IN MEMORIAM 
 FLORIAN CAJOR1 
 
MxL/L^J 
 
PLANE AND SPHERICAL 
 
 TRIGONOMETRY 
 
 BY 
 
 LEVI L. CONANT, Pii.D. 
 ? 
 
 PROFESSOR OF MATHEMATICS IN THE WORCESTER 
 POLYTECHNIC INSTITUTE 
 
 NEW YORK :. CINCINNATI : CHICAGO 
 
 AMERICAN BOOK COMPANY 
 
COPYRIGHT, 1909, BY 
 
 LEVI L. CONANT. 
 
 ENTERED AT STATIONERS' HALL, LONDON. 
 
 CAJOR1 
 
PREFACE 
 
 IN this work the author has attempted to produce a text- 
 book which should present in a concise and yet thorough 
 manner an adequate treatment of both the theoretical and the 
 practical sides of elementary trigonometry. The material here 
 presented has been gathered and tested during the course of 
 many years of experience in the class room, and the arrange- 
 ment and method of presentation are the result of numerous 
 experiments made for the purpose of ascertaining what could 
 be done most effectively in the limited time usually devoted 
 to this subject. 
 
 The problems given in connection with the different cases 
 under the solution of triangles are nearly all new, and are well 
 graded and sufficiently numerous to give the student ample 
 preparation for the various problems that arise in plane sur- 
 veying and in elementary astronomical and geodetic work. 
 That portion of the book which treats of theoretical trigo- 
 nometry has been written in the attempt to present this aspect 
 of the subject in the simplest and clearest manner, and at the 
 same time with the design of equipping the student for the 
 more advanced work in pure and applied mathematics which 
 is pursued in the later years of his college course. 
 
 The best English, French, and Italian text-books have been 
 consulted, as well as those published in this country. For 
 assistance in the preparation of the work thanks are due to my 
 colleague, Professor Arthur D. Butterfield, to Professor W. B. 
 Fite of Cornell University, to Professor O. S. Stetson of Syra- 
 cuse University, to Mr. C. G. Brown, head of the department 
 of mathematics in the Englewood, New Jersey, High School, 
 and to Mr. J. A. Bollard, instructor in mathematics in the 
 Worcester Polytechnic Institute. 
 
 LEVI L. CONANT. 
 
 WORCESTER POLYTECHNIC INSTITUTE, 
 WORCESTER, MASS. 
 
 918256 
 
ENGINEER'S TRANSIT, WITH GRADIENTEK 
 4 
 
CONTENTS 
 PLANE TRIGONOMETRY 
 
 CHAPTER PAGES 
 
 I. THE MEASUREMENT OF ANGULAR MAGNITUDE . . 7-19 
 
 II. TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE . 20-30 
 
 III. VALUES OF THE FUNCTIONS OF CERTAIN USEFUL ANGLES 31-35 
 
 IV. THE RIGHT TRIANGLE 36-50 
 
 V. THE APPLICATION OF ALGEBRAIC SIGNS TO TRIGO- 
 NOMETRY . . . . . . . . . 51-73 
 
 VI. TRIGONOMETRIC FUNCTIONS OF ANY ANGLE . . 74-84 
 VII. GENERAL EXPRESSION FOR ALL ANGLES HAVING A 
 
 GIVEN TRIGONOMETRIC FUNCTION .... 85-91 
 
 VIII. RELATIONS BETWEEN THE TRIGONOMETRIC FUNCTIONS 
 
 OF Two OR MORE ANGLES ...... 92-105 
 
 IX. FUNCTIONS OF MULTIPLE AND SUBMULTIPLE ANGLES . 106-113 
 
 X. INVERSE TRIGONOMETRIC FUNCTIONS .... 114-121 
 
 XI. THE GENERAL SOLUTION OF TRIGONOMETRIC EQUATIONS 122-130 
 
 XII. THE OBLIQUE TRIANGLE 131-155 
 
 XIII. MISCELLANEOUS PROBLEMS IN HEIGHTS AND DISTANCES 156-165 
 
 XIV. FUNCTIONS OF VERY SMALL ANGLES HYPERBOLIC 
 
 FUNCTIONS TRIGONOMETRIC ELIMINATION . . 166-175 
 
 SPHERICAL TRIGONOMETRY 
 
 XV. GENERAL THEOREMS AND FORMULAS .... 177-193 
 
 XVI. SOLUTION OF SPHERICAL TRIANGLES 194-213 
 
GREEK ALPHABET 
 
 Greek is written with the following twenty-four letters : 
 
 FORM 
 
 NAME 
 
 LATIN 
 EQUIVALENT 
 
 A 
 
 a 
 
 alpha 
 
 a 
 
 B 
 
 13 
 
 beta 
 
 b 
 
 r 
 
 7 
 
 gamma 
 
 g 
 
 A 
 
 8 
 
 delta 
 
 d 
 
 E 
 
 
 
 epsilon 
 
 e 
 
 Z 
 
 r 
 
 zeta 
 
 z 
 
 H 
 
 g 
 
 eta 
 
 e 
 
 @ 
 
 ></ 
 
 theta 
 
 th 
 
 I 
 
 t 
 
 iota 
 
 i 
 
 K 
 
 /c 
 
 kappa 
 
 c, k 
 
 A 
 
 \ 
 
 lambda 
 
 1 
 
 M 
 
 p 
 
 mu 
 
 m 
 
 N 
 
 ZV 
 
 nu 
 
 n 
 
 5 
 
 f 
 
 xi 
 
 X 
 
 O 
 
 
 
 o micron 
 
 6 
 
 n 
 
 7T 
 
 pi 
 
 P 
 
 p 
 
 P 
 
 rho 
 
 r 
 
 T 
 
 CT ? 
 
 T 
 
 sijma 
 tau 
 
 s 
 
 \ 
 t 
 
 T 
 
 V 
 
 upsilon 
 
 y 
 
 4> 
 
 <#> 
 
 phi 
 
 P h 
 
 X 
 
 % 
 
 chi 
 
 ch 
 
 
 
 i/r 
 
 psi 
 
 ps 
 
 n 
 
 CO 
 
 omega 
 
 o 
 
PLANE TRIGONOMETRY 
 
 CHAPTER I 
 THE MEASUREMENT OF ANGULAR MAGNITUDE 
 
 1. The size and shape of a plane triangle can be completely 
 determined when any three of its six parts are known, provided 
 at least one of the known parts is a side. 
 
 By means of certain ratios called trigonometric functions, 
 which will be defined later, trigonometry enables us to investi- 
 gate and to determine the unknown parts and the area of a tri- 
 angle when any three of the parts are known, provided at least 
 one of the known parts is a side. Hence, in its most elemen- 
 tary sense, 
 
 Trigonometry is that branch of mathematics which treats of 
 the solution of triangles. During the past two centuries the 
 sense in which the word " trigonometry " is used has been greatly 
 extended, and it is now understood to include the general sub- 
 ject of mathematical investigation by means of trigonometric 
 functions. 
 
 Plane trigonometry treats of plane triangles, and of plane 
 angles and their functions. 
 
 2. Angles. In its geometric sense the word " angle " is 
 defined as the difference in direction of two intersecting lines. 
 In trigonometry, however, this word receives an extension of 
 meaning, which must be fully understood at the outset. 
 
 Suppose two straight lines, OA and OB, are drawn from the 
 point in such a manner that they very nearly coincide. Let 
 one of the lines, OA, remain fixed in position, while the other, 
 OB, revolves on the point as a pivot. We are now free to 
 revolve OB, either back into actual coincidence with OA, or 
 
 7 
 
8 PLANE TRIGONOMETRY 
 
 forward, so as to enlarge the opening between the lines. At 
 any point of the revolution the angle AOB may be said to 
 have been formed, or generated, by the revolution of the 
 line OB. 
 
 In plane geometry angles greater than 180 are seldom em- 
 ployed, but in trigonometry the freest possible use is made 
 of such angles. Trigonometry even considers angles greater 
 than 360, meaning by an angle of that magnitude merely the 
 amount of revolution that has been performed by the moving 
 or generating line. 
 
 As an illustration of the meaning of the word " angle " used 
 in this sense, consider the movement of one of the hands of the 
 clock. Let the minute hand start from the position it occupies 
 at noon. In fifteen minutes it will move over or generate an 
 angle of 90 ; in thirty minutes an angle of 180 ; in forty-five 
 minutes an angle of 270 ; and in one hour an angle of 360. 
 Continuing, we may say that in two hours the minute hand 
 will move over an angle of 720, in three hours an angle of 
 1080, in four hours an angle of 1440, in n hours an angle of 
 rax 360, etc. 
 
 Again, suppose a runner to be competing in a two-mile race 
 on a circular track a quarter of a mile in length. If we sup- 
 pose a line to be drawn connecting the position of the runner 
 with the center of the circle formed by the track, the position of 
 the runner both on the track and in the race can be described 
 at any instant with perfect accuracy by giving the magnitude 
 of the angle through which this line has revolved since the 
 beginning of the race. 
 
 Thus, when the line has revolved through an angle, and hence 
 the runner has traversed an arc, of 180, he has completed one 
 eighth of a mile ; when he has traversed an arc of 360, he has 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE !> 
 
 completed one fourth of a mile ; and when he has finished 
 the race, he has run around the track eight times. In other 
 words, when he has finished the race the line that connects him 
 with the center of the track has revolved through an angle of 
 8 x 360, or 2880. During this time the runner has traversed 
 an arc of the same magnitude, i.e. of 2880. 
 
 It is at once seen that an idea is here introduced which is an 
 extension of the idea of the angle as it is ordinarily used in 
 geometry. This idea, which is fundamental in all work in 
 trigonometry involving angles, is the idea of formation or 
 generation in connection with the angle. Evidently a defini- 
 tion of this word is required which differs from that to which 
 the student has become accustomed in geometry ; and in the 
 extended sense here used, the term "angle " may be defined as 
 follows : 
 
 An angle is that relation of two lines which is measured by 
 the amount of revolution necessary to make one coincide with 
 the other. 
 
 3. The point about which the generating line revolves is 
 called the origin. The generating line is called the radius 
 vector. The line with which the radius vector coincides when 
 in its original position is called the initial line ; and the line 
 with which it coincides when in its final position is called the 
 terminal line. 
 
 4. Positive and negative angles. It is convenient, and often 
 necessary, to know not only the size of an angle, but also the 
 direction in which the radius vector has moved while generating 
 the angle. For this reason it is customary to speak of angles 
 as being either positive or negative. 
 
 If the radius vector moves in a direction opposite to that of 
 the hands of a watch when the face of the watch is toward the 
 observer, the angle it generates is said to be positive. The 
 motion of the radius vector as it generates the angle is then 
 said to be counter- clockivise. 
 
 If the radius vector moves in the same direction as the hands 
 of a watch when the face of the watch is toward the observer, 
 the angle it generates is said to be negative. The motion of 
 the radius vector is then called clockwise. 
 
10 
 
 PLANE TRIGONOMETRY 
 
 The angles AOB 1 and AOB 2 are positive angles, and the 
 angles AOB 3 and AOB 4 are negative angles. The initial line 
 in each case is OA, and the terminal lines are OB V OB^ OB S , 
 OB^ respectively. The direction of rotation for each angle 
 is indicated by the arrowhead. . 
 
 5. Angles are often described by referring them to some 
 position with reference to two intersecting lines, at right angles 
 to each other, of which one is horizontal and the other vertical. 
 It is customary to regard the horizontal line extending toward 
 the right as the initial line for all angles, when nothing is said 
 to the contrary. 
 
 If the radius vector, as shown in the figure, occupies any po- 
 sition between OX and OY, then the angle XOB l is said to be 
 
 in the first quadrant. If the 
 radius vector is between OY 
 and OX', the angle XOB 2 is 
 said to be in the second quad- 
 rant. Similarly, XOB 3 is said 
 to be in the third quadrant, and 
 XOB in the fourth quadrant. 
 These expressions only mean, 
 of course, that the terminal lines 
 lie in the first, second, third, and 
 fourth quadrants respectively. 
 
 6. In practical work the unit of measure that is always em- 
 ployed in dealing with angular magnitudes is the right angle 
 or some fraction of the right angle. This unit is chosen because: 
 
 (i) The right angle is a constant angle. 
 (ii) It is easy to draw or to construct in a practical manner, 
 (iii) It is the most familiar of all angles, entering as it does most 
 frequently into the practical uses of life. 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE 11 
 
 In geometry the right angle is the unit universally used. 
 In trigonometry two systems of measurement, involving the 
 use of two different units, are in common use. 
 
 7. The sexagesimal system. In this system the unit of 
 measure is the right angle. The right angle is divided into 90 
 equal parts, called degrees; each degree is divided into 60 equal 
 parts, called minutes; and each minute is divided into 60 equal 
 parts, called seconds. The symbols 1, 1', 1", are employed to 
 denote one degree, one minute, and one second respectively. 
 
 60 seconds (60") = one minute. 
 60 minutes (60') = one degree. 
 90 degrees (90) = one right angle. 
 
 This system is almost universally employed where numerical 
 measurements are to be made. It is, however, inconvenient 
 because of the multipliers, 60 and 90, which it introduces into 
 computations. 
 
 Another system, called the centesimal system, was proposed 
 in France a little over a century ago. In this system the 
 right angle is divided into 100 equal parts called grades, the 
 grade is divided into 100 equal parts called minutes, and 
 the minute is divided into 100 equal parts called seconds. 
 The centesimal system has been used to some extent in France, 
 but its use has never been looked upon with favor in other 
 countries. If its use were to become general, an enormous 
 amount of labor would have to be expended in the re-computa- 
 tion of existing tables. For this reason the centesimal system, 
 in spite of its intrinsic advantage over the sexagesimal system, 
 will probably never come into general use. 
 
 EXERCISE I 
 
 Express the following angles in terms of a right angle : 
 
 1. 30. 3. 68 14'. 5. 228 46'. 
 
 2. 120. 4. 114 38' 12". 6. 321 14' 22". 
 
 7. The angles of a right triangle are in arithmetical progres- 
 sion, and the greatest angle is three times the least ; what 
 is the number of degrees in each angle ? 
 
12 
 
 PLANE TRIGONOMETRY 
 
 Show by a figure the position of the revolving line when it 
 has generated each of the following angles : 
 
 8. | rt. angle. 11. 2^ rt. angles. 14. -150. 
 
 9. - 1 rt. angle. 12. 4| rt. angles. 15. 275. 
 10. -1| rt. angles. 13. 17| rt. angles. 16. 1225. 
 
 17. The angles of a triangle are such that the first contains 
 a certain number of degrees, the second 10 times as many min- 
 utes, and the third 120 times as many seconds ; find each 
 angle. 
 
 18. How many degrees are passed over by each of the hands 
 of a watch in one hour ? 
 
 Represent by a figure each of the following angular magni- 
 tudes : 
 
 19. l|-+2^ rt. angles. 23. 4 rt. angles. 
 
 20. 2| 1^ rt. angles. 24. 4n rt. angles (n integral). 
 
 21. - 4 rt. angles. 25. (4 n -f 1) rt. angles. 
 
 22. 6^ rt. angles. 26. (4 n 2) rt. angles. 
 
 8. Circular measure. Another system for the measurement 
 of angles has, in modern times, come into vogue. It is exten- 
 sively used in work connected with 
 higher branches of mathematics, and 
 is the almost universal unit employed 
 in theoretical investigations. 
 
 The unit of circular measure is the 
 radian, which is obtained as follows : 
 
 On the circumference of a circle lay 
 off an arc, AB, equal in length to the 
 radius of the circle, OA. The angle 
 AOB is called a radian. Accordingly: 
 
 A radian is an angle at the center of a Circle, subtended by an 
 arc equal in length to the radius of the circle. 
 
 In order to use the radian as a unit of measure, it is necessary 
 to prove that it is a constant angle ; or, in other words, it is 
 necessary to prove that the magnitude of the radian is the same 
 for all circles. 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE 13 
 
 9. THEOREM. The radian is a constant angle. 
 
 By definition the radian is measured by an arc equal in length 
 to the radius. Also, 
 
 An angle of two right angles is measured by an arc equal to 
 one half the circumference. 
 
 Therefore, since angles at the center of a circle are to each 
 other as the arcs by which they are subtended (Geom.), 
 
 a radian radius R 1 
 
 = = 
 
 2 rt. angles semi-circumference irR TT 
 .-. a radian = ~ of 2 right angles = 1 x 180 = 57.2958 
 
 = 57 17' 44. 8" nearly. 
 Therefore the radian is a constant angle. 
 
 10. The reason for the use of this unit may now be readily 
 understood. 
 
 Since 1 radian = ?_L^, 
 
 7T 
 
 .. TT radians = 2 rt, A = 180. 
 Similarly, - radians = 1 rt. Z = 90. 
 
 - radians = | rt. Z = 30. 
 6 
 
 radians = 60. 
 o 
 
 1 TT radians = 120. 
 f TT radians = 270. 
 
 2 TT radians = 4 rt. A = 360. 
 5 TT radians = 10 rt. A = 900. 
 
 18 TT radians = 36 rt. A = 3240. 
 
 This gives a method for the expression of the value of an 
 angle that is often far more convenient than that furnished 
 by the sexagesimal system. It is especially useful in dealing 
 with angles of great magnitude, and it greatly simplifies many 
 of the investigations and formulas of trigonometry. 
 
14 FLAKE TRIGONOMETRY 
 
 11. The symbol r is often used as the symbol to denote 
 radians. Thus, 6 r would stand for 6 radians, O r for 6 radians, 
 7r r for TT radians, etc. 
 
 When the value of the angle is expressed in terms of TT, and 
 when the unit is the radian, it is customary to omit the r and to 
 give the value of the angle in terms of TT alone, the r being 
 understood. Thus, when referring to angular magnitude, TT 
 
 means TT radians, ~ means radians, 6 TT means 6 TT radians, 
 
 2 
 
 etc. When the word "radians" is omitted, the student should 
 mentally supply it, or he may readily fall into the error of sup- 
 posing that TT alone means 180. The value of TT is the same 
 here as in geometry, i.e. 3.14159. Neither TT nor any multiple 
 of TT can by itself ever denote an angle. It simply tells how 
 many radians the angle contains. Too great care cannot be 
 exercised in keeping this distinction clear. 
 
 12. To find the number of degrees in an angle containing a 
 given number of radians, and vice versa. 
 
 Since 180 = IT radians, 
 
 1 = of a radian, 
 180 
 
 180 , , 
 and l r = ol a decree. 
 
 Hence, 
 
 To convert radians into degrees, multiply the number of radians 
 
 i 180 
 % ' 
 
 To convert degrees into radians, multiply the number of degrees 
 
 by -E-. ' 
 
 y 180 
 
 EXERCISE II 
 1. How many degrees are there in 3 radians ? 
 
 = 3 x = = m.89 nearly 
 
 7T 7T 
 
 = 171 53' 24" nearly. 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE 15 
 
 2. How many radians are there in 113 15' ? 
 113 15' = 113.25. 
 
 Since 1 = ^, 
 
 180 
 
 113.25 = 11 3.25 x -^ 
 180 
 
 _ 113.25 x 3.14159 
 
 180 
 
 = 1.976 + radians. 
 
 Express in degrees, minutes, and seconds the following 
 angles: 
 
 5. ^- 7. ^- 9. 3?r r . 
 
 Express in radians the following angles : 
 
 11. 45. 14. 225. 17. 286 38'. 20. A. 
 
 Q0 
 
 12. 120. 15. 60 30'. 18. 684 26'. 21. . 
 
 7T 
 
 13. 135. 16. 115 45'. 19. n. 22. 78.126. 
 
 23. The difference between two acute angles of a right tri- 
 angle is ^ radians; find the value of each of the angles in degrees. 
 
 5 
 
 24. If one of the angles of a triangle is 56 and a second 
 
 angle is ^-^ radians, find the value of the third angle. 
 5 , 
 
 25. The angles of a triangle are in A. P., and the smallest 
 is an angle of 36 ; find the value of each in radians. 
 
 26. The value of the angles of a triangle are in A. P., and 
 the number of degrees in the least is to the number of radians 
 in the greatest as 60 : TT ; find each angle in degrees. 
 
 27. The value of one of the interior angles of one regular 
 polygon is to the value of one of the interior angles of another 
 regular polygon as 3 : 4, and the number of sides in the first is 
 to the number of sides in the second as 2 . 3 ; find the number of 
 sides in each. 
 
16 
 
 PLANE TRIGONOMETRY 
 
 28. Find the number of radians in one of the interior angles 
 of a regular pentagon ; a regular heptagon ; a regular nonagon. 
 
 29. The angles of a triangle are in A. P., and the number 
 of radians in the least angle is to the number of degrees in 
 the mean angle as 1:120; find the value of each angle in 
 radians. 
 
 30. The angles of a quadrilateral are in A. P., and the 
 greatest is double the least; find the value of each angle in 
 radians. 
 
 31. Express in degrees and in radians the angle between the 
 hour hand and the minute hand of a clock at (1) five o'clock ; 
 (2) quarter-past nine ; (3) half -past ten. 
 
 32. At what time between four and five o'clock are the hour 
 and the minute hands of a clock 90 apart ? At what time are 
 they 180 apart ? 
 
 13. THEOREM. The circular measure of an angle whose vertex 
 is at the center of a circle is the ratio of its intercepted arc to the 
 
 radius of the circle. 
 
 By geometry, 
 
 arc AC 
 
 Z.AOB arc A B a radius' 
 
 arc AC ' X/ _ AOB 
 radius 
 
 arc A 
 
 : x a radian. 
 radius 
 
 Hence, the number of radians in any angle is found by dividing 
 the arc which subtends that angle by the radius of the circle. 
 
 The formula just obtained is often expressed in the following 
 convenient, though somewhat incorrect, form : 
 
 arc = angle x radius. (1) 
 
 The meaning of this formula is, that the length of any arc of a 
 circle is equal to the length of the radius of the circle multiplied 
 by the number of radians in the angle subtended by the arc. 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE 17 
 
 EXERCISE III 
 
 1. Find in degrees the angle subtended at the center of a 
 circle whose radius is 30 ft. by an arc whose length is 46 ft. 6 in. 
 
 In this circle the arc which subtends an angle equal to a radian is 30 ft. 
 in length, and the required angle is subtended by an arc whose length is 
 46.5 ft. 
 
 ,. ^radians = *?? x i* = 88.8'. Ans. 
 30 300 TT 
 
 2. In a circle whose radius is 8 ft., what is the length of 
 the arc subtended by an angle at the center, of 26 38' ? 
 
 Let x = the length of the required arc. 
 
 ber of radians in 26 
 . (See Art. 13.) 
 
 Then, - = the number of radians in 26 38' 
 
 8 
 
 x = 3.72 ft. nearly. 
 
 3. In running at a uniform speed on a circular track, a man 
 traverses in one minute an arc which subtends at the center of 
 the track an angle of 3| radians. If each lap is 880 yd., how 
 long does it take him to run a mile ? 
 
 Let x the number of yards traversed during each minute. 
 Then, x = 3^ x R. (See Art. 13.) 
 
 99 
 
 = x 140 = 440 yards. 
 
 Since Y& = 4, 
 
 therefore he can run a mile in 4 min. 
 
 4. The radius of a circle is 15 ft. ; find the number of radians 
 in an angle at the center subtended by an arc of 26^ ft. 
 
 5. The radius of a circle is 32 ft.; find the number of 
 degrees in a central angle subtended by an arc of 5 TT ft. 
 
 6. The fly wheel of an engine makes 3 revolutions per 
 second ; how long will it take it to turn through 5 radians ? 
 
 7. The minute hand of a tower clock is 2 ft. 4 in. long ; 
 through how many inches does its extremity move in half an 
 hour ? 
 
 CONANT'S TRIG. 2 
 
18 PLANE TKIGONOMETRY 
 
 8. A horse is picketed to a stake ; how long must the rope 
 be to enable the horse to graze over an arc of 104.72 yd., the 
 angular measurement of this distance being 150 ? 
 
 9. What is the difference between the latitude of two places, 
 one of which is 150 mi. north of the other, the radius of the 
 earth being reckoned as 4000 mi. ? 
 
 10. The angle subtended by the sun's diameter at the eye of 
 an observer is 32' ; find approximately the diameter of the sun, 
 if its distance from the observer is 92,500,000 mi. 
 
 NOTE. In this example the diameter of the sun, which is really the chord 
 of an arc of which the observer's eye is the center, may be regarded as 
 coinciding with the arc which it subtends. 
 
 11. Calling the earth a sphere, and the arc of a great circle 
 on its surface subtended by an angle of 1 at the center 69 J mi., 
 what is the radius of the earth ? 
 
 12. A railway train is traveling at the rate of 60 mi. an 
 hour on a circular arc of two thirds of a mile radius ; through 
 what angle does it turn in 10 sec. ? 
 
 13. The radius of a circle is 3 m.; find approximately, in 
 radians, the arc subtended by a chord whose length 'is also 3 m. 
 
 14. How many seconds are there in an angle at the center 
 of a circle subtended by an arc one mile in length, the radius 
 of the circle being 4000 mi. ? 
 
 15. In the circle of Ex. 14, what is the length of an arc that 
 subtends an angle of 3' at the center? 
 
 16. What is the ratio of the radii of two circles, if the semi- 
 circumference of the greater is equal in length to an arc of the 
 smaller which subtends an angle of 225 at the center? 
 
 17. If an arc 1.309 m. long subtends at the center of a 
 circle whose radius is 10 m. an angle of 7 30', what is the ratio 
 of the circumference of a circle to its diameter ? 
 
 18. The circumference of a circle is divided into four parts 
 which are in A. P., and the greatest part is twice the least ; find 
 the number of radians in the central angle subtended by each 
 of the respective arcs into which the circumference is divided. 
 
THE MEASUREMENT OF ANGULAR MAGNITUDE 19 
 
 19. The diameter of a circle is 80 m., and an arc whose 
 length is 15.75 m. subtends a central angle of 22 30'; find the 
 value of TT to four decimal places. 
 
 20. How many radians are there in a central angle subtended 
 by an arc of 20" ? 
 
 21. The semicircumference of a certain circle is equal to its 
 diameter plus a given arc ; find the central angle subtended by 
 that arc. 
 
 22. Find the radius of a globe such that the distance of 3 in. 
 on its surface, measured on an arc of a great circle, may subtend 
 at the center an angle of 1 45'. 
 
 23. At what distance does a telegraph pole, 24 ft. high, sub- 
 tend an angle of 10', the eye of the observer being on the same 
 level as the foot of the pole ? 
 
 NOTE. The suggestion made in connection with Ex. 10 applies to this 
 problem also. When a chord and its arc differ but little from each other 
 it is often convenient to use the arc in place of the chord. 
 
 24. At what distance will a church spire 100 ft. high subtend 
 an angle of 9', the angle being measured from the level on 
 which the church stands? 
 
 25. The difference between two angles is - - radians, and 
 
 y 
 
 their sum is 76 ; what is the value of each of the angles ? 
 
 26. If an incline rises 5 ft. in 300 ft., find the angle it makes 
 with its projection on the horizontal plane. 
 
 27. How many radians are there in an angle of a? 
 
 28. How many radians are there in an angle of 10" ? 
 
CHAPTER II 
 TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 
 
 14. In the present chapter only acute angles will be con- 
 sidered. In Chapter V the definitions here given will be 
 extended to angles of any magnitude. 
 
 Let any line having a given initial position OA begin to 
 revolve on as a pivot, in a direction opposite to the direction 
 
 A ' in which the hands of a 
 clock move. Let the angle 
 which it generates be the 
 acute angle A OA' . 
 A From any point in 
 
 either side of the angle, 
 
 asP in the side OA', let fall a perpendicular PM to the other 
 side of the angle. 
 
 The trigonometric functions, or ratios, of the angle AOA 
 are then denned as follows : 
 
 The sine of the angle A OA is the ratio ^ = side opposite 
 
 OP hypotenuse 
 
 The cosine of the angle AOA' is the ratio M = side adjacent 
 
 OP hypotenuse 
 
 The tangent of the angle A OA is the ratio = e opposite 
 
 OM side adjacent 
 
 The cotangent of the angled OA is the ratio ^ = side adjacent 
 
 MP side opposite 
 
 The secant of the angle AOA f is the ratio = hypotenuse > 
 
 OM. side adjacent 
 
 The cosecant of the angle A OA is the ratio QL = h .Ypotenuse 
 
 MP side opposite 
 20 
 
TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 21 
 
 In addition to these there are two other functions, less 
 frequently used, 
 
 versed sine of A OA' = 1 cosine of AOA', 
 coversed sine of A OA 1 = 1 sine of A OA'. 
 
 In writing, it is customary to abbreviate the words " sine," 
 "cosine," "tangent," etc., and to express the functions of any 
 given angle, a?, as follows : 
 
 sin x, cos x, tan a?, cot a?, sec #, esc #, vers a?, covers x. 
 
 It should be noted at the very beginning that these functions 
 are mere numbers, and their values can be expressed numerically 
 whenever the angle to which they belong is known. Thus, 
 sin x may equal J, J, or any other proper fraction ; tan x 
 may equal 2, 5, 18, or any other real number whatever. The 
 expression sin a;, for example, is a single symbol, and is to 
 be regarded as the name of the number which expresses the 
 value of the particular ratio in question. The expressions 
 sin, cos, etc., have no meaning unless some angle is asso- 
 ciated with them. 
 
 15. The trigonometric functions are always constant for the 
 same angle. 
 
 From any points in either side of the angle x, as A, 
 A f , A", drop perpendiculars AB, A'B', A"B" to the other 
 side. Then, by geometry, the triangles A OB, A' OB 1 , A" OB" 
 are similar, and their homologous sides are proportional. 
 Therefore, A 
 
 BA_B'A' _B"A" _ 
 OA~ OA' = '' OA" = 
 
 OB OB' OB" 
 
 OA OA' OA" 
 
 = cos a:, 
 
 U B" A B 
 
 and similarly for the other functions. 
 
 Hence, the value of any function of x remains unchanged as 
 long as the value of the angle itself remains unchanged. 
 
 Any increase or decrease in the size of the angle pro- 
 duces a change in the value of the function, or ratio. From 
 this it is readily seen why these ratios are called functions of 
 the angle. 
 
 
22 PLANE TRIGONOMETRY 
 
 From the -last paragraph the following important results may 
 now be stated : 
 
 (1) To every acute angle there corresponds one and only one 
 value of each trigonometric function. 
 
 (2) Two unequal acute angles have different trigonometric 
 functions. 
 
 (3) To each value of any trigonometric function there is but 
 one corresponding acute angle. 
 
 16. Fundamental relations between the trigonometric func- 
 tions of an acute angle. From the definitions given in Art. 14 
 it follows immediately that the sine of the angle x is the recip- 
 rocal of the cosecant x ; also that cosine x is the reciprocal of 
 secant #, and that tangent x is the reciprocal of cotangent x. 
 That is, . 
 
 cscrr' 
 
 cos# = , or cos # sec # = 1, 
 
 sec # 
 
 tan x = , or tan ^ cot a: = 1. 
 
 cot x 
 
 Also, it follows from the definitions that 
 
 sin x T cos a: 
 
 tan#=- , and cot x 
 
 cosx sin a; 
 
 In the right triangle ABC, a 2 + b 2 = c 2 . Therefore, 
 
 c , 
 
 and _ = ! + 
 
 a 2 a 2 
 
 
 From these equations it follows that ^ 
 
 sin 2 a? + cos 2 x - 1 , (3) 
 
 sec 2 x 1 + tan 2 x, (4) 
 
 esc-' JT, = 1 + cot 2 x. (5) 
 
TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 23 
 
 17. From the definitions of the trigonometric functions, 
 p. 20, it follows that in any right triangle any function of 
 either of the acute angles is equal to the corresponding co- 
 function of the other -acute angle. For example, 
 
 sinJ. = -, and cos=-. .-. sin A cos B= cos(90 A}. 
 G c 
 
 Similarly, cos A = sin B = sin (90 J.), 
 
 tan A = cot B = cot (90 - J.), 
 cot A = tan B = tan (90 - A), 
 sec A = esc B = esc (90 - A), 
 esc A = sec B = sec (90 - A), 
 vers A = covers B = covers (90 A), 
 
 covers A = vers B = vers (90 A). 
 Hence, 
 
 Any function of an acute angle is equal to the corresponding co- 
 function of its complement. 
 
 The meaning of the prefix co, in cosine, cotangent, cosecant, 
 and coversed sine appears from the above. The cosine of an 
 angle is the complement-sine, i.e. the sine of the complement of 
 that angle: the tangent of an angle is the cotangent of its com- 
 plementary angle; and a similar statement may be made for 
 the secant and for the versed sine of an angle. 
 
 ORAL EXERCISES 
 Prove the following relations : 
 
 1. sin A cot A = cos A. 
 
 SOLUTION. Using only the left number of the equation, we proceed as 
 
 follows : ___ A 
 
 sin A cot A = sin A -. (Art. 16, (2).) 
 
 sin A. 
 
 = cos A . 
 
 .*. sin A cot A = cos A . 
 
 2. cos A tan A = sin A. 
 
 3. (sec A tan A) (sec A + tan A) = 1. 
 
 4. (esc A cot ^4)(csc A -f- cot A) = 1. 
 
 5. (tan A + cot A) sin A cos ^4 = 1. 
 
24 PLANE TRIGONOMETRY 
 
 6. (tan A cot A) sin A cos A = sin 2 A cos 2 A. 
 
 7. sin 2 -*- esc 2 6 = sin 4 0. 
 
 8. sin 4 0- cos 4 0=sin 2 0-cos 2 0. 
 
 9. (sin - cos 0) 2 = 1 - 2 sin cos 0. 
 
 10. (sin - cos 0) 2 + (sin + cos 0) 2 = 2. 
 
 11. sec cot = esc 0. 
 
 12. (tan + cot 0) 2 = sec 2 + esc 2 (9. 
 
 13. cot 2 9 cos 2 = cot 2 - co., 2 0. 
 
 14. sin 2 + esc 2 6 + 2 = (sin (9 + esc 0) 2 . 
 
 15. vers 6 (1 + cos 0) = sin 2 0. 
 
 16. sin 2 (9 + vers 2 (9 = 2(1- cos (9). 
 
 17. sec sin tan = cos 0. 
 
 18. esc 6 cos cot 6 = sin 0. 
 
 19. sec 2 (9 - tan 2 = sin 2 + cos 2 0. 
 
 20. esc 2 (9 -cot 2 = sin 2 (9 + cos 2 0. 
 
 EXERCISE IV 
 Prove the following identities : 
 
 1. cos 4 d - sin 4 = 2 cos 2 6-1. 
 SOLUTION. Using only the left member of the equation, we proceed as 
 
 = (1) (cos 2 B - sin 2 0) 
 
 = cos 2 - (1 - cos 2 0) (Art. 16, (3).) 
 
 = 2cos 2 0- 1. 
 
 2. sin 3 + cos 3 = (sin + cos 0)(1 - sin cos 0). 
 
 3 smA +1+008^2080^. 
 1 + cos A sin A 
 
 4. (1 + sin a + cos a) 2 = 2(1 + sin a)(l + cos a). 
 
 5. ( COS 3 - sin 3 0) = (cos - sin 0)(1 + sin cos 0). 
 
 6. cos 2 /3 (sec 2 /3- 2 sin 2 /3) = cos 4 /3 + sin 4 /3. 
 
 .< 
 
t 
 
 TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 25 
 
 sin (S 1 4- sin /3 9 ,., 
 
 7. :: :~ 5 + H = sec 2 ff (csc/3 + 1). 
 
 1 sin /8 sin 
 
 8. tan a + tan /3 = tan a tan /:? (cot a + cot /3). 
 
 9. cot a 4- tan /3 = cot a tan /3 (tan a + cot /3). 
 10. cos 6 a 4- sin 6 a = 1 3 sin 2 a cos 2 a. 
 
 /I sin A 
 
 11. \/ 7 = sec A tan A. 
 
 *1 4- sin A 
 
 12. sin 2 <9 tan 2 04-cob 2 cot 2 = tan 2 4- cot 2 <9- 1. 
 
 13 . CSC / + CSC / =2 sec 2 A. 
 esc JL 1 esc J. -h 1 
 
 esc A 
 
 14. = cos ^L. 
 cot A + tan A 
 
 15. (1 sin a cos ) 2 (1 + sin a + cos a) 2 = 4 sin 2 a cos 2 a. 
 
 16. (sec A H- cos A) (sec A cos J.) = tan 2 A + sin 2 ^. 
 
 17. = sin A cos A. 
 
 cot ^4. H- tan A 
 
 1 tan A _ cot J. 1 
 1 + tan A ccff-A+1' 
 
 19. sjn 3 J. cos J. + cos 3 A sin ^4 = sin A cos A. * 
 
 20. sin 2 J. cos 2 ^L + cos 4 A = 1 sin 2 A. 
 esc a sec a cot a tan a 
 
 cot a -f- tail a esc a + sec a 
 1 + tan 2 A sin 2 A 
 
 21. 
 
 22. 
 
 23. sec A-tauA l _ 2sQGA tan A + 2 tan2 ^ 
 sec J. 4- tan ^4. 
 
 24. tan 2 a sec 2 a 4- cot 2 a esc 2 a 
 
 = sec 4 a esc 4 a 3 sec 2 a esc 2 a. 
 
 tan .A cot A 
 
 25. T + ^ = sec ^4. esc y 4- 1. 
 
 1 cot A 1 tan ^1 
 
 cos A sin ^4. ,, , ,, 
 
 26. - = sin A + cos A. 
 1 tan A 1 cot A 
 
26 PLANE TRIGONOMETRY 
 
 27. COt 4 A + COt 2 A = CSC 4 A CSC 2 A. 
 
 28. Vcsc 2 A I = cos A esc ^4. 
 
 29. tan 2 ^4 - sin 2 A = sin 4 .A sec 2 A. 
 
 30. (1 + cot^4. csc A) (I + tan J. + sec A) =2. 
 
 1 11 1 
 
 31. 
 
 32. 
 
 csc A cot A sin .A sin A csc .A + cot A 
 cot .A cos A. cot A cos vl 
 
 cot A + cos A cot A cos ^4. 
 
 33. 2 - vers 2 = sin 2 0+2 cos 0. 
 
 34. sin 8 A cos 8 .A = (sin 2 A cos 2 A)(l 2 sin 2 A cos 2 A). 
 cos ^1 esc A - sin A sec ^ 
 
 3g 
 
 
 cos ^ + sin ^. 
 
 tan A + sec ^4. 1 _ 1 + sin A 
 
 tan A sec A + 1 c< >s A 
 
 37. (tan a + csc ) 2 (cot fi sec a) 2 
 
 = 2 tan a cot /3(csc a.+ sec /3) 
 
 38. 2 sec 2 a sec 4 a 2 csc 2 a + csc 4 a = cot 4 a tan 4 Tx. 
 
 39. (sin a + csc a) 2 + (cos a + sec a) 2 = tan 2 a + cot 2 a -f 7. 
 
 v x . sec A csc, A 
 
 40. (1 + cot A + tan A) (sin J. cos A)= - 
 
 csc 2 J. sec 2 A 
 
 2 
 
 41. 2 vers^l -f cos 2 J. = 1 + vers 
 
 42. S6C x ~ tan * = 1 + 2 tan x (tan g - sec x). 
 sec a; + tan x 
 
 2 sin 6 cos cos 6 
 
 43. - - - - r = COL (7. 
 
 44. (sin a cos /3 + cosa sin /3) 2 4- (cos a cos /S sin a sin/^) 2 =l 
 
 45. (ta,^ + sec^ = l^. 
 
 1 sin 6 
 
TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 27 
 
 18. Limits of the values of the trigonometric functions of an 
 acute angle. 
 
 Since sin 2 A + cos 2 A = 1, 
 
 and since each term, being a square, is positive, neither sin 2 A 
 nor cos 2 A can be greater than unity. Hence, neither sin A nor 
 cos^l can be numerically greater than unity. 
 
 Since esc A is the reciprocal of sin A, and sec A is the recip- 
 rocal of cos A, both sec A and esc A can have any values numeri- 
 cally greater than unity, but neither can ever be numerically 
 less than unity. 
 
 Since sec 2 A=\ + tan 2 J., 
 
 tan A = Vsec 2 ^. 1. 
 
 Hence, tan A can have any value between and oo. And 
 since cot A is the reciprocal of tan A, therefore cot A can have 
 any value between oo and 0. 
 
 These results are summarized as follows : 
 
 When A is an acute angle, 
 
 sin^L can take any value between and + 1, 
 cos A can take any value between -f- 1 and 0, 
 tan A can take any value between and +00, 
 cot A can take any value between + GO and 0, 
 sec A can take any value between -f 1 and -foo, 
 esc A can take any value between +00 and + 1. 
 
 These results also follow directly from the definitions of the 
 functions of an acute angle, p. 20. 
 
 19. To express all the trigonometric functions in 
 terms of any one of them. 
 
 From any point in either side of the angle 
 A let fall a perpendicular upon the otlu r 
 side. Let the hypotenuse of the right 
 triangle thus formed be taken as unity, 
 
28 PLANE TRIGONOMETRY 
 
 and call the perpendicular a. Then the remaining side of the 
 right triangle is Vl a 2 . Then, 
 
 sin A = - a = sin A, 
 
 cos A = Vl a 2 = Vl sin 2 A, 
 sin A 
 
 tan A = 
 
 Vl - a 2 Vl - sin 2 A 
 
 cot A = 
 
 Vl - sin 2 A 
 sin A 
 
 sec . = 
 
 Vl - a 2 Vl - sin 2 
 
 csc . = -= 
 
 , 
 sin .A 
 
 This gives the value of each of the functions, except the vers A 
 and the covers A, in terms of sin A. 
 
 To express the values of the functions in terms of cos J., 
 tan A, or of any other given function of A, proceed in a similar 
 manner. It is not best, however, to assume the hypotenuse 
 equal to unity for all cases. Sometimes the side opposite the 
 given angle should be taken as unity, and sometimes the side 
 c adjacent. For example, to find the 
 other functions of A in terms of 
 tan A, assume the side adjacent A 
 equal to unity, and let the side oppo- 
 A B site the same angle equal a ; then the 
 
 hypotenuse of the right triangle equals VI + a 2 , and the* required 
 values are found as follows : 
 
 tan A = - = a = tan A, 
 
 Vl + a 2 Vl + taii 2 ^. 
 
 -V 
 
TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 29 
 cos .4 = - = , 
 
 tan 
 
 a tan A 
 
 In this work it will be noticed that the side adjacent to A is 
 assumed equal to unity, while in the preceding the hypotenuse 
 was assumed to be unity. Any other supp6sition might be 
 made with equal correctness, but no other would be equally 
 convenient. 
 
 EXERCISE V 
 
 1. Express all the other functions of 6 in terms of cos 6. 
 
 This problem can be solved, and the required values found, 
 in a manner similar to that employed in finding the values of 
 each of the other functions in terms of sin 0, or tan 0, which 
 has just been illustrated. Or the values can be found by means 
 of the relations deduced in Art. 16. Thus : 
 
 = vi- cos 2 6, 
 si ii# Vl cos 
 
 tan = 
 
 cos cos 
 
 A ~~ 
 
 : ,etc. 
 
 Sill 
 
 2. Express all the other functions of in terms of cot 6. 
 
 3. Express all the other functions of in terms of sec 0. 
 
 4. Express all the other functions of 6 in terms of esc 6. 
 
 5. Given sin 6 = f , find cos 6 and tan 0. 
 
 cos 
 
 B = Vl - sin 2 = Vl - ^ = i V21. 
 
 cos0 5 5 5 V21 V21 21 
 
30 
 
 PLANE TRIGONOMETRY 
 
 6. Construct the angle 6 if tan 6 = f . 
 
 The angle 6 may be considered one of the acute angles of a right triangle. 
 Hence, to construct 6 we have only to construct a right triangle whose legs 
 are respectively 2 and 7. Since tan = f , is the acute angle opposite the 
 
 Bide 2 ' 11. 
 
 7. If sin = -j3_, find sec 0. 
 
 8. If sin A = J-J, find vers A. 
 
 9. If cos = f, find esc 6 and tan 0. 
 
 10. If cos = |, find cot and sec 0. 
 
 11. If tan A = J-J, find sec J. and cos A. 
 
 12. If tan. A = |, find esc A and cos .4. 
 
 13. If cot A = | , find sin J. and cos A. 
 
 14. If sec B = 5, find siri J5 and tan .#. 
 
 15. If sec B = |^, find tan .5 and vers B. 
 
 16. If esc A = 8, find cos A and tan A. 
 
 17. If esc JL = f , find sin A and sec A. 
 
 18. Find all the functions of each of the acute angles, ^4, B, 
 of the right triangle whose sides are 8, 15, 17. 
 
 19. Find all the functions of each of the acute angles, A, B, 
 of the right triangle whose sides are x + y, 
 
 2 xu 
 
 x y x-y 
 
 20. . If sin 2 + cos = 2|, find tan 0. 
 
 21. If tan 2 - sec 6 = f>, find cos 0. 
 
 22. If 10 sin 2 6 - 5 cos = - |, find esc 6. 
 
 23. If sin + cot = 4y, find 0080. 
 
 24. If sin 0, = a and tan 6 = ft, prove (1 - a 2 )(l - ft 2 ) = 1 . 
 
 ' 
 
 
 \ \ 
 
 
CHAPTER III 
 
 VALUES OF THE FUNCTIONS OF CERTAIN USEFUL 
 
 ANGLES 
 
 20. Functions of an angle of 0. If the angle A is very 
 small, then in considering the value of sin A, that is, the ratio 
 
 CB 
 
 - , it is at once seen chat the numerator, CB, is very small in 
 
 comparison with the denominator, AB. Hence, the numerical 
 value of sin A is very small when the angle A is very small. 
 Also, if A decreases, the numerator of the fraction will also 
 decrease, while the denominator will 
 remain constant ; and as the angle 
 approaches as a limit, the sine of the 
 
 angle will also approach as a limit. When the angle becomes 
 0, that is, when A B coincides with A C, we shall have CB = 0, 
 and AB = AC. Hence, 
 
 sin 0= -=0, 
 
 When we say that sin A when A = 0, we simply mean 
 that, if A is made small enough, we can make the value of CB, 
 and hence the value of sin A as small as we please ; or, to ex- 
 press the same statement in different words, we can make sin A 
 smaller than any assignable quantity. 
 
 Hence, as stated above, sin A approaches as a limit when 
 A approaches as a limit. 
 
 In a similar manner, we interpret the statements cosO = l, 
 tan 90 = oo , etc,, as meaning that cos A approaches 1 as a limit, 
 tan A approaches oo as a limit, etc., when A approaches as a 
 limit, when A approaches 90 as a limit, etc. 
 
 31 
 
32 
 
 PLANE TRIGONOMETRY 
 
 21. Functions of an angle of 30. Let OAC be an equilateral 
 triangle ; then is it also equiangular. From the vertex draw 
 OB perpendicular to AC. Then in the right triangle GAB the 
 angle A = 60, and the angle A OB = 30. Also, 
 
 theleg AB=IAC= 
 Let AB = a. Then OA = 2 a, and 
 
 = V 6U 2 - AB* = V4 a 2 - a 2 = V3 a 2 = a V3. 
 
 The trigonometric functions of 30 can now be found as 
 follows : 
 
 OA 
 
 tan 30= B A = -A_ = JL = 1 V3, 
 av /3 V3 3 
 
 BA 
 
 V3 
 
 esc 30 = = = 2. 
 BA a 
 
 22. Functions of an angle of 45. Let OAB be an isosceles 
 right triangle. Each of the acute angles is 45, and the leg OB 
 equals the leg AB. ^4 
 
 Let AB = a. Then OB = a and OA = a V2, 
 and we have : 
 
 sin 45' 
 
 cos45=^ = 
 
 - 
 2 
 
FUNCTIONS OF CERTAIN USEFUL ANGLES 
 
 - BA - a --\ 
 ~ ~' 
 
 33 
 
 CSC 45=^= = V2. 
 BA a 
 
 23. Functions of an angle of 60. Let OAC be an equilateral 
 triangle. Then is it also equiangular. From the vertex A 
 draw AB perpendicular to 00. Then in the right triangle 
 OAB, angle 0= 60, and angle OAB= 30. Also, OB = OC 
 = \ OA. 
 
 Let OB = a. Then OA = 2 a, and AB = V OA* - OB* 
 
 = V42_ a 2 = V3a2 = 6? V3. 
 
 The trigonometric functions of 60 can now be found as 
 follows : 
 
 *.!. V 5 ,i - 
 
 OB a 
 
 cot60 = ^^ = -^=- J L = i 
 BA aV3 V3 3 
 
 fO 4 9 /, 9 9 
 
 csc 60 - ^ = ^^ =-^- = 
 
 O a 
 
 24. Functions of an angle of 90. Let the angle AOB (p. 34) 
 be very nearly a right angle. Then the angle A is very small, 
 and B the foot of the perpendicular from A to OB is very near 
 the vertex 0. When the angle approaches a right angle, AB 
 
 CON A NT'S TKIO. - 3 
 
34 
 
 PLANE TRIGONOMETRY 
 
 will approach coincidence with AO, and B will approach coinci 
 dence with 0. Hence, 
 
 . o BA OA - 
 
 YA 
 
 one 
 
 cos 90 = = 
 
 
 
 OA OA 
 BA OA 
 
 0, 
 
 _ 
 
 BA OA 
 
 * =-^=ir 
 
 OA OA 
 
 The real meaning of these equations is that, as the angle ap- 
 proaches 90 as a limit, the sine of the angle approaches 1 as a 
 limit, the cosine approaches as a limit, the tangent approaches 
 oo as a limit, etc. It is, however, customary to say sin 90 = 1, 
 cos 90 = 0, tan 90 = oo , etc. 
 
 A more complete discussion of the values of the trigonometric 
 functions for limiting cases such as the above is given later. 
 See Art. 41, p. 59. 
 
 25. In the following table are collected the results obtained 
 in the last five sections. These results are exceedingly im- 
 portant, and the student should become thoroughly familiar 
 with them before proceeding further. 
 
 
 
 
 30 
 
 45 
 
 60 
 
 90 
 
 sine 
 
 
 
 1 
 
 JvS 
 
 |V3 
 
 1 
 
 cosine 
 
 1 
 
 JV3 
 
 *V2 
 
 i 
 
 
 
 tangent 
 
 
 
 iV3 
 
 1 
 
 V:] 
 
 CO 
 
 cotangent 
 
 CO 
 
 V3 
 
 1 
 
 *V3 
 
 
 
 secant 
 
 1 I jVS 
 
 V2 
 
 o 
 
 -a 
 
 cosecant 
 
 cc j 2 
 
 V2 
 
 |v3 
 
 1 
 
FUNCTIONS OF CERTAIN USEFUL ANGLES 35 
 
 It is necessary to commit to memory only one half of this 
 table. The remainder can be obtained at any time by means 
 of the relations which were found in Art. 17, of which the 
 -following is a condensed statement : Any trigonometric function 
 of an acute angle is equal to the corresponding co-function of its 
 complement. 
 
 EXERCISE VI 
 
 Verify the following : 
 
 , 1. cos + sin 30 + sin 90 = 2. 
 
 2. cos cos 60 -f sin sin 60 -f sin 30 = 1. 
 
 3. tan 2 30+ sec 2 30 = If. 
 
 4. cos 2 60 + cos 2 45 4- cos 2 30 = f . 
 
 5. sin 60 cos 30 -f- cos 60 sin 30 = 1. 
 
 6. sin 2 30 tan 2 45 + sec 2 60 sin 2 90 = 4 J. 
 
 7. (sin 30 + cos 60) (sec 45 + c.sc 45; - 2 V2. 
 
 8. sin 30 sin 45 sin 60 tan 60 = f V2. 
 
 9. cot 30 tan 60 sin 45 cos 45 = f . 
 
 10. tan 2 45 + sin 2 30 - cos 2 30 - f tan 2 30 = J. 
 
 Prove the following identities : 
 
 11. sin A cos (90 - A) sec (90 -A) = sin A. 
 
 12. cos A cos (90 - A) sin (90 - A) esc A == cos 2 A. 
 
 13. tan (90 - A) cot (90 - A) tan A 
 
 = cos (90- A) esc (90- A). 
 
 cos (90 -A) cot(90-J.) 
 
 14. = sin A. 
 esc (90 - A) sin A 
 
 15. cos 2 A sec 2 (90 - A) tan 2 A cot 2 (90 -A) = tan 2 A. 
 
 16 tan 2 (90-^) cos 2 .4 csc 2 (90-^) ^ 4 A 
 
 sin 2 A ' cot 2 (yO - A) ' sec 2 (yo - A) " 
 
 17. cos (90 - A) 1 - cos (90 - A) _ t . m A 
 
 covers A sin ( ( JO A) 
 
 18. secMEEl +cos 2 (90-^)csc 2 (90-7l). 
 
 19. csc 2 ^ = 1 + sin 2 (90 - A) sec 2 (90 - A). 
 
 20 cot 2 (90 - A) tan 2 (90 -A')^ 1 
 esc 2 (90 - A) ' sin 2 (90 -A) 
 
 
CHAPTER IV 
 
 THE RIGHT TRIANGLE 
 
 26. In order to solve a right triangle, two parts besides the 
 right angle must be given, of which at least one must be a 
 side. The known parts may be : 
 
 1. An acute angle and the hypotenuse. 
 
 2. An acute angle and the opposite leg. 
 
 3. An acute angle and the adjacent leg. 
 
 4. The hypotenuse and either leg. 
 
 5. The two legs. 
 
 27. In the preceding sections we have seen that the trigono- 
 metric functions are pure numbers ; and in the case of the angles 
 0, 30, 45, 60, and 90, the values of these functions have been 
 ascertained. From a trigonometric table the values of the 
 functions of any angle can be found ; and by the aid of these 
 values the solution of any triangle can be effected. 
 
 The method for each case arising under right triangles is 
 illustrated by the following examples : 
 
 CASE 1 
 Given A = 61 22', c = 46.2; find B, a, b. 
 
 fit 22' 
 
 B = 90 - 61 22' = 28 38'. 
 
 b 
 
 (1) 
 
 (2) sin A--- .-.a=csiuA 
 
 c 
 
 = 46.2 x 0.8777. 
 .-. a = 40.54. 
 
 (3) cos^l =-. .-. b = coos ,4 
 
 c 
 
 = 46.2 x 0.4792. 
 .-. b = 22.14. 
 
 30 
 
THE RIGHT TRIANGLE 
 
 CASE 2 
 Given A = 31 17', a = 321 ; find B, c, b. 
 
 (1) B = 90 - 31 17' = 58 43'. 
 
 (2) sin.4 = ^ .' = -;? 
 
 321 
 
 = 618.14. 
 
 0.5193 
 .-. c = 618.14. 
 
 (3) tan J. = - /. b = 
 b tan A 
 
 321 
 
 0.6076 
 .-. b = 528.31. 
 
 CASE 3 
 Given A = 43 42', b = 38.6 ; find B, a, 
 
 , 43'42' 
 
 (1) 
 
 = 90 -43 42' =46 18'. 
 
 (2) tan /I = - .. a b tan A 
 
 (3) 
 
 = 38.6 x 0.9556. 
 .-. a = 36.89. 
 
 * 
 
 cos A 
 
 _ 38.6 
 0.7230* 
 
 .-. c = 53.39. 
 
 CASE 4 
 
 Given a = 36. 4, <? = 48.4; find A, B, b. 
 (1) sin A = - 
 
 = 36.4 
 ~48.4 
 
 = 0.7521, nearly. 
 ... A = 48 46'. 
 
 (2) 
 
 B = 90 - 48 46' = 41 14'. 
 
 (3) tanJ =- .-.6 = 
 b 
 
 36.4 
 
 tan 
 
 1.141 
 .-. b = 31.9. 
 
38 
 
 PLANE TRIGONOMETRY 
 
 The value of b could also be found directly by means of the familiar 
 geometric relation 
 
 from which we have b = Vc 2 a 2 . 
 
 CASE 5 
 Given a = 34.9, b = 38.6 ; find A, B, c. 
 
 (1) tan 4 = 2 
 
 = 34.9 
 38.6 
 
 = 0.9041. 
 .-. A =42 7'. 
 
 (2) = 90 -42 7' = 47 53'. 
 
 b-38.6 
 
 (3) sin,4 =?. .-. c = -^ 
 c sin ^1 
 
 34.9 
 
 0.6706 
 .-. c = 52.04. 
 
 The value of c can also be found directly by means of the relation 
 c 2 = Va* + b' 2 . 
 
 From the methods of solution illustrated in the examples 
 given in Art. 27, we deduce the following general rule : 
 
 Rule for the solution of right triangles. From the equation 
 A + B = 90, and from the equations that define the functions 
 of an acute angle of a right triangle, select an equation in which 
 the required part is the only unknown quantity. From this equa- 
 tion find an expression for the required part, and compute the value 
 of this part from the expression thus obtained. 
 
 If a and c, or b and c, have values that differ but little 
 from each other, the methods here given will yield inaccurate 
 results. In such cases the method of Art. 101, p. 144, should 
 be employed. 
 
 The student will find it advantageous to check his results in 
 all cases, to avoid numerical errors as far as possible. Any 
 method of checking can be employed that involves a process 
 of solution different from the one used in first obtaining the 
 required part. 
 
 
 
THE RIGHT TRIANGLE 
 
 39 
 
 EXERCISE VII 
 
 In the following examples, use the first two parts as the given 
 parts, and solve for the three remaining parts : 
 
 ~i. A = 21 19', c = 18. =68 41', a =6.5, 
 
 = 49 16', 
 
 2. 
 
 ^ = 40 44', 
 
 =31. 
 
 3. 
 
 ^ = 71 38', 
 
 =5.4. 
 
 4. 
 
 =13 14', 
 
 = 92. 
 
 5. 
 
 .A = 63 11', 
 
 a = 12. 
 
 6. 
 
 B = 43 52', 
 
 6 = 70. 
 
 7. 
 
 A = 19 36', 
 
 6 = 42. 
 
 8. 
 
 5 = 56 17', 
 
 a = 9. 
 
 9. 
 
 a = 12.6, 
 
 = 26. 
 
 10. 
 
 6 = 42.6, 
 
 = 46. 
 
 6 = 16.8. 
 
 = 20.2, = 23.5. 
 
 = 18 22', a =5.12, 6 = 1.7. 
 
 ^4 =72 46', 6 = 21, a = 89.6. 
 
 ,6 = 26 49', 6 = 6.1, c = 13.4. 
 
 ^ = 468', a =72.8, c = 101. 
 
 B =70 24', a =15, =44.6. 
 
 ^4 = 33 43', 6 = 13.5, = 16.2. 
 
 A = 28 59', B = 61 1', 6 = 22.7. 
 
 A = 22 10', B = 67 50', a = 17.4. 
 
 SOLUTION BY LOGARITHMS 
 
 28- Problems in the solution of triangles can usually be per- 
 formed quite as expeditiously by the use of logarithms as by the 
 use of the actual values of the trigonometric functions, and in 
 many cases the amount of labor is very greatly reduced by the 
 use of logarithms. 
 
 The method of solution by logarithms in the different cases 
 that arise in connection with right triangles is illustrated by 
 the following problems : 
 
 CASE 1 
 
 Given ^1 = 59 17', =42.68; find , a, ft, 
 
 (1) B = 90 - 59 17' = 30 43'. 
 
 (2) sin A=-- .-.a = csiuA. n 
 
 log a = log c + log sin A. 
 logc = 1.63022 
 log sin A = 9.93435 - 10 
 log a = 1.56457 
 .-. a = 36.69. 
 
 (3) cos A =--, b = ccosA. 
 
 log c = 1.63022 
 
 log cos A = 9.70824 - 10 
 
 log b = 1.33846 
 
 .-. b = 21.8. 
 
 
40 
 
 PLANE TRIGONOMETRY 
 
 Given A = 55 
 
 55 //' 
 
 CASE 2 
 a = 68. 34; find B, b, c. 
 
 (1) B = 90 - 55, 11' = 34 49'. 
 
 (2) tanX=2. ...&=__ 
 
 b tan yl 
 
 log ft = log a -f colog tan A. 
 log = 1.83467 
 colog tan A = 9.84227 - 10 
 log b = 1.67694 
 .-. b = 47.527. 
 
 (3) sin A = 1 
 
 sin A 
 
 log c = log + colog sin A. 
 
 log a = 1.83467 
 
 colog sin A = 0.08567 
 
 logc= 1.92034 
 
 .-. c = 83.242. 
 
 CASE 3 
 Given A = 49 13', b = 72.3 ; find B, a, e. 
 
 (1) 73 = 90 -49 13' = 40" 17'. 
 
 (2) tan A =-. .-. a = ft tanA. 
 
 log a = log ft + log tan A. 
 log ft = 1.85914 
 log tan .4 = 10.06116 - 10 
 logo= 1.92330-10 
 
 a = 83.81. 
 
 (3) cos 4 = - 
 c 
 
 cos 4 
 
 log c = log b 4- colog cos A . 
 log ft =1.85914. 
 colog cos A = 0.18495 
 logc = 2.04409 
 .-. c = 110.68 
 
 CASE 4 
 Given c= 61.14, a= 48.56; find ,4,^, 
 
 (1) sin A = a -- 
 c 
 log sin A = log a + colog c. 
 
 loga = 1.68628 
 colog c = 8.21367 - 10 
 log sin /I = 9.89995 - 10 
 .-. A = 52 35'. 
 
 *72 3 
 
THE RIGHT TRIANGLE 
 
 41 
 
 (2) cos A -. 
 
 .'. b = c cos A . 
 
 log b = log c + log cos A, 
 logc = 1.78633. 
 log cos A = 9.78362 - 10 
 log b = 1.56995 
 b = 37.149. 
 
 (3) tan B = - 
 
 lo 
 
 tan B = log b -f colog a. 
 
 log b = 1.56995 
 colog = 8.31372 - 10 
 log tan B = 9.88367 - 10 
 .-. B = 37 C 25'. 
 
 CASE 5 
 Given a = 126, b = 198 ; find A, B, c. 
 
 (1) 
 
 log tan ^4 = log a + colog 5. 
 
 log a = 2.10037 
 colog b = 7.70333 - 10 
 log tan A = 9.80370 - 10 
 .-.4 = 32 28'. 
 
 (2) tanB=- 
 
 log tan B = log 6 + colog a. 
 
 log 6= 2.29667 
 colog a= 7.89963-10 
 log tan B = 10.19630 - 10 
 .-. B = 57 32'. 
 
 sin A = - 
 
 C = ~ - 7' 
 
 sm -4 
 
 log c = log a + colog sin A. 
 
 log a = 2.10037 
 
 colog sin A - 0.27018 
 
 log c = 2. 37055 
 
 .-. c = 234.72. 
 
 NOTE. In the last two. cases the angle B might have been found directly 
 by subtracting A from 90. It is, however, better to determine the value of 
 the second angle independently, as a means of checking the work. 
 
42 PLANE TRIGONOMETRY 
 
 AREA OF THE RIGHT TRIANGLE 
 
 29. The area of any triangle is equal to one half the product 
 of the base and the altitude. In the case of the right triangle 
 either of the legs can be regarded as the base and the other as 
 the altitude. Hence the area of a right triangle can be found 
 when any two parts are known, provided one or both the known 
 parts are sides, by computing, if necessary, the legs of the tri- 
 angle, and then taking one half their product. That is, 
 
 If a, 6, denote the legs of a right triangle, and A the area, 
 
 then A = i- ab. (1) 
 
 Ex. l. In the right triangle ABO, given .4 = 36 14', 
 a = 26. 8; to find the area. 
 
 First find log b by the method of Case 2, p. 40. Then we have 
 log A = log a -f log b + colog 2. 
 log a = 1.42813 
 log b = 1.56315 
 colog 2 = 9.69897 - 10 
 log A = 2.69025 
 .-. A = 490.06. 
 
 Ex. 2. In the right triangle ABC, given ^. = 40 23, 
 c = 39.6; to find the area. 
 
 First find log a and log& as in Case 1, p. 89. Then we have 
 log A = log a + log b -f colog 2. 
 log a = 1.40921 
 log b= 1.47950 
 colog 2 = 9.69897- 10 
 log A = 2.58768 
 .-. A = 386.97. 
 
 EXERCISE VIII 
 
 Solve the following right triangles, finding the angles to the 
 nearest minute : 
 
 1. Given A = 34 10', a = 21 ; 
 
 find ^ = 55 50', 5 = 30.939, c= 37.39. 
 
 2. Given 5=50 12', a =65; 
 
 find .4=39 48', b = 78?15, c= 101.55. 
 
THE RIGHT TRIANGLE 43 
 
 3. Given 5 = 47 15', c= 54.39; 
 
 find .4 = 42 45', a = 36. 92, 5 = 39.94. 
 
 4. Given A = 31 25', c = 45.62 ; 
 
 find B = 58 35', b = 38.93, a = 23.78. 
 
 5. Given A = 29 17', c=31.68; 
 
 find =60 43', a = 15.495, 6=^=27.63. 
 
 6. Given 4 = 49 17', c= 36.48; 
 
 find JB=4043', a = 27.65, 6=23.796. 
 
 7. Given J. = 41 9', b = 156; 
 
 find B =48 51', a =136.33, c= 207.17. 
 
 8. Given B = 59 11', 6 = 221 ; 
 
 find ^1=30 49', a =131. 83, ^ = 257.33. 
 
 9. Given B = 62 55', c=92.4; 
 
 find ^1 = 27 5', a = 42.068, 6 = 82.268. 
 
 10. Given A = 29 31', a = 290.6; 
 
 find B= 60 29', b = 513.29, c= 589.85. 
 
 11. Given ^ = 45 20', a = 41. 46; 
 
 find ^. = 44 40', 5 = 41.946, c = 58.979. 
 
 12. Given a =20. 08, c?=28.26; 
 
 find A = 45 17', ^ = 44 43', b = 19.885. 
 
 13. Given B = 55 13', a = 72.96 ; 
 
 find ^1 = 34 47', 6 = 105.04, c = 127.89. 
 
 14. Given B = 51 19', 6 = 106.8; 
 
 find A =38 41', a =85.512, c= 136.81. 
 
 15. Given B = 59 49', a = 254.36 ; 
 
 find 4 =30 11', 6 = 437.33, c = 505.92. 
 
 16. Given A = 51 50', 6 = 6.813; 
 
 find B = 38 10', a = 8.668, c= 11. 025. 
 
 17. Given B = 57 46', 6 = 0.0688; 
 
 find A = 32 14', a = 0.04338, c = 0.08134. 
 
44 PLANE TRIGONOMETRY 
 
 18. Given 6 = 963.3, c=1465; 
 
 find ^1 = 48 53', =41 7', a = 1103.7. 
 
 19. Given a = 691, e= 877.62; 
 
 find .4 = 51 56', j5=384', 6 = 541.05. 
 
 20. Given a = 62. 36, 6 = 33.823; 
 
 find A = 61 32', ^ = 28 28', c = 70.96. 
 
 In the following examples find the required angles to the 
 nearest second : 
 
 21. Given A = 41 38' 20", b = 262.38 ; 
 
 find .g = 4S 21' 40", a=233.27, <?=351. 08. 
 
 22. Given ^=71 14' 12", <?= 129.3; 
 
 find ^=18 45' 48", a = 122.43, 6 = 41.6. 
 
 23. Given A = 41 17' 30", a = 29.41; 
 
 find B = 48 42' 30", 6 = 33.486, c = 44.568. 
 
 24. Given B = 61 12' 15", c = 382.6 ; 
 
 find A = 28 47' 45", a = 1 84. 29, 6 = 335. 29. 
 
 25. Given 6 = 1426, c = 2291.2; 
 
 find A = 51 30' 38", B = 38 29' 22", a = 1793.38. 
 
 26. Given B = 54 2' 28", a = 49.628 ; 
 
 find A = 35 57' 32", 6 = 68.41, c = 84.514. 
 
 27. Given = 35.421, 6 = 18.168; 
 
 find A = 62 50' 40", B = 27 9' 14", c = 39.81. 
 
 28. Given a = 39.313, 6 = 19.852; 
 
 find A = 63 12' 26", J5 = 26 47' 34", c = 44.036. 
 
 29. Given a = 126. 43, 6=131.52; 
 
 find A = 43 52' 9", B = 46 7' 51", c = 182.44. 
 
 , * 
 
 30. Given a = 476.32, c = 812.36; 
 
 find .4 = 35 53' 53", B = 54 6' 7", 6 = 658.05. 
 
 31. Given ,4 = 68 17' 22", c = 269.4; 
 
 find B = 21 42' 38", a = 250.29, 6 = 99.658. 
 
THE RIGHT TRIANGLE 45 
 
 111 the following ten examples find the area of the triangle in 
 each case, having given : 
 
 32. a = 10, 6 = 12. 37. .4 = 42 27', 6 = 50. 
 
 33. a = 268, b = 316. 38. A = 54 24', c = 90. 
 
 34. a = 3, <?=5. 39. =39 55', a =294. 
 
 35. b = 20. 7844, ^=24. 40. B = 66 36', b = 48. 
 
 36. J.= 35, a = 16. 41. ^=70 52', <? = 582. 
 
 42. Find the value of A in terms of a and c. 
 
 43. Find the value of A in terms of a and A. 
 
 44. Find the value of A in terms of a and B. 
 
 45. Find the value of A in terms of c and A. 
 
 46. Given A = 72, a = 9 ; find A. 
 
 47. Given A = 72, 5 = 9; find A. 
 
 48. Given A = 250, A = 40 ; find a. 
 
 49. Given A = 250, B = 29 30' ; find a. 
 
 50. Given A = 254.2, <?= 32; find B. 
 
 51. The hypotenuse of a right triangle is 28 and one of the 
 legs is 13. Find the angle opposite the given leg. 
 
 52. The legs of a right triangle are 36 and 39, respectively. 
 Find the angle opposite the shorter leg. 
 
 53. The tangent of one of the acute angles of a right tri- 
 angle is 2\. Find the angle. 
 
 54. The cotangent of one of the acute angles of a right 
 triangle is \\. What is the angle? 
 
 55. One of the acute angles -of a right triangle is 49 38' 
 and the adjacent leg is 68.42. Find the hypotenuse and the 
 other leg. 
 
 56. The legs of a right triangle are 41625.3 and 11362.7, 
 respectively. Find the larger angle. 
 
 57. The hypotenuse of a right triangle is 262.46 and one of 
 the acute angles is 28 15' 42". Find the opposite leg. 
 
46 PLANE TRIGONOMETRY 
 
 58. The legs of a right triangle are 515.38 and 221.34, re- 
 spectively. Find the hypotenuse. 
 
 59. One of .the acute angles of a right triangle is 46 21' and 
 the adjacent leg is 26.38. Find by natural functions the 
 other leg and the hypotenuse. 
 
 Angle of elevation and angle of depression. The angle of 
 elevation of an object above the point of observation is the 
 D angle between a line from the eye 
 
 angle of depression \^ of the observer to the object and 
 
 a horizontal line in the same ver- 
 tical plane. The angle of depres- 
 sion of an object below the point 
 angle of elevation of observation is the angle be _ 
 
 tween a line from the eye of the 
 
 observer to the object and a horizontal line in the same vertical 
 plane. 
 
 In the figure, BA C is the angle of elevation of the point B 
 above the point A ; and DBA is the angle of depression of the 
 point A below the point B. 
 
 60. The angle of elevation of the top of a tower 80 ft. 
 high is 41 49'. What is the distance of the point of observa- 
 tion from the foot of the tower ? 
 
 61. At a distance of 31.15 ft. from the foot of a vertical 
 cliff the angle of elevation of the top of the cliff is 56 18'. 
 What is the height of the cliff? 
 
 62. From the top of a monument the angle of depression of 
 a point on the ground, on the same level as the foot of the 
 monument, is 43 41'. The point is found by measurement to 
 be 128.29 ft. distant from the foot of the monument. What 
 is the height of the monument? 
 
 63. From the top of a hill 304 ft. 9 in. in height the angle 
 of depression of an object on the ground is 40 37'. What is 
 the distance of the object from a point directly below the point 
 of observation and on the same level with the object? 
 
 64. What is the height of a tree that casts a shadow 42.6 ft. 
 long when the angle of elevation of the sun is 60 11' ? 
 
THE RIGHT TRIANGLE 47 
 
 65. What must be the length of a ladder set at an angle of 
 71 14' with the ground to reach a window 21.88 ft. high ? 
 
 66. To find the width of a river a point P is selected on 
 one bank, and a distance of 138.2 ft. is measured parallel to 
 the course of the river from the given point P to a point Q. 
 Directly opposite (), on the other side of the river, is the point 
 #, and the angle SPQ is found to be 66 11'. What is the 
 width of the river ? 
 
 67. A guy rope 49.11 ft. long is attached to the top of a 
 mast, and makes an angle of 50 56' with the level of the 
 ground. What is the height of the mast ? 
 
 68. The top of a flag pole, broken by the wind, falls so that 
 it touches the ground at a distance of 19. 73 ft. from the foot of 
 the pole, and is inclined to the ground at an angle of 65 40'. 
 What is the height of the portion that remains standing, and 
 what was the total height of the pole? 
 
 69. What is the angle of elevation of an inclined plane that 
 rises 26 ft. in a horizontal distance of 31.9 ft. ? 
 
 70. A man walking on a level plain toward a tower observes 
 that at a certain point the angle of elevation of the top of the 
 tower is 30 ; on walking 300 ft. directly toward the tower the 
 angle of elevation of the top is found to be 60. What is 
 the height of the tower ? 
 
 SOLUTION. Let x = the height of the tower and y = the distance from 
 the second point of observation to the foot of the tower. 
 
 From the triangle A CD = tan 30 = , 
 
 300 + y V3 
 
 .-. y = V3x - 300; 
 from the triangle BCD - = tan 60 = V3, 
 
 y 
 
 equating these values of y, we have 
 
 V3z-300= -*-, 
 
 Vo 
 
 300 B y 
 
 2 x = 300 x 1.732, 
 
 x = 259.8. 
 
 rd 
 
 1 " "' ; ' 
 
48 
 
 PLANE TRIGONOMETRY 
 
 ! > 
 
 NOTE. In solving problem 70 natural functions have been employed. 
 On p. 156 a method will be given by means of which problems of this kind 
 can be solved by the use of logarithms. In the following problems it is 
 recommended that natural functions be employed. 
 
 v> 71. At a point on a level plain the angle of elevation of the 
 top of a church spire is 45, and at a point 50 ft. nearer, and in 
 the same straight line with the first point and the church, the 
 corresponding angle of elevation is 60. What is the height of 
 the spire? 
 
 ^ 72. From the top of a cliff 150 ft. high the angles of depres- 
 sion of the top and bottom of a tower are 30 and GO , respec- 
 tively. What is the height of the tower? 
 
 73. The angles of elevation of the top of a tower, taken at 
 two points 268 ft. apart and in the same straight line with the 
 tower, are 21 14' and 53 4G', respectively. What is the height 
 of the tower? 
 
 74. At the foot of a mountain the angle of elevation of the 
 summit is 45 ; one mile up the slope of the mountain, which 
 rises at an inclination of 30, the angle of elevation of the sum- 
 mit is 60. What is the height of the mountain ? 
 
 75. At a certain point south of a tower the angle of eleva- 
 tion of the top of the tower is 60, and at a point 300 ft. east 
 of the point the corresponding angle of elevation is 30. What 
 
 is the height of the tower ? 
 
 30. The isosceles triangle. The 
 
 perpendicular from the vertex, (7, of 
 an isosceles triangle to the base 
 divides the triangle into two equal 
 right triangles. 
 
 Any two parts of either of these 
 right triangles being given, one or 
 both of which are sides, the right 
 
 triangle can be completely determined. Therefore the isosceles 
 
 triangle also can be completely determined. 
 
 Denoting the base of the isosceles triangle by <?, and the 
 
 altitude by h, the area, A, is given by the formula 
 
 A = I ch. (1) 
 
 - 
 
THE RIGHT TRIANGLE 
 
 49 
 
 31. The regular polygon. A regular polygon is divided into 
 equal isosceles triangles by lines drawn from the center to the 
 vertices of the polygon. Each of 
 -the isosceles triangles is divided 
 into two equal right triangles by 
 the apothem of the polygon. 
 
 Any side of either of these right 
 triangles being given, the polygon 
 can be completely determined if 
 the number of sides is known. 
 
 For the angles at the center of 
 the polygon can be found when 
 the number of sides, n, is known, by dividing 360 by n. 
 Taking one half of this angle as one of the acute angles of the 
 right triangle, and combining it with the given side, we have 
 at our disposal two parts of a right triangle, one of which is a 
 side. The remaining parts can then be found by the methods 
 already given for the solution of right triangles. 
 
 Denoting the perimeter of the polygon by p and the apothem 
 by h< the area of the polygon can be found by the following 
 
 formula : 
 
 A = 
 
 (1) 
 
 It should be remembered that the legs of the isosceles tri- 
 angles are radii of the circumscribed circle, and the apothem 
 is the radius' of the inscribed circle of the polygon. 
 
 EXERCISE IX 
 
 Solve the following isosceles triangles, finding the part 
 indicated in each case : 
 
 -jC 1. Given c=83.2, h = 56.9; find C. 
 
 2. Given c= 92.56, 7i = 59.72; find C. 
 
 3. Given c=252.64, 0= 62 28' 36"; find a. 
 
 4. Given <7= 142 27' 44", a = 92.452 ; find c. 
 
 5. Given C= 102 44' 42", h = 92.96 ; find a. 
 
 6. Given c = 85.32, A = 49.84; find A. 
 y- 7. Given c = 136.48, A = 60.51; find a. 
 
 L 8. Given A = 1426.3, = 2291.2; find A. 
 
 CON A NT'S TRin 4. 
 
50 PLANE TRIGONOMETRY 
 
 9. Find the value of A in terms of a and 0. 
 
 10. Find the value of A in terms of a and A. 
 
 11. Find the value of A in terms of h and A. 
 
 Solve the following regular polygons, having given : 
 ~^12. n=10, c='3. 14. rc = 6, tf = 12. 
 
 13. n=S, h = 2. 15. n = 20, a = 10. 
 
 16. What is the area of a regular octagon formed by cut- 
 ting away the corners of a square whose side is 6? 
 
 * 17. What is the area of a circle inscribed in an equilat- 
 eral triangle whose side is 20? 
 
 *^- 18. What is the area of a regular polygon of 18 sides if 
 the radius of the circumscribed circle is 2? 
 
 ^ 19. One of the diagonals of a regular pentagon is 12.15. 
 
 What is the area of the pentagon? a*|. 0|ri>*" 
 
 20. Compute the area of a regular heptagon if the length 
 
 of one of its sides is 13.88. 
 v 21. The radius of the circumscribed circle of a regular 
 
 dodecagon is 27. What is the area? 
 
CHAPTER V 
 
 THE APPLICATION OF ALGEBRAIC SIGNS TO TRIGO- 
 NOMETRY 
 
 32. In the preceding work no attempt has been made to 
 apply the definitions of any of the trigonometric functions to 
 any except positive acute angles. 
 
 These definitions will now be extended so as to apply to 
 negative as well as to positive angles, and to angles of any 
 magnitude whatever. 
 
 33. The coordinate axes. The location of a point or a line 
 lying in a given plane is often described by referring it to two 
 intersecting straight lines in that plane, called coordinate axes. 
 These lines are usually drawn perpendicular to each other. 
 
 Let the two lines XX' and YY' intersect at right angles. 
 Then the plane of these lines is divided into four quadrants, 
 designated as the first, second, third, and fourth quadrants, 
 respectively. These quadrants are numbered as indicated in 
 the figure. 
 
 34. Coordinates of a point in a plane. The location of any 
 point in the plane determined by the axes XX' and YY' is 
 described by means of its perpendicular distances from these 
 axes. Y 
 
 The distance of a point from 
 YY' measured along a line parallel 
 to XX' is called the abscissa of 
 the point ; and the distance of a 
 
 point from XX', measured on a X- 
 
 line parallel to YY' is called the 
 ordinate of the point. 
 
 The abscissa of a point is usu- 
 ally designated by the letter x, y' 
 
 51 
 
52 
 
 PLANE TRIGONOMETRY 
 
 and the ordinate by the letter y. These two distances, taken 
 together, are called the coordinates of the point. 
 
 The line XX' is called the axis of abscissas, and the line 
 YY' is called the axis of ordinates. These axes are, for the 
 sake of brevity, often called the #-axis and the #-axis, respec- 
 tively. Their point of intersection, 0, is called the origin. 
 
 Any abscissa measured to the right of YY' is considered 
 positive, and any abscissa measured to the left of YY' is con- 
 sidered negative. 
 
 Any ordinate measured above XX' is considered positive, and 
 any ordinate measured below XX' is considered negative. 
 
 The coordinates of a point determine its position completely. 
 For example, if the point A is 4 units from YY 1 and 6 units 
 
 from XX', its position can be 
 located as follows : measure off 
 on XX' a distance equal to 4 
 units, and through the point 
 thus found draw a line parallel 
 to YY'., Also, measure off on 
 YY 1 a distance equal to 6 units, 
 and through the point thus deter- 
 mined, draw a line parallel to 
 XX'. The intersection, A, of 
 these two lines is the required 
 
 Y 
 
 12 
 
 point. The abscissa of A is 4, and its ordinate is 6, and this 
 point, whose location is given by means of its coordinates, is 
 called the point (4, 6). 
 
 The point B, located in a similar manner, has for its coordi- 
 nates x = 3 and y = 4 ; and this point B is called the point 
 (3, 4). The point is called the point (4, 5); and the 
 point D is called the point (6, 3). In a similar manner we 
 can locate any other point (#, 5), where a and b are any real 
 quantities whatever, either positive or negative. 
 
 35. Trigonometric functions of any angle. Let the line OA 
 (p. 53) start from OX and revolve in a positive direction until 
 it occupies a position in any one of the four quadrants. From 
 any point P in the revolving line draw a perpendicular PM to 
 the axis of abscissas, XX' . In each of the four figures we have 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 53 
 
 CM= x and MP = y. Let the distance OP = r. The trigono- 
 metric functions of the angle XOA, which may be represented 
 by 0, are then, for all positions of OA, defined as follows : 
 
 M 
 
 x 
 
 X 
 
 X 
 
 x x 
 
 sill = 
 
 ordinate 
 
 revolving line r 
 
 /j abscissa x 
 
 cos u = - : = -> 
 
 revolving line r 
 
 = = 
 
 abscissa x 
 
 , a abscissa x 
 cot u = - = -> 
 ordmate y 
 
 a revolving line r 
 
 sec 6 = - = -> 
 
 x 
 
 abscissa 
 
 esc 
 
 a __ revolving line _ r 
 ordinate y 
 
54 PLANE TRIGONOMETRY 
 
 The functions vers and covers are denned in a manner 
 similar to that employed in the case of the right triangle, as 
 follows: T ers 0=1 -cos*, 
 
 covers 6 = 1 sin 6. 
 
 NOTE. In the case of cot 0, esc 0, tan 90, sec 90, cot 180, esc 180, tan 
 270, sec 270, cot 360 and esc 360, these definitions fail. For, taking as an 
 illustration the tangent of 90, we have in that case a fraction whose numera- 
 tor is r and whose denominator is 0. The value of tan 90 is, then, if we 
 attempt to use the above definition, given by this fraction whose numerator 
 is r, and whose denominator is 0. But there is no such thing as division by 
 0, hence, according to the definition given, the symbol tan 90 has no mean- 
 ing. This and other similar cases will be discussed later. (See pp. 57-63.) 
 
 36. In a manner precisely similar to that employed in Art. 
 16 it can be proved that, for any value whatever of the fol- 
 lowing relations are true : 
 
 sin 2 6 + cos 2 6 = 1$ (1) 
 
 sec 2 6 = 1 + tan 2 6 ; (2) 
 
 esc 2 = 1 + cot 2 6. (3) 
 
 Also, from the definitions of the functions, the following rela- 
 tions are immediately derived : 
 
 sin 6 = -^-r, .-. sin esc 6 = 1, (4) 
 
 CSC U 
 -^ 
 
 cos0 = - -, .-. cos 6 sec = 1, (5) 
 
 sec# 
 
 - - 
 
 cot u 
 
 , .-. tan6cot0 = l. (6) 
 
 Also, since, cos# = -, . . a? = reos6, (7) 
 
 (8) 
 (9) 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 55 
 
 37. Signs of the trigonometric functions. In dealing with 
 the functions of an acute angle of a right triangle (Art. 14, 
 p. 20), no attention was paid to the question of positive 
 or negative signs. All lines employed in that connection 
 were considered positive; hence the value of each of the 
 functions was considered positive. But in dealing with the 
 general angle we have to consider both positive and nega- 
 tive lines, and as a result the signs of the functions undergo 
 certain changes as the revolving line passes from quadrant to 
 quadrant. 
 
 First Quadrant. Assume that the revolving line is always 
 positive, and let it occupy any position in the first quadrant. 
 
 In this position both x and y are positive; hence, since r is 
 also positive, both numerator and denominator are positive in 
 the case of each of the functions. Therefore all the trigono- 
 metric functions are positive for the angle in the first quadrant. 
 
 Y 
 
 Second Quadrant. Let the revolving line occupy any posi- 
 tion in the second quadrant. In this case x is negative and y 
 is positive; and we have the following results: 
 
 The sine is a fraction whose numerator and denominator are 
 both positive ; therefore the sine of an angle in the second 
 quadrant is positive. 
 
 The cosine is a fraction whose numerator is negative and 
 whose denominator is positive; therefore the cosine of an angle 
 in the second quadrant is negative. 
 
 The tangent is a fraction whose numerator is positive and 
 whose denominator is negative; therefore the tangent of an 
 angle in the second quadrant is negative. 
 
56 
 
 PLANE TRIGONOMETRY 
 
 The cotangent is a fraction whose numerator is negative and 
 whose denominator is positive; therefore the cotangent of an 
 angle in the second quadrant is negative. 
 
 The secant is a fraction whose numerator is positive and 
 whose denominator is negative; therefore the secant of an 
 angle in the second quadrant is negative. 
 
 The cosecant is a fraction whose numerator and denominator 
 are both positive; therefore the cosecant of an angle in the 
 second quadrant is positive. 
 
 Third Quadrant. Let the revolving line occupy any position 
 in the third quadrant. In this case both x and y are negative; 
 therefore the following results can at once be obtained: 
 
 The sine is negative. 
 The cosine is negative. 
 The tangent is positive. 
 The cotangent is positive. 
 The secant is negative. 
 The cosecant is negative. 
 
 Fourth Quadrant. Let the revolving line occupy any position 
 in the fourth quadrant. In this case x is positive and y is 
 negative; therefore the following results can at once be 
 obtained: The gine . g negative< 
 
 The cosine is positive. 
 The tangent is negative. 
 The cotangent is negative. 
 The secant is positive. 
 The cosecant is negative. 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 57 
 
 The above results are conveniently grouped together by 
 means of the following table: 
 
 sine + 
 
 sine -f- 
 
 cosine 
 
 cosine + 
 
 tangent 
 cotangent 
 secant 
 
 tangent + 
 cotangent -f 
 secant + 
 
 cosecant + 
 
 cosecant + 
 
 Y 
 
 sine 
 
 sine 
 
 cosine 
 
 cosine + 
 
 tangent + 
 cotangent + 
 secant 
 
 tangent 
 cotangent 
 secant + 
 
 cosecant 
 
 cosecant 
 
 Y' 
 
 From the definitions of the versed sine and of the coversed 
 sine it follows that these two functions are always positive. 
 
 38. Changes in sign and magnitude of the trigonometric func- 
 tions as the angle increases from to 360. 
 
 As before, we assume for the revolving line a constant length, 
 r. As the revolving line starts from its initial position we 
 have x = r, and y = 0. As the angle 0, which is generated by 
 the revolution of this line, increases from to 90, y increases 
 and x decreases; and when OA coincides with OY, we have 
 x = 0, and y = r. Hence, as the angle increases from to 90, 
 x decreases from r to 0, and y increases from to r. 
 
 As the angle increases from 90 to 180, x decreases in- 
 creases numerically from to r and y decreases from r 
 to 0. 
 
 As the angle increases from 180 to 270, x increases de- 
 creases numerically from r to and y decreases increases 
 numerically from to r. 
 
 As the angle increases from 270 to 360, x increases from 
 to r and y increases decreases numerically from r to 0. 
 
 Inasmuch as all changes in sign and magnitude among the 
 trigonometric functions are directly dependent on the changes 
 just noted, the following results are now obtained without 
 difficulty. 
 
58 
 
 PLANE TRIGONOMETRY 
 
 X- 
 
 X X- 
 
 Y 
 Y 
 
 Y 
 Y 
 
 39. Sine. As the angle increases from to 90 the numera- 
 tor of the fraction that expresses the value of the sine increases 
 from to r, and the denominator r remains constant. Hence 
 the sine increases from to 1. As the angle increases still 
 further, the numerator begins to decrease, the denominator still 
 remaining constant, and at 180 the numerator becomes 0. 
 Hence as the angle increases from 90 to 180 the sine decreases 
 from 1 to- 0. As the revolving line enters the third quadrant, 
 y becomes negative and continues to decrease algebraically, 
 becoming r when the angle equals 270. Hence in the third 
 quadrant the sine is negative, and as the angle increases from 
 180 to 270 the sine decreases from to - 1. In the fourth 
 quadrant y continues negative ; but as the angle increases y 
 increases algebraically, and when the revolving line reaches its 
 original position, y again becomes 0. Hence as the angle 
 increases from 270 to 360 the sine is negative, and increases 
 from 1 to 0. 
 
 Collecting the above results for the sake of convenience we 
 have the following statement : 
 
THE APPLICATION OF ALGEBRAIC SIGNS 59 
 
 In the first quadrant the sine increases from to 1; in the 
 second it decreases from 1 to ; in the third it decreases from 
 to 1 ; in the fourth it increases from 1 to 0. 
 
 40. Cosine. In a manner similar to that employed in the 
 case of the sine, the following results are obtained: 
 
 As the angle increases from to 90 the cosine decreases 
 
 from - to -, i.e. from 1 to 0. As the angle increases from 
 
 r r 
 
 90 to 180 the cosine decreases increases numerically from - 
 
 T 
 
 to ^^, i.e. from to 1. As the angle increases from 180 
 to 270 the cosine increases decreases numerically from' 
 
 to -, i.e. from 1 to 0. As the angle increases from 270 
 r r 
 
 to 360 the cosine increases from - to -, i.e. from to 1. 
 
 r r 
 
 41. Tangent. The value of the tangent is the value of the 
 
 fraction ^ When the angle is very small, the numerator of 
 x 
 
 this fraction is very small, and the denominator is very nearly 
 equal to r. Hence the tangent of the angle is very small ; or, 
 as it is commonly expressed, when the angle equals 0, the 
 tangent of the angle is also equal to 0. 
 
 As the angle increases the numerator y increases and the 
 denominator x decreases. Hence the tangent of the angle 
 increases. When the angle is nearly 90, the numerator is 
 very nearly equal to r\ and as the angle approaches 90 the 
 value of the numerator continually increases, approaching r as 
 its limit. At the same time the value of the denominator con- 
 tinually decreases, approaching as its limit. Hence, as 
 approaches 90 the value of tan can be made to exceed any 
 finite number previously assigned, no matter how great that 
 number may be. This is usually expressed by saying that 
 when the angle is equal to 90, the tangent of the angle is equal 
 to infinity. Hence, ~ 
 
 In the first quadrant the tangent increases from - to -, i.e. 
 from to QO . 
 
 In the second quadrant the denominator x becomes negative 
 while the numerator y remains positive. Hence the tangent 
 
60 PLANE TRIGONOMETRY 
 
 of an angle in the second quadrant is negative. When the 
 angle is but little greater than 90, the numerator is very 
 nearly equal to r and the denominator is very small, and nega- 
 tive. Therefore, as the revolving line enters the second 
 quadrant, the numerical value of the tangent can be taken to be 
 greater than any negative finite limit previously assigned. 
 That is, when the angle is in the second quadrant and differs from 
 90 by an amount that is less than any finite number assigned 
 in advance, no matter how small that number may be, the 
 tangent of the angle is negative and is numerically greater than 
 any finite limit assigned in advance. To express this we shall 
 'say that tan 90 = oo. It is thus seen that tan 90 will be 
 called equal to either +00 or oo according as the angle is 
 approaching the limit 90 from the positive direction, or as the 
 revolving line is leaving the position at which the angle equals 
 90 and is just entering the second quadrant. As the angle 
 increases, the numerator decreases and the denominator, which 
 is negative, increases numerically. Hence, the tangent decreases 
 numerically increases algebraically and when the angle 
 becomes equal to 180, the tangent becomes equal to 0. Hence, 
 
 In the second quadrant the tangent increases from - to , 
 
 i.e. from oo to 0. 
 
 In the third quadrant both numerator and denominator are 
 negative. Hence the tangent is positive. The numerator in- 
 creases numerically from to r, and the denominator de- 
 creases numerically from r to 0. Hence, 
 
 In the third quadrant the tangent increases from - to -^, 
 i.e. from to oo. 
 
 In the fourth quadrant the numerator is negative and the 
 denominator is positive. Hence the tangent is negative. The 
 numerator decreases numerically from r to 0, and the de- 
 nominator increases from to r. Hence, 
 
 In the fourth quadrant the tangent increases from -^ to , 
 i.e. from oo to 0. 
 
 The same restriction is to be observed with respect to the 
 value of tan 270 as was noted in connection with tan 90. 
 That is, if the angle is in the third quadrant and is approaching 
 270 as its limit, the tangent of the angle can be made to exceed 
 
THE APPLICATION OF ALGEBRAIC SIGNS 61 
 
 in magnitude any finite positive limit previously assigned. If 
 
 it is in the fourth quadrant, the tangent is negative and can 
 
 be made to exceed in numerical magnitude any finite limit 
 
 _previously assigned. For this reason it is customary to say 
 
 that tan 270 = oo . 
 
 42. Cotangent. The value of the cotangent is the value of 
 the fraction -. When the angle is very small, the numerator 
 
 y 
 
 is nearly equal to r and the denominator is nearly equal to 0. 
 Hence the value of the cotangent of is infinity. Then, 
 letting the angle increase, and reasoning in the same manner 
 as in the case of the tangent, we obtain the following 
 results : 
 
 In the first quadrant the cotangent is positive and decreases 
 
 T 
 
 from to , i.e. from GO to 0. 
 r 
 
 In the second quadrant the cotangent is negative and de- 
 
 r 
 
 creases from to , i.e. from to -co. 
 
 r 
 
 In the third quadrant the cotangent is positive and decreases 
 
 r 
 
 from to , i.e. from oo to 0. 
 
 -r 
 
 In the fourth quadrant the cotangent is negative and de- 
 
 T 
 
 creases from - to -, i.e. from to oo. 
 -r 
 
 Remarks similar to those made in connection with tan 90 and 
 tan 270 apply to cot 0, cot 180, and cot 360. 
 
 43. Secant. The value of the secant is the value of the 
 
 fraction -. The numerator remains constant for all positions 
 x 
 
 of the revolving line, while the denominator varies. When the 
 angle is very small, the numerator and the denominator are 
 approximately equal. Hence the secant of is equal to unity. 
 As the angle increases the denominator x decreases, thus caus- 
 ing the value of the secant to increase. When the angle is 
 nearly equal to 90, the denominator is nearly equal to 0, 
 and approaches as its limit. Therefore the secant can be 
 
62 PLANE TRIGONOMETRY 
 
 made to exceed any finite limit previously assigned. We shall 
 express this by saying that sec 90 = <x> . Hence, 
 
 As the angle increases from to 90 the secant increases 
 
 from - to , i.e. from +1 to +00 . 
 r 
 
 When the revolving line enters the second quadrant the 
 denominator x becomes negative and begins to increase numeri- 
 cally decrease algebraically becoming equal to r when 
 the angle becomes 180. Hence, beginning with a negative 
 value numerically greater than any finite limit assigned in 
 advance, the secant increases decreases numerically until it 
 reaches the value 1. Hence, 
 
 As the angle increases from 90 to 180 the secant increases 
 
 T T 
 
 from -^ to , i.e. from oo to 1. 
 
 r 
 
 In the third quadrant the denominator continues negative, 
 but begins to decrease increase numerically as soon as the 
 revolving line enters the quadrant. At 270 the denominator 
 becomes 0. Hence, 
 
 As the angle increases from 180 to 270 the secant decreases 
 
 from to -, i.e. from 1 to oo. 
 r 
 
 In the fourth quadrant the denominator again becomes posi- 
 tive, and increases from to r as the angle increases from 270 
 to 360, returning to its original value when the revolving line 
 completes one entire revolution. Hence, 
 
 As the angle increases from 270 to 360 the secant decreases 
 
 from -^ to -, i.e. from oo to 1. 
 r 
 
 The same restriction is to be observed with respect to the 
 value of sec 270 as was noted in connection with sec 90. 
 That is, if the angle is in the third quadrant and is approaching 
 270 as its limit, the secant of the angle can be made to exceed 
 in numerical magnitude any finite negative limit assigned in 
 advance. If the angle is in the fourth quadrant, the secant is 
 positive, and can be made to exceed in magnitude any finite 
 positive limit assigned in advance. We shall express this by 
 saying that sec 270 = cc . 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 63 
 
 44. Cosecant. The value of the cosecant is the value of the 
 fraction -. Remembering that the numerator remains con- 
 
 y 
 
 stant, and tracing out the changes in sign and magnitude of 
 the denominator, as in the case of the secant, we obtain the fol- 
 lowing results : 
 
 As the angle increases from to 90 the cosecant decreases 
 
 from - to -, i.e. from oo to 1. 
 r 
 
 As the angle increases from 90 to 180 the cosecant increases 
 
 7* 7* 
 
 from - to -, i.e. from 1 to oo. 
 r 
 
 As the angle increases from 180 to 270 the cosecant increases 
 
 y v* 
 
 from - to , i.e. from oo to 1. 
 
 r 
 
 As the angle increases from 270 to 360 the cosecant decreases 
 
 '/* '/* 
 
 from to -, i.e. from 1 to oo. 
 
 r 
 
 Remarks similar to those made in connection with sec 90 
 and sec 270 apply to esc 0, esc 180, and esc 360. 
 
 The changes that take place in the sign and magnitude of 
 the different trigonometric functions are conveniently grouped 
 together in the following table : 
 
 r 
 
 FIRST QUADRANT 
 increases from to 1 
 
 SECOND QUADRANT 
 
 sine decreases from 1 to 
 cosine decreases from to 1 
 tangent increases from GO to 
 cotangent decreases from to oo 
 secant increases from x to 1 
 cosecant increases from 1 to oo 
 X' 
 
 sine 
 
 cosine decreases from 1 to 
 tangent increases from to oo 
 cotangent decreases from oo to 
 secant increases from 1 to oo 
 cosecant decreases from oo to 1 
 
 THIRD QUADRANT 
 
 sine decreases from to- 1 
 
 cosine increases from 1 to 
 tangent increases from to oo 
 cotangent decreases from oo to 
 secant decreases from 1 to oo 
 cosecant increases from -co to 1 
 
 FOURTH QUADRANT 
 
 sine increases from 1 to 
 
 cosine increases from to 1 
 tangent increases from oo to 
 cotangent decreases from to oo 
 secant decreases from oo to 1 
 cosecant decreases from 1 to -co 
 
 T' 
 
 45. After the changes in sign and magnitude have been 
 obtained for the first three functions, the corresponding changes 
 for the last three can be found by remembering that the 
 
64 
 
 PLANE TRIGONOMETRY 
 
 cotangent, secant, and cosecant are the reciprocals of the 
 tangent, the cosine, and the sine respectively. The student 
 should verify the above results by obtaining them in this 
 manner also. 
 
 In connection with the general definitions of the trigonometric 
 functions given on p. 53, it was noted that these definitions 
 failed in the case of certain functions for certain values of the 
 angle. These cases have been explained in some detail in Arts. 
 41-44, and we now have definitions of the tangent, the cotan- 
 gent, the secant, and the cosecant of any angle from to 360 
 inclusive ; and hence, by the usual considerations, Arts. 50-57, 
 definitions of these functions for any angle whatever. 
 
 In order that the relations between tan 90 and cot 90, tan 
 270 and cot 270, sec 90 and cos 90, etc., may be the same as 
 that between the same functions in the case of other angles we 
 
 shall say that = 0, and - = oo . But the student is cautioned 
 oo 
 
 that "oo " is not a number in the usual sense of the word, and 
 that these two equations are not to be taken literally. They 
 are used merely for the sake of expressing concisely the result 
 of a definite limiting process, a process much more complicated 
 than that of ordinary division. 
 
 46. Geometrical representation of the trigonometric functions. 
 The trigonometric functions are pure numbers, the value in each 
 case being a ratio between two given magnitudes. These 
 magnitudes are represented by lines, and if the length of 
 the revolving line is properly chosen, it is possible to represent 
 the values of the functions themselves by lines. 
 
 Let the revolving line be the 
 radius of a circle, and let its value 
 be assumed to be unity. 
 
 The sine of the angle AOB is 
 
 CD 
 
 -. But since OD=\, we may 
 
 OD 
 
 say 
 
 CD CD 
 
 Similarly, 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 65 
 
 vers <9 = 1 - cos = (L4 - 00= AC, 
 covers = 1 - sin (9 = OG - OE = GE. 
 
 For an angle of the second quadrant the so-called "line 
 values" of the trigonometric functions are obtained as follows: 
 
 vers = 1 - cos = 0.4 - 00= OA+00= CA, 
 covers = 1 - sin = OG- OE=E&. 
 
 The change in sign when 00 is replaced by 00 in obtain 
 ing the value of the versed sine should be noted carefully. 
 CONANT'S TRIG. 5 
 
66 
 
 PLANK TRIGONOMETRY 
 
 For angles of the third and fourth quadrants the line values 
 are obtained in a manner similar to that employed in connec- 
 tion with angles of the first two quadrants. The figures are 
 lettered so that the following values hold for both : 
 
 oc an 
 
 = = 
 
 0(J OA 
 
 an 
 
 esc 
 
 OI> OH OH 
 
 = - = - OH, 
 
 CD oa i 
 
 vers 0=1- cos 0=OA- OC= OA, 
 covers 0=1 - sin = GO- - OE=Ea. 
 
 The signs of the trigonometric functions when used as lines 
 are, of course, the same as when they are used as ratios. It 
 will be noticed that when the line that represents the sine 
 extends upward from the axis of abscissas, or horizontal di- 
 ameter, the sine is positive ; when it extends downward, the 
 
THE APPLICATION OF ALGEBRAIC SIGNS 67 
 
 sine is negative. The cosine is positive when the line that 
 represents its value extends toward the right from the origin, 
 negative when it extends toward the left. The tangent is 
 positive when its line extends upward from the axis of abscissas, 
 or horizontal diameter, negative when it extends downward. 
 The cotangent is positive when its line extends toward the 
 right from the axis of ordinates, or vertical diameter, negative 
 when it extends toward the left. The secant and the cosecant 
 are positive when their respective lines extend in the same 
 direction from the origin as the revolving line, negative when 
 they extend in an opposite direction. The versed sine is con- 
 sidered as extending toward the right from the foot of the sine, 
 and the coversed sine upward from the foot of the perpen- 
 dicular dropped from the extremity of the revolving line to the 
 vertical diameter. Both are always positive. 
 
 The trigonometric functions were originally used as lines ; 
 and the numerical value was, in each case, the length of the 
 line in terms of the revolving line, or the radius of the circle, 
 taken as a unit. There are certain advantages connected with 
 the use of these line values, but for general purposes the ratios 
 are so much more convenient than the line values that they 
 have now come into almost universal use. 
 
 47. Limiting values of the trigonometric functions. In dis- 
 cussing the variation in the values of the different functions 
 the following limits were found. In the case of the sine the 
 positive limit was 1, and the negative limit was 1. For the 
 cosine also these limits were -f 1 and -- 1 respectively. For 
 the tangent and the cotangent the limits were +00 and -co. 
 For the secant and the cosecant it was found that the positive 
 values that these functions could take were comprehended 
 between + 1 and + oo, and the negative values between 1 
 and co. Hence, we can make the following definite state- 
 ment respecting the limits between which the different func- 
 tions can vary : 
 
 The sine can take any value between -f- 1 and 1. 
 
 The cosine can take any value between + 1 and 1. 
 
 The tangent can take any value between -f oo and oo. 
 
 The cotangent can take any value between + oo and GO. 
 
68 
 
 PLANE TRIGONOMETRY 
 
 The secant can take any value between + 1 and + oo, and 
 between 1 and oo. 
 
 The cosecant can take any value between -f- 1 and + oo, and 
 between 1 and oo. 
 
 From the definitions of the versed sine and the coversed sine 
 it follows that each of these functions can take any value be- 
 tween and -f 2. 
 
 48. Graphs of the trigonometric functions. The graphs of 
 the trigonometric functions can be plotted in the ordinary 
 manner if the values of the angles are taken as ordinates and 
 the corresponding values of the functions as abscissas. 
 
 Sine. For the sine we form the following table of values 
 from the equation y ~ s j n Xt 
 
 In this table the values of the sine are, for convenience in 
 plotting, given decimally, instead of in the ordinary common 
 fractious. 
 
 /scf 
 
 30 00 QO 120 f 50 
 
 -A' 
 
 X 
 
 y 
 
 
 
 
 
 30 
 
 .5 
 
 45 
 
 .71 
 
 60 
 
 .87 
 
 90 
 
 1 
 
 120 
 
 .87 
 
 135 
 
 .71 
 
 150 
 
 .5 
 
 180 
 
 
 
 225 
 
 - .71 
 
 270 
 
 - 1 
 
 315 
 
 - .71 
 
 360 
 
 
 
 415 
 
 .71 
 
 450 
 
 1 
 
 495 
 
 .71 
 
 etc. 
 
 etc. 
 
 Continuing this table, and plotting the points thus deter- 
 mined, we find that the graph is a curve consisting of an 
 infinite number of waves like those in the figure. By using 
 negative values of the angle we obtain similar waves at the left 
 of the origin. The curve is called the sine curve, or sinusoid. 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 
 69 
 
 Cosine. The graph of the equation 
 
 y = cos x 
 
 is found in a similar manner. Forming a table of values, and 
 plotting the points determined by these values, we find that 
 the cosine curve has the following form. 
 
 90 
 
 30 60 
 
 Y 
 
 Tangent. The table of values for x and y formed from the 
 
 e( l uation # = tan* 
 
 is as follows. 
 
 X 
 
 y 
 
 
 
 
 
 30 
 
 .58 
 
 45 
 
 1 
 
 60 
 
 1.73 
 
 90 
 
 00 
 
 120 
 
 - 1.73 
 
 135 
 
 - 1 
 
 150 
 
 - .58 
 
 180 
 
 
 
 210 
 
 .58 
 
 225 
 
 1 
 
 240 
 
 1.73 
 
 270 
 
 CO 
 
 300 
 
 - 1.73 
 
 315 
 
 -1 
 
 330 
 
 -.58 
 
 360 
 
 
 
 390 
 
 .58 
 
 etc. 
 
 etc. 
 
 -270 
 
 -96 
 
 30 60 90 
 
 I 2O 150' 
 
 I /ISO 270 
 
70 
 
 PLANE TRIGONOMETRY 
 
 Continuing the table, and plotting the points determined by 
 the values thus found, we obtain the tangent curve, which con- 
 sists of an infinite number of branches, each like one of those 
 in the figure. Negative values of the angle give an infinite 
 number of like branches at the left of the origin. 
 
 Cotangent. The graph of the equation 
 
 y = cot x 
 
 is similar to that of y = tan #, except that the points where the 
 different branches cross the #-axis are 90 to the right of those 
 where the tangent curve branches cross, and the curvature is 
 toward the right instead of toward the left. The form of the 
 graph is shown in the following figure. 
 
 X 
 
 y 
 
 
 
 CO 
 
 30 
 
 1.73 
 
 45 
 
 1 
 
 60 
 
 .58 
 
 90 
 
 
 
 120 
 
 -.58 
 
 135 
 
 - 1 
 
 150 
 
 - 1.73 
 
 180 
 
 CO 
 
 210 
 
 1.73 
 
 225 
 
 1 
 
 240 
 
 .58 
 
 270 
 
 
 
 300 
 
 -.58 
 
 315 
 
 -1 
 
 330 
 
 -1.73 
 
 360 
 
 CO 
 
 390 
 
 1.73 
 
 etc. 
 
 etc. 
 
 Secant. The table of values for the equation 
 
 y sec x 
 
 can readily be found if it is remembered that sec# is the recip- 
 rocal of cosx. The graph has the form shown in the first figure 
 on p. 71. 
 
 Cosecant. The graph of the cosecant is similar in form to 
 that of the secant, but the relative position of the various 
 
THE APPLICATION OF ALGEBRAIC SIGNS 
 Y 
 
 71 
 
 -36O -i 
 
 branches with respect to the #-axis is different. The graph is 
 shown in the following figure. 
 
 49. Periods of the trigonometric functions. In considering the 
 changes in value through which the functions pass as the angle 
 increases, it is seen that the sine, for example, takes all its pos- 
 sible values, in both increasing and decreasing order of change, 
 while the angle is increasing from to 360. As the angle 
 increases from 360 to 720 the values of the sine which were 
 obtained in the first 360 are repeated, this repetition of values 
 occurring in the original order. The same cycle of values will 
 again occur in the next 360, and so on, for each complete 
 revolution of the generating, or revolving line. The angle 
 formed by the generating line while this regular recurrence 
 of values takes place is called the period of the sine; and in 
 accordance with this result we may say that 
 
 The period of the sine is 360, or 2 IT. 
 
 A similar course of reasoning shows us that 360 is also the 
 period of the cosine, of the secant, and of the cosecant. 
 
72 PLANE TRIGONOMETRY 
 
 The values of the tangent repeat themselves completely with 
 each increase of 180 in the angle. Hence, 
 
 The period of the tangent is 180, or IT. 
 
 The period of the cotangent is the same as the period of the 
 tangent. 
 
 EXERCISE X 
 
 1. Trace the changes in sign and magnitude of sin 6 as 
 varies from - ^ to - ^ ; from - 270 to - 450. 
 
 2. Trace the changes in sign and magnitude of cos A as A 
 varies from TT to 2 TT. 
 
 3. Trace the changes in sign and magnitude of tan A as A 
 varies from 180 to 540. 
 
 4. Trace the changes in sign and magnitude of sec A as A 
 varies from - 90 to -270. 
 
 Find the value of each of the following: 
 
 5. sin 6 + cos 6 when 6 = 60. 
 
 6. sin 2 6 + 2 cos when = 45. 
 
 7. sin A 4- tan A when A = 135. 
 
 8. sin 60 + tan 240. 
 
 9. cos cos 30 + tan 135 cot 315. 
 
 10. cos tan 60 - sec 2 30 cot 225. 
 
 11. 2 sin 90 sec 2 30 + cos 180 tan 315. 
 
 12. 2sec 2 7rcos0 + 3sin 3 ^-csc^. 
 
 2 2t 
 
 13. COSTT tan !L - sec 2 11^ tan 2 ii 
 
 464 
 
 14. For which of the following values of 6 is sin 6 cos 6 
 positive and for which is it negative? 
 
 (9 = 0; (9=60; = 120 ; (9=210; (9=240; (9=300; 
 6 = 330. 
 
THE APPLICATION OF ALGEBRAIC SIGNS 73 
 
 15. For which of the following values of is sin -f cos 
 positive and for which is it negative? 
 
 (9 = 135; (9 = 210; 0=300; 0=315; 0=330. 
 
 16. Prove that sec 6 - tan 6 0=3 sec 2 tan 2 + 1. 
 
 9 79 
 
 17. If cos = a ~ _ , find sin and tan 0. 
 
 a 2 4- 6 2 
 
 18. If tan = a + a , find cos and sin 0. 
 
 2a + 1 
 
 19. Prove the equation sin0 = # + - impossible for all real 
 values of x. 
 
 20. Prove the equation sec 2 = ^ . impossible unless 
 
CHAPTER VI 
 TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 
 
 50. Functions of an angle 9 in terms of functions of 6. 
 Let the revolving line OA generate an angle 0, of any mag- 
 nitude. The final position of OA is, then, in any one of the 
 four quadrants, as shown in the figures. Also, let the line 
 OA' generate an angle 0, equal in magnitude to the positive 
 angle 0, generated by OA. 
 
 Take OB= OB 1 , and from B and B' draw perpendiculars 
 BC, B'C', to XX'. Then are the triangles OBC, OB'O', equal 
 geometrically, since they are right triangles having the hypote- 
 nuse and an acute angle of one equal respectively to the hypote- 
 nuse and an acute angle of the other. Hence the points 6 Y , 6 Y/ , 
 coincide, BO=B'Q'< and 00= 0' C' . 
 
TRIGONOMETRIC FUNCTIONS OF ANY ANGLK 75 
 
 For convenience, let OB = r, OB' = r f , BC = y, B'C'=y', 
 00 = x, OC' = z' -, then for each of the four figures we have 
 
 sin ( - 0) = ^ = 1 == - sin (9, 
 r r 
 
 cos ( - ) = - = - = cos 0, 
 r r 
 
 tan (-0)=^ = = - tan0, 
 
 COt ( 0) = ^ = =r COt 
 
 y -y 
 
 A\ ^ r 
 
 sec ( u) = = = sec 
 
 # a; 
 
 CSC ( 0) = = ^- = CSC 0. 
 
 y ~ y 
 
 EXAMPLES. 
 
 1. sin ( - 30) = - sin 30 = J, 
 
 A/2 
 
 2. cos (-45)= cos 45 = -^> 
 
 40 
 
 3. tan (- 60) = - tan 60 = - V. 
 
 51. Functions of an angle 90 6 in terms of functions of 0. 
 Let the revolving line OA (p. 76) generate an angle 0, of any 
 magnitude, and at the same time let OA' generate an angle 
 whose magnitude is 90 0. 
 
 As before, take OB OB' , and from B, B', draw perpendic- 
 ulars BO, B'C', to XX'. The triangles OB C, OB'C', are, in 
 each of the four figures, equal geometrically. The proof should 
 be supplied by the student. 
 
 With the same notation as in the previous figures we have, 
 considering only the actual lengths of the lines, and paying 
 no attention to positive and negative signs, r = >', y = or', 
 x y' . 
 
76 
 
 PLANE TRIGONOMETRY 
 
 The following equations then hold true for all possible cases: 
 
 sin (90 - 0) = -' = - = cos 0, 
 r r 
 
 cos (90 - 0) = - = = 
 r r 
 
 tan (90 - 0) = V- = - = cot 0, 
 x 1 y 
 
 y 
 
 sec (90 - (9) = - = - = esc 0, 
 
 x' y 
 
 esc (90 - 0) = - t = - = sec 0. 
 
 ' 
 
 NOTE. For the special case that occurs when 6 is an acute angle, these 
 relations were established independently in connection with the definitions 
 of the functions of an acute angle of a right triangle (Art. 17, p. 23). 
 
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 
 
 77 
 
 52. Functions of an angle 90 + 6 in terms of functions of 6. 
 Let the revolving line OA generate an angle 0, of any magni- 
 tude, and at the same time let OA' generate an angle whose 
 ^nagnitude is 90 + 6. 
 
 As in each of the previous cases, take OB = OB', and from 
 B, B', draw perpendiculars BC, B 1 C', to XX'. The triangles 
 OBC, OB' C' are, in each of the four figures, equal geometri- 
 cally. The proof should be supplied by the student. 
 
 With the notation used in the previous cases we have, con- 
 sidering only the actual lengths of the lines, and paying no 
 attention to positive and negative signs, r = r',x = y f , y = x f . 
 If positive and negative signs are taken into account, these equa- 
 tions become r = r', x = y', y = x'. 
 
 The following equations then hold true for all possible cases: 
 
 sin (90 + 6) = '4 = - = cos 0, 
 r' r 
 
 cos (90 + 0) = ^ = ^ = - sin 0, 
 r r 
 
78 
 
 PLANE TRIGONOMETRY 
 
 tan (90 + 0) = = = - cot 6, 
 x' -y 
 
 cot (90 + 0) = - = ^ = - tan 6, 
 
 ' 
 
 sec (90 + 9) = r - t = = - esc 0, 
 x -y 
 
 esc (90 + 0) = -= - = sec0. 
 
 y x 
 
 EXAMPLES. 
 
 1. sin (9(T 4- 30) = cos 3CP = 
 
 2. cos (90 + 45) = -sin45 = -| 
 
 3. tan (90 + 60) = - cot 60 =- 
 
 4. cot (90 + 120) = - tan 120 = - (- V3) = V3, 
 
 5. sec (90 + 135) = ~ esc 135 = - V2, 
 
 6. esc (90 + 150) = sec 150 = - f V3. 
 
 53. Functions of an angle 180 9 in terms of functions of 9. 
 Let the revolving line OA generate an angle 0, of any magni- 
 tude, and at the same time let OA' generate an angle whose 
 magnitude is 180 - 0. 
 
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 79 
 
 As in the previous cases, take OB = OB', and from B, B', 
 draw perpendiculars BO, B'C', to XX'. .The triangles OBC, 
 OB'C', are, in each of the four figures, equal geometrically. 
 The student should supply the proof. 
 
 With the notation used in the previous cases we have, con- 
 sidering only the actual lengths of the lines, and paying no 
 attention to positive arid negative signs, r = r', x == x', y = y' . 
 If positive and negative signs are taken into account, the second 
 equation becomes x = x' . 
 
 The following equations then hold true for all possible cases : 
 
 sin (180 - 0) = ^ = 2 = sin 0, 
 r' r 
 
 cos (180 - 0) = t = - = - cos 6, 
 r ' r 
 
 tan (180 - 0) = tf- = -- = - tan 0, 
 
 x' x 
 
 cot (180 -6) = - = - = - cot 0, 
 
 y y 
 
 sec (180 - 0) = r , = - - - - sec 0, 
 x' x 
 
 csc (180 - (9) = - t = - = esc 0. 
 
 1 1 y y 
 
 EXAMPLES. 
 
 1. sin (180 - 80) = sin 30 = \. 
 
 2. cos (180 - 60) = - cos 60 - -|> 
 
 3. tan (180 - 45) = - tan 45 - 1, 
 
 4. cot (180 - 120) = - cot 120 = - f--^2)=4 
 
 \ o / o 
 
 5. sec (180- 135) = - sec 135 = - (- V2)= V2, 
 
 6. esc (180 - 150) = esc 150 = 2. 
 
80 
 
 PLANE TRIGONOMETRY 
 
 54. Functions of an angle 180 -f in terms of functions of 6. 
 Let the revolving line OA generate an angle #, of any magni- 
 tude, and at the same time let OA' generate an angle whose 
 magnitude is 180 + 6. 
 
 As in the cases already considered, take OB = OB', and from 
 B, B', draw perpendiculars BC, B'C', to XX'. The triangles 
 OB 0, OB' C' , are, in each of the four figures, equal geomet- 
 rically. The student should supply the proof. 
 
 X- 
 
 With the notation used in the previous cases we have, con- 
 sidering only the actual lengths of the lines, and paying no 
 attention to positive and negative signs, r = r r , x = x\ y = y*. 
 If positive and negative signs are taken into account, the last 
 two equations become x = a;', y = y* respectively. 
 
 The following equations then hold true for all possible cases : 
 
 sin (180 + 0) = tf- = ^ = - sin <9, 
 r r 
 
 cos (180 + 0) = ~ = = - cos 0, 
 
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 81 
 
 tan (180 + 0) = - = = tan 0, 
 x' x 
 
 cot (180 + 0) = ^ = = cot 0, 
 
 y' -y 
 
 sec (180 + 0) = ^ = ^~ = - sec 0, 
 x' -y 
 
 esc (180 + 0) = r - t = -- = - esc 0. 
 
 y -* 
 EXAMPLES. 
 
 1. sin (180 +30) = - sin 30 = -l 
 
 2. cos (180 + 45) = -cos 45=-iV2, 
 
 3. tan (180 +60) = tan 60= V3, 
 
 4. cot (180 + 120)= cotl20 = -iV3, 
 
 5. sec (180 + 1 35) = - sec 135 = - ( - V2) = V2, 
 
 6. esc (180 + 150)= -esc 150 = -2. 
 
 55. In a manner precisely similar to that employed in the 
 preceding sections, we can determine the functions of an angle 
 270 6 in terms of functions of 6. The figures for each 
 quadrant should be constructed by the student, and the values 
 obtained, as in the cases which have just been considered. 
 
 These relations, true for all values of 0, are as follows : 
 
 sin (270 -0) = - cos 0, 
 cos (270 -0)=- sin 0, 
 tan (270 -(9)= cot0, 
 cot (270 -6)= tan0, 
 sec (270 - 0) = - esc 0, 
 esc (270 -0)=- sec 0. 
 
 56. The corresponding values of functions of an angle 
 270 -f in terms of functions of can also be obtained in a 
 manner similar to that employed in the cases already discussed 
 (Art. 50-54). These values are as follows: 
 
 sin (270 + 0) = - cos 0, 
 cos (270 +0)= sin0, 
 
 CONANT'S TRIG. 6 
 
 . vV 
 
82 PLANE TRIGONOMETRY 
 
 tan (270 + #) = -cot (9, 
 cot (270 4- 0)=- tan 6, 
 sec (270 + #)= csc0, 
 
 esc (270 + 0)= -sec (9. 
 EXAMPLES. 
 
 sin (270 - 210) = - cos 210 = - ( - \ V3) = J V3, 
 cos (270 - 150):= - sin 150= - |, 
 tan(270 + 185) = -cot 135 =-(-l)=l, 
 cot (270 -2 10 = tan240 = V3 
 sec (270 + 30) = esc 30 = 2, 
 esc (270 + 60) = - sec 60 = - 2. 
 
 57. Functions of an angle 360 + 9 in terms of functions of 6. 
 
 When the revolving line lias generated an angle 360 + #, its 
 position is the same as that occupied after it has generated the 
 angle 6. Hence, 
 
 The functions of an angle 360 + 6 are the same as the cor- 
 responding functions of 6. 
 
 Also, since the revolving line returns to its initial position 
 after any number of complete revolutions, in either a positive 
 or negative direction, it follows that, when n is any positive or 
 negative integer or zero, 
 
 Functions of an angle n x 360 4- 6 are equal to the correspond- 
 ing functions of 6. 
 
 In a similar manner it may be shown that the functions of 
 n x 360 9 are equal to the corresponding functions of 6. 
 
 58. By means of the equations contained in Arts. 50-57, 
 pp. 74-82, the functions of any angle can be found in terms 
 of functions of an angle less than 90. 
 
 For example, gin 2m > = ^ ( - x m , + 3510) 
 
 = sin :JJ31 
 = sin (270 + 81) 
 = - cos 81. 
 Similarly, cos ( - 2058) = cos 2008 
 
 = cos (5 x 860 + 258) 
 = cos -_>:>s 
 = cos (270 - 12) 
 = - sin 12. 
 
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 
 
 80 
 o 
 
 By reductions of this kind it is easy to find the values of func- 
 tions of any large angle, either positive or negative. Multiples 
 of 360 should first be subtracted, and the remainder of the 
 reduction performed by the theorems of this chapter. 
 
 59. The following table contains the values of the functions 
 of the angles between and 360 which are of most frequent 
 occurrence in elementary mathematics. 
 
 sine 
 cosine 
 
 tangent 
 cotangent 
 secant 
 cosecant 
 
 
 
 30 
 
 45 
 
 GO 
 
 90 
 
 120 
 
 135 
 
 150 
 
 180 
 
 270 
 
 
 
 1 
 2 
 
 M 
 
 ivs 
 
 1 
 
 H 
 
 H 
 
 1 
 2 
 
 
 
 - 1 
 
 1 
 
 H 
 
 H 
 
 1 
 
 2 
 
 
 
 i 
 
 2 
 
 -I* 
 
 -H 
 
 -1 
 
 () 
 
 
 
 |V3 
 
 i 
 
 V3 
 
 00 
 
 - >/3 
 
 -i 
 
 > 
 
 
 
 CO 
 
 00 
 
 V3 
 
 i 
 
 H 
 
 
 
 -H 
 
 - 1 
 
 -Va 
 
 *> 
 
 
 
 1 
 
 N 
 
 V2 
 
 2 
 
 co 
 
 -2 
 
 -V2 
 
 o 
 
 -5 VI 
 
 - 1 
 
 co 
 
 00 
 
 2 
 
 V2 
 
 h 
 
 1 
 
 fvs 
 
 V2 
 
 2 
 
 CO 
 
 _ 1 
 
 NOTE. In the above table the double sign, which is used wherever the 
 value co occurs, signifies that either the positive or the negative value is 
 obtained according as the revolving line approaches the given position from 
 the one or from the other side. For example, tan 90 = + co if the revolving 
 line approaches the positive portion of the y-axis from the right, i.e. through 
 positive rotation; tan 90 = co if the revolving line approaches the same 
 position from the left, i.e. through negative rotation. 
 
 EXERCISE XI 
 Prove that 
 
 1. sin 210 tan 225 + cos 300 cot 315 = - 1. 
 
 2. cos 240 cos 120 - sin 120 cos 150 = 1. 
 
 3. tan 120 cot 150 + sec 120 esc 150 = - 1. 
 
 4. tan 675 sec 540 + cot 495 esc 450 = 0. 
 
84 PLANE TRIGONOMETRY 
 
 5. For what values of A between and 360 are sin A and 
 cos .4 equal? For what values are tan A and cot A equal? 
 
 6. What sign has sin A -{-cos A for the following angles? 
 A = 120; A=135 ; A = 150; A = 300; A=315; A = 690 ; 
 
 x 7. What sign has sin A cos A for each of the following 
 angles? A = 210; A =225; A = 240; A = 300; A =625; 
 
 A = . 
 
 o 
 
 8. What sign has tan A cot A for each of the following 
 angles? A =60; A = 120; A =135; A = 150; A = 210; 
 
 A = 225; A = il^. 
 
 6 
 
 9. Find all the angles less than 360 that satisfy the fol- 
 lowing relations : 
 
 =_-^?; (6) cos 6 = - ^?; <V) tan 6 = - 1 ; 
 V3. 2 
 
 10. Prove sec (A - 180) = - sec A. 
 - 11. Prove cot (A - 270) = - tan A. 
 
 12. Prove cos A + cos (90 + A) + cos (180 - A) 
 
 -cos (270- A)=0. 
 
 13. Prove 
 
 ---- ' 
 
 tan (180 + A} cot (270 - A) sec (360 -A) A 
 
 tan (180 -A) ' cot (270 + A) ' esc (360 + A) 
 
 14. Find the value of 
 
 sin( A) cos ( A) tan( A) 
 cos(90 + A) sin (90 + A) cot (90 + A) ' 
 
 15. Express in simplest form 
 
 cos (180 - A) tan (270 - A) t gec ^ 
 sin (180 + A) ' cot (270 + A) ' 
 
 \ 
 
CHAPTER VII 
 
 GENERAL EXPRESSION FOR ALL ANGLES HAVING A 
 GIVEN TRIGONOMETRIC FUNCTION 
 
 60. From the definitions of the trigonometric functions it is 
 evident that a given angle can have but one sine, one cosine, 
 one tangent, etc. 
 
 But the converse statement is not true. A given sine may 
 belong to any one of an infinite number of angles. The same 
 is true of the cosine, the tangent, or of any of the other trigo- 
 nometric functions. This has already been alluded to inci- 
 dentally (Arts. 50-57, pp. 74-82). Expressions will now be 
 found for all angles that have a given sine, a given cosine, a 
 
 given tangent, etc. 
 
 i 
 
 61. When the revolving line has made one complete revolu- 
 tion in either direction, it has generated an angle of 2 TT 
 radians ; when it has made two complete revolutions, it has 
 generated an angle of 4 TT radians ; and, in general, when it 
 has made three, four, five, etc., revolutions, it has generated 
 an angle of 6 TT, 8 TT, 10 TT, etc., radians. 
 
 These statements may be combined into a single expression 
 by means of the following statement : 
 
 When the revolving line has made any number of complete 
 revolutions in either direction, it has generated an angle of 2 nir 
 radians, where n is some positive or negative integer or zero. 
 
 62. General expression for all angles that have the same sine. 
 Let XOA (p. 86) be any convenient angle, a, and let XOA! 
 be equal to TT a. By Art. 53, the sine of XOA = the sine of 
 XOA' ; or sin a = sin (TT a). Also, TT a is the only other 
 angle between and 360, or between and 2 TT whose sine is 
 equal to the sine of a. But (Art. 61) any angle whose initial 
 line coincides with OX and whose terminal line also coincides 
 
 85 
 
86 
 
 PLANE TRIGONOMETRY 
 
 with OX is represented by the expression 2 mr. Hence, all 
 angles whose initial lines coincide with OX and whose terminal 
 lines coincide with OA are represented by the expression 
 2 ntr + . 
 
 Any angle whose initial line coincides with OX and whose 
 terminal line coincides with OX' is represented by the expres- 
 sion 2n7r-h TT, or (2w 4- 1) TT. Hence, all angles whose initial 
 lines coincide with OX and whose terminal lines coincide with 
 OA' are represented by the expression (2w + I)TT a. These 
 two expressions, 2 mr + a and (2 n+ I)TT , are both included 
 in the more general expression ynr -f( l) n ; that is, a is to be 
 added to any even multiple of TT, and subtracted from any odd 
 multiple of TT. This will be understood if successive values 
 are substituted for 71, and the resulting positions of the ter- 
 minal line noted. This is conveniently done by means of the 
 following table : 
 
 If w = 0, mr +(!)"= , 
 
 n = 1, UTT 4- ( 1 )" = TT a, 
 
 71 = 2, W-7T + ( 1 ) 7i = 2 7T + 0, 
 
 n = 3, .WTT + ( - !)" = 3 TT - a, 
 
 71 = 4, WTT-f- ( !)" = 4-7T -|- , 
 
 n = 5, 7i?r 4- ( l) n a = 5 TT a, 
 
 71 = 6, TiTT -f ( 1 )" = 6 7T + , 
 
 n = l, UTT -f ( 1 )" = 7 TT a, 
 
 W=8, /Z7T +(-!)= 8 7T+a, 
 
 7i = 9, mr + ( 1 ) n a = 9 TT a, 
 
 71= -1, 
 
 71= -2, 
 
 H7T + ( l) n = 7T , 
 
 rc-TT + ( - l) n a = - 2 TT + a. 
 
 In this table we observe that 
 whenever n is an even number, the 
 expression ( l) n =-f-l, and the 
 angle that the revolving line has 
 then generated is (Art. 61, p. 85) a 
 certain number of complete revolu- 
 tions plus the angle . If n is an odd 
 number, the expression ( 1)"= 1, 
 and the angle that the revolving 
 
GENERAL EXPRESSION FOR ALL ANGLES 87 
 
 line has generated is a certain number of complete revolutions 
 plus a half revolution, minus the angle a. That is, 
 
 The expression n-rr +(!)"<* is a general expression for all 
 -angles that have the same sine as the angle a. 
 
 63. In this connection it should be noted that, when n is 
 any positive or negative integer or zero, 2 n is, by definition, an 
 even number, and 2 n -f- 1 is an odd number. 
 
 64. General expression for all angles that have the same cosine. 
 
 The cosine of the angle 360 a, or 2 TT , is equal to the 
 cosine of the angle a ; and 2 TT a 
 is the only angle between and 2 TT 
 that has the same cosine as the 
 angle a. 
 
 But, reasoning in the same manner X- 
 as in Art. 62, all angles whose initial 
 lines coincide with OX and whose 
 terminal lines coincide with OA are 
 included in the expression 2 mr + a ; 
 and all angles whose initial lines coincide with OX and whose 
 terminal lines coincide with OA' are included in the expression 
 2 mr a. Hence, 
 
 The expression 2 mr a is a general expression for all angles 
 that have the same cosine as the angle a. 
 
 65. General expression for all angles that have the same 
 tangent. The tangent of 180 + , or TT -f- , is equal to the 
 tangent of a ; and TT + a is the only angle between and 2 TT 
 that has the same tangent as the angle a (see fig. p. 88). 
 
 All angles whose initial lines coincide with OX and whose 
 terminal lines coincide with OA are included in the general ex- 
 pression 2 mr + a, and all angles whose initial lines coincide 
 with OX and whose terminal lines coincide with OA' are in- 
 cluded in the general expression (2 n + I)T + <* But, since 2 n 
 signifies only even integers, and 2 w -f 1 only odd integers, while 
 n includes all integers, both even and odd, the two expressions, 
 2 HTT + a and ('2 n + I)TT -|- , can be combined as follows : 
 
 The expression HTT -{- a is a general expression for all angles 
 that have the same tangent as the angle a. 
 
88 
 
 PLANE TRIGONOMETRY 
 
 66. Since cot is the reciprocal of tan a, the general expres- 
 sion for all angles that have the same cotangent as .the angle a 
 
 is HTT + a. 
 
 Since sec a is the reciprocal of 
 cos a, the general expression for all 
 angles that have the same secant as 
 -X the angle a is 2n7ra. 
 
 Since esc a is the reciprocal of 
 sin , the general expression for all 
 angles that have the same cosecant 
 as the angle a is mr + ( l) n a. 
 
 67. In the following examples, and in practical work generally, 
 the smallest positive value of a is taken. This is done simply 
 for convenience, the results just obtained being perfectly 
 general. 
 
 EXERCISE XII 
 
 1. What is the general expression for all angles whose sine 
 is J? 
 
 The smallest positive angle whose sine equals is 30, or -. 
 
 6 
 
 .-. = is the smallest positive angle, 
 
 and (Art. 62) 0= WTT+( 1)" is the general expression for all angles 
 whose sine is }. 
 
 2. What is the general expression for all angles whose 
 tangent is V3 ? 
 
 The smallest positive angle whose tangent is x/3 is 60, or ^ . 
 
 3 
 
 .-. ^ is the smallest positive angle, 
 o 
 
 and (Art. 65) 6 = mr + ^ is the general expression for all angles whose 
 tangent is V3. 
 
 3. What is the general expression for all angles whose cosine 
 is J, and whose tangent is V3? 
 
 The only angles between and 360 whose cosine is -\ are 120 and 240. 
 The only angles between and 360 whose tangent is - V3 are 120 and 
 300 . 
 
 The only angle that satisfies both these conditions is 120, or | TT. 
 
 .-. 0= 2n>rr+ ITT. 
 Another general expression for the same angles is (2 n -f 1) TT | TT. 
 
 
GENERAL EXPRESSION FOR ALL ANGLES 89 
 
 Find the general value of which satisfies each of the follow- 
 ing equations : 
 
 4. sin0=lV2. 13. tan0 = JV3. 
 
 5. sin 0=1. 14. sin20 = . 
 
 6 . sin0=-|V8. 15 COS 20 = |. 
 
 7 ' s in * = -J- 16 . 8 tan 2 = 1. 
 
 8. COS0=W3. 
 
 17. 3 sec 2 = 4. 
 
 9. cos0 = - 1 |V2. 
 
 18. cot 2 = 1. 
 
 10. cos = 0. 
 
 11. cos0=-l. 19 - tan 2 0=2 sin 2 0. 
 
 12. tan = 1. 20. 2 tan 2 = sec 2 0. 
 
 21. What is the general value of that satisfies both of the 
 following equations ? 
 
 sin = J V3, and cos = J. 
 
 22. What is the general value of that satisfies both of the 
 following equations? 
 
 sin = l, and cos = J V3. 
 
 In the following five examples, show that the same angles 
 are indicated by both the given expressions. 
 
 23. mr + -, and 
 
 24. W7r +(_ 
 
 25. M7T ^, and WTT + TT 
 
 6 6 
 
 26. WTT + ^, and mr + 
 o o 
 
 27. 
 
 \\ 
 
90 PLANE TRIGONOMETRY 
 
 68. An equation involving trigonometric functions of an 
 unknown angle is called a trigonometric equation. 
 
 The solution of a trigonometric equation involves the de- 
 termination of all angles that satisfy the equation. 
 
 In solving a trigonometric equation, the smallest positive 
 angle that satisfies it should first be determined, and then the 
 general value should be found for all angles that satisfy it. 
 This has been illustrated in the examples of Exercise XII, and 
 will be still further shown in those of the following set. 
 
 EXERCISE XIII 
 
 1. Solve the equation cos 2 6 + 2 sin 2 6 = J. 
 
 This may be written 
 
 2-2cos 2 = . 
 .-. cos' 2 = f . 
 
 The smallest positive angle whose cosine is - V3 is 30, or -. 
 
 Therefore, using the positive result, = 2 rnr - 
 
 Alp, the smallest positive angle whose cosine is - \/3 is 150, or f TT. 
 
 Therefore, using the negative result, = 2 rnr | TT, or (2 n + 1) TT -. 
 
 6 
 These two sets of values may be combined in the single expression 
 
 2. Solve the equation 2 cos 2 V3 sin + 1 = 0. 
 This may be written 
 
 2-2 sin 2 - V3 sin 6 + 1 = 0. 
 
 2 sin 2 + V3 sin 0-3 = 0. 
 
 Factoring, (sin + V3) (2 sin - V3) = 0. 
 
 .-. sin = - V3, or sin = | V3. 
 
 The sine of an angle cannot be numerically greater than 1; therefore, the 
 first equation gives no solution. 
 
 The smallest positive angle that satisfies the equation 
 sin = \ V3, 
 
 is = 60, or 5, 
 
 o 
 
 and (Art. 62) the general expression for the value of all angles that have the 
 same sine as 60 is TT 
 
 8 = n7r+ (~l) n |- 
 
 Therefore, the most general expression for all angles that satisfy the 
 original equation is mr + ( l) n f 
 
GENERAL EXPRESSION EOR ALL ANGLES 91 
 
 3. Solve the equation tan 4 cot 3 6. 
 
 This may be written tan 4 = tan I * - 3 0\ by Art. 51, 
 
 = tan (nir + f - 3 6\ by Art. 65. 
 
 .-. 4 = riTT + - - 3 0, 
 
 Solve the following equations, finding the general value of 
 in each case : 
 
 4. 2 sin 2 0- cos = 1. 16. sin 30 = sin 90. 
 
 5. tan 2 + sec = 1. 17. cos 6 = cos 2 0. 
 
 6. cot 2 0- esc = 1. 18 C os40 = cos50. 
 
 7. cos 2 - sin 0=1. 
 
 19. cos mv = cos r&0. 
 
 8. 2 sin 2 + 3 cos = 0. 
 
 20. cos 4 = sin 2 0. 
 
 9. 2 cos 2 + cos 0= 1. 
 
 21. sin 4 .0 = cos 2 0.. 
 
 10. sin 2 - 2 cos + I = 0. 
 
 11. 3sin 2 0-2sin0=l. 22. "tan 2 = tan 30. 
 
 12. 23> cot 5 6 = COt 2 
 
 13. csc20-cot0=3. 24 - tan 4 = cot 5 0. 
 
 14. tan 2 + cot 2 = 2. 25. tan ^0 4- cot nO = 0. 
 
 15. sin 50= sin 2 0. 26. tan 2 tan = 1. 
 
 M 
 
CHAPTER VIII 
 
 RELATIONS BETWEEN THE TRIGONOMETRIC FUNCTIONS 
 OF TWO OR MORE ANGLES 
 
 69. Sine and cosine of the sum of two angles. Let x and y 
 
 be acute angles, and let x -f y be either acute or obtuse. In 
 both figures the lettering is so arranged that the following 
 demonstrations apply to either case, 
 
 o 
 
 D F 
 
 o F 
 
 = Z 
 
 From C, any point in OB, draw CD _L XX', and CE JL OA ; and from E 
 draw EH \\ XX' and EFXX'. 
 Since Z x - Z OEH = 90 - 
 
 ..-. Z.x = Z.HCE. 
 
 T\f~V 
 
 Then we have sin (x + y) = =- : - 
 
 ^ J) OC 
 
 Also, 
 
 OC 
 
 = oc + oc 
 
 ~ ~OE ~OC + ~CE OC 
 = sin x cosy + cosZ HCE sin y. 
 . . sin (a? + ?/) = sin x cos y + cos a? sin y. 
 
 OP 
 
 OC 
 
 OF - DF 
 
 (1) 
 
 cos (x + y} = 
 
 OC 
 
 = OF HE 
 OC OC 
 
 = OF OE HE CE 
 OE OC CE OC 
 cos x cos y sin Z HCE sin y. 
 cos (x + y) = cos as cos y sin a? sin ?/. 
 92 
 
 (2) 
 
RELATIONS BETWEEN TWO OR MORE ANGLES 93 
 
 70. The above proofs are given only for the case when both x 
 and y are acute. 
 
 To prove the formulas true for all values of x and y we 
 _proceed as follows : 
 
 Let x and y be acute angles, and let x l = 90 + x; .then we have (Art. 52), 
 sin x } = cos x, and cos a^ = sin x* (1) 
 
 Then, sin (aj + #) = sin (90 + x + y) 
 
 = cos (z + ?/), (Art. 52) (2) 
 
 where # and y are both acute angles. 
 
 But (Art. 69, p. 92) when # and y are both acute angles, 
 cos (x + y) cos x cos y sin # sin #. 
 
 Substituting in this equation the values given in (1) and (2), we have 
 
 sin (a?i + y} sin a?i cos y + cos a?i sin ?/. Q.E.D. 
 
 In like manner, cos (x^ + ?/) = cos (90 + a; + ?/) 
 
 = -sin(a; + y), (Art. 52) (3) 
 
 where x and y are both acute angles. 
 
 But (Art. 69, p. 92) when x and y are both acute angles, 
 
 sin (a: + ?/) = sin # cos ?/ cos x sin y. 
 
 Substituting in this equation the" values given in (1) and (3), we have 
 
 cos (a?i + t/) = cos xi cos ?/ sin oc\ sin ?/. Q.E.D. 
 
 Formulas (1) and (2) (Art. 69, p. 92) have now been 
 proved for the case when x is obtuse and y is acute. 
 
 Letting y^ = (90 + /), and proceeding in the same manner, 
 we can establish these formulas for the case when both angles 
 are obtuse. 
 
 Then, letting a; 2 =90 + a: 1 , ^ = 90 + ^, x s =90-\-x^ etc., 
 and proceeding in a precisely similar manner, we can establish 
 the formulas for all possible values of x and y. 
 
 71. Sine and cosine of the difference of two angles. Let x and 
 
 y be two acute angles, placed as represented in the figure. It 
 is here assumed that x > y. 
 
 From C, any point in the final position of the 
 generating line OA, draw CD 1 OX and CE A. OB. 
 Prolong DC, and from E draw EH \\ OX, inter- 
 secting DC produced in H. 
 
 Since / 
 
 X 
 
94 PLANE TRIGONOMETRY 
 
 Then, sin (x - y) = - 
 
 = FE- HC 
 
 OC 
 
 = FE OE HC EC 
 OE OC EC OC 
 sin x cos y cos Z ECU sin y. 
 
 .-. sin (a? -y}= sin a? cosy cosa?siny. (1) 
 
 In like manner, nn 
 
 OF + 
 
 06' 
 
 = OF EH 
 OC OC 
 
 = OFOEKH EC_ 
 OE OC EC OC 
 = cos x cos ij + sili Z EC/7 sin y. 
 . : cos (a? y ) = cos . cos ?/ + sin x sin ?/. (2) 
 
 These proofs have been given on the assumption that x > y. 
 To prove that they are true when x < y, we proceed as follows : 
 sin (x -, y} = sin [ - (y - x)] 
 
 = sin (?/ #), (Art. 50, p. 75) 
 
 = sin ^ cos -f cos y sin x, 
 
 or, rearranging the terms and the factors in each term, 
 
 sin (a? y) = sin a? cos 2/ cos a? sin?/. Q. E. D. (3) 
 
 In like manner, 
 
 cos (x - y} = cos \_-(y - x~}~\ 
 
 - cos (y - x) (Art. 50) 
 
 = cos y cos x -f- sin ?/ sin #, 
 
 or, rearranging the factors in each term, 
 
 cos (x y} = cos x cos y + sin a? sin y. Q. E.D. (4) 
 
 72. The formulas of Art. 71 have now been proved for all 
 cases when x and y are both acute angles. To prove that they 
 are true for all possible values of x and ?/, we proceed as 
 follows : 
 
 Let x and y be acute angles, and let x\ 90 + x. Then, 
 
 sin X L = cos x, and cosa,^ = sin a:. (1) 
 
 Then we have sin (x l y) = sin (90 + x y) 
 
 = cos(x - y). (Art. 52) (2) 
 
RELATIONS BETWEEN TWO OR MORE ANGLES 95 
 
 But since .r and // are acute angles, 
 
 cos (x y} = cos x cos y + sin x sin y. (3) 
 
 Substituting in (3) the values given in (1) and (2), we have 
 
 sin(a?i y} = sin a?i cosy - cos^isiny. Q. E. D. (4) 
 
 In like manner, 
 
 cos (.r t - y) = cos (90 + x - y) = - sin (x - y). (5) 
 
 But since x and y are acute angles, 
 
 - sin (x - y} = - (sin x cos y - cos x sin y). 
 
 (Art. 71, p. 94) (6) 
 Substituting in (6) the values given in (1) and (5), we have 
 
 cos (a?i y) = cos a?i cos y + sin a?! sin t/. Q. E. D. (7) 
 
 Formulas (1) and (2) (Art. 71, p. 94) have now been proved 
 for the case when x is an obtuse angle and y is an acute 
 angle. 
 
 Letting y 1 = 90 + ?/, and proceeding as before, we can es- 
 tablish these formulas for the case when both angles are 
 obtuse. 
 
 Then, letting x 2 = 90 + ^, # 2 = 90 + y v x 8 = 90 + x v etc., 
 and proceeding in a precisely similar manner, we can establish 
 the formulas for all possible values of x arid y. 
 
 EXERCISE XIV 
 
 1. Find the value of sin 75. 
 
 sin 75 = sin (45 + 30) 
 
 = sin 45 cos 30 + cos 45 sin 30 
 
 = _L ^1 + JL1 
 
 V2 2 \/:2 2 
 = V3 + 1 
 
 2\/2 
 
 2. Find the value of sin 15. 
 
 si nl 5 = sin (45 -30) 
 
 = sin 45 cos 30 - cos 45 sin 30 
 1 \/3 1 1 
 
 ~ \/2 2 V2 2 
 = V3-1 
 
 2V2 
 
96 PLANE TRIGONOMETRY 
 
 3. Find the value of cos 105. 
 
 cos 105 = cos (60 + 45) 
 
 = cos 60 cos 45 - sin 60 sin 45 
 
 = i i Va i 
 
 2 V2 2 V2 
 
 2 "s/2 
 
 4. If sin a = | and sin /3 = ^|, find sin ( /3). 
 
 5. If sin a = | and cos ft = if, find cos (a -f /:?). 
 ^ 6. If cos a = &, and cos ft = -|, find cos (a /3). 
 
 Prove that 
 
 7. si 
 
 8. sin 105 + cos 105 = cos 45. 
 
 9. sin 75- sin 15 = cos 105 + cos 15. 
 
 10. sin (45 - 6) cos (45 -</>)- cos (45 - 0) sin (45 - 0) 
 
 = sin ((/> 6). 
 
 HINT. Let # = 45 - and y = 45 - <. Then compare with (1), 
 Art. 66. The converse application of the x-y formulas, as illustrated by 
 this example, is of frequent occurrence. 
 
 11. sin (45 + 6) cos (45 - () + cos (45 + 0) sin (45 - 0) 
 
 = cos (6 $). 
 
 13. cos (30 + ) cos (30- a) + sin (30 + ) sin (30 - ) 
 
 = cos 2 a. 
 
 14. cos a cos (/3 ) sin sin (/3 a) = cos /3. 
 
 15. sin (n + 1) sin (w 1) + cos (n + 1)<* cos (w- 1) 
 
 = cos 2 . 
 
 16. sin (n + l)a sin (n + 2)a -f cos (n + 1) cos (n + 2) 
 
 = cos a. 
 
 17. sin (a - jB + 15) cos (/3 - + 15) 
 
 - cos (a 0+ 15) sin (/ a + 15) = sin (2 2 yS). 
 
RELATIONS BETWEEN TWO OR MORE ANGLES 97 
 
 The following examples are of especial importance, and are 
 often used as standard formulas. 
 
 18. sin 75 = cos 15 = 
 
 _ 
 
 2V2 
 
 19. sin 15 - cos 75 - 
 
 2V2 
 
 20. cos (a? + y) cos (a? y) = cos 2 a? sin2 y. 
 
 21. sin (a? + -*/) sin (ac y} = cos 2 y cos 2 sc. 
 
 73. Tangent of the sum and of the difference of two angles. 
 
 For all values of x and y we have (Art. 69) 
 
 sin (x + y) = sin a; cos y + cos a: sin y, 
 and cos (a; + y) = cos # cos y sin a; sin y. 
 
 tan Q + y) ^ sin *' cos ^ + cos x sin ^ . 
 cos x cos y sin x sin ?/ 
 
 Dividing both numerator and denominator by cos a: cosy, we have 
 
 sin x cos y cos ar sin y 
 
 ,. cos a: cos \i cos a: cos y 
 tan (a? -f y) = 
 
 1 tan a? tan y 
 
 In like manner, . 
 
 sn arsn 
 cos a: cosy 
 
 (1) 
 
 tan * - 
 
 cos (a: - y) 
 
 _ sin x cos y cos x sin y 
 cos x cos y + sin x siti y 
 
 sin a; cos y cos a: sin y 
 
 _ cos a; cos y cos a: cos y 
 
 ~~ cos a: cos y sin a: sin y 
 
 cos a; cosy cos a: cosy 
 
 sin a: _ sin y 
 cos a: cos y 
 
 . (2) 
 1 -f tan 35 tan i/ 
 
 CONANT S TRIG. 
 
98 PLANE TRIGONOMETRY 
 
 74. Cotangent of the sum and of the difference of two angles. 
 
 For all values of x and y we have 
 
 Expanding cos (x -f ?/) and sin (x -f- ^), dividing both 
 numerator and denominator by sin x sin ?/, and reducing, we 
 
 - (1) 
 
 coty 
 
 In a similar manner it can be proved that 
 
 uin*^ \j\rii y ~t /"O\ 
 
 coty cota? 
 
 75. Formulas (1) and (2), Art. 69, (1) and (2), Art. 71, 
 (1) and (2), Art. 73, and (1) and (2), Art. 74, are often re- 
 ferred to as the addition and subtraction formulas. The addi- 
 tion formulas are sometimes known as the x + y formulas, and 
 the subtraction formulas as the x y formulas. When refer- 
 ence is made to both groups together, the general expression, 
 "the x-y formulas," is often employed. 
 
 76. From the formulas for the functions of the sum of two 
 angles the formulas for the functions of the sum of three angles 
 are at once obtained, as follows : 
 
 sin ( x + y + z) = sin [(x + y) + z] 
 
 sin\(.r + y) cos z -f cos (x + /y) sin z\ 
 = (sin x cos y + cos x sin y) cos z 
 
 + (cos x cos// sin a: sin y} sin z. 
 .*. sin (x + y + z) = sin a; cos// cos z -f cosx siny cosz 
 
 -f cos x cosy sin z sin x siuy sinz. (1) 
 
 In like manner it can be proved that 
 
 cos (x + y + z) cos x cosy cosz - cosx siny sinz 
 
 sin x cosy sin z sin x sin y cosz, (2) 
 and that 
 
 cos (x + y + z) 
 
 _ tan x + tan y + tan z tan x tan /y tan z ,.,, 
 1 tan x tan y - tan x tan z tan y tanz 
 
 ^ 
 
RELATIONS BETWEEN TWO OK MORE ANGLES 99 
 
 EXERCISE XV 
 
 1. If tan = | and tan ft 1, iind tan ( + ft). 
 
 2. If tan a = | and tan /3 = f f, find tan (_). 
 
 3. If tan = f and cot ft = -f%, find cot (a -f /8). 
 
 4. If tan = | and ft = 45, find tan ( + /3). 
 
 5. If tan = -|- and tan /8 = , find tan (2 a -f ft). 
 
 6. If tan a = ^ and tan /9 = - - - , find tan (a + ft). 
 
 n + l 2 W -f 1 
 
 7. If tan a = | and tan ft = Jj, prove that a -f ft 45. 
 
 The next four examples are of especial importance, and are 
 
 tan 75" = cot 16 = 2 
 
 often used as standard formulas. 
 
 8. 
 
 , , cot (9-1 
 
 12. cot - + = 
 
 
 10. tanl5-cot75=2-V3. 
 
 14. tan [ -f 
 
 15. Prove the identity cos ( 4- ft) cos ft -+- sin (a + ft) sin ft = 
 cos a. 
 
 HINT. Let a + /? = x and /? = y. Then compare with (2), Art. 69. 
 Many of the remaining examples can be worked without difficulty by 
 applying the addition or subtraction formulas directly. 
 
 16. sin 2 a cos a -f- cos 2 a sin a = sin 3 a. 
 
 17. sin 3 a cos cos 3 a sin = sin 2 a. 
 
 18. cos 3 a. cos 2 a sin 3 a sin 2 a = cos 5 a. 
 
 sec esc (x. 
 
 20. sin (60 + ) cos (30+ a) - cos (60 + a) sin (30 + a) = J. 
 
 21. tin2+tan = tftn 3 g> 
 1 tan 2 tan a 
 
 22. - =tan2c . 
 
 1 Un( + /8)tan( - ft) 
 
100 PLANE TRIGONOMETRY 
 
 tana- tu .- 
 
 23 . 
 
 1 + tan a tan (a 
 
 cot 3 a cot 2 a 4- 1 
 
 24. = cot a. 
 cot 2 a cot 3 a 
 
 25. tan 2 - tan 6 = tan sec 2 0. 
 
 26. sec 2 6 = 1 + tan 2 tan 0. 
 
 27. csc20 = cot0-cot20. 
 
 tan 3 6 tan 2 tan 4 6 tan 3 
 
 tan 3 tan 20 1 + tan 4 tan 3 
 
 4tan0 
 
 29. tan (45 4- 0) - tan (45 - 0) = 
 
 JL tan u 
 sin (# 4- y) cot # 4- cot y 
 
 3O. - ^ - = - 
 
 cos (x T- y) 1 4- cot # cot y 
 
 77. The algebraic sum of two sines or of two cosines in the 
 form of a product. For all values of x and y we have (Arts. 69 
 
 sin (x 4 ?/) = sin x cosy 4 cos x sin y, 
 and sin (a; y) = sin a: cos y cos # sin y. 
 
 Adding and subtracting, we have 
 
 sin (x 4 y) 4 sin (a; y} = 2 sin # cos y, (1) 
 
 and sin (x 4 #) sin (x #) = 2 cos x sin y. (2) 
 
 Also (Arts. 69 and 71), 
 
 cos (a: 4 y) = cos x cosy sin a; sin y, 
 and cos (a? y) = cos a: cos y 4 sin re siny. 
 
 Adding and subtracting, as before, we have 
 
 cos (x 4 y) 4 cos (ar ?/) = 2 cos a: cos y, (3) 
 
 and cos (a; 4 y) cos (a; y~) = 2 sin a; sin y. (4) 
 
 Let a: 4- y u, and x y = v. 
 
 Solving these two equations for x and y, 
 
 . 
 Substituting these values of a: and ?/ in (1), (2), (3), and (4), we have 
 
 smu 4 sinv = 2sm^^cos^^$ (5) 
 
 ** 
 
 A^--\r 
 
 sin w - sin v = 2 cos ^ + ^ sin^-^T (6) 
 
 cost* + cost? - 2cos^pcos^p; (7) 
 
 cost* - cos v = - 2sin^^ sin-^. (8) 
 
RELATIONS BETWEEN TWO OR MORE ANGLES ; I01 
 
 These formulas are among the most important of all' the 
 formulas of trigonometry. The student should commit them 
 carefully to memory, and become perfectly familiar with their 
 -application. They will sometimes be referred to as the u-v 
 formulas. 
 
 As illustrations of the manner in which certain expressions 
 can be simplified by the application of one or more of these 
 processes, the following examples are given : 
 
 2. 
 
 sin 75 - sin 1 5 _ 
 
 2 2 
 
 = 2 cos 40 sin 30 
 = cos 40. 
 
 75 + 15 . 75 -15 
 2 cos sin 
 
 cos 75 + cos 15 n _ _75 + 15 75 - 15 
 
 cos _ 
 
 2 
 
 _ 2 cos 45 sin 30 
 ~ 2 cos 45 cos 30 
 
 = tan 30 
 
 = iV3= 0.57735. 
 
 (sin 6 + sin 2 0)(cos 2 - cos 4 6) 
 (sin 5 6 + sin 0)(cos 3 - cos 5 0) 
 
 _ (2 sin 4 cos 2 0)(2 sin 3 sin 0) = 
 ~ (2 sin 3 cos 2 0) (2 sin 4 9 sin 0) 
 
 EXERCISE XVI 
 Prove the following relations : 
 
 l. sin 70 + sin 50 = V3 cos 10. 
 
 2 sin80-sin60 = tan ^ 3 . sin 2 + sin 6 
 cos 8 6 + cos 6 6 cos 2 6 + cos 6 6 
 
 sinSg-rintf 8g 4g- 
 
 sin 2 ^ + sin 2 fl = fan ^ ^ ^ _ B 
 
 sml A- sin 2 5 
 
K.)L' . PLANE TRIGONOMETRY 
 
 cos cos 20 2 * cosJ.+ cos 
 
 cos B cos ^4. 2 
 
 9. sin ( J. + JB) + cos (A - J5) = 2 sin(45 + 5) cos (45 - 
 cos b A cos 3 ^4 , cos 2 A cos 4 ^4 si n A 
 
 10. 
 
 sin <) A sin 3 .A sin 4^4 sin ^ A cos 4 ^4 cos 3 A 
 
 11. sin (60 + A)- sin (60 - A) = .sin A 
 
 12. cos (30 - 0) + cos(30 + 0; - V^ cos 0. 
 
 13. 
 
 14 sin 6 + sin 3 + sin 5 + sin 7 = t 4 ^ 
 cos H- cos 30 + cos 50 + cos 7 
 
 15 sin - sin 50 + sin 9 - sin 18 = cot Q 
 cos cos 5 cos 90 + cos 13 
 
 16 _ 
 
 sin x sin ^/ 
 
 cos x -\- cos v ^ ^ 
 
 17. = cot ' cot 
 
 cos x cos y 2 2 
 
 18. cos 3 + cos 5 + cos 7 + cos 150=4 cos 4 cos 5 cos 6 0. 
 19. 
 
 20. sin 50 + sin 10 -sin 70 = 0. 
 
 2 
 
 sin (3 A + i?) + sin(J. 3 ^ 
 
 22. sin 80 + sin 70 - sin 10 - sin 20 = -t sin 40 4- sin 50. 
 
 23. cos x + cos 2 # + cos 4 # + cos 5 # = 4 cos ~ cos cos 3 r. 
 
RELATIONS BETWEEN TWO OR MORE ANGLES 103 
 
 24. sin O + P + 7) + sin (a - yS - 7) + sin (a + /3 - 7) 
 
 -f- sin ( @ -f 7) = 4 sin a cos /? cos 7. 
 
 25. sin 2 a + sin 2 /3 + sin 2 7 sin 2 (a -f ft -f- 7) 
 
 = 4 sin (/3 + 7) sin (7 + a) sin (a 
 
 = cos 3 6 
 cos 3 6 + 2! cos 5 6 + cos 7 ~ cos 5 
 
 sin 30 + 2 sin 50 + sin 10 . c 
 27. __^ =sm 5 
 
 S1H0 + 2 sin 30 + sin 00 
 
 sin J + # - 2 sin A + sin Qi - 
 
 28. 
 
 cos (^4 + ^) 2 cos J. + cos ( A B} 
 29. 
 
 cos( 
 
 sin (x + y -|- 2) + sin( ^ + y + ^; sin (2: y-\-z)+ s\ 
 
 = cot ^. 
 so. cos 20 + cos 100 + cos 140 =0. 
 
 78. The product of two sines, of two cosines, or of a sine and a 
 cosine expressed in the form of an algebraic sum. 
 
 In (1), (2), (3), and (4), Art. 77, the u-v formulas are ex- 
 pressed in a form which is quite as important as that already 
 considered, and which is so convenient, and of such frequent 
 application that the formulas are here reproduced in that form. 
 Using the left for the right and the right for the left members, 
 they are 
 
 2 sin oc cos y = sin (& + y} + sin (oc - y) ; (1 ) 
 
 2 cos ac sin y = sin (x + y} - s :n (& - y} ; (2) 
 
 2 cos w cos y = cos (oc + y} + cos (x y} ; (3) 
 
 2 sin x sin y = cos (a? + y) - cos (x y). (4) 
 
 These formulas are the converse of the u-v formulas, and 
 may be conveniently referred to by that name. The two 
 groups taken together are useful in solving problems and in 
 performing investigations which, without them, could be 
 handled only with the greatest difficulty. 
 
104 PLANE TRIGONOMETRY 
 
 EXERCISE XVII 
 
 1. Express in the form of a sum or difference 2 sin 6 sin 4 6. 
 
 2 sin 60 sin 4 = - (cos(60 + 40)&cos(60 - 40)) 
 = - (cos 100 -cos 20) 
 
 = 00820- COS 100, 
 
 2. Express in the form of a sum or difference cos (A 2B) 
 sin (04 + 2 B). 
 
 cos(^ -2B)sin(A +25)= | (sin 2/1 - sin (-45)) 
 = (sin 2^4 + sin 45). 
 
 3. Find the value of 2 sin 75 sin 15 . 
 
 2 sin 75 sin 15 = cos (75 - 15) - cos (75 + 15) 
 = cos 60 - cos 90 
 
 = i-o 
 
 = * 
 
 Express as a sum or difference the following: 
 
 4. 2 sin 60 cos 26. 30 
 
 8. COS - COS . 
 
 5. 2 cos 40 sin '20. 
 
 6. cos ? sin ?*. 9- 2 sin (2 ,1 + 10 cos (A-*). 
 
 2 2 
 
 -* ** 10. 2 cos 3 J. cos 01 2*). 
 
 o u 7 " 
 
 1 T C "T* 11. sin (60 + 0) cos (60 - 0). 
 
 Prove the following identities : 
 
 12. cos (120 + 0) cos (120 - 0) = (2 cos 2 - 1). 
 
 13. cos (30 - 0) cos (60 - 0) = | (2 sin 20 + V 3). 
 
 14. sin (120 - 0) cos (60 + 0) = J- (sin 60 - 2 0). 
 
 15. sin (0 + 45) sin (0 - 45) = - | cos 2 0. 
 
 16. cos 3 sin 2 - cos 4 sin = cos 2 sin 0. 
 
 17. sin 3 sin 6 + sin sin 2 = sin 4 sin 5 0. 
 
 18. sin 20 cos + sin 6 cos = sin 3 cos 2 + sin 50 cos 20. 
 
 19. cos (40 - 0) cos (40 + 0) + cos (50 + 0) cos (50 - 0) = 
 cos 2 0. 
 
RELATIONS BETWEEN TWO OR MORE ANGLES 105 
 
 20. sin A cos {A + B) cos A sin (A B) = cos 2 -4 sin B. 
 
 3 7T 4 7T . 47T, 10 7T A 
 
 21. 2 cos - cos -f cos - -f- cos = 0. 
 
 22. 4 sin A sin ^ sin Q = sin (5 + (7 J.) -f sin ((7+ .A B) 
 
 + sin ( j. + B - Q) - sin (A + ^ -f 6 Y ). 
 
 cos 3 ^4. sin 2 A cos 4 J. sin A _ _ t o >4 
 cos 5 A cos "2 A cos 4 ^4. cos 3 .A 
 
 24. 4 sin sin (60 + 0) sin (60 - (9) = sin 3 0. 
 
 25. 4 cos cos + cos Z - = cos 3 6. 
 
 v 8 / \ o 
 
 26. sin 20 sin 40 sin 80 = \ V3. 
 
 27. cos 20 cos 40 cos 80 =i. 
 
CHAPTER IX 
 FUNCTIONS OF MULTIPLE AND SUBMULTIPLE ANGLES 
 
 79. Functions of an angle in terms of functions of half the angle. 
 If in the addition formulas, Arts. 69, 71, 73, and 74, we put 
 x = y, we have 
 
 sin (x 4- x) = sin x cos x -\- cos x sin a?, 
 
 cos (x + x) = cos x cos x sin x sin #, 
 
 tan (* + *)= *" * + **"*, 
 1 tan x tan # 
 
 and c 
 
 cot x -f- cot x 
 sin 2 x = 2 sin a? cos a? 5 (1) 
 
 cos 2 = cos 2 a? - sin 2 a?; (2) 
 
 ; (3) 
 
 (4) 
 
 In these formulas 2# may have any value whatever; or, in 
 other words, 2 # is any angle whatever. 
 
 Hence, these formulas are to be regarded as formulas for 
 expressing the values of functions of an angle in terms of 
 functions of half the angle. They may also, of course, be re- 
 garded as formulas for expressing the functions of twice an 
 angle in terms of functions of the angle itself. 
 
 80. If we let 2x= 0, we have the formulas in the following 
 useful form : ~ ^ 
 
 sin6 = 2 sin - cos -; (1) 
 
 10<5 
 
MULTIPLE AND SUBMULT 1PLE ANGLES 107 
 
 cos = cos 2 - - sin 2 - (2) 
 
 2 2 
 
 2cos 2 --l. 
 
 2tan- 
 
 (3) 
 
 1 - tan 2 - 
 2 
 
 cot 2 - - 1 
 cot 6 = - 
 
 2cot- 
 2 
 
 81. Functions of an angle 3 & in terms of functions of oc. 
 
 If in the addition formulas we put y = 2 x, we obtain expres- 
 sions for the value of functions of 3 # in terms of functions of 
 #, as follows : 
 
 sin (a; + 2 a;) = sin x cos 2 x 4- cos x sin 2 x 
 
 = sin x (cos 2 a; sin 2 a:) + cos a: 2 sin a: cos a; 
 = sin x (1 2 sin 2 a;) + 2 sin x (1 sin 2 a;) 
 = sin x 2 sin 3 a, 1 + 2 sin a: 2 sin 3 a:. 
 
 .-. sin 3 3C = 3 sin a? 4 sin 3 cc. (1) 
 
 In like manner, 
 
 cos (a; + 2 a:) cos a: cos 2 a; sin x sin 2 a: 
 
 = cos a: (cos 2 a; sin 2 a:) sin x 2 sin a? cos a: 
 = cos a: (2 cos 2 a; 1) 2 (1 cos 2 a;) cos a; 
 = 2 cos 3 x cos x 2 cos x + 2 cos 3 a:. 
 
 .. cos 3 a; = 4 cos 3 x 3 cos a% (2) 
 
 Also, ten 3*= - 
 
 1 - tan z tan 2 x ^ _ fcftn ^ 2 tan x 
 
 1 tan 2 a; 
 3 
 
 3 tan a? ^tan 3 x XON 
 
 /. tan 3 a? = - - . (3) 
 
 In a similar manner it is possible to obtain formulas for the 
 functions of higher multiples of x in terms of functions of x. 
 
108 PLANE TRIGONOMETRY 
 
 82. Functions of an angle expressed in terms of functions of 
 twice the angle. 
 
 Since cos 2 x = 1 - 2 sin 2 x, 
 
 we have 2 sin 2 ;r = 1 cos 2 x. 
 
 .. sin a? = 
 
 Also, cos 2 x = 2 cos 2 a: 1, 
 
 2 cos 2 s = 1 4- cos 2*. 
 
 1 + cos2ag *2\ 
 
 Dividing (1) by (2) we have 
 
 (3) 
 
 These formulas are often given in the following form, where 
 
 
 *=- 
 
 (5) 
 
 In this form they are to be regarded as formulas for express- 
 ing the values of functions of a half-angle in terms of functions 
 of the angle itself. 
 
 The magnitude of the angle determines which of the two 
 signs preceding the radical is to be employed. 
 
 EXERCISE XVIII 
 
 1. If sin 6 = 1, find sin 2 9 and sin 3 0. 
 
 2. If sin = \, find cos 2 d and cos 3 0. 
 
 3. If cos 6 = |, find sin 20 and cos 30. 
 
 4. If tan 6 == l, find tan 2 and tan 3 0. 
 
 5. If tan 6 = 1, find sin 2 and tan 3 6. 
 
MULTIPLE AND SUBMULTIPLE ANGLES 
 
 Prove the following identities : 
 6. cos 4 sin 4 = cos 2 0. cot tan 
 
 1 
 
 
 a an COt + tail 
 
 7. tan 4- cot = 2 esc 2 0. )t 
 
 j 
 
 
 ^T 
 
 tan -2 cot 2 0-1 
 
 
 H5j 
 
 T 
 
 ^ 
 
 The next six equations are especially important, and may^e 
 regarded as standard formulas. 
 
 1 
 
 
 11 f S in 6 4 D S 6 Y 11 -in 9 18 r*e 2 ~ sec2 * s\\ 
 
 ^ 
 
 ' ^"g h *ij - sec 20 
 
 
 
 
 
 12. tan 9^ 8in26 ;,* sec0-.l 
 
 J 
 
 l + cos29 1 2 - 2sec 
 
 
 l 
 
 
 TO * A S * n ^ " A f A\ 
 
 , XI 
 
 i oA* 2O tanf 77 "-!- 1 2DI 1 
 
 i T\r 
 
 1 COS 2 U ^ u - ^ /i ttl11 I i 1 "c\ I' i 
 
 p 
 
 1 - sm \4 2/ ^| V <* 
 
 
 9 i _ eos Q 
 
 } 
 
 1 4- t*in i i Z> ; *** 
 
 1 
 
 1 
 6 
 
 2 sin 9 \ & ta "V9 
 
 ?- 
 
 -| 
 
 i 
 
 , 9 _ 1 4- cos 9 eos (Jby ^/\ ^\^jf 
 
 2 sin 9 2 
 
 /A e\ 2 cos 20 _, ,, ro ^ 
 
 16. [ sin cos ] =1 sin 9. ^ i i ^i o /} 
 
 4 
 
 \ " */ ^ s^^ \ 
 
 \* 
 
 /i &i 
 
 /-> o0 1 -h sec sin 3 cos 30 /- 
 
 * 
 
 2 sec sin cos 
 
 11 
 ^ 
 
 1 cos J. + cos B cos (A + ./?) ^4 ^^-B 
 
 & 
 
 1 + cos 4 cos B cos ( A + .#) " 2 ~ 2 
 
 r 
 ~j 
 
 25. tan (45 + 0) + tan (45 - 0) = 2 ^ ' 
 
 N^ 
 
 26. tan 2 - sec sin = tan sec 2 0. 
 
 ^x 
 
 v i 
 
 ^*. 
 
 1 
 
 
 \ 
 
 T*, 
 
 siii 2 -sm 2 /3 Hn / rt + N T 
 
 
 
 
 * . /i /-> """ Lail V 1 r*x 
 
 sin a cos a sin p cos p ** \ 
 
 f 
 
 
 i 
 
 OQ cos + sin cos sin _ 9 ^ o ^ 
 
 h 
 
 '-O 
 
 cos sin cos + sin i' 
 
 
 V ^ 
 
 
 
 
 - L 
 
110 PLANE TRIGONOMETRY 
 
 2g cos(0 + 15) _ sin (9 - 15) = 4 cos 2 
 sin (0 + 15) cos (6 - 15) 1 + 2 sin 20 
 
 30. 
 
 32 
 
 sin 20 + sin 
 
 ;- pos :; +si "^=ta, 
 
 1 + cos 20 + sin 20 
 
 - tan + 1 = 1 - sin 2 
 tan + 1 cos 2 
 
 33 sin 2 1 - cos = 
 1 - cos 2 " cos '" 2 ' 
 
 34 sin (n + 1)0 + sin (ft- 1)0 + 2 sin w0 = cot 
 
 cos (n 1)0 cos (w +1)0 2 
 
 35. 
 
 . 
 
 COS Sill 
 
 36. sin 6 + sin 4 - sin 2 = 4 sin 2 cos cos 3 0. 
 
 37. (sec 20 + 1) Vsec 2 - 1 = tan 2 0. 
 
 38. 4 cos cos (60 - 0) cos (60 + Q = cos 3 # 
 
 39. 16 cos 20 cos 40 cos 60 cos 80 = 1. 
 
 40. tan (45 + 0) = X /f 
 
 M sin 2 
 
 41 sin (n + 1)0 - sin (n - 1)0 _ t 0. 
 
 cos (ft + 1) + cos (n 1) + 2 cos w0 ~~ 2 
 
 42. cos 2 O + 1)0 - cos 2 nO = - sin (2 n + 1)0 sin 0. 
 
 83. Identities that are true for angles whose sum is 180 or 
 
 90. When three angles are involved whose sum is either 90 
 or 180, many relations are found to exist that do not hold true 
 for angles in general. 
 
 For, if A + B + C= 180, we have (Art. 53, p. 78), 
 
 sin (A + B) = sin C, cos (^4 + B) = - cos (7, tan (A+B)=- tan (7, 
 
MULTIPLE AND SUBMULT1FLE ANGLES 111 
 
 and similar relations hold between functions of the sum of any 
 two of the given angles, and the corresponding functions of the 
 third angle, since the sum of any two is the supplement of the 
 third. 
 
 Also, if (- +- = 90, the sum of any two of these angles 
 
 is the complement of the third. Therefore, 
 in (I + f ) = cosf , cosg H- f ) = sinf , tan (f + f)= cotf , 
 
 sn 
 
 and similar relations hold between functions of the sum of any 
 two of the angles and the corresponding co-functions of the 
 third. 
 
 Ex. 1. If A + B + O= 180, prove that 
 
 sin 2 A -f sin 2 B sin 2 = 4 cos A cos B sin O. 
 
 Left member = 2 sin (A + 5) cos (4 - B) - 2 sin C cos C 
 = 2 sin C cos(.4 - ) + 2 sin C cos (A + ) 
 = 2 sin C [cos (.1 + B) + cos (.4 - 5)] 
 = 2 sin C (2 cos A cos 7?) 
 = 4 cos -4 cos R sin C. 
 
 Ex. 2. If A -h 5 + # = 180, prove that 
 
 ABO 
 
 cos A + cos # + cos (7= 1 + 4 sin sin sin . 
 
 Left member = 2 cos -- cos - +1-2 sin a 
 
 /^ A T> SI 
 
 = 1 + 2 sin cos ^- - 2 sm 2 . 
 
 = 1 + 2 sin 
 
112 PLANE TRIGONOMETRY 
 
 Ex.3. If A + B+ (7=180, prove thai 
 
 tan A + tan B + tan (7 = tan A tan B tan 0. 
 Since A + B = 180 - C, tan (^4 + 5) = - tan C ; 
 
 tan A + tang = _ tftn c< 
 1 tan /I tan B 
 
 Clearing of fractions, tan A + tan B = tan C + tan A tan 
 .-. tan .4 + tan B + tan C = tan /I tan B tan C. 
 
 EXERCISE XIX 
 
 If A + B + C= 180, prove that 
 
 1. sin 2 A 4 sin 2 B + sin 2 C = 4 sin A sin B sin C. 
 
 2. cos 2 A -f- cos 2 .B 4 cos 2 (7= 1 4 cos A cos .B cos 
 
 3. cos 2 A - cos 2 4 cos 2 (7= 1 -4 sin A cos B sin (7. 
 
 4. sin 2 A sin 2 B sin 2 "(7= 4 sin A cos B cos (7. 
 
 A .B (7 
 
 5. cos, A + cos B cos 0= 1 + 4 cos cos sin . 
 
 A B C 
 
 6. sin A 4 sin B 4 sin (7=4 cos cos cos . 
 
 7. sin A -f sin I? sin C 4 sin mt cos . 
 
 i- ^ ' 
 
 8. sin 2 A + sin 2 B sin 2 (7=2 sin A sin .Z? cos (7. 
 
 9. cos 2 A + cos 2 5 - cos 2 (7= 1-2 sin A sin .B cos (7. 
 
 14 - CW - '- : 0j f a,/;.: 
 
 sin A 4 sin .B sin (7 A, .Z? * A*<I Pr*** 
 
 10. - = tan tan . 
 
 sin A 4 sin B 4 sin C 2 
 
 sin 2 A + sin 2 J9 4 sin 2 (7 
 sin 2 A 4 sin 2B sin 2 f 
 
 1 4 cos A cos J5 4 cos C B , C 
 
 12. = tan cot . 
 
 I 4 cos A 4 cos ^ cos (7 22 
 
 sin J. + sin 5 -f- sin (7 
 
* - 
 
 14. cot A cot B 4- cot jB cot (7 4- cot (7 cot A 
 
 
 
 MULTIPLE AND SUBMULT1PLE ANGLED 113 
 
 M^iif, 
 
 1. 
 
 j 7? /7 (7 ^4. 
 
 15. tan tan + tan tan - + tan - tan = 1. 
 
 A 7? C* ABC 
 
 16. cot + cot 4- cot = cot cot cot . 
 
 17. sin 2 
 
 ABO A+ B B+ 0^ 
 
 18. cos 4- cos 4- cos = 4 cos cos ^ cos - 
 
 2 2 "2 4 44 
 
 19. sin (A + B- (7) 
 
 4- C- A) + sin ((7+ A - 
 = 4 sin A sin B sin 0. 
 
 . sin (^1 + 2 ) + sin (B + 2 (7) 4- sin ((74- 2' 
 
 4 sm 
 
 sin 
 
 -C C-A 
 
 sin - 
 
 CONANT'S TRIO. 8 
 
CHAPTER X 
 INVERSE TRIGONOMETRIC FUNCTIONS 
 
 84. If sin 6 = a, where a is any known quantity, 9 may 
 have any one of an infinite number of values. The symbol 
 " sin" 1 a " is used to denote the angle whose sine is #, and is, 
 accordingly, read "the angle whose sine is a." It is some- 
 times called the inverse sine, or the anti sine of a. 
 
 To illustrate the use of this notation, let us take the equation 
 
 cos0 = J. (1) 
 
 We know from this that may equal 60, 300, 420, 660, .... 
 To state the fact that may equal any one of these angles, we 
 
 employ the equation /, _-, ^ 
 
 6 = cos 1 1, (2) 
 
 which is read "0 = the angle whose cosine is |." 
 We are then to understand that (1) and (2) are inverse state- 
 ments, the former asserting that the cosine of some angle, #, is 
 equal to ^, and the latter asserting that 9 is the angle whose 
 cosine is |. 
 
 From (2) we also understand that 60, 300, 420, , are 
 angles that satisfy the equation, since the cosine of each of 
 these angles is J. In other words, (2) is satisfied by any of 
 the angles (Art. 64, p. 87) included in the general expression 
 
 7T 
 
 2^ f . 
 
 Similarly, if tan 0=1, 
 
 then the equation 9 = tan' 1 1 
 
 asserts that 9 may equal 45, 225, 405, . That is, 9 may 
 have any one of the values represented by the expression 
 
 + , 7T 
 
 H7T + 
 
 114 
 
INVERSE TRIGONOMETRIC FUNCTIONS 115 
 
 It is strongly urged that the student become familiar at the out- 
 set with the idea that the expressions sin" 1 1, cos" 1 J, tan~ J V3, 
 etc., are single symbols, and denote angles. They represent 
 angles just as definitely as do the symbols 0, <, A, B, x, y, etc., 
 which are used so frequently for that purpose. The only point 
 to be noted is, that the angle which is represented in this man- 
 ner is described by means of one of its trigonometric functions. 
 
 85. Angles expressed by the symbols sin" 1 ^, cos'^VS, 
 tan" 1 1, etc., are called inverse trigonometric functions, or in- 
 verse circular functions. 
 
 Since a central angle has the same magnitude in degrees as 
 the intercepted arc, these functions are used to represent arcs 
 as well as angles. The notation arc sin #, arc cos J, arc tan 
 JV3, etc., is often used instead of sin' 1 a, cos" 1 !, tan~ 1 ^V8, etc. 
 
 In using the notation here adopted, the student should note 
 that the symbol 1 is not an algebraic exponent. That is, 
 
 sin" 1 a is not the same as (sin a)" 1 . 
 The former expression denotes the angle whose sine is a, and 
 
 the latter denotes - , or esc a. 
 sin a 
 
 86. The smallest numerical value of an angle whose sine, 
 cosine, tangent, etc., have given values, is called the principal 
 value of the angle. 
 
 Thus, the principal values of 
 
 are 30, 120, -45, 60. 
 
 In a case like the second, where two values are given, which 
 are numerically equal but have opposite signs, the positive 
 value is usually understood. Thus, the principal value of 
 cos -i(_l) i s usually considered to be 120. 
 
 To avoid ambiguity, it will be understood that, when any of 
 these symbols are employed, the principal values of the angles 
 are referred to. 
 
 If a is positive, the principal values of all the inverse func- 
 tions except vers" 1 ^ and covers" 1 a lie between and 90. 
 The principal value of vers" 1 ^ lies between and 180, and the 
 
116 PLANE TRIGONOMETRY 
 
 principal value of covers" 1 a lies between and 90, or between 
 180 and 270. 
 
 If a is negative, the principal values of sin" 1 a and csc" 1 ^ lie 
 between and 90, or between 180 and 270. The principal 
 values of cos" 1 a and sec" 1 a lie between 90 and 180, or be- 
 tween 90 and 180. The principal values of tan" 1 a and 
 cot" 1 a lie between 90 and 180. As stated above, the positive 
 values of these angles are usually employed. Since vers and 
 covers 6 are always positive, vers~ 1 a and covers' 1 a are impossi- 
 ble when a is negative. 
 
 87. Ex. 1. Prove that sin" 1 ! + cos" 1 if = cos' 1 ! f. (1) 
 
 Let sin- 1 f = a, cos- 1 1| = ft, cos- 1 f f = y. 
 
 Then, sina=f, cos/3={f, cosy=ff. 
 
 We are to prove that a + ft = y. (2) 
 
 This can be done by proving that any function of a + ft is equal to the 
 
 same function of y, since, if two sines, two cosines, two tangents, -, are 
 
 equal, the principal values of the angles are also equal. 
 
 In this case we select the cosines ; and we are now to prove that 
 
 cos ( + /?) = cosy. (3) 
 
 Expanding, cos cos ft sin a sin ft = cos y. (4) 
 
 The values of cos ft, sin ct, and cos y are already known ; 
 3 and, obtaining the values of cos a and sin ft from the figures 
 in the margin, and substituting in (4), we have 
 
 t* - * = li 
 
 .. cos( + ft) = cosy. 
 
 Ex. 2. Prove that cos' 1 ! + sin" 1 1\ + sin' 1 I 
 
 Let cos- 1 1 = a, sm- 1 f s = p, si 
 
 Then, cos a = f, sin/8 = T \, 
 
 We are to prove that a -f ft + y = , 
 
 Selecting in this case the sines, we proceed as follows: 
 
 = cos y. 
 sin a cos ft -f cos a sin ft = cos y. 
 
INVERSE TRIGONOMETRIC FUNCTIONS 
 
 Substituting numerical values, we have 
 
 117 
 
 Ex. 3. Prove that 
 
 2 sin" 1 + tan" 1 -- cos" 1 - = 0. 
 VlO ? V2 
 
 Let 
 
 Then, 
 
 We are to prove that 2 a + fi y = 0, 
 
 v/10 7 
 
 sin a = - , tan B = - , 
 VlO 7 
 
 V2 
 
 cos y = 
 
 V2 
 
 or, 2 a + j8 = y. 
 
 Selecting the tangents as convenient functions to deal with in this case, 
 we proceed as follows : 
 
 tan (2 a + ft) = tan y 
 
 1 - 
 
 The left member = tan 2 + ten fl < 
 1 - tan 2 tan 3 
 
 1 - 
 
 1- 2ta " tan/? 
 l-tan 2 
 
 But 
 
 tan y = 1. 
 .. tan (2 a + /#) = tan y. 
 
 2 + ^8 - y, 
 
 63 
 
 Ex. 4. Prove that 
 
 2 sin- 1 -A- + cos" 1 ~ + i tan- 1 ^ = TT. 
 
 Via ^52 7 
 
 , 
 
 65 7 
 
 2 16 24 
 
 Then, sin= ' = , cos (3=, tan y = - 
 
 via 6o 7 
 
 V13 
 sin 
 
 We are to prove that 
 
 2 ce + ^8 - TT - | y. 
 
118 PLANE TRIGONOMETRY 
 
 Selecting the sines as the most convenient functions with which to work 
 in this case, we proceed as follows: 
 
 sin (2 a + /3)= sin (TT - \ y). 
 sin 2 a cos ft + cos 2 a sin ft = sin \ y. (1) 
 
 All the functions of a, ft, and y can be determined at once from the 
 proper figures ; and the values of sin 2 a, cos 2 ft, and sin | y must be 
 
 computed. 2 3 12 
 
 sin 2 a = 2 sin a cos a = 2 __ __ = -- 
 V13 V13 13 
 
 945 
 
 cos 2 a = cos 2 sin 2 a = --- = 
 13 13 13 
 
 Substituting in (1), we have 
 
 tt-tf + A-ti=! 
 
 192 + 315 = 3 
 845 5' 
 
 * = * 
 
 2 a + /3 = TT - \ y. 
 $y = TT. 
 
 EXERCISE XX 
 Prove that 
 
 1. sin" 1 ^ = 008-! if. 3. cos" 1 3f = esc" 1 ff. 
 
 2. sin-i T \ = tan-i T 5 2 . 4. sin-i-=2sin- 1 --L 
 
 5 VlO 
 
 5. tan-i J-tan-i} = tan-il. 
 
 ^N 6. sin' 1 if + cos" 1 if = sin- 1 f . 
 
 7. sin-if-f tariff =tan-iff 
 
 8. tan- 1 T 2 T + cot- 1 - 2 Y 4 - = tan' 1 J. 
 
 9. tan-i^ + tan-i|= sin-ii. 
 
 o V2 
 
 10. sin' 1 = + tan' 1 - = cos" 1 - - 
 V5 3 V2 
 
 11. COt- 1 f I + Cot" 1 J/- = COt- 1 1. 
 
 12. 2 tairi 1=00^1^2. 
 
 13. 2 tan- 1 + tiiir 1 J = tan- 1 . 
 
 \\ 
 
INVERSE TRIGONOMETRIC FUNCTIONS 119 
 
 14. tan' 1 1 + cot' 1 4 = | cos- 1 f . 
 is. sin-if + cot-i|-tarriJU|. 
 
 16. tan" 1 | + tan -1 ^ = tan" 1 1 + tan" 1 ^. 
 
 18. 2 cos- 1 If = tan-iifl. 
 
 19. cos" 1 x 2 cos" 1 \/ - 
 
 \ f) 
 
 20. tan" 1 x -f tan" 1 y tan" : 
 
 _ 1 xy 
 
 \J\ 21. tan' 1 x + cot- 1 O 4- 1) = tan- 1 (y? + x+ 1). 
 
 22. tan' 1 - - tan- 1 ^-^ = - 
 y x+ y 4 
 
 23. sin l a + cos" 1 b = cos - 1 (b Vl a 2 
 
 24. tair 1 - \ + tan- 1 ^ ^ -f tan' 1 - - = 0. 
 1 + ab 1 -f bo 1 -}- ca 
 
 25. sin (2 sin- 1 a) = 2 a Vl - a 2 . 
 
 26. sin f cos" 1 - J = tan f sin" 1 
 
 \ O/ V 
 
 27. sin (sin- 1 a + sin" 1 b) = a Vl b 2 4- Vl a 2 . 
 
 28. tan (tan" 1 a -f tan" 1 5) = 
 
 1- 
 
 29. tan (2 tan" 1 a) = - 
 
 30. cos (2 tan- 1 j) = sin (4 tan' 1 1). 
 
 88. Solution of equations expressed in the inverse notation. 
 
 The method of solution of equations that are expressed in terms 
 of inverse functions is best illustrated by means of examples. 
 Ex. l. Solve the equation 
 
 tan- 1 (x + 1) + tan- 1 (x - 1) = tan' 1 ^-. 
 
 Let tan- 1 (* + !) = , tan- 1 (*-!) = # tan" 1 ^ = y. 
 
 Then, tan = a;+l, t&u fi = x 1, tany = ^ v . 
 
 To find what values of x will satisfy the equation 
 
120 PLANE TRIGONOMETRY 
 
 when tan a, tan (3, and tan y have the above values, we proceed as follows : 
 tan (a + /?) = tan y. 
 
 Then the left member = *an a + tan ft 
 
 1 tan a tan p 
 
 2-z 2 
 Equating this to tan y, we have 
 
 2x = 8 
 2-z 2 31' 
 
 Solving, we have a: = J, or 8. 
 
 The second value is inadmissible as long as we use the principal value of 
 the angles. Therefore, x _ l 
 
 Ex. 2. Solve the equation 
 
 tan" 1 x + tan" 1 (1 x} = 2 tan" 1 V# x 2 . 
 
 Let tan-^^a, tan" 1 (1 - x)= (3, tan-Vz - x* = y. 
 
 Then, tan a = x, tan /? = 1 - ar, tan y = Vz - x 2 . 
 
 To find what values of x will satisfy the equation we proceed as follows : 
 tan (a + ft) = tan 2 y, 
 
 tan ft + tan /3 _ 2 tan y 
 1 tan a tan /2 1 tan 2 y' 
 
 l_a;(l-a;) 1 - x + x 2 ' 
 
 1 = 2V^^2. 
 
 Solving, x = %. 
 
 EXERCISE XXI 
 
 Solve the following equations : 
 
 2. sin" 1 ^ = cos" 1 ( x). 
 
 3. tan" 1 x = cot" 1 x. _, 1 2?r 
 
 7. tan * x 4- ^ tan x - = 
 
 4. tan" 1 a: = cot" 1 ( a?) . ^ 
 
 - + sm = 2' : ~T' 
 
Ml 
 
 INVERSE TRIGONOMETRIC B^UNCTIONS 
 
 9. tan" 1 (x 4- 1) cot" 1 - = tan~ 1 -. 
 
 x 1 *j 
 
 10. tan" 1 2 a; 4- tan- 1 3 a = 
 
 11. cos" 1 x cos" 1 VI x 2 = cos" 1 a; VS. 
 
 12. sin" 1 (3 x 2) 4- cos" 1 x = cos" 1 VI x 2 . \ * -"S 
 
 121 
 
 13. 
 
 x-2 
 
 2 4 
 
 14. 
 
 "2 5 x 
 
 15. sin (cot" 1 J)= tan (cos" 1 Vie). 
 
 16. tan (cos" 1 x) = sin (cot" 1 J ) . 
 
 17. sin" 1 - = sin" 1 - 4- sin" 1 - 
 x a o 
 
 18. tan" 1 -7- = tan- 1 (cos 
 Vsm a? 
 
 19. esc" 1 x = sec" 1 - 
 
 COS 
 
 20. 
 
 21. tan" 1 ^4 4- tan - i = tan~ 1 (-7). 
 
 ; - /-/ <V, 
 
 /( 1 
 
 >>;*>; 4 
 
 >l 1 I T- 
 
 ' 1 1 < ! 
 
CHAPTER XI 
 
 THE GENERAL SOLUTION OF TRIGONOMETRIC EQUA- 
 TIONS 
 
 89. A trigonometric equation is an equation in which the un- 
 known quantity or quantities appear in the form of trigono- 
 metric functions. 
 
 These equations have been used with the utmost freedom in 
 previous chapters, though no formal definition has been given 
 until the present time. They have been used in many differ- 
 ent ways, involving one or more functions, one or more angles, 
 and one or more values of the given angles in any single 
 equation. 
 
 At first the only angles used were acute angles, and an equa- 
 tion was understood to involve functions of an acute angle 
 only. Then the idea was introduced of an angle unrestricted 
 in magnitude ; and after this had been done, all results were 
 freed from the restraints which had previously been imposed 
 by the fact that we were dealing with acute angles only. 
 
 A large class of the equations with which we have previously 
 been concerned consist of trigonometric identities, that is, equa- 
 tions in which both sides had the same value for all possible 
 values of the angles employed, though the form might be 
 different. 
 
 Examples of these are the formulas that have been proved 
 from time to time, as, sin 2 6 + cos 2 1 ; sin (x -f /) = sin 
 x cosy + cos x sin y ; etc. Equations of this kind are true for 
 all possible values of the angle or angles involved. 
 
 But trigonometric equations are, of course, not ordinarily 
 true for all values of the angles involved. For example, if we 
 consider the equation cos Q _. \ 
 
 we see at once that we can assign but two values of 6 between 
 and 360 that satisfy this equation. In other words, 
 
 122 
 
GENERAL SOLUTION OF TK1GONOMETIUC EQUATIONS 123 
 
 cos 6 = is true only for = 60 and 6 = 300, as long as is 
 restricted to values between and 360. If angles of unre- 
 stricted magnitude are allowed, cos 6 = J is satisfied by all 
 values of 6 that are included in the general expression 
 
 0-Siirdbg, 
 
 O 
 
 and by no other values. 
 
 In like manner, the equation 
 
 is satisfied by all values of that are given by the general 
 expression 
 
 0=W7T+^, 
 
 o 
 and by no other values ; 
 
 sin 6 = J V2 
 
 by those values of 6 that are given by the expression 
 
 and by no other values ; and so on for other examples that 
 might be given. In all these illustrations it is to be under- 
 stood that n is any positive or negative integer or zero. 
 
 The solution of an equation is the determination of the value 
 of the angle or angles that satisfy the equation. In Art. 67, 
 p. 88, a method of solution was given by means of which some 
 of the simpler forms of trigonometric equations could be treated. 
 But at that time only a limited number of the formulas of 
 transformation were at our disposal. Hence, the number of 
 classes of equations that could be handled was necessarily quite 
 limited. 
 
 The methods of reduction and transformation that are now 
 available make it possible to solve many classes of equations 
 that were formerly quite out of our reach, and also to sim- 
 plify some of the methods previously employed. The present 
 chapter will illustrate some of the simpler cases of this kind. 
 
 This work should be looked upon as an extension of that 
 given in Art. 68, p. 90. 
 
124 PLANE TRIGONOMETRY 
 
 90. Solution of equations of the form 
 
 a cos 6 + b sin 6 = c. (1) 
 
 A simple method of solving equations of this form is fur- 
 nished by the introduction of what are termed auxiliary angles, 
 as follows : 
 
 Assume a right triangle whose legs are a, 6, and designate 
 by (/> the angle lying opposite the leg b. The hypotenuse of 
 this right triangle is Va 2 -}- 2 , and we now have 
 
 cos < = , and sin <f> = 
 
 Dividing each member of the original equation by Va 2 -}- 5 2 , 
 we have 
 
 cos + sin 6 = (2) 
 
 Substituting cos </> and sin <p for their respective values in this 
 equation we have 
 
 cos <j> cos H- sin <f> sin = : G 
 
 or, cos (0 <) = 
 
 Since a, b, and c are known, cos (6 <) is known, and 9 < 
 can at once be found from the tables. Calling this angle , 
 for convenience we have 
 
 cos (# <) = cos a. 
 . . 6 <t> = 2 MTT a, Art. 64, p. 87. 
 # = 2 ftTT + ^ a. 
 
 The cosine -of an angle can never be numerically greater than 
 unity. Hence, in dealing with the equation cos (0 </>) - 
 
 it is to be remembered that we must have c ^ Va 2 + 2 . If 
 c > Va 2 -f- b' 2 , there is no real value of <$> which will satisfy 
 the equation. 
 
GENERAL SOLUTION OF TRIGONOMETRIC EQUATIONS 125 
 
 Ex. i. Solve the equation V3 cos + sin 6 = V2. 
 Dividing both sides of the equation by V3 + 1, i.e. by 2, we have 
 
 In this case we have a = V3, 6 = 1, and Va' 2 + 6 2 = 2. Hence, the auxiliary 
 angle <f> is equal to 30. The original equation then becomes 
 
 cos 30 cos 6 + sin 30 sin = |V2. 
 cos(0-30)=|V2. 
 
 But \/2 is the cosine of 45. Hence, we write 
 cos (0-30) = cos 45. 
 
 4' 
 
 6 4* 
 
 Ex. 2. Solve the equation 5 cos 6 4- 2 sin = 4. 
 In this problem we have a = 5, and 6 = 2. Dividing both sides of the 
 equation by Va 2 + ft 2 , we have 
 
 JL cos + -?= sin = -t= (1) 
 
 A/29 V29 A/29 
 
 In the preceding example we were able to find the value of < from the 
 familiar coefficients and -, which we already knew were the cosine and 
 
 sine respectively of 30. But in this example we have unfamiliar values to 
 consider. 
 
 From the figure on the margin of the page we see that <f> is an 
 
 o i^i 
 
 angle whose cotangent is ~. Turning to the tables, we find that the 
 o 
 
 value of <f) is 68 12' ; and (1) can now be written 
 
 cos 68 12' cos + sin 68 12' sin = -4= 
 
 V29 
 
 Letting a equal the angle whose cosine is this becomes 
 
 V29 
 cos (0-68 12') = cos a. 
 
 Reducing the value of ^ to a decimal, we find it to be 0.7428 ; and, 
 
 V29 
 consulting the tables, we find that the angle whose cosine is 0.7428 is 42 2'. 
 
 Therefore, cos (0 _ 68 12') = cos 42 2', 
 
 - 68 12' = 2 mr 42 2', 
 
 NOTE. Each of the foregoing examples could have been solved by 
 replacing either sin or cos by its value in terms of the other, then 
 obtaining the value of the single function involved, and finally obtaining 
 the value of from the value of this function. But the process just ex- 
 plained is much simpler and better. 
 
126 PLANE TRIGONOMETRY 
 
 91. Solution of equations involving multiple angles. The 
 simplest forms of equations involving multiple angles have 
 already been considered (Art. 68, p. 90). But these, and 
 also many other forms of equations in which multiple angles 
 appear, are more conveniently treated by means of the various 
 reduction formulas that are now available. 
 
 The following problems will illustrate some of the methods 
 of most frequent application. 
 
 Ex. l. Solve the equation sin 3 6 -f sin 7 6 = sin 5 0. 
 By (5), Art. 77, p. 100, we have 
 
 2 sin 50 cos 20 = sin 50. 
 
 .-. sin 5 = 0, or cos 2 6 = |. 
 If sin 50 = 0, then 5 = HIT. 
 
 If cos 2 = -, then 20 = 2 mr 
 
 Therefore, the general values of that satisfy the equation 
 sin 30 + sin 7 = sin 5 0, 
 
 are = ^?, and 0= mr . 
 
 o o 
 
 Ex. 2. Solve the equation cos 4 cos 6 sin 20 = 0. 
 Applying the proper reduction formulas, we have 
 2 sin 5 sin - 2 sin cos = 0. 
 .-. sin (sin 5 cos 0) = 0. 
 
 From the first factor we have 
 
 sin = 0. 
 .-. = n7r. (1) 
 
 From the second factor we have 
 
 cos = sin 5 
 
 = cos r - 
 
 ..0=2mr(|-50Y 
 Using the positive sign, we have 
 
 12 
 
GENERAL SOLUTION OF TRIGONOMETRIC EQUATIONS 127 
 
 Using the negative sign, we have 
 
 [the sign of n being left unchanged because n denotes all negative as well 
 as all positive integers] mr t IT 
 
 *--j+g- (3) 
 
 Collecting the values given in (1), (2), and (3), we have as the general 
 values of that satisfy the given equation 
 
 Ex. 3. Solve the equation cos 2 x = cos x + sin x. 
 
 Expressing cos 2 # in terms of functions of x we have 
 
 cos 2 x sin 2 x = cos x + sin x ; 
 (cos x + sin x) (cos x sin x) = cos x + sin x. 
 
 .-. cos x + sin x 0, (1) 
 
 or, cos a; sin ar = 1. (2) 
 
 From (1) we have tan x 1. 
 
 From (2) we have 
 
 7T 
 
 x = nit 
 
 1 1.1 
 
 cos x sin x = -, 
 
 V2 V2 V2 
 
 or, cos ? cos x sin - sin x = cos ?, 
 
 444 
 
 f *\ 
 cos ar + ) = cos 
 
 V 4/ 
 
 x = 2 /ITT, or # = 2 n?r 
 
 EXERCISE XXII 
 
 Solve the following equations : 
 
 1. cos x V3 sin#= 1. 7. cos ex. -f sin a = V2. 
 
 2. sin x V3 cos # = 1. 8. sin m0+ sin nO = 0. 
 
 3. sin ^ + V3 cos ^ = V2. 9. cos w^ + cos n^ = 0. 
 
 4. V3 sin cos ^ = V2. 10. 3sin# + 2cos^ = 2. 
 5~ sin 6 + cos ^ = V2. 11. 6 cos 3 sin = 3. 
 6. cos a sin a = -|- V2- 12. 4 cos # 3 sin = 5. 
 
128 PLANE TRIGONOMETRY 
 
 ~~ 13. sin 7 x sin 4 x + sin x 0. 
 
 - 14. sin 5 x sin 3 x + sin a; = 0. 
 
 15. sin 1 x sin x = sin 3 a?. 
 
 16. sin 4x sin 2 x = cos 3 #. 
 
 17. cos 6 + cos 2 + cos 3 = 0. 
 
 18. sin + sin 2 + sin 3 6 = 0. 
 
 19. cos 7 cos = sin 4 0. 
 
 20. cos 2 - cos - sin 2 + sin = 0. 
 
 21. sin 4 sin 3 + sin 2 sin = 0. 
 
 22. cos70 + cos50+eos30+cos0 = 0. 
 
 23. 2 cos 2 = cos 3 + sin 0. 
 
 24. cos &<^ cos (k 2) = sin 0. 
 
 25. sin 5 cos sin 6 cos 2 = 0. 
 
 26. 
 
 27. COS 3 + 2 COS = 0. 
 
 28. cos20-f-sin30 = 0. 
 
 29. cos 5 + cos = V2 cos 3 0. 
 
 30. sin + V3 cos 4 = sin 7 0. 
 
 31. cos20-cos 2 = 0. 36. cot 0- tan 0=2. 
 
 32. cos 3 + 8 cos 3 = 0. 37. sec esc = 2 V2. 
 
 33. sin 3 - 8 sin 3 = 0. 38. cot 2 0- cot = - 2. 
 
 34. sin20 + 3sin0 = 0. 39. sec 4 0- sec 20= 2. 
 
 35. esc cot = V3. 40. sec + esc = 2 V2. 
 
 41. tan 3 + tan 2 + tan 0=0. 
 
 42. tan 30- tan 20 -tan 0=0. 
 
 43. tan 3 + tan = 2 tan 2 0. 
 
 44. sin 5 cos - sin 4 cos 2 = 0. 
 
 vr 
 
GENERAL SOLUTION OF TRIGONOMETRIC EQUATIONS 129 
 
 92. Changes in sign and magnitude of the expression a cos a? 
 
 4- & sin x. In connection with the solution of equations of the 
 
 form . , . 
 
 a cos x 4- o sin x = U, 
 
 it is often useful to trace the changes in sign and magnitude 
 of the left member of the equation as x increases from 
 to 360. 
 
 The simplest case occurs when a I and 6 = 1; in which 
 case we have simply sin x 4- cos x to examine. Proceeding as 
 in Art. 90 we have 
 
 cos x 4- sin x = V2 sin x 4 cos x 
 
 LV2 V2 J 
 
 = V2(sin x cos 45 4- cos x sin 45) 
 = V2sin<>4-45 ). 
 
 For convenience we replace cos x 4- sin x by y, and then, form- 
 ing the equation y = V2 sin (x + 45), we form the following 
 table of values. 
 
 Plotting the graph by the method explained in Art. 48, we 
 have the following result. 
 
 X 
 
 y 
 
 
 
 1 
 
 45 
 
 V2 
 
 90 
 
 1 
 
 135 
 
 
 
 180 
 
 -1 
 
 225 
 
 -V2 
 
 270 
 
 -1 
 
 315 
 
 
 
 360 
 
 1 
 
 
 
 /T\ 
 
 
 
 273 
 
 ~Kd 
 
 Since the greatest value that the sine of any angle can 
 have is 1, the maximum value of this expression occurs when 
 sin (x 4- 45) = 1, i.e. when z = 45. This gives V2 as the 
 maximum value of the expression sin x 4- cos x. 
 
 In like manner, the minimum value of the expression is 
 - V2, which corresponds to the angle x = 225. 
 COKANT'S TRIG. 9 
 
130 PLANE TRIGONOMETRY 
 
 If the table of values is extended, and the graph is plotted for 
 values of x greater than 360, the values of ?/, i. e. of cos x + sin #, 
 will be repeated in their original order ; that is, cos x + sinx 
 is a periodic function with a period of 360. (See Art. 49, p. 71.) 
 
 93. When a or 5, or both a and , are different from unity, 
 the process is slightly modified, as follows : 
 
 a cos x+ b sin x = Va 2 + b 2 l ^ - cos x -\ - sin x ] 
 
 = Va 2 -f- b 2 (cos x cos a + sin x sin a) 
 = Va 2 -f- b 2 cos (x a) . 
 
 Here, as is readily seen from the figure on the 
 b margin of the page, it has been assumed that a is 
 
 the angle whose cosine is a and whose sine is 
 When a and b are known, a can be found, as in 
 
 Va 2 + b 2 
 
 Art. 90, p. 124. 
 
 The table of values can then be obtained and the graph con- 
 structed, as in the preceding case. 
 
 Since cos (x a) has 1 for its maximum value and 1 for its 
 minimum value, the expression a cos x + b sin x has Va 2 + b 2 
 for its maximum value and Va 2 b 2 for its minimum value. 
 
 NOTE. In computing the table of values for the purpose of constructing 
 the graph, the values of y can always be obtained directly from the expres- 
 sion as it is originally given, without any reduction whatever. This is 
 sometimes preferable; and in certain cases, as for example the functions 
 given in Examples 7, 9, 10, and 11 in the following set, it is easier to com- 
 pute the values directly than to compute them after transforming the 
 expression. 
 
 EXERCISE XXIII 
 
 Trace the changes in sign and magnitude of the following 
 expressions as x increases from to 360. Find the period 
 and construct the graph in each case. 
 
 1. sin x cos x. 5. sin x + V3 cos x. 9> cos 3 9. 
 
 10 ' Sm 8 ' 
 
 2. V3sinz + cosz. 6 . 2 sin x + 3 cos x. 
 
 11. tan 20. 
 
 3. sin* + V3cos*. 7. cos 20. ^ sin 20- sin* 
 
 4. V3 sin x cos x. 8. sin 6 cos 6. cos 2 + cos 6 
 
CHAPTER XII 
 THE OBLIQUE TRIANGLE 
 
 94. The law of sines. Let A, B, denote the angles of a 
 triangle, and a, b, c respectively the sides opposite. 
 
 From any vertex, as (7, draw CD perpendicular to AB, meet- 
 ing AB, or AB produced, in D. 
 
 A D B A B 
 
 From the first figure we have 
 
 Also, 
 
 = b sin A. 
 
 - = sm B. 
 a 
 
 .. h = a sin B. 
 
 Equating these values of h we have 
 
 b sin A = a sin B. 
 
 From the second figure we have 
 
 - = sm A. 
 b 
 
 = sn 
 
 A. 
 
 Also, 
 whence as before, 
 
 - = si 
 
 b sin A = a sin 
 131 
 
132 PLANE TRIGONOMETRY 
 
 Therefore in either case we have the same result, 
 b sin ^4.= a sin J9; 
 a - sin A 
 
 In like manner drawing perpendiculars from the vertices A 
 and B to the opposite sides respectively we can prove that 
 
 b _ sin 
 G sin 
 
 and 
 
 c sm 
 
 The results obtained in (1), (2), and (3) enable us to state 
 the law of sines as follows : 
 
 The sides of a triangle are proportional to the sines of the 
 opposite angles. 
 
 Equations (1), (2), and (3) are often combined and written 
 in the following manner : 
 
 sin A sin B sin 
 
 95. The geometric meaning of each of the three ratios just 
 stated will be understood from the following : 
 
 Let ABO be any triangle, and let a circle be circumscribed 
 about the triangle. From the center to the vertices of the 
 triangle draw the radii OA, OB, 00, respectively, and also 
 
 draw OD perpendicular to AB. 
 By geometry 
 
 From this we have 
 
 = r sin C. 
 .*. c = 2 r sin C. 
 In like manner it can be proved that 
 
 a= 2rsin A* 
 and b = 2 r sin B. 
 
. 
 
 THE OBLIQUE TRIANGLE 
 
 133 
 
 Equating the values of 2 r obtained from these three equa- 
 tions we have a i c 
 
 2r = - - = -r = -^-~ - That is, 
 Bin .4 sin If sin O 
 
 The ratio of any side of a triangle to the sine of the opposite 
 angle is equal to the diameter of the circumscribed circle. 
 
 96. The law of cosines. Let ABO be any triangle, and let 
 (7Z), the perpendicular from the vertex to the opposite side, 
 meet AB, produced if necessary, in D. 
 
 D 
 
 B A 
 
 From the first figure we have 
 
 = 52 + ^2 _ 2 c - b cos A. 
 
 2 be 
 
 From the second figure we have 
 2 = h* + BD* 
 = h? + (AD - c) 
 = 2 + AD*-2c 
 = b 2 + c 2 2 c - b cos A. 
 
 
 
 2 be 
 
 Therefore, the same result is obtained for both triangles. 
 In like manner, drawing perpendiculars from A and B to the 
 opposite sides respectively, we can prove that 
 
 and 
 
 cos B = 
 
 cos C' = 
 
 (2) 
 (3) 
 
134 PLANE TRIGONOMETRY 
 
 Equations (1), (2), and (3) are often useful when expressed 
 in the following form : 
 
 (4) 
 
 C. 
 
 The law of cosines can now be stated as follows : 
 
 The square of any side of a triangle is equal to the sum of the 
 
 squares of the other two sides minus twice their product into the 
 
 cosine of the included angle. 
 
 yv 
 
 97. The law of tangents. We have already proved that, in 
 
 . . i a sin A 
 
 any triangle, - = 
 
 Therefore, considering this equation as a proportion, and 
 taking the four quantities by division and composition, 
 
 a b__ sin A sin B 
 a + b sin A + sin B 
 
 2 sin *** cos ^p? 
 
 ~ L 
 
 cot^i^tanAzi^. 
 
 a-b 2 
 
 2 
 
 In like manner it can be proved that 
 
 A-C 
 
 tan 
 
 and 
 
THE OBLIQUE TRIANGLE 135 
 
 The law of tangents can now be stated as follows : 
 
 The difference of two sides of a triangle is to their sum as the 
 tangent of half the difference of the opposite angles is to the tan- 
 gent of half their sum. 
 
 NOTE. In using the formulas of this section it is better to let the greater 
 side and the greater angle precede the smaller in all cases. The formulas 
 are true, whichever order is used ; but if the smaller side and the smaller 
 angle precede the greater side and the greater angle respectively, negative 
 numbers are introduced, and if logarithms are to be employed, these num- 
 bers should be avoided whenever it is possible to do so. 
 
 98. The given parts. In the solution of oblique plane tri- 
 angles four cases occur. In each case three parts are given, as 
 follows : 
 
 1. One side and two angles. 
 
 2. Two sides and the angle opposite one of them. 
 
 3. Two sides and the included angle. 
 
 4. Three sides. 
 
 The formulas developed in Arts. 94-97 are sufficient for the 
 solution of every possible case that can arise. These cases will 
 now be considered separately. 
 
 99. CASE 1. Given one side and two angles. Let the given 
 angles be A and J5, and the given side a. The formulas for 
 solution are as follows : 
 
 b _ sin B 7 _ a sin B 
 
 2. - -, . . - ; 
 
 a sin A. 
 
 c sin 
 
 > 
 a sin JL' sin A 
 
 Ex. i. Given a = 467, A = 56 28', B = 69 14'; find the re 
 maining- parts. 
 
 The work may be conveniently arranged as follows : 
 C = 180 - (.4 + B) = 54 18'. 
 
 (1) By natural functions. 
 
 b = a x sin B - sin A = 467 x 0.9350 t 0.8336 = 523.8. 
 c = a x sin C *- sin .4 = 467 x 0.8121 -* 0.8336 = 454.95. 
 
\\ 
 
 136 PLANE TRIGONOMETRY 
 
 (2) By logarithms. 
 
 log b = log a + log sin B log sin A 
 
 = log + log sin B + colog sin A. 
 log c = log a + log sin C log sin A 
 
 = log a + log sin C + colog sin A. 
 
 log a = 2.66932 log a = 2.66932 
 
 log sin B = 9.97083 - 10 log sin C = 9.90960 - 10 
 
 colog sin A = 0.07906 colog sin A = 0.07906 
 
 2.71921 2.65798 
 
 b = 523.85 c = 454.97 
 
 NOTE. To insure accuracy the student should check all results by solving 
 each problem by a second method, entirely independent of the first ; or by 
 the same method, using a different combination of parts. In the case under 
 consideration it is usually sufficient to employ the same method, i.e. the law 
 of sines, combining the parts in a manner different from that employed in 
 the first place. For example, after c has been found we can solve again for 
 
 b by the formula b = csm / f , as follows : 
 sin C 
 
 log c = 2.65798 
 log sin B = 9.97083 - 10 
 colog sin C = 0.09040 
 
 log b = 2.71921 b = 523.85 check. 
 
 EXERCISE XXIV 
 Solve the following triangles : 
 
 1. Given a = 438.3, A = 43 50' 24", B= 69 30' 
 An*. C= 66 39' 24", b = 592.74, c = 580.*. 
 
 1*1 
 
 2. Given b = 421, A = 31 12', B = 36 20'. 
 
 Ans. (7=112 28', a = 368.08, c = 656.63. 
 
 { 3. Given a = 412, 4 = 58U', B = 65 37'. 
 Ans. 0= 56 9', 5 = 441.37, c = 402.45. 
 
 4. Given 6 = 81.5, B = 43 44' 18", 0= 75 2' 42". 
 4 =61 13', a =103.32, c= 113.89. 
 
 5. Given c = 77.93, B = 22 15' 20", O= 41 50' 30". 
 Aw. A = 115 5& 10", a = 105.07, 5 = 44.23. 
 
 6. Given c = 6.98, A = 25 7' 10", (7= 36 12' 24". 
 Ans. B = 118 40' $", 4 = 5.016, b = 10.37. 
 
THE OBLIQUE TRIANGLE 137 
 
 7. Given a = 928.4, A = 61 17' 15", 6 V = 58 18' 40". 
 
 Am. B = 60 24' 5", c = 900.78, ft = 920.45. 
 
 8. Given a = 328.4, A = 29 41' 12", B = 37 50' 24". 
 Ana. C =11 2 28' 24", 5 = 406.77, c = 612.73. 
 
 9. Given A = 64 35', 0= 73 49', a = 213.47. 
 Ans. B = 41 36', 5=156.92, c= 226.98. 
 
 10. Given ^1 = 41 23' 47", B = 124 49', 5 = 65.536. 
 Am. 0= 13 47' 13", a = 52.788, c = 19.023. 
 
 11. Two points, A and ^, are separated by a body of water. 
 In order to find the distance between them a line AQ is meas- 
 ured 612.3 ft. in length, and the angles BAG, ACB are meas- 
 ured and are found to be 49 17' and 68 11' respectively. 
 What is the distance from A to B ? 
 
 12. It is desired to find the distance of a lighthouse A to 
 each of two stations B, C, situated on shore, and in the 
 same horizontal plane with the base of the lighthouse. BC 
 is 21 miles, Z.ABO is 39 38', and ZACB is 74 56'. Find AB 
 and AC. 
 
 13. The angles of elevation of a balloon that has ascended 
 vertically between two stations one mile apart on a level plain, 
 and in the same vertical plane with the balloon, are 29 41' and 
 37 17' respectively. What is the distance of the balloon from 
 each station, and what is its vertical height above the plain ? 
 
 14. Solve the preceding problem on the supposition that 
 both the stations are on the same side of the balloon. 
 
 15. To find the width of a stream a line AB, 351 ft. long, is 
 measured on one side, parallel to the bank. On the opposite 
 side of the stream a stake C is set, and the angles CAB, CBA, 
 are observed and are found to be 38 17' and 31 29' respec- 
 tively. What is the width of the stream ? 
 
 16. From the top and bottom of a column the angles of 
 elevation of the top of a tower 236 ft. high standing on the 
 same horizontal plane are 44 27' and 61 31' respectively. 
 What is the height of the column ? 
 
138 PLANE TRIGONOMETRY 
 
 17. When the altitude of the sun is 49 52', a pole standing 
 on the slope of a hill inclined 16 55' to the level of the plain 
 casts a shadow directly down the hill a distance of 45 ft. 8 in. 
 What is the height of the pole ? 
 
 18. An observer in a balloon measures the angle of depres- 
 sion of an object on the ground and finds it to be 63 58'. After 
 ascending vertically 582 ft. he finds the angle of depression of 
 the same object 74 49'. What was the height of the balloon 
 at the time of the first observation ? 
 
 19. From a ship the bearings of two objects were found to 
 be N.N.W. and N.E. by N., respectively. After sailing due 
 east 10 miles the two objects were in a line bearing W.N.W. 
 How far apart were the objects ? 
 
 NOTE. For an explanation of the term "bearing," and for instruction in 
 reading angles by means of the compass, see p. 176. 
 
 20. From a ship a lighthouse bears N. 21 12' E. After the 
 ship has sailed S. 25 12' E. 2| miles the lighthouse bears due 
 north. Find the distance of the lighthouse from the last point 
 of observation. 
 
 100. CASE 2. Given two sides and the angle opposite one of 
 them. Let the given parts be the sides a and &, and the angle 
 A. The required parts can be found in the following manner : 
 
 By the law of sines 
 
 (1) 
 
 sin A a a 
 
 From this equation the angle B can be found. 
 
 Then, C= 180 - (4 + B). 
 
 Also, ^ = ^4, .'.c = ^?. (2) 
 
 a sin A sin A 
 
 In solving for the angle opposite the second side, in this 
 case the angle B, it is to be noted that two solutions are pos- 
 sible, since the sines of supplementary angles are equal (Art. 
 53, p. 79). 
 
 The following considerations will determine the number of 
 solutions for any given set of conditions. 
 
THE OBLIQUE TRIANGLE 
 
 139 
 
 If a > b, then A > B, and B is necessarily an acute angle, 
 since a triangle can have but one obtuse angle. Therefore 
 there is one and only one solution. 
 
 If a = b, then A = B, and both 
 A and B are acute angles. There- 
 fore there is one and only one solu- 
 tion, an isosceles triangle. 
 
 If a < b, then A < B, and A is an FlG - 1- 
 
 acute angle. In this case B may One solution, a> 6 
 
 be either acute or obtuse, and there will be two solutions if 
 a > CD, the perpendicular drawn from the vertex C to AB, 
 produced if necessary. That is, either of the two triangles 
 AB l C, AB 2 C, will satisfy the given conditions. But the perpen- 
 dicular CD = b sin A.- Therefore, if A is acute and #<&, and 
 
 c 
 c 
 
 b sin A 
 
 FIG. 2. 
 Two solutions, a > b sin A 
 
 FIG. 3. 
 
 One solution, a = b sin A 
 
 if a > b sin A, there are two solutions. The angles 
 AB^C, are supplementary, since /.AB 1 C=/.B 1 B^C. Both 
 angles are given by the formula 
 
 If a = b sin A, that is, if a is equal to the perpendicular CD, 
 there is but one solution, a right triangle. This is also seen from 
 the fact that when a= b sin A, the value of sin B reduces to 
 
 unity. This gives B = 90. 
 
 If a < b sin A, that is, if a is less 
 than the perpendicular CD, there is 
 no solution, and the triangle is impos- 
 sible. This is also seen from the fact 
 that when a<bsinA, the fraction 
 FIG. 4. b sin A is ter than unit But 
 
 No solution, a < 6 sin A a 
 
140 PLANE TRIGONOMETRY 
 
 this fraction is in all cases equal to sin B ; and as the sine of an 
 angle can never exceed unity the triangle is therefore impossible. 
 
 These results may be summarized as follows : 
 
 Two solutions. 
 
 A acute, a < 6, and a > b sin A. 
 
 One solution. 
 
 (0) A obtuse and a > b. 
 
 (5) A acute and a = b sin A. 
 
 (c?) A acute and a > b. 
 
 No solution. 
 
 (a) A acute and a < b sin A. 
 
 (b) A obtuse and a = b or a < b. 
 
 To determine the number of solutions, first note whether A 
 is acute or obtuse. Then, on examining the different cases just 
 studied, it is seen that there can never be more than one solu- 
 tion unless A is acute and the Me opposite A is less than the side 
 adjacent. In this case there may be two solutions, one solution, 
 or no solution. 
 
 The comparison between a and b sin A is often most con- 
 veniently made by means of the natural value of sin A. In 
 many cases the computation can be performed mentally ; for 
 all that is now desired is to determine whether a is less than, 
 equal to, or greater than b sin A. 
 
 If logarithms are used, we compute log sin J5. The results 
 are as follows. 
 
 (a) log sin 1?>0, no solution. 
 
 (b) log sin B = 0, one solution, a right triangle. 
 
 (V) log sin B < 0, one solution if a > 5, and two solutions if 
 a< b and A is acute. 
 
 The student should bear in mind that the given parts are 
 not necessarily a, b, and A ; they, may be any two sides and 
 the angle opposite one of them. If other parts are given than 
 those mentioned above, the proper modifications should be 
 made in the formulas for determining the number of solutions. 
 
 Ex. 1. Given a = 26, b = 72, A = 30 ; find the remaining 
 parts. 
 
 Since sin A \, we have b sin A = 36. Hence, the triangle is impossible 
 as a < 36. 
 
THE OBLIQUE TRIANGLE 141 
 
 Ex. 2. Given a = 88, b = 103, A = 120; find the remaining 
 parts. 
 
 Here A is obtuse and a < b ; therefore the triangle is impossible. 
 
 Ex. 3. Given a =738.4, 6 = 1185.7,. ^ = 79 38' 40"; find 
 the remaining parts. 
 
 Solving by logarithms we proceed as follows : 
 
 a 
 
 logb = 3.07397 
 log sin A = 9.99287 - 10 
 
 colog a ="7.13171-10 Since log sin5 >> there is no 
 
 log sin 5 = 10.19855 -10 
 
 Ex. 4. Given a = 28.2, e = 45.65, A = 38 1' 7.5" ; find the 
 remaining parts. 
 
 Proceeding as in Ex. 3 we have , 
 
 a 
 
 logc = 1.65944 ... C = 90, and the triangle is a 
 
 log sin A = 9.79081 - 10 right triangle. 
 
 colog a = 8.54975 - 10 
 log sin C - 10.00000 - 10 
 
 Solving for B and b by the usual methods employed in the case of right 
 triangles (Arts. 26 and 27, pp. 36-38), we find B = 51 50' 52.5", b= 35.998. 
 
 Ex. 5. Given a = 67.53, b = 56.82, A = 77 14' 19" ; find the 
 remaining parts. 
 
 Here a > b and A is acute; therefore there is but one solution. 
 The unknown parts are found in the following manner : 
 
 log b = 1.75450 
 log sin A = 9.98914 - 10 
 
 colog a = 8.17050 -10 C = 180-(A+B) 
 
 __ 4gO 00 1 KAff 
 
 log sin B = 9.91414- 10 
 
 *= 55 8 ' 47 "' Check: 
 
 log b = 1.75450 log = 1-82950 
 
 log sin C = 9.86843 - 10 log sin C = 9.86843 - 10 
 
 colog sin A = 0.08586 colog sin A = 0.01086 
 
 log c = 1.70879 log c = 1.70879 
 
 .-. c= 51.143. c = 51.143 
 
142 PLANE TRIGONOMETRY 
 
 Ex.6. Given = 168.32, 5=221.46, 4 = 33 39' 16"; tind 
 the remaining parts. 
 
 In this case the simplest method of finding the number of solutions is to 
 obtain the value of b sin A by multiplying the value of b, 221.46, by the 
 natural value of sin A, and comparing the result with 168.32, the value of a. 
 The sine of 33 39' 16" is approximately 0.55. Hence, it is seen at a glance 
 that b sin A is a trifle over one half of 221.46; that is, much less than a 
 Hence, since A is acute and a < &, there are two solutions. 
 
 The work of computation, exhibited in compact form, is as follows : 
 
 log b = 2.34529 log a = 2.22613 
 
 log sin A = ,9.74365 - 10 log sin C = 9.99396 - 10 
 
 colog a = 7.77387 - 10 colog sin A = 0.25635 
 
 2.22613 
 9.35729 - 10 
 0.25635 
 
 log sin B = 9.86281 - 10 log c = 2.47644 1.83977 
 
 .-. B l = 46 48' 50", .-. c x = 299.53, c 2 = 69.147. 
 
 B 2 = 133 11' 10". 
 .-. C = 99 31' 54", or, 13 9' 34". 
 
 NOTE. The method of checking results is the same as that used in con- 
 nection with Case 1. In Ex. 5 above the check' work for c is given. After 
 a little practice this work can be performed with great rapidity. Every 
 result obtained by the student should, be subjected to a check of some kind. 
 
 
 EXERCISE XXV 
 
 1. Determine the number of solutions in each of the follow- 
 ing cases : 
 
 (1) 
 
 a = 30, 
 
 5 = 60, 
 
 4 = 30. 
 
 (2) 
 
 a = 20, 
 
 5 = 60, 
 
 4 = 30. 
 
 (3) 
 
 = 40, 
 
 5=<;o, 
 
 4=30. 
 
 (4) 
 
 a = 750, 
 
 5 = 638, 
 
 A = 69 30'. 
 
 (5) 
 
 a = 38. 8, 
 
 5 = 45.5, 
 
 4 = 60. 
 
 (6) 
 
 a = 226, 
 
 5 = 196, 
 
 4 = 123 40'. 
 
 2. Given 
 
 a=l 09.68, 
 
 e = 467, 
 
 A= 13 35'; 
 
 find 
 
 (7=90', 
 
 ^ = 76 25', 
 
 5 = 453.94. 
 
 3. Given 
 
 a =392, 
 
 5 = 124, 
 
 A = 36 41' 42"; 
 
 find 
 
 .5=10 53' 45" 
 
 <7=13224'33" 
 
 = 484.37. 
 
 4. Given 
 
 a = 168.2, 
 
 5 = 218.6, 
 
 4 = 3422 ; 50"; 
 
 \f r~" 
 
 
 
 
 find . 
 
 g 1 = 4712'49", 
 
 6\ = 9824'21", 
 
 e 1 = 294.67. 
 
 
 5o=13247'll", 
 
 (7 9 =12 49' 59", 
 
 <? 9 = 6(:>.16. 
 
THE OBLIQUE TRIANGLE 143 
 
 5. Given 6 = 8472.2, c = 3211.7, (7=16 33' 45"; 
 find ^ = 114 40' 42", ^ = 48 45' 33", 1 = 10238. 
 
 ^ 2 = 32 11' 48", B 2 =UIU' 21", 2 =6003.4 
 
 6. Given a = 506, 6 = 432, ^ = 367'12"; 
 find ,6 = 30 13', 6 7 =113 39' 48", c= 7-86.22. 
 
 7. Given a = 36.27, 6 = 23.96, 5=30 26' 14"; 
 find ^4 1 = 50 C 4'24", ^ = 99 29' 22", ^ = 46.65, 
 
 A 2 =129 55' 36", (7 2 =1938'10", c a =l 
 
 ' 
 
 8. Given = 283.4, 5 = 268.5, JL = 60 40' 26"; 
 
 find J5=5541 / 23", (7= 63 38' 11, c= 291.25. 
 
 9. Given a = 158, 6 = 179, J. = 2117' 22"; 
 
 find ^ = 24 17' 18", 6\ = 13425' 20", ^=310.8, 
 
 5 2 = 15lf p .42'42", <? 2 = 2 59' 56", 2 = 22.767. 
 
 10. Given a = 628. 2, 6 = 234.4, 4 = 119 40' 40"; 
 find ^=18 54' 58", (7=41 24' 22", ^=478.22. 
 
 11. Given a = 86. 14, 6 = 97.82, ^ = 38 15' 14"; 
 find ^ = 44 40' 42", C\ = 974'4", c? 1 =138.07, 
 
 6 7 2 = 625'28", ^ 2 = 15.57. 
 
 12. Given a = 158, 6 = 179, ^ = 21 17' 22"; 
 find j5=2417'18", 0= 134 25' 20", c= 310.8, 
 
 5' = 155 42' 42", 0' = 2 59' 56", c' = 22.77. 
 
 13. Given a = 36. 38, 6 = 23.92, A = 39 2' 14"; 
 find J5=2427'49", 0= 116 29' 57", <? = 51.69. 
 
 14. Given a = 0.09593, 6 = 0.16864, 5=125 33'; 
 find ^1=27 34' 12", 0= 26 52' 48", e= 0.09375. 
 
 15. Given a = 354.16, 6 = 433.86, .A = 361'4"; 
 find ^ = 46 5' 5", ^ = 97 53' 51", ^ = 596.57, 
 
 R 2 =133 54' 55", O 2 = 10 4' 1", ^ 2 =105.26. 
 
144 PLANE TRIGONOMETRY 
 
 16. Given a = 25.675, 6 = 50.139, = 68 4' 14"; 
 find 4=28 21' 42", C=8334'4", e=53.709. 
 
 17. Given a=542.99, 6 = 310.71, ^=122 49' 17"; 
 find 5=28 44' 34", (7= 28 26' 9", e=307.66. 
 
 18. Given a= 346.66, <?=412.33, J.= 2419' 51" ; 
 find ^ = 126 19' 31", ^ = 29 20' 38", ^ = 677.87, 
 
 2 = 50'47", <7 2 =15039'22", 6 2 = 73.524. 
 
 19. Given a = 56.82, 6 = 67.53, ^=77 14' 19"; 
 
 find ^L = 558'47", (7=47 36' 54", c = 51.14. 
 
 101. Given two sides and their included angle. 
 
 First method. When one angle O is given, the remaining 
 angles can be found by the law of tangents (Art. 97, p. 134), 
 which can be expressed in the following manner : 
 
 2 a + b 2 
 
 The angle - - = 90 Hence, its value is known, and 
 
 ' "2 
 
 the value of - can be obtained from the above equation. 
 
 2 
 
 The values of A and B can then be found as follows : 
 
 A+B , A-B_ 
 
 ~~~ ~~ 
 
 , nd 
 
 The remaining side c can now be found by the law of sines 
 in either of the two following ways : 
 
 a sin C b sin 
 
 c = , or c = : 
 sin A. sin f 
 
 /Second method. The third side c can be found directly by 
 the law of cosines (Art. 96, p. 133), as follows : 
 
THE OBLIQUE TRIANGLE 145 
 
 and the angles A and B can then be found by the law of sines, 
 
 as follows : . n -L - n 
 
 A a sm ' 7? Sln 
 c c 
 
 Third method. In the triangle ABC let the given parts be 
 a, 0, C. From the vertex B draw BD perpendicular to AC. 
 
 Then,' BD = a sin (7, 
 
 and 1)0= a cos (7. 
 
 Now 
 
 Substituting in this equation the values of BD and D C, we 
 have 
 
 a cos (7 
 
 In like manner, drawing a perpendicular from A to the side 
 BO it can be proved that 
 
 5 sin O 
 
 tan 
 
 cos C 
 
 The third side can now be found by the law of sines, as 
 under the first method. 
 
 NOTE. The first method is the best for use when all the unknown parts 
 are desired. If only the third side is desired, the second method can be 
 used to advantage. The second and third methods are not suitable for 
 computation by means of logarithms. 
 
 Ex. 1. Given a= 138.65, = 226.19, (7=59 12' 54"; find 
 the remaining parts. 
 
 b-a= 7a,54 log(b-a)= 1.94221 
 
 B:t:!f^rv> ^.^^4=10^46-10 
 
 B + A = 60 o 23/33" colog(6 + a)= 7.43790 - 10 
 
 Q 75 A 
 
 n " A log tan 9.62557 10 
 
 **~ A = 22 53' 31" 2 
 
 2 A= 37 30' 2" ^r''~- 22 58 ' 31 " 
 
 B= 83 17' 4" 
 CONANT'S TRIG. 10 
 
146 PLANE TRIGONOMETRY 
 
 Check: 
 
 loga= 2.14192 log b = 2.35447 
 
 log sin C = 9.93494 - 10 . log sin C = 9.93494 - 10 
 
 colog sin A = 10.21554 - 10 colog sin B - 0.00299 
 
 logc= 2.29240 log c = 2.29240 
 
 c= 196.06 c= 196.06 
 
 NOTE. In the solution of this problem b precedes a since b > a. (Compare 
 Art. 97, p. 134.) In finding c we use A rather than B, because B is so near 
 90 that any solution obtained by means of its sine is likely to be inaccurate. 
 
 NOTE. In Ex. 1 the check solution gives a result exactly equal to that 
 obtained by the original solution. In the work near the top of p. 136 the 
 check solution also gave a result exactly equal to that obtained in the origi- 
 nal solution. In general, however, the check solution may be expected to 
 differ slightly from the original. 
 
 Ex. 2. Given a = 7, c = 9, B = 60 ; find the third side 6. 
 
 In this problem the second method furnishes the solution with the 
 smallest amount of labor. 
 
 fe 2 = a 2 + c 2 2 etc cos B, 
 
 b = V49 + 81 - 2 .7 9 = VtJ7. 
 .-. b = 8.1854. 
 
 EXERCISE XXVI 
 
 1. Given a = 426, 6 = 582, 0= 52 18'; 
 find A = 46 21' 16", ^=81 20' 44", c = 465.8. 
 
 2. Given 6 = 123, c = 211, 4 = 115 22'; 
 find ^ = 41 46' 45", 0= 22 51' 15", a = 286.16. 
 
 3. Given a = 121. 6, c = 192.2, B =114 .42'; 
 find ^=24 26' 49", 0= 40 51' 11", 6 = 266.94. 
 
 4. Given a = 619, 6 = 515, 6^=39 17'; 
 find A = 84 46' 10", B= 55 56' 50", c= 393.56. 
 
 < 
 
 5. Given 6 = 35.218, c = 54.176, A = 32 48' 14"; 
 find ^=37 49' 35", 0= 109 22' 11", a =31.112. 
 
 6. Given a = 46.792, c = 61.234, ^=45 29' 16"; 
 
 find ^ = 49 34' 5", 0= 84 56' 39", 6 = 43.836. 
 
THE OBLIQUE TRIANGLE 147 
 
 7. Given b = 718.01, c = 228.88, A = 68 55' 2"; 
 find B = 92 30' 47", (7= 18 3-1' 11", a = 670.61. 
 
 8. Given 5 = 2478.1, c = 5134.8, A = 137 8' 49"; 
 find 5 =13 37' 43. 5", 0= 29 13' 27. 5", a =7152. 5. 
 
 9. Given a = 4.1203, 5 = 4.9538, O= 65 38' 52"; 
 find A = -&4' 18", B = 65 16' 50", c = 4. 9683. 
 
 10. Given a = 0.59217, 5 = 0.21833, (7= 41 37' 4"; 
 
 find ^1=119 42' 18", ^=18 40' 38", c = 0.4528. 
 
 11. Two objects A and B are separated by a body of water. 
 In order to find the distance between them a third point C is 
 chosen from which each of these points is visible, and the 
 following measurements are made: CA = 2560 ft., (7.5=3120 
 ft., and Z ACB = 105 35'. Find the distance from A to B. 
 
 12. If two sides of a triangle are 68.6 ft. and 92.2 ft. 
 respectively and the included angle is 112 42', what is the 
 third side ? 
 
 13. Find the distance between two points A, B, which are 
 separated by a marsh, when the distances of these points from 
 a third point C are 4214 ft. and 6932 ft. respectively, and the 
 angle A CB is 51 11. 
 
 14. In an isosceles triangle each of the equal sides is 9 and 
 the included angle is 60. Find the third side. 
 
 15. In an isosceles triangle each of the equal sides is 9 and 
 the included angle is 120. Find the third side. 
 
 16. There are two points, A, B, on the bank of a river, but 
 owing to a curve in its course it is impossible to measure the 
 distance between them directly. A third point C is chosen 
 such that the distances AC=l6Q ft. and 5(7=1680 ft. can 
 be measured, and the angle ACB is found to be 68 42' 30". 
 What is the distance from A to B? 
 
 17. In a given triangle two of the sides are 6 and 9 respec- 
 tively, and the included angle is 38. What is the third side? 
 
 18. The diagonals of a parallelogram are 8 and 10 respec- 
 tively, and they intersect at an angle of 60. What are the sides 
 of the parallelogram? 
 
148 PLANE TRIGONOMETRY 
 
 19. If two sides of a triangle are 1468 and 2136 respectively 
 and the included angle is 72 21' 14", what are the values of 
 the other angles? 
 
 20. There are two points, A, B, so situated that they are not 
 visible from each other, and there is no other point from which 
 both can be seen. To find the distance from A to B two other 
 points (7, .Z), are selected so that A and D are visible from (?, 
 and B and are visible from D\ and the following measure- 
 ments are made: CD = 826.5 ft., ZACD = 121 12',ZOZ) = 
 58 55', ^ADC= 49 12', ^ADB = 62 38'. What is the dis- 
 tance from A to B? 
 
 102. Given the three sides a, b, c. When the three sides of 
 a triangle are given, the angles can be found directly from the 
 formulas proved in Art. 96, p. 133. 
 
 * < 
 
 In order to obtain a form suitable for computation by means 
 of logarithms we proceed as follows : 
 
 Let the sum of the sides of the triangle # + >-h<?=2s. 
 Then we have a + _ c =2 (s <?) 
 
 b + e a = 2 (s a), 
 
 Then, 1 cos A = I 
 
 2 be 
 
 2 be 
 
 2 be 
 b c)(a b + c) 
 
 2 be 
 
 -b}(s-e) 
 be 
 
THE OBLIQUE TRIANGLE 149 
 
 Also (Art. 82, p. 108), 1 - cos A = 2 sin 2 ^. 
 
 NOTE. Since A < 180, being one of the angles of a triangle, < 90 ; 
 
 \ A A 
 
 therefore sin , cos, and tan are positive. Hence the radical in (4), 
 and the corresponding expressions in (5) and (6) below, are always positive. 
 
 -, , 5 2 4- c 2 a? 
 In like manner, 1 + cos A = 1 H 
 
 2 be 
 
 2 be 
 
 2 be 
 
 2 be 
 
 _ 2 s(s - a) 
 be 
 
 Also (Art. 82, p. 108), 1 + cos A = 2 cos 2 ^. 
 
 COS 
 
 ca 
 
 (7 
 
 o = \ 
 * 
 
 . 
 6) 
 
 Dividing (4) by (5), we have 
 
 tap: f = \ 7(g -a) ^ 
 
 In like manner it can be proved that 
 
150 PLANE TRIGONOMETRY 
 
 Any one of the three formulas just given can be used in 
 finding the angle required. If the half angle is very small, the 
 cosine formula will not give a result as accurate as either the 
 sine formula or the tangent formula, since the cosines of angles 
 that are very small differ but little from each other ; and for 
 a similar reason the sine formula should not be used when the 
 half angle is near 90. In general the tangent formula is better 
 than either of the others. 
 
 To insure as great a degree of accuracy as possible, it is 
 better to solve for all the angles rather than solve for two 
 angles and then subtract their sum from 180. If each angle 
 is computed separately and their sum is found to be within 
 two or three seconds of 180, the work of solution is probably 
 correct. 
 
 If all the angles are to be computed, the following variation 
 of the tangent formula may be found useful. 
 
 tan = 
 
 2 * s(s-a)* 
 
 1 /( s a ) ( s b)(s c) 
 
 ~~ 
 
 Putting V- ~ = * 
 
 we have Un i = 7^' 
 
 In like manner, tan = ; (9) 
 
 2 s b 
 
 tan !=--. (10) 
 
 Ex.1. Given a = 79. 3, 5 = 94.2, c>=66.9; find all the 
 angles. 
 
 The work of solving for A and B is as follows : 
 
 a =79.3 s- a = 40.9 
 
 b = 94.2 s - b = 26 
 
 c = 66.9 s-c = 53.3 
 2 s = 240.4 s = 120.2 
 
 s = 120.2 
 
THE OBLIQUE TRIANGLE 
 
 151 
 
 log (*-&)= 1.41497 
 
 log - c ) = 1 .72673 
 colog (s- ) = 8.38828 -10 
 colog 6- = 7.92010-10 
 2)19.45008 -20 
 
 log tan ^ = 9.72504-10 
 
 .-. |- = 2757'56". 
 A = 55 55' 52". 
 
 log (s-c)= 1.72673 
 log (s- a) =1.61172 
 colog (s - b) = 8.58503 - 10 
 colog .s=^.92010 -10 
 
 2)19.84358-20 
 log tan = 9.92179-10 
 
 ... ^ = 39 52' 6.9". 
 
 B = 79 44' 13.8". 
 
 ^+B = 13540'5.8' / . 
 
 .-. (7 = 44 19' 54.2". 
 
 If the value of C is found by logarithms in the same manner as were the 
 values of A and B, it will be found to be 44 19' 56.8", which is 2.6" larger 
 than the value found by subtracting the sum of A and B from 180. The 
 sum of the three angles, when all are found independently, is 180 0' 2.6". 
 The sum of the three angles determined in this manner is rarely equal to 
 exactly 180. This is due to the fact that logarithmic computation is 
 almost always slightly inexact. It is customary in practical work to divide 
 the error among the three angles according to the probable amount for each 
 angle. 
 
 Ex. 2. Solve the preceding example by the use of formulas 
 (8), (9), arid (10). 
 
 In solving by this method it is best to find all the logarithms 
 at the outset, and then to subtract the logarithms of s a, 
 s b, s c, respectively, from the logarithm of r. A com- 
 pact arrangement of the work can be secured by following the 
 model below. 
 
 log (s- a) = 1.61172 
 log (s- b) =1.41497 
 log (s-c) = 1.72673 
 
 colog s = 7.92010 - 10 
 log r 2 = 2.67352 
 log r= 1.33676 
 
 s = 120.2 Check. 
 
 Check. 
 
 log tan ^ = 9.72504 -10 
 log tan | = 9.92179 - 10 
 log tan = 9.61003 -10 
 
 A 
 
 2 
 B_ 
 
 2 
 C _ 
 2 
 A = 
 B = 
 C = 
 
 27 57' 
 39 52' 
 
 22 9' 
 
 55 55' 
 79 44' 
 44 19' 
 
 56" 
 6.9" 
 
 58.4" 
 
 52" 
 13.8" 
 56.8" 
 
152 PLANE TRIGONOMETRY 
 
 EXERCISE XXVII 
 
 1. Given a = 56, ft = 58, c = 64 ; 
 
 find ^=54 22' 43", = 57 20' 32", (7= 68 16' 44". 
 If fe^ ' 1 
 
 2. Given a = 54, 5 = 52, e = 68 ; 
 
 find 4 = 51 24' 3.8", B = 48 48' 52.8", O= 79 47' 7.6". 
 
 3. Given a = 35, ft = 41, c = 47 ; 
 
 find .4 = 46 15' 5", =57 48' 16", C = 75 56' 41.5". 
 
 4. Given a = 73, b = 82, c = 91 ; 
 
 find A = 49 34' 58", ^=58 46' 58", C=7138'4". 
 
 5. Given a = 47, ft = 51, c = 58; 
 
 find .4 = 50 35' 18", .B = 56 58' 4", 6 Y = 72 26' 40". 
 
 6. Given a = 286, ft = 321, c = 463 ; 
 
 find J. = 37 33' 57", = 43 10' 46", G 7 = 99 15' 23". 
 
 7. Given a = 138, ft = 246, c == 321 ; 
 find ^=23 47' 23", ^=45 58' 41", 0=110 14' 
 
 8. Given a = 196, ft = 211, <?=173; 
 find vl = 60 25'31", =69 26', 6^=50 8' 36". 
 
 9. Given a = 48.3, ft = 53.2, <? = 62.7; 
 find ^ = 48 24' 24", ^=55 27' 44", C= 76 7' 55". 
 
 10. Given a = 226.4, ft = 431. 6, c= 316.8; 
 
 find ^=30 35' 53", 5=103 58' 55" C =45 25' 8". 
 
 /ll. Given a = 262.43, ft = 514.36, c = 556.25 ; 
 
 find A = 50 59' 18" 
 
 12. Given a = 2243. 8, ft = 2469.2, c = 3125.6; 
 
 find ^1 = 45 26' 3", ^ = 51 37' 42", (7= 82 56' 19". 
 
 \ f ' 
 
' 
 
 - 7 
 
 THE OBLIQUE TRIANGLE 153 
 
 13. Given a = 25617, 6 = 34178, c = 23194; 
 find .4 = 48 31' 56", 5= 88 44' 34", (7= 42 43' 30". 
 
 14. Given a = 0.34177, b = 0.45623, c = 0.58216 ; 
 find A = 35 54' 30", B = 51 31' 34", = 92 33' 56". 
 
 15. Given a = 11.682, = 14.468, c= 20.386; 
 find ^ = 34 6' 13", = 43 58' 47", (7= 101 54' 58". 
 
 16. Given a = 1.9141, 6 = 1.8365, c= 1.2854; 
 
 find A = 73 14' 32," B =66 44' 22", <7=401'5". 
 
 17. The sides of a triangle are respectively 36.92, 31.84, 
 26.14. Find the smallest angle of the triangle. 
 
 18. The sides of a triangle are in the ratio of 29 : 21 : 38. 
 
 Find the medium angle. |> t \\^^ ({ 
 
 19. The sides of a triangle are to each other as 3:4:5. Find \(L I ! - (& 
 
 all the angles. 
 
 i S ^ ~~ ~~ 
 
 20. In a given triangle a =8, 6 = 8, c = S. Find all the 
 
 angles. 
 
 21. Three cities are respectively 22.6, 21.4, 19.6 miles apart. 
 If the curvature of the earth is disregarded, what angles are 
 made by the lines joining the cities? 
 
 22. In discussing the solution of a triangle when two sides 
 and the angle opposite one of them are given, it was noted that 
 two solutions were possible when an angle was found by means 
 of its sine. Why does not a similar ambiguity exist when an 
 angle is found by means of formula (4), p. 149? 
 
 23. The sides of a triangle are a = 7, b = 8, c 5. Find the 
 angle A. 
 
 24. The sides of a triangle are a = 7, 6 = 5, c 3. Find the 
 angle A. 
 
 25. An object 16.2 ft. in length is so situated that one end 
 is 17J ft. and the other is 11.9 ft. from the eye of an observer. 
 What angle does the object subtend at the eye? 
 
 ff# -' 
 
 >i I a * 
 
154 
 
 PLANE TRIGONOMETRY 
 
 103. Area of a triangle. In geometry it was proved that the 
 area of a triangle (A) can be found by either of the following 
 formulas: A = | base x altitude, 
 
 or, A = Vs (s a)(s b)(s <?). 
 
 The work of finding the area of a triangle can be greatly 
 simplified by trigonometry, as will be seen from the following 
 section. 
 
 104. CASE 1. Given two sides and the included angle. The 
 area of any triangle is equal to one half the product of the base 
 and the altitude. Therefore, using either of the following 
 figures, 
 
 But 
 
 A = 1 c CD. 
 CD = a sin B. 
 
 c 
 
 sin A. 
 
 Substituting this value of c in (1), Case 1, we have. 
 
 a 2 sin B sin C 
 
 A = 
 
 2 sin A 
 
 But since A + B + 6'= 180, sin A = sin (B + <7) ; 
 
 . ^ __ a 2 sin B sin C 
 = 2 sin (B + (7) 
 
 CD 
 
 (2) 
 
 In like manner it can be proved that 
 A = * be sin A, 
 and A = -*- ab sin C. 
 
 CASE 2. Given a side and the two adjacent angles. By the 
 law of sines (Art. 94, p. 131), 
 
 a : c = sin A : sin C. 
 a sin C 
 
 (4) 
 
THE OBLIQUE TRIANGLE 155 
 
 CASE 3. Given the three sides. In Art. 80, p. 106, it was 
 proved that , , 
 
 sin A = 2 sin cos . 
 
 L ' 
 
 But (Art. 102, p. 149), 
 
 be 
 and cos -^ ' 
 
 Substituting these values in the above equation, we have 
 
 2 
 sin A = T-S(S a)(sb)(s c). 
 
 Substituting this value of sin A in (2), we have 
 
 A = V*( -)(_ 6)( s - c). (5) 
 
 CASE 4. Given three sides and the radius of the circum- 
 scribed circle. By Art. 95, p. 132, we have 
 
 where r is the radius of the circumscribed circle. Substituting 
 this value in (2), we have 
 
 A=f (6) 
 
 CASE 5. Given three sides and the radius of the inscribed 
 circle. 
 
 Let r be the radius of the inscribed circle. The triangle 
 can be divided into three triangles whose bases are a, 6, <?, re- 
 spectively, and whose common altitude is r. Then 
 
 A = r( + ft + c). (7) 
 
CHAPTER XIII 
 
 MISCELLANEOUS PROBLEMS IN HEIGHTS AND 
 DISTANCES 
 
 105. In this chapter certain problems will be considered 
 that are frequently met in land surveying, railroad work, 
 etc. The degree of accuracy required in practical problems of 
 this kind can only be known after the nature of the special 
 problem under consideration is known. Hence, in the examples 
 that are here considered no attempt is made to conform to 
 the ordinary practice of field surveyors. In many classes of 
 problems that they are called upon to solve a .sufficient degree 
 of accuracy is, secured if the angles are measured to single 
 minutes and the computations are performed by means of four- 
 place tables of logarithms; while in others the measurements 
 are made with the greatest possible accuracy and the computa- 
 tions are performed with the aid of eight-, ten-, or twelve-place 
 tables. For this reason it is quite impracticable for an elemen- 
 tary text-book in trigonometry to attempt to conform to field 
 usage. 
 
 The tables used in the solution of the problems in this 
 chapter are five-place tables. 
 
 106. The height of an object by means of observations made 
 at distant points. 
 
 Let AB represent the height of an object, and let (7, JJ, 
 be two points of observation on the same level with A, so 
 
 situated that A, 0, Z), are in the 
 same straight line. Let the angle 
 of elevation of B at C be , and at 
 D be /3, and let DC=a. Then from 
 the triangle ABC 
 
 ./ / ~t *\ 
 
 /,v< = s1 ""' 
 
 150 
 
PROBLEMS IN HEIGHT- L FIANCES 157 
 
 and from the triangle DCB 
 BC 
 
 a sin (a 
 
 Substituting this value of 1M? in (1). and reducing we have 
 
 a formula which gives the value of x in a form suitable for 
 computation either by logarithms or by natural functions. 
 
 Ex. 1. What is the height of a tower when the angles 
 of elevation of the top of the tower from two points 250 ft. 
 apart on the ground and in the same straight line with the foot 
 of the tower are 30 and 60 respectively? 
 
 = 60% and = 3G. Therefore 
 >in 60 sin 30 
 
 x = 
 
 sin 3IT 
 50-1 x ^ = 218.5 ft. 
 
 107. If the height of an object is to be determined, and no 
 two points can be found that are in the same st might line, 
 and at ilie same time conveniently situated for observation, the 
 following method is often employed : 
 
 From A measure AB in any convenient direction. Let the 
 angle of elevation of the top of the object D, measured at A* 
 be , and let the distance AB be a. At A and B measure the 
 angles DAB=& and DIM = 7, respectively. Then in the 
 triangle AD* 
 
 Therefore, 
 
 AD _ _ 81117 _ _ siu 7 
 ~o~ " sin (1W - ( + 7)) ~ sin ( + 7) 
 
 1 -ing the value of AD obtained 
 from this equation, we have 
 
 . 
 sin ( + 7) 
 
158 PLANE TRIGONOMETRY 
 
 MISCELLANEOUS EXAMPLES 
 
 THE RIGHT TK I ANGLE 
 
 1. The angle of elevation of the top of a vertical cliff 
 426.28 ft. high, taken from a point on the same level as the 
 foot of the cliff, is 59 51' 14". What is the distance from the 
 foot of the cliff to the point where the observation was taken? 
 
 2. A pole 36 ft. high casts a shadow 39 ft. long. What is 
 the angle of elevation of the top of the pole, measured at the 
 extremity of the shadow? 
 
 3. The height of a room is 12.62 ft. and its length is 
 14.44 ft. What is the angle of e! of one of the upper 
 corners of the room taken at the lower corner on the same 
 side? 
 
 4. What is the elevation of the sun when a tree 31.6 ft. high 
 casts a shadow 42.9 ft. in length ? 
 
 5. What angle does a ladder 25.2 ft. long make with the 
 ground when it just reaches the sill of a window 18.95 ft. 
 above the level on which the foot of the ladder rests ? 
 
 6. The angle of depression of a point on the ground, meas- 
 ured from the top of a building 49.27 ft, high, is 34 6' 36". 
 What is the distance from the foot of the building to the given 
 point ? 
 
 7. The length of the diagonal of a rectangular field is 
 247.39 ft., and the angle between the diagonal and the 
 shorter side of the field is 29 40' 36". What is the width 
 of the field? 
 
 8. A path measuring 256.4 ft. in length leads diagonally 
 across a rectangular plot of ground, making with one of the 
 sides an angle of 61 12' 52". What is the length of the 
 side ? 
 
 9. The angle of elevation of a balloon measured at a certain 
 point is 71 14' 12", and from this point to a point directly 
 below the balloon the horizontal distance is 415.9 ft. What 
 is the height of the balloon and its distance from the point of 
 observation ? 
 

 PROBLEMS IX HEIGHTS AND DISTANCES 159 
 
 10. A kite is fastened to a string 483.2 ft. long, and the string 
 makes an angle of 63 19' 28" with the level of the ground. 
 What is the vertical height of the kite above the ground, no 
 allowance being made for the sagging of the string ? 
 
 11. To ascertain the width of a river a distance AB is meas- 
 ured along one of the banks 262.38 ft. Directly across the 
 river from B is a point (7, and the angle BAG is found upon 
 measurement to be 41 38' 20". Required the width of the 
 river. 
 
 12. Two forces, of 198.52 Ib. and 393.13 Ib. respectively, 
 are acting at right angles to each other. What is the resultant 
 of the two forces, and what is the angle which the direction 
 of each force makes with the resultant ? 
 
 13. What is the radius of the parallel passing through a 
 point on the earth's surface whose latitude is 43 15', the radius 
 of the earth being reckoned as 3956 mi. ? 
 
 14. The angle of elevation of the top of aitill viewed from 
 a certain point is 29 17', and from a point 362.4 ft. nearer, 
 measured directly toward the hill, the angle of elevation is 
 48 12'. Required the height of the-MH-. - 
 
 15. From the top of a mountain the angles of depression of 
 two milestones 2 mi. apart and in the same vertical plane with 
 the top of the mountain are 10 14' 42" and 5 38' 46" respec- 
 tively. What is the height of the mountain? 
 
 16. A flagstaff which is broken at a certain distance above 
 the ground falls so that its tip touches the ground at a distance 
 of 13.5 ft. from the foot of the portion which remains standing. 
 The length of the part broken over is 35.1 ft. What was the 
 total height of the staff before it was broken over ? 
 
 17. If the angle of depression of the visible horizon, observed 
 from the top of a mountain 3 mi. in height, is 2 13' 59", what is 
 the diameter of the earth ? 
 
 18 A ladder 30 ft. long when set in a certain position 
 between two buildings will reach a point 20 ft. from the 
 ground on one of the buildings, and on being turned over 
 without having the position of its foot changed it reaches a 
 
1HO PLANE TRIGONOMETRY 
 
 point on the other building 15 ft. from the ground. What is 
 the angle between the two positions of the ladder ? (Solve by 
 natural functions.) 
 
 19. A lighthouse 50 ft. high stands on the top of a rock. 
 The angle of elevation of the top of the rock and of the top 
 of the lighthouse, measured from the deck of a vessel, are 6 5' 
 and 6 58" respectively. What is the height of the rock, and 
 the distance from the vessel to the foot of the rock ? (Solve 
 by natural functions.) 
 
 20. At any point on the earth's surface a line is drawn tan- 
 gent to the surface at that point. If the earth is considered a 
 sphere whose diameter is 7912.4 mi., how far from the surface 
 will the line be at the end of 1 mi.? 
 
 21. A building 50 ft. high stands at the foot of a hill, and 
 from the top of the hill the angles of depression of the top 
 and of the bottom of the building are 45 15' and 47 12' 
 respectively. What is the height of the hill ? 
 
 22. The angles of a triangle are 1:2:3, and the perpendicu- 
 lar from the greatest angle to the side opposite is 15 ft. 
 Required the sides of the triangle. 
 
 23. A bridge of five equal spans crosses a river, each span 
 measuring 100 ft. from center to center. From a boat moored 
 in line with one of the middle piers the length of the bridge 
 subtends a right angle. What is the distance from the boat to 
 the bridge? (Solve by natural functions.) 
 
 24. An observer on a vessel at anchor sees another vessel 
 due north of him; at the end of fifteen minutes it bears E., 
 and half an hour later it bears S.E. How long after it is first 
 seen is it nearest the observer, and in what direction is it sail- 
 ing, its course being supposed to be in a straight line from the 
 time of the first to the time of the last observation? (Solve by 
 natural functions.) 
 
 25. A statue on a column subtends the same angle at dis- 
 tances of 27 and of 33 ft. from the column. If the tangent of 
 the angle equals T ^, what is the height of the statue ? (Solve 
 by natural functions.) 
 
PROBLEMS IN HEIGHTS AND DISTANCES 161 
 
 26. A tower 145 ft. high stands on an elevation 75 ft. 
 high. At what point in the plain on which the elevation 
 stands must an observation be made in order that the tower 
 and the height of the elevation may subtend equal angles? 
 (Solve by natural functions.) 
 
 27. A flagstaff 50 ft. high stands in the center of a plot 
 of ground in the form of an equilateral triangle. Each side 
 of the triangle subtends at the top of the staff an angle of 60. 
 What is the length of one of the sides of the triangle ? (Solve 
 
 by natural functions.) * 
 
 28. A tower stands on the slope of a hill that has an 
 inclination of 15 to the level of the plain. At a point 80 ft. 
 farther up the hill it is found that the tower subtends an angle 
 of 30. Prove that the tower is 40(VJ- V) ft. in height. 
 
 29. At a distance of 300 ft. from the foot of a tower the 
 angle of elevation is one third as great as it is at a distance of 
 60 ft. What is the height of the tower? 
 
 THE OBLIQUE TRIANGLE 
 
 30. The angles of elevation of a balloon measured at the 
 same instant at two points on level ground and in the same 
 vertical plane as the balloon are 41 56' and 28 14' respectivel} T . 
 The two points from which the angles are measured are 3462 
 ft. apart and on the same side of the balloon. Required its 
 height at the time of observation. 
 
 31. The angle of depression of an object viewed from the 
 top of a tower is 50 12' 56", and the angle of depression of 
 a second object 250 ft. farther away, and in a straight line with 
 the first object and the foot of the tower is 31 19' 54". What 
 is the height of the tower ? 
 
 32. The angles of depression of two objects on a level plain, 
 viewed from an elevation in the same vertical plane with the 
 objects, are 48 12' and 29 17' respectively, and the distance 
 between the two points is 362.4 ft. Required the height of 
 the point of observation. 
 
 CON ANT'S TKIG. 11 
 
162 PLANE TKIGONOMETKY 
 
 33. The sides of a triangular plot of ground are 138 ft., 
 246 ft., and 321 ft. respectively. What is the greatest angle 
 formed by the sides? 
 
 34. Two objects are separated by a building, and it is re- 
 quired to find the distance between them. At a third point, 
 distant 268 ft. and 315 ft. respectively from the given ob- 
 jects, the angle subtended by the line connecting the objects 
 is measured and is found to be 108 17'. What is the distance 
 
 between the objects ? 
 i^. 
 
 35. What is the distance between two points 4, B, when 
 
 the distances from these points to a third point C are 6282 ft. 
 and 2344 ft. respectively, and the angle :S*UL is 119 40' 40"? 
 Is more than one solution possible ? Why ? (See Art. 100, 
 p. 138.) 
 
 36. The distance between two points A, B, cannot be ob- 
 tained directly by the use of the chain or tape because of an 
 intervening body of water. A third point C is chosen from 
 which both A and B are visible, and the following measure- 
 ments are then made: 4(7=3101.8 ft., Z CAB = 51 28', 
 Z. ABQ = 70 37' 33". What is the required distance ? 
 
 37. In a system of triangulation the sides of a triangle con- 
 necting the stations on the tops of three hills have been com- 
 
 c puted and have been found to be 54,692.73 ft., 61,284.39 ft., 
 and 42,798.64 ft. respectively. What are the values of the 
 angles of this triangle as computed from the sides ? 
 
 38. An observation station A is set up in a field along one 
 side of which runs a straight, level road. Two points of ob- 
 servation on the road, J5, (7, one fourth of a mile apart, are 
 
 *o chosen, on opposite sides of the first station and the angles 
 ABO, ACB, are measured and found to be 46 20' 28" and 
 38 24' 48" respectively. What is the distance from the station 
 A to the road ? 
 
 39. The distances from a point on shore to two buoys are 
 known to be 1286 ft. and 2466 ft. respectively, and the angle 
 subtended at that point by the line connecting the buoys is 42 
 14' 16". What is the distance between the buoys? 
 
PROBLEMS IN HEIGHTS AND DISTANCES 163 
 
 40. A tripod is set up on a rock, and to find the distance 
 from the tripod to the shore a line 8500 ft. in length is meas- 
 ured along the shore, and at each extremity of the line the 
 angle is measured which subtends the line connecting the 
 tripod with the other end of the line. The angles are found 
 to be 46 28' and 43 32' respectively. Find the distance from 
 the tripod to the line of measurement along the shore. 
 
 41. Two vessels lying at anchor 1 mi. apart are observed 
 from a third vessel sailing east to be in a straight line due 
 north. After sailing an hour and a half one of the vessels 
 bears N.W. and the other W.N.W. Find the rate at which 
 the vessel is sailing. \ \ ^ ^ 
 
 42. The distance between two points A, B, is to be deter- 
 mined, where B is accessible and -4Ms not. A kite is sent up 
 and made fast, and its position is determined to be 517.3 
 yd. vertically above D, which is on the same level with A and 
 B. The following angles are then measured: A 6^5 = 13 15' 
 15", CAD= 21 9' 18", DBC=<2& 15' 34". \What is the dis- 
 tance from A to B? J $ v % $~ I 
 
 43. Two forces, of 410 Ib. and 320 Ib. respectively, are act- 
 ing at an angle of 51 37'. Required the direction and in- 
 tensity of the resultant. 
 
 44. A kite A has been sent up and is fastened to the ground 
 at a point Q. The kite has drifted a certain distance and now 
 stands directly above a point B, which is on the same level as 
 (7, but is separated from it by obstacles which render direct 
 measurement impracticable; and the height of the kite is de- 
 sired. To ascertain this a line is measured from to a point 
 Z), 4262.4 ft. in length, and the following angles are meas- 
 ured: ACB= 31 17' 14", ACD= 66 14' 52", CDA = 52 51' 
 38". Required the vertical height of the kite above the point B. 
 (See Art. 107.) 
 
 45. Two rocks are to be charted. To ascertain the distance 
 between them the angles of elevation of a point at the top of a 
 cliff 527.4 ft. high are taken and are found to be 21 8' 16" 
 and 23 14' 20" respectively, and the angle subtended by the 
 

 164 I'LAM-: TUGOXOMHTKY 
 
 line connecting the rocks, measured at a point at the top of 
 the cliff, is 16 3' 30". Required the distance between the 
 rocks. 
 
 46. A balloon, J., is sighted at the same instant from two 
 points, B, C, which are on the same level, and are 262.4 ft. 
 apart. The angle of elevation of the balloon at B is 41 15' 
 24", ZABC = 62 48' 14", ZACB=59 14' 21". What is the 
 height of the balloon at the instant of observation? ^ ^\ ^ t *^ \ 
 
 47. A tower stands on the slope of a hill which makes an 
 angle of 16 with the horizon. At a distance of 95 ft. from 
 the foot of the tower, measured directly up the side of the hill, 
 the height of the tower subtends an angle of 38. What is the 
 height of the tower? 
 
 48. A tree stands E.S.E. of an observer, and at noon the 
 extremit}^ of the shadow of the tree is directly N.E. of the 
 position in which he is standing. The length of the shadow is 
 60 ft., and the angle of elevation of the top of the tree viewed 
 from the position of the observer is 45. What is the height of 
 the tree? (Solve by natural functions.) 
 
 49. It is required to find the distance between two points, 
 
 A, B, neither of which is accessible. For that purpose a base 
 line, (7Z>, 4968 ft. long, is measured, and the following angles 
 are observed: ACD=W8 14', 6^Z) = 41 15', 7X7=11,5 
 21', ADO= 39 42'. What is the distance from A to B> 
 
 50. Two points are so situated that it is not possible to 
 measure directly from one to the other, but observations can 
 be taken at either point. Two other points, (7, D, are chosen, 
 5226 ft. apart, and the following angles are measured: ACB 
 = 15 18' 24", DAO= 21 12' 46", DBC= 23 18' 42", AT)C = 
 BDC= 90. What is the distance from A to #? 
 
 51. To find the distance between two inaccessible points, A, 
 
 B, two other points, (7, D, are chosen,' so situated that from 
 either of them the three other points can be seen; and the fol- 
 lowing measurements are then made: 6 Y .Z) = 826.5 ft., ZACD 
 = 121 12', Z BOD = 58 55', Z.ADC= 49 12', Z.ADB = 2 
 38'. What is the distance from A to B'> 
 
PROBLEMS IN HEIGHTS AND DISTANCES 
 
 165 
 
 52. Two points, A, B, are so situated that only one point, (7, 
 can be found which is conveniently situated for observation, 
 from which both can be seen. A fourth point, D, is found from 
 which A and Q can be seen, and a fifth point, J, from which B 
 and C can be seen. The following measurements are taken, 
 from which it is required that the distance from A to B shall 
 be computed: CD = 6428.72 ft., OE = 5872.54 ft., 
 
 = 64 21'. 
 
 53. Two points, A, B, are so situated that no point can be 
 found from which both can be seen. Two other points, (7, 1), are 
 found, so placed that A and D can be seen from C and B from D, 
 and also two additional points, E, F, so placed that A and 
 can be seen from F, and B and D from E. The following data 
 can now be obtained for the determination of the distance from 
 A to B: (7Z)=1254 ft,, OF =1216 ft., 7)^=1216 ft., Z.AFC 
 = 78 14' 15", ZFCA = 53 51' 40", Z.4CZ) = 52 17' 18", Z. CDB 
 = 155 24' 20", ZBDE=53 49' 8", ZD^ = 82 57'. What 
 is the length of the line AB? 
 
 
CHAPTER XIY 
 
 FUNCTIONS OF VERY SMALL ANGLES HYPERBOLIC 
 FUNCTIONS TRIGONOMETRIC ELIMINATION 
 
 108. Trigonometric functions of very small angles. Let 
 A OB be any angle less than 90* With as a center and any 
 
 radius OA describe a circle. 
 
 Draw BQ perpendicular to OA, and 
 produce it to intersect the circle in B 1 ' . 
 
 Draw tangents to the circle at B, B'. 
 These tangents will, by geometry, inter- 
 sect OA produced in the same point D. 
 Then 
 
 chord BB' < arc BB' < BD + B' D. 
 Dividing by 2, CB < arc AB < DB. 
 
 CB arc AB BD 
 'OB OB " OB ' 
 
 CB . /j BD ;\rcAB , 
 
 But - = sm0, = tan 0, and = the circular 
 
 OB OB OB 
 
 measure of the angle 0, or of the arc AB (Art. 13, p. 16). 
 Therefore, sin < < tan 0. 
 
 This important result may be expressed as follows : 
 When 6 < 90, sin 6, 6, and tan are in the ascending order 
 of magnitude. 
 
 109. Dividing the inequality just obtained by sin 0, we have 
 
 
 
 1< 
 
 sin<9 
 
 < sec 0, 
 
 or, 
 
 166 
 
FUNCTIONS OF VERY SMALL ANGLES 167 
 
 Therefore, lies between 1 and cos 6 for all values of 6 
 u 
 
 
 between and - 
 
 But as approaches as its limit, cos approaches 1 as its 
 limit; and at the same time approaches 1 as its limit. 
 
 COS0 
 
 Therefore, when is very small, and is approaching as its 
 
 limit, lies between 1 and a quantity that may be made 
 
 
 to differ from 1 by a quantity e which may be made as small as 
 we please ; and as approaches as its limit, e also approaches 
 as its limit. t, . * ; , t - ^<( l^ e^ . &-^ 
 
 In other words, when fl x approaches as its limit, S1 " ap- 
 
 u 
 
 proaches 1 as its limit. This fact is often expressed by the 
 statement that when is very small, sin = 0, approximately. 
 
 In like manner it can be shown that as approaches as its 
 limit, tan will also approach the limit ; that is, when is 
 very small, tan = approximately. 
 
 From the above it follows also that when is very small, sin 
 = tan 0, approximately. 
 
 In this discussion it should be remembered that is ex- 
 pressed in^circular measure ; i.e. is the number of radians 
 in the angle or arc under consideration. 
 
 EXERCISE XXVHI 
 
 1. Find the sine and the cosine of V. 
 Let x be the circular measure of 1'. 
 
 Therefore, since x > sin x > 0, (Art. 108) 
 
 sin 1' lies between and 0.000290889. 
 
 Also, cosl' = Vl-sin 2 l 
 
 > Vl - (0.00029088^) 2 
 
 ^O QQQQQQQ 
 
 >0.9999999. 
 
 .-.cosT = 0.9999999+. (1) 
 
 But (Art. 108, p. 166), sin x > x cos x. 
 
 .-. sin l'> 0.000290888 x 0.9999999 
 
 .kO.000290887. (2) 
 
168 PLANE TRIGONOMETRY 
 
 Therefore, sinl' lies between (1) and (2); i.e. 
 
 sin 1' = 0.00029088+, 
 and the next decimal place is either 7 or 8. 
 
 Find approximately the values of the following : 
 
 2. sin 10'. 4. sin 1'. 6. cos 15'. 
 
 S.^cosTO'. .5. sin 15'. 7. sin 8". 
 
 HYPERBOLIC FUNCTIONS 
 
 110. In the differential calculus it is proved that the follow- 
 ing equations are true for all values of x : 
 
 ein ~ _ ~ X X X> i . . . -fl\ 
 
 bill X JU -f -T- ' , {1J 
 
 cos ^_^_^__|_?: ^__^_...j (2) 
 
 where e = 2.7182818 is the base of the natural system of log- 
 arithms. In (1) and (2) x is the value of the angle or arc 
 expressed in radians. 
 
 If in (3) x is replaced by ix, where i = V 1, we have 
 
 X 2 
 
 The series in the first parenthesis is the same as the right 
 member of (2), and that in the second parenthesis is the same 
 as the right member of (1). Hence, replacing these series by 
 their values, we have equation (4) in the following form : 
 
 e** = cos x + i sin x. (5) 
 
 In a precisely similar manner it may be shown that 
 
 e~ lr = cos x i sin x. (6) 
 
HYPERBOLIC FUNCTIONS 
 Adding (5) and (6), and dividing by 2, we have 
 
 . (7) 
 
 Subtracting (6) from (5) and dividing by 2 i, and the cor- 
 responding value for sin x is obtained : 
 
 (8) 
 
 These equations give the values of the sine and the cosine of 
 any angle whatever in exponential form. 
 
 111. If in (5) and (6) of the preceding section we replace x 
 by ix, the following equations are obtained : 
 
 e~ x = cos ix-\- i sin ix\ (1) 
 
 e x = cos ix i sin ix. (2 ) 
 
 By addition and subtraction we obtain from these the results 
 
 below : e x , e -x 
 
 cos ix = - -~ - ; (3) 
 
 It will be noticed that the exponential functions which occur 
 in the right-hand members of (3) and (4) possess a striking 
 similarity to those which appear in (7) and (8) of the preced- 
 ing section. It has been found convenient to make use of this 
 similarity, and, corresponding to the exponential values of 
 sin x and cos x given in those equations, to give the following 
 definitions : 
 
 - is called the hyperbolic cosine of x, 
 
 oX p X 
 
 and is called the hyperbolic sine of x. 
 
 ft 
 
 These functions are written in abbreviated form cosh x and 
 and sinh x respectively. Accordingly we have 
 
 g.r I g X 
 
 cosh x y " = cos ix ; (5) 
 
 sinh x = '- = i si nia?. (6) 
 
170 PLANE TRIGONOMETRY 
 
 The name hyperbolic is applied to these functions because 
 they bear to the equilateral hyperbola a relation analogous to 
 that which sin a; and cos x bear to the circle. (Art. 46, p. 64.) 
 
 The other hyperbolic functions are denned as follows : 
 
 - 
 
 cosh# 
 
 sinh x 
 sech x = 1 ; (9) 
 
 
 
 cosh x 
 
 - .. 
 sinli x 
 
 112. Ex. l. Prove the relation sinh = 0. 
 By (6), Art. Ill, we have 
 
 (10) 
 
 . 
 2 2 
 
 Ex. 2. Prove the relation 
 
 sinh (x -f y) = sinh x cosh y + cosh x sinh y. 
 By definition 
 
 sinh (x + y) = - i (sin (ix + iy) ) 
 
 = i (sin t.r cos /# + cos ix sin z/y) 
 
 = i (i sinh x cosh ?/ + i cosh x sinh #) 
 
 = sinh x cosh y + cosh x sinh ?/. 
 
 Ex. 3. Prove the relation 
 sinh x + sinh y = 2 sinh ^^ cosh 
 
 By definition 
 
 sinh x + sinh y i (sin ix + sin z 
 
HYPERBOLIC FUNCTIONS 171 
 
 EXERCISE XXIX 
 Prove the following identities : 
 
 1. cosh = 1. 9. sin ( ix) = sin ix. 
 
 . i TTI . 10. cos( iz} = uosix. 
 
 2. smn = i. 
 
 11. tan ix = i tanh x. 
 
 3. cosh = 0. 12 - sinh (-2:)= -sinh a;. 
 
 13. cosh ( x) = cosh x. 
 
 4. sinh7n'=0. , , . 
 
 14. coth ( x) = coth #. 
 
 5. cosh9r* = -l. 15 sec h(-:r)=sech*. 
 
 6. sinh2mr = 0. 16> C sch ( - ^) = - csch a;. 
 
 7. cosh2mr = l. 17. 
 
 8. tanh = 0. 18. sech 2 x + tanh 2 x = 1. 
 
 19. csch 2 x coth 2 a; = 1 . 
 
 20. cosh (x + /) = cosh x cosh y -}- sinh x sinh ^. 
 
 21. sinh 2x 2 sinh a: cosh x. 
 
 22. cosh 2 # = cosh 2 x + sinh 2 #. 
 
 23. sinh # sinh y = 2 cosh ^^ sinh H 
 
 24. cosh a; + cosh y= 2 cosh ^-^ cosh ~ 
 
 2i 2 
 
 25. cosh x cosh y = 2 sinh x ^ sinh ' y ~^ 
 
 2 2 
 
 113. The notation for inverse hyperbolic functions is the 
 same as for inverse circular functions (Art. 84, p. 114). 
 
 If y = sinh x, 
 
 then, x = sinli" 1 ?/. 
 
 But by (6), p. 169, y = e ll. 
 
 Solving this equation for #, we have 
 
 1). 
 
172 PLANE TRIGONOMETRY 
 
 In like manner, cosh' 1 ^ = log (?/ -f V/ 2 1) ; (2) 
 
 tanh- 1 *, = 1 log i^; (3) 
 
 J- y 
 
 coth- 1 y = tanh- 1 - = \ log 1 ; (4) 
 
 y * y -* 
 
 sechr 1 / = cosh a - = log *- ; (5) 
 
 csch- 1 y = sinh- 1 = log A ^. (6) 
 
 EXERCISE XXX 
 
 Prove the following relations : 
 
 1. tanh- 1 -^_ = 2 tanh- 1 2:. 
 
 2. sinh" 1 2 # = 2 sinh" 1 a; cosh" 1 a;. 
 
 3. sinh" 1 z = cosh" 1 Vl + x z . 
 
 4. sinh" 1 a; = tanh" 1 
 
 VI 
 
 T -4- 
 
 5. tanh" 1 x+ tann" 1 y = tanh" 1 - 
 
 ELIMINATION 
 
 114. It often happens that two or more equations are given 
 that contain trigonometric functions of some angle, or perhaps 
 of more than one angle. From these equations a single equa- 
 tion is to be obtained from which all trigonometric functions 
 have been eliminated. 
 
 In theory the required elimination can always be performed, 
 but in practice this often involves processes that are some- 
 what complicated ; and the desired results are obtained with a 
 greater or less degree of difficulty. 
 
 No general rule for work of this kind can be given ; and the 
 process is best illustrated by a few examples. 
 
TRIGONOMETRIC ELIMINATION 173 
 
 115. Ex. i. Find the values of r and 6 from the equations 
 
 r sin 6 = a ; (1) 
 
 r cos d = b. (2) 
 
 Squaring and adding, 
 
 r 2 (sin 2 + cos 2 0) = a 2 + 6 a , 
 r 2 = 2 + b 2 , 
 
 r = \ / a 2 + b*. 
 Also, dividing (1) by (2), 
 
 tan0 = , 
 
 6 
 
 = tan- 1 ? . 
 o 
 
 Ex. 2. Find the equation of relation between a and b if 
 
 sin 3 = a, and cos 3 = 6. 
 From the values here given we have 
 
 sin = , and cos = 6*. 
 But for all values of 0, sin 2 + cos 2 0=1. 
 
 Therefore, substituting, a ^ + 6 7 = 1, 
 
 which is the equation desired. 
 
 Ex. 3. Eliminate 6 from the equations, 
 a cos + b sin # = c, 
 d cos + e sin =/. 
 
 Solving by any of the ordinary methods of elimination, 
 
 d c<7 a/* 
 sm0 = - J-, 
 od ae 
 
 bd ae 
 
 Substituting these values of sin and cos in 
 
 sin 2 + cos 2 0= 1, 
 and reducing, we have 
 
 - * 
 
 (j/_ ce y + (c,i ._ a f) 2 = (bd - ae) 
 
 Ex. 4. Eliminate from the equations 
 
 cot + tan = a ; (1) 
 
 sec cos = b. (2) 
 
 From (1) a = - 1 - + tan = 1 + ta f . 
 
 tan tan 
 
 S6C \/ xo\ 
 
 a= te^- (3) 
 
174 PLANE TRIGONOMETRY 
 
 From (2) 6 = sec - = 
 
 sec sec 
 
 . 
 
 sec0 
 
 From (3) and (4) 2 6 = sec 3 0, and a& 2 = tan 3 0. 
 
 But sec 2 0- tan 2 0=1. 
 
 (4) 
 
 = 1, 
 
 or, aV - aV = 1. 
 
 Ex. 5. Eliminate from the equations 
 
 - cos 6 - & sin 6 = cos 20; (1) 
 
 # 
 
 -sin<9 + ^cos<9:=2sin20. (2) 
 
 a 6 
 
 Multiplying (1) by cos and (2) by sin and adding the resulting equa- 
 
 tions, we obtain x 
 
 - = cos cos 20 + 2 sin 2 sin 
 a 
 
 = cos cos 2 + sin sin 20+ sin sin 2 
 
 = cos + 2 sin 2 cos 0. (-1) 
 
 In like manner, multiplying (1) by sin and (2) by cos0 and subtracting, 
 
 = 2 sin 2 cos - cos 2 sin 
 
 = sin0+2sin0cos 2 0. (4) 
 
 we obtain 1t 
 
 = 2 sin 2 cos - cos 2 sin 
 b 
 
 Adding (3) and (4), 
 
 - + 1 - cos + sin + 2 sin cos (cos + sin 0) 
 = (cos + sin 0) ( 1 + 2 sin cos 0) 
 = (cos + sin 0)(cos 2 + sin 2 + 2 sin cos 0) 
 = (cos0 + sin0) 3 . 
 
 i 
 
 (5) 
 
 By subtracting (4) from (3) and reducing the result, we find that 
 
 () 
 
 Squaring (5) and (6) and adding the results, we obtain the following, 
 which is the desired equation : 
 
 x y 
 __ ^ 
 a b 
 
TRIGONOMETRIC ELIMINATION 175 
 
 Ex. 6. From the following simultaneous equations, find the 
 values of r, </>, 6 : 
 
 r sin 0cos< = a; (1) 
 
 r cos cos < = & ; (2) 
 
 r sin < = c. (3) 
 
 Dividing (1) by (2), ten0 = |. .-. = tan-*S. (4) 
 
 Squaring (1) and (2) and adding, 
 
 r 2 cos 2 < = a 2 + 6 2 . (5) 
 
 Taking the square root of (5), and then dividing (3) by this result, 
 
 c (6) 
 
 Va 2 + b 2 Va 2 + 6 2 
 
 Squaring (3) 'and adding the result to (5), 
 
 r 2 = a 2 + b' 2 + c 2 , 
 r = Va 2 + 2 + c 2 . 
 
 EXERCISE XXXI 
 
 1. Find r and if r sin = 1.25 and r cos = 2.165. 
 
 Eliminate from the equations following : 
 
 2. cos + 6 sin = c, and 6 cos 6 a sin = c?. 
 
 3. - cos + f sin = 1, and - sin ^ cos = 1. 
 a b a b 
 
 4. a sec 06 tan = <?, and c? sec + tan 0=6. 
 
 5. a cos 20 = 6 sin 0, and e sin 2 = 6? cos 0. 
 
 6. cos + sin = a, and cos 2 = 6. 
 
 7. sin + cos = a, and tan + cot 0=6. 
 
 8. cot + cos = a, and cot cos = 6. 
 
 9. sin cos = , and esc sin = 6. 
 
 10. sin + cos sin 2 = a, and cos + sin sin 20=6. 
 
 11. sec cos = a, and esc sin = 6. 
 
 Eliminate and $ from the following equations : 
 
 12. tan + tan $ = a, cot + cot ^> = 6, and + c = a. 
 
 13. sin + sin <$> = a, cos + cos $=b, and $ = <*. 
 
 14. a cos 2 + 6 sin 2 = ccos 2 (, #sin 2 + 6cos 2 = c?sin 2 <, 
 and c tan 2 - d tan 2 <j> = 0. 
 
176 
 
 PLANK TRIGONOMETRY 
 
SPHERICAL TRIGONOMETRY 
 
 CHAPTER XV 
 GENERAL THEOREMS AND FORMULAS 
 
 116. Spherical trigonometry is that branch of trigonometry 
 which treats of the solution of spherical triangles. 
 
 117. The following definitions and theorems are to be found 
 in works on solid geometry. For a discussion of the defini- 
 tions and for proofs of the theorems the student is referred to 
 any text-book on that subject. 
 
 DEFINITIONS AND THEOREMS 
 
 1. The curve of intersection of a plane and a sphere is a 
 circle. 
 
 2. A great circle is a circle formed by a plane that passes 
 through the center of the sphere. 
 
 3. A small circle is a circle formed by a plane that inter- 
 sects the sphere without passing through its center. 
 
 4. Through any two points on the surface of a sphere one 
 and only one great circle can be passed, unless these points 
 are at opposite extremities of a diameter of the sphere. 
 
 5. A spherical angle is the angle between two arcs of great 
 circles. It is equal to the angle between the tangents to the 
 two circles drawn at their point of intersection ; it is also equal 
 in angular magnitude to the dihedral angle formed by the 
 planes of the two great circles. 
 
 6. A spherical polygon is a portion of the surface of the 
 sphere bounded by three or more arcs of great circles. 
 
 7. A spherical trian'gle is a spherical polygon of three sides. 
 
 CONANT'S TRIG, 12 177 
 
178 SPHERICAL TRIGONOMETRY 
 
 118. Let ABC be any spherical triangle, and the center 
 of the sphere on whose surface the triangle is drawn. The 
 
 vertices are represented geometri- 
 cally by the letters A, B, C, and the 
 same letters are used to designate 
 the angles lying at these vertices 
 respectively. The sides opposite 
 these angles are designated by the 
 corresponding letters a, b, c. Since 
 is the center of the sphere, OA = OBOC, each being a 
 radius of the same sphere. Also, the arcs a, b, c, are the meas- 
 ures of the central angles BOC, AGO, A OB, respectively. 
 
 THEOREMS. The following theorems on spherical triangles 
 were proved in solid geometry. 
 
 I. The sum of any two sides of a spherical triangle is greater 
 than the third side.* 
 
 II. In any spherical triangle the greatest side is opposite the 
 greatest angle, and conversely. Also, equal sides are opposite 
 equal angles. 
 
 III. Any angle of a spherical triangle is less than 180. 
 
 IV. The sum of the angles of a spherical triangle is greater 
 than 180 and less than 540 ; i.e. 180 < A -f B + 0< 540. 
 
 V. Any side of a spherical triangle is less than 180. 
 
 VI. The sum of the sides of a spherical traingle is less than 
 360 ; i.e. a + b + c< 360. 
 
 VII. The difference of any two angles of a spherical triangle 
 has the same sign as the difference of the corresponding opposite 
 sides ; e.g. A B and a b are of the same si</n. 
 
 VIII. If from the vertices of a spherical triangle as poles, arcs 
 of great circles are drawn, a second spherical triangle will be 
 formed which is called the polar of the first triangle. 
 
 Let ABC be any spherical triangle, and a', &', c' be arcs of great circles 
 drawn with A,B, C, respectively as poles. If these arcs are extended and 
 the great circles are fully drawn, the surface of the sphere is divided into 
 
 * Three great circles intersect on the surface of a sphere in such a way as to 
 form eight triangles ; and one of these triangles always satisfies the theorems of 
 this section. Only such triangles are considered in this work. 
 
GENERAL THEOREMS AND FORMULAS 
 
 179 
 
 eight spherical triangles. That triangle A'B'C' is called the polar of ABC 
 which is so situated that A and A' lie on the same side of BC ; B and B' on 
 the same side of A C ; C and C" on the same side of AB. 
 Any angle of a spherical triangle is the supplement of the side opposite 
 in its polar. 
 
 HABC is the polar of A'B'C', then conversely A'B'C' is the polar of 
 ABC. 
 
 Let ABO arid A' B' 0' be two polar triangles, and let a, b, <?, 
 and a', 6', <?', be the sides opposite the like-named angles in the 
 two triangles respectively. 
 
 A' -180 -a, 
 B 1 = 180 - b, 
 
 Then, .l = 180 -a', 
 B = 180 - b r , 
 (7=180-</. 
 
 Spherical triangles are called isosceles, equilateral, equiangular, 
 right, and oblique under the same conditions as are the corre- 
 sponding plane triangles. 
 
 It is to be remembered, however, that a spherical triangle 
 may have one, two, or three right angles. If it contains two 
 right angles, it is called a bi-rectangular spherical triangle ; and 
 if it contains three right angles, it is a tri-rectangular spherical 
 triangle. 
 
 NOTE. The length of a side of a spherical triangle, expressed in linear 
 measure, can not be determined until the radius of the sphere is known. 
 
 119. FUNDAMENTAL THEOREM. To express a side of a 
 spherical triangle in terms of the other two sides and of the angle 
 opposite : 
 
 Let ABQ be a spherical triangle and the center of the 
 sphere. 
 
180 
 
 SPHERICAL TRIGONOMETRY 
 
 E 
 
 From D, any point in the radius 
 OA, draw DE, DF, perpendicular 
 to OA, in the planes OAB, OAC, 
 respectively. Connect EF. 
 
 Then is the plane angle EDF 
 equal to the angle A (Art. 117, 
 p. 177). 
 In the plane triangles DEF, OEF, we have (Art. 96, 
 
 P- 133 ) EF 2 = DE 2 + DF 2 -2DE- DF cos A, 
 and EF 2 = OE 2 + OF 2 - 2 OE - OF cos a. 
 
 Equating these values of EF 2 and transposing, we have 
 
 L-2 OE. 
 
 Substituting OD 2 for OE 2 - DE 2 , and also for OF 2 - DF 2 , this 
 becomes 
 
 20D 2 + 2DE-DFcosA-2 OE OFcosa=0. 
 
 Dividing by 2 OE OF, 
 
 OD OD DE DF 
 
 i.e. 
 
 cos a cos b cos c -f sin b sin c cos A. 
 
 *J. 
 
 120. An examination of the figure which accompanies the 
 demonstration in the preceding article shows that the implied 
 supposition is there made 
 that both b and c are less 
 than 90, but that no restric- 
 tion is placed on a. ti/ \ V \*> 
 
 In order to establish the 
 truth of the theorem for all 
 values of a and b we pro- 
 ceed as follows : 
 
 Let b be greater than 90. Produce the arcs CA and OB 
 until they intersect again in C'. 
 
 Since AC > 90, we have AC' < 90. Therefore in the tri- 
 angle ABC', A( j, 90 o 
 
 and, by hypothesis, AB < 90, 
 
 while BC' is unrestricted. 
 
GENERAL THEOREMS AND FORMULAS 181 
 
 Applying (1), Art. 119, to the triangle ABC', we have 
 
 cos a' = cos b' cos c -f- sin b r sin c cos Z C'AB. (1) 
 
 But (Art. 53, p. 78), cos a' = cos a, 
 
 cos b r = cos b, 
 and cos Z C'AB = cos A. 
 
 Substituting these values in (1), we have 
 
 cos a = cos b cos c -f- sin b sin c cos ^4. 
 
 In like manner it can be shown that the theorem remains 
 true if a and b are both greater than 90. Hence, it is true 
 for all spherical triangles which come within the scope of 
 our work. 
 
 Also, by drawing the perpendiculars DE< DF, from some 
 point in the radius OB in the planes BOC, BOA, respectively, 
 in the figure of Art. 119, we can obtain a corresponding formula 
 for expressing the value of cos b ; and by drawing these per- 
 pendiculars from some point in the radius 00, in the planes 
 OOA, COB, respectively, a similar formula for the value of 
 cos c. Therefore, 
 
 cos a = cos b cos c 4- sin b sin c cos A, 
 
 cos b = cos c cos a-\- sine sin a cos B, (2) 
 
 cos c = cos a cos b + sin a sin b cos C. 
 
 The above are relations involving the sides and one of the angles 
 of a spherical triangle. 
 
 From these equations the following are at once derived : 
 
 cos a cos b cos c 
 
 cos A = 
 
 T> cos b cos c cos a 
 cos -o = 
 
 COS 
 
 sin c sin a 
 
 cos c cos a cos b 
 sin a sin b 
 
 sin b sin c 
 
 (3) 
 
 These relations express the values of the cosines of the angles of 
 a spherical triangle in terms of the sides of the triangles. 
 
182 SPHERICAL TRIGONOMETRY 
 
 121. After the first of the three formulas in (2) or in (3) 
 in the preceding article has been obtained the others can be 
 derived from it by a cyclic interchange of the letters a, >, c, 
 replacing at the same time A by B, and B by 0. 
 
 122. The law of sines. From plane trigonometry we have 
 
 the relation . . 
 
 sin 2 A = 1 cos 2 A. 
 
 Replacing cos 2 A by its value from (3) in the preceding 
 section, 
 
 sin 2 A = 1 ( cos a ~ cos fr cos g ) 2 
 sin 2 b sin 2 c 
 
 _ sin 2 b sin 2 c (cos a cos b cos <?) 2 
 sin 2 b sin 2 c 
 
 _ (1 cos 2 #)(! cos 2 (?) (cos a cos b cos e) 2 
 sin 2 b sin 2 c 
 
 Expanding, reducing, and rearranging terms, we have 
 
 . 2 A _ 1 c s 2 c s 2 & cos2 + 2 cos cos cos <? 
 
 sin ^i . , : r 
 
 snr 6 sm j c 
 
 Dividing both sides of the equation by sin 2 a and extracting 
 the square root, we obtain 
 
 sin A Vl cos 2 a cos 2 b cos 2 c+2 cos a cos 6 cos x-, >. 
 
 sin a sin a sin o sin c 
 
 In a precisely similar manner it can be proved that and 
 . * sin b 
 
 also that : have the same value. Therefore, since each of 
 sin c 
 
 these ratios has the same value, they are equal to each other. 
 
 sin A _ sin B __ sin ^^\ 
 
 sin a sin b sin c ' 
 
 which is the law of sines. It may be stated in words as 
 follows : 
 
 The sines of the sides of a spherical triangle are to each other as 
 the sines of the opposite angles. 
 
GENERAL THEOREMS AND FORMULAS 
 
 183 
 
 An inspection of (1) shows that a cyclic interchange of the 
 letters a, 5, c, and A, J5, (7, leaves the right member of the equa- 
 tion unchanged, while the left member is changed into and 
 . Q sin b 
 
 successively. Hence, after (1) has been proved, (2) can 
 
 sin c 
 
 be established by cyclic interchange of letters. 
 
 123. To derive a relation involving the angles and one of the 
 sides of a spherical triangle. 
 
 Let A'JS 1 '0' and ABC be two spherical triangles polar to each 
 other. Then (Art, 118, p. 1T9), 
 
 a' = 180 - A, 
 
 b f = 180 - B, 
 
 c' = 180 - 0. 
 By (1), Art. 119, p. 180, 
 
 cos a' = cos b' cos c' + sin b f sin c'cos A! . 
 But, by (1), 
 
 cos a' = cos A, 
 cos b' = cos B, 
 cos c 1 = cos C. 
 
 sin b 1 = sin _Z?, 
 
 sin c' = sin (7, 
 cos A' = cos a. 
 
 Substituting these values in (2), we have 
 
 cos A = cos B cos C sin .Z? sin (7 cos a. 
 
 In like manner we can obtain corresponding values for cos B 
 and for cos 0. 
 Therefore, 
 
 cos A = cos B cos (7+ sin B sin C cos 
 
 cos B = cos (7 cos ^4 + sin (7 sin A cos 6, 
 cos = cos J. cos B + sin .A sin B cos <?. 
 
 From these equations the following are at once derived 
 cos A + cos B cos C 
 
 (3) 
 
 cos a = 
 
 cos b 
 
 cose 
 
 sin J5 sin 
 
 cos B+ cos (7 cos J. 
 
 sin C sin ^1 
 
 cos (7 + cos A cos .g 
 sin A sin .B 
 
 (4) 
 
184 SPHERICAL TRIGONOMETRY 
 
 124. To derive a relation involving two angles and the sides 
 of a spherical triangle. 
 
 Resuming (1), Art. 119, p. 180, we have 
 
 cos a = cos b cos e + sin b sin c cos A. 
 
 Substituting in this equation the value of cos c obtained 
 from (2), Art. 120, p. 181, 
 
 cos a = cos b (cos a cos b -f sin a ski b cos (7) -f- sin b sin c cos A 
 = cos a cos 2 b + sin a sin > cos b cos (7 + sin b sin <? cos A. 
 cos a (1 cos 2 6) = sin a sin 6 cos b cos (7 4- sin b sin <? cos A. 
 
 Substituting for 1 cos 2 b its value, sin 2 6, and dividing both 
 sides of the equation by sin 6, we obtain the desired relation, 
 
 cos a sin b = sin a cos b cos C + sin c cos A. (1) 
 
 In like manner we can obtain corresponding expressions for 
 the value of cos a sin c, of cos b sin c?, etc. Therefore, 
 
 cos a sin b = sin a cos b cos (7 + sin c cos .A, " 
 cos a sin c = sin a cos c cos 5 -f sin b cos A, 
 cos 5 sin a = sin 6 cos a cos (7 + sin c cos .#, 
 cos b sin <? = sin b cos <? cos A 4- sin a cos .B, 
 cos c sin 6 = sin c cos 5 cos A + sin a cos (7, 
 cos c sin # = sin c cos a cos B -f- sin 5 cos (7, . 
 
 (2) 
 
 125. To derive a relation involving two sides and the angles 
 of a spherical triangle. 
 
 Resuming the first equation under (3), Art. 123, p. 183, we 
 cos A cos B cos C + sin B sin cos a. 
 
 Substituting in this equation the value of cos C obtained 
 from the third equation of the same set, 
 
 cos A = cos B ( cos A cos B -f sin A sin B cos <?) 
 
 4- sin B sin C cos a 
 
 = cos A cos 2 J5 sin A sin i? cos B cos c 4- sin B sin (7 cos a. 
 Transposing and factoring, 
 cos A (1 cos 2 B) = sin A sin B cos B cos 6> + vsin B sin (7 cos a. 
 
GENERAL THEOREMS AND FORMULAS 
 
 185 
 
 Replacing 1 cos 2 B by its value, sin 2 B, and dividing both 
 sides of the equation by sin B, we obtain the desired relation, 
 
 cos A sin B cos a sin cos c sin A cos B. (1) 
 
 In like manner we can obtain corresponding expressions for 
 the value of cos A sin, (7, cos B sin J., etc. Therefore, 
 
 cos A sin 1? = cos a sin (7 cos c cos ^ sin A, 
 cos A sin (7 = cos a sin .5 cos b cos (7 sin A, 
 cos (7 sin 5 = cos c sin A. cos a cos jB sin (7, 
 cos (7 sin A = cos <? sin B cos 5 cos A sin (7, 
 cos J5 sin A = cos 6 sin cos <? cos A sin 5, 
 cos B sin (7 = cos 6 sin A. cos a cos (7 sin ^. 
 
 (2) 
 
 126. From the formulas in Art. 124 a group of important 
 relations is derived, as follows : 
 
 From the first of the six formulas there given we have 
 
 cos a sin b = sin a cos b cos (7 + sin c cos A. 
 Dividing both sides of the equation by sin a, 
 
 sin 
 
 sin a 
 
 T> T . sin c , , sin C .-, i 
 
 Replacing - by its equal -, tins becomes 
 
 sin a sin -4 
 
 cot a sin b = cos b cos (7+ sin C 
 
 sin A 
 
 . *. cot a sill b = cos 5 cos C -f- sin (7 cot A. 
 
 In like manner we can obtain corresponding expressions for 
 the value of cot a sin <?, cot b sin #, etc. Therefore, 
 
 cot a sin b = cos 5 cos (7+ sin (7 cot A., 
 cot a sin c cos c cos B + sin ^ cot A, 
 
 cot 5 sin c = cos <? cos A -\- sin -A cot B, 
 
 r (^) 
 
 cot 5 sin a = cos a cos (7 + sin (7 cot B, 
 
 cot c sin a = cos a cos 5 + sin B cot (7, 
 cot c sin 5 = cos b cos .A + sin A cot (7. 
 
186 SPHERICAL TRIGONOMETRY 
 
 127. The values of sin ^, cos ^, tan -, etc., in terms of the 
 sides of the triangle. 
 
 From (3), Art. 120, p. 181, 
 
 cos A = 
 
 cos a cos b cos 
 
 sin b sin c 
 From this we have 
 
 1 , A S ^ n ^ s ^ n C + COS ^ cos c cos 
 
 X COo */l 
 
 sin b sin c 
 
 by Art. 68, = cos (b ~ c) .~ cos a . 
 
 sin b sin c 
 
 Dividing by 2, and applying (8), Art. 77, p. 100, 
 
 . a-4- b c . a b 4- c 
 sin - - sin - 
 
 1 cos A 2 
 
 sin b 
 
 sn 6- 
 
 Putting #-f5-h& = 2s, and replacing - ^ ()S by its equal 
 
 - %A_ sin (g 5) sin (> c) 
 2 sin 6 sin c 
 
 . .. sn = 
 
 2 sin 6 sin c 
 
 In like manner, 
 
 1 . j _ sin b sin c cos b cos <? + cos a 
 
 \. -f- COS J\. -- 
 
 sin b sin c 
 
 1 + cos A _ cos a cos (6 + c) 
 
 2 2 sin b sin 
 
 S = _ 2 _ : 
 
 2 sin 6 sin 
 
 cos = - . (2) 
 
 2 * sin i sin c 
 
GENERAL THEOREMS AND FORMULAS 187 
 
 Dividing (1) by (2), we have 
 
 tan = 
 
 2 * sin 8 sin (s a) 
 
 Since any angle of a spherical triangle is less than 180, all 
 
 the functions of the half angles are positive; i.e. sin , 
 
 A A ^ 
 
 cos, tan , are all positive. Therefore the signs of the 
 
 '2. A 
 
 radical expressions in (1), (2), and (3) are positive. 
 
 Since s, a, 5, c, s a, s b, s c are severally less than 180 
 and positive, the values obtained in (1), (2), and (3) are real. 
 
 128. The values of sin |, cos ^, tan |, etc., in terms of the 
 angles of the triangle. 
 
 From (4), Art. 123, p. 183, 
 
 cos A 4- cos B cos O 
 
 cos a = 
 
 Therefore, 1 cos a = 
 
 sin sin C 
 
 sin B sin C ' cos B cos cos A 
 sin B sin C 
 
 cos (B + (7) cos A 
 sin B sin C 
 
 -, i . sin B sin (7 -f cos 5 cos (7+ cos A 
 
 and 1 + cos a = 
 
 sin B sin (7 
 
 _ cos (B O) 4- cos A 
 sin .2? sin (7 
 
 Putting A + B -f- 0=2 S, and proceeding as in the last sec- 
 tion, we obtain 
 
 . a lGOStScoafS A) 
 - sin J sing ' 
 
 sin 5 sin C 
 
 cos iS cos T/S 7 
 
188 SPHERICAL TRIGONOMETRY 
 
 Since any side of a spherical triangle is less than 180, all 
 the functions of the half sides are positive; i.e. sin ^, cos-, 
 
 tan -, are all positive. Therefore the signs of the radical 
 
 2 
 
 expressions in (1), (2), and (3) are positive. 
 
 To prove that these expressions are real we proceed as follows : 
 Let A'B'C' be the polar triangle of ABC, and let a', b 1 , c', 
 
 be the sides of A'B' 0' which lie opposite the angles A, B, C, 
 
 respectively of the original triangle. 
 
 Then, since a', 6', <?', are supplements of A, B, (7, respectively, 
 
 and since a 1 < b' + e', we have 
 
 180 -A< (180 - B) + (180 - (7). 
 Transposing, B + C - A < 180 ; 
 
 i.e. S-A<90. 
 
 Therefore, cos (S A) is positive. 
 
 Also, since A + B + lies between 360 and 540, 8 lies 
 between 180 and 270. Hence cos 8 is negative ; i.e. cos 8 
 is positive. 
 
 Therefore the radical expressions in (1), (2), and (3) are 
 real. 
 
 129. Gauss's equations. From Art. 69, p. 92, 
 
 (A , B\ A B A B 
 
 C S U ~2 J = C S 2" C S "2 ~ S1U "2 Sm "2 ' 
 
 A A 
 
 Substituting in this equation the values of cos and sin , 
 
 T) T> 
 
 and corresponding values for cos-- and sin-' (Art. 127, 
 p. 186), we have 
 
 cos fA+.lP\ m /sin g sin Q - a} ^ /sin * sin ( 
 \2 2y ^ sin b sin c ^ sin a si 
 
 8-5) 
 
 Sill 
 
 /sin (8 b) sin (s <?) /sin (s #) sin (s 
 ^ sin b sin <? ^ sin a sin <? 
 
 sin s sin ( s 
 sin 
 
 sin (s c) A /sin (s a) sin (s 5) 
 in c * sin 6 sin a 
 
GENERAL THEOREMS AND FORMULAS 189 
 
 But by Art. 77, p. 100, and Art. 80, p. 106, 
 
 o 2 s c . c 
 2 cos - sm - 
 
 sin s sin (s <?) __ 2 2 
 
 !smj 
 
 a + b 
 
 sin c n . c c 
 
 2 sm - cos - 
 
 cos 
 
 COS 9 
 
 and by Art. 127, p. 186, 
 
 /sin (s a) sin (s b) _ . O 
 * sin a sin b 2 
 
 Substituting these values in (1), and reducing, we have 
 
 A+B o 
 
 008 -3- = r~ sm 2' (2) 
 
 cos- 
 
 Tn like manner corresponding values can be obtained for 
 sin - , sin ^ , and cos . These four relations, 
 which are commonly known as Gauss's Equations, are as follows : 
 
 a + b 
 
 A + B ~2~ . 
 
 cos ^~- = - sin -g- ; (3) 
 
 cos- 
 
 a-b 
 
 A + B COS ^~ O 
 sm g = - cos ^-5 (4) 
 
 cos- 
 . a + b 
 
 sn 
 
 . a-b 
 sin - 
 . A-B 2 C 
 
 sm - = - T~ cos "o' 
 sin- 
 
190 SPHERICAL TRIGONOMETRY 
 
 130. Napier's analogies. From Gauss's Equations the follow- 
 ing are derived. The method of derivation is obvious, and the 
 work is left as an exercise for the student. 
 
 a b 
 cos - 
 
 COS 
 
 (3) 
 
 sin 
 
 131. Special formulas for the solution of spherical right tri- 
 angles. If one of the angles of the triangle, as (7, is a right 
 angle, the following special formulas are derived from those 
 established in the preceding sections : 
 
 From (2), Art. 120, p. 181, 
 
 cos c = cos a cos b + sin a sin b cos C. (1) 
 
 But, since (7= 90, cos 0= 0. Therefore the second term of 
 the right member becomes zero. Therefore, 
 cos c = cos a cos b. 
 
 In a manner similar to that just employed, the following 
 formulas are derived for the special case when C is a right angle. 
 
 From (2), Art. 122, p. 182, formulas for finding either of the 
 oblique angles when the hypotenuse and the opposite leg are 
 
 S iven - sin a- 
 
 sin A = - , 
 sin c 
 
 j - T> sin b 
 
 arid sin B - 
 
 sin c 
 
GENERAL THEOREMS AND FORMULAS 191 
 
 From (3), Art. 123, p. 183, formulas for finding either of 
 the oblique angles when the opposite leg and the other oblique 
 
 angle are given. 
 
 cos A = cos a sin B, 1 
 
 cos B = cos b sin A. J 
 
 From (2) and (3) are derived the following formulas for 
 finding an oblique angle when the hypotenuse and the adjacent 
 
 leg are given. 
 
 cos A = tan b cot <?, 
 
 cos B = tan a cot c. 
 
 From (2), Art. 126, p. 185, formulas for finding the oblique 
 angles when the legs are given. 
 
 ,, tan a 
 
 tan A = , 
 
 sin b 
 
 tan B = 
 
 tan b 
 
 sin a 
 
 (5) 
 
 From (3), Art. 123, p. 183, formulas for finding the legs 
 when the two oblique angles are given. 
 
 cos 
 
 , 
 
 sin B 
 
 sin A 
 
 Multiplying together the two formulas just obtained, and 
 replacing the left member of the product, cos a cos 5, by its 
 value given in (1), we have the following formula for finding 
 the hypotenuse when the two oblique angles are given : 
 
 cos c= cot A cot B. (7) 
 
 132. Napier's rules. The formulas of the last section are 
 sufficient for the solution of every possible case that can arise 
 under spherical right triangles. But it is often better to solve 
 the various cases that arise under right triangles by two con- 
 venient and simple rules devised by Napier, the inventor of 
 logarithms. 
 
192 SPHERICAL TRIGONOMETRY 
 
 These rules are constructed by supposing that a right tri- 
 angle has five parts. These parts, which are usually called 
 Napier's parts, are 
 
 (1) The two legs. 
 
 (2) The complement of the hypotenuse. 
 
 (3) The complements of the two oblique angles. 
 
 The right angle is not considered, and plays no part what- 
 ever in the solution of a triangle by this method. 
 
 Any one of the five parts may be regarded as the middle 
 part. The two parts immediately adjacent to this are called 
 the adjacent parts, and the other two are called the opposite 
 parts. 
 
 Napier's rules for the solution of spherical right triangles 
 are as follows : 
 
 1. The sine of the middle part is equal to the product of the 
 tangents of the adjacent parts. 
 
 2. The sine of the middle part is equal to the product of 
 the cosines of the opposite parts. 
 
 The similarity of the vowel sounds in the syllables tan-, ad- 
 and co-, op- renders it easy to remember these rules, and also 
 to distinguish them from each other. 
 
 To test the correctness of these rules, assume any three parts 
 as the given parts. For example, let the given parts be a, b, 
 
 and co-A. In this case b is the middle 
 part, and a, co-A, are to be considered 
 adjacent parts. Hence we have 
 
 sin b = tan a tan (co-A) 
 = tan a cot A. 
 
 This is the same as the first of the two 
 formulas under (5), Art. 131, p. 191, 
 which has already been proved to be 
 true. 
 
 As another illustration, let the given parts be a, co A, co-B. 
 Here co-A is the middle part, and a, co-B are to be considered 
 opposite parts. Hence 
 
 sin (co-A) = cos a cos (co-B), 
 cos A cos a sin B. 
 
GENERAL THEOREMS AND FORMULAS 193 
 
 Tliis is the same as the first of the two formulas under (3), 
 Art; 130, p. 190, which has already been proved to be true. 
 
 In like manner Napier's rules as applied to any other group 
 of three parts will be found to reduce to one of the formulas 
 already proved. ^ 
 
 133. DEFINITION. Two angles, or an angle and a side, are 
 said to be of the same species when both are greater or both are 
 less than 90; they are said to be of opposite species when 
 one is greater and the other is less than 90. 
 
 In any right triangle if a and b are of the same species, the 
 hypotenuse c is less than 90 ; if a and b are of opposite species, 
 c is greater than 90. 
 
 This follows from (1), Art. 130, p. 190. For if a and b are 
 both greater or both less than 90, the product cos a cos b is posi- 
 tive. Therefore cos c is positive ; therefore c is less than 90. 
 
 But if a and b are of opposite species, the product cos a 
 cos b is negative. Therefore cos c is negative ; therefore c is 
 greater than 90. 
 
 EXERCISE XXXII 
 
 1. Prove that in any right triangle a leg and the angle oppo- 
 site are of the same species. 
 
 2. By the aid of Napier's rules derive the formulas in (6), 
 Art. 131, p. 190. 
 
 3. If the hypotenuse of a right triangle is equal to 90, what 
 must be the values of a and b? Why? 
 
 4. Prove tan2 = 
 
 2 sin (e -f- a) 
 5. Prove 
 
 2 cos(B-A) 
 
 6. If a = 90 and b = 90, what must be the values of the 
 remaining parts of the right triangle? 
 
 7. In a right triangle a side and the hypotenuse are of the 
 same or of opposite species according as the included angle is 
 less or greater than 90. 
 
 CONANT'S TRIO. 13 
 
CHAPTER XVI 
 SOLUTION OF SPHERICAL TRIANGLES 
 
 134. A spherical triangle is determined when any three of 
 its parts are known. That is, when any three parts are given, 
 the remaining parts can be computed. 
 
 In the solution of spherical triangles we have six cases to 
 consider, as follows : having given, 
 
 (1) The three sides. 
 
 (2) Two sides and the included angle. 
 
 (3) Two sides and the angle opposite one of them. 
 
 (4) Two angles and the side opposite one of them. 
 
 (5) Two angles and the included side. 
 
 (6) The three angles. 
 
 135. The right triangle. We proceed first to the considera- 
 t ion of the right triangle. We shall suppose that is the right 
 angle ; and here, as in Plane Trigonometry, only two parts are 
 known in addition to the right angle. 
 
 136. Ambiguous cases. Whenever a solution is obtained by 
 means of the sine or the cosecant, the solution is ambiguous, 
 because, both sine and cosecant being positive in the second 
 quadrant as well as in the first, a given value of either of these 
 functions is, in general, satisfied by two angles, one in the first 
 and the other in the second quadrant. 
 
 Hence, whenever a required part of a spherical triangle is 
 found by means of the sine or the cosecant, it is necessary to 
 test the result, and to determine whether or not both solutions 
 are admissible. 
 
 When a solution is found by means of the cosine, tangent, 
 cotangent, or secant, there is no ambiguity, since each of these 
 functions is positive in the first quadrant and negative in the 
 second quadrant. 
 
 194 
 
SOLUTION OF SPHERICAL TRIANGLES 195 
 
 For this reason it is of great importance that the student 
 should note carefully the sign of each of the functions that 
 appear in an equation. 
 
 137. CASE 1. Given two legs, a and 6; to find c, A, B. 
 
 The formulas for solution are contained in (1) and (5), Art. 
 131, p. 190, or are obtained directly from Napier's Rules, and 
 are as follows : 
 
 cos c = cos a cos b ; (1) 
 
 (2) 
 
 tan 5-^. (3) 
 
 sm a 
 
 For a check formula use cos c = cot A cot B. 
 
 Ex. 1. Given a = 46 50', b = 31 15'; find c, A, B. 
 
 log cos a = 9.83513 - 10 
 log cos b = 9.93192 - 10 
 log cos c = 976705 10. ]og ^ , = ^ _ w 
 
 log sin a = 9.86295 - 10 
 
 log tan a = 10.02781 - 10 lo S tan B = 9 ' 9 o 20U ~ 10 - 
 
 colog sin b = 10.28502 - 10 B ~ 39 45 ' 32 "' 
 
 log tan A = 10.31283- 10. 
 A = 64 3' 9". 
 
 Since c is obtained by means of its cosine and A and B by 
 means of their tangents, there is no ambiguity respecting the 
 result. Both a and b are in the first quadrant ; therefore cos a 
 and cos b are positive. It follows from this that the right mem- 
 ber of (1) is positive when applied to this particular problem ; 
 therefore cos c is positive, and consequently c is in the first 
 quadrant. 
 
 In like manner it can be shown that A and B are in the first 
 quadrant. 
 
 When only one solution exists that will satisfy the conditions 
 of a problem, the solution is said to be unique. 
 
 Ex. 2. Given a = 38 44' 40", b = 42 26' 28" ; 
 
 find c = 54 51' 37", A = 49 56' 12", B = 55 36' 44". 
 
196 SPHERICAL TRIGONOMETRY 
 
 138. CASE 2. Given the hypotenuse c, and one of the legs 
 a; to find b, A, B. The formulas for solution are (Art. 131, 
 p. 190) 
 
 cos 5 = 
 
 sin A = 
 
 cos a 
 
 sin a 
 
 sin c 
 
 n tan a 
 
 cosj5 = . 
 
 tanc 
 
 For a check formula use 
 
 cos B = cos b sin A (Art. 131, p. 191). 
 
 The solutions for b and B, being obtained in each case by 
 means of a cosine, are unique. 
 
 The solution for A, being obtained by means of its sine, is 
 apparently ambiguous. But by Art. 133, p. 193, a and A are 
 of the same species. Hence, as a is given, the species of A 
 becomes known at once, and the ambiguity disappears. 
 
 Ex.1. Given c = 54 36' 30", a = 23 17' 40"; 
 
 find b = 50 54' 30", A = 29 1' 5", =72 11' 20". 
 
 Ex. 2. Given c = 98 15' 12", a = 133 40' 24" ; 
 
 find b = 78 0' 7", A = 133 2' 30", B = 81 15' 40". 
 
 139. CASE 3. Given one of the legs a and the opposite angle 
 A; to find ft, c, B. The formulas for solution are as follows, 
 
 (Art. 131, p. 190): 
 
 sm a 
 sin c = 
 
 sin b = 
 
 sm f = 
 
 sin A* 
 
 tan a 
 tan A 
 
 cos ^4. 
 
 cos a 
 
 For a check formula use sin b = -^ . (Art. 131, p. 191) 
 
 tan A 
 
SOLUTION OF SPHERICAL TRIANGLES 197 
 
 The solution is ambiguous, being obtained in each case by 
 means of a sine. The different cases that may arise are as 
 follows : 
 
 (1) If a = A, then sin a = sin A, tan a = tan A, and cos a = cos 
 A i therefore sin <? = !, sin 6 = 1, and sin .5=1. Hence the 
 solution is unique. 
 
 (2) If c and a are of the same species, then B < 90 ; there- 
 fore b < 90 (Ex. 7, p. 193). 
 
 (3) If c and a are of opposite species, then B > 90; there- 
 fore b > 90 (Ex. 7, p. 193). 
 
 After c has been computed b and B may be found, if other 
 formulas than those given above are desired, by the following 
 (Art. 131, p. 191): 
 
 cos b = 
 
 COS Jt5 = 
 
 cos a 
 
 tan a 
 tan c 
 
 These formulas give unique solutions for b and B, but for 
 obtaining <? it is necessary to make use -of the sine. As any 
 given value of the sine is satisfied by two supplementary values 
 of the angle, this case often gives two solutions. 
 
 Ex.1. Given a= 70 55' 50", ^=82 58' 6"; 
 
 Find Cj = 72 13' 45", ^ = 20 54' 18", B l = 22 0' 19". 
 or, c 2 = 107 46' 15", b 2 = 159 5' 42", B 2 = 157 59' 41". 
 
 Ex. 2. Given a= 76 59' 59", JL = 39 50' 56". 
 The triangle is impossible. Why V 
 
 140. CASE 4. Given one of the legs a and the adjacent 
 angle B, to find c 9 6, A. The formulas for solution are 
 
 (Art. 131, p. 191) _ tan a 
 
 tun c j , 
 cos B 
 
 cos A = cos a sin B, 
 tan b = sin a tan B. 
 
 For a check formula use 7 
 
 cos A = !=; (Art. 131, p. 191) 
 tan c 
 
 The solution is unique. Why? 
 
198 SPHERICAL TRIGONOMETRY 
 
 Ex. l. Given a = 21 5' 15", B = 39 8' 10" ; 
 
 find c = 26 26' 6", A = 53 55' 13", b = 16 19' 5". 
 
 Ex. 2. Given a = 59 27' 32", B = 36 24' 25" ; 
 
 find c = 64 35' 56", b = 32 25' 17", A = 72 26' 47". 
 
 141. CASE 5. Given the hypotenuse c and one of the oblique 
 angles A; to find a, b, B. The formulas for solution are 
 
 (Art. 131, p. 190) . 
 
 sin a = sin c sin A, 
 
 tan b = tan c cos A, 
 cot .Z? = cos c tan .A. 
 
 For a check formula use 
 
 sin a = tan b cot .B (Art. 131, p. 191). 
 
 The solution for a, being obtained by means of its sine, is 
 apparently ambiguous. But since A is given, and since a and 
 A are of the same species, the proper value of a can always be 
 determined. Hence the solution is unique. 
 
 Ex. i. Given c= 117 39' 48", A -127 20' 25"; 
 
 find a = 135 14' 18", b = 49 9' 58", B = 58 40' 37". 
 
 Ex.2. Given e = 68 50' 31", 4 = 55 11' 17"; 
 
 find a=4958', 5 = 55 51' 53", 5 = 62 33' 58". 
 
 142. CASE 6. Given the two oblique angles A, B; to find 
 , b, c. The formulas for solution are (Art. 131, p. 191) 
 
 sin 
 
 7 cos B 
 
 cos b = - - 
 
 sin A" 1 
 cos c = cot A cot B. 
 
 For a check formula use 
 
 cos c = cos a cos b (Art. 131, p. 190). 
 The solution is unique. 
 
SOLUTION OF SPHERICAL TRIANGLES 199 
 
 Ex.l. Given 4 = 63 25' 32", 5 = 136 1' 27"; 
 
 find a = 4953'16", b = 143 34' 30", c= 121 13' 34". 
 
 Ex. 2. Given A = 119 20' !!",.# = 114 V 35"; 
 
 find a=12228'6", = 117 57' 42", <? = 75 25' 16". 
 
 143. The isosceles spherical triangle. An isosceles spherical 
 triangle can always be solved by means of the formulas em- 
 ployed in the solution of spherical right triangles ; for, by pass- 
 ing an arc of a great circle through the vertex and the middle 
 point of the side opposite, the isosceles triangle can always be 
 divided into two symmetrical right triangles. 
 
 EXERCISE XXXIII 
 
 1. In a right spherical triangle given c = 20 50' 52", 
 a =15 12' 44"; find 6, A, B. 
 
 2. In a right spherical triangle given a = 75 28' 24", 
 b = 33 37' 8" ; find c, A, B. 
 
 3. In a right spherical triangle given a = 66 9' 9", 
 ^ = 155 49' 46"; find b. c, B. 
 
 4. In a right spherical triangle given a = 122 5', 
 B = 125 40' ; find 5, c, A. 
 
 5. Iii a right spherical triangle given <? = 115 35' 4", 
 J. = 5729'; find a, b, B. 
 
 6. In a right spherical triangle given A = 45 23' 8", 
 B = 58 17' ; find a, b, e. 
 
 7. In a right spherical triangle given c = 80 28' 44", 
 A = 33 20' 24" ; find a, 6, B. 
 
 8. In a right spherical triangle given e = 139 42', 
 a = 21 47' 46" ; find 6, A, B. 
 
 9. In a right spherical triangle given a ="110 38', 
 B = 153 55' 40" ; find 5, c, A. 
 
 10. In a right spherical triangle given a = 112 49', 
 ^ = 100 27'; find 5, c, B. 
 
200 SPHERICAL TRIGONOMETRY 
 
 11. In a right spherical triangle given a = 55 52' 
 b = 34 46' 42" ; find <?, A, B. 
 
 12. In a right spherical triangle given A 54 20', 
 ^=64 49' 51"; find a, b, c. 
 
 13. In a right spherical triangle if a =6, prove that 
 cos 2 a = cos c. 
 
 14. In a right spherical triangle prove that 
 
 sin b = cos c tan a tan B. 
 
 15. In a right spherical triangle prove that 
 
 sin 2 A + sin 2 B = 1 + sin 2 a sin 2 ^. 
 
 16. In a right spherical triangle prove that 
 
 . sin (5 + c) = 2 cos 2 cos 5 sin <?. 
 
 THE OBLIQUE SPHERICAL TRIANGLE 
 
 144. In solving oblique spherical triangles we have six cases 
 to consider, as follows : 
 
 CASE 1. Given the three sides , &, c; to find A, B 9 c. 
 
 The formulas for solution are (Art. 127, p. 186) 
 
 sin g sin ( a) 
 
 tan = 
 
 2 sin s sin ( - 5) 
 
 tan ^= Jain (- a) sin 0-i)^ 
 
 2 sin s sin (s (?) 
 
 The corresponding formulas for the sines or for the cosines 
 of the half angles may be employed (Art. 127, p. 186), but in 
 general the tangent formulas are to be preferred. 
 
 If all the angles are to be found, a saving of labor can be 
 effected in the following manner. 
 
SOLUTION OF SPHERICAL TRIANGLES 201 
 
 Multiply both numerator and denominator of the fraction 
 under the radical sign in (1) by sin (s a). Then let 
 
 tan r = -J sin ( * - a) sin (s - 6 ) sin Q - c) 
 
 sin s 
 
 and we may write 
 
 2 sin (s a) 
 
 Making the corresponding changes in (2) and (3), we have 
 the three equations : 
 
 tan = 
 
 2 sin (s a) ' 
 
 tanr 
 
 2 sin -fi' 
 
 (7 tan r 
 tan = 
 
 2 sin (s c') 
 
 If these formulas are employed, it will be found that the 
 work of solution can be more compactly arranged and more 
 conveniently carried out than by the use of any other method. 
 
 Ex. 1. Given a = 51 43' 18", b = 38 2' 20", c = 75 11' 30" ; 
 
 find A. 
 
 a = 51 43' 18" log sin (s -b) = 9.84518 - 10 
 
 6 = 38 2' 20" log sin (-c) = 9.10311 -10 
 
 c = 75 11' 30" colog sin s = 0.00375 
 
 2 s = 164 57' 8" colog sin (s-a)= 0.29127 
 
 = *rwu ^331-20 
 
 s-a = 30 45' 16" Jog ^ n A = ^IQQ - 10 
 
 s - b = 44 26' 14" 
 
 s - c = 7 17' 4" 4.= 22 42' 27.4 
 
 s = 82 28' 34" Check. 
 
 A = 45 24' 55 
 
202 SPHERICAL TRIGONOMETRY 
 
 Ex. 2. Given a = 125 40' 14", b = 53 56' 12", c = 98 51' 16"; 
 find A, B, C. 
 
 "~ZZ *-*- 
 
 c= 98 51' 16" log tan | = 9.65185 - 10 
 
 2s = 278 27' 42" p 
 
 s = 139 13' 51" log tan 2 = 9.83894 - 10 
 
 s - a - 13 33' 37" 4. _ 62 o ^ ^, 
 
 s-b = So 17' 39" 
 
 j-c = 4022'85" =24 9' 38 
 
 4Q/ , 
 
 log sin (* - a) = 9.37008 - 10 C = M 
 
 log sin (s- 6)= 9.99854-10 2 
 
 J _ 1010 QQ' fi'f 
 
 logsin(s-c)= 9.81145-10 
 
 = 48 19' 16" 
 
 cologsin= 0.12071 C = 69 13' 20" 
 
 log tan 2 r = 19.30078 - 20 
 log tan r = 9.65039 - 10 
 
 EXERCISE XXXIV 
 
 1. In a spherical triangle given a=11922' 27", 6 = 60 44'40", 
 c=1083T' 3"; find A, B, 0. 
 
 2. In a spherical triangle given a = 53 42', b = 118 39' 28", 
 c = 130 38' 20" ; find A, B, 0. 
 
 3. In a spherical triangle given a = 129 11' 36", b = 109 29' 
 18", <?= 83 14'; find the largest angle. 
 
 4. In a spherical triangle given a = 22 56' 46", b = 60 47', 
 c = 69 49' 32" ; find B and C. 
 
 145. CASE 2. Given two sides , 6, and the included angle, 
 C; to find A, B, c. The angles A, B, may be found by the 
 first two of Napier's Analogies (Art. 130, p. 190) : 
 
 a b 
 
 A + B cos a 
 
 tan = ot 
 
 cos 
 
 A-B 
 
SOLUTION OF SPHERICAL TRIANGLES 
 
 From the values of " - and - - obtained from these 
 
 equations the values of A and B can at once be found. 
 
 The value of c can then be obtained from any one of Gauss's 
 Equations (Art. 129, p. 189) ; for example, 
 
 The solution is unique. 
 
 EXERCISE XXXV 
 
 1. In a spherical triangle given a = 8554' 16", 6=125 1' 27", 
 <?=526' 26"; findJ,j&,o. 
 
 2. In a spherical triangle given a = 119 32' 30", 6=8631'35", 
 0=49 40' 22"; find A, B, c. 
 
 3. In a spherical triangle given b = 61 23' 18", c = 48 30' 6", 
 A = 60 53' 24" ; find B, <7, a. 
 
 4. In a spherical triangle given a = 7240'40", c = 11033' 38", 
 =53 50' 20"; find -4, 0, b. 
 
 5. In a spherical triangle given b = 68 20' 25", o= 52 18' 15", 
 4 =117 12' 20"; find., (7, a. 
 
 146. CASE 3. Given two sides , 6, and the angle opposite 
 one of them A; to find B, C , c. The value of B can be found 
 by means of the law of sines (Art. 122, p. 182), from which 
 
 we have A 
 
 sin = ^_^ s i n 6. (1) 
 
 sin a 
 
 After B has been determined C and c can be found by the 
 use of the first and the third of Napier's Analogies. 
 
 a + b 
 
 "~ 
 
 ___tan. (3) 
 
 cos - 
 
204 SPHERICAL TRIGONOMETRY 
 
 Since is determined by means of its sine, the solution is 
 ambiguous. 
 
 The following tests may be conveniently employed to deter- 
 mine the number of solutions. 
 
 If sin A sin b > sin a, there is no solution ; for in that case 
 sin B > 1, which is impossible. 
 
 If sin A sin b < sin #, (1) is satisfied by two supplementary 
 
 values of B. But - - and - - are necessarily of the same 
 
 2 2 
 
 species. Therefore, if both these values of B satisfy this con- 
 dition, there are two solutions ; if not, there is but one. 
 
 NOTE. To make use of the test just given it is necessary that we first 
 solve for B. There are several methods of testing for the number of solu- 
 tions without first finding B, but it is not thought best to include any of 
 them in this work. For a full explanation of them the student is referred 
 to more extended treatises on the subject of Spherical Trigonometry. 
 
 Ex. i. Given a = 56 30', b = 31 20', A = 105 11' 10"; 
 find B, C, c. 
 
 Since in this case sin A sin b < sin a, there may be either 
 one or two solutions. To test for the number of solutions 
 we find the possible values of B. 
 
 log sin A = 9.98456 - 10 
 log sin b = 9.71602 -10 
 colog sin a = 0.07889 
 
 log sin B = 9.77947 - 10 
 
 B = 37 0' 3", 
 or, B = 142 59' 57". 
 
 We have from data given, ! < 90. 
 
 This shows that only the smaller of the two values of B is 
 admissible. 
 
 Therefore there is but one solution. 
 
SOLUTION OF SPHERICAL TRIANGLES 205 
 
 The work of solution may be compactly and conveniently 
 arranged as follows : 
 
 2 
 
 a - b = 25 10' 
 
 ^=12 35 
 A+B = U2U f 13" 
 
 A + B , 
 A-B = 68 II' 7" 2 
 
 log ain = 9.1*501 -10 
 
 lo S sin = 9-34112- 10 
 
 colog sin ^ ^ = 0.25140 
 
 log tan ^Lzi = 9.34874 - 10 col S sin ^T = ' 66182 
 
 log tan ^9.57605 -10 log tan ^ = 9.83053 - 10 
 
 log cot ^ = 0.33347 
 
 - = 20 38' 38" r 
 
 = 24 53' 31" 
 
 c = 41 17' 16" C = 49 47' 2" 
 
 EXERCISE XXXVI 
 
 1. In a spherical triangle given a = 71 14', b = 122 27' 18", 
 '4 = 77 23' 24"; find B, (7, c. 
 
 2. In a spherical triangle given a = 80 5' 16", b = 82 4', 
 .4 = 83 34' 12"; find B, <7, c. 
 
 3. In a spherical triangle given a = 151 22' 30", b = 133 31' 
 25", A= 143 32' 28"; find B, 0, c. 
 
 4. In a spherical triangle given a =30 38', b = 31 29' 45", 
 A = 87 53' 20" ; find the remaining parts. 
 
 147 CASE 4. Given two angles A, B, and the side oppo 
 site one of them a; to find C, 6, c. As in the preceding case 
 one of the parts, in this case 6, can be found by means of the 
 law of sines, from which we have (Art. 122, p. 182) 
 
 ~~ sin A &1D a ' 
 
206 SPHERICAL TRIGONOMETRY 
 
 The values of c and O can then be found by means of the 
 fourth and the second of Napier's Analogies : 
 
 . A + B 
 
 sin - 
 c 
 
 tan 2 = 
 
 sn 
 
 C A-B 
 
 -*" ' (3) 
 
 The solution is ambiguous, the value of b being determined 
 by means of its sine. 
 
 If sin B sin a > sin A, there is no solution; for in that case 
 sin b > 1, which is impossible. 
 
 If sin B sin a < sin A, (1) is satisfied by two supplementary 
 values of b. To ascertain whether or not both these values are 
 admissible we proceed in a manner similar to that employed 
 in the last case. If both values of b satisfy the condition im- 
 
 posed by the fact that - -^ and a are of the same species, 
 
 there are two solutions ; otherwise there is but one. 
 
 NOTE. The number of solutions can always be determined by forming 
 the polar of the given triangle and then determining by the tests under 
 Case 3 the number of solutions of that triangle. The number of solutions of 
 the given triangle is always the same as the number of solutions of its polar. 
 
 Ex. i. Given A = 29 43' 12", B = 45 4' 18", a = 36 19' 32"; 
 find 6, c, C. 
 
 In this case sin B sin a < sin A ; therefore there may be either 
 one or two solutions. Solving for 5, we proceed as follows : 
 
 log sin B = 9.85003 - 10 
 log sin a = 9.77260 - 10 
 colog sin A = 0.30173 
 log sin b = 9.92736 - 10 
 
 b = 57 48' 38", 
 or, b = 122 13' 22". 
 
 We have from data given, A + 
 
SOLUTION OF SPHERICAL TRIANGLES 207 
 
 % 
 
 Both of the values of b just found satisfy this condition. 
 Hence, there are two solutions. The values of and c can 
 now be found in the ordinary manner, both values of b being 
 employed. 
 
 EXERCISE XXXVII 
 
 1. In a spherical triangle given A = 109 20' 10", .#=134 
 16' 24", a= 148 48' 40"; find 6, c, 0. 
 
 2. In a spherical triangle given J. = 113 30', .8=125 31' 
 34", a = 66 44' 40"; find 5, c, 0. 
 
 3. In a spherical triangle given A = 28 35' 5", J5 = 47 51' 
 15", a = 38 41 '32"; find b, c, 0. 
 
 4. Iii a spherical triangle given A = 24 30', 5=38 15', 
 a = 65 22'; find 5, c, 0. 
 
 148. CASE 5. Given a side c and the two adjacent angles 
 A, B ; to find a, 6, C. The third and fourth of Napier's 
 Analogies may be used for determining the values of a and b 
 (Art. 130, p. 190) : 
 
 A-B 
 
 cos - 
 
 2 
 A-B 
 
 
 From these formulas the values of a and b can be obtained. 
 The value of C can then be found by means of the first of 
 Napier's Analogies : 
 
 a-b 
 
 cos 
 
 a 2 .A + B 
 
 tan - = -- cot 
 
 2 a + b 2 
 
 COS ~2~ 
 The solution is unique. 
 
208 
 
 SPHERICAL TRIGONOMETRY 
 
 Ex. l. Given A =108 28' 55", B = 38 11' 27", c = 52 29'; 
 find a, ft, 0. 
 
 = 35 8' 44 
 
 = 73 20' 11' 
 
 r = 26 14' 30" 
 
 log cos - - = 9.91259 - 10 
 
 log tan = 9. 69282- 10 
 
 colog cos 
 
 = 0.54250 
 
 log tan - = 10.14791 - 10 
 ^-^ = 54 34' 24.4" 
 = 16 30' 1.3" 
 
 2 
 a-b 
 
 a = 71 4' 26" 
 & = 38 4' 23" 
 
 log sin 
 
 = 9.76016 - 10 
 
 log tan | = 9.69282 - 10 
 colog sin A + B . = 0.01863 
 
 log tan ^~ = 9.47161 - 10 
 ^-=^=16 30' 1.3" 
 
 log cos = 9.98174 - 10 
 
 lo cot 
 
 colog cos 
 
 = 9.47599 - 10 
 
 = 0.23682 
 
 log tan ^ = 9.69455 - 10 
 
 | = 26 19' 56" 
 C = 52 39' 52" 
 
 EXERCISE XXXVIII 
 
 1. In a spherical triangle given ^. = 126 40' 50", j5=81 
 45' 42", c = 51 56' 12"; find a, b, 0. 
 
 2. In a spherical triangle given B= 27 27' 36", C = 40 44' 
 20", a =155 16'; find 6, c, A 
 
 3. In a spherical triangle given J. = 127 19' 38", (7=108 
 41' 30", b = 125 22' 32"; find a, c, .5. 
 
 4. In a spherical triangle given A = 154 20' 42", B == 79 
 
 16' 22", c = 85 24' 28"; find a, b, C. 
 
 149. CASE 6. Given the three angles A, B, C; to find the 
 three sides a, b, c. Any of the three groups of formulas in 
 Art. 128, p. 187, can be used. The formulas for the tangents 
 are recommended in preference to those for the sines or for the 
 cosines. 
 
SOLUTION OF SPHERICAL TRIANGLES 209 
 
 - cos - 
 
 o 
 
 
 
 If all three of the sides are to be found, it is convenient to 
 proceed in a manner similar to that employed in Art. 144, p. 
 200, where three sides were given and three angles were to be 
 found. 
 
 Multiplying both numerator and denominator of the fraction 
 under the radical sign in (1) by cos ($ A) we have 
 
 
 Putting tan R = " 
 
 ^, A)t!OS(CO8( ^, g) 
 
 we may write 
 
 tan - = tan R cos (S A) . 
 
 Making the corresponding changes in (2) and (3), we have 
 the three equations 
 
 tan - = tan R cos ($ J5), 
 2 
 
 tan | = tan R cos (# - (7). 
 
 The solution is unique. 
 COXANT'S TRIG. 14 
 
210 SPHERICAL TRIGONOMETRY 
 
 Ex. l. Given A = 221, B = 128, 0= 153 ; to find a. 
 The formula for tan -, with the algebraic sign of each factor written 
 above it for convenience, is as follows : 
 
 
 
 tan fl = / 
 
 cos 5 cos (S A ) 
 
 
 
 2 A 
 
 _ 
 
 
 
 
 
 \c 
 
 os(S-B)cos(S- 
 
 C) 
 
 
 
 A 
 
 = 221 
 
 log- 
 
 cos S = 9.51264 - 
 
 10 
 
 
 B 
 
 = 128 
 
 log cos(S 
 
 -.-0 = 9.93753- 
 
 10 
 
 
 C 
 
 = 153 
 
 colog cos (S 
 
 - B) = 0.26389 
 
 
 
 2 S 
 
 = 502' 
 
 colog cos (5 
 
 - C) = 0.85644 
 
 
 
 
 
 
 2)20.57050- 
 
 20 
 
 
 S 
 
 = 251 
 
 
 
 
 s 
 
 -A 
 
 = 30 
 
 log 
 
 tan ^=10.28525 - 
 
 -10 
 
 s 
 
 -B 
 
 = 123 
 
 
 - = 62 35' 35 
 
 
 
 
 
 
 o 
 
 
 s 
 
 -C 
 
 = 98 
 
 a = 125 11' 10" 
 
 The result is real (Art. 128, p. 187), the four negative signs under the 
 radical producing a positive quantity. 
 
 Ex. 2. Given A = 21 26' 20", B = 56 46' 28", (7=115 23' 
 4"; find a, 5, c. 
 
 Proceeding by the second method, we first find the value of log tan R. 
 The following is suggested as a convenient arrangement of the work: 
 
 tan R= 
 
 \ cos (S- A) cos (S - B) cos (S - C) 
 
 A _ 910 9f>' ()f\r> 
 
 log tan 2 = 9.30865 - 10 
 
 B = 56 46' 28" 2 
 
 C = 115 23' 4" log tan* =9.70007 -10 
 
 25 = 193 35' 52" 2 
 
 5 = 96 47' 50" log tan c - = 9.87055 - 10 
 S - A = 75 21' 36" 
 
 iS'- = 40 T28" 5 = 11 30' 17.5" 
 S-C = -19 24' 52" 
 
 log cos S = 9.07330 - 10 o = :}l 39/ 43 " 
 colog cos (5 - /I ) = 0.59732 
 
 ^_ Qf>o o-/ 4 f>// 
 
 colog cos (S -B) = 0.11590 2 " 
 
 colog cos (S - C) = 0.02542 a = 23 0' 35" 
 
 log tan 2 R = 9.81 194 - 10 b = 63 19' 26" 
 
 log tan R = 9.90597 - 10 c = 73 10' 9" 
 
SOLUTION OF SPHERICAL TRIANGLES 211 
 
 EXERCISE XXXIX 
 
 1. In a spherical triangle given A = 121 40' 24", B= 60 12' 
 22", O= 105 40'; find a, b, c. 
 
 2. Iii a spherical triangle given ,4 = 58 20' 27", =8430'30", 
 (7=61 35' 10"; find a, 6, c. 
 
 3. In a spherical triangle given A = 105 14' 4", B=55 31' 
 24", =88 51 '6"; find a, 5, <?. 
 
 4. In a spherical triangle given A = 171 49' 33", B= 5 15' 23", 
 =9 18' 28"; find a, 6, c. 
 
 THE AREA OF A SPHERICAL TRIANGLE 
 
 150. In considering the problem of finding the area of a 
 spherical triangle we have two principal cases to consider. 
 
 I. Given the three angles A, B, C. 
 
 Let r = radius of sphere. 
 
 E = spherical excess = A + B + - 180. 
 A = area of triangle. 
 
 It is proved in geometry that the area of a spherical triangle 
 is to the area of the surface of the sphere as its spherical excess, 
 in degrees, is to 720. Hence, we have 
 
 A : 4 Trr 2 - E : 720. 
 
 180 
 
 II. Given the three sides a, &, c. 
 The problem is to express the value of E in terms of the sides. 
 
 (1) CAGNOLI'S THEOREM. 
 
 sin -= sin 
 
 + B . A + B C 
 
 sin - - cos cos - 
 
212 SPHERICAL TRIGONOMETRY 
 
 C 
 sin cos 
 
 (cos ^ - cos ^} (Art. 130, p. 190) 
 
 C \ ' A J 
 
 cos- 
 
 : C Of n - a . V 
 "- cos- " "- 
 
 2 2 
 
 v \_, / /-> flf ' \ 
 
 sm cos ( 2 sin- sin - ) 
 
 c 
 cos- 
 
 (Art. 77, p. 100) 
 
 . 
 sin - sin - m . 
 
 _____ ^ V sin s sin ( s a) sin (g 6) sin ( s c} 
 cos c_ sin a sin 5 
 
 2 (Art. 127, p. 186) 
 
 Replacing sin a and sin b by their values (Art. 80, p. 106) 
 and canceling, we have 
 
 E _ Vsin 8 sin (g a) sin (g 6) sin (s c) 
 
 Sill . ' 
 
 2 n a b c 
 
 L COS - COS - COS - 
 
 (2> L'HUILIER'S THEOREM. This theorem, which expresses 
 the value of E by means of its tangent, is derived as follows : 
 
 ~Ei A 
 
 tan = 
 
 A + , TT- (7 
 
 cos - - + cos - 
 
 (Art, 77, p. 100) 
 
SOLUTION OF SPHERICAL TRIANGLES 213 
 
 a-b c 
 
 cos cos - cos 
 
 ^_ 2 2 (Art> 129 , p . 189) 
 
 a -\-b c C 
 
 cos-^- + cos- sm- 
 
 sin sin 
 
 __JL_ -JLcotS. ( Art - 77 > P- 10 ) 
 
 (Art. 127, p. 186) 
 
 (8) All other cases may be solved by first finding the three 
 sides or the three angles, and then applying the proper formula. 
 
ANSWERS 
 
 1. 1. 
 
 2. If 
 
 3. 0.7581+. 
 
 PLANE TRIGONOMETRY 
 Exercise I. Pages 11, 12 
 
 4. 1.2737+. 
 
 5. 2. 54 19-. 
 
 6. 3.5693+. 
 
 7. 40, 60, 80. 
 
 17. 5, 25, 150. 
 
 18. 30, 360, 21600. 
 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 30. 
 
 120. 
 
 36. 
 
 54. 
 
 270. 
 
 150. 
 
 540. 
 
 2700. 
 
 11. = 
 
 3' T 
 
 Exercise II. Pages 14-16 
 
 12 
 
 2?r 
 
 17 8599 TT 
 
 23. 27, 
 
 63. 
 
 
 
 3 
 
 5400 
 
 24. 52, 
 
 66, 
 
 72. 
 
 
 3?r . 
 
 lg 20533 TT 
 
 7T 
 
 7T 
 
 7 7T 
 
 13. 
 
 
 5400 
 
 25. f, 
 
 
 
 3' 
 
 Is" 
 
 
 STT 
 
 19 W7r . 
 
 26. 30, 
 
 60, 
 
 90. 
 
 14. 
 
 
 
 180 
 
 
 
 
 
 4 
 
 20 ^- 
 
 27. 4, 6. 
 
 
 
 
 121 7T 
 
 180 
 
 oa 3?r 
 
 57T 
 
 77T 
 
 
 360 
 
 21. J. 
 
 28. --, 
 
 7 
 
 9 
 
 16. 
 
 463 TT 
 
 oo 13021 TT 
 
 OQ 1 T 
 
 2?r 
 
 1 
 
 720 
 
 30000 
 
 ' 2' 3 
 
 ' 3 
 
 / 2 
 
 5?r 2ir 
 
 
 31. 150, ; 82 
 
 30', 11^; 135. 
 
 37T 
 
 9 ' 3 ' 
 
 
 6 
 
 ' 24 ' 
 
 
 4 
 
 32. 
 
 minutes past four ; 54 T 6 r minutes past four. 
 
 5. 1.77. 
 
 6. 28 7' 30". 
 
 7. 0.265 sec. 
 
 8. 40yd. 
 
 9. 2 8' 52.8". 
 
 10. 861,031 mi. 
 (approximately) . 
 
 11. 3962.95. 
 
 12. 14 19' 26.2". 
 
 13. 1.047 radians, 
 
 Exercise III. Pages 17-19 
 
 14. 51.56. 21. 65 24' 30.4". 
 
 15. 102 ft. 
 
 (approximately) . 
 
 16. 5:4. 
 
 17. 3.1416. 
 
 18. -, -T, - 
 399 
 
 19. 3.1416. 
 
 20. 0.000097+. 
 
 215 
 
 22. 98 ft. 
 
 23. 1 mi. 908 ft. nearly. 
 
 24. 7 mi. 1237.2 ft. 
 
 25. 18 and 58. 
 
 26. 19.099'. 
 
 27 60 ^ 
 
 10800 
 
 28. 0.00004848. 
 
216 
 
 ANSWERS 
 
 Exercise V. Pages 29, 30 
 
 7. T 4 r V7. 11. Ii, $?. 15. U> e 
 
 8. |f. 12. |, |. 16. f A/7, 
 
 9. f, f. 13. ft A/61, ft A/61. 17. f, ft A/14 
 10. & A/16, f 14. |Vfl,2VO. 
 
 18. sin A = T 8 7 , cos A = tf , etc. ; sin 5 = jf , cos J5 = T 8 7 , etc. 
 
 1. Sill ^1 
 
 x* + y' 
 
 - , ws ^i , CIA;. , iii jj , 
 
 V>V_/0 J-f ~ 
 
 20. f. 
 
 21. i. 22. f. 
 
 ^23T}f 
 
 
 Exercise VIII. Pages 42-48 
 
 
 32. 60. 
 
 43. $ a 2 cot A. 53. 23 11' 55". 
 
 63. 355.34. 
 
 33. 45188. 
 
 44. \a?\,*\\B. 54. 38 9' 25". 
 
 64. 74.335. 
 
 34. 6. 
 
 45. c 2 sin A cos A. 55. 80.49,105.64. 
 
 65. 42.838. 
 
 35. 124.71. 
 
 46. 29 22'. 56. 74 43' 54". 
 
 66. 313.1. 
 
 36. 182.8. 
 
 47. 60 38'. 57. 124.27. 
 
 67. 38.13. 
 
 37. 1143.4. 
 
 48. 20.48. 58. 560.88. 
 
 68. 43.03. 
 
 38. 1916.64. 
 
 49. 33.64. 59. 25.165, 36.458. 
 
 69. 39 11'. 
 
 39. 36157.5. 
 
 50. 41 36'. 60. 89.44. 
 
 71. 118.3. 
 
 40. 498.51. 
 
 51. 24 54' 16". 61. 46.71. 
 
 72. 100. 
 
 41. 52444.44. 
 
 52. 42 42' 34". 62. 122.53. 
 
 73. 145.58. 
 
 42. iaVc 2 -a 2 . 
 
 
 Exercise IX. Pages 49, 50 
 
 
 1. 64 20' 26". 
 2. 75 32' 50". 
 
 9. M 2 sin-cos . 
 16. 
 
 A = 309.01. 
 A = 29.82. 
 
 3. 243.57. 
 
 10. wrt 2 sin A cos A. 17. 
 
 A = 104.71. 
 
 4. 175.068. 
 
 11. nh' 2 cotA. 18. 
 
 A = 12.312. 
 
 5. 148.91'. 
 6. 80 17'. 
 
 12. A = 69.24. 19. 
 13. A = 1325.46. 20. 
 
 A = 115.92. 
 A = 700.616. 
 
 7. 91.204. 
 
 14. A = 3741.18. 21. 
 
 A = 2186.95. 
 
 8. 3 34' 8". 
 
 
 
 
 Exercise X. Pages 72, 73 
 
 
 K V3 + 1 
 
 V2-2 Q V3 + 2 
 
 11. L^. 
 
 12. -2. 
 
 2 
 
 2 2 
 
 c 1 + 2 V2 
 
 3 A/3 1Q 3 A/3 -4. 
 
 13. -|. 
 
 6 2 " 
 
 8> 2 3 
 
 , etc. 
 
ANSWERS 217 
 
 14. Positive for 60, 120, 210, 330 ; negative for 0, 240, 300. 
 
 15. Positive for 330; negative for 210, 300; zero for 135. 
 
 2ab 2ab 2a + l 2 a 2 + 2 a 
 
 ' a 2 + 6 2 ' a 2 - 6 2 2 a 2 + 2 a + 1 ' 2 a- + 2 a + 1 
 
 Exercise XI. Pages 83, 84 
 
 5. 45 and 226 ; 45, 135, 22o, 315. 
 
 6. Positive for 120 and 690 ; negative for 150, 300, and ; zero for 135 
 and 315. 
 
 7. Positive for 210 and 780; negative for 240, 300, 625 and ; zero 
 for 225. 
 
 8. Positive for 60, 150, and ^^ ; negative for 120 and 210 ; zero for 135 
 
 
 
 and 225. 
 
 9. (a) 240 and 300; (6) 210 and 330; (c) 135 and 315; (d) 30 and 
 210. 
 
 14. 3. 
 
 15. cot 2 A esc A. 
 
 Exercise XII. Pages 88, 89 
 
 I. 14. * = i. 
 
 4 6 
 
 15. = n7r-- 
 
 2 ^4 
 
 s\ /j ( I \ n ^T 
 
 6' 
 
 7. e =mr-(-\y\. 
 
 6 17. e = nr -. 
 
 8. 6 = 2mr^- 18 ^ = W7r 7r > 
 
 7T 
 
 9. ^ =(2 w + !)TT - v 
 
 19. ^ WTT or mr - 
 
 2 20. 6= mr - 
 
 4 
 
 11. 0=(2W + 1)7T. 
 
 21. <9^2w7r+-. 
 
 12. f = iw + 7- 3 
 
 4 
 
 22. *<1.-H), + S. 
 
 Exercise XIII. Pages 90, 91 
 
 4. 2 nir , or (2 n + I)TT. 5. 2 mr, or 2 nTr |. 
 
 3 
 
 g W7r _)_ (_ 1) ^, or MTT + ( 1) M ^-^- 
 6 2 
 
218 ANSWERS 
 
 7. W T+(-l)?. 
 
 2 W7T 
 
 8. 2 mr ~ 18. 2 HIT, or 
 
 9. 2 WTT *, or (2 w + I)TT. 19. -1^-, O r 2 r?r 
 
 8\ y " - 
 
 m n m + n 
 
 10. 2 nir -. 20. nir -, or + . 
 
 3 4 3 12 
 
 11. 2 nir + -, or sin = - |. 21. WTT + ^, or 7 -^ + -JL. 
 
 ^j 
 
 12. W7T -. 22. 7i7T. 
 
 13. WTT + -, or cot 6 = 2. 23. . 
 
 4 3 
 
 14. HT^. 24. 5? + -. 
 
 15. (2n + l)or. 25. r 
 
 1 3 2(m 
 
 16. + ,orH. 26 . (2)1 + 
 
 
 Exercise XIV. Pages 95-97 
 
 4 - -if- 5- ;;:; 6. ^ 
 
 Exercise XV. Pages 99, 100 
 1. 1. 2. &\. 3. - II 4. - 4. 5. 3. 
 
 Exercise XVIII. Pages 108-110 
 
 - >, u. 
 
 
 , 4V2 
 
 23 
 
 2 7 
 
 3\/15 
 
 3. it, - Hi 
 
 
 3VI6 
 
 
 9 ' 
 
 27* 
 
 8' 
 
 16 
 
 4. |, 6. 
 
 
 
 5 
 
 
 
 
 Exercise 
 
 XXI. 
 
 Pages 120, 121 
 
 
 
 1. 
 
 ^V2, 
 
 
 6 V ^ 
 
 
 9. I. 
 
 13. 
 
 iv 
 
 2. 
 
 \ V2. 
 
 
 2V?' 
 
 
 10. 1 or - i. 
 
 14. 
 
 If- 
 
 3. 
 
 1. 
 
 
 7. V3. 
 
 
 11. or .]. 
 
 15. 
 
 1- 
 
 4. 
 
 x imaginary. 
 
 -3Vl7 
 
 12. 1 or \. 
 
 16. 
 
 *V5. 
 
 5. 
 
 13. 
 
 
 4 
 
 
 
 
 
 17. 
 
 
 aft 
 
 19 
 
 
 ab 
 
 20. 
 
 V3. 
 
 
 vV 
 
 1 -f Vft 
 
 
 Va 2 - 
 
 1 + V6 2 -1 
 
 21. 
 
 2. 
 
 18. 
 
 WTT or n 
 
 r+J, 
 
 
 
 
 
 
 
 
 4 
 
 
 
 
 
 
ANSWERS 219 
 
 Exercise XXII. Page 127, 128 
 
 1. 2r, or2*w- 11. mr +(- 1) W 36 52', or 2 mr -. 
 
 3 2 
 
 . 12. 2n7r-3652'. 
 
 2. 2W7T + -, or (2n 
 
 13. , or . 
 439 
 
 14. f,or,|. 
 
 -' 
 
 7. 2W7T + , or2w7r- . 
 
 16. 
 
 O 
 
 17. ^ + |, 
 18. 
 
 19. S;qr-2!:+(--I)-i. 
 
 20. 2n7r, or 
 10. 2/i7r, or 2 WIT + 112 38'. 
 
 21. 2 mr, (2 n + 1) - , or (2 n + 1) - 
 
 22. (2w+l)^,(2rc + l)^,or(2N + l). 
 '2 4 o 
 
 23. 2 7Z7T, 01' ?I7T y o _ 
 
 35. 2 mr, or 2 7i?r + 
 
 25. ttr,or(2 + l). ^ B)r _ ^ or .yr +( _ 1)n jr . 
 
 26. - 
 
 27. , ,r 2 , , 
 
 , 
 
 4 2 
 
 29. n7r^, or(2n+l)- 
 
 41. 5E f or-| 
 
 30. (2* + l)f,or^.f(-l)*|. 
 
 42. WTT, or nir- 
 
 31. 7i7T. 3 
 
 32. (2w+ 1)|, or WIT |- 
 
 43. nr, or 
 
 33. ?ITT, or WTT 44. WTT, or ~ + 
 
220 
 
 ANSWERS 
 
 Exercise XXIV. Pages 136-138 
 
 11. 640.65ft. 
 
 12. AC = 8332.2 ft., AB = 12163.53 ft. 
 
 13. Distances 2841.2 ft., 3475.46 ft. Height 1721.08 ft. 
 
 14. Distances 11975.68 ft., 24182.77 ft. Height 19769.54 ft. 
 
 15. 121.04ft. 16. 171.15ft. 17. 110.39ft. 19. 4.588 mi. 20. 4.506 mi. 
 
 Exercise XXVI. Pages 146-148 
 
 11. 4536.4 ft. 13. 5402.6 ft. 15. 15.6. 
 
 12. 134.49 ft. 14. 9. 16. 1781.2 ft. 
 19. A= 39 46' 0.4", B = 68 2' 45.6". 20. 4494.3 ft. 
 
 17. 5.65. 
 
 18. 4.58: 9.81 
 
 Exercise XXVII. Pages 152, 153 
 
 17. 43 55' 13". 20. 60, 60, 60. 
 
 18. 49 8' 46". 21. 66 44' 2", 60 26' 53", 52 49' 9". 
 
 19. 30, 60, 90. 23. 60. 24. 120. 25. 73 44'. 
 
 Miscellaneous Examples. Pages 158-165 
 
 1. 247.56 ft. 3. 41 9' 7". 5. 48 45' 44". 7. 122.48 ft. 
 
 2. 42 42' 34". 4. 36 22' 21". 6. 72.75ft. 8. 123.47ft. 
 9. Height = 1224.3 ft.; distance = 1292.9 ft. 10. 431.78 ft. 
 
 11. 233.27 ft. 12. 440.36 Ib. ; 63 12' 26", 26 47' 34". 
 
 13. 2881.46 mi. 15. 2304.52ft. 17. 7912.8 mi. 
 
 14. 407.61ft. 16. 67.5ft. 18. 108 11'. 
 19. Height = 350.67 ft., distance =3205.15 ft. 20. 8.0076 in. 
 21. 746 ft. 22. 17.32, 30, 34.64. 23. 244.95. 
 24. tan- 1 f ; 3 \ of an hour. 25. 6ft. 
 
 26. 136.13 ft. from the foot of the tower. , 27. 61.24ft. 
 
 29. 109.9ft. 31. 308.66ft. 33. 110^'.^" 35. 4782.2ft. 
 
 30. 4621.1ft. 32. 407.61ft, 34. 473.3ft. 36. 2785.6ft. 
 37. 60 20' 8", 76 49' 18", 42 50' 29". 38. 595.84 ft. 
 39. 1743.36 ft. 40. 4244.4 ft. 41. 9.1 mi. arc-hour. 42. 383.37 yd. 
 
 43. Resultant = 658.36 Ib. ; angle bet. resultant and greater force 22 23' 43". 
 
 44. 2019.62 ft. 47. 63.08. 50. 3883 ft. 52. 13451.52 ft. 
 
 45. 410.35ft. 48. 45.92ft. 51. 4494.3ft. 53. 1949.77ft. 
 
 46. 178.88 ft. 49. 10520.49 ft. 
 
 Exercise XXVIII. Pages 167, 168 
 
 2. 0.0029089. 4. 0.002036. 6. 0.99999. 
 
 3. 0.9999958. 5. 0.004363. 7. 0.00003878. 
 
ANSWERS 221 
 
 Exercise XXXI. Page 175 
 
 1. r = 2.5, = 2.165. 5. 2 c 2 - ad 2 = bed. 
 
 2. 
 3. 
 
 4. 
 9. 
 
 10. 
 11. 
 
 a 2 + b' 2 = c 2 + cf 2 . 6. a 4 2 a 2 + & 2 = 0. 
 z 2 , y 2 _ 2 7. 2 & - b = 2. 
 2 6 2 8. (a 2 - & 2 ) 2 - 16 ab = 0. 
 a 2 + ^2 _ 6 - 2 + C 2. 
 
 (a 2 + I) 2 + 2 &(a 2 + l)(a + 6) - 4(a + ft) 2 = 0. 
 
 (a + 6)* + f a _ 5)1 - 2 12 - ( ~ & ) tan + & = - 
 | i _| 13. a 2 - & 2 - 2 cos a - 2 = 0. 
 
 SPHERICAL TRIGONOMETRY 
 
 Exercise XXXIII. 
 
 Pages 199, 200 
 
 1. 
 
 6 = 
 
 14 25' 20", 
 
 A 
 
 47 30' 46", 
 
 B 
 
 = 44 25' 26" 
 
 , 
 
 2. 
 
 c = 
 
 77 56' 37", 
 
 A = 
 
 81 50' 9", 
 
 B 
 
 = 34 28' 58" 
 
 . 
 
 3. 
 
 Impossible. 
 
 4. 
 
 c = 
 
 69 55' 18", 
 
 b = 
 
 130 15' 58", 
 
 A = 115 33' 51". 
 
 5. 
 
 a = 
 
 49 30' 54", 
 
 b = 
 
 131 41' 29", 
 
 B 
 
 = 124 6' 53" 
 
 , 
 
 6. 
 
 a = 
 
 34 20' 53", 
 
 b = 
 
 42 23' 40", 
 
 c 
 
 = 52 25' 39" 
 
 
 7. 
 
 a = 
 
 80 28' 44", 
 
 b = 
 
 78 38' 54", 
 
 B = 83 47 '23". 
 
 8. 
 
 b = 
 
 145 13' 27" 
 
 , A = 
 
 35 2' 7", 
 
 B 
 
 = 118 8' 2". 
 
 
 9. 
 
 b = 
 
 155 23' 47" 
 
 , c = 
 
 71 18' 48", 
 
 A 
 
 = 98 54' 34". 
 
 10. 
 
 &i = 
 
 153 59' 53" 
 
 , Ci = 
 
 69 36', 
 
 BI 
 
 = 152 6' 47" 
 
 
 
 .62 = 
 
 26 0' 7", 
 
 Co = 
 
 110 24', B-2 
 
 = 27 53' 13" 
 
 
 11. 
 
 c = 
 
 62 33' 19", 
 
 A = 
 
 68 51' 35", 
 
 B 
 
 = 39 59' 48". 
 
 12. 
 
 a = 
 
 49 53' 28", 
 
 b = 
 
 58 26', 
 
 c 
 
 = 70 17' 27". 
 
 Exercise XXXIV. 
 
 Page 202 
 
 
 1. 
 
 A = 
 
 113 51' 22" 
 
 ,B = 
 
 66 17' 20", 
 
 C 
 
 = 960'18". 
 
 
 2. 
 
 A = 
 
 65 10', 
 
 B = 
 
 98 50' 37", 
 
 C 
 
 = 125 17' 48". 
 
 3. 
 
 A = 
 
 129 22' 58", 
 
 , B = 
 
 109 41 '38", 
 
 c 
 
 = 97 21' 36". 
 
 
 4. 
 
 A = 
 
 23 16' 48", 
 
 B = 
 
 62 13' 34", 
 
 G 
 
 = 107 54' 18' 
 
 
 Exercise XXXV. 
 
 Page 203 
 
 
 1. 
 
 A = 
 
 117 33' 50", B = 
 
 46 37' 46", c 
 
 
 
 62 36' 45". 
 
 
 2. 
 
 A = 
 
 116 0' 7", 
 
 B = 
 
 51 34' 15", c 
 
 
 
 57 51' 26". 
 
 
 3. 
 
 B = 
 
 101 4' 47", 
 
 C = 
 
 40 8' 22", a 
 
 = 
 
 57 31' 43". 
 
 
 4. 
 
 A = 
 
 35 18' 32", 
 
 c = 
 
 126 39' 6", b 
 
 
 
 77 10' 36". 
 
 
 5. 
 
 B = 
 
 69 28' 26", 
 
 c = 
 
 42 13' 34", a 
 
 = 
 
 76 17' 36". 
 
 
 Exercise XXXVI. 
 
 Page 205 
 
 
 1. 
 
 B = 119 34' 43", C = 96 55' 26", 
 
 c = 105 36' 14". 
 
 2. 
 
 7? = 631'40", 
 
 C = 84 50' 28", 
 
 c = 80 51' 28". 
 
 3. 
 
 BI = 63 55' 10". 
 
 Ci = 3351'5", ci = 
 
 = 26 41' 4". 
 
 
 B = 1 16 4' 50", 
 Impossible. 
 
222 
 
 ANSWERS 
 
 Exercise XXXVII. Page 207 
 
 1. 6 = 156 51' 40", c = 30 57' 43", 
 
 2. b = 125 22' 40", c = 155 48' 12", 
 
 3. bi = 75 38' 40", ci = 102 0' 42", 
 
 4. b. 2 = 104 21' 20", c 2 = 134 30' 27", 
 
 Exercise XXXVIII. Page 208 
 
 1. a = 129 29' 29", b = 107 45' 45", 
 
 2. 6 = 36 23' 38", c = 122 53' 23", 
 
 3. = 123 21' 30", c = 84 15' 24", 
 
 4. a = 153 51' 21", 6 = 89 26', 
 
 Exercise XXXIX. Page 211 
 
 1. a = 142 5' 25", b = 38 47' 39", 
 
 2. a = 4920'39", 6 = 62 31' 13", 
 
 3. a = 107 45' 46", b = 54 27' 19", 
 
 4. a = 118 52' 50", 
 
 b = 34 20' 45", 
 
 (7=69 37 '20". 
 
 C= 155 50' 58". 
 Ci = 48 27' 53". 
 C 2 = 146 55' 13". 
 
 C = 54 54' 16". 
 A = 161 1' 28". 
 5 = 129 4' 47". 
 (7= 78 21' 23". 
 
 c = 135 57' 44". 
 c = 5137'5". 
 c = 99 18' 46". 
 c = 84 53' 32". 
 
FIVE-PLACE 
 
 LOGARITHMIC AND TRIGONOMETRIC 
 
 TABLES 
 
 BASED OX THE TABLES OF F. G. GAUSS 
 
 ARRANGED BY 
 
 LEVI L. CONANT, PH.D. 
 
 PROFESSOR OF MATHEMATICS IN THE WORCESTER 
 POLYTECHNIC INSTITUTE 
 
 NEW YORK :. CINCINNATI : CHICAGO 
 
 AMERICAN BOOK COMPANY 
 
COPYRIGHT, 1909, BY 
 
 AMERICAN BOOK COMPANY. 
 
 ENTERED AT STATIONERS' HALL, LONDON. 
 
 CONANT TRIG. TAliLES. 
 
 W. P. I 
 
INTRODUCTION 
 
 1. A logarithm is the exponent by which a number a must be 
 affected in order that the result shall be a given number m. That 
 is, if a x = m, then x is called the logarithm of m to the base a. The 
 above equation written in logarithmic form is log a m = x. 
 
 Any positive number except 1 may be used as the base of a 
 system of logarithms. In practical work involving numerical 
 computation 10 is the base that is universally employed. 
 
 All computations by means of logarithms are based on the 
 following theorems : 
 
 2. The logarithm of a product is equal to the sum of the logarithms 
 of the factors. 
 
 PROOF. Let m and n be any two positive numbers, and let x 
 and y be their logarithms respectively. Then 
 
 m-n = 10*-1 O^IO^. 
 /. log(w^i) = x -f- y = log m + log n. 
 
 3. The logarithm of a quotient is equal to the logarithm of the 
 dividend minus the logarithm of the divisor. 
 
 PROOF. = ! =10*-". 
 
 n I0 y 
 
 .'. log = x y = log m log n. 
 n 
 
 4. The logarithm of any power of a number is equal to the loga- 
 rithm of the number multiplied by the index of the power. 
 
 PROOF. m y = (10*)* = 10**. 
 
 .'. log m y = xy y log m. 
 
 5. The logarithm of any root of a number is equal to the logarithm 
 of the number divided by the index of the root. 
 
 PROOF. Vm = ^10^ = 10*. 
 
 ]ow m 
 
6. The logarithm of any integral power or root of 10 is an 
 integral number. The logarithms of all other positive numbers 
 are fractions. 
 
 Negative numbers have no logarithms. If any logarithmic 
 computation is to be performed which involves negative numbers, 
 the problem should be solved as though the numbers were all posi- 
 tive ; and the algebraic sign of the result should then be deter- 
 mined by the usual methods of algebra. 
 
 7. The logarithm of a number consists of two parts, an integral 
 part and a decimal. The integral part is called the characteristic, 
 and the decimal part the mantissa. As logarithms are usually 
 printed the mantissa is always positive. The characteristic may 
 be positive, negative, or zero. The characteristic of the logarithm 
 of any number may be found by one of the following rules : 
 
 I. The characteristic of the logarithm of a number greater than 
 one is positive, and is one less than the number of digits in the integral 
 part of the number. 
 
 II. The characteristic of the logarithm of a decimal fraction is 
 negative, and is numerically one greater than the number of ciphers 
 immediately after the decimal point. 
 
 For example, the characteristic of the logarithm of 3286 is 3 : 
 of 294645 is 5 ; of 0.0241 is -2 ; of 0.000649 is -4. 
 
 For the sake of convenience a negative characteristic is often 
 changed in form by adding to it and subtracting from it the number 
 10. For example, if the characteristic of a logarithm is 2, and 
 the mantissa is .38416, the logarithm may be written 8.38416 10. 
 If the characteristic is 1 and the mantissa is .74925, the logarithm 
 may be written 9.74925 10. If the negative forms of the charac- 
 teristics are retained, the above logarithms are written 2.38416 and 
 1.74925 respectively. When it is remembered that the mantissas 
 are positive, the reason for writing the negative sign of a charac- 
 teristic above instead of before it will be readily understood. 
 
 In all work connected with the logarithms in the following 
 tables the characteristics, when negative, are to be understood as 
 being increased and diminished by 10. 
 
 TABLE I 
 
 Directions for finding the logarithm of a number. 
 
 8. When the number is between i and 100. 
 
 The entire logarithm, including both characteristic and man- 
 tissa, is given on p. 9. 
 
9. Numbers containing one or two significant figures. 
 
 The mantissa is found on p. 9. It is the same for all numbers 
 containing the same significant figures arranged in the same order, 
 no matter where the decimal point is placed. 
 
 The characteristic is found by means of the rules given above. 
 
 For example, 
 
 log 53 = 1.72428, log .53 = 9.72428 - 10, 
 
 log 5.3 = 0.72428, log .053 = 8.72428 - 10. 
 
 10. Numbers containing three significant figures. 
 
 The number, no attention being paid to the decimal point, is 
 found at the left of the page in the column headed No. The 
 mantissa is found on a line with the number, and in the column 
 headed 0. The characteristic is found as before, by one or the 
 other of the rules on p. 4. 
 
 For example, 
 
 log 763 = 2.88252, log .0763 = 8.88252 - 10, 
 
 log 76.3 = 1.88252, log .00763 = 7.88252 - 10. 
 
 11. Numbers containing four significant figures. 
 
 The first three significant figures are found in the column 
 headed No., and the fourth is at the top of the page. On a 
 line with the first three figures, and in the column headed by the 
 fourth figure, the mantissa is found. The characteristic is deter- 
 mined as in the previous cases. 
 
 For example, 
 
 log 296300 = 5.47173, log .2963 = 9.47173 - 10, 
 log 29,63=1.47173, log .0002963 = 6.47173 - 10. 
 
 12. Numbers containing more than four significant figures. 
 
 Let the number whose logarithm is required be 61487. Since 
 the number lies between 61480 and 61490, the logarithm of the re- 
 quired number lies between the logarithms of those numbers, i.e. 
 between 4.78873 and 4.78880. 
 
 Now log 61490 = 4.78880 
 
 and log 61480 = 4.78873 
 
 giving a difference of .00007 
 
 Hence, we see that an increase of 10 in the number produces 
 an increase of .00007 in the logarithm. But the actual increase 
 we have to consider in the number is 7. Now if an increase of 
 10 in the number produces an increase of .00007 in the logarithm, 
 
an increase of 7 in the number will produce an increase of -^ of 
 .00007, or .000049. Calling this correction .00005, we have 
 
 log 61480 = 4. 78873 
 
 correction = .00005 
 
 .-. log 61487 = 4.78878 
 
 It is here assumed that an increase in the number is accom- 
 panied by a proportional increase in the logarithm of the number. 
 This is not true ; but in obtaining logarithms from a table, that 
 assumption is always made. If greater accuracy is desired, it 
 will be necessary to use tables containing a greater number of 
 figures. 
 
 Directions for finding the number corresponding to a given 
 logarithm. 
 
 13. Logarithms whose mantissas are found in the table. 
 When the exact mantissa of a logarithm is found in the table, 
 
 the first three significant figures of the number corresponding to 
 the logarithm are found in the column headed No., and on a 
 line with the given mantissa. The fourth significant figure is at 
 the top of the column in which the given mantissa is found. 
 For example, 
 
 2.68529 is the logarithm of 484.5. See p. 17. 
 9.68529-10 is the logarithm of 0.4845. 
 7.68529 - 10 is the logarithm of 0.004845. 
 5.68529 is the logarithm of 484500. 
 
 14. Logarithms whose mantissas are not found in the table. 
 
 When the exact mantissa of the given logarithm is not found 
 in the table, the first four significant figures of the number corre- 
 sponding to the logarithm are the same as the first four significant 
 figures of the number corresponding to the next smaller logarithm. 
 The remaining figures are found by interpolation, as illustrated in 
 the following. 
 
 To find the number corresponding to the logarithm 3.44127. 
 
 Number corresponding to 3.44138 is 2763 See p. 13. 
 Number corresponding to 3.44122 is 2762 
 
 .00016 ~T 
 
 Thus we see that an increase of .00016 in the logarithm corresponds 
 to an increase of 1 in the number. But the given logarithm, 
 3.44127, is .00005 greater than the logarithm of the number 2762. 
 
Therefore, the increase in the required number is ;$$$}f, or, more 
 simply, -^g- of 1. This gives .31 as the required increase. Hence 
 2762.31 is the number whose logarithm is 3.44127. 
 
 Similarly, 
 
 78.565 is the number whose logarithm is 1.89523. 
 
 58317.5 is the number whose logarithm is 4.76580. 
 
 .17532 is the number whose logarithm is 9.24383 - 10. 
 
 15. Cologarithms. 
 
 The cologarithm of a number is the logarithm of the recipro- 
 cal of that number. 
 
 Since the reciprocal of a number is unity divided by that num- 
 ber, and since the logarithm of unity is 0, it follows that the 
 cologarithm of a number is found by subtracting the logarithm of 
 the number from 0, or from 10 10. 
 
 For example, 
 colog 256 = log 2 iff = log 1 - log 256 = - 2.40824 = - 2.40824. 
 
 To avoid the use of negative logarithms the above work is 
 performed, and the value of the above result is expressed as 
 
 follows: log 1 = 10. 00000 -10 
 
 log 256= 2.40824 
 .-. colog 256= 7.59176-10. 
 
 From the definition of a cologarithm it follows that the effect 
 of subtracting the logarithm of a number is the same as that of 
 adding its cologarithm. For example, finding the logarithm 
 of HI by each of the two possible methods, we have : 
 
 BY LOGARITHMS BY COLOGAKITHMS 
 
 log 293 = 12.46687 - 10 log 293 = 2.46687 
 
 log 478= 2.67943 colog 478= 7.32057 - 10 
 
 Subtracting, 9.78744 - 10 Adding, 9.78744 - 10 
 The result is the same in both cases. 
 
 TABLE III 
 
 This table contains the logarithmic sine and tangent for every 
 second from 0' to 3', and the logarithmic cosine and cotangent for 
 every second from 89 57' to 90 ; the logarithmic sine, cosine, and 
 tangent for every ten seconds from to 2, and the logarithmic 
 sine, cosine, and cotangent for every ten seconds from 88 to 90 ; 
 and the logarithmic sine, cosine, tangent, and cotangent for every 
 minute from 1 to 89. 
 I 
 
16. The logarithmic sine, cosine, tangent, or cotangent of an 
 angle less than 90. 
 
 If the angle is less than 45, use the column having the name 
 of the proper function at the top, and the column of minutes at 
 the left of the page; if the angle is between 45 and 90, use the 
 column having the name of the proper function at the bottom, 
 and the column of minutes at the right of the page. 
 
 To illustrate the use of this table, let us find the logarithm of 
 sin 26 28' 12". 
 
 % P- 48 > log sin 26 28' = 9.64902 - 10. 
 
 The difference between log sin 26 28' and log sin 26 29' is .00025. 
 Increasing the former by ^| of this difference, or .00005, we have 
 
 log sin 26 28' 12" = 9.64907 - 10. 
 As a further illustration, find log tan 71 3/ 10". 
 
 % P- 44 > log tan 71 38' = 10.47885 - 10. 
 Increasing this by J J of .00042, i.e. by .00013, we have 
 log tan 71 38' 19" = 10.47898 - 10. 
 
 If the logarithm of a cosine or of a cotangent is to be found, 
 the correction for seconds must be subtracted, since these functions 
 decrease as the angle increases from to 90. 
 
 17. The angle corresponding to a logarithmic sine, cosine, tan- 
 gent, or cotangent. 
 
 Find the angle whose log tan = 9.65647 10. 
 
 The next smaller logarithmic tangent is (p. 47) 9.65636 10, 
 which corresponds to an angle of 24 23'. The difference between 
 this logarithm and the log tan 24 2i' is .00033, and the difference 
 between log tan 24 23' and the given logarithm is .00011. There- 
 fore, the angle corresponding to the next smaller logarithm, i.e. 
 24 23', must be increased by 1J of 60", i.e. by 20". Hence, 
 9.65647 - 10 = log tan 24 23' 20". 
 
 In the case of the logarithm of the cosine or of the cotangent 
 we work from the next larger logarithm to the next smaller, in- 
 stead of from the smaller to the larger as in the case of the sine 
 and the tangent. 
 
 TABLE IV 
 
 This table contains the numerical or natural values of the sine, 
 cosine, tangent, and cotangent for every minute from to 90. 
 
- 
 
 TABLE I 
 
 THE COMMON OR BRIGGS 
 
 LOGARITHMS 
 
 OF THE NATURAL NUMBERS 
 
 FEOM 1 TO 10000 
 
 MOO 
 
 No. Log. 
 
 No. Log. 
 
 No. Log. 
 
 No. Log. 
 
 No. Log. 
 
 
 2O 1.30103 
 21 1.32222 
 22 1.34242 
 23 1.36173 
 24 1.38021 
 
 4O 1.60206 
 41 1.61278 
 42 1.62325 
 43 1. 63 347 
 44 1.64345 
 
 6O 1.77815 
 
 61 1.78533 
 62 1 . 79 239 
 63 1. 79 934 
 64 1. 80 618 
 
 8O 1.90309 
 81 1.90849 
 82 1.91381 
 S3 1. 91 908 
 84 1.92428 
 
 1 0. 00 000 
 2 0. 30 103 
 3 0.47712 
 4 0.60206 
 
 5 0. 69 897 
 6 0.77815 
 7 0.84510 
 8 0.90309 
 9 0. 95 424 
 
 25 1. 39 794 
 26 1.41497 
 27 1.43136 
 28 1.44716 
 29 1.46240 
 
 45 1. 65 321 
 46 1.66276 
 47 1.67210 
 48 1.68124 
 49 1.69020 
 
 65 1. 81 291 
 66 1. 81 954 
 67 1.82607 
 68 1.83251 
 69 1. 83 885 
 
 85 1. 92 942 
 86 1.93450 
 87" 1.93952 
 88 1.94448 
 89 1.94939 
 
 MBh i.ooooo 
 
 11 1. 04 139 
 12 1.07918 
 13 1. 11 394 
 14 1. 14 613 
 
 3O 1.47712 
 31 1. 49 136 
 
 32 1.50515 
 33 1,51851 
 34 1.53148 
 
 5O 1.69897 
 51 1.70757 
 52 1.71600 
 53 1. 72 428 
 54 1. 73 239 * 
 
 7O 1.84510 
 71 1.85126 
 72 1.85733 
 73 1.86332 
 74 1.86923 
 
 9O 1.95424 
 91 1.95904 
 92 1. 96 379 
 
 93 1.968-JS 
 94 1.97313 
 
 15 1. 17 609 
 16 1.20412 
 17 1. 23 045 
 18 1.2-5527 
 19 1.27875 
 
 35 1.54407 
 36 1. 55 630 
 37 1. 56 820 
 38 1.57978 
 39 1. 59 106 
 
 55 1. 74 036 
 56 1.74819 
 57 1.75587 
 58 1.76343 
 59 1.77085 
 
 75 1. 87 506 
 76 1. 88 081 
 77 1.88649 
 78 1.89209 
 79 1. 89 763 
 
 95 1. 97 772 
 96 1. 98 227 
 97 1.98677 
 98 1 . 99 123 
 99 1. 99 564 
 
 2O 1. 30 103 
 
 4O 1.60206 
 
 6O 1.77815 
 
 8O 1.90309 
 
 1OO 2.00000 
 
 MOO 
 
It) 
 
 100-149 
 
 No. 
 
 01234 
 
 56789 
 
 1OO 
 
 00000 00043 00087 00130 00173 
 
 00217 00260 00303 00346 00389 
 
 101 
 
 00432 00475 00518 00561 00604 
 
 00647 00689 00732 00775 00817 
 
 102 
 
 00860 00903 00945 00988 01030 
 
 01072 01115 01157 01199 01242 
 
 103 
 
 01 284 01 326 01 368 01 410 01 452 
 
 01494 01536 01578 01620 01662 
 
 104 
 
 01 703 01 745 01 787 01 828 01 870 
 
 01912 01953 01995 02036 02078 
 
 105 
 
 02 119 02 160 02 202 02 243 02 284 
 
 02325 02366 02407 02449 02490 
 
 106 
 
 02531 02572 02612 02 653 02 694 
 
 02735 02776 02816 02857 02898 
 
 107 
 
 02938 02979 03019 03060 03100 
 
 03141 03181 03222 03262 03302 
 
 108 
 
 03342 03383 03423 03463 03503 
 
 03 543 03 583 03 623 03 663 03 703 
 
 109 
 
 03743 03782 03*822 03862 03902 
 
 03941 03981-04021 04060 04100 
 
 110 
 
 04139 04179 0-1218 04258 04297 
 
 04336 04376 04415 04454 04493 
 
 111 
 
 04532 04571 04610 04650 04689 
 
 04727 04766 04805 04844 04883 
 
 112 
 
 04922 04961 04999 05038 05077 
 
 05 115 05 154 05 192 05 231 05 269 
 
 113 
 
 05 308 05 346 05 385 05 423 05 461 
 
 05500 05538 05576 05614 05652 
 
 114 
 
 05 690 05 729 05 767 05 805 05 843 
 
 05881 05918 05956 05994 06032' 
 
 
 \ 
 
 
 115 
 
 06070 06108 06145 06183 06221 
 
 06258 06296 06333 06371 06408 
 
 116 
 
 06446 06483 06521 06558 06595 
 
 06633 06670 06707 06744 06781 
 
 117 
 
 06819 06856 06 893 06930 06967 
 
 07004 07-041 07078 07115 07151 
 
 118 
 
 07 188 07 225 07 262 07 298 07 335 
 
 07372 07408 07445 07482 07518 
 
 119 
 
 07555 07591 07628 07664 07700 
 
 07737 07773 07809 07846 07882 
 
 12O 
 
 07918 07954 07990 08027 08063 
 
 08099 08135 08171 08207 08243 
 
 121 
 
 08279 08314 OS 3"50 08386 08422 
 
 08458 08493 08529 08565 08600 
 
 122 
 
 08636 08672 08707 08743 08778 
 
 08814 08849 08884 08920 08955 
 
 123 
 
 08991 09026 09061 09096 09132 
 
 09167.09202 09237 09272 09307 
 
 124 
 
 09342 09377 09412 09447 09482 
 
 09517 09552 09587 09621 09656 
 
 125 
 
 09691 09726 09760 09795 09830 
 
 09864 09899 09934 09968 10003 
 
 126 
 
 10037 10072 10106 10140 10175 
 
 10209 10243 10278 10312 10346 
 
 127 
 
 10380 ]0415 10449 10483 10517 
 
 10551 10585 10619 10653 10687 
 
 128 
 
 10721 10755 10789 10823 10857 
 
 10890 10924 10958 10992 11025 
 
 129 
 
 11 059 11 093 11 126 11 160 11 193 
 
 11227 11261 11294 11327 11361 
 
 13O 
 
 11394 11428 11461 11494 11528 
 
 11561 11594 11628 11661 11694 
 
 131 
 
 11727 11760 11793 11826 11860 
 
 11893 11926 11959 11992 12024 
 
 132 
 
 12057 12090 12123 12156 12189 
 
 12222 12254 12287 12320 12352 
 
 133 
 
 12385 12418 12450 12483 12516 
 
 12548 12581 12613 12646 12678 
 
 134 
 
 12710 12743 12775 12808 12840 
 
 12872 12905 12937 12969 13001 
 
 135 
 
 13033 13066 13098 13130 13]62 
 
 13194 13226 13258 13290 13322 
 
 136 
 
 13354 13386 13418 13450 13481 
 
 13513 13545 13577 13609 13640 
 
 137 
 
 13672 13704 13735 13767 13799 
 
 13830 13862 13893 13925 13956 
 
 138 
 
 13988 14019 14051 14082 14114 
 
 14145 14176 14208 14239 14270 
 
 139 
 
 14301 14333 14364 14395 14426 
 
 14457 14489 14520 14551 I45^H 
 
 140 
 
 14613 14644 14675 14706 14737 
 
 14768 14799 14829 14860 1489^ 
 
 141 
 
 14922 14953 14983 15014 15045 
 
 15 076 15 106 15 137 15 168 15 198 
 
 142 
 
 15229 15259 15290 15320 15351 
 
 15381 15412 15442 15473 15503 
 
 143 
 
 15534 15564 15594 15625 15655 
 
 15685 15715 15746 15 776 15806 
 
 144 
 
 15836 15866 15897 159^7 15957 
 
 15987 16017 16047 16077 16107 
 
 145 
 
 16137 16167 16197 16227 16256 
 
 16286 16316 16346 16376 16406 
 
 - 146 
 
 16435 16465 16495 16524 16554 
 
 16584 16613 16643 16673 16702 
 
 147 
 
 16732 16761 16*791 16820 16850 
 
 16879 16909 16938 16967 16997 
 
 148 
 
 17026 17056 17085 17114 17143 
 
 17173 17202 17231 17260 17289 
 
 149 
 
 17319 17348 17377 17406 17435 
 
 17464 17493 17522 17551 17580 
 
 No. 
 
 O 1*2 3 4 
 
 56789 
 
 
 
 100-149 
 
150-199 
 
 ii 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 150 
 
 17609 
 
 17638 
 
 17667 
 
 17696 
 
 17725 
 
 17754 
 
 17 782 
 
 17811 
 
 17840 
 
 17869 
 
 151 
 
 17898 
 
 17926 
 
 17 955 
 
 17984 
 
 18 013 
 
 18041 
 
 18070 
 
 18099 
 
 18127 
 
 18156 
 
 152 
 
 18184 
 
 18213 
 
 18241. 
 
 18270 
 
 18298 
 
 18327 
 
 18355 
 
 18384 
 
 18412 
 
 18441 
 
 153 
 
 18469 
 
 18498 
 
 18526 
 
 18554 
 
 18 583 
 
 18611 
 
 18639 
 
 18667 
 
 18 696 
 
 18724 
 
 ^154 
 
 18752 
 
 18780 
 
 18808 
 
 18837 
 
 18865 
 
 18893 
 
 18921 
 
 18949 
 
 18977 
 
 19005 
 
 155 
 
 19033 
 
 19061 
 
 19089 
 
 19117 
 
 19145 
 
 19173 
 
 19201 
 
 19229 
 
 19257 
 
 19285 
 
 156 
 
 19312 
 
 19340 
 
 19368 
 
 19 396 
 
 19424 
 
 19451 
 
 19479 
 
 19507 
 
 19535 
 
 19562 
 
 157 
 
 19590 
 
 19618 
 
 19645 
 
 19673 
 
 19700 
 
 19728 
 
 19756 
 
 19783 
 
 19811 
 
 19838 
 
 158 
 
 19866 
 
 19893 
 
 19921 
 
 19 948 
 
 19976 
 
 20003 
 
 20030 
 
 20 058 
 
 20085 
 
 20112 
 
 159 
 
 20140 
 
 20167 
 
 20194 
 
 20222 
 
 20249 
 
 20276 
 
 20303 
 
 20330 
 
 20358 
 
 20385 
 
 16O 
 
 20412 
 
 20439 
 
 20466 
 
 20493 
 
 20520 
 
 20548 
 
 20575 
 
 20602 
 
 20629 
 
 20 656 
 
 161 
 
 20683 
 
 20710 
 
 20737 
 
 20763 
 
 20790 
 
 20817 
 
 20844 
 
 20871 
 
 20898 
 
 20925 
 
 162 
 
 20 952 
 
 20978 
 
 21005 
 
 21 032 
 
 21059 
 
 21085 
 
 21 112 
 
 21139 
 
 21 165 
 
 21 192 
 
 163 
 
 21219 
 
 21 245 
 
 21272 
 
 21299 
 
 21325 
 
 21 352 
 
 21378 
 
 21405 
 
 21 431 
 
 21458 
 
 164 
 
 21484 
 
 21511 
 
 21537 
 
 21 564 
 
 21590 
 
 21617 
 
 21643 
 
 21669 
 
 21696 
 
 21722 
 
 165 
 
 21 748 
 
 21775 
 
 21801 
 
 21 827 
 
 21 854 
 
 21880 
 
 21906 
 
 21932 
 
 21 958 
 
 21985 
 
 166 
 
 22011 
 
 22 037 
 
 22063 
 
 22 089 
 
 22115 
 
 22 HI 
 
 22167 
 
 22194 
 
 22220 
 
 22246 
 
 167 
 
 22272 
 
 22298 
 
 22324 
 
 22 350 
 
 22376 
 
 22 401 
 
 22427 
 
 22453 
 
 22479 
 
 2T2505 
 
 168 
 
 22531 
 
 22557 
 
 22 583 
 
 22608 
 
 22634 
 
 22660 
 
 22686 
 
 22712 
 
 22737 
 
 22763 
 
 169 
 
 22789 
 
 22814 
 
 22840 
 
 22866 
 
 22891 
 
 22917 
 
 22943 
 
 22968 
 
 22994 
 
 23019 
 
 17O 23045 
 
 23070 
 
 23096 
 
 23121 
 
 23 If 7 
 
 23172 
 
 23198 
 
 23223 
 
 23249 
 
 23274 
 
 171 
 
 23300 
 
 23325 
 
 23 350 
 
 23376 
 
 23401 
 
 23426 
 
 23 452 
 
 23477 
 
 23,502 
 
 23528 
 
 172 
 
 23553 
 
 23378 
 
 23603 
 
 23629 
 
 23 654 
 
 23679 
 
 23 704 
 
 23729 
 
 23754 
 
 23779 
 
 173 
 
 23805 
 
 23830 
 
 23855 
 
 23 880 
 
 23905 
 
 23930 
 
 23955 
 
 23980 
 
 24005 
 
 24030 
 
 174 
 
 24055 
 
 24080 
 
 24105 
 
 24130 
 
 24155 
 
 24180 
 
 24204 
 
 24229 
 
 24254 
 
 24279 
 
 175 
 
 24304 
 
 24 329 
 
 24353 
 
 24378 
 
 24403 
 
 24428 
 
 24452 
 
 24477 
 
 24 502 
 
 24527 
 
 176 
 
 24551 
 
 24576 
 
 24601 
 
 24625 
 
 24650 
 
 24674 
 
 24699 
 
 24724 
 
 24748 
 
 24773 
 
 177 
 
 24797 
 
 24822 
 
 24846 
 
 24871 
 
 24895 
 
 24920 
 
 24944 
 
 24969 
 
 24993 
 
 25018 
 
 178 
 
 25 042 
 
 25066 
 
 25091 
 
 25115 
 
 25 139 
 
 25 164 
 
 25188 
 
 25 212 
 
 25 237 
 
 25261 
 
 179 
 
 25285 
 
 25310 
 
 25 334 
 
 25358 
 
 25 382 
 
 25406 
 
 25431 
 
 25455 
 
 25479 
 
 25503 
 
 180 
 
 25527 
 
 25 551 
 
 25575 
 
 25600 
 
 25624 
 
 25 648 
 
 25672 
 
 25696 
 
 25720 
 
 25744 
 
 181 
 
 25768 
 
 25 792 
 
 25816 
 
 25 840 
 
 25864 
 
 25888 
 
 25 912 
 
 25 935 
 
 25 959 
 
 25983 
 
 182 
 
 26 007 
 
 26031 
 
 26055 
 
 26079 
 
 26102 
 
 26126 
 
 26150 
 
 26174 
 
 26198 
 
 26221 
 
 183 
 
 26245 
 
 26269 
 
 .26293 
 
 26316 
 
 26340 
 
 26364 
 
 26387 
 
 26411 
 
 26435 
 
 26458 
 
 184 
 
 26482 
 
 26 505 
 
 26529 
 
 26 553 
 
 26576 
 
 26600 
 
 26623 
 
 26647 
 
 26670 
 
 2 694 
 
 185 
 
 26717 
 
 26741 
 
 26764 
 
 26788 
 
 26811 
 
 26834 
 
 26858 
 
 26881 
 
 26905 
 
 26928 
 
 1B6 
 
 26951 
 
 26975 
 
 26998 
 
 27021 
 
 27045 
 
 27068 
 
 27091 
 
 27114 
 
 27138 
 
 27161 
 
 ^gjl 
 
 ^27184 
 
 27207 
 
 27231 
 
 27254 
 
 27277 
 
 27300 
 
 27323 
 
 27346 
 
 27370 
 
 27393 
 
 M: 416 
 
 27439 
 
 27462 
 
 27485 
 
 27508 
 
 27531 
 
 27554 
 
 27577 
 
 27600 
 
 27623 
 
 i V; 646 
 
 27669 
 
 27 692 
 
 27715 
 
 27738 
 
 27761 
 
 27784 
 
 27807 
 
 27830 
 
 27852 
 
 W^ 27 875 
 
 27898 
 
 27921 
 
 27944 
 
 27967 
 
 27989 
 
 28012 
 
 28035 
 
 28058 
 
 28081 
 
 191 1 28 103 
 
 28126 
 
 28149 
 
 28171 
 
 28194 
 
 28217 
 
 28240 
 
 28262 
 
 28285 
 
 28307 
 
 192 
 
 28330 
 
 28 353 
 
 28375 
 
 28398 
 
 28421 
 
 28443 
 
 28466 
 
 28488 
 
 28511 
 
 28533 
 
 193 
 
 28556 
 
 28 578 
 
 28601 
 
 28623 
 
 28646 
 
 28668 
 
 28691 
 
 28713 
 
 28735 
 
 28758 
 
 194 
 
 28780 
 
 28803 
 
 28825 
 
 28847 
 
 28870 
 
 28892 
 
 28914 
 
 28937 
 
 28959 
 
 28981 
 
 195 
 
 29003 
 
 29026 
 
 29048 
 
 29070 
 
 29092 
 
 29115 
 
 29137 
 
 29 159 
 
 29181 
 
 29203 
 
 196 
 
 29226 
 
 29248 
 
 29270 
 
 29292 
 
 29314 
 
 29 336 
 
 29 358 
 
 29380 
 
 29403 
 
 29425 
 
 197 
 
 29 447 
 
 29469 
 
 29491 
 
 29 S13 
 
 29535 
 
 29 557 
 
 29579 
 
 29601 
 
 29623 
 
 29645 
 
 198 
 
 29667 
 
 29688 
 
 29710 
 
 29732 
 
 29754 
 
 29776 
 
 29798 
 
 29820 
 
 29842 
 
 29 863 
 
 199 
 
 29885 
 
 29907 
 
 29929 
 
 29951 
 
 29973 
 
 29994 
 
 _3a?i?^ 
 
 30016 
 
 30038 
 
 30060 
 
 30081 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 150-199 
 
12 
 
 200-249 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 2OO 
 
 30103 
 
 30125 
 
 30146 
 
 30168 
 
 30190 
 
 30211 
 
 30233 
 
 30255 
 
 30276 
 
 30298 
 
 201 
 
 30320 
 
 30341 
 
 30363 
 
 30384 
 
 30406 
 
 30428 
 
 30449 
 
 30471 
 
 30492 
 
 30514 
 
 202 
 
 30 535 
 
 30557 
 
 30578 
 
 30 600 
 
 30621 
 
 30643 
 
 30664 
 
 30685 
 
 30707 
 
 30728 
 
 203 
 
 30750 
 
 30771 
 
 30792 
 
 30814 
 
 30835 
 
 30 856 
 
 30878 
 
 30899 
 
 30920 
 
 30942 
 
 204 
 
 30963 
 
 30984 
 
 31006 
 
 31027 
 
 31048 
 
 31069 
 
 31091 
 
 31112 
 
 31 133 
 
 31154 
 
 205 
 
 31 175 
 
 31 197 
 
 31218 
 
 31239 
 
 31260 
 
 31281 
 
 31302 
 
 31323 
 
 31345 
 
 31366 
 
 206 
 
 31387 
 
 31408 
 
 31 429 
 
 31450 
 
 31471 
 
 31492 
 
 31 513 
 
 31534 
 
 31 555 
 
 31576 
 
 207 
 
 31 597 
 
 31618 
 
 31 639 
 
 31660 
 
 31 681 
 
 31 702 
 
 31 723 
 
 31 744 
 
 31765 
 
 31 785 
 
 208 
 
 31806 
 
 31 827 
 
 318-18 
 
 31869 
 
 31 890 
 
 31911 
 
 31931 
 
 31 952 
 
 31973 
 
 31994 
 
 209 
 
 32015 
 
 32035 
 
 32056 
 
 32077 
 
 32098 
 
 32118 
 
 32139 
 
 32160 
 
 32181 
 
 32201 
 
 21O 
 
 32222 
 
 32 243 
 
 32263 
 
 32284 
 
 32305 
 
 32 325 
 
 32346 
 
 32 366 
 
 32387 
 
 32408 
 
 211 
 
 32428 
 
 32449 
 
 32469 
 
 32490 
 
 32510 
 
 32 531 
 
 32 552 
 
 32572 
 
 32593 
 
 32613 
 
 212 
 
 32634 
 
 32654 
 
 32 675 
 
 32 695 
 
 32715 
 
 32736 
 
 32 756 
 
 32777 
 
 32797 
 
 32818 
 
 213 
 
 32838 
 
 32 858 
 
 32879 
 
 32 899 
 
 32 919 
 
 32940 
 
 32 960 
 
 32980 
 
 33001 
 
 33021 
 
 214 
 
 33041 
 
 33062 
 
 33082 
 
 33102 
 
 33122 
 
 33143 
 
 33 163 
 
 33183 
 
 33203 
 
 33224 
 
 215 
 
 33244 
 
 33264 
 
 33284 
 
 33304 
 
 33325 
 
 33 345 
 
 33 365 
 
 33385 
 
 33405 
 
 33425 
 
 216 
 
 33445 
 
 33465 
 
 33 486 
 
 33 506 
 
 33 526 
 
 33 546 
 
 33 566 
 
 33 5S6 V 
 
 33 606 
 
 33 626 
 
 217 
 
 33646 
 
 33666 
 
 33 686 
 
 33 706 
 
 33 726 
 
 33 746 
 
 33766 
 
 33786 
 
 33 806 
 
 33826 
 
 218 
 
 33 846 
 
 33866 
 
 33885 
 
 33 905 
 
 33 925 
 
 33 945 
 
 33 965 
 
 33985 
 
 34005 
 
 34025 
 
 219 
 
 34044 
 
 34064 
 
 34 084 
 
 34104 
 
 34124 
 
 34143 
 
 34163 
 
 34183 
 
 34 203 
 
 34223 
 
 22O 
 
 34242 
 
 34 262 
 
 34282 
 
 34301 
 
 34 321 
 
 34 341 
 
 34361 
 
 34380 
 
 34400 
 
 34 420 
 
 221 
 
 344^9 
 
 34 459 
 
 34479 
 
 34498 
 
 345ft 
 
 34 537 
 
 34 557 
 
 34 577 
 
 34 596 
 
 34 616 
 
 222 
 
 34635 
 
 34 655 
 
 34674 
 
 34 694 
 
 34713 
 
 34 733 
 
 34753 
 
 347^2 
 
 34 792 
 
 34811 
 
 223 
 
 34830 
 
 34850 
 
 34869 
 
 34889 
 
 34 908 
 
 34 928 
 
 34 947 
 
 34 967 
 
 34 986 
 
 35 005 
 
 224 
 
 35025 
 
 35044 
 
 35 064 
 
 35083 
 
 35102 
 
 35 122 
 
 35 141 
 
 35160 
 
 35 ISO 
 
 35 199 
 
 225 
 
 35 218 
 
 35 238 
 
 35 257 
 
 35 276 
 
 35295 
 
 35315 
 
 35334 
 
 35353 
 
 35 372 
 
 35 392 
 
 226 
 
 35411 
 
 35430 
 
 35 449 
 
 35 468 
 
 35 488 
 
 35 507 
 
 35 526 
 
 35 545 
 
 35564 
 
 35583 
 
 227 
 
 35603 
 
 35 622 
 
 35 641 
 
 35 660 
 
 35 679 
 
 35 698 
 
 35717 
 
 35736 
 
 35 755 
 
 35 774 
 
 228 
 
 35 793 
 
 35813 
 
 35 832 
 
 35851 
 
 35 870 
 
 35 889 
 
 35908 
 
 35 927 
 
 35 946 
 
 35965 
 
 229 
 
 35 984 
 
 36003 
 
 36021 
 
 36040 
 
 36059 
 
 36078 
 
 36 097 
 
 36116 
 
 36135 
 
 36 154 
 
 23O 
 
 36 173 
 
 36192 
 
 36211 
 
 36229 
 
 36248 
 
 36 267 
 
 36 86 
 
 36305 
 
 36324 
 
 36342 
 
 231 
 
 36361 
 
 36380 
 
 36399 
 
 36418 
 
 36 436 
 
 36 455 
 
 36474 
 
 36 493 
 
 36511 
 
 36 530 
 
 232 
 
 36 549 
 
 36 568 
 
 36 586 
 
 36605 
 
 36 624 
 
 36 642 
 
 36 661 
 
 36 680 
 
 36698 
 
 36 717 
 
 233 
 
 36736 
 
 36 754 
 
 36 773 
 
 36 791 
 
 36810 
 
 36 829 
 
 36847 
 
 36 866 
 
 36 884 
 
 36 903 
 
 234 
 
 36922 
 
 36940 
 
 36959 
 
 36^977 
 
 36 996 
 
 37014 
 
 37033 
 
 37051 
 
 37070 
 
 37088 
 
 235 
 
 37107 
 
 37 125 
 
 37 144 
 
 37162 
 
 37 181 
 
 37 199 
 
 37218 
 
 37236 
 
 37254 
 
 37 273 
 
 236 
 
 37 291 
 
 37310 
 
 37328 
 
 37346 
 
 37365 37383 
 
 37401 
 
 37420 
 
 37 438 
 
 37457 
 
 237 
 
 37475 
 
 37493 
 
 37511 
 
 37 530 
 
 37 548 37 566 
 
 37 585 
 
 37 603 
 
 37621 
 
 
 238 
 
 37 658 
 
 37 676 
 
 37 694 
 
 37712 
 
 37 731 
 
 37 749 
 
 37 767 
 
 37 785 
 
 378031 
 
 
 239 
 
 37840 
 
 37858 
 
 37876 
 
 37 894 
 
 37912 
 
 37931 
 
 37949 
 
 37967 
 
 37 98| 
 
 
 24O 
 
 38021 
 
 38 039 
 
 38057 
 
 38 075 
 
 38093 
 
 38112 
 
 38130 
 
 38148 
 
 38166 
 
 
 241 
 
 38202 
 
 38220 
 
 38 238 
 
 38 256 
 
 38274 
 
 38 292 
 
 38310 
 
 38328 
 
 38 346 
 
 38 364 
 
 242 
 
 38382 
 
 38399 
 
 38417 
 
 38435 
 
 38 453 
 
 38471 
 
 38 489 
 
 38 507 
 
 38 525 
 
 38 543 
 
 243 
 
 38 561 
 
 38578 
 
 38 596 
 
 38614 
 
 38 632 
 
 38 650 
 
 38668 
 
 38686 
 
 38703 
 
 38721 
 
 244 
 
 38739 
 
 38 757 
 
 38775 
 
 38792 
 
 38810 
 
 38828 
 
 38846 
 
 38863 
 
 38881 
 
 38899 
 
 245 
 
 38917 
 
 33 934 
 
 38952 
 
 38970 
 
 38987 
 
 39005 
 
 39023 
 
 39041 
 
 39 058 
 
 39076 
 
 246 
 
 39 094 
 
 39111 
 
 39129 
 
 39 146 
 
 39164 
 
 39182 
 
 39199 
 
 39217 
 
 39 235 
 
 39 252 
 
 247 
 
 39^70 
 
 39287 
 
 39305 
 
 39 3-22 
 
 39 340 
 
 39 358 
 
 39375 
 
 39 393 
 
 39410 
 
 39428 
 
 248 
 
 39 445 
 
 39 463 
 
 39480 
 
 39498 
 
 39515 
 
 39 533 
 
 39 550 
 
 39 568 
 
 39 585 
 
 39602 
 
 249 
 
 39620 
 
 39637 
 
 39655 
 
 39672 
 
 39690 
 
 39707 
 
 39724 
 
 39742 
 
 39 759 
 
 39 777 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 200-249 
 
250-299 
 
 13 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 25O 
 
 39794 39811 39829 39846 39863 
 
 39881 39898 39915 39933 39950 
 
 251 
 
 39967 39985 40002 40019 40037 
 
 40054 40071 40088 40106 40123 
 
 252 
 
 40140 40157 40175 40192 40209 
 
 40226 40243 40261 40278 40295 
 
 253 
 
 40312 40329 40346 40364 40381 
 
 40398 40415 40432 40449 40466 
 
 N 254 
 
 40483 40500 40518 40535 40552 
 
 40 569 40 586, 40 603 40 620 40 637 
 
 255 
 
 40654 40671 40688 40705 40722 
 
 40739 40756 40773 40790 40807 
 
 256 
 
 40824 408-11 40858 40875 40892 
 
 40909 40926 40943 .40960 40976 
 
 257 
 
 40993 41010 41027 41044 41061 
 
 41078 41095 41111 47128 41145 
 
 258 
 
 41162 41179 41196 41212 41229 
 
 41 246 41 263 41 280 41 296 41 313 
 
 259 
 
 41330 41347 41 363 41 380 41397 
 
 41414 41430 41447 41464 41481 
 
 26O 
 
 41 497 41 514 41 531 41 547 41 564 
 
 41581 41597 41614 41631 41647 
 
 261 
 
 41664 41681 41697 41714 41731 
 
 41747 41764 41780 41797 41814 
 
 262 
 
 41 830 41 847 41 863 41 880 41 896 
 
 41 913 41 929 41 946 41 963 41 979 
 
 263 
 
 41996 42012 42029 42045 42062 
 
 42078 42095 42111 42127 42144 
 
 264 
 
 42 160 42 177 42 193 42 210 42 226 
 
 42 243 42 259 42 275 42 292 42 308 
 
 265 
 
 42 7 25 42341 42357 42374 42390 
 
 42406 42423 42439 42455 42472 
 
 266 
 
 42488 42504 42521 42537 42553 
 
 42570 42586 42602 42619 42635 
 
 267 
 
 42651 42667 42684 42700 42716 
 
 42732 42749 42765 42781 42797 
 
 268 
 
 42813 42830 42846 42862 42878 
 
 42894 42911 42927 42943 42959 
 
 269 42975 42991 43008 43024 43040 
 
 43 056 43 072 43 088 43 104 43 120 
 
 27O 
 
 43 136 43 152 43 169 43 185 43 201 
 
 43217 43233 43249 43265 43281 
 
 271 
 
 43297 43313 43329 43345 43361 
 
 43377 43393 43409 43425 43441 
 
 272 
 
 43457 43473 43489 43505 43521 
 
 43537 43553 43569 43584 43600 
 
 273 
 
 43 616 43 632 43 648 43 664 43 680 43 696 43 712 43 727 43 743' 43 759 
 
 274 
 
 43775 43791 43807 43823 43838 
 
 43854 43870 43886 43902 43917 
 
 275 
 
 43933 43949 43965 43981 43996 
 
 44012 44028 44044 44059 44075 
 
 276 
 
 44 091 44 107 44 122 44 138 44 154 
 
 44170 44185 44201 44217 44232 
 
 277 
 
 44248 44264 44279 44295 44311 
 
 44326 44342 44358 44'373 44389 
 
 278 
 
 44404 44420 44436 44451 44467 
 
 44483 44498 44514 44529 44545 
 
 279 
 
 44560 44576 44592 44607 44623 
 
 44638 44654 44669 44685 44700 
 
 28O 
 
 44 716 44 731 44 747 44 762 44 778 
 
 44793 44809 44824 44840 44855 
 
 281 
 
 44871 44886 44902 44917 44932 
 
 44948 44963 44979 44994 45010 
 
 282 
 
 45025 45040 45056 45071 45086 
 
 45102 45117 45133 45148 45163 
 
 283 ! 45 179 45 194 45 209 45 225 45 240 
 
 45255 45271 45286 45301 45317 
 
 284! 45332 45347 45362 45378 45393 
 
 45408 45423 45439 45454 45469 
 
 285 1 45 484 45500 45515 45530 45545 
 
 45561 45576 45591 45606 45621 
 
 286 
 
 45637 45652 45667 45682 45697 
 
 45 712 45*28 45 743 45 758 45 773 
 
 287 
 
 45 788 45 803 45 818 45 834 45 849 
 
 45864 45879 45894 45909 45924 
 
 288 
 
 45 939 45 954 45 969 45 984 46 000 
 
 46015 46030 46045 46060 46075 
 
 289 
 
 46090 46105 46120 46135 46150 
 
 46165 46180 46195 46210 46225 
 
 29O 
 
 46240 46255 46270 46285 46300 
 
 46315 46330 46345 46359 46374 
 
 291 
 
 46389 46404 46419 46434 46449 
 
 46464 46479 46494 46509 46523 
 
 292 
 
 46538 46553 46568 46583 46598 
 
 46613 46627 46642 46657 46672 
 
 293 
 
 46687 46702 46716 46731 46746 
 
 46761 46776 46790 46805 46820 
 
 294 
 
 46 835 46 850 46 864 46 879 46 894 
 
 46909 46923 46938 46953 46967 
 
 295 
 296 
 
 46982 46997 47012 47026 47041 
 47129 47144 47159 47173 47188 
 
 47056 47070 47lfc 47100 47 !M 
 47202 47217 47232 47246 47 2B1 
 
 297 
 
 47276 47290 47305 47319 47334 
 
 47349 47363 47378 47392 47407 
 
 298 
 
 47422 47436 47451 47465 47480 
 
 47494 47509 47524 47538 47553 
 
 299 
 
 47567 47582 47596 47611 47625 
 
 47640 47654 47669 47683 47698 
 
 No. 
 
 01234 
 
 56789 
 
 250-299 
 
14 
 
 300-349 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 300 
 
 47712 
 
 47727 
 
 47741 
 
 47756 
 
 47770 
 
 47784 
 
 47799 
 
 47813 
 
 47828 
 
 47 842 
 
 301 
 
 47 857 
 
 47871 
 
 47885 
 
 47900 
 
 47914 
 
 47929 
 
 47 94.3 
 
 47958 
 
 47972 
 
 47986 
 
 302 
 
 48001 
 
 48 015 
 
 48029 
 
 48 044 
 
 48058 
 
 48073 
 
 48087 
 
 48101 
 
 48116 
 
 48130 
 
 303 
 
 48144 
 
 48159 
 
 48173 
 
 48187 
 
 48202 
 
 48216 
 
 48230 
 
 48244 
 
 48 259 
 
 48273 
 
 304 
 
 48287 
 
 48302 
 
 48316 
 
 48330 
 
 48344 
 
 48359 
 
 48373 
 
 48387 
 
 48401 
 
 48416 
 
 305 
 
 48430 
 
 48444 
 
 48458 
 
 48473 
 
 48487 
 
 48501 
 
 48515 
 
 48530 
 
 48544 
 
 48 558 
 
 306 
 
 48572 
 
 48586 
 
 48601 
 
 48615 
 
 48629 
 
 48643 
 
 48657 
 
 48671 
 
 48686 
 
 48700 
 
 307 
 
 48714 
 
 48728 
 
 48742 
 
 48756 
 
 48770 
 
 48785 
 
 48799 
 
 48813 
 
 48 827 
 
 48 841 
 
 308 
 
 48 855 
 
 48869 
 
 48 883 
 
 48897 
 
 48911 
 
 48926 
 
 48 940 
 
 48 954 
 
 48968 
 
 48982 
 
 309 
 
 48996 
 
 49010 
 
 49024 
 
 49038 
 
 49052 
 
 49066 
 
 49080 
 
 49094 
 
 49108 
 
 49122 
 
 31O 
 
 49136 
 
 49150 
 
 49164 
 
 49178 
 
 49192 
 
 49206 
 
 49220 
 
 49234 
 
 49248 
 
 49262 
 
 311 
 
 49 276 
 
 49290 
 
 49304 
 
 49318 
 
 49332 
 
 49346 
 
 49360 
 
 49374 
 
 49388 
 
 49402 
 
 312 
 
 49 415 
 
 49429 
 
 49443 
 
 49457 
 
 49471 
 
 49485 
 
 49499 
 
 49513 
 
 49527 
 
 49 541 
 
 313 
 
 49 554 
 
 49 568 
 
 49582 
 
 49 596 
 
 49610 
 
 49624 
 
 49638 
 
 49651 
 
 49665 
 
 49679 
 
 314 
 
 49693 
 
 49707 
 
 49721 
 
 49734 
 
 49748 
 
 49762 
 
 49776 
 
 49790 
 
 49803 
 
 49817 
 
 315 
 
 49831 
 
 49845 
 
 49859 
 
 49872 
 
 49886 
 
 49900 
 
 49914 
 
 49927 
 
 49941 
 
 49955 
 
 316 
 
 49969 
 
 49982 
 
 49996 
 
 50010 
 
 50024 
 
 50037 
 
 50051 
 
 50 065 
 
 50079 
 
 50092 
 
 317 
 
 50 106 
 
 50 120 
 
 50133 
 
 50 147 
 
 50161 
 
 50174 
 
 50188 
 
 50 202 
 
 50 215 
 
 50 229 
 
 318 
 
 50 243 
 
 50 256 
 
 50270 
 
 50284 
 
 50297 
 
 50311 
 
 50325 
 
 50 338 
 
 50352 
 
 50365 
 
 319 
 
 50379 
 
 50393 
 
 50406 
 
 50420 
 
 50433 
 
 50447 
 
 50461 
 
 50474 
 
 50488 
 
 50501 
 
 320 
 
 50515 
 
 50529 
 
 50542 
 
 50 556 
 
 50 569 
 
 50583 
 
 50 596 
 
 50610 
 
 50623 
 
 50637 
 
 321 
 
 50651 
 
 50664 
 
 50678 
 
 50691 
 
 50705 
 
 50718 
 
 50 732 
 
 50745 
 
 50759 
 
 50772 
 
 322 
 
 50 786 
 
 50799 
 
 50813 
 
 50 826 
 
 50 840 
 
 50853 
 
 50 866 
 
 50880 
 
 50893 
 
 50907 
 
 323 
 
 50 920 
 
 50934 
 
 50947 
 
 50961 
 
 50974 
 
 50987 
 
 51001 
 
 51014 
 
 51028 
 
 51041 
 
 324 
 
 51 055 
 
 51068 
 
 51081 
 
 51095 
 
 51108 
 
 51121 
 
 51135 
 
 51148 
 
 51162 
 
 51175 
 
 325 
 
 51188 
 
 51202 
 
 51 215 
 
 51228 
 
 51242 
 
 51 255 
 
 51268 
 
 51282 
 
 51295 
 
 51308 
 
 326 
 
 51322 
 
 -51335 
 
 51348 
 
 51 362 
 
 51 375 
 
 51388 
 
 51402 
 
 51415 
 
 51428 
 
 51441 
 
 327 
 
 ^1415/51468 
 
 51481 
 
 51495 
 
 51508 
 
 51521 
 
 51534 
 
 51548 
 
 51561 
 
 51574 
 
 328 
 
 sStffefc 
 
 51601 
 
 51614 
 
 51627 
 
 51 640 
 
 51654 
 
 51667 
 
 51680 
 
 51693 
 
 51706 
 
 329 
 
 l '5l'20 
 
 51733 
 
 51746 
 
 51759 
 
 51772 
 
 51786 
 
 51799 
 
 51812 
 
 51825 
 
 51838 
 
 33O 
 
 51 851 
 
 51865 
 
 51 878 
 
 51891 
 
 51904 
 
 51917 
 
 51930 
 
 51943 
 
 51957 
 
 51970 
 
 331 
 
 51983 
 
 51996 
 
 52009 
 
 52022 
 
 52 035 
 
 52 048 
 
 52061 
 
 52075 
 
 52088 
 
 52101 
 
 332 
 
 52114 
 
 52127 
 
 52140 
 
 52 153 
 
 52 166 
 
 52179 
 
 52192 
 
 52205 
 
 52218 
 
 52231 
 
 333 
 
 52244 
 
 52257 
 
 52 270 
 
 52284 
 
 52 297 
 
 52310 
 
 52323 
 
 52336 
 
 52 349 
 
 52362 
 
 334 
 
 52375 
 
 52388 
 
 52401 
 
 52414 
 
 52427 
 
 52 440 
 
 52453 
 
 52466 
 
 52479 
 
 52492 
 
 335 
 
 52504 
 
 52 517 
 
 52530 
 
 52543 
 
 52556 
 
 52569 
 
 52582 
 
 52595 
 
 52608 
 
 52621 
 
 336 
 
 52634 
 
 52647 
 
 52 $60 
 
 52673 
 
 52686 
 
 52699 
 
 52711 
 
 52724 
 
 52737 
 
 52 750 
 
 337 
 
 52763 
 
 52776 
 
 52789 
 
 52802 
 
 52815 
 
 52827 
 
 52840 
 
 52853 
 
 52866 
 
 52879 
 
 338 
 
 52892 
 
 52905 
 
 52917 
 
 52 930 
 
 52943 
 
 52 956 
 
 52 969 
 
 52982 
 
 52994 
 
 53007 
 
 339 
 
 53020 
 
 53033 
 
 53046 
 
 53058 
 
 53071 
 
 53084 
 
 53097 
 
 53] 10 
 
 53122 
 
 53135 
 
 340 
 
 53148 
 
 53161 
 
 53 173 
 
 53186 
 
 53199 
 
 53 212 
 
 53224 
 
 53237 
 
 53250 
 
 53263 
 
 341 
 
 53275 
 
 53 288 
 
 53 301 
 
 53314 
 
 53326 
 
 53 339 
 
 53352 
 
 53364 
 
 53377 
 
 53390 
 
 342 
 
 53403 
 
 53415 
 
 53428 
 
 53441 
 
 53 453 
 
 53466 
 
 53479 
 
 53491 
 
 53504 
 
 53 517 
 
 343 
 
 53529 
 
 53542 
 
 53555 
 
 53567 
 
 53580 
 
 53 593 
 
 53 605 
 
 53 618 
 
 53631 
 
 53 643 
 
 344 
 
 53656 
 
 53668 
 
 53681 
 
 53694 
 
 53706 
 
 53719 
 
 53732 
 
 53744 
 
 53757 
 
 53769 
 
 345 
 
 53782 
 
 53794 
 
 53807 
 
 53820 
 
 53832 
 
 53845 
 
 53 857 
 
 53870 
 
 53882 
 
 53895 
 
 346 
 
 53908 
 
 53920 
 
 53 933 
 
 53945 
 
 53958 
 
 53 970 
 
 53 983 
 
 53 995 
 
 54008 
 
 54020 
 
 347 
 
 54033 
 
 54045 
 
 54058 
 
 54070 
 
 54083 
 
 54095 
 
 54108 
 
 54120 
 
 54133 
 
 54 145 
 
 348 
 
 54 158 
 
 54170 
 
 54183 
 
 54 195 
 
 54208 
 
 54220 
 
 54 233 
 
 54 245 
 
 54258 
 
 54270 
 
 349 
 
 54283 
 
 54295 
 
 54307 
 
 54320 
 
 54332 
 
 54345 
 
 54357 
 
 54370 
 
 54382 
 
 54394 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 g 
 
 6 
 
 7 
 
 8 
 
 9 
 
 300-349 
 
350-399 
 
 15 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 350 
 
 351 
 352 
 353 
 354 
 
 54407 54419 54 432 \5 4 444 54456 
 54531 54543 54555 54568 54580 
 54654 54667 54679 54691 54704 
 54 777 54 790 54 802 54 814 54 827 
 54900 54913 54925 54937 54949 
 
 54469 54481 54494 54506 54518 
 54593 54605 54617 54630 54642 
 54716 54728 54741 54753 54765 
 54839 54851 54864 54876 54888 
 54962 54974 54986 54998 55011 
 
 355 
 356 
 
 357 
 358 
 359 
 
 55023 55035 55047 55060 55072 
 55 145 55 157 55 169 55 182 55 194 
 55267 55279 55291 55303 55315 
 55388 55400 55413 55425 55437 
 55509 55522 55534 55546 55558 
 
 55084 55096 55108 55121 55133 
 55206 55218 55230 55242 55255 
 55328 55340 55352 55364 55376 
 55449 55461 55473 55485 55497 
 55570 55582 55594 55606 55618 
 
 36O 
 
 361 
 362 
 363 
 364 
 
 55630 55642 55654 55666 55678 
 55751 55763 55 775 55 787 55799 
 55871 55883 55895 55907 55919 
 55991 56003 56015 56027 56038 
 56110 56122 56134 56146 56158 
 
 55 691 55 703 55 715 55 727 55 739 
 55811 55823 55835 55*847 55859 
 55931 55943 55955 55967 55979 
 56050 56062 56074 56086 56098 
 56170 56182 56194 56205 56217 
 
 365 
 366. 
 367 
 368 
 369 
 
 56229 56241 56253 56265 56277 
 56348 56360 56372 56384 56396 
 56467 56478 56490 56502 56514 
 56585 56597 56608 56620 56632 
 56703 56714 56726 56738 56750 
 
 56289 56301 56312 56324 56336 
 56407 56419 56431 56443 56455 
 56526 56538 56549 56561 56573 
 56644 56656 56667 56679 56691 
 56761 56773 56785 56797 56808 
 
 37O 
 
 371 
 372 
 373 
 374 
 
 56820 56832 56844 56855 56867 
 56937 56949 56961 56972 56984 
 57054 57066 57078 57089 57101 
 57171 57183 57194 57206 57217 
 57287 57299 57310 57322 57334 
 
 56879 56891 56902 56914 56926 
 56996 57008 57019 57031 57043 
 57113 57124 57136 57148 57159 
 57229 57241 57252 57264 57276 
 57345 57357 57368 57380 57392 
 
 375 
 376 
 377 
 378 
 379 
 
 57403 57415 57426 57438 57449 
 57519 57530 57542 57553 57565 
 57634 57646 57657 57669 57680 
 57749 57761 57772 57784 57795 
 57864 57875 57887 -57898 57910 
 
 57461 57473 57484 57496 57507 
 57576 57588 57600 57611 57623 
 57692 57703 57715 57726 57738 
 57807 57818 57830 57841 57852 
 57921 57933 57944 57955 57967 
 
 38O 
 
 381 
 
 '382 
 383 
 384 
 
 57978 57990 58001 58013 58024 
 58092 58104 58115 58127 58138 
 58206 58218 58229 58240 58252 
 58320 58331 58343 58354 58365 
 58433 58444 58456 58467 58478 
 
 58035 58047 58058 58070 58081 
 58149 58161 58172 58184 58195 
 58263 58274 58286 58297 58309 
 58377 58388 58399 58410 58422 
 58490 58501 58512 58524 58535' 
 
 385 
 386 
 387 
 388 
 389 
 
 58546 58557 58569 58580 58591 
 58659 58670 58681 58692 58704 
 58771 58782 58794 58805 58816 
 58883 58894 58906 58917 58928 
 58995 59006 59017 59028 59040 
 
 58602 58614 58625 58636 58647 
 58715 5^726 58737 58749 58760 
 58827 58838 58850 58861 58872 
 58939 58950 58961 58973 58984 
 59051 59062 59073 59084 59095 
 
 39O 
 
 391 
 392 
 393 
 394 
 
 59106 59118 59129 59140 59151 
 59218 59229 59240 59251 59262 
 59329 59340 59351 59362 59373 
 59439 59450 59461 59472 59483 
 59550 59561 59572 59583 59594 
 
 59162 59173 59184^59195 59207 
 59273 59284 59295 59306 59318 
 59384 59395 59406 59417 59428 
 59494 59506 59517 59528 59539 
 59605 59616 59627 59638 59649 
 
 395 
 396 
 397 
 398 
 399 
 
 59660 59671 59682 59693 59704 
 59770 59780 59791 59802 59813 
 59879 59890 59901 59912 59923 
 59988 59999 60010 60021 60032 
 60097 60108 60119 60130 60141 
 
 59715 59726 59737 59 74S-.597Sa 
 59824 59835 59846 59857 5956$ 
 59934 59945 59956 59966 59977 
 60043 60054 60065 60076 60016 
 60152 60163 60173 60184 60195 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 350-399 
 
lli 
 
 400-449 
 
 ]$0. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 4OO 
 
 60206 
 
 60217 
 
 60228 
 
 60239 
 
 60249 
 
 60260 
 
 60271 
 
 60282 
 
 60293 
 
 60304 
 
 401 
 
 60314 
 
 60325 
 
 60 336 
 
 60347 
 
 60358 
 
 60369 
 
 60379 
 
 60390 
 
 60401 
 
 60412 
 
 402 
 
 60423 
 
 60 433 
 
 60 444 
 
 60455 
 
 60466 
 
 60477 
 
 60487 
 
 60498 
 
 60509 
 
 60520 
 
 403 
 
 60531 
 
 60541 
 
 60552 
 
 60 563 
 
 60574 
 
 60584 
 
 60595 
 
 60606 
 
 60617 
 
 60627 
 
 404 
 
 60638 
 
 60649 
 
 60660 
 
 60670 
 
 60681 
 
 60692 
 
 60703 
 
 60713 
 
 60724 
 
 60735 
 
 405 
 
 60746 
 
 60 756 
 
 60767 
 
 60778 
 
 60788 
 
 60799 
 
 60810 
 
 60821 
 
 60831 
 
 60842 
 
 406 
 
 60 853 
 
 60863 
 
 60874 
 
 60 885 
 
 60895 
 
 60906 
 
 60917 
 
 60927 
 
 60938 
 
 60949 
 
 407 
 
 60959 
 
 60970 
 
 60981 
 
 6Q991 
 
 61002 
 
 61013 
 
 61023 
 
 61034 
 
 61045 
 
 61 055 
 
 408 
 
 4 61 066 
 
 61077 
 
 61087 
 
 61 098 
 
 61 109 
 
 61 119 
 
 61 130 
 
 61140 
 
 61 151 
 
 61 162 
 
 409 
 
 61 172 
 
 61183 
 
 61194 
 
 61204 
 
 61215 
 
 61225 
 
 61236 
 
 61247 
 
 61257 
 
 61268 
 
 41O 
 
 61 278 
 
 61289 
 
 61300 
 
 61310 
 
 61321 
 
 61331 
 
 61342 
 
 61 352 
 
 61363 
 
 61374 
 
 411 
 
 61 384 
 
 61 395 
 
 61 405 
 
 61416 
 
 61426 
 
 61437 
 
 61448 
 
 61458 
 
 61469 
 
 61479 
 
 412 
 
 61490 
 
 61500 
 
 61511 
 
 61521 
 
 61532 
 
 61542 
 
 61553 
 
 61563 
 
 61 574 
 
 61584 
 
 413 
 
 61 595 
 
 61606 
 
 61616 
 
 61627 
 
 61637 
 
 61648 
 
 61 658 
 
 61 669 
 
 61679 
 
 61690 
 
 414 
 
 61700 
 
 61 711 
 
 61 721 
 
 61731 
 
 61742 
 
 61752 
 
 61763 
 
 61773 
 
 61784 
 
 61 794 
 
 415 
 
 61805 
 
 61815 
 
 61826 
 
 61836 
 
 61 847 
 
 61 857 
 
 61 868 
 
 61878 
 
 61888 
 
 61899 
 
 416 
 
 61909 
 
 61920 
 
 61930 
 
 61941 
 
 61951 
 
 61962 
 
 61972 
 
 61982 
 
 61 993 
 
 62003 
 
 ^417 
 
 62014 
 
 62024 
 
 62034 
 
 62045 
 
 62 055 
 
 62066 
 
 62 076 
 
 62086 
 
 62097 
 
 62107 
 
 418 
 
 62118 
 
 62128 
 
 62138 
 
 62149 
 
 62 159 
 
 62170 
 
 62180 
 
 62190 
 
 62201 
 
 62211 
 
 419 
 
 62221 
 
 62232 
 
 62242 
 
 62252 
 
 62263 
 
 62273 
 
 62284 
 
 62294 
 
 62304 
 
 62315 
 
 420 
 
 62325 
 
 62335 
 
 62346 
 
 62356 
 
 62366 
 
 62377 
 
 62387 
 
 62397 
 
 62408 
 
 62418 
 
 421 
 
 62428 
 
 62439 
 
 62 449 
 
 62 459 
 
 62469 
 
 62 480 
 
 62490 
 
 62500 
 
 62511 
 
 62521 
 
 422 
 
 62 531 
 
 62 542 
 
 62552 
 
 62562 
 
 62 572 
 
 62 583 
 
 62593 
 
 62603 
 
 62613 
 
 62 624 
 
 423 
 
 62 634 
 
 62644 
 
 62655 
 
 62665 
 
 62675 
 
 62 685 
 
 62696 
 
 62 706 
 
 62716 
 
 62726 
 
 424 
 
 62 737 
 
 62747 
 
 62757 
 
 62 767 
 
 62778 
 
 62 788 
 
 62 798 
 
 62808 
 
 62818 
 
 62829 
 
 425 
 
 62 839 
 
 62849 
 
 62859 
 
 62870 
 
 62880 
 
 62890 
 
 62900 
 
 62910 
 
 62921 
 
 62931 
 
 -126 
 
 62941 
 
 62951 
 
 62961 
 
 62972 
 
 62 982 
 
 62992 
 
 63 002 
 
 63012 
 
 63022 
 
 63 033 
 
 427 
 
 63043 
 
 63053 
 
 63 063 
 
 63 073 
 
 63 083 
 
 63094 
 
 63 104 
 
 63114 
 
 63 124 
 
 63134 
 
 428 63 141 
 
 63 155 
 
 63165 
 
 63175 
 
 63185 
 
 63 195 
 
 63 205 
 
 63215 
 
 63 225 
 
 63236 
 
 429 63 246 
 
 63256 
 
 63266 
 
 63276 
 
 63286 
 
 63296 
 
 63306 
 
 63317 
 
 63327 
 
 63337 
 
 430 
 
 63347 
 
 63357 
 
 63367 
 
 63377 
 
 63 387 
 
 63397 
 
 63407 
 
 63417 
 
 63428 
 
 63438 
 
 431 
 
 63 448 
 
 63458 
 
 63468 
 
 63478 
 
 63 488 
 
 63 498 
 
 63 508 
 
 63 518 
 
 63 528 
 
 63538 
 
 432 
 
 63548 
 
 63 658 
 
 63568 
 
 63579 
 
 63 589 
 
 63 599 
 
 63 609 
 
 63619 
 
 63629 
 
 63639 
 
 433 
 
 63649 
 
 63 659 
 
 63669 
 
 63679 
 
 63 689 
 
 63 699 
 
 63709 
 
 63719 
 
 63729 
 
 63739 
 
 434 
 
 63749 
 
 63759 
 
 63769 
 
 63779 
 
 63789 
 
 63 799 
 
 63809 
 
 63819 
 
 63829 
 
 63 839 
 
 435 
 
 63 849 
 
 63 859 
 
 63869 
 
 63 879 
 
 63889 
 
 63899 
 
 63909 
 
 63919 
 
 63929 
 
 63939 
 
 436 
 
 63949 
 
 63 959 
 
 63 969 
 
 63979 
 
 63 988 
 
 63 998 
 
 64008 
 
 64018 
 
 64028 
 
 64 038 
 
 437 
 
 64048 
 
 64058 
 
 64068 
 
 64 078 
 
 64088 
 
 64098 
 
 64108 
 
 64118 
 
 64128 
 
 64137 
 
 438 
 
 64 147 
 
 64 157 
 
 64167 
 
 64 177- 
 
 64 187 
 
 64 197 
 
 64207 
 
 64217 
 
 64227 
 
 64237 
 
 439 
 
 64 246 
 
 64256 
 
 64266 
 
 64276 
 
 64286 
 
 64296 
 
 64306 
 
 64316 
 
 64326 
 
 64335 
 
 44O 
 
 64 345 
 
 64 355 
 
 64365 
 
 64375 
 
 64385 
 
 64395 
 
 64 404 
 
 64414 
 
 64424 
 
 64434 
 
 441 
 
 64 444 
 
 64 454 
 
 64464 
 
 64 473 
 
 64483 
 
 64493 
 
 64 503 
 
 64513 
 
 64 523 
 
 64532 
 
 442 
 
 64542 
 
 64 552 
 
 64562 
 
 64572 
 
 64582 
 
 64 591 
 
 64601 
 
 64611 
 
 64621 
 
 64631 
 
 443 
 
 64640 
 
 64650 
 
 64660 
 
 64670 
 
 64680 
 
 64689 
 
 64699 
 
 64709 
 
 64719 
 
 64729 
 
 444 
 
 64738 
 
 64748 
 
 64758 
 
 64768 
 
 64777 
 
 64787 
 
 64797 
 
 64807 
 
 64816 
 
 64826 
 
 445 
 
 64836 
 
 64846 
 
 64856 
 
 64 865 
 
 64 875 
 
 64885 
 
 64895 
 
 64904 
 
 64914 
 
 64 924 
 
 446 
 
 64933 
 
 64943 
 
 64953 
 
 64963 
 
 64972 
 
 64 982 
 
 64992 
 
 65 002 
 
 65011 
 
 65021 
 
 447 
 
 65031 
 
 65 040 
 
 65050 
 
 65 060 
 
 65 070 
 
 65 079 
 
 65 089 
 
 65 099 
 
 65108 
 
 65 118 
 
 448 
 
 65128 
 
 65 137 
 
 65147 
 
 65 157 
 
 65 167 
 
 65 176 
 
 65 186 
 
 65 196 
 
 65 205 
 
 65 215 
 
 449 
 
 65 225 
 
 65 234 
 
 65244 
 
 65254 
 
 65 263 
 
 65273 
 
 65283 
 
 65292 
 
 65302 
 
 65312 
 
 1 
 No. O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 I 
 
 
 
 
 
 
 
 
 
 400-449 
 
450-499 
 
 17 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 450 
 
 65 321 
 
 65 331 
 
 65 341 
 
 65350 
 
 65360 
 
 65369 
 
 65 379 
 
 65 389 
 
 65 398 
 
 65 408 
 
 451 
 
 65418 
 
 65 427 
 
 65 437 
 
 65 447 
 
 65 456 
 
 65466 
 
 65 475 
 
 65485 
 
 65495 
 
 65 504 
 
 452 
 
 65 514 
 
 65 523 
 
 65 533 
 
 65 543 
 
 65 552 
 
 65 562 
 
 65571 
 
 65581 
 
 65 591 
 
 65600 
 
 453 
 
 65 6 10 
 
 65 619 
 
 65 629 
 
 65 639 
 
 65648 
 
 65 658 
 
 65667 
 
 65677 
 
 65686 
 
 65696 
 
 454 
 
 65 706 
 
 65715 
 
 65725 
 
 65734 
 
 65744 
 
 65753 
 
 65763 
 
 65772 
 
 65782 
 
 65792 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 455 
 
 65 801 
 
 65811 
 
 65 820 
 
 65 830 
 
 65839 
 
 65 849 
 
 65 858 
 
 65868 
 
 65877 
 
 65887 
 
 456 
 
 65 896 
 
 65 906 
 
 65916 
 
 65 925 
 
 65 935 
 
 65944 
 
 65 954 
 
 65963 
 
 65 973 
 
 65982 
 
 457 
 
 65 992 
 
 66001 
 
 66011 
 
 66020 
 
 66 030 
 
 66039 
 
 66049 
 
 66 058 
 
 66068 
 
 66 077 
 
 458 
 
 66087 
 
 66096 
 
 66 106 
 
 66115 
 
 66124 
 
 66134 
 
 66143 
 
 66153 
 
 66162 
 
 66172 
 
 459 
 
 66181 
 
 66191 
 
 66200 
 
 66 210 
 
 66219 
 
 66229 
 
 66238 
 
 66247 
 
 66257 
 
 66266 
 
 46O 
 
 66 276 
 
 66285 
 
 66295 
 
 66304 
 
 66314 
 
 66323 
 
 66332 
 
 66342 
 
 66351 
 
 66361 
 
 461 
 
 66 370 
 
 66380 
 
 66389 
 
 66398 
 
 66408 
 
 66417 
 
 66427 
 
 66436 
 
 66445 
 
 66 455 
 
 462 
 
 66 464 
 
 66 474 
 
 66483 
 
 66492 
 
 66502 
 
 66511 
 
 66521 
 
 66 530 
 
 66539 
 
 66549 
 
 463 
 
 66 558 
 
 66 567 " 
 
 66577 
 
 66 586 
 
 66 596 
 
 66605 
 
 66614 
 
 66624 
 
 66633 
 
 66642 
 
 464 
 
 66652 
 
 66 661 
 
 66671 
 
 66680 
 
 66689 
 
 66 699 
 
 66 708 
 
 66717 
 
 66727 
 
 66736 
 
 465 
 
 66 745 
 
 66 755 
 
 66764 
 
 66773 
 
 66783 
 
 66792 
 
 66801 
 
 66811 
 
 66820 
 
 66829 
 
 466 
 
 66839 
 
 66848 
 
 66857 
 
 66867 
 
 66876 
 
 66 885 
 
 66894 
 
 66904 
 
 66913 
 
 66922 
 
 467 
 
 66932 
 
 66 941 
 
 66950 
 
 66960 
 
 66969 
 
 66978 
 
 66987 
 
 66997 
 
 67006 
 
 67015 
 
 468 
 
 67025 
 
 67034 
 
 67043 
 
 67 052 
 
 67062 
 
 67071 
 
 67080 
 
 67089 
 
 67099 
 
 67108 
 
 469 
 
 67 1.17 
 
 67127 
 
 67136 
 
 67145 
 
 67154 
 
 67164 
 
 67173 
 
 67182 
 
 67191 
 
 67201 
 
 470 
 
 67210 
 
 67219 
 
 67228 
 
 67237 
 
 67247 
 
 67 256 
 
 67265 
 
 67274 
 
 67284 
 
 67293 
 
 471 
 
 67 302 
 
 67311 
 
 67321 
 
 67330 
 
 67339 
 
 67348 
 
 67357 
 
 67367 
 
 67376 
 
 67385 
 
 472 
 
 67394 
 
 67403 
 
 67413 
 
 67422 
 
 67431 
 
 67 440 
 
 67449 
 
 67 459 
 
 67468 
 
 67477 
 
 473 
 
 67486 
 
 67495 
 
 67 504 
 
 67514 
 
 67523 
 
 67 532 
 
 67541 
 
 67 550 
 
 67 560 
 
 67569 
 
 474 
 
 67578 
 
 67587 
 
 67596 
 
 67605 
 
 67614 
 
 67624 
 
 67633 
 
 67642 
 
 67651 
 
 67660 
 
 475 
 
 67669 
 
 67679 
 
 67688 
 
 67697 
 
 67706 
 
 67715 
 
 67724 
 
 67733 
 
 67742 
 
 67 752 
 
 476 
 
 67761 
 
 67770 
 
 67 779 
 
 67788 
 
 67797 
 
 67806 
 
 67815 
 
 67825 
 
 67834 
 
 67843 
 
 477 
 
 67852 
 
 67861 
 
 67870 
 
 67879 
 
 67888 
 
 67897 
 
 679J&6 
 
 67 916 
 
 67925 
 
 67934 
 
 478 
 
 67 943 
 
 67 952 
 
 67961 
 
 67 970 
 
 67979 
 
 67988 
 
 67997 
 
 68006 
 
 68015 
 
 68024 
 
 479 
 
 68 034 
 
 68043 
 
 68052 
 
 68061 
 
 68070 
 
 68079 
 
 68088 
 
 68097 
 
 68106 
 
 68115 
 
 480 
 
 68124 
 
 68133 
 
 68 142 
 
 68 151 
 
 68160 
 
 68169 
 
 68178 
 
 68187 
 
 68196 
 
 68 205 
 
 481 
 
 68215 
 
 68224 
 
 68 233 
 
 68242 
 
 68 251 
 
 68260 
 
 68269 
 
 68278 
 
 68287 
 
 68296 
 
 482 
 
 68 305 
 
 68314 
 
 68323 
 
 68332 
 
 68341 
 
 68350 
 
 68 359 
 
 68368 
 
 68377 
 
 68386 
 
 483 
 
 68395 
 
 68404 
 
 68 413 
 
 68422 
 
 68431 
 
 68440 
 
 68449 
 
 68 458 
 
 68467 
 
 68476 
 
 484 
 
 68485 
 
 68494 
 
 68502 
 
 68511 
 
 68520 
 
 68529 
 
 68538 
 
 68547 
 
 68556 
 
 68565 
 
 485 
 
 68574 
 
 68 583 
 
 68 592 
 
 68601 
 
 68610 
 
 68619 
 
 68628 
 
 68637 
 
 68646 
 
 68655 
 
 486 
 
 68664 
 
 68673 
 
 68681 
 
 68690 
 
 68 699 
 
 68708 
 
 68717 
 
 68726 
 
 68735 
 
 68744 
 
 487 
 
 68753 
 
 68762 
 
 687T1 
 
 68780 
 
 68789 
 
 68797 
 
 68806 
 
 68815 
 
 68824 
 
 68833 
 
 488 
 
 68 842 
 
 68851 
 
 68860 
 
 68869 
 
 68878 
 
 68.886 
 
 68 895 
 
 68904 
 
 68913 
 
 68922 
 
 489 
 
 68931 
 
 68940 
 
 68949 
 
 68 958 
 
 68 966 
 
 68 975 
 
 68984 
 
 68993 
 
 69002 
 
 69011 
 
 49O 
 
 69020 
 
 69028 
 
 69037 
 
 69046 
 
 69055 
 
 69064 
 
 69073 
 
 69082 
 
 69090 
 
 69 099 
 
 491 
 
 69 108 
 
 69117 
 
 69126 
 
 69135 
 
 69 144 
 
 69 152 
 
 69161 
 
 69170 
 
 69179 
 
 69188 
 
 492 
 
 69197 
 
 69 205 
 
 69214 
 
 69223 
 
 69232 
 
 69 241 
 
 69249 
 
 69 258 
 
 69267 
 
 69276 
 
 493 
 
 69 285 
 
 69294 
 
 69 302 
 
 69311 
 
 69320 
 
 69329 
 
 69338 
 
 69346 
 
 69 355 
 
 69364 
 
 494 
 
 69373 
 
 69381 
 
 69390 
 
 69 399 
 
 69408 
 
 69417 
 
 69425 
 
 69434 
 
 69443 
 
 69452 
 
 495 
 
 69461 
 
 69469 
 
 69478 
 
 69487 
 
 69496 
 
 69 504 
 
 69513 
 
 69522 
 
 69531 
 
 69 539 
 
 496 
 
 69 548 
 
 69 557 
 
 69 566 
 
 69574 
 
 69 583 
 
 69 592 
 
 69601 
 
 69 609 
 
 69618 
 
 69627 
 
 497 
 
 69636 
 
 69644 
 
 69 653 
 
 69662 
 
 69671 
 
 69679 
 
 69688 
 
 69697 
 
 69 705 
 
 69 714 
 
 498 
 
 69723 
 
 69732 
 
 69740 
 
 69749 
 
 69758 
 
 69 767 
 
 69775 
 
 69 784 
 
 69793 
 
 69801 
 
 499 
 
 69810 
 
 69819 
 
 69 827 
 
 69836 
 
 69845 
 
 69 854 
 
 69862 
 
 69871 
 
 69880 
 
 69888 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 O 
 
 7 
 
 8 
 
 9 
 
 450-499 
 
18 
 
 500-549 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 5OO 
 
 69 897 
 
 69906 
 
 69914 
 
 69923 
 
 69932 
 
 69940 
 
 69949 
 
 69958 
 
 69966 
 
 69 975 
 
 501 
 
 69984 
 
 69992 
 
 70001 
 
 70-010 
 
 70018 
 
 70027 
 
 70036 
 
 70044 
 
 70053 
 
 70062 
 
 502 
 
 70070 
 
 70079 
 
 70088 
 
 70096 
 
 70105 
 
 70114 
 
 70122 
 
 70131 
 
 70140 
 
 70148 
 
 503 
 
 70 157 
 
 70165 
 
 70174 
 
 70183 
 
 70191 
 
 70200 
 
 70209 
 
 70217 
 
 70 226 
 
 70234 
 
 504 
 
 70243 
 
 70252 
 
 70260 
 
 70269 
 
 70278 
 
 70286 
 
 70295 
 
 70303 
 
 70312 
 
 70321 
 
 505 
 
 70329 
 
 70338 
 
 70346 
 
 70355 
 
 70364 
 
 70372 
 
 70381 
 
 70389 
 
 70398 
 
 70406 
 
 506 
 
 70415 
 
 70424 
 
 70432 
 
 70441 
 
 70449 
 
 70 458 
 
 70467 
 
 70475 
 
 70484 
 
 70492 
 
 507 
 
 70 501 
 
 70509 
 
 70518 
 
 70526 
 
 70535 
 
 70544 
 
 70 552 
 
 70561 
 
 70569 
 
 70578 
 
 508 
 
 70586 
 
 70 595 
 
 70603 
 
 70612 
 
 70621 
 
 70629 
 
 70 638 
 
 70 646 
 
 70655 
 
 70663 
 
 509 
 
 70672 
 
 70680 
 
 70689 
 
 70697 
 
 70706 
 
 70714 
 
 70723 
 
 70731 
 
 70740 
 
 70749 
 
 510 
 
 70757 
 
 70766 
 
 70774 
 
 70783 
 
 70791 
 
 70800 
 
 70808 
 
 70817 
 
 70825 
 
 70834 
 
 511 
 
 70842 
 
 70851 
 
 70859 
 
 70868 
 
 70 876 
 
 70885 
 
 70893 
 
 70 902 
 
 70910 
 
 70919 
 
 512 
 
 70927 
 
 70935 
 
 70944 
 
 70 952 
 
 70961 
 
 70969 
 
 70 978 
 
 70986 
 
 70995 
 
 71003 
 
 513 
 
 71012 
 
 71020 
 
 71029 
 
 71037 
 
 71046 
 
 71054 
 
 71 063 
 
 71071 
 
 71079 
 
 71088 
 
 514 
 
 71096 
 
 71105 
 
 71113 
 
 71122 
 
 71130 
 
 71 139 
 
 71 147 
 
 71155 
 
 71164 
 
 71172 
 
 515 
 
 71181 
 
 71189 
 
 71198 
 
 71206 
 
 71214 
 
 71223 
 
 71231 
 
 71240 
 
 71248 
 
 71 257 
 
 516 
 
 71265 
 
 71273 
 
 71282 
 
 71290 
 
 71 299 
 
 71 307 
 
 71315 
 
 71324 
 
 71332 
 
 71341 
 
 517 
 
 71 349 
 
 71357 
 
 71366 
 
 71374 
 
 71383 
 
 71391 
 
 71399 
 
 71408 
 
 71416 
 
 71 425 
 
 518 
 
 71433 
 
 71 441' 
 
 71450 
 
 71458 
 
 71466 
 
 71475 
 
 71483 
 
 71492 
 
 71 500 
 
 71508 
 
 519 
 
 71517 
 
 71525 
 
 71533 
 
 71 542 
 
 71 550 
 
 71559 
 
 71567 
 
 71575 
 
 71584 
 
 71592 
 
 520 
 
 71600 
 
 71609 
 
 71617 
 
 71625 
 
 71634 
 
 71642 
 
 71650 
 
 71659 
 
 71667 
 
 71675 
 
 521 
 
 71684 
 
 71692 
 
 71700 
 
 71709 
 
 71 717 
 
 71725 
 
 71734 
 
 71742 
 
 71750 
 
 71759 
 
 522 
 
 71767 
 
 71775 
 
 71784 
 
 71792 
 
 71800 
 
 71809 
 
 71817 
 
 71825 
 
 71834 
 
 71842 
 
 523 
 
 71850 
 
 71858 
 
 71867 
 
 71875 
 
 71 883 
 
 71892 
 
 71900 
 
 71908 
 
 71917 
 
 71925 
 
 524 
 
 71933 
 
 71941 
 
 71950 
 
 71958 
 
 71966 
 
 7197,5 
 
 71983 
 
 71991 
 
 71999 
 
 72008 
 
 525 
 
 72016 
 
 72024 
 
 72032 
 
 72041 
 
 72049 
 
 72057 
 
 72066 
 
 72074 
 
 72082 
 
 72090 
 
 526 
 
 72099 
 
 72107 
 
 72115 
 
 72123 
 
 72132 
 
 72140 
 
 72148 
 
 72156 
 
 72165 
 
 72173 
 
 527 
 
 72181 
 
 72189 
 
 72198 
 
 72206 
 
 72214 
 
 72222 
 
 72 230 
 
 72239 
 
 72247 
 
 72255 
 
 528 
 
 72263 
 
 72272 
 
 72280 
 
 72288 
 
 72296 
 
 72304 
 
 72313 
 
 72321 
 
 72329 
 
 72337 
 
 529 
 
 72346 
 
 72354 
 
 72362 
 
 72370 
 
 72378 
 
 72357 
 
 72 395 
 
 72403 
 
 72411 
 
 72419 
 
 53O 
 
 72428 
 
 72436 
 
 72444 
 
 72452 
 
 72460 
 
 72469 
 
 72477 
 
 72485 
 
 72493 
 
 72501 
 
 531 
 
 72 509 
 
 72518 
 
 72 526 
 
 72534 
 
 72 542 
 
 72 550 
 
 72 558 
 
 72567 
 
 72575 
 
 72583 
 
 532 
 
 72591 
 
 72599 
 
 72607 
 
 72616 
 
 72624 
 
 72 632 
 
 72 640 
 
 72648 
 
 72656 
 
 72665 
 
 533 
 
 72673 
 
 72681 
 
 72689 
 
 72697 
 
 72705 
 
 72713 
 
 72722 
 
 72 730 
 
 72738 
 
 72746 
 
 534 
 
 72754 
 
 72762 
 
 72770 
 
 72779 
 
 72787 
 
 72795 
 
 72803 
 
 72811 
 
 72819 
 
 72827 
 
 535 
 
 72 835 
 
 72843 
 
 72852 
 
 72860 
 
 72868 
 
 72876 
 
 72884 
 
 72892 
 
 72900 
 
 72908 1 
 
 536 
 
 72916 
 
 72925 
 
 72933 
 
 72941 
 
 72949 
 
 72957 
 
 72965 
 
 72973 
 
 72981 
 
 72989 
 
 537 
 
 72997 
 
 73006 
 
 73014 
 
 73022 
 
 73030 
 
 73038 
 
 73046 
 
 73054 
 
 73062 
 
 73070 
 
 538 
 
 73078 
 
 73086 
 
 73094 
 
 73 102 
 
 73 111 
 
 73119 
 
 73127 
 
 73135 
 
 73143 
 
 73151 
 
 539 
 
 73159 
 
 73167 
 
 73175 
 
 73183 
 
 73191 
 
 73199 
 
 73207 
 
 73215 
 
 73223 
 
 73231 
 
 54O 
 
 73239 
 
 73247 
 
 73 255 
 
 73263 
 
 73272 
 
 73280 
 
 73288 
 
 73296 
 
 73304 
 
 73312 
 
 541 
 
 73320 
 
 73328 
 
 73336 
 
 73344 
 
 73 352 
 
 73360 
 
 73368 
 
 73376 
 
 73384 
 
 73392 
 
 542 
 
 73 400 
 
 73408 
 
 73416 
 
 73424 
 
 73432 
 
 73440 
 
 73448 
 
 73456 
 
 73464 
 
 73472 
 
 543 
 
 73480 
 
 73488 
 
 73496 
 
 73 504 
 
 73512 
 
 73 520 
 
 73528 
 
 73536 
 
 73 544 
 
 73552 
 
 544 
 
 73560 
 
 73568 
 
 73576 
 
 73 584 
 
 73592 
 
 73600 
 
 73608 
 
 73616 
 
 73624 
 
 73632 
 
 545 
 
 73 640 
 
 73648 
 
 73 656 
 
 73664 
 
 73 672 
 
 73679 
 
 73687 
 
 73695 
 
 73703 
 
 73711 
 
 546 
 
 73719 
 
 73727 
 
 73 735 
 
 73743 
 
 73751 
 
 73759 
 
 73767 
 
 73775 
 
 73783 
 
 73791 
 
 547 
 
 73 799 
 
 73807 
 
 73815 
 
 73823 
 
 73830 
 
 73838 
 
 73846 
 
 73 854 
 
 73862 
 
 73870 
 
 548 
 
 73878 
 
 73 886 
 
 73894 
 
 73902 
 
 7391$ 
 
 73918 
 
 73926 
 
 73933 
 
 73941 
 
 73 949 
 
 549 
 
 73957 
 
 73 965 
 
 73973 
 
 73981 
 
 73989 
 
 73997 
 
 74005 
 
 74013 
 
 74020 
 
 74028 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 500-549 
 
550-599 
 
 19 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 550 
 
 74036 
 
 74044 
 
 74052 
 
 74060 
 
 74068 
 
 74076 
 
 74084 
 
 74092 
 
 74099 
 
 74107 
 
 551 
 
 74115 
 
 74123 
 
 74131 
 
 74139 
 
 74147 
 
 74155 
 
 74162 
 
 74170 
 
 74178 
 
 74186 
 
 552 
 
 74194 
 
 74202 
 
 74210 
 
 74218 
 
 74225 
 
 74233 
 
 74241 
 
 74249 
 
 74257 
 
 74265 
 
 553 
 
 74273 
 
 74280 
 
 74 288 
 
 74296 
 
 74304 
 
 74312 
 
 74320 
 
 74327 
 
 74335 
 
 74 343 
 
 554 
 
 74351 
 
 74359 
 
 74367 
 
 74374 
 
 74382 
 
 74390 
 
 74398 
 
 74406 
 
 74 414' 
 
 74421 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 555 
 
 74429 
 
 74437 
 
 74445 
 
 74453 
 
 74461 
 
 74468 
 
 74476 
 
 74484 
 
 74492 
 
 74500 
 
 556 
 
 74507 
 
 74515 
 
 74523 
 
 74531 
 
 74539 
 
 74547 
 
 74 554 
 
 74562 
 
 74570 
 
 74578 
 
 557 
 
 74 586 
 
 74593 
 
 74601 
 
 74609 
 
 74617 
 
 74624 
 
 74632 
 
 74640 
 
 74648 
 
 74656 
 
 558 
 
 74663 
 
 74671 
 
 74679 
 
 74 687 
 
 74695 
 
 74702 
 
 74710 
 
 74718 
 
 74726 
 
 74733 
 
 559 
 
 74741 
 
 74749 
 
 74757 
 
 74764 
 
 74772 
 
 74780 
 
 74788 
 
 74796 
 
 74803 
 
 74811 
 
 560 
 
 74819 
 
 74827 
 
 74834 
 
 74842 
 
 74850 
 
 74 858 
 
 74865 
 
 74873 
 
 74881 
 
 74889 
 
 561 
 
 74896 
 
 74904 
 
 74912 
 
 74920 
 
 74927 
 
 74935 
 
 74943 
 
 74950 
 
 74 958 
 
 74966 
 
 562 
 
 74974 
 
 74981 
 
 74 989 
 
 74997 
 
 75005 
 
 75 012 
 
 75020 
 
 75028 
 
 75035 
 
 75 043 
 
 563 
 
 75 051 
 
 75 059 
 
 75 066 
 
 75074 
 
 75082 
 
 75089 
 
 75097 
 
 75105 
 
 75 113 
 
 75120 
 
 564 
 
 75128 
 
 75 136 
 
 75 143 
 
 75 151 
 
 75159 
 
 75166 
 
 75174 
 
 75 182 
 
 75 189 
 
 75197 
 
 565 
 
 75205 
 
 75213 
 
 75220 
 
 75 228 
 
 75236 
 
 75243 
 
 75251 
 
 75259 
 
 75266 
 
 75274 
 
 566 
 
 75282 
 
 75289 
 
 75297 
 
 75305 
 
 75312 
 
 75320 
 
 75328 
 
 75335 
 
 75343 
 
 75351 
 
 567 
 
 75358 
 
 75366 
 
 75374 
 
 75 381 
 
 75389 
 
 75397 
 
 75404 
 
 75412 
 
 75420 
 
 75427 
 
 568 
 
 75435 
 
 75 442 
 
 75 450 
 
 75 458 
 
 75465 
 
 75473 
 
 75481 
 
 75488 
 
 75496 
 
 75504 
 
 569 
 
 75511 
 
 75519 
 
 75526 
 
 75534 
 
 75542 
 
 75549 
 
 75 557 
 
 75565 
 
 75572 
 
 75580 
 
 570 
 
 75 587 
 
 75595 
 
 75603 
 
 75610 
 
 75618 
 
 75626 
 
 75633 
 
 75641 
 
 75648 
 
 75656 
 
 571 
 
 75 664 
 
 75 671 
 
 75679 
 
 75686 
 
 75694 
 
 75702 
 
 75709 
 
 75717 
 
 75 724 
 
 75732 
 
 572 
 
 75740 
 
 75747 
 
 75 755 
 
 75762 
 
 75 770 
 
 75 778 
 
 75 785 
 
 75793 
 
 75800 
 
 75808 
 
 573 
 
 75815 
 
 75823 
 
 75831 
 
 75838 
 
 75846 
 
 75853 
 
 75861 
 
 75868 
 
 75876 
 
 75884 
 
 574 
 
 75891 
 
 75899 
 
 75906 
 
 75914 
 
 75921 
 
 75929 
 
 75937 
 
 75944 
 
 75952 
 
 75959 
 
 575 
 
 75967 
 
 75974 
 
 75982 
 
 75989 
 
 75997 
 
 76005 
 
 76012 
 
 76020 
 
 76027 
 
 76035 
 
 576 
 
 76042 
 
 76050 
 
 76057 
 
 76065 
 
 76072 
 
 76080 
 
 76087 
 
 76095 
 
 76103 
 
 76110 
 
 577 
 
 76118 
 
 76125 
 
 76133 
 
 76140 
 
 76148 
 
 76155 
 
 76163 
 
 76170 
 
 76178 
 
 76185 
 
 578 
 
 76193 
 
 76200 
 
 76208 
 
 76215 
 
 76223 
 
 76230 
 
 76238 
 
 76245 
 
 76 253 
 
 76260 
 
 579 
 
 76268 
 
 76275 
 
 76283 
 
 76290 
 
 76298 
 
 76305 
 
 76313 
 
 76320 
 
 76328 
 
 76 335 
 
 580 
 
 76343 
 
 76 350 
 
 76358 
 
 76365 
 
 76373 
 
 76380 
 
 76388 
 
 76395 
 
 76403 
 
 76410 
 
 581 
 
 76418 
 
 76 425 
 
 76433 
 
 76440 
 
 76448 
 
 76455 
 
 76462 
 
 76470 
 
 76477' 
 
 76485 
 
 582 
 
 76492 
 
 76500 
 
 76 507 
 
 76515 
 
 76522 
 
 76530 
 
 76537 
 
 76 545 
 
 76552 
 
 76559 
 
 583 
 
 76567 
 
 76574 
 
 76 582 
 
 76 589 
 
 76597 
 
 76604 
 
 76612 
 
 76619 
 
 76626 
 
 76634 
 
 584 
 
 76641 
 
 76649 
 
 76 656 
 
 76664 
 
 76671 
 
 76678 
 
 76686 
 
 76693 
 
 76701 
 
 76708 
 
 585 
 
 76716 
 
 76723 
 
 76730 
 
 76738 
 
 76 745 
 
 76753 
 
 76760 
 
 76768 
 
 76775 
 
 76782 
 
 586 
 
 76790 
 
 76797 
 
 76805 
 
 76812 
 
 76819 
 
 76827 
 
 76834 
 
 76842 
 
 76849 
 
 76856 
 
 587 
 
 76864 
 
 76871 
 
 76 879 
 
 76886 
 
 76 893 
 
 76901 
 
 76908 
 
 76916 
 
 76923 
 
 76930 
 
 588 
 
 76938 
 
 76945 
 
 76 953 
 
 76 960 
 
 76967 ' 
 
 76975 
 
 76982 
 
 76989 
 
 76997 
 
 77004 
 
 589 
 
 77012 
 
 77019 
 
 77026 
 
 77034 
 
 77041 
 
 77048 
 
 77056 
 
 77063 
 
 77070 
 
 77078 
 
 59O 
 
 77085 
 
 77093 
 
 77100 
 
 77107 
 
 77115 
 
 77122 
 
 77129 
 
 77137 
 
 77144 
 
 77151 
 
 591 
 
 77 159 
 
 77166 
 
 77173 
 
 77181 
 
 77188 
 
 77195 
 
 77203 
 
 77210 
 
 77217 
 
 77225 
 
 592 
 
 77232 
 
 77240 
 
 77247 
 
 77 254 
 
 77262 
 
 77269 
 
 77276 
 
 77283 
 
 77291 
 
 77298 
 
 593 
 
 77 305 
 
 77313 
 
 77320 
 
 77327 
 
 77335 
 
 77342 
 
 77349 
 
 77357 
 
 77 364 
 
 77371 
 
 594 
 
 77379 
 
 77386 
 
 77393 
 
 77401 
 
 77408 
 
 77415 
 
 77422 
 
 77430 
 
 77437 
 
 77444 
 
 595 
 
 77 452 
 
 77 459 
 
 77 466 
 
 77 474 
 
 77481 
 
 77488 
 
 77495 
 
 77503 
 
 77510 
 
 77517 
 
 596 
 
 77525 
 
 77532 
 
 77539 
 
 77 546 
 
 77 554 
 
 77 561 
 
 77 568 
 
 77576 
 
 77583 
 
 77590 
 
 597 
 
 77597 
 
 77605 
 
 77612 
 
 77619 
 
 77627 
 
 77634 
 
 77641 
 
 77648 
 
 77 656 
 
 77663 
 
 598 
 
 77670 
 
 77677 
 
 77685 
 
 77692 
 
 77699 
 
 77706 
 
 77714 
 
 77721 
 
 77728 
 
 77 735 
 
 599 
 
 77743 
 
 77750 
 
 77757 
 
 77764 
 
 77772 
 
 77779 
 
 77786 
 
 77793 
 
 77801 
 
 77808 
 
 No. 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 550-599 
 
20 
 
 600-649 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 G 
 
 7 
 
 8 
 
 9 
 
 GOO 
 
 77815 
 
 77822 
 
 77830 
 
 77837 
 
 77 844 
 
 77 851 
 
 77 859 
 
 77866 
 
 77873 
 
 77 880 
 
 601 
 
 77887 
 
 77895 
 
 77902 
 
 77909 
 
 77916 
 
 77924 
 
 77931 
 
 77938 
 
 77 945 
 
 77 952 
 
 602 
 
 77960 
 
 77 967 
 
 77974 
 
 77981 
 
 77 988 
 
 77996 
 
 78003 
 
 78010 
 
 78017 
 
 78 025 
 
 603 
 
 78032 
 
 78 039 
 
 78046 
 
 78053 
 
 78 061 
 
 78068 
 
 78075 
 
 78082 
 
 78089 
 
 78 097 
 
 604 
 
 78104 
 
 78111 
 
 78118 
 
 78125 
 
 78132 
 
 78140 
 
 78147 
 
 78154 
 
 78161 
 
 78168 
 
 605 
 
 78176 
 
 78183 
 
 78190 
 
 78197 
 
 78204 
 
 78211 
 
 78219 
 
 78226 
 
 78233 
 
 78240 
 
 606 
 
 78247 
 
 78254 
 
 78262 
 
 78269 
 
 78276 
 
 78283 
 
 78290 
 
 78297 
 
 78305 
 
 78312 
 
 607 
 
 78319 
 
 78326 
 
 78333 
 
 78340 
 
 78347 
 
 78355 
 
 78362 
 
 78369 
 
 78376 
 
 78 383 
 
 608 
 
 78390 
 
 78398 
 
 78405 
 
 78412 
 
 78419 
 
 78426 
 
 78433 
 
 78440 
 
 78447 
 
 78455 
 
 609 
 
 78462 
 
 78469 
 
 78476 
 
 78483 
 
 78 490 
 
 78 497 
 
 78504 
 
 78512 
 
 78519 
 
 78 526 
 
 61O 
 
 78 533 
 
 78540 
 
 78 547 
 
 78554 
 
 78 561 
 
 78569 
 
 78576 
 
 78583 
 
 78590 
 
 78 597 
 
 611 
 
 78604 
 
 78611 
 
 78618 
 
 78 625 
 
 78 633 
 
 7S6HO 
 
 78647 
 
 78 654 
 
 78661 
 
 78668 
 
 612 
 
 78 675 
 
 78682 
 
 78 689 
 
 78696 
 
 78704 
 
 78711 
 
 78718 
 
 78725 
 
 78732 
 
 78739 
 
 613 
 
 78746 
 
 78 753 
 
 78760 
 
 78 767 
 
 78774 
 
 78 7S1 
 
 78789 
 
 78796 
 
 78 803 
 
 78810 
 
 614 
 
 78817 
 
 78824 
 
 78'S31 
 
 78838 
 
 78845 
 
 78852 
 
 78859 
 
 78866 
 
 78873 
 
 78880 
 
 615 
 
 78888 
 
 78895 
 
 78902 
 
 78909 
 
 78916 
 
 78923 
 
 78930 
 
 78937 
 
 78944 
 
 78951 
 
 616 
 
 78 958 
 
 78 965 
 
 78972 
 
 78979 
 
 78 986 
 
 78 993 
 
 79000 
 
 79007 
 
 79014 
 
 79021 
 
 617 
 
 79029 
 
 79036 
 
 79 043 
 
 79 050 
 
 79 057 
 
 79064 
 
 79071 
 
 79078 
 
 79085 
 
 79092 
 
 618 
 
 79099 
 
 79106 
 
 79 113 
 
 79120 
 
 79127 
 
 79134 
 
 79 141 
 
 79148 
 
 79 155 
 
 79162 
 
 619 
 
 79169 
 
 79176 
 
 79183 
 
 79190 
 
 79197 
 
 79204 
 
 79211 
 
 79218 
 
 79 225 
 
 79232 
 
 62O 
 
 79239 
 
 79246 
 
 79253 
 
 79260 
 
 79267 
 
 79274 
 
 79281 
 
 79288 
 
 79295 
 
 79302 
 
 621 
 
 79309 
 
 79316 
 
 79323 
 
 79330 
 
 79 337 
 
 79344 
 
 79351 
 
 79358 
 
 79365 
 
 79372 
 
 622 
 
 79379 
 
 79386 
 
 79393 
 
 79400 
 
 79 407 
 
 79414 
 
 79421 
 
 79428 
 
 79435 
 
 79442 
 
 623 
 
 79449 
 
 79 456 
 
 79463 
 
 79470 
 
 79 477 
 
 79 484 
 
 79 491 
 
 79498 
 
 79 505 
 
 79511 
 
 624 
 
 79518 
 
 79525 
 
 79532 
 
 79539 
 
 79546 
 
 79553 
 
 79 560 
 
 79567 
 
 79574 
 
 79581 
 
 625 
 
 79 588 
 
 79595 
 
 79602 
 
 79609 
 
 79616 
 
 79623 
 
 79630 
 
 79637 
 
 79644 
 
 79650 
 
 626 
 
 79657 
 
 79664 
 
 79671 
 
 79678 
 
 79 685 
 
 79692 
 
 79699 
 
 79706 
 
 79 713 
 
 79720 
 
 627 
 
 79727 
 
 79734 
 
 79741 
 
 79748 
 
 79 754 
 
 79761 
 
 79768 
 
 79 775 
 
 79782 
 
 79 789 
 
 628 
 
 79796 
 
 79803 
 
 79810 
 
 79817 
 
 79824 
 
 79831 
 
 79837 
 
 79 844 
 
 79851 
 
 79 858 
 
 629 
 
 79865 
 
 79872 
 
 79879 
 
 79886 
 
 79 893 
 
 79900 
 
 79 906 
 
 79913 
 
 79920 
 
 79927 
 
 63O 
 
 79934 
 
 79941 
 
 79948 
 
 79955 
 
 79962 
 
 79969 
 
 79975 
 
 79982 
 
 799S9 
 
 79996 
 
 631 
 
 80003 
 
 80010 
 
 80017 
 
 80024 
 
 80030 
 
 80037 
 
 80044 
 
 80051 
 
 80058 
 
 SO 065 
 
 632 
 
 80072 
 
 80079 
 
 80085 
 
 80092 
 
 80099 
 
 80106 
 
 80113 
 
 80120 
 
 80127 
 
 80134 
 
 633 
 
 80140 
 
 80147 
 
 80154 
 
 80161 
 
 80168 
 
 80175 
 
 80182 
 
 80188 
 
 80195 
 
 SO 202 
 
 634 
 
 80209 
 
 80216 
 
 80223 
 
 80229 
 
 80236 
 
 80243 
 
 80250 
 
 80257 
 
 SO 264 
 
 SO 271 
 
 635 
 
 80277 
 
 80284 
 
 80291 
 
 80298 
 
 80305 
 
 80312 
 
 80 318 
 
 80 325 
 
 80 332 
 
 80 339 
 
 636 
 
 80346 
 
 80 353 
 
 80359 
 
 80 366 
 
 80373 
 
 80380 
 
 80387 
 
 80393 
 
 80400 
 
 80407 
 
 637 
 
 80414 
 
 80421 
 
 80428 
 
 80 434 
 
 80441 
 
 80448 
 
 80 455 
 
 80462 
 
 SO 468 
 
 80 475 
 
 638 
 
 80482 
 
 80489 
 
 80496 
 
 80502 
 
 80509 
 
 80516 
 
 80 523 
 
 80 530 
 
 SO 536 
 
 80 543 
 
 639 
 
 80550 
 
 80557 
 
 80564 
 
 80570 
 
 80577 
 
 80 584 
 
 80591 
 
 80598 
 
 80604 
 
 SO 611 
 
 640 
 
 80618 
 
 80625 
 
 80632 
 
 80638 
 
 SO 645 
 
 80652 
 
 80 659 
 
 80665 
 
 SO 672 
 
 80679 
 
 641 
 
 80686 
 
 80693 
 
 80699 
 
 80706 
 
 80713 
 
 80720 
 
 80786 
 
 SO 733 
 
 80740 
 
 SO 747 
 
 642 
 
 80754 
 
 80760 
 
 80767 
 
 80774 
 
 80781 
 
 80787 
 
 80794 
 
 80801 
 
 80 SOS. 
 
 SO 814 
 
 643 
 
 80821 
 
 80828 
 
 80835 
 
 80841 
 
 80848 
 
 80855 
 
 80862 
 
 SOS6S 
 
 SO 875 
 
 80882 
 
 644 
 
 80889 
 
 80895 
 
 80902 
 
 80909 
 
 80916 
 
 80922 
 
 80929 
 
 80936 
 
 80943 
 
 80949 
 
 645 
 
 80956 
 
 80963 
 
 80969 
 
 80976 
 
 80983 
 
 80990 
 
 80996 
 
 SI 003 
 
 81010 
 
 81017 
 
 646 
 
 81023 
 
 81030 
 
 81037 
 
 81 043 
 
 81 050 
 
 81057 
 
 81064 
 
 81 070 
 
 81077 
 
 SI 084 
 
 647 
 
 81090 
 
 81097 
 
 81 104 
 
 81111 
 
 81 117 
 
 81 124 
 
 81131 
 
 81137 
 
 81144 
 
 SI 151 
 
 648 
 
 81 158 
 
 81 164 
 
 81171 
 
 81178 
 
 81 184 
 
 81191 
 
 81 198 
 
 81204 
 
 81211 
 
 81218 
 
 649 
 
 81224 
 
 81 231 
 
 81238 
 
 81245 
 
 81251 
 
 81258 
 
 81265 
 
 81271 
 
 8127S 
 
 81285 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 G 
 
 7 
 
 8 
 
 9 
 
 600-649 
 
650-699 
 
 21 
 
 No. 
 
 O 1 2 3 4 
 
 50789 
 
 65O 
 
 651 
 652 
 653 
 654 
 
 81291 81298 81305 81311 81318 
 81358 81365 81371 81378 81385 
 81425 81431 81438 81445 81451 
 81491 81498 81505 81511 81518 
 81 558 81 564 81 571 81 578 81 584 
 
 81 325 81 331 81 338 81 345 81 351 
 81391 81398 81405 81411 81418 
 81458 81465 81471 81478 81485 
 81525 81531 81538 81544 81551 
 81591 81598 81604 81611 81617 
 
 655 
 656 
 657 
 658 
 659 
 
 81624 81631 81637 81644 81651 
 81 690 81 697 81 704 81 710 81 717 
 81 757 81 763 81 770 81 776 81 783 
 81823 81829 81836 81842 81849 
 81889 81895 81902 81908 81915 
 
 81 657 81 664 81 671 81 677 81 684 
 81 723 81 730 81 737 81 743 81 750 
 81 790 81 796 81 803 81 809 81 816 
 81 856 81 862 81 869 81 875 81 882 
 81921 81928 81935 81941 81948 
 
 66O 
 
 661 
 662 
 663 
 664 
 
 81954 81961 81968 81974 81981 
 82020 82027 82033 82040 82046 
 82 086 82092 82099 82105 82112 
 82151 82-158 82164 82171 82178 
 82217 82223 82230 82236 82243 
 
 81987 81994 82000 82007 82014 
 82053 82060 82066 82073 82079 
 82119 82125 82132 82138 82145 
 82184 82191 82197 82204 82210 
 82249 82256 82263 82269 82276 
 
 665 
 666 
 667 
 668 
 669 
 
 82282 82289 82295 82302 82308 
 82347 82354 82360 82367 82373 
 82413 82419 82426 82432 82439 
 82478 82484 82491 82497 82504 
 82543 82549 82556 82562 82569 
 
 82315 82321 82328 82334 82341 
 82380 82387 82393 82400 82406 
 82445 82452 82458 82465 82471 
 82510 82517 82523 82530 82536 
 82575 82582 82588 82595 82601 
 
 67O 
 
 671 
 672 
 673 
 674 
 
 82607 82614 82620 82627 82633 
 82672 82679 82685 82692 82698 
 82737 82743 82750 82756 82763 
 82802 82808 82814 82821 82827 
 82866 82872 82879 82885 82892 
 
 82640 82646 82653 82659 82666 
 82705 82711 82718 82724 82730 
 82769 82776 82782 82789 82795 
 82834 82840 82847 82853 82860 
 82898 82905 82911 82918 82924 
 
 675 
 676 
 677 
 678 
 679 
 
 82930 82937 82943 82950 82956 
 82995 83001 83008 83014 83020 
 83059 83065 83072 83078 83085 
 83 123 83 129 83 136 83 142 83 149 
 83 187 83 193 83 200 83 206 83 213 
 
 82963 82969 82975 82982 82988 
 83027 83033 83040 83046 83052 
 83 091 83 097 83 104 83 110 83 117 
 83 155 83 161 83 168 83 174 83 181 
 83219 83225 83232 83238 83245 
 
 68O 
 
 681 
 682 
 683 
 
 684 
 
 83251 83257 83264 83270 83276 
 83315 83321 83327 83334 83340 
 83378 83385 83391 83398 83404 
 83442 83448 83455 83461 83467 
 83506 83512 83518 83525 83531 
 
 83283 83289 83296 83302 83308 
 83347 83353 83359 83366 83372 
 83410 83417 83423 83429 83436 
 83474 83480 83487 83493 83499 
 83537 83544 83550 83556 83563 
 
 685 
 686 
 687 
 688 
 689 
 
 83569 83575 83582 83588 83594 
 83632 83639 83645 83651 83658 
 S3 696 83 702 83 708 83 715 83 721 
 83 759 83 765 83 771 83 778 83 784 
 83822 83828 83835 83841 83847 
 
 83601 83607 83613 83620 83626 
 83664 83670 83677 83683 83689 
 83727 83734 83740 83746 83753 
 83790 83797 83803 83809 83816 
 83853 83860 83866 83872 83879 
 
 690 
 
 691 
 692 
 693 
 694 
 
 83885 83891 83897 83904 83910 
 83948 83954 83960 83967 83973 
 84011 84017 84023 84029 84036 
 84073 84080 84086 84092 84098 
 84 136 84 142 84 148 84 155 84 161 
 
 83916 83923 83929 83935 83942 
 83979 83985 83992 83998 84004 
 84042 84048 84055 84061 84067 
 84105 84111 84117 84123 84130 
 84167 84173 84180 84186 84 If 2 
 
 695 
 696 
 697 
 698 
 699 
 
 84198 84205 84211 84217 84223 
 84261 84267 842^ 84280 84286 
 84323 84330 84336 84342 84348 
 843S6 84392 84398 84404 84410 
 84448 84454 84460 84466 84473 
 
 84230 84236 84242 84248 A0d? 
 84292 84298 84305 84311 84317 
 84354 84361 84367 84373 84379 
 84417 84423 84429 84435 84442 
 84 479 84 485 84 491 84 497 84 504 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 650-699 
 
9,9, 
 
 700-749 
 
 No. 
 
 O 1 2 3 4 
 
 5 6 7 89 
 
 700 
 
 701 
 702 
 703 
 704 
 
 84510 84516 84522 84528 84535 
 84572 84578 84584 84590 84597 
 84634 84640 84646 84652 84658 
 84696 84702 84708 84714 84720 
 84757 84763 84770 84776 84782 
 
 84541 84547 84553 84559 84566 
 84603 84609 84615 84621 84628 
 84665 84671 84677 84683 84689 
 84726 84733 84739 84745 84751 
 84788 84794 84800 84807 84813 
 
 705 
 706 
 707 
 708 
 709 
 
 84819 84825 84831 84837 84844 
 84880 84887 84893 84899 84905 
 84942 84948 84954 84960 84967 
 85003 85009 85016 85022 85028 
 85065 85071 85077 85083 85089 
 
 84850 84856 84862 84868 84874 
 84911 84917 84924 84930 84936 
 84973 84979 84985 84991 84997 
 85034 85040 85046 85052 85058 
 85 095 85 101 85 107 85 114 85 120 
 
 710 
 
 711 
 712 
 713 
 714 
 
 85 126 85 132 85 138 85 144 85 150 
 85 187 85 193 85 199 85 205 85 211 
 85 248 85 254 85 260 85 266 85 272 
 85309 85315 85321 85327 85333 
 85370 85376 85382 85388 85394 
 
 85156 85163 85169 85175 85181 
 85 217 85 224 85 230 85 236 85 242 
 85278 85285 85291 85297 85303 
 85339 85345 85352 85358 85364 
 85400 85406 85412 85418 85425 
 
 715 
 716 
 717 
 718 
 719 
 
 85431 85437 85443 85449 85455 
 85 491 85 497 85 503 85 509 85 516 
 85552 85558 85564 85570 85576 
 85612 85618 85625 85631 85637 
 85673 85679 85685 85691 85697 
 
 85461 85467 85473 85479 85485 
 85522 85528 85534 85540 85546 
 85582 85588 85594 85600 85606 
 85643 85649 85655 85661 85667 
 85703 85709 85715 85721 85727 
 
 72O 
 
 721 
 
 722 
 723 
 724 
 
 85 733 85 739 85 745 85 751 85 757 
 85794 85800 85806 85812 85818 
 85854 85860 85866 85872 85878 
 85914 85920 85926 85932 85938 
 85974 85980 85986 85992 85998 
 
 85 763 85 769 85 775 85 781 85 788 
 85824 85830 85836 85842 85848 
 85884 85890 85896 85902 85908 
 85944 85950 85956 85962 85968 
 86004 86010 86016 86022 86028 
 
 725 
 726 
 
 727 
 728 
 729 
 
 86034 86040 86046 86052 86058 
 86094 86100 86106 86112 86118 
 86153 86159 86165 86171 86177 
 86213 86219 86225 86231 86237 
 86273 86279 86285 86291 86297 
 
 86064 86070 86076 86082 86088 
 86124 86130 86136 86141 86147 
 86183 86189 86195 86201 86207 
 86243 86249 86255 86261 86267 
 86303 86308 86314 86320 86326 
 
 73O 
 
 731 
 732 
 733 
 734 
 
 86332 86338 86344 86350 86356 
 86392 86398 86404 86410 86415 
 864S1 86457 86463 86469 86475 
 86510 86516 86522 86528 86534 
 86570 86576 86581 86587 86593 
 
 86362 86368 86374 86380 86386 
 86421 86427 86433 86439 86445 
 86481 86487 86493 86499 86504 
 86540 86546 86552 86558 86564 
 86599 86605 86611 86617 86623 
 
 735 
 736 
 737 
 738 
 739 
 
 86629 86635 86641 86646 86652 
 86688 86694 86700 86705 86711 
 86747 86753 86759 86764 86770 
 86806 86812 86817 86823 86829 
 86864 86870 86876 86882 86888 
 
 86658 86664 86670 86676 86682 
 86717 86723 86729 86735 867-41 
 86 776 86 782 86 788 86 794 86 800 
 86835 86841 86847 86 853 86859 
 86894 86900 86906 86911 86917 
 
 74O 
 
 741 
 742 
 743 
 744 
 
 86923 86929 86935 86941 86947 
 86982 86988 86994 86999 87005 
 87040 87046 87052 87058 87064 
 87099 87105 87111 87116 87122 
 87157 87163 87169 87175 87181 
 
 86953 86958 86964 86970 86976 
 87011 87017 87023 87029 87035 
 87070 87075 87081 87087 87093 
 87128 87134 87140 87146 87151 
 87186 87192 87198 87204 87210 
 
 745 
 746 
 747 
 748 
 749 
 
 87216 87221 87227 87233 87239 
 87274 87280 87286 87291 87297 
 87332 87338 87344 87349 87355 
 87390 87396 87402 87408 87413 
 87448 87454 87460 87466 87471 
 
 87245 87251 87256 87262 87268 
 87303 87309 87315 87320 87326 
 87361 87367 87373 87379 87384 
 87419- 87425 87431 87437 87442 
 87477 87483 87489 87495 87500 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 700-749 
 
750-799 
 
 23 
 
 No. 
 
 O 1 2 3 4 
 
 56789 
 
 750 
 
 751 
 752 
 753 
 754 
 
 87506 87512 87518 87523 87529 
 87564 87570 S7~576 87581 87587 
 87622 87628 87633 87639 87645 
 87679 87685 87691 87697 87703 
 87737 87743 87749 87754 87760 
 
 87535 87541 87547 87552 87558 
 87593 87599 87604 87610 87616 
 87651 87656 87662 87668 87674 
 87708 87714 87720 87726 87731 
 87766 87772 87777 87783 87789 
 
 755 
 756 
 757 
 758 
 759 
 
 87795 87800 87806 87812 87818 
 87 852 87858 87864 87869 87875 
 87910 87915 87921 87927 87933 
 87967 87973 87978 87984 87990 
 88024 88030 88036 88041 88047 
 
 87823 87829 87835 87841 87846 
 87881 87887 87892 87898 87904 
 87938 87944 87950 87955 87961 
 87996 88001 88007 88013 88018 
 88053 88058 88064 88070 88076 
 
 76O 
 
 761 
 762 
 763 
 764 
 
 SSOSl 88087 88093 88098 88104 
 88138 88144 88150 88156 88161 
 88195 88201 88207 88213 88218 
 88252 88258 88264 88270 88275 
 88 309 88315 88321 88326 88332 
 
 88110 88116 88121 88127 88133 
 88167 88173 88178 88184 88190 
 88224 88230 88235 88241 88247 
 88281 88287 88292 88298 88304 
 88338 88343 88349 88355 88360 
 
 765 
 766 
 767 
 768 
 769 
 
 88366 88372 88377 88383 88389 
 88423 88429 88434 88440 88446 
 88480 88485 88491 88497 88502 
 88536 88542 88547 88553 88559 
 88593 88598 88604 88610 88615 
 
 88395 88400 88406 88412 88417 
 88451 88457 88463 88468 88474 
 88508 88513 88519 88525 88530 
 88564 88570 88576 88581 88587 
 88621 88627 88632 88638 88643 
 
 770 
 
 771 
 
 772 
 773 
 774 
 
 88649 88655 88660 88666 88672 
 88705 88711 88717 88722 88728 
 88762 88767 88773 88779 88784 
 88818 88824 88829 88835 88840 
 88874 88880 88885 88891 88897 
 
 88677 88683 88689 88694 88700 
 88734 88739 88745 88750 88756 
 88790 88795 88801 88807 88812 
 88846 88852 88857 88863 88868 
 88902 88908 88913 88919 88925 
 
 775 
 776 
 777 
 778 
 779 
 
 88930 88936 88941 88947 88953 
 88986 88992 88997 89003 89009 
 -89042 89048 89053 89059 89064 
 89098 89104 89109 89115 89120 
 89154 89159 89165 89170 89176 
 
 88958 88964 88969 88975 88981 
 89014 89020 89025 89031 89037 
 89070 89076 89081 89087 89092 
 89126 89131 89137 89143 89148 
 89182 89187 89193 89198 89204 
 
 780 
 
 781 
 782 
 783 
 784 
 
 89209 89215 89221 89226 89232 
 89265 89271 89276 89282 89287 
 89321' 89326 89332 89337 89343 
 89376 89382 89387 89393 89398 
 89432 89437 89443 89448 89454 
 
 89237 89243 89248 89254 89260 
 89293 89298 89304 89310 89315 
 89348 89354 89360 89365 89371 
 89404 89409 89415 89421 89426 
 89459 89465 89470 89476 89481 
 
 785 
 786 
 787 
 788 
 789 
 
 89487 89492 89498 89504 89509 
 89542 89548 89553 89559 89564 
 89597 89603 89609 89614 89620 
 89653 89658 89664 89669 89675 
 89708 89713 89719 89724 89730 
 
 89515 89520 89526 89531 89537 
 89570 89575 89581 89586 89592 
 89625 89631 89636 89642 8^647 
 89680 89686 89691 89697 89702 
 89735 89741 89746 89752 89757 
 
 790 
 
 791 
 792 
 793 
 794 
 
 89763 89768 89774 89779 89785 
 89 818 89823 89829 89834 89840 
 89873 89878 89883 89889 89894 
 89927 89933 89938 89944 89949 
 89982 89988 89993 89998 90004 
 
 89790 89796 89801 89807 89812 
 89845 89851 89856 89862 89867 
 89900 89905 89911 89916 89922 
 89955 89960 89966 89971 89977 
 90009 90015 90020 90026 90031 
 
 795 
 796 
 797 
 798 
 799 
 
 90037 90042 90048 90053 90059 
 90091 90097 90102 90108 90113 
 90146 90151 90157 90162 90168 
 90200 90206 90211 90217 90222 
 90255 90260 90266 90271 90276 
 
 90064 90069 90075 90080 90086 
 90119 90124 90129 90135 90140 
 90173 90179 90184 90189 90195 
 90227 90233 90238 90244 90249 
 90282 90287 90293 90298 90304 
 
 No. 
 
 O 1 2 3 4 
 
 5 G 7 8 9 
 
 750-799 
 
800-849 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 80O 
 
 90309 
 
 90314 
 
 90320 
 
 90 325 
 
 90331 
 
 90 336 
 
 90342 
 
 90347 
 
 90 352 
 
 90 35S 
 
 801 
 
 90363 
 
 90369 
 
 90374 
 
 90380 
 
 90385 
 
 90390 
 
 90 396 
 
 90401 
 
 90 407 
 
 90412 
 
 802 
 
 90417 
 
 90423 
 
 90428 
 
 90 434 
 
 90 439 
 
 90445 
 
 90 450 
 
 90 455 
 
 90 461 
 
 90466 
 
 803 
 
 90 472 
 
 90 477 
 
 90 4 82 
 
 904SS 
 
 90493 
 
 90 499 
 
 90504 
 
 90 509 
 
 90515 
 
 90520 
 
 804 
 
 90526 
 
 90531 
 
 90536 
 
 90542 
 
 90547 
 
 90553 
 
 90558 
 
 90563 
 
 90569 
 
 90574 
 
 805 
 
 90 580 
 
 90585 
 
 90590 
 
 90596 
 
 90601 
 
 90607 
 
 90 612 
 
 90617 
 
 90623 
 
 90628 
 
 806 
 
 90 634 
 
 90 639 
 
 90 644 
 
 90650 
 
 90 655 
 
 90660 
 
 90 666 
 
 90671 
 
 90 677 
 
 90 682 
 
 807 
 
 90687 
 
 90693 
 
 90698 
 
 90703 
 
 90709 
 
 90714 
 
 90720 
 
 90 725 
 
 90 730 
 
 90 736 
 
 808 
 
 90741 
 
 90747 
 
 90752 
 
 90757 
 
 90763 
 
 90768 
 
 90773 
 
 90779 
 
 90 7S4 
 
 90 7 89 
 
 809 
 
 90795 
 
 90800 
 
 90806 
 
 90811 
 
 90 816 
 
 90822 
 
 90827 
 
 90 832 
 
 90 838 
 
 90843 
 
 810 
 
 90849 
 
 90854 
 
 90 859 
 
 90865 
 
 90S70 
 
 90875 
 
 90 SSI 
 
 90 886 
 
 90891 
 
 90 S97 
 
 811 
 
 90902 
 
 90 907 
 
 90 913 
 
 90918 
 
 90924 
 
 90 929 
 
 90934 
 
 90 940 
 
 90 945 
 
 90 950 
 
 812 
 
 90956 
 
 90961 
 
 90966 
 
 90 972 
 
 90 977 
 
 90 982 
 
 90 9SS 
 
 90 993 
 
 90 998 
 
 91 004 
 
 813 
 
 91009 
 
 91014 
 
 91020 
 
 91025 
 
 91030 
 
 91036 
 
 91041 
 
 91 046 
 
 91 052 
 
 91 057 
 
 814 
 
 91062 
 
 91068 
 
 91073 
 
 91 078 
 
 91084 
 
 91 OS9 
 
 91094 
 
 91100 
 
 91 105 
 
 91 110 
 
 815 
 
 91 116 
 
 91 121 
 
 91 126 
 
 91 132 
 
 91 137 
 
 91 142 
 
 91 148 
 
 91 153 
 
 91 158 
 
 91 164 
 
 816 
 
 91 169 . 
 
 91 174 
 
 91 ISO 
 
 91 185 
 
 91 190 
 
 91 196 
 
 91 201 
 
 91 206 
 
 91212 
 
 91217 
 
 817 
 
 91222 
 
 91228 
 
 91233 
 
 91238 
 
 91243 
 
 91 249 
 
 91 254 
 
 91 259 
 
 91 265 
 
 91270 
 
 818 
 
 91275 
 
 9128L 
 
 91 286 
 
 91 291 
 
 91297 
 
 91302 
 
 91307 
 
 91 312 
 
 91318 
 
 91323 
 
 819 
 
 91328 
 
 91334 
 
 91339 
 
 91344 
 
 91350 
 
 91355 
 
 91360 
 
 91365 
 
 91371 
 
 91376 
 
 82O 
 
 91381 
 
 91387 
 
 91 392 
 
 91397 
 
 91403 
 
 91 408 
 
 91413 
 
 91418 
 
 91424 
 
 91429 
 
 821 
 
 91434 
 
 91440 
 
 91445 
 
 91450 
 
 91 455 
 
 91461 
 
 91 466 
 
 91 471 
 
 91477 
 
 91 482 
 
 822 
 
 91487 
 
 91492 
 
 91 498 
 
 91 503 
 
 91 508 
 
 91514 
 
 91519 
 
 91 524 
 
 91 529 
 
 91535 
 
 823 
 
 91540 
 
 91 545 
 
 91 551 
 
 91556 
 
 91 561 
 
 91566 
 
 91 572 
 
 91 577 
 
 91 582 
 
 91 5S7 
 
 824 
 
 91 593 
 
 91 598 
 
 91603 
 
 91609 
 
 91614 
 
 91 619 
 
 91624 
 
 91 630 
 
 91 635 
 
 91 640 
 
 825 
 
 91645 
 
 91651 
 
 91656 
 
 91661 
 
 91666 
 
 91672 
 
 91677 
 
 91 682 
 
 91687 
 
 91693 
 
 826 
 
 91698 
 
 91 703 
 
 91 709 
 
 91714 
 
 91 719 
 
 91 724 
 
 91 730 
 
 91735 
 
 91 740 
 
 91 745 
 
 827 
 
 91751 
 
 91 756 
 
 91 761 
 
 91766 
 
 91772 
 
 91 777 
 
 91 782 
 
 91 787 
 
 91 793 
 
 91798 
 
 828 
 
 91803 
 
 91808 
 
 91814 
 
 91 819 
 
 91S24 
 
 91S29 
 
 91 834 
 
 91 840 
 
 91 845 
 
 91 850 
 
 829 
 
 91855 
 
 91 861 
 
 91866 
 
 91871 
 
 91876 
 
 91 882 
 
 91SS7 
 
 91892 
 
 91 S97 
 
 91 903 
 
 830 
 
 91 90S 
 
 91913 
 
 91918 
 
 91924 
 
 91929 
 
 91934 
 
 91939 
 
 91944 
 
 91 950 
 
 91 955 
 
 831 
 
 91960 
 
 91965 
 
 91971 
 
 91976 
 
 91 981 
 
 91 986 
 
 91 991 
 
 91 997 
 
 92002 
 
 92 007 
 
 832 
 
 92012 
 
 92018 
 
 92023 
 
 92028 
 
 92 033 
 
 92 038 
 
 92044 
 
 92049 
 
 92 054 
 
 92 059 
 
 833 
 
 92065 
 
 92070 
 
 92075 
 
 920SO 
 
 92 085 
 
 92 091 
 
 92 096 
 
 92101 
 
 92 106 
 
 92111 
 
 834 
 
 92117' 
 
 92122 
 
 92 127 
 
 92 132 
 
 92137 
 
 92143 
 
 92 148 
 
 92153 
 
 92158 
 
 92163 
 
 835 
 
 92169 
 
 92174 
 
 92179 
 
 92 184 
 
 921S9 
 
 92195 
 
 92200 
 
 92205 
 
 92210 
 
 92215 
 
 836 
 
 92221 
 
 92226 
 
 92231 
 
 92236 
 
 92 2-11 
 
 92 247 
 
 92 252 
 
 92 257 
 
 92 262 
 
 92267 
 
 837 
 
 92 273 
 
 92278 
 
 92 283 
 
 922SS 
 
 92293 
 
 92298 
 
 92 304 
 
 92 309 
 
 92314 
 
 92319 
 
 838 
 
 92324 
 
 92330 
 
 92335 
 
 92340 
 
 92345 
 
 92 350 
 
 92355 
 
 92361 
 
 92366 
 
 92371 
 
 839 
 
 92376 
 
 92381 
 
 92387 
 
 92392 
 
 92397 
 
 92402 
 
 92407 
 
 92412 
 
 92418 
 
 92423 
 
 840 
 
 92428 
 
 92433 
 
 92 438 
 
 92443 
 
 92449 
 
 92 454 
 
 92 459 
 
 92464 
 
 92469 
 
 92474 
 
 841 
 
 92480 
 
 92485 
 
 92 490 
 
 92495 
 
 92 500 
 
 92 505 
 
 92 511 
 
 92 516 
 
 92 521 
 
 92526 
 
 842 
 
 92531 
 
 92536 
 
 92542 
 
 92 547 
 
 92 552 
 
 92 557 
 
 92 562 
 
 92567 
 
 92572 
 
 92 5 78 
 
 843 
 
 92583 
 
 92588 
 
 92593 
 
 92598 
 
 92 603 
 
 92 609 
 
 92614 
 
 92619 
 
 92624 
 
 92629 
 
 844 
 
 92634 
 
 92639 
 
 92645 
 
 92650 
 
 92655 
 
 92660 
 
 92665 
 
 92670 
 
 92675 
 
 92681 
 
 845 
 
 92686 
 
 92691 
 
 92696 
 
 92701 
 
 92706 
 
 92711 
 
 92716 
 
 92722 
 
 92727 
 
 92 732 
 
 846 
 
 92 737 
 
 92742 
 
 92747 
 
 92 752, 
 
 92 758 
 
 92763 
 
 92 768 
 
 92773 
 
 92 778 
 
 92 783 
 
 847 
 
 92788 
 
 92 793 
 
 92799 
 
 92804 
 
 92809 
 
 92 814 
 
 92 819 
 
 92824 
 
 92 829 
 
 92 834 
 
 848 
 
 92840 
 
 92 845 
 
 92850 
 
 92855 
 
 92 860 
 
 92 865 
 
 92 870 
 
 92 875 
 
 92 SSI 
 
 92SS6 
 
 849 
 
 92891 
 
 92896 
 
 92901 
 
 92906 
 
 92911 
 
 92916 
 
 92921 
 
 92927 
 
 92 932 
 
 92 937 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 800-849 
 
850-899 
 
 25 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 850 
 
 92942 
 
 92947 
 
 92952 
 
 92 957 
 
 92962 
 
 92967 
 
 92973 
 
 92978 
 
 92983 
 
 92988 
 
 851 
 
 92 993 
 
 92 Si98 
 
 93003 
 
 93008 
 
 93013 
 
 93018 
 
 93024 
 
 93029 
 
 93034 
 
 93039 
 
 852 
 
 93044 
 
 93049 
 
 93 054 
 
 93 059 
 
 93064 
 
 93069 
 
 93075 
 
 93080 
 
 93085 
 
 93090 
 
 853 
 
 93095 
 
 93 100 
 
 93105 
 
 93110 
 
 93115 
 
 93120 
 
 93125 
 
 93131 
 
 93136 
 
 93 141 
 
 854 
 
 93146 
 
 93151 
 
 93156 
 
 93161 
 
 93166 
 
 93171 
 
 93176 
 
 93181 
 
 93186 
 
 93192 
 
 855 
 
 93197 
 
 93202 
 
 93207 
 
 93212 
 
 93217 
 
 93222 
 
 93227 
 
 93232 
 
 93237 
 
 93242 
 
 856 
 
 93247 
 
 93252 
 
 93 258 
 
 93263 
 
 93268 
 
 93 273 
 
 93278 
 
 93283 
 
 93 288 
 
 93293 
 
 857 
 
 93 298 
 
 93303 
 
 93308 
 
 93313 
 
 93 318 
 
 93323 
 
 93328 
 
 93334 
 
 93339 
 
 93344 
 
 858 
 
 93 349 
 
 93 354 
 
 93 359 
 
 93364 
 
 93369 
 
 93374 
 
 93379 
 
 93384 
 
 93389 
 
 93394 
 
 859 
 
 93 399 
 
 93404 
 
 93409 
 
 93414 
 
 93420 
 
 93425 
 
 93430 
 
 93435 
 
 93440 
 
 93445 
 
 860 
 
 93450 
 
 93 455 
 
 93460 
 
 93 465 
 
 93470 
 
 93475 
 
 93480 
 
 93485 
 
 93490 
 
 93495 
 
 861 
 
 93 500 
 
 93 505 
 
 93510 
 
 93 515 
 
 93 520 
 
 93 526 
 
 93531 
 
 93536 
 
 93 541 
 
 93546 
 
 862 
 
 93551 
 
 93 556 
 
 93 561 
 
 93566 
 
 93571 
 
 93576 
 
 93 581 
 
 93 586 
 
 93591 
 
 93596 
 
 863 
 
 93601 
 
 93606 
 
 93611 
 
 93616 
 
 93621 
 
 93626 
 
 936.31 
 
 93636 
 
 93641 
 
 93646 
 
 864 
 
 93651 
 
 93656 
 
 93661 
 
 93666 
 
 93671 
 
 93676 
 
 93682 
 
 93687 
 
 93692 
 
 93697 
 
 865 
 
 93702 
 
 93707 
 
 93712 
 
 93717 
 
 93722 
 
 93727 
 
 93732 
 
 93737 
 
 93742 
 
 93747 
 
 866 
 
 93 752 
 
 93 757 
 
 93762 
 
 93767 
 
 93772 
 
 93777 
 
 93782 
 
 93787 
 
 93792 
 
 93797 
 
 867 
 
 93802 
 
 93807 
 
 93812 
 
 93817 
 
 93822 
 
 93827 
 
 93832 
 
 93837 
 
 93842 
 
 93847 
 
 868 
 
 93852 
 
 93857 
 
 93862 
 
 93867 
 
 93872 
 
 93877 
 
 93882 
 
 93887 
 
 93892 
 
 93897 
 
 869 
 
 93902 
 
 93907 
 
 93912 
 
 93917 
 
 93922 
 
 93927 
 
 93932 
 
 93937 
 
 93942 
 
 93947 
 
 870 
 
 93952 
 
 93957 
 
 93962 
 
 93967 
 
 93972 
 
 93977 
 
 93982 
 
 93987 
 
 93992 
 
 93997 
 
 871 
 
 94002 
 
 94007 
 
 94012 
 
 94017 
 
 94022 
 
 94027 
 
 94032 
 
 94037 
 
 94042 
 
 94047 
 
 872 
 
 94 052 
 
 94057 
 
 94 062 
 
 94067 
 
 94072 
 
 94077 
 
 94082 
 
 94086 
 
 94091 
 
 94096 
 
 873 
 
 94101 
 
 94106 
 
 94111 
 
 94116 
 
 94121 
 
 94126 
 
 94131 
 
 94136 
 
 94141 
 
 94146 
 
 874 
 
 94151 
 
 94156 
 
 94161 
 
 94166 
 
 94171 
 
 94176 
 
 94181 
 
 94186 
 
 94191 
 
 94196 
 
 875 
 
 94201 
 
 94206 
 
 94211 
 
 94216 
 
 94221 
 
 94226 
 
 94231 
 
 94236 
 
 94240 
 
 94245 
 
 876 
 
 94 250 
 
 94255 
 
 94260 
 
 94265 
 
 94270 
 
 94275 
 
 94280 
 
 94285 
 
 94290 
 
 94295 
 
 877 
 
 94 300 
 
 94305 
 
 94310 
 
 94315 
 
 94320 
 
 94325 
 
 94330 
 
 94335 
 
 94340 
 
 94345 
 
 878 
 
 94 349 
 
 94354 
 
 94359 
 
 94364 
 
 94369 
 
 94374 
 
 94379 
 
 94384 
 
 94389 
 
 94394 
 
 879 
 
 94399 
 
 94404 
 
 94409 
 
 94414 
 
 94419 
 
 94424 
 
 94429 
 
 94433 
 
 94438 
 
 94443 
 
 88O 
 
 94448 
 
 94453 
 
 94 458 
 
 94463 
 
 94468 
 
 94473 
 
 94478 
 
 94483 
 
 94488 
 
 94493 
 
 881 
 
 94498 
 
 94 503 
 
 94507 
 
 94512 
 
 94517 
 
 94522 
 
 94527 
 
 94532 
 
 94537 
 
 94542 
 
 882 
 
 94 547 
 
 94 552 
 
 94557 
 
 94 562 
 
 94 567 
 
 94571 
 
 94576 
 
 94581 
 
 94586 
 
 94591 
 
 883 
 
 94596 
 
 94601 
 
 94606 
 
 94611 
 
 94616 
 
 94621 
 
 94626 
 
 94630 
 
 94 635 
 
 94640 
 
 884 
 
 94645 
 
 94650 
 
 94655 
 
 94660 
 
 94665 
 
 94670 
 
 94675 
 
 94680 
 
 94685 
 
 94689 
 
 885 
 
 94694 
 
 94699 
 
 94 704 
 
 94709 
 
 94714 
 
 94719 
 
 94724 
 
 94729 
 
 94734 
 
 94738 
 
 886 
 
 94743 
 
 94748 
 
 94753 
 
 94 758 
 
 94763 
 
 94768 
 
 94773 
 
 94778 
 
 94783 
 
 94787 
 
 887 
 
 94792 
 
 94797 
 
 94802 
 
 94 807 
 
 94812 
 
 94817 
 
 94822 
 
 94827 
 
 94832 
 
 94836 
 
 888 
 
 94841 
 
 94846 
 
 94851 
 
 94856 
 
 94861 
 
 94866 
 
 94871 
 
 94876 
 
 94880 
 
 94 885 
 
 889 
 
 94890 
 
 94895 
 
 94900 
 
 94905 
 
 94910 
 
 94915 
 
 94919 
 
 94924 
 
 94929 
 
 94934 
 
 89O 
 
 94939 
 
 94944 
 
 94949 
 
 94954 
 
 94 959 
 
 94963 
 
 94968 
 
 94973 
 
 94978 
 
 94983 
 
 891 
 
 94988 
 
 94993 
 
 94998 
 
 95002 
 
 95007 
 
 95 012 
 
 95 017 
 
 95022 
 
 95 027 
 
 95 032 
 
 892 
 
 95036 
 
 95041 
 
 95046 
 
 95051 
 
 95 056 
 
 95061 
 
 95 066 
 
 95071 
 
 95075 
 
 95080 
 
 893 
 
 95085 
 
 95090 
 
 95095 
 
 95 100 
 
 95 105 
 
 95109 
 
 95 114 
 
 95119 
 
 95 124 
 
 95 129 
 
 894 
 
 95134 
 
 95139 
 
 95143 
 
 95148 
 
 95153 
 
 95 158 
 
 95163 
 
 95168 
 
 95173 
 
 95177 
 
 895 
 
 95 182 
 
 95187 
 
 95192 
 
 95197 
 
 95202 
 
 95 207 
 
 95211 
 
 95216 
 
 95221 
 
 95 226 
 
 896 
 
 95 231 
 
 95 236 
 
 95 240 
 
 95 245 
 
 95 250 
 
 95 255 
 
 95260 
 
 95265 
 
 95 270 
 
 95 274 
 
 897 
 
 95279 
 
 95284 
 
 95289 
 
 95294 
 
 95299 
 
 95 303 
 
 95308 
 
 95313 
 
 95318 
 
 95323 
 
 898 
 
 95328 
 
 95332 
 
 95337 
 
 95342 
 
 95 347 
 
 95 352 
 
 95357 
 
 95361 
 
 95 366 
 
 95 371 
 
 899 
 
 95376 
 
 95381 
 
 95386 
 
 95390 
 
 95395 
 
 95400 
 
 95405 
 
 95410 
 
 95415 
 
 95419 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 850-899 
 
26 
 
 900-949 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 9OO 
 
 95424 
 
 95429 
 
 95434 
 
 95439 
 
 95444 
 
 95448 
 
 95 453 
 
 95458 
 
 95463 
 
 95468 
 
 901 
 
 95472 
 
 95477 
 
 95 482 
 
 95487 
 
 95492 
 
 95497 
 
 95501 
 
 95 406 
 
 95511 
 
 95516 
 
 902 
 
 95 521 
 
 95 525 
 
 95530 
 
 95535 
 
 95 540 
 
 95545 
 
 95 550 
 
 95 554 
 
 95559 
 
 95564 
 
 903 
 
 95569 
 
 95574 
 
 95578 
 
 95 583 
 
 95588 
 
 95 593 
 
 95 598 
 
 95602 
 
 95607 
 
 95612 
 
 904 
 
 95617 
 
 95622 
 
 95626 
 
 95631 
 
 95636 
 
 95641 
 
 95646 
 
 95650 
 
 95655 
 
 95660 
 
 905 
 
 95 665 
 
 95670 
 
 95674 
 
 95679 
 
 95684 
 
 95689 
 
 95694 
 
 95698 
 
 95703 
 
 95708 
 
 906 
 
 95713 
 
 95718 
 
 95 722 
 
 95727 
 
 95732 
 
 95737 
 
 95 742 
 
 95746 
 
 95751 
 
 95 756 
 
 907 
 
 95761 
 
 95 766 
 
 95770 
 
 95775 
 
 95 780 
 
 95785 
 
 95789 
 
 95794 
 
 95799 
 
 95804 
 
 908 
 
 95809 
 
 95813 
 
 95818 
 
 95823 
 
 95828 
 
 95832 
 
 95837 
 
 95 842 
 
 95 847 
 
 95 852 
 
 909 
 
 95856 
 
 95861 
 
 95866 
 
 95871 
 
 95875 
 
 95880 
 
 95885 
 
 95890 
 
 95895 
 
 95899 
 
 910 
 
 95904 
 
 95909 
 
 95 914 
 
 95918 
 
 95923 
 
 95928 
 
 95933 
 
 95 938 
 
 95942 
 
 95947 
 
 911 
 
 95952 
 
 95957 
 
 95961 
 
 95966 
 
 95 971 
 
 95976 
 
 95980 
 
 95985 
 
 95990 
 
 95995 
 
 912 
 
 95999 
 
 96004 
 
 96009 
 
 96014 
 
 96019 
 
 96023 
 
 96028 
 
 96033 
 
 96 038 
 
 96042 
 
 913 
 
 96 047 
 
 96052 
 
 96057 
 
 96061 
 
 96 066 
 
 96071 
 
 96076 
 
 96080 
 
 96085 
 
 96090 
 
 914 
 
 96095 
 
 96099 
 
 96104 
 
 96109 
 
 96114 
 
 96118 
 
 96123 
 
 96128 
 
 96133 
 
 96137 
 
 915 
 
 96142 
 
 96147 
 
 96152 
 
 96 156 
 
 96161 
 
 96166 
 
 96171 
 
 96175 
 
 96180 
 
 96185 
 
 916 
 
 96 190 
 
 96194 
 
 96 199 
 
 96204 
 
 96209 
 
 96213 
 
 96218 
 
 96223 
 
 96227 
 
 96232 
 
 917 
 
 96237 
 
 96242 
 
 96246 
 
 96251 
 
 96 256 
 
 96 261 
 
 96265 
 
 96270 
 
 96275 
 
 96280 
 
 918 
 
 96284 
 
 96289 
 
 96294 
 
 96298 
 
 96303 
 
 96308 
 
 96313 
 
 96317 
 
 96322 
 
 96327 
 
 919 
 
 96332 
 
 96336 
 
 96341 
 
 96346 
 
 96350 
 
 96355 
 
 96360 
 
 96365 
 
 96369 
 
 96374 
 
 92O 
 
 96379 
 
 96384 
 
 96388 
 
 96393 
 
 96398 
 
 96402 
 
 96407 
 
 96412 
 
 96417 
 
 96421 
 
 921 
 
 96426 
 
 96431 
 
 96435 
 
 96440 
 
 96445 
 
 96450 
 
 96454 
 
 96459 
 
 96464 
 
 96468 
 
 922 
 
 96473 
 
 96478 
 
 96483 
 
 96487 
 
 96492 
 
 96497 
 
 96501 
 
 96506 
 
 96511 
 
 96515 
 
 923 
 
 96520 
 
 96 525 
 
 96530 
 
 96 534 
 
 96539 
 
 96 544 
 
 96 548 
 
 96 553 
 
 96558 
 
 96562 
 
 924 
 
 96567 
 
 96572 
 
 96577 
 
 96581 
 
 96586 
 
 96591 
 
 96595 
 
 96600 
 
 96605 
 
 96 609 
 
 925 
 
 96614 
 
 96619 
 
 96624 
 
 96628 
 
 96633 
 
 96638 
 
 96642 
 
 96647 
 
 96652 
 
 96656 
 
 926 
 
 96661 
 
 96666 
 
 96670 
 
 96675 
 
 96680 
 
 96685 
 
 96689 
 
 96694 
 
 96699 
 
 96703 
 
 927 
 
 96708 
 
 96713 
 
 96717 
 
 96722 
 
 96727 
 
 96731 
 
 '96736 
 
 96741 
 
 96745 
 
 96750 
 
 928 
 
 96755 
 
 96759 
 
 96764 
 
 96 769 
 
 96774 
 
 96778 
 
 96783 
 
 96788 
 
 96792 
 
 96797 
 
 929 
 
 96802 
 
 96806 
 
 96811 
 
 96 816 
 
 96820 
 
 96825 
 
 96830 
 
 96834 
 
 96839 
 
 96844 
 
 93O 
 
 96848 
 
 96853 
 
 96858 
 
 96862 
 
 96867 
 
 96872 
 
 96876 
 
 96881 
 
 96886 
 
 96890 
 
 931 
 
 96895 
 
 96900 
 
 96904 
 
 96909 
 
 96914 
 
 96918 
 
 96923 
 
 96928 
 
 96 932 
 
 96937 
 
 932 
 
 96942 
 
 96946 
 
 96951 
 
 96956 
 
 96 960 
 
 96965 
 
 96 970 
 
 96974 
 
 96979 
 
 96984 
 
 933 
 
 96988 
 
 96993 
 
 96997 
 
 97002 
 
 97007 
 
 97011 
 
 97016 
 
 97021 
 
 97025 
 
 97030 
 
 934 
 
 97035 
 
 97039 
 
 97044 
 
 97049 
 
 97053 
 
 97058 
 
 97063 
 
 97067 
 
 97072 
 
 97077 
 
 935 
 
 97081 
 
 97086 
 
 97090 
 
 97 095 
 
 97100 
 
 97104 
 
 97109 
 
 97114 
 
 97118 
 
 97123 
 
 936 
 
 97128 
 
 97132 
 
 97137 
 
 97142 
 
 97146 
 
 97151 
 
 97 155 
 
 97160 
 
 97165 
 
 97169 
 
 937 
 
 97174 
 
 97179 
 
 97183 
 
 97188 
 
 97192 
 
 97197 
 
 97202 
 
 97206 
 
 97211 
 
 97216 
 
 938 
 
 97220 
 
 97225 
 
 97230 
 
 97234 
 
 97239 
 
 97243 
 
 97248 
 
 97253 
 
 97257 
 
 97262 
 
 939 
 
 97267 
 
 97271 
 
 97276 
 
 97280 
 
 97285 
 
 97290 
 
 97294 
 
 97299 
 
 97304 
 
 97308 
 
 940 
 
 97313 
 
 97317 
 
 97322 
 
 97327 
 
 97331 
 
 97336 
 
 97340 
 
 97345 
 
 97350 
 
 97354 
 
 941 
 
 97359 
 
 97364 
 
 97368 
 
 97373 
 
 97377 
 
 97382 
 
 97387 
 
 97391 
 
 97396 
 
 97400 
 
 942 
 
 97405 
 
 97410 
 
 97414 
 
 97419 
 
 97424 
 
 97428 
 
 97 433 
 
 97437 
 
 97442 
 
 97 447 
 
 943 
 
 97451 
 
 97 456 
 
 97 460 
 
 97465 
 
 97470 
 
 97474 
 
 97479 
 
 97483 
 
 97488 
 
 97493 
 
 944 
 
 97497 
 
 97 502 
 
 97506 
 
 97511 
 
 97516 
 
 97 520 
 
 97 525 
 
 97529 
 
 97534 
 
 97539 
 
 945 
 
 97543 
 
 97548 
 
 97 552 
 
 97557 
 
 97562 
 
 97566 
 
 9757,1 
 
 97575 
 
 97580 
 
 97585 
 
 946 
 
 97 589 
 
 97594 
 
 97598 
 
 97603 
 
 97607 
 
 97612 
 
 97617 
 
 97621 
 
 97626 
 
 97630 
 
 947 
 
 97 635 
 
 97640 
 
 97 644 
 
 97649 
 
 97653 
 
 97658 
 
 97663 
 
 97667 
 
 97672 
 
 97676 
 
 948 
 
 97681 
 
 97685 
 
 97690 
 
 97695 
 
 . 97 699 
 
 97704 
 
 97708 
 
 97713 
 
 97717 
 
 97722 
 
 949 
 
 97727 
 
 97731 
 
 97736 
 
 97740 
 
 97745 
 
 97749 
 
 97 754 
 
 97759 
 
 97763 
 
 97768 
 
 No. 
 
 O 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 900-949 
 
950-1000 
 
 27 
 
 No. 
 
 o 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 950 
 
 97772 
 
 97777 
 
 97782 
 
 97 786 
 
 97791 
 
 97795 
 
 97800 
 
 97804 
 
 97 809 
 
 97813 
 
 951 
 
 97818 
 
 97823 
 
 97827 
 
 97 832 
 
 97836 
 
 97841 
 
 97 845 
 
 97850 
 
 97855 
 
 97859 
 
 952 
 
 97864 
 
 97868 
 
 97873 
 
 97877 
 
 97882 
 
 97886 
 
 97891 
 
 97896 
 
 97900 
 
 97905 
 
 953 
 
 97909 
 
 97 914 
 
 97918 
 
 97923 
 
 97928 
 
 97932 
 
 97937 
 
 97941 
 
 97946 
 
 97950 
 
 954 
 
 97955. 
 
 97959 
 
 97964 
 
 97968 
 
 97973 
 
 97978 
 
 97982 
 
 97987 
 
 97991 
 
 97996 
 
 955 
 
 98000 
 
 98005 
 
 98009 
 
 98014 
 
 98019 
 
 98023 
 
 98028 
 
 98032 
 
 98037 
 
 98041 
 
 956 
 
 98046 
 
 98050 
 
 98055 
 
 98059 
 
 98064 
 
 98068 
 
 98073 
 
 98078 
 
 98082 
 
 98087 
 
 957 
 
 98091 
 
 98096 
 
 98100 
 
 98105 
 
 98109 
 
 98114 
 
 98118 
 
 98123 
 
 98127 
 
 98132 
 
 958 
 
 98137 
 
 98141 
 
 98146 
 
 98150 
 
 98155 
 
 98 159 
 
 98164 
 
 98 168 
 
 98173 
 
 98177 
 
 959 
 
 98182 
 
 98186 
 
 98191 
 
 98195 
 
 98200 
 
 98204 
 
 98209 
 
 98214 
 
 98218 
 
 98223 
 
 96O 
 
 98227 
 
 98 232 
 
 98 236 
 
 98241 
 
 98 245 
 
 98250 
 
 98254 
 
 98259 
 
 98263 
 
 98268 
 
 961 98272 
 
 98277 
 
 98281 
 
 98286 
 
 98290 
 
 98295 
 
 98299 
 
 98304 
 
 98308 
 
 98313 
 
 962 98318 
 
 98322 
 
 98327 
 
 98331 
 
 98336 
 
 98340 
 
 98345 
 
 98349 
 
 98354 
 
 98358 
 
 963 98363 
 
 98367 
 
 98372 
 
 98376 
 
 98 381 
 
 98385 
 
 98390 
 
 98394 
 
 98399 
 
 98403 
 
 964 
 
 98408 
 
 98412 
 
 98417 
 
 98421 
 
 98426 
 
 98430 
 
 98435 
 
 98439 
 
 98444 
 
 98448 
 
 965 
 
 98453 
 
 98457 
 
 98462 
 
 98466 
 
 98471 
 
 98475 
 
 98480 
 
 98484 
 
 98489 
 
 98493 
 
 966 
 
 98498 
 
 98502 
 
 98507 
 
 98511 
 
 98516 
 
 98520 
 
 98525 
 
 98529 
 
 98534 
 
 98538 
 
 967 
 
 98 543 
 
 98547 
 
 98552 
 
 98556 
 
 98561 
 
 98565 
 
 98570 
 
 98574 
 
 98579 
 
 98 583 
 
 968 
 
 98588 
 
 98592 
 
 98597 
 
 98601 
 
 98605 
 
 98610 
 
 98614 
 
 98 619 
 
 98623 
 
 98628 
 
 969 
 
 98632 
 
 98637 
 
 98641 
 
 98646 
 
 98650 
 
 98 655 
 
 98659 
 
 98664 
 
 98668 
 
 98673 
 
 97O 
 
 98677 
 
 98682 
 
 98686 
 
 98691 
 
 98695 
 
 98700 
 
 98704 
 
 98709 
 
 98713 
 
 98717 
 
 971 
 
 98722 
 
 98726 
 
 98731 
 
 98735 
 
 98740 
 
 98744 
 
 98749 
 
 98753 
 
 98758 
 
 98762 
 
 972 
 
 98767 
 
 98771 
 
 98776 
 
 98780 
 
 98 784 . 
 
 98789 
 
 98793 
 
 98798 
 
 98802 
 
 98807 
 
 973 
 
 98811 
 
 98816 
 
 98820 
 
 98825 
 
 98829 
 
 98834 
 
 98838 
 
 98843 
 
 98847 
 
 98851 
 
 974 
 
 98856 
 
 98860 
 
 98865 
 
 98869 
 
 98874 
 
 98878 
 
 98883 
 
 98887 
 
 98892 
 
 98896 
 
 975 
 
 98900 
 
 98905 
 
 98909 
 
 98914 
 
 98918 
 
 98923 
 
 98927 
 
 98932 
 
 98936 
 
 98941 
 
 976 
 
 98945 
 
 98949 
 
 98954 
 
 98958 
 
 98963 
 
 98967 
 
 98972 
 
 98976 
 
 98981 
 
 98985 
 
 977 
 
 98989 
 
 98 994 
 
 98998 
 
 99003 
 
 99007 
 
 99012 
 
 99016 
 
 99021 
 
 99025 
 
 99029 
 
 978 
 
 99034 
 
 99038 
 
 99043 
 
 99047 
 
 99052 
 
 99056 
 
 99061 
 
 99065 
 
 99 069 
 
 99074 
 
 979 
 
 99078 
 
 99083 
 
 99087 
 
 99092 
 
 99096 
 
 99100 
 
 99105 
 
 99 109 
 
 99114 
 
 99118 
 
 980 
 
 99123 
 
 99127 
 
 99131 
 
 99136 
 
 99 140 
 
 99 145 
 
 99149 
 
 99154 
 
 99158 
 
 99162 
 
 981 
 
 99167 
 
 99171 
 
 99176 
 
 99 180 
 
 99185 
 
 99189 
 
 99193 
 
 99198 
 
 99202 
 
 99207 
 
 982 
 
 99211 
 
 99216 
 
 99220 
 
 99224 
 
 99 229 
 
 99233 
 
 99238 
 
 99242 
 
 99247 
 
 99251 
 
 983 
 
 99255 
 
 99260 
 
 99264 
 
 99269 
 
 99273 
 
 99277 
 
 99282 
 
 99286 
 
 99291 
 
 99 295 
 
 984 
 
 99300 
 
 99304 
 
 99308 
 
 99313 
 
 99317 
 
 99322 
 
 99326 
 
 99330 
 
 99335 
 
 99339 
 
 985 
 
 99 344 
 
 99348 
 
 99352 
 
 99357 
 
 99361 
 
 99366 
 
 99370 
 
 99374 
 
 99379 
 
 99383 
 
 986 
 
 99 388 
 
 99392 
 
 99396 
 
 99401 
 
 99405 
 
 99410 
 
 99414 
 
 99419 
 
 99423 
 
 99427 
 
 987 
 
 99432 
 
 99436 
 
 99441 
 
 99445 
 
 99449 
 
 99454 
 
 99458 
 
 99463 
 
 99467 
 
 99471 
 
 988 99476 
 
 99480 
 
 99 484 
 
 99489 
 
 99493 
 
 99498 
 
 99 502 
 
 99 506 
 
 99511 
 
 99515 
 
 989 99520 
 
 99524 
 
 99528 
 
 99533 
 
 99537 
 
 99542 
 
 99546 
 
 99550 
 
 99 555 
 
 99559 
 
 990 
 
 99 564 
 
 99568 
 
 99 572 
 
 99 577 
 
 99 581 
 
 99 585 
 
 99590 
 
 99594 
 
 99599 
 
 99603 
 
 991 
 
 99607 
 
 99612 
 
 99616 
 
 99621 
 
 99625 
 
 99629 
 
 99 634 
 
 99638 
 
 99642 
 
 99647 
 
 992 
 
 99651 
 
 99656 
 
 99660 
 
 99664 
 
 99 669 
 
 99673 
 
 99677 
 
 99682 
 
 99686 
 
 99691 
 
 993 
 
 99695 
 
 99699 
 
 99704 
 
 99708 
 
 99712 
 
 99717 
 
 99721 
 
 99726 
 
 99730 
 
 99734 
 
 994 99739 
 
 99743 
 
 99747 
 
 99752 
 
 99756 
 
 99760 
 
 99765 
 
 99769 
 
 99774 
 
 99778 
 
 995 
 
 99782 
 
 99787 
 
 99791 
 
 99795 
 
 99800 
 
 99804 
 
 99808 
 
 99813 
 
 99817 
 
 99822 
 
 996 99826 
 
 99 830 
 
 99835 
 
 99839 
 
 99843 
 
 99848 
 
 99 852 
 
 99 856 
 
 99861 
 
 99865 
 
 997 99870 
 
 99874 
 
 99878 
 
 99883 
 
 99887 
 
 99891 
 
 99896 
 
 99900 
 
 99904 
 
 99909 
 
 998 99913 
 
 99917 
 
 99922 
 
 99926 
 
 99930 
 
 99935 
 
 99939 
 
 99944 
 
 99948 
 
 99952 
 
 999 
 
 99957 
 
 99961 
 
 99965 
 
 99970 
 
 99974 
 
 99978 
 
 99983 
 
 99987 
 
 99991 
 
 99996 
 
 1OOO 00000 
 
 00004 
 
 00009 
 
 00013 
 
 00017 
 
 00022 
 
 00026 
 
 00030 
 
 00035 
 
 00039 
 
 No. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 950-1000 
 
TABLE II -USEFUL CONSTANTS AND THEIR LOGARITHMS 
 
 
 LOG 
 
 Circumference of the Circle in Degrees 360 
 
 2. 55 630 250 
 
 Circumference of the Circle in Minutes = 21 600 
 
 4.3344537.S 
 
 Circumference of the Circle in Seconds 1296000 
 
 6.11 260500 
 
 If the radius = 1, the semi-circumference is 
 
 
 TT 3. 14 159 265 358 979 323 846 764 338 378 
 
 0.49714987 
 
 ALSO 
 
 LOG 
 
 7r 2 = 9.86960440 
 
 0.99429975 
 
 27r= 6.28318531 
 
 0.79817987 
 
 = 0.10132118 
 
 9.00570025 - 10 
 
 47r = 12.56637061 
 
 1.09920986 
 
 7T- 
 
 
 = 1.57079633 
 
 0.19611988 
 
 VV = 1. 77 245 385 
 
 0.24857494 
 
 2 
 
 
 
 
 = 1.04719755 
 
 0.02002862 
 
 JL =0.56418958 
 
 9. 75 142 506 - 10 
 
 3 
 
 
 VTT 
 
 
 ~= 4.18879020 
 
 0. 62 208 861 
 
 /I 
 
 
 3 
 
 
 \/- = 0.97 720 502 
 
 9.98998569- 10 
 
 = 0.78539816 
 
 9.89508988- 10 
 
 
 
 4 
 
 
 /4 
 
 
 
 
 \/-= 1.12837917 
 
 0. 05 245 506 
 
 = 0.52359878 
 
 9.71899862- 10 
 
 \7T 
 
 
 6 
 
 
 
 
 i 
 
 
 -v/TT = 1.46459189 
 
 0.16571662 
 
 -i.= 0.31830989 
 
 9. 50 285 013 - 10 
 
 
 
 7T 
 1 
 
 
 -^ = 0.68278406 
 
 9.83428338-10 
 
 = 0. 15 915 494 
 
 9.20182013-10 
 
 VTT 
 
 
 2-jr 
 
 
 
 
 = 0.95492966 
 
 9.97997138- 10 
 
 vV = 2. 14 502 940 
 
 0.33143325 
 
 7T 
 
 
 8/~5~" 
 
 
 ^-= 1.27323954 
 
 0.10491012 
 
 V /A. = 0.62 035 049 
 \4w 
 
 9.79263713 - 10 
 
 7T 
 
 
 
 
 = 0. 23 873 241 
 
 9. 37 791 139 - 10 
 
 \ 8 / = 0.80 599 598 
 
 9.90633287- 10 
 
 4?r 
 
 
 \ 6 
 
 
 Angle 0, whose arc is equal to the radius r, is 
 
 
 180 
 in degrees, = =57.29577951 
 
 7T 
 
 1.75812263 
 
 10800 
 
 
 in minutes, 0' 3437 74677' 
 
 3.53627388 
 
 7T 
 
 
 648000 
 
 
 in seconds 0" 206264806" 
 
 5.31 442 513 
 
 
 
 Angle 2 0, whose arc is equal to twice the radius, 2 r, is 
 
 
 in degrees, 20= = 114. 59 155 903 
 
 2. 05 915 263 
 
 7T 
 
 
 in minutes, 2 0' - 21 60 -687549354' 
 
 3.837303*88 
 
 7T 
 
 
 in seconds 20" 12 96000 412529612" 
 
 5.61545513 
 
 7T 
 
 
 If the radius r = 1, the length of the arc is : 
 
 
 for 1 degree = -~- = = 0. 01 745 329 . 
 
 8.24187737-10 
 
 J 180 
 
 
 for 1 minute = -L = ?_ = 0. 00 029 089 , 
 
 6.46372612- 10 
 
 0' 10 800 
 
 
 for 1 second = -L- = - = 0. 00 000 485 
 
 4. 68 557 487 ~ 10 
 
 0" 648000 
 
 
 for & degree = -^ = ^ =0.00872665 .... 
 
 7.94084737- 10 
 
 for 2 minute - 
 
 1 TT c 
 
 1.00014544 .... 
 
 6.16269612 10 
 
 2 0' 21 600 
 
 for .> second - 
 
 1 r - 
 
 .00000242 .... 
 
 4.38454487 10 
 
 20" 1296000 
 
 Sin 1", when the radius r - 1, is . . .=0.00000485 . . . . 
 
 4.68557487- 10 
 
TABLE III 
 
 LOGARITHMS 
 
 OF THE 
 
 TRIGONOMETRIC FUNCTIONS 
 
 From 0' to 3', and from 89 57' to 90, for every second 
 From to 2, and from 88 to 90, for every ten seconds 
 From 1 to 89, for every minute 
 
 NOTE. The characteristic of every logarithm in the following table is too 
 large by 10. Therefore, 10 should be written after every logarithm. 
 
 L sin and L tan U I< sin and L tan 
 
 //. 
 
 
 
 1' 
 
 6.46 373 
 6.47 090 
 6.47 797 
 6.48 492 
 6.49 175 
 
 2' 
 
 6.76476 
 6.76 836 
 6.77 193 
 6.77 548 
 6.77 900 
 
 // 
 
 // 
 
 O' 
 
 6.16270 
 6.17694 
 6.19072 
 6.20 409 
 6.21 705 
 
 1' 
 
 6.63 982 
 6.64 462 
 6.64 936 
 6.65 406 
 6.65 870 
 
 2' 
 
 6.86 167 
 6.86455 
 6.86 742 
 6.87 027 
 6.87 310 
 
 // 
 
 O 
 
 1 
 
 2 
 
 3 
 4 
 
 6O 
 
 59 
 
 58 
 57 
 56 
 
 30 
 
 31 
 32 
 33 
 34 
 
 30 
 
 29 
 28 
 27 
 26 
 
 4.68 557 
 4.98 660 
 5.16270 
 5.28 763 
 
 5 
 6 
 
 7 
 8 
 9 
 
 5.38 454 
 5.46373 
 5.53 067 
 5.58 866 
 5.63 982 
 
 6.49 849 
 6.50512 
 6.51 165 
 6.51 808 
 6.52 442 
 
 6.78 248 
 6.78 595 
 6.78 938 
 6.79278 
 6.79616 
 
 55 
 54 
 53 
 52 
 51 
 
 35 
 36 
 37 
 38 
 39 
 
 6.22 964 
 6.24 188 
 6.25 378 
 6.26 536 
 6.27 664 
 
 6.66 330 
 6.66 785 
 6.67 235 
 6.67 680 
 6.68 121 
 
 6.87 591 
 6.87 870 
 6.88 147 
 6.88 423 
 6.88 697 
 
 25 
 24 
 23 
 22 
 21 
 
 10 
 
 11 
 12 
 13 
 14 
 
 5.68557 
 5.72 697 
 5.76476 
 5.79952 
 5.83 170 
 
 6.53 067 
 6 53 683 
 6.54 291 
 6.54 890 
 6.55 481 
 
 6.79952 
 6.80 285 
 6.80615 
 6.80 943 
 6.81 268 
 
 50 
 
 49 
 48 
 47 
 46 
 
 40 
 
 41 
 42 
 43 
 44 
 
 6.28 763 
 6.29 836 
 6.30 882 
 6.31 904 
 6.32 903 
 
 6.68 557 
 6.68 990 
 6.69 418 
 6.69 841 
 6.70 261 
 
 6.88 969 
 6.89 240 
 6.89 509 
 6.89 776 
 6.90 042 
 
 2O 
 
 19 
 18 
 17 
 16 
 
 15 
 16 
 17 
 18 
 19 
 
 5.86 167 
 5.88969 
 5.91 602 
 5.94085 
 5.96433 
 
 6.56064 
 6.56 639 
 6.57 207 
 6.57 767 
 6.58 320 
 
 6.81 591 
 6.81 911 
 6.82 230 
 6.82 545 
 6.82 859 
 
 45 
 44 
 43 
 42 
 41 
 
 45 
 46 
 47 
 48 
 49 
 
 6.33 879 
 6.34 833 
 6.35 767 
 6.36 682 
 6.37 577 
 
 6.70676 
 6.71 088 
 6.71 496 
 6.71 900 
 6.72 300 
 
 6.90306 
 6.90 568 
 6.90 829 
 6.91 088 
 6.91346 
 
 15 
 14 
 13 
 12 
 11 
 
 20 
 
 21 
 22 
 23 
 24 
 
 5.98660 
 6.00 779 
 6.02 800 
 6.04 730 
 6.06579 
 
 6.58 866 
 6.59 406 
 6.59 939 
 6.60 465 
 6.60 985 
 
 6.83 170 
 6.83479 
 6.83 786 
 6.84 091 
 6.84394 
 
 40 
 
 39 
 
 38 
 37 
 66 
 
 50 
 
 51 
 
 52 
 53 
 54 
 
 6.38 454 
 6.39315 
 6.40 158 
 6.40 985 
 6.41 797 
 
 6.72 697 
 6.73 090 
 6.73 479 
 6.73 865 
 6.74 248 
 
 6.91 602 
 6.91 857 
 6.92 110 
 6.92 362 
 6.92 612 
 
 1O 
 
 9 
 
 8 
 7 
 6 
 
 25 
 26 
 
 27 
 28 
 29 
 
 6.08351 
 6.10055 
 6.11694 
 6.13 273 
 6.14 797 
 
 6.61 499 
 6.62 007 
 6.62 509 
 6.63 006 
 6.63 496 
 
 6.84 694 
 6.84 993 
 6.85 289 
 6.85 584 
 6.85 876 
 
 35 
 34 
 33 
 32 
 31 
 
 55 
 56 
 57 
 58 
 59 
 
 6.42 594 
 6.43 376 
 6.44 145 
 6.44 900 
 6.45 643 
 
 6.74 627 
 6.75 003 
 6.75 376 
 6.75 746 
 6.76 112 
 
 6.92 861 
 6.93 109 
 6.93 355 
 6.93 599 
 6.93 843 
 
 5 
 4 
 3 
 
 2 
 1 
 
 30 
 
 6.16270 
 59' 
 
 6.63 982 
 58' 
 
 6.86 167 
 
 57' 
 
 30 
 
 6O 
 
 6.46373 
 59' 
 
 6.76 476 
 58' 
 
 6.94 085 
 
 57' 
 
 O 
 
 " 
 
 " 
 
 " 
 
 " 
 
 L cos and L cot 
 
 89' 
 
 L cos and L cot 
 
 29 
 
30 
 
 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan I cos 
 
 // / 
 
 On 
 
 10 00000 
 
 fiO 
 
 1O 
 
 746^7^ 7 46 37"? 1000000 
 
 fft 
 
 V 
 
 10 
 
 5.68557 5.68557 10.00000 
 
 V/ \J VJ 
 
 50 
 
 J_ Vr \J 
 
 10 
 
 / . I O O t O / . i O O / O \J.\J\J \J\J\J 
 
 7.47090 7.47091 10.00000 
 
 U Ovr 
 
 50 
 
 20 
 
 5.98660 5.98660 10.00000 
 
 40 
 
 20 
 
 7.47797 7.47797 10.00000 
 
 40 
 
 30 
 
 6.16270 6.16270 10.00000 
 
 30 
 
 30 
 
 7.48491 7.48492 10.00000 
 
 30 
 
 40 
 
 6.28763 6.28763 10.00000 
 
 20 
 
 40 
 
 7.49175 7.49175 10.00000 
 
 20 
 
 50 
 
 6.38454 6.38454 10.00000 
 
 10 
 
 50 
 
 7.49 849 7.49849 10.00000 
 
 10 
 
 1 
 
 6.46373 6.46373 10.00000 
 
 59 
 
 11 
 
 7.50512 7.50512 10.00000 
 
 049 
 
 10 
 
 6.53067 6.53067 10.00000 
 
 50 
 
 10 
 
 7.51165 7.51165 10.00000 
 
 50 
 
 20 
 
 6.58866 6.58866 10.00000 
 
 40 
 
 20 
 
 7.51808 7.51809 10.00000 
 
 40 
 
 30 
 
 6.63982 6.63982 10.00000 
 
 30 
 
 30 
 
 7.52442 7.52443 10.00000 
 
 30 
 
 40 
 
 6.68557 6.68557 10.00000 
 
 20 
 
 40 
 
 7.53067 7.53067 10.00000 
 
 20 
 
 50 
 
 6.72697 6.72697 10.00000 
 
 10 
 
 50 
 
 7.53683 7.53683 10.00000 
 
 10 
 
 2 
 
 6.76476 6.76476 10.00000 
 
 58 
 
 12 
 
 7.54291 7.54291 10.00000 
 
 048 
 
 10 
 
 6.79952 6.79952 10.00000 
 
 50 
 
 10 
 
 7.54890 7.54890 10.00000 
 
 50 
 
 20 
 
 6.83170 6.83170 10.00000 
 
 40 
 
 20 
 
 7.55481 7.55481 10.00000 
 
 40 
 
 30 
 
 6.86167 6.86167 10.00000 
 
 30 
 
 30 
 
 7.56064 7.56064 10.00000 
 
 30 
 
 40 
 
 6.88969 6.88969 10.00000 
 
 20 
 
 40 
 
 7.56639 7.56639 10.00000 
 
 20 
 
 50 
 
 6.91602 6.91602 10.00000 
 
 10 
 
 50 
 
 7.57206 7.57206 10.00000 
 
 10 
 
 3 
 
 6.94085 6.94085 10.00000 
 
 57 
 
 13 
 
 7.57767 7.57767 10.00000 
 
 047 
 
 10 
 
 6.96433 6.96433 10.00000 
 
 50 
 
 10 
 
 7.58320 7.58320 10.00000 
 
 50 
 
 20 
 
 6.98660 6.98661 10.00000 
 
 40 
 
 20 
 
 7.58866 7.58867 10.00000 
 
 40 
 
 30 
 
 7.00779 7.00779 10.00000 
 
 30 
 
 30 
 
 7.59406 7.59406 10.00000 
 
 30 
 
 40 
 
 7.02800 7.02800 10.00000 
 
 20 
 
 40 
 
 7.59939 7.59939 10.00000 
 
 20 
 
 50 
 
 7.04730 7.04730 10.00000 
 
 10 
 
 50 
 
 7.60465 7.60466 10.00000 
 
 10 
 
 4 
 
 7.06579 7.06579 10.00000 
 
 56 
 
 14 
 
 7.60985 7.60986 10.00000 
 
 046 
 
 10 
 
 7.08351 7.08352 10.00000 
 
 50 
 
 10 
 
 7.61499 7.61500 10.00000 
 
 50 
 
 20 
 
 7.10055 7.10055 10.00000 
 
 40 
 
 20 
 
 7.62007 7.62008 10.00000 
 
 40 
 
 30 
 
 7.11694 7.11694 10.00000 
 
 30 
 
 30 
 
 7.62509 7.62510 10.00000 
 
 30 
 
 40 
 
 7.13273 7.13273 10.00000 
 
 20 
 
 40 
 
 7.63006 7.63006 10.00000 
 
 20 
 
 50 
 
 7.14797 7.14797 10.00000 
 
 10 
 
 50 
 
 7.63496 7.63497 10.00000 
 
 10 
 
 5 
 
 7.16270 7.16270 10.00000 
 
 55 
 
 15 
 
 7.63982 7.63982 10.00000 
 
 045 
 
 10 
 
 7.17694 7.17694 10.00000 
 
 50 
 
 10 
 
 7.64461 7.64462 10.00000 
 
 50 
 
 20 
 
 7.19072 7.19073 10.00000 
 
 40 
 
 20 
 
 7.64936 7.64937 10.00000 
 
 40 
 
 30 
 
 7.20409 7.20409 10.00000 
 
 30 
 
 30 
 
 7.65406 7.65406 10.00000 
 
 30 
 
 40 
 
 7.21705 7.21705 10.00000 
 
 20 
 
 40 
 
 7.65870 7.65871 10.00000 
 
 20 
 
 50 
 
 7.22964 7.22964 10.00000 
 
 10 
 
 50 
 
 7.66330 7.66330 10.00000 
 
 10 
 
 6 
 
 7.24188 7.24188 10.00000 
 
 54 
 
 16 
 
 7.66784 7.66785 10.00000 
 
 044 
 
 10 
 
 7.25378 7.25378 10.00000 
 
 50 
 
 10 
 
 7.67235 7.67235 10.00000 
 
 50 
 
 20 
 
 7.26536 7.26536 10.00000 
 
 40 
 
 20 
 
 7.67680 7.67680 10.00000 
 
 40 
 
 30 
 
 7.27664 7.27664 10.00000 
 
 30 
 
 30 
 
 7.68121 7.68121 10.00000 
 
 30 
 
 40 
 
 7.28763 7.28764 10.00000 
 
 20 
 
 40 
 
 7.68557 7.68558 9.99999 
 
 20 
 
 50 
 
 7.29836 7.29836 10.00000 
 
 10 
 
 50 
 
 7.68989 7.68990 9.99999 
 
 10 
 
 7 
 
 7.30882 7.30882 10.00000 
 
 53 
 
 17 
 
 7.69417 7.69418 9.99999 
 
 043 
 
 10 
 
 7.31904 7.31904 10.00000 
 
 50 
 
 10 
 
 7.69841 7.69842 9.99999 
 
 50 
 
 20 
 
 7.32903 7.32903 10.00000 
 
 40 
 
 20 
 
 7.70261 7.70261 9.99999 
 
 40 
 
 30 
 
 7.33879 7.33879 10.00000 
 
 30 
 
 30 
 
 7.70676 7.70677 9.99999 
 
 30 
 
 40 
 
 7.34833 7.34833 10.00000 
 
 20 
 
 40 
 
 7.71088 7.71088 9.99999 
 
 20 
 
 50 
 
 7.35767 7.35767 10.00000 
 
 10 
 
 50 
 
 7.71496 7.71496 9.99999 
 
 10 
 
 8 
 
 7.36682 7.36682 10.00000 
 
 52 
 
 18 
 
 7.71900 7.71900 9.99999 
 
 042 
 
 10 
 
 7.37577 7.37577 10.00000 
 
 50 
 
 10 
 
 7.72300 7.72301 9.99999 
 
 50 
 
 20 
 
 7.38454 7.38455 10.00000 
 
 40 
 
 20 
 
 7.72697 7.72697 9.99999 
 
 40 
 
 30 
 
 7.39314 7.39315 10.00000 
 
 30 
 
 30 
 
 7.73090 7.73090 9.99999 
 
 30 
 
 40 
 
 7.40158 7.40158 10.00000 
 
 20 
 
 40 
 
 7.73479 7.73480 9.99999 
 
 20 
 
 50 
 
 7.40985 7.40985 10.00000 
 
 10 
 
 50 
 
 7.73865 7.73866 9.99999 
 
 10 
 
 9 
 
 7.41797 7.41797 1000000 
 
 51 
 
 19 
 
 7.74248 7.74248 9.99999 
 
 041 
 
 10 
 
 7.42594 7.42594 10.00000 
 
 50 
 
 10 
 
 7.74627 7.74628 9.99999 
 
 50 
 
 20 
 
 7.43376 7.43376 10.00000 
 
 40 
 
 20 
 
 7.75003 7.75004 9.99999 
 
 40 
 
 30 
 
 7.44145 7.44145 10.00000 
 
 30 
 
 30 
 
 7.75376 7.75377 9.99999 
 
 30 
 
 40 
 
 7.44900 7.44900 10.00000 
 
 20 
 
 40 
 
 7.75745 7.75746 9.99999 
 
 20 
 
 50 
 
 7.45643 7.45643 10.00000 
 
 10 
 
 50 
 
 7.76112 7.76113 9.99999 
 
 10 
 
 10 
 
 7.46373 7.46373 10.00000 
 
 5O 
 
 20 
 
 7.76475 7.76476 9.99999 
 
 04O 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 89 
 
81 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 2O 
 
 7.76475 7.76476 9.99999 
 
 4O 
 
 3O 
 
 7.94084 7.94086 9.99998 
 
 03O 
 
 10 
 
 7.76836 7.76837 9.99999 
 
 50 
 
 10 
 
 7.94325 7.94326 9.99998 
 
 50 
 
 20 
 
 7.77 193 7.77 194 9.99 999 
 
 40 
 
 20 
 
 7.94564 7.94566 9.99998 
 
 40 
 
 30 
 
 7.77548 7.77549 9.99999 
 
 30 
 
 30 
 
 7.94802 7.94804 9.99998 
 
 30 
 
 40 
 
 7.77899 7.77900 9.99999 
 
 20 
 
 40 
 
 7.95039 7.95040 9.99998 
 
 20 
 
 50 
 
 7.78248 7.78249 9.99999 
 
 10 
 
 50 
 
 7.95 274 7.95 276 9.99 998 
 
 10 
 
 21 
 
 7.78594 7.78595 9.99999 
 
 39 
 
 31 
 
 7.95508 7.95510 9.99998 
 
 029 
 
 10 
 
 7.78938 7.78938 9.99999 
 
 50 
 
 10 
 
 7.95 741 7.95 743 9.99 998 
 
 50 
 
 20 
 
 7.79278 7.79279 9.99999 
 
 40 
 
 20 
 
 7.95973 7.95974 9.99998 
 
 40 
 
 30 
 
 7.79616 7.79617 9.99999 
 
 30 
 
 30 
 
 7.96203 7.96205 9.99998 
 
 30 
 
 40 
 
 7.79952 7.79952 9.99999 
 
 20 
 
 40 
 
 7.96432 7.96434 9.99998 
 
 20 
 
 50 
 
 7.80284 7.80285 9.99999 
 
 10 
 
 50 
 
 /.96660 7.96662 9.99998 
 
 10 
 
 22 
 
 7.80615 7.80615 9.99999 
 
 38 
 
 32 
 
 7.96887 7.96889 9.99998 
 
 028 
 
 10 
 
 7.80942 7.80943 9.99999 
 
 50 
 
 10 
 
 7.97113 7.97114 9.99998 
 
 50 
 
 20 
 
 7.81 268 7.81 269 9.99 999 
 
 40 
 
 20 
 
 7.97337 7.97339 9.99998 
 
 40 
 
 30 
 
 7.81591 7.81591 9.99999 
 
 30 
 
 30 
 
 7.97560 7.97562 9.99998 
 
 30 
 
 40 
 
 7.81911 7.81912 9.99999 
 
 20 
 
 40 
 
 7.97782 7.97784 9.99998 
 
 20 
 
 50 
 
 7.82229 7.82230 9.99999 
 
 10 
 
 50 
 
 7.98003 7.98005 9.99998 
 
 10 
 
 23 
 
 7.82545 7.82546 9.99999 
 
 37 
 
 33 
 
 7.98223 7.98225 9.99998 
 
 027 
 
 10 
 
 7.82859 7.82860 9.99999 
 
 50 
 
 10 
 
 7.98442 7.98444 9.99998 
 
 50 
 
 20 
 
 7.83170 7.83171 9.99999 
 
 40 
 
 20 
 
 7.98660 7.98662 9.99998 
 
 40 
 
 30 
 
 7.83479 7.83480 9.99999 
 
 30 
 
 30 
 
 7.98876 7.98878 9.99998 
 
 30 
 
 40 
 
 7.83786 7.83787 9.99999 
 
 20 
 
 40 
 
 7.99092 7.99094 9.99998 
 
 20 
 
 50 
 
 7.84091 7.84092 9.99999 
 
 10 
 
 50 
 
 7.99306 7.99308 9.99998 
 
 10 
 
 24 
 
 7.84393 .7.84394 9.99999 
 
 36 
 
 34 
 
 7.99520 7.99522 9.99998 
 
 026 
 
 10 
 
 7.84694 7.84695 9.99999 
 
 50 
 
 10 
 
 7.99732 7.99734 9.99998 
 
 50 
 
 20 
 
 7.84992 7.84993 9.99999 
 
 40 
 
 20 
 
 7.99943 7.99946 9.99998 
 
 40 
 
 30 
 
 7.85289 7.85290 9.99999 
 
 30 
 
 30 
 
 8.00154 8.00156 9.99998 
 
 30 
 
 40 
 
 7.85583 7.85584 9.99999 
 
 20 
 
 40 
 
 8.00363 8.00365 9.99998 
 
 20 
 
 50 
 
 7.85876 7.85877 9.99999 
 
 10 
 
 50 
 
 8.00571 8.00574 9.99998 
 
 10 
 
 25 
 
 7.86166 7.86167 9.99999 
 
 35 
 
 35 
 
 8.00779 8.00781 9.99998 
 
 025 
 
 10 
 
 7.86455 7.86456 9.99999 
 
 50 
 
 10 
 
 8.00985 8.00987 9.99998 
 
 50 
 
 20 
 
 7.86741 7.86743 9.99999 
 
 40 
 
 20 
 
 8.01 190 8.01 193 9.99 998 
 
 40 
 
 30 
 
 7.87026 7.87027 9.99999 
 
 30 
 
 30 
 
 8.01395 8.01397 9.99998 
 
 30 
 
 40 
 
 7.87309 787310 9.99999 
 
 20 
 
 40 
 
 8.01 598 8.01 600 9.99 998 
 
 20 
 
 50 
 
 7.87590 7.87591 9.99999 
 
 10 
 
 50 
 
 8.01801 S.01'803 9.99998 
 
 10 
 
 26 
 
 7.87870 7.87871 9.99999 
 
 34 
 
 36 
 
 8.02002 8.02004 9.99998 
 
 024 
 
 10 
 
 7.88147 7.88148 9.99999 
 
 50 
 
 10 
 
 8.02203 8.02205 9.99998 
 
 50 
 
 20 
 
 7.88423 7.88424 9.99999 
 
 40 
 
 20 
 
 8.02402 8.02405 9.99998 
 
 40 
 
 30 
 
 7.88697 7.88698 9.99999 
 
 30 
 
 30 
 
 8.02601 8.02604 9.99998 
 
 30 
 
 40 
 
 7.88969 7.88970 9.99999 
 
 20 
 
 40 
 
 8.02799 8.02801 9.99998 
 
 20 
 
 50 
 
 7.89240 7.89241 9.99999 
 
 10 
 
 50 
 
 8.02996 8.02998 9.99998 
 
 10 
 
 27 
 
 7.89509 7.89510 9.99999 
 
 33 
 
 37 
 
 8.03 192 8.03 194 9.99 997 
 
 023 
 
 10 
 
 7.89776 7.89777 9.99999 
 
 50 
 
 10 
 
 8.03387 8.03390 9.99997 
 
 50 
 
 20 
 
 7.90041 7.90043 9.99999 
 
 40 
 
 20 
 
 8.03581 8.03584 9.99997 
 
 40 
 
 30 
 
 7.90305 7.90307 9.99999 
 
 30 
 
 30 
 
 8 03 775 8.03 777 9.99 997 
 
 30 
 
 40 
 
 7.90568 7.90569 9.99999 
 
 20 
 
 40 
 
 8.03967 8.03970 9.99997 
 
 20 
 
 50 
 
 7.90829 7.90830 9.99999 
 
 10 
 
 50 
 
 8.04 159 8.04 162 9.99 997 
 
 10 
 
 28 
 
 7.91088 7.91089 9.99999 
 
 32 
 
 38 
 
 8.04350 8.04353 9.99997 
 
 022 
 
 10 
 
 7.91346 7.91347 9.99999 
 
 50 
 
 10 
 
 804540 8.04543 9.99997 
 
 50 
 
 20 
 
 7.91602 7.91603 9.99999 
 
 40 
 
 20 
 
 8.04729 8.04732 9.99997 
 
 40 
 
 30 
 
 7.91857 7.91858 9.99999 
 
 30 
 
 30 
 
 8.04918 8.04921 9.99997 
 
 30 
 
 40 
 
 7.92110 7.92111 9.99998 
 
 20 
 
 40 
 
 8.05 105 8.05 108 9.99 997 
 
 20 
 
 50 
 
 7.92362 7.92363 9.99998 
 
 10 
 
 50 
 
 8.05292 8.05295 9.99997 
 
 1(5 
 
 29 
 
 7.92612 7.92613 9.99998 
 
 31 
 
 39 
 
 8.05 478 8.05 481 9.99 997 
 
 021 
 
 10 
 
 7.92861 7.92862 9.99998 
 
 50 
 
 10 
 
 8.05663 8.05666 9.99997 
 
 50 
 
 20 
 
 7.93108 7.93110 9.99998 
 
 40 
 
 20 
 
 8.05848 8.05851 9.99997 
 
 40 
 
 30 
 
 7.93354 7.93356 9.99998 
 
 30 
 
 30 
 
 8.06031 8.06034 9.99997 
 
 30 
 
 40 
 
 7.93599 7.93601 9.99998 
 
 20 
 
 40 
 
 8.06214 8.06217 9.99997 
 
 20 
 
 50 
 
 7.93842 7.93844 9.99998 
 
 10 
 
 50 
 
 8.06396 8.06399 9.99997 
 
 10 
 
 3O 
 
 7.94084 7.94086 9.99998 
 
 3O 
 
 4O 
 
 8.06578 8.06581 9.99997 
 
 02O 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 89 
 
/ // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 4O 
 
 8.06578 8.06581 9.99997 
 
 2O 
 
 5O 
 
 8.16268 8.16273 9.99995 
 
 01O 
 
 10 
 
 806758 8.06761 9.99997 
 
 50 
 
 10 
 
 8.16413 8.16417 9.99995 
 
 50 
 
 20 
 
 8.06938 8.06941 9.99997 
 
 40 
 
 20 
 
 8.16557 8.16561 9.99995 
 
 40 
 
 30 
 
 8.07117 8.07120 9.99997 
 
 30 
 
 30 
 
 8.16700 8.16705 9.99995 
 
 30 
 
 40 
 
 8.07295 8.07298 9.99997 
 
 20 
 
 40 
 
 8.16843 8.168-18 9.99995 
 
 20 
 
 50 
 
 8.07473 8.07476 9.99997 
 
 10 
 
 50 
 
 8.16986 8.16991 9.99995 
 
 10 
 
 41 
 
 8.07650 8.07653 9.99997 
 
 19 
 
 51 
 
 8.17128 8.17133 9.99995 
 
 9 
 
 10 
 
 8.07826 8.07829 9.99997 
 
 50 
 
 10 
 
 8.17270 8.17275 9.99995 
 
 50 
 
 20 
 
 8.08002 8.08005 9.99997 
 
 40 
 
 20 
 
 8.17411 8.17416 9.99995 
 
 40 
 
 30 
 
 8.08176 8.08180 9.99997 
 
 30 
 
 30 
 
 8.17552 8.17557 9.99995 
 
 30 
 
 40 
 
 8.08350 8.08354 9.99997 
 
 20 
 
 40 
 
 8.17692 8.17697 9.99995 
 
 20 
 
 50 
 
 8.08524 8.08527 9.99997 
 
 10 
 
 50 
 
 8.17832 8.17837 9.99995 
 
 10 
 
 42 
 
 8.08696 8.08700 9.99997 
 
 18 
 
 52 
 
 8.17971 8.17976 9.99995 
 
 8 
 
 10 
 
 8.08868 8.08872 9.99997 
 
 50 
 
 10 
 
 8.18110 8.18115 9.96995 
 
 50 
 
 20 
 
 8.09040 8.09043 9.99997 
 
 40 
 
 20 
 
 8.18249 8.18254 9.99995 
 
 40 
 
 30 
 
 8.09210 8.09214 9.99997 
 
 30 
 
 30 
 
 8.18387 8.18392 9.99995 
 
 30 
 
 40 
 
 8.09 380 8.09384 9.99997 
 
 20 
 
 40 
 
 8.18524 8.18530 999995 
 
 20 
 
 50 
 
 8.09550 8.09553 9.99997 
 
 10 
 
 50 
 
 8.18662 8.18667 9.99995 
 
 10 
 
 43 
 
 8.09718 8.09722 9.99997 
 
 17 
 
 53 
 
 8.18798 8.18804 9.99995 
 
 7 
 
 10 
 
 8.09886 8.09890 9.99997 
 
 50 
 
 10 
 
 8.18935 8.18940 9.99995 
 
 50 
 
 20 
 
 8.10054 8.10057 9.99997 
 
 40 
 
 20 
 
 8.19071 8.19076 9.99995 
 
 40 
 
 30 
 
 8.10220 8.10224 9.99997 
 
 30 
 
 30 
 
 8.19206 8.19211 9.99995 
 
 30 
 
 40 
 
 8.10386 8.10390 9.99996 
 
 20 
 
 40 
 
 8.19341 8.19347 9.99995 
 
 20 
 
 50 
 
 8.10552 8.10555 9.99996 
 
 10 
 
 50 
 
 8.19476 8.19481 9.99995 
 
 10 
 
 44 
 
 8.10717 8.10720 9.99996 
 
 16 
 
 54 
 
 8.19610 8.19616 9.99995 
 
 6 
 
 10 
 
 8.10881 8.10884 9.99996 
 
 50 
 
 10 
 
 8.19744 8.19749 9.99995 
 
 50 
 
 20 
 
 8.11044 8.11018 9.99996 
 
 40 
 
 20 
 
 8.19877 8.19883 9,99995 
 
 40 
 
 30 
 
 811207 8.11 211 9.99996 
 
 30 
 
 30 
 
 8.20010 8.20016 9-99995 
 
 30 
 
 40 
 
 8.11370 8.11373 9.99996 
 
 20 
 
 40 
 
 8.20143 8.20149 9.99995 
 
 20 
 
 50 
 
 8.11531 8.11535 9.99996 
 
 10 
 
 50 
 
 8.20275 8.20281 9.99994 
 
 10 
 
 45 
 
 8.11693 8.11696 9.99996 
 
 15 
 
 55 
 
 8.20407 8.20413 9.99994 
 
 5 
 
 10 
 
 8.11853 8.11857 9.99996 
 
 50 
 
 10 
 
 8.20 538 8.20 544 9.99 994 
 
 50 
 
 20 
 
 8.12013 8.12017 9.99996 
 
 40 
 
 20 
 
 8.20669 820675 9.99994 
 
 40 
 
 30 
 
 8.12172 8.12 176 9.99996 
 
 30 
 
 30 
 
 8.20800 8.20806 9.99994 
 
 30 
 
 40 
 
 8.12331 812335 9.99996 
 
 20 
 
 40 
 
 8.20930 8.20936 9.99994 
 
 20 
 
 50 
 
 8.12489 8.12*493 9.99996 
 
 10 
 
 50 
 
 8.21060 8.21066 9.99994 
 
 10 
 
 46 
 
 8.12647 8.12651 9.99996 
 
 14 
 
 56 
 
 8.21189 8.21 195 9.99994 
 
 4 
 
 10 
 
 8.12804 8.12808 9.99996 
 
 50 
 
 10 
 
 8.21319 8.21324 9.09994 
 
 50 
 
 20 
 
 8.12961 8.12965 9.99996 
 
 40 
 
 20 
 
 8.21 447 8.21 453 9.99 994 
 
 40 
 
 30 
 
 8.13117 8.13 121 9.99996 
 
 30 
 
 30 
 
 8.21 576 8.21581 9.99994 
 
 30 
 
 40 
 
 8.13272 8.13276 9.99996 
 
 20 
 
 40 
 
 8.21 703 8.21 709 9.99 994 
 
 20 
 
 50 
 
 8.13427 8.13431 9.99996 
 
 10 
 
 50 
 
 8.21831 8.21 837 9.99994 
 
 10 
 
 47 
 
 8.13581 8.13585 9.99996 
 
 13 
 
 57 
 
 8.21958 8.21964 9.99994 
 
 3 
 
 10 
 
 8.13735 8.13 739 9.99996 
 
 50 
 
 10 
 
 8.22085 8.22091 9.99994 
 
 50 
 
 20 
 
 8.13888 8.13892 9.99996 
 
 40 
 
 20 
 
 8.22211 8.22217 9.99994 
 
 40 
 
 30 
 
 8.14041 8.14045 9.99996 
 
 30 
 
 30 
 
 822337 8.22343 9.99994 
 
 30 
 
 40 
 
 8.14193 8.14197 9.99996 
 
 20 
 
 40 
 
 822463 8.22-169 9.99994 
 
 20 
 
 50 
 
 8.14344 8.143-18 9.99996 
 
 10 
 
 50 
 
 8.22588 8.22595 9.99994 
 
 10 
 
 48 
 
 8.14495 8.14500 9.99996 
 
 12 
 
 58 
 
 8.22713 8.22720 9.99994 
 
 2 
 
 10 
 
 8.14646 8.14650 9.99996 
 
 50 
 
 10 
 
 8.22838 8.22844 9.99994 
 
 50 
 
 20 
 
 8.14796 8.14800 9.99996 
 
 40 
 
 20 
 
 8.22962 8.22968 9.99994 
 
 40 
 
 30 
 
 814945 8.14950 9.99996 
 
 30 
 
 30 
 
 8.23086 8.23092 9.99994 
 
 30 
 
 40 
 
 8.15094 8.15099 9.99996 
 
 20 
 
 40 
 
 8.23210 8.23216 9.99994 
 
 20 
 
 50 
 
 8.15243 8.15247 9.99996 
 
 10 
 
 50 
 
 8.23333 8.23339 9.99994 
 
 10 
 
 49 
 
 8.15391 8.15395 9.99996 
 
 11 
 
 59 
 
 8.23456 8.23462 999994 
 
 1 
 
 10 
 
 8.15538 8.15543 9.99996 
 
 50 
 
 10 
 
 8.23578 8.23585 9.99994 
 
 50 
 
 20 
 
 8.15685 8.15690 9.99996 
 
 40 
 
 20 
 
 8.23 700 8.23 707 9.99 994 
 
 40 
 
 30 
 
 8.15832 8.15836 9.99995 
 
 30 
 
 30 
 
 8.23822 8.23829 9.99993 
 
 30 
 
 40 
 
 8.15978 8.15982 9.99995 
 
 20 
 
 40 
 
 8.23944 8.23950 9.99993 
 
 20 
 
 50 
 
 8.16123 8.16128 9.99995 
 
 10 
 
 50 
 
 8.24065 8.24071 9.99993 
 
 10 
 
 50 
 
 8.16268 8.16273 9.99995 
 
 1C 
 
 6O 
 
 8.24186 8.24192 9.99993 
 
 O 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 89' 
 
33 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 O 
 
 8.24 186 8.24 192 9.99 993 
 
 6O 
 
 1O 
 
 8.30879 8.30888 9.99991 
 
 05O 
 
 10 
 
 8.24306 8.24313 9.99993 
 
 50 
 
 10 
 
 8.30983 8.30992 9.99991 
 
 50 
 
 20 
 
 8.24426 8.24433 9.99993 
 
 40 
 
 20 
 
 8.31086 8.31095 9.99991 
 
 40 
 
 30 
 
 824546 8.24553 9.99993 
 
 30 
 
 30 
 
 8.31188 8.31198 9.99991 
 
 30 
 
 40 
 
 8.24665 824672 9.99993 
 
 20 
 
 40 
 
 8.31291 8.31300 9.99991 
 
 20 
 
 50 
 
 8.24785 8.24791 9.99993 
 
 10 
 
 50 
 
 8.31393 8.31403 9.99991 
 
 10 
 
 1 
 
 8.24903 8.24910 9.99993 
 
 59 
 
 11 
 
 8.31495 8.31505 9.99991 
 
 049 
 
 10 
 
 8.25022 8.25029 9.99993 
 
 50 
 
 10 
 
 8.31597 8.31606 9.99991 
 
 50 
 
 20 
 
 8.25 140 8.25 147 9.99 993 
 
 40 
 
 20 
 
 8.31699 8.31 708 9.99991 
 
 40 
 
 30 
 
 8.25258 8.25265 9.99993 
 
 30 
 
 30 
 
 8.31800 8.31809 9.99991 
 
 30 
 
 40 
 
 .8.25375 8.25382 9.99993 
 
 20 
 
 40 
 
 8.31901 8.31911 9.99991 
 
 20 
 
 50 
 
 8.25493 8.25500 9.99993 
 
 10 
 
 50 
 
 8.32002 8.32012 9.99991 
 
 10 
 
 2 
 
 8.25609 8.25616 9.99993 
 
 58 
 
 12 
 
 8.32103 8.32112 9.99990 
 
 048 
 
 10 
 
 8.25 726 8.25 733 9.99 993 
 
 50 
 
 10 
 
 8.32203 8.32213 9.99990 
 
 50 
 
 20 
 
 8.25842 8.25849 9.99993 
 
 40 
 
 20 
 
 8.32303 8.32313 9.99990 
 
 40 
 
 30 
 
 8.25958 8.25965 9.99993 
 
 30 
 
 30 
 
 8.32403 8.32413 9.99990 
 
 30 
 
 40 
 
 8.26074 8.26081 9.99993 
 
 20 
 
 40 
 
 8.32503 8.32513 9.99990 
 
 20 
 
 50 
 
 8.26189 8.26196 9.99993 
 
 10 
 
 50 
 
 8.32602 8.32612 9.99990 
 
 10 
 
 3 
 
 8.26304 8.26312 9.99993 
 
 57 
 
 13 
 
 8.32702 8.32711 9.99990 
 
 047 
 
 10 
 
 8.26419 826426 9.99993 
 
 50 
 
 10 
 
 8.32801 8.32811 9.99990 
 
 50 
 
 20 
 
 8.26553 8.26541 9.99993 
 
 40 
 
 20 
 
 8.32899 8.32909 9.99990 
 
 40 
 
 30 
 
 8.26648 8.26655 9.99993 
 
 30 
 
 30 
 
 8.32998 8.33008 9.99990 
 
 30 
 
 40 
 
 8.26761 8.26769 9.99993 
 
 20 
 
 40 
 
 8.33096 8.33106 9.99990 
 
 20 
 
 50 
 
 8.26875 8.26882 9.99993 
 
 10 
 
 50 
 
 8.33195 8.33205 9.99990 
 
 10 
 
 4 
 
 8.26988 8.26996 9.99992 
 
 56 
 
 14 
 
 8.33292 8.33302 9.99990 
 
 046 
 
 10 
 
 8.27101 8.27109 9.99992 
 
 50 
 
 10 
 
 8.33390 8.33400 9.99990 
 
 50 
 
 20 
 
 8.27214 8.27221 9.99992 
 
 40 
 
 20 
 
 8.33488 8.33498 9.99990 
 
 40 
 
 30 
 
 8.27326 8.27334 9.99992 
 
 30 
 
 30 
 
 8.33585 8.33595 9.99990 
 
 30 
 
 40 
 
 8.27438 8.27446 9.99992 
 
 20 
 
 40 
 
 8.33682 8.33692 9.99990 
 
 20 
 
 50 
 
 8.27550 8.27558 9.99992 
 
 10 
 
 50 
 
 8.33779 8.33789 9.99990 
 
 10 
 
 5 
 
 8.27661 8.27669 9.99992 
 
 55 
 
 15 
 
 8.33875 8.33886 9.99990 
 
 045 
 
 10 
 
 8.27773 8.27780 9.99992 
 
 50 
 
 10 
 
 8.33972 8.33982 9.99990 
 
 50 
 
 20 
 
 8.27883 8.27891 9.99992 
 
 40 
 
 20 
 
 8.34086 8.34078 9.99990 
 
 40 
 
 30 
 
 8.27994 8.28002 9.99992 
 
 30 
 
 30 
 
 8.34164 8.34174 9.99990 
 
 30 
 
 40 
 
 8.28104 828112 9.99992 
 
 20 
 
 40 
 
 8.34260 8.34270 9.99989 
 
 20 
 
 50 
 
 8.28215 8.28223 9.99992 
 
 10 
 
 50 
 
 8.34355 8.34366 9.99989 
 
 10 
 
 6 
 
 8.28324 8.28332 9.99992 
 
 54 
 
 16 
 
 8.34450 8.34461 9.99989 
 
 044 
 
 10 
 
 8.28434 8.28442 9.99992 
 
 50 
 
 10 
 
 8.34546 8.34556 9.99989 
 
 50 
 
 20 
 
 8.28543 8.28551 9.99992 
 
 40 
 
 20 
 
 8.34640 8.34651 9.99989 
 
 40 
 
 30 
 
 8.28652 8.28660 9.99992 
 
 30 
 
 30 
 
 8.34735 8.34746 9.99989 
 
 30 
 
 40 
 
 8.28761 8.28769 9.99992 
 
 20 
 
 40 
 
 8.34830 8.34840 9.99989 
 
 20 
 
 50 
 
 8.2S869 8.28877 9.99992 
 
 10 
 
 50 
 
 8.34924 8.34935 9.99989 
 
 10 
 
 7 
 
 8.28977 8.28986 9.99992 
 
 53 
 
 17 
 
 8.35 018 8.35 029 9.99 989 
 
 043 
 
 10 
 
 8.29085 8.29094 9.99992 
 
 50 
 
 10 
 
 8.35112 8.35 123 9.99989 
 
 50 
 
 20 
 
 8.29093 8.29201 9.99992 
 
 40 
 
 20 
 
 8.35206 8.35217 9.99989 
 
 40 
 
 30 
 
 8.29300 8.29309 9.99992 
 
 30 
 
 30 
 
 8.35 299 8.35 310 9.99 989 
 
 30 
 
 40 
 
 8.29407 8.29416 9.99992 
 
 20 
 
 40 
 
 8.35 392 8.35 403 9.99 989 
 
 20 
 
 50 
 
 8.29514 8.29523 9.99992 
 
 10 
 
 50 
 
 8.35 485 8.35 497 9.99 989 
 
 10 
 
 8 
 
 8.29621 829629 9.99992 
 
 52 
 
 18 
 
 8.35578 8.35590 9.99989 
 
 042 
 
 10 
 
 8.29727 8.29736 9.99991 
 
 50 
 
 10 
 
 8.35671 8.35682 9.99989 
 
 50 
 
 20 
 
 8.29833 8.29842 9.99991 
 
 40 
 
 20 
 
 8.35764 8.35 775 9.99989 
 
 40 
 
 30 
 
 8.29939 8.29947 9.99991 
 
 30 
 
 30 
 
 8.35 856 8.35 867 9.99 989 
 
 30 
 
 40 
 
 8.30044 8.30053 9.99991 
 
 20 
 
 40 
 
 8.35948 8.35959 9.99989 
 
 20 
 
 -50 
 
 8.30150 8.30158 9.99991 
 
 10 
 
 50 
 
 8.36040 8.36051 9.99989 
 
 10 
 
 9 
 
 8.30255 8.30263 9.99991 
 
 51 
 
 19 
 
 8.36131 8.36143 9.99989 
 
 041 
 
 10 
 
 8.30359 8.30368 9.99991 
 
 50 
 
 10 
 
 8.36223 8.36235 9.99988 
 
 50 
 
 20 
 
 8.30464 8.30473 9.99991 
 
 40 
 
 20 
 
 8.36314 8.36326 9.99988 
 
 40 
 
 30 
 
 8.30568 8.30577 9.99991 
 
 30 
 
 30 
 
 8.36405 8.36417 9.99988 
 
 30 
 
 40 
 
 8.30672 8.30681 9.99991 
 
 20 
 
 40 
 
 836496 8.36508 9.99988 
 
 20 
 
 50 
 
 8.30776 8.30785 9.99991 
 
 
 50 
 
 8.36587 8.36599 9.99988 
 
 10 
 
 10 
 
 8.30879 8.30888 9.99991 
 
 *0 5O 
 
 2O 
 
 8.36678 8.36689 9.99988 
 
 04O 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 88 C 
 
34 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 2O 
 
 8.36678 8.36689 9.99988 
 
 40 
 
 3O 
 
 8.41792 8.41807 9.99985 
 
 03O 
 
 10 
 
 8.36768 8.36780 9.99 988 
 
 50 
 
 10 
 
 8.41872 8.41887 9.99985 
 
 50 
 
 20 
 
 8.36858 8.36870 9.99988 
 
 40 
 
 20 
 
 8.41952 8.41967 9.99985 
 
 40 
 
 30 
 
 8.36948 8.36960 9.99988 
 
 30 
 
 30 
 
 8.42032 8.42048 9.99985 
 
 30 
 
 40 
 
 8.37038 8.37050 9.99988 
 
 20 
 
 40 
 
 8.42112 8.42127 9.99985 
 
 20 
 
 50 
 
 8.37128 8.37140 9.99988 
 
 10 
 
 50 
 
 8.42192 8.42207 9.99985 
 
 10 
 
 21 
 
 8.37217 8.37229 9.99988 
 
 39 
 
 31 
 
 8.42272 8.42287 9.99985 
 
 029 
 
 10 
 
 8.37306 8.37318 9.99988 
 
 50 
 
 10 
 
 8.42351 8.42366 9.99985 
 
 50 
 
 20 
 
 8.37395 8.37408 9.99988 
 
 40 
 
 20 
 
 8.42430 8.42446 9.99985 
 
 40 
 
 30 
 
 8.37484 8.37497 9.99988 
 
 30 
 
 30 
 
 8.42510 8.42525 9.99985 
 
 30 
 
 40 
 
 8.37573 8.37585 9.99988 
 
 20 
 
 40 
 
 8.42589 8.42406 9.99985. 
 
 20 
 
 50 
 
 8.37662 8.37674 9.99988 
 
 10 
 
 50 
 
 8.42667 8.42683 9.99985 
 
 10 
 
 22 
 
 8.37750 8.37762 9.99988 
 
 38 
 
 32 
 
 8.42746 8.42762 9.99984 
 
 028 
 
 10 
 
 8.37838 8.37850 9.99988 
 
 50 
 
 10 
 
 8.42825 8.42840 9.96984 
 
 50 
 
 20 
 
 8.37926 8.37938 9.99988 
 
 40 
 
 20 
 
 8.42903 8.42919 9.99984 
 
 40 
 
 30 
 
 8.38014 8.38026 9.99987 
 
 30 
 
 30 
 
 8.42 982 8.42997 9.99984 
 
 30 
 
 40 
 
 8.38101 8.38114 9.99987 
 
 20 
 
 40 
 
 8.43060 8.43075 9.99984 
 
 20 
 
 50 
 
 8.38189 8.33202 9.99987 
 
 10 
 
 50 
 
 8.43 138 8.43 154 9.99 984 
 
 10 
 
 23 
 
 8.38276 8.38289 9.99987 
 
 37 
 
 33 
 
 8.43 216 8.43 232 9.99 984 
 
 027 
 
 10 
 
 8.38363 8.38376 9.99987 
 
 50 
 
 10 
 
 8.43293 8.43309 9.99984 
 
 50 
 
 20 
 
 8.38450 8.38463 9.99987 
 
 40 
 
 20 
 
 8.43371 8.43387 9.99984 
 
 40 
 
 30 
 
 8.38537 8.38550 9.99987 
 
 30 
 
 30 
 
 8.43448 8.43464 9.99984 
 
 30 
 
 40 
 
 8.38624 838636 9.99987 
 
 20 
 
 40 
 
 8.43526 8.43542 9.99984 
 
 20 
 
 50 
 
 8.38710 8.38723 9.99987 
 
 10 
 
 50 
 
 8.43603 8.43619 9.99984 
 
 10 
 
 24 
 
 8.38796 8.38809 9.99987 
 
 36 
 
 34 
 
 8.43680 8.43696 9.99984 
 
 026 
 
 10 
 
 8.38882 8.38895 9.99987 
 
 50 
 
 10 
 
 8.43757 8.43773 9.99984 
 
 50 
 
 20 
 
 8.38968 8.38981 9.99987 
 
 40 
 
 20 
 
 8.43834 8.43850 9.99984 
 
 40 
 
 30 
 
 8.39054 8.39067 9.99987 
 
 30 
 
 30 
 
 8.43910 8.43927 9.99984 
 
 30 
 
 40 
 
 8.39139 8.39153 9.99987 
 
 20 
 
 40 
 
 8.43987 8.44003 9.99984 
 
 20 
 
 50 
 
 8.39225 8.39238 9.99987 
 
 10 
 
 50 
 
 8.44063 8.44080 9.99983 
 
 10 
 
 25 
 
 8.39310 8.39323 9.99987 
 
 35 
 
 35 
 
 8.44139 8.44156 9.99983 
 
 025 
 
 10 
 
 8.39395 8.39408 9.99987 
 
 50 
 
 10 
 
 8.44216 8.44232 9.99983 
 
 50 
 
 20 
 
 8.39480 8.39493 9.99987 
 
 40 
 
 20 
 
 8.44292 8.44308 9.99983 
 
 40 
 
 30 
 
 8.39565 8.39587 9.99987 
 
 30 
 
 30 
 
 8.44367 8.44384 9.99983 
 
 30 
 
 40 
 
 8.39649 8.39663 9.99987 
 
 20 
 
 40 
 
 8.44443 8.44460 9.99983 
 
 20 
 
 50 
 
 8.39734 8.39747 9.99986 
 
 10 
 
 50 
 
 8.44519 8.44536 9.99983 
 
 10 
 
 26 
 
 8.39818 8.39832 9.99986 
 
 34 
 
 36 
 
 8.44594 8.44611 9.99983 
 
 024 
 
 10 
 
 8.39902 8.39916 9.99986 
 
 50 
 
 10 
 
 8.44669 8.44686 9.99 983 
 
 50 
 
 20 
 
 8.39986 8.40000 9.99986 
 
 40 
 
 20 
 
 8.44745 8.44762 9.99983 
 
 40 
 
 30 
 
 8.40070 8.40083 9.99986 
 
 30 
 
 30 
 
 8.44820 8.44837 9.99983 
 
 30 
 
 40 
 
 8.40153 8.40167 9.99986 
 
 20 
 
 40 
 
 8.44895 8.44912 9.99983 
 
 20 
 
 50 
 
 8.40237 8.40251 9.99986 
 
 10 
 
 50 
 
 8.44969 8.44987 9.99983 
 
 10 
 
 27 
 
 8.40320 8.40334 9.99986 
 
 33 
 
 37 
 
 8.45044 8.45061 9.99983 
 
 023 
 
 10 
 
 8.40403 8.40417 9.99986 
 
 50 
 
 10 
 
 8.45119 8.45 136 9.99983 
 
 50 
 
 20 
 
 8.40486 8.40500 9.99986 
 
 40 
 
 20 
 
 8.45 193 8.45 210 9.99 983 
 
 40 
 
 30 
 
 8.40569 8.40583 9.99986 
 
 30 
 
 30 
 
 8.45267 8.45285 9.99983 
 
 30 
 
 40 
 
 8.40651 8.40665 9.99986 
 
 20 
 
 40 
 
 8.45341 8.45359 9.99982 
 
 20 
 
 50 
 
 8.40734 8.40748 9.99986 
 
 10 
 
 50 
 
 8.45415 8.45433 9.99982 
 
 10 
 
 28 
 
 8.40816 8.40830 9.99986 
 
 32 
 
 38 
 
 8.45489 8.45507 9.99982 
 
 022 
 
 10 
 
 8.40898 8.40913 9.99986 
 
 50 
 
 10 
 
 8.45563 8.45581 9.99982 
 
 50 
 
 20 
 
 8.40 980 8.40995 9.99986 
 
 40 
 
 20 
 
 8.45637 8.45655 9.99982 
 
 40 
 
 30 
 
 8.41062 8.41077 9.99986 
 
 30 
 
 30 
 
 8.45 710 8.45 728 9.99 982 
 
 30 
 
 40 
 
 841144 8.41158 9.99986 
 
 20 
 
 40 
 
 8.45 784 8.45 802 9.99 982 
 
 20 
 
 50 
 
 8.41225 8.41240 9.99986 
 
 10 
 
 50 
 
 8.45857 8.45875 9.99982 
 
 10 
 
 29 
 
 8.41307 8.41321 9.99985 
 
 31 
 
 39 
 
 8.45930 8.45948 9.99982 
 
 021 
 
 10 
 
 8.41388 8.41403 9.99985 
 
 50 
 
 10 
 
 8.46003 8.46021 9.99982 
 
 50 
 
 20 
 
 8.41469 8.41484 9.99985 
 
 40 
 
 20 
 
 8.46076 8.46094 9.99982 
 
 40 
 
 30 
 
 8.41550 8.41565 9.99985 
 
 30 
 
 30 
 
 8.46149 8.46167 9.99982 
 
 30 
 
 40 
 
 8.41631 8.41646 9.99985 
 
 20 
 
 40 
 
 8.46222 8.46240 9.99982 
 
 20 
 
 50 
 
 8.41711 8.41726 9.99985 
 
 10 
 
 50 
 
 8.46294 8.46312 9.99982 
 
 10 
 
 3O 
 
 8.41 792 8.41 807 9.99 985 
 
 30 
 
 4O 
 
 8.46366 8.46385 9.99932 
 
 020 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 
 
 
 
 1 i 
 
 88' 
 
/ // 
 
 L sin L tan L cos 
 
 // / 
 
 / // 
 
 L sin L tan L cos 
 
 // / 
 
 40 
 
 8.46366 8.46385 9.99982 
 
 2O 
 
 5O 
 
 8.50504 8.50527 9.99978 
 
 010 
 
 10 
 
 8.46439 8.46457 9.99982 
 
 50 
 
 10 
 
 8.50570 8.50593 9.99978 
 
 50 
 
 20 
 
 8.46511 8.46529 9.99982 
 
 40 
 
 20 
 
 8.50636 8.50658 9.99978 
 
 40 
 
 30 
 
 8.46583 8.46602 9.99981 
 
 30 
 
 30 
 
 8.50701 8.50724 9.99978 
 
 30 
 
 40 
 
 8.46655 8.46674 9.99981 
 
 20 
 
 40 
 
 8.50767 8.50789 9.99977 
 
 20 
 
 50 
 
 8.46727 8.46745 9.99981 
 
 10 
 
 50 
 
 8.50832 8.50855 9.99977 
 
 10 
 
 41 
 
 8.46799 8.46817 9.99981 
 
 19 
 
 51 
 
 8.50897 8.50920 9.99977 
 
 9 
 
 > 10 
 
 8.46870 8.46889 9.99981 
 
 50 
 
 10 
 
 8.50963 8.50985 9.99977 
 
 50 
 
 20 
 
 8.46942 8.46960 9.99981 
 
 40 
 
 20 
 
 8.51028 8.51050 9.99977 
 
 40 
 
 30 
 
 8.47013 8.47032 9.99981 
 
 30 
 
 30 
 
 8.51092 8.51015 9.99977 
 
 30 
 
 40 
 
 8.47084 8.47103 9.99981 
 
 20 
 
 40 
 
 8.51157 8.51180 9-99977 
 
 20 
 
 50 
 
 8.47155 8.47174 9.99981 
 
 10 
 
 50 
 
 8.51222 8.51245 9.99977 
 
 10 
 
 42 
 
 8.47226 8.47245 9.99981 
 
 18 
 
 52 
 
 8.51287 8.51310 9.99977 
 
 8 
 
 10 
 
 8.47297 8.47316 9.99981 
 
 50 
 
 10 
 
 8.51351 8.51374 9.99977 
 
 50 
 
 20 
 
 8.47368 847387 9.99981 
 
 40 
 
 20 
 
 8.51416 8.51439 9.99977 
 
 40 
 
 30 
 
 8.47439 8.47458 9.99981 
 
 30 
 
 30 
 
 8.51480 851 503 9.99977 
 
 30 
 
 40 
 
 8.47509 8.47528 9.99981 
 
 20 
 
 40 
 
 8.51544 8.51568 9.99977 
 
 20 
 
 50 
 
 8.47580 8.47599 9.99981 
 
 10 
 
 50 
 
 8.51609 8.51632 9.99-977 
 
 10 
 
 43 
 
 8.47650 8.47669 9.99981 
 
 17 
 
 53 
 
 8.51673 8.51696 9.99977 
 
 7 
 
 10 
 
 8.47720 8.47740 9.99980 
 
 50 
 
 10 
 
 8.51737 8.51760 9.99976 
 
 50 
 
 20 
 
 8.47790 8.47810 9.99980 
 
 40 
 
 20 
 
 8.51801 8.51824 9.99976 
 
 40 
 
 30 
 
 8.47860 8.47880 9.99980 
 
 30 
 
 30 
 
 8.51864 8.51888 9.99976 
 
 30 
 
 40 
 
 8.47930 8.47950 9.99980 
 
 20 
 
 40 
 
 8.51928 8.51952 9.99976 
 
 20 
 
 50 
 
 8.48000 8.48020 9.99980 
 
 10 
 
 50 
 
 8.51992 8.52015 9.99976 
 
 10 
 
 44 
 
 8.48096 8.48090 9.99980 
 
 16 
 
 54 
 
 8.52055 8.52079 9.99976 
 
 6 
 
 10 
 
 8.48139 8.48159 9.99980 
 
 50 
 
 10 
 
 8.52119 8.52143 9.99976 
 
 50 
 
 20 
 
 8.48208 8.48228 9.99980 
 
 40 
 
 20 
 
 8.52 182 8.52 206 9.99 976 
 
 40 
 
 30 
 
 8.48278 8.48298 9.99980 
 
 30 
 
 30 
 
 8.52245 8.52269 9.99976 
 
 30 
 
 40 
 
 8.48347 8.48367 9.99980 
 
 20 
 
 40 
 
 8.52308 8.52332 9.99976 
 
 20 
 
 50 
 
 8.48416 8.48436 9.99980 
 
 10 
 
 50 
 
 8.52371 8.52396 9.99976 
 
 10 
 
 45 
 
 8.48485 8.48505 9.99980 
 
 15 
 
 55 
 
 8.52434 8.52459 9.99976 
 
 5 
 
 10 
 
 8.48554 8.48574 9.99980 
 
 50 
 
 10 
 
 8.52497 8.52522 9.99976 
 
 50 
 
 20 
 
 8.48622 8.48643 9.99980 
 
 40 
 
 20 
 
 8.52560 8.52584 9.99976 
 
 40 
 
 30 
 
 8.48691 8.48711 9.99980 
 
 30 
 
 30 
 
 8.52623 8.52647 9.99975 
 
 30 
 
 40 
 
 8.48760 8.48780 9.99979 
 
 20 
 
 40 
 
 8.52685 8.52710 9.99975 
 
 20 
 
 50 
 
 8.48828 8.48849 9.99979 
 
 10 
 
 50 
 
 8.52748 8.52772 9.99975 
 
 10 
 
 46 
 
 8.48896 8.48917 9.99979 
 
 14 
 
 56 
 
 8.52810 8.52835 9.99975 
 
 4 
 
 10 
 
 8.48965 8.48985 9.99979 
 
 50 
 
 10 
 
 8.52872 8.52897 9.99975 
 
 50 
 
 20 
 
 8.49033 8.49053 9.99979 
 
 40 
 
 20 
 
 8.52935 8.52960 9.99975 
 
 40 
 
 30 
 
 8.49101 8.49121 9.99979 
 
 30 
 
 30 
 
 8.52997 8.53022 9.99975 
 
 30 
 
 40 
 
 8.49169 8.49189 9.99979 
 
 20 
 
 40 
 
 8.53059 8.53084 9.99975 
 
 20 
 
 50 
 
 8.49236 8.49257 9.99979 
 
 10 
 
 50 
 
 8.53121 8.53146 9.99975 
 
 10 
 
 47 
 
 8.49304 8.49325 9.99979 
 
 13 
 
 57 
 
 8.53183 8.53208 9.99975 
 
 3 
 
 10 
 
 8.49372 8.49393 9.99979 
 
 50 
 
 10 
 
 8.53245 8.53270 9.99975 
 
 50 
 
 20 
 
 8.49439 8.49460 9.99979 
 
 40 
 
 20 
 
 8.53306 8.53332 9.99975 
 
 40 
 
 30 
 
 8.49506 8.49528 9.99979 
 
 30 
 
 30 
 
 8.53368 8.53393 9.99975 
 
 30 
 
 40 
 
 8.49574 8.49595 9.99979 
 
 20 
 
 40 
 
 8.53 429 8.53 455 9.99 975 
 
 20 
 
 50 
 
 8.49641 8.49662 9.99979 
 
 10 
 
 50 
 
 8.53491 8.53516 9.99974 
 
 10 
 
 48 
 
 8.49708 8.49729 9.99979 
 
 12 
 
 58 
 
 8.53552 8.53578 9.99974 
 
 2 
 
 10 
 
 8.49775 8.49796 9.99979 
 
 50 
 
 10 
 
 8.53614 8.53639 9.99974 
 
 50 
 
 20 
 
 8.49842 8.49863 9.99978 
 
 40 
 
 20 
 
 8.53675 8.53700 9.99974 
 
 40 
 
 30 
 
 8.49908 8.49930 9.99978 
 
 30 
 
 30 
 
 8.53736 8.53762 9.99974 
 
 30 
 
 40 
 
 8.49975 8.49997 9.99978 
 
 20 
 
 40 
 
 8.53797 8.53823 9.99974 
 
 20 
 
 50 
 
 8.50042 8.50063 9.99978 
 
 10 
 
 50 
 
 8.53858 8.53884 9.99974 
 
 10 
 
 49 
 
 8.50108 850130 9.99978 
 
 11 
 
 59 
 
 8.53919 8.53945 9.99974 
 
 1 
 
 10 
 
 8.50174 8.50196 9.99978 
 
 50 
 
 10 
 
 8.53979 8.54005 9.99974 
 
 50 
 
 20 
 
 8.50241 8.50263 9.99978 
 
 40 
 
 20 
 
 8.54040 8.54066 9.99974 
 
 40 
 
 30 
 
 850307 8.50329 9.99978 
 
 30 
 
 30 
 
 8.54101 8.54127 9.99974 
 
 30 
 
 40 
 
 8.50373 8.50395 9.99978 
 
 20 
 
 40 
 
 8.54161 8.54187 9.99974 
 
 20 
 
 50 
 
 8.50439 8.50461 9.99978 
 
 10 
 
 50 
 
 8.54222 8.54248 9.99974 
 
 10 
 
 5O 
 
 8.50504 8.50527 9.99978 
 
 1O 
 
 6O 
 
 8.54282 8.54308 9.99974 
 
 O 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
 / // 
 
 L cos L cot L sin 
 
 // / 
 
36 
 
 / 
 
 SLsin SLtan llLcot 9Lcos 
 
 / 
 
 o 
 
 .24186 .24192 .75808 .99993 
 
 60 
 
 1 
 
 .24903 .24910 .75090 .99993 
 
 59 
 
 2 
 
 .25609 .25616 .74384 .99993 
 
 58 
 
 3 
 
 .26304 .26312 .73688 .99993 
 
 57 
 
 4 
 
 .26988 .26996 .73004 .99992 
 
 56 
 
 5 
 
 .27661 .27669 .72331 .99992 
 
 55 
 
 6 
 
 .28324 .28332 .71668 .99992 
 
 54 
 
 7 
 
 .28977 .28986 .71014 .99992 
 
 53 
 
 8 
 
 .29621 .29629 .70371 .99992 
 
 52 
 
 9 
 
 .30255 .30263 .69737 .99991 
 
 51 
 
 1C 
 
 .30879 .30888 .69112 .99991 
 
 50 
 
 11 
 
 .31495 .31505 .68495 .99991 
 
 49 
 
 12 
 
 .32103 .32112 .67888 .99990 
 
 48 
 
 13 
 
 .32702 .32711 .67289 .99990 
 
 47 
 
 14 
 
 .33292 .33302 .66698 .99990 
 
 46 
 
 15 
 
 .33875 .33886 .66114 .99990 
 
 45 
 
 16 
 
 .34450 .34461 .65539 .99989 
 
 44 
 
 17 
 
 .35018 .35029 .64971 .99989 
 
 43 
 
 18 
 
 .35578 .35590 .64410 .99989 
 
 42 
 
 19 
 
 .36131 .36143 .63857 .99989 
 
 41 
 
 20 
 
 .36678 .36689 .63311 .99988 
 
 40 
 
 21 
 
 .37217 .37229 .62771 .99988 
 
 39 
 
 22 
 
 .37750 .37762 .62238 .99988 
 
 38 
 
 23 
 
 .38276 .38289 .61711 .99987 
 
 37 
 
 24 
 
 .38796 .38809 .61191 .99987 
 
 36 
 
 25 
 
 .39310 .39323 .60677 .99987 
 
 35 
 
 26 
 
 .39818 .39832 .60168 .99986 
 
 34 
 
 27 
 
 .40320 .40334 .59666 .99986 
 
 33 
 
 28 
 
 .40816 .40830 .59170 .99986 
 
 32 
 
 29 
 
 .41307 .41321 .58679 .99985 
 
 31 
 
 3O 
 
 .41792 .41807 .58193 .99985 
 
 30 
 
 31 
 
 .42272 .42287 .57713 .99985 
 
 29 
 
 32 
 
 .42746 .42762 .57238 .99984 
 
 28 
 
 33 
 
 .43216 .43232 .56768 .99984 
 
 27 
 
 34 
 
 .43680 .43696 .56304 .99984 
 
 26 
 
 35 
 
 .44139 .44156 .55844 .99983 
 
 25 
 
 36 
 
 .44594 .44611 .55389 .99983 
 
 24 
 
 37 
 
 .45044 .45061 .54939 .99983 
 
 23 
 
 38 
 
 .45489 .45507 .54493 .99982 
 
 22 
 
 39 
 
 .45930 .45948 .54052 ,99982 
 
 21 
 
 40 
 
 .46366 .46385 .53615 .99982 
 
 2O 
 
 41 
 
 .46799 .46817 .53183 .99981 
 
 19 
 
 42 
 
 .47226 .47245 .52755 .99981 
 
 18 
 
 43 
 
 .47650 .47669 .52331 .99981 
 
 17 
 
 44 
 
 .48069 .48089 .51911 .99980 
 
 16 
 
 45 
 
 .48485 .48505 .51495 .99980 
 
 15 
 
 46 
 
 .48896 .48917 .51083 .99979 
 
 14 
 
 47 
 
 .49304 .49325 .50675 .99979 
 
 13 
 
 48 
 
 .49708 .49729 .50271 .99979 
 
 12 
 
 49 
 
 .50108 .50130 .49870 .99978 
 
 11 
 
 50 
 
 .50504 .50527 .49473 .99978 
 
 1O 
 
 51 
 
 .50897 .50920 .49080 .99977 
 
 9 
 
 52 
 
 .51287 .51310 .48690 .99977 
 
 8 
 
 53 
 
 .51673 .51696 .48304 .99977 
 
 7 
 
 54 
 
 .52055 .52079 .47921 .99976 
 
 6 
 
 55 
 
 .52434 .52459 .47541 .99976 
 
 5 
 
 56 
 
 .52810 .52835 .47165 .99975 
 
 4 
 
 57 
 
 .53183 .53208 .46792 .99975 
 
 3 
 
 58 
 
 .53552 .53578 .46422 .99974 
 
 2 
 
 59 
 
 .53919 .53945 .46055 .99974 
 
 1 
 
 60 
 
 .54282 .54308 .45692 .99974 
 
 O 
 
 / 
 
 SLcos SLcot ULtan 9Lsin 
 
 / 
 
 / 
 
 SLsin SLtan 11 L cot 9Lcos 
 
 / 
 
 O 
 
 .54282 .54308 .45692 .99974 
 
 60 
 
 1 
 
 .54642 .54669 .45331 .99973 
 
 59 
 
 2 
 
 .54999 .55027 .44973 .99973 
 
 58 
 
 3 
 
 .55354 .55382 .44618 .99972 
 
 57 
 
 4 
 
 .55705 .55734 .44266 .99972 
 
 56 
 
 5 
 
 .56054 .56083 .43917 .99971 
 
 55 
 
 6 
 
 .56400 .56429 .43571 .99971 
 
 54 
 
 7 
 
 .56743 .56773 .43227 .99970 
 
 53 
 
 8 
 
 .57084 .57114 .42886 .99970 
 
 52 
 
 9 
 
 .57421 .57452 .42548 .99969 
 
 51 
 
 10 
 
 .57757 .57788 .42212 .99969 
 
 r>o 
 
 11 
 
 .58089 .58121 .41879 .99968 
 
 49 
 
 12 
 
 .58419 .58451 .41549 .99968 
 
 48 
 
 13 
 
 .58747 .58779 .41221 .99967 
 
 47 
 
 14 
 
 .59072 .59105 .40895 .99967 
 
 46 
 
 15 
 
 .59395 .59428 .40572 .99967 
 
 45 
 
 16 
 
 .59715 .59749 .40251 .99966 
 
 44 
 
 17 
 
 .60033 .60068 .39932 .99966 
 
 43 
 
 18 
 
 .60349 .60384 .39616 .99965 
 
 42 
 
 19 
 
 .60662 .60698 .39302 .99964 
 
 41 
 
 20 
 
 .60973 .61009 .38991 .99964 
 
 4O 
 
 21 
 
 .61282 .61319 .38681 .99963 
 
 39 
 
 22 
 
 .61589 .61626 .38374 .99963 
 
 38 
 
 23 
 
 .61894 .61931 .38069 .99962 
 
 37 
 
 24 
 
 .62196 .62234 .37766 .99962 
 
 36 
 
 25 
 
 .62497 .62535 .37465 .99961 
 
 35 
 
 26 
 
 .62795 .62834 .37166 .99961 
 
 34 
 
 27 
 
 .63091 .63131 .36869 .99960 
 
 33 
 
 28 
 
 .63385 .63426 .36574 .99960 
 
 32 
 
 29 
 
 .63678 .63718 .36282 .99959 
 
 31 
 
 30 
 
 .63968 .64009 .35991 .99959 
 
 30 
 
 31 
 
 .64256 .64298 .35702 .99958 
 
 29 
 
 32 
 
 .64543 .64585 .35415 .99958 
 
 28 
 
 33 
 
 .64827 .64870 .35130 .99957 
 
 27 
 
 34 
 
 .65110 .65154 .34846 .99956 
 
 26 
 
 35 
 
 .65391 .65435 .34565 .99956 
 
 25 
 
 36 
 
 .65670 .65715 .34285 .99955 
 
 24 
 
 37 
 
 .65947 .65993 .34007 .99955 
 
 23 
 
 38 
 
 .66223 .66269 .33731 .99954 
 
 22 
 
 39 
 
 .66497 .66543 .33457 .99954 
 
 21 
 
 4O 
 
 .66769 .66816 .33184 .99953 
 
 2O 
 
 41 
 
 .67039 .67087 .32913 .99952 
 
 19 
 
 42 
 
 .67308 .67356 .32644 .99952 
 
 18 
 
 43 
 
 .67575 .67624 .32376 .99951 
 
 17 
 
 44 
 
 .67841 .67890 .32110 .99951 
 
 16 
 
 45 
 
 .68104 .68154 .31846 .99950 
 
 15 
 
 46 
 
 .68367 .68417 .31583 .99949 
 
 14 
 
 47 
 
 .68627 .68678 .31322 .99949 
 
 13 
 
 48 
 
 .68886 .68938 .31062 .99948 
 
 12 
 
 49 
 
 .69144 .69196 .30804 .99948 
 
 11 
 
 50 
 
 .69400 .69453 .30547 .99947 
 
 10 
 
 51 
 
 .69654 .69708 .30292 .99946 
 
 9 
 
 52 
 
 .69907 .69962 .30038 .99946 
 
 8 
 
 53 
 
 .70159 .70214 .29786 .99945 
 
 7 
 
 54 
 
 .70409 .70465 .29535 .99944 
 
 6 
 
 55 
 
 .70658 .70714 .29286 .99944 
 
 5 
 
 56 
 
 .70905 .70962 .29038 .99943 
 
 4 
 
 57 
 
 .71151 .71208 .28792 .99942 
 
 3 
 
 58 
 
 .71395 .71453 .28547 .99942 
 
 2 
 
 59 
 
 .71638 .71697 .28303 .99941 
 
 1 
 
 60 
 
 .71880 .71940 .28060 .99940 
 
 O 
 
 / 
 
 SLcos SLcot ULtan 9Lsin 
 
 / 
 
 88 C 
 
 87' 
 
37 
 
 / 
 
 SLsin SLtan llLcot 9Lcos 
 
 / 
 
 o 
 
 .71880 .71940 .28060 .99940 
 
 60 
 
 1 
 
 .72120 .72181 .27819 .99940 
 
 59 
 
 2 
 
 .72359 .72420 .27580 .99939 
 
 58 
 
 3 
 
 .72597 .72659 .27341 .99938 
 
 57 
 
 4 
 
 .72834 .72896 .27104 .99938 
 
 56 
 
 5 
 
 .73069 .73132 .26868 .99937 
 
 55 
 
 * 6 
 
 .73303 .73366 .26634 .99936 
 
 54 
 
 7 
 
 .73535 .73600 .26400 .99936 
 
 53 
 
 8 
 
 .73767 .73832 .26168 .99935 
 
 52 
 
 9 
 
 .73997 .74063 .25937 .99934 
 
 51 
 
 10 
 
 .74226 .74292 .25708 .99934 
 
 50 
 
 11 
 
 .74454 .74521 .25479 .99933 
 
 49 
 
 12 
 
 .74680 .74748 .25252 .99932 
 
 48 
 
 13 
 
 .74906 .74974 .25026 .99932 
 
 47 
 
 14 
 
 .75130 .75199 .24801 .99931 
 
 46 
 
 IS 
 
 .75353 .75423 .24577 .99930 
 
 45 
 
 16 
 
 .75575 .75645 .24355 .99929 
 
 44 
 
 17 
 
 .75795 .75867 .24133 .99929 
 
 43 
 
 18 
 
 .76015 .76087 .23913 .99928 
 
 42 
 
 19 
 
 .76234 .76306 .23694 .99927 
 
 41 
 
 20 
 
 .76451 .76525 .23475 .99926 
 
 4O 
 
 21 
 
 .76667 .76742 .23258 .99926 
 
 39 
 
 22 
 
 .76883 .76958 .23042 .99925 
 
 38 
 
 23 
 
 .77097 .77173 .22827 .99924 
 
 37 
 
 24 
 
 .77310 .77387 .22613 .99923 
 
 36 
 
 25 
 
 .77522 .77600 .22400 .99923 
 
 35 
 
 26 
 
 .77733 .77811 .22189 .99922 
 
 34 
 
 27 
 
 .77943 .78022 .21978 .99921 
 
 33 
 
 28 
 
 .78152 .78232 .21768 .99920 
 
 32 
 
 29 
 
 .78360 .78441 .21559 .99920 
 
 31 
 
 30 
 
 .78568 .78649 .21351 .99919 
 
 30 
 
 31 
 
 .78774 .78855 .21145 .99918 
 
 29 
 
 32 
 
 .78979 .79061 .20939. .99917 
 
 28 
 
 33 
 
 .79183 .79266 .20734 .99917 
 
 27 
 
 34 
 
 .79386 .79470 .20*530 .99916 
 
 26 
 
 35 
 
 .79588 .79673 .20327 .99915 
 
 25 
 
 36 
 
 .79789 .79875 .20125 .99914 
 
 24 
 
 37 
 
 .79990 .80076 .19924 .99913 
 
 23 
 
 38 
 
 .80189 .80277 .19723 .99913 
 
 22 
 
 39 
 
 .80388 .80476 .19524 .99912 
 
 21 
 
 4O 
 
 .80585 .80674 .19326 .99911 
 
 2O 
 
 41 
 
 .80782 .80872 .19128 .99910 
 
 19 
 
 [ 42 
 
 .80978 .81068 .18932 .99909 
 
 18 
 
 43 
 
 .81173 .81264 .18736 .99909 
 
 17 
 
 44 
 
 .81367 .81459 .18541 .99908 
 
 16 
 
 45 
 
 .81560 .81653 .18347 .99907 
 
 15 
 
 46 
 
 .81752 .81846 .18154 .99906 
 
 14 
 
 47 
 
 .81944 .82038 .17962 .99905 
 
 13 
 
 48 
 
 .82134 .82230 .17770 .99904 
 
 12 
 
 49 
 
 .82324 .82420 .17580 .99904 
 
 11 
 
 50 
 
 .82513 .82610 .17390 .99903 
 
 1O 
 
 51 
 
 .82701 .82799 .17201 .99902 
 
 9 
 
 52 
 
 .82888 .82987 .17013 .'99901 
 
 8 
 
 53 
 
 .83075 .83175 .16825 .99900 
 
 7 
 
 54 
 
 .83261 .83361 .16639 .99899 
 
 6 
 
 55 
 
 .83446 .83547 .16453 .99898 
 
 5 
 
 56 
 
 .83630 .83732 .16268 .99898 
 
 4 
 
 57 
 
 .83813 .83916 .16084 .99897 
 
 3 
 
 58 
 
 .83996 .84100 .15900 .99896 
 
 2 
 
 59 
 
 .84177 .84282 .15718 .99895 
 
 1 
 
 52. 
 
 .84358 .84464 .15536 .99894 
 
 
 
 / 
 
 SLcos SLcot llLtan 9Lsin 
 
 / 
 
 / 
 
 SLsin 
 
 SLtan 
 
 11 Loot 
 
 DLcos 
 
 / 
 
 O 
 
 .84 358 
 
 .84 464 
 
 .15 536 
 
 .99894 
 
 6O 
 
 1 
 
 .84 539 
 
 .84646 
 
 .15354 
 
 .99893 
 
 59 
 
 2 
 
 .84718 
 
 .84 826 
 
 .15 174 
 
 .99 892 
 
 58 
 
 3 
 
 .84 897 
 
 .85006 
 
 .14994 
 
 .99891 
 
 57 
 
 4 
 
 .85 075 
 
 .85 185 
 
 .14815 
 
 .99 891 
 
 56 
 
 5 
 
 .85 252 
 
 .85 363 
 
 .14637 
 
 .99 890 
 
 55 
 
 6 
 
 .85 429 
 
 .85 540 
 
 .14460 
 
 .99889 
 
 54 
 
 7 
 
 .85 605 
 
 .85 717 
 
 .14283 
 
 .99888 
 
 53 
 
 8 
 
 .85 780 
 
 .85 893 
 
 .14 107 
 
 .99887 
 
 52 
 
 9 
 
 .85 955 
 
 .86069 
 
 .13931 
 
 .99886 
 
 51 
 
 1O 
 
 .86 128 
 
 .86243 
 
 .13757 
 
 .99885 
 
 50 
 
 11 
 
 .86301 
 
 .86417 
 
 .13583 
 
 .99884 
 
 49 
 
 12 
 
 .86474 
 
 .86591 
 
 .13409 
 
 .99883 
 
 48 
 
 13 
 
 .86645 
 
 .86 763 
 
 .13237 
 
 .99882 
 
 47 
 
 14 
 
 .86816 
 
 .86935 
 
 .13065 
 
 .99881 
 
 46 
 
 15 
 
 .86987 
 
 .87 106 
 
 .12 894 
 
 .99880 
 
 45 
 
 16 
 
 .87156 
 
 .87277 
 
 .12 723 
 
 .99 879 
 
 44 
 
 17 
 
 .87325 
 
 .87447 
 
 .12 553 
 
 .99 879 
 
 43 
 
 18 
 
 .87494 
 
 .87616 
 
 .12384 
 
 .99 878 
 
 42 
 
 19 
 
 .87661 
 
 .87 785 
 
 .12215 
 
 .99 877 
 
 41 
 
 2O 
 
 .87 829 
 
 .87953 
 
 .12047 
 
 .99876 
 
 40 
 
 21 
 
 .87995 
 
 .88 120 
 
 .11880 
 
 .99875 
 
 39 
 
 22 
 
 .88 161 
 
 .88287 
 
 .11713 
 
 .99874 
 
 38 
 
 23 
 
 .88326 
 
 .88453 
 
 .11547 
 
 .99 873 
 
 37 
 
 24 
 
 .88490 
 
 .88618 
 
 .11382 
 
 .99872 
 
 36 
 
 25 
 
 .88654 
 
 .88 783 
 
 .11217 
 
 .99871 
 
 35 
 
 26 
 
 .88817 
 
 .88948 
 
 .11052 
 
 .99 870 
 
 34 
 
 27 
 
 .88980 
 
 .89111 
 
 .10889 
 
 .99869 
 
 33 
 
 28 
 
 .89 142 
 
 89274 
 
 .10726 
 
 .99868 
 
 32 
 
 29 
 
 .89304 
 
 .89437 
 
 .10563 
 
 .99867 
 
 31 
 
 3O 
 
 .89464 
 
 .89 598 
 
 .10402 
 
 .99866 
 
 30 
 
 31 
 
 .89625 
 
 .89 760 
 
 .10240 
 
 .99865 
 
 29 
 
 32 
 
 .89 784 
 
 .89920 
 
 .10080 
 
 .99864 
 
 28 
 
 33 
 
 .89943 
 
 .90080 
 
 .09920 
 
 .99863 
 
 27 
 
 34 
 
 .90 102 
 
 .90 240 
 
 .09 760 
 
 .99862 
 
 26 
 
 35 
 
 .90260 
 
 .90399 
 
 .09601 
 
 .99861 
 
 25 
 
 36 
 
 .90417 
 
 .90557 
 
 .09443 
 
 .99860 
 
 24 
 
 37 
 
 .90574 
 
 .90715 
 
 .09 285 
 
 .99859 
 
 23 
 
 38 
 
 .90 730 
 
 .90872 
 
 .09 128 
 
 .99858 
 
 22 
 
 39 
 
 .90885 
 
 .91 029 
 
 .08971 
 
 .99857 
 
 21 
 
 4O 
 
 .91 040 
 
 .91 185 
 
 .08815 
 
 .99856 
 
 2O 
 
 41 
 
 .91 195 
 
 .91 340 
 
 .08660 
 
 .99855 
 
 19 
 
 42 
 
 .91 349 
 
 .91 495 
 
 .08 505 
 
 .99854 
 
 18 
 
 43 
 
 .91 502 
 
 .91 650 
 
 .08350 
 
 .99853 
 
 17 
 
 44 
 
 .91655 
 
 .91 803 
 
 .08 197 
 
 .99852 
 
 16 
 
 45 
 
 .91 807 
 
 .91957 
 
 .08043 
 
 .99851 
 
 15 
 
 46 
 
 .91 959 
 
 .92110 
 
 .07 890 
 
 .99850 
 
 14 
 
 47 
 
 .92110 
 
 .92 262 
 
 .07 738 
 
 .99848 
 
 13 
 
 48 
 
 .92 261 
 
 .92414 
 
 .07 586 
 
 .99847 
 
 12 
 
 49 
 
 .92411 
 
 .92 565 
 
 .07 435 
 
 .99846 
 
 11 
 
 5O 
 
 .92 561 
 
 .92716 
 
 .07 284 
 
 .99845 
 
 10 
 
 51 
 
 .92710 
 
 .92 866 
 
 .07 134 
 
 .99844 
 
 9 
 
 52 
 
 .92 859 
 
 .93 016 
 
 .06984 
 
 .99843 
 
 8 
 
 53 
 
 .93 007 
 
 .93 165 
 
 .06835 
 
 .99842 
 
 7 
 
 54 
 
 .93 154 
 
 .93313 
 
 .06687 
 
 .99841 
 
 6 
 
 55 
 
 .93301 
 
 .93 462 
 
 .06538 
 
 .99840 
 
 5 
 
 56 
 
 .93 448 
 
 .93 609 
 
 .06391 
 
 .99839 
 
 4 
 
 57 
 
 .93 594 
 
 .93 756 
 
 .06244 
 
 .99838 
 
 3 
 
 58 
 
 .93 740 
 
 .93 903 
 
 .06097 
 
 .99837 
 
 2 
 
 59 
 
 .93 885 
 
 .94 049 
 
 .05951 
 
 .99836 
 
 1 
 
 60 
 
 .94030 
 
 .94 195 
 
 .05 805 
 
 .99834 
 
 O 
 
 / 
 
 SLcos 
 
 SLcot 
 
 11 L tan 
 
 9Lsin 
 
 / 
 
 86 
 
 85 C 
 
38 
 
 / 
 
 SLsin SLtan llLcot 9Lcos 
 
 / 
 
 o 
 
 .94030 .94195 .05805 .99834 
 
 6O 
 
 1 
 
 .94174 .94340 .05660 .99833 
 
 59 
 
 2 
 
 .94317 .94485 .05515 .99832 
 
 58 
 
 3 
 
 .94461 .94630 .05370 .99831 
 
 57 
 
 4 
 
 .94603 .94773 .05227 .99830 
 
 56 
 
 5 
 
 .94746 .94917 .05083 .99829 
 
 55 
 
 6 
 
 .94887 .95060 .049-10 .99828 
 
 54 
 
 7 
 
 .95029 .95202 .04798 .99827 
 
 53 
 
 8 
 
 .95170 .95344 .04656 .99825 
 
 52 
 
 9 
 
 .95310 .95486 .04514 .99824 
 
 51 
 
 ID 
 
 .95450 .95627 .04373 .99823 
 
 50 
 
 11 
 
 .95589 .95767 .04233 .99822 
 
 49 
 
 12 
 
 .95728 .95908 .04092 .99821 
 
 48 
 
 13 
 
 .95867 .96047 .03953 .99820 
 
 47 
 
 14 
 
 .96005 .96187 .03813 .99819 
 
 46 
 
 15 
 
 .96143 .96325 .03675 .99817 
 
 45 
 
 16 
 
 .96280 .96464 .03536 .99816 
 
 44 
 
 17 
 
 .96417 .96602 .03398 .99815 
 
 43 
 
 18 
 
 .96553 .96739 .03261 .99814 
 
 42 
 
 19 
 
 .96689 .96877 .03123 .99813 
 
 41 
 
 20 
 
 .96825 .97013 .02987 .99812 
 
 40 
 
 21 
 
 .96960 .97150 .02850 .99810 
 
 39 
 
 22 
 
 .97095 .97285 .02715 .99809 
 
 38 
 
 23 
 
 .97229 .97421 .02579 .99808 
 
 37 
 
 24 
 
 .97363 .97556 .02444 .99807 
 
 36 
 
 25 
 
 .97496 .97691 .02309 .99806 
 
 35 
 
 26 
 
 .97629 .97825 .02175 .99804 
 
 34 
 
 27 
 
 .97762 .97959 .02041 .99803 
 
 33 
 
 28 
 
 .97894 .98092 .01908 .99802 
 
 32 
 
 29 
 
 .98026 .98225 .01775 .99801 
 
 31 
 
 30 
 
 .98157 .98358 .01642 .99800 
 
 30 
 
 31 
 
 .98288 .98490 .01510 .99798 
 
 29 
 
 32 
 
 .98419 .98622 .01378 .99797 
 
 28 
 
 33 
 
 .98549 .98753 .01247 .99796 
 
 27 
 
 34 
 
 .98679 .98884 .01116 .99795 
 
 26 
 
 35 
 
 .98808 .99015 .00985 .99793 
 
 25 
 
 36 
 
 .98937 .99145 .00855 .99792 
 
 24 
 
 37 
 
 .99066 .99275 .00725 .99791 
 
 23 
 
 38 
 
 .99194 .99405 .00595 .99790 
 
 22 
 
 39 
 
 .99322 .99534 .00466 .99788 
 
 21 
 
 40 
 
 .99450 .99662 .00338 .99787 
 
 20 
 
 41 
 
 .99577 .99791 .00209 .99786 
 
 19 
 
 42 
 
 .99704 .99919 .00081 .99785 
 
 18 
 
 43 
 
 .99830 .00046 .99954 .99783 
 
 17 
 
 44 
 
 .99956 .00174 .99826 .99782 
 
 16 
 
 45 
 
 .00082 .00301 .99699 .99781 
 
 15 
 
 46 
 
 .00207 .00427 .99573 .99780 
 
 14 
 
 47 
 
 .00332 .00553 .99447 .99778 
 
 13 
 
 48 
 
 .00456 .00679 .99321 .99777 
 
 12 
 
 49 
 
 .00581 .00805 .99195 .99776 
 
 11 
 
 5O 
 
 .00704 .00930 .99070 .99775 
 
 1O 
 
 51 
 
 .00828 .01055 .98945 .99773 
 
 9 
 
 52 
 
 .00951 .01179 .98821 .99772 
 
 8 
 
 53 
 
 .01074 .01303 .98697 .99771 
 
 7 
 
 54 
 
 .01196 .01427 .98573 .99769 
 
 6 
 
 55 
 
 .01318 .01550 .98450 .99768 
 
 5 
 
 56 
 
 .01440 .01673 .98327 .99767 
 
 4 
 
 57 
 
 .01561 .01796 .98204 .99765 
 
 3 
 
 58 
 
 .01682 .01918 .98082 .99764 
 
 2 
 
 59 
 
 .01803 .02040 .97960 .99763 
 
 1 
 
 60 
 
 .01923 .02162 .97838 .99761 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 / 
 
 9Lsin 9LtanlOLcot 9Lcos 
 
 / 
 
 
 
 .01923 .02162 .97838 .99761 
 
 6O 
 
 1 
 
 .02043 .02283 .97717 .99760 
 
 59 
 
 2 
 
 .02163 .02404 .97596 .99759 
 
 58 
 
 3 
 
 .02283 .02525 .97475 .99757 
 
 57 
 
 4 
 
 .02402 .02645 .97355 .99756 
 
 56 
 
 5 
 
 .02520 .02766 .97234 .99755 
 
 55 
 
 6 
 
 .02639 .02885 .97115 .99753 
 
 54 
 
 7 
 
 .02757 .03005 .96995 .99752 
 
 53 
 
 8 
 
 .02874 .03124 .96876 .99751 
 
 52 
 
 9 
 
 .02992 .03242 .96758 .99749 
 
 51 
 
 1O 
 
 .03109 .03361 .96639 .99748 
 
 5O 
 
 11 
 
 .03226 .03479 .96521 .99747 
 
 49 
 
 12 
 
 .03342 .03597 .96403 .99745 
 
 48 
 
 13 
 
 .03458 .03714 .96286 .99744 
 
 47 
 
 14 
 
 .03574 .03832 .96168 .99742 
 
 46 
 
 15 
 
 .03690 .03948 .96052 .99741 
 
 45 
 
 16 
 
 .03805 .04065 .95935 .99740 
 
 44 
 
 17 
 
 .03920 .04181 .95819 .99738 
 
 43 
 
 18 
 
 .04034 .04297 .95703 .99737 
 
 42 
 
 19 
 
 .04149 .04413 .95587 .99736 
 
 41 
 
 2O 
 
 .04262 .04528 .95472 .99734 
 
 40 
 
 21 
 
 .04376 .04643 .95357 .99733 
 
 39 
 
 22 
 
 .04490 .04758 .95242 .99731 
 
 38 
 
 23 
 
 .04603 .04873 .95127 .99730 
 
 37 
 
 24 
 
 .04715 .04987 .95013 .99728 
 
 36 
 
 25 
 
 .04828 .05101 .94899 .99727 
 
 35 
 
 26 
 
 .04940 .05214 .94786 .99726 
 
 34 
 
 27 
 
 .05052 .05328 .94672 .99724 
 
 33 
 
 28 
 
 .05164 .05441 .94559 .99723 
 
 32 
 
 29 
 
 .05275 .05553 .94447 .99721 
 
 31 
 
 3O 
 
 .05386 .05666 .94334 .99720 
 
 3O 
 
 31 
 
 .05497 .05778 .94222 .99718 
 
 29 
 
 32 
 
 .05607 .05890 .94110 .99717 
 
 28 
 
 33 
 
 .05717 .06002 .93998 .99716 
 
 27 
 
 34 
 
 .05827 .06113 .93887 .99714 
 
 26 
 
 35 
 
 .05937 .06224 .93776 .99713 
 
 25 
 
 36 
 
 .06046 .06335 .93665 .99711 
 
 24 
 
 37 
 
 .06155 .06445 .93555 .99710 
 
 23 
 
 38 
 
 .06264 .06556 .93444 .99708 
 
 22 
 
 39 
 
 .06372 .06666 .93334 .99707 
 
 21 
 
 4O 
 
 .06481 .06775 .93225 .99705 
 
 2O 
 
 41 
 
 .06589 .06885 .93115 .99704 
 
 19 
 
 42 
 
 .06696 .06994 .93006 .99702 
 
 18 
 
 43 
 
 .06804 .07103 .92897 .99701 
 
 17 
 
 44 
 
 .06911 .07211 .92789 .99699 
 
 16 
 
 45 
 
 .07018 .07320 .92680 .99698 
 
 15 
 
 46 
 
 .07124 .07428 .92572 .99696 
 
 14 
 
 47 
 
 .07231 .07536 .92464 .99695 
 
 13 
 
 48 
 
 .07337 .07643 .92357 .99693 
 
 12 
 
 49 
 
 .07442 .07751 .92249 .99692 
 
 11 
 
 5O 
 
 .07548 .07858 .92142 .99690 
 
 1O 
 
 51 
 
 .07653 .07964 .92036 .99689 
 
 9 
 
 52 
 
 .07758 .08071 .91929 .99687 
 
 8 
 
 53 
 
 .07863 .08177 .91823 .99686 
 
 7 
 
 54 
 
 .07968 .08283 .91717 .99684 
 
 6 
 
 55 
 
 .08072 .08389 .91611 .99683 
 
 5 
 
 56 
 
 .08176 .08495 .91505 .99681 
 
 4 
 
 57 
 
 .08280 .08600 .91400 .99680 
 
 3 
 
 58 
 
 .08383 .08705 .91295 .99678 
 
 2 
 
 59 
 
 .08486 .08810 .91190 .99677 
 
 1 
 
 6O 
 
 .08589 .08914 .91086 .99675 
 
 O 
 
 7 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 84 C 
 
 83< 
 
7 
 
 8 C 
 
 39 
 
 / 
 
 9Lsin 9Ltan 10 L cot 9Lcos 
 
 / 
 
 
 
 .08589 .08914 .91086 .99675 
 
 6O 
 
 1 
 
 .08692 .09019 .90981 .99674 
 
 59 
 
 2 
 
 .08795 .09123 .90877 .99672 
 
 58 
 
 3 
 
 .08897 .09227 .90773 .99670 
 
 57 
 
 4 
 
 .08999 .09330 .90670 .99669 
 
 56 
 
 5 
 
 .09101 .09434 .90566 .99667 
 
 55 
 
 6 
 
 .09202 .09537 .90463 .99666 
 
 54 
 
 7 
 
 .09304 .09640 .90360 .99664 
 
 53 
 
 8 
 
 .09405 .09742 .90258 .99663 
 
 52 
 
 9 
 
 .09506 .09845 .90155 .99661 
 
 51 
 
 1C 
 
 .09606 .09947 .90053 .99659 
 
 50 
 
 11 
 
 .09707 .10049 .89951 .99658 
 
 49 
 
 12 
 
 .09807 .10150 .89850 .99656 
 
 48 
 
 13 
 
 .09907 .10252 .89748 .99655 
 
 47 
 
 14 
 
 .10006 .10353 .89647 .99653 
 
 46 
 
 15 
 
 .10106 .10454 .89546 .99651 
 
 45 
 
 16 
 
 .10205 .10555 .89445 .99650 
 
 44 
 
 17 
 
 .10304 .10656 .89344 .99648 
 
 43 
 
 18 
 
 .10402 .10756 .89244 .99647 
 
 42 
 
 19 
 
 .10501 .10856 .89144 .99645 
 
 41 
 
 2O 
 
 .10599 .10956 .89044 .99643 
 
 4O 
 
 21 
 
 .10697 .11056 .88944 .99642 
 
 39 
 
 22 
 
 .10795 .11155 .88845 .99640 
 
 38 
 
 23 
 
 .10893 ..11254 .88746 .99638 
 
 37 
 
 24 
 
 .10990 .11353 .88647 .99637 
 
 36 
 
 25 
 
 .11087 .11452 .88548 .99635 
 
 35 
 
 26 
 
 -.11184 .11551 .88449 .99633 
 
 34 
 
 27 
 
 .11281 .11649 .88351 .99632 
 
 33 
 
 28 
 
 .11377 .11747 .88253 .99630 
 
 32 
 
 29 
 
 .11474 .11845 .88155 .99629 
 
 31 
 
 30 
 
 .11570 .11943 .88057 .99627 
 
 30 
 
 31 
 
 .11666 .12040 .87960 .99625 
 
 29 
 
 32 
 
 .11761 .12138 .87862 .99624 
 
 28 
 
 33 
 
 .11857 .12235 .87765 ,.99622 
 
 27 
 
 34 
 
 .11952 .12332 .87668 .99620 
 
 26 
 
 35 
 
 .12047 .12428 .87572 .99618 
 
 25 
 
 36 
 
 .12142 .12525 .87475 .99617 
 
 24 
 
 37 
 
 .12236 .12621 .87379 .99615 
 
 23 
 
 38 
 
 .12331 .12717 .87283 .99613 
 
 22 
 
 39 
 
 .12425 .12813 .87187 .99612 
 
 21 
 
 40 
 
 .12519 .12909 .87091 .99610 
 
 2O 
 
 41 
 
 .12612 .13004 .86996 .99608 
 
 19 
 
 42 
 
 .12706 .13099 .86901 .99607 
 
 18 
 
 43 
 
 .12799 .13194 .86806 .99605 
 
 17 
 
 44 
 
 .12892 .13289 .86711 .99603 
 
 16 
 
 45 
 
 .12985 .13384 .86616 .99601 
 
 15 
 
 46 
 
 .13078 .13478 .86522 .99600 
 
 14 
 
 47 
 
 .13171 .13573 .86427 .99598 
 
 13 
 
 48 
 
 .13263 .13667 .86333 .99596 
 
 12 
 
 49 
 
 .13355 .13761 .86239 .99595 
 
 11 
 
 50 
 
 .13447 .13854 .86146 .99593 
 
 10 
 
 51 
 
 .13539 .13948 .86052 .99591 
 
 9 
 
 52 
 
 .13630 .14041 .85959 .99589 
 
 8 
 
 53 
 
 .13722 .14134 .85866 .99588 
 
 7 
 
 54 
 
 .13813 .14227 .85773 .99586 
 
 6 
 
 55 
 
 .13904 .14320 .85680 .99584 
 
 5 
 
 56 
 
 .13994 .14412 .85588 .99582 
 
 4 
 
 57 
 
 .14085 .14504 .85496 .99581 
 
 3 
 
 58 
 
 .14175 .14597 .85403 .99579 
 
 2 
 
 59 
 
 .14266 .14688 .85312 .99577 
 
 1 
 
 6O 
 
 .14356 .14780 .85220 .99575 
 
 
 
 / 
 
 9 L cos 9 L cot 10 L tan 9 L sin 
 
 / 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 o 
 
 .14356 .14780 .85220 .99575 
 
 60 
 
 1 
 
 .14445 .14872 .85128 .99574 
 
 59. 
 
 2 
 
 .14535 .14963 .85037 .99572 
 
 58 
 
 3 
 
 .14624 .15054 .84946 .99570 
 
 57 
 
 4 
 
 .14714 .15145 .84855 .99568 
 
 56 
 
 5 
 
 .14803 .15236 .84764 .99566 
 
 55 
 
 6 
 
 .14891 .15327 .84673 .99565 
 
 54 
 
 7 
 
 .14980 .15417 .84583 .99563 
 
 53 
 
 8 
 
 .15069 .15508 .84492 .99561 
 
 52 
 
 9 
 
 .15157 .15598 .84402 .99559 
 
 51 
 
 1O 
 
 .15245 .15688 .84312 .99557 
 
 50 
 
 11 
 
 .15333 .15777 .84223 .99556 
 
 49 
 
 12 
 
 .15421 .15867 .84133 .99554 
 
 48 
 
 13 
 
 .15508 .15956 .84044 .99552 
 
 47 
 
 14 
 
 .15596 .16046 .83954 .99550 
 
 46 
 
 15 
 
 .15683 .16135 .83865 .99548 
 
 45 
 
 16 
 
 .15770 .16224 .83776 .99546 
 
 44 
 
 17 
 
 .15857 .16312 .83688 .99545 
 
 43 
 
 18 
 
 .15944 .16401 .83599 .99543 
 
 42 
 
 19 
 
 .16030 .16489 .83511 .99541 
 
 41 
 
 2O 
 
 .16116 .16577 .83423 .99539 
 
 40 
 
 21 
 
 .16203 .16665 .83335 .99537 
 
 39 
 
 22 
 
 .16289 .16753 .83247 .99535 
 
 38 
 
 23 
 
 .16374 .16841 .83159 .99533 
 
 37 
 
 24 
 
 .16460 .16928 .83072 .99532 
 
 36 
 
 25 
 
 .16545 .17016 .82984 .99530 
 
 35 
 
 26 
 
 .16631 .17103 .82897 .99528 
 
 34 
 
 27 
 
 .16716 .17190 .82810 .99526 
 
 33 
 
 28 
 
 .16801 .17277 .82723 .99524 
 
 32 
 
 29 
 
 .16886 .17363 .82637 .99522 
 
 31 
 
 3O 
 
 .16970 .17450 .82550 .99520 
 
 30 
 
 31 
 
 .17055 .17536 .82464 .99518 
 
 29 
 
 32 
 
 .17139 .17622 .82378 .99517 
 
 28 
 
 33 
 
 .17223 .17708 .82292 .99515 
 
 27 
 
 34 
 
 .17307 .17794 .82206 .99513 
 
 26 
 
 35 
 
 .17391 .17880 .82120 .99511 
 
 25 
 
 36 
 
 .17474 .17965 .82035 .99509 
 
 24 
 
 37 
 
 .17558 .18051 .81949 .99507 
 
 23 
 
 38 
 
 .17641 .18136 .81864 .99505 
 
 22 
 
 39 
 
 .17724 .18221 .81779 .99503 
 
 21 
 
 40 
 
 .17807 .18306 .81694 .99501 
 
 2O 
 
 41 
 
 .17800 .18391 .81609 .99499 
 
 19 
 
 42 
 
 .17973 .18475 .81525 .99497 
 
 18 
 
 43 
 
 .18055 .18560 .81440 .99495 
 
 17 
 
 44 
 
 .28137 .18644 .81356 .99494 
 
 16 
 
 45 
 
 .18220 .18728 .81272 .99492 
 
 15 
 
 46 
 
 .18302 .18812 .81188 .99490 
 
 14 
 
 47 
 
 .18383 .18896 .81104 .99488 
 
 13 
 
 48 
 
 .18465 .18979 .81021 .99486 
 
 12 
 
 49 
 
 .18547 .19063 .80937 .99484 
 
 11 
 
 50 
 
 .18628 .19146 .80854 .99482 
 
 10 
 
 51 
 
 .18709 .19229 .80771 .99480 
 
 9 
 
 52 
 
 .18790 .19312 .80688 .99478 
 
 8 
 
 53 
 
 .18871 .19395 .80605 .99476 
 
 7 
 
 54 
 
 .18952 .19478 .80522 .99474 
 
 6 
 
 55 
 
 .19033 .19561 .80439 .99472 
 
 5 
 
 56 
 
 .19113 .19643 .80357 .99470 
 
 4 
 
 57 
 
 .19193 .19725 .80275 .99468 
 
 3 
 
 58 
 
 .19273 .19807 .80193 .99466 
 
 2 
 
 59 
 
 .19353 .19889 .80111 .99464 
 
 1 
 
 60 
 
 .19433 .19971 .80029 .99462 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 81 
 
40 
 
 10 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 o 
 
 .19433 .19971 .80029 .99462 
 
 6O 
 
 I 
 
 .19513 .20053 .79947 .99460 
 
 59 
 
 2 
 
 .19592 .20134 .79866 .99458 
 
 58 
 
 3 
 
 .19672 .20216 .79784 .99456 
 
 57 
 
 4 
 
 .19751 .20297 .79703 .99454 
 
 56 
 
 5 
 
 .19830 .20378 .79622 .99452 
 
 55 
 
 6 
 
 .19909 .20459 .79541 .99450 
 
 54 
 
 7 
 
 .19988 .20540 .79460 .99448 
 
 53 
 
 8 
 
 .20067 .20621 .79379 .99446 
 
 52 
 
 9 
 
 .20145 .20701 .79299 .99444 
 
 51 
 
 1O 
 
 .20223 .20782 .79218 .99442 
 
 50 
 
 11 
 
 .20302 .20862 .79138 .99440 
 
 49 
 
 12 
 
 .20380 .20942 .79058 .99438 
 
 48 
 
 13 
 
 .20458 .21022 .78978 .99436 
 
 47 
 
 14 
 
 .20535 .21102 .78898 .99434 
 
 46 
 
 15 
 
 .20613 .21182 .78818 .99432 
 
 45 
 
 16 
 
 .20691 .21 261 .78739 .99429 
 
 44 
 
 17 
 
 .20768 .21341 .78659 .99427 
 
 43 
 
 18 
 
 .20845 .21420 .78580 .99425 
 
 42 
 
 19 
 
 .20922 .21499 .78501 .99423 
 
 41 
 
 20 
 
 .20999 .21578 .78422 .99421 
 
 4O 
 
 21 
 
 .21076 .21657 .78343 .99419 
 
 39 
 
 22 
 
 .21153 .21736 .78264 .99417 
 
 38 
 
 23 
 
 .21229 .21814 .78186 .99415 
 
 37 
 
 24 
 
 .21306 .21893 .78107 .99413 
 
 36 
 
 25 
 
 .21382 .21971 .78029 .99411 
 
 35 
 
 26 
 
 .21458 .22049 .77951 .99409 
 
 34 
 
 27 
 
 .21534 .22127 .77873 .99407 
 
 33 
 
 28 
 
 .21610 .22205 .77795 .99404 
 
 32 
 
 29 
 
 .21685 .22283 .77717 .99402 
 
 31 
 
 3O 
 
 .21761 .22361 .77639 .99400 
 
 3O 
 
 31 
 
 .21836 .22438 .77562 .99398 
 
 29 
 
 32 
 
 .21912 .22516 .77484 .993.96 
 
 28 
 
 33 
 
 .21987 .22593 .77407 .99394 
 
 27 
 
 34 
 
 .22062 .22670 .77330 .99392 
 
 26 
 
 35 
 
 .22137 .22747 .77253 .99390 
 
 25 
 
 36 
 
 .22211 .22824 .77176 .99388 
 
 24 
 
 37 
 
 .22286 .22901 .77099 .99385 
 
 23 
 
 38 
 
 .22361 .22977 .77023 .99383 
 
 22 
 
 39 
 
 .22435 .23054 .76946 .99381 
 
 21 
 
 40 
 
 .22509 .23130 .76870 .99379 
 
 20 
 
 41 
 
 .22583 .23206 .76794 .99377 
 
 19 
 
 42 
 
 .22657 .23283 .76717 .99375 
 
 18 
 
 43 
 
 .22731 .23359 .76641 .99372 
 
 17 
 
 44 
 
 .22805 .23435 .76565 .99370 
 
 16 
 
 45 
 
 .22878 .23510 .76490 .99368 
 
 15 
 
 46 
 
 .22952 .23586 .76414 .99366 
 
 14 
 
 47 
 
 .23025 .23661 .76339 .99364 
 
 13 
 
 48 
 
 .23098 .23737 .76263 .99362 
 
 12 
 
 49 
 
 .23171 .23812 .76188 .99359 
 
 11 
 
 5O 
 
 .23244 .23887 .76113 .99357 
 
 10 
 
 51 
 
 .23317 .23962 .76038 .99355 
 
 9 
 
 52 
 
 .23390 .24037 -.75963 .99353 
 
 8 
 
 53 
 
 .23462 .24112 .75888 .99351 
 
 7 
 
 54 
 
 .23535 .24186 .75814 .99348 
 
 6 
 
 55 
 
 .23607 .24261 .75739 .99346 
 
 5 
 
 56 
 
 .23679 .24335 .75665 .99344 
 
 4 
 
 57 
 
 .23752 .24410 .75590 .99342 
 
 3 
 
 58 
 
 .23823 .24484 .75516 .99340 
 
 2 
 
 59 
 
 .23895 .24558 .75442 .99337 
 
 1 
 
 60 
 
 .23967 .24632 .75368 .99335 
 
 O 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9 Lcos 
 
 / 
 
 O 
 
 .23 967 
 
 .24 632 
 
 .75 368 
 
 .99335 
 
 750 
 
 1 
 
 .24 039 
 
 .24 706 
 
 .75 294 
 
 .99 333 
 
 59 
 
 2 
 
 .24110 
 
 .24 779 
 
 .75 221 
 
 .99331 
 
 58 
 
 3 
 
 .24181 
 
 .24 853 
 
 .75 147 
 
 .99328 
 
 57 
 
 4 
 
 .24253 
 
 .24926 
 
 .75074 
 
 .99 326 
 
 56 
 
 5 
 
 .24324 
 
 .25000 
 
 .75000 
 
 .99324 
 
 55 
 
 6 
 
 .24 395 
 
 .25 073 
 
 .74 927 
 
 .99322 
 
 54 
 
 7 
 
 .24466 
 
 .25 146 
 
 .74 854 
 
 .99319 
 
 53 
 
 8 
 
 .24 536 
 
 .25 219 
 
 .74 781 
 
 .99317 
 
 52 
 
 9 
 
 .24607 
 
 .25 292 
 
 .74 708 
 
 .99315 
 
 51 
 
 10 
 
 .24677 
 
 .25 365 
 
 .74 635 
 
 .99313 
 
 5O 
 
 11 
 
 .24 748 
 
 .25 437 
 
 .74563 
 
 .99310 
 
 49 
 
 12 
 
 .24818 
 
 .25510 
 
 .74490 
 
 .99308 
 
 48 
 
 13 
 
 .24 888 
 
 .25 582 
 
 .74418 
 
 .99306 
 
 47 
 
 14 
 
 .24958 
 
 .25 655 
 
 .74345 
 
 .99304 
 
 46 
 
 15 
 
 .25 028 
 
 .25 727 
 
 .74273 
 
 .99301 
 
 45 
 
 16 
 
 .25 098 
 
 .25 799 
 
 .74 201 
 
 .99299 
 
 44 
 
 17 
 
 .25 168 
 
 .25 871 
 
 .74129 
 
 .99 297 
 
 43 
 
 18 
 
 .25 237 
 
 .25 943 
 
 .74057 
 
 .99 294 i . 42 
 
 19 
 
 .25307 
 
 .26015 
 
 .73985 
 
 .99 292 41 
 
 2O 
 
 .25 376 
 
 .26086 
 
 .73914 
 
 .99290 4O 
 
 21 
 
 .25 445 
 
 .26158 
 
 .73842 
 
 .99288 39 
 
 22 
 
 .25514 
 
 .26 229 
 
 .73 771 
 
 .99 285 38 
 
 23 
 
 .25 583 
 
 .26301 
 
 .73699 
 
 .99 283 
 
 37 
 
 24 
 
 .25 652 
 
 .26372 
 
 .73 628 
 
 .99281 
 
 36 
 
 25 
 
 .25 721 
 
 .26443 
 
 .73557 
 
 .99278 
 
 35 
 
 26 
 
 .25 790 
 
 .26514 
 
 .73486 
 
 .99 276 
 
 34 
 
 27 
 
 .25 858 
 
 .26 585 
 
 .73415 
 
 .99274 
 
 33 
 
 28 
 
 .25927 
 
 .26655 
 
 .73 345 
 
 .99271 
 
 32 
 
 29 
 
 .25 995 
 
 .26 726 
 
 .73 274 
 
 .99269 
 
 31 
 
 3O 
 
 .26063 
 
 .26 797 
 
 .73 203 
 
 .99 267 
 
 30 
 
 31 
 
 .26131 
 
 .26867 
 
 .73133 
 
 .99 264 
 
 29 
 
 32 
 
 .26 199 
 
 .26937 
 
 .73 063 
 
 .99262 
 
 28 
 
 33 
 
 .26267 
 
 ..27008 
 
 .72992 
 
 .99260 
 
 27 
 
 34 
 
 .26335 
 
 .27078 
 
 .72 922 
 
 .99257 
 
 26 
 
 35 
 
 .26403 
 
 .27148 
 
 .72852 
 
 .99255 
 
 25 
 
 36 
 
 .26470 
 
 .27218 
 
 .72 782 
 
 .99252 
 
 24 
 
 37 
 
 .26 538 
 
 .27 288 
 
 .72712 
 
 .99 250 
 
 23 
 
 38 
 
 .26605 
 
 .27357 
 
 .72643 
 
 .99 248 
 
 22 
 
 39 
 
 .26672 
 
 .27427 
 
 .72573 
 
 .99 245 
 
 21 
 
 40 
 
 .26 739 
 
 .27496 
 
 .72 504 
 
 .99243 
 
 2O 
 
 41 
 
 .26806 
 
 .27 566 
 
 .72434 
 
 .99 241 
 
 19 
 
 42 
 
 .26 873 
 
 .27635 
 
 .72365 
 
 .99 238 
 
 18 
 
 43 
 
 .26940 
 
 .27704 
 
 .72 296 
 
 .99 236 
 
 17 
 
 44 
 
 .27007 
 
 .27773 
 
 .72227 
 
 .99 233 
 
 16 
 
 45 
 
 .27073 
 
 .27 842 
 
 .72155 
 
 .99231 
 
 15 
 
 46 
 
 .27140 
 
 .27911 
 
 .72 089 
 
 .99 229 
 
 14 
 
 47 
 
 .27 206 
 
 .27 980 
 
 .72020 
 
 .99 226 
 
 13 
 
 48 
 
 .27273 
 
 .28049 
 
 .71951 
 
 .99 224 
 
 12 
 
 49 
 
 .27339 
 
 .28117 
 
 .71883 
 
 .99221 
 
 11 
 
 50 
 
 .27405 
 
 .28 186 
 
 .71814 
 
 .99219 
 
 10 
 
 51 
 
 .27471 
 
 .28254 
 
 .71 746 
 
 .99217 
 
 9 
 
 52 
 
 .27537 
 
 .28323 
 
 .71677 
 
 .99214 
 
 8 
 
 53 
 
 .27 602 
 
 .28391 
 
 .71 609 
 
 .99212 
 
 7 
 
 54 
 
 .27668 
 
 .28459 
 
 .71 541 
 
 .99 209 
 
 6 
 
 55 
 
 .27 734 
 
 .28 527 
 
 .71473 
 
 .99207 
 
 5 
 
 56 
 
 .27 799 
 
 .28 595 
 
 .71405 
 
 .99 204 
 
 4 
 
 57 
 
 .27 864 
 
 .28 662 
 
 .71338 
 
 .99 202 
 
 3 
 
 58 
 
 .27930 
 
 .28 730 
 
 .71270 
 
 .99 200 
 
 2 
 
 59 
 
 .27995 
 
 .28 798 
 
 .71 202 
 
 .99 197 
 
 1 
 
 60 
 
 .28060 
 
 .28 865 
 
 .71 135 
 
 .99 195 
 
 O 
 
 / 
 
 9 Lcos 
 
 9Lcot 
 
 lOLtan 
 
 9Lsin 
 
 / 
 
 80 C 
 
 79 
 
ir 
 
 41 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 o 
 
 .28060 .28865 .71135 .99195 
 
 6O 
 
 I 
 
 .28125 .28933 .71067 .99192 
 
 59 
 
 2 
 
 .28190 .29000 .71000 .99190 
 
 58 
 
 3 
 
 .28254 .29067 .70933 .99187 
 
 57 
 
 4 
 
 .28319 .29134 .70866 .99185 
 
 56 
 
 5 
 
 .28384 .29201 .70799 .99182 
 
 55 
 
 6 
 
 .28448 .29268 .70732 .99180 
 
 54 
 
 7 
 
 .28512 .29335 .70665 .99177 
 
 53 
 
 8 
 
 .28577 .29402 .70598 .99175 
 
 52 
 
 9 
 
 .28641 .29468 .70532 .99172 
 
 51 
 
 1C 
 
 .28705 .29535 .70465 .99170 
 
 50 
 
 11 
 
 .28769 .29601 .70399 .99167 
 
 49 
 
 12 
 
 .28833 .29668 .70332 .99165 
 
 48 
 
 13 
 
 .28896 .29734 .70266 .99162 
 
 47 
 
 . 14 
 
 .28960 .29800 .70200 .99160 
 
 46 
 
 15 
 
 .29024 .29866 .70134 .99157 
 
 45 
 
 16 
 
 .29087 .29932 .70068 .99155 
 
 44 
 
 17 
 
 .29150 .29998 .70002 .99152 
 
 43 
 
 18 
 
 .29214 .30064 .69936 .99150 
 
 42 
 
 19 
 
 .29277 .30130 .69870 .99147 
 
 41 
 
 2O 
 
 .29340 .30195 .69805 .99145 
 
 40 
 
 21 
 
 .29403 .30261 .69739 .99142 
 
 39 
 
 22 
 
 .29466 .30326 .69674 .99140 
 
 38 
 
 23 
 
 .29529 .30391 .69609 .99137 
 
 37 
 
 I 24 
 
 .29591 .30457 .69543 .99135 
 
 36 
 
 25 
 
 .29654 .30522 .69478 .99132 
 
 35 
 
 26 
 
 .29716 .30587 .69413 .99130 
 
 34 
 
 27 
 
 .29779 .30652 .69348 .99127 
 
 33 
 
 28 
 
 .29841 .30717 .69283 .99124 
 
 32 
 
 29 
 
 .29903 .30782 .69218 .99122 
 
 31 
 
 30 
 
 .29966 .30 846 '.69 154 .99119 
 
 30 
 
 31 
 
 .30028 .30911 .69089 .99117 
 
 29 
 
 32 
 
 .30090 .30975 .69025 .99114 
 
 28 
 
 33 
 
 .30151 .31040 .68960 .99112 
 
 27 
 
 34 
 
 .30213 .31104 .68896 .99109 
 
 26 
 
 35 
 
 .30275 .31168 .68832 .99106 
 
 25 
 
 36 
 
 .30336 .31233 .68767 .99104 
 
 24 
 
 37 
 
 .30398 .31297 .68703 .99101 
 
 23 
 
 38 
 
 .30459 .31361 .68639 .99099 
 
 22 
 
 39 
 
 .30521 .31425 .68575 .99096 
 
 21 
 
 40 
 
 .30582 .31489 .68511 .99093 
 
 2O 
 
 41 
 
 .30643 .31552 .68448 .99091 
 
 19 
 
 42 
 
 .30704 .31616 .68384 .99088 
 
 18 
 
 43 
 
 .30765 .31679 .68321 .99086 
 
 17 
 
 44 
 
 .30826 .31743 .68257 .99083 
 
 16 
 
 45 
 
 .30887 .31806 .68194 .99080 
 
 15 
 
 46 
 
 .30947 .31870 .68130 .99078 
 
 14 
 
 47 
 
 .31008 .31933 .68067 .99075 
 
 13 
 
 48 
 
 .31068 .31996 .68004 .99072 
 
 12 
 
 49 
 
 .31129 .32059 .67941 .99070 
 
 11 
 
 50 
 
 .31189 .32122 .67878 .99067 
 
 1O 
 
 51 
 
 .31250 .32185 .67815 .99064 
 
 9 
 
 52 
 
 .31310 .32248 .67752 .99062 
 
 8 
 
 53 
 
 .31370 .32311 .67689 .99059 
 
 7 
 
 54 
 
 .31430 .32373 .67627 .99056 
 
 6 
 
 55 
 
 .31490 .32436 .67564 .99054 
 
 5 
 
 56 
 
 .31549 .32498 .67502 .99051 
 
 4 
 
 57 
 
 .31609 .32561 .67439 .99048 
 
 3 
 
 58 
 
 .31669 .32623 .67377 .99046 
 
 2 
 
 59 
 
 .31728 .32685 .67315 .99043 
 
 1 
 
 6O 
 
 .31788 .32747 .67253 .99040 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9Lcos -L- 
 
 O 
 
 .31 788 
 
 .32 747 
 
 .67 253 
 
 .99040 
 
 ou 
 
 CO 
 
 1 
 
 .31847 
 
 .32810 
 
 .67 190 
 
 .99038 
 
 V 
 
 2 
 
 .31907 
 
 .32872 
 
 .67 128 
 
 .99035 
 
 58 
 
 3 
 
 .31 966 
 
 .32933 
 
 .67 067 
 
 .99032 
 
 57 
 
 4 
 
 .32025 
 
 .32995 
 
 .67005 
 
 .99030 
 
 56 
 
 5 
 
 .32084 
 
 .33057 
 
 .66943 
 
 .99027 
 
 55 
 
 6 
 
 .32 143 
 
 .33 119 
 
 .66881 
 
 .99024 
 
 54 
 
 7 
 
 .32 202 
 
 .33 180 
 
 .66 820 
 
 .99022 
 
 53 
 
 CO 
 
 8 
 
 .32 261 
 
 .33 242 
 
 .66 758 
 
 .99019 
 
 OL 
 
 9 
 
 .32319 
 
 .33303 
 
 .66697 
 
 .99016 
 
 51 
 
 1.O 
 
 .32378 
 
 .33 365 
 
 .66635 
 
 .99013 
 
 50 
 
 zin 
 
 11 
 
 .32437 
 
 .33 426 
 
 .66574 
 
 .99011 
 
 *ty 
 
 12 
 
 .32495 
 
 .33487 
 
 .66513 
 
 .99008 
 
 48 
 
 13 
 
 .32553 
 
 .33548 
 
 .66452 
 
 .99005 
 
 47 
 
 14 
 
 .32612 
 
 .33609 
 
 .66391 
 
 .99002 
 
 46 
 
 15 
 
 .32670 
 
 .33 670 
 
 .66330 
 
 .99000 
 
 45 
 
 16 
 
 .32 728 
 
 .33 731 
 
 .66 269 
 
 .98997 
 
 44 
 
 17 
 
 .32 786 
 
 .33 792 
 
 .66208 
 
 .98994 
 
 43 
 
 18 
 
 .32 844 
 
 .33 853 
 
 .66 147 
 
 .98991 
 
 42 
 
 19 
 
 .32902 
 
 .33913 
 
 .66087 
 
 .98989 
 
 41 
 
 20 
 
 .32960 
 
 .33974 
 
 .66026 
 
 .98986 
 
 4O 
 
 21 
 
 .33 018 
 
 .34 034 
 
 .65 966 
 
 .98983 
 
 39 
 
 '22 
 
 .33 075 
 
 .34095 
 
 .65 905 
 
 .98980 
 
 38 
 
 1 r- 
 
 23 
 
 .33 133 
 
 .34 155 
 
 .65 845 
 
 .98978 
 
 o/ 
 
 ox; 
 
 24 
 
 .33 190 
 
 .34215 
 
 .65 785 
 
 .98975 
 
 36 
 
 25 
 
 .33 248 
 
 .34 276 
 
 .65 724 
 
 .98972 
 
 35 
 
 26 
 
 .33 305 
 
 .34336 
 
 .65 664 
 
 .98969 
 
 34 
 
 27 
 
 .33 362 
 
 .34 396 
 
 .65 604 
 
 .98967 
 
 33 
 
 28 
 
 .33 420 
 
 .34456 
 
 .65 544 
 
 .98964 
 
 32 
 
 29 
 
 .33 477 
 
 .34516 
 
 .65 484 
 
 .98961 
 
 31 
 
 30 
 
 .33 534 
 
 .34576 
 
 .65 424 
 
 .98958 
 
 30 
 
 31 
 
 .33 591 
 
 .34 635 
 
 .65 365 
 
 .98955 
 
 29 
 
 32 
 
 .33647 
 
 .34695 
 
 .65 305 
 
 .98953 
 
 28 
 
 33 
 
 .33 704 
 
 .34 755 
 
 .65 245 
 
 .98950 
 
 27 
 
 34 
 
 .33 761 
 
 .34814 
 
 .65 186 
 
 .98947 
 
 26 
 
 35 
 
 .33 818 
 
 .34874 
 
 .65 126 
 
 .98944 
 
 25 
 
 36 
 
 .33 874 
 
 .34 933 
 
 .65 067 
 
 .98941 
 
 24 
 
 37 
 
 .33931 
 
 .34992 
 
 .65 008 
 
 .98938 
 
 23 
 
 38 
 
 .33 987 
 
 .35051 
 
 .649-19 
 
 .98 936 
 
 22 
 
 39 
 
 .34043 
 
 .35 111 
 
 .64 889 
 
 .98933 
 
 21 
 
 40 
 
 .34 100 
 
 .35 170 
 
 .64830 
 
 .98930 
 
 2O 
 
 41 
 
 .34 156 
 
 .35 229 
 
 ,64771 
 
 .98927 
 
 19 
 
 42 
 
 .34212 
 
 .35 288 
 
 .64712 
 
 .98924 
 
 18 
 
 43 
 
 .34 268 
 
 .35 347 
 
 .64653 
 
 .98921 
 
 17 
 
 44 
 
 .34324 
 
 .35 405 
 
 .64595 
 
 .98919 
 
 16 
 
 45 
 
 .34 380 
 
 .35 464 
 
 .64 536 
 
 .98916 
 
 15 
 
 46 
 
 .34 436 
 
 .35 523 
 
 .64477 
 
 .98913 
 
 14 
 
 47 
 
 .34491 
 
 .35 581 
 
 .64419 
 
 .98910 
 
 13 
 
 48 
 
 .34 547 
 
 .35 640 
 
 .64360 
 
 .9890? 
 
 12 
 
 49 
 
 .34602 
 
 .35 698 
 
 .64302 
 
 .98904 
 
 11 
 
 50 
 
 .34658 
 
 .35 757 
 
 .64 243 
 
 .98901 
 
 1O 
 
 51 
 
 .34 713 
 
 .35815 
 
 .64 185 
 
 .98898 
 
 9 
 
 52 
 
 .34 769 
 
 .35 873 
 
 .64127 
 
 .98896 
 
 8 
 
 53 
 
 .34 824 
 
 .35931 
 
 .64069 
 
 .98893 
 
 7 
 
 54 
 
 .34 879 
 
 .35989 
 
 .64011 
 
 .98890 
 
 6 
 
 55 
 
 .34934 
 
 .36047 
 
 .63 953 
 
 .98887 
 
 5 
 
 56 
 
 .34989 
 
 .36 105 
 
 .63 895 
 
 .98884 
 
 4 
 
 57 
 
 .35 044 
 
 .36 163 
 
 .63 837 
 
 .98 881 
 
 3 
 
 58 
 
 .35 099 
 
 .36221 
 
 .63 779 
 
 .98878 
 
 2 
 
 59 
 
 .35 154 
 
 .36279 
 
 .63 721 
 
 .98 875 
 
 1 
 
 60 
 
 .35 209 
 
 .36336 
 
 .63 664 
 
 .98 872 
 
 
 
 / 
 
 9Lccs 
 
 9Lcot 
 
 1O L tan 
 
 9Lsin 
 
 / 
 
 78 C 
 
 77 C 
 
42 
 
 13 
 
 14 C 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 o 
 
 .35209 .36336 .63664 .98872 
 
 60 
 
 1 
 
 .35263 .36394 .63606 .98869 
 
 59 
 
 2 
 
 .35318 .36452 .63548 .98867 
 
 58 
 
 3 
 
 .35373 .36509 .63491 .98864 
 
 57 
 
 4 
 
 .35427 .36566 .63434 .98861 
 
 56 
 
 5 
 
 .35481 .36624 .63376 .98858 
 
 55 
 
 6 
 
 .35536 .36681 .63319 .98855 
 
 54 
 
 7 
 
 .35590 .36738 .63262 .98852 
 
 53 
 
 8 
 
 .35644 .36795 .63205 .98849 
 
 52 
 
 9 
 
 .35698 .36852 .63148 .98846 
 
 51 
 
 1C 
 
 .35752 .36909 .63091 .98843 
 
 5O 
 
 11 
 
 .35806 .36966 .63034 .98840 
 
 49 
 
 12 
 
 .35860 .37023 .62977 .98837 
 
 48 
 
 13 
 
 .35914 .37080 .62920 .98834 
 
 47 
 
 14 
 
 .35968 .37137 .62863 .98831 
 
 46 
 
 15 
 
 .36022 .37193 .62807 .98828 
 
 45 
 
 16 
 
 .36075 .37250 .62750 .98825 
 
 44 
 
 17 
 
 .36129 .37306 .62694 .98822 
 
 43 
 
 18 
 
 .36182 .37363 .62637 .98819 
 
 42 
 
 19 
 
 .36236 .37419 .62581 .98816 
 
 41 
 
 20 
 
 .36289 .37476 .62524 .98813 
 
 40 
 
 21 
 
 .36342 .37532 .62468 .98810 
 
 39 
 
 22 
 
 .36395 .37588 .62412 .98807 
 
 38 
 
 23 
 
 .36449 .37644 .62356 .98804 
 
 37 
 
 24 
 
 .36502 .37700 .62300 .98801 
 
 36 
 
 25 
 
 .36555 .37756 .62244 .98798 
 
 35 
 
 26 
 
 .36608 .37812 .62188 .98795 
 
 34 
 
 27 
 
 .36660 .37868 .62132 .98792 
 
 33 
 
 28 
 
 .36713 .37924 .62076 .98789 
 
 32 
 
 29 
 
 .36766 .37980 .62020 .98786 
 
 31 
 
 30 
 
 .36819 .38035 .61965 .98783 
 
 30 
 
 31 
 
 .36871 .38091 .61909 .98780 
 
 29 
 
 32 
 
 .36924 .38147 .61853 .98777 
 
 28 
 
 33 
 
 .36976 .38202 .61798 .98774 
 
 27 
 
 34 
 
 .37028 .38257 .61743 .98771 
 
 26 
 
 35 
 
 .37081 .38313 .61687 .98768 
 
 25 
 
 36 
 
 .37133 .38368 .61632 .98765 
 
 24 
 
 37 
 
 .37185 .38423 .61577 .98762 
 
 23 
 
 38 
 
 .37237 .38479 .61521. .98759 
 
 22 
 
 39 
 
 .37289 .38534 .61466 .98756 
 
 21 
 
 4O 
 
 .37341 .38589 .61411 .98753 
 
 2O 
 
 41 
 
 .37393 .38644 .61356 .98750 
 
 19 
 
 42 
 
 .37445 .38699 .61301 .98746 
 
 18 
 
 43 
 
 .37497 .38754 .61246 .98743 
 
 17 
 
 44 
 
 .37549 .38808 .61192 .98740 
 
 16 
 
 45 
 
 .37600 .38863 .61137 .98737 
 
 15 
 
 46 
 
 .37652. .38918 .61082 .98734 
 
 14 
 
 47 
 
 .37703 .38972 .61028 .98731 
 
 13 
 
 48 
 
 .37755 .39027 .60973 .98728 
 
 12 
 
 49 
 
 .37806 .39082 .60918 .98725 
 
 11 
 
 50 
 
 .37858 .39136 .60864 .98722 
 
 10 
 
 51 
 
 .37909 .39190 .60810 .98719 
 
 9 
 
 52 
 
 .37960 .39245 .60755 .98715 
 
 8 
 
 53 
 
 .38011 .39299 .60701 .98712 
 
 7 
 
 54 
 
 .38062 .39353 .60647 .98709 
 
 6 
 
 55 
 
 .38113 .39407 .60593 .98706 
 
 5 
 
 56 
 
 .38164 .39461 .60539 '.98703 
 
 4 
 
 57 
 
 .38215 .39515 .60485 .98700 
 
 3 
 
 58 
 
 .38266 .39569 .60431 .98697 
 
 2 
 
 59 
 
 .38317 .39623 .60377 .98694 
 
 1 
 
 60 
 
 .38368 .39677 .60323 .98690 
 
 O 
 
 / 
 
 9Lcos 9LcotlOLtan9Lsin 
 
 / 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 ~o 
 
 .38368 .39677 .60323 .98690 
 
 6O 
 
 1 
 
 .38418 .39731 .60269 .98687 
 
 59 
 
 2 
 
 .38469 .39785 .60215 .98684 
 
 58 
 
 3 
 
 .38519 .39838 .60162 .98681 
 
 57 
 
 4 
 
 .38570 .39892 .60108 .98678 
 
 56 
 
 5 
 
 .38620 .39945 .60055 .98675 
 
 55 
 
 6 
 
 .38670 .39999 .60001 .98671 
 
 54 
 
 7 
 
 .38721 .40052 .59948 .98668 
 
 53 
 
 8 
 
 .38771 .40106 .59894 .98665 
 
 52 
 
 9 
 
 .38821 .40159 .59841 .98662 
 
 51 
 
 10 
 
 .38871 .40212 .59788 .98659 
 
 5O 
 
 11 
 
 .38921 .40266 .59734 .98656 
 
 49 
 
 12 
 
 .38971 .40319 .59681 .98652 
 
 48 
 
 13 
 
 .39021 .40372 .59628 .98649 
 
 47 
 
 14 
 
 .39071 .40425 .59575 .98646 
 
 46 
 
 15 
 
 .39121 .40478 .59522 .98643 
 
 45 
 
 16 
 
 .39170 .40531 .59469 .98640 
 
 44 
 
 17 
 
 .39220 .40584 .59416 .98636 
 
 43 
 
 18 
 
 .39270 .40636 .59364 .98633 
 
 42 
 
 19 
 
 .39319 .40689 .59311 .98630 
 
 41 
 
 20 
 
 .39369 .40742 .59258 .98627 
 
 40 
 
 21 
 
 .39418 .40795 .59205 .98623 
 
 39 
 
 22 
 
 .39467 .40847 .59153 .98620 
 
 38 
 
 23 
 
 .39517 .40900 .59100 .98617 
 
 37 
 
 24 
 
 .39566 .40952 .59048 .98614 
 
 36 
 
 25 
 
 .39615 .41005 .58995 .98610 
 
 35 
 
 26 
 
 .39.664 .41057 .58943 .98607 
 
 34 
 
 27 
 
 .39713 .41109 .58891 .98604 
 
 33 
 
 28 
 
 .39762 .41161 .58839 .98601 
 
 32 
 
 29 
 
 .39811 .41214 .58786 .98597 
 
 31 
 
 3O 
 
 .39860 .41266 .58734 .98594 
 
 30 
 
 31 
 
 .39909 .41318 .58682 .98591 
 
 29 
 
 32 
 
 .39958 .41370 .58630 .98588 
 
 28 
 
 33 
 
 .40006 .41422 .58578 .98584 
 
 27 
 
 34 
 
 .40055 .41474 .58526 .98581 
 
 26 
 
 35 
 
 .40103 .41526 .58474 .98578 
 
 25 
 
 36 
 
 .40152 .41578 .58422 .98574 
 
 24 
 
 37 
 
 .40200 .41629 .58371 .98571 
 
 23 
 
 38 
 
 .40249 .41681 .58319 .98568 
 
 22 
 
 39 
 
 .40297 .41733 .58267 .98565 
 
 21 
 
 4O 
 
 .40346 .41784 .58216 .98561 
 
 20 
 
 41 
 
 .40394 .41836 .58164 .98558 
 
 19 
 
 42 
 
 .40442 .41887 .58113 .98555 
 
 18 
 
 43 
 
 .40490 .41939 .58061 .98551 
 
 17 
 
 44 
 
 .40538 .41990 .58010 .98548 
 
 16 
 
 45 
 
 .40586 .42041 .57959 .98545 
 
 15 
 
 46 
 
 .40634 .42093 .57907 .98541 
 
 14 
 
 47 
 
 .40682 .42144 .57856 .98538 
 
 13 
 
 48 
 
 .40730 .42195 .57805 .98535 
 
 12 
 
 49 
 
 .40778 .42246 .57754 .98531 
 
 11 
 
 50 
 
 .40825 .42297 .57703 .98528 
 
 1O 
 
 51 
 
 .40873 .42348 .57652 .98525 
 
 9 
 
 52 
 
 .40921 .42399 .57601 .98521 
 
 8 
 
 53 
 
 .40968 .42450 .57550 .98518 
 
 7 
 
 54 
 
 .41016 .42501 .57499 .98515 
 
 6 
 
 55 
 
 .41063 .42552 .57448 .98511 
 
 5 
 
 56 
 
 .41111 .42603 .57397 .98508 
 
 4 
 
 57 
 
 .41158 .42653 .57347 .98505 
 
 3 
 
 58 
 
 .41205 .42704 .57296 .98501 
 
 2 
 
 59 
 
 .41252 .42755 .57245 .98498 
 
 1 
 
 60 
 
 .41300 .42805 .57195 .98494 
 
 O 
 
 / 
 
 9Lcos 9LcotlOLtan 9Lsin 
 
 / 
 
 76' 
 
 75 C 
 
15' 
 
 16 
 
 43 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 o 
 
 .41300 .42805 .57195 .98494 
 
 60 
 
 I 
 
 .41347 .42856 .57144 .98491 
 
 59 
 
 2 
 
 .41394 .42906 .57094 .98488 
 
 58 
 
 3 
 
 .41441 .42957 .57043 .98484 
 
 57 
 
 4 
 
 .41488 .43007 .56993 .98481 
 
 56 
 
 5 
 
 .41535 .43057 .56943 .98477 
 
 55 
 
 6 
 
 .41582 .43108 .56892 .98474 
 
 54 
 
 7 
 
 .41628 .43158 .56842 .98471 
 
 53 
 
 8 
 
 .41675 .43208 .56792 .98467 
 
 52 
 
 9 
 
 .41722 .43258 .56742 .98464 
 
 51 
 
 10 
 
 .41768 .43308 .56692 .98460 
 
 50 
 
 11 
 
 ATSIS .43358 .56642 .98457 
 
 49 
 
 12 
 
 .41861 .43408 .56592 .98453 
 
 48 
 
 13 
 
 .41908 .43458 .56542 .98450 
 
 47 
 
 14 
 
 .41954 .43508 .56492 .98447 
 
 46 
 
 15 
 
 .42001 .43558 .56442 .98443 
 
 45 
 
 16 
 
 .42047 .43607 .56393 .98440 
 
 44 
 
 17 
 
 .42093 .43657 .56343 .98436 
 
 43 
 
 18 
 
 .42140 .43707 .56293 .98433 
 
 42 
 
 19 
 
 .42186 .43756 .56244 .98429 
 
 41 
 
 2O 
 
 .42232 .43806 .56194 .98426 
 
 4O 
 
 21 
 
 .42278 .43855 .56145 .98422 
 
 39 
 
 22 
 
 .42324 .43905 .56095 .98419 
 
 38 
 
 23 
 
 .42370 .43954 .56046 .98415 
 
 37 
 
 24 
 
 .42416 .44004 .55996 .98412 
 
 36 
 
 25 
 
 .42461 .44053 .55947 .98409 
 
 35 
 
 26 
 
 .42507 .44102 .55898 .98405 
 
 34 
 
 27 
 
 .42553 .44151 .55849 .98402 
 
 33 
 
 28 
 
 .42599 .44201 .55799 .98398 
 
 32 
 
 29 
 
 .42644 .44250 .55750 .98395 
 
 31 
 
 3O 
 
 .42690 .44299 .55701 .98391 
 
 30 
 
 31 
 
 .42735 .44348 .55652 .98388 
 
 29 
 
 32 
 
 .42781 .44397 .55603 .98384 
 
 28 
 
 33 
 
 .42-826 .44446 .55554 .98381 
 
 27 
 
 34 
 
 .42872 .44495 .55505 .98377 
 
 26 
 
 35 
 
 .42917 .44544 .55456 .98373 
 
 25 
 
 36 
 
 .42962 .44592 .55408 .98370 
 
 24 
 
 37 
 
 .43008 .44641 .55359 .98366 
 
 23 
 
 38 
 
 .43053 .44690 .55310 .98363 
 
 22 
 
 39 
 
 .43098 .44738 .55262 .98359 
 
 21 
 
 4O 
 
 .43143 .44787 .55213 .98356 
 
 2O 
 
 41 
 
 .43188 .44836 .55164 .98352 
 
 19 
 
 42 
 
 .43233 .44884 .55116 .98349 
 
 18 
 
 43 
 
 .43278 .44933 .55067 .98345 
 
 17 
 
 44 
 
 .43323 .44981 .55019 .98342 
 
 16 
 
 45 
 
 .43367 .45029 .54971 .98338 
 
 15 
 
 46 
 
 .43412 .45078 .54922 .98334 
 
 14 
 
 47 
 
 .43457 .45126 .54874 .98331 
 
 13 
 
 48 
 
 .43502 .45174 .54826 .98327 
 
 12 
 
 49 
 
 .43546 .45222 .54778 .98324 
 
 11 
 
 50 
 
 .43591 .45271 .54729 .98320 
 
 10 
 
 51 
 
 .43635 .45319 .54681 .98317 
 
 9 
 
 52 
 
 .43680 .45367 .54633 .98313 
 
 8 
 
 53 
 
 .43724 .45415 .54585 .98309 
 
 7 
 
 54 
 
 .43769 .45463 .54537 .98306 
 
 6 
 
 55 
 
 .43813 .45511 .54489 .98302 
 
 5 
 
 56 
 
 .43857 .45559 .54441 .98299 
 
 4 
 
 57 
 
 .43901 .45606 .54394 .98295 
 
 3 
 
 58 
 
 .43946 .45654 .54346 .98291 
 
 2 
 
 59 
 
 .43990 .45702 .54298 .98288 
 
 1 
 
 6O 
 
 .44034 .45750 .54250 .98284 
 
 O 
 
 / 
 
 9 L cos 9 L cot 10 L tan 9 L sin 
 
 / 
 
 / 
 
 9 Lain 
 
 9Ltan 
 
 10 L cot 
 
 9Lcos 
 
 / 
 
 
 
 .44034 
 
 .45 750 
 
 .54250 
 
 .98284 
 
 60 
 
 1 
 
 .44 078 
 
 .45 797 
 
 .54203 
 
 .98 281 
 
 59 
 
 2 
 
 .44 122 
 
 .45 845 
 
 .54 155 
 
 .98277 
 
 58 
 
 3 
 
 .44 166 
 
 .45 892 
 
 .54 108 
 
 .98 273 
 
 57 
 
 4 
 
 .44 210 
 
 .45 940 
 
 .54060 
 
 .98 270 
 
 56 
 
 5 
 
 .44 253 
 
 .45 987 
 
 .54013 
 
 .98266 
 
 55 
 
 6 
 
 .44 297 
 
 .46035 
 
 .53 965 
 
 .98 262 
 
 54 
 
 7 
 
 .44341 
 
 .46082 
 
 .53918 
 
 .98 259 
 
 53 
 
 8 
 
 .44385 
 
 .46 130 
 
 .53870 
 
 .98255 
 
 52 
 
 9 
 
 .44428 
 
 .46 177 
 
 .53823 
 
 .98251 
 
 51 
 
 1O 
 
 .44472 
 
 .46224 
 
 .53 776 
 
 .98248 
 
 50 
 
 11 
 
 .44516 
 
 .46271 
 
 .53 729 
 
 .98244 
 
 49 
 
 12 
 
 .44559 
 
 .46319 
 
 .53681 
 
 .98240 
 
 48 
 
 13 
 
 .44602 
 
 .46366 
 
 .53 634 
 
 .98237 
 
 47 
 
 14 
 
 .44646 
 
 .46413 
 
 .53587 
 
 .98233 
 
 46 
 
 15 
 
 .44 689 
 
 .46 460 
 
 .53 540 
 
 .98 229 
 
 45 
 
 16 
 
 .44 733 
 
 .46 507 
 
 .53 493 
 
 .98 226 
 
 44 
 
 17 
 
 .44 776 
 
 .46554 
 
 .53 446 
 
 .98 222 
 
 43 
 
 18 
 
 .44819 
 
 .46601 
 
 .53 399 
 
 .98 218 
 
 42 
 
 19 
 
 .44862 
 
 .46648 
 
 .53 352 
 
 .98215 
 
 41 
 
 2O 
 
 .44905 
 
 .46694 
 
 .53 306 
 
 .98211 
 
 40 
 
 21 
 
 .44 948 
 
 .46741 
 
 .53259 
 
 .98 207 
 
 39 
 
 22 
 
 .44992 
 
 .46 788 
 
 .53212 
 
 .98 204 
 
 38 
 
 23 
 
 .45 035 
 
 .46 835 
 
 .53165 
 
 .98 200 
 
 37 
 
 24 
 
 .45 077 
 
 .46881 
 
 .53119 
 
 .98 196 
 
 36 
 
 25 
 
 .45 120 
 
 .46928 
 
 .53072 
 
 .98 192 
 
 35 
 
 26 
 
 .45 163 
 
 .46975 
 
 .53 025 
 
 .98 189 
 
 34 
 
 27 
 
 .45 206 
 
 .47021 
 
 .52979 
 
 .98 185 
 
 33 
 
 28 
 
 .45 249 
 
 .47068 
 
 .52932 
 
 .98181 
 
 32 
 
 29 
 
 .45 292 
 
 .47 114 
 
 .52886 
 
 .98177 
 
 31 
 
 30 
 
 .45 334 
 
 .47 160 
 
 .52840 
 
 .98174 
 
 30 
 
 31 
 
 .45377 
 
 .47 207 
 
 .52 793 
 
 .98170 
 
 29 
 
 32 
 
 .45 419 
 
 .47 253 
 
 .52 747 
 
 .98 166 
 
 28 
 
 33 
 
 .45 462 
 
 .47 299 
 
 .52701 
 
 .98 162 
 
 27 
 
 34 
 
 .45 504 
 
 .47346 
 
 .52654 
 
 .98159 
 
 26 
 
 35 
 
 .45 547 
 
 .47 392 
 
 .52608 
 
 .98 155 
 
 25 
 
 36 
 
 .45 589 
 
 .47438 
 
 .52562 
 
 .98151 
 
 24 
 
 37 
 
 .45 632 
 
 .47 484 
 
 .52516 
 
 .98 147 
 
 23 
 
 38 
 
 .45 674 
 
 .47530 
 
 .52470 
 
 .98 144 
 
 22 
 
 39 
 
 .45 716 
 
 .47576 
 
 .52424 
 
 .98 140 
 
 21 
 
 40 
 
 .45 758 
 
 .47 622 
 
 .52378 
 
 .98 136 
 
 2O 
 
 41 
 
 .45 801 
 
 .47 668 
 
 .52332 
 
 .98 132 
 
 19 
 
 42 
 
 .45 843 
 
 .47714 
 
 .52 286 
 
 .98 129 
 
 18 
 
 43 
 
 .45 885 
 
 .47 760 
 
 .52 240 
 
 .98 125 
 
 17 
 
 44 
 
 .45 927 
 
 .47806 
 
 .52 194 
 
 .98 121 
 
 16 
 
 45 
 
 .45969 
 
 .47 852 
 
 .52 148 
 
 .98117 
 
 15 
 
 46 
 
 .46011 
 
 .47 897 
 
 .52 103 
 
 .98113 
 
 14 
 
 47 
 
 .46053 
 
 .47 943 
 
 .52057 
 
 .98110 
 
 13 
 
 48 
 
 .46095 
 
 .47 989 
 
 .52011 
 
 .98 106 
 
 12 
 
 49 
 
 .46 136 
 
 .48035 
 
 .51965 
 
 .98 102 
 
 11 
 
 50 
 
 .46178 
 
 .48080 
 
 .51920 
 
 .98098 
 
 1O 
 
 51 
 
 .46 220 
 
 .48 126 
 
 .51874 
 
 .98094 
 
 9 
 
 52 
 
 .46262 
 
 .48 171 
 
 .51829 
 
 .98090 
 
 8 
 
 53 
 
 .46303 
 
 .48217 
 
 .51783 
 
 .98087 
 
 7 
 
 54 
 
 .46345 
 
 .48 262 
 
 .51 738 
 
 .98083 
 
 6 
 
 55 
 
 .46386 
 
 .48307 
 
 .51693 
 
 .98079 
 
 5 
 
 56 
 
 .46428 
 
 .48353 
 
 .51647 
 
 .98075 
 
 4 
 
 57 
 
 .46469 
 
 .48398 
 
 .51 602 
 
 .98071 
 
 3 
 
 58 
 
 .46511 
 
 .48443 
 
 .51557 
 
 .98067 
 
 2 
 
 59 
 
 .46552 
 
 .48489 
 
 .51511 
 
 .98063 
 
 1 
 
 60 
 
 .46594 
 
 .48 534 
 
 .51466 
 
 .98060 
 
 O 
 
 / 
 
 9Lcos 
 
 9Lcot 
 
 1O L tan 
 
 91 sin 
 
 / 
 
 73 
 
44 
 
 17 
 
 18 C 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 o 
 
 .46594 .48534 .51466 .98060 
 
 6O 
 
 1 
 
 .46635 .48579 .51421 .98056 
 
 59 
 
 2 
 
 .46676 .48624 .51376 .98052 
 
 58 
 
 3 
 
 .46717 .48669 .51331 .98048 
 
 57 
 
 4 
 
 .46758 .48714 .51286 .98044 
 
 56 
 
 5 
 
 .46800 .48759 .51241 .98040 
 
 55 
 
 6 
 
 .46841 .48804 .51196 .98036 
 
 54 
 
 7 
 
 .46882 .48849 .51151 .98032 
 
 53 
 
 8 
 
 .46923 .48894 .51106 .98029 
 
 52 
 
 9 
 
 .46964 .48939 .51061 .98025 
 
 51 
 
 10 
 
 .47005 .48984 .51016 .98021 
 
 5O 
 
 11 
 
 .47045 .49029 .50971 .98017 
 
 49 
 
 12 
 
 .47086 .49073 .50927 .98013 
 
 48 
 
 13 
 
 .47127 .49118 .50882 .98009 
 
 47 
 
 14 
 
 .47168 .49163 .50837 .98005 
 
 46 
 
 15 
 
 .47209 .49207 .50793 .98001 
 
 45 
 
 16 
 
 .47249 .49252 .50748 .97997 
 
 44 
 
 17 
 
 .47290 .49296 .50704 .97993 
 
 43 
 
 18 
 
 .47330 .49341 .50659 .97989 
 
 42 
 
 19 
 
 .47371 .49385 .50615 .97986 
 
 41 
 
 20 
 
 .47411 .49430 .50570 .97982 
 
 40 
 
 21 
 
 .47452 .49474 .50526 .97978 
 
 39 
 
 22 
 
 .47492 .49519 .50481 .97974 
 
 38 
 
 23 
 
 .47533 .49563 .50437 .97970 
 
 37 
 
 24 
 
 .47573 .49607 .50393 .97966 
 
 36 
 
 25 
 
 .47613 .49652 .50348 .97962 
 
 35 
 
 26 
 
 .47654 .49696 .50304 .97958 
 
 34 
 
 27 
 
 .47694 .49740 .50260 .97954 
 
 33 
 
 28 
 
 .47734 .49784 .50216 .97950 
 
 32 
 
 29 
 
 .47774 .49828 .50172 .97946 
 
 31 
 
 30 
 
 .47814 .49872 .50128 .97942 
 
 30 
 
 31 
 
 .47854 .49916 .50084 .97938 
 
 29 
 
 32 
 
 .47894 .49960 .50040 .97934 
 
 28 
 
 33 
 
 .47934 .50004 .49996 .97930 
 
 27 
 
 34 
 
 .47974 .50048 .49952 .97926 
 
 26 
 
 35 
 
 .48014 .50092 .49908 .97922 
 
 25 
 
 36 
 
 .48054 .50136 .49864 .97918 
 
 24 
 
 37 
 
 .48094 .50180 .49820 .97914 
 
 23 
 
 38 
 
 .48133 .50223 .49777 .97910 
 
 22 
 
 39 
 
 .48173 .50267 .49733 .97906 
 
 21 
 
 4O 
 
 .48213 .50311 .49689 .97902 
 
 2O 
 
 41 
 
 .48252 .50355 .49645 .97898 
 
 19 
 
 42 
 
 .48292 .50398 .49602 .97894 
 
 18 
 
 43 
 
 .48332 .50442 .49558 .97890 
 
 17 
 
 44 
 
 .48371 .50485 .49515 .97886 
 
 16 
 
 45 
 
 .48411 .50529 .49471 .97882 
 
 15 
 
 46 
 
 .48450 .50572 .49428 .97878 
 
 14 
 
 47 
 
 .48490 .50616 .49384 .97874 
 
 13 
 
 48 
 
 .48529 .50659 .49341 .97870 
 
 12 
 
 49 
 
 .48568 .50703 .49297 .97866 
 
 11 
 
 50 
 
 .48607 .50746 .49254 .97861 
 
 1O 
 
 51 
 
 .48647 .50789 .49211 .97857 
 
 9 
 
 52 
 
 .48686 .50833 .49167 .97853 
 
 8 
 
 53 
 
 .48725 .50876 .49124 .97849 
 
 7 
 
 54 
 
 .48764 .50919 .49081 .97845 
 
 6 
 
 55 
 
 .48803 .50962 .49038 .97841 
 
 5 
 
 56 
 
 .4S8H2 .51005 .48995 .97837 
 
 4 
 
 57 
 
 .48881 .51048 .48952 .97833 
 
 3 
 
 58 
 
 .48920 .51092 .48908 .97829 
 
 2 
 
 59 
 
 .48959 .51135 .48865 .97825 
 
 1 
 
 60 
 
 .48998 .51 178 .48822 .97821 
 
 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 9Ltan 10 L cot 9Lcos 
 
 / 
 
 O 
 
 .48998 .51178 .48822 .97821 
 
 6O 
 
 1 
 
 .49037 .51221 .48779 .97817 
 
 59 
 
 2 
 
 .49076 .51264 .48736 .97812 
 
 58 
 
 3 
 
 .49115 .51306 .48694 .97808 
 
 57 
 
 4 
 
 .49153 .51349 .48651 .97804 
 
 56 
 
 5 
 
 .49192 .51392 .48608 .97800 
 
 55 
 
 6 
 
 .49231 .51435 .48565 .97796 
 
 54 
 
 7 
 
 .49269 .51478 .48522 .97792 
 
 53 
 
 8 
 
 .49308 .51520 .48480 .97788 
 
 52 
 
 9 
 
 .49347 .51563 .48437 .97784 
 
 51 
 
 1O 
 
 .49385 .51606 .48394 .97779 5O 
 
 11 
 
 .49424 .51648 .48352 .97775 
 
 49 
 
 12 
 
 .49462 .51691 .48309 .97771 
 
 48 
 
 13 
 
 .49500 .51734 .48266 .97767 
 
 47 
 
 14 
 
 .49539 .51776 .48224 .97763 
 
 46 
 
 15 
 
 .49577 .51819 .48181 .97759 
 
 45 
 
 16 
 
 .49615 .51861 .48139 .97754 
 
 44 
 
 17 
 
 .49654 .51903 .48097 .97750 
 
 43 
 
 18 
 
 .49692 .51946 .48054 .97746 
 
 42 
 
 19 
 
 .49730 .51988 .48012 .97742 
 
 41 
 
 2O 
 
 .49768 .52031 .47969 .97738 
 
 40 
 
 21 
 
 .49806 .52073 .47927 .97734 
 
 39 
 
 22 
 
 .49844 .52115 .47885 .97729 
 
 38 
 
 - 23 
 
 .49882 .52157 .47843 .97725 
 
 37 
 
 24 
 
 .49920 .52200 .47800 .97721 
 
 36 
 
 25 
 
 .49958 .52242 .47758 .97717 
 
 35 
 
 26 
 
 .49996 .52284 .47716 .97713 
 
 34 
 
 27 
 
 .50034 .52326 .47674 .97708 
 
 33 
 
 28 
 
 .50072 .52368 .47632 .97704 
 
 32 
 
 29 
 
 .50110 .52410 .47590 .97700 
 
 31 
 
 30 
 
 .50148 .52452 .47548 .97696 
 
 3O 
 
 31 
 
 .50185, .52494 .47506 .97691 
 
 29 
 
 32 
 
 .50223 .52536 .47464 .97687 
 
 28 
 
 33 
 
 .50261 .52578 .47422 .97683 
 
 27 
 
 34 
 
 .50298 .52620 .47380 .97679 
 
 26 
 
 35 
 
 .50336 .52661 .47339 .97674 
 
 25 
 
 36 
 
 .50374 .52703 .47297 .97670 
 
 24 
 
 37 
 
 .50411 .52745 .47255 .97666 
 
 23 
 
 38 
 
 .50449 .52787 .47213 .97662 
 
 22 
 
 39 
 
 .50486 .52829 .47171 .97657 
 
 21 
 
 4O 
 
 .50523 .52870 .47130 .97653 
 
 20 
 
 41 
 
 .50561 .52912 .47088 .97649 
 
 19 
 
 42 
 
 .50598 .52953 .47047 .97645 
 
 18 
 
 43 
 
 .50635 .52995 .47005 .97540 
 
 17 
 
 44 
 
 .50673 .53037 .46963 .97636 
 
 16 
 
 45 
 
 .50710 .53078 .46922 .97632 
 
 15 
 
 46 
 
 .50747 .53120 .46880 .97628 
 
 14 
 
 47 
 
 .50784 .53161 .46839 .97623 
 
 13 
 
 48 
 
 .50821 .53202 .46798 .97619 
 
 12 
 
 49 
 
 .50858 .53244 .46756 .97615 
 
 11 
 
 50 
 
 .50896 .53285 .46715 .97610 
 
 10 
 
 51 
 
 .50933 .53327 .46673 .97606 
 
 9 
 
 52 
 
 .50970 .53368 .46632 .97602 
 
 8 
 
 53 
 
 .51007 .53409 .46591 .97597 
 
 7 
 
 54 
 
 .51043 .53450 .46550 .97593 
 
 6 
 
 55 
 
 .51080 .53492 .46508 .97589 
 
 5 
 
 56 
 
 .51117 .53533 .46467 .97584 
 
 4 
 
 57 
 
 .51154 .53574 .46426 .97580 
 
 3 
 
 58 
 
 .51191 .53615 .46385 .97576 
 
 2 
 
 59 
 
 .51227 .53656 .46344 .97571 
 
 1 
 
 60 
 
 .51264 .53697 .46303 .97567 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 72 C 
 
 71 
 
19 
 
 20 C 
 
 45 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 o 
 
 .51264 .53697^.46303 .97567 
 
 6O 
 
 1 
 
 .51301 .53738 .46262 .97563 
 
 59 
 
 2 
 
 .51338 .53779 .46221 .97558 
 
 58 
 
 3 
 
 .51374 .53820 .46180 .97554 
 
 57 
 
 4 
 
 .51411 .53861 .46139 .97550 
 
 56 
 
 5 
 
 .51447 .53902 .46098 .97545 
 
 55 
 
 6 
 
 .51484 .53943 .46057 .97541 
 
 54 
 
 7 
 
 .51520 .53984 .46016 .97536 
 
 53 
 
 8 
 
 .51557 .54025 .45975 .97532 
 
 52 
 
 9 
 
 .51593 .54065 .45935 .97528 
 
 51 
 
 1O 
 
 .51629 .54106 .45894 .97523 
 
 5O 
 
 11 
 
 .51666 .54147 .45853 .97519 
 
 49 
 
 12 
 
 .51702 .54187 .45813 .97515 
 
 48 
 
 13 
 
 .51738 .54228 .45772 .97510 
 
 47 
 
 14 
 
 .51774 .54269 .45731 .97506 
 
 46 
 
 15 
 
 .51811 .54309 .45691 97501 
 
 45 
 
 16 
 
 .51847 .54350 .45650 .97497 
 
 44 
 
 17 
 
 .51883 .54390 .45610 .97492 
 
 43 
 
 18 
 
 .51919 .54431 .45569 .97488 
 
 42 
 
 19 
 
 .51955 .54471 .45529 .97484 
 
 41 
 
 2O 
 
 .51991 .54512 .45488 .97479 
 
 4O 
 
 21 
 
 .52027 .54552 .45448 .97475, 
 
 39 
 
 22 
 
 .52063 .54593 .45407 .97470 
 
 38 
 
 23 
 
 .52099 .54633 .45367 .97466 
 
 37 
 
 24 
 
 .52135 .54673 .45327 .97461 
 
 36 
 
 25 
 
 .52171 .54714 .45286 .97457 
 
 35 
 
 26 
 
 .52207 .54754 .45246 .97453 
 
 34 
 
 27 
 
 .52242 .54794 .45206 .97448 
 
 33 
 
 28 
 
 .52 278 .54 835 .45 165 .97 444 
 
 32 
 
 29 
 
 .52314 .54875 .45125 .97439 
 
 31 
 
 3O 
 
 .52350 .54915 .45085 .97435 
 
 3Q 
 
 31 
 
 .52385 .54955 .45045 .97430 
 
 29 
 
 32 
 
 .52421 .54995 .45005 .97426 
 
 28 
 
 33 
 
 .52456 .55035 .44965 .97421 
 
 27 
 
 34 
 
 .52492 .55075 .44925 .97417 
 
 26 
 
 35 
 
 .52527 .55115 .44885 .97412 
 
 25 
 
 36 .52563 .55155 .44845 .97408 
 
 24 
 
 37 .52598 .55195 .44805 .97403 
 
 23 
 
 *3S 
 
 .52634 .55235 .44765 .97399 
 
 22 
 
 39 
 
 .52669 .55275 .44725 .97394 
 
 21 
 
 4O .52705 .55315 .44685 .97390 
 
 2O 
 
 41 .52740 .55355 .44645 .97385 
 
 19 
 
 42 
 
 .52775 .55395 .44605 .97381 
 
 18 
 
 43 
 
 .52811 .55434 .44566 .97376 
 
 17 
 
 44 
 
 .52846 .55474 .44526 .97372 
 
 16 
 
 45 
 
 .52881 .55514 .44486 .97367 
 
 15 
 
 46 
 
 .52916 .55554 .44446 .97363 
 
 14 
 
 47 
 
 .52951 .55593 .44407 .97358 
 
 13 
 
 48 
 
 .52986 .55633 .44367 .97353 
 
 12 
 
 49 
 
 .53021 .55673 .44327 .97349 
 
 11 
 
 5O 
 
 .53056 .55712 .44288 .97344 
 
 1O 
 
 51 
 
 .53092 .55752 .44248 .97340 
 
 9 
 
 52 
 
 .53126 .55791 .44209 .97335 
 
 8 
 
 53 
 
 .53161 .55831 .44169 .97331 
 
 7 
 
 54 
 
 .53196 .55870 .44130 .97326 
 
 6 
 
 55 
 
 .53231 .55910 .44090 .97322 
 
 5 
 
 56 
 
 .53266 .55949 .44051 .97317 
 
 4 
 
 57 
 
 .53301 .55989 .44011 .97312 
 
 3 
 
 58 
 
 .53336 .56028 .43972 .97308 
 
 2 
 
 59 
 
 .53370 .56067 .43933 .97303 
 
 1 
 
 60 
 
 .53405 .56107 .43893 .97299 
 
 O 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 O 
 
 .53405 .56107 .43893 .97299 
 
 6O 
 
 1 
 
 .53440 .56146 .43854 .97294 
 
 59 
 
 2 
 
 .53475 .56185 .43815 .97289 
 
 58 
 
 3 
 
 .53509 .56224 .43776 .97285 
 
 57 
 
 4 
 
 .53544 .56264 .43736 .97280 
 
 56 
 
 5 
 
 .53578 .56303 .43697 .97276 
 
 55 
 
 6 
 
 .53613 .56342 .43658 .97271 
 
 54 
 
 7 
 
 .53647 .56381 .43619 .97266 
 
 53 
 
 8 
 
 .53682 .56420 .43580 .97262 
 
 52 
 
 9 
 
 .53716 .56459 .43541 '97257 
 
 51 
 
 1O 
 
 .53751 .56498 .43502 .97252 
 
 5O 
 
 11 
 
 .53785 .56537 .43463 .97248 
 
 49 
 
 12 
 
 .53819 .56576 .43424 .97243 
 
 48 
 
 13 
 
 .53854 .56615 .43385 .97238 
 
 47 
 
 14 
 
 .53888 .56654 .43346 .97234 
 
 46 
 
 15 
 
 .53922 .56693 .43307 .97.229 
 
 45 
 
 16 
 
 .53957 .56732 .43268 .97224 
 
 44 
 
 17 
 
 .53991 .56771 .43229 .97220 
 
 43 
 
 18 
 
 .54025 .56810 .43190 .97215 
 
 42 
 
 19 
 
 .54059 .56849 .43151 .97210 
 
 41 
 
 20 
 
 .54093 .56887 .43113 .97206 
 
 4O 
 
 21 
 
 .54127 .56926 .43074 .97201 
 
 39 
 
 22 
 
 .54161 .56965 .43035 .97196 
 
 38 
 
 23 
 
 .54195 .57004 .42996 .97192 
 
 37 
 
 24 
 
 .54229 .57042 .42958 .97187 
 
 36 
 
 25 
 
 .54263 .57081 .42919 .97182 
 
 35 
 
 26 
 
 .54297 .57120 .42880 .97178 
 
 34 
 
 27 
 
 .54331 .57158 .42842 .97173 
 
 33 
 
 28 
 
 .54365 .57197 .42803 .97168 
 
 32 1 
 
 29 
 
 .54399 .$7235 .42765 .97163 
 
 31 
 
 30 
 
 .54433 .57274 .42726 .97159 
 
 30 
 
 31 
 
 .54466 .57312 .42688 .97154 
 
 29 
 
 32 
 
 .54500 .57351 .42649 .97149 
 
 28 
 
 33 
 
 .54534 .57389 .42611 .97145 
 
 27 
 
 34 
 
 .54567 .57428 .42572 .97140 
 
 26 
 
 35 
 
 .54601 .57466 .42534 .97135 
 
 25 
 
 36 
 
 .54635 .57504 .42496 .97130 
 
 24 
 
 37 
 
 .54668 .57543 .42457 .97126 
 
 23 
 
 38 
 
 .54702 .57581 .42419 .97121 
 
 22 
 
 39 
 
 .54735 .57619 .42381 .97116 
 
 21 
 
 4O 
 
 .54769 .57658 .42342 .97111 
 
 2O 
 
 41 
 
 .54802 .57696 .42304 .97107 
 
 19 
 
 42 
 
 .54836 .57734 .42266 .97102 
 
 18 
 
 43 
 
 .54869 .57772 .42228 .97097 
 
 17 
 
 44 
 
 .54903 .57810 .42190 .97092 
 
 16 
 
 45 
 
 .54936 .57849 .42151 .97087 
 
 15 
 
 46 
 
 .54969 .57887 .42113 .97083 
 
 14 
 
 47 
 
 .55003 .57925 .42075 .97078 
 
 13 
 
 48 
 
 .55036 .57963 .42037 .97073 
 
 12 
 
 49 
 
 .55069 .58001 .41999 .97068 
 
 11 
 
 50 
 
 .55102 .58039 .41961 .97063 
 
 10 
 
 51 
 
 .55136 .58077 .41923 .97059 
 
 9 
 
 52 
 
 .55169 .58115 .41885 .97054 
 
 8 
 
 53 
 
 .55202 .58153 .41847 .97049 
 
 7 
 
 54 
 
 .55235 .58191 .41809 .97044 
 
 6 
 
 55 
 
 .55268 .58229 .41771 .97039 
 
 5 
 
 56 
 
 .55301 .58267 .41733 .97035 
 
 4 
 
 57 
 
 .55334 .58304 .41696 .97030 
 
 3 
 
 58 
 
 .55367 .58342 .41658 .97025 
 
 2 
 
 59 
 
 .55400 .58380 .41620 .97020 
 
 1 
 
 60 
 
 .55433 .58418 .41582 .97015 
 
 O 
 
 / 
 
 9Lcos 9 Loot lOLtan 9Lsin 
 
 / 
 
 70 C 
 
 69 
 
22' 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9 Lcos 
 
 / 
 
 o 
 
 .55433 
 
 .58418 
 
 .41 582 
 
 .97015 
 
 6O 
 
 1 
 
 .55 466 
 
 .58455 
 
 .41545 
 
 .97010 
 
 59 
 
 2 
 
 .55 499 
 
 .58493 
 
 .41507 
 
 .97 005 
 
 58 
 
 3 
 
 .55 532 
 
 .58531 
 
 .41 469 
 
 .97 001 
 
 57 
 
 4 
 
 .55 564 
 
 .58 569 
 
 .41431 
 
 .96996 
 
 56 
 
 5 
 
 .55 597 
 
 .58606 
 
 .41 394 
 
 .96991 
 
 55 
 
 6 
 
 .55 630 
 
 .58644 
 
 .41 356 
 
 .96986 
 
 54 
 
 7 
 
 .55 663 
 
 .58681 
 
 .41319 
 
 .96981 
 
 53 
 
 8 
 
 .55 695 
 
 .58719 
 
 .41 281 
 
 .96976 
 
 52 
 
 9 
 
 .55 728 
 
 .58757 
 
 .41 243 
 
 .96971 
 
 51 
 
 10 
 
 .55 761 
 
 .58 794 
 
 .41 206 
 
 .96966 
 
 5O 
 
 11 
 
 .55 793 
 
 .58832 
 
 .41 168 
 
 .96962 
 
 49 
 
 12 
 
 .55 826 
 
 .58869 
 
 .41 131 
 
 .96957 
 
 48 
 
 13 
 
 .55 858 
 
 .58907 
 
 .41 093 
 
 .96952 
 
 47 
 
 14 
 
 .55 891 
 
 ,58944 
 
 .41 056 
 
 .96947 
 
 46 
 
 15 
 
 .55.923 
 
 .58981 
 
 .41 019 
 
 .96942 
 
 45 
 
 16 
 
 .55 956 
 
 .59019 
 
 .40981 
 
 .96937 
 
 44 
 
 17 
 
 .55 988 
 
 .59056 
 
 .40944 
 
 .96932 
 
 43 
 
 18 
 
 .56021 
 
 .59094 
 
 .40906 
 
 .96927 
 
 42 
 
 19 
 
 .56053 
 
 .59131 
 
 .40869 
 
 .96922 
 
 41 
 
 20 
 
 .56085 
 
 .59168 
 
 .40832 
 
 .96917 
 
 40 
 
 21 
 
 .56118 
 
 .59205 
 
 .40 795 
 
 .96912 
 
 39 
 
 22 
 
 .56150 
 
 .59243 
 
 .40757 
 
 .96907 
 
 38 
 
 23 
 
 .56182 
 
 .59280 
 
 .40 720 
 
 .96903 
 
 37 
 
 24 
 
 .56215 
 
 .59317 
 
 .40683 
 
 .96898 
 
 36 
 
 25 
 
 .56247 
 
 .59354 
 
 .40646 
 
 .96893 
 
 35 
 
 26 
 
 .56279 
 
 .59391 
 
 .40 609 
 
 .96888 
 
 34 
 
 27 
 
 .56311 
 
 .59429 
 
 .40571 
 
 .96883 
 
 33 
 
 28 
 
 .56343 
 
 .59466 
 
 .40534 
 
 .96878 
 
 32 
 
 29 
 
 .56375 
 
 .59503 
 
 .40497 
 
 .96873 
 
 31 
 
 30 
 
 .56408 
 
 .59540 
 
 .40460 
 
 .96868 
 
 30 
 
 31 
 
 .56440 
 
 .59577 
 
 .40423 
 
 .96 863 
 
 29 
 
 32 
 
 .56472 
 
 .59614 
 
 .40386 
 
 .96 858 
 
 28 
 
 33 
 
 .56504 
 
 .59651 
 
 .40349 
 
 .96853 
 
 27 
 
 34 
 
 .56536 
 
 .59688 
 
 .40312 
 
 .96848 
 
 26 
 
 35 
 
 .56568 
 
 .59725 
 
 .40275 
 
 .96843 
 
 25 
 
 36 
 
 .56 599 
 
 .59 762 
 
 .40 238 
 
 .96838 
 
 24 
 
 37 
 
 .56631 
 
 .59 799 
 
 .40 201 
 
 .96833 
 
 23 
 
 38 
 
 .56663 
 
 .59835 
 
 .40 165 
 
 .96828 
 
 22 
 
 39 
 
 .56695 
 
 .59872 
 
 .40 128 
 
 .96823 
 
 21 
 
 40 
 
 .56727 
 
 .59909 
 
 .40091 
 
 .96818 
 
 20 
 
 41 
 
 .56759 
 
 .59946 
 
 .40054 
 
 .96813 
 
 19 
 
 42 
 
 .56 790 
 
 .59983 
 
 .40017 
 
 .96808 
 
 18 
 
 43 
 
 .56822 
 
 .60019 
 
 .39981 
 
 .96803 
 
 17 
 
 44 
 
 .56854 
 
 .60056 
 
 .39944 
 
 .96 798 
 
 16 
 
 45 
 
 .56886 
 
 .60093 
 
 .39907 
 
 .96793 
 
 15 
 
 46 
 
 .56917 
 
 .60 130 
 
 .39870 
 
 .96 788 
 
 14 
 
 47 
 
 .56949 
 
 .60 166 
 
 .39834 
 
 .96 783 
 
 13 
 
 48 
 
 .56980 
 
 .60 203 
 
 .39 797 
 
 .96778 
 
 12 
 
 49 
 
 .57012 
 
 .60240 
 
 .39 760 
 
 .96772 
 
 11 
 
 50 
 
 .57044 
 
 .60276 
 
 .39 724 
 
 .96 767 
 
 10 
 
 51 
 
 .57075 
 
 .60313 
 
 .39687 
 
 .96 762 
 
 9 
 
 52 
 
 .57107 
 
 .60349 
 
 .39651 
 
 .96757 
 
 8 
 
 53 
 
 .57138 
 
 .60386 
 
 .39614 
 
 .96752 
 
 7 
 
 54 
 
 .57169 
 
 .60422 
 
 .39578 
 
 .96 747 
 
 . 6 
 
 55 
 
 .57201 
 
 .60459 
 
 .39 541 
 
 .96 742 
 
 5 
 
 56 
 
 .57232 
 
 .60495 
 
 .39505 
 
 .96737 
 
 4 
 
 "57 
 
 .57264 
 
 .60532 
 
 .39468 
 
 .96732 
 
 3 
 
 58 
 
 .57295 
 
 .60568 
 
 .39432 
 
 .96 727 
 
 2 
 
 59 
 
 .57326 
 
 .60605 
 
 .39395 
 
 .96 722 
 
 1 
 
 60 
 
 .57358 
 
 .60641 
 
 .39359 
 
 .96 717 
 
 O 
 
 / 
 
 9Lcos 
 
 9LcotlOLtan9Lsin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9 Lcos 
 
 / 
 
 O 
 
 .57358 
 
 .60641 
 
 .39359 
 
 .96717 
 
 6O 
 
 1 
 
 .57389 
 
 .60677 
 
 .39323 
 
 .96711 
 
 59 
 
 2 
 
 .57420 
 
 .60 714 
 
 .39286 
 
 .96 706 
 
 58 
 
 3 
 
 .57451 
 
 .60 750 
 
 .39250 
 
 .96 701 
 
 57 
 
 4 
 
 .57482 
 
 .60786 
 
 .39 214 
 
 .96696 
 
 56 
 
 5 
 
 .57514 
 
 .60823 
 
 .39177 
 
 .96691 
 
 55 
 
 6 
 
 .57545 
 
 .60859 
 
 .39 141 
 
 .96686 
 
 54 
 
 7 
 
 .57576 
 
 .60895 
 
 .39 105 
 
 .96681 
 
 53 
 
 8 
 
 .57607 
 
 .60931 
 
 .39069 
 
 .96676 
 
 52 
 
 9 
 
 .57638 
 
 .60967 
 
 .39033 
 
 .96670 
 
 51 
 
 1O 
 
 .57669 
 
 .61 004 
 
 .38996 
 
 .96665 
 
 50 
 
 11 
 
 .57700 
 
 .61 040 
 
 .38960 
 
 .96660 
 
 49 
 
 12 
 
 .57731 
 
 .61 076 
 
 .38924 
 
 .96655 
 
 48 
 
 13 
 
 .57762 
 
 .61] 12 
 
 .38 888 
 
 .96650 
 
 47 
 
 14 
 
 .57793 
 
 .61 148 
 
 .38852 
 
 .96645 
 
 46 
 
 15 
 
 .57824 
 
 .61 184 
 
 .38816 
 
 .96640 
 
 45 
 
 16 
 
 .57855 
 
 .61 220 
 
 .38 780 
 
 .96634 
 
 44 
 
 17 
 
 .57885 
 
 .61 256 
 
 .38 744 
 
 .96629 
 
 43 
 
 18 
 
 .57916 
 
 .61 292 
 
 .38 708 
 
 .96624 
 
 42 
 
 19 
 
 .57947 
 
 .61 328 
 
 .38672 
 
 .96619 
 
 41 
 
 20 
 
 .57978 
 
 .61 364 
 
 .38636 
 
 .96614 
 
 40 
 
 21 
 
 .58008 
 
 .61 400 
 
 .38 600 
 
 .96608 
 
 39 
 
 22 
 
 .58039 
 
 .61436 
 
 .38 564 
 
 .96603 
 
 38 
 
 23 
 
 .58070 
 
 .61 472 
 
 .38528 
 
 .96 598 
 
 37 
 
 24 
 
 .58101 
 
 .61 508 
 
 .38492 
 
 .96593 
 
 36 
 
 25 
 
 .58131 
 
 .61 544 
 
 .38456 
 
 .96 588 
 
 35 
 
 26 
 
 .58 162 
 
 .61 579 
 
 .38421 
 
 .96 582 
 
 34 
 
 27 
 
 .58 192 
 
 .61 615 
 
 .38385 
 
 .96577 
 
 33 
 
 28 
 
 .58223 
 
 .61651 
 
 .38349 
 
 .96572 
 
 32 
 
 29 
 
 .58253 
 
 .61 687 
 
 .38313 
 
 .96567 
 
 31 
 
 .30 
 
 .58284 
 
 .61 722 
 
 .38278 
 
 .96562 
 
 30 
 
 31 
 
 .58314 
 
 .61 758 
 
 .38 242 
 
 .96556 
 
 29 
 
 32 
 
 ,58345 
 
 .61 794 
 
 .38 206 
 
 .96551 
 
 28 
 
 33 
 
 .58375 
 
 .61 830 
 
 .38 170 
 
 .96546 
 
 27 
 
 34 
 
 .58406 
 
 .61 865 
 
 .38 135 
 
 .96541 
 
 26 
 
 35 
 
 .58436 
 
 .61901 
 
 .38099 
 
 .96535 
 
 25 
 
 36 
 
 .58467 
 
 .61936 
 
 .38064 
 
 .96530 
 
 24 
 
 37 
 
 .58497 
 
 .61 972 
 
 .38028 
 
 .96 525 
 
 23 
 
 38 
 
 .58527 
 
 .62008 
 
 .37992 
 
 .96 520 
 
 22 
 
 39 
 
 .58557 
 
 .62043 
 
 .37957 
 
 .96514 
 
 21 
 
 4O 
 
 .58588 
 
 .62079 
 
 .37921 
 
 .96509 
 
 2O 
 
 41 
 
 .58618 
 
 .62 114 
 
 .37886 
 
 .96504 
 
 19 
 
 42 
 
 .58648 
 
 .62 150 
 
 .37850 
 
 .96498 
 
 18 
 
 43 
 
 .58678 
 
 .62185 
 
 .37815 
 
 .96493 
 
 17 
 
 44 
 
 .58 709 
 
 .62221 
 
 .37779 
 
 .96488 
 
 16 
 
 45 
 
 .58739 
 
 .62256 
 
 .37 744 
 
 .96483 
 
 15 
 
 46 
 
 .58769 
 
 .62 292 
 
 .37 708 
 
 .96477 
 
 14 
 
 47 
 
 .58 799 
 
 .62327 
 
 .37673 
 
 .96472 
 
 13 
 
 48 
 
 .58829 
 
 .62 362 
 
 .37638 
 
 .96467 
 
 12 
 
 49 
 
 .58859 
 
 .62398 
 
 .37602 
 
 .96461 
 
 11 
 
 5O 
 
 .58889 
 
 .62433 
 
 .37567 
 
 .96456 
 
 10 
 
 51 
 
 .58919 
 
 .62 468 
 
 .37532 
 
 .96451 
 
 9 
 
 52 
 
 .58949 
 
 .62 504 
 
 .37496 
 
 .96445 
 
 8 
 
 53 
 
 .58979 
 
 .62 539 
 
 .37461 
 
 .96440 
 
 7 
 
 54 
 
 .59009 
 
 .62 574 
 
 .37426 
 
 .96435 
 
 6 
 
 55 
 
 .59039 
 
 .62 609 
 
 .37391 
 
 .96429 
 
 5 
 
 56 
 
 .59069 
 
 .62645 
 
 .37355 
 
 .96424 
 
 4 
 
 57 
 
 .59098 
 
 .62680 
 
 .37320 
 
 .96419 
 
 3 
 
 58 
 
 .59128 
 
 .62715 
 
 .37 285 
 
 .96413 
 
 2 
 
 59 
 
 .59158 
 
 .62 750 
 
 .37 250 
 
 .96408 
 
 1 
 
 60 
 
 .59188 
 
 .62 785 
 
 .37215 
 
 .96403 
 
 
 
 / 
 
 9 Lcos 
 
 9 L cot 1O L tan 
 
 9 L sin / 
 
 68' 
 
 67 
 
23' 
 
 47 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 
 
 .59188 .62785 .37215 .96403 
 
 6O 
 
 1 
 
 .59218 .62820 .37180 .96397 
 
 59 
 
 2 
 
 .59247 .62855 .37145 .96392 
 
 58 
 
 3 
 
 .59277 .62890 .37110 .96387 
 
 57 
 
 4 
 
 .59307 .62926 .37074 .96381 
 
 56 
 
 5 
 
 .59336 .62961 .37039 .96376 
 
 55 
 
 6 
 
 .59366 .62996 .37004 .96370 
 
 54 
 
 7 
 
 .59396 .63031 .36969 .96365 
 
 53 
 
 8 
 
 .59425 .63066 .36934 .96360 
 
 52 
 
 9 
 
 .59455 .63101 -36899 .96354 
 
 51 
 
 1C 
 
 .59484 .63135 .36865 .96349 
 
 50 
 
 11 
 
 .59514 .63170 .36830 .96343 
 
 49 
 
 12 
 
 .59543 .63205 .36795 .96338 
 
 48 
 
 13 
 
 .59573 .63240 .36760 .96333 
 
 47 
 
 14 
 
 .59602 .63275 .36725 .96327 
 
 46 
 
 15 
 
 .59632 .63310 .36690 .96322 
 
 45 
 
 16 
 
 .59661 .63345 .36655 .96316 
 
 44 
 
 17 
 
 .59690 .63379 .36621 .96311 
 
 43 
 
 18 
 
 .59720 .63414 .36586 .96305 
 
 42 
 
 19 
 
 .59749 .63449 .36551 .96300 
 
 41 
 
 2O 
 
 .59778 .63484 .36516 .96294 
 
 40 
 
 21 
 
 .59808 .63519 .36481 .96289 
 
 39 
 
 22 
 
 .59837 .63553 .36447 .96284 
 
 38 
 
 23 
 
 .59866 .63588 .36412 .96278 
 
 37 
 
 24 
 
 .59895 .63623 .36377 .96273 
 
 36 
 
 25 
 
 .59924 .63657 .36343 .96267 
 
 35 
 
 26 
 
 .59954 .63692 .36308 .96262 
 
 34 
 
 27 
 
 .59983 .63726 .36274 .96256 
 
 33 
 
 28 
 
 .60012 .63761 .36239 .96251 
 
 32 
 
 29 
 
 .60041 .63796 .36204 .96245 
 
 31 
 
 30 
 
 .60070 .63830 .36170 .96240 
 
 30 
 
 31 
 
 .60099 .63865 .36135 .96234 
 
 29 
 
 32 
 
 .60128 .63899 .36101 .96229 
 
 28 
 
 33 
 
 .60157 .63934 .36066 .96223 
 
 27 
 
 34 
 
 .60186 .63968 .36032 .96218 
 
 26 
 
 35 
 
 .60215 .64003 .35997 .96212 
 
 25 
 
 36 
 
 .60244 .64037 .35963 .96207 
 
 24 
 
 37 
 
 .60273 .64072 .35928 .96201 
 
 23 
 
 38 
 
 .60302 .64106 .35894 .96196 
 
 22 
 
 39 
 
 .60331 .64140 .35860 .96190 
 
 21 
 
 4O 
 
 .60359 .64175 .35825 .96185 
 
 2O 
 
 41 
 
 .60388 .64209 .35791 .96179 
 
 19 
 
 42 
 
 .60417 .64243 .35757 .96174 
 
 18 
 
 43 
 
 .60446 .64278 .35722 .96168 
 
 17 
 
 44 
 
 .60474 .64312 .35688 .96162 
 
 16 
 
 45 
 
 .60503 .64346 .35654 .96157 
 
 15 
 
 46 
 
 .60532 .64381 .35619 .96151 
 
 14 
 
 47 
 
 .60561 .64415 .35585 .96146 
 
 13 
 
 48 
 
 .60589 .64449 .35551 .96140 
 
 12 
 
 49 
 
 .60618 .64483 .35517 .96135 
 
 11 
 
 50 
 
 .60646 .64517 .35483 .96129 
 
 1O 
 
 51 
 
 .60675 .64552 .35448 .96123 
 
 9 
 
 52 
 
 .60704 .64586 .35414 .96118 
 
 8 
 
 53 
 
 .60732 .64620 .35380 .96112 
 
 7 
 
 54 
 
 .60761 .64654 .35346 .96107 
 
 6 
 
 55 
 
 .60789 .64688 .35312 .96101 
 
 5 
 
 56 
 
 .60818 .64722 .35278 .96095 
 
 4 
 
 57 
 
 .60846 .64756 .35244 .96090 
 
 3 
 
 58 
 
 .60875 .64790 .35210 .96084 
 
 2 
 
 59 
 
 .60903 .64824 .35176 .96079 
 
 1 
 
 60 
 
 .60931 .64858 .35142 .96073 
 
 O 
 
 / 
 
 9Lcos 91 cot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 lOLcot 
 
 9Lcos 
 
 / 
 
 O 
 
 .60931 
 
 .64858 
 
 .35 142 
 
 .96073 
 
 6O 
 
 1 
 
 .60960 
 
 .64892 
 
 .35 108 
 
 .96067 
 
 59 
 
 2 
 
 .60988 
 
 .64 926 
 
 .35 074 
 
 .96062 
 
 58 
 
 3 
 
 .61016 
 
 .64960 
 
 .35 040 
 
 .96056 
 
 57 
 
 4 
 
 .61 045 
 
 .64994 
 
 .35 006 
 
 .96050 
 
 56 
 
 5 
 
 .61 073 
 
 .65 028 
 
 .34972 
 
 .96045 
 
 55 
 
 6 
 
 .61 101 
 
 .65 062 
 
 .34938 
 
 .96039 
 
 54 
 
 7 
 
 .61 129 
 
 .65096 
 
 .34904 
 
 96034 
 
 53 
 
 8 
 
 .61 158 
 
 .65 130 
 
 .3^870 
 
 .96028 
 
 52 
 
 9 
 
 .61 186 
 
 .65 164 
 
 .34836 
 
 .96022 
 
 51 
 
 1O 
 
 .61 214 
 
 .65 197 
 
 .34803 
 
 .96017 
 
 5O 
 
 11 
 
 .61 242 
 
 .65 231 
 
 .34 769 
 
 .96011 
 
 49 
 
 12 
 
 .61 270 
 
 .65 265 
 
 .34735 
 
 .96005 
 
 48 
 
 13 
 
 .61 298 
 
 .65 299 
 
 .34 701 
 
 .96000 
 
 47 
 
 14 
 
 .61 326 
 
 .65333 
 
 .34667 
 
 .95 994 
 
 46 
 
 15 
 
 .61 354 
 
 .65 366 
 
 .34634 
 
 .95988 
 
 45 
 
 16 
 
 .61 382 
 
 .65 400 
 
 .34600 
 
 .95 982 
 
 44 
 
 17 
 
 .61411 
 
 .65 434 
 
 .34 566 
 
 .95 977 
 
 43 
 
 18 
 
 .61 438 
 
 .65 467 
 
 .34 533 
 
 .95971 
 
 42 
 
 19 
 
 .61 466 
 
 .65 501 
 
 .34499 
 
 .95 965 
 
 41 
 
 2O 
 
 .61 494 
 
 .65 535 
 
 .34465 
 
 .95 960 
 
 40 
 
 21 
 
 .61 522 
 
 .65 568 
 
 .34 432 
 
 .95 954 
 
 39 
 
 22 
 
 .61 550 
 
 .65 602 
 
 .34398 
 
 .95 948 
 
 38 
 
 23 
 
 .61 578 
 
 .65 636 
 
 .34364 
 
 .95 942 
 
 37 
 
 24 
 
 .61 606 
 
 .6T669 
 
 .34331 
 
 .95937 
 
 36 
 
 25 
 
 .61 634 
 
 .65 703 
 
 .34297 
 
 .95931 
 
 35 
 
 26 
 
 .61 662 
 
 .65 736 
 
 .34 264 
 
 .95 925 
 
 34 
 
 27 
 
 .61 689 
 
 .65 770 
 
 .34 230 
 
 .95920 
 
 33 
 
 28 
 
 .61 717 
 
 .65 803 
 
 .34 197 
 
 .95 914 
 
 32 
 
 29 
 
 .61 745 
 
 .65 837 
 
 .34163 
 
 .95 908 
 
 31 
 
 30 
 
 .61 773 
 
 .65 870 
 
 .34 130 
 
 .95 902 
 
 30 
 
 31 
 
 .61 800 
 
 .65 904 
 
 .34096 
 
 .95 897 
 
 29 
 
 32 
 
 .61 828 
 
 .65937 
 
 .34063 
 
 .95 891 
 
 28 
 
 33 
 
 .61 856 
 
 .65 971 
 
 .34 029 
 
 .95 885 
 
 27 
 
 34 
 
 .61 883 
 
 .66004 
 
 .33 996 
 
 .95 879 
 
 26 
 
 35 
 
 .61911 
 
 .66038 
 
 .33 962 
 
 .95 873 
 
 25 
 
 35 
 
 .61 939 
 
 .66071 
 
 .33 929 
 
 .95 868 
 
 24 
 
 37 
 
 .61 966 
 
 .66104 
 
 .33 896 
 
 .95 862 
 
 23 
 
 38 
 
 .61 994 
 
 .66138 
 
 .33862 
 
 .95 856 
 
 22 
 
 39 
 
 .62021 
 
 .66171 
 
 .33 829 
 
 .95 850 
 
 21 
 
 40 
 
 .62049 
 
 .66204 
 
 .33 796 
 
 .95 844 
 
 2O 
 
 41 
 
 .62 076 
 
 .66238 
 
 .33 762 
 
 .95 839 
 
 19 
 
 42 
 
 .62 104 
 
 .66271 
 
 .33 729 
 
 .95 833 
 
 18 
 
 43, 
 
 .62 131 
 
 .66304 
 
 .33 696 
 
 .95 827 
 
 17 
 
 ^ 
 
 44 
 
 .62 159 
 
 .66337 
 
 .33663 
 
 .95 821 
 
 16 
 
 45 
 
 .62 186 
 
 .66371 
 
 .33 629 
 
 .95 815 
 
 15 
 
 46 
 
 .62 214 
 
 .66404 
 
 .33 596 
 
 .95 810 
 
 14 
 
 47 
 
 .62 241 
 
 .66437 
 
 .33 563 
 
 .95 804 
 
 13 
 
 48 
 
 .62 268 
 
 .66470 
 
 .33 530 
 
 .95 798 
 
 12 
 
 49 
 
 .62 296 
 
 .66503 
 
 .33497 
 
 .95 792 
 
 11 
 
 5O 
 
 .62323 
 
 .66537 
 
 .33 463 
 
 .95 786 
 
 1O 
 
 51 
 
 .62 350 
 
 .66570 
 
 .33 430 
 
 .95 780 
 
 9 
 
 52 
 
 .62377 
 
 .66603 
 
 .33397 
 
 .95 775 
 
 8 
 
 53 
 
 .62 405 
 
 .66636 
 
 .33 364 
 
 .95 769 
 
 7 
 
 54 
 
 .62432 
 
 .66669 
 
 .33331 
 
 .95 763 
 
 6 
 
 55 
 
 .62 459 
 
 .66 702 
 
 .33 298 
 
 .95 757 
 
 5 
 
 56 
 
 .62 486 
 
 .66 735 
 
 .33 265 
 
 .95 751 
 
 4 
 
 57 
 
 .62513 
 
 .66 768 
 
 .33 232 
 
 .95 745 
 
 3 
 
 58 
 
 .62 541 
 
 .66801 
 
 .33 199 
 
 .95 739 
 
 2 
 
 59 
 
 .62 568 
 
 .66834 
 
 .33 166 
 
 .95 733 
 
 ' 1 
 
 60 
 
 .62595 
 
 .66867 
 
 .33 133 
 
 .95 728 
 
 O 
 
 / 
 
 9Lcos 
 
 9 Loot 10 L tan 
 
 9 L sin / 
 
 66 
 
 65 C 
 
48 
 
 25 
 
 26 
 
 / DLsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 O 
 
 .62595 .66867 .33133 .95728 
 
 6O 
 
 I 
 
 .62622 .66900 .33100 .95722 
 
 59 
 
 2 
 
 .62649 .66933 .33067 .95716 
 
 58 
 
 3 
 
 .62676 .66966 .33034 .95710 
 
 57 
 
 4 
 
 .62703 .66999 .33001 .95704 
 
 56 
 
 5 
 
 .62730 .67032 .32968 .95698 
 
 55 
 
 6 
 
 .62757 .67065 .32935 .95692 
 
 54 
 
 7 
 
 .62784 .67098 .32902 .95686 
 
 53 
 
 8 
 
 .62811 .67131 .32869 .95680 
 
 52 
 
 9 
 
 .62838 .67163 .32837 .95674 
 
 51 
 
 10 
 
 .62865 .67196 .32804 .95668 
 
 50 
 
 11 
 
 .62892 .67229 .32771 .95663 
 
 49 
 
 12 
 
 .62918 .67262 .32738 .95657 
 
 48 
 
 13 
 
 .62945 .67295 .32705 .95651 
 
 47 
 
 14 
 
 .62972 .67327 .32673 .95645 
 
 46 
 
 15 
 
 .62999 .67360 .32640 .95639 
 
 45 
 
 16 
 
 .63026 .67393 .32607 .95633 
 
 44 
 
 17 
 
 .63052 .67426 .32574 .95627 
 
 43 
 
 18 
 
 .63079 .67458 .32542 .95621 
 
 42 
 
 19 
 
 .63106 .67491 .32509 .95615 
 
 41 
 
 2O 
 
 .63133 .67524 .32476 .95609 
 
 40 
 
 21 
 
 .63159 .67556 .32444 .95603 
 
 39 
 
 22 
 
 .63186 .67589 .32411 .95597 
 
 38 
 
 23 
 
 .63213 .67622 .32378 .95591 
 
 37 
 
 24 
 
 .63239 .67654 .32346 .95585 
 
 36 
 
 25 
 
 .63266 .67687 .32313 .95579 
 
 35 
 
 26 
 
 .63292 .67719 .32281 .95573 
 
 34 
 
 27 
 
 .63319 .67752 .32248 .95567 
 
 33 
 
 28 
 
 .63345 .67785 .32215 .95561 
 
 32 
 
 29 
 
 .63372 .67817 .32183 .95555 
 
 31 
 
 30 
 
 .63398 .67850 .32150 .95549 
 
 30 
 
 31 
 
 .63425 .67882 .32118 .95543 
 
 29 
 
 32 
 
 .63451 .67915 .32085 .95537 
 
 28 
 
 33 
 
 .63478 .67947 .32053 .95531 
 
 27 
 
 34 
 
 .63504 .67980 .32020 .95525 
 
 26 
 
 35 
 
 .63531 .68012 .31988 .95519 
 
 25 
 
 36 
 
 .63557 .68044 .31956 .95513 
 
 '24 
 
 37 
 
 .63583 .68077 .31923 .95507 
 
 23 
 
 38 
 
 .63610 .68109 .31891 .95500 
 
 22 
 
 39 
 
 .63636 .68142 .31858 .95494 
 
 21 
 
 40 
 
 .63662 .68174 .31826 .95488 
 
 2O 
 
 41 
 
 .63689 .68206 .31794 .95482 
 
 19 
 
 42 
 
 .63715 .68239 .31761 .95476 
 
 18 
 
 43 
 
 .63741 .68271 .31729 .95470 
 
 17 
 
 44 
 
 .63767 .68303 .31697 .95464 
 
 16 
 
 45 
 
 .63794 .68336 .31664 .95458 
 
 15 
 
 46 
 
 .63820 .68368 .31632 .95452 
 
 14 
 
 47 
 
 .63846 .68400 .31600 .95446 
 
 13 
 
 48 
 
 .63872 .68432 .31568 .95440 
 
 12 
 
 49 
 
 .63898 .68465 .31535 .95434 
 
 11 
 
 5O 
 
 .63924 .68497 .31503 .95427 
 
 10 
 
 51 
 
 .63950 .68529 .31471 .95421 
 
 9 
 
 52 
 
 .63976 .68561 .31439 .95415 
 
 8 
 
 53 
 
 .64002 .68593 .31407 .95409 
 
 7 
 
 54 
 
 .64028 .68626 .31374 .95403 
 
 6 
 
 55 
 
 .64054 .68658 .31342 .95397 
 
 5 
 
 56 
 
 .64080 .68690 .31310 .95391 
 
 4 
 
 57 
 
 .64106 .68722 .31278 .95384 
 
 3 
 
 58 
 
 .64132 .68754 .31246 .95378 
 
 2 
 
 59 
 
 .64158 .68786 .31214 .95372 
 
 1 
 
 6O 
 
 .64184 .68818 .31182 .95366 
 
 O 
 
 / 
 
 9 L cos 9 L cot 10 L tan 9 L sin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9 L cos 
 
 / 
 
 O 
 
 .64 184 
 
 .68818 
 
 .31 182 
 
 .95 366 
 
 6O 
 
 1 
 
 .64 210 
 
 .68850 
 
 .31150 
 
 .95 360 
 
 59 
 
 2 
 
 .64 236 
 
 .68882 
 
 .31118 
 
 .95 354 
 
 58 
 
 3 
 
 .64 262 
 
 .68914 
 
 .31086 
 
 .95 348 
 
 57 
 
 4 
 
 .64 288 
 
 .68946 
 
 .31 054 
 
 .95 341 
 
 56 
 
 5 
 
 .64313 
 
 .68978 
 
 .31022 
 
 .95 335 
 
 55 
 
 6 
 
 .64339 
 
 .69010 
 
 .30990 
 
 .95 329 
 
 54 
 
 7 
 
 .64365 
 
 .69042 
 
 .30958 
 
 .95 323 
 
 53 
 
 8 
 
 .64391 
 
 .69074 
 
 .30926 
 
 .95317 
 
 52 
 
 9 
 
 .64417 
 
 .69 106 
 
 .30894 
 
 .95310 
 
 51 
 
 10 
 
 .64442 
 
 .69 138 
 
 .30862 
 
 .95 304 
 
 5O 
 
 11 
 
 .64 468 
 
 .69 170 
 
 .30830 
 
 .95 298 
 
 49 
 
 12 
 
 .64494 
 
 .69 202 
 
 .30 798 
 
 .95 292 
 
 48 
 
 13 
 
 .64519 
 
 .69 234 
 
 .30 766 
 
 .95 286 
 
 47 
 
 14 
 
 .64545 
 
 .69266 
 
 .30 734 
 
 .95 279 
 
 46 
 
 15 
 
 .64571 
 
 .69 298 
 
 .30 702 
 
 .95 273 
 
 45 
 
 16 
 
 .64 596 
 
 .69329 
 
 .30671 
 
 .95 267 
 
 44 
 
 17 
 
 .64622 
 
 .69361 
 
 .30639 
 
 .95 261 
 
 43 
 
 18 
 
 .64647 
 
 .69393 
 
 .30607 
 
 .95 254 
 
 42 
 
 19 
 
 .64673 
 
 .69425 
 
 .30575 
 
 .95 248 
 
 41 
 
 2O 
 
 .64698 
 
 .69457 
 
 .30 543 
 
 .95 242 
 
 4O 
 
 21 
 
 .64 724 
 
 .69488 
 
 .30512 
 
 .95 236 
 
 39 
 
 22 
 
 .64 749 
 
 .69520 
 
 .30480 
 
 .95 229 
 
 38 
 
 23 
 
 .64 775 
 
 .69552 
 
 .30448 
 
 .95 223 
 
 37 
 
 24 
 
 .64800 
 
 .69 584 
 
 .30416 
 
 .95217 
 
 36 
 
 25 
 
 .64826 
 
 .69615 
 
 .30385 
 
 .95211 
 
 35 
 
 26 
 
 .64851 
 
 .69647 
 
 .30353 
 
 .95 204 
 
 34 
 
 27 
 
 .64877 
 
 .69 679 
 
 .30321 
 
 .95 198 
 
 33 
 
 28 
 
 .64902 
 
 69710 
 
 .30290 
 
 .95 192 
 
 32 
 
 29 
 
 .64927 
 
 .69 742 
 
 .30258 
 
 .95 185 
 
 31 
 
 3O 
 
 .64953 
 
 .69 774 
 
 .30226 
 
 .95 179 
 
 3O 
 
 31 
 
 .64978 
 
 .69805 
 
 .30 195 
 
 .95 173 
 
 29 
 
 32 
 
 .65 003 
 
 .69837 
 
 .30163 
 
 .95 167 
 
 28 
 
 33 
 
 .65 029 
 
 .69868 
 
 .30 132 
 
 .95 160 
 
 27 
 
 34 
 
 .65 054 
 
 .69900 
 
 .30 100 
 
 .95 154 
 
 26 
 
 35 
 
 .65 079 
 
 .69932 
 
 .30068 
 
 .95 148 
 
 25 
 
 36 
 
 .65 104 
 
 .69963 
 
 .30037 
 
 .95141 
 
 24 
 
 37 
 
 .65 130 
 
 .69995 
 
 .30005 
 
 .95 135 
 
 23 
 
 38 
 
 .65 155 
 
 .70026 
 
 .29974 
 
 .95 129 
 
 22 
 
 39 
 
 .65 180 
 
 .70058 
 
 .29942 
 
 .95 122 
 
 21 
 
 40 
 
 .65 205 
 
 .70089 
 
 .29911 
 
 .95116 
 
 20 
 
 41 
 
 .65 230 
 
 .70121 
 
 .29879 
 
 .95 110 
 
 19 
 
 42 
 
 .65 255 
 
 .70152 
 
 .29 848 
 
 .95 103 
 
 18 
 
 43 
 
 .65 281 
 
 .70184 
 
 .29816 
 
 .95 097 
 
 17 
 
 44 
 
 .65 306 
 
 .70215 
 
 .29 785 
 
 .95 090 
 
 16 
 
 45 
 
 .65331 
 
 .70247 
 
 .29 753 
 
 .95 084 
 
 15 
 
 46 
 
 .65 356 
 
 .70278 
 
 .29 722 
 
 .95 078 
 
 14 
 
 47 
 
 .65 381 
 
 .70309 
 
 .29691 
 
 .95 071 
 
 13 
 
 48 
 
 .65 406 
 
 .70341 
 
 .29 659 
 
 .95 065 
 
 12 
 
 49 
 
 .65431 
 
 .70372 
 
 .29628 
 
 .95 059 
 
 11 
 
 50 
 
 .65 456 
 
 .70404 
 
 .29596 
 
 .95 052 
 
 1O 
 
 51 
 
 .65 481 
 
 .70435 
 
 .29565 
 
 .95 046 
 
 9 
 
 52 
 
 .65 506 
 
 .70466 
 
 .29 534 
 
 .95 039 
 
 8 
 
 53 
 
 .65 531 
 
 .70498 
 
 .29 502 
 
 .95 033 
 
 7 
 
 54 
 
 .65 556 
 
 .70 529 
 
 .29471 
 
 .95 027 
 
 6 
 
 55 
 
 .65 580 
 
 .70560 
 
 .29440 
 
 .95 020 
 
 5 
 
 56 
 
 .65 605 
 
 .70 592 
 
 .29408 
 
 .95 014 
 
 4 
 
 57 
 
 .65 630 
 
 .70623 
 
 .29377 
 
 .95 007 
 
 3 
 
 58 
 
 .65 655 
 
 .70654 
 
 .29346 
 
 .95 001 
 
 2 
 
 59 
 
 .65 680 
 
 .70685 
 
 .29315 
 
 .94995 
 
 1 
 
 60 
 
 .65 705 
 
 .70717 
 
 .29283 
 
 .94988 
 
 O 
 
 / 
 
 9Lcos 
 
 9Lcot 
 
 10 L tan 
 
 9Lsin 
 
 / 
 
 64 C 
 
 63 C 
 
27'- 
 
 28 C 
 
 49 
 
 / 
 
 9 L sin 9 L tan 10 L cot 9 L cos 
 
 / 
 
 o 
 
 .65705 .70717 .29283 .94988 
 
 00 
 
 1 
 
 .65729 .70748 .29252 .94982 
 
 59 
 
 2 
 
 .65754 .70779 .29221 .94975 
 
 58 
 
 3 
 
 .65779 .70810 .29190 .94969 
 
 57 
 
 4 
 
 .65804 .70841 .29159 .94962 
 
 56 
 
 5 
 
 .65828 .70873 .29127 .94956 
 
 55 
 
 6 
 
 .65853 .70904 .29096 .94949 
 
 54 
 
 7 
 
 .65878 .70935 .29065 .94943 
 
 53 
 
 8 
 
 .65902 .70966 .29034 .94936 
 
 52 
 
 9 
 
 .65927 .70997 .29003 .94930 
 
 51 
 
 1C 
 
 .65952 .71028 .28972 .94923 
 
 50 
 
 11 
 
 .65976 .71059 .28941 .94917 
 
 49 
 
 12 
 
 .66001 .71090 .28910 .94911 
 
 48 
 
 13 
 
 .66025 .71121 .28879 .94904 
 
 47 
 
 14 
 
 .66050 .71153 .28847 .94898 
 
 46 
 
 15 
 
 .66075 .71184 .28816 .94891 
 
 45 
 
 16 
 
 .66099 .71215 .28785 .94885 
 
 44 
 
 17 
 
 .66124 .71246 .28754 .94878 
 
 43 
 
 18 
 
 .66148 .71277 .28723 .94871 
 
 42 
 
 19 
 
 .66173 .71308 .28692 .94865 
 
 41 
 
 20 
 
 .66197 .71339 .28661 .94858 
 
 4O 
 
 21 
 
 .66221 .71370 .28630 .94852 
 
 39 
 
 22 
 
 .66246 .71401 .28599 .94845 
 
 38 
 
 23 
 
 .66270 .71431 .28569 .94839 
 
 37 
 
 24 
 
 .66295 .71462 .28538 .94832 
 
 36 
 
 25 
 
 .66319 .71493 .28507 .94826 
 
 35 
 
 26 
 
 .66343 .71524 .28476 .94819 
 
 34 
 
 27 
 
 .66368 .71555 .28445 .94813 
 
 33 
 
 28 
 
 .66392 .71586 .28414 .94806 
 
 32 
 
 29 
 
 .66416 .71617 .28383 .94799 
 
 31 
 
 SO 
 
 .66441 .71648 .28352 .94793 
 
 3O 
 
 3H.66465 .71679 .28321 .94786 
 
 29 
 
 32 
 
 .66489 .71709 .28291 .94780 
 
 28 
 
 33 
 
 .66513 .71740 .28260 .94773 
 
 27 
 
 34 
 
 .66537 .71771 .28229 .94767 
 
 26 
 
 35 
 
 .66562 .71802 .28198 .94760 
 
 25 
 
 36 
 
 .66586 .71833 .28167 .94753 
 
 24 
 
 37 
 
 .66610 .71863 .28137 .94747 
 
 23 
 
 38 
 
 .66634 .71894 .28106 .94740 
 
 22 
 
 39 
 
 .66658 .71925 .28075 .94734 
 
 21 
 
 4O 
 
 .66682 .71955 .28045 .94727 
 
 2O 
 
 41 
 
 .66706 .71986 .28014 .94720 
 
 19 
 
 42 
 
 .66731 .72017 .27983 .94714 
 
 18 
 
 43 
 
 .66755 .72048 .27952 .94707 
 
 17 
 
 44 
 
 .66779 .72078 .27922 .94700 
 
 16 
 
 45 
 
 .66803 .72109 .27891 .94694 
 
 15 
 
 46 
 
 .66827 .72140 .27860 .94687 
 
 14 
 
 47 
 
 .66851 .72170 .27830 .94680 
 
 13 
 
 48 
 
 .66875 .72201 .27799 .94674 
 
 12 
 
 49 
 
 .66899 .72231 .27769 .94667 
 
 11 
 
 50 
 
 .66922 .72262 .27738 .94660 
 
 1O 
 
 51 
 
 .66946 .72293 .27707 .94654 
 
 9 
 
 52 
 
 .66970 .72323 .27677 .94647 
 
 8 
 
 53 
 
 .66994 .72354 .27646 .94640 
 
 7 
 
 54 
 
 .67018 .72384 .27616 .94634 
 
 6 
 
 55 
 
 .67042 .72415 .27585 .94627 
 
 5 
 
 56 
 
 .67066 .72445 .27555 .94620 
 
 4 
 
 57 
 
 .67090 .72476 .27524 .94614 
 
 3 
 
 58 
 
 .67113 .72506 .27494 .94607 
 
 2 
 
 59 
 
 .67137 .72537 .27463 .94600 
 
 1 
 
 6O 
 
 .67161 .72567 .27433 .94593 
 
 O 
 
 / 
 
 9Lcos 9Lcot 10 L tan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 
 
 .67161 .72567 .27433 .94593 
 
 60 
 
 1 
 
 .67185 .72598 .27402 .94587 
 
 59 
 
 2 
 
 .67208 .72628 .27372 .94580 
 
 58 
 
 3 
 
 .67232 .72659 .27341 .94573 
 
 57 
 
 4 
 
 .67256 .72689 .27311 .94567 
 
 56 
 
 5 
 
 .67280 .72720 .27280 .'94560 
 
 55 
 
 6 
 
 .67303 .72750 .27250 .94553 
 
 54 
 
 7 
 
 .67327 .72780 .27220 .94546 
 
 53 
 
 8 
 
 .67350 .72811 .27189 .94540 
 
 52 
 
 9 
 
 .67374 .72841 .27159 .94533 
 
 51 
 
 1O 
 
 .67398 .72872 .27128 .94526 
 
 5O 
 
 11 
 
 .67421 .72902 .27098 .94519 
 
 49 
 
 12 
 
 .67445 .72932 .27068 .94513 
 
 48 
 
 13 
 
 .67468 .72963 .27037 .94506 
 
 47 
 
 14 
 
 .67492 .72993 .27007 .94499 
 
 46 
 
 15 
 
 .67515 .73023 .26977 .94492 
 
 45 
 
 16 
 
 .67539 .73054 .26946 .94485 
 
 44 
 
 17 
 
 .67562 .73084 .26916 .94479 
 
 43 
 
 18 
 
 .67586 .73114 .26886 .94472 
 
 42 
 
 19 
 
 .67609 .73144 .26856 .94465 
 
 41 
 
 2O 
 
 .67633 .73175 .26825 .94458 
 
 4O 
 
 21 
 
 .67656 .73205 .26795 .94451 
 
 39 
 
 22 
 
 .67680 .73235 .26765 .94445 
 
 38 
 
 23 
 
 .67703 .73265 .26735 .94438 
 
 37 
 
 24 
 
 .67726 .73295 .26705 .94431 
 
 36 
 
 25 
 
 .67750 .73326 .26674 .94424 
 
 35 
 
 26 
 
 .67773 .73356 .26644 .94417 
 
 34 
 
 27 
 
 .67796 .73386 .26614 .94410 
 
 33 
 
 28 
 
 .67820 .73416 .26584 .94404 
 
 32 
 
 29 
 
 .67843 .73446 .26554 .94397 
 
 31 
 
 3O 
 
 .67866 .73476 .26524 .94390 
 
 30 
 
 31 
 
 .67890 .73507 .26493 .94383 
 
 29 
 
 32 
 
 .67913 .73537 .26463 .94376 
 
 28 
 
 33 
 
 .67936 .73567 .26433 .94369 
 
 27 
 
 34 
 
 -.67959 .73597 .26403 .94362 
 
 26 
 
 35 
 
 .67982 .73627 .26373 .94355 
 
 25 
 
 36 
 
 .68006 .73657 .26343 .94349 
 
 24 
 
 37 
 
 .68029 .73687 .26313 .94342 
 
 23 
 
 38 
 
 .68052 .73717 .26283 .94335 
 
 22 
 
 39 
 
 .68075 .73747 .26253 .94328 
 
 21 
 
 40 
 
 .68098 .73777 .26223 .94321 
 
 2O 
 
 41 
 
 .68121 .73807 .26193 .94314 
 
 19 
 
 42 
 
 .68144 .73837 .26163 .94307 
 
 18 
 
 43 
 
 .68167 .73867 .26133 .94300 
 
 17 
 
 44 
 
 .68190 .73897 .26103 .94293 
 
 16 
 
 45 
 
 .68213 .73927 .26073 .94286 
 
 15 
 
 46 
 
 .63237 .73957 .26043 .94279 
 
 14 
 
 47 
 
 .68260 .73987 .26013 .94273 
 
 13 
 
 48 
 
 .68283 .74017 .25983 .94266 
 
 12 
 
 49 
 
 .68305 .74047 .25953 .94259 
 
 11 
 
 5O 
 
 .68328 .74077 .25923 .94252 
 
 10 
 
 51 
 
 .68351 .74107 .25893 .94245 
 
 9 
 
 52 
 
 .68374 .74137 .25863 .94238 
 
 8 
 
 53 
 
 .68397 .74166 .25834 .94231 
 
 7 
 
 54 
 
 .68420 .74196 .25804 .94224 
 
 6 
 
 55 
 
 .68443 .74226 .25774 .94217 
 
 5 
 
 56 
 
 .68466 .74256 .25744 .94210 
 
 4 
 
 57 
 
 .68489 .74286 .25714 .94203 
 
 3 
 
 58 
 
 .68512 .74316 .25684 .94196 
 
 2 
 
 59 
 
 .68534 .74345 .25655 .94189 
 
 1 
 
 6O 
 
 .68557 .74375 .25625 .94182 
 
 O 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 62' 
 
 61 
 
50 
 
 29 
 
 30< 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 
 
 .68557 .74375 .25625 .94182 
 
 60 
 
 1 
 
 .68580 .74405 .25595 .94175 
 
 59 
 
 2 
 
 .68603 .74435 .25565 .94168 
 
 58 
 
 3 
 
 .68625 .74465 .25535 .94161 
 
 57 
 
 4 
 
 .68648 .74494 .25506 .94154 
 
 56 
 
 5 
 
 .68671 .74524 .25476 .94147 
 
 55 
 
 6 
 
 .68694 .74554 .25446 .94140 
 
 54 
 
 7 
 
 .68716 .74583 .25417 .94133 
 
 53 
 
 8 
 
 .68739 .74613 .25387 .94126 
 
 52 
 
 9 
 
 .68762 .74643 .25357 .94119 
 
 51 
 
 10 
 
 .68784 .74673 .25327 .94112 
 
 50 
 
 11 
 
 .68807 .74702 .25298 .94105 
 
 49 
 
 12 
 
 .68829 .74732 .25268 .94098 
 
 48 
 
 13 
 
 .68852 .74762 .25238 .94090 
 
 47 
 
 14 
 
 .68875 .74791 .25209 .94083 
 
 46 
 
 15 
 
 .68897 .74821 .25179 .94076 
 
 45 
 
 16 
 
 .68920 .74851 .25149 .94069 
 
 44 
 
 17 
 
 .68942 .74880 .25120 .94062 
 
 43 
 
 18 
 
 .68965 .74910 .25090 .94055 
 
 42 
 
 19 
 
 .68987 .74939 .25061 .94048 
 
 41 
 
 20 
 
 .69010 .74969 .25031 .94041 
 
 4O 
 
 21 
 
 .69032 .74998 .25002 .94034 
 
 39 
 
 22 
 
 .69055 .75028 .24972 .94027 
 
 38 
 
 23 
 
 .69077 .75058 .24942 .94020 
 
 37 
 
 24 
 
 .69100 .75087 .24913 .94012 
 
 36 
 
 25 
 
 .69122 .75117 .24883 .94005 
 
 35 
 
 26 
 
 .69144 .75146 .24854 .93998 
 
 34 
 
 27 
 
 .69167 .75176 .24824 .93991 
 
 33 
 
 28 
 
 .69189 .75205 .24795 .93984 
 
 32 
 
 29 
 
 .69212 .75235 .24765 .93977 
 
 31 
 
 30 
 
 .69234 .75264 .24736 .93970 
 
 30 
 
 31 
 
 .69256 .75294 .24706 .93963 
 
 29 
 
 32 
 
 .69279 .75323 .24677 .93955 
 
 28 
 
 33 
 
 .69301 .75353 .24647 .93948 
 
 27 
 
 34 
 
 .69323 .75382 .24618 .93941 
 
 26 
 
 35 
 
 .69345 .75411 .24589 .93934 
 
 25 
 
 36 
 
 .69368 .75441 .24559 .93927 
 
 24 
 
 37 
 
 .69390 .75470 .24530 .93920 
 
 23 
 
 38 
 
 .69412 .75500 .24500 .93912 
 
 22 
 
 39 
 
 .69434 .75529 .24471 .93905 
 
 21 
 
 40 
 
 .69456 .75558 .24442 .93898 
 
 20 
 
 41 
 
 .69479 .75588 .24412 .93891 
 
 19 
 
 42 
 
 .69501 .75617 .24383 .93884 
 
 18 
 
 43 
 
 .69523 .75647 .24353 .93876 
 
 17 
 
 44 
 
 .69545 .75676 .24324 .93869 
 
 16 
 
 45 
 
 .69567 .75705 .24295 .93862 
 
 15 
 
 46 
 
 .69589 .75735 .24265 .93855 
 
 14 
 
 47 
 
 .69611 .75764 .24236 .93847 
 
 13 
 
 48 
 
 .69633 .75793 .24207 .93840 
 
 12 
 
 49 
 
 .69655 .75822 .24178 .93833 
 
 11 
 
 5O 
 
 .69677 .75852 .24148 .93826 
 
 1O 
 
 51 
 
 .69699 .75881 .24119 .93819 
 
 9 
 
 52 
 
 .69721 .75910 .24090 .93811 
 
 8 
 
 53 
 
 .69743 .75939 .24061 .93804 
 
 7 
 
 54 
 
 .69765 .75969 .24031 .93797 
 
 6 
 
 55 
 
 .69787 .75998 .24002 .93789 
 
 5 
 
 56 
 
 .69809 .76027 .23973 .93782 
 
 4 
 
 57 
 
 .69831 .76056 .23944 .93775 
 
 3 
 
 58 
 
 .69853 .76086 .23914 .93768 
 
 2 
 
 59 
 
 .69875 .76115 .23885 .93760 
 
 1 
 
 6O 
 
 '.69897 .76144 .23856 .93753 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 O 
 
 .69897 .76144 .23856 .93753 
 
 6O 
 
 1 
 
 .69919 .76173 .23827 .93746 
 
 59 
 
 2 
 
 .69941 .76202 .23798 .93738 
 
 58 
 
 3 
 
 .69963 .76231 .23769 .93731 
 
 57 
 
 4 
 
 .69984 .76261 .23739 .93724 
 
 56 
 
 5 
 
 .70006 .76290 .23710 .93717 
 
 55 
 
 6 
 
 .70028 .76319 .23681 .93709 
 
 54 
 
 7 
 
 .70050 .76348 .23652 .93702 
 
 53 
 
 8 
 
 .70072 .76377 .23623 .93695 
 
 52 
 
 9 
 
 .70093 .76406 .23594 .93687 
 
 51 
 
 1O 
 
 .70115 .76435 .23565 .93680 
 
 5O 
 
 11 
 
 .70137 .76464 .23536 .93673 
 
 49 
 
 12 
 
 .70159 .76493 .23507 .93665 
 
 48 
 
 13 
 
 .70180 .76522 .23478 .93658 
 
 47 
 
 14 
 
 .70202 .76551 .23449 .93650 
 
 46 
 
 15 
 
 .70224 .76580 .23420 .93643 
 
 45 
 
 16 
 
 .70245 .76609 .23391 .93636 
 
 44 
 
 17 
 
 .70267 .76639 .23361 .93628 
 
 43 
 
 18 
 
 .70288 .76668 .23332 .93621 
 
 42 
 
 19 
 
 .70310 .76697 .23303 .93614 
 
 41 
 
 20 
 
 .70332 .76725 .23275 .93606 
 
 40 
 
 21 
 
 .70353 .76754 .23246 .93599 
 
 39 
 
 22 
 
 .70375 .76783 .23217 .93591 
 
 36 
 
 23 
 
 .70396 .76812 .23188 .93584 
 
 37 
 
 24 
 
 .70418 .76841 .23159 .93577 
 
 36 
 
 25 
 
 .70439 .76870 .23130 .93569 
 
 35 
 
 26 
 
 .70461 .76899 .23101 .93562 
 
 34 
 
 27 
 
 .70482 .76928 .23072 .93554 
 
 33 
 
 28 
 
 .70504 .76957 .23043 .93547 
 
 32 
 
 29 
 
 .70525 .76986 .23014 .93539 
 
 31 
 
 30 
 
 .70547 .77015 .22985 .93532 
 
 30 
 
 31 
 
 .70568 .77044 .22956 .93525 
 
 29 
 
 32 
 
 .70590 .77073 .22927 .93517 
 
 28 
 
 33 
 
 .70611 .77101 .22899 .93510 
 
 27 
 
 34 
 
 .70633 .77130 .22870 .93502 
 
 26 
 
 35 
 
 .70654 .77159 .22841 .93495 
 
 25 
 
 36 
 
 .70675 .77188 .22812 .93487 
 
 24 
 
 37 
 
 .70697 .77217 .22783 .93480 
 
 23 
 
 38 
 
 .70718 .77246 .22754 .93472 
 
 22 
 
 39 
 
 .70739 .77274 .22726 .93465 
 
 21 
 
 4O 
 
 .70761 .77303 .22697 .93457 
 
 2O 
 
 41 
 
 .70782 .77332 .22668 .93450 
 
 19 
 
 42 
 
 .70803 .77361 .22639 .93442 
 
 18 
 
 43 
 
 .70824 .77390 .22610 .93435 
 
 17 
 
 44 
 
 .70846 .77418 .22582 .93427 
 
 16 
 
 45 
 
 .70867 .77447 .22553 .93420 
 
 15 
 
 46 
 
 .70888 .77476 .22524 .93412 
 
 14 
 
 47 
 
 .70909 .77505 .22495 .93405 
 
 13 
 
 48 
 
 .70931 .77533 .22467 .93397 
 
 12 
 
 49 
 
 .70952 .77562 .22438 .93390 
 
 11 
 
 50 
 
 .70973 .77591 .22409 .93382 
 
 1O 
 
 51 
 
 .70994 .77619 .22381 .93375 
 
 9 
 
 52 
 
 .71015 .77648 .22352 .93367 
 
 8 
 
 53 
 
 .71036 .77677 .22323 .93360 
 
 7 
 
 54 
 
 .71058 .77706 .22294 .93352 
 
 6 
 
 55 
 
 .71079 .77734 .22266 .93344 
 
 5 
 
 56 
 
 .71100 .77763 .22237 .93337 
 
 4 
 
 57 
 
 .71121 .77791 .22209 .93329 
 
 3 
 
 58 
 
 .71142 .77820 .22180 .93322 
 
 2 
 
 59 
 
 .71163 .77849 .22151 .93314 
 
 1 
 
 60 
 
 .71184 .77877 .22123 .93307 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 60 
 
 59 
 
32' 
 
 51 
 
 / 
 
 9Lsin 9Ltan lOLcot9Lcos 
 
 / 
 
 o 
 
 .71184 .77877 .22123 .93307 
 
 7*0^ 
 
 1 
 
 .71205 .77906 .22094 .93299 
 
 59 
 
 2 
 
 .71226 .77935 .22065 .93291 
 
 58 
 
 3 
 
 .71247 .77963 .22037 .93284 
 
 57 
 
 4 
 
 .71268 .77992 .22008 .93276 
 
 56 
 
 5 
 
 .71289 .78020 .21980 .93269 
 
 55 
 
 6 
 
 .71310 .78049 .21951 .93261 
 
 54 
 
 7 
 
 .71331 .78077 .21923 .93253 
 
 53 
 
 8 
 
 .71352 .78106 .21894 .93246 
 
 52 
 
 9 
 
 .71373 .78135 .21865 .93238 
 
 51 
 
 1O 
 
 .71393 .78163 .21837 .93230 
 
 5O 
 
 11 
 
 .71414 .78192 .21808 .93223 
 
 49 
 
 12 
 
 .71435 .78220 .21780 .93215 
 
 48 
 
 13 
 
 .71456 .78249 .21751 .93207 
 
 47 
 
 14 
 
 .71477 .78277 .21723 .93200 
 
 46 
 
 15 
 
 .71498 .78306 .21694 .93192 
 
 45 
 
 16 
 
 .71519 .78334 .21666 .93184 
 
 44 
 
 17 
 
 .71539 .78363 .21637 .93177 
 
 43 
 
 18 
 
 .71560 .78391 .21609 .93169 
 
 42 
 
 19 
 
 .71581 .78419 .21581 .93161 
 
 41 
 
 20 
 
 .71602 .78448 .21552 .93154 
 
 40 
 
 21 
 
 .71622 .78476 .21524 .93146 
 
 39 
 
 22 
 
 .71643 .78505 .21495 .93138 
 
 38 
 
 23 
 
 .71664 .78533 .21467 .93131 
 
 37 
 
 24 
 
 .71685 .78562 .21438 .93123 
 
 36 
 
 25 
 
 .71705 .78590 .21410 .93115 
 
 35 
 
 26 
 
 .71726 .78618 .21382 .93108 
 
 34 
 
 27 
 
 .71747 .78647 .21353 .93100 
 
 33 
 
 28 
 
 .71767 .78675 .21325 .93092 
 
 32 
 
 29 
 
 .71788 .78704 .21296 .93084 
 
 31 
 
 3O 
 
 .71809 .78732 .21268 .93077 
 
 3O 
 
 31 
 
 .71829 .78760 .21240 .93069 
 
 29 
 
 32 
 
 .71850 .78789 .21211 .93061 
 
 28 
 
 33 
 
 .71870 .78817 .21183 .93053 
 
 27 
 
 34 
 
 .71891 .78845 .21155 .93046 
 
 26 
 
 35 
 
 .71911 .78874 .21126 .93038 
 
 25 
 
 36 
 
 .71932 .78902 .21098 .93030 
 
 24 
 
 37 
 
 .71952 .78930 .21070 .93022 
 
 23 
 
 38 
 
 .71973 .78959 .21041 .93014 
 
 22 
 
 39 
 
 .71994 .78987 .21013 .93007 
 
 21 
 
 40 
 
 .72014 .79015 .20985 .92999 
 
 2O 
 
 41 
 
 .72034 .79043 .20957 .92991 
 
 19 
 
 42 
 
 .72055 .79072 .20928 .92983 
 
 18 
 
 43 
 
 .72075 .79100 .20900 .92976 
 
 17 
 
 44 
 
 .72096 .79128 .20872 .92968 
 
 16 
 
 45 
 
 .72116 .79156 .20844 .92960 
 
 15 
 
 46 
 
 .72137 .79185 .20815 .92952 
 
 14 
 
 47 
 
 .72157 .79213 .20787 .92944 
 
 13 
 
 48 
 
 .72177 .79241 .20759 .92936 
 
 12 
 
 49 
 
 .72198 .79269 .20731 .92929 
 
 11 
 
 50 
 
 .72218 .79297 .20703 .92921 
 
 1O 
 
 51 
 
 .72238 .79326 .20674 .92913 
 
 9 
 
 52 
 
 .72259 .79354 .20646 .92905 
 
 8 
 
 53 
 
 .72279 .79382 .20618 .92897 
 
 7 
 
 54 
 
 .72299 .79410 .20590 .92889 
 
 6 
 
 55 
 
 .72320 .79438 .20562 .92881 
 
 5 
 
 56 
 
 .72340 .79466 .20534 .92874 
 
 4 
 
 57 
 
 .72360 .79495 .20505 .92866 
 
 3 
 
 58 
 
 .72381 .79523 .20477 .92858 
 
 2 
 
 59 
 
 .72401 .79551 .20449 .92850 
 
 1 
 
 60 
 
 .72421 .79579 .20421 .92842 
 
 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 O 
 
 .72421 .79579 .20421 .92842 
 
 6O 
 
 1 
 
 .72441 .79607 .20393 .92834 
 
 59 
 
 2 
 
 .72461 .79635 .20365 .92826 
 
 58 
 
 3 
 
 .72482 .79663 .20337 .92818 
 
 57 
 
 4 
 
 .72502 .79691 .20309 .92810 
 
 56 
 
 5 
 
 .72522 .79719 .20281 .92803 
 
 55 
 
 6 
 
 .72542 .79747 .20253 .92795 
 
 54 
 
 7 
 
 .72562 .79776 .20224 .92787 
 
 53 
 
 8 
 
 .72582 .79804 .20196 .92779 
 
 52 
 
 9 
 
 .72602 .79832 .20168 .92771 
 
 51 
 
 10 
 
 .72 622 .79 860 .20 140 ,.92 763 
 
 5O 
 
 11 
 
 .72643 .79888 .20112 .92755 
 
 49 
 
 12 
 
 .72663 .79916 .20084 .92747 
 
 48 
 
 13 
 
 .72683 .79944 .20056 .92739 
 
 47 
 
 14 
 
 .72703 .79972 .20028 .92731 
 
 46 
 
 15 
 
 .72723 .80000 .20000 .92723 
 
 45 
 
 16 
 
 .72743 .80028 .19972 .92715 
 
 44 
 
 17 
 
 .72763 .80056 .19944 .92707 
 
 43 
 
 18 
 
 .72783 .80084 .19916 .92699 
 
 42 
 
 19 
 
 .72803 .80112 .19888 .92691 
 
 41 
 
 2O 
 
 .72823 .80140 .19860 .92683 
 
 40 
 
 21 
 
 .72843 .80168 .19832 .92675 
 
 39 
 
 22 
 
 .72863 .80195 .19805 .92667 
 
 38 
 
 23 
 
 .72883 .80223 .19777 .92659 
 
 37 
 
 24 
 
 .72902 .80251 .19749 .92651 
 
 36 
 
 25 
 
 .72922 .80279 .19721 .92643 
 
 35 
 
 26 
 
 .72942 .80307 .19693 .92635 
 
 34 
 
 27 
 
 .72962 .80335 .19665 .92627 
 
 33 
 
 28 
 
 .72982 .80363 .19637 .92619 
 
 32 
 
 29 
 
 .73002 .80391 .19609 .92611 
 
 31 
 
 3O 
 
 .73022 .80419 .19581 .92603 
 
 3O 
 
 31 
 
 .73041 .80447 .19553 .92595 
 
 29 
 
 32 
 
 .73061 .80474 .19526 .92587 
 
 28 
 
 33 
 
 .73081 .80502 .19498 .92579 
 
 27 
 
 34 
 
 .73101 .80530 .19470 .92571 
 
 26 
 
 35 
 
 .73121 .80558 .19442 .92563 
 
 25 
 
 36 
 
 .73140 .80586 .19414 .92555 
 
 24 
 
 37 
 
 .73160 .80614 .19386 .92546 
 
 23 
 
 38 
 
 .73180 .80642 .19358 .92538 
 
 22 
 
 39 
 
 .73200 .80669 .19331 .92530 
 
 21 
 
 4O 
 
 .73219 .80697 .19303 .92522 
 
 2O 
 
 41 
 
 .73239 .80725 .19275 .92514 
 
 19 
 
 42 
 
 .73259 .80753 .19247 .92506 
 
 18 
 
 43 
 
 .73278 .80781 .19219 .92498 
 
 17 
 
 44 
 
 .73298 .80808 .19192 .92490 
 
 16 
 
 45 
 
 .73318 .80836 .19164 .92482 
 
 15 
 
 46 
 
 .73337 .80864 .19136 .92473 
 
 14 
 
 47 
 
 .73357 .80892 .19108 .92465 
 
 13 
 
 48 
 
 .73377 .80919 .19081 .92457 
 
 12 
 
 49 
 
 .73396 .80947 .19053 .92449 
 
 11 
 
 5O 
 
 .73416 .80975 .19025 .92441 
 
 1O 
 
 51 
 
 .73435 .81003 .18997 .92433 
 
 9 
 
 52 
 
 .73455 .81030 .18970 .92425 
 
 8 
 
 53 
 
 .73474 .81058 .18942 .92416 
 
 7 
 
 54 
 
 .73494 .81086 .18914 .92408 
 
 6 
 
 55 
 
 .73513 .81113 .18887 .92400 
 
 5 
 
 56 
 
 .73533 .81141 .18859 .92392 
 
 4 
 
 57 
 
 .73552 .81169 .18831 .92384 
 
 3 
 
 58 
 
 .73572 .81196 .18804 .92376 
 
 2 
 
 59 
 
 .73591 .81224 .18776 .92367 
 
 1 
 
 60 
 
 .73611 .81252 .18748 .92359 
 
 O 
 
 / 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 58 C 
 
 57 C 
 
52 
 
 33 
 
 34' 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos 
 
 / 
 
 o 
 
 .73611 .81252 .18748 .92359 
 
 60 
 
 1 
 
 .73630 .81279 .18721 .92351 
 
 59 
 
 2 
 
 .73650 .81307 .18693 .92313 
 
 58 
 
 3 
 
 .73669 .81335 .18665 .92335 
 
 57 
 
 4 
 
 .73689 .81362 .18638 .92326 
 
 56 
 
 5 
 
 .73708 .81390 .18610 .92318 
 
 55 
 
 6 
 
 .73727 .81418 .18582 .92310 
 
 54 
 
 7 
 
 .73747 .81445 .18555 .92302 
 
 53 
 
 8 
 
 .73766 .81473 .18527 .92293 
 
 52 
 
 9 
 
 .73785 .81500 .18500 .92285 
 
 51 
 
 10 
 
 .73805 .81528 .18472 .92277 
 
 5O 
 
 11 
 
 .73824 .81556 .18444 .92269 
 
 49 
 
 12 
 
 .73843 .81583 .18417 .92260 
 
 48 
 
 13 
 
 .73863 .81611 .18389 .92252 
 
 47 
 
 14 
 
 .73882 .81638 .18362 .92244 
 
 46 
 
 15 
 
 .73901 .81666 .18334 .92235 
 
 45 
 
 16 
 
 .73921 .81693 .18307 .92227 
 
 44 
 
 17 
 
 .73940 .81721 .18279 .92219 
 
 43 
 
 18 
 
 .73959 .81748 .18252 .92211 
 
 42 
 
 19 
 
 .73978 .81776 .18224 .92202 
 
 41 
 
 20 
 
 .73997 .81803 .18197 .92194 
 
 4O 
 
 21 
 
 .74017 .81831 .18169 .92186 
 
 39 
 
 22 
 
 .74036 .81858 .18142 .92177 
 
 38 
 
 23 
 
 .74055 .81886 .18114 .92169 
 
 37 
 
 24 
 
 .74074 .81913 .18087 .92161 
 
 36 
 
 25 
 
 .74093 .81941 .18059 .92152 
 
 35 
 
 26 
 
 .74113 .81968 .18032 .92144 
 
 34 
 
 27 
 
 .74132 .81996 .18004 .92136 
 
 33 
 
 28 
 
 .74151 .82023 .17977 .92127 
 
 32 
 
 29 
 
 .74170 .82051 .17949 .92119 
 
 31 
 
 3O 
 
 .74189 .82078 .17922 .92111 
 
 30 
 
 31 
 
 .74208 .82106 .17894 .92102 
 
 29 
 
 32 
 
 .74227 .82133 .17867 .92094 
 
 28 
 
 33 
 
 .74246 .82161 .17839 .92086 
 
 27 
 
 34 
 
 .74265 .82188 .17812 .92077 
 
 26 
 
 35 
 
 .74284 .82215 .17785 .92069 
 
 25 
 
 36 
 
 .74303 .82243 .17757 .92060 
 
 24 
 
 37 
 
 .74322 .82270 .17730 .92052 
 
 23 
 
 38 
 
 .74341 .82298 .17702 .92044 
 
 22 
 
 39 
 
 .74360 .82325 .17675 .92035 
 
 21 
 
 4O 
 
 .74379 .82352 .17648 .92027 
 
 20 
 
 41 
 
 .74398 .82380 .17620 .92018 
 
 19 
 
 42 
 
 .74417 .82407 .17593 .92010 
 
 18 
 
 43 
 
 .74436 .82435 .17565 .92002 
 
 17 
 
 44 
 
 .74455 .82462 .17538 .91993 
 
 16 
 
 45 
 
 .74474 .82489 .17511 .91985 
 
 15 
 
 46 
 
 .74493 .82517 .17483 .91976 
 
 14 
 
 47 
 
 .74512 .82544 .17456 .91968 
 
 13 
 
 48 
 
 .74531 .82571 .17429 .91959 
 
 12 
 
 49 
 
 .74549 .82599 .17401 .91951 
 
 11 
 
 5O 
 
 .74568 .82626 .17374 .91942 
 
 1O 
 
 51 
 
 .74587 .82653 .17347 .91934 
 
 9 
 
 52 
 
 .74606 .82681 .17319 .91925 
 
 8 
 
 53 
 
 .74625 .82708 .17292 .91917 
 
 7 
 
 54 
 
 .74644 .82735 .17265 .91908 
 
 6| 
 
 55 
 
 .74662 .82762 .17238 .91900 
 
 5 
 
 56 
 
 .74681 .82790 .17210 .91891 
 
 4 
 
 57 
 
 .74700 .82817 .17183 .91883 
 
 3 
 
 58 
 
 .74719 .82844 .17156 .91874 
 
 2 
 
 59 
 
 .74737 .82871 .17129 .91866 
 
 1 
 
 60 
 
 .74756 .82899 .17101 .91857 
 
 O 
 
 / 
 
 9Lcos 9LcotlOLtan9Lsin 
 
 / 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 O 
 
 .74756 .82899 .17101 .91857' 
 
 60 
 
 1 
 
 .74775 .82926 .17074 .91849 
 
 59 
 
 2 
 
 .74794 .82953 .17047 .91840 
 
 58 
 
 3 
 
 .74812 .82980 .17020 .91832 
 
 57 
 
 4 
 
 .74831 .83008 .16992 .91823 
 
 56 
 
 5 
 
 .74850 .83035 .16965 .91815 
 
 55 
 
 6 
 
 .74868 .83062 .16938 .91806 
 
 54 
 
 7 
 
 .74887 .83089 .16911 .91798 
 
 53 
 
 8 
 
 .74906 .83117 .16883 .91789 
 
 52 
 
 9 
 
 .74924 .83144 .16856 .91781 
 
 51 
 
 1O 
 
 .749-13 .83171 .16829 .91772 
 
 50 
 
 11 
 
 .74961 .83198 .16802 .91763 
 
 49 
 
 12 
 
 .74980 .83225 .16775 .91755 
 
 48 
 
 13 
 
 .74999 .83252 .16748 .91746 
 
 47 
 
 14 
 
 .75017 .83280 .16720 .91738 
 
 46 
 
 15 
 
 .75036 .83307 .16693 .91729 
 
 45 
 
 16 
 
 .75054 .83334 .16666 .91720 
 
 44 
 
 17 
 
 .75073 .83361 .16639 .91712 
 
 43 
 
 18 
 
 .75091 .83388 .16612 .91703 
 
 42 
 
 19 
 
 .75110 .83415 .16585 .91695 
 
 41 
 
 2O 
 
 .75128 .83442 .16558 .91686 
 
 4O 
 
 21 
 
 .75 147 .83470 .16530 .91677 
 
 39 
 
 22 
 
 .75165 .83497 .16503 .91669 
 
 38 
 
 23 
 
 .75184 .83524.16476 .91660 
 
 37 
 
 24 
 
 .75202 .83551 .16449 .91651 
 
 36 
 
 25 
 
 .75221 .83578 .16422 .91643 
 
 35 
 
 26 
 
 .75239 .83605 .16395 .91634 
 
 34 
 
 27 
 
 .75258 .83632 .16368 .91625 
 
 33 
 
 28 
 
 .75276 .83659 .16341 .91617 
 
 32 
 
 29 
 
 .7-5294 .83686 .16314 .91608 
 
 31 
 
 30 
 
 .75313 .83713 .16287 .91599 
 
 30 
 
 31 
 
 .75331 .83740 .16260 .91591 
 
 29 
 
 32 
 
 .75350 .83768 .16232 .91582 
 
 28 
 
 33 
 
 .75368 .83795 .16205 .91573 
 
 27 
 
 34 
 
 .75386 .83822 .16178 .91565 
 
 26 
 
 35 
 
 .75405 .83849 .16151 .91556 
 
 25 
 
 36 
 
 .75423 .83876 .16124 .91547 
 
 24 
 
 37 
 
 .75441 .83903 .16097 .91538 
 
 23 
 
 38 
 
 .75459 .83930 .16070 .91530 
 
 22 
 
 39 
 
 .75478 .83957 .16043 .91521 
 
 21 
 
 4O 
 
 .75496 .83984 .16016 .91512 
 
 2O 
 
 41 
 
 .75514 .84011 .15989 .91504 
 
 19 
 
 42 
 
 .75533 .84038 .15962 .91495 
 
 18 
 
 43 
 
 .75551 .84065 .15935 .91486 
 
 17 
 
 44 
 
 .75569 .84092 .15908 .91477 
 
 16 
 
 45 
 
 .75587 .84119 .15881 .91469 
 
 15 
 
 46 
 
 .75605 .84146 .15854 .91460 
 
 14 
 
 47 
 
 .75624 .84173 .15827 .91451 
 
 13 
 
 48 
 
 .75642 .84200 .15800 .91442 
 
 12 
 
 49 
 
 .75660 .84227 .15773 .91433 
 
 11 
 
 50 
 
 .75678 .84254 .15746 .91425 
 
 1OI 
 
 51 
 
 .75696 .84280 .15720 .91416 
 
 9 
 
 52 
 
 .75714 .84307 .15693 .91407 
 
 8 
 
 53 
 
 .75733 .84334 .15666 .91398 
 
 7 
 
 54 
 
 .75751 .84361 .15639 .91389 
 
 6 
 
 55 
 
 .75769 .84388 .15612 .91381 
 
 5 
 
 56 
 
 .75787 .84415 .15585 .91372 
 
 4 
 
 57 
 
 .75805 .84442 .15558 .91363 
 
 3 
 
 58 
 
 .75823 .84469 .15531 .91354 
 
 2 
 
 59 
 
 .75841 .84496 .15504 .91345 
 
 1 
 
 60 
 
 .75859 .84523 .15477 .91336 
 
 O 
 
 ~7 
 
 9 L cos 9 L cot 1O L tan 9 L sin 
 
 / 
 
 56 
 
 55 
 
35 
 
 36< 
 
 53 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 1O L cot 
 
 9 Lcos 
 
 / 
 
 
 
 .75 859 
 
 .84 523 
 
 .15477 
 
 .91 336 
 
 6O 
 
 1 
 
 .75 877 
 
 .84550 
 
 .15450 
 
 .91 328 
 
 59 
 
 2 
 
 .75 895 
 
 .84 576 
 
 .15 424 
 
 .91319 
 
 58 
 
 3 
 
 .75913 
 
 .84 603 
 
 .15397 
 
 .91 310 
 
 57 
 
 4 
 
 .75931 
 
 .84630 
 
 .15370 
 
 .91 301 
 
 56 
 
 5 
 
 .75949 
 
 .84657 
 
 .15343 
 
 .91 292 
 
 55 
 
 6 
 
 .75 967 
 
 .84684 
 
 .15316 
 
 .91 283 
 
 54 
 
 7 
 
 .75985 
 
 .84711 
 
 .15 289 
 
 .91 274 
 
 53 
 
 8 
 
 .76003 
 
 .84 738 
 
 .15262 
 
 .91 266 
 
 52 
 
 9 
 
 .76021 
 
 .84764 
 
 .15 236 
 
 .91 257 
 
 51 
 
 10 
 
 .76039 
 
 .84 791 
 
 .15 209 
 
 .91 248 
 
 50 
 
 11 
 
 .76057 
 
 .84818 
 
 .15 182 
 
 .91 239 
 
 49 
 
 12 
 
 .76075 
 
 .84 845 
 
 .15 155 
 
 .91 230 
 
 48 
 
 13 
 
 .76093 
 
 .84 872 
 
 .15 128 
 
 .91 221 
 
 47 
 
 14 
 
 .76111 
 
 .84 899 
 
 .15101 
 
 .91212 
 
 46 
 
 15 
 
 .76 129 
 
 .84925 
 
 .15075 
 
 .91 203 
 
 45 
 
 16 
 
 .76 146 
 
 .84952 
 
 .15048 
 
 .91 194 
 
 44 
 
 17 
 
 .76 164 
 
 .84979 
 
 .15021 
 
 .91 185 
 
 43 
 
 18 
 
 .76 182 
 
 .85 006 
 
 .14994 
 
 .91 176 
 
 42 
 
 19 
 
 .76 200 
 
 .85033 
 
 .14967 
 
 .91 167 
 
 41 
 
 2O 
 
 .76218 
 
 .85 059 
 
 .14941 
 
 .91 158 
 
 40 
 
 21 
 
 .76 236 
 
 .85 086 
 
 .14914 
 
 .91 149 
 
 39 
 
 22 
 
 .76253 
 
 .85 113 
 
 .14887 
 
 .91 141 
 
 38 
 
 23 
 
 .76271 
 
 .85 140 
 
 .14860 
 
 .91 132 
 
 37 
 
 24 
 
 .76 289 
 
 .85 166 
 
 .14834 
 
 .91 123 
 
 36 
 
 25 
 
 .76307 
 
 .85 193 
 
 .14807 
 
 .91114 
 
 35 
 
 26 
 
 .76324 
 
 .85 220 
 
 .14780 
 
 .91 105 
 
 34 
 
 27 
 
 .76342 
 
 .85 247 
 
 .14753 
 
 .91 096 
 
 33 
 
 28 
 
 .76360 
 
 .85 273 
 
 .14 727 
 
 .91087 
 
 32 
 
 29 
 
 .76378 
 
 .85 300 
 
 .14 700 
 
 .91 078 
 
 31 
 
 30 
 
 .76395 
 
 .85 327 
 
 .14673 
 
 .91 069 
 
 30 
 
 31 
 
 .76413 
 
 .85 354 
 
 .14646 
 
 .91 060 
 
 29 
 
 32 
 
 .76431 
 
 .85 380 
 
 .14620 
 
 .91051 
 
 28 
 
 33 
 
 .76448 
 
 .85 407 
 
 .14593 
 
 .91 042 
 
 27 
 
 34 
 
 .76466 
 
 .85 434 
 
 .14 566 
 
 .91033 
 
 26 
 
 35 
 
 .76484 
 
 .85 460 
 
 .14540 
 
 .91 023 
 
 25 
 
 36 
 
 .76501 
 
 .85 487 
 
 .14513 
 
 .91014 
 
 24 
 
 37 
 
 .76519 
 
 .85 514 
 
 .14486 
 
 .91 005 
 
 23 
 
 38 
 
 .76537 
 
 .85 540 
 
 .14460 
 
 .90996 
 
 22 
 
 39 
 
 .76554 
 
 .85 567 
 
 .14433 
 
 .90987 
 
 21 
 
 4O 
 
 .76572 
 
 .85 594 
 
 .14406 
 
 .90978 
 
 2O 
 
 41 
 
 .76 590 
 
 .85 620 
 
 .14380 
 
 .90969 
 
 19 
 
 42 
 
 .76607 
 
 .85 647 
 
 .14353 
 
 .90960 
 
 18 
 
 43 
 
 .76625 
 
 .85 674 
 
 .14326 
 
 .90951 
 
 17 
 
 44 
 
 .76642 
 
 .85 700 
 
 .14300 
 
 .90942 
 
 16 
 
 45 
 
 .76660 
 
 .85 727 
 
 .14273 
 
 .90933 
 
 15 
 
 46 
 
 .76677 
 
 .85 754 
 
 .14246 
 
 .90924 
 
 14 
 
 47 
 
 .76695 
 
 .85 780 
 
 .14220 
 
 .90915 
 
 13 
 
 48 
 
 .76712 
 
 .85 807 
 
 .14 193 
 
 .90906 
 
 12 
 
 49 
 
 .76 730 
 
 .85 834 
 
 .14 166 
 
 .90896 
 
 11 
 
 50 
 
 .76 747 
 
 .85 860 
 
 .14 140 
 
 .90887 
 
 1O 
 
 51 
 
 .76 765 
 
 .85 887 
 
 .14113 
 
 .90878 
 
 9 
 
 52 
 
 .76 782 
 
 .85 913 
 
 .14087 
 
 .90869 
 
 8 
 
 53 
 
 .76800 
 
 .85 940 
 
 .14060 
 
 .90860 
 
 7 
 
 54 
 
 .76817 
 
 .85 967 
 
 .14033 
 
 .90851 
 
 6 
 
 55 
 
 .76835 
 
 .85 993 
 
 .14007 
 
 .90842 
 
 5 
 
 56 
 
 .76852 
 
 .86020 
 
 .13 980 
 
 .90832 
 
 4 
 
 57 
 
 .76870 
 
 .86046 
 
 .13954 
 
 .90823 
 
 3 
 
 58 
 
 .76887 
 
 .86073 
 
 .13927 
 
 .90814 
 
 2 
 
 59 
 
 .76904 
 
 .86 103 
 
 .13900 
 
 .90805 
 
 1 
 
 60 
 
 .76922 
 
 .86 126 
 
 .13874 
 
 .90 796 
 
 O 
 
 / 
 
 9 Lcos 
 
 9Lcot 
 
 10 L tan 
 
 9Lsin 
 
 / 
 
 / 
 
 91 sin 
 
 9Ltan 
 
 lOLcot 
 
 9 Lcos 
 
 t 
 
 O 
 
 .76922 
 
 .86126 
 
 .13874 
 
 .90 796 
 
 60 
 
 1 
 
 .76939 
 
 .86153 
 
 .13847 
 
 .90787 
 
 59 
 
 2 
 
 .76957 
 
 .86179 
 
 .13821 
 
 .90777 
 
 58 
 
 3 
 
 .76974 
 
 .86 206 
 
 .13 794 
 
 .90 768 
 
 57 
 
 4 
 
 .76991 
 
 .86232 
 
 .13 768 
 
 .90759 
 
 56 
 
 5 
 
 .77009 
 
 .86259 
 
 .13 741 
 
 .90 750 
 
 55 
 
 6 
 
 .77026 
 
 .86285 
 
 .13 715 
 
 .90 741 
 
 54 
 
 7 
 
 .77043 
 
 .86312 
 
 .13688 
 
 .90 731 
 
 53 
 
 8 
 
 .77061 
 
 .86338 
 
 .13662 
 
 .90 722 
 
 52 
 
 9 
 
 .77078 
 
 .86365 
 
 .13635 
 
 .90713 
 
 51 
 
 1O 
 
 .77 095 
 
 .86392 
 
 .13608 
 
 .90 704 
 
 5O 
 
 11 
 
 .77112 
 
 .86418 
 
 .13 582 
 
 .90694 
 
 49 
 
 12 
 
 .77 130 
 
 .86445 
 
 .13 555 
 
 .90685 
 
 48 
 
 13 
 
 .77 147 
 
 .86471 
 
 .13 529 
 
 .90676 
 
 47 
 
 14 
 
 .77 164 
 
 .86498 
 
 .13 502 
 
 .90667 
 
 46 
 
 15 
 
 .77181 
 
 .86524 
 
 .13476 
 
 .90657 
 
 45 
 
 16 
 
 .77 199 
 
 .86551 
 
 .13449 
 
 .90648 
 
 44 
 
 17 
 
 .77216 
 
 .86577 
 
 .13 423 
 
 .90639 
 
 43 
 
 18 
 
 .77233 
 
 .86603 
 
 .13397 
 
 .90630 
 
 42 
 
 19 
 
 .77250 
 
 .86630 
 
 .13370 
 
 .90620 
 
 41 
 
 2O 
 
 .77 268 
 
 .86656 
 
 .13 344 
 
 .90611 
 
 40 
 
 21 
 
 .77285 
 
 .86683 
 
 .13317 
 
 .90602 
 
 39 
 
 22 
 
 .77302 
 
 .86 709 
 
 .13291 
 
 .90592 
 
 38 
 
 23 
 
 .77319 
 
 .86 736 
 
 .13 264 
 
 .90 583 
 
 37 
 
 24 
 
 .77336 
 
 .86762 
 
 .13 238 
 
 .90574 
 
 36 
 
 25 
 
 .77353 
 
 .86 789 
 
 .13211 
 
 .90565 
 
 35 
 
 26 
 
 .77370 
 
 .86815 
 
 .13 185 
 
 .90555 
 
 34 
 
 27 
 
 .77387 
 
 .86842 
 
 .13158 
 
 .90 546 
 
 33 
 
 28 
 
 .77405 
 
 .86868 
 
 .13 132 
 
 .90537 
 
 32 
 
 29 
 
 .77422 
 
 .86894 
 
 .13 106 
 
 .90527 
 
 31 
 
 30 
 
 .77439 
 
 .86921 
 
 .13079 
 
 .90518 
 
 30 
 
 31 
 
 .77456 
 
 .86947 
 
 .13053 
 
 .90 509 
 
 29 
 
 32 
 
 .77473 
 
 .86974 
 
 .13026 
 
 .90499 
 
 28 
 
 33 
 
 .77 490 
 
 .87000 
 
 .13000 
 
 .90490 
 
 27 
 
 34 
 
 .77507 
 
 .87027 
 
 .12973 
 
 .90480 
 
 26 
 
 35 
 
 .77524 
 
 .87053 
 
 .12947 
 
 .90471 
 
 25 
 
 36 
 
 .77541 
 
 .87079 
 
 .12921 
 
 .90462 
 
 24 
 
 37 
 
 .77558 
 
 .87 106 
 
 .12 894 
 
 .90452 
 
 23 
 
 38 
 
 .77575 
 
 .87 132 
 
 .12868 
 
 .90443 
 
 22 
 
 39 
 
 .77 592 
 
 .87 158 
 
 .12842 
 
 .90434 
 
 21 
 
 4O 
 
 .77609 
 
 .87 185 
 
 .12815 
 
 .90424 
 
 2O 
 
 41 
 
 .77 626 
 
 .87211 
 
 .12 789 
 
 .90415 
 
 19 
 
 42 
 
 .77 643 
 
 .87 238 
 
 .12 762 
 
 .90405 
 
 18 
 
 43 
 
 .77660 
 
 .87264 
 
 .12 736 
 
 .90396 
 
 17 
 
 44 
 
 .77677 
 
 .87 290 
 
 .12710 
 
 .90386 
 
 16 
 
 45 
 
 .77694 
 
 .87317 
 
 .12683 
 
 .90377 
 
 15 
 
 46 
 
 .77711 
 
 .87343 
 
 .12657 
 
 .90368 
 
 14 
 
 47 
 
 .77 728 
 
 .87 369 
 
 .12631 
 
 .90358 
 
 13 
 
 48 
 
 .77 744 
 
 .87 396 
 
 .12604 
 
 .90349 
 
 12 
 
 49 
 
 .77761 
 
 .87422 
 
 .12578 
 
 .90339 
 
 11 
 
 5O 
 
 .77 778 
 
 .87448 
 
 .12552 
 
 .90330 
 
 10 
 
 51 
 
 .77 795 
 
 .87475 
 
 .12525 
 
 .90320 
 
 9 
 
 52 
 
 .77812 
 
 .87501 
 
 .12499 
 
 .90311 
 
 8 
 
 53 
 
 .77829 
 
 .87 527 
 
 .12473 
 
 .90301 
 
 7 
 
 54 
 
 .77 846 
 
 .87554 
 
 .12 446 
 
 .90292 
 
 6 
 
 55 
 
 .77 862 
 
 .87 580 
 
 .12420 
 
 .90282 
 
 5 
 
 56 
 
 .77879 
 
 .87 606 
 
 .12394 
 
 .90273 
 
 4 
 
 57 
 
 .77896 
 
 .87 633 
 
 .12367 
 
 .90263 
 
 3 
 
 58 
 
 .77913 
 
 .87659 
 
 .12341 
 
 .90254 
 
 2 
 
 59 
 
 .77930 
 
 .87685 
 
 .12315 
 
 .90244 
 
 1 
 
 60 
 
 .77946 
 
 .87711 
 
 .12289 
 
 .90235 
 
 O 
 
 / 
 
 9 Lcos 
 
 9Lcot 
 
 10 L tan 
 
 9Lsin 
 
 / 
 
 54 C 
 
 53' 
 
54 
 
 37 
 
 38 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 lOLcot 
 
 9 Lcos 
 
 / 
 
 o 
 
 .77946 
 
 .87711 
 
 .12289 
 
 .90 235 
 
 60 
 
 1 
 
 .77963 
 
 .87 738 
 
 .12262 
 
 .90 225 
 
 59 
 
 2 
 
 .77980 
 
 .87 764 
 
 .12236 
 
 .90216 
 
 58 
 
 3 
 
 .77997 
 
 .87 790 
 
 .12210 
 
 .90 206 
 
 57 
 
 4 
 
 .78013 
 
 .87817 
 
 .12183 
 
 .90 197 
 
 56 
 
 5 
 
 .78030 
 
 .87 843 
 
 .12157 
 
 .90187 
 
 55 
 
 6 
 
 .78047 
 
 .87 869 
 
 .12131 
 
 .90178 
 
 54 
 
 7 
 
 .78063 
 
 .87895 
 
 .12105 
 
 .90 168 
 
 53 
 
 8 
 
 .78080 
 
 .87922 
 
 .12078 
 
 .90 159 
 
 52 
 
 9 
 
 .78097 
 
 .87948 
 
 .12052 
 
 .90 149 
 
 51 
 
 1O 
 
 .78113 
 
 .87974 
 
 .12026 
 
 .90 139 
 
 50 
 
 11 
 
 .78 130 
 
 .88000 
 
 .12000 
 
 .90 130 
 
 49 
 
 12 
 
 .78 147 
 
 .88027 
 
 .11973 
 
 .90 120 
 
 48 
 
 13 
 
 .78 163 
 
 .88053 
 
 .11947 
 
 .90111 
 
 47 
 
 14 
 
 .78 180 
 
 .88079 
 
 .11921 
 
 .90 101 
 
 46 
 
 15 
 
 .78 197 
 
 .88 105 
 
 .11895 
 
 .90091 
 
 45 
 
 16 
 
 .78213 
 
 .88131 
 
 .11869 
 
 .90082 
 
 44 
 
 17 
 
 .78 230 
 
 .88 158 
 
 .11 842 
 
 .90072 
 
 43 
 
 18 
 
 .78 246 
 
 .88 184 
 
 .11816 
 
 .90063 
 
 42 
 
 19 
 
 .78 263 
 
 .88210 
 
 .11790 
 
 .90053 
 
 41 
 
 20 
 
 .78280 
 
 .88236 
 
 .11764 
 
 .90043 
 
 40 
 
 21 
 
 .78 296 
 
 .88 262 
 
 .11738 
 
 .90034 
 
 39 
 
 22 
 
 .78313 
 
 .88 289 
 
 .11711 
 
 .90024 
 
 38 
 
 23 
 
 .78329 
 
 .88315 
 
 .11685 
 
 .90014 
 
 37 
 
 24 
 
 .78346 
 
 .88341 
 
 .11659 
 
 .90005 
 
 36 
 
 25 
 
 .78362 
 
 .88367 
 
 .11633 
 
 .89995 
 
 35 
 
 26 
 
 .78379 
 
 .88393 
 
 .11607 
 
 .89985 
 
 34 
 
 27 
 
 .78 395 
 
 .88420 
 
 .11580 
 
 .89976 
 
 33 
 
 28 
 
 .78412 
 
 .88446 
 
 .11554 
 
 .89966 
 
 32 
 
 29 
 
 .78428 
 
 .88472 
 
 .11528 
 
 .89956 
 
 31 
 
 30 
 
 .78445 
 
 .88498 
 
 .11502 
 
 .89947 
 
 3O 
 
 31 
 
 .78461 
 
 .88 524 
 
 .11476 
 
 .89937 
 
 29 
 
 32 
 
 .78478 
 
 .88550 
 
 .11450 
 
 .89927 
 
 28 
 
 33 
 
 .78494 
 
 .88577 
 
 .11423 
 
 .89918 
 
 27 
 
 34 
 
 .78510 
 
 .88603 
 
 .11397 
 
 .89908 
 
 26 
 
 35 
 
 .78527 
 
 .88629 
 
 .11371 
 
 .89898 
 
 25 
 
 36 
 
 .78543 
 
 .88655 
 
 .11345 
 
 .89888 
 
 24 
 
 37 
 
 .78560 
 
 .88681 
 
 .11319 
 
 .89879 
 
 23 
 
 38 
 
 .78576 
 
 .88 707 
 
 .11293 
 
 .89869 
 
 22 
 
 39 
 
 .78 592 
 
 .88 733 
 
 .11267 
 
 .89859 
 
 21 
 
 40 
 
 .78609 
 
 .88759 
 
 .11241 
 
 .89849 
 
 2O 
 
 41 
 
 .78625 
 
 .88 786 
 
 .11214 
 
 .89840 
 
 19 
 
 42 
 
 .78642 
 
 .88812 
 
 .11188 
 
 .89830 
 
 18 
 
 43 
 
 .78658 
 
 .88838 
 
 .11162 
 
 .89 820 
 
 17 
 
 44 
 
 .78674 
 
 .88864 
 
 .11136 
 
 .89810 
 
 16 
 
 45 
 
 .78691 
 
 .88890 
 
 .11110 
 
 .89801 
 
 15 
 
 46 
 
 .78 707 
 
 .88916 
 
 .11084 
 
 .89791 
 
 14 
 
 47 
 
 .78 723 
 
 .88942 
 
 .11058 
 
 .89781 
 
 13 
 
 48 
 
 .78739 
 
 .88968 
 
 .11032 
 
 .89771 
 
 12 
 
 49 
 
 .78756 
 
 .88994 
 
 .11 006 
 
 .89 761 
 
 11 
 
 5O 
 
 .78 772 
 
 .89020 
 
 .10980 
 
 .89 752 
 
 10 
 
 51 
 
 .78 788 
 
 .89046 
 
 .10954 
 
 .89 742 
 
 9 
 
 52 
 
 .78805 
 
 .89073 
 
 .10927 
 
 .89 732 
 
 8 
 
 53 
 
 .78821 
 
 .89099 
 
 .10901 
 
 .89 722 
 
 7 
 
 54 
 
 .78837 
 
 .89 125 
 
 .10875 
 
 .89712 
 
 6 
 
 55 
 
 .78853 
 
 .89151 
 
 .10849 
 
 .89 702 
 
 5 
 
 56 
 
 .78869 
 
 .89177 
 
 .10823 
 
 .88693 
 
 4 
 
 57 
 
 .78 886 
 
 .89 203 
 
 .10797 
 
 .89683 
 
 3 
 
 58 
 
 .78902 
 
 .89 229 
 
 .10771 
 
 .89673 
 
 2 
 
 59 
 
 .78918 
 
 .89255 
 
 .10745 
 
 .89663 
 
 1 
 
 60 
 
 .78934 
 
 .89281 
 
 .10719 
 
 .89653 
 
 
 
 / 
 
 9 Lcos 
 
 9Lcot 
 
 1O L tan 9 L sin 
 
 / 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 
 
 .78934 .89281 .10719 .89653 
 
 60 
 
 1 
 
 .78950 .89307 .10693 .89643 
 
 59 
 
 2 
 
 .78967 .89333 .10667 .89633 
 
 58 
 
 3 
 
 .78983 .89359 .10641 .89624 
 
 57 
 
 4 
 
 .78999 .89385 .10615 .89614 
 
 56 
 
 5 
 
 .79015 .89411 .10589 .89604 
 
 55 
 
 6 
 
 .79031 .89437 .10563 .89594 
 
 54 
 
 7 
 
 .79047 .89463 .10537 .89584 
 
 53 
 
 8 
 
 .79063 .89489 .10511 .89574 
 
 52 
 
 9 
 
 .79079 .89515 .10485 .89564 
 
 51 
 
 1O 
 
 .79095 .89541 .10459 .89554 
 
 5O 
 
 11 
 
 .79111 .89567 .10433 .89544 
 
 49 
 
 12 
 
 .79128 .89593 .10407 .89534 
 
 48 
 
 13 
 
 .79144 .89619 .10381 .89524 
 
 47 
 
 14 
 
 .79160 .89645 .10355 .89514 
 
 46 
 
 15 
 
 .79176 .89671 .10329 .89504 
 
 45 
 
 16 
 
 .79192 .89697 .10303 .89495 
 
 44 
 
 17 
 
 .79208 .89723 .10277 .89485 
 
 43 
 
 18 
 
 .79224 .89749 .10251 .89475 
 
 42 
 
 19 
 
 .79240 .89775 .10225 .89465 
 
 41 
 
 20 
 
 .79256 .89801 .10199 .89455 
 
 4O 
 
 21 
 
 .79272 .89827 .10173 .89445 
 
 39 
 
 22 
 
 .79288 .89853 .10147 .89435 
 
 38 
 
 23 
 
 .79304 .89879 .10121 .89425 
 
 37 
 
 24 
 
 .79319 .89905 .10095 .89415 
 
 36 
 
 25 
 
 .79335 .89931 .10069 .89405 
 
 35 
 
 26 
 
 .79351 .89957 .10043 .89395 
 
 34 
 
 27 
 
 .79367 .89983 .10017 .89385 
 
 33 
 
 28 
 
 .79383 .90009 .09991 .89375 
 
 32 
 
 29 
 
 .79399 .90035 .09965 .89364 
 
 31 
 
 3O 
 
 .79415 .90061 .09939 .89354 
 
 3O 
 
 31 
 
 .79431 .90086 .09914 .89344 
 
 29 
 
 32 
 
 .79447 .90112 .09888 .89334 
 
 28 
 
 33 
 
 .79463 .90138 .09862 .89324 
 
 27 
 
 34 
 
 .79478 .90164 .09836 .89314 
 
 26 
 
 35 
 
 .79494 .90190 .09810 .89304 
 
 25 
 
 36 
 
 .79510 .90216 .09784 .89294 
 
 24 
 
 37 
 
 .79526 .90242 .09758 .89284 
 
 23 
 
 38 
 
 .79542 .90268 .09732 .89274 
 
 22 
 
 39 
 
 .79558 .90294 .09706 .89264 
 
 21 
 
 4O 
 
 .79573 .90320 .09680 .89254 
 
 2O 
 
 41 
 
 .79589 .90346 .09654 .89244 
 
 19 
 
 42 
 
 .79605 .90371 .09629 .89233 
 
 18 
 
 43 
 
 .79621 .90397 .09603 .89223 
 
 17 
 
 44 
 
 .79636 .90423 .09577 .89213 
 
 16 
 
 45 
 
 .79652 .90449 .09551 .89203 
 
 15 
 
 46 
 
 .79668 .90475 .09525 .89193 
 
 14 
 
 47 
 
 .79684 .90501 .09499 .89183 
 
 13 
 
 48 
 
 .79699 .90527 .09473 .89173 
 
 12 
 
 49 
 
 .79715 .90553 .09447 .89162 
 
 11 
 
 50 
 
 .79731 .90578 .09422 .89152 
 
 1O 
 
 51 
 
 .79746 .90604 .09396 .89142 
 
 9 
 
 52 
 
 .79762 .90630 .09370 .89132 
 
 8 
 
 53 
 
 .79778 .90656 .09344 .89122 
 
 7 
 
 54 
 
 .79793 .90682 .09318 .89112 
 
 6 
 
 55 
 
 .79809 .90708 .09292 .89101 
 
 5 
 
 56 
 
 .79825 .90734 .09266 .89091 
 
 4 
 
 57 
 
 .79840 .90759 .09241 .89081 
 
 3 
 
 58 
 
 .79856 .90785 .09215 .89071 
 
 2 
 
 59 
 
 .79872 .90811 .09189 .89060 
 
 1 
 
 60 
 
 .79887 .90837 .09163 .89050 
 
 
 
 / 
 
 9 Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 52 C 
 
 51 C 
 
39 
 
 40' 
 
 55 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 o 
 
 .79887 .90837 .09163 .89050 
 
 BO 
 
 1 
 
 .79903 .90863 .09137 .89040 
 
 59 
 
 2 
 
 .79918 .90889 .09111 .89030 
 
 58 
 
 3 
 
 .79934 .90914 .09086 .89020 
 
 57 
 
 4 
 
 .79950 .90940 .09060 .89009 
 
 56 
 
 5 
 
 .79965 .90966 .09034 .88999 
 
 55 
 
 6 
 
 .79981 .90992 .09008 .88989 
 
 54 
 
 7 
 
 .79996 .91018 .08982 .88978 
 
 53 
 
 8 
 
 .80012 .91043 .08957 .88968 
 
 52 
 
 9 
 
 .80027 .91069 .08931 .88958 
 
 51 
 
 10 
 
 .80043 .91095 .08905 .88948 
 
 50 
 
 11 
 
 .80058 .91121 .08879 .88937 
 
 49 
 
 12 
 
 .80074 .91147 .08853 .88927 
 
 48 
 
 13 
 
 .80089 .91172 .08828 .88917 
 
 47 
 
 14 
 
 .80105 .91198 .08802 .88906 
 
 46 
 
 15 
 
 .80120 .91224 .08776 .88896 
 
 45 
 
 16 
 
 .80136 .91250 .08750 .88886 
 
 44 
 
 17 
 
 .80151 .91276 .08724 .88875 
 
 43 
 
 18 
 
 .80166 .91301 .08699 .88865 
 
 42 
 
 19 
 
 .80182 .91327 .08673 .88855 
 
 41 
 
 2O 
 
 .80197 .91353 .08647 .88844 
 
 4O 
 
 21 
 
 .80213 .91379 .08621 .88834 
 
 39 
 
 22 
 
 .80228 .91404 .08596 .88824 
 
 38 
 
 23 
 
 .80244 .91430 .08570 .88813 
 
 37 
 
 24 
 
 .80259 .91456 .08544 .88803 
 
 36 
 
 25 
 
 .80274 .91482 .08518 .88793 
 
 35 
 
 26 
 
 .80290 .91507 .08493 .88782 
 
 34 
 
 27 
 
 .80305 .91533 .08467 .88772 
 
 33 
 
 28 
 
 .80320 .91559 .08441 .88761 
 
 32 
 
 29 
 
 .80336 .91585 .08415 .88751 
 
 31 
 
 30 
 
 .80351 .91610 .08390 .88741 
 
 3O 
 
 31 
 
 .80366 .91636 .08364 .88730 
 
 29 
 
 32 
 
 .80382 .91662 .08338 .88720 
 
 28 
 
 33 
 
 .80397 .91688 .08312 .88709 
 
 27 
 
 34 
 
 .80412 .91713 .08287 .88699 
 
 26 
 
 35 
 
 .80428 .91739 .08261 .88688 
 
 25 
 
 36 
 
 .80443 .91765 .08235 .88678 
 
 24 
 
 37 
 
 .80458 .91791 .08209 .88668 
 
 23 
 
 38 
 
 .80473 .91816 .08184 .88657 
 
 22 
 
 39 
 
 .80489 .91842 .08158 .88647 
 
 21 
 
 4O 
 
 .80504 .91868 .08132 .88636 
 
 20 
 
 41 
 
 .80519 .91893 .08107 .88626 
 
 19 
 
 42 
 
 .80534 .91919 .08081 .88615 
 
 18 
 
 43 
 
 .80550 .91945 .08055 .88605 
 
 17 
 
 44 
 
 .80565 .91971 .08029 .88594 
 
 16 
 
 45 
 
 .80580 .91996 .08004 .88584 
 
 15 
 
 46 
 
 .80595 .92022 .07978 .88573 
 
 14 
 
 47 
 
 .80610 .92048 .07952 .88563 
 
 13 
 
 48 
 
 .80625 .92073 .07927 .88552 
 
 12 
 
 49 
 
 .80641 .92099 .07901 .88542 
 
 11 
 
 50 
 
 .80656 .92125 .07875 .88531 
 
 10 
 
 51 
 
 .80671 .92150 .07850 .88521 
 
 9 
 
 52 
 
 .80686 .92176 .07824 .88510 
 
 8 
 
 53 
 
 .80701 .92202 .07798 .88499 
 
 7 
 
 54 
 
 .80716 .92227 .07773 .88489 
 
 6 
 
 55 
 
 .80731 .92253 .07747 .88478 
 
 5 
 
 56 
 
 .80746 .92279 .07721 .88468 
 
 4 
 
 57 
 
 .80762 .92304 .07696 .88457 
 
 3 
 
 58 
 
 .80777 .92330 .07670 .88447 
 
 2 
 
 59 
 
 .80792 .92356 .07644 .88436 
 
 1 
 
 60 
 
 .80807 .92381 .07619 .88425 
 
 O 
 
 / 
 
 9Lcos 9Lcot lOLtan 9Lsin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 10 L cot 
 
 9Lcos 
 
 / 
 
 O 
 
 .80807 
 
 .92381 
 
 .07 619 
 
 .88425 
 
 60 
 
 1 
 
 .80822 
 
 .92407 
 
 .07 593 
 
 .88415 
 
 59 
 
 2 
 
 .80837 
 
 .92433 
 
 .07 567 
 
 .88404 
 
 58 
 
 3 
 
 .80852 
 
 .92458 
 
 .07 542 
 
 .88394 
 
 57 
 
 4 
 
 .80867 
 
 .92484 
 
 .07516 
 
 .88383 
 
 56 
 
 5 
 
 .80882 
 
 .92510 
 
 .07 490 
 
 .88372 
 
 55 
 
 6 
 
 .80897 
 
 .92 535 
 
 .07 465 
 
 .88362 
 
 54 
 
 7 
 
 .80912 
 
 .92561 
 
 .07 439 
 
 .88351 
 
 53 
 
 8 
 
 .80927 
 
 .92 587 
 
 .07413 
 
 .88340 
 
 52 
 
 9 
 
 .80942 
 
 .92612 
 
 .07388 
 
 .88330 
 
 51 
 
 10 
 
 .80957 
 
 .92638 
 
 .07 362 
 
 .88319 
 
 50 
 
 11 
 
 .80972 
 
 .92663 
 
 .07 337 
 
 .88308 
 
 49 
 
 12 
 
 .80987 
 
 .92 689 
 
 .07311 
 
 .88 298 
 
 48 
 
 13 
 
 .81 002 
 
 .92 715 
 
 .07 285 
 
 .88 287 
 
 47 
 
 14 
 
 .81017 
 
 .92 740 
 
 .07 260 
 
 .88276 
 
 46 
 
 15 
 
 .81032 
 
 .92 766 
 
 .07 234 
 
 .88 266 
 
 45 
 
 16 
 
 .81 047 
 
 .92 792 
 
 .07 208 
 
 .88255 
 
 44 
 
 17 
 
 .81061 
 
 .92817 
 
 .07 183 
 
 .88 244 
 
 43 
 
 18 
 
 .81076 
 
 .92 843 
 
 .07157 
 
 .88 234 
 
 42 
 
 19 
 
 .81 091 
 
 .92 868 
 
 .07 132 
 
 .88223 
 
 41 
 
 2O 
 
 .81 106 
 
 .92894 
 
 .07 106 
 
 .88212 
 
 40 
 
 21 
 
 .81 121 
 
 .92920 
 
 .07080 
 
 .88 201 
 
 39 
 
 22 
 
 .81 136 
 
 .92 945 
 
 .07055 
 
 .88 191 
 
 38 
 
 23 
 
 .81151 
 
 .92971 
 
 .07029 
 
 .88 180 
 
 37 
 
 24 
 
 .81 166 
 
 .92996 
 
 .07004 
 
 .88 169 
 
 36 
 
 25 
 
 .81 180 
 
 .93022 
 
 .06978 
 
 .88 158 
 
 35 
 
 26 
 
 .81 195 
 
 .93048 
 
 .06952 
 
 .88 148 
 
 34 
 
 27 
 
 .81210 
 
 .93073 
 
 .06927 
 
 .88137 
 
 33 
 
 28 
 
 .81 225 
 
 .93099 
 
 .06901 
 
 .88126 
 
 32 
 
 29 
 
 .81 240 
 
 .93 124 
 
 .06876 
 
 .88115 
 
 31 
 
 3O 
 
 .81 254 
 
 .93 150 
 
 .06850 
 
 .88 105 
 
 3O 
 
 31 
 
 .81269 
 
 .93175 
 
 .06825 
 
 .88094 
 
 29 
 
 32 
 
 .81 284 
 
 .93 201 
 
 .06 799 
 
 .88083 
 
 28 
 
 33 
 
 .81 299 
 
 .93 227 
 
 .06 773 
 
 .88072 
 
 27 
 
 34 
 
 .81314 
 
 .93252 
 
 .06748 
 
 .88061 
 
 26 
 
 35 
 
 .81328 
 
 .93 278 
 
 .06 722 
 
 .88051 
 
 25 
 
 36 
 
 .81 343 
 
 .93 303 
 
 .06697 
 
 .88040 
 
 24 
 
 37 
 
 .81358 
 
 .93329 
 
 .06671 
 
 .88029 
 
 23 
 
 38 
 
 .81372 
 
 .93 354 
 
 .06646 
 
 .88018 
 
 22 
 
 39 
 
 .81387 
 
 .93380 
 
 .06620 
 
 .88007 
 
 21 
 
 4O 
 
 .81 402 
 
 .93 406 
 
 .06594 
 
 .87996 
 
 20 
 
 41 
 
 .81417 
 
 .93431 
 
 .06569 
 
 .87985 
 
 19 
 
 42 
 
 .81431 
 
 .93457 
 
 .06543 
 
 .87975 
 
 18 
 
 43 
 
 .81 446 
 
 .93 482 
 
 .06518 
 
 .87964 
 
 17 
 
 44 
 
 .81461 
 
 .93 508 
 
 .06492 
 
 .87953 
 
 16 
 
 45 
 
 .81 475 
 
 .93 533 
 
 .06467 
 
 .87942 
 
 15 
 
 46 
 
 .81 490 
 
 .93 559 
 
 .06441 
 
 .87931 
 
 14 
 
 47 
 
 .81 505 
 
 .93 584 
 
 .06416 
 
 .87 920 
 
 13 
 
 48 
 
 .81519 
 
 .93610 
 
 .06390 
 
 .87 909 
 
 12 
 
 49 
 
 .81 534 
 
 .93 636 
 
 .06364 
 
 .87 898 
 
 11 
 
 50 
 
 .81 549 
 
 .93 661 
 
 .06339 
 
 .87 887 
 
 1O 
 
 51 
 
 .81 563 
 
 .93 687 
 
 .06313 
 
 .87877 
 
 9 
 
 52 
 
 .81578 
 
 .93 712 
 
 .06288 
 
 .87 866 
 
 8 
 
 53 
 
 .81 592 
 
 .93 738 
 
 .06262 
 
 .87855 
 
 7 
 
 54 
 
 .81 607 
 
 .93 763 
 
 .06237 
 
 .87844 
 
 6 
 
 55 
 
 .81622 
 
 .93 789 
 
 .06211 
 
 .87 833 
 
 5 
 
 56 
 
 .81636 
 
 .93 814 
 
 .06 186 
 
 .87822 
 
 4 
 
 57 
 
 .81651 
 
 .93 840 
 
 .06 160 
 
 .87811 
 
 3 
 
 58 
 
 .81 665 
 
 .93 865 
 
 .06 135 
 
 .87 800 
 
 2 
 
 59 
 
 .81680 
 
 .93 891 
 
 .06 109 
 
 .87 789 
 
 1 
 
 60 
 
 .81 694 
 
 .93 916 
 
 .06084 
 
 .87 778 
 
 
 
 r 
 
 9Lcos 
 
 9Lcot 
 
 lOLtan 9Lsin 
 
 ' 
 
 50 C 
 
 49' 
 
41 C 
 
 42 C 
 
 / 
 
 9Lsin 9Ltan lOLcot 9Lcos / 
 
 o 
 
 .81694 .93916 .06084 .87778 
 
 GO 
 
 1 
 
 .81709 .93942 .06058 .87767 
 
 59 
 
 2 
 
 .81723 .93967 .06033 .87756 
 
 58 
 
 3 
 
 .81738 .93993 .06007 .87745 
 
 57 
 
 4 
 
 .81752 .94018 .05982 .87734 
 
 56 
 
 5 
 
 .81767 .94044 .05956 .87723 
 
 55 
 
 6 
 
 .81781 .94069 .05931 .87712 
 
 54 
 
 *7 
 
 .81796 .94095 .05905 .87701 
 
 53 
 
 8 
 
 .81810 .94120 .05880 .87690 
 
 52 
 
 9 
 
 .81825 .94146 .05854 .87679 
 
 51 
 
 10 
 
 .81839 .94171 .05829 .87668 
 
 50 
 
 11 
 
 .81854 .94197 .05803 .87657 
 
 49 
 
 12 
 
 .81868 .94222 .05778 .87646 
 
 48 
 
 13 
 
 .81882 .94248 .05752 .87635 
 
 47 
 
 14 
 
 .81897 .94273 .05727 .87624 
 
 46 
 
 15 
 
 .81911 .94299 .05701 .87613 
 
 45 
 
 16 
 
 .81926 .94324 .05676 .87601 
 
 44 
 
 17 
 
 .81940 .94350 .05650 .87590 
 
 43 
 
 18 
 
 .81955 .94375 .05625 .87579 
 
 42 
 
 19 
 
 .81969 .94401 .05599 .87568 
 
 41 
 
 20 
 
 .81983 .94426 .05574 .87557 
 
 40 
 
 21 
 
 .81998 .94452 .05548 .87546 
 
 39 
 
 22 
 
 .82012 .94477 .05523 .87535 
 
 38 
 
 23 
 
 .82026 .94503 .05497 .87524 
 
 37 
 
 24 
 
 .82041 .94528 .05472 .87513 
 
 36 
 
 25 
 
 .82055 .94554 .05446 .87501 
 
 35 
 
 26 
 
 .82069 .94579 .05421 .87490 
 
 34 
 
 27 
 
 .82084 .94604 .05396 .87479 
 
 33 
 
 28 
 
 .82098 .94630 .05370 .87468 
 
 32 
 
 29 
 
 .82112 .94655 .05345 .87457 
 
 31 
 
 3O 
 
 .82126 .94681 .05319 .87446 
 
 3O 
 
 31 
 
 .82141 .94706 .05294 .87434 
 
 29 
 
 32 
 
 .82155 .94732 .05268 .87423 
 
 28 
 
 33 
 
 .82169 .94757 .05243 .87412 
 
 27 
 
 34 
 
 .82184 .94783 .05217 .87401 
 
 26 
 
 35 
 
 .82198 .94808 .05192 .87390 
 
 25 
 
 36 
 
 .82212 .94834 .05166 .87378 
 
 24 
 
 37 
 
 .82226 .94859 .05141 .87367 
 
 23 
 
 38 
 
 .82240 .94884 .05116 .87356 
 
 22 
 
 39 
 
 .82255 .94910 .05090 .87345 
 
 21 
 
 4O 
 
 .82269 .94935 .05065 .87334 
 
 20 
 
 41 
 
 .82283 .94961 .05039 .87322 
 
 19 
 
 42 
 
 .82297 .94986 .05014 .87311 
 
 18 
 
 43 
 
 .82311 .95012 .04988 .87300 
 
 17 
 
 44 
 
 .82326 .95037 .04963 .87288 
 
 16 
 
 45 
 
 .82340 .95062 .04938 .87277 
 
 15 
 
 46 
 
 .82354 .95088 .04912 .87266 
 
 14 
 
 47 
 
 .82368 .95113 .04887 .87255 
 
 13 
 
 48 
 
 .82382 .95139 .04861 .87243 
 
 12 
 
 49 
 
 .82396 .95164 .04836 .87232 
 
 11 
 
 5O 
 
 .82410 .95190 .04810 .87221 
 
 1O 
 
 51 
 
 .82424 .95215 .04785 .87209 
 
 9 
 
 52 
 
 .82439 .95240 .04760 .87198 
 
 8 
 
 53 
 
 .82453 .95266 .04734 .87187 
 
 7 
 
 54 
 
 .82467 .95291 .04709 .87175 
 
 6 
 
 55 
 
 .82481 .95317 .04683 .87164 
 
 5 
 
 56 
 
 .82495 .95342 .04658 .87153 
 
 4 
 
 57 
 
 .82509 .95368 .04632 .87141 
 
 3 
 
 58 
 
 .82523 .95393 .04607 .87130 
 
 2 
 
 59 
 
 .82537 .95418 .04582 .87119 
 
 1 
 
 60 
 
 .82551 .95444 .04556 .87107 
 
 
 
 / 
 
 9Lcos 9LcotlOLtan9Lsin 
 
 / 
 
 / 
 
 9Lsin 
 
 9Ltan 
 
 lOLcot 9 Lcos |_/_ 
 
 O 
 
 .82551 
 
 .95 444 
 
 .04 556 
 
 .87 107 
 
 GO 
 
 1 
 
 .82 565 
 
 .95 469 
 
 .04531 
 
 .87 096 
 
 59 
 
 2 
 
 .82579 
 
 .95 495 
 
 .04 505 
 
 .87085 
 
 58 
 
 3 
 
 .82 593 
 
 .95 520 
 
 .04480 
 
 .87073 
 
 57 
 
 4 
 
 .82607 
 
 .95 545 
 
 .04 455 
 
 .87062 
 
 56 
 
 5 
 
 .82621 
 
 .95 571 
 
 .04 429 
 
 .87050 
 
 55 
 
 6 
 
 .82635 
 
 .95 596 
 
 .04 404 
 
 .87 039 
 
 54 
 
 7 
 
 .82649 
 
 .95 622 
 
 .04378 
 
 .87028 
 
 53 
 
 8 
 
 .82 663 
 
 .95647 
 
 .04353 
 
 .87016 
 
 52 
 
 9 
 
 .82677 
 
 .95 672 
 
 .04328 
 
 .87 005 
 
 51 
 
 1O 
 
 .82691 
 
 .95 698 
 
 .04 302 
 
 .86993 
 
 50 
 
 11 
 
 .82 705 
 
 .95 723 
 
 .04 277 
 
 .86982 i 49 
 
 12 
 
 .82719 
 
 .95 748 
 
 .04 252 
 
 .86970 48 
 
 13 
 
 .82 733 
 
 .95 774 
 
 .04 226 
 
 .86959 47 
 
 14 
 
 .82 747 
 
 .95 799 
 
 .04 201 
 
 .86947 
 
 46 
 
 15 
 
 .82 761 
 
 .95 825 
 
 .04 175 
 
 .86936 
 
 45 
 
 16 
 
 .82775 
 
 .95 850 
 
 .04 150 
 
 .86924 
 
 44 
 
 17 
 
 .82 788 
 
 .95 875 
 
 .04 125 
 
 .86913 
 
 43 
 
 18 
 
 .82 802 
 
 .95 901 
 
 .04 099 
 
 .86902 
 
 42 
 
 19 
 
 .82816 
 
 .95 926 
 
 .04074 
 
 .86890 
 
 41 
 
 20 
 
 .82830 
 
 .95952 
 
 .04048 
 
 .86879 
 
 4O 
 
 21 
 
 .82 844 
 
 .95 977 
 
 .04023 
 
 .86867 
 
 39 
 
 22 
 
 .82858 
 
 .96002 
 
 .03 998 
 
 .86855 
 
 38 
 
 23 
 
 .82872 
 
 .96028 
 
 .03 972 
 
 .86844 
 
 37 
 
 24 
 
 .82885 
 
 .96 053 
 
 .03947 
 
 .86832 
 
 36 
 
 25 
 
 .82 899 
 
 .96078 
 
 .03 922 
 
 .86821 
 
 35 
 
 26 
 
 .82913 
 
 .96 104 
 
 .03 896 
 
 .86809 
 
 34 
 
 27 
 
 .82927 
 
 .96129 
 
 .03871 
 
 .86 798 
 
 33 
 
 28 
 
 .82941 
 
 .96 155 
 
 .03 845 
 
 .86 786 
 
 32 
 
 29 
 
 .82955 
 
 .96 180 
 
 .03 820 
 
 .86 775 
 
 31 
 
 30 
 
 .82968 
 
 .96205 
 
 .03 795 
 
 .86 763 
 
 30 
 
 31 
 
 .82982 
 
 .96231 
 
 .03 769 
 
 .86752 
 
 29 
 
 32 
 
 .82996 
 
 .96256 
 
 .03 744 
 
 .86 740 
 
 28 
 
 33 
 
 .83 010 
 
 .96 281 
 
 .03 719 
 
 .86 728 
 
 27 
 
 34 
 
 .83 023 
 
 .96307 
 
 .03 693 
 
 .86717 
 
 26 
 
 35 
 
 .83 037 
 
 .96332 
 
 .03 668 
 
 .86705 
 
 25 
 
 36 
 
 .83051 
 
 .96357 
 
 .03 643 
 
 .86694 
 
 24 
 
 37 
 
 .83 065 
 
 .96383 
 
 .03617 
 
 .86682 
 
 23 
 
 38 
 
 .83 078 
 
 .96408 
 
 .03 592 
 
 .86670 
 
 22 
 
 39 
 
 .83 092 
 
 .96433 
 
 .03 567 
 
 .86659 
 
 21 
 
 40 
 
 .83 106 
 
 .96459 
 
 .03 541 
 
 .86647 
 
 20 
 
 41 
 
 .83120 
 
 .96484 
 
 .03516 
 
 .86635 
 
 19 
 
 42 
 
 .83 133 
 
 .96510 
 
 .03 490 
 
 .86624 
 
 18 
 
 43 
 
 .83 147 
 
 .96535 
 
 .03465 
 
 .86612 
 
 17 
 
 44 
 
 .83 161 
 
 .96560 
 
 .03 440 
 
 .86600 
 
 16 
 
 45 
 
 .83 174 
 
 .96 586 
 
 .03 414 
 
 .86589 
 
 15 
 
 46 
 
 .83 188 
 
 .96611 
 
 .03389 
 
 .86577 
 
 14 
 
 47 
 
 .83 202 
 
 .96636 
 
 .03 364 
 
 .86 565 
 
 13 
 
 48 
 
 .83215 
 
 .96662 
 
 .03 338 
 
 .86554 
 
 12 
 
 49 
 
 .83 229 
 
 .96687 
 
 .03313 
 
 .86542 
 
 11 
 
 50 
 
 .83 242 
 
 .96712 
 
 .03 288 
 
 .86530 
 
 1O 
 
 51 
 
 .83 256 
 
 .96 738 
 
 .03 262 
 
 .86518 
 
 9 
 
 52 
 
 .83 270 
 
 .96 763 
 
 .03 237 
 
 .86 507 
 
 8 
 
 53 
 
 .83 283 
 
 .96 788 
 
 .03 212 
 
 .86495 
 
 7 
 
 54 
 
 .83 297 
 
 .96814 
 
 .03 186 
 
 .86483 
 
 6 
 
 55 
 
 .83310 
 
 .96839 
 
 .03 161 
 
 .86472 
 
 5 
 
 56 
 
 .83 324 
 
 .96864 
 
 .03 136 
 
 .86460 
 
 4 
 
 57 
 
 .83338 
 
 .96890 
 
 .03 110 
 
 .86448 
 
 3 
 
 58 
 
 .83351 
 
 .96915 
 
 .03085 
 
 .86436 
 
 2 
 
 59 
 
 .83365 
 
 .96940 
 
 .03 060 
 
 .86425 
 
 1 
 
 6O 
 
 .83 378 
 
 .96966 
 
 .03034 
 
 .86413 
 
 
 
 / 
 
 9Lcos 
 
 9LcotlOLtan 
 
 9 L sin / 
 
 48' 
 
 47 
 
43' 
 
 44 C 
 
 57 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 o 
 
 .83378 .96966 .03034 .86413 
 
 W 
 
 1 
 
 .83392 .96991 .03009 .86401 
 
 59 
 
 2 
 
 .83405 .97016 .02984 .86389 
 
 58 
 
 3 
 
 .83419 .97042 .02958 .86377 
 
 57 
 
 4 
 
 .83.432 .97067 .02933 .86366 
 
 56 
 
 5 
 
 .83446 .97092 .02908 .86354 
 
 55 
 
 6 
 
 .83459 .97118 .02882 .86342 
 
 54 
 
 7 
 
 .83473 .97143 .02857 .86330 
 
 53 
 
 8 
 
 .83486 .97168 .02832 .86318 
 
 52 
 
 9 
 
 .83500 .97193 .02807 .86306 
 
 51 
 
 1C 
 
 .83513 .97219 .02781 .86295 
 
 50 
 
 11 
 
 .83527 .97244 .02756 .86283 
 
 49 
 
 12 
 
 .83540 .97269 .02731 .86771 
 
 48 
 
 13 
 
 .83554 .97295 .02705 .86259 
 
 47 
 
 14 
 
 .83567 .97320 .02680 .86247 
 
 46 
 
 IS 
 
 .83581 .97345 .02655 .86235 
 
 45 
 
 16 
 
 .83594 .97371 .02629 .86223 
 
 44 
 
 17 
 
 .83608 .97396 .02604 .86211 
 
 43 
 
 18 
 
 .83621 .97421 .02579 .86200 
 
 42 
 
 19 
 
 .83634 .97447 .02553 .86188 
 
 41 
 
 2O 
 
 .83648 .97472 .02528 .86176 
 
 40 
 
 21 
 
 .83661 .97497 .02503 .86164 
 
 39 
 
 22 
 
 .83674 .97523 .02477 .86152 
 
 38 
 
 23 
 
 .83688 .97548 .02452 .86140 
 
 37 
 
 24 
 
 .83701 .97573 .02427 .86128 
 
 36 
 
 25 
 
 .83715 .97598 .02402 .86116 
 
 35 
 
 26 
 
 .83728 .97624 .02376 .86104 
 
 34 
 
 27 
 
 .83741 .97649 .02351 .86092 
 
 33 
 
 28 
 
 .83755 .97674 .02326 .86080 
 
 32 
 
 29 
 
 .83768 .97700 .02300 .86068 
 
 31 
 
 30 
 
 .83781 .97725 .02275 .86056 
 
 30 
 
 31 
 
 .83795 .97750 .02250 .86044 
 
 29 
 
 32 
 
 .83808 .97776 .02224 .86032 
 
 28 
 
 33 
 
 .83821 .97801 .02199 .86020 
 
 27 
 
 34 
 
 .83834 .97826 .02174 .86008 
 
 26 
 
 35 
 
 .83848 .97851 .02149 .85996 
 
 25 
 
 36 
 
 .83861 .97877 .02123 .85984 
 
 24 
 
 37 
 
 .83874 .97902 .02098 .85972 
 
 23 
 
 38 
 
 .83887 .97927 .02073 .85960 
 
 22 
 
 39 
 
 .83901 .97953 .02047 .85948 
 
 21 
 
 4O 
 
 .83914 .97978 .02022 .85936 
 
 2O 
 
 41 
 
 .83927 .98003 .01997 .85924 
 
 19 
 
 42 
 
 .83940 .98029 .01971 .85912 
 
 18 
 
 43 
 
 .88954 .98054 .01946 .85900 
 
 17 
 
 44 
 
 .83967 .98079 .01921 .85888 
 
 16 
 
 45 
 
 .83980 .98104 .01896 .85876 
 
 15 
 
 46 
 
 .83993 .98130 .01870 .85864 
 
 14 
 
 47 
 
 .84006 .98155 .01845 .85851 
 
 13 
 
 48 
 
 .84020 .98180 .01820 .85839 
 
 12 
 
 49 
 
 .84033 .98206 .01794 .85827 
 
 11 
 
 50 
 
 .84046 .98231 .01769 .85815 
 
 1O 
 
 51 
 
 .84059 .98256 .01744 .85803 
 
 9 
 
 52 
 
 .84072 .98281 .01719 .85791 
 
 8 
 
 53 
 
 .84085 .98307 .01693 .85779 
 
 7 
 
 54 
 
 .84098 .98332 .01668 .85766 
 
 6 
 
 55 
 
 .84112 .98357 .01643 .85754 
 
 5 
 
 56 
 
 .84125 .98383 .01617 .85742 
 
 4 
 
 57 
 
 .84138 .98408 .01592 .85730 
 
 3 
 
 58 
 
 .84151 .98433 .01567 .85718 
 
 2 
 
 59 
 
 .84164 .98458 .01542 .85706 
 
 1 
 
 60 
 
 .84177 .98484 .01516 .85693 
 
 
 
 / 
 
 9Lcos 9Lcot 10 L tan 9Lsin 
 
 / 
 
 / 
 
 9 L sin 9 L tan 1O L cot 9 L cos 
 
 / 
 
 ~cT 
 
 .84177 .98484 .01516 .85693 
 
 6O 
 
 i 
 
 .84190 .98509 .01491 .85681 
 
 59 
 
 2 
 
 .84203 .98534 .01466 .85669 
 
 58 
 
 3 
 
 .84216 .98560 .01440 .85657 
 
 57 
 
 4 
 
 .84229 .98585 .01415 .85645 
 
 56 
 
 5 
 
 .84242 .98610 .01390 .85632 
 
 55 
 
 6 
 
 .84255 .98635 .01365 .85620 
 
 54 
 
 .7 
 
 .84269 .98661 .01339 .85608 
 
 53 
 
 8 
 
 .84282 .98686 .01314 .85596 
 
 52 
 
 9 
 
 .84295 .98711 .01289 .85583 
 
 51 
 
 1O 
 
 .84308 .98737 .01263 .85571 
 
 50 
 
 11 
 
 .84321 .98762 .01238 .85559 
 
 49 
 
 12 
 
 .84334 .98787 .01213 .85547 
 
 48 
 
 13 
 
 .84347 .98812 .01188 .85534 
 
 47 
 
 14 
 
 .84360 .98838 .01162 .85522 
 
 46 
 
 15 
 
 .84373 .98863 .01137 .85510 
 
 45 
 
 16 
 
 .84385 .98888 .01112 .85497 
 
 44 
 
 17 
 
 .84398 .98913 .01087 .85485 
 
 43 
 
 18 
 
 .84411 .98939 .01061 .85473 
 
 42 
 
 19 
 
 .84424 .98964 .01036 .85460 
 
 41 
 
 2O 
 
 .84437 .98989 .01011 .85448 
 
 4O 
 
 21 
 
 .84450 .99015 .00985 .85436 
 
 39 
 
 22 
 
 .84463 .99040 .00960 .85423 
 
 38 
 
 23 
 
 .84476 .99065 .00935 .85411 
 
 37 
 
 24 
 
 .84489 .99090 .00910 .85399 
 
 36 
 
 25 
 
 .84502 .99116 .00884 .85386 
 
 35 
 
 26 
 
 .84515 .99141 .00859 .85374 
 
 34 
 
 27 
 
 .84528 .99166 .00834 .85361 
 
 33 
 
 28 
 
 .84540 .99191 .00809 .85349 
 
 32 
 
 29 
 
 .84553 .99217 .00783 .85337 
 
 31 
 
 30 
 
 .84566 .99242 .00758 .85324 
 
 3O 
 
 31 
 
 .84579 .99267 .00733 .85312 
 
 29 
 
 32 
 
 .84592 .99293 .00707 .85299 
 
 28 
 
 33 
 
 .84605 .99318 .00682 .85287 
 
 27 
 
 34 
 
 .84618 .99343 .00657 .85274 
 
 26 
 
 35 
 
 .84630 .99368 .00632 .85262 
 
 25 
 
 36 
 
 .84643 .99394 .00606 .85250 
 
 24 
 
 37 
 
 .84656 .99419 .00581 .85237 
 
 23 
 
 38 
 
 .84669 .99444 .00556 .85225 
 
 22 
 
 39 
 
 .84682 .99469 .00531 .85212 
 
 21 
 
 40 
 
 .84694 .99495 .00505 .85200 
 
 20 
 
 41 
 
 .84707 .99520 .00480 .85187 
 
 19 
 
 42 
 
 .84720 .99545 .00455 .85175 
 
 18 
 
 43 
 
 .84733 .99570 .00430 .85162 
 
 17 
 
 44 
 
 .84745 .99596 .00404 .85150 
 
 16 
 
 45 
 
 .84758 .99621 .00379 .85137 
 
 15 
 
 46 
 
 .84771 .99646 .00354 .85125 
 
 14 
 
 47 
 
 .84784 .99672 .00328 .85112 
 
 13 
 
 48 
 
 .84796 .99697 .00303 .85100 
 
 12 
 
 49 
 
 .84809 .99722 .00278 .85087 
 
 11 
 
 50 
 
 .84822 .99747 .00253 .85074 
 
 1O 
 
 51 
 
 .84835 .99773 .00227 .85062 
 
 9 
 
 52 
 
 .84847 .99798 .00202 .85049 
 
 8 
 
 53 
 
 .84860 .99823 .00177 .85037 
 
 7 
 
 54 
 
 .84873 .99848 .00152 .85024 
 
 6 
 
 55 
 
 .84885 .99874 .00126 .85012 
 
 5 
 
 56 
 
 .84898 .99899 .00101 .84999 
 
 4 
 
 57 
 
 .84911 .99924 .00076 .84986 
 
 3 
 
 58 
 
 .84923 .99949 .00051 .84974 
 
 2 
 
 59 
 
 .84936 .99975 .00025 .84961 
 
 1 
 
 6O 
 
 .84949 .00000 .00000 .S49J2_. 
 
 O 
 
 / 
 
 9 L cos 1O L cot 1O L tan 9~lTsiii 
 
 / 
 
 46' 
 
 45< 
 
58 
 
 TABLE IV NATURAL FUNCTIONS 
 
 
 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .00000 .00000 co 1.0000 
 
 60 
 
 1 
 
 .00029 .00029 3437.7 1.0000 
 
 59 
 
 2 
 
 .00058 .00058 1718.9 1.0000 
 
 58 
 
 3 
 
 .00087 .00087 1145.9 1.0000 
 
 57 
 
 4 
 
 .00116 .00116 859.44 1.0000 
 
 56 
 
 5 
 
 .00 145 .00 145 687.55 1.0000 
 
 55 
 
 6 
 
 .00 175 .00175 572.96 1.0000 
 
 54 
 
 7 
 
 .00204 .00204 491.11 1.0000 
 
 53 
 
 8 
 
 .00233 .00233 429.72 1.0000 
 
 52 
 
 9 
 
 .00262 .00262 381.97 1.0000 
 
 51 
 
 1C 
 
 .00291 .00291 343.77 1.0000 
 
 5O 
 
 11 
 
 .00320 .00320 312.52 .99999 
 
 49 
 
 12 
 
 .00349 .00349 286.48 .99999 
 
 48 
 
 13 
 
 .00378 .00378 264.44 .99999 
 
 47 
 
 14 
 
 .00407 .00407 245.55 .99999 
 
 46 
 
 15 
 
 .00436 .00436 229.18 .99999 
 
 45 
 
 16 
 
 .00465 .00465 214.86 .99999 
 
 44 
 
 17 
 
 .00495 .00495 202.22 .99999 
 
 43 
 
 18 
 
 .00524 .00524 190.98 .99999 
 
 42 
 
 19 
 
 .00553 .00553 180.93 .99998 
 
 41 
 
 20 
 
 .00 582 -.00 582 171.89 .99 998 
 
 4O 
 
 21 
 
 .00611 .00611 163.70 .99998 
 
 39 
 
 22 
 
 .00640 .00640 156.26 .99998 
 
 38 
 
 23 
 
 .00669 .00669 149.47 .99998 
 
 37 
 
 24 
 
 .00698 .00698 143.24 .99998 
 
 36 
 
 25 
 
 .00727 .00727 137.51 .99997 
 
 35 
 
 26 
 
 .00756 .00756 132.22 .99997 
 
 34 
 
 27 
 
 .00785 .00785 127.32 .99997 
 
 33 
 
 28 
 
 .00814 .00815 122.77 .99997 
 
 32 
 
 29 
 
 .00844 .00844 118.54 .99996 
 
 31 
 
 30 
 
 .00873 .00873 114.59 .99996 
 
 3O 
 
 31 
 
 .00902 .00902 110.89 .99996 
 
 29 
 
 32 
 
 .00931 .00931 107.43 .99996 
 
 28 
 
 33 
 
 .00960 .00960 104.17 .99995 
 
 27 
 
 34 
 
 .00989 .00989 101.11 .99995 
 
 26 
 
 35 
 
 .01018 .01018 98.218 .99995 
 
 25 
 
 36 
 
 .01047 .01047 95.489 .99995 
 
 24 
 
 37 
 
 .01 076 .01 076 92.908 .99 994 
 
 23 
 
 38 
 
 .01105 .01 105 90.463 .99994 
 
 22 
 
 39 
 
 .01 134 .01 135 88.144 .99994 
 
 21 
 
 40 
 
 .01 164 .01 164 85.940 .99993 
 
 20 
 
 41 
 
 .01 193 .01 193 83.844 .99 993 
 
 19 
 
 42 
 
 .01222 .01222 81.847 .99993 
 
 18 
 
 43 
 
 .01251 .01251 79.943 .99992 
 
 17 
 
 44 
 
 .01280 .01280 78.126 .99992 
 
 16 
 
 45 
 
 .01 309 .01 309 76.390 .99 991 
 
 15 
 
 46 
 
 .01338 .01338 74.729 .99991 
 
 14 
 
 47 
 
 .01367 .01367 73.139 .99991 
 
 13 
 
 48 
 
 .01396 .01396 71.615 .99990 
 
 12 
 
 49 
 
 .01425 .01425 70.153 .99990 
 
 11 
 
 50 
 
 .01 454 .01 455 68.750 .99 989 
 
 10 
 
 51 
 
 .01483 .01484 67.402 .99989 
 
 9 
 
 52 
 
 .01513 .01 513 66.105 .99989 
 
 8 
 
 53 
 
 .01542 .01 542 64.858 .99988 
 
 7 
 
 54 
 
 .01571 .01571 63.657 .99988 
 
 6 
 
 55 
 
 .01 600 .01 600 62.499 .99987 
 
 5 
 
 56 
 
 .01629 .01629 61.383 .99987 
 
 4 
 
 57 
 
 .01 658 .01 658 60.306 .99 986 
 
 3 
 
 58 
 
 .01 687 .01 687 59.266 .99 986 
 
 2 
 
 59 
 
 .01716 .01 716 58.261 .99985 
 
 1 
 
 6O 
 
 .01 745 .01 746 57.290 .99985 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 89 
 
 
 
 1 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .01 745 .01 746 57.290 .99 985 
 
 00 
 
 1 
 
 .01774 .01775 56.351 .99984 
 
 59 
 
 2 
 
 .01803 .01804 55.442 .99984 
 
 58 
 
 3 
 
 .01832 .01833 54.561 .99983 
 
 57 
 
 4 
 
 .01862 .01862 53.709 .99983 
 
 56 
 
 5 
 
 .01891 .01891 52.882 .99982 
 
 55 
 
 6 
 
 .01920 .01 920 52.081 .99982 
 
 54 
 
 7 
 
 .01949 .01949 51.303 .99981 
 
 53 
 
 8 
 
 .01978 .01978 50.549 .99980 
 
 52 
 
 9 
 
 .02007 .02007 49.816 .99980 
 
 51 
 
 1O 
 
 .02036 .02036 49.104 .99979 
 
 50 
 
 11 
 
 .02065 .02066 48.412 .99979 
 
 49 
 
 12 
 
 .02094 .02095 47.740 .99978 
 
 48 
 
 13 
 
 .02123 .02124 47.085 .99977 
 
 47 
 
 14 
 
 .02152 .02153 46.449 .99977 
 
 46 
 
 15 
 
 .02181 .02182 45.829 .99976 
 
 45 
 
 16 
 
 .02211 .02211 45.226 .99976 
 
 44 
 
 17 
 
 .02 240 .02 240 44.639 .99 975 
 
 43 
 
 18 
 
 .02 269 .02 269 44.066 .99 974 
 
 42 
 
 19 
 
 .02298 .02298 43.508 .99974 
 
 41 
 
 2O 
 
 .02327 .02328 42.964 .99973 
 
 40 
 
 21 
 
 .02356 .02357 42.433 .99972 
 
 39 
 
 22 
 
 .02385 .02386 41.916 .99972 
 
 38 
 
 23 
 
 .02414 .02415 41.411 .99971 
 
 37 
 
 24 
 
 .02443 .02444 40.917 .99970 
 
 36 
 
 25 
 
 .02 472 .02 473 40.436 .99 969 
 
 35 
 
 26 
 
 .02501 .02502 39.965 .99969 
 
 34 
 
 27 
 
 .02530 .02531 39.506 .99968 
 
 33 
 
 28 
 
 .02560 .02560 39.057 .99967 
 
 32 
 
 29 
 
 .02589 .02589 38.618 .99966 
 
 31 
 
 3O 
 
 .02618 .02619 38.188 .99966 
 
 30 
 
 31 
 
 .02647 .02648 37.769 .99965 
 
 29 
 
 32 
 
 .02676 .02677 37.358 .99964 
 
 28 
 
 33 
 
 .02 705 .02 706 36.956 .99 963 
 
 27 
 
 34 
 
 .02 734 .02 735 36.563 .99 963 
 
 26 
 
 35 
 
 .02763 .02764 36.178 .99962 
 
 25 
 
 36 
 
 .02792 .02793 35.801 .99961 
 
 24 
 
 37 
 
 .02821 .02822 35.431 .99960 
 
 23 
 
 38 
 
 .02850 .02851 35.070 .99959 
 
 22 
 
 39 
 
 .02879 .02881 34.715 .99959 
 
 21 
 
 40 
 
 .02908 .02910 34.368 .99958 
 
 20 
 
 41 
 
 .02938 .02939 34.027 .99957 
 
 19 
 
 42 
 
 .02967 .02968 33.694 .99956 
 
 18 
 
 43 
 
 .02996 .02997 33.366 .99955 
 
 17 
 
 44 
 
 .03 025 .03 026 33.045 .99 954 
 
 16 
 
 45 
 
 .03054 .03055 32.730 .99953 
 
 15 
 
 46 
 
 .03083 .03084 32.421 .99952 
 
 14 
 
 47 
 
 .03112 .03114 32.118 .99952 
 
 13 
 
 48 
 
 .03141 .03143 31.821 .99951 
 
 12 
 
 49 
 
 .03 170 .03 172 31.528 .99950 
 
 11 
 
 50 
 
 .03199 .03201 31.242 .99949 
 
 10 
 
 51 
 
 .03 228 .03 230 30.960 .99 948 
 
 9 
 
 52 
 
 .03257 .03259 30.683 .99947 
 
 8 
 
 53 
 
 .03 286 .03 288 30.412 .99 946 
 
 7 
 
 54 
 
 .03316 .03317 30.145 .99945 
 
 6 
 
 55 
 
 .03345 .03346 29.882 .99944 
 
 5 
 
 56 
 
 .03374 .03376 29.624 .99943 
 
 4 
 
 57 
 
 .03403 .03405 29.371 .99942 
 
 3 
 
 58 
 
 .03432 .03434 29.122 .99941 
 
 2 
 
 59 
 
 .03461 .03463 28.877 .99940 
 
 1 
 
 GO 
 
 .03 490 .03 492 28.636 .99 939 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 88 
 
 
NATURAL FUNCTIONS 
 
 59 
 
 
 2 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .03490 .03492 28.636 .99939 
 
 60 
 
 1 
 
 .03519 .03521 28.399 .99938 
 
 59 
 
 2 
 
 .03548 .03550 28.166 .99937 
 
 58 
 
 3 
 
 .03577 .03579 27.937 .99936 
 
 57 
 
 4 
 
 .03 606 .03 609 27.712 .99 935 
 
 56 
 
 5 
 
 .03 635 .03 638 27.490 .99 934 
 
 55 
 
 6 
 
 .03664 .03667 27.271 .99933 
 
 54 
 
 7 
 
 .03693 .03696 27.057 .99932 
 
 53 
 
 8 
 
 .03723 .03725 26.845 .99931 
 
 52 
 
 9 
 
 .03 752 .03 754 26.637 .99 930 
 
 51 
 
 1C 
 
 .03 781 .03 783 26.432 .99 929 
 
 5O 
 
 11 
 
 .03810 .03812 26.230 .99927 
 
 49 
 
 12 
 
 .03839 .03842 26.031 .99926 
 
 48 
 
 13 
 
 .03868 .03871 25.835 .99925 
 
 47 
 
 14 
 
 .03897 .03900 25.642 .99924 
 
 46 
 
 15 
 
 .03 926 .03 929 25.452 .99 923 
 
 45 
 
 16 
 
 .03955 .03958 25.264 .99922 
 
 44 
 
 17 
 
 .03984 .03987 25.080 .99921 
 
 43 
 
 18 
 
 .04013 .04016 24.898 .99919 
 
 42 
 
 19 
 
 .04042 .04046 24.719 .99918 
 
 41 
 
 2O 
 
 .04071 .04075 24.542 .99917 
 
 4O 
 
 21 
 
 .04 100 .04 104 24.368 .99 916 
 
 39 
 
 22 
 
 .04129 .04133 24.196 .99915 
 
 38 
 
 23 
 
 .04 159 .04 162 24.026 .99913 
 
 37 
 
 24 
 
 .04188 .04191 23.859 .99912 
 
 36 
 
 25 
 
 .04217 .04220 23.695 .99911 
 
 35 
 
 26 
 
 .04 246 .04 250 23.532 .99 910 
 
 34 
 
 27 
 
 .04 275 .04 279 23.372 .99 909 
 
 33 
 
 28 
 
 .04304 .04308 23.214 .99907 
 
 32 
 
 29 
 
 .04333 .04337 23.058 .99906 
 
 31 
 
 3O 
 
 .04362 .04366 22.904 .99905 
 
 30 
 
 31 
 
 .04391 .04395 22.752 .99904 
 
 29 
 
 32 
 
 .04420 .04424 22.602 .99902 
 
 28 
 
 33 
 
 .04449 .04454 22.454 .99901 
 
 27 
 
 34 
 
 .04478 .04483 22.308 .99900 
 
 26 
 
 35 
 
 .04507 .04512 22.164 .99898 
 
 25 
 
 36 
 
 .04536 .04541 22.022 .99897 
 
 24 
 
 37 
 
 .04565 .04570 21.881 .99896 
 
 23 
 
 38 
 
 .04 594 .04 599 21.743 .99 894 
 
 22 
 
 39 
 
 .04623 .04628 21.606 .99893 
 
 21 
 
 40 
 
 .04653 .04658 21.470 .99892 
 
 2O 
 
 41 
 
 .04682 .04687 21.337 .99890 
 
 19 
 
 42 
 
 .04711 .04716 21.205 .99889 
 
 18 
 
 43 
 
 .04 740 .04 745 21.075 .99 888 
 
 17 
 
 44 
 
 .04 769 .04 774 20.946 .99 886 
 
 16 
 
 45 
 
 .04 798 .04 803 20.819 .99 885 
 
 15 
 
 46 
 
 .04827 .04833 20.693 .99883 
 
 14 
 
 47 
 
 .04856 .04862 20.569 .99882 
 
 13 
 
 48 
 
 .04885 .04891 20.446 .99881 
 
 12 
 
 49 
 
 .04914 .04920 20.325 .99879 
 
 11 
 
 5O 
 
 .04943 .04949 20.206 .99878 
 
 1O 
 
 51 
 
 .04 972 .04 978 20.087 .99 876 
 
 9 
 
 52 
 
 .05 001 .05 007 19.970 .99 875 
 
 8 
 
 53 
 
 .05 030 .05 037 19.855 .99 873 
 
 7 
 
 54 
 
 .05 059 .05 066 19.740 .99 872 
 
 6 
 
 55 i .05 OSS .05 095 19.627 .99 870 
 
 5 
 
 56 
 
 .05117 .05124 19.516 .99869 
 
 4 
 
 57 
 
 .05 146 .05 153 19.405 .99867 
 
 3 
 
 58 
 
 .05 175 .05 182 19.296 .99866 
 
 2 
 
 59 
 
 .05 205 .05 212 19.188 .99 864 
 
 1 
 
 60 
 
 .05 234 .05 241 19.081 .99 863 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 87 
 
 
 
 3 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .05 234 .05 241 19.081 .99 863 
 
 6O 
 
 1 
 
 .05 263 .05 270 18.976 .99 861 
 
 59 
 
 2 
 
 .05 292 .05 299 18.871 .99 860 
 
 58 
 
 3 
 
 .05 321 .05 328 18.768 .99 858 
 
 57 
 
 4 
 
 .05350 .05357 18.666 .99857 
 
 56 
 
 5 
 
 .05 379 .05 387 18.564 .99 855 
 
 55 
 
 6 
 
 .05408 .05416 18.464 .99854 
 
 54 
 
 7 
 
 .05437 .05445 18.366 .99852 
 
 53 
 
 8 
 
 .05466 .05474 18.268 .99851 
 
 52 
 
 9 
 
 .05495 .05503 18.171 .99849 
 
 51 
 
 1O 
 
 .05 524 .05 533 18.075 .99 847 
 
 50 
 
 11 
 
 .05 553 .05 562 17.980 .99 846 
 
 49 
 
 12 
 
 .05582 .05591 17.886 .99844 
 
 48 
 
 13 
 
 .05611 .05620 17.793 .99842 
 
 47 
 
 14 
 
 .05 640 .05 649 17.702 .99 841 
 
 46 
 
 15 
 
 .05669 .05678 17.611 .99839 
 
 45 
 
 16 
 
 .05.698 ,05 708 17.521 a83& 
 
 44 
 
 17 
 
 .05727 .05737 17.431 .99836 
 
 43 
 
 18 
 
 .05 756 .05 766 17.343 .99834 
 
 42 
 
 19 
 
 .05785 .05795 17.256 .99833 
 
 41 
 
 20 
 
 .05 814 .05 824 17.169 .99 831 
 
 4O 
 
 21 
 
 .05 844 .05 854 17.084 .99 829 
 
 39 
 
 22 
 
 .05 873 .05 883 16.999 .99 827 
 
 38 
 
 23 
 
 .05902 .05912 16.915 .99826 
 
 37 
 
 24 
 
 .05931 .05941 16.832 .99824 
 
 36 
 
 25 
 
 .05 960 .05 970 16.750 .99 822 
 
 35 
 
 26 
 
 .05989 .05999 16.668 .99821 
 
 34 
 
 27 
 
 .06018 .06029 16.587 .99819 
 
 33 
 
 28 
 
 .06047 .06058 16.507 .99817 
 
 32 
 
 29 
 
 .06076 .06087 16.428 .99815 
 
 31 
 
 30 
 
 .06105 .06116 16.350 .99813 
 
 3O 
 
 31 
 
 .06 134 .06 145 16.272 .99 812 
 
 29 
 
 32 
 
 .06163 .06175 16.195 .99810 
 
 28 
 
 33 
 
 .06192 .06204 16.119 .99808 
 
 27 
 
 34 
 
 .06221 .06233 16.043 .99806 
 
 26 
 
 35 
 
 .06250 .06262 15.969 .99804 
 
 25 
 
 36 
 
 .06279 .06291 15.895 .99803 
 
 24 
 
 37 
 
 .06308 .06321 15.821 .99801 
 
 23 
 
 38 
 
 .06337 .06350 15.748 .99799 
 
 22 
 
 39 
 
 .06 366 .06 379 15.676 .99 797 
 
 21 
 
 4O 
 
 .06395 .06408 15.605 .99795 
 
 20 
 
 41 
 
 .06424 .06438 15.534 .99793 
 
 19 
 
 42 
 
 .06453 .06467 15.464 .99792 
 
 18 
 
 43 
 
 .06482 .06496 15.394 .99790 
 
 17 
 
 44 
 
 .06511 .06525 15.325 .99788 
 
 16 
 
 45 
 
 .06 540 .06 554 15.257 .99 786 
 
 15 
 
 46 
 
 .06569 .06584 15.189 .99784 
 
 14 
 
 47 
 
 .06 59S .06 613 15.122 .99 782 
 
 13 
 
 48 
 
 .06627 .06642 15.056 .99780 
 
 12 
 
 49 
 
 .06 656 .06 671 14.990 .99 778 
 
 11 
 
 50 
 
 .06685 .06700 14.924 .99776 
 
 10 
 
 51 
 
 .06714 .06730 14.860 .99774 
 
 9 
 
 52 
 
 .06743 .06759 14.795 .99772 
 
 8 
 
 53 
 
 .06 773 .06 788 14.732 .99 770 
 
 7 
 
 54 
 
 .06802 .06817 14.669 .99768 
 
 6 
 
 55 
 
 .06831 .06847 14.606 .99766 
 
 5 
 
 56 
 
 .06 860 .06 876 14.544 .99 764 
 
 4 
 
 57 
 
 .06889 .06905 14.482 .99762 
 
 3 
 
 58 
 
 .06918 .06934 14.421 .99760 
 
 2 
 
 59 
 
 .06947 .06963 14.361 .99758 
 
 1 
 
 6O 
 
 .06 976 .06 993 14.301 .99 756 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 86 
 
 
60 
 
 NATURAL FUNCTIONS 
 
 
 4 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .06976 .06993 14.301 .99756 
 
 6O 
 
 1 
 
 .07005 .07022 14.241 .99754 
 
 59 
 
 2 
 
 .07034 .07051 14.182 .99752 
 
 58 
 
 3 
 
 .07063 .07080 14.124 .99750 
 
 57 
 
 4 
 
 .07 092 .07 110 14.065 .99 748 
 
 56 
 
 5 
 
 .07 121 .07 139 14.008 .99 746 
 
 55 
 
 6 
 
 .07 150 .07 168 13.951 .99 744 
 
 54 
 
 7 
 
 .07 179 .07 197 13.894 .99 742 
 
 53 
 
 8 
 
 .07208 .07227 13.838 .99740 
 
 52 
 
 9 
 
 .07 237 .07 256 13.782 .99 738 
 
 51 
 
 10 
 
 .07 266 .07 285 13.727 .99 736 
 
 50 
 
 11 
 
 .07295 .07314 13.672 .99734 
 
 49 
 
 12 
 
 .07324 .07344 13.617 .99731 
 
 48 
 
 13 
 
 .07353 .07373 13.563 .99729 
 
 47 
 
 14 
 
 .07382 .07402 13.510 .99727 
 
 46 
 
 15 
 
 .07411 .07431 13.457 .99725 
 
 45 
 
 16 
 
 .07 440 .07 461 13.404 .99 723 
 
 44 
 
 17 
 
 .07 469 .07 490 13.352 .99 721 
 
 43 
 
 18 
 
 .07498 .07519 13.300 .99719 
 
 42 
 
 19 
 
 .07527 .07548 13.248 .99716 
 
 41 
 
 20 
 
 .07556 .07578 13.197 .99714 
 
 4O 
 
 21 
 
 .07585 .07607 13.146 .99712 
 
 39 
 
 22 
 
 .07 614 .07 636 13.096 .99 710 
 
 38 
 
 23 
 
 .07 643 .07 665 13.046 .99 708 
 
 37 
 
 24 
 
 .07 672 .07 695 12.996 .99 705 
 
 36 
 
 25 
 
 .07 701 .07 724 12.947 .99 703 
 
 35 
 
 26 
 
 .07 730 .07 753 12.898 .99 701 
 
 34 
 
 27 
 
 .07 759 .07 782 12.850 .99 699 
 
 33 
 
 28 
 
 .07 788 .07 812 12 801 .99 696 
 
 32 
 
 29 
 
 .07817 .07841 12.754 .99694 
 
 31 
 
 30 
 
 .07846 .07870 12.706 .99692 
 
 3O 
 
 31 
 
 .07 875 .07 899 12.659 .99 689 
 
 29 
 
 32 
 
 .07904 .07929 12.612 .99687 
 
 28 
 
 33 
 
 .07933 .07958 12.566 .99685 
 
 27 
 
 34 
 
 .07962 .07987 12.520 .99683 
 
 26 
 
 35 
 
 .07991 .08017 12.474 .99680 
 
 25 
 
 36 
 
 .08020 .08046 12.429 .99678 
 
 24 
 
 37 
 
 .080*9 .08075 12.384 .99676 
 
 23 
 
 38 
 
 .08 078 .08 104 12.339 .99 673 
 
 22 
 
 39 
 
 .08107 .08134 12.295 .99671 
 
 21 
 
 40 
 
 .08136 .08163 12.251 .99668 
 
 20 
 
 41 
 
 .08 165 .08 192 12.207 .99 666 
 
 19 
 
 42 
 
 .08 194 .08 221 12.163 .99 664 
 
 18 
 
 43 
 
 .08223 .08251 12.120 .99661 
 
 17 
 
 44 
 
 .08252 .08280 12.077 .99659 
 
 16 
 
 45 
 
 .08 281 .08 309 12.035 .99 657 
 
 15 
 
 46 
 
 .08310 .08339 11.992 .99654 
 
 14 
 
 47 
 
 .08339 .08368 11.950 .99652 
 
 13 
 
 48 
 
 .08368 .08397 11.909 .99649 
 
 12 
 
 49 
 
 .08397 .08427 11.867 .99647 
 
 11 
 
 50 
 
 .08426 .08456 11.826 .99644 
 
 1O 
 
 51 
 
 .08455 .08485 11.785 .99642 
 
 9 
 
 52 
 
 .08484 .08514 11.745 .99639 
 
 8 
 
 53 
 
 .08513 .08544 11.705 .99637 
 
 7 
 
 54 
 
 .08542 .08573 11.664 .99635 
 
 6 
 
 55 
 
 .08571 .08602 11.625 .99632 
 
 5 
 
 56 
 
 .08600 .08632 11.585 .99630 
 
 4 
 
 57 
 
 .08629 .08661 11.546 .99627 
 
 3 
 
 58 
 
 .08658 .08690 11.507 .99625 
 
 2 
 
 59 
 
 .08687 .08720 11.468 .99622 
 
 1 
 
 60 
 
 .08716 .08749 11.430 .99619 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 85 
 
 
 
 5 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .08 716 .08 749 11.430 .99 619 
 
 TK> 
 
 1 
 
 .08745 .08778 11.392 .99' 617 
 
 59 
 
 2 
 
 .08774 .08807 11.354 .99614 
 
 58 
 
 3 
 
 .08803 .08837 11.316 .99612 
 
 57 
 
 4 
 
 .08831 .08866 11.279 .99609 
 
 56 
 
 5 
 
 .08860 .08895 11.242 .99607 
 
 55 
 
 6 
 
 .08889 .08925 11.205 .99604 
 
 54 
 
 7 
 
 .08918 .08954 11.168 .99602 
 
 .53 
 
 8 
 
 .08947 .08983 11.132 .99599 
 
 52 
 
 9 
 
 .08976 .09013 11.095 .99596 
 
 51 
 
 10 
 
 .09005 .09042 11.059 .99594 
 
 5O 
 
 11 
 
 .09034 .09071 11.024 .99591 
 
 49 
 
 12 
 
 .09 063 .09 101 10.988 .99 588 
 
 48 
 
 13 
 
 .09092 .09130 10.953 .99586 
 
 47 
 
 14 
 
 .09 121 .09 159 10.918 .99 583 
 
 46 
 
 15 
 
 .09150 .09189 10.883 .99580 
 
 45 
 
 16 
 
 .09179 .09218 10.848 .99578 
 
 44 
 
 17 
 
 .09208 .09247 10.814 .99575 
 
 43 
 
 18 
 
 .09237 .09277 10.780 .99572 
 
 42 
 
 19 
 
 .09 266 .09 306 10.746 .99 570 
 
 41 
 
 20 
 
 .09295 .09335 10.712 .99567 
 
 40 
 
 21 
 
 .09324 .09365 10.678 .99564 
 
 39 
 
 22 
 
 .09353 .09394 10.645 .99562 
 
 38 
 
 23 
 
 .09382 .09423 10.612 .99559 
 
 37 
 
 24 
 
 .09411 .09453 10.579 .99556 
 
 36 
 
 25 
 
 .09440 .09482 10.546 .99553 
 
 35 
 
 26 
 
 .09469 .09511 10.514 .99551 
 
 34 
 
 27 
 
 .09498 .09541 10.481 .99548 
 
 33 
 
 28 
 
 .09527 .09570 10.449 .99545 
 
 32 
 
 29 
 
 .09556 .09600 10.417 .99542 
 
 31 
 
 30 
 
 .09585 .09629 10.385 .99540 
 
 30 
 
 31 
 
 .09614 .09658 10.354 .99537 
 
 29 
 
 32 
 
 .09642 .09688 10.322 .99534 
 
 28 
 
 33 
 
 .09671 .09717 10.291 .99531 
 
 27 
 
 34 
 
 .09 700 .09 746 10.260 .99 528 
 
 26 
 
 35 
 
 .09 729 .09 776 10.229 .99 526 
 
 25 
 
 36 
 
 .09758 .09805 10.199 .99523 
 
 24 
 
 37 
 
 .09 787 .09 834 10.168 .99 520 
 
 23 
 
 38 
 
 .09816 .09864 10.138 .99517 
 
 22 
 
 39 
 
 .09845 .09893 10.108 .99514 
 
 21 
 
 40 
 
 .09874 .09923 10.078 .99511 
 
 20 
 
 41 
 
 .09903 .09952 10.048 .99508 
 
 19 
 
 42 
 
 .09932 .09981 10.019 .99506 
 
 18 
 
 43 
 
 .09961 .10011 9.9893 .99503 
 
 17 
 
 44 
 
 .09990 .10040 9.9601 .99500 
 
 16 
 
 45 
 
 .10019 .10069 9.9310 .99497 
 
 15 
 
 46 
 
 .10048 .10099 9.9021 .99494 
 
 14 
 
 47 
 
 .10077 .10128 9.8734 .99491 
 
 13 
 
 48 
 
 .10106 .10158 9.8448 .99488 
 
 12 
 
 49 
 
 .10 135 .10 187 9.8164 .99 485 
 
 11 
 
 50 
 
 .10164 .10216 9.7882 .99482 
 
 1O 
 
 51 
 
 .10 192 .10 246 9.7601 .99 479 
 
 9 
 
 52 
 
 .10221 .10275 9.7322 .99476 
 
 8 
 
 53 
 
 .10250 .10305 9.7044 .99473 
 
 7 
 
 54 
 
 .10279 .10334 9.6768 .99470 
 
 6 
 
 55 
 
 .10308 .10363 9.6493 .99467 
 
 5 
 
 56 
 
 .10337 .10393 9.6220 .99464 
 
 4 
 
 57 
 
 .10366 .10422 9.5949 .99461 
 
 3 
 
 58 
 
 .10395 .10452 9.5679 .99458 
 
 2 
 
 59 
 
 .10424 .10481 9.5411 .99455 
 
 1 
 
 6O 
 
 .10453 .10510 9.5144 .99452 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 84 
 
 
NATURAL FUNCTIONS 
 
 61 
 
 
 6 D 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .10453 .10510 9.5144 .99452 
 
 GO 
 
 1 
 
 .10482 JO 540 9.4878 .99449 
 
 59 
 
 2 
 
 .10511 .10569 9.46L4 .99446 
 
 58 
 
 3 
 
 .10540 .10599 9.4352 .99443 
 
 57 
 
 4 
 
 .10569 .10628 9.4090 .99440 
 
 56 
 
 5 
 
 .10597 .10657 9.3S31 .99437 
 
 55 
 
 6 
 
 .10626 .10687 9.3572 .99434 
 
 54 
 
 7 
 
 .106S5 .10716 93315 .99431 
 
 53 
 
 8 
 
 .10681 .10746 9.3060 .99428 
 
 52 
 
 9 .10713 .10775 9.2806 .99-124 
 
 51 
 
 10 
 
 .10742 .10805 9.2553 .99421 
 
 50 
 
 11 
 
 .10771 .10834 9.2302 .99418 
 
 49 
 
 12 
 
 .10800 .10863 9.2052 .99415 
 
 48 
 
 13 
 
 .10829 .10893 9.1803 .99412 
 
 47 
 
 14 
 
 .10858 .10922 9.1555 .99409 
 
 46 
 
 15 
 
 .10837 .10952 9.1309 .99406 
 
 45 
 
 16 
 
 .10916 .10981 9.1065 .99402 
 
 44 
 
 17 
 
 .10945 .11011 9.0821 .99399 
 
 43 
 
 18 
 
 .10973 .11040 9.0579 .99396 
 
 42 
 
 19 
 
 .11002 .11070 9.0338 .99393 
 
 41 
 
 20 
 
 .11031 .11099 9.0098 .99390 
 
 4O 
 
 21 
 
 .11050 .11 128 8.9860 .99386 
 
 39 
 
 22 
 
 .11089 .11 158 8.9623 .99383 
 
 38 
 
 23 
 
 .11 118 .11 187 8.9387 .99380 
 
 37 
 
 24 
 
 .11 147 .11217 8.9152 .99377 
 
 36 
 
 25 
 
 .11176 .11246 8.8919 .99374 
 
 35 
 
 26 
 
 .11205 .11276 8.8686 .99370 
 
 34 
 
 27 
 
 .11234 .11305 8.8455 .99367 
 
 33 
 
 28 
 
 .11263 .11335 8.8225 .99364 
 
 32 
 
 29 
 
 .11291 .11364 8.7996 .99360 
 
 31 
 
 30 
 
 .11 320 .11394 8.7769 .99357 
 
 30 
 
 31 
 
 .11349 .11423 8.7542 .99354 
 
 29 
 
 32 
 
 .11378 .11452 8.7317 .99351 
 
 28 
 
 33 
 
 .11407 .11482 8.7093 .99347 
 
 27 
 
 34 
 
 .11436 .11511 8.6870 .99344 
 
 26 
 
 35 
 
 .11465 .11541 8.6648 .99341 
 
 25 
 
 36 
 
 .11494 .11570 8.6427 .99337 
 
 24 
 
 37 
 
 .11523 .11600 8.6208 .99334 
 
 23 
 
 38 
 
 .11552 .11629 8.5989 .99331 
 
 22 
 
 39 
 
 .11580 .11659 8.5772 .99327 
 
 21 
 
 4O 
 
 .11609 .11688 8.5555 .99324 
 
 2O 
 
 41 
 
 .11 638 .11 718 8.5340 .99320 
 
 19 
 
 42 
 
 .11667 .11 747 8.5126 .99317 
 
 18 
 
 43 
 
 .11696 .11 777 8.4913 .99314 
 
 17 
 
 44 
 
 .11725 .11806 8.4701 .99310 
 
 16 
 
 45 
 
 .11 754 .11 836 8.4490 .99307 
 
 15 
 
 46 
 
 .11 783 .11865 8.4280 .99303 
 
 14 
 
 47 
 
 '.11812 .11895 8.4071 .99300 
 
 13 
 
 48 
 
 .11840 .11924 8.3863 .99297 
 
 12 
 
 49 
 
 .11869 .11954 8.3656 .99293 
 
 11 
 
 50 
 
 .11898 .11983 8.3450 .99290 
 
 1O 
 
 51 
 
 .11927 .12013 8.3245 .99286 
 
 9 
 
 52 
 
 .11956 .12042 8.3041 .99283 
 
 8 
 
 53 
 
 .11985 .12072 8.2838 .99279 
 
 7 
 
 54 
 
 .12014 .12101 8.2636 .99276 
 
 6 
 
 55 
 
 .12043 .12131 8.2434 .99272 
 
 5 
 
 56 
 
 .12071 .12160 8.2234 .99269 
 
 4 
 
 57 
 
 .12 100 .12 190 8.2035 .99265 
 
 3 
 
 58 
 
 .12 129 .12 219 8.1837 .99 262 
 
 2 
 
 59 
 
 .12 158 .12249 8.1640 .99258 
 
 1 
 
 6O 
 
 .12187 .12278 8.1443 .99255 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 83 
 
 
 
 7 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .12187 .12278 8.1443 .99255 
 
 60 
 
 1 
 
 .12216 .12308 8.1248 .99251 
 
 59 
 
 2 
 
 .12245 .12338 8.1054 .99248 
 
 58 
 
 3 
 
 .12274 .12367 8.0860 .99244 
 
 57 
 
 4 
 
 .12302 .12397 8.0667 .99240 
 
 56 
 
 5 
 
 .12331 .12426 8.0476 .99237 
 
 55 
 
 6 
 
 .12360 .12456 80285 .99233 
 
 54 
 
 7 
 
 .12389 .12485 8.C095 .99230 
 
 53 
 
 8 
 
 .12418 .12515 7.9906 .99226 
 
 52 
 
 9 
 
 .12447 .12544 7.9718 .99222 
 
 51 
 
 1O 
 
 .12476 .12574 7.9530 .99219 
 
 50 
 
 11 
 
 .12501 .12603 7.9344 .99215 
 
 49 
 
 12 
 
 .12533 .12633 7.9158 .99211 
 
 48 
 
 13 
 
 .12562 .12662 7.8973 .99208 
 
 47 
 
 14 
 
 .12591 .12692 7.8789 .99204 
 
 46 
 
 15 
 
 .12 620 .12 722 7.8606 .99 200 
 
 45 
 
 16 
 
 .12649 .12751 7.8424 .99197 
 
 44 
 
 17 
 
 .12678 .12781 7.8243 .99193 
 
 43 
 
 18 
 
 .12 706 .12 810 7.8062 .99 189 
 
 42 
 
 19 
 
 .12735 .12840 7.7882 .99186 
 
 41 
 
 2O 
 
 .12764 .12869 7.7704 .99182 
 
 4O 
 
 21 
 
 .12793 .12899 7.7525 .99178 
 
 39 
 
 22 
 
 .12822 .12929 7.7348 .99175 
 
 38 
 
 23 
 
 .12851 .12958 7.7171 .99171 
 
 37 
 
 24 
 
 .12880 .12988 7.6996 .99167 
 
 36 
 
 25 
 
 .12908 .13017 7.6821 .99163 
 
 35 
 
 26 
 
 .12937 .13047 7.6647 .99160 
 
 34 
 
 27 
 
 .12966 .13076 7.6473 .99156 
 
 33 
 
 28 
 
 .12 995 .13 106 7.6301 .99 152 
 
 32 
 
 29 
 
 .13024 .13136 7.6129 .99148 
 
 31 
 
 30 
 
 .13053 .13165 7.5958 .99144 
 
 30 
 
 31 
 
 .13081 .13 195 7.5787 .99141 
 
 29 
 
 32 
 
 .13110 .13224 7.5618 .99137 
 
 28 
 
 33 
 
 .13 139 .13 254 7.5449 .99 133 
 
 27 
 
 34 
 
 .13 168 .13 284 7.5281 .99 129 
 
 26 
 
 35 
 
 .13197 .13313 7.5113 .99125 
 
 25 
 
 36 
 
 .13226 .13343 7.4947 .99122 
 
 24 
 
 37 
 
 .13254 .13372 7.4781 .99118 
 
 23 
 
 38 
 
 .13283 .13402 7.4615 .99114 
 
 22 
 
 39 
 
 .13 312 .13 432 7.4451 .99 110 
 
 21 
 
 4O 
 
 .13341 .13461 7.4287 .99106 
 
 20 
 
 41 
 
 .13370 .13491 7.4124 .99102 
 
 19 
 
 42 
 
 .13 399 .13 521 7.3962 .99 098 
 
 18 
 
 43 
 
 .13427 .13550 7.3300 .99094 
 
 17 
 
 44 
 
 .13456 .13580 7.3639 .99091 
 
 16 
 
 45 
 
 .13485 .13609 7.3479 .99087 
 
 15 
 
 46 
 
 .13514 .13639 7.3319 .99083 
 
 14 
 
 47 
 
 .13543 .13669 7.3160 .99079 
 
 13 
 
 48 
 
 .13 572 .13 698 7.3002 .99 075 
 
 12 
 
 49 
 
 .13 600 .13 728 7.2844 .99 071 
 
 11 
 
 50 
 
 .13629 .13758 7.2687 .99067 
 
 1O 
 
 51 
 
 .13658 .13 787 7.2531 .99063 
 
 9 
 
 52 
 
 .13687 .13817 7.2375 .99059 
 
 8 
 
 53 
 
 .13716 .13846 7.2220 .99055 
 
 7 
 
 54 
 
 .13744 .13876 7.2066 .99051 
 
 6 
 
 55 
 
 .13773 .13906 7.1912 .99047 
 
 5 
 
 56 
 
 .13802 .13935 7.1759 .99043 
 
 4 
 
 57 
 
 .13831 .13965 7.1607 .99039 
 
 3 
 
 58 
 
 .13860 .13995 7.1455 .99035 
 
 2 
 
 59 
 
 .13 889 .14 024 7.1304 .99 031 
 
 1 
 
 60 
 
 .13917 .14054 7.1154 .99027 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 82 
 
 
62 
 
 NATURAL FUNCTIONS 
 
 
 8 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .13917 .14054 7.1154 .99027 
 
 6O 
 
 1 
 
 .13946 .14084 7.1004 .99023 
 
 59 
 
 2 
 
 13975 .14113 7.0855 .99019 
 
 58 
 
 3 
 
 .14004 .14143 7.0706 .99015 
 
 57 
 
 4 
 
 .14033 .14173 7.0558 .99011 
 
 56 
 
 5 
 
 .14061 .14202 7.0410 .99006 
 
 55 
 
 6 
 
 .14 090 .14 232 7.0264 .99 002 
 
 54 
 
 7 
 
 .14119 .14262 7.0117 .98998 
 
 53 
 
 8 
 
 .14 148 .14291 6.9972 .98994 
 
 52 
 
 9 
 
 .14177 .14321 6.9827 .98990 
 
 51 
 
 1O 
 
 .14205 .14351 6.9682 .98986 
 
 5O 
 
 11 
 
 .14234 .14381 6.9538 .98982 
 
 49 
 
 12 
 
 .14263 .14410 6.9395 .98978 
 
 48 
 
 13 
 
 .14 292 .14 440 6.9252 .98 973 
 
 47 
 
 14 
 
 .14320 .14470 6.9110 .98969 
 
 46 
 
 15 
 
 .14349 .14499 6.8969 .98965 
 
 45 
 
 16 
 
 .14 378 .14 529 6.8828 .98 961 
 
 44 
 
 17 
 
 .14407 .14559 6.8687 .98957 
 
 43 
 
 18 
 
 .14 436 .14 588 6.8548 .98 953 
 
 42 
 
 19 
 
 .14464 .14618 6.8408 .98948 
 
 41 
 
 2O 
 
 .14493 .14648 6.8269 .98944 
 
 4O 
 
 21 
 
 .14522 .14678 6.8131 .98940 
 
 39 
 
 22 
 
 .14551 .14707 6.7994 .98936 
 
 38 
 
 23 
 
 .14580 .14737 6.7856 .98931 
 
 37 
 
 24 
 
 .14 608 .14 767 6.7720 .98 927 
 
 36 
 
 25 
 
 .14637 .14796 6.7584 .98923 
 
 35 
 
 26 
 
 .14666 .14826 6.7448 .98919 
 
 34 
 
 27 
 
 .14695 .14856 6.7313 .98914 
 
 33 
 
 28 
 
 .14723 .14886 6.7179 .98910 
 
 32 
 
 29 
 
 .14752 .14915 6.7045 .98906 
 
 31 
 
 30 
 
 .14781 .14945 6.6912 .98902 
 
 30 
 
 31 
 
 .14810 .14975 6.6779 .98897 
 
 29 
 
 32 
 
 .14 838 .15 005 6.6646 .98 893 
 
 28 
 
 33 
 
 .14867 .15034 6.6514 .98889 
 
 27 
 
 34 
 
 .14 896 .15 064 6.6383 .98 884 
 
 26 
 
 35 
 
 .14925 .15094 6.6252 .98880 
 
 25 
 
 36 
 
 .14954 .15 124 6.6122 .98876 
 
 24 
 
 37 
 
 .14 982 .15 153 6.5992 .98 871 
 
 23 
 
 38 
 
 .15011 .15 183 6.5863 .98867 
 
 22 
 
 39 
 
 .15 040 .15 213 6.5734 .98 863 
 
 21 
 
 40 
 
 .15 069 .15 243 6.5606 .98 858 
 
 20 
 
 41 
 
 .15097 .15272 6.5478 .98854 
 
 19 
 
 42 
 
 .15 126 .15 302 6.5350 .98 849 
 
 18 
 
 43 
 
 .15 155 .15 332 6.5223 .98 845 
 
 17 
 
 44 
 
 .15 184 .15 362 6.5097 .98 841 
 
 16 
 
 45 
 
 .15212 .15391 6.4971 .98836 
 
 15 
 
 46 
 
 .15 241 .15 421 6.4846 .98 832 
 
 14 
 
 47 
 
 .15270 .15451 6.4721 .98827 
 
 13 
 
 48 
 
 .15 299 .15 481 6.4596 .98 823 
 
 12 
 
 49 
 
 .15327 .15511 6.4472 .98818 
 
 11 
 
 50 
 
 .15 356 .15 540 6.4348 .98 814 
 
 10 
 
 51 
 
 .15385 .15570 6.4225 .98809 
 
 9 
 
 52 
 
 .15 414 .15 600 6.4103 .98 805 
 
 8 
 
 53 
 
 .15442 .15630 6.3980 .98800 
 
 7 
 
 54 
 
 .15471 .]5660 6.3859 .98796 
 
 6 
 
 55 
 
 .15 500 .15 689 6.3737 .98 791 
 
 5 
 
 56 
 
 .15 529 .15 719 6.3617 .98 787 
 
 4 
 
 57 
 
 .15557 .15749 6.3496 .98782 
 
 3 
 
 58 
 
 .15 586 .15 779 6.3376 .98 778 
 
 2 
 
 59 
 
 .15 615 .15 809 6.3257 .98 773 
 
 1 
 
 6O 
 
 .15 643 .15 838 6.3138 .98 769 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 81 
 
 
 
 9 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .15643 .15838 6.3138 .98769 
 
 60^ 
 
 1 
 
 .15 672 .15 868 6.3019 .98 764 
 
 59 
 
 2 
 
 .15 701 .15898 6.2901 .98760 
 
 58 
 
 3 
 
 .15 730 .15928 6.2783 .98755 
 
 57 
 
 4 
 
 .15 758 .15958 6.2666 .98751 
 
 56 
 
 5 
 
 .15 787 .15 988 6.2549 .98 746 
 
 55 
 
 6 
 
 .15816 .16017 6.2432 .98741 
 
 54 
 
 7 
 
 .15845 .16047 6.2316 .98737 
 
 53 
 
 8 
 
 .15873 .16077 6.2200 .98732 
 
 52 
 
 9 
 
 .15 902 .16 107 6.2085 .98 728 
 
 51 
 
 10 
 
 .15931 .16137 6.1970 .98723 
 
 50 
 
 11 
 
 .15 959 .16 167 6.1856 .98 718 
 
 49 
 
 12 
 
 .15988 .16196 6.1742 .98714 
 
 48 
 
 13 
 
 .16017 .16226 6.1628 .98709 
 
 47 
 
 14 
 
 .16046 .16256 6.1515 .98704 
 
 46 
 
 15 
 
 .16074 .16286 6.1402 .98700 
 
 45 
 
 16 
 
 .16103 .16316 6.1290 .98695 
 
 44 
 
 17 
 
 .16132 .16346 6.1178 .98690 
 
 43 
 
 18 
 
 .16 160 .16 376 6.1066 .98 686 
 
 42 
 
 19 
 
 .16189 .16405 6.0955 .98681 
 
 41 
 
 20 
 
 .16218 .16435 6.0844 .98676 
 
 40 
 
 21 
 
 .16246 .16465 6.0734 .98671 
 
 39 
 
 22 
 
 .16275 .16495 6.0624 .98667 
 
 38 
 
 23 
 
 .16304 .16525 6.0514 .98662 
 
 37 
 
 24 
 
 .16333 .16555 6.0405 .98657 
 
 36 
 
 25 
 
 .16361 .16585-6.0296 .98652 
 
 35 
 
 26 
 
 .16390 .16615 6.0188 .98648 
 
 34 
 
 27 
 
 .16419 .16645 6.0080 .98643 
 
 33 
 
 28 
 
 .16447 .16674 5.9972 .98638 
 
 32 
 
 29 
 
 .16476 .16704 5.9865 .98633 
 
 31 
 
 30 
 
 .16505 .16734 5.9758 .98629 
 
 30 
 
 31 
 
 .16533 .16764 5.9651 .98624 
 
 29 
 
 32 
 
 .16562 .16794 5.9545 .98619 
 
 28 
 
 33 
 
 .16591 .16824 5.9439 .98614 
 
 27 
 
 34 
 
 .16620 .16854 5.9333 .98609 
 
 26 
 
 35 
 
 .16648 .16884 5.9228 .98604 
 
 25 
 
 36 
 
 .16677 .16914 5.9124 .98600 
 
 24 
 
 37 
 
 .16706 .16944 5.9019 .98595 
 
 23 
 
 38 
 
 .16734 .16974 5.8915 .98590 
 
 22 
 
 39 
 
 .16763 .17004 5.8811 .98585 
 
 21 
 
 40 
 
 .16792 .17033 5.8708 .98580 
 
 2O 
 
 41 
 
 ..16820 .17063 5.8605 .98575 
 
 19 
 
 42 
 
 .16849 .17093 5.8502 .98570 
 
 18 
 
 43 
 
 .16878 .17123 5.8400 .98565 
 
 17 
 
 44 
 
 .16906 .17153 5.8298 .98561 
 
 16 
 
 45 
 
 .16935 .17183 5.8197 .98556 
 
 15 
 
 46 
 
 .16964 .17213 5.8095 .98551 
 
 14 
 
 47 
 
 .16992 .17243 5.7994 .98546 
 
 13 
 
 48 
 
 .17021 .17273 5.7894 .98541 
 
 12 
 
 49 
 
 .17050 .17303 5.7794 .98536 
 
 11 
 
 5O 
 
 .17078 .17333 5.7694 .98531 
 
 10 
 
 51 
 
 .17107 .17363 5.7594 .98526 
 
 9 
 
 52 
 
 .17136 .17393 5.7495 .98521 
 
 8 
 
 53 
 
 .17164 .17423 5.7396 .98516 
 
 7 
 
 54 
 
 .17193 .17453 5.7297 .98511 
 
 6 
 
 55 
 
 .17222 .17483 5.7199 .98506 
 
 5 
 
 56 
 
 .17250 .17513 5.7101 .98501 
 
 4 
 
 57 
 
 .17279 .17543 5.7004 .98496 
 
 3 
 
 58 
 
 .17308 .17573 5.6906 .98491 
 
 2 
 
 59 
 
 .17336 .17603 5.6809 .98486 
 
 1 
 
 60 
 
 .17365 .17633 5.6713 .98481 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 80 
 
NATURAL FUNCTIONS 
 
 63 
 
 
 10 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .17365 .17633 5.6713 .98481 
 
 6O 
 
 1 
 
 .17393 .17663 5.6617 .98476 
 
 59 
 
 2 
 
 .17422 .17693 5.6521 .98471 
 
 58 
 
 3 
 
 .17451 .17723 5.6425 .98466 
 
 57 
 
 4 
 
 .17479 .17753 5.6329 .98461 
 
 56 
 
 5 
 
 .17 508 .17 783 5.6234 .98 455 
 
 55 
 
 6 
 
 .17537 .17813 5.6140 .98450 
 
 54 
 
 7 
 
 .17565 .17843 5.6045 .98445 
 
 53 
 
 8 
 
 .17594 .17873 5.5951 .98440 
 
 52 
 
 9 
 
 .17623 .17903 5.5857 .98435 
 
 51 
 
 1O 
 
 .17651 .17933 5.5764 .98430 
 
 50 
 
 11 
 
 .17680 .17963 5.5671 .98425 
 
 49 
 
 12 
 
 .17 708 .17 993 5.5578 .98 420 
 
 48 
 
 13 
 
 .17737 .18023 5.5485 .98414 
 
 47 
 
 14 
 
 .17766 .18053 5.5393 .98409 
 
 46 
 
 15 
 
 .17794 .18083 5.5301 .98404 
 
 45 
 
 16 
 
 .17823 .18113 5.5209 .98399 
 
 44 
 
 17 
 
 .17852 .18143 5.5118 .98394 
 
 43 
 
 18 
 
 .17880 .18173 5.5026 .98389 
 
 42 
 
 19 
 
 .17909 .18203 5.4936 .98383 
 
 41 
 
 20 
 
 .17937 .18233 5.4845 .98378 
 
 40 
 
 21 
 
 .17 966 .18 263 5.4755 .98 373 
 
 39 
 
 22 
 
 .17 995 .18 293 5.4665 .98 368 
 
 38 
 
 23 
 
 .18023 .18323 5.4575 .98362 
 
 37 
 
 24 
 
 .18052 .18353 5.4486 .98357 
 
 36 
 
 25 
 
 .18081 .18384 5.4397 .98352 
 
 35 
 
 26 
 
 .18 109 .18 414 5.4308 .98 347 
 
 34 
 
 27 
 
 .18 138 .18 444 5.4219 .98 341 
 
 33 
 
 28 
 
 .18166 .18474 5.4131 .98336 
 
 32 
 
 29 
 
 .18195 .18504 5.4043 .98331 
 
 31 
 
 '30 
 
 .18 224 .18 534 5.3955 .98 325 
 
 3O 
 
 31 
 
 .18 252 .18 564 5.3868 .98 320 
 
 29 
 
 32 
 
 .18281 .18594 5.3781 .98315 
 
 28 
 
 33 
 
 .18309 .18624 5.3694 .98310 
 
 27 
 
 34 
 
 .18 338 .18 654 5.3607 .98 304 
 
 26 
 
 35 
 
 .18367 .18684 5.3521 .98299 
 
 25 
 
 36 
 
 .18395 .18714 5.3435 .98294 
 
 24 
 
 37 
 
 .18 424 .18 745 5.3349 .98 288 
 
 23 
 
 38 
 
 .18452 .18775 5.3263 .98283 
 
 22 
 
 39 
 
 .18481 .18805 5.3178 .98277 
 
 21 
 
 40 
 
 .18 509- .18 835 5.3093 .98272 
 
 2O 
 
 41 
 
 .18 538 .18 865 5.3008 .98 267 
 
 19 
 
 42 
 
 .18 567 .18 895 5.2924 .98 261 
 
 18 
 
 43 
 
 .18 595 .18 925 5.2839 .98 256 
 
 17 
 
 44 
 
 .18624 .18955 5.2755 .98250 
 
 16 
 
 45 
 
 .18652 .18986 5.2672 .98245 
 
 15 
 
 46 
 
 .18681 .19016 5.2588 .98240 
 
 14 
 
 47 
 
 .13710 .19046 5.2505 .98234 
 
 13 
 
 48 
 
 .18738 .19076 5.2422 .98229 
 
 12 
 
 49 
 
 .18 767 .19 106 5.2339 .98 223 
 
 11 
 
 50 
 
 .18 795 .19 136 5.2257 .98 218 
 
 1O 
 
 51 
 
 .18 824 .19 166 5.2174 .98 212 
 
 9 
 
 52 
 
 .18 852 .19 197 5.2092 .98 207 
 
 8 
 
 53 
 
 .18881 .19227 5.2011 .98201 
 
 7 
 
 54 
 
 .18910 .19257 5.1929 .98196 
 
 6 
 
 55 
 
 .18938 .19287 5.1848 .98190 
 
 5 
 
 56 
 
 .18967 .19317 5.1767 .98185 
 
 4 
 
 57 
 
 .18995 .19347 5.1686 .98179 
 
 3 
 
 58 
 
 .19024 .19378 5.1606 .98174 
 
 2 
 
 59 
 
 .19052 .19408 5.1526 .98168 
 
 1 
 
 60 
 
 .19 081 .19 438 5.1446 .98 163 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 79 
 
 
 
 11 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .19081 .19438 5.1446 .98163 
 
 60 
 
 1 
 
 .19109 .19468 5.1366 .98157 
 
 59 
 
 2 
 
 .19138 .19498 5.1286 .98152 
 
 58 
 
 3 
 
 .19 167 .19 529 5.1207 .98 146 
 
 57 
 
 4 
 
 .19195 .19559 5.1128 .98140 
 
 56 
 
 5 
 
 .19 224 .19 589 5.1049 .98 135 
 
 55 
 
 6 
 
 .19 252 .19 619 5.0970 .98 129 
 
 54 
 
 7 
 
 .19281 .19649 5.0892 .98124 
 
 53 
 
 8 
 
 .19309 .19680 5.0814 .98118 
 
 52 
 
 9 
 
 .19 338 .19 710 5.0736 .98 112 
 
 51 
 
 1O 
 
 .19 366 .19 740 5.0658 .98 107 
 
 5O 
 
 11 
 
 .19395 .19770 5.0581 .98101 
 
 49 
 
 12 
 
 .19423 .19801 5.0504 .98096 
 
 48 
 
 13 
 
 .19452 .19831 5.0427 .98090 
 
 47 
 
 14 
 
 .19481 .19861 5.0350 .98084 
 
 46 
 
 15 
 
 .19 509 .19 891 5.0273 .98 079 
 
 45 
 
 16 
 
 .19538 .19921 5.0197 .98073 
 
 44 
 
 17 
 
 .19566 .19952 5.0121 .98067 
 
 43 
 
 18 
 
 .19595 .19982 5.0045 .98061 
 
 42 
 
 19 
 
 .19 623 .20 012 4.9969 .98 056 
 
 41 
 
 2O 
 
 .19652 .20042 4.9894 .98050 
 
 4O 
 
 21 
 
 .19680 .20073 4.9819 .98044 
 
 39 
 
 22 
 
 .19709 .20103 4.9744 .98039 
 
 38 
 
 23 
 
 .19 737 .20 133 4.9669 .98 033 
 
 37 
 
 24 
 
 .19766 .20164 4.9594 .98027 
 
 36 
 
 25 
 
 .19794 .20194 4.9520 .98021 
 
 35 
 
 26 
 
 .19 823 .20 224 4.9446 .98 016 
 
 34 
 
 27 
 
 .19851 .20254 4.9372 .98010 
 
 33 
 
 28 
 
 .19 880 .20 285 4.9298 .98 004 
 
 32 
 
 29 
 
 .19908 .20315 4.9225 .97998 
 
 31 
 
 30 
 
 .19937 .20345 4.9152 .97992 
 
 3O 
 
 31 
 
 .19 965 .20 376 4.9078 .97 987 
 
 29 
 
 32 
 
 .19994 .20406 4.9006 .97981 
 
 28 
 
 33 
 
 .20022 .20436 4.8933 .97975 
 
 27 
 
 34 
 
 .20051 .20466 4.8860 .97969 
 
 26 
 
 35 
 
 .20079 .20497 4.8788 .97963 
 
 25 
 
 36 
 
 .20 108 .20 527 4.8716 .97 958 
 
 24 
 
 37 
 
 .20 136 .20 557 4.8644 .97 952 
 
 23 
 
 38 
 
 .20 165 .20 588 4.8573 .97 946 
 
 22 
 
 39 
 
 .20 193 .20 618 4.8501 .97 940 
 
 21 
 
 4O 
 
 .2022? .20648 4.8430 .97934 
 
 2O 
 
 41 
 
 .20 250 .20 679 4.8359 .97 928 
 
 19 
 
 42 
 
 .20 279 .20 709 4.8288 .97 922 
 
 18 
 
 43 
 
 .20307 .20739 4.8218 .97916 
 
 17 
 
 44 
 
 .20 336 .20 770 4.8147 .97 910 
 
 16 
 
 45 
 
 .20364 .20800 4.8077 .97905 
 
 15 
 
 46 
 
 .20393 .20830 4.8007 .97899 
 
 14 
 
 47 
 
 .20421 .20861 4.7937 .97893 
 
 13 
 
 48 
 
 .20450 .20891 4.7867 .97887 
 
 12 
 
 49 
 
 .20478 .20921 4.7798 .97881 
 
 11 
 
 5O 
 
 .20 507 .20 952 4.7729 .97 875 
 
 1O 
 
 51 
 
 .20 535 .20 982 4.7659 .97 869 
 
 9 
 
 52 
 
 .20 563 .21 013 4.7591 .97 863 
 
 8 
 
 53 
 
 .20 592 .21 043 4.7522 .97 857 
 
 7 
 
 54 
 
 .20 620 .21 073 4.7453 .97 851 
 
 6 
 
 55 
 
 .20649 .21 104 4.7385 .97845 
 
 5 
 
 56 
 
 .20677 .21 134 4.7317 .97839 
 
 4 
 
 57 
 
 .20706 .21 164 4.7249 .97833 
 
 3 
 
 58 
 
 .20 734 .21 195 4.7181 .97 827 
 
 2 
 
 59 
 
 .20763 .21225 4.7114 .97821 
 
 1 
 
 60 
 
 .20 791 .21 256 4.7046 .97 815 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 78 
 
 
64 
 
 NATURAL FUNCTIONS 
 
 
 12 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .20 791 .21 256 4.7046 .97 815 
 
 60^ 
 
 1 
 
 .20 820 .21 286 4.6979 .97 809 
 
 59 
 
 2 
 
 .20848 .21316 4.6912 .97803 
 
 58 
 
 3 
 
 .20 877 .21 347 4.6845 .97 797 
 
 57 
 
 4 
 
 .20905 .21377 4.6779 .97791 
 
 56 
 
 5 
 
 .20 933 .21 408 4.6712 .97 784 
 
 55 
 
 6 
 
 .20 962 .21 438 4.6646 .97 778 
 
 54 
 
 7 
 
 .20 990 .21 469 4.6580 .97 772 
 
 53 
 
 8 
 
 .21 019 .21 499 4.6514 .97 766 
 
 52 
 
 9 
 
 .21 047 .21 529 4.6448 .97 760 
 
 51 
 
 1O 
 
 .21 076 .21 560 4.6382 .97 754 
 
 5O 
 
 11 
 
 .21 104 .21 590 4.6317 .97 748 
 
 49 
 
 .12 
 
 .21 132 .21 621 4.6252 .97 742 
 
 48 
 
 13 
 
 .21 161 .21 651 4.6187 .97 735 
 
 47 
 
 14 
 
 .21 189 .21 682 4.6122 .97 729 
 
 46 
 
 15 
 
 .21 218 .21 712 4.6057 .97 723 
 
 45 
 
 16 
 
 .21 246 .21 743 4.5993 .97 717 
 
 44 
 
 17 
 
 .21 275 .21 773 4.5928 .97 711 
 
 43 
 
 18 
 
 .21 303 .21 804 4.5864 .97 705 
 
 42 
 
 19 
 
 .21331 .21834 4.5800 .97698 
 
 41 
 
 20 
 
 .21 360 .21 864 4.5736 .97 692 
 
 4O 
 
 21 
 
 .21 388 .21 895 4.5673 .97 686 
 
 39 
 
 22 
 
 .21 417 .21 925 4.5609 .97 680 
 
 38 
 
 23 
 
 .21445 .21956 4.5546 .97673 
 
 37 
 
 24 
 
 .21 474 .21 986 4.5483 .97 667 
 
 36 
 
 25 
 
 .21502 .22017 4.5420 .97661 
 
 35 
 
 26 
 
 .21 530 .22 047 4.5357 .97 655 
 
 34 
 
 27 
 
 .21 559 .22 078 4.5294 .97 648 
 
 33 
 
 28 
 
 .21 587 .22 108 4.5232 .97 642 
 
 32 
 
 29 
 
 .21616 .22139 4.5169 .97636 
 
 31 
 
 30 
 
 .21644 .22 169 4.5107 .97630 
 
 30 
 
 31 
 
 .21 "57^.22 200 4.5045 .97623 
 
 29 
 
 32 
 
 .21701 .22231 4.4983 .97617 
 
 28 
 
 33 
 
 .21 729 .22261 4.4922 .97611 
 
 27 
 
 34 
 
 .21 758 .22 292 4.4860 .97 604 
 
 26 
 
 35 
 
 .21 786 .22 322 4.4799 .97 598 
 
 25 
 
 36 
 
 .21 814 .22 353 4.4737 .97 592 
 
 24 
 
 37 
 
 .21 843 .22 383 4.4676 .97 585 
 
 23 
 
 38 
 
 .21871 .22414 4.4615 .97579 
 
 22 
 
 39 
 
 .21 899 .22 444 4.4555 .97 573 
 
 21 
 
 4O 
 
 .21928 .22475 4.4494 .97566 
 
 20 
 
 41 
 
 .21 956 .22 505 4.4434 .97 560 
 
 19 
 
 42 
 
 .21 985 .22 536 4.4373 .97 553 
 
 18 
 
 43 
 
 .22013 .22567 4.4313 .97547 
 
 17 
 
 44 
 
 .22 041 .22 597 4.4253 .97 541 
 
 16 
 
 45 
 
 .22 070 .22 628 4.4194 .97 534 
 
 15 
 
 46 
 
 .22 098 .22 658 4.4134 .97 528 
 
 14 
 
 47 
 
 .22 126 .22 689 4.4075 .97 521 
 
 13 
 
 48 
 
 .22155 .22719 4.4015 .97515 
 
 12 
 
 49 
 
 .22 183 .22 750 4.3956 .97 508 
 
 11 
 
 50 
 
 .22 212 .22 781 4.3897 .97 502 
 
 1O 
 
 51 
 
 .22240 .22811 4.3838 .97496 
 
 9 
 
 52 
 
 .22 268 .22 842 4.3779 .97 489 
 
 8 
 
 53 
 
 .22297 .22872 4.3721 .97483 
 
 7 
 
 54 
 
 .22' 325 .22903 4.3662 .97476 
 
 6 
 
 55 
 
 .22 353 .22 934 4.3604 .97 470 
 
 5 
 
 56 
 
 .22 382 .22 964 4.3546 .97 463 
 
 4 
 
 57 
 
 .22410 .22995 4.3488 .97457 
 
 3 
 
 58 
 
 .22 438 .23 026 4.3430 .97 450 
 
 2 
 
 59 
 
 .22 467 .23 056 4.3372 .97 444 
 
 1 
 
 6O 
 
 .22 495 .23 087 4.3315 .97 437 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 77 
 
 
 
 13 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .22495 .23087 4.3315 .97437 
 
 60 
 
 1 
 
 .22523 .23117 4.3257 .97430 
 
 59 
 
 2 
 
 .22 552 .23 148 4.3200 .97 424 
 
 58 
 
 3 
 
 .22580 .23179 4.3143 .97417 
 
 57 
 
 4 
 
 .22 608 .23 209 4.3086 .97 411 
 
 56 
 
 5 
 
 .22 637 .23 240 4.3029 .97 404 
 
 55 
 
 6 
 
 .22 665 .23 271 4.2972 .97 398 
 
 54 
 
 7 
 
 .22 693 .23 301 4.2916 .97 391 
 
 53 
 
 8 
 
 .22 722 .23 332 4.2859 .97 384 
 
 52 
 
 9 
 
 .22 750 .23 363 4.2803 .97 378 
 
 51 
 
 10 
 
 .22 778 .23 393 4.2747 .97 371 
 
 5O 
 
 11 
 
 .22 807 .23 424 4.2691 .97 365 
 
 49 
 
 12 
 
 .22 835 .23 455 4.2635. .97 358 
 
 48 
 
 13 
 
 .22863 .23485 4.2580 .97351 
 
 47 
 
 14 
 
 .22892 .23 516 4.2524 .97345 
 
 46 
 
 - 15 
 
 .22 920 .23 547 4.2468 .97 338 
 
 45 
 
 16 
 
 .22948 .23578 4.2413 .97331 
 
 44 
 
 17 
 
 .22 977 .23 608 4.2358 .97 325 
 
 43 
 
 18 
 
 .23 005 .23 639 4.2303 .97 318 
 
 42 
 
 19 
 
 .23033 .23670 4.2248 .97311 
 
 41 
 
 2O 
 
 .23 062 .23 700 4.2193 .97 304 
 
 4O 
 
 21 
 
 .23 090 .23 731 4.2139 .97 298 
 
 39 
 
 22 
 
 .23 118 .23 762 4.2084 .97291 
 
 38 
 
 23 
 
 .23 146 .23 793 4.2030 .97 284 
 
 37 
 
 21 
 
 .23 175 .23 823 4.1976 .97 278 
 
 36 
 
 25 
 
 .23 203 .23 854 4.1922 .97 271 
 
 35 
 
 26 
 
 .23 231 .23 885 4.1868 .97 264 
 
 34 
 
 27 
 
 .23 260 .23 916 4.1814 .97 257 
 
 33 
 
 28 
 
 .23 288 .23 946 4.1760 .97 251 
 
 32 
 
 29 
 
 .23 316 .23 977 4.1706 .97 244 
 
 31 
 
 3O 
 
 .23345 .24008 4.1653 .97237 
 
 3O 
 
 31 
 
 .23373 .24039 4.1600 .97230 
 
 29 
 
 32 
 
 .23 401 .24 069 4.1547 .97 223 
 
 28 
 
 33 
 
 .23 429 .24 100 4.1493 .97 217 
 
 27 
 
 34 
 
 .23 458 .24 131 4.1441 .97 210 
 
 26 
 
 35 
 
 .23 486 .24 162 4.1388 .97 203 
 
 25 
 
 36 
 
 .23 514 .24 193 4.1335 .97 196 
 
 24 
 
 37 
 
 .23 542 .24 223 4.1282 .97 189 
 
 23 
 
 38 
 
 .23 571 .24 254 4.1230 .97 182 
 
 22 
 
 39 
 
 .23 599 .24 285 4.1178 .97 176 
 
 21 
 
 4O 
 
 .23627 .24316 4.1126 .97169 
 
 2O 
 
 41 
 
 .23 656 .24 347 4.1074 .97 162 
 
 19 
 
 42 
 
 .23 684 .24 377 4.1022 .97 155 
 
 18 
 
 43 
 
 .23 712 .24 408 4.0970 .97 148 
 
 17 
 
 44 
 
 .23 740 .24 439 4.0918 .97 141 
 
 16 
 
 45 
 
 .23 769 .24 470 4.0867 .97 134 
 
 15 
 
 46 
 
 .23797 .24 501 4.0815 .97127 
 
 14 
 
 47 
 
 .23 825 .24 532 4.0764 .97 120 
 
 13 
 
 48 
 
 .23 853 .24 562 4.0713 .97 113 
 
 12 
 
 49 
 
 .23 882 .24 593 4.0662 .97 106 
 
 11 
 
 50 
 
 .23910 .24624 4.0611 .97100 
 
 10 
 
 51 
 
 .23 938 .24 655 4.0560 .97 093 
 
 9 
 
 52 
 
 .23 966 .24 686 4.0509 .97 086 
 
 8 
 
 53 
 
 .23 995 .24 717 4.0459 .97 079 
 
 7 
 
 54 
 
 .24 023 .24 747 4.0408 .97 072 
 
 6 
 
 55 
 
 .24051 .24778 4.0358 .97065 
 
 5 
 
 56 
 
 .24 079 .24 809 4.0308 .97 058 
 
 4 
 
 57 
 
 .24 108 .24 840 4.0257 .97 051 
 
 3 
 
 58 
 
 .24 136 .24 871 4.0207 .97 044 
 
 2 
 
 59 
 
 .24 164 .24 902 4.0158 .97 037 
 
 1 
 
 60 
 
 .24192 .24933 4.0108 .97030 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 76 
 
 
NATURAL FUNCTIONS 
 
 65 
 
 
 14 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .24 192 .24 933 4.0108 .97 030 
 
 6O 
 
 1 
 
 .24 220 .24 964 4.0058 .97 023 
 
 59 
 
 2 
 
 .24249 .24995 4.0009 .97015 
 
 58 
 
 3 
 
 .24 277 .25 026 3.9959 .97 008 
 
 57 
 
 4 
 
 .24 305 .25 056 3.9910 .97 001 
 
 56 
 
 5 
 
 .24 333 .25 087 3.9861 .96 994 
 
 55 
 
 6 
 
 .24362 .25 118 3.9812 .96987 
 
 54 
 
 7 
 
 .24 390 .25 149 3.9763 .96 980 
 
 53 
 
 8 
 
 .24 418 .25 180 3.9714 .96973 
 
 52 
 
 9 
 
 .24446 .25211 3.9665 .96966 
 
 51 
 
 10 
 
 .24 474 .25 242 3.9617 .96 959 
 
 5O 
 
 11 
 
 .24 503 .25 273 3.9568 .96 952 
 
 49 
 
 12 
 
 .24 531 .25 304 3 9520 .96 945 
 
 48 
 
 13 
 
 .24559 .25335 3.9471 .96937 
 
 47 
 
 14 
 
 .24587 .25*366 3.9423 .96930 
 
 46 
 
 15 
 
 .24 615 .25 397 3.9375 .96 923 
 
 45 
 
 16 
 
 .24644 .25428 3.9327 .96916 
 
 44 
 
 17. 
 
 .24 672 .25 459 3.9279 .96 909 
 
 43 
 
 18 
 
 .24 700 .25 490 3.9232 .96 902 
 
 42 
 
 19 
 
 .24 728 .25 521 3.9184 .96 894 
 
 41 
 
 2O 
 
 .24756 .25552 3.9136 .96887 
 
 4O 
 
 21 
 
 .24 784 .25 583 3.9089 .96 880 
 
 39 
 
 22 
 
 .24 813 .25 614 3.9042 .96 873 
 
 38 
 
 23 
 
 .24841 .25645 3.8995 .96866 
 
 37 
 
 24 
 
 .24 869 .25 676 3.8947 .96 858 
 
 36 
 
 25 
 
 .24897 .25707 3.8900 .96851 
 
 35 
 
 26 
 
 .24 925 .25 738 3.8854 .96 844 
 
 34 
 
 27 
 
 .24 954 .25 769 3.8807 .96 837 
 
 33 
 
 | 28 
 
 .24982 .25800 3.8760 .96829 
 
 32 
 
 29 
 
 .25010 .25831 3.8714 .96822 
 
 31 
 
 3D 
 
 .25038 .25862 3.8667 .96815 
 
 30 
 
 31 
 
 .25066 .25893 3.8621 .96807 
 
 29 
 
 32 
 
 .25094 .25924 3.8575 .96800 
 
 28 
 
 33 
 
 .25 122 .25 955 3.8528 .96 793 
 
 27 
 
 34 
 
 .25 151 .25 986 3.8482 .96 786 
 
 26 
 
 35 
 
 .25179 .26017 3.8436 .96778 
 
 25 
 
 36 
 
 .25 207 .26 048 3.8391 .96 771 
 
 24 
 
 37 
 
 .25 235 .26 079 3.8345 .96 764 
 
 23 
 
 38 
 
 .25 263 .26 110 3.8299 .96 756 
 
 22 
 
 39 
 
 .25 291 .26 141 3.8254 .96 749 
 
 21 
 
 4O 
 
 .25 320 .26 172 3.8208 .96 742 
 
 2O 
 
 41 
 
 .25348 .26203 3.8163 .96734 
 
 19 
 
 42 
 
 .25376 .26235 3.8118 .96727 
 
 18 
 
 43 
 
 .25 404 .26 266 3.8073 .96 719 
 
 17 
 
 44 
 
 .25432 .26297 3.8028 .96712 
 
 16 
 
 45 
 
 .25 460 .26 328 3.7983 .96 705 
 
 15 
 
 46 
 
 .25 488 .26 359 3.7938 .96 697 
 
 14 
 
 47 
 
 .25516 .26390 3.7893 .96690 
 
 13 
 
 48 
 
 .25 545 .26 421 3.7848 .96 682 
 
 12 
 
 49 
 
 .25573 .26452 3.7804 .96675 
 
 11 
 
 50 
 
 .25 601 .26 483 3.7760 .96 667 
 
 10 
 
 51 
 
 .25629 .26515 3.7715 .96660 
 
 9 
 
 52 
 
 .25657 .26546 3.7671 .96653 
 
 8 
 
 53 
 
 .25685 .26577 3.7627 .96645 
 
 7 
 
 54 
 
 .25713 .26608 3.7583 .96638 
 
 6 
 
 55 
 
 .25741 .26639 3.7539 .96630 
 
 5 
 
 56 
 
 .25 769 .26 670 3.7495 .96 623 
 
 4 
 
 57 
 
 .25798 .26701 3.7451 .96615 
 
 3 
 
 58 
 
 .25 826 .26 733 3.7408 .96 608 
 
 2 
 
 59 
 
 .25 854 .26 764 3.7364 .96 600 
 
 1 
 
 60 
 
 .25882 .26795 3.7321 .96593 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 75 
 
 
 
 15 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .25 882 .26 795 3.7321 .96 593 
 
 60 
 
 1 
 
 .25 910 .26 826 3.7277 .96 585 
 
 59 
 
 2 
 
 .25 938 .26 857 3.7234 .96 578 
 
 58 
 
 3 
 
 .25 966 .26 888 3.7191 .96 570 
 
 57 
 
 4 
 
 .25 994 .26 920 3.7148 .96 562 
 
 56 
 
 5 
 
 .26022 .26951 3.7105 .96555 
 
 55 
 
 6 
 
 .26050 .26982 3.7062 .96547 
 
 54 
 
 7 
 
 .26079 .27013 3.7019 .96540 
 
 53 
 
 8 
 
 .26 107 .27 044 3.6976 .96 532 
 
 52 
 
 9 
 
 .26 135 .27 076 3.6933 .96 524 
 
 51 
 
 1O 
 
 .26163 .27107 3.6891 .96517 
 
 5O 
 
 11 
 
 .26 191 .27 138 3.6848 .96 509 
 
 49 
 
 12 
 
 .26 219 .27 169 3.6806 .96 502 
 
 48 
 
 13 
 
 .26247 .27201 3.6764 .96494 
 
 47 
 
 14 
 
 .26 275 .27 232 3.6722 .96 486 
 
 46 
 
 15 
 
 .26303 .27263 3.6680 .96479 
 
 45 
 
 16 
 
 .26331 .27294 3.6638 .96471 
 
 44 
 
 17 
 
 .26 359 .27 326 3.6596 .96 463 
 
 43 
 
 18 
 
 .26387 .27357 3.6554 .96456 
 
 42 
 
 19 
 
 .26415 .27388 3.6512 .96448 
 
 41 
 
 2O 
 
 .26443 .27419 3.6470 .96440 
 
 4O 
 
 21 
 
 .26471 .27451 3.6429 .96433 
 
 39 
 
 22 
 
 .26500 .27482 3.6387 .96425 
 
 38 
 
 23 
 
 .26528 .27513 3.6346 .96417 
 
 37 
 
 24 
 
 .26556 .27545 3.6305 .96410 
 
 36 
 
 25 
 
 .26584 .27576 3.6264 .96402 
 
 35 
 
 26 
 
 .26612 .27607 3.6222 .96394 
 
 34 
 
 27 
 
 .26 640 .27 638 3.6181 .96 386 
 
 33 
 
 28 
 
 .26 668 .27 670 3.6140 .96 379 
 
 32 
 
 29 
 
 .26 696 .27 701 3.6100 .96 371 
 
 31 
 
 30 
 
 .26 724 .27 732 3.6059 .96 363 
 
 3O 
 
 31 
 
 .26 752 .27 764 3.6018 .96 355 
 
 29 
 
 32 
 
 .26 780 .27 795 3.5978 .96 347 
 
 28 
 
 33 
 
 .26 808 .27 826 3.5937 .96 340 
 
 27 
 
 34 
 
 .26 836 .27 858 3.5897 .96 332 
 
 26 
 
 35 
 
 .26 864 .27 889 3.5856 .96 324 
 
 25 
 
 36 
 
 .26892 .27921 3.5816 .96316 
 
 24 
 
 37 
 
 .26920 .27952 3.5776 .96308 
 
 23 
 
 38 
 
 .26948 .27983 3.5736 .96301 
 
 22 
 
 39 
 
 .26976 .28015 3.5696 .96293 
 
 21 
 
 4O 
 
 .27004 .28046 3.5656 .96285 
 
 2O 
 
 41 
 
 .27032 .28077 3.5616 .96277 
 
 19 
 
 42 
 
 .27 060 .28 109 3.5576 .96 269 
 
 18 
 
 43 
 
 .27 088 .28 140 3.5536 .96 261 
 
 17 
 
 44 
 
 .27 116 .28 172 3.5497 .96 253 
 
 16 
 
 45 
 
 .27 144 .28 203 3.5457 .96 246 
 
 15 
 
 46 
 
 .27 172 .28 234 3.5418 .96 238 
 
 14 
 
 47 
 
 .27 200 .28 266 3.5379 .96 230 
 
 13 
 
 48 
 
 .27 228 .28 297 3.5339 .96 222 
 
 12 
 
 49 
 
 .27256 .28329 3.5300 .96214 
 
 11 
 
 50 
 
 .27284 .28360 3.5261 .96206 
 
 10 
 
 51 
 
 .27312 .28391 3.5222 .96198 
 
 9 
 
 52 
 
 .27340 .28423 3.5183 .96190 
 
 8 
 
 53 
 
 .27 368 .28 454 3.5144 .96 182 
 
 7 
 
 54 
 
 .27396 .28486 3.5105 .96174 
 
 6 
 
 55 
 
 .27424 .28517 3.5067 .96166 
 
 5 
 
 56 
 
 .27 452 .28 549 3.5028 .96 158 
 
 4 
 
 57 
 
 .27480 .28580 3.4989 .96150 
 
 3 
 
 58 
 
 .27508 .28612 3.4951 .96142 
 
 2 
 
 59 
 
 .27536 .28643 3.4912 .96134 
 
 1 
 
 6O 
 
 .27564 .28675 3.4874 .96126 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 74 
 
 
66 
 
 NATURAL FUNCTIONS 
 
 
 16 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 |O 
 
 .27 564 .28 675 3.4874 .96 126 
 
 6O 
 
 1 
 
 .27592 .28706 3.4836 .96118 
 
 59 
 
 2 
 
 .27620 .28738 3.4798 .96110 
 
 58 
 
 3 
 
 .27 648 .28 769 3.4760 .96 102 
 
 57 
 
 4 
 
 .27676'.28801 3.4722 .96094 
 
 56 
 
 5 
 
 .27 704 .28 832 3.4684 .96 086 
 
 55 
 
 6 
 
 .27731 .28864 3.4646 .96078 
 
 54 
 
 7 
 
 .27759 .28895 3.4608 .96970 
 
 53 
 
 8 
 
 .27787 .28927 3.4570 .96062 
 
 52 
 
 9 
 
 .27815 .28958 3.4533 .96954 
 
 51 
 
 10 
 
 .27843 .28990 3.4495 .96046 
 
 5O 
 
 11 
 
 .27871 .29021 3.4458 .96037 
 
 49 
 
 12 
 
 .27899 .29053 3.4420 .96029 
 
 48 
 
 13 
 
 .27927 .29084 3.4383 .96021 
 
 47 
 
 14 
 
 .27955 .29116 3.4346 .96013 
 
 46 
 
 15 
 
 .27 983 .29 147 3.4308 .96 005 
 
 45 
 
 16 
 
 .28 Oil .29 179 3.4271 .95 997 
 
 44 
 
 17 
 
 .28 039 .29 210 3.4234 .95 989 
 
 43 
 
 18 
 
 .28 067 .29 242 3.4197 .95 981 
 
 42 
 
 19 
 
 .28095 .29274 3.4160 .95972 
 
 41 
 
 20 
 
 .28 123 .29 305 3.4124 .95 964 
 
 40 
 
 21 
 
 .28150 .29337 3.4087 .95956 
 
 39 
 
 22 
 
 .28178 .29368 3.4050 .95948 
 
 38 
 
 23 
 
 .28206 .29400 3.4014 .95940 
 
 37 
 
 24 
 
 .28234 .29432 3.3977 .95931 
 
 36 
 
 25 
 
 .28 262 .29 463 3.3941 .95 923 
 
 35 
 
 26 
 
 .28 290 .29 495 3.3904 .95 915 
 
 34 
 
 27 
 
 .28 318 .29 526 3.3868 .95 907 
 
 33 
 
 28 
 
 .28346 .29558 3.3832 .95898 
 
 32 
 
 29 
 
 .28 374 .29 590 3.3796 .95 890 
 
 31 
 
 30 
 
 .28402 .29621 3.3759 .95882 
 
 30 
 
 31 
 
 .28429 .29653 3.3723 .95874 
 
 29 
 
 32 
 
 .28457 .29685 3.3687 .95865 
 
 28 
 
 33 
 
 .28485 .29716 3.3652 .95857 
 
 27 
 
 34 
 
 .28513 .29748 3.3616 .95849 
 
 26 
 
 35 
 
 .28 541 .29 780 3.3580 .95 841 
 
 25 
 
 36 
 
 .28569 .29811 3.3544 .95832 
 
 24 
 
 37 
 
 .28 597 .29 843 3.3509 .95 824 
 
 23 
 
 38 
 
 .28625 .29875 3.3473 .95816 
 
 22 
 
 39 
 
 .28 652 .29 906 3.3438 .95 807 
 
 21 
 
 4O 
 
 .28 680 .29 938 3.3402 .95 799 
 
 20 
 
 41 
 
 .28708 .29970 3.3367 .95791 
 
 19 
 
 42 
 
 .28 736 .30 001 3.3332 .95 782 
 
 18 
 
 43 
 
 .28 764 .30 033 3.3297 .95 774 
 
 17 
 
 44 
 
 .28 792 .30 065 3.3261 .95 766 
 
 16 
 
 45 
 
 .28820 .30097 3.3226 .95757 
 
 15 
 
 46 
 
 .28 847 .30 128 3.3191 .95 749 
 
 14 
 
 47 
 
 .28875 .30160 3.3156 .95740 
 
 13 
 
 48 
 
 .28903 .30192 3.3122 .95732 
 
 12 
 
 49 
 
 .28931 .30224 3.3087 .95724 
 
 11 
 
 50 
 
 .28 959 .30 255 3.3052 .95 715 
 
 1O 
 
 51 
 
 .28 987 .30 287 3.3017 .95 707 
 
 9 
 
 52 
 
 .29015 .30319 3.2983 .95698 
 
 8 
 
 53 
 
 .29042 .30351 3.2948 .95690 
 
 7 
 
 54 
 
 .29 070 .30 382 3.2914 .95 681 
 
 6 
 
 55 
 
 .29 098 .30 414 3.2879 .95 673 
 
 5 
 
 56 
 
 .29 126 .30 446 3.2845 .95 664 
 
 4 
 
 1 57 
 
 .29154 .30478 3.2811 .95656 
 
 3 
 
 58 
 
 .29 182 .30 509 3.2777 .95 647 
 
 2 
 
 59 
 
 .29 209 .30 541 3.2743 .95 639 
 
 1 
 
 6O 
 
 .29237 .30573 3.2709 .95630 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 73 
 
 
 
 17 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .29237 .30573 3.27Q9 .95630 
 
 GO 
 
 1 
 
 .29265 .30605 3.2675 .95622 
 
 59 
 
 2 
 
 .29293 .30637 3.2641 .95613 
 
 58 
 
 3 
 
 .29321 .30669 3.2607 .95605 
 
 57 
 
 4 
 
 .29348 .30700 3.2573 .95596 
 
 56 
 
 5 
 
 .29376 .30732 3.2539 .95588 
 
 55 
 
 6 
 
 .29404 .30764 3.2506 .95579 
 
 54 
 
 7 
 
 .29432 .30796 3.2472 .95571 
 
 53 
 
 8 
 
 .29460 .30828 3.2438 .95562 
 
 52 
 
 9 
 
 .29487 .30860 3.2405 .95554 
 
 51 
 
 1O 
 
 .29515 .30891 3.2371 .95545 
 
 50 
 
 11 
 
 .29543 .30923 3.2338 .95536 
 
 49 
 
 12 
 
 .29571 .30955 3.2305 .95528 
 
 48 
 
 13 
 
 .29599 .30987 3.2272 .95519 
 
 47 
 
 14 
 
 .29626 .31019 3.2238 .95511 
 
 46 
 
 15 
 
 .29654 .31051 3.2205 .95502 
 
 45 
 
 16 
 
 .29682 .31083 3.2172 .95493 
 
 44 
 
 17 
 
 .29710 .31115 3.2139 .95485 
 
 43 
 
 18 
 
 .29 737 .31 147 3.2106 .95 476 
 
 42 
 
 19 
 
 .29765 .31 178 3.2073 .95467 
 
 41 
 
 20 
 
 .29 793 .31 210 3.2041 .95 459 
 
 40 
 
 21 
 
 .29 821 .31 242 3.2008 .95 450 
 
 39 
 
 22 
 
 .29849 .31274 3.1975 .95441 
 
 38 
 
 23 
 
 .29876 .31306 3.1943 .95433 
 
 37 
 
 24 
 
 .29904 .31338 3.1910 .95424 
 
 36 
 
 25 
 
 .29932 .31370 3.1878 .95415 
 
 35 
 
 26 
 
 .29960 .31402 3.1845 .95407 
 
 34 
 
 27 
 
 .29987 .31434 3.1813 .95398 
 
 33 
 
 28 
 
 .30015 .31466 3.1780 .95389 
 
 32 
 
 29 
 
 .30043 .31498 3.1748 .95380 
 
 31 
 
 30 
 
 .30071 .31530 3.1716 .95372 
 
 30 
 
 31 
 
 .30098 .31562 3.1684 .95363 
 
 29 
 
 32 
 
 .30 126 .31 594 3.1652 .95 354 
 
 28 
 
 33 
 
 .30 154 .31 626 3.1620 .95 345 
 
 27 
 
 34 
 
 .30 182 .31 658 3.1588 .95 337 
 
 26 
 
 35 
 
 .30 209 .31 690 3.1556 .95 328 
 
 25 
 
 36 
 
 .30 237 .31 722 3.1524 .95 319 
 
 24 
 
 37 
 
 .30 265 .31 754 3.1492 .95 310 
 
 23 
 
 38 
 
 .30292 .31786 3.1460 .95301 
 
 22 
 
 39 
 
 .30 320 .31 818 3.1429 .95 293 
 
 21 
 
 40 
 
 .30348 .31850 3.1397 .95284 
 
 2O 
 
 41 
 
 .30376 .31882 3.1366 .95275 
 
 19 
 
 42 
 
 .30403 .31914 3.1334 .95266 
 
 18 
 
 43 
 
 .30431 .31946 3.1303 .95257 
 
 17 
 
 44 
 
 .30459 .31978 3.1271 .95248 
 
 16 
 
 45 
 
 .30486 .32010 3.1240 .95240 
 
 15 
 
 46 
 
 .30514 .32042 3.1209 .95231 
 
 14 
 
 47 
 
 .30542 .32074 3.1178 .95222 
 
 13 
 
 48 
 
 .30570 .32106 3.1146 .95213 
 
 12 
 
 49 
 
 .30597 .32139 3.1115 .95204 
 
 11 
 
 50 
 
 -.30625 .32171 3.1084 .95 195 
 
 10 
 
 51 
 
 .30653 .32203 3.1053 .95 186 
 
 9 
 
 52 
 
 .30680 .32235 3.1022 .95 177 
 
 8 
 
 53 
 
 .30 708 .32 267 3.0991 .95 168 
 
 7 
 
 54 
 
 .30 736 .32 299 3.0961 .95 159 
 
 6 
 
 55 
 
 .30763 .32331 3.0930 .95150 
 
 5 
 
 56 
 
 .30 791 .32 363 3.0S99 .95 142 
 
 4 
 
 57 
 
 .30 819 .32 396 3.0868 .95 133 
 
 3 
 
 58 
 
 .30 846 .32 428 3.0838 .95 124 
 
 2 
 
 59 
 
 .30874 .32460 3.0807 .95 115 
 
 1 
 
 6O 
 
 .30902 .32492 3.0777 .95 106 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 72 
 
 
NATURAL FUNCTIONS 
 
 6T 
 
 
 18 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .30 902 .32 492 3.0777 .95 106 
 
 6O 
 
 1 
 
 .30 929 .32 524 3.0746 .95 097 
 
 59 
 
 2 
 
 .30957 .32556 3.0716 .95088 
 
 58 
 
 3 
 
 .30985 .32588 3.0686 .95079 
 
 57 
 
 4 
 
 .31012 .32621 3.0655 .95070 
 
 56 
 
 5 
 
 .31 040 .32 653 3.0625 .95 061 
 
 55 
 
 6 
 
 .31068 .32685 3.0595 .95052 
 
 54 
 
 7 
 
 .31 095 .32 717 3.0565 .95 043 
 
 53 
 
 8 
 
 .31 123 .32 749 3.0535 .95 033 
 
 52 
 
 9 
 
 .31151 .32782 3.0505 .95024 
 
 51 
 
 10 
 
 .31 178 .32 814 3.0475 .95 015 
 
 50 
 
 11 
 
 .31 206 .32 846 3.0445 .95 006 
 
 49 
 
 12 
 
 .31233 .32878 3.0415 .94997 
 
 48 
 
 13 
 
 .31261 .32911 3.0385 .94988 
 
 47 
 
 14 
 
 .31289 .32943 3.0356 .94979 
 
 46 
 
 15 
 
 .31316 .32975 3.0326 .94970 
 
 45 
 
 >16 
 
 .31 344 .33 007 3.0296 .94 961 
 
 44 
 
 17 
 
 .31 372 .33 040 3.0267 .94 952 
 
 43 
 
 18 
 
 .31399 .33072 3.0237 .94943 
 
 42 
 
 19 
 
 .31 427 .33 104 3.0208 .94 933 
 
 41 
 
 2O 
 
 .31 454 .33 136 3.0178 .94924 
 
 40 
 
 21 
 
 .31482 .33169 3.0149 .94915 
 
 39 
 
 22 
 
 .31510 .33201 3.0120 .94906 
 
 38 
 
 23 
 
 .31 537 .33 233 3.0090 .94 897 
 
 37 
 
 24 
 
 .31565 .33266 3.0061 .94888 
 
 36 
 
 25 
 
 .31593 .33298 3.0032 .94878 
 
 35 
 
 26 
 
 .31620 .33330 3.0003 .94869 
 
 34 
 
 27 
 
 .31648 .33363 2.9974 .94860 
 
 33 
 
 28 
 
 .31675 .33395 2.9945 .94851 
 
 32 
 
 29 
 
 r. 31 703 .33427 2.9916 .94842 
 
 31 
 
 30 
 
 \31730 .33460 2.9887 .94832 
 
 30 
 
 31 
 
 .31 758 .33 492 2.9858 .94 823 
 
 29 
 
 32 
 
 .31 786 .33 524 2.9829 .94 814 
 
 28 
 
 33 
 
 .31 813 .33 557 2.9800 .94 805 
 
 27 
 
 34 
 
 .31 841 .33 589 2.9772 .94 795 
 
 26 
 
 35 
 
 .31 868 .33 621 2.9743 .94 786 
 
 25 
 
 36 
 
 .31 896 .33 654 2.9714 .94 777 
 
 24 
 
 37 
 
 .31923 .33686 2.9686 .94768 
 
 23 
 
 38 
 
 .31951 .33718 2.9657 .94758 
 
 22 
 
 39 
 
 .31 979 .33 751 2.9629 .94 749 
 
 21 
 
 4O 
 
 .32 006 .33 783 2.9600 .94 740 
 
 2O 
 
 41 
 
 .32 034 .33 816 2.9572 .94 730 
 
 19 
 
 42 
 
 .32 061 .33 848 2.9544 .94 721 
 
 18 
 
 43 
 
 .32089 .33881 2.9515 .94712 
 
 17 
 
 44 
 
 .32116 .33913 2.9487 .94702 
 
 16 
 
 45 
 
 .32144 .33945 2.9459 .94693 
 
 15 
 
 46 
 
 .32 171 .33 978 2.9431 .94 684 
 
 14 
 
 47 
 
 .32 199 .34 010 2.9403 .94 674 
 
 13 
 
 48 
 
 .32227 .34043 2.9375 .94665 
 
 12 
 
 49 
 
 .32 254 .34 075 2.9347 .94 656 
 
 11 
 
 50 
 
 .32282 .34108 2.9319 .94646 
 
 1O 
 
 51 
 
 .32 309 .34 140 2.9291 .94 637 
 
 9 
 
 52 
 
 .32 337 .34 173 2.9263 .94 627 
 
 8 
 
 53 
 
 .32364 .34205 2.9235 .94618 
 
 7 
 
 54 
 
 .32392 .34238 2.9208 .94609 
 
 6 
 
 55 
 
 .32 419 .34 270 2.9180 .94 599 
 
 5 
 
 56 
 
 .32447 .34303 2.9152 .94590 
 
 4 
 
 57 
 
 .32474 .34335 2.9125 .94580 
 
 3 
 
 58 
 
 .32502 .34368 2.9097 .94571 
 
 2 
 
 59 
 
 .32 529 .34 400 2.9070 .94 561 
 
 1 
 
 6O 
 
 .32557 .34433 2.9042 .94552 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 71 
 
 
 
 19 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .32557 .34433 2.9042 .94552 
 
 6O 
 
 1 
 
 .32 584 .34 465 2.9015 .94 542 
 
 59 
 
 2 
 
 .32612 .34498 2.8987 .94533 
 
 58 
 
 3 
 
 .32 639 .34 530 2.8960 .94 523 
 
 57 
 
 4 
 
 .32667 .34563 2.8933 .94514 
 
 56 
 
 5 
 
 .32 694 .34 596 2.8905 .94 504 
 
 55 
 
 6 
 
 .32 722 .34 628 2.8878 .94 495 
 
 54 
 
 7 
 
 .32749 .34661 2.8851 .94485 
 
 53 
 
 8 
 
 .32 777 .34 693 2.8824 .94 476 
 
 52 
 
 9 
 
 .32 804 .34 726 2.8797 .94 466 
 
 51 
 
 10 
 
 .32832 .34758 2.8770 .94457 
 
 5O 
 
 11 
 
 .32859 .34791 2.8743 .94447 
 
 49 
 
 12 
 
 .32887 .34824 2.8716 .94438 
 
 48 
 
 13 
 
 .32914 .34856 2.8689 .94428 
 
 47 
 
 14 
 
 .32942 .34889 2.8662 .94418 
 
 46 
 
 15 
 
 .32969 .34922 2.8636 .94409 
 
 45 
 
 16 
 
 .32997 .34954 2.8609 .94399 
 
 44 
 
 17 
 
 .33 024 .34 987 2.8582 .94 390 
 
 43 
 
 18 
 
 .33051 .35020 2.8556 .94380 
 
 42 
 
 19 
 
 .33 079 .35 052 2.8529 .94 370 
 
 41 
 
 20 
 
 .33 106 .35 085 2.8502 .94 361 
 
 4O 
 
 21 
 
 .33134 .35118 2.8476 .94351 
 
 39 
 
 22 
 
 .33 161 .35 150 2.8449 .94 342 
 
 38 
 
 23 
 
 .33 189 .35 183 2.8423 .94 332 
 
 37 
 
 24 
 
 .33216 .35216 2.8397 .94322 
 
 36 
 
 25 
 
 .33 244 .35 248 2.8370 .94 313 
 
 35 
 
 26 
 
 .33 271 .35 281 2.8344 .94 303 
 
 34 
 
 27 
 
 .33298 .35314 2.8318 .94293 
 
 33 
 
 28 
 
 .33 326 .35 346 2.8291 .94 284 
 
 32 
 
 29 
 
 .33 353 .35 379 2.8265 .94 274 
 
 31 
 
 3O 
 
 .33 381 .35 412 2.8239 .94 264 
 
 30 
 
 31 
 
 .33 408 .35 445 2.8213 .94 254 
 
 29 
 
 32 
 
 .33436 .35477 2.8187 .94245 
 
 28 
 
 33 
 
 .33463 .35510 2.8161 .94235 
 
 27 
 
 34 
 
 .33 490 .35 543 2.8135 .94 225 
 
 26 
 
 35 
 
 .33 518 .35 576 2.8109 .94 215 
 
 25 
 
 36 
 
 .33 545 .35 608 2.8083 .94 206 
 
 24 
 
 37 
 
 .33 573 .35 641 2.8057 .94 196 
 
 23 
 
 38 
 
 .33 600 .35 674 2.8032 .94 186 
 
 22 
 
 39 
 
 .33 627 .35 707 2.8006 .94 176 
 
 21 
 
 4O 
 
 .33 655 .35 740 2.7980 .94 167 
 
 2O 
 
 41 
 
 .33 682 .35 772 2.7955 .94 157 
 
 19 
 
 42 
 
 .33 710 .35 805 2.7929 .94 147 
 
 18 
 
 43 
 
 .33 737 .35 838 2.7903 .94 137 
 
 17 
 
 44 
 
 .33 764 .35 871 2.7878 .94 127 
 
 16 
 
 45 
 
 .33 792 .35 904 2.7852 .94 118 
 
 15 
 
 46 
 
 .33 819 .35 937 2.7827 .94 108 
 
 14 
 
 47 
 
 .33846 .35969 2.7801 .94098 
 
 13 
 
 48 
 
 .33 874 .36 002 2.7776 .94 088 
 
 12 
 
 49 
 
 .33901 .36035 2.7751 .94078 
 
 11 
 
 50 
 
 .33 929 .36 068 2.7725 .94 068 
 
 1O 
 
 51 
 
 .33 956 .36 101 2.7700 .94 058 
 
 9 
 
 52 
 
 .33 983 .36 134 2.7675 .94 049 
 
 8 
 
 53 
 
 .34011 .36167 2.7650 .94039 
 
 7 
 
 54 
 
 .34 038 .36 199 2.7625 .94 029 
 
 6 
 
 55 
 
 .34065 .36232 2.7600 .94019 
 
 5 
 
 56 
 
 .34093 .36265 2.7575 .94009 
 
 4 
 
 57 
 
 .34120 .36298 2.7550 .93999 
 
 3 
 
 58 
 
 .34147 .36331 2.7525 .93989 
 
 2 
 
 59 
 
 .34 175 .36 364 2.7500 .93 979 
 
 1 
 
 6O 
 
 .34 202 .36 397 2.7475 .93 969 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 70 
 
 
68 
 
 NATURAL FUNCTIONS 
 
 
 20 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .34202 .36397 2.7475 .93969 
 
 6O 
 
 1 
 
 .34 229 .36 430 2.7450 .93 959 
 
 59 
 
 2 
 
 .34 257 .36 463' 2.7425 .93 949 
 
 58 
 
 3 
 
 .34 284 .36 496 2.7400 .93 939 
 
 57 
 
 4 
 
 .34311 .36529 2.7376 .93929 
 
 56 
 
 5 
 
 .34339 .36562 2.7351 .93919 
 
 55 
 
 6 
 
 .34 366 .36 595 2.7326 .93 909 
 
 54 
 
 7 
 
 .34 393 .36 628 2.7302 .93 899 
 
 53 
 
 8 
 
 .34 421 .36 661 2.7277 .93 889 
 
 52 
 
 9 
 
 .34 448 .36 694 2.7253 .93 879 
 
 51 
 
 10 
 
 .34475 .36727 2.7228 .93869 
 
 50 
 
 11 
 
 .34 503 .36 760 2.7204 .93 859 
 
 49 
 
 12 
 
 .34 530 .36 793 2.7179 .93 849 
 
 48 
 
 13 
 
 .34 557 .36 826 2.7155 .93 839 
 
 47 
 
 14 
 
 .34584 .36859 2.7130 .93829 
 
 46 
 
 15 
 
 .34612 .36892 2.7106 .93819 
 
 45 
 
 16 
 
 .34 639 .36 925 2.7082 .93 809 
 
 44 
 
 17 
 
 .34666 .36958 2.7058 .93799 
 
 43 
 
 18 
 
 .34 694 .36 991 2.7034 .93 789 
 
 42 
 
 19 
 
 .34 721 .37 024 2.7009 .93 779 
 
 41 
 
 20 
 
 .34748 .37057 2.6985 .93769 
 
 4O 
 
 21 
 
 .34.775 .37090 2.6961 .93759 
 
 39 
 
 22 
 
 .34 803 .37 123 2.6937 .93 748 
 
 38 
 
 23 
 
 .34830 .37157 2.6913 .93738 
 
 37 
 
 24 
 
 .34 857 .37 190 2.6889 .93 728 
 
 36 
 
 25 
 
 .34 884 .37 223 2.6865 .93 718 
 
 35 
 
 26 
 
 .34 912 .37 256 2.6841 .93 708 
 
 34 
 
 27 
 
 .34 939 .37 289 2.6818 .93 698 
 
 33 
 
 28 
 
 .34 966 .37 322 2.6794 .93 688 
 
 32 
 
 29 
 
 .34 993 .37 355 2.6770 .93 677 
 
 31 
 
 30 
 
 .35 021 .37 388 2.6746 .93 667 
 
 30 
 
 31 
 
 .35048 .37422 2.6723 .93657 
 
 29 
 
 32 
 
 .35 075 '.37 455 2.6699 .93 647 
 
 28 
 
 33 
 
 .35 102 .37 488 2.6675 .93 637 
 
 27 
 
 34 
 
 .35 130 .37 521 2.6652 .93 626 
 
 26 
 
 35 
 
 .35157 .37554 2.6628 .93616 
 
 25 
 
 36 
 
 .35 184 .37 588 2.6605 .93 606 
 
 24 
 
 37 
 
 .35211 .37621 2.6581 .93596 
 
 23 
 
 38 
 
 .35 239 .37 654 2.6558 .93 585 
 
 22 
 
 39 
 
 .35 266 .37 687 2.6534 .93 575 
 
 21 
 
 40 
 
 .35 293 .37 720 2.6511 .93 565 
 
 20 
 
 41 
 
 .35 320 .37 754 2.6488 .93 555 
 
 19 
 
 42 
 
 ;35 347 .37 787 2.6464 .93 544 
 
 18 
 
 43 
 
 .35 375 .37 820 2.6441 .93 534 
 
 17 
 
 44 
 
 .35402 .37853 2.6418 .93524 
 
 16 
 
 45 
 
 .35429 .37887 2.6395 .93514 
 
 15 
 
 46 
 
 .35 456 .37 920 2.6371 .93 503 
 
 14 
 
 47 
 
 .35 484 .37 953 2.6348 .93 493 
 
 13 
 
 48 
 
 .35 511 .37 986 2.6325 .93 483 
 
 12 
 
 49 
 
 .35 538 .38 020 2.6302 .93 472 
 
 11 
 
 50 
 
 .35565 .38053 2.6279 ;93 462 
 
 1O 
 
 51 
 
 .35 592 .38 086 2.6256 .93 452 
 
 9 
 
 52 
 
 .35 619 .38 120 2.6233 .93 441 
 
 8 
 
 53 
 
 35647 .38153 2.6210 .93431 
 
 7 
 
 54 
 
 .35 674 .38 186 2.6187 .93 420 
 
 6 
 
 55 
 
 .35 701 .38 220 2.6165 .93 410 
 
 5 
 
 56 
 
 .35 728 .38 253 2.6142 .93 400 
 
 4 
 
 57 
 
 .35 755 .38 286 2.6119 .93 389 
 
 3 
 
 58 
 
 .35 782 .38320 2.6096 .93379 
 
 2 
 
 59 
 
 .35 810 .38 353 2.6074 .93 368 
 
 1 
 
 6O 
 
 .35837 .38386 2.6051 .93358 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 69 
 
 
 
 21 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .35837 .38386 2.6051 .93358 
 
 6O 
 
 1 
 
 .35 864 .38 420 2.6028 .93 348 
 
 59 
 
 2 
 
 .35891 .38453 2.6006 .93337 
 
 58 
 
 3 
 
 .35 918 .38 487 2.5983 .93 327 
 
 57 
 
 4 
 
 .35 945 .38 520 2.5961 .93 316 
 
 56 
 
 5 
 
 .35 973 .38 553 2.5938 .93 306 
 
 55 
 
 6 
 
 .36 000 .38 587 2.5916 .93 295 
 
 54 
 
 7 
 
 .36 027 .38 620 2.5893 .93 285 
 
 53 
 
 8 
 
 .36054 .38654 2.5871 .93274 
 
 52 
 
 9 
 
 .36 081 .38 687 2.5848 .93 264 
 
 51 
 
 1O 
 
 .36 108 .38 721 2.5826 .93 253 
 
 5O 
 
 11 
 
 .36 135 .38 754 2.5804 .93 243 
 
 49 
 
 12 
 
 .36 162 .38 787 2.5782 .93 232 
 
 48 
 
 13 
 
 .36 190 .38 821 2.5759 .93 222 
 
 47 
 
 14 
 
 .36217 .38854 2.5737 .93211 
 
 46 
 
 15 
 
 .36 244 .38 888 2.5715 .93 201 
 
 45 
 
 16 
 
 .36 271 .38 921 2.5693 .93 190 
 
 44 
 
 17 
 
 .36 298 .38 955 2.5671 .93 180 
 
 43 
 
 18 
 
 .36 325 .38 988 2.5649 .93 169 
 
 42 
 
 19 
 
 .36 352 .39 022 2.5627 .93 159 
 
 41 
 
 20 
 
 .36 379 .39 055 2.5605 .93 148 
 
 4O 
 
 21 
 
 .36406 .39089 2.5583 .93137 
 
 39 
 
 22 
 
 .36 434 .39 122 2.5561 .93 127 
 
 38 
 
 23 
 
 .36461 .39156 2.5539 .93 116 
 
 37 
 
 24 
 
 .36488 .39190 2.5517 .93106 
 
 36 
 
 25 
 
 .36515 .39223 2.5495 .93095 
 
 35 
 
 26 
 
 .36542 .39257 2.5473 .93084 
 
 34 
 
 27 
 
 .36 569 .39 290 2.5452 .93 074 
 
 33 
 
 28 
 
 .36 596 .39 324 2.5430 .93 063 
 
 32 
 
 29 
 
 .36623 .39357 2.5408 .93052 
 
 31 
 
 30 
 
 .36 650 .39 391 2.5386 .93 042 
 
 30 
 
 31 
 
 .36677 .39425 2.5365 .93031 
 
 29 
 
 32 
 
 .36 704 .39 458 2.5343 .93 020 
 
 28 
 
 33 
 
 .36731 .39492 2.5322 .93010 
 
 27 
 
 34 
 
 .36 758 .39 526 2.5300 .92 999 
 
 26 
 
 35 
 
 .36785 .39559 2.5279 .92988 
 
 25 
 
 36 
 
 .36812 .39593 2.5257 .92978 
 
 24 
 
 37 
 
 .36 839 .39 626 2.5236 .92 967 
 
 23 
 
 38 
 
 .36867 .39660 2.5214 .92956 
 
 22 
 
 39 
 
 .36894 .39694 2.5193 .92945 
 
 21 
 
 4O 
 
 .36921 .39727 2.5172 .92935 
 
 2O 
 
 41 
 
 .36948 .39761 2.5150 .92924 
 
 19 
 
 42 
 
 .36975 .39795 2.5129 .92913 
 
 18 
 
 43 
 
 .37002 .39829 2.5108 .92902 
 
 17 
 
 44 
 
 .37029 .39862 2.5086 .92892 
 
 16 
 
 45 
 
 .37 056 .39 896 2.5065 .92 881 
 
 15 
 
 46 
 
 .37 083 .39 930 2.5044 .92 870 
 
 14 
 
 47 
 
 .37110 .39963 2.50Z3 .92859 
 
 13 
 
 48 
 
 .37 137 .39 997 2.5002 .92 849 
 
 12 
 
 49 
 
 .37 164 .40 031 2.4981 .92 838 
 
 11 
 
 5O 
 
 .37191 .40065 2.4960 .92827 
 
 10 
 
 51 
 
 .37218 .40098 2.4939 .92816 
 
 9 
 
 52 
 
 .37 245 .40 132 2.4918 .92 805 
 
 8 
 
 53 
 
 .37 272 .40 166 2.4897 .92 794 
 
 7 
 
 54 
 
 .37 299 .40 200 2.4876 .92 784 
 
 6 
 
 55 
 
 .37 326 .40 234 2.4855 .92 773 
 
 5 
 
 56 
 
 .37 353 .40 267 2.4834 .92 762 
 
 4 
 
 57 
 
 .37380 .40301 2.4813 .92751 
 
 3 
 
 58 
 
 .37407 .40335 2.4792 .92740 
 
 2 
 
 59 
 
 .37 434 .40 369 2.4772 .92 729 
 
 1 
 
 6O 
 
 .37461 .40403 2.4751 .92718 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 68 
 
 
NATURAL FUNCTIONS 
 
 69 
 
 
 22 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .37461 .40403 2.4751 .92718 
 
 60 
 
 1 
 
 .37 488 .40 436 2.4730 .92 707 
 
 59 
 
 2 
 
 .37515 .40470 2.4709 .92697 
 
 58 
 
 3 
 
 .37 542 .40 504 2.4689 .92 686 
 
 57 
 
 4 
 
 .37 569 .40 538 2.4668 .92 675 
 
 56 
 
 5 
 
 .37595 .40572 2.4648 .92664 
 
 55 
 
 6 
 
 .37622 .40606 2.4627 .92653 
 
 54 
 
 7 
 
 .37649 .40640 2.4606 .92642 
 
 53 
 
 8 
 
 .37676 .40674 2.4586 .92631 
 
 52 
 
 9 
 
 .37 703 .40 707 2.4566 .92 620 
 
 51 
 
 1C 
 
 .37 730 .40 741 2.4545 .92 609 
 
 50 
 
 11 
 
 .37757 .40775 2.4525 .92598 
 
 49 
 
 12 
 
 .37 784 .40 809 2.4504 .92 587 
 
 48 
 
 13 
 
 .37811 .40843 2.4484 .92576 
 
 47 
 
 14 
 
 .37 838 .40 877 2.4464 .92 565 
 
 46 
 
 15 
 
 .37865 .40911 2.4443 .92554 
 
 45 
 
 16 
 
 .37892 .40945 2.4423 .92543 
 
 44 
 
 17 
 
 .37 919 .40 979 2.4403 .92 532 
 
 43 
 
 18 
 
 .37 946 .41 013 2.4383 .92 521 
 
 42 
 
 19 
 
 .37973 .41047 2.4362 .92510 
 
 41 
 
 20 
 
 .37 999 .41 081 2.4342 .92 499 
 
 4O 
 
 21 
 
 .38 026 .41 115 2.4322 .92 488 
 
 39 
 
 22 
 
 .38 053 .41 149 2.4302 .92 477 
 
 38 
 
 23 
 
 .38 080 .41 183 2.4282 .92 466 
 
 37 
 
 24 
 
 .38 107 .41 217 2.4262 .92 455 
 
 36 
 
 25 
 
 .38134 .41251 2.4242 .92444 
 
 35 
 
 26 
 
 .38161 .41285 2.4222 .92432 
 
 34 
 
 27 
 
 .38 188 .41 319 2.4202 .92 421 
 
 33 
 
 28 
 
 .38215 .41353 2.4182 .92410 
 
 32 
 
 29 
 
 .38 241 .41 387 2.4162 .92 399 
 
 31 
 
 30 
 
 .38268 .41421 2.4142 .92388 
 
 30 
 
 31 
 
 .38295 .41455 2.4122 .92377 
 
 29 
 
 32 
 
 .38 322 .41 490 2.4102 .92 366 
 
 28 
 
 33 
 
 .38349 .41524 2.4083 .92355 
 
 27 
 
 34 
 
 .38 376 .41 558 2.4063 .92 343 
 
 26 
 
 35 
 
 .38 403 .41 592 2.4043 .92 332 
 
 25 
 
 36 
 
 .38430 .41626 2.4023 .92321 
 
 24 
 
 37 
 
 .38 456 .41 660 2.4004 .92 310 
 
 23 
 
 38 
 
 .38 483 .41 694 2.3984 .92 299 
 
 22 
 
 39 
 
 .38 510 .41 728 2.3964 .92 287 
 
 21 
 
 40 
 
 .38 537 .41 763 2.3945 .92 276 
 
 2O 
 
 41 
 
 .38 564 .41 797 2.3925 .92 265 
 
 19 
 
 42 
 
 .38 591 .41 831 2.3906 .92 254 
 
 18 
 
 43 
 
 .38 617 .41 865 2.3886 .92 243 
 
 17 
 
 44 
 
 .38644 .41899 2.3867 .92231 
 
 16 
 
 45 
 
 .38671 .41933 2.3847 .92220 
 
 15 
 
 46 
 
 .38 698 .41 968 2.3828 .92 209 
 
 14 
 
 47 
 
 .38 725 .42 002 2.3808 .92 198 
 
 13 
 
 48 
 
 .38 752 .42 036 2.3789 .92 186 
 
 12 
 
 49 
 
 .38 778 .42 070 2.3770 .92 175 
 
 11 
 
 5O 
 
 .38 805 .42 105 2.3750 .92 164 
 
 1O 
 
 51 
 
 .38 832 .42 139 2.3731 .92 152 
 
 9 
 
 52 
 
 .38 859 .42 173 2.3712 .92 141 
 
 8 
 
 53 
 
 .38 886 .42 207 2.3693 .92 130 
 
 7 
 
 54 
 
 .38912 .42242 2.3673 .92119 
 
 6 
 
 55 
 
 .38 939 .42 276 2.3654 .92 107 
 
 5 
 
 56 
 
 .38966 .42310 2.3635 .92096 
 
 4 
 
 57 
 
 .38993 .42345 2.3616 .92085 
 
 3 
 
 58 
 
 .39020 .42379 2.3597 .92073 
 
 2 
 
 59 
 
 .39046 .42413 2.3578 .92062 
 
 1 
 
 6O 
 
 .39073 .42447 2.3559 .92050 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 67 
 
 
 
 23 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .39073 .42447 2.3559 .92050 
 
 60 
 
 1 
 
 .39 100 .42 482 2.3539 .92 039 
 
 59 
 
 2 
 
 .39 127 .42 516 2.3520 .92 028 
 
 58 
 
 3 
 
 .39153 .42551 2.3501 .92016 
 
 57 
 
 4 
 
 .39 180 .42 585 2.3483 .92 005 
 
 56 
 
 5 
 
 .39207 .42619 2.3464 .91994 
 
 55 
 
 6 
 
 .39 234 .42 654 2.3445 .91 982 
 
 54 
 
 7 
 
 .39 260 .42 688 2.3426 .91 971 
 
 53 
 
 8 
 
 .39 287 .42 722 2.3407 .91 959 
 
 52 
 
 9 
 
 .39 314 .42 757 2.3388 .91 948 
 
 51 
 
 10 
 
 .39 341 .42 791 2.3369 .91 936 
 
 5O 
 
 11 
 
 .39 367 .42 826 2.3351 .91 925 
 
 49 
 
 12 
 
 .39 394 .42 860 2.3332 .91 914 
 
 48 
 
 13 
 
 .39421 .42894 2.3313 .91902 
 
 47 
 
 14 
 
 .39 448 .42 929 2.3294 .91 891 
 
 46 
 
 15 
 
 .39474 .42963 2.3276 .91879 
 
 45 
 
 16 
 
 .39 501 .42 998 2.3257 .91 868 
 
 44 
 
 17 
 
 .39 528 .43 032 2.3238 .91 856 
 
 43 
 
 18 
 
 .39 555 .43 067 2.3220 .91 845 
 
 42 
 
 19 
 
 .39 581 .43 101 2.3201 .91 833 
 
 41 
 
 2O 
 
 .39 608 .43 136 2.3183 .91 822 
 
 4O 
 
 21 
 
 .39635 .43170 2.3164 .91*810 
 
 39 
 
 22 
 
 .39 661 .43 205 2.3146 .91 799 
 
 38 
 
 23 
 
 .39 688 .43 239 2.3127 .91 787 
 
 37 
 
 24 
 
 .39 715 .43 274 2.3109 .91 775 
 
 36 
 
 25 
 
 .39 741 .43 308 2.3090 .91 764 
 
 35 
 
 26 
 
 .39 768 .43 343 2.3072 .91 752 
 
 34 
 
 27 
 
 .39 795 .43 378 2.3053 .91 741 
 
 33 
 
 28 
 
 .39 822 .43 412 2.3035 .91 729 
 
 32 
 
 29 
 
 .39 848 .43 447 2.3017 .91 718 
 
 31 
 
 30 
 
 .39 875 .43 481 2.2998 .91 706 
 
 30 
 
 31 
 
 .39902 .43516 2.2980 .91694 
 
 29 
 
 32 
 
 .39 928 .43 550 2.2962 .91 683 
 
 28 
 
 33 
 
 .39 955 .43 585 2.2944 .91 671 
 
 27 
 
 34 
 
 .39 982 .43 620 2.2925 .91 660 
 
 26 
 
 35 
 
 .40 008 .43 654 2.2907 .91 648 
 
 25 
 
 36 
 
 .40 035 .43 689 2.2889 .91 636 
 
 24 
 
 37 
 
 .40 062 .43 724 2.2871 .91 625 
 
 23 
 
 38 
 
 .40 088 .43 758 2.2853 .91 613 
 
 22 
 
 39 
 
 .40 115 .43 793 2.2835 .91 601 
 
 21 
 
 4O 
 
 .40 141 .43 828 2.2817 .91 590 
 
 2O 
 
 41 
 
 .40 168 .43 862 2.2799 .91 578 
 
 19 
 
 42 
 
 .40 195 .43 897 2.2781 .91 566 
 
 18 
 
 43 
 
 .40 221 .43 932 2.2763 .91 555 
 
 17 
 
 44 
 
 .40 2H8 .43 966 2.2745 .91 543 
 
 16 
 
 45 
 
 .40 275 .44 001 2.2727 .91 531 
 
 15 
 
 46 
 
 .40 301 .44 036 2.2709 .91 519 
 
 14 
 
 47 
 
 .40 328 .44 071 2.2691 .91 508 
 
 13 
 
 48 
 
 .40355 .44" 105 2.2673 .91496 
 
 12 
 
 49 
 
 .40381 .44140 2.2655 .91484 
 
 11 
 
 50 
 
 .40408 .44175 2.2637 .91472 
 
 1O 
 
 51 
 
 .40434 .44210 2.2620 .91461 
 
 9 
 
 52 
 
 .40461 .44244 2.2602 .91449 
 
 8 
 
 53 
 
 .40 488 .44 279 2.2584 .91 437 
 
 7 
 
 54 
 
 .40514 .44314 2.2566 .91425 
 
 6 
 
 55 
 
 .40 541 .44 349 2.2549 .91 414 
 
 5 
 
 56 
 
 .40567 .44384 2.2531 .91402 
 
 4 
 
 57 
 
 .40594 .44418 2.2513 .91390 
 
 3 
 
 58 
 
 .40621 .44453 2.2496 .91378 
 
 2 
 
 59 
 
 .40 647 .44 488 2.2478 .91 366 
 
 1 
 
 60 
 
 .406.74 .44 523 2.2460 .91 355 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 66 
 
 
70 
 
 NATURAL FUNCTIONS 
 
 
 24 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .40674 .44523 2.2460 .91355 
 
 6O 
 
 1 
 
 .40 700 .44 558 2.2443 .91 343 
 
 59 
 
 2 
 
 .40727 .44593 2.2425 .91331 
 
 58 
 
 3 
 
 .40753 .44627 2.2408 .91319 
 
 57 
 
 4 
 
 .40 780 .44 662 2.2390 .91 307 
 
 56 
 
 5 
 
 .40 806 .44 697 2.2373 .91 295 
 
 55 
 
 6 
 
 .40 833 .44 732 2.2355 .91 283 
 
 54 
 
 7 
 
 .40 860 .44 767 2.2338 .91 272 
 
 53 
 
 8 
 
 .40 886 .44 802 2.2320 .91 260 
 
 52 
 
 9 
 
 .40913 .44837 2.2303 .91248 
 
 51 
 
 1C 
 
 .40 939 .44 872 2.2286 .91 236 
 
 5O 
 
 11 
 
 .40 966 .44 907 2.2268 .91 224 
 
 49 
 
 12 
 
 .40992 .44942 2.2251- .91212 
 
 48 
 
 13 
 
 .41019 .44977 2.2234 .91200 
 
 47 
 
 14 
 
 .41 045 .45 012 2.2216 .91 1S8 
 
 46 
 
 15 
 
 .41 072 .45 047 2.2199 .91 176 
 
 45 
 
 16 
 
 .41 098 .45 082 2.2182 .91 164 
 
 44 
 
 17 
 
 .41 125 .45 117 2.2165 .91 152 
 
 43 
 
 18 
 
 .41 151 .45 152 2.2148 .91 140 
 
 42 
 
 19 
 
 .41 178 .45 187 2.2130 .91 128 
 
 41 
 
 2O 
 
 .41204 .45222 2.2113 .91116 
 
 40 
 
 21 
 
 .41 231 .45 257 2.2096 .91 104 
 
 39 
 
 22 
 
 .41 257 .45 292 2.2079 .91 092 
 
 38 
 
 23 
 
 .41 284 .45 327 2.2062 .91 080 
 
 37 
 
 24 
 
 .41 310 .45 362 2.2045 .91 068 
 
 36 
 
 25 
 
 .41 337 .45 397 2.2028 .91 056 
 
 35 
 
 26 
 
 .41 363 .45 432 2.2011 .91 044 
 
 34 
 
 27 
 
 .41 390 .45 467 2.1994 .91 032 
 
 33 
 
 28 
 
 .41 416 .45 502 2.1977 .91 020 
 
 32 
 
 29 
 
 .41 443 .45 538 2.1960 .91 008 
 
 31 
 
 30 
 
 .41469 .45573 2.1943 .90996 
 
 30 
 
 31 
 
 .41 496 .45 608 2.1926 .90984 
 
 29 
 
 32 
 
 .41 522 .45 643 2.1909 .90 972 
 
 28 
 
 33 
 
 .41549 .45678 2.1892 .90960 
 
 27 
 
 34 
 
 .41575 .45 713 2.1876 .90948 
 
 26 
 
 35 
 
 .41602 .45748 2.1859 .90936 
 
 25 
 
 36 
 
 .41 628 .45 784 2.1842 .90 924 
 
 24 
 
 37 
 
 .41655 .45819 2.1825 .90911 
 
 23 
 
 38 
 
 .41 681 .45 854 2.1808 .90 899 
 
 22 
 
 39 
 
 .41 707 .45 889 2.1792 .90 887 
 
 21 
 
 40 
 
 .41 734 .45 924 2.1775 .90 875 
 
 20 
 
 41 
 
 .41 760 .45 960 2.1758 .90 863 
 
 19 
 
 42 
 
 .41787 .45995 2.1742 .90851 
 
 18 
 
 43 
 
 .41813 .46030 2.1725 .90839 
 
 17 
 
 44 
 
 .41 840 .46 065 2.1708 .90 826 
 
 16 
 
 45 
 
 .41 866 .46 101 2.1692 .90 814 
 
 15 
 
 46 
 
 .41 892 .46 136 2.1675 .90 802 
 
 14 
 
 47 
 
 .41 919 .46 171 2.1659 .90 790 
 
 13 
 
 48 
 
 .41 945 .46 206 2.1642 .90 778 
 
 12 
 
 49 
 
 .41 972 .46 242 2.1625 .90 766 
 
 11 
 
 5O 
 
 .41998 .46277 2.1609 .90753 
 
 10 
 
 51 
 
 .42 024 .46 312 2.1592 .90 741 
 
 9 
 
 52 
 
 .42051 .46348 2.1576 .90729 
 
 8 
 
 53 
 
 .42077 .46383 2.1560 .90717 
 
 7 
 
 54 
 
 .42104 .46418 2.1543 .90704 
 
 6 
 
 55 
 
 .42 130 .46 454 2.1527 .90 692 
 
 5 
 
 56 
 
 .42156 .46489 2.1510 .90680 
 
 4 
 
 57 
 
 .42 183 .46 525 2.1494 .90 668 
 
 3 
 
 58 
 
 .42 209 .46 560 2.1478 .90 655 
 
 2 
 
 59 
 
 .42235 .46595 2.1461 .90643 
 
 1 
 
 60 
 
 .42262 .46631 2.1445 .90631 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 65 
 
 
 
 25 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .42262 .46631 2.1445 .90631 
 
 60 
 
 1 
 
 .42 288 .46 666 2.1429 .90 618 
 
 59 
 
 2 
 
 .42315 .46702 2.1413 .90606 
 
 58 
 
 3 
 
 .42341 .46737 2.1396 .90594^ 
 
 57 
 
 4 
 
 .42367 .46772 2.1380 .90582 
 
 56 
 
 5 
 
 .42 394 .46 808 2.1364 .90 569 
 
 55 
 
 6 
 
 .42420 .46843 2.1348 .90557 
 
 54 
 
 7 
 
 .42 446 .46 879 2.1332 .90 545 
 
 53 
 
 * 8 
 
 .42473 .46914 2.1315 .90532 
 
 52 
 
 % 9 
 
 .42499 .46950 2.1299 .90520 
 
 51 
 
 10 
 
 .42525 .46985 2.1283 .90507 
 
 50 
 
 11 
 
 .42552 .47021 2.1267 .90495 
 
 49 
 
 12 
 
 .42578 .47056 2.1251 .90483 
 
 48 
 
 13 
 
 .42604 .47092 2.1235 .90470 
 
 47 
 
 14 
 
 .42631 .47128 2.1219 .90458 
 
 46 
 
 15 
 
 .42657 .47163 2.1203 .90446 
 
 45 
 
 16 
 
 .42683 .47199 2.1187 .90433 
 
 44 
 
 17 
 
 .42709 .47234 2.1171 .90421 
 
 43 
 
 18 
 
 .42736 .47270 2.1155 .90408 
 
 42 
 
 19 
 
 .42762 .47305 2.1139 .90396 
 
 41 
 
 2O 
 
 .42788 .47341 2.1123 .90383 
 
 40 
 
 21 
 
 .42815 .47377 2.1107 .90371 
 
 39 
 
 22 
 
 .42841 .47412 2.1092 .90358 
 
 38 
 
 23 
 
 .42867 .47448 2.1076 .90346 
 
 37 
 
 24 
 
 .42 894 .47 483 2.1060 .90 334 
 
 36 
 
 25 
 
 .42920 .47519 2.1044 .90321 
 
 35 
 
 26 
 
 .42946 .47555 2.1028 .90309 
 
 34 
 
 27 
 
 .42 972 .47 590 2.1013 .90 296 
 
 33 
 
 28 
 
 .42999 .47626 2.0997 .90284 
 
 32 
 
 29 
 
 .43025 .47662 2.0981 .90271 
 
 31 
 
 3O 
 
 .43051 .47698 2.0965 .90259 
 
 3O 
 
 31 
 
 .43 077 .47 733 2.0950 .90 246 
 
 29 
 
 32 
 
 .43 104 .47 769 2.0934 .90 233 
 
 28 
 
 33 
 
 .43 130 .47 805 2.091S .90 221 
 
 27 
 
 34 
 
 .43 156 .47 840 2.0903 .90 208 
 
 26 
 
 35 
 
 .43 182 .47 876 2.0887 .90 196 
 
 25 
 
 36 
 
 .43 209 .47 912 2.0872 .90 183 
 
 24 
 
 37 
 
 .43235 .47948 2.0856 .90171 
 
 23 
 
 38 
 
 .43261 .47984 2.0840 .90158 
 
 22 
 
 39 
 
 .43 287 .48 019 2.0825 .90 146 
 
 21 
 
 40 
 
 .43313 .48055 2.0809 .90133 
 
 2O 
 
 41 
 
 .43 340 .48 091 2.0794 .90 120 
 
 19 
 
 42 
 
 .43 366 .48 127 2.0778 .90 108 
 
 18 
 
 43 
 
 .43 392 .48 163 2.0763 .90 095 
 
 17 
 
 44 
 
 .43 418 .48 198 2.0748 .90 082 
 
 16 
 
 45 
 
 .43445 .48234 2.0732 .90070 
 
 15 
 
 46 
 
 .43471 .48270 2.0717 .90057 
 
 14 
 
 47 
 
 .43497 .48306 2.0701 .90045 
 
 13 
 
 48 
 
 .43 523 .48 342 2.0686 .90 032 
 
 12 
 
 49 
 
 .43549 .48378 2.0671 .90019 
 
 11 
 
 50 
 
 .43575 .48414 2.0655 .90007 
 
 1O 
 
 51 
 
 .43 602 .48 450 2.0640 .89 994 
 
 9 
 
 52 
 
 .43628 .48486 2.0625 .89981 
 
 8 
 
 53 
 
 .43 654 .48 521 2.0609 .89 968 
 
 7 
 
 54 
 
 .43680 .48557 2.0594 .89956 
 
 6 
 
 55 
 
 .43 706 .48 593 2.0579 .89 943 
 
 5 
 
 56 
 
 .43 733 .48 629 2.0564 .89 930 
 
 4 
 
 57 
 
 .43 759 .48 665 2.0549 .89 918 
 
 3 
 
 58 
 
 .43 785 .48 701 2.0533 .89 905 
 
 2 
 
 59 
 
 .43 811 .48 737 2.0518 .89 892 
 
 1 
 
 6O 
 
 .43 837 .48 773 2.0503 .89 879 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 64 
 
 
NATURAL FUNCTIONS 
 
 71 
 
 
 26 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .43837 .48773 2.0503 .89879 
 
 60 
 
 1 
 
 .43863 .48809 2.0488 .89867 
 
 59 
 
 2 
 
 .43 889 .48 845 2.0473 .89 854 
 
 58 
 
 3 
 
 .43916 .48881 2.0458 .89841 
 
 57 
 
 4 
 
 .43942 .48917 2.0443 .89828 
 
 56 
 
 5 
 
 .43968 .48953 2.0428 .89816 
 
 55 
 
 6 
 
 .43 994 .48 989 2.0413 .89 803 
 
 54 
 
 7 
 
 .44020 .49026 2.0398 .89790 
 
 53 
 
 8 
 
 .44 046 .49 062 2.0383 .89 777 
 
 52 
 
 9 
 
 .44 072 .49 098 2.0368 .89 764 
 
 51 
 
 1O 
 
 .44098 .49134 2.0353 .89752 
 
 5O 
 
 11 
 
 .44 124 .49 170 2.0338 .89 739 
 
 49 
 
 12 
 
 .44151 .49206 2.0323 .89726 
 
 48 
 
 13 
 
 .44177 .49242 2.0308 .89713 
 
 47 
 
 14 
 
 .44203 .49278 2.0293 .89700 
 
 46 
 
 15 
 
 .44229 .49315 2.0278 .89687 
 
 45 
 
 16 
 
 .44255 .49351 2.0263 .89674 
 
 44 
 
 17 
 
 .44281 .49387 2.0248 .89662 
 
 43 
 
 18 
 
 .44307 .49423 2.0233 .89649 
 
 42 
 
 19 
 
 .44333 .49459 2.0219 .89636 
 
 41 
 
 2O 
 
 .44359 .49495 2.0204 .89623 
 
 4O 
 
 21 
 
 .44385 .49532 2.0189 .89610 
 
 39 
 
 22 
 
 .44411 .49568 2.0174 .89597 
 
 38 
 
 23 
 
 .44437 .49604 2.0160 .89584 
 
 37 
 
 24 
 
 .44 464 .49 640 2.0145 .89 571 
 
 36 
 
 25 
 
 .44 490 .49 677 2.0130 .89 558 
 
 35 
 
 26 
 
 .44 516 .49 713 2.0115 .89 545 
 
 34 
 
 27 
 
 .44 542 .49 749 2.0101 .89 532 
 
 33 
 
 28 
 
 .44568 .49786 2.0086 .89519 
 
 32 
 
 29 
 
 .44594 .49822 2.0072 .89506 
 
 31 
 
 '3O 
 
 .44620 .49858 2.0057 .89493 
 
 30 
 
 31 
 
 .44646 .49894 2.0042 .89480 
 
 29 
 
 32 
 
 .44672 .49931 2.0028 .89467 
 
 28 
 
 33 
 
 .44698 .49967 2.0013 .89454 
 
 27 
 
 34 
 
 .44 724 .50 004 1.9999 .89 441 
 
 26 
 
 35 
 
 .44750 .50040 1.9981- .89428 
 
 25 
 
 36 
 
 .44 776 .50 076 1.9970 .89 415 
 
 24 
 
 37 
 
 .44802 .50113 1.9955 .89402 
 
 23 
 
 38 
 
 .44 828 .50 149 1.9941 .89 389 
 
 22 
 
 39 
 
 .44 854 .50 185 1.9926 .89 376 
 
 21 
 
 40 
 
 .44880 .50222 1.9912 .89363 
 
 20 
 
 41 
 
 .44906 .50258 1.9897 .89350 
 
 19 
 
 42 
 
 .44932 .50295 1.9883 .89337 
 
 18 
 
 43 
 
 .44958 .50331 1.9868 .89324 
 
 17 
 
 44 
 
 .44984 .50368 1.9854 .89311 
 
 16 
 
 45 
 
 .45010 .50404 1.9840 .89298 
 
 15 
 
 46 
 
 .45036 .50441 1.9825 .89285 
 
 14 
 
 47 
 
 .45062 .50477 1.9811 .89272 
 
 13 
 
 48 
 
 .45 088 .50 514 1.9797 .89 259 
 
 12 
 
 49 
 
 .45114 .50550 1.9782 .89245 
 
 11 
 
 5O 
 
 .45 140 .50 587 1.9768 .89 232 
 
 10 
 
 51 
 
 .45 166 .50 623 1.9754 .89 219 
 
 9 
 
 52 
 
 .45192 .50660 1.9740 .89206 
 
 8 
 
 53 
 
 .45218 .50696 1.9725 .89193 
 
 7 
 
 54 
 
 .45243 .50733 1.9711 .89180 
 
 6 
 
 55 
 
 .45269 .50769 1.9697 .89167 
 
 5 
 
 56 
 
 .45 295 .50 806 1.9683 .89 153 
 
 4 
 
 57 
 
 .45321 .50843 1.9669 .89140 
 
 3 
 
 58 
 
 .45347 .50879 1.9654 .89127 
 
 2 
 
 59 
 
 .45 373 .50 916 1.9640 .89 114 
 
 1 
 
 60 
 
 .45399 .50953 1.9626 .89101 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 63 
 
 
 
 27 
 
 
 / 
 
 sin tan cot cos 
 
 f 
 
 
 
 .45 399 .50 953 1.9626 .89 101 
 
 60 
 
 1 
 
 .45425 .50989 1.9612 .89087 
 
 59 
 
 2 
 
 .45451 .51026 1.9598 .89074 
 
 58 
 
 3 
 
 .45477 .51063 1.9584 .89061 
 
 57 
 
 4 
 
 .45503 .51099 1.9570 .89048 
 
 56 
 
 5 
 
 .45529 .51136 1.9556 .89035 
 
 55 
 
 6 
 
 .45554 .51173 1.9542 .89021 
 
 54 
 
 '7 
 
 .45580 .51209 1.9528 .89008 
 
 53 
 
 8 
 
 .45606 .51246 1.9514 .88995 
 
 52 
 
 9 
 
 .45 632 .51 283 1.9500 .88 981 
 
 51 
 
 1O 
 
 .45658 .51319 1.9486 .88968 
 
 5O 
 
 11 
 
 .45 684 .51 356 1.9472 .88 955 
 
 49 
 
 12 
 
 .45 7JO .51393 1.9458 .88942 
 
 48 
 
 13 
 
 .45736 .51430 1.9444 .88928 
 
 47 
 
 14 
 
 .45762 .51467 1.9430 .88915 
 
 46 
 
 15 
 
 .45 787 .51 503 1.9416 .88902 
 
 45 
 
 16 
 
 .45813 .51 540 1.9402 .88888 
 
 44 
 
 17 
 
 .45839 .51577 1.9388 .88875 
 
 43 
 
 18 
 
 .45865 .51 614 1.9375 .88862 
 
 42 
 
 19 
 
 .45891 .51651 1.9361 .88848 
 
 41 
 
 20 
 
 .45917 .51688 1.9347 .88835 
 
 4O 
 
 21 
 
 .45942 .51 724 1.9333 .88822 
 
 39 
 
 22 
 
 .45968 .51 761 1.9319 .88808 
 
 38 
 
 23 
 
 .45 994 .51 798 1.9306 .88 795 
 
 37 
 
 24 
 
 .46020 .51 835 1.9292 .88782 
 
 36 
 
 25 
 
 .46046 .51872 1.9278 .88768 
 
 35 
 
 26 
 
 .46072 .51909 1.9265 .88755 
 
 34 
 
 27 
 
 .46097 .51946 1.9251 .88741 
 
 33 
 
 28 
 
 .46123 .51983 1.9237 .88728 
 
 32 
 
 29 
 
 .46149 .52020 1.9223 .88715 
 
 31 
 
 30 
 
 .46 175 .52 057 1.9210 .88 701 
 
 3O 
 
 31 
 
 .46201 .52094 1.9196 .88688 
 
 29 
 
 32 
 
 .46226 .52131 1.9183 .88674 
 
 28 
 
 33 
 
 .46252 .52168 1.9169 .88661 
 
 27 
 
 34 
 
 .46278 .52205 1.9155 .88647 
 
 26 
 
 35 
 
 .46304 .52242 1.9142 .88634 
 
 25 
 
 36 
 
 .46330 .52279 1.9128 .88620 
 
 24 
 
 37 
 
 .46355 .52316 1.9115 .88607 
 
 23 
 
 38 
 
 .46381 .52353 1.9101 .88593 
 
 22 
 
 39 
 
 .46407 .52390 1.9088 .88580 
 
 21 
 
 40 
 
 .46433 .52427 1.9074 .88566 
 
 2O 
 
 41 
 
 .46458 .52464 1.9061 .88553 
 
 19 
 
 42 
 
 .46484 .52501 1.9047 .88539 
 
 18 
 
 43 
 
 .46 510 .52 538 1.9034 .88 526 
 
 17 
 
 44 
 
 .46536 .52575 1.9020 .88512 
 
 16 
 
 45 
 
 .46 561 .52 613 1.9007 .88 499 
 
 15 
 
 46 
 
 .46 587 .52 650 1.8993 .88 485 
 
 14 
 
 47 
 
 .46 613 .52 687 1.89SO .88 472 
 
 13 
 
 48 
 
 .46 639 .52 724 1.8967 .88 458 
 
 12 
 
 49 
 
 .46664 .52761 1.8953 .88445 
 
 11 
 
 50 
 
 .46690 .52798 1.8940 .88431 
 
 1O 
 
 51 
 
 .46716 .52836 1.8927 .88417 
 
 9 
 
 52 
 
 .46742 .52873 1.8913 .88404 
 
 8 
 
 53 
 
 .46767 .52910 1.8900 .88390 
 
 71 
 
 54 
 
 .46793 .52947 1.8887 .88377 
 
 6 
 
 55 
 
 .46819 .52985 1.8873 .88363 
 
 5 
 
 56 
 
 .46 844 .53 022 1.8860 .88 349 
 
 4 
 
 57 
 
 .46 870 .53 059 1.8847 .88 336 
 
 3 
 
 58 
 
 .46 896 .53 096 1.8834 .88 322 
 
 2 
 
 59 
 
 .46921 .53 134 1.8820 .88308 
 
 1 
 
 60 
 
 .46947 .53171 1.SS07 .88 295 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 62 
 
 
72 
 
 NATURAL FUNCTIONS 
 
 
 28 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .46947 .53171 1.8S07 .88295 
 
 60 
 
 1 
 
 .46973 .53208 1.8794 .88281 
 
 59 
 
 2 
 
 .46999 .53246 1.8781 .88267 
 
 58 
 
 3 
 
 .47 024 .53 283 1.8768 .88 254 
 
 57 
 
 4 
 
 .47050 .53320 1.8755 .88240 
 
 56 
 
 5 
 
 .47 076 .53 358 1.8741 .88 226 
 
 55 
 
 6 
 
 .47 101 .53 395 1.8728 .88 213 
 
 54 
 
 7 
 
 .47 127 .53 432 1.8715 .88 199 
 
 53 
 
 8 
 
 .47 153 .53470 1.8702 .88 185 
 
 52 
 
 9 
 
 .47 178 .53 507 1.8689 .88 172 
 
 51 
 
 10 
 
 .47 204 .53 545 1.8676 .88 158 
 
 5O 
 
 11 
 
 .47 229 .53 582 1.8663 .88 144 
 
 49 
 
 12 
 
 .47 255 .53 620 1.8650 .88 130 
 
 48 
 
 13 
 
 .47 281 .53 657 1.8637 .88 117 
 
 47 
 
 14 
 
 .47 306 .53 694 1.8624 .88 103 
 
 46 
 
 15 
 
 .47332 .53732 1.8611 .88089 
 
 45 
 
 16 
 
 .47 358 .53 769 1.8598 .88 075 
 
 44 
 
 17 
 
 .47 383 .53 807 1.8585 .88 062 
 
 43 
 
 18 
 
 .47409 .53844 1.8572 .88048 
 
 42 
 
 19 
 
 .47434 .53882 1.8559 .88034 
 
 41 
 
 2O 
 
 .47 460 .53 920 1.8546 .88 020 
 
 40 
 
 21 
 
 .47486 .53957 1.8533 .88006 
 
 39 
 
 22 
 
 .47511 .53995 1.8520 .87993 
 
 38 
 
 23 
 
 .47 537 .54 032 1.8507 .87 979 
 
 37 
 
 24 
 
 .47562 .54070 1.8495 .87965 
 
 36 
 
 25 
 
 .47588 .54307 1.8482 .87951 
 
 35 
 
 26 
 
 .47 614 .54 145 1.8469 .87 937 
 
 34 
 
 27 
 
 .47 639 .54 183 1.8456 .87 923 
 
 33 
 
 28 
 
 .47665 .54220 18443 .87909 
 
 32 
 
 29 
 
 .47 690 .54 258 1.8430 .87 896 
 
 31 
 
 3O 
 
 .47 716 .54 296 1.8418 .87 882 
 
 3O 
 
 31 
 
 .47741 .54333 1.8405 .87868 
 
 29 
 
 32 
 
 .47 767 .54 371 1.8392 .87 854 
 
 28 
 
 33 
 
 .47 793 .54 409 1.8379 .87 840 
 
 27 
 
 34 
 
 .47 818 .54 446 1.8367 .87 826 
 
 26 
 
 35 
 
 .47844 .54484 1.8354 .87812 
 
 25 
 
 36 
 
 .47 869 .54 522 1.8341 .87 798 
 
 24 
 
 37 
 
 .47 895 .54 560 1.8329 .87 784 
 
 23 
 
 38 
 
 .47 920 .54 597 1.8316 .87 770 
 
 22 
 
 39 
 
 .47 946 .54 635 1.8303 .87 756 
 
 21 
 
 4O 
 
 .47971 .54673 1.8291 .87743 
 
 2O 
 
 41 
 
 .47 997 .54 711 1.8278 .87 729 
 
 19 
 
 42 
 
 .48022 .54748 1.8265 .87715 
 
 18 
 
 43 
 
 .48048 .54786 1.8253 .87701 
 
 17 
 
 44 
 
 .48073 .54824 1.8240 .87687 
 
 16 
 
 45 
 
 .48099 .54862 1.8228 .87673 
 
 15 
 
 46 
 
 .48124 .54900 1.8215 .87659 
 
 14 
 
 47 
 
 .48150 .54938 1.8202 .87645 
 
 13 
 
 48 
 
 .48175 .54975 1.8190 .87631 
 
 12 
 
 49 
 
 .48201 .55013 1.8177 .87617 
 
 11 
 
 50 
 
 .48226 .55051 1.8165 .87603 
 
 1O 
 
 51 
 
 .48 252 .55 089 1.8152 .87 589 
 
 9 
 
 52 
 
 .48 277 .55 127 1.8140 .87 575 
 
 8 
 
 53 
 
 .48 303 .55 165 1.8127 .87 561 
 
 7 
 
 54 
 
 .48328 .55203 1.8115 .87546 
 
 6 
 
 55 
 
 .48 354 .55 241 1.8103 .87 532 
 
 5 
 
 56 
 
 .48379 .55279 1.8090 .87518 
 
 4 
 
 57 
 
 .48405 .55317 1.8078 .87504 
 
 3 
 
 58 
 
 .48430 .55355 1.8065 .87490 
 
 2 
 
 59 
 
 .48 456 .55 393 1.8053 .87 476 
 
 1 
 
 GO 
 
 .48481 .55431 1.8040 .87462 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 61 
 
 
 
 29 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .48481 .55431 1.8040 .87462 
 
 6O 
 
 1 
 
 .48506 .55469 1.8028 .87448 
 
 59 
 
 2 
 
 .48 532 .55 507 1.8016 .87 434 
 
 58 
 
 3 
 
 .48 557 .55 545 1.8003 .87 420 
 
 57 
 
 4 
 
 .48 583 .55 583 1.7991 .87 406 
 
 56 
 
 5 
 
 .48608 .55621 1.7979 .87391 
 
 55 
 
 6 
 
 .48634 .55659 1.7966 .87377 
 
 54 
 
 7 
 
 .48 659 .55 697 1.7954 .87 363 
 
 53 
 
 8 
 
 .48684 .55 736 1.7942 .87349 
 
 52 
 
 9 
 
 .48710 .55774 1.7930 .87335 
 
 51 
 
 1O 
 
 .48735 .55812 1.7917 .87321 
 
 50 
 
 11 
 
 .48 761 .55 850 1.7905 .87 306 
 
 49 
 
 12 
 
 .48786 .55888 1.7893 .87292 
 
 48 
 
 13 
 
 .48811 .55926 1.7881 .87278 
 
 47 
 
 14 
 
 .48837 .55964 1.7868 .87264 
 
 46 
 
 15 
 
 .48862 .56003 1.7856 .87250 
 
 45 
 
 16 
 
 .48888 .56041 1.7844 .87235 
 
 44 
 
 17 
 
 .48913 .56079 .7832 .87221 
 
 43 
 
 18 
 
 .48938 .56117 .7820 .87207 
 
 42 
 
 19 
 
 .48 964 .56 156 .7808 .87 193 
 
 41 
 
 2O 
 
 .48 989 .56 194 .7796 .87 178 
 
 4O 
 
 21 
 
 .49 014 .56 232 .7783 .87 164 
 
 " 39 
 
 22 
 
 .49 040 .56 270 .7771 .87 150 
 
 38 
 
 23 
 
 .49065 .56309 .7759 .87136 
 
 37 
 
 24 
 
 .49 090 .56 347 .7747 .87 121 
 
 36 
 
 25 
 
 .49 116 .56 385 .7735 .87 107 
 
 35 
 
 26 
 
 .49141 .56424 .7723 .87093 
 
 34 
 
 27 
 
 .49166 .56462 .7711 .87079 
 
 33 
 
 28 
 
 .49192 .56 501 .7699 .87 064 
 
 32. 
 
 29 
 
 .49 217 .56 539 .7687 .87 05.0 
 
 31 
 
 30 
 
 .49242 .56577 .7675 .87036 
 
 3O 
 
 31 
 
 .49268 .56616 .7663 .87021 
 
 29 
 
 32 
 
 .49293 .56654 .7651 .87007 
 
 28 
 
 33 
 
 .49318 .56693 .7639 .86993 
 
 27 
 
 34 
 
 .49344 .56731 .7627 .86978 
 
 26 
 
 35 
 
 .49369 .56769 1.7615 .86964 
 
 25 
 
 36 
 
 .49394 .56808 1.7603 .86949 
 
 24 
 
 37 
 
 .49419 .56846 1.7591 .86935 
 
 23 
 
 38 
 
 .49445 .56885 1.7579 .86921 
 
 22 
 
 39 
 
 .49470 .56923 1.7567 .86906 
 
 21 
 
 40 
 
 .49495 .56962 1.7556 .86892 
 
 2O 
 
 41 
 
 .49521 .57000 1.7544 .86878 
 
 19 
 
 42 
 
 .49546 .57039 1.7532 .86863 
 
 18 
 
 43 
 
 .49 571 .57 078 1.7520 .86 849 
 
 17 
 
 44 
 
 .49596 .57116 1.7508 .86834 
 
 16 
 
 45 
 
 .49 622 .57 155 .7496 .86 820 
 
 15 
 
 46 
 
 .49647 .57 193 .7485 .86805 
 
 14 
 
 47 
 
 .49 672 .57 232 .7473 .86 791 
 
 13 
 
 48 
 
 .49 697 .57 271 .7461 .86 777 
 
 12 
 
 49 
 
 .49 723 .57 309 .7449 .86 762 
 
 11 
 
 50 
 
 .49 748 .57 348 .7437 .86 748 
 
 1O 
 
 51 
 
 .49 773 .57 386 .7426 .86 733 
 
 9 
 
 52 
 
 .49 798 .57 425 1.7414 .86 719 
 
 8 
 
 53 
 
 .49824 .57464 1.7402 .86704 
 
 7 
 
 54 
 
 .49849 .57503 1.7391 .86690 
 
 6 
 
 55 
 
 .49874 .57541 1.7379 .86675 
 
 5 
 
 56 
 
 .49899 .57580 1.7367 .86661 
 
 4 
 
 57 
 
 .49 924 .57 619 1.7355 .86 646 
 
 3 
 
 58 
 
 .49950 .57657 1.7344 .86632 
 
 2 
 
 59 
 
 .49975 .57696 1.7332 .86617 
 
 1 
 
 60 
 
 .50000 .57735 1.7321 .86603 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 60 
 
 
NATURAL FUNCTIONS 
 
 73 
 
 
 30 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .50000 .57735 1.7321 .86603 
 
 6O 
 
 1 
 
 .50025 .57774 1.7309 .86588 
 
 59 
 
 2 
 
 .50050 .57813 1.7297 .86573 
 
 58 
 
 3 
 
 .50076 .57851 1.7286 .86559 
 
 57 
 
 4 
 
 .50 101 .57 890 1.7274 .86 544 
 
 56 
 
 5 
 
 .50 126 .57 929 1.7262 .86 530 
 
 55 
 
 6 
 
 .50151 .57968 1.7251 .86515 
 
 54 
 
 7 
 
 .50176 .58007 1.7239 .86501 
 
 53 
 
 8 
 
 .50201 .58046 1.7228 .86486 
 
 52 
 
 9 
 
 .50227 .58085 1.7216 .86471 
 
 51 
 
 10 
 
 .50252 .58124 1.7205 .86457 
 
 50 
 
 11 
 
 .50277 .58162 1.7193 .86442 
 
 49 
 
 12 
 
 .50302 .58201 1.7182 .86427 
 
 48 
 
 13 
 
 .50327 .58240 1.7170 .86413 
 
 47 
 
 14 
 
 .50352 .58279 1.7159 .86398 
 
 46 
 
 15 
 
 .50377 .58318 1.7147 .86384 
 
 45 
 
 16 
 
 .50403 .58357 1.7136 .86369 
 
 44 
 
 17 
 
 .50428 .58396 1.7124 .86354 
 
 43 
 
 18 
 
 .50453 .58435 1.7113 .86340 
 
 42 
 
 ! 19 
 
 .50478 .58474 1.7102 .86325 
 
 41 
 
 2O 
 
 .50503 .58513 1.7090 .86310 
 
 40 
 
 21 
 
 .50 528 .58 552 1.7079 .86 295 
 
 39 
 
 22 
 
 .50553 .58591 1.7067 .86281 
 
 38 
 
 23 
 
 .50578 .58631 1.7056 .86266 
 
 37 
 
 24 
 
 .50603 .58670 1.7045 .86251 
 
 36 
 
 25 
 
 .50628 .58709 1.7033 .86237 
 
 35 
 
 26 
 
 .50654 .58748 1.7022 .86222 
 
 34 
 
 27 
 
 .50679 .58787 1.7011 .86207 
 
 33 
 
 28 
 
 .50704 .58826 1.6999 .86192 
 
 32 
 
 29 
 
 .50729 .58865 1.6988 .86178 
 
 31 
 
 3O 
 
 .50 754 .58 905 1.6977 .86 163 
 
 30 
 
 31 
 
 .50779 .58944 1.6965 .86148 
 
 29 
 
 32 
 
 .50804 .58983 1.6954 .86133 
 
 28 
 
 33 
 
 .50829 .59022 1.6943 .86119 
 
 27 
 
 34 
 
 .50854 .59061 1.6932 .86104 
 
 26 
 
 35 
 
 .50879 .59101 1.6920 .86089 
 
 25 
 
 36 
 
 .50904 .59140 1.6909 .86074 
 
 24 
 
 37 
 
 .50929 .59179 1.6898 .86059 
 
 23 
 
 38 
 
 .50954 .59218 1.6887 .86045 
 
 22 
 
 39 
 
 .50979 .59258 1.6875 .86030 
 
 21 
 
 4O 
 
 .51004 .59297 1.6864 .86015 
 
 2O 
 
 41 
 
 .51029 .59336 1.6853 .86000 
 
 19 
 
 42 
 
 .51054 .59376 1.6S42 .85985 
 
 18 
 
 43 
 
 .51079 .59415 1.6831 .85970 
 
 17 
 
 44 
 
 .51104 .59454 1.6820 .85956 
 
 16 
 
 45 
 
 .51 129 .59494 1.6808 .85941 
 
 15 
 
 46 
 
 .51 154 .59533 1.6797 .85926 
 
 14 
 
 47 
 
 .51 179 .59573 1.67S6 .85911 
 
 13 
 
 48 
 
 .51204 .59612 1.6775 .85896 
 
 12 
 
 49 
 
 .51229 .59651 1.6764 .85881 
 
 11 
 
 50 
 
 .51254 .59691 1.6753 .85866 
 
 10 
 
 51 
 
 .51279 .59730 1.6742 .85851 
 
 9 
 
 52 
 
 .51304 .59770 1.6731 .85836 
 
 8 
 
 53 
 
 .51329 .59809 1.6720 .85821 
 
 7 
 
 54 
 
 .51354 .59849 1.6709 .85806 
 
 6 
 
 55 
 
 .51379 .59888 1.6698 .85792 
 
 5 
 
 56 
 
 .51404 .59928 1.6687 .85777 
 
 4 
 
 57 
 
 .51429 .59967 1.6676 .85762 
 
 3 
 
 58 
 
 .51454 .60007 1.6665 .85747 
 
 2 
 
 59 
 
 .51479 .60046 1.6654 .85732 
 
 1 
 
 60 
 
 .51504 .60086 1.6643 .85717 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 59 
 
 
 
 31 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .51504 .60086 1.6643 .85717 
 
 60 
 
 1 
 
 .51 529 .60 126 1.6632 .85 702 
 
 59 
 
 2 
 
 .51 554 .60 165 1.6621 .85 687 
 
 58 
 
 3 
 
 .51579 .60205 1.6610 .85672 
 
 57 
 
 4 
 
 51604 .60245 1.6599 .85657 
 
 56 
 
 5 
 
 .51 628 .60 284 1.6588 .85 642 
 
 55 
 
 6 
 
 .51653 .60324 1.6577 .85627 
 
 54 
 
 '7 
 
 .51678 .60364 1.6566 .85612 
 
 53 
 
 8 
 
 .51703 .60403 1.6555 .85597 
 
 52 
 
 9 
 
 .51728 .60443 1.6545 .85582 
 
 51 
 
 1O 
 
 .51753 .60483 1.6534 .85567 
 
 50 
 
 11 
 
 .51 778 .60522 1.6523 .85551 
 
 49 
 
 12 
 
 .51803 .60562 1.6512 .85536 
 
 48 
 
 13 
 
 .51828 .60602 1.6501 .85521 
 
 47 
 
 14 
 
 .51852 .60642 1.6490 .85506 
 
 46 
 
 15 
 
 .51877 .60681 1.6479 .85491 
 
 45 
 
 16 
 
 .51902 .60721 1.6469 .85476 
 
 44 
 
 17 
 
 .51927 .60761 1.6458 .85461 
 
 43 
 
 18 
 
 .51952 .60801 1.6447 .85446 
 
 42 
 
 19 
 
 .51977 .60841 1.6436 .85431 
 
 41 
 
 2O 
 
 .52 002 .60 881 1.6426 .85 416 
 
 40 
 
 21 
 
 .52026 .60921 1.6415 .85401 
 
 39 
 
 22 
 
 .52051 .60960 1.6404 .85385 
 
 38 
 
 23 
 
 .52076 .61000 1.6393 .85370 
 
 37 
 
 24 
 
 .52 101 .61 040 1.6383 .85 355 
 
 36 
 
 25 
 
 .52 126 .61 080 1.6372 .85 340 
 
 35 
 
 26 
 
 .52151 .61 120 1.6361 .85325 
 
 34 
 
 27 
 
 .52175 .61160 1.6351 .85310 
 
 33 
 
 28 
 
 .52 200 .61 200 1.6340 .85 294 
 
 32 
 
 29 
 
 .52 225 .61 240 1.6329 .85 279 
 
 31 
 
 30 
 
 .52 250 .61 280 1.6319 .85 264 
 
 30 
 
 31 
 
 .52 275 .61 320 1.6308 .85 249 
 
 29 
 
 32 
 
 .52 299 .61 360 1.6297 .85 234 
 
 28 
 
 33 
 
 .52 324 .61 400 1.6287 .85 218 
 
 27 
 
 31 
 
 .52 349 .61 440 1.6276 .85 203 
 
 26 
 
 35 
 
 .52374 .61480 1.6265 .85188 
 
 25 
 
 36 
 
 .52 399 .61 520 1.6255 .85 173 
 
 24 
 
 37 
 
 .52 423 .61 561 1.6244 .85 157 
 
 23 
 
 38 
 
 .52 448 .61 601 1.6234 .85 142 
 
 22 
 
 39 
 
 .52473 .61641 1.6223 .85 127 
 
 21 
 
 4O 
 
 .52498 .61681 1.6212 .85112 
 
 2O 
 
 41 
 
 .52 522 .61 721 1.6202 .85 096 
 
 19 
 
 42 
 
 .57 547 .61 761 1.6191 .85 081 
 
 18 
 
 43 
 
 .52572 .61801 1.6181 .85066 
 
 17 
 
 44 
 
 .52 597 .61 842 1.6170 .85 051 
 
 16 
 
 45 
 
 .52 621 .61 882 1.6160 .85 035 
 
 15 
 
 46 
 
 .52 646 .61 922 1.6149 .85 020 
 
 14 
 
 47 
 
 .52671 .61962 1.6139 .85005 
 
 13 
 
 48 
 
 .52696 .62003 1.6128 .84989 
 
 12 
 
 49 
 
 .52720 .62043 1.6118 .84974 
 
 11 
 
 5O 
 
 .52745 .62083 1.6107 .84959 
 
 1O 
 
 51 
 
 .52770 .62 124 1.6097 .84943 
 
 9 
 
 52 
 
 .52 794 .62 164 1.6087 .84 928 
 
 8 
 
 53 
 
 .52 819 .62 204 1.6076 .84 913 
 
 7 
 
 54 
 
 .52 844 .62 245 1.6066 .84 897 
 
 6 
 
 55 
 
 .52 869 .62 285 1.6055 .84 882 
 
 5 
 
 56 
 
 .52893 .62325 1.6045 .84866 
 
 4 
 
 57 
 
 .52918 .62366 1.6034 .84851 
 
 3 
 
 58 
 
 .52 943 .62 406 1.6024 .84 836 
 
 2 
 
 59 
 
 .52967 .62446 1.6014 .84820 
 
 1 
 
 60 
 
 .52992 .62487 1.6003 .84805 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 58 
 
 
74 
 
 NATURAL FUNCTIONS 
 
 
 32 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 ~0 
 
 .52992 .62487 1.6003 .84805 
 
 6O 
 
 1 
 
 .53017 .62527 1.5993 .84789 
 
 59 
 
 2 
 
 .53041 .62568 1.5983 .84774 
 
 58 
 
 3 
 
 .53 066 .62 608 1.5972 .84 759 
 
 57 
 
 4 
 
 .53 091 .62 649 1.5962 .84 743 
 
 56 
 
 5 
 
 .53 115 .62 689 1.5952 .84 728 
 
 55 
 
 6 
 
 .53 140 .62 730 1.5941 .84 712 
 
 54 
 
 7 
 
 .53164 .62770 1.5931 .84697 
 
 53 
 
 8 
 
 .53189 .62811 1.5921 .84681 
 
 52 
 
 9 
 
 .53214 .62852 1.5911 .84666 
 
 51 
 
 10 
 
 .53 238 .62 892 1.5900 .84 650 
 
 50 
 
 11 
 
 .53 263 .62 933 1.5890 .84 635 
 
 49 
 
 12 
 
 .53288 .62973 1.5880 .84619 
 
 48 
 
 13 
 
 .53312 .63014 1.5869 .84604 
 
 47 
 
 14 
 
 .53337 .63055 1.5859 .84588 
 
 46 
 
 15 
 
 .53 361 .63 095 1.5849 .84 573 
 
 45 
 
 16 
 
 .53 386 .63 136 1.5839 .84 557 
 
 44 
 
 17 
 
 .53411 .63177 1.5829 .84542 
 
 43 
 
 18 
 
 .53435 .63217 1.5818 .84526 
 
 42 
 
 19 
 
 53460 .63258 1.5808 .84511 
 
 41 
 
 2O 
 
 .53 484 .63 299 1.5798 .84 495 
 
 40 
 
 21 
 
 .53 509 .63 340 1.5788 .84 480 
 
 39 
 
 22 
 
 .53534 .63380 1.5778 .84464 
 
 38 
 
 23 
 
 .53558 .63421 1.5768 .84448 
 
 37 
 
 24 
 
 .53583 .63462 1.5757 .84433 
 
 36 
 
 25 
 
 .53607 .63503 1.5747 .84417 
 
 35 
 
 26 
 
 .53632 .63544 1.5737 .84402 
 
 34 
 
 27 
 
 .53 656 .63 584 1.5727 .84 386 
 
 33 
 
 28 
 
 .53681 .63625 1.5717 .84370 
 
 32 
 
 29 
 
 .53705 .63666 1.5707 .84355 
 
 31 
 
 3D 
 
 .53 730 .63 707 1.5697 .84 339 
 
 30 
 
 31 
 
 .53 754 .63 748 1.5687 .84 324 
 
 29 
 
 32 
 
 .53 779 .63 789 1.5677 .84 308 
 
 28 
 
 33 
 
 .53 804 .63 830 1.5667 .84 292 
 
 27 
 
 34 
 
 .53 828 .63 871 1.5657 .84 277 
 
 26 
 
 35 
 
 .53853 .63912 1.5647 .84261 
 
 25 
 
 36 
 
 .53 877 .63 953 L5637 .84 245 
 
 24 
 
 37 
 
 .53902 .63994 1.5627 .84230 
 
 23 
 
 38 
 
 .53926 .64035 1.5617 .84214 
 
 22 
 
 39 
 
 .53951 .64076 1.5607 .84198 
 
 21 
 
 4O 
 
 .53975 .64117 1.5597 .84182 
 
 20 
 
 41 
 
 .54 000 .64 158 1.5587 .84 167 
 
 19 
 
 42 
 
 .54024 .64199 1.5577 .84151 
 
 18 
 
 43 
 
 .54 049 .64 240 1.5567 .84 135 
 
 17 
 
 44 
 
 .54073 .64281 1.5557 .84120 
 
 16 
 
 45 
 
 .54097 .64322 1.5547 .84104 
 
 15 
 
 46 
 
 .54122 .64363 1.5537 .84088 
 
 14 
 
 47 
 
 .54146 .64404 1.5527 .84072 
 
 13 
 
 48 
 
 .54171 .64446 1.5517 .84057 
 
 12 
 
 49 
 
 .54 195 .64 487 1.5507 .84 041 
 
 11 
 
 50 
 
 .54220 .64528 1.5497 .84025 
 
 10 
 
 51 
 
 .54244 .64569 1.5487 .84009 
 
 9 
 
 52 
 
 .54269 .64610 1.5477 .83994 
 
 8 
 
 53 
 
 .54293 .64652 1.5468 .83978 
 
 7 
 
 54 
 
 .54317 .64693 1.5458 .83962 
 
 6 
 
 55 
 
 .54342 .64734 1.5448 .83946 
 
 5 
 
 56 
 
 .54 366 .64 775 1.5438 .83 930 
 
 4 
 
 57 
 
 .54 391 .64 817 1.5428 .83 915 
 
 3 
 
 58 
 
 .54415 .64858 1.5418 .83899 
 
 2 
 
 59 
 
 .54 440 .64 899 1.5408 .83 883 
 
 1 
 
 6O 
 
 .54 464 .64 941 1.5399 .83 867 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 57 
 
 
 
 33 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .54464 .64941 1.5399 .83867 
 
 6O 
 
 1 
 
 .54488 .64982 1.5389 .83851 
 
 59 
 
 2 
 
 .54 513 .65 024 1.5379 .83 835 
 
 58 
 
 3 
 
 .54 537 .65 065 1.5369 .83 819 
 
 57 
 
 4 
 
 .54 561 .65 106 1.5359 .83 804 
 
 56 
 
 5 
 
 .54 586 .65 148 1.5350 .83 788 
 
 55 
 
 6 
 
 .54610 .65 189 1.5340 .83772 
 
 54 
 
 7 
 
 .54 635 .65 231 1.5330 .83 756 
 
 53 
 
 8 
 
 .54 659 .65 272 1.5320 .83 740 
 
 52 
 
 9 
 
 .54683 .65314 1.5311 .83724 
 
 51 
 
 10 
 
 .54 708 .65 355 1.5301 .83 708 
 
 50 
 
 11 
 
 .54 732 .65 397 1.5291 .83 692 
 
 49 
 
 12 
 
 .54 756 .65 438 1.5282 .83 676 
 
 48 
 
 13 
 
 .54781 .65480 1.5272 .83660 
 
 47 
 
 14 
 
 .54805 .65521 1.5262 .83645 
 
 46 
 
 15 
 
 .54 829 .65 563 1.5253 .83 629 
 
 45 
 
 16 
 
 .54 854 .65 604 1.5243 .83 613 
 
 44 
 
 17 
 
 .54 878 .65 646 1.5233 .83 597 
 
 43 
 
 18 
 
 .54 902 .65 688 1.5224 .83 581 
 
 42 
 
 19 
 
 .54 927 .65 729 1.5214 .83 565 
 
 41 
 
 2O 
 
 .54951 .65771 1.5204 .83549 
 
 40 
 
 21 
 
 .54975 .65813 1.5195 .83533 
 
 39 
 
 22 
 
 .54999 .65854 1.5185 .83517 
 
 38 
 
 23 
 
 .55 024 .65 896 1.5175 .83 501 
 
 37 
 
 24 
 
 .55 048 .65 938 1.5166 .83 485 
 
 36 
 
 25 
 
 .55072 .65980 1.5156 .83469 
 
 35 
 
 26 
 
 .55097 .66021 1.5147 .83453 
 
 34 
 
 27 
 
 .55121 .66063 1.5137 .83437 
 
 33 
 
 28 
 
 .55-145 .66105 1.5127 .83421 
 
 32 
 
 29 
 
 .55 169 .66 147 1.5118 .83 405 
 
 31 
 
 30 
 
 .55 194 .66 189 1.5108 .83 389 
 
 30 
 
 31 
 
 .55 218 .66 230 1.5099 .83 373 
 
 29 
 
 32 
 
 .55 242 .66 272 1.5089 .83 356 
 
 28 
 
 33 
 
 .55266 .66314 1.5080 .83340 
 
 27 
 
 34 
 
 .55291 .66356 1.5070 .83324 
 
 26 
 
 35 
 
 .55315 .66398 1.5061 .83308 
 
 25 
 
 36 
 
 .55339 .66440 1.5051 .83292 
 
 24 
 
 37 
 
 .55 363 .66 482 1.5042 .83 276 
 
 23 
 
 38 
 
 .55 388 .66 524 1.5032 .83 260 
 
 22 
 
 39 
 
 .55412 .66566 1.5023 .83244 
 
 21 
 
 40 
 
 .55 436 .66 608 1.5013 .83 228 
 
 20 
 
 41 
 
 .55460 .66650 1.5004 .83212 
 
 19 
 
 42 
 
 .55484 .66692 1.4994 .83195 
 
 18 
 
 43 
 
 .55 509 .66 734 1.4985 .83 179 
 
 17 
 
 44 
 
 .55 533 .66 776 1.4975 .83 163 
 
 16 
 
 45 
 
 .55557 .66818 1.4966 .83147 
 
 15 
 
 46 
 
 .55581 .66860 1.4957 .83131 
 
 14 
 
 47 
 
 .55605 .66902 1.4947 .83115 
 
 13 
 
 48 
 
 .55630 .66944 1.4938 .83098 
 
 12 
 
 49 
 
 .55654 .66986 1.4928 .83082 
 
 11 
 
 50 
 
 .55 678 .67 028 1.4919 .83 066 
 
 10 
 
 51 
 
 .55 702 .67 071 1.4910 .83 050 
 
 9 
 
 52 
 
 .55726 .67113 1.4900 .83034 
 
 8 
 
 53 
 
 .55750 .67155 1.4891 .83017 
 
 7 
 
 54 
 
 .55 775 .67 197 1.4882 .83 001 
 
 6 
 
 55 
 
 .55 799 .67 239 1.4872 .82 985 
 
 5 
 
 56 
 
 .55823 .67282 1.4863 .82969 
 
 4 
 
 57 
 
 .55847 .67324 1.4854 .82953 
 
 3 
 
 58 
 
 .55871 .67366 1.4844 .82936 
 
 2 
 
 59 
 
 .55 895 .67 409 1.4835 .82 920 
 
 1 
 
 60 
 
 .55919 .67451 1.4826 .82904 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 56 
 
 
NATURAL FUNCTIONS 
 
 75 
 
 
 34 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .55919 .67451 1.4826 .82904 
 
 6O 
 
 1 
 
 .55 943 .67 493 1.4816 .82 887 
 
 59 
 
 2 
 
 .55968 .67536 1.4807 .82871 
 
 58 
 
 3 
 
 .55992 .67578 1.4798 .82855 
 
 57 
 
 4 
 
 .56016 .67620 1.4788 .82839 
 
 56 
 
 5 
 
 .56 040 .67 663 1.4779 .82 822 
 
 55 
 
 6 
 
 .56064 .67705 1.4770 .82806 
 
 54 
 
 7 
 
 .56088 .67748 1.4761 .82790 
 
 53 
 
 8 
 
 .56112 .67790 1.4751 .82773 
 
 52 
 
 9 
 
 .56 136 .67 832 1.4742 .82 757 
 
 51 
 
 10 
 
 .56 160 .67 875 1.4733 .82 741 
 
 50 
 
 11 
 
 .56 184 .67 917 1.4724 .82 724 
 
 49 
 
 12 
 
 .56 208 .67 960 1.4715 .82 708 
 
 48 
 
 13 
 
 .56232 .68002 1.4705 .82692 
 
 47 
 
 14 
 
 .56 256 .68 045 1.4696 .82 675 
 
 46 
 
 15 
 
 .56280 .68088 1.4687 .82659 
 
 45 
 
 16 
 
 .56 305 .68 130 1.4678 .82 643 
 
 44 
 
 17 
 
 .56 329 .68 173 1.4669 .82 626 
 
 43 
 
 18 
 
 .56353 .68215 1.4659 .82610 
 
 42 
 
 19 
 
 .56377 .68258 1.4650 .82593 
 
 41 
 
 2O 
 
 .56401 .68301 1.4641 .82577 
 
 40 
 
 21 
 
 .56425 .68343 1.4632 .82561 
 
 39 
 
 22 
 
 .56 449 .68 386 1.4623 .82 544 
 
 38 
 
 23 
 
 .56473 .68429 1.4614 .82528 
 
 37 
 
 24 
 
 .56497 .68471 1.4605 .82511 
 
 36 
 
 25 
 
 .56521 .68514 1.4596 .82495 
 
 35 
 
 26 
 
 .56545 .68557 1.4586 .82478 
 
 34 
 
 27 
 
 .56569 .68600 1.4577 .82462 
 
 33 
 
 28 
 
 .56593 .68642 1.4568 .82446 
 
 32 
 
 29 
 
 .56617 .68685 1.4559 .82429 
 
 31 
 
 30 
 
 .56641 .68728 1.4550 .82413 
 
 3O 
 
 31 
 
 .56665 .68771 1.4541 .82396 
 
 29 
 
 32 
 
 .56689 .68814 1.4532 .82380 
 
 28 
 
 33 
 
 .56713 .68857 1.4523 .82363 
 
 27 
 
 34 
 
 .56736 .68900 1.4514 .82347 
 
 26 
 
 35 
 
 .56760 .68942 1.4505 .82330 
 
 25 
 
 36 
 
 .56784 .68985 1.4496 .82314 
 
 24 
 
 37 
 
 .56808 .69028 1.4487 .82297 
 
 23 
 
 38 
 
 .56832 .69071 1.4478 .82281 
 
 22 
 
 39 
 
 .56856 .69114 1.4469 .82264 
 
 21 
 
 4O 
 
 .56880 .69157 1.4460 .82248 
 
 2O 
 
 41 
 
 .56904 .69200 1.4451 .82231 
 
 19 
 
 42 
 
 .56928 .69243 1.4442 .82214 
 
 18 
 
 43 
 
 .56952 .69286 1.4433 .82198 
 
 17 
 
 44 
 
 .56 976 .69 329 1.4424 .82 181 
 
 16 
 
 45 
 
 .57 000 .69 372 1.4415 .82 165 
 
 15 
 
 46 
 
 .57024 .69416 1.4406 .82148 
 
 14 
 
 47 
 
 .57047 .69459 1.4397 .82132 
 
 13 
 
 48 
 
 .57071 .69502 1.4388 .82115 
 
 12 
 
 49 
 
 .57095 .69545 1.4379 .82098 
 
 11 
 
 50 
 
 .57119 .69588 1.4370 .82082 
 
 1O 
 
 51 
 
 .57143 .69631 1.4361 .82065 
 
 9 
 
 52 
 
 .57167 .69675 1.4352 .82048 
 
 8 
 
 53 
 
 .57191 .69718 1.4344 .82032 
 
 7 
 
 54 
 
 .57215 .69761 1.4335 .82015 
 
 6 
 
 55 
 
 .57238 .69804 1.4326 .81999 
 
 5 
 
 56 
 
 .57262 .69847 1.4317 .81982 
 
 4 
 
 57 
 
 .57286 .69891 1.4308 .81965 
 
 3 
 
 58 
 
 .57310 .69934 1.4299 .81949 
 
 2 
 
 59 
 
 .57334 .69977 1.4290 .81932 
 
 1 
 
 6O 
 
 .57358 .70021 1.4281 .81915 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 55 
 
 
 
 35 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .57358 .70021 1.4281 .81915 
 
 60 
 
 1 
 
 .57381 .70064 1.4273 .81899 
 
 59 
 
 2 
 
 .57405 .70107 1.4264 .81882 
 
 58 
 
 3 
 
 .57429 .70151 1.4255 .81865 
 
 57 
 
 4 
 
 .57 453 .70 194 1.4246 .81 848 
 
 56 
 
 5 
 
 .57 477 .70 238 1.4237 .81 832 
 
 55 
 
 6 
 
 .57 501 .70 281 1.4229 .81 815 
 
 54 
 
 7 
 
 .57 524 .70 325 1.4220 .81 798 
 
 53 
 
 8 
 
 .57548 .70368 1.4211 .81782 
 
 52 
 
 9 
 
 .57572 .70412 1.4202 .81765 
 
 51 
 
 10 
 
 .57596 .70455 1.4193 .81748 
 
 50 
 
 11 
 
 .57619 .70499 1.4185 .81731 
 
 49 
 
 12 
 
 .57643 .70542 1.4176 .81714 
 
 48 
 
 13 
 
 .57667 .70586 1.4167 .81698 
 
 47 
 
 14 
 
 .57691 .70629 1.4158 .81681 
 
 46 
 
 15 
 
 .57715 .70673 1.4150 .81664 
 
 45 
 
 16 
 
 .57738 .70717 1.4141 .81647 
 
 44 
 
 17 
 
 .57 762 .70 760 1.4132 .81 631 
 
 43 
 
 18 
 
 .57786 .70804 1.4124 .81614 
 
 42 
 
 19 
 
 .57810 .70848 1.4115 .81597 
 
 41 
 
 20 
 
 .57833 .70891 1.4106 .81580 
 
 40 
 
 21 
 
 .57857 .70935 1.4097 .81563 
 
 39 
 
 22 
 
 .57881 .70979 1.4089 .81546 
 
 38 
 
 23 
 
 .57904 .71023 1.4080 .81530 
 
 37 
 
 24 
 
 .57 928 .71 066 1.4071 .81 513 
 
 36 
 
 25 
 
 .57952 .71110 1.4063 .81496 
 
 35 
 
 26 
 
 .57976 .71154 1.4054 .81479 
 
 34 
 
 27 
 
 .57999 .71198 1.4045 .81462 
 
 33 
 
 28 
 
 .58 023 .71 242 1.4037 .81 445 
 
 32 
 
 29 
 
 .58 047 .71 285 1.4028 .81 428 
 
 31 
 
 3O 
 
 .58070 .71329 1.4019 .81412 
 
 30 
 
 31 
 
 .58 094 .71 373 1.4011 .81 395 
 
 29 
 
 32 
 
 .58 118 .71 417 1.4002 .81 378 
 
 28 
 
 33 
 
 .58 141 .71 461 1.3994 .81 361 
 
 27 
 
 34 
 
 .58 165 .71 505 1.3985 .81 344 
 
 26 
 
 35 
 
 .58189 .71549 1.3976 .81327 
 
 25 
 
 36 
 
 .58212 .71593 1.3968 .81310 
 
 24 
 
 37 
 
 .58236 .71637 1.3959 .81293 
 
 23 
 
 38 
 
 .58260 .71681 1.3951 .81 276 
 
 22 
 
 39 
 
 .58 283 .71 725 1.3942 .81 259 
 
 21 
 
 4O 
 
 .58307 .71769 1.3934 .81242 
 
 20 
 
 41 
 
 .58330 .71813 1.3925 .81225 
 
 19 
 
 42 
 
 .58354 .71857 1.3916 .81208 
 
 18 
 
 43 
 
 .58378 .71901 1.3908 .81191 
 
 17 
 
 44 
 
 .58401 .71946 1.3899 .81174 
 
 16 
 
 45 
 
 .58425 .71990 1.3891 .81157 
 
 15 
 
 46 
 
 .58 449 .72 034 1.3882 .81 140 
 
 14 
 
 47 
 
 .58472 .72078 1.3874 .81 123 
 
 13 
 
 48 
 
 .58 496 .72 122 1.3865 .81 106 
 
 12 
 
 49 
 
 .58 519 .72 167 1.3857 .81 089 
 
 11 
 
 5O 
 
 .58543 .72211 1.3848 .81072 
 
 1O 
 
 51 
 
 .58567 .72255 1.3840 .81055 
 
 9 
 
 52 
 
 .58590 .72299 1.3831 .81038 
 
 8 
 
 53 
 
 .58614 .72344 1.3823 .81021 
 
 7 
 
 54 
 
 .58637 .72388 1.3814 .81004 
 
 6 
 
 55 
 
 .58661 .72432 1.3806 .80987 
 
 5 
 
 56 
 
 .58684 .72477 1.3798 .80970 
 
 4 
 
 57 
 
 .58708 .72521 1.3789 .80953 
 
 3 
 
 58 
 
 .58731 .72565 1.3781 .80936 
 
 2 
 
 59 
 
 .58755 .72610 1.3772 .80919 
 
 1 
 
 60 
 
 .58 779 .72 654 1.3764 .80 902 
 
 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 54 
 
 
76 
 
 NATURAL FUNCTIONS 
 
 
 36 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 ~o 
 
 .58779 .72654 1.3764 .80902 
 
 6O 
 
 i 
 
 .58802 .72699 1.3755 .80885 
 
 59 
 
 2 
 
 .58 826 .72 743 1.3747 .80 867 
 
 58 
 
 3 
 
 .58 849 .72 788 1.3739 .80 850 
 
 57 
 
 4 
 
 .58 873 .72 832 1.3730 .80 833 
 
 56 
 
 5 
 
 .58896 .72877 1.3722 .80816 
 
 55 
 
 6 
 
 .58920 .72921 1.3713 .80799 
 
 54 
 
 7 
 
 .58943 .72966 1.3705 .80782 
 
 53 
 
 8 
 
 .58967 .73010 1.3697 .80765 
 
 52 
 
 9 
 
 .58 990 .73 055 1.3688 .80 748 
 
 51 
 
 10 
 
 .59014 .73100 1.3680 .80730 
 
 50 
 
 11 
 
 .59037 .73144 1.3672 .80713 
 
 49 
 
 12 
 
 .59 061 .73 189 1.3663 .80 696 
 
 48 
 
 13 
 
 .59084 .73234 1.3655 .80679 
 
 47 
 
 14 
 
 .59108 .73.278 1.3647 .80662 
 
 46 
 
 IS 
 
 .59131 .73323 1.3638 .80644 
 
 45 
 
 16 
 
 .59154 .73368 1.3630 .80627 
 
 44 
 
 17 
 
 .59178 .73413 1.3622 .80610 
 
 43 
 
 18 
 
 .59201 .73457 1.3613 .80593 
 
 42 
 
 19 
 
 .59225 .73502 1.3605 .80576 
 
 41 
 
 2O 
 
 .59248 .73' 547 1.3597 .80558 
 
 40 
 
 21 
 
 .59 272 .73 592 1.3588 .80 541 
 
 39 
 
 22 
 
 .59 295 .73 637 1.3580 .80 524 
 
 38 
 
 23 
 
 .59318 .73681 1.3572 .80507 
 
 37 
 
 24 
 
 .59 342 .73 726 1.3564 .80 489 
 
 36 
 
 25 
 
 .59365 .73771 1.3555 .80472 
 
 35 
 
 26 
 
 .59389 .73816 1.3547 .80455 
 
 34 
 
 27 
 
 .59412 .73861 1.3539 .80438 
 
 33 
 
 28 
 
 .59436 .73906 1.3531 .80420 
 
 32 
 
 29 
 
 .59459 .73951 1.3522 .80403 
 
 31 
 
 3O 
 
 .59482 .73996 1.3514 .80386 
 
 30 
 
 31 
 
 .59506 .74041 1.3506 .80368 
 
 29 
 
 32 
 
 .59529 .74086 1.3498 .80351 
 
 28 
 
 33 
 
 .59552 .74131 1.3490 .80334 
 
 27 
 
 34 
 
 .59576 .74176 1.3481 .80316 
 
 26 
 
 35 
 
 .59599 .74221 1.3473 .80299 
 
 25 
 
 36 
 
 .59622 .74267 1.3465 .80282 
 
 24 
 
 37 
 
 .59646 .74312 1.3457 .80264 
 
 23 
 
 38 
 
 .59669 .74357 1.3449 .80247 
 
 22 
 
 39 
 
 .59693 .74402 1.3440 .80230 
 
 21 
 
 40 
 
 .59716 .74447 1.3432 .80212 
 
 2O 
 
 41 
 
 .59739 .74492 1.3424 .80195 
 
 19 
 
 42 
 
 .59763 .74538 1.3416 .80178 
 
 18 
 
 43 
 
 .59 786 .74 583 1.3408 .80 160 
 
 17 
 
 44 
 
 .59809 .74628 1.3400 .80143 
 
 16 
 
 45 
 
 .59832 .74674 1.3392 .80125 
 
 15 
 
 46 
 
 .59 856 .74 719 1.3384 .80 108 
 
 14 
 
 47 
 
 .59 879 .74 764 1.3375 .80 091 
 
 13 
 
 48 
 
 .59902 .74810 1.3367 .80073 
 
 12 
 
 49 
 
 .59926 .74855 1.3359 .80056 
 
 11 
 
 50 
 
 .59949 .74900 1.3351 .80038 
 
 1O 
 
 51 
 
 .59972 .749-16 1.3343 .80021 
 
 9 
 
 52 
 
 .59995 .74991 1.3335 .80003 
 
 8 
 
 53 
 
 .60019 .75037 1.3327 .79986 
 
 7 
 
 54 
 
 .60042 .75082 1.3319 .79968 
 
 6 
 
 55 
 
 .60065 .75128 1.3311 .79951 
 
 5 
 
 56 
 
 .60089 .75173 1.3303 .79934 
 
 4 
 
 57 
 
 .60112 .75219 1.3295 .79916 
 
 3 
 
 58 
 
 .60135 .75264 1.3287 .79899 
 
 2 
 
 59 
 
 .60158 .75310 1.3278 .79881 
 
 1 
 
 60 
 
 .60 182 .75 355 1.3270 .79 864 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 53 
 
 
 
 37 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .60182 .75355 1.3270 .79864 
 
 60 
 
 1 
 
 .60205 .75401 1.3262 .79846 
 
 59 
 
 2 
 
 .60228 .75447 1.3254 .79829 
 
 58 
 
 3 
 
 .60251 .75492 1.3246 .79811 
 
 57 
 
 4 
 
 .60 274 .75 538 1.3238 .79 793 
 
 .56 
 
 5 
 
 .60 298 .75 584 1.3230 .79 776 
 
 55 
 
 6 
 
 .60321 .75629 1.3222 .79758 
 
 54 
 
 7 
 
 .60344 .75675 1.3214 .79741 
 
 53 
 
 8 
 
 .60 367 .75 721 1.3206 .79 723 
 
 52 
 
 9 
 
 .60390 .75767 1.3198 .79706 
 
 51 
 
 1O 
 
 .60414 .75812 1.3190 .79688 
 
 50 
 
 11 
 
 .60437 .75858 1.3182 .79671 
 
 49 
 
 12 
 
 .60460 .75904 1.3175 .79653 
 
 48 
 
 13 
 
 .60483 .75950 1.3167 .79635 
 
 47 
 
 14 
 
 .60506 .75996 1.3159 .79618 
 
 46 
 
 15 
 
 .60529 .76042 1.3151 .79600 
 
 45 
 
 16 
 
 .60553 .76088 1.3143 .79583 
 
 44 
 
 17 
 
 .60576 .76134 1.3135 .79565 
 
 43 
 
 18 
 
 .60599 .76180 1.3127 .79547 
 
 42 
 
 19 
 
 .60622 .76226 1.3119 .79530 
 
 41 
 
 2O 
 
 .60645 .76272 1.3111 .79512 
 
 4O 
 
 21 
 
 .60668 .76318 1.3103 .79494 
 
 39 
 
 22 
 
 .60691 .76364 1.3095 .79477 
 
 38 
 
 23 
 
 .60714 .76410 1.3087 .79459 
 
 37 
 
 24 
 
 .60738 .76456 1.3079 .79441 
 
 36 
 
 25 
 
 .60761 .76502 1.3072 .79424 
 
 35 
 
 26 
 
 .60784 .76548 1.3064 .79406 
 
 34 
 
 27 
 
 .60807 .76594 1.3056 .79388 
 
 33 
 
 28 
 
 .60830 .76640 1.3048 .79371 
 
 32 
 
 29 
 
 .60853 .76686 1.3040 .79353 
 
 31 
 
 3O 
 
 .60876 .76733 1.3032 .79335 
 
 30 
 
 31 
 
 .60899 .76779 1.3024 .79318 
 
 29 
 
 32 
 
 .60922 .76825 1.3017 .79300 
 
 28 
 
 33 
 
 .60945 .76871 1.3009 .79282 
 
 27 
 
 34 
 
 .60968 .76918 1.3001 .79264 
 
 26 
 
 35 
 
 .60991 .76964 1.2993 .79247 
 
 25 
 
 36 
 
 .61015 .77010 1.2985 .79229 
 
 24 
 
 37 
 
 .61038 .77057 1.2977 .79211 
 
 23 
 
 38 
 
 .61 061 .77 103 1.2970 .7? 193 
 
 22 
 
 39 
 
 .61 084 .77 149 1.2962 .79 176 
 
 21 
 
 4O 
 
 .61 107 .77 196 1.2954 .79 158 
 
 20 
 
 41 
 
 .61 130 .77242 1.2946 .79140 
 
 19 
 
 42 
 
 .61 153 .77 289 1.2938 .79 122 
 
 18 
 
 43 
 
 .61 176 .77335 .2931 .79105 
 
 17 
 
 44 
 
 .61199 .77382 .2923 .79087 
 
 16 
 
 45 
 
 .61222 .77428 .2915 .79069 
 
 15 
 
 46 
 
 .61245 .77475 .2907 .79051 
 
 14 
 
 47 
 
 .61 268 .77 521 .2900 .79 033 
 
 13 
 
 48 
 
 .61 291 .77 568 .2892 .79 016 
 
 12 
 
 49 
 
 .61314 .77615 1.28S4 .78998 
 
 11 
 
 50 
 
 .61337 .77661 1.2876 .78980 
 
 1O 
 
 51 
 
 .61 360 .77 708 1.2869 .Z8_%4 
 
 9 
 
 52 
 
 .61383 .77754 1.2861 ./*94^ 
 
 8. 
 
 53 
 
 .61406 .77801 1.2853 .78926 
 
 7 
 
 54 
 
 .61 429 .77 848 1.2846 .78 90S 
 
 6 
 
 55 
 
 .61451 .77895 1.2838 .78891 
 
 5 
 
 56 
 
 .61 474 .77 941 1.2830 .78 873 
 
 4 
 
 57 
 
 .61497 .77988 1.2822 .78855 
 
 3 
 
 58 
 
 .61520 .78035 1.2815 .78837 
 
 2 
 
 59 
 
 .61543 .78082 1.2807 .78819 
 
 1 
 
 00 
 
 .61 566 .78 129 1.2799 .78 801 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 52 
 
 
NATURAL FUNCTIONS 
 
 
 38 
 
 
 f 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .61566 .78129 1.2799 .78801 
 
 60 
 
 1 
 
 .61 589 .78 175 1.2792 .78 783 
 
 59 
 
 2 
 
 .61 612 .78 222 1.2784 .78 765 
 
 58 
 
 3 
 
 .61 635 .78 269 1.2776 .78 747 
 
 57 
 
 4 
 
 .61658 .78316 1.2769 .78729 
 
 56 
 
 5 
 
 .61681 .78363 1.2761 .78711 
 
 55 
 
 6 
 
 .61 704 .78 410 1.2753 .78 694 
 
 54 
 
 7 
 
 .61 726 .78 457 1.2746 .78 676 
 
 53 
 
 8 
 
 .61749 .78504 1.2738 .78658 
 
 52 
 
 9 
 
 ..61772 .78551 1.2731 .78640 
 
 51 
 
 1O 
 
 .61 795 .78 598 1.2723 .78 622 
 
 50 
 
 11 
 
 .61818 .78645 1.2715 .78604 
 
 49 
 
 12 
 
 .61 841 .78 692 1.2708 .78 586 
 
 48 
 
 13 
 
 .61 864 .78 739 1.2700 .78 568 
 
 47 
 
 14 
 
 .61 887 .78 786 1.2693 .78 550 
 
 46 
 
 15 
 
 .61 909 .78 834 1.2685 .78 532 
 
 45 
 
 16 
 
 .61932 .78881 1.2677 .78514 
 
 44 
 
 17 
 
 .61 955 .78 928 1.2670 .78 496 
 
 43 
 
 18 
 
 .61 978 .78 975 1.2662 .78 478 
 
 42 
 
 19 
 
 .62001 .79022 1.2655 .78460 
 
 41 
 
 2O 
 
 .62 024 .79 070 1.2647 .78 442 
 
 4O 
 
 21 
 
 .62046 .79117 1.2640 .78424 
 
 39 
 
 22 
 
 .62069 .79164 1.2632 .78405 
 
 38 
 
 23 
 
 .62092 .79212 1.2624 .78387 
 
 37 
 
 24 
 
 .62115 .79259 1.2617 .78369 
 
 36 
 
 25 
 
 .62138 .79306 1.2609 .78351 
 
 35 
 
 26 
 
 .62 160 .79 354 1.2602 .78 333 
 
 34 
 
 27 
 
 .62183 .79401 1.2594 .78315 
 
 33 
 
 28 
 
 .62 206 .79 449 1.2587 .78 297 
 
 32 
 
 29 
 
 .62229 .79496 1.2579 .78279 
 
 31 
 
 30 
 
 .62251 .79544 1.2572 .78261 
 
 30 
 
 31 
 
 .62 274 .79 591 1.2564 .78 243 
 
 29 
 
 32 
 
 .62297 .79639 1.2557 .78225 
 
 28 
 
 33 
 
 .62 320 .79 686 1.2549 .78 206 
 
 27 
 
 34 
 
 .62 342 .79 734 1.2542 .78 188 
 
 26 
 
 35 
 
 .62 365 .79 781 1.2534 .78 170 
 
 25 
 
 36 
 
 .62388 .79829 1.2527 .78152 
 
 24 
 
 37 
 
 .62411 .79877 1.2519 .78134 
 
 23 
 
 38 
 
 .62433 .79924 1.2512 .78116 
 
 22 
 
 39 
 
 .62456 .79972 1.2504 .78098 
 
 21 
 
 40 
 
 .62479 .80020 1.2497 .78079 
 
 2O 
 
 41 
 
 .62502 .80067 1.2489 .78061 
 
 19 
 
 42 
 
 .62524 .80115 1.2482 .78043 
 
 18 
 
 43 
 
 .62547 .80163 1.2475 .78025 
 
 17 
 
 44 
 
 .62570 .80211 1.2467 .78007 
 
 16 
 
 45 
 
 .62592 .80258 1.2460 .77988 
 
 15 
 
 46 
 
 .62615 .80306 1.2452 .77970 
 
 14 
 
 47 
 
 .62638 .80354 1.2445 .77952 
 
 13 
 
 48 
 
 .62660 .80402 1.2437 .77934 
 
 12 
 
 49 
 
 .62683 .80450 1.2430 .77916 
 
 11 
 
 50 
 
 .62 706 .80 498 1.2423 .77 897 
 
 1O 
 
 51 
 
 .62 728 .80 546 1.2415 .77 879 
 
 9 
 
 52 
 
 .62 751 .80 594 1.2408 .77 861 
 
 8 
 
 53 
 
 .62 774 .80 642 1.2401 .77 843 
 
 7 
 
 54 
 
 . .62 796 .80 690 1.2393 .77 824 
 
 6 
 
 55 
 
 .62819 .80738 1.23S6 .77806 
 
 5 
 
 56 
 
 .62 842 .80 786 1.2378 .77 788 
 
 4 
 
 57 
 
 .62864 .80834 1.2371 .77769 
 
 3 
 
 58 
 
 .62887 .80882 1.2364 .77751 
 
 2 
 
 59 
 
 .62909 .80930 1.2356 .77733 
 
 1 
 
 6O 
 
 .62932 .80978 1.2349 .77715 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 51 
 
 
 
 39 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 O 
 
 .62932 .80978 1.2349 .77715 
 
 60 
 
 1 
 
 .62955 .81027 1.2342 .77696 
 
 59 
 
 2 
 
 .62977 .81075 1.2334 .77678 
 
 58 
 
 3 
 
 .63000 .81123 1.2327 .77660 
 
 57 
 
 4 
 
 .63 022 .81 171 1.2320 .77 641 
 
 56 
 
 5 
 
 .63045 .81220 1.2312 .77623 
 
 55 
 
 6 
 
 .63 068 .81 268 1.2305 .77 605 
 
 54 
 
 7 
 
 .63 090 .81 316 1.2298 .77 586 
 
 53 
 
 8 
 
 .63 113 .81 364 1.2290 .77 568 
 
 52 
 
 9 
 
 .63 135 .81 413 1.2283 .77 550 
 
 51 
 
 10 
 
 .63 158 .81 461 1.2276 .77 531 
 
 50 
 
 11 
 
 .63180 .81510 1.2268 .77513 
 
 49 
 
 12 
 
 .63 203 .81 558 1.2261 .77 494 
 
 48 
 
 13 
 
 .63 225 .81 606 1.2254 .77 476 
 
 47 
 
 14 
 
 .63248 .81655 1.2247 .77458 
 
 46 
 
 15 
 
 .63 271 .81 703 1.2239 .77 439 
 
 45 
 
 16 
 
 .63 293 .81 752 1.2232 .77 421 
 
 44 
 
 17 
 
 .63 316 .81 800 1.2225 .77 402 
 
 43 
 
 18 
 
 .63 338 .81 849 1.2218 .77 384 
 
 42 
 
 19 
 
 .63 361 .81 898 1.2210 .77 366 
 
 41 
 
 20 
 
 .63 383 .81 946 1.2203 .77 347 
 
 40 
 
 21 
 
 .63 406 .81 995 1.2196 .77 329 
 
 39 
 
 22 
 
 .63 428 .82 044 1.2189 .77 310 
 
 38 
 
 23 
 
 .63451 .82092 1.2181 .77292 
 
 37 
 
 24 
 
 .63473 .82141 1.2174 .77273 
 
 36 
 
 25 
 
 .63 496 .82 190 1.2167 .77 255 
 
 35 
 
 26 
 
 .63 518 .82 238 1.2160 .77 236 
 
 34 
 
 27 
 
 .63 540 .82 287 1.2153 .77 218 
 
 33 
 
 28 
 
 .63 563 .82 336 1.2145 .77 199 
 
 32 
 
 29 
 
 .63 585 .82 385 1.2138 .77 181 
 
 31 
 
 30 
 
 .63608 .82434 1.2131 .77162 
 
 3O 
 
 31 
 
 .63 630 .82 483 1.2124 .77 144 
 
 29 
 
 32 
 
 .63653 .82531 1.2117 .77125 
 
 28 
 
 33 
 
 .63 675 .82 580 1.2109 .77 107 
 
 27 
 
 34 
 
 .63698 .82629 1.2102 .77088 
 
 26 
 
 35 
 
 .63 720 .82 678 1.2095' .77 070 
 
 25 
 
 36 
 
 .63742 .82727 1.2088 .77051 
 
 24 
 
 37 
 
 .63765 .82776 1.2081 .77033 
 
 23 
 
 38 
 
 .63 787 .82 825 1.2074 .77 014 
 
 22 
 
 39 
 
 .63 810 .82 874 1.2066 .76 996 
 
 21 
 
 4O 
 
 .63832 .82923 1.2059 .76977 
 
 2O 
 
 41 
 
 .63854 .82972 1.2052 .76959 
 
 19 
 
 42 
 
 .63877 .83022 1.2045 .76940 
 
 18 
 
 43 
 
 .63 899 .83 071 1.2038 .76 921 
 
 17 
 
 44 
 
 .63 922 .83 120 1.2031 .76 903 
 
 16 
 
 45 
 
 .63944 .83169 1.2024 .76884 
 
 15 
 
 46 
 
 .63966 .83218 1.2017 .76866 
 
 14 
 
 47 
 
 .63989 .83268 1.2009 .76847 
 
 13 
 
 48 
 
 .64011 .83317 1.2002 .76828 
 
 12 
 
 49 
 
 .64 033 .83 366 1.1995 .76 810 
 
 11 
 
 50 
 
 .64056 .83415 1.1988 .76791 
 
 10 
 
 51 
 
 .64078 .83465 1.1981 .76772 
 
 9 
 
 52 
 
 .64 100 .83 514 1.1974 .76 754 
 
 8 
 
 53 
 
 .64 123 .83 564 1.1967 .76 735 
 
 7 
 
 54 
 
 .64145 .83613 1.1960 .76717 
 
 6 
 
 55 
 
 .64 167 .83 662 1.1953 .76 698 
 
 5 
 
 56 
 
 .64 190 .83 712 1.1946 .76 679 
 
 4 
 
 57 
 
 .64212 .83761 1.1939 .76661 
 
 3 
 
 58 
 
 .64234 .83811 1.1932 .76642 
 
 2 
 
 59 
 
 .64256 .83860 1.1925 .76623 
 
 1 
 
 6O 
 
 .64279 .83910 1.1918 .76604 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 50 
 
 
78 
 
 NATURAL FUNCTIONS 
 
 
 40 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .64279 .83910 1.1918 .76604 
 
 60 
 
 1 
 
 .64301 .83960 1.1910 .76586 
 
 59 
 
 2 
 
 .64323 .84009 1.1903 .76567 
 
 58 
 
 3 
 
 .64346 .84059 1.1896 .76548 
 
 57 
 
 4 
 
 .64368 .84108 1.1889 .76530 
 
 56 
 
 5 
 
 .64390 .84158 1.18S2 .76511 
 
 55 
 
 6 
 
 .64412 .84208 1.1875 .76492 
 
 54 
 
 7 
 
 .64435 .84258 1.1868 .76473 
 
 53 
 
 8 
 
 .64457 .84307 1.1861 .76455 
 
 52 
 
 9 
 
 .64479 .84357 1.1854 .76436 
 
 51 
 
 1O 
 
 .64501 .84407 1.1847 .76417 
 
 50 
 
 11 
 
 .64524 .84457 1.1840 .76398 
 
 49 
 
 12 
 
 .64546 .84507 1.1833 .76380 
 
 48 
 
 13 
 
 .64568 .84556 1.1826 .76361 
 
 47 
 
 14 
 
 .64590 .84606 1.1819 .76342 
 
 46 
 
 15 
 
 .64612 .84656 1.1812 .76323 
 
 -45 
 
 16 
 
 .64 635 .84 706 1.1806 .76 304 
 
 44 
 
 17 
 
 .64 657 .84 756 1.1799 .76 286 
 
 43 
 
 18 
 
 .64679 .84806 1.1792 .76267 
 
 42 
 
 19 
 
 .64701 .84856 1.1785 .76248 
 
 41 
 
 2O 
 
 .64723 .81-906 1.1778 .76229 
 
 4O 
 
 21 
 
 .64746 .84956 .1771 .76210 
 
 39 
 
 22 
 
 .64 768 .85 006 1.1764 .76 192 
 
 38 
 
 23 
 
 .64790 .85057 .1757 .76173 
 
 37 
 
 24 
 
 .64 812 .85 107 .1750 .76 154 
 
 36 
 
 25 
 
 .64834 .85157 .1743 .76135 
 
 35 
 
 26 
 
 .64856 .85207 .1736 .76116 
 
 34 
 
 27 
 
 .64878 .85257 1.1729 .76097 
 
 33 
 
 28 
 
 .64901 .85308 1.1722 .76078 
 
 32 
 
 29 
 
 .64923 .85358 1.1715 .76059 
 
 31 
 
 3O 
 
 .64945 .85408 1.1708 .76041 
 
 30 
 
 31 
 
 .64967 .85458 1.1702 .76022 
 
 29 
 
 32 
 
 .64 989 .85 509 1.1695 .76 003 
 
 28 
 
 33 
 
 .65011 .85559 1.1688 .75984 
 
 27 
 
 34 
 
 .65 033 .85 609 1.1681 .75 965 
 
 26 
 
 35 
 
 .65055 .85660 1.1674 .75946 
 
 25 
 
 36 
 
 .65 077 .85 710 1.1667 .75 927 
 
 24 
 
 37 
 
 .65 100 .85 761 1.1660 .75 908 
 
 23 
 
 38 
 
 .65 122 .85 811 1.1653 .75 889 
 
 22 
 
 39 
 
 .65 144 .85 862 1.1647 .75 870 
 
 21 
 
 4O 
 
 .65 166 .85912 1.1640 .75851 
 
 20 
 
 41 
 
 .65 188 .85 963 1.1633 .75 832 
 
 19 
 
 42 
 
 .65 210 .86 014 1.1626 .75 813 
 
 18 
 
 43 
 
 .65 232 .86064 1.1619 .75 794 
 
 17 
 
 44 
 
 .65254 .86115 1.1612 .75775 
 
 16 
 
 45 
 
 .65 276 .86 166 1.1606 .75 756 
 
 15 
 
 46 
 
 .65 298 .86 216 1.1599 .75 738 
 
 14 
 
 47 
 
 .65 320 -86 267 1.1592 .75 719 
 
 13 
 
 48 
 
 .65342 .86318 1.1585 .75700 
 
 12 
 
 49 
 
 .65364 .86368 1.1578 .75680 
 
 11 
 
 5O 
 
 .65386 .86419 1.1571 .75661 
 
 10 
 
 51 
 
 .65408 .86470 1.1565 .75642 
 
 9 
 
 52 
 
 65430 .86521 1.1558 .75623 
 
 8 
 
 53 
 
 .65452 .86572 1.1551 .75604 
 
 7 
 
 54 
 
 .65474 .86623 1.1544 .75585 
 
 , 6 
 
 55 
 
 .65496 .86674 1.1538 .75566 
 
 5 
 
 56 
 
 .65518 .86725 1.1531 .75547 
 
 4 
 
 57 
 
 .65 540 .86 776 1.1524 .75 528 
 
 3 
 
 58 
 
 .65562 .86827 1.1517 .75509 
 
 2 
 
 59 
 
 .65584 .86878 1.1510 .75490 
 
 1 
 
 6O 
 
 .65606 .86929 1.1504 .75471 
 
 o 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 49 
 
 
 
 41 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .65606 .86929 1.1504 .75471 
 
 60 
 
 1 
 
 .65 628 .86 980 1.1497 .75 452 
 
 59 
 
 2 
 
 .65650 .87031 1.1490 .75433 
 
 58 
 
 3 
 
 .65 672 .87 082 1.1483 .75 414 
 
 57 
 
 4 
 
 .65 694 .87 133 1.1477 .75 395 
 
 56 
 
 5 
 
 .65 716 .87 184 1.1470 .75 375 
 
 55 
 
 6 
 
 .65 738 .87 236 1.1463 .75 356 
 
 54 
 
 7 
 
 .65 759 .87 287 1.1456 .75 337 
 
 53 
 
 8 
 
 .65781 .87338 1.1450 .75318 
 
 52 
 
 9 
 
 .65803 .87389 1.1443 .75299 
 
 51 
 
 1O 
 
 .65 825 .87 441 1.1436 .75 280 
 
 50 
 
 11 
 
 .65 847 .87 492 1.1430 .75 261 
 
 49 
 
 12 
 
 .65 869 .87 543 1.1423 .75 241 
 
 48 
 
 13 
 
 .65 891 .87 595 1.1416 .75 222 
 
 47. 
 
 14 
 
 .65913 .87646 1.1410 .75203 
 
 46 
 
 15 
 
 .65 935 .87 698 1.1403 .75 184 
 
 45 
 
 16 
 
 .65956 .87 749 1.1396 .75 165 
 
 44 
 
 17 
 
 .65 978 .87 801 1.1389 .75 146 
 
 43 
 
 18 
 
 .66000 .87852 1.1383 .75 126 
 
 42 
 
 19 
 
 .66022 .87904 1.1376 .75107 
 
 41 
 
 2O 
 
 .66044 .87955 1.1369 .75088 
 
 4O 
 
 21 
 
 .66066 .88007 1.1363 .75069 
 
 39 
 
 22 
 
 .66088 .88059 1.1356 .75050 
 
 38 
 
 23 
 
 .66109 .88110 1.1349 .75030 
 
 37 
 
 24 
 
 .66131 .88162 1.1343 .75 QU^ 
 
 36 
 
 25 
 
 .66153 .88214 1.1336 .74992 
 
 35 
 
 26 
 
 .66175 .88265 1.1329 .74973 
 
 34 
 
 27 
 
 .66197 .88317 1.1323 .74953 
 
 33 
 
 28 
 
 .66218 .88369 1.1316 .74934 
 
 32 
 
 29 
 
 .66240 .88421 1.1310 .74915 
 
 31 
 
 30 
 
 .66262 .88473 1.1303 .74896 
 
 30 
 
 31 
 
 .66 284 .88 524 1.1296 .74 876 
 
 29 
 
 32 
 
 .66306 .88576 1.1290 .74857 
 
 28 
 
 33 
 
 .66327 .88628 1.1283 .74838 
 
 27 
 
 34 
 
 .66349 .88680 1.1276 .74818 
 
 26 
 
 35 
 
 .66371 .88732 1.1270 .74799 
 
 25 
 
 36 
 
 .66393 .88784 1.1263 .74780 
 
 24 
 
 37 
 
 .66414 .88836 1.1257 .74760 
 
 23 
 
 38 
 
 .66436 .88888 1.1250 .74741 
 
 22 
 
 39 
 
 .66458 .88940 1.1243 .74722 
 
 21 
 
 4O 
 
 .66480 .88992 1.1237 .74703 
 
 2O 
 
 41 
 
 .66501 .89045 1.1230 .74683 
 
 19 
 
 42 
 
 .66523 .89097 1.1224 .74664 
 
 18 
 
 43 
 
 .66545 .89149 1.1217 .74644 
 
 17 
 
 44 
 
 .66566 .89201 1.1211 .74625 
 
 16 
 
 45 
 
 .66588 .89253 1.1204 .74606' 
 
 15 
 
 46 
 
 .66610 .89306 1.1197 .74586 
 
 14 
 
 47 
 
 .66632 .89358 1.1191 .74567 
 
 13 
 
 48 
 
 .66653 .89410 1.1184 .74548 
 
 12 
 
 49 
 
 .66675 .89463 1.1178 .74528 
 
 11 
 
 50 
 
 .66697 .89515 1.1171 .74509 
 
 1O 
 
 51 
 
 .66718 .89567 1.1165 .74489 
 
 9 
 
 52 
 
 .66 740 .89 620 1.1158 .74 470 
 
 8 
 
 53 
 
 .66762 .89672 1.1152 .74451 
 
 7 
 
 54 
 
 .66783 .89725 1.1145 .74431 
 
 6 
 
 55 
 
 .66805 .89777 1.1139 .74412 
 
 5 
 
 56 
 
 .66827 .89830 1.1132 .74392 
 
 4 
 
 57 
 
 .66848 .89883 1.1126 .74373 
 
 3 
 
 58 
 
 .66870 .89935 1.1119 .74353 
 
 2 
 
 59 
 
 .66891 .89988 1.1113 .74334 
 
 1 
 
 6O 
 
 .66913 .90040 1.1106 .74314 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 48 
 
 
NATURAL FUNCTIONS 
 
 79 
 
 
 42 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .66913 .90040 1.1106 .74314 
 
 60 
 
 1 
 
 .66935 .90093 1.1100 .74295 
 
 59 
 
 2 
 
 .66956 .90146 1.1093 .74276 
 
 58 
 
 3 
 
 .66 978 .90 199 1.1087 .74 256 
 
 57 
 
 4 
 
 .66999 .90251 1.1080 .74237 
 
 56 
 
 5 
 
 .67021 .90304 1.1074 .74217 
 
 55 
 
 6 
 
 .67043 .90357 1.1067 .74198 
 
 54 
 
 7 
 
 .67064 .90410 1.1061 .74178 
 
 53 
 
 8 
 
 .67086 .90463 1.1054 .74159 
 
 52 
 
 9 
 
 .67107 .90516 1.1048 .74139 
 
 51 
 
 1O 
 
 .67 129 .90 569 1.1041 .74 120 
 
 50 
 
 11 
 
 .67151 .90621 1.1035 .74100 
 
 49 
 
 12 
 
 .67172 .90674 1.1028 .74080 
 
 48 
 
 13 
 
 .67194 .90727 1.1022 .74061 
 
 47 
 
 14 
 
 .67 215 .90 781 1.1016 .74 041 
 
 46 
 
 15 
 
 .67 237 .90 834 1.1009 .74 022 
 
 45 
 
 16 
 
 .67258 .90887 1.1003 .74002 
 
 44 
 
 17 
 
 .67 280 .90 940 1.0996 .73 983 
 
 43 
 
 18 
 
 .67301 .90993 1.0990 .73963 
 
 42 
 
 19 
 
 .67323 .91046 1.0983 .73944 
 
 ' 41 
 
 20 
 
 .67344 .91099 1.0977 .73924 
 
 4O 
 
 21 
 
 .67366 .91153 1.0971 .73904 
 
 39 
 
 22 
 
 .67 387 .91 206 1.0964 .73 885 
 
 38 
 
 23 
 
 .67409 .91259 1.0958 .73865 
 
 37 
 
 24 
 
 .67430 .91313 1.0951 .73846 
 
 36 
 
 25 
 
 .67 452 .91 366 1.0945 .73 826 
 
 35 
 
 26 
 
 .67473 .91419 1.0939 .73806 
 
 34 
 
 27 
 
 .67495 .91473 1.0932 .73787 
 
 33 
 
 28 
 
 .67516 .91526 1.0926 .73767 
 
 32 
 
 29 
 
 .67 538 .91 580 1.0919 .73 747 
 
 31 
 
 3O 
 
 .67 559 .91 633 1.0913 .73 728 
 
 30 
 
 31 
 
 .67 580 .91 687 1.0907 .73 708 
 
 29 
 
 32 
 
 .67 602 .91 740 1.0900 .73 688 
 
 28 
 
 33 
 
 .67 623 .91 794 1.0894 .73 669 
 
 27 
 
 34 
 
 .67 645 '.91 847 1.0888 .73 649 
 
 26 
 
 35 
 
 .67 666 .91 901 1.0881 .73 629 
 
 25 
 
 36 
 
 .67 688 .91 955 1.0875 .73 610 
 
 24 
 
 37 
 
 .67709 .92008 1.0869 .73590 
 
 23 
 
 38 
 
 .67 730 .92 062 1.0862 .73 570 
 
 22 
 
 39 
 
 .67 752 .92 116 1.0856 -.73 551 
 
 21 
 
 40 
 
 .67 773 .92 170 1.0850 .73 531 
 
 2O 
 
 41 
 
 .67795 .92224 1.0843 .73511 
 
 19 
 
 42 
 
 .67 816 .92 277 1.0837 .73 491 
 
 18 
 
 43 
 
 .67837 .92331 1.0831 .73472 
 
 17 
 
 44 
 
 .67859 .92385 1.0824 .73452 
 
 ,16 
 
 45 
 
 .67880 .92439 1.0818 .73432 
 
 15 
 
 46 
 
 .67901 .92493 1.0812 .73413 
 
 14 
 
 47 
 
 .67923 .92547 1.0805 .73393 
 
 13 
 
 48 
 
 .67 944 .92 601 1.0799 .73 373 
 
 12 
 
 49 
 
 .67965 .92655 1.0793 .73353 
 
 11 
 
 50 
 
 .67 987 .92 709 1.0786 .73 333 
 
 1O 
 
 51 
 
 .68008 .92763 1.0780 .73314 
 
 9 
 
 52 
 
 .68029 .92817 1.0774 .73294 
 
 8 
 
 53 
 
 .68051 .92872 1.0768 .73274 
 
 7 
 
 54 
 
 .68 072 .92 926 1.0761 .73 254 
 
 6 
 
 55 
 
 .68093 .92980 1.0755 .73234 
 
 5 
 
 56 
 
 .68 115 .93 034 1.0749 .73 215 
 
 4 
 
 57 
 
 .68 136 .93 088 1.0742 .73 195 
 
 3 
 
 58 
 
 .68 157 .93 143 1.0736 .73 175 
 
 2 
 
 59 
 
 .68 179 .93 197 1.0730 .73 155 
 
 1 
 
 60^ 
 
 .68 200 .93 252 1.0724 .73 135 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 47 
 
 
 
 43 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 
 
 .68200 .93252 1.0724 .73135 
 
 6O 
 
 1 
 
 .68221 .93306 1.0717 .73116 
 
 59 
 
 2 
 
 .68242 .93360 1.0711 .73096 
 
 58 
 
 3 
 
 .68 264 .93 415 1.0705 .73 076 
 
 57 
 
 4 
 
 .68285 .93469 1.0699 .73056 
 
 56 
 
 5 
 
 .68 306 .93 524 1.0692 .73 036 
 
 55 
 
 6 
 
 .68327 .93578 1.0686 .73016 
 
 54 
 
 7 
 
 .68 349 .93 633 1 .0680 .72 996 
 
 53 
 
 8 
 
 .68 370 .93 688 1.0674 .72 976 
 
 52 
 
 9 
 
 .68 391 .93 742 1.0668 .72 957 
 
 51 
 
 1O 
 
 .68412 .93797 1.0661 .72937 
 
 50 
 
 11 
 
 .68434 .93852 1.0655 .72917 
 
 49 
 
 12 
 
 .68455 .93906 1.0649 .72897 
 
 48 
 
 13 
 
 .68476 .93961 1.0643 .72877 
 
 47 
 
 14 
 
 .68497 .94016 1.0637 .72857 
 
 46 
 
 15 
 
 .68518 .94071 1.0630 .72837 
 
 45 
 
 16 
 
 .68 539 .94 125 1.0624 .72 817 
 
 44 
 
 17 
 
 .68 561 .94 180 1.0618 .72 797 
 
 43 
 
 18 
 
 .68582 .94235 1.0612 .72777 
 
 42 
 
 19 
 
 .68603 .94290 1.0606 .72757 
 
 41 
 
 2.0 
 
 .68624 .94345 1.0599 .72737 
 
 40 
 
 21 
 
 .68645 .94400 1.0593 .72717 
 
 39 
 
 22 
 
 .68666 .94455 1.0587 .72697 
 
 38 
 
 23 
 
 .68688 .94510 1.0581 .72677 
 
 37 
 
 24 
 
 .68 709 .94 565 1.0575 .72 657 
 
 36 
 
 25 .68 730 .94 620 1.0569 .72 637 
 
 35 
 
 26 .68751 .94676 1.0562 .72617 
 
 34 
 
 27 .68 772 .94 731 1.0556 .72 597 
 
 33 
 
 28 
 
 .68 793 .94 786 1.0550 .72 577 
 
 32 
 
 29 
 
 .68814 .94841 1.0544 .72557 
 
 31 
 
 30 
 
 .68835 .94896 1.0538 .72537 
 
 30 
 
 31 
 
 .68 857 .94 952. 1.0532 .72 517 
 
 29 
 
 32 
 
 .68878 .95007 1.0526 .72497 
 
 28 
 
 33 
 
 .63_S.9_9 .95062 1.0519 .72477 
 
 27 
 
 34 
 
 .68920 .95118 1.0513 .72457 
 
 26 
 
 35 
 
 .68941 .95173 1.0507 .72437 
 
 25 
 
 36 
 
 .68962 .95229 1.0501 .72417 
 
 24 
 
 37 
 
 .68 983 .95 284 1.0495 .72 397 
 
 23 
 
 38 
 
 .69004 .95340 1.0489 .72377 
 
 22 
 
 39 
 
 .69025 .95395 1.0483 .72357 
 
 21 
 
 40 
 
 .69046 .95451 1.0477 .72337 
 
 2O 
 
 41 
 
 .69067 .95506 1.0470 .72317 
 
 19 
 
 42 
 
 .69 088 .95 562 1.0464 .72 297 
 
 18 
 
 43 
 
 .69 109 .95 618 1.0458 .72 277 
 
 17 
 
 44 
 
 .69 130 .95 673 1.0452 .72 257 
 
 16 
 
 45 
 
 .69 151 .95 729 1.0446 .72 236 
 
 15 
 
 46 
 
 .69172 .95785 1.0440 .72216 
 
 14 
 
 47 
 
 .69 193 .95 841 1.0434 .72 196 
 
 13 
 
 48 
 
 .69 214 .95 897 1.0428 .72 176 
 
 12 
 
 49 
 
 .69235 .95952 1.0422 .72156 
 
 11 
 
 50 
 
 .69256 .96008 1.0416 .72136 
 
 1O 
 
 51 
 
 .69 277 .96 064 1.0410 .72 116 
 
 9 
 
 52 
 
 .69 298 .96 120 1.0404 .72 095 
 
 8 
 
 53 
 
 .69319 .96176 1.0398 .72075 
 
 7 
 
 54 
 
 .69340 .96232 1.0392 .72.055 
 
 6 
 
 55 
 
 .69361 .96288 1.0385 .72035 
 
 5 
 
 56 
 
 .69382 .96344 1.0379 .72015 
 
 4 
 
 57 
 
 .69403 .96400 1.0373 .71995 
 
 3 
 
 58 
 
 .69424 .96*457 1.0367 .71974 
 
 2 
 
 59 
 
 .69445 .96513 1.0361 .71954 
 
 1 
 
 6O 
 
 .69466 .96569 1.0355 .71934 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 / 
 
 
 46 
 
 
80 
 
 NATURAL FUNCTIONS 
 
 
 44 
 
 
 / 
 
 sin tan cot cos 
 
 / 
 
 o 
 
 .69 466 .96 569 1.0355 .71 934 
 
 6O 
 
 1 
 
 .69487 .96625 1.0349 .71914 
 
 59 
 
 2 
 
 .69508 .96681 1.0343 .71894 
 
 58 
 
 3 
 
 .69 529 .96 738 .1.0337 .71 873 
 
 57 
 
 4 
 
 .69549 .96794 1.0331 .71853 
 
 56 
 
 5 
 
 .69 570 .96 850 1.0325 .71 833" 
 
 55 
 
 6 
 
 .69591 .96907 1.0319 .71813 
 
 54 
 
 7 
 
 .69612 .96963 1.0313 .71792 
 
 53 
 
 8 
 
 .69633 .97020 1.0307 .71772 
 
 52 
 
 9 
 
 .69654 .97076 1.0301 .71752 
 
 51 
 
 10 
 
 .69 675 .97 133 1.0295 .71 732 
 
 50 
 
 11 
 
 .69696 .97189 1.0289 .71711 
 
 49 
 
 12 
 
 .69717 .97246 1.0283 .71691 
 
 48 
 
 13 
 
 .69737 .97302 1.0277 .71671 
 
 47 
 
 14 
 
 .69758 .97359 1.0271 .71650 
 
 46 
 
 15 
 
 .69 779 .97 416 1.0265 .71 630 
 
 45 
 
 16 
 
 .69800 .97472 1.0259 .71610 
 
 44 
 
 17 
 
 .69821 .97529 1.0253 .71590 
 
 43 
 
 18 
 
 .69842 .97586 1.0247 .71569 
 
 42 
 
 19 
 
 .69862 .97643 1.0241 .71549 
 
 41 
 
 2O 
 
 .69883 .97700 1.0235 .71529 
 
 4O 
 
 21 
 
 .69904 .97756 1.0230 .71508 
 
 39 
 
 22 
 
 .69925 .97813 1.0224 .71488 
 
 38 
 
 23 
 
 .69946 .97870 1.0218 .71468 
 
 37 
 
 24 
 
 .69966 .97927 1.0212 .71447 
 
 36 
 
 25 
 
 .69987 .97984 1.0206 .71427 
 
 35 
 
 26 
 
 .70008 .98041 1.0200 .71407 
 
 34 
 
 27 
 
 .70029 .98098 1.0194 .71386 
 
 33 
 
 28 
 
 .70049 .98155 1.01SS .71366 
 
 32 
 
 29 
 
 .70070 .98213 1.0182 .71345 
 
 31 
 
 30 
 
 .70091 .98270 1.0176 .71325 
 
 30 
 
 31 
 
 .70112 .98327 1.0170 .71305 
 
 29 
 
 32 
 
 .70 132 .98 384 1.0164 .71 284 
 
 28 
 
 33 
 
 .70153 .98441 1.0158 .71264 
 
 27 
 
 34 
 
 .70174 .98499 1.0152 .71243 
 
 26 
 
 35 
 
 .70195 .98556 1.0147 .71223 
 
 25 
 
 36 
 
 .70215 .98613 1.0141 .71203 
 
 24 
 
 37 
 
 .70 236 .98 671 1.0135 .71 182 
 
 23 
 
 38 
 
 .70257 .98728 1.0129 .71162 
 
 22 
 
 39 
 
 .70277 .98786 1.0123 .71141 
 
 21 
 
 40 
 
 .70298 .98843 1.0117 .71 121 
 
 2O 
 
 41 
 
 .70319 .98901 1.0111 .71100 
 
 19 
 
 42 
 
 .70339 .98958 1.0105 .71080 
 
 18 
 
 43 
 
 .70360 .99016 1.0099 .71059 
 
 17 
 
 44 
 
 .70381 .99073 1.0094 .71039 
 
 16 
 
 45 
 
 .70401 .99131 1.0088 .71019 
 
 15 
 
 46 
 
 .70422 .99189 1.0082 .70998 
 
 14 
 
 47 
 
 .70443 .99247 1.0076 .70978 
 
 13 
 
 48 
 
 .70463 .99304 1.0070 .70957 
 
 12 
 
 49 
 
 .70484 .99362 1.0064 .70937 
 
 11 
 
 5O 
 
 .70505 .99420 1.0058 .70916 
 
 1O 
 
 51 
 
 .70525 .99478 1.0052 .70896 
 
 9 
 
 52 
 
 .70546 .99536 1.0047 .70875 
 
 8 
 
 53 
 
 .70567 .99594 1.0041 .70855 
 
 7 
 
 54 
 
 .70587 .99652 1.0035 .70834 
 
 6 
 
 55 
 
 .70608 .99710 1.0029 .70813 
 
 5 
 
 56 
 
 .70628 .99768 1.0023 .70793 
 
 4 
 
 57 
 
 .70649 .99826 1.0017 .70772 
 
 3 
 
 58 
 
 .70670 .99884 1.0012 .70752 
 
 2 
 
 59 
 
 .70690 .99942 1.0006 .70731 
 
 1 
 
 6O 
 
 .70711 1.0000 1.0000 .70711 
 
 O 
 
 / 
 
 cos cot tan sin 
 
 . / 
 
 
 45 
 
 
n I 
 
 7 
 
 
 
 
 - 
 
 
 
 
 5"' 
 
 
14 DAY USE 
 
 RETURN TO DESK FROM WHICH BORROWED 
 
 LOAN DEPT. 
 
 This book is due on the last date stamped below, or 
 
 on the date to which renewed. 
 Renewed books are subject to immediate recall. 
 
 *EP $3 i960 
 
 rrcr 
 
 65 -4PM 
 
 ^25- 
 
 LD 21-100m-7,'40 (0936s) 
 

 
 
 7~1 ^ 
 o^ 
 
 
 
 
 ^v-^e 
 
 
 9 
 
 , 7- 
 
 918256 
 
 THE UNIVERSITY OF CALIFORNIA LIBRARY 
 
 "'*,>.. < 
 
 ^* .'-