SOLUBILITIES OF INORGANIC AND ORGANIC SUBSTANCES A COMPILATION OF QUANTITATIVE SOLUBILITY DATA FROM THE PERIODICAL LITERATURE BY ATHERTON SEIDELL, PH.D. Hygienic Laboratory, U. S. Public Health Service, Washington, D. C. SECOND EDITION ENLARGED AND THOROUGHLY REVISED NEW YORK D. VAN NOSTRAND COMPANY 25 PARK PLACE 1919 COPYRIGHT, 1907, 1911, 1919, BY D. VAN NOSTRAND COMPANY Stanbope jpress F. H.GILSON COMPANY BOSTON, U.S.A. PREFACE The principal object in preparing a compilation of solubility data, from the point of view of the advancement of chemistry, is to furnish material for the origination and verification of theories of solution. The majority of investigators who have been en- gaged on such problems, have been compelled to determine ex- perimentally the values required for developing the generalizations they hoped to establish. In fact, a large part of the most accurate data which are here brought together, are the outgrowth of such studies. It is hoped, therefore, that the present effort to make these and all other quantitative results more accessible for theo- retical studies of solubility, will lead to noteworthy advances in this field of chemistry. Of the various properties which determine the uses of com- pounds in a chemical way, solubility is of first importance. There- fore, solubility data are perhaps of even greater interest from a practical than from a theoretical point of view. For this reason it has been necessary to consider the needs of those who require such information only incidentally and may, therefore, be less familiar with some of the forms used for its expression. With this in mind, and at the suggestion of users of the preceding edition, chapters have been prepared in which are described, among other things, the sources of solubility data, the methods of calculating them to desired terms, the interpretation of their tabular arrange- ment, as well as some of the methods used for the accurate deter- mination of solubilities. Soon after the previous edition was issued, the collection of the new data, to be used in keeping the subject matter up to date, was systematically begun. In doing this, the experiment was made of examining each journal page by page, instead of scan- ning the titles of original papers contained in it. This resulted in the discovery of many data that would otherwise have been over- looked, and it soon became apparent that a more careful search of the literature than that previously made was necessary. It was, therefore, decided not only to examine the current periodicals minutely, but to go through the back volumes in a manner equally as thorough. The data collected in this way soon amounted to more than could be advantageously added as a supplement to the tables in the first edition, and it was decided to wait until the whole book could be completely rearranged, before making any additions iii PREFACE to the subject matter. It also appeared advisable to extend the scope to include freezing-point and certain other data, which had been omitted entirely from the first edition. The undertaking, therefore, developed far beyond the original expectation of regu- larly adding, from year to year, the new data which would keep the compilation up to date. Since the amount of time at my dis- posal for this work was limited, progress necessarily has been slow. Finally, the advent of the war extended the period far be- yond the limit caused by other conditions. Although the compilation has now been completed, I realize that in a work of this kind, more satisfactory results would have been achieved if several individuals had cooperated in its prepara- tion. The recent decision of the American Chemical Society to extend its activities to the publication of reference books, will, I hope, insure that hereafter, compilations of the present character will be made in the exceptionally thorough manner which only an organization with elaborate facilities can provide. In this connection I wish to express the opinion that the new venture of publishing compendia of chemical literature, which the chemical societies of England and America are just now about to undertake, will prove of service to the progress of chemistry in English speaking countries, second only to that rendered by the journals of original and of abstract literature, which these societies have so successfully developed. I realize, more than ever, that opportunities for the occurrence of errors are innumerable and although I have endeavored to maintain unremitting vigilance to avoid them, my efforts toward this end have not always been successful. I desire to express my appreciation to all who have called attention to errors in the former edition and I will be equally grateful to those who point out to me needed corrections in the present book. In this con- nection, I am greatly indebted to Professor B. N. Menschutkin of the Polytechnic Institute (Sosnovka), Petrograd, Russia, who, in calling my attention to an error in the tabulation of some of his work given in the first edition, sent me a complete set of reprints of his many papers on solubility and personally corrected the tables which I prepared from them, for use in the present volume. In conclusion I wish gratefully to acknowledge the assistance rendered me by Dr. W. S. Putnam of the Cooper Union of New York during the compilation of the first 150 pages of the tables. A. S. WASHINGTON, D. C., Feb. 22, 1919. iv GENERAL INFORMATION The following detailed account of the collection and arrangement of the solubility data contained in the present volume, has been prepared particularly for those who need quantitative solubilities rarely, and are more or less unfamiliar with the usual tabular methods of expressing such data. To those who are better ac- quainted with the subject, the descriptions in some cases at least, will probably be considered more elementary than necessary. It is hoped, however, that with the aid of the explanations here given, no one need remain uncertain as to the true meaning of any result or form of expression found in the book. Sources of the Data. In addition to those determinations made for the specific purpose of ascertaining particular solubilities, many results are reported in connection with the study of theories of solution and are, therefore, easily located. On the other hand, since solubilities often form only an incidental part of an investigation, many valuable data can be found only by a very careful search of the literature. Consequently, in collecting material for the present compilation, the procedure was adopted of perusing, page by page, every volume of a selected number of chemical journals, for the years 1900 to 1918. In doing this, attention was paid particularly, to collecting all tabulated data, but a vigilant watch for solubility statements in the text was also maintained. The twenty-three journals which were examined in this manner are designated with asterisks (*) in the volume-year table of journals given at the end of the book. There is also listed in this table a somewhat larger number of other journals, containing relatively few papers in which solubility data may be expected. In these cases, a page by page examination would have required more effort than the results to be gained appeared to justify. Consequently, only the tables of con- tents of these journals were searched for references to solubility data. The last volume number given for each journal in this table shows the final volume examined as above mentioned. Of the abstract journals, only "Chemical Abstracts" was syste- matically searched for references to data published in other than the twenty-three journals which were minutely examined. The original of practically all references obtained in this way was consulted. GENERAL INFORMATION The larger handbooks of inorganic and organic chemistry, such as those of Dammer, Moissan, Gmelin-Kraut, Abegg, Beilstein and others, were not examined, since it was believed that the major part of the data so obtained would undoubtedly have been already col- lected from the journals. Of the available compendia of physical constants, only the fourth edition of Landolt and Bornstein's "Tabellen" and the three issues of the international "Tables annuelles de Constantes et Donnees Numerique" were systematically examined, and in these cases the volumes were used principally to check the completeness of the compilation made directly from the journals. Of the various pharmacopoeias and pharmaceutical reference books, only the eighth edition of the U. S Pharmacopoeia (1905) was used to any extent as a source of solubility data. Most of the results contained in the subsequent ninth edition (1916), are taken from the previous edition and calculated to the basis of volume, in- stead of weight, of solvent required to dissolve unit weight of solid. It is believed that, for the present compilation, the weight basis for expressing the results is to be preferred, and moreover, by taking the data directly from the eighth edition, the errors incidental to the recalculation and rounding off to whole numbers, are elimi- nated. In this connection, it should be mentioned that the results ob- tained from pharmaceutical reference books for the more complex compounds such as the alkaloids, are for the most part of only qualitative interest, and although probably of sufficient exactness for use in pharmaceutical compounding, do not come within the scope of quantitative accuracy adopted for the present volume. Collection and Compilation of the Data. In all cases where solu- bility results were found recorded in an original communication, the data and accompanying descriptions of the experiments were copied and the record thus made filed for future use. In preparing these abstracts the actual experimental results were always recorded when available, rather than the values as recalculated by the author to terms which best suited the solution of the problem in hand. In many cases the original analytical data were not given and uncer- tainties arose as to the factors used and as to just how the calcula- tions had been made. This was particularly true in the many cases where the results were expressed in gram molecular quantities per given volume of solution or on the basis of molecular percentage. The supplementary information sought in each paper included such points as the method which had been employed for securing vi GENERAL INFORMATION equilibrium, the care exercised in purifying the material, the exact composition of the solid phase, the procedure followed in separating the saturated solution and analyzing it, as well as any other details which might be of value in forming a correct estimate of the ac- curacy of the work. The time consumed in this part of the exami- nation of the original papers was usually found to have been well spent when the compilation of the solubility tables from these data sheets was undertaken. This was especially the case when it be- came necessary to compare the results for the same compounds obtained by two or more investigators. When practically all abstracting of the solubility data in the journals already referred to had been completed, the data sheets, which were at first grouped according to the journals examined, were arranged alphabetically in accordance with the names of the compounds for which data had been determined. In this way all results for a particular compound were brought together and the actual preparation of the systemati- cally arranged tables could be begun. It will be noted that by this plan the original papers were practi- cally all consulted before the actual compilation of any of the data was started. In only a small percentage of cases was the author's paper again consulted, at the time the manuscript of the compiled tables was prepared or later. Although this plan introduces numerous opportunities for errors resulting from the recopying of the original data, it appeared to be the only practical procedure. A more direct transference of the original results to the finished page would have required that the work be done in the library or that a much larger number of books be withdrawn than is ordinarily permitted. Although it was originally intended to have the manuscript pages typewritten before transmitting them to the printer, this plan had to be abandoned on account of the difficulty in obtaining the services of a competent person and also on account of the considerable added expense. This necessity may possibly have resulted advantageously, since one of the several opportunities for the introduction of mistakes through copying the figures, was eliminated. The copy as forwarded to the printer was, for the most part, clear and legible but it was far from the orderly character of type- written pages, consequently, it would be surprising if none of the many errors made by the compositors as a result of imperfect copy, were overlooked during the proof-reading, which from be- ginning to end was done without assistance. In order to reduce vii GENERAL INFORMATION typographical and all other errors to the least possible number, it would be necessary to compare every original paper with the final printer's proof and to repeat every calculation of a result one or more times. That this was not possible in the present case will be easily realized when the very large amount of the data is considered. These details are mentioned at this time because it is believed that the user of the book is entitled to exact information in regard to the conditions under which the compilation was made. It is only with a clear understanding of its limitations that the book can be used to greatest advantage. In this connection it should be pointed out that although oppor- tunities for errors in recording the purely numerical data here brought together are abundant, in the majority of cases the mis- takes are not necessarily misleading if proper regard is paid to the general import of the results as a whole. Thus on the basis of the well-established principle that changes in solubility, such as are due to temperature or concentration of solvent, always proceed regularly, errors in the case of one or more figures in a table will become apparent on careful comparison with the remaining results, or by plotting them on cross section paper and drawing the curve. Consequently, the table as a whole provides a check on the indi- vidual results of which it is composed. Scope. In brief, it may be stated that it has been the inten- tion to include in this compilation, the actual results, or a reference to all quantitative solubility data, recorded in the journals referred to in a preceding section and listed in the table at the end of the book. Freezing- or melting-points of binary or more complex systems, as explained in the footnote on page I , are considered to be quanti- tative solubility data. The experimental results are quoted for only those systems in which one component is water or alcohol, or which are mixtures of fairly well-known compounds, and ref- erences are given to all others for which data were found Owing to the uncertainty of the boundary between solubility and other equilibria, it has been necessary arbitrarily to draw the line in regard to certain data which it has appeared wise to exclude. In accordance with this, no attempt has been made to gather either figures or references, for the following: (a) Melting-point data for mixtures of metals (alloys). (6) Melting-point data for mixtures of minerals, except a few of relatively simple composition, viii GENERAL INFORMATION (c) Freezing-points of very dilute solutions made for the de- termination of molecular weights or electrolytic disso- ciation. (d) Data for the solubility of gases in molten metals. (e) The so-called solubility of metals in various solvents, due to a chemical reaction which occurs. (/) Data for solid solutions. (g) Data for compounds of unknown or variable composition. Order of Arrangement. The alphabetical arrangement is be- lieved to have the advantage that data for particular compounds can be more easily located than would be the case if various com- pounds- or systems had been grouped according to selected rela- tionships. There is one difficulty which applies equally to any ar- rangement designed to avoid duplications, and that is the placing of those systems for which solubility results are given for two or more of the constituents involved. This applies especially to freezing-point lowering data for binary mixtures. In these cases the results show in turn the solubility of each component in the other and it is necessary to choose one, or to record the results under the name of each member in two separate places. There are many similar cases, in aqueous systems of two or more salts and of mix- tures of liquids, where results are given in succession for the solu- bility of each component in solutions of varying concentrations of the other. In order to prevent duplication in these cases it was necessary arbitrarily to select that component under which the results for the entire system are to be recorded. In harmony with the general alphabetical plan of the book, it appeared most logical to make the selection on the basis of the alphabetical order of the names of the compounds involved. In the majority of cases, therefore, every system in which solubility data for two or more compounds are given, is placed under the name of that component, the initial of which comes earliest in the alphabet. The advantage of this plan is that every system is assigned to a single position by rule and opportunities for unknowingly record- ing independent investigations of the same system, under different headings at widely separated portions of the book, are avoided. An exception to this rule, which it was considered wise to observe, is in connection with mixed systems containing a compound of one of the rarer elements. In these cases, on account of the greater interest in the rare earth compound, the data have been located under its name. In the case of those mixtures of salts and liquids which yield ix GENERAL INFORMATION liquid layers over certain concentrations and, therefore, to all in- tents and purposes become reciprocally soluble liquid mixtures, they are placed under the name of the salt or of that component which exists as a solid under ordinary conditions. It has only rarely been possible to give cross references in the body of the book, but in all cases those components of the mixtures, other than the one under which the data are alphabetically recorded, are included in the subject index of the book and the reader, therefore, should not fail to consult the index when results or a cross reference to the desired compound are not found in the proper place in the body of the book. Nomenclature. In regard to questions of the proper naming of compounds for the purpose of their correct alphabetical arrange- ment, particularly in respect to organic compounds, the usage followed in the index of "Chemical Abstracts" Has been adopted. Thus the name under which a given compound is indexed in "Chemical Abstracts" is, in practically all cases, the one used for deciding its position in the present compilation. The most notable deviation from this rule is in the case of com- pounds of those metals to which specific names, differing from the name of the metal itself, have been given; thus, for example in the present compilation, iron salts are not classed under ferrous and ferric and tin salts under stannous and stannic but under iron and tin, respectively. Another exception is the grouping of di and tri substituted amines under the mono substituted compound, instead of placing them under the widely separated headings Di and Tri. Thus results for diethylamine and triethylamine are given in connection with ethyl amine instead of being grouped, on the one hand with dimethyl, dipropyl, diphenyl, etc., amines, and on the other with trimethyl, tripropyl, triphenyl, etc., amines. In harmony with the adoption of "Chemical Abstracts" as authority for the correct naming of compounds, the rules adopted for that publication (see, in connection with index to Vol. n, 1917) have been followed as closely as possible in all other matters connected with systematic nomenclature. The exceptions which may be found are either mistakes, or occur in those tables reused from the first edition, in which corrections of the original plates would have cost more than the advantage to be gained appeared to justify. (For example, see first table, page 144, and many others in which the old forms of spelling names such as aniline, sulfate, glycerol, etc., have not been corrected.) Abbreviations. Although, in practically every case the abbre- GENERAL INFORMATION viations which have been used are identical with those adopted for "Chemical Abstracts" and will, in general, be readily under- stood, for the sake of accuracy and as a matter of convenience a list of those made use of in the present volume is given at the close of this chapter. (Page xxi.) Literature References. In order to save space, when several references must be given in connection with one result or table, and to avoid the repetition of the complete journal reference when data for different compounds are given in the same paper, an abbreviated form of reference, consisting of the name of the author and year of the work, has been adopted. These are to be used in connection with the author's index, in which the complete references are arranged chronologically under each name. Deviations from this system occur in connection with the tables reused from the first edition. In these cases it was decided not to incur the expense of altering the plates simply for the sake of uniformity. The complete references given with the old tables are sometimes, but not always, repeated in the author's index. Forms of Stating and Methods of Calculating Solubilities to Desired Terms. When a solid compound is brought in contact with a liquid, more or less of it dissolves with the production of a homoge- neous liquid mixture. The disappearance of the solid in the liquid continues, however, only up to a certain point, beyond which at a given temperature, no more of the solid can be made to dissolve. This quantity is designated as the solubility of the compound in the particular liquid. Solubility, therefore, always refers to a saturated solution and is expressed numerically in terms of the composition of the homogeneous liquid in equilib- rium with an excess of undissolved solid. It is obvious that the composition of a saturated solution may be expressed in a great variety of terms and it is, therefore, to be expected that investi- gators will choose those terms which best suit the elucidation of the particular problems in hand. As might be expected, the terms in most general use and those which permit of the widest applicability of the results, are based on the weights of the ingredients of the saturated solution. These may be either the weight of the dissolved compound contained in a unit weight (usually 100 grams) of the homogeneous liquid mixture, which corresponds to percentage of the dissolved compound in the saturated solution, or else the weight of the dissolved sub- stance in a unit weight of the solvent. In either case the one form may be easily calculated to the other. Thus, for instance, xi GENERAL INFORMATION if it is found that 100 grams of the saturated solution contain 20 grams of the dissolved compound, there can be present only loo 20 = 80 grams of solvent, and since this 80 grams of solvent holds 20 grams of the dissolved compound, 20 -r- 80 X 100 = 25 grams of it are present per 100 grams of solvent. The calculation in the opposite direction is, of course, just as simple. If 100 grams of solvent contain 25 grams of dissolved compound, then 100 + 25 grams of solution must contain 25 grams or 100 grams of saturated solution contain ^ X 100 = 20 grams of the dissolved compound. In the case of most solubility statements contained in the phar- maceutical literature, the results are given in terms of weight or volume of solvent required to dissolve unit weight of solid. Since all such results are simply the reciprocal of the terms, grams solid contained in unit number of grams of solvent, the procedure for transforming them to the more usual form simply involves dividing I gram by the stated number of grams of solvent. In < those cases, however, where the amount of solvent is expressed in vol- ume instead of weight, it is first necessary to multiply by the specific gravity of the solvent in order to find the weight corre- sponding to the given volume. A more serious complication is, however, introduced in those cases where the results have been reported only in terms of vol- ume of the saturated solution (100 cc. or I liter). On account of the change in volume which always results when a solid dissolves in a liquid, a calculation of the weight of the solvent present, when only the weight of the dissolved compound and total volume of the solution is given, cannot be made. . In these cases it is also necessary to know the weight of a unit volume of the satu- rated solution, that is, its specific gravity, in order to convert the results from the volume to the weight basis. Consequently, for solubility results to be most generally useful, the specific gravity of the saturated solution should always be determined. The calculation of a given result from the volume to the weight basis or vice versa, with the aid of the specific gravity (density), is readily understood when it is remembered that this factor is simply the weight in grams of I cc. of the solution. If, for example, it is stated that 100 cc. of saturated solution contain 25 grams of salt and the specific gravity is 1.15, it is apparent that 115 grams of the solution contain 25 grams of the salt, or 100 grams contain - =21.7 grams. Conversely, when the calculation of the amount of salt in 100 cc. from that in 100 grams of solution, is to xii GENERAL INFORMATION be made, the weight of dissolved compound must be multiplied by the specific gravity. One of the forms of presenting solubility data for which especial care is needed in converting the values to a different basis is in the case of results for salts with water of crystallization. In some instances these results are expressed in weight of the hydrated compound in a given volume or weight of the saturated solution. If it is desired to ascertain the weight of anhydrous salt present, it will be necessary first to calculate the grams of anhydrous salt equivalent to the stated number of grams of the hydrated com- pound and, if the results have been expressed in terms of volume of saturated solution, this will be all that is necessary, but if, for instance, the grams of hydrated salt per 100 grams of saturated solution or of water have been given, then it will be necessary to add the weight of water present as water of crystallization in the salt, to the weight of water present as solvent. The total weight of solvent is, therefore, made up of the weight of water used for preparing the solution and that carried by the salt as t^O of crystallization. In the case of solvents composed of mixtures of water and alcohol, or other liquids, authors sometimes fail to specify whether the figures for such mixtures refer to the weight or volume basis, consequently, without a specific gravity determination, the exact composition of the mixture is uncertain. The above remarks con- cerning the calculation of solubility results from one form to another apply equally to determinations made in mixed solvents, provided all supplementary data for accurately establishing the composition of the mixed solvent are given. Although in most cases the actual experimental results of solu- bility determinations are obtained in terms of weight, many investi- gators find that certain advantages are to be gained, in particular problems, by converting their analytical results to the basis of normality or gram molecules, and in practically all such cases it is not thought necessary to present also the gram quantities from which the molecular values were calculated. Although this may be justified from the narrow point of view of the particular problem in hand, it is greatly to be deplored when the broader aspects of the value of solubility data as a whole are considered. As already mentioned, solubility results which have been determined for some one purpose may frequently be applied to the solution of other problems, or serve in the development or testing of generalizations or of laws of solution. It is, therefore, important that in the case of xiii GENERAL INFORMATION all solubility data the results should either be expressed in the gravimetric terms derived most directly from the experimental de- terminations, together with the specific gravities of, and solid phases in contact with the solutions, or else, when presented in terms more or less remote from those of the directly determined values, the method of making the calculations should be plainly indicated and all factors or supplementary data which have been used, presented in detail. In preparing the present compilation occasion was several times taken to write to authors for data supplementary to those published, which although not essential to the solution of the particular prob- lem in hand, and therefore omitted from the paper, were, neverthe- less, needed for calculating the results to a form which would permit comparison with similar data by others or their use in the solution of other problems. The calculation of results from the molecular basis to the gram basis or vice versa, introduces, in addition to the errors incidental to the calculation itself, those resulting from the selection of the atomic or molecular weights which are used as the factors. It is indeed rare for an author to state the actual molecular weights used for a calculation, and although the revisions of atomic weights which are occasionally made are usually not of great magnitude, opportunities for slight differences in recalculating results to a desired basis, due to differences in molecular weights, are worthy of consideration. A source of greater inaccuracies, however, is that resulting from the failure of authors to differentiate clearly between the significance of normality (gram equivalents) and gram molecules (formula weights) in calculating or in expressing their results. It also occasionally happens that the compounds involved are de- scribed only by names which are not specific and a doubt may arise as to the exact formula expressing the composition of the compound in question. This applies particularly to work described in lan- guages other than English. In cases of complex mixtures of several salts the results are sometimes given in terms of the ions present and the calculation of such results to the gram basis calls for especial care. The general procedure for calculating gram quantities to the molecular basis consists simply in dividing by the molecular weight, or molecular equivalent weight in the case of results to be expressed in normality, and pointing off according to the unit quantity of solution selected. The reverse calculation is, of course, made by multiplying the molecular or normality values as given, by the xiv GENERAL INFORMATION molecular, or molecular equivalent weights. An example which will illustrate the principal points involved, is the case of the calcu- lation of the grams of dissolved compound per 100 grams of solvent, from a result expressed in terms of molecular per cent, that is, in terms of molecules of dissolved compound present in a total of 100 molecules of dissolved compound plus solvent. Thus, in the case of the solubility of mercuric iodide in pyridine, it has been found that the saturated solution at 100 contains 25 mol. per cent HgI 2 , which designates a mixture of 25 gram mols. of HgI 2 and 100 25 = 75 gram mols. of pyridine. To convert to gram quantities, each figure is multiplied by the respective molecular weight and the product for the HgI 2 divided by the product for the C 5 H 5 N. Thus, (25 X 45445) * (75 X 79.08) = 1.915, which, X 100, = 191.5 grams HgI 2 per 100 grams of C 6 H 5 N. Although, in the present compilation an attempt has been made to calculate as many as possible of the data to terms of weight of the compounds involved, especially for the commoner substances, this has not appeared advisable in some cases, either on account of uncertainties as to the factors to be used, or on account of the rela- tive unimportance of the data and the considerable labor which would have been involved in making the calculations. The principal terms used in expressing the solubility of gases in liquids are defined in connection with the tables of data in the body of the book. See, for instance, p. 227. Explanation of Tables. Although the tables of results contained in the present volume will, it is hoped, be easily understood by all who are familiar with the subject, for the benefit of those who need solubility data only rarely, it has appeared desirable to mention some of the principles followed in constructing the tables and ex- plain in detail the exact meaning of the results contained in a num- ber of typical tables. The main consideration in connection with a compilation such as the present one, is to arrange the very large amount of material in the most concise manner compatible with perfect clearness. It has, therefore, been necessary to adopt forms and abbreviations which eliminate the repetition of readily understandable details. In general, it may be stated that the record of a solubility de- termination consists of the analytical results showing the composi- tion of a homogeneous liquid mixture in equilibrium at a given temperature, with one or more solid compounds or with another homogeneous liquid mixture. In the case of aqueous solutions of salts, for instance, the analysis will show the weight of salt and of xv GENERAL INFORMATION water contained in a given amount of the saturated solution. In recording this analysis, however, as solubility data, it is not cus- tomary to state the weight of water directly, since its quantity is derivable from the given weight of salt and of solution (salt plus water). Thus, in all cases the amount of the dissolved compound is numerically reported in terms of unit quantity (100 grams, one liter, etc.) of the saturated solution or of the solvent. The tables, therefore, all show in the heading above the columns of figures, the terms in which the results are expressed (grams, cubic centimeters, gram molecules, etc.) and the unit quantity of solution or solvent in which the numerically recorded amounts of dissolved compound are contained. When more than one column of figures are inclosed under a bracket below the heading, the arrangement is an abbrevia- tion designed to eliminate the repetition of the heading over each column separately, and, therefore, indicates that the heading applies independently to each separate column of figures. Thus, in the case of the table showing the solubility of sodium nitrate in water (see p. 656) the heading which is as follows: Cms. NaN0 3 ^per 100 Gms. j^ o l s Solution. Water. ' per Liter. o 42.2 72.9-73* 6.71* 10 44.7 80.8-80.5 7.16 when translated into its detailed meaning shows, (i) that at o, 100 grams of the saturated solution of sodium nitrate in water contain 42.2 grams NaNO 3 , (2) that at o, 100 grams of water dissolve from 72.9 to 73 grams NaNOs according to the authorities quoted (Mulder or Berkeley), and (3) that one liter of a saturated solution of sodium nitrate in water at o contains 6.71 gram molecules of NaNO 3 . This general form of heading is typical and will be found in prac- tically all cases where results for the solubility of a single salt in a single solvent at various temperatures are given. As will be noted, tables of this form show the results for a single series of determina- tions at increasing temperatures expressed in more than one set of terms. As a general rule, and especially when determinations of the specific gravities of the solutions are also given, any one of the figures for a given temperature may be calculated, as described in the previous section, from either of the others at the same tempera- ture. The advantages of tables giving the results in several sets of terms are that the reader is relieved of making the calculations individually. xvi GENERAL INFORMATION In a number of cases where, either the importance of the com- pound does not warrant very detailed results, or where similar data for several near related compounds have been determined, com- posite tables showing the results for two or more compounds in one or more solvents have been constructed. Although by this pro- cedure considerable space has been saved and frequent repetitions avoided, it is possible that clearness has sometimes been sacrificed. An example of such a composite table is that for the three com- pounds, CdI 2 .KI.H 2 O, CdI 2 .2KI.2H 2 O and CdI 2 .2NaI.6H 2 O given in the first table on p. 178. The three solvents in which the solubilities were separately determined are placed in the first column of the table. Next follow the results for CdI 2 .KI.H 2 O, given in terms both of grams of anhydrous salt, CdI 2 .KI, per 100 grams of solution and per 100 grams of solvent. The next group of figures shows successively the solubility of CdI 2 .2KI.2H 2 O in water, in absolute alcohol and in absolute ether, reported in each case, in terms of grams of anhydrous salt per 100 grams of saturated solution and also in grams per 100 grams of each solvent. The last group of figures, columns 6 and 7, gives similar results for CdI 2 .2NaI.6H 2 O. Other examples of this type of table are given on p. 188. In these cases results for three compounds, each in the same solvent but at different temperatures, are given. The abbreviation here adopted consists in providing only one column of temperatures to serve for each of the three sets of results given in the succeeding columns. This general plan is followed in a very large number of cases throughout the book. One other example is that of the results for platinic double chlorides, given in the first table on p. 498. In this case, although each column of results represents an independent series of solubili- ties in water, they have all been grouped under the same bracket, instead of each being given under a separate, complete heading. By this plan a very compact arrangement has been provided but the results are apt to be misunderstood unless the reader bears in mind that here as elsewhere it has been necessary to condense the data as much as possible. Before leaving the general subject of composite tables, attention should be called to one point which will be found illustrated in a large number of them. This is in reference to results at other tem- peratures than those which apply to the table as a whole, as recorded in the first column under the designation t. In these cases the figure for the temperature is given in a parenthesis immediately following the result for grams of compound dissolved and, of course, xvii GENERAL INFORMATION means that the particular determination was made at the tem- perature stated in the parenthesis, instead of at the temperature shown in the column t, which applies to all the results not so modified. This principle of indicating in parentheses any variations from the general order of the table, and also in respect to the introduction of additional matter, such as results for densities, points on the character of the solutions, etc., is one which has been followed in many instances. As already stated, a solubility is an expression of the con- centration of a solution in equilibrium with a particular solid com- pound. Therefore, if a compound can exist in more than one form at a given temperature, such as in different states of hydration, its solubility will show variations in accordance with which one of its forms is in contact with the saturated solution at the particular temperature. Information in regard to the solid phase is, conse- quently, essential to the accurate expression of a solubility. When- ever such facts are available they are shown in the tables by means of formulas recorded under the heading "Solid Phase." These formulas are usually placed on a line with the numerical results for the solution in contact with the solid represented by the formula given. A case which illustrates strikingly the multiplicity of variations in solubility with change in degree of hydration is that of the solu- bility of the hydrates of ferric chloride in water (see p. 337). In this case, to economize space, the formula for the hydrate has been placed immediately above that group of data to which each refers, instead of on the same line with the results for each solution in contact with that particular hydrate. An examination of this table will show the apparent anomaly that the same hydrate possesses two different solubilities at certain temperatures. Thus, in the section of the table giving results for solutions in contact with the solid phase Fe2Cl 6 .i2H2O, it will be noted that 100 grams of H 2 O dissolve 106.8 grams FeCla at 30 and two lines below, the same amount of water is stated to dissolve 201.7 grams FeCl 3 at 30. This is due to the fact that each of the hydrates gives a more or less well developed reverse solubility curve. The character of these curves is plainly indicated by plotting them on cross-section paper from the results given in the table. If this is done it will be seen that in case of the results for Fe 2 Cl 6 .i2H 2 O, the grams of FeCl 3 con- tained in 100 grams of water increase regularly with rise of tem- perature up to 37, which is the melting-point of this hydrate. If xviii GENERAL INFORMATION more crystals are added and the temperature raised above 37, they melt and form a homogeneous solution of increased concentration. K, however, this more concentrated solution is cooled again below 37, and crystals then added, they remain as solid phase and, when equilibrium is established, the composition of the solution corre- sponds to a point on the upper, reverse arm, of the solubility curve. With this salt, therefore, it is seen that for certain ranges of tem- perature the concentration of the saturated solution depends upon the procedure by which the point of equilibrium has been ap- proached. In cases where results are given for the solubility of a particular compound in aqueous solutions of another, the heading above the columns of figures shows, as usual, the terms in which the results are expressed (gms., cc., mols., etc.) and the unit amount of solution or solvent in which the recorded amounts of each compound is con- tained; while below the bracket are given, at the heads of the columns, the formulas of the respective compounds simultaneously present in the solution. Thus, there will usually be found in one column, the increasing concentrations of the salt present in the aqueous solution constituting the solvent, and in the other the amounts of the other compound of which the solubility is being de- termined and which is present as solid phase in contact with the solution. Examples of this form of table are those for the solubility of calcium sulfate in aqueous salt solutions (pp. 215 to 219) and numerous others throughout the book. In all cases where the solid phase exists in more than one form, this information, when available, is recorded in the usual manner in the column under the heading "Solid Phase." (See pp. 174, 185, 203, 404, and many others.) The results for the specific gravities of the saturated solutions are also given, when available. It is needless to say that, according to the arrangement of these tables, the figures in the horizontal lines refer to the same solution and those in the vertical columns to dif- ferent solutions of the series. In the case of tables showing the distribution of a compound between two immiscible solvents (see for example, results for mer- curic chloride, pp. 420 and 421), the amounts of the dissolved com- pound in the conjugate layers are given under the same bracket with column headings designating the respective layers. In the case of equilibria in ternary systems, which form two liquid layers (see for example, last table, p. 511), the compositions of the upper and lower layers are given under separate brackets, the results on each horizontal line being for layers in contact with each other. xix GENERAL INFORMATION Data of this character are described more fully in the chapter on Methods for the Determination of Solubility. The types of cases which have just been described were pointed out by users of the first edition of the book who did not understand the arrangement in these cases and suggested that an explicit de- scription of them would make the book more generally useful. It is realized that the explanations which have been given here apply only to a certain proportion of the tables in the book. There are, no doubt, many tables and forms of expression, especially for the more complex systems, which will not be understood by the casual reader. In some of these cases brief remarks in connection with the tables have been given, but to just what extent these explanatory remarks are warranted, it has been difficult to decide. In conclu- sion, it should be mentioned that the title of the table is intended to describe the nature of the results and should always be used as a guide in the interpretation of the tabular arrangement. xx ABBREVIATIONS Most of the following abbreviations will be found written both with capitals and without. WD- Specific Rotation. abs. Absolute. abs. coef . Absorption Coefficient. alcohol. Ethyl Alcohol. amt(s). Amount (s). anhy. Anhydrous. aq. Aqueous. atm(s). Atmosphere(s). at. wt. Atomic Weight. b.-pt. Boiling-point. C. Centigrade. calc. Calculate (ed). cc. Cubic Centimeter (s). cm. Centimeter (s). coef. Coefficient. com. Commercial. compd. Compound. cone. Concentration, Concentrated. cond. Conductivity. const. Constant. cor. Corrected. crit. Critical. cryo. Cryohydric. cryst. Crystalline. d. Dextro (in connection with the name of an optically active com- pound). d. Density (d is Specific Gravity at 1 8, referred to water at 4; d^ at 20 referred to water at 20), decomp. Decomposition. dif. Different. dil. Dilute. dist. coef. Distribution Coefficient. ed. Edition. elec. Electric (al). equil. Equilibrium. equiv. Equivalent (s). eutec. Eutectic. F. Fahrenheit. f.-pt. Freezing-point. g., gm., gms. Gram(s). gm. mol. Gram Molecule (s). G. M. Gram Molecule (s). hr(s). Hour(s). i. (d + /) Inactive (in connection with the name of an optically active compound.) inorg. Inorganic, insol. Insoluble. /. Laevo (in connection with the name of an optically active com- poun4). kg. kgm. Kilogram (s). 1. Liter(s). mm. Millimeter (s) m. Meta. max. Maximum, mg., mgm. Milligram(s). mol(s). Molecule(s), Molecular, mol. wt. Molecular Weight, millimol. Milligram Molecule, m.-pt. Melting-point. n. Normal (gm. equiv. per 1.). N. Normal (used rarely). o. Ortho. ord. Ordinary, org. Organic, p. Page. p. Para, pet. Petroleum, ppt. Precipitate, pt. Point. quad. pt. Quadruple Point, qual. Qualitative, sapon. Saponification. sat. Saturated, sol(s). Solution (s). sp. gr. Specific Gravity (Density), sq. cm. Square Centimeter. s. Symmetrical, sym. Symmetrical. xxi ABBREVIATIONS fc. Temperature, Centigrade- Scale. wt. Weight. temp(s). Temperature (s). oo Infinity. tr.pt. Transition Point. .lo" 2 , .io~ 5 , etc., following a result vol(s). Volume (s). means that the decimal point is to be undissoc. Undissociated. moved as many places to the left as U. S. P. U. S. Pharmacopoeia, indicated by the minus exponent. XXll ACENAPHTHENE C 12 Hi . SOLUBILITY IN SEVERAL ORGANIC SOLVENTS. (Speyers Am. J. Sci. [4] 14, 294, 1902.) NOTE. In the original paper the results are given in terms of gram mole- cules of acenaphthene, acetamide, acetanilide, etc., per 100 gram molecules of solvent, at temperatures which varied with each solvent and with each weigh- ing of the solutions. The tabulated results here given were obtained by re- calculating and reading the figures from curves plotted on cross-section paper. In Methyl Alcohol. In Ethyl Alcohol. In Propyl Alcohol. t . (a) (ft) (c) (a) (ft) ( c ) "(a) (ft) (0 " 81 33 I .80 o 39 81.1 1.9 0.57 82.3 2.26 0.88 10 80 .40 I .70 o 38 80.3 2.8 0.84 8l.8 2.40 i .00 2O 79.60 2 .25 o .48 79.6 4.0 1.20 81.4 3-40 !-35 30 79 .00 3 .50 o .72 79.1 5-6 1.70 80.9 4-75 i .90 40 78 45 6 .00 I .20 78.7 8.4 2.6o 80.6 7.10 2.90 50 78 15 9 .00 I 77 78.8 13.2 3-90 80.7 II. 10 4.40 60 78 30 ii .70 2 35 79-4 23.2 7.00 81 .5 19.60 8.20 70 78 .60 14 .30 2 .90 80.75 40-5 12.50 83-9 37.00 16.20 In Chloroform. In Toluene. t . (a) (ft) (c) <) (ft) (c) 143-8 16. 4 12-7 90.7 I3.I8 7-9 10 I40.I 20. 6 16.0 90.8 18.0 10.7 20 I36-3 27. o 19.5 91.0 24-5 14-5 30 132.4 34- o 25 .0 91.8 33-5 20.5 40 128.0 42. 5 32-0 92-7 47.0 28.0 50 123.4 Si- 5 40.0 94.0 60.5 35-7 60 119.3 62. 5 5- 95-5 74.0 43-5 70 . 97.2 89.0 52-5 (a) Weight of 100 cc. solution in grams. (b) Grams dissolved substance per 100 grams solvent. (c) Gram molecules of dissolved substance per 100 gram molecules of solvent. looo gms. Aq. 25% NH 3 dissolve 0.07 gm. acenaphthene at 25. (Hilpert, 1916). RECIPROCAL SOLUBILITIES DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT * ARE GIVEN BY GIUA (1915), FOR THE FOLLOWING PAIRS OF COMPOUNDS: Acenaphthene + m Dinitrobenzene. + 2.4 Dinitrotoluene. " + a. Trinitrotoluene. Freezing or Melting-point Curves as Solubility Data. When a mixture of two compounds, rendered liquid by elevation of temperature, is gradually cooled, a point will be reached at which one or the other of the constituents will separate as a solid. This point represents the solubility of the one compound in the other. The method involved, differs principally from that ordinarily employed for solubility de- terminations, in that the composition of the mixture remains constant while the saturation tempera- ture is being approached, instead of the reverse procedure. A considerable amount of data of this character is available, but, after careful consideration, it has been decided that references only will be given to it in the present volume, except in cases of mixtures of well-known compounds or of those in which water is one of the constituents. RECIPROCAL SOLUBILITIES (Freezing-point Lowering Data, see footnote, page i ) ARE GIVEN FOR THE FOLLOWING PAIRS OF COMPOUNDS: Acenaphthene + Chloroacenaphthene -j- Bromoacenaphthene " -|- lodoacenaphthene + Benzil -j- p Nitrobenzoic Aldehyde " + Piperonilic Aldehyde + Vanillic Aldehyde Chloroacenaphthene + Bromoacenaphthene + lodoacenaphthene Bromoacenaphthene -j- " (Crompton and Walker, 1912.) (Pawlewski, 1893.) (Fazi, 1916.) (Crompton and Walker, 1912.) ACETALDEHYDE CH 3 COH. SOLUBILITY IN ETHYL ALCOHOL DETERMINED BY THE METHOD OF LOWERING OF FREEZING-POINT (de Leeuw, 1911). Liquid air was used as the cooling medium and temperatures were measured with the aid of a specially con- structed resistance thermometer. -123-3 -125.4 127.6 -132 -126 -126 -124.3 -123.5 Wt. Per Cent CH 3 COH in Mixture. Mol. Per Cent CH 3 COH in Mixture. 100 ICO 90.7 84.5 80.9 7 8.1 90.3 83-9 80.2 77-3 ' 75-2 67.0 60.8 74-4 66.0 59-7 Solid Phase. r. CH 3 COH 122.3 -I25-3 -128 (Eutectic) 123.2- 77.3 CH 3 COH.C 2 H 5 OH 126.8 -130.6 120.6 -II4.9 Wt. Mol. Per Cent Per Cent CH 3 COH CH 3 COH Solid Phase. in in Mixture. Mixture. 51.8 50.7 CH 3 COH.C 2 H 5 OH 45-6 44-5 40.6- 39.5 CH 3 COH. 2 C 2 H 5 OH 35-3 34-3 30.2 29.3 17.9 17.3 C 2 H 6 OH 10.2 Q.8 o.o o.o Freezing-point data for mixtures of acetaldehyde and paraldehyde as well as the complete x T diagrams are given by Holleman (1903). Results for mixtures of paraldehyde and p xylene are given by Paterno and Ampola (1897). Results for mixtures of the a and /3 forms of Acetaldehyde phenyl hydrazone are given by Laws and Sidgwick (1911). AOETAMIDE CH 3 CO.NH 2 . SOLUBILITY IN WATER AND IN ALCOHOL. (Speyers.) In Water. In Ethyl Alcohol. t. (0 (ft) (c) ' (a) (ft) ()" 105 5 70 .8 29 .6 85 .62 J 7 3 18.5 10 104 9 81 .0 34 o 86 .2 24 .0 26.0 20 104 3 97 5 40 .8 87 3 31 .5 33-8 30 103 7 114 .0 47 7 88 .8 40 5 43-0 40 103 .0 133 .0 55 5 90 7 5o .0 S3 -5 50 102 3 154 .0 64 .0 93 .0 61 .0 60 101 .6 177 5 74 95 5 72 o 76S 1 (a) Wt. of 100 cc. sat. solution in gms. Acetamide per 100 gm. mols. solvent. 100 gms. pyridine dissolve 17.75 gms. acetamide at 20-25; Io gms. aq. 50 per cent pyridine dissolve 84.7 gms. acetamide at 20-25. (Dehn, 1917.) Freezing-point curves are given for: Acetamide + Benzene (Moles and Jimeno, 1913); Acetamide + Phthalide (Lautz, 1913); Acetamide + Triphenyl guanidine (Lautz, 1913); Tribromoacetamide + Trichloroacetamide (Kiister, 1891). ACETANILIDE ACETANILIDE C6H 6 NH.COCH 3 . SOLUBILITY IN SEVERAL SOLVENTS. Solvent. Water Ether Formic Acid (95%) Acetic Acid (99.5%) Acetone Amyl Acetate Amyl Alcohol Aniline Benzene Benzaldehyde Toluene Xylene Pyridine 50% Aq. Pyridine Petroleum Ether i6 25 30 25 21-5 30^31 25 30-31 25 32.5 20-25 u about 20 0-997 i .000 1. 121 O.9O2 0.882 1.034 0-875 1.068 0.862 0.847 0-47 0-54 0.69 2.8 56.74 33-21 10.46 14.00 19.38 2.46 18.83 0.50 1.65 32.7 35-7 0.03 Authority. (Greenish and Smith, 1903.) (Holleman and Antush, 1894.) (Seidell, 1907.) (Marden and Dover, 1916.) (Aschan, 1913.) (Seidell, 1907.) (Dehn, 1917.) (Salkower, 19x6.) SOLUBILITY IN METHYL ALCOHOL, ETHYL ALCOHOL AND IN CHLOROFORM. (Speyers, 1902.) See Note, page i. In CH 3 OH. O 10 20 30 40 50 60 Sp. Gr. of Sat. Solu- tion. 0.860 0.864 0.875 0.892 O.9II 0.932 0.957 Gms. C 8 H5NH.COCH, per zoo Gms. Sat. Solution. 18-5 23.1 29.1 35-i 42.9 5!-7 59-2 In C 2 H 5 OH. Sp. Gr. of Sat. Solu- Cms. C 6 H 5 NHCOCH 3 per too Gms. tion. Sat. Solution. 0.842 12.8 0.844 16.7 0.850 21.3 0.860 26.5 0.874 32.9 0.895 39-4 0.920 46.4 In CHCV Sp. Gr. of Sat. Solu- tion. Gms. CeHjNHCOCHa per 100 Gms. Sat. Solution. I-503 3-53 1-475 7.24 1.440 10.7 1.398 14-5 1-354 18.7 1.3*4 23-7 1.272 29.1 SOLUBILITY OF ACETANILIDE IN MIXTURES OF ETHYL ALCOHOL AND WATER. wt. nesuiis at 25 . \r\ Loiieman ana /wuusn, 1094.; K.CSUILS at j 50 . v^e'ueu, 1907.; lerCent : 2 H 5 OH in Solvent. Sp. Gr. of Sat. Solution. Gms. C6H 6 NH.COCH 3 per too Gms. Sat. Solution. Sp. Gr. of Sat. Solution. Gms. C 6 H S NH.GOCH, per loo Gms. Sat. Solution. 0.997 o-54 I .OOO 0.69 10 0.985 0-93 0.984 I.QD 2O 0-973 1.28 0.970 2.20 30 0.962 2.30 0.956 4.80 40 0.950 4-85 0-945 9.40 50 0-939 8.87 Q-934 15.40 60 0.928 14.17 0.926 22.00 70 0.918 19.84 0.917 27.60 80 0.907 25-I7 0.907 31.20 85 0.899 26.93 0.900 31.70 00 0.890 27.65 0-893 51.60 95 0.874 26.82 0.885 30.80 IOO 0.851 24-77 0.876 29.OO (See remarks under a Acetnaphthalide, page 13.) ACETANILIDE 4 SOLUBILITY OF ACETANILIDE" IN MIXTURES OF ETHER AND CHLOROFORM AND OF ACETONE AND BENZENE AT 25. (Marden and Dover, 1916.) Results for Ether-Chloroform Mixtures. Results for Acetone-Benzene Mixture. Wt Per Cent C H Gms ' C 6 H 5 NH.COCH 3 Wt. .rer l^ent ^srls __ /- n/r:j Wt. Per Cent CHC1 3 in Mixed Solvent. Gms. C 6 H 5 NH.COCH 3 per 100 Gms. Mixed Solvent. 100 17.7 90 80 II.7 8.2 70 00 6.2 4-95 50 40 4-25 3-8 30 3-5 20 3-25 10 3-05 2.9 100 1.36 90 6.78 80 13.0 70 20.0 60 29.2 50 30.0 40 3-5 30 33-o 20 36.0 10 45-7 o ' 39-4 DISTRIBUTION OF ACETANILIDE BETWEEN IMMISCIBLE SOLVENTS AT 25. Cone. C 6 H 5 NH.COCH 3 in Benzene layer -f- Cone, in H 2 O layer = 1.65. (Farmer and Warth, 1904.) " Chloroform " -r- Cone, in H 2 O layer = 7.75. (Marden, 1914.) " Ether " -f- Cone, in H 2 O layer = 2.98. (Marden, 1914.) SOLUBILITY OF HALOGEN SUBSTITUTED ACETANILIDES IN ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Chattaway and Lambert, 1915.) Gms. of Each Anilide per 100 Gms. of Each Sat. Solution. t. p Chloro- acetanilide. 2.4 Dichloro- acetanilide. p Bromo- acetanilide. 2.4 Dibromo- acetanilide. 4 Chloro- 2 Bromo- acetanilide. 2 Chloro- 4 Bromo- acetanilide. 5 4.244 2.480 . . . . . . 10 3.278 3.008 4.847 2.876 4-334 2-575 15 3-777 3-564 5-56I 3-382 5.088 2.961 20 4.366 4.192 6.390 4.002 5.986 3.466 25 5.040 4.962 7.300 4.714 7-043 4-095 30 5.828 5.864 8.440 5-6I5 8.328 4.891 35 6.700 6-937 9-7I5 6.686 9.844 5.820 40 7.728 8.276 11.156 7.914 11.586 6.887 45 8.918 9-750 12.767 9-357 13.718 8.186 (Results for unstable needle forms of p bromoacetanilide and 2.4 dibromo- acetanilide are also given.) SOLUBILITY OF p NITROACETANILIDE AND OF 2.4 DICHLOROACETANILIDE IN ACETIC ACID AT l6. (Orton and King, 1911.) Compound. Solvent. <5SS&SR p Nitroacetanilide Glacial Acetic Acid o . 83 50% Aq. " 0.38 2.4 Dichloroacetanilide Glacial Acetic Acid 6.37 50% Aq. " 0.83 Freezing-point curves (see footnote, page i) are given for mixtures of: Acetanilide and Antipyrine (Comanducci, 1912.) ' m Nitraniline ' (Crompton and Whiteley, 1895.) " m Dinitrobenzene " ' a Dinitrophenol " p Nitroacetanilide (Kiister, 1891.) p Nitroacetanilide and Dinitroacetanilide (Holleman and Sluiter, 1906.) p Bromoacetanilide and 2.4 Dibromoacetanilide (Sidgwick, 1915.) ACETIC ACID ACETIC ACID CH 3 COOH. RECIPROCAL SOLUBILITY OF ACETIC ACID AND WATER DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT . Gms. CH 3 COOH Gms. CH 3 COOH t. per 100 Gms. Solid Phase. Sat. Solution. t. per 100 Gms. Sat. Solution. Solid Phase. o o Ice 2O 67.0 CH 3 COOH - 5 15-2 15 72.3 " 10 28.5 10 77-5 " "~ I 5 40.0 - 5 82.2 it 20 49.2 87.0 it 2 5 K + 5 91.8 tt -26. 7 60 . o (Eutectic) 10 95-8 it -25 62.5 CH 3 COOH 16.6 100. ft The data in the above table were obtained by plotting the results of Pickering (1893), Roloff (1895), Dahms (1896) (1899), deCoppet (1899), Kremann (1907), Faucon (1910), Ballo (1910), Groschuff (1911), Paterno and Salimei (1913), and Tsakalotos (1914), on cross-section paper and drawing a curve through the points in best agreement. In addition to making determinations of the freezing-points of the mixtures, Ballo also analyzed the solid phases which separated, and snowed that these contained, in all cases, increasing percentages of acid and, therefore, must have consisted of mixed crystals. This formation of mixed crystals is offered as an explanation of the abnormality of the freezing-point lowering of the system. SOLUBILITY OF ACETIC ACID IN ETHYL ALCOHOL (98.9%) DETERMINED BY THE METHOD OF LOWERING OF FREEZING-POINT. (Pickering, 1893.) Gms. CH 3 COOH Gms. CH 3 COOH t. per zoo Gms. Sat. Solution. Solid Phase. -75 26.O CH 3 COOH -70 27.7 tt -60 33-o it -So 38.2 ft -40 43-7 tt -30 50.2 tt 20 58.0 ft t. per too Gms. Sat. Solution. Solid Phase. 10 6 7 .7 CH 3 COOH - 5 73-2 n 79.1 tt + s 85.2 tt 10 Qi-5 ft 15 98.0 tt 16.6 IOO.O tt (The original results were plotted on cross-section paper and the above figures read from the curve.) SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZ- ING-POINT (see footnote, page i) ARE GIVEN FOR MIXTURES OF Acetic Acid AND EACH OF THE FOLLOWING COMPOUNDS: Chloroacetic Acid (Mameli and Mannessier, Dimethyl pyrone (Kendall, 1914 (a).) . J9I3: Kendall, 1914.) DlchloroacetlC Add (Kendall, 1914.) Tnchloroacetic Acid (Kendall, 1914.) Acetic Anhydride (Pickering, 1893.) Booge, 1916.) Benzene + Vaseline (Roloff, 1895-) Benzene + Naphthalene (Roloff, 1895.) Benzene + Water (Roloff, 1895.) Benzoic Acid (Kendall, 1914.) Chlorobenzene (Baud, 1913 (c).) Nitrobenzene (Dahms, 1895; Baud, 1913 (c).) Carbon Disulfide (Pickering, 1893.) Cyclohexane (Baud, 1913 (a) (6).) Dimethyl Oxalate (Kendall and Booge, 1916.) Dimethyl Succinate (Kendall and Booge, 19x6.) Eth j Ether (Pickermg> l893 . } Ethylene Bromide (Dahms.tSgs; Baud, I9 i 2 (a).) Ethylene Dibromide (Baud, *' (>,) tormamide (English and Turner, 1915.) Formic Acid (Baud, 1913 (c).) Methyl Alcohol (Pickering, 1893.) Picric Acid (Kendall, 1916.) Propyl Alcohol (Pickering, 1893.) Sulfuric Acid (Pickering, 1893.) Thymol (Paterno and Ampola, 1897.) p Xylene (Paterno and Ampola, 1897.) ACETIC ACID 6 DISTRIBUTION OF ACETIC ACID BETWEEN: Water and Amyl Alcohol at 20. Water and Benzene at 25. (Herz and Fischer, 1904.) (Herz and Fischer, 1905.) Cms. CHaCOOH G. M. CHaCOOH Cms. CH 8 COOH G. M. CHaCOOH per IPO cc. per 100 cc. per 100 cc. per 100 cc. H 2 Alcoholic' HsO ' Alcoholic" H^O C 6 H 6 ' TlzO C 6 H 6 " Layer. Layer. Layer. Layer. Layer. Layer. Layer. Layer. 1 0.923 o-oi 0.0095 5 0.130 0.05 0.0014 2 1.847 -3 0-0280 io 0.417 o.io 0.0005 3 2.741 0.05 0-0460 20 i-55 0.20 0.0030 4 3-694 0.07 0.0645 30 3-03 0.30 0.0290 5 4-587 0.09 0.0830 40 4.95 0-50 0.051 6 5-475 o- 11 o.ioio 0.70 0.090 7 6.434 0.13 0.1190 8 7.328 NOTE. The distribution results of Herz and co-workers are reported in millimolecules per io cc. portions of each layer in the several cases. To obtain the figures given in the tables here shown, the original results, before and after calculating to gram quantities, were plotted on cross-section paper, and from the curves thus obtained, readings for regular intervals of concentration of acetic acid in the aqueous layer were selected. DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND BENZENE. (Waddell, 1898; see also Lincoln, 1904.) The measurements were made by adding varying amounts of benzene or water to 5 cc. of acetic acid and then running in water or benzene till saturation was reached. The observed readings were calculated to grams per 100 grams of the liquid mixture. Upper Layer. Lower Layer. t. CHaCOOH. C 6 H 6 . 5^6. CHaCOOH. CeH 6 . H&T 25 0.46 99-52 0.02 9.4 0.18 90.42 25 3-10 96.75 0.15 28.2 0.53 71.27 25 5.20 94-55 - 2 5 37-7 - 8 4 61.46 25 8.7 90.88 0.42 48.3 1.82 49.88 25 16.3 82.91 0.79 61.4 6.1 32.5 2 5 30-5 67.37 2.13 66.0 13.8 20.2 25 5 2 -5 39-6o 7-60 52.8 39.6 7.6 35 1.2 98.68 0.08 16.4 0.62 82.98 35 5-7 93-97 -33 3 6 -8 1.42 62.78 35 9- 90.42 0.58 49 -o 2.10 48.90 35 45.0 49-0 6.0 61.3 25.5 13.2 35 52-2 39.4 8.4 52.2 39.4 8.4 Additional data in connection with the distribution of acetic acid between water and benzene are given by King and Narracutt (1909), Kuriloff (1898), Farmer (1903), Bubanovic (1913), and Lincoln (1904). This latter investigator points out that the same degree of clouding does not represent the end point in all cases as was assumed by Waddell (1900). Data for the distribution of acetic acid between benzene and aqueous solu- tions of sodium acetate at 25 are given by Farmer (1903). ACETIC ACID DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND CHLOROFORM: At Room Temperature. At 25. (Wright, Thomson and Leon Proc. Roy. (Herz and Lewy; Rothmund and Wilsmore.) Soc. 49 185, 1891.) Results in parts per 100 parts of solution. Upper Layer. Lower Layer. Cms. CHaCOOH per TOO cc. G. M. CHgCOOH per 100 cc. CHaCOOH. CHCla- H 2 O. CHsCOOH . CHC1 3 . H 2 0. H 2 Layer. CHC1 3 Layer. H 2 Layer. CHCI; Layer. O 0.84 99 .16 o 99.01 0.99 2 o. 089 0.05 0.0032 6.46 0.92 92 .62 1.04 98.24 0.72 4 O. 3i3 0.075 0.0062 17.69 0.79 81 52 3.83 94.98 I.I9 6 o. 596 0.100 O.OIOO 25.10 I. 21 73 .69 6.77 91.85 1.38 8 o. 974 0.150 0.0198 33 7i 2-97 63 3 2 11.05 87.82 I - I 3 10 I. 43 0-175 0.0260 44.12 7-30 48 58 17.72 80.00 2.28 12 I. 982 0.200 0.0325 50.18 15.11 34 7i 25-75 70.13 4.12 20 5- 10 0.30 0.070 30 10.2 0.50 O.I7O 40 15- 3 O.70 0.275 50 21. 9 0.80 o-335 52-3 39- 54 0.87 0.659 See Note, page 6. In addition to the above results, data for somewhat lower concentrations of acetic acid determined at 20 are given by Dawson and Grant (1901). Results showing the influence of electrolytes upon the distribution of acetic acid between water and chloroform are given by Rothmund and Wilsmore and by Dawson and Grant. DISTRIBUTION OF ACETIC ACID AT 25 BETWEEN: Water and Carbon Disulphide. (Herz and Lewy.) Cms. CHsCOOH G. M. CHsCOOH per ipo cc. per 100 cc. H 2 CS 2 ' H 2 O CS 2 " Layer. Layer. Layer. Layer. 65 2.64 I.I 0-45 7O 3-O 1.2 0.55 75 3-3 1.2 0.80 80 5.4 i-35 0.97 85 6.4 1.4 1.3 Water and Carbon Tetrachloride. (Herz and Lewy.) Cms. CH 3 COOH G. M. CH 3 COOH per IPO cc. per 100 cc. H 2 Layer. 30 1.8 0.5 0.03 40 3.0 0.7 0.055 50 4.8 0.9 0.095 60 5.8 i.i 0.155 7O 12. 1.2 0.235 76.2 25.2 1.27 0.420 Results for the distribution of acetic acid between water and mixtures of equal volumes of carbon disulfide and carbon tetrachloride at 25 are given by Herz and Kurzer (1910)* DISTRIBUTION OF ACETIC ACID AT 25 BETWEEN: ecu Layer. Water and Bromoform. (H. and L. Z. electro. Ch. ix, 818, '05.) Cms. CHaCOOH G. M. CHaCOOH Water and Toluene. (H. and F. Ber. 38, 1140, '05.) Cms. CH 3 COOH -G. M. CH 3 COOH per 100 cc. per ipo cc. H 2 Layer. CHBr 3 Layer. 'H 2 Layer. CHBr 3 Layer. 20 I .5 0-4 0-035 30 3-o 0.6 0.070 40 4-8 0.8 0.120 50 7.8 i -o O-2O 60 12.0 i .1 0.28 65 I 5 .6 1.15 o-395 70 27.0 per ipo cc. per 100 cc. H 2 O C 6 H 5 CH 3 Layer. Layer. H 2 O Layer. C 6 H 5 CH 3 Layer. 5 Q - II 9 O.I 0.0025 10 0.328 0.2 0.0075 20 I-I32 0-4 O.O26O 30 2.265 0.6 0.0530 40 3-725 0.8 0.090 50 5.841 i.o 0.140 60 8.344 See Note, page 6. ACETIC ACID 8 DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND ETHYL ETHER. (de Kolossovsky, 1911.) Results at Several Temperatures. Gms. CH 3 COOH per 100 cc. of: H 2 O Ether P Layer (p). Layer (p'). P'' 13 0.365 0.207 I. 7 6 18 0.367 O.2OI 1.82 27 0-379 0.195 1.94 7-5 0-799 0.551 I .45 12 0.803 0.529 1.52 18 0.802 0.501 1. 60 25 0.789 0.474 1.66 Results at 18. Gms. CHgCOOH per 100 cc. of: H 2 Ether p Layer (p). Layer (p'). p'' 1.0 0.5 i l.O 2.0 1.0 J 2.0 4.0 2.1 ] 9 6.0 3-5 3 7 8.0 4-9 J .6 10. 6.6 5 15-0 EX.4 3 20. o 17.0 .2 25.0 23-3 : [.07 According to results obtained at 25 by Morgan and Benson (1907), the ratio of distribution for concentrations of acetic acid up to 12 grams per 100 cc. of the H 2 O layer is more nearly constant (1.92) than shown above for 18. A similar constancy of distribution (approx. 2.08 at 15) was also found by Pinnow (1915)- Results showing the influence of varying concentrations of a large number of electrolytes upon the distribution of acetic acid between water and ether are given by de Kolossovsky, Dubrisay (1912), and by Hantzsch and Vagt (1901). Data for the distribution of acetic acid between ether and molten CaCl 2 .6H 2 O and ether and molten LiNO 3 3H 2 O are given by Morgan and Benson (1907). One determination of the distribution of acetic acid between sat. aq. CaCl2 solution (20 gms. per 1.) and kerosene gave 97.7 gms. acid per 100 gms. aq. layer and 27 gms. per 100 gms. kerosene layer at ordinary temperature. (Crowell, 1918.) DISTRIBUTION OF ACETIC Water and o or p Xylene. (Herz and Fischer.) ACID AT 25 BETWEEN: Water and m Xylene. (Herz and Fischer.) Gms. CH 3 COOH per 100 cc. G, , M. CH 3 COOH per 100 cc. Gms. CH 3 COOH per 100 cc. G . M. CH 3 COOH per 100 cc. IT r o or p l52. X * lene Layer. H 2 Layer. o or p TT Q m Xylene L vr X ^ ene Layer. y ' Layer. H 2 O Layer m Xylene Layer. C O .24 O .1 O .004 5 .06 .1 0.0015 IO O .48 , .2 .010 IO 30 .2 O.OO7 20 I .13 O 4 .025 20 95 O 4 O-O22 30 2 mI 5 o .6 .047 30 I .91 o .6 0.042 40 3 .40 o .8 .079 40 3 .04 o .8 0.072 50 5 .10 I .0 .122 50 4 65 I .0 O.III 60 7 .27 I .2 .230 60 6 65 I .2 ... 70 12 52 See Note, page 6. Data showing effect of camphor on the reciprocal solubility of acetic acid and olive oil are given by Wingard, 1917. ChloroACETIC ACIDS ChloroACETIC ACIDS CH 2 C1COOH, CHC1 2 COOH, and CCUCOOH. SOLUBILITY OF THE a, ft, AND 7 MODIFICATION OF MONOCHLORO ACETIC Aero IN WATER AT DIFFERENT TEMPERATURES. (Miers and Isaac, 1908; Pickering, 1895.) The determinations were made by the sealed tube method. The following figures were obtained by plotting the original results on cross-section paper: Cms. per 100 Gms. of Each Sat. Solution. Gms. per 100 Gms. of Each Sat. Solution. a 'Modifi- /3 Modifi- 7 Modifi- t . cation. cation. cation. 20 ... . . . 88.0 25 . . . 85.8 90.0 30 86.0 88.2 92.2 35 88.4 90.6 94.1 40 90.8 93-9 95-8 45 93-o 95-o 97.8 *o a Modifi- Modifi- y Modifi- cation. cation. cation. 50 95 .0 97 .0 99 .6 51 (m. pt.) . .; 100 .0 55 97 .2 99 3 . t . 56 .5 (m.pt.) , too .0 . 60 99 .0 t . 62 .4 (m. pt.) 0:00 .0 . . . . , . , Reciprocal solubilities of mono-, di-, and trichloroacetic acids and water de- termined by the freezing-point method are given by Pickering (1895). SOLUBILITY OF TRICHLQROACETIC ACID IN WATER AT 25. (Seidell, 1910.) 100 gms. saturated solution of d& = 1.615 contain 92.32 gms. GC1 3 .COOH. SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZ- ING-POINT (see footnote, page i) ARE GIVEN FOR MIXTURES OF Chloro- acetic Acid AND EACH OF THE FOLLOWING COMPOUNDS: Dichloroacetic Acid (Kendall, 1914.) Trichloroacetic Acid (Kendall, 1914.) Acetophenone (Kendall and Gibbons, Dibenzyl Acetone (Kendall and Gibbons, 1915.) Benzil (Kendall and Gibbons, 1915.) Benzene (Kendall and Booge, 1916.) Benzoic Acid (Kendall, 1914.) Camphor (Pawlewski, 1893.) Cinnamic Acid (Kendall, 1914.) Crotonic Acid Cetyl Alcohol (Mameli and Mannessier, 1913.) Cresol (Kendall, 1914.) Methyl Cinnamate (Kendall and Booge, 1916). Dimethyl Oxalate (Kendall and Booge, 1916.) Dimethyl Succinate (Kendalland Booge, 1916.) Dimethylpyrone (Kendall, 1914 (a).) Naphthalene (Miers & Isaac, 1908; M. & M.,i9i3.) Phenol (Kendall, 1916.) Piperonal (Kendall &Gibbons, I9IS;M.&M.,I9I3.) Salol (Mameli and Mannessier, 1913.) Sulfuric Acid (Kendall and Carpenter, 1914.) Toluic Acid (Kendall, 1914.) m " p " " a " Vanillin (Kendall and Gibbons, 1915.) SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZ- ING-POINT (see footnote, page i) ARE GIVEN BY KENDALL (1914) FOR MIX- TURES OF Dichloroacetic Acid AND EACH OF THE FOLLOWING COMPOUNDS: Trichloroacetic Acid Benzoic Acid Cinnamic Acid Crotonic Acid Dimethylpyrone o Toluic Acid m " p " " a " (Phenylacetic Acid) ChloroACETIC ACID 10 SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZ- ING-POINT (see footnote, page i) ARE GIVEN FOR MIXTURES OF Trichloro- acetic Acid AND EACH OF THE FOLLOWING COMPOUNDS: (Kendall and Gibbons, I9IS-) AcetOphenone (Kendall and Gibbons, 1915.) Anisaldehyde Benzene (Kendall and Booge, 1916.) Benzaldehyde (Kendall and Gibbons, 1915.) m Hydroxy Benzaldehyde p " o Nitro Benzaldehyde m " p " Benzophenone Benzil ' Benzoquinone Benzoic Acid (Kendall, 1914.) Camphene (Timofeiew & Kravtzov, 1915, 1917.) Cinnamic Acid (Kendall, 1914.) Crotonic Acid Cresol (Kendall, 1914.) Diethyl Oxalate (Kendall and Booge, 1916.) Diethyl Succinate Dimethyl Oxalate Dimethyl Malonate Dimethyl Succinate Dimethyl Terephthalate (Kendall and Booge, 1916.) Dimethylpyrone (Plotnikov, 1911; Kendall, 1914 (o)-) Ethyl Ether (Tsakalotos and Guye, 1910.) Ethyl Acetate (Kendall and Booge, 1916.) Ethyl Benzoate " " Methyl Benzoate Anisate " Cinnamate " " " />Toluate a Naphthol (Kendall, 1916.) " a Naphthyl Acetate (Kendall and Booge, 1916.) a (( P Phenol (Kendall, 1916.) o Nitro Phenol (Kendall, 1916.) m " p " " Piperonal (Kendall and Gibbons, 1915.) Nitro Piperonal Phenyl Anisylketone " " Benzoate (Kendall and Booge, 1916.) " Salicylate " " Salicylic Aldehyde (Kendall and Gibbons.igis.) Sulfuric Acid (Kendall and Carpenter, 1914.) Toluic Acid (Kendall, 1914.) m " p " " a " " " Thymol (Kendall, 1916.) Vanillin (Kendall and Gibbons, 1915.) DISTRIBUTION OF CHLORACETIC ACID BETWEEN: (Herz and Fischer.) Water and Benzene at 25. Water and Toluene at 25. Cms. CH 2 C1COOH G. M. CH 2 C1COOH Cms. CH 2 C1COOH G. M. CH 2 C1COOH per zoo cc. per i po cc. per 100 cc. per 100 cc. HaO C*He' Layer. Layer. Layer. Layer. H 2 QHsCfta Layer. Layer. 6 2 CeHsCHs Layer. Layer. 0.25* 8.69 O.OO25 0.090 o.i* 5.22 o.ooi 0.055 o-S 15-59 O.OO5 0.155 0-5 20.31 O.OO5 O.2O 1.0 27.87 o.oio 0.28 i.o 34.87 o.oio 0.36 1.5 41.10 0.015 0.415 1-5 49.14 O.OI5 0.50 2.0 52.90 O.O2 0-54 2.O 60.46 O.O2 O.62 3.0 68.01 O.O3 0.70 3-0 72.28 0.03 0-77 40 76.52 O.O4 O-79 4-0 81.72 O.O4 0.85 5.0 86.94 0.05 0.90 * See Note, page 6. Additional data for the distribution of monochloroacetic acid between water and benzene as well as similar results for dichloroacetic acid are given by Georgievics, 1915. II ChloroACETIC ACIDS DISTRIBUTION or CHLORACETIC ACID BETWEEN: (Herz and Lewy.) Water and Chloroform at 25. Water and Bromoform at 25. Cms. CH 2 C1COOH G. M. CH 2 C1COOH Cms. CH 2 C1COOH G. M. CHaClCOOH . per 100 CC, per 100 cc. per 100 cc. per 100 cc. H 2 Layer. CHC1 3 Layer. 1H 2 Layer. CHC1 3 Layer. H 2 O Layer. CHBr 3 Layer. H 2 o Layer. CHBrs Layer. 5* 0.283 0.05 0.0025 40* 0.850 0-45 O-OII 10 0.6l4 o.io O.OO6O So 1.889 0.50 0.0165 20 1. 088 O.2O O.OI3S 60 2.994 O.6o O.O28 40 2.948 O.4O O.O29 70 4.241 0.70 0.040 50 3.684 0-6o 0.045 80 5.620 0.8o 0-053 60 4.440 0.70 0.061 90 7.560 0.90 0-067 70 7.086 o-75 0.077 91 .6 11.340 0-97 0.120 DISTRIBUTION OF CHLORACETIC ACID BETWEEN: (Herz and Lewy.) Water and Carbon Disulphide at 25. Water and Carbon Tetra- chloride at 25. Cms. CHzClCOOH per 100 cc. G . M. CH 2 C1COOH per 100 cc. Cms. CH 2 C1COOH per 100 cc. G . M. CH 2 C1COOH per 100 cc. 'H 2 Layer. CS 2 Layer. H 2 Layer. CS 2 Layer. H 2 O Layer. ecu Layer. "l^O Layer. ecu Layer. 60* .426 O .6 .0042 9 0* I.4I7 95 0.0150 80 .691 O .8 O .007 95 2.031 I .00 0-0195 90 O .803 I .0 .009 100 2.645 I 05 0-0270 100 I .040 I 05 O .0105 >5 4.26 I .10 0.0415 105 I .464 I .10 .015 106.7 5-19 I 13 0.0550 106.7 I .8 9 I 13 O .020 * See Note, page 6. Results showing the influence of sulfuric acid upon the distribution of mono- chloroacetic acid between water and ethyl ether at 26 are given by Hantzsch and Vagt (1901). CyanoACETIC ACID CH 2 (CN)COOH. DISTRIBUTION OF CYANOACETIC ACID BETWEEN: (Hantzsch and Sebalt, 1899.) Water and Ethyl Ether. Cms. CH 2 (CN)COOH per Liter. H 2 (G>H ) O Layer. Layer. O 0.070 0.042 10 0.076 0.044 21 0.083 0.030 30 0.089 0.027 Water and Benzene. Cms. CH 2 (CN)COOH per Liter. 6 25 H 2 C,H 9 Layer. Layer. 0.067 0.02O 0.130 O.OIQ PhenylACETIC ACID 12 PhenylACETIC ACID ( Toluic Acid) CH 2 (CH 5 )COOH. SOLUBILITY IN WATER AND IN ALCOHOLS. (Timofeiew, 1894.) Gms.CH 2 (C 6 H 5 )COOH Cms. Solvent. t. per 100 Gms. Solvent. t. CH 2 (CH 5 )COOH per 100 Gms. Sat. Sol. Sat. Sol. Water 20 1.64 Ethyl Alcohol o.o 50-7 Methyl Alcohol 17 50.6 + 19-4 64.4 -13 S3- 2 20.0 65.1 " o 59-2 Propyl Alcohol 17.0 29.4 + 19-4 70.8 -13-0 32.3 " 20 71.8 0.0 40.9 Ethyl Alcohol -17 39-7 +19.4 56.8 -13 4i.5 20.0 57-2 SOLUBILITY OF PHENYLACETIC ACID IN SEVERAL SOLVENTS AT 25. (Herz and Rathmann, 1913.) Gms. Gms. Solvent. CH 2 (C 6 H5)COOH Solvent. CH 2 (C 6 H 5 )COOH per 100 cc. Sat. Sol. per 100 cc. Sat. Sol. Chloroform 60.17 Tetrachlorethylene 21.19 Carbon Tetrachloride 25.07 Tetrachlorethane 61.45 Trichlorethylene 44-89 Pentachlorethane 44.26 The freezing-point curve (Solubility, see footnote, page i) is given by Sal- kowski (1885) for mixtures of phenylacetic acid and hydrocinnamic acid. ACETIC ACID ESTERS. SOLUBILITIES OF SEVERAL ACETIC ACID ESTERS IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE. (Pfeiffer, 1892.) ~. TTfV, i cc - HjjO added to cause separation of a second phase in mixtures of the given Alcohol m amounts of Alcohol and 3 cc. of: Mixtures. 3 6 9 12 IS 18 21 24 27 30 33 ChloroACETIC ACID ESTERS. SOLUBILITY OF MONOCHLOR, DICHLOR, AND OF TRICHLORACETIC ESTER IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE." (Bancroft Phys. Rev. 3, 193, 1895-06, from results of Pfdffcr, Z. physik. chem. 9, 469, *9a.) CH 3 COOCH 3 . CH 3 COOC 2 H S . CH 3 COOC 3 H 7 . CH 3 COOC 4 H . CHsCOOCgHu. 00 6.0 4-50 2.08 I. 7 6 ... o 10.48 6.08 4.24 ... ... 17.80 10.46 9-3 ... ... 26.00 15.37 13.24 ... ... 35.63 20.42 I7-52 ... ... 47-5 26.60 22.22 ... ... 58.71 3 J -49 26.99 ... ... 00 37.48 32.14 ... ... . . . 43-75 37.23 ... ... . . . 50-74 42.06 ... ... 59-99 48.41 cc. Ethyl Alcohol in cc. H2O added to cause separation of a second phase in mixtures of the given amts. of Alcohol and 3 cc. of: Mixtures. CHaClCOOCzHs. CHC1 2 COOC 2 H5 CC1 3 COOC 2 H 4 . 3 1-32 0.90 0.65 6 4.01 2-45 1. 80 9 7-30 4-33 3.02 12 10.78 6.60 4.50 IS 16.16 9.20 6.50 18 22.16 21 28.74 13 ACETIN Mono-, Di- f and Tri ACETIN C 3 H 6 (OH) 2 (OC 2 H 8 O), C 3 H5(OH)(OC2H 3 O) 2 , and Trie partition coefficients of these three compounds between olive oil and water are given by Baum (1899) an d Meyer (1901, 1909), as 0.06, 0.23, and 0.3 respectively. MethACETIN (p Acetanisidine, or p oxymethylacetanilide) C 6 H 4 .OCH 8 . NHCHaCO. 100 gms. H 2 O dissolve 0.19 gms. of the compound at 15 and 8.3 gms. at 100. (German Pharmacopoeia.) a ACETNAPHTHALIDE C 2 H 3 ONH(CioH7). SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25. (Holleman and Antusch Rec. trav. chim. 13, 289, 1894.) Vol.% Alcohol. Gms. per 100 Gms. Solvent. Sp. Gr. of Solutions. Vol.% Alcohol. Gms. per 100 Gms. Solvent. Sp. Gr. of Solutions. 100 4-02 0.7916 65 I. 7 8 0.8977 95 4-31 0.8150 60 1-44 0.9091 90 4.II 0.8344 55 I -O2 0.9201 85 3- 6 9 0.8485 5o 0-71 0.9290 80 3 .l8 0.8624 35 0.25 Q-9537 75 2-73 0.8761 20 O.O9 0.9717 70 2.31 0.8798 10 O.O4 0.9841 Constant agitation was not employed. The mixtures were allowed to stand in bath and the solutions analyzed after different lengths of time. Formulas are not given. This applies to all determinations by Holleman and Antush. ACETONE (CH 3 ) 2 CO. SOLUBILITY OF ACETONE AT 25 IN AQUEOUS SOLUTIONS OF: Electrolytes. Non-Electrolytes. (Bell J. Phys. Ch. 9, 544, 1905; Linebarger Am. Ch. J. 14, 380, 1802.) Gms. Electro- lyte per 100 Gnis* AQ< Gms. (CH 3 ) 2 CO per 100 Gms. Gms. Non- Gms. (CH 3 ) 2 CO per 100 Gms. Solvent in Solutions of: Electrolyte Solvent in Solutions of: Solution. K 2 C0 3 Na 2 CO 3 (NH4) 2 CO 3 MgCO 3 " Xq. Solution. CioHat Anethol* (C 6 H 6 ) 2 CO I 25 . 83-5 5 92 5 103.0 90.0 2 50 51.0 IIO.O 65.0 10 117 .0 123.0 108.5 5 -CO 65' o 38.0 73-5 47-o 20 137 .0 144-5 126.0 7 5 4 6, 5 27-5 57-o 38.0 30 148 5 155-0 i33-o 10 .0 34 5 19-5 44-5 29.0 40 155 5 162 -O 136.0 12 5 25 5 14.0 35-o 50 159 5 166.0 135-5 15 .0 18 o 9-0 28.0 60 160 .2 165.0 I3I-5 20 O 8 2-7 70 155 O 158.0 123.0 25 .0 3 7 80 . i 108.5 30 .0 i 6 ... 90 . 82.0 * Anethof = p Propenylanisol, CH 3 .CH:CH.C 6 H 4 OCH3. f Naphthalene results at 35. NOTE. In the case of the results for the aqueous solutions of electrolytes, the determinations were made by adding successive small quantities of acetone to the mixtures of given amounts of water and electrolyte, and noting the point at which a clouding, due to the separation of a second phase, occurred. In the case of the aqueous non-electrolyte solutions, successive small amounts of water were added to mixtures of known amounts of acetone and the non-electrolyte. In all cases the results, as given in the original papers, have been recalculated and plotted on cross-section paper. From the curves so obtained, the above table was constructed. Additional data for systems containing acetone are given under the salt involved, as, for instance, Potassium Carbonate, p. 51 1, Potassium Fluoride, p. 534. etc. ACETONE 14 MlSCIBELITY OF ACETONE AT O WITH MIXTURES OF: Chloroform and Water (Bonner, 1910). Bromobenzene and Water (Bonner, 1910). Gms. Gms. Gms. Sp. Gr. of Gms. Gms. Gms. Sp. Gr. of CHClj. H 2 0. (CHa) 2 CO. Mixture. CH 5 Br. H 2 0. (CH 3 ) 2 CO. Mixture. 0.988 O.OI2 O.5OI z.i8 0.977 0.023 0.685 1. 12 0.900 O.IOO .300 1. 01 0.90 O.IO I .13 1. 01 0.792 0.208 .633 0.98 0.80 O.2O I.4I 0.98 0.696 0.304 750 0.96 0.70 0.30 1.52 0.97 0.600 O.4OO .770 0.95 0.60 0.40 i-S7 0.96 0.500 0.500 .720 0.94 0.50 0.50 i .60 -95 *O.42O 0.580 .650 *-49 0.51 i. 60 0.400 O.6OO .630 o-93 0.40 0.60 i-59 0.94 0.300 0.700 -530 0.94 0.30 0.70 i-55 o-93 O.2OO 0.800 .321 -95 0.20 0.80 1.46 o-93 O.IOO o . 900 i . 144 0.97 0.10 0.90 1.30 o-93 O.OlS 0.982 0.464 0.98 , O.O2 0.98 0.849 o-95 NOTE. The determinations were made by gradually adding acetone to the mixtures of the given amounts of water and the other constituent until a homo- geneous solution was obtained. The results give the binodal curve for the sys- tem. The author also determined "tie lines" showing the compositions of the various pairs of liquids which may exist in equilibrium. When the two layers are practically of the same composition the tie line is reduced to a point desig- nated as the "plait point" of the binodal curve. This point is indicated by a * in the above tables. SOLUBILITY OP ACETONE IN AQUEOUS SOLUTIONS OF CARBOHYDRATES. (Krug and McElroy J. Anal. Ch. 6, 184, '92; Bell J. Phys. Ch. 9, 547. '05.) In Aqueous Solutions of Cane Sugar. Gms. (CH3)2CO per 100 Gms. Sugar Solution at: Percent Sugar. 10 20 30 35 40 45 50 55 60 65 70 In Aqueous Dextrose Solutions. 15. 20. 25. 30. 35. 40. 597-2 581.8 574-8 272.5 250.0 251.8 172.4 150.0 150.6 no 96.4 92.8 89.8 85 . . . 71.9 68.8 65-7 . . . 62 50.8 48.1 45-9 42 ... 35-8 33-8 3 2 -5 .... 29 25.2 24.2 23-4 . . . 18-3 17.7 17.0 13-2 12.8 12-5 ... In Aqueous Maltose Solutions. Per cent Gms. (CH 3 ) 2 CO per 100 Gms. Solvent at: Per cent Gms. (CH 3 ) 2 CO per Solvent at: too Gms. Dextrose. 15. 25. 35. ' Maltose. 15 25. 35." 10 736 7 747-9 761-5 10 353 .6 348 .1 342 20 255 3 247-7 240.8 20 185 4 181 .2 I 7 6 9 30 157 5 149.8 142.5 30 119 9 116 O 112 4 40 86 9 79.6 74-o 40 78 4 74 7 70 5 50 36 .2 33-o 31.2 50 46 .2 42 9 39 .8 */ IS \J%J \J \J S \J S The determinations were made as in the case of the solubility of acetone in aqueous solutions of electrolytes. See preceding page. ACETONE DISTRIBUTION OF ACETONE BETWEEN: Benzene and Water. Results at 20. Results at 25. (Philip and Bramby, 1915-) Gm. (CH 3 ) 2 CO per 1000 cc. ' H^O C 6 H g Layer. 0.08 Layer. O.IO 0.20 0-30 O.40 0.12 0.25 0-34 (Herz and Fischer, 1905.) Cms. (CH 3 ) 2 CO per 1000 cc. C 6 H 6 Layer. 12.0 41-7 IOI.5 Toluene and Water. At Different Temps. (Hantzsch and Vagt, 1901.) Cms. (CH;j) 2 CO per 1000 cc. H 2 Layer. 50 100 150 200 155-9 225.0 See Note, page 6. * H 2 Layer. C 6 H 5 CH 3 Layer. 2.105 0-993 10 20 30 2.000 1.960 1.867 0-957 0-957 0-957 Philip and Bramby also give data for the effect of NaCl, KC1 and LiCl upon the distribution of acetone between benzene and water. In the determinations by Hantzsch and Vagt the equilibrium was approached from above. The amount of acetone in the lower layer was determined by analysis, and that in the upper layer calculated by difference. Water and Carbon Tetrachloride. Mols. (CHs) 2 CO per Liter. CC1 4 DISTRIBUTION OF ACETONE BETWEEN: (Herz and Rathmann, 1913.) Water and Chloroform. Mols. (CH,) 2 CO per Liter. H 2 Layer. 0.186 0.322 1. 01 1.66 2.87 Layer. 0.0833 0.146 0.514 0.997 2.10 ' H 2 CHC1 3 Layer. Layer. 0.032 0.168 0.0781 0-399 0.145 0.676 0.263 1.17 0-493 1.98 1. 01 3-o6 Water and Pentachlorethane. Mols. (CH 3 ) 2 CO per Liter. H 2 Layer. O 144 271 541 806 149 QHC1 6 Layer. 0.251 0.469 0.859 1-275 I-763 Water and Tetrachlorethane. Mols. (CH 3 ) 2 CO per Liter. Water and Tetrachlorethylene. Mols. (CH 3 ) 2 CO per Liter. H 2 Layer. 0.249 0.317 0.363 0.569 C 2 H 2 CU Layer. 0.341 0.994 I. 210 I-323 1.936 H 2 Layer. CC) 2 :CCI 2 Layer. 0.081 0.274 0.562 0.174 1.020 0.343 1.545 0.629 2.007 0.891 The distribution coefficient of acetone between olive oil and water is given by Meyer (1901), as 0.146 at 3 and 0.235 at 30. ^ Water and Trichlorethylene. Mols. (CH 3 ) 2 CO per Liter. Layer. 0.160 0.350 0.654 0.946 CHCl:CCl a Layer. 0.193 0-359 0.719 1.029 1.562 SOLUBILITY DATA DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. i) ARE GIVEN FOR MIXTURES OF Acetone AND EACH OF THE FOLLOWING COMPOUNDS: (Maass and Mclntosh, 1912.) Phenol Resorcinol Pyrogallol (Schmidlin and Lang, 1910.) Bromine Chlorine Hydrobromic Acid Chloroform (Tskalotos and Guye, 1910.) Pyrocatechol Chlorophenol (Bramby, 1916.) Depression of the freezing-point of mixtures of acetone and water and each of the following compounds are given by Waddell (1899): Ether, hydroquinone, phenol, p nitrophenol, salicylic acid. ACETOPHENONE 16 ACETOPHENONE CH 3 COC 6 H 6 . The freezing-point curve for mixtures of acetophenone and sulfuric acid is given by Kendall and Carpenter (1914). Freezing-point curves (solubility, see footnote, page i) for mixtures of Cinna- mylidene Acetophenone and each of the following compounds are given by Giua (1916): Acenaphthene, azobenzene, ethyl ether and a trinitrotoluene. ACETYLACETONE CH 3 COCH 2 COCEL SOLUBILITY IN "WATER. (Rothmund Z. phys. Ch. 26, 475, '98.) Cms. CH 3 COCH,COCH S per 100 Cms. t o H2O Acetyl Acetone Layer. Layer. 30 15-46 95-02 40 17.58 93.68 50 20.22 91.90 60 23.23 89.41 70 27.10 85.77 80 33-92 78.82 87.7 (crit. temp.) 56.8 NOTE. Weighed amounts of water and acetyl acetone were placed in small glass tubes, which were then sealed and slowly heated until the contained mix- tures became homogeneous. The temperature was then allowed to fall very gradually and the point noted at which cloudiness appeared. This point was accurately established for each tube by repeated trials. The curve plotted from these determinations shows two percentage amounts of acetyl acetone which cause cloudiness at each temperature below the critical point. Of these two points, for each temperature, one represents the aqueous layer, i.e., the solu- bility of acetyl acetone in water; and the other represents the acetyl acetone layer, i.e., the solubility of water in acetyl acetone. This method is known as the 'Synthetic Method," and yields results in harmony with those obtained by the analytical method, i.e., by analyzing each layer after complete separation occurs. See also, chapter on Methods of Solubility Determinations. ACETYLENE C 2 H 2 . SOLUBILITY IN WATER. (Winkler; see Landolt and Bernstein's Tabellen, 3d ed. p. 604, '05.) t. a. q. O 1-73 0.20 5 x -49 o- 1 ; 10 1.31 0.15 15 i-iS - I 3 20 1.03 OI2 25 0.93 o.n 30 0-84 0.09 a, "Absorption Coefficient," = the volume of gas (reduced to o and 760 mm. pressure) taken up by one volume of the liquid at the given temperature when the partial pressure of the gas equals 760 mm. mercury. q, "Solubility," = the amount of gas in grams which is taken up by 100 grams of the pure solvent at the given temperature if the total pressure, i.e., the partial pressure of the gas plus the vapor pressure of the liquid at the absorption tem- perature, is 760 mm. 17 ACETYLENE SOLUBILITY OF ACETYLENE IN WATER, AQUEOUS SOLUTIONS OF ALKALIES AND SULFURIC ACID AT 15. (Billitzer, 1902.) Aq. Solution of: Ba(OH) 2 Ca(OH) 2 NH4OH NaOH KOH Na 2 S0 4 H 2 S0 4 SOLUBIL / 15 0f Acetylen e in Aq. Sol utions ot Norma lity: O.OI 1.230 1.216 1. 210 1. 212 ITY IN 0.025 1.218 0.05 O.IO 1.230 0.15 1.240 0.25 0.50 1. 00 2.OO 3-oo WATER I.2OO , /15 = 1.218 I.lSo 1.185 I.I70 I.I90 I.25L I.22O ... I.I28 I.I30 . . . 1.068 1.225 1.040 1.056 0.940 I.I2O 1.230 0.885 0.912 0.720 1.040 1-235 0.6OO 0.660 0.340 0.900 1.240 0.370 0.460 0.780 .The above results were determined by the method of Ostwald (Handbuch physiko-chemischen Messungen 207 ff.). A thermostat was used and great care taken to reduce experimental errors and purify the acetylene. The results are in terms of the Ostwald Solubility Expression, for which see page 227, following. SOLUBILITY OF ACETYLENE IN AQUEOUS ACETONE SOLUTIONS. (Kremann and Honel, 1913.) Vol. Per Cent H 2 O Cms. CzH. 2 dissolved per Liter Sat. Solution at: in Solvent (HjO + Acetone). O 5 10 20 35 5o 75 100 The freezing-point curve for mixture* of acetylene and methyl ether are given by Baume and German (1911, 1914). ACETYLENE Biiodide, cis and trans. Data for the lowering of the freezing-points of mixtures of these two isomers are given by Chavanne and Vos (1914). ACONITIC ACID C 3 H 3 (COOH) 3 . 100 grams of formic acid (95% HCOOH) dissolve 2.01 grams C 3 H 3 (COOH) S at 2O.6 C. (Aschan, 1913.) 18 25 37 21 15-2 3i 18.2 13-5 26 15-0 io-5 i5 9-5 8.0 8.4 5-5 4-45 5-7 1.23 2.22 1.23 0.98 AOONITINE (Amorphous) C 34 H 47 NO U . SOLUBILITY IN SEVERAL SOLVENTS. (At 25 U.S.P.; at i8-22, Miiller Apoth.-Ztg. 18. a, '03.) Solvent. Water . . Alcohol . Ether . . 100 gms. Cms. CaJItfNOi per loo Gms. Solvent at: Solvent l8-32. 0.054 1.44 25. 0.031 4-54 2.27 Gms. CsilL^NOii pet 100 Gms. Solvent at: ~~^ l8-22. Benzene *7 -%$ Carbon Tetrachloride i . 99 Petroleum Ether . . 0.023 0.028 dissolve 0.0226 gm. aconitine at 22 (Dunstan and Umney, 1892.) abs. alcohol " 2.7 " " " " (Jiirgens, 1885.) " ether "- 1.56 " TrichloroACRYLIC ACID 18 TrichloroACRYLIC ACID CC1 2 :CC1COOH. SOLUBILITY OF TRICHLOROACRYLIC ACID IN WATER (Boeseken and Carriere, 1915.) Gms. CC1 2 : 44 , CC1COOH t per 100 Gms. Sat. Solution. O.O 0.0 0.36 2.0 - 0.6 Eutec. 4.5 : +13.7 64.1 68.5 17.0 74-5 19.2 m. pt. 80.0 17.0 Eutec. 8 1 . i 20.3 82.8 25.0 84-5 30.0 86.0 40.0 89.5 50.0 92.5 60.0 94-5 70.0 98.5 72.9 IOO.O Solid Phase. Ice Ice+CCl 2 : CCl 2 .CClCOOH.2iH 2 Q CC1 2 :CC1COOH+ CC1 2 :CC1COOH.2JH2O CC1 2 :CC1COOH Between the concentration 4.5 and 64.1 two liquid layers are formed. The percentage of CC1 2 :CC1COOH in each is as follows: Gms. CC1 2 :CC1COOH per t loo Gms. Sat. Solution. Lower Layer. Upper Layer. 10 5-0 20 5-2 64.1 30 6.0 63.8 40 7-5 62.2 50 13-0 59-5 55 18.0 56.0 60 27.0 49.0 62 crit. t. 38 .0 The original results were plot- ted on cross-section paper and the above figures read from the curves. ACTINIUM EMANATIONS. SOLUBILITY IN SEVERAL SOLVENTS. (Hevesy, 1912.) A method was elaborated for determining the partition coefficient between a gas and a liquid phase. The solubility of actinium emanations was then de- termined in KC1, H 2 O, H 2 SO 4 , CjHsOH, C 5 H n OH, (CH 3 ) 2 CO, C 6 H 5 CHO, C 6 H 6 , CyHs, petroleum ether and CS 2 . The solubility increases in the order named. Close relations are indicated between actinium, thorium and radium. ADIPIC ACID (Normal) (CH 2 ) 4 (COOH) 2 . 100 grams H 2 O dissolve 1.44 grams adipic acid at 15. (Henry Compt. rend., 99, 1157, '84; Lamouroux Ibid., 128, 998, '99.) ADIPINIC ACID (CH 2 ) 4 (COOH) 2 . loo grams of formic acid (95% HCOOH) dissolve 4.04 grams of (CH 2 ) 4 (COOH) 2 at 18.5; 100 cc. of the saturated solution contain 4.684 grams of the acid. (Aschan, 1913.) AGARIC ACID CioH3oO 6 .H 2 O. IOO grams trichloroethylene dissolve 0.014 gram agaric acid at 15. (Wester and Bruins, 1914.) I 9 AIR AIR SOLUBILITY IN WATER. (Winkler Bcr. 34. 1409. 'ox; see also Peterson and Sondern Ber. 22, 1439, '89.) cc.* of atmospheric O and N per liter of: Dist. HjjO (at 760 mm.). Sea Water (at 760 mm.). f. B. o 0.02881 5 -02543 10 .02264 15 .02045 20 .01869 25 .01724 30 .01606 40 .01418 50 .01297 60 .01216 80 .01126 100 .01105 B = " Coefficient of Absorption," i.e. by the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm. B f = " Solubility," i.e., the amount of gas, reduced to o and 760 mm., which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure. * Reduced to o and 760 mm. SOLUBILITY OP AIR IN AQUEOUS SULPHURIC ACID AT 18 AND 760 MM. (Tower Z. anorg. Ch. 50, 382, '06.) B'. Oxygen. Nitrogen. Oxygen. Nitrogen. 0.02864 10.19 18.45 7-77 14.85 .02521 8.91 16.30 6-93 I3-32 .02237 7.87 14.50 6.29 12. 06 .O2OI I 7-04 13.07 5-70 11.05 .Ol826 6-35 II.QI 10.25 .01671 5-75 10.96 ... 9.62 01539 5-24 10.15 OI3I5 4.48 8.67 .OII4O 3-85 7-55 .00978 3.28 6.50 .OO6OO 1.97 4-03 .00000 o.oo o.oo the amount of gas dissolved Wt. % H 2 SO 4 98 90 80 70 Solubility Coef. 0.0173 0.0069 0.0069 -5S SOLUBILITY OF AIR IN ALCOHOL, ETC. (Robinet, 1864.) 60 50 0.0059 0.0076 Vols. Air per 100 Vols. Solvent. Solvent. Alcohol (95 . i%) . . 14.1 Petroleum 6.8 Benzene 14.0 Solvent. Oil of Lavender . . Oil of Turpentine . Vols. Air per too Vols. Solvent. . . 6. 9 . . 24.2 ALANINE ( Aminopropionic Acid) CH 3 CH(NH 2 )COOH. SOLUBILITY IN MIXTURES OP ALCOHOL AND WATER AT 25. (Holleman and Antusch, 1894.) !% :ohol. Gms. per 100 Gms. Solvent. Sp. Gr. of Solutions. 16.47 I .0421 5 14-37 I.03II 10 12-43 I .0280 15 10-49 I.OIOI 20 8.48 o 9984 25 7- II 0.9886 31 5-53 o 9761 Vol. % Alcohol. Gms. per 100 Gms. Solvent. Sp. Gr. of Solutions. 35 4.91 0.9670 40 3-89 0-9577 5o 2.38 0-9355 60 i-57 0.9102 70 0.85 0.8836 80 o-37 o 8556 See remarks under a Acetnaphthalide, page 13. 100 gms. pyridine dissolve 0.16 gm. a alanine at 20-25. .(Dehn, 1917.) ALANINE 20 SOLUBILITY OF d ALANINE AND OF dl ALANINE IN WATER AT DIFFERENT TEMPERATURES. (Pellini and Coppola, 1913.) Results for: d Alanine. d I Alanine. Mixtures d + 1 Alanine. o 17 3<> 45 ALBUMIN, (Egg). 100 gms. H 2 O dissolve 100 gms. egg albumin at 20-25. (Dehn, 1917.) loo gms. pyridine dissolve o.i gm. egg albumin at 2O-25. " loo gms. aq. 50% pyridine dissolve 6.29 gms. egg albumin at 2O-25. (Dehn, 1917.) Gms. d Alanine per 100 Gms. IfcO. 12.99 Gms. d I Alanine pe 100 Gms. H2O. 12.89 r Gms. per 100 Gms. H 2 O. d Alanine. J 3-27 / Alanine". 4-OI 15-17 J 4-95 14-5 4.1 17.39 20.55 17.72 21.58 J 7.o5 4.99 ALLANTOIN SOLUBILITY IN WATER. (Titherly, 1912.) The author obtained results varying from 0.7 to 0.77 gms. allantoin per 100 gms. H 2 O at 25. The variations were considered to be due to slow decompo- sition of the compound. ALIZARIN Ci4H 6 2 (OH) 2 . SOLUBILITY IN WATER AT VARYING TEMPERATURES. (Hiittig, 1914; Beilstein.) t. 2S. V 100. 250. Grams Alizarin per liter 0.00x3595 0.340 3- OI 7 According to Dehn (1917), 100 gms. H 2 O dissolve 0.04 gm. alizarin at 2o-25. SOLUBILITY OF ALIZARIN IN AQUEOUS SOLUTIONS OF: Ammonia at 25. Sodium Hydroxide at 25 (Huttig, 1914.) Gms. NHs per Liter. Gms. Alizarin per Liter. Gms. NaOH per Liter. Gms. Alizarin per Liter. Solid Phase. 0.160 4-025 0.132 0.228 0.427 I .050 I-I59 3.820 C ]4 H 8 4 Ci 4 H 8 4 + CnHANa loo gms. 95% formic acid dissolve o.io gm. alizarin at 20.8. (Aschan, 1913.) Alizarin is soluble in all proportions in pyridine and in aqL. 50% pyridine at 20-25. (Dehn, 1917.) ALOIN. Squires and Caines (1905) found the solubility of aloin in water at room tem- perature to be 0.83 gm. per 100 cc. and in 90% alcohol, 5.55 gms. per 100 cc. According to Wester and Bruins (1914) 100 gms. trichloroethylene dissolve 0.013 gm- aloin at 15. 21 ALUMINIUM BROMIDE ALUMINIUM BROMIDE AlBr,. SOLUBILITY IN SEVERAL ORGANIC SOLVENTS. (Mcnschutkin, 1909-10.) (Determinations by Synthetic Method.) In Benzene. In Para Xylene. 5-7m.pt. 4-5 10 3 20 1.8 Eutec. 27.4 10 35-3 20 46.5 30 59 40 70 60 83 80 91.2 90 95-3 96 IOO Gms. AlBra per loo Gms. Sat. Solid Phase. Sol. QH, AlBra Gms. AlBra per t. 100 Gms. Sat. Solid Phase. Sol. 14 m. pt. p QlfcCCHa), 12.5 11.4 r 10.2 Eutec. 25 AlBra+ QH4(CHi)i 20 35-7 AlBr, 30 47.2 " 40 61.2 M 5 72.2 M 60 79.6 M 80 90.9 a 90 95-4 M 96 IOO M In Toluene. Gms. AlBrs per loo Gms. Solid Phase. Sat. Sol. 15 O 10 20 30 40 50 70 9 9 6 16.1 23-7 32.1 42.5 56 68.8 76.5 87.2 95-7 IOO AlBrs In Benzoyl Chloride. Gms. AlBrs ~ t. per loo Gms. Solid Phase. Sat. Sol. 0.5 m. pt. o CgHsCOCl - 2.5 . n-7 1 - 5 Eutec. 22.2 QHsCOCl+AlBra.CgHiCOCl 20 33-7 AlBra-QHsCOCl 40 42.6 " 00 51-6 " 80 60.5 M 9 m. pt. 65.5 M 80 68.9 M 60 71.8 30 75-8 " 7 Eutec. 78.8 AlBr l .C 6 H 5 COCl+AlBr, 20 80.6 AlBra 50 85.6 80 93-2 " 9 6 IOO " Reciprocal solubilities determined by the method of lowering of the freezing- point (see footnote, page i) are given by Kahlukow and Sachanow (1909) for mixtures of Aluminium Bromide and each of the following compounds: ani- line, benzene, benzonitrile, methylbenzoate, p bromaniline, bromobenzene, methylene bromide, p dibromobenzene, dimethylaniline, diphenylamine, methyl- aniline, naphthaline, nitrobenzene, p yridine, toluene and p xylene. Similar data for mixtures of Aluminium Bromide and dimethylpyrone are given by Plot- nikow (1911). ALUMINIUM BROMIDE 22 SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.') (Determinations by Synthetic Method.) In Benzophenone. In Ethylene Bromide^ Gms. AlBrs per t. ioo Gm. Sat. Solid Phase. Gms. AlBrs per t. ioo Gm. Sat. Solid Phase.? Sol. Sol. 48 m. pt. O (QHfi^CO 10 m. pt. C 2 H 4 Br 2 45 I2 6 11.5 42 19 2 21.3 38EutCC. 24.7 " +AlBr 3 .(C 6 H5) 2 CO 2 EutCC. 29.7 C 2 H4Br 2 +AlBn 60 3 9 AlBrs. (CH5) 2 CO 10 36 . 1 AlBr 3 80 36.4 20 42 . I IOO 42 . 2 " 30 48.7 120 49 40 56 130 53 50 63.7 I42m.pt. 59.5 60 71.5 130 64 70 79.1 ioo 69 80 86.8 70 72.2 90 94.5 50 74 96 ioo 38 EutCC. 75 " +AlBn 50 78 AlBn ".- 80 88 90 93-5 96 ioo In Nitrobenzene. In o Chloronitrobenzene. Gms. AlBrs per t. ioo Gm. Sat. Solid Phase. Gms. AlBrs per t. ioo Gm. Sat. Solid Phase. Sol. Sol. 5. 5m.pt. o CoHsNOj 32 , 5 m. pt. O o CeHUClNOa o 18 25 21.8 " -5 28.8 " 13 . 8 EutCC. 37.5 " +AlBr 3 .o C 6 H4ClNOa -l5EutCC. 42 " +AlBr 3 .CHsNO2 30 43 . 1 AlBrs.0 QH^ClNOj O 44-3 AlBn.QHsNOs 50 50-3 30 49.4 70 57-6 60 56.7 83 ,5 m. pt. 62.9 80 63.6 70 67 87m.pt. 68.4 40 73-7 80 71.3 21 EutCC. 77.5 " +AlBr t 60 73.9 40 80 . 6 AlBn 40 76.4 60 8 4 2oEutCC. 78.9 " +AlBn 80 88.6 40 82 .4 AlBrj 90 93-4 60 85.8 96 IOO 80 89.8 93 96.6 96 ioo 23 ALUMINIUM BROMIDE SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.) In m Chloronitrobenzene. In p Chloronitrobenzene. ' Gms. AlBrs per t. 100 Gms. Sat. Solid Phase. Gms. AlBrs per t.. 100 Gms. Sat. Solid Phase. Sol. 'Sol. 44 .5m.pt. o wCH4CiN02 83 m. pt. o CH4ClNOi 40 18.9 " 80 9 " 35 . 5 EuteC. 27.8 " +AlBr 3 .M C 6 H4C1NO 70 24.8 " 50 34.8 AlBrs.t C 6 HiClNOj 60 Eutec. 36.6 "+AlBrs.C 6 H4ClNOj 70 44-5 80 45-6 AlBrs. C 6 H4C1NO 90 54-5 100 54-9 " io 3 .5 m. pt. 62.9 MS m. pt. 62.9 " 90 68.6 100 66.8 " 70 73-4 60 72.4 M 5o 77-3 20 Eutec. 78 " 4-AlBri 40 Eutec. 79.1 " +AlBrj 60 85-3 AlBrs 6o 82.2 AlBrs 80 89.3 H 80 8 7 . t 93 95-4 H 90 92.2 96 100 M 95 95-1 96 100 In o Bromonitrobenzene. In m Bromonitrobenzene. Gms. AlBrs per t. 100 Gms. Sat. Solid Phase. Gms. AlBrs per t. 100 Gms. Sat. Solid Phase. Sol. .Sol. 38 m. pt. o o. .C,EUBrNOi 54 m. pt. o t QH4BrNOj 30 19.7 50 ii. 6 " 21 Eutec. 30 " +AlBrs.o CglMBrNOz 45 .5 Eutec. 19.5 40 37-6 AlBr*> CeH4BrNOa 60 25-5 AlBr 3 .w QHiBrNOj 60 45-3 80 34-5 " 80 53 no 49-5 88 .5m.pt. 56.9 " 122 m. pt. 56.9 it 80 59-7 no 61.6 " 60 64.1 80 69.2 H 40 68.6 60 74.1 " 24 Eutec. 72 " +AlBn 42 Eutec. 78.7 " +AlBn 40 75-5 AlBrs 60 80.3 AlBn 60 79.8 80 84.9 i< 80 86.3 93 93-6 " 93 94-5 ;; 96 100 a 96 IOO ALUMINIUM BROMIDE 24 SOLUBILITY OF ALUMINIUM BROMIDE IN SEVERAL ORGANIC SOLVENTS (Con.}. (Determinations by Synthetic Method.) In p Bromonitrobenzene. In p Nitrotoluene. Gms. AlBr 3 per Gms - AlBrs per t. loo Gms. Sat. Solid Phase. t. 100 Gms. Sat. Solid Phase. Sol. Sol. I24.5m.pt. ^.CBHiBrNOa 53.5m.pt. *CH4CH3NOj 119 10 " 50 10 no 25.2 40 31 .3 " 98 Eutec. ,35-3 " {-AlBrs.0 C 6 H4BrNO2 29 EutCC. 46.1 "+AlBr3.C 4 H4CHsNOi no 39-7 A [Era.p C 6 H4BrNOa 50 52.9 AlEr 3 .p CH4CHsNOi 130 48.7 80 63 ii 144 m. pt. 56-9 88 m. pt. 66 " 120 65.5 80 68.5 " 90 7o-5 50 74-3 * 60 74.1 27 Eutec. 78.9 " +AlBn 45 Eutec. 76 " +AlBr 3 50 83-3 AlBrs 60 79.6 AlBrs 70 87.7 80 86.6 8 S 92.2 " 93 95-4 93 96.7 ii 96 IOO 96 IOO " In m Nitrotoluene. In o Nitrotoluene. i 16 12 Gms. AlBrs t. per loo Gms. Solid Phase. Sat. Sol. m. pt. m CjHiCHsNOa 14-5 " Gms. AlBr 3 t. per loo Gms. Solid Phase. Sat. Sol. 8 . 5 m. pt. o C 6 H 4 CH3N02 II EuteC. 8.7 ! '-J- AlBrs. 2oCH4CHsNO2 8 21.8 " 10 12.8- MBr3.20CH4CaNOa I EuteC. 32 "+AlBrs. QEUCHsNOz 30 24.8 " 20 38.5 AlBrs-m CeHiCHsNOj 40 38 " 40 46.6 42 .5 Eutec. 47.7 "+ AlBrs.aoCjHjCHsNO! 80 59-7 60 54-3 AlBrs.o C 6 H 4 CHsNOj 9 63.3 75 59-5 " 9 6 m. pt. 66 90 m. pt. 66 " 90 68.8 70 72 " 60 73-8 40 76.1 " 27 EuteC. 78.9 " +AlBr 3 19 Eutec. 79.1 " +AlBa 40 82 AlBr, 40 82.5 AlBrs 70 8 9 70 87.5 " 9 95-3 90 93-8 " 9 6 IOO 96 IOO " ALUMINIUM CHLORIDE ALUMINIUM CHLORIDE A1C1 3 .6H 2 O. SOLUBILITY IN WATER. (Gerlach Z. anal. Ch. 8, 250, '69.) ioo gms. saturated solution contain 41.13 gms. A1C1 3 at 15, Sp. Gr. of solu tion = 1.354. SOLUBILITY OF ALUMINIUM CHLORIDE IN SEVERAL ORGANIC SOLVENTS. (Menschutkin, 1909.) (Determinations by Synthetic Method.) In Nitrobenzene. In o Chloronitrobenzene. Gms. A1CL, t. per ioo Gms. Solid Phase. Gms. A1CU t. per ioo Gms. Solid Phase. Sat. Sol Sat ~ .Sol. 5 5 m. pt. CgHsNOj 32 .5 m. pt. o o C,H 4 C1N02 2 Eutec. 10 3 " +A1CU.2C6H5N02 27 10 .2 " 15 18 A1C13.2C.H5NO2 21 16 .1 " 25 -5 Eutec. 30 . 5 " +A1C1 3 .C 6 H5NO 2 15 Eutec. 20 3 " +A1C13.0C.H4C1N02 45 34 .2 AlCls.CelfcNOi 35 25 5 AlCls.o C 6 H 4 ClNOj 65 39 5 " 55 31 5 " 85 48 " 75 38 7 tt 90 m .pt. 52 " 89 m. pt. 45 9 " 82 55 .6 " 80 51 tt 72 58 " 69 Eutec. 54 4 " +A1C1. 52 Eutec. 61 .6 "+A1C1, no . 57 5 A1CU 90 64 A1C1* 150 65 4 " 130 67 7 " 175 74 .6 " 160 72 4 " 194 IOO " 180 80 .1 " 194 IOO In m Chloronitrobenzene. In p Chloronitrobenzene. t. Gms. A1CU per ioo Gms. Sat. Sol. Solid Phase. 44 . 5 m. pt. O m C 8 H 4 ClNOa 44 10.7 " 36 Eutec. 16.6 "+Aici3.w c 6 H4CiN02 50 21 70 28.3 90 36.8 104 m. pt. 90 81 Eutec. 120 140 160 45-9 52-4 55-6 60 64.1 70.2 " +A1CU A1CU Gms. A1CU t. per ioo Gms. Solid Phase. Sat. Sol. 83 .5 m. pt. o p C 6 H 4 ClNOa 78 7.1 " 73 12.8 " 68 Eutec. 17.1 " +MC\3.p C 8 H 4 C1NO, 80 22.2 MOa.p C4H4C1NO IOO 31-4 " 120 41.8 " 126 m. pt. 45.9 no 53-2 " 94 Eutec. 58.1 "+ AlCli 125 60.5 AlCli 155 66.9 s. - " 180 77-7 M 190 88.2 " 104 IOO " The solubility of aluminium chloride in anhydrous hydrazine is stated by Welsh and Broderson (1915) to be i.o gm. in ioo cc. at room temperature. ALUMINIUM CHLORIDE 26 SOLUBILITY IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.) In o Bromonitrobenzene. In m Bromonitrobenzene. Gms. AlCb t. per 100 Gms. Solid Phase. Gms. AlCb t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. 38.5 o QlfcBrNO, 54 7 o m C 6 H4BrNOa 32 7-5 " f 51 6.5 " 26 47 Eutec. 11.9 "+ AlCU.ro C 6 H 4 BrNOi 20 Eutec. 17.5 " +A1C13.0 C 6 H 4 BrNOa 60 16 AlCb.ro C 6 H 4 BrNO 40 21.7 AlCb.o CH4BrNO 80 22.9 " 60 26.4 100 30.7 " 80 31.7 " no 35-9 97 m. pt. 38 116 m. pt. 39.8 M 100 39.8 H3 42.3 90 44.6 107 44-5 80 Eutec. 46.5 " +A1CU 97 Eutec. 47.4 "+A1CU no 50.1 Aid, 120 5i-5 A1CU 130 54-1 140 56.5 " 150 60.2 160 64-5 " 170 70 180 77-4 180 77-4 190 88.8 M 197 100 U In p Bromonitrobenzene. In o Nitrotoluene. ^ Gms. AlCb Gms. AlCb t. per zoo Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. 124 , 5 m. pt. P QI&BrNOa 8.5 HI. pt. O o C 6 H4CH3N0 2 117 7-4 " 9.3 EuteC. I "+AlCb.2o C,H4CTfcNOi III 12.8 " 1-5 AlCb.20 CeHiCHsNOi 105 17.7 " 20 4 99 EuteC. 22.2 "+AlCb. CVEfcBrNOa 40 II 120 28 . 4 MC\a.p CjHiBrNOj << EuteC. 31 " +AlCb.o CH4CHjNOj \s \s \s I4O 36.4 85 41.8 AlCb.o C 6 H 4 CH3NOj 145 m. pt. 39.8 95. 5m. pt.49.3 140 44-5 70 56.8 120 51-2 45 Eutec. 61.5 "+AICI, "3 Eutec. 52.8 "+AICU 95 64.5 Aicb 130 55.9 AlCb 145 73-7 150. 61.3 180 86.2 180 77-4 185 89.5 190 88.8 194 100 194 100. One liter sat. solution of A1C1 3 in CC1 4 contains 0.74 gm. at 4, 0.22 gm. at 14, 0.15 gm. at 20 and 0.06 gm. at 34. One liter sat. solution of A1C1 3 in CHC1 3 contains 0.65 gm. at 15, i.o gm at o and 0.72 gm. at 25. (Lloyd, 1918.) ALUMINIUM CHLORIDE SOLUBILITY IN SEVERAL ORGANIC SOLVENTS (Con.). (Determinations by Synthetic Method.) In m Nitrotoluene. In p Nitrotoluene. ' Gms. AlCla Gms. A1CU t. per 100 Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. i6 m. pt. m CeHiCHsNCb 52 . 5 m. pt. P CaHUCHaNOj 13 EuteC. 7.8 "+AlCl3.2wC 6 H4CH3NOa 47 9.2 27 13 .4 A1C13.2W CfrfoCHsNOz 42 15 " 35 EuteC. 24.5 "+AlCl3.tC 6 H 4 CH3NO a 37 EuteC. 19 "+AlCU.0CeH 4 CH s NO, 65 34 AlCls.w CeEUCHsNOa 55 29 . 1 AlCla.* CH4CH,NOi 90 44.2 80 34-8 95 46.7 95 41.3 99 .Sm.pt. 49. 3 109 m. pt. 49.3 70 56.8 100 53-4 45 Eutec. 61.5 "+Aici3 60 61.7 95 64 . S AlCla 45 Eutec. 64 " +Aicii 120 68.2 105 69 . 5 AlCli 130 70.2 165 80 190 94-3 194 IOO.O In Benzophenone. In Benzoyl Chloride. f Gms. AlCls \ Gms. AlCls t. per loo Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. 4 8 m. pt. (C 8 H5) 2 CO o. 5 m. pt. CeHsCOCl 44 8-5 - 4 7.9 " 39 . 5 Eutec. 15.4 " +Aici 3 (c,H 5 )2CO -7- S Eutec. 12.7 " +Aici 3 .c,H 6 coci 60 19.3 AlCl3.(C 6 H5)*CO o 14 . 1 AlCU-QHsCOCl 90 26 . s 20 18.8 120 37 40 25 130 m. pt. 42.3 60 33 110 48.8 80 42.2 80 53-5 93m.pt. 48.7 60 Eutec. 56 . i " +AICU 80 52.9 100 58 AlCli 60 57.2 140 63 40 61 160 68.6 180 78.5 190 89.1 192 93 104 100 ALUMINIUM FLUORIDE A1F 3 . Fusion-point data (Solubility, see footnote, page i) are given by Pushin and Baskov (1913) for the following mixtures: A1F 3 + NaF, A1F 3 + KF, A1F 3 + LiF, A1F 3 + CsF, A1F 3 + RbF. Similar data for mixtures of A1F 3 + NaF are given by Fedotieff and Illjinsky (1913). ALUMINIUM HYDROXIDE 28 ALUMINIUM HYDROXIDE A1(OH) 3 . SOLUBILITY OF MOIST FRESHLY PRECIPITATED ALUMINIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ALUMINIUM SULPHATE. (Kremann and Hiittinger, 1908.) Results at 40. Results at 20. Gms. per zoo Gms. H 2 O. 'A1 2 (SO4)3. Al(OH)a. 2-37 0.15 A1 2 O 3 .SO 3 .9H 2 O 5 0.30 tt 7 0.65 tt 9.1 1.30 Transition Point 10 1.23 Al 2 O 3 2SO 3 .i2H 2 O 15 1.04 " 20 1.40 tt 25 2.40 11 3 3-70 tt 31.6 4.20 Transition Point 33 2-75 Al 2 O 3 .3S0 3 .i6H 2 O 34-73 0.92 tt Gms. per 100 Gms. HbO. Al(OH)r Solid Phase. 5.22 . . .* Transition Point 8.85 1.82 Al 2 O 3 .2SO 3 i2H 2 10 1.65 tt 15 1.40 ft 20 2-15 " 25 3.80 " 28.5 5.80 Transition Point 30 4-35 Al 2 3 .3SO 3 .i6H 2 O 35 i. 60 tt 49 0.60 ft Results at 60. f Gms. per 100 Gms. HzO. * The figures given are not sufficient to deter- mine this transition point accurately. t The author's figures for 60 are reproduced without change as they are not sufficient to deter- mine transition points. A1 2 (SO4)3. 3-24 8.83 12.67 24.07 31-55 42.38 49 - 8 5 A1(OH) 3 2-53 I.8S 4.89 6.02 1.42 Solid Phase. A1 2 O 3 .SO 3 .9H 2 O Al 2 3 .2S0 3 .i2H 2 O Al 2 O 3 .3S0 3 .i6H 2 O SOLUBILITY OF ALUMINIUM HYDROXIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. (Haber and van Oordt, 1904.) The mixtures were agitated for 24 hours- So-called acetic acid soluble tonerde (E. Merck) was used for the experiments. Temp. 2O-23. Normality of Aq. NaOH. Gms. AUOa per Liter. 0.49 9.27 0.99 13.90 2.OO 14.40 SOLUBILITY OF ALUMINIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Herz, 1911; Slade, 1911 and 1912.) The experiments show that the ratio of Na to Al in the solution varies con- siderably depending upon whether the used Al hydroxide was precipitated hot or cold, also upon the length of time it was dried and upon the nature of the drying agent. Herz found a nearly constant ratio of 3 Na to I Al in solution. Slade gives ratios of approximately 2.5 : 1 in normal NaOH at 25 for cold pre- cipitated hydroxide dried over HgSCX and 9.0 : I for hot precipitated Al hydroxide dried over PzO^ Drying in thin layers also increased this ratio but to a some- what less extent. Slade reports the solubility of A1(OH) 3 in a 0.6414 normal NaOH solution to be 1.34 gm. per 100 cc. at room temperature. ALUMINIUM OXIDE A1 2 O 3 . m Fusion-point lowering data for mixtures of aluminium oxide and cryolite are given by Lorenz, Jabs and Eitei (1913). The results show one eutectic at ap- proximately 940. The eutectic mixture contains 19.8% A1 2 O 3 . Results for aluminium oxide and magnesium oxide are given by 'Rankin and Merwin (1916). 29 ALUMINIUM SULFATE ALUMINIUM SULFATE Al 2 (SO 4 )3.i8H 2 O. SOLUBILITY IN WATER. (Poggiale, 1843; Kremann and HUttinger, 1908.) Mid Phase. t. ^G^^tToL SoM Phase. AU(SO4),.i8HiO I .02 8 .09 Ice 20 26 7 I 43 10 7 30 28 .8 2 .04 14 3 40 31 4 2 -65 17 5 50 34 3 2 85 19 .2 60 37 .2 4 Eutec. 23 . I Ice + Al 2 (SO4)3.i8H 2 O 70 39 .8 o 23 . 8 Al2(SO4)3.l8H2O 80 42 .2 -f- 7 73 24 .8 90 44 7 10 25 .1 IOO 47 .1 SOLUBILITY OF ALUMINIUM SULFATE IN AQUEOUS SOLUTIONS OF FERRIC SULFATE AT 25 AND VICE VERSA. (Wirth and Bakke, 1914.) Gms. per 100 Gms. Sat. Sol. . Gms. per 100 Gms. Sat. Sol. AWSO.).. ' Fe,(SO.),. SohdPhaSe - 'AMSO.),. ' Fe^SO.)..' S< "' d " 27.82 O . Ak(SO4)3.i8H 2 O 10.03 3 2 -4 2 Fe 2 (SO 4 )3-9H 2 O 26.01 6.064 " 8.819 34-02 24.21 9.819 " 6.626 35.82 21.64 13-02 " 5-200 38.83 15.22 23.28 2.342 42.44 10.46 31.90 " +Fe2(SO4)3.9H2O ... 44-97 EQUILIBRIUM BETWEEN ALUMINIUM SULFATE, LITHIUM SULFATE, AND WATER AT 30. (Schreinemaker and De Waal, 1906.) Composition in Weight per cent: Solid Phase. Of Solution. Of Residue. % Li 2 S0 4 . % A1 2 (S0 4 ) 3 . % Li 2 SO 4 . % A1 2 (SO4) 3 . 25.1 21-93 5-34 16.10 14-89 63.70 4-02 13.63 20.76 14.72 3 I - I 7 13.24 21 .71 61 .24 7.22 "73 22.08 6.92 33-54 6-75 24-34 3-77 37.06 3-44 26.12 o.o 28.0 . . . { Al 2 (So!) 3 .i8H 2 Li 2 S0 4 . 4 H 2 Al 2 (S0 4 ) 3 .i8H20 SOLUBILITY OF ALUMINIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (Wirth, 1912.) Gms. per IO o Gms. Sat. Sol - Gms. per 100 Gms. Sat Sol. 'Al 2 (S04)s. H 2 S0 4 . " ' Al2(S04)3. H2S04. 27.82 O AU(SO4)s.i8H 2 O 4.8 40 Ali(SO4)3.i8HzO 29.21 5.13 1.5 5 26.2 10 i 60 19.5 20 2.3 70 11. 6 30 4 75 A curve was plotted from the published results and the above figures read from the curve. loo gms. glycol dissolve 16.82 gms. A1 2 (SO 4 )3. We Coninck, 1905-) ALUMINIUM SULFIDE A1 2 S 3 . Fusion-point data for mixtures of Al 2 Sa + Ag 2 S are given by Cambi (1912). ALUMS ALUMS. SOLUBILITY OP AMMONIUM ALUM AND OP POTASSIUM ALUM IN WATER. (Mulder; Poggiale Ann. chim. phys. [3] 8, 467, '43; Locke Am.Ch. J.26, 174, '01; Marino Gazz. chim. ital. 35, II, 351, '05; Berkeley Trans. Roy. Soc. 203 A, 214, '04.) O 5 10 15 20 25 30 40 50 60 70 80 9 9 2. 95 Ammonium Alum. Potassium Alum. Gms. (NH4) 2 Gms. Al2(S04)4 A1 2 (S04J42 4 H 2 per 100 g. H 2 0. G.M.(NH4) 2 A1 2 (S0 4 )4 per 100 g. H 2 0. Gms. K 2 A1 2 (S0 4 )4 per 100 g. H 2 0. Gms. K 2 G. M. K 2 A1 2 (S0 4 )424H 2 A1 2 (S0 4 )4 per 2.10 3-90 O.OO44 3-o 5-65 0.0058 3-5 6.91 O.OO74 3-5 6.62 0.0068 4-99 9-52 O.OIO5 4-0 7.60 0.0077 6.25 12.66 0.0132 5-o 9-59 0.0097 7-74 15.13 0.0163 5-9 ii .40 O.OII4 9.19 19.19 O.OI94 7-23 14.14 0.0140 10.94 22 .OI 0.0231 8-39 16.58 0.0162 14.88 30.92 0.0314 11.70 23-83 0.0227 20.10 44-10 O.O424 17.00 36.40 0.0329 26 . 70 66.65 0.0569 24-75 57-35 0.0479 40.0 110.5 0-0774 71.0 321-3 0-1374 ... ... 109.0 2275.0 0.2IIO 119.0 GO. 0-2313 109.7 CO 0.2312 NOTE. The potassium alum figures in the preceding table were taken from a curve plotted from the closely agreeing determinations of Mulder, Locke, Berkeley, and Marino. For the higher temperatures (above 60), however, the results of Marino are lower than those of the other investigators, and are omitted from the average curve. Locke called attention in his paper to the fact that Poggiale's results upon ammonium and potassium alum had evidently become inter- changed through some mistake. This explanation is entirely sub- stantiated, not only by Locke's determinations, but also by those of Mulder and Berkeley. The ammonium alum figures given above were therefore read from Poggiale's potassium alum curve, with which Locke's determination of the solubility of ammonium alum at 25 is in entire harmony. SOLUBILITY OF AMMONIUM ALUM IN PRESENCE OF AMMONIUM SULFATE AND IN PRESENCE OF ALUMINIUM SULFATE IN Mixture Used. (Rudorff Ber. 18, 1160, '85.) 100 Gms. Saturated Solution Contain: Saturated Ammonium Alum at 18.5 . . . . 20 cc. above sol. + 6 gms. cryst. A1 2 (SO 4 ) 3 . 20 cc. above sol. + 4 gms. cryst. (NH 4 ) 2 SO 4 . Grams (NILJjjSCU + Grams Al^SO*)* . . 1.42 3.69 0-45 20. 8l 16.09 0.29 ALUMS SOLUBILITY OF MIXTURES OF POTASSIUM ALUM AND ALUMINIUM SULFATE AND OF POTASSIUM ALUM AND POTASSIUM SULFATE IN WATER. t. o 20 35 65 77 o 5- 10 *5 30 40 60 3o (Marino Gazz. chim. ital. 35, II, 351, '05.) Gms. per 1000 Gms. Al 2 (S0 4 ) 3 .i8H 2 0. K 2 S0 4 . 243-73 23-45 824-25 30.85 911 .02 35-29 1243.21 59-55 1598.00 ii9-43 l872.II 183.80 5-06 75 -83 8.66 75 I 8 16.07 85.78 18.52 96.50 20.56 109.30 39.60 147-8 73-88 163.1 126.0 195-4 249.7 238.8 529.0 323-7 1044.0 5*7-27 Gm. Mols. per t i OOP Mols. H 2 O. Al 2 (S0 4 ) 3 .i8H 2 0. K 2 S0 4 ." 6.1 Solid Phase. 24.1 33-5 o.i O.2 0-4 o-5 o-55 i .o 1.9 3-4 6.7 14.2 28.1 2-3 3-6 6.1 12.6 18.9 7.8 7-7 8.8 9-9 II .2 15.2 16.8 20. i 24.6 32.6 53-4 K 2 A1 2 (SO 4 ) 2 .24H 2 O + A1 2 (S0 4 ), K 2 A1 2 (S0 4 ) 2 .2 4 H 2 + K 2 S0 4 SOLUBILITY OF MIXTURES OF POTASSIUM ALUM AND OF THALLIUM ALUM IN WATER AT 25. (Fock Z. Kryst. Min. 28, 397, '97.) K,A1 2 (S0 4 ) 4 .2 4 H,0 ; T1 2 A1 3 (SO 4 ) 4 .2 4 H 2 O. Composition of Solution. A . ._ Solid Phase Mol. % of Potassium Alum. KAl(S0 4 ) 2 j>er Liter. T1A1(SO 4 ) 2 per Liter. Grams. Mg. Mols. Mol. % Sp. Gr. of KA1(S0 4 ) 2 . Solutions. Grams. Mg. Mols. 69.90 270.5 o.oo o-oo ioo i -0591 IOO-O 74-56 288.2 0.48 1-13 99.61 I. 0601 99-32 67.90 262.8 1.72 4-07 98.48 1.0598 96.84 65-30 252.7 4-52 10.67 95-95 .0603 90.84 64 95 25I-4 9.60 22.67 91 .73 .0605 82.94 53-23 205-9 18.44 43.56 82.54 .0609 68.24 45-32 175-4 24.60 58.10 75- 12 .0609 58.23 38.02 147.2 32-48 76.75 65-73 .0611 46.72 34-54 133-6 35-59 84.10 61.36 .0611 44.23 28-35 109-7 42.99 101.60 5*-93 .0623 32.07 10.94 42.4 66.12 156.2 21.34 1-0654 7-94 o.oo O-O 75-46 178-3 o.oo 1.0674 o.oo Data for the influence of pressure on the solubility of potassium alum in water at o are given by Stackelberg, 1896. Data for the solubility of Rubidium Alums are given on p. 582. ALUMS SOLUBILITY OF SODIUM ALUM IN WATER. (Smith, 1909.) Gms. Na2Al2(SO4)4 per 100 Cms. Cms. Na2Al 2 (S0 4 )4.24H 2 per 100 Gms Sat. Sol. 26.9 27.9 Water. 36.7 38.7 29 40.9 3 O.I 31-4 43-i 45-8 ' Sat. Sol. Water. IO 50.8 I03.I 15 52.7 III.3 20 54-8 121 .4 25 56-9 I3I.8 30 59-4 146.3 10 15 20 25 30 Above 30, sodium alum is decomposed in contact with its saturated solution. The exact temperature of transition has not been determined. Single determinations differing from the above are given by Tilden (1884) and by Auge (1890). SOLUBILITY OF CAESIUM ALUM, RUBIDIUM ALUM, AND OP THALLIUM ALUM IN WATER. (Setterburg~Liebig's Annalen, 211, 104, '82; Locke Am. Ch. J. 26, 183, '01; Berkeley Trans. Roy. Soc. 203 A, 215, '04.) Thallium Alum. Gms. per 100 Gms. H 2 O. t. Caesium Alum. Gms. per 100 Gms. H 2 O. Al 2 Cs 2 (S0 4 ) 4 . Al 2 Cs 2 (S0 4 ) 4 .2 4 H 2 O. o 0.21 o-34 5 0.25 0.40 10 0.30 0.49 20 0.40 0.65 25 0.50 0.81 30 O.6o 0.97 40 0.85 1.38 50 1.30 2. II 60 2.0O 3-27 70 3-20 5-27 80 5-40 9-01 90 10.50 i8.ii 100 22.70 42-54 Rubidium Alum. Gms. per 100 Gms. H 2 O. Al 2 Rb 2 (S0 4 ) 4 . Al2 ^f ( 2 o* )4 0-72 I. 21 0.86 1.48 1.05 1.81 1.50 2-59 i. 80 3.12 2.20 3-82 3-25 5-69 8.50 7.40 13-36 12.40 23-25 21. 60 43-25 A1 2 T1 2 (S0 4 ) 4 . A1 2 T1 2 (SO< 3-15 '4.84 3 .8o 5-86 4.60 7.12 6.40 10.00 7.60 11 -95 9-38 14.89 14.40 23-57 22.50 38-41 35.36 65.19 NOTE. Curves were plotted from the closely agreeing determina- tions recorded by the above named investigators and the table con- structed from the curves. Recent determinations of the solubility of caesium alum in water, by Hart and Huselton (1914), agree well with the data in the above table. For addi- tional caesium alums see page 180. SOLUBILITY OF Ammonium Chromium Alum IN WATER. (Koppel, 1906.) It was shown that, due to the transition between the violet and green forms of the compound, the saturation point is reached very slowly, especially at the higher temperatures. From the determinations at o it was found that equi- librium is reached in 2\ hours. If this saturation time is taken for the other temperatures, the results are considered to show the solubility of the violet form alone. The final saturation represents the attainment of an equilibrium between the violet and green forms. Results for the Violet Form. Results for Final Equilibrium. ~- Time of Gms. r Time of Gms. t. Saturation, (NH 4 ) Cr (S0 4 ) 2 t. Saturation, (NH 4 )Cr(S0 4 )2 Hrs. per 100 Gms. Sol. Hrs. per 100 Gms. Sol. 2-5 3-8 2-5 3-8 30 2-5 10.6 30 300 I5.7-I6 40 2-5 15-5 40 250 24.5-24.8 33 AMMONIA AMMONIA NH 3 . SOLUBILITY OP AMMONIA IN WATER. (Roscoe and Dittmar Liebig's Annalen, 112, 334, '59; Raoult Ann. chim. [5] i, a6a, '74; Mallet Am. Ch. J. 19, 807, '97.) -40 -30 20 10 O 5 10 15 At 760 mm. Pressure. G.NH 3 Vol. NH 3 per 100 g. H 2 O. per i g. 1l 2 0. 294.6 278.1 ... 176.8 III-5 87-5 1299 77-5 1019 67.9 910 60.0 802 20 25 30 35 40 45 5o 56 At 760 mm. Pressure. G.NH 3 per 100 g. H 2 0. Vol. Nils per i g. 52.6 46.0 40-3 710 635 595 (28) 35-5 30-7 27.0 ... 22.9 ... SOLUBILITY OF AMMONIA IN WATER DETERMINED BY METHOD OF LOWERING OF FREEZING-POINT. (Rupert, 1910.) j.o vjins, INX13 PC f Solid Phase. Ice 2 2 " - 4 .6 4 " - 7.6 6 " 10.6 8 * - 13-9 10 it - 17.6 12 . tt - 21.4 14 tt - 25.8 16 ft 18 ft - 37 20 tt - 43-6 22 - 50-7 24 ft - 60.3 26 it - 72.2 28 " -87.2 30 tt -102.3 32 tt 116.7 34 " 120 Eutec. 34-5 Ice + NHjH2O -103.8 36 NHjHjO - 9 2 -9 38 " - 86.7 40 " - 83.5 42 ft - 81.4 44 tt - 80 46 " - 79-3 48.7 it - 79-4 50 " t Cms. NHa per 100 Gms. Sol. Solid Phase. -80.6 52 NHsHjO -82.8 54 M -85.8 56 " -8 7 Eutec. 56 . 5 N Hs.H2O+2NH3.Hj -84.8 58 aNHaHzO -82.2 60 " -80. 4 62 -79.2 64 a -79.8 m. pt. 66 tt -79.2 68 " -80.3 70 " -82.1 72 it -84.5 74 it -87.4 76 it -90.4 78 it -93-6 80 it -94 Eutec. 80.3 2NH 3 .HjO-f-NHi -91.7 82 NHi -89.4 84 " -87.4 86 " -85.6 88 it 84.1 90 " -82.7 92 M -81.5 94 M -80.3 96 " -79.1 98 It -78 100 * More recent data on the above system, by Smits and Postma (1914) agree quite closely with the above except in the region of the eutectic Ice + NH 3 H 2 O. These authors report a temperature of 100.3 instead of 120 for this point. Additional determinations are also given by Baume and Tykociner (1914). Older data for the ice curve are given by Guthrie (1884) and Pickering (1893). ' o 1 10. 20 30. 40. 50. 60. * 4 5 9 17 5 31 5 55 125 149. 5 13 18 32 5 56. 5 91 146 234 20 27 47 5 83 134. 5 210 327 * 27 5 40 70 IX 5 183- 5 28l 425 35 54 93 153 5 241.5 363.5 539- 5 45 69 118 193, 5 303- 5 455 666 57 5 89 151 245 377. 5 564 816. 5 75 "5 191 305 5 465- 5 688.5 985 93 144 237 393 569. 5 834.5 1191 117 180.5 291 455 5 690 1005 1432 144 5 226.5 360 561. 5 830. 5 1195 ... 181 280 440 680 1007 ... 222 346 537 8i7 1189. 5 AMMONIA 34 VAPOR PRESSURE OF AQUEOUS AMMONIA SOLUTIONS. (Perman, 1903.) G s NHs oer Vapor Pressure in mm. of Mercury at: 100 Cms. Sol. O 2.5 5 7-5 10 12.5 15 I7-S 20 22.5 25 27-5 30 The apparatus (Perman, 1901) used for the above determinations, consisted of a pipet provided with a stop-cock at its upper end and connected with a Hg leveling tube at its lower end. For maintaining constant temperatures the vessel was surrounded by a glass jacket into which water or vapors of liquids boiling at various temperatures could be introduced. The aqueous ammonia solution was drawn in above the Hg and boiled to expel air. A portion of it was withdrawn for analysis through the stop-cock at the top, by elevating the level of Hg. The vapor pressures of the analyzed mixture at various constant temperatures were then read with the aid of an adjacent millimeter scale. Curves were plotted from the results and readings for regular intervals of concentration and temperature made. By means of a modification of the above apparatus the author was also able to estimate the partial pressure of the ammonia and of the water of each mix- ture. Tables for these values are given. Data have also been calculated for the latent heat of evaporation of aqueous ammonia solutions. INFLUENCE OF SALTS AND OTHER COMPOUNDS ON THE VAPOR PRESSURE OF AQUEOUS AMMONIA SOLUTIONS. (E. G. Perman, J. Chem. Soc. (Lond.), 81, 480, 1902.) Vapor pressure determinations were made as above described on aqueous solutions of the following compositions (a) 10.43% Urea -+- 16.36% NHs, (b) 5-29% Urea + 17.22% NH 3 , (c) 4.56% Mannitol + 12.27% NH 3 , (d) 3.05% K 2 S0 4 + 749% NH 3 , () 5.27% NH 4 Cl + 16.85% NH 3 , (/) 10.26% NH 4 C1 + 12.9% NH 3f (g) 2.68% CuS0 4 + 14-65% NH 3 , (h) 3.94% CuSO 4 + 6.54% NH 3 . The author's data were plotted on cross section paper and the following values read from the curves. t. Vapor Presure of Each Solution in mm. of Mercury. (a) (b) to (d) (e) (/) tt (*) 20 204 200 120 . . . 193 130 155 . . . 30 325 325 198 . . . 302 220 235 87 40 485 500 3H 200 471 345 365 145 50 715 727 465 304 695 522 545 223 60 1050 1060 705 453 975 770 344 In an earlier paper Perman (1901) gives data similar to the above for the vapor pressure of ammonia in aqueous solutions of sodium sulfate. 35 AMMONIA MUTUAL SOLUBILITY OP AQUEOUS AMMONIA AND POTASSIUM CARBON- ATE SOLUTIONS. (Newth J. Chem. Soc. 77. 776, 1900.) The solutions used were: Potassium Carbonate saturated at 15 (contained 57.2 grams K 2 CO 3 per 100 cc.). Aqueous Ammonia of 0.885 Sp. Gr. (contained about 33 per cent ammonia). The determina- tions were made by adding successive small quantities of one of the solutions to a measured volume of the other, and observing the point at which opalescence appeared. Saturated K 2 CO3 in Aq. Ammonia. Aq. Ammonia in Saturated t*. cc. KaCOa per %K2COa Solution cc. Ammonia %K2COa Solution 100 cc. Ammonia, in Mixture. in 100 cc. K 2 COa. in Mixture. i 2.0 2.0 37.5 72.7 6 3.0 3.0 47-5 6 7-6 ii 5-0 4-7 5 2 -5 6 5-o 16 6.5 6.1 % 60.0 63.0 21 8.5 8.0 77-5 56-3 26 10.5 9.5 105.0 49-0 31 12.5 ii. i 152.5 39.0 38 20.0 16.6 i9S-o 33 - 39 21 .o 17.0 220- o 31-0 42 25.0 20.0 250.0 28.5 43 35.0 26.0 285.0 26.5 Above 43 the solutions are completely miscible. If 10 per cent of water is added to each solution the temperature of complete miscibility is lowered to 25. The mutual solubilities are: Per cent K 2 CO3 Solution in; t. Ammonia K 2 CO 3 Sol. Layer. Layer. o 8 62 10 ii 52 20 15 38 25 (crit. pt.) 25 With the addition of 12.9 per cent of water to each solution the temperature of complete miscibility (crit. pt.) is lowered to 10. With the addition of 18.1 per cent water this temperature becomes o. SOLUBILITY OF AMMONIA IN AQUEOUS SALT SOLUTIONS. (Raoult.) In Calcium Nitrate Solutions In Potassium Hydroxide Solutions Gms. NHa per too Gms. NHa per 100 Cms. Solvent in: Gms. Solvent in: t*. 28.38% In 59.03% n-25% Ca(N03) 2 . CMJ88S KOH o 96.25 104.5 7 2 -o 49-5 8 78.50 84.75 57-o 37-5 16 65.00 70.5 46-0 28.5 24 373 21.8 The freezing-point curve for mixtures of ammonia and ammonium thiocyanate is given by Bradley and Alexander (1912). AMMONIA 36 SOLUBILITY OF AMMONIA IN AQUEOUS SALT SOLUTIONS AT 25. (Abegg and Riesenfeld, 1902.) The determinations were made by the dynamic method of vapor pressure measurement previously used by Doyer (1890), Konowalow (1898), Gahl (1900), and Gaus (1900). It consists in passing an indifferent gas through an aqueous ammonia solution of known concentration and calculating the vapor pressure from the volume of indifferent gas required to remove a definite amount of ammonia from solution. The indifferent gas (H + O) was generated by an electric current and its volume measured by means of a voltmeter. The accom- panying ammonia was removed by passing through o.oi n. HC1 and estimated by means of electrolytic conductivity. The molecular vapor pressure was obtained by dividing the absolute vapor pressure, calculated from above meas- urements, by the concentration (normality) of the ammonia. For i n. am- monia in water at 25 the molecular vapor pressure was 13.45 mm - Hg; for 0.5 n. solution it was 13.27 mm. Hg. Since it has been shown by much experimental evidence, that Henry's Law of the proportionality of the concentration in the liquid and vapor phase applies very closely in the present case, see also Gaus (1900), it follows that the am- monia pressure relation of two solutions of equal ammonia content is recipro- cally proportional to the solubility relation of the ammonia in them. Hence, to calculate the solubility from the vapor pressures, it is only necessary to divide the value for the molecular vapor pressure in H 2 O by that for the salt solution. Thus the solubility of NH 3 in HzO becomes unity. All determinations were made with i n. aqueous ammonia in salt solution of 0.5, i and 1.5 normality. The figures therefore show mols. NH 3 per liter of the particular salt solution at 25. In a later paper by Riesenfeld (1903), additional determinations are given for 35. Salt Mols. NH 3 per Liter S altS iol. of: Salt Mols. NH 3 per Liter Salt Sol. of: Solution. 0.5 n. i n. i 5n. Solution. 0.5 n. i n. i-S n. KC1 0.930 .866 O .809 KCN O .926 o .858 O.8O2 KBr 0.950 O .904 O 857 KCNS 932 o .868 0.8l4 KI 0.970 942 .900 K 2 SO 4 .875 o .772 0.678 KOH 0.852 o .716 o .607 K 2 SO 3 o .865 o .768 0.675 NaCl 0.938 o .889 o 843 K 2 CO 3 o .788 o .650 0-554 NaBr 0.965 .916 0. 890 K 2 C 2 O 4 .866 o. .771 0.675 Nal 0-995 o .992 0. 985 K 2 CrO 4 o .866 o .771 0.675 NaOH 0.876 .789 o. 7 l6 CH 3 COOK .866 o. 765 0.685 LiCl 0.980 I .008 I. 045 HCOOK .868 o. 760 0.678 LiBr I .OOI I .040 I. 090 KBO 2 o ,814 0. 677 0.560 Lil 1.030 I .094 I . 190 K 2 HPO 4 0. 860 o. 749 0.664 LiOH 0.863 .808 0. 768 Na 2 S 0. 887 0. 795 0.726 KF 0.839 0.722 p. 626 *KC1O 3 0.927 KNO 3 0.923 o .862 o. 804 *KBrO 3 o. 940 . . . . . . KN0 2 0.920 .855 0. 798 *KIO 3 0. 951 . * These salt solutions are 0.25 normal. Konowalow (1898) expressed the results of determinations of the solubility of ammonia in aqueous silver nitrate by the equation H = 56.58 (m 2 n) in which H = partial pressure of NH 3 in mm. of Hg., m = molecular concentra- tions of NH 3 and n = molecular concentration of AgNO 3 . Similar results are given in later papers (Konowalow, 1899, a, b) for a large number of other salt solutions. Gaus (1900) gives data for the vapor pressure of ammonia in aqueous 0.4 n solutions of about 20 salts, only a few of which occur in the above table. 37 AMMONIA SOLUBILITY OF AMMONIA IN ABSOLUTE ETHYL ALCOHOL. (Delepine J. pharm. chim. [5] 25, 496, 1892; de Bruyn Rec. trav. chim. n, 112, '92.) Gms. NHa Gms. NH 3 per 100 Gms. Solution. Gms. NH 3 per 100 Gms. Alcohol t . Density. per 100 cc. Solution. (Delepine.) (de Bruyn.) (Delepine.) (de Bruyn.) o 0.782 13 05 20 95 19 7 26 5 24 5 5 0.784 12 .00 19 .00 17 5' 23 o 21 .2 10 0.787 10 8S 16 43 15 .0 19 .6 17 .8 15 0.789 9 .20 13 .00 13 .2 15 15 .2 20 0.791 7 5 10 .66 II 5 II 9 13 .2 25 0-794 6 .00 10 .0 10 .0 II .0 II .2 30 0.798 5 J 5 9 7^ 8 .8 10 7 9 5 According to Miiller (1891), one volume of alcohol absorbs 340 volumes of ammonia at 20 and 760 mm. pressure. SOLUBILITY OF AMMONIA IN AQUEOUS ETHYL ALCOHOL. (Delepine.) In 06% Alcohol. In 90% ^Alcohol. In 8o% A Alcohol. t. Sp. Gr. G. NH 3 per Solution, zoo Gms. Sol. Sp. Gr. Solution. G. NH 3 per * 100 Gms. Sol. fc 'Sp. Gr. G. NH S per Solution. 100 Gms. Sol. O 783 24 5 O .800 30.25 0.8o8 39-o 10 .803 18 .6 794 28.8 O.Soo 28.8 20 o .788 14 .8 795 15-8 0.821 19.1 30 o .791 10 7 O .796 II-4 0.826 12.2 In 60% Alcohol. In so%_ Alcohol. t . Sp. Gr. Solution. G. NH 3 p 100 Gms. S . Sp. Gr. Solution. G. NH 3 per" 100 Gms. Sol. 0-830 50-45 0.835 69.77 10 0.831 37-3 0.850 43.86 20 0.842 26.1 0.869 33-8 30 0.846 21 .2 0.883 25.2 SOLUBILITY OF AMMONIA IN ABSOLUTE METHYL ALCOHOL. (de Bruyn Rec. trav. chim. n, 112, '92.) G. NH 3 per 100 Grams. G. NH 3 per^ioo Grams. Solution. Alcohol. Solution. Alcohol. O 29.3 41.5 20 19.2 23.8 5 26.5 36.4 25 16.5 20.0 10 24.2 31.8 30 14.0 16.0 15 21.6 27.8 SOLUBILITY OF AMMONIA IN ETHYL ETHER. (Christoff, 1912.) Results in terms of the Ostwald Solubility Expression (see page 227), at o = 17.13, at 10 = 12.35, at 15 = 10.27. Freezing-point lowering curves (Solubility, see footnote, page i) are given by Baume and Perrot (1910), (1914) for mixtures of ammonia and methyl alcohol and for mixtures of ammonia and methyl ether; results for ammo- nium and potassium, ammonium and sodium, and ammonium and lithium are given by Ruff and Geisel (1906); results for ammonium and hydrogen sulfide are given by Scheffer (1912). SOLUBILITY OF AMMONIA IN HYDROXYLAMINE. (de Bruyn, 1892.) 100 gms. of the sat. solution contain 26 gms. NH 3 at and 19-20 gms. at I5 -i6. AMMONIA 38 DISTRIBUTION OF AMMONIA BETWEEN: Water and Amyl Alcohol at 20. Water and Chloroform at 20. (Herz and Fischer Ber. 37, (Dawson and McCrae J Ch. Soc. 79, 496, '01; see 4747. '04) also Hantsch and Sebaldt Z.phys.Ch.ao, 258, '99.) Cms . NHg per 100 cc. G . M. NHa per too cc. Cms . NHaper 100 cc. G. M. NH 3 per 100 cc. ' Aq. Alcoholic Aq. Alcoholic Aq. CHC1 3 Aq. CHCla Layer Layer. Layer. Layer. Layer. Layer. Layer. Layer. o-5 0. .072 O 25 O 0035 O .2 O.OO7 O.OI 0.00038 I .147 O 50 .0073 4 0-015 0-02 0.00073 2 -O O .272 I .00 .0148 .6 0.023 C.03 O.OOII4 30 43 8 2 oo -02Q5 O .8 0.031 O.O4 O.OOI52 40 595 3 .00 O 0460 I o 0.039 O.O5 0.00193 5- 756 I .2 0-046 0.06 0.00232 I 4 0-055 0.08 O.OO3II I .6 0-063 o.io 0-00396 For calculations of above distribution results see Note, page 6. Additional data for the distribution of ammonia between water and chloroform are given by Dawson and McCrae (1900), (19010), (19016); Dawson (1906), (1909); Abbott and Bray (1907); Sherrill and Russ (1907); Bell (1911), and by Moore and Winmill (1912). The results show that with increase of concen- tration of ammonia, the relative amount in the aqueous layer diminishes. Thus Bell found that at 25 the distribution ratio is 22.7 when the aqueous layer con- tains 1. 02 gm. mols. NH 3 per liter and only 10 when 12.23 S m - mols. NH 3 are present in the aqueous layer. The influence of increase of temperature was also found to be in the direction of diminution of the relative amount in the aqueous layer. The influence of the presence of a large number of salts in the aqueous layer has been studied by several of the above-mentioned investigators. In the case of copper, zinc and cadmium salts (Dawson and McCrae, 1900), {Dawson, 1909), the distribution ratio varied with salt concentration in a manner indicating that metal ammonia compounds were formed. Results for the effect of KOH, NaOH and Ba(OH) 2 on the distribution at 18 are given by Dawson (1909). Results for the effect of ammonium chromate upon the distribution at 25 are given by Sherrill and Russ (1907). Results for the distribution of ammonia between water and mixtures of chloro- form and amyl alcohol at 25 are given by Herz and Kurzer (1910). DISTRIBUTION OF AMMONIA BETWEEN TOLUENE AND AIR. (Hantzsch and Vagt, 1901.) Gms. NHajrer 1000 cc. Mols. NHs per 1000 cc. Air. C 6 H 8 CH3 Layer. Air. o 0.366 0.0396 0.0215 0.00233 10 -357 -435 0.0210 0.00256 20 0.326 0.0451 0.0192 0.00265 30 0.286 0.0462 0.0168 0.00272 39 AMMONIUM ACETATE AMMONIUM ACETATE CH,COONH 4 . 100 cc. of sat. solution in acetone contain 0.27 gm. CH 3 COONH 4 at 19. (Roshdestwensky and Lewis, 1912.) AMMONIUM ARSENATES. THE SYSTEM AMMONIA,; ARSENIC TRIOXIDE AND WATER AT 30. (Schreinemakers and de Baat, 1915.) Gms. per 100 Gms. Sat. Sol. NHj. I.4I 2.78 2.86 2.88 2.26 10.98 20.49 21 .17 18-43 Solid Phase. AsA Gms. per 100 Gms. Sat. Sol. NH 3 . 3-13 3-91 6-95 9-93 4.28 Data are also given for the system NH 4 C1 100 gms. H 2 O dissolve 0.02 gm. NH 4 CaAsO 4 .H 2 O. " " " " 0.014 " NH 4 MgAsO4.*H 8 O. AS203. 12.30 7-63 4.72 3.20 2.16 + H 2 at 30. Solid Phase. (Field, 1873.) SOLUBILITY OF AMMONIUM MAGNESIUM ARSENATE IN WATER AND IN AQUEOUS SOLUTIONS OF AMMONIUM SALTS. (Wenger, 1911.) Gms. NH4MgAsO4 per 100 Gms. of Each Solvent. Solid Phase. NH4MgAs04.6HzO Water. Aq. 5% NH 4 N0 3 . Aq. 5% NH 4 C1. Aq.* NH 4 OH. NH 4 OH t Aq. NH 4 OH f +10% -vfrr pi O O 0339 0.092 .084 .0087 ... JN1 4 C1. 20 .0207 0. 114 .113 .0096 0.013 0.032 30 0. 118 O 113 40 .0275 0. 139 .190 .0117 50 o .0226 0. 189 O .189 .0100 . . ... 60 O.O2IO o. 211 .219. .0090 0.047 0.054 70 .0156 0. I8 9 .221 o .0095 ... ... 80 O .0236 o. 189 O .231 .0091 * Composed of i part NHt(4 = 0.96) + 4 parts KfeO. t Contained 4 parts NHi(d = 0.96) per 100 parts NH 4 C1 solution. AMMONIUM BENZOATE C.H,COONH 4 . SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL AT 25. (Seidell, 1910.) Gms. CzHsOH per 100 Gms. Solvent. d& of Sat. Sol. Gms. C 6 H 6 COONH 4 per 100 Gms. Sat. Sol. Gms. C 2 HsOH per 100 Gms. Solvent 1.043 18.6 60 10 I .027 18 70 20 1. 012 18 80 30 0.997 18.1 90 40 0.979 18 95 50 0.956 17 100 . Wl. 01 i cc. Sol. G.M. NHJICOa. G. M. NH4C1. Gms. NH4HCO Gms. '' O 1.069 0-0 4.60 o.o 246.1 O 15 IS 2O 1.077 1.077 1.085 o-37 o.o 0.62 4.41 5-29 4-95 29.2 O-O 48.9 235-9 283.1 264.8 J ?r G. M. G. M. Gms. Gms. NH4HC0 3 . NH4C1. NH4HC1. NEUCl. o.o 5.57 o.o 298.0 0.46 5.42 36.0 290-8 O.O 0.8l 0-0 6.64 o.o 6.40 64.2 7.78 355-Q 343-5 416.4 7.40 91.0 397. o, o.o 45 AMMONIUM CHLORIDE SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT o. (Engel Bull. soc. chim. [3] 6, 17, 1891.) Milligram Molecules Grams" per 100 cc. Sp. Gr. of per 10 cc. Solution. Solution. SolUtionS. TT ' f VrTrp.tr ' M TT r i JNiia. JNrUd. XMJtliUxl. JNli^Ll. 1.067 5.37 45- 8 0-92 24.52 1.054 12-02 45.5 2.05 24.35 1.031 38.0 44-5 6 -48 23.82 1.025 47.0 44-o 8.02 23.56 1-017 54-5 43- 6 3 9-30 23.35 0.993 80.0 43-12 13-66 23.09 0.992 90.0 44.0 15-36 23.56 o-9 8 3 95-5 44-37 l6 - 2 9 23.75 o-953 J 3Q o 49-75 22 -i8 26.63 0.931 169.75 60.0 28.97 32.14 SOLUBILITY OF NH 4 C1 IN AQUEOUS AMMONIA SOLUTIONS AT 17.5. (Stromholm, 1908.) Normality Equiv. per Liter. Gms. per 1000 cc. Solution. ' NH 3 . NH4C1. ' ' NH 3 . NH 4 C1." o 5.435 o 290.8 0.15 5.420 2.55 290 4.76 5.082 81 271.9 SOLUBILITIES OF MIXTURES OF AMMONIUM CHLORIDE AND OTHER SALTS IN WATER. (Riidorff, Karsten, Mulder.) Both salts present in solid phase; t e Grams per 100 Grams HgO. t o Grams per 100 Grams H2O. 19.5 29 . 2 NH 4 C1+ 1 74 . o NH 4 N0 3 * R b. pt. 67.7 NH 4 C1+ 21.9 KC1 M 21.5 26.8 " + 4 6.5(NH 4 ) 2 SO 4 R 14-8 38.8 " +34-2KNO 3 K 20.0 33.8 " + ii.6BaC! 2 R 18.5 39.8 " +38.6KNO 3 K 18.5 39.2 " + i7.oBa(NO 3 ) 2 K 14.0 36.8 " +i4-iK 2 SO 4 R 15.0 28.9 " + 16.9 KQ R 18.7 37.9 " +i 3 .3K 2 S0 4 K 22.0 30.4 " + i9.iKCl R iS.f 22.9 -f-23.9NaCl R SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 30. (Wibaut, 1909; Schreinemakers, 1910.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. tNHO.504. ' NH 4 C1. - SolldPhase - ' (NH4 ),S0 4 . ' NH.C1. ' Sohd Phase. o 29.5 NH4C1 25 18.3 NH4C1+(NH4) 2 S0 4 5 28.5 30 13.2 (NH4) 2 SOi 10 25.7 35 8.5 15 23.2 40 2.8 20 20.2 " 42 O SOLUBILITY OF MIXTURES OF AMMONIUM CHLORIDE AND COBALT CHLORIDE IN WATER AT 25. * (Foote, 1912.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Solid Residue. Solid Phase. Mixed crystals of NH 4 Cl+CoCl 2 . 2H 2 O Mixed crystals + CoCl 2 .6H 2 O NH 4 C1. CoCl 2 . NH 4 C1. CoC! 2 . H 2 O. 17.90 15.63 ... 3 .2 13-59 25.19 83.01 13.52 3^7 8.75 34.28 35.12 50.66 14.22 7-45 35-24 34-02 49.64 16.31 7.62 34.61 7.07 55.27 37.66 AMMONIUM CHLORIDE 46 SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS HYDROCHLORIC ACID. Results at O. (Engel, 1888.) So Gr. of Sat. Gms - P** I0 cc - && so1 - Sol. .076 .069 .070 073 .078 .106 .114 HCl. i.99 3-93 7-74 19. i8 22.07 NH 4 C1. 24.6l 23.16 21.78 19.36 14-54 5-78 4.67 Results at 25. (Armstrong and Eyre, 1910-11.) Gms. HC1 pe too Gms. H 2 ( O O.QI 1.82 3.65 18.25 d $f Gms. NIL.C1 per Sat. Sol. 100 Gms. Sat. Sol. .080 28.3 .079 .082 083 27.4 26.4 24.6 .099 n-3 SOLUBILITY OF MIXTURE OF AMMONIUM CHLORIDE AND LEAD CHLORIDE IN WATER AT SEVERAL TEMPERATURES. (At 17, 50 and 100 Demassieux (1913) at 25 Foote and Levy, 1907.) At 23. At 50. At 100 At 17. Solid Phase Gms.'per 100 Gms. Sol. Gms. per 100 Gms. Sol. Gms. per 100 Gms. Sol. Gms. per 100 Gms.Sol. in Each fPbCl,. NH 4 C1. PbCl 2 . NH.C1. * ' PbCl 2 . NH 4 C1. ' PbCJ 2 . NH 4 C1. " Case. 0.30 27 03 ... ... 0.32 34 .14 1.61 43 .42 NH4C1 0.52 26 .68 . . . . . . 2.65 33 .62 4.21 42 .91 " 0.64 26 49 I. 2O 28.15 3.96 33 56 . . . . . . " +1.2 0.26 41 .00 " +2.1 7 9.88 T^ v/v .22 2.1 II .60 38 .^2 12.67 o 37 o .62 " +1.2 0-34 22 32 0-93 27-45 3-31 31 .90 / 11.40 O 1 36 .29 1.2 0.098 12 36 o-35 21-59 1.76 27 .16 8.32 32 .6 4 " 0.078 4 93 0.29 17.97 0.71 19 .42 4-54 26 .08 0.078 4 23 O.II 10.25 0.49 12 45 1.98 13 .12 " 0.076 3-48 0.03 2-77 0.48 4 .86 1.76 8 59 " +PbCl, 0.16 I 43 ... 0.67 I 45 1.85 5 33 PbCl 2 0.21 .96 . . . . . . 1. 08 o 2.02 i 32 " 0.89 1.69 3.10 " Gm. Equiv. Gm. Equiv. PbCl a NH4C1 per iooGms.H 2 O. per TOO Gms. Sat. Sol. i ^.49 Xio- 3 o.i '; 5.10 Xio- 3 O.2 .9i6Xio- 3 0.4 ' . 348XIQ- 3 0-5 ' . 263 X lo" 8 o-55 . 189X10-3 [0.6 .092X10-3 0.7 < ). 956X10-3 Solid Phase. PbCl 2 Solid Phase. 2 PbCl 2 .NH4Cl 1.2 = NH 4 C1.2(PbCl 2 X 2.1 = 2NH 4 Cl.PbCl 2 . The following additional data for the above system at 22 are given by Bron- sted (1909). Gm. Equiv. PbCl 2 per 100 Gms. Sat. Sol. 0.837XIO- 3 0.758XIO- 3 0.695XIO- 3 0.968X10-3 I . 502 X I0~3 2.338X10-3 3.580XIO- 3 Gm. Equiv. NH4C1 per 100 Gms. H 2 O. 0.8 i 2 3 4 6 7. 29 sat. 6.46 Xio" +NH4C1 YThe two curves intersect at 0.52 normal NH 4 C1. SOLUBILITY OF MIXTURES OF AMMONIUM CHLORIDE AND MAGNESIUM CHLORIDE IN WATER. (Biltz and Marcus, 1911.) Gms. per loo Gms. Sat, Sol. ....,. *<> Gms. per 100 Gms. Sat. Sol. *' ' MgCl 2 . " NH 4 C1. ' ^ - MgCl, NH 4 C1, 3-5 21.41 5.93 NH4Cl+MgCl 2 .6H 2 3.5 34.43 0.09 25 20.95 8.78 " 25 35.41 0.09 50 20.84 12.46 " 50 36-92 0.15 47 AMMONIUM CHLORIDE SOLUBILITY OF MIXTURES OF AMMONIUM AND MANGANESE CHLORIDES' IN WATER AT 25. (Foote and Saxton, 1914.) Cms, per 100 Gms. Sat. Sol. NH4C1. 23-97 22.94 MnCl 2 . 7.97 9.65 21.44 21. 18 12.31 13.38 20. 10 I5-I9J 19.70 \ 19.75 19.67 15-47] Solid Phase. a mixed crystals Cms. per 100 Cms. Sat. Sol. NH4C1. MnCl 2 . ' 17.09 18.76 15.05 22.44 13.17 9.15 24.52 29.24 ft mixed crystals or double salt 2 NH4C1. MnCl 2 .2H 2 O 5.90 34.78 3-77 39.48 2.98 43.71 2NH4Cl.MnCl 2 . 2 H,O 2.94 43-44 +MnCl 2 .2H 2 a mixed crystals consist of NH4C1 with varying amounts of MnCl2.2H 2 O; /3 mixed crystals consist of the double salt 2NH 4 Cl.MnCl 2 .2H 2 O with excess of NH 4 C1. This case represents a very rare type of solid solution "in which a single salt and a double salt are each capable of taking up very considerable quantities of the other to form homogeneous mixed crystals." EQUILIBRIUM IN THE SYSTEM AMMONIUM CHLORIDE, MERCURIC CHLORIDE, WATER AT 30. (Meerburg, 1908.) Gms. per 100 Gms. Sat. Sol. ' HgCl 2 . NH4C1. 29.50 22.80 26.91 42.45 25-05 50.05 24-79 53-08 22.77 58.90 20.02 56.38 18.50 55.58 16.82 57-01 14.12 56.26 13.04 Solid Phase. Gms. per 100 Gms. Sat. Sol. NH4C1 +1.1.1 1 +3-2.1 3-2.1 1.2.1 = HgCl 2 .2NH 4 Cl.H 2 O; i.i.i = HgCl 2 .NH 4 Cl.H 2 O; 3.2.1 = 3HgCl 2 .2NH 4 Cl.H 2 O; 9.2 = 9HgCl 2 .2NH 4 Cl. * In these solutions 2 to 3 weeks were required for attainment of equilibrium. ' HgCl 2 . NHjCl.' 57.05 9.92 58.65 9.20 *5i-83 8.76 *46 7.52 *35-6o 5.26 * 3 2. 9 5-06 29.65 3.62 40.12 5.13 21 2.29 7.67 Solid Phase. 3-2.1 +9-2 +HgCl 2 HgCl 2 SOLUBILITY OF MIXTURES OF AMMONIUM AND NICKEL CHLORIDES IN WATER AT 25. (Foote, 1912.) Gms. per 100 Gms. Sat. Sol. NH4C1. NiCl 2 . ' 26.07 3.10 22.27 8.04 20.68 10.32 Mixed crystals of 17-43 11.22 I5.OI 26.93 NH 4 C1 and NiCl 2 .2H 2 IO.2I 30.56 Q.l6 35.70 Gms. per 100 Gms. Sat. Sol. Solid Phase. NH4C1. NiCl 2 . 7.98 37-41 8.07 37.73 Mixed crystals and 8.23 37-45 NiCl 2 .6H 2 O 8.1 7 37.64 7.51 37.191 3-06 37.98| NiCl,.6H 2 O 37.53U AMMONIUM CHLORIDE 48 SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER AT 25. (Fock Z. Kryst. Min. 28, 3 53, '97-) Grams per Liter Solution. Mol. per cent in Solution. Sp. Gr. of Mol. per cent in Solid Phase. ' NH4C1. KCl. NHiCl. KCl." Solutions* NHtCi. KCl. o.oo 311-3 o.oo IOO-O 1.1807 o.o 100 22. Si 293.3 9.41 90.59 1.1716 1. 21 98.79 35-39 278.7 15.04 84.96 1.1678 2. II 97.89 89.17 273.2 34.26 65-74 1.1591 6.18 93-82 127.8 234.6 46.59 53-44 1-1493 8.90 91.10 147.2 204.2 5I-63 48.37 1.1461 Jo- 53 89.47 197-3 157.7 63.56 36-44 1.1391 17.86 82.14 232.5 116.8 73-49 26.51 1.1326 60.20 39-80 244.5 123.0 73-48 26.52 1.1329 76.88 23.12 261.9 III.O 79.10 20.90 1.1245 97-51 2.49 259.0 102.2 82.14 17.86 I.I2I2 97-79 2.21 278.6 53 -16 87.96 12.04 I.I009 98.85 ^S 320.7 31-24 93-45 6-55 I.09I2 99-33 0.67 273-5 o.oo 100.00 o.oo 1.0768 100 .0 o.oo The following additional data for the above system are given by Biltz and Marcus (1911). The results show that NH 4 C1 + KCl form a series of mix- crystals broken by a gap which extends between about 20 and 98 mol. per cent NH 4 C1 in the crystals. Composition of Sat. Solution. Composition of Solid Phase. Gms. per icx) Gms. Mols. per 1000 Mols. Gms. per 100 Gms. Mnl <, Sat. Sol. H,0. Crystals. NH 4 C1 in NH4C1. KCl. NHiCl. KCl/ NHtCl. KCl. Crystals. 5-13 22 .29 23.8 74.2 I. 21 98.79 1.7 7 20.40 32.5 67.9 2.22 97.78 3.1 ii 18.04 52.2 61 .4 4 9 6 5-5 13-73 16.11 65.9 55-5 5.89 94.11 8 15.46 14-53 74.4 50.2 7-24 92.76 9.8 19.54 12. l6 96.3 43 II .20 88.80 14.9 22.04 10.49 109 37-4 16.90 83.10 22.1 21.68 10.40 109 37-4 26.04 73.96 32.9 21.95 10.48 109 37-4 97.60 2.40 98.3 24.30 6.48 1x8.2 22.6 98.28 1.72 98.8 These authors also give data for the ammonium chloride carnellite and potassium chloride carnellite diagram at 25. SOLUBILITY OF MIXTIJRES OF AMMONIUM AND POTASSIUM CHLORIDES IN WATER AT 25, 65 AND 90. (Uyeda, 1912.) The results as presented by Uyeda show the percentage composition of the dissolved mixture and of the undissolved residue in the several cases, but not the quantity of salts dissolved. Mixed crystals were formed over certain ranges of concentration at each temperature. Data for the cryohydric temperatures and composition of the saturated solu- tions of mixtures of the chlorides, nitrates and sulfates of ammonium, potas- sium and sodium are given by Mazatto (1891). 49 AMMONIUM CHLORIDE SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS {SOLUTIONS or SODIUM CHLORIDE SATURATED WITH CO 2 . (Fedotieff.) Per 1000 cc. Solution. Per 1000 Cms. H2O. t. Wt.of G. M. G. M. Cms. Gms. G. M. G. M. Gms. Gms. i cc. Sol. NaCl. NH4C1. NaCl. NH4C1. NaCl. NHiCl. NaCl. NH4C1. .069 0-0 4.60 .0 246 .1 o.o 5-57 o.o 298.0 O .185 4.04 2.26 236 5 121 .0 4 .8 9 2-73 286.4 146.1 15 .077 0-0 S- 2 9 O o 283 .1 o.o 6.64 o.o 355-Q 15 .097 0.81 4.71 47 5 252 .1 1.02 5-91 59-8 316.4 15 .120 1.68 4-13 98 .0 221 7 2.09 5-i8 122.4 277.0 15 *S3 2.87 3-38 168 o 180 7 3-57 4.20 208.9 224.7 15 175 3-65 2.98 213 5 159 4 4-55 3-72 266.8 198.8 30 o.o 7.78 0-0 416.4 30 1.166 3-30 3-70 J 93 o I 9 8 .0 4.26 4-77 249.0 255-4 45 o.o 9-03 o-o 483.7 AC 4-0 6.02 233.9 322.1 SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL AT 15 AND AT 30. Gms. C 2 H fi OH per joo Gms. Solvent. ' ms. NELjCl per 100 C ims. Solvent at: 15. 30. 35-2 40.4 20 40 60 80 25 16.8 9-5 4 29.7 19 5-3 92.3 100 0^6 . . . Results at 15 by interpolation from Gerardin ;Bruyn (1892). Those at 30 from Bathrick (185 (1865), Greenish ,6). (1900) and 100 gms. absolute methyl alcohol dissolve 3.35 gms. NH 4 C1 at 19. 100 gms. 98% methyl alcohol dissolve 3.52 gms. NH 4 C1 at 19.5. (deBruyn, 1892.) SOLUBILITY OF AMMONIUM CHLORIDE IN MIXTURES OF SEVERAL ALCOHOLS WITH WATER. (Armstrong, Eyre, Hussey and Paddington (1907); and Armstrong and Eyre (1910-11.) Gm. Mols. Al- Gms. NH 4 C1 per 100 Gms. Sat. Solution in: Gms. H 2 O. Aq. CH 3 OH. Aq. CjHsOH. Aq. C 3 H 7 OH. O 23 23 23 o 25 22 .8 22 .6 22. 7 50 22 .6 22 .2 22. 3 O I 22 .1 21 5 21. i 3 20 5 19 . . 25 28 3 28 13 (1.0805) 28. 3 25 25 28.1 28 (i .0780) 28.1 25 50 27 9 27 .6 d 0753) 27. 5 25 I 27 .6 27 d .0704) 26. 6 25 3 26 .1 26 5 d .0528) . . 25 5 ... 22.6 d .0376) (Figures in parentheses show Sp. Gr. of sat. sols.) AMMONIUM CHLORIDE SOLUBILITY OF AMMONIUM CHLORIDE IN SEVERAL ALCOHOL MIXTURES AT 25. (Herz and Kuhn, 1908.) In Methyl and Ethyl Alcohol. In Methyl and Propyl Alcohol. In Propyl and Ethyl Alcohol. Cms. CH 3 OH per 100 Gins. Solvent. Cms. NH4C1 per loo Gms. Sat. Solution. Gms. C 3 H 7 OH per 100 Gms. Solvent. Gms. NH 4 C1 per 100 Gms. Sat. Solution. Gms. C 3 H,OH per loo Gms. Solvent. Gms. NH 4 C1" per 100 Gms. Sat. Solution. o-53 2.76 o-53 10 0.67 IO 2-33 10 0.50 20 0.80 20 1.90 20 0.47 30 0.98 30 1.58 30 0.42 40 1.18 40 1.26 40 o-39 50 1.40 50 1.03 5 0.36 60 1.65 60 0.82 60 0.32 70 1.92 70 0.60 70 0.30 80 2.18 80 0.41 80 0.26 00 2.48 90 0.30 90 O.22 100 2.76 100 0.18 100 0.18 SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS GLYCEROL SOLUTIONS AND IN AQUEOUS ACETONE SOLUTIONS AT 25. (Herz and Knoch Z. anorg. Chem. 45, 263, 267, '05.) In Aqueous GlyceroL (Sp. Gr. of Glycerine 1.255, Impurity about 1.5%.) Wt.% Glycerine. O. 13.28 25.98 45-36 54-23 83.84 IOO-OO NHiCl per Soluti 'Millimols" 585-I 544-6 502.9 434-4 403-5 291.4 228.4 tion. Grams. 29.16 26.93 23 .26 21. 60 15.60 12.23 Sp. Gr, at I .0793 1.0947 I.II27 I.I452 I .1606 1.2225 1.2617 Vol.% O 10 20 30 40 *S 90 In Aqueous NH 4 C1 per too cc. S 1 tion. Acetone. Sp. Gr. at-^-- 1.0793 r.o6i8 1.0451 1.0263 0.9998 o . 9800 0.8390 0.8274 L indicates L U jepa MHlimols Grams. 585-1 3I-32 534-1 28.59 464.6 24.87 396.7 21.23 328.5 17-59 283.7 15.19 18.9 i. oi 9-4 0.50 rates into two kyers. lower layer, U indicates upper layer. ioo cc. anhydrous hydrazine dissolve 75 gms. NH 4 C1 at room temp, with evolution of ammonia. (Welsh and Broderson, 1915.) SOLUBILITY OF TETRA ETHYL AMMONIUM CHLORIDE N(C 2 H 5 ) 4 C1, AND ALSO OF TETRA METHYL AMMONIUM CHLORIDE N(CH 3 ) 4 C1 IN ACETONITRILE. ioo cc. sat. solution in CH 3 CN contain 29.31 gms. N(C 2 H 5 ) 4 C1 at 25. ioo cc. sat. solution in CH 3 CN contain 0.265 g m s. N(CH 3 ) 4 C1 at 25. (Walden Z. physik. Chem. 55, 712, '06.) SOLUBILITY OF TETRA ETHYL AMMONIUM CHLORIDE IN WATER AND IN CHLOROFORM. (Peddle and Turner, 1913.) ' ioo gms. H 2 O dissolve 141.0 gms. N(C 2 H 5 ) 4 C1 at 25. ioo gms. CHC1 3 dissolve 8.24 gms. N(C 2 H 5 ) 4 C1 at 25. SOLUBILITY OF DIMETHYL AMMONIUM CHLORIDE IN WATER AND IN CHLOROFORM. (Hantzsch, 1902.) ioo gms. H 2 O dissolve 208 gms. of the salt. ioo gms. CHC1 3 dissolve 26.9 gms. of the salt (temp, not stated in abstract). 51 AMMONIUM CHROMATE AMMONIUM CHROMATES. SOLUBILITY IN WATER AT 30. (Schreinemaker Z. physic. Chem. 55, 80, '06.) Composition in Wt. per cent of: ' The Solution. The Residue/ Solid Phase - % CrO 3 . % NH 3 . % CrO 3 . % NH 3 . 6.933 22.35 (NH 4 ) 2 Cr0 4 9.966 16.53 47-59 20.44 16.973 8.20 22.53 6.37 38.03 12.15 27.09 6.87 48.02 12.01 (NH 4 ) 2 CrO 4 +(NH 4 ) 2 Cr 2 O, 26.19 5-7o 47-38 8.81 (NH4) 2 Cr a O ? 25-99 5- 10 4i -5 6 7-58 30.16 3.50 38.89 3.10 61.08 8.80 42.44 3-i5 59-72 6.75 (NHOAsO^CNHOaCrAu 44.08 2.27 54.90 4-14 (NH 4 ) 2 Cr 3 O 10 52.91 i. i i 60.88 3-09 54.56 1.03 63.07 3.09 (NH 4 ) 2 Cr 3 O 10 +(NH 4 ) 2 Cr 4 O lt 56.57 0.97 65.70 2.95 (NH 4 ) 2 Cr 4 O 3 58.87 0.65 69.74 3.24 62.48 0.46 71.93 3-10 63.60 0.40 73-68 1.18 63.66 0.41 71.47 2*.o; 62.94 0.21 CrO a 62.28 o.o CrO too gms. of the sat. aq. solution contain 28.80 gms.(NH 4 ) 2 CrO 4 at 30. 100 gms. of thesat. aq. solution contain 32. 05 gms. (NH 4 ) 2 Cr 2 O 7 at 30. AMMONIUM CITRATES. SOLUBILITY IN AQUEOUS SOLUTIONS OF CITRIC ACID AT 30. (van Itallie, 1908.) (Data read from curve plotted from original results.) Gms. per too Gms. Sat. Sol. C.HA. ' NH 3 . ' SohdPhase - 65 O C,HA.H 2 68 0.5 72 1.3 75 2.3 C 6 HA.H 2 0+C 6 H 7 Q, 70 2.4 C 6 H 7 O 7 .NH 4 65 2. 5 60 2.7 55 2.8 52 2.8 50 3-6 49-2 5.1 50 6.2 Composition of the solid phases determined by " Rest Method." (Schreinemakers, Z. anorg. Ch. 37, 207.) AMMONIUM CALCIUM FERROCYANIDE. 100 gms. sat. aqueous solution contain 0.258 gm. (NH4)2CaFe(CN) 6 at 16. (Brown.) AMMONIUM FLUOBORIDE NH 4 3BF 3 . 100 parts of water dissolve 25 parts salt at 16, and about 97 parts at b. pt. 1 (Stolba Chem. Techn. Cent. Anz. 7, 459 ) ,53 56 54 NH 3 . 7-5 8.2 8.5 8.5 ^ OU11U JTUO3C. C.HA.NH4 C 6 H 7 7 NH 4 +C (1 H0 7 (NH < ), 50 45-8 7-9 8.4 " 47 ii. i " 50 12.9 c HA(NH!),+CHA 54-5 14.5 6 (NHJj.p'HjO' 52 50 48.4 15 16 17.9 It AMMONIUM FORMATE AMMONIUM FORMATE HCOONH 4| and also Ammonium Acid Formate. SOLUBILITY IN WATER. (Groschuff Ber. 36, 4351, '03.) to Gms. HCOONH 4 per ioo Gms. Solid + Gms. per ioo Gms. Solution. Solid . Solution. Water. Phase. HCOONH 2 . HCOOH . ' Phase. 20 4 I 9 72 HCOONH4 6 5 46 7 34 .1 HCOONH4.HCOOH 50 5 102 + I 5 49 .6 36 .2 " 20 58 9 143 6 51 3 37 4 * 40 6 7 .1 204 8 5 52 .1 38 * 60 75 -7 311 ~~ 7 49 .6 36 .2 HCOONH 4 labil. 80 84 .2 531 " +13 53 38 .6 " stabil. 116 m.pt. 29 55 .8 40 7 " " 39 57 .8 42 .2 H 2 O free solution SOLUBILITY OF AMMONIUM FORMATE IN FORMIC ACID SOLUTIONS. (Groschuff.) 30 grams of HCOONHU dissolved in weighed amounts of anhydrous formic acid and cooled to the point at which a solid phase separated. Gms. t o HCOONH, per ioo Gms. Solution. G. M. HCOONH 4 Solid penooG.M. Phase. HCOOH. Gms. G. M. t o HCOONH 4 . HCOONH, per ioo Gms. per ioo G.M Solution. HCOOH. Solid Phase. - 3 35-3 ~ n n HCOONH, 39-9 HCOOH II 50 73 HCOONHi labil. + 8 5 40.6 49.9 39 57-8 IOO stabil. 21 5 50 73 78 73- 1 199 " " Il6 m.pt. IOO 00 i ioo gms. 95% Formic Acid dissolve 6.2 gms. HCOONH 4 at 21. (Aschan, 1913.) AMMONIUM IODATE NHJO 3 . SOLUBILITY IN AQUEOUS IODIC ACID AT 30. (Meerburg, 1905.) Gms. per ioo Gms. Sat. Sol. HIO; NHJOT SolidPhase - 24 0.62 NH 4 TO : . 2 HIO 3 44 43 o 39 76.35 0.31 +mo 3 76 . 70 O HI0 3 AMMONIUM Per IODATE NH 4 IO 4 . ioo gms. H 2 O dissolve 2.7 gms. salt at 16, d u = 1.078. (Barker, 1908.) AMMONIUM IODIDE NH 4 I. SOLUBILITY IN WATER. SOLUBILITY IN AQUEOUS ALCOHOL AT 25. (Smith and Eastlack, 1916.) Gms. NHJ Gms. per ioo Gms. Sat. So - Solid Phase. NH,IO 3 HIO 3 . O NH 4 I0 3 . 4-2O 2-54 4-52 6-57 3 '83 1.94 "+NH 4 IO 3 . 2 HIO 3 NH 4 I0 3 . 2 HI0 3 Gms.C 2 H 5 OH , f - (Seidell, unpublished.) Gms. NH 4 I per ioo Gms. 20 10 o 10 15 20 25 30 L iuu \jrui3. H 2 0. * . JC1 IUU VTIIlb. H 2 0. PCI iuu vjiiia. < Solvent. >at. Sol. Sat. Sol. Solvent. 125.2 40 190.5 O 3 [ .646 64.5 l8l.9 136 50 199.6 10 : C.590 6l. 7 161 .1 145 60 208.9 20 525 58.7 142.1 154.2 70 218.7 30 .462 55-5 124.8 163.2 80 228.8 4 395 52 108.3 167.8 IOO 250-3 5 ii .320 48 92.3 172.3 120 273.6 60 .250 43-8 77-9 176.8 140 299.2 70 .168 39 64 l8l.4 80 .094 33-3 49.9 9 .013 27-5 37-9 IOO < 5.929 20.8 26.3 53 AMMONIUM IODIDE Tetra Ethyl AMMONIUM IODIDE N(C 2 H 6 )J, SOLUBILITY IN SEVERAL SOLVENTS. (Walden Z. physik. Chem. 55, 698, '06.) Solvent. Water Water Methyl Alcohol Methyl Alcohol Ethyl Alcohol Ethyl Alcohol Glycol Glycol Acetonitrile Acetonitrile Propionitrile Propionitrile Benzonitrile Methyl Sulphocyanide Ethyl Sulphocyanide Nitro Methane Nitro Methane Nitroso Dimethyline Acetyl Acetone Furfurol Furfurol Benzaldehyde Salicylaldehyde Anisaldehyde Acetone Acetone Ethyl Acetate Ethyl Nitrate ' Formula. H 2 H 2 O CHaOH CHaOH C 2 H 5 OH C 2 H 5 OH (CH 2 OH) 2 (CH 2 OH) 2 CHaCN CH 3 CN CH 3 CH 2 CN CH 3 CH 2 CN o 25 o 25 o 25 o 25 o 25 o 25 25 25 25 o 25, 25 CH 3 COCH 2 COCH 3 25 C 4 H 3 O.COH o C4H 3 O.COH 25 CeH 5 COH 25 CeH4.OH.COH 25 CH 3 SCN C 2 H 5 SCN CH 3 NO 2 CH 3 N0 2 (CH 3 ) 2 N.NO C6H 4 .OCH 3 .COH (CH 3 ) 2 CO (CH 3 ) 2 CO C 2 H 5 ONO 2 25 o 25 25 25 Benzoyl Ethyl Acetate C 6 H 5 COCH 2 COOC 2 H 5 25 Dimethyl Malonate CH 2 (COOCH 3 ) 2 Methyl Cyan Acetate CH 2 CNCOOCH 3 Methyl Cyan Acetate CH 2 CNCOOCH 3 Ethyl Cyan Acetate CH 2 CNCOOC 2 H 5 Ethyl Cyan Acetate Nitrobenzene Acetophenone Amyl Alcohol Paraldehyde Methyl Formate CH 2 CNCOOC2H 5 C 6 H 5 NO 2 25 o 25 o 25 25 Bromobenzene C 5 H n OH (C 2 H 4 0) 3 HCOOCH 3 CeHaBr (Walden Sp. Gr. Gms. N(C 2 Ha)4l per IPO. Solution. cc. Solution. g^ 1.0470 16.31 15.58 I.I02I 36.33(35.5) 32.9 0.8326 3-7-4-3 4-44 0.8463 10.5 (10.7) 12.29 0.7928 0.348 0.439 0.7844 0.98(0.88) I.II3 I.I039 3-27 2.97 1.0904 7-63(7.55) 7 0.8163 2.24 2.74; 0.7929 2.97(3.54) 3.74 0.8059 0.618 0.767 0.7830 0.81-1.01 0.99 0.467 0.451 1.0828 4.40 4.06 I. 0012 0.475 0.47 1.1658 '3.59 3-004 1.1476 5.38-6.27 4.72 ^.0059 2.67 2.66 0.268 I.I738 3-91 3-33 1.1692 5.33 4.55 0.43 change- able-i7.7 0.59 0.7991 0.174 0.218 0.249 0.316 .0.00039 1.0984 0.062 0.056 1.1303 0.321 0.284 1.1335 0.040 0.035 1.1341 1.82 1.605 2.83 1.0760 1.057 0.981 1.0607 I -7 I 1.41 0.504 0.422 0.13 0.127 0.071 0.089 0.036 0.037 "... 0.031 0.032 '. . . 0.009 0.006 Z. physik. Chem. 61, 635, igo7-'o8.) AMMONIUM IODIDE 54 Tetra Methyl AMMONIUM IODIDE N(CH 3 ) 4 I. SOLUBILITY IN SEVERAL SOLVENTS. (Walden Z. physik. Chem. 55, 708, '06.) Sp. Gr. of Cms. N(CH 3 ) 4 1 '. per roo. Solvent. Formula. t . Solution. cc . Solution. Gms. Solution. Water H 2 \ .0188 2 .01 I 97 Water H 2 25 I 0155 5 31-5 .89 5 .22 Methyl Alcohol CH 3 OH o .8025 o .18-0 .22 .22 Methyl Alcohol CH 3 OH 25 .7920 .38-0 .42 o .48 Ethyl Alcohol C 2 H 5 OH 25 .7894 o .09 Glycol (CH 2 OH), x .014 Glycol (CH 2 OH) 8 25 I .0678 o .240 .224 Acetonitrfl CH 3 CN 25 o .650 . . . Nitro Methane CH 3 NO, I 1387 .25-0 32 o .22 Nitro Methane CH 3 NO a 25 I .1285 o 34-0 38 o .21 Acetone (CH 3 ) 2 CO o . . . o .118 Acetone (CH 3 ) 2 CO 25 o .187 Salicyl Aldehyde C 6 H 4 .OH.COH I .1492 .302 .263 Salicyl Aldehyde CJl4.OH.COH 25 I 1379 .510 o .484 Very exact determinations of the solubility of tetra methyl ammonium iodide in aqueous solutions of KOH and of NH 4 OH at 25 are given by Hill (1917). Tetra Propyl AMMONIUM IODIDE N(C 3 H 7 )4l. SOLUBILITY IN SEVERAL SOLVENTS, (Walden Z. physik. Chem. 55, 709, '06.) Formula. CH 3 OH CH 3 OH C 2 H 5 OH C 2 H 5 OH CHsCN CHaCN C 2 H 5 CN Solvent, Methyl Alcohol Methyl Alcohol Ethyl Alcohol Ethyl Alcohol Acetonitrile. Acetonitrile Propionitrile Propionitrile Benzonitrile Nitro Methane Nitro Methane Nitro Benzene Benzaldehyde Benzaldehyde Anisaldehyde Anisaldehyde Salicylaldehyde Ethylnitrite C 2 H 5 NO 2 Ethylnitrite C 2 H 5 NO 2 DimethylMalonate CH 2 (COOCH 3 ) 2 DimethylMalonate CH^COOCH^ Acetone (CHs) 2 CO Acetone (CH 3 ) 2 CO ' Ethyl Acetate CH 3 COOC 2 H5 Ethyl Bromide C 2 H5Br CeH 6 CN CH3NO2 CH 3 NO 2 C 6 H 5 NO 2 C 6 H 5 COH Sp. Gr. of Gms. N(C 3 H 7 )J per 100. t. Solution. cc. Solution Gms. Solution. 0.9756 40.92 41.94 25 I.OI87 56.42 55-37 0.8349 6.5-6.8 8.14 25 0.8716 19.88-20.29 23-28 0.8553 I3-03 15.24 25 0.8584 18.69 21.77 0.8280 6.37 7.66 25 0.8191 9-65 10.29 25 I.OI99 8.44 8-35 o I.lSl 14.79 12.52 25 I.I58 22.24 19.21 25 I-IQ3 5-71 4 79 I.058l 7 .06 6.67 25 1.0549 9.87 9-35 I.III4 5-60 5-04 25 I.I004 6-75 6.14 25 . . . 39.28 o I.I207 0.522 0.466 25 I.I025 0.653 0.592 o I-I532 0.298 0.259 25 I-I345 0.320 0.282 0.8259 2.692 4-65 25 o . 8049 3-944 4.90 25 0.8975 0.0063 0.007 25 0.187 (Walden 2. physik. Chem. 61, 639, 55 AMMONIUM IODIDE SOLUBILITY OF TETRA AMYL, TETRA ETHYL AND TETRA a PROPYL AMMONIUM IODIDES IN WATER AND IN CHLOROFORM AT 25. (Peddle and Turner, 1913.) Gms. Each Salt (Determined Separately), per 100 Gms. Solvent. Solvent. t * > N(C s Hn) 4 I. NCCtH^J. aN(C 3 H 7 ) 4 I. Water 0.74 45 18.64 CHC1 3 210.8 1.55 54.56 Freezing-point data for mixtures of tetra methyl ammonium iodide and iodine, and for phenyltrimethyl ammonium iodide and iodine are given by Olivari (1908). AMMONIUM Iridium CHLORIDES. SOLUBILITY IN WATER AT 19. (Delepine, 1908.) Name of Salt. Formula. ^ Ammonium iridium chloride (NH4) 2 IrCl6 0.77 Diammonium aquo penta chloro indite IrCl5(H 2 O)(NH 4 )2 15.4 Triammonium hexa chloro iridite IrCl 6 (NH4)3+H 2 O 10.5 AMMONIUM lodo MERCURATE 2NH 4 I.HgI 2 .H 2 O. 100 gms. of the saturated aqueous solution contain 4.5 gms. NH4, 22.6 gms. Hg and 62.3 gms. I at 26, sp. gr. = 2.98. (Duboin, 1905.) AMMONIUM Tetra MOLYBDATE (NH 4 ) 2 O.4MoO 3 .2H 2 O. 100 gms. H 2 O dissolve 3.52 gms. salt at 15 (d = 1.03), 3.67 gms. at 18 (d = 1.04) and 4.60 gms. at 32 (d = 1.05). (Wempe, 1912.) AMMONIUM Phospho MOLYBDATE SOLUBILITY IN WATER AND AQUEOUS SOLUTIONS AT 15. (de Lucchi, 1910.) Solvent. Gms. Salt per 1000 Gms. Solvent. Water 0.238 5 per cent aqueous NHiNOs solution o. 137 i per cent aqueous HNOs solution o . 203 AMMONIUM NITRATE NH 4 NO 3 . SOLUBILITY IN WATER. (Schwarz Ostwald's Lehrbuch, ad ed. p. 425; Muller and Kaufmann Z. physik. Chem,- 42, 497. oi-'oa.) ... Sp. Gr. Solution. G. Mols. NI^NOa per loo Mols. HaC Gms. NH4NO8 per )ioo Gms. Solid Phase. Solution. Water: 26 63 54 .19 118 3 NH 4 NO a rhomb. ft 12 2 2945 34 50 60 53 153 4 " 20 2 .3116 43 30 65 .80 192 4 " 25 O 3!97 48 19 68 .17 214 .2 M 30 O 3299 54 40 70 73 241 .8 ft 32 I 3344 57 .60 97 256 9 NH 4 NO a rhomb. ft + rhomb, a 35 .0 3394 59 .80 72 .64 265 .8 NH 4 NO 8 rhomb. a 40 o 3464 66 80 74 .82 297 -0 ii So o 77 .41 77 49 344 O M 60 94 73 80 .81 421 .0 M 70 .0 112 30 83 32 499 " 80 .0 130 5 85 25 580 .0 M 90 .0 166 88 .08 740 .0 NH^Oa rhombohedral ? 100 .0 196 oo 89 7i 871 .0 " SOLUBILITIES OF MIXTURES OF AMMONIUM NITRATE AND OTHER SALTS. (RUdorf Mulder.) loo gms. H 2 O dissolve 162.9 gms. NH 4 NO 3 + 77.1 gms. NaNO 3 at 16 R. 100 gms. H 2 O dissolve 88.8 gms. NH 4 NO 3 + 40.6 gms. KNO 3 at 9 M. 100 gms. H 2 O dissolve 101.3 gms. NH 4 NO 3 + 6.2 gms. Ba(NO 3 ) 2 at 9 M. AMMONIUM NITRATE SOLUBILITY OF AMMONIUM NITRATE IN AMMONIA. (Kuriloff Z. physic. Chem. 25, 109, '98.) Gms. Mols. NEUN0 3 Gms. per 100 Mols. Gms. Mols. NEUNO, Gms. per 100 Mols, f. NEUNOa- NHa. + NHa. t o NH4NO 3 . NHa. NH4NO + NHT 80 O 100 .0 33 3 O 9358 2352 45-9 60 1.3918 4-4327 6 25 35 9 O 7746 1857 47 o 44-5 0.9526 1-2457 13 9 68 .8 4 .2615 o 7747 53-8 30 0-8308 0.3700 32 3 94 .0 6439 o .0665 67-3 10.5 0.9675 o-4&5 36 9 190 .8 7578 .0588 74-2 o . 7600 o . 2607 38 3 168 .0 IOO-O t = temperature of equilibrium between solution and solid phase SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AND VlCE VERSA. (Massinik, 1916, 1917.) Results (de Waal Gms. per loo Gms. Sat. Sol. ato. , 1910.) Solid Phase Results at 30. Results at 70. (Schreinemakers and Haenen, 1910.) (de Waal, 1910.) Gms. per Gms. per 100 Gms. Sat. Sol. 100 Gms. Sat. Sol. e~i:j T>I . c_i:j T>I .*_ 54-19 (Nl 1 S( o [U>2 NH 4 NO 3 70.1 (NH*), S0 4 . NEUN0 3 NH 4 NO 3 . 84-03 o J?" NH 4 N0 3 49.12 6 " 67.63 2.38 " 81 -38 2. 4i " 45-99 9 53 NEUN0 3 +i. 3 66.93 3-46 NEUN0 3 +i.3 81 .01 2. 45 NHiNOs+i.s 31.61 19 5 1.3 63-84 4.96 1.3 80 25 2. 68 i-3 30.87 20 43 1.3+1.2 58.06 8.22 1.3+1-2 76 .01 3- 96 " 31.04 20, 4 1.2 52.75 11.42 1.2 73 .48 1.3+1.2 29.81 21, 33 " 49.80 13.27 " +(NEU) 2 S0 4 .58 5- 82 1.2 29.58 41, 64 i.2+(NEU)2SO 4 37.20 19.48 (NH 4 ) 2 S0 4 70 15 6. 71 3 t.a+(NEW a S0 4 S .6l 37 89 (NEU) 3 S0 4 19.91 28.83 " ii .10 40. 81 (NILJzSO, o 4i 4 " I2.O5 34-7 " 47- 81 " O 44.1 " 1.2 = 1.3 = (NH4)aS0 4 .3NH,NO.. Freezing-point lowering data for mixtures of ammonium nitrate and lead nitrate are given by Bogitch (1915). SOLUBILITY OF AMMONIUM NITRATE IN NITRIC ACID. (Groschuff Ber. 37, 1488, '04.) Determinations by the " Synthetic Method," see Note, page 16. Gms. Mols. Gms. Mols. t o NH4NOJ NEUNOa Solid t NEUNO 3 NH 4 NO 3 Solid Gms. 100 Sol. per 100 Mols. HNO 3 . Phase. per 100 Gms. Sol. per 100 Mols. HNO 3 . Phase, 8 21 . I 21. 1 ] tfEUNO a .2HNOa II. 51.7 84 . 3 NH.NO 3 .HNOs 23 28 7 31-6 a 12. 54.7 95-1 labil. 29.5m Pt. 38 .8 50.O " II. 5 57-6 IOS.0 " b 27 5 44 .6 63-4 b II. 5 54-0 92.4 NH 4 NO 3 labil 23 5 49 4 76.8 ' 17. 54-7 95-1 stabil 17 5 54 .0 92.4 i 27. o 56.2 IOI.O ' 16 4 5 .0 54 45 :I 93-5 66.7 NEUNO 3 .HNO 3 49- 79- o 60.4 68.1 I2O.O 168.0 a = solution in HNO 8 ! l 6 = solution in NH,NO,. 57 AMMONIUM NITRATE SOLUBILITY OF AMMONIUM TRI-NITRATE IN WATER. (Grcschuff.) Cms. NI^NOs Cms. HNO 3 Mols. NH 4 NO 3 * Mols. NIL.NO, per 100 Cms. per 100 Gms. per 100 Mols. per 100 total Solid Phase. Solution. Solution. H 2 0. Mols. Solution. O 34-2 53-9 64.3 22 - 2.5 34-8 54-8 75.1 23.1 + 3 35 4 55-8 90 24-3 8-5 36.6 56-9 "3 25-7 19-5 37-4 58.9 225 29 25 38.1 60 45 31 29-5 m. pt. 38 8 61.2 00 33 SOLUBILITY OF MIXTURES OF AMMONIUM NITRATE AND SILVER NITRATE IN WATER AT VARIOUS TEMPERATURES. (Schreinemakers and deBaat, 1910.) Gms. per 100 Gms. t o Sat. Sol. Solid Phase. t. Gms . per 100 Gms. Sat. Sol. Solid Phase. AgNO 3 . NI^NOj. 'AgN0 3 . NH 4 NO 3 : - 7-3 47. ,i o Ice+rb AgNO 3 109 6 6 7 9 32 .1 D+rb.AgNO 3 10.7 44- 52 8.43 { * 22 13 44 87 D+rb-NHiNOj 14.9 42 16.8 Ice+D+rb . AgN0 3 18 27 .07 49 .22 " -14.8 39 Si 18.79 " +D 30 29 .76 52 50 " -18.7 15 99 37-3 " +D+0rb.NH 4 NO 3 32 {D-frb. NH 4 NO 8 + a+rb. NH 4 NO 3 17.4 18 30 l/t Cn c/v OOVx O C 36 : 3 8 9 6 41.2 19-59 22.06 23.42 D+rb. AgNO 3 40 55 85.4 32 36 .68 .6 52 52 .22 .38 D+rb.NH 4 NO 3 (D+rb.NH 4 NO 3 + \ rbd.NH 3 NO 3 55 63 32 26.12 1 * 101.5 47 5 52 5 D+rbd. NH 3 NO 3 D = NH 4 NO 3 .AgNO 3 . rb. = rhombic. rbd. = rhombohedric. SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS SOLUTIONS OF SILVER NITRATE AND VICE VERSA AT 30. (Schreinemakers and deBaat, 1910.) Solid Phase. D u D+AgN0 3 AgN0 3 Results are also given by Schreinemakers (1908-09) for the reciprocal solubility of ammonium nitrate and silver nitrate in aqueous alcohol solutions at 30. 100 cc. anhydrous hydrazine dissolve 78 gms. NH 4 NO 3 at room temp, with decomp. (Welsh and Broderson, 1915.) Freezing-point data for mixtures of ammonium nitrate and silver nitrate are given by Flavitzkii (1909) and by Zawidzki (1904). The eutectic is at 102.4 and 30.9 Mol. % AgNO 3 . Results for NH 4 NO 3 + T1NO 3 are given by Boks (1902). Gms. per 100 Gms. Sat. Sol. AgN0 3 . NH 4 N0 3 - 70.1 12.51 21.31 58.64 27-75 29.76 35-62 41.09 54.12 52.5 45-44 39.60 Solid Phase. Gms. per 100 Gms. Sat. Sol. AgNO 3 . NH 4 NO 3 ." NH 4 NO 3 45-85 34-47 " 52.45 28.86 " 57-93 24-33 " 58.88 23-42 [H4N03+D 63-27 15.62 D 69.08 6-59 Cl 73 o D = NH 4 NO 3 , ,AgN0 3 . AMMONIUM NITRATE 58 RECIPROCAL SOLUBILITY OF AMMONIUM NITRATE AND SODIUM NITRATE IN WATER AT o, 15 AND 30. (Fedotieff and Koltunoff, 1914.) I . o Sol. 354 .407 .264 ' NH 4 N0 3 . 105.5 II8.4 NaN0 3 . 73-33 66 o i> . 15 15 15 Sol. 1.429 1.405 1.364 ' NH 4 NO 3 . 155-3 I56.I 159 NaNO 3 . 75.38 60.76 36.50 15 375 83 9 15 1-350 1 60 27.79 15 .386 24 03 81 .21 15 I. 330 l62. 3 17.63 392 42 .81 79 34 15 I. 298 167. 4 O 15 .401 64.6 78 .06 30 I . 401 96.12 15 .417 110 9 75 .81 30 I. 450 220. 8 88.31 15 1.428 152 75 35 30 I. 329 232. 6 O SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL ALCOHOL. (Fleckenstein - Physik . Z., 6, 419, '05.) t Grams of NHN0 3 Dissolved per 100 Grams Aq. Alcohol of (Wt. %): 100%. 86.77%. 76.12%. 51.65%. 25.81%. 0%. 20 2.5 II 23 70 I4O 195 30 4 14 32 90 165 230 40 5 18 43 196 277 50 6 24 55 144 244 365 60. 7.5 30 70 183 320 70 9 41 93 230 80 10.5 56 NOTE. The figures in the preceding table were read from curves shown in the abridged report of the work, and are, therefore, only approximately correct. Determinations of the solubility in methyl alcohol solutions were also made but not quoted in the abstract. The "Synthetic Method" (see Note, page 16) was used. 100 grams absolute ethyl alcohol dissolve 4.6 grams NKUNOs at 14 and 3.8 100 grams absolute methyl alcohol dissolve 14.6 grams NP^NOs at 14, 16.3 grams at 18.5 and 17.1 grams at 20.5. (Schiff and Monsacchi Z. physik. Chem., 21, 277, '96; at 20.5 de Bruyn Ibid., 10, 783, '92.) SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL AND METHYL ALCOHOLS AND IN A MIXTURE OF THE Two AT 30. (Schreinemakers, 1908-09.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. H 2 0. QHsOH. NILJSTOa. H 2 0. CH 3 OH. NIL.NO 3 . H 2 0. *CH 3 OH +Q.H.O. NH4 per 100 Grams. O 5 10 15 20 25 Water. 70.6 7 1.8 73-o 74-2 75-4 76.7 Solution. 41.4 41.8 42 .2 42.6 43-o 43-4 t. Grams (NIL^S D 4 per TOO G ' Water. Solution o 30 78.0 43-8 40 81.0 44.8 60 88.0 46.8 80 95-3 48.8 100 103 .3 50 8 108.9 I0 7-5 5i-8 Sp. Gr. of saturated solution at 15 i 248; at 19 = 1.241 Eutectic point, Ice + (NH 4 ) 2 SO 4 = 19.05 and 38.4 gms. (NH 4 ) 2 SO 4 per 100 gms. sat. solution. SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 25. (D'Ans and Schreiner, 1910.) Mols. per 1000 Gms. Sat. Sol. Gms. per looo^Gms. Sat. Sol. (NHa). (NH 4 ) 2 S0 4 . 3-28 I .02 2.60, i-95 2.13 3-44 i-S9 5-35 i .16 7-i3 0.78 9-47 '(NH 3 ). (NH 4 ) 2 S0 4 . O 433-4 17.4 343-6 33-2 281.5 58.6 210. 1 91.1 153-3 121.4 103 161.2 SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF COPPER SULFATE AT 30 AND VICE VERSA. (Schreinemakers, 1910.) Gms. per 100 Gms. Sat. Solution. CuS0 4 . o Solid Phase. Gms. per 100 Gms. Sat. Solution. Solid Phase. 44 38.32 29.27 17.53 9. 33 (NH4) 2 SO 4 8.19 1. 1. 6 1. 1.6 CuSO 4 . 13.65 16.77 20.53 i.i.6-fCuSO 4 .5H 2 O 20.19 CuSO 4 .5H 2 O 20.32 * = Solubility of 1.1.6 in water. 1. 1.6 = CuSO 4 (NH 4 ) 2 SO 4 .6H 2 O. Several additional determinations for the above system at 19, are given by Riidorff (1873), and by Schiff (1859). 0.77 1.57 4-S 11.03 (NH4) 2 S0 4 +i.i.6 6.98 5.79 2.45 AMMONIUM SULFATE 64 SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF FERROUS SULFATE AT 30 AND VICE VERSA. (Schreinemakers, 1910 a.) Gms. per 100 Gi Solution. T1S. Sat. Solid Phase. (NH 4 ) 2 S0 4 (NH)SO+i.i.6 1. 1.6 it u Gms. per 100 Gms Solution. .Sat. Solid Phase. 1. 1.6 it i.i.6+FeSO 4 .7H 2 O FeSO 4 .7H 2 (NH 4 ) 2 S0 4 . '44.27 43-88 34.24 19.64 16.29 n-45 FeS0 4 . O o-79 1.72 5-70 7-95 (NH 4 ) 2 S0 4 . 8.90 6.44 5-91 5-24 O FeS0 4 . ' 17.64 23-59 25.24 25.24 24.90' 1.1.6 = (NH 4 ) 2 SO4.FeSO4.6H 2 O. Data for the quaternary system (NH 4 ) 2 SO 4o + FeSO 4 + Li 2 SO 4 + H 2 O at 30 are. also given. SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF LITHIUM SULFATE AND VICE VERSA. (Schreinemakers, Cocheret, Filippo and deWaal, igos^igo;.) Results at 30. Results at 50. Gms. per 100 Gms. Sat. Solution. Solid Phase. Gms. per 100 Gms. Sat. Solution. Solid Phase. (NH 4 ) 2 S0 4 . Li 2 S0 4 - (NH 4 ) 2 S0 4 . Li 2 S0 4 . 44 .1 (NHJjSO* 45 7 (NIL^SO, 40 .8 3 43 05 5.86 (NH 4 ) 2 SO 4 +NH 4 LiSO 4 39 5 6.6 (NH 4 ) 2 SO 4 +NH 4 LiSO 4 19 65 16.35 NH 4 LiSO 4 30 10 NH 4 LiSO 4 13 .90 21.20 " 21 .6 15 13 97 21.23 NH 4 LiS0 4 +Li 2 S0 4 .H 2 O 15 20 ii 45 21-75 Li 2 SO 4 .H 2 O 12 -5 21.9 NH 4 LiSO 4 +Li 2 SO 4 .H 2 O 9 63 22.79 " 8 9 23 Li 2 SO 4 .H 2 O 8 58 23.09 25.1 " 7 56 22.86 o 24-3 " Additional data for the triple points of the above system at 20, 57 and 97 are given by Spielrein (1913), but the terms in which the results are presented are not clearly shown. Data for the quaternary system, ammonium sulfate, lithium sulfate, alco'hol and water at 6.5, 30 and 50 are given by Schreinemakers and van Dorp (1907). A mixture of an excess of ammonium and of potassium sulfates in water at 19 was found by Rudorff (1873) to contain 37.97 gms.^ (NH 4 ) 2 SO 4 + 39-3 gms. K 2 SO 4 per 100 gms. sat. solution. SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 30. (Van Dorp, 1910 and 1911.) Gms. per 100 Gms. Sat. Solution. (NH 4 ) 2 S0 4 . * H 2 S0 4 . 44-3 43-6 O 10 44.1 13.2 42.9 15 41 40.8 20 25 43 45-5 30 33-8 42.3 35 Solid Phase. (NH 4 ) 2 S0 4 (NH 4 ) 2 S0 4 + 3 .i 3 .i+(NH 4 )HS0 4 (NH4)HSO 4 3 .i= 3 [(NH 4 ) 2 S0 4 ].H 2 SO. Gms. per 100 Gms. Sat. Solution. (NH 4 ) 2 S0 4 . H 2 S0 4 . 32-8 40 26.1 45 20.9 50 I 7 .6 55 I 7 .8 60 20 61.7 30 62.9 37 62.2 Solid Phase. (NHOHSO 6s AMMONIUM SULFATE Data for the solubility of ammonium sulfate in aqueous solutions of sulfuric acid of concentration extending to 10 gm. mols. per liter, are given by D'Ans (1909 and 1913). Data for the solubility of ammonium and lithium sulfates in concentrated sun uric acid containing traces of water, at 30, are given by Van Dorp (1913-14). SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS SOLUTION OF ETHYL ALCOHOL AT 30 AND AT 50. (Results at 30, Wibaut, 1909; at 50, Schreinemakers and.de Baat, 1907.) Results at 30. Two liquid layers are formed at concentrations of alcohol between 5.8 and 62%. These have the compositions: Upper Layer. Lower Layer. Gms. per 100 Gms. Sat Solution. Gms. per 100 Gms. Sat. Solution. (NH4) 2 SO 4 . C 2 H 8 OH. H 2 O. (NH)jSO 4 . QH B OH. H 2 O. 2.2 56.6 41.2 37.1 5.8 57.1 2.6 54.5 42.9 35.7 6.3 58 3-4 5 2 -3 44-3 33-8 7-4 $8-8 13.2 31.8 55. 21.7 18.4 59.9 17 25 58 17 25 58 At a concentration of 62% alcohol the liquid is homogeneous and contains 1.3 gms. (NH 4 ) 2 SO 4 per 100 gms. sat. solution, At 90.4% alcohol no (NH 4 ) 2 SO 4 is dissolved. Results at 50. Gms. per too Gms. Saturated Solution. 43.02 2.32 ' 54.66 41.1 4-1 54-8 1-2 64.5 34.3 0-2 75.5 24.3 Between the concentrations 4.1 and 64.5% C 2 H 5 OH the mixtures separate into two layers. The percentage composition of each member of several such conjoined layers, is as follows: Upper Layer. Lower Layer. Gms. per 100 Gms. Sat. Solution. Gms. per roo Gms. Sat. Solution. (NH4) 2 SO 4 . QH S OH. H 2 O. (NHt)iSO 4 . QHsOH. H 2 O. 1.2 64.5 34.3 4I.I 4.1 54.8 1.6 60 38.4 36.8 6 57.2 3.8 50 46.2 30.8 9 60.2 7.4 40 52.6 26.6 12 61.4 10 34.4 55.6 23.6 15 61.4 Two determinations at o Jby deWaal (1910) gave 30 gms. (NH 4 ) 2 SO 4 per 100 gms. sat. solution in 9.41% alcohol and 0.14 gm. (NH 4 ) 2 SO 4 in 73.03% alcohol. Between these concentrations of alcohol two liquid layers are formed. loo gms. 95% formic acid dissolve 25.4 gms. (NH 4 ) 2 SO 4 at 16.5. (Aschan, 1913.) AMMONIUM SULFATE 66 SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS. (Continued.) (Traube and Neuberg Z physik. Chem. i, 510, '87; Bodlander Ibid. 7, 318, '91; Schreinemaker Ibid. 23, 657, '97 ; de Bruyn Ibid. 32, 68, 'oo; Linebarger Am. Ch. J. 14, 380, '"92.) Upper Layer Results. Grams per 100 Gms. Solu- tion at io-4o. Lower Layer Results. Gms. C 8 H 5 OH Gms. (NH<) 2 SO 4 per 100 g. per 100 Gms. Solution at: CaHeOH. (NH 4 ) 2 S0 4 . Solution. 6.5. IS - 33. 100 O-O O 42 .O 42.6 44 80 o.-i 2-5 39-o 40.2 ? 70 o-3 36.2 37-2 ? 60 1.4 7-5 33-2 34-5 42 50 3-2 IO-O 30.0 31.0 35 45 4.8 12.5 27.2 28.0 40 6.6 15-0 24.6 25.2 ? 35 9.2 '75 22 .O 22.4 ? 30 12.2 20-0 20.0 20. o ? 25 14.6 NOTE. When ammonium sulfate is added to aqueous solutions of alcohol, it is found that for certain concentrations and temperatures the solutions sep- arate into two liquid layers, the upper of which contains the larger percentage of alcohol. Most of the determinations which have been made upon this system, as con- tained in the papers referred to above, are given in terms of grams of ammo- nium sulfate, of alcohol and of water per 100 grams of these three components taken together. Those results which are given in other terms can be readily calculated to this basis, and it is, therefore, possible to make a comparison of the several sets of determinations by plotting on cross-section paper and drawing curves through the points. In the present case the grams of alcohol per 100 grams of solution were taken as ordinates, and the grams of ammonium sulfate in the same quantity of each solution taken as abscissae. It was found that a single curve could be drawn through practically all the points representing the upper layer solutions at the several temperatures, but the points for the solutions containing the larger amounts of water gave curves which diverged with increase of temperature. The results given for 33 in the above table are not to be accepted as correct until further work has been done. SOLUBILITY OF AMMONIUM SULFATE IN AQUEOUS PROPYL ALCOHOL SOLUTIONS AT 20. (Linebarger Am. Ch. J. 14, 380, '92.) Gms per 100 Gms, Gms. per 100 Gms. Solution. Solution . CaH 7 OH. (NH 4 ) 2 SO 4 . C 3 H 7 OH. (NH 4 ) 2 SO 4 c 70 0-4 40 3-2 60 1.0 30 4.8 50 2.0 20 6.7 67 AMMONIUM Cadmium SULFATE AMMONIUM Cadmium SULFATE (NH 4 ) 2 Cd(SO4) 2 6H 2 O. 100 cc. H 2 O dissolve 72.3 gms. (NH 4 ) 2 Cd(SO 4 )2 at 25. (Locke, 1901.) AMMONIUM Chromium SULFATE (Alum) (NH 4 ) 2 Cr 2 (SO4)4.24H 2 O. 100 cc. H 2 O dissolve 10.78 gms. anhydrous or 21.21 gms. hydrated salt at 25. (Locke, 1901.) AMMONIUM Cobalt SULFATE (NH 4 ) 2 Co(SO 4 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Tobler Liebig's AnnalenQS, 193, '55; v. Hauer J. pr. Chem. 74, 433. '58; at 25, Locke Am Ch. J. 27, 459. V>i.) Gms. (> rH4) 2 Co(S0 4 )2 Gms. (NH 4 ) 2 Co(SO 4 ) 2 t. P er ioo Gms. t. per ioo Gms. Water. Solution. 'Water. Solution.' .6.0 5-7 40 22 -O 18.0 10 9.5 8.7 50 27.0 21-3 2O I3-O "5 60 33-5 25.1 25 14.72 12.8 70 40.0 28.6 30 17.0 14-5 80 49-o 32-9 NOTE. The determinations reported by the above named inves- tigators were plotted on cross-section paper and although considerable variations were noted, an average curve which probably represents very nearly the true conditions was drawn through them, and the above table made from this curve. AMMONIUM Indium SULFATE (NH 4 ) 2 In 2 (SO 4 ) 4 .24H 2 O. ioo gms. H 2 O dissolve 200 gms. salt at 16 and 400 gms. at 30. (Rossler, 1873-) AMMONIUM Iron SULFATE (Alum) (NH 4 ) 2 Fe 2 (SO 4 ) 4 .24H 2 O. ioo cc. H 2 O dissolve 44 25. Sp. gr. of saturated j ioo cc. H 2 O dissolve 44.15 gms. anhydrous or 124.40 gms. hydrated salt at solution at 15 = 1.203. (Locke, 1901.) AMMONIUM Iron SULFATE (ferrous) (NH 4 ) 2 Fe(SO 4 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Tobler; at 25, Locke Am. Ch. J. 2KK, 459, '01.) G. (NH 4 ) 2 Fe(S0 4 ) 2 G. (NH 4 ) 2 Fe(SO 4 ) 2 G, (NH 4 ) 2 Fe(S0 4 ) 2 * per ioo g. H 2 O. per ioo g. H 2 O. per ioo g. H2O. o 12 5 25 2 5 .o(T) 50 40 15 20-0 2 5 35-i(L) 70 5 2 40 33 o AMMONIUM Lead SULFATE (NH 4 ) 2 SO 4 .PbSO 4 . SOLUBILITY IN WATER. (Barre, 1909.) Gms. (NH 4 ) 2 SO 4 per ioo Gms. Sat. Solution. Water. 20 12.17 13.86 50 16.15 19.25 75 19.52 24.31 IOO 22.74 29.42 (NH4) 2 SO 4 .PbSO4 AMMONIUM Lithium SULFATE 68 AMMONIUM Lithium SULFATE NH 4 LiSO 4 . SOLUBILITY IN WATER. (Schreinemakers, Cocheret, Filippo and deWaal, 1905, 1907.; Cms. NH4LiSO 4 Cms. NH 4 LiSO 4 t. per 100 Cms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. o o Ice -10 35.25 NKjLiSC^ - 5 14 +10 35-58 -io 23.5 30 ^.87 -15 29.7 50 36 -2o.6Eutec. 35.15 Ice+NH4LiSO 4 70 36.18 AMMONIUM Magnesium SULFATE (NH 4 ) 2 Mg(SO 4 ) 2 . SOLUBILITY OF AMMONIUM MAGNESIUM SULFATE IN WATER. (Porlezza, 1914.) t o. Gms per xoo Gms. ^ ^ ^ Cms. per .zoo Gms. Sat. Sol. Water. Sat. Sol. Water. 0.34 1. 01 1.02 Ice 20 15.23 17.96 (NH 4 ) 2 Mg(SO 4 ) a 0.8o 2.98 3.07 25 16.45 19-69 -1.23 4.92 5.17 30 17.84 21.71 1. 60 6.56 7-02 40 20.51 25.86 2.02 8.34 9.10 " 50 23.18 30.17 -2.34Eutec lce+(NH 4 ) 2 M g (S0 4 ) 2 60 26.02 35.17 O 10.58 11.83 (NILJMgSO, 80 32.58 48.32 io 12.75 14.61 " loo 39.66 65.72 " AMMONIUM Manganese SULFATE (NH 4 ) 2 Mn(S0 4 ) 2 .6H 2 O. 100 cc. water dissolve 37.2 gms. (NH 4 ) 2 Mn(SO 4 ) 2 at 25. (Locke, 1901.) AMMONIUM Nickel SULFATE (NH 4 ) 2 Ni(SO 4 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Average curve from Tobler, Locke, at 25.) G. (NH 4 )2Ni(S0 4 )2 G. (NH 4 ) 2 Ni(S0 4 ) 2 t. per ioo Gms. t. per ioo Gms. Water. Solution. Water. Solution. 1.0 0-99 40 12 .O IO.72 10 4.0 3-85 50 14-5 12.96 20 6-5 6.10 60 17-0 14-53 25 7-57 7.04 70 20. o 16.66 30 9.0 8-45 AMMONIUM Sodium SULFATE NH 4 NaSO 4 .2H 2 O. ioo gms. water dissolve 46.6 gms. NH 4 .NaSO 4 .2H 2 O at 15 Sp. Gr., of Sol. 1.1749. AMMONIUM Strontium SULFATE (NH 4 ) 2 SO 4 .SrSO 4 . SOLUBILITY IN WATER. (Barre, 1909.) t. Gms.^Hj.SO.perxooGms. Solid Phase. Sat. Solution. Water. 50 <43-99 78.54 75 45-40 83.15 ioo 46.27 66.2 69 AMMONIUM Vanadium SULFATE AMMONIUM Vanadium SULFATE (Alum) (NH 4 ) 2 V 2 (SO 4 ) 4 24H 2 O. 100 cc. H 2 O dissolve 31.69 gms. anhydrous or 78.50 gms. hydrated salt at 25. AMMONIUM Zinc SULFATE (NH4)2Zn(SO 4 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Average curve, see NOTE, p. 67, Tobler, Locke, at 25.) G. (NHJzZntSO^a G. (NIL^ZnCSOJj ^ f per 100 Gms. $o^ per 100 Gms. Solution. Water. Solution. Water. o 6.54 7.0 40 16.66 20 10 8.67 9.5 50 20.0 25 20 II. II 12-5 6b 23.1 30 25 12.36 14.1 70 25.9 35 30 13-79 16.0 80 29.6 42 AMMONIUM PERSULFATE (NH^S-A. 100 parts H 2 O dissolve 58.2 parts (NHOsSgOg at o. (Marshall, 1891.7 AMMONIUM Sodium Hydrogen SULFITE (NH 4 )Na 2 H(SO 3 ) 2 4H 2 O. 100 gms. H 2 O dissolve 42.3 gms. salt at 12.4 and 48.5 gms. at 15. (Schwincker, 1889.) AMMONIUM Antimony SULFIDE (Sulfoantimonate) (NH 4 ) 3 SbS 4 .4H 2 O. SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL. (Donk, 1908.) In Water. In Aqueous Alcohol at 10. , Gms. (NH4) 3 SbS 4 c: I M Pll!10 , Gms. per 100 Gms. Sat. Solution. per 100 Gms. Sat. Sol. ' C 2 H 6 OH. (NH^SbS.. " 1.9 9.9 Ice o 43.2 - 5 20 5-i 35-9 - 8 30.2 19.1 23.1 -13.5 41-6 Ice+(NH4)3SbS 4 .4H 2 O 43.1 8.7 o 41.6 (NH4) 3 SbS4.4H 2 O 53.1 4.1 + 20 47-7 93-3 o 30 54-5 AMMONIUM 0-Naphthalene Mono SULFONATE Ci Hi 7 SO 3 NH 4 . 100 cc. of the saturated aqueous solution contain 13.05 gms. of the salt at 25, and dz$ = 1.034. ( witt I 9 I 5-> AMMONIUM Phenanthrene Mono SULFONATES Ci 4 H 9 SO 3 NH 4 (2), (3) and SOLUBILITY IN WATER AT 20. (Sandquist, 1912.) ioo gms. H 2 O dissolve 0.37 gms. Ci 4 H 9 SO 3 NH 4 (2). 100 gms. H 2 O dissolve 0.26 gms. d 4 H 9 SO 3 NH 4 (3). ioo gms. H 2 O dissolve 4.41 gms. Ci 4 H 9 SO 3 NH 4 (10). AMMONIUM 2.5 di-iodobenzene SULFONATE C 6 H 3 I 2 SO 3 (NH4). ioo gms. H 2 O dissolve 4.35 gms. salt at 20. (Boyle, 1909.) AMMONiUM TARTRATES (NH 4 ) 2 C 4 H 4 O 6 . ioo cc. H 2 O dissolve 2.83 gms. (NH 4 ) 2 C 4 H 4 O 6 .2H 2 O at o. (Fenton, 1898.) ioo cc. H 2 O dissolve 5.9 gms. (NH 4 ) 2 C 4 H 4 O 6 at 15 (d = 1.04). (Greenish and Smith, 1903.) AMMONIUM Lithium TARTRATES dextro and racemic. ioo gms. sat. sol. inH 2 O contain 13. 104 gms. racemate(NH 4 )Li(C 4 H 4 O 6 ).H 2 Oat2O. ioo gms. sat. solution in H 2 O contain 14.186 gms. dextro (NH 4 )Li(C 4 H 4 O 6 ). H 2 O at 20. (Schlossberg, 1900.) Freezing-point data for mixtures of water and ammonium tartrate and of water and ammonium racemate are given by Bruni and Finzi (1905). AMMONIUM THIOCYANATE 70 AMMONIUM THIOCYANATE NH 4 SCN SOLUBILITY IN WATER. (Average curve from results of Riidorff, 1868 and 1872; Wassilijew, 1910; Smits and Kettner, 1912.) t o Gms. NH 4 SCN -,., p , Cms. NH 4 SCN Solid * ' per 100 Gms. Sat. Sol. Phase ' * ' per too Gms. Sat. Sol. Phase. -io 20 Ice o 54.5 NH4SCN -15 28.5 +10 59 -20 35.5 20 63 -25.2 42Eutec. Ice+NH4SCN 25 65.5 -io 50 NKtSCN 30 67.5 Data for the system ammonium thiocyanate, thiourea and water at 25 are given by Smits and Kettner (1912) in the form of a triangular diagram, but the numerical results are omitted. The diagram confirms the freezing-point lowering results in showing that the molecular compound NhUSCN^NH^CS is formed. IOO gms. acetonitrile dissolve 7.52 gms. NH4SCN at l8. (Naumann and Schier, 1914.) Freezing-point curves have been determined for the following mixtures: Ammonium Thiocyanate + Ammonia. (Bradley and Alexander, 1912.) + Potassium Thiocyanate. (Wrzesnewsky, 1912.) + Thiocarbamide (Thiourea). (Renolds and Werner, 1903; Findlay, 1904; Atkins and Werner, 1912; Smits and Kettner, 1912; Wrzesnewsky, 1912.) AMMONIUM URATE (Primary) CgHsN^NH*. SOLUBILITY OF THE LACTAM AND LACTIM FORMS IN WATER. (Gudzeit, 1908-09.) Gms. of Each per 1000 cc. Sat. Solution. Lactam. Lactim. Mixture of the Two. 1 8 0-456 0.304 0.414 37 0.817 0.540 0.741 AMMONIUM Meta VANADATE NH 4 VO 3 . SOLUBILITY IN WATER AND IN AQUEOUS AMMONIUM SALT AND AMMONIUM HYDROXIDE SOLUTIONS. (Meyer, 1909.) Gms. per 1000 cc. in Each Solvent. 18 25 35 45 55 70 loo cc. anhydrous hydrazine dissolve 2 gms. ammonium metavanadate at room temp. (Welsh and Broderson, 1915.) AMYGDALIN C 20 H 27 NO. 3 H 2 O. IOO gms. trichlorethylene dissolve 0.029 g m - amygdalin at 15. (Wester and Bruins, 1914.) AMYL ACETATE BUTYRATE, FORMATE, etc. SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL AT 20. [(Bancroft Phys. Rev. 3, 131, 106, 205, 'Q5-'o6; Traube. Ber. 17, 2304, '84.) p. t ._ cc. Ester per Sp. Gr. v . cc. Ester per Sp. Gr. loocc. H 2 0. of Ester. 100 cc. H 2 O. of Ester. Amy 1 acetate 0.2 0.88 Amyl propionate o.i 0.88 Iso amyl acetate 0.2(1.2?) ... Iso amyl formate 0.3 (gms. at 22) Amyl butyrate 0-06 0.85 Water. 0.05 n. NH 4 C1. o.i n. NH 4 C1. 0.05 n. NH 4 NO 3 . o.i n. NH 4 N0 3 . 0.0668 n. NH 3 . 0.245 n. NH 3 . 0.588 n. NH 3 . 4-35 1.66 0.41 .1.67 0.58 5-58 7-97 1 2. 06 6.08 2.63 I.I7 2.77 1.23 7.06 8.58 12.66 IO. 77 r 21 2 .60 I cj 71 8 88 5 40 IQ O7 ii 18 7 40 3O.A7 AMYL ACETATE SOLUBILITY IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE. (Pfeiffer, 1892.) Solubility of I so Amyl Acetate Solubility of Amyl Acetate and Amyl in Aq. Alcohol Mixtures. Formate in Aq. Alcohol Mixtures. Per 5 cc. C 2 H 5 OH. cc. H 2 O. cc.IsoAmyl acetate. 7 6 0.41 0-7 3-6i I-3I 3-o 3.01 2.60 4-0 S-o cc. in Mixture. cc. H2O added to cause separation of second phase in mixtures of the given amounts of alcohol and 3 cc portions of : Amyl Formate. Amyl Acetate. 3 i. 80 1.76 9 8.77 9.03 15 17.01 17.52 21 27.06 26.99 27 38-3I 37-23 33 So-7 1 48-41 39 65.21 45 85.10 48 94 . 20 AMYL ALCOHOL C 6 H U OH. SOLUBILITY OF AMYL ALCOHOL IN WATER AT 22. (Herz Ber. 31, 2671, '98.) ioo cc. water dissolve 3.284 cc. amyl alcohol. Sp. Gr. of solu- tion = 0.9949, Volume = 102.99 cc. ioo cc. amyl alcohol dissolve 2.214 cc. water. Sp. Gr. of solu- tion = 0.8248, Volume = 101.28 cc. Sp. Gr. of H 2 O at 22 = 0.9980; Sp. Gr. of amyl alcohol at 22= 0.8133. SOLUBILITY IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Pfeiffer, 1892; Bancroft, 1895-96.) Mixture of Mixture of c.c. H 2 O added to * nr* A C 6 H U OH+C 2 H S OH Mixture at C.C. C.C. 9.1. 19.2. 3 3 3-21 3-5 3 6 IO -35 10.80 3 9 18.34 19.10 3 12 27.47 29.15 3 15 41.25 43-15 c.c. H 2 O Added to * Mixture at c.c. 3 6 9 12 15 c.c. 3 3 3 3 3 13.3 3.36 2. 2O 2.10 2.10 2.10 17.4- 3-47 2.25 2.15 2.10 2.IO .* Just enough water was added to produce cloudiness. NOTE. The effect of various amounts of a large number of salts upon the temperature (39.8) at which a mixture of 20 cc. of amyl alcohol + 20 cc. of ethyl alcohol -f 32.9 cc. of water becomes homo- geneous has been investigated by Pfeiffer (Z. phys. Ch. 9, 444, '92). The results are no doubt of interest from a solubility standpoint, but their recalculation to terms suitable for presentation in the present compilation has not been attempted. DISTRIBUTION OF ISOAMYL ALCOHOL BETWEEN WATER AND COTTON SEED OIL AT 25. (Wroth and Reid, 1916.) Cms. CjHuQH per ioo c.c. Oil Layer. H 2 O Layer. 1.947 0.9153 0.470 2.195 I.II56 0.508 2.273 I.I050 0.486 2.372 0.9995 0-421 AMYL ALCOHOL 72 SOLUBILITY OF AMYL ALCOHOL IN WATER AND IN AQUEOUS SOLUTIONS OF ETHYL AND METHYL ALCOHOLS. (Fontein, 1910.) t. 15 20 40 60 80 IOO 120 140 1 00 170 180 187, In Water. Gms. CjHnOH per ioo Gms. H 2 Layer. C 6 H U OH Layer. 4 2.6 90.7 2.6 90.6 2.1 89.5 2 88 2-5 86 3 83.8 3-8 80.8 5 76.4 7-3 70 9-3 65.1 13-5 57-3 In Aq. Ethyl Alcohol." In Aq. Methyl Alcohol.f Gms. CcHuOH per Gms. CsHnOH per to ioo Gms. t. ioo Gms. 2 H 5 OH+] 3 2 CjHuQH CH 3 OH+H 2 O CsHuOH* Layer. Layer. Layer. Layer. 4-5 16.2 . . . 3-6 II . . . 20 20.8 . . . 20 19-3 . . . 40 26.7 . . . 38.4 . . . 78.4 60 33 . . . 40 31.2 78 67.8 24.4 50 37-i 74.8 70 36,'s 73-7 60 43-3 7 1.6 80 40.8 70.1 70 52.7 65 90 47 64 72 (crit. temp.) 94.2 (crit. temp.) (crit. temp.) Of 33-55 per cent QHjOH. f Of 33 Per cent CH 3 OH. The "synthetic method" was used for the preceding determinations. Fer- mentation amyl alcohol of b. pt. I3i-I3i.4 and ^15.5 = 0.814 was employed. It contained 16% of optically active amyl alcohol. Many other series of deter- minations were made with solvents containing other percentages of ethyl and methyl alcohol. Also, other series were made for the above-named ternary systems at constant temperatures from which binodal curves were obtained. The author uses a very ingenious indirect method for determining the composi- tion of the conjugated solutions. Data are also given for the distribution of ethyl alcohol between water and amyl alcohol. "The results of Alexejew (1886) for the solubility of amyl alcohol in water agree fairly well with the above data. AMYL AMINE C 6 H U .NH 2 . The freezing-point curve for mixtures of amyl amine and water is given by Pickering (1893). Iso AMYLAMINE HYDROCHLORIDE C 6 Hn.NH 2 .HCl (iso). IOO gms. H 2 O dissolve 192.2 gms. of the salt at 25. (Peddle and Turner, 1913.) ioo gms. CHC1 3 dissolve 5.1 gms. of the salt at 25. Data for the distribution of e-chloramyl amine between water and tetra- chlorethane at o, water and nitrobenzene at 25 and water and benzene at 25 are given by Freundlich and Richards (1912). AMYLENE (Trimethylethylene) (CH 3 ) 2 C: CHCH 3 . RECIPROCAL 'SOLUBILITY IN ANILINE; DETERMINATIONS BY SYNTHETIC METHOD. (Konowalow, 1903.) Gms. Aniline per ioo Gms. Amylene Layer. Aniline Layer. 28 Gms. Aniline per ioo Gms. Amylene Layer. Aniline Layer. 19-5 19.7 20.5 21-7 24.2 81.5 80.5 79-5 78 75-8 10 12 13 14 34 38.5 45 14.5 (crit. temp.) 51.6 73 68 64.7 59 73 AMYLENE SOLUBILITY OF AMYLENE IN LIQUID CARBON DIOXIDE. (Buchner, 1905-06.) (Determinations made by the synthetic method.) t. (crit.) 31 103 201 Cms. CsHio per 100 gms. sat. sol. o 38 100 AMYLENE HYDRATE (CH 3 ) 2 C(OH)CH 2 .CH 8 . The distribution coefficient of amylene hydrate between olive oil and water at ord. temp, is I. (Baum, 1899.) ANDROMEDOTOXINE C 3 iH 6 iOi . SOLUBILITY IN SEVERAL SOLVENTS AT 12 AND AT THE BOILING-POINTS OF THE SOLVENTS. (Zaayer, 1886.) Gms. CsiHjiOxo per 100 Gms. Sat. Sol. at : Solvent. t -- - > - -, 12. B. Pt. Water 2.81 0.87 Ethyl alcohol (&& = 0.821) n .70 Amyl alcohol i . 14 Chloroform o . 26 o . 26 Commercial ether o . 07 o . 07 Benzine o . 004 ANETHOLE (p Propylanisole) C SOLUBILITY IN AQUEOUS ALCOHOL AT 20 (Schimmel and Co., Reports, Oct. 1895, p. 6.) Vol. per cent alcohol = -20 25 30 40 50 Gm. anethole per liter aq. alcohol = 0.12 0.20 0.32 0.86 2.30 333-3 g m s- anethole dissolve in one liter of 90% alcohol at room temperature. (Squire and Caines, 1905.) Freezing-point data for mixtures of anethole and menthol are given by Scheuer (1910). ANILINE C 6 H 6 (NH 2 ). SOLUBILITY IN WATER AT 22. (Herz, 1898; see also Vaubel, 1895; Aignan and Dugas, 1899.) loo cc. H 2 O dissolve 3.481 cc. C 6 H 5 (NH 2 ) Vol. of Sol. = 103.48, Sp. Gr. = 0.9986. 100 cc. C 6 H 6 (NH2) dissolve 5.22 cc. H 2 O Vol. of Sol. = 104.96, Sp. Gr. = 1.0175. 100 cc. sat. aq. sol. contain 3.607 gms. C 6 H5NH 2 at 25. (Reidel, 1906.) SOLUBILITY OF ANILINE IN WATER. (Determination by synthetic method.) (Sidgwick, Pickford and Wilsden, 1911.) t o Gms. QH S NH 2 per 100 Gms. Gms. QHiNHz per^ioo Gms. Aq. Layer. Aniline Layer. Aq. Layer. Aniline Layer. 13.8 3-6lI 5.12 (20 ) 120 Q.I 14.6 3 3-7 5-4 130 ii- 2 16.9 50 4.2 6.4 140 13.5 19.5 70 5 7.7 150 17.1 24 9O 6.4 9.9 l6o 22 32 no 8 13 165 26.1 The critical solution temperature for aniline and water is 168. Alexejew (1886) and Rothmund (1898) obtained results for the preceding system which differ in part quite widely from the above table. More recent determinations, in terms of cc. aniline per IOO cc. of mixture, are given by Kolthoff (1917). ANILINE 74 SOLUBILITY OF ANILINE IN AQUEOUS SOLUTIONS OF ANILINE HYDROCHLORIDE. (Sidgwick, Pickford and Wilsden, 1911.) The temperatures at which a second liquid phase separated from homogeneous mixtures of known amounts of aniline + HC1 + H 2 O were determined for a very extensive series of mixtures. The procedure consisted in first heating a given mixture until it became homogeneous and then cooling it slowly, with constant shaking. A critical turbidity preceding the actual separation by a few de- grees was always noticed. The point of separation was taken as that at which a small gas flame seen through the liquid disappeared. At higher temper- atures, the observations were made on mixtures contained in sealed bulbs. In the actual experiments, binodal curves for mixtures of Aq. HC1 (of different strengths) and aniline were determined. By interpolation from these, the fol- lowing isothermal curves were obtained. Isotherm for 15. Isotherm for 25. H 2 O Rich Mixtures. Gms. per 100 Cms. Sat. Solution. Aniline Rich Mixtures. ' Gms. per 100 Gms. Sat. Solution. H 2 O Rich Mixtures. Gms. per 100 Gms. Sat. Solution. Aniline Rich Mixtures. Gms. per 100 Gms. Sat. Solution. C 6 H 5 NH 2 . C 6 H 5 NH 2 .HC1. H 2 O. C 6 H B NH 2 .HCi. CH 6 NH 2 . C,H 6 NH 2 .HC1. ' H 2 O. C6H 5 NH 2 .HC1. 3-6IS 7 .276 3 .025 3 .681 14 8.884 3-7QI 1-529 7 .231 i .989 4 .020 3.02 10. 84 6.062 4.144 5.829 5 .816 i 195 5 .380 ii .40 6. 949 1.912 4.940 11.44 5 .230 o 340 7 .023 15-83 6. 043 0.828 5-995 16.03 5 .006 .163 ii .86 19.02 5- 568 0-363 10.44 19-35 4 .960 .080 3i 35 20.15 5- 3H 0.089 26.80 21.49 4 .942 o 59 95 15-55 5- 299 9-30 21.21 Isotherm for 40. Isotherm for 60. 3-941 15-65 8 752 4.58 14 .27 5-93 4-i87- i 523 10 .21 4 .243 4.87 1.512 9 .569 2.632 4-37 1 3 009 7 .874 2 .166 5.13 2.984 8 .109 1. 112 4.823 e 815 7 .069 I .452 5.67 5.762 7 49 2 0.4876 6.2IO II . 30 7 .058 .9669 7.69 II .14 7 .051 0.2284 8.779 15 55 6 .225 -4052 n-53 15-25 7 .047 O.II38 38.6 9 18 5 .940 .0960 22.80 16.66 7 .030 64.20 12 .84 5 930 51.10 14.36 Isotherm for 8e. Isotherm for 100. 5-66 o 12 3 1 3-387 7 .10 41-57 n-45 5-95 i 495 9 .848 1-35 7 .68 I .467 18.16 4-995 6.26 2 950 8 .998 0-5857 8 .10 2 .891 12.76 1.784 7.11 5 .678 8 -524 0.2769 9 .60 5 .522 n-37 0.1836 9-95 10 85 8 .512 0.1387 13 .60 10 .41 11.90 31.18 14 85 8 .500 Isotherm for 120. o 17-94 9.497 14.45 2-459 o T 3-75 38.75 Isotherm for 140. o 2 9-52 4.043 7-384 21.09 o The authors also calculated the position of tie lines for the binodal curves with the aid of distribution coefficients, which they determined at 25 and which are quoted in a subsequent table (page 78 following). Additional data for the system aniline + HC1 + H 2 O at o, 25 and at 35 are given by Thonus (1913), and for aniline -f HC1 by Leopold (1910). 75 ANILINE SOLUBILITY OF ANILINE IN AQUEOUS SALT SOLUTIONS AT 18. (Euler Z. physik. Chem. 40, 307, '04.) Aq. Solution. Cms. Salt Cms, C 6 H 5 (NH 2 ) Aq. Cms. Salt Cms. CH6(NH 2 ) per liter, per 100 g. solvent. Solution. per liter, per looitsolvent! H 2 O alone o 3.61 i wNaOH 40.06 1.90 o.5wKCl 37.3 3.15 i wLiCl 42.48 2.80 iwKCl 74.6 2.68 iwCaCl 2 67.25 3.00 iwNaCl 58.5 2.55 SOLUBILITY OF ANILINE IN AQUEOUS ANILINE HYDROCHLORIDE SOLUTIONS AT 18. (Lidow J. russ. phys. chem. Ges. 15, 420, '83; Ber. 16, 2297, '83.) Per cent C 6 H 6 NH 2 HC1 Cms. CeNsNHz Per cent C 6 H5NH 2 JIC1 Cms. CeHsNHj insolvent, per 100 g. Solvent in Solvent. per loog? Solvent. 5 3-8 30 39.2 5-3 35 So-4 SOLUBILITY OF ANILINE IN AQUEOUS SOLUTIONS OF GLYCEROL AND VICE VERSA. (Kolthoff, 1917.) (The liquids were measured from burets. The determinations at 100 were made in sealed tubes. The others were made in open tubes.) Results for the Solubility of Aniline in Aqueous Glycerol. Per cent Glycerol in Aq. Mixture used. cc. Am line dissc lived by ioo cc. of Aq. G Uycerol of Com :. shown at: 18. 25. 36. r 00. o (= water) 3 25 3 4 5-6 9.9 39 5 15 5 3 . . . 56 7 5 7 .6 28 (58* 7o Glycerol) 65 10 . 38 (66< 7o " ) 74-3 ii 75 12 .1 . . . . . 78 20 2O 16 ... 87 70 . . . . Results for the Solubility of Aqueous Glycerol in Aniline. Per cent Glycerol in CC- * Aq> Glycerol Mixture dissolved by too cc. Aniline at: Aq. Mixture used. o (= water) 39 47 56 74-3 DISTRIBUTION OF ANILINE BETWEEN WATER AND BENZENE AT 25. (Farmer and Warth, 1904.) Cms. C 6 H 5 NH 2 per 100 cc. Ratio. 18. 25- 36. IOO . 4 .6 5 4 5-3 6.4 5-2 . . . ... 7-9 7-7 . . . 15 (58% Glycerol) I3-I 11.7 ... 17(66% " ) I7.I 14.8 Water Layer. C 6 H 6 Layer. 0.0135 O.I3I2 9.7 0.0122 0.1282 10.5 0.0065 0.0656 10. i .Data for the distribution between water and benzene at 25 of each of the fol- lowing substituted anilines; o, m and p nitraniline, chloraniline, bromaniline, P nitrosmethylaniline, and p nitrosodimethylaniline are given by Farmer and Warth (1904). ANILINE 76 SOLUBILITY OF ANILINE, PHENOL MIXTURES IN WATER. (Schreinemaker Z. physik. Chem. 29, 584; 30, 460, '09.) Mitture used = 2^.4 Mols. Aniline + 74 6 Mols. Phenol Mixture used = 50 Mols. Aniline + 50 Mols. Phenol Gms. of Mixture per ioo Gms. * Gms. of Mixture per ioo Gms. *^Aq. Layer. A. + P . Layer. Aq. Layer. A, , + P. Layer. 40 5-o 86-0 40 4-0 91-5 60 55 82.0 80 5-5 85 5 80 8.0 77 o IOO 8.0 82 o IOO 12 5 67 o 120 13 5 73 5 no 19.0 56.5 130 19.0 66 o 104 (crit. temp.) 33 23 5 58.0 140 (crit. temp.) 35 Determinations in above table by "Synthetic Method," see NOTE, p. 16. Schreinemakers gives results for several other mixtures of aniline and phenol which yield curves entirely similar to those for the two mixtures here shown. DISTRIBUTION OF ANILINE BETWEEN: (Vaubel J. pr. Chem [2] 67, 477, '03.) Water and Ether. Water and Carbon Tetrachloride. Composition of Solutions. Gms. CeHsNHain: Com position jof Solutions. Gms.C 6 H6NH 2 in: G.CeHfiNHa ^ Aq. EtLer G. CeHgNHa " gl ' Aq. ' CCU ' Used. Layer. Layer. Used. Layer. Layer. 1.2478 50 cc. H 2 O 50 cc. H 2 O + 2occ. Ether 0.1671 1.0807 3478 +2occ.CCl 4 0.33580.012 1.2478 50 cc. H 2 O 50 cc. H 2 O + 50 cc. Ether 0.0835 1.1643 1.2478 +5occ. CC1 4 0.2767 1.971 1.2478 50 cc. H 2 O 50 cc. H 2 O 4- 1 oo cc. Ether 0.0594 1.1884 1.2478 +ioocc. CC1 4 0.1845 1.063 SOLUBILITY OF ANILINE IN SULPHUR. (Alexejew Ann. Physik. Chem. 28, 305, '86.) . loog. Gms. C 6 HsNH 2 per loog. S. Layer. Anilin Layer. S. Layer. Anilin Layer. ioo 4 75 *3Q I 5 5 8 no 6 70 135 17.5 47 120 10 64 138 (crit. temp.) 23 . . DISTRIBUTION OF ANILINE BETWEEN WATER AND TOLUENE AT 25. (Riedel, 1906.) NOTE. Mixtures of aniline and toluene were shaken with water and after separation of the two layers the Sp. Gr. of the A : T mixture (layer) was de- termined and also the amount of aniline in each layer. Solution Shaken with A : T Mixture. Vol. per cent Sp. Gr. of A : T Aniline : Toluene Mixture after in Mixtures Used . Separation . Gms. C 6 H 5 N H2 in ioo cc. c A : T Layer. Aq. Layer. HaO 50:50 0.9257 41-5 2.14 u 25 : 75 0.8928 20-7 I .5 tt 12.5:87.5 0.8737 8.62 0.86 ti 5.5:94.5 0.8661 3-87 o 45 " 2.5:97.5 0.8627 1.68 0.21 The author also gives data for the distribution of aniline between toluene and aqueous solutions of K 2 SO 4 , KBO 3 , Ba(OH) 2 , Sr(OH) 2 and Ca(OH) 2 . 77 ANILINE SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD (see foot- note, page i) ARE GIVEN FOR MIXTURES OF ANILINE (m. pt. 5.5 to 6.8) AND OTHER COMPOUNDS. Name and M. Pt. of the Other Com- pound of Each Mixture.. Nitrosodimethyl aniline (85.5) Benzene (5.42) Nitrosobenzene (63.5) Nitrobenzene (2.8) o Dinitrobenzene (116.5) m (91) P s Trinitrobenzene (122.2) o Chloronitrobenzene (32) (43) P " (82.5' Benzoic acid (121.25) Chloroform (-63) o Cresol (30.4) m " (4.2) P " (33-2) Ethylacetate (-83.8) Hydroquinone Allyl mustard oil o Chlorophenol o Nitrophenol (46) m (96) P " (H3) m Dinitrophenol (110.5) Pyrocatechol (105) Resorcinol (110) Nitrotoluene (51.3) Dmitrotoluene (71), 1.3.4; 1.3. and 1.2.6 Trinitrotoluene (82) Isopentane (less than 24) Data for First Eutectic. M. Pt. - 9.2 -12.5 30.6 10 - 8 Wt. Per Cent. QH 5 NH 2 . 94- 2 ' 77.2 53-4 92.2 92.7 no eutectic not determined 3 19.5 66.1 -12.6 79.7 -16.3 72.7 -71 -17 -30 -IS- '89 21.7 78. 8 4 74- 3 s 85- S 6 62" 7 -13.5 80.2 -18.7 74. 2 8 -17.5 86. 8 - 7-3 94- S 10 -13 86. 5 u not determined -17 89 5 | -13., 80.8 - 8 96. 4 12 Authority. (Kremann, 1904.) (Kremann and Borjanovics, 1916.) (Kremann, 1904.) (Kremann and Rodinis, 1906.) (Kremann. 1904.) (Kremann and Rodinis, 1906.) (Kremann, 1904.) (Kremann, 1907.) (Kremann and Rodinis, 1906.) (Baskov, 1913.) (Tsakalatos and Guye, 1910.) (Kremann, 1906.) (Kremann, 1906; Philip, 1903.) (Wroczynski and Guye, 1910.) (Kremann and Rodinis, 1906.) (Kurnakov and Kriat, 1913.) (Kurnakov and Solover, 1916.) (Bramley, 1916.) (Kremann and Rodinis, 1906.) (Kremann. 1906.) ((Kremann and Rodinis. 1906.) (Kremann, 1904.) (Kremann. 1906.) (Campetti and del Grosso, 1913.) 1 A second eutectic melts at 76 and contains 7 per cent C 6 H 6 NH 2 , a molecular compound of m. pt. 92 and containing 24 per cent C 6 H 5 NH 2 exists between these eutectics. The author also gives data for the effect of nitrobenzene, o nitrophenol and of m xylene upon the lowering of the m. pt. of the above com- pound. 2 A break in the curve at 41.5 and 39.2 per cent QHsNHj indicates that a molecular compound exists between the first eutectic and this point. The first eutectic apparently lies too near pure aniline to be determined. An equi-molecular compound of aniline and s trinitrobenzene (m. pt. 30) exists over the range pure aniline to the" second eutectic which melts at 101 and contains 8.7 per cent QHsNHj. 4 A second eutectic melts at o and contains 28.7 per cent C 6 H 5 NH 2 , the molecular compound between these points melts at 8.3 and contains 46.2 per cent C 8 H S NH 2 . 5 A second eutectic melts at 31 and contains 17 per cent C 6 H 8 NH 2 , the molecular compound between these points melts at 14.6 and con- tains 49 per cent C 6 H 6 NH 2 . The second eutectic melts at 6 and contains 23 per cent QH 6 NH 2 , the molecular compound melts at 19.2 and contains 47.5 per cent C 6 H 5 NH 2 . 7 There are two eutectics between which an equi-molecular combination exists. 8 There is a break in the curve at 26 and 421. per cent C 6 H B NH 2 indicating the existence of a molecular compound from the eutectic up to this point. 9 There is a break in the curve at 42 and 39.8 per cent CtHsNH* indicating formation of a molecular compound. There is a break in the curve at 74 and 32.9 per cent C 6 H5NH 2 indicating the existence of a molecular compound from the eutectic up to this point. " There is a break in the curve at 39 and 48.9 per cent CeH B NH 2 . A second eutectic melts at 60 and contains 7 per cent CsHjNHz, the molec- ular compounds melts at 85 and contains 30 per cent QHsNHg. ANILINE 78 RECIPROCAL SOLUBILITY OF ANILINE AND HEXANE. (Keyes and Hildebrand, 1917.) t of Complete Gms. Hexane per 100 t of Complete Gms. Hexane per 100 Miscibility. Gms. Mixture. Miscibility. Gms. Mixture. 26.1 9-6 59-2 35-9 43.9 14.8 59.4 41-6 45.9 16.3 59.6 48 49-9 20 57.9 62.9 Si-4 21 53.9 73.1 56 27.2 47.2 80.6 58.2 31 35-6 88.1 58.2 34-6 16.5 93.8 RECIPROCAL SOLUBILITY OF ANILINE AND PHENOL, DETERMINED BY THE FREEZING-POINT METHOD. (Schreinemakers, 1899.) Mols. C 6 H 5 NH 2 Mols. C 6 H 5 NH 2 t of Melting. per 100 Mols. Solid Phase. t of Melting. per 100 Mols. Solid Phase. Mixture. Mixture. 6.1 loo C 6 H 5 NH 2 3o.4m.pt. 50 1.1 - 8.9 96 " 28.6 40 n.7Eutec. 92.3 c 6 H 6 NH 2 +i.i 22.3 30 6.5 90 i.i 14.8 EuteC. 21.2 i.i+CH 6 OH + 10. 1 80 " 18.4 20 QH 5 OH 22 70 " 31.4 10 28.5 60 " 37.3 4 i.i = C 6 H5NH 2 .C 6 H 6 OH. Data for* the solubility of aniline in cyclohexane at pressures up to 300 at- mospheres are given by Kohnstamm and Timmermans (1913). ANILINE HYDROCHLORIDE C 6 H 6 NH 2 .HC1. IOOCC. H 2 O dissolve 17.8 gms. of the salt at 15. (NiementowskiandRoszkowski, 1897.) IOO gms. H 2 O dissolve IO7.I gms. of the salt at 25. (Peddle and Turner, 1913.) ioo gms. sat. solution in water contain 52.1 gms. C 6 H 6 NH 2 .HC1 at 25. loo gms. sat. solution in aniline contain 8.89 gms. CeHsNHg.HCl at 25. (Sidgwick, Pickford and Wilsden, 1911.) DISTRIBUTION OF ANILINE HYDROCHLORIDE BETWEEN WATER AND ANILINE AT 25. (Sidgwick, Pickford and Wilsden, 1911.) O.II O.2 0-3 0.4 0.5 Cq. = gms. salt per ioo gms. aq. layer. C n . = gms. salt per ioo gms. ani- line layer. NitrANILINES C 6 H 4 NH 2 NO 2 . o, m, and p. SOLUBILITY IN WATER. (Carnelly and Thomson J. Chem. Soc. S3. 768, '88; Vaubel J. pr. Chem. [2] 52, 73. '95', above ao, Lowenherz Z. physik. Chem. 25, 407, '98.) " Grams Nitraniline per Liter of Solution. Ortho Nitraniline. Meta Nitraniline. Para Nitraniline. 20 ... 1.14-1.67 0.77-0.80 24-2 1.25 (25) 1.205 27.3 ... 1.422 IOO CC. H 2 O dissolve 2.2 gms. p nitraniline at IOO. (Jaeger and Kregten, 1912.) Cn. c^ 'C M . c. q . Cn. c* ./c... Cq. < -M. Caq./Can. 0.006 19 30 0.6 .219 2 74 I o .804 1.24 O.O2O 10 0.7 327 2 .14 I.I I .005 I 0.043 6 .98 0.8 o .471 I .70 1.2 I .228 0.98 0.086" 4 65 0.9 o .631 I 43 i-3 I .412 0.92 0.146 3 .42 79 NitrANILINES SOLUBILITY OF ORTHO AND OF META NITRANILINE IN HYDROCHLORIC ACID. (Lowenherz.) Ortho Nitraniline at 25. Meta Nitraniline. G. Mols. per Liter. Grams _ger_ Liter. G. Mols. per Liter. Grams per Liter. 'HCl o.o 0.63 1.26 C 6 H 6 NH 2 . N0 2 (o) O.OO9I 0.0143 0.0174 0.021^ HCl o.o 22.97 34-63 45-94 N0 2 (<7) 2 ' 1-25 1.97 2.40 2.97 (25) (26-5) (23-3) O O O HCl O .OI25 .0247 NO 2 (w) 0-0091 0.0183 0.0274 HCl o.o 0.46 0.90 1. 2O 2 -S3 3-85 SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR THE FOLLOWING MIXTURES. o Nitraniline + m Nitraniline \ , < f (Kremann, 1910; Valeton, 1910; Holleman, Hartogs * I and van der Linden, 1911, Nichols, 1918.) m + p ' o " 4- o Nitracentanilide (Jaeger, 1906.) p + p Nitrosoaniline (Jaeger and van Kregten, 1912.) + Benzene (Bogojawlensky, Winogradow and Bogalubow, 1906.) m ' " + p ."_[_" U o " + Nitrobenzene " " m + p " _1_ " i o " + Ethylenebromide m " + p ' _i_ " m + m Dinitrobenzene (Crompton and Whitely, 1895.) m -\- s Trinitrobenzene (Smith and Walts, 1910; Sudborough and Beard, 1910.) p + 5 m + Naphthalene (Pushin and Grebenschikov, 1913.) O " + Phenol (Kremann and Rodinis, 1906.) m " + " P + s Tribromaniline + 2 Chlor, 4.6 Dibromaniline (Sudborough and Lakhamalani, 1917.) p Nitroethylaniline + p Nitrosoethylaniline (Jaeger and van Kregten, 1912.) p " propylaniline + p Nitrosopropylaniline Nitrodiethylaniline + Nitrosodiethlyaniline (Jaeger, 1905, 1907.) Methylaniline + Benzylchloride (Wroczynski and Guye, 1910.) Dimethylaniline + Benzene (Schmidlin and Lang, 1912.) + Tetramethyldiaminobenzophenone " + Phenol (Bramley, 1916; Kremann, 1906.) + o Chlorophenol (Bramley, 1916.) Tetranitromethylaniline + a Trinitrotoluene ( Gi ua. 1915.) + P Nitrotoluene Nitrosodimethylaniline + Naphthylamine (Kremann, 1904.) 4- Phenol + o Toluidine + p " + m Xylidine NitrANILINE 80 SOLUBILITY OF META AND or PARA NITRANILINE IN ORGANIC SOLVENTS AT 20. (Carnelly and Thomson.) Gms. per Liter. Solvent Cms, per Liter. Meta. Para. Meta. Para. Methyl Alcohol no. 6 95.9 Benzene 24.5 19.8 Ethyl Alcohol 70 . 5 58.4 Toluene 17.1 13.1 Propyl Alcohol 56.5 43.5 Cumene "-5 9-o Iso Butyl Alcohol 26 . 4 19.1 Chloroform 30 . i 23 . i Iso Amyl Alcohol 85 . i 62 .9 Carbon Tetra Chloride 2.1 1.7 Ethyl Ether 78.9 61.0 Carbon Disulfide 3.3 2.6 ANILINE SULFATE C 6 H 6 NH 2 .H 2 SO 4 , loo cc. H 2 O dissolve 6.6 gms. C 6 H 5 NH 2 .H 2 SO4 at 15. (Niementowski and Roszkowski, 1897.) ANISIC ACID (-Methoxybenzoic Acid) CH 3 O.C 6 H 4 COOH. 1000 cc. sat. aqueous solution contain 0.2263 gm. acid at 25. (Paul, 1894.) SOLUBILITY OF ANISIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) In Methyl Alcohol. In Ethyl Alcohol. In Propyl Alcohol. Gms. per 100 Gms. Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. " Solvent. Sat. Sol. " Solvent. Sat. Sol. Solvent! o 51.1 104.5 46.7 87.6 35 53.8 16.5 64.9 183.5 53.6 115.5 43 75.5 Data for the distribution of anisic acid between water and olive oil at 25 are given by Boeseken and Waterman (1911, 1912). pANISIDINE C6H 4 (OCH 3 ).NH 2 . DISTRIBUTION BETWEEN BENZENE AND WATER AT 25. (Farmer and Warth, 1904.) Gms. C 6 H4(OCH 3 ).NH 3 per 100 cc. QHfi Layer. H 2 O Layer. 0.4356 0.0747 0.6662 O.III2 O.9OIO O.I472 ANISOLE C 6 H 6 OCH 3 . RECIPROCAL SOLUBILITY OF ANISOLE AND BENZYL CHLORIDE DETERMINED BY THE FREEZING-POINT METHOD. (Wroczynski and Guye, 1910.) nf Gms. C 6 H 5 OCH 3 ~ llV1 nf Gms. C 37.2 ioo QHsOCH, 72.8Eutec. 46.1 40 93.3 " 60 28 C 6 H 5 CH 2 C1 -50 75-3 -50 13 60 62.1 " 41.1 o p NitrANISOLE FREEZING-POINT CURVES (Solubilities, see footnote, page i) ARE GIVEN FOR THE FOLLOWING MIXTURES. p Nitranisole + Mercuric Chloride (Mascarelli, 1908, 1909; Mascarelli and Ascoli, 1907.) " _j_ Urethan (Mascarelli, 1908, 1909; Pushin and Grebeuschukov, 1913.) " + " + HgCl 2 (Mascarelli, 1908, 1909.) -f Diphenylamine (Pushin and Grebenschukov, 1913.) Dinitranisole -f- Dinitrophenetol (Blanksma, 1914-) 8i ANTHRACENE ANTHRACENE Ci 4 H 10 SOLUBILITY OF ANTHRACENE IN SEVERAL SOLVENTS. Solvent. t ^f|j. Authority. Ethyl Alcohol (abs.) 16 0.076 (v. Becchi.) " " " 19-5 I -9 (de Bruyn, 1892.) ". " " 25 0.328 (Hildebrand, Ellefson and Beebe, 1917.) " " " b. pt. 0.83 (v. Becchi.) Methyl Alcohol (abs.) 19.5 1.8 (de Bruyn 1892) Benzene 25 1.86 (Hildebrand, Ellefson and Beebe, 1917.) Carbon Bisulphide 25 2.58 Carbon Tetrachloride 25 0.732 Ether 25 1.42 Hexane 25 0.37 95% Formic Acid 18.3 0.03 (Aschan, 1313.) Toluene 16.5 0.92 (v. Becchi.) " loo 12.94 Trichlorethylene 15 I.OI (Wester and Bruins, 1914.) SOLUBILITY OF ANTHRACENE IN BENZENE AND IN MIXTURES OF BENZENE AND PENTANE AND OF BENZENE AND HEPTANE. (Tyrer, 1910, and private communication. See Note, p. 447.) Tn In Benzene -f- Pen- In Benzene + Heptane In Benzene. tane at I5 <> at ^o and ^ t. d. of Sat. Sol. Gms. C^HIQ per 100 Gms. insol- Gms. C 14 H, per loo Gms. Solvent. Gms. QHio per 100 Gms. Solyent \ Solvent. vent. Solvent. at 14. at 70. 0.9008 0.605 O 0.184 0.2IO 1.6 7 10 o . 8909 o-975 10 0.225 12-5 0.284 2.10 ,20 0.8812 i-43 20 0.279 25 0.372 2.64 30 0.8717 2.03 30 o-357 37-5 0.474 3.23 40 0.8627 2.78 40 0.447 50 0.592 3-87 50 0.8541 3-75 50 0-549 62.5 0.718 4-59 60 o . 8460 5-i4 60 0.600 75 0.850 5-37 70 0.8374 7 70 0.780 87.5 0.976 6.15 75 0-8347 8-35 80 0.915 IOO I.lSo 6-93 90 1.059 IOO i. 221; Results for the solubility in benzene, differing from the above in some cases by 15%. are given by Findlay (1902). SOLUBILITY OF ANTHRACENE IN ALCOHOLIC PICRIC ACID SOLUTIONS AT 25. (Behrend Z. physik. Chem. 15, 187, '94.) Solid Phase Anthracene Picrate a N Anthracene Picrate -f Picric Acid Picric Acid Grams per 100 Grams Solution. Grams per 100 Gms. Solution. ^Acicf Anthracene Add. Anthracene. O o .176 Anthracene 3 999 o .202 I .017 o .190 it 5 .087 .180 2 .071 .206 14 5 843 .162 2 673 .215 (I 6 .727 151 3 233 o .228 ftf 7 5 11 o .149 3 .469 .236 Anthracene and 7 452 Anthracene Picrate ANTHRACENE 82 SOLUBILITY IN LIQUID SULFUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow, 1903.) Weighed amounts of anthracene and liquid SO 2 were placed in glass tubes which were sealed and rotated at a gradually increasing temperature, and the point observed at which the solid disappeared. Gms CnHi. 100 Gms. ! 40.1 45.8 47-9 2. II 2.48 2.65 65 7 8.2 88 Gms. C M Hio per loo 1 Gms. SO,. 9-9 12.7 too Gms. 4 98 5-66 99.1 7.14 106.5 Freezing-point curves are given for mixtures of anthracene and each of the fol- lowing compounds: Diphenyl, diphenylamine, a and /3 naphthylamines, a and /3 naphthols, resorcinol, p toluidine and triphenyl methane (Vignon, 1891); Naph- thalene (Vignon and Miolati, 1892); Phenanthene (Vignon, 1891, Garelli, 1894); Picric acid (Kremann, 1905). ANTHRAQUINONE (C 6 H4) 2 (CO) 2 . SOLUBILITY IN LIQUID SULFUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow, 1908.) (See Anthracene, above.) Gms. CuHgOi! per 100 Gms. SO 2 . 5.60 7-53 9.60 12.70 18.30 100 parts of absolute ethyl alcohol dissolve 0.05 part anthraquinone at 18 and 2.249 parts at b. pt. (v. Becchi.) loo gms. alcohol dissolve 0.437 gni. anthraquinone at 25. (Hildebrand, Ellefson and Beebe, 1917.) SOLUBILITY OF ANTHRAQUINONE IN BENZENE AND IN CHLOROFORM. (Tyrer, 1910.) In Benzene. In Chloroform. jo Gms. C M H 8 O 2 per f e Gms. C U H 8 O 2 per f 100 Gms. SO 2 . 100 Gms. SO 2 . 3.96 0.64 92.1 2.81 118.5 51-5 0.88 101.4 3-67 141.6 67.9 1.73 106.3 4.23 160 82.4 2.24 108.7 4.40 179 183-7 t. Sp. Gr. Solution. Gms. Ci 4 H 8 O 2 per 100 Gms. C 6 He. t. Sp. Gr. Solution. Gms. C 14 H 8 O 2 per loo Gms. CHC1 3 . o 0.8900 O.IIO -5244 0.340 20 0.8794 0.256 10 .5046 0-457 30 0.8692 0-350 20 .4850 0.605 40 0.8591 0.495 30 .4656 0.780 50 0.8439 0.700 40 .4461 0.994 00 0.8389 0.974 50 .4261 1.256 70 0.8288 1-355 55 .4164 1-415 80 O.8I90 1-775 00 .4070 1-577 SOLUBILITY OF ANTHRAQUINONE IN A MIXTURE OF CHLOROFORM AND HEXANE AT 12.6 AND 49. (Tyrer, 1910, also private communication. See Note, p. 447.) O IO 20 30 SO Gms. CuH^ per too Gms. Solvent at: %CHCl,in Solvent. 60 90 100 Gms. CuHjOj per 100 Gms. Solvent at: 12.6. O.OO6 0.016 0.024 0.034 0.068 49.0. 0.056 0.074 0.096 0.124 0.212 12.6. O.IOI 0.148 O.222 0-334 0.482 49 .0. 0.292 0.417 0.6o8 0.852 I.2O9 83 ANTHRAQUINONE SOLUBILITY OF ANTHRAQUINONE IN ETHER. (Smits Z. Electrochem. pi 663, '03.) Weighed amounts of ether and anthraquinone were placed in glass tubes which were then sealed. The temperature noted at which the anthraquinone disappeared and also at which the liquid phase disap- peared (critical temp.). The two curves cross at 195 and again at 241. Between these two temperatures the critical curve lies below the solubility curve, hence for this range of temperature no solubility curve is shown. The following figures were read from the curves, and are therefore only approximately correct. Cms. CuHgOa Cms. C t*. per too g. t. per 100 g. t . per 100 g. Solution. Solution. Solution. 130 3 241 30 260 80 150 4 245 40 270 90 170 4-5 2 47 So 275 100 195 5.0 250 60 100 parts of toluene dissolve 0.19 part anthraquinone at 15 and 5.56 parts at 100 (v. Becchi). loo gms. ether dissolve o 104 gm. anthraquinone at 25. (Hildebrand, Ellefson and Beebe, 19170 Data for the solubility of anthraquinone in mixtures of phenol and water are given by Timmermanns (1907). Hydroxy ANTHRAQUINONES C 6 H 4 < (CO)* > C 6 H 3 OH. 1000 cc. H 2 O dissolve 0.0035 gm. a oxyanthraquinone at 25. (Huttig, 1914.) 1000 cc. H 2 O dissolve o.oon gm. oxyanthraquinone at 25. 1000 cc. H 2 O dissolve 0.000012-0.000062 gm. 1.4 dioxyanthraquinone (= chin- izarin) at 25. 1000 cc. H 2 O dissolve 0.00158 gm. 1.6 dioxyanthraquinone ( = chrysazin) at 25. (Huttig, 1914.) ANTHRAFLAVINE (2.6 Dioxyanthraquinone) Ci 2 H 6 (CO) 2 (OH) 2 . 1000 cc. H 2 O dissolve 0.0003 S m - anthraflavine at 25. (Huttig, 1914.) ANTHRARUFINE (1.5 Dioxyanthraquinone) Ci 2 H 6 (CO) 2 (OH) 2 . looo cc. H 2 O dissolve 0.000285 gm. anthrarufine at 25. (Huttig, 1914.) ANTIMONY Sb. Fusion-point data for mixtures of antimony and iodine are given by Jaeger and Dornbosch (1912); for mixtures of antimony and sulphur by Jaeger and Van Klooster (1912), and for mixtures of antimony, iodine and arsenic by Quercigh (1912). ANTIMONY TriBROMIDE SbBr,. SOLUBILITY IN BENZENE DETERMINED BY "SYNTHETIC METHOD." (Menschutkin, 1910.) Gms. SbBr 3 Gms. SbBr 3 t. per loo Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. 5 . 6 m. pt. O QH, 90 83 2SbBr,.CA 4 . 5 Eutec. 8 . 3 c 8 H 6 + 2 sbBr 3 .c (l H (1 92.5111. pt. 90 . 2 15 12.5 aSbBrs-QH, 91.5 Q2.8 " 35 23 " 90 93.8 55 39 85 EuteC. 96.3 2SbBr,.C 6 H 6 +SbBr, 75 60.5 " QO 98 SbBr, 85 74.3 "94 ioo ANTIMONY TriBROMIDE 84 RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1911.) SbBr 3 + Acetic SbBr 3 4- Benzoic SbBr 3 4- Benzoyl SbBr 3 + Benzene Acid. Acid. Chloride. Sulphonic Acid. r. Gms. SbBr 3 per loo Gms. Sat. Sol. r. Gms. SbBr 8 per loo Gms. Sat. Sol. t'. Gms. SbBr 3 per 100 Gms. Sat. Sol. t. | Gms. SbBr 3 per 100 Gm. 1 Sat. Sol. 16.5* 120* o - 0-5 * 52.5 * is 12.2 "5 20. 1 3 19-5 So 15.8 10 41.8 no 36.8 6 f 32 47-5 26.2 4t S8.2 105 50 +10 41.2 44 t 36.9 20 64.3 IOO 61.5 20 47-5 So 39-1 40 72-5 95 71 30 54 60 45-7 60 81.9 85 83.1 40 60.8 70 55-2 70 97.1 79 t 87.6 5 67.8 80 68.1 80 92.4 85 92 60 74-9 85 77.6 90 97-8 90 96.4 80 89.4 90 90-3 94 IOO 94 IOO 94 IOO 94 IOO Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic. SbBr 3 + Acetophenone. Gms. SbBr 3 ^ VA SbBr 3 + Amylbenzene. Gms. SbBr 3 ^^ A SbBr 3 + Anisole. Gms. SbBr s c ^ i: j t. i er 100 Gr ns ' Phase. t. pei "- r ? s I 3 ' Phase. t. pei : loo Gr 081 Phase. 19-5* O C 6 H 6 COCH3 70 4.5 SbBrjj.CgHfj.CjjHu -34* o C 6 H 5 OCH 3 15 22.7 " -50 8-3 -35 2.5 "-fi.i i.S* 48.6 " +1.1 -30 16.6 20 11.7 i.i 20 56.8 i.i -25 21 " 26.5 " 30 63.3 " -17 t 32.5 "+SbBr 3 10 37-i " 37-5* 75 " 10 33 . 5 SbBr 3 20 50-5 " 31 t 83-2 i.i+SbBr 3 o 35-6 25 59 " 40 84.6 SbBr 3 20 41.6 30-5* 77 " 60 88.4 " 40 S 1 ^ " 30 t 77-9 "+SbBr, [80 94.1 60 65 40 80.6 SbBr 3 194 IOO H 80 84 60 86.4 " 80 93-6 " SbBr 3 -f Benzaldehyde. SbBr 3 -f- Benzonitrile. SbBr 3 + Benzophenone. Gms. SbBr 3 q ,. , 20 38. 4 i.i -13.2' * .0 CHBCN 48 * C 6 H fi CO.C 6 H 6 45- 5 " -16 19 .2 " 40 24 " 20 54- 3 " 18 t 28 .7 "+i.i 29 t 41. 2 "+i.i 35 64. i " 43 i.i 40 50 i.i 40 70. 3 " 20 59 " 45 56, 3 " 41. 5* 77- " 30 67 " 48 5 *66, A K 37. 8f 84. 4 i ,i+SbBr 3 38* 77 .8 45 76 " 55 88 SbBr 8 35 t '82 .5 i.i+SbBr, 40 80 i.i+SbBr 3 75 93. i " 55 87 . 5 SbBr 3 . So 82, 6 SbBr 3 85 96. i " 75 93 3 70 88. 7 " 90 98. 2 85 96 5 80 92, A " 94 IOO 90 98 3 90 97. 3 . " 94 IOO 94 IOO " * m .pt. t Eutec. t tr. pt. I.I = compound of equimolecular amounts of the two constituents in each case. ANTIMONY TriBROMIDE RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910.) SbBr 3 + Brombenzene. Gms. SbBr 3 t. per 100 Gms. Sat. Sol. -31* o -32 5-7 -25 1 9-5 -15 15 5 20.8 + 5 26.8 i5 33 25 39-6 45 54-6 65 71.9 85 90.7 94 roo SbBr ; 5 + SbBr 3 + SbBr 3 + Chlorbenzene. lodobenzene. Fluorbenzene. Gms. SbBr 3 Gms. SbBr 3 Gms. SbBr! t. per 100 Gms. Sat. Sol. t. per 100 Gms. Sat. Sol. t. per 100 Gms. Sat. Sol. -45-2* -28.6* -39- 2* -47 t -40 5-2 6.8 -30.3 -32 t 7.0 14-3 -39- -25 5t 1-3 4-3 -30 Q.6 20 21.6 -15 6-7 -20 12.6 10 27.5 + 5 12.6 -10 16 o 33-4 25 21.8 20 +10 39-3 45 35-3 20 30 20 45-2 55 45-5 40 45-4 40 57-6 65 60.8 60 65.8 60 71.1 75 81.8 80 86.3 80 86.3 85 93-5 94 100 94 IOO 94 IOO SbBr 3 + SbBr, + SbBr 3 + SbBr 3 + p Dibrombenzene. p Dichlorbenzene. Nitrobenzene. m Dinitrobenzene. Gms. SbBr 3 t. per i oo 'Gms. Sat. Sol. Gms. SbBr 3 t. per 100 Gms. Sat/ Sol. Gms. SbBr 3 t. per loo Gms. Sat. Sol. Gms. SbBr 3 t. per loo Gms. Sat. Sol. 88* o 54-5* o 6* o 90* o 85 10 51-5 14 I 22 80 29 . I 80 25.2 48. 5 t 26.5 - 4 37-4 70 50 75 39-2 55 35-9 - 9 48.4 60 63 70 52 60 43-1 -14- 5t 55-3 50 70 . 8 65 f 62.2 65 50.7 - 5 58.3 47-5 t 72 70 68.7 70 58.8 + 5 61.5 50 73-4 75 75-3 75 67.2 25 68.6 60 78.2 80 8r.8 80 75.8 45 76.6 70 84 85 88.3 85 84.5 65 85.3 80 90.4 90 94-3 90 93-4 85 94-7 90 96 . 8 94 100 94 100 94 loo 94 loo Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic. SbBr 3 + Ethylbenzene. SbBr 3 + Propylbenzene. SbBr 3 + p Cymene. Gms. SbBr 3 <,,. . t. per loo Gms. p S , olld Sat. Sol. Phase - Gms. SbBr 3 A .. . * Tssr * F Gms. SbBr 3 g^ -93* C 8 H 6 .C 2 H 5 -80 i. 3 I - 1 -75* -93-2 t 0.4 "+i.i -60 3- 7 -77 t 2 70 I i.i 40 9- 4 -So 6. I i.i -50 2.2 " 20 22. 5 -30 12. 3 " -30 4.8 " 10 38. 4 10 27 " 10 12 ' - si 49 i.i+SbBr, 42. 3 " +10 29.2 " +10 53- 3 SbBr 3 +5 t 51- 5 x.x+SbBit 20 46.3 M 20 57- I 20 56 SbBr, 29 1 69.7 i.i+SbBr s 40 66. 2 " 40 6 4 . i M 50 78.2 SbBr 3 60 77 2 60 75 " 70 87.3 " so 89. 8 it 80 88. 5 M 90 97-7 " 94 IOO " 94 IOO M * m. pt. t Eutec. tr. pt. i.i = compound of equimolecular amounts of the two constituents in each case. ANTIMONY TriBROMIDE 86 RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1911.) SbBr 3 + Cyclohexane. SbBr 3 + Pseudo Cymene. SbBr 3 + Mesitylene. Gms. SbBr 3 s ,-, Gms. SbBr 3 ,,.. Gms. SbBr 3 <, ... t. per loo Gms. p>._.. t. per 100 Gms. ^u t. per 100 Gms. i2~ Sat. Sol. Sat. Sol. Sat. Sol. Phase ' 6.4* o CsHu 57-^* o C 6 H 3 (CH 3 ) !, 2, 4 54.4* o QH^CHj), i, 3, 5 6f 0.3 CeHu+SbBr, -58.8 f 9-7 " +i-i ~55-2f 2.1 " +1.1 20 1.4 SbBr 3 50 II i.i 30 3.6 i.i 40 3.7 30 16.2 io 9 60 7.1 io 31 +10 25.4 " 80 12.5 o 47.6 " 20 35. $ liquid layers formed 7 63.5 1.1+2.1 29 t 46.5 i.i +2.1 92.5 17.4 97.6 IS 67.4 2.1 40 54 . 2 2.1 no 25.8 96.5 25 73 50 61.7 130 36.4 95 33 79.1 2 .i+SbBr s 60 70 . 2 " 150 47.8 92.7 50 82.8 SbBr 3 69.5*85.8 170 62.3 86.3 70 88.4 69! 87.7 2.i+SbBr 3 175 1 74.0 90 97.4 80 92.7 SbBr 3 SbBr 3 + Diphenylmethane . SbBr 3 + Naphthalene. SbBr 3 +a Nitronaphthalene. Gms. SbBr 3 g j i( j Gms. SbBr 3 ~ ,.. t. per loo Gms. ? Gms. SbBr 3 So jj d Sat. Sol. ase ' Sat. Sol. Fhase ' Sat. Sol. Phase. 26 * o CH 2 (C 6 H 5 ) 2 79.4* ' C 10 H 8 57* o.o aC 10 H 7 N0 2 22. 5 f 12.8 "+2.1 75 23.7 50 23.2 40 22.8 2.1 70 37-4 40 42.6 50 29.5 65 48.6 33-5 1 50.5 "+ 60 37-5 57 6l.2 " +2.: t 37.5 62.6 i.ilf 70 47-8 60 68 2.1 38.2* 67.6 80 60.2 65 81.3 38 f 68 i.i+SbBr, 90 * 81 . i 66* 84.9 50 73.4 SbBr 3 85 89.6 65 f 86.7 2 .i+SbBr 3 70 83.8 82f 92.2 2 .i+SbBr 3 75 90.1 SbBr 3 90 96.4 90 96 . 2 SbBr 3 85 94-9 94 IOO " 90 97.7 SbBr 3 + Diphenyl. SbBr 3 + Phenol. SbBr 3 + Phenetol. Gms. SbBr 3 s ,. , t. per loo Gms. ^,? lld Sat. Sol. Phase - Gms. SbBr 3 c rj * isssr $ Gms. SbBr 3 g oli( j ,'70.5* o C6H 6 C 6 H 5 41 * C 6 H 5 OH -28.6* o C 6 H 6 OC 2 H 5 60 35.7 35 22.5 29 1 1.6 " +1.1 50 54-3 30 40 io 4.8 i.i 47 1 57-4 "+2.1 28.5! 44-6 "+2.1 +10 12.9 55 68.5 2.1 40 53 2.1 20 19.2 " 60.5* 82.7 50 62.5 30 29.7 70 86 . S SbBr 2 60 75.8 4O 46 . 2 80 91.5 65 84.7 48.8* 74-7 90 97-3 66.5* 88.5 47 1 77-8 i.i+SbBr 8 94 loo 75 9 1 7 SbBr 3 60 83 SbBr 3 85 95-8 70 87.3 90 98.1 90 97.4 * m. pt. t Eutec. t crit. t. tr. pt. H Not obtained regularly, in such cases, single eutectic at 23 and 61.5 per cent SbBr 3 . i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbBr 3 with one molecule of the other con- stituent. ANTIMONY TriBROMIDE RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE IN VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910-12.) naphthalene. Gms. SbBr 3 per loo Gms. Sat. Sol. O ,3.8 22.6 27.3 35-5 46.7 61.6 69.9 78.6 87.5 96.6 IOO SbBr 3 + a Brom- SbBr ; naphthalene. nap Gms. SbBr 3 t. per 100 Gms. t. Sat. Sol. 3* -17 s o 15-8 21 - 3-St 3i-4 24. 15 38.7 IO 35 49-9 +10 45 56.9 30 55 64.7 65 72.9 g 75 81.8 70 80 86.3 80 85 90.8 90 90 95.4 94 SbBr 3 +/3Chlor- naphthalene. SbBr 3 + Tetra- hydrobenzene. Gms. SbBr 3 Gms. SbBr 3 t. per 100 Gms. Sat. Sol. t. per 100 Gms. Sat. Sol. 56* O ... 50 26.1 -5 ii. 7 45 38.5 IS 40 49 35 24.1 37- St 53-6 55 41 45 58.8 65 55-1 55 66.8 70 64-5 65 75-2 75 76.2 75 83-8 80 84-4 80 88.1 85 90.7 85 92.4 90 95-8 90 96.7 94 IOO SbBr 3 + SbBr 3 + SbBr 3 + SbBr 3 + o Chlortoluene. m Chlortoluene. p Chlortoluene. m Nitroluene. Gms. SbBr 3 Gms. SbBr 3 Gms. SbBr 3 Gms. SbBr 3 t. per loo Gms. Sat. Sol. t. per 100 Gms. Sat. Sol. t per loo Gms. Sat. Sol. tv, i per 100 Gms. Sat. Sol. -36, 2* -47-8* 6 .2* 16* -38. St i-7 -50 t 8.1 2 St 23.3 10 24.2 20 15-4 -30 IX .7 2O 33 5 39 22.S io 17.5 30 39-3 o 46.6 + 20 32.5 + 10 25.8 40 47-2 - 9t 56.8 30 38.8 30 37-5 50 56.3 +10 62.7 40 46.8 40 45-1 60 66.7 30 69.7 50 60 56 66.5 54-4 65 70 80 77-8 88.2 f 60 77-5 8i-S g 77-8 88.2 70 80 77 88.2 90 94 97 IOO 70 80 86.3 91.4 90 97 90 97 90 97-2 Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic. SbBr 3 + Toluene. SbBr 3 + o Nitrotoluene. Gms SbBr 3 Solid SbBr 3 + p Nitrotoluene. Gms. SbBrj , ... Sat. Sol. 5at. Sol rnase.j Sat. So -93* C 6 H 5 .CH 3 - 8.5* O o N0 2 .C 6 H4.CH 3 52-5* -93-5t I.O "+i.i -13-5 19-5 " +1.1 45 29.8 -80 2.4 i.i O 27.6 i.i 40 42.2 -60 6.2 " IO 35-6 " 35 50 40 12.4 " 20 47-5 " 25 61 20 25-7 " 25 55-7 H i6f 67 - It 53.1 1. 1+2. 1 31 t 70 " +SbBr 3 30 71.6 + 20 30 t 69.4 78 2.1 2.i+SbBr 3 40 5 73-5 77-5 SbBr 3 g 78.9 82.9 40 80.6 SbBr 3 60 81.7 70 87.2 60 86.6 80 91.4 " 80 92 80 93-8 " 90 97-2 " 90 97-5 94 IOO " P N0 2 .C 6 H4.CH 3 +SbBr, SbBr 3 * m. pt. t Eutec. tr. pt. i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbBr 3 with i molecule of the other con- stituent. ANTIMONY TriBROMIDE 88 RECIPROCAL SOLUBILITIES OF ANTIMONY TRIBROMIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910-11.) phe^y?mttiie. SbBr 3 + o Xylene. SbBr 3 + m Xylene. SbBr 3 + p Xylene. Gms. SbBr s t. per 100 Gms. Sat. Sol. Gms. SbBr 3 t. per 100 Gms. . ' Sat. Sol. Gms. SbBr 3 t. per loo Gms. Sat. Sol. Gms. SbBr 3 t. per 100 Gms. Sat. Sol. 92* -2 9 * O -57* o 14* o 85 18 -33 t 10-5 -59- 2 t 5-5 12 16.6 80 30.1 20 17 -45 10 lot 28 70 47 10 24.6 -35 14.2 2O 36 00 48 1 58.2 67.1 2O 34-5 65.8 -25 - 5 20 38.8 30 40 44-6 53-8 60 70 73-3 79-5 24* 22. St 77.2 78.6 + 5 12.5 $ 56.6 75-4 t 63-5 74 80 86.4 30 80 25 77-6 67-5* 87.3 90 95-2 50 84.7 45 82.3 66. st 88.3 94 100 70 90.1 65 87.9 75 91.4 90 97-7 87 95-3 85 95-7 * m. pt. f Eutec. J tr. pt. In the case of each of the above xylenes the compound existing between the first and second eutectic consists of equimolecular amounts of SbBr 3 and xylene. Solubility data determined by the freezing-point method (see footnote, page i) are given for mixtures of antimony tribromide and each of the following compounds : azobenzene, benzil, s diphenylethane and stilbene (Van Stone, 1914), aniline, ben- zophenone, triphenylmethane and toluene. (Kurakov, Krotkov and Oksman, 1915.) ANTIMONY TriCHLORIDE SbCl 3 . SOLUBILITY IN WATER. SOLID PHASE SbCl 8 . (Meerburg Z. anorg. Chem. 33, 299, 1003.) Mols. SbCU Gms. SbCla Mols. SbCla Gms. SbCl 3 t. per loo per 100 t. per 100 per 100 Mols. H 2 O. g. H 2 O. Mols. H 2 O. g. H 2 O. o 47.9 601.6 35 91.6 1152.0 15 64.9 815.8 40 108.8 1368.0 (72.4 9IO-I 50 152.5 1917.0 (74-1 931.5 60 360.4 4531-0 25 78.6 988.1 72 oo oo 30 84.9 1068. o SOLUBILITY OP ANTIMONY TRICHLORIDE IN AQUEOUS HYDROCHLORIC ACID. SOLID PHASE SbCl 3 . TEMP. 20. (Meerburg.) Mols. per 100 Mob. H 2 O. Gms 100 g :Sb. Mols. per 100 Mols. H 2 O. Gms. per 100 g. H 2 O. HC1. 2.4 6.1 8-3 SbCla. 72.4 71.2 69.9 68.2 HC1. o.o 4-86 12-34 16.80 SbCla. 910.1 895-4 879.0 857.6 HC1. 9.1 II-7 28. 7 SbCl 3 '. 68.9 68.1 62.8 HC1. 18.41 23.68 5 8.08 SbCla. 866.4 856.3 789.8 loo gms. absolute acetone dissolve 537.6 gms. SbCla at 18. d*p sat. sol. = 2.216. (Naumann, 1904.) loo gms. ethyl acetate dissolve 5.9 gms. SbCl 3 at 18 d sat. sol. = 1.7968. (Naumann, 1910.) 89 ANTIMONY TriCHLORIDE RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1911.) SbCl 3 + Acetic Acid. SbCl 3 + Acetophenone. SbCl 3 + Anisol. Gms. SbCl 3 o-,, Gms. SbCl 3 S , ;H Gms. SbCl, 16.5* o 10 22.7 o 42.5 - 5 48.5 - 9t 52.7 o 59 CH 3 COOH 19 . 5 IS ft " +1.1 IS i.i 35 * o C 6 H 6 COCH 3 -34* 14-3 -36.5 28.5 -30 31.8 ' +1.1 io 35-4. LI +10 41.6 20 t n. 8 16 28.3 43 52.8 CH 6 OCH 3 " +1.1 i.i IO 67.3 55 55 .2 " 251 63.6 " +2.1 19* "79.1 60.5 * 65 4 " 35 70 2.1 25 81.5 SbCl, 45 79 3 " 41-5 * 80.9 " 45 87.4 32 t 84 i.i+SbCl, 40 t 84-5 "+SbCl 3 65 95-3 So 89 3 SbCl 3 60 .92 SbCl 3 73 IOO 70 98 ,2 70 98 SbCl 3 + Aniline. SbCl 3 + Benzaldehyde. SbCl 3 +- Benzophenone. Gms. SbCl 3 g ,5. Gms. SbCl 3 Solid Gms. SbCl 3 o ,. , t. per too Gms. T>I ' t. per ioo Gms. pv, 00 t. per ioo Gms. pu^ c4- c.r.1 jrnase. GO+- c^i iiio.sc. Qot Q/^I x ua,c. t x C 6 H 5 NH 2 +i. 4 IO 43 . 5 x.i 48 * o C 8 H 5 COC,H 5 + 20 ' 2 7 1.4 20 47 5 40 16.3 " 60 18. 7 " 30 52 4 35 t 21.6 " +1.1 77 t 29. 6 I-4+I-3 40 60 .2 45 26.2 i.i 88* 44- 8 1-3 43 5* 68 . I " 55 31-4 " 87 t 46. 3 1.3+1-2 40 74 .2 " 65 37-5 " 94-5* 54- 9 1.2 30 80 .6 76 * 55-4 " 89-5 61. 7 1. 2+1. 1 25 t 83 i.i+SbCl 3 65 71.6 " 100.5 * 71 I.I 35 85 SbCl 3 45 80.6 it 70 82. 2 " 45 87 5 39 t 82.7 "+SbCl 3 3i t 88 i.i+SbCl 3 65 95 .2 50 87 SbCl 3 60 94- 9 SbCl 3 73 IOO " 70 97-7 " i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbCl 3 with i molecule of the other constit- uent. 1.2, 1.3 and 1.4 = compounds of i molecule of SbCl 3 with 2, 3 and 4 molecules of aniline. SbCl 3 + Benzoic Acid. SbCl 3 + Benzoyl Chloride. SbCl 3 +- Benzene Sulphonic Acid. SbCl 3 + Tetra- hydrobenzene. Gms. SbCl 3 'Gms. SbCl 3 Gms. SbCl 3 Gms. SbCl 3 t. per ioo Gms. Sat. Sol. t per ioo Gms. Sat. Sol. t. per ioo Gms. Sat. Sol. t. per ioo Gms. Sat. Sol. 1 20 O - 5 I 7 .8 52-5* O -25 19.1 no 23 -IS 36.8 45 18 -15 24 IOO 38.8 -23 t 45 25 43-7 - 5 30 90 50 5 5- 7 5 56.i + 5 37- * 80 59 +15 58.2 -5t 60.8 IS 45-1 70 66 25 62.9 +5 49-8 25 54-3 60 71.6 35 68.4 25 56.7- 35 64.5 46 1 78 45 74-9 45 69.2 45 74 60 89.2 55 82.4 65 90.2 55 83.6 70 97-5 70 96.5 73 65 92.8 Molecular compounds are not formed in the above systems. The diagram in each case consists of two arms meeting at the eutectic. * m. pt. t Eutec. I tr. pt. ANTIMONY TriCHLORIDE 90 RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, igio-'n.) SbCl 3 + Benzene. SbCl 3 + Brombenzene. SbCl 3 + Chlorbenzene. Gms. SbCl, <^,., 1 Gms. SbCl, <,,.. Gms. SbCl, -... 4* 7-3 QH, . -3i t CH6Br -45 .2f QH 5 C1 i 19.4 " +2.1 -32-5* 4.8 " +1.1 -47 4-3 " +1.1 10 24.6 2.1 -30 6.8 i.i -40 7 i.i 20 30.5 " 20 14.8 " -30 ii. i 40 44.1 " io 23-9 " -IS 20.5 60 60.6 H o 34-3 H - 5 32.5 79 t 5 + 3t 20 40-3 52 i.i+SbCl, SbCl, o 20 t 44-2 56 70 93-5 " 40 68 " 40 72.1 62* 96 2.1+SbCl, 60 85.8 II 60 88.2 67.5 97-9 SbCl, 73 IQO II 73 100 SbCl 3 + Fluorbenzene. SbCl 3 + lodobenzene. SbCl 3 + Nitrobenzene. Gms. SbCl, g^ Gms. SbCl, Solid Gms. SbCl, Solid -39.2 t o QHjF -28. 6f Sat. Sol. CH 5 I 6f o CANO, -40-5 * 2.4 "+ i.i -35 ^ 12.8 " 2 20.4 1 -25 II i.i -45* 29.8 "+i.i 10 * 32 M -IS 17.3 " -34-5 11.7 i.i, unstable -16 5* 38 " +I.I 10 21.4 " -IS 26.4 (i io 5 44 I.I - 5 26.4 " - 3 . 49 i " " - 7 5 So ii 34.1 " -35 32.5 i.i+SbCl, - 6 t 64.8 1C + 5-5 t 45.8 i.i+SbCl, -IS 38.9 SbCl, - 6 5* 67.5 i.i+SbCls 15 53.6 SbCl, + 5 46.4 " + 5 69.6 SbCl, 25 61.6 " 25 56 S l 88* 54-5*. 6.4* 0.0 85 5-7 So 14 6f 0.2 80 15-4 45 30 20 1.2 70 35 40 48 40 4-2 60 52.8 39-5 t 50.5 60 9.7 55 59 45 59 . 5 Two liquid layers formed 49- 5 t 64 So 67.8 70 13.7 97 65 71.8 55 75-7 80 19.5 96.1 60 79-3 60 83 ioo 32.3 92.7 70 95 70 96.2 120 57.1 83.2 124 58.9 76.7 125. 5 68 SbCl 3 + P Cymene, SbCl 3 + Pseudocymene. SbCl 3 + Diphenyl. Gms. SbCl 3 ^ r . A Gms. SbCl 3 Solid Gms. SbCl 3 Solid .*.' P* * too Gms. p hase t. Per ioo Gms. p hase *. ^c^Sol 118 ' Phase - -75* P C 6 H4CH 3 C 3 H 7 57.4 * o C 6 H 3 (CH 3 ) 3l ,2, 4 70.5* QH5.QH, -76. st 2 " -{-I.I -6ot 18.6 " +1.1 65 14 -So 7 i-i -45 23.6 i.i 55 33-4 -30 IS -25 33-3 sot 40 "+2.1 IO 30 IO 45 55 45-2 2.1 -.3. si 41 I.I+2.I - si 50.7 " +2.1 60 51.4 10 46.1 2.1 +15 55.8 2.! 70 70.7 30 60 35 62.2 " 71* 74-6 40 i 76.4 2. I -fSbCl So 69.7 " 65 85.5 So 81.2 56* 79.2 " 57 1 88.9 2.1+SbCl, 60 8 7 Sit 87.5 2.i+SbCl 3 65 93.1 SbCl, 70 95-6 65 93.9 SbCl, 70 97 * m. pt. t Eutec. tr. pt. crit. t. i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbCl 3 with I molecule of the other constituent. ANTIMONY TriCHLORIDE 92 RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910-11.) SbCl 3 + Mesitylene. Cms. SbCl 3 Cms. SbCl 3 o ni; j SbCl 3 + Triphenyl Methane. Cms. SbClj o 1; , 54-4 o CgHs(CH^ 3 i, 3,5 26* o CH Z (C 6 H 5 ) 2 92* o CH(C 6 H 6 ) 3 -55-6 i. 5 " +1 i 22.5' t 7-9 " +2.! 85 ii. 8 " -40 3 I.I 40 15.1 2.1 80 19-3 " 20 7 60 26 70 32 " 14.2 (i 70 33 60 42.4 " 10 20. 3 80 41.6 So 49-6 3 39- 3 " 9 52-7 49 t 5 " +1.1 f* 65 : 4 4 2.1 1 9S * 100* 59-8 72.9 45 40 62.8 68.3 i.i 75-5* 79- 2 " 95 82.2 35$ 72 i.i+SbCl 3 70 87 " 90 86.7 45 76.6 SbCl 3 58.5 92. 4 " +SbCl 3 80 91-5 55 82.4 63 94 SbCl 3 67 I 95-7 *. i+SbC! 3 65 90.6 70 98 " 70 97 SbCl ? 70 96.1 " SbCU + Naphthalene. ^naphthalene? 1 '" SbCl 8 + 18 Chlor- naphthalene. Cms. SbCl 3 c vj Gms. SbCl 3 Solid Gms. SbCl 3 g i- j t. per i oo Gms. pv, oca t. pe^ioo Gms. pv..^,, t. per 100 Gms. pv, oco I79-4* Sat. o sol. C 10 H 8 i -17* a CioH 7 Cl 56 at. Sol C 10 H 7 C1 75 . IS .2 M 21 t 8.1 " +2.1 5 16.6 " .65 35 " O 14.4 2.1 45 27.2 " 59 t 42 .8 " +2.1 IO 18.7 " 40 35-4 " 65 48 4 2.1 20 24.6 ii 30 A 47-3 * 75 58 .8 " 30 33-5 " 25 t 52-3 " +1.1 80 65 " 40 47-7 " 29-5* 58.2 i.i 86* 78 " 45 61.5 " 28 1 64 i.i+SbCl, 80 88 7 ' 46* 73-6 " 35 68.3 SbCl 3 70 93 * 45-5 J 75 2.1+SbCla 45 75-3 65 J 94 2.1+SbCl, 55 82.2 SbCl 3 60 87.5 " 70 97 .2 SbCl 3 70 90-5 73 I 00 " SbCl 3 + a Bromnaphthalene. SbCl 3 + a Nitronaphthalene. t. Gms. SbCl 3 per 100 Gms. Sat. Sol. Solid Phase. t Gms. SbCl 3 per 100 Gms. Sat. Sol. Solid Phase. 3* o a C w H 7 Br 57 * a C 10 H 7 N0 2 - it 8-3 " +1.1 50 13 .6 " 10 12.8 i.i 40 27 3 " 25 24 " 30 t 35 .8 " +1.1 33 38.5 " 35 43 .2 i.i 34-5 * 52.4 " 37 5 49 3 " 33 62.1 < 39 * 56 7 " 31.5 t 64.7 i.i+SbCl 3 37 5 64 " 40 69.7 SbClj 34 i.St 72 .8 i.i+SbCla 76.2 84.5 . 45 60 78 87 4 SbCl 3 70 94-8 " 70 96 .6 " " m pt. t tr. pt. t Eutec. i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbCl 8 with I molecule of the other con- stituent. 93' ANTIMONY TriCHLORIDE RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910-12.) SbCl 3 + Phenol. Gms. SbCl, o-ijj SbCl 3 + Phenetol. Gms. SbCl 3 o,.. SbCl 3 + Toluene. Gms. SbCl 3 o^i:-i t. per zoo Gms. ?** t. per !oo Gms. fT" t. per 100 Gms. pT"t Sat. Sol. se ' , Sat. Sol. Sat. Sol. 41* C 6 H B OH -28 .6* O 1"* TT r\(~* T3 [ 5 -93 * C,H 6 .CH 3 35 16.2 " -29 t I 4 "+! i -94 t i .1 " +i.l 30 25.6 " 20 4 .5 I.I 70 3 . i i.i 20 38.7 " 10 8 .1 -30 IS .8 " 10 48 Cl + 10 18 .2 O 5 " St 52 " +3.1 2O 27 4 II I 57 .8 " +2.1 IS 58.6 2.1 30 39 .4 20 62 .8 2.1 30 70.6 " 40 58 " 40 78 " 37* 83 - " 42 .2* 65 " 42 5* 83 . i " 36. 5 t 83.7 2.I+SbCl 3 35 t 77 .8 40 t 85 .8 2.i+SbCl 3 55 90.6 SbCl s So 86 8 50 89 SbCl 3 70 98.2 H 70 97 i 70 97 .8 " SbCl 3 + o Chlortoluene. SbCl 8 +\m Chlortoluene. I to ims. SDI nS Solid Li rmS. 3D pe r 100 Gi ns - Phase. t.' pe r 100 G -36.2* O o C1C6H 4 CH 3 -47-8* -37- St 6. 9 " +1.1 -49 t 6.9 20 I8. 3 i.i 40 12.3 10 29.2 " -30. 20.1 - 5 37-i " 20 31 - o.st 47-9 i.i+SbCl 3 14 1 40 + 10 SbCl 3 o 4 6.! 20 5^2 M 10 51.6 3 64.6 M 20 57-4 40 71.8 II 40 72.8 60 88.4 " 60 89.1 +1.1 SbCl 3 - 7-St 73 73 IOO o 10 30 40 50 60 70 o 12.7 23-5 32.2 43-8 47-2 52.2 64.8 72-3 80.2 88.8 97-4 SbCl 3 + p Chlortoluene. Gms. SbCl 3 c ... 6.2 3 o 3 7 '+SbCl 3 SbCl 3 + o Nitrotoluene. SbClg + m Nitrotoluene. SbCl 3 + p Nitrotoluene. Gms. SbCl 3 ' Sol . , . [Gms. SbCl 3 g. Gms. SbCl 3 q ... t. per loo Gms. ^ J. t. per toe Gms. ,$ se t. >er 100 Gms. pi? Sat. Sol. , Fha >e - Sat. Sol. Sat. Sol. * flase ' -8.5* oNOsQ H 4 CH 3 16* wNOjC ^CHs 52.5 * o p NOzQ^CH -13-5 II- 3 io 15 45 18.5 -iS.st 18.5 +n o 30.7 35 33-6 io 21.3 i. i io 39.2 30 ' 38.8 " + 10 31.1 20 42.8 1 20 46 20 39 crystallization not 7-5 t 52 " +i.x 30 So obtained here 7-5 * 62.3 34-5 * 62.3 o 67 . 2 Sb Cl, 5 66.1 33 68 20 72.5 3t 68.5 i.i+SbClj 27- St 74-6 +SbCl3 30 76.3 10 70 SbCU 40 79 . i Sbl :i, 40 80.8 30 ^75-5 50 84-5 * 50 86 So 85 70 97-5 1 60 91.6 70 97-5 73 loo t Eutec. t tr. pt. m. pt. i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbCl 8 with i molecule ot the other con- stituent. ANTIMONY TriCHLORIDE 94 RECIPROCAL SOLUBILITIES OF ANTIMONY TRICHLORIDE AND VARIOUS ORGANIC COMPOUNDS, DETERMINED BY THE "SYNTHETIC METHOD." (Menschutkin, 1910.) SbCl 3 + o Xylene. SbCl 3 + m Xylene. SbCI 3 + p Xylene. Cms. SbCl s Solid t. per 100 Gms. -pi t. p Sat. Sol. Phase ' Gms. SbCls Solid GmS ' SbC1 3 Snlirl ' Gms ' Phase *- P er I0 Gms - PI? Sol. Phase ' Sat. Sol. Phase. _ 29. 0C 6 H 4 (CH 3 ) 2 -57* O 7W L-c-H-4 (0.11.3)2 14 * P C6H 4 (CH 3 ) 2 35 t 14 " +1.1 60.5 t 7 5 " +I.I II 71 1" Ir 7 " +I.I 30 17- 5 45 15 .8 I.I 2O i7 5 i.i 20 24. 8 -25 29 40 37 3 " 10 33- 4 5 46 . 2 So 52 3 o 43- 4 - aj 49 .8 " +2.1 55 t 62 7 +2.1 IO 55 5 53 .1 2.1 60 66 .1 2.1 19. 5*68. i IS 58 7 70 * 81 25 71- 3 2.1 25 65 7 6 S 88 .1 " 30 75. 7 33 73 .8 58 t 92 11 +SbCl 3 33. 5 * 81 38* 81 6 9 97 . 2 SbCl 3 5t82. 5 2 .i+SbCl 3 36.5 t 83 , 7 2.I+SbCl 3 m 5 88 SbCl 3 50 87 7 SbCl 3 10 20 7 P C 6 H4(CH 3 ) 2 unstable 60 92. 4 60 91 5 " 7 t 32 .8 "k+2. 1 71 98. 5 70 97 ,2 35 50 3 2.1 55 62 7 " * * m. pt. t Eutec. t tr. pt. i.i = compound of equimolecular amounts of the two constituents in each case. 2.1 = compound of 2 molecules of SbCl 3 with i molecule of the other con- stituent. DISTRIBUTION OF ANTIMONY TRI AND PENTACHLORIDES BETWEEN AQUEOUS HC1 AND ETHER AT ROOM TEMPERATURE (Mylius, 1911 ) When i gm. of antimony as SbCl 3 or as SbCl 5 is dissolved in 100 cc. of aq. HC1 of the following strengths and the solution shaken with 100 cc. of ether, an amount of metal, depending upon the concentration of the aq. acid solution, enters the ethereal layer. With i% SbCl 3 Solution. Per cent Cone. Per cent of Total of HC1. Sb in Ether Layer. With i %SbCl 6 Solution. 20 15 10 S i 6 13 22 8 0-3 Per cent Cone, of HC1. Per cent of Total Sb in Ether Layer. 20 81 15 10 22 6 5 i 2-5 trace Solubility data determined by the freezing-point method (see footnote, p. i) are given for mixtures of antimony trichloride and each of the following com- pounds: azobenzene, benzil, s diphenylethane, and stilbene (Van Stone, 1914); benzene, naphthalene, diphenylmethane and triphenylmethane (Kurnakov, Krotkov and Oksman, 1915); SbBr 3 , SbI 3 , and SbBr 3 + SbI 3 (Bernadis, 1912); SbCU (Aten, 1909). ANTIMONY PentaCHLORIDE SbCl 6 . Data for the freezing-points of mixtures of antimony pentachloride and anti- mony pentafluoride are given by Ruff (1909). 95 ANTIMONY TriFLUORIDE ANTIMONY TriFLUORIDE SbF 3 . SOLUBILITY IN WATER. (Rosenheim and Grunbaum, 1909.) Gms. SbF 3 per 100 Gms. O 2O 22.5 25 30 SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS AND OF HYDROFLUORIC ACID AT o. Normality Gms. SbF 3 per 100 Gms. H 2 O present in Aq. Solutions of: Water. Sat. Solution. 384.7 79-4 444-7 8l.6 452.8 81.9 492.4 83.1 563.6 84.9 Solution. KC1. KBr. KNO 3 . K 2 SO 4 . K 2 C 2 O 4 . (NH^CA- K 2 C 4 H 4 O 6 . HF. 4 I 461.8 448.7 458.2 419.9 465.7 ... 461.4 432.5 0.5 448-3 45 45 J -9 408.5 481.2 431.9 430.5 404 0.25 431.9 455-6 418.3 406.6 451.3 442.3 430.8 o 125 407.3 417-2 401.4 ... 405-2 433-3 435-2 *479-4 * (2 n HF.) Celluloid flasks were used and all measuring apparatus provided with HF re- sistant coating. The SbF 3 was prepared in the form of rhombic transparent crystals from Sb 2 O 3 and HF. ANTIMONY TrilODIDE SbI 3 . SOLUBILITY IN METHYLENE IODIDE AT 12. (Retgers, 1893.) loo parts CH 2 l2 dissolve 11.3 parts SbI 3 . Sp. Gr. of solution = 3.453. SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF: Antimony triiodide and arsenic triiodide. (Quercigh, 1912; Jaeger and Dornbosch, 1912; Vasilev, 1912.) phosphorus triiodide. Qaeger and Dornbosch, 1912.) iodine. (Quercigh, 1912.) ANTIMONY TriOXIDE Sb 2 O 3 . Freezing-point data are given for mixtures of antimony trioxide and antimony trisulfide. (Quercigh, 1912.) ANTIMONY TriPHENYL Sb(C 6 H 6 ) 3 . Freezing-point data are given for mixtures of antimony triphenyl and mercury diphenyl and for antimony triphenyl and tin tetraphenyl. (Cambi, 1912.) ANTIMONY SELENIDES SbSe, Sb 2 Se. Freezing-point data for SbSe + Ag 2 Se and Sb 2 Se + AgSe. (Pglabon, 1908.) ANTIMONY TriSULPHIDE Sb 2 S 3 . looo cc. water dissolve 0.00175 gm. Sb 2 S 3 at 18. (Weigel, 1907.) SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF: Antimony trisulphide and cuprous sulfide. (Parravano and Cesaris, 1912.) stannous sulfide. " " lead sulfide. (Jaeger and Van Klooster, 1912; Pe*labon, 1913.) " " " silver sulfide. (Jaeger and Van Klooster, 1912,) ANTIMONY TARTRATE 96 ANTIMONY Potassium TARTRATE C 2 H 2 (OH) 2 (COOK)(COOSbOUH 2 O. loo gms. water dissolve 5.9 gms. salt at room temp. (Squire and Caines, 1905.) 6.9 " " " 25. (S and S. 1903.) " " " 8 " " " 21. (Aschan, 1913.) " 95% HCOOH dissolve 82.7 gms. salt at 20.8. (Aschan, 1913.) " glycerol dissolve 5.5 gms. salt at 15.5. SOLUBILITY OF ANTIMONY POTASSIUM TARTRATE IN AQ. ALCOHOL SOLUTIONS AT 25. (Seidell, 1910.) Wt. Per cent QH 6 OH in . t Gms. C 4 H 4 O. Sat Sol KSbO.|H 2 Oper Sat. bol. IOQ Qms gat Sol Wt. Per cent C 2 H 5 OH in Solvent. <*25 Of Sat. Sol. l Gms. C 4 H 4 O 6 . KSbO.*H 2 O per I.O52 7^5 40 o-935 0.38 5 1.025 5-50 50 0.913 0.23 10 1.007 3-92 60 0.890 0.12 20 0.980 I. Q2 70 0.866 0.06 30 0.958 0.84 IOO 0.788 trace ANTIPYRINE C U H 12 N 2 O. IOO gms. water dissolve 80 gms. CnHi 2 N 2 O at 15. (Greenish and Smith, '03.) " IOO * alcohol " IOO 90% alcohol ' 75-2 chloroform 1 IOO ; ether 1.3 pyridine 50% aq. pyridine 1 38.0 1 79.61 25 at 20-25' (U. S. P.) (Enell, 1899.) (Dehn, 1917.) THE SOLIDIFICATION POINTS OF MIXTURES OF ANTIPYRINE AND CHLORAL HYDRATE. (Tsakalatos, 1913.) t o of Solidification. Gms. 108.9 90 70 50 . 5 Eutec. 60 62.3 m. pt. 60 56 Eutec. IOO 86.1 73 64.2 56.8 53-2 50-3 47.2 Solid Phase. C U H 12 N 2 "+i.a t o of Gms. C U H 12 N 2 SnllM Solidification. f >er zoo urns Mixture. Phase. 60 61.8 m. pt. 40.9 36.7 1.2 it 57 So 30.1 26.1 it 40 33. 8 Eutec. 40 5i.6 20.2 I6. 5 6 i. 2 +CCl 3 .COH.H 2 CC1 3 .COH.H,0 I.I 1.2 C U H 12 N 2 O.CC1 3 COH.H 2 O (Hypnal). CnHi 2 N 2 O.2(CCl 3 .COH.H 2 O)'(Bihypnal). THE SOLIDIFICATION POINTS (Solubility, see footnote, p. ' ANTIPYRINE AND SALOL. (Bellucci, 1912, 1913.) i), OF MIXTURES OF Initial t of Gms ' C "H, 2 N 2 O Initial t of Gm ?' C " Solidification. per zoo Lms. Mixture. Solidification. 112. 6 IOO 65 40 104.5 90 53 30 9 8 80 30 Eutec. i7 91 70 34 20 83 60 35 10 75 50 42 97 APOMORPHINE HTDROCHLORIDE APOMORPHINE HYDROCHLORIDE Ci 7 H 17 NO 2 .HCl. 100 gms. water dissolve 1.7 gms. salt at 15 and 2 gms. at 25. 100 gms. 90% alcohol dissolve 2 gms. salt at 25. (Dott, 1906; Squires and Caines, 1905.) ARACHIDIC ACID C 20 H 4 oO 2 . SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN BY MEYER, BROD AND SOYKA (1913), FOR MIXTURES OF: Arachidic and Stearic Acids. Palmitic Acids. ' Lignoceric Acids. ARBUTIN Ci 2 Hi 6 7 .H 2 O. 100 gms. trichlorethylene dissolve o.on gm. arbutin at 15. (Wester and Bruins, 1914.) ARGON, A. SOLUBILITY IN WATER. (Estreicher Z. physik. Chem. 31, 184, '99.) t o Cor. Bar. Vol. Vol. Absorbed Absorption Coefficients.* Solubility. Pressure. HaO. Argon. a. /. 0. . . 0-0578 .0102 I 764 9 77 .40 4 34 .0561 0-0561 O .0099 5 765 o 77 39 3 .92 O .0507 0-0508 O .0090 10 765 3 77 .41 3 49 o .0450 0-0453 .0079 15 762 4 77 .46 3 13 .O4O4 O.O4IO .0072 20 757 .6 77 53 2 .86 o .0369 0.0379 O .0066 25 766 7 77 .62 2 .64 o 0339 0.0347 O .0060 30 760 .6 77 73 2 43 .0312 0.0326 0.0056 35 757 .1 77 .86 2 .24 o .0288 0.0305 O .O052 40 758 3 77 99 2 .07 o .0265 0.0286 O .0048 45 756 4 78 15 I .92 .0246 0.0273 .0045 5 747 .6 78 3 1 I 73 o .0221 0.0257 o .0041 a = under barometric pressure minus tension of H 2 O vapor. / = under 760 mm. pressure. q = grams argon per 100 g.H 2 O when total pressure is equal to 760 mm. * See Acetylene, page 16. SOLUBILITY OF ARGON AND WATER. (von Antropoff, 1909-10.) O 10 20 30 4 50 Coef . of Absorption. 0.0561 0.0438 0.0379 0.0348 0.0338 0-0343 The coef . of absorption adopted for these results is that of Bunsen as modified by Kuenen. The modification consists in substituting unit of mass in place of unit of volume of water in the formula. Data for the solubility of argon in water and in sea water, together with a critical discussion of the literature, are given by Coste (1917). Data for the solubility and diffusion of argon in solid and liquid metals are given by Sieverts and Bergner (1912). ARSENIC 98 ARSENIC As. Data for the fusion-points of mixtures of arsenic and iodine are given by Jaeger and Doornbosch (1912). MetaARSENIC ACID AsO 2 H. DISTRIBUTION AT 25 BETWEEN: (Auerbach, 1903.) H2O and Amyl Alcohol. Sat. Aq. H 3 BO 3 Solution and Amyl Alcohol. Cms. AsO 2 H per 1000 cc. Gms. AsQ 2 H per 1000 cc. Aq. Layer. Alcoholic Layer. Aq. Layer. Alcoholic Layer. 4.82 O.gO 9.28 1.75 9-63 i-75 18.74 3.47 18.44 3-5o ARSENIC TriBROMIDE and TrilODIDE AsBr 3 and AsI 3 . 100 gms. H 2 O dissolve about 6 gms. AsI 2 at 25. (U. S. P.) 100 gms. carbon disulfide dissolved about 5.2 gms. AsI 3 . (Squires.) 100 gms. methylene iodide, CH2I2, dissolve 17.4 gms. AsI 3 at 12, d of sat Solution = 3.449. (Retgers, 1893.) SOLUBILITY DATA DETERMINED BY THE FREEZING-POINT METHOD ARE GIVEN FOR MIXTURES OF: Arsenic tribromide and naphthalene. (Pushin and Kriger, 1914-) " phosphorus triiodide. (Jaeger and Doornbosch, 1912.) " triiodide and iodine. (Quercigh, 1912.) ARSENIC TriCHLORIDE AsCl 3 . When i.o gm. of arsenic as the trichloride is dissolved in 100 cc. of aq. HC1 and the solution shaken with 100 cc. of ether the following percentages of the metal enter the ethereal layer; with 20% HC1, 68%; 15% HC1, 37%; 10% HC1, 7%; 5% HC1, 0.7% and with i% HC1, 0.2% of the arsenic. (Mylius, 1911.) ARSENIC TRIOXIDE As 2 O 3 . SOLUBILITY OF THE: Crystallized Modification. Amorphous Modification, In Water. In Water. . Gms.As 2 03per Sat. Solution. ioocc.H 2 O. 2 1 . 201 ord. temp. 3 . 7 15 1-657 b. pt. 11.86 25 ft 2 ' 38 In Alcohol, Ether and CS 2 . 39' 8 2.930 G.As 2 3 per xoog. Solvent. b -Pt- Alcohol 0.446 (Bfuner and St. Tolloczko Z. anorg. Chem. 37, 456, Ether O . 454 '03; Chodounsky Listy. Chem. 13, 114, '88.) O.OOI (Winkler J. pr. Chem. [2] 31, 347, '85.) SOLUBILITY OF ARSENIC TRIOXIDE IN AQUEOUS SOLUTIONS OF AMMONIA AT 30 (INTERPOLATED FROM ORIGINAL RESULTS). (Schiememakers and deBaat, 1915.) Gms. per 100 Gms. Sat Sol. Gms. per 100 Gms. Sat. Sol. " Solid Phase. . - - " - . Solid Phase. . . NH 3 . AsjOg. NH 3 . 2.3 As2O 3 4 7.6 NH4AsO 4 1 8.3 " 5 6.2 2 14.9 " 7 4.6 2.8 20.5 As2O3+NH4AsO 2 10 3.1 3 13 NH4As0 4 13 2.4 3-5 9-i 14-3 2.2 99 ARSENIC OXIDES SOLUBILITY OF ARSENIC TRIOXIDE IN WATER AND IN ' AQUEOUS SOLUTION OF HYDROCHLORIC ACID AT 15 (Interpolated from the original). (Wood, 1908.) Mols. HC1 per Liter. Gms. AsA per 100 cc. Solution. 0.46 1-495 2 1.2 4 1-3 Mols. HC1 per Liter. Cms. AsA per 100 cc. Solution. 6 3-8 7 7-5 8 12.5 9 17.7 SOLUBILITY OF ARSENIC TRIOXIDE IN AQUEOUS SALT SOLUTIONS. (Schreinemakers and deBaat, 1917.) In Aq. Ammonium Bromide at 30. Gms. per too Gms. Sat. Sol. ^ ^^ AsA AsA- NH 4 Br. 2.26 2.25 0-339 0.679 4-37 0.518 7 .l8 0.386 I3-3I 0.303 2O.I4 0.237 31.69 0.154 41-34 0.190 45.66 44-8 As 2 3 .NH 4 Br "+NH,Br NI^Br In Aq. Sodium Bromide at 30. Gms. per too Gms. Sat. Sol. NH^Br. 2.19 5-57 AsA 2.09 10.89 " 1.88 20.79 1.63 30.39 " 1.50 35-75 " 1.20 39-24 (AsA) 3 NaBr 0-953 43.64 " 0.852 45-99 <( 0.719 50.25 " -f-NaBr.2: 49-5 NaBr.2H 2 O In Aq. Barium Bromide at 30. Cms. per too Gms. Sat. Sol. In Aq. Barium Chloride at 30. AsA 2.09 2.03 BaBr 2 . 9.41 16.88 1.97 1.8 7 1.58 24.03 24.41 23.49 0-757 0.678 0.464 29.09 33-08 38.19 0.322 43-02 0.277 O 50.03 50.62 Cms. per 100 Cms. Sat. Sol. ' +BaBr 2 .2H 2 O BaBr 2 .2H 2 O AsA BaCl 2 . 2.24 3-84 2. 2O 8. 7 2 2.19 8.86 2-15 10.34 1.69 9-55 1. 12 13.62 0.905 16.93 0-737 20.06 0.608 23.87 0.506 26.54 27.6 Solid Phase. AsA (AsA) 2 .BaCl, ' +BaCl 2 .2H 2 O BaCl 2 .2H 2 O, In Aq. Calcium Bromide at 20. In Aq. Calcium Chloride at I9.5-2O. Gms. per 100 Gms. Sat. Sol. Solid Phase. As 2 O 3 CaBr 2 . ' 1-58' 9.65 AsA 1.28 20.13 " O.9I2 34-90 0.789 41 0.698 47.67 0-5I3 52.06 0.687 58.22 " +CaBr 2 .6H 2 O 58.20 CaBr 2 .6H 2 O Gms. per 100 Gms. Sat. Sol. AsA. I. 7 8 i-39 1. 01 0.865 0-757 0.697 0.675 O CaCl z . O 12.66 23.09 27.68 31.85 36.01 41.92 42.7 Solid Phase. AsA 100 gins. 95% formic acid dissolve 0.02 gm. AszO 3 at 19.8. " +CaCl 2 .6H 2 CaCl,.6H,O (Aschan, 1913.) ARSENIC OXIDES 100 SOLUBILITY OF ARSENIC TRIOXIDE IN AQUEOUS SALT SOLUTIONS. (Continued.) In Aq. Lithium Bromide at 30. Gms. per 100 Gms. Sat. Sol. ^ ^^ AsA In Aq. Lithium Chloride at 30. Cms. per too Cms. Sat. Sol. AsA. LiBr. 2.26 O 1.69 11.68 1.20 23-23 0-734 35-54 0-534 37 0.332 42.62 0.28l 43-87 0.198 46.75 59.62 +(As 2 3 ) 2 .LiBr (As2O 3 ) 2 .LiBr LiBr.H 2 O AsA. LiCl. ' LOOUU 1 IK1SC. 1.69 7-57 AsA I-I5 15-30 0.77 22.67 0-54 29.04 it 0.43 35-37 " 0-39 41.13 " 0.385 43-oi < 0.41 45.12 " +LiCl.H 2 O 46.1 LiCl.H 2 O In Aq. Potassium Bromide at 30. Gms. per 100 Gms. Sat. Sol. In Aq. Potassium Iodide at 30**. Solid Gms. per 100 Gms. Sat. Sol. Solid 'AsA- 2.25 0.8l8 0.460 0.327 0.290 0.275 0.207 0.166 KBr. 0.336 2.51 12.78 22.59 27.40 3 6 -98 39 -4 42.07 AsA+0 'AsA- 2.26 0.772 0.296 AsA (AsA) 2 -KI 150 II9 "+KBr KBr 0.081 0.115 0.134 D variesfrom (As 2 O 3 )2KBrto (As20 3 )7(KBr)4. 1 In Aq. Strontium Bromide at 30. Gms. per 100 Gms. Sat. Sol. AsA- .69 .74 .48 .25 .07 0.991 SrBr 2 . 1 1 . 69 22.09 31.98 41.91 46.87 48.91 49-H AsA As2O 3 . 2.14 1.92 1.6 7 1.46 I . 28 "+SrBr 2 .6H 2 x . 23 SrBr 2 .6H 2 O O ARSENIC PENTOXIDE As 2 O 6 . SOLUBILITY IN WATER. (Menzies and Potter, 1912.) Solid Phase. t. Ice KI. O I.I9 9-56 22.89 34-31 40.79 47.07 53-51 60.54 61.5 In Aq. Strontium Chloride at 30. Gms. per 100 Gms. Sat. Sol. SrCl 2 . 6.2 7 13.67 21.29 27.46 34-03 36.16 37-5 "+KI KI Solid Phase. AsA +SrCl 2 .6H 2 SrCl 2 .6H,0 - 5 10.6 io 15.6 20 21.3 " -30 25.1 40 27.8 -50 29.9 59 EutCC. 31.7 Ice+AsA4H 2 50 32.6 AsA4H 2 -40 33-5 -30 34-4 -20 35.4 100 gms. 95% HCOOH dissolve 7.6 gms. io o + 10 20 29 40 60 80 100 120 140 36.2 37-3 38.3 39-7 41.4 41.6 42.2 42.9 43-4 43-7 44-5 T ol Solid Phase. AsA4H 2 "+3AsA.5H 2 3As 2 6 .5H 2 O 19 (Aschan, 1913.) ioi A&5FNIOCS r&lELFIDE ARSENIOUS SULFIDE As^Ss. looo cc. water dissolve 0.000517 gm. As 2 S 3 at 1 8. (Weigel, 1907.) Data for the fusion-points of mixtures of arsenious sulfide and silver sulfide are given by Jaeger and Van Klooster (1912). ASPARAGINE C 4 H 8 N 2 O 3 .H 2 O. SOLUBILITY /S-/-ASPARAGINE, C 4 H 8 N 2 O 3 .H 2 O, AND OF ^-/-ASPARAGINIC ACID, C 4 H 7 NO 4 , IN WATER. (Bresler Z. physik. Chem. 47, 613, '04.) /3-/- Asparagine. /3-/-Asparaginic Acid. Gms. t. C4H 8 N 2 3 .H 2 t. per 100 g. Gms. C 4 H 8 N 2 3 .H 2 t per loo g. Gms. C 4 H 7 NO 4 per 100 g. t Gms. '. C4H 7 NO 4 per 100 g. H 2 O. H 2 0. H 2 O. H 2 O. 0-7 0.9546 55-5 10. 650 .2 0-2674 51 O i .2746 7-9 I . 4260 71.7 19. 838 9 5 0.4042 63 5 i .8147 17-5 2.1400 87.0 36. 5 6 4 16 4 0.5176 70 .0 2 3500 28.0 3.1710 98.0 52- 475 3 1 5 0-75*4 80 5 3 .2106 41-4 5.6500 40 o 0.9258 97 4 5 3746 ) gms. H 2 O dissolve 2.4 gms. asparagine at 2o-25. (Dehn, 1917.) 100 gms. pyridine dissolve 0.03 gm. asparagine at 2o-25. ; ioo gms. 50% aq. pyridine dissolve 0.15 gm. asparagine at 2O-25. loo gms. trichlorethylene dissolve o.oi 8 gm. asparagine at 1 5. (Wester & Bruins, 1914-) Data for the solubility of asparaginic acid in aqueous salt solutions are given by Wiirgler (1914). ASPIRIN (Acetyl salicylic acid) C 6 H 4 (OCH 3 CO)COOH. loogms. water dissolve 0.25 gm. aspirin at room temperature. (Squire and Caines, 1905.) loo cc. 90% alcohol dissolve 20 gm. aspirin at room temperature. " ATROPINE SOLUBILITY OF ATROPINE, Ci 7 H 23 NO 3 , AND OF ATROPINE SULFATE, $ (CnH 23 NO3) 2 .SO 2 (OH) 2 , IN WATER AND OTHER SOLVENTS. (U. S. P.; Muller, 1903.) Grams Atropine per xoo Grams. Solution. Solvent. (U. S. P.) Gf ^|$J lt Water 25 1.782 (20) 0.222 (0.13*) 263.1 Water 80 ... 1.15 454-5 Alcohol 25 ... 68.44 27 Alcohol 60 ... in. ii 52.6 Ether 25 2.21 (20) 6.02 0.047 Chloroform 25 68.03 ( 20 ) 64.10 0.161 Benzene 20 3.99 Carbon Tetrachloride 20 0.661 Ethyl Acetate 20 3 .88 Petroleum Ether 20 o . 83 Glycerol 15 ... 3 33 Aniline 20 ... 34 Diethylamine 20 ... 67 Pyridine 20 ... 73 Piperidine 20 ... H4 50% Aq. Glycerol ) -r + 3 %H 3 B0 3 j Oil of Sesame 20 ... 0.25* *Zalai, 1910. tAti7,Schnidelmeiser,i9oi. JGori,i9i3. Scholtz, 1912. IFBaroni and Borlinetto, 1911. 102 DISTRIBUTION OF ATROPINE BETWEEN WATER AND CHLOROFORM AT 25. (Seidell, 19100.) Gms. Atropine Recovered per 15 cc. per 15 cc. HssO+is cc. CHCla. Aqueous Layer (a). Chloroform Layer (b). b < a O.OO5 O.OOIO 0.0057 5-7 0.025 0.0021 0.0256 12.2 0.125 0.0049 o . i 246 25.4 0.625 0.0160 0.6267 39-i ATROPINE METHYLBROMIDE IOO gms. water dissolve IOO gms. of the salt at room temp. (Squires and Caines, 1905.) 100 cc. 90% alcohol dissolve 10 gms. of the salt at room temp. " AZELAIC ACID C 7 H 14 (COOH) 2 . SOLUBILITY IN WATER. (Lamouroux, 1899.) t. = o 15 20 35 50 65 Gms. C 7 Hi 4 (CqOH) 2 per 100 cc. solution = o.io 0.15 0.24 0.45 0.82 2 20 loo gms. 95% HCOOH dissolve 3.79 gms. azelaic acid at 19.4. (Aschan, 1913.) DISTRIBUTION OF AZELAIC ACID BETWEEN WATER AND ETHER AT 25. (Chandler, 1908.) Gms. C7Hi 4 (COOH)j per 1000 cc. Aq. Layer. O.O6 Ether Layer* 0.47 1. 10 2.71 4.26 Gms. C7Hi4(COOH) 2 per 1000 cc. Aq. Layer. Ether Layer. 0.40 5.83 0.50 7.40 0.58 8.65 O.IO 0.20 0.30 AZOBENZENE C 6 H5.N 2 .C 6 H 6 . SOLUBILITY OF AZOBENZENE IN SEVERAL BINARY MIXTURES. (Timmermans, 1907.) Solvent, Binary Mixture of: t. Gms. (CeHsN)? per loo Gms. Sat.;Sol. 6.4 0.46 34.9% Butyric Acid + 65.1% H 2 O (= sat. sol. 10 IT *J at 2.3) 20 I 3 O / 30 i .92 40.6 2-95 80 .0 3.22 36% Triethylamine + 64% H 2 O (= sat. sol. at II 2.57 19.1) 14 1.66 17.4 -54 69-3 0-43 36.5% Phenol + 63.5% H 2 O (= sat. sol. at 6-^) 72.7 80 0.47 1.47 o o / 90 2-43 IOO 3-45 23-9 0.52 71.4% Phenol + 28.6% H 2 O (= sat. sol. at 20.6) 25.2 40 0.87 4.45 60 10.35 72.6 I33-40 46% Succinic Nitrile-j- 54% H 2 O ( = sat. sol. at 54) 56 . 9 0.54 103 AZOBENZENE SOLUBILITY OF AZOBENZENE IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) Solvent. Methyl Alcohol 9 . 5 Ethyl Alcohol 9-5 Gms. (C 6 H 3 N) 2 per loo Gms. Solvent. Gms. (CHsN) 2 t. per 100 Gms. Sat. Sol. Sat. Sol. 3-8 Ethyl Alcohol 10.5 5.88 3-95 Propyl Alcohol 9-5 5-42 5-29 " " 10.5 6.02 SOLUBILITY OF AZOBENZENES IN WATER AND IN PYRIDINE. (Dehn, 1917.) Gms. Each Compound (Determined Separately) per 100 Gms. Solvent: Solvent. Water Pyridine Aq. 50% Pyridine 20-25 20-25 20-25 Azobenzene. Diazoamino- Dimethylamino- benzene. azobenzene. 0.03 O.O5 0.016 76.44 I36.7 27.90 16.78 67.7 4-Si HydroxyAZOBENZENE C 6 H 6 .N: N.C 6 H 4 OH. 1000 cc. sat. solution in H 2 O contain 0.0225 gm. C 6 HsN: N.C 6 H 4 OH at 25. 1000 cc. sat. solution in H 2 O sat. with C 6 H 6 contain 0.0284 gm. C 6 H 6 N:N. C 6 H 4 OH at 25. looo cc. sat. solution in C 6 H 6 sat. with H 2 O contain 15.20 gms. C 6 H 6 N:N. C 6 H 4 OH at 25. (Fanner, 1901.) Distribution results for hydroxyazobenzene between benzene and water gave: cone, in C 6 H 6 -* cone, in H 2 O = 539 at 25. (Farmer, 1901.) AminoAZOBENZENE C 6 H 6 N: N.C 6 H 4 .NH 2 . Distribution results for amino azobenzene between benzene and water gave: COnc. in C 6 H 6 -f- COnc. in H 2 O =3,173 at 25. (Farmer and Warth, 1904.) AZOANISOL, AZOBENZENE, AZOPHENETOL, etc. SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. l), ARE GIVEN FOR THE FOLLOWING MIXTURES: p Azoanisol Azobenzene + p Azoxyanisol (i) -j- p Azoanisolphenetol (i) + Methylpropylazophenol (i) " + p Azophenetol (i) p Azoxyanisol + p Azoanisolphenetol (i) + p Azoxyphenetol (3), (4) + Benzene (2) -j- Ethylene bromide (2) + Hydroquinone (5) + Benzophenone (5) + p Methoxycinnamic Acid (5) -f Nitrobenzene (2) p Azoanisolphenetol to + Azophenetol (i) + p Dipropylazophenetol (i) Azobenzene + Azoxybenzene (6) + p Azotoluene (7) + p Azonaphthalene (7) -+- Benzalaniline (7) p Azobenzoic Acid Ethyl Ester + p Azoxybenzoic Acid Ethyl Ester (5) (i) Bogojawlausky and Winogrodow, 1907; (2) (3) Ratinjanz and Rotaiski, 1906; (4) Prins, 1909; (5) (7) T 1907 Pascal and Normand, 1913; (8) Vanstone, 1913; (9) Beck, 1904; (10) Isaac (1910-11); '; (12) Hasselblatt, 1913; (13) Garelli and Calzolari, 1899; (14) Bruni and Gorni, 1899. + Benzeneazonapthalene (9) + Benzil (8) + Benzoin (8) + Benzylaniline (7), (9), (10), (n), (12) + Dibenzyl (7), (13), (14), (12) + Diphenyl (9) -j- p Dimethoxystilbene (7) + Hydrobenzene (7) + Stilbene (7), (9) + Tolane (7) Hydrazobenzene + Benzoin (8) p Azophenetol + p Azoxyphenetol (i) ' -j- p Dipropylazophenetol (i) p Azoxyphenetol + Cholesterylisobutyrate (A) " + Cholesterylpropionate (4) + Cholesterylbenzoate (4) " 4- P Methoxycinnamate (4) p Azotoluene + Stilbene (7) fawlauski, Winogrodow and Bogolubow, 1906; Kock, 1904; (6) Hartley and Stewart, 1914; (n) Jaeger, AZOLITMINE 104 AZOLITMINE C 7 H 7 NO 4 . 100 gms. H 2 O dissolve 39.5 gms. azolitmine at 2O-25. 100 gms. pyridine dissolve 0.05 gm. azolitmine at 20-25. loo gms. aq. 50% pyridine dissolve 0.12 gm. azolitmine at 2O-25. (Dehn, 1917.) AZOPHENETOL (p) C^ SOLUBILITY IN 100 PER CENT ACETIC ACID. (Dreyer and Rotarski Chem. Centr. 76, II, 1016, '05.) t= 89.2 91 93 956 97- 2 99- 6 Mols. per liter. 0.153 0.176 0.185 0.209 0.232 0.252 A break in the curve at 94.7 corresponds to the transition temperature of the a modification into the ft modification. BARIUM ACETATE Ba(CH 3 COO) 2 . . SOLUBILITY IN WATER. (Walker and Fyffe, 1903; Krasnicki, 1887, gives incorrect* 'results.) Gms. Ba(CH 3 COO) 2 per 100 Gms. Solid Phase. Gms. Ba(CH 3 COO) 2 per 100 Gms. Solid Phase. Water. Solution. Water. Solution o-3 58 .8 37 .0 Ba(C 2 H 3 2 ) 2 . 3 H 2 40 5 79 .0 44.1 Ba(C 2 H 3 2 ) 3 7-9 61 .6 38 .1 ft 41 5 78 7 44.0 u 17-5 69 .2 40 9 1C 44 5 77 9 43-8 11 21 .6 72 .8 42 .1 (I 51 .8 76 5 43-4 (I 24.1 78 .1 43 9 11 63 .0 74 .6 42.7 1C 26.2 76 4 43 3 Ba(C 2 H 3 2 ) 2 .H 2 73 o 73 5 42.4 (C 30.6 75 .1 42 9 84 .0 74 .0 42.5 cc 35-o 75 .8 43 .1 u 99 .2 74 .8 42.8 (( 39-6 77 9 43 .8 a Transition temperatures 24.7 and 41. loo cc. 97% ethyl alcohol dissolve 0.0723 gm. barium acetate at room temp. (Crowell, 1918.) AQUEOUS SOLUTIONS OF ACETIC ACID SOLUBILITY OF BARIUM ACETATE IN AT 25 (Iwaki, 1914.) 5-18 Mols. per too Mols. Sat. Sol. CHaCOOH. L o 0.41 1.40 1.46 3.30 10.23 20.60 (CH 3 COO) 2 Ba.3H 2 O " +3.3.11 4.52 5.34 5.32 3.48 3.14 3.62 3(CH 3 COO) 2 Ba.3CH 3 COOH.iiH 2 0, 3.3.11 Mols. per 100 Mols. Sat. Sol. CHaCOQH. 28.72 36.54 42.08 46.51 51.98 65.77 85.27 7.85 8.87 8.62 8.40 7.36 ;< +1.3 1.3 = (CH 3 COO) 2 Ba.3CH,COOH. 3.3.11 BARIUM ARSENATE Ba 3 (AsO 4 ) 2 . loo gms. H 2 O dissolve 0.055 gm. Ba 3 (AsO 4 ) 2 ; 100 gms. 5% NH 4 C1 dissolve 0.195 gm., and 100 gms. 10% NH 4 OH dissolve 0.003 S m - Ba 3 (AsO 4 ) 2 (Field J. Ch, Soc. n 6, i8sp.) BARIUM BENZOATE (C 6 H 6 COO) 2 Ba.6H 2 O. 100 gms. sat. aqueous solution contain' 4.3 gms. salt (anhydrous P) 1 at 15 and IO.I gms. at IOO. (Tarugiand Checchi, 1901.) 105 BARIUM BORATE BARIUM BORATES. SOLUBILITY IN AQUEOUS BORIC ACID SOLUTIONS AT 30. (Sborgi, 1913.) Cms. per ioo Gms.Sat. Sol. Cms. per 100 Cms. Sat. Sol. Ba 2 Q3. ' BaQ. Sohd Phase. . - t Sohd Phase. 3.6 0.04 H 3 B0 3 +i.3.7 0.3 0.23 1.3.7 3.4 0.04 1.3.7 0.3 0.31 1.37+1.1.4 2.5 0.04 0.2 0.8 1.1.4 2.0 0.04 0.2 1.2 i.o 0.05 0.24 4.8 " 0.5 0.09 0.26 5.8 i.i4+Ba(OH) 2 0.4 0.12 0.08 5.3 Ba(OH) 2 1.3.7 = BaO.3B 2 O 3 .7H 2 O (Triborate); 1.1.4 = BaO.B 2 O 3 .4H 2 O (Metaborate). The original results were plotted and above figures read from curve. BARIUM BROMATE Ba(BrO 3 ) 2 H 2 O. SOLUBILITY IN WATER. (Trautz>nd Anschiitz, 1906; Rammelsberg, 1841.) Cms. Ba(BrO 3 ) 2 Cms. Ba(BrO 3 ) 2 Cms. Ba(BrO 3 )i t. per ioo Gms, t. per ioo Cms. t. per ioo Cms. Solution. Solution. Solution. 0.034 0.28 30 0-95 70 2.922 o 0.286 40 1.31 80 3-521 + 10 0.439 5 J -7 2 90 4-26 20 0.652 60 2.271 98.7 5- .256 25 0.788 99.65 5.39 SOLUBILITY OF BARIUM BROMATE IN AQUEOUS SOLUTIONS OF SALTS AT 25. (Harkins, 1911.) Cone, of Salt in Gms. Equiv- alents per Liter. 0.025 0.050 O. IOO O.2OO Gms. Ba(BrOs) 2 Dissolved per Liter in Aqueous Sol. of y 8 9 10 KI 93 62 91 2 5 JOa. 1.0038) 1.0059) 1.0080) I. OI2O) Ba(I 7-93 7.22 6.83 6.415 6 . 230 ro 3 ) 2 . 1.0059) 1.0083) 1.0132) 1.0233) 7 5 3 i KBrOs. 93 216 (1.0046) 415 (1.0062) 72 (1.0109) 7 8 Mg(NOs)2. 93 .196(1.0114) 25 Figures in parentheses show densities of the sat. sols, at 5-* 4 BARIUM BROMIDE BaBr 2 . 2 H 2 O. SOLUBILITY IN WATER. (Kremers Pogg, Ann. 99, 47, '56; Etard Ann. chim. phys.frja, 540, '94.) Gms. BaBr 2 per TOO Grams. Gms. BaBr 2 j>er ioo Grams. t. 'Water. Solution. t. ' Water. Solution. (Kremers.) (Kremers.) (Etard.) (Kremers.) (Kremers.) (Etard.) 20 45-6 40 114 S3- 2 S^S o 98 49.5 47-5 50 II8 S4-i 5 2 -5 10 101 50.2 48.5 60 123 55.1 53.5 20 104 51.0 49-5 70 128 56.1 54.5 25 106 51.4 50.0 80 135 57-4 55-5 30 109 52.1 50.6 ioo 149 60.0 57.8 140 ... 59.4 Sp. Gr. of saturated solution at 19.5 = 1.710. BARIUM BROMIDE 106 Data for the system Barium Bromide + Barium Oxide + H 2 O at 25 are given by Milikau (1916). SOLUBILITY OF MIXTURES OF BARIUM BROMIDE AND BARIUM IODIDE IN WATER AT DIFFERENT TEMPERATURES. (Etard.) Grams per ioo Gms. Solution. Grams per too^Gms. Solution. ' ' BaBr 2 . BaI 2 . BaBr 2 . 16 4.8 58.4 170 ii. o 67.4 |-6o 5.5 66.0 210 14.9 67.7 135 9.2 67 . 2 Both salts present in solid phase. SOLUBILITY OF BARIUM BROMIDE IN METHYL AND ETHYL ALCOHOLS. (de Bruyn Z. physik. Chem. 10, 783, .92 ; Richards Z. anorg. Chem. 3, 455, '93 ; Rohland Ibid. 15 412, '97.) Parts BaBr2 per ioo Parts BaBr2.aH2O per ioo o parts Aq. QjHfiOH of; parts of Aq. CH 3 OH of: 97%. 7%. io%. 93-5%. 50%. 15.0 .. 0.48 (BaBr 2 .2H 2 0) .. 45.9 27.3 4.0 22.5 3 6 56.1 ioo gms. sat. solution in methyl alcohol at the crit. temp, contain 0.4 gm. BaBr 2 . (Centnerszwer, 1910.) Data for the lowering of the melting point of BaBr 2 by BaF 2 and by BaCl 3 are given by Ruff and Plato (1903). BARIUM PerBROMIDE BaBr 4 . Data for the formation of barium perbromide in aqueous solutions at 25 are given by Herz and Bulla (1911). See reference calcium perbromide, p. 189. BARIUM BUTYRATE Ba(C4H 7 O 2 ) 2 2H 2 O. SOLUBILITY IN WATER. (Deszathy Monatsh. Chem. 14, 249, '93.) Gms. Ba(C 4 H 7 O 2 ) 2 per ioo Gms. Gms. Ba(C 4 H 7 O 2 )2 per ioo Gms. **" Water. Solution". Water. Solution. o 37-42 27.24 50 36.44 26.77 10 36.65 26.82 60 37.68 27.36 20 36.12 26.55 70 39-58 28.36 30 35.85 26.38 80 42.13 29.64 40 35-82 26.37 ioo gms. 97% ethyl alcohol dissolve 0.17 gm. barium butyrate at ord. temp. (Crowell, 1918.) BARIUM CAMPHORATE BaCioHi 4 O 4 4H 2 O. SOLUBILITY OF BARIUM CAMPHORATE IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT i6-i7. (Jungflisch and Landrieu, 1914-) Gms. per ioo Gms. Sat. Sol. Gms. per ioo Gms. Sat. Sol. Camphoric Barium " SoUd Phase. Camphoric Barium Solid Phase. Acid. Camphorate. Acid. Camphorate. O.68 0.134 d Camphoric ac. + 1.3 0.48 22.71 1.3 0.84 0.150 " 0.45 32.19 0.693 0.20 1.3 0.50 37- 22 . 38 2 . 59 " 0.51 40 . 99 1.3 + Ba Camphorate O.44 II. IO " O 42.59 Ba Camphorate 1.3 = Barium tetracamphorate, ID; BARIUM CAPROATE BARIUM CAPROATE AND BARIUM ISO CAPROATE. SOLUBILITY IN WATER. (Kulisch, 1893.) Barium Caproate (Methyl 3 Pentan.) Ba(CH 3 .CH2CH(CH3)CH 2 COO)2. ^ Gms.Ba(C 6 H u O 2 ) 2 40^ per 100 Gms. Solid Phase. Water. Solution. 11.71 10. 49 Ba(C 6 H u 2 ) 2 . 3 iH 2 10 8. 3 8 7- 73 20 6.89 6. 45 30 5-87 5- 55 40 5-79 5- 47 5 6.63 6. 21 60 8-39 7- 74 70 11.09 9- 98 80 14.71 12 . 82 90 19.28 16. 16 (Konig, 1893.) Barium Iso Caproate (Methyl 2 Pentan.) Ba(CH 3 CH(CH3)CH2.CH2COO)2. Gms. B3.(C(5rJiiO2/2 per loo Gms. gelid Phase. Water. Solution. 14-34 12 . 54 Ba(C6H u O2)2.4H 2 O 13-33 II 77 12.67 II .26 12.37 II .01 12 .42 II .05 12.83 II .38 13 .63 II 99 14.68 12 .80 16.24 13 97 17-95 15 23 BARIUM CARBONATE BaCOg. SOLUBILITY IN WATER. (Holleman, Kohlrausch and Rose, 1893.) Electrolytic conductivity method used. i liter H 2 O dissolves 0.016 gin. BaCO 3 at 8.8, 0.022 gm. at 18, and 0.024 g- at 24.2. SOLUBILITY OF BARIUM CARBONATE IN WATER CONTAINING CO 2 . The average of several determinations at about 10, by Bineau, Lassaigne, Foucroy and Bergmann is i.io gms. BaCO 3 per liter water. Wagner (Z. anal. Ch. 6, 167, '67) gives 7.25 gms. BaCO 3 per liter of water saturated with CO 2 at 4-6 atmospheres pressure. Eleven determinations by McCoy and Smith (1911), of the solubility of barium carbonate at 25 in water in contact with pressures of CO 2 varying from 0.2 to 30 atmospheres, showed that a maximum solubility is reached at 22 atmos- pheres (see also calcium carbonate, p. 192), at which point the saturated solution contains 0.727 mols. = 45.1 gms. H 2 CO 3 per liter and 0.028 mols. = 7.3 gms. Ca(HCO 3 ) 2 per liter. The equilibrium constant is k = 2.24 X IO" 2 and the solubility product Ba X CO 3 = k* = 8.1 X lo" 9 . SOLUBILITY OF BARIUM CARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 30. (Kernot, d'Agostino and Pellegrino, 1908.) Gms. per 1000 cc. NH 4 C1. O 8.0Q9 64-536 92-593 160.265 186.775 268.920 Solid Phase. BaCOs. 0.035 BaCOs 0.521 1-333 1.596 2 2.093 2.256 Data are also given for 25. Some uncertainty exists as to the terms in which the results are expressed. In some cases the column headings read "Gms. per liter of H 2 O" and in others "Gms. per liter of solution." The saturation was effected by adding just the necessary amount of one constituent to cause the disappearance of the last particle of the other. The amounts so added were determined by weighing the flasks. At high concentrations of the two salts, the sudden increase in solubility appears to indicate a molecular combination. Gms. per 1000 cc. HzO. Solid Phase. BaCOs. NH4C1. 2.245 335-70 BaCOa 2.706 358.66 " 2.630 418.33 NHiCl 2.I5I 414.71 1.558 4I3-77 " 0.730 4IO.I6 u 397-58 " BARIUM CARBONATE 108 SOLUBILITY OF BARIUM . CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE. (Cantoni and Goguelia, 1905.) In KClatB.pt. of Sol. In NaCl at B.pt. of Sol. In 10% KC1 Sol. In io%NaC!Sol. Cms. KC1 per 100 Cms. Sol. 0.15 1. 00 3 IO 30 Cms. BaCOs per 1000 cc. Sat. Sol. Gms. NaCl Gms. BaCOs Gms. BaCOa Gms. BaCOs per 100 Gms. Sol. per 1000 cc. Sat. Sol. t. per 1000 cc. Sat. Sol. t. per 1000 cc. Sat. Sol. 0.15 0.0587 10 0.2175 10 0.1085 I 0.0787 2O o . 2408 20 O.II26 3 0.1056 40 0.2972 40 0.1231 10 0-1575 60 0-349 1 40 0.1303 30 0.2784 80 o . 4049 40 0.1418 o . 0847 o. 1781 0.2667 0.4274 0-5550 Barium carbonate boiled with aqueous NH 4 C1 is slowly but completely decom- posed. The time required varies inversely as the concentration of the NH^Cl solution. Data are also given for solubility in 10% aqueous KC1 and NaCl at the boiling point, the time factor being varied from I to 198 hours. Data for lowering of the melting point of BaCO 3 by Na 2 CO 3 are given by Sackur (1911-12). BARIUM CHLORATE Ba(ClO 3 ) 2 .H 2 O. SOLUBILITY IN WATER. (Carlson, 1910; Trautz and Anschiitz, 1906.) fo Sp. Gr. of Cms. Ba(ClO)j per 100 Sp. Gr. of * Sat. Sol. Gms. Sat. Sol. t. Sat. Sol. Gms. Ba(C10 3 )2 per too Gms. Sat. Sol. O IO 20 25 30 1 . 195 2O 24 1.274 28 30 32 3* 3 2 16.90!' 21.23 25.26 27-53 29-43 * C. 40 60 80 100 105 . 6 b. pt. t (rand 4.) 355 433 -508 -580 .660 35 42 48 53 54 8* 6 i 6 33 40 45 Si 52 i6f 05 90 2 62 The determinations of Trautz and Anschiitz appear to have been made with very great care. The original paper of Carlson was not available and it has been impossible to explain the discrepancy between the two sets of results. BARIUM PerCHLORATE Ba(C10 4 ) 2 .3H 2 O. SOLUBILITY IN WATER. (Carlson, 1910.) O 20 40 60 Sp. Gr. Sat. Sol. 1.782 1.912 2.009 2.070 Gms. Ba(C104)2 per 100 Gms. Sat. Sol. 67-3 74-3 78.2 81 80 100 1 20 140 Sp. Gr. Sat. Sol. 2.114 2.155 2.195 2.230 Gms. Ba(C10 4 )2 per too Gms. Sat. Sol. 83-2 84.9 86.6 88.3 BARIUM CHLORIDE BaCl 2 .2H 2 O. SOLUBILITY IN WATER. (Mulder, Engel, 1888; Etard, 1894.) , Gms. BaCla per 100 Gms. O 10 20 25 30 40 50 Water. 31-6 33-3 35-7 3 38.2 40.7 43-6 Solution. 24 25 26.3 27 27-7 28.9 3-4 60 70 80 IOO 130 1 60 215 Gms. Bad? per TOO Gms. Sp. Gr. of solution saturated at o = 1.25; at 20 Water. Solution. 46.4 31-3 49-4 33-i 52.4 34-4 58.8 37 59-5 "37-3 63-6 38.9 75-9 43-1 1.27. 109 BARIUM CHLORIDE SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER. At 30. (Schreinemakers, 1908.) Cms, per'ioo Cms. Sat. Sol ' BaCb. NH 4 C1. 22.16 5.71 18.36 10.06 15.42 13.84 10.89 20.01 8.33 24.69 7-97 25.92 3-S6 27.47 Solid Phase. BaCl 2 .2HjO BaCh.2H20+NH4Cl NH4C1 At Varying Temps. (Schreinemakers, igiob.) Cms. per too Cms. Sat. Sol. Solid Phase. BaCU.2HjO+NH4Cl t 16.2 o 30 40 So BaCl 2 . 8.07 8.22 8.19 8.40 8-55 NHo \jins. oat. oui- . Solid Phase. BaCk. CuCl 2 . 5-49 30.76 BaCk^HsO 10.13 21.76 17.08 11.49 " 22.78 5-13 27.6 O it Solubility data have been determined for the following systems: BaCl 2 .2H 2 O 4- CuCl 2 .2H 2 O + NH 4 C1 + H 2 O at 30. (Schreinemakers, 1909.) + " 4- KC1 + H 2 O at 40 and 60. ( " and de Baat, 1914.) 4- " + NaCl + H 2 O at 30. ( " and de Baat, 1908^9.) + BaO + Na 2 O + H 2 O at 30. (Schreinemakers, igiob.) 4- Ba(NO 3 ) 2 4- NaNO 3 + NaCl + H 2 O at 30. (Coppadoro, 1913.) 4- HCl 4- NaCl 4- H 2 O at 30. CSchreinemakers, 1909-10. igiob.) BARIUM CHLORIDE no SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO- CHLORIC ACID: Ato. (Engel, 1888.) At 30. (Masson, 1911, 1912-13; Schreinemakers, 1909-10.) >p. Gr Gms. per 100 jms. Sat. Sol. at. Sol. ' HC1. BaCli. ' S .250 'o 24.07 I .242 0.32 23-3I .228 0.83 22.11 .2IO I-5I 2O.I4 143 4.58 12.76 .118 6.13 9-37 .099 7-55 6-33 .079 10.81 2.64 .088 16.92 0.28 Sp. Gr. Sat. Sol. Gms. per 100 Gms. Sat. Sol. 1.3056 .2651 .2147 -1789 .1419 .io68 .o88o .0895 1024 .!6o9 The results of Schreinemakers show that at 37.34% HC1 the barium chloride dihydrate is converted into monohydrate. Less than i part of BaCl 2 is soluble in 20,000 parts of concentrated HC1 and in 120,000 parts of cone. HCl containing | volume of ether. (Mar, 1892.) SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS SOLUTIONS OF MERCURIC CHLORIDE: HC1. BaCb. 97.84 1.36 24.02 3-32 19.20 5-oi IS-2 7-13 II. I 10 5-8 13-43 2.4 16.92 0.38 20.62 o 32.18 o At O. (Schreinemakers, 1910.) Gms. per 100 Gms. Sat. Sol. At 30. (Schreinemakers, 1910.) ' HgCl*. BaCh. 23.70 14.25 24 36.20 24.89 46.08 24.05 46.59 23.28 47-78 21.05 48.46 20.67 44-33 18.50 29 "59 16.36 6. ii 3-95 o Solid Phase. BaClt.2HjO BaClt.3HgClj.6HjO " +HgCl HgClj SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND MERCURIC CHLORIDE IN WATER. (Foote and Bristol Am. Ch. J. 32, 248, '04.) HgCh. BaCk. oouu jriiase. O 27.77 BaClj.2HjO 2.90 27.56 " 12.98 26.99 34-57 26.69 46.50 25.22 " 55-22 23.17 " +HgCl 48.97 17.87 HgClj 41-30 14.26 " 27.62 8. 4 I i 14.19 2.65 7-67 O " Gms. per 100 Gms. t. Solution. Solid Phase. BaCl 2 . H g ci 2 : 10.4 23-58 50.54 ( BaCl,2H,O+ I HgCl,. 10.4 10-4 10.4 23-44 22.58 22.48 50-74 51-23 51.41 ( Double Salt Gms. per 100 Gms. t. Solution. Solid Phase. BaCl 2 . HgCl 2 . 10.4 22.10 51.66] [ Double Salt IO-4 25 21.64 23.02 51-74. 54.83 ( BaCl,.2H,O+HgCl 8 . SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND SODIUM CHLORIDE IN WATER: At 30. (Schreinemakers and de Baat, 1908-09.) Gms. per 100 Gms, Sat. Sol. BaCh. NaCl. ' O 26.47 2.28 25.28 3.80 23.77 5.76 20.25 8.19 17.89 Solid Phase. Gms. per 100 Gms. Sat. Sol. NaCl ' +BaCU.2HiO BaCb.2HiO BaCk. 12.25 15-83 20.93 24.24 27.60 NaCl. 13-39 10.06 5-39 2.76 o Solid Phase. BaCl Z .2H20 At Varying Temps. (Precht and Wittgen, 1881 ; Rudorff, 1885.) Gms. per 100 Gms' *o Sat. Sol. 20 40 60 80 100 BaCk. 2-9 4.5 6.8 9-4 ii. 8 NaCl. 25 23 23-4 22.8 22.2 in BARIUM CHLORIDE SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND POTASSIUM CHLORIDE IN WATER. (Foote, 1904.) 100 gms. saturated solution contain 13.83 gms. BaCl 2 + 18.97 gms. KC1 at 25. Fusion-point curves (solubility, see footnote, p. i) are given for the following mixtures: BaCl 2 + BaCOs (Sackur, 1911-12.) + BaCrO 4 -j- BaO (Sackur, 1911-12, Arndt, 1907.) -j- BaSO 4 (Sackur, 1911-12, Ruff and Plato, 1903.) -j- BaF 2 (Botta, 1911; Ruff and Plato, 1903; Plato, 1907.) + BaI 2 (Ruff and Plato, 1903.) + CdCl 2 (Sandonini, 1911, 1914; Ruff and Plato, 1903.) -j- CaCl 2 (Sandonini, 1911, 1914; Ruff and Plato, 1903; Schaefer, 1914.) -j- CuCl 2 (Sandonini, 1914-) -j- PbCl 2 (Sandonini, 1911, 1914; Ruff and Plato, 1903.) -f- LiCl (Sandonini, 1913, 1914-) -|~ MgCl 2 (Sandonini, 1912, 1914.) -j- MnCl 2 (Sandonini, 1912, 1914; Ruff and Plato, 1903.) -f- KC1 (Sandonini, 1911; Ruff and Plato, 1903; Vortisch, 1914.) + NaCl (Sackur, 1911-12; Ruff andPlato, 1903; LeChatelier, 1894; Vortisch, 1914.) + NaCl-f-KCl (Vortisch, 1914 (); Gemsky.) 4* SrCl 2 (Sandonini, 1911, 1914; Ruff and Plato, 1903; Vortisch, 1914.) -j- ZnCl 2 (Sandonini, 1912 a, 1914.) -f T1C1 (Korreng, 1914.) SOLUBILITY OF At 15. (Schiff, 1861; 'Rohland, 1897.) Wt Gms.BaCk r Tilr\u Per 100 Gms. C2H{OH - Solvent. 10 31 -i 20 21.9 3 H-7 4O IO.2 60 3-5 80 0.5 97 0.014 BARIUM Gms. per Sat. CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS. At 30. At 60. (Schreinemakers and Messink, 1910.) loo Gms. Gms. per 100 Gms. Sol. Solid Phase. Sat. Sol. Solid Phase. C^OH. o 32.67 50.16 60.72 92-53 94-73 97-14 98.17 99.41 BaCk. 27 95 10.63 5-68 2.23 0.05 0.06 0.08 BaCk.2H20 " +BaCk.H2O BaCk-HbO " -f-BaCk BaCla C^OH. 16.68 34.10 66.02 88.55 90.25 93-95 BaCk.' 31-57 20.16 13.21 2.82 0.25 0.09 BaCk.2HzO " +BaCk.H20 BaCk-HzO 100 gms. methyl alcohol dissolve 2.18 gms. BaCl 2 at 15.5 and 7.3 gms. BaCl 2 . 2 H 2 O at 6. (de Bruyn, 1892.) loo gms. glycerol dissolve 9.73 gms. BaCl 2 at i5-i6. (Ossendowski, 1907.) loo cc. anhydrous hydrazine dissolve 31 gms. BaCl 2 at room temp. (Welsh and Broderson, 1915.) 100 gms. 95% formic acid dissolve 7.3 gms. BaCl 2 at 19. (Aschan, 1913.) One liter sat. sol. in nitrobenzene contains 0.167 gm BaCl 2 at 20, 0.33 gm. at 50 and 0.40 gm. at 100. (Lloyd, 1918.) Data for the system BaCl 2 + Triethylamine + H 2 O are given by Timmermans (1907). SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND GLYCINE. IN WATER AT 2O. (Pfeiffer and Modelski, 1912.) Gms. per 100 cc. Sat. Sol. Nft 2 CH 2 COOH. 5-5 26 BaCk 37 16 Solid Phase. BaCU. 2H 2 O+BaCk. 2NH 2 CH 2 COOH.HjO NH4CHjCOOH+BaClj.2NH 2 CHjCOOH.HaO BARIUM CHROMATE 112 BARIUM CHROMATE BaCrO 4 . SOLUBILITY OF BARIUM CHROMATE IN WATER. One liter of sat. solution contains 0.002 gm. of the salt at o; 0.0028 gm. at 10; 0.0037 gm. at 20 and 0.0046 gm. at 30. (Kohkausch, 1908.) Results higher than the above are given by Schweitzer, 1890, as follows: One liter of aqueous solution saturated at room temp, contains o.oi gm. BaCrO 4 ; if ignited barium chromate is used, only 0.0062 gm. dissolves. One liter sat. sol. contains 0.043 S m - f the salt at boiling point. (Mescherzski, 1882.) Fresenius (1890) gives the following: i liter of sat. sol. at room temp, con- tains 0.02 gm. of the salt, the solvent being 1.5% sol. of CH 3 CO2NH 4 and 0.022 gms. when the solvent is 0.5% sol. of NH 4 NO 3 . One liter of 45% aq. ethyl alcohol solution dissolves 0.000022 gm. at room temp. BARIUM CINNAMATES. (Guenm, I9 i 2 .) SOLUBILITY OF BARIUM CINNAMATES IN WATER, METHYL" ALCOHOL AND ACETONE. Gms. Anhy- Authority. o. 726 (Tarugi and Checchi, 1901.) (Liebermann,i903.) (Michael and Garner, 1903.) (Michael, 1901.) (Michael and Garner, 1503.) (Michael, 1901.) Compound. Formula. t. Solvent. arous o Der ioo G Sat. Sc Barium Cinnamate Ba(C 9 H70 2 )2.2H 2 15 HjO 0.72* u " " IOO " 2.27 " Allocinnamate Ba(C9H7O2) 2 .H2O 19 CHsOH 15.8 " u 12 " I 5-4 " " Ba(CH7O2)j3HjO 20 " 2.56 II " " 2O (CH 3 )zCO 0.80 " " " 2O HzO 6 " Hydrocinnamate Ba(C 9 H70 J )2.2HiO 27 " 2.9 " 25 CHsOH O.I " " 16 " 9-7 " Isocinnamate 20 * 70 " " 20 (CHs) 2 CO 20 u " 20 HjO 17 BARIUM CITRATE Ba 3 (C 6 H 6 O 7 ) 2 .7H 2 O. SOLUBILITY IN WATER AND IN ALCOHOL. ioo grams water dissolve 0.0406 gram Ba 3 (C 6 H 6 O 7 )2.7H 2 O at 18, and 0.0572 gm. at 25. ioo grams 95% alcohol dissolve 0.0044 gram Ba 3 (C 6 H 6 O 7 ) 2 .7H 2 O at 18, and 0.0058 gm. at 25. (Partheil and Hiibner Archiv. Pharm. 241, 413, '03.) BARIUM CYANIDE Ba(CN) 2 . SOLUBILITY IN WATER AND IN ALCOHOL AT 14. (Joannis Ann. chim. phys. [5] 26, 489, '82.) ioo parts water dissolve 80 parts Ba(CN) 2 . ioo parts 70% alcohol dissolve 18 parts Ba(CN) 2 . BARIUM FERROOYANIDE AND BARIUM POTASSIUM FERRO- CYANIDE. (Wyrouboff Ann. chim. phys. [4] 16, 292, '69.) ioo parts water dissolve o.i part Ba 3 Fe(CN) 6 .6H 2 O at 15, and i.o part at 75. ioo parts water dissolve 0.33 part BaK 2 Fe(CN) .5H 2 O at ord. temp. BARIUM FLUORIDE BaF 2 . SOLUBILITY IN WATER. (Kohkausch, 1908.) One liter sat. sol. contains 1.586 gms. of the salt at 10; 1.597 gms. at 15; 1.607 g 1115 - at 2 j 1-614 g ms a t 2 5 an d 1.620 gms. at 30. Freezing-point curves are given for mixtures of BaFz+KF by Puschin and Baskow (1913), and for BaF 2 -J-BaIj by Ruff and Plato (1903). BARIUM FORMATE BARIUM FORMATE Ba(HCOO) 2 . SOLUBILITY IN WATER. (Stanley, 1904. See also Krasnicki, 1887.) Gms. Ba(HCOO)j t o 2r too Gms. Sat. Sol. per Gms. Ba(HCOO) per zoo Gms. Sat. SoL 23.24 23.22 O 10 20 23.0< 25 23.9 30 24.2 BARIUM HYDROXIDE Ba(OH) 2 .8H 2 O. SOLUBILITY IN WATER. SOLID PHASE Ba(OH) 2 .8H 2 O. 40 So 60 80 100 25 25-9 26.9 29-3 32.8 (Rosenthiel and Riihlmanu ' Jahresber. Chem. 314, '70.) Gms. Ba(OH)z per 100 Gms. Gms. Ba(OH) 2 per 100 Gms. Water. Solution 1.6 7 I . 6C 5 I .95 I 02 10 2. 4 8 , 2 .42 15 3-23 3-13 20 3-89 3-74 25 4-68 4-47 Water. Solution. 30 5-59 5 - 2 9 40 8.22 7.60 50 13.12 ii .61 00 20-94 17.32 75 63-5 1 38.85 80 101 .40 50-35 Data are given by Sill (1916), for the influence of pressures up to 490 kgs. per sq. cm. on the solubility of Ba(OH) 2 .8H 2 O in H 2 O at 25. Sat. Sol. .0512 .0651 .0790 0975 .1220 SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF BARIUM NITRATE AT 25 AND VICE VERSA. (Parsons and Carson, 1910.) Sp. Gr. Gms. per 100 Gms. H 2 O. Solid Sp. Gr. Ba(OH) 2 . Ba(NO 3 ) 2 . Phase - Sat - So1 - 4.29 O Ba(OH)j.8H2O I.I37I 4.35 1.88 " 1.1448 4.48 3.47 " I.I2IO 4.40 5-66 " I.IOO2 4-72 7-55 " 1-0797 Ba(OH) 2 .Ba(NO 3 )2. 4.93 10.21 5.02 11.48 Phase. Ba(OH) 2 .8H2O " +Ba(N03)a 3-22 11.04 1.55 10.66 Ba(N03) 8 o 10.30 SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ALKALI CHLORIDES AT 25. (Herz, 1910.) In Lithium Chloride. Gms. per 100 cc. Sat. Sol. In Potassium Chloride. Gms. per 100 cc. Sat. Sol. In Rubidium Chloride. Gms. per loqcc. Sat. Sol. In Sodium Chloride. Gms. per loocc. Sat. Sol. Lid. 9-75 6. 02 3-i8 o Ba(OH) 2 . " n-45 8.03 6-39 4.76 KC1. 25-95 I3-05 8.60 Ba(OH) 2 . 5-93 5-66 5-53 4.76 ' RbCl. 15.11 Ba(OH) 2 . 5-55 4.76 NaCl. 16.51 8-37 4-27 Ba(OH)i". 6.91 5-99 5-40 4.76 SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM > HYDROXIDE AT 30. (Schreinemakers, 1909-10.) Gms. per 100 Gms. Sat. Sol. BaO. NacO. 4-99 O 1.29 4.78 0.89 6-43 0-57 9.63 0-53 11.62 0.47 17.87 1. 06 23.28 1.8 7 24.63 Solid Phase. Gms. per 100 Gms. Sat. Sol. Ba0.9H20+Ba0.4HjO BaO. NazO. ' ouuu riiitsc. 1.84 26.14 BaO.4H2O i-75 27.72 " 1.58 28.43 " i-34 29.24 " +Ba0.2H20 0.82 32.12 BaO.2H2O 0-59 34.72 " o-57 41.09 " +NaOH.HO +42 NaOH.HiO BARIUM HYDROXIDE 114 SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS ACETONE AT 25. (Herz and Knoch Z. anorg. Chem. 41, 321, '04.) r t v i of Ba(OH) 2 per 100 cc. Sat. Gms. Ba(OH) 2 Sp. Gr. of Vol.% Solution. per Solutions. Acetone. , . xoo Gms. Millimols. Grams. Solution. 1.0479 o 55.08 4.722 4.506 i. 0168 10 31-84 2.730 2.686 0.9927 20 17.79 i-S 2 S I-536 0.9763 30 9.10 0.779 0.798 0.9561 40 4.75 0.407 0.426 0.9398 50 1.54 0.132 0.141 0.9179 60 0.48 0.041 0.045 0.8956 70 0.08 0.007 0.018 Data for the systems Ba(OH) 2 + Phenol + H 2 O at 25 and Ba(OH) 2 + Resorcinol + H 2 O at 30 are given by van Meurs (1916). BARIUM IODATE Ba(IO 3 ) 2 .H 2 O. SOLUBILITY IN WATER. (Trautz and Anschutz, 1906.) t o Gms. Ba(IO 3 ) 2 per Gms. Ba(IO 3 ) per Gms. Ba(I0 3 ) 2 per 100 Gms. Solution. 100 Gms. Solution. 100 Gms. Solution, - 0.046 O.OOS 30 0.031 70 0-093 + io 0.014 40 0.041 80 0.115 2O O-O22 5O 0.056 9O O.I4I 25 0-028 60 0.074 100 o>1 97 One liter sat. aqueous solution contains 0.3845 gm. Ba(IO3) 2 at 25. (Harkins and Winninghoff, 1911.) At room temperature Hill and Zink (1909), found 0.284 gm. Ba(IOs) 2 per liter sat. aqueous solution. SOLUBILITY OF BARIUM IODATE IN AQUEOUS SALT SOLUTIONS AT 25. (Harkins and Winninghoff, 1911.) Added Mols. Salt Salt. per Liter. Ba(NOs)2 o . ooi 0.002 " 0.005 " O.O2O " o . 050 loo cc. cone, ammonia (Sp. Gr. 0.90) dissolve 0.0199 gm. Ba(IOs) 2 at room temp. (Hill and Zink, 1909.) 100 cc. 95% ethyl alcohol dissolve o.oon gm. Ba(IO 3 ) 2 at room temp. (Hill and Zink, 1909.) BARIUM IODIDE BaI 2 . SOLUBILITY IN WATER. (Kremers Pogg. Ann. 103, 66, 1858; Etard Ann. chim. phys. [7] 2, 544, '94.) Gms-BaI 2R erzooGms. ^ Gms ,.BaI 2 per xooGms. Water. Solution. Water. Solution. -20 143-9 59-0 BaI 2 .6H.5O 40 231.9 69.8 BaI 2 .2 H 2 O o 170.2 63.0 60 247.3 7 1 - 2 + 10 185.7 65.0 80 261.0 72.3 20 203.1 67.0 100 271.7 73.1 25 212.5 68.0 " 120 281.7 73.8 " 30 219.6 68.7 160 294.8 74.6 " Sp. Gr. of sat. solution at I9.5 = 2.24. 100 gms. 95% HCOOH dissolve 75 gms. BaI 2 at 20.2. (Aschan, 1913.) 100 gms. 97% ethyl alcohol dissolve 1.07 gms. BaI 2 .2H 2 O at 15. (Rohland, 1897.) Data for the system BaI 2 +BaO+H 2 O at 25 are given by Milikau (1916). Gms. Ba(IO 3 ) 2 per Liter. Added ' Salt. Mols. Salt per Liter. Gms. Ba(I0 3 ) 2 per Liter. Added Salt. Mols. Salt per Liter. Gms.' Ba(I0 3 )j per Liter. , 0-331 Ba(NO 3 ) 2 O.IOO o. 148 KNO 3 O.2OO 0.777 0.294 " 0.200 0.136 KIO 3 O.OOOIO6 0.368 0.237 KNO 3 O.OO2 0.396 " 0.000530 0.303 o. 164 " O.OIO 0-445 " o. 001061 0.229 0.149 " 0.050 0.643 115 BARIUM PerlODIDE BARIUM PerlODIDE BaI 4 . Data for the formation of barium periodide in aqueous solutions at 25 are given by Herz and Bulla (1911). (See reference calcium perbromide, p. 186.) BARIUM IODOMERCURATE. A saturated solution of BaI 2 and HgI 2 in water at 23.5 was found by Duboin (1906) to have the composition BaI 2 .i.33HgI 2 .7.76H 2 O, d = 2.76. BARIUM MALATE BaC 4 H 4 O s . SOLUBILITY IN WATER. (Cantoni and Basadonna Bull. soc. chim. [3] 35, 731, '06.) t o Gms.BaC 4 H4O 5 t o Gms. BaC 4 H4O 5 t o Cms. BaC 4 H 4 O 8 per 100 cc. Sol. per 100 cc. Sol. per 100 cc. Sol. 20 0.883 35 0.895 60 i. on 25 0.90! 40 0.896 70 I.04I 30 0.903 50 0.942 80 1.044 SOLUBILITY IN WATER AND IN ALCOHOL. (Rartheil and Hiibner Archiv. Pharm. 241, 413,. '03.) ioo grams water dissolve 1.24 gms. BaC 4 H 4 O 6 at 18, and 1.3631 gms. at 25. too grams 95% alcohol dissolve 0.0038 gms. BaC 4 H 4 O 6 at 18, and 0.0039 gm. at 25. BARIUM MALONATE BaC 3 H 2 O 4 .2H 2 O. SOLUBILITY IN WATER. (Miczynski Monatsh. Chem. 7, 263, '86.) Gms . BaC3H 2 O 4 per ioo Gms. A Gms. BaC3H 2 O 4 per too Gms. t . O 10 2O 30 40 Results slightly higher than the above, from o-5O are given by Cantoni and Diotalevi (1905). BARIUM MOLYBDATE BaMoO 4 . ioo parts water dissolve 0.0058 part BaMoC>4 at 23. (Smith and Bradbury, 1891.) Water. Solution. * Water. Solution. 0-143 0.143 50 0.287 0.285 0.179 0.179 60 0.304 0.303 0-212 0-2II 70 0.317 0.316 0.241 0.240 80 0.326 0-325 0.266 0.265 IARIUM NITRATE Ba(NO 3 ) 2 . SOLUBILITY IN WATER. (Mulder; Gay Lussac; Etard Ann. chim. phys.ty] 2, 528, 94; Euler Z. physik. Chem. 49, 3i5.'o4-> Gms. Ba(NO 3 ) 2 t. per ioo Gms. 80 IOO 120 Gms. Ba(NO 3 ) 2 per ioo Gms. Water. Solution. o 5.0 4.8 10 7.0 6.5 20 9-2 8.4 Water. Solution. 27.0 21-3 34-2 25.5 42.0 29.6 25 10.4 9-4 30 ii. 6 10.6 40 14.2 12.4 50 17.1 14.6 60 20.3 16.9 140 160 180 200 215 5o-o 33-3 58.0 36.7 67.0 40.1 76.0 43.2 84.5 45.8 Results from o-35 differing from the above are given by Vogel (1903). ioo gms. sat. aqueous solution contains 4.74 gms. Ba(NO 3 ) 2 ato. (Coppadoro.ign.) BARIUM NITRATE 116 SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND LEAD NITRATE IN WATER AT 25. (Fock, 1897; Euler, 1904.) In Solution. >p. W. 01 Solution. Cms. per Liter. Mg. Mols. per Liter. Mol. % Mol.% T> _/"VTr\ A Ba(N0 3 ) 2 . Pb(N0 3 ) 2 ." Ba(NO 3 ) 2 . Pb(N0 3 ) 2 " Ba(NO 3 ) 2 . *>a^iN Usja 1.079 102.2 O 391.0 100 100 I .088 54-9 17.63 2IO.I 53-3 79.78 98.30 I.loS 86.5 49-80 330-7 J50-7 68.70 96.74 I .Up 79-7 68.10 304-9 205-7 59-69 94-So I.I40 77.0 97.20 294.4 293.6 50-09 93.62 1.163 69.8 130.7 266.8 395-o 40.31 92-49 1.198 66.0 177-3 2 5 2 -5 535 - 6 32.03 90.07 1.252 57-5 247-7 222 .6 748.5 22.91 83-47 1.294 25-9 334-3 99-2 1010.3 8. ii 75-44 1.376 28.8 429.7 110.3 1298.0 . 7-77 35-n 1. 4*9 553-* o.o 1673.0 o.o o.o Tables of results are also given for 15, 30, and 47. SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND POTASSIUM NITRATE IN WATER. (Findlay, Morgan and Morris, 1914; Foote, 1904.) Gms. per 100 Gms. Sat. Sol. ' Solid Ba(NO 3 )2. 6.62 5-49 3-04 2.04 n-39 8.18 8.08 8.42 5-85 5.02 3-02 1.77 O 24.77 b * Results by Foote. a = Ba(NO 3 ) 2 , 2b.a = 2KN0 3 .Ba(NO 3 ) 2 , b = KNO 3 . SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND SODIUM NITRATE IN WATER. (Coppadoro, at o, 1912; at 30, 1913.) Results at o. Results at 30. Ba(NOs)2. KNOs. Phase. 9.1 6 25 a 9.1 4 .20 8 15 0+26.0 9- I . 9 8 12 .02 26.0 9- . 9 8 16 .80 6+26.0 9- 16 .76 6 21. 8 .46 o a 21. 7 47 2 .12 " 21. 1 6 35 5 .98 21. 1 6 .06 8 47 " 2i. i 5 .98 13 .24 0+26.0 21. i 3 .35 18 .24 26.0 21. 1 2 -30 21 47 " 21. 1 I .76 24 .86 6+26.0 t. 25* 25 25 25 35 35 35 35 35 35 35 35 35 Gms. per 100 Gms. Sat. Sol. KN0 3 . 14-89 16.30 21.99 27.76 O 12.99 17.48 19-75 24 26.05 34.87 34.98 35-01 Solid Phase. 0+26.0 zb.a 6+26.0 0+26.0 26.0 6+26.0 6 21. I Gms. per loo^Gms. Sat. Sol. Ba(NO3) 2 . NaNCb. 33 Solid Phase. Ba(NO 3 ) 2 4.33 0.41 3.34 1.68 2-50 3-54 I. 60 8.02 " 1.56 12.71 1.53 20.24 1.56 27.74 i-55 30.81 1.49 35.83 1.55 40.85 98 %Ba(NOs)2+ 2 %NaNO 3 1.55 41.3 26 % " + 73-8% " 1.54 42.06 2.6% " +97-4% " 0.51, 41.68 o % " +ioo % " Gms. per 100 Gms. Sat. Sol Solid Phase. Ba(NOs)2. NaNOs. 10-33 Ba(NOs). 8.58 2-33 " 5-28 7.09 3.89 12.07 3-54 14.41 " 3.20 17.87 H 3-07 19.06 ii 2.81 23-55 " 2.27 41 .22 " 2. II 48.22 Ba(N0 3 ) 2 + NaNOs I 48.50 NaNOs 9 49.16 " 117 BARIUM NITRATE SOLUBILITY OF BARIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 30. (Masson, 1911.) Cms, per 100 cc. Sat. Sol. Gms. per 100 cc. Sat. Sol. P ' HNOa. Ba(NOs) 2 . HNO 3 . Ba(NO)"t. 1.0891 o 54-31 1.0811 8.303 30.50 15.72 27.73 1.0663 31.49 22 -76 1.0619 47 .18 19 .71 1.0609 63 17-84 0633 78.54 16.66 .0668 98.40 15.88 .0783 125.9 14.99 .1050 188.6 14.11 .1341 251.6 13.75 1645 315.7 13.52 Fusion-point curves (solubility, see footnote, p. i) are given by Harkins and Clarke, 1915, for the following mixtures: Ba(N0 3 ) 2 + NaN0 3 + KNO 3 , Ba(NO 3 ) 2 + NaNO 3 , Ba(NO 3 ) 2 '+ KNO 3 , Ba(N0 3 ) 2 + LiN0 3 , Ba(NO 3 ) 2 + LiNO 3 + KNO 3 . SOLUBILITY OF BARIUM NITRATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (D'Ans and Siegler, 1913.) Gms. C 2 H 6 OH Gms. per 100 Gms. Sat. Sol. Gms. CtHsOH Gms. per 100 Gms. Sat. Sol. ^SS^ST 'OaOH. " BatNOa),: ^sS^T ckoH. * Ba(NO 3 ) Z . o o 9.55 58 57 1.85 10.25 9.5 7.63 78.7 78.2 0.62 18.6 17.5 6.02 90.1 89.9 0.18 25-05 23.7 5.25 99.4 99.39 0.005 40.2 38.3 3.53 Data are also given by Vogel (1903), but'as the results are given in gms. per 100 cc. and densities are omitted, no exact comparison can be made with the above. SOLUBILITY OF BARIUM NITRATE IN AQUEOUS PHENOL SOLUTIONS AT 25. (Rothmund and Wilsmore Z. phyisk. Chem. 40, 620, 'oa.) G. Mols. per Liter. Gms. per Liter. G. Mols. per Liter. Gms. j>er Liter. CflHfiOH Ba(N0 3 )2. o.ooo 0.3835 0.045 -37 8 5 0-082 0.3746 0.146 0.3664 QHsOH. Ba(NO 3 ) 2 . 0.0 100.2 4.23 98.97 7-7i 97-95 13-73 95 -81 C 6 H 6 OH. Ba(N0 8 ) 2 . 0.310 0.3492 O-4OI 0.3400 0.501 0.3299 0.728 (sat.) 0.3098 CoHcOH. Ba(NO 3 )a. 29.12 91.31 37-73 88.90 47.11 86.26 68.45 81.00 Data for the above system are also given by Timmermans (1907). 100 gms. hydroxylamine dissolve 1 1.4 gms. Ba(NO 3 ) 2 at i7-i8. (de Bruyn, 1892.) 100 cc. anhydrous hydrazine dissolve 3 gms. Ba(NO 3 ) 2 at room temp. (Welsh and Brodersen, 1915.) 100 gms. methyl alcohol dissolve 0.5 gm. Ba (NO 3 ) 2 at 25. (D'Ans and^Siegler. 1913.) 100 gms. acetone dissolve 0.005 S m - Ba(NO 3 ) 2 at 25. BARIUM NITRITE Ba(NO 2 ) 2 .H 2 O. SOLUBILITY IN WATER. (Oswald, 1914; see also, Vogel, 1903-) t. Gms. Ba(N02) 2 ^ ... Gms. 1-7 9-2 Ice 20 40.3 Ba(NOi)j.HiO - 3-2 19-5 " 43 50-3 - 5.8 33.1 61 58-6 6.5 34.5 " +Ba(NO l )i.H 2 80 67.3 4.3 34.9 Ba(NO J ).H l O 92 71.7 + 17 40* * no 82 * d of the sat. solution = 1.4897. BARIUM NITRITE 118 SOLUBILITY OF MIXTURES OF BARIUM NITRITE AND SILVER NITRITE IN WATER AT 13.5. (Oswald, 1914.) Cms. per 100 Gms. HjO. Ba(NO,),. ' AiNO?. S Ud Phase " 64 10.2 AgN0 2 +BaAg2(N0 2 )4.H 2 O 75-6 9-5 Ba(N0 2 ) 2 +BaAg 2 (N0 2 ) 4 .H 2 SOLUBILITY OF BARIUM NITRITE IN AQUEOUS ALCOHOL SOLUTIONS AT I9.5-20.5. (Vogel, 1903.) % alcohol in solvent: 10 20 30 40 50 60 70 80 184 13.3 9.1 4.8 2.7 0.98 Gms. Ba(N0 2 ) 2 .H 2 j per 100 cc. sat. soli 49 ' 3 29 * 3 BaC 2 O 4 . 90 o BARIUM OXALATE SOLUBILITY OP THE THREE HYDRATES IN WATER. (Groschuff Ber. 34, 3318, '01.) BaC 2 43 *H 2 0. BaC 2 O 4 .2H 2 O. BaC 2 O 4 .}H 2 O. t . Gms.BaC 2 O 4 G.M.BaC 2 O 4 per per 100 Mol. Gms. BaC 2 O 4 per G. M. BaC 2 O 4 per 100 G. M. Gms.BaC 2 O 4 per G. M. BaC 2 4 " per loo Mol. 1000 g. Sol. H 2 0. looo g. SoL H 2 O. looo g. Sol. H 2 0. O 0.058 O.OOO46 0-053 O.OOO42 0.089 O.OOO7O 9-5 0.082 O.OOO66 . . . 18 O.II2 0.00090 0-089 O.OOO7I O.I24 0.00099 3 0.170 O.OCI36 O-I2I 0.00097 0.140 0-OOII2 40 O.I52 O.OOI22 O.I5I O.OOI2I 45 0-169 0.00135 50 ... ... 0.164 O.OOI3I 55 ... O.2I2 0.00170 00 0-175 0.00140 65 ... o 250 O.OO2OO 73 ... 0.285 0.00228 75 ... ... 0.188 O.OOI5I 90 ... ... ... ... 0.200 0.00100 100 ... *. .. * ... O.2II o 00169 The following additional data for the solubility of the above three hydrates in water are given by (Kohlrausch, 1908). i BaC 2 O4.2H 2 0. BaCi-CMHzO. ' t Gms. per Liter. * t. Gms. per Liter. ' t. Gms. per Liter. 2.07 0.0553 3 0.0519 0.08 0.0499 4.2 0.059 5-47 0.0575 2.46 0-053 16.1 0.0962 11.28 0.0693 9.62 0.0619 17.8 0.1047 17.9 0.085 15.04 0.0699 23-3 0.0987 17-54 0.0751 28.4 O.II24 27.02 0.091 33-73 O.IOlS Cantoni and Diotalevi (1905) obtained higher results than either of the above. SOLUBILITIES OF BARIUM OXALATE (BaC z O 4 .iH 2 O) IN AQUEOUS ACETIC ACID AT 26-27. (Herz and Muhs, 1903.) Normality G. Residue* Gms. per IOQCC. Solution. Normality of Acetic Acid. per 50. 05 cc. CH 3 COOH Ba * Oxalate. of Acetic Acid. 0.0077 O .00 .0154 3-85 O 565 0.0423 3 39 .0845 5-79 I .425 o 0520 8 55 .1039 I7-30 2 8 S 0.0556 17 .11 .1111 , Dried at 70. G. Residue* Gms. per 100 cc. Solution ^Sof."' CH 3 COOH. BaOxalate 0.0564 23.12 O.II27 0.05II 34-76 0.0048 103.90 O 1021 o 0096 119 BARIUM OXALATE BARIUM AOID OXALATE BaC 2 O 4 .H 2 C 2 O 4 . 2 H 2 O. SOLUBILITY IN WATER. (Groschuff.) f. ' jms.per K x> Gms. Solution. Mols. per too Mols. H 2 O. Mols. HaCtO* per i Mol.BaC 2 O 4 . HjC 2 O 4 iC_O 4 . H 2 C 2 4 . BaC 2 4 . o 0.27 O .030 0.054 0.0024 22 18 0.66 O .070 0.130 0.0056 24 20.5 0.76 .076 0.15 0.0061 25 38 1.61 0.16 o-33 0.013 25 4i 1.82 o .18 o-37 0.015 25 53 2.92 31 0.60 0.026 24 60 3.60 o .40 0-75 0-033 22. 5 80 6.21 o .81 i-34 0.070 J 9 90 7.96 I .11 0.098 18 99 10.50 1 55 2-39 0.141 17 BARIUM OXIDES. Data for the lowering mixtures of BaO and B 2 ( r of the fusion 3 3 are given by points (solubility, see footnote, p. i), of Guertler (1904). Results for mixtures of BaO and CaCl 2 and for BaO and SrCl 2 are given by Sackur (1911-12). BARIUM Glycerol PHOSPHATES. SOLUBILITY IN WATER. Gms. Anhy- t. Compound. Formula. drous Salt per Authority. loo Gms. Sat. Sol. 21 Barium Glycerolphosphate BaCsHrOsP.HzO 4.5 (Rogier and Fiore, 1913.) 13 " a Glycerolphosphate BaCsHrOsP 1.4 (King and Pyman, 1914.) 12 ft BaCaHvOsP.IHzO 5.8 " " " . 21 Glycerolphosphate BaCaHeOeP.^HzO 8.4 (Langheld and Oppmann, 1912.) 22 " di Glycerolphosphate ____ 3.76 BARIUM PICRATE. Solubility in H 2 O + C 2 H 6 OH at 25. (Fischer, 1914.) BARIUM PROPIONATE Ba(C 3 H 5 O 2 ) 2 .H 2 O, also 6H 2 O. SOLUBILITY IN WATER. (Krasnicki Monatsh. Chem. 8, 597, '87.) Gms. Ba(C 3 H 5 O2)2 Gms. Ba(C 3 H fi O 2 )2 t. per IPO Gms. $. per 100 Gms. Water. Solution. Water. Solution. o 47 -9 8 32-4i 5 62 -74 38-57 10 51-56 34-02 60 64.76 39 .31 20 54-82 35.42 70 66.46 39.93 3o 57-77 36-65 80 67.85 40.42 40 60.41 37-66 .. ... 100 cc. 95% ethyl alcohol dissolve 0.1631 gm. barium propionate at room temp. (Crowell, 1918 ) BARIUM SALICYLATE Ba(C 6 H 4 OHCOO) 2 .H 2 O. 100 gms. sat. aqueous solution contain 28.65 g 1115 - anhydrous salt at 15 and 54.08 gms. at I OO. (Tarugi and Checchi, 1901.) BARIUM DinitroSALICYLATE. Solubility in H 2 O + C 2 H 6 OH at 25. (Fischer, 1914.) BARIUM SILICATE BaSiO 3 . Fusion-point curves (solubility, see footnote, p. i) for mixtures of: BaSiO 3 +CaSiO 3 and BaSiO 3 -fMnSiO 3 are given by (Lebedeu, 1911). BaSiO 3 +Li 2 SiO 3 and BaSiO 3 +Na 2 SiO 3 are given by Wallace, 1909. BaSiO 3 -j-BaTiOj are given by Smolensky (1911-12). BARIUM STEARATE 120 BARIUM STEARATE and Salts of Other Fatty Acids. SOLUBILITY OF BARIUM STEARATE, PALMITATE, MYRISTATE AND LAURATE IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.) Solvent. t. Cms. Each Salt (Determined Separately) per 100 Cms. Solvent. Ba Stearate. Ba Palmitate. Ba Myristate. Ba Laurate. Water 15.3 0.004 0.004 0.007 0.008 " 50 0.006 0.007 o.oio o.on Abs. Ethyl Alcohol 16.5 0.006 0.009 0.009 o.oio 50 0.003 0.004 0.004 0.007 Methyl Alcohol 15 o . 042 o . 045 o . 05 7 o . 084 " " 50.5 0.077 0.088 0.108 0.163 Ether 25 o.ooi o.ooi 0.003 0.007 Amyl Alcohol 25 0.007 0.008 0.009 0.009 BARIUM SUCCINATE AND BARIUM ISO SUCCINATE Ba.CH 2 CH 2 (COO) 2 . Ba.CH 3 CH 2 (COO) 3 . SOLUBILITY OF EACH IN WATER. (Miczynski Monatsh. Chem. 7. 263, 1886.) Cms. Ba. Succinate Cms. Ba. Iso Succinate IjO^ per IPO Gms. per iqo Gms. Water. Solution. Water. Solution. o 0.421 0.420 1.884 1.849 10 0.432 0.430 2.852 2.774 20 0.418 0.417 3-618 3-493 30 0.393 0.392 4.181 4.014 40 0.366 0.365 4.542 4.346 50 0.337 -33 6 4-7oo 4-594 60 0.306 0.305 4-656 4-45 70 0.273 0.272 4.410 4.224 80 0.237 0.237 3-9 62 3- 8l 100 gms. H 2 O dissolve 0.396 gms. Ba Succinate at 18 and 0.410 gms. at 25. 100 gms. 95% alcohol dissolve 0.0015 g ms - Ba Succinate at 18 and 0.0016 gms. at 25. ' (Partheil and Hiibner Archiv. Pharm. 241, 413. '03-) Cantoni and Diotalevi (1905), and Tarugi and Checchi (1901), obtained data in close agreement with the above. BARIUM SULFATE BaSO 4 . SOLUBILITY IN WATER. (Kohlrausch, 1908.) One liter of sat. solution contains 0.00115 gm. BaSO 4 at o; 0.0020 gm. at 10; 0.0024 gm. at 20 and 0.00285 g m - at 30. Melcher (1910) obtained results a little lower than the above. His data for higher temperatures are 0.00336 gm. at 50 and 0.0039 gm. at 100. Kohlrausch obtained the following results for the solubility of heavy spar (BaSO 4 ); 0.0019 g m - a t o, 0.0023 gm. at 10; 0.0027 gm. at 20; 0,00315 gm at 30 and 0.0033 gm. at 33.5. 100 gms. sat. solution of BaSO 4 in 21.37% aqueous ammonium acetate solu- tion contain O.OI6 gm. at 25. (Harden, igzG.) SOLUBILITY OF BARIUM SULFATE" IN AQUEOUS SOLUTIONS OF IRON, ALUMINIUM AND MAGNESIUM CHLORIDES AT 2o-25. (Fraps, 1901.) Gms. Milligrams BaSO 4 per Liter in: Gms. Mgs. BaSO 4 per Liter in: Chloride , ^ , Chloride Vxiuuiiue /- -^ v-mui me s per Liter. Aq. FeCl 8 . Aq. AlCla. Aq. MgCl 2 - per Liter. Aq. FeCl 3 . Aq. A1C1 3 . Aq.MgCl 2 - i 58 33 30 25 150 116 50 2i 72 43 30 5 l6 *7o 5 5 115 o 33 ioo 170 175 So 10 123 94 33 ... 121 BARIUM SULFATE SOLUBILITY OF BARIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS. (Banthisch, 1884.) In Hydrochloric Acid. In Nitric Acid. cc. containing Mgs. BaSO 4 Gms. per 100 cc. cc . containing Mgs. BaSO 4 Cms. per 100 cc. i MK Equiv. per i Mg. Equiv. Solution. i Mg.Equiv. per i Mg.Equiv. Solution. ofHCl. ofHCl. HC1. BaSO/. of HNO 3 . of HNO 3 . tiNO 3 . ' BaSOl. 2. 0.133 1.82 0.0067 2. 0.140 3.15 0.0070 I. 0.089 3.65 0.0089 I. 0.107 6.31 0.0107 0.5 0-056 7-29 o.oioi 0.5 0.085 12. 61 0.0170 0.2 0.017 18.23 0.0086 O.2 0.048 3I-52 0.0241 TOO cc. HBr dissolve 0.04 gm. BaSO 4 ; 100 cc. HI dissolve 0.0016 gm. BaSO 4 at the boiling point. (Haslam, 1886.) SOLUBILITY OF BARIUM SULFATE IN CONCENTRATED AQUEOUS SOLUTIONS OF SULFURIC ACID AT 2O. * (Von Weimarn, 1911.) Gms. HtSOi per Gms. BaS04 per Gms. HzSO4 per Gms. BaS04 per ico Gms. Solvent. 100 cc. Sat. Sol. ico Gms. Solvent. 100 cc. Sat. Sol. 73.83 0.0030 85.78 0.3215 78.04 0.0135 88.08 1.2200 80.54 0.0285 93 . . .* 83.10 O.OSOO 96.17 4.9665 84.15 ...t 96.46 18.6900 * Solid Phase = BaSCMIfcSO^.H^ + BaSCU.EkSO*. f Solid Phase = BaSO4 + BaS04.H2S04.H2O. Data for the above system are also given by Volkhouskii (1910). 100 cc. sat. solution of BaSO 4 in abs. H 2 SO 4 contain 28.51 gms. BaSO 4 , solid phase = BaSO 4 .3oH 2 SO 4 . (Bergius, 1910.) 100 cc. of sat. solution of BaSO 4 in 95% formic acid contain o.oi gm. BaSO 4 at 18.5. (Aschan, 1913.) Fusion-point curves (solubility, see footnote, p. i) are given the following mixtures of barium sulfate and other salts: BaSO 4 + NaCl (Sackur, 1911-12.) + KC1 + CaCl 2 -f- K2SO 4 (Grahmann, 1913; Calcagni, 1912.) + Li 2 SO 4 (Calcagni and Marotta, 1912.) + Na 2 SO 4 (Calcagni, 1912.) BARIUM Amyl SULFATE Ba(C 5 HnSO 4 )2.2H 2 O. SOLUBILITY OF MIXED CRYSTALS OF THE ACTIVE AND INACTIVE SALT IN WATER AT 20.5. (Marckwald, 1904.) Gms. Salt per Per cent Active Salt Gms. Salt per Per cent Active Salt ico Gms. H2O. in Dissolved Salt. 100 Gms. HjO. in Dissolved Salt. 28.2 ico 18.3 49.6 26.3 91.6 16.6 36.3 24.8 84.5 15 25.8 21.7 71.2 13.6 10.6 19.5 59.5 12.8 o Mixed crystals of the active and inactive barium amyl sulfate were dissolved in water by warming, then cooled to the beginning of crystallization and shaken two hours at 20.5. The percentage of the active salt was determined by the polariscope. Its specific rotation was [a] D = +2.52. BARIUM SULFATE 122 BARIUM Isoamyl SULFATE Ba(C 5 HiiSO4) 2 .2H 2 O. 100 gms. H 2 O dissolve 9.71 gms. of the anhydrous salt at 10, 11.85 S m s. at 19.3 and 12.15 8 m S. at 20.5. (Marckwald, 1902.) BARIUM PerSULFATE BaS 2 O 8 .4H 2 O. 100 parts water dissolve 39.1 parts BaS 2 O 8 or 52.2 parts BaS 2 O 8 . 4H 2 O at o. (Marshall J. Ch. Soc. 59, 771, '91** BARIUM SULFITE BaSO 3 . SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS. (Rogowicz Z. Ver Zuckerind. 938, 1905.) Cone, of Gm. BaSO 4 per 100 cc. Sol. ^^ Q{ Gm. BaSO 4 per 100 cc. Sol. S^Sfll. ' a t 20 . "TTsoX Sugar Sol. ' a t 2 o. "!Ts>. o Bx 0.0197 0.00177 40 Bx 0.0048 0.00158 10 0.0104 0.00335 5 " 0.0030 0.00149 20 " 0.0097 0-00289 60 " (Sat.) 0-0022 0-OOII2 30 " 0.0078 0.00223 BARIUM SULFONATES. SOLUBILITY OF SEVERAL BARIUM SULFONATES IN WATER. Gms. Anhy- Salt. Formula. f. pj^g.. Authority. Barium: HzO. 3.4 Diiodobenzene Sulfonate CuHeOek&Ba.H^ 21.5 0.27 (Boyle, 1909.) 2.5 " " CuHeOehSiBa.^H^ 2O 0.522 " 2 Phenanthrene Sulfonate (Ci4H9SO3)2Ba.|H2O 20 0.016 (Sandquist, 1912.) 3 " " (CuH 9 SO3)2Ba.3H2O 2O 0.03 " 10 (C,4H 9 S0 3 )2Ba.3H 2 2O 0.13 Bromobenzene Sulfonate (CelfcBrSOshBa 17.5 3.31 (Meyer, 1875.) BARIUM TARTRATE Ba(C 2 H 2 O 3 ) 2 . SOLUBILITY IN WATER. (Cantoni and Zachoder Bull. soc. chim. [3] 33, 751, '05; see also Partheil and Hiibner.) Gms. Ba(C 2 H 2 O 3 )2 t. DCT loo cc. t. Gms. Ba(C 2 H 2 O 3 )2 per 100 cc. t". Gms. Ba(C 2 H 2 per loo cc. Solution. Solution. Solution. O.O2O5 30 0.0315 70 0.0480 10 O.O242 40 0.0352 00 0.0527 20 0.0279 50 0.0389 85 0.0541 25 0.0297 60 0.0440 SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, SODIUM CHLORIDE AND AMMONIUM CHLORIDE. (Cantoni and Jolkowski, 1907.) At Different Temperatures. Varying Concentrations at 16. Gms. Ba(C2H2Os)2 per 100 cc. Sat. Sol. in: Gms. Chlo- Gms. Ba(C2H2Oa)2 per 100 cc. Sat. Sol in: 7% KC1. 7%NaCl. 7% NEUC1. Gms. Solvent. KC1. NaCl. NH 4 C1. 16 O .0823 0, ,0887 0.1050 o-5 0.0398 0, ,0410 .0441 30 .1017 ,1151 0.1370 i o . 0466 0514 o .0589 55 .1230 O 1348 0.1590 3 0.0723 o. ,0826 o .0892 70 .I5OO O .1781 o . 2030 10 O.II99 o, 1260. .1342 85 O .1828 .2168 o . 2360 15 0.1435 o, 1440 .1585 20 o . 1466 0, 1573 1663 (See Note p. 222.) 123 BARIUM TARTRATE SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26-27. (Herz and Muhs, 1903.) Normality Cms. residue* Gms. per 100 cc. Solution. Normality. Cms, residue* Gms.per IOQCC. Solution. 01 /vceuc Acid. per 50 cc. Sol. CH 3 COOH. Batartratc! ^Atid L 50 tA.. Sol. CH 3 COOH. Ba tartrate. O 0.0328 o. o 0655 3 77 o .1866 22 .62 0.3728 o-5 6 5 O.II5I 3-39 .2300 5 65 .1865 33 .90 0.3726 1-425 0-1559 8-55 o 3"5 16 85 .02l8 101 .10 0.0436 2.85 o 1739 17.11 3475 * Dried at 7- TOO grams 95% alcohol dissolve 0.032 gm. Ba tartrate at 18 and 0.0356 gm. at 25. (Partheil and Hubner.) BARIUM P TRUXILATE. 100 cc. sat. solution in water contain 0.028 gm. of the salt at 26. (de'Jong, 1912.) BEHENIC ACID C 2 iH 43 GOOH. Freezing-point data (solubility, see footnote, p. i) are given for the following mixtures of behenic icid and other compounds. Behenic Acid + Erusic Acid (Mascarelli and Sanna, 1915.) + Isoerusic Acid + Brassidinic Acid + Isobehenic Acid (Meyer, Brod and Soyka, 1913.) Methylester+Isobehenic Acid Methyl Ester. " BENZALANILINE CeHsCHiN.CeHs. Solubility data determined by the freezing-point method are given by Pascal and Normand (1913), for mixtures of benzalaniline and each of the following compounds: Azobenzene, benzylaniline, dibenzyl, hydrazobenzene, stilbene and tolane. BENZALAZINE C 6 H 5 CH : N.N : CHC 6 H 5 . Solubility data determined by the freezing-point method are given by Pascal (1914), for mixtures of benzalazine and each of the following compounds: Di- phenylhydrazine, diphenyldiacetylene, naphthalene, furfuralazine, diphenylbuta- diene and cinnamylidene. Data are also given for mixtures of thiophenylalazine and cinnamylidene. BENZALDEHYDE C 6 H 5 CHO. 100 gms. H 2 O dissolve 0.3 gm. C 6 H 5 .CHO at room temp. (Fluckinger, 1875; U. S. P.) Freezing-point data for mixtures of C 6 H 5 .CHO and HNO 3 are given by Zukow and Kasatkin (1909). Para HydroxyBENZALDEHYDE p C 6 H 4 OH.CHO. Freezing-point data are given for mixtures of p hydroxybenzaldehyde + di- methylaniline and p hydroxybenzaldehyde + phenol. (Schmidlin and Lang, 1912.) Ortho NitroBENZALDEHYDE o C 6 H 4 NO 2 .CHO. SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS AT 25. (Goldschmidt and Sunde, 1906.) Gms. CelfcNOz. Gms. CelfcNOj. Gms. CHNO Solvent. CHO per 100 cc. Solvent. CHO per 100 cc. Solvent. CHO per 100 Sat. Sol. Sat. Sol. cc. Sat. Sol. H 2 O 0.2316 i raNaCl 0.1899 I wKNO 3 0.3199 o.5wHCl 0.2391 2 n " 0.1390 2 n " 0.3419 1 n " 0.2466 o.5nHNOa 0.3207 o.swNaNOa 0.3013 2 n " 0.2658 i n " 0.3758 i n 0.3132 1 nKCl 0.2046 o.5wKNO 3 0.3123 2 n 0.3201 2 n " 0.1912 BENZALDEHYDE 124 Meta NitroBENZALDEHYDE m C 6 H 4 NO 2 .CHO. 100 CC. H 2 O dissolve 0. 1625 gm. m C 6 H 4 NO 2 .CHO at 25 (Goldschmidt and Sunde, 1906.) " I n HC1 " 0.1813 " " inKCl " 0.1542 ." 11 2wKCl " 0.1417 " Para NitroBENZALDEHYDE p C 6 H 4 NO 2 .CHO. Data for the system p nitrobenzaldehyde + nitrobenzene + hexane are given by Timmermans (1907). Solubility data determined by the freezing-point method are given for: p Nitrobenzaldehyde + Sulfuric Acid (Kendall, 1914.) m + Benzene (Schmidlin and Lang, 1912.) m -j- Phenol BENZALDOXIME C 6 H 6 CH:NOH. Solubility data determined by the freezing-point method are given for mix- tures of: a Benzaldoxime + ft Benzaldoxime (Cameron, 1898.) a Nitrobenzaldoxime + ft Nitrobenzaldoxime. (Beck, 1904.) BENZAMIDE C 6 H 6 CONH 2 . SOLUBILITY IN ETHYL ALCOHOL. (Speyers Am. J. Sci. [4] 14, 295, '02.) G.M. Cms. G. M. Cms. t o Sp. Gr. of C 6 H 8 CONH 2 C 6 H 6 CONH2 t o Sp. Gr. of C 6 H 6 CONH 2 C 6 H 6 CONH a * Solutions, per 100 G.M. per 100 Gms. Solutions, per 100 G.M. per 100 Gms. CaHfiOH. C-sHcOH. C 2 H 6 OH. C^OK. -^33 3- 1 8.15 40 0.848 ii .o 28.92 10 0.832 4.2 11.04 50 0.862 14.2 37-34 20 0.833 5.9 15-52 60 0.881 17.2 45-22 25 0.835 6.8 17.87 70 0.913 20.4 53-63 30 0.838 8.2 21.56 SOLUBILITY OF BENZAMIDE IN MIXTURES OF ALCOHOL AND WATER AT 25". (Holleman and Antusch Rec. trav. chim. 13, 294, '94.) Alcohol. 100 95 90 85 83 80 75 See rematks under a Acetnaphthalide, p. 13. loo gms. pyridine dissolve 31.23 gms. benzamide at 2p-25. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 39.15 gms. benzamide at 2O-25. The coefficient of distribution of benzamide between oil and water is 0.66 at 3 and 0.43 at 36. (Meyer, 1900, 1909.) BENZANILIDE. Solubilities determined by the freezing-point method are given by Vanstone (1913)- for mixtures of benzanilide and each of the following compounds: ben- zil, benzylideneaniline, and benzoin. Results for mixtures of o chlorobenzanilide and p chlorobenzanilide are given by King and Orton (1911). Gms. Gms. per 100 Gms. Sp. Gr. of Solutions. Vol. % Alcohol. QsHsCONHjj per 100 Gms. Sp. Gr. of Solutions. Solvent. Solvent. 17.03 0.830 70 23.87 0.925 21 .12 0.856 60 18.98 0-939 24.50 0.878 50 13-74 0.949 26.15 0.895 40 8.62 0.958 26.63 O.9OO 31 5-33 0.967 26.43 0.907 15 2.28 0.982 25 41 O.Qiy i-35 0.999 125 BENZENE BENZENE C 6 H e . SOLUBILITY IN WATER AT 22. (Herz Ber. 31, 2671, '98.) ioo cc. water dissolve 0.082 cc. C 6 Hfr, Vol. of Sol. 100.082, Sp. Gr. = 0.9979. ioo cc. C 6 H 6 dissolve 0.211 cc. H 2 O, Vol. of sol. = 100.135, Sp. Gr. - 0.8768. SOLUBILITY OF WATER IN BENZENE. (Groschuff, 1911.) j.o Gm. HkO per ioo j. Gms. HsO per ioo 1 ' Gms. Sat. Sol. Gms. Sat. Sol. 3 0-030 55 0.184 23 0.061 66 - 2 55 40 0.114 77 0.337 BENZENE, AQ. ALCOHOL MIXTURES; BENZENE, AQ. ACETONE MIX- TURES AT 20. H 2 O added to mixtures of known amounts of the other two and appearance of clouding noted. (Bancroft Phys. Rev. 3, 31, 1895.96.) C 6 H 6 ,C 2 H S OH and H 2 O C 6 H 6 ,CH 3 OH and H 2 O C 6 H 5 , (CH 3 ) 2 CO and H 2 O Per 5 cc.C 2 H 5 OH. Per 5 cc. CH 3 OH. Per 5 cc. (CH 3 ) 2 CO. * cc. H 2 0. cc. C 6 H 6 . 'cc. H 2 O. cc. C 6 H8.' cc. H 2 O. 20 0.03 5.0 0.15 8.0 o.io 8 0.13 3.0 0.215 3.0 0.395 4 0-39 2.0 0-59 2.0 0.69 2 1.17 1-4 I.O 1.3 1.0 1.5 1.87 I.o 1-9 O.5I 2.0 i.o 3.57 0.8 3.0 0.295 3.0 0.605 8.0 0.69 4.0 0.2 4.0 0.34 20.0 0.49 8.0 0.15 5.0 C 2 H 5 OH added to mixtures of known amounts of CeH 6 and H 2 O until the solutions became homogeneous at 20. (Lincoln, 1900.) Per 5 cc. CsHe. Per 5 cc. CeH 6 . Per 5 cc. C 6 H 6 . cc. HzO. ' cc. CzHiOH. cc. HzO. cc. CzHsOH. cc. H 2 O. cc. CzHsOH.' . I 4-6 20 31.6 50 58 5 12.8 30 41.4 60 65.6 10 19.8 40 39.5 70 73.1 Lincoln also gives results at 10. Data of a similar character for mixtures of benzene, ethyl alcohol and water at 20, 25 and 35 are given by Taylor (1897). For results at 15, see page 287. Data for mixtures of benzene, ethyl alcohol and glycerol and for mixtures of benzene, ethyl alcohol and lactic acid are given by Rozsa (1911). MUTUAL SOLUBILITY OF BENZENE AND CARBON TETRACHLORIDE. (Determined by the synthetic method.) (Baud, 1913.) t o Gms. CeHg per ioo f0 Gms. CsHe per 100 t o Gms. CH per ioo Gms. Mixture. Gms. Mixture. Gms. Mixture. 24.2 O 40 19.3 20 48 . 30 2.8 34 24.2 io 64.1 -40 8.5 -35tr.pt. 31 o 85.3 46.3Eutec. 12.9 30 36 +5-5 ioo BENZENE 126 MUTUAL SOLUBILITY OF BENZENE AND CHLOROFORM. FREEZING-POINT METHOD. (Wroczynski and Guye, 1910.) Cms. CeH 6 ,. . Cms. C 6 H 6 ~ ,. , Gnfs. CeH 6 . t. periooGms. ** t. per 100 Gms. p S h ^ t. per 100 Cms. Solution. rhase> Solution. Phase - Solution. 63.5 O CHCb 60 26.8 C 6 H 20 58.3 C 6 H 6 70 1 1. 8 " 50 32 " io 70.8 -75 H-7 " -40 39 " o 88 81.7 18.4 CHCU+c 6 H 6 30 47.8 " 5 100 70 22.6 CsH The eutectic point was found by extending the curves to their intersection. The temperature of the eutectic could not be reached by use of liquid CO 2 . MUTUAL SOLUBILITY OF BENZENE AND FORMIC ACID. SYNTHETIC METHOD. (Ennis, 1914.) t of Cms. HCOOH t of Cms. HCOOH per t of Cms. HCOOH Miscibility per 100 Gms. Sol. Miscibility. 100 Cms. Sol. Miscibility. per 100 Gms. Sol. 21 9.2 70 31.5 60 74 30 10.3 72 35 40 82 40 12.2 73.2 43-51 20 87 50 16.5 72 60 5 89.6 60 22 70 65 SOLUBILITY OF BENZENE IN AQUEOUS SOLUTIONS OF FORMIC ACID. SYNTHETIC METHOD. (Ennis, 1914.) iirr riCL iVt. % (OH. Gms. CeHj In 85 Wt. % HCOOH. jo Q Gms. CeHj 'H % yo Q Gms. CeHe In 60 Wt. % HCOOH. i t of Gms. CeHs Miscibility. per ioo Gms. Sol. Miscibility. per ioo Gms. Sol. Misdbility. G ^ r gj Miscibility. per ioo Gms. Sol. 57-5 96.3 71 97-5 122 12 105 6 77 94-4 87 96.6 97-5 8-5 82 3-8 95 89.8 101 96 74 6 7 6 3 112 85-2 100.5 14.3 94-5 24.7 81 IO 80.5 20 46 7 51 12.5 MUTUAL SOLUBILITY OF BENZENE AND ETHYL ALCOHOL. FREEZING-POINT. METHOD. (Viala, 1914; see also Rozsa, 1911 and Pickering, 1893.) t o Gms. CeHe per f Gms. CeHe per f o Gms. CeHe per ioo Gms. Sol. ioo Gms. Sol. ioo Gms. Sol. -113.9 o -60 19.3 -io 57.6 ioo 8 50 24.1 o 85 90 io 40 29.8 i 93 - 80 12 -30 37 5.5 ioo - 70 15 -20 45.7 MUTUAL SOLUBILITY OF BENZENE AND /3 NAPHTHALENE PICRATE, C 6 H 2 (Np2)3OH.CioH 7 OH. (Kuriioff, 1897.) Synthetic method used see Note, p. 16 |.o Gms. Gma. f o Gms. Gms. Picrate Benzene Picrate. Benzene. 157 ioo. ... 100.0 in. 6 1.173 I -37 J 9- 2 148.4 2.128 O.II5 79.3 IO2.O I.oS/ 1.780 II. 2 137.4 1-274 0.170 61.1 29.5 0.390 8.430 0.95 134.2 1-384 0.297 49.3 4.6 1.329 21. 80 0.48 126.8 1.019 0.343 38.3 5.02 ... loo.o a = Mols. ft Naphthalene Picrate per ioo Mols. of ft Napthalene Picrate plus Benzene. Determinations for a large number of isothermes are also given. 127 BENZENE THE SYSTEM BENZENE, PHENOL AND WATER AT 25. (Horiba, 1914.) In the case of phenol, the bromine method was used for its determination. In the case of the other two compounds, the amounts required to produce constant turbidity were measured directly from burettes. Solubility of Benzene in Aqueous Solu- tions Containing Phenol and Vice Versa. Solubility of Phenol in Benzene Solu- tions Containing Water and Vice Versa. Saturating <* Gms. per ioo Gms. CsHsOH+CeHe+HzO. ^jgj* ^36- Gms. per ioo Gms. IS CeHiOH. QHe. * 3s ' UHsOH. CH. I .0002 O .198 CeH, 29 ,29 I .0008 I 059 O . 204 71 63 I .62 I .OO2I 2 .602 .205 74 5 3 I .00305 3 .526 o 199 I .0256 6 9 . ,18 16.33 5 65 .17 CoHs+CsHsOH O .9891 55< 80 36 13 5 953 .132 QHsOH .9629 44 39 5o 56 I .0059 6 .516 o 075 .9142 21. 15 77 .22 I .0069 7 683 .025 o .8818 4 78 94 .98 I .0073 8 195 o " .8764 99 95 CsHsOH CeHfiOH+CeH, CeH. Data are also given for the solubility of phenol as solid phase, in C 6 H 6 and in water and in their mixtures. A complete table for the conjugate points, showing the distribution of phenol between the aqueous and the benzene layers, is given. The results agree with those of Rothmund and Wilsmore. See page 482. RECIPROCAL SOLUBILITY, DETERMINED BY FREEZING-POINT METHOD, OF MIXTURES OF C Benzene and Phenol. (Hatcher and Skirrow, 1917.) Benzene and Pyridine. (Hatcher and Skirrow, 1917.) t of Melting. Ifl *g^*y r Solid ;ure. Phase. t of Meltine Gms> C) + m + p Bromotoluene (Borodowski and Bogojawlenski, 1904.) 129 BromoBENZENES SOLUBILITY OF p DIBROMOBENZENE IN SEVERAL SOLVENTS AT 25. (Hildebrand, Ellefson and Beebe, 1917.) Cms. CeH4Br 2 (p) Gms. CeffcBn (p) Solvent. per 100 Gms. Solvent. per 100 Cms. Solvent. Solvent. Methyl Alcohol 10.35 Carbon Tetrachloride 36.6 Benzene 83.8 Ethyl Ether 71.3 Carbon Bisulfide 90 Hexane 25.9 DiBromoBENZENE (p} C 6 H 4 Br 2 . SOLUBILITY IN ETHYL, PROPYL, Iso BUTYL ALCOHOLS, ETC. (Schroder Z. physik. Chem. n, 456, '93.) Determinations by " Synthetic Method" see Note, p. 16. Grams C 6 H 4 Br 2 (P) per too Grams Sat. Solution in: CzHcOH. Crf O 10 20 30 40 50 60 70 75 80 SOLUBILITY OF MIXTURES OF p DIBROMOBENZENE AND p DICHLOROBENZENE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL Solvent, 50 Vol. % C 2 H 5 OH, t = ^.i. Solvent, 90.9 Vol. % C 2 H 6 OH, t = 25 (Kiister and Dahmer, 1905.) (Kiister and Wiirfel, 1904-05.) f "LS /~\1X CsHyOH. (CHa)CH.CH 2 OH. (C2H 6 ) 2 0. CS 2 . C 6 H 6 . \ 27 30 34 34 22 38 43 43 29 14 15 47 53 53 36 19 2O 57 62 62 45 26 2? 30 67 72 71 54 38 40 44 77 8! 80 67 576 67 65 87 90 88 79 80-5 85 77 84 94.4 95 94-6 90 Gms. per 100 cc. Sat. Sol. Mol. % CeHiBra in Solute. Gms. per loo cc. Sat. Sol. Mol. % CeHtBra in Solute. CeH4Br2. CeHiCk. CgHxBrj. CsHiCh. 0.484 100 2.909 100 0.505 O.O44 89.8 2.674 0.696 94-3 0.496 0.084 80.7 2.220 2.808 70.7 0.477 0.503 59-3 1.769 4.249 49.1 0.470 0.721 54-4 I.27I 6.237 24-5 0.196 I.3II ii. 6 0.675 6.877 9.9 O I .614 8.271 Additional data for the above system are given by Thiel (1903). Tribrpmo BENZENE, C 6 H 3 Br3. Solubility, gms. per 100 gms. at 20-25: In H 2 (X 0.004; i n pyridine, 24.3; in Aq. 50% pyridine , 2.01. (Dehn, 1917.) SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see foot- note, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES. p Bromochlorobenzene + p Dichlorobenzene (Bruni and Garni. 1899.) + Bromochlorobenzene (Holleman and Van der Linden, 1911.) p Bromoiodobenzene -j- p Diiodobenzene (Nagomow, 1911.) O Bromonitrobenzene -j- Chloronitrobenzene (Kremann; Kremann and Ehrlich. 1908.) + P Bromonitrobenzene (Holleman &deBruyn, 1900; Narbutt, '05.) m -j- o " (Narbutt, 1905.) + p + m Chloronitrobenzene (Hasselblatt, 1913; Kuster, 1891.) -j- m lodonitrobenzene (Hasselblatt, 1913.) -j- m Fluoronitrobenzene -j- m Chloronitrobenzene (Kremann, 1908.) p " -j- p " (Kremann, 1908; Isaac, 1913; Kremann & Ehrlich, 1308.) ChloroBENZENES 130 ChloroBENZENE C 6 H 5 C1. SOLUBILITY OF CHLOROBENZENE IN SULPHUR. " Synthetic Method," see page 16. (Alexejew.) Grams C 6 H 5 Cl^per TOO Grams. *" Sulphur Layer. QO 13 ioo 18.5 no 27 116 crit. temp. 38 Chlor Ben- zene Layer. 70 63 53 ^DichloroBENZENE, C 6 H 4 C1 2 . o and m ChloronitroBENZENE, C 6 H 4 C1NO 2 . SOLUBILITY OF EACH IN LIQUID CARBON DIOXIDE. (Biichner, 1905-06.) o Chloronitrobenzene. m Chloronitrobenzene. 'Dichlorobenzene. Gms. p C 6 H4Cl2 t. per ioo Gms. t. Sat. Solution. -33 1.2 -32 10 4.2 + 5 + 10 II.4 7 20 22.7 8 22 34-4 ii Gms. o CeH4ClNO2 per ioo Gms. Sat. Solution. I 7.8 16 . 5-36 quad. pt. 58.8 65.8 Gms. m C6H 4 C1NO 2 t. per ioo Gms. Sat. Solution. - i 1.8 + 16.5 II. 2 7.5 38.2quad.pt. 20 53.2 SOLUBILITY OF o, m AND p CHLORONITROBENZENES IN ANILINE, DETER- MINED BY THE FREEZING-POINT METHOD (see also p. 77). (Kremann, 1907.) Gms. Each Compound (Determined Separately) per too Gms. Sat. Sol. C 6 H4C1N0 2 . 51.30 ( = 39 69- IS ( = 57 m CeftClNO*. 21.60 (=i4Mol. 31.67 ( = 21.5 49.29 ( = 36.5 P C 6 H4ClNOz. 2 7 . 7 5(=i8. S Mol.%) 31.67 ( = 21.5 38. 5 ( = 2 7 SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES: (Pascal, 1913.) (Holleman and Van der Linden, 1911.) (Nagornow, 1911.) (Van der Linden, 1912.) Chlorobenzene + lodobenzene -f- Cyanbenzene -j- Fluorobenzene o Dichlorobenzene + p Dichlorobenzene P "j + p Diiodobenzene + p Chloroiodobenzene 1.2.4 Trichlorobenzene + 1.2.3 Trichlorobenzene + 1.3-5 + + i. 2. 3 Trichlorobenzene " a Hexachlorobenzene + Hexachlorobenzene p Chloroiodobenzene + p Diiodobenzene (Nagornow. 1911.) o Chloronitrobenzene -j- p Chloronitrobenzene (Holleman and de Bruyn, 1900.) -f- (Bogaiawlewsky, Winogradow and Bogolubow, 1906.) -j- Formic acid (Bruni and Berti, 1900.) + m lodoijitrobenzene (Hasselblatt, 1913.) + m Fluoronitrobenzene " -(- Naphthalene (Kremann and Rodenis, 1906.) -j- Diphenylamine (Tinkler. 1913.) -j- Naphthalene (Kremann and Rodenis, 1906.) o lodonitrobenzene + p lodonitrobenzene (Holleman, 1913.) m Benzene disulf one chloride -{-p Benzene disulfone chloride. (Holleman and Pollak, 1910.) m 131 NitroBENZENES MUTUAL SOLUBILITY OF NITROBENZENE AND WATER (Campetti and Del Grosso, 1913; Davis, 1916.) Oms rHiN( t. 20 40 00 80 100 120 140 160 Data for the solubility of nitrobenzene in hexane, diisoamyldecane and Ameri- can petroleum at pressures up to 3000 atmospheres, are given by Kohnstamm and Timmermans (1913). SOLUBILITY OF o, m AND p NITROBENZENE IN WATER AND IN PYRIDINE. (Dehn, 1917.) Gms. Each Compound Separately per 100 Gms. Solvent. Solvent. Gms. CoHsNOi per 100 Gms. H,O Layer. < HjHiNOz Layer. 0.19 99.76 0-3 99.6 0.4 99-3 0.8 99 i 98.7 1.3 98.2 1.9 97.2 2.8 95-8 * H 2 O Layer. CH S N0 2 Layer. 180 4-2 93-7 200 7.2 91 220 II. 8 87 230 15.8 83 240 23 72 241 26 6 7 242 32 58 244-5 crit. t. 50. I Water 20-25 50% Aq. Pyridine 20-25 Pyridine 20-25 o Nitrobenzene, m Nitrobenzene. p Nitrobenzene. 0.21+ 2.14+ 1.32 + 1 73 two layers formed 85.3 260 . 394 53.2 SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see foot- note, p. i), ARE GIVEN FOR MIXTURES OF NITROBENZENE AND EACH OF THE FOLLOWING COMPOUNDS: Ethyl Ether (Tsakalotos and Guye, igro.) Mercuric Bromide (Mascarell and Ascoli, 1907.) Hexane (Timmermans, 1907, 1911.) Mercuric Chloride Hexane -f- Resorcine (Timmermans, 1907.) Isopentane (Timmermans, 1910, 1911.) Diethyldiacetyltartrate (Scheuer, 1910.) Menthol Nitrosobenzene (Jaeger and van Kregten, 1912.) Phenol (Dahms, 1895.) Ethylene Bromide " Naphthalene (Kremann, '04; Kurnakov, etal, '15.) DiNitroBENZENE (m) C 6 H 4 (NO 2 ) 2 . SOLUBILITY IN BENZENE, BROM BENZENE AND IN CHLOROFORM. " Synthetic Method." (Schroder.) Gms C a H 4 (NO2) 2 per 100 t Gms. Sol. in: 15 20 25 30 C 6 H 6 *7 5 26 .o 33 o 40.0 I8. S 23 7 28.7 CHCI 3 22 .2 25 o 29.0 33-o Gms. C fl H 4 (N0 8 ) 2 per t. 100 Gms. Sol. in: C 6 H a C 8 H 5 Br CHC1 3 . 40 52 .0 38 .0 42 .0 50 62 5 47 5 5 2 5 60 7 1 .0 57 .0 65 .0 SOLUBILITY OF m DINITROBENZENE IN SEVERAL ALCOHOLS AND ACIDS (Timofeiew. 1894.) Solvent. Gms. m C6H 4 (NO)j t. per 100 Gms. Solvent. Gms.wtCeEUCNCtoj t. per 100 Gms. Sat. Sol. Solvent. Sat. Sol. Solvent. CH 3 OH 13 .8 5.38 5 65 CHaCOOH 15 5 15 7 18.6 C 2 H 5 OH 13 .8 2.83 2 .92 t4 23 17 .8 21.6 C 3 H 7 OH 13 .8 2 2 C 2 H 5 COOH 5 12 13.6 C 3 H 7 OH 73 43-6 77 3 " 15 5 12 9 14 8 HCOOH 13 5 9 9 9 " 23 *3 45 15-5 HCOOH 5 9.6 10 5 C 3 H 7 COOH 13 5 7 3 8-3 CH 3 COOH 13 5 15-2 X 7 9 " 15 5 8. 2 8.9 i oo gms. 95% formic acid dissolve 1 1.89 gms. m dinitrobenzene at 20.8. (Aschan.'is). 100 gms. pyridine dissolve 106.3 S m s. m dinitrobenzene at 2O-25. (Dehn, 1917.) 100 gms. 50% aq. pyridine dissolve 45.5 gms. m dinitrobenzene at 2O-25. " NitroBENZENES 132 Solubilities of Di-Nitro BENZENES and of Tri-Nitro BENZENES in Several Solvents. (de Bruyn Rec. trav. chim. 13, 116, 150, '94.) Grams per 100 Grams Solvent. Solvent. (No 6 2 ) 2 ; (wz) (N o5)a.' (N $&/ in Solvent. SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR MIXTURES OF BENZOIC ACID AND EACH OF THE FOL- LOWING COMPOUNDS: n CUor0 ^ icA ) Salicylic Acid Qaeger, 1907.) m Nitrobenzoic Acid (Bakunin and Angrisani, 1915.) Succinic Acid Nitrile (Schreinemakers, 1898.) Benzil (Kendall and Gibbons, 1915.) Sulfuric Acid (Kendall and Carpenter, 1914.) Camphor (Joumiaux, 1912.) o Toluic Acid (Kendall, 1914.) Cinnamic Acid (Kachler, 1870; Kendall, 1914.) o Toluidine (Baskov, 1913.) Dimethylpyrone (Kendall, 1914.) p (Baskov, 1913; Vignon, 1891.) Fluorobenzoic Acid (Koopal, 137 BENZOIC ACID DISTRIBUTION OF BENZOIC ACID BETWEEN WATER AND BENZENE: At 10. (Hendrixon, 1897.) At 20. (Nernst, 1891.) At 25. (Farmer, 1903.) At 40. (Hendrixon, 1897.) Cms. CeHsCOOH per 100 cc. Cms. CeHsCOOH per zoo cc. Cms. CsHsCOOH per 100 cc. Cms. CeHsCOOH per 100 CC. H 2 0. CH 'H 2 O. C 6 H 6 . H2O Laver. CH 6 H 2 O CeH " Lciycr. Layer. Layer. Layer. Layer. Layer. Lciycr. 0.0215 0.0725 0.0163 0-0535 0.2002 (0.1885*) 3-33S 0.0238 0.0714 0.0412 0.2363 0.0244 0.099 O.2OI2 (0.1891*) 3-329 o . 0404 0.1637 0.0562 0.4422 0.0452 0.273 0.2020 (0.1902*) 3.319 0.0837 0.5740 o . 0890 1.0889 0.0788 0-737 O.H5S 1.0269 0.1215 2.0272 0.1500 2.42 0.1715 2.1420 o . 1409 2.7426 0.2890 9.70 k i 0.2313 3-9167 unionized. DISTRIBUTION OF BENZOIC ACID BETWEEN BENZENE AND AQUEOUS POTASSIUM BENZOATE SOLUTIONS AT 25. (Farmer, 1903.) Cms. CeHsCOOK Qms. CeHsCOOH per liter. per Liter Aq. Sol. Aq. Layer. C 6 H 6 Layer. 33-88 33-79 33-71 Gms. Mols. CeHsCOOK per Liter Aq. Sol. O.OOQ3 0.028 0.047 Gm. Mols. CeHsCOOH per Litei Aq. Layer. 0.01587 O.OIS97 0.01603 CsHe Layer. 0.2776 0.2768 0.2762 1.341 1.937 4.035 1.950 6.774 1.956 DISTRIBUTION OF BENZOIC ACID BETWEEN: Water and Chloroform. (Hendrixon, 1897.) Water and CC1 4 . At 40. Gms. CeHsCOOH per too cc. At 10' Gms. CsHsCOOH per too cc. H 2 O Layer. O.O2O8 CeHe Layer. 0.0880 (Seidell, igioa. 1 ) At 25. Gms. CeHsCOQH per 100 cc. HzO Layer. CCU Layer." 0.134 0.830 0.291 4.41 CeHe Layer. H:zO Layer. O.O9I5 0.0258 0.0269 0.1518 0.0432 0.2059 0.0327 0.2170 0.0885 0.6961 0.1057 2.0930 0.1553 2.0435 The coefficient of distribution of benzoic acid between olive oil and water at 25 is given by Boeseken and Waterman (1911) as 12.6. AminoBENZOIC ACID (o) C 6 H 4 .NH 2 .COOH. SOLUBILITY OF o AMINOBENZOIC ACID IN WATER. (Lunden, 1905-06.) Sp. Gr. Gms. C 6 N4NH 2 COOH(o) Sat. Sol. per 100 cc. Sat. Sol. 25 26.1 28.1 0.999 0.519 0-540 0.570 t. Sp. Gr. Sat. Sol. Gms. CeH4NH2COOH(0) per 100 cc. Sat. Sol. 34-9 0.998 0.731 35 0.997 0.744 39-8 0.997 0.889 SOLUBILITY OF AMINOBENZOIC ACID IN AQUEOUS SALT SOLUTIONS AT 25. (Lunden, 1905-06.) Gms. Normality of Salt Solution. S Po<*r- CeH4NlScOOH( ) Normality of Solution. 0.768 iBa(N0 3 ) 2 0.507 0.3427 0.1780 0-IS4S 1.080 1.052 1.037 1.018 1.015 Sat. Solution. 0.634 2.633 0.603 i-37 2 0.598 1.853 0.946 0.560 0-585 0.555 0.549 lity of It ion. Sp. Gr. Sat. Solution. CeH4NH2- COOH(o) per 100 cc. Sat. Sol. KNOj 1 I -155 1.083 0.501 0-544 I -33 0-549 KI tt (C I. 221 I .114 1. 068 0.541 0-559 0-550 The author also gives additional data for aqueous salt solutions at 28.1. Additional data for the solubility of aminobenzoic acid in aqueous salt solu- tions are given by Euler (1916). AminoBENZOIC ACIDS 138 AminoBENZOIC ACID C 6 H 4 .NH 2 .COOH (w). SOLUBILITY IN WATER AND IN OTHER SOLVENTS. (de Coninck Compt. rend. 116, 758, '93.) In Water. Gms. t. C6H4.NH 3 .COOH(m) per 100 cc. HjO. o-43 10 20 30 0.52 0.67 0.87 40 i-i5 SO 60 1.50 2.15 70 3-15 In Organic Solvents. Gms. Solvent. t. CH 4 .NH 2 .COOH(m) per 100 cc. Solvent. Ethyl Alcohol (95 / ) 12.5 2.92 Methyl Alcohol (pure) 10.5 4.05 Acetone 11.3 6.22 Methyl Iodide 10-0 0.04 Ethyl Iodide o-o 0.02 Chloroform 12.0 0.07 Bromoform 8.0 trace MUTUAL SOLUBILITY OF AMINOBENZOIC ACIDS AND WATER AT HIGH TEMPERA- TURES, DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.) Mixtures of m Acid and H 2 O. t of Gms. m Acid p Melting. 100 Gms. Mixt 66 crit. sol. temp. 4.8 9.9 18.5 30.6 38 49.4 59-4 69.7 80 87.2 95 100 Mixtures of p acid and H 2 O. t of Gms. p Acid per Melting. 100 Gms. Mixture 47 crit. sol. temp. MIXTURES OF o ACID and H 2 O. t of Gms. o Acid per Melting. 100 Gms. Mixture. 83.6 95-8 101.4 103.4 104.4 105 105.6 107.8 112 Il6.2 128.4 144.6 / reading, for critical saturation and for separating, also given in the case of the o acid. Data for the distribution of o aminobenzoic acid between water and benzene at 25 are given by Farmer and Warth (1904). 77.8 4-6 82.2 5 90 5-8 90 7-1 100 9-7 100 iS-8 no 20.2 105 22 120 51-2 no 32.3 130 73-7 116 SI.8 140 83.7 120 62 ISO 90.7 130 77 160 95-8 150 91.1 170 99-2 170 98 174-4 100 186 100 AminonitroBENZOIC ACIDS C 6 H 3 .NO 2 .NH 2 .COOH o, m and p. SOLUBILITY OF THE THREE ISOMERIC AMINONITROBENZOIC ACIDS: In Ether. Gms. C 6 H3.N0 2 .NHj.COOH per 100 cc. Ether. In Ethyl Alcohol (90%). Gms. CeH3N0 2 .NH 2 .COOH per 100 cc. Alcohol. 2.7 5-8 Ortho. 10.84 16.05(6.8) Meta. 1.70 Para. 6.41 8.21 3 9.6 Ortho. 8.13 10.70 Meta. Para. 1.79 8.4 2.20 II.3 SOLUBILITY IN WATER OF THE THREE ISOMERIC: (Vaubel, 1895.) Aminobenzo Sulphonic Acids. Amino Phenols. G. qifr.NHt.SOiH^per 100 G. Aq. Sol. o G. CrfMOH) .NH 2 per too G. Aq. Sol. Ortho. 1. 06 Meta. Para. 1.276 0.592(6) Ortho. Meta. 2.6(20) Para. I.I 139 BENZOIC ACIDS Brom, Chlor and lodoBENZOIC ACIDS. SOLUBILITY IN WATER AT 25. (Paul, 1894; Lowenherz, 1898; Vaubel, 1895.) _ , Per 1000 cc. Aqueous Solution. Compound. Formula. / -*- Grams. Gram Mol. Brombenzoic Acid Cel^Br.COOH (ortho) 1.856 0.00924 Brombenzoic Acid CeH 4 Br.COOH (meta) 0.402 0.00200 Brombenzoic Acid CeHiBr.COOH (para) 0.056 0.00028 Chlorbenzoic Acid CettiCl.COOH (ortho) 2 . 087 o . 01333 lodobenzoic Acid CeKJ . COOH (ortho) 0.952 o . 003 84 lodobenzoic Acid CeKJ.COOH (meta) 0.116 0.00047 lodobenzoic Acid CeELJ.COOH (para) 0.027 (Koopoi, 1912.) The following results at 28. (Sieger, 1912.) Chlorobenzoic acid C^CICOOH (ortho) 2.25 (meta) 0.45 (para) 0.093 MUTUAL SOLUBILITY OF BROMO AND CHLOROBENZOIC ACIDS AND WATER AT HIGH TEMPERATURES, DETERMINED BY SYNTHETIC METHOD.^FiasdmerandRankin, 1910.) p Bromobenzoic o Chlorobenzoic m Chlorobenzoic p Chlorobenzoic Acid + Water. Acid + Water. Acid + Water, j Acid + Water. j.o Q f Gms. Acid f. Q f Gms. Acid ^. Q f Gms. Acid * nt Gms. Acid 170 (Crit. sol. temp.) IOO . 169 3 102 , 8 5.5 ,7 10 123 123.8 4.2 18.9 167 (crit. t) 162 3 180 6.2 104 20 I42.8(crit.t.)34.3 170 5-4 190 10-5 126 .2(crit. 1034.9 123.8 75-8 180 10 196 27 104 7 6 125 81.5 183 14-5 2OO 61 no 85.3 130 87.5 184 21.5 210 80 120 92 140 93-2 187. 47 22O 88.3 130 96.5 150 97-5 200 79-5 240 96.9 139 5 loo 156 IOO 220 92 254 IOO 240 IOO SOLUBILITY OF ORTHOCHLOROBENZOIC ACID IN AQ. SOLUTIONS OF SODIUM ACE- TATE, SODIUM FORMATE AND POTASSIUM FORMATE AT 25. (Philip and Garner, 1909.) In Aq. CH 3 COONa v In Aq. HCOONa. In Aq. HCOOK. Grams per Liter. Grams per Liter. Grams per Liter. CHaCOONa. 1.009 2.484 5.027 10.07 CeH4ClCOOH. 3-599 6.181 15.60 18.27 HCOONa. 0.843 2.IO2 4.196 8.410 C 6 H4C1COOH." 3.381 5.258 7.637 11.02 HCOOK. 1.025 2.563 5.124 C6H 4 C1COOH. 2.128 3.396 5.226 7-543 SOLUBILITY OF CHLOROBENZOIC ACIDS IN SEVERAL SOLVENTS AT 14-16. (Bornwater and Holleman, 1912.) Gms. per 100 cc. Sat. Solution. Solvent. i -*- ^ 0CH4C1COOH. m CoHiClCOOH. p CeH4ClCOOH. Ligroin 0.07 0.084 trace Carbon Tetrachloride 0.58 o . 48 o . 04 Benzene 0.92 0.66 0.017 Carbon Disulfide 0.52 0.62 0.016 75% Aq. Acetic Acid 6 . 22 ... 0.32 Ethyl Ether 16 . 96 14 1.72 Acetone 28.42 ... 2 . 58 Ethyl Acetate 13 . 20 ... i . 64 Freezing-point data are given by Bornwater and Holleman (1912) for mix- tures of o, m and p Chlorobenzoic acids. BENZOIC ACIDS 140 FluoroBENZOIC ACIDS C 6 H 4 FCOOH. 100 cc. aqueous solution saturated at 32 contain 0.882 gm. o " 0.308 " m " 0.107 " p (Slothouwer, 1914.) lodoBENZOIC ACID p CeHJCOOH. MUTUAL SOLUBILITY OF PARA IODOBENZOIC ACID AND WATER AT HIGH TEM- PERATURES DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.) tof Melting. 175 crit. sol. t. 178 190 200 Gms. Acid per 100 Gms. Mixture. 3 5-8 10 t of Gms. Acid per Melting, zoo Gms. Mixture. 207 22 210 41 215 63.5 220 77 t pf Gms. Acid per Melting. 100 Gms. Mixture 230 87.4 240 92.7 269 98 . I 270 ioo p lodo Bromo and ChloroBENZOIC ACID Methyl Esters. FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES. Qaeger, 1906.) p Chlorobenzoic methyl ester + p Bromobenzoic methyl ester. -j- p lodobenzoic p lodobenzoic " + P Bromobenzoic HexahydroBENZOIC ACID CH 2 (CH 2 .CH 2 ) 2 .CH.COOH. ioo gms. H 2 O dissolve 0.201 gm. of the acid at 15, d. saturated solution = 1.048. (Lumsden, 1905.) HydroxyBENZOIC ACIDS m and p (o = Salicylic Acid, see p. 588). SOLUBILITY OF META AND PARA HYDROXYBENZOIC ACIDS IN WATER, BENZENE, ETC. (Walker and Wood, 1898.) In Water. In Benzene. Gms. CeHvOH.COOH t. per ioo Gms. H2O. Meta. Para. 10 o-55 0-25 20 0.90 0.50 25 1. 08 0.65 30 i-34 0-81 35 1.64 I .01 40 2.10 1.24 5 3.10 2.12 00 80 . . . Gms. CoH4.OH.COOH Meta. Para. O.OOlS 0.008 0.0027 o.oio 0.0035 O.OI2 0.015 0.017 0.028 0.0045 O.OO6O 0.0082 0.0162 0.047 0.028 0.066 In Acetone. G. CeH4.OH.COOH per ioo cc. Sol. Meta. Para. 26.0 22-7 t e . In Ether. G. C 8 H4.OH.COOH per loo^ cc. Sol. Meta. 9-73 Para. 9-43 ioo gms. sat. sol. in H 2 O contain 0.7 gm. m acid at 15 and 4 gms. at 50. " " " " " " 044 " p " " " "2.98" " " 4i CH3OH 53 5 g m ' 236.22 " p ' (Savorro, 1914-) " 95% formic acid dissolve 2.37 gms. m acid at 20.8. (Aschan, 1913.) 141 BENZOIC ACIDS MUTUAL SOLUBILITY OF META AND PARA OXYBENZOIC ACIDS AND WATER AND OF PARAMETHOXYBENZOIC ACID AND WATER AT HIGH TEMPERATURES, DE- TERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin, 1910.) Meta Oxybenzoic Acid Para Oxybenzoic A +H 2 0. +H 2 0. tof Melting. Cms. Acid per 100 Gms. Mixture. tof Melting. Gms. Acid p loo Gms. Mixture. 7 8.2 9-9 77 10 Q0.8 20 90 19.8 9 8 30 97-4 2 9-5 103.2 39-8 104.4 40.1 108.8 49 in. 8 50 119.2 60 1 20 59-6 I3I-4 70 134 69.2 143-4 77-9 154-4 80 175-6 90.8 180.6 90.4 199.8 IOO 213 IOO Para Methoxy benzole Acid + H 2 0. tof Melting. Gms. Acid per' zoo Gms. Mixture. 138.2 crit. sol. t. 140 9 142 12 144 18 145 30 146 59-4 150 73-3 160 89.8 170 95-6 184 IOO Readings for t of critical saturation obtained by cooling from t of melting, are also given by the authors. Coefficients of distribution of oxybenzoic acids between water and olive oil are given by Boeseken and Waterman (1911) as follows:] p oxybenzoic acid, 0.6; m oxybenzoic acid, 0.4; 2.4 dioxybenzoic acid, i.o; 2.5 dioxybenzoic acid, 0.3; 3.4 dioxybenzoic acid, 0.05; 3.4.5 trioxybenzoic acid 0.025. MethylBENZOIC ACIDS C 6 H 4 COOH.CH 3 . o, m, and p. SOLUBILITY IN WATER. (Vaubel, 1895.) Gms. C 6 H 4 COOH.CH 3 per 1000 Gms. Sat. Solution. 25 Ortho 1.18 Meta. 0.98 Para. o-35 NitroBENZOIC ACIDS C 6 H 4 .NO 2 .COOH. o~m, and p. SOLUBILITY IN SEVERAL SOLVENTS. (de Connick, 1894; for solubility inHzO, see also Paul; Vaubel; Lowenherz; Goldschmidt, 1898; Holle- man, 1898; Noyes and Sammet, 1903; Sidgwick, 1910.) Gms. CeH4.NO2.COOH per 100 cc. Solvent. Ortho. Meta. Para. ""* Water 15 -625 0. 238 .0213 tt 20 o .682 (o. 645G.) o. 315 o 039 " 25 .738 (o. 779G.) o. 341 .028(0. 045) tt 30 .922 (o. 9 22G.) it 35 I .141 (i 054) 0. 477 o .0419 Methyl Alcohol 10 42 .72 47- 34 9 .6 Ethyl Alcohol IO 28 .2 33- 1(11.7) o 9 " (abs.) 15 37 .58* 47- 26* X Q .71* " (33Vol.%) 15 o .64 (ll. 8) o. 52 O 055 Acetone 10 4 1 5 41 5 4 54 Benzene IO .294 0. 795 .017(12..?) Carbon Bisulfide 10 .OI2 o. 10(8.5) o .007 Chloroform 10 15 i 455 .o6f (n ) 5- 3- 678 4St o o .066 .o88f " 25 i -i3t 4- o H4t M 35 i 59t 3 J t Ether 10 21 58 25- 175 2 .26 Ligroin IO trace 0. 013 Gms. acid per 100 cc. saturated solution. f = Gms. acid per 100 gms. solvent. NitroBENZOIC ACIDS 142 SOLUBILITY OF ORTHO NITROBENZOIC ACID IN WATER. (Noyes and Sammet, 1903.) C6H4N02COOH o per Liter Sol. ^ CelfrNChCOOH o per Liter Sol. Millimols. Grams. Millimols. Grams. 10 26.62 4.645 25 43.3 7.231 15 31-06 5-187 30 51.6 8.616 20 36.57 6.106 Additional determinations by other investigators, in millimols C 6 H 4 NO 2 COOH o per liter at 25, are: 46.5 (van Maarseveen, 1898); 44.19 (Paul, 1894); 42.3 (Holleman, 1898); 43.6 (Kendall, 1911). SOLUBILITY OF ORTHO, META AND PARA NITROBENZOIC ACIDS IN WATER AT HIGH TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Flaschner and Rankin. 1910.) o C 6 H 4 NO 2 COOH+H*O. m C 6 H 4 NO 2 COOH+H 2 O. p C6H 4 NO 2 COOH+H 2 O. to t Gms. Acid t of: Gms. Acid to -f Gms. Acid Of per zoo Gms. per 100 Gms. Sat. Sol. OI Melting. per 100 Gms. Sat. Sol. Melting. Solution' 52 crit. t. . . . 63.2 2 118 crit. t. 69 5 77-4 6 143 5 75 9.9 77-4 90 7 150 9 78 13-5 77-4 100 10.5 155 14-5 79 49-5 77-4 105 17 1 60 30 80 62 77-4 107 . 5 crit. t. 30 165 53-5 85 73-5 77-4 106 So 170 65-5 90 78.6 77-4 100 58.6 180 76.7 100 83.5 77-4 90 65-4 190 83-2 120 94 80 74 200 88 I 4 8 100 100 . . . 88.5 220 J 95-2 120 96.8 237 100 140.4 100 Data for the solubility of mixtures of o, m and p nitrobenzoic acids in water at 24.4 are given by Holleman (1898). SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF HYDRO- CHLORIC, FORMIC, MALONIC AND SALICYLIC ACIDS AT 25. (Kendall, 191 ij Gms. o Normality CeHUNCfe.COOH of Solvent. per Liter Sat. Solution . 7.28l 7.144 6-934 Solvent. Normality of Solvent. HC1 Gms. C 6 H4Np2COOH per Liter Sat. Solution. Solvent. HCOOH 0.0179 0-0357 0.125 0.250 0.500 0.0517 o . 0998 6.146 5-66i 4.976 4-997 4.752 7.188 7.124 CH 2 (COOH) 2 C 6 H4(OH)COOH o 0.0313 O.IOOI 0.2004 0.0094 0.0136 0.0162 6.656 7.276 7-352 7-369 SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE, SODIUM CHLORIDE, AND OF SODIUM NITRATE. Original results in molecular quantities. (Hoffman and Langbeck, 1905). In Dextrose. In NaCl. In NaNO 3 . G.QH 12 8 G.(0)CH4N0 2 .COOHG.NaCl. G.^C^NOa-COOH G .NaNO 8 G.^CeEUNOz-COOH i*r TOO cc. per 100 g. Solvent, per I00 cc. per 100 g. Solvent. pg r IOO cc . per 100 g. Solvent. Solution. At 25. j M 35 b . Solution. At 25. At 35- Solution. At 25. i Vt 35*. 0-0 0.736 -06 3 O.II7 o-743 I .072 O.I7O 0.746 .074 0.36 0-736 .064 0.195 0.746 I .075 0.284 o-754 .080 1. 80 0.732 .061 0.585 0.749 I .070 0.851 0.767 .096 9-50 0.722 .051 2.425 0.688 0.967 4-255 o-774 .097 20-00 0-703 030 S .8o 0-597 0.831 8.510 0.748 047 143 NitroBENZOIC ACIDS SOLUBILITY OF ORTHO NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM BUTYRATE, ACETATE, FORMATE, AND SALICYLATE AT 26.4. (Philip, 1905.) Original results in terms of '- per liter. 100 Gms. Na Salt o-ms. \jn .iiu v^n^v^^JLi. i.>* v/2 l-'C 1 Jt-*itci UJ per Liter. C3H 7 COONa. CH 3 COONa. HCOONa. C 6 H4.OH.COONa. 7-85 7-85 7-85 7-85 0-5 8-35 8.50 8.60 8-35 1.0 8.90 9.15 9-50 8.70 2 10. IO.8o n-5 9-4 3 II. 2 12-55 13 .5 II. 4 12-4 14-5 15.6 11.5 6 15.2 Solvent. CH 3 OH <( C 2 H 5 OH SOLUBILITY OF ORTHO NITROBENZOIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) Gms. Acid per 100 Gms. Gms. Acid per 100 Gms Sat. Sol. Solvent. i Sat. Sol. Solvent. 56.6 C 3 H 7 OH o 17.7 I09.I " 22 31.2 (CH 3 ) 2 CH.CH 2 OH o o 22 O 22 36.2 52.2 23-3 42.7 30-4 74-5 9-65 21.5 45-5 10.7 Freezing-point data for mixtures of o nitrobenzoic acid and dimethylpyrone are given by Kendall (i9i4a). SOLUBILITY OF META NITROBENZOIC ACID IN SEVERAL ALCOHOLS. Solvent. CH 3 OH C 2 H 5 OH (Timofeiew, 1894.) ^ Gms. Acid per 100 Gms. Solvent. C 2 H 5 OH C 3 H 7 OH ^ Gms. Acid per 100 Gms 19 Sat. Sol. 41-9 53-7 Solvent. 72.2 116 21-5 Sat. Sol. 43-9 24.1 Solvent. 89.8 31-8 21.5 57-i 33-6 I33-I 50.6 tt 19 21.5 32.5 45 48 19 42-3 73-2 SOLUBILITY OF META NITROBENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, SODIUM FORMATE, SODIUM MONOCHLORACETATE AND POTASSIUM FORMATE AT 25. (Philip and Garner, 1909.) In CHsCOONa. Gms. per Liter. In HCOONa. Gms. per Liter. In CH 2 ClCOONa. Gms. per Liter. In HCOOK. Gms. per Liter. CHs- COONa. m CeH 4 N02- COOH. HCOONa. m C 6 H 4 NO r COOH. CH 2 C1- COONa. m CeH4NO2- COOH. HCOOK. m \. COOH. O I.OO9 2.484 5.027 10.07 5-144 7.932 12. 6l 20.77 2 4 8 .843 .102 .196 .410 3.424 4.776 6.380 8.616 11.90 1-375 3.426 6.839 13.710 3 4 4 5 7 .424 075 .876 .861 .264 I . 2. 5. 025 563 124 3 4 6 8 .424 .742 .446 5Si NitroBENZOIC ACIDS 144 SOLUBILITY OF PARA NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25. (Lowenherz Z. physik. Chem. 25, 395, '98.) In Anilin. In ^-Toluidin. G. Mols. per Liter. Gms. per Liter. G. Mols.^per Liter. Gms. per Liter. HoNH" %oS" ^^ H '- ( aX)H 2 ' C CH 3 NH *~ SoH 02 ' CH 3 . CfiHtNO,.' COOH. D.O O .00164 o.o .274 .0 0.00164 O .0 0.274 D.OI O .00841 0.91 I .406 .01 O-OIOO I .071 I .671 D.02 .01379 1.82 2 34 o .02 0.0174 2 .142 2 .OX>2 3.04 .02172 3- 6 4 3 .629 o 03 0.0245 3 .213 4-097 3.08 o 0347 7.29 5 .798 1000 cc. of sat. solution of pira nitrabenzoic acid in aqueous I normal sodium para nitrobenzoate contain 0.0046 gm. mols. = 0.768 gm. ^Cgl^NC^COOH at 25. (Sidgwick, igzo.) SOLUBILITY OF PARA NITROBENZOIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) Gms. Acid per 100 Gms. Gms. Acid per 100 Gms. S 1VCnt - * ' 'Sat. Sol.' Solvent.' ^^ * ' Sat. Sol. ' Solvent. ' 18.5 3-45 3-57 C 2 H 5 OH 21 3.22 3.32 21 3-75 3-90 C 3 H 7 OH 18.5 2.12 2.17 C 2 H 5 OH 18.5 3.25 3.36 19.5 1.85 1.90 19-5 3- 16 3-26 21 2.29 2.34 DinitroBENZOIC ACIDS C 6 H 3 (NO 2 ) 2 COOH. 1.3.5 and 1.2.4. SOLUBILITY OF 3.5 AND OF 2.4 DINITROBENZOIC ACIDS IN AQUEOUS SOLUTIONS OF SODIUM ACETATE AT 25. (Philip and Garner, 1909.) Gms. per 100 cc. Sat. Sol. Gms. per 100 cc. Sat. Sol. CHaCOONa. 3 .5CH,(NOi)jCOOH. CHsCOONa. 2. 4 C6H3(N02) 2 COOH. 0.1314 0.0572 O.0976 0.3392 0.0976 0.2056 0.2428 0.6720 0.2428 0-3434 0.4846 I.2OI 0.4846 0.5023 0.9718 2.H5 0.9718 0.7440 Data for the solubility of 1.3.5 dinitrobenzoic acid in water and aqueous solutions of KC1, NaCl, KNOs and NaNOs, and for its distribution between water and benzene at 25, are given by B. de Szyszkowski (1915). SOLUBILITY OF 1.3.5 DINITROBENZOIC ACID IN WATER AT HIGH TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Flaschnw and Rankin, 1910.) + Gms. Acid per * Gms. Acid per t o Gms. Acid per 100 Gms. Sol. 100 Gms. Sol. 100 Gms. Sol. i23.8crit. t. ... 123 66.5 160 90.9 113 4-4 125 72.7 180 95 120 9.3 130 79-3 200 99 121 14.5 140 85.7 206 100 122 40 150 89 145 NitroBENZOIC ACIDS SOLUBILITY OF NITROBROMOBENZOIC ACIDS AND OF NITROCHLOROBENZOIC ACIDS IN WATER AT 25. (Holleman, 1910.) Acid. C 6 H 3 COOH.NO 2 .Br 1.2.3 C 6 H3COOH.NO 2 .Br 1.2.5 Cms. Acid per 100 cc. Sol. 0.033 0.741 Acid. Cms. Acid per 100 cc. Sol. C6H 3 COOH.NO 2 C1 1.2.3 0.047 C 6 H3COOH.NO 2 .C1 1.2.5 0.967 Holleman also gives data for the solubility of various mixtures of the above two bromo compounds and of the two chloro compounds and' uses the results for estimating the quantity of each in an unknown mixture. Dinitro p oxyBENZOIC ACID C 6 H 2 OH(NOj) 2 COOH. SOLUBILITY OF MIXTURES OF DINITRO PARA OXYBENZOIC ACID AND OTHER COMPOUNDS IN ABSOLUTE ETHYL ALCOHOL AT 29.6. (Morgenstern. 1911 ) Dinitro p Oxybenzoic Acid -f Phenanthrene. Dinitro p Oxybenzoic Acid + Fluorene. Dinitro p Oxybenzoic Acid + Retene. Gms. per IOC ems. Gms. per ioo Gms. Gms. per ioo Gms. Sat.. Sol.' C ,,.M T>U_ Sat, Sol. Solid Sat. Sol. Solid Acid. p] tl Sre^e 1 ." AdcL _ Phase. Fluorene. Acid. Retene. Phase 2.0483 O .1333 Acid 2.0440 0.1232 Acid 2.0232 Acid 2.0776 O .2796 2.0823 0.3484 M 2 . 0484 0.1236 1 2.1249 .5267 2.1045 0.4824 w 2-0933 0.3446 ' 2.2195 i 0311 2.1744 o . 8960 M 2. 1276 0.5162 1 2.2883 i 43 10 2.2618 I . 4308 M 2 . 2346 1.0489 ' 1.2171 6 .0092 Phena threne 1 . 0490 3.8618 Flu< jrene 2 3034 1.3634 1 0.8681 5 .8300 0.8004 3.7566 M 1.9664 3-3698 Retene 0.6017 5 .6890 0.5620 3-6532 w 0.7830 3-0032 " 0.3487 5 .5619 0.3900 0-5597 2.9331 " 0.2157 5 .4890 0.2113 3-5024 o. 2740 2.8466 " 5 .3781 O 3.4II5 O 2.2795 " BENZOIC ANHYDRIDE (C 6 H 5 CO) 2 O. Freezing-point data are given for mixtures of benzoic anhydride and sulfuric acid by Kendall and Carpenter (1914). BENZOIN (Benzoyl phenyl carbinol) C 6 H 6 CH(OH)COC 6 H5. SOLUBILITY OF BENZOIN IN WATER, PYRIDINE AND AQUEOUS 50% PYRIDINE AT 20-25. (Dehn, 1917.) Solvent.' Water Aq. 5 % Pyridine Pyridine Cms. Benzoin per ioo gms. Solvent. o 03 6.6 3 20.20 ioo gms. 95% formic acid dissolve 3.06 gms. benzoin at 18.5. (Aschan, 1913.) Freezing-point data (solubilities, see footnote, p. i) are given by Vanstone . for mixture of benzoin and each of the following compounds: Dibenzyl, benzylaniline, benzylideneaniline and hydrazobenzene. BENZOPKENONE 146 BENZOPHENONE (C 6 H 6 ) 2 CO. SOLUBILITY IN AQUEOUS ALCOHOL AND IN OTHER SOLVENTS. (Derrien Compt. rend. 130, 722, 'oo; Bell J. Physic. Chem. 9, 550, '05.) In Aqueous Alcohol at 40. Wt. % Cms. (C 6 H 6 )2CO Alcohol per 100 Gms. (BeU.) Jolveni ' Solvent. Solution. 40 2 1.0 45 5 4-8 50 8 8-3 55 II 9-9 60 16 13-8 65 28 22.6 Wt.% Gms. (CftH 6 ) 2 CO Alcohol per 100 Gms. in Solvent. Solvent. Solution. 67-5 39 28.1 70 5 6 35-9 71 67 39.2 7 2 90 47.4 72-5 105 51.2 73 156 61.0 In Aqueous Alcohol and other Solvents. (Derrien.) Solvent. Gms. Gms. " o,ven, f. * Solvent. Solvent. 17 13-5 Ethyl Ether (rectifiec I) 12.7 *7-S 17 3-8 Benzene 17 76.9 17 17 2.2 J -3 Xylene Nitro Benzene 17.6 iS-8 38-4 58.8 9.8 II Chloroform (com.) 16.5 55-5 15 14-3 Bromoform 17-3 33-3 9.6 19.2 Toluene 17.2 55-5 16.1 66.6 Ligroine 14.6 6-7 97% Ethyl Alcohol 85 cc. 97% Alcohol + 15 cc. H 2 O 17 80 " " +20 75 " " + 26 Methyl Alcohol (pure) it Acetic Ether (pure) Carbon Disulfide Determinations made by means of the Pulfrich refractometer (Osaka, 1903-8), gave 39 gms. benzophenone per 100 gms. absolute ethyl alcohol at 20, and 78.6 gms. benzophenone per 100 gms. benzene at 25. SOLUBILITY OF BENZOPHENONE IN AQUEOUS SOLUTIONS OF PHENOL AND OF n BUTYRIC ACID, DETERMINED BY THE SYNTHETIC METHOD, ARE GIVEN BY TlMMERMANS (1907). In Aq. 71.4% C 6 H 6 OH 36.51% C 6 H 5 OH (Sat. t = 65.3). (Sat. t = 20.6). tof Sat. Gms. (CHi)CO per loo Gms. Sat. Sol. tof Sat. Gms. (C 6 H5) 2 CO per 100 Gms. Sat. Sol. 75-4 0.685 26.1 0.96 81.1 1. 06 29-3 1.77 85.3 I.4I 39-5 4.06 88.1 1.6 7 55-5 7.82 82.6 16.82 In Aq. 39.4% C 3 H 7 COOH (Sat. t = -2.3). t. of Sat. Gms. (C 6 ft) 2 C( per 100 Gms. Sat. Sol. 6.1 0-439 18.5 1. 12 28.9 I.7I 44 2.66 61.6 3-92 75-2 5-09 Solubility data for mixtures of benzophenone and resorcinol and for benzo- phenone" and pyrocatechinol, determined by the freezing-point method, are given by Freundlich and Posnjak (1912). Similar data for mixtures of benzophenone and thymol are given by Pawlewski (1893). Results for mixtures of benzophenone and sulfuric acid are given by Kendall and Carpenter (1914). BENZOYL CHLORIDE, BENZOYL tetra hydro quinaldine, d and /. Fusion-point data are given for mixtures of benzoyl chloride and phenol by Tsakalotos and Guye (1910), and for mixtures of the d and / forms of benzoyl tetrahydroquinaldine, by Adriani (1900). 147 BENZYLAMINES BENZYLAMINE HYDROCHLORIDE C 6 H 5 CH 2 .NH 2 .HC1. IOO gms. H 2 O dissolve 50.6 gms. of the compound at 25. (Peddle and Turner, 1913.) DiBENZYLAMINE HYDROCHLORIDE (C 6 H 5 CH 2 ) 2 NH.HC1. IOO gms. H 2 O dissolve 2.17 gms. of the compound at 25. (Peddle and Turner, 1913.) loo gms. chloroform dissolve 0.37 gm. of the compound at 25. ' TriBENZYLAMINE HYDROCHLORIDE (CeHsCH-OsN.HCl. IOO gms. H 2 O dissolve o.6l gm. of the compound at 25. (Peddle and Turner, 1913.) ioo gms. chloroform dissolve 1 1 .41 gms. of the compound at 25. ' DiBENZYL C 6 H 5 CH 2 .C 6 H 6 CH 2 , BENZYLANILINE C 6 H 5 CH 2 .NHC 6 H 6 . SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES: Dibenzyl+ Stilbene " + Benzylphenol " -j- Hydrobenzene " + Tolane Benzylaniline + Dibenzyl " + Stilbene + Benzylphenol + Hydrazobenzene + Tolane NitroBENZYL CHLORIDE p C 6 H 5 CHNO 2 .C1. SOLUBILITY IN SEVERAL SOLVENTS AT 25. Gms. p GiHsCH.NCkCl Solvent. (Bruni, 1898: Pascal and Normand, 1903.) (Pascal and Normand, 1913-) per ioo Gms. Solvent. (v. Halban, 1913.) Gms. p CsHsCHNOz-Cl per ioo Gms. Solvent. Sat .Sol. Methyl Alcohol 8 .87 8 15 Ethyl Alcohol 7 .10 6 .63 Propyl Alcohol 5 .70 5 39 Amyl Alcohol 4 .88 4 65 Butyl Alcohol 21 5 17 7 Acetic Acid 18 .1 15 3 Acetone 107 5i 7 Acetophenone 63 .1 38 7 Paraldehyde 24 9 19 9 Ether 23 .1 18 .8 Acetonitrile 96 .6 49 .1 Nitromethane 68 .8 40 .8 o Nitrotoluene 5i .1 33 .8 Solvent. Sat. Sol. 57-8 3 6 -4 57-8 36-4 43-3 30.2 51.2 33-9 12.5 10.4 32 24.2 47.6 32-3 6.05 5-69 45-3 31.2 31-7 . 23.4 1.30 1.28 0.49 0.49 69.7 37-4 Nitrobenzene Ethylacetate Ethylbenzoate Ethylnitrite Isoamylbromide Brombenzene Chloroform Carbon Tetrachloride Benzylchloride a Bromnaphthaline n Hexane Isopentane Benzene Data for the lowering of freezing-point are given by Holleman (1914) for mixtures of o and p nitro benzylchloride. DiBENZYL HYDRAZINE C6H 6 CH 2 .NH.C 6 H 5 CH 2 NH. Reciprocal solubilities of dibenzylhydrazine and cinnamylidene, determined by the method of lowering of the fr.-pt. (see footnote, p. i), are given by Pascal ('14). ChloronitroBENZYLIDENES C 6 H 6 C: N0 2 .C1. BENZYLIDENE NAPHTHAL- AMINES C6H 5 CH:NCi H 7 . DATA FOR THE LOWERING OF THE FREEZING-POINTS (solubilities, see foot- note, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES. o Chloronitrobenzylidene -f m Chloronitrobenzylidene (Holleman, 1914.) p +m P " +o a Benzylidene naphthalamine +/3 Benzylidene naphthalamine (Pascal and Normand, '13.) BERYLLIUM ACETATE (basic) Be 4 O(CH 3 COO) 6 . ioo gms. chloroform dissolve 33.3 gms. Be 4 O(CH 8 COO)6 at 18. (Wirth, 1914.) BERYLLIUM FLUORIDE 148 BERYLLIUM Potassium FLUORIDE, etc. SOLUBILITY IN WATER AND IN ACETIC ACID SOLUTIONS. (Marignac; Sestini, 1890.) Gms. Anhydrous Salt Salt. Formula. Solvent. per 100 Gms. Solvent. At 20. At 100. Beryllium potassium fluoride BeF 2 .KF Water 2.0 5.2 sodium " BeF 2 .NaF " 1.4 2.8 hydroxide Be(OH) 2 Water + CO 2 sat. 0.0185 (BeO). .. phosphate Be 3 (PO 4 ) 2 .6H 2 2% CHaCOOH 0.055 10% 0.1725 BERYLLIUM HYDROXIDE Be(OH) 2 . SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Rubenbauer Z. anorg. Chem. 30 334, '02.) Moist Be(OH) 2 used, solutions shaken 5 hours, temperature prob- ably about 20. Per 20 absolution. Dilution Gms. per 100 cc. Solution. Gms. Na. Gms. Be. jd^jg NaOH. Be(OH) 2 ." 0-335 8 0.0358 1.37 2.917 0.850 0.6716 0.0882 0.68 5-840 2.094 0.8725 0.1175 0.53 7.585 2.789 1.7346 0.2847 0.27 18.310 6.760 SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE AT DIFFERENT TEMPERATURES. (Haber and Oordt, 1904.) Normality of Gm. BeO per Liter Sat. Sol, at: Aq. NaOH. 0-5 I 2 BERYLLIUM OXALATE BeC 2 O 4 .3H 2 O. 100 gms. water dissolve 63.2 gms. BeC 2 O 4 .3H 2 O at 25 (Wirth, 1914.) o.i n oxalic acid " 75-92 " o.insulfuric " " 72.65 " i.on " " 52.8 " BERYLLIUM PALMITATE and Salts of Other Fatty Acids. SOLUBILITIES IN ETHYL AND METHYL ALCOHOLS AT 25. (jacobson and Holmes, 1916.) Gms. of Each Salt (Determined Separately) per 100 Gms. Solvent. Solvent. / * N Be Palmitate. Be Stearate. Be Laurate. Be Myristate. Ethyl Alcohol o . 004 ... o . 004 o . 004 Methyl Alcohol o . 042 o . 040 o . 050 o . 047 20-23. 0.060 50-53. 0.080 100. 0.080 0.170 0.570 0.230 0.900 0.290 1.020 Mols. H 2 O . o per i Mol. * ' BeS0 4 . SOLUBILITY IN Gms. BeSO 4 per 100 Gms. S< WATER. (Levi, Malv m Mols. H 2 base. t<. P^e's^ 01 ano, 1906.) Gms. BeSO 4 per too Gms. Solid Phase. Water. Solution. Water. Solution. 31 ii. 18 52-23 34- 32 BeS0 4 .6H,0 95.4 6.44 9 0. 63 47- 55 BeS0 4 . 4 HO 5 9.62 60.67 37 77 107.2 5-o6 3 53- 58 " 72.2 7-79 74-94 42 8$ ' ill 4-55 14* 3 56 I 9 11 77-4 81.87 45- 01 ' 80 6.89 8 4 76 45 87 B eSO 4 .aH,0 30 13.33 43.78 3' 45 BeSO 4lIjO 91.4 5-97 97- 77 49 .42 " 40 12.49 46.74 3 1 - 85 ' IO5 4-93 118 4 54 21 " 68 9.42 61.95 38. 27 119 3,91 149. 3 59-88 <4 85 7-65 76,30 43. 28 149 BERYLLIUM SULFATE SOLUBILITY OF BERYLLIUM SULFATE IN AQUEOUS SULFURIC ACID AT 25. (Wirth, 1912-13.) Cms. H 2 SO< Cms. BeSO Cms. H 2 SO4 Cms. BeSCh per 100 Cms. per 100 Cms. Solid Phase. per 100 Cms. per 100 Cms. Solid Phase. Solvent. Sat. Sol. Solvent. Sat. Sol. o 8.212 BeSO 4 .6H 2 Q 45.51 6.628 BeSO 4 .6H 2 O 5.23 8.429 50-63 5-438 BeSO 4 .4H 2 O 9-61 7-944 56.59 3-640 18.70 6.603 63.24 2.244 34 5- 6 3i 65.24 2.128 40.35 5-773 73-64 2.185 Freezing-point data for mixtures of beryllium sulfate and potassium sulfate are given by Grahmann (i9 I 3) BERYLLIUM MetaVANADATE Be(VO 3 )24H 2 O. 100 gms. H2O dissolve o.i gm. of the salt at 25. (Brinton, 1916.) BETAINE (Trimethyl glycocoll) C 5 H U O 2 N.H 2 O. SOLUBILITY OF ANHYDROUS BETAINE IN WATER AND ALCOHOLS. (Stoltzenberg, 1914-) (Figures read from the author's curves.) ' Gms. CsHuCfeN per 100 Gms. Gms. CsHnQiN per 100 Gms. c 2 H 5 OH. HO CKOH. c 2 H 5 OH; -10 134 38 5 5o 197 70 16 o 140 43 6 60 215 75 18.5 + io 147 49 7 70 236 80 22 20 157 54 8.5 80 259 25 30 168 60 ii 90 286 .. 40 182 65 13 100 328 BETAINE SALTS. SOLUBILITY OF EACH, SEPARATELY, IN WATER. (Stoltzenberg, 1914.) Grams per 100 Grams H 2 O. 10 o + 10 20 30 40 50 60 70 80 90 100 169 206 Data are also given by Stoltzenberg for the following basic salts of betaine (C 6 H U O2N) 2 HC1.H 2 O, (C 5 H u O 2 N) 2 .HBr, (C 6 HnO 2 N) 2 HI, (C 6 H U O 2 N) 2 H 2 SO 4 and (C 6 H 11 O 2 N) 2 HAuCl 4 .H 2 O. CsHiiOjjN. CsHnCfeN. CsHnCfeN. CsHnCfcN. CsHnQzN. CsHnOaN. CsHnCfcN^ HC1. HBr. HI. H 2 SO4.H2O. HsPO4. HMnO4. HAuCl4. 38 28 35 67 35 1.5 1.3 44 39 66 86 45 i-75 1-5 52 S 2 98 107 58 2-5 2 60 65 130 132 73 5 3 70 79 162 164 91 9 4.5 8l 94 198 203 112 16 6 93 no 231 250 135 30 8 106 127 269 306 160 (55) 48 n-5 120 144 304 . . . 190 15 135 162 (75) 321 . . . 223 18 !5 X 183 23 BETOL 03-Naphthylsalicylate) Freezing-point data'including super solubility curves, are given for mixtures of betol a-nd salol by Miers and Isaac, 1907. BISMUTH 150 BISMUTH Bi. RECIPROCAL SOLUBILITIES, DETERMINED BY THE METHOD OF LOWERING OF TUSION-POINT (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES: Bismuth + Bromine (Eggink, 1908.) " 4" Chlorine " + Iodine (Amadori and Becarelli, 1912.) " + Sulfur (Aten, 1905; Palabon, 1904.) MUTUAL SOLUBILITY OF BISMUTH AND ZINC. (Spring and Romanoff, 1906.) t . 266 419 475 Upper Layer. Lower^ Layer. t . 584 650 75o Upper Layei . Lower Layer. 86 84 %Zn. 14 16 3 5 %Zn. 97 95 80 77 70 %Zn. 20 23 30 10 15 27 90 85 73 810-820 (crit. temp.) BISMUTH CHLORIDE. BiCl 3 . BSMUTH OxyCHLORIDE BJOC1.H 2 O. SOLUBILITY IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID. Results at 25. (Noyes and Hall, 1917.) Results at 30. (Jacobs, 1917.) Cl. Bi. H( = Cl- 3 Bi). Bi2O 3 . HC1. 1.002 0.3477 0.00130 0.3438 0.60 2.40 BiOCl.HaO 1.007 0.4350 0.00376 0.4237 5-35 5-69 i. oio 0.5221 o . 00869 o . 4960 8.17 8.47 I.OI3 0.6244 0.01767 0.5714 8.70 8.93 .018 0.7375 0.03138 0.6434 14.52 13.02 .025 0.8824 0.05338 0.7223 18.60 15.80 .036 1.0760 0.08937 0.8079 30.10 21.7 .044 1.2277 O.II77 0.8746 36.95 25.4 .061 1.5321 O.lSlO 0.9891 54.70 31-5 .083 1.9021 0.2657 I.I05 56 32.8 BiOCl .157 3-1865 0.5685 1.481 58.5 33 BiCl^H^ .237 4.5056 0.9022 1-799 56.6 33.8 +BiCU .288 5.325 i. 100 2.025 56.25 34.9 BiCU .329 6.066 1.317 2.115 55-9 35-9 BICU.HCI SOLUBILITY OF BISMUTH CHLORIDE IN SEVERAL SOLVENTS. Cms. I 5iCb per 100. to . . A ., - solvent. cc. Solvent. Cms. Solvent. Authority. Acetone 18 ... 17. 9 (^is = O.9I94)(Naumann, 1904/05.) Ethyl Acetate 18 ... i . 66 (Ji8 = O.9Io6)(Naumann, 1910). Anhydrous Hydrazine ord. temp. 32 ... (Welsh and Broderson, 1915.) loo gms. 95% formic acid dissolve 0.05 gm. bismuth oxychloride (BiOCl) at 19.8. (Aschan, 1913.) Freezing-point data are given for BiCl 3 +CuCl, BiCl 3 +FeCl 3 , BiCl 3 -f PbG 2 , BiCl 3 -f-PbBr 2 and BiCl 3 +ZnCl 2 by Herrmann (1911) and for BiCl 3 +TlCl by Scarpa (1912). BISMUTH CITRATE (CH 2 ) 2 C(OH)(COO) 3 Bi. BISMUTH Ammonium CITRATE. SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell. '10.) -*4 o o.on o 22.25 1.25 51 0.041 51 1.34 0.92 91.4 0.065 91.4 None 0.81 151 BISMUTH HYDROXIDE BISMUTH HYDROXIDE Bi(OH),. SOLUBILITY OF BISMUTH HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM AND POTASSIUM HYDROXIDES AT 20 AND AT 100. (Moser, 1909.) Cms KOH Gms> D isso l ve d Bi(QH)3 per Liter at: Q mg j^aOH ^ms. Dissolved Bi(OH)j per Liter at: per Liter. ' ^~ ^T * perLiter. ' 20 ^ I0 o. * 28 o 0.188 20 o 0.188 50 trace 0.249 4 trace (0.0014)* 0.249 112 0.037 -373 80 0.050 (0.0029)* 0.436 168 0.074 ... 120 0.087(0.0054)* 0.622 224 o.ioo 0.622 160 o.ioo ... 280 0.124 0.622 200 0.124 , 0.622 336 0.137 ... 240 0.137 448 0.137 1.494 320 0.137 1.494 560 0.174 2.054 400 0.199 2.120 * Results at 25 by Knox (1909). At 100 some Bi(OH) 3 was converted into BiO(OH). SOLUBILITY OF BISMUTH HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF POTASSIUM BROMIDE AT 30. (Herz and Bulla, 1909.) (An excess of bismuth hydroxide, prepared according to Moses and having the composition corresponding to BiO.OH, was shaken 2-3 weeks at 30 with aqueous KC1 and KBr. The analyses of the sat. solutions are expressed in terms of milli- mols KOH and KC1 or KBr. They have been calculated for the following table to gms. BiO.OH and KC1 or KBr.) Gms. per 100 cc. Sat. Sol. Gms. per 100 cc. Sat. Sol. ' - ' SolVCnt - BiO.OH. KCl ' BiO.OH. r 2nKC\ 3.759 13.75 iwKBr 8.555 7.67 3^KC1 5-745 20.71 2wKBr 17.785 15.02 BISMUTH IODIDE BiI 3 . 100 gms. absolute alcohol dissolve 3.5 gms. BiI 3 at 20. (Gott and Muir, 1888.) 100 gms. methylene iodide, CH 2 l2, dissolve 0.15 gm. BiI 3 at 12. (Retgers, 1893.) BISMUTH NITRATE Bi(NO 3 ) 3 .5H 2 O. 100 gms. acetone dissolve 48.66 gms. Bi(NO 3 ) 3 .5H 2 O at o, and 41.7 gms. at IQ (von Laszczynski, 1894.) SOLUBILITY OF BISMUTH NITRATE IN AQUEOUS NITRIC ACID AND IN AQUEOUS NITRIC ACID CONTAINING ACETONE, AT ORDINARY TEMPERATURE. (Dubrissay, 1911.) SolidPhaSC - 0.922 n HNO 3 86.86 Bi(N0 3 ) 3 .5H 2 O 0.922" " + 6.66% Acetone 85.51 0.922" " +13.33% " 81.96 2.3 " " 80.37 2.3 " " +16.66% 74.47 SOLUBILITY OF DOUBLE NITRATES OF BISMUTH AND MAGNESIUM, NICKEL, COBALT, ZINC AND MANGANESE IN CONC. HNO 3 AT 16. (Jantsch, 1912.) (di 6 of HNO 3 = 1.325, ioo cc. of this acid contained 51.59 gms. HNOa.) Gms. Hydrated Gms. Hydrated Double Salt. Salt per ioo cc. Double Salt. Salt per ioo cc. Sat. Solution. Sat. Solution. Bi 2 Mg 3 (NO 3 )i2.24H 2 O 41 -69 Bi 2 Zn 3 (NO 3 )i 2 .24H 2 O 57 .51 Bi 2 Ni 3 (NO 3 ) 12 .24H 2 O 46.20 Bi 2 Mn 3 (N0 3 )i 2 .24H 2 O 65.77 Bi 2 Co 3 (NO 3 )i2.24H 2 O 54 . 67 BISMUTH OXIDE 152 BISMUTH OXIDE Bi 2 O 3 . SOLUBILITY OF BISMUTH OXIDE IN AQUEOUS NITRIC ACID AT 20. (Rutten and van Bemmelen, 1902.) Present in Shaker Flask. Gms. per TOO Gms. Solution. Mols. per 100 Mols. H 2 O. Solid Per i part Bi 2 Os. 3N 2 O 5 .ioH 2 O. Bi 2 3 N 2 S Bi 2 3 N 2 6 R fSfof 3 Phase. 24.4 parts H-P 3.2 parts H 2 O 0.321 6.37 0.963 7.17 o 126 2.844 1.61 13.82 i 12.8) 4.8 ( B5 2 O 3 .N 2 O 6 . 2 H 2 O Dilute HNO 3 Dilute HNO 3 18.74 31.48 15-9 23-7 10.50 27.2 38.65 83.8 i i 3-6} 3.Q J Bi 2 O s N 2 5 .H 2 Dilute HNO 3 = 6.13% N 2 O S 3 2 -93 24.83 3- I 5 97-97 Bi 2 O,.N 2 O 5 .HjO and Bi 2 3 . 3 N 2 5 .ioH 2 6.816% N 2 5 32.67 24.70 29.70 96.57 i 3-21 24.0% N 2 O 6 51.0% N 2 6 24.16 11.66 28.25 ... 46.62 19.65 10.81 98.76 186.23 i i- 5-0 17.2 J Bi 2 O 3 .3N 2 O s .ioH 2 O 70.0% N 2 6 20.76 53-75 33-5 1 355.87 i io.6j 27.85 51.02 51.0 403.0 i 7-9 { Bi 2 O 3 .3N 2 O 5 .ioH 2 O and Bi 2 3 .3N 2 5 . 3 H 2 Anyhdrous HNO Bi 2 3 + " 38.56 4-05 68.28 74.90 14-35 7-45 492.0 592.9 j 34-31 79-5* Bi 2 8 .3N,0 6 . 3 H a O Results are also given for 9, 30, and 65. BISMUTH TriPHENYL Bi(C 6 H 6 ) 3 . Fusion-point data (see footnote, p. i) are given for mixtures of bismuth triphenyl and mercury diphenyl by Cambi (1912). BISMUTH SALICYLATE (basic, 64% Bi 2 O 3 ). SOLUBILITY IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (Seidell, 1910.) Gms. C2HsOH per 100 Gms. Solvent. Gms. Salt per 100 Gms. Sat. Sol. Gms C 2 H 6 OHper zoo Gms. Solvent. Gms. Salt per 100 Gms. Sat. Sol. O O.OIO 80 0.065 20 0.015 00 0.095 40 60 0.022 0.036 92.3 100 O.IO5 0.160 BISMUTH SELENIDE Bi 2 Se 3 . Fusion-point data (see footnote, p. i) are given for mixtures of bismuth sele- nide and silver selenide by Pelabon (1908). BISMUTH SULFIDE Bi 2 S 3 . i liter H 2 O dissolves 0.00018 gm. Bi 2 S 3 at 18. (Weigel, 1906; see also Bruner and Zawadski, 1912.) SOLUBILITY OF BISMUTH SULFIDE IN AQUEOUS ALKALI SULFIDE SOLUTIONS AT 25. (Knox, 1909 ) Gms. Bi 2 Ss per Solvent. 100 cc. Sat. Solvent. Solution. 0.5 n Na 2 S wNaOH 0.0040 0.5 i.on " 0.0238 i 1.5 n " 0.1023 0.5 o.5K 2 S 0.0043 I i n ' 0.0337 1.25 n K 2 S +i.25wKOH 1.5 w " 0.0639 Freezing-point data (see footnote, p. i) are given for mixtures of bismuth sulfide and bismuth telluride by Amadori (1915). Gms. BizSs per loo cc. Sat. Solution. 0.0185 0.0838 o . 0240 0.1230 0.2354 BORAX, see sodium tetraborate, p. 629. I 53 BORIC ACID BORIC ACID H 3 B0 3 . SOLUBILITY OF BORIC ACID IN WATER. (Nasini and Ageno, 1909.) . Gms. HsBOa per 1 loo Gms. Sat. Sol. , Gms. HsBOs per 100 Gms. Sat. Sol. t o Gms. HaBO 3 per 100 Gms. Sat. Sol. o.76Eutec 2.27 30 6.30 80 19.11 2-59 40 8.02 90 23.30 + 10 3-45 50 10.35 100 28.7 20 4.8 60 12.90 1 10 38-7 25 5-5 70 15.70 120 52.4 The results of Herz and Knoch (1904), and one determination by Auerbach (1903), given in terms of gms. per 100 cc. sat. solution, appear to be in good agreement with the above. The earlier data of Ditte (1877) are low. SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, SULPHURIC, AND NITRIC ACIDS AT 26. (Herz Z. anorg. Chem. 33, 355. 34. 205, '03.) Normality of Normality of Gms. Strong Acid Gms. B(OH) 3 per 100 cc. Solution, the H 2 SO 4 , HC1 Dissolved per 100 cc or HNO 3 . B(OH) 3 . Solution. In HC1. In H 2 SO 4 . In HNO 3 . o 0.91 o 5.64 5.64 5.64 0.5 0.78 5 4.0 4.25 4.50 i.o 0.71 10 3-2 3.6 3.9 2.0 0.58 15 2.45 3-o 3-35 3.0 0.49 20 1.8 2.5 2.9 4.0 0.41 25 2.0 2-55 5-o 0-35 30 i-55 2.1 6.0 0.26 35 ... ... 1.75 The determinations given in the original tables in terms of normal solutions when plotted together lay close to an average curve drawn through them. The figures in the tables here shown were read (and calculated) from the average curve. SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF ELECTROLYTES AT 25. (Bogdan Ann. Scient. Univ. Jassy, 2, 47, 'oz-'o3.) Gms. Electro- Grams H 3 BO 3 per too Gms. H 2 Oin Aq. Solutions of: Gms. H 2 O. NaCl. KC1. NaNO 3 . KN0 3 . N a2 S0 4 . K2SO-4. O 5 75 5 75 5 75 5-75 c 75 5-75 IO 5 75 r .80 5 .78 5 .8l 5 .88 5-92 20 5 74 5 .86 5 .81 5 .88 6 oo 6.10 40 5 .72 3 .98 5 .87 6.04 6 33 6.50 60 5 .72 6 .12 5 95 6. 20 6 .70 6.92 80 5 7i 6 .29 6 .02 6.37 7 .10 7-40 Interpolated from the original. BORIC ACID 154 SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF ALKALI CHLORIDES AT 25. (Herz, 1910.) (The original results are given in millimols per 10 cc. They have been calcu- lated to gram quantities, plotted on cross-section paper and the following values read from the curves.) Cms. HC1 or Alkali Cms. HsBOs Dissolved per 100 cc. Sat Sol. in Aq.: Chloride per 100 cc. Sat. Sol. O 2 4 6 8 10 15 20 30 ... 6.55 THE SYSTEM BORIC ACID, ACETIC ACID AND WATER AT 30. (Dukelski, 1909.) (The sat. solutions _and residues were analyzed by titrating total acidity with o.i n NaOH and the acetic acid alone by an iodometric method.) HCl. Lid. NaCl. RbCl. KCl. 5-59 5-59 5-59 5-59 5-59 4.92 5-20 5-4o 5.60 5-67 4-36 4.85 5-30 5-62 5-75 3.88 4-45 5.20 5-67 5.85 3-50 4.07 5-i5 5-72 5-9 3-i5 3-75 5.10 5-77 6 3 5-07 5-90 6.25 6.10 6.50 Cms. per 100 Gms. Sat. Sol. Solid Phase. B(OH) 3 Gms. per 100 Gms. Sat. Sol. Solid Gms. per 100 Gms. Sat. Sol. So ii d p has e. BiOs. (CH3CO)20. 3-55 3-i8 7.78 2.98 16.44 2.34 28.96 1.98 41.06 i-47 52-63 1. 12 67.76 B 2 3 . (CH 3 CO) 2 O. I.OI 73.96 B(OH) 3 0-54 80.67 0.45 84.55 "+ (?) 0.39 84.65 O.4I 84.48 o . 46 84 . 44 0.50 84.51 B 2 3 . (CH 3 CO) 2 0. 4.98 82.13 B 2 3 .2(CH3CO)20 5.13 84.60 5.41 85.68 4.82 88.74 BzOs.sCCHsCO)^ 4.71 89.98 4.06 92.68 3.10 95.76 SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF: Acetic Acid at 26. (Herz, 19030.) Acetone at 2O. (Herz and Knoch, 1904.) Normality of Solutions. Gms. per 100 cc. Solution. cc > Acetone B(OH) 3 per 100 cc. Solution. CHaCQOH. B(OH)' 3 . CHaCOOH. B(OH) 3 . ^SoiwnU* Millimols. Grams! 0-91 o 5-64 1 0.82 5 4.7 2 0.65 1C 4-2 4 0.42 20 3.0 6 p. 25 30 2.0 o 79 - J 5 4.91 20 81.71 5-o7 30 83-35 5-*7 40 82.72 5-*3 50 81.62 5-06 60 76.40 4-74 70 67.62 4.19 80 55-05 3-4i 100 8.06 0.50 SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF UREA, ACETONE, AND OF PROPYL ALCOHOL AT 25 (Bogdan.) Grams of Gms. HaBOs per 100 g. H 2 O in Aq. CO(NH 2 )2,(CH 3 ) 2 CO Solutions of: or of CsHyOH per 100 Gms. H 2 O. O 10 20 40 60 CO(NH 2 ) 2 (CH 3 ) 2 CO. CaHyOH. 5-75 5-75 5-75 5-84 5-84 5.80 5-93 5-93 5-85 6.13 6.12 5-94 6.31 6.29 6.03 155 BORIC ACID SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF SEVERAL ALCOHOLS AT 25. (Mueller and Abegg, 1906.) In Aq. Methyl Alcohol. In Aq. Ethyl Alcohol. In Aq. Propyl Alcohol. Solvent. Gms. HaBOa Solyent. Gms. HaBOa Solvent. BF 3 at o and 762 mm.; i cc. cone. H 2 SO 4 (Sp. Gr. 1.85) absorbs 50 cc. BF 3 . BRASSIDIC ACID 158 BRASSIDIC ACID Solubility data determined by the freezing-point method are given by Mas- carelli and Sanna (1915), for mixtures of brassidic and erucic acids and brassidic and isoerucic acids. BROMAL HYDRATE CBr 3 .CH(OH) 2 The distribution coefficient of bromal hydrate between olive oil and water is 0.665 at ord. temp. (Baum, 1899); 0.7 at ord. temp. (Meyer, 1909). BROMINE Br. SOLUBILITY IN WATER. fWinkler Chem. Ztg. 23, 687, '99; Roozeboom Rec. trav. chim. 3, 29, 59, 73, 84, '84; Dancer J. Chem. Soc. 15, 477, '62; at 15, Dietze Pharm. Ztg. 43, 290, '08 J Grams Bromine per 100 Grams. __^ Solubility."* * * Water. Solution. (W.) (R. D. & D.) (W.) (R. D. & D.) ff - o 4-^7 4.22 3-98 4-05 60.5 43.1 5 3-92 3-7 3-77 3-57 45- 8 32-4 10 3.74 3-4 3- 61 3-29 35- 1 24.8 15 3- 6 5 3-25 3-S 2 3- J 5 27.0 19.0 20 3.58 3.20 3.46 3.10 21.3 14.8 25 3-48 3- J 7 3-3 6 3-o7 17 o 11.7 30 3.44 3-!3 3-32 .3-03 13-8 9-4 40 3.45 3-33 9-4 6.2 50 3.52 ... 3.40 ... 6.5 4.0 60 ... 4-9 2.8 80 ... ... 3-o LI * For definition of "Absorption Coefficient " a and "Solubility '' q, see Acetylene, p. 16. One liter sat. solution of bromine in water contains 0.21 mol. Br2 = 33.56 gms. Br at 25. (Bray and Connolly, 1910.) The coefficient of solubility of bromine in water at 15, determined by an aspiration method, is given as 33 by Jones (1911). This investigator also gives the figure 56 for the solubility coefficient in 25 vol. % acetic acid and 551 for 90 vol. % acetic acid at 15. Data for the distribution of bromine between water and air at 25, are given by Hantzsch and Vagt (1901). SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF MERCURIC BROMIDE AT 25 AND VICE VERSA. (Herz and Paul, 1914.) Gms. per 100 cc. Sat. Sol. Soiy Gms. per 100 cc. Sat. Sol. Solid HgBrz. Br. Phase. HgBr 2 . fiT Phase. o 3.40 Br 2 0.763 3.57 Br 2 +HgBr 2 0.202 3.53 0.701 2.88 HgBr 2 0-285 3-55 0.664 1-20 0.462 3.56 " 159 BROMINE SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE. (Results at o and 25, Boericke, 1905; at o, Jones and Hartmann, 1916; at 18.5 and 26.5, Worley, 1905.) Cms. Bromine Dissolved per Liter of Sat. Solution at: Br per Liter. Liter. o. 18.5. 25. 26.5. 41.6 (24.2) 35-56 34 34-23 O.OO5 o-59 41-7 (25-5) 36.1 34.3 35-i 0.010 1.19 42.6 (26.2) 37 35 36 0.020 2.38 44.4 127.5) 38.56 36.5 37-35 o . 050 5-95 50.2 (31.5) 43-8 4i 42.5 0.100 11.90 59-7 (4o) 52-23 49-3 51.87 O.2O 23.80 79-i (57-i) 69.69 67-3 68.69 0.50 59-5i 138.6 (111.9) 123 119 116 0.80 92.22 200 (174) 178.70 176 168 . 10 I 119.02 243.1 (217.5) 216 216.5 204 I-725 205.2 402.3 (395-9) . . . . . . ... 1.82 216.6 423.8 (423) ... ... 2.17 258.2 5II.7 (5H.7) . . . ... ... 3-033 360.8 736.7 ... 632.4 Very accurate determinations at o, at concentrations of KBr below o.oi normal, are given by Jones and Hartmann. Liquid bromine in contact with aqueous solutions at o is slowly converted to the hydrate, Br2.ioH 2 O, with a reduction in amount of dissolved bromine. At this temperature there are, con- sequently, two saturation concentrations. The unstable one being for solutions in contact with liquid bromine and the stable one being for solutions in contact with Br 2 .ioH 2 O. The results for the latter are shown in parentheses in the above table. SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF POTASSIUM SUL- PHATE, SODIUM SULPHATE, AND OF SODIUM NITRATE AT 25. (Jakowkin Z. physik. Chem. 20, 38, '96.) Normality o: Salt Solution i 1 In K 2 S0 4 Gms. per Liter. In Na 2 SO 4 Gms. per Liter. In NaNOs Gms. per Liter. 9I.I8 45-59 22.79 5-69 Br. 25.14 29.44 31.46 32.70 33 ^o Na 2 SO 4 . 15.88 7-94 3-97 Br. " 25.07 29.20 32-94 33-26 NaN0 3 . 85.09 42-54 21.27 10.63 5-31 Br. 28.80 31-35 32.62 33-33 33-74 SOLUBILITY OF BROMINE IN AQUEOUS SALT SOLUTIONS AT 25. (McLauchlan, 1903.) Gms. Normality Gms. Gms. Normality Gms. Salt. Salt per of Dis- Br. per Salt. Salt per of Dis- Br. per Liter. solved Br. Liter. Liter. solved Br. Liter. Water 0.0 0.424 33-95 NH 4 NO 3 80. 1 1 0.688 55.15 Na 2 S0 4 63-55 0.286 23-9 I^aCl 58.50 0.701 55.90 K 2 S0 4 9I.I8 0.310 24.8 KC1 74.60 0.718 57.40 (NH,) 2 SO 4 70.04 0.971 77-7 NH 4 C1 53.52 1.028 82.2 NaNO 3 VKTr\ 8 5 .0 9 0-3495 28.0 CH 3 COONH 4 77.o 9 4.26 340.5 KNO 3 101.19 0.362 28.95 H 2 SO 4 * 49-03 0.366 29.26 * Wildeman. BROMINE 160 SOLUBILITY OF BROMINE IN AQUEOUS SOLUTIONS OF SODIUM BROMIDE AT 25. (Bell and Buckley, 1912.) Grams per Liter Sat. Sol. j^ o f NaBr. Ei. Sat. Sol. 92.6 99.2 I.2I3 160.5 176.7 1.372 205.8 247.8 1-515 255-8 343 1-678 RECIPROCAL SOLUBILITY OF BROMINE AND CHLORINE, BROMINE AND HYDRO- BROMIC ACID AND BROMINE AND SULFUR DlOXIDE, DETERMINED BY METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. i). Gms. per Litei Sat. Sol. d>* of Sat. Sol. 1.997 2.137 2.327 2.420 NaBr. 319-7 359 408 '.3 Br. 546 641 .6 769.2 834 Results for Bromine + Chlorine. (Lebeau, 1906; see also Karsten, 1907.) Bromine + Hydro- bromic Acid. (Buchner and Karsten, 1908-09.) Bromine -f- Sulfur Dioxide. (van der Goot, 1913.) tof Melting. Gms. Br per loo Gms. Mixture. " tof Melting. Gms. Br per loo Gms. Mixture Mol. % Br. in Mixture. tof Melting. Gms. Br per loo Gms. Mixture. 102.5 O -87-3 O -75-i . IOO 6 5 -90 6 2. 5 -75-3* I 73 90 31 -95* II .2 4- 8 -60 4 80 48 .6 -90 II .8 5 -40 12 -5 70 60 -4 -80 15 .2 .6. 8 -30 21 60 70 -70 22 n. 5 20 35 5 50 79 -60 31 -7 19 -18 40 5 40 86 3 50 43 30 -16 48 30 91 .1 -40 54 5 43- 5 -14 72 20 95 .2 -30 66 .2 60 -13 90 IO 89 20 79 5 76. 5 10 96 5 7-3 IOO -12.5 90 90 7.1 IOO * Eutec.. SOLUBILITY DATA, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES: Bromine + Methyl alcohol (Maass and Mclntosh, 1912.) + Ethyl alcohol " + Ethyl acetate " + Ethyl bromide (Wroczynski and Guye, 1910.) " + Iodine (Meerum-Terwogt, 1905; Kruyt and Heldermann, 1916.) 41 + Sulfur (Ruff and Winterfeld, 1903.) TOO grams saturated solution of bromine in carbon disulfide contain 45.4 grams'Br at 95, 39 grams at - 1 10.5, and 36.9 grams at - 1 16. (Arctowski, 1895 1896.) DISTRIBUTION OF BROMINE BETWEEN WATER AND CARBON TETRACHLORIDE AT 0. (Jones and Hartmann, 1916.) Gm. Br per Gm. CCU Solution. Density , CCU-Br 2 . jms. Bromine per Litei ' Gm. Brcper ' Gm. CCU. Solution. Density / CCl4-Br 2 . Gms. Bromine per Liter. HzO Layer. ecu Layer. H 2 Layer. ecu Layer. 0.01640 1.6454 1.28 26.99 0.07261 1.6896 5-35 122.82 0.01847 1.6470 1.44 30-45 O.o8l62 1.6972 6.03 138.66 0.05433 I-6755 4.12 91.12 0.08661 I.70I2 6.30 184.41 0.06126 1.6809 4-59 103.07 0.1646 1.7667 II .22 29I.IO 161 BROMINE DISTRIBUTION OF BROMINE AT 25 BETWEEN WATER AND: (Calculated from results of Jakowkin, 1895. Those in parentheses from Herz and Kurzer, 1910.) Carbon Disulfide. Bromoform. Carbon Tetrachloride. Gms. Br. per Liter of; Gms. Br. per Liter of: Gms. Br. per Liter of; Aq. 'Layer. CS 2 Layer. Aq. Layer. CHBr 3 Layer. Aq. Layer. CC1 4 Layer. 0.5 36 (35) o-5 33 0.5 15 (13) 1 80 (75) i 66 i 28 (23) 2 163 (155) 2 136 2 60 (45) 3 240 (230) 3 206 3 90 (70) 4 330 (31) 4 276 4 123 (95) 5 420 (395) 5 346 5 156 (122) 6 515 (480) 6 415 6 190 (150) 7 620 (565) ... ... 8 260 (220) 10 340 (300) 12 430 (400) Lewis and Storch (1917) point out that Jakowkin (1896) failed to take into consideration, the hydrolysis of the bromine in the aqueous phase in the very dilute solutions. They used o.ooi n HC1 which prevents the hydrolysis but is presumably too dilute to affect the true solubility. The distribution coefficient found in this way, given in terms of mols. Br per 1000 gms. H 2 O, divided by the mol. fraction of Br in the CC1 4 , is 0.3705 at 25. These authors also give a series of determinations of the distribution of bromine between o.i n HBr and CCU at 25. DISTRIBUTION OF BROMINE BETWEEN WATER AND MIXTURES OF CARBON DISULFIDE AND CARBON TETRACHLORIDE AT 25. (Herz and Kurzer, 1910.) 75 Vol. % CS2+25 Vol. % CC1 4 . Gms. Bromine per Liter. Aq. Layer. CS2+CCU Layer. 0.71 46 1.34 87.2 3.98 213.8 5.06 330.5 6.82 444-2 DISTRIBUTION OF BROMINE AT 25 (Herz and Rathmann, 1913) BETWEEN: Water and Tetrachlorethane. Water and Pentachlorethane. Grams Bromine per Liter. Gms. Bromine per Liter. Aq. Layer. CzIfeCU Layer. Aq. Layer. C2H.CU Layer. 0.216 6.47 0.402 10.70 0.592 18.20 0.670 18.29 0.944 29.46 0.864 23.49 1.348 41.65 1.300 35.46 2.444 74-57 2.408 67.44 25 Vol. % CSa + 75 Vol. % CC1 4 . Gms. Bromine per Liter. , 50 Vol. %CSi+5oVol. % CC1 4 . Gms. Bromine per Liter. Aq. Layer. 0.79 i-53 2.32 2.98 3.66 5-26 7-95 9.66 CS 2 +CCU Layer. 28.4 58.4 86.6 111.3 137.8 205.1 324.9 432.2 Aq. Layer. 0.63 I.I 9 I. 7 6 2-45 2-95 6.47 7-97 CS2+CCU Layer. 28. 7 54-5 8l.I II0.9 132.9 343-8 447-7 BROMINE 162 DATA FOR THE DISTRIBUTION OF BROMINE BETWEEN AQUEOUS SALT SOLUTIONS AND ORGANIC SOLVENTS ARE GIVEN BY THE FOLLOWING INVESTIGATORS: Immiscible Solvents. t. Aqueous CdBrz+CCU 25 Aqueous CdBr 2 .2KBr+CCl4 25 Aqueous HBr-j-CCL; 25 Aqueous HgBr 2 +CCLi 25 Aqueous HgBra^KBr-fCCU 25 Aqueous KBr+CCU o Aqueous KBr-j- 82 32.6 Authority. (Van Name and Brown, 1917.) (Lewis and Storch, 1917.) (Herz and Paul, 1914; Van Name and Brown, 1917.) (Van Name and Brown, 1917.) (Jones and Hartmann, 1916.) (Roloff, 1894.) BROMOFORM CHBr 3 . 100 cc. H 2 O dissolve 0.125 gin. CHBr 3 at I5-2O. (Squire and Caines, 1905.) SOLUBILITY (Freezing-point lowering data, see footnote, p. i) FOR MIXTURES OF:. Bromoform and Liquid Carbon Dioxide. (Biichner, 1905-06.) Bromoform and Toluene. (Baud, 1912.) ' Cms. CHBra per t of Freezing. ! 100 Cms. Solid Phase. CHBrs+CeHs.CHs. + 7.7 IOO CHI -11.4 86.6 (i 22.2 75-6 tt -30.9 69.8 14 -48.5 60.3 11 Gms. CHBrs per t. 100 Gms. CHsBr+C02. 31 o -32 3-7 -30 4-9 -16 13-5 - 8 24 - 5 35-2-67.7 quad.pt. - 3-5 92-1 BRUCINE C 2 iH 20 (OCH 3 ) 2 N 2 2 .4H 2 0. SOLUBILITY OF BRUCINE IN SEVERAL SOLVENTS. Qnlnf t o Gms - Brucine per A.ithnritv Solvent. t. I00 cms. Sat. Sol. 18-2 2 o . 056-0 . 1 25 (Muller,'i903 ; Squire and Caines, 1905; Zalai, 1910.) 20 12 (Scholtz, 1912.) 1 8-2 2 I . Il-l . 86 (Muller, 1903; Schaefer, 1913.) 0.08 " " . 1.96 Water Aniline Benzene Carbon Tetrachloride 18-22 " " 20 Chloroform 25 Trichlor Ethylene 15 Ether 18-22 Ethyl Acetate 18-22 Ethyl Alcohol 25 Diethylamine 20 Methyl Alcohol 25 Petroleum Ether Glycerol Pyridine ii. 6 2-5 o-75 4.26 45-2 1.6 55-6 (Schindelmeiser, 1901; Gori, 1913.) (Schaefer, 1913.) (Wester and Bruins, 1914.) (Muller, 1903.) Aq. 50% Pyridine Piperidene (Schaefer, 1913.) (Scholtz, 1912.) (Schaefer, 1913.) 18-22 0.055-0.088 (Muller, 1903; Zaki, 1910.) 1 8-2 2 2 . 2 (Muller, 1903.) 2O 28 (Scholtz, 1912.) 20-25 21.9 (Dehn, 1917.) 20-25 3 T -6 " 20 I (Scholtz, 1912.) Results for the solubility of brucine and brucine sulfate in mixtures of alcohol, chloroform and benzene are given by Schaefer (1913). BRUCINE Per CHLORATE C 21 H 20 (OCH 3 ) 2 N 2 O 2 .HC1O 4 . loo gms. H 2 O(+ 2%HC1O 4 ) dissolve 0.15 gm. of the salt at 18. (Hofmann, Roth, Hobold and Metzler, 1910.) 163 BEUCINE BRUCINE SULFATE. 100 cc. methyl alcohol dissolve 0.28 gm. brucine sulfate at 25. (Schaefer, 1913.)^ " ethyl " " 1.66 " " (Schaefer, 1913.) " chloroform O.6 (Schaefer. 1913.) BRUCINE d, /, and i TARTRATE. SOLUBILITY OF EACH OPTICAL ISOMER IN WATER (Dutiih, 1912.) Gms. per 100 Cms. Water. t. t * \ d Tartrate. I Tartrate. Racemic Tartrate. 20 ... ... 1.38 25 1.008 1.84 35 1-272 3-24 44 1.590 4-64 50 1.854 6.56 BUTANE C 4 H 10 . SOLUBILITY IN WATER AT t AND 760 MM. t. o. 4. 10. 15. 20. Vol. C 4 Hio per icovols. H 2 O 3.147 2.77 2.355 2.147 2.065 DiphenylBUTADIENE. Freezing-point curves (solubility, see footnote, p. i), are given by Pascal (1914) for mixtures of diphenylbutadiene and each of the following compounds: diphenyldiacetylene, diphenylhydrazine and cinnamylidene. BUTYL ACETATE CHj.C02.CiH9. SOLUBILITY OF BUTYL ACETATE AND OF BUTYL FORMATE IN MIXTURES OF ALCOHOL AND WATER. (Bancroft Calc. from Pfeiffer Phys. Rev. 3. 205, '? cc. H 2 O added to cause separation of a Air h 1 second phase in mixtures of the given in Mixture quantity of alcohol and 3 cc. portions of: Butyl Formate. Butyl Acetate. 3 3-45 2 -8 6 8.83 6.08 9 14-75 IO -46 12 21.45 J 5-37 15 29.65 20.42 18 39.0 25". 60 21 51.8 31.49 24 <*> 37-48 27 43-75 30 50-74 33 59-97 100 cc. H 2 O dissolve 0.7 cc. isobutyl acetate at 25. (Bancroft.) IsoBUTYL ACETATE, etc. SOLUBILITY IN WATER. (Traube, 1884; at 20, Vaubel, 1899.) Grams Com- * o Compound. pound per zoo Grams HaO. 22 Iso Butyl Acetate 0.5 22 Iso Butyl Formate x.o 20 Normal Butyric Aldehyde 3 .6 20 Iso Butyric Aldehyde 10.0 BUTYL ALCOHOLS 164 Secondary BUTYL ALCOHOL CH 3 .CHOH.CH 2 CH,. Iso BUTYL ALCOHOL (CH 3 ) 2 CH.CH 2 OH. SOLUBILITY OF BUTYL ALCOHOLS IN WATER, "SYNTHETIC METHOD." (see Note, p. 16). (Alexejew, 1886.) Secondary Butyl Alcohol Iso Butyl Alcohol and Water. and Water. Cms. Secondary Butyl Alcohol per too Gms. Cms. Iso Butyl Alcohol per 100 Cms. Aqueous Alcoholic Layer. Layer. 13 85 9 84 7-5 83 7 82 7 77 8 72 16 62 28 50 49 Additional determinations of] the reciprocal solubility of secondary butyl alcohol and water are given by Dolgolenko (1908). This investigator prepared three fractions of 98 -o.8.6 , 98.6-99 and 99-99.5 boiling point respectively, and determined the curve for each fraction and water by the "synthetic method." The first fraction gave a closed curve having both a lower and an upper critical solution temperature, while the other fractions gave curves with only an upper critical solution temperature, and in other respects in fair agreement with the results of Alexejew as shown in the above table. The explanation of this differ- ence in the case of the first fraction, is supposed to be that this fraction contained a larger proportion of tertiary butyl alcohol than the others, due to the lower boiling point of this isomer. Since the tertiary alcohol is entirely miscible with secondary alcohol and water its presence would restrict the boundaries of inhomogeneity and, therefore, tend to favor a closed curve for the system. SOLUBILITIES, DETERMINED BY THE FREEZING-POINT METHOD (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES CONTAINING BUTYL ALCOHOLS. Isobutyl alcohol + Water (Dreyer, 1913.) " + Liquid CO 2 (Buchner, 1905-06.) Normal butyl alcohol + Water (Dreyer, 1913.) " " " + Liquid CO 2 (Buchner, 1905-06.) Secondary butyl alcohol + Water (Dreyer, 1913; Timmermans, 1907, 1910, X9.) }" " + " + Hydroquinine (Timmermans, 1907.) Tertiary butyl alcohol -f Water. (Dreyer, 1913.) Aqueous Alcoholic * Layer. Layer- 20 2 7 66 10 28 60 27-5 56 10 26.0 57 20 22-5 60 30 18 63-5 40 16 65-5 6o 13 67 80 IS 63 100 20 52 io7crit. temp. 33 120 130 133 crit. ternp. 1 65 IsoBUTYL ALCOHOL DISTRIBUTION OF ISOBUTYL ALCOHOL BETWEEN WATER AND COTTON SEED OIL AT 25. (Wroth and Reid, 1916.) Cms. C4H9OH per TOO cc. Cms. CHOH per too cc. OU Layer. H Z O Layer. Ratio. [Oil Layer. H 2 O Layer. - Ratio 1.168 2.043 i-74 1-375 2 -3oi 1.67 1.276 2.250 1.76 1-405 2.429 1.72 1.288 2.135 X - 6 S x -495 2 -45o 1-64 The partition coefficient of tertiary butyl alcohol (CH 3 )2C(OH)CH 3 , between olive oil and water is given as 0.176 at ord. temp. (Baum, 1899.) IsoBUTYLAMINE HYDROCHLORIDE (CH 3 ) 2 CHCH 2 NH 2 .HC1. IOO gms. H 2 O dissolve 238.9 gms. of the salt at 25. (Peddle and Turner, 1913.) IOO gms. CHC1 8 dissolve 11.56 gms. of the salt at 25. (Peddle and Turner, 1913.) BUTYLCHLORAL CH 3 CHC1.CC1 2 CHO. The distribution coefficient of butylchloral between oil and water is given as 1.6. (Meyer, 1907.) BUTYLCHLORALHYDRATE CH 3 CHC1.CC1 2 .CH(OH) 2 . 100 gms. H 2 O dissolve 2.7 gms. butylchloralhydrate at 15.5 (Greenish and Smith, 1903.) 2.3 " " at I5-20. (Squire and Caines, 1905.) glycerol " 100 " " at I5-2O. (Greenish and Smith, 1903.) The partition coefficient of butylchloralhydrate between olive oil and water is given as 1.589 at ord. temp. (Baum, 1899.) BUTYRIC ACIDS (normal) CH 3 (CH 2 ) 2 COOrJ; (iso) (CH 3 ) 2 CH.C6OH. SOLUBILITY OF NORMAL BUTYRIC ACID IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Faucon, 1909, 1910.) t-of Gms. Acid per f . of Gms. Acid per t<> of Gms. Acid per 100 Congealing. Congealing. ' Congealing. Gms. Mixture oo 3.57 67.38 13-40 87.62Eutec. i. 08 5.12 5.20 75 12.40 90.08 2.70 12.75 6.80 80 10 95 .92 2.96 25.32 8.61 84 8 98.60 -3.07 50.60 -10.25 85.41 - 5.40 99.15 -3.14 59.72 -12.54 86.54 - 3.12 loo Higher values for the temperature of congealing of the above mixtures are given by Ballo (1910). For additional data see also Timmermans (1907) and Tsakalotos (1914). Data for the miscibility of normal butyric acid and water are also given by Faucon. The curve is entirely in the metastable region. The mixtures are either opalescent or completely homogeneous and never form two distinct layers, even with the application of centrifugal force. The results are as follows: t of opalescence 5.2 4.2 4 3.8crit. t. 4-5 7 Gms. acid per 100 v gms. mixture 25 30 35 40 50 58 . 2 SOLUBILITY OF ISOBUTYRIC ACID IN WATER, DETERMINED BY THE FREEZING- POINT METHOD. (Faucon, 1910.) The congealing temperatures for mixtures containing up to 60 grams iso- butyric acid per ipo gms. coincide with the results given in the above table for normal butyric acid and water. For higher concentrations the following results were obtained. t of congealing -3.09 3-35 ~3-6i -12.5 -80 Gms. acid per 100 gms. mixture 70.10 82.08 86.44 97- 21 IO BUTYRIC ACID 166 MlSCIBILITY OF ISOBUTYRIC ACID AND WATER, DETERMINED BY THE "SYNTHETIC METHOD." (Smirnoff, 1907.) Gms. "Acid per 100 Gms.: 10.05 12 14 16 18 20 22 22.5 23 Upper Layer. Lower Layer. 69.08 17.82 6 7 .I 18.3 64.9 I9.I 62.3 20 59-2 21. 1 55-4 22.8 49 25.8 46 27 4i 29 34-7 Determinations varying more or less from the above are given by Rothmund (1898), Friedlander (1901) and Faucon (1910). The discrepancies are shown by Smirnoff to be due to the effect of variations in purity of the isobutyric acid upon the position of the curve. Smirnoff fractionated the purest obtainable acid and determined the miscibility curve for each fraction. The above results were obtained with fraction 4 of boiling point 154-! 55, twice refractionated. An extensive series of determinations are* given by Smirnoff of the effect of various percentages o different salts upon the temperature of immiscibility of aqueous 16.46% isobutyric acid solution. DISTRIBUTION OF BUTYRIC ACID BETWEEN WATER AND BENZENE AT I3-I5 (Georgievics, 1913.) Gms. Acid Found per- Gms. Butyric Acid Used. 2.0044 2.9968 3.5028 4.0088 4-5342 150 cc. Benzene Layer. 1.7643 2.6965 3-I740 25 cc. HzO Layer. o . 2401 0.3003 0.3288 0-3544 0.3821 4-I52I The distribution ratio of normal butyric acid between water and benzene at room temperature was found by King and Narracott (1909), to be I to 0.7585, and for isobutyric acid, the ratio was I to 0.810. One determination of the distribution of butyric acid between sat. aqueous CaCl 2 solution and kerosene gave 7.2 gms. acid per 100 gms. aqueous layer and 92.8 gms. per 100 gms. kerosene layer at ord. temp. (Crowell, 1918.) DATA FOR THE FOLLOWING TERNARY SYSTEMS CONTAINING NORMAL BUTYRIC ACID ARE GIVEN BY TIMMERMANS, 1907. Normal Butyric acid + Water + Azobenzene. + Barium nitrate. + Benzophenone. -j- Camphor. + Cane sugar. -j- Mannite. -j- Naphthalene. + Potassium sulfate. + Sodium chloride. Freezing-point data are given for mixtures of n butyric acid and formamide by English and Turner (1915), and for mixtures of trichlorobutyric acid and dimethyl pyrone by Kendall (1914). 167 CADMIUM BROMIDE CADMIUM BROMIDE CdBr,. SOLUBILITY IN WATER. (Dietz Ber. 32, 95, '99; Z. anorg. Chem. 20, 260, '09; Wiss. Abh. p.t. Reichanstalt, 3, 433, 'oo; see also Eder Dingier polyt. J. 221, 189, '76; Etard Ann. chim. phys. [7] 2, 536, '94.) Gms.CdBr 2 Mols. CdBr 2 Gms. CdBr 2 Mols. CdBr 2 t. per ioo Gms. per ioo Solid Phase. t. per ioo Gms. per ioo Solid Phase. Solution. Mols. H 2 O. Solution. Mols. H 2 O. o 37.92 4.04 CdBr 2 .4H 2 O 40 60.65 10.20 CdBr 2 .H 2 O 18 48.90 6.21 45 60.75 10.24 30 56.90 8.73 60 61.10 10.39 38 61.84 10.73 80 62.29 10.48 35 60.29 10.05 CdBr 2 .H 2 O ioo 61.63 .10.63 Density of saturated solution at 18= 1.683. SOLUBILITY OF CADMIUM BROMIDE IN ALCOHOL, ETHER, ETC. ioo gms. sat. solution of CdBr 2 .4H 2 O in abs. alcohol contain 20.93 g m s- CdBr 2 at 15. (Eder.) ioo gms. sat. solution of CdBr 2 .4H 2 O in abs. ether contain 0.4 gm. CdBr 2 at 15. (Eder.) ioo gms. absolute acetone dissolve 1.559 gms. CdBr 2 at 18. dj^ sat. sol. = 0.8073. (Naumann, 1904.) ioo gms. benzonitrile dissolve 0.857 gm. CdBr 2 at 18. (Naumann, 1914.) ioo gms. anhydrous hydrazine dissolve 40 gm. CdBr 2 at room temp. (Welsh and Broderson, 1915.) RECIPROCAL SOLUBILITIES, DETERMINED BY THE METHOD OF LOWERING OF THE FREEZING-POINT (see footnote, p. i), ARE GIVEN FOR THE FOLLOWING MIXTURES: Cadmium Bromide + Cadmium Chloride (Nacken, 1907; Ruff and Plato, 1903.) -j- Cadmium Iodide (Nacken, 1907.) + Calcium Fluoride (Ruff and Plato, 1903.) + Cuprous Bromide (Herrmann, 1911.) -j- Potassium Bromide (Brand, 1913.) + Sodium Bromide + " + Potassium Bromide " CADMIUM (Mono)AMMONIUM BROMIDE CdBr 2 .NH 4 Br SOLUBILITY IN WATER. (Rimbach, 1905; Eder.) ioo Grams Solution contain Gms. Atomic Relation. G. CdBr 2 .NH4Br (1 . Cd. Br. NH 4 . 'Cd : Br : NH*. per ioo Lri Solution. i.o 16.33 34.87 2.63 I 3 I 53-82 14.8 17.40 37-15 2.80 I 3 I 58.01 52.2 19.79 42.38 3-21 I 3 I 65.3I no. i 22.99 49.17 3-72 I 3 I 75.98 ioo gms. sat. solution of CdBr 2 .NH 4 Br in abs. alcohol contain 15.8 gms. double salt at 15 (Eder). ioo gms. sat. solution of CdBr 2 .NH 4 Br in abs. ether contain 0.36 gm. double salt at 15 (Eder). CACODYLXC ACID (CH 3 ) 2 AsO.OH. ioo cc. H 2 O dissolve about 200 gms. cacodylic acid at 15. (Squire and Caines, 1905.) ioo cc. 90% alcohol dissolve about 28.5 gms. cacodylic acid at 15. " " CADMIUM BROMIDE 168 CADMIUM (Tetra) AMMONIUM BROMIDE CdBr 2 . 4 NH 4 Br. SOLUBILITY IN WATER. (Rimbach.) The double salt is decomposed by water at temperatures below 1 ioo Gms. Solution contain Gms t> * Cd. Br. NH4. Cd : Br : NH4. * Cd : Br ; ; NH 4 . " .8 14.72 50.46 6.67 I 4 .82 2 .82 I 10.02 8.02 13 o 14-95 51 .48 6.85 I 4 -8 5 2 85 I II 57 9-57 44.0 15 -OI 53-85 7-35 i 5 04 3 .04 I 6 .84 4.84 76 4 14.6 55-28 7.80 I 5 32 3 32 I 6 63 4-63 123 5 15 .5 59-50 8.45 I 5 38 3 38 I 7 .40 5-40 1 60 .0 14-7 62.67 9-43 i 5 99 3 99 I 6 03 4-03 CADMIUM (Mono) POTASSIUM BROMIDE CdBr 2 . KBr.H 2 O. SOLUBILITY IN WATER. (Rimbach; see also Eder.) *o ioo Gms. Solution contain Gms. Atomic Relation in Sol. Gms.CdBr 2 .KBr * Cd. Br. K. Cd : Br : K. Solution. 4 IS- 4i 33- o 5.42 I 3 I 53-63 JL5 .8 16. 85 35- 9 6 5.86 I 3 I 58.61 5 O 19. 58 41. 86 6.85 I 3 I 67-87 112 5 22 . 24 48. 28 8.14 0.98 3 1.03 78.11 CADMIUM TetraPOTASSIUM BROMIDE is decomposed by water at ordinary temperatures. CADMIUM (Mono)RUBIDIUM BROMIDE CdBr 2 .RbBr. SOLUBILITY IN WATER. (Rimbach.) to ioo Gms. Solution contain Gms. Atomic Relation in Sol. Gms. CdBrz.RbBr . Cd. Br. Rb. ' Cd : Br : Rb.' Solution. o 4 8-37 17-93 6-43 I 3 1. 01 32. 65 14 5 10, ,72 23.02 8.30 O. 99 3 I .OI 41. 87 49 .2 15.01 32.13 11.51 I 3 I 58. 54 107 5 19.65 41.12 14.06 I. 02 3 0.96 75- 77 CADMIUM (Tetra)RUBIDIUM BROMIDE CdBr 2 .4RbBr. SOLUBILITY IN WATER. (Rimbach.) ^ ioo Gms. Solution contain Gms. Atomic Relation in Sol. ^ per ioo Gms. Solution. ' Cd Br Rb. 'Cd : Br : Rb. -5 5 .70 24.94 17.97 0. 98 6 4-05 47- 95 13 5 6 55 28.74 20.74 0. 97 6 4-05 55- 17 5 8 25 35-51 25-39 0. 99 6 4.O2 68. 82 114 5 9 50 40.67 29.0O I . 00 6 4.0 79- 04 169 CADMIUM BROMIDE CADMIUM (Mono) SODIUM BROMIDE CdBr a .NaBr2jH,O. SOLUBILITY IN WATER, ETC., AT 15. (Eder Ding, polyt. J. 221, 189,' '76.) Solvent. Gms. CdBr2.NaBr per 100 Cms. Solution. Solvent.' Water 49 -o 96.1 Absolute Alcohol 21.2 27.0 Absolute Ether 0.52 0.53 Solid Phase. CdBr 2 .NaBr.2iH 2 O CADMIUM CHLORATE Cd(ClO 3 ) 2 .2H 2 O. SOLUBILITY IN WATER. (Meusser, 1902 ) Gms. - 6. 5 -I 3 .0 2O.O -15.0 Solution. 26.18 52.36 72.10 72.53 Mols. Gms. t o Cd(ClO)z " ' per 100 Gms Mols. Cd(C103)2 solid Phase. . per 100 er ib. j Solution. Mols. H2O. 3 .07 Ice db O 74 95 25 .92 Cd(ClO3)2.2HzO 9 52 " 18 76 .36 27 .98 '* 22 .47 Cd(ClO3)2.2HiO 49 80 .08 34 .82 M 22 .8 7 65 82 -95 42 .14 " ;. solution at 18 = 2 .284. CADMIUM CHLORIDE CdCl 2 .2|H 2 O. SOLUBILITY IN WATER. (Dietz W. Abh. p. t. Reichanstalt 3, 433, 'oo; above 100, Etard Ann. chim.phys.fr] 2, 536, '94.) G. CdCl 2 per Mols.CdCl 2 ~ ,. . t . 100 Gms. per 100 ^T Solution. Mols.H 2 O. Phase ' G.CdCljper t . loo Gms. Solution. - 9 43 S 8 7 5" + 10 57 47 + 10 49 55 39 58 9 12 .6 3 CdCI 2 . 4 H 2 20 40 57 57 35 5i 15 59 .12 14 .2. 60 57 7i 10 44 35 7 .8" 80 58 .41 o 47 37 9 O 100 59 S 2 + 18 52 53 10 9 CdCI 2 .2iH 2 O 150 64 .8 30 56 .91 12 .8 (monoclinic) 200 72 36 57 .91 13 5. 270 77 7 Mols.CdCl, per TOO Mob.H,0. 13.2 13-3 13-4 13.8 14. 4J Density of saturated solution at 18 = 1.741. Solid PV,~ . HCOOCHs. HCOOCzHs. HCOOC 3 H 7 . CH 3 COOC 2 H 5 . 0.84 1.16 2-37 4-73(?) 13.0 o-75 1.05 2.07 1.67 26.0 0.66 0.77 i-53 2.02 CeHsNHz. CsHsN. C 9 H 7 N. 1-7 2-3 O.I 3-i o-S 2 4 i-7 3-5 5-i 4.8 5 6.4 13-4 6.7 8.4 30 8-3 SOLUBILITY OF CADMIUM IODIDE IN ANILINE, PYRIDINE AND IN QUINOLINE AT DIFFERENT TEMPERATURES. (Muchin, 1913.) Gms. CdI 2 per 100 Gms. Sat. Solution in: t". 40 50 60 70 80 90 100 SOLUBILITY OF CADMIUM IODIDE IN MIXTURES OF SOLVENTS AT DIFFERENT TEMPERATURES. (Muchin, 1913.) Composition of Solvent **%? Gms. CdI 2 per 100 Gms. Sat. Solution at: to Mols. Solvent. 'V. 16.8. 36.8. iCH3OH+2CHCl3 ii. 8 ii .o 10.4 9.3 iCHsOH+iCHCla 21.1 22.4 22.3 20.6 iC 2 H5OH+2CHCl3 16.2 7.5 7.1 6.6 iCjjHsOH+iCHCls 27.8 13.9 14.3 13.6 43.5 25.2 24.1 60.3 34.4 91-5 45-4 i<^H50H+2C 6 H 6 22.8 17.6 16.3(16.3) 15.2(31.2) iC 2 H50H+iC 6 H6 37.1 26.1 26.0(15.7) 26.0 " aC^OH+iQft 54.1 33.5 35-3(i5 ) 9.8 6.5 177 CADMIUM IODIDE SOLUBILITY OF CADMIUM IODIDE IN MIXTURES OF SOLVENTS. (Muchin, 1913.) Results for a mixed solvent composed of: One Mol. Pyridine+One Mol. Chloroform. One Mol. Pyridine-hOne Mol. Benzene. Cms. CdLz per Gmsi Cdh per . Cms. Cdlj per Cms. CHfcper t. 100 Gms. t. 100 Cms. t. 100 Gms. t. 100 Gms. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. 50.1 1.27 63 6.3 57.9 1.77 72.5 32.6 54 1-72 64 8.3 60 2.2 74.0 35.9 56 2.3 64.5 12.35 65 4.2 76 36.3 58 3.0 64 14.8 70 8.1 80 40.8 60 4.0 62 22.0 71 II.5 85 41.6 62 5.6 6I.I5 24.67 71.5 15.0 90.4 42.67 SOLUBILITY OF CADMIUM IODIDE IN ETHYL ETHER CONTAINING WATER AT 12. (Tyrer, 19 n.) Gms. H 2 O per 100 gms. ether -{-H^O > o.o o.io 0.30 0.50 0.70 0.90 i.oo i.io 1.14 sat. Gms. Cdl2 per 100 gms. solvent > 0.1430.78 2.07 3.36 4.77 6.46 7.30 8.278.68 DISTRIBUTION OF CADMIUM IODIDE AT 30 BETWEEN: (Dahr and Batter, 1913.) Water and Amyl Alcohol. Water and Ethyl Ether. Gms. per 100 cc. c Gms. per 100 cc. c HaO Layer (c). Alcohol Layer (c 1 ). c/ HzO Layer (c). Ether Layer (c 7 ). c/ 47-75 43 I- ii 37 -18 8.38 4.43 29.08 25.86 1.13 30.03 6.61 4.54 14.46 12.55 1.15 15.38 3.09 4.97 10.69 ^.94 1.20 12. 60 2.38 5.29 6-23 4-94 i-33 9-89 1-83 5.40 2.42 i-54 1-55 7-68 i. 06 5.52 i-93 i.io 1.76 4-03 0.73 5.60 1.76 0.94 1.87 3.10 0.51 6.03 Freezing-point data (solubility, see footnote, p. i) are given for the following mixtures: Cadmium Iodide + Cuprous Iodide (Herrmann, 1911.) + Mercuric Iodide (Sandonnini, 1914.) -j- Potassium Iodide (Brand, 1912.) " + Sodium Iodide CADMIUM AMMONIUM IODIDES (Mono and Di). SOLUBILITY OF EACH SEPARATELY IN WATER, ETC. (Rimbach, 1905; Eder, 1876.) Cd. Mono Ammonium Iodide. Cd. Diammonium Iodide. Gms. Cdfc.NHJ per Gms. CdI 2 . 2 NHJ per Solvent. t. IPO Gms. t_ too Gms. Solution. Solvent. Solution. Solvent* Water 15 52.6 in 14.5 85.97 611.6 Abs. Alcohol 15 53 113 15 59 143 Abs. Ether 15 29.4 41.7 15 10 n CADMIUM IODIDES 178 CADMIUM POTASSIUM IODIDES, Mono = CdI 2 .KI.H 2 O, Di = CdI 2 .2KI.2H 2 O. CADMIUM DiSODIUM IODIDE CdI 2 .2NaI.6H 2 O. ^SOLUBILITY OF EACH SEPARATELY IN WATER, ETC., AT 15. (Eder.) Gms. Gdljj.KI Solvent. Water Abs. Alcohol Abs. Ether CADMIUM NITRATE Cd(NO 3 ) 2 . SOLUBILITY IN WATER. (Funk Wiss. Abh. p. t. Reichanstalt 3 440, 'oo.) Gms. CdI 2 .KI per 100 Gms. Gms. CdI 2 .2KI per 100 Gms. Gms. CdI 2 .2NaI per 100 Gms. Solution. Solvent. Solution. Solvent. Solution. Solvent. 51.5 106 57-8 41.7 137 71 53-7 158.8 116.2 ... 3-9 4-1 9.0 9-9 Gms. Cd(N0 3 ) 2 % o. per i oo^ Gms. Mols. Cd(N0 3 ) 2 Solid Solution. Water.' per 100 Mols. H 2 O. Phase. 13 37-37 59 - 6 7 4-55 Cd(N0 3 ) 2 . 9 H 2 ~ I 47-33 89.86 6.85 Tt + I 52-73 in. 5 8.50 11 52-37 109.7 8-37 Cd(N0 3 ) 2 . 4 H 2 + 18 55-9 126.8 9.61 " 30 58-4 140.4 10.7 u 40 61.42 159.2 12. 1 " 59-5 7 6 -54 326.3 25.0 tt Density of saturated solution at 18 = 1.776. The eutectic of the system Cd(NO 3 ) 2 .4H 2 O + Cd(NO 3 ) 2 is at*44.8and has the composition Cd(NO 3 ) 2 .2.65H 2 O. (Vasilev, 1910.) CADMIUM OXALATE CdC 2 O 4 .3H 2 O. i liter of sat. aqueous solution contains 0.033 gm. CdC 2 O4 at 18. (Kohlrausch, 1908.) CADMIUM SILICATE CdSiO 3 . Fusion-point data are given for CdSi0 3 + ZnSiOj. (van Klooster, 1910-11.) CADMIUM SULPHATE CdSO 4 . SOLUBILITY IN WATER. (Mylius and Funk W. Abh. p. t. Reichanstalt 3, 444, 'oo; see also Kohnstamm and Cohn Wied Ann. 65, 344, '98; Steinwehr Ann. der Phys. (Drude) [4] 9, 1050, '02; Etard Ann. chim. phys [?J 2 536, '94-) Gms. CdSO 4 Gms. CdSO 4 t. per IPO Gms. Ph * - per 100 Gms. Solid Solution. Water. Solution. Water. -17 44.5 80.2 CdSO 4> 7H 2 O 40 43.99 78.54 CdSO 4 .fH 2 O. 10 46.1 85.5 60 44.99 83.68 " - 5 48.5 94-2 " 73.5 46.6 87.28 -18 43.35 76.52 CdS0 4 .|H 2 74.5 46.7 87.62 CdS0 4 .H 2 O -10 43.27 76.28 77 42.2 73.02 o 43.01 76.48 85 39.6 65.57 J-io 43.18 76.00 90 38.7 63.13 20 43-37 7 6 -6o 100 37.8 60.77 For results at high pressures, see Cohen (1909). 179 CADMIUM SULFATE SOLUBILITY OF CADMIUM SULPHATE IN AQUEOUS SOLUTIONS OP SUL- PHURIC ACID AT o. (Engel Compt. rend. 104, 507, '87.) Equivalents per 10 Gms. H2O. H 2 S0 4 . O. 3-87 12.6 28.1 43-3 47.6 53-8 CdS0 4 . 7 1.6 70.9 62 .4 50.6 40.8 37-o 32-7 23.0 Density of Solutions. .609 59 1 545 .476 435 .421 1.407 1-379 Grams per log Grams H2O. H 2 S0 4 . CdSO 4 . O-OO 74.61 1.90 73-87 6.18 65-03 13-78 52-73 21.23 42.52 23-34 38.56 26.38 34-07 35-06 23.96 ioo gms. 95% formic acid dissolve 0.06 gm. CdSO 4 at 18.5. ' (Aschan, 1913.) Freezing-point data (solubility, see footnote, p. i) are given for mixtures of CdSO 4 + Li 2 SO 4 , CdS0 4 + K 2 SO 4 and CdSO 4 + Na 2 SO 4 by Calcagni and Marotta (1913)- SOLUBILITY OF MIXED CRYSTALS OF CADMIUM SULPHATE AND FERROUS SULPHATE IN WATER AT 25. (Stortenbecker Z. physik. Chem. 34, 109, 'oo.) VxUIIlp usuion 01 ooiu Gms. per ioo Gms. H 2 O. Mols. per ioo Mols. H 2 O. Mol. % Cd. in Sol. Crystals of Solid Phase. CdSO 4 . FeSO 4 . Cd. Fe. Crystals with a\ } Mols. H 2 O. 76.02 O-O 6-57 0-0 IOO IOO 57-6i 10.63 4.98 1.26 79-8 99-o Crystals with 7 Mols. H 2 O. 57'6l 10.63 4.98 1.26 79.8 36-6 78.5 34-6 44.6 n. i . . . . . . 24.4 4-8 0.0 26.69 o.o 3-I65 o.o o.o CADMIUM POTASSIUM SULFATE CdK 2 (SO 4 ) 2 SOLUBILITY IN WATER. (Wyrouboff, 1901.) t G. CdK 2 (SO4) 2 per ioo Gms. HzO. 16 42.89 31 46.82 40 47-40 Solid Phase. CdK 2 (SO 4 )2.2H 2 f o G. CdK 2 (SO4)2 per ioo Gms. H2O. 26 31 40 64 Solid Phase. 42.50 CdK 2 (SO 4 )2.ijH 2 42.80 43-45 ;; 44.90 CADMIUM SODIUM SULFATE 180 CADMIUM SODIUM SULFATE CdNa 2 (SO 4 )2.2H 2 O. SOLUBILITY IN WATER, ALSO WITH THE ADDITION OF CADMIUM SUL- PHATE AND OF SODIUM SULPHATE. (Koppel, Gumpery Z. physik. Chem. 52, 413, '05.) Gms. per 100 Gms. t. Solution. Gms. per 100 Gms. Mols. per 100 Mols. H 2p- H ?O. Solid Phase. 24 30 40 10 CdS0 4 . 22.25 22-55 22 .89 40.32 39-91 Na 2 SO 4 . I5-29 I5-65 4-85 5-24 CdSO 4 . 35-49 36.28 37-24 73-54 72.77 Na 2 S0 4 . 24.04 24.60 25-45 8.85 9-55 CdSO 4 . * 3-07 , 3-!4 , 3-22 , 6. 3 6 6.30 5-05] 5.12 [ CdNa 2 (SO 4 ) 2 . 2 H 2 O 5.28] I2 } .21 CdNa 2 (S0 4 ) 2 . 2 H 2 2O 40 .26 73 .81 9-45 6 39 .20 I +CdSO 4 -.|H 2 O 40 39 .89 7^8 75 38 13 56 6 52 .72 1 14. 840 .18 4.60 72 .68 8 32 6 .29 05 IO 20 37 32 22 30 53 .69 6-53 8.69 14.71 66 55 36 32 34 2 5 ii 14 23 .62 .78 52 5 4 3 74 79 .14 ; 47 .84 ;. 9 8 CdNa 2 (SO 4 ) 2 . 2 H 2 O + Na 2 SO 4 .ioH 2 O 25 16 33 19.82 25 .60 3 1 .06 2 .21 3.94^ 30 35 40 9 8 9 .21 .26 . 9 8 27.80 29-35 28.27 14 13 16 .62 .26 .24 44 47 46 .14 .06 I I I .26 4.59" .41 5.86. CdNa 2 (SO 4 ) 2 .2H 2 O + Na 2 S0 4 CADMIUM SULFIDE CdS. 1000 cc: H 2 O dissolves 9 X lo" 6 gms. CdS at 18. (Weigel, 1906.) CAESIUM ALUMS SOLUBILITY OF CAESIUM CHROMIUM ALUM, CAESIUM IRON ALUM, CAESIUM INDIUM ALUM, AND OF CAESIUM VANADIUM ALUM IN WATER. (Locke Am. Ch. J. 27, 174, '01.) Formula of Alum. Cs 2 Cr 2 (S0 4 ) 4 . 24 H 2 tt tt ii Cs 2 Fe 2 (S0 4 ) 4 .2 4 H 2 Cs 2 In 2 (S0 4 ) 4 .2 4 H 2 Cs 2 V 2 (S0 4 ) 2 . 24 H 2 See also Alums, p. 32. 25 30 35 40 25 30 35 40 25 25 Gms. per 100 cc. H 2 O. Anhydrous Salt. 0.96 I .206 I.7I 2.52 3-75 6.04 7-57 0.771 Hydrated Salt. 1.52 1.91 2-43 2.72 4.01 6.01 9.80 Gram Mols. Salt per 100 cc. H 2 O. 0.0025 0.0032 O.OO4O5 0.0045 O.OO66 0.0099 0-0156 O.OI72 O-O0204 I8i CAESIUM CHLORAURATE CAESIUM CHLORAURATE CsAuCl*. SOLUBILITY IN WATER. (Rosenbladt, 1886.) Cms. CsAuCU Gms. CsAuCU Gms. CsAuO< t. per 100 Gms. t. per 100 Gms. t. per 100 Gms. Solution. Solution. Solution. IO o-5 40 3-2 80 I6. 3 20 0.8 50 5-4 90 21.7 30 i-7 60 8.2 IOO 27-5 70 12. CAESIUM FLUOBORIDE CsBFl 4 . loo grams water dissolve 0.92 gram CsBFl 4 at 20, and 0.04 gram at 100. (Godeffroy, 1876.) CAESIUM BROMIDE CsBr. SOLUBILITY OF CAESIUM AND LEAD BROMIDES AND THEIR DOUBLE SALTS IN WATER AT 25. (Foote, 1907.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. 1 CsBr^ PbBr 2 . 7~Cs&- PbBrT^ 0.24 0.33 PbBr 2 +CsPb 2 Br 5 33.65 trace CsPbBr 3 0.33 0.36 " " 36-7 " +Cs 4 PbBr 8 1 2. 8s trace CsPb 2 Br 5 46.4 " Cs 4 PbBr 6 a u ti it 17*68 " " +CsPbBr 3 54.4 "' " +CsBr 18.58 CsPbBr 3 55.23 o CsBr CAESIUM Mercuric BROMIDE CsBr.2HgBr 2 . 100 grams saturated aqueous solution contain 0.807 gram CsBr.2HgBr 2 at 16. (Wells, 1892.) CAESIUM CARBONATE Cs 2 CO 3 . 100 grams absolute alcohol dissolve n.i grams Cs-jCOs at 19, and 20.1 grams at b. pt. (Bunsen.) CAESIUM BiCARBONATE CsHCO 3 . 100 grams sat. solution in H 2 O contain 67.8 grams CsHCO 3 at about 20. (de Forcraud, 1909.) CAESIUM CHLORATE CsClO 3 CAESIUM PerCHLORATE CsClO 4 . SOLUBILITY OF EACH IN WATER. (Calzolari, 1912; see also Carlson, 1910.) Results for CsClOj. Results for CsClO 4 . Gms. CsClOa Gms. CsClOs Gms. CsClOi Gms. CsClO4 t. per loo Gms. t. per 100 Gms. t. per 100 Gms. t. per 100 Gms. HzO. H20. HzO. ^ HjO. o 2.46 50 19.4 o 0.8 50 5.4 10 3.8 60 26.2 10 i.o 60 7.3 20 6.2 70 34.7 20 1.6 7O 9.8 25 7.6 80 45.0 25 2.o(d=I.Ol)8o 14.4(^=1.084) 30 9.5 90 58.0 30 2.6 90 20.5 40 13.8 loo 79.0 40 4.0 zoo 30.0 CAESIUM CHLORIDE 182 CAESIUM CHLORIDE CsCl. SOLUBILITY IN WATER. (Berkeley Trans. Roy. Soc. (Lond.) 203 A, 208, '04; see also Hinrichsen and Sachsel Z. physik. Chem. 50, 99, '04- '05; at 25, Foote.) t . G. CsCl per 100 Gms. G.Mol.CsCl G. CsCl per ioo Gms. G. Mol r s ri Solution. , Water. per Liter. v * Solution . Water. per Liter. 6l. 7 161 4 6 74 60 69.7 229 7 8 .28 10 63.6 174 7 7 .11 70 70.6 2 39 5 8 .46 20 6 S .I 186 5 7 38 80 71.4 250 .0 8 .64 30 66.4 197 3 7 63 90 72.2 260 .1 8.80 40 67-5 208 .0 7 .86 IOO 73-o 270 .5 8 .96 So 68.6 218 5 8 .07 119.4 74-4 290 .0 9 y .22 SOLUBILITY OF MIXTURES OF CAESIUM CHLORIDE AND' MERCURIC CHLORIDE IN WATER AT 25. (Foote, 1903.) Gms. per ioo Gms. Solution. Solid Phase. Gms. per ioo Gms Solution. Solid Phase. CsCl. HgCl 2 . 65.61 o.o 65.78 0.215 62.36 0.32 CsCl CsCl + Cs 3 HgCl 6 ) Double Salt CsCl. 17.03 HgCl 2 . o.H \ 0.42 , Double Salt CsHgCl 3 = 38.3% CsCl 57.01 0.64 52-35 -23 > CssHgCl B j = 65.1% CsCl 0.61 0.49 2.64 2.91 1 CsHg + CsHg,Cl 5 Double Salt 51-08 44 Cs 3 HgCl 5 + Cs,HgCl 4 0.40 3-78 ! CsHg 2 Cl 6 = 23.7% CsCl 49-30 45-95 49 .69 ) Double Salt \ CsjHgCU = 55.4%CsCl 0.44 0.41 t'el j CsH gz Cl 6 + CsH g5 Cl u Double Salt 45- 2 3 73 CsjHgCU + CsHgCl, 0.25 5-65 i CsHg 5 Clu= n.i%C 6 Cl 0.18 7.09 CsH&Clu + HgCl, o.o 6.90 HgCl 2 SOLUBILITY OF MIXTURES OF CAESIUM CHLORIDE AND MERCURIC CHLORIDE IN ACETONE AT 25. (Foote, 1911.) Gms. per ioo Gms. Solution. . pfpi -7T-F1 ' Solid Phase - CsCl. HgCh. 0.48 28.48 CsC1.2HgCl 2 0.48 39.65 " 0.47 44.40 " +CsCl. 5 HgCl 2 0.32 49.83 CsC1.5HgCl 2 Gms. per ioo Gms. Solution CsCl. ' HgClz. O O.O2 O.l6 0.032 O.II 0.19 0.25 0.45 0.46 0.56 Solid Phase. CsCl Mixed salts 0.17 13.08 CsCl.HgCl 2 21 .50 0.20 57.74 0-13 57-76 " +HgCl 2 57 . 7 4HgCl 2 27.2 " + CsCl. 2 HgCl 2 o.o CAESIUM Iridium CHLORIDES Cs 2 IrCl 6 , etc. loogms. HzO dissolve o.oi I gm. caesium chloroiridate, Cs2lrCleat 19. (Delepine, 1908.) ioo ' 0.05 gm. caesium hexachloroiridite, Cs 3 IrCl 6 .3H 2 O at 19. ioo " 0.83 " caesiumaquopentachloroiridite,|Cs 2 H 2 OIrCl 6 ati9 . CAESIUM Platinic CHLORIDE CsPtCle. IOO gms. H 2 O dissolve 0.135 S m - CsPtCle at 2O. (Rosenheimand Weinheber, 1910-11.) CAESIUM Tellurium CHLORIDE CsTeCl 6 . SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID. (Wheeler, 1893.) ioo parts HC1 (Sp. Gr. 1.2) dissolve 0.05 part CsTeCU at 22. ioo parts HC1 (Sp. Gr. 1.05) dissolve 0.78 part CsTeCle at 22. CAESIUM Thallium CHLORIDE 3 CsCl.TlCl 3 .2H 2 O. ioo parts H 2 O dissolve 2.76 parts 3CsCl.TlCl 3 .2H 2 O at 17, and 33.3 parts at I OO. (Godeffroy, 1886.) 183 CAESIUM CHLORIDE Freezing-point lowering data (solubilities, see footnote, p. i) are given for the following mixtures of caesium chloride and other salts. Mixture. Authority. Caesium Chloride + Cuprous Chloride (Sandonnini and Scarpa, 1912; Sandonnini, 1914.) -j- Silver Chloride + Thallium Chloride " " + Lithium Chloride (Korreng, 1915; Richards and Meldrum, 1917.) + NaCl (Richards and Meldrum, 1917.) -|-v Potassium Chloride (Zemcznzny and Rambach, 1910.) + Rubidium " " + Sodium CAESIUM CHROMATES, Cs 2 CrO 4 , Cs 2 Cr 2 O 7 , etc. SOLUBILITY IN WATER AT 30. (Schreinemakers and Meijeringh, 1908.) Gms. per 100 Gms. Sat. Sol. Solid Phase. Gms. per 100 Gms. Sat. Sol. Solid Phase. CsaO. 70.63 69.22 36.06 31.00 31.68 35-80 3I-05 24.05 3-4 1.61 1.18 0.586 CrOs. 0.0 O.II9 1.883 7-523 9.652 13.08 10.79 8.98 2.16 4-57 7-95 15-05 ' CS20. CrOs. 0.169 21 .21 t 0.096 25-59 1.89 36.19 2.79 41.68 3.29 44-23 3.13 44-45 2.96 44.66 3-40 46.03 3-94 56.77 > 10 4.35 62.70 2.33 62.50 62.28 " +082014013 " +Cr0 3 CrO 3 CAESIUM FLUORIDE CsF.i|H 2 O. 100 gms. H 2 O dissolve 366.5 gins. CsF at 18, solid phase CsF.iH 2 O. (de Forcrand, 191 x.) CAESIUM HYDROXIDE CsOH. 100 gms. sat. solution in H 2 O contain 79.41 gms. CsOH at 15 (de Forcrand, i9Oo,a); for 30, see above. CAESIUM IODATE CsIO 4 . loo parts H 2 O dissolve 2.6 parts CsIO 3 at 24, and 2.5 parts 2CsIO 3 .I 2 O 6 at 21. (Wheeler, 1892; Barker, 1908.) CAESIUM Per IODATE CsIO 4 . loogms. H 2 O dissolve 2. 15 gms. CsIO 4 at 15, CAESIUM IODIDES Csl, CsI 3 , etc. sat. solution = 1 .0166. (Barker, 1908.) SOLUBILITY IN WATER AT 25. (Foote and Chalker, 1908.) Gms. per 100 Gms. Sat. Solution. Empirical Comp. Csl. 7.72 7.69 i. 1.19 2.40 1.23 2-35 1.23 2-39 1-25 of Residue CsI 3 .29 CsI 3 .98 Csi 5 : 7 5 CsI 7 .43 CsIiQ.3 Present in Residue. CsI 3 and it CsI 5 and I u u CAESIUM IODIDE 184 CAESIUM IODIDE Csl. SOLUBILITY OF MIXTURES OF CAESIUM IODIDE AND IODINE IN WATER. (Foote Am. Ch. J. 29, 210, '03.) Gms. per ioo Gms. t . Solution. 40 Gms. per ioo Gms. Solution. Solid Phase at Csl. i. Csl. i. both Temps. -4 27.68 o.o 35-6 51.48 o.o Csl -4 27.52 0.09 35-6 51.66 0.71 Csl and CsI 3 -4 3.18 0.31 35-6 10.72 1.78 CsI 3 and CsI 5 0.2 0.85 o.34 35-6 3-74 i. 60 CsI 5 and I Gms. per ioo Gms. t <\ Solution. Csl. i. 52.2 16.75 4-52 52.2 6.69 3-36 52.2 6.72 3-32 52.2 6.65 3-45 73 26.98 15-07 73 16.66 10.50 73 6.2 7 4-08 In Separated Heavy Solution Gms. per ioo Gms. Solution. Csl. I. .rnase. CsI 3 and CsI 5 CsI 5 and I 22.94 73-72 CsI 5 22.8o I CsI 3 and CsI 6 27.56 68.40 CsI 5 17.68 80.02 I CAESIUM (Tri) IODIDE CsI 3 . 100 cc. saturated aqueous caesium iodide (about 17 per cent Csl) solution contain 0.97 gram CsI 3 at 20, density of solution =1.154. (Wells Am. J. Sci. [3] 44, 221, 'pa.) CAESIUM NITRATE CsNO 3 . SOLUBILITY IN WATER. (Berkeley Trans. Roy. Soc. (Lond ) 203 A, 213, '04.) Gms. CsNO 3 per t . ioo Gms. G. Mols. CsNO 3 t . Gms. CsNO 3 per ioo Gms. G. Mols CsN0 3 Solution. Water. per Liter. Solution. Water'. per Liter. 0* 8-54 9 33 o. 476 60 45-6 83 .8 3 .41 10 12-97 14 9 o. 725 70 51 .7 107 .0 4 .10 2O I8.7 23 .0 I. II 80 57-3 134 .0 4 .81 30 25-3 33 9 I . 58 90 62 .0 I6 3 .0 5 -50 40 32.1 47 .2 2. 12 IOO 66.3 197 .0 6 .19 50 39-2 64 4 2. 73 106 .2 68.8 2 2O 3 6 58 THE ICE CURVES FOR MIXTURES OF CAESIUM NITRATE AND WATER, DETERMINED BY THE SYNTHETIC METHOD. (Jones, 1908.) Solubility curve. t of Crystalli- Gms. CsNOs per zation. ioo Gms. HjO. -0.3 0.21 0.4 1.28 1.2 6.01 i.l 8.0 Solid Phase. Ice M u Supersolubility curve. t 8 of Crystalli- Gms. CsNOs per Solid e'zation. ioo Gms. HjsO. Phase. Ice 1.2 -2-5 -3-2 -3.2 O.2I 1.28 3-99 6.01 8 -i.4(Eutec.) The eutectic is given as 1.254 and 8.51 gms. CsNOs per ioo gms. H 2 O, by Washburn and Maclnnes (1911). 185 CAESIUM "OXALATE CAESIUM OXALATE Cs 2 C 2 O4.H 2 O. SOLUBILITY OF MIXTURES OF CAESIUM OXALATE AND OXALIC ACID IN WATER AT 25. (Foote and Andrew, 1905.) Varying amounts of the two substances were, dissolved in hot water and the solutions allowed to cool in a thermostat held at 25. Gms. per 100 Gms. Solution. G. Mols. per 100 G. Mols. H 2 0. Solid Phao HjC^. CsjjCjA. H 2 C 2 O 4 . Cs 2 C 2 O 4 . i na.se. 10 .20 2.274 H 2 C 2 O 4 . 2 H 2 O 10 .29 o .61 2.314 035 H 2 C 2 4 . 2 H 2 0+H 3 Cs(C 2 O 4 ) 2 .2H 2 7 .90 9 .92 1.924 o .614 ^ Double Salt. 4 .11 2 5 .12 I.l62 I .81 J H 3 Cs(C 2 O 4 ) 2 .2H 2 O 4 32 27 55 279 2 .06 H 3 Cs(C 2 4 ) 2 2H 2 0+H 4 Cs 2 (C 2 4 ) 3 4 .27 28 .30 ] .267 2 .14 I Double Salt. 4 40 35 .90 3 .476 3 .07 \ H 4 Cs 2 (C 2 4 ) 3 4 .82 40 .10 752 3 .71 H 4 Cs 2 (C 2 4 ) 3 +HCsC 2 4 4 3 i 45 05 .04 42 48 68 .32 ] .80 .69 c .672 .268 5.688 4 5 ii 05 .16 56 \ Double Salt. HCsC 2 4 .91 7 1 .24 0.648 13 .06 HCsC 2 O 4 + HgCsg^OJ- o 77 73 45 < 3.598 14 5 1 I Double Salt. 75 74 .04 0.596 14 .96 \ H 6 Cs 8 (C 2 4 ) 7 o 74 75 .20 0.625 15 93 H 6 Cs 8 (C 2 4 ) 7 + Cs 2 C 2 4 .H 2 o .0 75 .82 o.o 15 97 Cs 2 C 2 4 .H 2 CAESIUM Telluracid OXALATE Cs 2 [H 6 TeO6.C 2 O 4 ]. 100 gms. H 2 O dissolve 6.42 gms. Cs 2 [H 6 TeO 6 .C 2 O 4 ] at o, 12.39 S 1118 - at 20, 15.08 gms. at 30, 19.78 gms. at 40 and 27.66 gms. at 50. (Rosenheim and Weinheber, 1910-11.) CAESIUM PERMANGANATE CsMnO 4 . 100 cc. sat. aqueous solution contain 0.097 gm. CsMnO 4 at i, 0.23 gm. at 19, and 1.25 gms. at 59. (Patterson J. Am. Chem. Soc. 28, 1735, '06.) CAESIUM SELENATE Cs 2 SeO 4 . 100 grams H 2 O dissolve 245 grams Cs 2 SeO 4 at 12. (Tutton J. Chem. Soc. 7ii 850, *97<) CAESIUM SULPHATE Cs 2 SO 4 . SOLUBILITY IN WATER. (Berkeley Trans. Roy. Soc. (Lond.) 203 A, 210, '04.) Gms. Cs 2 SO 4 per t c . ioo Gms. G. Mols. Cs 2 S0 4 t. Gms. Cs 2 SO 4 per ioo Gms. G.Mols. Cs 2 S0 4 Solution. Water. per Liter. Solution. Water. per Liter. O 62 .6 I6 7 .1 3 42 60 66.7 199 9 3-78 10 63 4 173 .1 3 .49 70 6 7 .2 205 O 20 64 .1 I 7 8 7 3 56 80 67.8 210 3 3-88 30 64 .8 184 .i 3 .62 90 68.3 214 9 3-92 40 65 5 I8 9 9 3 .68 IOO 68.8 220 3 3-97 50 66 .1 194 9 3 73 108.6 69.2 224 5 4-00 CAESIUM DOUBLE SULFATES 186 SOLUBILITY OF CAESIUM DOUBLE SULPHATES IN WATER AT 25. (Locke Am. Ch. J. 27, 459, 'ox.) Cms. Anhydrous Salt Gm. Mols. Name. Formula. per 100 Cms. Salt per 100 Solution. Water. Gms.H 2 O. Caesium Cadmium Sulphate - Cs2Cd(so 4 )2.6H 2 o 58.16 139.9 0.2455 Caesium Cobalt Sulphate Cs2Co(so 4 ) 2 .6H 2 o 29.52 41.9 0.081 Caesium Copper Sulphate c^Cu(so 4 ) 2 .6H 2 o 31-49 46.0 0.0882 Caesium Iron Sulphate Cs 2 Fe(so 4 ) 2 .6H 2 o 50.29 101.1 0.1967 Caesium Magnesium Sulphate Cs 2 Mg(so 4 ) 2 .6H 2 o 34-77 53-3 o . i 106 Caesium Manganese Sulphate Cs 2 Mn(SO 4 ) 2 .6H 2 o 44 .58 80. 4 0.157 Caesium Nickel Sulphate Cs 2 Ni(so 4 ) 2 .6H 2 o 20.37 2 5-6 0.0495 Caesium Zinc Sulphate Cs2Zn(so 4 ) 2 .6H 2 o 27.87 38.6 0.0738 SOLUBILITY OF CAESIUM SODIUM SULFATES IN WATER AT 25. (Foote, 1911.) Cms, per 100 Cms. Sat. Solution. Per cen t CsSC>4 Empirical C9mposition of Cs 2 SO4. NazSO 4 . i n Residue. **, * Residue. 54.65 11.44 89.98 iNa 2 SO 4 .3.53Cs 2 SO 4 54.58 11.63 78.22 iNa 2 S04.i.4iCs2SO 4 54.81 11.25 34.67 4.8Na 2 SO4.iCs 2 SO4 The author's solubility method for determination of the formation and com- position of double salts is described in the paper containing the above results. CAESIUM DihydroxyTARTRATE Cs 2 C 4 H4O 8 .2H 2 O. 100 gms. H 2 O dissolve 22.5 gms. Cs2C 4 H 4 O8.2H 2 O at o. (Fenton, 1898.) CAFFEINE C 6 H(CH3)3N 4 O2.H 2 O. SOLUBILITY IN WATER. (Average curve from results of Zalai, 1910; Pellini, 1910, and U.S.P., 8th Ed.) t Gms. C 6 H(CH3)3N4O t Gms. C 6 H(CH3)3N4O per 100 Gms. HiO. per 100 Gms. HjO. o 0.6 40 . 4.64 15 i.o 50 6.75 20 1.46 60 9.7 2$ 2.13 70 13.5 30 2.8 80 19-23 SOLUBILITY OF CAFFEINE IN ORGANIC SOLVENTS. Solvent t Gms - C5H(CH3)3N402 Solve _ t t Gms. C s H(CHs)iN4O, bolvent. t . pe,. I00 Gms- Solvent. bolvent. t . per IQQ Gmg Solvent . Ethyl Alcohol 25 1.32(2) Carbon Tetra- ( 18 0.09(4) " " 25 1.88(1) chloride ] 20 0.26(6) 60 5.85(1) 'b.pt. 0.70(4) . Methyl ' 25 1.14(2) Chloroform 17 12.9 (5) Amyl " 25 o.5o(3)(<*=o.8io) 25 12.3 (i) Amyl Acetate 30.5 0.72(3)0*30=0.862) 25 11.92(2) Acetic Acid (99.5%) 2 1. 5 2.6 (3) b.pt. 15.63 (4) Acetone 30.5 2 . 3 2 (3) (d m =0.83 2) Ether 1 8 o . 1 2 (4) Aniline 30.5 29.4(3)0*30=1.080) 25 0.27(1) Benzaldehyde 30.5 13.1(3)0*30=1.087) " b.pt. 0.30(4) Benzene 18.0 0.91(4) Trichlorethylene 15 0.76(7) 25.0 1.16(2) Dichlorethylene 15 1.82(7) 30. 5 i . 23 (3)0*30=0.875) Pyriclme " 20-25 34.39 (8) b.pt. 5.29(4) 50% Aq. Pyridine " 11.12(8) Carbon Bisulfide 17 0.06(5) Toluene 25 0.58(3)^=0.861) Xylene 32.5 1.13(3)0*32=0.847) (i) = U. S. P.; (2) = Schaefer, 1913; (3) = Seidell, 1907; (4) = Gockel, 1898; (5) = Commaille, 1875; (6) = Gori, 1913; (7) = Wester and Bruins (1914); (8) = Dehn, 1917. Data for the solubility of caffeine in mixtures of alcohol and chloroform and alcohol and benzene are given by Schaefer (1913). 187 CAFFEINE SOLUBILITY OF CAFFEINE IN AQUEOUS SOLUTIONS OF SODIUM BENZOATE AND VICE VERSA. (Peilmi, 1910.) Results at 25. Gms. per too Gms. HzO. C 8 H 10 N40 2 . CrHiOiNa. 2.13 O 8.32 6.67 38.10 45 5*-74 76.75 46.27 76.68 24.79 69.56 9-47 62.97 o 61.17 Solid Phase. Results at 40. Gms. per too Gms. H 2 O. +C 7 H fi 2 Na.H 2 4- 64 o 3 J -43 25-3I 56.82 69.68 57-99 74.64 55.98 74.02 18.31 67.97 59.82 Solid Phase. SOLUBILITY OF CAFFEINE IN AQUEOUS SOLUTIONS OF SODIUM SALICYLATE AND VICE VERSA. (P^llini and Amadori, 1912.) Results at 25 . Results at 40. Gms. per 100 Gms. H2O. C 8 H 10 N402. 2.13 38.36 CrtUOsNa. 30.76 55-23 74-32 16.78 47-31 68.81 124.96 13.22 121 .27 9-03 120.54 115-43 Solid Phase. CsH 10 N402.H20 Gms. per 100 Gms. H2O. : 8 H 10 N402. CvHsOsNa. 4.64 O 59-49 37-47 86.49 62.47 95-94 69.15 26.93 131-52 iQ-75 124-35 119.66 Solid Phase. Data for the depression of the freezing-point of sodium salicylate solutions by caffeine and theobromine are also given. DISTRIBUTION OF CAFFEINE BETWEEN WATER AND CHLOROFORM. (Marden, 1914.) Grams Caffeine in: 105 cc. EbO Layer. o . 0090 O.OlSo 0.0291 50 cc. CHCla Layer. 0.0563 o . 1048 0.1770 Ratio of Caffeine in Equal Vols. H 2 O and CHC1. 0.0456 o . 0492 O.0470 Gms. Ca(CH 3 COO) 2 . per 100 Gms. CALCIUM ACETATE Ca(CH 3 COO) 2 .2H 3 O. SOLUBILITY IN WATER. (Lumsden, 1902; Krasnicki, 1887.) Gms. CaCCHaCOCOa jo^ per IPO Gms. Solid Phase. Water. 37.4 Ca(CH 3 COO) 2 .2H 2 O Ca(CH 3 COO) 2 .2H 2 O Ca(CH 3 COO) 2 . 2 H 2 O Ca(CH 3 COO) 2 . 2 H 2 O Ca(CH 3 COO) 2 . 2 H 2 O Ca(CH 3 COO) 2 . 2 H 2 O Solid Phase. 30 40 32-9 3 1 - 1 Solution. o 27.2 10 26.5 36.0 20 25.8 25 25.5 25-3 24-9 SOLUBILITY OF CALCIUM ACETATE IN AN AQUEOUS SATURATED SOLUTION OF SUGAR AT 31.25. (Kohier, 1897.) 100 gms. solution contain 8.29 gms. Ca(CH 3 COO) 2 + 60.12 gms. sugar. 100 gms. water dissolve 26.3 gms. Ca(CH 3 COO) 2 + 190.3 gms. sugar. loo cc. anhydrous hydrazine dissolve i gm. calcium acetate at room temp. (Welsh and Broderson, 1915.) 34-7 34-2 33-8 33-2 60 80 84 85 90 IOO Solution. 24.6 25-1 25-3 24-7 23-7 22-9 Water. 32.7 Ca(CH 3 COO) 2 . 2 H 2 33.5 Ca(CH 3 COO) 2 . 2 H 2 33.8 Ca(CH 3 COO) 2 . 2 H 2 Ca(CH3COO) 3 .H 2 O Ca(CH 3 COO) 2 .H 2 O 29 . 7 Ca(CH3COO) 2 .H,O CALCIUM ACETATES 188 CALCIUM (Tri) Methyl ACETATE Ca[(CH 3 ) 3 CCOO] 2 . CALCIUM (Di) Ethyl ACETATE Ca[(C 2 H 6 ) 2 CHCOO] 2 . CALCIUM Methyl Ethyl ACETATE Ca[CH 3 (C 2 H 6 ).CHCOO] 2 . SOLUBILITY OF EACH IN WATER. (Landau Monatsh. Chem. 14, 717, '93; Keppish Ibid, g, 600, '88; Sedlitzki Hid. 8, 573, '87.) Ca. Tri Methyl Acetate. Ca. Di Ethyl Acetate. Ca. Methyl Ethyl. Acetate. Gms. Ca(CsH 9 O 2 )2 t o. per 100 Gms. Water. Solution". 7 .30 6.81 10 6.84 6.40 20 6-54 6.14 30 6.40 6.01 40 6.44 6.05 50 6.64 6.22 60 6.86 6.42 70 7.11 6.64 80 7-38 6.87 Gms. ' Ca(CeHiiO 2 ) 2 Gms. Ca(C5H 9 2 ) 2 per 100 Gms. per ipo Gms. 'Water . Solution. Water. Solution. 30-3 23.22 28.78 22-35 2 7 .8 2i-75 31.71 24.07 25.6 20.38 33 -7 6 25.23 23-7 19.16 34.92 25.89 22 .1 18.10 35.20 26.04 20.8 17.22 34.60 25.71 19.9 16.60 33.11 24.89 19.2 i6.n 30.74 23.41 27.49 21.56 CALCIUM Methyl Propyl ACETATE Ca[CH 3 (C 3 H 7 ).CHCOO] L . CALCIUM (Di) Propyl ACETATE Ca[(C 3 H 7 ) 2 CHCOO] 2 . CALCIUM (Iso) Butyl ACETATE Ca[(CH E ) 2 CH(CH 2 ) 2 COO] 2 . SOLUBILITY OF EACH IN WATER. (Stiassny Monatsh. Chem. 12, 596, '91; Furth Ibid. 9, 313, '88; Konig Ibid. 15, 22, '94.) Ca. Methyl Propyl Acetate. Ca. Di Propyl Acetate. Ca. Iso Butyl Acetate. Gms. Ca(C 6 H n O 2 ) 2 t o. per 100 Gms. Water. Solution. O 16.58 14.22 10 15.80 I3-65 2O 15.14 13.15 30 I4.6l "75 40 14.21 12.45 50 13-94 12.24 60 13-79 12.13 70 I3-78 12.12 80 13.89 12. 2O 90 Gms. Ca(C 8 H 15 O 2 )2 per 100 Gms. Gms. Ca(C 6 H 11 O 2 ) 2 per TOO Gms. Water. Solution. Water. Solution. 9 57 8 73 7 .48 6 .96 8 35 7 7i 6 38 5 99 7 .19 6 7i 5 .66 5 36 6 .11 5 77 5 3i 5 .04 5 .09 4 .84 5 3i 5 .04 4 .14 3 98 5 .68 5 37 3 25 3 15 6 .41 6 .02 2 44 2 38 7 5 1 6 .98 I 65 I. 62 8 97 8 23 . 10 79 9 74 CALCIUM BENZOATE Ca(C 6 H 5 COO) 2 . loocc. sat. solution in water contain 3.02 gms. Ca[C 6 H 6 COO] 2 at 26. (de Jong, 1912.) 100 gms. sat. solution in water contain 8.6 gms. Ca[C 6 H 5 COO] 2 at 15 and 10.2 gms. at I OO. (Tarugi and Checchi, 1901.) CALCIUM BORATES CaB 2 O 4 .4H 2 O, CaB 2 O 4 .6H 2 O. SOLUBILITY OF EACH SEPARATELY IN WATER. (Mandelbaum, 1909.) 3O 50 70 90 0.0365 0.036 0.048 0.0315 0.310 0.307 0.392 0.310 (amorphous) B 2 3 . 30 0.0205 50 0.032 70 0.068 90 0.0675 0.254 0-353 0-457 0-359 CaB 2 04.6H 2 O " (cryst.) I8 9 CALCIUM BORATE SOLUBILITY OF CALCIUM BORAXES IN AQUEOUS SOLUTIONS OF BORIC, Aero AT 30. (Sborgi, 1913-) Gms. per 100 Gms. Sat .Sol. Solid Gms. per 10 o Gms. Sal :. Sol. Solid 'BzOs. CaO. Phase. BijOa. CaO. Phase. .014 O. 126 Ca(OH)j 0. 869 0. 067 2.3.9 .032 0. 140 " I. 116 0. 076 .098 0. 194 " I. 339 0.093 " +1.3.12 O .127 O. 217 " +1.1.6 2. 058 0. 093 1.3.12 134 0. 220 1. 1. 6 2. 509 o. 099 " .138 O. 118 H 2. 730 0. III " O .162 O. 106 " 3- 732 0. 325 (C O .166 0. 107 " +2.3-9 2. 798 0. 109 M .171 O. 109 " " 3- 313 0. 143 " O .290 0. 052 2-3-9 3- 841 o. 152 It .610 0. 054 " 4- 250 0. 155 " +HiBO, .767 o. 059 " 4- 179 o. 137 HaBOj 1. 1.6 = CaO, ,B 2 O 3 .6H 2 O, 2.3-9 = 2Ca0.3B 2 O 8 .9H 2 O, I-3- 12 = CaO.3B 2 3 .i2H 2 O. Many determinations, in addition to the above, are given in the original paper. CALCIUM BROMIDE CaBr 2 .6H 2 O. SOLUBILITY IN WATER. (Kremers, 1858; ' Etard, r i894, gives results which yield an irregular curve and are evidently less than those of Kremers.) Solid Phase. CaBn.6HjO +CaBr. 4 HjO CaBr,. 4 H,0 * Eutec. t tr. pt. Density of saturated solution at 20 = 1.82. Data for the system calcium bromide, calcium oxide and water at 25 are given by Milikau (1916). Freezing-point data are given for mixtures of calcium bromide and calcium chloride, calcium bromide and calcium fluoride by Ruff and Plato, 1903. t. - -22* 10 20 25 Gms. CaBrz per 100 Gms. Solid Phase. CaBtt.SHzO+Ice CaBr 2 .6H2O <( it t. 34- 40 60 80 105 Gms. CaBra per 100 Gms. Water. Solution. ioi 50.5 125 55-5 132 57 143 58.8 153 60.5 Water. Solution. 2f 185 65.1 213 68.1 278 73-5 295 74-7 312 75.7 CALCIUM PerBROMIDE CaBr 4 . Data for the formation of calcium perbromide in aqueous solutions at 25 are given by Herz and Bulla (1911). The experiments were made by adding bromine to aqueous solutions of CaBr 2 and agitating with carbon tetrachloride. From the bromine content of the CC1 4 layer, the amount of free bromine in the aqueous layer can be calculated on the basis of the distribution ratio of bromine between water and CC1 4 . This furnishes the necessary data for calculating the amount of ^calcium perbromide existing in the aqueous layer. CALCIUM BUTYRATB 190 CALCIUM (Normal) BUTYBATE Ca[CH 3 (CH 2 ) 2 COO] 2 .H 2 O. CALCIUM (Iso) BUTYRATE Ca[(CH 3 ) 2 CH.COO] 2 .5H 2 O. SOLUBILITY OF EACH IN WATER. (Lumsden J. Chem. Soc. 81, 355, '02; see also Chancel and Parmentier Compt. rend. 104, 474, '87; Deszathy Monatsh. Chem. 14, 251, '93, and also Hecht Liebig's Annalen 213, 72, '82, give results for the normal salt which are somewhat below those of Lumsden for the lower temperatures. SedJitzki Monatsh. Chem. 8, 566, '87, gives slightly different results for the iso salt.) Calcium Normal Butyrate. Calcium Iso Butyrate. Gms. Ca(C4H 7 O 2 ) 2 Cms. Ca t o^ per iqo Gms. t . per 100 Gms. Water. Solution. Water. Solution. o 20.31 16.89 o 20.10 16.78 Ca(C 4 H 7 O 2 ) 2 .5H 2 O 10 19-15 16.08 20 22.40 18.30- 20 18.20 15.39 30 23.80 19.23 25 I7-7 2 I 5-5 4 25.28 20.65 30 I 7- 2 5 14-71 60 28.40 22.12 40 16.40 14.09 62 28.70 22.30 60 15.15 13.16 65 28.25 22.03 Ca(C 4 H 7 3 ) 2 .H 2 O 80 14-95 I 3- I 80 27.00 21.26 100 I 5-^5 I 3-^9 Io 26.10 20.69 CALCIUM d CAMPHORATE Ci H 14 O4Ca.7H 2 O. SOLUBILITY OF CALCIUM CAMPHORATE IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT 15 AND VICE VERSA. (Jungfleisch and Landrieu, 1914.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Sohd Phase ' ' ' Sohd Phase. C^^Ca. 1.35 1.23 C8HH(COOH) 8 2.90 7.75 C 8 H 14 (COOH) 2 1-57 1.97 " 3 8.66 " +C 10 Hi4O4.Ca.7H2O I.7I 2.55 " 3.07 8.57 2.18 4.34 1.50 7.94 2-33 4-73 " o 7.37 gms. CioHuC^Ca per 100 gms. sat. solution. CALCIUM CAPROATE (Hexoate) Ca[CH 3 (CH 2 ) 4 COO] 2 .H 2 O. CALCIUM 3 Methyl PENTANATE Ca[CH,.CH 2 .CH(CH,)CH 2 .COO] 2 .3H 2 O. CALCIUM CAPRYLATE Ca[CH 3 (CH 2 ) 6 COO] 2 .H 2 O. SOLUBILITY OF EACH IN WATER. (Lumsden; the Pentanate, Kulish, 1893; see also Keppish, 1888, and Altschul, 1896, for results on the Caproate.) Ca. Caproate. Ca. 3 Methyl Pentanate. Ca. Caprylate. Gms. CaCCeHnO^j per Gms.Ca(C 6 HnO 2 )2l >er 100 Gms Gms. Ca(C 8 Hi5O2) 2 ] ' loo Gms. H 2 0. " Water. Solution. loo Gms. HzO. 2.23 12-33 10.98 o-33 20 2.18 I7.I8 14.66 0.31 40 2.15 18.99 15-97 0.28 50 2.IO 18.73 I5-78 0.26 60 2-15 17.71 15.04 0.24 80 2.30 13-37 II.80 0.32 100 2-57 9-94 9.04 0.50 CALCIUM CARBONATE CALCIUM CARBONATE CaCO 3 . EQUILIBRIUM IN THE SYSTEM CaO-H 2 O-CO 2 AT 16. The following data for the solubility of calcite (CaCO 3 ) in water at 16 in con- tact with air containing the partial pressure P of CO 2 were calculated from the results of Schloesing (1872), Engel (1888), and others by Johnston (1915) and Johnston and Williamson (1916). These authors describe the changes in the system resulting from a gradual increase in partial pressure of COa, as follows: "We begin by considering the equilibrium between the hydroxide M(OH)2 and the aqueous solution saturated with it as affected by a progressive increase from zero of the partial pressure P of CO 2 in the atmosphere in contact with the solution. Addition of CCk is followed by a dis- tribution between the vapor and liquid phases until there is equilibrium between the residual partial pressure of CQj and the HzCOs in solution, and in ^urn between the latter and the several ions; the net effect of this is a definite decrease in [OH ], the concentration of hydroxide ion, which necessitates that more of the hydroxide dissolve in order to keep the solubility- product [M++][OH ] 2 constant. Consequently the total concentration of M++ increases, part of it being now associated with carbonate and bicarbonate; in other words, the apparent solubility of the base increases if the method of analysis of the solution is a determination of M, whereas it would decrease if one should determine [OH ] 2 . This process continues until the product [M++][CO 3 = ] reaches the value requisite for the precipitation of MCOs (on the assumption that supersaturation does not occur) which, for a given base, takes place at a definite value of P which depends only upon the temperature; this transition pressure Pi is, at a given temperature, the highest under which solid hydroxide is stable and the lowest at which solid carbonate is stable. At Pi the solubility (as measured by the total [M]) begins to diminish, because increase of P increases [CO 3 =] while the product [M-H-][CO 3 = ] must remain constant so long as MCO 3 is the stable solid phase; this increase of [CO 3 =] continues until a definite pressure Po is reached, when the formation of bicarbonate in the solution becomes the predominant reaction and [CO 3 = ] begins to decrease again. JP is thus a minimum in the solubility curve. With further increase beyond Po the concentration of both M-H- and HCOs increases steadily until the precipitation value of the product [M-H-][HCOs~] 2 is reached at Pz, which is a transi- tion pressure at which both carbonate and bicarbonate are present as stable solid phases. Beyond P 2 bicarbonate alone is stable, and its total solubility falls off very slowly with further increase of partial pressure of CCh." THE CALCULATED ION-CONCENTRATIONS AND SOLUBILITY OF CALCITE IN WATER AT 16 IN CONTACT WITH AIR CONTAINING THE PARTIAL PRESSURE P OF CO 2 . Partial Pressure P of CO2 Measured in Atmospheres. Ion-concentrations per Liter X 10-*. Total Ca, Mols. per * Liter Xio-*. Grams CaCOa per Liter. Ca-H-. OH-. C0s=. HCOr. 3 .16X10-" 138 5 277 O.OO7I o .0000235 2 2 .80 Xio- 10 6 .81 13 -3 0.144 .01 . . . 0.074 9 .78Xio- 9 2 377 3 .82 0.414 .10 0.026 6 .i4Xio~ 8 I 654 i .82 0-593 o 30 . O.OlS 2 .19X10-7 I .476 i .02 0.665 .60 . 0.016 3 .73X10-7 I 459 o .787 0.672 o .787 . 0.0159 3 .85X10-7 I 459 o 774 0.672 o .80 . . . 0.0159 6 .07X10-7 I 473 .614 0.666 i . . . 0.016 7 .62 Xio" 6 2 051 .147 0.478 3 . 0.022 7 .63X io~ 5 3 777 034 0.260 7 . 0.040 2 .I5X lo" 4 5 .197 0174 0.188 10 . . . 0.056 2 Xio" 4 5 .09 o .0182 0.19 9 .96 5 52 0.055 2 5 Xio- 4 5 .46 o oi57 0.18 10 54 5 93 0.059 3 Xio- 4 5 79 .0140 0.17 ii .22 6 .31 0.063 3 5 Xio- 4 6 .08 .0126 0.16 ii .82 6 64 0.066 4 XlO" 4 6 35 o .0115 0.16 12 .36 6 94 0.069 4 .5 Xio" 4 6 59 o .0107 0.15 12 .86 7 .21 0.072 5 Xio- 4 6 .82 o .0100 0.14 13 32 7 .46 0.075 CALCIUM CARBONATE 192 THE SOLUBILITY OF CALCIUM CARBONATE (CALCITE) IN WATER AT 16 IN CONTACT WITH AIR CONTAINING PARTIAL PRESSURE P OF CO 2 . (Calc. from Schloesing, 1872, and Engel, 1888, by Johnston, 1915.) Total Ca, Mols. Total Ca(HCp3)j per Liter. Mols. per Liter 0.007825 0.007874 0.008855 0.008854 O.OO972 O.OIO86 0.01085 O.OI4II 0.01834 P of CO 2 in Atmospheres. Total (Ja, Mols. per Liter. Total ua(.nuj3)2 Mols. per Liter. P of CCh in Atmospheres. o . 000504 o . 000746 0.000731 0.4167 0.000808 O.OOO85O 0.000837 0-5533 0.00333 0.001372 0.001364 0.7297 0.01387 0.002<23I O.OO2226 0.9841 O.O282O 0.002965 O.O0296I i o . 05008 0.003600 0.003597 2 0.1422 0.005330 0.005328 4 0.2538 o . 006634 0.006632 6 0.02139 O.OO972 O.OIO86 0.01085 O.OI4II 0.01834 0.02139 THE SOLUBILITY OF CALCIUM CARBONATE] (CALCITE) IN WATER AT 25 IN CONTACT WITH CO 2 UNDER INCREASING PRESSURES. (McCoy and Smith, 1911.) B* Cot C^vl Solid Phase. CaC0 3 tt Appro*. Pres- sure of CO2 in Mols. per Liter Sat. Solution. Gms. per Liter Sat. Sol. Atmospheres.* H 2 COs. Ca(HCO 3 ) 2 . H 2 COs. Ca(HCOs) 2 . O.I 0.003522 0.004Il6 0.22 0.67 I.I 0.03728 0.009734 2-3 I. 5 8 9.9 0.3329 0.02236 20. 6 3.62 13.2 0.444 0.02495 27-5 4.04 16.3 0.550 0.02600 34-1 4.21 25-4 0.858 11- e *-+f* o . 02603 53-2 4.22 Ca(HCO 3 ) 2 u Calc. by Henry's Law from CO 2 concentrations. See also remarks under Ferrous Bicarbonate, p. 336. These results show that the solution becomes saturated with Ca(HCO 3 ) 2 at about 15 atmospheres pressure of CO 2 , and it would be theoretically possible to convert all the CaCO 3 to Ca(HCO 3 ) 2 by introducing sufficient CO 2 at pressures greater than 15 atmospheres. Under the conditions of the present experiment, it was calculated that more than 3 months time would have been required for the complete conversion. The solubility of calcium carbonate in water saturated with CO 2 at one at- mosphere pressure was found by Cavazzi (1916) to be 1.56 gms. CaCO 3 at o and 1.1752 gms. at 15. A supersaturated solution prepared by passing a rapid stream of CO 2 through sat. Ca(OH) 2 solution at 15 contained 2.29 gms. CaCO 3 . SOLUBILITY OF CALCIUM CARBONATE IN WATER AT 15. (Tread well and Reuter, 1896.) (Among the investigators who have reported results upon the solubility of calcium carbonate may be mentioned, Cossa, 1869; Schloesing, 1872; Caro, 1874; Reid, 1887-88; Irving and Young, 1888; Ander- son, 1888-89; Engel, 1888; Lubavin, 1892; Pollacci, 1896.) Gms. per 100 cc. Saturated Solution. cc. CO2 per 100 cc. Gaseous Phase (o and 760 mm.). 8.94 6.04 Partial Pres of CO 2 in n Hg. 67.9 45-9 5-45 2.18 41.4 16.6 1.89 14.4 1.72 0.79 i3-i 6 0.41 3-i 0.25 0.08 1.9 0.6 Free CO*. Ca(HCO 3 ) 2 . Ca. 0.1574 0.1872 0.0462 0.0863 0.1755 0.0433 0.0528 0.1597 0.0394 0.0485 O.I54O 0.0380 0.0347 O.I492 0.0368 0.0243 O.I33I 0.0329 O.OI45 0.1249 o . 0308 O.OO47 0.0821 o . 0203 O.OO29 0.0595 0.0147 O.O4O2 o . 0099 0-0385 0.0095 Therefore i liter sat. solution at 15 and o partial pressure of CO 2 contains 0.385 g ra m Ca(HCO 3 ) 2 . Determinations similar to the above, made in o.i n NaCl solutions at 15, are also given. It is pointed out by Johnston (1915), that although Treadwell and Reuter made very painstaking analyses, their mode of working did not secure equilibrium conditions, a fact which is borne out by the lack of constancy of the calculated solubility-product constant. 193 CALCIUM CARBONATE SOLUBILITY OF CALCIUM CARBONATE (CALCITE) IN WATER IN CONTACT WITH AIR AT DIFFERENT TEMPERATURES. " (Wells, 1915.) (Joplin, Mo., calcite was used. The solutions were kept in a thermostat and agitated by a current of out-door air filtered through cotton and washed by water. The CO 2 content of the air varied from 3.02 to 3.27 parts per 10,000. The calcium content of the solutions was determined by titrating with 0.02 n NaHSO4, using methyl orange as indicator. The solutions were slightly acid to phenolphthaleine, showing.that the calcium was present chiefly as bicarbonate.) t. Cms. CaCOs per Liter. o 0.081 10 0.070 20 0.065 25 0.056 (0.046) 30 0.052 40 o . 044 50 0.038 (0.029) Results in parentheses by Kendall (1912). In connection with these it is stated by Johnston (1915), that assurance is wanting that the partial pressure of CO 2 was the same at both temperatures and the results are, therefore, not neces- sarily comparable. SOLUBILITY OF CALCIUM CARBONATE IN WATER AT DIFFERENT TEMPERATURES AND IN CONTACT WITH AIR CONTAINING DIFFERENT PARTIAL PRESSURES OF C0 2 . (Leather and Sen, 1909.) Results at 15". Partial Pressure Gms - per Liter Sol. Results at 25. Pressure Gms. per Liter Sol. Results at 40. Partial Pressure Gms. per Liter Sol. CO 2 in Gas ' CaCOs. C02. C0 2 inGas CaCOs. C02. ' COz in Gas" CaCOs. C02. ' Phase. Phase. Phase. 0.8 193 0.117 0.7 159 .091 0.6 0.136 0.078 i .5 193 0.152 1.6 .177 o .III i .7 0.143 0.085 1.7 o .238 0.135 4-6 o 341 o .208 2.9 0.175 0.106 6.8 445 0.327 7 .8 .446 .301 3-5 0.232 0.169 9.9 .627 0.456 16.5 o 539 o .522 7 0.284 0.234 13-6 o .723 0.560 30.1 o 743 o 715 14.9 0.384 0.293 14.6 .686 0.623 35-5 755 o .803 22.2 0.427 o 333 31.6 I .050 1.117 31-7 0.480 0.476 Similar results also given for 20, 30 and 35. The mixtures were constantly agitated at constant temperature. The solid phase in each case was found to be CaCO 3 and it is concluded that Ca(HCO 3 ) 2 cannot exist in this solid state above 15. In discussing the experiments of Leather and Sen, Johnston (1915) points out that their method of analysis gives low results for CO 2 . A calculation of the data yields very irregular results and the most that can be deduced from them is that the solubility-product constant of calcite probably decreases some- what with temperature, becoming apparently about 0.5 X io~ 8 at 40. Data for the solubility of CaCOs in boiling water are given by Cavazzi (1917). Data for the solubility of calcium carbonate in water containing excess of carbon dioxide are also given by Seyler and Lloyd (1909). The experiments were made -at room temperature. Additional experiments showed that small amounts of CaCl 2 , CaSO 4 or NaHCO 3 did not affect the solubility-product con- stant. Small amounts of Nad, Na 2 SO 4 and MgSO 4 , containing no ion in common with CaCOs, resulted in an increase of the total calcium in the solution. Data for the solubility of calcium carbonate in water, determined by the con- ductivity method, are given by Holleman and by Kohlrausch and Rose (1893). CALCIUM CARBONATE 194 SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE. Results at I2 -i8. (Cantoniand Goguelia, 1905.) (Flasks>llowed to stand 98 days.) Cms. per Liter Sat. Sol. NH4C1. 53-5 100 2OO CaCOs. 0.423 0.609 0.645 Results at 25. (Rindell, 1910.) (Constant agitation ^ 24 hrs.),.-. Cms. per Liter Sat. Sol. Results at 60 for Calcite and Aragonite. (Warynski and Kouropatwinska, 1916.) G*ms. per Liter. Cms. per Liter. NH 4 C1. 6. 7 13-4 26.8 53-5 CaCOs. 0.285 0-373 0.502 0.678 1 NH 4 C1. O 1.07 5-35 10.70 26.76 53-52 160.56 Calcite. 0.028 0.164 0-333 0-453 0.664 0-934 I. 21 NH4C1. O 1.07 5-35 10.70 26.76 53-52 160.56 Aragonite. 0.041 0.184 0.371 0-505 0.728 I.OI5 1.36 SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE AND OF TRIAMMONIUM CITRATE. laAq. NH 4 NO 3 at 18. InAq.NH 4 NO 3 at25. In Aq. Triammonium Citrate at 25. (Berju andiKosminiko, 1904.) Gms. per Liter Sat. Sol. (Rindell, 1910.) Gms. per Liter Sat. Sol. (Rindell, 1910.) Mols. Citrate Gms. CaCOs per Liter. 0.0625 0.125 0.250 0.500 per Liter. 1.492 2.264 3.980 6.687 NH*NOs. CaCOs. NH 4 NOs. CaCOs. o 0.131 5 0.200 5 0.211 10 0.278 10 0.258 20 0.383 20 0.340 40 0.526 4O 0.462 80 0.584 SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF MAGNESIUM CHLORIDE, MAGNESIUM SULFATE, SODIUM CHLORIDE AND SODIUM SULFATE UNDER CO 2 PRESSURE OF Two ATMOSPHERES. (Ehlert and Hempei, 1912.) Gms. Hv- ^. ^ r,^ Aq. Salt Solution. MgCl 2 .6H 2 O Gms. Hy- drated Salt per 1000 Gms. HaO. Gms. CaCOs . Salt "SSL* &S '' Gms. Hy- drated Salt per looo Gms. H 2 Gms. CaCOs per looo cc. Solvent. 5 O 2-337 NaCl 5 8 3-740 5 6.1 2.352 " 5 86 3- 783 5 50 3-404 u 5 106.9 3.690 5 86.9 4.083 tc 5 175-6 3-350 5 350 3-301 " 263.4 2.8x1 5 700 2.736 cc 8 35i-2 2.163 5 1150 2.205 MgSO 4 .7H 2 O 14 105-3 2.177 5 1725 i .706 u 14 (sat.) 0.914 5 2300 sat. i .406 Na 2 S0 4 .ioH 2 14 137-7 1 .406 5 28 3.280 " 14 (sat.) 1 .920 NaCl SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF POTASSIUM SULFATE AT 25. (Cameron and Robinson, 1907.) Results for Aqueous KCI: " Results for Aqueous K 2 SO 4 : iii coiiuici wnn air. Gms. per 100 Gms. Sat. Sol. atmosphere of CO 2 . Gms. per 100 Gms. Sat. Sol. : ' atmosphere of C0 2 . Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Sat. Sol. KCI. 3-9 7-23 13-82 18.21 26 CaCOa. 0.0013 0.0078 0.0078 0.0072 0.0070 0.0060 KCI. O 3-9 7-23 13.82 18.21 26 CaCOs. 0.062 0.145 0.150 0.165 0.154 0.126 K 2 S04. 1. 60 3.15 4-73 6.06 8.88 10.48 CaCOs. 0.0104 0.0116 0.0132 0.0148 0.0192 0.0188 K 2 S0 4 0.69 i-37 1.67 2.18 2.99 CaO. ' 0.69 0.69 0.47* 0.30* 0.24* * J5olid phase syngenite. One liter aqueous solution containing 223.8 gms. KCI dissolves 0.075 gm. calcite at 60. One liter aqueous solution containing 223.8 KCI dissolves 0.093 g m - aragonite a t 60. (Warynski and Kouropatwinska, 1916.) 195 CALCIUM CARBONATE SOLUBILITY "OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25. Solutions in contact with. CO 2 Free Air. Ordinary Air. CO 2 atOne Atmos. Pressure. (Cameron, Bell and Robinson, 1907.) (Cameron and Seidell, 1902.) (Cameron, Bell and Robinson, 1907.) Cms. per 100 Gms. HzO. Gms. per 100 cc. Sat. Sol. Gms. per 100 Cms. H2O. NaCl. CaCOa. ' NaCl. CaCOs. NaCl. CaCOa. 1. 60 o . 0079 I O.OII2 1.49 0.150 5.18 0.0086 4 O.OI4O 5-69 0.160 9- 2 5 o . 0094 8 0.0137 II. 06 0.174 11.48 O.OIO4 10 0.0134 15.83 0.172 16.66 0.0106 15 O.OII9 19.62 0-159 22.04 O.OII5 20 0.0106 29.89 0.123 30-50 O.OII9 25 0.0085 35-85 0.103 Data for the solubility of calcium carbonate in aqueous solutions of mixtures of sodium chloride and sodium sulfate in contact with air and with CO 2 are given by Cameron, Bell and Robinson (1907). Data for solubility of CaCO 3 in aqueous NaCl and other salt solutions, de- termined by boiling and cooling the solution, are given by Gothe (1915). Data for the solubility of mixtures of calcium carbonate and calcium sulfate in aqueous solutions of sodium chloride at 25 t are given by Cameron and Seidell (1901 ). Data for the solubility of mixtures of calcium carbonate and calcium sulfate in aqueous solutions of mixtures of sodium chloride and sodium sulfate at 25, in contact with air and with CO 2 , are given by Cameron, Bell and Robinson (1907). One liter aqueous solution containing 175.5 gms. NaCl dissolves 0.062 gm. calcite at 60. One liter aqueous solution containing 175.5 g ms - NaCl dissolves 0.071 gm. aragonite at 60, (Warynski and Kouropatwinska, 1916.) SOLUBILITY OF CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE IN CONTACT WITH CO 2 FREE AIR. (LeBlanc and Novotny, 1906.) Gms. CaCOs per Liter Sat. Sol. Water 0.0128 0.0207 About o . oooi n NaOH 0.0087 0.0096 " o.ooiow " 0.0042 0.0069 " o.oioow " 0.0042 0.0057 Data on the equilibrium in aqueous solutions of CaCO 3 , Na 2 CO 3 and NaOH are given by Wegscheider and Walter (1907). SOLUBILITY OF CALCIUM CARBONATE iNAQUEOUs.SoLUTiONs OF SODIUM SULFATE. Solutions in contact with: CO 2 Free Air at 25. Ordinary Air at 24. (Cameron, Bell and Robinson, 1907.) (Cameron and Seidell, 1902.) Gms. per IPO Gms. HsO. Gms . Na.SCu S^E'SL? Na 2 SO<. CaCOs. ^ per Liter. E C a(HCO 8 ),.' 0.97 0.0151 5 0.175 1.65 0.0180 10 0.232 4.90 O.O262 2O 0.277 12.69 0.0313 40 0.332 14.55 0.0322 80 0.400 19.38 0.0346 I5O 0.510 23.90 0.0360 250 0-725 Freezing-point data for mixtures of calcium carbonate and calcium chloride are given by Sackur (1911-12). CALCIUM CHLORATE 196 CALCIUM CHLORATE Ca(ClO 3 ) 2 .2H 2 O. loo grams saturated aqueous solution contain 64 grams Ca(ClO 3 ) 2 at 18. Density of solution is 1.729. (Mylius and Funk, 1897.) CALCIUM CHLORIDE CaCl 2 . SOLUBILITY IN WATER (Roozeboom Z. physik. Chem. 4, 42, '89; see also Mulder; Ditte Compt. rend. 92, 242, '81; Engel Ann. chim. physic. [6Ji3, 381, '88; Etard Ibid, [7] 2, 532, '94.) Cms. CaClj per 100 Gms. Solid Phase. -55 -2$ O 10 20 Water. Solution. 42.5 29.8 Ice + CaCl 2 ^H 2 O 50.0 33.3 CaCl 2 .6H 2 59-5 37-3 CaC1 *- 6H * 65.0 39.4 CaCl 2 .6H 2 O 42.7 CaCl 2 .6H 2 50.7 CaCl 2 .6H 2 O 47.6 CaCl 2 . 4 H 2 Oa 50.1 4H 2 Oa+.6H 2 53.4 -4H 2 Oa. 5I.I CaCl 2 . 4 H 2 00 wiH 2 O /3 + .6H 2 O 74-5 3O.2 IO2-7 20 91.0 29.8 100.6 40 II5-3 20 104.5 29.2 112. 8 35 I22 -5 38.4 127.5 45-3 130-2 Density of saturated solution at o = 1.367, at 15 = 1.399, 'at 18 = 1.417; at 25 = 1.47. SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT o. (Engel, 1887.) _ 53 55.0 56.0 wtH 2 Q/3+CaCl 2 . 2 H 2 56.6 ^H 2 O a + CaCl 2 .2H 2 O Gms. CaCl 2 per t. 100 Gms. Solid Water. Solution. ase. 60 136.8 57-8 CaCl 2 . 2 H 2 O 70 I4I.7 58.6 CaCl 2 . 2 H 2 O 80 147.0 59-5 CaCl 2 . 2 H 2 O 90 152 .7 60.6 CaCl 2 . 2 H 2 O 100 159.0 61 .4 CaCl 2 .2H 2 O 120 173.0 63-4 CaCl 2 . 2 H 2 O I4O I9I.O 65.6 CaCl 2 . 2 H 2 O 160 222-5 69.0 CaCl 2 . 2 H 2 O 170 255-0 71.8 CaCk-aHaO 175-5 297.0 74-8; ( CaCl z . 2 H 2 t -t CaCla-iizC 180 300.0 75-o CaCl 2 .H 3 O 200 3II.O 75-7 CaCl 2 .H 2 235 332-0 76.8 CaCl 2 .H 2 O 260 347-0 77.6 CaCl 2 .H 2 CaCb. HC1. U 01 JH.L. OU1. ' CaCh. HC1. 51-45 1.367 29.84 I5-84 1.283 46.45 3-32 1-344 20. 1 2 23-I5 I.25O 42.80 5-83 1.326 11.29 34.62 1.238 36.77 10.66 1.310 SOLUBILITY OF MIXTURES OF CALCIUM CHLORIDE, MAGNESIUM CHLORIDE AND CALCIUM MAGNESIUM DOUBLE CHLORIDE (TACHHYDRITE). (Van't Hoff and Kenrick, 1912.) Gms. per 100 Gms. CaCl 2 . MgCk 41.2 31-6 57-i 26 54-5 28.4 o 85.63 32-3 17.9 80. i 16.1 88.7 7.24 16.7 21-95 28.2 116.7 25 28.2 28.2 Tachhydrate = 2MgCl 2 .CaCl 2 .i2H 2 O. 100 grams H 2 O dissolve 63.5 grams CaCl 2 + 4.9 grams KC1 at 7 (M). 100 grams H 2 O dissolve 57.6 grams CaCl 2 + 2.4 grams NaCl at 4 (M). loo grams H 2 O dissolve 59.5 grams CaCl 2 + 4.6 grams NaCl at 7 (M). 100 grams H 2 O dissolve 72.6 grams CaCl 2 + 16 grams NaCl at 15 (R). (M) = Mulder. (R) = Rudorff. Solid Phase. MgCU.6H20-r-CaCl2.6H20 " " +Tachhydrite Tachhydrite+MgCl2.6H2O + " +M g Cl 2 . 4 H s O +CaCl 2 .6H2O +CaCl2.4H2O +CaCl2. 4 H 2 CaCl2.6H204-CaCl2.4H20 197 CALCIUM CHLORIDE SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25 AND VICE VERSA. (Cameron, Bell and Robinson, 1907.) 1 M Sat.fol. I.444I I-365I 1.3463 1.2831 Gms. per 100 Cms. HzO ' Solid Phase. CaCl 2 .6H 2 O " +NaCl NaCl d tt ( Sat. Sol. 1-2653 1.2367 I . 2080 I . 2030 Gms. per 100 Gms. HzO Solid * CaCl 2 . 84 78.49 58.48 53-47 36.80 NaCl. o 1.846 1.637 1.799 7-77 CaCl 2 . 30.08 19-53 3-92 O NaCl. 10.70 18.85 32.48 35-80 ' Phase. NaCl SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE. (Bodtker, 1897.) Vol. Gms. Vol. Gms. Solution Used. Per Cent CaCk per Solution Used. Per Cent CaClsper Alcohol. 5 cc. Sol. Alcohol. 5 cc. Sol. 15 Gms. CaCl2.6H 2 O 15 Gms. CaCl 2 .6H 2 O+2o cc.: + 20 cc. alcohol 92.3 1.430 alcohol + 2 Gms. CaCl 2 99.3 1.561 15 Gms. CaCl 2 .6H 2 O + 3 99-3 i 59 + 20 cc. alcohol 97.3 1.409 " +4 " 99.3 1.641 15 Gms. CaCl 2 .6H 2 O " +5 " 99-3 1.709 + 20 cc. alcohol 99.3 1.429 15 Gms. CaCl 2 .6H 2 O + 20 cc. alcohol + i Gm. CaCl 2 99.3 1.529 SOLUBILITY OF CALCIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ACETONE AT 20. (Frankforter and Cohen, 1914.) Measured amounts of acetone were added to known solutions of CaCl 2 in water, until opalescence, indicative of the separation of a second liquid layer, was ob- served. The composition of a large number of such mixtures gives the limiting values for the binodal curve of the system. Tie lines were also determined in several instances by using such quantities of the three components that an ade- quate amount of each layer would be formed to permit the determination of the CaCl 2 in it. The points thus located on the curve fix the tie lines, and from them the approximate position of the plait point can be estimated. Points on the Binodal Curve Composition of Points Representing at 20. Tie Lines at 20. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Upper Layer. Gms. per 100 Gms. Lower Layer. Acetone. Cadi. Acetone. CaCl 2 . Acetone. CaCl 2 . 9 40.5* /(solid phase 90.2 0.186 28.5 16.61 22.7 3 8.l6tf CaCl 2 ) 83-3 0.628 34.6 12.97 20.8 31.2 8l o . 948 40 10 . 6 2O. 2 28 78.5 1.321 43-5 9-36 21 24.4 60 5 (plait point) 60 5 23 21.1 Points on the Binodal Curve at Different 2 5 19.2 is 6 Temperatures. 35 * w 12.8 Gms. per loo^Gms. Sat. Sol. 40 ' Acetone. CaCl 2 . 45 8.8 5 3I.09 I5-52 50 7-4 10 22.77 23.64 55 6.1 15 31.09 I 5-5 2 60 5 18 30-58 15-27 65 70 3-9 2.8 25 25 21.44 22.25 29.83 14.89 75 1.8 30 20.99 21.79 80 i 30 29.27 14.62 85 35 21.14 20.91 9 O.2 35 28.59 14-29 95 O.I 40 19.83 20.58 Point on solubility curve, t Quadruple point. 4 27.90 13.93 CALCIUM CHLORIDE 198 SOLUBILITY OF CALCIUM CHLORIDE IN A SATURATED SOLUTION OF SUGAR AT 31-25. . (Kohler, 1897.) 100 grams saturated solution contain 42.84 grams sugar + 25.25 grams CaCl 2 , or 100 grams water dissolve 135.1 grams sugar + 79.9 grams CaCl2. 100 gms. 95% formic acid dissolve 43.1 gms. CaCl 2 at 19. (Aschan, 1913.) loo cc. anhydrous hydrazine dissolve 16 gms. CaCl 2 at room temp. (Welsh and Broderson, 1915.) ioo gms. propyl alcohol dissolve 10.75 S 1118 - CaCl 2 (temp.?). (Schlamp, 1894.) FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM CHLORIDE AND OTHER SALTS. CaCl 2 +CaF 2 (i) (2) CaCl 2 +CaI 2 (i) CaCl 2 +CaO( 3 ) CaCl 2 +CaSi0 3 (4) CaCl 2 +CuCl (5 (3) 5) (i) = Ruff and Plato, 1903; (2) = Pla = Menge, 1911; (6)= Sandonnini, 1911; reng, 1914; (10) = Schaefer, 1914. CaCl 2 +PbCl 2 (5) (6) (7) CaCl 2 +LiCl (7) (8) CaCl 2 +MgCl 2 (5) (6) CaCl 2 +MnCl 2 (6) (7) CaCl 2 +KCl (5) (3) CaCl 2 +NaCl (5) (3) CaCl 2 +AgCl (5) CaCl 2 +SrCl 2 (6) (7) (3) (10) CaCl 2 +SrO (3) CaCl 2 -fTlCl (9) * CaCl 2 +SnCl 2 (5) CaCl 2 +ZnCl 2 (5) Plato, 1907; (3) = Sacfcur, 1911-12; (4) = Karandeeff, 1910; (5) (7) = Sandonnini, 1913; (8) = Sandonnini, 1913; (9)= Kor- CALCIUM CHLORIDE ACETAMIDATE CaCl 2 .3CH 3 CONH 2 . SOLUBILITY IN ACETAMIDE AT VARIOUS TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Menschutkin, 1908.) t /- Gms. per Sat. too Gms. So1 - Solid Gms. per ioo Gms. ^ Sat. Sol. Solid CaCl 2 . 3 CH 3 -l_ rarl ' Phase. CONH 2 /- CaCl2 - CaCl 2 -3CH 3 -\ r r , CONH2 j=CaC! 2 . Phase. 82 m. pt. CHaCONIfc IOO 6 5 .6 25-3 1-3 78 8 3.1 " 150 70-5 27.1 " 74 15-4 5-9 " 165 74 .8 28.8 " 66 27 10.4 " 175 80.6 31 " 54 39-2 I5.I ' 180 85-5 32.9 it 46 Eutec. 45 17.3 " +1.6 184 90-5 34-8 " 58 48-5 18.7 1.6 186 tr. pt. 94.5 3^-4 " +CaCl2(?) 62 54-5 21 200 97-5 37-5 CaCla(?) 64 tr. pt. 62.1 23.9 1.6+1.3 2IO IOO 38.5 1.6 = CaCl 2 .6CH 3 CONH 2 . 1.3 = CaCl 2 .3CH 3 CONH 2 CALCIUM CHLORIDE ACETIC ACIDATE CaCl 2 .4CH 3 COOH. SOLUBILITY IN ACETIC ACID AT VARIOUS TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Menschutkin, 1906.) Gms. per ioo Gms. Sat. Sol. SoUd Phase. CaCl 2 . 4 CH3-l ran COOH /- Ca Cl2. 16.2 m. pt. o o 15 18 5-7 14 27 8.5 13 34 10.7 II. I Eutec. 42 13-3 30 47.6 15 35 5o 15-8 1.4 t. CHsCOOH 40 45 60 " +1-4 65 1.4 70 73 m. pt. CaCl 2 .4CH 3 COOH. Gms. per ioo Gms. Sat. Sol. Solid Phase. CaCWCHs-l COOH / = CaCl 2 . 54-7 17-3 1*4 63 19.9 " 69.5 21-9 " 79-5 25.1 " 84-5 26.7 " 91 .2 28.8 H IOO 31-6 199 CALCIUM CHLORIDE CALCIUM CHLORIDE ALCOHOLATES CaCl 2 .3CH 3 OH, CaCl 2 .3C 2 H 5 OH. (The compounds were prepared by mixing anhydrous CaCl 2 with the alcohbf. In the case of the methyl alcohol compound, the tri CH 3 OH salt crystallizes above 55, the tetra salt below this temperature.) SOLUBILITY OF EACH IN THE RESPECTIVE ALCOHOL AT VARIOUS TEMPERATURES, DETERMINED BY THE SYNTHETIC METHOD. (Menschutkin, 1906.) Results for CaCl 2 .3CH 3 OH. Results for CaCl 2 .3C 2 H 5 OH. Gms. per 100 Gms. Gms. per 100 Gms. o Sat. Sol. Solid *<, Sat. Sol. Solid Gms. per 100 Gms. t o Sat. Sol. CaCl2.3CH 3 OH - CaCl 2 .' CaCU-sCHaO] H = CaCl z . CaCl2.3C2HsOH = CaCl 2 33 O 17-85 1-4 95 66 3 35- 5 1.3 O 34-8 iS-5 10 37 6 20.15 "5 70 3 37- 6 2O 46 20.5 2O 42 2 22.6 135 75 2 40. 3 40 58.7 26.1 30 47 25.2 155 81 8 43- 8 60 73 32.5 40 S 2 2 7 .8 165 86 2 46. 2 " 70 80.8 36 5 57 3 30-7 ' 170 89 5 47- 9 80 86.8 38.7 55 60 32.1 174 93 5 50. i " 85 89.2 39-7 56 61 3 32.8 177* IOO 53- 6 90 91.9 40.8 55 60 5 32.4 "+1.3 190 55- 7 i.i(?) 95 96.2 42.8 75 63 i 33-8 1.3 215 57- 7 " 97* IOO 44-5 14 = CaCl 2 .4CH 3 OH. 1.3 * M. pt. CaCl 2 .3CH 3 OH, i.i = CaCl 2 .CH 3 OH. CALCIUM CHROMATE CaCrO 4 . SOLUBILITY OP THE SEVERAL HYDRATES IN WATER. (Mylius and Wrochem Wiss. Abh. p. t. Reichanstalt 3, 462, 'oo.) -. o Gms. CaCrO 4 per 100 Gms. Mols. CaCrO 4 * i ; ; > per 100 Mols. Water. Solution. H 2 O. SoHd Phase, o CaCrO 4 .2H 2 O. (Monoclinic.) 17-3 14-75 2.O 18 16.68 14-3 i-93 20 16.6 14.22 i-93 30 16-5 I3-89 1-85 45 14-3 I2 -53 1-65 Solid Phase, ft CaCr0 4 . 2 H 2 (Rhombic.) o 10.9 9.8 i 18 11.5 10.3 i 40 1 1 . 6 10 . 4 i Solid Phase, CaCrO 4 .H 2 O. 25 33 34 13.0 "5 1.50 18 10.6 9.6 I .22 2 5 10.0 9.1 **$ 40 8-5 . 7-8 0.98 60 6.1 5-7 0.70 75 4-8 4.6' 0.56 IOO 3-2 3-i o-37 f. c Jms. CaCrO 4 per TOO Gms. ^ [ols.CaCr0 4 er TOO Mols. H 2 0. Water. Solution.' * Solid Phase, CaCr0 4 .iH 2 o 7-3 6.8 0.84 18 4-8 4.4 0.51 3i 3-84 3-7 0.44 38 5 2.67 2,6 0.31 5o 1.63 1.6 0.19 60 1-13 i.i 0.13 ICO 0.81 0.8 O.O9 Solid Phase, CaCrO 4 . O 4-5 4-3 0.52 18 2.32 2.27 0.27 3 1 2 .92 1.89 O-22 5o 1. 12 i. ii 0.13 60 0.83 0.82 O.II 70 0.80 0.79 O.OQ IOO 0.42 0.42 0.05 Densities of the saturated solutions of the above several hydrates at 18 are: a CaCrO 4 .2H 2 O, 1.149; CaCrO 4 .2H 2 O, 1.105; CaCrO 4 .H 2 O, 1.096; CaCrO 4 .iH 2 O, 1.044; CaCrO 4 , 1.023. loo cc. 29% alcohol dissolve 1.206 grams CaCrO 4 . loo cc. 53% alcohol dissolve 0.88 gram CaCrO 4 . (Fresenius Z. anal. Chem. 30, 672, '91.) CALCIUM CINNAMATES 200 CALCIUM CINNAMATE Ca(C 6 H 6 .CH:CHCOO) 2 .3H 2 O. SOLUBILITY OF CALCIUM CINNAMATE AND ITS ISOMERS IN SEVERAL SOLVENTS. Name of Salt. Calcium Cinnamate Formula. Ca(C6H 6 CH:CHCOO) 1 .3H i O Ca(C9H70 2 ) 2 . 3 H 2 Isocinnamate M Allocinnamate tt Hydrocinnamate (i) = De Jong, 1909; (2) = Tarugi and CheccnC 1901; 1903; (s) . and Garner, 1903. (3) Gms. Anhy- Solvent. t. drous Salt per 100 Gms. Solvent. Water 2 0.19(1) " 15 0.2l(2) " 26 100 0.24(1) 1.15(2)1 " 20 23-8 (3) Acetone 2O 19-6 (3) M 2O 2 (3 Water 2O 10.2 (4 Acetone 18 2-7 (5 u 14 0.19(5) " 19 0.21(5) Water 27 4.25(3) Acetone 25 3-3 (3) = Michael, 1901; (4 )_= Liebermann, CALCIUM CITRATE Ca 3 (C 6 H 6 O 7 ) 2 .4H 2 O. SOLUBILITY IN WATER AND IN ALCOHOL AT 18 AND AT 25. (Partheil and Hubner, 1903.) Solvent. 100 Gms. Solvent at: Water Alcohol (Sp. Gr. 0.8092 = 95%) 18. 0.08496 0.0065 25 0.0959 0.0089 EQUILIBRIUM IN THE SYSTEM CALCIUM OXIDE-CITRIC ACID-WATER AT 30. (van Itallie, 1908.) The compositions of the solid phases were determined by the " Rest Method ' of Schreinemakers (1903). The results are presented in the triangular diagram and it was necessary to select the fictitious compound CeHsOj.i^HsO instead of CeHgO? in order to keep the citrate component within the limits of the diagram. This is in harmony with the choice of anhydrides as components in the inorganic oxy acid systems. Gms. per 100 Gms. ' Sat. Sol. QHsCh. CaO. 5*5.86 54-8 OK 24 55-4 0-35 53-7 0.40 48.3 0.52 42.6 O.6O 38.5 0.77 36.5 0.70 34-8. 0.77 27-5 0-45 Solid Phase. +CHO7Ca.4H 2 O Gms. per 100 Gms. Sat. Sol. ^StjO CaO. 20.3 0.35 I6. 3 0-33 12-5 0-39 8-3 0.28 5-2 0.25 4.1 O.2O 3-2 0.20 2.4-0 0.2I-O.I3 0.18 0.24 O.II3 Solid Phase. Quadruple pt. Quadruple pt. Ca(OH), CALCIUM Potassium FERROCYANIDE CaK 2 Fe(CN) 6 .3H 2 O. 100 parts H 2 O dissolve 0.125 part salt at 15, and 0.69 part at boiling-point. (Kunheim and Zimmerman, 1884.) ioo gms. H 2 O dissolve 0.41 gm. CaK 2 Fe(CN) 6 at 15-17. (Brown, 1907.) 201 CALCIUM FLUORIDE CALCIUM FLUORIDE CaF 2 . One liter sat. aqueous solution contains 0.016 gm. CaF 2 at 18 and 0.017 gm. at 26. One liter sat. aqueous solution contains 0.0131 gm. fluorspar at o, 0.0149 gm. at 15, 0.0159 gm. at 25 and 0.0167 gm. at 40. (Kohlrauscb, 1904-05, 1908.) Freezing-point data for mixtures of calcium fluoride and calcium iodide are given by Ruff and Plato (1903) and for mixtures of calcium fluoride and calcium silicate by Karandeeff (1910). CALCIUM FORMATE Ca(HCOO) 2 . SOLUBILITY IN WATER. (Lumsden, 1902; see also Krasnicki, 1887.) Cms. Ca(HCOO)2 per 100 Gms. Cms. Ca(HCOO) per 100 Gms. Water. Solution. Water. Solution. " o 16.15 I 3-9 60 17-50 14.89 20 16.60 14.22 80 17-95 15-22 40 17.05 14.56 100 18.40 15.53 Results in good agreement with the above are given by Stanley (1904). CALCIUM GLYCEROPHOSPHATES a = OH.CH 2 .CH(OH)CH 2 .OPO 3 Ca f = OH.CH 2 .CH.OPO 3 Ca.CH 2 OH. SOLUBILITY OF CALCIUM a. GLYCEROPHOSPHATE IN WATER. (Power and Tutin, 1905; Couch, 1917.) t o Gms. CaCaHrOeP ^o Gms. CaCsHrOeP per loo Gms. Sat. Sol.! per 100 Gms. Sat. Sol. 05 40 3-5 10 4.6 60 2.7 20 5.2 80 1.8 25 5 100 0.9 Results varying from 1.7 to 5.4 gms. per 100 gms. sat. solution at or near 1 8 are given by Rogier and Fiore (1913), Willstaetter (1904) and King and Pyman (1914). It is pointed out by Couch, however, that since the solubilities of the a and ft isomer differ, and also that the commercial product contains both isomers, variable results will be obtained, depending on the composition of the product and the method used for determining the solubility. These authors also show that increasing amounts of alcohol in the solvent decrease the solu- bility of calcium glycerophosphate. i oo grams H 2 O dissolve i .66 grams calcium /3 glycerophosphate at 20. (Couch, 1917.) The results of King and Pyman (1914) are: 1.4 gms. at 13 and I gm. at 15. CALCIUM HEPTOATE (Oenanthate) Ca[CH 3 (CH 2 ) 5 COO] 2 .H a O. SOLUBILITY IN WATER. (Lumsden, 1902; see also Landau, 1893; Altschul, 1896.) t . o. 20. 40. 60. 80. '100* Gm. Ca(C 7 Hi 3 O 2 ) 2 per 100 gms. solution 0.94 0.85 0.81 0.81 0.97 1.24 CALCIUM HYDROXIDE Ca(OH). Recent determinations of the solubility of calcium hydroxide in water, agree- ing fairly well with the average results given in the table on next page, are given by Bassett, Jr. (1908), Moody and Leyson (1908), Chugaev and Khlopin (1914) and Seliwanow (1914). One liter sat. aqueous solution contains 0.305 gm. CaO at 120, 0.169 S m - at 150 and 0.084 gm. at 190. (Herold, 1905.) One liter of aqueous 5.2% NH 3 solution dissolves 0.81 gm. Ca(OH) 2 at about 20. (Konowalow, *899&.,> CALCIUM HYDROXIDE 202 CALCIUM HYDROXIDE Ca(OH) 2 . SOLUBILITY IN WATER. (Average curve from the results of Lamy, 1878; Maben, 1883-84; Herzfeld, 1897, and Guthrie ,^19.01.) Grams per 100 Grams EhO. - , "Grams per too Grams H 2 O. *' ' Ca(OH) 2 . CaO. ' Ca(OH 2 ). CaO. o 0.185 0.140 50 0.128 0.097 10 0.176 0.133 60 0.116 0.088 20 0.165 - I2 5 7 0.106 0.080 25 - I 59 0.120 80 0.094 0.071 30 o^SS 0.116 90 0.085 0.064 40 0.141 0.107 I0 0.077 0.058 SOLUBILITY QF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OP AMMONIUM CHLORIDE AT 25. (Noyes and Chapin Z. physik. Chem. 28, 520, '09.) Millimols per Liter. Grams per Liter of Saturated Solution. NH^Cl. Ca(OH) 2 . NI^Cl. ClT(OH) 2 = CaO. o.oo 20.22 o.oo 1-50 1.13 21.76 29.08 1-165 2.l6 1.63 43.52 39-23 2.330 2.91 2.20 83-07 59 - 68 4-447 4-42 3-45 SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE. (Zahorsky Z. anorg. Chem. 3, 41, '93; Lunge J. Soc. Chem. Ind. u, 882, '92.) Concentration Grams CaO Dissolved per 100 cc. Solvent at: ~ ~ itions,Wt.%. f 20. 40. 60. 80. 100. ' o. 1374 .Il62 .1026 .0845 .0664 5 o. 1370 .Il6o .1020 .0936 .0906 10 o. 1661 .1419 1313 o .1328 .1389 IS o. *993 o .I78l .1706 o .1736 .1842 20 o. 1857* .2249 .22O4 .2295 o 2325 25 o. 1661* o .3020* .2989 .3261 o .3710 30 o. 1630* o .3680* o .3664 .4122 0.4922 * Indicates cases in which a precipitate of calcium oxychloride separated and thus removed some of the CaCh from solution. The results in o% CaCh solutions, i.e., in pure water, are high wken compared with the average results given above. SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE AT 25. (Schreinemakers and Figee, 1911.) JC&Clt. 5.02 CaO. O . IOI Ca(OH) 2 CaCl 2 . 33-21 CaO. 0.245 > ooiiu imase. CaCl2.4CaO.i4H 2 O 10 O.II5 " 33-72 0.254 " +CaCl2.Ca0.2H2O 15.14 0.140 " 34.36 0.173 CaCl2.CaO.2H 2 O 18.15 0.148 " +CaCl 2 .4CaO.i 4 H 2 O 38.61 O.O6O " 18.01 0.152 CaCl 2 . 4 CaO.i 4 H 2 O 41 .32 0.048 M 21.02 0.147 " 44.30 O.O3O " 28.37 0.170 44.61 0.029 " +CaCl2.6H 2 32.67 O.225 Ca(OH) 2 ? 44-77 CaCl 2 .6H 2 Data for the above system at 10, 25, 40, 45, 48, and 50 are given by Milikau (1916). Data for the solubility of calcium hydroxide in aqueous calcium iodide solu- tions at 25 are also given by Milikau. 203 CALCIUM HYDROXIDE SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM NITRATE AT 25 AND AT 100. (Bassett and Taylor, 1914; see also Cameron and Robinson, Results at 25. Gms. per 100 Gms. Sat. Sol. Results at 100. Gms. per 100 Gms. Solid Phase. , per i Sat. S Sol. Solid Phase. Results at 100 (Con.). Gms. per 100 Gms. Sat. Sol. solid Phase. 'CaO. Ca(NO,) 2 . CaO. Ca(NO 3 ) 2 . CaO. Ca(N0 3 ) 2 .' O.II50 o Ca(OH) 2 0.0561 O Ca(OH) . 576 58 .67 ( 'a 2 N 2 C t 7.2H 2 O 0.0978 4- 836 0.0550 2 .42 " .348 60 44 " 0.1074 9- 36 " 0.0624 4 .91 " .167 62 .82 H O.H93 77 " O.IIIO 15 39 " -077 66 44 " 0.1444 22. 46 " O.I2OO 16 . 10 " . 141 69 .12 " 0.1650 27. 83 0.155 21 .86 " I " + a very 0.1931 32- 94 0.269 33 .03 " 1.252 70 .60 . little Caj- 0.2579 .40. 66 " 0.480 42 .26 I NiOr.ilbO o . 3060 44- 44 0.973 50 94 * I . 203 70 .40 ( o. 2802 45- 28 Ca 2 NjOr.3H 2 1.261 53 75 1.103 71 44 " 0.2314 47- 79 1-477 55 .40 0-937 73 85 M 0.1894 5 1 - 07 .476 55 43 0.849 75 74 " 0.1659 53- 20 " 3 .491 55 65 0.815 76 94 " o . 1486 55- 25 " 635 56 89 I +Ca 2 N 2 O;.- o . 804 77 .62 Ca(NO,), 0.0836 57- 72 Ca(NOs)2.4H 2 O .686 57 .03 S aHzO 0.412 77 74 " 57- 98 M .596 57 .91 Ca 2 N 2 O7.2H2O 78 43 " Cerasine wax bottles were used and more than 6 months constant agitation allowed for attainment of equilibrium at 25 and 4-14 days at 100. SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM SULFATE AT 25. (Cameron and Bell, 1906.) Gms. per 100 cc. Sat. Sol. CaO. 0.1166 0.1141 0.1150 0.1215 0.1242 0.1222 Solid Phase. Ca(OH) 2 Gms. per 100 cc. Sat. Sol. CaSO4. O 0.0391 0.0666 0-0955 O.I2I4 0.1588 The mixtures were constantly agitated at 25 for two weeks. CaSO4. CaO. 0.1634 0.0939 0.1722 0.0611 0.1853 0.0349 O.IQiS 0.0176 o . 2030 0.0062 0.2126 Solid Phase. CaS04. 2 H0 SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE. (Cabot, 1897.) - In KC1 Solutions. Gms. of the Chloride Gms. CaO per Liter at: per Liter. . ' o. 15. 99. O 1.36 I.3I 0.635 30 I.70I 1.658 0.788 60 1.725 1.674 0.876 120 I.7l8 I. 606 0.894 240 I . 248 I . 199 0.6l7 320 ... ... In NaCl Solutions. Gms. CaO per Liter at: 0. 15. 99. 1.36 1.31 0-635 1.813 1-703 0.969 1.824 I .004 1.86 1.722 I.OI5 i .37 1.274 0.771 1.054 0.929 0.583 Results in harmony with the above for the solubility of calcium hydroxide in aqueous solutions of potassium chloride at 50, are given by Kernot, d'Agostino and Pellegrino (1908). CALCIUM HYDROXIDE 204 SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE ALONE AND CONTAINING SODIUM HYDROXIDE. (Maigret, 1905.) Gms. CaO per Liter of Solution. tier liter Without o-8 9 .NsOH 4 .09 .NaOH ' NaOH. per Liter. per Liter. 0.22 o-SS 3 0.8 5 4 0.9 10 .6 I.O 25 7 i.i 5 .8 1-25 75 , 9 1.4 100 .85 1.4 c Naa Gms. CaO per Liter of Solution. per Liter Without o.8g.NaOH 4-oo.NaOH ' NaOH. per Liter. per Liter. 150 1.65 1.25 0-44 175 1.6 1.2 182 1.6 1.2 225 1.4 i.o 250 1.3 0.9 300 I.I 0-7 0.22 SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (d'Anselme Bull. soc. chim. [3] 29, 938, '03.) Concentration of NaOH: Normality. Gms. per Liter O N/ioo 0-4 N/2 5 1.6 N/i5 2.66 N/8 S-oo N/5 8.00 N/2 20-00 Grams CaO per Liter Sat. Solution at: 20. 50. 70. 100. I.I70 0-94 0.880 0.65 0-75 o-53 0-54 o-3S o-57 o-3S 0.225 0.14 o-39 0.18 0.20 O-o6 o.n 0.04 0.05 o.oi o.n 0-02 O-OI trace 0.02 trace o.oo o.oo For results upon mixtures of calcium hydroxide and alkali carbonates and hydroxides, see Bodlander Z. angew. Chem. 18, 1138, '05. SOLUBILITY OF, CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AT 25. (Herz andKnoch Z. anorg. Chem. 46, 193, '05; for older determinations, see Berthelot Ann. chim phys. [3] 46, 176; and Carles Arch. Pnarm. [3] 4, 558, '74.) Density of Solutions Wt. per cent Glycerine in Solution. Millimols *Ca(OH) 2 per i oocc. Solution. Gms. per 100 cc. Solution. Ca(OH) 2 - CaO. " .0003 o.o 4-3 0.1593 0.1206 .0244 7-15 8-13 0.3013 0.2281 0537 20-44 14.9 0.5522 0.4180 .0842 31-55 22.5 0.8339 0.6313 H37 40.95 40.1 1.486 1.125 J 356 48.7 44.0 1.631 1.234 .2072 69.2 95-8 3-550 2.687 Data tor the solubility of calcium hydroxide in aqueous solutions of phenol at 25 are given by van Meurs (1916). 205 CALCIUM HYDROXIDE SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AND OF CANE SUGAR AT 25. (Cameron and Patten, 1911.) In order to obviate the uncertainties due to the presence of a large excess of the solid phase in contact with the solutions, the clear liquids, saturated at o, were decanted from the solid and slowly brought to 25 and constantly agitated at this temperature, until equilibrium with the finely divided solid phase, which separates at the higher temperature, was reached. Results for Glycerol Solutions. Results for Sugar Solutions. da of Gms. per TOO Gms. Sat. Sol. Solid d* of Gms. per 100 Gms. Sat. Sol. Solid Sat. Sol. "~ Ca(OH) 2 . CsH5(OH)3. Pnase - bat.bol. Ca(OH) 2 . CwHaOu Phase. -983 .117 Ca(OH) .188 .62 Ca(OH)j + Sugar I .008 O .178 3 .50 .021 730 4 .82 " 413 15-59 037 I 355 7 50 " I .042 O .48 17 .84 .067 3 .21 ii .90 I .088 .88 34 .32 .109 5 -38 17 .42 " I .149 I 34 55 .04 .123 6 .07 19 .86 " SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CANE SUGAR AT 80. (von Ginneken, 1911.) Gms. per 100 Gms. Sat. Sol. CaO. O.II7 0.189 0.230 Sugar. 4.90 9.90 14-75 Solid Phase. Ca(OH) 5 Gms. per 100 Gms. Sat. Sol. CaO. Sugar. 0.358 19.50 0.548 24.60 I.OI7 29.70 Solid Phase. Ca(OH), SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SUGAR. (Weisberg Bull. soc. chim. [3] 21, 775, '99.) The original results were plotted on cross-section paper and the following table constructed from the curves. ist series, t = i6'-i7. Jms. per 100 Gms. Solution. G. CaO per 100 Gms. Sugar in Sol. Sugar. CaO. I 0.30 35-o 2 0.56 28.7 3 0.85 28.0 4 1. 12 27.7 5 1.40 27-5 6 1.65 27-5 8 2 .22 27-5 10 2.77 27-5 12 3-27 27-5 14 3-85 27-5 2d, series t = 15. rms. per 100 Gms. Solution. G. CaO per 100 Gms. Sugar in Sol. Sugar. CaO: I 0.50 62.5 2 0-75 36.0 3 I .02 32-5 4 I .22 30.2 5 i-45 28.5 6 1.67 27.7 8 2 .22 27-5 10 2.77 27-5 12 3-27 27-5 14 3-85 27-5 In the second series a very much larger excess of lime was used than in the first series. The author gives results in a subsequent paper, Bull. soc. chim. [3] 23, 740, 'oo, which show that the solubility is also affected by the condition of the calcium compound used, i.e., whether the oxide, hydrate, or milk of lime is added to the sugar solutions. A very exhaustive investigation of the factors which influence the solubility of lime in sugar solutions is described by Claasen (1911). CALCIUM IODATE 206 CALCIUM IODATE Ca(IO 3 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Myiius and Funk Ber. 30, 1724. '97; W. Abh. p. t. Reichanstalt 3, 448, 'oo.) t * Gms. Ca(I03) 2 Mols. Ca(I0 3 ) 2 Solid t . Gms. Ca(I0 3 ) 2 Mols. Ca(I0 3 ) 2 Solid I . per 100 Gms. Sol. per 100 Phase. Mols.H 2 O. per 100 Gms. Sol. per 100 Phase. Mols. HaO. .10 .0044 Ca(IO 3 ) .6Hj jO 21 37 .016 Ca(I0 3 ) 2 .H 2 10 17 .0075 35 .48 O O2I it 18 O 25 .Oil 40 o 52 O 023 u 30 .42 O .019 45 o 54 .024 it 40 .61 .027 5 59 .026 " 50 .89 .040 60 65 O .029 " 54 I .04 .046 80 79 O 034 tt 60 I 36 O .063 100 o 94 .042 tt Density of solution saturated at 18 = i.oo. CALCIUM IODIDE CaI 2 . SOLUBILITY IN WATER. (Average curve from the results of Kremers Pogg. Ann. 103, 65, '58; Etard Ann. chim. phys. [7] 2, 532, '94-) . o Cms. CaI 2 per 100 f Cms. CaI 2 per 100 . Cms. CaI 2 per 100 Cms. Solution. Cms. Solution. Cms. Solution. o 64.6 30 69 80 78 10 66. o 40 70.8 100 81 20 67.6 60 74 Density of solution saturated at 20 = 2.125. The fusion-point curve (solubility, see footnote, p. i) is given for mixtures of calcium iodide and iodine by Olivari (1908). CALCIUM IODO MERCURATE. A saturated solution of CaI 2 and HgI 2 in water at 15.9 was found by Duboin (1906) to have the composition CaI 2 .i.3HgI 2 .i2.3H 2 O; d = 2.89 and the solid phase in contact with the solution was CaI 2 .HgI 2 .8H 2 O. CALCIUM PerlODIDE CaI 4 f Data for the formation of calcium periodide in aqueous solution at 25 are given by Herz and Bulla (1911). (See reference note under calcium perbromide, p. 189.) CALCIUM LACTATE Ca(C 6 H 10 O 6 ).5H 2 O. 100 gms. H 2 O dissolve 3.1 gms. of the salt at o, 5.4 gms. at 15 and 7.9 gms. at 30. (Hill and Cocking, 1912.) CALCIUM MALATE CaC 4 H 4 O 6 .H 2 O. SOLUBILITY OF CALCIUM MALATE IN WATER AND IN ALCOHOL. (Partheil and Hubner, 1903.) ioo gms. H 2 O dissolve 0.9214 gm, CaC 4 H 4 O 6 .H 2 O at 18, and 0.8552 gm. at 100 gms. 95% alcohol dissolve 0.0049 gm. CaC 4 H 4 O 6 .H 2 O at 18, and 0.00586 gm. at 25. 207 CALCIUM MALATE CALCIUM (Neutral) MALATE Ca(C 4 H 4 O 6 ).3H 2 O. CALCIUM (Acid) MALATE Ca(C 4 H B O6) 2 .6H 2 O. CALCIUM MALONATEtCa(C 3 H 2 O 4 )4H 2 O. SOLUBILITY OF EACH IN WATER. (I wig and'Hecht, 1886; Cantoni and Basadonna, 1906; the malonate, Mic^ynski, 1886.) Ca. Neutral Malate. Cms. CaCCJfcOs) per 100 t. 6ms. Gms. cc. Sol. HzO. Sol. (C and B). 10 0.85 0.84 20 0.82 0.81 0.907 30 0.78 0.77 0.835 40 0.74 0-73 0.816 50 0.66 0.65 0.809 57 0-57 0.56 60 0.58 0.58 . 0.804 70 0.63 0.63 0-795 80 0.71 0.70 0-754 90 0.740 Ca. Acid Malate. Cms. Ca(C4H5O 5 )2 per 100 Cms. Ca. Malonate. Water. 2 5-2 15 ' 32.24 26 II 6.8 Solution. 1.77 I. 4 8 1.96 4-94 13.09 24.29 20.64 9.91 6-37 per 100 Gms. HjO. 0.290 (0.374) 0.330 (0.419 0.365 (0.460 0.396 (0.495 0.422 (0.524 0.443 (0.544) 0.460 0.472 0.479 The results for calcium malonate given above in parentheses are by Cantoni and Diotalevi (1905), but these authors fail to state the terms in which their data are reported. By comparison with other papers of the series, it is prob- able that in this case the figures refer to grams per 100 cc. saturated solution. CALCIUM NITRATE Ca(NO 3 ) 2 .4H 2 O. SOLUBILITY IN WATER. (Bassett and Taylor, 1912.) (Silica vessels used. Constant agitation at constant temperature for two to three days. Calcium determined by precipitation as oxalate and weighing as oxide.) Gms. Ca(NOs)2 Solid per 100 Gms. Phase. Sat. Sol. 53.55 Ca(N03)2. 4 H J 54-94 56.39 57.98 60.41 62.88 66.21 68.68 68.74 71.7 70.37 Gms. t o Ca(N03>2 per 100 Gms. . Sat. Sol. Solid Phase. 0.4 1.4 Ice 1-4 4.78 " - 1-9 6-53 " - 3-05 IO " 4-15 12.98 " -15-7 33-13 " -21.7 38.7 " -28.7 * -26.7 43-37 C* t(NOs)j.4 IO 47-31 " o 50.50 M 5 Si-97 1C 10 IS 20 25 30 35 40 42.4 42.4 42.7 42-45 40 t m. pt. Gms. to Ca(NO 3 )2 Solid . per 100 Gms. Phase. Sat. Sol. 45 7L45 Ca(N0 3 )i.3H,0 50 73-79 " Si 74-73 49 77 -4 Ca(NOj).2H.O 5i 78.05 " 78.16 78.2 Ca(NOi)i 100 78.43 " 125 78.57 147. 5 78.8 " 151 79 " Eutectic. SOLUBILITY OF THE UNSTABLE CALCIUM NITRATE TETRAHYDRATE /3 IN WATER. (Results supplementary to the above.) (Taylor and Henderson, 1915.) Gms. Ca(NO 3 )2 t. per 100 Gms. Sat. Sol. o 50.17 22.2 56.88 25 57-9 30 60. 16 30 6i.57 34 63.66 35 62.88 38 64.34 Solid Phase. aCa(N03)j. 4 H 2 /3Ca(NOa)2.4H2O Gms. Ca(NO..) a t 8 . per zoo Gms. Sat. Sol. 38 66.65 , 39 67-93 39.6 (m. pt.) 69.50 39 (reflex pt.) 75-34 40 66.22 < 42 . 7 (m. pt.) 69.50 42.4 (reflex pt.) 71.70 25 77.30 Solid Phase. 0Ca(NOs).4HO Ca(NOi) CALCIUM NITRATE 208 SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF CALCIUM THIOSULFATE AT 9 AND AT 25 AND VICE VERSA. (Kremann and Rodemund, 1914.) Results at 9. Results at 25. Gms. per ioo Gms. Sat. Sol. Gms. per ioo Gms. Sat. Sol. Solid Phase. 'Ca(NOa). CaS 2 3 . ' 'Ca(NO 3 ) 2 . CaS 2 O 3 . 46.02 5.46 Ca(NOs) 2 .4H : O 54-03 4.27 Ca(N03) 2 .4HiO 45-68 6. 8 1 " fCaSiOs.GHzC > 50.25 9-IO " 27.92 10.46 CaS^.GHzO 45-92 13 " +CaS 2 Oa.6HK) 10.49 22. 8l 42-93 I3-83 CaSzOs-GHW) 29-33 32.01 17.09 " I 9-5 I 23.78 " 8.15 SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AT 9 AND AT 25 AND VICE VERSA. (Kremann and Rodemund, 1914.) Results at 9. Gms. per 100 Gms. Sat. Sol. Ca(NO 3 ) 2 . NaNOa. ' 47.51 9.51 46.08 12.56 26.67 23.32 11.76 34.26 Solid Phase. Ca(N0 3 ) 2 .4H20 " +NaN03 NaNO Results at 25' Gms. per 100 Gms. Sat, Sol. Ca(NO 3 ) 2 . NaNO 3 ." 54.58 7-25 53-22 10.70 52-73 12.08 52.40 11.88 37-31 19.48 26.91 24.98 I4.6l 36.12 Solid Phase. Ca(NOi) 2 . 4 H 2 " +NaNO, NaNOi These authors also give the complete solubility relations of the reciprocal salt pairs, Ca(NO 3 ) 2 + Na^Oj => 2NaNO 3 + CaS2O 3 at 9 and 25. SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25. (Bassett and Taylor, 1912.) (The mixtures were shaken intermittently, by hand, during quite long periods; one week was allowed between duplicate determinations.) Gms. per 100 Gms. Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Solid Phase. Sat. Sol. Solid Phase. _ Sat. Sol. Solid Phase. Ca(NOi)i. HN0 3 . Ca(NO 3 ) 2 . HNO 3 . Ca(NO 3 ) 2 . HNO 3 . 57 . 98 O Ca(N03)j. 4 H20 3 2 . 84 32 . 63 Ca(NO3) 2 . 4 H2O 9 . 34 65 . 69 Ca(NO 3 ) 2 . 2 HjO 54.82 3.33 52.96 5.87 51.58 7.21 47.82 11.27 45-59 I3-7I 40.70 19.65 38.17 22.80 34.46 28.81 Freezing-point data for the Ternary System Ca(NO 3 ) 2 -r-KNO 3 + NaNOs are given by Menzies and Dutt, 1911. SOLUBILITY OF CALCIUM NITRATE IN SEVERAL ORGANIC SOLVENTS. 32.50 33-52 " 8.52 67.20 33-44 35.63 Ca(NO 3 ) 2 .3HjO 5-o6 71.12 Ca(NOi) 2 29.05 41.66 " 2-53 74-77 27-79 45-70 " 1.05 78.56 31.09 40.56 Ca(NOa).2H,0 0-54 80.83 26.07 45-70 ft 0.36 85-83 17.41 55-48 " O.OI 90.90 12.25 62.05 " o 96.86 Solvent. Gms. Ca(NO 3 )j per 100 Gms. N Sat. Solution. Methyl Alcohol Propyl " i Butyl " Amyl Acetone Methyl Acetate 25 25 25 25 25 18 65.$ 36.5 25 13-3 58.5 4i Authority. (D'Ans and Siegler, 1913.) (d sat . sol. =1.313) (Naumann, 1 909.) j 209 CALCIUM NITRATE SOLUBILITY OF CALCIUM NITRATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (D'Ans and Siegler, 1913.) Gms. per too Gms. Sat. Sol. C 2 HsOH. Ca(N0 3 ) 2 . O 57-5 8.1 55-2 14.1 52-9 22.3 50.2 29.4 49 31.2 52 29-5 56.2 27.8 60 26.5 62.3 82.5 5-8 77 Solid Phase. Gms. per 100 Gms. Sat. Sol. Ca(N03) 2 . 4 H 2 " +Ca(NOi), Ca(NOa)j unstable CALCIUM NITRITE Ca(NO 2 ) 2 .4H 2 O. SOLUBILITY IN WATER. CzHaOH. Ca(NO.-) 2 . 15-2 69.52 20-4 66.08 35-9 57-7 41.8 51-4 27-39 61.96 28.5 61.15 29.6 60.3 60.2 3 8.6 54-6 41.9 42.5 50-97 35-8 55-3 Solid Phase. Ca(NOs)2 unstable CaCNOs)* stable Ca(NOs)2.2C 2 H60H (Oswald, 1914.) Solid Phase. - 4 ~ 9-3 -12. 5 -14-5 -17-5 ^ 9-5 o 16 16.7 25-5 29-5 32 35 36.2 38-3 Ice [ r Solid Phase. CaCNO^^HzO +Ca(N0 2 ) 2 . 4 H 2 42 44 54 64 70 73 +Ca(NO J ) J .2H 1 43 51.8 53-5 55-2 58 60 61 71 An aqueous solution simultaneously saturated with calcium nitrite and silver nitrite, contains 92.4 gms. Ca(NO 2 ) 2 + 11.2 gms. AgNO 2 per 100 gms. H 2 O at 14. (Oswald, 1914.) 100 cc. sat. solution of calcium nitrite in 90 % alcohorcontain 39 gms. Ca(NO 2 ) 2 . H 2 O at 20. 100 cc. sat. solution of calcium nitrite in absolute alcohol contain i.i gms. Ca(NO 2 ) 2 .H 2 O at 20. (Vogel, 1903.) CALCIUM OLEATE (C^O-OCa. One liter water dissolves about o. i gm. calcium oleate at tnot stated. (Fahrion, 1916.) 100 gms. glycerol (of d = 1.114) dissolve 1.18 gms. calciumoleate at t not stated. (Asselin, 1873.) CALCIUM OXALATE Ca(COO) 2 .H 2 O. SOLUBILITY IN WATER, BY ELECTROLYTIC CONDUCTIVITY METHOD. (Holleman, Kohlrausch, and Rose, 1893; Richards, McCaffrey, and Bisbee, 1901.) *o Gms. CaC 2 O 4 per Liter of Solution. 13 0.0067 (H) 08. 0.0056 (K and R) 24 0.0080 (H) .<> Gms. CaC 2 O 4 per Liter of Solution. 25 0.0068 (R, McC and B) 50 0.0095 95 0.0140 SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 26-27. (Herz and Muhs, 1903.) Normality of Acetic Acid. O 0.58 2.89 5-79 G. CH 3 COOH per 100 cc. Sol. 0-00 17-34 34-74 Residue from 50.053 cc. Solution. 0.0017 0.0048 0-0058 0.0064 The residues were dried at 70 C. CALCIUM OXALATE 210 SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 25. (Henderson and Taylor, 1916.) NonnaUtyofHCl. ^S^ Normality of HC1. o 0.009 0.500 2.638 0.125 0.717 0.625 3.319 0.250 1.359 0.750 3.922 0.375 2.019 I 5.210 These authors also give data showing the effect of increasing amounts of KC1 and KNO 3 upon the solubility of calcium oxalate in 0.5 normal HC1 at 25, and also of the effect of increasing amounts of potassium trichloracetic acid upon the solubility in 0.5 normal trichloracetic acid, and of increasing amounts of potas- sium monochloracetic acid upon the solubility of calcium oxalate in 0.5 normal monochloracetic acid. SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND OF SODIUM PHOSPHATE. (Gerard, 1901.) Salt in Aq. Cms. Salt t o Cms. CaCzOt Salt in Aq. Cms. Salt t o Cms. CaCzCU Solution. per Liter.. per Liter. Solution. per Liter. per Liter. NaCl i 25 0.0075 NaCl 25 37 0.0414 5 25 0.0188 Na 2 H(P0 4 ) 2 4.8 15 0.016 10 25 0.0255 4.8 37 0.033 25 ,25 0.0291 One liter 45% ethyl alcohol dissolves 0.000525 gm. calcium oxalate, temp, not Stated. (Gueiin, 1912.) CALCIUM OXIDE CaO. 100 gms. molten CaCl 2 dissolve 16.2 gm. CaO at about 910. (Arndt and Loewenstein, 1909.) Data for the systems, CaO -f- MgO and for CaO + A1 2 O 3 + MgO are given by Rankin and Merwin (1916); for CaO + A1 2 O 3 + SiO 2 by Rankin and Wright (1915); for CaO + Fe 2 O 3 by Sosman and Merwin (1916); and for CaO + MgO + SiO 2 by Bowen (1914). Data for the system CaO + C + CaC 2 + CO are given by Thompson (1910). CALCIUM PHOSPHATE (Tribasic) Ca 3 (PO 4 ) 2 . SOLUBILITY IN WATER. The determinations of the solubility of this salt in water, as stated in the literature, are found to vary within rather wide limits, due, no doubt, to the fact that so-called tribasic calcium phosphate is apparently a solid solution of the dibasic salt and calcium oxide, and therefore analyses of individual samples may show an excess of either lime or phosphoric acid. When placed in contact with water, more PO 4 ions enter solution than Ca ions, the resulting solution being acid in reaction and the solid phase richer in lime than it was, previous to being added to the water. For material having a composition approximating closely that represented by the formula Ca 3 (PO 4 ) 2 the amount which is dissolved by CO 2 free water at the ordinary temperature, as calculated from the calcium determination, is o.oi to o.io gram per liter, depending upon the conditions of the experiment. Water saturated with CO 2 dissolves 0.15 to 0.30 gram per liter. A list of references to papers on this subject is given by Cameron and Hurst J. Am. Chem. Soc., 26, 903, 1904; see also Cameron and Bell, Ibid., 27, 1512, 1905. 211 CALCIUM PHOSPHATE CALCIUM PHOSPHATE (Dibasic) CaHPO 4 .2H a O. SOLUBILITY IN WATER. (Cameron and Seidell J. Am. Chem. Soc. 26, 1460, '04; see also Rindell Compt. rend. 134, iza, 'oaj Magnanini Gazz. chim. ital. 31, II, 544, *oi.) i liter of CO 2 free water dissolves 0.136 gram CaHPO 4 at 25. i liter of water sat. with CO 2 dissolves 0.561 gram CaHPO 4 at 25. SOLUBILITY OF Di CALCIUM PHOSPHATE AND OP MONO CALCIUM PHOS- PHATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25. (Cameron and Seidell J. Am. Chem. Soc. 27, 1508, '05; Causse Compt. rend. 114, 414, '92.) Grams per Liter of Solution. Gms. per Liter Calc. from CaO Found. PaO 5 per Liter in Excess of e rj t>v. that combined Sohd Phase - CaO. P 2 5 . with Ca. I .71 4.69 4- J 5 CaHP0 4 2-53 CaHP0 4 . 2 ILO "57 36.14 28.05 " 21.5 u 2 3 -3 1 75-95 5 6 -53 tt 46-45 ft 39.81 139.6 97-Qi " 89.0 tt 49.76 191.0 120.7 tt 128.0 tf 59-40 234.6 144.1 u 159-4 tt 70-3 1 279.7 170.6 tt 190.7 tt 77.00 317.0 ( 174.2 (321.3 CaHPO, or CaH 4 (P0 4 ) 2 226.0 122.2 CaHPO 4 . 2 H CaH 4 (PO ) r ! .0+ E^O 72.30 35 J -9 301.6 CaH 4 (P0 4 ) 2 169.0 CaH 4 (P0 4 ) 2 .: Hp 69-33 361.1 289-3 a 186.1 M 59 98 419.7 250.2 tt 267.9 tl 53-59 45 J -7 223-7 ft 316.1 tt 44-52 505-8 185.8 tt 393-1 ft 39-89 538.3 166.4 tt 437-4 tt Density of the solution in contact with both salts at 25 = 1.29. SOLUBILITY OF CALCIUM PHOSPHATES IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT DIFFERENT TEMPERATURES. (Bassett, Jr., 1908, 1917.) Results at 25. Results at 40. Results at 50.7. Gms. per 100 Gms. Sat. Sol. Solid Phase. Gms. per 100 Gms. Sat. Sol. Solid Phase. Gms. F Gms. S S- too . Sol. Solid Phase. CaO. P 2 6 . CaO. P 2 O 5 . CaO. p 2 o 6 : 3.088 36.11 CaHiPjjOs.HiO 1.768 42.42 CaH*P 2 8 .H 2 0.336 62.01 CaH*P 2 8 + 4.908 28.34 3.584 36.79 " CaHiPjOg-aO 5.809 24.20 +CaHPO* 5-755 27.25 " +CaHPO* 0.635 58.08 CaH*PjO.H2O 5.523 22.90Ca HPO* 4.813 21.67 CaHPO* 1.428 50.25 " 4-499 17.55 3.810 16.35 2.974 41.92 " 2.638 9.100 2.536 9-905 4.880 33.18 1.878 6.049 1.847 6.979 5.725 29.61 " +CaHPO* 0.826 2.387 1.267 4.397 3.507 15.48 CaHPO* 0.165 0.417 ( ' CaHPO*. 0.576 1.819 2.328 9.465 0.07 0.166 1 2 H 2 O 0.156 0.426 " I.563 6.157 O.o6 0.140 0.0592 0.158 " 0.692 2.281 " 0.05 0.118 " 0.0508 0.128 Ca3P 2 08.HjO 0.0596 0.1527 CaHPO*.aHjO 0.04 0.093 0.0098 0.0262 " 0.0514 0.1331 CaaPjOs-HjO 0.03 0.070! . 0.0709 trace Ca*P 2 9 . 4 H 2 0.0351 0.0942 " 0.02 0.047 f r 'TXPO^'TT r\ 1 0.0814 " " 0.0106 0.0309 " O.OI 0.023J a 4 ' 2 2 0.0840 " " 0.0007 0.0007 " In the case of most of the solutions 7-15 weeks constant agitation was allowed for attainment of equilibrium. For the last seven results at 25, 18 months were required. Cerasine bottles were used in these cases. The solid phases were determined by analysis. The quintuple points were found by dilatometer experiments at 36, 21 and 152. (See next page.) CALCIUM PHOSPHATES 212 SOLUBILITY OF CALCIUM PHOSPHATES IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT TEMPERATURES ABOVE 100. (Bassett, Jr., 1908.) Cms. per 100 Cms Sat. Sol. * -Caa - ' - PloT- SohdPhase, 100 2.503 53-71 CaH4P 2 8 +CaH4P 2 8 .H 2 1 15 b. pt. 5 . 623 43 . 60 CaH4P 2 8 .H 2 0+CaHP04 132 " 4-327 53-43 CaH4P 2 8 +CaH4P 2 8 .H 2 169 " 4-489 63.95 CaH*P 2 8 The quintuple points for the system determined by dilatometer experiments are as follows: 5.60 53 ; CaH4P 2 08+CaH4P 2 8 H 2 0+CaHP04 152 21 36 5.81 0.0514 23.5 0.14 CaH4P 2 Os.H 2 0+CaHP04+CaHP04.2H 2 CaHPO4+CaHP04.2H 2 O+Ca3P 2 Os.H 2 O Salt in Aq. Solvent. Gms. Salt For additional data on the solubility of calcium phosphates in water, see Cameron and Bell, 1905 and 1910. Data for the four component system, lime, phosphoric acid, sulfuric acid and water, the essential constituents of "superphosphates," are given by Cameron and Bell (1906). One liter of aqueous 0.005 n potassium bitartrate solution sat. with calcium phosphate, contains 0.08 gm. Ca and 0.181 gm. HaPO 4 at 25. (Magnanini, 1901.) SOLUBILITY OF CALCIUM PHOSPHATE IN AQUEOUS SALT SOLUTIONS UNDER 2 ATMOSPHERES PRESSURE OF CO 2 AT 14. (Ehlert and Hempel, 1912.) Gm Salt in Aq. Solution. Solventi 70.95 1.777 cone. K 2 SO 4 74-5 cone. NaCl 50 " cone. NaNOs 72.7 Cone. Na 2 SO 4 .ioH 2 O 137.7 conc - per Gms. Water NH4C1 45-74 a cone. (NH 4 ) 2 S0 4 56.5 cone. MgCl 2 .6H2O 86.9 11 cone. MgS0 4 . 7 H 2 105.3 u cone. MgCl 2 .KC1.6H 2 O 79.2 (i cone. MgSO4.K 2 SO4.MgCl 2 .6H 2 O 2.491 4.904 4.765 1.321 0.641 1.583 0.864 2.491 3-227 Gms. Salt per ioo Gms. HaO. 0.228 I-37I 1.293 2.413 5-885 1.287 2.892 1.9728 3.6001 1-577 I.I54 Data for the solubility of calcium phosphate in aqueous saturated solutions of carbon dioxide containing ammonia are given by Foster and Neville, 1910. CALCIUM PELARGONATE (Nonate) Ca[CH 3 (CH 2 ) 7 COO] 2 .H 2 O. CALCIUM PROPIONATE Ca(CH 3 .CH 2 COO) 2 .H 2 O. SOLUBILITY OF EACH IN WATER. (Lumsden, 1902; Krasnicki, 1887.) Calcium Pelargonate. Gms. t". Ca[CH3(CH 2 )7COOla per ioo Gms. H-iO. 20 40 00 80 90 ioo O.l6 0. 14 0.13 0.12 0.15 0.18 0.26 Calcium Propionate. Gms. Ca(CH3.CH 2 COO) 2 per ioo Gms. Water. 42.8O 39-85 38.45 38.25 39.85 42.15 48.44 Solution. 29.97 28.48 27.76 27.67 28.48 29.66 32.63 213 CALCIUM SALICTLATE CALCIUM SALICYLATE Ca(C 6 H4.OHCOO) 2 .3H 2 O. 100 grams of the saturated aqueous solution contain 2.29 grams of the an- hydrous salt at 15 find 35.75 grams at IOO. (Tarugi and Checchi, 1901.) CALCIUM SELENATE CaScO 4 . SOLUBILITY IN WATER (Etard Ann. chim. phys. [7] 2, 532, '94.) t. -i. +5. 20. 37*. 67. Gms. per ioo gms. sol. 7.4 7.3 7.6 6.8 5.1 The accuracy of these results appears questionable. CALCIUM SILICATE CaSiO 3 . SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 17. (Weisberg Bull. soc. chim. [3] 15, 1097, '96.) The sample of calcium silicate was air dried. Grams per ioo cc. Saturated Solution. Solvent. At^i? . After Boiling and Filtering Hot. CaO(det-) ' CaSiO 3 (calc.) CaO(det.) CaSiO s (calc.) Water 0.0046 0.0095 i o% sugar sol. 0.0065 0.0135 0.0094 0.0195 20% sugar sol. 0-0076 0-0157 0-0120 0-0249 FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM SILICATE AND OTHER COMPOUNDS. CaSiO s + CaS (Lebedew, 1911.) -j- CaTiOs (Smolensky, 1911-12.) -j- Li 2 Sip 3 (Wallace, 1909.) + MgSiO 3 (Allen and White, 1911; Ginsberg, 1906.) + MnSiO 3 (Ginsberg, 1908, 1909.) + Na 2 SiO 3 (Wallace, 1909; Kultascheff, 1903.) CALCIUM SUCCINATE Ca(C 2 H 2 2 )2. CALCIUM (Iso) SUCCINATE CaCH 3 .CHC 2 O 4 .H 2 O. SOLUBILITY OF EACH IN WATER. (Miczynski, 1886.) Calcium Succinate. Calcium Iso Succinate. Gms. w Gms. Gms. Gms. t o Ca(C 2 H 2 02)s t o Ca(C 2 H 2 Oi) 2 t Ca(CjHOi)i t Ca(C 2 H 2 O 2 )j per ioo Gms. ' per ioo Gms. ' per ioo Gms. per ioo Gms. H 2 0. HzO. H.O. H>. o 1.127 50 1.029 o 0.522 50 0.440 10 1.220 60 0.894 10 0.524 60 0.396 2O 1.276 70 0.770 2O 0.517 7O 0.342 40 1.177 80 0.657 4 -475 8 0.279 ioo cc. H 2 O dissolve 1.424 gms. CaC 4 H 4 O 4 .H 2 O at 18 and 1.436 gms. at 25 (Partheil and Hubner, 1903.) ioo gms. H 2 O dissolve 1.28 gms. CaC 4 H 4 O 4 at 15 and 0.66 gms. at 100. (Tarugi and Checchi, 1901.) Results for calcium succinate in water, varying considerably from the above and indicating an increase of solubility with temperature, are given by Cantoni and Diotalevi (1905) but the terms used for expressing the results are not stated. ioo cc. 95% alcohol dissolve 0.00136 gm. CaC 4 H 4 O 4 .H 2 O at 18 and 0.00136 gm. at 25. (Parheil and Hubner, 1903.) CALCIUM SULFATB 214 CALCIUM SULFATE CaSO 4 .2H 2 0. SOLUBILITY IN WATER. (Hulett and Allen, 1902; for references to other determinations see Hulett and Allen, also Euler, 1904. For data by the electrolytic conductivity method, see Holleman, Kohlrausch and Rose, 1893, 1908.) Gms. CaSO* t. per 100 cc. Solution. Millimols per Liter. Density of Solutions. Gms. CaSO 4 t. per loo cc. Solution. Millimols per Liter. Density of Solutions O o, 1759 12 .926 I.OOI97 40 o. 2097 15 413 0.99439 10 o, ,1928 14 .177 I.OOI73 55 o. 2009 14 .765 0.98796 18 0. ,2016 14 .817 I . OOO59 65-3 0. 1932 14 .2OO 0.98256 25 0. ,2080 15 .235 0.99911 75 o. 1847 13 575 0.97772 30 o, ,2090 15 .361 0.99789 IOO o. 1619 II .900 35 o, ,2096 15 4S 0.99612 107 II 390 SOLUBILITY OF CALCIUM SULFATE ANHYDRITE AND OF SOLUBLE ANHYDRITE IN WATER. (Melcher, 1910.) t o MiUimols PCr GmS 'Lite S r 4 *** Solid Phase ' loo 11.65 1-586 CaSO 4 .2H 2 loo 11.4 i .55 2 Soluble anhydrite 100 4.6 0.626 Anhydrite 156 3.2 0.436 Soluble anhydrite 156 1.35 0.184 Anhydrite 218 -35 - 0.048 " Data' for the solubility.'of calcium sulfate in sea water are given by Manuelli, 1916. SOLUBILITY OF CALCIUM SULFATE IN .AQUEOUS^SOLUTIONS OF AMMONIUM ACETATE AT 25. (Harden, 1916.) Cms. CH 3 COONH4 per , Cms. CaSO4 per loo Gms. Solution. 100' Gms. Sat. Solution. o I 0.2085 2.13 1.005 0.454 5.34 I. 012 0.752 10.68 1.024 1.146 21-37 1-045 1.755 SOLUBILITY OP CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OP HYDRO- CHLORIC, NITRIC, CHLOR ACETIC, AND FORMIC ACIDS. (Banthisch J. pr. Chem. 29, 52, '84; Lunge J. Soc. Chem. Ind. 4, 32, '85.) In Hydrochloric. In Nitric. In Chlor Acetic. In Formic. Grams Acid Grams CaSO 4 per per TOO cc. io cc. Sol. Gms. CaSO 4 per loo cc. Solution Gms. CaSO 4 per IOO CC. Sol. Gms. CaSO 4 per loo cc. Soi. Solution. at 25. at I02 6 . at 25. at 25. at 25. O .208 o, ,160 O .208 O.2O8 0.208 I .72 I. 38 56 2 I .02 a. 38 .82 3 I 25 3 20 I O2 4 I 42 3.; 64 I .20 0.22 0.24 6 I 65 4' 1 6^ I .48 . . . 8 I 74 . I .70 10 . I .84 0.25 12 . . . , . . I .08 . . . . . . Data for the solubility of mixtures of CaSO 4 (NH 4 ) 2 SO 4 .H 2 O + (NH 4 ) 2 SO 4 and of CaSp 4 (NH 4 ) 2 SO 4 .4H 2 O + CaSO 4 .2H 2 O at various temperatures between 3 and 100 are given by Barre, 1909 and 1911. Additional data for this system, including re- sults for the pentacalcium salt, (NH 4 ) 2 Ca 6 (SO 4 )6.H 2 O, are given by D'Ans, 1909. 215 CALCIUM SULFATE SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SALTS. (In NH 4 C1 and NH 4 NO 3 , Cameron and Brown J. Physic. Chem. g, 210, '05 ; In (NH 4 ) 2 SO 4 at 25, Sullivan J. Am. Chem. Soc. 27, 529, '05; In (NKO-jSCu at 50, Bell and Tabor J. Physic. Chem. 10, InNH 4 Cl InNH 4 NO 3 In NH 4 C1 In NH 4 NO 3 at 25. at 25. at 25. at 25. Gms. Ammo- nium Salt G.CaSO 4 Dissolved G. CaS0 4 Dissolved Gms. Ammo- nium Salt G. CaS0 4 Dissolved G. CaSO 4 Dissolved per Liter. per Liter. per Liter per Liter. per Liter. per Liter. O 2.08 2.08 300 IO.IO 10.80 2O 5-oo 3-70 375 7-40 40 7-00 5-10 400 11.40 60 8.00 6.05 600 12.15 80 8.50 7-00 800 12 .IO IOO 9-10 7-65 1000 ii. 81 J 5o 10.30 8.88 1400 10-02 200 10.85 9-85 sat. 7-55 In (NH 4 ) 2 S0 4 at25. In (NH^SO, at 5o. Grams per Liter Sol. Wt. of ioo CC. Grams per Liter Sol. Sp. Gr. (NH^SO 4 . CaS0 4 . Sat. Sol. '(NH4) 2 S0 4 . CaSO 4 . ' of Solutions. O 2.08 99.91 2.168 . . . 0.129 2.O4 99.91 I5-65 1.609 1.0026 0.258 1.99 99.92 30-67 1-750 I.OII3 0.821 1.81 99-95 91 .6 2.542 1.0440 1.643 1.66 99.99 160.4 3.402 .0819 3.287 1.54 100.10 221.6 4.068 .II08 6-575 1.44 100.34 340.6 5.084 1653 1.46 100.82 416.5 5-354 .1964 26.30 1.62 101.76 428.4 4.632 .2043 84.9 2.33 105.34 530.8 2 .152 2437 169.8 3-33 110.32 566 1. 08 1.2508 339-6 4-50 119.15 566.7 I.25IO SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF CALCIUM SALTS AT 25 (Cameron and Seidell J. Physic. Chem, 5. 643. 'or, Seidell and Smith Ibid. 8, 493, '04; Cameron and Bell J. Am. Chem. Soc. 28, 1220, '06.) In Calcium Chloride. Grams per Liter Sol. In Calcium Nitrate. Gms. per Liter Sol. Wt.of In Calcium Hydroxide and vice versa. Gms. per Liter Sol. Solid " CaCl 2 . CaS0 4 . " Ca(N0 3 ) 2 . CaS0 4 . x cc. Sol. Ca07~ CaS0 4 . Phase. o.oo 2 .06 o.o 2.08 998 .0 2 .126 CaS0 4 .2H,0 7-49 'z .24 25 - 1.24 :z .014 .062 2 .030 II .96 I .18 50 1.20 z .032 O .176 I .918 a 25-77 Z .10 IOO I.I3 z .067 O 349 Z, 853 tt 32-05 I .08 200 o-93 z 137 O .61 z .722 it 51 .53 I .02 300 0.76 z .204 o 939 I, 634 " 97.02 .8 4 400 o-57 i .265 I .222 I. 588 1 CaS0 4 . 2 H 2 O+ ! Ca(OH) 3 192.71 o 47 500 0.40 i .328 I .242 z .214 Ca(OH), 280.30 .20 544 o-35 i 352 I .150 .666 " 367-85 03 I .166 oo M CALCIUM SULFATE 216 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF COPPER SULFATE AT 25. (Bell and Taber, 1907.) Cms, per Liter Sat. Sol. d K Sat. Sol. Gms. per Liter Sat. Sol. CuS04. CaSOi. U23 OO.I. OU1. CuSO4. CaSOi. an oai. aoi. I.I44 - 2.068 1.002 39-407 I.7I8 I.04I 3-564 .986 I.OO5 49.382 1.744 I.05I 6.048 944 I .OO7 58.880 1.782 1.061 7.279 .858 1.009 97-950 I-93I 1.098 14.814 .760 1.016 146.725 2.048 1.146 19.729 736 1. 021 I96.O2I 2.076 1.192 29-543 .688 1.030 224.916 2.088 i. 218 SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND CAESIUM SULFATE IN WATER. (D'Ans, 1908.) t e . 25 60 Mols.CsjS04.CaS04 per 1000 Gms. Sat. Sol. 0.667 0.607 Gms. Cs 2 SO4.CaS04 per 1000 Gms. Sat. Sol 352 320 Solid Phase. Dicalcium Sulfate + Gypsum SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF MAGNESIUM CHLORIDE AND OF MAGNESIUM NITRATE AT 25. (Cameron, Seidell, and Smith.) In Magnesium Chloride. In Magnesium Nitrate. Grams per Liter of Sat. Solution. MgCl 2 . CaS0 4 . HzO." O 2.08 997-9 8.50 4.26 996.5 I9.I8 5-69 994-5 46.64 7-59 989.1 121.38 8.62 972.2 206.98 6-57 949-9 337 2.77 908.7 441.1 i-39 878.6 warns per L,iter solution. Wt. of i cc. Mg(NOs)2. CaS0 4 . Solution. 2.08 0.9981 25 5-77 1.0205 50 7.88 I .0398 100 9.92 1.0786 200 13-34 1.1498 300 14 I.2I90 4OO 14.68 I.282I 514 15.04 1-3553 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF MAGNESIUM SULFATE AT 25. (Cameron and Bell, 19063.) Grams per Lit er Solution. 5 p. Gr. of tions at f$ . MgSO4. CaS04." Sok 2.046 .0032 3-20 1.620 0055 6-39 1.507 .0090 10.64 I.47I .OIl8 21.36 1.478 .O226 42.68 1-558 .0419 64.14 1. 608 .0626 85.67 1.617 0833 128.28 1.627 .1190 Grams per Liter Solution. J p. Gr. of itions at f MgS04. CaS0 4 . *> 149.67 1-597 1 1377 165.7 1-549 3 .1479 I7I.2 1.474 .1537 198.8 i .422 .1813 232.1 1.254 .2095 265.6 1.070 .2382 298 0.860 : .2624 330.6 0.647 OLUT 33.) Resu Gm pe CaS04. ' Solutions at |. 7.920 1.106 8.383 1.145 7.965 I. 221 6.848 1.280 5.572 1.344 IONS OF SULFURIC ACID. Its at 35. Results at 43. s. CaSO 4 Gms. CaSO 4 r Liter. per Liter. Gms. CaSO 4 per Liter. Wt. of Sol I CC. O 00 2 .126 .9991 grams . . . 2 145 O .48 2 .128 I .0025 tt 2 .209 2 236 4 .87 2 .144 I .OO26 (i 2 451 2 456 8 .11 2 .203 I .0051 a 2 .760 16 .22 2 .382 I .0098 n 3 .116 4 8 .67 2 .727 I .0302 tt 3 397 3 .843 75 .00 2 .841 I 0435 tt 4 .146 97 35 2 779 I 0756 (I 3 .606 . . . 146 01 2 571 t( 3 150 4 139 194 70 2 3*3 I 1134 ft 3 551 243 35 I .901 I .1418 tt 2 959 292 .02 I 541 I .1681 It 2 .481 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE AT 21. (Ditte, 1898.) In KC1 Solutions. In KBr Solutions. In KI Solutions Grams of the Potassium Salt per Liter. Gms. CaSO4 per Liter. Gms. CaSO 4 per Liter. Gms. CaSO 4 per Liter. 2.05 2.05 2.05 10 3-6 3-i 2.8 20 4-5 3-6 32 40 5-8 4-5 3-9 60 6.6 5- 2 4-5 80 7-2 5-9 4-85 100 7-5 6-3 5- 1 I2 5 double salt 6-7 5-45 150 ... 7.0 5-8 20O . . . 7-3 5-95 250 . double salt 6.00 300 double salt CALCIUM SULFATE 218 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AND OF POTASSIUM SULFATE AT 25. (Seidell and Smith, 1904; Cameron and Breazeale, 1904.) In Potassium Nitrate. In Potassium Sulphate. Cms. per Liter _, Cms. per Liter SohTtion. Wt.of.icc. Solution. Wt. of i cc. KNOaT CaSOi. fc 2 SO 4 . ' CaSO, o.o 2.08 0.9981 o.o 2.08 0.9981 12.5 3.28 1.0081 4.88 I. 60 1.0036 25.0 4.08 1.0154 5.09 1.56 1.0038 50.0 5.26 1.0321 9.85 1.45 1.0075 ioo. o 6.86 1.0625 19.57 1.49 1.0151 150 7.91 1.0924 28.35 1.55 1.0229 200 8.69 I.I224 30.66 1.57 1.0236 260 syngenite 1.1539 3 2 -47 J-S 8 * * Solid phase syngenite. Results for the solubility of syngenite in solutions of potassium sulphate are also given in the original paper. Data for the solubility of syngenite, K 2 Ca(SO 4 ) 2 .H 2 O, and of potassium pentacal- cium sulfate, K 2 Ca 5 (SO 4 )6.H 2 O, in water at various temperatures, are given by D'Ans (1909). This author also gives results for the effect of the following salts upon the concentration of the boundary solution for gypsum-potassium syn- genite at 25: KC1, KBr, KI, KC1O 3 , KC1O 4 , KNO 3 , CH 3 COOK, KOH, K 4 Fe(CN), K 3 Fe(CN) 6 , NaCl, Nal, NaNOs, CH 3 COONa, HC1, HNO 3 , H 3 PO 4f CH 3 COOH, H 2 SO 4 , Ag 2 SO 4 and cane sugar. Data for the solubility of mixtures of CaSO4.K 2 SO 4 .H 2 O + CaSO 4 .2H 2 and CaSO 4 .K 2 SO 4 .H 2 O + K 2 SO 4 in^water at temperatures between o and 99, are given by Barre (1909, 1911). Data for mixtures of gypsum-rubidium syngenite and of dicalcium salt-syn- genite, at temperatures between o and 40, are given by D'Ans (1909). SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 26. (Cameron, 1901; also Orloff, 1902; Cloez, 1903; d'Anselme, 1903.) Grams per ioo cc. Solution. \\rt. of i cc. Grams per ioo cc. Solution. \yt. of i cc. ' NaCl. CaSOT Solution. ' NaCl. CaSOT Solution. O 0.2I2I 0.9998 17.650 0.712 1.1196 9.115 0.666 1.0644 22.876 0.679 1.1488 14.399 0.718 1.0981 26.417 0.650 1.1707 14.834 0.716 I.IOI2 32.049 0.572 1.2034 SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23. (Cameron and Seidell, 1901 a.) Grams per Liter Solution. Grams per Liter Solution. NaCl. Ca(HC03)2. CaSCh. ' NaCl. Ca(HCO 3 )2. CaSO?. o 0.060 1.930 79.52 0.060 6.424 3.63 0.072 2.72O 121.90 0.056 5.272 11.49 0.089 3.446 I93.8O 0.048 4.786 39.62 o.ioi 5.156 267.60 0.040 4.462 Data for the solubility of mixtures of calcium sulfate and sodium chloride at o-09 are given by Arth and Cretien (1906). Data for the equilibrium CaSO 4 + Na 2 CQ 3 ^ CaCO 3 + Na 2 S0 4 at 25 are given by Herz (191 la). 219 CALCIUM SULFATB SOLUBILITY OF MIXTURES OF CALCIUM SULFATE AND SILVER SULFATE IN WATER. (Euler, 1904.) Per Liter of Solution. Total Salt c r t i. r Co u Cms. Equiv. per 100 Gms. Cms. Salt. Sal Solution Solutions. '7igfsd 4 -35 1:5 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM SULFATE AT 25. (Seidell, Smith, Cameron, Brea/eale.) In Sodium Nitrate. In Sodium Sulfate. Gms. per Liter Solution. \yt. o f T cc . Gms. per Liter Solution. \yt. of r cc. 'NaNO?. CaSO4. ' Solution. ' Na 2 SO4. CaS67 Solution. o 2.08 0.9981 2.39 1.65 1.0013 25 4.25 1.0163 9-54 i-45 1.0076 50 5.50 1.0340 14.13 1.39 1.0115 100 7.10 1.0684 24.37 I -47 1.0205 200 8.79 1.1336 46.15 1.65 1.0391 300 9.28 1.1916 115.08 2.10 1.0965 600 7.89 1.3639 146.61 2.23 1.1427 655 7.24 L3904 257.10 2.65 I.2I2O Data for the solubility of calcium sulfate, sodium sulfate glauberite, sodium sulfate syngenite, separately and mixed, in water at various temperatures, are given by D'Ans (1909) and;'Barre (1911). SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS AND ALCOHOLIC MONO- POTASSIUM TARTRATE SOLUTIONS AT 20. (Magnanini, 1901.) Gms. CaSO 4 Gms. CaSO< Solvent. per 100 Gms. Solvent. per 100 Gms. Solution. Solution. Water 0.2238 10% alcoholic N/ 200 KHC^Oe 0.0866 Aq. N/2oo KHC^Oe 0.2323 Aq. N/2oo KHC 2 H4O 6 +s% tar- 10% alcohol 0.0970 taric acid 0.2566 10% ale. N/4oo KHC 2 H40 6 +5% tartaric acid 0.1086 SOLUBILITY OF CALCIUM SULFATE IN AQUEOUS SUGAR SOLUTIONS. (Stolle, 1900.) Per cent Concen- Gms. CaSC>4 Dissolved by 1000 Gms. of the Sugar Solutions at: Solutions. 30. 40. 50. 60. 70. 80. 2.157 73 1.730 1.652 1.710 10 2.041 1.730 730 i-574 i-574 1.613 20 i. 808 1.652 .419 1.380 1.419 1.263 27 i-55o 1.438 M .361 1.283 1.283 0.972 35 1.263 1.050 .088 1.108 0.914 . . . 42 1.030 0.777 0.816 0.855 0.729 49 . . . 0.564 0.739 0.564 0.603 0.486 55 0.486 0.505 0.486 0.369 0.330 ioogms.glycerolofdi5i.256dissolve5.i7gms. CaSChat i5-i6. (Ossendowski, 1907.) 100 gms. glycerol of d 1.114 dissolve 0.95 gm. CaSO4 at ord. temp. (Asselin, 1873.) CALCIUM SULFATE 220 FREEZING-POINT DATA (Solubilities, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES OF CALCIUM SULFATE AND OTHER SALTS: Calcium Sulfate + Lithium Sulfate (Mailer, 1910.) + Potassium Sulfate (Muller, 1910; Grahmann, 1913.) + Rubidium Sulfate (Muller, 1910.) + Sodium Sulfate (Muller, 1910; Calcagni and Mancini, 1910.) CALCIUM SULPHIDE CaS. SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle.) Per cent Concen- trution of Sugar / Grams CaS Dissolved per Liter of the Sugar Solutions at: Solutions. 30. 40. 50. 60. 70. 80. PC*.' i .982 2.123 I 235 i 390 1.696 2 .032 2.496 10 i .866 I.3I6 I .441 i 6 73 1.560 I 6 3 4 1-544 20 2 .187 I .696 I .802 i 905 1.879 I .892 1.930 2 7 2 .522 2-097 2 059 2 .226 2.342 2 304 2-357 35 2 .689 2.265 2 304 2 .406 2.342 2 857 2.947 42 2 342 2 .136 2 .226 2 .522 2-574 2 509 2.689 49 2 445 2.290 2 458 2 .638 2.728 2 .8l8 3-o 6 3 55 2 509 2.226 2 340 2 .882 2.766 2 .972 3.616 CALCIUM SULFITE CaSO 3 2H 2 O. SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 18. (Weisberg, 1896.) Grams CaSOa per 100 cc. Solution. Solvent. ' At T oo After Boiling At l8 ' Solution 2 Hours. Water 0.0043 .... 10 Per cent Sugar o . 0083 o . 0066 30 Per cent Sugar o . 0080 o . 0069 RESULTS AT HIGHER TEMPERATURES. (Van der Linden, 1916.) Cms. CaS0 3 .2H 2 per 1000 gms. Sat. Solution at. Solvent. 30. 40. 50. 60. 70. 80. 90. b. pt. Water 0.064 0.063 -57 0.06 1 0.045 0-031 0.027 o.on AqSucroseofi5gms.perioo Water+Excess CaSC>4 0.031 0.029 0.025 0.019 0.012 0.009 0.008 0.006 0.032 0.022 0.019 0.021 0.017 0.020 0.021 Aq. Sucrose, 15 gms.+i-S gms. } Glucose per 100 cc.+Excess > 0.032 0.027 0.022 0.020 0.019 0.019 0.019 0.023 CaSO 4 CALCIUM Phenanthrene SULFONATES. SOLUBILITY IN WATER. (Sandquist, 1912.) rv. ,,r.^ Gms. Anhydrous Salt Compound. ^ IQQ g ^ Calcium- 2-Phenanthrene Monosulfonate 0.024 " - 3- " " -2H 2 0.083 " -io- " " . 2 H 2 O 0.30 221 CALCIUM TARTRATE CALCIUM TARTRATE CaC 4 H 4 O 6 .4H 2 O. SOLUBILITY IN WATER. (Cantoni and Zachoder, 1905.) AO Gms. CaCH4O. 4 H2O t o Gms. CaC^HtOj.^jO t o Gms. CaC4H4O 8 .4HiO ** per ioo cc. Sol. per ioo cc. Sol. per ioo cc. Sol. o 0.0365 30 0.0631 70 0.1430 10 0.0401 40 0.0875 80 0.1798 20 0.0475 5 o.noo 85 0.2190 25 0.0525 60 0.1262 ioo gms. aq. Ca. tartrate solution contain 0.0185 gm CaC 4 H 4 O 6 .4H 2 Oat 18, and 0.029489 gm. at 25. ioo gms. 95% alcohol solution contain 0.0187 gm. CaC 4 H 4 O 6 .4H 2 O at 18, and 0.02352 gm. at 25. (Partheil and Hiibner, 1903.) ioo gms. aq. Ca. tartrate solution contain 0.0364 gm. CaC 4 H 4 O 6 at 20. ioo gms. 10% alcohol solution contain 0.0160 gm. CaC 4 H 4 O 6 at 20. ioo gms. aqueous 5% tartaric acid solution contain 0.1632 gm. CaC 4 H 4 O6 at 2O. (Magnanini, 1901.) SOLUBILITY OF CALCIUM TARTRATE, CaC 4 H 4 O 6 .4H 2 O, IN AQUEOUS ACETIC ACID SOLUTIONS AT 26-27. (Herz and Muhs, 1903; see also Enell, 1899.) Normality of Gms. CHsCOOH Residue from Normality of Gms. CHsCOOH Residue from Acetic Acid. per ioo cc. Sol. 50.052 cc. Sol. Acetic Acid. per ioo cc. Sol. 50.052 cc. Sol. o o 0.0217 3.80 22.80 0.2042 0.57 3.42 0.1082 5.70 34.20 0.1844 1.425 8.55 0.1635 10.09 60.54 0.1160 2.85 17.10 0.1970 16.505 93.03 0.0337 The residue was dried at 70 C. SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS SOLUTIONS OF CALCIUM _j CHLORIDE, TARTARIC ACID, ETC., AT 18. (Paul, 1915.) (The determinations were made by weighing the tartrate remaining undissolved and calculating the amount dissolved by difference. It was found that even a small amount of CO 2 in the water had a distinct influence on the solubility. One liter of pure CO 2 free water was found to dissolve 0.380 gm. CaC 4 H 4 O 6 .4H 2 O at 1 8 and one liter of ordinary distilled water, 0.410 gm. at the same temperature.) Results for Aque- Results for Aqueous Results for Aque- Results for Alcoholic ous Calcium Dipotassium Tar- ous Tartaric Tartaric Acid Chloride Solution. ' Gms. per Liter. trate Gms. per Sols. Liter. Acid Sols. Gms. per Liter. Sols. Gms. per Liter. CaCU. CaQaOe. kjC4H 4 O6. CaC4H4Oe. . 4 H20. n TT n CaC4H 4 6 . L4-n.6vJ6* TT f\ 4rl2U. CzHsOH. OHeOe. CaC4H 4 O. 0.503 0. 202 0.392 0.166 i .910 50 0.263 1.005 o. 179 2 139 0.160 2 I .162 (4 4 I.I07 3.518 0. 166 2 352 o.i57 4 I 5" (4 16 i.8 S 4.523 0. 154 2 .614 0.150 6 I .776 80 O 0.205 o. 154 4 705 0.223 8 I .972 tt 4 0.867 7-538 0. 171 23 524 0.263 10 2 .205 u 16 1.506 IO.O5 0. 177 47 .048 0.305 12 2 .380 IOO o 0.190 25.125 o. 182 14 2 .514 u 4 0.766 50.25 0. 224 16 2 .643 14 16 1.297 Data for the effect of potassium chloride and of potassium acetate upon the solubility of calcium tartrate in aqueous 0.5 normal acetic acid solutions at 25, and also for the effect of potassium monochloracetate upon the solubility of the salt in 0.5 normal chloracetic acid solutions at 25, are given by Henderson and Taylor (1916). CALCIUM TARTRATE 222 SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS SOLUTIONS OF AMMONIUM, POTASSIUM AND SODIUM CHLORIDES AT SEVERAL TEMPERATURES. (Cantoni and Jolkowsky, 1907.) NOTE. (The authors refer in all cases to their determination of the amount of decomposition of the tartrate by the aqueous chloride solutions. Constant agita- tion and temperature were maintained.) Cms. Chloride per Liter Solvent. 5 10 30 IOO 2OO Cms. Ca Tartrate Dissolved at 16 per Liter of Aq.: t a . 16 30 55 70 85 Cms. Ca Tartrate per Liter of 7% Aqueous: NH4C1. KC1. NaCl 0.701 0.643 0.680 0.861 0.822 0.840 I.28l I.lSo 1.305 1.897 J -753 i -860 2.305 2. 110 2.163 NH 4 C1. KC1. NaCl. 1.676 1.504 1.637 2.417 2.031 2.275 3.712 2.154 3.579 5.080 2.546 4.148 6.699 4.264 6.305 CALCIUM BITARTRATE CaH 2 (C 4 H 4 O 6 ) 2 . SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS OP ACIDS AND OF SALTS. (Warington J. Chem. Soc. 28, 946, '75.) In Hydrochloric Acid. In other Acids and in Salt Solutions at 14. Acid or Salt. GmsAcidorSalt Gms.CaH 2 (C 4 H 4 O 6 ) a per loo cc. Sol. per 100 cc. Sol. Acetic Acid Tartaric Acid Citric Acid Sulphuric Acid Hydrochloric Acid Nitric Acid Potassium Acetate Potassium Citrate Cone, of HC Gms. per loo Gms. Sol 1 Gms. CaH 2 (C 4 H 4 O 6 ) 2 per 100 Gms. Solvent. At 22. At 80. O O.6OO 4-027 0.68 3-01 5-35 2.15 6.88 "35 4.26 11.19 20.23 8. 3 6 22.75 40.93 16.13 48.31 80.12 0.81 0.422 1.03 0.322 0.84 0.546 0.685 1.701 0.504 1.947 0.845 1.969 1-387 0.744 1-397 0.843 CALCIUM THIOSULFATE CaS2O,.6H 2 O. SOLUBILITY OF CALCIUM THIOSULFATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE AT 9 AND 25 AND VICE VERSA. (Kremann and Rodemund, 1914.) Results at 9. Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol Solid Phase. Sat. Sol. NazSzOj. CaSzOa. NazSzOs. CaSzO. 29.4 CaS 2 O 3 .6H 2 O o 34-7 II .04 22.64 " 9.24 29.69 25.21 15 .84 "+Na 2 S 2 O 3 .5H 2 O 15 .67 21.41 31.01 7.70 Na2S2O 3 .5H 2 O 18.34 25.18 28.24 21 .14 30.19 20.33 31.24 18.43 35-04 ii. 61 Results at 25. Solid Phase. CaS 2 O 3 .6H 2 O Data are also given for the quaternary systems, CaS 2 O 3 +Na2S 2 O3+NaNO3 +H 2 O and CaS 2 3 +Ca(NO 3 ) 2 +NaNO 3 + H 2 O at 9 and 25. A triple salt of the composition CaNa^SzOs^NOa.iiHaO was obtained. 223 CALCIUM VALERATE CALCIUM VALERATE Ca[CH 3 (CH 2 ) 3 coo] 2 .H 2 o. CALCIUM (Iso) VALERATE Ca[(CH 3 ) 2 .CH.CH 2 .COO] 2 .3H a O. SOLUBILITY OF EACH IN WATER. (Lumsden J. Chem. Soc. 81, 355, '02; see also Furth Monatsh. Chem. 9, 313, '88; Sedlitzky Ibid, 8, 566, '87.) Calcium Valerate. Gms. CaCCsHoO^a 40^ per TOO Gms. t . Water. Solution. O 9.82 8.94 o IO 9' 2 5 8-47 10 20 8.80 8.09 20 30 8.40 7-75 30 40 8.05 7-45 40 5 7-85 7.28 45 57 7-75 7.19 5 60 7.78 7.22 60 70 7-80 7.24 70 80 7-95 7-36 80 90 8.20 7.58 90 100 8.78 8.07 TOO Calcium Iso Valerate. Gms. Ca(C s H 9 O2) 2 per 100 Gms. bond Phase. 'Water. Solution. 26.05 2O.66 (XC.H.O.VaH.O 22.70 18.50 ti 21. 80 17.90 tt 21.68 17.82 " 22.00 18.18 " 22.35 18.42 " 19-95 16.63 GKC.H.O.kH.O 18.38 I5-52 " 17.40 14.82 tt 16.88 14.44 11 16.65 14.28 " l6 -55 14.20 " CAMPHENE Ci H 16 . Freezing-point data (solubility, see footnote, p. i) are given by Kurnakov and Efrenov (1912) for mixtures of camphene + methylmustard oil, camphene-f- naphthalene and camphene + phenanthene. CAMPHOR C 10 H 16 O d and /. APPROXIMATE SOLUBILITY OF d CAMPHOR IN SEVERAL SOLVENTS AT ORDI- NARY TEMPERATURE. (U. S. P., Squires; Greenish and Smith, 1903.) Parts Camphor Solvent. per 100 Parts Solvent. Solvent. o . 08-0 . 14 100 Parts Camphor per 100 Parts Solvent Water 90% Alcohol 95% Alcohol Ether 125 173 Carbon Disulfide Readily Soluble Chloroform Olive Oil Turpentine Glacial Acetic Acid Lanolin 300-400 25-33 66 200 12-5 (Klose,ioo7). Saturated solutions of d camphor and of / camphor in turpentine of ap =4.38 (in a 10 cm. tube at 18) were found to have di& = 0.9028 and 0.9030 respectively; the mo Camphor per Solvent. per IOQ parts Solvent> I00 Parts Solv ; nt . ^ Alcohol 12. i at 15 Ether 50 " 19.7 " 25 Chloroform 143 130.0 " 50 Olive Oil 12.5 " 705.0" 61 95% Formic Acid 13.6 (Aschan, 1913.) Freezing-point data (solubility, see footnote, p. i) are given for mixtures of /bromo- camphor + d chlorocamphor by Padoa (1904) ; for mixtures of d bromocamphor + / bromocamphor by Padoa and Rotondi (1912); for mixtures of bromocamphor -j- stearine by Batelli and Martinetti (1885); /3 bromocamphor + salol by Caille, 1909. CAMPHOROXIME Ci H 16 : NOH d and /. 100 gms. turpentine dissolve 8.68 gms. d oxime at 18, dn = 0.8784, ap = 2.30 in 10 cm. tube. 100 gms. turpentine dissolve 8.69 gms. / oxime at 18, du = 0.8782, an = 18.24 in 10 cm. tube. a D of the turpentine = 4.38 in a 10 cm. tube at 18. In the case of results in / amyl bromide the d^ = 1.199 i n both cases and the OD was 3.55 (10 cm. tube) for the d oxime and + 11.48 for the / oxime. The etj> of the amyl bromide was +4.6 in 10 cm. tube at 18. The results show that the solubility and rotatory power of the d and / isomerides are identical in an optically active as well as in an inactive solvent. Freezing-point data are given for mixtures of d and / camphoroxime by Beck (1904) and Adriani (1900). CAMPHORIC ACID C 8 H 14 (COOH) 2 . loo gms. of water dissolve 0.8 gm. C 8 Hi 4 (COOH) 2 at 25, and 10 gms. at the b. pt. (U.S.P.) SOLUBILITY OF CAMPHORIC ACID IN AQUEOUS SOLUTIONS OF ALCOHOL AT 25. (Seidell, 1908, 1910.) Wt. % C2H 5 OH CzHsOI 0.032 40 17 0.206 40 II o, ,80 40 9 .6 0.080 40 15 8 0.81 40 IO .8 2 ,OI 40 8.8 0.405 40 14, ,8 2.01 40 10 .2 O .20 40 8.1 2.404 40 14 5 3.22 40 9 .8 4.061 40 13 ,8 Results at 40. Results at 60. Gms. Caoutchouc, cc. CH. cc. Abs. CzHsOH. Gms. Caoutchouc, cc. CeHe. cc. Abs. CjHsOH, 0.2 40 18.8 0.2 40 N 2i.6 i.o 40 18.1 i 40 23.3 2 40 17.4 2 40 24.4 SOLUBILITY OF CAOUTCHOUC IN MIXTURES OF BENZENE AND ACETONE. (Caspari, 1915.) Results at 20. ; Results at 40. Results at 60. Gms. r- TT ~ cc. Gms. ^ TT cc. Gms. r TT cc. Caoutchouc. <* UH *' (CHs^CO. Caoutchouc. cc ' UH(> - (CH 3 ) 2 CO. Caoutchouc. cc 6H6 ' (CH 3 ) 2 CO. o.n 20 i$-7 o.io 20 19.6 o 10 20 23 0.80 20 15.0 0.98 20 17.6 i.oi 20 26.4 1.86 20 14-7 CARBAMIDES. SOLUBILITY IN SEVERAL SOLVENTS. (Walker and Wood. 1898.) as Methyl phenyl carbamide (m. pt. 82), benzyl carbamide (m. pt. 149). o tolyl carbamide (m. pt. 185) and p tolyl carbamide (m. pt. 173). Gms. Each Carbamide Separately per 100 cc. Sat. Solution. Solvent. t. / * v as Methyl Phenyl. Benzyl. p Tolyl. o Tolyl Water 45 74 1.71 0.307 0.251 Acetone 23 29.4 3-io 2.66 0.462 Ether 22.5 2.28 -53 0.062 0.0162 Benzene 44-2 12.4 0.0597 -43 - OI 5S 100 gms. chloroform dissolve 0.6-0.7 g m - diiododithio carbamide (CSN-jH^Iz at temp, not stated. (Werner, 1912.) 227 CARBAZOLE CARBAZOLE (Diphenylene imide) (C 6 H 4 ) 2 NH. 100 grams abs. alcohol dissolve 0.92 gm. (C 6 H 4 ) 2 NH at 14, and 3.88 gms. at b. pt. loo gms. toluene dissolve 0.55 gm. (C 6 H 4 ) 2 NH at 16.5, and 5.46 gms. at b. pt. Freezing-point data are given for mixtures of carbazole and phenanthene by Garelli (1894). CARBINOL CH 3 OH, see Methyl alcohol, p. 435. Trimethyl CARBINOL (CH 3 ) 3 COH, Triphenyl CARBINOL (C 6 H 5 ) 3 COH. Freezing-point data (solubilities, see footnote, p. i) are given for mixtures of trimethyl carbinol and water by Paterno and Mieli (1907). Results for tri- methyl carbinol + phenol, trimethyl carbinol + thymol and trimethyl carbinol + bromotoluene are given j^by Paterno and Ampola (1897). Results for triphenyl carbinol + phenol are given by Yamamoto (1908). CARBON DIOXIDE CO 2 . SOLUBILITY IN WATER. (Bohr, 1899; Geffcken, 1904; Just, 1901.) Solubility in Water. Il NaCl % ^NaCl^ ** ' ~ ~^ft~ ~T^ V ft. ' o 0.335 I -7 I 3 1-234 0.678 5 0.277 1.424 ... 1.024 0.577 10 0.231 1.194 0.875 0.503 15 0.197 1.019 1.070 0.755 0.442 20 0.169 0.878 ... 0.664 0.393 25 0.145 0.759 0.826 0.583 0.352 30 0.126 0.665 ... 0.517 0.319 40 0-097 -S3 0.414 0.263 50 0.076 0.436 ... 0.370 0.235 60 0.058 0.359 ... 0.305 0.183 q = wt. of gas dissolved by i oo grams of solvent at a total pressure of 760 mm. ft = the Bunsen Absorption Coefficient which signifies the volume (v) of the gas (reduced to o and 760 mm.) taken up by unit volume (V) of the liquid when the pressure of the gas itself minus the vapor tension of the solvent is 760 mm. _ v * ~ V(i + 0.00367 /) ' / = the Ostwald Solubility Expression which represents the ratio of the volume (v) of gas absorbed at any pressure and temperature, to the volume (V) of the absorbing liquid, i.e. I = - This expression differs from the Bunsen Absorption Coefficient, ft, in that the volume (v) of the dissolved gas is not reduced to o and 760 mm. The solubility / is therefore the volume of gas dissolved by unit volume of the solvent at the temperature of the experiment. The two expressions are related thus: 0.00367 /), ft = , A (i + 0.00367 SOLUBILITY IN WATER AT PRESSURES ABOVE ONE ATMOSPHERE. (Wroblewski Compt. rend. 94, 1335, '82.) pressure Coefficient of Saturation* at: .Pressure Coefficient of Saturation * at : in Atmos- , - - - - > m Atmos- . - - - - Dheres. I2 -4 pheres. - 12.4. i 1-797 i. 086 20 26.65 17.11 5 8.65 5.15 25 30.55 20.31 10 16.03 9-65 3 33-74 23.25 * Coefficient of absorption is no doubt intended. CARBON DIOXIDE 228 SOLUBILITY OF CARBON DIOXIDE IN WATER AT HIGH PRESSURES. (Sander, 1911-12.) NOTE. The pressures varied from 25 to 170 kilograms per square centimeter. The results are expressed in terms of the volume of CC>2, reduced to I kg. per sq. centimeter, dissolved by unit volume of liquid at the temperature and pressure of the experiment. A Caillet apparatus, provided with the well-known Caillet tube, was used. The experiments were made with very great care. In general, the procedure consisted in compressing CO2 above mercury in the closed milli- meter graduated end of the Caillet tube and taking many readings on the scale at various pressures and temperatures. The volumes thus found were compared with similar readings made after a known amount of solvent had been introduced above the layer of mercury, by means of a graduated pipet with turned-up end. The differences show the volume of CO 2 dissolved at given temperatures and pressures. Two series of determinations were made. In the case of the results marked (a) the used volume of water was 0.210 cc. and for those marked (6) the volume was 0.102 cc. The volumes of CO 2 used, varied from 60 to 76 cc. 20 35 a 60 tt SOLUBILITY OF CARBON DIOXIDE IN WATER EXPRESSED IN TERMS OF THE FAHR- ENHEIT SCALE OF TEMPERATURE AND POUNDS PER SQUARE INCH PRESSURE. (Heath, 1915; Anthony, 1916, see also Riley, 1911.) (The existing data were calculated to this form, particularly for use in the bottling industry.) Volumes of CCfe Gas Dissolved by One Volume of Water at: Pressure in Kg. per Sq. Cm. cc. of COa (Reduced to i Kg. per Sq. Cm.) Dis- solved by i cc. HzO. r. Pressure m Kg. per Sq. Cm. , Cc. CO2 (Reduced to i Kg. per Sq. Cm.) Dissolved by i cc- H 2 O. (a) (ft) (a) (6) 25 . . . 17.77 60 90 22.74 21. l6 30 . . . 19.77 u 100 26.22 27.85 40 ... 21 .52 It 110 28.92 28.79 50 . . . 28.09 tl 120 30.20 33-90 55 . . . 29-75 100 00 8.97 . . . 30 11.77 13-57 tt 70 IO.II 6.40 40 14.82 20 n 80 11.05 9-59 5o 18.96 24.64 tt 90 12.62 10.85 00 22 .90 22 .50 a 100 I3-63 12.40 70 27.18 27.62 it no 14.88 16.31 80 . . . 32.85 tt 120 16.40 15-78 40 10.88 9.80 tt 130 17-93 16.89 50 12.24 I3-72 tt I4O 19.56 17.71 60 14.46 15.28 tt 150 20.58 17.49 70 16.80 17.46 tt 160 22.07 80 19.74 22.67 tt 170 22.78 Inch Pressure 32. 36. 40. 44. 4 8. 55. 60. 65. 70. 75- 80. 85. 90. is 3.46 3-iQ 2.93 2.70 2tso 2. 2O 2.02 1.86 I.7I 1.58 1.84 4-35 *- 2 7 20 4.04 3-73 3.42 3-15 2^2 2-57 2.36 2.17 2 1.84 1.69 1.58 1.48 25 4.58 4.27 3.92 3.61 3-35 2.04 2.69 2.48 2.29 2.IO i-93 1.80 1.70 30 5.21 4.81 4.41 4.06 3-77 3.31 3.03 2.80 2.58 2.37 2.18 2.03 1.91 35 5.80 5-35 4.91 4-52 4.19 3-69 3-37 3- 11 2.86 2.63 2.42 2.26 2.13 40 6.37 5-89 5-39 4.97 4.61 4.05 3.71 342 3.15 2.89 2.67 2-49 2.34 45 6.95 6.43 5.88 5-43 5.03 4-43 4.06 3-74 3-44 3-i6 2.91 2.72 2.56 5 7-53 6-95 6.36 5-89 5-45 4.80 4.40 4.05 3-73 3-42 7.16 2.94 2.77 55 8.ii 748 6.86 6-34 5.87 5.17 4-74 4.37 4.02 3.69 3-4 3.17 2.99 60 8.71 8.02 7-35 6.79 6. 20 >53 5.08 4.68 4-31 3-95 3-64 3-39 3-20 70 9.86 9.09 8.33 7.70 7-13 6.27 5-76 5-30 4.89 4.49 4.14 3-86 3-63 80 1 1. 02 10.17 9.3i 8.6 1 7.98 7 6-43 5.92 5.46 5.02 4.62 4.31 4.06 00 12. 18 11.25 10.30 9-52 8.82 7.74 7.11 6-54 6.04 5.55 5.12 4-77 4-49 100 13-34 12.33 11.29 10.43 9.66 8-4 7.79 7.18 6.62 6.08 <.6o 5.22 4-9 1 SOLUBILITY OF CO 2 IN 229 CARBON DIOXIDE AQUEOUS SOLUTIONS OF ACIDS AND SALTS. (Geffcken.) Aq. Gms. Acid C0 2 Dissolved, / at: Aq. Gms. Salt CO 2 Dissolved, / at: Solvent. per Liter. 15- 25- Solvent per Liter. 15. 25. HC1 18.23 I .043 0.806 CsCl 84.17 I .OO6 .781 " 36.46 I .028 0.799 KC1 37-30 0.976 759 tt 72.92 I .000 0-795 ]C1 74.60 0.897 o .700 HN0 3 3I-52 I .078 0.840 KI 83.06 0.992 775 " 63-05 I .086 0-853 KI 166.12 0.923 o .727 Cl 126.10 I .100 0.877 KBr 59-55 0.986 o .768 H 2 SO 4 24.52 I .018 0.794 KBr 119.11 0.914 713 tt 49 . 04 o .978 0.770 KNO 3 50.59 1.005 o .784 t( .98.08 o .917 0.730 KN0 3 101.19 0.946 o 749 n 147.11 o .870 0.698 RbCl 60.47 0.989 .769 n 196.15 o .828 0.667 RbCl 120.95 0.921 o .788 SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS. (Mackenzie, 1877.) Salt in Gms. Salt per Density of Absorption Coefficient a at: Solution. 100 Gms. Solution. Solution 15". ' go 15. 22. KC1 6.05 i .021 0.988 o-777 o .670 tt 8.646 1-053 0.918 0.777 o .649 " 11.974 1.080 0.864 0.720 o 597 tt 22.506 1-549 0.688 o-57i o .480 NaCl 7.062 1.038 0.899 (6.4) o-735 it 12.995 1.080 0.633 (6.4) o.557 o .482 11 17.42 1.123 0.518 (6.4) 0.431 389 tt 26.00 I-I95 o-347 (6.4) 0.297 o 263 NH 4 C1 6.465 i .021 1.023 0.825 o .718 " 8.723 1.047 1. 000 0.791 .702 " 12.727 1-053 0.922 0.798 o .684 tt 24.233 i .072 0.813 (10) 0.738 .600 8. 16-5. 22. 30. BaCl 2 7.316 .068 0.969 0.744 0.680 .566 tt 9-753 .092 I .O2I 0.645 0.607 543 tt 14.030 137 . . . 0.618 0.524 o .467 tt 25-215 273 0-495 0.618 0.383 315 SrCl 2 9.511 .087 0-779 0.663 -508 tt 12.325 1159 0-737 0.586 0.507 o 539 n 17.713 173 0.606 o-473 0.444 367 " 3i-i94 343 0.285 0.245 0.247 o .223 CaCl 2 4-365 .036 0.942 0-759 0.673 596 tt 5-739 I .049 0-855 0.726 0.616 527 tt 8.045 I .068 0.838 0.674 0.581 .500 tt 15-793 I *39 0.632 0.520 0.471 .400 Data for the solubility of CO 2 in sea water are given by Hamberg (1885). According to Fox (19093.), analyses of sea water all show an excess of base over acid, that is, when COi Is left out of account. This COz (about 50 cc. per liter) is, of course, in equilibrium with the excess of base, which is actually equal to about 40 rngs. OH per liter. The partial pressure of COz very seldom, if ever, exceeds 6 in 10,000. For the determination of the absorption coefficient of COz there are, consequently, four independent variables to be considered; influence of alkalinity, a chemical influence in addition to the purely physical influences of temperature, pressure and salinity. For convenience, the dissolved COz may be considered as made up of two parts, about i % dependent upon physical influences alone and a far larger part dependent upon the alkalinity, pressure and temperature, but independent of salinity. Extensive experimental determinations are described. A critical review of the literature on the solubility of carbon dioxide in water and in sea water is given by Coste (1917). CARBON DIOXIDE 230 SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF SALTS (Setschenow, 1892.) (Results expressed in terms of cc. CO 2 (at o and 760 mm.) dissolved sat. solution.) Salt. Cms. Salt per Dis- solved Salt. Cms. Salt per Dis- solved Salt. Cms. Salt per Dis- solved Liter. C0 2 . Liter. C0 2 . Liter. C0 2 . NH4C1 I 1.005 LCI 16.72 1-035 NaCl 12.9 0.978 M IO 0.985 i 50.15 0.808 64 0.760 tt 51.6 0.941 t 125.4 0.596 t 128 0.580 tt 172 0.819 i 250.8 0.497 t 192 0.466 tt 258 0.770 i 501.5 O. I2O NaBr II5.I 0-775 NI^NOa 2.8 1.013 MgS0 4 26.5 O.9OI 1 460.3 0.364 ' II. 2 I.OO2 a 79-5 0.669 ( 690.4 O.22I < 55 0.989 it 159 0.441 NaNOa 89.3 0-835 i IOI 0.962 n 3i8 0.188 u J 25 0.762 t 202. i 0.9II KBr 83-9 0.908 M 208.4 0.621 i 404-3 0.807 " 167.7 0.819 U 416.8 0.385 t 810.4 0.612 u 25*. 5 0.748 ft 625.2 0.244 (NH4) 2 S0 4 72.2 0.712 tt 503.1 0-579 NaClO 3 233-3 0.625 u 144.4 0.575 KI 3*9- 1 0-777 ait. 5_ bat. wa i<| j? x _ ' pression /2B. Water alone 0.825 Fe(SO 4 ) (NH 4 ) 2 SO 4 .6H 2 O 9.51 1.052 0.641 NH 4 C1 2.35 1.005 0-79 1 10.26 1.057 0.629 .124 0.460 .008 0.792 --.-., -017 0.764 BaCl 2 2.80 .018 0.789 4.58 .026 0.749 .044 0.701 .009 0.813 .... . .018 0.798 Chloral Hy- ( 5.08 .019 0.815 9-68 .038 0.767 drate } 10.12 .041 0.795 I2 -33 -051 0.744 Data for KC1 solutions at higher pressures are given by Findlay and Creighton, 1910. Data for the influence of colloids and fine suspensions upon the solubility of carbon dioxide in water at 25 and at various pressures are given by Findlay, 1908; Findlay and Creighton, 1910, 1911; Findlay and Shen, 1911, 1912; Findlay and Williams, 1913; Findlay and Howell, 1915. The solubility of CO 2 increases slightly with increasing concentrations of Fe(OH) 8l gelatine, silicic acid, aniline (chem. combination occurs), methyl orange, blood, serum, peptone, protopeptone, and commercial hemoglobin. The solu- bility diminishes slightly with increasing concentrations of arsenious sulfide, dextrine, soluble starch, glycogen (?), egg albumen and serum albumen. No appreciable effect is produced by suspensions of charcoal or silica. ^When the solubility is increased by a given substance, the solubility curve falls with increase of pressure; when it is lessened, the curve rises with increasing pres- sure. In the case of starch and other neutral colloids, the solubility passes through a minimum with increase of pressure. Data for the influence of colloids and suspensions on the evolution of COj from supersaturated solutions, are given by Findlay and King, 1913-14. 231 CARBON DIOXIDE SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SALT SOLUTIONS AT 15.5 AND 760 MM. PRESSURE. (Christoff, 1905.) A gravimetric method was used. A stream of CO 2 was passed through the weighed salt solution and, after saturation, the solution again weighed and the dif- ference taken to represent absorbed CO 2 . The loss of water from the solution was prevented by first passing the CC>2 through a series of U-tubes containing some of the same solution. Constant temp, was not employed, but corrections of the results were made for the slight variations in temp, which occurred. Absorption flasks of special shape, graduated to hold 75 cc., were used. Salt in Aq. Solution. Water Alone (NH 4 ) 2 SO 4 K 2 A1 2 (S0 4 ) 4 .2 4 H 2 NH 4 HB 2 O 4 CuSO 4 LiCl KBr KC1 KI KNO 3 K 2 HAsO 4 KH 2 As 3 O 4 KH 2 PO 4 K 2 HPO 4 Gms. COiz Gms. CO Cone, of Absorbed Salt in Aq. Cone, of Absorbed" Aq. Sol. per 75 cc. Solution. Aq. Sol. per 75 cc. Solvent. Solvent. 0.1382 K.P4012 i normal 0.1237 i normal o . 1093 KHSO 4 0.66 O.IO2O i 0.0991 u 2. O. IOOO i o . 1054 K 2 S0 4 0.66 0.1140 0.25 0.7672 " i 0.1002 2 0.0751 Na 4 B 4 (>7 0.025 0.2205 I 0.1087 " o. 125 0.5317 0-5 0.1209 " 0.25 O.85II I O. IO2O M sat. sol. 1.8285 2 O.O662 H " -f-crysts. 3.2240 4 0.0527 NaBO 2 0.25 normal 0.8122 i 0.1280 NaCl i o. 1050 i O.I2I3 Na 3 PO 4 .i2H 2 O i 0.5828 i O.I2O4 Na 4 P 2 O 7 .ioH 2 O i o . 8463 i O.I23I Na 4 P 4 Oi2 i 0.0700 0.5 O. IIIO ZnSO 4 2 0.0720 i 0.0812 Sugar O.I o. 1225 i 0.0860 " 0-5 o. 1089 0.5 ' o.490o(?) u i 0.0931 SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF SULFURIC ACID. Results at 15.5. Per cent Cms. CO 2 H 2 SO 4 Absorbed per in Solvent. 75 cc. Solvent. 2.5 0.1282 5 0.1079 10 0.0833 20 0.0755 30 0.0751 (Christoff, Per cent H 2 S0 4 in Solvent. 40 45 70 90 1905.) Cms. CO 2 Absorbed per 75 cc. Solvent. 0.0713 0.0725 0.0918 0-1433 Results at 20. (Christoff, 1906.) Per cent H 2 SO 4 in Solvent. o 35.82 6l.62 95.6 96 Solubilit Ostwald Expres- 0.9674 0.6521 0.7191 0.9924 j8 = 0.926 (Bohr, 1910.) SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF CHLORAL HYDRATE AND OF GLYCEROL AT 15. Results in terms of the Bunsen absorption coefficient 0, and also the Ostwald (von Hammel, 1915.) solubility expression / (see p. 227). In Aq. Chloral Hydrate. In Aq. Glycerol. CC1,.CH(OH) 2 per Abs -Coef., 100 Gms. Aq. Sol. ft5 ' Solubility, (CH^CHOH per Aba. Corf., 100 Gms. Aq. Sol. Solubility, 17.7 0.885 0-935 1.008 I .064 31.6 0.803 0.848 26.11 0-785 0.829 38.3 0.781 0.825 43-72 0.639 0.675 49-8 0.760 0.802 62.14 0.511 0.540 57-i 0.765 0.808 77-75 0.430 0-454 68.8 0.797 . 0.842 90.74 0.404 0.427 79-4 0.903 0-953 99.26 0.410 0.438 CARBON DIOXIDE 232 SOLUBILITY OP CARBON DIOXIDE IN ALCOHOL. (Bohr Wied. Ann. Physik. [4] IP 247, 'oo) In 99 per cent Alcohol. In 98.7 per cent Alcohol. cc. COg (at o and^ 760 mm.) per i cc. cc. COz (at o and^?6o mm.) per r cc. b . 'Alcohol. Sat. Solution. -65 38.41 35-93 2O 7-51 7.41 10 5-75 5-69 4.44 4.40 + 10 3-57 3-55 20 2.98 2 .96 2 5 2.76 2-74 30 2-57 2.56 40 2.20 2.19 45 2 .01 2.00 Alcohol. 39 -89 7-25 5-43 4-35 Sat. Solution. 37-22 7 .l6 5-38 4-31 SOLUBILITY IN AQUEOUS ALCOHOL AT 20. (Muller, 1889; Lubarsch, 1889.) Density of Per cent Abs. Coef. Density of Per cent Abs. Coef. Alcohol. Alcohol by Wt. of COz, a. Alcohol. Alcohol by Wt. of COz, a. 0.998 1.07 0.861 0.922 49.O 0.982 0.969 22.76 0.841 0.870(18.8 i) 7I.I 1.293 0.960(22.4) 28.46 0.792 0.835(16) 85.3 1-974 0.956 3 I - I 7 0.801 0.795(19) 99-7 2.719 o.935(i7 ) 42.15 0.877 SOLUBILITY IN AQUEOUS ALCOHOL AT 25. (Findlay and Shen, 1911.) Results for alcohol, Results for alcohol, Results for alcohol, of df| = 0.9931 of dft = 0.9929 of dft = 0.9834 (2.95 gms. per 100 cc.). (3.01 gms. per 100 cc.). (8.83 gms. per 100 cc.). Pr Solubility of COz, Prpc< Solubility of COz, mm H OstwaldExpres- mm H Ostwald Expres- sion /25. Sion /2o. Pressure Solubffity of COz, mm S Hg e . StW ^ d n t preS - 737 0-812 745 0.814 747 0.786 836 0.813 937 0.815 942 0.784 1073 0.811 1083 0.813 1090 0.785 1338 0.811 1357 0.812 1360 0.788 These authors also showed that the solubility of COz in wort containing 13 gms. solids per 100 cc. is less than in water; also that the solubility of CO 2 in beer is less than in aqueous alcohol solutions of alcohol content equal to that of the beer. SOLUBILITY OF CARBON DIOXIDE IN AQUEOUS SOLUTIONS OF NON- ELECTROLYTES AT 20. Results in terms of the Bunsen Absorption Coefficient /3, see p. 227. (Usher, 1910.) Aqueous Solu- tion of: Gm. , Mols.per d Liter. 20 of Aq. Absorp- tion Coef. 0. Aqueous Solu- tion of: Liter. 20 OI AQ. Absorp- tion Coef. 0. Water Alone 0.877 Resorcinol 0-5 .0096 0.901 Sucrose 0.125 .0152 0.846 Catechol o-S .0107 0.868 " o. 25 0313 0.815 Urethan 0.5 .0037 0.869 0.50 0637 0.756 Carbamide 0.5 .0072 0.864 " I .1281 0.649 Thiocarbamide .0092 P-859 Dextrose 0.5 .0328 0.792 Antipyrine 0.5 0134 0.859 Mannitol 0.5 0303 0.782 Acetamide 0.5 .0005 0.879 Glycine o-S .0141 0.843 Acetic Acid 0.5 .0026 0.868 Pyrogallol 0-5 .0172 0-853 n Propyl Alcohol o-S c >-9939 0.869 Quinol 0-5 ^ :.oo95 0.887 233 CARBON DIOXIDE SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS AT Low TEM- PERATURES AND PRESSURES. (Stem, 1912-13.) Very accurate determinations with an elaborate apparatus. The results are expressed in terms of K' = the number of cc. of CO 2 , reduced to o, absorbed at the indicated pressure by I gram of liquid. This number differs from the Bunsen absorption coefficient only by a constant factor which is the density d of the liquid. Therefore Bunsen coef. /3 = K'd. The results are also expressed in terms of the Ostwald solubility expression / (see p. 227). -78 -59 SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS AT HIGH PRESSURES. (See Note, p. 228.) (Sander I9 "-"- ) Solvent, CjHsOH. Solvent, CHsOH. Pressure d= 0.872. d- Jlt = 0.884- m i: m ' <*J= 0-856. ij = 0.866. Solvent, (CHj)zCO. d-j a = 0.900 d- 9 = 0.879- Solvent, CHsCOs.OHs. d_p = 1.017. <*-j 9 = 0.994 Solvent. CHjCOjCHj. d-p= 1.056. d-| 9 = 1.032. K 1 . /. K 1 . /. K'. /. K'. /. K'. /. 5 107 194 120.5 3" 196.6 250.2 177-5 304.9 224.1 100 iii.S 68.4 195 119.6 322 I98.I 255-6 177.1 315 224.3 200 115-7 69.5 202.9 1 20. 1 344-5 201.5 271.8 179.2 337.4 223.1 400 123.8 71.4 221.5 122.2 400 208.8 310.9 183.2 389.3 225.6 700 138.6 74.7 260 126.8 545-5 IOO 40.85 27.27 63 42.5 97-8 6 7 .2 85.3 65.6 94-3 75-8 2OO 41 27.16 64.2 42.7 IOI.2 68 86.3 65-3 98.45 77.1 400 42.35 27.65 66.3 43-i 106.6 72.8 91.6 66. 7 103.6 77-6 700 44.15 28.10 69 43-35 II8.8 72.8 IOI.5 69.7 112.9 79 Pres- sure in perSq Cm. Cc. of COj (Reduced to i Kg per Sq. Cm.) Dissolved at the Temp, and Pressure of Experi- ment by i cc. of Sat. Solution in: . ClHjOH aHrOH (CjHOzO (0.093 cc.) (0.103 cc.) (0.131 cc.) CHsCOOCzHs QHs CeHsCl OHsBr OHsNOi (0.155 cc.) (0.08 cc.) (0.106 cc.) (0.113 cc.) (0.164 cc.) OHsCHa (o.ii4cc.) Results at 20. 20 . 56.16 . 71.16 62.61 50.83 57-12 57-91 30 104.8 86.62 188.2 125-3 95-22 82.29 92.50 103-3 40 149.7 122. 1 227.9 192.4 137.3 121. 1 "5.9 155-9 50 188.8 174.6 264.3 187.5 1 60 155-9 235-8 Results at 35- 20 40 . . . 48.65 46.66 43.38 44.48 49-6 40 113.1 98.16 188.4 138.3 101.5 90-43 94-39 118.8 60 173 159-9 241.3 219.8 243-1 168.3 .146 145.1 192.1 80 269.6 233-9 227 Results at 60. 2O 24-73 . . . 34-57 35.86 30.58 31-38 40 72.82 64-65 140.5 88.71 73-69 62.64 52.26 78.67 60 122.5 111.5 195-4 186.7 156.6 118.1 98.73 72-15 128.1 80 167.9 159.2 221.4 223.4 215 149-3 i3 J -4 85-03 171.9 IOO 195-7 213.9 248.7 284.4 169.7 210 Results at 100. 30 33.65 30.56 41.09 28.68 40 26.5 80.70 46.52 48.16 41.49 50-36 49-25 60 66.05 74.51 IOI 132 91.27 77-24 72.64 70.85 85.98 80 III. 2 107.7 142.8 162.3 155-8 103 92.86 86.86 II7.6 IOO 145-7 144.7 175.4 i9i-5 212.9 121.5 118 . . . 149 1 20 174.6 175.4 258.2 140.7 140.7 . . . I7I.8 130 182.6 146.8 178.2 The figures in parentheses immediately below the formulas of the solvents in the above table, show the volumes of solvent used for the series of determinations in each case. The volumes of CO 2 varied from about 55 to 77 cc. in the several cases. The increasing content of COa in the solvents at increasing pressures caused a considerable increase in volume of the solvent. This was determined and the proper calculation of the readings to the saturated solution were made. All necessary figures to show the extent of the applicability of Henry's Law in the present case, are given. CARBON DIOXIDE 234 SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS. (Just, 1901.) The determinations are described in great detail. of the Ostwald solubility expression / (see p. 227). Results are given in terms Solvent. fc *. b. Solvent. b. /20- /. Water 0.8256 Benzene 2.425 2.540 2.710 Glycerol 0.0302 . . . Amylbromide 2-455 2.638 2.803 Carbon Bisulfide 0.8699 0.8888 0.9446 Nitrobenzene 2.456 2.655 2.845 lodobenzene 1.301 I-37I 1.440 Propyl Alcohol 2.498 Aniline 1.324 1-434 I-53I Carvol 2.498 2.69O 2.914 o Toluidine 1.381 1-473 1-539 Ethyl Alcohol (97%) 2.706 2.923 3. J 30 m 1.436 1.581 1.730 Benzaldehyde 2.841 3-057 3-304 Eugenol 1-539 I-653 1.762 Amylchloride 2.910 3.127 3-363 Benzene Trichloride 1.643 Isobutylchloride 3- I 5 3-388 3-659 Cumol 1.782 1.879 1.978 Chloroform 3-430 3-681 3-956 Carven 1.802 1.921 2.030 Butyric Acid 3-478 3.767 4.084 Dichlorhydrine 1.810 1.917 2.034 Ethylene Chloride 3-525 3-795 4.061 Amyl Alcohol 1.831 1.941 2.058 Pyridine 3-656 3.862 4.291 Bromobenzene 1.842 1.964 2.092 Methyl Alcohol 3-837 4-205 4.606 Isobutyl Alcohol 1.849 1.964 2.088 Amylformate 4.026 4.3 2 9 4.646 Benzylchloride 1.938 2.072 2.180 Propionic Acid 4.078 4407 4.787 Metoxylol 2.090 2.216 2.346 Amyl Acetate 4.119 4.411 4.850 E thylenebromide 2.157 2.294 2.424 Acetic Acid (glacial) 4.679 5.129 5-6i4 Chlorobenzene 2.265 2.420 2.581 Isobutyl Acetate 4.691 4.968 Carbontetrachloride 2.294 2.502 2.603 Acetic Anhydride 5-206 5.720 6.218 Propylenebromide 2.301 2.453 2.586 Acetone > 6.295 6.921 . . . Toluene 2-305 2.426 2-557 Methyl Acetate 6.494 SOLUBILITY OF CARBON DIOXIDE IN ETHYL ETHER, f RESULTS IN TERMS OF THE OSTWALD SOLUBILITY EXPRESSION /. (Christoff, 1912.) k = 7-330. /io = 6.044. Data for the solubility of carbon dioxide in mixtures of acetic acid and carbon tetrachloride and of ethylene chloride and carbon disulfide are given by Christoff, 1905. Data for the adsorption of CO 2 by p azoxyphenetol at temperatures below and above its melting point, show that no adsorption or solution occurs while the material is in the solid (unmelted) condition, but after the first melting, absorp- tion takes place and as soon as the isotropic liquid phase is reached, a second very well-marked increase in absorption is observed. After this, expansion and de- crease of solubility proceed regularly with rise of temp. (Homfray, 1910.) 'The absorption coefficient ft of CO 2 in Russian petroleum was found by Gniewosz and Walfisz (1887) to be 1.17 at 20 and 1.31 at 10. Data for the absorption of CO 2 by rubber and carbon are given by Reychler (1910). Data for the absorption of CO 2 by hemoglobin are given by Jolin (1889). Data for the distribution of CO 2 between air and H 2 O, air and aq. H 2 SO4 and air and toluene at various temperatures, are given by Hantzsch and Vagt (1901). Data for the freezing-points of mixtures of CO 2 and methyl-ether and for CO 2 and methyl alcohol are given by Baume and Perrot (1911, 1914). 235 CARBON BISULFIDE CARBON BISULFIDE CSa. SOLUBILITY IN WATER. (Chancel and Parmentier, 1885; Rex, 1906.) Grams CSz per 100 cc. [Solution. O 5 10 IS 20 25 Cms. H2O (Rex). 0.258 0.239 ... 0.217 30 35 40 45 49 Grams CS2 per 100 cc. Solution. Cms. H2O (Rex). O.IS5 0.195 0.137 O.III 0.070 0.014 0.204 0.199 0.194 0.187 0.179 0.169 ,100 cc. H 2 O dissolve 0.174 cc. CS>2 at 22; Vol. of solution = 100.208, Sp. Gr. = 0.9981. 100 cc. CS2 dissolve 0.961 cc. H 2 O at 22; Vol. of solution = 100.961, Sp. Gr. = 1.253. (Herz, 1898.) SOLUBILITY OF CARBON DISULFIDE IN: Aq. Solutions of Ethyl Alcohol at 17. (Tuchschmidt and Folleuins, 1871.) Wt. per cent Alcohol. cc.CS, per 100 cc. Solvent. Wt. per cent Alcohol. cc. CSj per 100 cc. Solvent. t. 100 CO 91-37 50 IO 98.5 182 84.12 30 20 98.15 132 76.02 20 2 5 9 6 -95 100 48.40 2 30 93-54 70 47.90 35 Methyl Alcohol. (Rothmund, 1898.) Wt. per CS2 in: CHiOH CSa ' Layer. Layer. 45.1 98.3 50.8 97.2 54-2 96.4 58.4 95-5 64 93-5 40.5 (crit. temp.) 80.5 SOLUBILITY OF CARBON BISULFIDE IN ETHYL ALCOHOL. (Guthrie, 1884.) Gms. CSz per 100 Cms. CS2+C2H5OH. Appearance on Cooling in Ice and Salt Mixture. 94.94 Remains clear down to -18.4 89-54 Becomes turbid at 14 . 4 84.89 it " " -15- 9 79.96 (t tt ' -16 . i 65.11 tt (t " -17 . 7 59.58 Remains clear down to 20 29.92 it ii a (( M CARBON MONOXIDE CO. SOLUBILITY IN WATER. (Winkler,'"i9oi.) a < ' Absorp. /SY'Solu-. t . 0, "Absorp. 0', "Solu- * Coef." ' bility." <7- Coef." bility." 9* 0. 03537 0.03516 o .0044 40 0.01775 0.01647 0. 0021 5 O. 03149 0.03122 .0039 50 0.0l6l5 O.OI42O O. 0018 10 0. 028l6 0.02782 0035 60 0.01488 O.OII97 0. 0015 15 0. 02543 0.02501 .0031 70 O.OI44O o . 00998 0. 0013 20 0. 02319 0.02266 .0028 80 0.01430 O.OO702 0. 0010 25 0. 02142 O.O2O76 o .0026 90 O.OI42O 0.00438 0. 0006 30 o. 01998 O.OI9I5 o .0024 100 O.OI4IO O.OOOOO O. oooo = vol. of CO absorbed by I volume of the liquid at a partial pressure of 7& mm. See p. 227. ft' = vol. of CO (reduced to o and 760 mm.) absorbed by I volume of the liquid under a total pressure of 760 mm. q = grams of CO dissolved by 100 grams H 2 at a total pressure of 760 mm. CARBON MONOXIDE 236 SOLUBILITY OF CARBON MONOXIDE IN WATER AND AQUEOUS SOLUTIONS. The solubility in water, in terms of the Ostwald solubility expression (see p. 227), was found by Findlay and Creighton (1911) to be l^, = 0.0154. Data for the solubility of CO in water at high pressures are given by Cassuto, Data for the solubility of CO in aq. NaOH solutions are given by Fonda, 1910. Results for the solubility of CO in aq. H2SO4 at 20 are given in terms of the Ostwald solubility expression / by Christoff (1906) as follows: /25 for H 2 O = 0.02482, /25 for 35.82% H 2 SO 4 = 0.0114, / for 61.62% H 2 SO 4 = 0.00958, /25 for 95.6% H 2 SO 4 = 0.02327 and 0.02164. Data for the solubility of CO in ox blood and ox serum at 25 are given by Findlay and Creighton, 1910-11. Data for the influence of time on the absorption of CO by blood are given by Grehaut (1894). The author passed air containing from one part CO per 1000 to one part CO per 60,000, through 100 cc. portions of blood and found that the maximum absorption, 18.3 cc. CO per 100 cc. of blood (for the I : 1000 mixture) occurred in three hours. Data for the solubility of CO in aqueous hemoglobin solutions are given by Hiifner (1895) and Hiifner and Kulz (1895). SOLUBILITY OF CARBON MONOXIDE IN AQUEOUS ALCOHOL SOLUTIONS AT 2O AND 760 MM. PRESSURE. (Lubarsch, 1889.) Wt. % Vol. % Wt. % Vol. % Alcohol. Absorbed CO. Alcohol. Absorbed CO. o 2.41 28.57 1.50 9-09 1-87 33.33 1.94 16.67 1.75 50 3.20 23.08 1.68 SOLUBILITY OF CARBON MONOXIDE IN ORGANIC SOLVENTS. Just, 1901.) Results in terms of the Ostwald Solubility Expression, see p. 227. Solvent. /25. fe Solvent. fe. b. Water o . 02404 0.02586 Toluene 0.1808 0.1742 Aniline 0.05358 0.05055 Ethyl Alcohol o. 1921 O.I9OI Carbon Bisulfide 0.08314 o. 08112 Chloroform O.I9S4 0.1897 Nitrobenzene 0.09366 0.09105 Methyl Alcohol O.I95S 0.1830 Benzene 0.1707 o. 1645 Amyl Acetate 0.2140 0.2108 Acetic Acid 0.1714 0.1689 Acetone 0.2225 0.2128 Amyl Alcohol 0.1714 0.1706 Isobutyl Acetate 0.2365 0.2314 Xylene 0.1781 0.1744 Ethyl Acetate 0.2516 0.2419 100 volumes of petroleum absorb 12.3 vols. CO at 20, and 13.4 vols. at 10. (Gniewosz and Walfisz, 1887.) SOLUBILITY OF CARBON MONOXIDE IN ETHYL ETHER. (Christoff, 1912.) Results in terms of the Ostwald solubility expression, see p. 227. /o = 0.3618. /io = 0.3842. 237 CARBON MONOXIDE SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETIC ACID AND OTHER SOLVENTS AT 25. (Skirrow, 1902.) Results in terms of the Ostwald solubility expression, see p. 227. Mixture of Wt. % rr > Mixture of wt. % f*s\ Acetic Ac. CHaCOOH V~' Acetic Ac. CHjCOOH ,co. and: in Mixture. and: in Mixture. *. Aniline 100 0.173 Chloroform 56.4 0.196 86.5 o.no O 0.206 " 58.3 0.070 Nitrobenzene 78.4 0.156 " 17.8 0.058 49 0.130 o 0.053 0.093 Benzene 67.5 0.199 Toluene 74-7 0.191 33-S o. I9 8 56.9 0.195 19.2 0.190 20.5 0.190 o 0.174 0.182 V SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETONE AND OTHER SOLVENTS AT 25. (Skirrow.) Mixture of Acetone ^ ( M% CO. Mixture of Acetone j in iviiXLurc. ? __ j. By Wt. ks ' %(CH,) 2 CO in Mixture. By Wt. CO. In. AniHne 100 0.238 Chloroform 66.6 0.226 79.2 0.179 26.5 0.212 44.9 o.i 10 O O.2O7 " o 0.053 /3 Naphthol 86 0.190 Carbon Bisulfide 82 o . 236 73.1 0.169 " 50.5 0.227 Nitrobenzene 78.4 0.207 26 0.187 46.8 0-157 14.5 0.144 0.093 o 0.096 Phenanthrene 87.2 0.205 Naphthalene 86.7 0.199 " 75 0.183 72.6 0.187 SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF BENZENE AND OTHER SOLVENTS AT 25. (Skirrow, 1902.) The solubility of the CO given in terms of the Ostwald expression, see p. 227. Mixture of Benzene ^/^^^ CO. Mixture of Benzene %CH 6 in Mixture. CO. and: ByWt." fe ' and: By Wt. k&- Naphthalene 100 0.174 Aniline 87-3 0.156 88.5 0.164 " 71.7 0.131 66.2 0.141 42.6 0.095 Phenanthrene 89.5 0.144 " 21.2 0.068 72.6 0.127 0-053 a Naphthol 96 . 5 o . 149 Nitrobenzene 7 1.8 0.152 87.9 0.139 0.127 j8 Naphthol 97.9 0.158 0.093 95 . 6 o . 149 Ethyl Alconol 47-7 0.181 0.192 CARBON MONOXIDE 238 SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF TOLUENE AND OTHER SOLVENTS AT 25. (Skirrow, 1902.) Mixture of Tol- CgHsCHa in Mixture. CO. Mixture of Tol- frl&CIfr in Mixture. Co . uene and: wt. %. Mol. %. Ais- uene and: \vt. %. Mol. %. k&. Aniline 100 100 0.182 a Naphthol 95.5 97.1 0.171 " 93-4 93- S 0.169 91.2 94.2 0.162 80. i 80.3 0.148 Nitrobenzene 81.7 85.7 0.160 55.4 55.6 0.115 So.8 58.1 0.131 25.4 25.6 0.077 2.3.7 29.3 0.108 o o 0.053 0-093 Naphthalene 92.9 94.8 0.169 Phenanthrene 94.4 97 0.170 84.9 88.7 0.161 88.8 93.9 0.161 77.3 82.5 0.153 78.4 87.5 0.147 SOLUBILITY OF CARBON MONOXIDE IN' MIXTURES OF ORGANIC SOLVENTS AT 25. (Skirrow.) % of Latter in Mixture. CO Mixture Composed of: 'By Wt. ' By Moll Chloroform and Methyl Alcohol o.o 0.207 " " 13.0 0.202 100 0.196 Carbon Bisulphide and Ethyl Di Chloride 100 o . 147 75 0.157 51 0.160 18.4 0.140 'o.o 0.083 Methyl Alcohol and Glycerine o.o o.o o . 196 ." 39.6 30.1 0.096 60.5 50.1 0.052 77.1 68.9 0.025 loo.o 100.0 very small NOTE. From the results shown in the preceding five tables, it is concluded that the solubility of carbon monoxide in various mixtures of organic solvents is, in general, an additive function. CARBON OXYSULFIDE COS. SOLUBILITY OF CARBON OXYSULFIDE IN WATER. (Winkler, 1906.) o 1-333 O-356 20 0.561 0.147 5 1.056 0.281 25 0.468 0.122 10 0.836 0.221 30 0.403 0.104 15 0.677 0.179 For /? and q see Carbon Dioxide, p. 227. SOLUBILITY OF CARBON OXYSULFIDE IN SEVERAL SOLVENTS. Solvent. t. CC '^5ohrent Authority. Water 13.5 80 (Hempel, 1901.) 2O 54 (Stock and Kuss 1917.) Alcohol 22 800 " " Toluene 22 1500 M " HC1 Solution Of CuCl 13.5 20 (Hempel, 1901.) i gm. KOH+2CC.H 2 O+2CC.C 2 H 5 OH 13 .5 7200 Pyridine ... 4.4 Nitrobenzene 12.0 " 239 CARBON TETRACHLORIDE CARBON TETRACHLORIDE CC1 4 . SOLUBILITY IN WATER. (Rex, 1906.) t. o. 10 20 30 Gms. CCLj per 100 gms. H 2 O 0.097 0.083 0.080 0.085 RECIPROCAL SOLUBILITY OF CARBON TETRACHLORIDE, ALCOHOL AND WATER. (Curtis and Titus, 1915.) Alcohol was added from a weight buret to mixtures of weighed amounts of CCU and H 2 O, stirred vigorously at 19.75, until the mixture became homogeneous. Per cent Per cent Per cent CCU. CzHfiOH. H 2 0. 41.94 43.19 14.89 33.07 47.68 19.25 25.46 50.50 24.04 17.00 51.95 31.05 14.02 51.56 34.42 10.53 50.97 38.50 In order to determiae the effect of temperature upon the mutual solubility, one component was added to a known mixture of the other two, and the critical solubility temperature determined by raising and lowering the temp, through the critical point several times. A further amount of the third component was then added and the critical solubility temperature again determined. **c3B ^g = 0.5048. "Rltin ^^ ' _ . . T>~4.!~ V^v^ 4 ^ ^ Ratio CCl4 = 1.0922. Jxaiio , -JTT i.WU^. ""CsHsC >xl ltl H 2 Per cent Crit. o Sol." Per cent Crit^Sol. Per cent Crit. Sol. Per cent Crit. Sol. H2O. HzO. H 2 0. 24.25 -i'.8 12.47 2.03 6.84 12.7 47-43 44-5 24.61 +3-6 13-95 23-9 7-16 21-55 47-83 39-5 25.13 10.6 14-45 29.8 7-35 27.2 48.6 30.6 25.64 17 14.85 35-4 7-54 31-3 49.61 19.9 26.14 24-5 15-3 39-55 7.84 36.8 50.07 14.6 27.15 31-45 I5-67 42.75 8.02 39-75 50.50 9.15 28.52 35- 5(?) 16.02 45-5 8.28 44.1 51.06 1.6 The results show that temperature has very little effect on the mutual solubility of the three components. Extensive series of determinations of refractive indices and densities of the mixtures are also given. Freezing-point data for CCU+C1 are given by Waentig and Mclntosh (1916). CARMINE. loo gms. H 2 O dissolve 0.13 gm. carmine at 20-25. (Dehn, 1917.) pyridine " 3.34 gms. " " " 50% aq. pyridine " 2.03 " CARVACROL (CH 3 )2CH.C6H 3 (CH 3 )OH. MISCIBILITY OF AQ. ALKALINE SOLUTIONS OF CARVACRQL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER. (Sheuble, 1907.) To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and then the carvacrol, drop- wise until solution occurred. Temperature not stated. Composition of Homogeneous Solutions. Aq. KOH. Aq. Insol. Compd. Carvacrol. 5CC. 2 cc. (= 1.64 gms.) Octyl(i) Alcohol 1.8 gms. 5" 5 cc. (= 4.1 gms.) 2.6 " 5" 2 cc. (= 1.74 gms.) Toluene 4 " 5" 3 cc. (= 2.61 gms.) " 4-8 " 5" 2 cc. (= 1.36 gms.) Heptane 4.6 the normal secondary octyl alcohol, i.e., the so-called capryl alcohol, CHj(CH)t.CH(OH)CHj. CARVOXIME 240 CARVOXIME Ci H 4 :NOH d, I and i. SOLUBILITY IN AQUEOUS ALCOHOL OF dn. 6 = 0.9125 (51.6 PER CENT C 2 H 6 OH). (Goldschmidt and Cooper. 1898.) The determinations were made by the synthetic method. On account of the slow rate at which melted carvoxime solidified on cooling below the melting point, in the tubes containing the synthetic mixtures, it was possible to obtain results which show the solubility curve for liquid carvoxime, in addition to the curves for dextro and inactive carvoxime. The curves for these latter intersect the curve for liquid carvoxime respectively at 51.7, the m. pt. of dextro, and 70.5 the m.pt. of inactive carvoxime. Gms. Gms. Mols. Carvoxime Carvoxime. Solvent, per 100 Gms. Solvent. t of Solution. Solid Phase. Solid. Liquid. 0.0668 1.0868 0.0373 38.4 13-9 d Carvoxime 0.1232 1.0830 o . 0689 45-8 31-9 " 0.2026 I. 02l8 0.1202 50-3 49-8 " 0.4040 I. O2l8 0.2396 . . . 79.6 " 0.4128 0.8130 0.3077 . . . 94-5 ' Solution. Water.' 1.999 : 7O.2 235-5 1-995 : 74-8 296.8 2.037 80.4 4IO.2 2.054 : c 87.2 681.2 2. 022 : 89.1 817.4 CERIUM AMMONIUM SULPHATE Ce 2 (SO 4 ) 3 .(NH 4 ) 2 SO 4 .8H 2 O. SOLUBILITY IN WATER. (Wolff.) Gms. Gms. Ce 2 (S0 4 ) 3 .(NH 4 ) 2 S0 4 1 per 100 Gms. Solid Phase. .8H 2 O M It 22.3 35-i 45-2 Solution. 5.06 4-93 4.76 Water". 5-33 S .l8 4-99 Ce2(SO 4 )s .(NH4)2SO 4 * per ipo Gms. Solid Phase. Solution. Water. 45 - 2.91 2-99 Anhydride 55-25 2 .l6 2.21 u 75-4 I .46 1.48 u 85-2 I.I7 1.18 n CEROUS CHLORIDE 242 CEROUS CHLORIDE CeCl,. 100 cc. anhydrous hydrazine dissolve 3 gms. CeCl s , with evolution of gas, at room temp. (Welsh and Broderson, 1915.) CERIUM CITRATE 2(CeC 6 H 6 7 ).7H 2 O. 100 gms. of aq. citric acid solution containing 10 gms. citric acid per 100 cc., dissolve 0.3 gm. Ce(C 6 H 6 O7) at 20. (Holmberg, 1907.) CERIUM COBALTICYANIDE Ce 2 (CoC 6 N 6 ) 2 .9H 2 O. 100 gms. aq. 10% HC1 (di$ '= 1.05) dissolve 1.075 S m s. of the salt at 25. (James and Willand, 1916.) CERIUM FLUORIDE CeF 3 . Freezing-point lowering data are given for mixtures of CeF 8 + KF by Puschin and Baskow, 1913. CERIUM GLYCOLATE Ce(C 2 H 3 O 3 ) 3 . One liter H 2 O dissolves 3.563 gms. of the salt at 2O. (Jantsch and Grunkraut, 1912-13.) CERIUM IODATE Ce(IO 3 ) 3 . Oneliter sat. aqueous solution contains 1.456 gms.Ce(IO 3 ) 3 , determined by achem- ical method, and 1.636 gms. determined electrolytically. (Rimbach and Schubert, 1909.) CERIUM MALONATE Ce 2 (C 3 H 2 O 4 ) 3 + 6H 2 O. c i AO Gms. Ce 2 (C3H 2 O4)3 per Solvent - t * ' loo Grams. Solvent. Aq. Ammonium Malonate, containing 10 gms. per 100 cc. 20 0.2 Aq. Malonic Acid, containing 20 gms. per 100 cc. 20 0.6 (Holmberg, 1907.) CERIUM Magnesium, etc., NITRATES. SOLUBILITY IN CONG. AQ. HNO 3 (dy = 1.325 =51. 59'Gms. HNO 3 per 100 cc.) AT 16. (Jantsch, 1912.) Cerium magnesium nitrate, i liter sat. solution contains 58.5 gms.[Ce(NOs)6]Mg 3 .24H 2 0. " nickel " " " 75-3 " " Ni 3 " " cobalt " " " " 103.3 " " Co, " " zinc " " " " 111.7 " " Zn 3 " " manganese " " 178.8 " " Mn ? " CERIUM OXALATE Ce 2 (C 2 O 4 ) 3 .9H 2 O. One liter H 2 O dissolves 0.00041 gm. Ce 2 (C 2 O4) 3 at 25, determined by the elec- trolytic method. (Rimbach and Schubert, 1909.) SOLUBILITY OF CERIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AND OF OXALIC ACID AT 25. (Hauser and Wirth, 1908; Wirth, 1912.) Cone of Gms. per 100 Gms. Gms. per 100 Gms. Aqueous Sat. Sol. Phase Conc> of Aq> Acid ' Sat. Sol. Solid Phase. Acid. CeO^ Ce 2 (C 2 04) 3 . ' CeO 2 = Ce 2 (C 2 O4)s. O.IWH 2 SO 4 0.0136 0.0215 Ce(C 2 4 )3.9H 2 Oo.m(COOH) 2 0.0020 o.oo32Ce 2 (C 2 O 4 )3-9H 2 O 0-5 0.0524 0.0828 0-5 0.0083 0.0131 " i.o 0.114 0.1802 I.O 0.0040 0.0063 " 1-445 0.1764 0.2788 3-2 (sat.) 0.0019 0.0030 " 2-39 0.3083 0.4871 0.05 +.O5H 2 S( ) 4 o.oo3O 0.0047 " 2.9 0.4724 0.7467 * 0.05 +5 0.0025 0.0039 it 3-9 0.6300 0.9957 0.25 +-25 " 0.0046 0.0073 " 4-32 0.7502 1. 1860 0.50 " +.05 0.0105 0.0166 " 5.3 0.9019 1.4250 0.50 " +.50 o.ooio 0.0016 " CERIUM Dimethyl PHOSPHATE Ce 2 [(CH 3 ) 2 PO 4 ]6.H 2 O. 100 gms. H 2 O dissolve 79.6 gms. Ce 2 [(CH 3 ) 2 PO 4 ]6 at 25 and about 65 gms. at 95 (Morgan and James, 1914.) .243 CERIUM SELENATE CERIUM SELENATE Ce 2 (SeO 4 ) 8 .iiH 2 O. SOLUBILITY IN WATER. Gms. t. Ce2(Se04)3 per Solid Phase. t. loo Gms. HzO. 39-55 Ce 2 (SeC^s. 1 2H 2 O 60 37.0 60.8 36.9 33.84 33-22 33-15 32.16 (Cingolani, 1908.) ] Gms. Ce2(SeO4) per 100 Gms. H.O. Solid Phase. 7 8.2 80.5 91 95-4 13.68 Ce2(SeO 4 )3.8H 2 O 13.12 5.53 4-56 Ce 2 (Se0 4 ) 3 .7H 2 o n. 6 12.6 26 28.8 34.2 45 45-9 31-89 CERIUM SULFATE Ce 2 (SO 4 ) 3 . SOLUBILITY OF THE SEVERAL HYDRATES IN WATER. (Koppel, 1904; the previous determinations by Muthman and Rolig, 1898, and by Wyrouboff, 1901, are shown by Koppel to be inaccurate.) 2.02 I I 100 536 785 2.513 Gms. Mols. Gms. Solution. H 2 0. O 14.20 0-525 18.8 14.91 o-555 19.2 15.04 0.561 J 7-35 0.665 15 10.61 0.376 21 8.863 0.308 31-6 6.686 0.227 45-6 4-910 0.164 5o 4-465 0.148 60 3-73 0.123 65 3-47 0.114 o 15-95 0.605 IS 9-95 o.35o Ce 2 (S0 4 ) 3 .oH 2 Solution. mv. 20.5 8.69 0.302 40 5- 6l 3 0.188 60 3.88 0.129 45 8.116 0.280 60 3 .145 0.103 80 1.19 0.0382 100.5 0.46 0.0149 35 7.8 0.27 40 5 -7 1 0.19 50 3 .31 o.n 65 1-85 0.06 82 0.98 0.032 100.5 0.42 0.014 Solid Phase. 062(504)3^20 Ce 2 (S0 4 ) 3 .5H 3 Ce 2 (S0 4 ) 3 .8H 2 SOLUBILITY OF CERIUM SULFATE IN AQUEOUS SOLUTIONS OF ALKALI SULFATES. (Barre, 1910.) In aq. sols, of K 2 SO 4 at 16. In aq Na 2 SC isols. of 4 at 19. In aq. sols, of (NH 4 ) 2 SO 4 at 16. Gms. per too Gms. H2O. Gms. per 100 Gms. HzO. Gms. per 100 Gms. H2O. KzSO4. Ce2(SO4) 3 . 'Na 2 S04. Ce 2 (SO4)3. (NH4) 2 SO4 . CC2(SO4)l. 10.747 9.648 10.747 0.178 0.956 0.328 0.637 3.464 1.026 0.510 0.432 0.684 0.259 9-323 0.782 0.726 0.250 I.09I 0.0937 19 . 240 0.748 I.29O 0.042 1.392 0.0570 29-552 0.701 6.949 (at 33) 1.699 0.0303 45.6l6 0.497 2.640 0.0120 55-083 0.194 3-589 0.0065 63.920 0.090 5.660 0.0046 72.838 0.035 7.710 0.0037 The following double salts were found. Ce 2 (S0 4 ) 3 , ,K 2 SO 4 .2H 2 O, 2Ce 2 (S0 4 ),. 3K 2 S0 4 .8H 2 0, Ce 2 (S0 4 ) 3 .5K 2 S0 4 , Ce 2 (SO 4 ) 3 .Na 2 SO 4 .2H 2 O, Ce 2 (SO 4 ) 3 (NH 4 ) 2 SO4. 8H 2 and Ce 2 (SO 4 ) 8 .5(NH 4 ) 2 SO 4 . CERIUM SULFATE 244 SOLUBILITY OF CERIUM SULFATE IN AQ. SOLUTIONS OF SULFURIC ACID AT 25. (Wirth, 1912.) Normalit of Aq. IfcSO*. v Gms. per Sat zoo Gms. . Sol. Solid TlU- Normality of Aq. HzSO4. Gms. per 100 Gms. Sat. Sol. Solid Phase. CeCfe = = Ce 2 (S04) 3 : CeO 2 = Ce 2 (S04) 3 . 0.0 4 .604 7 .60 CezCSO^a-SH z o 4 32 2 3' .301 Ce 2 (S04) 3 .8H 2 O O.I 4 .615 7 .6l8 6 .685 .9115 i. 505 " I.I 3 .64 6 " 9 .68 4439 o 733 " 2.16 3 .04 5 .Ol8 15 15 O 145 o 2 39 " CERIUM SULFONATES. SOLUBILITY IN WATER. Name. (Holmberg, 1907; Katz and James, 1913.) Formula. Gms. Anhy- drous Salt per 100 Gms. H 2 O. 25-5 5.89 Cerium m Nitrobenzene Sulfonate Ce[C 6 H4(NO 2 )SO3]3.6H 2 O 15 Cerium Bromonitrobenzene Sulfonate Ce[C 6 H3Br(NO 2 )SO3i.4.2]3.8H 2 O 25 CERIUM TARTRATE Ce 2 (C4H 4 O 6 ) 3 4sH 2 O, also 6H 2 O. SOLUBILITY IN WATER (Rimbach and Shubert, 1909, by electrolytic method) AND IN AQ. SOLUTIONS. (Holmberg, 1907.) Solvent. Gms. An- hydrous Salt per 100 Gms. Sat. Sol. Solid Phase. 25 20 20 20 2O 0.005 0.7 2 0.4 O.2 Water Aq. Am. Tartrate, 10 Gms. per 100 cc. Aq. Am. Tartrate, 20 Gms. per 100 cc. Aq. Tartaric Acid, 20 Gms. per 100 cc. Aq. Tartaric Acid, 40 Gms. per 100 cc. CERIUM TUNGSTATE Ce 2 (WO 4 ) 3 . Freezing-point lowering data for mixtures of Ce 2 (WO 3 )3 and PbWO 4 are given by Zambonini, 1913. CETYL ALCOHOL Ci 6 H 33 OH. 100 gms. methyl alcohol dissolve 96.9 gms. Ci 6 H 3 OH at 23.9. (Timofeiew, 1894.) ethyl " 102.2 " " " . w. s". 'w. s. ' w. s. w. s: o 1-433 189 7 I .11 123.3 i 530 3-7 0.898 3-2 5 1.460 233 .0 I .16 130.0 i 5*5 4.0 0.900 4-0 10 1.485 275 o I 23 140.0 i . 5 !0 5 .0 0.910 7.0 15 1.510 o I 30 160.0 i 505 9.0 0-915 II. 20 J-535 383 I .36 185.0 i .510 19-0 o-94 21.0 25 '555 433 I .42 215.0 i . 34-o 0.97 36.0 30 1.580 480 .0 I .49 245.0 i 540 56.0 1.02 56.0 35 i-59 516 .0 I 55 280.0 i 570 80.0 I .13 80.0 40 1.605 . ' I .60 320.0 i 590 IIO.O 1-40 IIO-O 45 1.620 . . W = wt. of i cc. saturated solution, S = Gms. C 2 HC1 3 .H 2 O per 100 grams solvent. 245 CHLORAL HYDRATE SOLUBILITY IN SEVERAL SOLVENTS. f0 Cms. CChCOH.HzO sl . t . Gms. tCbCOH.HjO Solvent. t . per IOQ Gms So i vent . t . IOQ Gmg Solvent 50% Aq. Pyridine 20-25 374 (Dehn, 1917.) Ether ord. t. 200 (Squires.) Pyridine 20-25 80.9 Oil tur- (cold 10 " Carbon Bisulfide ord. t. i . 47 (Squires.) pentine ( hot 20 Glycerol ord. t. 200 Olive Oil ord. t. 100 " Freezing-point data (solubility, see footnote, p. i) are given for mixtures of chloral and water by van Rossem (1908) ; for mixtures of chloral and ethyl alcohol by Leopold (1909); for mixtures of chloral hydrate and menthol by Pawlewski (1893) and for mixtures of chloral hydrate and salol by Bellucci (1912, 1913). DISTRIBUTION OF CHLORAL HYDRATE BETWEEN WATER AND ORGANIC SOLVENTS. Immiscible Solvents. t. Dist. Coef . c^nOrg. Solvent. Authoritv - Water and Ether 0-30 0.235 (Hantzsch and Vagt, 1901.) Water and Benzene ... ... (Bubanovk, 1913.) Water and Olive Oil ord. 4.9 (Baum, 1899.) " " " 30 4-3 (Meyer, 1901; 1909.) 3 16.7 (Meyer, 1901.) " " Toluene O-20 58-74.5 (Hantzsch and Vagt, 1901.) CHLORAL FORMAMIDE CC1 3 .CH(OH).NH.CHO. 100 gms. H 2 O dissolve 5.3 gms. CC1 3 CH(OH).NHCHO at 25. (U. S. P.) 100 gms. 95% alcohol dissolve 77 gms.SCCl 3 CH(OH).NHCHO at 25. L.U-ttJ.1 *Ci 14* SOLUBILITY IN (Winkler, 1912; Roozeboom WATER. , 1884, 1885, 1888.) t. 0'. 9. f . Gms. Cl per 100 Gms. HjjO. Solid Phase. 4.6lO I .46 0.24 0.492 Ice + C1.8 aq. 3 3-947 1-25 o 0.507-0.560 C1.8 aq. 6 3.411 1. 08 2 3.644 " 9 3-031 0.96 4 0.732 a 9.6 2.980 0.94 6 0.823 u 12 2.778 0.88 8 0.917 (C 10 3-095 0.980 9 0.965-0.908 tc 15 2-635 0-835 20 1.85 u 20 2.260 0.716 28. 7 3-69 " + 2 layers 25 1.985 0.630 30 1.769 0.562 40 1.414 0.451 50 1.204 0.386 60 i. 006 0.324 70 0.848 0.274 80 0.672 0.219 90 0.380 0.125 [OO c ft' = vol. of Cl .(reduced to o and 760 mm.) absorbed by i vol. H 2 O at total pres- sure of 760 mm. q = Gms. Cl per 100 gms. H 2 O at a total pressure of 760 mm. The coefficient of solubility of chlorine at 15, determined by an aspiration method, is given as 51.7 for carbon tetrachloride, 39.6 for acetic anhydride, 36.7 for 99.84% acetic acid, 25.3 for 90 vol. % acetic acid, 16.43 for 75 vol. % acetic acid and 13.43 fo r 65 vol. % acetic acid. (Jones, 1911.) CHLORINE 246 SOLUBILITY IN WATER. (Goodwin, 1882.) ,. The saturated aqueous solution of the chlorine was cooled until chlorine hydrate separated; the temperature was then gradually raised and portions withdrawn for analysis at intervals. The chlorine was determined by iodometric titration and the results calculated to volume of chlorine dissolved by unit volume of solvent at the given temperature and 760 mm, pressure. Slightly different results were obtained for solutions in contact with much, little, or no chlorine hydrate. The following results are taken from an average curve: , to Solubility f o Solubility , Solubility Coefficient. . Coefficient. Coefficient. 2.5 1.76 ii 3 25 2.06 5 2 12.5 2.75 30 1.8 7-5 2.25 15 2.6 40 1.35 IO 2.7 20 2.3 50 I SOLUBILITY OF CHLORINE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF POTASSIUM CHLORIDE. (Goodwin.) Coefficient (^Solubility in: ^ Results at 21. (Mellor, 1901.) *- HC1. HC1 HC1 KC1 Cms. HClper Solubility of Cl. (i.o46Sp.Gr.). (i.oSSp. Gr.). (1.125 Sp.Gr.). (20 g. per xoocc.) 1000 cc. (Ostwald/, seep. 227.) o 4.1 6.4 7.3 1.5 o. 2.2799 5 5-i S- 2 6 -7 2 3.134 1.6698 10 4.1 4.5 6.1 2.2 9.402 I-50I3 15 3.5 3.9 5.5 1.6 12.540 1.5292 20 3 3.4 4-7 I- 2 31-340 1-8033 25 2.5 3 4 i 125.360 2.4473 30 2 2.4 ... -0.9 219.380 3- I 3*2 40 1.25 1.6 ... ... 3 I 3-4oi 3.8224 Goodwin also gives results for solutions of NaCl, CaCl2, MgCl2, SrCl2, Fe2Cl2, CoCl 2 , NiCl 2 , MnCl 2 , CdCl 2 , LiCl, and in mixtures of some of these, but the con- centrations of the salt solutions are not stated. SOLUBILITY OF CHLORINE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE. (Kumpf, 1882; Kohn and O'Brien, 1898.) Coefficient of Solubility in: 9-97% NaCl. 16.01 % NaCl. 19.66% NaCl. 26.39% NaCl. o 2.3 1.9 1.7 0.5 5 2 1.6 1.4 0.44 10 1.7 1.3 1.15 0.4 15 1.4 i. 06 0.95 0.36 20 1.2 0.9 0.8 0.34 25 0.94 0.75 0.65 0.3 50 ... ... ... 0.2 80 ... ... ... 0.05 100 cc. of 6.2 per cent CaCl 2 solution dissolve 0.245 S m - Cl at 12. 100 cc. of 6.2 per cent MgCl 2 solution dissolve 0.233 gm. Cl at 12. loo cc. of 6.2 per cent MnCl 2 solution dissolve 0.200 gm. Cl at 12. For coefficient of solubility see p. 227. 247 CHLORINE Freezing-point data (solubility, see footnote, p. i) are given for the following mixtures containing chlorine. Chlorine + Chloroform (Waentig and Mclntosh, 1916.) + Ethyl Alcohol " " -j- Methyl Alcohol " -j- Ethyl Acetate (Waentig and Mclntosh, 1916; Maass and Mclntosh, 1912.) + Methyl Acetate (Waentig and Mclntosh, 1916.) + Ether -j- Hydrochloric Acid (Maass and Mclntosh, 1912.) -j- Iodine (Stortenbecker, 1888, 1889.) + Sulfur (Ruff and Fischer, 1903.) -j- Sulfur Dioxide (Smits and Mooy, 1910; Van der Goot, 1913.) -j- Sulfuryl Chloride (SO 2 C1 2 ) (Van der Goot, 1913.) + Sulfur Dioxide -j- Stannic Chloride (Waentig and Mclntosh, 1916.) -j- Toluene (Waentig and Mclntosh, 1916; Maass and Mclntosh, 1912.) -j- Nitrosyl Chloride (NOC1) (Boubnoff and Guye, 1911.) DISTRIBUTION OF CHLORINE BETWEEN CC1 4 AND GASEOUS PHASE AND BETWEEN CC1 4 AND WATER. (Jakowkin, 1899.) Results for CC1 4 + Gaseous Phase. MillimolsCl per Liter. Results for dist. between CC1 4 and H 2 O. ist Series. 2nd Series. Millimols per Liter. Millimols per Liter. H 2 OI,ayer. ecu. Layer. 803.3 464.6 222.5 52.93 HzO Layer. ecu. Layer. 864.2 335-1 311-3 202.7 Gaseous Phase. O.IIOQ O.2666 O-SS^S 0.8800 ecu Phase. 8.908 22.46 44.14 75 -9 Total Cl. 58.21 38.36 23.08 10.10 Unhydro- lized Cl. 39-67 22.97 II .12 2.707 Total Cl. 61.73 42.62 28.98 21.70 Unhy- drolized Cl. 42.55 26.36 15.24 9-94 Data for the effect of HC1 upon the distribution between H 2 O and CC1 4 are also given. CHLORINE DIOXIDE C1O 2 .8H 2 O iH 2 O. SOLUBILITY IN WATER. (Bray, 1905-06.) * SrlS? Solid Phase. t. ^ClO, Solid Phase. 0.79 Eutec. 26.98 ClO 2 .8H 2 O+Ice 15.3 87.04 ClOj.SHjOiiHjO 27.59 ClO 2 .8H 2 OiH 2 O I0.7tr.pt. 107.9 " + liquid CIO, 1 29.48 " 14 more than > 107.9 liquid CIO, 5-7 42.10 " 10.7 116.7 10 60.05 " I more than > 108.6 " The exact composition of the hydrate could not be determined on account of manipulative difficulties. Data for the distribution of C1O 2 between H 2 O and CCU at o and 25 are given, also some results showing the effect of H 2 SO 4 , KC1O S and of KC1 on this distribu- tion. CHLORINE MONOXIDE C1 2 O. 100 volumes of water at o absorb 200 volumes of C1 2 O gas. CHLORINE TRIOXIDE C1 2 O 3 . SOLUBILITY IN WATER AT APPROX. 760 MM. PRESSURE. (Brandan, 1869.) t. 8.5. 14. 21. 93. Cms. C^Oa per ioo gms. H 2 O 4.765 5.012 5-445 5.651 Garzarolli and Thurnbalk, 1881, say that C1 2 O 5 does not exist, and above figures are for mixtures of C1 2 O and Cl. CHLOROFORM 248 CHLOROFORM CHC1 3 . SOLUBILITY IN WATER. (Chancel and Parmentier, 1885; Rex, 1906.) AO Cms. CHCls per Density of f0 Gms. CHCls per Liter of Solution. Solutions. 100 Cms. HjO (Rex). O 9.87 1.00378 3.2 8.90 ... O 1.062 17.4 7.12 1.00284 .10 0-895 29.4 7-O5 1.00280 20 0.822 41.6 7.12 1.00284 30 0.776 54-9 7-75 1.00309 S'IQO cc. H 2 O dissolve 0.42 cc. CHC1 3 at 22; Vol. of sol. = 100.39 cc., Sp. Gr. = 1.0002. 100 cc. CHC1 3 dissolve 0.152 cc. H 2 O at 22; Vol. of sol. = 99.62 cc., Sp. Gr. = 1.4831. (Herz, 1898.) SOLUBILITY OF CHLOROFORM IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20. (Bancroft, 1895.) In Ethyl Alcohol. In Methyl Alcohol. In Acetone. Per 5 cc. CzHsOH. Per 5 cc. CHsOH. Per 5 cc. (CH 3 ) 2 CO cc. H2O. cc. CHCls. cc. HjO. cc. CHCls. cc. H2O.. cc. CHCb. 10 0.20 10 o.io 5 0.16 8 0.3 5 0.48 4 0.22 6 0.515 4 0.8 3 0.33 4 1-13 24 2 0.58 2 2.51 1.49 7 i 0.955 i 4.60 1.35 8 0.79 i. 12 0.91 5 i. 12 10 0.505 i. 60 0.76 6 0.30 2.50 0.55 8 0.21 3.50 0.425 10 0.19 4 0.20 20 0.16 5 O.I25 3O.24 O.I2 IO Data for the system chloroform, ethyl ether and water are given by Juttner, 1901. Experiments by Schachner (1910) show that various fats (olive oil, sheep suet, goose fat) in an atmosphere containing 0.55% CHCla vapor, dissolve 0.96-0.98 per cent CHC1 3 at 38.5. Data for the properties of solutions of CHC1 3 in water, saline solution, serum, hemoglobin, etc.,|in their relation to anesthesia are given by Moore and Roaf, (1904) and Waller (1904-05). Freezing-point lowering data (solubility, see footnote, p. i) are given for the following mixtures of chloroform and other compounds. Mixture. Authority. Chloroform + Hydrobromic Acid (Maassand Mclntosh, 1912.) + Hydrochloric Acid (Baume and Borowski, 1914.) + Methyl Alcohol 4- Methyl Ether (Baume, 1914, 1909.) p nitrophenyl chloroform + m nitrophenyl chloroform (Holleman, 1914.) CHOLESTEROL C w H a OH.H z O. 100 gms. H 2 O dissolve 0.26 gm. cholesterol at 20-25. (Dehn.igr;.) pyridine " 68.10 gms. 50% aq. pyridine i.io " loo cc. HzO dissolve 0.0006 gm. cholesterol-digitonide at b. pt. (Mueller, 1917.) 100 cc. ether dissolve 0.0007 gm. cholesterol-digitonide at room temp. " Freezing-point lowering data (solubility, see footnote, p. i) are given for mix- tures of cholesterol acetate and phytosterol a and /3 by Jaeger, 1907. Data for mixtures of cholesterol and oleic acid, cholesterol and palmitic acid and cholesterol and stearic acid are given by Partington, 1911. 249 CHOLESTEROL SOLUBILITY OF STEARIC ACID ESTER OF CHOLESTEROL IN OILS AT 37 AND VICE VERSA. (Filehne, 1907.) The determinations were made by adding small weighed amounts of the ester to the oil at 60 and cooling to 36-37 while stirring continually. The additions of the ester were repeated until a clouding just appeared at 36-37. In the case of the solubility of the oils in cholesterol, the composition of the sat. solution was estimated by means of the specific gravity and the melting point. Solvent. t of Clouding. ms. Ester Gms. Oil or Acid per 100 , Gms. Sat. Solution in per loo Sol ute. Ester, Bet. by: 'Sp. Gr. M. pt. 3-35 Olive Oil 25.5 33-8 0.26 Oleic Acid 37 40 4.11 Castor Oil 5 1.85 o-33 Ricinic Acid 20 16 0.85 Pseudo Ricinic Acid 10 12 0.87 Crotonic Acid (5) 5 Olive Oil 37.6 Castor Oil 37.6 Oleic Acid 37.5 Ricinic (Oil) Acid 37 Pseudo Ricinic Acid 36 . 2 Crotonic (Oil) Acid 36 . 5 CHOLINE PERCHLORATE and its Nitric Ether. 100 gms. H 2 O dissolve about 290 gms. (CH 3 ) 3 N(ClO 4 )CH 2 CH 2 .OHat i5.)(Hofmann 100 gms. H 2 O dissolve o.62'gm. (CH 3 ) 3 N(C1O4)CH 2 .CH 2 .ONO 2 at 15. \ H JjJ ld 100 gms. H 2 O dissolve 0.82 gm. at 20. J 1911.)' CHROMIUM ALUMS. SOLUBILITY OF CHROMIUM ALUMS IN WATER AT 25. (Locke, 1901.) Per loo cc. Water. Formula. Grams Grams Gram Anhydrous. Hydrated. Mols. Potassium Chromium Alum K^C^SO^^H^O 12.51 24.39 0.0441 Tellurium Chromium Alum Te 2 Cr 2 (804)4. 24H 2 O 10.41 16.38 0.0212 CHROMIUM CHLORIDES CrCl 3 .6H 2 O. SOLUBILITY OF THE GREEN AND THE VIOLET MODIFICATIONS IN WATER AT 25. (Olie Jr., 1906.) The solubility of hydrated chromium chloride depends upon the inner com- position of the solution, that is, the relative amounts of the green and the violet modification of the salt present in the saturated solution. These are determined by precipitating with silver nitrate. A freshly prepared solution of the green chloride yields only one-third of its chlorine in the cold, hence the composition of this modification, according to Werner, is represented by the formula' [Cr(H2O)4Cl 2 ] C1.2H 2 O. The violet chloride is considered to have the composition, [Cr(H 2 O)e]Cl3. A determination of the amount of each present involves precipitating one portion of the solution at o with silver nitrate and another portion (for total Cl) at the boiling point. Experiments were first made with aqueous solutions of different percentage composition of the two modifications. These were agitated at 25 and analyzed at intervals until equilibrium was reached. The time for equilibrium varied from 18 to 40 days according to the concentrations present. The effect of temperature and of the presence of HC1 on the transition of the green chloride was also studied. The equilibrium in saturated solutions at 25 was determined by rubbing the hydrated chromium chloride with a little water previously cooled to o to a thin mush. This was then agitated at 25 and portions removed at successive inter- vals of time and analyzed. The results show the total chloride and per cent present as the green modification. 25 Gms. Green Salt + 10 Gms. H 2 O. Time of Gms. CrCls Per cent \gita- per 100 Gms. of Green 25 Gms. Violet Salt 25 Gms. Violet Salt + locc. + 10 Gms. H 2 O. of 35% Sol. of the Green Salt. Time of Gms. CrCla Per cent Agita- per 100 Gms. of Green Sat. Sol. 61.99 63.88 70.68 72.11 70.62 In a later paper Olie Jr. (1907) gives additional results at 29, 32 and 35. loocc.anhydr. hydrazine dissolve I3gms. CrCU at room temp. (Welsh&Broderson.'is.) tion. Sat. Sol. Ihr. 58.36 4hrs. 63.27 i day 68 . 50 3 days 68 . 95 19 days 68 . 58 Salt. tion. 91-7 fchr. 75.2 i day 62.36 4 days 57-22 7 " 57-38 26 Salt. i-53 8.46 30.89 37.28 Si-54 tion. ifchr. 2 days 5 " 8 " 12 " Sat. Sol. 65.49 70.47 76.38 73.26 71.14 Salt. 15-95 26.81 39-34 34-20 58-60 CHROMIUM TRIOXIDE 250 CHROMIUM TRIOXIDE CrO 3 . SOLUBILITY IN WATER. (Buchner, and Prins, 1912-13; Kremann, Daimer and Bennesch, 1911; Koppel and Blumenthal, 1907; and Mylius and Funk, 1900.) ,., Gms. CrO 3 c Ud I Gms. CrO 3 s M OilQ 4.0 -v- ,-.- f^mf OOllCl AO r^^w -r^^ C*mo oOUQ - O.Q 3.6 Ice - 43-5 49-1 Ice 50 64.55 CrO, 1.9 7-8 " - 60 53.3 65 64.83 3.7 ii. s " -155 60.5 " +CrO, 82 66 4.8 14.1 " 20 61.7 CrO, 90 68.5 " 10.95 24.9 " o 62.24 " 100 67.4 " 11.7 25.2 " + 18 62.45 " 115 68.4 -18.75 33-5 " 24.8 62.88 122 70.7 25.25 39.2 " 40 63.50 193-196 IOO [decomposition Density of solution sat. at 18 = 1.705. 100 cc. anhydrous hydrazine dissolve I gm. CrO 8 with evolution of gas and production of a black precipitate at room temp. (Welsh and Broderson, 1915.) CHROMIUM DOUBLE SALTS. SOLUBILITY IN WATER. Qorgensen, 1879, 1884, 1890; Struve, 1899.) Gms. per Name of Salt. Formula. t. 100 Gms. H 2 0. Chlorotetraamine Chromium Chlo- ride CrCl(NH 3 )4(OH 2 )Cl2 15 6.3 Chloropurpureo Chromium Chloride CrCl(NH 3 )5Cl 2 16 0.65 Luteo Chromium Nitrate Cr(NH 3 ) 6 (NO 3 )3 ? 2.6 Chloropurpureo Chromium Nitrate CrCl(NH 3 ) 5 (NO 3 ) 2 17.5 1.4 Chromic Potassium Molybdate 3K 2 O.Cr 2 03.i2Mo0 3 .2oH 2 O 17 2.5 CHROMIUM SULFATES (ous and ic). SOLUBILITY IN WATER. Salt. Gms. pg^oo Gms. Solid Phase. Authority. Chromous i2.35(ato ) CrSO 4 .7H 2 (Moissan, 1882.) Chromic 120 (at? ) Cr 2 (S0 4 )3.i8H 2 (Etard, 1877.) CHROMIUM THIOCYANATE Cr(CNS) 8 . Data for the distribution of Cr(CNS) 3 between water and ether at o-3O are given by Hantzsch and Vagt, 1901. CHRYSAROBIN CjoHzeOy. SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.) c , Gms. per 100 Gms. Solvent at: Gms. per too Gms. ' as . 8o . SolVent> Solvent at 25. Water 0.021 0.046 Chloroform 5.55 Alcohol 0.324 0.363 (60) Ether 0.873 Benzene 4 ... Amyl Alcohol 3.33 Carbon Bisulfide o . 43 CHRYSENE Ci 8 Hi 2 . SOLUBILITY IN TOLUENE AND IN ABS. ALCOHOL. (v. Becchi.) loo gms. toluene dissolve 0.24 gm. Ci 8 Hi 2 at 18, and 5.39 gms. at 100. 100 gms. abs. alcohol dissolve 0.097 S m * CisHi 2 at 16, and 0.170 gm. at boiling point. 251 CINEOLE CINEOLE (Eucalyptole) Ci Hi 8 O. Freezing-point lowering data (solubility, see footnote, p. i) for mixtures of cineole and each of the following compounds are given by Bellucci and Grassi, (1913); phenol, a. and ft naphthol, o, m and p crespl, o, m and p nitrophenol, o, m amidophenol, pyrocatechol, resorcinol, hydroquinone, guaiacol, o, m and p oxybenzoic acid, methyl salicylate, phenyl salicylate, naphthalene and thymol. CINCHONA ALKALOIDS. SOLUBILITY OF CINCHONINE, CINCHONIDINE, QUININE, AND QUINIDINE IN SEVERAL SOLVENTS. (Muller, 1903; see also Prunier, 1879.) Grams of the Alkaloid per 100 Grams Solution. Solvent. Quinine Cinchonine Cinchonidine CjoHwNjO,. Quinidine f~> TT -T /-\ f* TI XT C\ A /" IT KT f\ -19 23 a 19 n Hydrate. Anhydride. Ether .10 0.211 I.6l9 0.876 0.776 Ether sat. with Hp o .123 0-523 5.6l8 2.794 1.629 HjO sat. with Ether .025 0.0306 0.0667 0.0847 0.031 Benzene o 0545 0.099 0.2054 1.700 2.451 Chloroform o .6979 9.301 100 + 100+ 100 + Acetic Ether .0719 0.3003 4.65 2.469 1.761 Petroleum Ether 0335 0.0475 0.0103 O.O2II O.O24I Carbon Tetra Chloride o .0361 0-0508 0.203 0.529 0.565 Water o .0239 0.0255 o-574 0.0506 O-O2O2 Glycerine (15^) o 50 0.50 ... ... SOLUBILITY OF CINCHONINE AND CINCHONIDINE' IN SEVERAL SOLVENTS. Gms. Alkaloid per 100 Solvent. t. Gms . Solvent. Authority. Cinchonine. Cinchonidine. Water ord. temp . 0.0043 (Hatcher, 1902.) u 20 0.0131 (Scholtz, 1912.) " 25 O.OII3 0.021 (Schaefer, 1910.) Aq. 10% Ammonia 20 0.025 ... (Scholtz, 1912.) Aq. 85% C 2 H50H+io% Am. 20 0.41 ... Aniline 20 1.6 Pyridine 20 1.4 7*78 (Scholtz, 1912; Dehn, 1917.) 50% Aq. Pyridine 20-25 10 (Dehn, 1917.) Aq. 85% C 2 H 5 OH (^20=0.832) 20 0.86 . . . (Scholtz, 1912.) C 2 H 5 OH (95%) 2O 0.80 5 (Wherry and Yanovsky.igiS.) C 2 H5OH (prob. 92.3 wt. %) 25 0.62 (Schaefer, 1913.) Abs. QjHsOH 19 0.874 (Timofeiew, 1894.) Abs. C 2 H 5 OH 2 5 0.89 (Sill, 1905.) Benzene 25 0.057 0.127 (Schaefer, 1913.) Acetone 25 0.091 (Sill, 1905.) Chloroform 17 0.014 (Oudemans, 1872.) " 25 0.606 19 (Schaefer, 1913.) u SO 0-565 (Kohler, 1879.) Ether 25 0-055 (Sill, 1905.) " 3 2 0.264 (Kohler, 1879.) Isoamyl Alcohol ' 25 I.IO (Sill, 1905.) Isobutyl Alcohol 1.09 . (Timofeiew, 1894.) Methyl Alcohol Piperidine 25 20 0.785-1. 3-5 17 7-39 (Schaefer, 1913; Sill, 1905.) (Scholtz, 1912.) Diethyl Amine 2O " Results for the solubility of cinchonine and Cinchonidine in mixtures of ethyl and methyl alcohols with benzene and with chloroform are given by Schaefer (1913). It is pointed out by Schaefer (1910), that if the saturated solution is analyzed by shaking out with chloroform or ether, variable results, depending on the age and method of manufacture of the alkaloid, will be obtained. Except in the case of the results by Sill in the above table, the saturated solu- tions were obtained by agitating at intervals, instead of constantly at the given temperature. CINCHONA ALKALOIDS 252 SOLUBILITY OF CINCHONINE, CINCHONIDINE AND CINCHOTINE SALTS IN WATER. Cms. per 100 Cms. H 2 O. Salt. Hydrobromide *" Cinchonine Cinchoni- Cinchotine Authority. Salt. dine Salt. Salt. 25 1.7 I 66 ... (Schaefer, 1910.) Bihydrobromide 25 55-5 14-3 Hydrochloride 25 4 . S 1 4 . 8 2 2 . 1 2 3 (Schaefer, 1910; Forst and Bohringer, 1881.) Bihy drochloride 25 62.5 ... (Schaefer, 1910.) Sulfate 25 I . IT 4 I .o8 5 3 . 28 6 (Schaefer, 1910; Forst and Bohringer, 1881.) Sulfate 80 3.1 4.8 ... (U.S. P.) Bisulfate 2 S 66.6 IOO ... (Schaefer, 1910.) Perchlorate 12 0.3(solvent =aq.6% HCIOJ (Hofmann, Roth, Hobold and Metzler, 1910.) Salicylate 25 0.17 0.075 (Schaefer, 1910.) Tannate 2S 0.091 0.055 Tartrate 25 3 . 12 7 ... 1 . 76 8 (Schaefer, 1910; Forst and Bohringer, 1881.) Bitartrate 16 0.99 ... 1.28 (Forst and Bohringer, 1 88 1.) Oxalate 20 0.96 ... 1.16 " " i 4.16 at 10. * 4 at 15, , at 10. * 1.52 at 13. i at 15. at 13. T 3 at 16. at 16. SOLUBILITY OF CINCHONINE SULFATE AND OF CINCHONIDINE SULFATE IN ALCOHOL AND OTHER SOLVENTS. Gms. per 100 Gms. Solvent. Solvent. t. Ethyl Alcohol (92.3 wt. %) Methyl Alcohol Chloroform Ether Glycerol 25 60 25 25 25 15 (CJBaNjO)r H 2 S0 4 .3H,0. 0.85 (1.4) ... (3-1) 35-9 O.I (O.ll) O.O2 Authority. (Schaefer, 1913; U. S. P.) (U. S. P.) (Schaefer, 1913; U. S. P.) (Schaefer, 1913; U. S. P.) (U. S. P.) 4 . 2 9.8 (10) ... (19.2) 83.9 0.66(1.45) 0.04 6.7 Results for mixtures of alcohol, chloroform and benzene are given by Schaefer, '13. Very carefully determined data for the solubility of Cinchonine in ethyl alco- hol, methyl alcohol, amyl alcohol and acetone solutions of various concentra- tions of a large number of organic acids and of phenols are given by Sill, 1905. CINNAMIC ACID C 6 H 6 CH:CH.COOH. loo gms. H 2 O dissolve 0.0495 gm. C 6 H 6 CH:CHCOOH at 25. (De Jong, 1909.) loo gms. H 2 O dissolve 0.0607 gm. CHiCH:CHCOOH at 25. (Sidgwkk, 1910.) loo cc. 0.5 n sodium cinnamate solution dissolve 0.155 gm. C 6 H 5 CH:CHCOOH at 25 (Sidgwick, 1910.) loo cc. sat. sol. in petroleum ether (b. pt. 3O-7o) contain 0.095 S m - C 6 H 6 CH: CH.COOH at 26. 100 cc. sat. sol. in carbon tetrachloride contain 2.172 gms. C 6 H 6 CH:CH.COOH at 26. (De Jong, 1909.) loo cc. sat. sol. in 95% formic acid contain 3.76 gms. C 6 H 6 CH :CH.COOH at 20. (Aschan, 1913.) SOLUBILITY OF CINNAMIC ACID (Melting point, 133) IN ALCOHOLS. (Timofeiew, 1894.) Gms. Cinnamic Acid per 100 Gms. Sat. Solution in: -18 -12.5 o + 19-5 SOLUBILITY OF CINNAMIC ACID IN ORGANIC SOLVENTS AT 25. (Herz and Rathmann, 1913.) So.ven, CH 3 OH. C^OH. C 3 H 7 OH. (CH^CH.CHjOH. 8.1 6.74 4-3 . . . 9-3 8 5-5 . . . 13 n-3 8.2 . . . 22.5 18.1 13-4 8.6 loo cc. Sat. Sol. CHC1 3 Chloroform 1 2 . 09 Carbontetrachloride i . 75 Trichlorethylene 6 . 04 Tetrachlorethylene 2.55 Tetrachlorethane 11.05 Pentachlorethane 5 . 54 IOO C C.+ CC 80 + 20 50 + So 33-3 + 66.6 20 + 80 -f-ioo n^VTVil >cc.Sat. Ft FrrF Sol. l^nC \ C 2 HC1 5 12.09 IOO C C.+ CC. 9.86 80 + 20 " 6.61 So + 50 " 4-50 33-3 + 66.6" 3.32 20 + 80 " 1-75 o + IOO per i oo cc. Sat. Sol. 6.04 5-91 5-85 5-82 5-70 5-54 253 CINNAMIC ACID OINNAMIO ACID C 6 H 5 CH:CH.COOH. SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, BUTYRATE, FORMATE, AND SALICYLATE AT 26.4. (Philip J Chem. Soc. 87, 992, '05.) Calculated from the original results, which are given in terms of molecular quantities per liter. Gms. NaSalt Urns. (J per Liter in bolutio us of: per Liter. CH 3 COONa. C 3 H 7 COONa. HCOONa. Ce^.OH.COONa, O 0.56 0.56 0.56 0.56 I 1.50 1-30 0.92 0.62 2 2.12 1.85 1. 12 0.70 3 2.52 2.25 1.27 o-73 4 2-8 5 2.60 1.40 0.77 5 3-05 2.90 1.47 0.80 5 ... ... ... 0.90 i liter of aqueous solution contains 0.491 gm. C 6 H 6 CH :CH.COOH at 25 (Paul). SOLUBILITY OF 'CINNAMIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25. (Lowenherz Z. physik. Chem. 25, 394, '98.) Original results in terms of molecular quantities per liter. In Aqueous Anilin. In Aqueous p Toluidin. Grams per Liter. Grams per Liter. CeHfiCH : CHCOOH. CeH^CHsNIfc. QHeCH : CHCOOH. 0.49 o 0.49 1 1.20 I 1.52 2 1.65 2 2. 2O 3 2.02 3 2.83 4 2.35 4 3.35 6 2.92 5 3 .80 "Freezing-point data for mixtures of cinnamic acid and dimethylpyrone and for hydrocinnamic acid and dimethylpyrone are given by Kendall, 1914. BromoCINNAMIC ACIDS. SOLUBILITY OF a AND OF /3 BROMOCINNAMIC ACIDS IN WATER AT 25. (Paul, 1894.) Per looo cc. Sat. Solution. Gms. Millimols. a C 6 H 5 CH: CBrCOOH 3.9325 17.32 /3C 6 H 5 CBr: CHCOOH 0.5255 2.315 SOLUBILITY OF a I so BROMOCINNAMIC ACID IN AQUEOUS SOLUTIONS OF OXANILIC ACID (Melting point = 120) AT 25. (Noyes, 1890.) Normality of Solutions. Grams per Liter. C,H 5 NHCO- C 6 H 5 CH- QHsNHCO- QHjCH- COOH. CBrCOOH. COOH. CBrCOOH. o 0.0176 o 3-995 0.0275 0.0140 4.54 3.178 0.0524 0.0129 8.65 2.928 CINNAMIC ACIDS 254 Allo CINNAMIC ACIDS (Unstable Isomers of Cinnamic Acid). SOLUBILITY OF EACH OF THE THREE ISOMERIC ALLOCINNAMIC ACIDS AND OF THE MELTS OF THE THREE ISOMERS IN WATER. Results for: (Meyer, 1911.) Allocinnamic Acid Allocinnamic Acid Allocinnamic Acid Melted Allocin- of M. pt. 68. of M. pt. 58. of M. pt. 42. namic Acid. (Natural Isocinnamic Acid.) (Artificial Isocinnamic Acid.) fco " Cms. Acid AO ~ Gms. Acid +o Gms. Acid AO Gms. Acid per Liter. 1 ' per Liter. per Liter. i . per Liter 18 6.88 18 7.62 18 8.95 18 I3-63 25 8.45 25 9-37 25 11-03 25 14.44 35 H-I4 35 I2 -39 35 14-61 35 16.05 45 14.46 45 16.09 45 i8.ii 55 18.45 55 20.55 These curves intersect that for the melted acid at the 65 23-43 melting points of the solid isomers. 75 27.69 The results show that the three isomers are polymorphic modifications of the cis acid. loo gms. ligroi'n (b. pt. 60-70) dissolve more than 16 gms. isocinnamic acid. (Liebermann, 1903.) IOO gms. ligroi'n (b. pt. 60-70) dissolve approx. 2 gms. allocinnamic acid. ' SOLUBILITY OF a CHLOROCINNAMIC ACID, ETC., IN BENZENE. (Stoermer and Heymann, 1913.) Gms. Gms. Name of Compound. M.pt. t. Cmpd. per loo Gms. Name of Compound. M.pt. tf. Cmpd. per loo Gms. C 6 H 6 . C 6 H 6 . a Chlor- 137 2O 2.6 ft Brom- *35 jo 1.58 Allo a Allo a Brom- Chlor- cin- namic Acid in 120 142 21 2O 17 II 5-17 5 6.9 1.94 Allo cis trans cis Dichlor- u Dibrom- cin- namic Acid 159-5 121 101 IOO 14 13 14 14 0.86 6.1 21.2 26.9 Mo ft u 132 16 3-i7 trans " 136 14 10.6 FREEZING-POINT DATA (Solubility, see footnote, p. i) FOR MIXTURES OF CIN- NAMIC ACID AND OTHER COMPOUNDS, AND OF CINNAMIC ACID DERIVATIVES AND OTHER COMPOUNDS. (Bruni and Gorni, 1899.) (de Kock, 1904.) a Monochlorcinnamic Aldehyde + a Monobromcinnamic Aldehyde (Kiister, 1891.) Cinnamylidine + Diphenylbutadiene (Pascal, 1914.)' + Diphenyldiacetylene " Cinnamic Acid + Phenylpropionic Acid p Methoxycinnamic Acid + Hydroquinone CITRIC ACID (CH 2 ) 2 COH(COOH) 3 .H 2 0. SOLUBILITY OF HYDRATED AND OF ANHYDROUS CITRIC ACID, DETERMINED SEPARATELY, IN AQUEOUS SOLUTIONS 'OF ETHYL ALCOHOL AT 25. (Seidell, 1910.) Results for Hydrated Citric Acid. Results for Anhydrous Citric Acid. Wt 7 C.H OH rL nf Gms - (CHo^COH- Wf r ^u j t Gms. (CH 2 ) 2 COH- inlS Sal! Sol. C ^^ffi^ inloS H Satsol. (C ^ll^ GmS ' 311 67-5 20 1.297 62.3 20 .286 66 40 I .246 59 40 257 64-3 60 I.I9O 54-8 50 237 63-3 70 1.160 52.2 60 .216 62 80 i .120 48.5 70 .192 60.8* 90 1.065 43-7 80 .163 $8.1* IOO i .010 38.3 9 .125 54.7* IOO J .068 49-8* * Solid phase dehydrated more or less completely. 255 CITRIC ACID SOLUBILITY OF HYDRATED AND OF ANHYDROUS CITRIC ACID, DETERMINED SEPARATELY, IN SEVERAL ORGANIC ACIDS AT 25. (Seidell, 1910.) Results for Hydrated Citric Acid. Results for Anhydrous Citric Acid. Gms coH l2)2 " Gms ' sf?S f ol( COOH )3- H Solvent. < f . UKL, Gms. roo H 2 0. Solid Phase. t .tensity ( at. Sol. < JU(UUJ 2 per loo 5ms. H 2 O Solid Phase. 10 9 32 .6 7 Ice 564 IOO CoCClO^.sHjO -30 -7 58 .16 " 7-5 .566 101.9 " -62 . 2 Eutec. Ice+Co(C104) 2 .9H 2 18 .567 103.8 -30 -7 83 .2 Co(C104) 2 .9H 2 26 581 113-4 H 21 3 QO .6 M 45 .588 115 H COBALT CHLORIDE SOLUBILITY IN WATER. (Etard Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94.) t. Gms. CoCl 2 per loo Gms. Solid Phase. t. Gms. CoCl 2 per Solid zoo Gms. Phase. Solution. Solution. 10 27.0 CodydHjO (red) 35 38.0 CoC^.Hp (violet) 29-5 14 40 41.0 + 10 31-5 So 47-o 20 33-5 U 60 47-5 CoCL^O (blue) 25 34-5 it 80 49-5 30 35-5 (( TOO 51.0 SOLUBILITY OF COBALT AMMONIUM CHLORIDES IN WATER. (Kurnakoff J. russ. phys. chem. Ges. 24, 629, '93; J. Chem. Soc. 64, ii, 509, '93.) Grams per 100 Grams H2O at: o. 16.9. 46.6- ,, . CoCl3.5NH3.H2O CoCl^NH, 0.232 16.12 4.26 24.87 1.031 ... 12.74 257 COBALT CHLORIDE SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT o. (Engel Ann. chim. phys. [6] 7, 355, '89.) Milligram Mols. per 10 cc. Sol. Sp. Gr. of gQpnftlflBB. Gms. per 100 Gms. Solution. Gms. per 100 cc. Solution. iCoCl 2 . HCL CoCl 2 . HCl. CoCl 2 . HCl. 62.4 O I 343 30 17 .00 40 5 58-52 3 7 I .328 28 .62 .102 38 .0 0-135 50.8 ii 45 I 299 2 5 39 .321 33 .0 0.417 37-25 25 .2 I .248 19 43 738 24 .2 0.919 12.85 55 O I .167 7 J S z .718 8 34 2.OO 4-75 74 75 I .150 2 .68 2 369 3 .08 2.72 12.0 104 5 I .229 6 34 3 .099 7 79 3-8i 25.0 139 o I 323 12 .27 3 .829 16 .24 5-07 SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS ALCOHOL AT 11.5. (Bodtker Z. physik. Chem. 22, 509, '97.) 10 gms. of CoCl 2 .6H 2 O were added to 20 cc. of alcohol and in addition the amounts of CoCl 2 shown in the second column. The solutions were shaken 2 hours, 5 cc. withdrawn, and the amount of dissolved CoCl, determined by evaporation and weighing. Vol. % Gms. CoCl 2 Gms. per 5 cc. Solution. Vol. % Gms. CoCl2 Gms. per 5 cc. Sol. Alcohol. Added. H 2 0. CoCl 2 . Alcohol. Added. H 2 0. CoCl 2 . 9 x -3 .0 I 325 1.168 99 3 0.612 .764 1-459 98-3 O .0 I 134 1.214 99 3 0.813 .688 1.568 98-3 O O I .068 1.181 99 3 I .022 o 634 i-7i3 99-3 .0 I 045 1.199 99 3 I .240 553 1.831 99-3 O .194 O .899 1.204 99 3 1.446 o 483 1-943 99-3 .400 O .829 1-325 99 3 1.650 o .500 2.183 100 gms. sat. solution in alcohol (6.792 Sp. Gr.) contain 23.66 gms. CoCL, So. Gr. = I.OI07. (Winkler J.pr. Chem. 91. 207, '6*0 SOLUBILITY OF COBALT CHLORIDE IN ORGANIC SOLVENTS. Solvent. Acetone Ethyl Acetate Ether, Abs. Glycol Acetonitrile 18 Methyl Acetate 18 95% Formic Acid 20 . 5 Anhy. Hydrazine 15 Gms. per 100 Gms. Solvent. ' ' CoCl 2 . CoCl 2 .2H 2 O. 9.II I7.I6 22.5 9.28 17.06 25 8.62 18 2-75 14 0.08 . . . 79 0.26 ... 0.021 0.201 10. 7 (per 100 g. sol.) 4.08 0.369* ... 6.2 I ... dja sat. sol. = 0.938. Authority. (von Laszczynski, 1894.) (von Laszczynski, 1894.) (Krug and McElroy, 1892.) (Naumann, 1904.) (von Laszczynski, 1894.) (Bodtker, 1897.) (de Coninck, 1905.) (Naumann and Schier, 1914.) (Naumann, 1909.) (Aschan, 1913.) (Welsh and Broderson, 1915.) COBALT CHLORIDE 258 SOLUBILITY OF COBALT CHLORIDE IN PYRIDINE. (Pearce and Moore, 1913.) r. Gm. CoCl 2 per too Gms Sat. Sol. Solid Phase. t p^oo^p^l t. Gm. CoCl 2 per 100 Gms Sat. Sol. Solid Phase. 4 8 .2 C 6 H 5 N 34 6 0.749 1.4 74.8 2. 037 1.2 50 3 Eutec. ... "+ 1.6 .37 6 0.754 78.2 2. 2 7 6 " 45 0.4185 1.6 44 6 0.950 ' 79.8 2. 428 H 30 0.4205 " 47 2 .O2O 88 3- 284 " .6 0.4208 " .no 90 tr. P t. .. " +CoCl, 10 0.4310 " 55 .192 96.5 7- 251 CoCl 2 0.4307 60 .324 98.8 7- 936 " 15 tr . pt. ... 1.6+1.4 64 2 .460 106 12. 540 M 23 0.569 1.4 68 .572 no 14. 165 25 0-575 " 70 tr. pt . . . " +1.2 1.6 = CoCl 2 .6C s H s N. 1.4 = CoCl 2 .4C s H i N. 1.2 =.CoCl 2 .2C 5 H 5 N. COBALT CITRATES. Salt. Formula. IN WATER . (Pickering, 1915.) Gms. per TOO cc. Sat. Sol. t. ~ _ Salt Co ~ (anhydrous). Cobalt Citrate (normal) Co 3 [(COO.CH 2 )2C(OH)COO] 2 .2H 2 O 10 0.08 0.267 Cobalt Hydrogen Citrate CoH[(COO.CH 2 ) 2 C(OH)COO] 10 0.20 0.906 Cobalt Potassium Citrate KCof(COO.CH 2 ) 2 C (OH) COO]. 4H 2 O 10 1.05 5.11 Cobalt Potassium Citrate K4Co[(COO.CH 2 ) 2 C(OH)COO] 2 10 3.04 31 COBALT FLUORIDE CoF 2 .4H 2 O. 100 gms. sat. solution in water contain 2.23 gms. of cobalt fluoride of a variety. loo gms. sat. solution in water contain 2.32 gms. of cobalt fluoride of variety. (Costachescu, 1910.) OOBALT IODATE Co(IO 3 ) 2 . SOLUBILITY IN WATER. (Meusser Ber. 34, 2435, '01.) Solid Phase : Co(IO3)2.2H 2 O. Co(IO3>.4H 2 O. Co(IO 3 ) 2 . G. o-54 0.83 1.03 1.46 1.86 2.17 M. O.O28 0.038 0-046 0.065 0.084 0-098 G. M. G. M. 0.32 O.OI4 o-45 0.020 1.03 0.046 0.52 0.023 0.89 0.040 0.67 0.030 0.85 0.030 O 18 30 So 60 65 75 100 G = Gms. Co(IO 3 ) 2 per 100 gms. solution. per 100 Mols. H 2 O. OOBALT IODIDE CoI 2 . SOLUBILITY IN WATER. (Etard Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, *g4<) The accuracy of these results is doubtful. 0.84 1.02 0.038 0.045 o-7S 0.69 0-033 0-031 M = Mols. Co(IO 8 ) 8 Gms. CoI 2 f. per 100 Gms. Solution. -10 55-5 O 58.0 10 61-5 15 63.2 20 65-2 2$ 67 Solid Phase. 25 30 40 50 80 no Gms. CoI 2 per 100 Gms. Solution. 67-5 7O.O 75-o 79.0 80.0 81.0 Solid Phase. (olive) ii CoI 2 .H 2 (yellow) 259 COBALT MALATE COBALT MALATE Co(COO.CH 2 .CHOHCOO).2H 2 O. ioo cc. sat. solution in water contain 0.14 gm. Co = 0.453 gm- anhydrous salt at 10. (Pickering, 1915.) COBALT MALONATES. SOLUBILITY OF COBALT MALONATES IN WATER. (Lord, 1907.) Gms. Anhy- Satt. FomuJa. f. **.. Sat. Sol. Cobalt Malonate CoCH 2 (COO) 2 .2H 2 O 18 1.353 " Ammonium Malonate Co(NH4) 2 [CH 2 (COO) 2 ] 2 .4H 2 O 18 10.61 " Caesium " CoCs2[CH 2 (COO) 2 ] 2 .4H 2 O 18 14.23 " Potassium " CoK 2 [CH 2 (COO) 2 ] 2 .4H 2 O 18 4.26 OOBALT NITRATE Co(NO 3 ) 2 . SOLUBILITY IN WATER. (Funk Wiss. Abh. p. t. Reichanstalt 3, 439, *oo.) Gms. Mols. Gms. Mols. *' P SSf^. ( 52^ > **""- ' PS. C ^S **- Solution. Mols.H 2 O. Solution. Mols.H 2 O. 26 39-45 6.40 Co(NO 3 ) 2 .QH 2 O 41 55.96 12.5 Co(NO3) 2 .6H 2 O -20.5 42-77 7-35 " 56 62.88 16.7 21 41-55 6-98 Co(NO 3 ) 2 .6HaO 55 61.74 15.8 Co(NO a )2.3HaO io 43.69 7.64 " 62 62.88 16.7 - 4 44.85 7.99 " 70 64.89 18.2 o 45-66 8.26 " 84 68.84 21.7 + 18 49.73 9.71 91 77-21 33-3 Density of solution saturated at 18 = 1.575. SOLUBILITY OF COBALT NITRATE IN GLYCOL. (de Coninck, 1905.) ioo grams saturated solution contain 80 gms. cobalt nitrate. COBALT RUBIDIUM NITRITE Rb 3 Co(NO 2 ) 6 .H2O. ioo gms. H 2 O dissolve 0.005 S m - of the salt. (Rosenbladt, 1886.) COBALT OXALATE Co(COO) 2 . ioo gms. 95% formic acid dissolve 0.04 gm. Co(COO) 2 at 19.8. (Aschan, 1913.) COBALT SULFATE CoSO 4 .7H 2 O. SOLUBILITY IN WATER. (Mulder; Tobler, 1855; Koppel, Wetzel, 1905.) Gms. CoSO 4 per t. ioo Gms. Mols. CoSO 4 . per ioo Gms. CoSO 4 per t. ioo Gms. Mols. CoSO, per ioo Solution. Water.' Mols. H 2 O Solution. Water. Mols. H 2 O. 20-35 25-55 2.958 35 31.40 45-80 5-31 5 21.90 28.03 3-25I 40 32.81 48.85 5.664 10 23.40 30-55 3-540 50 35.56 55-2 15 24.83 33-05 3.831 60 37.65 60.4 20 26.58 36.21 4.199 70 39-66 65-7 25 28.24 39-37 4.560 80 41.18 70 ... 30 29.70 42.26 4.903 IOO 45-35 83 IOO gms. H 2 O dissolve 37.8 gms. CoSO 4 at 25. (Wagner, '1910.) Freezing-point data (solubility, see footnote, p. i) for mixtures of CoSC>4 + Li 2 SO 4 , CoSO 4 + K 2 S0 4 and CoSO 4 + Na 2 SO/are given by Calcagni and Marotta (1913). COBALT SULFATE 260 SOLUBILITY OP MIXTURES OP CoSO 4 .7H 2 O AND Na 2 SO 4 .ioH 2 O IN WATER. (Koppel; Wetzel.) Gms. per ^o^ ioo Gms. Solution. Gms. per ioo Gms. H 2 O. Mols. per ioo Mols. H 2 O. Solid Phase. 'CoSO 4 . Na 2 SO 4 . r CoS0 4 . Na 2 SO 4 . CoSO 4 . Na 2 SO 4 . 5 16 17 56 .46 9-59 21.85 23-94 10 07 2 2 54 77 I I 27 .67 CoS0 4 . 7 H 2 + Na 2 S0 4 .ioH 2 O 10 .90 n-73 25-41 16 67 2 94 2 .11 .. 20 17 59 16.43 26.65 24 .91 3 .09 3 .15 CoNa 2 (S0 4 ) 2 . 4 H 2 25 17 .06 I5-70 25.36 23 32 2 95 2 97 " 30 J 5 94 14-93 23 -!5 21 .61 2 7o a 74 35 15 73 14.52 22.54 20.85 2 .62 2 .64 " 40 14 87 14.22 20.98 2O 05 2 .46 2 53 18-5 18 75 15.61 28.61 23 .82 3 32 3 .02 CoNa 2 (SO 4 ) 2 . 4 H 2 O 20 19 30 15.10 29.42 23 .01 3 .41 2 .92 + CoSO 4 . 7 H 2 O 25 20.30 13.60 30-74 20 58 3 56 2 .61 30 21 .67 12.05 32.70 18 17 3 79 2 30 35 22 .76 10.43 34.06 15 .61 3 95 I .98 M 40 24 05 9.16 35-oi 13 .72 4 .81 I 74 " 18.5 16 .87 16.97 25-50 25 65 2 .96 3 25 CoNa 2 (S0 4 ) 2 . 4 H 2 O 20 15 .41 18.12 23.18 27 .26 2 .69 3 45 +Na 2 S0 4 .ioH 2 O 25 10 63 23.26 16.07 35 17 I .86 4 .46 lt 30 6 .01 28.67 9.20 43 74 I .07 5 54 M 35 4 56 32.14 7.19 50 79 O 835 6 44 CoNa 2 (SO 4 ) 2 . 4 H 2 O 40 4 .72 3I-78 7-45 So- 10 o .864 6 34 + Na 2 SO 4 SOLUBILITY OF COBALT SULPHATE IN METHYL AND ETHYL ALCOHOL AND IN GLYCOL. Solvent. Methyl Alcohol (abs.) 3 15 18 (93-5%) 3 (50%) 3 Ethyl Alcohol (abs.) 3 Glycol Gms. per 100 Gms. Solvent. Observer. CoSO 4 . CoSO 4 .7H 2 O. . . 42 .8 (deBruyn Z. physik.Ch. 10, 784, '92.) 50.9 1-04 54-5 i3-3 1.8 2.5 o . (per 100 gmS. (de Coninck Bull. acad. roy . Belgique, solution) 3 . i 359. '05-) COBALT SULFIDE CoS. One liter water dissolves 0.00379 S m - CoS at 18 (electrolytic conductivity method, assuming complete dissociation and hydrolysis). (Weigel, 1906.) 261 COCAINE COCAINE C 17 H 21 N0 6 . SOLUBILITY IN SEVERAL SOLVENTS. Solvent. Water 50% Glycerol Gms. C n H 21 NO, t. per zoo Gms. Authority. Solvent. 2O 0.028 (Zalai, 1910.) 20 0.140 (Baroni and Barlinetti, 1911.) 25 0.17 (U. S. P.) 80 0.38 20 8 (Baroni and Barlinetti, 1911.) 25 2O (U. S. P.) 25 26.3 " 18-22 n. 6 (Muller, 1903.) l8-22 34 18-22 0.254 " 20 76 (Scholtz, 1912.) 2O 31-94 (Gori, 1913.) 18-22 100 + (Muller, 1903.) 18-22 100 18-22 59 18-22 2-37 " 20-25 80+ (Dehn, 1917; Scholtz, 1912.) 20 56 (Scholtz, 1912.) 20 36 " 20 4-34* (Zalai, 1910.) 25 8-3 (U. S. P.) 25 7.1 " * Per too cc. 3 Cms. H 3 BO 3 in A< Alcohol (92.5 Wt. %) Ether Ether sat. with H 2 O Water sat. with Ether Aniline Carbon Tetrachloride Chloroform Benzene Ethyl Acetate Petroleum Ether Pyridine Piperidine Diethylamine Sesame Oil Olive Oil Oil of Turpentine COCAINE HYDROCHLORIDE C 17 H 21 NO 4 .HC1. 100 gms. H 2 O dissolve 250 gms. of the salt at 25 and 1000 gms. at 80. (U. S. P.) 100 gms. 92.3% alcohol dissolve 38 gms. salt at 25 and 71 gms. at 60. (U. S. P.) 100 gms. chloroform dissolve 5.4 gms. salt at 25. (U.S. P.) 100 gms. glycerol dissolve 25 gms. salt at 15. (B. P.) COCAINE PERCHLORATE C 17 H 2 iNO 4 .HClO4. 100 gms. H 2 O (containing 8% free HC1O 4 ) dissolve 0.26 gm. perchlorate at 6. (Hofmann, Roth, Hobold and Metzler, 1910.) CODEINE Ci 8 H 21 NO 3 .H 2 O. CODEINE PHOSPHATE Ci8H 2 iNO 3 .H 8 PO4.2H 2 O. CODEINE SULFATE (Ci 8 H 2 iNO 3 ) 2 .H 2 SO 4 .5H 2 O. SOLUBILITY OF EACH SEPARATELY IN SEVERAL SOLVENTS. Gms. per 100 Gms. Solvent. e. (U. S. P.; Baroni and Barlinetto, (Zalai. 1910.) [1911-) (U. S. P.) (Schaeffer, 1913; U. S. P.) (U. S. P.) (Schaeffer, 1913.) Solvent. Water Alcohol (92.3 Wt. %) 25 20 80 25 60 25 25 20 25 25 Codeine, o . 80-1 . 7 0.84 1.70 63.7 108.7 62.8 2.94-1.33 8 11.4 12 C. Phos- phate. 44-9 227 0.383 1.03 O.OI5 0.075 C. Sulfate. 3-3 16" O.I 0.27 0.56 0.007 Insol. Authority. Methyl Alcohol Chloroform Carbon Tetrachloride Ether Benzene Trichlorethylene 3 Gms. HsBOs per 100 cc. aq- 50% Glycerol ord. t. loo gms. trichlorethylene dissolve 0.014 m - codeine hydrochloride at 15. (Wester and Bruins, 1914.) Data for the solubility of codeine and codeine sulfate in mixtures of alcohols, benzene and chloroform are given by Schaeffer (1913). 0.007 (Schaeffer, U. S. P.) (Gori, 1913; Beilstein, Suppl.) (U. S. P.) (Schaeffer, 1913.) (Wester and Bruins, 1914.) (Baroni and Barlinetto, 1911.) COLCHICINE 262 COLCHICINE C 22 H25N06. SOLUBILITY IN SEVERAL SOLVENTS. (Mliller, 1903; U. S. P.) Gms. Solvent. Solvent. Gms. Water Ether sat. with H 2 O 18-22 25 80 82 18-22 25 1 8-2 2 per 100 Gms. Solvent. 9.6 4-5 0.13 0.64 0.18 Water sat. with Ether 18-22 Benzene 18-22 Benzene 25 Chloroform 18-22 Carbon Tetrachloride 18-22 Ethyl Acetate 18-22 Petroleum Ether 18-22 per 100 Gms. Solvent. 12.05 0.94 I -IS IOO+ O.I2 '34 0.06 Beilstein. COLCHICINE SALTS. Name. Formula. Solvent. Colchicine lodohydrate C 2 2H25NO 6 .HI Water Iso Colcnicine lodohydrate Gms. Salt per Liter Sat. Sol. 30 30 Authority. (Pfannl, 1911.) 0.84 3-86 o . 083 (Jensen, 1913.) 0.007 " COLLIDINE (2.4.6 Trimethyl Pyridine) C 6 H 2 N(CH 8 ) 8 . SOLUBILITY IN WATER. (Rothmund, 1898.) Gms. Collidine per 100 Gms. Aq. Layer. Collidine Layer. 5.7 crit. t. 17.20 7.82 41.66 54.92 62.80 Gms. Collidine per 100 Gms. 10 20 30 40 60 3.42 2.51 1.93 1.76 70.03 80.19 Aq. Layer. Collidine Layer. 80 i-73 86.12 100 i! 7 8 88.07 120 1.82 88.98 I4O 2.19 89.10 160 2-93 87.2 180 3-67 ... COLLIDINE (1.3.5 Trimethyl Pyridine) C 6 H 2 N(CH 3 ) 3 . DISTRIBUTION BETWEEN WATER AND TOLUENE. (Hantzsch and Vagt, 1901.) G. Mols. Collidine per Liter. G. Mols. Collidine per Liter. t. H 2 Layer. Toluene Layer. Dist. Coef. t. H 2 O Layer Toluene Layer. Dist. Coef. o 0.0035 0.0580 0.0603 50 0.0017 0.0596 0.0285 10 O.OO26 0.0587 0.0443 70 O.OOI5 0.0597 0.0251 20 O.OO22 0.0588 0.0374 90 0.0013 0.0598 0.0218 30 0.0020 0.0594 0.0337 CONGO RED [C 6 H4.N:N.CioH 6 (NH 2 )SO 3 Na] 2 . 100 gms. H 2 Q dissolve n.6 gms. congo red at 2O-25. (Dehn, 1917.) 100 gms. pyridine dissolve 0.29 gm. congo red at 20-25. 100 gms. aq. 50% pyridine dissolve 7.32 gms. congo red at 20-25. " CONIINE (aPropyl Piperidine) C 8 HnN. 100 gms. H 2 O dissolve 1.83 gms. coniine at 20. (Zalai, 1910.) COPPER ACETATE Cu(C 2 H 3 O 2 ) 2 H 2 O. 100 gms. glycerol (d^ = 1.256 = 96%) dissolve 10 gms. copper acetate at I5-l6. (Ossendowski, 1907.) 263 COPPER ACETATE SOLUBILITY OF ANHYDROUS COPPER ACETATE IN PYRIDINE. (Mathews and Benger, 1914.) t. per 100 Gms. Solid Phase. t. per 100 Gms. Solid Phase Sat. Sol. Sat. Sol. 1 1. 6 0.37 CutQHsOz^CsHsN 45.2 4.17 + 2 0.6 " 34.8 3.75 Cu(C 5 H 3 2 ) 2 .C s H 6 N 13 I -3 55-7 4-13 26.45 Z -6I 64-3 4.48 " 37-4 2.83 " 76.2 4.83 41.9 3.12 83.3 5.40 43-2 3-39 95-4 6.31 Transition point = 44.7. COPPER ^BROMIDE (ous) Cu 2 Br 2 . SOLUBILITY OF CUPROUS BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AT i8-2O. (Bodlander and Storbeck, 1902.) Millimols per Liter. Grams per Liter. KBr. Total Cu. Total Br. Cu (ic). Cu (ous). KBr. Total Cu. Cu (ic). Cu (ous). O 3157 0.4320 o .2096 0.1061 O.O2OI O 0133 0.0067 25 .119 .012 0.107 2 .98 O.OO76 .0007 0.0068 40 0.200 .' . . 013 0.187 4 .76 O.OI27 .0007 O.OII9 60 O .310 025 0.285 7 15 O.OI97 .0015 O.OlSl 80 423 .012 0.411 9 53 O.0266 .0007 O.026l IOO 584 . . . 0.584 ii .91 0.0371 . . . 0.0371 120 693 . . . 0.693 14 .29 0.0441 0.0441 500 8 .719 . . . 8.719 59 55 0-5540 0.5540 loo gms. acetonitrile dissolve 3.86 gms. Cu 2 Br 2 at 18. ' (Naumann and Schier, 1914.) Freezing-point lowering data for mixture of CuBr + KBr are given by de Cesaris, 1911. COPPER BROMIDE (ic) CuBr 2 . IOO gms. acetonitrile dissolve 24.43 ms ' CuBr 2 at 18. (Naumann and Schier, 1914.) ioo gms. 95% formic acid dissolve 0.16 gm. CuBr 2 at 21. (Aschan, 1913.) COPPER CARBONATE Basic. SOLUBILITY IN AQUEOUS CO 2 SOLUTIONS AT 30. (Free, 1908.) Aq. 0.5 n Na 2 COs and 0.5 n CuSCX were mixed and the precipitate washed and suspended in H 2 O containing CO 2 at a pressure slightly above atmospheric, for 3 days. The filtered precipitate was kept in water ready for use. In the fresh condition or dried, the molecular ratio of the constituents was found to be iCuO: 0.515 CO 2 : 0.61 H 2 O. For the solubility determinations, about 2 gms. of the precipitate were suspended in 600 cc. of H 2 O and CO 2 passed in to the desired concentration. The mixture was shaken frequently for 3 days. The total COg in the sat. solution was determined and the free CO 2 calc. by difference, assuming that the amount combined to the Cu was in the molecular ratio 2CuO:iCO2. Parts per Million. Parts per Million. Free CO 2 . Metallic Cu. Free CO 2 . Metallic Cii. o = pure H^O i . 5 859 28 157 8.3 961 31 277 13-7 1158 33-7 348 17 1224 34.8 743 25.7 1268-1549 35-3-39-7* * Saturated with CO 2 at i + atmosphere. Results practically identical with the above were obtained for a NaCl solu- tion containing ioo parts per million. Data for other concentrations of NaCl and for other salts are also given. Salts with a common ion depress the solubil- ity. Those with no common ion increase it slightly. A recalculation of the results of Free is given by Seyler (1908). COPPER CARBONATE 264 SOLUBILITY OF MIXTURES OF COPPER CARBONATE AND POTASSIUM CARBONATE IN WATER AT 25. (Wood and Jones, 1907-08.) ioo gms. H 2 O dissolve 3.15 gms. CuCO 3 + 105 gms. K 2 CO 3 at 25 when the solid phase in contact with the solution is CuCO 3 .K 2 CO 3 + K 2 CO 3 . Additional points on the curves were determined but the analytical data are not given. The following approximate values were read from the curve for the double salt, CuCO 3 .K 2 CO 3 : Gms. per ioo Gms. H 2 O. , % Solid Phase. K 2 CO 3 . CuCO 3 . 105 3.15 KgCOrf CuCO 3 .K 2 CO 3 .100 3.20 CuCO 3 .K 2 CO 3 90 3.40 85 3-6o The triple point for double salt + CuCO 3 could not be determined since CuCO 3 is not capable of existing alone and decomposes into CO 2 + Cu(OH) a . COPPER CHLORATE (ic) Cu(ClO 3 ) 2 .4H 2 O. SOLUBILITY IN WATER. (Meusser, 1902.) Gms. Mols. Gms. Mols. t. Cu(ClO3) 2 Cu(ClO 3 ) 2 Solid Phase. t. ' Cu(ClO 3 ) 2 Cu(ClO 3 ) 2 Solid Phase, per ioo Gms. per ioo Mols. per ioo Gms. per ioo Mols. ^ Solutions. H 2 O. Solutions. H 2 6. -12 30.53 3.43 Ice l8 62.17 12.84 CuCClO,),.^ -3i 54-59 9-39 Cu(ClO 3 ) 2 . 4 H 2 O 45 66.17 15.28 -21 57.12 10.41 " 59.6 69.42 17.73 " -f 0.8 58.51 11.02 ." 71 76.9 25.57 1 Density of solution saturated at 18 = 1.695. COPPER CHLORIDE (ic) CuCl 2 .2H 2 O. SOLUBILITY IN WATER. (Reicher and Deventer," 1890; see also Etard, 1894.) Gms. CuCl 2 Gms. CuCl 2 Gms. CuClj t. per ioo Gms. t. per ioo Gms. t. per ioo Gms. Solution. Solution. Solution. 40 Eutec. 36.3 20 43.5 50 46.65 o 41.4 25 44 60 47.7 10 42.45 30 44.55 80 49.8 17 43-6 40 45-6 ioo 51.9 Density of solution saturated at o = 1.511, at 17.5 = 1.579. ioo gms. sat. solution in water contain 43.95 gms. CuCl 2 at 30, solid phase, CuCl 2 .2H 2 O. (Schreinemakers, 1910.) COPPER CHLORIDE (ous) CuCl. ioo gms. H 2 O dissolve 1.52 gms. CuCl at 25. (Noss, 1912.) SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID CONTAINING CuCl 2 AT 25. (Poma, 1909, 1910.) Results for i n HC1. Results for 2 n HC1. Results for 4 n HC1. Mols. per Liter. Mols. per Liter. Mols. per Liter. CuCl, Added. CuCl 2 +CuCl. Phase. Added. CuCl 2 +CuCl. Phase. C dded. CuCla+CuCl. SOlld . Phaser 0.0862 CuCl o . 2365 CuCl .7704 CuCl .1 0.2017 O .094 .3528 " 095 .9044 " .2 0.3256 o .188 .4766 " .189 I .0370 M 4 0.5707 235 5385 " o 379 I .3040 " o 5 0.6924 o .282 .6038 " 473 I .4380 26 5 COPPER CHLORIDE SOLUBILITY OP CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OP HYDRO- CHLORIC ACID. (Engel Ibid. [6] 17. 372, '89; Compt. rend. 121, 529, '95.) Milligram Mols. jjer 10 cc. Sol. iCu 2 Cl 2 . HCl. Results at o. o-475 8-975 i-5 17-5 2.9 26.O 4-5 34-5 8.25 47-8 15-5 68.5 104.0 Results at i5-i6. 7-4 54-4 10.8 68.9 12.8 75-o 16 o 92.0 Sp. Gr. of Solutions. ' Gms. per^ioo cc. Sol. 'Cu 2 Cl 2 / HCL Cms, per 100 Cms. Sol. ' HCL I 05 0.471 327 o .448 .312 I .049 i .486 .638 i .418 .608 I .065 2 .872 .948 2 .697 932 I .080 4 457 I 257 4 .127 I .!6 4 I 135 8 .172 I 743 7 .199 i I .261 15 7 2 497 12 .46 i ^80 I 345 3 2 .68 3 .827 24 30 2 845 I .19 7 33 I 983 6 159 I .666 I .27 10 .69 2 5" 8 .422 I 977 I .29 12 .68 2 734 9 .826 2 .119 I 38 J 5 .84 3 346 ii .48 2 424 SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS SOLUTIONS OP HYDRO- CHLORIC ACID AT o. (Engel Ann. chim. phys. [6] 17, 351, '89.) Milligram Mols. per 10 cc. Sol. Sp Gr. of Gms. per 100 cc. Sol. Gms. per 100 Gms. Sol. iCud 2 . HCl. Solutions. CuCl 2 . HCl. CuCl 2 . HCI: 91 75 O 1.49 61 .70 o. 41 41 o.o 86 .8 4 5 *-475 58 37 I. 64 39 58 1 .11 83 .2 7 .8 .458 55 95 2. 84 38 37 1 .95 79 35 10 5 435 53 37 3- 83 37 .19 2.67 68 4 20 25 389 46 .01 7- 38 33 .11 50 o 37 3*9 33 .62 13- 67 25 5o 10.37 22 .8 70 25 .231 15 33 25- 61 12 .46 20.80 23 5 102 .288 .81 37- 36 12 .27 29.00 26 7 128 O 323 17 .96 46. 66 13 57 35 -26 29 o Sat .HCl COPPER CHLORIDE, AMMONIUM CHLORIDE MIXTURES IN AQUEOUS SOLUTION AT 30. (Meerburg Z. anorg. Chem. 45, 3, '05.) Grams per 100 Gms. Sat. Solution. CuCl 2 . NEUCl.' 29-5 28.6 3-6 10.5 25-9 I6. 5 19.9 9-4 29.4 4-9 41.4 2.1 43-2 2-0 43-9 Grams per 100 Gms. Solid Phase. 'CuCl 2 . 6.0 37-o 21.7 28.5 35-i 43-1 48.2 34-9 23-1 18.4 15-3 13-3 6.6 Solid Phase. NH^Cl NHC1 + CuCl 2 .2NH 4 Cl. 2 H 2 O Cud8.2NH4Cl.aH20 + Cud 2 .iH,O Additional determinations for the ammonia end of this system at 25 are given by Foote, 1912. COPPER CHLORIDE 266 COPPER AMMONIUM CHLORIDE CuCl 2 .2NH 4 C1.2H 2 O. io. s -10.8 ii io o 12 20 per 100 Gms. Solution. 3.87 2O. 12 20.3 20.46 22.O2 24.26 25-95 SOLUBILITY .IN WATER. (Meerburg, 1905.) Solid Phase. Ice < Ice+CuCl 2 .2NH4C1.2H 2 O CuCl,.2NH4C1.2H 2 O 30 40 50 60 70 80 Gms. CuCl 2 . 2 NH4Cl per 100 Gms. Solution. 27.70 30.47 33-24 36.13 39-35 43.36 Solid Phase. .SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OP CUPRIC SULFATE AT ABOUT 2O. (Bodlander and Storbeck, 1902.) Millimols per Liter. Grams per Liter. CuSO 4 . Total Cu. Total Cl. Cu (ic). Cu (ous). CuSCv Total Cu. Total Cl. Cu(ic). Cu (ous). o 2 .880 5-312 2.25$ O.622 O 0.183 O.lSS 0.143 ' 0.040" 0.987 3 .602 4.908 3-145 0-457 o. 158 0.229 0.174 O.2OO 0.029 1-975 4 553 4.687 4-I3I 0.422 o. 315 0.290 0.166 0.263 0.027 2.962 5 193 4.256 4.625 0.509 o. 473 0.330 0.151 o. 292 0.032 4.937 7 276 4.329 6.546 0.730 0. 788 0.463 0.154 0.4l6 o . 046 SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT ABOUT 20. (Bodlander and Storbeck, 1902.) Millimols per Liter. Grams per Liter. KC1. Total Cu. Total Cl. Cu (ic). Cu (ous). KC1. Total Cu. Total Cl. Cu (ic). Cu (ous). 2 851 5.416 2.222 0.629 o. 181 0.193 0.141 O.O4O 2. 5 i 955 6.015 I.42I 0-534 0.186 0.124 0.213 0.090 0.034 5 i ,522 7.525 1.008 0.5H 0-373 o. 097 0.267 0.069 0.033 10 i .236 "735 0-475 0.761 0.746 o. 079 0.416 0.030 0.048 20 i ,446 21.356 0.324 1. 122 1.492 o. 092 0-759 O.O2I O.O7I 50 2 ,411 notdet. 0.1088 2.302 3-730 o. 153 not det. O.OO7 0.146 IOO 4 ,702 O 4.702 7.460 0. 299 tt O 0.299 2OO 9 485 M O 9-485 14.920 0. 603 t( 0.603 1000 97 O 97 74.60 6. 170 u 6.170 2000 384 t( 384 149.2 24- 42 it 24.420 The results in the 3d, 7th, 8th and last line of this table are at 16. SOLUBILITY OF COPPER CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE. (Hunt, 1870.) Gms. CuClg per too cc. Solution of: f. Sat. NaCl. iS%NaCl. S%NaCL II 8-9 3-6 40 11.9 6 I.I 90 16.9 10.3 2.6 26 7 COPPER CHLORIDE SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF FERROUS CHLORIDE AT 21.5 AND VICE VERSA. (Kremann and Noss, 1912.) In order to ascertain the composition of the solid phase, the experiment was made by mixing together weighed amounts of H 2 O, CuCl and FeCl 2 and agi- tating in a thermostat at constant temperature. A weighed portion of the clear saturated solution in each case was analyzed and the composition of the solid phase calculated by difference. Cms. per 100 Cms. H 2 O. FeCl 2 . CuCl. ' O i-53 6.02 i-33 11.62 i. 80 16.30 3-n 26.30 7.12 29-35 8.06 33-12 9-S6 Solid Phase. CuCl M Gms. per 100 Cms. H 2 O. FeCl 2 . CuCl. " 43-75 12.42 CuCl 54 17.04 66.40 21.6 u 73-20 23.20 71.90 21.65 F( 69.30 11.9 65.10 O Solid Phase. +FeCl 2 . 4 H 2 FeCl 2 . 4 H 2 SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 26.5 AND VICE VERSA. (Kremann and Noss, 1912.) (See remarks above.) 'NaCl. 10.8 CuCl.' i-55 OUJ1U. i IltlbC. CuCl 20.7 27 36.48 7-30 40.60 49.10 M Gms. per 100 Gms. H 2 O. Solid Phase. ' NaCl. CuCl. ' 44.14 57-21 CuCl 55-io 44.10 NaCl 56.80 41.70 " 50.90 18.70 u SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 22 AND VICE VERSA. (Bronsted, 1912.) Gms. per 100 Gms. _ ,. Sat. Sol. Solid Gms. per 100 Gms. _ ... Sat-Sol. lohd Gms. per TOO Gms. Sat. Sol. Solid Phase. KC1. CuCl.' ' KC1. CuCl. ' KC1. CuCl. 3-87 .115 CuCl 21 .64 13 .32 CuCl 24, 04 4 53 CuCl.aKCl 6.56 405 " 23 .84 17 -23 25 03 3 .14 " 8.24 O .861 " 25 .24 21 47 26 ,28 a .20 " n-33 2 .19 " 23 .87 15 .48 CuCLaKCl 27 ,06 i .60 " I5-30 4 .80 " 23 57 13 99 26 .68 -i .21 KC1 17-47 7 .19 " 23 II 39 26 32 -58 " 20.31 10 .21 " 23 -49 7 35 25 .68 ** COPPER CHLORIDE 268 SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS SOLUTIONS OF MERCURIC CHLORIDE AT 35 AND VICE VERSA. (Schreinemakers and Thonus, 1912.) ' HgCl 2 . CuCl 2 . auiiu r iia.se. HgCl 2 . CuCl 2 . " ooiiu rnase. O 44-47 CuCl 2 .2H 2 O 52-54 18.46 HgCl 2 21.03 33-5 52.81 18.06 u 37-30 26.07 tt 51.03 14-73 (( 44-47 23-31 tt 49-50 5-94 It 50-47 21 .50 " +HgCl 2 23.87 2.64 tl 52-44 19.40 HgCl 2 8.51' tt SOLUBILITY OF COPPER CHLORIDE AND POTASSIUM CHLORIDE DOUBLE SALTS AND MIXTURES IN WATER. (Meyerhoffer Z. physik. Chem. 5, 102, '90.) Cl per i Gram Solution. Mols.per iooMols.H 2 O. * Solid Phase. CuCl 2 .2KC1.2H 2 + KCl CuCl 2 .KCl + KC1 CuCl 2 .2KC1.2H 2 O + CuCl 2 .2H 2 O CuCl 2 .KCl + CuCl 2 . 2 H 2 O ii CuCl 2 .2KC1.2H 2 O + CuCl 2 .KCl CuCl 2 JCCl SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 30 AND VICE VERSA. (Schreinemakers and de Baat, 1908-09.) Gms. per 100 Gms. Sat. Sol. Gms. per TOO Gms. Sat. Sol. , ^. > Solid Phase. . ; > Solid Phase. MaCl. CuCl 2 . NaCl. CuCl 2 . o 43-95 CuCl 2 .2H 2 O 12.25 32.40 NaCl 3.10 41.14 13.54 28.64 4.28 41.06 15-40 23.72 6.41 39.40 " 18.44 16.98 " 10.25 36.86 " +NaCl 20.61 11.03 12.02 32.38 NaCl 26.47 " t<>. Present as CuCl 2 . Present as KC1. CuCb. KCl. 39-4 0.120 0.107 5.56 9-93 49.9 0.129 O.II5 6-39 11.4 60.4 0.142 0.125 7.71 13.6 79.1 0.168 O.I42 n. i 18.8 0.188 0.154 14.9 24.4 93-7 0.194 0.156 16.2 26.0 98.8 0.197 O.l62 17-5 28.7 o 0.214 O-02I 9.84 i-94 39-6 0.232 O.O49 12.9 5-44 50.1 0.233 0.059 13-7 6.90 0.241 0.062 14.8 7-63 60.2 0.246 O-o66 15-8 8-49 72.6 0-255 0.063 16.8 8-35 64.2 14.9 ii. 6 72-5 ... ... 14.8 15.0 26$ : COPPER CHLORIDE SOLUBILITY OF CUPRIC CHLORIDE? itf AQUEOUS ALCOHOL AT^II.S". (Bodtker, 1897.) 10 gms. of CuCl 2 2H 2 O and the indicated amounts of CuCl 2 were added to 20 cc. portions of alcohol. The solutions shaken two hoursjand 5 cc. portions withdrawn. Vol. % Gms. CuCl 2 Gms. per 5 cc. Solution. ' Vol. % Gms. CuClj Gms. per 5 cc. Solution. Alcohol. Added." ' H 2 O. CuCl 2 . " Alco] hoi. Added. , > H 2 0. CuCl 2 . " 89.3 o 0.794 LI37 99 3 0.223 0.330 I-29S 92.3 o 0.648 1.090 99 3 0.887 0.247 1.639 96.3 0.478 1.116 99 3 I.S40 0.191 2.086 99-3 o 0.369 1.208 99 3 1-957 0.164 2.400 SOLUBILITY OF CUPRIC CHLORIDE IN SEVERAL SOLVENTS. (Etard Ann. chim. phys. [7] 2, 564, '94; de Bruyn Z. physik. Chem. 10, 783, '92; de Coninck Compt.rend. 131, 59, 'oo; St. von Laszczynski Ber. 27, 2285, '94.) Grams CuCl2 per 100 Grams Sat. Solution at: ooiveni. 0. 15. 20. 40. 80. Methyl Alcohol 36 40.5 (deB.) 36.5 37-o Ethyl Alcohol 32 35.0 (deB.) 35-7 39-0 Propyl Alcohol 29 30-5 30-5 . . . Iso Propyl Alcohol . . . 16.0 30.0 n Butyl Alcohol 1^ . . . J 5-3 16.0 16.5 Allyl Alcohol 23 . . . 23.0 . . . Ethyl Formate 10 9.0 8.0 Ethyl Acetate . . . ... 3-0 2 -5 i.3(72 ) Acetone (abs.) 8.86* 8. 9 2f 2.88 (18) ... 1.40(56) Acetone (80%) . . . 18.9$ Ether 0.043 ( IJ ) o.n * (CuCl 2 .2 Aq.) t(CuCl 2 .2Aq.) * (23 CuCl 2 .2 Aq.) For the solubility of cupric chloride in mixtures of a number of organic solvents, see de Coninck. Gms. Solvent. V. g^T Sat. Sol. Acetonitrile 18 1.57 Ethyl Acetate 18 0.4 Methyl Acetate 18 0.55 Sp. Gr. Sat. Sol. Authority. (Naumann and Schier, 1914.) 0.9055 (Naumann, 1904.) O . 939 (Naumann, 1909.) AnhydrOUS Hydrazine Ord. temp. 5 (decomp.) . . . (Welsh and Broderson, 1915.) SOLUBILITY OF CUPROUS CHLORIDE IN ACETONITRILE. (Naumann and Schier, 1914.) loo gms. acetonitrile of boiling point 81.6 dissolve 13.33 g ms CuCl at 18. SOLUBILITY OF CUPRIC CHLORIDE IN PYRIDINE. : (Mathews and^Spero, 1917.) Gms. t o CuCl 2 per 100 Gms. Sat. Sol. 0.140 0.195 0.295 12. 1 IO 8.9 tr. pt. 0.270 + 2 0.275 10 0.293 25 0.348 35 0.382 Gms. Solid Phase. t CuCl 2 per Solid Phase. too Gms. Sat. Sol. :i,.6C 5 HBN 45 0.422 CuClj-aCjHjN 53 0-493 it (unstable) 60 0.565 " (unstable) +CuCl 2 .2C 5 H 6 N 62 0.616 " " CuCl 2 .2C 6 H5N 58 tr. pt. . . . " +2CUC1J.3C5HSN " 63 0-543 2CUC12.3C5H6N (i 75 0.631 M 95 0.917 M COPPER CHLORIDE 270 DISTRIBUTION OF CUPRIC CHLORIDE BETWEEN AQ. HC1 AND ETHER When i gm. of copper as chloride is dissolved in 100 cc. of 10% HC1 and shaken with loo cc. of ether, 0.05% of the metal enters the ethereal layer. (Mylius, 1911.) COPPER Ammonium CHLORIDE CuCl 2 .NH 4 Cl. SOLUBILITY IN ABSOLUTE ALCOHOL AT 25. (Foote and Walden, 1911.) Gms. per 100 Gms. Sat. Sol. Solid Phase. 4.7 not det. NH4C1+ CuCl 2 .] 6.45 " CuCl 2 .NH 4 Cl 12.90 34-7 " +CuCl 2 .C 2 H 5 OH COPPER Potassium CHLORIDE CuCl 2 .KCl. SOLUBILITY IN ABSOLUTE ALCOHOL *ANDJN ACETONE AT 25. (Foote and Walden, 191 1) In Absolute Alcohol. In Acetone. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. _ -. " ^7- . Solid Phase. TT-rr " TTTT, Solid Phase. CuCl 2 . KC1. CuCl 2 . KC1. 1.40 0.28 KCl+CuCl 2 .KCl 0.34 0.38 KCl+CuCl 2 .KCl 2.15 not. det. Cud 2 .KCi 0.48 not det. CuCi 2 .Kd 5.25 " 1.50 30.16 " 2.06 34.45 0.21 " H-CuClz.QHBOH 2.40 0.27 " +CuCl 2 .C 3 HO 33.97 O CuCl,.CfH,OH Freezing-point data (solubility, see footnote, p. i) are given for the following mixtures of cuprous chloride and other chlorides. CuCl + CuCl 2 (Sandonnini, 1912 (a)). + FeCls (Hermann, 1911.) + PbCl 2 -j- LiCl (Sandonnini, 1911, 1914; Korreng, 1914.) -\- RbCl (Sandonnini, 1914; Sandonnini and Aureggi, 1912.) + AgCl (Sandonnini, 1911, 1914; Poma and Gabbi, 1911, 1912.) -j- KC1 (Sandonnini, 1911,1914; Korreng, 1914; Sackur, 1913; Poma and Gabbi, 1911, 1912.) + NaCl (Sandonnini, 1911, 1914; Korreng, 1914; Sackur, 1913; de Cesari, 1911.) + T1C1 (Sandonnini, 1911, 1914.) + SnCl 2 (Hermann, 1911.) + ZnCl 2 Freezing-point lowering data for mixtures of CuCl + Cu 2 O and CuCl + Cu 2 S are given by Truthe, 1912. COPPER Potassium CITRATE CuK 4 [(COOCH 2 ) 2 C(OH)COO] 2 . 100 cc. sat. solution in H 2 O contain 43.3 gms. of the salt at 10. (Pickering, 1915.) COPPER CYANIDE (ous) Cu 2 (CN) 2 . Freezing-point data for Cu 2 (CN) 2 + KCN and Cu 2 (CN) 2 + NaCN are given by Truthe (1912). COPPER HYDROXIDE (ic) Cu(OH) 2 . SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIA AT 18. (Dawson, 1909.) Mols. NH 3 per Gm. Atoms Cu per Mols. NH 3 per Gm. Atoms Cu per Liter. Liter. Liter. Liter. 0.2 0.00054 3 0.0548 0.5 0.0033 4 0.0784 1 0.0109 5 0.1041 1.5 0.0204 6 0.1254 2 0.0314 8 0.1599 2.5 0.0442 9.96 0.1787 Three series of results at 25, somewhat higher than the above, are given by Bonsdorff, 1904. Data showing the effect of increasing amounts of (NH 4 ) 2 SO 4 , Ba(OH) 2 , NaOH and of Na 2 SO 4 upon the solubility of cupric hydroxide in aqueous ammonia solution at 18, are given by Dawson, 1909 a. 271 COPPER IODATK COPPER IODATE (ic) Cu(IO 3 ) 2 H 2 O. One liter sat. aqueous solution contains 1.36 gms. Cu(I0 3 ) 2 at 25, determined by measurement of single potential differences against a o.i n calomel electrode. (Spencer, 1913.) COPPER IODIDE (ic) CuI 2 . One liter sat. aqueous solution contains 11.07 gms. CuI 2 at 20. (Fedotieff, ign-ia.) COPPER IODIDE (ous) Cu 2 I 2 . SOLUBILITY OF CUPROUS IODIDE IN AQUEOUS SOLUTIONS OF AMMONIUM BROMIDE AND OF POTASSIUM BROMIDE. (Kohn, 1909; Kohn, and Klein, 1912.) Results for Aq. NH 4 Br at 20. Results for Aq. KBr Solutions. Normality Gms. Cu 2 I 2 Normality Gms. Cu 2 I 2 Normality Gms. Cu 2 I, NHiBr per 1000 cc. t. of KBr per 1000 cc. t. Sol. Sat. Sol. Sol. Sat. Sol. 2 1.9068 19.5 2 1.467 23 3 3-6540 24 2 1.558 22 4 6.0588 19.5 3 3.409 22 of KBr per 1000 Gms. Sol. Sat. Sol. 3-595 7.126 6.977 SOLUBILITY OF CUPROUS IODIDE IN AQUEOUS SOLUTIONS OF IODINE AT 20 AND VICE VERSA. (Fedotieff, 1910-11.) Gms. per Liter. Solid Gms. per Liter. Solid Cu. I. Phase. ' Cu . i. Phase. 0.285 .5848 Cul 0.964 5 .0854 Cul 0.482 I 3053 " .032 5 .6854 " 0.583 I .9218 " .090 6 .2816 " 0.678 2 5573 " .112 6 5301 " 0.756 3 . 2042 " .232 7 .6529 " +1 0.844 3 9539 " .040 6 .4440 I 0.898 4 4359 " 0.898 5 5941 " Gms. per Liter. Solid Phase. Cu. I. 0.748 4.7112 I 0.6o6 3.8562 0.448 2.9493 " 0.300 2.0689 0.159 I-2304 " at o= 0.925 5.4609 Cui+i at 40= i. 658 11.3658 " _ Constant agitation and temperature. Iodine determined by thiosulfate titra- tion; copper, electrolytically. Additional data for the solubility of cuprous iodide in aqueous solutions of iodine in presence of acids and salts at 25, are given by Bray and MacKay (1910). These authors state that cuprous iodide is difficultly soluble in water, but in the presence of iodine a considerable amount dissolves, owing to the formation of cupric iodide and tri-iodide. 100 gms. acetonitrile dissolve 3.52 gms. Cu 2 I 2 at 18. (Naumann and Schier, 1914.) Freezing-point lowering data for mixtures of Cul + Agl are given by Quercigh, '14. COPPER NITRATE (ic) Cu(NO 3 ) 2 . SOLUBILITY IN WATER. Gms. t o Cu(N0 3 ) 2 ' per 100 Gms. Mols. Cu(NO 3 ) 2 per too Solid Phase. Solution. Mols. H 2 O. -23 36.08 5-42 Cu(NO 3 ) 2 .9H 2 O 20 40.92 6-65 21 39-52 6.27 Cu(NO 3 ) 2 .6H 2 O 45 7.87 M + 10 48.79 9-15 18 53-86 11.20 II (Funk, 1900.) Gms. Mols. r. per 100 Urns. per Solution. Mols. H 2 O. scud Ph- 55.58 Cu(NO J ),. 3 H 1 20 26.4 25 40 60 80 II4-5 Density of solution saturated at 18 = 1.681. 100 gms. H 2 O dissolve 127.4 gms. Cu(Np 3 ) 2 at2O ,er loo Gms. it. Sol. Li 2 S0 4 . 17.92 20-55 22.23 23-59 25.24 CuSO 4 . II .04 IO.O5 6.41 3-39 o Solid Phase. CuSO 4 .5H 2 O " +Li 2 SO 4 .H 2 O Li 2 SO 4 .H 2 O SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF LITHIUM AND OTHER CHLORIDES AT 25. (Herz, 1910.) In Lithium Chloride. Gms. per 100 cc. Sat. Sol. In Potassium Chloride.' Gms. per 100 cc. Sat. Sol. In Rubidium Chloride. Gms. per 100 cc. Sat. Sol. In Sodium Chloride. Gms. per too cc. Sat. Sol. LiCl. CuS0 4 . 3.10 20.06 5-93 18.78 12 17.03 KC1. CuS0 4 . 4.19 23.89 8.75 24.92 17.50 29.03 ' RbCl. CuS0 4 , o 22.34 13.22 25.02 . NaCl. CuSO 4 . 2.10 22.41 7.72 22.76 14.79 24.05 SOLUBILITY OF. COPPER POTASSIUM SULFATE CuK 2 (SO 4 ) 2 .6H 2 IN WATER AT 25. loo gms. H 2 O dissolve 11.14 S ms - CuK 2 (SO 4 )2. (Trevor, 1891.) Additional data for the system Copper sulfate -f Potassium sulfate + H 2 O are given by Meerburg, 1909. Data for the solubility in water of mix-crystals of copper sulfate and man- ganese sulfate at o and 17, and of copper sulfate and zinc sulfate at 12, 18, 25i 35 40 and 45, are given by Hollemann, 1905-06. 275 COPPER SULFATE COPPER SULFATE, MANGANESE SULFATE, MIXED CRYSTALS AT 25. (Stortenbecker, 1900.) Cms, per 100 Gms. HaO. Mols. per 100 Mols. H 2 O, CuSCv MnSO 4 . Tridinic Crystals with sH 2 O. 20.2 19.76 I3-65 ii. 61 9-39 6-47 o 3-69 St'S* 39-4i 46.77 53-39 58-93 o.o 61.83 Monoclinic Crystals with 7H 2 O. 9-39 6-47 o.o 46.77 53-39 Cu. 2.282 2.23 1-54 I-3 1 i. 06 o-73 0.34 o.o i. 06 o-73 o.o Mn. O 0.44 3-76 5-59 6-37 7-03 7-375 5-58 6-37 8* Mol. % Cu in Solution. Mol. % Cu in Crystals. 100 100 90-5 83.5 99-3 74.1 97-3 57-7 31-0 *l'.l 29.0 26.1 21.8 70.4 21.2 42.6 20.0 34-4 13-45* 22.9 15 .2* 10.27 10-5 4-6 4.9 2.31 2.15 o.o IOO.O 20. o 10.27 4,6* o.o 28.2 23-5 20.8 16.0 5-8* 100 * Indicates points of labil equilibrium. COPPER SULFATE, ZINC SULFATE, MIXED CRYSTALS IN WATER AT 18. (Stortenbecker, 1897.) Triclinic Crystals with Monoclinic Crystals with 7H 2 O. Rhombic Crystals with 7H 2 O. Mols. per 100 Mols. H 2 O. Mol. % Cu Mol. % Cu Cu. Zn. in Solution. in Crystals. 2.28 100 100 -83 2.08 46.8 94.9 -41 3-60 28.1 .19 5-01 19.2 77-9 .86 3-36 36.2 40.4 .22 4-45 21-5 29-5-3I-9 .01 4.72 17.6 24.1-28. 0.82 5-03 14.0 19.0-22. 0.51 5-59 8.36 12.4-14-9 0.30 5-56 4.87 7.02 o.o 6.42 o.o 1.19 5.01 19.2 5.01 0.51 5-59 8.36 1.97 0.267 5-77 4.42 i-i5 o.o 5-94 o.o 0-00 COPPER SULFATE 276 SOLUBILITY OF COPPER SULFATE, SODIUM SULFATE MIXTURES IN WATER. (Koppel, 1901-02; Massol and Maldes, 1901.) Solid Phase. CuS0 4 .5H 2 0+NaSO 4 .ioH 2 O CuSO 4 .NajSO <2 H 2 O CuS0 4 .Na 2 S0 4 .2H 2 0+CuS0 4 .sH 2 Gms. per 100 Gms. t t Solution. Mols. per 100 Mols. H 2 0. " CuSO 4 . NajSO,. CuSO 4 . NajSO 4 . O 13.40 6.23 1.88 0.98 IO 14.90 9.46 2.23 1.56 15 15.18 11.64 2-34 2.02 17.7 14-34 13-34 2.24 2-34 23 14.36 12.76 2.23 2.21 40.15 13-73 12.26 2.10 2.10 17.7 14.99 I3-48 2-37 2-39 23 16.41 n-35 2-57 1.99 40.15 20.56 8 3-25 1.47 18 13-53 13.84 2.10 2.41 20 n-34 I5-70 I. 7 6 2-73 25 6.28 21.20 0.98 3-70 30 2.607 28.38 0-43 5-2i 33-9 1-475 32.30 0.25 6.18 37-2 1-494 31.96 0.25 6.08 30 5-38 22.17 30.1 3 -69 25-37 30 i-57 32.09 CuS0 4 .Na 2 S0 4 .2H 2 +increasing Data tor the system copper sulfate, sodium sulfate, water, at 20 and 35* are given by Massink, 1916, 1917. SOLUBILITY OF COPPER SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 0. (Engel, 1887.) Milligram Eqvnv. H,0. per 10 Gms. Sp. Gr. of Solutions. I.I44 Grams per 100 Grams H 2 0. H 2 S0 4 . CuSO 4 . 18.6 H 2 S0 4 . cuso 4 : 14-85 4.14 14.6 17.9 19.6 I I -143 .158 2 7 03 .16 14.29 15-65 54-2 56-25 71.8 12.4 8.06 7-75 5 I I I I .170 195 .211 .224 15 26 27 35 .20 57 57 .2 9.90 6.43 6.19 3-99 SOLUBILITY OF COPPER SULFATE IN AQUEOUS AT 25. (Bell and Taber, 1908; SOLUTIONS Foote, 1915.) OF SULFURIC ACID Gms. per 100 Gms. Sat. Sol. Solid Phase. CuSO 4 .sH 2 < Gms. per 100 Gms. Sat. Sol. Solid Phase. CuSO 4 . 3 H 2 O+CuSO CuS0 4 .H 2 H 2 H 2 S0 4 . 11.14 CuSO 4 . 18.47 12.62 H 2 S0 4 . 55-72 61.79 CuS0 4 . 2.13 o-95 25 36 42 47 49 53 77 .66 5 3 2 2 2 .92 25 -63 59 -83 M " +CuSO 4 .sH 2 O 77 83 85 85 86 93 .29 .46 .76 .04 0.17 0-15 0.19 0-43 0.40 u If " +CuS0 4 CuS0 4 50 54 23 .78 2 2 .70 .19 CuSO 4 .3H 2 O 92 .70 0.19 277 COPPER SULFATE SOLUBILITY OF COPPER SULFATE IN METHYL AND ETHYL ALCOHOL, ETC. (de Bruyn, 1892; de Coninck, 1905.) Solvent. Methyl Alcohol Abs. " 93-5% " 50% " " Abs. Ethyl Alcohol Abs. Glycol Glycerol Glycerol 95% Formic Acid Anhy. Hydrazine Cms, per ioo Gms. Solv. SOLUBILITY IN AQUEOUS i8 18 18 3 3 14.6 15-5 15-16 CuS0 4 . CuS0 4 .sH 2 0. 1.05 15.6 0-93 0.40 ... 13.4 ALCOHOL AT 15. (Schiff, 1861.) Alcohol Gms. CuSO 4 .sH 2 O per ioo g. Solvent. IO 20 40 I.I 7-6* 30 36 . 3 (Ossendowski, 1907.) 15-3 3-2 0.25 ord. t. 2 * Per ioo gms. solution. O'O5 . . . t (Welsh and Broderson, 1915.) t decomp. Data for the solubility of copper sulfate in methyl alcohol are given' by Carrara and Minozzi, 1897. COPPER SULFIDE (ic) CuS. 1 One liter of water dissolves 0.00033 gm. CuS at 18, determined by the conduc- tivity method. (Weigel, 1906; see also Bruner and Zawadski, 1909.) ioo cc. sat aq. sodium sulfide solution (of d = 1.225) dissolve 0.0032 gm. CuS. (Holland, 1897.) SOLUBILITY OF COPPER SULFIDE IN AQUEOUS SUGAR SOLUTIONS. (Stolle, 1900.) insolvent. 10 30 50 Gms. CuS p< :r Liter of Aq. Sugar 1 Solution at: 17.5- 0.5672 0.8632 0.9076 45- 0-3659 0.7220 1.0589 75. ' I-I34S 1.2033 I . 2809 COPPER SULFIDE (ous) Cu 2 S. Freezing-point lowering data (solubility, see footnote, p. i) for mixtures of Cu 2 S + Ag 2 S, Cu 2 S + PbS and Cu 2 S + ZnS are given by Friedrich, 1907-08. Results for Cu 2 S + Sb 2 S 3 are given by Chikashigi and Yamanchi, 1916. Data for Cu 2 S + FeS are given by Shad and Bornemann, 1916. COPPER SULFONATES. 100 gms. H 2 O dissolve 0.25 gm. copper 2-phenanthrene monosulfonate at 20. 0^26 " " 10- " COPPER TARTRATE CuC 4 O 6 H4.3H 2 O. SOLUBILITY IN WATER. (Cantoni and Zachoder, 1905.) (Sandquist, 1912.) t. Gms. per ioo cc. t. Gms. CuC 4 6 H 4 . 3 H 2 per ioo cc. t. Gms. CuC 4 O f H 4 . 3 H 2 O per ioo cc. Solution. Solution. Solution. 15 0.0197 40 0.1420 65 0.1767 20 0.0420 45 0.1708 70 0.1640 25 o . 0690 O.I92O 75 0.1566 30 o . 0890 55 0.2124 80 0.1440 35 0.1205 60 0.1970 85 0.1370 COPPER THIOCYANATE 278 NH 3 . Cu(SCN) 2 . 0.79 2-45 1.98 4.08 2.50 5.11 4.26 5.96 5-35 6.22 6-39 6-59 9-93 7.98 16.55 11.24 21.47 15.22 COPPER THIOCYANATE (ic) Cu(SCN) 2 . SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 25 AND AT 40. (Horn, 1907.) Results at 25. , Results at 40. dv, Gms. per 100 Gms. Sat. Sol. ^.^ ^^^ Gms. per 100 Sat. 1.0082 0.70 2.4S Cu(SCN) 2 . 2 NH3 I.OI66 I .O2I3 I.OI7I 4.26 ^.Q6 Cu(SCN) 2 .4NH3 1.0151 1.0134 1.0070 0.9987 0.9985 COUMARIN C 9 H 6 O 2 . 100 gms. water dissolve o.oi gm. coumarin at 2O-25. (Dehn, 1917.) " pyridine 87.7 gms. 50% aq. pyridine 60. i " chloroform 49.4 " 25. (Osaka, 1903-08.) Freezing-point lowering data for mixtures of coumarin and sulfuric acid are given by Kendall and Carpenter, 1914. CRESOLS C 6 H 4 (OH)CH 3 o, m and p. SOLUBILITY OF EACH SEPARATELY IN WATER. (At 20, Vaubel, 1895; Sidgwick, Spurrell and Davies, 1915.) Determinations by synthetic method; melting-point of o = 29.9, of m = 4, of p = 33-8. Triple point for o = 87 and 2.5 gms. per 100 gms. sat. sol. at 8; triple point for p = 86 and 2 gms. per 100 gms. sat. sol. at 8.7. NH 3 . Cu(SCN) 2 . ooiiu rnase. 0.94 2.81 Cu(SCN) 2 .2NH 3 1.77 4.18 " 2-57 6.55 " 3-52 8.76 4-35 11.78 Cu(SCN) 2 . 4 NH3 5-50 12.07 " 7-58 12.99 13.98 16.58 " 18.02 19.76 Gms. per 100 Gms. Sat. Solution. 20 40 o Cresol. 2-45 3.08 m Cresol. 2.18 2.51 p Cresol. 1-94 2.26 50 60 3.22 3-40 2.72 2.98 2-43 2.69 70 80 90 3-74 4.22 4.80 3-35 4-43 3-03 3-52 4.16 100 5-30 5-47 5.10 no < .80 5-SO ^ Gms. per too Gms. Sat. Solution. o Cresol. m Cresol. P Cresol. 120 6.22 7 6.58 I 3 6.70 8.86 9 I4O 7.67 12.3 15-9 143.5 crit - *. . . . . . . CO 147 crit. t. 00 150 II. I 160 23-7 162. 8 crit. t. 00 One liter aqueous I normal solution of the sodium salt of o cresol dissolves 7.57 gms. o cresol at 25, 8.32 gms. at 40, 9.84 gms. at 60 and 13.62 gms. at 80 (Sidgwick, 1910.) MISCIBILITY OF AQUEOUS ALKALINE SOLUTIONS OF m CRESOL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER. (Sheuble, 1907.) To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret, and then the m cresol dropwise, until solution occurred. Temp, not stated. Composition of Homogeneous Solution. cc. Aq. KOH. Aq. Insol. Cmpd. m Cresol. 5 2 CC. (I .64 gms, .) Octyl Alcohol* I .1 gms. 5 5 tt (4 .1 tt ) " I .8 tt 5 2 " (i 74 tt ) Toluene 4 4 " 5 3 tt (2 .61 it \ a 5 .1 " 5 2 " (I .36 tt ) Heptane 6 4 n the normal secondary alcohol, the so-called capryl alcohol, CH 3 (CH2) s CH(OH)CHa. 279 CRESOL DISTRIBUTION OF CRESOL BETWEEN WATER AND ETHER. (Vaubel, 1903.) Composition of Solvent. Gms - ^jj ' m H 2 l n Ether Layer. 200 cc. H 2 0+ioo cc. Ether 0.0570 i .0760 200 cc. H2O+200 cc. Ether 0.0190 i .1144 FREEZING-POINT LOWERING DATA (Solubility, see footnote, p. i) FOR MIX- TURES OF o, m AND p CRESOL (each determined separately) AND OTHER COMPOUNDS. Mixture. Authority. o, m and p Cresol + Dimethylpyrone (Kendall, 1914.) -j- Picric Acid (Kendall, 1916.) " + Pyridine (Hatcher and Skirrow, 1917.) and p + (Bramley, 1916.) + Sulfuric Acid (Kendall and Carpenter, 1914.) 4- Urea (Kremann, 1907.) o, m and p , Trinitrocresol + Naphthalene (Saposchinikow and Gelvich, 1903, 1904.) CROTONIC ACIDS a. ^CHsCHrCHCOOH, = HCH 3 C:CHCOOH. FREEZING-POINT LOWERING DATA FOR MIXTURES OF CROTONIC ACIDS AND OF CROTONIC ACID AND OTHER COMPOUNDS. Mixture. Authority. a Crotonic Acid + ft Crotonic Acid (Morrell and Hanson, 1904.) " + Dimethylpyrone (Kendall, 1914.) + Sulfuric Acid Chlorocrotonic Acid + Dimethylpyrone " + Sulfuric Acid (Kendall and Carpenter, 1914.) (Kendall, 1914.) (Kendall and Carpenter, 1914.) Methyl CRYPTOPINES, A, B and C forms, C 22 H 25 O 5 N. The solubilities of the three forms in benzene, determined by lowering of the freezing-point, are: 5 gms. A form per liter at 5, 30 gms. B form and no gms. C form. (Sidgwick, 1915.) CUMINIC ACID C 3 H 7 C 6 H 4 .COOH (p Isopropyl Benzole Acid). SOLUBILITY IN WATER AT 25. (Paul, 1894.) looo cc. sat. solution contain 0.1519 gm. or 0.926 millimol cuminic acid. PseudoCUMIDINE (CH 3 )3.C 6 H 2 .NH 2 (s, 5 Amino, i. 2. 4, Trimethyl Benzene). SOLUBILITY IN WATER. (Lowenherz, 1898.) t. 19.4. 23.7. 28.7. Gms. \l/ Cumidine per liter H 2 O i . 198 i .330 i .498 CYANAMIDE CN.NH 2 . SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Pratolongo, 1913.) Gms. " Gms. fc of Congealing. CN.NH 2 per 100 Gms. Solid Phase. Sat. Sol. 0.62 2. 5 8 Ice - 3.96 9.42 " - 7.58 18.40 . " . 12.72 30-9 <( i6.6Eutec. 37-8 " +CN.NH, -15-6 38.75 CN.NH 2 f of Congealing. Sat. Sol. -14-39 40.19 - 2.49 56.80 +14.50 77.20 25.6 87-I5 37-90 96.77 42.9 100 Solid Phase.' CN.NH, Similajata forCN.NHi + urea and^CN.NHa + dicyandiamide are also' given. DiCYANDIAMIDINE Perchlorate C 2 H 6 N 4 OHC1O4. '"loo'gms. H 2 O dissolve 9.97 gms. of the salt at 17 (d sat. sol. = 1.039). (Carlson, 1910.; CYANOGEN 280 CYANOGEN (CN) 2 . SOLUBILITY IN WATER AND OTHER SOLVENTS. (Berthelot, 1904.) The determinations were made over mercury with exclusion of air. The mercury was not attacked by the (CN) 2 . On account of polymerization, the solubility increased with time of contact and amount of agitation of the mixture. One volume of H 2 O at 30 dissolves 3.5 vols. (CN) 2 after 2 hours, and 9.7 vols. after 97 hours. One volume of abs. alcohol at 20 dissolves 26 vols. (CN) 2 immediately; 39 vols. after 4 hours; 89 vols. after 48 hrs. and 223 vols. after 4 days. One volume glacial acetic acid dissolves 42 vols. of (CN) 2 immediately and 50.5 vols. after 3 days. One volume of chloroform dissolves about 19 vols. (CN) 2 immediately and 29-30 vols. with time. One volume of benzine finally dissolves 28 vols. (CN) 2 . One volume of rectified turpentine dissolves 9-10 vols. of (CN) 2 . One volume of ether dissolves 5 vols. (CN) 2 at 20. (Gay Lussac.) CYCLOHEXANE (Hexamethylene, Hexahydrobenzene) CH 2 < (CH 2 .CH 2 ) 2 > CH 2 . Freezing-point data (solubility, see footnote, p. i) for mixtures of cyclo- hexane and ethylene bromide are given by Baud (i9i3b). Results for mix- tures of cyclohexane and methyl alcohol are given by Lecat (1909). Results for mixtures of cyclohexane and piperidine are given by Mascarelli and Con- stantino (1909, 1910). CYCLOHEXANOL (CH 2 ) 5 .CHOH. 100 gms. H 2 O dissolve 5.67 gms. cyclohexanol at 11. (de Forcrand, 1912.) loo gms. cyclohexanol dissolve 11.27 S m s- H 2 O at 11. RECIPROCAL SOLUBILITY OF CYCLOHEXANOL AND WATER, DETERMINED BY THE FREEZING-POINT METHOD. (de Forcrand, 1912.) Gm. (CH 2 ) 5 .CHOH Gm. (CH 2 ) 5 CHOH t of Solidification. per 100 Gms. t of Solidification. per 100 Gms. Mixture. Mixture. + 22.45 loo -57.4Eutec. 95-3 17.48 99-767 -43-2 93-I50 1.40 98.817 -33 91.962 34.10 96.868 18.50 90.980 -46.80 95-9 10 -14-58 9-3 6 -55.70 95-I70 . -12.05 88.73 Freezing-point data for mixtures of cyclohexanol and phenol are given by Mascarelli and Pestalozza, 1908, 1909. CYCLOHEXANONE (CH 2 ) 6 :CO. Freezing-point data for mixtures of cyclohexanone and phenol are given by Schmidlin and Lang, 1910. CYTISINE (Ulexine) C U H 16 N 2 O (m. pt. I5i-I5i.5). SOLUBILITY IN SEVERAL SOLVENTS AT 15. (Van de Moer, 1891.) Q i v< ,nf Gms. C u Hi R N 2 O Qni W nt Gms - C u H w NjO per bolvent. per ipo Gms. Sat. Sol. Solvent. 100 Gms. Sat. Sol. Water soluble in all proportions Benzine 1.26 Alcohol " " " Petroleum Ether insol. Chloroform " " Amyl Alcohol 0.303 Ether (d 0.725) 0.302 Carbon Disulfide insol. Ether, abs. insol. Ethyl Acetate very soluble 28l DEXTRIN DEXTRIN CuHQio. SOLUBILITY IN WATER. (Lewis, 1914.) " In the case of dextrin, however, no matter how small an amount of water be employed, under no condition does the concentration of the solution remain con- stant, while on the other hand the addition of further solvent, never fails to dissolve additional dextrin, although the use of no amount of water, however large, will dissolve the whole of the sample." 100 gms. pyridine dissolve 65.44 gms. dextrin at 20-25. 100 gms. aq. 50% pyridine dissolve 102 gms. dextrin at 20-25. (Dehn, 1917.) DIACETYL TARTARIC ETHER (m. pt. 104) DIACETYL RACEMIC ETHER (m. pt. 84). Freezing-point lowering data for each of these compounds in ethylene bromide and in p xylene are given by Bruni and Finzi, 1905. DIBENZYL C 6 H5.CH 2 .CH 2 .C 6 H5. Freezing-point lowering data for mixtures of dibenzyl and stilbene are given by Garelli and Calzolari, 1899. DIDYMIUM Ammonium NITRATE Di(NO 3 )3.2NH 4 NO3. 100 gms. H 2 O dissolve 292 gms. of the salt at 15. (Holmberg, 1907.) DIDYMIUM SULFATE Di 2 (SO 4 ) 3 . SOLUBILITY IN WATER. Gms. (Marignac, 1853.) t. per 100 Solid Phase. Gms. H 2 O. 12 43.1 Di 2 (S0 4 ) 3 18 25.8 tt 25 20. 6 tt 38 13 t( 50 ii tt 19 40 So 100 per 100 Gms. H 2 O. II.7 8.8 6-5 1.8 Solid Phase. Di 2 (SO 4 ) 3 .6H 2 O Di 2 (SO 4 ) 3 .8H 2 O DIDYMIUM POTASSIUM SULFATE K 2 SO 4 .Di 2 (SO 4 ) 3 .2H 2 O. 100 gms. H 2 O dissolve 1.6 grams of the double salt at 18. DIDYMIUM SULFONATES. SOLUBILITY IN WATER. Salt. Didymium Benzene Sulfonate ' m Nitro Benzene Sulfonate m Chloro m Bromo " " Chloro Nitro " a Naphthalene Sulfonate Di(Ci H 7 SO 3 ) 3 .6H 2 O 1.5 Nitro " " Di(CioH 6 (N0 2 )SO 3 ) 3 .6H 2 O 1.6 " 1.7 " " (Holmberg, 1907.) Formula. t. Di(C 6 H 5 SO 3 ) 3 .9H 2 O 15 Di(C 6 H4(NO2)SO 3 ) 3 .6H 2 O 15 Di(C 6 H 4 ClS0 3 ) 3 . 9 H 2 O 15 Di(C 6 H 4 BrSO 3 ) 3 .9H 2 O 15 Di(C 6 H 4 Cl(N0 2 )S0 3 *) 3 .i6H 2 O 15 IS 15 Di(CioH6(N0 2 )S0 3 ) 3 . 9 H 2 O 15 Di(Ci H 6 (NO 2 )SO 3 ) 3 .9H 2 O 15 (Marignac.) Gms. Anhydrous Salt per 100 Gms. H 2 0. S3-I 47-8 12.7 14-3 0.52 0.18 * (SO 3 :NO 2 :C1 - 1.3.6.) DIETHYLAMINE see ETHYLAMINE, page 294. DIONINE (Ethyl Morphine) Ci 9 H 23 NO 3 . 100 cc. H 2 O dissolve 0.2613 gm. Ci 9 H 23 NO 3 at 20^. loo cc. oil of sesame dissolve 0.5144 gm. at 20. (Zalai, 1910.) DIPHENYL 282 DIPHENYL CeHs-CeHfi. 100 grams absolute methyl alcohol dissolve 6.57 grams at 19.5. 100 grams abs. ethyl alcohol dissolve 9.98 grams at 19.5. (de Bruyn, 1892.) Freezing-point data (Solubility, see footnote, p. i) are given for mixtures of diphenyl + naphthalene by Washburn and Read (1915) and by Vignon (1891). Results for diphenyl -f- phenanthrene and for diphenyl + triphenylmethane are given by Vignon (1891). DIPHENYLAMINE (C 6 H 6 ) 2 NH. RECIPROCAL SOLUBILITY OF DIPHENYLAMINE AND WATER, BY SYNTHETIC I [METHOD. (Campetti and del Grosso, 1913.) ' Cms. (C 6 H 5 ) 2 NH Cms. (C 6 H 5 ) 2 NH Cms. (C 6 H 5 ) 2 NH t. per 100 Gms. t. per ipo Gms. t. per ipo Gms. Mixture. Mixture. Mixture. 231 1.48 305crit. t. 47.5 239 88.28 264 3.49 304 62.52 229 90.23 275 5.62 299 73.07 210 92.93 297 16.50 289 82.08 152 97-19 303 45.16 249 86.73 Similar data for the systems diphenylamine + ether and diphenylamine -f- isopentane are given by Campetti, 1917. SOLUBILITY OF DIPHENYLAMINE IN SEVERAL SOLVENTS. Solvent. f. pe^gMLt. Authority. Water 20-25 0.03 (Dehn, 1917.) Methyl AlCOhol 14.5 45 . 2 (Timofeiew, 1894.) " " 19-5 57-5 (de Bruyn, 1892.) Ethyl Alcohol 14 . 5 39.4 (Timofeiew, 1894-) " " 19.5 56 (de Bruyn, 1892.) Propyl Alcohol 14.5 29.4 (Timofeiew, 1894.) Pyridine 20-25 302 (Dehn, 1917.) Aq. 50% Pyridine 20-25 two layers formed SOLUBILITY OF DIPHENYLAMINE AND ALSO OF TRIPHENYLAMINE IN CARBON DlSULFIDE. (Arctowski, 1895.) NH(C 6 H^) 2 in CS, N(C 6 H 5 ) 3 in CS,. t. Gms. per 100 Gms. Solution. t. Gms. per 100 Gms. Solution. -88J 0.87 -8 3 I. 9 I -117 0-37 -91 1.56 102 1.24 II3| 0.98 SOLUBILITY OF DIPHENYLAMINE IN HEXANE AND IN CARBON DISULFIDE. (Etard, 1894.) Gms. NH(CH E )j Gms. NH(C fi H R ) 2 $. per IPO Gms. Sol, in; t t per 100 Gms. Sol, in: Hexane. CS^T* Hexane. CS 2 . ' -60 ... 1.3 o 2.6 33.7 50 ... 2.2 +10 3.8 46.8 40 ... 3.8 20 6.7 60.9 -30 0.5 7.2 30 13.8 76 20 0.8 12.5 40 47 io 1.4 21.6 50 94 28 3 DIPHENYLAMINE FREEZING-POINT DATA FOR MIXTURES OF DIPHENYLAMINE AND OTHER COMPOUNDS. Diphenylamine Diphenylmethylamine + Acetyldiphenylamine 4- Ethylene Bromide -j- Naphthalene + a Naphthylamine + Nitronaphthalene + a and /3 Naphthol -j- Paraffin + Phenanthrene + Phenol -j- Resorcinol -j- p Nitrotoluene -{-2.4 Dinitrotoluene -j- a Trinitrotoluene -j- p Toluidine + Urethan Phenol (Boeseken, 1912.) (Dahms, 1895.) (Roloff, 1895; Vignon, 1891.) (Vignon, 1891.) (Battelli and Martinetti, 1885.) 'Vignon, 1891.) (Palazzo and Battelli, 1883.) (Narbutt, 1905.) (Philip, 1903.) (Vignon, 1891.) (Giua, 1915.) + o Chlorophenol Hexanitrodiphenylamine + a Trinitrotoluene DIPHENYLAMINE BLUE. SOLUBILITY IN SEVERAL SOLVENTS AT 23. (Vignon, 1891.) (Pushin and Grebenschikov, 1913.) (Bramley, 1916.) (Giua, 1915.) Solvent. Methyl Alcohol Ethyl Amyl (Szathmary de Szachinar, 1910.) Gms. Diphenylamine Blue per 100 Gms. Sat. Sol. 0.385 0.230 o . 049 Acetone Aniline Diphenylamine Blue per 100 Gms. Sat. Sol. -i77 -395 DIPHENYL SULFIDE (C 6 H 5 ) 2 S, etc. Freezing-point lowering data for mixtures of (CeHs^S + (C 6 H 5 )2Se, (C 6 H 6 ) 2 Te, (C 6 H 6 ) 2 S + (C 6 H 6 ) 2 O, (QH.),Se+(G,H.),Te f are given by Pascal (1912). DYES. Data for the distribution of 12 dyes between water and isobutyl alcohol at 25, are given by Reinders and Lely, Jr. (1912). DYSPROSIUM OXALATE Dy 2 (C 2 O4) 3 .ioH 2 O. 100 cc. aq. 20% methylamine oxalate dissolve 0.276 gm. Dy^QjOOs- | (Grant and " ethylamine " " 1.787 " \ James, triethylamine " " 1.432 ) Wl) EDESTIN and Edestin Salts. SOLUBILITY IN AQ. SALT SOLUTIONS AT 25. (Osborne and Harris, 1905.) The determinations were made by shaking an excess of the air-dry preparation with 20 cc. of the salt solution, allowing the globulin to settle and determining nitrogen in 10 cc. of the clear supernatant solution. The edestin or edestin salt was calculated from the N. The results are given in the form of curves. The following figures were read from the curve for the solubility of neutral edestin in aq. NaCl. Gms. NaCl per 20 cc. Solvent 0.468 0.585 0.702 0.818 0.935 Gm. Edestin per 20 cc. Sat. Sol. > 0.25 0.55 0.92 1.25 1.45 Curves are also given for the solubility of edestin in aqueous solutions of many other salts and of the solubility of edestin chloride, bichloride and sulfate in aq. sodium chloride solutions. 100 gms. pyridine dissolve 0.07 gm. edestin at 20-25. (Dehn, 1917.) ioo gms. aq. 50% pyridine dissolve 9.05 gm. edestin at 20-25. ELATERIN 284 ELATERIN ibo cc. 90% alcohol dissolve 0.09 gm. elaterin at 15-20. (Squire and Caines, 1905.) 100 cc. chloroform dissolve 4 gms. elaterin at 15-20. " " EMETINE and Salts. SOLUBILITY IN WATER. (Carr and Pyman, 1914.) c I* p^rrv.nio * Gms. Hydrated Salt Salt - Formula. t. per I00 cc. Sat. Sol. Emetine Hydrochloride C29H4oO4N2.2HC1.7H 2 18 13 . i " Hydrobromide C 2 9H4oO 4 N2.2HBr.4H 2 O 17-18 1.9 " Nitrate C29H4oO4N2.2HNO3.3H 2 O 17-18 3.7 " Sulfate C29H4oO4N2.H 2 S04.7H 2 O 17-18 more than 100 ERBIUM OXALATE Er 2 (C 2 O 4 ) 3 .i4H 2 O. SOLUBILITY IN AQ. SULFURIC ACID AT 25. (Wirth, 1912.) Solid Phase. Er 2 (C 2 4 ) 3 .i4H 2 Normality of Aq. H 2 SO 4 . Gms. per 100 Gms. Sat. Sol. ' Er 2 3 - Er 2 (QA) 3 . 2.l6 0.329 0.5144 3-n 0-493 0.7708 4-32 0.7036 1. 10 6.I7S I .IO 1.72 ERBIUM Dimethyl PHOSPHATE Er 2 [(CH 3 ) 2 PO4] 6 . IOO gms. H 2 O dissolve 1.78 gm. Er 2 [(CH 3 ) 2 PO 4 ] 6 at 25. (Morgan and James, 1914.) ERBIUM SULFATE Er 2 (SO 4 ) 3 .8H 2 O. SOLUBILITY IN WATER AND Aq.^H 2 S04 AT 25. (Wirth, 1912.) [Gms. per ioo Gms. Solid Phase. Normality of H 2 S0 4 . Gms. per Sat. ioo Gms. Sol. Solid Phase Normality of H 2 SO 4 . [Gms. per Sat. ioo Gms. Sol. Er 2 3 . Er.CSO,);,. ' Er 2 3 . Er 2 (S0 4 ) 3 : Water alone 7 339 II .94 ErzCSO^.SHzO 2 .16 3 .98 6. 473 O .1 7 389 12 .02 " 6 175 9352 i , 52i 505 6 .249 10 . 164 12 .6 .0852 ,1386 I .1 5 .256 8 549 ERBIUM Bromonitrobenzene SULFONATE Er(C 6 H 3 Br.NO 2 .SO 3 , 1.4.2)3. 12H 2 O. ioo gms. sat. solution in water contain 6.056 gms. anhydrous salt at 25. (Katz and James, 1913.) ERUCIC ACID C 8 H 17 CH:CH(CH 2 ) n COOH. SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.) Gms. Erucic Gms. Erucic Alcohol. t. Acid per ioo Alcohol. t. Acid per ioo Gms. Sat. Sol. Gms. Sat. Sol. Methyl Alcohol 2 2.25 Ethyl Alcohol '+21.4 63.4 + 18 60.4 Propyl Alcohol - 2 10.2 21.4 62 " " +18 60.5 Ethyl Alcohol - 2 8.24 21.4 63 ERYTHRITOL (CH 2 OH.CHOH) 2 . ioo gms. H 2 O dissolve 61.5 gms. erythritol at 20-25. ( Dehn *9i7) ioo gms. aq.^0% pyridine dissolve 8.47 gms. erythritol at 20-25. ioo gms. pyridine dissolve 2.50 + gms. erythritol at 20-25. (Dehn.Jigi?; Holty, 1905.) 285 ETHANE uinr, ^ 2 n 6 . SOLUBILITY IN WATER. (Winkler, 1901.) t. /9. /S'. 3. t. 0. /?'. j. O .0987 o .0982 .0132 40 .0292 o 0271 0.0037 5 .0803 .0796 .0107 50 o .0246 0.0216 0.0029 10 .0656 .0648 .0087 60 .0218 0.0175 0.0024 15 0550 .0541 .0073 70 .0195 0.0135 0.0018 20 .0472 .0462 o .0062 80 o .0183 0.0097 0.0013 25 .0410 .0398 .0054 90 .0176 0.0054 0.0007 30 .0362 o 0347 .0049 100 o .0172 o.oooo o.oooo /? = Absorption coefficient, i.e., the volume of gas (reduced to o and 760 mm.) absorbed by i volume of the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm. ft' = Solubility, i.e., the volume of gas (reduced to o and 760 mm.) which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure. q = the weight of gas in grams which is taken up by 100 grams of the pure solvent at the indicated temperature and a total pressure (that is, the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature) of 760 mm. Freezing-point data for mixtures of ethane and hydrochloric acid are given by Baume and Georgitses, 1912, 1914. SOLUBILITY OF ETHANE IN SEVERAL ALCOHOLS AND OTHER SOLVENTS. (McDaniel, 1911.) Solvent. Methyl Alcohol (99%) 22.1 " " 30.2 40 49.8 Ethyl Alcohol (99.8%) 22,2 (I U Isopropyl Alcohol Abs. coef. A = vol. of ethane absorbed by unit volume of solvent at the temp, stated. For definition of Bunsen Coef. B, see /3 above, and also carbon dioxide, p. 227. Additional data for the solubility of ethane in amyl alcohol are given by (Friedel and Gorgeu, 1908). ETHYL ACETATE CH 3 COOC 2 H 5 . SOLUBILITY OF ETHYL ACETATE IN WATER AND VICE VERSA. (Merriman, 1913, see also Seidell, 1 1910.) Results for Ethyl Acetate in Water. Results for Water in Ethyl Acetate. Gms. H 2 O per 100 t. Abs. Coef. A. " Bunsen c/o,,* * Coef. B. Solvent. t . Abs. Coef. A. Bunsen Coef. B. 22.1 0.4436 0.4102 Amyl Alcohol 22 0.4532 0.4196 30.2 0.4278 0.3883 " 30.1 0.4444 0.4002 40 0.3938 0.3436 Benzene 22.1 0.4954 0.4600 49.8 0.2695 0.2278 35 0.4484 0.3976 22.2 0.4628 0.4282 40.1 0.4198 0.3661 30-r 0.4503 0.4051 49.9 0-3645 0.3081 40 0.43 2 3 0.3771 Tol ene 25 0.4852 0.4450 21.5 0.4620 0.4275 3 0.4778 0.4300 29.9 0.4532 0.4081 40.1 0.4675 0.4080 40 0.4400 0.3837 50.2 0-4545 0.4013 60.3 0.4244 0.3478 60 0.4502 0.3690 t. d of Sat. Sol. Gms. CH 3 COOC 2 H 5 per 100 Gms. H 2 O.| 5 * 1. 0034 1.0022 II. 21 10.38 10 I . OOOQ 9.67 15 20 25 0.9995 0.9979 0.9962 9-5 8-53 8.08 30 0.9943 7.71 40 0.9901 7.10 t. d^ of Sat. S< o 10 0.9280 0.9164 20 0.9054 25 3 40 O.9OO2 0.8953 0.8863 50 60 . . . 2.34 2.68 3-07 3-30 3-52 4.08 4.67 5-29 ETHYL ACETATE 286 SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 28, (Euler Z. physik. Chem. 31, 365, '99; 49, 306, '04.) Cone, of Salt Solution. CHgCOOCjiHs per Liter. Solvent. * -. / Cone, of Salt Solution. CH 3 COOC2H per Liter. ^olvent. Nor- Gms per mality. Liter. Gram Mols. Grams. Nor- Gms. per Gram nudity. Liter. Mols. Grams. Water O 0. 825 75.02 NaCl(at 18) i 14.62 0.76 67.0 KNO a i 5 59 O. 77 67.81 i 29-25 0.67 59-o M I 101 .19 0. 72 63.40 i 58.5 -5I 45-o It 2 202 .38 O. 625 55-04 Na 2 S0 4 i 71.08 0.465 40.96 KC1 i 18 4 0. 747 65-79 " (at 18) i 35-54 0.61 54-0 i 36 .8 0. 685 65-33 (( (t i 71.08 0.42 37-o M I 73 .6 O. 575 50.64 MgS0 4 1 16.30 o-733 64.55 . 2 147 .2 0. 41 36. ii a i 32.6 0-655 57.68 Nad \ 14 .62 0. 745 65.61 (i i 65.21 0-505 44-47 M i 29 2 5 0. 677 59.62 ZnSO 4 1 20.18 0-733 64.55 I 58 5 0. 545 47-99 i 40.36 0-653 57-50 M 2 117 .0 O. 3 J 5 27.74 u i 80.73 0.500 44-03 Additional data for the influence of salts upon the solubility of ethyl acetate in water are given by Lundin, 1913. SOLUBILITY OF ETHYL ACETATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (Seidell, 1910.) cc. CH 3 COOC 2 H 5 Gms. CH 3 COOC 2 H, per TOO Gms. Solvent. 8.6 10.9 13-3 19.6 37-o 66.7 00 SOLUBILITY OF ETHYL ACETATE IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20. (Bancroft Phys. Rev. 3, 122, 131, '95-' 96.) In Ethyl Alcohol. In Methyl Alcohol. In Acetone. Per i cc. C 2 H 6 OH. Wt. in! 7 C 2 H 5 OH Solvent. d& of Sat. Sol. cc. CH 3 COO( per 100 cc Solvent. o-999 10 5 0-993 10-5 10 0.986 12 15 0-974 15 20 0.960 27 25 0-945 44 30 0.931 70 35 0.918 125 40 CO cc-HaO* , :H3COOC 2 H6.t 10 0.25 8 0.27 4 0-35 2 1.02 1. 06 2.50 0.65 5-0 0-54 7.0 0.44 10. Per i cc. CH 3 OH. Per i cc. (CH 3 ) 2 CO. cc. H 2 O. CHaCObc-zHB. cc. H 2 O. CH3COOC 2 H 8 . 10 1. 08 10 1. 01 3 0.68 5 O.6o *$ 1.69 2 o-43 1.29 2.50 I .5 0.47 1.0 4-9 I .O 0.63 0.98 7-o 0.8 o-74 I -O 8.0 0.51 1. 00 1.03 10. 0.25 2.00 0.29 5.00 1 acetate. t Saturated with water. Data for the distribution of ethyl acetate between petroleum and water, ben- zene and water, and benzene and a large number of aqueous solutions, at various temperatures, are given by Philip and Bramley, 1915. 28 7 ETHYL ALCOHOL RECIPROCAL SOLUBILITY OF ETHYL ALCOHOL AND WATER AT Low TEM- PERATURES, DETERMINED BY THE FREEZING-POINT METHOD. (Pictet and Altschul, 1895; Pickering, 1893.) Cms. t. of Freezing. Sp. Gr. C 2 H B OH per Solid Sat. Sol. 100 Gms. Phase. Sat. Sol. I 0.9962 2.5 Ice 2 0.9916 4 .8 - 3 0.9870 6.8 " - 5 0.9824 11.3 - 6.1 0.9793 13-8 " - 8.7 0.9747 17.5 " - 9.4 0.9732 18.8 10.6 0.9712 20.3 12.2 o . 9689 22.1 -14 0.9662 24 . 2 -16 0.9627 26.7 18.9 0.9578 29.9 t. of Sp. Gr. Freezing. Sat. Sol. Gms. QHjOHper Solid . 100 Gms. Phase. Sat. Sol -23.6 o .9512 33-8 Ice 28.7 o .9417 39 H - 33-9 o .9270 46.3 " 41 o .9047 56-1 " - 50 68 " - 60 . . . 75 H - 70 . . . 80 - 80 . . . 83-5 " 100 . . . 89-5 " uSEutec. . . . 93-5 " +C 2 H 6 OH "~ II 5 96 QH 6 OH 110.5 . . . 100 " The result for the eutectic and for the f.-pt. of C 2 H 5 OH are by Puschin and Glagoleva, 1914, 1915; the other data for concentrations of C2HsOH above 70% were obtained by exterpolation. Additional data for the freezing-point lowering are given by Rozsa (1911). Freezing-point lowering data for mixtures of ethyl alcohol and hydrochloric acid are given by Maass and Mclntosh, 1913. The distribution coefficient of ethyl alcohol between amylalcohol and water was found by Fontein (1910) to be 1.13 at 15.5 and 1.21 at 28. MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES OF: Benzaldehyde and Water at o. (Bonner, 1910.) Composition of Homogeneous Mixtures. Benzene and Water at 15. (Bonner, 1910.) (See also, p. 125.) Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. of Gms. Gms. Gms. Sp. Gr. of QH 5 CHO. H 2 0. C 2 H 5 OH. Mixture. C 6 H6. H 2 0. C 2 H 5 OH. Mixture. 0-957 0.043 159 I .02 O .987 o .013 0.170 0.86 0.898 O. IO2 O .283 I .OI 937 .063 0.356 0.87 O.SOO 0.200 .420 99 *0 .900 0. 100 0.500 0.86 0.700 0.300 O 550 O .98 o .800 o .200 0.860 0.86 ^0.598 O.4O2 O .601 97 .700 o ,300 0.910 0.88 0.430 .610 .600 o, .400 1.07 0.87 0.496 0.504 o 643 o .96 o .500 o .500 1.18 0.87 0-394 0.606 o .681 95 o .400 o .600 I .22 0.88 0.298 0.702 .701 95 0.300 o ,700 I. 21 0.89 0.200 0.800 .670 o 95 o .201 o, 799 I-I3 0.89 O.IOO O.9OO o .610 .96 o .100 o .900 0.97 0.92 0.031 0.969 .461 o 97 .020 o .980 o-59 0.94 NOTE. The determinations were made by gradually adding ethyl alcohol to the mixtures of the given amounts of water and the other constituent until a homogeneous solution was obtained. The results give the binodal curve for the system. The author also determined "tie lines" showing the compositions of various pairs of liquids which may exist in equilibrium. As the two layers approach each other in composition, the tie line is gradually shortened and finally reduced to a point, designated as the "plait point" of the binodal curve. This point is indicated by a * in the above tables. The mixtures above and below the * correspond, according to their Sp. Gr., to the upper and lower layers of the system. See also, last table p. 289. The distribution coefficient of ethyl alcohol between benzene and water at 25 was found by Morgan and Benson (1907) to be 1.16. Additional data for this system are also given by Bubanovic, 1913 and by Taylor (1897). ETHYL ALCOHOL 288 'MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) WITH MIXTURES OF: Bromobenzene and Water at o. Nitrobenzene and Water at 15. (Bonner, 1910.) (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. QH 5 Br. H 2 O. C 2 H 5 OH. Sat. Sol. C 6 H 8 NO2. H 2 O. C 2 H 5 OH. Sat. Sol. 0.99 o.oio 0.115 I -34 0.965 0.035 0.248 I. 08 *o.96 0.040 0.32 *o.9i 0.09 0.49 ... 0.90 o.io 0.65 1.07 0.90 o.io 0.53 i. 02 0.80 0.20 I 0.96 0.80 0.20 0.86 0.97 0.70 0.30 I.I9 0.96 0.70 0.30 1.09 0.94 o . 60 o . 40 i . 30 o . 98 0.594 0.406 1.238 0.93 0.50 0.50 1.39 0.95 0.50 0.50 I.3I 0.92 0.40 0.60 1.43 0.91 0.40 0.60 1.34 0.92 0.30 0.70 1.43 0.92 0.30 0.70 1.30 0.91 O.2O O.8O 1.36 0.93 0.194 0.8o6 I. 212 0.92 o.io 0.90 1.16 0.93 o.io 0.90 0.98 0.93 0.024 0.976 0.803 -9 2 0.02 0.98 0.601 0.95 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Benzyl Acetate and Water. (Bonner, 1910.) Benzyl Alcohol and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Cms. CH 3 .- Cms. Cms. Sp. Gr. Gms. Gms. ' Gms. Sp. Gr. CO 2 .CH 2 .QH 5 . H 2 O. C 2 H 5 OH. Sat. Sol. C 6 H 5 CH 2 OH. H 2 O. Q,H 5 OH. Sat. Sol. 0.977 0.023 0.120 1.05 0.90 o.io 0.13 1.03 0.901 0.099 o-a 1 ? i -3 0.80 0.20 0.26 I O.8O O.2OO 0.46 0.99 0.70 0.30 0.35 0.98 0.70 0.300 0.58 0.97 0.60 0.40 0.39 0.98 *o.68 0.32 0.60 0.50 0.50 0.40 0.97 0.60 0.40 0.69 0.95 0.40 O.6O 0.41 0.97 0.50 0.50 0.78 0.94 *o.38 0.62 0.42 0.40 0.60 0.85 0.94 0.379 0.621 0.417 0.98 0.30 0.70 0.88 0.93 0.30 0.70 0.41 0.97 0.20 0.80 0.88 0.93 0.194 0.806 0.388 0.97 o.io 0.90 0.80 0.94 o.io 0.90 0.35 0.98 0.041 0.959 0.665 -95 0.04 0.96 0.139 0.99 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Benzylethyl Ether and Water. (Bonner, 1910.) Carbon Tetrachloride and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. CeHsCHj.O.QHs. H 2 O. CjHjOH. Sat. Sol. CCU. H 2 O. C 2 H 5 OH. Sat. Sol. 0.971 0.029 0.189 -94 0.961 0.039 0.224 1.36 0.90 o.io 0.37 0.92 0.928 0.072 0.347 1.23 0.80 0.20 0.54 0.92 *o92 0.08 0.39 0.70 0.30 0.67 0.91 0.90 o.io 0.45 i. 20 *o.67 0.33 0.71 O.8O O.2O 0.67 I .15 0.60 0.40 0.78 0.91 0.70 0.30 0.82 1.07 0.50 0.50 0.87 0.91 o . 60 o . 40 o . 94 i . 03 0.40 0.60 0.93 0.92 0.499 -5 O1 1.04 i 0.30 0.70 0.96 0.92 0.40 0.60 i -97 0.198 0.802 0.952 ,0.92 0.25 0.75 1.105 -9S o.io 0.90 0.86 0.93 o.io 0.90 i 0.92 0.08 0.92 0.793 -94 0.032 0.968 0.745 0.93 289 ETHYL ALCOHOL DISTRIBUTION OF ETHYL ALCOHOL AT 25 (Bugarszky, 1910) BETWEEN: Bromobenzene and Carbon Tetrachloride and Carbon Disulfide and Water. Water. Water. Cms. C 2 H 5 OH per Liter. Cms. C 2 H 5 QH per Liter. Cms. QHsOH per Liter. C 6 H 5 Br Layer* H 2 O Layer'. 'CO, Layer. H 2 O Layer." 'CSj Layer. H 2 O Layer. 0.72 18.5 0.45 18.7 0.27 IQ.I 1-36 36-9 o-93 36-5 1-87 37- 2.68 68.2 2.55 68.1 10.23 69.3 MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT o WITH MIXTURES OF: Chloroform and Water. (Bonner, 1910.) Diethylketone and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp, Gr. Cms. Cms. Cms. Sp. Gr. CHC1 3 . H 2 0. C 2 H 6 OH. Sat .Sol. i- H 2 0. Sat. Sol. 0.907 O 093 0.434 I. 19 0. 938 ' .062 0.136 0.85 0.90 .10 0-45 I . 18 0. 900 O .10 O.I9 0.85 0.80 O .20 0.60 I. 12 O. 895 O 105 0.201 0.86 0.70 3 0.68 I . 07 0. 800 .20 0.31 0.87 0-593 407 0.726 I. 04 0. 781 O .219 0.317 0.87 0.501 O 499 0.729 I . 03 0. 702 .298 0.356 0.88 "0.420 58 0.73 . . . 0. 600 .400 0.392 0.89 0.404 O 596 0-733 I . 01 O. 547 O 453 O.4IO 0.90 0.300 O .70 0.70 O. 99 0. 499 .501 0.4II 0.91 0.197 .803 0.672 0. 98 O. 458 O 542 0.415 0.92 O.IOO O .90 0.61 O. 98 0. 407 593 0.404 0.91 0.088 .912 0.608 0. 98 Additional data for the miscibility of alcohol with chloroform + water mixtures are given by Miller and McPherson, 1908. MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES ^OF ETHYL ETHER AND WATER AT O. (Corliss, 1914; Bonner, 1910; see also Kremann, igioa.) Composition of the Lower Layer. Composition of Upper Layer. Cms. (C 2 H 5 ) 2 0. 0.10 Cms. H 2 0. 0.90 Cms. C 2 H B OH. 0.163 Sp. Gr. Sat. Sol. 0.970 Cms. (C 2 H 6 ) 2 0. Cms. H 2 0. Cms. Sp. Gr. Sat. Sol. 0.957 043 O.I5I 0-757 0.16 0.84 O, 297 O 951 O .902 .098 0.230 0. 77 8 0.178 0.822 O, .318 O 945 O 87 O 13 0.26 0.788 0.192 0.8o8 0, 332 .941 .85 O 15 0.275 0.794 0.204 0.796 O 34 O 937 O .825 175 0.292 0.800 0.227 0-773 O, 352 932 O 79 O .210 0.313 0.808 0.250 o-75 0, 36 .926 759 O 243 0.33 0.815 0.293 0.707 O, 37 O .916 70 30 0-35 0.827 0-335 0.665 0, 375 .906 O 645 O 355 0.366 0.839 0.422 0.578 O, 385 O .886 562 O 438 0.385 0.857 "0.49 0.51 385 O .874 49 5 1 0.385 0.874 The data for the binodal curve given by Corliss and by Bonner agree closely. The Sp. Gr. determinations of Corliss were made on larger amounts of solution and appear to be the more accurate. In addition, Corliss gives the specific gravi- ties of each layer of a series of liquids in contact with each other, and from these and the binodal curve, the above data for the composition of the several con jugate layers have been calculated. Data are also given by Corliss for the distribution of colloidal arsenious sulfide between the two layers of the system. Data for the distribution of ethyl alcohol between ether and water and between ether and molten CaCl2.6H 2 O are given by Morgan and Benson (1907). ETHYL ALCOHOL 290 MISCIBILITY OF ETHYL ALCOHOL WITH MIXTURES OF ETHYL ETHER AND WATER AT 25. (Horiba, 1911-12.) Composition of Lower Layer. Composition of Upper Layer. Gms. Gms. (QH 5 ) 2 0. H 2 0. Gms. QH 5 OH. 5-77 94-23 6-3 85-7 8 7.2 79-2 13-6 8 76 16 9-7 70.4 19.9 13-3 62.8 23-9 22.1 50.6 27-3 28.4 43-4 28.2 *3i-6 40 28.4 (Plait point; Gms. Gms. Gms. H 2 0. QH 5 O 2 H. 98/72' 1.28 94-5 2.2 3-3 88.5 3-7 7-8 84-4 4-9 10.7 75.1 8.4 I6. 5 60.8 iS-5 23-7 43-8 28.1 28.1 35-8 35-6 28.6 31-6 40 28.4 The binodal curve was determined in the usual way (see Note, p. 287). A series of conjugate liquids was then prepared and the Sp. Gr., refractive index and viscosity of each layer determined. From specially prepared curves for variations of physical constants with composition of mixture, the composition of the several conjugate liquids was ascertained. The results thus obtained, are given in the above table. Data for the miscibility of ethyl alcohol with mixtures of water, ethyl ether and sulfuric acid at o and with mixtures of ethyl ether, water and ethylsulfuric acid at o are given by Kremann, 19103. MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT o WITH MIXTURES OF: Ethyl Acetate and Water. (Bonner, 1910.) Ethyl Bromide and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Grns. Gms. Sp. Gr. CHjCOOQHs. H 2 0. C 2 H 5 OH. Sat. Sol. 0.92 0.080 0.100 0.91 0.90 O.IO 0.13 0.91 0.799 O.2OI 0.228 o-93 0.699 O.3OI 0.265 0.92 0.60 0.40 0.29 o-95 0.50 0.50 0.30 o-95 *o.48 0.52 0.30 0.40 O.6O 0.31 0.96 0.30 O.7O 0.31 0.96 0.197 0.803 0.282 o-97 0.102 0.898 0.143 o-99 Gms. Gms. Gms. Sp. Gr. C 2 H B Br. H 2 0. C 2 H 5 OH. Sat. Sol. 0.967 0.033 O.24O 1.23 0.90 O.IO 0-37 I-I5 *o.8 3 0.17 0.45 0.80 O.2O 0-51 1.09 0.70 0.30 0.64 1. 06 0.60 0.40 0-754 1.03 0.50 0.50 0.83 I 0.40 O.6O 0.89 o-99 0.30 0.70 0.89 o-97 O.IO 0.90 o-73 0-97 0.017 0.983 0.182 o-99 MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT o, WITH MIXTURES OF: Ethyl Buty rate and Water. (Bonner, 1910.) Ethyl Propionate and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. 0.97 0.90 0.80 0.70 0.599 0.494 *o.46 0.40 0.297 0.193 O.JO Gms. H 2 0. 0.030 o.io 0.20 0.30 0.401 0.506 0.54 0.60 0.703 0.807 0.90 Gms. ' Sp.Gr. C 2 H 5 OH. Sat. Sol. 0.166 0.96 0.32 0.483 0.567 0.628 0.659 0.67 0.69 0.693 0.88 0.89 0.90 0.91 Gms. Gms. CjHjCOOQNj. H 2 O. 0.977 0.023 0.90 o.io 0.80 0.695 0.60 Gms. 0-684 0.63 0.92 o-93 o-94 0.94 0.50 *o.46 0.398 0.30 0.201 o.io 0.20 -35 0.40 0.50 0.54 0.602 0.70 0.799 0.90 0.138 0.27 0.38 -453 0.49 0.52 0.53 0.532 0.55 -5 I 7 0.46 Sp. Gr. Sat. Sol. 0.90 0.90 0.90 o-9 2 0.91 0.92 0.93 0.94 -95 0.96 291 ETHYL ALCOHOL MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF ; Ethylene Chloride and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. CH 2 C1.CH 2 C1. H 2 O. CjH.,OH. Sat. Sol. O.pyi 0.029 0.191 I.I5 0.90 o.io 0.42 i. 08 *O . 88 O . 1 2 . 46 ... 0.792 0.208 0.670 i. oi O.7O 0.30 O.8O 0.98 O.6O 0.40 0.93 0.96 0.50 0.50 0.99 0.95 0.40 0.60 i.oi 0.94 0.30 0.70 0.99 0.94 O.2O O.8O 0.95 0.94 O.O95 0.905 0.842 0.96 0.02 0.980 0.514 0-97 Ethylidene Chloride and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. CH 3 .CHCI 2 . H 2 0. QHjOH. Sat. Sol. 0.985 0.015 0.226 i. 10 0.90 o.io 0.43 1.03 0.805 - I 95 0.586 i.oi O.yO 0.30 0.69 0.98 *o.67 0.33 0.72 0.60 0.40 0.77 0.96 0.50 0.50 0.82 0.95 0.437 0-563 o-857 0.94 0.30 0.70 0.88 0.93 0.20 0.80 0.86 0.93 o.io 0.90 0.79 0.94 0.03 0.97 0.576 0.95 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Heptane and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. Heptane.* Gms. Gms. Sp. Gr."| H 2 0. C,H 5 OH. Sat. Sol. 0.962 0.038 0.704 0.79 0.90 o.io 1.44 0.80 0.798 0.202 2.375 0.82 0.70 0.30 2.82 0.81 0.60 0.40 3.06 0.82 0.50 0.50 3.16 0.83 o . 40 o . 60 3 . 1 7 o . 84 0.30 0.70 3.10 0.85 0.196 0.804 2.96 0.87 0.093 0.907 2.305 0.88 Hexane and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Gms. Hexane. Sp. Gr. Sat. Sol. Gms. Gms. H 2 O. C 2 H 8 OH. 0.97 0.03 0.59 0.90 o.io 1.30 0.77 0.80 0.20 2.04 0.79 0.70 0.30 2.45 0.81 0.60 0.40 2.73 0.82 0.50 0.50 2.93 0.83 o . 40 o . 60 3 . oo o . 83 0.20 0.80 2.75 0.85 o.io 0.90 2.23 0.86 0.014 0.986 1.056 Kahlbaum's Heptane and Hexane "aus Petroleum " were used. MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Isoamyl Alcohol and Water. (Bonner, 1910.) , Composition of Homogeneous Mixtures. Gms. (CH 3 ) 2 - Gms. Gms. Sp. Gr. CH(CH2) 2 OH. H 2 0. C 2 H 5 OH. Sat. Sol. 0.903 0.097 0.116 0.84 0.90 O.IO O.I2 0.84 0.797 O.2O3 0.258 0.85 0.694 0.306 0.396 0.86 0.602 0.398 0.427 0.88 0.497 -53 -449 0.89 0.399 0.601 0.453 0.90 0.294 0.706 0.434 0.92 *o.27 0.73 0.43 0.196 0.804 0.411 0.94 o.io 0.900 0.369 0.96 Isobutyl Alcohol and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Gms. (CH,),- Gms. CH.CH 2 OH. H 2 0. Gms. Sp. Gr. Sat. Sol. 0.70 0.30 0.13 0.87 0.589 0.4II 0.177 0.89 0.502 0.498 0.194 0.90 0.50 0.50 0.20 0.90 0.40 O.6O O.2O 0.92 0.387 0.613 0.204 0.92 *o.35 0.65 0.21 0.304 0.696 0.205 0.94 0.30 0.70 O.2I 0.94 O.2O O.8O O.2O -95 0.132 0.868 0.189 0.96 ETHYL ALCOHOL 292 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Isoamyl Bromide and Water. (Bonner, '10.) Composition of Homogeneous Mixtures. Iso butyl Bromide and Water. (Bonner, '10.) Composition of Homogeneous Mixtures. Gms. Cms. Cms. Sp. Gr. Gms. (CH 3 ) r Gms. Gms. Sp. Gr. C s H u Br. H 2 O. QH 6 OH. Sat. Sol. CHCH 2 Br. H 2 O. CjH 6 OH. Sat. Sol. 0.975 0.025 0-25 1 i-io 0.976 0.024 0.200 1.18 *o . 96 o . 04 0.36 *o.93 0.07 0.42 0.90 o.io 0.68 i.oi 0.90 o.io 0.52 1.09 0.80 0.20 1.09 0.96 0.80 0.20 0.83 I.OI 0.70 0.30 1.37 0.94 0.70 0.30 .05 0.98 0.60 0.40 1.57 0.93 O.6O 0.40 .21 0.96 0.498 0.502 .676 0.91 0.501 0.499 -3 -94 0.40 0.60 .75 0.91 0.40 0.60 .35 0.93 0.30 0.70 .75 0.91 0.30 0.70 .36 0.93 O.2O O.8O .71 0.91 O.2O O.8O .32 0.92 o.io 0.90 .46 0.92 o.io 0.90 .20 0.93 0.022 0.978 .027 0.93 0.047 0.953 0.937 0.94 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT-O WITH MIXTURES OF: Isoamyl Ether and Water. (Bonner, '10.) Mesitylene and Water. (Bonner, '10.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. f(CH 3 ) 2 .- Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. CH.CH 2 CHd 2 O. H 2 0. C 2 H 5 OH. Sat. Sol. C 6 H 3 (CH a ) 3 . HjO. CjHjOH. Sat. Sol. 0.958 0.042 0.368 0.81 *o.97 0.03 0.48 0.90 o.io 0.70 0.82 0.963 0.037 o-S 1 ^ 0.86 *o . 89 o . 1 1 o . 74 ... 0.90 o.io 1.09 0.85 0.879 O.I2I 0.793 -82 o . 80 o . 20 i . 66 o . 84 0.80 0.20 1.20 0.83 0.70 0.30 2.04 0.85 0.702 0.298 1.573 0.83 0.60 0.40 2.32 0.85 0.594 0.406 1.876 0.84 0.50 0.50 2.52 0.85 0.50 0.50 1.98 0.84 0.40 0.60 2.64 0.86 0.40 0.60 2.19 0.85 0.30 0.70 2.68 0.87 0.302 0.698 2.24 0.86 0.199 0.801 2.49 0.87 0.20 0.80 2.14 0.87 o.io 0.90 2.28 0.89 o.io 0.90 1.87 0.89 0.051 0.949 1.615 0.90 MISCIBILITY OF ETHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Methyl Aniline and Water. (Bonner, '10.) Phenetol and Water. (Bonner, '10.) 1 ' Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. CHjNHQHj. H 2 0. QHsOH. Sat. Sol. QHsOCzHs. H 2 O. C 2 H 5 OH. Sat. Sol. 0.959 0.041 0.218 0.96 0.992 0.18 0.157 0.96 0.90 o.io 0.37 0.95 *o.9o o.io 0.55 ... 0.795 0-205 0.555 0.93 0.897 0.103 0.554 0.93 0.70 0.30 0.68 0.93 0.798 0.202 0.916 0.90 *o.66 0.34 0.72 0.70 0.30 .l8 0.90 0.60 0.40 0.76 0.93 O.6O O.4O .39 0.89 0.50 0.50 0.84 0.93 0.495 -55 5 1 ^ -89 0.40 0.60 0.89 0.93 0.399 0.601 .560 0.89 0.30 0.70 0.91 0.93 0.30 0.70 .54 0.90 0.20 0.80 0.87 0.94 0.198 0.802 .449 0.91 0.098 0.902 0.734 0.95 O.IO 0.90 .21 0.92 0.041 0.959 0-581 0.96 0.082 0.918 .156 0.93 293 ETHYL ALCOHOL MISCIBILITY OF ETHYL ALCOHOL (see Pinene and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Note p. 287) AT o WITH MIXTURES OF: Propyl Bromide and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. ' Gms. Gms. Gms. Sp. Gr. C, H,,. H 2 0. QH 6 OH. Sat. Sol. CH 3 .CH 2 .CH 2 Br. H 2 O. QH 6 OH. Sat. SoL 0.99 o.oio 0.268 0.87 0.975 0.025 0.190 1.26 *o.985 0.015 0.47 *o.92 0.08 0.42 0.897 0.103 1.595 0.85 0.90 O.IO 0.50 1. 12 0.795 0.205 2.268 0.84 O.8O O.2O 0.72 I. 06 0.70 0.30 2.67 0.84 0.70 0.30 0.88 1.02 0.60 0.40 2.94 0.85 0.60 0.40 i.oi 0.99 0.493 -57 3-!35 0-85 0.50 0.50 i.io 0.98 0.393 0.607 3.126 0.86 0.40 0.60 1.15 0.96 0.293 0.707 3.038 0.86 0.30 0.70 1.14 0.95 0.194 0.806 2.799 0-87 O.2O4 0.796 I. 12 0.94 0.094 0.906 2.331 0.89 0.096 0.904 1.02 0.94 0.035 0.965 1.639 0-9 1 0.027 0.973 0.687 0.95 MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT b WITH MIXTURES OF: Toluene and Water. (Bonner, 1910.) o Toluidine and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. C 6 H 5 CH 3 . H 2 0. QHsOH. Sat. Sol. CH 3 .C 6 H4.NH 2 . H 2 O. QHsOH. Sat. Sol. 0.948 0.052 0.388 0.87 0.954 0.046 0.025 I - I 0.90 o.io 0.61 0.86 0.90 O.IO O.2I 0.93 0.80 0.20 0.95 0.86 0.80 0.20 0.32 0.97 0.70 0.30 .21 0.86 0.70 0.30 0.41 0.96 0.60 0.40 .41 0.86 0.60 O.40 0.455 O-Q^ 0.50 0.50 .53 0.87 0.50 0.50 0.48 0.96 0.40 0.60 .59 0.87 0.40 O.OO 0.50 0.96 0.30 0.70 .56 0.88 0.30 0.70 0.50 0.96 0.20 0.80 .44 0.89 0.20 0.80 0.49 0.96 o.io 0.90 .23 0.91 0.098 O.9O2 0.462 0.98 0.028 0.972 0.817 0.94 0.027 0-973 0.262 MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT o WITH MIXTURES OF: Bromotoluene (b. pt. 182-3) an d Water. p Nitrotoluene and Water. (Bonner, 1910.) (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr, BrC 6 H4.CH 3 . H 2 O. CjHsOH. Sat. Sol. NO 2 .C 6 H4.CH 3 . H 2 O. QH 6 OH. Sat. Sof. o . 98 o . 02 o . 33 0.978 0.022 0.253 I. 08 0.951 0.049 O.522 I.OQ *o95 0.05 0.50 0.90 o.io 0.87 i. 06 0.90 o.io 0.84 0.97 0.80 0.20 .28 0.97 O.8O O.2O 1.29 0.96 O.yO 0.30 .54 0.94 0.70 0.30 1.57 0.92 O.6O O.40 .71 0.93 0.00 0.40 1.73 0.91 O.5O O.50 .8l 0.92 0.506 0.494 1.782 0.91 O.4O O.6O .89 0.91 0.398 0.602 1.868 0.91 O.30 O.70 .89 0.90 0.294 0.706 1.816 0.91 O.20 0.80 .78 0.90 0.20 0.80 1.63 0.91 o.io 0.90 .533 0.91 o.io 0.90 1.30 0.92 0.033 0.967 1.307 O.Q2 0.056 0.944 1.105 0.93 ETHYL ALCOHOL 294 MISCIBILITY OF ETHYL ALCOHOL (see Note p. 287) AT o WITH MIXTURES OF: o Xylene and Water. (Bonnet, 1910.) Composition of Homogeneous Mixtures. m Xylene and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. ' Gms. Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. o C,H4(CH3),. H 2 0. QH 6 OH. Sat. Sol. Hn C^g-tl^v^ji^g. H^O. C^HsOH. Sat. Sol. 0.971 0.029 0-352 0.89 0. 967 0. 033 0.388 0.88 4 0.04 o-53 . . . 0. 90 O. 10 0.81 0.87 0.90 O.IO 0-93 0.87 o. 80 O. 20 -30 0.85 0.786 0.214 32 0.87 0. 70 0. 30 .61 0.86 0.70 0.30 53 0.87 0. 60 O. 40 77 0.86 O.6O 0.40 .72 0.87 0. 50 0. 50 .90 0.87 0.50 0.50 .87 0.87 0. 40 0. 60 .98 0.87 0.40 0.60 .96 0.88 o. 30 o. 70 .01 0.88 0.30 0.70 94 0.88 0. 20 0. 86 87 0.89 O.2O 0.80 .81 0.89 0. 10 0. 9 53 0.90 O.O3I 0.969 .19 0.03 o. 023 o. 977 .168 O.O2 Additional data for the system ethyl alcohol, m xylene, water at o, 19, 41, 63 and 1 00 are given by Holt and Bell, 1914. p XYLENE AND WATER. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. Gms. Gms. Gms. Sp. Gr. P C 6 H 4 (CHa) 2 . H 2 0. C 2 H 5 OH. Sat .Sol. *C 6 H 4 (CH 3 ) 2 . H 2 0. QH 5 OH. Sat. Sol. 0.966 0.034 O. .306 O, 8 4 5 O 50 1.68 0.86 *0.92 0.08 0. 57 .40 O .60 1.77 0.86 0.90 O.IO 0, 65 0, 8S .292 .702 1-743 0.87 0.80 0.20 I, 5 o 8S O 193 o .807 1.625 0.88 0.70 0.30 I, 35 o .85 .100 o .90 i-39 0.89 0.60 T*t- - 0.40 ft*. . . J ( A 85 1 t 1 .015 _ _ 1 1 A 985 0.863 0-93 The coefficient of distribution of ethyl alcohol between olive oil and water is O.026 at 3 and 0.047 at 30. (Meyer, 1901; 1909.) 100 gms. cottonseed oil (0.922 Sp. Gr.) dissolve 22.9 gms. ethyl alcohol at 25. 100 gms. ethyl alcohol dissolve 11.75 gms. cottonseed oil at 2 5. (Wroth and Reid, '16.) DISTRIBUTION OF ETHYL ALCOHOL BETWEEN COTTONSEED OIL AND WATER AT 25. (Wroth and Reid, 1916.) Gms. C 2 H 5 OH per 100 cc. Oil Layer. H 2 Layer." JXCLLiU* o . 2083 6.147 29-5 0.2251 6.738 29.9 0.25I5 6-835 27.1 0.2783 6.876 24.7 /3 1 I 7.,. 8.682 f , 1 1 t 1 28. 7 Data for the reciprocal solubility of ethyl alcohol and turpentine are given by Vezes and Mouline, 1904, 1905-06. Data for the system ethyl alcohol, water, petroleum are given by Rodt (1916). ETHYLAMINES C 2 H 5 .NH 2 , (C 2 H 6 ) 2 NH, (C 2 H 6 ) 3 N. Freezing-point data (solubility, see footnote, p. i) for mixtures of ethylamine + water, diethylamine + water, and triethylamine + water are given by Guthrie, 1884 and by Pickering, 1893. The solubility of ethylamine and of diethylamine in water at 60, calculated from the vapor pressures determined by an aspiration method, are given by Doyer, (1890) as follows: A Vapor Pressure in Ostwald Solubility Bunsen Absorption mm. Hg. Ex. / (see p. 227.) Coef. (see p. 227.) C 2 H5NH 2 64.5 321 263 (C 2 H 6 ) 2 NH 233 89 73 Data for the solubility of triethylamine in water at high pressures are given by Kohnstamm and Timmermans, 1913. 295 ETHYL AMINES SOLUBILITIES OF Di ETHYL AMINE AND WATER.* (Lattey Phil. Mag. [6] 10, 398, '05.) Gms. NH(C 2 H 5 ) 2 per 100 Gms. Aqueous Amine ' Layer. Layer. 155 21.7 59-O 150 23-6 55-5 148 24.8 53-5 146 26.3 51.0 145 28.0 49.0 144 31.0 45 - DISTRIBUTION OF TRI ETHYL AMINE BETWEEN WATER AND AMYL ALCOHOL AT 25. (Herz and Fischer Ber. 37, 4751, '04.) Cms. N(C 2 H 5 ) 3 Millimols N(C 2 H6) per 100 cc. per 10 cc. Aqueous Layer. Alcoholic Layer. Aqueous Layer. Alcoholic Layer. 0.0885 0.1683 0.1866 0.2502 2.299 4-457 4.922 6.491 0-0875 0.1664 0.1846 0.2474 2.273 4-408 4.868 6.418 143.5 ( crit - *) 37-4 TriethylAMINE N(C 2 H 5 ) 3 . t. 1 8. 6 (crit. temp.) 20 25 30 35 SOLUBILITY IN WATER.* (Rothmund, 1898.) Gms. NCCjH^s per 100 Gms. f0 Gms. N(C2H 5 ) 3 per 100 Gms. Aq. Layer. Amine Layer. Aq. Layer. Amine Layer >) 51-9 40 3^5 96.48 14.24 72 50 2.8 7 96.4 7-3 9 5 .l8 55 2-57 96.3 96.60 60 2.23 96.3 4.58 96.5 65 1.97 96.3 SOLUBILITY OF TRIETHYLAMINE IN WATER AND IN AQ. ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.* (Meerburg, 1902.) Water. 13-33% Alcohol. 28.98% Alcohol. 38.84% Alcohol. 60.16% Alcohol. din. ^((^2x15)3 (jrHl. ^((^2X15) 3 Gm.N(C 2 H fi ) 3 Gm.N(C 2 H 5 j 3 Gm.N(C 2 H 5 ) t. per 100 t. Gms. Sol. < per zoo jms. Sol. t . per loo Gms. Sol. t . per loo t. per loo Gms. Sol. Gms. Sol. 69.2 I 7 38. 3 8.2 54- 5 22 .8 73-4 31.2 76-77 71.2 30.8 5 .6 3i- 7 13-9 45 29 .8 65-4 33-3 74-75 75 23.1 8 5 28 21.6 33 4 51 .1 51.6 40.6 72-73 80 I8. 7 2 5 .8 26. 4 30.6 3i 4 63 7 42.1 50.6 I8. 7 37 .2 24. 9 40-5 30 3 68 5 40.9 54-7 19-5 .8 24. 2 49.8 28, 5 82 .2 34-2 70.6 20.5 68 .6 24. I , 60.7 35 91 .8 33 77-5 20.5 84 24 69.7 34-7 88 20.5 89 7 23- 5 76.6 40-5 91.3 21.2 92 4 24 81.5 25.8 95 5 24. 2 87.4 - 26.5 96 .1 25 92 NOTE. Results for triethylamine, water and ethyl ether, and for triethyl- amine, water and phenol are also given by Meerburg. 100 gms. abs. methyl alcohol dissolve 57.5 gms. NH(C6H5)2 at 19.5. 100 gms. abs. ethyl alcohol dissolve 56 gms. NH(C 6 H 5 )2 at 19.5. (de Bruyn, 1892.) * Determinations made by "Synthetic Method," see Note, p. 16. Results at 1 8. Results at 25. Results at 32.35. Cms. Equiv. per Liter Aq. Layer. Partition Coef. Gms. Equiv. per Liter Aq. Layer. Partition Coef. Gms. Equiv. per Liter Aq. Layer. Partition Coef. 0.0756 26.09 O.II59 I9-I3 0.1287 14.76 0.0886 26.14 0.0999 19.11 0.2479 14.79 o . 0484 2.14 0.0483 i-59 0.1200 1.093 0.0503 2.14 O.O4l6 i-59 O.IIO4 1.095 0.0189 O.I3I O.OIO4 0.099 0.0132 0.069 O.OI9I O.I3I O.OI3I 0.099 0.0133 0.069 ETHYLAMINES 296 DISTRIBUTION OF ETHYLAMINES BETWEEN WATER AND TOLUENE. (Moore and Winmill, 1912.) Amine. (C 2 H 5 )NH 2 a (C 2 Hs) 2 NH (C 2 H5) 3 N Similar data for triethylamine at 25 and at other, temperatures are given by Hantzsch and Sebaldt, 1899, and by Hantzsch and Vagt, 1901. Data for ternary systems composed of triethylamine, water and each of the following compounds: naphthalene, cane sugar, KC1, K 2 CO 3 , K 2 SO 4 and KSCN, are given by Timmermans (1907). ETHYL, DiETHYL and TriETHYLAMINE HYDROCHLORIDES, etc. v SOLUBILITY OF EACH IN WATER AND IN CHLOROFORM AT 25. * ' (Peddle and Turner, 1913.) Solubility in Water. Solubility in CHC1 3 . Amine Salt. Formula. Gms. Amine Salt Gms. Amine Salt per loo Gms. H 2 O. per 100 Gms. CHC1 3 . Ethylamine Hydrochloride C 2 H5.NH 2 .HC1 279.9 0.17 Diethylamine " (C 2 H 5 ) 2 NH.HC1 231.7 29.45 Hydrobromide (C 2 H 5 ) 2 NH.HBr 311.6 46 . 65 " Hydroiodide (C 2 H 5 ) 2 NH.HI 377.2 71.56 Triethylamine Hydrochloride (C 2 H 5 ) 3 N.HC1 137 17.37 Hydrobromide (CjjHs^N.HBr 150.6 23 . 44 Hydriodide (CjjHysN.HI 370 92.2 ETHYL BROMIDE C 2 H 6 Br. SOLUBILITY IN ETHER. (Parmentier, 1892.) t. 13. O. 12. 22.5. 32. Gms. C 2 HsBr per ioo gms. Ether 632 561 462 302 253 SOLUBILITY OF ETHYL BROMIDE, ETC., IN WATER. (Rex, 1906.) Grams per 100 Grams H 2 O at: Dissolved Substance. t * N o . 10 . 20. 30. Ethyl Bromide i . 067 o . 965 o . 914 o . 896 Ethyl Iodide 0.441 0.414 0.403 0.415 Ethylene Chloride 0.922 0.885 0.869 0.894 Ethylidene Chloride 0.656 0.595 -55 0.540 ETHYL BUTYRATE C 3 H 7 COOC 2 H 5 . SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES AT 20. 100 g. H 2 O dissolve 0.5 g. ethyl butyrate at 22. (Traube, 1884.) 100 cc. H 2 O dissolve 0.8 cc. ethyl butyrate at 20. (Bancroft, 1895.) 100 cc. ethyl butyrate dissolve 0.4 0.5 cc. H 2 O at 20. Per 5 cc. (cc. H 2 O 10 6 4 2.96 2.10 Ethyl Alcohol j cc. C 3 H 7 COOC 2 H 5 o . 34 o . 96 2 . 47 4 6 ETHYL CARBAMATE (Urethan) CO(OC 2 H 5 )NH 2 . See also p. 741. SOLUBILITY IN SEVERAL SOLVENTS AT 25. (U. s. P. vin.) Solvent. Water. Alcohol. Ether. Chloroform. Glycerol. Gms. CO(OC 2 H 5 )NH 2 ) per 100 gms. solvent } I00+ l66 IO 77 33 297 ETHYL ETHER (C 2 H 6 ) 2 O. RECIPROCAL SOLUBILITY OP ETHER ETHYL ETHER AND WATER. (Klobbie Z.physik.Chem. 24, 619, '97$ Schuncke Ibid. 14,334. '94; St. ToUoczko Ibid. 20, 407, 96.) Solubility of Ether in Water, Lower Layer Aqueous. Gms.(C 2 H 5 ) 2 O per 100 Cms. Solubility of Water in Ether. Upper Layer Ethereal. Gms. H 2 O per 100 Gms. Water. Solution. o 13-12 ii. 6 5 11.4 10.2 10 9.5 8.7 15 8.2 7.6 I ^ther. So .01 ] .06 .12 ] .16 ,.20 ] lution. O 05 .12 (2.6, *5 S.) Jii 25 6 -oS 5-7 30 54 5- 1 * 4 o 4-7 4-5 *5 4-3 4-i *6o 3-8 3-7 *7o 3-3 3-2 *8o 2.9 2.8 .26 33 52 73 83 J.04 j J.2 5 i .26 32 50 7 .8 J.O } .2 * Indicates determinations made by Synthetic Method, for which see page 16, ioo cc. H 2 O dissolve 8.11 cc. ether at 22; vol. of solution, 107.145 cc., Sp. Gr. 0.9853. ioo cc. ether dissolve 2.93 cc. HzO at 22; vol. of solution, 103.282 cc.; Sp..Gr. 0.7164. (Herz, 1898.) More recent determinations of the solubility of ethyl ether in water, agreeing closely with the above data, are given by Osaka, 1910. Data for the temp.-pressure diagram of ether-water are given by Scheffer, 19123. SOLUBILITY OF ETHER IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID. (Schuncke Z. physik. Chem. 14, 334, '94; in 38-52% HC1, Draper Chem. News, 35, 87, '77.) In 38.52 %HC1. In 31.61 %H Cl. In 20 % HC1. -6 o + 6 cc. Ether cc. Ether Gms. per i per ioo cc. per ioo cc. Solvent. Solvent. HC1 - 181 149 0.4622 177.5 T 4 2 0.4622 172.5 I 3 I -5 0.4622 Gram H 2 O. cc. Ether Gms. per i g. H2O. (C 2 H5) 2 O. Solvent. HC1. (C^g)^. .387 67.2 0.253 0-5637 .308 58.3 0.253 0-4863 .2075 5 1 - 1 o-253 0.4231 15 163 121.7(14) 0.4622 1075 40-5 0.253 0.3299 20 158 in .9 (20.8) 0.4622 0005 33.1 0.253 0.2688 26 135 104.2 0.4622 0.9360 27.5 0.253 0.2221 In i2.58%HCl. In 3.65 %HC1. to cc. Ether per Gms. per i Gram H 2 O. cc. Ether per Gms. per i Gram H 2 O. ioo cc. Solvent. HC1. (C 2 H 5 ) 2 O. ioo cc. Solvent. HC1. (C 2 H fi )2O. -6 26.45 0.144 0.2106 19.23 0.0308 0.1454 o 22. 19 O-I44 0.1748 ... +6 19.18 0-144 0-1503 14.31 0.0308 0.1070 15 I5.6l 0.144 0-I2IO 11.83 0-0308 0.0868 20 13.76 0-144 0.1059 10.52 0-0308 0-0769 26 12.70 0.144 0.0970 9.24 0-0308 0-0673 The above data are recalculated and discussed by Juttner, 1901. ETHYL ETHER 298 Data for the solubility of ethyl ether in carbon dioxide at high pressures are given by Sander (1911-12). The determinations were made by using quite small amounts of ether and observing the pressure at which a drop of liquid just appeared or disappeared in a mixture of known weight per cent composition. The results give the "gas curve" for constant temperature and when plotted in connection with the " liquid curve" (see CO 2 , p. 233), give the complete pressure concentration diagram. Freezing-point lowering data for mixtures of ethyl ether and hydrochloric acid are given by Maass and Mclntosh (1913). SOLUBILITY OF ETHER IN AQUEOUS SALT, ETC., SOLUTIONS AT 18. (Euler, 1904.) Aq. Solu- tion of: Aq. Solu- tion of: vjms. per Liter Added Salt. oms. (.L^tii per 100 c Solvent, Water 7 .8 KN0 3 lOI.ig 5-4 KC1 73-6 4-7 LiCl 42.48 5-2 NaCl 58-5 4-5 Mannite H 2 S0 4 Gms. per Liter Added Gms. (CjHs^O per 100 cc. Salt. Solvent. 59-54 3-7 91 .06 6.7 49 6.6 122.5 5-65 245- 4-55 SOLUBILITY OF ETHYL ETHER IN AQ. SALT SOLUTIONS AT 28. (Thorin, 1915.) Gms. S^vent. *0 Solvent. Gms. Gms. (CtfM> Solvent (QH 5 ) 2 per 100 cc. per 100 cc. Solvent. Solvent. Solvent. Water 5-85 o.sNa 3 PO 4 4- 17 o.5NaSuccinate 4 .68 0.5 wNal 5-70 o . 5 n Na 3 AsO 4 4- 20 o. 5 wNa Citrate 4 .19 o . 5 n NaBr 4.68 o. S Hg(CN) 2 5- 7i o. 5 wNa Acetate 4 IS o.swNaCl 4.48 o . 5 n NHUNOs 5- 37 o . 5 n Na Tartrate 4 .12 o . 5 n NaF 4-iS o . 5 n FeCls 5- 09 o.sNaPhthalate 5 .88 o.swNa 2 SO 4 4-30 o . 5 n Na 2 Cr 2 O7 4- 84 o . 5 n Na Cinnamate 6 .29 0.5 wNa 2 CrO 4 4.22 o.sFeSO 4 4- 33 o.5NaBenzoate 5 99 o . 5 n Na 2 MoO 4 4-39 o. 5 wAl 2 (S0 4 ) 3 3- 95 o.5NaSalicylate 6 44 o. 5 wNa 2 WO 4 4.12 o . 5 n Am. Oxalate 4 . 74 o . 5 n Na Benzene Sulf onate 6 S SOLUBILITY OF ETHYL ETHER IN 0.91 PER CENT (PHYSIOLOGICAL NORMAL SALINE) AQUEOUS NaCl SOLUTION. ' (Bennett, 1912.) Determinations made by freezing-point method. Ether of d i6 = 0.720 used. t". Gms. (QH^O per 100 Gms. cc. (C 2 H 5 ) 2 (at 15 ) per 100 Aq. NaCl. cc. Aq. NaCl. 13.08 18.27 5 11.15 I5-58 10 9-45 13.20 15 8.10 11.31 20 6.87 9.60 25 5.96 8.33 30 5-30 7.40 Purified ether prepared from methylated spirit gave slightly higher results. SOLUBILITY OF ETHYL ETHER IN AQ. SULFURIC ACID AT o. (Kremann, igioa.) Gms. per too Gms. Homogeneous Mixture. Gms. per 100 Gms. Homogeneous Mixture. (C 2 H 5 ) 2 0. 24.2 24.8 43-9 34 H 2 0. 34-5 35-4 15.7 26.1 H 2 S0 4 . 41-3 39-8 40.4 39-9 (C 2 H 6 ) 2 0. 16.1 6.1 53-8 H 2 0. 42-7 78 8-5 H 2 S0 4 . 41.2 15-9 37-7 Data for the system ethyl ether, ethyl alcohol, water, sulfuric acid at o are also given. 299 ETHYL ETHER SOLUBILITY OF ETHER IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS METHYL ALCOHOL MIXTURES AT 20. (Bancroft, 1895.) In Ethyl Alcohol. In Methyl Alcohol. Per 5 cc. QHsOH. Per 5 cc. QHjOH. Per i cc., CH a OH. Per i cc. CH 3 OH. 'cc. H 2 O.* cc. (Q .VCC.HA* cc. (QH 6 ) 2 0.f cc. H 2 O. cc. (C 2 H B ) 2 O. cc. H 2 0. cc. (C 2 H B ),0. 50 I . 30 4.45 7 10 I.I3 0.83 I. 80 25 I. 70 4 7 ,8 7 0.85 0.64 3 10 2. 3-87 8 4 0.60 0.52 5 8 3- 35 3.10 10 2 5 0.56 0.44 10 6 5- 10 2.08 15 I .8 0.63 0-45 IS 5.21 6 1.77 17 5 I 1.23 * Saturated with ether. f Saturated with water. THE SYSTEM ETHYL ETHER-MALONIC ACID- WATER AT 15. (Kiobbie, 1897.) Results for Conjugated Liquid Layers Formed Results for the Liquid Layers in when Insufficient Malonic Acid to Satu- Contact with Excess of rate the Gms. per 100 Gms Layer. Solutions Was Present. . Lower Gms. per 100 Gms. Layer. Upper Gms Malonic Ac , per 100 Gms. Liquid. id. Solid Phase. Malonic Add tt tt tt tt it Malonic Acid. 4-63 II. 60 20.45 27-43 33-63 34-17 3I.II H 2 0. 92.23 87.42 79.92 69-S5 60.57 47-45 35-8i 26.76 Ethyl Ether. 7-77 7-94 8.48 9.99 12 18.80 30.02 42.12 Malonic Acid. o 0.72 2.19 5.01 9-52 21.89 3 -44 31.11 HA 1. 2O i-54 1.99 3-o8 5-i9 13-42 25-37 26.76 Ethyl Ether. 98.80 97-74 95-82 91.91 85.29 64.91 44.19 42.12 Malonic Acid. 8 9.96 19.41 27.22 35-51 46.48 51-33 57-37 H 2 0. 0.42 2-79 5-23 10.73 20.86 26.30 39.10 Ethyl. Ether. 92 89.61 77.80 67-54 53-75 32.66 22.36 3-52 Data for the system ethyl ether, succinic acid nitrile and water are given by Schreinemakers, 1898. Data for the extraction of formic acid from water by ether are given by Dakin, Janney and Wakemann, 1913. ETHYL FORMATE HCOOC 2 H 6 . 100 grams water dissolve 10 grams ethyl formate at 22. (Traube, 1884.) ETHYL METHYL KETONE CH 3 .CO.C 2 H 6 . SOLUBILITY IN WATER. (Rothmund; 1898.) By synthetic method, see Note, page 16. , Gms. Ketone per 100 Gms. Gms. Ketone per 100 Gms. Aq. Layer. Ketone Layer. Aq. Layer. Ketone Layer. -io 34.5 89.7 90 16.1 84.8 + 10 26.1 90 no 17.7 80 30 21.9 89.9 130 21.8 71.9 50 17.5 89 140 26 64 70 16.2 85.7 i5i.8(crit. temp.) 44. 2 The accuracy of Rpthmund's data is questioned by Marshall (1906) and the following new determinations given. t'. 64.7. 65.5- 73-6. 91-0. 15. 73-6. Wt. % Ketone in Mixture 18.15 18.08 18 18.08 88.2 85.05 Data for the reciprocal solubility of ethyl methyl ketone and water, containing J-5% ethyl alcohol, are given by Bruni (1899, 1900). This system is of interest particularly on account of having both an upper and a lower critical point. Freezing-point data for mixtures of ethylmethyl ketone and water are given by Timmermans (1911) and by Bruni, 1899, 1900. ETHYL KETONE 300 DiETHYL KETONE (Propione) (C 2 H 6 ) 2 CO. SOLUBILITY IN WATER. (Rothmund, 1898.) The determinations were made by Synthetic Method, see p. 16. The critical temperature could not be reached and high accuracy is not claimed for the results. Cms. Diethyl Ketone Cms. Diethyl Ketone t. per IPO Gms. t. per ioo Cms. Aq. Layer. Ketone Layer. Aq. Layer. Ketone Layer. 20 4.60 ... loo 3.68 93 .10 40 3-43 97-42 120 4.05 QO.lS 60 3.08 96.18 140 4.76 87.01 80 3.20 94.92 160 6.10 83.33 ETHYL PROPIONATE C 2 H 6 COOC 2 H 5 . SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES. (Pfeiffer, 1892; Bancroft, 1895.) . 4iv,r,i cc. H 2 O to Cause Separation of a Second Phase in F M- ? Mixtures of the Given Amounts of Alcohol and 3 cc. Portions of Ethyl Propionate. 3 2.32 6 6.87 9 12.35 12 IQ-I? 15 27.12 18 36.84 21 50.42 24 CO 100 grams H 2 O dissolve 1.7 grams ethyl propionate at 22. (Traube, 1884.) DiETHYL Diacetyl TARTRATE (CHOCOCH 3 ) 2 (COOC 2 H 6 ),. Freezing-point lowering data (solubility, see footnote, p. i) for mixtures of diethyl diacetyl tartrate and each of the following compounds are given by Scheuer (1910); m nitrotoluene, ethylene bromide, phenol and naphthalene. Results for diethyl diacetyl tartrate and naphthalene are also given by Palazzo and Batelli (1883). ETHYL VALERATE C 4 H 9 COOC 2 H 6 . ETHYL (Iso) VALERATE (CH 3 ) 2 .CH.CH 2 COOC 2 H 6 . SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ALCOHOL MIXTURES AT 20. (Pfeiffer, 1892; Bancroft, 1895.) ioo cc. water dissolve 0.3 .cc. ethyl valerate at 25. 100 cc. water dissolve 0.2 cc. ethyl iso valerate at 20. ioo cc. ethyl iso valerate dissolve 0.4+ cc. water at 20. Mixtures of Ethyl Alcohol, Mixtures of Ethyl Alcohol, Ethyl Valerate and Water. Ethyl Iso Valerate and Water. Per 5 cc. Ethyl Alcohol. CC.Alcohol* cc.H 2 0.f cc.Alcohol* cc.H 2 O-t ' 177 " C c Ethyl ' CC ' H2 - Iso Valerate. 10 0.15 8 0.23 6 0.46 5 o-72 4 1.23 * cc. Alcohol in mixture. t cc. H2O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of ethyl valerate. 3 1.42 39 53-13 9 7.18 45 63.60 15 14-13 57 90-53 21 22.40 72 131.0 27 31.62 81 180.0 33 41 .62 ETHYLENE C 2 H 4 . 301 El SOLUBILITY IN WATER AND IN ALCOHOL. (Bunsen and Carius; Winkler, 1906.) t. O 0. .226 O q- .0281 Solubility in Alcohol. 5 O .191 .0237 t. I( ^ c Vol^AlcSd. 10 .162 o .0200 359-5 15 139 .0171 4 337-5 20 .122 .0150 10 308.6 25 .108 o .0131 15 288.2 30 o .0 9 8 .0118 20 271-3 ETHYLENE O.I. 0.25. 0.5. 0.75. X.O. 0.154 0.144 0.130 0.118 o . 1056 0.153 0.144 0.128 0.114 O.IOI 0.157 0.156 o.i55 0.154 0.1525 0.1425 0.127 0.109 0.093 For ft and q see Ethane, p. 285. SOLUBILITY OF ETHYLENE IN AQUEOUS SOLUTIONS OF ALKALI HYDROXIDES, ETC., AT 15. (Billitzer, 1902.) Results in terms of the Ostwald Solubility Expression /. See p. 227. Solubility 1 K in Aq. Solution of Normality: Aqueous Solution of: KOH NaOH NH40H | Na 2 SO 4 In HzO alone o . 1593 SOLUBILITY OF ETHYLENE IN METHYL ALCOHOL AND IN ACETONE. (Levi, 1901.) Results in terms of the Ostwald Solubility Expression /. See p. 227. t. In Methyl Alcohol. In Acetone. t". In Methyl Alcohol. In Acetone. o 3-3924 4-0652 30 1.8585 1.8680 10 2.8831 3-35 8 40 1-3432 1.0852 20 2.3718 2.6278 5O 0.8259 0.2772 25 2.1154 2.2500 60 0.3506 The formulas from which the above figures were calculated are: In Methyl Alcohol, I = 3 .3924 0.05083 / o.ooooi ^. In Acetone, / = 4.0652 0.06946 / 0.000126 P. SOLUBILITY OF ETHYLENE IN SEVERAL SOLVENTS. (McDaniel, 1911.) qnlvwi * Abs - Coef - Bunsen Qnlv^nt t Abs - Coef - Bunsen Solvent. t. A Coef.0. solvent. t. A Coef . 0. Benzene 22 3.010 2.786 Heptane 22.4 3-463 3.207 35 2.655 2.353 35 3-186 2.824 50 2.482 2.100 39 3.110 2.722 Hexane 22 3.038 2.8141 Acetone 20 2.571 2.290 35 2.826 2.505 35 2.308 2.046 ? " 45 2.586 2.219 Limonene 22 no constant equilibrium Abs. Coef. A = vol. of ethylene absorbed by unit vol. of solvent at temp, stated. For definition of Bunsen Coef. ft, see carbon dioxide, p. 227. The Coef. of Abs. ft of ethylene in Russian petroleum is o. 1 64 at I o and o. 1 42 at 20. (Gniewosz and Walfisz, 1887.) Freezing-point data (solubility, see footnote, p. i) for mixtures of ethylene and methyl ether are given by Baume and Germann, 1911, 1914. ETHYLENE BROMIDE C 2 H 4 Br 2 . F.-PT. DATA FOR MIXTURES OF ETHYLENE BROMIDE AND OTHER COMPOUNDS. Ethylene Bromide + Naphthalene (Baud, 1912; Dahms, 1895.) 44 + ft Naphthol (Bruni, 1898.) " -j- " + Picric Acid (Bruni, 1898.) -j- Paraldehyde (Paterno and Ampola, 1897.) -j- Phenol (Dahms, 1895; Paterno and Ampola, 1897.) -j- Toluene (Baud, 1912.) " + Bromotoluene (Paterno and Ampola, 1897.) "- " +Xylene ETHTLENE CYANIDE 302 ETHYLENE CYANIDE C 2 H 4 (CN) 2 . DISTRIBUTION BETWEEN WATER AND CHLOROFORM. (Hantzsch and Vagt, 1901.) Gm. Mols. QjH^CCN);; per Liter. . Cl . * / T r^-w-rf^i -T Ivatio. ~ Aq. Layer, c\. CHClj Layer, c%. c 2 . o 0.0786 0.0464 1.69 10 0.0787 0.0463 1.70 20 0.0791 0.0459 1.72 Additional data for the influence of KOH, KC1 and HC1 on the above distri- bution are also given. DiETHYLENE ETHER (CH 2 OCH 2 ) 2 . Freezing-point data (solubility, see footnote, p. i) are given for mixtures of diethylene ether and water, by Unkovskaja, 1913. Tetraphenyl ETHYLENE (C 6 H5) 2 C:C(C 6 H5) 2 . Freezing-point data for tetraphenyl ethylene + silicotetraphenyl are given by Pascal and Normand (1913). EUCAINE Ci 5 H 21 NO 2 and Salts. 100 cc. H 2 O dissolve 0.296 gm. anhydrous ft eucaine at 20. 1 (Zalai, 100 cc. oil of sesame dissolve 3.49 gms. anhydrous ft eucaine at 20. ) 1910.) 100 cc. aniline oil dissolve 66.6 gms. anhydrous /3 eucaine at 20. 100 cc. H 2 O dissolve 2.5 gms. /3 eucaine hydrochloride at 15-20 (Squire and Caines, 1905.) ioo cc. 90% alcohol 9 100 cc. H 2 O " 25 " lactate ioo cc. 90% alcohol " 12.5 " loocc. CHC1 3 " 20 " EUROPIUM Bromonitrobenzene SULFONATE Eu[C 6 H 3 Br(i)N02(4)SO3(2)]j.- ioH 2 O. ioo gms. sat. solution in water contain 6.31 gms. anhydrous salt at 25. (Katz and James, 1913.) FATS. SOLUBILITY OF THE FATTY ACIDS OBTAINED FROM SEVERAL SOURCES IN ALCOHOL AND IN BENZENE. (Dubois and Fade, 1885.) Crude Fatty Gms. Fat j >er ioo Gms. Ab; 5. Alcohol at: Gms. Fats per ioo Acid of: r o. 10. 26. Gms. Benzene at 1 2, Mutton 2.48 5.02 67.96 14.70 Beef 2.51 6.05 82.23 15.89 Veal 5 13.78 137.10 26.08 Pork 5-63 11.23 118.98 27.30 Butter 10. 61 24.81 158.2 69.61 Margarine 2-37 4-94 47.06 13-53 MlSCIBILITY OF FATS AND 90 VOL. PER CENT ALCOHOL AT 37. (Vandevelde, 1911.) Mixtures of fats and alcohol in various proportions were shaken twice daily for 8 days and the volume of each layer, as well as its composition, determined. Composition of Mixture- Mixture. . * . cc. Alcohol cc. Fat Alcohol + Cocaline 25 5 Volume after Agitation. Gms. Fat per Gms. Alcohol ioo Gms. per ioo Gms. \lcohol Layer Fat Layer. 4-9 19-4 cc. Alcohol 25-4 cc. Fat , 4-6 (1 2O IO 19 .2 10.8 5 .6 16 ,2 it u is IS 13 17 7 .2 13 5 N (( 10 20 6 7 23 3 9 .1 12 ,2 ft ll 5 25 i .1 28 9 13 II, 4 Alcohol + Butter Fat 25 5 25 .r 4 9 3 5 17 4 " " 20 IO 19 .2 IO .8 3 5 14 i " " IS IS 13 17 4 14 i " ** 10 20 7 . i 22 9 S 7 " " 5 25 2 28 14 .1 9 5 Alcohol + Olive Oil 25 S 24 7 5-3 2 3 ii 2 " " 20 IO 19 .2 IO .8 2 4 8 .7 '* " IS 15 13 17 2 4 8 7 N 10 20 7 -5 22 5 2 5 8 8 H M 5 25 2 .2 27 .8 7 7 ,6 For other data on the solubility of fats see Ewers (1910) and Louise (1911). 303 FLUORENE FLUORENE (Diphenylenemethane) C 6 H 4 .CH 2 .CH4. Freezing-point data (solubility, see footnote, p. i) are given by Kre*mann (1911) for mixtures of fluorene and each of the following compounds: o, m and p dintro- benzene, 1.3.5, trinitrobenzene, dinitrophenol, dinitrotoluene, trinitrotoluene and picric acid. FLUORESCEIN 100 gms. H 2 O dissolve 0.005 S m fluorescein at 20-25 (Dehn, 1917.) 100 gms. pyridine dissolve 13.29 gms. fluorescein at 20-25 " 100 gms. aq. 50% pyridine dissolve 37.22 gms. fluorescein at 20-25 " FORMALDEHYDE, Solid Polymers (CH 2 O) n . SOLUBILITY OF THE Six WELL-DEFINED SOLID POLYMERS OF FORMAL- DEHYDE IN WATER. (Auerbach and Barschall, 1908.) Name. Formula. m. pt. Gms. per 100 cc. Sat. Solution in Water. Paraformaldehyde (CH 2 O) n +#H 2 O 150-160 20-30 gms. at 18 a Polyoxymethylene (CH 2 O) n 163-8 n gms. at 18-25 /3 Polyoxymethylene (CH 2 O) n 163-8 3.3 gms. at 18, about 4 at 25 7 Polyoxymethylene (CH 2 O) n ^S~5 less than o.i at 18, o.i gm. at 25 8 Polyoxymethylene (CH 2 O) n 169-70 practically insoluble a Trioxymethylene C 3 H 6 O 3 63-4 17.2 at 18, 21.1 at 25 All are insoluble in alcohol and ether except trioxymethylene. SOLUBILITY OF TRIOXYMETHYLENE IN AQ. SODIUM SULFITE SOLUTIONS AT 15. (Lumiere and Seyewetz, 1902.) Gms. Na 2 S03 per 100 cc. H 2 O 5 10 20 25 28 (sat.) Gms. CsHeOs per 100 cc. sat. sol. 22 24 26 27 27 Data are also given for the solubility of various mixtures of trioxymethylene and sodium sulfite in water at 15. The distribution coefficient of formaldehyde between water and ether is 8.5 at O and 9.23 at 2O. (Hantzsch and Vagt, 1901.) FORMAMIDE HCONH 2 . SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (English and Turner, 1915.) Gms. Gms. Gms. t of HCONH 2 Solid t of HCONH 2 <, r , p , ^ t of HCONH 2 ~ ,. . p . Solidif. per 100 Phase. Solidif. per 100 Solid Phase. Solidif per IQQ 2 Solid Phase. Gms. H 2 O. Gms. H 2 O. Gms. H 2 O. o o Ice 31.1 116.4 Ice 37-6 267 HCONHa -2.7 9.93 " -42.5 169 -29.4 369-8 -5.7 17.87 " -45-4 187-8 HCONH 2 .H 2 O -21.9 540.3 -ii 35.45 " -40.4 218.3 " -14-5 836.8 -23.6 81.93 -40 241.4 - 6.4 1780 Similar data are also given for formamide + formic acid and formamide -h propionic acid. o and p ChloroFORMANILIDES C1.C 6 H 4 NH.CHO. Freezing-point lowering data for mixtures of o and p chloroformanilide are given by King and Orton, 1911. FORMIC ACID HCOOH. SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Faucon, 1910.) t o f Gms. HCOOH , . Gms. HCOOH t o of Gms. HCOOH o o -5 12.5 10 23 15 32 20 39.2 -25 46.5 Similar data for mixtures of 97.4% formic acid and water are given by Kremann, 1907. -30 53 -40 74.2 -35 57-6 -30 79 -40 62.5 20 84.2 -45 66.5 10 89.4 49 Eutec. 70 95 -45 71.7 +8.51 TOO FORMIC ACID 304 DISTRIBUTION OF FORMIC ACID BETWEEN WATER AND BENZENE AT 13-15. (v. Georgievics, 1913.) A small separatory funnel was used and the acid in each layer titrated with o.i n NaOH, using phenolphthaleine as indicator. Cms. HCOOH Found per: Cms. HCOOH Found per: 25 cc. H 2 O Layer. isocc. C 6 H 6 Layer. 25 cc. H 2 O Layer. iSoce. C 6 H 6 Layer. 1.016 0.016 2.365 0.035 1-539 0.031 3.826 O.O62 1.800 0.024 5^74 O.II4 2. 112 0.031 7.836 0.138 p__ The distribution ratio of formic acid between water and benzene was found by King and Narracott (1909) to be I to 0.0242 at room temp. Freezing-point lowering data (solubility, see footnote, p. i) are given for mix- tures of formic acid and dimethylpyrone by Kendall, 1914. FUMARIC ACID COOH.CH:CH.COOH. MALEIC ACID COOH.CHrCH.COOH. (See also p. 398.) SOLUBILITY IN WATER. (Vaubel, 1899.) loo gms. water dissolve 0.672 gm. fumaric acid at 165. 100 gms. water dissolve 50 grams maleic acid at 100. Data for the distribution of fumaric acid between water and ether at 25 are given by Chandler, 1908. FURFUROL C 4 H 3 OCHO. SOLUBILITY IN WATER. (Rothmund, 1898.) Determinations by Synthetic Method, for which see p. 16. Gms. C 4 H 3 OCHO per 100 Gms. Gms. C 4 H 3 OCHO per 100 Gms. Aq. Layer. Furfurol Layer. Aq. Layer. Furfurol Layer. 40 8.2 93.7 ioo 18.9 83.5 50 8.6 93 no 24 78.5 60 9.2 92 115 28 74.6 70 10.8 90.7 120 34.4 68.1 80 13 89 122.7 (crit. t.) 51 90 15.5 86.6 GADOLINIUM CobaltiCYANIDE GdiCCoCeNe^HjO. looo gms. aq. 10% hydrochloric acid dissolve 1.86 gms. of the salt at 25. (James and Willard, 1916.) GADOLINIUM GLYCOLATE Gd 2 (C 2 H 3 O 3 )3.2H 2 O. , IOOO CC. H 2 O dissolve 14.147 gms. of the salt at 2O. (Jantsch and Grunkraut, 1912-13.) GADOLINIUM Magnesium NITRATE, etc. SOLUBILITY OF DOUBLE NITRATES OF GADOLINIUM AND OTHER METALS IN CONC. NITRIC ACID OF dy = 1.325 ( = 51.59 GM. HNO 3 PER ioo cc.) at 16. (Jantsch, 1912.) Gms. Hydrated Salt. Formula. Salt per Liter Sat. Solution. Gadolinium Magnesium Nitrate [GdCNOa^feMga^I^O 352 .3 Nickel " " Ni 3 " 400.8 Cobalt " " Co 3 " 451-4 Zinc Zn 3 " 472.7 GADOLINIUM OXALATE Gd 2 (C 2 O 4 )3.ioH 2 O. SOLUBILITY IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (Wirth, 1912.) Normality of Gms. per ioo Gms. Sat. Sol. Aq-H 2 S0 4 . Gd^ Gd 2 (CA)3. 2.16 0.1883 0.3005 Gd 2 (C 2 04)3.ioH 2 O 3.11 0.3010 0.4803 4-32 0.4359 0.6956 6.175 0.707 1.128 305 GADOLINIUM OXALATE SOLUBILITY OF GADOLINIUM OXALATE IN AQUEOUS 20% SOLUTIONS OF METHYLAMINE OXALATE, ETHYLAMINE OXALATE AND TRIETHYLAMINE OXALATE. (Grant and James, 1917.) . Aq. 20% Methylamine Oxalate 0.069 " Ethylamine 0.360 " Triethylamine " 0.883 GADOLINIUM Dimethyl PHOSPHATE Gd 2 [(CH 3 ) 2 PO 4 ] 6 , 100 gms. H 2 O dissolve 23 gms. Gd 2 [(CH 3 ) 2 PO4]6 at 25 and 6.7 gms. at 95. (Morgan and James, 1914.) GADOLINIUM SULFATE Gd 2 (SO 4 ) 3 .8H 2 O. SOLUBILITY IN WATER. (Benedicks, 1900.) t<>. , Gms - era 8 H 2 b Pef I0 Solid Phase ' o 3.98' ' Gd 2 (SO 4 )3.8H 2 O 10 3-3 14 2.8 25 2.4 34.4 2.26 SOLUBILITY OF GADOLINIUM SULFATE IN AQUEOUS SOLUTIONS OF: Sodium Sulfate at 25. (Bissell and James, 1916.) Sulf uric Acid at 25. (Wirth, 1912.) Gms. per 100 Gms. H 2 O. Normality Gms. P 61 " I0 Gms - Sat - So1 - ' NasS0 4 . O Gd 2 (SO4) 2.15 Gd 2 UUU i 1UIOC. (SO 4 ) 3 .8H 2 O ofH ' Gd 2 3 = 1-793 2, Igsl* Gd 2 (S0 4 ) 3 .8H 2 0.43 2.06 it I 1.98 3 .291 M 0.47 0.76 Gd 2 (SO 4 ) 3 .Na 2 SO 4 .2H 2 O o. 505 2-365 3- 931 M 1.26 0.17 11 I, I 2.29 v5 .807 ( 3-01 0.07 ti 2 .16 1.789 2 974 tl 7.46 0.05 (i 6. 175 0.528 0.8777 it 27.40 0.05 (i 12. 6 0.0521 O. ,0867 ft GADOLINIUM SULFONATES. SOLUBILITY IN WATER. Gms Salt. Formula. *-&SK?S Authorit y- Gms. H 2 O. x S 43.8 Gd[C t H 3 Br(N0 2 )SO s ( I . 4 . 2 )], I oH 2 , S 6.3. GALACTOSE C 6 Hi 2 O 6 . See also Sugars, pages 695-7. 100 gms. saturated solution in pyridine contain 5.45 gms. C 6 Hi 2 O 6 at 26, density of solution = 1.0065. (Holty, 1905.) 100 gms. H 2 O dissolve 68.3 gms. galactose at 20-25. (Dehn, 917.) 100 gms. aq. 50% pyridine dissolve 6.83 gms. galactose at 20-25. " GALLIC ACID 3.4.5, (OH) 3 C 6 H 2 COOH.H 2 O. SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell, 1910.) Wt. PerCent fnT^nntPfr n Wt. Per Cent rniS"?'*? O CjHsOHm ^Sat-So.. <^ G H * &HH in ^of Sat. Sol. *>*%$? Solvent. Sat. Sol. Solvent. Sat ^ o 1.002 1.15 60 0.957 16 10 0.992 2 70 0.946 18 20 0.983 4.2 80 0.933 I 9-9 30 0.977 7.5 90 0.919 21.2 40 0.972 10.6 95 0.911 21.6 50 0.965 13.4 IOO 0.902 22.2 IOO gms. H 2 O dissolve 0.95 gm. gallic acid at 15. (Greenish and Smith, 1903.) loo gms. H 2 O dissolve 33. 3 gms. gallic acid at 100. (U. S. P. VIII) GALLIC ACID 306 SOLUBILITY OF GALLIC ACID IN ORGANIC SOLVENTS AT 25. (Seidell, 1910.) ^ f Qof Gms - C fi H 2 (OH)j Solvent. Density of Solvent. Solution COOH.H 2 O per 100 Gms. Sat. Sol. Acetone du> = 0.797 0.941 2 5-99 Amylalcohol (iso) ^0=0.817 o . 834 5.39 Amylacetate ^20 = 0.875 0.878 2.72 Benzene d& = 0.873 -&7S 0.022 Carbon Bisulfide di = 1.258 1.262 0.042 Ether (abs.) ^20 = 0.711 0.718 i-37 Ethylacetate d& = 0.892 0.911 3.610 The amount of gallic acid dissolved by carbon tetrachloride, chloroform and toluene was too small for estimation. 100 gms. glycerol dissolve 8.3 gms. C 6 H 2 (OH) 3 CpOH.H 2 O at 25. (U. S. P. VIII.) loo gms. 95% formic acid dissolve 0.56 gm. gallic acid at^!9.4. (Aschan, 1913.) GERMANIUM DIOXIDE GeO 2 . loo gms. H 2 O dissolve 0.405 gm. GeO 2 at 20, and 1.07 gms. at 100. (Winkler, 1887.) GERMANIUM (Mono) SULFIDE GeS GERMANIUM (Di) SULFIDE GeS* 100 gms. H 2 O dissolve 0.24 gm. GeS loo gms. H 2 O dissolve 0.45 gm. GeSa. (Winkler, 1887.) GLASS. For data on the solubility of glass in water and other solvents, see: (Cowper, 1882; Emmerling, 1869; Bohling, 1884; Kreusler and Herzhold, 1884; Kohlrausch, 1891; Forster, 1892; Mylius and Forster, 1889; 1892; Wartha, 1885; Nicolardot, 1916.) GLOBULIN (Serum). SOLUBILITY IN AQUEOUS MAGNESIUM SULFATE SOLUTIONS. (Galeotti, 1906; Scaffidi, 1907.) The precipitated globulin (from oxblood) was not dried, but pressed between filter paper, and an excess introduced into each MgSC>4 solution. After constant agitation for 12 hours, the saturated solution was filtered, weighed and evaporated to constant weight, the coagulated globulin then washed to disappearance of SO 4 and dried and weighed. Results for 10. Results for 25. Results for 40. Results'for 55. Results for 70. Gms. per ido Gms. Gms. per 100 Gms. Gms. per 100 Gms. Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. MgS0 4 . Globulin. MgS0 4 . Globulin. MgS0 4 . Globulin. MgS0 4 . Globulin. MgS0 4 . Globulin. 0.06 0.07 0.06 0.07 0.06 0.42 0.40 1.14 0.71 o-34 0.18 0-34 O.2I 0.61 0.31 1.42 0.88 2.14 2.52 o-55 0.65 I.6 3 0.63 2. 2O 0.61 5-39 i. 60 3-34 4-74 1.14 2. II 3-35 2.28 5.56 1.92 8.31 S-64 5-06 6.83 1.17 4-32 4-42 3-35 6.07 5-40 8.63 10.81 3.10 9.22 1.76 I3-63 2.60 16 4-03 14.72 3 13-84 2. II 13.29 i 20.86 0.37 21.30 o-95 18.47 i. 02 17.90 0.69 15.38 0-37 24.18 0.18 25-47 0.03 27.03 O.OI 17.67 0.07 The coagulation curve and freezing-point curve are also given. GLUCOSE d C 6 Hi 2 O6.H 2 O. See also Sugars, pages 695-7. 100 gms. H 2 O dissolve 82 gms. glucose at 20-25. (Dehn, 1917.) 100 gms. pyridine 7.62 " 100 gms. aq. 50% pyridine " 49.17 " " " " 100 gms. trichlor ethylene 0.006 " 15 (Wester and Bruins, 1914.) GLUTAMINIC ACID C 3 H 5 NH 2 (COOH) 2 . Data for the solubility of glutaminic acid in aq. salt solutions are given by Wiirgler (1914) and Pfeiffer and Wurgler (1916). 307 GLUTAMINIC ACID GLUTAMINIC ACID HYDROCHLORIDE C 3 H 6 NH 2 (COOH) 2 .HC1. SOLUBILITY IN WATER. (Stoitzenberg, 1912.) (The following results were taken from the diagram given by the author.) Cms. Glutaminic Acid. Cms. Glutaminic Acid. t. HC1 per 100 cc. t. HC1 per 100 cc. Sat. Sol. Sat. Sol. o 3i-5 60 57 10 34.5 70 62 20 38 80 67.5 30 42-5 90 74 40 47 100 81 50 52 20 1.4 (sol. sat. with HC1) GLUTARIC ACID (Pyrotartaric) (CH 2 ) 3 (COOH) 2 . SOLUBILITY IN WATER. (Lamouroux, 1899) t. o. 15. 20. 35. 50. 65. Cms. (CH 2 ) 3 (COOH) 2 per 100 cc. solution 42.9 58.7 63.9 79.7 95.7 ni.8 100 gms. 95% formic acid dissolve 55.62 gms. glutaric acid at 18.6. (Aschan, 1913.) Data for the distribution of glutaric acid between water and ether at 25 are given by Chandler, 1908. F. pt. data for glutaric acid + sulfuric acid. (Kendall and Carpenter, 1914.) GLYCINE (Glycocoll) CH 2 .NH 2 .COOH. loo gms. H 2 O dissolve 51 gms. CH 2 .NH 2 .COOH at 20-25. (Dehn, 1917.) 100 gms. pyridine dissolve 0.61 gm. CH 2 .NH 2 .COOH at 20-25. 100 gms. aq. 50% pyridine dissolve 0.74 gm. CH 2 .NH 2 .COOH at 20-25. " SOLUBILITY OF GLYCINE IN WATER AND IN AQ. SALT SOLUTIONS AT 20. (Pfeiffer and Wurgler, 1915, 1916.) Mnlc Sal* Gms. Glycine , , c olf Gms. Glycine Water only 1.962 LiCl 0.96 4.188 BaCl 2 0.5 2.375 LiBr 0.97 4.245 BaBr 2 0.5 2.954 SrCl 2 0.25 2.129 SrCl 2 0.5 2.362 0.50 2.331 SrBr 2 0.49 2.440 i 2.605 CaCl 2 0.57 4.848 2 3.301 CaBr 2 0.51 4-994 10 cc. sat. aq. solution contains 1.8 gms. glycine + 2.7 gms. KC1 at 20 when both are present in the solid phase. (Pfeiffer and Modelski, 1912.) GLYCOLIC ACID CH 2 OH.COOH. SOLUBILITY IN WATER. (Emich, 1884.) t. 20. 60. 80. 100. Gms. CH 2 OH(COOH) per 100 gms. H 2 O 0.033 0.102 0.235 0.850 PhenylGLYCOLIC ACID dextro and racemic. CH.C 6 H 5 .OH.COOH. SOLUBILITY OF DEXTRO AND OF RACEMIC PHENYL GLYCOLIC ACID IN CHLOROFORM. (Holleman, 1898.) Gms. Detro Acid Gms. Racemic t. per loo Gms. t. Acid per 100 CHC1 3 . Gms. CHClj. IS 0.952 IS 0.877 25 1.328 25 1.07 35 i-95o 35 1-6 GLYCYRRHIZIC ACID. 100 gms. sat. solution in H 2 O contain 0.575 gm. glycyerrhizicacid at 15. (Capin, '12.) IOO gms. sat. solution in H 2 O contain 0.152 gm. Am. glycyrrhizate at o and 0.225 gm- at 15. ' (Capin, 1912.) PhenylGLYOXAL Phenyl hydrazone C 6 H 5 .CO.CH.N.NH.C6H 6 . One liter C 6 H 6 dissolves 52.6 gms. of the A form at 5. (Sidgwick, 1915 ) One liter CeHe dissolves 2.9 gms. of the B form at 5. " GOLD 308 GOLD Au. SOLUBILITY OF GOLD IN POTASSIUM CYANIDE SOLUTIONS. (Maclaurin, 1893.) Gold disks were placed in Nessler tubes with aqueous KCN solutions. Gms. Au Dissolved in 24 Hours in Nessler Tubes: rer cent KCN. Full. Full. Oxygen. Passed in. Oxygen + Agitation. O.I I 5 O.OOI95 O.OOI62 0.0032 0.00331 O.OO4I8 0.0046 o . 00845 0.01355 0.0472 20 5 O.OOI2 O.OOO43 0.00305 O.OOO26 O.OII5 0.00505 0.0314 O.OIO8 The following data for more dilute KCN solutions are given by Christy (1901). Gold strips 2 X | inch were rotated for 24 hrs. in aq. KCN solutions and the loss in weight determined. 1 Per cent Mgs. Au Per cent Mgs. Au Per cent Mgs. Au KCN. Dissolved. KCN. Dissolved. KCN. Dissolved. o o.oio 0.002 0.44 0.016 74-96 0.0005 0.043-0.07 0.00325 1.77 0.0325 150.54 o.ooi 0.10-0.23 0.004 4- 2 9 0.065 168.12 0.0016 0.16 0.008 48.43 Data are also given for 48 hour periods and for solutions containing Oa. One liter of cone. H NOs dissolved o. 66 gm. Au on boiling for two hours. (Dewey, '10.) Data for the rate and limit of solubility of Au in cone. HC1 solutions of iron alum and of cupric chloride are given by McCaughey, 1909. GOLD CHLORIDE (Auric) AuCl 3 . 100 gms. HaO dissolve 68 gms. AuCla. When i gm. of gold as chloride is dissolved in aq. HC1 of different strengths and the solutions shaken with 100 cc. portions of ether, the following percentages of the gold enter the ethereal layer. With 20% HC1, 95%; 10% HC1, 98%; 5% HC1, 98%; 11% HC1, 84% and 0.18% HC1, 40.3% of the gold. Distribution results, indicating considerable variation in the constitution of the dissolved substance in the two layers, are also given. (Mylius, 1911.) GOLD PHOSPHORUS TRI CHLORIDE (Aurous) AuClPCl 3 . 100 gms. PC1 3 dissolve i gram at 15, and about 12.5 grams at 120. (Lindet Compt. rend. 101, 1492, '85.) GOLD ALKALI DOUBLE CHLORIDES. SOLUBILITY OF SODIUM GOLD CHLORIDE, LITHIUM GOLD CHLORIDE, POTASSIUM GOLD CHLORIDE, RUBIDIUM GOLD CHLORIDE, AND CAESIUM GOLD CHLORIDE IN WATER. (Rosenbladt Ber. 19, 2537, '86.) Grams Anhydrous Salt per 100 Grams Solution. 10 20 30 40 50 60 70 80 90 100 100 gms. glycerol (d i6 = 1.256) dissolve 0.21 gm. AuK(CN) 2 .5H 2 O at 15-16. (Ossendowski, 1907 ) NaAuCU. LiAuCU. KAuCU. RbAuCU- CsAuCU. 58.2 53 - 1 27.7 4-6 o-5 60.2 57-7 38.2 9-0 0.8 64.0 62.5 48.7 13-4 i .7 69.4 67-3 59-2 17.7 3-2 77-5 72.0 70-0 22.2 5-4 90.0 76.4 80.2 26.6 8.2 81.0 3 I.O 12 .O 85-7 35-3 16.3 39-7 21-7 44.2 27-5 309 GUAIACOL GUAIACOL C 6 H 4 (OH)OCH 3 (7. GUAIACOL CARBONATE [C 6 H 4 (OCH 3 )O] 2 CO. SOLUBILITY IN WATER, ALCOHOL, ETC. (u. s. P. vra.) Cms. per 100 Cms. Solvent. Solvent. t. Guaiacol. Guaiacol Carbonate. Water 25 1.89 Alcohol 25 ... 2.08 Chloroform 25 ... 66.6 Ether 25 ... 7.69 Glycerol 25 100 The coefficient of distribution of guaiacol carbonate between olive oil and water at 25 is given as Sr = 3.7 by Boeseken and Waterman, 1911, 1912. Freezing-point lowering data (solubility, see footnote, p. i) are given for mix- tures of guaiacol and a. naphthylamine by Pushin and Mazarovic, 1914; for mix- tures of guaiacol and picric acid by Philip and Smith, 1905; and for mixtures of guaiacol and salol by Bellucci, 1912, 1913. a Tri PhenylGUANIDINE CeH.N:C(NHCaHO,. SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25. (HollemanandAntusch,'94.) Gms. Gms. Vol. % C 6 H 5 N:C(NHC 6 H fi )2 Density Vol. % CH 5 N:C(NHC 6 H 5 ) 2 Density Alcohol. per 100 Gms. of Solutions. Alcohol. per 100 Gms. of Solutions. Solvent. Solvent. ioo 6.23 0.8021 80 i. 06 0.8572 95 3.75 0.8158 75 0.67 0.8704 90 2.38 0.8309 70 0.48 0.8828 85 1.58 0.8433 6o - 22 0.9048 See remarks under a Acetnaphthalide, p. 13. Freezing-point lowering data for mixtures of triphenylguanidine and triphenyl methane and for triphenylguanidine and phthalide are given by Lautz, 1913. HEMOGLOBIN. ioo gms. H 2 O dissolve 15.16 gms. hemoglobin at 20-25. (Dehn, 1917.) ioo gms. pyridine dissolve 0.15 gm. hemoglobin at 20-25. " ioo gms. aq. 50% pyridine dissolve 0.77 gms. hemoglobin at 20-25. " HELIANTHIN (Methyl Orange, Tropaeolin). ioo cc. H 2 O dissolve 0.0055 to 0.0225 gm. helianthin. (Dehn, igiya.) ioo cc. pyridine dissolve 0.75 gm. helianthin. " ioo cc. 50% aq. pyridine dissolve 62.5 gms. helianthin. " Results for other solvents and observations on the state of colored compounds in solution are given. HELIUM He. SOLUBILITY IN WATER, (von Antropoff, 1909-10.) t. Coef. of Absorption. o 0.0134 IO O.OIOO 20 0.0138 30 0.0161 40 0.0191 50 0.0226 The coef. of absorption adopted for the present results is that of Bunsen as modified by Kuenen. The modification consists in substituting unit of mass in place of unit of volume of water, in the formula. HELIUM 310 HELIUM He. t o SOLUBILITY IN WATER. (Estreicher Z. physik. Chem. 31, 184, '99.) Absorption Coefficient. Cor. Barometic Vol. of Pressure. Water. Vol. of He. fl. At Bar. Pressure Minus H 2 O Vapor Tension. At 760 mm. Pressure. o .000270 O .0150 > 764 .0 73 584 I 093 O .0149 O .0149 758 .0 73 578 I .062 .000260 .0144 o .0146 758 .0 73 597 I .046 000255 .0142 O .0144 757 .8 73 .641 I .008 .000246 o .0137 .0140 758 4 73 .707 .996 .000242 0.0135 O .0139 762 3 73 793 983 .000238 o 0133 o .0137 764 4 73 .897 985 .000238 o 0133 o .0138 764 5 74 .0167 .972 .000234 .0131 .0138 762 .0 74 .147 o 957 o .000232 o .0129 0.0139 76l 7 74 .294 947 .000229 o .0127 o .0140 760 9 74 .461 .920 .000223 o .0124 .0140 5 10 IS 20 25 30 35 40 45 5o For q and also absorption coefficient, see Ethane, p. 285. HEPTANE n CH 3 (CH 2 ) 5 CH 3 . F.-pt. lowering data for mixtures of heptane and phenol are given by (Campett and Delgrosso, 1913). HEPTOIC ACID CH 3 (CH 2 ) 6 COOH. 100 gms. H 2 O dissolve 0.241 gm. heptoic acid at 15. (Lumsden, 1905.) HEXAMETHYLENE (Hexahydrobenzene) . See Cyclohexane, p. 280. HEXAMETHYLENE TETRAMINE (CH 2 ) 6 N4. 100 gms. H 2 O dissolve 81.32 gms. (CH 2 ) 6 N 4 at 12. (Delepine, 1895.) ioo gms. abs. alcohol dissolve 3.22 gms. (CH 2 ) 6 N 4 at 12. " IOO CC. 90% alcohol dissolve 12.5 gms. (CH 2 ) 6 N4 at I5-2O . (Squire and Caines, 1905.) T r\ri ^--v- <-. /^t-1^1 *r1si/i^1-r~k Q ^-w\ ^v, -.-,. //~*LT \ XT **- -r/-O /T^.I : _o^\ ioo gms. CHC1 3 dissolve 8.09 gms. (CH 2 ) 6 N4 at 12. HEXANE C 6 Hi4. SOLUBILITY IN METHYL ALCOHOL. (Rothmund, 1898.) Determined by synthetic method, see p. 16. t. (Delepine, 1895.) Gms. Hexane per 100 Gms. 10 20 30 Alcoholic Layer. 26.5 31.6 38.3 Hexane Layer. 96.8 95-9 93-7 F.-pt. data for hexane + phenol. Gms. Hexane per ioo Gms. t- Alcoholic Hexane Layer. Layer. 35 43-6 9i- 2 40 52-7 85.5 42.6 (crit. t.) 68.9 (Campetti and Delgrosso, 1913.) HIPPURIC ACID C 6 H 6 CO.NH.CH 2 COOH. SOLUBILITY IN SEVERAL SOLVENTS. Solvent Water Methyl Alcohol Ethyl Alcohol Propyl Alcohol 50% Aqueous Pyridine t. C 6 H 5 CO.NHCH 2 COOH Authority, per ioo Gms. Solvent. 20-25 0.42 (Dehn, 1917.) 22 9.80 (Timofeiew, 1894.) 22 5.20 " 23 2.80 " 20-25 88 (Dehn, 1917.) 3H HIPPURIC ACID SOLUBILITY OF HIPPURIC ACID AT 25 IN AQUEOUS SOLUTIONS OF: Formic Acid. (Kendall, 1911.) Sodium Hippurate. (Sidgwick, 1910.) Normality Cms. Hippuric Normality Cms. Hippuric Normality of Cms. Hippuric of Aq. Acid per of Aq. Acid per Aq. Sodium Acid per HCOOH. Liter. HCOOH. Liter. Hippurate. Liter. o 3.67 5 4-08 o 6.Q9(?) 1.25 3.61 10 4.77 i 13-9700 2-5 3-72 HIPPURIC ACID C 6 H 6 CONH.CH 2 COOH. SOLUBILITY IN AQ. POTASSIUM HIPPURATE SOLUTIONS AT 20*. (Hoitsema Z. physik. Chem. 27 3i?t '98.) Density Gram Mols. per Liter Sol. Grams per Liter Solution. Solid of Solutions. C 9 H 9 N0 3 . KCgHgNCV C 9 H 9 NO 3 . 'KC 9 H 8 NO 3 .' Pnase - .002 0.0182 O 3-276 0.0 CoHoNO, .003 0.0163 o.on 2.919 2.39 .008 0.0183 0.071 3-278 15.43 .022 0.0234 0.254 4-191 55- lS .114 0-064 1.36 11-47 295.4 .l82 O.I3I 2.21 23.46 480.1 192 0.147 2.32 26.32 504.1 iCeHjjNOg-f 195 0.153 2. 4 27.40 52I.4J C 9 H^0 3 .KC 9 H 8 N0 3 .H0 .201 0.133 2.50 23.82 543.1 .239 0.084 3.01 15.04 654.0 .282 0.068 3.57 1 2.l8 775-7 .282 0.065 3.58 II. 60 777-8) +KC 9 H 8 N0 3 1.276 0.031 3.56 5.55 773.4 KQtfsNOs 1.277 o.on 3.55 1.917 771.3 1.277 o-oo 3-5 6 773-4 HOLOCAINE HYDROCHLORIDE. loo gms. H2O dissolve 2 gms. holocaine hydrochloride at 15-20. (Squire and Caines, .1905.) HOMATROPINE HYDROBROMIDE Ci 6 H 21 NO 3 .HBr. SOLUBILITY IN WATER, ETC. (U. s. P. vni.) loo gms. water dissolve 17.5 gms. salt at 25. 100 gms. alcohol dissolve 3.08 gms. salt at 25, and 11.5 gms. at 60. 100 gms. chloroform dissolve 0.16 gm. salt at 25. HYDRASTINE C 21 H 2i NO 6 . HYDRASTININE HYDROCHLORIDE CiiHnNO 2 .HCl. SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P. VIII; at i8- 2 2, Miiller, 1903.) Gms. C2iH 21 NO per 100 Gms. Gms. per 100 Gms. Solution Solvent. _ Solution. _ Solvent. at i8-22. ' At i8-22. At 80. ' Q 1 H 21 NO I ^C 11 H 11 N0 2 .HC1. Water 0.033 0.025 Ether 0.51 0.078(25) Alcohol 0.74(25) 5.9(60) Ether+H 2 O o .8o Benzene 8.89 ... Chloroform loo-f- 0.35 (25) Ethyl Acetate 4.05 ... CCU 0.123 ... Petroleum Ether 0.073 HYDRAZIDES 312 HYDRAZIDES. SOLUBILITY OF THE TAUTOMERIC FORMS OF HYDRAZIDES IN BENZENE AT 5. Determined by the freezing-point method. See also p. 487. (Sidgwick, 1915.) Cms. Compound Compound. Formula. Dissolved per Liter Benzene. form 5.5 Phthalylphenylhydrazide Ce^ N.NH.C 6 H 5 ! *** ^ CO ' ) C form i.i / C0 \ Phthalylphenylmethylhydrazide Ce^ \ CQ / N.N(CH 3 )C6H 6 , A form 124 HYDRAZINE NH 2 .NH 2 . DISTRIBUTION OF HYDRAZINE BETWEEN WATER AND BENZENE. (Georgievics, 1915.) Cms. NH 2 .NH 2 per: Gms. NH.NH, per: 25 cc. H 2 O Layer. 75 cc. C 6 H 6 Layer. 25 cc. H 2 O Layer. 75 cc. C 6 H 6 Layer. 0.4137 O.O27 1.7601 0.0626 0.6676 0.0335 2.3336 o.noi 1.0862 0.0355 4-75 0-J37 HYDRAZINE PerCHLORATE N 2 H 4 (HC1O 4 ) 2 .3H 2 O. SOLUBILITY IN WATER. (Carlson, 1910.) ,o Sp. Gr. Gms. N 2 H 4 (HC1O4) 2 Sat. Sol. per 100 cc. Sat. SoL 18 1.264 41-72 35 I-3QI 66.9 HYDRAZINE MonoNITRATE N 2 H 4 .HNO 3 . SOLUBILITY IN WATER. (Sommer, 1914.) Gms. N 2 H 4 HNp 3 per 100 Gms. Gms. N 2 H 4 .HNp 3 per 100 Gms. ' Sat. Sol. Water. Sat. Sol. Water. 10 63.63 174.9 40.02 85.86 607.2 15 68.47 217.2 45-02 88.06 737-6 20.01 72.70 266.3 5- 01 91.18 1034 25.01 76.61 327.5 55.01 93.58 1458 30.01 80.09 402.2 60.02 95.51 2127 35.01 83.06 490.3 HYDRAZINE SULFATE N 2 H 4 .H 2 SO 4 . loo grams water dissolve 3.055 gms. N 2 H 4 .H 2 SO 4 at 22. (Curtius and Jay, 1889.) Phenyl HYDRAZINE and other substituted hydrazines. See page 486. HYDRIODIC ACID HI. SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Pickering, i893a.) Gm. HI Gms. HI t. per 100 Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. IO 20.3 Ice 60 52.6 HI.4H 2 O -20 29.3 " -40 59 -30 35.1 about-35.5m.pt. 64 -40 39 -40 65.5 50 42 " 49 66.3 +HI. 3 H 2 O 60 44.4 " 48m.pt. 70.3 Hi. 3 H 2 o -70 46.2 " -56 73.5 " +HI. 2 H 2 80 47.9 " +HI. 4 H 2 O 52 74 HI 2 H 2 O F.-pt. data for HI + H 2 S (Bagster, 191 1), HI + (CH 3 ) 2 O. (MaassandMclntosh, 1912.) HYDROBROMIC ACID HYDROBROMIO ACID HBr. SOLUBILITY IN WATER. (Roozeboom Z. physik. Chem. 2, 454, '88; Rec. trav. chim. 4, 107, '85; 5. 358, '86; see also Pickering Phil. Mag. [5] 36, 119, '93.) Gms.HBr Dissolved(at 760-765111111.) per 100 Gms. Water. Solution. 255-0 7I-83 239.0 70.50 221 .2 68.85 6II.6 210-3 67.76 581.4 2O4.O 67.10 193.0 65.88 532-1 171 .5 63.16 468.6 I50-5 60.08 406.7 130.0 56.52 344-6 Gms. HBr Dissolved at Lower Pressures per 100 Gms. H 2 O. 175.0 (10 mm.) - 2.5 -15 o + 10 210.3 67.76 581.4 108 . 5 (5 mm.) 15 25 50 75 100 For see ethane, p. 285. F.-pt. data for HBr + H 2 S (Bagster, 1911); HBr + (CH 3 ) 2 O, HBr + CH 3 OH, HBr + CzHsOH, HBr + CH 3 COOC 2 H 6 and HBr + C 6 H 6 CH3. (Maass and Mclntosh, 1912.) (Reid and Mclntosh, 1916.) HYDROCHLORIC ACID HC1. SOLUBILITY IN WATER BY THE FREEZING-POINT METHOD. (Composite curve from results of Roloff, 1895; Pickering, 1893 (a); Roozeboom, 1884, 1889 and Rupert, 1909.) Gms. HC1 t. per loo Gms Solid Phase. t. Gms. HC1 per loo Gms. Solid Phase. Sat Sol. Sat. Sol. I . 706 I .66 Ice 18 4 48.6 HC1.2H,O -14.97 10 .02 " 17 .7m. P t. 50.3 " -28.84 14 5i 18 7 52.85 " -40 17 .40 " 19 4 54-i M -60 21 30 " 20 .8 55-7 -80 24 .20 " 21 3 56.5 -86Eutec. 24 .8 " +HC1. 3 H 2 23 .2 57-3 50 30 .1 HC1.3H 2 23 -5Eutec. " +HC1.H 2 -40 32 7 M 21 5 58^2 HC1.H,O -30 36 5 20 7 59.1 24.9m.pt. 40 3 " 18 4 61.1 " -27-5 44 " +HC1 .aH 2 O 17 4 62.4 " -23.8 45 7 HC1. 2 H 2 15 -4 65-4 ' 21.2 45 9 " 15 35 66.8 " At about 15.35 two liquid layers are formed. Data for these are as follows: HC1 layer. H 2 O layer. tof Saturation Gms. H 2 O Gms. HC1 per 100 Gms. t. per 100 Gms. Sat. Sol. Sat. Sol. d. of Sat. Sol. t. Gms. HC1 per 100 Gms. Sat. Sol. d. of Sat. Sol. Below 50 O .008 2O 67. 65 279 IS 64 70 .231 " -50 o .017 ~~ I 5 67. 29 .269 20 64 19 .228 Bet. -15 and o o .077 10 66. .260 30 63.21 .229 Above 45 .021 -5 66. 44 255 35 62 00 .227 " .052 65- 85 .247 40 62 27 .218 " .11 +5 65- 48 .245 45 61.76 .212 " 13 10 65- 18 .240 So 61 65 .2IQ For additional data on this system see Baume and Tykociner, 1914. HYDROCHLORIC ACID 314 HYDROCHLORIC ACID HC1. SOLUBILITY IN WATER AT DIFFERENT TEMPERATURES AND PRESSURES. o 8 12 14 18 23 30 40 f 60 ioscoe and Dittmar Liebig's Ann. 112, 334, '59; betow o, Roozeboom- Rec. trav. chim. 3, 104, '84.) At Different Temperatures and 760 mm. Pressure. At Different Pressures and o _A JL cc. HClper ioocc.H 2 O. Density. ' ^SoF r Gms. HC1 per 100 g. H 2 O. Pressures.* Gms. HC1 per 100 g. H 2 O 525-2 1.2257 45 I 5 82.31 60 61-3 497 7 I .2265 44-36 79 73 100 65-7 480.3 1.2185 43 83 78.03 150 68.6 47J-3 I.2I48 43-28 76.30 200 70.7 462 4 1.2074 42.83 74-92 300 73-8 451.2 I . 2064 42-34 73-4i 4OO 76.3 435-o I.20I4 41 .54 71.03 500 78.2 40.23 67-3 600 80.0 38.68 63-3 750 82.4 . . . . . . 37-34 59-6 IOOO 85.6 ... 35-94 56-1 1300 89-5 * Pressures in mm. Hg minus tension of H 2 O vapor. SOLUBILITY IN WATER AT TEMPERATURES BELOW o". At a pressure of 760 mm. At pressures below and above 760 mm. t. q. t. q. t. mm. Pressure. q. -24 IOI.2 -15 93.3 -23.8 ... 84.2 21 98.3 io 89.8 2i 334 86.8 18.3 96 5 86.8 19 580 92.6 18 95.7 o 84.2 18 900 98.4 -17.7 1073 101.4 For definition of q, see Ethane, p. 285. The eutectic is at 86 and 33 gms. HC1 per 100 gms. H 2 O. SOLUBILITY OF HYDROCHLORIC ACID GAS IN METHYL ALCOHOL, ETHYL ALCOHOL, AND JN ETHER AT 760 MM. PRESSURE. (dc Bruya Rec. tray. chim. u, 129, '92; Schuncke Z. physik. Chem. 14* 336. *94-) Grams HC1 gas per 100 Grams Solution in: CH 3 OH. C 2 H 6 OH. (C 2 H 6 ) 2 O. -10 54-6 ... 37-5 I (-9-2) - 5 o + 5 io '5 30 25 30 5 I -3 45-4 35-6 44.2(6.5) 42.7(11-5) 30.35 27 .62 47-o(i8) 41.0 24.9 40.2 (23.5) 22.18 43-o(3i.7) 38-1(32) 19.47 315 HYDROCHLORIC ACID SOLUBILITY OF HYDROCHLORIC ACID GAS IN AQ. SULFURIC ACID SOLUTIONS. (Coppadoro, 1909.) Results at 17. Gms. per 100 Cms. 1 of Sat. Sat. Sol. Results at 40. Gms. per 100 Gms. d ol Sat. Sat.>l. Results at 70. , , _ Gms. per 100 Gms. d cL? at ' Sat : S 01 - Sol. H,S0 4 . HCl. ' oOl. H 2 S0 4 . HCl. ' SoL H 2 SO 4 .- HCl.' .211 42.7 1.185 3 -56 35-6 1.145 I .61 32.7 .220 I. 86 39-9 i-i95 5 .86 34-8 1.150 3 -38 3I-I .220 4- 75 39-2 I. 210 8 .90 32-4 1.160 4 .80 30-5 235 8. 04 36-9 1-255 16 .80 27.6 1.180 7 93 28.9 .260 12. 80 33-2 1-255 18 .8 25-9 1.225 18 9 22.8 305 2O. 9 28.5 1.340 28 .6 18.5 1.230 20 22-3 355 30. 8 22.6 I .400 44 .2 "5 1.315 36 .2 13-2 430 44- 6 15 1.520 61 .1 3-35 1.380 4 8 6.99 545 59- 4 6.26 1-575 66 4 1.17 1.510 62 7 1.56 .580 65- 4 3-25 1.650 73 .2 0.17 1.560 6 7 .6 0-54 i. 660 73- 7 0.62 1-725 79 4 0.081 1.700 80 7 0.05 1-735 77- 5 O.II i-755 81 4 0.032 1-745 83 0-035 1.815 89 0.068 1.770 83 5 0.029 1-745 83 -4 0.032 Phenol Rich Layer. ^ % HCl. % Phenol". o 72 0.09 78 0.2 80 . 3 0.36 82.6 0.52 84.5 % Water. 11.22 84.5 80.38 72.43 60.25 % HCl. % Phenol. o 88.78 IO.7 4.8 15.64 3.98 24-37 3-2 36-25 3-5 MISCIBILITY OF HYDROCHLORIC ACID WITH MIXTURES OF WATER AND PHENOL AT 12. (Schreinemakers and van der Horn van der Bos, 1912.) Composition of the Reciprocally Composition of the Solutions in Saturated Liquid Pairs. Contact with Solid Phenol. Water Rich Layer. %HC1. ' % Phenol o 7-45 3.1 6.6 6.6 5-3 8 5-1 10.7 4.8 Additional data for this system are given by Krug and Cameron, 1900. FREEZING-POINT DATA (Solubility, see footnote, p. i) FOR MIXTURES OF HYDROCHLORIC ACID AND OTHER COMPOUNDS. Hydrochloric Acid + Hydrogen Sulfide (Baume and Georgitses. 1912, 1914.) 11 i A/Toi-t,,,! Al~~t,~| f (Baume and Borowski, 1914; Baume and Pamfil, - Methyl Alcohol { igil I9u; Maass and Mclntosh, 1913-) + Methyl Chloride (Baume and Tykociner, 1914.) + Methyl Ether (Maass and Mclntosh, 1912; Baume, 1911, 19x4.) + Propionic Acid (Baume and Georgitses, 1912, 1914.) -j- Sulfur Dioxide (Baume and Pamfil, 1911, 1914.) HYDROCYANIC ACID HCN. DISTRIBUTION BETWEEN WATER AND BENZENE. (Hantzsch and Sebalt, 1899; Hantzsch and Vagt, 1901.) t . Mol. HCN per Liter; c Mol. HCN per Liter: c H 2 O Layer (c). CeH 6 Layer (c'). 7'' ' H 2 O Layer (c) . CgR* Layer (cO-~ ?' 6 0.00625 0.00325 1.923 7 0.0574 0.0148 3.88 16 0.00593 0.00363 1-634 20 0.0572 0.0154 3.72 25 0.00580 0.00375 1.547 Data for the effect of HCl and of KC1 on the distribution are also given. HYDROFLUORIC ACID HF. 100 grams H 2 O dissolve in grams HF at 35. (Metzner. 1894.) HYDROGEN 316 HYDROGEN H. SOLUBILITY IN WATER. (Winkler Ber. 24, 99, 'gx; Bohr and Bock Wied. Ann. 44, 318, '91; Timofejew Z. physik. Chem. 6, 147, oo.) t. ft'. _ /. _ ft. q. a 0.0214 ... ... 0.0214 0.000193 5 0.0203 0.0209 0.0241 0.0204 0.000184 10 0.0193 0.0204 0.0229 0.0195 0.000176 15 0.0185 0.0200 0.0217 0.0188 0.000169 20 0.0178 0.0196 - 0.0205 0.0182 0.000162 25 0.0171 0.0193 0.0191 0.0175 0.000156 30 0.0163 ... ... 0.0170 0.000147 40 0.0153 ... ... 0.0164 0.000139 50 0.0141 ... ... 0.0161 0.000129 60 0.0129 ... ... 0.0160 0.000119 80 0.0085 ... ... 0.0160 0.000079 100 o.oooo ... ... 0.0160 o.oooooo I = Ostwald Solubility Expression, see p. 227. For 0', /3, and q, see Ethane, p. 285. Data for the solubility of hydrogen in water at pressures up to I o atmospheres are given by Cassuto, 1913. SOLUBILITY OP HYDROGEN IN AQUEOUS SOLUTIONS OF ACIDS AND BASES AT 25. (Geffcken Z. physik. Chem. 49, 268, '04.) _ Solubility of H (/a = Ostwald Expression) in Solutions of; peter. HCL HN 3 ' * H 2SO 4 . CHaCOOH. CH 2 C1COOH. KOH. NaOH. o.o 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.5 0.0186 0.0188 0.0185 0.0192 0.0189 0.0167 0.0165 i.p 0.0179 0.0183 0.0177 0.0191 0.0186 0.0142 0.0139 2.0 0.0168 0.0174 0.0163 0-0188 0.0180 ... 0.0097 3.0 0.0159 0.0167 0.0150 0.0186 ... ... 0-0072 4.0 ... 0.0160 0.0141 0.0186 ,.. ... 0.0055 The above figures for the concentrations of acids and bases were calculated to grams per liter, and these values with the corresponding 1& values for the solubility of hydrogen, plotted on cross-section paper. From the resulting curves, the follow- ing table was read : Grams Acids and Bases per Liter. 20 40 00 80 100 150 2OO 250 Solubility of H (/25 = Ostwald Expression) in Solutions of: O O O HCL .0193 .0185 .0179 .0173 .0167 Ol6o HNO 3 . 0.0193 0.0189 0.0186 0.0183 0.0180 0.0179 0.0171 0.0165 0.0160 *H 2 S0 4 . 0.0193 0.0186 0.0180 0.0174 0.0168 0.0162 0.0148 0.0140 CH 3 COOH. 0.0193 0-0192 O.Oigi 0.0190 0.0189 0.0189 0.0188 0.0186 0.0184 CH 2 C1COOH 0.0193 0.0191 O.OI9O o.o i 88 0.0187 0.0185 0.0182 0.0179 o KOH. .0193 .OI72 0135 NaOH. 0.0193 0.0165 O.OI4O O.OII7 0.0097 0.0082 0,0058 For Ostwald Solubility Expression /, see p. 227. THE SOLUBILITY OF HYDROGEN IN CONC. H2SO< AT 20. (Christoff, 1906.) %H 2 S0 4 o 35.82 61.62 95.6 4o 0.0208 0.00954 0.00708 0.01097 317 HYDROGEN SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE AT 20. (Knopp Z. physik. Chem. 48, 103, '04.) *' Normality (per 1000 Gins.' H 2 0. Molecular Concentra- tion. Absorption Coefficient of Hydrogen. Density A Solutions. o.oo O-OO o.oo 0.0188 1.037 0.1308 0.002352 0.01872 .0027 2.167 0.2765 0.004956 0.01845 .0072 3-37 8 0.4363 0.007799 0.01823 OI22 4.823 0.6333 O.OII280 0.01773 .0182 6.773 0.9069 0.016447 0.01744 .0262 / / v/ "550 1.6308 0.028525 0-01647 .04652 SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF BARIUM CHLORIDE. (Braun Z. physik. Chem. 33, 735, 'oo.) Gms.BaClu per 100 Gms. Solution. o.oo 3-29 3-6 6-45 7.00 Coefficient of Absorption of Hydrogen at : 5. 0.0237 0.02II O.O2O9 0-0196 0.0194 10. 0-0221 0.0198 0.0197 0.0186 0.0183 15. 0.0206 0.0l85 O.Ol84 0.0173 0.0172 20. O.OI9I 0.0172 O.OI7O 0.0161 0.0159 2S- 0.0175 0-0157 0.0156 0.0147 0.0146 SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CALCIUM CHLOR- IDE, MAGNESIUM SULPHATE, AND LITHIUM CHLORIDE AT 15. (Gordon Z. physik. Chem. 18, 14, '95.) Coefficient of Absorption of hydrogen in water at 15 = 0.01883. In Calcium In Magnesium In Lithium Chloride. Sulphate. Chloride. Gms. CaCl 2 G.M. CaCl 2 Absorption Coefficient Gms. MgSO 4 G.M. MgSO 4 Absorption Coefficient Gms. LiCl G.M. LiCl Absorption Coefficient per too g. Sol per . Liter. of H. per 100 g. Sol. per Liter. of H. per 100 g. Sol. Ltter. of H. 3-47 0. 3 2I 0. 01619 4- 97 0-433 O.OI5OI 3-48 0.835 0.01619 6.10 0. 578 0. 01450 10. 19 0.936 0.01159 7-34 1.800 0.01370 "33 I. 122 0. 01138 23- 76 2.501 0.00499 14.63 3-734 0.0099 17-52 I. 1827 0. 00839 26.34 2. 962 0. 00519 For definition of Coefficient of Absorption, see page 227, SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE, CHLORIDE, AND NITRATE AT 15. (Gordon.) In Potassium In Potassium In Potassium Carbonate. Chloride. Nitrate. Gms. K 2 C03 per 100 g. Sol. 2.82 8.83 16.47 24.13 4I.8l G.M. K-jCOa per Liter. 0.209 0.690 1.376 2.156 4.352 Absorption Coefficient of H. 0.01628 0.01183 0.00761 0.00462 0.00l6o Gms. KC1 per 100 g. Sol. 3.83 7.48 12.13 19.21 22.92 G.M. KC1 per Liter. 0.526 1.051 1-755 2.909 3-554 Absorption Coefficient of H. 0.01667 0.01489 0.01279 O.OIOI2 0.00892 Gms. KNO 3 per 100 g. Sol. 4-73 8.44 16.59 21.46 G. M. KNO 3 Liter. 0.482 0.879 1.820 2.430 Absorption Coefficient of H. 0.01683 0.01559 0.01311 O.OIlSo HYDROGEN 318 SOLUBILITY OP HYDROGEN IN AQUEOUS SOLUTIONS OP POTASSIUM CHLORIDE AND NITRATE AT 20. (Knopp Z. physik. Chem. 48, 103, '04.) In Potassium Chloride. In Potassium Nitrate. P> Normality (per 1000 g.H 2 0). Absorption Coefficient. Density of Solutions. P- Normality (per looo g.H 2 0). Absorption &*&? Coefficient. c . ? Solutions. 1.089 0.1475 o .01823 I .0052 I .224 .1245 0.01835 .0059 2.123 0.2907 01757 I .OIl8 2 .094 O .2114 o. 01818 .0113 4.070 0.5687 .01661 I .0243 4 .010 .4127 0.01785 .0236 6-375 0.9127 o 01531 I 0394 5 9 2 5 .6225 0.01743 0359 7.380 1.0682 .01472 I .0460 7 .742 o .8293 0.01667 .0477 13.612 2.1222 01255 I .0875 13 .510 I 5436 0.01436 .0865 SOLUBILITY OP HYDROGEN IN AQUEOUS SOPIUM CARBONATE AND SULPHATE SOLUTIONS AT 15. (Gordon.) In Sodium Carbonate. Gms. NazCOa G.M. Absorption per loo Gms. Na2CO Coefficient Solution. per Liter. of H. 2.15 0.207 0.01639 8.64 0.438 0.01385 11.53 1.218 0.00839 In Sodium Sulphate. Gms. Na 2 SO 4 G. M. Absorption per loo Gms. Na 2 SO4 Coefficient Solution. per Liter. of H. 4-5 8 o-335 0.01519 8.42 0.638 0.0154 16.69 I-364 0.00775 SOLUBILITY OP HYDROGEN IN AQUEOUS SOLUTIONS OP SODIUM CHLORIDE. (Braun; Gordon.) Gms.NaCl per ioo Gms. Solution 1.25 3-80 . 4.48 6.00 14-78 23.84 Coefficient of Absorption of Hydrogen at: 5. 0.0218 0.0198 0.0192 0.0184 10. O.O2O5 0.0188 0.0182 0.0175 15. O.OI9I 0.0176 O.OI7I O.Ol64 0.0093 0.00595 20. 0.0177 0.0162 0.0159 0.0153 25. 0.0162 0.0148 0.0143 0.0138 SOLUBILITY OP HYDROGEN IN AQUEOUS SOLUTIONS OP SODIUM NITRATE. In Sodium Nitrate at 20. In Sodium Nitrate at 15. (Knopp.) (Gordon.) Normality Absorption Density Gms. NaNO 3 G.M. Absorption p. (per 1000 Gms. H 2 0). Coefficient of H. of Solutions. per TOO Gms. Solution. NaNOa per Liter. Coefficient of H. 1.041 0.1236 0.01839 I .0052 5-57 0.679 0.01603 2.192 0.2634 0.01774 I.OI30 ii .16 I-4I3 0.0137 4-405 0.5416 0.01694 1.0282 19.77 2.656 0.01052 6.702 o . 8442 O.OI5I8 I .04411 37-43 5-7II 0.00578 12.637 J-7354 0.0130 I .08667 319 HYDROGEN SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF VARIOUS SALTS AT 15. (Steiner, 1894.) Salt in Aq Bunsen Absorption Coefficient (Xio 4 ) in Aq. Solution of Normality. Solution. LiCl KNO 3 KC1 NaNO 3 NaCl iMgS0 4 |ZnSO 4 iNa 2 SO 4 0. I. 2. 3- 4- 5- 6. 7- 9- 1883 1^74 132^ II2I 040 1883 1^24 1276 IO76 1883 1221 QQ3 810 667 -- 1883 I f)O2 1217 006 820 1883 I4O6 I2OI 984 808 667 ^42 1883 140? line 0^8 780 trio 1883 I 47 8 1144 880 699 573 1883 1451 II2O 856 659 499 ... ... ... 1883 1446 III3 852 667 1883 I37O 001 7IO *-3 / w yvyj. / xv 1883 1338 967 700 508 372 273 206 158 1883 I7AO 6OO 1883 1280 731 |Na 2 CO 3 Cane Sugar SOLUBILITY OF HYDROGEN IN ALCOHOL. (Timofeiew, 1890; Bunsen-Heurich, 1892.) Coef. of Absorp- Coef. of Absorp- Coef. of Absorption t. tion in 98.8% t. tion in 7% t. in Pure Alcohol ' Alcohol. Alcohol. (Bunsen). o 0.0676 4 0.0749 i 0.06916 6.2 0.0693 18.8 0.0740 5 0.06847 .13.4 0.0705 11.4 0.06765 23.7 0.06633 SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 20 AND 760 MM. PRESSURE. (Lubarsch, 1889.) Wt. % Alcohol. Vol. % Absorbed H. Wt. % Alcohol. '.Vol. % Absorbed H. o 1.93 28.57 1.04 9-09 i-43 33-33 i-i7 16.67 I - 2 9 50 2.02 23.08 I.I7 66.67 2.55 SOLUBILITY OF HYDROGEN IN AQ. SOLUTIONS OF CHLORAL HYDRATE. (Miiller, C. 1912-13.) Cms. Chloral Absorption Coefficient. j.o Hydrate per d^ of Aq. , * \ 100 Gms. Aq. Solution. ft. fto. Sol. 19.4 15-5 1.0722 0.01732 0.01724 17.4 28.3 I.I43 0.01569 0.01540 18.7 46.56 1.2505 0.01388 0.01375 16.5 52 1.2870 0.01314 O.OI28O 17 63 I-37I 0.01270 0.01243 17.9 68 1.4097 0.01286 0.01270 18.3 78.4 1-4993 0.01398 0.01380 SOLUBILITY OF HYDROGEN IN CHLORAL HYDRATE SOLUTIONS AT 20. (Knopp, 1904.) A Normality (per Molecular Absorption Density 1000 Gms. H 2 O). Concentration. Coefficient of H. of Solutions. 4.91 0.310 0.005594 0.01839 1.0202 7.69 0.504 0.008992 0.01802 1.0320 14.56 I.O3O O.OI8223 O.OI7I2 1.0669 29.50 2.530 0.043601 0.01542 I.I466 38.42 3-770 0.063647 0.01440 1.1982 49-79 6 0.097493 0.01353 1.2724 63.90 10.700 o. 161660 0.01307 1.3743 For definition of Bunsen Absorption Coef., see p. 227. HYDROGEN 320 SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF GLYCEROL. Results at 14 and 21. (Henkel, 1905, 1912.) Results at 25. (Drucker and Moles, 1910.) Wt. % Absorp. Coef. t . Glycerol. (See p. 227-) 14 O 0.0193 M 2.29 0.0189 u 5-3 2 0.0186 u 8-57 0.0182 ft 10.83 0.01815 u 15-31 0.01765 21 0.0184 2.29 0.0181 It 5.68 0.0177 11 6.46 0.0176 11 10.40 0.0171 u 18.20 0.0160 Wt. % Glycerol. % Sat. Sol. /zs (Ostwald Expression) . I 0.0196 4 I.OIOI 0.0186 10.5 1.0260 O.OI78 22 1.0542 0.0154 49-8 1.1290 o . 0099 50-5 1.1300 0.0097 52-6 1-1365 o . 0090 67 1.1752 0.0067 80 1.2113 0.0051 82 1.2159 0.0051 88 1.2307 o . 0044 95 1.2502 0.0034 Aqueous Solution of: . Water alone Dextrose (Grape Sugar) Additional data for this system are given by Miiller, C. 1912-13. SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS. (Hiifner, 1906-07.) Cone, of Solvent Gms. per Liter. O 41-45 87-3 174 60 59 89 75 SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CANE SUGAR AND OF GRAPE SUGAR. (Mulier, c. 1912-13.) Urea Acetamide Alanine Glycocol t. Absorption Coef. 0. 20. 1 1 O.OlSl 20 20.25 20.28 0.0176 0.0166 0.0152 20.17 20.11 0.0170 0.0180 20.08 20. l6 0.0156 0.0158 Wt. % Cane Sugar. Sp. Gr. Sat. Sol. Abs. Coef. t o 015- Wt. % Grape Sugar. Sp. Gr. Sat. Sol. Abs. Coef. 5-04 di5 =1 .019 O .0173 19 3 0.0184 14-7 du =i .060 O .0151 20 5 12 ,2 ^20=1 .048 0.0160 20.26 du = i .084 .0146 20 5 2O 7 d%Q = I .084 0.0145 29.86 di3 = i .128 .0126 21 .1 32 56 ^20= I .130 0.0125 31-74 dn =i .138 o .0119 21 , ,8 45 8 ^20=1 .199 O.OIO2 39.65 ~ 100 cc. Sp ' Gr " i Gms. '** per Gelatin , 100 CC. 3-98 1. 012 .0194 2 .OI I .005 0.0194 I 53 0.0194 8.58 I.Oig .0191 3 -56 I .Oil 0.0189 2 .69 0.0189 8.12 1.028 .0188 7 13 i .024 O.OlSl 4 74 0.0185 19.20 1.066 .0174 9 .29 I .032 0.0182 5 7i 0.0182 321 HYDROGEN SOLUBILITY OF HYDROGEN IN AQUEOUS PROPIONIC ACID SOLUTIONS. (Braun, 1900.) Cms. QHsCOOH per 100 Cms. Solution. 2.63 3-37 5-27 6.50 9.91 Coefficient of Absorption of Hydrogen at: 5. 10. 15. 20. 25. O. 02 245 O.O2I4 0.0200 0.0188 0.0172 0.0222 0.0212 0.0199 0.0187 O.OI7I O.O224 O.O2I2 0.0198 O.Ol84 O.OI7I 0.0218 o . 0209 0.0193 0.0183 0.0169 0.0213 o . 0203 O.OI9I 0.0178 0.0160 SOLUBILITY OF HYDROGEN IN RUSSIAN PETROLEUM. (Gniewasz and Walfisz, 1887.) Coefficient of absorption (see p. 227) at 20 = 0.0582, at 10 = 0.0652. SOLUBILITY OF Results in terms of Solvent. Water Aniline Amyl Alcohol Nitrobenzene Carbon Bisulfide Acetic Acid Benzene Acetone HYDROGEN IN WATER AND IN ORGANIC SOLVENTS. the Ostwald Expression, see p. 227. (Just, 1901.) Solvent. /25- ly\. Amyl Acetate 0.0774 0.0743 Xylene 0.0819 0.0783 Ethyl Acetate 0.0852 0.0788 Toluene 0.0874 0.0838 Ethyl Alcohol (98 .8 %) o . 0894 o . 0862 Methyl Alcohol 0.0945 0.0902 Isobutyl Alcohol 0.0976 0.0929 fa. 0.0199 0.0285 0.0301 0.0371 0.0375 0.0633 0.0756 0.0764 fc. 0.02OO 0.0303 0.0353 0.0353 0.0336 0.0617 O.O7O7 0.0703 SOLUBILITY OF HYDROGEN IN ETHYL ETHER. (Christoff, 1912.) Results in terms of the Ostwald Solubility Expression I (see p. 227). k = 0.1115, h = 0.1150, /io = 0.1195, As = 0.1259. Data tor the solubility of hydrogen in metals are given by Sieverts and co- workers, 1909, 1910, 1912. HYDROGEN PEROXIDE H 2 O 2 . DISTRIBUTION OF HYDROGEN PEROXIDE BETWEEN WATER AND AMYL ALCOHOL AT O AND AT 25. (Calvert, 1901; Joyner, 1912.) Results at O. (Calvert, Joyner.) Mok. HA per Liter. jp A 6.76 6.66 6.63 6 . 66 6.71 Results at 25. Mols. H 2 O 2 per Liter. (Calvert.) H 2 O layer (fl 0.146 0.200 0.407 0-749 1.970 Alcohol Layer (A). 0.0216 0.030 0.061 0.113 0.293 H 2 O Layer (JF). Alcohol Layer (4). 0.094 0.013 0.194 0.028 0.297 0.042 o . 670 o . 095 0.913 0.130 7.01 6.91 7.08 7.09 7.01 Data are also given for the distribution of hydrogen peroxide between aqueous sodium hydroxide solutions and amyl alcohol at o and at 25. HYDROGEN PEROXIDE 322 DISTRIBUTION OF HYDROGEN PEROXIDE BETWEEN WATER AND ORGANIC SOLVENTS. (Walton and Lewis, 1916.) Different amounts of perhydrol (30% H 2 O 2 solution) were added to various mixtures of water and organic solvents and, after constant agitation for about i hour, the H 2 O 2 in each layer was determined. Solvent Ethyl Acetate Isobutyl Alcohol Amyl Acetate Acetophenone Ether Ether Aniline t. 25 25 25 25 25 25 Ratio, Cone. aq . Solvent. Methyl Iodide m Toluidine Phenol Quinoline it u t. 25 25 25 25 40 Ratio, Cone. aq . Cone. org. solvent 3.92- 4.II 2.58- 2.63 13 "13-2 5.82- 6.06 8.28- Q.II 5-72- 5.85 4.08- 4.IO Cone. org. solvent Approx. 200 Approx. 5 4-35 -5-55 0.276-0.391 0.365-0.642 0.516-0.602 The following approximate values, determined at room temp., are quoted from the dissertation of A. Braun, Univ., Wisconsin, 1914. Ratio, Ratio, Ratio, Solvent. Cone. aq . Solvent. Conc - aq. Solvent. Cone. aq . Conc. org. solvent Conc. O rg. solvent Conc. O rg. solvent Ethyl Acetate f Ethylisovalerianate ^ Isobutyl Alcohol Nitrobenzene ^ Isoamyl Propionate T \ Propyl Formate | Acetophenone Chloroform ^fa Isobutyl Butyrate ^ Amyl Acetate | Benzene jfo Propyl Butyrate ^ The distribution ratio of hydrogen peroxide between water and ether at 17.5 varies with concentration from 13.9 to 17.4. (Osipoff and Popoff, 1903.) HYDROGEN SELENIDE H 2 Se SOLUBILITY IN WATER. (de Forcrand and Fonzes-Diacon, 1902.) 4 9-65 3-77 Vol. H 2 Se (at o and 760 mm.) dissolved per i vol. H 2 O 13-2 3-45 22.5 2.70 HYDROGEN SULFIDE H 2 S. SOLUBILITY IN WATER. (Winkler, 1906, 1912.) t. Abs. Coef. 0. q. o 4.621 0.699 5 3-935 0.593 10 3.362 0.505 15 2.913 0.436 20 2.554 0.380 SOLUBILITY IN WATER AND IN ALCOHOL AT t AND 760 MM. PRESSURE. (Bunsen and Carius; Fauser, 1888.) In Water. In Alcohol. t. Abs. Coef. /9 '. q. t. Abs. Coef. 0. q. 25 2.257 0-334 60 1.176 0.146 30 2.014 0.295 70 1. 010 0.109 35 1.811 0.262 80 0.906 0.076 40 1.642 0.233 90 0.835 0.041 So 1.376 0.186 100 0.800 t. i Vol. H 2 Absorbs. 0. Q- i Vol. Alcohol Absorbs. o 4- 37 Vols. H 2 S (at o and 760 mm.) 4- 686 0. 710 17.89 Vols. H 2 S (at o and 760 mm.) 5 3-97 " 4- 063 0. 615 14.78 IO 3-59 3- 520 0. 530 11.99 M 15 3-23 " 3- 056 0. 458 9-54 20 2.91 2. 672 0. 398 7.42 M 25 2.61 " . 5-96 (24) M 30 2-33 m f t 35 2.08 m 40 1.86 For /3 and q The PT and see Ethane, page 285. the Px curves for the system H 2 S + H 2 O are given by Scheffer, 1911. 323 HYDROGEN SULFIDE SOLUBILITY OF HYDROGEN SULFIDE IN AQUEOUS SOLUTIONS OF HYDRIODIC ACID AT 25 AND 760 MM. TOTAL PRESSURE. (Pollitzer, 1909.) Cms, per Liter. HI. HJST Mols. per Liter. Gms. per Liter. Mols. per Liter. 'IH']. [HI]. [H 2 S]. HI. H 2 S. IH']. [HI]. [H 2 S]: O.2O O o. 1040 O 3-54 4.71 4 -38 O. 163 1.23 I .01 0. III 129.2 3-78 5-33 5 .005 0. 165 1.74 1 51 0. 113 193.2 3-85 6.06 5 -695 O. 181 2.18 I 93 0. 125 246.9 4.26 7-33 6 935 O. 197 2.Q2 2 .64 0. 138 337-8 4.70 .9-75 9 .21 O. 267 3-71 3 .42 0.142 437-5 4.84 560.4 640.3 728.6 887.2 1179 5-55 5-62 6.17 6.71 9.10 Data for the solubility of hydrogen sulfide in liquid sulfur are given by Pela- bon, 1897. Freezing-point lowering data for mixtures of H 2 S and CH 3 OH and H 2 S and (CH 3 ) 2 O are given by Baume and Perrot, 1911, 1914. SOLUBILITY OF HYDROGEN SULFIDE IN AQUEOUS SALT SOLUTIONS AT 25. (McLauchlan, 1903.) NOTE. The original results are given in terms of =- which is the iodine titer (I) of the H 2 S dissolved in the salt solution, divided by the titer (/o), of the H 2 S dis- solved in pure water. These figures were multiplied by 2.61 (see 25 result in last table on page 322) and the products recorded in the following table as volumes of H 2 S absorbed by i vol. of aqueous solution. Solution. wNH 4 Br iw(NH 4 ) 2 S0 4 NH 4 C 2 H 3 O 2 n (NH 2 ) 2 CO Grams Salt I Vols. H 2 S per Liter. k Per i Vol. Sol. 9 8 I 2.61 53-4 0.96 2.40 80 0.99 2.58 33 0.82 2.14 16.5 0.91 2.37 77.1 1.09 2.84 60. i I. O2 2.66 18.22 0-975 2-54 24-52 0.905 2.36 150 0.944 2.46 45 0.858 2.24 1000 0.863 2.26 Solution. wKBr wKCl wKI wNaBr wNaCl n SnCAOe Pure C3H 5 (OH) 3 1000 Similar data are also given for the solubility of H 2 S in aq. C 2 H 6 OH solutions and in aq. CH 3 COOH solutions at 25. Gms. Salt" i Vols. H,S per Liter. ' per i Vol. Sol. 119 O 945 2.47 74-5 853 2.22 IOI 913 2.38 43-5 .78 2.04 21.7 89 2.32 166 98 2.56 103 935 2.44 58-5 847 2.21 29.2 93 2.42 85 o 893 2.32 * 35-5 73 1.90 i 17-8 855 2.23 HYDROQUINOL (Hydroquinone) C 6 H 4 (OH) 2 p. 100 gms. sat. solution in water contain 6.7 gms. hydroquinol at 20, Sp. Gr. of sol. = 1. 012. (Vaubel, 1899.) 100 gms. 95%Jormic acid dissolve 6.07 gms. hydroquinol at 20.2. (Aschan, 1313.) HYDROQUINOL 324 SOLUBILITY OF HYDROQUINOL IN SULFUR DIOXIDE IN THE CRITICAL VICINITY. (Centnerswer and Teletow, 1903.) Determinations made by the Synthetic Method, for which see Note, p. 16. -0 Cms. Hydroquinol *<> Gms. Hydroquinol j. Gms. Hydroquinol per 100 Gms. SO 2 per 100 Gms. SO 2 per 100 Gms. SO 2 63 0.89 II7.6 4.46 136.7 10.31 73.5 1.22 123.3 5.66 I4I.4 13-3 89.2 2.l8 134.2 8.31 145 14.9 DISTRIBUTION OF HYDROQUINOL BETWEEN WATER AND ETHER AT 15. (Pinnow, 1911.) Cone.* Hydroquinol in: Cone. Hydroquinol in: H 2 O Layer. Ether Layer. H 2 O Layer. Ether Layer. 0.00502 o.oin 0.0502 0.1275 0.01196 0.0249 0.0818 0.2343 0.0128 0.0274 0.1105 -3543 0.0236 0.0552 0.1411 0.5300 0.0455 0.1148 0.1502 0.5604 * The terms in which the cone, is expressed are not stated. FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES: Hydroquinol and Naphthalene. (Kremann and Janetzky, 1912.) 1 Pyrocatechol. Qaeger, 1907.) " Resorcinol. " Toluidine. (Philip and Smith, 1905.) Monochlorohydroquinol and Monobromohydroquinol. (Kuster.iSgi.) Diacetylmonochlorohydroquinol and Diacetylmonobromohydroquinol. (Kuster, 1911.) HYDROXYLAMINE NH 2 (OH). HYDROXYLAMINE HYDROCHLORIDE NH 2 (OH).HC1. SOLUBILITY OF EACH IN SEVERAL SOLVENTS. (de Bruyn, 1892.) Gms. NH 2 OH Gms. NH 2 (OH).HC Solvent. t. per too Gms. t. per too Gms. Solution. Solvent. Methyl Alcohol (abs.) 5 35 iQ-75 16.4 Ethyl Alcohol (abs.) 15 15 19.75 4.43 Ether (dry) (b. pt.) 1.2 Ethyl Acetate (b. pt.) 1.6 For densities of NH 2 (OH).HC1 solutions, see Schiff and Monsacchi, 1896. PhthalylHYDROXYLAMINE C 6 H 4 < CO > O. One liter benzene dissolves 0.33 gm. of the A form of melting point 22O-226. (Sidgwick, 1915.) HYOSCYAMINE Ci7H 23 N0 3 . SOLUBILITY IN SEVERAL SOLVENTS AT i8-22. (Muller, 1903.) Gms. C 17 H 21 NO, Gms. C 17 H 21 NO, Solvent. per 100 Gms. Solvent. per 100 Gms. Solution. Solution. Water 0.355 Chloroform 100+ Ether 2 . 02 Acetic Ether 4 . 903 Ether sat. with H 2 O 3 . 913 Petroleum Ether o . 098 Water sat. with Ether 3.125 Carbon Tetrachloride o . 059 Benzene o . 769 325 HYOSCINE HYOSCINE (Scopolamine) HYDROBROMIDE, etc. SOLUBILITY IN SEVERAL SOLVENTS AT 25. (U. S. P. VIII.) Grams per too Grams Solvent. Solvent. Hyoscine Hydrobromide C 17 H 21 NO 4 HBr.3H 2 O. Water 66.6 Alcohol 6 . 2 Ether Chloroform o . 133 Hyoscyamine Hydrobromide CnHzsNOa.HBr. very soluble 50 0.062 40 Hyoscyamine Sulfate (C 17 H 23 N0 3 ) 2 .H 2 S0 4 very soluble 15.6 0.04 0.043 Nitro INDAN Carboxylic Acids. Freezing-point lowering data for mixtures of / nitroindan-2-carboxylic acid and d nitroindan-2-carboxylic acid are given by Mills, Parker and Prowse, 1914. CO INDIGO (C 6 H 4 < NH >C:) 2 . 100 gms. 95% formic acid dissolve 0.14 gm. indigo at 19.8. (Aschan, 1913.) INDIUM IODATE In(IO,) 8 . IOO gms. H 2 O dissolve 0.067 g m - In(IO 3 )3 at 2O. (Mathers and Schluederberg, 1908.) IsoINOSITOL C 6 Hi 2 O 6 . loo gms. H 2 O dissolve25.i2 gms. C 6 Hi 2 O 2 at i8and43.22 gms. at 100. (Muller, 1912.) IODIC ACID HIO 3 . SOLUBILITY OF IODIC ACID IN WATER. (Groschuff, 1906.) - 0.3 1.69 Ice 16 71.7 mo s 1. 01 6.81 it 40 73-7 - 2.38 26.22 60 75.9 H - 4.72 51.42 80 78.3 U - 6.32 57-6i K 85 78.7 u 12.25 67.40 " 101 80.8 -14 69.10 " +HI0 3 no 82.1 HI0 3 +HI 3 8 - J 5 70 (unstable) Ice 125 82.7 HI 3 8 -19 72 , 140 83.8 " 70.3 HI0 3 160 85.9 u SOLUBILITY OF IODIC ACID IN NITRIC ACID. (Groschuff.) Gms, . HIO 3 per 100 Gms. *" ' Aq. 27.73 %HN0 3 40.88% HNQ,' Solution. Solution. Solution. 74.1 18 9 20 75-8 21 10 40 77-7 27 14 60 80 38 18 IODINE I 2 SOLUBILITY OF IODINE IN WATER. (Hartley, 1908.) j.o Gms. I per 1000 Gms. H 2 0. 18 0.2765 25 0-3395 35 0.4661 45 0.6474 55 0.9222 The above determinations were made with great care. Results for single temperatures in good agreement with the above are given by Dietz, 1898; Jakowkin, 1895; Noyes and Seidensticker, 1898; Sammet, 1905; Bray and Connolly, 1910, 1911; Herz and Paul, 1914 and Fedotieff, 1911-12. IODINE 326 SOLUBILITY OF IODINE IN AQUEOUS MERCURIC CHLORIDE AND IN AQUEOUS CADMIUM IODIDE SOLUTIONS AT 25. In Aq. HgCl 2 . (Herz and Paul, 1914.) Gms. per Liter. Millimols per Liter. o 94-44 124.42 iQS-42 334-6o 1-3.4 12.94 14.60 18.06 25-43 HgCl 2 . o 25.64 33-78 54-29 90.84 I. 0.340 3-285 3.706 4-583 6.454 In Aq. CdI 2 . (Van Name and Brown, 1917.) Gms. per Liter. CdI 2 . 3-66 45.78 91.56 183.12 I. 2.072 9.056 11.386 14.040 SOLUBILITY OF IODINE IN VERY DILUTE AQUEOUS SOLUTIONS OF POTASSIUM IODIDE. (Determinations made with very great care.) Results at o. Results at 25. Results at 25. (Jones and Hartman, igiS-) (Bray and MacKay, 1910.) (Noyesand Seidenstricker, 1898.) Normality A Gms. I per Normality Millimols I 2 Normality Millimols I 2 KI A s2i. Sallol. ioo Gms. Sat. Sol. of Aq. KISol. per Liter j Sat.Sol. of Aq. KISol. per Liter Sat. Sol.~ O.OOO992 .OOO2 0.0282 1-333 O 1.342 O.OO2OO .OOO4 0.0409 0.001 1.788 0.00083 1.814 0.00500 .OOIO o . 0760 O.OO2 2.266 0.00166 2-235 O.OIOOO .OO2O 0.1356 0.005 3.728 0.00664 4.667 0.01988 .0044 0-2533 O.OIO 6.185 0.01329 8.003 O.O500 3 .OIO9 0.609 O.O2O 11.13 0.02657 4.68 0.09993 .O2I9 1.199 0.050 25-77 0.05315 28.03 0.100 51-35 0.1063 55-28 SOLUBILITY OF IODINE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25 AND VICE VERSA. (Parsons and Whittemore, 1911.) (Time of rotation 6 mos. or longer. Duplicate determinations at different lengths of time, were made.) Solid Sp. Gr. Sat. Sol. Gms. per ioo Gms. Sat. Sol. KI I 1-349 16.03 18.49 1.516 19.70 26.16 1.769 22.88 36.06 1.910 23.55 40.52 2.403 24.78 53.60 2.904 25 63.12 3.082 25.18 66.04 3-3*6 26 68.09 Solid Sp. Gr. Gms. per ioo Gms. Sat. Sol. Phase. Sat. Sol. KI I dine 3-246 27.92 66.45 29.71 62.81 2.665 35.80 49.61 2-539 38.09 44.58 2.216 44.82 31.01 2.066 49.04 23.08 1.888 54.41 11.63 +KI 1-733 60.39 o KI Additional data for this system are given by Bruner, 1898; Hamberger, 1906; and Lami, 1908. Data for the solubility of iodine in aq. 40% ethyl alcohol and aq. 60% ethyl alcohol solutions of potassium iodide at 25, are given by Parsons and Corliss, 1910. The solid phases were identified in each case and it was demonstrated that no polyiodides of potassium exist in the solid phase or in solution at 25. An extensive series of determinations of the simultaneous solubility of iodine and potassium iodide in nitrobenzene and in other organic solvents, as well as in mixtures of nitrobenzene and other solvents are given by Dawson and Gawler, 1902, and Dawson, 1904. The determinations were made to obtain information on the formation of polyiodides in solution. The molecular ratio of dissolved I2/KI was found to be I or more in all cases. (See also p. 537.) Freezing-point lowering data, determined by time-cooling curves, for mixtures of iodine and potassium iodide are given by Kremann and Schoulz, 1912. Data for this system are also given by Olivari (1908). 327 IODINE SOLUBILITY OF IODINE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AND OF SODIUM BROMIDE AT 25. (Bell and Buckley, 1912.) In Aq. KBr Solutions. In Aq. NaBr Solutions. Cms. KBr Gm. Atoms I Gms. NaBr Gm. Atoms I per Liter. per Liter. per Liter. per Liter. 60.6 ty 0.0176 2,^ 96.4 0.0266 106.9 0.0278 I87. 7 0.0425 175-9 0.0415 271.8 0.0538 229.8 0.0532 357-4 0.0598 281.9 0.0628 422.21 0.0638 33 -6 0.0717 499.1 o . 0648 377-1 0.0797 569-9 o . 0644 411 0.0864 632 0.0622 461.7 o . 0948 679.7 0-0595 509.8 0.1006 750-5 0.0551 567.9 sat. 0.1094 756.1 sat. 0.0550 SOLUBILITY OF IODINE IN AQUEOUS SOLUTIONS OF ACIDS. Aqueous Acid. Mols. I per Liter Gms. I per Liter Sat. Sol. Sat. Sol. Authority. o.ooi wHCl 0.001332 338 (Bray and MacKay, 1910.) o.iorcHNOs 0.001340 . 340 (Sammet, 1905.) o . 10 n H 2 SOi O.OOI342 0.341 SOLUBILITY OF IODINE IN AQUEOUS SODIUM IODIDE SOLUTIONS. (Gill, 1913-14.) i Aqueous Nal solutions were prepared by dissolving the stated amounts of the salt in water and diluting to 100 cc. An excess of iodine was added to each of these solutions, the mixtures heated to 60 and shaken for several minutes. They were then allowed to cool in a thermostat at 25 for four hours. The dissolved iodine in weighed amounts of the saturated solutions was titrated with thiosulfate. The densities of the Aq. Nal mixtures and also of the solutions after saturation with iodine were determined. Gms. Nal &* of d 25 of Aq. Nal Gms. I Dissolved per zoo cc. Aq. Nal after Saturation at 25 per 100 Gms. Aq. Solution. Solution. with I. of the Sat. Sol. 5 1.0369 1.0698 4.99 10 1.0720 1-1415 9.96 15 1.1072 1.2162 J 4-93 20 I.I458 1.2998 20.02 Determinations at other temperatures were made in an apparatus which per- mitted constant stirring of the solutions at the several temperatures. Results, interpolated from the original, are as follows: Gms. I Dissolved per 100 Gms. Gms. I Dissolved per 100 Gms. Sat. Solution in Aq. Nal of: Sat. Solution in Aq. Nal of: 10 Gms. per 20 Gms. per 10 Gms. per 20 Gms. per 100 cc. 100 cc. 100 cc. loo cc. 10 8.9 17.6 30 10.3 20.5 15 9-3 l8 -3 40 10.9 22 20 9.6 19 50 11.7 23.4 25 10 19.4 60 12.6 24.9 IODINE 328 SOLUBILITY OF IODINE IN AQUEOUS SALT SOLUTIONS AT 25. (McLauchlan, 1903.) Q,. Gms. Salt per Liter. NaaSO 4 29.77 KaSO 4 43.5 (NH 4 ) 2 SO 4 33 Gms. Dissolved I per Liter. 0.160 0.238 0.246 . Salt. NH4C1 NaBr KBr Gms. Sak. per Liter. 53-4 103 119 Gms. Dissolved I per Liter. 0-735 3-29 3.801 NaNO 3 85 0.257 NHjBr 98 4.003 KN0 3 IOI.2 0.266 NH4C2HsO2 77-i 0.440 NHiNOs 80 0-375 (NH4) 2 C 2 4 86.9 0.980 NaCl S8.5 0-575 HaBOs 55-8 0.300 KC1 73-6 0.658 SOLUBILITY OF IODINE IN NITROBENZENE SOLUTIONS CONTAINING VARIOUS IODIDES AT ROOM TEMPERATURE. SOLUTIONS SAT. WITH I IN EACH CASE. (Dawson and Goodson, 1904.) Iodide. Gms. per Liter. Iodide. Iodine. Potassium Iodide 12-35 112.7 45-56 295-7 115.8 698.2 155-2 943-6 Sodium Iodide 13-55 125 57-7 393 a log: I 738 228 1251 Rubidium Iodide 85.4 421 Rubidium Iodide 217-5 1060 Lithium Iodide 84.1 642 Iodide. Caesium Iodide* Caesium Iodide Ammonium Iodide Ammonium Iodide* Aniline Hydriodide Dimethylaniline Hydriodide Tetramethylammonium Iodide Tetramethylammonium Iodide Strontium Iodide Barium Iodide Barium Iodide * Solvent = o nitrotoluene instead of nitrobenzene. Gms. per Liter. Iodide. 48.2 223 69.5 94-3 164 160 49-3 51-4 106.5 42.2 158.5 Iodine. 213 858 482 669 721 626 266 280 599 237 809 Similar results are also given for solutions containing KI in addition to the other iodide, and one series for the simultaneous solubility of KBr and I in nitro- benzene. It is considered that the increased solubility is most easily explained on the assumption that periodides are formed in solution. SOLUBILITY OF IODINE IN AQUEOUS ETHYL AND NORMAL PROPYL ALCOHOL SOLUTIONS AT 15. (Bruner, 1898.) In Aq. Ethyl Alcohol. In Aq. (n.) Propyl Alcohol. Vol. % C,H 5 OH insolvent. Gms. I per 100 cc. Solution. Vol. % r 1 TT f\tr \*2 iL^Jti. in Solvent. Gms. I per 100 CC. Solution. Vol. % CaH 7 OH in Solvent. Gms. I per 100 cc. Solution. Vol. % C S H 7 OH in Solvent. Gms. I per ICO CC. Solution. 10 0.05 60 I.I4 IO 0.05 60 2.71 20 0.06 70 2-33 20 O.II 70 4.10 30 0.10 80 4.20 30 0.40 80 6.05 40 0.26 90 7-47 40 o-94 90 9.17 50 0.88 100 15-67 50 1.64 100 14-93 329 IODINE SOLUBILITY OF IODINE IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS ACETIC ACID SOLUTIONS AT 25. (McLauchlan, 1903.) In Aq. C 2 H 6 OH Solutions. In Aq. CH 3 COOH Solutions. Gms. I per ioo cc. Sat. Gms. CH 3 COOH per too Gms. Gms. I per ioo cc. Sat. Solution. Solvent. Solution. 0.034 0.034 0.039 20 . 0.076 0.172 39-5 0-173 0-955 61.1 0.510 6.698 80.7 I-363 24.548 IOO 3.l62 Cms. per 100 Gms. Solvent. O 4-55 28.48 44.41 72-51 100 SOLUBILITY OF IODINE IN AQUEOUS GLYCEROL SOLUTIONS AT 25. (Herz and Knoch, 1905.) Density of glycerine at 25/4 = I - 2 555' impurities about 1.5%. Wt.% Glycerine Millimols I Grams I per Density of inSolvent. per 100 cc. Solution. loocc. Solution. Solutions at 25 /4. o 0.24 0.0304 0.9979 7.15 0.27 O.O342 1.0198 20-44 0.38 0-0482 I.047I 31.55 0-49 0.0621 1.0750 40.95 0.69 0.0875 1.0995 48.7 1.07 0.135 1.1207 69.2 2.20 0.278 LI765 ioo. o 9.70 1-223 1.2646 ioo gms. glycerol (d u = 1.256) dissolve 2 gms. iodine at i5-i6. (Ossendowski, 1907.) > SOLUBILITY OF IODINE IN BENZENE, CHLOROFORM, AND IN ETHER. (Arctowski Z. anorg. Chem. n, 276, '95-'96.) In Benzene. In Chloroform. . In Ether. t. Gms. I per ioo Gms. Solution. A o Gms. I per ioo ^ Gms. I per ioo Gms. Solution. Gms. Solution. 4.7 8.08 -49 0.188 -83 15.39 6.6 8.63 -55* 0.144 90 14-58 10.5 9.60 -60 0.129 108 15-09 10-44 69 J 0.089 16^3 11.23 -73i 0.080 + 10 i . 76 per ioo gms. CHC1 3 (Duncan Pharm. J. Trans. 22, 544, 'pi-' SOLUBILITY OF IODINE IN BROMOFORM, CARBON TETRACHLORIDE, AND IN CARBON DISULFIDE AT 25. (Jakowkin, 1895.) I liter of saturated solution in CHBr 3 contains 189.55 gms. I. i liter of saturated solution in CC1 4 contains 30.33 gms. I. I liter of saturated solution in CSa contains 230 gms. I. IODINE 330 100 - 80 - 63 20 10 SOLUBILITY OF IODINE IN CARBON BISULFIDE. (Arctowski, 1894.) Gms. I per 100 Gms. Solution. 0.32 0.51 1.26 4.14 S-S 2 O 10 15 20 Gms. I per 100 Gms. Solution. 7.89 10.51 12-35 14.62 10.92 3 36 40 42 [Gms. I per 100 Gms. Solution. 19.26 22.67 25.22 26.75 SOLUBILITY OF IODINE IN SEVERAL SOLVENTS AT 25. (Herz and Rathmann, 1913.) Iodine Solvent. Chloroform Carbon Tetrachloride Tetrachlorethylene One liter sat. solution of iodine in nitrobenzene contains 50.62 gms. I at i6-i7. (Dawson and Gawler, 1902.) IOO gms. hexane dissolve 1 .32 gms. iodine at 25. (Hildebrand, Ellefson and Beebe, 1917.) 100 gms. sat. solution of iodine in anhydrous lanolin (melting point 46), con- tain 5.50 gms. iodine at 45. (Klose, 1907.) Iodine per Liter of Sat. Sol. Solvent. Trichlorethylene Tetrachlorethane Pentachlorethane Iodine per Liter of Sat. Sol. Mols. 0-352 0.237 0.241 Gms. 44.68- 30.08 3 -59 Mols. 0.312 0.244 0.272 Gms. 39.61 30-97 34-53 SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHER AT 25. (Harden and Dover, 1916.) ', Gms. CHC1 3 per 100 Gms. Iodine per 100 Gms. CHC1 3 +(C2H B ) 2 O. Gms. ~ O 10 20 30 40 5 3S-i 29.6 24.8 20.2 I6. 3 12.7 Gms. CHC1 3 per 100 Gms. Iodine per 100 Gms. Gms. CHC1 3 +(C 2 H 5 ) 2 O. CHC1 3 +(C 2 60 9.83 80 90 loo 7-5 5-73 4.31 3.10 loo cc. of a mixture of CHC1 3 + CSa (3:1) dissolve 7.39 gms. iodine (t ?.) The addition of S even up to the point of saturation does not affect the amount of iodine held in solution. (Olivari, 1908.) Diagrammatic results for mixtures of iodine and each of the following com- pounds are given by Olivari, 1911: CHI 3 , p C 6 H 4 Br 2 , [C 6 H 4 ]N 2 , p C 6 H 4 (NO 2 ) 2 , (C 6 H 6 CO) 2 O and C 6 H 6 COOH. ' SOLUBILITY OF IODINE IN MIXED SOLVENT (Stromholm, 1903.) Gms. I Solvent. per Liter SoK Sat. Sol. Ether 206 . 3 Ether+ 20.96 grr Carbon Bisulfide 178.5 Ether+4i.9 Ether+3.96 gms. H 2 O per liter 221 CS 2 +22.5 ' +7.91 gms. H 2 O 235.7 CSa +45.1 ' +excessH 2 O 251.4 Ether+47.63 1 +9.79 gms. C 2 H 6 OH " 219.1 CS2 +50.06 " +19.6 " " " 231.5 Ether+8o. 3 ' +294 " " " 243-9 Ether+77.8s " +39.2 " " 254.4 CS-j +62.2 S AT 1 6.6. ent. is. CS2 per liter CS 2 ether ether CHCU CHCU C 6 H 6 CH 3 I S Gins. I per Liter Sat. Sol. 202.3 217.2 189.3 201. I 195-2 172.8 204.1 22O.2 189.4 One liter sat. solution in ether contains 167.3 S m s. I at o. (StrSmholm, 1903.) 331 IODINE SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHYL ALCOHOL, CHLOROFORM AND NORMAL PROPYL ALCOHOL, CHLOROFORM. AND BENZENE, AND CHLOROFORM AND CARBON DISULFIDE AT 15. (Bruner, 1898.) Vol f CHCI ^ ms ' * Dissolved per 100 cc. of Mixtures of: insolvent. 3 O 10 20 30 40 50 60 70 80 'QO IOO SOLUBILITY OF IODINE IN MIXTURES OF CARBON TETRACHLORIDE AND BEN- ZENE AND IN MIXTURES OF CARBON TETRACHLORIDE AND CARBON DISUL- FIDE AT I CHC1 3 +C 2 H 5 OH. CHC1 3 +C 3 H 7 OH. CHC1 3 +C 6 H6. CHClj+CSs. I5-67 14-93 10.40 17.63 9-43 13.16 9.84 15.93 8.69 11.20 8.78 14.20 7.80 8.98 7-74 12. l6 7.09 8.09 6.96 IO.2O 6.62 7 .82 6.20 9.08 6.24 7.09 5-34 7.72 5-77 6.42 4.89 6.42 5-06 5-54 4-53 5-27 4-34 4-52 4.07 4.32 3.62 3.62 3.62 3.62 1898.) Vrti of rr\ Gms. I per 100 cc. of Mixture of: v i o/ rn Gms. I per 100 cc. of Mixture of: VOl. /Q V^^i4 -^_,^ _Ai - _ VOI. /o l_,l_J4 ji * Solvent. ' CCU+CeHe. CCU+CS,. ' in Solvent. 'ca+C^. CCU+CS,/ o 10.40 17.6 60 4.90 5-55 10 9.44 14.44 70 4.09 4.50 20 8.53 12.33 80 3.41 3.37 30 7.77 10.34 90 2.74 2.60 40 6.63 8.60 loo 2.06 2.06 50 5.70 6.83 In the case of the above determinations the volume change occurring on mixing the solvents was neglected. The temperature was not accurately regulated and the mixtures not shaken during the saturation. The curves plotted from the results are not smooth. DISTRIBUTION OF IODINE BETWEEN WATER AND BROMOFORM^ WATER AND CAR- BON BISULFIDE, AND WATER AND CARBON TETRACHLORIDE AT 25. Qakowkin, 1895.) The original results were plotted on cross-section paper and the following table made from the curves. Jakowkin points out that the results of Berthelot and Jungfleisch, 1872, are^incorrect on account of the presence of HI. Gms. I per Liter Gms. I per Liter of: of H 2 O Layer in Each Case. 0.05 0.10 0-15 0.20 0.25 A theoretical discussion of the results of Jakowkin is given by Schiikarew (1901). CHBr 3 Layer. CSj Layer. CCU Layer. 20 30 4 45 60 8.5 71 91 13 IOO 126 17-5 130 160 22 IODINE 332 DISTRIBUTION OF IODINE BETWEEN CARBON DISULFIDE AND AQ. POTASSIUM OXALATE. (Dawson Z. physik. Chem. 56, 610, '06; Dawson and McRae J. Chem. Soc. 81, 1086, '02.) Concentration flf Gms. I per Liter of Aq. K 2 C 2 4 . Aq. Layer. CS 2 Layer. .0 Equiv. 2.408 10.82 .0 " 3-555 l6 -3 2 .0 " 5.766 27.91 .0 " 6.861 34-01 .2 " 3-525 J 7-o7 Vol. of Solution which Contains i Mol. I. Fraction of I Uncombined in Solution. 105.3 0.005495 71.37 0.00561 43-99 0.005915 36.98 0.006055 71.97 0.005645 DISTRIBUTION OF IODINE BETWEEN AMYL ALCOHOL AND WATER AND BETWEEN AMYL ALCOHOL AND AQUEOUS POTASSIUM IODIDE SOLUTIONS AT 25. (Herz and Fischer Ber. 37, 4752, '04.) The original results were plotted on cross-section paper, and the following tables made from the curves. Millimols I per 10 cc. of H2O and of Aq. KI Layers. Amyl Alcohol Layer ' N 2 N 3N 4N ioN in Each Case. H-jO. K.I. KI. - KI. ' K I KI. 10 10 10 IO IO 2-5 O.OI2 0-135 0.160 0.170 0.170 O.OI4 0.150 0.185 O.2OO O-2OO 0.160 4.0 O.OlS 0.180 0.235 0.255 O.27O O.24O 5 O.O2I O.2IO 0.280 0.340 0.315 6 O.025 0.230 0-330 0-375 0.410 0.390 7 O.O29 0.250 0-375 0.430 0.480 0.470 8 . . . 0.26o 0.420 0.490 0-550 o-555 9 0.270 0.450 0-550 O.62O 0-640 10 . . . 0.280 0.470 0.605 0.690 0.720 12 . . . . . . 0.490 0.700 0.830 0.900 14 0.510 0.790 0.980 1.200 20 ... 0-575 Grns.Iperioocc. Amyl Alcohol Layer Gms. I per ioo cc. of H 2 O and of KI Layers. /J N aN N N N ""* in Each Case. H 2 0. KI. KI. KL KI. KI. 10 10 10 10 IO 3 O.OI4 0.164 O.2O 0.21 0.21 4 c 016 0.196 O.24 O.26 O.26 0.21 6 ^026 0.252 o-34 0.38 O.4O o-37 8 o*-o33 0.297 0.43 0.49 0-54 0.51 10 0.040 0.328 0.51 0.61 0.67 0.69 12 0.341 0.58 o-73 0.81 0.84 14 0.60 0.83 o-95 1. 00 16 0.63 0.91 1.09 1.20 18 0.64 25 0.71 The original figures for sN/io and loN/io KI solutions give prac- tically identical curves. Results for the distribution of Iodine between N/io KI solutions on the one hand, and mixtures in various proportions of C 6 H 6 4- CS 3 , C 6 H 6 CH 3 +CS 2 , C 6 H 6 + C 6 H 6 CH 3 , C 6 H 6 + ligfft petroleum, CS 2 + light petroleum, CS 3 +CHC1 3 , CHC1 3 + C C H 6 , CC1 4 + CS 2 and CC1 4 + C 6 H 6 CH, on the other hand, are given by Dawson J. Chem. Soc., 81, 1086, '02, 333 IODINE DISTRIBUTION OF IODINE BETWEEN WATER AND IMMISCIBLE ORGANIC SOLVENTS. Results for Water Results for Water Results for Water Results for Water -f Carbontetra- + Nitrobenzene + Carbon Disul- + Chloroform chloride at 18. at 18. fide at 15. at 25. (Dawson, 1908.) (Dawson, 1908.) (Dawson, 1902.) (Herz & Kurzer, 1910.) Mols. Iodine per Liter. Mols. Iodine per Liter. Gins. Iodine per Liter. Mols. Iodine per Liter. 'H 2 O Layer. CCU Layer. 0.000416 0.0344 0.000535 0.0443 Results for Water + Trichlorethyl- ene at 25. (Herz & Rathmann, ' 13.) Mols. Iodine per Liter. H 2 O Layer. CeHsNOz Layer 0.00019 0.0333 o . 00050 o . 0854 0.00133 0.2275 0.00189 0.3328 Results for Water + Tetrachlor- ethylene at 25. (Herz & Rathmann,; 13.) Mols. Iodine per Liter. .H 2 O Layer. CSj Layer. 0.0452 27.85 0.0486 30.09 0.0486 30.31 Results for Water + Tetrachlor- ethane at 25. (Herz $; Rathmann, '13.) Mols Iodine per Liter. H 2 Layer. CHC1, Layer." 0.00025 0.0338 0.00120 0.1546 0.00184 0.2318 0.00259 0-3439 Results for Water + Pentachlor- ethane at 25. (Herz & Rathmann, '13.) Mols. Iodine per Liter. ' H 2 O CHC1.CC1 2 Layer. Layer. 0.00046 0.0543 O.oooyo 0.0778 O.OOII2 0.1275 0.00236 0.2672 ' H 2 CC1 2 .CC1 2 Layer. Layer. O.OOO88 0.0653 O.OOI27 0.0932 0.00172 0.1285 0.00281 0.2161 H 2 CiH,(V Layer. Layer. 0.00119 O.lioi 0.00145 0.1247 0.00159 0.1479 0.00217 0.2103 H 2 C 2 HC1 5 1 Layer. Layer. 0.00092 0.0848 0.00117 0.1067 0.00160 0.1434 o . 00204 o . 1963 Data for the distribution of iodine between water and mixtures of at 25 are given by Herz and Kurzer, 1910. Data for the distribution of iodine between carbon disulfide and aqueous solu- tions of each of the following iodides at 25 are given by van Name and Brown, 1917. Cadmium iodide, cadmium potassium iodide, lanthanum iodide, nickel iodide, strontium iodide, zinc iodide and zinc potassium iodide. Results for the distribution of iodine between carbon tetrachloride and aq. mercuric potassium iodide are also given. Results for distribution between CS-5 and aq. BaI 2 sols, are given by Herz and Kurzer, 1910. Data for the distribution of iodine between carbon disulfide and aqueous solu- tions of potassium iodide at 15 and at 13.5, and between carbon disulfide and aqueous solutions of hydriodic acid at 13.5, are given by Dawson, 1901 and 1902. Data for the distribution of iodine between carbon tetrachloride and aqueous solutions of mercuric bromide and of mercuric chloride at 25 are given by Herz and Paul, 1914. DISTRIBUTION OF IODINE BETWEEN CARBON DISULFIDE AND AQ. t; ETHYL ALCOHOL AT 25. (Osaka, 1903-08.) Gms. C 2 H 5 OH Gms. Iodine per Liter: Gms. CsHfiOH Gms. Iodine per Liter: per 100 cc. Aq. Alcohol. CSz Layer c. Aq. Alcohol Layer c'. c'' per 100 cc. Aq. Alcohol. CSz Layer c. Aq. Alcohol Layer c'. c' 7.6 O, ,072 35-86 O .0020 I9.I 0.330 97 o, 0034 7-6 O, 211 107.79 o .0020 22.9 O.II5 23-78 Q ,0048 ii. 4 o 077 32.93 .0023 22.9 0.418 89.61 o 0047 ii.4 o ,280 133.22 .0021 26.7 0.0756 9-8 o .0077 15-3 o 075 25.61 .0029 26.7 0-495 65.10 o .0076 iS-3 o 315 115-34 .0027 30.5 o . 0636 4.90 .0130 19.1 o 045 I3-42 .0034 30.5 0.546 42.27 o .0129 DISTRIBUTION OF IODINE BETWEEN ETHER AND ETHYLENE GLYCOL. (Landau, 1910.) Results at 25. Gms. Iodine per Liter: Results at o. Gms. Iodine per Liter: a r .48 .80 .75 .76 75 .80 (C 2 H 5 ) 2 Layer (c). 2.139 7.820 16.620 20.564 3L785 79-950 (CH 2 OH) 2 Layer (b), 1-449 4-347 9.486 1 11.685 18.135 44.460 (C 2 H 5 ) 2 Layer (a). (CH 2 OH), Layer (b). r 2.208 1.449 52 4-255 2.541 .60 7.728 4-347 J .78 16.200 9.120 . 7 8 30.322 17.062 .78 78.195 44-460 3 .76 IODINE 334 DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND BENZENE AND BETWEEN GLYCEROL AND CARBON TETRACHLORIDE. (Landau, 1910.) Results for Glycerol and Benzene. Grams Iodine per Liter: /M Results for Glycerol and CC1 4 . Gms. Iodine per Liter: /M t- Glycerol Layer (o) Benzene Layer. (b) ' to' t Glycerol Layer (a) CC1 4 Layer. (b) (a) 25 0.407 I .922 4 .72 25 0.365 .565 1 55 ft 0.676 4 .086 6 .04 u .684 I .224 ] .78 tt 1.470 10 .212 6 95 " I .416 2 .652 : .87 n 2.622 20 .102 7 .67 " 5 .064 9 .888 'i 95 n 5.280 42 .458 8 .04 " 7 .636 14 .766 3 93 40 0-459 2 .168 4 .72 40 o .322 575 79 It 0.658 3 .911 5 94 tl o .690 I .169 1.74 It 1.584 II .244 7 .10 tl i .224 2 .772 1.69 11 3.048 24 .104 7 .91 " 2 .832 6 .444 2.26 11 46 .960 8 44 " 6 854 15 .410 2.25 50 0.467 2 .194 4 .70 So .299 .653 2.19 It 0.642 3 .864 6 .02 It 570 I .270 2.23 " 1.463 II .196 7 65 " I 5" 3 457 2.29 tl 2.391 19 .872 8 31 It 2 .664 6 .468 2.43 " 46 .782 8 .6 9 It 6 .348 16 .008 2.52 DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND CHLOROFORM. Results at 25. (Herz & Kurzer, 1910.) Results at 30. (Hantzsch & Vagt, 1901.) Results at Dif. Temps. (Hantzsch & Vagt, 1901.) Mols. Iodine per 1000 Gms. c Mols. Iodine per Liter: c Mols. I per Liter: C Glycerol CHC1 3 c' Glycerol CHC1 3 c' Glycerol CHClj c' Layer c. Layer c'. Layer c. Layer c'. Layer c. Layer c'. 0.0244 0.0564 O 43 0.00097 0.00172 0.056 O 0.0119 0.0177 0.675 0.0397 0.0919 43 O.OO2O4 0.00412 0-495 20 0.0084 0.0213 0.400 0.0500 O.II5I 43 0.00418 0.00898 0.465 40 0.0077 O.O22I 0-349 0.00782 0.0216 0.362 50 0.0074 O.O226 0.330 Data are also given by the above named investigators for the distribution of iodine between aqueous glycerol solutions and chloroform at several temperatures. DISTRIBUTION OF IODINE BETWEEN GLYCEROL AND ETHYL ETHER. (Hantzsch & Vagt, 1901.) Mols. Iodine per Liter: O 30 30 Glycerol Layer (c). 0.00566 0.00544 0.00100 Ether Laver (0- O.027O 0.0272 O.OO5I ?* 0.21 O.2O 0.20 FREEZING-POINT DATA (Solubility, see footnote, p. I)FOR MIXTURES IODINE AND OTHER ELEMENTS. Iodine and Selenium " Sulfur 44 Tellurium 44 Tin (Pellini and Pedrina, 1908.) (Olivari, 1908; Smith and Carson, 1908.) (Jaeger and Menke, 1912.) (van Klooster, 1912-13; Remders and de Lange, 1912-13.) SOLUBILITY OF IODINE IN ARSENIC TRICHLORIDE. (Sloan and Mallet, 1882.) t. o. 15. 96. Gms. I per ico.gms. AsCl 3 8.42 u.88 36.89 335 IODOEOSINE IODOEOSIN (Sodium tetra iodofluorescein) loo gms. H 2 O dissolve 90 gms. iodoeosin at 20-25. (Dehn, 1917.) 100 gms. pyridine dissolve 4.63 gms. iodoeosin at 20-25. IOO gms. aq. 50% pyridine dissolve 71.6 gms. iodoeosin at 20-25. IODOFORM CHI 3 , IODOL C 4 I 4 NH (Tetraiodopyrrol). SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P. VIII; Vulpius, 1893.) Gms. per 100 Gms. Solvent. Solvent. t. , * Water 25 0.0106 0.0204 Alcohol 25 2.14(1.43 gms. (V.)) u.i Alcohol b. pt. (10 gms. (V.)) Ether 25 19.2 (16.6 gms. (V.)) 66.6 Chloroform 25 ... 0.95 Pyridine 20-25 I 73- 1 ODehn, 1917.) Aq. 50% pyridine 20-25 22 -4 Lanolin (30% H 2 0) 46 5.2 (Kiose, 1907.) IRIDIUM CHLORIDE IrCU. When i gm. iridium as chloride is dissolved in 100 cc. of 10% HC1 and shaken at 1 8 with 100 cc. of ether, 0.02 per cent of the metal enters the ethereal layer. When 20% HC1 is used 5% of the metal enters the ether. When dissolved in i % HC1 or in water approximately o.oi per cent of the metal enters the ethereal layer. (Mylius, 1911.) IRIDIUM Ammonium CHLORIDE IrCl 4 .2NH 4 Cl. SOLUBILITY IN WATER. (Rimbach and Korten, 1907.) Gms. IrCU-aNEUCl per 100 Gms. Gms. IrCU.aNH^Cl per 100 Gms. I . Water. Sat. Sol. Water. Sat .Sol. ' 14.4 o . 699 o . 694 52.2 I . 608 I. 583 26.8 o . 905 o . 899 61.2 2 . I3O 2. 068 39-4 1.226 I.I24 69-3 2. 824 2. 746 IRIDIUM DOUBLE SALTS v SOLUBILITY IN WATER. (Palmaer Ber. 23, 3817; 24, 2090, '91.) Double Salt. Formula. t. Gnu per Irido Pentamine Bromide Ir(NH 3 ) 5 Br 3 12.5 O. W Phase. o.o 9-30 o.o 83.88 Fe2Cl.i2H 2 O 1.09 9-57 3.24 86.32 44 1.36 9-93 4.03 9I.6l F e2 Cl6.i2H 2 -f Double Salt 2-OO 9.27 5.92 83.64 Double Salt 2-79 8.71 8. 3 I 78.77 " 4-05 8.09 12. 08 73. 2O " 6.41 7.18 19.12 64.83 4 10.78 6.21 32.04 56.00 " 7.82 6-75 23.21 60.83 Mixed Crystals containing 7.29% FeCJ, 7 .62 5-94 22.63 53.47 5.55 " 7.70 5-03 22.90 45-42 4-4 M 7 .8l 4-34 23.23 39-I3 " M 3-8 It S-52 2.82 25-33 25.43 1.64 <( 10.95 0.68 32.55 6-15 " " 0.31 II u.88 o.o 35-30 o.o NILC1 SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT DIFFERENT TEMPERATURES. (Roozeboom and Schreinemaker Z. physik. Chem. 15, 633, '94.) Mols. per TOO H,0. Mols. Gms. per 100 Gms. Mols H 2 0. Solid . per 100 Mols H 2 0. . Gms. per 100 Gms. H 2 0. Solid HC1. FeCl 3 . HC1. FeCl 8 . *****' HC1. FeCl 3 : 'HC1. FeCl 3 . Phase Results at o. Results at 25 (con.). O 8 2 5 74 3 0. 29.00 0.0 26l.I 7-52 6 51 15.22 58 62 7. 5 29.75 15.18 267.9 Fe 2 Cl 6 13.37 6 -33 27.06 57 01 19. 35.25 39-46 317.4 5 2M 16.80 8 -70 33-99 78 34 19. 5 35-25 39-46 3I7-4 18.45 10 23 37-34 92 10 Fe a Cl 20, 6 35-34 41.68 20.40 15 .40 41.28 138 7 .i 2 H 2 3I> 34 41.58 63.42 374-4 ^|u) 20.10 16 .00 40.67 144 i 33- 00 43-0 66. 77 387.3 19.95 17 70 40.37 159 4 34- 65 44-80 70.11 403.4 19.00 22 75 38.45 204 8 40. 4i 40.25 81.77 362.4 1 FeCl 18.05 23 .41 3 6 -53 210. 8 . 39- 03 41.38 78.98 372.7 [ C2 .2HC1 18.05 23 .40 3 6 -53 2IO. 8 ^fflzO 35< 74 45-24 72-33 407.4 J + 4H 2 O 19.50 25 93 39-55 233-5 J Results at AO. 24. 12 26.0O 26.00 34.60 37-27 34.60 30 32 32 36 38 .04 .16 .16 .11 .60 .11 48.81 52.60 52.60 70.01 75-41 70.01 270. 289. 289. 343- 329. 343- i 6 2 6 2 F ^fc>^4 Fe2 HCl 2 o -fW) 2 32.4 37.45 37-45 50.80 58.0 50.8 0.0 27.11 27.11 54.64 o.o 54.64 291.7 337-3 337-3 457-5 522.3 457-5 1 Ferf* Results at 25. 42. 01 48.64 85.00 438. oj O.O IO .90 o.o 98 I S^\ 42. 50 47-52 86.72 428.0 ) Fe 2 Cl 2-33 23 .72 4.715 213 6 r j 2 jf o 42 OI 48.64 85.00 438-0 i +4H 2 O 0.0 24 5 0.0 220 7 J '' 0.0 2.33 7.50 23 23 29 5 .72 -75 o.o 4.715 15.18 211. 267! 6 i Results for other temperatures 4 1 Fe 2 ci are also given in the original g f .yHaO paper. 0.0 31 50 0.0 283. 6 J 339 IKON CHLORIDE RESULTS FOR THE SYSTEM FERRIC OXIDE, HYDROCHLORIC ACID, WATER AT 25. (Cameron and Robinson, 1907.) (Excess of ferric hydroxide was added to aq. ferric chloride solutions and agi- tated for 3 months.) Gms. per 100 Gms. Sat. Sol. Solid Phase. o f? , Gms. per too Gms. Sat. Sol. Solid Phase. Fe2O 3 . HCl. FejOs. HCL ' 34 .61 59 .88 FeCl 3 .HC1.2HtO 1.485 21 .84 2 9 -33 { FeCl 3 .6H 2 0+ Fe20 3 .*HCl.H 2 O 33 27 60 23 " 349 16 .82 22 55 Fe2Oa.itHCl.H2O 32 78 54 + FeCl 3 .321 15 83 21 .10 " 95 58 .20 FeCV+FeCU^HjO .284 14 .62 19 53 34 .42 54 .12 FeCl 3 .2HjO .242 12 59 16.61 35 .22 59 .28 " .220 II .76 15 .28 34 .07 55 .71 I.I95 10 56 13 .76 34 .21 55 47 +FeCl 3 .2jH 2 1.158 8 .60 II .24 " 34 44 51 .11 FeCl 3 . 3 JH 2 0+ " I.H5 6 47 8 39 33 .04 46 .72 " +FeCl3.6H 2 O 1.070 4 .04 5 36 (C 24 .42 33 .40 FeCU.6H 2 1 . 047 2 85 3 .66 " Data for the systems FeCl 2 + MgCl 2 + KC1 + H 2 O at 22.8 and for FeCl 2 + KC1 + NaCl are given by Boeke, 1911. 100 gms. abs. acetone dissolve 62.9 gms. FeCl 3 at 18. (Naumann, 1904.) 100 gms. anhydrous lanolin (m. pt. about 46) dissolve 4.17 gms. FeCl 3 at 45. (Klose, 1907.) DISTRIBUTION OF FERRIC CHLORIDE BETWEEN WATER AND ETHER AT 18. (Mylius, 1911.) One-gram portions of iron as chloride were dissolved in 100 cc. of aq. HCl of different concentrations and shaken with 100 cc. of ether in each case. The per- centage of iron in the ethereal layer was determined after separation of the two layers. Per cent cone, of Aq. HCl i 5 10 15 20 Per cent of Iron Extracted by Ether (o.oi) o.i 8 92 99 Fusion-point curves (solubility, see footnote, p. i) for mixtures of FeCl 3 + PbCl 2 and FeCl 3 + ZnCl 2 are given by Herrmann, 1911, and for mixtures of FeCl 3 +TlCl by Scarpa, 1912. SOLUBILITY OF THE SALT PAIR FeCl 3 .NaCl IN WATER AT 21. (Hinrichsen and Sachsel, 1904-05.) Gms. Used. Gms. per 100 Gms. Solution. G. Mols. per 100 Mols. H 2 O. Solid Phase. FeCl 3 . NaCl.' FeCl 3 . NaCl. FeCl 3 . NaCl. " 3-6 36.10 II. 2 NaCl 1.8 3 24.27 9.10 2.69 2.8 Mix Crystals 3-6 2-5 25.40 8-45 2.81 2.6 tt 5-5 2 26.40 5-25 2.93 2-54 7.2 i-5 38.15 3.90- 4-23 1.22 tt 9 i 45.38 2-45 5-03 o-75 u 10.8 o-5 46.75 2. II 5-i8 0.65 tt 10.8 83.39 9-3 o FeCla IRON CHLORIDE 340 SOLUBILITY OF THE SALT PAIR FeCl 3 .KCl IN WATER AT 21. (Hinrichsen and Sachsel, 1904-05.) Cms. Used. Fed,. O 13 18 23 28 KCl. 35 28 21 16 36.2 9 46.5 6 155 o Gms. per 100 Gms. Solution. Gms. Mols. per 100 Mols. H 2 0. Solid Phase. FeClj. O 13-44 23.18 28.05 KCl. ' 34-97 24-45 16.54 11.69 FeCl 3 . 1.49 2-57 3- KCl. 8-45 5-90 3-99 2.82 KCl Mix Crystals 35-72 11.68 3-96 2.82 " 36.62 11.19 4.06 2.70 FeCl3.2KCl.H 2 37-35 13.67 4.14 3-30 a 51.69 7-54 5-73 1.82 a 83-89 9-3 . FeCl 3 SOLUBILITY OF THE SALT PAIR FeCl 3 .CsCl IN WATER AT 21. (H. and S.) Gms. Used. Gms. per 100 Gms. Solution. Gms. Mols. per 100 Mols. H,0. Solid Phase. FeCl 3 . CsCl. ' FeCl 3 . CsCl. FeCl 3 . CsCl. ' O 65 65 6-95 CsCl 0.6 ii. 6 0-45 55-18 0.05 5-9 FeCl3.3CsCl.H 2 O 1-4 10.2 2.1 52.38 0.23 5-6 ts 2.2 8.8 5-24 5 J -44 o-57 5-5 (( 2 74 7-8 47.70 0.86 5-i FeCl3.2CsCLH 2 O 3-8 6 8-93 4i-i5 0.99 4-4 u 4-6 4-6 15-34 25-25 1.70 2.7 n 5-4 2.8 21.65 14.96 2.40 1.6 (i 6.2 1.4 27.96 8.42 3.10 0.9 ti 35 0.2 48.71 0.94 5-40 O.I n 35 83-89 o 9-3 o FeCla IRON FORMATE (Ferric) Fe 3 (OH) 2 (HCOO) 7 .4H 2 O. SOLUBILITY IN WATER AND IN ABSOLUTE ALCOHOL. (Hampshire and Pratt, 1913.) 15 20 25 30 35 Solubility in Water. Gms. Salt per 100 Gms. Solid Phase. H 2 0. Fe 3 (OH)2(HCOO)74H 2 O Solubility in Abs. Alcohol. Gms. Salt t. per 100 Gms. QH6OH. 5-08 5-52 6.10 6.78 7-52 19 22 23 4-59 6.25 7.62 (The sat. solutions are not stable.) 341 IRON HYDROXIDE IRON HYDROXIDE (Ferric) Fe(OH) 3 . SOLUBILITY OF FERRIC HYDROXIDE IN AQ. OXALIC ACID SOLUTION AT 25. (Cameron and Robinson, 1909.) The solutions were constantly agitated for 3 months. The solubility is directly proportional to the concentration of the oxalic acid and no definite basic ferric oxalate is formed. Gms. per 100 Gms. Sat. Sol. Fe 2 O 3 . CA 0.48 0.61 0.95 1.23 1.86 2.45 Gms. per 100 Cms. Sat. Sol. Sat. Sol. 1.007 I.OI5 I.03I Sat. Sol. 1.040 1.050 1.064 2-33 2.98 3.62 5.17 IRON NITRATE (Ferric) Fe(N0 3 ) 3 .9H 2 0. EQUILIBRIUM IN THE SYSTEM, FERRIC OXIDE, NITRIC ACID AND WATER AT 25. (Cameron and Robinson, 1909.) Solutions of ferric nitrate of varying concentrations were shaken with freshly precipitated ferric hydroxide at const, temp., 25, for 4 months. The acid branch of the curve was studied in a similar manner by starting with ferric nitrate and various concentrations of nitric acid. No definite basic nitrates of iron were formed. ^25 Of | Gms . per 100 Gms. Sat. Sol. solid Phase. c . dys of it Sol Gms. per 100 Gms. Sat. Sol. Solid Phase. Fe2O 3 . N 2 O 5 . ,t. OUl. ' FeA. NA.: .032 I .78 2 .21 FeA m NA n H 2 O I 452 12 .14 33- 5 FeA. 3 NA.i8HjO :79 3 99 5 .61 I 434 9 95 36. 3 " .127 5 79 9 " I .417 7 25 40. 3 " .177 7 .22 12 .31 I .404 5 .02 47- 5 " .264 9 .70 16 .60 I .428 3 55 51. 5 " .368 12 .48 22 .70 I 450 4 .51 52 * 435 14 .62 28 13 I 465 4 19 55- 2 " .498 15 .40 29 .52 I .407 3 93 47- 2 FeA.4NAi8H 2 0* .496 15 .22 30 .50 FeA.3N 2 5 .i8H 2 I .419 3 52 49- 6 " This salt was obtained accidentally and its preparation could not be repeated. IRON NITRATE (Ferrous) Fe(NO 3 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Funk, 1900.) t. 27 21.5 19 15.5 Gms. Fe(NOs) 2 per 100 Gms. Sol. 35-66 36.10 36.56 37-17 Mols. Fe(NO 3 ) 2 per 100 Mols. H 2 0. 5-54 5-64 5-76 5-9i Solid Phase. Gms. Mols. Fe(N0 3 ) 2 Fe(NO^ t. per 100 Gms. per 100 Mob Sol. H 2 -9 39-68 6.$7 4L53 7.10 18 45-14 8.23 24 46.51 8.70 Solid Phase. Fe(NO l ) 2 .6H l O 60.5 62.50 16.67 Density of solution saturated at 18 = 1.497. IRON OXALATE 342 IRON OXALATE (Ferrous) FeC 2 4 .2H 2 O. SOLUBILITY IN WATER>T 25 DETERMINED BY THE CONDUCTIVITY METHOD. (Schafer, 1905.) The sat. solution contains 5.38. 10-* gm. mols. C 2 O 4 per liter. IRON OLEATE. 100 gms. glycerol (d = 1.114) dissolve 0.71 gm. iron oleate. (Asselin, 1873.) IRON OXIDES, HYDROXIDE and SULPHIDE. SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stclle Z. Ver Zuckerind. 50, 340, 'oo.) % . ^ 5?. 17.5.' 4!* ' 17.5- 45^ 75^ 17-5. ^ 7?T 10 3.4 3-4 6.1 1.4 2.0 10.3 10.3 12.4 3.8 3.8 5.3 30 2.3 2.7 3.8 1.4 ... 12.4 10.3 12.4 7.1 9.1 7.2 50 2.3 1.9 3.4 0.8 i.i 14.5 10.3 14-5 9-9 19-8 9.1 IRON PHOSPHATE Fe 2 (PO 4 ) 3 . THE ACTION OF WATER AND OP AQUEOUS SALT SOLUTIONS UPON FERRIC PHOSPHATE. (Lachowicz Monatsh. Chem. 13, 357, '92; Cameron and Hurst J. Am. Chem. Soc. 26, 888, '04.) The experiments show that the ordinary precipitation methods for the production of ferric phosphate give products which do not conform to the formula Fe 2 (PO 4 ) 3 . By digesting such samples with water very little is dissolved, but the material is decomposed to an extent depending upon the relative amounts of solid and solvent used. The amount of PO 4 dissolved per gram of Fe 2 (PO 4 ) 3 varies from about 0.0026 gram removed by 5 cc. H 2 O to 0.0182 gram removed by 800 cc, H 2 O at the ordinary temperature. SOLUBILITY FERRIC PYROPHOSPHATE IN AQ. AMMONIA AT o. (Pascal, 1909.) The solutions containing an excess of salt were agitated violently every half hour for seven hours and filtered at o. The sat. sol. was analyzed for ammonia and for residue obtained by evaporation. Gms.NH 3 F< .{??n Gms.NH 3 P^Sol" 13 ' Pe^ioo^s. Solid Phase. P^gms. pem's. Solid Phase. 0.884 5.606 Fe(PA)i 5*92 14-71 viscous black deposit 1.59 9-75 " 8.26 13.89 chamois colored lumps 3.71 14-85 " 10.55 7.40 4.72 15.94 15.96 2.52 5.93 I3-92 viscous black deposit 18.83 -445 7.91 14.61 SOLUBILITY OF FERRIC PHOSPHATE IN AQ. PHOSPHORIC ACID SOLUTIONS AT 25- (Cameron and Bell, 1907.) Solid ferric phosphate of unknown composition was constantly agitated with aq. phosphoric acid solutions of concentrations up to 5% for 4 months. Analy of the sat. solutions and solid phases were made. ses ^of Gms. per 100 Gms. Sat. Sol. Solid Phase. Sat.' Sol. .0074 .0162 .0244 .0310 0383 FeA- PA. ' O.OIO5 0.942 0.0205 1-984 0.0384 2.838 0.0611 3.770 0.0849 4.706 Solid Solution it 343 IRON SULFATB SOLUBILITY OF FERROUS SULFATE IN WATER. (Fraenckel, 1907.) Gms. FeSO 4 Gms. f per 100 Solid Phase. Gms.H 2 O. t. FeSO 4 penoo Solid Phase. Gms. H 2 O. o. 172 I.OI56 Ice 45 .18 44 32 FeSO 4 .7H 2 O o. 566 4.2^2 50 .21 48 .60 " I . 06 3 8.7054 52 50 .20 " I . 511 12.713 54-03 S 2 .07 " I. 771 14.511 56 .56 ti r. pt54 . 58 (1 I T7|Cf\ . H,0 I . 82Eutec .17.53 Ice+FeS0 4 . 7 H 2 60 .OI / 54 95 FeS0 4 . 4 H 2 O 15.65 FeS0 4 . 7 H 2 65 55 59 " unstable + 10 20.51 70 .04 56 .08 " " 15- 25 23.86 64 .8tr. P t. . . FeSO 4 . 4 H 2 O+FeSO 4 .H 2 O 20. 13 26.56 68 .02 52 31 FeSO 4 .H 2 O 25- O2 29.60 77 1 45 .90 " 30. 03 32.93 80 .41 43 -58 " 35-07 36.87 85 .02 40 . 4 6 " 40. 05 40 . 2O " 90 -13 37 .27 " 4) 2 t Gms. K 2 Fe(SO4)2 per 100 Gms. H 2 O. per 100 Gms. H 2 0. o 19-6 35 41 10 24.5 40 45 14-5 29.1 55 56 16 30-9 65 57.3 25 36-5 70 64.2 IRON SULFIDE (Ferrous) FeS. One liter of water, saturated at 18 with precipitated ferrous sulfide, contains 70.I.IO" 6 mols. FeS = 0.00616 gm., determined by conductivity method. (Weigel, 1906, 1907.) Additional data for the solubility in water are given by Bruner and Zawadzki. loo gms. anhydrous hydrazine dissolve 9 gms. FeS at room temp, with decom- position. (Welsh and Broderson, 1915.) Fusion diagrams for mixtures of FeS + PbS and for FeS + ZnS are given by Friedrich, 1907, 1908. IRON SULFONATES. SOLUBILITY OF IRON PHENANTHRENE SULFONATES IN WATER AT 20. (Sandquist, 1912.) Gms Anhydrous Salt Salt ' per 100 Gms. H 2 O. Iron 2-Phenanthrene Monosulfonate sH^O o . 044 " 3- " " 5H 2 0.20 " lo- 6H 2 O 0.16 IRON THIOCYANATE (Ferric) Fe(CNS) 3 -3H 2 O. DISTRIBUTION BETWEEN WATER AND ETHER. (Hantzsch and Vagt, 1901.) Results at 25. Results at Several Temperatures. Gm. Mols. Fe(CNS) 3 per Liter. c Gm. Mols. Fe(CNS) 3 per Liter. ,. H 2 O Layer (c). Ether Layer (cO- c> H 2 O Layer (c). Ether Layer (c 1 ) . c ' 0.0202 0.0108 1.87 o 0.0089 0.0167 -53 2 0.0119 0.0034 3.51 10 0.0127 0.0128 0.995 0.0066 0.00093 7-7 20 0.0165 0.0091 1.814 0.0035 0.00025 J 3-95 3 0.0196 0.0059 3.303 35 0.0207 0.0048 4.32 Results for the effect of HNO 3 upon the distribution at 25 are also given. ITACONIC ACID CH:C(COOH)CH,COOH. Data for the distribution of itaconic acid between water and ether at 25 are given by Chandler, 1908. KERATIN. 100 gms. H 2 O dissolve 8.71 gms. keratin at 20-25. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 16 gms. keratin at 20-25. " Pyridine mixes with keratin in all proportions at 20-25. " ' SOLUBILITY IN WATER, (von Antropoff, 1909-10.) (Results in terms of coefficient of absorption as defined by Bunsen, see p. 227, and modified by Kuenen in respect to substituting mass for volume of water involved.) t. Abs. Coef. (First Series). Abs. Coef. (Second Series). o 0.1249 0.1166 10 0.0965 0.0877 20 0.0788 0.0670 30 0.0762 0.0597 4O O.O74O 0.0561 50 0.0823 0.0610 The cause of the differences between the first and second series of results was not ascertained by the author. LACTIC ACID 346 LACTIC ACID (t) CH 3 CHOHCOOH. DISTRIBUTION BETWEEN WATER AND ETHER. (Pinnow, 1915.) Results at 27.5. Results at 15. Gm. Mols. Acid per Liter: Gm. Mols. Acid per Liter: (w) HjO Layer (w). Ether Layer (e). e H 2 Layer (w). Ether Layer (e). () I. 9 8 0.215 9.19 1-354 0.130 - 10.42 I-3SI 0-133 10.15 0.3203 0.0278 11.52 0.297 0.0246 12. 08 0-1855 0.0156 11.89 0.1448 O.OIlS 12.27 0.0548 O.0046 11.88 F.-pt. data for mixtures of trichlorolactic acid and dimethylpyrone are given by Kendall, 1914. LACTOSE (see sugars, pages 695-7). LANTHANUM BROMATE La(BrO 3 ) s .9H 2 O. 100 gms. H 2 O dissolve 28.5 gms. lanthanum bromate at 15. (Marignac.) LANTHANUM CITRATE 2(LaC 2 H 6 O 7 ).7H 2 O. 100 gms. aq. citric solution containing 10 gms. citric acid per 100 cc., dissolve 0.8 gm. La(C 6 H 6 O 7 ) at 20. (Holmberg, 1907.) LANTHANUM CobaltiCYANIDE La 2 (CoC 6 N 6 ) 2 .9H 2 O. 100 gms. aq. 10% HC1 (dm = 1.05) dissolve 10.41 gms. salt at 25. (James and Willand, 1916.) LANTHANUM GLYCOLATE La(C 2 H s O3) 3 . One liter H 2 O dissolves 3.328 gms. La(C 2 H 3 O 3 )3 at 20. (Jantsch'and Grunkraut, 1912-13.) LANTHANUM IODATE La(I0 3 ) 3 . SOLUBILITY IN WATER AND IN AQ. SALT SOLUTIONS AT 25. (Harkins and Pearce, 1916.) 1000 gms. H 2 O dissolve 0.6842 gm. La(IO 3 ) 3 at 25, dap sat. sol. = 0.99825. " ~ Cone, of Gms. ^ of Cone, of Gms. , f Salt. Salt, Milli- Li(IO 3 ) 3 Salt. Salt, Milli- *! - Nonnal. per Liter. Sat. Sol. Normal. per Liter. Sat. Sol. La(NO,), 2 0-5595 0.99732 NaNO 3 25 0.86901 .00250 " 5 0.5288 0.99807 So 0.99040 .00385 ti 10 0.5194 0.99859 IOO I . 1603 .00742 " 50 0.5522 I. 00212 200 I-385 .01290 u IOO 0.6214 I. OO66I 400 1.636 .02422 'n 200.52 0.7431 I.OI533 800 2. 156 .04677 KIO, 0.0990 0.6290 I.OOO3O I6OO 2.859 .09005 14 0.4957 0.5633 1.00027 " 32OO 3.030 .17243 It K 0.9914 1.9828 0.4970 0.3738 1.00030 I.0003I ^N^O 1 26 ^ 4 0.631 .00112 NalO, 0.0913 0.63538 I.0006o 52.68 0-674 .00355 " 0.4560 o . 56466 I.OOO59 105.36 0-754 .00971 1C 0.9130 0.50835 1.00065 158.04 0.816 .01608 u I . 8260 0.39938 1.00065 196.83 0.867 .02183 U 3.6530 0.19736 1.00069 393.67 1.063 .04343 u 4.5326 0.13393 1.00083 787.35 1-364 .08286 (i 6.7989 0.09733 I.OOI3O I574-70 1.923 .16652 According to Rimbach and Schubert (1909), one liter H 2 O dissolves 1.681 gms. Li(IO 3 ) 3 at 25, determined chemically, and 1.871 gms. determined electrolytically; solid phase, 2La(IO,) 3 .3H 2 O. LANTHANUM MALONATE La 2 (C 3 H 2 O 4 ) 3 .5H 2 O. 100 gms. aq. Am. malonate sol. (10 gms. per 100 cc.) dissolve 0.2 gm. ) La 2 (C 3 H 2 O4)s loo gms. aq. malonic acid sol. (20 gms. per loocc.) dissolve 0.6 gm. f at 20. (Holmberg, 1907.) 347 LANTHANUM MOLYBDATE LANTHANUM MOLYBDATE La 2 (MoO 4 ) 3 . One liter H 2 O dissolves 0.0179 g m - La 2 (MoO 4 ) 3 at 25 and 0.0332 gm. at 85. (Hitchcock, 1895. LANTHANUM Ammonium NITRATE La(NO 3 ) 3 .2NH 4 NOs. 100 gms. H 2 O dissolve 181.4 gms. La(NO 3 ) 3 .2NH 4 NO3 at 15. (Holmberg, 1907.) LANTHANUM j Double. NITRATES. SOLUBILITY OF LANTHANUM DOUBLE NITRATES IN CONC. HNO 3 (dia = 1.325) AT 1 6. (Jantsch, 1912.) Salt. Lanthanum Magnesium Nitrate Nickel Cobalt Zinc " Manganese " Formula. [La(N0 3 ) 6 ] 2 Mg 3 .24H 2 Co 3 " Zn 3 " Mn 3 " Gms. Hydrated Salt Dissolved per Liter Sat. Sol. 63-8 80.3 109.2 124.1 LANTHANUM NITRATE La(NO 3 ) 3 . SOLUBILITY OF LANTHANUM NITRATE IN AQUEOUS SOLUTIONS OF LANTHANUM OXALATE AT 25 AND VICE VERSA. (James and Whittemore, 1912.) Gms. per ioo Gms. Sat. Sol. Solid Phase. Gms. per 100 Gms. Sat. Sol. La 2 (C 2 4 ),. 3 H 2 O 0.67 2.IO 2.23 2.26 2-34 2-47 2-59 2.68 not det. not det. La;(C 2 4 ) 3 . La(NO 3 ) 3 . ' ooiia rnase. not det. not det. La 2 (C 2 4 ) 3 . 5 H 2 3-32 42.27 La 2 (C 2 4 ) 3 .8H 2 2.80 38-50 " 2.51 35-57 " 2.21 31-53 ft 2.01 28.63 * I. 4 6 22.15 1.18 17.99 H 0.50 9.89 0.28 5-o6 H La(N0 3 ) 3 . 60.17 LatNOa), 59-91 59-03 " 59-03 58.22 55-20 52-74 49.84 45-26 La 2 (C 2 4 ) 3 . S H 2 LANTHANUM OXALATE La 2 (C 2 O 4 ) 3 .9H 2 O. One liter water dissolves 0.00062 gm. La 2 (C 2 O 4 ) 3 at 25, determined by electroly- tic method. (Rimbach and Schubert, 1909.) ioo gms. aq. 10.2% HNO 3 (d = 1.063) dissolve 0.80 gm. La 2 (C 2 O 4 ) 3 at 15. (v. Scheele, 1899.) ioo gms. aq. 19.4% HNO 3 (d = 1.116} dissolve 2.69 gms. La 2 (C 2 O 4 ) 3 at 15. (v. Scheele, 1899.) SOLUBILITY OF LANTHANUM OXALATE IN AQ. SOLUTIONS OF SULFURIC ACID AT 25. (Hauser and Wirth, 1908; Wirth, 1908; Wirth, 1912.) Normal- Gms. per ioo Gms. Normal- Gms - P 61 " J oo Gms. ity of Sat. Sol. Solid Phase. ity of Sat. Sol. Solid Phase. H *SO 4 . La 2 O 3 = La 2 (C 2 4 ) 3 . H 2 SO 4 . La 2 O 3 o.i 0.0208 0.0346 La 2 (C 2 O 4 ) 3 .9H 2 O 2 0.5 0.0979 0.1629 La2(C 2 O 4 ) 3 . 0.4417 0.7344 La 2 (C2O 4 ) 3 .9H 2 3.09 0.680 1.1306 4.32 0.880 1.4630 5.6 1.092 1.8155 " 0.2383 0.3962 c.S 0.319 0.5304 SOLUBILITY OF LANTHANUM OXALATE IN AQ. SOLUTIONS OF OXALIC ACID AT 25. (Hauser and Wirth, 1908.) Normality of Aq. Gms. per ioo Gms. Sat. Sol. Solid phase La 2 (C 2 4 ) 3 . Oxalic Acid. o . i unweighable i.o 0.00032 0.00053 3.2 (sat.) 0.00045 0.00075 Results are also given for the solubility in mixtures of sulfuric and oxalic acids, ioo cc. aq. 20% triethylamineoxalate dissolve approx. 0.032 gm. La 2 (C 2 O 4 ) 3 . (Grant and James, 1917.) LANTHANUM PHOSPHATE 348 LANTHANUM Dimethyl PHOSPHATE La 2 [(CH,)jPO 4 ]6.4HjO. 100 gms. H 2 O dissolve 103.7 gms. La 2 [(CH 3 ) 2 PO 4 ]6 at 25. (Morgan and James,li9t4.) LANTHANUM SULFATE La 2 (SO 4 ) 3 .9H 2 O. SOLUBILITY IN WATER. (Muthmann and Rolig, 1898.) Gms. La2(SO 4 ) 3 per 100 Gms. Solution. Water. 2.91 3 2.53 2.6 Gms. La2(SO 4 )3 per 100 Gms. Solution/ Water. o 14 30 1.86 1.9 5 75 100 o-95 0.68. 0.96 0.69 SOLUBILITY OF LANTHANUM SULFATE IN AQ. SOLUTIONS OF AMMONIUM SULFATE, POTASSIUM SULFATE AND SODIUM SULFATE. (Ban-e, 1910, 1911.) In Aq. (NH 4 ) 2 SO 4 at 18. In Aq. K 2 SO 4 at 16.5. In Aq. Na 2 SO 4 at 18. Gms. per 100 Gms. H 2 O. Solid Gms. per 100 Gms. H 2 O. Solid Gms. per 100 Gms. H 2 O. Solid (NH4) 2 SO 4 . La2(S04) 3 . phase - K 2 SO 4 . La2(SO 4 ) 3 . Muse. NazSCv La2(SO 4 ) 3 . Phase. 4.01 0.393 I.I-2 o 2.198 1.0.9 2.130 1.0.9 8-73 0.279 0.247 0.727 1. 1.2 0.395 0.997 I.I. 2 18.24 0-253 0.496 0.269 0.689 0-353 11 27.89 0.476* " 0.846 0.185 0-774 0.299 (t 36.11 0.277* " 1.029 0.054 1.5 1.136 0.129 ti 47-49 0.137 2.5 1.156 0.022 " 2.480 0.044 " 53-82 0.067 1.5 3.802 0.019 it 65.29 0.0117 5.548 0.016 " 73-78 . 0.0033 * = unstable equilibrium. 1.0.9 KorN; = La 2 (S0 4 ) 3 . 9 H 2 0, a), 2.5 = 2La 2 (S0 4 ) 1. 1.2 = La 2 (SO 4 ) 3 .* 2 SO 4 .2H 2 O (where X = 3 .5(NH 4 ) 2 S0 4 , 1.5 =JLa 2 (S0 4 ) 3 .5* 2 S0 4 . (NHO, SOLUBILITY OF LANTHANUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (Wirth, 1912.) Normality of Aq. H 2 S0 4 . Gms. per 100 Gms. Sat. Sol. pS. N g- ty Gms. per 100 Gms. Sat. Sol. ^Solid 1^03 = La2(S04) 3 . La 2 3 = = La 2 (S0 4 ) 3 . Water I 43 2 483 La 2 (S0 4 ) 3 . 9 H 2 4 .321 I .11 I .927 LajCSOJs.gl o 505 I .69 2 934 6 .685 531 .9217 i .10 I .796 3 .118 9 .68 O .266 O .4617 2 .16 I .818 3 156 12 .60 .214 o 371 3 39 I .42 2 -465 15 15 .177 307 Data for the solubility of lanthanum sulfate in aq. H 2 SO 4 in presence of solid oxalic acid at 25 are given by Wirth, 1908. LANTHANUM SULFONATES. SOLUBILITY OF EACH IN WATER. Sulfonate. Lanthanum Benzene Sulfonate m Nitrobenzene Sulfonate ' m Chlorbenzene Sulfonate m Brombenzene " Gms. Anhydrous Formula. Sulfonate Authority. per too Gms. H 2 O. 63 . 1 (Holmberg, 1907.) 16 La[CH 6 SO3]3.9H 2 O La[C 6 H 4 NO 2 SO3] 3 .6H 2 O LafCjH4Cl.SO3ls.9H2O LalC6H4Br.SO3l3.9H2O I3-I 12.9 ' (6) Chloro (3) Nitrobenzene (i) )Sulfo-j La[C 6 H 3 Cl(NO2)SO 3 ] 3 .8H 2 O 24 . 5 " ' (i) Bromo (4) Nitrobenzene (2) { nate \ LalCgHjBrNOzSO^.SHzO 5 (Katz & James, '13.) *' a Naphthalene Sulfonate La[C 10 H 7 SO 3 ] 3 .6H 2 O 5 . 2 (Holmberg, 1907.) " 1.5 Nitronaphthalene Sulfonate La[CioH 8 (NO 2 )SO 3 l 3 .6H 2 O 0.55 " "1.6 " " . 9 H.D 0.21 " 1.7 " " " . 9 IW) i.i 349 LANTHANUM TARTRATE LANTHANUM TARTRATE La 2 (C 4 H 4 Oe One liter H 2 O dissolves 0.059 gm. La 2 (C 4 O 4 O 6 )3 at 25 (solid phase La 2 (C 4 H 4 O 6 )3. 3H 2 O). Determined by electrolytic method. (Rimbach and Schubert, 1909.) SOLUBILITY OF LANTHANUM TARTRATE IN AQ. TARTARIC ACID AND AMMONIUM TARTRATE SOLUTIONS AT 20. (Holmberg, 1907.) In Aq. Tartaric Acid. In Aq. Ammonium Tartrate. Gms. Tartaric Acid per Gms.La^C^O^sper Gms. Am. Tartrate per Gms. La^C^O^s per 100 cc. Solvent. too Gms. Sat. Sol. 100 cc. Solvent. 100 Gms. Sat. Sol. 20 0.6 10 0.2 40 1.2 20 0.6 LANTHANUM TUNGSTATE La 2 (WO 4 ) 3 . One liter H 2 O dissolves 0.0117 gm. La 2 (WO 4 ) 3 at 27 and 0.0236 at 65. u (Hitchcock, 1895.) LAURIC ACID Ci 2 H 23 COOH. SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.) Alcohol t Gms.CuH-aCOOHDer Alcohol t Gms. C, 2 H 23 COOH per Alcohol. t . IQO Gms Sa( . Sol Alcohol. t . IQQ Gms Sat sd Methyl Alcohol o 14.8 Propyl Alcohol o 21.5 21 58.6 21 52.6 Ethyl Alcohol o 20.5 Isobutyl Alcohol o 18.4 21 57.3 21 49.7 LEAD Pb. An extensive investigation of the solubility of lead in the water passing through lead pipes is described by Paul, Ohlmiiller, Heise and Auerbach, 1906. ^ The solubility is increased by oxygen, CO 2 , sulfates and perhaps other salts; it is de- creased by hydrocarbonates. SOLUBILITY OF LEAD IN LIQUID AMMONIA-SODIUM SOLUTIONS AT 33. (Smith, F. H. t 1917.) Gm. Atoms Sodium Gm. Atoms Pb Gm. Atoms Na Gm. Atoms Pb per Liter of Liquid Dissolved per Gm. per Liter of Liquid Dissolved per Gm. Ammonia. Atom Na. Ammonia. Atom Na. 0.078 1-95 0.13 2.17 0.093 2 - 20 - I 4 2 - 12 0.094 2.03 0.33 1.83 o.no 2.24 0.34 1.73 0.12 1.78 LEAD ACETATE Pb(C 2 H 3 O 2 ) 2 .3H 2 O. loo gms. H 2 O dissolve 55.04 gms. Pb(C 2 H 3 O 2 ) 2 at 25. (Jackson, 1914.) EQUILIBRIUM IN THE SYSTEM LEAD OXIDE, ACETIC ACID, WATER AT 25. (Sakabe, 1914.) Gms. per 100 Gms. Sat. Sol. .. . _. Gms. per 100 Gms. Sat. Sol. (C 2 H 3 2 )(HO)Pb-f- PbO. CH 3 COOH. oouu jrnase. . / PbO. CHjCOOI 4.18 2 *-53 Pb(C 2 H 3 2 ) 2 . 3 H 2 > 3.80 16.78 7- I 5 7.20 3.16 13.07 " 5.20 5-61 2.64 5-49 3-78 4.17 3-34 5-36 M 2.89 2 -5i 4-38 7-30 i-45 1.03 5.18 7.92 " +(0,11302) (HO)Pb i .05 0-54 5-59 7.72 (QHAXHOJPb 1.07 0.48 6.51 7-79 " i 0.20 PbO Equilibrium was attained quickly in the acid solutions but 2-3 days were required in case of the basic salts. Both sat. solutions and solid phases were analyzed. LEAD ACETATE 35O EQUILIBRIUM IN THE SYSTEM LEAD ACETATE, LEAD OXIDE, WATER AT 25. (Jackson, 1914.) ^26 Of Gms. per too Gms. Sat. Sol. Solid djsof Gms. per ioo Gms. Sat. Sol. Solid Sat. Sol. ' PbO. Pb(C 2 H 3 2 ) 2 . Phase. Sat. Sol. PbO. Pb(C 2 H 3 Oo) 2 . Phase. I .326 .27* 35-19 i-3 2 .280 24 74 49 .21 3.1.3+1.2.4 1-334 '+0 .IO 35-60 2 .048 2 3 59 43 17 1.2.4 1.367 I .OI 37-14 it I 951 22 .78 40 .78 (( 1.422 3 .38 38.93 a I 657 19 -63 3i .40 ii 1-531 6 .01 41-95 (( I 599 18 73 29 -63 tt 1.658 9 47 44.71 (C I .382 14 .62 20 .96 tt . . . 14 .22 47.88 (( I .348 13 .41 19 -65 ft 1.852 14 -44 47.92 (( I .229 10.66 12 99 tt . . . 15 .89 48.951 .3+3-1.3 I .157 8 47 8 .64 tt 1.930 IS .90 48.42 3.1.3 I .119 7 .87 5 27 tt 1.942 16 25 48.85 (( I .117 7 79 5 25 ft 1.956 16 -65 49.04 (( 4 17 Pb(OH) 2 2.024 18 -83 48.71 tt I .100 6 '*4 4 3i n 2.161 22 23 48.52 (( I 095 6 54 4 25 tt 2.193 22 94 48.96 ft I -085 5 .91 3 .82 tt 23 .28 49.14 ft I 075 5 .29 3 .40 tt 2.22O 23 53 49.01 {( o .20 .11 H,0. Ot: Sat. Sol. 0.02II o . 00996 n PbCl2 0.0030 18 0.0325 0.0195 n O.OOOS 25 0.0370 0.0392 n " 0.0005 IOO O.IOSI Aq. Solution of: Gms. PbFCl per ioo cc. Sat. Sol. o.o535wHCl 0.0758 0.1069^ " 0.1006 0.0518 n CH 3 COOH 0.0512 O.I055/J 0.0561 357 LEAD CHROMATE LEAD CHROMATE PbCrO 4 . SOLUBILITY OF LEAD CHROMATE IN WATER. t. "* G rffi' Method. Authority. Normality Milligrams * 'b per 100 cc. b; it. SQL at: Normality of HC1. 18. 25- 37. HNOj. O.I 3.86 4.96 7.40 O.I 0.2 8-15 10. 06 15.40 0.2 o-3 I3-56 I7-38 27.30 -3 0.4 22.14 2 7 .78 43.60 0.4 0.5 32.30 42.60 68 o-5 0.6 46.60 61.06 97.20 0.6 l8 3.0.IO" 7 O.OOOIO Solution equilibrium (Beck and Stegmiiller, 1910.) 1 .4. 1 0~ 7 . 00004 (Auerbach and Pick.) 1 8 3.2.IO" 7 O.OOOIO Conductivity (Kohlrausch, 1908.) 20 2.I.IO" 7 0.00007 Radio Indicators (v. Hevesy and Rona, 1915.) SOLUBILITY OF LEAD CHROMATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS. (Beck and StegmiUler, 1910, 1911.) Solubility in Aq. HC1. Solubility in Aq. HNO 3 at 18. Milligrams Pb per 100 oc. Sat. Sol. 2; 67 4.70 6.46 8. 3 I 10.31 12.39 Results are also given for the solubility of mixtures of lead chromate and lead sulfate in aqueous hydrochloric acid at 25 and 37. SOLUBILITY OF LEAD CHROMATE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS. (Lacland and Lepierre, 1891.) t. Grams KOH per loo cc. Grams PbCrO 4 per icocc. 15 2.308 I.Ip 60 2.308 1.62 80 2.308 2.61 102 2.308 3.85 LEAD CITRATE Pb(C 6 H 5 O 7 ) 2 .H 2 O. SOLUBILITY IN WATER AND IN ALCOHOL. 100 gms. H 2 O dissolve 0.04201 gm. Pb(C 6 H 5 O 7 ) 2 .H 2 O at 18, and 0.05344 gm. at 25. 100 gms. alcohol (95%) dissolve 0.0156 gm. Pb(C 6 H 6 O 7 ) 2 .H 2 O at 1 8, and 0.0167 g m - at 2 5- (Partheil and Httbner Archiv. Pharm. 241, 413, '03.) LEAD DOUBLE CYANIDES. SOLUBILITY IN WATER. (Schuler Sitzber. Akad. Wiss. Wien, 79, 302, '79.) Double Salt. Formula. t. ^^Q 00 Lead Cobalticyanide Pbg[Co(CN) 6 ] 2 .7H 2 O 18 56.5 Lead Cobalticyanide PbJCo(CN) 6 ] 2 .7H 2 O 19 61.3 Lead Potassium Cobalticyanide PbKCo(CN) 6 .3H 2 O 18 14.8 Lead Cobalticyanide Nitrate Pb3fCo(CN) 6 ] 2 .Pb(NO 3 ) 2 .i2H 2 O 18 5.9 Lead Ferricyanide Nitrate PbjFe(CN) 6 ] 2 .Pb(NO 3 ) 2 .i2H 2 O 16 7.5 Lead Potassium Ferricyanide PbKFe(CN) 6 .3H 2 O 16 21.0 LEAD FLUORIDE PbF 2 . One liter of water dissolves 0.6 gm. PbF 2 at 9, 0.64 gm. at 18, and O.68 gm. at 26.6 (conductivity method). (Kohlrausch, 1908.) ipo cc anhydrous hydrazine dissolve 6 gms. PbF 2 at room temp, with decom- position. (Welsh and Broderson, 1915,) Freezing-point data (solubility, see footnote, see p. i) for mixtures of PbF2 and PbI 2 are given by Sandonnini (1911); for mixtures of PbF 2 + PbO by Sandon- nini (1914); for mixtures of PbF 2 + Pb 3 (PO 4 ) 2 by Amadari (1912), and for PbF 2 + NaF by Puchin and Baskow (1913). LEAD FORMATE 358 LEAD FORMATE Pb(HCOO) 2 . SOLUBILITY OF LEAD FORMATE IN AQUEOUS SOLUTIONS OF BARIUM FORMATE AT 25. (Fock, 1897-) Mol. % in Solution. Grams per Liter. Sp. Gr. of In Solid Phase Mol. % of Pb(HCO 2 ) 2 . Ba(HCO 2 ) 2 . ' Pb(HC0 2 ) 2 . Ba(HCO 2 ) 2 . Solutions. Pb(HCO 2 ) 2 . Ba(HC0 2 ) 2 .' O IOO 28.54 1.2204 IOO 0.2Q 99.71 I .IO4 28.65 I.22I3 1.72 98.28 0.74 99.26 2.803 28.90 I .2251 5-29 94.71 1.24 98.76 5-39 32.24 1.2529 11.94 88.06 2.91 97.09 ii .42 29.29 I.234I 24.81 75-19 5-92 94.08 23.11 28.13 1-2355 56.54 43-46 IOO 28.35 I .0911 IOO LEAD HYDROXIDE Pb(OH) 2 . SOLUBILITY OF LEAD HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Moist Lead Hydroxide used, temperature not given.) (Rubenbauer, 1902.) Grams per 100 cc. Solution. Amount of Na Amt. of Pb Mol. Dilution in 20 cc. in 20 cc. of NaOH. o . 2024 O.IOI2 2.27 0.3196 0.1736 1.44 0.5866 0-3532 0.785 0.9476 o . 407 i 0.485 1.7802 0.5170 0.258 NaOH. 1-759 2.7 7 8 5-1 8-235 I5-470 Pb(OH) 2 . 0.590 I .OIO 2.056 2.370 3.010 LEAD IODATE Pb(IO 3 ) 2 . One liter of water dissolves 0.0134 gm. Pb(IO 3 ) 2 at 9.2, 0.019 gm. at 18 and O.023 gm. at 25.8. (Kohlrausch, 1908; Bottger, 1903.) One liter H 2 O dissolves 0.0307 gm. Pb(IO 3 ) 2 at 25. (Harkins and Winninghoff, 1911.) SOLUBILITY OF LEAD IODATE IN AQUEOUS SALT SOLUTIONS AT 25. (H. and W., 1911 ) Gms. per Liter. KNO 3 . 0.202 I .Oil 5-055 20.220 Gms. per Liter. Gms. per Liter. Pb(I0 3 ) 2 . 0.0318 0.0363 0.0567 0.0708 LEAD IODIDE PbL o 15 25 35 45 55 65 80 95 IOO Density. (H 2 O at o.) I. 0006 0.9998 o . 9980 0.9951 0.9915 0.9872 0-9745 o 9671 KIO 3 . O.OII3 0.0227 Pb(N0 3 ) 2 . 0.0165 0.165 SOLUBILITY (Lichty, Grams PbI 2 Pb(IO 3 ) 2 . 0.0199 0.0122 0.0242 O.OII5 IN WATER. 1903.) per 100. cc. Solution. O.O442 0.0613 0.0762 0.1035 o . 1440 0.1726 0.2140 0.2937 0.3814 O.42O Grams H,O. 0.0442 O.O6I3 0.0764 0.1042 0-1453 0.1755 0.2183 0.3023 0.3960 0.436 Pb(N0 3 ) 2 . 1.656 16.561 82.805 496.83 Pb(I0 3 ) 2 . O.OO52 0.0045 0.0078 0.0418 Millimols PbI 2 per 100. cc. Solution. 0.096 0.133 0.165 0.224 0.312 0-374 0.464 0.637 0.828 0.895 Grams H 2 O. 0.096 0.133 0.166 0.226 0-315 0.381 0-473 0.656 0.859 0.927 ^ Data for the solubility of lead iodide in water by the conductivity method are given by Bottger, 1903; Kohlrausch, 1904-05; Denham, 1917. 359 LEAD IODIDE SOLUBILITY OF MIXTURES OF LEAD IODIDE AND POTASSIUM IODIDE IN WATER. (Ditte, 1881; Schreinemakers, 1892.) Gms. per 1000 Gms. H 2 O. PbI 2 . KT 5 ... 163 Double Salt +PbI 2 50 526.7 1906 Double Salt +KI 20 9 260 64 789.3 2161 28 25 325 83.5 1,108.6 2434 39 45 449 92 1,273 2566 67 255 751 137 2,382 3278 80 731 1186 165 4,187 4227 80 569.9 976.4 218 10,303 104.5 1411 1521 241 12,803 7998 " 120 2151 1812 " 242 12,749 ... " 137 2874 2097 250 15,264 175 5603 2947 157 5, 218 gms. Pbl,. 2 Kl >bl 2 . 2 Kl.2iH s o 189 ... 3339 " 172 6,489 ' 9 96.6 1352 ' +KI 186 7,903 13 114.3 1384 " 194 9,266 ' 23 186.3 I 3 I " 201 11,320 ' Ordinary solubility method used for temperatures below boiling-point of the solution and sealed tube (with constriction in middle) method used for tem- peratures above boiling point. One liter sat. aqueous solution of iodine dissolves 0.0021 6 gm. mols. PbI 2 (0.996 gms.) at 2O. (Fedotieff, 1911-12.) SOLUBILITY OF LEAD IODIDE IN ACETONE, ANILINE AND AMYL ALCOHOL. (von Laszczynski, 1894.) AO Gms. PbL per ioo Gms. Solvent. 59 0.02 13 -5o 184 i. 10 C 5 H 7 OH 133.5 0-02 SOLUBILITY OF LEAD IODIDE IN PYRIDINE. (Heise, 1912.) Gms. PbI 2 Gms. Pbl, t. per ioo Gms. Solid Phase. t. periopGms. Solid Phase. Pyridine. Pyridine. 43 . 5 f .-pt. ... Pblj.sCjHjN 35 O.l88 Pblj^CsHjN 37 0.166 " 57 0.190 20 0.175 " 77 0.228 " 9 0.186 " 92 0.200 " o 0.200 " 98 0.340 " + 3 0.215 " 105 0.370 6tr.pt. 0.225 Pbiz.aCjHsN+Pbiz^CsH^ 108 0.410 " 15 O.2O8 Pblz^CsHsN 112 0.445 " ioo gms. 95% formic acid dissolve 0.25 gm. PbI 2 at 19.8. (Aschan, 1913.) ioo cc. anhydrous hydrazine dissolve 2 gms. PbI 2 at room temp, with decom- position. (Welsh and Broderson, 1915.) Freezing-point data for mixtures of lead iodide and silver iodide are given by Matthes (1911). T.F.AD MAT.ATE Pb.C 4 H 4 O5.3H 2 O. SOLUBILITY IN WATER AND ALCOHOL. (Partheil and Hubner, 1903.) ioo gms. H 2 O dissolve 0.0288 gm. PbC 4 H 4 O s .3H 2 O at 18, and 0.06504 gm. at 25. ioo gms. 95% alcohol dissolve 0.0048 gm. PbC 4 H 4 O 6 .3H 2 O at i8-25. Density of alcohol employed = 0.8092. LEAD LAURATE 360 LEAD LAUEATE, MYRISTATE, PALMITATE and STEARATE. SOLUBILITY OF EACH IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.) (See Lithium Laurate, p. 375, for formulas and other details. See also p. 362.) Solvent. Cms. of Each Salt (Determined Separately) per too Gms. Solvent. Pb Laurate. Pb Myristate. Pb Palmitate. Pb Stearate. 35 O.OOQ 0.005 O.OO5 0.005 So 0.007 0.006 0.007 0.006 25 O.OOg O.OO4 O 35 0.032 O.OO4 O.OOI O.OOI 5 0.264 0.052 0.012 0.004 15-5 0.061 0.056 0.051 0.039 25 0.096 0.078 0.069 0.051 35 0.113 0.082 0.076 0.062 5<> 0.280 O.II9 0.093 0.083 14-5 O.OIO 0.013 O.OIO 0.007 14 0.017 O.OIO 0.009 0.007 35-5 0.035 0.015 0.009 0.008 50 O.2OI 0.077 0.033 O.O2O 15 O.OII O.OIO 0.009 0.008 Water Abs. Ethyl Alcohol u u <( tt tt (( Methyl Alcohol Ether Ethyl Acetate (t u tt tt Benzene LEAD NITRATE Pb(NO 8 ) 2 . SOLUBILITY IN WATER. (Mulder; Kremers, 1854; at 15, Michel and Kraft, 1854; at 17, Euler, 1904.) Grams Pb(N0 3 ) 2 per 100 Gms. Grams Pb(NO 3 ) 2 per 100 Gms. V . O 10 17 20 25 30 Water. Solution. 27.33^) 3L6 34-2 35.2 36.9 38.8 Water. Solution. 41.9 45 47-8 52.7 57-1 34-54 36 44 50 52 56 60 4 3 4 7 L > 38. 8 W 48.3 54 56.5 60.6 66 40 50 60 80 IOO 17 6 9 78 88 107 127 52 4 7 .6 .76* 75 85 95 138.8 * Euler. (i) Mulder, (2) Kremers, (3) Average of M and K. Density of saturated solution at 17 = 1.405. loo gms. H 2 O dissolve 55.8 gms. Pb(NO 3 ) 2 at 20. Pb( (Euler.) F(LeBlanc and Noyes, 1890.) b(NO 3 ) 2 + KNO 3 at 20 dissolve 95.39 gms. Pb(NO 3 ) 2 . +61.05 gniS. KNO 3 . (LeBlanc and Noyes, 1890.) loo gms. H 2 O sat. with Pb(NO 3 ) 2 -f NaNO 3 at 20 dissolve 38.42 gms. Pb(NO 3 ) 2 +84.59 S ms - NaNO 3 . (Le Blanc and Noyes, 1890.) SOLUBILITY OF LEAD NITRATE IN AQUEOUS SOLUTIONS OF COPPER NITRATE AT 20. Fedotieff, 1911-12.) Gms. per 100 Gms. H 2 O. -55 -ii 2 J 1 OttL. O .419 7-7 39-34 354 15.04 27.80 ] .322 24.63 19.05 i .321 33-25 14.70 343 Cu(NO 3 )o. Pb(NO 3 ) 2 ." 1*20 ui 00.1. hjvsi. 37.96 13.08 1.360 60.32 8.19 I.45I 83.11 5-37 1.546 100.29 3-53 1.622 127.70* 2.33* 1.700 * Solid phase in contact with this solution = Pb(NO,), + Cu(NO,) 2 .6H,O. 361 LEAD NITRATE SOLUBILITY OF LEAD NITRATE IN CONCENTRATED AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA, DETERMINED BY SYNTHETIC METHOD. (Isaac, 1908.) (The several mixtures were enclosed in sealed tubes and lieated until only one or two very small crystals remained undissolved. The temperature was then determined at which the edges of these crystals just showed a change from sharp to round or vice versa.) Results for Lead Nitrate as Solid Phase. Cms, per 100 Cms. Sat. Sol. Results for Sodium Nitrate as Solid Phase. t O f Saturation. 32 35-5 39-5 44 49.1 55 58 62 65 SOLUBILITY OF MIXED CRYSTALS OF LEAD NITRATE AND_STRONTIUM NITRATE IN WATER AT 25. (Fock, 1897-) ' NaNO 3 . Pb(N0 3 ) 2 . 34-42 19.69 34-15 20.33 33-71 21-35 33-35 22. 19 32-94 23.15 32.60 23-93 32.47 24.24 32-33 24-57 32.19 24-89 t of Saturation. 21 26.5 3i 38.8 41 44.25 51 Cms, per 100 Gms. Sat. Sol. NaNOj. Pb(NOa) 2 ." 40.97 13.62 42.04 13.38 43-18 12.88 44.63 12.78 45 - 11 12.94 46.03 12-45 47.28 12.50 49-03 11.76 49.92 11.56 Mol. per cent in Solution. Gms. per ioo cc. Solution. Pb(NO 3 ) 2 . Sr(N0 3 ) 2 . Pb(N0 3 ) 2 . SrCNO-O,. IOO 46-31 O 87.41 12.39 50-47 4.56 78.68 21.32 53-92 8.14 56.39 43-61 45-34 17.81 60.29 39-71 44.48 18.74 33-70 36.30 25-23 35.03 24.58 75-42 19-13 37-54 o IOO o 71.04 Sp. Gr. of Solutions. .4472 .4336 .4288 ,4263 4245 .4468 .4867 .5141 Mol. per cent in Solid Phase. ' PKNO^. * Sr(NO)j. " ioo 99-05 98.11 97.02 96.06 83-84 32.88 o o 0.95 1.89 2.98 3.94 16.16 67.12 ioo SOLUBILITY OF LEAD NITRATE IN ETHYL AND METHYL ALCOHOL. Solvent. Gms. Pb(NOj) 2 per ioo Gms. Solvent at: . Aq. C 2 H 5 OH (Sp. Gr. 0.9282) 4.96 Abs. C 2 H 5 OH Abs. CHsOH 50. 14.9 (G) (deB) 8. 22. 40. 5.82 8.77 12. 0.04(20.5) 1.37 " (Gerardin, 1865; de Bruyn, 1892.) ioo cc. anhydrous hydrazine dissolve 52 gms. lead nitrate at room temper- ature with formation of a yellow precipitate. (Wekh and Broderson, 1915.) SOLUBILITY OF LEAD NITRATE IN PYRIDINE. (Walton and Judd, 1911.) Gms. Pb(NO,) 2 t. per ioo Gms. Solid Phase. Pyridine. -19.4 2-93 Pfc .(NQ^C.H -14-5 2.14 " IO 1.90 " o 3-54 " 5.4 3-93 M 8.7 5-39 M 14.72 6.13 ( 19.97 6.78 " 24.75 8.56 30.03 10.96 M 34.97 13.20 40.03 16 94 Gms. Pb(NOj) t. per ioo Gms. Pyridine. 45 22.03 49-97 29-37 51 tr. pt. 59-52 36.70 70 47.29 80 61.60 89-93 90.21 94 94 128.06 96 tr. pt. . 99.89 143-36 104.90 152 109.90 163.80 Solid Phase. +Pb(NO,) 2 .3C s H l N + 3 Pb(N0 3 ) 1 .2C 6 H l N 3Pb(NO,),.2CH|N LEAD NITRATE 362 SOLUBILITY OF LEAD NITRATE-NITRITE, Pb(NO 3 ) 2 .Pb(NO 2 ) 2 .2Pb(OH) 2 .2H 2 O, IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 13.3. (Chilesotti, 1908.) Normality of Gms. PbO per 100 Normality of Cms. PbO per 100 cc. Acetic Acid cc. Sat. Sol. Acetic Acid. Sat. Sol. o 0.601 0.25 5-45 0.0$ 1.323 0.50 9.690 o.io 2.185 -75 IJ5-874 LEAD OXALATE PbC 2 O 4 . One liter of water dissolves 0.0015 gni. PbC 2 O 4 at 18 (conductivity method). (Bottger Z.physik. Chem. 46, 602, '03; Kohlrausch Ibid. 50, 356, W-'os.) LEAD OXIDES. SOLUBILITY IN WATER. (Bottger; Ruer Z. anorg. Chem. 50, 273, '06.) No. Description of Oxide. G r !S' pe?LUer. 1. Yellow Oxide, by boiling Pb hydroxide with 10% NaOH i . 03 X io~* o. 023 2. Red Oxide, by boiling Pb hydroxide with cone. NaOH 0.56X10"* 0.012 3. Yellow Oxide, by heating No. i to 630 1.05X10"* 0.023 4. Yellow Oxide, by heating No. 2 to 740 1.00X10"* 0.022 5. Yellow Oxide, by heating com. yellow brown oxide to 620 i . 09 X io~* o. 024 6. Yellow Brown Oxide commercially pure i.ioXio"* 0.024 7. Yellow Brown Oxide, by long rubbing of No. 5. i. 12X10"* 0.025 Bottger gives for three samples of lead oxide, 0.017, 0.021, and 0.013 gm. per liter respectively. One liter H 2 O dissolves 0.068 gm. PbO at 18, solid phase PbO and 0.1005 S m - PbO at 1 8, solid phase Pb 3 O 2 (OH) 2 . (Pleissner, 1907.) Results for the solubility of hydrated lead oxide in water and dilute H 2 SO4 solutions are given by Sehnal (1909).* The results are considerably higher than the above, viz. 0.1385 gm. Pb per 1000 cc. H 2 O at 20; with increase of H 2 SO 4 the solubility decreases rapidly. 100 cc. anhydrous hydrazine dissolve i gm. lead oxide (red) at room temp. (Welsh and Broderson, 1915.) Freezing-point lowering data for mixtures of PbO + PbSO 4 are given by Schenck and Rassbach, 1908. Data for mixtures of PbO + SiO 2 are given by Weiller, 1911, and by Cooper, Shaw and Loomis, 1909. LEAD PerOXIDE PbO 2 . The two forms of lead superoxide, (a) amorphous and (&) crystalline, differ in their solubilities in sulphuric acid. One liter of very concentrated H 2 SO dissolves about o.oio mol. PbO 2 (&) at 22. One liter of cone. H 2 SO 4 contain- ing 1720 gms. per liter, dissolves 0.0995 m ol- PbO 2 (a) at 22. The solid phase is slowly converted to Pb(SO4) 2 . One liter of H 2 SO4 containing 1097 gms. HjSO* per liter dissolves 0.004 mol. PbO 2 at 22. The solid phase is converted more quickly to Pb(SO4) 2 . In more dilute H 2 SO4 solutions no solubility can be de- tected. (Dolezalek and Finckli, 1906.) LEAD PALMITATE, LEAD STEARATE. See also p. 360. 100 cc. absolute ether dissolve 0.0138 gm. palmitate and 0.0148 gm. stearate. ' (Lidoff, 1893.) LEAD TetraPHENYL Pb(C 6 H 6 )4. Freezing-point data for Pb(C 6 H 6 )4 + Si(C 6 H 6 )4 are given by Pascal (1912). LEAD PHOSPHATE (Ortho) Pb s (PO 4 ) 2 . One liter water dissolves 0.000135 gm. lead phosphate at 20 by conductivity method. (Bottger, 1903.) One liter of 4.97 per cent aqueous acetic acid solution dissolves 1.27 gms. Pba(PO 4 ),. (Bertrand, 1868.) 363 LEAD SUCCINATE LEAD SUCCINATE PbC 4 H 4 O 4 . SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hiibner, 1903.) ioo gms. H 2 O dissolve 0.0253 gm. PbC 4 H 4 O 4 at 18, and 0.0285 gm. at 25. 100 gms. 95% alcohol dissolve 0.00275 g m PbC 4 H 4 O 4 at 18, and 0.003 S m at 25. Density of alcohol used = 0.8092. SOLUBILITY OF LEAD SUCCINATE IN WATER. (Cantoni and Diotalevi, 1905.) t. 10. 21. 32. 39. 50. Gms. PbC4H 4 04 per ioo cc. sat. sol. 0.015 0.019 0.024 0.027 0.029 LEAD SULFATE PbSO 4 . SOLUBILITY IN WATER. (Average curve from gravimetric results of Dibbits (1874), Beck and Steg- miiller (1910) and Pleissner (1907) and conductivity results of Bottger (1903) and Kohlrausch (1904-05). t. Gms. PbSO 4 per Liter. t. Gms. PbSO 4 per Liter. o 0.028 20 0.041 5 -3i 25 0.045 10 0.035 3 -049 15 0.038 35 0.052 18 0.040 40 0.056 . Results considerably higher than the above are reported by Sehnal (1909). This author finds 0.082 gm. PbSO 4 per liter at 18 and claims that the presence of H 2 SO 4 in the PbSO 4 reduces the solubility very greatly. His results for the solubility in presence of small amounts of H 2 SO 4 are: Gms. H 2 SO 4 per 1000 cc. solu- tion o 0.0098 0.0196 0.0980 0.4900 0.9800 Gms. dissolved PbSO 4 per 1000 cc. solution at 20 0.082 0.051 0.025 0.013 0.006 o Sehnal also gives results showing that the solubility in water and dilute HjSO* solutions is exactly the same at 100 as at 20. Data for the solubility of PbSO 4 precipitates are given by deKoninck, 1907. SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AND OF SODIUM ACETATE. (Noyes and Whitcomb, 1905; Dunnington and Long, 1899; Dibbits, 1874.) In Ammonium Acetate. In Sodium Acetate. At 25 (Nand W.). ' At 100 (D. and L.). (D.). Millimoh per Liter. Gms. per Liter. G. NHiCaHad G. PbSO 4 Gms. per ioo Cms. H 2 O. NH.C.H.Q,. PbSO." ' NHAHA. PbS0 4 : * ShltS*' NaC 2 H,O 2 .' PbSO 4 . ' o 0.134 o 0.041 28 7.12 2.05 0.054 103.5 2.10 7.98 0.636 32 9.88 8.2 0.853 207.1 4.55 15.96 1.33 37 10.58 41 11.23 414.1 10.10 31.92 3.02 45 ii. 10 SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AT 25. (Harden, 1916.) Gms. per 1000 Gms. Sat. Sol. Gms. per rooo Gms. Sat. Sol. NHCiH,0*. PbS0 4 . NH 4 C,H,0,. PbSO 4 . " 7.96 0.636 53.4 5.60 1. 012 15.91 i-37 106.8 16.8 1.024 31.70 3.04 213.7 3S-9 1-045. Milligrams Pb per 100 cc. Solution. Normal- Mgm. Pb Normal- Mgm. Pb At 18. At 25. At 37. HNO 3 . So?. NCL per 100 cc. Sol. I 2.6O 3 3.80 O.I 10.48 O.I 11.19 19 22.18 28.04 O.2 17.48 0.2 18.73 35-70 42.88 54-50 0-3 23.4I o-3 26.51 55-37 65-15 84.04 0.4 29.84 0.4 33-76 75-27 88.80 I I I . 9O LEAD SULFATE 364 SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM ACETATE AND OF SODIUM ACETATE AT 25. (Fox, 1909.) In Aq. Potassium Acetate. In Aq. Sodium Acetate. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. c ... , * x Solid Phase. , *- ^ | hd CH 3 COOK. (CH 3 COO),Pb. CH,COONa. (CH 3 COO) 2 Pb. Na^SO,. Phase ' 4.33 2.54 PbSO.+PbKjCSO^j 6.69 0.78 0.34 PbSO, 9-3 3-55 6.95 0.81 0.35 17.81 5.43 11.76 2.73 1.26 26.58 9.83 16.90 5.70 2.49 28.82 11.40 19.92 8.24 3.60 28.93 19-41 21.51 10.75 4-68 In the case of the CH 3 COOK solutions, the double salt PbK 2 (SO 4 ) 2 is formed and no SO 4 ions enter the solution. SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC AND OF NITRIC ACIDS AND OF SODIUM CHLORIDE. .(Beck and Stegmiiller, 1910.) T_ A ur 1 ! I n Aq. HNOa In In Aqueous HL1. ^ Tft0 Normality of HCl. o( = pureH 2 0) O.I 0.2 0-3 0.4 SOLUBILITY OF LEAD SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 1 8. (Pleissner, 1907.) ( See also Sehnal, preceding page.) Gms. per Liter. Millimols^ per Liter. Gms. per Liter. Millimols per Liter. H t SO 4 . PbSO 4 . " 'H 2 SO 4 . PbSO 4 ". ' H 2 SO 4 . PbSO 4 . ' H 2 SO 4 . PbSO 4 .' o 0.0382 o 0.126 0.0245 0.0194 0.25 0.064 0.0049 0.0333 -5 o.no 0.0490 0.0130 0.50 0.043 0.0098 0.0306 o.io o.ioi 0.4904 0.0052 5 0.017 SOLUBILITY OF LEAD SULFATE IN CONCENTRATED AQUEOUS SOLUTIONS OF ACIDS. (Schultz, 1861; Rodwell, 1862.) In Aq. H 2 SO 4 . In Aq. HCl. In Aq. HNO 3 . (a) (b) (c) (a) (b) (c) (a) (b) (c) 1.540 63.4 0.003 I -5 IO -6 0.14 i. 08 ii. 6 0.33 1-793 85.7 o.on i. 08 16.3 0.35 1. 12 17.5 0.59 1.841 97 0.039 i-n 22 0.95 1.25 34 0.78 1.14 27.5 2. ii 1.42 60 i. 01 1.16 31.6 2.86 (a) Sp. Gr. of Aq. Acid, (b) Gms. Acid per 100 Gms. Solution, (c) Gms. PbSO 4 per 100 Gms. Solvent. SOLUBILITY OF LEAD SULFATE IN CONC. SOLUTIONS OF SULFURIC ACID. (Donk, 1916.) Gm. per 100 Gms. Gms. per 100 Gms.' , t. Sat. Sol. Solid Phase. t. Sat. Sol. Solid H 2 S0 4 . PbS0 4 : "H 2 S0 4 . PbS0 4 . O 51.2 O PbS0 4 IOO 6l.2 O PbSO 4 O 89.4 O " +H 5 SO 4 .H e O IOO 72.5 O.I o 97 o H 2 so 4 loo 96.3 0.2 O 97.2 0.3 " +PbSO 4 IOO 99.1 0.9 50 -50.4 o PbSO 4 200 79 o " 50 '86.7 o.i 200 88.8 o.i 50 95-i 0.2 200 95.5 0.3 50 99.3 0.6 200 98.9 i.i Additional data for highly concentrated solutions of H 2 SO 4 are given by Ditz and Kanhauser (1916). 365 LEAD SULFATE SOLUBILITY OF BASIC LEAD SULFATES IN WATER AT 18. (Pleissner, 1907.) Compound. \ Basic Lead Sulfate f Basic Lead Sulfate LEAD PerSULFATE Formula. One Liter Sat. Solution Contains: Mg. Lead Salt = Mg. Pb = Millimols Pb. PbSO 4 .PbO 13.4 10.6 PbSO 4 .3PbO.H 2 O 26.2 22 Pb(S0 4 ) 2 . SOLUBILITY IN AQUEOUS SULFURIC ACID AT 22. 0.050 0.106 (Dolezalek and Finckli, 1906.) Gms. per Liter. "H 2 S0 4 . 94 8 Pb(SO 4 ) 2 . 1014 1081 1098 0.719 1.198 1-557 1130 1180 2.115 5-749 1217 9-303 Solid Phase. PbOS0 4 .H,0 Gms. per Liter. H 2 S0 4 . Pb(S0 4 ) 2 . 1253 14.85 1352 16.17 1470 9-30 1532 9.46 1631 19.80 l6 9 8 33-34 1703 35-22 Solid Phase. PbOSO 4 .H 2 O Pb(S04), The solid phase at concentrations of acid up to 1352 gms. per liter is the white basic salt of the composition PbOSO4.H 2 O. In the concentration limits of about 1470-1703 gms. H 2 SO 4 per liter the original yellow color of the solid phase remains unchanged. Freezing-point data (solubility, see footnote, p. i) for mixtures of PbSO4-HLi 2 SO4, PbSO 4 + K 2 SO 4 and PbSO 4 + Na 2 SO 4 are given by Calcagni and Mariotta (1912). Results for mixtures of PbSO 4 + K 2 SO 4 are also given by Grahmann, 1913. LEAD (Hypo) SULFATE. SOLUBILITY OF MIXTURES OF LEAD HYPOSULPHATE AND STRONTIUM HYPOSULPHATE AT 25. (Fock Z. Kryst. Min. 28. 389, '97.) Mol. per cent in Solution. Grams per Liter. Rn nr nf Mol. per cent in Solid Phase. PbSjO, SrSzCV PbS 2 O 6 . SrS 2 O e . Solutions. PbS 2 8 SrS 2 0(j 4H 2 0. 4H 2 0. .4H 2 0. .4H20. 0.0 100. o.o 145.6 .1126 0-0 IOO-O 1.05 98-95 2-97 I5I.2 .1184 0.30 99-7 I5-3I 84.69 40.82 152.5 1503 3-87 96.13 46.80 53-20 149-2 II4-5 .2147 9.84 90.16 62.30 37-70 256.1 85.0 .2889 19.26 80.74 75-75 24.25 3 I o-3 67.0 3252 23-73 76.27 78.09 21 .91 373-7 70-8 .3726 32.24 67.76 88.29 11.71 509-5 45-6 .4671 49-97 50-13 100. o.oo 374-3 o.o .6817 0-00 0-00 LEAD SULFIDE PbS. One liter H 2 O dissolves 3.6.10"* gm. Mols. = 0.00086 gm. PbS at 18, (Weigel, 1907.) Determined by conductivity method. See also Bruner and Zawadzki (1909). Fusion diagrams for PbS + ZnS and PbS + Ag 2 S are given by Friedrich (1908). Results for PbS + Sb 2 S 3 are given by Wagemmann (1912). LEAD SULFONATES. SOLUBILITY IN WATER. Name. Formuta. *.%!&. Lead 2.5 Diiodobenzenesulfonate C^HgOs^S-sPb^HzO 20 0.77 (Boyle, 1909.) Lead ft Naphthalene Sulfonate (C 10 H 7 SO 3 ) 2 Pb.H 2 O 25 0.4 (Witte, '15; Euwes, '09.) " (doHvSOjJjPb.aHaO 24.9 4 . 195 (Euwes, 1909.) Lead 2 PhenanthreneMonosulfonate iH,O 20 0.014 (Sandquist, 1912.) 5 3 H 2 O 20 0.08 " 10 4 H,0 20 0.14 LEAD TARTRATE 366 LEAD TAETRATE PbC 4 O 6 H 4 . SOLUBILITY IN WATER. (Caatoni and Zachoder Bull. soc. chim. [3] 33, 751, '05; Partheil and HQbner Arckiv. Pharm. 241. ' A o Gms. PW^OeJ^ per . ioo cc. Solution. l8 O.OIO (P.andH.) 50 25 0.0108 " 55 35 0.00105 60 40 0.0015 65 '03.) Gms. PbC 4 O(jH 4 per ioo cc. Solution. O.OO225 O.OO295 0.00305 0.00315 Cms IOO CC 70 75 80 85 PbC 4 6 H 4 per cc. Solution. 0.0032 0.0033 0.0038 0.0054 NOTE. The positions of the decimal points here shown are just as given in the original communications. ioo gms. alcohol of 0.8092 Sp. Gr. (about 95%) dissolve 0.0028 gm PbC 4 O 6 H 4 at 18, and 0.00315 gm. at 25. (P ^ H) LECITHIN ioo gms. of sat. solution in aqueous 5% bile salts contain 4.5 gms. lecithin at I5-2O and 7 gms. at 37. Lecithin is practically insoluble in water. (Moore, Wilson And Hutchinson, 1909.) LEUCINE CH 3 (CH 2 ) 3 CH(NH 2 )COOH. ioo cc. H 2 O dissolve 2.2 gms. leucine at 18. ioo cc. alcohol dissolve 0.06 gm. leucine at 17. Data for the solubility of leucine in aqueous solutions of salts at 20 are given by Wiirgler , 1914, and Pfeiffer and Wiirgler, 1916: LIGNOCERIC ACID. Data for the freezing-points (solubility, see footnote, p. i) of mixtures of lignoceric acid and other compounds are given by Meyer, Brod and Soyka, 1913. LIGROIN. ioo cc. H 2 O dissolve 0.341 cc. ligroin at 22, Vol. of solution = 100.34, Sp. Gr. 0.9969. ioo cc. ligroin dissolve 0.335 cc. H 2 O at 22, Vol. of solution = 100.60, Sp. Gr. 0.6640. (Herz, 1898.) LITHIUM Li. One gm. atom Li dissolves in 3.93 gm. mols. NH S at 80, at 50. at 25, and at O. (Ruff and Geisel, 1906.) LITHIUM ACETATE CH 3 COOLi. 2 H 2 O. Freezing-point data for mixtures of lithium acetate and acetic acid are given by Vasilev, 1909. LITHIUM SulfoANTIMONATE Li 3 SbS 4 .ioH 2 O. SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL. In Water. (Donk, 1908.) Gms. Li,SbS 4 t. per^ioo^Gma. Solid Phase. t. In Aqueous Alcohol at 10 and 30. Gms. per ioo Gms. Sat^Sol. Solid Phase. Authority. i i i 7 2 j 12 SOL I Ice 8 " IO IO CjHjOH. 10.7 26.2 Li,SbS 4 . 41 . 8 Li,SbS 4 .icHiO (Donk, 1908.) 36.5 ; c I 17 5 " 10 66.2 20 .6 IO 8 23 2 " 30 13-3 46 . 3 Li,SbS 4 .8iH t O *5 9 28 5 " 30 51-9 30 .7 " -26 2 35 2 " 30 54-8 29 9 (Schreine- 42 40 4 Ice+Li,SbS 4 .ioH z O 30 58.4 30 .8 " makers and 45 5 Li s SbS 4 .ioH,O 30 58.6 32 .3 " +Li,SbS Jacobs, + 10 46 9 30 65.26 29 .31 Li,SbS 4 1910.) 30 So i u 30 74-3 24 . I SO 5i 3 M 30 79-5 20 5 LITHIUM BENZOATE LITHIUM BENZOATE C 6 H 6 COOLi. SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25. (Seidell, 1910.) Gms. Q,H 5 COOLi per zoo Gms. Sat. Sol. 27.64 28.60 28.50 27.80 26.20 23.60 100 gms. H 2 dissolve about 40 gms 100 gms.. alcohol dissolve about 10 gms. CeHsCOOLi at the b. pt. LITHIUM BORATE LizQBA. SOLUBILITY IN WATER. t o 10 20 30 40 45 Gms. Li 2 OB20s per 100 Gms. HjO 0.7 1.4 2.6 4.9 11.12 20 (Le Chatelier, 1897.) EQUILIBRIUM IN THE SYSTEM LITHIUM OXIDE, BORIC OXIDE, WATER AT 30. .' (Dukelski, 1907.) nor fnn rime Qa+ ^rtl Solid Phase. Per cent CjHsOH in s Solvent. J M of at. Sol. IO .103 .088 20 .072 30 .052 40 .030 50 .003 Per cent QHjOH in Solvent. da of Sat. Sol. Gms. CH 6 COOLi per zoo Gms. Sat. Sol. 60 0.970 19-80 70 0.932 15.40 80 O.SOO IO.7O QO 0.847 6.40 95 0.823 4-50 100 0.799 2.6o I 5 COOLi at the b. pt. (U.S. P.) Li 2 0. B 2 3 . OULLU jruoac. 7.01 LiOH.H 2 7-51 2.98 " 7.71 3.38 " +Li 2 O.B 2 O 3 .i6H 2 O 7.68 3.56 Li 2 O.B 2 O 3 .i6H 2 O 5-40 2.78 " 3-47 2.42 " 2.94 2-51 " 1.58 3-27 < 2.17 6.90 3-66 14.78 5-25 22 5-63 23-8 " K.8l 6. 20 Li 2 O.2B 2 3 .*H 2 O Gms. per 100 Gms. Sat. Sol. 1.32 0.86 B 2 3 . 3.36 2.47 0.53 2.47 2.17 2.61 5.08 13.12 16.39 30.81 4.10 27.07 3-22 15.40 i-55 15.40 1.30 0.96 0.63 14.14 11.47 4.85 o 3-54 Li 2 0. 5 B 2 0,.ioH 2 B(OH), Freezing-point data (solubility, see footnote, p. i) for mixtures of LiBOj + NaBO 2 , and LiBO 2 + Li 2 SiO 3 are given by van Klooster, 1910-11. LITHIUM BROMATE LiBrO 3 . 100 gms. H 2 O dissolve 153.7 g m s. LiBrO 3 at 18, or 100 gms. saturated solu- tion contain 60.4 gms. Sp. Gr. of sol. = 1.833. (Mylius and Funk, 1897.) LITHIUM BROMIDE LiBr.2H 2 O. SOLUBILITY IN WATER. (Kremers, 1858; Bogorodsky, 1894; Jones, 1907.) IO 20 30 40 44 SO 60 80 IOO 159 0.46 Gms. LiBr per 100 Gms. H 2 O. 1.058 Solid Phase. Ice(J) -1.94 - 4.27 -10.3 4.274 8.678 17.80 m -30.5 37-^4 " ~45 -30 50 80 " +LiBr. 3 l LiBr. 3 H 2 O 10 122 " o + 4 143 160 " (K) " +UET.2W 1 66 177 191 205 209 214 224 245 266 LiBr. 2 H 2 (K) +LiBr.H 2 (B) LiBr. H 2 O (K) LiBr.H 2 0+LiBr (B) Freezing-point data for LiBr + LiOH (Scarpa, 1915), for LiBr + AgBr. (Sandonnini and Scarpa, 1913.) loo gms. glycol dissolve 60 gms. LiBr at 14.7. (de Coninck, 1905.) LITHIUM CAMPHORATE 368 DiLITHIUM d CAMPHORATE Ci Hi 4 O 4 Li. SOLUBILITY IN AQUEOUS SOLUTIONS OF CAMPHORIC ACID AT i3.5-i6 AND VICE VERSA. (Jungfleiscb and Landrieu, 1914-) Gms. per 100 Gms. Sat. Sol. , s Solid Phase. C6H 14 (COOH) 2 . C 10 H u O 4 Li 2 . 0.621 o Camphoric Acid C6Hi 4 (COOH) 2 2.02 3.77 3.25 10.63 Monolithium Tetracamphorate 3.51 12.61 3.99 20.56 Dicamphorate CioHi 5 O 4 .Li.CioHi 6 04 3-43 24.69 " , 2.87 37 .16 Camphorate CioHi 5 O 4 Li o 40 . 80 Dilithium Camphorate The mixtures were kept in a cellar at nearly constant temperature and shaken from time to time until equilibrium was reached. Additional results at i7-23 are also given. LITHIUM CARBONATE Li 2 CO 3 . SOLUBILITY IN WATER. (Bevade, 1885; Fluckiger, 1887; Draper, 1887.) An average curve was constructed from the available results and the following table read from it. Gms. LigCOa per 100 Gms. Gms. Li 2 C(\per 100 Gms. *0- Water. Solution. 1; * Water. Solution. i-54 1.52 40 I.I7 1.16 10 i-43 I.4I 50 1. 08 1.07 20 i-33 I-3I 60 1. 01 1. 00 25 i .29 1.28 80 0.85 0.84 30 1.25 1.24 IOO 0.72 0.71 Density of saturated solution at o = 1.017; at J 5 = SOLUBILITY OF LITHIUM CARBONATE IN AQUEOUS SOLUTIONS OP ALKALI SALTS AT 25. (Geffcken Z. anorg. Chem. 43, 197, '05.) The original results were calculated to gram quantities and plotted on cross-section paper. The figures in the following table were read from the curves. Gms Salt Grams Li 2 CO 3 per Liter in Aqueous Solutions of: per Liter. KC1O 3 . KN0 8 . KC1. NaCl. K 2 S0 4 . Na 2 SO 4 . NH 4 C1. (NH 4 ) 2 S0 4 . O 12.63 12 .63 12.63 12.63 12 .63 12.63 12.63 12.63 IO 12.95 I 3-5 13 .IO 13-4 13.9 14.0 16.0 2O-7 20 13.10 13-3 J3-5 13 .9 14.7 15.0 19.2 25.0 30 13.25 13.6 13-8 14-3 IS-4 16.0 21.5 28.2 40 13.40 13-8 14.0 14.6 16.0 16.6 23-3 30.8 <5o 13.8 14.2 14-5 16.9 17.8 26.0 35-2 80 13-6 14.0 14.4 17.7 18.6 27 .6 38.5 IOO J 3-5 13.9 14.2 18.2 19.4 28.4 41.0 120 *3-3 13-7 14.0 19.9 28.7 42.6 140 13.0 J 3-3 . . . . . . 20.4 28.8 43-5 I7O 12 .6 28.0 / 200 12.2 y 20-0 ... loo gms. aq. alcohol of 0.941 Sp. Gr. dissolve 0.056 gm. Li 2 CO 3 at 15.5. One liter sat. sol. in water contains 0.1722 gm. mols. = 12.73 g ms - Li 2 CO 3 at 25. (Ageno and Valla, 1911.) 369 LITHIUM CARBONATE SOLUBILITY OF LITHIUM CARBONATE IN AQUEOUS SOLUTIONS OF ORGANIC COM- POUNDS AT 25. (Rothmund, 1908, 1910; see also Traube, 1909.) The solubility in H 2 O = 0.1687 mols. Li 2 CO 3 per liter = 12.47 gms. at 25. Gm. Mols. LijCOs per Liter in Aq. Solution of: Aqueous Solution of: Methyl Alcohol Ethyl Alcohol Propyl Alcohol Amyl Alcohol (tertiary) Acetone Ether Formaldehyde Glycol Glycerol Mannite Grape Sugar Cane Sugar Urea Thiourea Dimethylpyrone Ammonia Diethylamine Pyridine Urethan Acetamide Acetonitrile Mercuricyanide Freezing-point data for mixtures of Li 2 CO 3 '+ Li 2 SO.4 (Amadori, 1912.) Li 2 CO 3 + K 2 CO 3 . (Le ChateUer, 1894.) 0.125 0.25 0.5 i Normality. Normality. Normality. Normality. . . . 0.1604 0.1529 0.1394 O.l6l4 0-1555 O.I4I7 0.1203 0.1604 0.1524 0.1380 0.1097 0.1564 0.1442 0.1224 o . 0899 0.1600 O.I5I5 0.1366 o . i 104 0.1580 0.1476 0.1300 . . . 0.1668 0.1653 0.1606 O.I53I 0.1660 0.1629 0.1565 0.1472 0.1670 0.1647 0.1613 0.1532 0.1705 0.1737 0.1778 0.1702 0.1728 0.1752 0.1778 0.1693 0.1689 0.1661 0.1557 0.1686 0.1673 0.1643 0.1605 0.1667 0.1643 0.1600 0.1523 0.1562 o . 1460 0.1280 0.0992 0.1653 0.1630 0.1577 o . 1466 0.1589 O.I48l 0.1283 0.0937 0.1592 0.1503 0.1347 0.1091 0.1604 0.1525 0.1377 0.1113 . . . O.l6l4 0.1520 0.1358 0.1618 0.1556 0.1429 0.1178 0.1697 0.1704 LITHIUM (Bi) CARBONATE LiHCO,. 100 gms. H 2 O dissolve 5.501 gms. LiHCO 3 at 13. (Bevade, 1884.) LITHIUM CHLORATE LiClO 3 . loo gms. H 2 O dissolve 213.5 gms. LiClO 3 at 18, or 100 gms. sat. solution con- tain 75.8 gms. Sp. Gr. of sol. = 1.815. (Mylius and Funk, 1897.) ioo gms. H 2 O dissolve 483^13. LiClO 3 at 1 5, d i6 of sat. sol. = i .82. (Carlson, 1910.) LITHIUM CHLORAURATE LiAuCU. 10 20 30 Gms. LiAuCl 4 per ioo Gms. Solution. 57-7 62.5 SOLUBILITY IN WATER. (Rosenbladt, 1886.) t o Gms. LiAuCU per ioo Gms. Solution. 40 50 67.3 72 60 70 80 Gms. LiAuCli per ioo Gms. Solution. 76.4 81 85-7 LITHIUM CHLORIDE 370 LITHIUM CHLORIDE LiCl. SOLUBILITY IN WATER. Cms. LiCl per 100 Gms. (Average curve from results of Gerlach, 1869.) Gms. LiCl per 100 Gms. . Water. Solution. 67 40.1 10 72 41.9 20 78-5 44 25 Bi.S 44.9 3 84-5 45-8 I . Water. Solution^ 40 90.5 47-5 50 97 49.2 60 103 SI.Q 80 "5 53-5 100 127.5 56 Density of saturated solution at o, 1.255; at 15, 1.275. SOLUBILITY OF LITHIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID. Results at 25. (Here, 1911-12.) Gms. per 100 cc. Sat. Sol. LiCl. HC1.' Results at o. (Engel, 1888.) Gms. per 100 cc. Sat. Sol. LiCl. HC1. IN oat. i 51 1.255 41-4 8.2 1.243 28.5 24.1 I.. 249 2 4 .6 29-5 L25I 57-4 56.87 53-64 51.98 o 2.30 3-84 6.43 SOLUBILITY OF LITHIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ALCOHOL AT 25. (Pinar de Rubies, 1913-1914.) ' The LiCl was determined by titration with AgNOs. Solutions saturated by constant agitation for many hours. Solid phase, LiCl.r^O for all mixtures. The anhydride, LiCl, separates only from the most highly concentrated alcohol solutions. Gms. per 100 Gms. Sat Sol. Gms. per 100 Gms. Sat. Sol. CiH 6 OH. O IO 20 30 40 LiCl. 44.9 40.9 37-25 33-3 29.4 QH 5 OH. 50 60 70 75 80 LiCl. 25-75 21.6 21. 1 20.8 20.75 SOLUBILITY OF LITHIUM CHLORIDE IN ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Turner and Bissett, 1913.) o Gms. LiCl per 100 Gms. QjH 6 OH. Solid Phase. Solid Phase. O 5 10 i5 17 Solvent. 14.42 LiC1.4C 2 H 5 OH 15-04 16.77 18.79 20.31 SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS. Gms. LiCl 20 24.28 LiCl 30 25.10 40 25-38 n 50 24.40 M 60 23.46 ft Gms. LiCl per 100 Gms. Solvent. Authority. Solvent. t per 100 Gms. Solvent. Authority. 9-03 10-57* 4.32* 1-93* (Turner & Bissett, 1913.) (Andrews & Ende, 1895.) (Patten & Mott, 1907.) Alcohol: Alcohol: Methyl 25 42.36 (Turner & Bissett, 1913.) Amyl 25 Ethyl 25 2 . 54* (Patten & Mott, 1904.) " ? Propyl 25 16.22 (Turner & Bissett, 1913.) " 25 ? 15.86 (Schkmp, 1894.) Butyl 25 25 3.86*(P*tten&Mott, 1904.) Glycerol 25 Allyl 25 4.38* Phenol 53 * Fused LiCl used for these determinations. loo cc. anhydrous hydrazine dissolve 16 gms. LiCl at room temp. (Welsh and Hroderson, 1915.) 371 LITHIUM CHLORIDE t. 8 28 40 60 80 IOO SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS. (Laszczynski, 1894; deConinck, 1905.) In Acetone. (L.) In Pyridine. (L.) In Glycol. (de C.) Gms. LiCl Gms. LiCl f. per 100 Gms. t. per 100 Gms. (CH,) 2 CO. 4.60 46 3-76 12 4.41 53 3-12 25 4.II 58 2.14 "t. 15 Cms. Lid per too Gms. C 6 H 5 N. 7-78 14-26 Cms. Lid t. per 100 Gms. Sat. Sol. 15 ii SOLUBILITY OF LITHIUM CHLORIDE IN PYRIDINE. (Kahlenberg and Krauskopf, 1908.) In 97% Pyridine In Anhydrous Pyridine. Gms. LiCl f>er 100 Gms. Solid Phase. LiC1.2CfiH 6 N tt u tt tt ' Sat. Sol. Solvent. 11.31 12.71 11.87 13.47 I I. 60 I3.IO 11.38 12.84 11.71 13.27 13.01 14.98 tr. temp, about 28. K- V, 3%HS by Volume. . Gms. LiCl per TOO Gms. Sat. Sol. 22 12.50 32 13-79 45 15-58 58 16.72 72 17.12 97 i8.35 Solvent. 14.31 15.98 18.46 2O.O8 20.66 22.48 SOLUBILITY OF LITHIUM CHLORIDE AT 25 IN MIXTURES OF: Acetone and Benzene. (Marden and Dover, 1917.) Ethyl Acetate and Benzene. (Marden and Dover, 1917.) Gms. Acetone Gms. LiCl per 100 Gms. per 100 Gms. Solvent. Solvent. Gms. Acetone Gms. LiCl per loo Gms. per 100 Gms. IOO 00 80 60 2.30 1.69 0.966 0.234 Solvent. 40 2O IO O Solvent. 0.088 O.OI9 0.009 O Gms. Ethyl Acetate per 100 Gms. Solvent. IOO 70 Gms. LiCl per loo Gms. Solvent. I. 7 8 0.147 0.028 0.005 DISTRIBUTION OF LITHIUM CHLORIDE BETWEEN WATER AND AMYL ALCOHOL AT 30. (Dhar and Datta, 1913.) Mols. LiCl per Liter. Cl H 2 O Layer c\. Alcohol Layer Cj. ** 3.24 0.0347 93.37 3.06 0.0325 94.15 2.93 0.0300 97-70 2.82 O.0275 102.58 2.76 O.O250 IIO.40 Mols. LiCl per Liter. ft H 2 O Layer c\. Alcohol Layer c^. ** 2.68 0.0240 in. 66 2.58 0.0275 H3.40 2.34 O.020O 117 1.84 0.0125 147-2 0.65 O.003O 2l6.66 Freezing-point data (solubility, see footnote, p. i) are given for the following mixtures of lithium chloride and other compounds. Lithium Chloride + Lithium Hydroxide (Scarpa, 1915.) -j- Magnesium Chloride (Sandonnini, 1913, 1914.) + Manganese Chloride (Sandonnini and Scarpa, 1913.) + Potassium Chloride (Richards and Meldrum, 1917.) " +'NaCl (Richards and Meldrum, 1917.) + Rubidium Chloride (Richards &Meldrum,'i7; Zemcznzny &Rambach,'lo.) + Silver Chloride (Sandonnini, 191 ia, 1914.) -j- Sodium Chloride (Zemcznzny and Rambach, 1910.) -j- Strontium Chloride (Sandonnini, 1911, 191 ia, 1914.) -j- Thallium Chloride (Sandonnini, 1911, 1914.) " -j- Tin Chloride (ous) (Rack, 1914.) LITHIUM CHROMATE 372 LITHIUM CHROMATE Li 2 CrO 4 .2H 2 O. LITHIUM BICHROMATE Li 2 Cr 2 O 7 .2H 2 O. SOLUBILITY IN WATER AT 30. (Schreinemaker Z. physik. Chem. 55, 79, '06; at 18, Mylius and Funk Ber. 30, 1718, '97.) Composition in Weight per cent: Of Solution. Of Residue. %Cr0 3 . %Li 2 0. %Cr0 3 . %Li 2 O. o.o 7.09 6.986 7.744 4.322 18.538 16.564 8.888 10.089 19.556 25.811 10.611 15.479 21.106 33.618 12.886 24.365 19-398 37.411 14-306 44-555 i7-4ii 37.588 14.381 36.331 18.552 37-495 13-3" 5*-o75 16.384 40.280 10.858 43.404 11.809 53-793 14-070 45- I 3o 9-5 I 5 56-085 10.190 47-945 7-95 1 58-029 9.238 57.031 6.432 65.560 8.733 67-73I 5-7I3 71-687 8.513 67.814 5.689 80.452 3.780 65.200 4.661 63.257 2.141 85.914 0.758 62.28 Solid Phase. LiOH.H 2 O LiOH JI 2 + Li 2 Cr0 4 .2H 2 Li 2 CrO 4 .2H 2 O Li 2 CrO 4 .2 Li 2 Cr 2 O7.2H 2 O Li 2 Cr 2 07.2H 2 + CrOg CrO, A saturated aqueous solution contains: .49-9 8 5 P er cent Li 2 CrO 4 , or 100 grams H 2 O dissolve 99.94 grams Li 2 CrO 4 at 30 (S.). 56.6 per cent Li 2 Cr 2 O 7 , or 100 grams H 2 O dissolve 130.4 grams Li 2 Cr 2 O 7 at 30 (S.). 52.6 per cent Li 2 CrO 4 , or 100 grams H 2 O dissolve 110.9 grams LiCrO 4 at 18 (M. and F.). Sp. Gr. of sat. solution at 18 = 1.574. LITHIUM CITRATE C 3 H 4 (OH)(COOLi) 3 .4H 2 O. 100 gms. HjO dissolve 61.2 gms. Li citrate at 15. d^ sat. sol. = 1.187. (Greenish and Smith, 1902.) SOLUBILITY IN AQUEOUS ALCOHOL AT 25. ' (Seidell, 1910.) Wt Of Gms. Gms. wt. % .CjHuoH in Solvent. <*25 of C 3 H 4 OH(COOLi) 3 .- Sat. Sol. 4H 2 O per 100 Gms. Solvent. Wt. % C 2 H 6 OH in Solvent. Solution. H 2 0. H,0. H^O. 20 21.14 9-28 HCOOLi.H 2 O 91 54.16 40.90 HCOOLi.H 2 O o 24.42 ii. 18 98 57.05 45-99 HCOOLi 18 27.85 13.36 104 57-64 47-n 49-S 35-<5o 19-14 120 59.63 51.13 74 44.91 28.22 Sp. gr. sat. sol. at .18 = 1.142. SOLUBILITY OF NEUTRAL LITHIUM FORMATE IN ANHYDROUS FORMIC ACID. (Groschuff, 1903.) Gms. HCOOLi Mols. HCOOLi t. per loo Gms. Solution. per loo Mols. L HCOOH. Solid Phase. 25-4 30 HCOOLi 18 25-9 30-9 tt 39 26.4 31-75 tt 60 26.9 32.6 " 79 2 7 .8 34 *' LITHIUM HIPPURATE C 6 H 6 CO.NHCH 2 COOLi. 100 gms. H 2 O dissolve about 40 gms. of the salt at 15-20. (Squire and Caines, 1905.) LITHIUM HYDROXIDE LiOH.H 2 O. SOLUBILITY IN WATER. (Dittmar, 1888; Pickering, 1893.) Gms. per 100 Gms. Gms. LiOH t. Solution. per 100 Gms. t. Gms. per too Gms. Gms. LiOH Solution. per I00 Cms- Li 2 = . LiOH. ' HiO. Li 2 = LiOH. H 2 0. -10.5 . . 7- 23 . 30 7-05 II .27 12.9 1 8 Eutec. ii . 2 . . . 40 7.29 II .68 13 6 .'67 10 .64 12 7 50 7.56 12 .12 13-3 10 6 74 IO .80 12 7 60 7.96 12 .76 13-8 20 6 .86. 10 99^ 12 .8 80 8.87 14 .21 15-3 25 6 95 II .14 12 9 100 10.02 16 .05 17.5 SOLUBILITY OF LITHIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF LITHIUM SULFOANTIMONATE AT 30 AND VlCE VERSA. (Donk, 1908.) Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Solid Phase.,, Sat. Sol. Solid Phase. EiOIL Li 3 SbS 4 . LiOH. Li 3 SbS 4 . II.4 O LiOH.HjO 2.1 48.3 LiOH.H 2 9.1 8.3 2.1 52.1 " +Li 3 SbS 4 .ioH I 2.3 29.9 1.4 51.8 LUSbS 4 .ioH,Q O 51-3 Data for equilibrium in the system lithium hydroxide, phenol, water at 25 are given by van Meurs, 1916. LITHIUM IODATE 374 LITHIUM IODATE Li(IO 3 ).H 2 O. 100 gms. H 2 O dissolve 80.3 gms. LiIO 3 at 18, or 100 gms. solution contain 44.6 grams. Sp. gr. of sol. = 1.568. (Mylius and Funk, 1897.) LITHIUM IODIDE LiI.3H 2 O. SOLUBILITY IN WATER; (Kremers, 1858, 1860; ice curve, Jones, 1907.) I . Water. Sat. Sol. OU11U JTUctiC. V . Water. Sat. Sol. ooiia rnase. 0.296 1 .08 1. 06 Ice 20 165 62. 2 LiI. 3 H 2 O 1.218 A .36 4.19 a 25 I6 7 62. 6 -2.70 8 71 8.02 30 171 63- i - 6.14 17 .69 15-03 it 40 179 64- 2 M -16.2 38 3i 27.70 ii 50 187 6$. 2 M -25 48 .67 32.72 tt 60 202 66. 9 ~59 85 !3 46 u 70 330 69. 7 M 69 Eutec. 93 48.2 Ice+LiI.3H 2 O 75 263 72. 5 H -60 IOO 50 LiI. 3 H 2 75 m. pt. 40 118 54.13 M 85 m. pt. . . . LiI. 2 H 2 20 134 57-27 <( 80 435 81. | LiI.H 2 O o. 151 60.2 it IOO 481 82. 8 (( 10 157 61.1 (i 1 20 590 85- $ a SOLUBILITY OF LITHIUM IODIDE IN SEVERAL SOLVENTS. Solvent. t. Methyl Alcohol 25 Ethyl Alcohol 2 5 Propyl Alcohol 25 Amyl Alcohol 2 5 Glycol Furfurol 2 5 Nitromethane O n 25 * Solid phase = LiI. 4 C 3 H 7 OH. Gms. Lil per 100 Gms. Solvent. Authority. 343-4 (Turner and Bissett, 1913.) 250.8 " " 47.5 2 * 112.5 " " 38-9 (de Coninck, 1905.) 45 -9t (Walden, 1906.) I.22f 2.52 " f = gms. per 100 cc. sat. solution. F.-pt. data for Lil + Agl are given by Sandonnini and Scarpa, 1913. LITHIUM IODOMERCURATE 2LiI.HgI 2 .6H 2 O. 100 gms. sat. solution of lithium iodomercurate in water prepared by cooling a hot solution and allowing to stand at 24.7 for 3 months, contained 1.30 gms. Li, 27.4 gms. Hg, 58 gms. I and 13.3 gms. H 2 O; Sp. Gr. of the sat. sol. = 3.28. (Duboin, 1905.) LITHIUM LAURATE, MYRISTATE, etc. SOLUBILITY IN WATER AND IN ALCOHOL OF d = 0.797, AT 18 AND AT 25. (Partheil and Ferie, 1903.) Gms. Salt per 100 cc. Sat. Solution in: Salt. Formula. Water at Alcohol at 18. 25- 18. 25. Stearate CnH^COOLi O.OIO O.OII 0.041 0.0532 Palmitate C 15 H 3 iCOOLi O.OII 0.018 0.0796 0.0956 Myristate Laurate Oleate Ci 3 H 27 COOLi CnH 23 COOLi CnH-aCOOLi 0.0232 0.158 0.0674 0.0234 0.1726 0.1320 0.184 O.4l8 o . 9084 0.2100 0.4424- I.OIO 375 LITHIUM LAURATE LITHIUM LAURATE, MYRISTATE, PALMITATE and STEARATE. SOLUBILITY OF EACH OF THESE SALTS, DETERMINED SEPARATELY, IN SEVERAL SOLVENTS. (Jacobson and Holmes, 1916.) Li laurate = CnH 2 3COOLi. Li myristate = CisH^COOLi, Li palmitate = CH 3 (CH 2 )uCOOLi and Li stearate = CH 3 (CH 2 ) 16 COOLi. Excess of salt shaken with solvent for 2 hrs. in all cases. The sat. sol. was analyzed by evaporating to dryness and weighing residue. Gms. of Each Salt (determined separately) per 100 Gms. Solvent. Solvent. Abs. -Ethyl Alcohol Methyl Alcohol a a ti (i Water tt Ether a > . Li Li Li Li Laurate. Myristate. Palmitate. Stearate. 20 0.403 0.194 0.096 0.072 25-4 0.447 O.224 O.II8 0.089 35 0.546 0.278 0.142 0.106 5o 0.782 0-435 0.248 0.200 65 I.I49 0.669 0.391 0-333 15-2 3-159 1.346 0.616 0-349 25 3-773 i. 680 0.771 0-439 34-6 4-597 2.193 i. 086 0.658 50 6.088 3.281 1.652 1-057 16.3 0.154 0.027 O.OIO 0.009 25 0.187 0.036 0.015 O.OIO 35 0.207 0.042 0.015 O.OIO 50 0.280 0.062 15-8 O.OII 0.013 0.007 O.OII 25 0.006 0.004 0.007 O.OII 16 0.073 0.029 0.019 O.OII 25-7 6. in 0*046 0.032 0.028 35 0.126 0.062 0.033 0.031 49-2 0.203 0.109 0.069 0.060 15.2 0.006 0.004 0.004 0.004 14-5 0.068 0.037 0.038 0.034 25 0.064 0.034 0.024 0.029 35 0.061 0.044 0.037 0.031 50 0.061 0.045 0.036 0.044 24-5 0.026 0.013 0.015 0.012 15 0.300 0.413 0.434 0.571 25 0.376 0.447 0.508 0.706 35 0.430 0.502 0-537 0.663 Amyl Alcohol Chloroform Amyl Acetate Methyl Acetate Acetone tt ^ The above lithium salts were prepared by adding the calculated amount of lithium acetate to the alcoholic solutions of the respective fatty acids. The resulting precipitates were dissolved in boiling alcohol and the solutions allowed to stand over night in a cool place. The salts so obtained were washed and dried. LITHIUM TetraMOLYBDATE Li 2 O.MoO 3 .2H 2 O. 100 cc. sat. aqueous solution contain 43.13 gms. Li 2 O.MoO 3 .2H 2 O at 20. d of sat. sol. = 1.44. (Wempe, 1912.) LITHIUM NITRATE 376 LITHIUM NITRATE LiNO 3 .3H 2 O. SOLUBILITY IN WATER. (Donnan and Burt, 1903.) Gms. LiNO, Cms. LiNOj t. per 100 Cms. Solid Phase. . t. per 100 Cms. Solid Phase. Solution. Solution. o.i 34.8 LiNO 3 .3H 2 O 29.87 56.42 LiNO 3 .3H 2 O 10.5 37-9 29.86 56.68 12. i 38.2 29.64 57.48 13-75 39-3 29.55 58.05 19.05 40.4 43.6 60.8 LiN0 3 .|H 2 O 22.1 42.9 50.5 61.3 27-55 47-3 55 63 29-47 53.67 60 63.6 29.78 55.09 64.2 64.9 LiNO 3 70.9 66.1 The eutectic Ice + LiNO 3 .3lI 2 O, is at -17.8 and about 33 gms. LiNO 3 per 100 gms. sat. sol. Transition points, 29.6 and 61.1. Data for die system LiNO 3 +Li 2 SO 4 +H 2 O at o, 30 and 70 are given by Massink, 1916. A sat. solution of lithium nitrate in acetone contains 0.343 gm. mols. = 23.67 gms. per liter at about 2O. ^ (Roshdestwensky and Lewis, 1911.) Freezing-point data for LiNOs + KNO 3 and LiNO 3 + NaNO 3 are given by Carveth, 1898. Results for LiNOa + KNO 3 are also given by Harkins and Clark, Results for LiNO 3 + Li 2 SO 4 are given by Amadori, 1913. LITHIUM NITRITE LiNO 2 .H 2 O. SOLUBILITY IN WATER. (Oswald, 1914.) Gms. Gms. r. JSSST solid Phase. t. d, r Sat. Sol. Sat. Sol. - 7.5 II. I Ice 38.5 55.5 LiN0 2 .H,0 -II.7 15 42 56.9 21 21.2 49 60.6 28.8 29 49.5 6l.2 " +LiNCMH 2 O 31.3 29.4 " +LiN0 2 .H 2 65 63.8 LiN0 2 .*H,0 -19.3 33-9 LiN0 2 .H 2 81.5 68.7 O 41-5 91 72.4 + 19 48.90*19=1.3186.) 96 91.8 25 50-9 92.5 94-3 100 gms. H 2 O dissolve 10.5 gms. AgNO 2 + 78.5 gms. LiNO 2 at 14. (Oswald, 1914.) LITHIUM OXALATE Li 2 C 2 O 4 . SOLUBILITY OF MIXTURES OF LITHIUM OXALATE AND OXALIC ACID IN WATER AT 25. (Foote and Andrew, 1905.) Mixtures of the two substances were dissolved in water, and the solutions cooled in a thermostat to 25. Gms. per 100 Gms. Solution. Mols. per 100 Mols. H 2 0. " HsCA. ' Li 2 C 2 4 . H 2 C 2 4 . ' Li 2 C 2 O 4 . ' P aS6 ' 10.20 ... 2.274 ... H 2 C 2 O 4 .2H 2 O 2 ' 457 ' 622 H 2 C 2 4 .H 2 and HLiC 2 4 .H 2 808 3.18 1.823 0.633 2 60 ; o* o tc6^ o 062 \ ' 2 ) =39-2H 2 C 2 4 and 0.469 1.273 HLiC 2 4 .H 2 and Li 2 C 2 4 5-87 ... 1.901 Li 2 C 2 O 4 100 gms. aqueous solution, simultaneously saturated with lithium oxalate and ammonium oxalate at 25, contain 5.75 gms. Li 2 C 2 O4 + 4.8 gms. (NH 4 ) 2 C 2 O 4 . (Foote and Andiew, 1905.) 377 LITHIUM PHOSPHATE LITHIUM PHOSPHATE Li 3 PO 4 . 100 gms. H 2 O dissolve 0.04 gm. Li 3 PC>4. (Mayer, 1856.) LITHIUM (Hypo) PHOSPHATE Li 4 P 2 O 6 .7H 2 O. 100 gms. H 2 O dissolve 0.83 gm. hypophosphate at brd. temp. (Rammelsberg, 1892.) LITHIUM PERMANGANATE LiMn0 4 .3H 2 O 100 gms. water dissolve 71.4 gms. permanganate at 16. (Ashoff.) LITHIUM SALICYLATE C 6 H 4 OHCOOLi.|H 2 O. SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25. (Seidell, 1909, 1910.) Gms. Gms. Gms. CzHjOHper ^B of C 6 H4OHCOOH.iH 2 O C 2 H 5 OH per looGrns. Sat. Sol. per 100 Gms. 100 Gms. Gms. 4 12.23 20.45 61.46 17.10 16.60 19.10 62.49 18.89 Li 2 S04.H 2 SO4 32.70 13.37 69.40 13.75 42.98 10.57 78-23 11.64 52.72 H.44 83.43 15.65 SOLUBILITY OF LITHIUM SULFATE IN AQUEOUS ALCOHOL AT 30. (Schreinemakers and van Dorp, Jr., 1906.) Cms. per 100 Cms. Sat. Sol. Cms. per 100 Cms. Sat. Sol. ' QH.OH. ' Li,S0 4 . ' SohdPhaSe ' ' C,H 5 OH. ' Li,SO 4 . ' S Ld P ^' o 25.1 Li 2 SO 4 .H 2 47.28 3.04 Li 2 SO 4 .H 2 O 11.75 16.16 58.59 1.22 21.19 n-S 2 69.39 -396 29.40 8.17 80.74 o 33.31 6.66 ,94-n o F.-pt. data for Li 2 SO 4 + MnSO4 are given by Calcagni and Marotta, 1914: Results for Li 2 SO 4 + SrSO 4 are given by Calcagni and Marotta, 1912. Results for Li 2 SO 4 + Na 2 SO 4 and Li 2 SO 4 + K 2 SO 4 are given by Nacken, 1907; results for Li 2 SO 4 + Ag 2 SO 4 are given by Nacken, i9O7b. LITHIUM SILICATE Li 2 SiO 3 . Fusion point data for Li 2 O + SiO 2 and Li 2 SiO 3 + ZnSiOs are given by van Klooster, 1910-11. Results for Li 2 SiO 3 + MgSiO 3 , Li 2 SiO 3 + Na 2 SiO 3 , Li 2 SiO 3 + K 2 SiO 3 and Li 2 SiO 3 + SrSiO 3 are given by Wallace, 1909. LITHIUM TARTRATES. SOLUBILITY IN WATER. Cms. Salt Salt. Formula. t. per too Cms. Authority. Sat. Sol. Lithium Dihydroxytartrate Li 2 C4H 4 O 8 .2^H 2 O o 0.079 (Fenton, 1898.) Lithium Sodium Racemic Tartrate LiNaC^Oe^H^O 20 19.97 (Schlossberg, 1900.) " Dextro " " 20 22.55 " Potassium Racemic " LiKC^A.I^O 20 55.19 " Dextro 20 37.82 MAGNESIUM Mg. F.-pt. data for Mg+Hg. (Cambi and Speroni, 1915.) MAGNESIUM ACETATE Mg(CH 3 COO) 2 .4H 2 O. EQUILIBRIUM IN THE SYSTEM MAGNESIUM OXIDE-ACETIC ACID-WATER AT 25. (Iwaki, 1914.) Cms. per too Cms. Cms. per 100 Cms. Sat, Sol. Solid Phase. Sat, Sol. Solid Phase. CHjCOOH. MgO. CHsCOOH. MgO. 3.36 1. 73 MgO 31.37 7.99(CH 3 COO) 2 Mg.4H 2 5.65 2.93 " 36.23 8.l8 " +2.3.3 8.06 4.21 " '35-77 8 - J 7 2 -3-3 12.46 6.54 " ,,; 40.87 7.42 15 . 46 8 . 24 " +(CH,coo) 2 M g . 4 H 2 o 47 . 86 6 . 74 15.38 8.31 (CH,COO) 2 M g .4H 2 56.16 5.81 14.25 7.24 " 61.59 4.68 20.19 7-47 " 69.13 3.75 22.93 7 -60 " 75.93 2.85 26.61 7.74 " 82.90 , 2.23 2.3.3 = 2(CH 3 COO) 2 Mg.3CH 3 COOH.3H 2 O. More careful work in the region of the double salt showed that a second double salt of the composition 5(CH 3 COO) 2 Mg.ioCH 3 COOH.7H 2 O was obtained. This compound usually separated from the more concentrated acetic acid solutions. 379 MAGNESIUM BENZOATE MAGNESIUM BENZOATE Mg (Ce^COOJ^HjO. 100 gms. H 2 O dissolve 6.16 gms. Mg(C 6 H 6 COO) 2 at 15 and 19.6 gms. at 100. (Tarugi and Checchi, 1901.) IOO gms. H 2 O dissolve 3.33 gms. MgCCgHsCOO^ at I5-2O. (Squire and Caines, 1905.) MAGNESIUM BROMATE Mg(BrO 3 ) 2 .6H 2 O. TOO cc. sat. solution contain 42 grams Mg(BrO 3 ) 2 , or 0.15 grammols. at 1 8. (Kohlrausch Sitzb. K. Akad. Wiss. (Berlin), i, 90, '97.) MAGNESIUM BROMIDE MgBr 2 .6H 2 O. SOLUBILITY IN WATER. (Menschutkin - Chem. Centrb. 77, I. 646, '06; at 18, Mylius and Funk Ber. 30, 1718, '97.) o Grams MgBr 2 per 100 Gms. Grams MgBr 2 per 100 Grams. Solution. Water. Solution. Water. io 47.2 89.4 40 50.4 101.6 o 47-9 91-9 5 5 1 - I0 4-i io 48-6 94-5 60 51.8 107.5 18 49.0 96.1 80 53.2 113.7 18 50.8 103 . 4 (M. and F.) 100 54.6 120.2 20 49-i 9 6 -S I2 5 6 - I2 7-5 25 49-4 97-6 140 5 8 - I 3 8 - 1 30 49.8 99.2 160 62.0 163.1 Density of saturated solution at 18 = 1.655 (M. and F.) Etard Ann. chim. phys. [7] 2, 541, '94, gives solubility results which are evidently too high. MAGNESIUM BROMIDE ETHERATES, ALCOHOLATES, ACIDATES, ETC. SOLUBILITIES RESPECTIVELY IN ETHER, ALCOHOL, ACIDS, ETC., AT VARIOUS TEMPERATURES. (Boris N. Menschutkin. Monograph in the Russian language entitled " On Etherates and Other Molec- ular Combinations of Magnesium Bromide and Iodide." St. Petersburg, 1907, pp. 267 and XLVIII. Also published in the Memoirs of the St. Petersburg Polytechnic Institute, Vols. 1-7, 1904-1907, and in condensed form in Vols. 49-62 of the Zeit. anorg. Chem., 1906-1909.) Preparation of Material. The dietherate of magnesium bromide, MgBr 2 .2(C 2 H 5 )2O (Z. anorg. Chem., 49, 34, '06) was prepared by the very gradual addition of bromine to a cold mixture of magnesium powder and dry ether. It is very hygroscopic and is stable only under its ethereal solution. It is decom- posed by water and reacts with very many organic compounds as alcohols, acids, ketones, esters, aldehydes, etc. The addition products thus formed con- stitute the material employed in the author's succeeding studies. The mono- etherate of magnesium bromide, MgBr 2 .(C 2 H 6 ) 2 O, was prepared just as the dietherate, but the temperature during crystallization was kept above 30, at which point the dietherate is converted to monoetherate. It is also precipitated by dry ligroin. Method of Determination of Solubility. At temperatures below 30 the determinations were made by agitating an excess of the salt with the solvent and analyzing the saturated solution. At the higher temperatures the synthetic (sealed tube) method of Alexejeff (Wied. Ann., 1885) was used. See also p. 391. MAGNESIUM BROMIDE ETHERATES 380 SOLUBILITY OF MAGNESIUM BROMIDE DIETHERATE, MgBr 2 .2(C 2 H 6 )2O, AND OF MAGNESIUM BROMIDE ETHERATE, MgBr 2 (C 2 H 3 ) 2 O, IN ETHYL ETHER, (C 2 H 5 ) 2 O, AT VARIOUS TEMPERATURES. (Menschutkin. See preceding page.) Solubility of the Dietherate in Ether. Solubility of the Monoetherate in Ether. ^ Gms. per 100 Gms. Sat. Sol. Mols. MgBr,. 2 (C2H 5 ) 2 O per t <, 100 Mols. Sat. Sol. Gms. per 100 Gms. Sat. Sol. ( ols. MgBr 2 , 2 H 5 ) 2 per :oo Mols. Sat. Sol. ' MgBr 2 .2(C 2 H 5 ) 2 O. MgBr,. MgBr 2 .(C 2 H 6 ) 2 0. MgBr 2 . ' ' - 8 1. 08 0.6 .24 68 .8 49 .1 28.1 o 1.44 .8 O 32 20 67 .2 47 9 27.1 + 10 2-3 i .27 3 66 5 47 3 26.6 14 2-95 i .64 67 40 65 5 46 7 26.1 16 i 93 o .80 60 63 .8 45 5 25-1 18 4.14 2 3 .96 80 62 .1 44 3 24.2 20 4.86 2 7- I 125 100 60 7 43 3 23-5 22. .8 6.3 3 5 I .6 120 59 .6 42 5 22.9 Two liquid layers separate between these con- I4O 58 5 41 7 22.3 centrations of MgBr 2 .2(C2Hjj) 2 O. 158 57 5 41 21-9 23 72.3 40 .1 36 .8 Two liquid layers separate between these con- 24 75-3 41 .8 40 5 centrations of MgBr 2 .(C 2 H 6 ) 2 O. 26 79-5 44 .1 46 .6 158 5 .8 4 .15 1.6 28 5 84.2 46 7 54 .2 158 4 .8 3 4 1.36 30 85.5 47 4 56 9 159 i .96 i 4 0.56 l62 .38 o .27 O.II 170 .18 13 0.05 At 22.8 and 158 the saturated solutions of the dietherate and monoetherate, respectively, separate into two liquid layers which have at the intervening tem- peratures the following composition. Determinations of the specific gravity of the lower layer gave d# = 1.1628 and d%$ = 1.1492. Gms. per 100 Gms. Solution. t. Lower Layer. Upper Layer. MgBr 2 . 2 (C 2 H3) 2 O. MgBr 2 . MgBr 2 . 2 (C2H 3 ) 2 O. MgBr 2 . 10 75-75 42 3-2 1.8 73-9 41 4.1 2-3 + IO 72.2 40.1 5 2.8 20 70.8 39-3 5-9 3-3 30 69.8 38.7 6.8 3-8 40 68.8 38.2 7-7 4-3 50 68 37-8 8.5 4-7 60 67.7 37-6 9.2 5.1 70 67.7 37-6 9-7 5-4 80 68 37-8 10 5-6 90 68.6 38.1 10.2 5-7 100 69.4 38.5 10.4 5-8 120 71 39-3 10. 1 5-6 140 72.4 40.15 9.2 5.1 158 74 41 7 .8 4-3 unstable stable 3 8i MAGNESIUM BROMIDE ALCOHOLATES SOLUBILITY OF ETHYL, METHYL, PROPYL, ETC., ALCOHOLATES OF MAG- NESIUM BROMIDE IN THE RESPECTIVE ALCOHOLS. (Menschutkin, 1907.) These compounds were all prepared by the action of magnesium bromide dietherate upon the several alcohols. The ether was expelled and the new alco- holate addition product recrystallized from the respective alcohol. The solubility determinations were made by the synthetic method. Solubility of Solubility of Solubility of Solubility of MgBr 2 .6CH 3 OH M in Methyl Alcohol. in gBr 2 .6C 2 H 5 OH MgBr 2 .6C 3 H 7 OH MgBr 2 .6IsoC 4 H 9 OH Ethyl, Alcohol, in Propyl Alcohol, in IsoButyl Alcohol. Gms. MgBr 2 . t 6CH 3 OH t o Gms. MgBr 2 . 6C 2 H 6 OH t o Gms. MgBr 2 . Gms. MgBr 2 . 6C 3 H 7 OH t o 6C 4 H 9 OH per ioo per ioo per ioo per ioo Gms. Sat. Sol. Gms. Sat. Sol. Gms. Sat. Sol. Gms. Sat. Sol. o 42.6 o 17.2 o 77-9 o 55-8 20 44.6 10 24.9 10 81.5 10 60.5 40 46 . 7 20 32.7 20 85.1 20 65.2 60 48 . 9 30 40-3 30 88.5 30 69.8 80 51.4 40 47.8 40 92 40 74.3 ioo 55.5 60 62.2 43 93 50 78.5 I2O 60.7 80 73-8 46 94.3 60 82.4 140 66 . 8 90 78.7 48 95-8 65 84.2 160 74 ioo 86.7 50 97.8 71 88 180 84.5 103 90 52m.pt. ioo 75 92 185 88 106 94-4 77 94-6 i90m.pt. ioo 108 .5m.pt. ioo 8om.pt. ioo Solubility of MgBr 2 .6 Iso C 5 HnOH in IsoAmyl Alcohol. Solubility of MgBr 2 .4(CH 3 ) 2 CHOH in Dimethyl Carbinol. Solubility of MgBr 2 . 4 (CH 8 )3COH in Trimethyl Carbinol. Gms. MgBr 2 . t 6C 5 H U OH per Gms. MgBr 2 . t o 4 (CH 3 ) 2 CHOH Gms. MgBr 2 . t o 4 (CH 3 ) 3 COH ioo Gms. per ioo Gms. per ioo Gms. Sat. Sol. Sat. Sol. Sat. Sol. i o 70.2 o 40 24.7m. pt. of (CH 3 ) 3 COH 10 75-6 2O 42 . 2 24.4Eutec. 0.06 20 80.2 40 45 25 I 30 84.5 60 48.5 35 9-5 35 86.7 80 53-3 45 19-1 38 88.7 ioo 59 55 32.2 40 90 120 67.3 60 40.5 42 92 130 74 70 62.5 44 94-2 136 83.6 75 77 46 m. pt. ioo 138 90 79 91-5 139 m. pt. ioo 80 m. pt. ioo MAGNESIUM BROMIDE ANILINATES. SOLUBILITY OF MAGNESIUM BROMIDE ANILINATES IN ANILINE AT DIFFERENT TEMPERATURES. (Menschutkin, 1907.) The compounds were formed by the action of aniline on magnesium bromide dietherate. The three compounds were: MgB^CeHsNH-j, MgBr 2 .4C 6 H4NH 2 and MgBr 2 .2C 6 H 5 NH 2 . Gms. MgBr 2 . t o 4 C 6 H S NH 2 per ioo Gms. Sat. Sol. IO 3-2 50 5-i 70 7-5 QO 12.8 IOO 18.5 103.5 27-5 103 tr. pt. 24 1 20 24-3 140 24-3 Solid Phase. MgBr 2 .6C 6 H 5 NH 2 M g Br 2 . 4 C 6 H 5 NH, Gms. MgBr 2 . 4 C 6 H 8 NH 2 t . per ioo Gms. Sat. Sol. 160 26 180 28.3 200 33-5 2 2O 45 230 55 237 tr. pt. 76.3 250 77-3 260 78.1 270 79 Solid Phase. MgBr I . 4 C 6 H 4 NH 1 MAGNESIUM BROMIDE 382 MAGNESIUM BROMIDE PHENYLHYDRAZINATES. SOLUBILITY OF MAGNESIUM BROMIDE. PHENYLHYDRAZINATES IN PHENYL- HYDRAZINE. (Menschutkin, 1907.) (Approximate determinations.) Gms. MgBr 2 . 5 NHNH 2 2O 40 60 80 99 Cms. MgBr 2 . 6QH 6 NHNH 2 per too Gms. Sat. Sol. 3 7 16.4 33 54-8 Solid Phase. MgBrj.GCeHsNHNH, IOO tr. pt. 140 180 200 Sat. Sol. 54-8 60.8 68.4 73-4 MgBr 2 .4QHjNH.NH 2 MAGNESIUM BROMIDE COMPOUNDS with Benzaldehydeand with Acetone- SOLUBILITY RESPECTIVELY IN BENZALDEHYDE AND IN ACETONES. (Menschutkin, 1907.)' The compounds were prepared by the action of benzaldehyde and of acetone on magnesium bromide dietherate. On account of the nature of the compounds the results are only approximately correct. Solubility of MgBr 2 .3C 6 H 5 COH in Benzaldehyde. Solubility of MgBr 2 .3CH 3 .CO.CH 3 . in Acetone. Gms. MgBr 2 . 3 QH 6 COH t o per ioo Gms. Gms. MgBr 2 . 3 C 6 H 5 COH per ioo Gms. Gms. MgBr 2 . Gms. MgBr 2 . t o 3 CH 3 .CO.CH 3 t o 3 CH 3 COCH 3 per ioo Gms. per ioo Gms. Sat. Sol. Sat. Sol. Sat. Sol. Sat.: Sol. O 7 140 I 7 .8 0.2 75 50 , 30 I .3 145 37-5 30 0.8 76 71 .6 60 I 9 146 65 60 i-45 80 83 3 IOO 3 4 148 84-5 70 2 84 89 .8 120 6 153 93-2 73 5-5 88 95 .2 130 9 5 I5pm.pt. IOO 74 14 92m. pt. IOO MAGNESIUM BROMIDE COMPOUNDS with Methylal, Ortho Ethylformate, Formic Acid and Acetic Acid. (Menschutkin, igo7a.) The compounds were prepared by the action of methylal, ortho ethylformate* and absolutely dry formic and acetic acids on magnesium dietherate. In the case of the latter compounds the results are only approximately correct, due to their extreme hygroscopicity. Solubility of Solubility of Solubility of Solubility of MgBr 2 .2CH,(OCH 3 ) 2 MgBr 2 .2CH(OC 2 H 6 )3 MgBr 2 .6HCOOH MgBr 2 .6CH 3 COOH in Methylal. in Orthoethylformate. in Formic Acid. in Acetic Acid. Gms. MgBr 2 . Gms. MgBr 2 . Gms. MgBr 2 . t 2 CH 2 (OCH 3 ), t o 2CH(OC 2 H 6 ) 3 t o 6HCOOH per ioo Gms. per ioo Gms. per ioo Gms. Sat. Sol. Sat. Sol. Sat. Sol. Gms. MgBr 2 . t o 6CH 3 COOH ' per ioo Gms. Sat. Sol. 20 o-3 n. i o 49-8 17 o-3 40 0.45 20 12.5 20 57-5 3 i . 5 60 0.6 40 14.8 40 65-1 50 4-5 80 0-75 60 18.6 60 73-i 60 7-9 IOO 0.9 80 25-7 70 78.1 70 16.2 106 i.i 90 35 80 86 80 38.5 2 liquid layers here 95 86 95 90 57-7 106 86.2 IOO 50 88 m. pt. IOO IOO 71.8 108 90.8 105 66 105 80 no 95-4 no 88.5 no 89.5 112 m. pt. IOO 114 m. pt. IOO 112 m. pt. IOO 383 MAGNESIUM BROMIDE MAGNESIUM BROMIDE COMPOUNDS with Acetamide, Acetanilide and Acetic Anhydride. (Menschutkln, 1909.) The compounds were prepared by reaction with magnesium bromide dietherate. Solubility of MgBr 2 .6CH 3 CONH 2 "in Acetamide. Gms. MgBr 2 .6CH r t e . CONH 2 Solid Phase, per ioo Gms. Sat. Sol. Solubility of Solubility of MgBr 2 .6CH 3 CONHC 6 H 5 MgBr 2 .6(CH 3 CO) 8 O in Acetanilide. in Acetic Anhydride. Gms. Gms. MgBr 2 .6CH r MgBr 2 . t. CONHQHs Solid Phase. t. 6(CH 3 COO) 2 O per ioo Gms. per ioo Gms. Sat. Sol. Sat. Sol. 82 m.pt.ofCH 3 CONH 2 CH 3 CONH 2 112 m. pt. of CHsCONHQHj o 26 4 80 3 I no 3- 7 CHsCONHQHs 2O 28 7 70 21 7 " 108 7- 7 40 31 6 60 40 " -* n "+MgBr 2 CH 3 - 60 35 7 ff\ CH 3 CONH 2 +MgBr 2 107. 5 9 CONHQH 6 80 i 50-5* 50 CH 3 CONH 2 L20 13- i MgBr 2 .CH,CONHC 6 H 6 ioo 48 4 70 57 8 MgBr 2 .CH,CONH 2 140 19. 3 " 1 2O 57 8 90 60 5 160 25- 5 I 3 69 8 1 10 65 180 35- 3 133 77 130 5 200 59- 5 135 85 150 80 205 73- 2 136. 5t 1 60 85 207 82. 5 " 165 90 209 ioof " i6 9 f IOO 4. MAGNESIUM BROMIDE COMPOUNDS with Urethan and with Urea. (Menschutkin, 1909.) Solubility of Magnesium Bromide Solubility of Magnesium Bromide Urethan Compounds in Urethan. Urea Compounds in Urea. Gms. Gms. TMgBr 2 . 4 C 2 H 5 O- MgBr,. 4 CO- t. CONH 2 Solid Phase. t. (NH,) 2 Solid Phase, per ioo Gms. per iooj3ms. Sat. Sol. bat. bo i. 49m. pt. of urethan C 2 H 3 OCONH 2 132 m. pt. of urea COCNHj), 45 18.5 " 126 9-5 " 36-5 " 120 17.2 35* 43-3 " +MgBr 2 .6C 2 H 3 OCONH 2 114 21.8 So 45-6 MgBr 2 .6CjH 3 OCONH 2 108. 5* 24.2 CCKNH,), +MgBr 2 .6CO(NHj), 70 5 1 -3 "5 29.8 MgBrj.GCOCNHzJj 80 56-2 120 35 " t 90 66.5 127 45-5 " 75-5 130 60 " 9 I t 69.4 +MgBr 2 . 4 C,H,OCONH, i3t 58 " +MgBr 2 . 4 CO(NH 2 ), IOO 73-8 MgBr 2 . 4 CjH 3 OCONH, 145 60.7 MgBrj^COCNH,), no 80 1 60 67.2 " "5 84.1 " 165 71.4 " 120 90 " 170 83-7 M 123 IOO " 171 96 * Eutec. t tr. pt. MAGNESIUM CAMPHORATE CioH 14 O 4 Mg.i4H 2 O. SOLUBILITY OF MAGNESIUM CAMPHORATE IN d CAMPHORIC ACID AT 15 AND VICE VERSA. Qungfleisch and Landrieu, 1914.) Gms. per ioo Gms. Sat. Sol ' Ci H 14 4 . C 10 H 14 4 M g . 3.16 10.30 3-5 16.5 3.6 16.7 1.91 15-1 o 14.25 Gms. per ioo Gms. Sat. Sol. _ C 10 H lg 4 . ' C 10 H 14 Q^ g . So 0.622 (13.5) o CioH 16 O 4 I . 20 I . 29 1-98 3-53 2.36 5-66 2.85 8.19 Solid Phase. CioH lo 4 " +CioH 14 4 Mg.i 4 H 2 CioH, 4 4 M g .i4H 2 MAGNESIUM CARBONATE 384 MAGNESIUM CARBONATE MgCO,.3H 2 O. SOLUBILITY IN WATER IN PRESENCE OF CARBON DIOXIDE AT 15. (Treadwell and Reuter Z. anorg. Ch. 17, 200, '98.) cc. CO 2 per too cc. Gas Phase (at o and 760 mm.). Partial Pressure of COa in mm. Hg. Grams per TOO cc. Solution. Free CO 2 . MgC0 3 . Mg(HC0 3 ) 2 . Total Mg. 1 8. 86 143-3 O.IIQO . . . I.2I05 0.2016 5-47 41 .6 0.0866 I .2IO5 0.2016 4-47 33-8 0.0035 I .2105 0.2016 i-54 11.7 0.0773 I .0766 0.2016 J -3S 10.3 . . . 0.0765 0.7629 0.1492 1.07 8.2 ... 0.0807 0-5952 0.1224 0.62 4-7 . . . O.O7OI 0-3663 0.0865 0.60 4.6 0-0758 0.3417 0.0788 o-33 2-5 0-0748 0.2632 0.0655 0.21 1.6 0.0771 O.2229 0.0594 0.14 i .1 0.0710 0.2169 0.0566 0.03 o-3 0.07II 0.2036 0.0545 0.0685 0.2033 0-0536 0.0702 0-1960 0.0529 0.0625 0.2036 O.O52O 0.0616 0.1954 0.05II ... ... 0.0641 0.1954 O.O5l8 Therefore at o partial pressure of CO 2 and at 15 and mean barometric pressure, one liter of saturated aqueous solution contains 0.641 gm. of MgCO 3 plus 1.954 gms. Mg(HCO 3 )i. It is pointed out by Johnston (1915) that although Treadwell and Reuter made very painstaking analyses, their mode of working did not secure equilibrium con- ditions, a fact which is borne out by the lack of constancy of the calculated solu- bility-product constant. SOLUBILITY OP MAGNESIUM CARBONATE IN WATER CHARGED WITH CAR- BON DIOXIDE AT PRESSURES GREATER THAN ONE ATMOSPHERE. (Engel and Ville Compt. rend. 93, 340, '81; Engel Ann. chim. phys. [6] 13, 349, '88.) Pressure of C0 2 in Atmospheres. G. MgCO 3 ? per Liter. Pressure of CO 2 in Atmospheres o G. MgC0 3 * per Liter. At 12. At 19. At 12. At 19. o-5 20. 5 . 4 o 42 .8 I.O 26. 5 25 .8 4 7 43-5 2.0 34- 2 33 .1(2 ,i At.) 6 .0 50 .6 48.5(6 2 At.) 3-o 39- O 37 2(3 .2 At.) 9 .0 56.6 SOLUBILITY IN WATER SATURATED WITH CO 3 AT ONE ATMOSPHERE. (Engel.) f. o Gms. MgCO>* per Liter. 60 II 80 5 100 O Dissolved as Mg(HCO 3 ) a . t<>. Gms. MgCO 3 * per Liter. y Gms.MgCO 3 * per Liter. 5 36 30 21 10 31 40 17 20 26 385 MAGNESIUM CARBONATE Data for the system magnesium carbonate-carbonic acid- water at 20, 25, 30, 34 and 39 are given by Leather and Sen (1914). In connection vith these results, it is pointed out by Johnston (1915), that it is questionable whether equilibrium was really obtained and furthermore, the accuracy of the analytical results cannot be trusted since the ratio of total amount of CO 2 in solution, to the magnesia ia very irregular. The results when plotted directly show great inconsistencies. THE CALCULATED SOLUBILITY OF MgCO 3 .3H 2 O IN WATER AT 18 IN CONTACT WITH Am CONTAINING PARTIAL PRESSURES OF CO 2 FROM 0.0002 TO 0.0005 ATMOSPHERES. (Johnston, 1915.) It is shown that if the CO 2 pressure is kept constant at P and the water evapo- rated off so slowly at 18 that equilibrium conditions are continuously maintained, the following amounts of Mg(OH) 2 or of MgCO 3 .3H 2 O will be obtained. Partial Pressure P of CO 2 in Atms. O Mols. Cms. per Liter. 0.0087 Mg(OH) 2 I 3 29 45 60 97 05 12 Total Mg p 0.00015 0.01934 O.O22I8 0.02486 0.02742 0.02868 0.02924 0.02976 SOLUBILITY OF MAGNESIUM CARBONATE IN NATURAL WATERS. (Wells, 1915.) (In all cases the solutions were in equilibrium with atmospheric air at 20.) Milligrams per Liter of Sat. Solution. Mixture. MgC0 3 .3H 2 0.00020 0.00025 0.00030 0.00035 0.00040 0.00045 0.00050 Mg. Free COj. Natural Magnesite in Distilled H 2 O 0.018 trace 0.065 in Aq. NaCl (27.2 g. per 1.) 0.028 trace 0.086 MgCOs^BkO (equilibrium from bicarbonate end) 0.038 0.28 COc as carbonate 0.83 MgCO 3 .3H 2 O( ' under saturation ") 0.034 0.32 CO 2 " 0.59 SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF POTASSIUM BICARBONATE. (Auerbach, 1904.) The conditions necessary for preventing changes in equilibrium due to hy- drolysis and loss of CO 2 are discussed. The mixtures were shaken from 1-4 days. The sat. sol. analyzed for total alkali ( K -\ J by titration with standard HC1 using methyl orange as indicator. The neutralized solution was boiled to expel CO 2 and then excess o. i n NaOH added and the filtrate from magnesium precipi- tate back titrated with o.i n HC1. The - was calculated from the used O.I n NaOH and the K obtained by difference. Results at 15. Mols. per Liter. Results a Mols. per Liter. t2 5 . Solid Phase. MgC0 3 . 3 H 2 " (labil) " +1.1 i.i Results at Mols. per Liter. 35. Solid Phase. MgCO^HjO " (labil) " +X.X i.i < KHC0 3 . MgOV" o 0.0095 MgCO s .3H z O 0.0992 0.0131 " 0.1943 0.0167 " 0.3992 O.O2II "(labil) 0.2681 0.0192 " +1.1 0.5243 0.0097 LI 0.6792 0.0074 " 0.981 0.0028 " i.i = MgCO 3 .KHCO 3 . 4 H 2 O. KHCO 3 . O 0.0985 O.22IO 0-3434 0.4985 0.3906 0-5893 0.6406 I.I25 MgCO 3 . 0.0087 0.0115 0.0149 0.0181 0.0217 0.0196 0.0128 0.0117 0.006 1 KHCO 3 . O 0.1092 0.2811 0.4847 0.5807 0.5088 0.6231 0.8535 MgCO 3 . 0.0071 0.0098 0.0142 0.0177 0.0198 0.0184 0.0153 0.0119 Additional data for this system are given by Nanty, 1911. Data for the solubility of MgCO 3 in aq. NaCl and other salt solutions, deter- mined by prolonged boiling and subsequent cooling of the solution out of contact with air, are given by Gothe (1915). MAGNESIUM CARBONATE 386 SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OP SODIUM CARBONATE AT 25. The solutions being in equilibrium with an atmosphere free from CO 2 . (Cameron and Seidell J. Physic. Ch. 7, 588, '03.) Wt. of i Liter Grams per Liter. Reacting Weights per Liter. of Solution. N a2 C0 3 . M g co 3 : Na 2 C0 3 . MgC0 3 . 996.8 o.oo 0.223 o.ooo O.OO266 1019-9 23.12 0.288 O.22O 0.00344 1047-7 50-75 0.510 0.482 o .00620 1082.5 86.42 0.879 O.82O 0.01027 1118.9 127.3 1-314 1.209 0.01570 1147.7 160.8 1.636 I .526 0.01955 1166.1 181.9 1.972 1.727 0.02357 1189.4 213.2 2.317 2.024 0.02770 SOLUBILITY OP MAGNESIUM Bi CARBONATE AND OF MAGNESIUM CAR- BONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23. The solutions being in equilibrium with an atmosphere of CO 2 in the one case, and in equilibrium with air free from CO 2 in the other. (C. and S.) In Presence of CO 2 as Gas Phase. In Presence of Air Free from CO 2 . Cms. NaCl per Liter. Gms. Mg(HCO 3 ) 2 per Liter. Wt. of i Liter. Gms. NaCl per Liter. Gms. MgCO 3 per Liter. 7-0 30.64 996.9 o.o 0.176 5^5 30.18 IOI6.8 28.0 0.418 119.7 27.88 1041 . I 59-5 0.527 163.9 24.96 1070.5 106.3 0.585 224.8 20.78 1094.5 147.4 0-544 306.6 iQ-75 1142.5 231.1 0.460 II70.I . 272.9 o-393 II99-3 331-4 0.293 SOLUBILITY OP MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM SULPHATE AT 24 AND AT 35.5. The solutions being in equilibrium with an atmosphere free from CO 2 . (Cameron and Seidell.) Results at 24. Results at 35.5. Wt. of Gms. Na 2 SO 4 Gms. MgCO 8 Wt. of Gms. Na 2 SO Gms. MgCO 3 i Liter. per Liter. per Later., i Liter. per Liter. per Liter. 007-5 o.oo 0.216 995- 1 0.32 0.131 I02I.2 25.12 0.586 1032.9 41.84 0.577 1047.6 54-76 0.828 1067.2 81.84 -753 1080.9 95-68 1133.8 160.8 1157.3 191.9 1206.0 254.6 1242.0 305.1 .020 1094.8 116.56 0.904 .230 II20-4 148.56 0.962 .280 "S 1 -? 186.7 1-047 .338 1179.8 224.0 I. 088 .388 1236.5 299.2 1-130 MAGNESIUM CHLORATE MAGNESIUM CHLORATE Mg(ClO 3 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Meusser Ber. 35, 1416, '02.) Mg(003) 2 Mg(C103)j per 100 Gms. per 100 Solution. Mols.H 2 0. Solid Phase. Gms. Mols. Mg(C10 3 ) 2 Mg(C10a)a per 100 Gms. per 100 Solution . Mols . H 2 O . -18 o 18 29 35 51.64 53-27 56.50 60.23 63-65 10.05 10.73 12.22 14.25 16.48 Mg(C10 8 )2-6H 3 42 65-5 39-5 61 .o 68 63.82 69.12 65-37 69.46 70.69 93 (73 -7 1 ) 16.60 20.08 17.76 21.40 22.69 (26.38) Solid. Phase. Mg(C10 8 )a.4H,0 Mg(C10 a ) a .3H 3 Sp. Gr. of saturated sol. at + 18 = 1.564. MAGNESIUM CHLORIDE MgCl 2 . SOLUBILITY IN WATER. (van't Hoff and Meyerhoff er, 1898; Engel; Lowenherz. Results quoted from Landolt and BCrnstein, 191 2-) Gms. MgCbper too Gins SoHd t. Gms. MgCljperioo Gms* Solid t Solution. Water. Phase - Solution . Water. Phase. 10 n. i 12 5 Ice O 34 5 52 .8 MgCl 2 .6H a O 2O 16.0 19 .0 IO 34 9 53 5 " -30 19.4 24 .0 20 35 3 54 5 33- 6 20. 6 26 O Ice + MgCl 2 .i2H2O 22 35 .6 55 .2 " 20 26.7 36 . 5 MgCl 2 .i 2 H 2 O 25 36.2 56 7 " -16. 4 30.6 44 .04f.pt. 40 36 5 57 5 44 -16. -17- 8 4 3i-6 32-3 46 47 .2 6* * MgCl 2 .i2H 2 O + MgCl 2 .8H 2 O a MgCl 2 .i 2 H 2 0-f MgCl 2 .8H 2 O/3 MgCl 2 .i2H 2 O + 60 80 100 37 39 42 9 .8 .2 61 66 73 .0 .0 .0 44 44 -19 4 33-3 49 9 116 7 46 .2 85 5 f MgCl 2 .6H 2 O + | MgCl 2 .4H 2 G - 9- - 3- 6 4 33-9 34-4 5 1 3* 3 M!gC^l 2 .8H 2 O p + MgClo.6H 2 O MgCl 2 .8H 2 a + MgCl 2 .6H 2 O about 152 181 6 49 5 55 .1 .8 96 126 4 .0 MgCl 2 . 4 H 2 O ( MgCl 2 . 4 H 2 O + \ MgCl 2 . 2 H 2 O 1 86 56 .1 128 .0 MgCl 2 .2H 2 * = Unstable. SOLUBILITY OP MAGNESIUM CHLORIDE IN AQUEOUS SOLUTIONS OP HYDROCHLORIC ACID AT o. (Engel Compt. rend. 104, 433, '87.) Milligram Mols. p^er 10 cc. Solution. Sp.Gr.of Grams per Liter of Solution. HC1. iMgd 2 . Solutions. HC1. MgCl z . o.o 99-55 I .362 o.o 474.2 4-095 95-5 1-354 14-93 454-8 9-5 90.0 1-344 34.63 428.6 17.0 82.5 1.300 61.97 393-o 20.5 79-o 1.297 74-74 376-2 28.5 71.0 1.281 103.9 338-3 42.0 60.125 286.4 58.75 46.25 214.2 2204.3 76.0 32-0 277.1 152.0 sat. HC1 (Ditte) 6.5 100 gms. H 2 O dissolve 52.65 gms. MgCl 2 at 3.5, 55.26 gms. at 25 and 58.66 gms. at 50. (Biltz and Marcus, 1911.) MAGNESIUM CHLORIDE 388 SOLUBILITY OF BASIC MAGNESIUM CHLORIDE IN WATER AT 25. (Robinson and Waggaman, 1909.) An excess of MgO was shaken with each of 20 MgCl 2 solutions at 25 for six months and the supernatant clear solutions and solid phases with adhering liquid, analyzed. The solutions were titrated with 0.02 n HC1 for dissolved MgO (present as Mg(OH) 2 ). The composition of the solid phase in each case was ascertained by plotting the analytical results on a triangular diagram. Solid Phase. 2MgO.HCl. S H 2 O SOLUBILITY OF MIXTURES OF MAGNESIUM CHLORIDE, POTASSIUM CHLORIDE AND OF MAGNESIUM POTASSIUM CHLORIDE (CARNALLITE) IN WATER AT VARIOUS TEMPERATURES. (van't Hoff and Meyerhoffer, 1899, 1912.) Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase.' gjfc^ Gms. per 100 Gms. Sat. Sol. MgCl*. MgO. ' MgCl 2 . MgO. I 019 2 36 00008 Indefinite .141 17-53 .0024 I 038 4 47 o 00028 Solid Solution .162 18.52 .0025 i 056 6 79 o . 00048 .192 22.04 .00245 I 075 9 .02 o 00080 (C .245 26.88 .0025 V I 13 14 00115 l( .274 29.80 .0024 .321 34-22 o .0030 Gms. per 100 t . Gms. H 2 O. Solid Phase. Kind of Point on Curve. 1 MeCl,. KC1. II i . . ; 24 6 Ice +KC1 Cryohydric of KC1 - 33 6 26 " +MgCl 2 .i2H 2 MgCl 2 i 2 H 2 O 34 3 22 7 I 24 " +KCl+MgCl 2 .i 2 H 2 O +KC1 21 34 9 2 03 Carnawte+M g Cl 2 . I2 H 2 O+KCl Formation Temp, of Carnallite O 35 5 3-02 +KC1 Point on Curve 25 38 4 4.76 + " U (( 50 42 6 17 4- " (( (I (Uhlig, 1913 61 5 42 6 7 20 + " (( 11 *54 5 65 5 14 07 H~ " (I 167 5 88 i 26 -f " M. pt. of Carnallite 25 55 5 0.83 " +MgClj.6H,O Point on Curve 50 59 13 o 50 " + " K It (Uhlig, 1913-) 80 65 i 24 U _J_ 1C it "5 7 85 6 i 66 " + " +MgCl 2 . 4 H 2 O Transition Point [Carnallite 152 5 105 7 9-93 " +MgCl 2 . 4 H 2 0+KCl Upper Formation Temp, of 176 126 9 16 97 MgCl 2 . 4 H 2 O+MgCl 2 .2H 2 O+KCl Transition Point 186 126 9 26 i MgCl 2 . 2 H 2 O+KCl Point on Curve Carnallite = MgKCl 3 .6H 2 O. SOLUBILITY OF MIXTURES OF MAGNESIUM CHLORIDE AND OTHER SALTS IN Mixture. MgCl 2 .6H 2 O+MgSO 4 .6H 2 O MgCl 2 .7H 2 O+MgSO 4 .6H 2 O WATER AT 25. (Lowenherz, 1894.) Gms. Mols. per 1000 Mols. H 2 O. 104 MgCl 2 +i 4 MgSO 4 73 " +15 " MgCl 2 .6H 2 O+MgCl 2 .KC1.6H 2 O 106 Cl 2 -f-i K 2 +io5 Mg Gms. per Liter of Solution. i *" 25. Cl+4.4 SO 4 19.5 Cl+5-3 S0 4 26. 9 Cl+o. 3 K+45.7S0 4 Results for all possible combinations of magnesium sulfate and potassium chloride and of magnesium chloride and potassium sulfate are also given. 100 cc. anhydrous hydrazine dissolve 2 gms. MgCl 2 at room temp. A flocculant ppt. separates on Standing. (Welsh and Broderson, 1915.) Freezing-point data (solubility, see footnote, p. i) for mixtures of MgCl 2 and KC1, NaCl, AgCl, ZnCl 2 and SnCl 2 are given by Menge (1911). Data for mixtures of MgCl 2 + SrCl 2 and MgCl 2 + MnCl 2 are given by Sandonnini (1912, 1914). Data for MgCl 2 + MgSO 4 are given by Jaenecke (1912). Data for MgCl 2 +TlCl are given by Korreng (1914) and data for MgCl 2 +KCl and MgCl 2 -f HC1 are given by Dernby (1918). MAGNESIUM CINNAMATE MAGNESIUM CINNAMATE (C 6 H 6 .CH.CH.COO) 2 Mg.H 2 O. 100 gms. sat. solution in water contain 0.85 gm. (C 6 H 6 CH.CHCOO) 2 Mg at 15 and 1.94 gms. at IOO. (Tarugi and Checchi, 1901.) MAGNESIUM CHROMATE MgCrO 6 .7H 2 O. 100 grams H 2 O dissolve 72.3 grams MgCrO< at 18, or 100 grams solution con- tain 42.0 grams. Sp. Gr. = 1.422. (Mylius and Funk, 1897.) MAGNESIUM POTASSIUM OHROMATE MgCrO 4 .K 2 CrO 4 . 2 H 2 O. 100 grams H 2 O dissolve 28.2 grams at 20, and 34.3 grams at 60. (Schweitzer.) MAGNESIUM PLATINIC CYANIDE SOLUBILITY IN WATER. (Buxhoevden and Tamman Z. anorg. Ch. 15, 319 '97.) Gms.MgPt(CN)4 Gms. MgPl(CN)* t. per 100 Gms. Solid Phase. t. penooGms. Solid Phase. Solution. Solution . 4.12 24.90 MgPt(CN) 4 .6.8-8.iH 2 O 48.7 40-89 MfcPt(CN) 4 .4H 2 O O 5 26 9 " (Red) 55 41 33 5 5 28 65 " 58 .1 42 .15 14 18 .0 3 2 .46 it 69 .0 43 .40 41 36 .6- 39 53 it 77 .8 44 ,90 45 .0 41 33 it 8? 4 45 52 M 46 .2 42 .0 90 .0 45 65 14 42 .2 40 .21 MgPt(CN) 4 . 4 H 2 O 93 .0 45 .04 It 46 3 39 85 14 (Bright Green) 96 4 44 33 MgPt(CN) 4 . 2 H 2 100 44 .0 " (White) MAGNESIUM FerroCYANIDES. SOLUBILITY IN WATER AT 17. (Robinson, 1909.) One liter sat. sol. contains 1.95 gms. magnesium potassium ferrocyanide, MgK 2 FeC 6 N 6 . One liter sat. sol. contains 2.48 gms. magnesium ammonium ferrocyanide, Mg(NH 4 ) 2 FeC 6 N6. MAGNESIUM FLUORIDE MgF 2 . One liter of water dissolves 0.076 gm. MgF 2 at 18 by conductivity method. (Kohlrausch, 1905.) One liter water dissolves 0.087-0.090 gm. MgF 2 at 0.3 and 0.084 gm. at 27 by conductivity method. (Kohlrausch, 1908.) MAGNESIUM HYDROXIDE Mg(OH) 2 . One liter of water dissolves 0.008 0.009 S m - Mg(OH) 2 at 18 by conductivity method. (Dupre and Brutus, 1903.) One liter of water dissolves 0.009 S m - Mg(OH) 2 at 18 by conductivity method (Kohlrausch and Rose, 1893), 0.012 gm. (Tamm, 1910). SOLUBILITY OF MAGNESIUM OXIDE IN AQUEOUS SOLUTIONS CONTAINING SODIUM CHLORIDE AND SODIUM- HYDROXIDE. (Maigret, 1905.) Gms. MgO per Liter Solution with Added: Gms. NaCl , * ^ per Liter. 0.8 g. NaOH 4.0 g. NaOH 125 140 160 per Liter. 0.07 0.045 none per Liter. 0.03 none MAGNESIUM HYDROXIDE 390 SOLUBILITY OF MAGNESIUM HYDROXIDE IN AQUEOUS SOLUTIONS OP AMMONIUM CHLORIDE AND OF AMMONIUM NITRATE AT 29. (Herz and Muhs Z. anorg. Ch. 38, 140, '04.) NOTE. Pure Mg(OH) 2 was prepared and an excess shaken with solutions of ammonium chloride and of ammonium nitrate of different concentrations. ..Concentration of ^Sg^d Normality of; Grams per Liter ^Wo?^ '^^r 'Mg(OH), NH.C1'. IWOH^HH.O: .7 (NH4C1) 0.09835 0.156 0.388 4.55 20.86 0.466 " O.IIOS 0.108 0.250 3.15 13.39 0.35 " 0-09835 0.089 O.I72 2.6o 9-21 0.233 " 0.1108 0.0638 0.106 1.86 5.67 0.175 " 0.1108 0.049 0-0771 i-43 4-i3 0.35 (NIL^NOs) O.IIoS 0.0833 O . l834(NH*NO t )2 -43 14 -69 (NIL^NOs) 0.175 " O.IIOS 0.04950-076 " 1.45 6.09 MAGNESIUM IODATE Mg(IO 3 ) a . SOLUBILITY IN WATER. (Mylius and Funk Ber. 30, 1722, '97; Wiss. Abh. p. t. Reichanstalt 3, 446, f oo.) Gms. Mols. Gms. Mols. t o Mg(I0 3 ) 2 Mg(I0 3 ) 2 Solid to Mg(I0 3 ) 2 Mg(I0 3 ) 2 Solid per ioo per TOO Mols, Phase. per 100 per 100 Mols, Phase. Gms. Solution. H2O. Gms. Solution. H 2 O. O 3-1 0.15 MgaQs^.ioHjjO o 6.8 0.34 Mg(IOa) 2 .4H 2 O 20 10.2 0-55 10 6.4 0.30 30 17.4 i. oi 18 7.6 0.40 35 2I -9 I -35 20 7.7 0.40 50 67.5 10.0 35 8.9 0.47 63 12.6 o . 69 M ioo 19.3 1.13 Sp. Gr. of solution sat. at 18= 1.078. MAGNESIUM IODIDE MgI 2 .8H 2 O. SOLUBILITY IN WATER. (Menschutkin, 1905, 1907.) The salt was prepared by the action of water upon magnesium iodide dietherate (see p. 391) by which the octrahydrate and not the hexahydrate is formed. The crystals of this hydrate melt at 43.6. The solubility determinations were made by the synthetic method. Gms. per 100 Gms. Sat. Solution. Solid Phase. MgI 2 .8H 2 O 1 ' (Mylius and Funk, 1897.) u (( MgI 2 .6H 2 = = Mgl,. O 7 6 54-7 18 59.7 W-i.909) 20 81 58.3 40 88 63.4 43.5tr.pt. 90.8 65-4 43 89.8 64.7 80 90-3 65 120 90.9 65-4 160 91.7 66 200 93-4 67.2 215 94-3 67.9 " +MgI 2 .6H20 MgI 2 .6H 2 O 391 MAGNESIUM IODIDE MAGNESIUM IODIDE ETHERATES, ALCOHOLATES, ACIDATES, etc. SOLUBILITIES RESPECT/VELY IN ETHER, ALCOHOL AND ACID SOLVENTS AT VARIOUS TEMPERATURES. Boris N. Menschutkin. Monograph in the Russian Language entitled "On Etherates and Other Molec- ular Combinations of Magnesium Bromide and Iodide," St. Petersburg, 1907, pp. 267 -+- XL VIII. Also published in "Memoirs of the St. Petersburg Polytechnic Institute," vols. 1-7, 1904-07 and in condensed form in vols. 49-67 of the Zeit. anorg. Chem., 1906-09. Preparation of Material. The dietherate of magnesium iodide, MgI 2 .2C 4 Hi O, was prepared by the very gradual addition of iodine to a mixture of magnesium and dry ether. The reaction is not so violent as that which takes place during the preparation of the magnesium bromide dietherate (see p.~379). Two liquid layers are present at the end of the reaction and by slight cooling beautiful white needle-like crystals separate from the lower one. The growth of these crystals is also accompanied, as in the case of the magnesium bromide compound, by an evolution of ether droplets. Magnesium iodide dietherate is very hygroscopic, it is less stable than magnesium bromide dietherate, and becomes yellowish even after several hours, and brown after a day, owing probably to separation of iodine. As in the case of the magnesium bromide compound it reacts with very many organic compounds as alcohols, acids, ketones, etc., with liberation of ether and formation of addition products. These latter constitute the material used for the following solubility studies. Method of Determination of Solubility. The synthetic (sealed tube) method of Alexejeff (Wied. Ann., 1885) was used almost exclusively. Explanation of Results. As is seen* from the following table, the solubility increases much more rapidly with temperature than in the case of magnesium bromide dietherate, especially in the vicinity of the melting point of Mgl2.2C4H:oO under its ethereal solution, which is at 23.6. At this temperature there appears two layers, the lower one of which may be considered as a solution of ether in dietherate, and the upper one as a solution of the lower layer in ether. By in- crease of temperature a point is reached, at which both layers are miscible in all proportions (critical point). In the case of magnesium bromide dietherate no such critical point could be obtained. Both layers may be cooled below 23.6, but only to about + 15 since here spontaneous crystallization of the dietherate almost always occurs, and the temperature rises to 23.6. The great tendency to crystallize is probably due to the difference between the composition of the lower layer and of the saturated solution of the dietherate. The determinations in the vicinity of the critical point were quite difficult to make on account of the considerable opalescence which occurred and also the formation of a white substance, the nature of which was not ascertained. The critical concentration, as determined by means of the law of straight averages of Cailletet and Mathias, was approximately 40.3 per cent MgI 2 .2(C 2 H 5 )2O; the temperature, 38.5. At concentrations of MgI 2 .2C 4 HioO greater than 54 per cent, a single liquid is again formed and the solubility curve can be followed up to the melting point of the dietherate at 51. MAGNESIUM IODIDE 392 SOLUBILITY OF MAGNESIUM IODIDE DIETHERATE IN ETHER AT DIFFERENT TEMPERATURES. (Menschutkin, 1906.) Cms. per 100 Cms. Mols. MgI 2 .2(C 2 H 6 )2O per I00 Mols. t. Sat, Sol. per loo Mols. Solid Phase. 5-4 2.2 1.45 0-39 MgI 2 .2(C2H 5 )2O ii. 8 iS-6 18.1 20.4 22.2 23-6 Between these two concentrations of MgI 2 .2(C 2 H 6 ) 2 O two liquid layers separate (see below). 23-6 54.4 35-5 J 7-l 25 73 ^gI Z .2(CjH6)2 O = MgI 2 . Sat. Sol. 2.2 I .45 0.39 3-7 2-43 0.66 5-3 0.96 8.3 5-4 1.55 n. 6 7-55 2.24 17-3 11.28 3.56 22 14.4 4.67 30 35 40 45 5i.Sm.pt. 82.5 87 89.6 93-5 IOO 47.6 54 57 58.6 61.2 65.2 42.9 53-4 60.4 71-4 100 At 23.6 the saturated solution separates into two liquid layers which have the following composition at different temperatures. Cms. per 100 Cms. Solution. unstable u stable u it MAGNESIUM IODIDE ALCOHOLATES and ANILINATE. SOLUBILITY OF EACH IN THE RESPECTIVE ALCOHOLS OR ANILINE. (Menschutkin.) 4.0 Lower Layer. MgI 2 . 2 (QH 6 ) 2 = MgI 2 . Upper Layer. Mgl^CQH-^O = Mgl,. 15 54-4 35-5 20.5 13-4 2O 54-4 35-5 21-5 I4.I 25 54-4 35-5 22.5 14.7 30 54-4 35-5 23-5 15-4 35 54-1 35-3 26 17 36 53-5 34-9 27 17.7 37 52.2 34-2 28.5 lS.1 38 So-5 33-i 32 21 38 . 5 cnt. temp. 40.3 26.3 40-3 26.3 MgI 2 .6CH 3 OH in Methyl Alcohol Gms. t o MgI 2 .6CH 3 OH per loo Gms. MgI 2 .6C 2 H 5 OH in Ethyl Alcohol. Gms. t o MgI 2 .6C 2 H 5 OH per 100 Gms. MgI 2 .6C6H 5 NH 2 in Aniline. Gms. t o MgI 2 .6C 8 H 5 NH 2 per 100 Gms. MgI 2 .6(CH 3 ) 2 CHOH in Dimethyl Carbinol. Gms. t o MgI 2 .6(CHj) r * ' CHOH oer 100 Sat. Sol. Sat. Sol. Sat. Sol. Gms. Sat. Sol. O 49.6 21.9 3-3 10 57.1 20 52.6 2O 33-2 60 3-9 30 60 40 55-3 40 44-4 IOO 5 50 63.3 60 58.8 60 55-3 130 8.5 70 6 7 80 60.6 80 65.5 150 17-5 90 71.2 IOO 63.3 IOO 74-7 170 38 no 7 6.2 1 20 66.2 120 82.7 180 S 2 120 79-4 140 69.5 130 87.2 i88J 64-5 130 84.8 160 73-2 I4O 93-3 200 65.9* 136 91.7 180 77.1 143 96 210 67.2* I38f IOO 200 8i.S 146. st IOO 230 69.8* Solid Phase, Mgl^HjNH,. f M. pt. I Tr. pt. , 393 MAGNESIUM IODIDE MAGNESIUM IODIDE COMPOUNDS. SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH BENZALDEHYDE, ACETONE, ACETAL, AND ACETIC ACID IN EACH OF THESE LIQUIDS. fc(Menschutkin.) MgI 2 .6C 6 H 5 COH MgI 2 .6CH 3 COCH 3 MgI 2 .2CH 3 CH- MgI 2 .6CH 3 COOH in Benzaldehyde. in Acetone. (OC 2 H 6 ) 2 in Acetal. in Acetic Acid. Gms. MgI 2 .- Gms. MgI 2 .- Gms. MgI 2 .- Gms. Mglj.- t o 6C,H 5 COH t o 6CH 3 COCH 3 t o 2CH 3 CH(OC2H 6 ) 2 fa 6CH 3 COOH per loo Gms. per 100 Gms. per 100 Gms. Der 100 Gms- Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. 3-2 4-9 20 0.15 20 0.6 20 3-8 30 6. 7 60 0.45 40 2 40 5-3 50 8-3 77 0.60 60 5 60 7-7 60 10.2 (Between these two con- 70 9-5 80 n 70 15-2 centrations the mix- 80 18.5 IOO 18.5 80 28.6 ture separates into two 95 42 no 26.5 85 40 liquid layers.) 105 54-5 120 40 90 59-2 77 92 65 125 53 95 80 79 93-7 125 73-8 130 74-5 IOO 92-5 81 95-5 85 136 94.2 105 98.5 83 97-3 140 94 I39m.pt. IOO Io6.5m.pt. IOO 86m.pt. IOO I42m.pt. IOO ^On account of the properties of these molecular compounds, their great hygro- scopicity, etc., the solubility determinations are not strictly accurate in all cases. SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH FORMIC AND ACETIC ACID ESTERS IN THE RESPECTIVE ESTERS. (Menschutkin.) in Ethyl Formate, in Methyl Acetate. in Ethyl Acetate. in Propyl Acetate. Gms. MgI 2 .- Gms. MgI 2 .- t o 6HCOOC 2 H 5 t o 6CH 3 COOCH, Gms. MgI 2 .- Gms. Mgl,.- t o eCHsCOOQHj t o 6CH 3 COOC 3 H 7 per loo Gms. ' per 100 Gms. per too Gms. per 100 Gms. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. o 15.1 o 0.4 o 3.2 o 4.1 10 17.4 60 0.75 20 4.8 20 5.4 20 20.5 90 0.9 40 8.6 30 6.5 30 25 loo 1.8 50 13-7 35 7-8 40 31.8 103 2.4 55 21.5 40 19 50 44 (Two layers here.) 60 38 45 46 60 68 103 74.2 65 63.5 50 72.5 7o.5m.pt. loo no 81.7 70 90.5 55 88.2 120 98 75 92-7 6 96 I2Im.pt. IOO 78.5m.pt. IOO 65m.pt. IOO MgI 2 .6CH 3 COO (iso) C 4 H 9 in Isobutyl Acetate. MgI 2 .6CH 3 COO (iso) C 6 H U in Isoamyl Acetate. Gms. MgI 2 .6CH r t. COO (iso) C 4 H 9 per loo Gms. Sat. Sol. Gms. MgI v 6CH r t e . [COO (iso) C S H U per loo Gms. Sat. Sol. o 10.5 o 7.7 20 13.6 20 II.5 40 17.6 40 20 . 9 60 24 . 9 45 25.5 70 33-7 5 33-2 80 52 55 47-8 85 < 89 57-5 63 87.5m.pt. IOO 6om.pt. IOO MAGNESIUM IODIDE 394 MgI 2 .6CH 3 CN in Acetonitrile. MgI 2 .6CH 3 CONH 2 in Acetamide. Gms. MgI 2 .- t o 6CH.,CNper *o Gms. MgI 2 .- ^CH 3 CONHj Solid Phase t 6: ioo Gms. per ioo Gms. * .1 Sat. Sol. Sat. Sol. 37-2 82m . pt. of acetamide 49 n 30 49.8 70 28 CHjCONH, 45 50 58.2 58 46.7 " 39 70 67.9 49* 56 . 5 ' +MgI 2 .6CH a CONH 2 32* 75 71.7 80 63.4 Mglj 6CH 3 CONH, 40 80 76.5 130 7 6 60 85 83 160 85-5 80 89 170 90.8 86 i77t IOO 87! * Eutec. t m. ] SOLUBILITY OF MAGNESIUM IODIDE COMPOUNDS WITH ACETONITRILE, ACETAMIDE AND URETHAN IN THESE LIQUIDS. (Menschutkin.) MgI 2 .6NH 3 COOC 2 H 6 in Urethan. Gms. MgI 2 .- GS?' ^id Phase. Sat. Sol. pt. of urethan 27.5NH3COOQH5 45 51.8 " +MgI 2 .NH 3 COOC 2 H 5 55 MglvNHsCOOCjHj 64.7 78.8 92.5 IOO t. MAGNESIUM IODOMERCURATE MgI 2 .2HgI 2 .7H 2 O. The sat. solution in water at 17.8 has the composition MgI 2 .i.29HgI 2 .n.o6H 2 O and Sp. Gr. 2.92. (Duboin, 1906.) MAGNESIUM DiLACTATE Mg(C 6 H 8 O 6 ).6H 2 O racemic, Mg(C 6 H 8 O 6 ).3H 2 O, inactive. SOLUBILITY OF RACEMIC AND OF INACTIVE MAGNESIUM DILACTATE IN WATER. (Jungfleisch, 1912.) ioo gms. H 2 O dissolve 7 to 8 gms. racemic and 2.28 gms. inactive lactate at 15. MAGNESIUM LAURATE, MYRISTATE, PALMITATE and STEARATE. SOLUBILITY OF EACH IN SEVERAL SOLVENTS, (jacobson and Holmes, 1916.) Gms. Each Salt Determined Separately per ioo,Gms. Solvent. Solvent. Water tt u tt Abs. Ethyl Alcohol Methyl Alcohol Ether Ethyl Acetate Amyl alcohol Amyl Acetate u tt tt t. Mg Laurate Mg Myristate Mg Palmitate Mg Stearate (C 11 H 23 COO) Z Mg. (CnHtfCOO),- Mg. (CH 3 (CH2) M - COO) 2 Mg. (CHs(CHj) r COO) 2 Mg. 15 O.OIO 0.006 0.005 0.003 25 0.007 O.OO6 O.OOS O.OO4 35 O.OIO O.OO7 0.006 O.OO7 So 0.026 0.014 o . 009 0.008 0.519 0.158 0.034 O.OI7 25 0.591 0.236 0.058 O.O23 35 0.805 0-373 0.085 0.031 50 1.267 0-577 O.I5I . . . 15 1.095 0.571 0.227 0.084* 25 1.108 0.763 0.36 O.IOO S 1 ^ 0.50 0.166 25 0.015 O.OIO O.OO4 0.003 15 0.004 0.004 0.004 0.004 35 O.OII O.OIO 0.007 0.008 50 0.024 O.O2I 0.013 15 0.191 0.086 0.043 0.014 25 0.236 0.145 0.066 0.018 35 1.481 0.438 O.IO4 0.039 50 4.869 1.893 0.263 0.105 15 0.119 0.063 0.039 0.029 25 0.162 0.073 0.045 0.030 34-6 0.259 O.IO5 0.057 0.046 50 1-939 0.605 0.216 0.115 395 MAGNESIUM NITKATE Mg(NO 3 ) 2 . MAGNESIUM NITRATE SOLUBILITY IN WATER. (Funk Wiss. Abh. p. t. Reichanstalt 3, 437, 'oo.) t Gms. Mg(N0 3 ) 2 per 100 Gms. Mols. Mg(N0 3 ) 2 per 100 Mo] , Solid is. Phase. Gms. Mg(N0 3 ) 2 t . per 100 Gms. Mois. Mg(NO s per loo Ik! ,) 2 Solid lols. Phase. Solution. H 2 0. Solution. H 2 0. -23 35 44 6 .6 Mg(N03) 2 .9H 2 40 45 .87 10. 3 Mg(NOa) 2 ^] -20 36.19 7 .0 " 80 .69 14. 6 " -18 38 03 7 4 " 90 57 .81 16. 7 " -18 38 03 7 37 Mg(NO3) 2 .6H2O 8 9 63 .14 20. 9 ) ~ 4 5 39 50 7 .92 " 77-5 65 .67 23- 2 U 8 .08 " 67 6? 55 25- I +18 42 33 8 9 " * Reverse curve- Sp. Gr. of solution saturated at 18 = 1.384. The eutectic is at 29 and 34.6 gms. Mg(NO 3 ) 2 per 100 gms. sat. solution. Fusion-point data for Mg(NOs) 2 + Zn(NOs) 2 are given by Vasilev (1909.) Results for Mg(NO 3 ) 2 + HNO 3 are given by Dernby (1918). MAGNESIUM OLEATE (CH 3 (CH 2 ) 13 CH:;CH.CH 2 COO) 2 Mg. One liter H 2 O dissolves about 0.23 gm. oleate (soap). (Fahrion, 1916.) 100 gms. glycerol (d 1.114) dissolve 0.94 gm. oleate. (Asselin, 1873.) MAGNESIUM OXALATE MgC 2 O 4 .2H 2 O. One liter of water dissolves 0.3 gm. MgC 2 O4 at 18 (conductivity method). (Kohlrausch, 1905.) MAGNESIUM^ OXIDE MgO. Fusion-point data (quenching method) for MgO + SiOg are .given by Bowen and Anderson, 1914. MAGNESIUM PHOSPHATE MgHPO 4 .3H 2 O. SOLUBILITY OF MAGNESIUM PHOSPHATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25. (Cameron and Bell, 1907.) The mixtures were constantly agitated for two months and the clear solutions analyzed for magnesia and phosphoric acid. ^25 Of Sat. Sol. Gms. per Liter. c VJ Phase. Sa ^ J L Gms. p er Liter. Solid Phase. MgO. P 2 6 . MgO. P2O 5 . 0.207 0.486 MgHPO 4 . 3 H 2 O 109.5 439 MgHPO 4 -3H 2 O 0.280 0.732 1.470 122.6 498 . . . 0-553 1.917 129.9 546.5 " 1.438 4-85 140 584 .006 2.23 7-35 1-595 146.8 623.3 .017 4-73 16.84 147-3 625.9 .042 11.19 38.59 . . . 150.3 645.8 .069 17-33 61.21 . . . 155-5 680.7 V .109 26.09 93-09 . . . 1 60 700 +MgH4(P04)2.XH 2 .144 37-40 130.7 1.626 87.1 779.6 MgH4(PO4) 2 .XH 2 O .285 75-5 281.8 1.644 77.1 809/6 " 1.654 7O.6 835.1 " MAGNESIUM (Hypo) PHOSPHATE Mg 2 P 2 O 6 .i2H 2 O. One liter of water dissolves 0.066 gm. hypophosphate. (Salzer, 1886.) One liter of water dissolves 5 gms. magnesium hydrogen hypophosphate, MgH 2 P 2 O 6 .4H 2 O. (Salzer.) MAGNESIUM SALICYLATE Mg(C 7 H 6 O 3 ) 2 .4H 2 O. loo gms. sat. solution in water contain 20.4 gms. salicylate at 15 (14.3 gms. Squire and Caines, 1905), and 79.7 gms. at 100. (Tarugi and Checchi, 1901.) loo gms. 90% alcohol dissolve 0.6 gm. salicylate at I5-2O. (Squire and Caines, 1905.) MAGNESIUM SILICATE 396 MAGNESIUM SILICATE MgSiO,. Fusion-point data for mixtures of MgSiOs + MnSiOs are given by Lebedew (1911). Results for MgSiO 3 + Na 2 SiO 3 are given by Wallace (1909). MAGNESIUM FLUOSILICATE MgSiF 6 .6H 2 O. One liter of water dissolves 652 gms. of the salt at 17.5. = 1-235. Sp. Gr. of solution (Stolba, 1877.) MAGNESIUM SUCCINATE C 4 H 4 O4Mg.5H 2 O. 100 gm. sat. solution in water contain 24.35 gms. succinate at 15 and 66.36 gms. at I OO. (Tarugi and Checchi, 1901.) MAGNESIUM SULFATE MgSO 4 .7H 2 O. SOLUBILITY IN WATER. (Results by several investigators. 4th Ed. Landolt>nd Bornstein, " Tabellen," 1912.) Gms. MgSO 4 Gms. MgSO 4 t. per 100 Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. Unstable Portions of Curve. 2.9 13.9 (i) ice -8.4 23.6 (l) Ice 3.9 19. (2) " +MgSO 4 .i2H 2 O 5 19 (12) " -fMgSO 4 .7H 2 O rhomb. + 1.8 21. 1 (2) MgSO 4 .i 2 H 2 0+MgS0 4 .7H 2 O o 20 . 6 (3) MgSO 4 .7H 2 O rhomb. 10 23 . 6 (3) MgSO 4 .7H 2 O (rhombic) o 25.8 (3) " hexagonal 20 26 . 2 ; +10 27.9 3 25 26.8 t [ 20 30 3 30 29 . % o 29 3 MgS0 4 .6H,0 40 31-3 (s) 10 29 . 7 (3 48 33 (< ) +MgSO 4 .6H,O 20 30.8 (3 50 33-S (' 7 MgS0 4 .6H 2 O 30 31.2 (7 55 34-3 ( 1 70 37-3 (5 60 35-5 (5) 80 39-i (S) 68 37 (8) " +MgS0 4 .H,0 90 40.8 (5) 80 38.6 (7) MgS0 4 .H 2 100 42.5 (5) 83 40.2 (9) 99.4- 40.6(10) 164 29.3 (n) 188 20.3 (n) . (i) de Coppet, 1872; (2) Cottrell et al, 1901; (3) Loewel, 1855; (4) Basch, 1901; (5) Mulder; (6) Van der Heide, 1893; (7) Smith, 1912; (8) Van't Hoff, 1901; (9) Geiger, 1904; (10) Meyerhoffer, 1912; (n) Etard, 1894; (12) Guthrie, 1876. See also Tilden, 1884. Data for densities of aq. MgSO 4 solutions are given by Barnes and Scott, 1898. SOLUBILITY OF MAGNESIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25 AND VICE VERSA. (Van Klooster, 1917.) rime r\fir Tnr* Clmc Qof Qrtl /~lr*-p r\av Y ^/-* Clrrtv Qnf Q/-1 Solid Phase. MgS0 4 . K 2 S0 4 . DOI1U 1 IKISC. MgS0 4 . K 2 S0 4 . 26.76 MgS0 4 . 7 H,0 13.26 10.34 26.67 1.68 " 12.88 IO.5I 26.57 2-34 " 12.68 10.70 26.36 3-76 12.06 10.77 26.39 4.02 " +MgK 2 (S0 4 ) 2 .6H 2 10.69 10.84 18.76 7.02 MgK,(SO),.6H|Q 7.8 II .IO 16.36 8-43 " 4 11.03 I4.2 7 9-63 " o 10.77 loo gms. 95% formic acid dissolve 0.34 gm. MgSO 4 at 19. +K 2 S0 4 K 2 S0 4 (Aschan, 1913.) 397 MAGNESIUM SULFATE SOLUBILITY OF MAGNESIUM SULFATE IN METHYL AND ETHYL ALCOHOLS (de Bruyn, 1892.) Solvent. t. Per 100 Cms. Solvent. Solvent. t. Per 100 Gms. Solvent. Abs. CHaOH 18 1.18 gms. MgSO 4 93% Methyl Ale. 17 9.7 gms. MgSO 4 .7H,O 17 41 " MgS0 4 . 7 H,0 50% " " 3-4 4.1 " 3-4 29 " " Abs. CijHsOH 3 1.3 " SOLUBILITY IN AQUEOUS ETHYL ALCOHOL. (Schiff, 1861.) Weight per cent Alcohol 10 20 40 Gms. MgSO4.7H 2 O per 100 gms. solvent 64.7 27.1 1.65 SOLUBILITY OF MAGNESIUM SULFATE IN SATURATED SUGAR SOLUTION AT 31.25. (Kohler, 1897-) ioo gms. saturated aqueous solution contain 46.52 gms sugar + *4 S m s. MgS0 4 . ioo gms. water dissolve 119.6 gms. sugar + 36 gms. MgSO 4 . Data for the system magnesium sulfate, phenol, and water are given by Tim- mermans, 1907. Fusion-point data for mixtures of MgSO 4 + K 2 SO 4 are given by Ginsberg, 1906; Nacken, i9O7a and Grahmann, 1913. Results for MgSO 4 + NajSO 4 are given by Nacken iox)7b. MAGNESIUM POTASSIUM SULFATE MgK 2 (SO 4 ) 2 .6H 2 O. , SOLUBILITY IN WATER. (Tobler, 1855.) t- o 20 30 45 60 75 Gms. MgK 2 (SO 4 ) 2 per icogms. H 2 O 14.1 25 30.4 40.5 50.2 59.8 ioo gms. H 2 O dissolve 30.52 gms. MgK 2 (SO 4 ) 2 .6H 2 O at 15. (Lothian, 1909.) MAGNESIUM SULFITE MgSO 3 .6H 2 O. 10 gms. cold water dissolve 1.25 gms. sulfite; ioo gms. boiling water dissolve 0.83 gm. (Hager, 1875.) IOO gms. H 2 O dissolve I gm. sulfite at 15. (Squire and Caines, 1905.) MAGNESIUM SULFO NATES. SOLUBILITY IN WATER AT 20. (Sandquist, 1912.) r A Gms. Anhydrous Salt Compound. p^ JQO Magnesium -2-Phenanthrene Monosulfonate 6H 2 O 0.051 -3- " " 4 H 2 O 0.116 -10- " " 5H 2 O 0.22 MALAMINIC ACID 398 MALAMINIC ACID CH 2 (OH)COOH:jCH 2 CONH 2 , CH 2 COO.NH 3 .CHCOOH. SOLUBILITY IN WATER AT 18. (Lutz, 1902.) Compound. d |8 Malaminic Acid M,p,. 149 U9 148 7.52 7-5 4.02 +9 . 70 -9-33 MALEIC ACID COOHCHfCH.COOH (see also p. 304). SOLUBILITY IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) Alcohol. f. Gms. (CHCOOH) 2 per 100 Gms. Alcohol. f Gms. (CHCOOH)j per loo Gms. Sat. Sol. Sat. Sol. Methyl Alcohol 22. 5 41 Propyl Alcohol 2O Ethyl Alcohol O 30.2 u 22 , 5 24-3 u 22 . 5 34-4 Isobutyl Alcohol 14.2 " 22, 5 17-5 Data for the distribution of maleic acid between ether and water at 25 are given by Chandler, 1908. Freezing-point data for mixtures of maleic acid and / mandelic acid are given by Centnerszwer, 1899. MALIC ACID I COOH.CH 2 CHOHCOOH. 100 gms. methyl alcohol dissolve 1 24.8 gms. malic acid at o c 167.7 91.4 54 ethyl propyl ' dichlorethylene trichlorethylene 0.009 O.OIO o 15. 15. (Timofeiew, 1894.) (Wester & Bruins, 1894.) DISTRIBUTION OF MALIC ACID BETWEEN WATER AND ETHER. (Pinnow, 1915.) Results at 25.5. Gm. Mols. Acid per Liter. Results at 15. Gm. Mols. Acid per Liter: H 2 O Layer. Ether Layer. 0.564 0.0091 o . 288 o . 0045 O.I5I O.OO24 0.967 0.0157 Dist. Coeff. 62 6 4 62.9 6l.6 t 2 O Layer. I.I79 0.582 Ether Layer. 0.0172 O.OO82 68.4 71 0.293 0.0040 73 0.142 0.0020 71 Freezing-point data for i malic acid -f- 1 mandelic acid are given by Cent- nerszwer, 1899. MALONIC ACID CH 2 (COOH) 2 . SOLUBILITY IN WATER. (Klobbie, 1897; Miczynski, 1886; Henry, 1884; Lamouroux, 1898, 1899.) Gms. CH 2 (COOH) 2 per 100. Gms. CH 2 (COOH) 2 per 100. Gms. Solution.* cc. Solution (L.). 52 61 10 56.5 67 20 60.5 73 25 62.2 76.3 30 6 4 80 40 68 86.5 t> . Gms. Solution.* cc. Solution (L.). So 71 - 93 60 74-5 IOO 70 106 80 82 " IOO 89 132 m. pt. loo * Average curve from results of K., M., and H. ioo gms. 95% formic acid dissolve 22.42 gms. malonic acid at 19.5. (Aschan, 1913.) 399 MALONIC ACID Alcohol. Methyl Alcohol - SOLUBILITY OF MALONIC ACID IN ALCOHOLS. (Timofeiew, 1894.) Gms. A.Q OH.2(C^OOri)j Alpnhftl ^Sa^Sol!" 8 ' 42 . 7 Ethyl Alcohol 43 . 5 Propyl Alcohol CH,( perioo Ethyl Alcohol -i5 o +19 +19.5 -18.5 -15 o + 19 47-3 52.5 53-3 30 30.7 35-3 40.1 Isobutyl Alcohol + 19-5 -18.5 -IS o +19 + 19-5 o 19 Sat. Sol. 41-3 19.5 20.2 24-3 29-5 30-7 17.5 21.2 SOLUBILITY OF MALONIC ACID IN ETHER. (Klobbie, 1897.) t. Cms. CH,(COOH). per loo Gms. t. Gms. CH 2 (COOH), per 100 Gms. Solution. Solution. 6.25 30 10.5 IP 7-74 80 33 20 9 00 39 25 9-7 Gms. CH 2 (COOH), t 8 . per 100 Gms. Solution. 100 46 no 56 1 20 70 132 m. pt. 100 100 ems. saturated solution of malonic acid in pyridine contain 14.6 gms. at 26. (Holty, 1905.) SOLUBILITY OF SUBSTITUTED MALONIC ACIDS IN WATER. (Lamouroux, 1899.) Gms. per 100 cc. Saturated Aqueous Solution. O 15 25 30 DISTRIBUTION OF MALONIC ACID BETWEEN ETHER AND WATER AT 25. (Chandler, 1908.) Mols. Acid per Liter. Malonic Methyl Malonic Ethyl Malonic Propyl Malonic n Butyl Malonic Iso Amyl Malonic Acid. Acid. Acid. Acid. Acid. Acid. 61.1 44-3 52.8 45-6 ii. 6 38.5 70.2 58.5 63-6 60. i 30.4 51-8 76.3 67.9 71.2 70 43-8 79-3 92.6 91.5 90.8 94-4 79-3 83-4 H 2 O Layer. 0.1478 O.II2I 0.0862 0.0331 MANDELIC ACID Solvent. Water Ether Layer. 0.0135 O.OIO2 0.0076 O.OO27 Coef. Cone. H 2 O 10.94 11.07 11.28 12.22 Dist. Coef. corrected for lonization. 9.86 9-79 9.86 9.82 Methyl Alcohol ( Ethyl Alcohol Propyl Alcohol 95% Formic Acid C 6 H 5 .CH(OH)COOH i and d. SOLUBILITY IN SEVERAL SOLVENTS. t Gms. CH 5 CHOHCOOH per iQOiGms. Sat. Sol. 15.95 (inactive acid) 19.17 (dextroacid) 5I.I (inactive acid) 20 20 O 16.5 O 16.5 o 16.5 19 64.9 4 6. 7 53-6 35 43 40 Authority. (Schlossberg, 1900.) (Timofeiew, 1894.) (Aschan, 1913.) MANDELIC ACID 400 FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOL- LOWING MIXTURES OF MANDELIC ACID AND OTHER COMPOUNDS. d Mandelic Acid + / Mandelic Acid (Adrian!, 1900.) (Centnerszwer, 1899.) i / Methylester + I Mandelic Methylester Isobutylester + / Mandelic Isobutylester Acid + Dimethylpyrone / Menthylester + d Mandelic / Menthylester (Findky and Hickmans, 1907. (Kendall, 1914.) Menthyl MANDELATES. SOLUBILITY IN ETHYL ALCOHOL. (Findlay and Hickmans, 1909.) Solvent. t. Gms. Gms. per 100 Solvent. Solid Phase. Solvent. t. Gms. per 100 Gms. Solvent. Solid Phase. L. D. L. D. 80% Alcohol 35 1. 08 D 80% Alcohol 10 0.287 D * 35 3 .19 L IO 0-595 L it 35 .80 0.80 R IO 0.184 0.184 R tt 35 544 i-35 D+R IO 0.404 o. 291 D+R tt 35 2 83 0.60 L+R IO 0.505 0.088 L+R " 25 0-595 D Abs. ^ Jcohol o 1. 06 D tt 25 I .64 L J -93 L it 25 .448 0.448 R ' o 0.625 0.625 R tt 25 o .321 0.882 D+R o 0-535 0.915 D+R tt 25 I .192 0.267 L+R o 1.03 0-54 L+R * d& = 0.8517. D =1 menthyl d mandelate, [a]^ 17 - 5 = 9.45 in alcohol. L = I menthyl / mandelate [ct] D zo = 140.92 in alcohol. R = I menthyl r-mandelate [a]^ 11 - 3 = 75.03 in alcohol. MANGANESE BORATE MnH 4 (BO,) 2 . SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS. (Hartley and Ramage J. Ch. Soc. 63, 137, '93.) per Liter in Solutions of: f. H 2 + trace Na 2 S0 4 . Na 2 SO< Na 2 S0 4 (0.2 Gms. (20 Gms. per Liter). per Liter). NaCl (20 Gms. per Liter). CaClj (20 Gms. per Liter). 14 0-94 I .7 . . . 18 . . . . . . 77 I .31 2 .91 40 0.50 0.69(52) O 65 . . . 2 44 60 O 36 0.6o 2 2 5 80 0.08 ... .12 0.29 I MANGANESE BROMIDE MnBr 2 . SOLUBILITY IN WATER. (Etard, 1894.) t. Gms. MnBrj per 100 Gms. Solution. Solid Phase. 20 52-3 ] SdnBra^H 10 O 10 54-2 56.0 57-6 M 20 25 30 59-5 60.2 61.1 M M t-. Gms. MnBr 3 per loo Gms. Solution. Solid Phase. 40 62.8 MnBr 2 . 4 H a O 50 64.5 60 66.3 70 68.0 M 80 69.2 MnBr.2H s O 90 69.3 " IOO 69-5 i us MnCl2 p er ioo Grams Mols. MnCJ 3 Solid per ioo Mols. H 2 O. Phase. Water. Solution. 53-8 35-o MnCl .4lIj 58-7 37-o " 63-4 3 8.8 ... 68.1 40-5 it 73-9 42-5 M 77.18 43-55 II.OS 80.71 44.68 n-55 ** 88.59 46.96 12.69 " 98.15 49-53 14.05 105.4 51 .33 15.10 108.6 52.06 15-55 MnCl 2 .2H. no. 6 5 2 -52 I5-85 112.7 52.98 16.14 114.1 53-2 . " iiS-3 53-5 ** 118.8 54-3 ... II9-5 55-o ... M 401 MANGANESE CARBONATE MANGANESE CARBONATE MnCO 8 . One liter water dissolves 5.659.io~ 4 mols. MnCOs = 0.065 S m - at 2 5- (Ageno and Valla, 1911.) MANGANESE CHLORIDE MnCl 2 . SOLUBILITY IN WATER. (Etard; Dawson and Williams Z. physik. Chem. 31, 63, '99.) 4. Sp. Gr. of * Solutions. 20 10 O + 10 20 25 I .4991 30 I-5049 40 L5348 50 1-5744 57.65 1.6097 60 i. 6108 70 1-6134 80 90 100 120 I4O One liter of water dissolves 87.0 grams MnCl 2 . One liter of sat. HC1 dissolves 19.0 grams MnCl, at 12. (Ditte Compt. rend. 92, 242, '81.) EQUILIBRIUM IN THE SYSTEM MANGANESE CHLORIDE, POTASSIUM CHLORIDE AND WATER. (Suss, 1913.) Cms per 100 Gnu. Gms. per 100 Gms. f. Sat. Sol. Solid Phase. t. Sat. Sol. Solid Phase. MnClj. KC1. MnCl,. KC1. 6 40.23 ... MnCWHjO 52.8 50.14 6.0lMnCl 2 .4H 2 O+MnCl 2 .2H 2 O+i.i.2 6 35-94 9-41 " +I.I.2+KC1 58.3 51.72 ... MnCl 2 .4H 2 O+MnCl 2 .2H 2 O 6 ... 23.06 KC1 62.6 51.86 ... MnCl 2 . 2 H 2 O 28.4 44.46 ... MnClz^H-jO 62.6 49.95 6.67 " -fi.i.2 28.4 43.28 8.66 " +1.1.2 62.6 44.05 12.49 i.i.2+MnCl 2 .2KCl. 3 H 2 O 28.4 38.65 13.79 " +I.2.2+KC1 62.6 36,85 18.77 MnCl,.2KC1.2H 2 O+MnCl,. 4 KCl 28.4 ... 26.91 KC1 62.6 ... 31.57 KC1 1.1.2 = MnCkKC1.2H 2 O. 1.2.2 = MnCl 2 2KC1.2H 2 O 100 cc. anhydrous hydrazine dissolve 13 gms. MnCl 2 at room temp. (Welsh and Broderson, 1915). Fusion-point data for MnCl 2 + SnCl 2 (Sandonnini, 1911), MnCl 2 + SnClj (Sandonnini and Scarpa, 1911), MnCl 2 + ZnCl 2 (Sandonnini, 1912 and 1914). MANGANESE CINNAMATE (C 6 H 6 CH:CHCOO) 2 Mn. 100 gms. H 2 O dissolve 0.26 gm. manganese cinnamate at 26. (De Jong, 1909.) MANGANESE FLUOSILICATE MnSiF 6 .6H 2 O. 100 gms. H 2 O dissolve 140 gms. salt at 17.5. Sp. Gr. of solution = 1.448. (Stolba, 1883.) MANGANESE HYDROXIDE Mn(OH) 2 . One liter H 2 O dissolves 2.I5.IO" 6 gms. mols. Mn(OH) 2 at 18. (Sackur and Fritzmann, 1909.) One liter H 2 O dissolves 2.10.10""* gms. mols. Mn(OH 2 ) at 18. (Tamm, 1910.) The determination of S. & F. was made by the neutralization method of Kuster, that is, by determining the conductivity minimum on adding Ba(OH) 2 to MnSO< solution and calculating the Mn(OH) 2 remaining in solution. MANGANESE HYDROXIDE 402 SOLUBILITY OF MANGANESE HYDROXIDE IN AQUEOUS SOLUTIONS OF ORGANIC SALTS. (Tamm, 1910.) (25 cc. of the neutral salt solution + 25 cc. of aqueous suspension of Mn(OH) were shaken different lengths of time. Temp, not stated.) ^ 100 cc. sat. solution in I n sodium tartrate solution contain 0.052 gm. 100 cc. sat. solution in I n sodium malate solution contain 0.032 gm. IOO cc. sat. solution in I n sodium citrate solution contain 0.095 S m * MANGANESE IODOMERCURATE 3MnI 2 .5HgI 2 .2oH 2 O. A saturated solution of the salt in water at 17 has 1.4 MnI 2 .HgI 2 .io.22H 2 O and density 2.98. MANGANESE NITRATE Mn(NO 3 ) 2 . SOLUBILITY IN WATER. (Funk Wiss. Abh. p. t. Reichanstalt 3, 438, 'oo.) the composition (Duboin, 1906.) to Gms. Mols. Mn(N0 3 ) 2 Mn(NO 3 ) 2 Solid per loo Gms. Sol. per loo Phase. Mols. H 2 O. -29 42 .29 7 .37 Mn(NO 3 ) 2 .6H 2 O. -26 43 7 63 21 44 30 8 O " -16 45 52 8 4 - 5 48 .88 9 .61 o 50 49 10 .2 fn 54 50 12 .O " t . Gms. Mn(NO 3 ) 2 Mols. Mn(N0 3 ) 2 Solid per loo Gms. Sol. per loo Mols.H 2 O. Phase. 18 57-33 13.5 Mn(N0 3 ) 2 .6H 2 0. 25 62.37 I6. 7 " 27 65.66 19.2 Mn(N0 3 ) 2 . 3 H 2 0. 29 66.99 2O-4 ** 30 67.38 20-7 " 34 7I-3 1 24-9 H 35-5 76.82 33-3 M Sp. Gr. of solution saturated at 18 = 1.624. The Eutec is at 36 and 40.5 gms. Mn(NO 3 ) 2 per 100 gms. Sat. Sol. MANGANESE OXALATE MnC 2 O 4 .2H 2 O. SOLUBILITY IN AQUEOUS SOLUTIONS AT 25. (Hauser and Wirth, 1909.) In Oxalic Acid In Ammonium Oxalate In Sulfuric Acid Solutions. Solutions. Solutions. Per 1000 Gms. Sat. Sol. Per 1000 Gms. Sat. Sol. Per 1000 Gms. Sat. Sol. G. Mols. Gms. G. Mols. Gms. Normality Gms. Solid Phase. (COOH) 2 . Mn(COO) 2 .(NH<) 2 (COO) 5 . Mn(COO) 2 . H 2 S0 4 . Mn(COO) 2 . O O .312 O, 005 O 338 O, 025 I .825 MnCA. 2 H 2 O .0125 759 .025 479 .24 8 .850 .025 930 0, ,050 .761 I 25 955 .050 I .080 O, 125 I .789 2 389 51 .080 o 125 I 396 O, 245 3 .970 2 .987 60 . 109 MnCA. 2 H 2 0+(COOH), 25 I .708 0, 245 4 .005 o 952 73 .200 49 2 .081 o, ,28l 4 .650 4 .500 82 .401 " Results are also given for the solubility of MnC 2 O 4 .2H 2 O in aq. solutions of H 2 SO4 containing also about 0.25 gm. mols. free oxalic acid per liter at 25 MANGANESE OXIDE MnO. Fusion-point data for mixtures of manganese oxide and silicic acid are given by Doernickel, 1907. MANGANESE (Hypo) PHOSPHITE Mn(PH 2 O 2 ) 2 H 2 O. 100 gms. H 2 O dissolve 15.15 gms. salt at 25, and 16.6 gms. at b. pt. (U. S. P.) MANGANESE SILICATE MnSiO 3 . Fusion-point data for mixtures of manganese silicate and titanate are given by Smolensky, 1911-12. 403 MANGANESE SULFATE MANGANESE SULFATE MnSO 4 . SOLUBILITY IN WATER. (Cottrell J. Physic. Ch. 4, 651, '01; Richards and Fraprie Am. Ch. J. 26, 77, *oi. The results of Lmebarger Am. Ch. J. 15, 225, '93, were shown to be incorrect by Cottrell, and this conclusion was confirmed by R. and F.) Grams MnSO 4 per Grams MnSO 4 per t. zoo Gms. Solid Phase. t. 100 Cms. Solid Phase J Water. Solution. Water. Solution. 10 47 .96 32 .40 MnS0 4 .7H20 16 63 94 38 99 MnS0 4 4H 2 53 23 34 73 18, 5 6 4 .19 39 .10 " 5 56 .24 35 99 25 65 32 39 53 44 9 59 33 37 .24 3 66 44 39 93 '* 12 61 77 38 .19 39 9 68 .81 40 77 M 14-3 63 93 39.00 49 9 72 63 42 .08 44 5 58 .06 36 . 69 MnSO 4 .sH 2 O 41 4 60 87 37 .84 MnSO 4 .H 2 O 9 59 .19 .18 5 58 17 36 .76 15 61 .08 37 .91 60 55 .0 35 49 44 25 64 .78 39 .31 70 52 .0 34 .22 44 67 .76 40 .38 80 48 .0 32 43 44 35-5 7 1 .61 4i 74 90 42 5 29 83 44 IOO 34 .0 24 .24 44 SOLUBILITY OF MANGANESE SULFATE, COPPER SULFATE MIXED CRYSTALS IN WATER AT 18. (Stortenbecker, 1900.) Mola. per TOO Mols. H,0. Mol. per cent Cuin: Mols. per 100 Mols. H 2 0. Mol. per cent Cuin: "Cu. Mn. " Solution. Crystals. 'Cu. Mn. " Solution. Crystals. Solid Phase, CuMnSO 4 .sH 2 O, Triclinic. Solid Phase, CuMnSO 4 .sH 2 O. Triclinic. 2.282 O IOO IOO [0-73 6. 37 IO 27 10.5] 00 5 . . 5 .0 4.9 2.23 0-44 83 5 0-34 7- 03 4 .60 74 .1 97 3 . 2 31 2-15 . i . 57 7 95 .1 7- 375 .0 o.o ... ... o 81 3 Solid Phase . CuMnSO 4 . Monoclinic. jH- i-54 3-76 4.70 29 26 21 .0 .1 .8 70 4 [1.06 5- 58 20 15 4 9 28.2* 23-5] 21 20 .2 O 42 34 .6 4 [o-73 6. 37 12 10 45 27 20.8 16.0] [1.06 5-58 15 13 9 9 \J 22 15 A 8 4 .60 o 5.8* o.o * Indicates meta stabil points. CuMnSO 4> 5H 2 O = 100-90.8 and 2.11-0 mol. per cent Cu. = 37.8-4.92 mol. per cent Cu. SOLUBILITY OF MANGANESE SULFATE IN GLYCOL. : ioo gms. saturated solution contain 0.5 gm. MnSO*-. (de Coninck, 1905.) MANGANESE SULFATE 404 SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 25 AND 50 AND VICE VERSA. (Schreinemakers, 1909.) Results at 25. Results at 50. Cms. per 100 Gins. Sat. Sol. MnSO 4 . 39.3 38.49 33.44 22.06 9.O2 2.91 1.75 1.77 O D 6 = Solid Phase. MnSO 4 .sH 2 O " +D, D, O 3.64 4.91 9.65 20.36 37-42 42.58 43. 24 43-4 MnSO4.(NH 4 ) 2 SO4.6H 2 O. +(NH4) 2 S0 4 (NH 4 ) 2 SO 4 Gms. per ioo Gms. Sat .Sol. Solid Phase. MnSO 4 . (NH^SO, 36.26 O , MnSd.HjO 35-35 2-95 " +DM 30.57 5-14 DM 16.86 17.62 " 6.92 35.98 " 6.29 39-71 " 5-70 43-24 3-49 44.02 (NH^O, 45-7 " D 2 .i = = (MnSO 4 ) 2 (NH 4 ) 2 S0 4 . SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 35 AND VICE VERSA. (Schreinemakers and Provije, 1913.) Gms. per ioo Gms. Sat. Sol. MnSO 4 . NajSO,. 39-45 33-92 5-23 33-06 7-97 32.92 7.42 3L05 9.20 27.67 10.76 22.14 14.28 14.58 20.01 Solid Phase. MnSO 4 .HjO +(MnS0 4 ) 9 .(Na 2 S0 4 ) IO (MnS0 4 ) 9 .(Na 2 S0 4 )io Gmis. per too Gms. Sat. Sol. MnSO 4 . Na 2 SO 4 . 13.96 21.91 12.19 22.49 10.45 23-4I 7-43 26.58 5-69 29.31 5-n 30.52 2.96 31-33 33 ; Solid Phase. (MnSO 4 ) 9 .(NajSO 4 )io +MnS0 4 (Na 2 SO 4 ), +Na 2 S0 4 Data for the solubility of mix crystals of manganese and zinc sulfates between o and 39 are given by Sahmen, 1905-06. SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL ALCOHOL. (Schreinemakers, 1909; Schreinemakers>nd Deuse, 1912.) . .' Results at 50. Gms. per ioo Gms. Sat. Sol. MnS0 4 . 36.26 28.12 18-75 Results at 25. Gms. per ioo Gms. Sat. Sol. QHjOH. MnSO 4 . O 39-3 6.8l 33-72- liquid layers separate here 53-09 1-23 57.39 0.56 76.70 o Solid Phase. MnS0 4 . S H 2 MnS0 4 .H 2 C 2 H 5 OH. O 6.67 16.02 22.63 36.47 Solid Phase. MnS0 4 .H;O 12-54 4.12 Composition of the liquid layers. Water rich Layer. QH 5 OH rich Layer. The following reciprocally saturated meta- stable solutions were obtained at 50. Water rich Layer. C 2 H 5 OH rich Layer. %C 2 H 5 OH. %MnS0 4 . %QH 6 OH. %MnSO 4 . % C 2 H 5 OH. % MnS0 4 . % C 2 H 5 OH. % MnS0 4 ." 6.81 33-72* 53-09 1.23* 5-68 34-95 53.64 0.97 8.48 31.51 49.76 1.83 7.69 30.99 45.83 2.19 15.02 22. 6l 32.75 8.01 8.70 29.20 41-93 11.85 24.84 35-15 5-95 * These liquids in contact with MnSO 4 .sH 2 O. Similar data are also given for 30 and for 35. Both stable and metastable liquid pairs were obtained at these intermediate temperatures. Additional data for this system are also given by Cuno, 1908. 405 MANGANESE SULFATE SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL ALCOHOL (CON.). Composition of the conjugated liquids in contact with excess of solid salt. C 2 H 5 OH rich Layer. Aqueous rich Layer. %C 2 H 5 OH. % MnS0 4 ". % QHjOH. % MnSO 4 '. 10 37.06 5.44 13-78 25.25 MnSO 4 .sH 2 O 15 44-56 2.79 9.25 29.79 17. 47-11 2.22 8.53 30-88 21 53.55 i. 10 6.10 35.05 25 53-09 1-23 6 -8i 33-72 30 45.20 2.49 8.69 30.15 MnSO 4 .H 2 O 31 43.90 2.74 8.47 30.10 35 41.71 3.44 9.24 28.61 37 38-26 4.84 11.03 26.47 41 34.01 5.86 11.93 24.97 42 32-37 6.89 13.57 23.09 43 3*-42 8.51 14.33 22.01 Data for the solubility of manganese sulfate and potassium iodate in methyl alcohol are given by Karplus, 1907. SOLUBILITY OF MANGANESE SULFATE IN AQUEOUS ETHYL AND PROPYL ALCOHOL SOLUTIONS AT 20. (Linebarger, 1892; Snell, 1898.) Gms. MnS0 4 per 100 Gms. Aq. Ethyl Ale. Propyl Ale. 3-3 i-9 2.2 1.4 1.4 i.i 100 cc. anhydrous hydrazine dissolve about I gm. MnSO 4 at room temp. (Welsh and Broderson, 1915.) Fusion-point data for mixtures of MnSO 4 + K 2 SO 4 , and MnSO 4 + Na 2 SO 4 are given by Calcagni and Marotta, 1914. MANGANESE SULFIDE MnS. One liter sat. solution in water contains 7i.6.io~ 6 mols. MnS = 0.00623 gm. per liter at 18 by conductivity method. (Weigel, 1907; see also Bruner and Zawadzki, 1909.) MANGANESE Potassium VANADATE MnKV 6 Oi 4 .8H 2 O. 100 gms. H 2 O dissolve 1.7 gms. salt at 18. (Radan, 1889.) MANNITOL CH 2 OH(CHOH) 4 CH 2 OH. SOLUBILITY IN WATER. (Findlay, 1902.) t o Gms. CH 2 OH(CHOH) 4 CH 2 OH * Gms. CH 2 OH(CHOH) 4 CH 2 OH per roo Gms. H 2 O. per 100 Gms. H 2 O. o 7-59 40 35-4 IO 1 1 . 63 (13-94 gms. Campetti, 1901)' $O . 8 46 . 69 2O Z7-7 1 (18.98 gms. Campetti, 1901) 60 6o.OI 24,5 20.96 70 74-5 30 25.4 80 91.5 35.8 29.93 I0 I33-I 100 gms. alcohol, Sp. Gr. 0.905, dissolve 1 .56 gms. mannitol at 14. (Krusemann, 1876.) Data for the solubility of mannitol at high pressures are given by Cohen, Inouye and Euwen, 1910. 100 gms. sat. sol. in pyridine contain 0.47 gm. mannitol at 26. (Holty, 1905.) 100 gms. aq. 50% pyridine dissolve 2.46 gms. mannitol at 20-25. (Dehn, 1917.) Data for the ternary systems mannitol -f- succinic acid nitrile -f- water and mannitol + triethylamine + water, are given by Timmermans, 1907. Cone, of Alcohol Gms. MnS0 4 per zoo Gms. Aq. Cone, of Alcohol in Wt. per cent. Ethyl Ale. Propyl Ale. in Wt. per cent. 34 9-5 6 44 36 7.2 4.6 48 38 5-8 3-5 52 40 4-7 2.8 MERCURY ACETATE 406 MERCURY ACETATE (ic) Hg(C 2 H 3 O 2 )2, (ous) Hg 2 (C 2 H 3 O 2 )2. 100 gms. water dissolve 25 gms. mercuric acetate at 10. loo gms. water dissolve 0.75 gm. mercurous acetate at 13. loo cc. anhydrous hydrazine dissolve about 2 gms. mercurous acetate at room temp, with precipitation of Hg. (Welsh and Broderson, 1915.) MERCURY BENZOATE (ic) (C 6 H 6 COO) 2 Hg.?H 2 O. 100 gms. H 2 O dissolve 1.2 gms. mercuric benzoate at 15 and 2.5 gms. at 100. (Tarugiand Checchi, 1901.) (ic) HgBr 2 . SOLUBILITY IN WATER. MERCURY BROMIDE Q I .06 (Lassaigne, 1876.) 25 . 0.6l (SherrUl, 1903.) ICO 2O-25 (Lassaigne.) Mercurous bromide. One liter sat. aq. solution contains 0.000039 S m - Hg 2 Bri at 25. (Sherrill, 1903.) EQUILIBRIUM IN THE SYSTEM MERCURIC BROMIDE, AMMONIA, WATER AT 8-io. (Gaudechon, 1910.) The mixtures were shaken intermittently for 21-48 hrs. Both the clear sat. solution and the separated and dried solid phases were analyzed. Initial Mixture. Gms. Mols. per Liter. Sat. Solution. Gms. Atoms, per Liter. Solid Phase HgBr 2 . NH 3 . NHBr. Hg. Br. N. OOIIQ Jrnasc. o, 0125 o. 0250 o trace 0. 0154 0.0185 (NH g2 Br) 4 HgBr 2 0166 0. 0332 o 0.00032 0. 0172 O.O2O2 36% " +64% NHg 2 BrNH4Br o ,025 o 050 0.00078 0. 0241 O.O25I NH&Br.NH^Br .050 ,100 o 0.0019 0. 0525 0.0514 o .0125 o ,025 o. 0375 0.00178 o. 0497 0.0497 " o .025 o .050 0. 075 0.0041 0.103 0.108 o .0328 o .0656 0984 0.0061 o. 133 0-133 93% " +6% NHgBr.3NH 4 Br 0365 073 1095 0.0060 0. 132 0.133 36% " +64% NHgBr. 3 NHBr .050 . IOO o 150 0.007 o. 170 o. 169 NHg 2 Br. 3 NHBr . IOO .200 o .300 0.0124 o. 333 0.338 " o .ci8o o .036 o, .01875 O.OOI 0.0315 0.0318 NHgjBr.NI^Br 0.050 0.100 0.006 0.0057 0. 1172 0.1178 " .050 o .100 o 150 0.0071 0. 169 0.168 NHg 2 Br.3NH4Br . IOO .200 o .160 0.0083 0. 184 0.187 " 125 .250 o .306 0.0160 o. 393 SOLUBILITY OF MERCURIC BROMIDE IN AQUEOUS SALT SOLUTIONS AT 25. (Herz and Paul, 1913.) (The mixtures were constantly agitated for eight days.) In Aq. BaBr 2 . In Aq. CaBr 2 . In Aq. KBr. In Aq. NaBr. Mols. per Liter. Mols. per Liter. Mols. per Liter. Mols. per Liter. In Aq. SrBr 2 . Mols. per Liter. BaBr 2 . 0.274 0.396 0-579 1.096 HgBr 2 . 0.017 0-370 0.540 0-759 1.478 CaBr 2 . 0.072 0.645 1.892 2.479 3-754 HgBr 2 . o. 117 0.676 1.358 2.766 3.666 "[KBr. O. 209 0.770 2.380 3-470 HgBr 2 .' 0.017 0.098 0.472 1.360 1.930 NaBr. O.II8 0.596 1.142 2.448 5.246 HgBr 2 . 0.078 0.285 0.540 1.276 2.306 SrBr 2 . 0.062 0.328 0.668 1.401 1.872 HgBr 2 . 0.104 0.471 0.902 1.770 2.238 The following slightly higher results for KBr solutions are given by Sherrill (1903). Mols. KBr per liter o 0.05 o.io 0.5 0.866 234 Mols. HgBr 2 per liter 0.017 O - O 55 0.088 0.0359 0.611 1.407 2.096 2.339 Data for equilibrium in the system HgBr 2 + KOH + H 2 at 25 are given by Herz (1910). 407 MERCURY BROMIDE SOLUBILITY OF MERCURIC BROMIDE IN AQUEOUS SOLUTIONS OF METYHL ALCOHOL, ETHYL ALCOHOL AND OF ETHYL ACETATE AT 25. (Herz and Anders, 1907.) In Aq. Methyl Alcohol. In Aq. Ethyl Alcohol. In Aq. Ethyl Acetate. wt. % CH,OH in Sat Sr.1 Gms. HgBr 2 per IOO CC. Wt 7 in . Gms. Wt. % d f oi HgBr.perCHjCC^QHj Sat. Sol. ioo cc. in Solvent. Sat. Sol. Solvent. Sat. Sol. Solvent. 10.6 o 9857 0.72 O I .0022 0.6o 30.77 o 9588 1.29 20, 18 .9717 0.67 4 39 47.06 o 94oi 2.52 40, 69 -9435 i-59 96 .76 64 o 9386 6.85 70. 01 .9214 6.58 IOO 78.05 o 9744 14.66 IOO 9873 22.81 IOO I, 2275 50.25 loo gms. sat. sol. in 95% CjHftOH (di 6 = 0.8126) contain i 0, 16.53 gms. at 25 and 22.63 S m s i. at 50. <**50f Sat. Sol. I.OO22 I.OOlS I.II59 I.OII3 Gms. HgBr 2 per IOO CC. Sat. Sol. 0.6o 0-574 26.69 (Reinders, 1900.) SOLUBILITY OF MERCURIC BROMIDE IN ALCOHOLS. (Timofeiew, 1894.) In Methyl Alcohol. In Ethyl Alcohol. In Propyl Alcohol. In Isobutyl Alcohol t. Gms. HgBr 2 per ioo Gms. t. Gms. HgBr 2 per ioo Gms. r. Gms. HgBr 2 per ioo Gms. t o Gms. HgBr 2 per ioo Gms. CHjOH. CjHsOH. C 3 H 7 OH. C 4 H,OH. 4LI5 25.2 14.6 o 4 .6l 10 49-5 10 26.3 10 15-6 10 5^3 19 66.3 19 29.7 19 15-5 23 6.65 22 60.9 39 31-9 39 20.8 39 9-58 39 71 .3 65 44-5 65 31-3 65 15.80 65 90.8 89 66.9 86.5 42.7 97 139.1 SOLUBILITY OF MERCURIC BROMIDE IN MIXTURES OF ALCOHOLS AT 25. In Mixtures of Methyl (Herz and Kuhn, 1908.) In Mixtures of Methyl In Mixtures of Ethyl and and Ethyl Alcohols. and Propyl Alcohols. Propyl Alcohols. % CH,OH d of Gms. HgBr 2 per %C,H 7 OH i fof Gms. HgBr 2 per % C 3 H 7 OH <* of Gms. HgBr 2 per Mixture. Sat - SoL IOO CC. Sat. Sol. Mixture. Sat: Sol. IOO CC. Sat. Sol. Mixture. Sat. Sol. IOO CC. Sat. Sol. 0.9873 22.8 O I .227 50.20 O 0.9873 22.80 4-37 0.9932 23.1 II. II I 1954 47.28 8.1 o . 9802 22.25 10.4 .009 25-4 23-8 I .1524 41-53 17-85 0.9740 21. 06 41.02 .080 33-3 65-2 I 0257 25-30 56-6 0.9487 17.63 80.69 -185 45-7 91.8 o 9437 16.35 88.6 0.9269 14.76 84-77 193 46.8 93-75 o .9368 15-86 91.2 0.9239 14.64 9 I - 2 5 .211 48.6 96.6 9275 14.66 95-2 0.9227 14.06 IOO .227 50.2 IOO o .9213 I3.78 IOO 0.9213 13.78 SOLUBILITY OF MERCURIC BROMIDE IN ORGANIC SOLVENTS. In Carbon Disulfide. (Arctowski, 1894.) In Other Solvents at i8-2O. (Sulc., 1900.) Gms. HgBr 2 Solvent. Formula. per ioo Gms. Solvent.. 0.126 0.679 0.003 2. 3 I 2.34 One liter benzene dissolves 6.99 gms. HgBr 2 at 25. (Abegg and Shemll, 1903.) Gms. HgBr 2 t. per ioo Gms. t. Solution. Gms. HgBr 2 per ioo Gms. Solution. io 0.049 J S 0.140 5 0.068 20 O.l87 o 0.087 2 5 0.232 + 5 -ioS 30 0.274 10 0.122 Chloroform CHC1 3 Bromoform CHBr 3 Carbon Tetrachloride CCU Ethyl Bromide C 2 H 5 Br Ethylene Dibromide MERCURY BROMIDE 408 SOLUBILITY OF MERCURIC BROMIDE IN AN EQUIMOLECULAR MIXTURE OF ETHYL ALCOHOL AND BENZENE. (Dukdski, 1907.) t. o. 10. 20. 30. 40. 50. 60. Gms. HgBr 2 per loo Gms. Sat. Sol. 10.7 12 14 16 17.5 19 21 100 gms. of sat. sol. in acetone at 25 contain 34.76 gms. HgBr 2 . (Reinders, 1900.) SOLUBILITY OF MERCURIC BROMIDE IN ANILINE. (Staronka, 1910.) Gms. Gms. g&? S?8S! So*" Phase. f- S&? SJaST "Id Phase. C 6 H 5 NH 2 . C 6 H 5 NH 2 . 60 4 16.14 HgBr 2 .2C 6 HBNH 2 IIO* 33.3 193.3 HgBr 2 .2CH 6 NH 2 70 5.8 23.83 80 8.3 35.04 QO 12.2 53.80 IOO 18.8 89.64 105 23.2 116.9 109 -7t 33-5 195 " +HgBr 2 .C e H 6 NH, US 37.2 229.3 HgBr 2 .C 8 H 6 NH, 120 42.3 283.8 124 50 387.2 123 55.4 480.9 * M. pt. f Eutec. IOO gms. ethyl acetate dissolve 13.05 gms. HgBr 2 at 18. (Naumann, 1910.) IOO gms. methyl acetate dissolve 21.93 g ms - HgBr 2 at 18 (d 18 sat. sol. = 1.090). (Naumann, 1909.) SOLUBILITY OF MERCURIC BROMIDE IN PYRIDINE. (Staronka, 1910.) Gms. Gms. C 5 H S N. C 6 H 5 N. 10 5 24 HgBr 2 .2CsH 6 N 107* 39 291 .5 HgBr-j^CsHsN+HgBrz.CjHjN 30 8 39-64 no 40.4 309 HgBrz.CjHsN 50 ii. a 57-49 " 120 45.5 381.3 " 80 17.5 96.68 I23f 50 455-8 IOO 22 128.5 I2 5 5 1 474-4 sHgBrj.aCBHjN no 24.5 147.8 130 54.2 539.4 8t 33-3 22 7-6 I34t 60 683.7 no 35.5 250.8 133 64 810.4 " * Eutec. f m. pt. SOLUBILITY OF MERCURIC BROMIDE IN QUINOLINE. (Staronka, 1910.) 0.0 Mol. % Gms. HgBr 2 per c r j TJV, HgBr 2 ? loo Gms C^N. Solld Phase ' 88 4.4 12.85 HgBr 2 .2C 9 H 7 N in 8.9 27.28 127 14.3 46.58 134 17.6 61.16 Data for the solubility of mercuric bromide in nitrobenzene, in p nitrotoluene, in m nitrotoluene, in o nitrotoluene and in a nitronaphthalene, determined by the method of lowering of the freezing-point, are given by Mascarelli, 1906, and Mas- carelli and Ascoli, 1907. Data for HgBr 2 + Se are given by Olivari, 1912. DISTRIBUTION OF MERCURIC BROMIDE BETWEEN WATER AND BENZENE (THIOPHENE FREE) AT 25. (Shemll, 1903.) Mols. per Liter. Mols. per Liter. H 2 Layer. QH, Layer". H 2 O Layer. " C.H 6 Layer. 0.017 0.194 0.876 0.00634 0.0715 0.89 0.01147 0.1303 0.88 0.00394 0.0436 0.90 0.00953 0.1074 0.89 0.00320 0.0353 -9 e Data are also given for the distribution between aqueous potassium iodide solu- tions and thiophene free benzene at 25. Data for the solubility of mix crystals of HgBr 2 -f- HgI 2 in acetone at 25 and in ethyl alcohol of d i6 = 0,8126 = 95% at o, 25 and 50 are given by Reinders (1900). In the case of acetone, the ratio of HgBr 2 in the solution increases with increase of per cent of HgBr 2 in the solid phase. In the case of the alcohol solu- tions the ratio in solution does not show such regular variations with change of per cent of MgBr 2 in the solid phase. 409 MERCURY CHLORIDE MERCURY CHLORIDE (ic) HgCl 2 , (ous) Hg 2 Cl 2 . SOLUBILITY OF MERCURIC CHLORIDE IN WATER. Average curve from results of Etard, 1894; Foote, 1903; Osaka, 1903-08; Herz and Paul, 1913; Greenish and Smith, 1903; Schreinemakers and Thonus, 1912; Sherrill, 1903; Morse, 1902. t o Gms. HgCl 2 per ' ioo Gms. Sat. Sol. o 3-5 10 4.6 15-5 5-3 20 6.1 1.047) f. Gms. HgClj per ioo Gms. Sat. Sol. t o Gms. HgClj per ioo Gms. Sat. SoL 25 3 6. 9 7-7 80 IOO 23.1 38 40 60 9-3 14 120 59 78.5 20 SOLUBILITY OF MERCUROUS CHLORIDE IN WATER. Gms. Hg 2 Cl 2 per 100 Gms. Sat. Sol. Authority. 0.5 O . OOOI4O (Conductivity, Kohlrausch, 1908.) l8 O.OOOO75 (Indirect, Behrend, 1893.) 1 8 O . OOO2 1 (Conductivity, Kohlrausch, 1908.) . 000038 (Ley and Heimbucher, 1904.) t". Gms. Hg 2 Cl 2 per 100 Gms. Sat. Sol. Authority. 24.6 O.OOO28 (Kohlrausch, 1908.) 25 0.000047 (Sherrill, 1903.) 43 O.OOO7O (Kohlrausch, 1908.) SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SOLUTIONS OP SODIUM CHLORIDE. (Homeyer and Ritsert Pharm. Ztg. 33, 738, '88.) Per cent Concentration 3 ^ s ' of NaCl Solutions. ' IS <> 65 100 0.5 10 13 44 i.o 14 18 48 5.0 30 36 64 10. o 58 68 no 25.0 120 142 196 26.0 (saturated) 128 152 208 SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SOLUTIONS OP HYDROCHLORIC ACID AT: o. 20-25 (?). (Engel Ann. chim. phys. [6] 17, 362, '89.) (Ditte Ibid. [5] 22, 551, '81.) {. Mob. per HC1. ioo cc. Sol. iHgCl. Gms. pe HC1. r ioo cc. Sol. HgCl 2 . Sp. Gr. of Solutions. Farts riU per ioo Parts H 2 O. Parts Hg( per ioo Parts Solu 4-3 9-7 i-57 13.11 I.II7 o.o 6.8 99 19.8 3 .6l 18.04 1.238 $ 46.8 17.8 35-5 6.49 3 2 -44 1.427 IO.I 73-7 26.9 55-6 9.81 49.04 1.665 13-8 87.8 32-25 68.9 II .76 58.80 I .$11 21. 1 127.4 34-25 72.4 12.48 62.40 1.874 31.0 141.9 4i-5 85 5 iS-^ 75-65 2.023 50.0 148.0 48.1 88 6 17-54 87.70 2.066 68.0 154.0 70-9 95-7 25.84 129.20 2.198 One liter of o.i n Hg(NO 3 )2 solution dissolves 105 gms. HgCl 2 at 25. (Morse, 1902.) This result, together with distribution experiments, show that complexes of HgCl 2 and Hg(NO 3 )j are formed. MERCURY CHLORIDE 410 SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25. (Herz and Paul, 1913-) In Aqueous Ba- rium Chloride. In Aqueous Cal- cium Chloride. In Aqueous Lith- ium Chloride. In Aqueous Mag- nesium Chloride. Mols. per Liter. Mols. per Liter. Mols. per Liter. Mols. per Liter. 1 HgCl 2 . CaCl 2 . HgCl 2 . LiCl. HgCl 2 . MgCl 2 . Hg(V 0.265 O .190 0.364 0.414 .351 0.168 0-374 o .385 0.697 o ,402 0.766 0.835 .666 0.415 0.719 572 1.167 0, 656 1.108 I.27I I .021 o.57o I.I3I .776 1.620 o ,964 1.811 L738 I .678 0.997 1.864 I -336 2.645 I 429 2.645 2.265 2 .214 1.320 2.569 3 030 5.348 I, 723 3.304 3.091 2 .896 1.728 3.206 In Aqueous Potas- In Aqueous Sodium In Aqueous Strontium sium Chloride. Chloride. Chloride. Mols. per Liter. Mols. per Liter. Mols. per Liter. ' KC1. HgCl 2 . ' NaCl. Hg(V 'SrCl 2 . HgCl 2 / O 0.265 O.20I 0.372 0.164 O 315 O.I 0.381 (Sherrill, 1903.) 0.416 0.508 0.3II .563 0.174 0-355 0.671 0.748 0.519 o .829 0.221 0.381 I-I53 1.192 0.724 I -342 0.25 0.542 (Sherrill, 1903.) I.94I 2.022 1.046 I .776 0.683 0.836 3.162 3-434 1.38 4 2 .293 SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20 AND VICE VERSA. (Tichomirow, 1907; see also results by Foote and Levy on next page.) Gms. per 100 Gms. H 2 O. KC1. HgCl 2 . ouuu i lutse. 7-39 HgOa 1. 12 11.63 tt 2-39 15.72 tt 4-05 22.17 tt 4.84 25.16 " +2HgCl 2 .KCl 5.60 25-13 2 HgCl 2 .KCl 6.71 25.66 " 7-39 26.41 " +HgCl 2 .KCl 7.46 24.70 HgCl 2 .KCl 8.95 19-93 tt 15 22.87 " 17.57 26.12 " Gms. per 100 Gms. H 2 O. - c _, : J Wl _ KC1. HgCl 2 . 20-35 29 HgCl 2 .KCl 26.31 34.83 " 30-32 39-10 " 34-12 42.82 " +HgCl 2 .2KCl 34.18 39.34 HgCl 2 .2KCl 34-34 35-i6 " 35-54 30.63 37.72 24.3 41-33 19.33 +KC1 39.66 15.76 KC1 37.87 10.28 " 35-32 2.1 100 gms. i n aq. NaCl solution dissolve 25.08 gms. HgCl 2 at 25. (Osaka, 1903-08.) Data for the solubility of mercuric chloride in aqueous solutions of glycerol, sucrose, tartaric and citric acids at 25 are given by Moles and Marquina, 1914. Data for equilibrium in the system HgCl 2 + KOH + H 2 O at 25 are given by Herz, 1910. Similar data for mercurous chloride + KOH + H 2 O at 25 are given by Herz, 1911. 411 MERCURIC CHLORIDE SOLUBILITY OP MIXTURES OF SODIUM AND MERCURIC CHLORIDE IN WATER AT 25. (Foote and Levy Am. Ch. J. 35, 239, '06.) Gms. per 100 Gms. Solution. Gms. per 100 Gms. Undissolved Residue. NaCl. HgCl 2 . NaCl. HgCl 2 . H 2 6. 26.5 none 100 none none 18.66 51-35 . . . 16.39 ... ] 18.71 21.98 ... 18.64 51.42 . . . 65.42 ... 18.87 51 .26 . . . 71-25 ... J 14.97 57-74 16.38 74.18 9-44 ' 14.03 59.69 16.36 74-21 9-43 13 .25 62 .16 16.16 74-70 9.14 13.17 62.59 15.96 74-76 9-28 12.97 62.50 78.20 ... I3-I4 62.48 . . . 88.64 . . . 62-55 90.83 , Two determinations made at 10.3 gave: 19.46 46.49 67.46 29.19 3-35 19.48 46.50 22.83 68.85 8.32 Solid Phase. NaCl NaCl and NaCl.HgCl 2 .aH a O Double Salt NaCl.HgCl 2 .2H 2 O Calc. Comp. = 16.01% NaCl 74-14% HgCl.g.85% HaO and SOLUBILITY OF MIXTURES OF POTASSIUM AND MERCURIC CHLORIDES IN WATER AT 25. (Foote and Levy.) Composition of Solution. Grams per 100 Grams Percentage Composition of Undissolved Solid Solution. Residue Phase. J KC1. HgCl 2 . KC1. HgCl 2 . H 2 0. 26.46 none 100 none KC1 26.24 15.04 . . . 3-63 ::: i | 26.43 15.02 . . . 26.15 ... i KC1 and 26.33 15 .02 52.01 ... i 2KCl.HgCl 3 .H 2 26-33 14.92 6 1 .04 ... j 23-74 18.91 34.6l 61.66 3-731 2KCl.HgCl 2 .H 2 O 22.36 21.39 21.39 23.88 34-77 34-8o 62.02 61.84 3-2i 3-35 J Calc. Composition 34-05% KC1, 61.84% 4.11% H 2 20.32 20.26 27 .62 27.38 65-24 73-98 :::! 2 KCl.HgCl 2 .H 2 and KCl.HgCl 2 .H 2 O I7-85 25-34 21.89 75-io 3 -on 9.26 18.95 21 .02 73-36 5.62 iKCl.HgC! 2 .H 2 O '6.84 19.56 22.81 20.76 20-75 73.06 74-54 6.18 4-7 1 Calc. Composition 20. 5 2%KC1, 74-53% 1 4-95% H 2 6.66 24.32 20.54 73-99 5-47J '. 6.52 6.64 25.16 76.46 80.60 :::] 1 KCl.HgCl 2 .H 2 O and KC1.2HgCl 2 . 2 H 2 O I 6.27 5-77 25.11 24-73 12 .09 11.87 83.20 83.18 4-71 4-95 ! , KC1.2HgCl 2 .2H 2 O Calc. Composition 4.68 24-75 . . . 84.46 ... l I 4.66 25- J 7 . . . 93-68 I I KCl.aHgCl 2 .aH 3 ai 4.69 24.82 98.50 ::: j I none 6.90 none 100. OO none HgCl a HgCl 2 , MERCURIC CHLORIDE 412 SOLUBILITY OF MIXTURES OF MERCURIC AND RUBIDIUM CHLORIDES IN WATER AT 25. (Foote and Levy, 1906.) Composition of Solution. Cms. per 100 Gms. Solution. Percentage Composition of Undissolved Residue. Solid Phase. RbCl. HgCl RbCl. HgCl 2 . H 2 0. 48.57 none 100 none none Rbci 46.76 9.18 88.04 11.24. 0.72 47-54 47-55 9-49 9-39 60.33 56.59 37-51 40.75 2.16 2.66 RbCl and 2RbCl.HgCl 2 .H 2 47-3 9-47 46.73 49-38 3-88 47-65 35 -16 iQ-35 19.58 46.50 45-98 50.92 50.80 2-58 3-22 2 RbCI.HgCI 2 .H 2 Calc. Com- position 45-55% RbCl. 51 .05% HgCl 2 . 3 . 4 % H 2 34-77 19.94 43-07 5 2 -44 4-49 2RbCl.HgCl 2 .H 2 and 3 RbCl. 34.76 20. 10 41.10 55-36 3-54 2HgCl 2 .2H 2 O 30.27 29.20 27.38 20.17 20.55 20.63 39-07 39.10 38.67 57-34 ' 57'-47 57-40 3-59 3-43 3-93 3RbCl. 2 H g Cl 2 . 2 H 2 Calc. Composition 38.55% RbCl, 57.62 %HgCl 2 . 3.82 %H 2 26.83 20.87 38.48 57-36 4.16 3RbCl. 2 HgCl 2 .2H 2 O and 27.09 20.97 31.40 64.35 4-25 RbCl.HgCl 2 .H 2 O 26.15 20.58 30-34 65.48 4.18 RbCl.HgCl 2 .H 2 O 23.81 18.71 30.87 65.10 4-03 Calc. Composition 18.10 14.25 29.87 65.28 4-85 29-49% RbCl, 66.11 %HgCl 2 , 10.87 10.42 29-33 66.15 4-52 4.40% H 2 O 10.68 10.56 28.59 67-99 3-42 RbCl.HgCl 2 .H 2 O and 3RbCl 10.50 10.05 26.22 72.20 1.58 4HgCl 2 .H 2 10. 06 9.86 25.28 73-38 0.84 8.48 8.46 8.71 8.80 25-30 25-44 73-15 73-67 !-55 0.89 3RbCl. 4 HgCl 2 .H 2 O Calc. Composition 24.76% RbCl, 74-01% HgCl 2 , 5.68 8.70 25.09 73-46 1-45 i.2 3 %H 2 5-io 8-33 24.92 73-93 i-i5 3-43 8.25 22.79 75-72 i-49 3 RbCl. 4 HgCl 2 .H 2 and RbCl 3-38 8 12.68 86.74 0.58 5HgCl 2 2.98 7.71 8.40 91.24 1.89 1.50 7.64 7-55 8-38 8.30 . 91.78 91.81 RbCl.sHgCl 2 Calc. Composition 8.20% RbCl, 91.8% HgCl, 1. 10 7.21 8.07 91.58 . . 0.79 0.84 7.16 7.42 6.91 2.27 93-15 97.09 ... RbCl.sHgCl 2 and HgCl 2 none 6.90 none 100 HgCl 2 20 30 40 50 60 SOLUBILITY OF MERCURIC CHLORIDE IN ACETIC ACID. (Etard, 1894.) Gms. HgCU per roo Gms. Solution. 2-5 3-5 4-7 6 7.2 t e . 70 80 90 100 Gms. HgCl 2 per i oo Gms. Solution. 8-5 9-7 ii 12.4 no 120 130 140 160 Gms. __, per 100 Gms. Solution. I 3 .6 16.5 20.7 25.2 34-8 413 MERCURY CHLORIDE SOLUBILITY OF MERCUROUS CHLORIDE (CALOMEL) IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, BARIUM CHLORIDE, CALCIUM CHLORIDE AND OF HYDRO- CHLORIC ACID AT 25. (Richards and Archibald, 1902.) Solid phase in each case. Calomel + about o.i gm. of mercury. In Aqueous NaCl. In Aqueous BaCl2. p. Gr. of Gms. per Liter. Sp. Gr. of Gms. per Liter. olutions. ' NaCl. . HgCl. Solutions. BaClz. a HgCl. . . . 5.85 O.C04I 1. 088 104.15 0.044 .040 58.50 0.041 I-I34 156.22 0.088 .078 IIQ O.I2Q I.I74 208.30 0.107 093 148.25 0.194 1.263 312.54 0.231 .142 222.3 0.380 .188 292.5 0.643 In Aqueous CaCl 2 . In Aqueous HC1. p. Gr. of Gms. pe Liter. Sp. Gr. of Gms. per Liter. olutions. ' CaCl 2 . HgCl. " Solutions. HCl.j HgCl. ' 39-96 O.O22 31.69 0.034 . . . 55-5 0.033 36.46 0.048 .064 in O.oSl .042 95-43 0.207 .105 I38-75 0.118 .069 158-4 0-399 151 I95-36 0.231 .091 209.2 0.548 .205 257-52 0.322 .114 267.3 0.654 243 324.67 0.430 .119 278.7 0.675 315 432-9 0.518 1.132 3I7-3 0.670 358 499-5 0.510 1.153 -364-6 0.673 loo gms. bromoform, CHBr 3 , dissolve 0.055 8 m - HgCl at i8-2O. (Sulc., 1900.) SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS ETHYL ALCOHOL AT 25. (Abe, 1912.) 'QH 6 OH. HgCl 2 . " ociiiu .rjua.sc. C 2 H 5 OH. HgCl 2 . ouuu rna.be. 6.80 HgCk 45-84 I5-36 HgCfe 5-08 0.65 u 49.86 18.18 M 14.49 6.41 1C 53-61 21.40 (I 21 6-55 It 57.26 24.51 tt 26.25 7-31 ft 60.55 27.67 It 31-53 8.51 tf 63-95 29.86 tt 36.85 10.32 (( 67-39 32.40 tt 41.36 12.64 It SOLUBILITY OF MERCURIC CHLORIDE IN AQ. ETHYL ALCOHOL AT 25. (Herz and Anders, 1907.) t. % CjHsOH in Solvent. dy, of Solvent. d^ of Sat. Sol. Gms. HgCV] 100 cc. Sat. 0.9971 I-0565 7.22 20. l8 0.9665 I.02I4 6-76 40.69 0.9302 I.OlSo 10.69 70.01 0.8632 I. O6l6 23.60 100 0.7856 I.I067 36.86 MERCURY CHLORIDE 414 SOLUBILITY OF MERCURIC CHLORIDE IN AQUEOUS METHYL ALCOHOL AT 25. (Herz and_Anders, 1907.) Wt. % CHjOH in Solvent. J, of Solvent. d^ of Sat. Sol. Cms. HgCl 2 per 100 cc. Sat. Sol. 10.60 0.9792 .0441 7.00 30-77 0.9481 .0420 11.31 37.21 0.9369 .0507 13-43 47.06 0.9186 .0809 19.71 64 0.8800 .2015 3 8 -44 78-05 0.8489 ] c-33*4 57-17 100 0.7879 ] [.2160 48.62 loo cc. 90% ethyl alcohol dissolve 27.5 gms. HgCl 2 at 15.5, rfis sat. sol. = 1.065. (Greenish and Smith, 19030 loo gms. 00.2 % ethyl alcohol dissolve 33.4 gms. HgCU at 25. (Osaka, 1903-8.) abs. " " " 49.5 (de Bruyn, 1892.) methyl 49-5 52.9 1 at 19.5 and 66.9 gms. at 25. (de Bruyn, 1892.) 1.2 " " at the crit. temp. (Centnerszwer, 1910.) SOLUBILITY OP MERCURIC CHLORIDE IN METHYL, ETHYL PROPYL, n BUTYL, Iso BUTYL AND ALLYL ALCOHOLS. (Etard Ann. cliim. phys. [7] 2, 563, '94.) NOTE. For the solubility in Me, Et, and propyl alcohols at room temperature, see Rohland Z. anorg. Ch. 1-8, 328, '98; at 8.5, 20 and 38.2, see Timofejew Compt. rend. 112, 1224, '91; in Me and Et alcohols at 25, see de Bruyn Z. physik. Ch. 10, 783, '92. The deter- minations of these investigators agree well with those of Etard, which are given below. Grams HgCl 2 per 100 Grams Saturated Solution in: fc . CHaOH. C 2 H 6 OH. CsH 7 OH. CH3(CH 2 ) 3 OH. (CH3) 2 CHCH 2 OH. CH 2 .CH.CloH. -30 14-5 15.0 20 20.1 15-7 *3-5 21.0 10 IS-2 26.5 I6. 5 i3-7 25-5 O 20.1 29.8 17.4 14.0 5- 2 30.0 + 10 26.3 30.6 18.0 14-3 6.0 37-5 20 34-o 32.0 18.8 14.6 6.8 46-5 2 5 40.0 32-5 19-5 i5-S 7-2 30 44-4 33-7 20. o 16.5 7-5 ' 40 58.6 35-6 23.0 19.6 9-7 60 62.5 41.2 29.8 26.5 17.0 . . . 80 66.0 47-5 36.8 33-o 24.9 100 70.1 54-3 43-8 3i-7 120 73-5 61.5 50.6 . . . 39-2 'SO 78-5 ... ... ... SOLUBILITY OF MERCURIC CHLORIDE IN AQ. ETHYL ACETATE AT 25. ^ (Herz and Anders, 1907.) ^ Wr t. % CHjCOOCjHg j ^r c \. f in Solvent. d * ol o 0.9971 4-39* 9 6. 7 6t loot 0.884 Almost sat. with ethyl acetate. t Ethyl acetate almost sat. with H,O. J (b. pt. = 75.77.) t of Sat. Sol. Gms. HgClj per 100 cc. Sat. SoL 1-0565 1.0581 7-22 7-38 I.237I I .1126 41-55 26.42 415 MERCURY CHLORIDE SOLUBILITY OF MERCURIC CHLORIDE IN WATER-ETHER MIXTURES AT 25. (Abe, 1912.) Cms. per 100 Cms. Sat. Sol. HgCl 2 . Ether. H 2 O. ouiiu rua.sc. 6.92 87.86 5-22* HgCl 2 S- 2 1.2 93-6 u 4-3 5-2 90-5 (I 2.8 5-4 91.8 tt tt 5-4 * (Solvent, ether sat.jwith H 2 0.) SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ETHER AND ETHYL ALCOHOL AT 25. (Abe, 1912.) Gms. per 100 Cms. Sat. Sol. HgCl 2 . 32.43 35-50 37-39 37 -9 6 38-24 37-75 C 2 H 6 OH. 67-57 58.59 51.02 44-79 38.69 32.84 Gms. per 100 Gms. Sat. Sol. ' 5gC QH 6 OH. ' 36.29 27.16 34.08 22.48 28.55 I 5-2Q 20.67 8.97 5-49 o SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ALCOHOLS AT 25. (Herz and Kuhn, 1908.) In Mixtures of Ethyl and In Mixtures of Ethyl and In Mixtures of Methyl and Methyl Alcohols. Propyl Alcohols. Propyl Alcohols. % CH 3 OH da. Of Gms.HgCl, %C 3 H 7 OH fl Uof Gms. HgCl 2 % C 3 H 7 OH a ' of Gms. HgCfc in Solvent. Sat. Sol. per 100 cc. Sat. Sol. in Solvent. Sat. Sol. per too cc. Sat. Sol. in Solvent. _ TT per loo cc. Sat. Sol. Sat. Sol. I.IO7 36.86 O I ,1070 36.86 O I .2l6o 48.62 4-37 I.I30 39-43 8. i I ,0988 36.67 II. II I .2278 50-34 10.40 I-I57 42.61 17- 85 I ,0857 34.06 23.80 I .2848 57-14 41.02 1.294 58.37 56. 6 I ,0272 27.11 65.20 I .1568 42.28 80.69 I.32I 61.67 88. 6 9854 21.66 91.80 I .0090 25.09 84.77 1.288 57-82 91. 2 o .9824 21.60 93-75 I .0029 23-23 91-25 1.254 53.85 95- 2 o .9772 20.87 96.6 .9851 21.52 100 1.216 48.62 IOO o ,9720 20.03 IOO .9720 20.03 SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ETHYL ALCOHOL AND BEN- ZENE AND OF ETHYL ALCOHOL AND CHLOROFORM AT DIFFERENT TEMPERATURES. (Dukelski, 1907.) In a Mixture of one mol. C 2 H 6 OH + one mol. CeHe. Gms. HgCl 2 t. per loo Gms. In a Mixture of In a Mixture of In a Mixture of two mols. C 2 H 6 OH one mol. C 2 H 6 OH two mols. C 2 H 6 OH + one mol. CeHe. + one mol. CHsCl. + one mol. CHCla. Gms. HgCl 2 Gms. HgCl 2 Gms. HgCl 2 t. per loo Gms. t. per 100 Gms. t. per 100 Gms. Sat. Sol. Sat. Sol. Sat. Sol. Sat. SoL -2.5 15 .20 -5 .2 19-45 20, 1 5 3-82 20 -5 6.60 O 15 .40 20.13 12 4-43 7.69 6 16 .38 9 .1 21.65 O 4-89 8 8.96 20.5 18 .40 20 9 23-57 8 5-37 23 10.66 20.65 18 -50 24 -4 24.19 23 7.12 38 5 12.50 ' 24.5 19 33 36 5 26.53 38, 5 8.51 44 .2 14.40 34-5 21 34 53 -7 31.27 44 ,2 9-51 54-4 24 -84 74 38.74 45 ,6 9.98 54-5 24 .42 Some of the determinations were made by the direct method of saturating the solution at a given temperature and determining the dissolved material by evap- orating and weighing. Others were made by the synthetic method of Alexejew. MERCURY CHLORIDE 416 SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF METHYL ALCOHOL AND CHLOROFORM, METHYL ALCOHOL AND CARBON] TETRACHLORIDE, AND METHYL ALCOHOL AND DICHLORETHANE AT DIFFERENT TEMPERATURES. (Dukelski, 1907.) In a Mixture of one mol. CH 3 OH 4- one mol. CHC1 3 . Gms. HgClj t. per 100 Gms In a Mixture of two mols. CH 3 OH + one mol. CHC1 3 . Gms. HgClj t. per loo Gms. In a Mixture of In a Mixture of two mols. CH 3 OH two mols. CH 3 OH + one mol. CC1 4 . + one mol. C 2 H 4 C1 2 . Gms. HgCl 2 Gms. HgCl 2 t. per 100 Gms. t. periooGms. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. 12 I .73 12 3-33 5-20 O 13-33 O 3-51 O 6-73 7-7 6.69 12.5 21.30 8 5-63 8 8.21 24-9 14.06 20.8 2 9 .23 23 IO.I5 23 16.56 30.6 19.40 25-3 34.78 24.9 10.71 24-9 18.45 35-5 20.50 30.2 36.87 30.6 11.40 30.6 19.70 36.1 21. 80 37-4 37-95 38.5 12. 02 38.5 20.83 48.5 21.90 45-9 39-36 SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF METHYL ALCOHOL AND BENZENE AT DIFFERENT TEMPERATURES. (Timofeiew, 1894.) In a Mixture of one mol. CH 3 OH + one mol. C 6 H 6 . *' O 21-25 30 37 Gms. HgCl 2 per roo Gms. Sat. Sol. 8 23-9 27-3 28.1 In a Mixture of one mol. CH 3 OH + two mols. C 6 H 6 . t o Gms. HgCl s per 100 1 ' Gms. Sat. Sol. O 21-25 30 37 4-8 17.1 18 18.4 SOLUBILITY OF MERCURIC CHLORIDE IN BENZENE, IN DICHLORETHANE AND IN ETHYLACETATE AT DIFFERENT TEMPERATURES. (Dukelski, 1907.) In C 6 H 6 . In C 2 H 4 C1 2 . f Gms. HgCl 2 per loo Gms. Sat. Sol. 6-5 0.26 18 o-53 34-i 0.64 54-i i .02 69 i-39 t o Gms. HgClj per 100 Gms. Sat. Sol. O i-33 12.5 i-55 25-3 i-73 33 2.05 45-9 2.42 In CH 3 COOC 2 H 6 . xo Gms. HgClo per * 100 Gms. Sat. Sol. 6.5 26 38 45 22.9 22.7 22.8 23-5 26.4 SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF BENZENE AND ETHYL- ACETATE, CHLOROFORM AND ETHYL ACETATE AND OF CARBO.N TETRACHLORIDE AND ETHYL ACETATE. (Dukelski, 1907.) In a Mixture of one mol. CeHe + one mol. CH 3 COOC 2 H 6 . In a Mixture of one mol. CHCls + one mol. CH 3 COOC 2 H5. In a Mixture of one mol. CCU + two mols. CH 3 COOC 2 H 6 . f o Gms. HgCl 2 per 100 Gms. Sat. Sol. O 9.62 6-5 9.62 25-7 9.78 2 7 .6 9.98 35-5 10.81 45-3 13.69 Gms. HgCl 2 per zoo Gms. Sat. Sol. O 26.1 36.1 4 6 48.5 3-34 4.07 4.78 5-38 5.10 t o Gms. HgCli per 100 Gms. Sat. Sol. O 9-24 10.3 9-05 25-7 27.6 38.5 9-32 .9-50 -9-89 45-3 11.70 417 MERCURIC CHLORIDE SOLUBILITY OF MERCURIC CHLORIDE IN ETHYL ACETATE AND IN ACETONE. (Etard, 1894; von Laszcynski, 1894; Krug and McElroy, 1892; Linebarger, 1894; Aten, 1905-06.) NOTE. The results obtained by the above-named investigators were calcu- lated to a common basis and plotted on cross-section paper. The variations which were noted could not be satisfactorily harmonized, consequently all the results are included in the following table: SOLUBILITY. In Ethyl Acetate. In Acetone. Grams HgCk per 100 Grams Solution. Gms. HgCl2 per too Gms. Solution. / Laszcynski. Aten. Linebarger. Etard . K and McE . Laszcynski . Aten. Etard. 10 . 23.0 . . . 40 ... ... 44.0 * 57 .0 22 O 23.2 32 .0 40 49-7 43-o * 61 7 + 10 22 .2 23-5 3 2 5 40 52.0 5 i.o *~5 8.9 >t 61 7 20 22 5 23-4 32 40 54 58.5 t 61 7 25 22 7 23-5 33 .0 40 37-4 55-2 S 8. 2 t 61 7 30 23 .0 33 .2 40 61 7 40 23 5 33 5 40 ... ... 61 7 50 24 .0 33 5 41 ... ... . 61 7 60 24 7 . . . 42-5 ... * . 61 7 80 26 .0 . 45-2 ... ... 61 7 100 . . . . . . . 48.0 ... ... , 120 . . 50.8 ... > 150 . . 55-o ... .. (*) Solid phase HgCl 2 (CH 3 ) 2 CO. (t) Solid Phase HgCl,. loo gms. absolute acetone dissolve 143 gms. HgC^ at 18. (Naumann, 1904.) 100 gms. ethyl acetate (dig. = 0.8995) dissolve 48.8 gms. HgCl 2 at 18. (Naumann, 1910.) 100 gms. methyl acetate (dig = 0.935) dissolve 42.6 gms. HgCl 2 at 18. (Naumann, 1909.) SOLUBILITY OF MERCURIC CHLORIDE IN SEVERAL SOLVENTS. (Arctowski, 1894; von Laszcynski, 1894; Sulc, 1900.) In Carbon Bisul- phide (A.). In Benzene (von L.). In Several Solvents at 18-20 (S.). Gms. HgCl 2 Gms. HgCl 2 Gms. HgCl 2 t. per 100 Gms. t. per 100 Gms. Solvent. per 100 Gms. Solution. Solution. Solvent. 10 O.OIO 15 o-537 CHBr s 0.486 o O.OlS 41 0.616 CHC1 3 0.106 IO O.O26 55 0.843 CC1 4 0.002 15 0.032 84 1-769 C 2 H 5 Br 2.010 20 O.O42 C 2 H 4 Br, 1-530 2 5 0-053 30 0.063 MERCURY CHLORIDE 418 SOLUBILITY OF MERCURIC CHLORIDE IN MIXTURES OF ACETONE AND BENZENE, ETHER AND CHLOROFORM AND OF ETHYL ACETATE AND BENZENE AT 25. (Harden and Dover, 1917.) In Mixtures of CH 3 COCH 3 + C 6 H 6 . Gms.CH 3 COCHj Cms. HgCl 2 per 100 Gms. per 100 Gms. Mixture. Mixed Solven 100 140 9 80 117 96.5 70 60 77 60 50 45 40 3i-4 30 20 20 10.7 10 3-9 0.66 In Mixtures of (C 2 H 5 ) 2 + CHC1 3 . Gms. CHC1 3 per 100 Gms. Mixture. Gms. HgCl 2 per 100 Gms. Mixed Solvent. IO 6-95 5-85 20 4-73 30 40 3-7 2.80 SO 60 2.IO I. 4 8 70 80 QO 100 o-95 0.657 0.328 0.128 In Mixtures of CH 3 COOC 2 H 6 + C 6 H 6 . Gms. CH 3 COOC 2 H 5 Gms. HgCl 2 per 100 Gms. per 100 Gms. Mixed Solvent. Mixture. 100 90 80 70 60 40 30 20 IO O 49-3 26 22.1 I8.I 14.2 II 8 5-4 3-i 1.6 0.66 SOLUBILITY OF MERCURIC CHLORIDE IN BENZENE. (Average curve from results of Linebarger, 1895; Sherrill, 1903; and Marden and Dover, 1917.) O 10 20 Gms. HgCl 2 per zoo Gms. CaH. O.2O 0-39 0.56 25 30 40 Gms. HgCl 2 per 100 Gms. CjHg. 0.64 0.84 SOLUBILITY OF MERCURIC CHLORIDE IN ABSOLUTE ETHYL ETHER. (Etard, 1894; Laszcynski, 1894; Kdhler, 1879.) fc -2O O 20 Gms. HgCl 2 per 100 Gms. Solution. 6 6 6 60 70 80 Gms. HgCl 2 per loo Gms. Solution. 6 6-4 7 90 100 no Gms. HgCl 2 per 100 Gms. Solution. 7-5 8 8-5 SOLUBILITY OF MERCURIC CHLORIDE IN CHLORINATED HYDROCARBONS AT 25. (Hoffmann, Kirmreuther and Thai, 1910.) Solvent. Formula. Solvent. Gms. HgCl 2 per loo Gms. Solvent. Ethylene Chloride CH 2 C1.CH 2 C1 1.229 Dichlorethylene Formula. Tetrachlorethane C 2 H 2 Cl4 Chloroform CHCU Pentachlorethane C 2 HCl6 0.090 o. 101 Trichlorethylene Tetrachlorethylene 0.0193 Carbontetrachloride CC14 Gms. HgCl 2 per 100 Gms. Solvent. CHC1.CHC1 0.114 CHC1.CC1 2 0.0274 CC1 2 .CC1 2 0.0072 trace (Aschan, 1913.) 100 gms. 95% formic acid dissolve 2.1 gm. HgCl 2 at 19. 100 gms. 95% formic acid dissolve 0.02 gm. Hg 2 Cl 2 at 16.5. 100 cc. anhydrous hydrazine dissolve I gm. HgCl 2 with decomp. at room temp. (Welsh and Broderson, 1915.) loo cc. anhydrous hydrazine dissolve I gm. Hg 2 Cl 2 with decomp. at room temp. (Welsh and Broderson, 1915.) IOO gms. glycerol dissolve 80 gms. HgCl 2 at 25. (Moles and Marquina, 1914.) ioo gms. glycerol dissolve 8 gms. HgCl 2 ? Hg 2 Cl 2 at 15-16. (Ossendowski, 1907.) loo gms. anhydrous lanolin (m. pt. about 46) dissolve 1.55 gms. HgCl 2 at 45. (Klose, 1907.) 419 MERCURY CHLORINE Gms. SOLUBILITY OF MERCURIC CHLORIDE IN PYRIDINE. (McBride, 1910.) The determinations at the lower temperatures were made by stirring an excess of HgCl 2 with pyridine and analyzing the sat. solution. Those at the higher tem- peratures were made by the synthetic method. Cms. *" SPoT/ Solid Phase. Sat. Sol. 32.6 2.76 HgCl 2 .2C 6 HjN 21.75 7.86 " 0.02 13.14 " 12.58 17.34 " 18.78 19.78 " 27.23 22.65 " 31.05 24.46 " 40.90 29.29 " 50.10 34.94 " 60.03 40.36 70.15 46.44 76 ... 80.02 51.52 89 56.45 94.1 60.09 t. Solid Phase. Sat. Sol. 94-7 60.72 HgCl 2 .2C B H B N+3HgCl 2 .2C B H 6 N 74.7 48.38 HgCl 2 .C 6 H6N(unstable) (stable) 50.53 53-41 56.45 57-84 60.72 63.06 " +HgCl 2 .C 6 H 6 N HgCl 2 .2C B H B N (unstable) 83.5 90.4 97 IOO -5 104.2 107 106.2 95-2 60.77 106.4 61.93 109.8 62.58 114 63.18 65 69.66 (unstable) + 3 H g Cl 2 .2C s H5N 3 HgCl 2 .2C 6 H 6 N (unstable) " (stable) 124.2 145-5 Data for this system are also given by Staronka (1910). Data for the solubility of HgCl 2 .2C 6 H 6 N and of Hg(NO3)2.2C5H 6 N.2H 2 O in aqueous solution of pyridine at i8.i are given by Stromholm (1908). Data for the solubility of diamine mercuric chloride, (NH 3 )2HgCl 2 NH 2 HgCl, in aqueous solutions of ammonia at 17.5 are given by Stromholm (1908). SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE (CH 3 ) 4 NC1.6HgCl 2 IN AQ. ETHER AT 1 7. (Stromholm J. pr. Ch. [2] 66, 443, '02; Z. physik. Chem. 44, 64, '03.) Molecular Concentration per Liter. Grams per Liter of Solution. H 2 0. HgCl 2 (*). HgCl 2 (f). O-O 0-I5I5 0.0342 0.0656 0-1795 0-0428 0.1311 o . 2069 0-0516 0.1956 0.2339 0-0603 0.2611 o . 2489 0-0690 0.3267 o . 2849 0.0779 0.3922 0.3100 0.0866 H 2 O. HgCl 2 (*). HgCl 2 (f). O 41 .16 9.26 1.18 48.64 II .60 2.36 56.08 14.00 3-52 63-38 16.34 4.70 70.16 18.70 5.88 77-20 21 .IO 7.06 84.02 23.48 (*) Results in this column are for solutions in contact with the Solid Phase HgClj. (t) Results in this column are for solutions in contact with the Solid Phase (CH 3 ) 4 NC1.6HgCl 2 . SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE IN ALCOHOL-ETHER SOLUTIONS AT 17 (Stromholm.) . . Grams CaHsOH per Liter. Grams HgCl 2 (*) per Liter. Grams HgCl 2 (t) per Liter. o.o 41.16 9.26 50.00 11.87 58.76 14.38 66.96 16.90 o.o 4.58 9.16 13.74 MERCURY CHLORIDE 420 SOLUBILITY OF DOUBLE MERCURIC CHLORIDES IN AQUEOUS AND PURE ETHER AT 16.6. (Stromholm, 1902, 1903.) Mol. Cone, of HgCl 2 per Liter of: Cms. HgCl 2 per Liter of: Aq. Ether Pure Aq. Aq. Aq. Pure Aq. Aq. Ether. Ether Ether Ether Ether. Ether Ether (i). (2). (3). (4). (5). (6). 0.1515 0.2387 0.2647 0.3196 41.04 64.69 71.71 86.58 0.0673 0.1157 0.1293 0.1617 18.23 3i-4i 35-05 43-79 0.0404 0.0720 0.0835 0.1034 10.95 *9 -5 1 22 -6i 28.01 0.0342 ... 0.0706 ... 9.26 ... 19.10 ... 0.0264 ... 0.0568 ... 7.14 ... 15.39 0.0209 0.0400 0.0460 0.0594 5.66 10.83 12.48 16.10 0.0063 0.0144 1-70 ... 3.90 ... Solid Phase. HgCl 2 (CH 3 ) 4 NC1.6HgCl 2 (C 2 H 5 ) 3 SC1.6H g Cl 2 (CH 3 C 2 H 6 ) 2 SC1.6HgClj (CH s ) 2 .H 2 NCl. 2 HgCl 2 (i) containing 0.21055 mol. H 2 O per liter. (2) 0.2756 mol. H 2 O per liter. (3) 0.421 mol. H 2 O per liter. (4) containing 3.79 gms. H 2 O per liter. (5) 4.97 gms. H 2 O per liter. (6) 7.59 gms. H 2 O pe SOLUBILITY OF MIXTURES OF MERCURIC Absolute Alcohol. (Foote, 1910.) Gms. per 100 Gms. Sat. Solution. KC1. 0.21 0.28 O.22 0.28 0.25 0.17 0.38 HgCl 2 . 33.69 33-80 24.84 6.21 1.65 i. 57 1.03 Solid Phase. HgCl 2 +5KC1.6HgCl 2 .2C 2 H 6 OH sKC1.6HgCl 2 .2C2H 5 OH 7-59 gms. H 2 O per liter. AND POTASSIUM CHLORIDES AT 25 IN: Acetone. (Foote, 1910.) Gms. per 100 Gms. Sat. Solution. KC1. 1.27 1-39 2-58 2. 7 8 2-93 2.52 3-34 2.92 HgCl 2 . 61.87 60.68 55-85 54-41' 48.13 18.04 13.26 ii Solid Phase. HgCl 2 +KCl.sHgCl 2 .(CH,) 2 CO KCl. 5 HgCl 2 .(CH3) 2 CO +5.6.2 5.6.2 +KC1 100 gms. of sat. abs. alcohol solution HgCl 2 and 3.01 gms. NaCl at 25. 5.6.2= 5KC1.6HgCl 2 .2(CH 8 )aCO. of HgCl 2 + NaCl contain 46.85 gms. (Foote, 1910.) SOLUBILITY OF MERCURIC CHLORIDE AND SODIUM CHLORIDE IN ETHYL ACETATE AT 40. (Linebarger Am. Ch. J. 16, 214, '94.) Solid Mols. per too Mols. Acetate. Gms. per too Gms. Acetate. Gms. per 100 Gms. Solution. NaCl. HgCl 2 . NaCl. HgCl 2 ". NaCl. HgCl 2 . 0.8 12.9 0.53 39-7 o-53 28.4 2-3 12.4 I .53 38-15 27.61 4-3 16.4 2.85 50-44 2 '.78 33-54 9.1 22.85 6.05 86.14 46.28 18.5 34-9 12.29 107.4 10-95 5 J -7 6 20. o 40.0 13.29 123.0 II -73 55.18 HgCl 3 HgCl 2 + NaCl The double salt (HgCl 2 ) 2 .NaCl is formed under proper conditions. DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND BENZENE. (Linhart, 1915.) Results at 40. Mols. HgCl 2 per Liter: Cone, in H 2 O me. in C 6 H 13.07 12. 08 Results at 25. Mols. HgCl 2 per Liter; Cone, in H 2 O Cone, in C 6 Hg I3-65 12.91 12-35 CHg Layer. O.O2IOO O.OI224 0.005244 0.00o6l8 0.000310 0.000155 H 2 Layer. 0.2866 0.15777 0.064756 0.007382 o . 003696 0.001845 11.90 11.90 C 8 H 6 Layer. 0.02647 0.015296 0.011774 0.008041 0.004140 0.000847 H 2 O Layer. 0.34600 0.18470 0.138228 0.091959 o . 04586 0.009153 11.74 11.44 II. 08 I0.8I 421 MERCURY CHLORIDE DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND ETHER. (Hantzsch and Sebalt, 1899.) 50 cc. ether + 50 cc. sat. aqueous HgCl 2 solution were shaken together at different temperatures and after equilibrium was established the HgCl 2 in each layer determined. I/ . H 2 Layer (cO- (C2H 5 ) 2 O Layer (<:*). c* 0.0056 O.OI4O7 0.391 10 O.OO66 O.OI4I5 0.467 17-5 o . 0090 0.02150 0.419 25 O.OO95 O.O2O76 0.429 Determinations by Skinner (1892) at room temp, using concentrations of HgCl 2 in the aqueous layer varying from 1.4 to 5.9 per cent, gave a distribu- tion coefficient, = approximately 0.23. DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN AQUEOUS HC1 AND ETHER AT 18. (Mylius, 1911.) When I gm. of Hg as HgCl 2 is dissolved in 100 cc. of H 2 O or aqueous HC1 and shaken with 100 cc. of ether, the percentage of the Hg which goes into the ethe- real layer is as follows: Percentage Cone, of Aq. HC1 o (=H 2 0) i 10 20 Per cent Hg in Ether Layer 69.4 13 0.4 0.2 DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND TOLUENE AT 24. (Brown, 1898.) Gms. HgCJ2 per 100 cc. Cms. HgClg per TOO cc. H 2 O QsHsCHs H 2 O Layer. Layer. Layer. 0.442 0.0270 1.816 0.732 0.0488 3-766 0.780 0.0542 3-754 1.192 0.0812 6.688* *.This solution saturated. Results at Dif. Temperatures. Results at 25. yer. 0.130 0.292 0.298 0.528* (Hantzsch and Vagt, 1901.) Mols. HgCl 2 per Liter: H 2 O Layer fa) . C 6 H 5 CH 3 Layer (<*) . i. O 10 20 30 50 0.0578 0-0575 0.0576 0.0574 0.0573 o . 0047 o . 0050 0.0050 0.0051 0.0052 12.35 0.18410 0.01590 ii. 6 ii. 60 0.09193 0.00807 XI -4 11.40 0.04593 0.00410 n. i ii. 20 0.02289 0.00211 10.8 11.25 0.01142 0.00108 10.5 0.00573 0.00057 10 Data for the effect of Hg(NO 3 ) 2 upon the distribution are given by Morse (1902). Results for the effect of ZnCl 2 are given by Drucker (1912). FREEZING-POINT DATA (Solubilities, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES: Mercuric Chloride + Mercuric Iodide (Padoa and Tibaldi, 1903.) + Selenium (Olivari, 1909.) + Sulfur + Nitrobenzene (Mascarelli, 1906.) -j- o m and p Nitrotoluene (Mascarelli, 1906, 1907, 1909.) + Urethan ( " 1908, 1909.) + a Nitronaphthalene ( " 1906, 1907.) + p Nitrotoluene ( " 1908.) + Nitronaphthalene ( " 1906, 1907.) + p Nitranisole ( " 1906.) MERCURY CINNAMATE 422 MERCURY CINNAMATE (ic) (C 6 H 5 CH.CHCOO) 2 Hg.?H 2 O. 100 gms. H 2 O dissolve about 0.03 gm. mercuric cinnamate at 25. (De Jong, 1906.) loogms. H 2 O dissolve about o. 53 gm. Hg cinnamateat 100. (Tarugi& Checchi, 1901.) MERCURIC CYANIDE Hg(CN) 2 . SOLUBILITY IN WATER. Gms. Hg(CN), per 100: cc. Sat. Sol." Authonty. Gms.H 2 0. o.45Eutec. about u 13.5 9-3 15 12 . 5 2O ..." 25 ... 25 11.27 IOI.I 53-8S One liter 5.2% aqueous NH 3 solution dissolves 204.3 S m s- Hg(CN) 2 at about 20. (Konowalow, 1898.) SOLUBILITY OF MERCURIC CYANIDE "IN AQUEOUS POTASSIUM CYANIDE SOLU- 9-3 II. 12 IO. 95 ( 2 at 18. (Naumann and Schier, 1914.) ioo gms. benzonitrile (b. pt. 190-1) dissolve 1.093 S m s. Hg(CN) 2 at 18. (Naumann, ^914.) SOLUBILITY OF MERCURIC CYANIDE IN ANILINE. (Staronka, 1910.) t of Solidification Mol. % Hg(CN) 2 in sat. Solution 41 49 58.5 65 77 83.5 84 88.5 3.7 5.7 7.7 9 14.2 is. 2 19.7 23.4 The solid phases are the unstable Hg(CN) 2 .4C 6 H 6 NH2 and the stable Hg(CN) 2 . 2C 6 H 6 NH 2 (m. pt. about 90). One liter sat. solution in ethyl ether contains 2.53 gms. Hg(CN) 2 at 25. (Abegg and Sherrill, 1903.) ioo gms. glycerol dissolve 27 gms. Hg(CN) 2 at 15.5. SOLUBILITIES OP MERCURIC CYANIDE DOUBLE SALTS IN WATER AND IN ALCOHOL. Double Salt. cold 1 Hg(CN) 2 . 2 KCN Hg(CN) 2 . 2 TlCN Hg(CN) 2 .2TlCN 10 2Hg(CN) 2 .CaBr 2 . 5 H 2 O cold 2Hg(CN) 2 .CaBr 2 . 5 H 2 O boiling Hg(CN) 2 .KCl.H 2 18 Hg(CN) 2 .KBr. 2 H 2 18 Hg(CN) 2 .KBr. 2 H 2 boiling Hg(CN) 2 .BaI 2 . 4 H 2 O cold Hg(CN) 2 .BaI 2 .4H 2 O boiling Hg(CN) 2 .KI cold Hg(CN) 2 .NaI.2H 2 O 18 Hg(CN) 2 .SrI 2 .6H a 6 '18 Gms. per ioo Grams. Water. 'Alcohol. " 22.7 12.6 9-7 100.0 400.0 14.81 7-49 ioo.o-f 6.42 250.0 6.2 22.2 50.0 IOO.O Observer. (Fromuller Ber. u, oa, *78.) 14 41 (Custer.) (Brett.) 4.42 (Custer.) 62.5 (00% Ale.) 1. 4 (34 B Ale.) (Caillot.) 15.4 (90% Ale.) (Custer.) 25.0 (90% Ale.) 14-3 SOLUBILITY OF MECURIC CYANIDE IN ORGANIC SOLVENTS AT i8-2o. (Sulc, 1900.") G. Hg(CN)2per ioo Gms. Solvent. 0.005 O-OOI 0.013 0:001 Solvent. Bromoform Carbon Tetra Chloride Ethyl Bromide Ethylene Di Bromide Formula. CHBr 3 CC1 4 C 2 H 5 Br C 2 H 4 Br 2 Data for the ternary system, mercuric cyanide, phenol, water are given by Timmermans, 1907. MERCURY CYANIDE 424 SOLUBILITY OF MERCURIC CYANIDE IN PYRIDINE. (Staronka, 1910.) Mols. t. per foo Mols. Solid Phase. (CN) 2 + 9 7-1 ii 8.7 12.2 10.4 13 II-3 13-5 12.9 14-5 13-8 16.5 15.8 20.5 15.9 Mols. Hg(CN) t. per zoo M 22.5 17.3 28.5 18.4 32 19-3 38 20.6 5ls. Solid Phase. Hg(CN),.2C 8 H,N Mols. t. per 100 Mols. Solid Phase. Hg(CN) 2 + C 5 H 5 N 56.5 26.6 2 Hg(CN) 2 . 3 C 5 H5N 68 27.5 Hg(CN)2.C 6 H6N 70 27.7 86 29 42 22.3 in 32 46 23 7 " 122.5 33 O 53 25 3 ; 2 Hg(CN) 2 .3C 6 H 5 N 125 34 4 54-5 26 " 141 38 3 O *3 'V irT ' J 100 gms. pyridine dissolve 64.8 gms. Hg(CN) 2 at 18 (Schroeder, 1905.) SOLUBILITY OF MERCURIC CYANIDE IN QUINOLINE. (Staronka, 1910.) Mols. Hg(CN) 2 per 100 Mols. Solid Phase. t. Hg(CN) 2 +C 9 H 7 N. 4.2 Hg(CN) 2 .3C 9 H 7 N 137 6 " tr. pt. 60 161 89(61) 8.2 180 99(61) 9.2 192 Mols. Hg(CN) 2 > Me Solid Phase. 45 per 100 Hg(CN) 2 +C 9 H 7 N. 13.2 Hg(CN) 2 .2CH 7 N(?) 17.4 22.5 27.1 MERCURY FULMINATE C 2 HgN 2 O 2 . One liter of solution in water contains 0.70 gm. C 2 HgN 2 O 2 at 12 and 1.76 gms. at 49. (Holleman, 1896.) MERCURIC IODIDE HgI 2 . SOLUBILITY IN WATER. t. Gms. HgI 2 per Liter. Observer. 18 o . 0004 (conductivity method) (Kohlrausch, 1904- 05.) 17.5 0.040 (Bourgoin, 1884.) 22 0.054 (Rohland, 1898.) 25 0.0591 (Morse, 1902.) SOLUBILITY OF MERCUROUS IODIDE IN WATER AT 25. (Sherrill, 1903.) One liter sat. solution contains 2 X io~ 7 gms. Hg2l 2 , determined by indirect method. Data for the solubility of mercurous iodide in aq. KI solutions at 25 are also given by Sherrill. SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS SOLUTIONS AT 25. (Herz and Paul, 1913.) In Aq. Bal2. Mols. per Liter. 'Bal^ H^lT 0.099 -59 0.748 0.742 0.978 0.897 1.508 1.462 In Aq. CaI 2 . Mols. per Liter. In Aq. Nal. Mols. per Liter. CaI 2 . 0-053 0.252 0.468 1.799 HgI 2 . 0.050 0.261 0.440 1.706 Nal. 0.794 1.385 2.225 HgI 2 . 0.412 0.622 0-945 In Aq. SrI 2 . Mols. per Liter. "Sr HgTT. 0.254 0.212 0.355 0.320 0-539 0.582 o . 608 o . 694 SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25. (Sherrill, 1903; Herz and Paul, 1913.) Mols. per Liter. Gms. per Liter. Mols. per Liter. Gms. per Liter. "KL HiiT ICL H g i 2 . ' TL ' H g i 2 . ' To! H g i 2 . ' 0.05 0.025 8.3 11.4 i 0.50 166 227.2 o.io 0.05 16.6 22.7 1.5 0.75 249 340.8 0.20 o.io 33.2 45-4 2 i 332 454.5 0.50 0.25 ' 83 113.6 2.5 1.25 415 578 Data for the distribution of mercuric iodide between aq. KI solutions and benzene at 25 are given by Sherrill, 1903. 425 MERCURY IODIDE EQUILIBRIUM IN THE TERNARY SYSTEM MERCURIC IODIDE, POTASSIUM IODIDE, WATER AT 20 AND 30. (Dunningham 1914.) Results at 20. Results at 30 9 Gms. per zoo Gms. Sat. Sol. Gms. per TOO Gms. Sat. Sol. Solid PJiaa KI. 55* KI. Hgl,. ooiiu i nase. 50-9 19.3 KI 60.6 KI 44-4 32-4 40 53 " +KHgI 3 39 4 8 39-6 52-7 KHgla 37-4 53.6 " +KHgj3 40 52.2 " 37-8 52.6 KHglj 4O.2 51-2 " 35.1 52-2 39-3 50.3 M 35-5 512 KHgI 3 .H 2 O 33-7 49-8 " 26.7 50.3 " +UeT* 33 52 " 26.6 49-4 HgI 2 3!-4 5i-7 KHglj.HzO 23-7 40 . 2 " 29.1 52.2 " 14.9 22.5 EQUILIBRIUM IN THE TERNARY SYSTEM MERCURIC IODIDE, POTASSIUM IODIDE, ETHYL ETHER AT 20. (Dunningham, 1914.) Two liquid layers with compositions as follows, are formed: Gms. per 100 Gms. Upper Layer. Gms. per 100 Gms. Lower Layer. , s , " v Solid Phase. KI. Hgl,. KI. HgI 2 . i.i 2.8 None Ki+KHgS I.I 2.4 17.6 53.2 KHgl, 0.8 2.5 16.5 56.1 HgL, None 17 58.2 KHgi 3 +H g i 2 Data are also given for the four component system, HgI 2 + KI + (C 2 H 5 )2O + H 2 O at 20. The results are of special interest since 3 liquid layers are formed. SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS ETHYL ALCOHOL: At 1 8.' (Bourgoin.) (Herz and Knoch At 25. Z. anorg. Ch. 45, 266, '05.) Solvent. Gms. HgI 2 per Liter. Wt.% Alcohol in Solvent. Hgl2 per 100 cc. Solution. Sp. Gr. of Solutions 25/4 Millimols. Grams. Abs. Alcohol 11.86 100 3 86 I 754 O 8033 H 2 O + 8o% 90 Ale. 2.857 95 .82 2 56 I .162 O .8095 H 2 0+io% 90 Ale. 0.086 92 44 j ,92 873 8154 86 74 I 38 O .623 O .8300 78 75 O 935 425 O .8465 67 63 o-45 .204 .8721 SOLUBILITY OF MERCURIC IODIDE IN AQUEOUS METHYL ALCOHOL AND IN AQUEOUS ETHYL ACETATE AT 25. (Herz and Anders, 1907.) In Aq. Methyl Alcohol. In Aq. Ethyl Acetate. rJS^Z - d ** of <*M of Gms " Hgl2 wt - % CHr 4 of Gms ' Hgl CHjOH in o - ^ per zoo cc. COOC 2 H 5 i 8 , per 100 cc. Solvent. SoFvent. Sat. Sol. Sat. Sol. in Solvent. Sat. Sol. S at. Sol 47.06 0.9186 0.9187 0.044 4-36 0-9973 0-013 64 0.8800 0.8834 0.158 96.74 0.9063 1.87 78.05 0.8489 0.8519 0.445 I0 0.9011 1.09 100 0.7879 0.8155 2.590 100 gms. sat. solution in 95% alcohol (dis = 0.8126) contain 0.72 gm. HgI 2 at O, 1. 06 gms. at 25 and 2.15 gms. at 50. (Reinders, 1900.) MERCURIC IODIDE 426 Alcohol. Methyl tt Ethyl Propyl Amyl tt u Isopropyl Isobutyl SOLUBILITY OF MERCURIC IODIDE IN ALCOHOLS. Formula. CH(CoH 6 )3 7 .2 84 .1 62 .8 44 .6 22 .64 74 .6 87 5 69 .i 5 .1 30 .64 76 .0 89 .0 72 .2 55 5 40 5 1 78 .8 90 5 75 3 7 1 .0 140 .00 82 3 93 .1 81 3 76 .2 319 .67 86 .6 95 7 87 .8 monoclinic Hartley and Thomas call attention to the inaccuracy of Linebarger's results and to the correctness of the determinations of Kuriloff (18973). According to Kuriloffthetr.pt. (CeHg^CH.CeHe + C 6 H 6 is at 4.2 and 1.25 mol. % (CeHs^CH, the m. pt. of (C 6 H5) 3 CH.C 6 H 6 is 78.2 and the tr. P t.(C 6 H 6 ) 3 CH.C 6 H6 + (C 6 H 6 ) 3 .CH is at 74 and 69.4 mol. % (C 6 H B )3CH. <* Triphenyl METHANE 434 SOLUBILITY OP TRI PHENYL METHANE IN CARBON BISULPHIDE. (Etard Ann. chim. phys. [7] 2, 5701 '94; below 80, Arctowski Z. anorg. Ch. II, 273, '95.) 40 50 60 70 So Gms. CHCQsHs. t. per 100 Gms. Solution. -113 5 0-98 102 1.24 - 91 1.56 - 8 3 I.9I - 00 3-4 t. Gms. CH(C6H S ) 3 per 100 Gms. Solution. -40 7-5 20 + 10 13-7 25-8 38.7 20 43-2 30 52-9 Cms. per 100 Gms. Solution. 63.7 72.4 78.6 85.6 92.2 SOLUBILITY OF TRI PHENYL METHAKE rv HEXANE AND IN CHLOROFORM. (Eurd.) Gms. CHtCeH-Oa per 100 Gms. Solution in: Gms. CH(CeH 5 ) 3 per 100 Gi Solution in: Hexane. Chloroform. -So 10.5 30 I .2 15.2 20 1.6 19.0 10 2.2 23-5 3-5 28.9 + 10 5-6 35-o 20 8-3 41-5 Hezane. Chloroform. 30 12-5 48.8 40 20. o 56.1 50 25.8 6 3 .8 60 45-7 71.7 70 62.0 79-8 80 785 8 7 .2 90 97.0 SOLUBILITY OF TRI PHENYL METHANE IN: (Hartley and Thomas.) Thiophene. Gms. Mol. Gms. Pyrrole. Mol. t o CH(QjH5)3 per Solid ' per 100 Gms. cent Phase. Sol. CHCCeHsV 24 .6 24 3 8 _i 29 .0 29 .8 10 .4 " fl 3 1 5 33 4 12 .1 36 .8 40 .6 J 5 .8 CHCCTOs 42 7 49 .1 20 9 " n 4 6 9 56 25 9 53 .2 63 9 32 .8 60 72 3 41 .8 63 9 76 7 47 4 68 5 81 9 55 .6 7 1 .1 84 4 59 .8 80 .0 91 5 74 .8 89 .2 97 .6 9i Q' M t o CH(CH 5 )3 per Solid * per i oo Gms. cent Phase. Solution. CH(C6H 5 ) 3 . 2 f 7 26 .0 10 .8 CHCQHJs.C^S *^ i rhombs 33 5 31 -I 13 5 44 43 .6 21 .1 ' 47 .6 48 4 24 4 1C 53 -5 58 7 32 9 57 4 70 2 44 7 * 57 .6 74 .8 50 6 62 67 7 .0 78 81 7 9 56 60 .0 .8 CH(CH 5 ) 3 monoch'nic 67 .2 82 i 6r 3 " 74 .2 87, 4 70 5 " 79 .0 90. \J 76 3 M 87 ,2 96. 2 89 9 " F.-pt. data for triphenylmethane + naphthalene are given by Vignon (1891). SOLUBILITY OF TRIPHENYL METHANE IN PYRIDINE. (Hartley and Thomas, 1906.) Synthetic method used, see note, p. 16. t Gms. CH(C,H 5 ), per TOO Gms, Solution. Mol. per cent Solid Phase. CH(C 6 H 6 ) 3 . t' Gms. CH(C 6 H 5 ), per TOO Gms. Solution. Mol. per cent Solid Phase. CH(C 6 H S ) 8 . 22 .8 4 6 .2 22 CH(C 6 H B ), 59 3 75-6 50-3 CHCQHs), 31 7 53 3 27. 2 " monoclinic 67 .8 81.9 59-7 " 37 9 57 .6 30- 7 72 .8 85-7 66.4 " 48 7 66 .6 39- 5 " 80 .6 9i-5 77.2 (4 53 .1 70 .1 43- 5 " 86 .8 95-8 88.1 M 435 Sulfon METHANES Ethyl and Methyl Sulfon METHANES. SOLUBILITY IN WATER AND IN 90% ALCOHOL. Compound. Formula. f Gms. Cmpd. per too cc.: Authority . Water. 90% Alcohol Sulfonal (CH3)2C(SO 2 C 2 H 6 )j 15.5 0.22 1.25 (Greenish and Smith, 1903.) Tetronal (C 2 H5) 2 C(SO2C2H 5 )2 IS-2O O.l8 8.33 (Squire and Caines, 1905.) Trional (CH 3 )(C 2 H 6 )C(SO 2 C2H 5 )2 15-20 0.31 9.0 DISTRIBUTION BETWEEN WATER AND OLIVE OIL AT ROOM TEMP. (Baum, 1899; Meyer, 1909.) Gms. Cmpd. per 100 cc. Compound. Formula. Dimethyl Sulfon Dimethyl Methane (CH 3 ) 2 C(SO 2 .CH S ) 1 Diethyl Sulfon Methane Sulfonal Trional Tetronal METHYL ACETATE CH 3 COOCH 3 . loo gms. H 2 O dissolve 25 gms. CH 3 COOCH 3 at 22. (CHMC.HOCCSCfe.CiHs), 0.0404 0.1646 Ratio M. 0.103 O.I5I 0.979 4.074 0.0462 0.1446 3.756 HjO Layer Oil Layer (w) , (0) . 0.6072 O.O622 0.092 0.0686 0.610 0.070 (Traube, 1884.) More recent data for the solubility of this compound in water are given by (Herz, 1917). METHYL ALCOHOL CH 3 OH. FREEZING-POINTS OF MIXTURES OF METHYL ALCOHOL AND WATER. (Pickering, 1893; Baumfi and Borowski, 1914.) Gms. , CH 3 OH Solid t . per 100 Phase. Gms. Sol. IO 14-5 Ice 20 25 " -30 33 " -40 40 " -50 47 " -60 52-6 Gms. Gms. * CH 3 OH per loo Gms. Sol. Solid Phase. t. CH 3 OH per loo Gms. Mixtures. Solid Phase. -70 58-3 Ice -130 75-5 Ice -80 62.6 " -138.5 Eutec. 77 " +CH,OH -90 65-7 " -130 82 CH,OH IOO 68.8 " 120 86.5 M no 71.5 " no 92 " 1 20 74.0 " -95-7 IOO " In the vicinity of the eutectic the solutions become vitreous and direct determina- tions of the f .-pt. cannot be made. The above results were obtained from the curve. MISCIBILITY OF METHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Carbon Tetrachloride and Water. (Bonner, 1910.) Chloroform and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. 00* Gms. H 2 0. ( Gms. :H S OH. Sp. Gr. of Mixture. Gms. CHC1,. Gms. HA Gms. CH,OH. Sp. Gr. of Mixture. "0.935 0.015 c ).2I5 . . . 0.979 0.021 0.161 . . . 0.974 0.026 c >.328 1.30 0.90 O.IO 0-35 17 0.90 O.IO < >-74 I-I3 0.80 0.2O 0.49 .12 0.80 0.20 .10 1.04 *o. 7 3 0.27 o-57 . . . 0.70 0.30 ] .40 I 0.70 0.30 0.60 .08 0.60 0.40 ] .68 0.97 0.60 0.40 0.70 05 0.50 0.50 7i o-9S 0.50 0.50 0.77 .02 0.40 0.60 77 o-93 0.40 O.6O 0.83 0.20 0.80 ] .88 0.92 0.20 0.80 0.84 0.97 O.IO 0.90 1 .90 0.92 O.IO 0.90 0.74 0.96 O.O26 0.974 045 o-93 0.013 0.987 0.267 0.98 METHYL ALCOHOL 436 ,MISCIBILITY OF METHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES of: Brombenzene and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Ethyl Bromide and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. Cms. Cms. Sp. Gr. of Gms. Gms. Gms. Sp. Gr. of C 6 H 6 Br. H 2 0. CH 3 OH. Mixture. C 2 H 5 Br. H 2 0. CH 3 OH. Mixture. 0.991 0.009 0.230 o-973 O.O27 0.202 1.27 0.985 O.OI5 0.314 1.24 0.950 0.05 o-33 *0. 9 8 O.O2 0.40 0.936 0.064 o-393 1.18 0.90 0.10 1. 01 1.04 0.90 O.IO o.54 1.14 0.80 0.20 1-50 0.98 0.80. 0.20 0.86 1.05 O.yO 0.30 1.84 o-95 0.70 0.30 i .04 1. 01 0.60 0.40 2.065 0.94 0.60 0.40 1.18 o-99 0.50 0.50 2.24 0.91 0.50 0.50 1.26 0.97 0.40 O.6O 2.30 0.90 0.40 O.6O i-3i 0.96 0.30 0.70 2.28 0.89 O.2O 0.80 I. 21 0.94 0.20 0.80 2.20 0.89 O.IO 0.90 0.94 0.94 0.095 0.905 1.927 0.90 0.022 0.978 1.94 0.98 0.016 0.984 1-332 0.91 MISCIBILITY T OF METHYL ALCOHOL (see Note, p. 287) AT o WITH MIXTURES OF: Hexane and Water. (Bonner, 1910.) Heptane and Water. Composition of Homogeneous Mixtures. (Bonner, 1910.) Composition of Homogeneous Mixtures. Gms. Gms. Gms. Sp. Gr. of Gms. Gms. Gms. Sp. Gr. of Hexane(i). H 2 0. CH 3 OH. Mixture. Heptane(i). H 2 0. CH 3 OH. Mixture. 0-973 0.067 4.280 0.966 0.034 4.78 . . . 0.90 O.IO 4.69 0.80 0.90 O.IO 5-55 0.80 0.80 0.20 5.26 0.80 0-793 0.207 6.36 0.82 0.691 0.309 5-710 0.82 0.70 0.30 7-30 0.82 0.60 0.40 6.1 7 0.81 0.60 0.40 8.22 0.82 0.491 0.509 6.365 0.83 0.50 0.50 8.76 0.82 0.40 0.60 6.33 0.83 0.40 0.60 8.65 0.83 0.30 0.70 6.13 0.84 0.30 0.70 7.78 0.83 0.20 0.80 5-49 0.85 0.198 0.802 6. 7 I 0.84 O.IO 0.90 4.01 0.86 O.IO 0.90 4.40 0.87 0.016 0.984 i-759 0.91 0.038 0.962 2.96 0.91 (i) The hexane and heptane used were Kahlbaum's "aus Petroleum." loo cc. cotton seed oil (^25 = 0.922) dissolve 4.84 gms.CK^OH at 25. (Wroth and Reid, 1916.) 100 cc. methyl alcohol dissolve 6.74 gms. cotton seed oil at 25. " DISTRIBUTION OF METHYL ALCOHOL BETWEEN" WATER AND COTTON SEED OIL AT 25. (Wroth and Reid, 1916.) Oil Layer. 0.199 HjO Layer. 17.28 jxauu. 86.6 0.253 0.298 0.264 2 3-34 25-73 24-I5 92.2 86.2 9i-3 Gms. CHsOH per 100 cc. Oil Layer. H 2 O Layer. 0.275 23.48 Q.258 24.44 0.284 23.06 Ratio. 85.2 94 81.4 Freezing-point curves (solubility, see footnote, p. i) are given for the following mixtures: CH 3 OH + SO 2 , CH 3 OH + C 2 H 5 COOH, (CH 3 OH.HC1) + C 2 H 6 COOH, (C 2 H 5 COOH.HC1) + CH 3 OH (Baume and Pamfil, 1914); CH 3 OH-f NH 3 (Baume and Borowski, 1914); CH 3 OH + CH 3 I (Baume and Tykociner, 1914). 437 METHYL AMINES METHYL AMINES CH 3 NH 2 , (CH 3 ) 2 NH, (CH 8 ) 8 N. Freezing-point data (solubility, see footnote, p. i) for mixtures of CH 3 NH 2 -f- H 2 O, (CH 3 ) 2 NH + H 2 O and (CH 8 )N + H 2 O are given by Pickering (1893). The solubility of methylamine and of dimethylamine in.water at 60, calculated from the vapor pressures determined by an aspiration method are given by Doyer (1890) as follows: Aminc. CH 3 NH 2 (CH 3 ) 2 NH Vapor Pres- sure in mm. Hg. 40.6 90-3 Ostwald Solu- bility CoefJ. (see p. 2 2 7). 5" 230 Bunsen Abs. Coef . 0. (see p. 227). 419 188 SOLUBILITY OF TRIMETHYL AMINE IN VARIOUS SOLVENTS AT 25. (v. Halban, 1913.) The measurements were made according .to the dynamic method in the form developed by R. Abegg and his collaborators (Gaus, 1900; Abegg and Riesenfeld, 1902). The calculations of the partial pressures of the trimethylamine were made according to the Abegg and Riesenfeld method. E = calc. partial pressure of (CH 3 ) 3 N above a I normal solution, based on Henry's Law. i }\ = solubility, i.e.. the quotient of the concentration in the solution and in the , . mois. (CH 3 ) 3 N per liter X RT X 760 gas phase: X = , f ,~.. > , T . ^- . Rl X 760 = 18,590. partial pressure of (CH 3 ) 3 N in mm. Hg ' Solvent. E. Methyl Ale. 26.1 Ethyl " - Propyl Amyl Benzyl Acetone 39-5 39-4 48-3 14.2 243 711 471 472 385 1308 76. Solvent. E. Acetophenone 321 Ether 349 Acetonitrile 292 Nitromethane 329 o Nitrotoluene 340 Nitrobenzene 350 x. 57-9 53-3 63-7 56.5 54-7 Solvent. E. X. Ethyl Acetate 220 84.5 Ethyl Benzoate 244 76.2 Chloroform 31.1 598 : Bromnaphthalene 409 47 Hexane Benzene 248 172 75 109 Two determinations are also given for triethyl amine: X 25 in hexane = 2160. X 25 in nitromethane = 400. METHYL AMINE AND TRI METHYL Water and Amyl Alcohol. (Herz and Fischer Ber. 37, 4751, '04.) Cms. NH 2 (CH3) Mfflimok NH 2 (CH 3 ) per ipo cc. per 10 cc. AMINE, DISTF Water (Herz and Fis Cms. N(CHa)3 per 100 cc. Aq. Alcoholic Aq. Alcoholic Layer. Layer. Layer. Layer. 0-37 0-12 I.I5S 0-3804 0-94 0.33 3-3 6 1-070 J -57 0.54 5.054 1.759 1.89 0.69 6.083 2.219 2.00 0.72 6.429 2.315 2-53 0.92 8.126 2.981 3.30 1.24 10.613 3.974 Aq. QjHfl Layer. Layer. 0-345 0.174 0.812 0.396 1-075 0-545 1.462 0.731 2.139 1.077 2-757 i-376 3.292 1.683 3.996 2.053 6.582 3.465 Millimok N(CHa)3 per 10 cc. Aq. Layer. 0.584 1-377 1.819 2.474 3.619 4-663 5-568 6.760 H-I3S QH5 Layer. 0.295 0.670 0.921 1.237 1.823 2.328 2.847 3-474 S-86I METHYL AMINES 438 DISTRIBUTION OF METHYLAMINE BETWEEN WATER AND CHLOROFORM AND DI- METHYL AND TRIMETHYL AMINES BETWEEN WATER AND TOLUENE. (Moore and Winmill, 1912.) Results at 1 8. Results at 25. Results at 32. 35. A; Gm. Equiv. per Partition 6m. Equiv. per Partition Gm. Equiv. per Partition Amme ' Liter Aq.|Layer. Coef. Liter Aq. Layer. Coef. Liter Aq. Layer. Coef. (CH3)NH 2 0.0817 8 .496 O . 1 2O3 7.965 .1399 5 99 u 0.0809 8 477 .1312 8 .0959 6 (CHa) 2 NH 0.0759 23 .28 .1203 19.013 .1003 13 .38 tt 0.0975 23 .29 O .IOIO 19.05 O .1043 13 36 (CH3)3N 0.0688 3 .297 .0677 2.291 O .1182 I 815 u 0.0791 3 .290 .0641 2.297 .1248 I .820 Similar data for the distribution of trimethylamine between water and toluene at 25 and at other temperatures are given by Hantzsch and Sebalt (1899) and Hantzsch and Vagt (1901). DiMETHYL AMINE HYDROCHLORIDE (CH,),NH.HC1. IOO gms. H 2 O dissolve 369.2 gms. (CH 3 ) 2 NH.HC1 at 25. (Peddle and Turner, 1913.) ioo gms. CHCls dissolve 16.91 gms. (CH 3 ) 2 NH.HC1 at 25. Phenyl METHYL AMINE HYDROCHLORIDE (CH 3 )(C 6 H 6 )NH.HC1. ioo gms. H 2 O dissolve 378.8^1113. (CH 3 )(C 6 H 5 )NH.HClat25. (Peddle and Turner, '13.) Di and TriMETHYL AMINE CHLOROPLATINATES, (CH 3 ) 2 NH.H 2 PtCl8, (CH 3 ) 3 N.H 2 PtCl 6 . SOLUBILITY OF EACH IN AQ. ALCOHOL AT o. (Bertheaume, 1910.) Gms. Each Compound (Determined Sepa- Sol ent rately) per ioo Gms. Solvent. (CH 3 ) 2 NH.H 2 PtCl 6 . (CH 3 )N.H 2 PtClfi. Absolute Alcohol o . 0048 o . 003 6 90 o.i 10 0.070 80 0.325 0.243 70 0-558 0-391 60 0.996 0.766 METHYL BUTYRATE C 3 H 7 COOCH 3 . ioo gms, H 2 O dissolve 1.7 gms. C 3 H 7 COOCH 3 at 22. (Traube, 1884.) More recent data for the solubility of methyl toutyrate in water are given by Herz, 1917. METHYL BUTYRATE, METHYL VALERATE. SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft, 1895; from Pfeiffer, 1892.) ioo cc. H 2 O dissolve 1.15 cc. methyl butyrate at 20. cc. Alcohol cc. H 2 Added.* -5' MORPHINE 442 i MORPHINE ACETATE CH 3 COOH.C 17 H 19 NO 3 .3H 2 O, Morphine Hydrochloride HC1.C 17 H 19 NO 3 .3H 2 O, Morphine Sulphate H 2 SO 4 . (C 17 H 10 NO 3 ) 2 .5H 2 O, and Apo Morphine Hydrochloride HC1.C 17 H 17 N0 2 . SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.) Grams per 100 Grams of Solvent. Solrent. Water Alcohol Chlorof Ether 100 gms. H 2 O dissolve 1.69 gms. apo morphine hydrocloride at 15.5, and 2.04 gms. at 25. 100 gms. 90% alcohol dissolve 1.96 gms. apo morphine hydrochloride at about 15.5. (Dott, 1906.) 100 gms. H 2 O dissolve 4.17 gms. morphine hydrated sulfate .5H 2 O at 15. (Power, 1882 ) MORPHINE SALTS (con.) SOLUBILITY IN WATER AND IN 90% ALCOHOL AT ORD. TEMP. (Squire and Caines, 1905.) Gms. Salt per IPO cc. Gms. Salt per 100 cc. Morphine Salt. 9 o% Morphine Salt. ' 90 % H2 - Alcohol. H2 ' Alcohol. Morphine Acetate ... i Diacetyl Morphine (Heroine) o.n 2.5 " Hydrochloride ... 2 " - HC1 50 9.1 " Sulfate ... 0.143 Ethyl Morphine HCl(Dionin) 14.3 20 " Tartrate 10 0.172 100 gms. 4% HC1O4 solution dissolve 0.44 gm. morphine perchlorate at 15. (Hofmann, Roth, Hobald and Metzler, 1910.) SOLUBILITY OF MORPHINE SALTS IN SEVERAL SOLVENTS AT 25. (Schaeffer, 1913.) Gms. of Each Salt Separately per 100 cc. of Each Solvent. Morphine Morphine Diacetyl Hydrochloride. Sulfate. Morphine. HC HC1 95% Ethyl Alcohol 0.606 0.2 3 9.1 4 85% Ethyl Alcohol 1.2 0.4 ......... 80% Ethyl Alcohol 2 0.77 ......... Methyl Alcohol ... ... 4 n.i 66. 6 Chloroform Insol. Insol. 66.6 33.3 0.526 Benzene Insol. Insol. 12.5 Insol. Insol. i Vol. C 2 H5OH+4 Vols. CHC1 3 0.18 0.0164 66.6 4-5 5 " +4 Vols. C 6 H 6 0.089 - OI 33 2 5 Q-7 1 I - I 4 i Vol. CH 3 OH +4 Vols. CHC1 3 ... 0.22 66.6 20 20 +4 Vols. C 6 H 6 0.253 0.066 25 6.6 8.33 Ethyl MORPHINE Ci,H H ON(OH)(OC,H,). J 100 cc. H 2 O dissolve 0.208 gm. CnHi 7 OH(OH)(OC 2 H 5 ) at 25. (Schaeffer, 1912.) " alcohol " 1.33 gms. " " " ether " 66.6 443 Ethyl MORPHINE Ethyl MORPHINE HYDROCHLORIDE C 17 H 1 7NO(OH)(OC 2 H 5 ).HC1.2H 2 O (Dionin) (see also on preceding page). SOLUBILITY IN WATER AND IN ALCOHOL. (Schaeffer, 1912.) Cms. Ethyl Morphine HC1 per 100 cc. t. 'Water. Alcohol.^ IS 8-7 3-85 25 12.5 5 40 25 12. 1 50 40 20 These results differ from similar data for commercial samples of Dionin. The differences are believed to be due to the impurities (amorphous salts of the by-products of the ethylation) in commercial products. 100 cc. H 2 O dissolve 10 gms. ethyl morphine hydrochloride at ord. temp. (Dott, 19x2.) MUSTARD OIL Allyl Isothiocyanic Ester CS:NC 3 H 5 . SOLUBILITY IN SULFUR BY SYNTHETIC METHOD. (See Note, p. 16.) (Alexejew, 1886.) Gms. Mustard Oil per loo'Gms. Sulfur Layer. Mustard Oil Layer. 90 10 72 100 12 67 tuo 15 62 120 23 51 124 (crit. temp.) 35 Freezing-point data for allyl isothiocyanate + aniline are given by Kurnakov and Solovev (1916). Results for methyl isothiocyanate -j- phenanthrene and methyl isothiocyanate + naphthalene are given by Kurnakov and Efrenov (1912). MYRISTIC ACID C 13 H 27 COOH. SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.) Gms. Gms. Alcohol t CjjH^COOH Alrnhnl t CuH^COOH AicohoL l ' per TOO Gms. Alcohol. t . IOQ Gms> Sat. Sol. Sat. Sol. Methyl Alcohol o 2.81 Propyl Alcohol o 5.6 21 21.2 " " 2i 31.2 31-5 59-2 " " 36.5 55-3 Ethyl Alcohol o 7.14 Isobutyl Alcohol o 6.4 21 31 21 28 Freezing-point data for myristic acid + palmitic acid are given by Heintz (1854). NAPHTHALENE d H 8 . 1000 cc. H 2 O dissolve 0.019 g' Ci H 8 at o and 0.030 gm. at 25. (Hilpert, 1916.) SOLUBILITY IN ACETIC AND OTHER ACIDS. (Timofeiew, 1894.) Acid * Gms. CioHg per A _: j f0 Gms. CioHg] i :oo Gms. Acid, /\C1U. * ' 3 too Gms.'Ac Acetic Acid 6-75 6.8 Isobutyric Acid 6.75 12.3 U (I 21-5 i3-i Propionic Acid 6-75 13-9 {( (I 42.5 3i-i U (t 21-5 23-4 11 t( 51-3 53-5 t( <( 50 7Q.8 (I (I 60 in Valeric Acid 6-75 9-5 Butyric Acid 6.75 13.6 n t 21-5 17.7 21.5 22.1 65 167.4 ti 60 I3I.6 NAPHTHALENE 444 SOLUBILITY OF NAPHTHALENE IN AQUEOUS AMMONIA. (Hilpert, 1916.) Gms. CigHg per 1000 Gms. Solvent. Solvent at: ^ o. 25. Aq. 5%NHs 0.030 0.044 Aq. 10% NHs 0.042 0.074 Aq. 25%NHa 0.064 0.162 100% NHs 33 120 Aq. 2% Pyridine 0.082 0.245 SOLUBILITY IN METHYL, ETHYL, AND PROPYL ALCOHOLS. (Speycrs Am. J. Sci. [4] 14, 294, '02 ; at 19.5, de Bruyn Z. physik. Chem. 10, 784, '92 ; at 11, Timo feiew Compt. rend. 112* 11371 '91.) The original results were calculated to a common basis, plotted on cross-section paper, and the following table read from the curves. In Methyl Alcohol. In Ethyl Alcohol. In F-opyl Alcohol. t'. Wt Sc . of i c< Gms. C 10 H 8 Wt. of i cc. Solution. Gms. C 10 H 8 per 100 Gms. C 2 H 6 OH. Wt. of i cc. Solution. Gms. Cjo-^s per loo Gms. C 3 H 7 OH. o. 8194 3 .48 O 8175 5.0 0.8285 4-45 10 o. 812 5 .6 O .814 7-0 0.824 5-6 20 0.807 8 .2 o .810 9 .8 0.821 8.2 25 o. 805 9 .6 o .809 ii -3 0.820 9.6 30 o. 804 ii .2 o .809 13-4 O.82O 11.4 40 o. 805 16 .2 o .812 19-5 0.823 16.4 50 0.813 26 O .822 35-o 0.837 26.0 60 o. 837 So O o 855 67.0 0.867 50.0 65 o. 870 o .890 96.0 0.897 80.0 70 o. 9023 (68) : o 930 179.0 0-933 134.1 (68 5) EQUILIBRIUM IN THE SYSTEM NAPHTHALENE, ACETONE, WATER. (Cady, 1898.) An excess of naphthalene was added to each of a series of mixtures of water and acetone and the temperature determined at which a second liquid phase first appeared. Since an excess of naphthalene was present, the amount dissolved was not known. The following supplementary experiment was, therefore, required to ascertain the composition of the saturated solution in each case. "A weighed quantity of naphthalene was added to a known weight of the mixed liquids, the amount being just sufficient to cause the formation of two liquid phases. The consolute temperature of the system was then determined and the experiment re- peated several times with different amounts of naphthalene. If the results are plotted, using the weights of naphthalene in a constant quantity of the mixed liquids as abscissas and the temperatures as ordinates, we shall get a series of curves. The composition of the liquid phase at the moment when the system passes from solid, solution and vapor to solid, two solutions and vapor is given by the point at which the prolongation of the curve for that particular mixture of acetone and water, cuts the ordinate for temperature at which the change takes place. This me^iod requires no analysis and is of advantage in this case where ordinary quantitative analysis would be very difficult." Considerable difficulty was experienced in determining the consolute temperatures-. It was necessary on account of the extreme volatility of the acetone to seal the mixtures in tubes. The table of results, calculated with the aid of the determinations made as de- scribed above, is given on the following page. 445 NAPHTHALENE TABLE SHOWING THE TEMPERATURES AT WHICH SOLUTIONS OF THE GIVEN COM- POSITIONS BEGIN TO SEPARATE INTO Two LAYERS IN PRESENCE OF SOLID NAPHTHALENE. (Cady, 1898.) (Calculated as described on preceding page.) Cms. per 100 Gms. Solution. f. 65.5 53-3 45 38 32.2 28.5 28.2 The isotherms for intervals of 10 lie so close together that they are practically indistinguishable for the greater part of their length. SOLUBILITY OF NAPHTHALENE IN LIQUID CARBON DIOXIDE. (Buchner, 1905-06.) (Synthetic Method used.) Acetone. Water. Naphthalene. 10 89.92 0.08 ig.QI 80 0.09 29.92 69.67 0.41 4O.8l 58.22 o 97 48.67 48.68 2.65 57-43 36.64 5-93 60.43 25-75 13.82 Crit. Temp. 34-8 64 80 Gms. CnHg per 100 Gms. Sat. Sol. 8 54 IOO loo gms. 95% formic acid dissolve 0.30 gm. naphthalene at 18.5. (Aschan, 1913.) 100 gms. 95 % formic acid dissolve 3.44 gms. a nitronaphthalene at 18.5. " Data for equilibrium in the systems: naphthalene, phenol, water and naphtha- lene, succinic acid nitrile, water, determined by the synthetic method, are given by Timmermans (1907). SOLUBILITY OF NAPHTHALENE IN; Chloroform. (Speyers; Etard.) Carbon Tetra Carbon Di Chloride, Sulphide. (Schroder Z. physik. (Arctowski Compt Ch. ii, 457/93.) rend. 121, 123/95; Etard.) ft0 Wt. of i cc. Solution. Gms. C 10 H 8 per 100 Grama CHCJ a . Gms. CioH 8 per too Gms. SaL Solution, Oms. C-iQrig per too Gms. Sat. Solution. -108 ... 0.63 -82 . 1 . 1.38 ~~~ 5 23 -30 8.8 6.6 10 15-6 ... 14.1 393 19-5 9-0 19.9 + 10 355 25-5 I4-O 27-5 20 .300 31.8 20-0 36-3 25 .280 35-5 23-0 41 -o 30 2 55 40.1 26.5 46.0 40 .205 49-5 35-5 57 -2 50 .150 60.3 47-5 67.6 60 .090 62.5 79-2 70 .040 87^2 80.0 9 -3 NOTE. Speyers' results upon the solubility of C 10 H 8 in CHC1 3 , when calculated to grams per 100 grams of solvent, agree quite well with Etard's (Ann. chim. phys. [712 570, '94 figures, reported on the basis of grams C 10 H 8 per 100 grams saturated solution. NAPHTHALENE 446 Benzene. SOLUBILITY OF NAPHTHALENE IN: (Schroder; Etard; Speyers.) Chlor Benzene. Hexane. 50 20 O 10 20 25 30 40 50 60 70 80 Gms. CioH 8 per 100 Gms. Solution. 27 36 40 45 54 65 77 88.0 Gms. CioHg per 100 Gms. Solution. 24.0 31.0 39-o 48.0 57-5 70-5 85.0 Gms. C 10 H 8 per loo Gms. Solution. o-3 1.9 5-5 9.0 14.0 17-5 21 .0 30.8 43-7 60.6 78.8 Toluene. wt. of i cc. Solution. 0.9124 0.9126 0-9I35 0-9I55 0.9180 0.9250 0.9350 0-9475 o . 9640 0.9770 Gms. CioH 8 per 100 Gms. C 6 H 5 .CH 3 . 15-0 28.0 36.0 42.O 56.0 69-5 83.0 97-5 III.O Freezing-point data (solubility, see footnote, p. i) are given for mixtures of naphthalene and each of the following compounds: ttNaphthol. (Crompton & Whitely, 1895; Kuster, '95; Vignon, '91 ; Miers & Isaac, 'o8a.) ft Naphthol. (Crompton & Whitely, 1895; Vignon, iSgirlsaac, 1908.) a Naphthylamine. (Vignon, 1891.) Dihydronaphthalene. (Kuster, 1891.) Nitronaphthalene. (Palazzo & Battelli, 1883.) Palmitic Acetic Ester. (Batelli & Martinetti, '85.) Paraffin. (Palazzo & Battelli, 1883.) Phenanthrene. (Vignon, 1891; Miolati, 1897.) Phenol. (Yamamoto, '08; Hatcher & Skirrow, '17.) Nitrophenol. (Saposchinikow, '04 ; Kremann, '04.) p Nitrophenol. (Kremann, 1904.) 2.4 Dinitrophenol. ( (Saposchinikow, 1904; Picric Acid. ( Kremann, 1904.) Pyridine. (Hatcher & Skirrow, 1917.) Pyrocatechol. (Kremann & Janetzky, 1912.) Resorcinol. (Vignon, 1891; Kremann & Janetzky, 1912.) Stearic Acid. (Gourtonne, 1882.) Sulfur. (Bylert, .) Nitrotoluene. (Kremann, 1904.) i.2.4Dinitrotoluene. " 1 .2 .6 " (Kremann & Rodinis, 1906.) 1.34 I.3;5 Trinitrotoluene. (Kremann, 1904.) P Toluidine. (Vignon, 1891.) Thymol. (Roloff, 1895.) F.-pt. data are also given for the following mixtures: Nitronaphthalene + Paraffin. (Campetti & Delgrosso, 1913; Palazzo & Batelli, 1883.) a Nitronaphthalene + Urethan. (Mascarelli, 1908.) a Nitronaphthalene + Naphthylamine. (Tsakalotos, 1912.) NAPHTHALENE SULFONIC ACID C 10 H 7 SO 3 H. SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID AT 30. (Masson, 1912.) dyoi Sat. Solution. .1925 1653 1553 .1115 .1197 .1569 Mols. per Liter Sat. Sol. HC1. C 10 H 7 SO,H. 3 263 I.29I 2.470 1.826 2.117 4.017 0.762 7.232 0.089 0.88 0.063 Gms. per Liter Sat. Sol. HC1. C 10 H 7 S0 3 H. O 679 47.08 5H 66.59 440.6 146.5 158.6 263.7 I8. 5 300.3 I3-I 447 NAPHTHOIC ACID NAPHTHOIC ACID Ci H 7 COOH. One liter of aqueous solution contains 0.058 gm. Ci H 7 COOH at 25. (Paul, 1894.) Dihydro p NAPHTHOIC ACIDS Ci H 9 COOH (118 and 161 isomers). SOLUBILITY OF EACH ISOMER, DETERMINED SEPARATELY, IN WATER. (Derick and Kamra, 1916.) cc. o.oi n Ba(OH) 2 Solution Required AO per 10 cc. of the Sat. Solution of the: 118 Isomer. 161 Isomer. 0-39 O.I9 20 0.56 o-34 40 1-34 0.69 55-56 2.89 i-45 71-72 6. 7 3.48 80 9-3 4.68 00 14.6 8 96-97 20.1 io-5 P NAPHTHOL CioHyOH. SOLUBILITY IN WATER. Gms.0C 10 H 7 OH t. per 100 cc. Authority. Sat. Sol. 12.5 . 044 (Kuriloff, 1897.) 25.1 . 074 (Kttster, 1895.) 29.5 0.0876 (Kuriloff, 1898.) Data for the solubility of isomorphous mixtures of naphthol and naphthalene in water at 25.1 are given by Kiister (1895). SOLUBILITY OF /3 NAPHTHOL IN AQUEOUS SOLUTIONS OF PICRIC ACID AT 29. (Kuriloff, 1898.) Mols. X lo 6 per 100 cc. Solution. Gms. per 100 cc. Solution. QH 2 .OH(N02) 3 . C, H 7 OH. C 6 H 2 OH(N0 2 ) 3 . Ci H 7 OH. Solid Phase. 609 O 0.0877 Naphthol 54 615 0.0124 0.0886 " 68.5 62O 0.0157 o . 0894 " +/3 Naphtholpicrate 69 607 0.0158 0.0875 Naphtholpicrate 69 597 0.0158 0.0860 88 494 O.O2I2 O.O7I2 100 390 0.0229 0.0562 " 196 180 O.O449 0.0259 308 105 o . 0706 O.OI5I 933 8 0.2138 O.OOII " +PicricAcid 928 O.2I26 Picric Acid Data are also given for the distribution of naphthol between water and ben- zene. The mean of the cone, in C 6 H 6 layer divided by cone, in H 2 O layer is given as 67. The temperature is not given. The determination of the ft naphthol was made by an iodine titration method. The coefficient of distribution of /3 naphthol between H 2 O and CHClj at 25 is; cone, in H 2 O -5- cone, in CHCls = 0.0171. (Marden, 1914.) Data for the solubility of /9 naphthol, picric acid (naphthol picrate) and their mixtures in benzene, determined by the synthetic (sealed tube) method, are given by Kuriloff (i897a). 100 cc. 90% alcohol dissolve about 55 gms. /3 Ci H 7 OH at 15.5. (Greenish and Smith, 1903.) 100 gms. 95% formic acid dissolve 3.11 gms. /3 C 10 H 7 OH at 18.6. (Aschan, 1913.) NAPHTHOL 448 SOLIDIFICATION TEMPERATURES OF MIXTURES OF ft NAPHTHOL AND SALOL. (Bellucci, 1912.) t of Cms. CioH 7 pH per t of Cms. C 10 H 7 OH per Solidification. 100 Cms. Mixture. Solidification. 100 Gms. Mixture. 121.7 ioo 80 40 116.5 9 68 30 in 80 52.5 20 105 70 34 Eutec. 10 97-5 38.5 5 88 - - 50 42 o FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES: a Naphthol + a. Naphthylamine. (Vignon, 1891.) ^ + ft + Dimethylpyrone. (Kendall, 1914.) -j- Resorcinpl. (Vignon, 1891.) + p Toluidine. (Vignon, 1891; Philip, 1903.) ft Naphthol + a Naphthol. (Vignon, 1891; Crompton and Whiteley, 1895.) " + a Naphthylamine (Vignon, 1891.) + /3. + Dimethylpyrone (Kendall, 1914.) + Picric Acid. (Kendall, 1916.) -j- Sulfonal (Bianchini, 1914.) + p Toluidine. (Vignon, 1891.) a NAPHTHYLAMINE p Sulfonic Acid, 1.4 a. Ci H 6 NH 2 .SO 3 H. a NAPHTHYLAMINE o Sulfonic Acid, 1.2 a doHeNHi.SOsH. SOLUBILITY OF EACH SEPARATELY IN WATER. (Dolinski, 190? "* Gms. per ioo Gms.H 2 O. Gms. per ioo Gms. H 2 O. t. p Sulphonic o Sulphonic t. p Sulphonic o Sulphonic Ac. Ac. Ac. Ac. 0.027 0.24 50 0.059 0.81 10 O.O29 0.32 60 0-075 I .01 20 0.031 0.41 70 0.097 i .37 30 0.037 0.52 80 0.130 1. 80 40 0-048 0.65 90 0.175 2 .40 IOO 0.228 3-19 The coefficient of distribution of ft naphthylamine between benzene and watei at 25 is; cone, in C 6 H 6 -:- cone, in H 2 O = 279. The coefficient for a naphthyla mine, similarly determined, is 252. (Farmer and Warth, 1904 ) FREEZING-POINT DATA ARE GIVEN FOR THE FOLLOWING MIXTURES: a Naphthylamine + Phenol. (Philip, 1903.) + Quinol. (Philip & Smith, 1905.) + Resorcinpl. ( " ; Vignon, 1891.) + p Toluidine. (Vignon, 1891.) ft Naphthylamine -j- Phenol. (Kremann, 1906.) -j- Rescorcinol. (Vignon, 1891.) + p Toluidine. P NAPHTHYL BENZOATE C6H 5 COOC 10 H 7 . ioo gms. 95% formic acid dissolve 0.25 gm. CeHsCOOCioHr at 18.6. (Aschan, 1913.) NARCEINE C 23 H 27 N0 8 + 3 H 2 O. ioo gms. H 2 O dissolve 0.076 gm.'narceine at 13; ioo gms. 80% alcohol dissolve 0.105 gm. at 13. ioo gms. CC1 4 dissolve o.on gm. narceine at 17 (Schindelmeiser, 1901); 0.002 gm. at 20 (Gori, 1913). 449 NARCOTINE NARCOTINE C 20 H 23 NO 7 . SOLUBILITY IN SEVERAL SOLVENTS. Solvent. t. Gms. Narcotine per 100 Gms. Solvent. Authority. Water 15 I* (Guerin, 1913.) Water 20 O.OO445 (Zalai, 1910.) Acetone 15 41.96* (Guerin, 1913.) Aq. 50 Vol. % Acetone 15 0. 7 * Aniline 20 25 (Scholtz, 1912.) Pyridine 2O 2-3 Piperidine 20 Diethylamine 2O 0.4 Carbon Tetrachloride 2O 1.04 (Gori, 1913-) Trichlor Ethylene 15 6.5 (Wester and Bruins, 1914.) Oil of Sesame 2O 0.086 (Zalai, 1910.) * Per 100 cc. solvent. NEODYMIUM CHLORIDE NdC1.6H 2 O. SOLUBILITY IN WATER. (Matignon, 1906, 1909.) Method of obtaining saturation not stated. Cms. NdCl 3 per 100 Cms. Cms. NdCl 3 .6HoO per 100 Gms. jj Sat. Sol. 1.74 Sat. Sol. Water. Sat. Sol. Water. 13 1-74 49-67 98.68 71.12 246.2 100 ... ... 140 100 gms. abs. alcohol dissolve 44.5 gms. (anhydrous) NdCl 3 at 20. Saturation was obtained by spontaneous evaporation of the solution over H 2 SO4. (Matignon, 1906.) 100 gms. anhydrous pyridine dissolve 1.8 gms. anhydrous NdCl 3 at about 15. Saturation obtained by daily agitation of the solution for some weeks. (Matignon, '06.) NEODYMIUM COBALTICYANIDE Nd 2 (CoC6N 6 ) 2 .9H 2 O. looogms.aq. io%HCl (di 5 = 1.05) dissolve 4. 19 gms. salt at 25. (James & Willand, '16.) NEODYMIUM GLYCOLATE Nd(C 2 H 3 O 3 ) 3 . One liter H 2 O dissolves 4.609 gms. salt at 2O. (Jantsch & Grimkraut, 1912-13.) NEODYMIUM MOLYBDATE Nd 2 (MoO 4 ) 3 . One liter H 2 O dissolves 0.0186 gm. salt at 28 and 0.0308 gm. at 75. The mixtures were frequently stirred at constant temperature during only two hours. (Hitchcock, 1895.) NEODYMIUM Double NITRATES. SOLUBILITY IN AQ. HNO 3 OF d^= i.325( = 51.59 GMS. HNO 3 PER 100 CC.) AT 16. (Jantsch, 1912.) Gms. Hydrated Double Salt. Formula. Double Salt per 100 Gms. Sat. Sol Neodymium Magnesium Nitrate [Nd(NO 3 )6]2Mg 3 .24H 2 O 97.7 Nickel " " Ni 3 " 116.6 Cobalt " " CO 3 " 151.6 Zinc " " Zn 3 " 177 Manganese " Mn 3 " 296 NEODYMIUM OXALATE Nd 2 (C 2 O 4 ) 3 .ioH 2 O. SOLUBILITY IN WATER AT 25 BY ELECTROLYTIC DETERMINATION. (Rimbach and Schubert, 1909.) One liter sat. solution contains 0.0053 m g- equivalents of anhydrous salt = 0.49 milligram. SOIJUBILITY IN AQUEOUS 20% SOLUTIONS OF METHYL, ETHYL AND TRIETHYL AMINE OXALATBS, ROUGHLY DETERMINED. (Grant and James, 1917.) 100 cc. aq. 20% methyl amine oxalate dissolve 0.027 gm. neodymhim oxalate. " ethyl " " " ai07 " " triethyl " ^ " 0.065 "- " NEODYMIUM OXALATE 450 SOLUBILITY OF NEODYMIUM OXALATE IN AQUEOUS SOLUTIONS OF NEODYMIUM NITRATE AT 25. (James and Robinson, 1913.) (The mixtures were constantly agitated at constant temperature for twelve weeks.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Solid Phase. Nd 2 (C 2 04) 3 . Nd 2 (NO 3 ) 6 . Nd 2 (C 2 04) 3 . Nd 2 (N0 3 ) 6 . 0.18 6.46 Nd 2 (C 2 04) 3 .nH 2 2.07 47.64 0-54 12.23 2-54 50-52 0.76 17.78 2.89 52.82 0.85 22.67 3-17 54.67 0.96 27-43 2.21 56.48 P r. 1.28 3I-36 " 1.44 59.68 1.38 1.33 59-67 1.66 38^0 I. 21 59-70 1.88 42.13 0.96 59-75 1.96 44.82 60.46 1.2^.24 Nd 2 (NO 3 ) 6 (?H 2 0) 4 ) 3 .2|Nd 2 (N0 3 ) 6 .2 4 H 2 0. NEODYMIUM Dimethyl PHOSPHATE Nd 2 [(CH 3 ) 2 PO 4 ] 6 . 100 gms. H 2 O dissolve 56.1 gms. Nd 2 [(CH 3 ) 2 PO 4 ] 6 at 25 and about 22.3 gms. at 95- (Morgan and James, 1914.) NEODYMIUM SULFATE Nd 2 (SO 4 ) 3 . SOLUBILITY IN WATER. (Muthmann and Rolig, 1898.) Gms. Nd 2 (SO 4 )^ per 100 Gms. Gms. Nd 2 (SO 4 ) 3 per TOO Gms. Solution. Water. Solution. Water. o 8.7 9.5 50 3.5 3.7 16 6.6 7.1 80 2.6 2.7 30 4.7 5 108 2.2 2.3 NEODYMIUM SULFONATES. SOLUBILITY IN WATER. Gms. Anhy- Sulfonate. Formula. t. dr Q s Q^f 61 Authority. H 2 O. Neodymium : m (Nitrobenzene Nd[C 6 H 4 (NO 2 )SO 3 ] 3 .6H 2 O 15 46.1 (Holmberg, 1907.) Bromo} Sulfonate Nd[C 6 H 3 Br(i)NO 2 (4)SO 3 ( 3 )] 3 .8H 2 O 25 7.25 (Katz& James, 1913.) NEODYMIUM TUNGSTATE Nd 2 (WO 4 ) 3 . One liter H 2 O dissolves 0.0190 gm. Nd 2 (WO 4 ) 3 at 22, 0.0168 gm. at 65 and 0.0152 gm. at 98. The mixtures were not constantly agitated and only two hours were altowed for saturation. (Hitchcock, 1895.) NEON Ne. SOLUBILITY IN WATER. (v. Antropoff, 1909-10.) t. o. 10. 20. 30. 40. 50. Coef. of Absorption /? 0.0114 0.0118 0.0147 0.0158 0.0203 0.0317 The results are in terms of the coefficient of absorption as defined by Bunsen (see p. 227) and modified by Kuenen, in respect to substitution of mass of H 2 O for volume of H 2 O in the formula Absorp. coef. Kuenen = ~rrrv> vx r>* mass of H 2 O X P NEURINE PERCHLORATE CH 2 .CH.N(CH 3 ) 3 ORHC1O 4 . 100 gms. EUO dissolve 4.89 gms. of the salt at 14.5 (Hofmann & Hobold, 1977.) 451 NICKEL BROMATE Ni(BrO 3 ) 2 .6H 2 O. 100 gms. cold water dissolve 27.6 gms. nickel bromate. NICKEL BROMATE NICKEL BROMIDE NiBr 2 .6H 2 O. SOLUBILITY IN WATER. (Etard, 1894.) t. -20 io o + 10 20 Gms. NiBr t per 100 Gms. Solution. 47. 50. 53 55 56. t. 25 30 40 50 60 Gms. NiBr, per 100 Gms. Solution. 57.3 58 59.1 60 60. t. 80 ioo 120 140 NICKEL CARBONATE NiCO 3 . One liter H 2 O dissolves 7.?8<)\X io~* mols. NiCO 3 NICKEL CARBOXYL. Gms. NiBrj per 100 Gms. Solution. 60.6 60.8 60.9 6 1 0.0925 gm. at 25. (Ageno and V (Ageno and Valla, 1911.) ioo gms. of the aqueous solution saturated at 9.8 contain 2.36 cc. of the vapor 6.43 milligrams Ni. In blood serum it is 2 \ times as soluble. (Armit, 1907.) NICKEL CHLORATE Ni(ClO 3 ) 2 . SOLUBILITY IN WATER. (Meusser Ber. 35, 1419, '02.) 48 55 65 79-5 -13-5 9 26.62 Sp. Gr. of solution saturated at + 18 = 1.661. According to Carlson (1910) ioo gms. sat. sol. in H 2 O at 16 contain 64.1 gms. Ni(ClO 3 ) 2 and d u of sat. sol. = 1.76. Gms. Mols. t Ni(ClO 3 ) 2 Ni(C10 3 ) 2 Solid per ioo Gms, Solution. . per ioo Mols.H 2 O Phase. -18 49-55 7.84 Ni(ClO 3 ) 2 .6H 2 O - 8 5 J -5 2 8.49 " o 52.66 8.88 " + 18 5 6 -74 10-47 " 40 64.47 15.35 it Gms. Mols. Ni(ClO 3 ) 2 Ni(ClO 3 ) 2 per ioo Gms. per ioo Solid Phase. Solution. Mols. H 2 O. 67.60 16.65 Ni(C10 3 )24H,0 68.78 17.59 4 69.05 iS.OI 75.50 24.68 3 J - 8 5 3-73 Ice 2. 9 NICKEL PerCHLORATE Ni(ClO 4 ) 2 .9H 2 O. SOLUBILITY IN WATER. (Goldblum and Terlikowski, 1912.) Gms O 10.9 21.3 30.7 49 30.7 H 2 0. O 33.19 46.68 70 .. 90 Ice Ice + Ni(ClO4) 3 .9H 2 O 21.3 9 7-5 18 26 45 Gms. H 2 0. .. 92.5["Ni(ClO4)s9 H 573 104.6 Ni(ClO4),.sH,Q 576 1 06. 8 Ni(C10<)3.sH,0 576 no.i 584 112. 2 594 1 18. 6 NICKEL CHLORIDE 452 NICKEL CHLORIDE NiCl 2 .6H 2 O. SOLUBILITY IN WATER. (Etard, 1894.) t-. Gms. NiCU per ioo Gms. Solution. -. Gms. NiClj per ioo Gms. Solution. t. Gms. NiCl 2 per ioo Gms. Solution. -17 29.7 25 40 60 45.1 o 35 30 40.8 70 46 + 10 37-3 40 42.3 78 46.6 20 39 - 1 50 43-9 IOO 46.7 1000 cc. sat. HC1 solution dissolve 4 gms. NiCl 2 at 12. (Ditte, 1881.) 100 gms. abs. alcohol dissolve 10.05 S ms - NiCl 2 at room temperature. 100 gms. abs. alcohol dissolve 53.71 gms. NiCl 2 .6H 2 O at room temperature. (Bodtker, 1897.) 100 gms. abs. alcohol dissolve 2.16 gms. NiCl 2 .7H 2 O at 17, and 1.4 gms. at 3. (de Bruyn, 1892.) 100 gms. saturated solution in-glycol contain 16.2 gms. NiCl 2 at room tem- perature, (de Coninck, 1905.) loo cc. anhydrous hydrazine dissolve 8 gms. NiCl 2 at room temp, and solu- tion is colored violet. (Welsh and Broderson, 1915.) ioo gms. 95% formic acid dissolve 5.9 gms. NiCl 2 at 20.5. (Aschan, 1913.) When i gm. of nickel, as chloride, is dissolved in ioo cc. of 10% aq. HC1 and shaken with ioo cc. of ether, o.oi per cent of the Nickel enters the ethereal layer. (Mylius, 1911.) NICKEL CITRATE Ni 3 [(COOCH 2 ) 2 C(OH)COO] 2 .2H 2 O. 'ioo cc. sat. solution in water contain 0.28 gm. Ni =[0.94 gm. anhydrous salt at IO. (Pickering, 1915.) NICKEL Potassium CITRATE K 4 Ni[(COOCH 2 ) 2 COHCOO] 2 . ioo cc. sat. sol. in water contain 3.9 gms. Ni = 41 gms. salt at 10. (Pickering, 1915.) NICKEL HYDROXIDE Ni(OH) 2 . Aqueous ammonia solutions of nickel hydroxide were evaporated in a vacuum desiccator and samples withdrawn at intervals for analysis. The results obtained in duplicate series yielded different curves. For 2 n NHs the gms. Ni per liter varied from 0.17 to 0.83. For 4 n NH 3 , the gms. Ni per liter varied from 0.36 to 1.8. (Bonsdorff, 1904.) NICKEL IODATE Ni(IO 3 ) 24 SOLUBILITY IN WATER. (Meusser Ber. 34, 2440, *oi.) Gms. Mols. Gms. Mols. t o Ni(IO 3 ) 2 Ni(IO 3 ) 2 Solid t o Ni(IO 3 ) 2 Ni(IO 3 ) 2 Solid ' per ioo Gms. per ioo Mols. Phase. ' per ioo Gms. per ioo Mols. Phase. Solution. H 2 O. Solution. H 2 O. 0-73 0.033 Ni(I0 3 ) 24 H 2 18 0.55 0.0245 Ni(IOa)2. 2 H 2 (a) 18 I -01 0.045 50 0.81 0-035 1C 30 1.41 0.063 75 03 0.045 tc O o-53 0.023 Ni(I03) 2 . 2 H 2 (i) 80 .12 O.O49 It 18 0.68 0.030 30 135 O.05O Ni(I0 3 ) 2 30 0.86 0.039 .07 0-046 " 50 1.78 0.080 75 .02 0.045 " 8 0.52 0.023 Ni(I0 3 ) 2 . 2 H 2 O (2) 90 0.988 0.044 M (i) a Dihydrate. (2) /3 Dihydrate. 453 NICKEL IODIDE NICKEL IODIDE NiI 2 .6H 2 O. 20 O IO 20 Gms. NiI 2 per 100 Gms. Solution 52 55-4 57-5 59-7 IN WATER. (Etard, 1894.) xo Gms. Nil2 per loo Gms. Solution. t o Gms. NiI 2 per 100 Gms. Solution. 25 60.7 60 64.8 30 61.7 70 65 40 63.5 80 65.2 50 64.7 90 65-3 By interpolation the tr. pt. for NiI 2 .6H 2 O + NiI 2 .4H 2 O is at 43. NICKEL MALATE Ni[CH 2 CHOH(COO)] 2 .3H 2 O. loo cc. sat. solution in water contain 0.02 gm. Ni = 0.06 gm. salt_at ip. NICKEL NITRATE Ni(NO 3 ) 2 . SOLUBILITY IN WATER. (Funk Wiss. Abh. p. t. Reichanstalt, 3, 439, *oo.) (Pickering, 1915.) Gms. Mols. Ni(NO 3 ) 2 Ni(N0 3 ) 2 Solid per 100 Gms. per 100 Mols. Phase. Solution. H 2 O. Ni(NO 3 ) 2 .9H 2 O Ni(N0 3 ) 2 .6H 2 -23 39 .02 6-31 21 39 .48 6-43 10 5 44 13 7-79 21 39 94 6-55 12 5 4i 59 7.01 10 42 .11 7.16 - 6 43 .00 7-44 O 44 32 7.86 + 18 48 59 9-3 Gms. Mols. Ni(N0 3 ) 2 Ni(NO 3 ) 2 SoUd per 100 Gms. per 100 Mols. Phase. Ni(NOa) 2 .6H2O Ni(N0 3 ) 3 . 3 H20 Solution. H 2 O. 20 49.06 9-49 41 55- 22 12. 1 S^ 7 62.76 I6. 7 58 61.61 J 5-9 60 61.99 16.0 6 4 62.76 16.6 70 63-95 17.6 90 70.16 23.1 95 77.12 33-3 100 gms. sat. solution in glycol contain 7.5 gms. Ni(NO 3 ) 2 at room temperature. (de Coninck.) 100 cc. anhydrous hydrazine dissolve 3 gms. Ni(NO 3 ) 2 at room temp. (Welsh and Broderson, 1915.) NICKEL OXALATE Ni(COO) 2 . 100 gms. 95% formic acid dissolve o.oi gm. at 19.8. (Aschan, 1913.) NICKEL SULFATE NiSO 4 .7H 2 O. SOLUBILITY IN WATER. (Steele and Johnson, 1904; see also Tobler, Etard and Mulder.) Grams NiSO 4 per *o zoo Gms. Solld * * T>U t Grams NiSO 4 per 100 Gms. Solid Phase. Solution. Water.' Solution. Water. -5 20 47 25 . 74 NiSO 4 .7H 2 O 33 O 30 25 43 35 NiSO 4 .6H 2 O 21 .40 27 .22 35 .6 30 45 43 79 (blue) 9 23 99 3 1 55 44 7 32 45 48 05 " 22 .6 27 .48 37 .90 5 .0 33 39 5 .15 " 30 29 99 42 .46 53 .0 34 38 52 34 " 32-3 30 57 44 O2 " 54 5 34 43 5 2 50 NiSO 4 .6H 2 O 33 31 38 45 74 57 .0 34 .81 53 .40 " (green) 34 3 1 .20 45 5 60 35 43 54 .80 " 32-3 30.35 43 .57 NiSO 4 .6H 2 O 7 37 29 59 44 " 33 - 30 25 43 35 " < blue > 80 38 .71 63 17 M 34-o 30 49 43 83 99 43 .42 76 7 1 M Transition points, hepta hydrate <= hexa hydrate = 31.5* Hexa hydrate (blue) ^ hexa hydrate (green) = 53.3. NICKEL SULFATE 454 SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND COPPER SULPHATE. Results at 35. Gms. per 100 Gms. H^. Mol. per cent in Solution. Mol. per cent in Solid Phase. Crystal CuSO 4 . NiSO 4 . * CuS0 4 . NiSO 4 / 'CuS0 4 . NiSO 4 . Form. 9.62 583-9 1.57 98.43 o-35 99-65 Rhombic 41.66 484.4 7.69 92.31 2.12 97.88 " 75-39 553-5 11.66 88.34 4.77 95-23 Tetragonal 106.40 506-5 16.92 83.08 6-52 93-48 " 172.0 483.8 25-63 74-37 13.88 86.17 " 186.9 468.0 27.90 72.IO (I8.7 7 (94.91 81-23 5-09 Tetragonal Triclinic Results at 67. 20.04 729-3 2.65 97-35 o-93 99.07 Monociinic 66.01 706.2 8. 3 I 91.69 2.86 97.14 " 88.08 501.6 86.45 3-92 96.08 47-94 675.0 16.39 83.61 6.66 93-34 249-9 747-8 24.46 75-54 22.32 77.68 f Monociinic I Triclinic SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND SODIUM SUL- PHATE, ETC. (Koppel; Wetzel Z. physik. Chem. 52, 401, '05.) Gms. per 100 t. Gms. Solution. Gms. per 100 Gms.H 2 O. Mols. per 100 Mols. H 2 O. SoKd Dl NiS0 4 . Na 8 S0 4 . NiS0 4 . Na 2 S0 4 . 'NiS0 4 . Na 2 S0 4 . ' fudx ' O 16 94 7 .61 22 .46 10 .09 2 .61 1.28 " . 5 17 99 IO 85 25.28 J 5 .24 2 94 1-93 NiS0 4 . 7 H 2 + Na 2 SO 4 .ioH 2 O 10 18 97 I3-85 28 .26 20 .64 3 .29 2.61 20 18 .76 17 .21 29 3i 26 .87 3 .410 3.404 NiNa 2 (S0 4 ) 24 H a O 25 17 85 16 54 27 33 25 33 3 .181 3.208 30 16 74 15 34 24 .64 22 58 2 .868 2.861 it 35 16 .28 14 .91 23 .66 21 .67 2 753 2.744 - 40 15 35 14.49 21 .88 20 65 2 .546 2.616 i* 18.5 '9 .61 16 49 30 .70 25 .80 3 S 6 3-27 * 20 20 i3 16 IS 59 25 35 3 .67 3.21 25 21 .20 14 77 33 .11 23 .06 3 .85 2.92 f NiNa 2 (SO 4 ) 2 .4H 2 O H- 30 22 .60 12 .80 34 .98 19 .82 4 .07 2.59 NiSO 4 .7H 2 O 35 23 .62 10 .78 36 .01 16 43 4 .19 2.08 40 24 .92 9 39 37 93 14 .29 4 .41 1.81 - 18.5 16 .80 18 93 26 .14 29 45 3 .04 3-72 " 20 15 .48 20 .18 24 .06 3 1 37 2 .80 3.97 25 10 .92 24 .12 16 .81 37 13 I .96 4.70 a 30 6.40 28 71 9 .87 I .15 5.60 - 35 4 54 3i 65 7 13 49 59 O .838 6.28 NiNa 2 (S0 4 ) 2 . 4 H 2 + 40 4 63 3i 37 7 .24 49 03 o .843 6.21 j Na 2 S0 4 455 NICKEL SULFATE SOLUBILITY OF NICKEL POTASSIUM SULFATE NiK 2 (SO4)2.6H 2 O IN WATER. (Tobler, 1855; v. Hauer, 1858.) Cms. NiK 2 (SO4) 2 per 100 Gms. H 2 O. o Cms. NiK^SOQa Per 100 Cms. H 2 O. (Tobler.) (v. Hauer.) (Tobler.) (v. Hauer.) o 5.3 ... 50 30 10 . 8.9 ... 60 35.4 20.47 20 13.8 9.53 70 42 30 18.6 ... 80 46 28.2 4 24 14.03 SOLUBILITY OF NICKEL SULFATE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL AT 14. (de Bruyn, 1903.) Small test tubes of 4-6 cc. capacity'were used. They were almost completely filled with the salt and solvent and placed in the bath in an inclined position with salt occupying the upper part of the tube. This caused a "spontaneous circulation of the solvent." The solutions were analyzed by precipitating NiO with KOH at the boiling point, in porcelain vessels. Wt. Per cent VJII is. rNio~ 4 per 100 vjiii s. oai. oui. 111 \_uuuitt \ mtun CH 3 OH in Solvent. NiSO 4 .7H 2 O as Solid Phase. NiSO 4 .6H 2 O a as Solid Phase. NiSO 4 .6H 2 O /3 as Solid Phase. NiSO 4 . 4 H 2 O as Solid Phase. o (H 2 0) 26.4 26 (low) 27.2 25.1 10 19.7 22(?) 20-4 20 14.7 14 14.8 30 6^8 6.6 7-5 . . . 40 2.8 2.4 3.1 50 1.3 i 1.4 1.4 60 0.8 0.4 0.6 70 0.6 0.2 0.4 80 0.65 0.2 0.4 0.66 85 *-5 -3 0.7 90 5-7 1.2 2-5 95 ii 6 9 (?) . . . 100 16.8 12.4 (low) 15.7 (low) 7-38 NiSO4.6H 2 O a is greenish blue. NiSO 4 .6H 2 O is more greenish than the a salt. SOLUBILITY OF NiSO 4 .3CH 3 OH.3H 2 O IN 'AQUEOUS CH 8 OH AT 14. (de Bruyn, 1903-) Wt. Per cent CH 3 OH. Gms. NiSO 4 per 100 Gms. Sat. Sol. Wt. Per cent CH 3 OH. Gms. NiSO 4 per 100 Gms. Sat. Sol. 85 I .93 90 0.70 86 I .73 92-5 0.50 87 1.48 95 0-455 88 1-25 97-5 0-77 89 1. 01 100 3-72 Approximately two hours were allowed for attainment of equilibrium. In solutions containing more than 15% H 2 O the salt is gradually transformed toNiSO 4 .6H 2 O0. 100 gms. absolute ethyl alcohol dissolve 1.4 gm. NiSO 4 -7H 2 O at 4 and 2.2 gms. at 17. (de Bruyn, 1892.) 100 gms. sat. solution in glycol contain 9.7 gms. NiSO 4 at room temp. (de Coninck, 1905.) NICKEL SULFIDE NiS. One liter H 2 O dissolves 39.9 X lO" 6 gm. mols. NiS = 0.0036 gm. at 18, by conductivity method. (Weigel, 1906.) Fusion-point data for Ni 2 S-fNa 2 S and Ni 3 S 2 +Na 2 S are given by Friedrich (1914). NICOTINE NICOTINE Ci Hi 4 N 2 . 456 SOLUBILITY IN WATER. (Hudson, 1904.) Determinations made by Synthetic Method, for which see Note, page 16. Below 60 and above 210 both liquids are miscible in all proportions; likewise with percentages of nicotine less than 6.8 and above 82 per cent the liquid does not show two layers at any temperature. Below 94 the upper layer is water. Above 94 the upper layer is nicotine. The curve plotted from the following results makes a complete circle. Percentage of Nicotine in the Mixture. 6.8 7.8 10.0 14.8 32.2 49.0 66.8 80.2 82.0 Temperature of Appearance of Temperature of 94 89 75 64 72 87 129 95 155 200 210 205 190 170 I 3 Additional data for the above system are given by Tsakalotos (1909). The values for the temperatures of saturation are in general, from i to 5 lower than those of Hudson. NIOBIUM Potassium FLUORIDE NbK 2 F 7 . SOLUBILITY IN WATER AND IN AQUEOUS HF AND AQUEOUS KF SOLUTIONS. (Ruff and Schiller, 1911.) ' The determinations were made in platinum vessels. The mixtures were shaken for 3 hour periods at constant temperature and the saturated solutions filtered through platinum funnels. Gms. per 100 Cms. Sat. Solution. NbF 6 . KF. HF. ooiiu .ruase. Water 16 5-IQ 2.98 o-35 K 2 NbOF 6 .H 2 O a 16 7.07 5-33 4-35 K 2 NbOF 5 .H 2 O+K 2 NbF 7 Aq. 10.95% HF 16 4-33 2.32 10.43 K 2 NbF 7 " 7-4i%KF 16 1.16 5-54 0.13 K 2 NbOF 5 .H 2 O " 7-39% EF 16 2.67 6.04 5-39 K 2 NbOF s .H 2 O+K 2 NbF 7 Water 85 30-39 14.68 0-35 K 2 NbOF s .H 2 0(?) Aq. 4 .8i%KF 80 11.66 10. 08 i-53 " NITRIC ACID HNO 3 . DISTRIBUTION OF NITRIC ACID BETWEEN WATER AND ETHER AT 25., (Bogdan, 1905, 1906.) Mols. HNO 3 per Liter of: Mols. HNO, per Liter of: H 2 O Layer. 0.9145 0.4811 o . 2644 0.1392 Ether Layer. 0.0855 0.0278 o . 00894 O.OO278 H 2 O Layer. 0.09005 0.04749 0.02760 0.02462 Ether Layer. O.OOlSl 0.00064 0.00029 0.00025 457 NITRIC ACID RECIPROCAL SOLUBILITY OF NITRIC ACID AND WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Kiister and Kremann, 1904; see also Pickering, 1893.) Gms. HN0 3 t. per^ioopms. Solid Phase. t. Gms. HNO 3 per 100 Gms. Solid Phase. bat. bol. Sat. Sol. 10 13.9 Ice -40 69.7 HNO 3 . 3 H 2 O 20 22.9 " 42 Eutec. 70.5 " +HN0 3 .H 2 -30 2 7 .8 -40 72.5 HNO 3 .H 2 O -40 3 I -5 " -38m.pt. 77-75 " 43 Eutec. 32.7 "+HN0 3 . 3 H 2 -40 82.4 " -40 34 . 1 HN0 3 .3H 2 -50 86.5 " -30 40 -60 88.8 20 49.2 66.3 Eutec. 89-95 " +HN0 3 18 . 5 m. pt. 53-8 -60 91.9 HNO, 20 58.5 -5o 94-8 " -30 65-4 4i.2m.pt. 100 NITROGEN N a . SOLUBILITY IN WATER. (Winkler Ber. 24, 3606, '91; Braun Z. physik. Chem. 33, 732, 'oo; Bohr and Bock Wied. Ann, 44, 318, '91.) t L/oemcien t 01 ADsorptic A, in p. " Solubility " B'. ? 0.0235* ...t 0.0233* O.OO239* 5 0.0208 0.0215 0.0217 O.O2O6 O.OO259 10 0.0186 0-0196 O.O2OO 0.0183 0.00230 15 0.0168 0.0179 0.0179 0-0165 0.00208 20 0.0154 0-0164 O.Ol62 O.OI5I 0.00189 25 0.0143 O.OI5O 0.0143 0.0139 0.00174 30 0.0134 0-0138 . . . O.OI28 o. 00161 35 0-0125 0.0127 . . . O.OIlS 0.00148 40 0.0118 O-OIlS O-OIIO 0.00139 50 0.0109 0.0106 . . . 0.0096 0-OOI2I 60 0.0102 O-OIOO . . . 0.0082 O.OOIO5 80 0.0096 0.0051 0.00069 100 0.0095 o.oioo o.oooo o.ooooo *w. t B. and B. tB. For values of ft, ft', and q, see Ethane, p. 285. Single determinations of the solubility of nitrogen in water reported by Hiifner (1906-07), Bohr (1910), Muller (1912-13) and von Hammel (1915), are, on the average, about 2-3 units in the fourth place higher than the above figures of Winkler for the absorption coefficient ft. Drucker and Moles (1910), give an extensive review of the literature and present results which, they state, are in very satisfactory agreement with previous determinations. A critical review of the literature of the solubility of nitrogen in water and in sea water is given by Coste (1917). Data for the solubility of the nitrogen of air in water are given by Fox (iQOQa). The oxygen was removed from air and the solubility of the residual N + 1.185% argon was determined. After making correction for the argon, the following formula for the solubility of pure nitrogen in water was deduced : 1000 X coef. of abs. ft = 22.998 0.5298 1 -f 0.009196 0.00006779 ** Data for the solubility of nitrogen in water at pressures up to 10 atmospheres are given by Cassuto (1913). The solubility was found to increase at a some- what slower rate than proportional to the pressure. NITROGEN 458 SOLUBILITY OF NITROGEN IN SEA WATER. (Fox, igoga). Before using the sample of sea water for the solubility determinations it was found necessary to add acid, otherwise the CO 2 could not be boiled out or the precipitation of neutral carbonates prevented. The very small amount of acid was titrated back, using phenolphthaleine as indicator. The results are in terms of number of cc. of nitrogen (containing argon) ab- sorbed by 1000 cc. of sea water from a free dry atmosphere of 760 mm. pressure. The calculated formula expressing the solubility is: 1000 a = 18.639 04304 1 + o-o7453 ** 0.0000549 & Q (0.2172 0.007187 / -f 0.0000952 1 2 ). imorine t-n A r looo. 8. 12 . 16. 20. 24. 28. O 18 -64 17.02 15.63 14. 45 13-45 12, 59 11.86 11.25 4 17 74 16.27 14.98 88 12.94 12 15 11.46 10.89 8 16 .90 15-51 I4.32 13. 30 12.44 II ,70 11.07 10.52 12 16 03 14-75 13-66 12. 72 H-93 II 25 10.67 10. 16 16 15 .18 14 13 12. 15 n-73 10, ,81 10.27 9.80 20 14 .31 13.27 12.34 II. 57 10.92 10, 36 9.87 9-44 A recalculation of Fox's determinations to parts per million, with correction for vapor pressure, is published by Whipple and Whipple (1911). SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF SULFURIC ACID Results at 21. (Bohr, 1910.) Results at 20. (Christoff, 1006.) Normality of Absorption Coef . Normality of Absorp. Coef. Per cent Ostwald Solubility Aq. H 2 SO 4 . (Bunsen). Aq. H 2 SO 4 . (Bunsen). H 2 SO 4 . Expression 1 M . o 0.0156 24.8 0.0048 o 0.01537 4.9 O.009I 29.6 O.O05I 35-82 0.008447 8.9 0.0072 34.3 o.oioo 61.62 0.006144 10.7 0.0066 35-8* 0.0129 95-6 0.01672 20.3 0.0049 * = about 96%. For definitions of Absorption Coef. (Bunsen) and Solubility Expression (Ost- wald), see p. 227. SOLUBILITY OF NITROGEN IN AQUEOUS SALT SOLUTIONS. (Braun.) Coefficient of Absorption of N in Barium Chloride Solutions of: i . 13.83 Per cent 11.92 Per cent. 6.90 Per cent. 3.87 Per cent. 3.33 Per cent. 5 O.OI27 0.0137 0.0160 O.OlSo 0.0183 10 O.OII7 0.0125 0.0147 0.0166 0.0168 15 O.OI04 O.OII4 0.0132 0.0148 0.0150 20 0.0092 0.0098 0.0118 0.0132 0.0135 25 0.0078 0.0086 0.0104 O.OII4 0.0119 Coefficient of Absorption of N in Sodium Chloride Solutions of: ' 11.73 Per cent. 8.14 Per cent. 6.4 Per cent. 2.12 Per cent. 0.67 Per cent. 5 O.OIO2 O.OI27 0.0138 O.OI79 0.0200 10 0.0093 O.OII3 O.OI26 0.0164 0.0185 15 O.OOSl O.OIOI O.OII3 O.OI47 0.0l64 20 0.0066 0.0087 0.0098 O.OI3I O.OI48 25 O.OO47 0.0075 0.0083 O.OII3 0.0130 SOLUBILITY OF NITROGEN IN ALCOHOL. (Bunsen.) t. o. 5. 10. 15. 20. 24. Vols. N * dissolved by i Vol. Alcohol. 0.1263 0.1244 0.1228 0.1214 0.1204 0.1198 * At o and 760 mm. 459 NITROGEN SOLUBILITY OF NITROGEN IN MIXTURES OF ETHYL ALCOHOL AND WATER AT 25. (Just, 1901.) Results in terms of the Ostwald solubility expression, see p. 227. Dissolved Nfe). 0.01634 0.01536 Vol. % H 2 O in Mixture. Vol. % Alcohol'in Mixture. 100 80 20 6 7 33 100 (99-8% SOLUBILITY OF NITROGEN IN SEVERAL SOLVENTS AT 20 AND 25. (Just.) Solvent. ^25. Water 0.01634 Aniline o . 03074 Carbon Disulfide 0.05860 Nitro Benzene Benzene Acetic Acid Xylene Amyl Alcohol 0.1225 0.06255 0.1159 o. 1190 o. 1217 0.01705 0.02992 0.05290 0.06082 o. 1114 o. 1172 o. 1185 0.1208 Solvent. /25- Toluene 0.1235 Chloroform 0.1348 Methyl Alcohol o. 1415 Ethyl Alcohol (99-8%) o. 1432 Acetone 0.1460 Amyl Acetate 0.1542 Ethyl Acetate 0.1727 Isobutyl Acetate o. 1734 *20. O.II86 0.1282 0.1348 O.I40O 0.1383 o. 1512 0.1678 0.1701 SOLUBILITY OF NITROGEN IN PETROLEUM. COEFFICIENT OF ABSORPTION AT 10 = 0.135, AT 20 = 0.117. (Gniewasz and Walfisz, 1887.) SOLUBILITY OF NITROGEN IN AQUEOUS PROPIONIC ACID AND UREA SOLUTIONS. (Braun.) Coefficient of Absorption of N in C 2 H 5 COOH Solutions of: I/ . 11.22 per cent. 9.54 per cent. 6.07 per cent. 4.08 per cent. 3.82 per cent. 5 10 i5 20 0.0195 0.0178 '0.0159 0.0146 0.0204 0.0182 0.0l63 0.0147 0.0208 0.0186 0.0164 0.0148 O.O2IO 0.0192 0.0169 0.0154 O.O2O9 O.OI9I O.Ol67 0.0155 25 0.0130 0.0134 0.0134 0.0137 0.0137 Coefficient of Absorption of N in CO(NHs), Solutions of: 15-65 per cent. 11.9 per cent. 9.42 per cent. 6.90 per cent. 5.15 per cent. 2.28 per cent. 5 10 i5 20 0. O. 0. 0. 0175 Ol62 0150 OI4O o O O .0179 .0167 .0149 .0139 O, o o o OI9O ,0176 0158 ,0146 O .0198 .0183 .0165 .0151 O .0197 .0182 0165 .0151 0.0199 0.0l84 O.OI7I 0.0155 25 o. 0130 .0130 o 0133 O .0137 0135 0.0139 NITROGEN 460 SOLUBILITY OF NITROGEN IN AQUEOUS SOLUTIONS OF CHLORAL HYDRATE AT 15. Results by Miiller, C (1912-13.) Gms. Results by von Hammel (1915). Gms. CC1 S .CH(OH), .682 585 509 8 .88 I .614 o .713 .603 434 12 78 2 391 634 532 449 0.386 5 .76 O 427 o .808 0.677 584 495 8 53 O .646 o .692 o 574 .482 .416 12 44 O 974 o 559 .486 417 o 354 3 .31 O 215 o .928 .788 .671 578 5 73 o -380 .848 .709 .610 o 13 .24 o 939 o .644 547 463 39 Salt. Calcium Chloride u Lithium Chloride a Lithium Sulphate Magnesium Sulphate ii Potassium Chloride tt n (i Potassium Sulphate Sodium Chloride tt Sodium Sulphate Strontium Chloride a SOLUBILITY OP NITROUS OXIDE IN ALCOHOL AND IN AQUEOUS CHLORAL HYDRATE SOLUTIONS AT 2cr. (Bunsen; Knopp Z. physik. Ch. 48, 106, '04.) In Alcohol (B.). In Aq. Chloral Hydrate (K.). Vols. N 2 t . (at o and 760 mm.) per i Vol. Alcohol. Normality C 2 HCl3O.H 2 O. Cms. C 2 HC1 3 O.H 2 per Liter. Coef. of Abs. of NjO. 4.178 0.184 30-43 0.618 5 3-844 0-445 73.60 0-613 10 3-541 0.942 155-8 0.596 IS 3.268 I .165 192.7 0.589 20 3-025 1-474 243-8 o-579 24 2.853 i .911 316.4 0.567 SOLUBILITY OP NITROUS OXIDE IN PETROLEUM. ABSORPTION AT 10 = 2.49, AT 20 COEFFICIENT OF = 2. ii. (Gniewasz and Walfisz Z. physik. Ch. i, 70, '87.) 465 NITROUS OXIDE SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AND OF UREA. (Roth, 1897.) Coefficient of Absorption of N 2 O in Glycerol Solutions of: 3.46 Per cent. 6.73 Per cent. 12. 12 Per cent. 16.24 Per cent. 5 i .097 i 055 O 999 959 10 .917 .887 .841 O .810 *5 .767 745 .710 o .686 20 .647 .630 .605 58S 25 556 o 542 527 o 508 Coefficient of Absorption of N 2 O in Urea Solutions of: 3.31 per cent. 4.97 per cent. 6.37 per cent. 7.30 per cent. 9.97 per cent. I .104 I . 096 i. 088 I .IOI 1.069 .921 o. 92O 0.909 0.921 o. 901 .771 o. 773 0.761 0.772 o. 7 6l o 653 o. 6 S 6 0.644 0-655 o. 65* 5 6 9 o. 567 0-559 0.570 o. 5<*> 5 10 15 20 25 SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SOLUTIONS OF GLYCEROL. (Henkel, 1905, 1912.) Results at 15. Results at 20. Per cent Glycerol. Absorption Coef. a. Per cent Glycerol. Absorption Coef. a. o 0.7327 o 0.6288 2.49 0.7181 2.36 0.6131 3.28 o\7io3 4.88 0.5993 7.17 0.6844 6.88 0.5903 10.52 0.6668 9.86 0-5633 14.05 0.6410 15.82 -53 I 5 17.08 0.6229 Data for the influence of colloids and fine suspensions on the solubility of ni- trous oxide in water at 25 are given by Findlay and Creighton (1910), and Find- lay and Howell (1914). Results for solutions of ferric hydroxide, dextrin, arsenious sulfide, starch, gelatin, glycogen, egg albumen, serum albumen, silicic acid and suspensions of charcoal and of silica are given. Data for the solubility of nitrous oxide in blood are given by Siebeck (1909) and by Findlay and Creighton f (1910-11). NITROGEN TETROXIDE NO 2 . Data for the solubility of nitrogen tetroxide in ferrous bromide solutions are given by Thomas (1896). Freezing-point data (solubility, see footnote, p. i), are given for mixtures of NO 2 + NO by v. Wittorff (1904), and for mixtures of NO 2 + o Nitrotoluene by Breithaupt. NITROCELLULOSE (Soluble Pyroxylin, Tetra and Penta Nitrate). SOLUBILITY IN ETHER-ALCOHOL MIXTURES. (Matteoschat, 1914; see also Stepanow, 1907.) A sample of gun cotton containing 12.95% N was used. The compound was first covered with alcohol and then the amount of ether to yield the desired com- position of solvent was added. Lower results were obtained with ready prepared ether-alcohol mixtures. Ratio of Gms. Gun Cotton Dissolved per 100 Cms. Solution in Mixtures Prepared with: r : Alcohol. 99-5 Vol. % Alcohol. 95 Vol. % Alcohol. 90 Vol. % Alcohol. 80 Vol. % Alcohol. i : 2 34-4 i : i 52-3 42-3 28. 7 14.2 2 : i 40.5 52-4 53-9 45 3:1 25 42.4 53 57-5 NOVOCAINE 466 NOVOCAINE (base) CH 2 (C 6 H 4 NH 2 COO)CH 2 [N.(C 2 H 6 ) 2 ].2H 2 O. 100 cc. H 2 O dissolve 0.333 g m - anhydrous novocaine at 20. (Zalai, 1910.) 100 cc. oil of sesame dissolve 4.29 gms. anhydrous novocaine at 20. NOVOCAINE (Hydrochloride) CH2(C 6 H 4 NH 2 COO).CH 2 [N(C 2 H 6 ) 2 ].HC1. loo gms. H 2 O dissolve about 100 gms. of the salt at room temp. 100 gms. alcohol dissolve about 3 gms. of the salt at room temp. OCTANE CH 3 (CH 2 ) 6 CH 3 . RECIPROCAL SOLUBILITY OF OCTANE AND PHENOL. (Campetti and Del Grosso, 1913.) AC Gms. Phenol per ^ Gms. Phenol per loo Gms. Mixture. 100 Gms. Mixture. 22.55 13.28 49.501!. t. 52.2 37.85 22.74 49.35 52.37 38-15 2 3-S3 44.7 7i-i4 44.70 32.85 30.65 82.01 47-75 41-72 19-65 85.99 OLEIC ACID C 8 Hi 7 CH:CH(CH 2 ) 7 COOH. SOLUBILITY OF OLEIC ACID IN AQUEOUS ALCOHOL SOLUTIONS AT 25. (Seidell, 1910.) Oleic acid of d<& = 0.8935 an d containing 99.5% acid, determined by titration, was used. It was found that the addition of as little as one drop of this acid to aq. alcohol solutions containing up to 50 wt. % C 2 H 6 OH caused an opalescence on shaking, therefore, indicating a solubility of less than about 0.05 gm. acid per 100 cc. water or of aq. alcohol. With solutions containing more than 50 wt. % C 2 H 6 OH the following results were obtained: Wf Pot- , cc - Oleic Acid per r w nw I0 cc - Aq. Alcohol to Remarks. CjHjUH. produce cloudiness. 51 O . 08 . 2 Cloudiness gradually increased. 58.2 0.2 0.4 65 -5 ' O . 3 . 6 Cloudiness disappeared when about 5.5 cc. acid had been added. 70.2 O.6 I " " " " 4-5 cc. " " " 81.4 CO No cloudiness appeared at all. It was found that although the end points obtained by addition of oleic acid to aq. alcohol mixtures are not sharp, they become so when the procedure is changed to addition of H 2 O*to mixtures of oleic acid and alcohol. By this method perfectly clear liquid may be transformed by one drop of the H 2 O to an opa- lescent mixture which, after standing a few minutes, separates into two liquid layers. Determinations made in this way gave the following observed and cal- culated quantities. Gms. of Constituents to Yield Results Calculated from the Opalescent Mixtures. Plotted Curve. Alcohol + Oleic Acid Mixture. H 2 O Added Wt. Per cent cc. Oleic Acid Gms. Oleic Acid to Cause Qh^OH in per 100 cc. per 100 Gms. CjH 6 OH. Oleic Acid. Separation. Aq. Alcohol. Aq. Alcohol. Sat. Sol. 15.30 1-794. 10.4 57 o 15-30 3-588 10.2 58.5 o 5 15.30 4.485 9.8 60 n 12.3 I 5-3 7-175 9- 2 5 62.5 30 20 15.30 n. 210 8.05 65 49 3-5 24.42 22.420 10.10 67.5 69 40 15.30 20.810 6.50 70 91 50 1.195 8.969 0.321 75.5 ... 68.5 80 ... 88 Alter standing 24 hours the opalescent mixtures separated into layers which on analysis, gave the results shown in the following table: 467 OLEIC ACID COMPOSITION OF UPPER AND LOWER LAYERS OBTAINED BY THE ADDITION OF WATER TO MIXTURES OF AQUEOUS ALCOHOL AND OLEIC ACID AT 25. (Con. from p. 466). Composition of Original Mixture. After Separation into Two Layers: r wt. % * cc. Aq. cc. cc. H 2 O Lower Layer. Upper Layer. in Aq. Ale. Used. Alcohol Mixture. Oleic Acid. to Cause / * Separa- cc. Total tion. Vol. Sp. Gr. cc. Oleic Acid. cc. Total Vol. Sp. Gr. cc. Oleic Acid. 70.2 25 2 3-9 29 0.893 1.48 I 0-35 70.2 25 4 3-70 26 0.890 1.89 6 0.875 1.98 65.5 26.5 5 1-75 22.7 0.891 i-93 9-3 0.875 2. 7 8 70.2 2 5 8 2-75 16 0.893 0.98 19 0.876 6-59 70.2 25 12.5 1-55 6 0.890 0.37 33-2 0.878 11.87 70.2 35 . 2 5 i 4-5 . 1 1 0.28 55-5 0.877 f 24.14 50 cc. Aq. Alcohol 50 cc. Benzine Layer. Dist. Coef. Layer. Layer. 0.277 0.723 2.6l O.II2 0.888 7-93 0.025 o-97S 39 O.OO6 0.994 166 0.002 0.998 499 The C 2 H 5 pH in the two layers could not be determined on account of excessive foaming during distillation of the neutralized solution. Some losses occurred in transferring the original mixtures to the graduated cylinders and differences between final amounts and those originally present are due to these losses. SOLUBILITY OF OLEIC ACID IN AQUEOUS SOLUTIONS OF BILE SALTS. (Moore, Wilson and Hutchinson, 1909.) <""-. ^iS'tr 100 Water less than o . i 5% Aq. Solution of Bile Salts about o. 5 5% Aq. Solution of Bile Salts-f-i % Lecithin . 4 DISTRIBUTION OF OLEIC ACID BETWEEN AQUEOUS ALCOHOL AND BENZINE. (Holde.'io.) Strength of Aq. Gm. (Approx.) of Oleic Acid in; Alcohol in Vol. Per cent. 84.1 76.9 63.7 50.5 42.4 SOLIDIFICATION-POINTS OF MIXTURES OF OLEIC AND STEARIC ACIDS. (Meldrum, '13.) Solidification Temp. O IO 20 30 4O Additional data for the above system as well as for mixtures of oleic and palmitic acids and for the ternary system oleic, palmitic and stearic acids are given by Carlinfante and Levi-Malvano (1909). Results for Oleic Acid + Stearic acid are also given by Fokin (1912). TriOLEIN (C 18 H33O 2 )3C 3 H5. SOLIDIFICATION- POINTS OF MIXTURES OF TRIOLEIN AND OTHER FATS. (Kremann and Schoulz, 1912.) Triolein + Tripalmitin. Triolein + Tristearin. Tripalmitin + Tristearin. t. Wt. Per cent f0 Wt. Per cent. f <, Wt. Per cent Triolein. Triolein. . Tristearin. 7 loo +28 95.2 60.4 90 +25 93-9 44 85.3 58 75 48.2 78.5 50.7 76.7 57.8 . 69.4 50 73.9 56 68.8 56 60.2 56.9 53 6 4-3 47-2 57.2 53 60.9 27.2 64.3 25.4 55.1 43-8 62.6 o 56 o 54.5 31.2 60 . 4 8.4 Data for the ternary system, triolein. tripalmitin and tristearin are also given. Per cent Oleic Aci'd Solidification Per cent Oleic Acid in Mixture. Temp. in Mixture. 54-8 50 44-7 53-3 60 41.2 51-6 70 36.6 49-7 80 30-5 47.6 OILS 468 OILS. (See also Fats, p. 302.) SOLUBILITY OF SEVERAL OILS IN ALCOHOL (di 5 = 0.795) AT I 4~ I 5 - (Davidsohn and Wrage, 1915.) f)-i Gms. Oil per 100 Gms. Sat Sol. Linseed Oil 3.32 Rape Oil i . 36 Cotton Seed Oil 3.61 Olive Oil 2.25 Results are also given for the solubility of mixtures of oils and fatty acids in alcohol. The following results at 22, in terms of approx. volume of oil dissolved by 100 volumes of 80% alcohol, are given by Aubert (1902). Nigella oil, 4.3; oil of boldo leaves, more than 100; matico oil, about 20; cascarilla oil, 5; weld- mint oil, 66. ^ Miscibility curves for various oils with acetone, petroleum and aniline are given by Louise (1911). The use of this data for the identification of oils and the detection of adulterants in them is described. An extensive series of observations on the solubility of water in oils and on the water content of various oils is given by Umney and Bunker (1912). Freezing-point data for oil of helianthus annus + stearic acid are given by Fokin (1912). OSMIC ACID OsO 4 , 100 gms. H 2 O dissolve 5.88 gms. Osmic Acid at about 15. (Squire and Caines, 1905.) OXALIC ACID H 2 C 2 4 .2H 2 0. SOLUBILITY IN WATER. (Koppel and Cahn, 1908; for older* data see Alluard, Miczynski, 1886; Lamouroux, 1899.) 0.064 0.1805 0.152 0.452 - 0.533 I. -820 - 0.936 3.291 - i.5o 5.836 - o.9S 3.302 o 3.416 + 10 - 5.731 Ice 20 8.69 HjQC^HjO 30 12.46 40 17.71 50 23.93 60 30. 71 70 37.92 80 45 . 80 90.2 54.67 " H 2 C 2 O 4 .2H 2 O melts in its H 2 O of crystallization at 98. SOLUBILITY OF OXALIC ACID IN AQUEOUS HC1.AND IN AQUEOUS HNO 3 AT 30. (Masson, 1.912.) In Aq. Hydrochloric Acid. In Aq. Nitric Acid. G. Mols. G. Mols. Gms. G. Mols. G. Mols. Gms. HC1 <*Sat. (COOH) 2 (COOH) 2 HNO 3 < fag Sat. (COOH) 2 (COOH) 2 per liter Sol per liter per liter per liter Sol. per liter per liter Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. Sat. Sol. -0594 1.479 I33-I 0.478 1.0648 1.268 114. 1 0.503 0561 I.I90 107.1 I. 606 1.0932 1.039 93.48 0.970 0577 1.032 92.85 4.224 .1666 0.790 71.09 1-939 .0654 0.821 73-88 9-590 3074 0.639 57-50 2-959 0757 0.675 60.74 13.62 3938 0.847 76.23 4-528 0957 0-555 49-95 14.12 .4060 0.966 86.94 6.026 .1165 0.525 47-25 15-59 43 J 9 1 . 114 IOO. 2 7.907 .1494 0.607 54.63 16.92 4443 0.840 75-6 9.680 . 1843 0.871 78.38 20.84 .4819 0.524 47-iS 21.63 L49I7 0-553 49.76 SOLUBILITY OF OXALIC ACID IN AQUEOUS SOLUTIONS OF H 2 SO 4 AT 25. (Wirth, '08.) A C Q 0n HSo ^' fSat - Gms. per 100 Gms. Sat. Sol. Cone, of 3 An TT ^O *** B of Sat Gms ' per I0 Gms ' Sat ' Sol- No*rrnSuy 4 . So1 ' S0 3 . (COOH) 2 . Aq. Xlgov^ Normality. 5 Sol. S0 3 . (COOH) 2 . o 1.047 O 10.23 4.85 I-I57 14 3-92 I I . 064 2.98 8.03 5.67 I.I77 16.44 3-51 2 . 39 i . 140 7.30 6.02 6-45 1.220 17.84 3.12 4.36 1.146 12.57 4.26 8. 9 1.280 25.92 2-37 469 OXALIC ACID SOLUBILITY OF OXALIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) Gms. (COOH), Gms. (COOH), Alcohol. t. per zoo Gms. Alcohol. t. per 100 Gms. Sat. Sol. Sat. Sol. Methyl Alcohol 1.5 34-2 Propyl Alcohol 1.5 12.2 + 20.2 39-8 + 18.5 16.7 Ethyl Alcohol - i-5 22.4 20.2 a + I8.5 26.2 Isobutyl Alcohol 20 . 2 10.9 u tt 20.2 26.9 SOLUBILITY OF OXALIC ACID IN ABSOLUTE AND IN AQUEOUS ETHER AT 25. (Bodtker, 1897; Bourgoin.) 100 gms. absolute ether dissolve 1.47 gms. (COOH) 2 .2H 2 O. 100 gms. absolute ether dissolve 23.59 gms. (COOH) 2 . In Aqueous Ether Solutions. Gms. Solid Acid Added per 100 cc. Ether Solution. Gms. per 100 cc. Ether Solution. (COOH) 2 . 2 H 2 O. (COOH) 2 . HA (COOH) 2 / (1) 5 o 1.250 0.742 (2) 5 o 0.788 0.720 5 o 0.418 1.044 5 2.44 0.360 3.388 5 4.82 0.484 6.038 5 7-i4 0.558 8.538 5 9.42 0.632 10.996 5 11-63 0.676 13-316 5 13-79 0.760 15.684 5 18.18 0.816 17.818 5 22.73 0.816 17.818 (i) Ether saturated with water. (2) Ether containing 0.694 P er cent water. 100 gms. glycerol dissolve 15 gms. oxalic acid at 15.5. (Ossendowski, 1907.) loo gms. 95% formic acid dissolve 9.74 gms. anhydrous oxalic acid at 16.8. (Aschan, 1913.) DISTRIBUTION OF OXALIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20. (Herz and Fischer, 1904.) Millimols \ (COOH) 2 per 10 cc. Gms. (COOH) 2 per 100 cc. Aq. Layer. Alcoholic Layer. Aq. Layer. Alcoholic Layer. O.68o6 0.1451 0.306 0.0653 2.364 0.7233 1.064 0.326 6.699 2.550 3.015 1.148 10.029 4-300 4-5H 1-934 Data for the distribution of oxalic acid between mixtures of amyl alcohol + ether and water at 25 are given by Herz and Kurzer (1910). DISTRIBUTION OF OXALIC ACID BETWEEN WATER AND ETHER. (Pinnow, 1915.) Results at 15. Results at 27. Gm. Mols. (COOH) 2 per Liter. Dist. Coef. of: Gm. Mols. (COOH) 2 per Liter. Dist. Coef. of; Water Ether Total Undissoc. Water Ether Total Undissoc. Layer. Layer. Acid. Acid. Layer. Layer. Acid. Acid. 0-3435 O.O2945 II .6 8. 49 O, ,760 0.0637 II 9 8.18 0.1885 0.01395 13 5 8. 81 0, 56l 0.0433 13 8-37 O.I24 0.00845 14 .8 8. 69 O 3575 0.025O 14 3 8.26 0.0892 0.00553 16 .1 8. 72 O 2550 0.0165 15 5 8.12 o . 0470 0.00248 19 8. 19 0. 1754 0.01025 17 i 7.94 0.0435 O.OO22 19 .8 8. 26 Data for the effect of H 2 SO4 upon the above distribution are also given. Data similar to the above for a greater range of cone, at 25 are given by Chandler (1908). OXYGEN 470 OXYGEN 2 . SOLUBILITY IN WATER. *. Coef. of Absorption /9. g . (Winkler, 1891; Bohr and Bock, 1891.) 0.0489* 0.0496! 5 0.0429 0.0439 IO 0.0380 0.0390 15 0.0342 0.0350 20 0.0310 0.0317 25 0.0283 0.0290 30 o. 0261 0.0268 0.00695 0.00607 0.00537 0.00480 0.00434 0.00393 0.00359 *w. For values of /3 and q see Ethane, p. 285. cc. per Liter H 2 O. 10.187 8.907 7.873 7.038 6.356 5.776 5-255 t. 40 50 60 70 80 90 IOO Coef. of Absorption /5. ? . O. 0. O. 0. 0. 0. 0. 0231* 0209 0195 0183 0176 OI72 OI7O 0.0233! o. 0207 0.0189 0.0178 0.0172 0.0169 0.0168 0. o. 0. o. 0. 0. 0. 00308 00266 00227 00186 00138 00079 ooooo t B. and B. According to determinations by Fox (igoga), which agree satisfactorily with the above, the solubility of oxygen in water is expressed by the formula: 1000 X abs. coef. ft = 49-239 i-344 < + 0.28752 ft 0.0003024 fl. References to more recent papers on the solubility of oxygen are given by Coste (1917, 1918). SOLUBILITY OF THE OXYGEN OF AIR IN WATER. t. 5-2. 5-65. 14-78. Solubility* 8.856 8.744 7.08 * cc. Oxygen per 1000 cc. H 2 O saturated with air at 760 mm. 24-8. 5.762 SOLUBILITY OF OXYGEN IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS, BASES AND SALTS. (Geffcken, 1904.) Concentration per Liter. Solubility of Oxygen.* Water alone Hydrochloric Acid Nitric Acid Sulphuric Acid Potassium Hydroxide Sodium Hydroxide Potassium Sulphate Sodium Chloride Gram Equiv, , Grams. o-5 18.22 I-O 36-45 2.0 72.90 o-5 36.52 i.o 63-05 2.O I26.IO o-5 24.52 I.O 49.04 2.0 98.08 3-o I47-I2 4.0 196.16 5-o 245 . 20 o-5 28.08 I.O 56.16 o-5 20.03 I.O 40.06 2.0 80. 12 o-5 43-59 I.O 87.18 o-5 29.25 I.O 58.5 2.0 119.0 In terms of the Ostwald Solubility Expression. 0.0363 0.0344 0.0327 0.0299 0.0348 0.0336 0.0315 0.0338 0.0319 0-0335 0.0256 0.0233 0.0213 0.0291 0.0234 0.0288 0.0231 0.0152 0.0294 0.0237 0.0308 .0.0260 0.0182 See page 227. 0-0308 0-0296 0.0287 0-0267 0.0302 0.0295 0-0284 0.0288 0.0275 0.0251 0.0229 o . 0209 O.OI94 O.O252 O.O2O6 0.0250 0-0204 0.0133 0.0253 O.O2O7 O.O262 0.0223 0.0158 SOLUBILITY OF OXYGEN IN AQUEOUS POTASSIUM CYANIDE SOLUTIONS AT 20. (Maclaurin, 1893.) Cms. KCN per ioo gms. sol. i 10 20 Coefficient of absorption j3 0.029 0.018 0.013 30 0.008 5<> 0.003 471 OXYGEN SOLUBILITY OF OXYGEN IN SEA WATER. (Fox, igoga.) Before using the sample of sea water for the solubility determinations, it was found necessary to add acid, otherwise the CO Z could not be boiled out or the precipitation of neutral carbonates prevented. The very small amount of acid was titrated back, using phenolphthaleine as indicator. Results in terms of cc. of oxygen absorbed by 1000 cc. of sea water from a free dry atmosphere at 760 mm. pressure. The calculated formula expressing the solubility is: 1000 a = 10.291 0.2809 t -f- 0.006009 P + 0.0000632 P Cl (0.1161 0.003922 / + 0.0000631 ). Parts Chlorine per 1000. t = o. 4- 8. 12. 16. 20. 24. 28. O IO. 29 9 .26 8.40 7.68 7.08 6-57 6. 14 5-75 4 9- 83 8 85 8.04 7.36 6.80 6-33 5- 9i 5-53 8 9- 36 8 45 7.68 7.04 6.52 6.07 5- 67 5-3i 12 8. 90 8 .04 7-33 6.74 6.24 5-82 5- 44 5-08 16 8. 43 7 .64 6.97 6-43 5-90 5-56 5- 20 4.86 20 7- 97 7 23 6.62 6. ii 5-69 5-31 4- 95 4.62 A recalculation of Fox's determinations to parts per million, with correction for vapor pressure, is published by Whipple and Whipple (1911). Additional data on the solubility of atmospheric oxygen in sea water are given by Clowes and Biggs (1904). Data for the solubility of oxygen in water under pressures up to 10 atmos- pheres are given by Cassuto (1913). The solubility increases at a somewhat slower rate than proportional to the pressure. SOLUBILITY OF OXYGEN IN AQUEOUS SALT SOLUTIONS AT 25. (MacArthur, 1916.) Aq. Salt Solution. da Aq. Solu- tion. cc. oxy- gen per Liter. Aq. Salt Solution. d K Aq. cc. Oxy- Solu- gen per tion. Liter. Aq. Salt Solution. du ot cc. Oxy- Solu- gen per tion. Liter. Dist. H 2 I 5-78 0.25 ttKBr 1.019 5-29 O.I25 NaBr 1.007 5-65 O.I25 I 1 JH 4 C1 I.OOI5 2.31 2 n " 1.079 3.27 0.25 n ' 1.017 5-52 0.25 n " 1.0025 1.16 4 n " 1.162 1.84 0.50 n " 1.036 5-15 i n " 1.014 0.07 O.I25WKC1 1.003 5-52 I n " 1.075 4-47 O.I25 BaCl 2 1.019 540 0.25 n " 1. 0086 5-30 2 n " 1.150 3-37 0.25 n " 1.042 5-04 0.50 n " I.O2O 4.98' 3 n " 1.219 2-57 0.50 n " 1.082 4.27 I n " I.O42 4.26 4 n " I '35 2.O2 i n " I.I77 3.10 2 n " 1.086 3.21 6 n " 1-455 1.28 0.25 nCaCl, 1.022 S-o8 3 n " I.I34 2.36 O.l25NaCl I.OO22 5.52 i n " 1.084 3-71 4 n " I.I70 1.86 0.25 n " 1.0067 5-30 5 n " 1.34 2.14 O.I25KI I.OI3 5.65 0.50 n " I.OI7 4.92 0.l25CsCl I.OI4 5.67 0.25 n ' I.O27 549 I n " 1.038 4.20 o.i25LiCl I.OOO4 5.63 0.50 n ' 1.056 5-20 2 n " 1.075 3.05 0.50 n " I.OO9I I n ' 1.116 4-75 3 n " 1. 112 2.24 i n " I. O2 1 4-59 2 n ' 1.23 3-77 4 n " I.I49 1.62 2 n 1.044 3-63 5 n ' 1.46 1.81 O.I25W Na 2 SO 4 I.OI4 5.04 3 w I.II 3 1.97 0.25 MKNO, 1.015 5-49 0.25 n " 1.032 4.60 4 w " 1.220 1. 12 0.50 n " 1.029 S-ii 0.50 n " 1.063 3-97 o.i25wMgCl, 1. 01 1 5.35 I- n " 1.059 4.61 I n " I.I30 3 0.50 w 1.044 4.37 2 n " i. no 3.65 0. 1 25 Sucrose I.OI5 540 i n i 1.085 o.i25 K 2 .SO 4 1.016 0.25 n " 1.033 4.82 2 i 1.160 2.22 0.25 n " 1.032 . 4*.66 0.50 n " i -6-i 1-39 4 n 1.284 0.78 0.5 n i. 060 3.89 I n " 1.147 3-20 5 ** ' 1.343 0-54 o.i25RbCl 1.0094 5.65 2 n " 1.336 1.84 OXYGEN 472 SOLUBILITY OF OXYGEN IN AQUEOUS SULFURIC ACID SOLUTIONS. Results at 21. (Bohr, 1910.) Results at 29. (Christoff, 1906). Normality of H 2 S0 4 . Absorp. Coef . ft. Normality of H 2 SO<. Absorp. Coef.0. Wt. % Ostwald Solubility H 2 SO 4 . Expression /jo- 0.0310 24.8 O.OI03 0.03756 4.9 0.0195 29.6 O.OII7 35-82 0.0l8l5 8. 9 0-0155 34-3 0.0201 61.62 0.01407 10-7 0.0143 35. 8 (=96%) 0.0275 95.60 0.03303 20.3 O.OII9 SOLUBILITY OF OXYGEN IN ETHYL ALCOHOL, METHYL ALCOHOL AND IN ACETONE. (Timofejew Z. physik. Ch. 6, 151, 'oo; Levi Gazz. chim. ital. 3i t II, 513, 'ox.) O 5 10 15 20 25 30 40 SO For values of ft and /3', see Ethane, p. 285. / = Ostwald Solubility Expres- sion. See p. 227. The formulae expressing the solubility of oxygen in methyl alcohol and in ace- tone as shown in the above table are as follows: In Methyl Alcohol / = 0.31864 0.002572 / 0.00002866 ^. In Acetone / = 0.2997 0.00318 / 0.000012 P. The formula expressing the absorption coefficient of oxygen in ethyl alcohol is = 0.23370 0.00074688 t + 0.000003288 P. SOLUBILITY OF OXYGEN IN AQUEOUS ALCOHOL AT 20 AND 760 MM. (Lubarsch, i Ethyl Alcohol of 90.7% (T.). In Methyl Alcohol (L.) In Acetone (L.) 0. ' 0.2337 0.2297 0.31864 0.2997 0.2301 0.2247 0-30506 0.2835 O.2266 0.2194 o . 29005 . 0-2667 0.2232 0-2137 0-27361 0.2493 0.2201 0.2073 0-25574 0-2313 0.2177 (24) 0.2017 (24) 0.23642 O.2I27 . . . 0.21569 0-1935 . . . . . . 0.16990 0-1533 0.11840 0.1057 Wt. Per cent Vol. Per cent Wt. Per cent Vol. Per cent Wt. Per cent Vol. Per cent Alcohol. Absorbed O. Alcohol. Absorbed O. Alcohol. Absorbed O. o 2.98 23.08 2.52 50 3.50 9.09 2.78 28.57 2.49 66.67 -4-95 16.67 2 - 6 3 33 -33 2.67 80 5.66 SOLUBILITY OF OXYGEN IN PETROLEUM. COEFFICIENT OF ABSORPTION AT 10 = 0.229, AT 2O = 0.202. (Gniewasz and Walfisz, 1887.) SOLUBILITY OF OXYGEN ETHYL ETHER. (Christoff, 1912.) Results in terms of the Ostwald Solubility Expression, A> = 0.4235, l w =* 0.4215. 473 OXYGEN SOLUBILITY OF OXYGEN IN AQUEOUS SOLUTIONS OF: Chloral.Hydrate at 20. (Muller, 1912-13.) Glycerol at 15. (Muller, 1912-13.) Gms. CC1 3 .CH(OH) 2 per loo Gms. Aq. Sol. Aq?Sok A rBun e ^ ft (CH 2 OH)TcHOH d of (Bunsen) IQQ Qms A Sol at 20 Aq. Sol. Abs. Coef. (Bunsen) at 15. 16.9 1.0798 0.02795 20.5 rfl2. 5 =1.0509 O.O2742 3 2 1.1630 0.02495 25 dtf = .0621 0.02521 52.9 1.2935 0.02325 37-3 dn* = 0957 0.02022 61.08 1-354 O.O24IO 45 ^12-5 = .Il6l O.OI744 65.5 1.382 0.02580 52 fi?12 -5 = I 35 I O.OI57O 71.4 1.4404 0.02730 7i.5 dl2-b = .1908 0.00950 78 1.46 0.03280 88.5 (/13.5=1.236 0.00886 SOLUBILITY OF OXYGEN IN AQUEOUS SOLUTIONS OF: Glucose at 2O. (Muller, 1912-13-) Cane Sugar at 15. (Mttlkr, 1912-13-) Gms C H O Abs, Coef. Gms. QaHaOu Abs. Coef. per zoo Gms. Aq. Sol. dzo of f Aq. Sol. (Bunsen) at 20. per 100 Gms. Aq. Sol. Aq U Sol. (Bunsen) at 15. 10.84 I.04I3 0.02690 12. 1 .1.0482 0.02969 20-7 1.0835 O.O225O 24.38 I. 1022 0.02396 33-8 I.I370 0.0l8l5 28.44 I.I205 o. 02181 1.2295 0.01390 42.96 I.I938 0.01600 58.84 I . 2649 0.01250 50 I.23I8 0.01359 INFLUENCE OF ANESTHETICS UPON THE SOLUBILITY OF OXYGEN IN OLIVE OIL. (Hamberger, 1911.) Name and Cone, of Solubility of Oxygen in; Narcotic Added p ure Narcotic to the Oil. Solvent. Solution. Sulfonal (0.8 per 100) 9 . 69 4.55 9.69 9.69 (saturated) Trional Tetronal (2 per 100) Camphor (10 per 100) 9. 10 9. 10 9.67 9.67 8-53 5-68 6.25 4-55 5-68 9. 10 9. 20 7.96 Name and Cone, of Narcotic Added to the Oil. . Monochlorhydrine (5 " ' (2-5 (1.25 (10 (5 (5 (2.5 D ichlorhy drine Phenylurethan Solubility of Oxygen in; Pure Narcotic Solvent. Solution, penoo) 9.10 7.50 ) 9.10 7.50 ) 9.10 7.90 ) 9.10 7.96 ) 9.10 8 ) 8.53 6.25 ) 8.53 7.50 Data for the solubility of oxygen in liquid air are given by Baly (1900). Data for the solubility of oxygen in hemoglobin are given by Jolin (1889). Data for the solubility of oxygen in defibrinated ox-blood and ox-serum, at pressures varying from 760 to about 1400 ram. Hg, are given by Findlay anc Creighton (1911). OZONE 3 . SOLUBILITY IN WATER. (von Mailfert, 1894; Carius; Schone, 1873.) t. w. G. R. t. w. G. R. 39-4 61.5 0.641 27 13-9 51-4 0.270 6 34-3 61 0.562 33 7-7 39-5 0.195 n. 8 29.9 59-6 O.5OO 40 4.2 37.6 O.II2 13 28 58-1 0.482 47 2.4 31.2 0.077 IS 25-9 56.8 0.456 55 0.6 19.3 0.031 19 21 55-2 0.381 60 12.3 W = milligrams ozone dissolved per liter water. G = milligrams ozone in one liter of the gas phase above the solutions. R = ratio of the dissolved to undissolved ozone (W -J- G). OZONE 474 The experiments of Schone (see preceding page) were repeated by Inglis (1903). "The results confirm Schone's experiments and indicate that ozone, when passed through water, is partly decomposed." According to Moufang (1911) the solubility of ozone in distilled water ranges from about 10 milligrams per liter at 2 to about 1.5 milligrams per liter at 28. The solubility is greatly affected by other substances in solution. Small amounts of acids increase the solubility and render the aqueous solution of the ozone more permanent. Alkalis decrease the solubility. Neutral salts (i.e., calcium sulfate) increase the solubility. SOLUBILITY OF OZONE IN DILUTE SULFURIC ACID. (Rothmund, 1912.) The explanation of the discrepancies concerning the solubility of ozone in water is that the ozone quickly decomposes as the saturation point is reached. Rothmund, therefore, determined the solubility in dilute HaSC^ in which decomposition takes place much more slowly than in pure water. At o the absorption coef. /3 (Bun- sen, see p. 227) in o.i n H 2 SO 4 , is 0.487. The coef. remains practically the same when the concentration of the ozone is changed over a wide range, hence Henry's Law holds for ozone. The dissolved ozone has the same molecular weight as the gaseous. The solubility depression which ozone experiences through o.i n H 2 SO 4 is calculated as 1.5%. Therefore, by extrapolation, it is calculated that the abs. coef. ft of ozone in H 2 O at o, is 0.494. PALLADIUM CHLORIDE PdCl 2 . When i gm. of palladium, as chloride, is dissolved in 100 cc. of H2O and shaken with 100 cc. of ether, 0.02 per cent of the metal enters the ethereal layer at ord. temp. When aq. 10% HC1 is used/p.oi per cent of the metal enters the ethereal layer. (Mylius, 1911.) 100 cc. anhydrous hydrazine dissolve i gm. PdCl 2 , with evolution of gas and formation of a black precipitate, at room temperature. (Welsh and Broderson, 1915.) PALMITIC ACID CH 3 (CH 2 ) 14 COOH. SOLUBILITY IN AQ. AND ABSOLUTE ETHYL ALCOHOL. i (Falciola, 1910.) Cms. CH 3 (CH 2 )i 4 COOH per 100 cc.: Absolute Aq. 75% Alcohol. Alcohol. 10 2.8 0.24 0.05 20 9.2 0.43 0.08 30 ... 1.19 0.12 40 31.9 3-59 0-3 1 100 cc. sat. solution of palmitic acid in methyl alcohol of 94.4 vol. % (d = 0.8183) contain 1.03 to 1.17 gms. at 0.2, equilibrium being approached from above. The mixtures were simply allowed to stand in an ice chest for from 12 to 156 hours. (Hehner and Mitchell, 1897.) SOLUBILITY OF PALMITIC ACID IN SEVERAL ALCOHOLS. (Timofeiew, 1894.) ( Alcohol. Methyl Alcohol it d Ethyl Alcohol u One hundred gms. of aq. 5% solution of bile salts dissolve about o.i gm. palmitic acid. 100 gms. aq. 5% solution of bile salts containing i % of lecithin dissolve 0.6 gms 1 . palmitic acid. (Moore, Wilson and Hutchinson, 1909.) Gms. Gms. t o CH 3 (CH 2 ) 14 COOH A ,_,_i to CH 3 (CH 2 )i 4 COOH per 100 Gms. i> . per loo Gms. Sat. Sol. Sat. Sol. '0 0.72 Propyl Alcohol 2.92 21 5-i it 21 13.8 36 29-5 Isobutyl Alcohol 2.2 O 2 a 21 12.8 21 10. I 475 PALMITIC ACID Cms. Stearic Acid tof Gms. Stearic Acid per 100 Gms. Mixture. Solidi- fication. per loo Gms. Mixture. 100 57-2 55 9 56.42 5o 80 56.38 45 70 56.11 40 60 55-62 36 tof Gms. Stearic Acid Solidi- per 100 Gms. fication. Mixture. 54.85 Eutec. 55-46 56.53 59-3i 62.62 30 25 20 10 O SOLIDIFICATION POINTS OF MIXTURES OF PALMITIC AND STEARIC ACIDS. (De Visser, 1898.) Fifty gram samples of each mixture were used and great care taken to insure accuracy of the determinations. tof Solidi- fication. 69.32 67.02 64-51 61.73 58. 7 6 Additional determinations on this system by Dubowitz (1911) are, for the most part, in good agreement with the above. According to Carlinfanti and Levi Malvano (1909), however, the eutectic could^not be located and there were indications of the existence of solid solutions. DATA ARE GIVEN FOR THE SOLIDIFICATION POINTS OF THE FOLLOWING MIXTURES: Palmit c Acid + Tripalmitin -|- + Stearic Acid. 4- 4- Tristearin. + Tristearin + Stearic Acid. + Tristearin. Tripalmitin + Tristearin -f Stearic Acid. -j- Stearic Acid. Palmitic Acid Cetyl Ester + Paraffin. (Kremann and Klein, 1913.) (Kremann and Kropsch, 1914.) (Kremann and Klein, 1913.) (Palazzo and Battelli, 1883.) PAPAVEBINE C 20 H 21 N0 4 . IOO gms. carbon tetrachloride dissolve 0.203 gm. at 17. (Schindelmeiser, 1901.) 100 gms. carbon tetrachloride dissolve 0.518 gm. at 20. (Gori, 1913.) loo gms. ethyl ether dissolve 0.38 gm. at 10. 100 gms. of each of the following solvents dissolve the stated amount of papaver- ine at 20. Aniline, 29 gms.; pyridine, 8 gms.; piperidine, I gm.; diethylamine, 0.4 gm. (Scholtz, 1912.) PARAFFIN. .SOLUBILITY OF OZOKERITE PARAFFIN OF MELTING POINT 64-65 AND SP. GR. AT 20 = 0.917 IN SEVERAL SOLVENTS AT 20. (Pawlewski and^Filemonowicz, 1888.) Gms. Paraffin per 100 Gms. Paraffin per 100 Solvent. Carbon Bisulfide Benzine, boiling below 75 Turpentine, b. pt. i58-i66 Cumol, com. b. pt. 160 " frac. iso-i6o Xylene, com. b. pt. i35-i43 " frac. i 3 5-i38 Toluene, com. b. pt. io8-no frac. io8-io9 Chloroform Benzene Ethyl Ether Isobutyl Alcohol, com. F.-pt. data for paraffin + stearin are given by Palazzo and Battelli (1883). Gms. cc. Solvent. Gms. cc. Solvent. Solvent. Solvent. Solvent. 12.99 Acetone 0.262 .209 n-73 8 '.48 Ethyl Acetate 0.238 . . . 6.06 5 .21 " Alcohol 0.219 4. 26 3 .72 Amyl Alcohol O.2O2 .164 3-99 3 39 Propionic Acid 0.165 . . . 3-95 3 43 Propyl Alcohol o. 141 4-39 3 77 Methyl Alcohol O.O7I o .056 3 3-88 3 34 Methyl Formate 0.060 3-92 3 .41 Acetic Acid 0.060 .063 2.42 3 .61 " Anhydride 0.025 1.99 1 75 Formic Acid 0.013 .015 i-95 Ethyl Alcohol 75% 0.0003 0.285 o .'228 PENTANE 476 Isopentane Rich Layer. Phenol Rich Layer. 4-5 87 7 83-5 "5 80 18 75-S 29-5 68 40 58 PENTANE CH 3 (CH 2 ) 3 CH 8 . Data for the solubility of pentane in liquid carbon dioxide, determined by the synthetic method, are given by Biichner (1906). IsoPENTANE (CH 3 ) 2 CH.CH 2 CH 3 . RECIPROCAL SOLUBILITY OF ISOPENTANE AND PHENOL. (Campetti and Del Grosso, 1913.) Gms. Phenol per 100 Cms. 20 30 40 50 60 65 66 crit. temp. 50 F.-pt. data for mixtures of hexachloro-a-keto 7--R-pentene, C 5 C1 6 O, +penta chloromonobromo ex-keto y-R pentene, C 5 Cl 6 BrO, are given by Kiister (1890, 1891). PEPTONE. 100 gins. H 2 O dissolve 42.2 gms. peptone at 20-25. (Dehn, 1917.) " pyridine " 0.22 " " aq. 50% pyridine " 12.6 " PERCHLORIC ACID HC1O 4 . SOLUBILITY IN WATER, (van Wyk, 1902, 1905.) Mixtures of HC1O4 and water were cooled until crystals appeared and then very gradually warmed and constantly stirred while an observation was made of the exact temperature at which the last crystal disappeared. At certain concentrations and temperatures unstable solid phases were obtained, also, curves for two series of mix crystals were encountered. The methods for detecting these phases consisted in seeding the saturated solutions with the several different crystalline forms, and observing the change in rate of cooling during the solidification of the mixture. The data for the mix-crystal curves I and II are not given in the following table: Mols. HC1O 4 t. per 100 Mols. Solid Phase. t. HC1O 4 +H 2 O. Mols. HC10 4 per 100 Mols. Solid Phase. HC10 4 +H 2 O. Ice -32 26 HC10 4 .2*H 2 10 5 -29 .8 28 57 21 7 -44 27 HC10 4 .2H 2 O -34 5 9 -41 27 .25 ' -54 ii -34 28 ii -50 5 19 HC10 4 . 3 iHjO 24 29 9 -45 20 -17 .8m. ^33-3 -42 3 21 21 5 36 " -41 4 22.22 -23 .6 36 .5 " +HClO 4 .H a O -43 23-5 12 5 37 HC10 4 .H 2 O -40 5 22.5 HC10 4 . 3 H 2 Oa 1+3 38 -39 5 22.75 28 40 .8 -37 .6 24 40 43 7 -37 5 26 50 m. pt 50 -38 .8 27 45 59 9 -47-8 22.5 HC10 4 .3H 2 O/3 27 5 7 1 5 -44 24 17 77 .2 -43 5 24-5 + 2 .2 83 3 -43 .2 25 " 21 5 90 7 -44 5 26 -40 94 -37 .2 25 HClO 4 .3H 2 Oa+HC10 4 .2|H 2 O IO2 ICO 477 PETROLEUM ETHER PETROLEUM ETHER. 100 cc. H 2 O dissolve 0.005 cc. petroleum ether at 15. (Groschuff. 1910.) PHENACETIN (p Acetphenetidin) CeH^OC^NHCHaCO p. SOLUBILITY IN AQUEOUS ALCOHOL AT 25. (Seidell, unpublished.) Wt. % C 2 H 5 OH in Solvent. __ , f Cms. C 6 H 4 (OQH 5 ) 9 t cl NHCH 3 CO per 100 j Sat. Sol. Gms. Sat. Solution. Wt. % OH 5 OH in Solvent. Sa , Cms. Sat. Solution. o (water) I 0.0766 70 0.879 6.25 10 0.984 0.14 80 0.858 7.63 20 0.968 0.28 85 0.847 7.88 30 0.952 0.65 90 0.834 7.82 40 0-935 1-50 92-3 0.827 7.70 50 0.917 2.8 5 95 0.821 7-45 60 0.898 4-55 100 0.806 6.64 loo gms. H 2 O dissolve 1.43 gms. phenacetin at "the b. pt. (U.S. P., VIII.) ioogms-92.3 wt. % alcohol dissolve about^o gms. phenacetin at the b. pt. " SOLUBILITY OF PHENACETIN IN SEVERAL SOLVENTS. (Seidell, 1907.) Gms. Phenacetin Gms. Phenacetin Solvent. t. per 100 Gms. Solvent. t. per 100 Gms. Sat. Solution. Sat. Solution. Acetone 3~3 I 10.68 Benzene 30-31 0.65 (0.873) Amyl Acetate 3~~3 I 2.42 (0.865) Chloroform 25 4.76 Amyl Alcohol 25 3.51 (0.819) Ether 25 1.56 Acetic Acid (99.5%) 21.5 13.65 (1.064) Toluene 25 0.30 (0.863) Aniline 3~3 I 9-46 (1.025) Xylene 32.5 1.25 (0.847) Benzaldehyde 3~3 I 8.44 (1.063) (Figures in parentheses are Sp. Gr. of Sat. Solutions.) 100 cc. petroleum ether dissolve 0.015 gm. phenacetin at room temp. (Salkower, 1916.) 100 gms. pyridine dissolve 17.39 g m s. phenacetin at 20-25. (Dehn.igi?.) 100 gms. aq. 50% pyridine dissolve 28.94 m $' phenacetin_at 20-25. " PHENANTHRAQUINONE SOLUBILITY IN BENZENE AND IN ETHYL ACETATE. (Tyrer, 1910.) Solubility in Benzene. Solubility in Ethyl Acetate. , Sp Gr.of Gms ' (CaHMOW. s Gr of Gms. * Sat P Solution. -- * Sat P Solution. 10 0.8902 0.412 10 0.9102 0.518 15 0.8850 0.471 2O 0.9025 0.626 20 0.8800 0.538 30 0.8906 0.770 30 0.8698 0.738 40 0.8789 0.995 40 0.8601 1-032 50 0.8674 1.292 50 0.8506 x -354 60 0.8561 1.640 60 0.8415 1.760 65 0.8508 1.902 70 0.8327 2.687 7 0-^454 2.215 80 0.8241 3.770 75 0.8401 2.515 NOTE. The Sp. Gr. determinations given in the above table and in the tables for anthracene and anthraquinone, pp. 81 and 82, are not included in the original paper of Tyrer (1910) but, in response to my request, have been kindly supplied for the present volume. I am also indebted to Dr. Tyrer for the modified form of his original tables showing the solubilities of anthraquinone and phenanthra- quinone in mixed solvents. (A. S.) PHENANTHRAQUINONE 478 SOLUBILITY OF PHENANTHRAQUINONE IN MIXTURES OF ORGANIC SOLVENTS. (Tyrer, 1910.) In C 6 H 6 + Hydrocarbons In CHC1 3 + Pentane In CH 3 COOC 2 H 5 + Hydro- (i) at 48. Per cent Gms at 14.5. . Phenan- Per cent Gms. Phenan- carbons(i) at 48. Per cent Gms. Phenan- Mixe^ Solvent thraquinone CHC1 3 in thraquinone CH 3 COOC 2 H 5 thraquinone per loo Gms. Mixed per 100 Gms. in Mixed per 100 Gms. Solvent. Solvent. Solvent. Solvent. Solvent. .0708 0. 025 O 073 10 .088 10 o. 045 14 .19 .126 20 o .118 20 0. 080 27 37 O .207 30 .160 30 0. "5 39 94 335 40 .228 40 0. 165 52 .12 494 50 o .318 50 0. 220 63 -56 -656 60 .440 60 0. 330 74 .19 O .817 70 .588 70 0. 525 84 .62 993 80 772 80 o. 80 5 90 I 073 90 I .004 90 I. 415 IOO I 230 IOO I .288 IOO 2. 402 (O Distilled from petroleum, b. pt. - 82' '-92 . (See note, preceding page.) PHENANTHRENE Ci 4 Hi . SOLUBILITY IN ALCOHOL AND IN TOLUENE .* (Speyers Am.J.Sci.[ 4] 14, 295, 'oa.) In Alcohol. In Toluene. Gms. CwHro per Sp. Gr. of Gms. Ci4Hio per Sp. Gr. of t loo Grams Solutions loo G rams Solutions CjzHjiOH. CHzO at 4 -) QHfi.CHa (H 2 at 4 .) 3-65 0.814 2 3 .0 0.925 10 3-80 0.807 30 .O 0.929 20 4 .6 0.801 42 O Q-934 25 5-5 o-7P9 50 .O 0-939 30 6.4 0-797 58.0 0-943 40 8.2 o-795 7 6 .0 o-955 50 10.6 o.794 95 .0 0.971 60 15.6 o-797 "5 .0 0.989 70 0.815 .0 1.007 80 0.865 (76 -4) 155-0 1.027 Calculated from the original results which are given in terms of gram molecules of Phenanthrene per loo gram molecules of solvent, and for irregular intervals of temperature. Behrend, 1892, reports 2.77 gms. phenanthrene per 100 gms. alcohol at 12.3, and 3.09 gms. at 14.8. SOLUBILITY OF PHENANTHRENE IN ORGANIC ACIDS. (Timofeiew, 1894.) Gms. Ci 4 H 10 Gms. C U H 10 Acid. t. per 100 Gms. Acid. .! t. per 100 Gms. Sat. Sol. Sat. Sol. Acetic Acid 23 8.31 Propionic Acid 9.8 Butyric Acid 23 39 70 23 39 34-6 15-6 21 23 39 62. 23 17 21.4 40.3 12.3 16.6 (Aschan, 1913.) Isobutyric Acid Valeric Acid 100 gms. 95% formic acid dissolve 0.46 gms. CuHio at 20.8 F.-pt. data for mixtures of phenanthrene and each of the following compounds are given by Kremann et. al., (1908); 1.2.6 dinitrotoluene, 1.2.4. dinitrotoluene, 1.3.4 dinitrotoluene, trinitrotoluene and trinitrobenzene. Results for mixtures of phenanthrene and 2.4 dinitrotoluene are given by Kremann and Hofmeier (1910). 479 PHENANTHRENE SOLUBILITY OF PHENANTHRENE IN SEVERAL SOLVENTS AT 25. (Hildebrand, Ellefson and Beebe, 1917.) Solvent. Alcohol Benzene Carbon Bisulfide Cms. CuHjo per 100 Gms. Solvent. 4.91 59-5 80.3 Solvent. Carbon Tetrachloride Ether Hexane Gms. CuHjo per too Gms. Solvent. 26.3 42.9 9-15 SOLUBILITY OF PHENANTHRENE PICRATE IN ABSOLUTE ALCOHOL. (Behrend, 1892.) Grams per 100 Grams Saturated Solution. Picric Acid + Phenanthrene = Phenanthrene titrate. 12-3 0.91 O.yi 1.62 14.3 i .00 0.78 1.78 17.5 1.05 0.82 1.87 SOLUBILITY OF PHENANTHRENE PICRATE IN ALCOHOLIC SOLUTIONS CONTAINING PICRK; ACID AND ALSO PHENANTHRENE. (Behrend.) Grams Added to 62 cc. Abs. Alcohol. Gms. per 100 Gms. Sat. Solution. t o. , - - N r . P. Picrate + Picric Ac. + Phenanthrene. Pi 12.3 12-3 12 -S 12-3 17-5 17-5 17-5 17-5 17-5 PHENOL C 6 H 5 OH. SOLUBILITY IN WATER. (Alexejew, 1886; Schreinemaker, 1900; Rothmund, 1898.) The determinations were made by the "Synthetic Method," for which, Note, p. 1 6. Gms. Phenol per 100 Gms. \ Picrate + Picric Ac. + Phenanthrene 1-4 o-5 1.4 0.8 o 0.9 2.1 0.8 4.0 4 O.I 4 O.2 4 1.0 4 4.0 o 4 o.o 2.2 Picric Ac. + Phenanthrene *- P. Picrate 0-534 I-4I3 1-947 0.409 2.I4I 2-550 o-354 2-77 3.124 0.139 5.626 c . 76? I-I59 o-75 I Q I 1.285 0.68 1-97 2-45 o-37 2.82 6.15 0.195 6-345 0.423 3.276 3-699 i> . Aqueous Layer. Phenol Layer. 10 7-5 75 20 8-3 72.1 30 8.8 69.8 40 9.6 66.9 50 12 62.7 55 I4.I 59-5 60 I6. 7 55-4 65 21-9 49.2 68.3 (crit. temp.) 33-4 Results confirming the above, and also viscosity measurements, are given by Scarpa (1904). The complete T x data for the system are given by Smits and Maarse (1911). F.-pt. data for the system are given by Rozsa (1911) and Paterno and Ampola Vaubel (1895) states that ipo gms. sat. aqueous solution contain 6.1 gms. phenol at 20. Sp. Gr. of solution = 1.0057. PHENOL 480 PHENOL. SOLUBILITY OF PHENOL IN AQUEOUS ACETONE SOLUTIONS. (Schreinemakers, 1900.) In 4.24% Acetone. Grams Phenol per In 12.2% Acetone. Gms. Phenol per In 24.6% Acetone. Gms. Phenol per In 59-9% Acetone. Gms. Phenol per A0 100 Gms. 100 Gms. 100 Gms. 100 Gms. Aq. Acetone Layer. Phenol Layer. Aq . Acetone Layer. Phenol * Layer. Aq. Acetone Layer. Phenol ' Layer. Aq . Acetone Phenol Layer. Layer 20 ... . . . 26. o 60. 5 3 S-o 74.0 4.0 71.0 6.0 69.5 28.5 57.0 40 5-5 70.0 32.0 52.0 5 5-7 67.0 5-0 67.0 8.0 64.0 34- 5 49- 60 6-5 61.0 36.51! 46. 5 U 70 9.0 51.0 7-5 57-5 19.0 57- (49-5) 41-5 80 14. o 34-0 10.5 49-5 14.0 5 2 -5 (84) 22.5 20. 4* 23. ot 47. ot (90.3) 25. o 26. 5t 44. o t (90. 5) 35- , o 90 t8 S t8 7 .S 45 !!47.5 The figures in the above table were read from curves plotted from the original results. Similar data are also given for acetone solutions of seven other concen- trations. The determinations were made by adding various quantities of phenol to the mixtures of water and acetone and observing the temperature at which the two layers became homogeneous. The isothermal lines for 30, 50, 68, 80, 85 and 87 were located. The results for 30 and 80 are as follows: (Schreinemakers, 1900.) Results at 30. Gms. per 100 Gms. Mixture. Gms. per 100 Gms. Mixture. Results at 80. Gms. per 100 Gms. Mixture. H 2 0. (CH^CO. C 6 H 6 OH. H 2 0. (CH 3 ) 2 CO. C 6 H 6 OH. H 2 0. (CHs),CO. C 6 H 5 OH. 92 8 18.4 34-i 47-5 83.3 3-7 13 9 2 -3 i-7 6 17.2 25-8 57 82.9 7-i 10 9 1 4 5 17.9 81.1 64 74-7 13-8 "5 88.4 7.6 4 19.1 12.9 68 61.8 20.2 18 81 IS 4 21 .1 9-9 69 52-5 24-5 23 70.9 23.1 6 22.6 7-4 70 40.6 27.4 32 62.1 28.9 9 25.2 4.6 70.2 32.2 21.8 46 51.6 34-9 13-5 27.1 2-3 70.6 33-4 15-6 5i 39-8 40.2 20 28. 7 i-3 70 35-4 ii. 6 53 28.9 43-i 28 30 o-5 69-5 40-5 7-5 S 2 21.8 40.2 38 49-7 4-3 46 62.7 2.8 34-5 SOLUBILITY OF PHENOL IN BENZENE AND IN PARAFFIN, (Schweissinger, 1884-85.) Gms. C 6 H 5 OH per 100 Gms. Solvent at: Solvent. Paraffin Benzene 16. 1.66 2-5 8-33 10 43". 5 IOO Data for equilibrium in systems composed of phenol, water and each of the fol- lowing compounds are given by Timmermans (1907): NaCl, KC1, KBr, KNO 3 , , MgSO4, tartaric acid, salicylic acid, succinic acid and sodium oleate. 48 1 PHENOL MISCIBILITY OF AQUEOUS ALKALINE SOLUTIONS OF PHENOL WITH SEVERAL ORGANIC COMPOUNDS INSOLUBLE IN WATER. (Scheuble, 1907.) To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and then the phenol, drop- wise, until solution occurred. Temperature not stated. Composition of Homogeneous Solutions. cc. Aq. KOH. 5 5 5 5 5 cc. Aq. Insol. Cmpd. Gms. Phenol. 2 (= 1.64 gms.) Octyl * Alcohol 2.6 5 (= 4.1 gms.) 3.9 2 (= 1.74 gms.) Toluene 4.9 3 (= 2.61 gms.) Toluene 6.7 2 (== 1.36 gms.) Heptane 15 1 = the normal secondary octyl alcohol, i. e., the so-called capryl alcohol, CH 3 (CH 2 )s.CH(OH)CHj. SOLUBILITY OF PHENOL IN AQUEOUS SOLUTIONS OF DEXTRO TARTARIC ACID AND OF RACEMIC ACID. (Schreinemakers, 1900.) In 5.093% Acid. In 19.34% Acid. In 40.9% Acid. Gms. Phenol per 100 Gms. Gms. Phenol per 100 Gms. Gms. Phenol per too Gms 30 50 60 65 67-5 69* Aq. Acid Layer. 7-5 14-5 19-5 25 Phenol Layer. 72.5 65.5 58 53 48.5 t. ' Aq. Acid Phenol Layer. Layer. 50 10 77 60 12.5 72 70 19 64 75 29 56 77* 47 47-5 70 80 85 90 95 < 97" Aq. Acid. Layer. 13 16.5 2O 26.5 39 Phenol Layer. 77 74 63-5 54 * Critical temperature. Identical results were obtained with the dextro and racemic acids, showing that both have exactly the same influence on the formation of layers in the system water-phenol. DISTRIBUTION OF PHENOL BETWEEN: AMYL ALCOHOL AND WATER AT 25. BENZENE AND WATER AT 2o r (Herz and Fischer Ber. 37, 4747, '04.) (Vaubel J. pr. Ch. [2] 67, 4?6, 'op Millimols Phenol per 10 cc. Gms. Phenol per 100 cc. Alcoholic Aqueous Layer. Layer. 0- 75 0-P47 0.9 0.05 I.I 0.07 e. 6 o. 16 54-1 3- 8 3 5 6 -3 3-9 Alcoholic Aqueous Layer. Layer. o. 705 o. 0441 o. 846 o. 047 1.035 0.066 2.445 0.150 50.88 3.601 52.93 3.667 Gms. Phenol in 1 Volumes of Solvents i Gm. Phenol ^5" . Layer. Layer 5occ.H 2 O+ 5occ.C 6 H 8 0.286 0.714 " -r-ioocc. " o. 1188 0.8212 " +151000. u 0.0893 0.9107 " *f20occ. " 0.0893 0.9107 DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AT 20. (Philip and Bramley, 1915.) Gms. Phenol per Liter. * Ratio - a 2.194 2.189 2.184 2.176 2.181 Results are also given for the effect of NaCl, KC1 and of LiCl upon the above distribution. Aq. Layer, a. C 6 H 6 Layer, b. 0-945 2.073 0.888 1.944 0.711 1-553 0-594 0-475 1.293 i 036 lims. .Fnei iol per Liter. A. .... Ratio-. a 2.173 2.175 2.180 2.189 Aq. Layer, a. 0-356 0.238 O.II9 0.0601 QH 6 Layer; b. 0.7736 o.5 J 77 0.2594 O.I3I4 PHENOL 482 DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AND BETWEEN AQUEOUS K 2 SO 4 SOLUTIONS AND BENZENE AT 25. (Rothmund and Wilsmore Z. physik. Ch. 40, 623, '02.) NOTE. The original results, which are given in terms of gram jnols. per liter, were calculated to grams per liter, and plotted on cross- section paper. The following figures were read from the curves obtained. Between H2O and C 6 H. Effect of K2SO 4 upon the Distribution. Grams C 8 H 5 OH per Liter of: Gms. K 2 SO 4 per Liter (i) Gms. CeH 6 OH per Liter of: GOGms. C 6 H 5 OH per Liter of: fi 2 Layer. Layer. Aq. Solution. Aq. Layer. QjH,, Layer. Aq. Layer. Layer. 5 10 L36 17.08 59-96 9-52 26.28 10 28 2.72 16.92 60.63 9-50 26.38 20 e 5-44 10.89 16.85 16-44 60.92 62.73 9.46 9-35 26.55 27.06 C 5 128 21.79 15.89 65.19 9.09 28.27 30 200 43-59 14-85 69.71 8.68 30.21 35 300 87.18 12.92 78.00 r-79 34.38 40 410 45 520 So 610 (i) First series. (2) Second series. EQUILIBRIUM IN THE SYSTEM PHENOL, BENZENE AND WATER AT 25. (Horiba, 1914-1916.) Cms. per 100 Cms. Sat. Sol. Solid Phase. Q,H 6 OH CH 6 OH. C 6 H 6 . H 2 0. 81.06 18.94 89.78 7-92 2.30 92.31 4.07 3.62 95-14 o 4.86 The results for the conjugated liquid layers are as follows: Upper Layer. Cms. per 100 Gms. of the Liquid. Lower Layer. Gms. per 100 Gms. of the Liquid. QHjOH. C 6 H,. H 2 0. C 6 H 6 OH. CeHs. H 2 O. 99-95 0.05 O 0.198 99 . 802 4-78 94-98 O.24 i-43 0.21 98.36 17.36 81.83 0.81 2.80 O.2I 96.99 21.15 77.22 1.63 3.01 O.2I 96.77 28.01 69.81 2.18 3-35 0.21 96.44 44-39 50-56 5-05 4.07 O.I9 95-74 55-8o 36-13 8.07 4-58 0.19 59-23 74-5 3 22.5 5-65 0.17 94.18 70.70 29.29 8.195 91-805 Data for this system are also given by Rozsa (1911). The coefficient of distribution of phenol between olive oil and water at 25, cone, in oil -*- cone, in H 2 O, is given by Boeseken and Waterman (1911) as greater than 9 and less than 10.3. The figure was obtained by dividing the solubility of phenol in olive oil by the solubility in water, each being determined separately. Results for this system are also given by Reichel (1909). According to Greenish and Smith (1903), 100 cc. of olive oil dissolve about 50 gms. of phenol at 15.5. These authors report that 100 cc. of glycerol dissolve about 300 gms. of phenol at 15.5. PHENOL DISTRIBUTION OF PHENOL BETWEEN WATER AND CARBON TETRA CHLORIDE AT 20. (Vaubel J. pr. Ch. [2] 67, 4?6, '03.) Grams Phenol in: Volumes of Solvents. Gms. Phenol Used. 50 cc. H 2 O+ 10 cc. CC1 4 " ' + 20 CC. + 30 cc. + 50 cc. + 100 CC. " + 1500:. " +200 CC. H 2 O Layer. CCU Layer. 0.8605 0.1285 0.7990 O.I9OO 0.7275 0.2615 0-6435 Q-3455 0.4680 0.5210 0.3645 0.6245 0.3240 0-6650 DISTRIBUTION OF PHENOL BETWEEN WATER AND ORGANIC SOLVENTS AT 25. (Herz and Rathmann, 1913-) Results for: H 2 O and Tetrachlor Ethane. Mols. C 6 H 5 OH per Liter. H,0 -d Chloroform. Mols. C 6 H 6 OH per Liter. Mols. C 6 H 5 OH per Liter. H 2 O Layer. CHC1 3 Layer. 0-0737 0.254 0.163 0.761 O.2II 1.27 0.330 3-36 0.436 5-43 H 2 O and Pentachlor Ethane. Mols. C 6 H 5 OH per Liter. H 2 O Layer. CC1 4 Layer. 0.0605 0.0247 O.I4O 0.072; 0.213 O.I4I o-355 o-392 0.489 1.47 0.525 2.49 H 2 O and Trichlor Ethylene. Mols. C 6 H 5 OH per Liter. H 2 O Layer. C 2 H 2 C1 4 Layer. 0.023 0.061 0.0345 0.094 O.oSl 0.265 O.II4 0.406 0.151 O.6l7 0.155 0.651 H 2 O and Tetrachlor Ethylene. Mols. C 6 H 5 OH per Liter. H 2 O Layer. C 2 HC1 6 Layer. o . 0420 o . 0495 0.0866 o.no 0.150 0.226 O.222 0.432 O.28O 0.708 0.333 I - I 7o H 2 Layer. CHC1:CC1 2 Layer. o . 044 o . 046 o.ioi 0.107 0.180 0.236 0.236 0.388 0-277 0.555 0.339 0-986 H 2 Layer. CC1 2 :CC1 2 Layer. 0.0653 0.0277 0.143 0.0650 0.327 0.198 0.421 0.4II o . 490 o . 684 DISTRIBUTION OF PHENOL AT 25 BETWEEN: (Herz and Fischer Ber. 38, 1143, '05.) Water and m Xylene. Water and Toluene. Millimols C 6 H 6 OH Grams C 6 H 6 OH per 10 CC. per 100 cc. CflHgCH; Layer. j H 2 Layer. C 6 H 5 CH 3 Layer. H 2 6 Layer. 1.244 0.724 1.169 0.681 3-047 1.469 2.865 1.381 4.667 2 .200 4-389 2.068 6.446 2.861 6.o6l 2.691 14.960 4-750 14.07 4.467 I7-725 5-346 16.69 5.027 47-003 7.706 44-20 7.246 8.087 50.58 7.604 90.287 9.651 84.89 9.074 Millimols per 10 cc mC 6 H4(CH 3 ) 2 Layer. 1.610 4.787 I2.2IO 22.7l8 34.827 51.352 77.703 H 2 ' Layer. 1.071 2.726 5.l68 6.994 8.124 9.123 10.050 Grams C 6 H 6 OH per zoo cc. H 2 O' Layer. Layer. I.5I4 4.501 11.22 21.36 32.75 48.28 73-07 1.007 2.563 4-86(5 6-57? 7.640 8.578 9-45< PHENOL 484 FREEZING-POINT DATA (Solubilities, see footnote, p. i) ARE GIVEN FOR MIXTURES OF PHENOL AND EACH OF THE FOLLOWING COMPOUNDS: Dimethylpyrone. (Kendall, igua.) Bromotoluene. (Paterno and Ampola, 1897.; Phenylhydrazine. (Cuisa and Bernardi, 1910.) Toluidine. (Kremann, 1906.) Picric Acid. (Philip, 1903; Kremann, 1904.) p Toluidine. (Kremann, 1906; Philip, 1903.) Picric Acid +Other Cm'p'ds. (Kremann, '04.) Urea (Kremann & Rodenis, 1906; Philip, 1903.) Pyridine. (Bramley, 1916; Hatcher &Skirrow, 1917.) Methyl Urea. (Kremann, 1910.) Quinoline. (Bramley, 1916.) as Dimethyl Urea. Resorcinol. (Jaeger, 1907.) s Dimethyl Urea. Sulfuric Acid. (Kendall and Carpenter, 1914.) Urethan. (Mascarelli & Pestalozza, 1908, 1909.) Thymol. (Paterno and Ampola, 1897.) p Xylene. (Paterno and Ampola, 1897.) m Xylidene. (Kremann, 1906.) PHENOLATE of Phenyl Ammonium. SOLUBILITY IN WATER. (Alexejew, 1886.) The determinations were made by the synthetic method (see p. 16). The re- sults were plotted and the following figures read from the curve: Gms. Phenolate per 100 Gms. Gms. Phenolate per 100 Gms. t. t *- 160 98.7 crit. t. CO ... 200+ Ortho. Meta. Para. 1.078 i-59 2-32 2 . 90 3-75 crit. t. oo * in above table indicates that a solid phase is present. The above determinations were made by the synthetic method. M. pt. of o = 44.9; of m = 95.1, of p = 113.8. Triple pt. for o = 43.5 at cone. 99.48 and 0.35; for m = 41.5 at cone. 74 and 3.16; for p = 39.6 at cone. 71.2 and 3.26. One liter sat. solution in water contains 3.89 gms. o nitrophenol at 48. One liter sat. solution in i.o n o C 6 H 4 (ONa)NO 2 contains 9.6 gms. o nitrophenol at 48. (Sidgwick, 'io.) SOLUBILITY OF o NITROPHENOL IN LIQUID CARBON DIOXIDE. (Buchner, 1905-6.) Gms. o C,H 4 (OH)NO 2 t. per 100 Gms. Sat. Sol. -52 1.9 -40 2-5 20 3-8 + 10 5-2 7-7 Gms.0C,H 4 (OH)NO 2 per 100 Gms. Sat. Sol. 12.5 14 15 16 20 io 21.2 33-8 48.5 60 . 7 100 gms. 95% formic acid dissolve"! 6.06 gms. 0C 6 H 4 (OH)NO 2 at 20.8. (Aschan, '13.) ioogms.95%formicaciddissolve23.44gms.C 6 H 4 (OH)NO 2 at 18.6. One liter of sat. solution of the pale yellow form of p nitrophenol in benzene, contains 7.1 gms. p C 6 H 4 (OH)NO 2 at 5, determined by the f.-pt. method. (Sidgwick, 1915.) SOLUBILITY OF THE THREE NITROPHENOLS, SEPARATELY, IN TOLUENE, BROMOBENZENE AND IN ETHYLENE DIBROMIDE. (Sidgwick, Spurrell and Davies. 1915.) f Gms. o C 6 H 4 (OH)NO 2 per 100 Gms. Sat. Sol. Gms. p C 6 H 4 (OH)NO 2 per 100 Gms.Sat. Sol. l> In C 6 H 5 CH 3 . In C 6 H 6 Br, , In C 2 H 4 Br 2 . In C 6 H 5 CH 3 . In C 6 H 6 Br. InC 2 H 4 Br 2 . 15 46.9 40 70 18 5 . . . 31 20 55-2 48-8 47 ,8 80 28 .1 32 7 52 \ 25 64.6 57.7 56 .8 90 54 4 59 7 73-2 30 74.6 67.2 6 7 . 2 100 79 .6 80 .6 88.5 35 84-5 78.3 79 IIO 96 3 96 3 98 40 93.1 89.7 9 6 t < Gms. m CH 4 (OH)NO 2 per loo Gms. Sat. Sol. Gms. m C 6 H 4 (OH)NO 2 t. per loo Gms. Sat. Sol. t. Gms. m C 6 H 4 (OH)NO, per loo Gms. Sat. Sol. in C 6 H 5 CH 3 . in C,H 6 CH 3 . in C 6 H 6 CH 3 . .39 .6 4.63 64.8 16.44 78-5 70 50 45 .8 6 67-7 2O.26 82.3 79 57 48 9 7-03 71-5 33-16 88.8 91 43 54 9.II 74-5 46.93 95.1 IOO 58 11.28 75-7 57-71 DiNitro PHENOL C 6 H 6 . OH.(N0 2 ) 2 . 100 gms. abs. methyl alcohol dissolve 6.3 gms. C 6 H 3 .OH.(NO 2 ) 2 at 19.5. 100 gms. abs. ethyl alcohol dissolve 3.9 gms. C 6 H3.OH.(NO 2 ) 2 at 19. 5. (deBruyn, '92.) PHENOLS 486 FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES CONTAINING SUBSTITUTED PHENOLS. o Bromophenol + p Bromophenol. o Chlorophenol 4- P Chlorophenol. o lodophenol + p lodophenol. 5 Tribromophenol + s Trichlorophenol. 2.4.6 Tribromophenol + Acetyl tribromophenol. o Chlorophenol + Quinoline. + Pyridine. o Nitrophenol + Acetyl o Nitrophenol. o Nitrophenol + a Dinitrophenol. + p Toluidine. p Nitrophenol + p Nitrosophenol. Each of o, m and p Nitrophenol + Dimethylpyrone. + Picric Acid. + Sulfuric Acid. + Urea. 2.4 Dinitrophenol + Dimethylpyrone. PHENOLPHTHALEIN (Ce^OH^CO.CeKUCO. loogms. H 2 O dissolve 0.0175 gm. phenol phthalein at 20. (Acree and Slagle, 1909.) 0.04 at 20-25. (Dehn.'i?.) " Pyridine " 796. gms. " aq. 50% pyridine " 300 PHENYL ALANINE C 6 H 6 NHCH(CH 3 )COOH. Data for the solubility of phenyl alanine in aqueous salt solutions at 20 are given by Wiirgler (1914) and Pfeiffer and Wurgler (1916). PHENYLENE DIAMINES o, m, and p. C 6 H 4 (NH 2 ) 2 . SOLUBILITY IN WATER AT 20. (Vaubel, 1895.) 100 cc. sat. solution contain 23.8 gms. w'CeH^NI^, d 20 of sat. sol. = 1.0317. loo cc. sat. solution contain 3.7 gms. p C 6 H 4 (NH 2 )2, d 20 of sat. sol. = 1.0038. RATIO OF DISTRIBUTION BETWEEN WATER AND BENZENE AT 25. (Farmer and Warth, 1904.) (Holleman and Rinkes, 1911.) (Kiister and Wiirfel, 1904-05.) (Boeseken, 1912.) (Bramley, 1916.) (Boeseken, 1912.) (Crompton and Whitely, 1895.) (Pawlewski, 1893; Philip, 1903.) (Jaeger, 1908.) (Kendall, i Ratio Gms. m C 6 H 4 (NH !1 ) 2 per: Ratio conc. CH 50 cc. CH. 1000 cc. H 2 O. 50 cc. C 6 H. 1000 cc. H 2 O. 0.0273 0.9818 0.556 0.0828 9.088 0.2040 7-5470 0.541 0.0463 5.260 PHENYL HYDRAZINE C 6 H 6 NH.NH 2 . RECIPROCAL SOLUBILITY OF PHENYLHYDRAZINE AND WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Bianksma, 1910.) Gms. t o C,H 6 NH.NH 2 Soli , p , e per 100 Gms. * - Sat. Sol. O O Ice 19.8 0.3 2.2 " 20.4 0.6 3.9 " 21.8 0.7 4.6 " +CH 6 NH.NH 2 .JH 2 O 23 I 4.7 C,H s NH.NH 2 .iH 2 24.2 7 6 26.1 ii. 6 7 26.2 15 8 25-7 16.8 9.6 23-2 19.6 10.9 " i7 16.6 Gms. QH 6 NH.NH 2 per loo Gms. Sat. Sol. 60 Solid Phase. 64 75 79 83 1 C,H 6 NH.NH,.iH,O 2 " 2 " 7 " 92-3 93-7 97-2 98.8 99 +C 6 H 8 NH.NH, C 6 H 6 NH.NH 2 19.6 m. pt. ioo . . Between the concentrations 10.9 and 60. i, two liquid layers are formed. See p. 487. 487 PHENYL HYDRAZINE RECIPROCAL SOLUBILITY OF PHENYL HYDRAZINE AND WATER. (Con.) The temperatures of separation into two liquid layers of mixtures containing from 10.9 to 60 per cent C 6 H 6 NH.NH2, are: t o of Cms. C 6 H 5 NH.NH 2 t , O f Gms^C.HjNH.NH, t , Q j Cms. C 6 H 5 NH.NH 2 19.8 ii. 6 54.6 29.7 50.6 48.9 34 I3- 8 55-1 31-4 50 5!-2 45 l6 -5 55-a.cnt.-t 33-6 46 53-5 49-4 18.7 55.2 36.9 44.2 54.7 52.4 21.9 55 39-3 39-6 56.7 54 25.2 54 41-7 24 59.5 54.4 28.3 52.6 46 19.8 60. i Additional data for concentrations of CeHsNH.NH-j above 60 per cent, are given by Oddo (1913)- Benzoyl PHENYL HYDRAZINE C 6 H 6 NH.NHC 7 H 5 O. SOLUBILITY IN AQUEOUS ALCOHOL AT 25. (Holleman and Ajitusch, 1894.) Cms. Hydrazine c n p- Vnl % Cms. Hydrazin* ico 2.39 0.793 8o J -59 0.859 95 2.43 0.814 70 i. 08 0.884 93 3 - 822 55 0.51 0.917 90 2.26 0.831 40 0.16 0.946 The above results give an irregular curve. See remarks under a acetnaph- thalide, p. 13. X CO V H Phthalyl PHENYL HYDRAZIDE C 6 H 4 < >N.N< CO CeHfi. CO^ CH 3 Phthalyl PHENYL Methyl HYDRAZIDE C 6 H 4 < > N.N ( ^CO' ^ C 6 H 5 . Very careful determinations of the solubilities of the enantrotropic forms of these two compounds in alcohol, chloroform, ethyl acetate, acetone, benzene and in methyl alcohol are given by Chattaway and Lambert (1915). See also p. 312. Acetone PHENYL HYDRAZONE (CH 3 ) 2 C.N 2 HC 6 H 5 . DATA FOR THE SYSTEM ACETONE PHENYL HYDRAZONE -f- WATER ARE GIVEN BY BLANKSMA (1912). The following results were obtained for the solubility of (CHs^C. in water. t. Cms. (CH 3 ) 2 C.N 2 .HC,H S pet loo cc. Solution. Solid Phase. 0.090 (CHa) 2 C.N 2 HCeHB.HjO 15 0.187 32.8 0.412 x " DibromoPHENYL SELENIDE and TELLURIDE (Ce Data for the solubility of mixtures of dibromophenyl selenide and dibromo- phenyl telluride in benzene at 21 are given by Pellini (1906). PHLOROGLTTCINOL 1.2.3 C 6 H 3 (OH) 3 .2H 2 O. ioogms.H 2 O dissolve i.i3gms.phloroglucinolat2O-25. (Dehn, '17.) " pyridine " 296 " aq. 50% pyridine " 134 PHOSPHO MOLYBDIC ACID 488 PHOSPHO MOLYBDIC ACID P 2 O 5 .2oMoO 3 .52H 2 O. SOLUBILITY IN ETHER. (Parmentier, 1887.) t. o. 8.1. 19.3. Cms. Acid per 100 gms. Ether 80 . 6 84 . 7 96 . 7 PHOSPHORUS P. (yellow) SOLUBILITY IN BENZENE. (Christomanos Z. anorg. Ch. 45, 136, ^55.) .o Gms. P per Sp. Gr. of * 100 Gms. C 6 He. Solution. AO Gms. P per Sp. Gr. of ' jooGms.CeHe. Solution. 1-5*3 . . . 23 3-399 0.8875 5 1.99 . . . 25 3-7o 0.8861 8 2.31 0.8990 30 4.60 10 2.4 0.8985 35 5-17 15 2.7 0.894 40 5-75 18 3-i 0.892 45 6. ii 20 3-2 0.890 27-4- 103.9 32.9. 107.9 Gmi. P 100 Gms. 50 55 60 65 70 75 81 6.80 7.32 7.90 8-40 8.90 9.40 10.03 SOLUBILITY OF PHOSPHORUS IN ETHER. 10 (Christomanos.) Gms. P per 100 Gms. (C 2 H 6 )20. Sp. Gr. of Solutions. Gms. P per c f t f. -a-.; <&$ Gms. P per t . zoo Gms. (C 2 H 6 ) 2 0. 0-434 15 0.90 0.723 28 i .60 O.62 . . . 18 I -OI 0.719 30 i .75 0.79 0.732 20 1.04 0.718 33 i. 80 0.85 0.729 23 1. 12 0.722 35 2.00 25 i-39 0.728 SOLUBILITY OF YELLOW PHOSPHORUS IN SEVERAL SOLVENTS AT 15. (Stich, 1903.) Gms. P per Solut Solvent. er 100 Gms. lution. Almond Oil 1.25 Oleic Acid i . 06 Paraffin 1.45 Water o . 0003 Acetic Acid (96%) o . 105 SOLUBILITY OF PHOSPHORUS IN CARBON DISULFIDE. (Cohn and Inouye, 1910.) IO -7-5 -5 Gms. P per 100 Gms. Sat. Sol. 31.40 35.85 41-95 -3-5 -3.2 -2-5 Gms. P per 100 Gms. Sat. Sol. 66.14 71.72 75 o +5 IO Gms. P per TOO Gms. Sat. Sol. 8l.27 86.3 89.8 The above determinations were made with very great care. The authors show that the previous determinations of Giran (1903) are inaccurate. loogms. alcohol (d = 0.799) dissolve 0.312 gm. P, cold, and 0.416 gm., hot. (Buchner ) 100 gms. glycerol (d^ = 1.256) dissolve 0.25 gms. Pat 15-16. (Ossendowski, 1907.) Red phosphorus is completely insoluble in turpentine even up to 270 provided the determination is made without access of air (sealed tube). If air is not ex- cluded a portion of the red phosphorus may be converted to yellow phosphorus which would dissolve. (Colson, 1907.) 489 PHOSPHORUS RECIPROCAL SOLUBILITY OF PHOSPHORUS AND SULFUR, DETERMINED BY THE SYNTHETIC (Sealed Tube) METHOD. (Giran, 1906.) (Mixtures of P and S were sealed in small tubes and first heated to about 200 to cause combination. They were then cooled to the solidification point and gradually heated to the temperature at which the last crystal disappeared. The following results, which were read from the diagram, show the eutectics and maxima of the curves.) Eutectics. t. Mols. % S in Mixture. Selid Phase. -40 33-5 P 4 S 3 +P 2 +46 50 P4S 3 +P 2 S 3 230 67-5 P 2 S 3 +P 2 S 6 243 75 P 2 S 6 +PS 6 Maxima of Curves. M Mixt?re SiQ Solid Phase. + 167 43.6 296 60.8 272 314 72.1 86.1 P 2 S 3 P 2 S 5 PS, Additional data for this system are given by Boulouch (1902 and 1906) and by Helff, 1893. PHOSPHORUS SULFIDES P 4 S 3 , P 4 S 7 , P 4 Si . SOLUBILITY IN CARBON DISULFIDE, BENZENE, AND IN TOLUENE. (Stock, 1910.) Cms. P 4 S 3 per 100 Cms.: ll . 82. CeHs. C 6 H 6 Cn 3 . 20 II .1 +17 80 27 100 2-5 II. I 3-125 no 15-4 Cms. P 4 S7_per 100 Cms. PjS 10 per Gms. 82. Cms. CSj. 0.005 0.0286 0.083 0.182 0.223 PHOSPHORIC ACID (ortho) H 3 PO 4 . SOLUBILITY IN WATER. (The sat. solutions were analyzed by titration. stirred for at least two hours.) (Smith and Menzies, 1909.) The mixtures were constantly Gms. H 3 PO 4 t. per too Gms. Solid Phase. Sat. Sol. -81* 62.9 Ice+2H s PO 4 .H 2 O -16.3 76.7 aHPO 4 .HjO + o-5 78.7 " 14-95. 81.7 " 24.03 85-7 " 27 87.7 " 29-15 9-5 " 29-35! 91.6 " 28.5 92-S " 27 93-4 " 25-4 94.1 " 23-5* . . . " +ioH 3 PO 4 .H 2 O 24.11 94.78 ioH 3 PO 4 .H 2 O Gms. H 3 PO 4 t. per 100 Gms. Solid Ph Sat. Sol. 24.38 94.80 ioH 8 PO 4 .H 2 O 24.40 94.84 " 24.81 -94-95 a 25.41 95.26 25-85 95.54 " 26.2* 26 . 23 95 . 90 H.PC 27.02 95.98 K 29.42 96.15 M 29.77 96.11 " 37.65 97.80 " 39.35 98.48 42.30! 100 +H 3 P0 4 * Eutec. t M. pt. NOTE. The results of Giran (1908), determined by the freezing-point method, are shown to be erroneous, due to supercooling which would result from failure to induce crystallization by inoculation. F.-pt. data for mixtures of phosphoric and phosphorus acids are given by Rosen- hejm, Stadler and Jakobsohn (1906). ns. H 4 PA per ico Gms. Sat. Sol. Solid Phase. 59 86.8 Ice +H 4 PA.i^H 2 88.8 +H4PA 100 IL.PA PHOSPHORIC ACID 490 PyroPHOSPHORIC ACID H 4 P 2 O 7 . SOLUBILITY IN WATER. (Giran, 1908; see note on preceding page.) t. -75 +26 m. pt. 23 61 m. pt. HypoPHOSPHORIC ACID H 2 PO 3 .H 2 O. 100 gms. sat. solution in water contain 81.8 gms. H 2 PO 3 at the m. pt., 62, of the hydrated compound, t^POa.HgO. (Rosenheim and Pritze, 1908.) PHTHALIC ACIDS C 6 H 4 (COOH) 2 , o, m and p. SOLUBILITY OF EACH IN WATER. (Vaubel, 1895, 1899.) Acid. t. Gms. per 100 Gms. Solution. o Phthalic Acid 14 o . 54 m = Isophthalic Acid 25 0.013 p = Terephthalic Acid . . . almost insoluble MELTING TEMPERATURES OF MIXTURES OF o PHTHALIC ACID AND WATER. (Flaschner and Rankin, 1910.) (The determinations were made by the sealed tube method of Alexejew.) Wt. %Acid 14.4 28.2 39.6 49.3 75 100 Saturation Temp. 97 111.5 121.2 130 162 231 Unstable boundary ... ... ... 27 84 SOLUBILITY OF o PHTHALIC ACID IN ALCOHOL AND IN ETHER AT 15. (Bourgoin, 1878.) Gms. C 6 H 4 (COOH) 2 o per 100 Gms. Solution. Solvent. Absolute Alcohol 9.156 II .70 90 per cent Alcohol 10.478 IO.O8 Ether 0.679 0.684 SOLUBILITY OF o PHTHALIC ACID IN ALCOHOLS. (Timofeiew, 1894.) Gms. o Gms. o Alcohol t CeH4(COOH)j Alcohol. t o C 6 H 4 (COOH) 2 per 100 Gms. per 100 Gms. Sat. Sol. Sat. Sol. Methyl Alcohol 2 15.1 Ethyl Alcohol 21.4 11.65 + 19 19.5 Propyl Alcohol - 3 3-42 + 21.4 20.4 + 19 5.27 Ethyl Alcohol -2 8.2 (( (( 22 5-54 + 19 ii (i a 23 5-70 DISTRIBUTION OF o PHTHALIC ACID AND OF m PHTHALIC ACID (ISOPHTHALIC) BETWEEN WATER AND ETHER AT 25. (Chandler, 1908.) Results for o Phthalic Acid. Results for m Phthalic Acid. Mols. o C,H 4 (COOH) 2 Ratio for Mols. m C 6 H 4 (COOH) 2 Ratio for I** L iter: ?- U n - P er L * er: U ' Ratio- n - P er ao- H t O Layer, a. Ether Layer, 6. Acid. H 2 O Layer, a. Ether LayerA Acid. 0.0261 0.0322 0.809 0.637 0.000398 0.0485 0.0821 0.0359 0.0131 0.0150 0.873 0.645 0.000272 0.0288 0.0943 0.0352 0.0085 0.0091 0.932 0.667 0.000263 0.0279 0.0944 0.0350 0.0056 0.0056 I. 006 0.635 0.000252 0.0266 0.0949 0.0341 Ratio of solubilities of Phthalic acids in olive oil and water at 25. (Boeseken and Waterman, 1911, 1912.) o Phthalic acid, solubility in oil -s- solubility in H 2 O = o.oi. p Phthalic acid (Terephthalic), solubility in oil 4- solubility in H 2 O = 9.52. loo gms. 95% formic acid dissolve 0.55 gm. p phthalic acid (Terephthalic) at 20.2. CAschan, 1913.) 491 PHTHALIC ACIDS NitroPHTHALIC ACIDS o and m (Iso) C 6 H3(NO 2 )(COOH) 2 . SOLUBILITY OF THE SEVERAL NITRO PHTHALIC ACIDS itf WATER AT 25. (Holleman and Huisinga, 1908.) Gms. Acid Acid. M. pt. per 100 Gms. Sat. Solution. a. Nitro Ortho Phthalic Acid 220 2 .048 8 " 164-166 very soluble Symmetrical Nitro Iso Phthalic Acid (anhy.) 255-256 0.220 " (hydrated) 255-256 0.157 Asymmetrical " " " 245 0.967 Vicinal 300 0.216 The authors also give several tables showing the solubility of one of the above compounds in aqueous solutions of another. These data are .made the basis of an ingenious solubility method for determining the composition of unknown mixtures of these compounds. PHTHALIC ANHYDRIDE C 6 H 4 O. SOLUBILITY IN WATER. (van der Stadt, 1902.) All determinations, except first three, made by the Synthetic Method. See p. 16. Gms. C 8 H 4 O 3 per 100 Gms. Mol. per cent to C 8 HA. * Gms. C 8 H 4 O 3 per 100 Gms Mol. percent C 8 H 4 0,. Water. Solution. Water. Solution. O .00295 O.OO295 o .00036 189 5 1076 91 .66 56.73 25 .6194 0.6150 P754 188 .8 1265 9 2 .68 60.63 50 I .630 1.604 o .198 187 .1 1474 93 -65 64.22 135-9 94 -3 48.54 10 30 181 .8 2332 95 .88 73-95 165.4 210 67.75 20 -36 176 .2 3334 97 .07 80.23 179.4 319 3 76.13 27 .98 169 -4 5745 98 .28 87.49 186.2 449 .6 81.81 35-37 130 9 37570 99 .72 97.89 189.6 546 .1 84.50 39 93 83010 99 .86 99.02 191 821 5 89.19 5o 131 .2 00 100 IOO 190.4 863 4 89.62 51 .24 SOLUBILITY OF PHTHALIC ANHYDRIDE IN CARBON BISULFIDE. (Arctowski, 1895; Etard, 1894.) Gms. t. per loo Gms. Solution. 70 2.3 90 3-7 loo 5 120 8 140 13-3 160 20.7 180 30.2 100 gms. 95% formic acid dissolve 4.67 gms. phthalic anhydride at 19.8. (Aschan, 1913.) loo gms. pyridine dissolve 83.5 gms. phthalic anhydride at 20-25. (Dehn, 1917.) r. Gms. C 8 H 4 O 3 per loo Gms. Solution. f. per 100 Gms. Solution. -112.5 0.013 + 10 0.3 -93 -77-5 0.013 0.016 20 30 0.7 0.8 -40 20 10 0.03 0.06 O.IO 40 50 60 1.2 0.20 PHTHALIMIDE 492 PHTHALIMIDE o C 6 H 4 < (CO) 2 > NH. 100 gms. H 2 O dissolve 0.06 gm. phthalimide at 20-25. (Dehn, 1917.) " pyridine " 14.15 gms. " " aq. 50% pyridine 7-74 PHTHALONIC ACID COOH.C 6 H 4 .CO.COOH.2H 2 O. 100 gms. sat. solution in water contain'64.4 gms. anhydrous acid at 15, Sp. Gr. of sat. solution = 1.243. (Tcherniac, 1916.) Amide of PHTHALIDECARBOXYLIC ACID C 6 H 4 O (m. pt. 185.5). 100 gms. H 2 O dissolve 0.132 gm. of the acid at 16.2 and 5.7 gms. at b. pt. (Tcherniac, 1916.) PHYSOSTIGMINE (Eserine) Ci5H 21 N 3 O 2 . Water dissolves only traces of physostigmine. ipo gms. of a solvent composed of 3 gms. H 3 BO 3 per 100 cc. of aq. 50% glycerol dissolve 2.5 gms. Ci 5 H 2 iN 3 O 2 at room temp. (Baroni and Borlinetto, 1911.) PHYSOSTIGMINE SALICYLATE C 6 H 4 (OH)COOH.Ci 6 H 21 N 3 O 2 and Physo- stigmine Sulfate H 2 SO 4 (Ci 5 H 2 iN 3 O 2 ) 2 . SOLUBILITY OF EACH IN WATER, ALCOHOL, ETC. (U. S. P. VIII.) Salicylate. Sulfate. Water 25 I-38 very soluble Water 80 6.66 u Alcohol 25 7-87 (( Alcohol 60 25 {( Chloroform 25 ii. 6 (( Ether 25 0.57 0.083 Methylphenyl PICRAMIDES. SOLUBILITY IN ETHYL ALCOHOL AT 18. (Hantzsch, 1911.) 100 cc. C 2 H 6 OH dissolve 0.32 gm. of the isomer melting at 108. 100 cc. C 2 H6OH dissolve 0.42 gm. of the isomer melting at 128. PICRIC ACID C 6 H 2 .OH.(NO 2 ) 3 1.2.4.6. SOLUBILITY IN WATER. (Dolinski Ber. 38, 1836, '05; Findlay J. Ch. Soc. 81, 1219, 'oa.) Gms. CeHsNsO? per 100 Grams Gms. CeHsNaO? per 100 Grams Solution. Water. Solution. Water. 0.67 (D.) .68 (D.) I .05 (F.) 60 2 77 (D.) 2.8l(D. ) 3-i7(F.) 10 .80 o .81 I .10 70 3 35 3 47 3-89 20 1. 10 I .11 I .22 80 4 .22 4 .41 4.66 30 1.38 I 40 I 55 90 5 44 5 .72 5-49 40 I .78 I .98 IOO 6 75 7 .24 6-33 50 2.15 2 .19 2 53 . Dolinski does not refer to the previous determinations of Findlay. loo gms. H 2 O dissolve 1.525 gms. C 6 H 2 .OH.(NO 2 ) 3 at 30 and 1.868 gms. at 40. (Karplus, 1907.) loo gms. H 2 O dissolve 1.45 gms. C 6 H 2 .OH.(NO 2 ) 3 at 20. (Sisley, 1902.) loo gms H 2 O containing 5 gms. H 2 SO 4 per liter, dissolve 0.61 gm. C 6 H 2 OH(NO 2 ) 3 at 20. (Sisley, 1902.) loo gms. ethyl alcohol dissolve 8.37 gms. C 6 H 2 OH(NO 2 ) 3 at 22. (Timofeiew, 1894-) loo gms. methyl alcohol dissolve 22.5 gms. C 6 H 2 OH(NO 2 ) 3 at 22. loo gms. propyl alcohol dissolve 3.81 gms. C 6 H 2 OH(NO 2 ) 3 at 22. loo gms. 95% formic acid dissolve io.83gms. C 6 H 2 OH(NO 2 ) 3 at 19.8. (Aschan, 1913.) 493 PICRIC ACID SOLUBILITY OF PICRIC ACID IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 25. (Levin Z. physik. Ch. 55, 520, '06.) One liter of aqueous solution contains 0.05328 gram mols. = 12.20 grams C 6 H 2 .OH(NO 2 ) 3 at 25. Gm Mols Salt Gram Mols. Picric Acid per Liter in Aq. Solutions of: per Liter. 'NaCl. NaNO 3 . Na 2 SO 4 . LiCl. Li 2 S0 4 . NIL^Cl. .01 05524 0.05529 0-05604 0.05480 O .05661 0.05487 O O2 o 05559 0-05872 0.05872 0-05558 .06053 0.05540 05 o .05729 0.06632 0.06632 0.05703 .06691 0.05771 .07 .05862 6.07093 0.07093 0.05878 o .07013 0.05865 O .10 .05902 0.07670 0-07670 0.06132 o 07437 O 50 o .0790 .123 I .00 o .Il8o ... .149 Gm. , Mols. Grams Picric Acid per Liter in Aq. Solutions of: Salt per Liter. NaCl. NaNO 3 . Na 2 S0 4 . ; uci. Li 2 S0 4 . NHC1. O .01 12.66 12.67 12.83 12 .55 12-97 12-57 O O2 12.74 13-45 13-45 12-74 I3-87 12.69 05 13.12 13.06 15-33 13.22 O .07 13-43 16.25 16.25 13-47 16.06 13-44 O .10 13-52 17-57 17-57 14.05 17.04 50 18.09 28.18 I .00 26.98 34-14 Solubility in Aq. Cane Sugar. Solubility in Aq. Grape Sugar. Gm. Mols. Sugar per Liter. Picric Ac. per Liter Solution. Sp. Gr. Solution. Gm. Mols. Grape Sugar per Liter. Picric Acid er Liter Sol. Gm. Mols. Cms. G. Mols. Gms. O-IO 0.05202 II .92 I .OI22 O.IO 0.0530 12.14 0.25 0.04978 11.40 I.03I9 0.25 0.0521 "93 0.50 0.0482 II .04 I .0654 0.50 0-0509 11.66 1. 00 0.0443 IO.I5 I.I294 I .OO 0-0474 10.86 SOLUBILITY OF PICRIC ACID IN ABSOLUTE ALCOHOL. (Behrend Z. physik: Ch. 10, 265, '92.) TOO gms. sat. solution contain 5.53 grams CeHgNgOj at 12.3, and 5.92 grams at 14.8. Sp. Gr. of the latter solution = 0.8255. SOLUBILITY OF PICRIC ACID IN BENZENE. (Findky.) Gms. Mols. t*. C 6 H 3 N 3 7 C6H 3 N 3 O per 100 Gms.C 6 H 6 . per 100 Mols.CsE 5 3-70 1.26 10 5-37 I .83 '5 7-29 2. 4 8 20 9.56 3-25 25 12.66 4-30 26.5 13 -5 1 4.60 35 21.38 7.26 Gms. Mols. per 100 per 100 Gms.CeHe. Mols. ~ " 38.4 26.15 8.88 45 33-57 ii .40 55 50-65 17.21 58.7 58-42 19.83 65 71 .31 24.20 75 96.77 32.92 PICRIC ACID 494 SOLUBILITY OF PICRIC ACID IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AT 25. (Stepanow, 1910.) (The solutions were saturated by constant agitation at constant temperature. The picric acid in the saturated solutions was determined by evaporation and weighing. The solubility passes through a minimum.) Mols. HC1 C 6 H 2 .OH.(] \Oz) s per Liter. Mols. HC1 C 6 H 2 .OH.(N0 2 ) 3 per Liter. per Liter. Mols. Cms. per Liter. Mols. Cms. 0.25 0.0116 2.66 3^7 0.0068 i-SS 0.50 0.0079 i. 80 4.40 0.0082 1.87 o-7S 0.0062 1.42 5-H o . 0098 2.26 i 0.0054 1.24 5-51 O.OIO5 2.41 1.47 0.0050 1.14 5-87 O.OII5 2.6 5 2.20 0.0051 i-i5 6.24 0.0123 2.82 2.94 0.0057 i-3i 6.61 O.OI25 2.86 SOLUBILITY OF PICRIC ACID IN ETHER. (Bougault, 1903.) Solvent. t. Cms. CeHjNsOr per Liter' Ether of Sp. Gr. 0.721 13 10.8 (B.) Ether of Sp. Gr. 0.725 (0.8 pt.H 2 O per 100) 13 36 .8 Ether of Sp. Gr. 0.726 (i pt. H 2 O per 100) 13 40 Ether saturated with H 2 O 15 51 .2 H 2 O saturated with Ether 15 13.8 100 parts of ether dissolve about 2.27 gms. picric acid at 15. (S. 1905.) chloroform 2 " petroleum ether 0.04 ' loo gms. sat. solution in pure ether contain 5 gms. picric acid at 20. (Sisley, 1902.) 100 cc. sat. solution in pure ether contain 3.7 gms. picric acid at 20. 100 gms. sat. solution in pure toluene contain 12 gms. picric acid at 20. 100 cc. sat. solution in pure toluene contain 10.28 gms. picric acid at 20. " 100 cc. sat. solution in pure amy 1 alcohol contain i .755 gms. picric acid at 20. " DISTRIBUTION OF PICRIC ACID AT 25 BETWEEN: Water and Amyl Alcohol. Water and. Toluene, (Herz and Fischer Ber. 37, 4747. '04.) (H. and F. Ber. 38, 1142, '05.) Millimols CeHjjNsOr per 10 cc. Gms. CeHaNgOy per 100 cc. Millimols CeHgNaOy per 10 cc. Gms. QHgNaOr per 100 cc. Aq. Alcohol " Aq. Alcohol * Aq. Toluene Aq. Toluene Layer. Layer. Layer. Layer. Layer. Layer. Layer. Layer. 0-0553 0.0930 0.127 0.213 0.075 0.126 0.172 0-289 0.0920 0.1850 O.2II 0.424 O.IO9 0.230 0.250 0.527 O.l6l3 0.4127 0.369 0.946 0.163 0.482 o-374 I .IO4 0.1869 0.5182 0-428 I.I88 0.244 I .026 o-559 2-35 1 0.3l6l 1.079 0.724 2-473 0.389 2-347 0.891 5-38o 0.4471 1.638 I .024 3-753 0.496 3-747 i-i37 8.586 0.5624 2.189 1.288 5-oi7 0.583 5-135 I-336 11.770 0.6423 2 -549 1.472 5-839 Additional data for the distribution of picric acid between water and amyl alcohol and water and toluene at 20 are given by Sisley (1902). Very irregular results were obtained. The fact that the colors of the two layers are different, was taken to indicate that the picric acid dissolves in a different molecular form in the two layers. 495 PICRIC ACID DISTRIBUTION OF PICRIC ACID AT 25 BETWEEN: Water and Bromoform. Water and Chloroform. (Herz and Lewy Z. Electrochem, n, 820, '05.) (H. and L.) MiUimols CeHsNaOr Cms. CeHsNaOr Mfflimols QjHsNaOr Cms. QHaNsOr per 10 cc. per 100 cc. per 10 cc. per 100 cc. Aq. Bromoform Aq. Bromoform Aq. Chloroform Layer. Layer. Layer. Layer. Layer. Layer. 0.321 0.365 0.736 0.836 0.207 0.254 0-401 0.515 0.919 I.lSo 0.329 0-547 0-475 - 6 55 i. 088 1.501 0.488 1.09 o-575 0.871 1.317 1.995 0.561 1.41 0.674 1.14 1.545 2.612 0.588 1.53 DISTRIBUTION OF PICRIC ACID BETWEEN: Water and Benzene. (Kuriloff, 1898.) Water and Ether at 20. Mols. Picric Acid per Liter: Cms. Picric Acid per Liter: Aq. Chloroform Layer. Layer. 0.474 0.582 o-754 1-253 1.118 2.498 1-285 3-230 1-348 3-505 (Sisley, 1902.) Dist. Coef. 2.63 i-79 i-34 0.13 O.OI Aq. Layer. C 6 H 6 Xayer. 0.026l 0.0940 O.O2O8 0.0779 0.0188 0.0618 0.0132 0.0359 0.0097 0.0198 1 L Aq. Layer. Ether Layer. 6.78 17.85 3.74 6.70 2.85 3.72 0.85 o.n O.IO O.OOI Data for the distribution of picric acid between water and mixtures of chloro- form and toluene at 25, are given by Herz and Kurzer (1910). FREEZING-POINT DATA (Solubilities, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES: Picric Acid + Dirnethylpyrone. (Kendall, 1914.) -j- Resorcinol. (Philip and Smith, 1905.) -J- Thymol. (Kendall, 1916.) + a Trinitrotoluene. (Giua, 1916.) MethylPICRIC ACID C 6 H(CH 3 )(OH)(NO 2 ) 3 , 1.3.2.4.6. SOLUBILITY IN AQUEOUS SOLUTIONS AT 25. (Kendall, 1911.) Normality of Normality of A c i Dissolved A c i Dissolved Aq. Solvent. Methyl pkric Aq. Solvent. Methyl picric Acid. Acid. Water o.oioo 0.01975 n o Nitrobenzoic Acid 0.0080 " -f-Ligroin 0.01019 0.00981 n Salicylic Acid 0.01063 " -(-Toluene 0.01059 0.01393 n " 0.01072 . 0.00895 n HC1 0.00641 H 2 O+Excess of Salicylic Acid 0.02613* 0.01593 n HC1 0.00487 0.01013 n Picric Acid 0.00702 * = normality of salicylic acid + inethylpicric acid. PICROTOXIN C3oH340 13 . loogms. H 2 O dissolve o.4i+gm. picrotoxin at 20-25. (Dehn, 1917.) pyridine dissolve 102 gms. " aq-50%pyridine 81 PIMELIC ACID (CH 2 ) 5 (COOH) 2 . DISTRIBUTION BETWEEN WATER AND ETHER AT 25. (Chandler, 1908.) Mols. (CH 2 ) 5 (COOH)j per Liter. Dist. Coef. ? 1 0.7095 0.7170 0.7195 o . 7480 0.7075 Dist. Coef. Corrected for lonization. 0.670 0.670 0.663 0.663 0-653 Aq. Layer, a. o . 00998 0.00702 0.00480 O.OO284 O.OOI79 Ether Layer, b, O.OI4O7 0.00979 0.00667 0.00380 0.00253 PILOCARPINE 496 PILOCARPINE C U H 16 N 2 2 . 100 cc. oil of sesame dissolve 0.3142 gm. CnHi6N 2 O 2 at 20. (Zalai, 1910.) PILOCARPINE HYDROCHLORIDE C U H 16 N 2 O 2 .HC1, Pilocarpine Nitrate CiiHi 6 N 2 O 2 .HNO 3 , and Piperine Ci 7 H 19 NO 3 in Several Solvents. (U. S. P., VIII.) Gms. per 100 Gms. Solvent. Solvent. t. , x C U H 16 N 2 2 .HC1. C U H 16 N 2 2 .HN0 3 . ,C 17 H 19 NO,. Water 25 333 25 insoluble Alcohol 25 4-35 1-66 6.66 Alcohol 60 9.09 6.2 22.7 Chloroform 25 0.18 ... 58.8 Ether 25 ... ... 2.8 PINACOLIN CH 3 .CO.C(CH 3 ) 3 . SOLUBILITY IN WATER AND IN AQ. ACETONE AT 15. (Deiange, 1908.) Per cent Acetone cc. Pinacolin Dissolved in Solvent. per 100 cc. Solvent. o (= pure H 2 O) 2 .44 20 3.47 33 6.06 50 9.09 60 14-27 PINENE HYDROCHLORIDE C 10 H 16 .HC1. IOO gms. 95% formic acid dissolve i.2gms. CioHie.HCl at 16.8. (Aschan, 1913.) PIPECOLINE C 5 H 9 (CH 3 )NH d and /. F.-pt. data for mixtures of d and I pipecoline are given by Ladenburg and Sobecki (1910). PIPERIDINE CH 2 <(CH 2 .CH 2 ) 2 >NH. DISTRIBUTION BETWEEN WATER AND BENZENE AT ORD. TEMP. (Georgievks, 1915.) Gms. Piperidine per: Gms. Piperidine per: 25 cc. H 2 O Layer. 75 cc. C 6 H 6 Layer. 25 cc. H 2 O Layer. 75 cc. CeH 6 Layer. 0.1573 0.4127 0.891 2.339 0.256 0.674 1.299 3-589 0.409 I. 088 I.7I2 4-789 0.674 1-746 PIPERIDINE HYDROCHLORIDE CH 2 <(CH 2 .CH 2 ) 2 >NH.HC1. SOLUBILITY IN SEVERAL SOLVENTS. (Freundiich and Richards, 1912.) c,o, ro , *o Mols. Piperidine Solvent. * HC1 per Liter. Water o 4.87 25 S-iQ Tetrachlor Ethane (sat. with H 2 0) o 0.13 25 0.29 Nitrobenzene 25 0.00543 Benzene 25 0.00102 MethylPIPERIDINES 2-, 3-, 4-, n Methyl, etc. Data for the reciprocal solubility of 2-methylpiperidine and water, 3-methyl- piperidine and water, 4-methylpiperidine and water, nitrosopiperidine and water and for w-methylpiperidine and water, determined by the synthetic (sealed tube) method of Alexejeff, are given by Flaschner and MacEwan (1908) and by Flasch- ner (1909) and (1908). Similar data for -ethylpiperidine and water and for n- propylpiperidine and water are given by Flaschner (1908). 497 PIPERIDINES act' Diphenyl PIPERIDINES Ci 7 Hi 9 N. SOLUBILITIES OF THE ACID SALTS OF ace' DIPHENYL PIPERIDINE AND OF I so act' DIPHENYL PIPERIDINE IN WATER AT 25. (Scholtz, 1901.) Cms. per 100 Cms. Sat. Solution: Piperidine Base. f - - * - \ HClSalt. HBrSalt. HI Salt. H 2 SO 4 Salt. a, a' Diphenyl Piperidine, m. pt. 7 1 o . 85 o . 90 0.12 6.31 Iso a, a' Diphenyl Piperidine, liquid 3.02 i 0.72 easily soluble PIPERINE Ci 7 Hi 9 N0 3 . (See also under Pilocarpine, preceding page.) SOLUBILITY IN SEVERAL SOLVENTS. ! Authority. Water 20-25 0.01 (Dehn, 1917.) Ethyl Alcohol 9.5 2.9 (Timofeiew, 1894.) Methyl " 9.5 4.4 Propyl " 9.5 2.94 Trichlor Ethylene 15 9 . 83 (Wester and Bruins, 1914-) Pyridine 20-25 22.46 (Dehn, 1917.) Aq. 50% Pyridine 20-25 IJ -39 PLATINUM ALLOYS. SOLUBILITY OF PLATINUM ALLOYS IN NITRIC ACID. (Winkler Z. anal. Ch. 13, 369, '74.) Appro*. Grams Alloy Dissolved per TOO Grams HNOs Solution of Pt^in Alloy. ^ i.3o8Sp.Gr. i.2o8Sp.Gr. i.iooSp.Gr. i.2o8Sp.Gr4 IO 57 44 6 9 37 5 6 9 57 51 35 2-5 62 61 69 I 75 70 76 10 46 27 II 51 5 36 34 14 4i 2-5 51 40 30 i 5 2 41 37 . . 10 7 9 8 5 8 9 10 .. 2-5 22 17 ii 21 18 23 .-. 10 14 19 4 3 5 21 20 6 18 2-5 25 42 8 I 49 6 4 10 ...-. 10 10 II 19 5 5 16 12 6 ii 2-5 16 24 19 .. i 20 32 37 Pt and Silver Pt and Copper Pt and Lead n M II Pt and Bismuth Pt and Zinc ii n ii PLATINUM BROMIDE PtBr 4 . 100 grams sat. aqueous solution contain 0.41 gram PtBr4 at 20. (Halberstadt Ber. 17, 2062, '84.) PLATINIO POTASSIUM BROMIDE K 2 PtBr 6 . 100 grams sat. aqueous solution contain 2.02 grams K 2 PtBr 6 at 20. (HalberstadU PLATINUM CHLORIDES 498 PLATINIC DOUBLE CHLORIDES of Ammonium, Caesium, Potassium, Rubidium and Thallium. (Data for each separately.) SOLUBILITY IN WATER. (Crookes Chem. News 9 37. 205, '64; Bunsen Pogg. Ann. 113, 337, *6i.) Grams per 100 Grams Water. 1". (NH^tCle. Cs 2 PtCl6. K 2 PtCl6. Rb 2 PtCl 6 . Tl 2 PtCler Liter. Solvent. O.2C 0.0236 0.25 O.O2O7 0.50 0.0109 I o . 0046 2 O.OO45 3 O.OO43 4 0.0042 sat. 0.0034 In Aq. NaCl at 1 6. Gm. Mols. Cms. K 2 PtCU NaCl per loo Gms. per Liter Solvent. 0.672 0.05 0.700 0.10 0.729 0.25 0.758 0.50 0-775 o-7S 0.791 i 0.805 2 0.834 SOLUBILITY OF POTASSIUM CHLOROPLATINATE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL AND OF &THYL ALCOHOL AT 20. (Archibald, Wilcox and Buckley, 1908.) Wt. Per cent Alcohol in Gms. K 2 PtCl per 100 Gms.: Solvent. Aq. CHjOH. Aq. C 2 H 5 OH. 0.7742 0.7742 5 0-535 0.491 10 0.412 0.372 20 0.264 0.218 30 0.1831 0.134 40 O.II65 0.076 Wt. Per cent Alcohol in Solvent. 50 60 70 80 90 100 Gms. K 2 PtCl 8 per 100 Gms.: Aq. CH 3 OH. Aq. C 2 H S OH. 0.0625 0.0491 0.0325 0.0265 0.0l82 0.0128 0.0124 0.0085 0.0038 0.0025 O.OO27 o . 0009 loo gms. aq. 8.2% isobutyl alcohol dissolve 0.625 S m - K 2 PtCl 6 at 20. loo gms. aq. sat. isobutyl alcohol dissolve 0.318 gm. K 2 PtCl 6 at 20. (Archibald, Wilcox and Buckley, 1908.) One liter of 55% alcohol dissolves 0.150 gm. (NH 4 ) 2 PtCl 6 at 15-20. (Fresenius, 1846.) 76% " " 0.067 " 95% " " 0.0037 " 499 PLATINUM CHLORIDES DISTRIBUTION OF PLATINUM CHLORIDE BETWEEN WATER AND ETHER AT ORD. TEMP. (Mylius, 1911.) When i gm. of platinum as chloride is dissolved in 100 cc. of aq. 10% HC1 and shaken with 100 cc. of ether, o.oi per cent of the platinum enters the etheral layer. If water is used instead of 10% HC1, approximately the same per cent of Pt enters the ether layer. 100 cc. anhydrous hydrazine dissolve I gm. platinic chloride, with formation of a black precipitate at room temp. (Welsh and Broderson, 1915.) ChloroPLATINATES of Hydrocarbon Sulfines. SOLUBILITY OF EACH IN WATER AT 16. (Stromholm, 1900.) Chloroplatinate. Cms. Salt per f * \ 100 Gms. Name. Formula. Sat. Solution. Trimethyl Sulfine Chloroplatinate Dimethyl Ethyl Sulfine Chloroplatinate Methyl Diethyl Sulfine Chloroplatinate Triethyl Sulfine Chloroplatinate (CH 3 ) 3 S] 2 PtCl 6 0.47 (CH 3 ) 2 (C 2 H5)S] 2 PtCl 6 3-43 CH 3 (C 2 H 5 ) 2 S 1 2 PtCl6 2.42 (C 2 H5) 3 S] 2 PtCl 6 1.98 Similar results for more complex sulfines are also given. PLATING AMINES. SOLUBILITY IN WATER. (Cleve, 1866 ?) Amine. Formula. Gms. per 100 Gms. H 2 O. Platino Semi Diamine Chloride pt< (NH.),.C1 . 26 at , 3 . 4 at 100 Chloro Platino Amine Chloride OPt < *gjg o. 14 at o, 3 at 100 Chloro Platino Semi Diamine Chloride Cl 3 Pt(NH 3 ) 2 Cl o . 33 at o, i . 54 at 100 PLATINOUS NITRITE AMMONIUM COMPOUNDS. SOLUBILITY IN WATER. (Tschugaev and Kiltinovie, 1916.) When ammonia is added to a cold solution of potassium platinonitrite a copious precipitate of the composition Pt2NH 3 (NO 2 )2, is obtained. By comparison of the solubility of this precipitate with that of each of three hitherto described ammonioplatinum compounds, it 'was found that the precipitate obtained as de- NH 3 . .N0 2 scribed, corresponds to the cis form of dinitro diammonio platinum, / Pt ( NH 3 NO 2 The results for the solubility of cis and trans dinitro diammonio platinum and of tetra ammonia platinous platinonitrite in water, are as follows : Gms. Each Compound per 100 Gms. H 2 O. trans Pt2NH 3 (NO.,) 2 . [Pt 4 NH 3 ] [Pt(NOk) 4 l- 25 0.083 0.063 o.on 63 o . 66 o . 49 ... 74.4 ... 0.81 95 2.32 1.85 Determinations of the solubility of several mixtures of the cis and trans com- pounds in water are also given. PONCEAU (Free Acid) Ci HTN:N.Ci H4(OH)(SQ,H),.9HiO. SOLUBILITY IN SEVERAL SOLVENTS AT 23. (Sisley, 1002.) Solvent. Gms. Ponceau per Liter. Water 209 . 6 +5 Gms. H 2 SO 4 per Liter 180 " Sat. with Amyl Alcohol 195 Amyl Alcohol 73 .4 Ether, pure none Data are also given for the distribution of ponceau between water and amyl alcohol at 18. POTASSIUM 500 POTASSIUM K 2 . SOLUBILITY OF POTASSIUM IN LIQUID AMMONIA. (Ruff and Geisei, 1906.) t o Mols. NH 3 to Dis- solve i Gm. Atom K. loo 4.82 -So 4-79 o 4.74 SOLUBILITY OF POTASSIUM IN MELTED KOH. (von Hevesy, 1909.) Difficulty was experienced due to the failure of the excess of K to separate com- pletely from the saturated solution. Time of heating, 50 hours. t. Cms. K per 100 Cms. KOH. 480 7.8-8.9 600 3 -4 650 2 -2.7 700 0.5-1.3 POTASAMMONIUM K ? (NH 3 )2. 100 gms. liquid ammonia dissolve 99.5 gms. K 2 (NH 3 )2 at o and 97 gms. at +8.44. (Joannis, 1906.) POTASSIUM ACETATE CH 3 COOK.iiH 2 O. SOLUBILITY IN WATER. (Abe, 1911.) Gms. CHsCOOK t. per 100 Gms. Solid Phase. H 2 0. 2CH 3 COOK.3H 2 O Gms. CH 3 COOK per 100 Gms. H 2 0. Solid Phase. O.I 216.7 2CH 3 COOK.3H 2 O 41 327-7 2 CH 3 COOK. 3 H 2 5 223.9 " 4i.3tr.pt. ... " + 2 CH 3 cooK.H 2 o 10 233.9 " 4 2 3 2 9 2CH 3 COOK.H 2 O 15 243.1 45 332.2 20 255.6 50 337.3 25 269.4 " 60 350 30 283.8 " 70 364.8 35 30.1-8 " 80 380.1 38 314.2 90 396.3 40 323.3 96 406.5 SOLUBILITY OF POTASSIUM ACETATE IN AQ. ALCOHOL SOLUTIONS AT 25. (Seideii, '10.) <* 25 of Gms. CH 3 COOK per Sat. Sol. loo Gms. Solvent. 219.6 70 LI56 Il8.3 219.6 80 1.085 87.6 192.4 90 0.990 52.9 171.8 95 0.922 34.2 147.5 I0 0.850 16.3 Wt. % QHjOH in Solvent. O 20 40 50 60 Sat. Sol. .417 .363 .302 .260 .210 Gms. CH 3 COOK per 100 Gms. Solvent. F.-pt. data for potassium acetate + acetic acid (Vasilev, 1909); potassium acetate + sodium acetate (Baskov, 1915). (Baskov, 1915.) POTASSIUM SulfoANTIMONATE SOLUBILITY IN WATER. Solid Phase. Ice (Donk, 1908.) ' i-3 - 2.6 - 4 - 7.2 10.6 -&.$ -28.8 9-5 17.1 24.2 35-4 42.9 48.8 52.6 59-6 t o Gms. K 3 SbS 4 per loo Gms. Sat. Sol. Solid Phase. -34 62 Ice+K 3 SbS 4 .6H 2 O 10 65.5 K3SbS 4 .6H 2 - 4.5 69.1 " 75-4 K 3 SbS 4 .sH 2 O + 10 76.2 30 75-i 50 77-7 K 8 SbS 4 . 3 H 2 80 79.2 it 5oi POTASSIUM SulfoANTIMONATE SOLUBILITY OF POTASSIUM SULFOANTIMONATE IN AQ. SOLUTIONS OF POTASSIUM HYDROXIDE AT 30 AND VICE VERSA. (Donk, 1908.) Gms. per 100 Gms. Sat. Sol. K 3 SbS 4 . 75 68.4 56.8 50-9 37-7 KOH. O 3-4 ii 16.1 25 5 Solid Phase. K 3 SbS 4 .sH 2 O K 3 SbS 4 . 3 H 2 K 3 SbS 4 Gms. per 100 Gms. Sat. Sol. K 3 SbS 4 . 19.8 KOH. 40-5 > OUMU rua,sc. K 3 SbS 4 "5 49.9 " +KOH. 2 H 2 9.4 49.9 56.3 KOH.2H 2 O u SOLUBILITY OF POTASSIUM SULFOANTIMONATE IN AQ. ETHYL ALCOHOL. (Donk, 1908.) Solid Phase. K 3 SbS 4 .sH 2 O Results at 10. Gms. per roopms. Sat. Sol. 'K 3 SbS 4 . QH5OH. ' o 94 o 90.5 Two Liquid Layers Formed Here. 69 . 2 0.8 76.1 o Composition of the Liquid Layers. Gms. per 100 Gms. Results at 30. Gms. per 100 Gms. Sat. Sol. K 3 SbS 4 . O C 2 H 5 OH. 97 Solid Phase. K 3 SbS 4 .3H 2 O Two Liquid Layers Formed Here: Composition of the Liquid Layers. Gms. per 100 Gms. Alcoholic Layer. Aqueous Layer. K 3 SbS 4 . 2.2 4.2 27.4 C 2 H 5 OH. 85 54-7 46.9 16 "K 3 SbS 4 . 67.4 49 45-6 C,H B OH. I.I 3-4 3-8 Alcoholic Layer. Aqueous Layer. K 3 SbS 4 . C 2 H 5 OH. K 3 SbS 4 . QHBOtf. 93-i 70.5 0.5 85.6 65.2 I .2 2.2 56.8 47-8 5-7 8.5 41.1 37-i 9-2 12.7 31-1 SOLUBILITY OF POTASSIUM SULFOANTIMONATE IN AQ. METHYL ALCOHOL AT 15. (Donk, 1908.) Composition of the Liquid Layers. Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Solid Phase. K 3 SbS 4 . CH 3 OH. 0.5 99.5 K 3 SbS 4 0-45 99-5 i. 5 93-9 1.8 92 Two Liquid Layers Formed Here. 62.7 7.5 KaSbS^HjO ... ... 31.1 31.3 68.4 3.5 41.1 22.2 75-5 o 47.2 18.2 Two Liquid Layers Formed Here. ... ... 57 - 2 II. I 0-5 98.1 POTASSIUM (Dihydrogen) ARSENATE KH 2 AsO 4 . 100 gms. sat. aq. solution contain 15.9 gms. KH 2 AsO4, or 100 gms. H 2 O dissolve 18.86 gms. at 6. Sp. Gr. of solution = 1.1134. (Field, 1859.) 100 cc. sat. aq. solution contain 28.24 gms. KH 2 AsO 4 at about 7. (Muthmann and Kuntze, 1894.) loo gms. glycerol (d 16 = 1.256) dissolve 50.1 gms. potassium arsenate at 15-16. (Ossendowski, 1907.) Alcoholic Layer. Aqueous Layer. 'K,SbS 4 . 5 4-9 13-6 19.1 CH 3 OH.' 82.5 76.3 66.9 54 45-5 62.5 CH 3 OH." 8 POTASSIUM BENZOATE 502 POTASSIUM BENZOATE KC 7 H 6 O 2 .3H 2 O. SOLUBILITY IN WATER. (Pajetta, 1906, 1907.) t- 17-5 2 5 33-3 50 Cms. KC 7 H60 2 per ioo Gms. Solution 41.1 42.4 44 46.6 POTASSIUM BORAXES. SOLUBILITY OF POTASSIUM BORATES IN WATER AT 30. (Dukelski Z. anorg. Chem. 50, 42, '06, complete references given.) Gms. per ioo Gms. Solution. Gms. per ioo Gms. Residue. Solid ' K 2 0. B 2 3 . * K 2 0. B 2 3 . ' Phase- 47 . 50 ... ... ... KOH.2H 2 O 46.36 O.QI 46.13 9-02 K 2 O.B 2 3 .2iH20 40-51 1-25 41.62 9.71 36.82 I. 80 39-90 13 .19. 3 2 -74 3-5 1 37-22 14.58 29.63 6.98 35.05 17.92 24.84 17-63 30.02 21.70 " 23.30 18.19 26.84 3 J -49 K 2 0.2B 2 03.4H20 16.21 13-10 25.12 33 .18 11.78 9.82 20.57 26.43 9.18 8.00 22.38 31-30 6.22 9.13 20-87 31 06 7-73 J 3'37 22.21 36.24 K 2 0. 2 B 2 8 .4H 2 0+K 2 0.5B 2 3 .8H 2 7.81 13.28 17.50 34.18 7.71 13.21 11.49 34 -8l K 2 0. 5 B 2 3 .8H 2 7.63 13.28 12.51 4052 3-42 7-59 10.77 37.35 I. 80 4.15 5.88 20-00 0.51 3.19 10.81 40.89 0-33 4-5 8 7-7 2 34-21 K 2 0. 5 B 2 3 .8H 2 0+B(OH) a 0.31 4-46 3.91 30-68 3-54 POTASSIUM MetaBORATE KBO 2 . Fusion-point data for potassium metaborate + sodium metaborate and for potassium metaborate + potassium metaphosphate are given by van Klooster (1910-11). POTASSIUM PerBORATES, 2KB0 3 .H 2 O, 2KB0 3 .H 2 O 2 . SOLUBILITY OF EACH IN WATER. (v. Girsewald and Wolokitin, 1909.) T>_ rat ., % Active O in f0 Gms. Salt per ioo Borate. Gms. Water. 2KBO 3 .H 2 O 14.93 i- 2 S 14.93 i5 2.50 2KBO 3 .H 2 O 2 20.84 15 0.70 POTASSIUM (Fluo) BORIDE KBF 4 . ioo gms. H 2 O dissolve 0.44 gm. KBF 4 at 20, and 6.27 gms. at 100. (Stolba, 1889.) 503 POTASSIUM BROMATE POTASSIUM BROMATE KBrO 3 . SOLUBILITY IN WATER. (Krcmers Pogg. Ann. 97, 5, '56; Rammelsberg Ibid. 55, 79, '42; Pohl Sitzber. Akad. Wiss Wien. 6, 595, '51-) Gms. KBrOa per 100 Gms. f m ' Water. Solutio o 3 -i 3-o 10 4-8 4.6 20 6.9 6-5 25 8.0 7-4 30 95 8.7 Gms. KBrOa per 100 Gms. Water. Solution. 40 13.2 II-7 50 17-5 J 4-9 60 22. f 18.5 80 34-0 25.4 100 50.0 33.3 Sp. Gr. of solution saturated at 19.5 = 1.05. SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OP SODIUM NITRATE AND OF SODIUM CHLORIDE. (Geffcken Z. physik. Chem. 49, 296, '04.) In Sodium Nitrate. Grams per Liter. Mols. KBrO 3 NaNO 3 . KBrO 3 . per Liter. o.o 78.79 0.4715 42.54 96.01 0-5745 85.09 108.6 0.6497 170.18 128.3 0.7680 255.27 150.9 0.9026 340.36 172.3 1.031 In Sodium Chloride. Grams per Liter. NaCl. KBr0 3 . o.o 78-79 29 25 82.24 58.50 93.87 117.0 100.9 175-5 IQ 4 3 234.0 106.9 Mols. KBrO 3 per Liter. 0-47*5 0.5220 0.5616 o . 6042 0.6244 o . 6400 SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OF VARIOUS COMPOUNDS AT 25. (Rothmund, 1910.) Solvent, 0.5 Normal T Aq. Sol. of: Water alone Methyl Alcohol Ethyl' Alcohol Propyl Alcohol Tertiary Amyl Alcohol Acetone Ethyl Ether Formaldehyde Glycol Glycerol Mannitol Grape Sugar Urea IBrcfper Gms. KBrO 3 per Solvent, 0.5 Normal Aq Sol of- Mols. KBrO 3 per Gms. KBrOj per Liter. Liter. Liter. Liter. 0.478 79.84 Dimethylpyrone 0.478 79.84 0-444 74.16 Ammonia 0.445 74-33 0.421 70-33 Dimethylamine 0.384 64.13 0.409 68.31 Pyridine 0.415 69.31 0.383 63.97 Piperidine 0.396 66.15 0.425 70.99 Urethan 0-433 72.33 0-395 65.98 Formamide 0-473 79.02 0-397 66.31 Acetamide 0-445 74-33 0.448 74.84 Glycocol 0.501 83.68 0.451 75-34 Acetic Acid 0.456 76.17 0-45 1 75-34 Phenol 0.426 7LI5 0.431 71.99 Methylal 0.405 67.66 0-477 79-68 Methyl Acetate 0.420 70.15 POTASSIUM BROMIDE 504 POTASSIUM BROMIDE KBr. SOLUBILITY IN WATER. (Average curve from results of Meusser Z. anorg. Chem. 44, 79, '05; Etard Compt. rend. '84; Ann. chim. phys. [7] 2, 526, '94; de Coppet Ibid. [5] 30,^16, '83; Tilden and Shenstone Phil. Trans. 175, 23, '84.) 98, 1432. Grams KBr per 100 Grams Grams KBr per 100 Grams I . Solution. Water. i> . Solution. Water. - 6.5 20. o 25.0 30 41-4 70.6 - 8-5 26.5 35-7 40 43-o 75-5 -10.5 2 9'5 41.8 50 44-5 80.2 -"5 31.2 45-3 60 46.1 85-5 10 3 1.8 46.7 70 47-4 QO.O - 5 33-3 50.0 80 48-7 95-o o 34-9 53-5 90 49.8 99.2 5 36-1 56.5 IOO 51.0 104.0 10 37-3 59-5 no 52-3 109.5 IS 38-5 62 .5 140 54-7 120.9 20 39-5 65 .2 181 59-3 145.6 25 40.4 67.7 SOLUBILITY OF MIXTURES OP POTASSIUM BROMIDE AND AMMONIUM BROMIDE IN WATER AT 25. (Fock Z. Kryst. Min. 28, 3 57, '97-) rams per Liter Solution. Mol. per cent in S >olution. Sp. Gr. of Mol. per cent in Solid Phas NH 4 Br. OO KBr. " 558.1 N O .0 KBr. Solutions. IOO L3756 NHiBr. o.oo KBr. IOO 6 4 554 .2 I 38 9 8 .62 1.3745 O .26 99-74 24 .64 536 5 5 .29 94 71 1-3733 I 27 98.73 51-34 516.8 10 77 89 23 3721 3 .02 96.98 152 9 441 .2 29 63 70 37 37^1 8 .42 91.58 262 .2 347 3 47 .84 5 2 .16 3715 17 .20 82.80 347 .6 262 3 61 .69 38-31 3753 27 .98 72 .02 381 -4 260 3 64 03 35 97 i 3753 32 53 67.47 417 .8 232 .2 68 .61 3 1 39 i .3766 39 45 60.55 432 5 222 3 70 27. 29 73 ' 3777 variable variable 480 .8 179 9 76 47 23 53 .3766 98 53 1.47 577 3 .0 IOO .0 o o 3763 IOO o o.oo SOLUBILITY OF POTASSIUM BROMIDE AT 25 IN: Aq. Solutions of KC1 and Vice Versa. Aq. Solutions of KI and Vice Versa. (Amadori and Pampanini, 1911.) (Amadori and Pampanini, 1911.) Cms, per 100 Cms. H 2 O. KBr. KCl/ 68.47 62.26 5-43 58.50 8.46 52.45 12.48 45-42 17.17 38.70 21.23 26.62 25.88 12.94 31.02 36.12 (Seeal Iso next page.) Gms. per 100 Cms. H 2 O. KBr. 53-21 42.32 34-14 30.08 29.62 22.15 21.88 18-54 o KI. 35-92 66.63 95-36 119.52 119 127.10 127.31 I30.6I 149.26 505 POTASSIUM BROMIDE SOLUBILITY OP POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Ditte Compt. rend. 124, 30, '97.) Grams per 1000 Grams H2O. ' KOH. KB7 ' 3 6 -4 558-4 "3-5 433-6 177.2 358.1 231.1 281.2 Grams per 1000 Grams H2O. KOH. KBr. 277.6 248.1 434-7 J 37-i 579.6 64.8 806.9 33.4 SOLUBILITY OF MIXTURES OP POTASSIUM BROMIDE AND CHLORIDE AND OF MIXTURES OF POTASSIUM BROMIDE AND IODIDE IN WATER. (Etard Ann. chim. phys. [7] 3, 275, '97.) Mixtures of KBr and KC1. Mixtures of KBr and KI. Grams per 100 Gms. Solution. KBr. KCl. 20 17.5 10.5 21-5 10.8 10 23.2 II .0 20 24.8 II .2 25 25-5 "3 3 26.3 11.4 40 28.0 "5 60 30.6 11. 8 80 33-4 12. 1 100 35-7 12 .6 120 38.0 12-9 150 40.6 13-4 Grams per too Grams Solution. KBr. 9 .2 KI. 42-5 9-9 10.2 45-3 46.6 10-5 10-7 10-9 II .2 47-5 48.0 48.6 49.6 II-9 12.6 I 3 .2 14.0 5*-3 5 2 -7 53-8 54-8 14.9 55-5 SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AND OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE, AT 25.2. (Touren Compt. rend. 130, 1252, 'oo.) KCl in Aq. KBr Solutions. KBr in Aq. KCl Solutions. Mols. per Liter. Grams per Liter. KCl. KBr. KCl. KBr. .0 4 .76! .0 567 .0 .67 4 .22 50 .0 502 5 .81 4 '5 60 4 494 .2 I 35 3 .70 100 7 440 7 I .48 3 54 no 4 421 .6 I .61 3 .42 120 .0 407 .2 I .70 3 34 126 .8 397 7 2 .46 2 So 183 5 297 7 3 775 O 525 28l .6 625 3 Mols. per Liter. KBr. KCl. o.o 4.18 0-49 3-85 0.85 3.58 I-3I 3-19 1.78 2.91 2.25 2.58 2-69 2-33 Grams per Liter. KBr. KCl. o.oo 311.8 287.2 267.1 238.0 2I7.I 192.4 173-8 58-4 IOI-3 156.1 211 .9 268.0 320.4 POTASSIUM BROMIDE 506 SOLUBILITY OP POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OP POTASSIUM BROMIDE, AT 14.5 AND AT 25.2. (Touren Compt. rend. 130, 908, 'oo.) KNO 3 in Aq. KBr Solutions. KBr in Aqueous KNO 3 Solutions. Mols. per Liter. Grams per Liter. Mols. per Liter. Grams per Liter. KNOs. Results at o.o KBr. 14.2. 4.332 KNO 3 . O-O KBr. 5*5-9 KBr. KNO 3 . Results at 14.20. o.o 2.228 KBr. o.o KNO 3 . 225.4 0.362 4.156 36 .6 494 9 .356 2.026 42 4 205.0 0-706 4-093 71 4 487 4 O .784 835 93 4 185-7 1-235 3-939 124 9 469 .1 I .092 730 130 .0 175-0 I -577 587 I8 7 .8 l6o.6 Results at 25.2. 2 542 .406 302 7 142.2 0-0 4.761 O o 566 .2 3 536 308 421 .i 132.3 O.I3I 4-72 13 3 561 O Results at 25.2. 0.527 4.61 53-3 549 .1 O .0 3.217 .0 325-5 0.721 4-54 72 9 540 .8 .38 3.026 45 3 306.2 1.09 4-475 no 3 533 .0 0.93 2.689 no .8 272.0 I.I70 4-44 118 4 528 .8 I 37 2.492 163 .1 252.2 I.C04 4-375 152 .2 521 .1 I .208 2.216 143 .8 224-3 2 .87 1.958 34i .8 198.1 3 55 1-807 422 .8 182.8 SOLUBILITY OP POTASSIUM BROMIDE IN ALCOHOLS AT 25. (de Bruyn Z. physik. Chem. 10, 783, '92; Rohland Z.. anorg. Chem. 18, 327, '98.) Grams KBr Dissolved by 100 Gms. Alcohol at: /iiconoi. Methyl Alcohol Ethyl Alcohol Propyl Alcohol Room Temp. (R.). I .92 0.28 (Sp. Gr. 0-055 0.81) 25 (de B.). i .51 Abs. Alcohol o.i 3 SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS ALCOHOL. (Taylor j. Physic. Ch. I, 724, '9<5-'97.) Results at 30. Results at 40. Wt. per cent Alcohol Gms. KBr per 100 Gms. Gms. KBr per TOO Gms. in Solution. Sat. Solution. Solvent. Sat. Solution. Solvent. 41 .62 71.30 43-40 7 6.6 5 5 38.98 67.25 40.85 72.70 10 36.33 63.40 38.37 69.00 20 31.09 56.40 33-27 62.30 30 25.98 50-I5 28.32 5 6 -45 40 21 .24 44-95 23.22 50.46 50 16.27 38-85 i8.ii 44-25 60 11.50 32-50 13.02 37-40 70 6.90 24.70 7 -98 28.90 80 3-09 15-95 3-65 18.95 90 0.87 8.80 1.03 10.45 100 gm. acetone dissolve 0.023 g m - KBr at 25. (Krug and McElroy J. anal. Chem. 6, 184, '93.) 507 POTASSIUM BROMIDE SOLUBILITY OF POTASSIUM BROMIDE IN DILUTE AQUEOUS ETHYL ALCOHOL. Results at o. (Armstrong and Eyre, 1910-11.) Results at 25. (Armstrong, Eyre, Hussey and Paddison, 1907.) Wt. % CjH B OH in Solvent. Gms. KBr per 100 Gms. Sat. Sol. Wt. % QH 6 OH in Solvent. Gms. KBr per 100 Gms. Sat. Sol. Sp. Gr. of Grams per Liter. Sp. Gr. of Grams F>er Liter. Solutions. KC1. KC10 3 . Solutions. KC1. KC10 3 : 1.050 o 71.1 1.098 120 24-5 1.050 10 58.0 I.IOS 140 22.5 1.050 20 49-0 I .119 160 21.0 1.054 40 39-5 I.I30 180 20. o I .064 60 34.0 I.I40 200 2O *} 1-075 80 30.0 I.I68 250 20. o 1. 086 ioo 27.0 SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OP POTASSIUM NITRATE. (Arrhenius Z. physik. Chem. n, 397, '93.) Results at 19.85' Mols. per Liter. Grams per Liter. Results at 23.87. Mols. rjer Liter. Grams per Liter. KNO 3 . KC10 3 ." 'KN0 3 . KC10 3 " " KN0 3 . KC1O 3 " KN0 3 . KC10 3 . O O 570 O .O 6 9 . 88 o.o 0.645 O o 79 .09 O 125 o. 529 12 65 64- 86 0.5 0.515 50 59 63 .14 O 25 o 492 25 .29 60. 33 I .0 o 374 IOI .19 45- 85 2 .0 328 2O2 38 40. 22 SOLUBILITY OF POTASSIUM CHLORATE: (Taylor, 1897; see also Gerardin, 1865.) In Aqueous Alcohol. In Aqueous Acetone. Wt. per cent At 3- Alcohol or Gms. KC10 3 per of Acetone ioo Gms. At 40. Gms. KClOg per ioo Gms. At 30. Gms. KC1O 3 per ioo Gms. At 40. Gms. KC1O 3 per ioo Gms. insolvent. Soi ut i on . Water. Solution. Water. Solution. Water. Solution. Water. O 9-23 IO 17 12.23 J 3-93 9 23 10 17 12.23 13-93 5 7-7 8 .80 10.48 12 -33 8 32 9 56 II .10 I3.II 10 6.44 7 65 8.84 10.77 7 .63* 9 .09 10.28* 12 .60 20 4-5 1 5 .90 6.40 8.56 6 .09 8 .10 8.2 7 II .26 30 3-21 4 74 4.67 7.00 4 93 7 .40 6.69 10.24 40 2-35 4 .00 3-41 5-88 3 .90 6 .76 5-36 9-45 50 i .64 3 33 2-41 4-94 2 .90 5 .98 4-03 8.40 60 I .01 2 53 I.4I 3-69 2 03 c 17 2.86 7-35 70 0-54 I .82 0.78 2.63 I .24 4 .18 1.68 5.68 80 0.24 I .22 o-34 J -73 O 57 2 .88 o-79 3-97 90 0-06 .62 O-I2 1.17 .18 I ,82 0.24 2-45 * Solvent, 9.09 Wt. per cent Acetone. ioo gms. sat. solution of KC1O 3 in glycol contain 0.9 gms. KC1O 3 . (de Coninck, 1905.) 515 POTASSIUM CHLORATE SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF VARIOUS COMPOUNDS AT 25. (Rothmund, 1910.) Aqueous 0.5 Normal Solution of: Water alone Methyl Alcohol Ethyl Alcohol Propyl Alcohol Tertiary Amyl Alcohol Acetone Ether Glycol Glycerol Urea 100 gms. glycerol (d u = 1 .256) dissolve 3.54 gms. KC1O 3 at 15-16. (Ossendowski, 1907.) POTASSIUM PerCHLORATE KC1O 4 . SOLUBILITY IN WATER. (Average curve from results of Noyes and Sammet (1903); Carlson (1910); Rosenheim and Weinhaber (1910-11); Calzolari (1912); Thin and Gumming (1915). KC1O 3 per Liter. Aqueous 0.5 Normal KC1O 3 per Liter. Mols. Gms. Solution of: Mols. Gms. O. 1475 20. 44 Ammonia O. 1474 2O 43 Q- 1402 19. 43 Dimethylamine 0. 1342 18 .66 0. 1356 18. 75 Pyridine 0. 1410 19 54 0. 1343 18. 61 Urethan O. 1400 19 .40 0. 1279 17- 72 Formamide 0. J 539 21.32 0. 1451 20. ii Acetamide 0. 1447 20 05 0. 1336 18. 51 Acetic Acid O. 1462 2O .26 0. 1416 19. 62 Phenol 0. 1362 18 .87 0. 1404 19. 45 Methylal 0. 1400 19 .40 0. 1510 20. 92 Methyl Acetate 0. 1429 19 .80 O 10 2O 25 30 40 doi Sat. Sol. 1.007 Gms. KC1O 4 per ioo Gms. H 2 O. 0-75 1000 Gms. H 2 O. At o. At 25. O 22.11 26.45 9.11 20.93 2 5- J 7 18.22 I9-7I 24.07 36.45 17.26 21.74 109-35 ' 13-47 182.25 6 -93 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO- BROMIC ACID AND OF HYDROCHLORIC ACID AT 25. (Herz, 1911-12.) In Aq. HBr. In Aq. HC1. Millimols per 10 cc. Gms. per Liter. Millimols j>er 10 cc. Gms. per Liter. HBr. KCl. HBr. KCl. HC1. KCl. ' HC1. KCl.' o 42.72 o 318.5 5.66 37.49 20.64 279.6 6.61 37.80 53.5 281.9 I0 - 20 33-79 37-*9 252 34.15 19-57 276.4 146 15.91 28.68 57.98 213.9 20.94 24.74 76.35 146.6 32.52 17.39 Il8 -6 129.6. 517 POTASSIUM CHLORIDE SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS HYDROCHLORIC ACID AT o. (Jeannel Compt. rend. 103, 381, '86; Engel Ann. chim. phys. [6] 13, 377, '88.) OF ram Mols per 10 cc. Grams per ipo cc. Solution. g D- Q r> o f KC1. HCI: KCl. HCI. Solutions. 34-5 o.o 25-73 0-0 159 30.41 3-9 22 .69 1.42 152 27-95 6.6 20.84 2.41 .150 27-5 7-i 20.51 2.59 ] .147 23-75 ii .1 17.71 4-05 ] 137 16.0 23.0 n-93 8-39 .in lo.o 34-o 7.46 12.40 3 .105 7-5 41 .0 5.60 *4-95 .105 2.0 65-5 1.49 23.88 .121 2-4 148.8 (sat.) 1.52 54.26 .224 100 cc. saturated HCI solution dissolve 1.9 gms. KC1 at 17. (Ditte, 1881.) 100 gms. sat. aq. HCI solution dissolve 1.9 gms. KC1 at 20. (Stoltzenberg, 1912.) F.-pt. data for mixtures of KC1 and HCI are given by Dernby (1918). SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT 25. (Hicks, 1915.) Gms. per 100 Gms. Sat. Solutions. HCI. NaCl. KCl. 19-95 10.90 8.61 10.65 7-58 17.16 3-56 3.80 20.65 2.03 2.86 32.78 0.18 1.27 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS MAGNESIUM CHLORIDE SOLUTIONS. (Precht and Wittgen Ber. 14, 1667, '81.) Grams KCl per 100 Grams Sat. Solution in: t. II Mg( % 15% :i 2 . M K ci 2 . 21.2% MgCb. 3% M K C1 2 . 20% MgCl 2 . 10 14 3 9 9 5-3 I 9 4 .2KCl+ 5 . 7 NaC 20 15 9 ii ,3 6-5 2 .6 6 .0 1 +5-9 tt 30 17 5 12 7 7.6 3 4 6 9 " +6.0 tt 40 19 .0 14 .2 8.8 4 .2 7 9 " +6.1 n 50 20 5 15 .6 IO-O 5 .0 8 9 " +6-3 tt 60 21 9 17 o II. 2 5 .8 9 9 " +6.4 tt 80 24 5 J 9 5 13-6 7 3 10 9 " +6.6 tf 90 25 .8 20 .8 14.7 8 .1 ii 9 " +6.7 t( 100 27 .1 22 .1 J 5-9 8 9 13 .0 " +6.9 u More recent data on the solubility of potassium chloride in aqueous solutions of magnesium chloride are given by Feit and Przibylla (1909). POTASSIUM CHLORIDE 518 SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM BROMIDE AT 25. (Fock, 1897.) Grams per Litef Solution. Milligram Mols. per Liter. M kcfin Cent Sp.Gr.of r- i Solutions Mol. per cent KCI in KBr. KCI: KBr. KCI. Solution. Solid Phase. 558 .1 .00 4686.2 O .0 o o I 3756 o.oo .5 23 44 4462.7 3*4 .2 6 .16 I .3700 o.oo 503 .6 4 6 57 4228.5 624.3 12 .86 I 3648 8.23 454 .6 82 .62 3817.8 1108 O 22 49 I 3544 15.68 379 .6 136 .6 3I88.I 1830 7 36 .48 I 3320 33-66 324 .8 166 9 2727.6 2237 4 45 .06 I 3 IJ 9 63-5 1 218 .0 213 9 1830.2 2868 .0 60 30 I .2689 82.29 140 7 250 9 1181.1 3363 9 74 .01 I 2455 88.04 47 5 291 7 398.8 39" 4 85 .22 I .1977 96.98 o .0 3 11 3 0-0 .1 IOO OO I 1756 100.00 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS. (Engel Bull. soc. chim. [3] 6, 16, '91; Winteler Z. Electrochem. 7, 360, 'oo.) Results at 0. Results at 20. (Engel.) (Winteler.) Mg. Mols. per 10 cc. Solution S>P- Gr. of Jution. Gms. per 100 cc. Solution. Gms. per 100 cc. Solution. p. Gr. of olution. KCI. KOH. KCI. KOH. KCI. KOH. ' 35-5 o 1.159 26.83 o.o 29.3 i.o .185 31.0 2.375 1.146 23-44 J-33 21. I IO.O 2IO 28.3 4-7 1-153 21.39 2.64 14.8 20. o -245 23.0 9.9 1.172 17-39 5-56 IO-4 30.0 295 18.38 15 1 195 13.89 8.46 6.8 40 . o 345 14-43 20. o .216 10.91 11.23 4-0 50.0 397 n-43 24.63 239 8.64 13-83 2.2 60 O 450 8.98 29.25 .261 6.78 16.43 1-4 70.0 .500 6.28 35-*3 .294 4-74 19.72 I.I 80 . O 550 0-9 85.0 .580 SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM IODIDE IN WATER. (Etard Ann. chim. phys. [7] 3, 275, '94.) Grams per TOO Gms. Solution Grams per 100 Gms. Solution. * KCI. Kl. i . KCI. KI. o 3-7 50-5 IOO 6.2 61 .0 20 4.2 53-o 140 7-3 63-7 40 4-7 55-3 180 8-3 65-5 60 5-2 57-5 220 9-4 66-3 80 5-7 59-4 245 IO.O 66.5 519 POTASSIUM CHLORIDE SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AT 25 AND VICE VERSA. (Amadori and Pampanini, 1911.) Gms. per 100 Cms. H 2 O. KC1. KI. 149 . 26 4.06 144.03 7-63 137-79 11.36 132.60 11.74 I33-90 15.10 105.91 Gms. per 100 Gms. H 2 O. KC1. KI. ' 19.64 68.22 23-75 43-89 29.56 23-83 31.38 14.83 33-68 ' 7 36.12 o SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AT o AND AT 25. (Armstrong and Eyre, 1910-11.) Solvent, Gms. KNO 3 per 1000 Gms. H 2 0. O 25.27 50-55 IOI.II 151.66 Gms. KC1 Dissolved per zoo Gms. Sat. Solution at: o . 22. IO 21.71 21.25 20.70 25 26.73 26.26 25.61 24.58 23-57 SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIRS KCl+NaNO 3 ^NaCl+KNO 3 AT 5, 25, 50 AND IOO. (Reinders, 1914, 1915; see also Uyeda, 1909-10.) Results at 25. Gms. per 100 Gms. H 2 0. Results at 50. Gms. per 100 Gms. H 2 O. Solid Phase in Each Case. NaCl NaCl+KCl KC1 KC1+KN0 3 i KNO 3 KN0 3 +NaN0 3 NaNO, NaNOj+NaCl NaCl NaCl+KCl KCl+KNOs KNO 3 +NaNO 3 NaNO 3 +NaCl - NaCl+NaNO 2 +KN0 3 NaCl+KCl+KNO 3 NaCl. KC1. 36 . 04 32.28 10 30.27 16.45 12 26.78 35-54 34.92 IO IO 23.62 33-90 24.82 22.2 21.36 2O 24-5 23.8 ::: 4-5 NaNO 3 . 10 60 100.9 96.06 77.46 58.01 IO 15-4 61.3 82.1 64 KNO 3 . IO 22.79 31.48 37-49 41.87 46.15 20 32-9 17.2 43-15 41.2 40-3 NaCl. 36.72 28 .'35 KC1. NaNO 3 . 23.09 ... 42 . 80 41-39 ..- 38.75 .-. KN0 3 . 24.05 52.54 85.10 20.5 28.4 34 12.7 ... 134.9 ... 114.1 ... 84.8 ... 43-9 13-4 25-4 90.2 24-3 58.6 19.2 12.2 59-9 104 . i 110.7 6.1 27.2 82.2 70.9 31-50 27.6 Results at 5*. 10.4 29.84 82.10 41.7 10.14 18.1 27.3 19.2 Results at ioo c 36-2 41 .6 233-6 158 199 218 NaCl+KCl KC1+KN0 3 KN0 3 +NaNO 3 NaNO 3 +NaCl POTASSIUM CHLORIDE 520 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AT SEVERAL TEMPERATURES. (Touren, 1900; Bodlander, 1891; Nicol, 1891; Soch, 1898.) KC1 in Aq. KNO 3 Solutions at: 14-5 (T.). 25.2 (T.). 20, etc. (N.). Gms. per Liter Solution. Gms. per Liter Solution. Gms. per 1000 Gms. HgO. KN0 3 . KC1. ' KNO 3 . KC1. KNO 3 . KC1. o 288.3 o 311.8 o 345-2 20 . 64 284 . 2 13.76 306.6 56.18 342.15 32.18 282.1 32.18 303.6 168.54 334-39 62.23 276.8 91.26 293.2 at 25 (S) 82.77 273.5 122.7 287.2 225.8 341.3 II5.9 270.7 I4I.4 284.2 at 80 (S) II9.I 268.3 182.7 276 1175 402 123.4 267.2 KN0 3 in Aq. KC1 Solutions at: 14-5. 25.2. 20. Gms. per Liter Solution. Gms. per Liter Solution. Gms. per 1000 Gms. H 2 O. KC1. KNO,. KC1. KNO 3 . KC1. KNO 3 . o 225.4 o 325.5 o 311.1 13.58 219.8 19.39 312.3 82.9 256.8 31.63 208.2 49-22 288.7 165.8 221.7 65.64 185.2 100.7 254 248 . 7 202 132.6 159.5 155.2 224.4 310.8 501.6 164.4 153-3 207.3 203.9 196.5 144 226.8 196.9 236.9 I37.I In the case of the results by Touren, constant temperature and agitation were employed. KN0 3 in Aq. KC1 at 20.5 (B.). KC1 in Aq. KN0 3 at 17.5 (B.). Gms. per 100 cc. Solution. Sp. Gr. of Gms. per 100 cc Solution. Sp. Gr. of ' KC1. KN0 3 . ' Solutions. " KNO 3 . KC1. Solutions. o 27 68 .1625 o 29.39 1-173 4.72 24.39 .1700 6.58 27.50 , 1.1980 7-74 22.44 .1765 8.88 27.34 I. 2100 12.23 20.23 .1895 12.48 26.53 1.2250 15.15 18.96 .1983 14.83 25.98 1.2360 I9.6l 17-67 .2150 15.22 25.96 1.2300 22.17 17.11 .2265 15-49 25.95 1-2388 24.96 16.79 .2400 15.33 26.24 I.24IO In the case of the above results by Bodlander, a saturated aqueous solution of potassium chloride was prepared and weighed amounts of potassium nitrate were added to measured volumes of it. The mixtures were warmed and then allowed to cool to the indicated temperature and frequently shaken during 24 hours. 521 POTASSIUM CHLORIDE SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AND VICE VERSA. (Leather and Mukerji, 1913.) Results at 30. Sp. Gr. Sat. Sol. 1.186 1.219 1.251 1.281 1.258 1.241 1.225 Cms. per 100 Cms. KCl. 37.58 36.72 36.19 35-42 28.71 19.35 9-44 H 2 0. KN0 3 . O 8.05 19.36 26.83 29.19 32.34 38.10 Results at 40. Gms. per too Gms. , H ? O. j p.Gr. at. Sol. .222 344 .486 552 544 545 .552 Results at 91. Gms. per 100 Gms. H 2 0. Solid Phase in Each Case. KCl " +KNO, KNO, KCl. 40.60 39.11 37.08 3749 32.22 22.63 11.58 KN0 3 ." " 16.86 35-45 39-71 41.52 46.31 52.66 KCl. 53.58 47.85 43-30 39-90 33.25 J5-56 KNO ? ." 52.75 114.6 162.9 165.6 181.1 202.8 Sp. Gr. Sat. Sol. I.I94 1.252 I.305 I.3I9 I.3I2 1.297 1.279 Results are also given for 20. SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND SODIUM CHLORIDE IN WATER. Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. KCl. NaCl. KCl. NaCl. O II .2(l) 11.2(2) 30(1) 30(2) 50 22(1) 19(2) 27.7(l) 32.3(2) IO 12 5 12.3 29-7 30.5 60 24 .6 20.6 27.2 32.8 20 14 .7 13.8 29.2 31 70 27 3 32.5 26.8 34.1 25 17 ) 14.5 29(3) 31.3 80 31 (3) 25.2(3) 26.4(3) 34 30 17 .2 15.4 28. 7 31-5 90 32 9 28.4 26.1 32.3 40 19 5 17 28.2 31-9 100 34 7 32.3 25-8 30.6 (i) Precht and Wittgen, 1881; (2) Etard, 1897; (3) at 25 and at 80, Soch, 1898. NOTE. Page and Keightly, Rudorff and also Nicol give single determinations which lie nearer the results of Precht and Wittgen than to those of Etard. SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND VICE VERSA. (Leather and Mukerji, 1913; see also Nicol, 1891.) Sp. Gr. >at. Sol. .176 .197 .213 237 .240 233 .224 193 Results at 20. Gms. per 100 Gms. ( H 2 O. ^ >p. Gr. at. Sol. .194 .207 235 .248 .242 [.247 .222 .197 Results at 40 Gms. per 100 Gms. H 2 0. Sp. Gr. 1.222 1.236 1.262 1.262 1.264 1-235 1.223 1.189 Results at 91. Gms. per 100 Gms. H 2 0. Solid Phase in Each Case. KCl it " +NaCl NaCl KCl. 34.6l 26.60 19.65 14.92 I5.36 14.76 9.70 O NaCl. O 10.13 20.61 30.36 29.61 30.38 32.40 35.63 KCl. 40.60 31.42 2443 18.23 18.74 19.13 10.49 NaCl. ' 10.68 20.99 30.60 30.32 29.92 32.59 36.53 KCl. 45.01 35.84 33.12 32.45 27.15 13 O NaCl. O 10.66 22.87 28.12 28.26 29.18 33-93 38.72 Results are also given for 30. 100 gms. 40 wt. per cent alcohol dissolve 5.87 gms. KCl + 12.25 gms. NaCl at 25. loo gms. 40 wt.'per cent alcohol dissolve 5.29 gms. KNO 3 + 10.06 gms. KCl at 25. (Soch, 1898.) 100 gms. abs. ethyl alcohol dissolve 0.034 gm. KCl at 18.5. 100 gms. abs. methyl alcohol dissolve 0.5 gm. KCl at 18.5. (de Bruyn, 1892; Rohland, 1898.) POTASSIUM CHLORIDE 522 SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIRS KCl+Na 2 SO4^K 2 SO4+NaCl. (Meyerhoffer and Saunders, 1899.) , ftf Mols. per 1000 Mols. H 2 O. t. Solid Phase. Sat. Sol. S0 4 . K 2 . Na,. C1 2 . 4.4* ... 5.42 14-39 Si-83 60.8 K 3 Na(S0 4 ) 2 +KCl+NaCl 0.2 ... 3.35 12.78 50.93 60.36 Na4SO 4 .ioHrf)-fKCl+NaCl 0.4 ... 3.59 16.38 40.75 53.54 Na a SO 4 .ioH 4 0+KCl+K,Na(SO 4 ) 16 ... 4.72 17.58 50.56 63.42 K 3 Na(SO4) 2 +KCl+NaCl 24.8 1.2484 4.37 20.02 48.36 64.01 16 . 3* ... 16 . 29 9.16 61 . 06 53 . 93 K s Na(SO 4 ) 2 +NaCl+Na 2 SO 4 .ioH 2 O+Na 2 S0 4 24.5 1.2625 14.45 9-QO 58.46 53-91 K 3 Na(SO 4 ) 2 +NaCl+Na 2 SO4 0.3 ... 2.75 25.77 17.93 40.95 K 3 Na(S0 4 ) 2 +KCl+K 2 SO 4 25 1.2034 2.94 36.20 14.80 48.06 17.9* 1.2470 13.84 O 62.54 48.70 Na2SO 4 .ioH 2 O+Na 2 SO 4 +NaCl 30.1* 1.289 50.41 10.08 40.33 o K 3 Na(SO 4 ) 2 +Na 2 SO 4 .ioH 2 O+Na 2 SO 4 * tr. pt. Curves are given in the original paper and a complete discussion of the older work. SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM SULFATE IN WATER. Gms. per 100 Cms. H 2 O. . Gms. per too Gms. H 2 O. ^ ' KCl + K.SO.. ' bSErVer ' ' KC1 + K,SO.. IO 30 . 9 1.32 (Precht & Wittgen.) 40 38-7 I . 68 (P. and W.) 15.8 28 2.3 (Kopp.) 50 41.3 1.82 20 33.4 1.43 (P.andW.) 60 43.8 1. 94 25 34 .76 2.93 (Van't Hoff & Meyerhoffer.) 80 49-2 2.21 " 30 36.1 1.57 (P.andW.) 100 54.5 2.53 100 gms. aq. solution, sat. with both salts, contain 26.2 gms. KCl + 1.09 gms. K 2 SO4 at 30. (Schreinemakers and de Baat, 1914.) SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS 'OF STANNOUS CHLORIDE AT 25 AND VICE VERSA. (Fujimura, 1914-) Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. Solid Phase. ' Sohd Phase. KCl. O 34-73 KC1 58.48 17.85 SnCl 2 .KCl.H 2 2.86 32.17 " 81.78 19.06 4.37 34.08 " 107.65 17.79 5-95 3 I -76 SnCi 2 .2KCi.2H 2 o 170.70 21.26 5.83 30.65 " 247.50 24.38 10.24 27.30 337- 26 2 5-5 x 17.42 24.68 " 290.30 19.66 SnCl 2 .2H 2 O 27.88 24.40 " 235.50 7.49 34-28 5.99 222.5 2-73 54.19 19.45 SnCl 2 .KCl.H 2 234.05 SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE SOLUTIONS OF ETHYL ALCOHOL AT o AND AT 25. (Armstrong, Eyre, Hussey and Paddison, 1907; Armstrong and Eyre, 1910-11.) Wt. % Gms. KCl Dissolved per 100 Gms. QHsOH Sat. Sol. at: <% of in , * s Sol. Sat. Solvent. o. 25. O 22.1 26.44 I.l8l3 1.14 21.6 25.91 I.I754 2.25 20.9 25.29 1.1689 4.41 19.7 24.21 1.1568 8.44 ... 22.46 LI357 12.13 15-5 18.69 I7-42 1.0847 523 POTASSIUM CHLORIDE SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL. (Gerardin Ann. chim. phys. [4] 5, 140, '65.) Interpolated from the original results. Grams KC1 per too Gms. Aq. Alcohol of Sp. Gr.: t". 0.9904 0.9848 0.9793 0.9726 0.9573 0-939 0.8967 0.8244 Wt. 5 *. wt'f. = 13-6 Wt.%. = 19.1 Wt.%. = 30 Wt.%. = 40 Wt.%. = 60 Wt.%. = 90 Wt. %. o 23-4 iQ-5 I5-S "S 7.0 4.0 i-7 o.o 5 25.0 21.0 16.8 12.8 8.0 4.8 2.2 0-0 10 26.4 22.5 18.0 14.0 9.0 5-6 2-7 0-0 15 26.8 24.0 19.2 15-2 IO.O 6.4 3-i 0.04 20 29.1 25-3 20.3 16. i 10.8 7.2 3-5 0.06 2 5 30-4 26.8 2i-S 17.1 ii. 6 7-9 3-9 0.08 30 3!-7 28.0 22.6 18.2 12.5 8-5 4.2 o.io 40 34-3 30.8 24.8 20-0 14.0 9-9 4.8 O.2O 50 37-o 33-5 27.0 21.8 *5-5 10.8 5-2 0.30 60 16.8 ii.8 5-5 0-40 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL AT: (Schiff Liebig's Ann. 118, 365, *6i.) 14-5 (Bodlander Z. physik. Ch. 7, 316, '91.) Sp. Gr. Wt. G. KC1 per Sp. Gr. of Sat Grams per 100 cc. Solution. Alcohol. per cent Alcohol. 100 jr. AQ. Alcohol. oi oat. Solutions. CjjHsOH. H 2 0. KCI: 0.984 10 19 .8 I .1720 . . 88 .10 29.10 0.972 2O 14 7 I .1542 2 79 85 .78 26 85 0.958 30 10 7 I J 3 6 5 4 .98 84 .00 24 .67 0.940 40 7 7 I 1075 10 56 79 63 20 56 0-918 So 5 .0 I .1085 15 57 75 .24 17 .24 0.896 60 2 .8 I 0545 20 .66 70 S 2 14 .27 0.848 80 O 45 I 0455 24 25 67 05 13 25 Gerardin 's results at 15 agree 9695 40 .42 5o .18 6 35 well with the above deter- 9315 48 73 40 .60 3 .82 minations . O .8448 68 63 15 55 o 30 30 and 40. (Bathrick J. Physic. Chem. i, 160, '96.) Wt. per cent Alcohol. Gms. KCI per 100 Gms. Aq.jUcohol. Wt. per cent Alcohol. Gms. KCI per too Gnc Aq. Alcohol. At 30. At 40. "At 30. At 40." O 38.9 41.8 43.1 II. I 13.1 5-28 33-9 35-9 55-9 6.8 8.2 9-43 30.2 33-3 6 5-9 3-6 4.1 16.9 24.9 27.6 78.1 1.6 25-1 19.2 21.8 86.2 0.4 0-5 15-6 17.2 POTASSIUM CHLORIDE 524 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (Mclntosh, 1903.) vt. % HsOH, Mols. KC1 per Liter. Gms. KC1 per ioo cc. Sat. Sol. Wt. % QHsOH. Mols. KC1 per Liter. Gms. KC1 per ioo cc. Sat. Sol. 4.18 3I.I8 60 0.56 4.18 10 3-21 23-93 70 0-305 2.27 20 2.40 17.89 80 0.125 o-93 3 1.78 I3-27 90 O.O42 0.31 40 1.26 9.40 IOO O.OII 0.08 50 0.84 6.26 SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF METHYL ALCOHOL AT o AND AT 25. (Armstrong and Eyre, 1910-11.) Wt. % PN OH Gms. KC1 per ioo Gms. Sat. Sol. at; v^Xl^UXl in Solvent. o. 25. 22.06 26.69 0.79 21.74 26.42 i-57 21.39 26.OI 3.10 20. 6l 25-25 8.76 17.84 22.82 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS METHYL ALCOHOL AT 25. (Herz and Anders, 1907; Mclntosh, 1903.) Solvent flfog Of Gms .KCl Solve :nt. j oc Of Gms. KCl ,, wt. % d F CH 3 OH. Sat. Sol. per ioo cc. Sat. Sol. dap- Wt.% CH 3 OH Satfsol per ioo cc. Sat. Sol. O, ,9971 1.1782 31 .13 .8820 64 o. 9064 3-44 o ,9791 10.6 I.I25 24 .53 .8489 7 8.1 0. 8607 1-54 ,9481 30.8 1.033 13 -65 .8167 98. 9 (? ) o. 8242 0-75 o. .9180 47.1 0.9679 7 .6l o .7882 IOO o. 7937 0-43 ioo gms. methyl alcohol dissolve 0-53 gm. KCl at 25. (Turner and Bissett, 1913.) ti ethyl 11 11 0.022 it " n propyl 0.004 M " amyl " 0.0008 Potassium chloride is insoluble in CHsOH at the crit. temp. (Centnerszwer, 1910.) SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF PROPYL ALCOHOL AT o AND AT 25. (Armstrong and Eyre, 1910-11.) Wt. % C 3 H 7 OH in Solvent. I 1.48 2.91 5.66 Gms. KC1 per 100 Gms. Sat. Sol. at: o. 22.O6 21.25 20.49 18.97 25. 26.44 25.94 25.23 23.82 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLUCOSE AT 25. (Armstrong and Eyre, 1910-11.) wt.% Gms. KCl C 6 H 12 6 +H,O per ioo Gms. in Aq. Solvent. Sat. Solution. 26.63 4.72 25.86 9 25.18 16.53 23.89 37-27 20.15 525 POTASSIUM CHLORIDE SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ACETONE SOLUTIONS. (Snell, 1898; at 20, Herz and Knoch, 1904.) Wt. (see Note) _At 20 . Percent KClperioocc. Acetone in Solution. At 30. Gms. per 100 Gms. Solution. At 40. Gms. per 100 Gms. Solution. At 50. Gms. per 100 Gms. Solution. Solvent. Millimols. Gms. Acetone. KCl. Acetone. KCl. ' Acetone. KCl. " 410.5 30. 62 27- 27 O 28.69 30 Q.I 351-7 26. 23 6. 9 6 23- 42 6. 79 25.33 ... . . . 20 286.6 21 . 38 16. 22 18. 90 15- 75 21.28 . . . . . . 30 223.7 16. 6 9 25- 45 15- 06 two layers 25.67 14.42 40 166.5 12. 42 35- 52 II . 31 it 36.03 9-93 50 II5-4 8. 61 45- 98 8. 04 t( 46.46 7.07 60 71.2 5- 3 1 56- 9i 5- 12 a 57-37 4-38 70 38-5 2. 87 68. 18 2. 60 (i 68.56 2.22 80 I2.Q O. 96 79- 43 0. 7 6 79 34 0.58 79-25 0.94 90 2 0. 15 89. 88 O. 13 89 .84 0.16 81 sat. sol. 100 O 100 100 NOTE. For the 20 results the per cent acetone in the solvent is in terms of volume instead of weight per cent, and the concentration of the second solu- tion is 10 per cent instead of 9.1 which is the weight per cent concentration of the solvent for the corresponding results at the other temperatures. AT THE TEMPERATURE 40 AND FOR CONCENTRATIONS OF ACETONE BETWEEN 20 AND 8O PER CENT THE SATURATED SOLUTION SEPARATES INTO TWO LAYERS HAVING THE FOLLOWING COMPOSITIONS: Upper Layer. Gms. per 100 Gms. Solution. H 2 0. (CH 3 ) 2 CO. KCl. 55-2 31.82 12.99 53-27 35-44 11.29 51-23 48.50 10.27 50-34 39-88 9-77 48.02 43-i8 8.79 46.49 45-34 8.17 58.99 25.24 15-77 Lower Layer. Gms. per 100 Gms. Solution. r H 2 0. (CH 3 ) 2 CO. KCl. 28.14 69.42 2.44 30.96 65-97 3-07 32.64 63-79 3-56 34-07 62.01 3-92 37-44 57-67 4.89 38.68 56.17 5-25 23.66 74.91 i-43 100 cc. sat. solution of potassium chloride in furfurol (C^aO.COH) contain 0.085 gm. KCl at 25. (Walden, 1906.) POTASSIUM CHLORIDE 526 SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLYCEROL AT 25. (Herz and Knoch, 1905.) Sp. Gr. of Glycerol at 25/4 = 1.2555. Impurity about 1.5%. Wt. Per cent Glycerol in Solvent. KCl per ioo cc. Solution. Sp. Gr. of Solutions. Wt. Per cent Glycerol in Solvent. KCl per ioo cc. Solution. Sp. Gr. of Solutions. Millimols. Gms. Millimols. Gms. 424.5 31.66 I .180 54 23 238. 5 17 79 I .219 13.28 383.4 28.61 I .185 83 .84 149 II .11 1.259 25.98 339-3 25-3I I .194 IOO no .6 8 25 1.286 45.36 271.4 20.24 I .211 100 gms. H 2 O dissolve 246.5 gms. sugar + 44.8 gms. KCl at 31.25, or 100 gms. of the sat. solution contain 62.28 gms. sugar + H-33 gms. KCl. (Kohler, 1897.) SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF PYRIDINE AT 10. (Schroeder, 1908.) Aq. Mixture. Gms. KCl Aq. Mixture. Gms. KCl , per 100 Gms. ' per too Gms. cc. H 2 O. cc. Pyridine. Sat. Sol. cc- H 2 O. cc. Pyndine. Sat. Sol. ioo o 23.79 40 60 3.33 90 10 19-76 30 70 1.25 80 20 16.37 20 80 0.24 70 30 I3-I9 1 90 0-04 60 40 * 10.05 o ioo o 50 50 6 -34 SOLUBILITY OF POTASSIUM CHLORIDE IN DILUTE AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS AT 25. (Armstrong and Eyre, 1913.) Gms. Cmpd. Gms. KCl Gms. Cmpd. Gms. KCl Compound. per 1000 Gms. per ioo Gms. Compound, per 1000 Gms. per ioo Gms. H 2 O. Sat. Sol. H 2 O. Sat. Sol. Water alone ... 26.89 Glycol I5-5* 26.43 Acetaldehyde n.oi 27.05 62.05 25.26 Paraldehyde n.oi 26.42 Mannitol 45-53 24.86 Glycerol 13.01 25.58 136-59 24.46 ioo gms. 95% formic acid dissolve 19.4 gms. KCl at 19. 7. (Aschan, 1913.) glycerol (d i6 = 1.256) 3.72 ' " 15-16. (Ossendowski, 1907.) ioo cc. anhydrous hydrazine " 9 " " " room temp. (Welsh and Broderson, 1915.) ioo gms. hydroxylamine 12.3 " 17-18. (de Bruyn, 1892.) FUSION-POINT DATA (Solubilities, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES OF POTASSIUM CHLORIDE AND OTHER SALTS. vr'ij^irT \ (Wrzesnewski/ia; Amadori&Pam- vr'l-Lircr* I (Jaenecke, '12; Sackur, '11-12; " KL i panmi,'n; Ruff & Plato, '03.) KU HK 2 bU 4 .j Ruff & p lato/03>) KC1 + KF. (Ruff and Plato, 1903.) KCl + HgCl (Sackur, 1913.) KC1 + KOH. (Scarpa, 1915.) KCl + NaCl. (Sackur, '13; Ruff & Plato, 03.) KCl-i-KCrO 4 . (Sackur,'ii-i2;Zemcznzny,'o8.) KCl-i-Na 2 SO 4 . (Sackur, 1913.) KCl + KPOs. (Amadori, 1912.) KCl+SrCl 2 . (Vortisch, '14; Sackur, '11-12.) KC1+K 4 P 2 O 7 . " KC1+T1C1. (Sandonnini, J9"J 1914-) KC1+K 3 PO 4 . POTASSIUM CHLOROIRIDATE K 2 IrCl 6 . ioo gms. H 2 O dissolve 1.25 gms. of the salt at 18-20. ioo gms. H 2 O dissolve 9.18 gms. dipotassium aquopentachloroiridite, IrCl 6 (H 2 O)K 2 at 19. (Delepine, 1908.) 527 POTASSIUM CHROMATES POTASSIUM CHROMATES K 2 CrO 4 , K 2 Cr 2 O 7 , K 2 Cr 3 Oi 0> etc. EQUILIBRIUM IN THE SYSTEM, POTASSIUM OXIDE, CHROMIC ACID AND WATER AT SEVERAL TEMPERATURES. (Koppel and Blumenthal, 1907.) Results at o. Results at 30. Results at 60. Gms. per 100 Gms. Sat. Solution. Gms. per too Gms. ' Solution. Sat. Gms. per too Gms. Sat. Solution. Solid Phase at each ' K 2 0. Cr0 3 . ' K 2 0. Cr0 3 . ' KA Cr 2 3 . Temp. 3I.I8 . 4 6. 8 about 50 KOH. 2 H 2 O 26.06 54 26. 89 0. 94 32 .98 o. 53 K 2 Cr0 4 19.31 4 27 22. 25 3- 06 21 .05 9- 15 " 17.06 ii 77 18. 65 13- 72 20 25 14. 43 " 17.62 18 .71 19. 12 20. 30 20 .70 21 . 97 " 17-73 19 .04 19. 35 21 2O .61 23- 61 " +K 2 CrA 10.90 ii 93 15- 04 16. 85 14-53 20. 82 K 2 CrA 1.87 3 13 II. 20 13- ii IO .OI 21 . 21 " 0.78 22 -38 2. 42 28. 21 6 .86 39- 6 4 " i-47 42 95 2. 50 44. 50 7 .06 49- 8 4 " +K 2 CrAo 1.25 44 -52 4 .06 54- 73 K 2 CrAo 1.17 46 .84 . . 2 60. 69 " i-37 47 .40 2. 35 49- 95 . . . . " +K 2 Cr 4 Oi3 1.24 48.23 I. 35 53- 39 . . . . . . K 2 Cr 4 O 13 1.16 56 93 . . . . . . . . . " 0.64 61 79 0. 69 62. 81 I .27 65- 77 " +Cr0 3 61 54 . 62. 52 65- 12 CrO, THE CRYOHYDRATES (EUTECTICS) IN THE SYSTEM K 2 O CrO 3 H 2 O. The points were determined by adding to a sat. solution of K 2 Cr 2 O 7 successive I to 2 gm. portions of. chromic acid and ascertaining the freezing-point and composition of the solution. At the point of appearance of a new solid phase an additional amount of chromic acid does not change the f.-pt. since the added CrOa goes into the solid phase. This relation also holds at the points where the solu- tion is simultaneously saturated with K 2 Cr 2 O 7 and K 2 Cr 2 Oio or K 2 Cr 2 Oi and K 2 Cr 4 13 . t of Equi- librium of Sat Sol Gms. per 100 Gms. Solid Phase Sat. Solution. injuffitaraiii t of Equi- librium of Cj, * C n l Gms. per 100 Gms. Sat. Solution. Solid Phase in Equilibrium with Sat. Sol. with Ice. K 2 O. CrO 3 . an d j ce> oat. ooi. with Ice. ' K 2 O. CrO 3 . and Ice. -25 2O 5 . 70 K 2 CrO 4 13 .22 not det. 27 .26 K 2 CrA 17 .52 13 .89 " -14 50 u 28 85 " II 37 17 .12 18 .18 * 22 .IO ft 35 .92 " II 50 17 .18 18 .11 " +K 2 CrA 22 .11 0.47 36 .14 " -5 8 27 8 . OI K 2 CrA -26 77 0.88 39 .86 M o. 63 i 38 2 93 " * -30 .20 1.18 42 .31 ~l~K 2 Cr 3 Ojo i . 78 not det. 6 .81 -34 .01 0-95 43 45 K 2 CrA -5- 5 tt 16 .05 " -39 0.79 45 65 " +K 2 CrA, -6. 43 48 17 .25 -49 not det. 49 .11 K 2 Cr 4 13 IO. 25 o 45 2 3 63 -61 5 0.61 53 57 * The viscosity of the solutions at the lower temperatures increased so much that the cryohydrate points could not be determined. By graphic extrapolation the cryohydrate temperature of chromic acid and of chromic acid + potassium tetra- chromate is near 80 and the CrO 3 content is 59 gms. per 100 gms. sat. solution. POTASSIUM CHROMATES 528 By interpolation from the data given in the preceding tables the following solubilities in water are obtained : THE ICE CURVE AND SOLUBILITY OF POTASSIUM CHROMATE IN WATER. to Gms. K 2 CrO 4 per Solid 100 Gms. H 2 O. Phase. - o-99 4-53 Ice 1.2 6.12 " - 4.3. 26.99 7.12 42.04 -10.35 52.41 Potassium Potassii Dichromate + Potasi Gms. K 2 Cr 2 O7 I t. per 100 Gms. t. H 2 0. -0.63* 4.50 -II.5* o 4.65 o 30 I8.I3 +30 60 45.44 60 104. 8f 108.2 io6.8t * *&%& SoHd Phase. -11.35 EuteC. 54 . 54 Ice+K 2 CrO 4 O 57 .11 K 2 CrO 4 30 65 . 13 60 74.60 io5.8b.pt. 88.8 im Dichromate Potassium Dichromate sium Chromate. + Potassium Trichromate. Gms. per 100 Gms. H 2 O. f0 Gms ' p ^ ms ' Sat K 2 O. CrO 3 . 17.18 i8.ii 17.73 19.03 19-35 21 20. 61 23.61 24-3 30.5 -30* + 20 3 60 K 2 0. 1.18 1.47 2.20 2.50 7.06 16.80 Cr0 3 . 42.51 42.99 43.10 44-50 49.84 59.20 Eutec. Potassium Trichromate + Potassium Tetrachromate. * ' K 2 0. Cr0 3 . 39 Eutec. 0.79 45-69 i-37 47.40 20 2 48.46 30 2.25 49-95 60 5.01 54-09 t b. pt. Potassium Tetrachromate-f- Chromic Acid (CrOs). Gms. per 100 Gms. Sat. Sol. O 20 30 60 K 2 0. 0.64 O.62 0.69 1.27 Cr0 3 . 61.79 62.80 62.81 Data for boiling points in the system K 2 O + CrO 3 .H 2 O determined by means of the Beckmann apparatus, are also given. The older data for K 2 CrO 4 and K 2 Cr 2 O 7 are as follows: SOLUBILITY OF EACH IN WATER. (Alluard, 1864; Nordenskjold and Lindstrom, 1869; Etard, 1894; Kremers, 1854; Tilden and Shen- stone, 1884.) Potassium Dichromate. Potassium Chromate. Grams per 100 Grams Water. Grams per 100 Grams Water. 58.2* 59 -3t 60.2* 10 60-0 61.2 62.5 20 61.7 63.* 64-5 25 62.5 64.2 64-5 30 63-4 65.2 66.5 40 65.2 67.0 68.6 50 66.8 69.0 70.6 60 68.6 71.0 72.7 70 70.4 73-o 74.8 80 72.1 75-o 76.9 90 73-9 77-o 79-o 100 75-6 79-o 82.2 "5 79-o 150 83.0 5* 5 7 7 12 12 16 16 20 20 26 27 34 37 43 47 5 2 58 61 70 70 82 80 97 no 145 *43 205 * Etard. t Alluard. N. and L. A., K., T. and S. 529 POTASSIUM CHROMATES SOLUBILITY OF POTASSIUM CHROMATES IN WATER AT 30* (Schreinemaker Z. physik, Ch. 55, 83, '06.) Composition in Wt. per cent of: Solid The Solution Per cent CrO 3 Per cent K 2 O . The Residue. Per cent CrO 3 . Per cent K 2 O . 47 . . . o.o 47.16 12.59 47-54 0.1775 34.602 10-93 37-47 I-35 1 26.602 16.482 32.532 20.584 37-I3I 39.922 15-407 19.225 27.966 29-377 20.67 19.17 19.096 17.30 37.64 22.61 7.88 . . . . . . 17-93 3.412 25-85 7.82 43 -5 1 3-oi 49-45 9.91 44.46 3-245 53-94 12.40 46.368 2.823 60.314 12.935 49-357 2-353 63-044 11.684 53-215 1.360 62.958 8.002 62-55 0.796 67.944 6.731 62.997 0.621 70.0 4.0 62.28 Q.O . . . . . . Phase. KOH-zHzO K 2 Cr 2 07 K 2 Cr 3 O 10 K 2 Cr 4 0, 3 K 2 Cr 4 O l3 + Cr08 Cr0 3 IOO gms. sat. solution in glycol, C?H 4 (OH) 2 .H 2 O, contain 1.7 gms. K 2 CrO 4 at 15.4. IOO gms. sat. solution in glycol, C 2 H 4 (OH) 2 .H 2 O, contain 6 gms. K 2 Cr 2 O 7 at 14.6. (de Coninck, 1905.) IOO gms. H 2 O dissolve IO.I gms. K 2 Cr 2 O 7 at 15.5. (Greenish and Smith, 1901.) ioo gms. sat. solution in water contain 5.52 gms. K 2 Cr 2 O 7 at 4.81, 15.17 gms. at 30.1 and 1777 gms. at 35.33. (Le Blanc and Schmandt, 1911.) ioo cc. sat. aqueous solution contain 11.43 gms. K 2 Cr 2 O 7 at 20. (Sherrill and Eaton, 1907.) SOLUBILITY OF POTASSIUM CHROMATE IN AQUEOUS SOLUTIONS OF POTASSIUM MOLYBDATE AT 25 AND VlCE VERSA. (Amadori, 191 aa.) Gms. per ioo Gms. H 2 O. K 2 Cr0 4 . 64-62 49-59 38.90 33-21 K 2 Mo0 4 . O 15-37 38.79 50.96 Gms. per ioo Gms. H 2 O. 'K 2 CrO 4 . K 2 MoO 4 . 14.13 98.72 10.07 118.8 10.24 119.9 7.12 137.8 6.37 157.2 Gms. per ioo Gms. H 2 O. K 2 Cr0 4 . K 2 MoO 4 . 4.92 165.4 2.14 I80.8 1.70 183 o 184.6 SOLUBILITY OF POTASSIUM CHROMATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25 AND VICE VERSA. (Amadori, 191 2a.) Gms. per ioo Gms. H 2 O. K 2 CrO7 K 2 SO 4 . ' 63.09 0.76 61.39 I.I7 58.40 1.84 5I.8I 2.36 Gms. per ioo Gms. H 2 O. K 2 CrO 4 . 40.93 27.36 20.83 14.65 K 2 S0 4 . 3.33 4.82 5-72 7.12 Gms. per ioo Gms. H 2 O. K 2 Cr0 4 . 7 .8l 4.36 1.94 O K 2 S0 4 . 8.98 IO.25 10.86 12. IO IOO cc. anhydrous hydrazine dissolve I gm. K 2 CrO 4 at room temp. ) (Welsh and Brod- 100 cc. anhydrous hydrazine dissolve i gm. K 2 Cr 2 O 7 at room temp. J erson, 1915.) POTASSIUM CHROMATES 530 FREEZING-POINT DATA (Solubilities, see footnote, p. i) FOR MIXTURES OF POTASSIUM CHROMATES AND OTHER COMPOUNDS. K 2 CrO 4 + K 2 Cr 2 O 7 . (Groschuff, 1908.) ' K 2 CrO 4 -j- K 2 MoO 4 . (Amadori, 1913.) K 2 Cr a O7 -j- K 2 Mo 2 O7. K 2 CrO 4 -j- K 2 SO 4 . (Amadori, 1913; Groschuff, 1908.) K 2 CrO 4 + K 2 WO 4 . (Amadori, 1913.) K 2 Cr 2 O 7 + K 2 W 2 O 7 . POTASSIUM CITRATE (CH 2 ) 2 C(OH)(COOK) 3 .H 2 O. SOLUBILITY IN WATER. (Average results of Seidell, 1910; Greenish and Smith, 1901; Kohler, 1897.) Gms. (CH2) 2 C(OH)(COOK)3.H 2 O per ioo Gms. Sat. Solution. Water. 15 6l.8 l62 20 63.2 172 25 64.5 l82 (^25 = L5l8) 30 66 194 ioo gms. H 2 O dissolve 198.3 gms. (CH 2 ) 2 COH(COOK) 3 + 303.9 gms. cane sugar at 31.25- (Kohler, 1897.) SOLUBILITY OF POTASSIUM CITRATE IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell, 1910.) When potassium citrate is added to aqueous alcohol of certain concentrations the mixture separates into two liquid layers. A series of determinations made by adding an excess of the salt to 10-15 cc. portions of several aq. alcohol mixtures at 25 gave the following results. Wt.% . C 2 H B OH in Solvent. d 5 of Sat. Solution. ' Wt. %_ C^HsOH in Sat. Solution. Gms. (CH 2 ) 2 COH- (COOK) 3 .H 2 O per ioo Gms. Sat. Solution. 8. 9 (a lb 1.4920 O 60 (a . . . ... 0.2 3 2 lb 1.4930 6l.6 iff (a . . . 65.1 0.38 S 1 lb 62.5 *7O "? (a 0.8366 81 O.IO 7O.2 lb ... 62.3 8l.4 0/8356 8l.4 0.038 91.6 0.8139 91 .6 0.016 99-9 0.7896 99-5 0.014 a = upper, alcohol rich layer, b = lower, water rich layer. A series of determinations was also made by adding just enough potassium citrate to the alcohol solution to cause distinct clouding and then, after bringing to 25, titrating with the aqueous alcohol mixture to disappearance of the clouding. The results were plotted and the following interpolated values obtained. Wt.% in Solvent. Gms. (CH 2 ) 2 COH- <*u of (COOK) 3 .H 2 Sat. Solution. per ioo Gms. Sat. Sol. wt.% CzHsOH in Solvent. Gms.(CH 2 ) 2 COH- duol (COOK) 3 H 2 0, Sat. Solution, per ioo Gms. Sat. Sol. I.5l8 64.5 40 I .005 12.4 5 1.400 52-5 50 0-943 5-6 10 I.3IO 45-5 60 0.900 1.6 20 I.I77 31-5 70 0.868 0.4 3 1.085 21.5 80 0.838 0.04 In one determination at 15, made with alcohol of 59 Vol. per cent, 4.51 gms. (CH 2 ) 2 COH(COOK)s.H 2 O were required to just cause clouding. 531 POTASSIUM CYANATE POTASSIUM CYANATE KCNO. SOLUBILITY IN ALCOHOLIC MIXTURES. (Erdmann, 1893.) Cms. KCNO Solvent. per Liter Solvent at b.-pt. 80 per cent Alcohol + 20 per cent Water 62 80 per cent Alcohol + 20 per cent Methyl Alcohol 76 80 per cent Alcohol + 10 per cent Acetone 82 POTASSIUM CYANIDE KCN. 100 gms. H 2 O dissolve 122.2 gms. KCN, or 100 gms. sat. solution contain 55 gms. KCN at 103.3. (Griffiths.) 100 gms. abs. ethyl alcohol dissolve 0.87 gm. KCN at 19.5. 100 gms. abs. methyl alcohol dissolve 4.91 gms. KCN at 19.5. (de Bruyn, 1892.) 100 gms. glycerol dissolve 32 gms. KCN at 15.5. (Ossendowski, 1907.) 100 gms. hydroxylamine dissolve 41 gms. KCN at 17.5. (de Bruyn, 1892.) F.-pt. data for KCN + KC1, KCN + NaCN, KCN + AgCN, KCN + Cu 2 (CN) 2 and for KCN + Zn(CN) 2 are given by Truthe (1912). POTASSIUM CHROMOCYANIDE K 3 Cr(CN) 6 . 100 gms. H 2 O dissolve 32.33 gms. K 3 Cr(CN)e at 20. (Moissan, 1885; Christensen, 1885.) POTASSIUM CHROMITHIOCYANATE K 2 Cr(SCN) 6 .4H 2 O. IOO gms. H 2 O dissolve 139 gms. salt. (Karsten, 1864-5.) POTASSIUM CARBONYL FERROCYANIDE K3FeCO(CN) 6 .3^H 2 O. IOO gms. H 2 O dissolve 148" gms. salt at 16. (Muller, 1887.) POTASSIUM FERRICYANIDE KsFe(CN) 8 . POTASSIUM FERROCYANIDE K 4 Fe(CN) 6 .3H,O. SOLUBILITY OF EACH IN WATER. (Wallace, 1855; Etard, 1894; Schiff, 1860; Michel and Krafft, 1858; Thomsen.) NOTE. The available determinations fall very irregularly when plotted on cross-section paper, and the following figures, which are averages, are therefore hardly more than rough approximations to the true amounts. The figures under K 4 Fe(CN) 6 show the limits between which the correct values probably lie. Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. 10 2O 25 10 K 3 Fe(CN) 6 . 31 36 43 46 t A N KF. CHj.CO.C2Hj. H 2 O. KF. CH S .CO.C 2 H B . H 2 O. 34.38 0.17 65.45 10.50 4.87 84.63 23-63 0.50 75.87 5.70 9.93 84.37 18.62 1.49 79.89 3.96 12.42 83.61 15.91 2.19 81.90 0.84 21.23 77.93 13.80 2.98 83.22 0.34 23.55 76.11 Freezing-point data (solubilities, see footnote, p. i) for mixtures of KF + KI are given by Ruff and Plato (1903). Results for KF + KOH by Scarpa (1915). Results for KF + KPO 3 , KF + K 4 P 2 O 7 and KF + K 3 PO 4 are given by Amadori (1912). Results for KF + K 2 SO 4 are given by Karandeef (1909). Results for KF + NaF are given by Kurnakow and Zemcznzny (1907). 535 POTASSIUM FORMATE POTASSIUM FORMATE HCOOH. SOLUBILITY OF POTASSIUM FORMATE AND OF THE ACID SALT IN WATER. Solid Phase : HCOOK. A (Groschuff, 1903.) Solid Phase : HCOOK.HCOOH. Cms. Mols. Cms. HCOOK.- Cms. Cms. Mob. HCOOK HCOOK HCOOH HCOOK HCOOK HCOOH t. per too per 100 r. per 100 per 100 r. per 100 per i Cms. Mols. Cms. Cms. Cms. Mol. Solution. HjO. Solution. Solution. Solution. HCOOK. 2O 7 2.8 57-4 o 6o-4 39-o 36.3 3-21 + 18 76.8 71.0 25 69.8 4S-i 19-5 38.2 2.96 So 8 . 7 89.8 50 79-2 51.2 39-3 40.8 2.65 90 86.8 141.0 80 90.7 58.6 60 44.0 2-33 120 92.0 247.0 70 45-9 2.16 140 96.0 5ii 90 S 2 -! 1.68 157 IOO.O 00 Sp. Gr. of sat. solution at 18 = 1.573. NOTE. Since the acid salt is less soluble at ordinary temperatures than the neutral salt, it can be precipitated from the solution of the neutral salt by addi- tion of aqueous formic acid. Proceeding in this way an impure product is ob- tained, giving solubility values (expressed in HCOOK) as shown in the last three columns above. POTASSIUM GERMANIUM FLUORIDE K,GeF 6 . SOLUBILITY IN WATER. (Winkler, 1887; Kruss and Nilson, 1887.) 100 gms. H 2 O dissolve 173.98 gms. K 2 GeF 6 at 18, and 34.07 gms. at 100 (W.). 100 gms. H 2 O dissolve 184.61 gms. K 2 GeF 6 at 18, and 38.76 gms. at 100 (K. and N.). POTASSIUM HYDROXIDE KOH. Gms. KOH per 4. 100 Gms. Water. Solution. 2.2 3- 7 3 .6 20-7 22. 5 18 4 65.2 44. 5 30 .8 36.2 36. 2 26 .6 32.7 77- 94 43 .8 33 80 44 4 23-2 85 45 9 97 49 .2 10 103 50 7 SOLUBILITY IN WATER. (Pickering, 1893; at 15, Ferchland, 1902.) Solid Phase. Ice KOH. 4 H 2 KOH. 4 HjO+KOH.2H 2 O KOH.2H,0 Gms. KOH per t. 100 Gms. Solid Phase. Water. Solution. 15 107 51-7 KOH.2H 2 O 20 112 52.8 it 30 126 55-76 " 32-5 135 57-44 KOH. 2 H 2 O+ 50 I4O 58.33 KOH.H,O 100 I 7 8 64.03 KOH.HjO 125 213 68.06 " 143 3II.7 75-73 ii Sp. Gr. of sat. solution at 15 = 1.5355. 100 gms. sat. solution in H 2 O contain 50.48 gms. KOH at 15. (de Forcrand, 1909.) ioo gms. sat. solution in H 2 O contain 53.1 gms. KOH at 15. (Greenish and Smith, 1901.) POTASSIUM HYDROXIDE 536 SOLUBILITY OF POTASSIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 30. (deWaal, 1910.) Cms. per ioo Cms. Sat. Sol. Gms. per 100 Cms. Sat. Sol. KOH. QHsOH. H 2 0. ooiiu .rnase. KOH. C 2 H 4 OH. H 2 0. soiia rb&se. 55 75 44-25 KOH. 2 H 2 O 27. 67 69 92 2.41 KOH. 2 H 2 O 54 ,8l 0.43 44.76 " 27. 20 73- 01 negative* Two liquid layers are formed here. 26. 25 81. 95 31 57.50 11.50 KOH. 2 H 2 O 28. 99 65.07 5-94 * Negative on account of reaction KOH+QjHjOH ^QHjOK+HjjO. Data for equilibrium in the system potassium hydroxide, phenol, water at 25 are given by van Meurs (1916). Freezing-point data for KOH + RbOH and KOH + NaOH are given by von Hevesy (1900). Results for KOH + KI are given by Scarpa (1915). POTASSIUM IODATE KIO 3 . SOLUBILITY IN WATER. (Kremers, i8s6a; at 30, Meerburg, 1904.) t. 20 30 40 60 80 100 Gms. KI0 3 per ioo gms. H 2 O 4.73 8.13 11.73 I2 -8 l8 -5 24.8 32.2 100 gms. H 2 O dissolve 1.3 gms. potassium hydrogen iodate, KH(IO 3 )2, at 15* and 5.4 gms. at 17. (Semllas.) ioo gms. H 2 O dissolve 4 gms. potassium dihydrogen iodate, KH 2 (IO 3 )3, at 15. (Meineke, 1891.) EQUILIBRIUM IN THE SYSTEM POTASSIUM IODATE, IODIC ACID, WATER AT 30. (Meerburg, 1905.) Gms. per ioo Gms. Gms. per ioo Gms. Sat. Sol. Solid Phase. Sat. Sol. Solid Phase. HI0 3 . KI0 3 . " ' HI0 3 . KIOT O 9.51 KI0 3 3-47 3-59 KIO 3 . 2 HI0 3 (unstable) 0.65 9.49 +KI0 3 .HIO, 4-80 2.90 0.65 8.90 KIOj.HIO, 6.45 1.35 0.67 6.6 " 9.35 0.64 KIO 3 . 2 HIO 3 1.14 4-57 " 12.04 0.44 1.69 3.63 17-50 0-30 2. 02 3-10 " 31.20 0.52 " 3.34 2.10 " 53-64 0.68 5 1.32 " 62.52 0.72 7.09 I ' 76.40 0.8o +HI0 3 8.04 0.85 +KI0 3 .2HIO 3 76.7 O HI0 3 ioo cc. anhydrous Hydrazine dissolve I gm. KIO 3 at room temp. (Welsh and Broderson, 1915.) POTASSIUM PerlODATE KIO 4 . ioo gms. H 2 O dissolve 0.66 gm. KIO4 at 13, dig. of sat. solution = 1.0051. (Barker, 1908.) POTASSIUM IODIDE SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Kremann and Kershbaum, 1907.) Gms. KI per CrtV A Gms. KI per <- KJ &.<& % '" &.< $2- -12.5 38 Ice -22.5 52.1 KI 15 41.2 " 20 52.6 -17-5 44-6 " -15 53-5 20 48 " 10 54-5 " -22.5 51.2 - 5 55.4 23.2Eutec. 51.9 " +KI o 56.4 " 537 POTASSIUM IODIDE POTASSIUM IODIDE KI. SOLUBILITY IN WATER. (Mulder; de Coppet, 1883; Etard, 1894; Meusser, 1905; see also Tilden and Shenstone, 1884; Scbreinemakers, 1892.) Gms. KI per TOO Gms. Water. Solution. 10 II5.I 53-5 5 II9.8 54-5 i 122.2 55 ' 127.5 56.0 10 136 57-6 20 144 59-O 25 148 59-7 30 152 60.3 40 160 61.5 50 168 62.7 60 176 63-7 70 184 64.8 Gms. KI per 100 Gms. * . Water. Solution. 80 192 65.8 90 200 66.7 100 208 6? 5 no 215 68,3 120 223 69.0 Ice Curve - 5 25-7 22 5 - 7 42 .6 29.9 - 9 5 5 J '5 34-o ii 5 64.7 39-3 -14 75-8 42.7 Sp. Gr. of sat. solution at 15.2 = 1.704. (Greenish and Smith, 1901.) Individual determinations, in good agreement with the above results, are given by van Dam and Donk (1911), and by Greenish and Smith (1901). SOLUBILITY OF POTASSIUM IODIDE + IODINE IN WATER AT 25. (Foote and Chalker, 1908.) Gms. per 100 Gms. Sat. Sol. Present in Solid Phase. ' KI. I. I-KI. 29-45 64.34 34.89 Kland 28.91 63.88 34-97 KI 3 26.84 27.18 66.54 67.14 39.70 39.96 KI 3 and KI. 27.14 66.00 39.46 Bhlf Gms. per 100 Gms. Sat. Sol. Present in Solid Phase. ' KI. I. I KI. 25-88 68.79 42.91 KI 7 and 25.57 69.01 43.44 Iodine 27.86 66.56 27.27 66.91 3 26.95 67.17 KI, 25.71 67.91 JXJ.7 The experiments of Hamberger (1906) are discussed. (See also p. 326.) SOLUBILITY OF MIXTURES OF POTASSIUM IODIDE AND SILVER IODIDE IN WATER AT o, 30 AND 50. (Van Dam and Donk, 1911.) Results at o. Gms. per TOO Gms. Sat. Sol. Results at 30. Gms. per 100 Gms. Sat. Sol. Results at 50. Agl. KI. O 56.1 9 53 18 51-2 3i.3 46.6 37-9 44 37-6 42.7 38 41-3 28.1 36.4 26.6 34-6 6.5 26.1 i-5 20.5 0.2 9.8 27-5 48.7 21 50.3 Agl. KI. O 60.35 16 55-5 35-8 46.9 42.8 43-9 44.1 43-2 47-7 40.9 49-7 38.6 42.8 38.8 29.4 37-6 10 31-4 O.I IO.2 jms. per 100 Gms. Sat. So I- Solid Phase in Each Case. Agl. KI. 62.6 KI 10.7 59-1 22.8 55-5 " 45 43-2 tt 53-4 37-6 " +AgI.KI 53-5 37-1 AgLKI 53-5 36-6 " +AgI 53-5 36.5 Agl 39 38.1 28 36.7 16 33-8 2-5 24.8 " Agl.aKI+KI Agl.aKI POTASSIUM IODIDE 538 SOLUBILITY OF POTASSIUM IODIDE IN DILUTE AQUEOUS SOLUTIONS OF ETHYL ALCOHOL AT 25. (Armstrong, Eyre, Hussey, and Paddison, 1907.) Wt. Per cent d of Gms. KI Wt. Per cent d of Gms. KI CjHjOH in Solvent. SatTSoL per ioo Gms. Sat. Sol. QHsOH in Solvent. "25. ^* L Sat. Sol. per ioo Gms. Sat. Sol. O 1.7268 59.80 4.41 1.6833 58.08 1. 14 I.7I54 59-41 12.14 I . 6063 54-93 2.25 I . 7042 58-95 18.73 1.5420 52.08 loo gms. aqueous 94% ethyl alcohol dissolve 3.99 gms. KI at 17. (de Bruyn, 1892.) I oogms. aqueous 98% methyl alcohol dissolve 17.1 gms. KI at 17. ioo cc. of ethyl alcohol of d i6 = 0.8292 dissolve 8.83 gms. KI at 15, dm of sat. solution = 0.8989. (Greenish and Smith, 1901.) SOLUBILITY OF POTASSIUM IODIDE IN ABSOLUTE ALCOHOLS. (de Bruyn Z. physik. Ch. 10, 783, '92; Rohland Z. anorg. Ch. 18, 327, '98.) ioo gms. methyl alcohol dissolve 16.5 gms. KI at 20.5. 100 gms. ethyl alcohol dissolve 1.75 gms. KI at 20.5. ioo gms. propyl alcohol dissolve 0.46 gm. KI at i5-2o (R.). SOLUBILITY OF POTASSIUM IODIDE IN: Ethyl Alcohol of 0.9496 Sp. Gr. Aqueous Ethyl Alcohol at 18. r Gms. KI per Sp. Gr. Weight Gms. KI Sp. Gr. Weight Gms. K! t. IOO Gms. Alcohol of Alcohol. per cent Alcohol. per ioo Gms. Alcohol. of Alcohol. per cent Alcohol. per ioo Gms Alcohol. 8 67.4 0.9904 S- 2 I30.5 0.9390 45 66.4 13 69.2 0.9851 9 .8 119.4 0.9088 59 48.2 25 75- 1 0.9726 23.0 IOO. I 0.8464 86 II.4 46 84-7 0.9665 29.0 89.9 0.8322 91 6.2 55 87-5 0.9528 38.0 76.9 62 9 ' ^ (Gerardin Ann. chim. phys. [4] 5, 155, '65.^ SOLUBILITY OF POTASSIUM IODIDE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL Solvent. (Herz and Anders, 1907.) Sat. Solution. Solvent. Sat. Solution. Wt. Per cent j Gms. KI Wt. Per cent Gms. KI" *>' CH 3 OH. "V per ioo cc. a ^' CH 3 OH. ^6- per ioo cc. 0.9971 O 1.7213 102. 9 0. 8820 64 I .185 40.33 0.9791 10. 6 1.634 92. 12 O. 8489 7 8.1 i .066 28.05 0.9481 30. 8 1.460 55 0. 8167 93-9 .9700 18.76 0.9180 47. i 1.325 55- 6 0. 7881 IOO .9018 13.28 SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL ALCOHOLS. Alcohol. Methyl Alcohol Ethyl Propyl Amyl t. Gms. KI per ioo Gms. Alcohol. Authority. ii. 4 13-5 (Timofeiew, 1894.) 12.2 14.6 " 13-5 16 " 25 18.04 (Turner and Bissett, I9I3-) 13.6 1.63 (Timofeiew, 1894.) 25 2.16 (Turner and Bissett, I9I3-) 12.2 o.73i (Timofeiew, 1894.) 25 0-43 (Turner and Bissett, 1913-) 25 0.098 ioo cc. sat. solution of KI in ethyl alcohol contain 1.585 gms. KI at 25. (Laurie, 1912.) 539 POTASSIUM IODIDE SOLUBILITY OF POTASSIUM IODIDE IN LIQUID METHYL ALCOHOL AT TEM- PERATURES UP TO THE CRITICAL POINT. (Tyrcr, 1910.) (Determined by the Sealed Tube Method.) r. 15 5 = 5 = Bo ICO 14-50 16.20 18.9 22.5 25 r. 140 160 r. ioo 27.2 29.2 30.6 30-7 29.1 240 245 247 250 cnt, temp. 252.5 27-5 24-8 22.6 21 13-8 7-6 SOLUBILITY OF POTASSIUM IODIDE IN VAPOR OF METHYL ALCOHOL ABOVE THE CRITICAL POINT. (Tyrer, 1910*.) GBS-ODiaohrdprriooGi Btai :,: = 300 i 33 7 i cc. Vapor. O.I O.2 0-3 0.36 0-4 0.45 Data for the author gives the crit. temp, as 266 and the corresponding concentration as 8.64 gms. KI per ioo gms. of the sat. solution. 0-3 i 3-7* 7-6 ii. 8 18.1 i 3-5 7-4 ti-5 ?y~:e~ I 34 73 tt-3 given by I 3-4 7-2 ii rszwer (1910). This SOLUBILITY OF POTASSIUM IODIDE IN MIXTURES OF ALCOHOLS AT 25. fliu ir^a. 1908.) In Methyl -f Ethyl 1 In Ethyl + Prop>*l SfiS* 1 sSsoL 9 SfSSi as* S^SoL ^loT- C SSL~ S.L.SOL ] per ioo a Sat-SoL 0.8015 i-55 O.QOlS 13.16 0.8015 1-55 4 37 0.8041 1.91 n. ii 0.8823 IO.O6 8.1 0.7983 1.46 10.4 0.8071 2.25 238 0.8629 8-54 17 85 0.7991 1-37 41.02 0.8295 4 94 65.2 0.8187 2.62 56.6 0.7988 0-75 80.69 0.8794 10.13 91.8 0.8045 0.60 88.6 0.8022 0-52 - -- 0.8795 10.72 96.6 0.8041 0.58 91.2 0.8027 0-49 91.25 0.8oo8 11.84 IOO 0.8041 0-43 95 2 0.8029 0-44 ICO O.OOlS 13.16 IOO 0.8041 0-43 SOLUBILITY OF POTASSIUM IODIDE IN ACETAMIDE. t GMS. KI per ioo Sofid * - OK.Sit.SoL }-_>i 82 m. pt. O CHjGOXH- 78 6-5 - 74 12.8 m 70 17-8 " 66 21-5 M $ 26.2 M 53 Eutec, 28.4 +n 7~ 85 ioo 130 145 IOO 175 Gms. KI per ioo G-B.Sat.5oL 28-75 29.1 29 45 30-15 30-5 30-8 POTASSIUM IODIDE 540 SOLUBILITY OF POTASSIUM IODIDE IN ACETONE AND IN PYRIDINE. (von Laszcynski, 1894; at 25, Krug and McElroy, 1892.) Cms. KI per 100 Cms. Solvent at: Solvent. Acetone Pyridine 2.5 10 22 2-38 25 2-93 56 I. 21 119 0.26 O.II 100 gms. glycerol dissolve 40 gms. KI at 15.5. (Ossendowski, 1907.) 100 gms. 95% formic acid dissolve 38.2 gms. KI at 18.5. (Aschan, 1913.) 100 cc. anhydrous hydrazine dissolve 175 gms. KI at room temp. (Welsh and Broderson, 1915.) 100 gms. hydroxylamine dissolve no gms. KI at 17.5. (de Bruyn, 1892.) 100 gms. sat. solution in hydrated lanolin (containing 30% emulsified water) contain 42.5 gms. KI at 45. (Klose, 1907;) KI is insoluble in anhydrous lanolin. SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL SOLVENTS. (Walden, 1906.) Solvent. Water Water Methyl Alcohol Methyl Alcohol Ethyl Alcohol Ethyl Alcohol Glycol Glycol Acetonitrile Acetonitrile Propionitrile Propionitrile Benzonitrile Nitromethane Nitromethane Nitrobenzene Acetone Acetone Furfurol Furfurol Benzaldehyde Salicylic Aldehyde Salicylic Aldehyde Anisic Aldehyde Anisic Aldehyde Ethyl Acetate Methyl Cyanacetate Methyl Cyanacetate Ethyl Cyanacetate _ . * SD.Gr.of oms.^perioo 1* orrnula,. Solution. cc. Solution. Gms. Solution. H 2 O o i . 6699 94-05 56.32 H 2 O 25 I-7254 IO2 . 70 59-54 CH 3 OH o 0.8964 ii. 61 12.95 CH 3 OH 25 0.9003 13.5-14.3 14.97 C 2 H 5 OH o 0.8085 1.197 1.479 C 2 H 5 OH 25 0.7908 1.520 1.922 (CH 2 OH) 2 1-3954 45-85 31-03 (CH 2 OH) 2 25 1.3888 47-23 33-01 CHgCN o 0.8198 1.852 2.259 CH 3 CN 24 0.7938 i-57 2.003 C 2 H 5 CN o 0.8005 0.34-0.41 0.0429 C 2 H 5 CN 25 0.7821 0.32-0.36 0.0404 C 6 H 5 CN 25 [.0076 0.051 0.0506 CH 3 NO 2 [.1627 0.314-0.366 0.315 CH 3 NO 2 25 1.1367 0.289-0.349 0.307 CeHsNC^ 25 . . . 0.0019 (CH 3 ) 2 CO o 0.8227 1.732 2.105 (CH 3 ) 2 CO 25 0.7968 1.038 1.302 CAO.COH 15. 10 . . . C 4 H 3 O.COH 25 .2014 5.62 4-94 C 6 H 5 COH 25 .0446 0.343 0.328 C 6 H 4 .OH.COH o 1501 1.257 1.093 C 6 H 4 .OH.COH 25 1373 0.549 0.483 C6H 4 .OCH 3 .COH o .1223 1.520 1-355 CeH 4 .OCH 3 .COH 25 .1180 0.720 0.644 CH 3 COOC 2 H 5 25 . . . 0.0013 CHoCNCOOCHg o .1521 3.256 2.827 CH 2 CNCOOCH 3 25 .1358 2.459 2.165 CH 2 CNCOOC 2 H 5 25 .0628 0.989 0.930 541 POTASSIUM IODIDE SOLUBILITY OF POTASSIUM IODIDE AT 20 IN SEVERAL SOLVENTS CONTAINING DISSOLVED IODINE. (Olivari, 1908.) Gm. Mols. KI per Liter in Solvent Containing: Solvent. as Gm. Mols. Ts~Gm. Mols. 2.5 Gm. Mols. I 2 per Liter. Ij per Liter. I 2 per Liter. Acetic Acid 0.511 1.460 2.080 Ethyl Acetate 0.490 1.400 1.980 Ethyl Alcohol 0.520 1.220 1.730 Nitrobenzene 0.414 0.960 1.380 Ethylbromide 0.140 0.350 EQUILIBRIUM IN THE SYSTEM POTASSIUM IODIDE ETHYL ETHER WATER AT 20. (Dunningham, 1914-) Cms. per too Gms. Upper Layer. Gms. per 100 Gms. Lower Layer. Solid KL~~ ~~HA (C 2 H 6 ) 2 0. liL*"" H 2 O. (QH^O. Phase- 59-2 40.8 ... KI o 3.9 96.1 o 93 7 None 0.4 0.4 99-2 55-6 40-7 3-7 KI O.I 2.2 97.7 25 72.1 2.9 None DISTRIBUTION OF POTASSIUM IODIDE BETWEEN WATER AND: Nitrobenzene at 1 8. (Dawson, 1908.) Phenol at Room Temp. (Riesenfeld, 1902.) Mols. KI per Liter. Dist. Gms. KI per 100 cc. Dist. CeHfiNOz Layer"! H 2 O Layer. Ratio. C 6 H 6 OH Layer! Aq. Layer.' Ratio. O.OOII4 6.05 5300 0.052 0.725 13.2 0.00108 6.05 5600 0.197 2.42 12.3 2.09 30.7 14-7 Freezing-point data for KI + K 2 SO 4 and KI + NaCl are given by Ruff and Plato (1903). Results for KI + Agl are given by Sandonnini (i9i2a). Results for KI -f- SO 2 are given by Walden and Centnerszwer (1903). POTASSIUM IODOMERCURATE (Thoulet Solution). A sat. solution at 22.9, prepared by adding KI and HgI 2 in excess to water, contained 8.66% K, 22.49% Hg, 52.58 (57.7) % I and 10.97 (11.15)% H 2 O, corresponding to 0.22 mol. alkali, o.n mol. Hg and 0.45 mol. I. (Duboin, 1905.) POTASSIUM MOLYBDATE K 2 MoO 4 SOLUBILITY OF POTASSIUM MOLYBDATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE AT 25 AND VlCE VERSA. (Amadori, igi2a). Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. fzSOT K 2 MoO 4 : KjSOT K 2 MoO 4 .' o 184.6 1.50 99-49 0.46 180.7 2 - T 3 45-89 0.72 177 3.95 17-48 0.98 127.2 8.55 4-73 1.27 J O7.5 12. 10 o Freezing-point data for K 2 MoO4+ K 2 SO 4 , K 2 MoO 4 + K 2 WO 4 and K 2 Mo2O + K 2 W 2 O 7 are given by Amadori (1913). POTASSIUM NITRATE KNO 3 . SOLUBILITY ICE CURVE AND SUPERSOLUBILITY ICE CURVE. (Jones, 1908.) Gms. KNO 3 per 100 Gms. H 2 O. Gms. KNO 3 per 100 Gms. H 2 O. of Cryst Solubility Supersolubility o { Cryst. Solubility Supersolubility Ice Curve. Ice Curve. Ice Curve. Ice Curve. -I 3.336 I. Oil -3 ... 5.762 2 7.582 3-S38 4 ... 8.694 2.8* 11.62 5.56 5 .... II. 12 -5-3* ... ".82 * Cryohydrate. POTASSIUM NITRATE 542 SOLUBILITY IN WATER. (Mulder; Andrae, 1884; Gerardin, 1865; Etard, 1894; Ost, 1878; at 31.25, Kohler, 1897; Euler, 1904; Tilden and Shenstone, 1884; Berkeley, 1904.) Average Curve. 9 Gms. KNOa per TOO Gms. . Gms.KNO 3 per TOO Gms. Water. Solution. Water. Solution. o 13-3 11.7 70 *3 8 5 8 o 10 20.9 17.3 80 169 62.8 2O 3I-6 24.O 9O 2O2 66.9 25 37.3 27.2 ioo 246 71.1 30 45-8 3 J -4 no 300 75.0 40 63.9 39.0 120 394 79-8 50 85.5 44-o 125 493 83.1 60 no.o 52.0 The very carefully determined figures of Berkeley are as follows: dt of Gms. KNOs per d.oi Gms. KNO 3 per Sat. Sol. ioo Gms. H 2 O. ' Sat. Sol. ioo Gms. HjO. 0.40 1.0817 13-43 60.05 I-3903 111.18 14.90 1.1389 25.78 7 6 1.4700 156.61 30.8o I.22I8 47-5 2 91.65 1-5394 210.20 44-75 i-343 74.50 114 b. pt. 1.6269 311.64 IOOO gms. H 2 O dissolve 384.48 gms. KNO 3 at 25. (Armstrong and Eyre, 1910-11.) One liter sat. solution in water contains 2.8 mols. = 283.11 gms. KNO 3 at 20. (Rosenheim and Weinheber, 1910-11.) Recent determinations of the solubility of potassium nitrate in water, agreeing satisfactorily with the above data, are given by Chugaev and Khlopin (1914). SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND BARIUM NITRATE IN WATER. (Euler Z. physik. Ch. 49, 313, '04.) t. Sp. Gr. of Sat. Solution. Grams per ioo Grams H2O. 17 1. 120 13.26 KNO 3 + 6.31 Ba(NO 3 ) 2 21.5 ... 17.00 " + 7-58 30 1.191 24.04 + 9-99 50 ... 49-34 +18.09 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT o. (Engel Compt. rend. 104, 913, '87.) p. Gr. of olutions. Equivalents per 10 cc. Solution. Grams per ioo cc. Solution. 1.079 i2. 5 KN0 3 o HN0 3 12.65 KNO 3 o.ooHNO 8 9-9 " 5-87 H IO-O2 " 3-7 1 tt 093 8.28 " 13-2 tt 8.38 " 8.38 " .117 7-4 " 2i-55 tt 7-49 " 13.58 " .144 7-4 " 3i-i tt 7-49 " 19.47 " .202 7.6 48.0 tt 7.68 " 30.04 " .289 10.3 68.0 tt 10.42 " 42.86 tt 498 28.3 " 120.5 tt 28.64 " 75-95 " Freezing-point data for KNO, + HNO 3 are given by Dernby (1918). 543 POTASSIUM NITRATE SOLUBILITY OF POTASSIUM NITRATE AND OF ACID POTASSIUM NITRATES IN NITRIC ACID. (Groschuff Ber. 37, 1490, '04.) NOTE. Determinations made by the so-called thermometric method, i.e., by observing the temperature of the disappearance of the separated, finely divided solid from solutions of known concen- tration. Grams per 100 t. Solution. Gms. Solid Phase. Gms. per 100 Gms. t i Solution. Solid Phase. KN0 3 . HNO 3 . K.N0 3 . HN0 3 . - 6 24 4 75 .41 KNO 3 .2HNO a 0) 22.5 47.2 52-93 KN0 3 .HN0 3 + 14 32 .6 67 .42 " (stabil) 23-5 47.8 52.11 " (stabil) 17 34 .8 65 .04 " 25-5 48.6 51.46 ' 19 5 37 .2 62 .90 " 27.0 49.4 50.78 22 44 5 55 .46 " 29.0 50.1 49.94 KNO 3 .HNO 3 21 5 47 .8 S 2 .11 KNOs.2HNO 3 (0 30-5 5o-9 49-15 (labil) 21 5 48 .6 5 1 .46 (labil) 21 .0 49.4 50.78 KNO 8 (labil) 20 So 9 49 .15 " 39-o 5o-9 49 -IS " (stabil) 4 37 .a 62 -8l KNO 3 .HNO 3 5 51 .7 48.32 -16 5 44 5 55 .46 (labil) c 1 ) Solution in HNO 3 . 0) Solution in KNOj. CONDUCT OF ACID POTASSIUM NITRATE TOWARDS WATER. Gms. per 100 Gms. t. Solution. Solid Phase. t Gms. per 100 Gms. Solution. Solid Phase. KN0 3 . HN0 3 . KNOg. HNO 3 . 22 44 5 55 5 KNO 3 .2HNOi 5 38. 7 4 8. 3 KNO 8 20 5 44 .1 55 o " 61 36. o 44- 8 " 18 43 .8 54 5 " 63 34- 5 43- o " 12 43 53 .6 " 60. 5 3- 39- 5 " 6 42 3 52 7 " 56 27. 6 34- 4 " o 41 .6 5 1 .8 " 43 20. 8 25- 9 " 12 41 3 5 1 4 KNO 8 17 ii. 7 14. 6 M 22 40 9 5 1 .0 it -5 5- 54 6.91 40 39 9 49 .8 * SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM CHLORIDE IN WATER. (Etord Ann. chim. phys. [7] 3, 283, '94; at 20, Riidorff Ber. 6, 482, '73; Nicol Phil. Mag. [5] 3 it 385, '91 ) Gms. per too Gms. t. Solution. Gms. per 100 Gms. 40. Solution. Gms. t. per 100 Gms. Solution. KN0 3 . KCI/ 'KN0 3 . KCI: KN0 3 . KCI. 5-o 20. o 30 16 o 21 .2 70 39 5 17-5 10 8.0 20.8 40 21 .0 21 O 80 45 ^5 15-8 20 12.6 21 .2 50 27 o 2O O 100 57 5 ii .6 25 14.0 21.3 60 33 5 19 .0 120 69 7-7 POTASSIUM NITRATE 544 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OP: (Touren Compt. rend. 131, 259, 'oo.) Potassium Carbonate. Results at 14.5. Potassium Bi Carbonate. Mols. per Liter. Gms. per Liter. KzCO*. KNOa- K 2 C0 3 . KJNU 3 . o.o 2 .228 o.o 225 0-48 I 85 66.4 188 1-25 I 39 172.9 141 2.58 .86 35 6 -9 87 3-94 o .64 544-9 65 Results at *s. o.o 3 .217 o.o 326 o-59 2 .62 81.6 265 3-35 I 97 186.7 199 2.10 I .46 290.5 148 2.70 I .14 373-6 H5 3-58 O 79 495 - 1 80 Results at Mols. per Liter. 14-5. Grams per Liter. KHC0 3 . KN0 3 . KHC0 3 . KN0 3 . 0-0 2-33 o.o 336 o-39 2.17 39-o 2 2O 0.76 2.03 76.0 205 1.16 1.92 116 194 i-55 1.81 J 55 183 Results at 25. o.o 3-28 o.o 332 0.89 2.84 8 9 287 i-33 2.65 133 268 1.91 2-45 191 249 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE AT 24.2. (Kremann and Zitek, 1909.) Gms. per 1000 Gms. H 2 O. KNO 3 . Gms. per 1000 Gms. H 2 O. KN0 3 . 3 7 6.8 285 161.7 I4I.8 K 2 C0 3 . O I30-3 348.4 371-9 Solid Phase. KNO, 73 38.8 K 2 C0 3 . 688.1 878.3 III2.2 Solid Phase. KNO 3 +K 2 CO, looo gms. H 2 O containing I mol. KC1 (ioi.n gms.) dissolve 324.85 gms. KNO 3 at 25 . (Armstrong and Eyre, 1910-11.) Data for the system potassium nitrate, potassium sulfate, water at 35 are given by Massink (1916, 1917). SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM SULPHATE IN WATER. (Euler Z. physik. Ch. 49, 3i3> '04-) t*. Sp. Gr. of Sat. Solution. Grams per 100 Grams Water. 15 i . 165 24 .12 KNO 3 " 5.65 K 2 SO 4 20 ... 30.10 " 5.58 " 25 I. 210 36.12 " 5.58 " SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SODIUM CHLORIDE IN WATER. (Etard Ann. chim. phys. [7] 3, 283, '94 agree well with those of Etard.) ; the older determinations of Riidorff, Karsten, Mulder, ;tc. t. Gms. per 100 Gms. Solution. t. Gms. per 100 Gms. Solution. t. Gms. per 100 Gms. Solution. KN0 3 . NaCl. " KNO 3 . NaCl." KNO 3 . NaCl. 13 24 40 3o-5 *9 120 73 8.0 10 16 23 So 36 17 140 77 7-o 20 2O 22 60 42-5 15 160 79-5 6 - 25 23 21-5 80 55 12 170 80.5 5-5 30 25 20.5 100 6 7 9-5 545 POTASSIUM NITRATE 100 gmsi H2O, simultaneously sat. with potassium nitrate and sodium chlo- ride, contain 41.14 gms. KNO 3 + 38.53 gms. NaCl at 25 and 168.8 gms. KNO 8 + 39.81 gms. NaCl at 80. (Soch, 1898.) SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AND VICE VERSA. (Leather and Mukerji, 1913.) Sp. Gr. Results at 20. Gms. per 100 Gms. H 2 O. Solid Sp. Gr. Results at 30. Gms. per looGms. H 2 O. Solid Sat. Sol. ' KNO 3 . NaCl. Phase. Sat. Sol. KNO 3 . NaCl. Phase. 1.167 31 49 KNO, I .261 4 6 .48 9.82 KNO, I.22O 33 .41 9- 94 I 302 47 .08 20. l8 1.267 34 93 19. 44 " I 343 47 .24 29.86 I.3II 36 .41 29. 46 ii I 372 49 .24 38.72 " +NaCl 1-344 37 30 37- 73 " +NaCl I 342 38 36 38.55 NaCl 1-330 31 .41 37- 57 NaCl I .298 25 32 38.23 1.283 19 56 37- " I .258 12 IS 37.38 1-243 9 .76 36. 73 " I .202 36.30 " Results at 40. Results at 91. 1.288 64 74 o KNO, I -552 2O2 .8 o KNO, 1.320 64 .66 ii. 32 " I 573 204 .2 12. 8l ii . . . 64 05 23- 41 " .601 208 .1 28.45 1.396 64 13 35- 08 645 213 3 37-92 1.411 64 77 38. 79 " +NaCl .660 218 .8 39-oS " +NaCl 1.376 52 .81 39- 51 NaCl .607 175 .8 40.87 NaCl 1-323 34 98 38. 98 " 517 126 9 44-33 . ii 1.267 17 33 37- 74 a 378 57 53 42.90 , At the higher temperatures, results for NaNO 3 in certain solutions are reported. SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA. (Leather and Mukerji, 1913.) Rei Sp. Gr. Sat. Sol. I.3I7 1.403 1.472 1-544 1.520 1.481 I-45 1 1.406 suits at 30. Gms per 100 Gms. H 2 0. Res Sp. Gr. Sat. Sol. 1.358 1.428 I-505 1-570 1-573 1.526 1.476 1.421 mlts at 40. Gms. per 100 Gms. H 2 0. Sp. Gr. Sat. Sol. 1.615 1.674 I-75I 1.790 1-774 1.695 1.610 1.521 Results at 91 Gms. per 100 Gms. H 2 O. o Solid Phase in Each Case. KNO, " +NaNO, NaNO, KN0 3 . 45-73 47-25 50.93 54-34 47.67 30.25 14.30 NaN0 3 ." 25.90 52.53 79.27 103.3 103.1 101.6 99.10 95-90 KN0 3 . 63.21 63.86 66.44 74.06 68.72 43-92 20.33 NaN0 3 . 23.85 49-79 79.46 116.2 116.7 112. 2 109.9 105.2 KN0 3 . 200.8 207.2 229-5 251.8 2II.7 128.5 .55-75 o NaN0 3 ." 43-4 : 92.90 156.2 206.5 200 186 I73.I 160.8 Results at 20 are also given. SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 20. (Carnelly and Thomson J. Ch. Soc. 53, 782, '88; Nicol Phil. Mag. 31, 369, '91.) KNO 3 in Aq. NaNO 3 Solutions. NaNO 3 in Aq. KNO 3 Solutions. Grams per 100 Grams H a O. KNO 3 . NaNO 3 . " 88 9 9 2 93 Grams per 100 Grams H 2 O. NaNO 3 . KN0 3 O 10 20 40 60 80 31-6 30-5 3 I.O 33-o 35-5 41-0 o 10 20 25 30 35 94 96 POTASSIUM NITEATE 546 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 10 AND AT 24.2. (Kremann and Zitek, 1909.) Gms. per 1000 Gms. H 2 O. Cms. per 1000 Gms. H 2 O. I . KN0 3 . NaN0 3 . OUUU JTllitSC. * KNO 3 . NaN0 3 . ouiiu ruMBi 10 208.9 O KNO 3 24.2 422 931-3 KNO, IO 301.9 848.3 " +NaNO, 24.2 437 1019 " +NaNO, IO o 805 NaNO, 24.2 123.6 910.6 NaNO, 24.2 377-3 KNO, 24.2 o 913 " 24.2 390 346.7 " SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SILVER NITRATE Gms. per too Gms. Sat. Sol. KNO 3 . 31-3 30-45 29.22 26.58 25.02 AgN0 3 . o 11.51 23-59 39-09 46.38 AT 30 AND VICE VERSA. (Schreinemakers, 1908-09.) Solid Phase. KNO, " +AgNOj.KNO 3 KNO 3 . AgN0 3 . ounu rna.sc 17.38 57-85 AgNOj.KNO, 13-44 65.08 11.22 69.01 " -hAgNO, 5-53 7I.6S AgNO, 73 " SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SILVER NITRATE Gms. per 100 Gms. Sol. o 10 20 25 KNO 3 . 13-5 19 23 25 AgNO 3 . 43 44-7 47 48 IN WATER. (Etard, 1894.) Gms. per 100 Gms. Sol. ' KNO 3 . 'AgNO 3 . Gms. per 100 Gms. Sol. 30 40 26.8 29.6 32 33-5 49-4 Si-5 54 54-8 80 IOO 120 140 KNO 3 . 36-2 38.3 40 41-5 AgNO,. 55-1 55-3 55-6 55-8 SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM NITRATE AND SILVER Gms. per Liter. NITRATE IN WATER AT 25. (Herz, 1905; Fock, 1897.) Mg. Mols. per Liter. Mol. Per cent Mol. Per cent AgN0 3 . 45-9 110.7 176.8 259.6 365-6 507-9 745-9 KNOj. 321.8 322.6 333-7 364 456.4 387.2 398.6 AgNO 3 . 270 65L3 1040 1528 2151 2988 4388 KNO 3180 3184 3298 3597 45" 3816 396o AgN0 3 in AgNO 3 in Solution. Solid Phase. 7.83 0.2896 16.96 0.6006 23-97 o . 9040 29.81 1-054 32.28 1.604 43-85 2-439 52.70 8.294 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF STRONTIUM NITRATE AND VICE VERSA AT 20 AND AT 40. (Findky, Morgan and Morris, 1914.) Gms. per 100 Gms. t. Sat. Sol. Solid Phase. t. Gms. per Sat. 100 Gms. Sol. Solid Phase. KNOj. Sr(NOj) 2 . ' KNOj. Sr(NO 3 ) 2 . 20 22 90 5.49 KNO, 20 12 -65 41. 12 Sr(N0 3 ) 2 . 4 H 2 2O 21 70 9.17 2O 10 40. 70 " 2O 21 OI 17.10 ' 40 30 .26 23- 70 KNO 3 20 19 60 31.24 40 26 .90 38. 52 " +Sr(NOj) 2 . 4 H 2 2O 19 49 34-91 40 22 50 40. 22 Sr(NO,) 2 .4H 2 2O 19 69 39.56 ' +Sr(N0 3 ),. 4 H 2 40 II .19 44- 19 " 20 17 56 40.37 Sr(NO3) 2 . 4 H 2 O 40 O 47- 7 " 1000 gms. H 2 O, simultaneously saturated with both salts, contain 552 gms. KNOi + 1074 gms, Sr(NO 3 ) 2 at 25, (LeBlanc and Noyes, 1890.) 547 POTASSIUM NITRATE SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM NITRATE AND THAL- LIUM NITRATE IN WATER AT (Fock.) *$' Grams per Liter. Mg. Mols. per Liter. Mol. per cent Sp. Gr. T1NO* of Mol. per cent TINOa T1NO 3 . KN0 3 . T1N0 3 . KNO 3 , in Solution. Solutions, in Solid Phase . O-OO 35 1 .0 .0 34 68 .2 O .00 .2632 O .00 2-37 329 .0 8 9 325 1 5 O 43 .1903 .08 6.15 332 4 23 .1 3285 .1 .70 .1956 .20 17.64 333 7 66 3 3298 .1 I 97 .2050 o 57 49-74 333 3 186 9 3294 4 5 37 .2196 I .78 63.60 321 .0 239 .0 3172 4 7 .01 1.2436 2 .19 86.18 330 5 323 .8 3265 .8 9 .02 1.2617 2 77 123.8 428 3 465 .2 4232 .6 9 .90 1.2950 (27 .00 .04 101.3 245 .1 380.6 2423 3 13 .58 1.2050 93 33 116.1 o .0 463 .1 O .0 100 .00 i .0964 IOO .00 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL SOLUTIONS, (Gerardin Ann. chim. phys. [4] 5, 151, '65.) Grams KNO 3 per 100 Grams Aqueous Alcohol of Sp. Gr.: t. 0.9904 0.9843 0.9793 0.9726 09571 0-939 0.8967 0.8429 = 13-6 = 19.1 = 40 = 60 =90 Wt.%. Wt.%. Wt.%. Wt.%. Wt.%. Wt.%. Wt.%. Wt.%. 10 i7 13 10 7 4-5 3 I 0-2 18 22.5 18.5 14-5 10 6.2 4-5 1.6 0-3 20 24 20 16 ii 7.0 5 2 o-3 25 29 24-5 20 13-5 9.0 6-5 2-5 0.4 30 36 30 25 8 0.5 40 52 43 36 27 16:5 ii 4 0.6 5o 72 61 50 38 23.0 16 6 0.7 60 93 79 6 9 52 31.0 21 8 i.i SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AT 18 (Bodlander Z. physik. Ch. 7. 316, '91.) p. Gr. of Gms. per 100 cc. Solution. Sp. Gr. of Gms. per 100 cc. Solution. Solution. C^OH. H 2 O. KN0 3 . Solution. C 2 H 6 OH. H 2 0. KNOa". I .1480 . 8 9 .80 25.0 I .0120 23-33 69.81 8.06 .1085 3 3o 87 44 2O- 1 1 O 9935 28 .11 64.74 6.50 IOIO 5 .24 86 .26 18.60 9585 37 53 54-21 4-II .0805 8 .69 83 .18 16.18 o 9450 42 .98 48.15 3-37 0755 9 .06 83 .10 15 .39 o .9050 51 2 3 27.32 i-95 0655 14 .08 77 93 14-54 o .8722 61 65 24.74 0.83 .0490 16 .27 76 36 12.27 o 8375 69 .60 13-95 O-2O 0375 19 97 72 93 10.8 SOLUBILITY OF POTASSIUM NITRATE IN DILUTE ETHYL ALCOHOL AT 25. (Armstrong and Eyre, 1910-11.) Wt.% ' QHsOH in Solvent. O 2.25 4.41 Gms. KNOj per 100 Gms. Sat. Solution. 27.77 26.69 25-79 23.81 POTASSIUM NITRATE 548 SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AND IN AQUEOUS ACETONE. (Batnrick, 1836.) In Aqueous Alcohol. In Aqueous Acetone at 40. Wt Per cent Gms. KN0 3 per 100 Gms. Aq. Alcohol. Wt. Per cent Gms. KNO 3 Alcohol. ' At30 o. At 40. ^ Aceto - ^Xn G t mS - o 45-6 64.5 o 64.5 8.25 32.3 47-i 8.5 51.3 17 22.4 33.3 16.8 38.9 25.7 15.1 24.1 25.2 22.8 35 11.4(34-4) 16.7 34.3 24.7 44-9 7 11.6(44) 44-1 17 54-3 4-5 7-2(55) 53-9 "-9 65 2.7 4-4 64.8 7.2 75-6 1.3 2 (76.3) 76 3 88 0.4 0.6(88.5) 87.6 0.7 100 gms. H 2 O saturated with sugar and KNO 3 dissolve 224.7 E^s. sugar -f- 41.9 gms. KNO 3 , or 100 gms. of the saturated solution contain 61.36 gms. sugar + 11.45 gms. KNO 3 at 31.25. (Kohler, 1897.) SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF METHYL ALCOHOL, ETHYL ALCOHOL AND MIXTURES OF THE Two AT 30. (Schreinemakers, 1908-09.) In Aq. CH 3 OH. In Aq. C 2 H 5 OH. In Aq. v ^x i3 v^** T ^2iX6^ Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. CH 3 OH. KNO 3 . QHjjOIL KNO 3 . '(CH 3 OH +0^011) KNO 3 . o 31.3 10. i 20.7 o 31.3 7.8 23.3 23.8 12. 1 12.7 18.9 17.3 16.3 32.2 9 29.2 12.8 27.8 ii. 2 43.1 6.1 41 6.7 38-4 7-7 56.9 3-3 47-8 5-* 57 3-8 76-8 0.88 56.4 3.5 98.58 0.43 92.3 0.15 74.8 1.2 * The mixture contained 51.7% CH 3 OH and 48.3% C 2 H 5 OH. loo gms. trichlorethylene dissolve o.oi gm. KNO 3 at 15. (Wester and Bruins, 1914.) 100 cc. anhydrous hydrazine dissolve 14 gms. KNO 3 at room temp. (Welsh and Brpderson, 1915.) 100 gms. aq. 40 weight % C 2 H 6 OH, simultaneously saturated with the two salts, dissolve 13.74 S ms - KNO 3 + 15.78 gms. NaCl at 25. (Soch, 1898.) SIMULTANEOUS SOLUBILITY OF POTASSIUM NITRATE AND SILVER NITRATE IN AQUEOUS 51.6 PER CENT C 2 H 6 OH AT 30. (Schreinemakers, 1908-09.) Gms. per 100 Gms. Sat. Solution. -KNCV AiNoT SoMK ' 4-8 o KNO 3 4-55 5-15 4.11 16.47 4-26 21.28 " H-AgNO 3 .KNO, 2.62 36.94 AgN0 3 .KNO 3 +AgNO, o 37 AgN0 2 Fusion-point data (solubilities, see footnote, p. i), are given for KNO 3 + KNO 2 by Meneghini (1912); for KNO 3 + AgNO 3 by Usso (1904); for KNO 3 + NaNO 3 by Carveth (1898) and by Hissink (1900); for KNO 3 + Sr(NO 3 ) 2 and KNO 3 + NaNO 3 + Sr(NO 3 ) 2 by Harkins and Clark (1915); for KNO 3 + T1NO 3 by Van Eyk (1899, 1905). 549 POTASSIUM NITRITE POTASSIUM NITRITE KNO 2 . SOLUBILITY IN WATER. (Oswald, 1912, 1914.) Gms. KNO 2 , ,. . - 4.1 - 7-6 -13.8 -18.6 24.6 -30 31.6 Eutec. 16.1 24.1 40.2 50.1 61.7 69.8 71.8 73-2 73-6 Ice " +KN0 2 KN0 2 * dn.i = 1.6464. 17- 25 40 55 75 100 in 119 100 gms. H 2 O dissolve about 300 gms. KNO 2 at 15.5. The figure 138.5 gms. KNO 2 per 100 gms. H 2 O at 15, towski and von Roszkowski (1897), is evidently low. Cms. KNOj per 100 Cms. Sat. Sol. Solid Phase. 74-5* KNOj 75-75 " 77 77-5 M 78.5 80.5 80.7 II 81.15 81.8 (Divers, 1899.) given by von Niemen- SOLUBILITY OF MIXTURES OF POTASSIUM NlTRITE AND OF SILVER NlTRITE IN WATER. (Oswald, 1914.) Results at 13.5. Gms. per 100 Gms. H 2 O. Results at 25. Gms. per 100 Gms. H 2 O. kN0 2 . 18 276 AgN0 2 . 2.36 26.3 KN0 2 . 23.1 279 AgN0 2 . 5-3 39-3 Solid Phase in Each Case. AgN0 2 +K 2 Ag 2 (N0 2 ) 4 .H 2 KN0 2 +K 2 A g2 (N02)4.H 2 Of the two layers obtained by mixing an equal volume or more of 96% ethyl alcohol with a nearly saturated aqueous solution of KNO 2 , the lower contains 71.9% KNO 2 and the upper, alcoholic, 6.9%. With methyl alcohol there is no separation into two layers. (Donath, 1911.) POTASSIUM OXALATE K 2 C 2 O 4 .4H 2 O. SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OXALIC ACID IN WATER AT 25. (Foote and Andrew, 1905.) Gms. per 100 Gms. Solution. H 2 C 2 4 . K,Q0 4 . IO.2 10.31 0.04 9.26 0.13 3-39 0.63 2.06 4.26 1.16 11.50 0.99 16.93 0.85 21. 08 0.82 21.49 0.64 23-52 0-57 24.88 0-43 27.52 27.40 Mols. per 100 Mols. H 2 O. 2.274 K 2 C 2 4 . 2.302 2.046 0.005 0.016 0.707 0.071 0.440 0.266 0-495 1.427 0.240 0.221 0.2II 0.169 0-153 2.235 2.928 2.998 3-301 3.617 0.122 4.14 4.09 Solid Phase. H 2 C 2 O 4 .2H 2 O+H 3 K(C 2 O 4 ) 2 .2H 2 O Double salt H 3 K(C 2 O 4 ) 2 . 2 H 2 O H 3 K(CA) .2HJO+HKCA Double salt HKC-A HK CA +H 2 K 4 (C 2 4 ) 3 .2H 2 Double salt H 2 K 4 (C 2 4 ) 8 .2H 2 O H S K 4 (C S 4 ) 3 2H 2 O4-K,C 5 O 4 .H 2 O POTASSIUM OXALATES 550 EQUILIBRIUM IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT o, 30 AND 60. (Koppel and Cahn, 1908.) Results at o. Gms. per 100 Gms. Sat. Sol. Results at 30. Gms. per 100 Gms. Sat. Sol. Results at 60. Gms. per 100 Gms. Sat. Sol. Solid Phase in Each Case CA. 2.72 2.91 K 2 0. O.226* Q0 3 . 9-97 10.15 K 2 0. O.IO C 2 3 . 24-75 K 2 0. 2. 985 342* . . 2. 827 o .125 IO. 23 0. 34 25 .70 O. 46 " +KH 3 (C2O4) 2 .2H 2 O 2. 345 o 145 . . . . . . . " " I. 47i o 195 7- 28 o. 33 25 .So O. 54 KH 3 (QO4) 2 .2H 2 O 0.823 o .240 4 0. 4i 22 .06 o. 58 " O. 799 o 454 3- 08 0. 50 20 17 0. 6 7 " I. 173 o, .785 2. 38 I. 002 14 25 o. 90 I. 38i 962 2. 98 I. 79 9 .82 I. 48 " I. 545 I, 155 . . 6 95 2. 244 " I. 666 I, 273 4- 24 2. 76 9 17 5- 60 " +KHCA I. 754 I. 479 4- 26 3- 38 8 .81 6. 37 KHCA 2. 627 2, 858 5- 44 5- 43 10 17 10 " 3- 772 4. 422 6. 66 7- 27 12 36 13. 40 4- 292 5 161 8. 64 IO. 05 14 .10 16 " 4- 975 6, 088 IO. 03 12. 01 15 35 17- 80 5- 652 7 IO. 80 12. 94 16 .07 18. 89 " +(K 2 C 2 4 ) 2 H 2 C 2 04.2H 2 6. 27 7. 87 ii. 47 14. 13 16 Si 19. 59 (K 2 C 2 04) 2 .H 2 C 2 4 .2H 2 7- 63 9 ,72 12. 16 15- ii 16 .80 20. IO 8. 66 ii 14 12. 32 15-37 16 95 2O. 34 9- 055 ii 58 12. 90 16. 23 17 .14 20. 70 " +K 2 Q0 4 .H 2 8. 826 ii 52 12.36 16. 14 16 2O. 41 KzC-A-HijO 5- 215 12, 33 8.52 15. 03 15 94 2O. II " 2. 23 14 ,80 4- 53 $ 55 15 .06 19. 66 I. 245 16 ,82 I. 87 18. 17 8 .82 19. 2 S 0. 871 18 4 0. 74 22. 32 2 .04 23- 09 0. 511 20 91 . 434 29 " 0. 325 23 30 .365 31- 40 4i 3t O 4 o! 79 O 51- 34 KOH.H 2 O * Supersaturated. t About. EQUILIBRIUM IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT 25. Gms. er 100 Gms. it. Sol. (Hartley, Drugman, Vlieland and Bourdillon, 1913.) Solid Phase. Gms. per 100 Gms. Sat. Sol. Solid Phase. Q0 3 . K 2 0. ' 3-079 2.052 KH 3 (Q04) 2 .2H 2 3-450 2.360 " +KHCA 3-793 3-199 KHCA 5-457 5-9I9 " 9.816 11.96 " +2K 2 C 2 O4.H 2 C2O 4 .2H 2 O 12.365 15.71 2K2QO4.H2CzO4.2H2O +K 2 C2O4.H 2 O 11-85 I 5-5 I K 2 C2O 4 .H 2 O QO,. K,0. 8.29 o 8.278 0.045 7.412 0.064 2.827 0.238 2.007 0.346 1-734 0.567 2.675 I.7H Similar data at 15 for the above system are given by .Jungfleisch and Landrieu 55i POTASSIUM OXALATES SOLUBILITIES IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT THE CRYOHYDRIC POINTS. (Koppel and Cahn, 1908.) (Temp, of Equilibrium of Solution with Ice.) t e oflce Separa- tion. 0.9S 0.90 -0.52 -0.25 0.58 0.78 -1.50 2.10 -2. 7 8 -345 Gms. per 100 Cms. Sat. Sol. Solid Phase, Ice+: H 2 C 2 4 . 2 H 2 " +KH 3 (CA),.2H 2 O KH 3 (CA) 2 . 2 H 2 << " +KHCA KHCA " +(K 2 CA; 2 . H 2 CA. 2 H 2 t of Ice Separa- tion. - 4-45 - 5-20 - 5.32 - 5.97 - 6.55 8.10 10.30 13.60 17.40 -23.80 Gms. per 100 Gms. Sat. Sol. Solid Phstee, Ice+: ;K 2 CA) 2 .H 2 CA.2H 2 " -f-K 2 C 2 4 .H 2 K 2 CA.H,0 i u CA 2.641 2.720 1.672 0.643 1.229 1.648 2.707 3.687 4.576 5-681 K 2 0. 0.0466 0.0602 O.2IO 0.823 1.234 2.950 4.363 5-50 7-05 CA 6.902 7.616 7.696 8.51 6.742 4-999 3.358 1.854 i. 200 0.606 K 2 0. ' 8.820 ( 9-74 9.84 II.OI 10.45 10.86 11.76 13.08 14.55 16.89 SOLUBILITIES IN THE SYSTEM POTASSIUM OXALATE, OXALIC ACID, WATER AT THE BOILING POINTS. (Koppel and Cahn, 1908.) Gms. per 100 Gms. Sat. Sol. Solid Phase. KH 3 (CA) 2 . 2 H 2 "+KHCA KHCA CA. K 2 0. 39.84 5-25 36.95 5.83 32.75 5-97 27.64 9.12 27.46 11.43 23.36 10.50 18.81 12.29 tof B.pt. Gms. per 100 Gms. Sat. Sol. 'CA. K 2 o. ' 102.8 19.10 18.25 103.25 21. II 21.71 107.7 25.19 27.91 106.35 22.04 26.45 106.25 19.17 25.02 108.25 12.73 27.69 iii.S 5-35 30.40 Solid Phase. KHCA " +K 2 C 2 4 .H 2 K 2 CA.H 2 tof B.pt. 105.5 104.9 104.3 103.4 102.9 102.5 102.4 From the preceding tables the following results for the solubilities of the pure oxalates in water are obtained. SOLUBILITY OF POTASSIUM OXALATE, K 2 C 2 O<.H 2 O IN WATER. t Gms. per 100 Gms Sat. Sol. Solid A0 Gms. per roo Gms. Sat. Sol. Solid If CA + K 2 O = K 2 CA. Phase- C A + K 2 = =K 2 CA- phase - 0.78 1.31 1.71 3.02 Ice 30 12.36 16.14 28.50 K 2 C 2 4 .H 2 I 49 2.48 3-20 5-68 " 40 13.20 17.22 30.44 2 50 3-99 5.20 9-195 " 50 14.14 18.46 32.60 - 3 .22 5-iS 6.705 11.855 " 60 15.06 19.66 34.72 - 5 .88 8.429 II.OI 19.43 " +K 2 CA-H 2 O 70 15-94 20.81 36.75 o 8.83 11.52 20.35 K 2 CA.H 2 O 80 16.86 22.02 38.875 + 10 10.48 13.69 24.17 90.2 17.73 23.14 40.90 20 11-57 15.11 26.675 106.2* 19.17 25.02 44.19 * b. pt. 100 gms. sat. aq. sol. contain 20.62 gms. K 2 C 2 O4 at o, d = 1.161. (Engel, 1888.) The results oL Hartley, Drugman, Vlieland and Bourdillon (1913) and of Colani (1916), for the solubility of neutral potassium oxalate in water, agree satisfactorily with the above. SOLUBILITY OF POTASSIUM BIOXALATE, KHC 2 O 4 , IN WATER. (Koppel and Cahn, 1908.) t. Gms. per zoo Gms. Sal Sol, j^ phase . C 2 Oj. K 2 O. 60 8.75 6.50 KHCA I02.4b.pt. 18.81 12.29 " The KHC 2 O 4 is decomposed to the less soluble tetroxalate at temperatures below 50. POTASSIUM OXALATES 552 SOLUBILITY OF POTASSIUM TETROXALATE, KH3(C 2 O4) 2 .2H 2 O, IN WATER. (Koppel and Cahn, 1908.) o. 25 cryohydrate o 30 60 103.5 b. pt. Gms. KH 3 (C 2 O 4 ) 2 per 100 Gms. H 2 O. 0..99 1.27 4-30 n-95 72.17 Solid Phase. SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OTHER SALTS IN WATER. (Coiani, 1916.) Results at 15. Gms. per 100 Gms. Sat. Sol. Results at 50. Gms. per too Gms. Sat. Sol. Solid Phase in Each Case. K 2 C 2 O 4 .H 2 O+KC1 10.03 K 2 C 2 O 4 +i9.i9 KC1 15.18 K 2 C 2 O 4 +2o.26 KC1 23.55 " + i.82K 2 SO 4 31.06 " + i.99K 2 SO 4 20.39 +11.60 KNO 3 (i9) 19.63 +28.29 KNO 3 " +KNO, ipo gms. aqueous solution, simultaneously saturated with potassium and sodium oxalates, contain 26.15 g ms - K 2 C 2 O4 + 2.44 gms. Na 2 C 2 O 4 at 25. (Foote and Andrew, 1905). POTASSIUM Telluric Acid OXALATE K 2 [H d Te0 6 .C 2 O 4 ]. (Rosenheim and Weinheber, 1910-11.) SOLUBILITY IN WATER. t Gms. K 2 [H 6 TeO6.C 2 O 4 ] per 100 gms. H 2 O POTASSIUM PERMANGANATE KMnO 4 . SOLUBILITY IN WATER. (Baxter, Boylston, and Hubbard, 1906; Patterson, 1906.) O 2.6 7 2O 5.36 6.82 4o~ 9.07 5o 12.35 Gms. KMnO 4 per 100: Gms. KMnO 4 per 100 : I . Gms. Solution. Gms. H 2 O. cc. Solution (P). o 2-75 2.83 2.84 9.8 4-31 15 . . . 5-22 19.8 5-96 6-34 24.8 7.06 7-59 . . . 29.8 8.28 9-03 8.69 Gms. Solution. Gms. H 2 O. 34-8 i 9.64 10.67 40 ii. 16 12.56 45 12.73 14.58 50 14-45 16.89 55 16.20 19.33 65 20.02 25.03 Sp. Gr. of saturated solution at 15 = 1.035. Determination by Worden (1907), made with extreme care, gave results in very close agreement with the above. SOLUBILITY OF POTASSIUM PERMANGANATE IN: Water. (Voerman, 1906.) Aqueous Acetone Solutions at 13. (Herz and Knoch, 1904.) Gms. KMn0 4 per 100 Gms. cc. Acetone KMn0 4 per 100 cc. Solutit A ' Solution. Water. per 100 cc. Solvent. Millimols. Grams. 0.18 0.58 0.58 Ice 148.5 4.70 - 0.27 0.99 I.OI " 10 162.5 5.13 - 0.48 1.98 2. 02 20 177-3 5-61 - 0.58 2.91 3 Ice+KMnO 30 208.2 6.59 +10 4.01 4.22 KMnO 4 40 257-4 8. 14 15 4-95 5-20 50 289.7 9.16 25 7 7-53 60 316.8 10. 02 40 10.40 ix. di 70 328 10.38 So 14-35 16.75 " 80 312.5 9.89 90 227 7.18 100 67 2.14 553 POTASSIUM PERMAN- GANATE SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE. (Sackur and Taegener, 1912.) Mols. KMnO 4 per Liter in: t. O.I ft ^ivjCAJg. i n |K 2 CO 3 . 2 n K 2 CO 3 . 4 n iK 2 C0 3 . 6 n iK 2 C0 3 . o. 1462 0.0629 o . 0446 0.027 0.0156 25 0-4375 0.2589 . . . 0.093 40 0.7380 0.5007 0.3519 ... v SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE. (Sackur and Taegener, 1912.) Mols. KMnO 4 per Liter in: t. o.i KC1. 0.5 n KC1. i n KC1. 2 n KC1. o 0.1395 0.076 0.0532 0.0379 25 0.4315 0.306 0.220 0.1432 40 0.738 0.584 0.444 0.288 SOLUBILITY OF POTASSIUM PERMANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Sackur and Taegener, 1912.) Mols. KMnO 4 per Liter in: t. H 2 O. i KOH. 2 KOH. 4 KOH. 6 KOH. 8 n KOH. 10 n KOH. . 176 0.050 .031 0. 027 O 023 O.OI7 O.OI2 10 o ,278 O. 112 .068 0. 048 .042 0.028 0.016 20 ,411 0.179 o .119 0. 079 o .074(19) 0.032 0.029 30 0, 573 0.316(32) o .213(32) 0. 149(32) 0. 114 0.062(32) 0.040 40 o, 792 0-439 .306 0. 211 ,161 0.084 0.052 50 I , 154(53) 0.638 .462 0. 304 .219 O.III . . . 70 I. 812 I.I72 0, 869 0. 572 o 390 0.188 0.082 80 I-5I3 I. 190 0, 500 0.231 . . . 90 . . . . . . 0, 649 0.297 SOLUBILITY OF POTASSIUM MANGANATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE. (Sackur and Taegener, 1912.) (The KzMnO* was prepared by boiling KMnO 4 with very cone. KOH, draining by suction and washing with ice cold K 2 CO 3 solution. The impurities were of no consequence since the determinations were made in alkaline solutions.) Mols. K 2 MnO 4 per Liter in: O 10 15 20 30 40 45 50 60 70 80 2 n KOH. 4 n KOH. 6 KOH. 8 n KOH. 10 n KOH. 0.907 0-554 0.155 0.063 0.0145 I.OI3 . . . 0.07O 0.0152 . . . 0.681 (17) 0.224 . . . I.I4O 0-733 ( 2 S) 0.26l (23) 0.078 0.0160 1.252 0.772 0.303 0.096 0.0215 . . . 0.852 0.362 o. 119 0.0305 1.424 0.889 0.388 0.938 (51) o. 142 0.0462 1.003 0.469 0.167 0.062 (63) 1.074 0.528 0.196 0.070 1.143 0.587 O.222 0.083 TOO cc. anhy. hydrazine dissolve 2 gms. KMnC>4, with evolution of gas and for- mation of a brown precipitate, at room temp. (Welsh and Broderson, 1915.) POTASSIUM PERMAN- GANATE 554 SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM PERMANGANATE AND POTASSIUM PERCHLORATE AT 7. (Muthmann and Kuntze , 1894; recalculated by Fock, 1897.) MUligram Mols. per Liter. KC10 3 ." Cms. per Liter. Mol. per cent KMnO 4 in * Crystals of Solid Phase. KMnO 4 . KMnO 4 . KC1O 4 . O 63.91 o 8.86 29-37 54.48 4-65 7-55 2.84 67-73 42.75 10.71 5-93 9.78 79.04 39-59 12.50 5.49 10. 8 1 99.81 38.63 15-79 5-36 15.96 122.24 34-39 19-34 4-77 23-56 119.21 38.91 18.84 5.39 24.28 128.08 33-77 20.26 4.68 26.40 144.46 33-14 22.86 4.59 34-32 167.81 29-53 26.55 4.09 44.42 183.09 25-I9 28.97 3.49 67-33 197.82 20. 16 . 31.30 2.80 77-95 233-75 28.26 36.98 3.92 94-37 264.27 o 41.81 o IOO SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM PERMANGANATE AND RUBIDIUM PERMANGANATE AT 7. (Muthmann and Kuntze, calc. by Fock.) Milligram Mols. per Liter. Cms, per Liter. KMn0 4 . 27.04 75 120.26 188.30 198.36 205.76 225.12 264.27 22.69 22.22 3L29 38-98 41.29 42.50 26 o KMnO 4 . 4-28 11.84 I9.03 29.80 31.39 32.56 35.6l 41.81 4.64 4-54 6.40 7.97 8.44 8.69 5.32 o 3.50 13-75 34.29 71.45 92.50 99.47 99.32 ioo POTASSIUM PICEATE C 6 H 2 (NO 2 ) 3 OK. Data for the solubility of potassium picrate in aqueous solutions of ethyl alcohol, methyl alcohol and of acetone at 25 are given by Fisher (1914). POTASSIUM PHOSPHATES SOLUBILITY OF POTASSIUM ACID PHOSPHATE, KH 2 PO4.H 3 PO4, IN WATER. (Parravano and Mieli, 1908.) Determinations by Synthetic (sealed tube) Method. Gms. Gms. Solid Phase. t'. Sat. Sol. -o.6 3-337 -2.5 12.13 -6. 7 29-43 - 9-2 36.98 i3 Eutec. 44 o(?) 45-8 + 10.9 50-3 Solid Phase. Ice Sat. Sol. 65.2 68.44 78 72.43 87-5 77-6 105.5 85-9 +KH 2 PO 4 120 tr. pt. 92.1 KH 2 PO 4 135 96. i 139 IOO KH 2 PO 4 +KH 2 PO 4 .H 3 PO< One liter of sat. aq. solution contains 249.9 gms. KH 2 PO 4 at 7. (Muthmann and Kuntze, 1894.) 555 POTASSIUM PHOSPHATES SOLUBILITY OF POTASSIUM ACID PHOSPHATE, KH 2 PO4.H 3 PO4, IN ANHYDROUS PHOSPHORIC ACID. (Parravano and Mieli, 1908.) Determinations by Synthetic (sealed tube) Method. Gms. per 100 Cms. Sat. Solution. KH 2 P0 4 .H 3 P0 4 ^ KH 2 P0 4 . 38.5 18.17 10.56 84 58-42 33-97 no 77.53 45.08 126.5 92.26 S 1 ^ EQUILIBRIUM IN 'THE SYSTEM POTASSIUM HYDROXIDE, PHOSPHORIC ACID, WATER AT 25. (D'Ans and Schreiner, igioa; Parker, 1914.) The results of these investigators agree satisfactorily when plotted on cross- section paper. The following figures were read from the curves. Some uncer- tainty exists in regard to the solid phase in contact with some of the solutions. K. P0 4 . - OU11U -T1JCI.SC. 9.62 KOH. 2 H 2 O 9.76 0.24 " +K 3 PO 4 .3H 2 O 9-15 o-5 K 3 P0 4 . 3 H 2 8.2 i " 7-5 i-5 " 8.2 2 7-5 2-5 8.8 2.9 9-7 2.9 " +K 3 P0 4 9-5 3 K 3 P0 4 8-5 3-4 " 8 3-6 H 7-5 3-75 " Fusion-point data for KPOs + (1908, 1910). POTASSIUM HYPOPHOSPHATE, etc. SOLUBILITY IN WATER. (Salzer Liebig's Ann. 211, i, 82.) K. P0 4 . - aoua rnase. 7 4 K 3 P0 4 +K 2 HP0 4 6 3-6 K 2 HP0 4 5 3.15 " 4 2.65 " or KH 2 P0 4 (?) 3 2.2 (?) 2 1-7 " " (?) I .5 1-5 " " (?) 1.6 2 KH 2 PO 4 2.1 4 " 2-5 6 " 3 8 " 1.65 6 KH 2 P0 4 .H 3 P0 4 (Parker) *-35 8 are given by Parravano and Calcagni Salt. Formula. Gms. Salt per 100 Gms. H 2 O. Cold. 400 20O 33 66.6 Hot. Potassium Hypophosphate K 4 P 2 O 6 .8H 2 O " Hydrogen Hypophosphate K 3 HP 2 O 6 .3H 2 O Di Hydrogen Hypophosphate K 2 H 2 P 2 O 6 .3H 2 O " Tri Hydrogen Hypophosphate KH 3 P 2 O 6 " Penta Hydrogen Hypophosphate K 3 H 5 (P 2 O 6 ) 2 . 2H 2 O 40 " Hydrogen Phosphite KH 2 PO 3 172 (20) . . . " Hypophosphite KH 2 PO 2 200(25) 333 Hypophosphite KH 2 PO 2 * 14.3 ( 2 S) 28 * Solvent alcohol. IOO 200 125 POTASSIUM PHOSPHOMOLYBDATE K 3 PO4.iiMoO 3 .i|H 2 0. 100 gms. H 2 O dissolve 0.0007 gip. at 30. 100 gms. aqueous 10% HNO 3 dissolve 0.204 S m - at 3' (Donk, M. G., 1905.) POTASSIUM SELENATE 556 POTASSIUM SELENATE K 2 SeO 4 SOLUBILITY IN WATER. t. -20. - S . +5. 18". 97. Cms. K 2 Se0 4 per 100 gms. solution 51.5 51.7 52 52.6 54.9 (Etard, 1894.) 100 gms. H 2 dissolve 115 gms. K 2 SeO4 at 12. (Tutton, 1907.) POTASSIUM SILICATE K 2 SiO 3 . Data for equilibrium in the systems K 2 SiO 3 + H 2 O, K 2 Si 2 O 5 + H 2 O, K 2 SiO 3 + SiO 2 , SiO 2 + H 2 O and K 2 SiO 3 + SiO 2 + H 2 O, at temperatures between 200 and 1000 +, determined by the " hydrothermal quenching method," are given by Morey (1917). POTASSIUM STANNATE K 2 SnO 3 . 3 H 2 O. 100 gms. H 2 O dissolve 106.6 gms. at 10, and 110.5 S m s. at 20. Sp. Gr. at 10 = I.6l8 at 20 = 1.627. (Ordway, 1865.) POTASSIUM SULFATE K 2 SO 4 . SOLUBILITY IN WATER. (Mulder; Andrae, 1884; Trevor, 1891; Tilden and Shenstone, 1884; Berkeley, 1904; see also Etard, 1894.) Gms. K,SO 4 per 100 Gms. ^ Gms. K 2 SO 4 per 100 Gms. Gms. K 2 SO 4 per loo Gms. ' Water. Solution. Water. Solution. * Water. Solution. 7-35 6.85 40 14.76 12.86 90 22.8 18-57 10 9.22 8.44 50 16.50 14.16 IOO 24.1 19.42 20 II .11 IO 60 18.17 I5-38 I2O 26. $ 20.94 25 I2.O4 10-75 70 19-75 16.49 143 28.8 22.36 30 12.97 11.48 80 21.4 17-63 170 32.9 24.76 Sp. Gr. of solution saturated at 18 = 1.083. The determinations of Berkeley (1904), which were made with exceptional care, are as follows: ^.0 Sp. Gr. of Sat. Gms. K 2 SO 4 per f Sp. Gr. of Sat. Gms. K 2 SO 4 per Solution. loo Gms. H 2 O. Solution. 100 Gms. H 2 O. 0.40 ' 1.0589 7.47 58.95 1.1089 iS.OI 15.70 1.0770 IO-37 74-85 I.II57 20.64 31.45 I.092I 13.34 89.70 I.II94 22.80 42.75 i.ioio 15.51 ioi.ib.pt. 1.1207 24.21 Individual determination in good agreement with the above, are given by Le- Blanc and Schmandt (1911); Greenish and Smith (1901); Osaka (1903-8); Nacken (1910); Smith and Ball (1917). SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULFATE AND AMMONIUM SULFATE AT 25. (Fock, 1897.) Grams per Liter. Milligram Mols. per Liter. Mol. per cent Sp. Gr. K 2 SO 4 in of Solution. Solution. Mol. per cent K 2 SO 4 in Solid Phase. ' KaSCV (NH4) 2 S0 4 . K 2 S0 4 . (NH4) 2 S0 4 . ' 127-9 o.o 734 O-O IOO 1. 086 IOO 135-7 "5-7 778.5 874.6 47-1 1.149 91.28 84.20 28l.I 483 2126 I8. 5 1 .200 80-05 59.28 355-o 340 2685 11.13 1 .226 68.6 3 40.27 482.7 231 3650 5-98 1 .246 27-53 o.oo 542-3 o.o 4100 0-00 1.245 0-00 Results are also given for 14, 15, 16, 30, 46, and 47. 557 POTASSIUM SULFATE SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS AMMONIA SOLUTIONS AT 20. (Girard, 1885.) Cms. NH 3 per ioo cc. solution o 6.086 15.37 24.69 31.02 Gms. K 2 SO4 per loo cc. solution 10.80 4.10 0.83 0.14 0.04 One liter sat. solution in water contains 105.7 S m s. K 2 SO 4 at 20. One liter sat. solution in 5.2% NH 3 contains 45.2 gms. K 2 SO 4 at 20. (Konowalow, SOLUBILITY DATA FOR THE RECIPROCAL SALT PAIR K 2 SO 4 + BaCO 3 <=* K 2 CO 3 + BaSO 4 . (Meyerhoffer, 1905.) 25 25 80 80 80 IOO IOO Gms. per ioo Gms. t 8 . Sat. Sol. Solid Phase. K 2 S0 4 . K 2 C0 3 . 25 10.76 O K 2 SO 4 +BaS0 4 25 6.76 5-85 " " 25 3-92 12.6 << 25 2.485 17.81 "+BaC0 3 25 1.72 22.1 K 2 SO 4 +BaCO 3 25 0.0886 28.5 25 0.023 53-i " +K 2 C0 3 . 2 H 2 25 O 53-2 K 2 CO 3 .2H 2 O+BaCO 3 Gms. per ioo Gms. Sat. Sol. Solid Phase. K 2 S0 4 . K 2 C0 3 . O.6O2 7-35 BaC0 3 +BaS0 4 0.173 2.85 " 0.613 2.49 " i-39 4.88 " 7-i 15-33 "+K 2 SO< 0-797 2-36 BaC0 3 +BaS0 4 1.83 4-5i " 9.42 13-6 " +K 2 S0 4 SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM COPPER SULFATE AND AMMONIUM COPPER SULFATE IN WATER. CuS0 4 .K 2 SO 4 .6H 2 O and CuSO 4 (NH 4 ) 2 SO 4 .6H 2 O at I3-I4. (Fock, 1897.) Mols. per ioo Mols. H 2 0- Mol. per cent K Salt. Mols. per too Mols. H 2 0. Mol. per cent K Salt. K O 0. 0. o. . Salt. 0897 2269 2570 NH 4 Salt. 1-035 0.8618 o . 6490 0.5887 in Solution 5.06 16.76 30.40 . in Solid. 10.34 33-05 46.22 K Salt. o . 2946 0-3339 0.4560 0-4374 NH< Salt. o . 5096 0.3319 0.1961 in Solution. 36.63 50.15 69-93 IOO lin Solid. 58.20 75-34 83.86 IOO SOLUBILITY OF SOME POTASSIUM DOUBLE SULFATES IN WATER AT 25. (Locke, 1902.) Gms. Anhydrous Salt per ioo Gms. H 2 O. 12.88 Double Salt. Potassium Cobalt Sulfate Copper " Nickel Zinc Formula. K 2 Co(SO 4 ) 2 .6H 2 O K 2 Cu(SO 4 ) 2 .6H 2 O K 2 Ni(S0 4 ) 2 .6H 2 K 2 Zn(SO 4 ) 2 .6H 2 O II .69 6.88 SOLUBILITY OF POTASSIUM NICKEL SULFATE AND ALSO OF POTASSIUM ZINC SULFATE IN WATER, EACH SEPARATELY DETERMINED AT DIFFERENT TEM- PERATURES. o 10 20 25 30 Gms. per ioo Gms. H 2 O. .6H 2 O. 6 9 14 16 18 13 19 26 30 35 t 8 . 40 50 60 70 Gms. per ioo Gms. H 2 O. 23 28 35 43 45 56 72 88 POTASSIUM SULFATE 558 SOLUBILITY OF THE THREE HYDRATES OF POTASSIUM FERROSULFATE IN WATER AT DIFFERENT TEMPERATURES. (Kuster and Thiel, 1899.) KgSCU.FeSp4.6H2G-. K 2 SO4.FeSO 4 .4H 2 O. K 2 SO 4 .FeSO 4 .2H 2 O. t. cc.N/ioKMnO 4 Cms. K 2 SO 4 cc.N/ioKMnO 4 Gms.K 2 SO 4 cc.N/ioKMnO 4 Gms.K 2 SO" per 2cc. Solution. .FeSO 4 per 100 cc. Sol. per 2 cc. Solution. .FeSO 4 per 100 CC. Sol. per 2 cc. Solution. .FeSO 4 per, 100 cc. Sol. 4 o-5 12-4 18.36 *S'S 22-94 15-4 22-79 17.2 17.0 25.16 18.1 26.79 21 .6 3I-98 40.1 24.8 36.72 21.9 32.41 2 7 .6 40-86 60 29.0 42-93 24.1 35-68 28.8 42.63 80 30.6 45-29 27-3 40.46 28.6 42-34 90 . . . 29.6 43-82 28.9 42-73 95 ... 29.8 44.11 27.7 41 -or SOLUBILITY OF MIXTURES OF POTASSIUM AND LEAD SULFATES AND OF POTASSIUM AND STRONTIUM SULFATES IN WATER. (Barre, 1909.) Results for K 2 SO 4 + PbSO 4 . Results for K 2 SO 4 + SrSO 4 . Cms. K 2 SO 4 Cms. K 2 S0 4 t. per zoo Cms. Solid Phase. t. per 100 Cms. Solid Phase. Sat. Sol. Sat. Sol. 7 0.56 PbS0 4 .K 2 S0 4 17.5 1.27 K 2 S0 4 .SrS0 4 +SrSO< 17 0.62 " 50 1.88 " 50 1.09 " 75 2.71 75 i-37 ioo 3.90 100 1.69 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE. (Blarez, 1891.) Interpolated from the original results. Grams K 2 SO 4 per too cc. in Aq. Grams Halogen Solutions of: Salt per 100 cc. Solution. O 2 4 6 8 10 12 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM HYDROXIDE AT 25. (D'Ans and Schreiner, 1910.) KC1 KBr KI at 12.5. at 14. at 12.5. 9.9 10. 16 9-9 8-3 9.1 9-2 7.0 8.2 8. 4 5-7 7-4 7-7 4.6 6.6 7-2 3-5 6.0 6.6 5-5 6.0 Mols. per 1000 Cms. Sat. Solution. Gms. per 100 Cms. Sat. Solution. Mols. per 1000 Gms. Sat. Solution. Gms. per 100 Gms. Sat. Solution. (KOH) 2 . 0.258 0-433 I-I3 K 2 S0 4 .' 0.6l7 0-433 0.280 0.137 KOH. O 2.892 4.854 12.67 K 2 S0 4 . 10-75 7-544 4.878 2.386 (KOH) 2 . 2.86 3-42 4.809 K 2 S0 4 . 0.035 0.009 ' KOH. 32.06 38.33 53-51 K 2 S0 4 . 0.61 0.16 o 559 POTASSIUM SULFATE SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULFATE AND POTASSIUM CHROMATE AT 25 (Fock, 1897.) Milligram Mols. per Liter Grams per Liter. Mol. pe :r cent Sp. Gr. Mol. per cen? r\ ;., v o/-\ ' K 2 S0 4 . K 2 Cr0 4 . K 2 S0 4 . K 2 Cr0 4 : K 2 So 4 iu ui Solution. Solution. J\.2O^ 4 HI Solid Phase. 618 i O O 107 7 O .00 100 .0 1-083 IOO.O 608 4 103 106 .0 2O .02 85 .51 1.092 99.65 34i .0 691 .8 59 .46 134 5 33 .01 1.141 97-30 174 .8 1496 .0 30 47 290 5 10 50 .231 91.97 no 7 2523 19 30 49 5 4 .21 3 356 28.43 100 .6 2687 17 54 522 3 3 .60 377 2-41 2847 .0 553 5 OO 398 o.oo 734 -O O .0 127 9 .0 100 O 3 .0863 IOO.O 617 .0 103 4 107 .6 20 .1 85 .65 3 0934 99.78 463 452 7 80 .72 88 .0 55 55 I2 35 98.49 279 948 .2 48 .64 184 4 22 .72 1.1700 96.07 1469 26 .68 285 .6 9 .41 1-2255 85-77 296 268l 5 1 .61 521 .2 21 .09 1.3688 25-73 o .0 2715 .00 5 2 7 .8 .00 1-3781 o.oo SOLUBILITY OF POTASSIUM SODIUM SULFATES IN WATER. Double Salt. 3K 2 S0 4 .Na 2 SO 4 5K 2 SO 4 .Na 2 SO4 103-5 4-4 12.7 100 Gms. per 100 Cms. H 2 O. Authority. 40.8 (Penny, 1855.) 9.2 (Gladstone, 1854-) 10. 1 25 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE. Results at 25. (Smith and Ball, 1917.) Gms. per 100 Gms. Results at 34 and at 6o- (Nacken, 1910.) Na 2 S0 4 . O I. 7 8 3-58 5.38 7.19 K 2 S0 4 . 12.05 12-33 12.65 12.89 13.12 Gms. per 100 Gms. Sat. Sol. at 34- Gms. per 100 Gms. Sat. Sol. at 60. Solid Phase at 34 and at 60. Na 2 SO 4 . K 2 so 4 : 'Na 2 S0 4 . K 2 S0 4 . 11.9 15-3 K 2 S0 4 7.1 10.7 6.6 13-9 " +Glaserite 31-4 4.3 27.1 8.2 NajSC^+Mix crystals 33 I NajS0 4 Additional data for the above system at 15, 25, 40, 50, 60, 70 and 80 are given by Okada (1914). The results show that potassium and sodium sulfates form a double salt of the composition "K 3 N a (SO 4 ) 2 . This double salt dissolves sodium sulfate as a solid solution but not potassium sulfate. POTASSIUM SULFATE 560 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 1 8. Mols. per 100 Mols. K 2 S0 4 +H 2 SQ 4 +H 2 0. K^SOT H 2 S0 4 . I. 10 O i-59 o-95 2.49 2.70 2-75 3-17 2-75 3-74 2.83 5.08 (Stortenbecker, 1902.) Solid Phase. K 2 S0 4 Mols. per 100 Mols. K 2 S0 4 +H 2 S0 4 +H 2 O. K 2 S0 4 . 2.80 2.61 2. 25 I. 08 0.77 0.44 H 2 S0 4 . 5-79 5-6i 6. 19 7-94 9.2 22.7 Solid Phase. K 2 SO 4 . 3 KHSO 4 K 2 SO 4 .6KHSO 4 " +KHS0 4 KHS0 4 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT o. (D'Ans, igoga.) Mols. per 1000 Cms. Sat. Sol. K 2 S0 4 . H 2 S0 4 . 0-53 < 0.64 < 0.74 5-37 3-75 .08 0-73 13 0.71 0.69 0.69 : 44 .66 .88 Solid Phase. K 2 S0 4 " +K 3 H(S0 4 ), +K a SS. Sol. K 2 S0 4 . 0.61 0-54 o-53 0-43 0.28 O.I2 0.09 H 2 S0 4 . 2.12 2.29 2.30 2.48 3-04 4-43 5-27 Solid Phase. Ka+Kb Kb " +KHS0 4 KHSO 4 Ka and Kb are acid sulfates between K3H(SO 4 ) 2 and KHSO 4 . Their composi- tions were not determined. SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (D'Ans, igoga, igia; see also Herz, ig 11-12.) Mols. per 1000 Gms. Sat. Sol. Solid Phase. K 2 S0 4 . H 2 SO 4 . ' .27 I-3I K 2 S0 4 +K 3 H(S0 4 ) 2 33 1.99 K 3 H(S0 4 ) 2 +Ky .24 2.03 Ky 13 2.17 " .04 2-35 " +KHSO 4 .032 2-345 KHS0 4 0.67 2.8 3 O.22 4-13 " 0.15 5.36 K 2 S0 4 . H 2 SO 4 +SO 3 . O.I7I 6. 4 2 KHS0 4 O.I90 6.60 0.266 0.182 6.91 7.26 " +KH 3 (SO 4 ) 2 .H 2 O 0.157 7.62 0.167 7-88 0.201 8 K y = an acid sulfate between position was not determined. Mols. per 1000 Cms. Sat. Sol. Solid Phase. K 2 SO 4 . H 2 S0 4 +S0 3 . 0.250 8.10 KHsCSO^.HzO 0.352 8.15 " 0.364 8.16 " -l-KHaCSOO, 0.341 8.29 KHsCSO,), 0.322 8.33 " 0.325 8-45 " 0.346 6.62 0.384 8-57 0.412 8.71 K 0.583 8.82 0.880 8.65 " +KHS 2 7 0.899 8.63 KHS 2 7 (unstable) 0.882 8.70 0.561 8.96 " 0.365 9.80 " 0-43 9-78 (i 0.665 9.80 " 0-937 9.66 and KHSO 4 of which the exact com- 5 6i POTASSIUM SULFATE SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ALCOHOL. (Gerardin, 1865; Schiff, 1861.) In Aq. Alcohol of 0.939 I n Alcohol of Different Sp. Gr. = 40 Wt. %. Strengths at 15. , Cms. K 2 SO 4 per ioo Weight per Cms. K 2 SO 4 per too Cms. Alcohol. cent Alcohol. Cms. Sat. Sol. 40 0.16 10 3.90 80 O.2I 2O 1.46 60 0.92 30 0.56 40 0.21 SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ALCOHOL AT 25. (Fox and Gauge, 1910.) Cms. per ioo Gms. Sat. Solution. Cms. per ioo Cms. Sat. Solution. K 2 SO 4 . C 2 H 5 OH. H 2 0. K 2 SO 4 . C 2 H 5 OH. H 2 O. 9.17 1.35 89.48 2.66 15.26 82.08 6.90 4.80 88.30 1.83 20.50 77-67 4.96 7.80 87.24 0.97 26.91 72.12 4.32 9.70 85.98 0.41 35.97 63.62 3.57 12.34 84.09 0.22 43.90 55.88 2.71 14.51 82.78 0.016 69.26 30.72 SOLUBILITY OF POTASSIUM SULFATE AT 25 (Fox and Gauge, 1910.) IN: Aqueous Chloral Hydrate Solutions. Aqueous Glycerol Solutions. Gms. per ioo Gms. Sat. Solution. Gms. per ioo Gms. Sat. Solution. K 2 S0 4 . CC1 3 CH(OH) 2 . H 2 O. K 2 SO 4 . (CH 2 OH) 2 CHOH. H 2 O. 9.13 6.44 84.43 8.87 8.96 82.17 8.41 9.09 82.50 7.69 13-36 7 8 -95 7.79 12.38 79.83 6.47 20-34 73.19 7.31 13.20 79.49 5.83 24.15 70.02 5.88 22.07 72.05 4.44 33.73 61.83 4.54 33.15 62.31 3.65 40.40 55.95 3.36 44.40 52.24 3.38 43.52 53.10 2.92 47.30 49.78 2.69 50.18 47.13 2 62.82 35-i8 2.07 57-22 40.71 1.75 70.28 27.97 i-53 67.94 3-53 1.40 80.36 18.24 0.98 78.18 20.84 i. 08 85.26 13.66 0.73 98.28 0.99 SOLUBILITY OF POTASSIUM SULFATE AT 25 (Fox and Gauge, 1910.) IN: Aqueous Acetone Solutions. Aqueous Pyridine Solutions. Gms. per ioo Gms. Sat. Solution. Gms. per ioo Gms. Sat. Solution. K 2 SO 4 . (CH 3 ) 2 CO. H 2 O. K 2 SO 4 . CH<(CH.CH) 2 >N. H 2 O. 7.20 4.92 87.88 7.95 4.23 87.82 5.02 10. 06 84.92 4.77 13.90 81.33 2.96 16.23 8o.8l 2.75 24.51 72.74 1.50 24.31 74.19 1.47 34.19 64.34 0.47 37.19 62.34 0.45 46.29 53.26 0.20 46.29 53.51 0.12 55.93 43.95 0.03 62.40 37-57 0.006 75-QO 24.09 POTASSIUM SULFATE 562 SOLUBILITY OF POTASSIUM SULFATE AT 25 (Fox and Gauge, 1910.) IN: Aqueous Ethylene Glycol Solutions. Aqueous Mannitol Solutions. Gms. per 100 Gms. Sat. Solution. Gms. per 100 Gms. Sat. Solution. K 2 S0 4 . (CH 2 OH) 2 . H 2 0. K 2 S0 4 . (CHOH) 4 (CH 2 OH) 2 . H 2 O. 9.67 3.16 87.17 10.32 3.20 86.48 7.69 9.79 82 -53 9- 61 8 -35 82.04 5.74 18.47 75.79 9.19 11.26 79.55 3.57 32.11 64.32 8.66 14.30 77.04 1.83 49-3 49-14 8.35 17.22 74.43 SOLUBILITY OF POTASSIUM SULFATE AT 25 IN: Aq. Sucrose Solutions. Aq. Potassium Acetate Solutions. (Fox and Gauge, 1910.) (Fox, 1909.) Gms. per 100 Gms. Sat. Solution. Gms. per 100 Gms. Sat. Solution. K 2 S0 4 . CuHaOu. H 2 0. K 2 SO 4 . CH 3 COOK. H 2 O. 9.65 9.56 80.79 6.65 6. ii 87.24 8.65 18.55 72.80* 5.09 8.68 86.23 7.42 28.16 64.42 3.99 11.29 84.72 6.35 37.24 56.41 2.35 15.59 82.06 5.21 47.55 47.24 1.23 20.12 78.65 4.24 57 38.76 0.39 29.95 69.66 100 gms. glycerol of d = 1 .255 dissolve 1.316 gms. K 2 SO 4 at ord. temp. (Vogel, 1867.) SOLUBILITY OF POTASSIUM SULFATE IN AQUEOUS ACETIC ACID AND IN AQUEOUS PHENOL SOLUTIONS AT 25. (Rothmund and Wilsmore, 1902.) In Aq. Acetic Acid. In Aq. Phenol. Mols. per Liter. Grams per Liter. Mols. per Liter. Grams per Liter. ' ' taCOOH. K 2 S0 4 . CH 3 COOH . lv2SO4. C-gxi^Oii. K2SC/4. C 6 H 5 OH. K2SO,. o.o 0-6714 .0 117 .0 0-0 o .6714 .0 117.0 0.07 0.6619 4 .2 JI 5 4 0.032 o .6598 3 .01 115.0 0-137 0-6559 8 .22 114 4 0.064 o .6502 6 .02 IJ 3-3 0-328 0.6350 19 .68 no .8 0.127 .6310 II 94 no.o 0-578 0.6097 34 .68 1 06 3 0.236 o .6042 22 .19 I0 5-3 I.I 5 I o-555 6 69 .06 96 .87 0.308 o 5834 28 97 101 .7 2.183 0-4743 128 58 82, .70 0.409 o 5572 38 .46. 97.2 0.464 0.5480 43 .63 95.5 0.498 (sat.) 0-5377 46.82 93.8 100 gms. water dissolve 10.4 gms. K 2 SO 4 + 219 gms. sugar at 31.25, or 100 gms. sat. solution contain 3.18 gms. K 2 SO4 + 66.74 g ms - sugar. (Kohler, 1897.) loo gms. 95% formic acid dissolve 36.5 gms. K 2 SO 4 at 21. (Aschan, 1913.) 100 gms. 95% formic acid dissolve 14.6 gms. KHSO 4 at 19.3. 100 cc. anhydrous hydrazine dissolve 5 gms. K 2 SO 4 at room temp. (Welsh and Broderson, 1915.) 100 gms. hydroxylamine dissolve 3.5 gms. K 2 SO 4 at 17-18. (de Bruyn, 189*.) FREEZING-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES: K 2 SO 4 + K 2 WO 4 . CAmadori, 1913-) f Ag 2 SO 4 . (Nacken, 19070.) + NaCl. (Sackur, 1911-12.) H- Na 2 SO 4 . (Jaenecke, 1908; Nacken, 1907 (b) (c); Sackur, 1911-12). + SrSO 4 . (Grahmann, 1913; Calcagni, 1912, 19124.) 563 POTASSIUM BiSULFATE POTASSIUM BiSULFATE KHSO 4 . SOLUBILITY IN WATER. (Kremers, 1854.) t. o. 20. 40. 100. Cms. KHS0 4 per ioo gms. H 2 O 36.3 51.4 67.3 121.6 See also p. 560. POTASSIUM PerSULFATE SOLUBILITY IN WATER. (Tarugi, 1904.) +o Gms. K-^Og per t o Gms. K^Og per f Gms. I^Og per 1 ' ioo cc. Sat. Sol. ioo cc. Sat. Sol. ioo cc. Sat. Sol. o 1.620 15 3.140(3.7) 30 7.190(7.7) 5 2.156 20 4-490 35 8.540 10 2.600 25 5- 8 40 40 9.890 The results in parentheses are the averages of a large number of determinations by Pajetta (1906). This investigator employed constant agitation for various lengths of time. Tarugi approached equilibrium from above as well as below but stirred the solutions only at intervals. The determination of the dissolved per- sulfate was made by boiling a measured volume of the clear saturated solution for 20 min. and titrating the H 2 SOi liberated, according to the equation K 2 S 2 O8-f-H 2 O = K 2 SO 4 + H 2 SO 4 + O. Tarugi also reports that the presence of a number of sodium and other salts in solution, does not appreciably alter the solubility of K 2 S 2 O 8 in water. ioo gms. H 2 O dissolve 1.77 gms. K 2 S 2 Os at o. (Marshall, 1891.) SOLUBILITY OF POTASSIUM PERSULFATE IN SATURATED AQUEOUS SALT SOLUTIONS AT 12. (Pajetta, 1906.) (An excess of the salt and of K 2 S 2 O 8 was, in each case, added to water and the mixture stirred at constant temperature for 10 to 20 hours.) Salt Gms. K 2 S2O 8 per sl Gms. K^Og per balt ' . . ioo Gms. Sat. Sol. balt ' ioo Gms. Sat. Sol. Water alone 3.196 K 2 SO 4 0.798 Na 2 SO 4 .ioH 2 6.238 KHS0 4 0.336 NaHS0 4 8.842 KNO 3 0.904 Na 2 HPO 4 .i2H 2 O 4.766 K 2 CO 3 0.0146 Na 2 B 4 O 7 .ioH 2 O 3.825 KHCO 3 0.317 NaNO 3 19.302 MgSO 4 .7H 2 O 2.990 Na 2 CO 3 .ioH 2 O 5.682 CaSO 4 .2H 2 O 3.384 NaHC0 3 5.042 Additional determinations made with salt solutions of lower concentrations than saturation, gave the following results at 12.5. Gms. Salt per Gms. KjSjOg Gms. Salt per Gms. Salt. ioo Gms. per ioo Gms. Salt. ioo Gms. per ioo Gms. H 2 0. Sat. Sol. H 2 O. Sat. Sol. Na 2 CO3 2.304 4.297 NaHS0 4 5.218 4.556 NaHCO 3 3.652 4.230 NaNO 3 3.696 4.613 Na 2 SO 4 .ioH 2 O 7 4.554 Na 2 HP0 4 3.086 4.446 POTASSIUM Ethyl SULFATE K(C 2 H 6 )SO 4 . SOLUBILITY IN WATER. (Illingworth and Howard, 1884.) Gms. K(C 2 H 5 )SO 4 t. per ioo Gms. Sat. Sol. 14.2 45.01 O 53-71 + 15 62.35 POTASSIUM Ethyl SULFATE 564 SOLUBILITY OF POTASSIUM ETHYL SULFATE, POTASSIUM METHYL SULFATE AND OF POTASSIUM AMYL SULFATE IN WATER, DETERMINED BY THE FREEZING- POINT METHOD. (Ulingworth and Howard, 1884.) Results for K(C 2 H 6 )SO 4 Results for K(CH 3 )SO 4 Results for K(C 6 H U )SO4 + H 2 O. + H 2 O. + H 2 O. j.o t Gms. xo -r Gms. +o'r Gms. SSL 2.2 10 Ice 2.3 10 Ice 1.9 10 Ice 4.9 20 " 3.6 15 4.3 20 8.2 30 5 20 5.4 24 " 12.1 40 8 30 " +K(C 6 H 11 )SO 4 - 14.2 45 . 01 "+K(C 2 H B )S0 4 - 1 1 . 8 39 . 84 " +K(CH 3 )SO 4 - 4-8 25 K(C 6 Hn)SO 4 6 50 EXCzHjJSO* 11.5 40 K(CH3)S0 4 o 33-44 o 53-71 o 47.1 +17-3 59-46 + 15 62.35 +12.3 54.8 POTASSIUM Sodium SULFITE KNa2H(SO 3 ) 2 .4H 2 O. 100 gms. H 2 O dissolve 69 gms. of the salt at 15. (Schwicker, 1889.) POTASSIUM SULFONATES SOLUBILITY IN WATER. Gms. Anhy- Salt. t. drous Salt per Authority. 100 Gms. H 2 O. Potassium Naphthalene Monosulfonate4H 2 O 25 8 . 48* (Witt, 1915.) " 2 Phenanthrene Monosulfonate.-IHaO 20 0.273 (Sandquist, 1912.) 3 " " .oH 2 20 0.342 10 .iH 2 O 20 0.84 " o Guaiacol Sulfonate (Thiocol) 15-20 16.6 (Squire & Caines, 1905.) * d = 1.029 loocc.QOvol. % alcohol dissolve 0.25 gm.thiocolat I5-2O. (Squire and Caines, 1905.) POTASSIUM SULFIDE K 2 S. Fusion-point data for K 2 S + S are given by Thomas and Rule (1917). POTASSIUM Antimony SULFIDE, see Potassium Sulfoantimonate, p. 500. POTASSIUM TARTRATE (K 2 C 4 H 4 O 6 ) 2 .H 2 O. 100 gms. H 2 dissolve 138 gms. K 2 C 4 H 4 O6 at 16.6, Sp. Gr. of sat. sol. = 1.49. (Greenish and Smith, 1901.) POTASSIUM (Bi) TARTRATE (Mono) KHC 4 H 4 6 , Cream of Tartar. SOLUBILITY OF MONO POTASSIUM TARTRATE IN WATER. (Afluard, 1865; Roelofsen, 1894; Blarez, 1891; at 20, Magnanini, 1901; at 25, Noyes and Clement, 1894.) Gms. KHC 4 H 4 O 6 per 100 t. Gms. Solution. t. A Gms. KHC 4 H 4 6 per 100 Gms. Solution. 0. 30 (R.) 0. 32 (A.) o, 35 (B.) 40 0.96 I. 3 1.29 IO 0. 37 0. 40 o 42 50 1.25 I, 8 i. 80 2O 0. 49 0. 53 (M.) o, 60 60 2. 4 25 0. 58 0. 654 (N. and C.) 0. 74 80 . . . 4- 4 . . . 30 0. 69 0. 9 (A.) 0, 89 IOO 6. 3 SOLUBILITY OF MONO POTASSIUM TARTRATE IN AQUEOUS ALCOHOL AT 25. (Seidell, 1910.) Wt. % C 2 H 5 OH in Solvent du,oi Sat. Sol. Gms. KHC 4 H 4 O per loo Gms. Sat. Sol. Wt. % C 2 H 8 OH in Solvent. <*25 Of Sat. Sol. Gms. KHC 4 H 4 O per loo Gms. Sat. Sol. I.OO2 0.649 50 0.912 0.064 IO 0.985 0.358 00 0.890 0.043 20 0.970 0.2IO 80 0.842 0.023 30 0-953 O.I3I 92.3 0.807 O.OI4 40 0-933 0.087 IOO 0.789 O.OIO 565 POTASSIUM BiTARTRATE SOLUBILITY OF MONO POTASSIUM TARTRATE IN AQUEOUS ALCOHOL AT 18. (Paul, 1917.) Cms. C 2 H 5 OH per 100 cc. solvent o 5 Gms. KHC 4 H4O 6 per liter sat. sol. 4 . 903 3 . 58 2.94 10 2-57 Approximate determinations at other temperatures are given by Roelofsen (1894) and by Wenger (1892). SOLUBILITY OF MONO POTASSIUM TARTRATE (KHC 4 H 4 O6) IN NORMAL SOLUTIONS OF ACIDS AT 20. (Ostwald; Huecke, 1884.) Purified tartrate was added in excess to normal solutions of the acids, and, after shaking, clear I cc. portions of each solution were withdrawn and titrated with approximately o.i n Ba(OH)2 solution; I cc. normal acid requiring 10.63 cc of the Ba(OH) 2 solution. Acid. Gms. Acid cc. N/io Ba(OH) 2 Gms. KHC 4 H4O< 1 Acid Gms. cc. N/io Gms Acid Ba(OH) 2 KHC 4 H 4 O 6 per 100 cc. pei Solvent. Sol i cc. ution. per loo cc. Solution. per 100 cc. Solvent. per i cc. per ico cc Solution. Solution" HNO 3 6. 31 5 77* 10. 21 C 2 H 5 S0 3 H II. O 5 .01* 8.87 HC1 3- 65 5- 32 9- 42 HO.(CH 2 ) 2 SO 3 H 12. 6l 5 33 9-43 HBr 8. IO 5- 38 9- 75 C 6 H 5 S0 3 H 15.81 5 25 9.29 HI 12. 80 5- 43 9- 61 HCOOH 4.60 45 0.80 H 2 S0 4 4- 90 3- 97 7- 3 CH 3 COOH 6.00 .27 0.48 HCH 3 SO 4 ii. 21 5- 58 12. 44 CH 2 C1COOH 9-45 I, .01 1.79 HC 2 H 5 S0 4 12. 61 9- 58 C 2 H 5 COOH 7.40 .24 0.42 HC 3 H 7 S0 4 14. OI 5. 21 9- 22 C 3 H 7 COOH 8.81 23 0.41 * The figures in this column show the amount of the Ba(OH>2 solution in excess of that which would have been required by the normal acid solution alone in each case, viz., 10.63 cc. They, therefore, corre- epond to the amount of KHC^Oo dissolved in i cc. of each saturated solution, and when multiplied by i-77give the grams of KHC 4 H 4 Oe per 100 cc. solution. SOLUBILITY OF MONO POTASSIUM TARTRATE (KHC 4 H 4 O 6 ) IN AQUEOUS SOLUTIONS OF ELECTROLYTES AT 25. (Noyes and Clement, 1894; Magnanini, 1901.) Electro- Gm. Equiv. per Liter. Gms. per Liter. Electro- Gm. Equiv. per Liter. Gms. per Liter. lyte. KC1 Electro- KHC 4 lyte. H 4 O 6 . 0.025 0.0254 Electro- lyte. 1.86 KHC 4 HA 4.788 lyte. CHsCOOK Electro- lyte. 0.05 KHC 4 * HA. 0.0410 Electro- lyte. 4.91 KHC 4 " HA. 7.718 " 0.05 0.0196 3 73 3-680 " O. IO o . 0504 9.82 9.486 u O. IO 0.0133 7 .46 2.509 " o. 20 0.0634 19.63 II. 930 11 O.2O 0.0087 14 .92 1.636 KHS0 4 ( 2 o) O.OI 0.0375 1-36 7- 06 KC10 3 0.025 0.0256 3 .06 4.821 " O.O2 0.0500 2.72 9- AI u 0.05 0.0197 6 13 3.716 " O. IO 0.1597 13.62 30. 06 " O. IO 0.0138 12 .26 2.601 KHC 2 O 4 * (20) O.OI o . 0369 1.28 6. 94 " O.2O 0.0097 24 5 2 1.728 a 0.02 o . 0424 2.56 7- 98 KBr 0.05 0.0192 5 95 3.699 u 0.10 O.II32 12.82 21. 30 " 0.10 0.0134 ii .91 2.517 HC1 0.013 0.0367 0-45 6. 90 " o. 20 0.0087 23 .82 1.629 " O.O25 0.0428 0.91 8. 06 KI 0.05 0.0196 8 30 3.687 " O.O5O o . 0589 1.82 ii. 09 M O. 10 0.0132 16 .61 2.492 Nad 0.05 0.0376 2.92 7- 08 u o. 20 0.0086 33 .22 1.619 tt O.IO 0.0397 5.85 7- 48 KNO 3 0.05 0.0195 5-06 3.676 11 o. 20 0.0428 11.70 8. 05 u O. IO 0.0136 IO . 12 2.551 NaC10 3 0.05 0.0382 5-32 7- 18 " o. 20 0.0090 20 .24 1.696 M O.IO o . 0405 10.65 7- 63 K 2 SO 4 0.05 0.0208 4 .36 3.921 " O.2O 0.0446 21.30 8. 40 " 0.10 0.0147 8 .72 2.769 M 0.20 O.OIOO 17 44 1.888 * = acid potassium oxalate. POTASSIUM TARTRATE 566 POTASSIUM Sodium TARTRATE. KNa.C 4 H 4 O 6 .4H 2 O. (Rochelle or Seig- nette Salt.) loo gms. sat. aq. solution contain 36.66 gms. KNaC 4 H 4 O 6 at 9.7 and 47.97 gms. at 29.5. (van't Hoff and Goldschmidt, 1895.) loo gms. H 2 O dissolve 53.53 gms. KNaC 4 H 4 O 6 at 15, Sp. Or. of sol. = 1.2713. (Greenish & Smith, 1901.) SOLUBILITY OF MIXTURES OF POTASSIUM TARTRATE AND OF SODIUM TARTRATE IN WATER AT SEVERAL TEMPERATURES. (van Leeuwen, 1897.) AB Gms. per 100 Gms. Sat. Sol. Gms. per roo Gms. Sat. Sol. * '-K rwn '*r rwr> ' Solld Phase ' * ' ' y r H n - - ' Solld Phase * K 2 C 4 H 4 U 6 . J\a 2 L 4 Jl4U s . Js. 2 ^4Al 4 U 6 . l8 19.2 16.5 KNaCiHiQs^HsiO 26.6 56 4.2 KNaC 4 H 4 6 . 4 H 2 O+K 2 T 38 26.6 22.8 " 48.3 51.6 13.2 20.9 ii. 8 28 " +Na*T 59-7 44-5 25.3 38 25.8 24.7 " " 80 39.7 34.7 50 36.7 23.9 " K 2 T = K 2 C 4 H 4 O 6 .H 2 O. Na 2 T = Na 2 C 4 H 4 O 6 .2H 2 O. SOLUBILITY OF SEVERAL POTASSIUM SALTS OF TARTARIC ACIDS IN WATER AT 20. (Schlossberg, 1900.) Salt. Formula. Q ^^sS Potassium Sodium Salt of Racemic Acid KNa(C 4 H 4 O 6 ).3H 2 62.84 Potassium Sodium Salt of d Tartaric Acid KNa(C 4 H 4 O 6 ).4H 2 O 63 . 50 Potassium Neutral Inactive Pyrotartrate K^CsHeOe.H^O 56.33 Potassium Neutral Dextropyrotartrate K^CsHeOe 57-62 SOLUBILITY OF POTASSIUM SODIUM TARTRATE IN AQ. ALCOHOL SOLUTIONS AT 25. (Seidell, 1910.) Wt. % , . Gms. Wt. % . . Gms. QH 6 OH s^'c*, KNaC4HA.4H 8 C 2 H 5 OH J* 2* KNaC 4 H 4 O 6 . 4 H 2 O in Solvent. bat " SoL per 100 Gms. Solvent in Solvent. bat ' SoL per 100 Gms. Sat. Sol. o 1.310 53.33 50 0.908 2.40 10 . 1.216 41.60 60 0.878 0.90 20 1.124 26.20 70 0-857 -3 30 1.034 13.80 80 0.840 0.06 40 0.961 6 100 0.789 trace POTASSIUM DihydroxvTARTRATES K 2 C 4 H 4 O 8 .H 2 O and KHC 4 H 4 O 8 .H 2 O. 100 gms. H 2 O dissolve 2.66 gms. K^I^Os.HoO at o. (Fenton, jSgS.) 100 gms. H 2 O dissolve 2.70 gms. KHC 4 H 4 O 8 .H 2 O at o. F.-pt. data for mixtures of d and / dimethyl ester of potassium bitartrate and for mixtures of d and / diacetyl dimethylester of potassium bitartrate are given by Adriani (1900). POTASSIUM TELLURATE K 2 TeO 4 . 100 gms. H 2 O dissolve 8.82 gms. K 2 TeO 4 at o, 27.53 gms. at 20 and 50.42 gms. at 30 . (Rosenheim and Weinheber, 1910-11.) POTASSIUM THIOCYANATE KSCN. SOLUBILITY IN WATER. SStSSXL SolidPhase ' Auttefty. - 6.5 16.7 Ice (Rudorff, 1872.) - 9-55 23.1 31.2 Eutec. 50.25 " +KSCN (Wassilijew, 1910.) 63-9 KSCN 20 68.5 " (Rudorff, 1869.) 25 70.5 " (Foote, 1903.) 567 POTASSIUM THIOCYANATE SOLUBILITY OF MIXTURES OF POTASSIUM THIOCYANATE AND SILVER THIOCYANATE IN WATER AT 25. (Foote, 1903.) Solid Phase. KSCN KSCN 4- zKSCN.AgSCN Double Salt. 2 KSCN.AgSCN = 53- 92% KSCN 2 KSCN.AgSCN+ KSCNAgSCN Double Salt. KSCN .AgSCN = 36.9% KSCN KSCN AgSCN + AgSCN Gms. per TOO Gms. Solution. Mols. per ioo Mols. H^O. KSCN. AgSCN. KSCN. AgSCN." 70-53 44.36 66-55 9-32 51 .13 4.19 64.47 10.62 47-98 4-60] 61 .25 II .76 42.07 4-7*1 .58.34 *3-55 38.47 5-23 1 53-21 17 .53 33-71 6. 5 oJ 50.68 20.43 32.52 7-67 49-43 32-5 1 20.32 18.34 30.29 12 .26 7.28^1 4-05 f 24.68 16.41 7-77 J 23.86 16.07 7-36 2.90 SOLUBILITY OF POTASSIUM THIOCYANATE IN ACETONE, AMYL ALCOHOL, ETC. (von Laszcynski, 1894.) In Acetone. In Amyl Alcohol. In Ethyl Acetate. In Pyridine. Gms. KSCN per Gms. KSCN per Gms. KSCN per Gms. KSCN per t. 100 Gms. t. 100 Gms. t. 100 Gms. t. 100 Gms. (CH3) 2 CO. CsHnOH. CH3COOC 2 H6 CsHfiN. 22 20-75 13 0.18 o 0.44 6-75 58 20-40 65 i-34 14 0.40 20 6.15 100 2.14 79 O.2O 58 4-97 133-5 3-i5 97 3-88 "5 3.21 SOLUBILITY OF POTASSIUM THIOCYANATE IN PYRIDINE, DETERMINED BY THE SYNTHETIC METHOD. (Wagner and Zerner, 1911.) -42 -42.1 -42.4 -42.8 Gms. KSCN per loo Gms. Mixture. O 0-5 i-33 2.4 Solid Phase. Gms. KSCN per loo Gms. Mixture. -43.3Eutec. 3.1 about +10 2.2 +KSCN KSCN 70-71 II6-II7 172.7 173. 8m. pt. Solid Phase. KSCN 1.23 0.89 at this temperature two liquid layers appear and do not be- come homogeneous up to 200. 100 KSCN ioo gms. anhydrous acetonitrile dissolve 11.31 gms. KSCN at 18. (Naumann and Schier, 1914.) Fusion-point data for mixtures of KSCN + NaSCN and KSCN + RbSCN are given by Wrzesnewsky (1912). POTASSIUM THIOSULFATE 568 POTASSIUM THIOSULFATE SOLUBILITY IN WATER. Solid Phase. (Jo, 1911,1912.) O Gms. K^Os per ioo Gms. H 2 0. 96.1 17 I50-5 20 25 155-4 165 30 175-7 35 2O2.4 40 45 204.7 208.6 50 215.2 55 227.7 3K 2 S 2 O 3 .sH 2 O t. Gms. K 2 Sj0 3 per ioo Gms. H 2 0. 56.1 234-5 60 238.3 65 245-8 70 255-2 75 268 78.3 292 80 293.1 85 298.5 90 312 Solid Phase. 2 S 2 O 3 .H 2 O 3K 2 SA.H 2 POTASSIUM Sodium THIOSULFATE KNaS 2 O 3 .2H 2 O. 100 gms. H 2 O dissolve 213.7 S ms - KNaS 2 O 3 .2H 2 O (a) at 15. 100 gms. H 2 O dissolve 205.3 gms. KNaS2O 3 .2H 2 O (6) at 15. (Schwicker, 1889.) POTASSIUT3 FluoTITANATE K 2 TiF 6 .H 2 O. SOLUBILITY IN WATER. (Marignac, 1866.) t. o. 3. 6. 10. 14. 20. Gms. K 2 TiF 6 per ioo gms. H 2 0.55 0.67 0.77 0.91 1.04 1.28 POTASSIUM VANADATE K 3 V 5 O 14 .5H 2 O. ioo gms. H 2 O dissolve 19.2 gms. at 17.5. (Radan. 1889.) POTASSIUM ZINC VANADATE KZnV6O 14 .8H 2 O. ioo gms. H 2 O dissolve 0.41 gm. of the salt (Radan). PRASEODYMIUM CHLORIDE PrCl 3 . SOLUBILITY IN WATER, AQ. HYDROCHLORIC ACID AND IN PYRIDINE. (Matignon, 1906, 1909.) Solvent. t. Sp. Gr. Sat. Sol. Gms. per ioo Gms. Sat. Sol. Water 13 1.687 5o.96PrCl 3 Aq.HCl 13 1.574 4i.o5PrCld-7.2 5 HCl Pyridine room temp. ... 2.1 PrCls PRASEODYMIUM GLYCOLATE Pr 2 (C 2 H 3 O 3 ) 3 . One liter water dissolves 3.578 gms. Pr 2 (C 2 H 3 O 3 ) 3 at 20. Qantsch & Grunkraut, '12-13.) PRASEODYMIUM MOLYBDATE Pr 2 (MoO 4 ) 8 . One liter water dissolves 0.0152 gm. Pr 2 (MoO4) 3 at 23 and 0.0143 gms. at 75. (Hitchcock, 1895. PRASEODYMIUM Double NITRATES SOLUBILITY AT 16 IN CONC. HNO 3 OF Salt. ^=1.325. (Jantsch, 1912.) Gms. Hydrated Formula. Salt per ioo cc. Sat. Solution. Praseodymium Magnesium Nitrate Nickel Cobalt Zinc Manganese " Ni 3 Co 3 Zn 3 Mn 3 7.70 9.28 12.99 14.69 23.40 569 PRASEODYMIUM OXALATE PRASEODYMIUM OXALATE Pr 2 (C 2 O 4 ) 8 .ioH 2 O. One liter H 2 O dissolves 0.00074 S m - Pr 2 (C 2 O 4 ) 3 at 25. (Rimbach and Schubert, 1909.) ioo gms. aq. 19.4% HNO 3 (d = 1.116) dissolve 1.16 gms. Pr 2 (C 2 O 4 ) 3 at 15. (v. Scheele, 1899.) ioo gms. aq. 10.2% HNO 3 (d = 1.063) dissolve 0.50 gm. Pr 2 (C 2 O 4 ) 3 at 15. Cv. Scheele, 1899.) PRASEODYMIUM Dimethyl PHOSPHATE Pr 2 [(CH 3 ) 2 PO 4 ] 6 . IOO gms. H 2 O dissolve 64.1 gm. Pr 2 [(CH 3 ) 2 PO 4 ]e at 25. (Morgan and James, 1914.) PRASEODYMIUM SULFATE Pr 2 (SO 4 ) 3 . SOLUBILITY IN WATER. (Muthmann and Rolig, 1898.) Solid Phase. Pr 2 (S0 4 ) 3 .8H 2 Pr 2 (S0 4 ) 3 .8H 2 + Pr 2 (S0 4 ) 3 . 5 H 2 PRASEODYMIUM SULFONATES SOLUBILITY IN WATER. Gms. Pr 2 (SO 4 ) 3 t " per ioo Gms. Solid + o Phase. ' Gms. Pr 2 (SO 4 )s per loo^Gms. Solution. Water. Solution. Water. I6. S 19.8 Pr 2 (S0 4 ) 3 .8H 2 75 4-0 4-2 18 12-3 I4.I 8 S J -5 i-55 35 9-4 10-4 " 55 6,6 7- 1 95 I.O 1. 01 Praseodymium Salt of: Bromonitrobenzene Sulfonic Acid Benzene Sulfonic Acid m Nitrobenzene Sulfonic Acid m Chlorobenzene Sulfonic Acid Chloronitrobenzene Sulfonic Acid a Naphthalene Sulfonic Acid 1.5 Nitronaphthalene Sulfonic Acid 1.6 1.7 Formula. Pr(C 6 H 3 .Br.N0 2 .S0 3) i,4,2) s .- 8H 2 O Pr(C 6 H 6 S0 3 )3.9H 2 Pr[C 6 H 4 (N0 2 )S03] 3 .6H 2 O PrICeH4Cl.S03j3.9H20 Pr (C 6 H 3 .SO 3 .NO 2 .Cl,i ,3,6)3.- i4H 2 O Pr[C 10 H 7 S0 3 ] 3 .6H 2 ,. 6B,O . 9 H 2 .nH 2 O Gms. Anhy- drous Salt per ioo Gms. H 2 0. 6 . 08 (Katz& James, '13.) Authority. 55-6 33-9 12.6 25-9 6.1 0.47 0.18 (Holmberg, 1907.) PRASEODYMIUM TUNGSTATE Pr 2 (WO 4 ) 3 . One liter water dissolves 0.0438 gm. Pr 2 (WO 4 ) 3 at 75. PROPIONIC ACID C 2 H 5 COOH. (Hitchcock, 1895.) SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Faucon, 1910.) tof Solidif. -17.2 21 t of Gms. C 2 H 5 COOH ,. , p.. Solidif. per ioo Gms. Sol. Sohd Phase ' -1.33 4.98 Ice 2.60 10. ii - 3.76 6. 10 - 7.70 15 25 35. 28 9.20 -10.80 14.20 45 55 65 .20 .88 Gms. C 2 H 5 COOH per ioo Gms. Sol. 73.48 Ice Sl-75 86.85 8 7 .65 89.12 92.40 97.22 IOO Solid Phase. +C2HJCOOH QHsCOOH 29.10 29.40 -28.30 26 . 90 - 23 . 90 19.30 Additional data for this system are given by Tsakalatos (1914), Herz (1917) and Ballo (1910). The last-named investigator also determined the composition of the solid phases and explains the abnormal freezing-point lowering on the basis of production of mix-crystals. The ratio of distribution of propionic acid between water and benzene was found by King and Narracott (1909) to be 1:0.129 at room temperature. PROPIONIC ACID 570 DISTRIBUTION OF PROPIONIC ACID BETWEEN ETHER AND AQUEOUS SALT SOLUTIONS AT l8. (de Kolossovsky, 191 1.) Aq. Salt Solution (2 Mols. per Liter). QHsCOOH per 100 cc. of: Salt. Gms. Salt per 100 cc. Aq. Layer (q). Ether Layer (q 1 ). q'' Water alone I.I7O 2.305 0.50 NaCl 11.69 0.762 2-543 0.30 MgCl 2 19.05 0.567 3.I35 0.18 KNO 3 20.22 0.972 2.298 0.42 KC 3 H40 1 22.43 L324 2.406 o-55 P lodoPROPIONIC ACID CH 2 I.CH 2 .COOH. One liter sat. solution in water contains 80 gms. CH 2 I CH 2 COOH at 25. (Sidgwick, 1910.) One liter sat. solution in i n aq. sodium ft iodopropionate contains 126 gms. at 25. (Sidgwick, 1910.) PhenylPROPIONIC ACID (Hydrocinnamic Acid) CH 2 (C 6 H 6 ).CH 2 COOH. SOLUBILITY IN WATER AND IN AQ. NORMAL SODIUM ft PHENYLPROPIONATE. (Sidgwick, 1910.) Gms. CH 2 (C 6 H S )CH 2 COOH per Liter Solution at: Solvent. , * > 11. 25. Water 4.80 7.5 i n aq. CH 2 (C6H 6 )CH 2 .COONa 7 . 65 172.5 (liquid layers formed) SOLUBILITY OF ft PHENYLPROPIONIC ACID IN WATER AND IN ALCOHOLS. (Timofeiew, 1894.) Gms. CH 2 (C,H 6 )- Gms. CH 2 (C,H 5 ) Almhnl t CHjCOOH per Almhnl t CH 2 COOH per ioo Gms. Sat. 100 Gms. Sat. Solution. Solution. Water 19 0.7 Ethyl Alcohol +19.6 77.2 Methyl Alcohol -18.5 55.8 " " 20 78.8 -16 57.6 Propyl Alcohol -18.5 35 " " o 66.9 " " -16 39 + 19.6 82.8 " " +19.6 73.4 20 83.8 " " 20 73.9 Ethyl " 18.5 46 Isobutyl Alcohol 19.6 67.3 -16 48 SOLUBILITY OF ft PHENYLPROPIONIC ACID IN SEVERAL SOLVENTS. (Herz and Rathmann, 1913.) CH 2 (CH 5 ) CH 2 .COOH CH 2 (C 6 H 6 ) CH 2 COOH Solvent. P er Liter. Solyent per Liter. Mols. Gms. Mols. Gms. Chloroform 5 . 444 817.2 Tetrachloro Ethylene 4.725 709 . 2 Carbon Tetrachloride 4.604 691.1 Tetrachloro Ethane 5.430 815.1 Trichloro Ethylene 5.140 771.6 Pentachloro Ethane 5.019 753.4 P Phenyl DibromoPROPIONIC ACID C 2 H 2 Br 2 (C 6 H 6 )COOH. ioo cc. sat. sol. in carbon tetrachloride contain o. 124 gm. acid at 26. (De Jong, 1909.) ioo cc. sat. sol. in petroleum ether contain 0.072 gm. acid at 26. PhenylPROPIOLIC ACID C 6 H 6 C : C.COOH. SOLUBILITY IN SEVERAL SOLVENTS. (Herz and Rathmann, 1913.) C 6 H 6 C:C COOH C 6 H B C:C.COOH Solvent. per Liter. Solvent. per Liter. Mols. Gms. Mols. Gms. Chloroform 0.789115.30 Tetrachloro Ethylene 0.324 47.34 Carbon Tetrachloride 0.227 33.16 Tetrachloro Ethane 0.718104.90 Trichloro Ethylene 0.382 55.82 Pentachloro Ethane 0.410 59.91 PROPIONIC ALDEHYDE C 2 H 5 COH. ioo gms. H 2 O dissolve 16 gms. aldehyde at 20. (Vaubel, 1899.) 571 PROPIONITRILE PROPIONITRILE C 2 H 5 CN. SOLUBILITY IN WATER. Synthetic method used. See Note, p. 16. (Rothmund, 1898.) Wt. per cent C 2 H 5 CN in: Wt. per cent C 2 H 5 CN in: * ' Aq C 2 H 6 CN *" A^ C 2 H S CN Layer. Layer. Layer. Layer. 40 10.7 92.1 95 19.6 78.0 50 ii. 6 90.5 ioo 22.4 75.5 60 12.7 88.5 105 26.0 72.1 70 13.2 86.1 no 32.0 66.5 80 14-9 83.4 113 .1 (crit. temp.) 48.3 90 17.6 80.2 PROPYL ACETATE, Butyrate and Propionate. SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft Phys. Rev. 3, 205, '95, calc. from Pfeiffer.) cc. Alco- hol in P. Ace- P. Butyr P. Propio- cc. Alco- hol in P. Ace- P. Buty- P. Propio- Mixture. tate. rate. nate. Mixture. tate. rate. nate. 3 4-5 I.I9 I. 5 8 21 58-7I 19.68 27.83 6 10.48 3-55 4.70 24 00 23.72 33-75 9 17.80 6.13 8-35 30 32.10 47-15 12 26.00 9-o5 12.54 36 41-55 63.18 15 35- 6 3 12.31 17-15 42 51 .60 83-05 18 47-50 15.90 22.27 4 8 62 .40 107.46 54 73 85 * cc. H 2 O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of propyl acetate, butyrate and propionate SOLUBILITY OF PROPYL ACETATE, FORMATE, AND PROPIONATE IN WATER. 100 cc. H 2 O dissolve 1.7 gms. propyl acetate at 22. (Traube, 1884.) 100 cc. H 2 O dissolve 2.1 gms. propyl formate at 22. 100 cc. H 2 O dissolve 0.6 cc. propyl propionate at 25. (Bancroft, 1895.) PROPYL ALCOHOL C 3 H 7 OH. Freezing-point data (solubilities, see footnote, p. i) for mixtures of propyl alcohol and water are given by Pickering (1893). Results for mixtures of iso- propyl alcohol and water are given by Dreyer (1913). 100 gms. sat. solution of propyl alcohol in liquid carbon dioxide contain 36.5 gms. C 3 H 7 OH at 24 and 57.5 gms. at 30. (Buchner, 1905-06.) MISCIBILITY OF PROPYL ALCOHOL WITH MIXTURES OF CHLOROFORM AND WATER AT o. (Bonner, 1910.) See Notes, pp. 14 and 287. Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. CHC1 3 . Gms. H 2 O. Gms. C 3 H 7 OH. Sp. Gr. of Mixture. Gms. CHC1 3 . Gms. H 2 O. Gms. C 3 H 7 OH. Sp. Gr. of Mixture. 0.977 O.O23 0.304 1.28 0.500 0.50 1-34 0.97 0.926 0.074 0.631 I-I3 0-394 0.6o6 1.32 0.98 0.90 0.10 0.76 I .11 0.293 0.707 1-235 0.96 0.80 0.20 1. 06 1.04 0.194 0.8o6 0.996 -95 0.70 0.30 I .20 1. 01 0.097 0.903 0.672 0.97 0.60 0.40 1.30 0.98 0.030 0.97 0-39 0.97 PROPYL ALCOHOL 572 MISCIBILITY OF PROPYL ALCOHOL AT o WITH MIXTURES OF: Carbon Tetrachloride and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Ethyl Bromide and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Cms. CC1 4 . Cms. H 2 O. Cms. C 3 H 7 OH. Sp. Gr. of Mixture. Cms. C 2 H B Br. Cms. H 2 O. Cms. C 3 H 7 OH. Sp. Gr. of Mixture. o-975 0.025 0.317 I-3I 0.941 0.039 0.367 I. 21 0.931 0.069 0.536 I.I7 0.912 0.088 0.615 I. II 0.90 O.IO 0.65 I.I4 0.90 O. IO 0.64 I.IO 0.80 0.2O 0.949 1.07 0.80 0.2O 0.85 1-05 0.70 0.30 I. 12 1 .02 o. 70 0.30 I I. O2 0.60 0.40 I. 20 0.99 0.6o 0.40 1.09 I 0.499 0.501 1-234 0.98 0.491 0.509 I.I24 0.98 0.40 O.60 I-I95 0-97 0.40 0.60 I. 10 0.97 0.30 0.70 I.I3 0.96 ,0.30 0.70 0.90 0.96 *0.2 5 0-75 I. 06 0.20 0.80 0.81 0.96 0.194 0.806 0.912 0.96 o. 14 0.86 0.671 0.96 O. IOO 0.90 0.68 0.96 O.IO 0.90 0.56 0-97 0.013 0.987 0-354 0.96 *0.023 0.977 0.227 0.99 See Notes, pp. 14 and 287. MISCIBILITY OF PROPYL ALCOHOL AT o WITH MIXTURES OF: Bromobenzene and Water. (Bonner, 1910.) Bromotoluene and Water. (Bonner, 1910.) Composition of Homogeneous Mixtures. Composition of Homogeneous Mixtures. Gms. C 6 H 6 Br. Gms. H 2 O. Gms. C 3 H 7 OH. Sp. Gr. of Mixture. Gms. C 6 H 4 CH 3 Br. Gms. H 2 O. Gms. C 3 H 7 OH. Sp. Gr. of Mixture. 0.983 O.OI7 0.186 1.29 0.968 0.032 0.252 1.23 0.909 0.091 0.56 I. II 0.90 O. IO 0.52 I. II 0.90 O.IO 0.58 I. II 0.80 0.20 0.78 1.03 0.80 0.20 0.87 1.05 0.70 0.30 0.96 I. 01 0.70 0.30 1.05 1 .02 0.6o 0.4O 1.07 0.99 0.60 O.40 I-I5 I 0.50 0.50 I-I3 0.97 0.50 0.50 I.I9 0.97 0.40 0.60 I-I3 0.96 0.40 0.60 I.I9 0-97 0.30 O.7O 1.03 0-95 0.30 0.70 1.09 0-95 *0.2 5 0-75 0.97 O. 20 0.80 0-93 0-95 0. 20 0.80 0.90 0.94 O. IO 0.90 0.71 0.96 O.IO 0.90 0.72 0-95 0.021 0.979 o-457 0.98 0.013 0.987 0.424 0.96 See Notes, pp. 14 and 287. DISTRIBUTION OF PROPYL ALCOHOL BETWEEN WATER AND COTTON-SEED OIL AT 25. (Wroth and Reid, 1916.) Oil Layer. 1.447 1-475 1-503 H 2 O Layer. 8. 112 8.897 9.809 5-60 6. 10 6-53 Oil Layer. I.5l6 I-576 1.694 H 2 O Layer. 10.07 10.49 10.41 6.64 6.65 6. 14 Data for systems composed of normal propyl alcohol, water and various in- organic salts are given by Timmermans, 1907. PROPYLAMINE CH 3 .CH 2 .CH 2 .NH 2 . The solubility of propylamine in water at 60, determined by an aspiration method using an indifferent gas, is 191 when expressed in terms of the Bunsen absorption coefficient (see p. 227) and / 6 o = 233 when expressed in terms of the Ostwald solubility expression. (Doyer, 1890.) 573 PROPYL AMINES Freezing-point data for mixtures of propylamine and water, isopropylamine and water and for dipropylamine and water are given by Pickering (1893). DISTRIBUTION OF PROPYLAMINES BETWEEN WATER AND TOLUENE. (Moore and Winmill, 1912.) Results at 18. Amine. Gm. Equiv. Amine per Liter of Aq. Layer. Propylamine o . 0973 " 0.0928 Dipropylamine o . 0764 0.0794 Tripropylamine 0.0003 Partition Coef. 434 439 0.1185 0.1188 0.003 Partition Coef. Results at 25. Gm. Equiv. Amine per Liter of Aq. Layer. 0.03837 o . 04300 O.O722 0.0681 4.470 4.470 0.0769 0.0771 Results at 32.35. Gm. Equiv. Amine per Liter of Aq. Layer. o . 0602 0.0578 O. OIl68 O.OII99 Partition Coef. 3-3I7 0.05802 0-05795 PROPYLAMINE HYDROCHLORIDE a NH 2 (C 3 H 7 ).HC1. 100 gms. H 2 O dissolve 278.2 gms. NH 2 (C 3 H 7 ).HC1 at 25. (Peddle and Turner, 1913.) 100 gms. CHC1 3 dissolve 5.26 gms. NHi(C 3 H 7 ).HCl at 25. (Peddle and Turner, 1913.) DiPROPYL AMINE HYDROCHLORIDE NH(C 3 H 7 ) 2 .HC1. IOO gms. H 2 O dissolve 165.3 S ms - NH(C 3 H 7 ) 2 .HC1 at 25. (Peddle'and Turner, 1913.) 100 gms. CHC1 3 dissolve 47.24 gms. NH(C 3 H 7 ) 2 .HC1 at 25. (Peddle and Turner, 1913.) PROPYL CHLORIDE, Bromide, etc. SOLUBILITY IN WATER. (Rex, 1906.) Propyl Compound. CH 3 CH 2 CH 2 C1 (normal) CH 3 CH 2 CH 2 Br " CH 3 CH 2 CH 2 I (CH 3 ) 2 CHC1 (iso) (CH 3 ) 2 CHBr (CH 3 ) 2 CHI Grams P. Compound per 100 Gms. HjO at: 0. 10. 20. 30. 0.376 0.323 0.272 0.277 0.298 0.263 0.245 0.247 0.114 0.103 O.IO7 0.103 0.440 0.363 0.305 0.304 0.418 o-3 6 5 0.318 0.3l8 0.167 0.143 O.I4O 0.134 PROPYLENE C 8 H 6 . SOLUBILITY IN WATER. (Than, 1862.) t". ft. q. o 0.4465 0.0834 5 0.3493 0.06504 10 0.2796 0.0519 15 0.2366 0.0437 20 0.2205 0.0405 For values of /3 and q, see Ethane, p. 285. PYRENE C 16 H 10 SOLUBILITY IN TOLUENE AND IN ABSOLUTE ALCOHOL. 100 gms. toluene dissolve 16.54 S m s- pyrene at 18. 100 gms. absolute alcohol dissolve 1.37 gms. pyrene at 10 and 3.08 gms. at b. pt. PYRIDINE 574 PYRIDINE CH < (CH.CH) 2 > N. SOLUBILITY IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. (Average curve from results of Pickering (1893) and Baud (1909.) t'.of Solidi- fication. Gms. C 5 H 6 N per 100 Gms. Mixture. Solid Phase. Ice I 7-5 " 2 i7 " -3 28 u -4 37-5 " -5 43-5 " -6 48 Q 54 " Gms. C 6 H 6 Nper Solid J.G n t Gms. C * H * N P er Solid phase - 10 12. -15 20 -25 -30 -40 -50 58 62 6 4 68 7i 73 78 81 5 Ice -60 -65 Eutec. -60 -55 -50 -45 -40 84 85 87 89 92 95 97 Ice +C t HjN 38 m. pt. 100 Timmermans (1912) is reported to have made determinations on the above systems but the original paper could not be located. Baud also gives data for the densities of pyridine + water mixtures. DISTRIBUTION OF PYRIDINE BETWEEN WATER AND BENZENE. At Room Temperature. (v. Georgievics, 1915.) Gms. C S H 5 N per At 2 5 . (Hantzsch and Sebaldt, 1899.) Mols. C 8 H 5 N per Liter. 25 cc. H 2 O Layer. 0.0617 0.0958 0.1549 0.2432 0.3297 0.723 1. 147 75 cc. CeH 6 Layer. 0.4733 0.7631 1.2249 2.0096 2.6553 5-4I59 9.878 Aq. Layer. C 6 H 6 Layer. rs.ai.io. O.OOI48 0.00436 0-339 0.00076 0.00226 0-339 0.00038 O.OOIIO 0-345 O.OOO2O8 O.OOO546 0.381 O.OOOII2 0.000274 0.413 (at 5.5) 0.000456 O.OOO928 0.491 (at 50) O.OOO3I4 O.OOIO88 0.289 DISTRIBUTION OF PYRIDINE BETWEEN WATER AND TOLUENE. (Hantzsch and Vagt, 1901.) At 25. er Liter. Ratio. 0.458 0.466 0.481 0.496 0.551 0.629 0.647 0.696 Data for systems composed of py given by Timmermans, 1907. Methyl PYRIDINES Data for the reciprocal solubility of 3 methyl pyridine { = picoline) and water, 2.6 dimethyl pyridine (= 2.6 lutidine) and water, methyl pyridine (=7 picoline) zinc chloride and water, methyl pyridine zinc chloride and each of the following alcohols; methyl, ethyl, propyl, isobutyl, isoamyl, cetyl and methyl hexylcarbinol, determined by the synthetic method (see Note, p. 16), are given by 'Flaschner (1909). See also p. 262, for2.4.6trimethyl pyridine (collidine) and water. Mols. C 6 H B N per Liter. Aq. Layer. CH & CH 3 Layer. 0.0517 0.026l O.II29 0.0559 O.OI32 0.0067 0.0033 0.0275 0.0137 0.0066 O.OOI9 O.OO34 O.OOII 0.0017 0.0007 0.0010 At Various Temperatures. Mols. C 5 H 5 N per Liter. t * Ratio Aq. Layer. C 6 H 5 CH 3 Layer. 0.0168 O.O2OI 0.840 10 0.0135 0.0215 0.627 20 O.OIII 0.0228 0.529 30 0.0108 0.0234 0.461 40 O.OIOI 0.0245 0.411 50 0.0096 0.0252 0.380 70 0.0085 0.0263 0-324 9 0.0082 0.0266 0.307 e, water and various inorga: nic salts are 575 PYRIDINE PYRIDINAMINO SUCCINIC ACIDS. 100 gms. H 2 O dissolve 1.67 gms. of the d compound, 1.64 gms of the / com- pound and 1.68 gms. of the dl compound at 18. (Lutz, 1910.) PYROCATECHOL o C 6 H 4 (OH) 2 . 100 gms. H 2 9 dissolve 45.1 gms. C 6 H4(OH) 2 at 20. (Vaubel, 1899.) 100 gms. pyridine dissolve an unlimited amount of CeH^OH^ at 20. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 101 + gms. of CeH^OH^ at 20-25. " F.-pt. data for pyrocatechol + resorcinol are given by Jaeger (1907). PYROGALLOL C 6 H 3 (OH) 3 i, 2, 3. SOLUBILITY IN WATER, ETC. (U. S. P. VIII.) ioo gms. water dissolve 62.5 gms. C 6 H 3 (OH) 3 at 25^. 100 gms. alcohol dissolve ioo gmi ioo gms. ether dissolve 90.9 gms. ioo gms. alcohol dissolve ioo gms. C 6 H 3 (OH) 3 at 25. jms. CeHa(OH), at 25. Dimethyl PYRONE C 7 H 8 O 2 . Freezing-point data for mixtures of dimethyl pyrone and each of the following compounds: salicylic acid, 0, m, p and a toluic acids and trinitrotoluene are given by Kendall (i9i4a). Results for mixtures of dimethyl pyrone and sulfuric acid are given by Kendall and Carpenter (1914). QUINHYDRONE Data for the solubility and dissociation of quinhydrone in water at 25 are given by Luther and Leubner (1912). QUINIDINE C 2 oH 24 N 2 2 . ?H 2 O. SOLUBILITY IN SEVERAL SOLVENTS. Solvent. t. Water 18-22 Water 25 Ethyl Alcohol (95%) 20 Ethyl Alcohol Methyl Alcohol Benzene Benzene Carbon Tetrachloride Chloroform Chloroform Ether (d = 0.72) Ether sat. with H 2 O H 2 O sat. with Ether Ethyl Acetate Pet. Ether (b. pt. 59-64) i vol. C 2 H 5 OH+4 vols. CHCU i vol. C 2 H 5 OH+4 vols. C 6 H 6 i vol. CH 3 OH+4 vols. CHCla i vol. CH 3 OH+4 vols. QUINIDINE SALTS Gms. Gms. Solvent. O.O2O I 24 N 2 O 2 per ioo. cc. Solvent. Authority. 25 25 25 1 8-2 2 2-45 1 8-2 2 -SS7 18-22 IOO+ 25 1 8-2 2 0.78 1 8-2 2 1.63 1 8-2 2 0.031 1 8-2 2 1.76 1 8-2 2 0.024 25 25 25 25 (Mullet, 1903.) 0.0145 (Schaefer, 1910.) (Wherry & Yanovsky, 1918.) (Schaefer, 1913.) 22 66 33-3 12.5 25 6.6 (Muller, 1903.) (Schaefer, 1913.) (Muller, 1903.) (Schaefer, 1913.) Quinidine Salt. Q. Hydrobromide Q. Hydrochloride Q. Hydroiodide Q. Salicylate 0.060 SOLUBILITY IN WATER AT 25. (Schaefer, 1910.) Gms. Salt per loo Gms. H 2 O. 0.526 1. 160 0.082 Quinidine Salt. Q. Sulfate Q. Tannate Q. Tartrate O. Bitartrate Gms. Salt per 100 Gms. H 2 O. 1.05 0.0477 2.86 0.323 QUINIDINE SULFATE 576 SOLUBILITY OF QUINIDINE SULFATE IN SEVERAL SOLVENTS AT 25. (Schaefer, 1913.) Solvent. Ethyl Alcohol Methyl Alcohol Chloroform Benzene Cms. Q. Sulfate per too cc. Solvent. 5 40 Insol. Solvent. i vol. C 2 H 6 OH+4 vols. CHC1 3 i vol. C 2 H 5 OH+ 4 vols. C 6 H 6 i vol. CH 3 OH+4 vols. CHCls i vol. CHaOH+4 vols. CeH 6 Cms. Q. Sulfate per too cc. Solvent. 33-3 8-33 33-3 20 QUININE C 2 oH 24 N 2 O 2 .3H 2 O. Solvent. Water Ethyl Alcohol Methyl Alcohol Benzene Aniline Carbon Tetrachloride Chloroform Diethylamine Ether SOLUBILITY IN SEVERAL SOLVENTS. sat. with H 2 O H 2 O sat. with Ether Ethyl Acetate Petroleum Ether (b. pt. 59-64) Oil of Sesame Glycerol Piperidine Pyridine Aq. 50% Pyridine 7.65gms.H 3 BO 3 perioo room cc. aq. 50% Glycerol temp. i5.3gms.H 3 BO 3 perioo room cc. aq. 50% Glycerol temp. Anhydrous Quinine A0 Gms. per 100. Hydrated oJ U ^oo Authority. Gms. Solvent. Gms. Solvent. CC. Solvent. 18-22 0.051 0.05 74 (Muller, 1903.) 25 0.057 0. 033 0.065 (U. S. P.; Schaefer, 1910.) 80 0.123 0.129 (U. S. P.) 20 100 . . . (Wherry and Yanovsky, 1918.) 25 166.6 . i6o\6 (U. S. P.) 25 . . . 1333 (Schaefer, 1913.) 2O 66. 6 . ' .: 25 o. 55 0.205 (Schaefer; Muller, 1903.) 2O 0-5 . (Wherry and Yanovsky, 1918.) 1 8-2 2 . (Muller, 1903.) 20 14-5 . (Scholtz, 1912.) 20 0-54 . 0.204 (Gori, 1913; Muller, 1903.) 25 50-52.6 . . . 62.5 (Schaefer, 1913; U. S. P.) 18-22 100 -f- . . . loo + (Muller, 1903.) 20 57 . . . (Scholtz, 1912.) 25 22.2 . . . 76.9 (U. S. P.) 1 8-2 2 0.876 . . . 1.62 (Miiller, 1903.) 1 8-2 2 2.8 5-62 " 1 8-2 2 0.085 0.067 " 1 8-2 2 24-7 . - 4-65 " 18-28 20 25 2O 20 20-25 0.021 0.633 IIQ IOI 59-4 20 40 O.OIO 0.053 0.472 (Zalai, 1910.) (U. S. P.; Ossendowski, 1907.) (Scholtz, 1912.) (Dehn, 1917.) (Baroni and Barlinetto, 1911.) SOLUBILITY OF QUININE IN BENZENE, DETERMINED BY THE SYNTHETIC (SEALED TUBE) METHOD. (van Iterson-Rotgans, 1914.) *"' Qubint Solid Phase. 53-5 4-8r 63 6 . 09 Mixed phase, 91 30.01 probably a I O2 43 4 colloid or sol- 104 .5 45 . 9 ution of high 109 51.8 viscosity. 130 75.46 * Eutec. t". Wt. % Quinine. Solid Phase. 5-4 QH, 5-3* 17 0.72 c 29 1.48 " 38.5 2-36 49 5.22 " unstable 70 28.9 U t. ' Solubility Supersolubility Curve. Curve. Curve. Curve. -0.4 1.16 ... -3-5 9-94 -1.8 ... 1.24 -2.3 13.97 -2.1 5.39 -4.2 ... 13.97 1.7 9.94 ... 2 . 7 Cryohydrate 17.11 RUBIDIUM Telluric Acid OXALATE Rb 2 [H 6 TeO 6 .C 2 O 4 ]. SOLUBILITY IN WATER. (Rosenheim and Weinheber, 1910-11.) t. 20 30 40 50 Gms. Rb 2 [H 6 Te0 6 .C 2 O4] per zoo gms. H 2 O 3.85 7.26 9.40 12.76 16.90 RUBIDIUM PERMANGANATE RbMnO 4 . One liter of aqueous solution contains 6.03 gms. RbMnO 4 at 7. (Muthmann and Kuntze, 1894.) 100 cc. sat. aq. solution contain 0.46 gm. RbMnO 4 at 2, 1.06 gms. at 19 and 4.68 gms. at 60. (Patterson, 1906.) RUBIDIUM SELENATE Rb 2 SeO 4 . 100 gms. H 2 O dissolve 158.9 gms. Rb 2 SeO 4 at 12. (Tutton, 1897.) SOLUBILITY OF MIXED CRYSTALS OF RUBIDIUM ACID SELENATE AND RUBIDIUM ACID TELLURATE AND OF RUBIDIUM ACID SULFATE AND RUBIDIUM ACID TEL- LURATE IN WATER AT 25. (Pellini, 1909.) Results for RbHSeO 4 + RbHTeO 4 . Results for RbHSO 4 + RbHTeSO 4 . Gms. per loop cc. Sat. Sol. Mol. % Selenate Gms. per loop cc. Sat. Sol. Mol. % Sulfate RbHSe0 4 . RbHTe0 4 . in Solid Phase. 'RbHSO 4 . RbHTeO 4 '. in Solid Phase. 76.46 39.51 51.55 26.675 38.403 47-91 95-82 35.30 52.22 32.117 31.58 50.33 171.70 22.98 53.95 42.917 26.764 50.74 462.80 5 56.33 59.074' 20.182 50.99 8 59-30 3.40 67. 46* 498.25 0.02887 52.52 RUBIDIUM FLUOSILICATE Rb 2 SiF 6 . 100 gms. H 2 O dissolve 0.16 gm. Rb 2 SiF 6 at 20, and 1.36 gms. at 100. (Stolba, 1867.) RUBIDIUM SILICOTUNGSTATE Rb 8 SiWi 2 O 42 . 100 gms. H 2 O dissolve 0.65 gm. RbsSiW^O^ at 20, and 5.1 gms. at 100. (Godeffroy, 1876.) 587 RUBIDIUM SULFATE RUBIDIUM SULFATE Rb 2 SO 4 . SOLUBILITY IN WATER. SOLUBILITY IN WATER. (Etard, 1894; Berkeley, 1904.) Gms. I . per Liter. Water. Solution. ii . per Liter. Water. Solution. 1.27 3 6 -4 27-3 60 2.IS 67.4 40-3 10 I .46 42 .6 29.9 70 2.25 71.4 41.7 20 I .64 48.2 32-5 80 2-34 75 - 42.9 30 1-79 53-5 34-9 90 2.42 78.7 44.0 40 1.92 58-5 3 6 -9 100 2.49 81.8 45-o SO 2.04 63.1 38-7 IO2 .4 2 .50 82.6 45-2 The following Sp. Gr. determinations are also given by Berkeley. t. 0.5 15.80 31.6 44.2 57-90 74-75 89.45 102.4* Sp.Gr.Sat.Sol. 1.2740 1.3287 1.3704 1.3998 1.4232 1.4480 1.4649 1-4753 * b. pt. 100 cc. sat. solution in absolute H 2 SO 4 contain 58.81 gms. Rb 2 SO 4 . (Bergius, 1910.) SOLUBILITY OF RUBIDIUM DOUBLE SULFATES IN WATER AT 25 (Locke, 1902.) Per IPO cc. H 2 O. Per 100 cc. H 2 O. Formula. ' Gms. Mols. Formula. ' Gms. " Mols. Anh. Salt. Salt. Anh. Salt. Salt. Rb 2 Cd(SO 4 ) 2 .6H 2 O 76.7 0.1615 Rb 2 Mn(SO 4 ) 2 .6H 2 O 35.7 0.0857 Rb 2 Co(SO 4 ) 2 .6H 2 O 9.28 0.022 Rb 2 Mg(SO 4 ) 2 .6H 2 O 20.2 0.0521 Rb 2 Cu(SO 4 ) 2 .6H 2 O 10.28 0.0241 Rb 2 Ni(SO 4 ) 2 .6H 2 O 5.98 0.0142 RblFefSO 4 ) 2 .6H 2 O 24.28 0.0579 Rb 2 Zn(SO 4 ) 2 .6H 2 O 10.10 0.0236 RUBIDIUM Dihydroxy TARTARIC ACID 100 gms. H 2 O dissolve 6.51 gms. Rb 2 C 4 H 4 O 8 .3H 2 O at o. (Fenton, 1898.) On account of the unstable character of the compound, only \ hour was allowed for saturation of the solution. RUTHENIUM SALTS SOLUBILITIES IN WATER. (Howe, 1894.) Salt. Formula. t. Gms. Salt per 100 Gms. H 2 0. Ruthenium Potassium Nitrosochloride K 2 RuCl 5 NO 25 12 it tt it (i 00 80 tt Ammonium Nitrosochloride (NH 4 ) 2 RuCl 5 NO 25 5 n n tt 00 22 ti Rubidium Nitrosochloride Rb 2 RuCl 5 NO 25 o-57 (i a it u 60 2.13 tt 11 (hydrated) Rb 2 RuCl 5 NO.2H 2 O 25 114-3 (i Caesium Nitrosochloride Cs 2 RuCl 5 NO 25 O.2O n it tt tt 60 0.56 n 11 " (hydrated) Cs 2 RuCl 5 .NO.2H 2 O 25 105.8 SACCHARIN (i, Benzosulfonazole, 2(1), one) C 6 H 4 NH. 100 parts H 2 O dissolve 0.4 part at 25 and 4.17 parts at 100. 100 parts alcohol dissolve 4 parts at 25. (U. S. P. VTH.) loo gms. trichlorethylene dissolve 0.012 gm. saccharin at 15. (Wester and Bruins, 1914.) SACCHARIN 588 DISTRIBUTION OF SACCHARIN AT 25 BETWEEN: Water * and Ether. Water f and Amyl Acetate. (Marden, 1914.) (Marden, 1914.) Gms. Saccharin per: Gms. Saccharin per: 'loocc. H 2 50 cc. Ethe? Dist> CoeL 105 cc. Aq. 50 cc. AmyP Dist> Coef ' Layer. Layer. Layer. Acetate Layer. 0.0290 0.0438 0.267 0-0045 0.0700 0.0306 0.0458 0.0829 0.235 0.0065 0-0957 0.0322 0.0719 0.1245 0.245 O.OII4 0.1724 0.0315 * Slightly acidified with HC1. f Containing 5 cc. cone. HC1 per 100 cc. The amount of saccharin entering the ethereal layer is increased by addition of HC1 to the aqueous layer. With 5 cc. cone. HC1 per 100 cc. H 2 O, the distribu- tion coefficient is reduced to 0.0624. SALICIN C 6 H4(CH 2 .OH)O.C 6 Hu0 5 . SOLUBILITY IN SEVERAL SOLVENTS. Solvent. f. GmS - S P Tven?. GmS - Authority. Water 15 3.52 (Greenish and Smith, 1903.) Water 25 4.16 (Dott, 1907.) 90% Alcohol 15 1.5 (Greenish and Smith, 1903.) 90% Alcohol 15 2 (Squire and Caines, 1905.) Trichlor Ethylene 15 O.OI3 (Wester and Bruins, 1914.) SALICYLAMIDE OH.C 6 H 4 CONH 2 . DISTRIBUTION BETWEEN WATER AND OLIVE OIL. (Meyer, 1901.) Gms. OHCeH^CONHz per 100 cc. t. , * v Dist. Coef. H 2 O Layer. Oil Layer. 3 0.056 0.126 2.25 36 0.075 0.107 i-40 SALICYLIC ACID C 6 H 4 .OH.COOH'i:2. SOLUBILITY IN WATER. (Average curve from the closely agreeing determinations of Walker and Wood, 1898; at 26.4, Philip, 1905; at 25, Paul, 1894; at 20, Hoitsema, i8g8a; Hoffman and Langbeck, 1905. For determinations not in good agreement with the following, see Alexejew, 1886; Bourgoin, 1878; Ost., 1878.) Gms. Gms. Gms. t o C 6 H 4 .OH.COOH t C 6 H 4 .OH.COOH t CsH^OH.COOH Liter Solution. per Liter Solution. Liter Solution. 0.8 25 2.2 60 8.2 IO 1.2 30 2-7 70 13.2 20 1.8 40 3-7 80 20.5 50 5-4 SOLUBILITY OF SALICYLIC ACID IN WATER (Savorro, 1914.) Gms. Gms. Gms. t , C 6 H 4 .OH.COOH t C 6 H 4 .OH.COOH t C 6 H 4 .OH.COOH per 1000 Gms. * . per 1000 Gms. i* . per 1000 Gms. Sat. Sol. Sat. Sol. Sat. Sol. o 1.24 35 3-51 70 13.70 5 1-29 40 4.16 75 17-55 10 1.35 45 4.89 80 22.O8 15 1.84 6-38 85 27.92 20 2 55 7-44 90 37-35 25 2.48 60 9 95 50-48 30 2 . 98 65 10.94 100 75-07 589 SALICYLIC ACID SOLUBILITY OF SALICYLIC ACID (LIQUID) IN WATER. Determinations by Synthetic Method. See Note, p. 16. The original data in each case were plotted and the following figures read from the curves. (Flaschner and Rankin, 1910.) (Alexejew.) Cms. CH 4 OHCOOH per 100 Cms. Cms. C|HOHCOOH per 100 Cms. I . Aqueous Salicylic Acid i . Aqueous Salicylic Acid Layer. Layer. Layer. Layer. 60 7 68 60 4-5 68 70 8 64 70 6-5 62.5 80 12 58 80 10 54 90 19 49 8$ 15 46 95 crit temp. _i _r 87 crit. temp. 30 are also given by Flaschner and Rankin. SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SALT SOLUTIONS AT 25 AND AT 35. (Hoffman and Langbeck, 1905.) C 6 H 4 OH.COOH Dissolved at 25. C 8 H 4 OH.COOH Dissolved at 35. Salt. iNormaiiiy of Salt Solution. oms. /- Salt per Liter. Gms. per 1000 Gms. Sat. Sol. Gm. Mol. Per cent. Gms. per 1000 Gms. Sat. Sol. Gm. Mol. Per cent. KC1 0.020 I .49 2.24 2.92l6. io- 4 3 23 4 .2206. io- 4 u O.IOO 7 .46 2.25 2-9377 tt 3 23 4 .22O3 11 tt 0.492 36 73 2.02 2.6321 tt 3 .01 3 .9268 tl tl 1.004 74 .92 1.89 2.4759 tt 2 .68 3 5003 It KN0 3 0.020 2 .02 2.25 3-9351 tt 3 25 4 .2499 tt O.IOO 10 .12 2.30 3.0103 tl 3 32 4 3334 11 tt 0.504 51 .10 2.38 3 . 1061 ft 3 .38 4 .4123 It tt I .OO4 101 .60 2-39 3.1249 tl 3 36 4 .3848 It NaCl O.O2O I .19 2.23 2.9110 tl 3 .22 4 .2062 It tt O.IOO 5 95 2.22 2.9027 tt 3 .20 4 .1806 tt it 0.497 29 50 2 2.6128 tl 2 -85 3 .7171 tt tt 0.988 58 .80 1.72 2.2487 tt 2 43 3 .1596 tt SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SALT SOLUTIONS AT 25. (Philip, 1905; Philip and Garner, 1909.) In Aq. Sodium Acetate. Gms. per Liter. CHjCOONa. CH 4 OHCOOH. i. oi 3.60 2-48 5-93 5-03 9-56 10.07 16.81 In Aq. Sodium Succinate. Gms. per Liter. C,H4(COONa) 2 . CH 4 OHCOOH. 1.18 2.97 2-93 4-34 5-85 6.56 11.73 10.82 In Aq. Sodium Formate. Gms. per Liter. HCOONa. CH 4 OHCOOH. 0.81 3.40 1.63 4-42 4.06 7.II 8.14 IO.44 In Aq. Potassium Formate. Gms. per Liter. HCOOK. 1.03 2.56 In Aq. Sodium Monochlor Acetate. Gms. per Liter. CH 2 ClCOONa. C^OHCOOH. 1.38 2.83 3-43 3-58 6 . 84 4 . 64 13.71 6.17 In Aq. Sodium Butyrate at 26.4. Gms. per Liter. C,H 4 OHCOOH. C,H 7 COONa. CgH^OHCOOI?. 2.265 i 3-3 3-38 2 4.5 4-93 4 6.85 7-13 * 8.1 One liter of I normal aqueous sodium salicylate solution dissolves 4.97 gms. salicylic acid at 25. (Sidgwick, 1910.) SALICYLIC ACID 590 SOLUBILITY OF SALICYLIC ACID IN SALIC YLATE (Hoitsema, Gm. Mols. per Liter. ^OOH 1 " QftOH- COONa. 0.0132 O.OII2 0.017 0.0124 0.113 0.0143 0.226 0.0164 0-344 O.O2O3 0.500 O.O62 1.70 0.095 2. II 0.091 2.19 0.086 3-41 O.oSl 4-23 0.048 4.18 O.O2I 4.12 O. 4.15 Sp. Gr. of Solutions. .OO2 .003 .009 .016 .024 1-034 I. 112 1-137 I.I44 I.2I5 1.263 Cms. per Liter. 259 258 257 AQUEOUS SOLUTIONS OF SODIUM AT 2O.I. Solid Phase. Cs^OHCOOH ( C 6 H 4 OHCOOH.C 6 H 4 OHCOONa ( +C 6 H 4 OHCOOH C 6 H 4 OHCOOH.C 6 H 4 OHCOONa ( C 8 H 4 OHCOOH.C 8 H 4 OHCOONa | +C 6 H 4 OHCOONa QH4OHCOONa C 6 H 4 OH- COOH. QH 4 OH- COONa. 1.823 1-55 I.7I 2.705 17-98 1.97 2.26 2.80 54-74 8.56 270.5 13.11 335 7 12.56 11.88 348.4 542.6 11.19 673 6.63 2.90 o 665.1 665.5 660.3 SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF ACIDS AT 25. (Kendall, 1911.) Gms. per Liter. Gms. per Liter. Acid. * - Acid. C.H.OH- Water alone o 2.257 Formic Acid 230 15 HCOOH 2.370 Acetic Acid 37.52CH 3 COOH 2-335 " 46O 30 " 2.901 " 75-05 " 2.409 Hydrochloric Acid o 653 HC1 1 . 781 " 150. 10 " 2-549 I 302 1.710 u 300.20 " 2.850 A 558 " 677 Formic Acid 2.38 HCOOH 2.114 " 9 117 " 3 649 u 4-59 " 2-035 n 18 235 " .551 tt 11.05 " 2.114 Malonic Acid ? 253 CH 2 (COOH) 2 .051 ft 21.17 " 2-035 10 49 " 944 " 28.76 " 2.049 " 20 84 .880 " 57-53 " 2.066 Methyl Picric Acid 2 28 C 7 H 6 7 N, 2.115 " 115.07 u 2. 121 SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF o NITROBENZOIC Gms. per Liter. O 2.615 7- 202 7.283 o C 6 H 4 - OHCOOH. 2.257 1-974 1.887 1.885 ACID AT 25 AND VICE VERSA. (Kendall, 1911.) Gms. per Liter Solid Phase. ' ~ XT Salicylic Acid +Nitrobenzoic 7.188 7.213 7-233 o CH 4 .OH.- COOH. 2.243 1.873 1.294 Solid Phase. o Nitrobenzoic Acid da of Sat. Sol. SOLUBILITY OF SALICYLIC ACID IN AQUEOUS ALCOHOL AT 25. (Seidell, 1908, 1909, 1910.) Wt. Per cent Gms. C 2 H 5 OH in ^ Sat. Sol. C,H 4 OHCOOH Solvent. per 100 Gms. Sat. Sol. 10 0.984 0.38 2O 0.970 0.80 3 0.959 2.20 40 0.951 5.90 90 SO 0.945 12.20 100 0.919 33-20 Wt. Per cent QHsOH in Solvent. 60 70 80 0-943 0.941 0-937 0.930 0.919 Gms. C 6 H 4 OHCOOH per 100 Gms. Sat. Sol. 18.30 24 28.30 591 SALICYLIC ACID SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL, ISOBUTYL ALCOHOL, DEXTROSE, CANE SUGAR, AND OF LEVULOSE AT 25 AND AT 35. (Hoffmann and Langbeck, 1905.) Cone, of Solvent. C 6 H4OH.COOH Dissolved at 25. Aq. Solvent. Normal- ity. Gms. per Liter. Gm. Mol. Per cent. Gms. per 100 Gms. Sat. Sol. Gm. Mol. Per cent. Gms. per 100 Gms Sat. Sol. CjjHsOH 0.0249 I .146 2 .8966. io- 4 O.222 4- 2044. io- 4 0.322 0.0560 2 578 2 .9150 tt 0.223 4- 2348 11 0.324 cc 0.1747 8 .04 2 .9901 cc O.229 . tt 0.2399 II 05 . . . 4- 434i n 0-339 tt 1.03 47 4 3 5279 ct O.27O 5- 2816 n 0.404 cc 1.638 75 44 3 9253 Cl 0.300 C^OH (iso) 0.020 i .496 2 .909 cc 0.223 4- 229 Cl 0.324 cc O.O5I 3 74 2 955 cc O.226 4- 289 n 0.329 It 0. 100 7 .48 3 -033 ct 0.232 4- 435 " 0-339 cc 0.521 38 .60 3 .718 Cl 0.285 5- 624 tt 0.431 C 6 H 12 6 0.02 3 .6 2 .886 Cl O.22I 4- 184 n 0.321 tt O.IO 18 2 .898 Cl 0.222 4- 202 1C 0.322 tt 0.50 89 .6 2 954 1C O.226 4- 263 ct 0.326 tt I 180 3 .015 11 0.231 4- 360 11 0-334 Ci 2 H 22 On O.O2 6 .88 2 .902 1C 0.221 4- 206 Cl 0.322 tt O.IO 34 97 2 .964 cc o. 227 4- 287 11 0.328 tt 0.50 172 3 239 cc 0.248 4- 697 11 0.360 n I.IO 376 3 3 -633 1C 0.278 5- 236 11 O.40I CeH 12 6 O.02 3 .6 2 .888 Cl O.22I . . . . cc 0.06 IO .8 2 895 1C O.22I . . . tt 0.25 45 2 944 Cl 0.225 . SOLUBILITY OF SALICYLIC ACID IN ALCOHOLS, IN ETHER AND IN ACETONE. (Timofeiew, 1891; at 15, Bourgoin, 1878; at 23, Walker and Wood, 1898.) . Solvent. CH 3 OH CH 3 OH C 2 H 5 OH C 2 H 5 OH C 2 H 5 OH C 2 H 5 OH 90% Gms. C 6 H4OHCOOH t f per 100 Gms. Solvent. C 3 H 7 OH(w) C 3 H 7 OH(n) (CH 3 ) 2 (CH 3 ) 2 (CH 3 ) 2 CO Gms. C 6 H 4 OHCOOH t_ per loo Gms. - 3 + 21 3 + 15 21 15 Solvent. 40.67 62.48 36.12 53-53 42.09 Solution. 28.91 38.46 26.29 33-17 34.87 29.62 - 3 + 21 15 23 Solvent. 26. 12 37.69 50-47 Solution. 2O.7I 27.36' 33-55 23-4* 31-3* Gms. per 100 cc. sat. sol. instead of per 100 gms. sat. sol. 100 gms. sat. solution in methyl alcohol contain 39.87 gms. salicylic acid at 15. (Savorro, 1914.) SOLUBILITY OF SALICYLIC ACID IN MIXTURES OF ACETONE AND BENZENE AT 25. (Marden and Dover, 1917.) Gms. per 100 Gms. Mixed Solvent. Gms. per 100 Gms. Mixed Solvent. Gms. per too Gms. Mixed Solvent. Acetone. IOO 00 80 70 Salicylic Acid. 55 4? t ' per 100 Gms. SoL Sat. Sol. bo1 ' Sat. Sol. Acetone 30-31 ... 90 .99 Amyl Alcohol 25 0.869 20.44 Benzene 30-31 1.148 88.57 Acetic Acid (99. 5%) 21.5 1.143 63.24 Amyl Acetate 30-3 1 1.136 85.29 Xylene 32.5 ... 87.14+ Aniline 30-31 ... very soluble Toluene 25 1.128 83.62 100 gms. pyridine dissolve 381 gms. salol at 2O-25 (Dehn, 1917). The solu- tion in aqueous 50 per cent pyridine separates into two layers. SOLIDIFICATION TEMPERATURES (Solubility, see footnote, p. i) FOR MIXTURES OF: Salol and Thymol. (Bellucci, 1912.) Salol and Urethan. (Bellucci, 1912, 1913.) AO t Gms. Salol c r!rf P er I0 Gms. Sohdif. V Mixture f o e Gms. Salol Snlirlif per too Gms. Solldlf - Mixture. +o Gms. Salol Solidif per \ Gms> Mixture. tof Solidif. Gms. Salol Mixture. 42 100 23 So 42 IOO 36. 5 50 34 26 90 80 29 34-5 40 30 36 29 Eutec. 00 86 39 41-5 40 30 18 70 40 20 31 80 44 2O J 3 Eutec. 66 46 10 30 70 47 IO 17 5 60 Si o 3*4 60 48. 5 The Eutec . for sa lol + cam phor is at -1-6 and contains 56% salol KBellucci, The Eutec. for salol 4-monobromcamphorisat2iand contains 6o%salol. (1912, 13.) Solidification temperatures for Salol + Sulfonal and for Salol + Naphthol are given by Bianchini (1914). SANTONIN Ci B Hi 8 O 3 . SOLUBILITY IN SEVERAL SOLVENTS. f. rGmo^ Authorit ^ Water 20-25 0.02+ (Dehn, 1917.) Alcohol (90%) 15 about 2. 3 (Greenish and Smith, 1903.) Trichlor Ethylene 15 2.46 (Wester and Bruins, 1914.) Pyridine 20-25 12.72 (Dehn, 1917.) Aq. 50% Pyridine 20-25 12.35 F.-pt. data for mixtures of stereoisomeric santonin salts are given by Malvino and Manino (1908). SAMARIUM CHLORIDE 594 SAMARIUM CHLORIDE SaCl 3 . 100 gms. pyridine dissolve 6.38 gms. SaCl 3 at 15. (Matignon, 1906, 1909.) SAMARIUM GLYCOLATE Sa(C 2 H 3 O 3 ) ? 100 gms. H 2 O dissolve 0.6373 S m - Sa(C 2 h 3 O 3 )3 at 20. (Jantsch and Griinkraut, 1912-13.) SAMARIUM Double NITRATES. SOLUBILITY IN CONC. HNO 3 OF dip = 1.325 AT 16. (Jantsch, 1912.) Samarium Magnesium Nitrate [Sa(N03)e]Mg3 . 24 H 2 O 24 . 55 Nickel " " Ni 3 " 29.11 Cobalt " " Co 3 " 34.27 Zinc " " Zn 3 " 36.47 Manganese " Mn 3 " 50.04 SAMARIUM OXALATE Sa 2 (C 2 O 4 ) 3 .ioH 2 O. One liter H 2 O dissolves 0.00054 S m - Sa 2 (C 2 O 4 ) 3 at 25, determined by the electrolytic Conductivity method. (Rimbach and Schubert, 1909-) SOLUBILITY OF SAMARIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (Wirth, 1912.) ^THSO^ ^i^Gmf. 3 Solid Phase. N A r ^y of pTr i^Gmf. 3 Solid Phase. Aq.H 2 S0 4 . *sat. Sol. Aq. H 2 SO 4 . *. fc^ I O.IOI5 Sa 2 (C 2 O 4 ) 3 .ioH 2 2.8 0.3886 Sa 2 (C 2 O 4 ) 3 .ioH 2 O 1.445 0.1804 " 4- 3 2 0.7008 1.93 0.2254 " 6.175 1.072 SAMARIUM Dimethyl PHOSPHATE Sa 2 [(CH 3 ) 2 PO 4 ] 6 . 100 gms. H 2 O dissolve 35.2 gms. Sa 2 [(CH 3 ) 2 PO 4 ] 6 at 25 and about 10.8 gms. at 95- (Morgan and James, 1914.) SAMARIUM SULFATE Sa 2 (SO 4 ) 3 . SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE AT 25.* (Keyes and James, 1914.) Clmc rwvr Tfv\ rime TT-O Cirrtc r\**r T/V\ Clmc TT_O Solid Phase. +(NH 4 ) 2 SO 4 (NH 4 ) 2 S0 4 . Sa 2 (S0 4 ) 3 . ouiiu .rjiase. (NH 4 ) 2 S0 4 . Sa 2 (S0 4 ) 3 . 0.03 2.1 802(8003 32.5 0.9 0.8 2 " 46.3 I i .1 2.8 " +1.1.7 77-5 i-3 1.9 i-5 1.1.7 77-3 o-3 7-4 0.8 76.8 0.6 18.8 0.8 1.1.7 =Sa 2 (S0 4 ) 3 .(NH 4 ) 2 S0 4 .7H 2 0. SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 25.* (Keyes and James, 1914.) Gms. per too Gms. H 2 O. Gms. per 100 Gms. H 2 O. N^SO.. sa.CSO.)..' SO " dPhaSe - ' Na,SO.. ' Sa,(SO.).; " 2 . 05 Sa 2 (SO 4 ), 10.51 0.012 2 Sa 2 (SO 4 ) 3 .3Na 2 SO 4 .6H 2 O O.I 2 " 14.71 0.010 0.5 O.I I 2 Sa 2 (S0 4 ),.3Na 2 SO 4 .6H 2 O 2O.O2 O.OI2 1.9 0.03 " 23.68 0.018 " 6.44 0.016 " 27.40 o.on " * The mixtures were rotated at constant temperature for 5 months. loo cc. anhydrous hydrazine dissolve I gm. Sa 2 (SO 4 ) 3 at room temp. (Welsh and Broderson, 1915.) 595 SAMARIUM SULFONATES SAMARIUM SULFONATES SOLUBILITY IN WATER. Gm. An- Salt. Formula. t. J^^G^ 1 Authority. H 2 0. Samarium m Nitro- benzene Sulfonate SatCjILXNO^SOskyHzO 15 50.9 (Holmberg, 1907.) Samarium Bromonitro- benzene Sulphonate Sa[C 6 H 3 (i)Br(4)N0 2 (2)SO 3 ]3.ioH 2 O 25 7.84 (Katz and James, 1913.) SCANDIUM OXALATE Sc 2 (C 2 O 4 ) 3 .5H 2 O. SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM OXALATE AND OF HYDRO- CHLORIC ACID. In Aq. Ammonia Oxalate at 25. In Aq. Hydrochloric Acid at 25 (Wirth, 1914.) , and at 50. (Meyer, 1914.) Gms. per 100 Gms. Gms. Sc 2 (C 2 O 4 ) 3 per Sat. Sol. Solid Phase. No A rms i 1 & o 100 Gms. Sat. Sol. -QOa" Sc 2 3 . 'Atas . At S oV 1.624 0.3019 Sc 2 (C 2 O 4 )s SH 2 O O.I 0.0299 0.0420 2.4 O.40I2 " 0.5 0.0650 0.0870 4.478 0.7108 " +(NH 4 ) 2 C 2 O 4 I O.IO20 O.I435 2 0.1716 0.2556 5 0.4170 0.6533 SOLUBILITY IN AQUEOUS SOLUTIONS OF SULFURIC ACID. Results at 25. (Wirth, 1914.) Results at 25 and at 50. (Meyer, 1914.) Normality of Aq. H 2 SO 4 . per zoo Gms. Sat. Sol. Solid Phase. Nngjgjof Gms. Sc 2 (C ' 2 O 4 ) 3 per 100 Gms. Sat. Sol. At 25. At 50. I 0.1148 Sc,(CA)a.5H*) O.I 0.0385 0.0562 2.1 0.2573 0-5 0.0997 0.1481 2-43 0.2904 I 0.1663 0.2493 3-57 0.4204 2 0.3176 0.4429 4.86 0.5834 5 0.7761 I.I280 100 gms. sat. solution of scandium oxalate in 2.43 n H 2 SO 4 + 0.5 n oxalic acid contain 0.0284 g m - Sc 2 O 3 at 25. (Wirth, 1914.) SCANDIUM SULFATE Sc 2 (SO 4 ) 3 .5H 2 O. SOLUBILITY IN WATER AND IN AQUEOUS SULFURIC ACID AT 25. (Wirth, 1914.) Gms. Sc 2 (SO 4 ) 3 Gms. Sc 2 (SO4>3 Solvent. per 100 Gms. Solid Phase. Solvent. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. Water 28.52 Sc 2 (SO4) 3 .sH 2 o 4.86wH 2 S0 4 8.363 Sc 2 (SO4) 3 .sH 2 o o.5wH 2 S0 4 29.29 " 9.73ttH 2 SO 4 1.315 i wH 2 SO 4 19.87 22.35nH 2 SO 4 0.484 Sc^SO^.sHzO Scandium sulfuric acid double sulfate, Sc 2 (SO4)3.3H 2 SO 4 . 100 gms. sat. sol. in cone. H 2 SO 4 of d = 1.6 contain 0.8616 gm. of the double salt. (Wirth, 1914.) SEBACIC ACID (CH 2 ) 8 (COOH) 2 . 100 gms. 95% formic acid dissolve 1.05 gm. sebacic acid at 19. (Aschan, 1913.) DISTRIBUTION OF SEBACIC ACID BETWEEN WATER AND ETHER AT 25. (Chandler, 1908.) Mol. Concentration of Sebacic Acid in: Ratio. Aq. Layer. Ether Layer. O.00062 O.O29I O.O2I3 O.OOO58 O.O272 O.O2I3 0.00047 0.0213 0.0221 0.00036 0.0155 0.0232 SELENIUM 596 SELENIUM Se. SOLUBILITY IN CARBON BISULFIDE. (Marc, 1906.) 100 cc. CSj dissolve 0.065 gm. amorphous Se at room temperature. Se which is heated to 180 for 6-7 hours is insoluble in CSa. Se crystallized from the melt at 200 is insoluble in CS-j. Se heated once quickly to 140 is very slightly soluble in CSa. 100 cc. CSz dissolve at the boiling-point 3-3.4 mgs. Se which has been heated to 140 for i hr. 100 cc. CSj dissolve at the boiling-point 2 mgs. Se which has been heated to 195 for 2 days. (Marc, 1907.) ,100 gms. methylene iodide (CH 2 I 2 ) dissolve 1.3 gms. Se at 12. (Retgers, 1893.) SOLUBILITY OF Mix CRYSTALS OF SELENIUM AND SULFUR IN CARBON DISULFIDE AT 25. (Ringer, 1902.) Mols. per 100 Mols. Solution. Mol.Per Mols. per 100 Mols. Solution. Mol. Per , - - *- - - Cent Se in /- - -* - - - . Cent Se in CSj. Se. S. Crystals. CS 2- Se - S. Crystals. 43-i o . 56.9 o 58.24 2.35 39.41 55.67 45-i o-93 53-97 3-54 64.66 1.58 33.76 68.38 44.98 1.03 53.99 3.81 8r.ii 2.4 16.49 58.7 47.84 2.07 50.59 8.69 88.41 2.17 9.42 61.5 49.54 2.19 48.27 16.4* 91-38 1.68 6.94 65 47.62 2.16 50.22 14.2* 99-5 1 -49 o ioof 46.12 1.485 52.39 2 9-35* 99-14 0.86 o iooj * Mix crystals homogeneous in all except these solutions. t = Solubility of hexagonal selenium. t = Solubility of amorphous selenium. Fusion-point curves for mixtures of selenium and other metals are given by Pelabon (1909). Results for Se + Te are given by Pellini and Vio (1906). Diohenyl SELENIUM BROMIDE (C 6 H 6 ) 2 SeBr 2 . "RECIPROCAL SOLUBILITY OF DIPHENYL SELENIUM BROMIDE AND DIPHENYL TELLURIUM BROMIDE IN WATER AT 25. (Pellini, igo6a.) Gms. per 1000 cc. Sat. SoL Mo1 - % (C 6 H 6 ) r Qms. per 1000 cc. Sat. Sol. Mol. '(C,H 6 ) 2 TeBr 2 . * (C 6 H 5 ) 2 SeBr 2 .' bC Mixture^' (QH^TeBr,. " (C 6 H 5 ) 2 SeBr 2 . * 18.614 o 10.224 14.608 44-89 17.400 1.448 4.91 7.544 19.876 51.18 16.152 4-172 10.51 6.780 18.984 94- 2 5 15.030 6.210 18.21 3-184 17.392 95-82 13.320 8.148 24.98 o 18.984 100 11.940 11.420 34-94 SELENIC ACID H 2 SeO 4 SOLUBILITY IN WATER, DETERMINED BY FREEZING-POINT METHOD. (Kremann and Hofmeier, 1908.) Gms. H 2 SeO 4 Gms. H 2 SeO 4 t. per 100 Gms. Solid Phase. t. per 100 Gms. Solid Phase. Sat. Sol. Sat. Sol. o o Ice 55 71.5 H 2 SeO 4 . 4 H 2 O 10 21 20 . 30 -30 36 40 40 -50 42.5 65 Eutec. 74 " +H 2 SeO 4 .H,0 50 75.5 -20 79 o 81 +20 85 60 45 26 m. pt. 88 80 48 ' " 20 91 " -95 Eutec. 50 +H z Se0 4 . 4 H 2 16 Eutec. 91.5 " +H f SeO 4 -80 52 H 2 Se0 4 . 4 H 2 30 93 H 2 Se0 4 -70 54 " 40 94.5 -60 58 " 50 96.5 51 m. pt. 67 " 60 loo " 597 SELENIOUS ACID SELENIOUS ACID H 2 SeO 3 . SOLUBILITY IN WATER. (Etard, 1894.) IO O + 10 20 Cms. H 2 SeO 3 per 100 Cms. Solution. 42.2 47-4 55 62.5 25 30 40 50 Cms. H 2 SeO 3 per 100 Cms. Solution. 67 70.2 77-5 79.2 60 70 80 90 Cms. H 2 SeO 3 per 100 Cms. Solution. 79-3 79-3 79-3 79-4 SELENIOUS ANHYDRIDE (Selenium Dioxide) SeO 2 . SOLUBILITY IN SEVERAL SOLVENTS. (de Coninck, 1906.) Solvent. Water Ethyl Alcohol (93%) Methyl Alcohol Acetone Acetic Acid (Glacial) SILICA Si0 2 . SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS. (Lenher and Merrill, 1917.) . A platinum bottle and stirrer were used. The silica was prepared by adding silicon tetrachloride to water. The gel thus formed was washed until free of HC1 and dried between filter papers. Conductivity water was used and equi- librium was reached within 24 hours. The saturated solution was evaporated to dryness in a platinum dish. The residue was weighed and the silica volatil- ized with HF1 + H 2 SO 4 . The difference was considered to show "the amount of silica which had changed from an unfiiterable to a filterable state of division." t. 11-3-15 Cms. SeO 2 per 100 cc. Solvent. 38.5 14.1 ii. 8 10.2 6.66 15-3 4-35 12.9 i. ii At 25. Per cent HC1. Gm. SiO 2 per 50 cc. Sol. O.OOSo 3 6-3 0.00665 o . 00465 II. I 18.9 25.1 34-6 0.00245 0.0008 O.OOO6 0.0003 Results for Aq. HC1: At 90. Results for Aq. H 2 SO 4 : At 90. Per cent HC1. O 2 3 5-4 7 .6 10 13.6 18.6 Gm. SiO 2 per 50 cc. Sol. 0.0213 0.0198 0.0186 0.0152 0.0115 0.0091 0.0056 0.0029 Per cent H 2 S0 4 . Gm. SiO 2 per 50 cc. Sol. 3-9 0.02II 7-3 0.0186 15.6 O.OII2 25.4 0.0058 36 0.0034 46.9 0.0013 55.6 O.OOO5 71 0.0004 At 90, a slow current of CO 2 through the solutions did not affect the results. Ignited silica reaches equilibrium very slowly as compared with silica gel. The true solubility of ignited silica is probably the same as that of gelatinous silica. SOLUBILITY OF SILICA IN MELTED CALCIUM CHLORIDE. (Arndt and Lowenstein, 1909.) 800 850 900 950 Cms. SiO 2 per 100 Gms. Sat. Solution. 2-5 3-8 5-4 7.6 SILICON Si 598 SOLUBILITY IN LEAD, IN ZINC AND IN SILVER. (Moissan and Siemens, 1904.) In Lead. In Zinc. In Silver. j.o Gm. Si per ^ Gm. Si per ^ Gm. Si per ioo Gms. ioo Gms Lead. ioo Gms. Zinc. Silver. 1250 0.024 600 0.06 970 9.22(58.02) 1330 O.O7O 650 O.I5 H5O 14.89(27.66) 1400 0.150 730 0.57 1250 19.26 (19) 1450 0.210 800 0.92 1470 41.46(16) 1550 0.780 850 1.62 The silicon which crystallized from the saturated solution in silver was found to be incompletely soluble in HF. The figures in parentheses show the per- centage soluble in HF in each case. Freezing-point data for mixtures of silicon tetraphenyl and tin tetraphenyl are given by Pascal (1912). SILICON IODIDES Si 2 I 6 , SiI 4 . SOLUBILITY IN CARBON DISULFIDE. (Friedel and Lachburg, 1869; Friedel, 1869.) IOO gms. CSa dissolve 19 gms. Si 2 Ie at 19. IOO gms. CSa dissolve 26 gms. Si 2 I 6 at 27. ioo gms. CSa dissolve 2.2 gms. SiI 4 at 27. SILICO TUNGSTIC ACID H 8 SiWi 2 O 42 . ioo gms. H 2 O dissolve 961.5 crystallized silico tungstic acid at 18, and the solution has Sp. Gr. 2.843. SILVER Ag. For equilibrium between metallic Silver and mercury (Silver amalgam) and mixed aqueous solutions of their nitrates, determined for mixtures of the two metals in all proportions, see Reinders, 1906. SILVER ACETATE CH 3 COOAg. SOLUBILITY IN WATER. (Nernst, 1889; Arrhenius, 1893; Goldschmidt, 1898; Nauman and Rucker, 1905; Raupenstrauch, 1885; Wright and Thompson, 1884, 1885.) t o Gms.Ag(C 2 H 3 O 2 ) t o Gms. Ag(C 2 H 3 O 2 ) t e Gms. Ag(C 2 H 3 O 2 ) per Liter. per Liter. per Liter. O 7-22 25 II. 2 50 16.4 IO 8.75 30 12. I 00 18.9 15 9.4 40 14- r 7 2I - 8 20 10.4 80 25.2 SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF: Silver Nitrate. Sodium Acetate. Gms. CH 3 COOAg per Liter at: rnJrOON Gms - CH 3 COOHg per Liter at: per g Liter. 16 (Nernst). 'i 9 .8(Arrhenius). per Liter * '16 (N.,N.andR.). i8.6(A.). ' o 10.05 9-^5 o 10.05 9-9 5 8.2 7.9 5 6.3 6.6 10 7 .o 6.6 10 4.6 4.9 15 6 -4 5-5 J 5 3- 8 4-i 20 5.7 4-5 20 3-3 3-5 30 4.4 ... 30 ... 2.8 40 3.2 ... 40 ... 2.4 599 SILVER ACETATE SOLUBILITY OF SILVER ACETATE IN AQUEOUS SALT SOLUTIONS AT 25. (jaques, 1910.) Aq. Solution of; Water alone Cadmium Acetate ii ii Lead Acetate o ii. 08 i-i5 10.39 5.76 8.10 11.52 6.71 57-6 4-33 115.2 3-95 1.63 10.69 8.13 9-45 16.26 8-34 81.3 7.26 162.6 5-99 Aq. Solution of: Potassium Acetate Silver Nitrate Sodium Acetate Gms. Salt per Liter. 2.22 Gms. AgCjHA per Liter. 9.60 22.2 4-43 III 222 2.41 2.18 2.77 9-93 5-55 9 II. 10 22.21 7.41 5-8i 1.97 9.27 19.7 98.5 4.21 2-33 197 2.07 SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25. (Hill and Simmons, 1909.) Normality of Aq. HNO 3 . Per cent HNO 3 in Solvent. S 4* of at. Sol. Gms. AgQHsOj per Liter Sat. Sol. ] [.005 11.13 0.50 3.096 ] [.072 85-3I I 6.128 ] .I4O 161.9 2 11.757 -a .267 307-4 4.02 22.386 3 .470 549-3 5-03 27.328 .561 656 6.44 r _ -u_ _-i-.t-Mr.i- t A _./ .670 792.2 Results are also given for the solubility of AgC 2 H 3 O2+AgNO3 in Aq. HNO 3 at 25. SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF SEVERAL COMPOUNDS AT 25. (Armstrong and Eyre, 1913.) Gms. Gms. Aqueous Solution of: wuiiipouuu per 1000 Gms. rtg^ 2 n 3 ^f 2 per 1000 Gms. Aqueous Solution of: H 2 0. Sat. Sol. II. 08 Propyl Alcohol II 10.13 II 8.92 Glycerol 33 9.16 Glycol 66.4 7-55 u Water Acetaldehyde Paraldehyde ii Isobutyl Alcohol SILVER MonochlorACETATE CH 2 ClCOOAg. One liter aqueous solution contains 12.97 gms. CHjClCOOAgat 16.9. (Arrhenius/93.) Gms. Gms. Compound per looo Gms. per 1000 Gms. H 2 0. Sat. Sol. 15 9.88 60 8.03 9.21 8.66 15-5 10.86 62.1 8.44 SOLUBILITY OF SILVER MONO CHLOR ACETATE AT 16.9 AQUEOUS SOLUTIONS OF: IN Silver Nitrate. Sodium Chlor Acetate. Gms. AgNOa per Liter. Gms. CH 2 ClCOOAg per Liter. Gms. CH 2 ClCOONa per Liter. Gms. CH 2 ClCOOAg per Liter. 0-0 9 .6 17.0 12-97 10.05 7-55 O-O 3 .88 7-77 15-53 12.97 10.05 8.16 6. 02 31.07 58.26 4.19 3.26 SILVER ACETATE 600 SOLUBILITY OF SILVER MONOCHLORO ACETATE IN NITRIC ACID AT 25. (Hill and Simmons, 1909.) Normality Gms. HN0 3 Gms. of Aq. HN0 3 . per 100 Gms. Solvent. Sa* Sol. AgC 2 H 2 C10 2 per Liter. .0095 I5.I8 0.25 1.564 .0426 50.33 0.50 3.096 .0791 91.83 I 6.128 1473 167.3 2 n-757 .2716 310.8 4 22.277 4749 549-1 5 27.185 5673 659.2 SILVER Dipropyl ACETATE AgC 8 H 15 O 2 . 100 gms. H 2 O dissolve 0.123 gm. AgC 8 Hi 5 2 at 11.7, and 0.190 gm. at 72. (Fiirth, 1888.) SILVER Methyl Ethyl ACETATE Ag.CH 3 .CH 2 CH(CH 3 )COO. SILVER Diethyl ACETATE Ag[(C 2 H 5 ) 2 CH.COO]. SILVER Trimethyl ACETATE Ag(CH 3 ) 3 CCOO.* SOLUBILITY OF EACH IN WATER. (Sedlitzky, 1887; Keppish, 1888; Stiassny, 1891.) Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. I . Ag.C 5 H 9 2 . AgC.HuOj. AgC 5 H 9 2 .* i . AgC B H 9 2 . AgC.HuO,. AgC 5 H 9 2 .* I .112 0.402 1. 10 50 I. 602 0-536 i-47 10 I .126 0.413 I-I5 60 1.827 0.585 i-57 20 I.I82 0.432 1.22 70 2.093 0.643 1.68 30 1.280 0.458 1.22 80 2.402 i. 80 40 I .420 0.494 1-37 SILVER ARSENATE Ag 3 AsO 4 . One liter H 2 O dissolves 0.0085 gm.Ag 3 AsO4 at 20. See Note, p. 608. (Whitby, 1910.) SILVER ARSENITE Ag 3 AsO 3 . One liter H 2 O dissolves o.oi 15 gm. Ag 3 AsO 3 at 20. See Note, p. 608. (Whitby, 1910.) SILVER BENZOATE C 6 H 6 COOAg. One liter of aqueous solution contains 1.763 gms. C 6 H 5 COOAg at 14.5, and 2.607 gms. at 25. (Holleman, 1893; Noyes and Schwartz, 1898.) SOLUBILITY OF SILVER BENZOATE AT 25 IN AQUEOUS SOLUTIONS OF: Gms. per Liter. Nitric Acid (N. and S.). Gms. Mols. per Liter. Gms. per Liter. Chloracetic Aci< Gms. Mols. per Liter. HNO 3 . COOAg. HNO 3 . CH 6 COOAg. C1COOH. C 6 H 5 COOAg. .01144 O 2 .607 O .01144 -004435 01395 O .280 3-195 o .00394 .01385 .00887 O .01698 O 559 3.889 ,00787 O .Ol6l2 O .00892 .01715 O .562 3.926 o, 01574 .02093 O .01774 .02324 X .118 5-321 O .02674 .03071 I .686 7.031 CH 2 C 6 H 6 C1COOH. COOA 5 g. o 2.607 0.371 3.172 0.744 3.691 1.487 4.792 One liter of cold alcohol dissolves 0.169 gm. C 6 H 6 COOAg; one liter of boiling alcohol dissolves 0.465 gm. (Liebermann, 1902.) SILVER BORATE AgBO 2 . One liter of aqueous solution contains about 9.05 gms. AgBO 2 at 25. (Abegg and Cox, 1903.) Normality of Aq. Acetic Acid. o . 0498 0.0997 0.1995 Gms. AgBrO 3 per Liter. 1.9429 1-9379 1.9206 Normality of Aq. Acetic Acid. 0.4988 0-9975 1.8721 6oi SILVER BROMATE SILVER BROMATE AgBrO 3 . SOLUBILITY IN WATER. t. Cms. AgBrO 3 per Liter. Authority. 20 I . 586 (BSttger, 1903.) 24.5 I.gil (Noyes, 1900.) 25 1.68 (Longi, 1883.) 27 I . 71 (Whitby, 1910, see note, p. 608.) 25 1-949 (Hill, 1917.) SOLUBILITY OF SILVER BROMATE IN AQUEOUS ACETIC ACID AT 25. (Hill, 1917-) Cms. AgBrO 3 per Liter. 1.863 I.80I3 1.6178 SOLUBILITY OF SILVER BROMATE IN AQUEOUS AMMONIA AND NITRIC ACID SOLUTIONS AT 25. (Longi, 1883.) Gms. AgBrO 3 per Solvent. , -T-5 iI _, 1000 cc. Sol. 1000 Gms. Sol. Ammonia Sp. Gr. 0.998 = 5% 35.10 35.54 Ammonia Sp. Gr. 0.96 = 10% 443.6 462.5 Nitric Acid Sp. Gr. 1.21 =35% 3.81 3.12 SOLUBILITY OF SILVER BROMATE AT 24.5 IN AQUEOUS SOLUTIONS OF: Silver Nitrate (Noyes). Potassium Bromate (N.). Normal ^Content. Gms. per Liter. Normal Content. Gms. per Liter. AgN0 3 . AgBr0 3 ." 'AgNOs- AgBrO 3 . KBrO 3 . AgBrO 3 ". KBrO 3 . AgBrOi o.o 0-0081 o.o 1.911 o.o 0.0081 o.o 1.911 0.0085 0.0051 1-445 I - 20 3 0.0085 0.00519 1-42 1-225 0.0346 0.0022 5.882 0.510 0.0346 0.00227 5.78 0.536 SILVER BROMIDE AgBr. SOLUBILITY IN WATER. t . Gms. AgBr per Liter. Authority. 2O O -000084 (Bottger Z. physik. Ch. 46, 602, '03.) 25 O .OOOI37 (Abegg and Cox Z. physik. Ch. 46, u, '03.* IOO O OO3 70 (Bottger Z. physik. Ch. 56, 93, '06.) (See alsoHolleman Z. physik. Ch. 12, 129, '93; Kohlrausch Ibid. 50, 365, '05.) SOLUBILITY OF SILVER BROMIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi Gazz. chim. ital. 13, 87, '83; at 80, Pohl Sitzber. Akad. Wiss. Wien, 41, 267, '60.) Gms. AgBr at 12 per Gms. AgBr at 80 pet Solvent. 1000 cc. 1000 Gms. IO 1 Gms - Solvent. Solvent. Solvent. Ammonia Sp. Gr. 0.998=5% 0.114 0.114 ... Ammonia Sp. Gr. 0.96 =10% 3-33-4-0 3.47 Ammonia Sp. Gr. 0.986 ... 0.51*1.0! * Dried AgBr. t Freshly pptd. SILVER BROMIDE 602 SOLUBILITY OF SILVER Results at 15. (Bodlander, 1892.) BROMIDE IN AQUEOUS AMMONIA SOLUTIONS. Results at 25. Results at 25. (Bodlander and Fittig, 1901-02.) (Whitney and Melcher, 1903.) <*lfi.5 Of Sat. Sol. Cms. Mols. per Liter. Gms. Mols. per roc o Gms. H 2 O. G oncentrat ion per Liter. 'NH 3 . Ag 2 Br 2 . NH 3 . AgBr. G. Mols. NH 3 . G . Atoms Ag. 0.9932 1.085 .0011 .1932 .OOO6O .0764 .000276 0-9853 2.365 o .0031 o .3849 o .00120 115 O .000391 0.9793 3.410 .0050 7573 .00223 .268 O .000941 O.972O 4-590 .0074 I 965 .00692 o 273 .00107 O-Q^SS 5-725 .OIOI 3 .024 o .01163 o 450 .00170 5.244 0.02443 0.497 0.00159 SOLUBILITY OF SILVER BROMIDE IN Ammonia at o. (Jarry, 1899.) Grams per TOO cc. Solution. AQUEOUS SOLUTIONS OF: Monomethyl Amine at 11.5. (Jarry.) Gms. per 100 cc. Solution. NHsGas. AgBr. NH 3 Gas. AgBr. 3-07 O.oSo 26.27 1.067 4.88 0-096 31.26 1.568 6.69 O.I72 33-89 I. 9 87 8.29 0.212 36-52 2 .669 11.51 c-349 37-22 2.888 I5-32 o-557 37-70 2.930 18.09 0.722 39.26 2.892 19-53 0.741 39-95 2.852 NH 2 CH 3 . AgBr. II .01 O.O7 13 . 17 O.I2 J 5 I 3 0.16 17.97 32-58 35-62 0.28 o-55 o-73 43 " 48.44 1.27 2.89 SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF METHYL AMINE AND OF ETHYL AMINE AT 25. (Bodlander and Eberlein, 1903; Wuth, 1902.) In Methyl Amine. In Ethyl Amine. Mols. per Liter. Mols. per Liter. Total Base. AgBr. Free Base.* 1.017 0.0025 i. 012 (B.&E.) 0.508 0.0013 0.505 (B.&E.) 0.200 0.203 0.00049 0.202 (B.&E., W.) o.ioo 0.102 0.00026 o.io2(B.&E.) 0.103 0.00026 o.io2(B.&E.) 0.0947 0.00041 ... (W.) 0.051 0.00012 0.051 (B.&E.) 0.04 0.00034 ... (W.) O.O2 O.OOO26 ... (W.) Total Base. AgBr. Free Base.* 0.483 0.00231 0.478 (B.&E.) 0.00097 0.198 " 0.000475 0.099 " 0.000711 . . . (W.) 0.06572 0.000258 ... " 0.05512 0.000193 " 0.03942 0.000137 " 0.01272 0.0000867 * The free base is found by subtracting from the total base two mols. of base for each atom of dissolved Ag. SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF MERCURIC NITRATE AT 25. (Morse, 1902.) Mols. HgNO r Mols. AgBr Gms. AgBr (HNOs) per Liter. per Liter. per Liter. I 0.03660 6.878 o.io 0.00873 1.640 o . 05 o . 0063.9 T 2O Since HNO 3 was present in all cases, its influence on the solubility was ex- amined. It was found that no appreciable differences were obtained with con- centrations varying between o.i and 2 normal HNOa. Both crystallized and amorphous silver bromide gave identical results. Mols. HgNO r (HN0 3 ) per Liter. 0.025 O.OI25 O.OIOO Mols. AgBr per Liter. 0.00459 0.00329 o . 00306 Gms. AgBr per Liter. 0.863 0.618 0-575 603 SILVER BROMIDE SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Mees and Piper, 1912.) Aqueous Solution. t. Gms. AgBr per Liter. Aq. i per cent Sodium Thiosulf ate ? 2 . 06 " Ammonium Thiocyanate 0.03 " " Ammonium Carbonate " 0.004 " " Sodium Sulfate " 0.055 " " Thiocarbamide " 1.49 SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Valenta, 1894; see also Cohn, 1895.) Gms.AgBr per 100 Gms.Aq. Solution of Concentration: Salt Solution. t. / * > 1:100. 5:100. 10: 100. 15:100. 20:100. Sodium Thio Sulphate 20 0.35 1.90 3.50 4.20 5.80 " " Calc. by Cohn 20 0.50 2.40 4.59 6.58 8.40 Sodium Sulphite 25 ... ... 0.04 ... 0.08 Potassium Cyanide 25 ... 6.55 " Calc. by Cohn 25 ... 6.85 Potassium Sulphocyanide 25 0.73 Ammonium Sulphocyanide 20 ... 0.21 2.04 5-30 Calcium Sulphocyanide 25 0.53 Barium Sulphocyanide 25 0.35 Aluminum Sulphocyanide 25 ... ... 4.50 Thio Carbamide 25 1.87 Thio Cyanime 25 0.08 0.35 0.72 NOTE. Cohn shows that the lower results obtained by Valenta are due to the excess of solid AgBr used and the consequent formation of the less soluble di salt, 3(AgS2O 3 Na) 2 , instead of the more soluble tri salt, (AgS^OsNa^NazSzOs. 100 cc. H 2 O containing 10 per cent of normal mercuric acetate, Hg(C 2 H 3 O 2 )2-h Aq. f dissolve 0.0122 gm. AgBr at 20. 100 gms. NaCl in cone. aq. solution dissolve 0.474 g- AgBr at 15. 100 gms. NaCl in 21 per cent solution dissolve 0.182 gm. AgBr at 15. 100 gms. KBr in cone, solution dissolve 3.019 gms. AgBr at 15. 95 gms. NaCl + 10 gms. KBr in cone. aq. solution dissolve 0.075 gm. AgBr at 15. (Schierholz, 1890.) SOLUBILITY OF SILVER BROMIDE IN AQUEOUS POTASSIUM BROMIDE AT 25. (Hellwig, 1900.) Mols. KBr per Liter 2.76 3.68 4.18 4.44 4.864 Gms. KBr per Liter 2.20 7.50 13.50 17 .95 26.44 SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM SULFITE. Results at Room Temperature (?). Results at 25. (Mees and Piper, 1912.) (Luther and Leubner, i9i2a.) Gms. per Liter. Gms. per Liter. Gms. Formula Weights per Liter. Na 2 SO 3 . 0.08 0.17 0.30 o-59 1-13 2.08 AgBr. o . 000746 O . OO2 19 0.00393 o . 00448 O.OO865 0.01585 Na^Oa. 4.85 9-47 I7-65 3^.2 70.75 83.75 AgBr. 0.0329 0.05264 0.116 0.265 0-57 0.79 S0 3 ". 0.232 0.406 0.448 0.466 0-474 0.675 Ag'. O.OO25 0.0023 0.0023 0.0053 0.0055 0.0084 SILVER BROMIDE 604 SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE AT 35. (Richards and Faber, 1899.) Cms. Cryst. Na Thiosulfate per Liter. Cms. AgBr Dissolved per Gm. of Thiosulphate. Mols. AgBr Dissolved per Mol. of NaSA. 100 0.376 0.496 2OO 0.390 0-SI5 300 400 o-397 0.427 , 0.524 0.564 100 cc. of 3 n AgNO 3 solution dissolve 0.04 gm. AgBr at 25. (Hellwig, 1900.) Fusion-point data for mixtures of AgBr + AgCl and AgBr + Agl are given by Monkemeyer -(1906). Results for AgBr + NaBr are given by Sandonnini and Scarpa (1913)- SILVER BUTYRATE C 3 H 7 COOAg. SILVER (Iso)BUTYRATE (CH 3 ) 2 CHCOOAg. SOLUBILITY OF EACH SEPARATELY IN WATER. (Goldschmidt, 1898; Arrhenius, 1893; Raupenstrauch, 1885.) Cms. per too Gms. H 2 O. Cms. per 100 Gms. H 2 O. I . f Butyrate. > I/ . Iso Butyrate. Butyrate. Iso Butyrate. O O .363 0.796 30 0. 561 I .060 (l.I022) 10 O .419 0.874 40 O. 647 I .176 (R.) I 7 .8 .432 (A.) 50 O. 742 I .313 18.8 -445 (A.) 60 O. 8 4 8 20 O .484 0.961 (0.9986) 70 0. 964 I .670 25 . (1.0442) 80 I . 14 I .898 SOLUBILITY OF SILVER BUTYRATE IN AQ. SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM BUTYRATE. (Arrhenius, 1893.) In Silver Acetate at 17.8. In Silver Nitrate at 18.8. G. Mols, , per Liter. Grams per Liter. G. Mols^per Liter. Grams per Liter. COOAg. C 3 H 7 COOAg. ' CH 3 COOAg. C 3 H 7 COOAg. AgNO 3 . C 3 H/ COOAg. AgNOa- COOAg. 0.0 O-O22I o.o 4-3 2 o.o O.O228 o.o 4-445 0.0270 0.0139 4-51 2.71 0.0667 0.0078 n-33 1.521 0.0506 O.OIO3 8-45 2 -OI O.IOO O.OO62 17.00 1.209 G. Mols. per Liter. COONa. COOAg. o.o 0.0224 O.OO66 O.OI99 0.0164 0.0169 0-0329 O.OI3I In Sodium Butyrate at 18.2. Grams per Liter. COONa. COOAg 0-0 4-3 6 3 0.73 3-881 1.81 3.296 3-62 2.555 G. Mols. per Liter. ' C 3 H 7 C 3 H 7 ' COONa. COOAg. 0-0658 O.OO9I 0.1315 0-0060 0.263 O.OO4O 0.493 O-OO27 Grams per Liter. C 3 H r COONa. 7-24 14-47 COOAg. 1-774 .170 28.96 0.780 54.28 0.526 605 SILVER CAPROATES SILVER CAPROATES Ag(C 6 H n O 2 ). SOLUBILITY OF EACH SEPARATELY IN WATER. (Keppish, 1888; Stiassny, 1891; Kulisch, 1893; Konig, 1894; Altschul, 1896.) Results in terms of gms. salt per 100 gms. H2O. a Methyl Pentan Methyl 3 Pentan 4 Methyl Pentan Normal Caproate 4 Acid Acid 4 4 Acid . CH 3 (CH 2 ) 4 COOAg. CH3.CH.CHa CH 3 .CH 2 CH 3 (CH 2 ) 2 CH(CH 3 ) .CHCH 3 CH 2 COOAg. .COOAg. .(CH 2 ) 2 COOAg. o 0.076 (A.) 0-078(Keppish) O.l68 (Konig) o .880 (Kulish) o .510 (Stiassny) 10 0-085 0.089 O.l62 0.858 0.528 20 o.ioo 0.107 0.163 0.849 -55 3 O..I23 0.131 0.170, 0.854 0.574 40 0.154 0.161 0.183 0.871 0.602 5 0.193 0.198 0.203 0.902 0.632 60 0.240 0.243 0.229 o . 946 o . 666 7o 0.295 0-288 0.263 i . 003 o . 702 80 0-354 0.300 1.073 -742 90 0-347 1.157 SILVER CARBONATE Ag 2 CO 3 . SOLUBILITY IN WATER. t. Gms. Ag 2 CO 3 per Liter. Authority. 15 0.031 (Kremers, 1852.) 25 . 033 (0.00012 gm. atoms Ag.) (Abegg and Cox, 1903.) 25 0.032 (by potential measurement) (Spencer and Le Pla, 1909.) loo 0.50 (Joulin, 1873.) 15 0.85 (in H 2 O sat. with COz) (Johnson, 1886.) SILVER CHLORATE AgClO 3 . 100 gms. cold water dissolve 10 gms. AgClO 3 (Vauquelin); 20 gms. AgC10 3 (Wachter). SILVER CHLORIDE AgCl. SOLUBILITY IN WATER. (A large number of determinations are quoted by Abegg and Cox, 1903; see also Kohlrausch, 1904- 05; Bottger, 1903, 1906.) t. 14. 20. 25. 42. 100. Gms. AgCl per Liter 0.0014 0.0016 0.0020 0.0040 0.0218 More recent determinations are as follows: ** G w'uf l Method ' Authority. 10 . 00089 Conductivity (Kohlrausch, 1908.) l8 O.OOI5O Conductivity (Melcher, 1910.) 21 O . OOI 54 Colorimetric (See Note, p. 608) (Whitby, 1910.) 25 0.00172 Analytical (Glowczynski, 1914.) 5O 0.00523 Conductivity (Melcher, 1910.) IOO O.O2IO7 (Melcher, 1910.) loo 0.0217 Colorimetric (Whitby, 1910.) Note in the case of determination by Glowczynski, one liter of sat. solution was treated with freshly dis- tilled ammonia and evaporated to dryness in a platinum dish. The residue was dissolved in strong am- monia and again evaporated. The residue then dissolved in 5-6 cc. of 0.05 n KCN and the silver separated electrolytically, dissolved in HNO 3 and titrated with o.oi n NHer Liter. Cr. Ag. 0.01 O.O2 32.20 25.06 2O. 21 5-390 6.131 7.1 4 8 0.04 0.06 13-59 II. 10 9-529 II. I 0.08 II .1 II. I 0.08+0.1 AgNO 3 6.625 . . ... At the lower concentrations some of the dichromate is converted into solid chromate. SILVER CITRATE C6H 5 O 7 Ag 3 . loo gms. H 2 O dissolve 0.0277 gm. CeHsO/Ags at 18, and 0.0284 S m - at 2 5- (Partheil and Hubner, 1903.) SILVER CYANIDE AgCN. One liter of aqueous solution contains 0.000043 gm. AgCN at 17.5 and 0.00022 gm. at 20 (by Conductivity Method). (Abegg and Cox; Bottger, 1903.) SOLUBILITY OF SILVER CYANIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi, 1883.) 100 gms. aq. ammonia of 0.998 Sp. Gr. = 5%, dissolve 0.232 gm. AgCN at 12. 100 gms. aq. ammortia of 0.96 Sp. Gr. = 10%^ dissolve 0.542 gm. AgCN at 18. One liter aq. 3 n AgNO 3 dissolves 0.0091 gm. mol. = 1.216 gm. AgCN at 25. (Hellwig, 1900.) Fusion-point data for mixtures of AgCN + NaCN are given by Truthe (1912). SILVER FERRICYANIDE Ag 3 FeCN 6 . 3 FeCN 6 at 20. See Note, p fhitby, 1910.) One liter H 2 O dissolves 0.00066 gm. Ag 3 FeCN 6 at 20. bee JNote, p. (Wl SILVER SODIUM CYANIDE AgCN.NaCN. 100 gms. H 2 O dissolve 20 gms. at 20, and more at a higher temperature. 100 gms. 85% alcohol dissolve 4.1 gms. at 20. (Baup, 1858.) SILVER THALLOUS CYANIDE AgCN.TICN. 100 gms. H 2 O dissolve 4.7 gms. at o, and 7.4 gms. at 16. (Fronmuller, 1878.) SILVER FLUORIDE AgF. 2 H 2 O. SOLUBILITY IN WATER. (Guntz and Guntz, Jr., 1914.) 14.2 EutCC. 60 Ice+AgF. 4 H 2 O 25 1 79 -5 AgF. 2 H 2 O + 18.5 165 AgF. 4 H 2 28.5 215 18.65 z ^9-5 " +AgF.2H 2 O 32 193 2O 172 AgF.2H 2 O 39-5 222 " +AgF 24 178 " I08 205 AgF Two unstable hydrates, AgF.H 2 O and 3AgF-5H 2 O were also obtained. 100 gms. H 2 O dissolve 181.8 gms. AgF at 15.8, di$.& of Sat. Sol. = 2.61. (Gore, 1870.) SILVER FLUORIDE 614 SOLUBILITY OF SILVER FLUORIDE IN AQUEOUS SOLUTIONS OF HYDRO- FLUORIC ACID AT O AND AT 24. (Guntz and Guntz, Jr., 1914-) Results at 24. Results Gms. per ioo Gms. H 2 O.' Solid Phase. AgF. HF. 87-5 0.40 AgF. 4 H 2 O 89.4 2.0O " 93-8 3-97 ii Il8.5 9.60 " 156 14 " +AgF. 159 17.2 AgF.aH.O 185 24 " I8 9 25-7 AgF 188 29-5 " 196 39-8 " 142.1 52 AgF.2H 2 O 121.75 57-2 M 94-93 66.57 " 173-75 0.4 3AgF.sH 2 O 174 3-6 " AgF. HF. ouiiu iruasc. I 7 8 O AgF. 2 H 2 O 178.5 i-73 " I77-65 5-42 *! 179-5 IO " 189.5 13-4 ii I9I-5 14-3 " +AgF(?) 207 0-15 3 AgF. 5 H 2 2O6.2 1-25 " 202.5 7-9 ii 198.6 12.65 " 195-5 11.7 AgF.H,O 194-5 13 " 189.5 18.8 3AgF. S H 2 0+AgF(?) 193 36.6 AgF 193-5 16 Additional determinations at other temperatures are given. SILVER FULMINATE CAg^NO^CN. One liter of aqueous solution contains 0.075 gm. C 2 Ag2N 2 O2 at 13, and 0.180 gm. at 3O r (Holleman, 1896.) SILVER HEPTOATE (Onanthylate) AgC 7 H 13 O 2 . SOLUBILITY IN WATER. (Landau, 1893; Altschul, 1896.) ^o Gms. AgCyHisOj per ioo Gms. H 2 O. ^.o O O . 0635 (Landau) O . 0436 (Altschul) 50 10 0.0817 0.0494 60 20 0.1007 -555 7 30 o.i 206 0.0617 80 40 0.1420 0.0714 Gms. ioo Gms. 0.1652 (Landau) O . 08 5 8 (Altschul) 0.1906 0.1036 0.2185 - I 35 I 0.2495 0.1688 SILVER IODATE AgIO 3 . One liter of aqueous solution contains 0.04 gm. or 0.00014 & m - mol. at i8-2O, and 0.05334 gm. or 0.000189 gm- mol. at 25. (Longi; Bottger; Kohlrausch; Noyes and Kohr, 1902.) The solubility of. silver iodate in water, determined by a colorimetric method (see Note, p. 608), was found by Whitby (1910) to be 0.039 g m - AgIO 3 per liter at 20. Determinations reported by Sammet (1905) made by a chain cell method, gave 0.0611 gm. AgIO 3 per liter at 25 and 0.1849 S m - at 6o - One liter of H 2 O dissolves 0.0275 g m - AgIO 3 at 9.43, 0.039 gm. at 18.4 and -539 gm- at 26.6. (Kohlrausch, 1908.) SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF AMMONIA AND OF NITRIC ACID AT 25. (Longi, 1883.) ioo gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 2.36 gms. AgIO 3 . ioo gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 45.41 gms. AgIO 3 . ioo gms. aq. nitric acid of 1.21 Sp. Gr. =35% dissolve 0.096 gm. AgIO 3 . 6i5 SILVER IODATE SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT 25, (Hill and Simmons, 1909.) Normality of Aq. HNO,. O 0.125 0.250 0.500 Cms. AglOj per Liter. 0.0503 o . 0864 0.1075 O.I4I4 Normality of Aq. HNO 3 . I 2 4 8 Cms. AglOj per Liter. 0.2067 0.3319 0.6085 1.587 The solubility of the amorphous modification of AglOs is considerably higher than that of the crystalline, but the amorphous product rapidly becomes crystalline and correct results are soon obtained. SILVER IODIDE Agl. One liter of aqueous solution contains 0.0000028 gm. Agl at 2O -2. (Average of several determinations by Kohlrausch, Abegg and Cox, etc., Holleman gives higher figures.) One liter of water dissolves 0.0000253 S m - Agl at 60, determined by a chain cell method (Sammet, 1905). This author also gives data for the solubility of Agl in i n and o.i n KI solutions at 60. Per cent Con- centration of Aq. Ammonia. 7 10 SOLUBILITY OF SILVER IODIDE IN AQUEOUS AMMONIA. Authority. d of Aq. Ammonia. Gms. Agl per Liter. 0.971 1 6 0.045 (Ladenburg, 1902.) 0.960 12 0.035 (Longi, 1883.) 2O 0.926 l6 O.l66 (Baubigny, 1908.) Baubigny used a sealed tube and noted the first appearance of crystallization of Agl in mixtures of known compositions. SOLUBILITY OF SILVER IODIDE IN AQUEOUS MERCURIC NITRATE AT 25. (Morse, 1902.) Mols. Hg(NOs), per Liter. Mols. Agl per Liter. Gms. Agl Mols. Hg(NO 3 ), per Liter. per Liter. Mols. Agl per Liter, j Gms. Agl per Liter. O.OIO o . 00340 0.800 0.050 O.0074O 1-737 0.0125 0.00358 0.841 0. IOO o. 01161 2.730 0.025 0.00476 i.zxS I O.I070O 25. 160 Since HNOs was present in all cases its influence on the solubility was examined. It was found that no appreciable differences were obtained with concentrations varying between o.i and 2 n HNO 3 . Both crystallized and amorphous silver iodide gave identical results. SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF POTASSIUM IODIDE AND OF SILVER NITRATE AT 25. (Hellwig, 1900.) In Aq. KI Solutions. In Aq. AgNO 3 Solutions. fols. KI Mols. Agl Gms. Agl Mols. AgN0 3 Mols. Agl Gms. Agl Solid er Liter. per Liter. per Liter. per Liter. per Liter. per Liter. Phase. 0. 335 0.000363 o 0853 O. 20 O OO0289 O .068 Agl 0. 586 O.O02I8 5" 0. 35 000532 .121 0. 734 0.0044 I 032 0. 50 O OOI27 O .299 " 008 O.OI4I 3 32 0. 70 O 00362 .850 " 018 0.0148 O 47 I. 215 0131 3 .08 AgjINO, 406 0.0535 12 55 I. 63 0267 6 .26 " 486 0.0658 15 46 2. 04 O 0458 IO 9 6304 0.102 24 01 2. 54 0678 16 . i AftKNO,), . 937 0.198 4 6 42 3- 75 141 33 .2 4- 69 227 53 .2 5- 90 O 362 85 u SILVER IODIDE 616 SOLUBILITY OF SILVER IODIDE IN AQUEOUS SALT SOLUTIONS. (Valenta, 1894; Cohn, 1895.) Aq. Salt. Solution. t. Sodium Thiosulfate 20 " Calc. by Cohn.* Potassium Cyanide 25 " Calc. by Cohn.* Sodium Sulfite 25 Ammonium Thiocyanate 20 Calcium Barium Aluminium " Thiocarbamide Thiocyanime Gms. Agl per 100 Cms. Aq. Sol. of Concentration: i : ioo. 5 : ioo. 10 : ioo. 15 : ioo. 20 : ioo. 0.03 0-15 0.30 0.40 0.60 0.623 2.996 5.726 8.218 10.493 8.28 . . . 8.568 . . . . . . . . . . . . O.OI . . . 0.02 O.O2 0.08 0.13 ... 0.03 O.O2 . . . . . . . . . O.O2 ... ... 0.79 . . . . . . 0.008 0.05 O.O9 25 25 25 25 25 * See Note, p. 603. SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, POTASSIUM BROMIDE AND OF POTASSIUM IODIDE AT 15. (Schierholz, 1890.) In Sodium Chloride. Gms. per 100 Gms. Solution. In Potassium Iodide. Gms. per 100 Gms. Solution. NaCl. 26.31 25.00 Agl. O.O244 O.OOO72 KI. 59.16 Agl. 53-^3 57-15 40-0 50.0 25.0 4O.O 13.0 33-3 7-33 25.0 21.74 20-0 2-75 1.576 0.80 In Potassium Bromide. Gms. per IPO Gms. Solution. KBr Agl 30.77 0.132 ioo gms. sat. silver nitrate solution dissolve 2.3 gms. Agl at 11, and 12.3 gms. at b. pt. ioo gms. pyridine dissolve o.io gm. Agl at 10, and 8.60 gms. at 121. (von Laszcynski, 1894.) SOLUBILITY OF SILVER IODIDE IN AQUEOUS SODIUM IODIDE AT 25. (Krym, 1909.) Gms. per ioo Gms. H 2 O. Nal. 59-29 67.47 Agl. 31.21 28.52 I34-I 156.9 99-54 124.6 179.8 196.3 150 134.8 223.7 122 Solid Phase. Gms. per ioo Gms. H 2 O. Agl " +AgI.NaI.3*H 2 O AgI.NaI. 3 *H 2 O Nal. Agl. ouuu jriiasc. 226 120-9 AgI.NaI.3HjO+NaI 222-7 H2. 1 Nal 214.7 90.84 " 203.9 59.48 " 194.5 31.10 " 185.52 o " The above table was calculated from the original results which are expressed in mols. per 1000 mols. H 2 O. Fusion-point data for mixtures of Agl + HgI 2 are given by Steger (1903). Results for Agl + Nal are given by Sandonnini and Scarpa (1913). Laurate. Myristate. Palmitate. Stearate. 35 0.007 O.OO4 O.O04 50 . . . O.OO7 O.OO6 O.OO4 25 0.009 0.008 O.007 O.OO7 So 0.009 0.008 O.OO7 O.007 15 0.074 0.063 0.060 0.051 25 0.072 0.067 0.059 0.052 35 0.078 0.071 O.062 0.055 50 0.083 0.073 0.066 0.000 15 O.OIO 0.009 O.OO9 0.007 617 SILVER LAURATE SILVER LAURATE, MYRISTATE, PALMITATE and STEARATE SOLUBILITY OF EACH, DETERMINED SEPARATELY, IN WATER AND OTHER SOLVENTS AT SEVERAL TEMPERATURES. (Jacobson and Holmes, 1916.) Cms. each Salt per too Gms. Solvent. Solvent. Water u Abs. Ethyl Alcohol 25 a ii Methyl Alcohol Ether SILVER LEVULINATE (Acetyl propionate) CH 3 .COCH 2 CH 2 COOAg. SOLUBILITY IN WATER. (Furcht and Lieben, 1909.) jo Gms. per loo Gms. Sat. Solution. 8 o. 5363 (white salt) o. 5195 (yellow salt) 9 0.5166 0.5372 14-15 0.6078 0.6448 99-6 3-49 3-70 SILVER MALATE C4H 4 O 5 Ag 2 . 100 gms. H 2 O dissolve 0.0119 S m s. at 18, and 0.1216 gm. at 25. (Partheil and Hiibner, 1903.) SILVER NITRATE AgNO 3 . SOLUBILITY IN WATER. (Etard, 1894; Kremers, 1854; Tilden and Shenstone, 1884.) Gms. AgNO 3 per 100 Gms. Gms. AgNO 3 per 100 Gms. Solution. Water. Solution. Water. ~ 5 48 (Etard) 50 79 (Etard) 82 455 53 55 122 60 8x. 5 84 525 IO 62 63 170 80 85. 5 87 669 20 68 69 222 IOO 88. 5 90* 952 25 70. 5 72 257 120 9i 95 1900 30 72. 5 75 300 140 93- 5 . . . . . . 40 76. 5 79 376 160 95 ioo gms. sat. aq. solution contain 47.1 gms. AgNO 3 at 7.3 (= Eutectic). (Middleberg, 1903.) IOO gms. sat. aq. sol. contain 65.5 gms. AgNOs at 15.5. (Greenish and Smith, 1903.) IOO gms. sat. aq. sol. contain 73 gms. AgNOs at 30. (Schreinemakers and de Baat, igioa.) SOLUBILITY OF SILVER NITRATE IN AQUEOUS NITRIC ACID AT 25. (Masson, 1911.) 4. of Sat. Gm. Mols . per Liter. Gms. AgNO 3 4; of Sat. Gm. Mols. per Liter. Gms. AgNO, Sol. ' HN0 3 . AgNOj. per Liter. Sol. ' HNO S . AgN0 3 . per Liter. 2.3921 10.31 1752 I . 4980 4-497 2.590 440.1 2.2754 0.4042 9-36 1591 I.4I95 5-992 1.698 288.6 2.1243 0.962 8.08 1373 1.3818 8.84 0.843 143-2 1.9402 1.698 6-54 IIII 1.3976 12.53 0-347 58.96 T.7052 2.834 4.526 769.1 ioo gms. 2HNO S .3H 2 O dissolve 3.33 gms. AgNO 3 at 20, and 16.6 gms. at 100. ioo gms. cone. HNOi dissolve 0.2 gm. AgNOj. (Schultz, 1860.) SILVER NITRATE 618 SOLUBILITY OF MIXED CRYSTALS OF SILVER NITRATE AND SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL. (Hissink, igoo.) Results at 25 in Results at 50 in Aq. C 2 H 6 OH of fa = 0.945 (37 wt. %). Aq. C 2 H 6 OH of d 17 = 0.859 (75 wt. %). Gms. per 100 Gms. Sol. Wt. per cent in Mix Crystals. Gms. per 100 Gms. Sol. Wt. per cent in Mix Crystals. ' AgNO 3 . NaN0 3 . AgN0 3 . NaNO 3 AgN0 3 . NaN0 3 . AgNO 3 . NaNOs 47-32 o O 100 O .0 29 .78 o.o 100 o.o 44-01 8 ,78 99-1 O 9 27 9 2-5 99 5 -5 36.78 20 .42 42.9 57 .1 26 4 4.2 99 3 0.7 29.97 23 .2 33-6 66 4 23 .0 6.3 42 9 57-i 24.56 24 .82 27.6 72 4 18 3 7.1 3* .0 69.0 8.02 26 .41 9-9 90 .1 9 5 8.3 17 5 82.5 o.o 26 77 o.o 100 .0 .0 8.54 o .0 100. Very extensive data for equilibrium in the system silver nitrate, succinic acid nitrile and water are given by Middelberg (1903). This author first gives data for the ternary systems and then results for isotherms of the ternary system at o, 12, 20, 25 and 26.5. A number of determinations for higher temperatures are also given. The following compounds of succinic nitrile and silver nitrate were identified; C 2 H4(CN)2.4AgNO 3 , C 2 H 4 (CN) 2 .2AgNO 3 , C 2 H 4 (CN) 2 .AgNO 3 , 2C 2 H 4 (CN) 2 .AgN0 3 .H 2 0, and 4[2C 2 H 4 (CN) 2 .AgNO 3 ]H 2 O. Additional data for this system are also given by Timmermans (1907). SOLUBILITY OF SILVER NITRATE IN ALCOHOLS. (de Bruyn, 1892.) 100 gms. abs. methyl alcohol dissolve 3.72 gms. AgNO 3 at 19. 100 gms. abs. ethyl alcohol dissolve 3.10 gms. AgNO 3 at 19. SOLUBILITY OF SILVER NITRATE IN AQUEOUS ETHYL ALCOHOL, (Eder, 1878.) Sp. Gr.of Aq. Volume Gms. AgNO 3 per 100 Gms. Aq. Alcohol at: Alcoholic per cent / * s Mixture- Alcohol. 15. 50. 75. 0.815 95 3.8 7.3 18.3 0.863 80 10.3 ... 42.0 0.889 70 22.1 0.912 60 30.5 58.1 89.0 0.933 50 35.8 0.951 40 56.4 98-3 160.0 0.964 30 73.7 0-975 2 107.0 214.0 340-0 0.986 10 158-0 ioo gms. of a mixture of I vol. (95%) alcohol + I vol. ether dissolve 1.6 gms. AgNO 3 at 15. ioo gms. of a mixture of 2 vols. (95%) alcohol + I vol. ether dissolve 2.3 gms. AgNO 3 at 15. ioo gms. H 2 O sat. with ether dissolve 88.4 gms. AgNO 3 at 15. (Eder, 1878.) ioo gms. acetone dissolve 0.35 gm. AgNO 3 at 14, and 0.44 gm. at 18. (von Lasczynski, 1894; Naumann, 1904.^ 6 19 SILVER NITRATE SOLUBILITY OF SILVER NITRATE IN SEVERAL SOLVENTS. Solvent. Acetonitrile (anhydrous) a 1 8 290 ord. temp, about 150 Authority. (Naumann and Schier, 1914.) (Scholl and Steinkopf, 1906.) Benzonitrile 18 about 105 (Naumann, 1914.) Benzene 35 O.022 (Linebarger , 1895.) {( 40.5 0.044 Hydrazine (anhydrous) ord. temp. I (with decomp.) (Welsh and Broderson, 1915.) SOLUBILITY OF SILVER NITRATE IN PYRIDINE. (Kahlenberg and Brewer, 1908.) t. Gms. AgNOj per 100 Gms. Solid Phase. t. Gms. AgNO, per too Gms. Solid Phase. CjHjN. C^N. -48.501. pt. o C 5 H 6 N 45 62 . 26 AgNOj.sQHjN -50-5 3 " 46 63 . 09 -53 6 " 47 66.35 ' | -59 9 48 70.85 ' 65 Eutec. "+AgNO 3 .6C 5 H 8 N 48.5tr. pt. ... [ +AgNO,.2C s H b N -51-25 II. I AgNO,.6CsH s N 45 69.85 AgNOa.jQHiN -44 ix. 7 " 50 72.25 " -40 12.2 " 60 78.60 -35 12.6 " 70 89.10 " -30 13-9 <( 80 121. 21 -25 I 7 .6 " 87 215.02 " 24 tr. pt . ... "+AgN0 3 .3C 5 H 6 N 80 228.5 22 18.8 AgNOs.aCsHsN 74 230.6 10 20.03 " 74 225.4 H 22.34 80 230.4 + 10 27.21 <( 87 237.1 H 20 33.64 " 90 241.9 " 30 40.86 " 100 253-8 M 40 53.52 no 271.4 * Fusion-point data for mixtures of AgNOa + T1NO 3 are given by van Eyk (1905). SILVER NITRITE AgNO 2 . SOLUBILITY IN WATER. (Creighton and Ward, 1915.) O 10 15 Cms. AgN0 2 per Liter. 1-55 2. 2O 2-75 2O 25 30 Cms. AgNOj per Liter. 3-40 4.14 5 40 50 60 Gms. AgNOj per Liter. 7-15 9-95 13-63 The determinations by Abegg and Pick (1906) are slightly higher than the above at temperatures below 20. Single determinations agreeing well with the above are given by Ley and Schaefer (1906), and by von Niementowski and von Roszkowski (1897). SOLUBILITY IN Mols, per Liter. AQUEOUS SOLUTIONS OF SILVER NITRATE AT 18. (Naumann and Rucker, 1905.) Grams per Liter. Mols. per^ Liter Grams per Liter. AgNO 3 . o.oooo 0-00258 0-00517 0.01033 AgNO 2 . 0.02067 0.01975 0.01900 0.01689 AgN0 3 . o.ooo 0-439 0.878 I-756 AgN0 2 . 3.184 3.042 2 .926 2 .6ol AgN0 3 . 0.02067 0.04134 0.08268 AgN0 2 . 0-01435 o. 01168 0-00961 AgN0 3 - 3-5 12 7.024 14.048 AgN0 2 . 2.201 1-799 1.480 SILVER NITRITE 620 SOLUBILITY OF SILVER NITRITE IN AQUEOUS SOLUTIONS OF SILVER NITRATE AND OF POTASSIUM NITRITE AT 25. (Creighton and Ward, 1915.) In Aqueous AgNO 3 . In Aqueous KNO 2 . Mols. AgNOj, Dissolved AgNO 2 per Liter. Mols. KNO 2 . Dissolved AgNO 2 per Liter. per Liter. Mols. = Cms. per Liter. Mols. Cms. o 0.0269 4-135 o 0.0269 4-135 0.00258 0.0260 3-991 0.00258 0.0259 3-974 0.00588 0.0244 3-735 0.00588 0.0249 3.820 0.01177 0.0224 3.432 0.01177 0.0232 3-56o 0.02355 0.0192 2.943 0.02355 0.0203 3-ii9 0.04710 0.0164 2.498 0.04710 0.0181 2.765 Additional determinations of the solubility of silver nitrite in aqueous silver nitrate solutions at 25 are given by Abegg and Pick (1905). One liter aqueous 0.02 n NaNO 2 dissolves 3.185 gms. AgNO 2 at 25., " " " 0.20 n " " 3.016 " " " " o.2onNaNO 3 " 4.956 " (Ley and Schaefer, 1906; see also p. 660.) ioo gms. H 2 O sat. with both salts contain 10.9 gms. AgNO 2 + 78.3 gms. Sr(NO 2 )i at 14. (Oswald, 1912, 1914.) ioo gms. acetonitrile dissolve about 23 gms. AgNO 2 at ord. temp, and about 40 gms. at the boiling-point (8l.6). (Scholl and Steinkopf, 1906.) SILVER OXALATE Ag 2 C 2 O 4 . One liter H 2 O dissolves 0.0378 gm. Ag 2 C 2 O 4 at 21, see Note, p. 608. (Whitby, 1910.) One liter H 2 O dissolves 0.0416 gm. Ag 2 C 2 O 4 at 25. Conductivity method. (Schafer, 1905.) One liter H 2 O dissolves 0.0265 gm. Ag 2 C 2 O 4 at 9.72, 0.034 S m - a t 18.5 and 0.043 gm. at 26.9. (Kohlrausch, 1908.) SOLUBILITY OF SILVER OXALATE IN AQUEOUS NITRIC ACID AT 25. (Hill and Simmons, 1909.) Normal- Per cent 3 t Gms. Normal- Per cent J -. Gms. ity of Aq. HNO 3 . Cone, of HNO 3 . 25 OI Sat. Sol. Ag 2 C 2 4 . per Liter. ity of Aq. HN0 3 . Cone, of HNO 3 . 026 O* Sat. Sol. Ag,CA per Liter . 0.2517 1-574 1.0080 1-345 4.017 22.37 I.I4I5 17.11 0.5025 3-II7 I.OI86 2.189 5-564 29.84 1.1996 29.96 0.9806 6.017 1-0339 3-720 5.83 31.085 I.2I62 33-88 1.040 11.476 I . 0647 7.170 SILVER OXIDE Ag 2 O. One liter of H 2 O dissolves 0.021 gm. at 20, and 0.025 g m at 25. (Noyes and Kohr; Bottger; Abegg and Cox.) One liter H 2 O'dissolves 0.0215 gm. Ag 2 O at 20. (See Note, p. 608.) (Whitby, 1910.) SOLUBILITY OF SILVER OXIDE IN WATER. (Rebiere, 1915.) Gm. Mols. Ag 2 O per Liter. Gms. Ag 2 O per Liter. Method of Preparation of the Sample. S_I . . ,_ ~ir > At 25 . At 50 . At 25. At 50 . By action of NaOH on AgNO 3 2.I6.IQ- 4 2.97.IQ- 4 0.050 0.0691 By action of Ba(OH) 2 on AgNOs 2.23.IO" 4 s.OQ.icr 4 0.0519 0.0719 By action of KOH on AgCl 2.32.10-* 3.55.IQ- 4 0.0538 0.0825 By action of KOH on Ag 2 COj 2 . 95 . lo" 4 3 . 89 . lo" 4 o . 0680 o . 0904 SOLUBILITY OF SILVER OXIDE IN AQUEOUS AMMONIA AT 25. (Whitney and Melcher, 1903.) Mols. NH 3 Gm. Atoms Ag Mols. NH 3 Gm. Atoms Ag Mols. NH 3 Gm. Atoms Ag (Total) per Liter. per Liter. (Total) per Liter. per Liter. (Total) per Liter. per Liter. 0.220 0.0658 0.733 0.224 I-I47 0.343 0.469 0.134 0.876 0.257 1.498 0.454 .684 O.2O5 0.915 0.276 1.522 0.470 621 SILVER OXIDE SOLUBILITY OF SILVER OXIDE IN AQUEOUS SOLUTIONS OF ETHYL AMINE AND OF METHYL AMINE AT 18. (Euler, 1903.) In Aqueous Ethyl Amine. In Aqueous Methyl Amine. Normality of Normality of Normality of Normality of Aq. Amine. Dissolved Ag. Aq. Amine. Dissolved Ag. O.IOO 0.0322 O.IOO O.O22I 0.50 0.160 0.500 0.118 I O-3I4 I O.228 SILVER PERMANGANATE AgMnO,. 100 gms. cold water dissolve 0.92 gm.: hot water dissolves more. (Mitscherlich, 1832.) SILVER PHOSPHATE Ag 3 PO 4 . One liter of water dissolves 0.00644 gm. at 20. SILVER PROPIONATE C 2 H 5 COOAg. SOLUBILITY IN WATER. (Raupenstrauch, 1885; Arrhenius, 1893; Goldschmidt, 1898.) t o ' Gms. C 3 H 5 O 2 Ag t o Gms. C 3 H 5 O 2 Ag t <, per Liter. per Liter. O 5.12 20 8.36(8.48) 50 10 6.78 25 9.06 70 18.2 8. 36 (A) 30 9.93(9.70) 80 (Bottger, 1903.) Gms. C 3 H B O 2 Ag per Liter. 13-35 17.64 20.30 SOLUBILITY OF SILVER PROPIONATE IN AQUEOUS SOLUTIONS OF: (Arrhenius.) Silver Nitrate at 19.7. Mols. per Liter. Gms. per Liter. Sodium Propionate at 18.2. Mols. per Liter. Gms. per Liter. AgNO 3 . C 3 H 5 2 Ag. AgN0 3 . C 3 H 5 2 Ag. C 3 H 5 O 2 Na. C 3 H 6 O 2 Ag. C 3 H 5 2 Na. C 3 H 5 2 Ag. O ,0471 O 8.519 O O, ,0462 8.362 0.0133 0. 0415 2 ,289 7.511 0. 0167 0393 I. 60 7 7.II4 0.0267 0. 0379 4 ,577 6.86 0. 0333 0, 0345 3- 215 6.244 0.0533 0. 0307 9 059 5-556 O. 0667 0. 0258 6. 429 4.670 O.IOO 0. 0222 16, 997 4-019 0. 1333 0. 0191 12. 859 3.456 0. 2667 0. 0131 25. 7 l8 2.371 O. 5000 0. OIOI 4 8. 77 1.828 SILVER SALICYLATE C 6 H 4 .OH.COOAg 1,2. One liter of aqueous solution contains 0.95 gm. at 23. (Holleman,5i893.) SILVER SUCCINATE C 4 H 4 O 4 Ag 2 . 100 gms. H 2 O dissolve 0.0176 gm. at 18, and 0.0199 S m - at 2 5- (Partheil and HUbner, 1903.) SILVER SULFATE Ag 2 SO 4 . O IO 20 25 Gms. Ag 2 SO 4 per 100 Gms. Sat. Sol. 0-57 0.69 0.79 0.834 SOLUBILITY IN WATER. (Barre, 1911.) . Gms. Ag 2 SO 4 per 1 * 100 Gms. Sat. Sol. 0.88 30 40 50 60 0.97 1.05 I.I4 70 80 00 100 Gms. Ag 2 SO 4 per 100 Gms. Sat. Sol. I. 21 1.28 1-34 1-39 The result at 25 is the average of the very accurate and closely agreeing determinations of Hill and Simmons (1909), Rothmund (1910) and Harkins (191 1 ). Earlier determinations, differing somewhat from the above, are given by Euler (1904), Wright and Thompson (1884), Wentzel ( ) and Drucker (1901). SILVER SULFATE 622 SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULFATE. (Barre, 1911.) Results at 33. Gms. per 100 Gms. Sat. Sol. Results at 51. Gms. per 100 Gms. Sat. Sol. Results at 75. Gms. per 100 Gms, Sat. Sol. Results at 100. Gms. per 100 Gms. Sat. Sol. (NH 4 ) 2 S0 4 . I 8.85 15.90 22.22 27.25 30.80 35-88 43.22 ^g 2 SO 4 . .101 331 .500 .585 .619 .627 .600 557 8.90* 16.27 22.43 32.10 35-38 39-03 42.37 45-05 Ag 2 S0 4 ." 1.362 1.680 1.887 2.o6l 2.095 2 .082 2-055 2.026 (NH 4 ) 2 S0 4 . 8.80 I5-23 22.30 28.25 32 35-82 4I.l6 46.46 A g2 so;. 1.758 2.155 2.490 2.734 2.823 2.889 2.929 2.902 (NH 4 ) 2 S0 4 . 9.23 15 22.01 27 34.90 38.70 44-15 47.63 A g2 so 4 : 2.221 2.626 3-075 3-325 3-663 3-772 ^867 A series of determinations at 16.5 is also given. SOLUBILITY OF SILVER SULFATE IN AQUEOUS NITRIC ACID AT 25. (Hill and Simmons, 1909.) Normality 01 Aq. HNO 3 . L-onc. 01 Aq. HN0 3 . Sat. Sol. per Liter. OI Aq. HNO 3 . ^onc. 01 Aq HN0 3 . ' Sat. Sol. per Liter. I .0054 8-35 4 .209 23-33 I .1956 73.212 1.0046 6 154 I .O6l 34.086 5 564 29.84 I .2456 84 . 609 2.0452 12 .005 I .1069 49-OIO 8 .487 42.37 I .3326 94.671 4.017 22.37 1.1871 71.166 10.034 48.77 1.3676 90.806 SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF ACIDS AND SALTS AT 25. (Swan, 1899.) Acid or Salt. Gm. Equiv. Gms. Dissolved per Liter. Ag 2 SO 4 per Liter. HNO 3 8.41 " 0.01589 9-33 tt 0.03178 10.18 (( 0.06357 11.83 KHS0 4 0.05264 8.13 tt 0.10526 8.07 Acid or Salt. Gm. Equiv. Gms. Dissolved per Liter. Ag 2 SO 4 per Liter. H 2 SO, O 8.41 u 0.02902 8-55 u 0.05802 8.68 K O.IO526 8.86 K 2 SO 4 O.O27I8 7-93 tt 0.05434 7.68 SOLUBILITY OF SILVER SULFATE IN AQUEOUS SOLUTIONS OF SALTS AT 25. (Harkins, 1911.) Gm. Eauiv. j Gms. Gm. Eauiv. j *r Gms. Salt. A. ** Ag 2 SO 4 per Liter. Salt. Salt per Liter. "25 ul Sat. Sol. * Ag 2 S0 4 per Liter. KNO 3 o . . . 8-344 AgN0 3 0. 09961 I 0137 2 .644 u 024914 .0072 8.996 K 2 SO 4 O. 025024 i 0064 7 .899 u 049774 .0092 9.531 tt 0. 050044 i 0079 7 .694 tt o 09987 .0034 10.435 tt 0. IOO x 0112 7 49 Mg(N0 3 ) 2 024764 .0073 9.267 " 0. 20003 I Ol8o 7 .531 " 049595 .0094 10.029 MgS0 4 o. 020022 X .0061 8 .140 lf 09946 0133 ".334 " o. 050069 X .0079 7 .941 AgN0 3 024961 .0065 6.095 tt 0. IOOO4 X .0105 7 .740 " 0. 04986 .0084 4.487 tt 0. 20005 X 0164 7 733 One liter of aqueous solution in contact with a mixture of silver sulfate and silver acetate contains 3.95 gms. Ag 2 SO 4 + 8.30 gms. CH 3 COOAg at 17. Sp. Gr. of solution = 1.0094. (Euler, 1904.) 62 3 SILVER SULFATE SOLUBILITY OF SILVER SULFATE AT 25 IN AQUEOUS SOLUTIONS OF: (Drucker, 1901.) Sulfuric Acid. Mols. per Liter. Cms. per Liter. Potassium Sulfate. Mols. per Liter. Cms, per Liter. A g2 S0 4 . H 2 SO 4 . Ag 2 S0 4 . H 2 so 4 : 'Ag 2 S0 4 . K 2 S. Na-,0. 44-45 32.47 22.30 17.85 11.05 7.63 0.44 (CH 3 CO) 2 0. Each Case. 0.76 CHjCOONa 5.03 36.69 . . . CH3COONa.3H 2 " +1.1 43 06 i.i 65.71 8i.49 98.35 " +1.2 ... 1.2 el 24.12 14.46 9-72 9-77 9.04 2.04 8.55 41.23 43-94 25-94 15-49 n-45 11.25 10.33 10.22 9.l6 4 12 23 34 39 39 49 .19 .01 54 -56 .08 73 -32 25- 18. 13- 13- 13- 7- 98 09 53 24 14 64 9 13 21 33 32 65 .06 .62 .88 .05 .90 .07 8.96 8. 7 2 7-83 6.19 4.02 1.05 0.42 44.80 45.10 50.03 62.44 79.29 92.29 97-51 8.56 7.06 5-95 4.84 2.87 i. 02 0.79 .54 61 70 77 86 95 98 34 63 -55 .60 .61 -87 .09 7- 6. 5- 3. 2. I. 67 33 61 52 78 94 27 66 69 72 77 83 86 94 -42 .68 -85 .76 92 -73 .78 i.i = CH 3 COONa.CH 3 COOH. 1.2 = CH 3 COONa.2CH 3 COOH. Additional data for 5, 20, 45 and 60 are also given. Similar data for 30 are given by Dukelski (1909), and for 20 by Abe (191 1-12). One determination at 25, expressed in terms of volume of solution, is given by Herz (1911-12). Two determinations at 10 similarly expressed, are given by Enklaar (1901). Data for the freezing-point of mixtures of sodium acetate and acetic acid are given by Vasilev (1909). 62 7 SODIUM ACETATE SOLUBILITY OF SODIUM ACETATE IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell, 1910.) Gms. CHjjCOO- Wt. Per cent QHsOH in Solvent. , n( Gms. CH 3 COO- SfttSoL N G m ? 2 sr ri 1.209 55-7 IO 1. 160 53 20 i.i35 49-8 30 1.108 46.5 40 1.072 42 50 1.038 37 Wt. Per cent , * QHsOH in Solvent. Sat 5 Sol. 60 0.990 70 0.942 80 0.882 90 0.838 95 0.828 IOO 0.823 30.4 22.8 13 6. 7 6.1 7-3 The solid phase in contact with the solution was CH 3 COONa.3H 2 O in all cases. ioo gms. absolute alcohol dissolve 7.49 gms. CH 3 COONa.3H 2 O at room temp. (Bodtker, 1897.) SOLUBILITY OF SODIUM ACETATE IN AQUEOUS ALCOHOL: At Different Temperatures. (Schiavor, 1902.) At 1 8. (Gerardin, 1865.) Wt. Per cent Alcohol. Gms. CH 3 COONa per ioo Gms. Aq. Alcohol. 5-2 38 9 .8 35-9 23 29.8 29 27-5 38 23-5 45 20.4 59 14.6 86 3-9 91 2.1 t. Degree of Alcohol. Gms. per too Gms. Alcohol. CH 3 COONa. CH 3 COONa.3H 2 O. 8 98.4 2.08 3-45 12 98.4 2.12 3-51 19 98.4 2-33 3-86 II 90 2.O7 3-42 13 90 2.13 3-52 15 63 I3-46 22.32 18 63 13.88 23.03 21 63 14.65 24.30 23 40 28.50 47.27 ioo gms. H 2 O dissolve 237.6 gms. sugar + 57.3 gms. CH 3 COONa, or 100 gms. of the saturated solution contain 58.93 gms. sugar + 14.44 gms. CH 3 COONa at 3 1. 25. (Kohler, 1897.) ioo cc. anhydrous hydrazine dissolve 6 gms. sodium acetate at room temp. (Welsh and Broderson, 1915.) ioo gms. propyl alcohol dissolve 0.97 gm. sodium acetate. (Schlamp, 1894.) SODIUM SulfoANTIMONATE Na 3 SbS 4 .9H 2 O. o.i 0.65 0.9 1.26 1-45 Gms. NajSbS 4 per too Gms. Sat. Sol. 0-5 4 5-7 7.8 9.2 Solid Phase. Ice SOLUBILITY IN WATER (Donk, 1908.) Gms. t o Na 3 SbS 4 per Solid ioo Gms. Phase. Sat. Sol. I .75 II. 2 II. 8 Ice Na 3 SbS 4 .9H 2 O 15 30 38 19-3 27.1 32 it r. 49.6 59-6 69.6 79-5 Gms. Na 3 SbS 4 per Solid ioo Gms. Phase. Sat. Sol. 38.9 Na 3 SbS 4 . 9 H 2 45 50.7 57-1 SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 30. (Donk, 1908.) Gms. per ioo Gms. Sat. Sol. Na 3 SbS 4 . 27.1 NaOH. ooua rnase. Na 3 SbS 4 .9H 2 O 13 5-9 9.9 24.8 10.5 32.9 Na 3 SbS 4 . NaOH. * ooua rnase. 16.4 42.6 Na 2 SbS 4 .9H,O 17.7 47.2 "+NaOH.H 2 O 9.1 49-5 NaOH.H 2 O 54.3 SODIUM SulfoANTIMONATE 628 SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE. (Donk, 1908.) Results at o. Gms. per 100 Gms. Sat. Sol. ' Na 3 SbS 4 . Solid Phase. ii. 8 4.4 0.8 O.I o o o 4-9 14.6 27-3 33-6 33-6 Na 3 SbS 4 .9H 2 Na 8 S 2 J . S H i O Results at 30. Na 3 SbS*. 19.9 12-5 Na 2 S 2 3 . ' 7-7 16.4 ooiia rnase. Na 3 SbS 4 . 9 H 2 4-2 37-7 " I 43-8 " I 47 " I 47.8 " +Na 2 S 2 3 . 5 H 2 45-8 Na 2 S 2 3 . S H 2 SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS ETHYL ALCOHOL. (Donk, 1908.) Results at 30. Cms. per 100 Gms. Sat. Sol. Results at 65. Gms. per 100 Gms. Sat. Sol. Results at o. Gms. per 100 Gms. Sat. Sol. N&sSbS^ CjHsOri. ii. 8 o 8.2 3.7 3.2 12.7 0.9 29 o 60.8 * Two liquid layers separate between these concentrations of alcohol. The composition of several of these conjoined layers is as follows: Na 3 SbS 4 . C 2 H 5 OH. Na 3 SbS 4 . C 2 H B OH. ' 19-3 5 47-9 14.6 10.3 39-3 4-7 6.4 24.8 36.5 8* 1.2 4 6 4.1 54.i* 76.2 o 81 Gms. per 100 Gms. Alcoholic Layer. Na 3 SbS 4 . 4.1 10.2 I4.I Gms. per 100 Gms. Aqueous Layer. 54-1 40.4 33-5 o Na 3 SbS 4 . 36.5 27.8 24.1 18 C 2 H B OH. 8 14.3 18.8 27.2 The solid phase in contact with each of the above solutions is Na 3 SbS4.9H 2 O. SOLUBILITY OF SODIUM SULFOANTIMONATE IN AQUEOUS METHYL ALCOHOL. (Donk, 1908.) Results at o c ' Na 3 SbS 4 . CH 3 OH." OUilU JTllitSC. 8.6 3-4 Na 3 SbS 4 .9H 2 6 2.8 15-5 " 2.1 23.1 0-3 50.3 " O.I 57 0.05 81.7 " O.2 92 2 95-9 M Results at 30. Gms. per 100 Gms. Sat. Sol. Na 3 SbS 4 . CH 3 OH. 27.1 12.8 O 18.1 5.8 O.I O.I 33-i 65.7 84.2 1.2 91.2 3-9 94 Solid Phase. Na 3 SbS 4 .9H 2 O SODIUM ARSENATE Na 3 AsO 4 .i2H 2 O. 100 gms. aqueous solution contain 21.1 gms. Na 3 AsO4.i2H 2 O (= 10.4 gms. Na 8 AsO 4 ) at 17. Sp. Gr. of solution = 1.1186. (Schiff, 1860.) 100 gms. glycerol dissolve 50 gms. sodium arsenate at 15.5. (Ossendowski, 1907.) 629 SODIUM ARSENATES EQUILIBRIUM IN THE SYSTEM SODIUM OXIDE, ARSENIC TRIOXIDE, WATER AT 25. (Schreinemakers and de Boat, 1917.) Solid Phase. AS20V N&>. ouiiu niiibc. As-A. Na 2 O. 2.019 AsA 3I-05 21.82 ] 14.45 2-45 " 29 22.7 24.42 4-23 " 21.92 24.04 37-73 6.46 " 17-50 25.64 58.54 9.60 " 14.26 29.16 73 12 " +NaAs02 14-63 30.24 63.01 12.73 NaAs0 2 19.32 32.04 57-90 13.24 " 15-53 33-57 48.05 14.27 M 10.49 36.21 36.32 18.74 " 6-59 39-39 34 21.1 " +Na 4 As 2 5 .9H 2 5-ii 39-69 32.24 21.6 Na4As2O 6 .9H 2 O o 41.2 +NaioAs 4 On.26H,O Na 10 As 4 O 11 .26H 2 O +NaOH.H 2 O NaOH.H 2 O SODIUM Hydrogen ARSENATE Na 2 HAsO 4 .i2H 2 O. SOLUBILITY IN WATER. (Average curve from results of Schiff, 1860; Tilden, 1884; Greenish and Smith, 1901.) Cms. Na2HAsO 4 per 100 Gms. H 2 O. O 10 IS 7-3 15-5 20.50* = = 1.1765) 20 25 30 Gms. Na 2 HAsO 4 per 100 Gms. H 2 O. 26.5 33 37 40 60 80 Gms. per loo Gms. 47 65 85 SODIUM Diethyl BARBITURATE Na(C 8 HnO 8 N 2 ). SOLUBILITY IN WATER. (Puckner and Hilpert, 1909.) 16.87 Gms. Salt per 100 Gms. Sat. Sol. SODIUM BENZOATE C 6 H 5 COONa. 5 6.08 25 17.18 32-50 SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell, 1910.) Wt. Per cent C 2 H 5 OH in Solvent. O IO 20 30 40 50 SODIUM (Tetra) BORATE Na 2 B 4 O 7 .ioH 2 O (Borax). SOLUBILITY IN WATER. (Horn and Van Wagener, 1903.) 1 #25 OI 3ms. C 6 H 5 COONa per 100 Gms. Sat. Sol. Wt. Per cent C2H 5 OH in Solvent. & c of G Sat. Sol. ms. C 6 H 5 COONa per loo Gms. E Sat. Sol. -155 36 60 0-975 21.3 .132 35-3 70 0.927 15-4 .110 33-7 80 0.877 8.8 .086 90 0.831 2.8 055 28.9 95 0.812 1.3 .020 25-6 100 0-795 0.6 t. 0-5 IO 21.5 30 37-5 45 Gms. per roo Gms. H 2 0. i!6 2.8 3-9 5-6 8.1 5o 54 II 57 Gms. Na 2 B 4 O/7 per too Gms. H 2 0. 10.5 13-3 14.2 II 60 62 65 70 80 oo IOO Gms. NajB 4 O7 per 100 Gms. H 2 0. 19.4 20.3 22 20.7 22 21.9 24-4 31-5 41 52-5 Tr. temp., Na 2 B 4 O7.ioH 2 O->Na 2 B 4 O7.5H 2 O, approximately 62. ^16.5 of sat. sol. = I.O2O. (Greenish and Smith, 1901.) ioo gms. H 2 O dissolve 3.33 gms. Na 2 B 4 O 7 at 25, determined by refractometer. (Osaka, 1903-08.) SODIUM BORATES 630 SOLUBILITY OF SODIUM BORAXES IN WATER AT 30. (Dukelski, 1906, complete references given.) Cms, per 100 Gms. Solution. Gms. per 100 Gms. Residue. ' NaA B 2 3 . Na 2 0. B 2 3 . ' 42.0 NaOH.H 2 O 41-37 5.10 43.54 4.19 38.85 5-55 37-20 II. 1 8 Na 2 O .B 2 O 3 . 4 H 2 O 34-44 3-73 33.52 I0.8o 29-39 2.51 29.63 io.ii " 26.13 2-75 27.85 15.21 23.00 3.82 24.91 II. 60 16.61 13.69 21.29 20.64 21.58 4-63 24.52 1 9 . 04 Na 2 O .B 2 O 3 .4H 2 O +|Na 2 O.B 2 O 3 .8H 2 O 20.58 4.69 21. 6 1 16.59 NajsO .B 2 O 3 .8H 2 O I5-32 6.21 19.70 17.84 12.39 9.12 18.05 18.17 8.85 10.49 11.72 2O.62 Na 2 .2B 2 O 3 .ioH2O 5.81 6.94 IO.82 21.31 1.88 2.41 7-3 1 J 5-5o 1-38 5-i6 7.16 17.44 2.02 7-79 6.24 16.38 4 .08 17.20 8 . 96 29 . 20 Na 2 O. 2 B 2 O 3 .ioH 2 O + Na 2 O.5B 2 O 8 .ioH2G 3-79 15.84 5 . 68 28.19 Na 2 0.sB 2 3 .ioH 2 2.26 12.14 5-21 29.19 1.99 11.84 5 . 74 39 . 66 Na 2 O.2B 2 O 3 .ioH 2 O + B(OH) 3 1.86 ii. 18 1. 06 28.78 B(OH) 3 0.64 6. ii 0.31 31.19 3-54 ... " EQUILIBRIUM IN THE SYSTEM SODIUM OXIDE, BORIC OXIDE, WATER AT 60. (Sborgi and Mecacci, 1915, 1916.) Gms. per 100 Gms. Gms. per 100 Gms. Sat. Sol. Solid Phase. Sat. Sol. Solid Phase. NajO. B 2 3 . NaaO. B 2 O 3 . 49-25 O NaOH.H 2 O 19.29 22.78 Na20.B 2 O 3 . 4 H 2 O 48.44 0.81 20.30 25.50 49.28 i-53 " +2Na2O.B 2 O 3 .H 2 O 22.21 32.17 " +Na2O.2B 2 O 3 .s H 2 C 47.38 2. 24 2Na2O.B 2 O 3 .H 2 O 19-43 27.09 Na20.2B 2 O 3 .sH 2 O 44-74 3.78 16.13 23.05 42-94* 5.67 " +Na 2 O.B 2 O 3 .H 2 O 13-51 IQ.IO 40.14 5-41 Na2O.B 2 O 3 .H 2 O 1 1- 58 16.62 " 38.70 5.56 6.95 11.50 " 35.76 6.29 5.65 14.89 34-93 6.80 " 6.84 20.40 " 31-88 9.85 " (unstable) 8.42 28.05 " 29-56 11.83 " 11.29 41.47 " +Na 2 0. 5 B 2 3 .ioH 2 28.07 14.65 8.29 33.57 Na 2 0. S B 2 3 .ioH 2 33-12 7-47 " +NajO.B 2 O 3 .4H 2 O 6.29 28.77 28.64 6.51 Na20.B 2 O 3 . 4 H 2 O 3-22 21.94 22.06 10.29 3-40 22.59 " +H 3 BO, 18.72 J 7-33 1.39 13.92 H 3 B0 3 18.32 19.17 o 7.39 SODIUM BORAXES 631 SOLUBILITY OF SODIUM BORAXES IN SEVERAL SOLVENTS. Borate. Sodium borate Sodium Biborate Solvent. f. Alcohol (d= 0.941) 15.5 Glycerol 15.5 80 Trichlorethylene 15 gS*. Authori *- 2 . 48 (u. s. P. vm.) 60.3 ouiiu runsc. 20.72 11.49 NajCOs.HjO 18 14. 12 " +NaCJ 14.81 16.26 NaCl 9.71 18.76 " 5.65 21-94 o 26.47 < SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE. (Kremarm and Zitek, 1909.) , Gms. per TOO Gms. H 2 O. ^ t. c 10 10 IO 24.2 24.2 Ims. per 100 Gms. H 2 O. ^ __ u. 98* 8-75 o 28.55 26.33 NaNO 3 . O 70.48 80.5 45.96 " +NaNO 3 NaNO 3 Na-sCOj.ioHzO 24.2 24.2 24.2 24.2 24.63 21.8 5.96 NaNO 3 . 54-43 62.7 84.45 91-3 Na 2 C0 3 . 7 H 2 " +NaNO, NaNO, SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS ETHYL ALCOHOL AT 30. (Cocheret, 1911.) Solid Phase. Gms. per 100 Gms. Sat. Sol. ' NajCOs. QHfiOH. " 26.61 2.64 NajCOj.ioHjO 26.14 3-41* Gms. per 100 Gms. Sat. Sol. Solid Phase. 1.38 0.62 0-53 0.51 44-81* 52.99 55-70 56.56 +Na 2 C0 3 . 7 H 2 NajCO,. C;,H 6 OH. OU11U JTllttSC. 0.40 63.20 Na 2 CO 3 .7H 2 O O. II 73.06 " +Na 2 CO s .H,0 O.O7 78.19 NajCOj.HjO 0.06 90.95 " 0.03 95.06 " +Na 2 C0 3 98.46 NajCO, * Between these two concentrations, the mixtures separate into two liquid layers. Results are also given for the solubility of Na 2 CO 3 + NaBr and of Na 2 CO 3 + NaCl in Aq. C 2 H 6 OH at 30. SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL AND OF PROPYL ALCOHOL AT 20. (Linebarger, 1892.) Wt. Per cent Gms. Na^COa per 100 Gms. Sol. Alcohol. ' In Ethyl In Propyl. ' 28 ... 4-4 38 ... 2.7 44 1-7 1-7 46 1.13 i-S Wt. Per cent Alcohol. 48 50 54 62 Gms. NajCOj per 100 Gms. Sol. In Ethyl. 0.9 0.84 0.80 In Propyl. i-3 1.2 0.9 0.4 SODIUM CARBONATE 636 SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Ketner, 1901-02.) NOTE. The mixtures were so made that alcoholic and aqueous layers were formed, and these were brought into equilibrium with the solid phase. Gms. per 100 Gms. Alcoholic Layer. Gms. per 100 Gms. Aq. Layer. t. , * s / * > Solid Phase. C 2 H 5 OH. Na 2 CO,. H 2 O. C 2 H b OH. Na 2 CO 3 . H 2 O. 35 62.9 0.3 36.8 i 32.4 66.6 Na 2 co 3 .H 2 o 40 61 0.4 38.6 1.2 31.9 66.9 " 49 61 0.4 38.6 1.2 31.5 67.3 68 55.8 0.9 43.3 2.3 28.8 68.9 31.2 52.4 0.8 46.8 ... 29.3 ... Na2CO 3 .7H 2 O(0) 31.9 54.8 0.7 44.5 1.7 29.8 68.5 32.3 56.1 0.6 43.3 1.5 30.2 68.3 33.2 58.1 0.5 42.4 1.4 ' 31 67.6 27. 7 Crit. sol. 14% C 2 H 2 OH 13% Na 2 CO., 73% H 2 O 28.2 23.5 7.3 69.2 7.9 18.6 73.5 NajCOj.ioHjO 29 32.7 3.8 63.5 4.3 22.7 73.0 29.7 40 2.1 57.9 2.9 25.5 71.6 30.6 47.8 1.2 51 2.3 27.8 69.9 " SOLUBILITY OF Na 2 CO 3 .ioH 2 O IN DILUTE ALCOHOL AT 21. (Ketner.) Gms. per 100 Gms. Solution. Gms. per 100 Gms. Solution. Na,COj. QH S OH. H 2 O. N^COj. QH 5 OH. H 2 O. 18.5 O 81.5 1.2 39.2 59.6 12.7 6.2 81.1 0.2 58.2 41.6 6.9 15.3 77.8 o.i 67.1 32.8 3.2 26.1 70.7 0.06 73.3 26.64 Isotherms showing the compositions of the conjugated liquids at 28.2, 29.7 and 40 are also given. EQUILIBRIUM IN THE SYSTEM SODIUM CARBONATE, NORMAL PROPYL ALCOHOL AND WATER AT 20. (Frankforter and Temple, 1915.) (Note. In this paper the results for the binodal curve are reported in terms of gms. per 100 gms. solvent (water -f- alcohol), instead of gms. per 100 gms. of the homogeneous liquid (sodium carbonate + water + alcohol.) Gms. per 100 Gms. Alcohol + Water. Gms. per 100 Gms. Alcohol + Water. Na^CO,. Alcohol. Water. Na^COj. Alcohol. Water. 16.568 3.409 96.591 J -99o 31-537 68.463 15.363 4.472 95-5 2 8 1.338 40.796 59-204 11.696 6.595 93-405 0.930 46.933 53-067 8.415 9-176 90.824 0.567 53-875 46.125 6.669 n. 221 88.779 0.298 59-507 40.493 4.138 15.785 84.215 0.160 63.568 36.432 2.878 21.099 78.901 0.109 75-159 24.841 For results on the system sodium carbonate, allyl alcohol, water at 20 see last table, p. 647. 100 gms. glycerol (du = 1.256) dissolve 98.3 gms. Na 2 CO 3 at i5-i6. (Ossendowski, 1907.) loo gms. saturated solution in glycol contain 3.28-3.4 gms. sodium carbonate. (de Coninck, 1905.) 100 gms. H 2 O dissolve 229.2 gms. sugar + 24.4 gms. Na 2 CO 3 , or 100 gms. sat. aq. solution contain 64.73 gms. sugar -f- 6. 89 gms. Na 2 CO 3 at 31.25. (Kohler, 1897.) 637 SODIUM CARBONATE EQUILIBRIUM IN THE SYSTEM SODIUM CARBONATE, PYRIDINE, WATER. (Limbosch, 1909.) Very pure materials were used. The boiling-point (cor.) of the pyridine was 115-! 15.07. Increasing amounts of this pyridine were added to aqueous solutions of sodium carbonate contained in glass tubes. After the tubes were sealed they were placed in a bath and the temperature noted at which the liquid mixture passed from a homogeneous to an opalescent condition. During the observation, the contents of the tubes were stirred by means of pieces of iron, moved with the aid of a magnet on the outside of the tube. Per cent of Per cent of t of Sat. Per cent of Per cent of Per cent t of Sat. of Per cent of t oi bat. Pyridine. NajCOs. Pyridine. Na,CO 3 . Pyridine. O.I29 66.2 12 2. 5o 50 199 6.12 23- 5 1 2O 0.129 66.4 25 2. 5o 53-3 197 6.12 25. 5 132 O.I29 67.7 36 2. 5o 59-4 173 6.12 28. 4 152 0.129 69.2 44 2. 50 69.2 123 6.99 13- 8 54.2(40.5) 0.129 73-5 53 2. 5o 73-8 1 10 6.99 15- 4 81 d7) o. 129 74.8 2. 5o 74-8 * 6.99 19. 5 117 0.129 76.1 25. s( 64) 3- 49 30-3 -0-5 6.99 22. 7 142 o. 129 77-8 ii (-59) 3- 49 32.6 39 6.99 25- i 158 I.OI 47.6 17 3- 49 34-3 86.5 6.99 27. 6 169 I .OI 49-9 36 3- 49 36.7 107 6.99 32. 6 180+ I.OI 51-2 55 3- 49 37-4 123 9.36 8. 50 64 (26) I.OI 52.2 72 3- 49 42.5 194 9.36 9 78 (18) I.OI 56-1 107 3- 49 69.6 167 9.36 ii. 4 106.5 I.OI 60.6 in 3- 49 71.2 * 9.36 13- 8 127 I.OI 66.8 no 5- 23 23-3 63(27 .5) 9.36 16. 3 148 I.OI 75-i 86.5 S- 23 23-7 70(20 .5) 9.36 20. i 169 I.OI 76.9 7 1 5- 23 24.6 79 9.36 25 180+ I.OI 78.1 * 5- 23 26.2 96 9-36 50 180+ 2.50 36.3 22 5- 23 28.7 in 18.1 2. 12 48 (18) 2.50 37-9 53-25 23 32.5 155 18.1 2. 25 66 2.50 39-2 74-5 5- 23 36.6 196 18.1 2, 70 79 2.50 40 94 5- 23 37-2 200+ I*, i 4 20 108 2.50 43-6 147 5- 23 55-4 * 18.1 5 ,40 126 2.50 47.6 185 18.1 6 80 155 * Precipitate of NajCOs. Results in parentheses show lower temperatures of saturation. Fusion-point data for Na 2 CO 3 + NaCl are given by Le Chatelie 0*1894) and Sackur (1911-12). Results for Na 2 CO 3 + NazSO* are given by Le Chatelier (1894), Sackur (1911-12) and by Amadori (1912). Results for Na2CO3 + KC1 are given by Sackur (1911-12). SODIUM (Bi) CARBONATE NaHCO 3 . SOLUBILITY IN WATER. (Dibbits, 1874; Fedotieff, 1904.) o 10 20 25 Cms. NaHCOs per 100 Cms. Water. 6.9 8.15 9.6 10.35 Solution. 6.5 7.5 8.8 9-4 30 40 50 60 Cms. NaHCO per 100 Cms. Water. Solution. ii. i 10 12.7 11.3 14.45 I2 -6 16.4 13.8 100 gms. H 2 O dissolve 9.03 gm. NaHCO 3 at 15, d i6 = 1.061. (Greenish and Smith, 1901.) 100 gms. alcohol of 0.941 Sp. Gr. dissolve 1.2 gms. NaHCO 3 at 15.5 100 gms. glycerol dissolve 8 gms. NaHCO 3 at 15.5. (Ossendowski, 1907.) SODIUM (Bi) CARBONATE 638 SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS AMMONIUM BICARBONATE SOLUTIONS SATURATED WITH CO 2 . (Fedotieff, 1904.) .0 Wt. of i cc. ! * - Solution. Ylols.per IDC >o Gms.H 2 NHtHCOs. NaHCO 3 ". o 1.072 i-39 0.58 tt o.o 0.82 g .056 O-O 1.05 it .061 0.29 o-95 tt .065 0.56 0.89 It 073 1. 08 0.79 It .090 2.16 0.71 30 o.o 1.65 tt 2.91 0.83 Grams per 1000 Gms. H 2 O- 'NH 4 HCO 3 . NaHCO 3 . ' 109.4 O.O 0-0 23.0 44.0 85-7 170.6 o.o 230 48.2 69.0 88.0 80.0 74.6 66.7 59-2 138.6 70.0 SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE SATURATED WITH CO 2 . (Fedotieff; see also Reich, 1891.) Wt. of i cc. Mols. per icx DO Gms.H 2 O. Grams per i< XXD Gms. H 2 < Solution. NaCl. NaHCO 3 . NaCl. NaHCO 3 . o 0-0 0.82 0-0 69.0 u 1. 208 6.0 O.O9 35 - 1 7-7 15 I .056 o.o 1.05 O-O 88.0 1.063 0.52 0.82 30.2 68.6 t( 1.073 1.03 0.64 60. 1 53-6 It 1.096 2. II 0.41 123 .1 34-8 It I.I27 3-20 0.28 187.2 23.0 u 1.158 4-39 O.I9 256.9 16.1 tt 1.203 6.06 O.I2 354-6 IO.Q 30 1.066 o.o I .31 o.o no. 2 tt 1.079 1.02 0.87 59-9 72.8 tt i .100 2.08 0.56 121.9 47-3 tt i .127 3.18 0.38 186.3 32-0 tl 1.156 4-38 0.27 256.0 22.3 tt 1.199 6.12 0.17 358-1 13-9 45 1.077 o.o I.6 S o.o 138.6 tt i. 086 1.04 1. 12 60.7 94.0 " 1.115 2.65 O.62 155-2 52.0 " i -127 3-24 0.52 189.4 43-4 u i .155 4-38 o-37 256.1 30-7 tt 1.198 6.18 0.23 361-5 19-5 100 gms. alcohol of 0.941 Sp. Gr. dissolve 5.55 gms. sodium sulfocarbonate at 15-5. SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS SODIUM NITRATE SOLUTIONS. (Fedotieff and Koltunoff, 1914.) o 15 15 15 Sp. Gr. of Sat. Sol. I-356 1.183 1.285 1-377 Gms. per 100 Gms. H 2 O. 'NaNO 3 . NaHCO 3 .' 72.74 1.41 29.06 3.40 54.56 2.l6 83.20 1.57 95.14 I. 80 639 SODIUM CHLORATE SODIUM CHLORATE NaC10 3 . SOLUBILITY IN WATER. (Carlson, 1910; Le Blanc and Schmandt, 1911; Osaka, 1903-08.) , dof * Sat. Sol. Gms. NaClOs per t o zoo Gms. EkO. dof Sat. Sol. Gms. NaClO 3 per loo Gms. H 2 O. -15 I .380 72- 40 I .472 126 (i 15 LeB.&S.) I .389 79 (80 LeB.&S.) 50 140 (126 10 89 (87 60 I .514 155 15 I .419 95 (91 " 70 172 20 I .430 IOI (95-7 " 80 I 559 I8 9 25 I 44 1 06 (101 O.) IOO I .604 230 30 JI 3 (105 Le B. & S.) 122 (b. pt.) I .654 286 The earlier data of Kremers (1856) lie between the values of Carlson and of Le Blanc and Schmandt. SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS SODIUM CHLORIDE SOLUTIONS AT 20. (Winteler, 1900.) Sp. Gr. of Gms. per Liter. Sp. Gr. of Gms. per Liter. Solutions. Nad. NaClO 3 . Solutions. NaCl. NaClO,. 1.426 5 668 I .365 175 393 I.4I9 25 638 I 345 2OO 338 I.4I2 5o 599 j 319 225 271 1.405 75 559 I ,289 250 197 1.398 IOO 522 I, ,2 5 6 275 1 20 1.389 125 484 j 235 290 78 1-379 150 442 I .217 300 55 100 gms. H 2 O dissolve 24.4 gms. NaCl + 50.75 gms. NaClO 3 at 12. loogms. H 2 O dissolve 1 1 .5 gms. NaCl + 249.6 gms. NaClO 3 at 122. (Schlosing, 1871.) SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS ETHYL ALCOHOL. (Carlson, 1910.) Gms. NaClO 3 per Liter of Sat. Sol. in Aqueous Alcohol of: If . 50 Per cent. 75 Per cent 90 Per cent. 20 3I3-3 II0.8 16.1 40 60 70 321.8 326.8 133-5 155-8 161.3 22.9 29 gms. alcohol of 77 Wt. per cent dissolve 2.9 gms. NaClO 3 at 16. (Wittstein.) gms. alcohol dissolve i gm. NaClO 3 at 25, and 2.5 gms. at b. pt. IOO IOO 100 gms. glycerol dissolve 20 gms. NaClOs at 15.5. (Ossendowski, 1907.) 100 cc, anhydrous hydrazine dissolve 66 gms. NaClOs at room temperature. (Welsh and Broderson, 1915.) SODIUM PerCHLORATE NaClO 4 .H 2 O. SOLUBILITY IN WATER. (Carlson, 1910) is 50 143 dot Sat. Solution Gms. NaClO 4 per TOO cc. Sat. Solution. Solid Phase. 1.666 107.6 NaClCvHjO I-73I 1.789 123.4 141.4 NaCIO. SODIUM CHLORIDE 640 SODIUM CHLORIDE NaCl. SOLUBILITY IN WATER. (Mulder; de Coppet, r883,'Andrae, 1884; Raupenstrauch, 1885; above 100, Tilden and Shenstone, 1884; Berkeley, 1904; Etard, 1894, gives irregular results.) t o Cms. NaCl per Gms^NaCl AO Gms. NaCl per Gms. NaCl looGms-HaO. jooTsoL 100 Gms. H 2 O. per ioo g. Sol. o 35-7* 35- 6 3t 26.28! 70 37.8* 37-5if 27-27t 10 35-8 35.69 26.29 80 38.4 38.00 27-54 20 36.0 35.82 26.37 90 39-o 3 8 -5 2 t 27.80 25 3 6 - 12 35-9 2 26 -43 ioo 39.8 39-I2J 28.12 30 3 6 -3 3 6 -3 26.49 118 39.8 28.46 40 36.6 36.32 26.65 140 42 . 1 29.63 50 37.0 36.67 26.83 160 43-6 30-37 60 37.3 37-06 27.04 180 44-9 30.98 * M.; de C. t A. * B. The original, very carefully determined figures of Berkeley, are as follows. f d of Gms. NaCl per Sat. Sol. loo Gms. H 2 O. +o doi Sat. Sol. Gms. NaCl per ioo Gms. H 2 O. 0.35 1.2090 35.75 6l.70 1.1823 37-28 t5.20 1.2020 35.84 75.65 1.1764 37-82 30.05 1.1956 36.20 90.50 I.I7OI 38.53 45.40 1.1891 36.60 107 b. pt. 1.1631 39.65 ioo gms. H 2 O dissolve 35.99 gms. NaCl at 30. (Cocheret, 1911.) SOLUBILITY OF SODIUM CHLORIDE IN WATER, DETERMINED BY THE FREEZING- POINT METHOD. (Matignon, Gms. NaCl t. per ioo Gms. Solid Phase. t. Gms. NaCl per ioo Gms. Solid Phase. H 2 O. H 2 0. 0.4 0.69 Ice (Raoult) -12.7 20 Ice 0.8 1-37 " (Biltz) -16.66 25 " 2.86 4.9 " (Kahlenberg) -21.3 30.7 " +NaCl. 2 H 2 O 3-42 5.85 " (Raoult) -14 32.5 NaCl. 2 H 2 O (de Coppet) 6.6 II " 12.25 32.9 " (Matignon) 9.25 15 " 6.25 34-22 " (de Coppet) Data for the influence of pressure on the solubility of sodium chloride in water are given by v. Stackelberg (1896); Cohen, Inouye, and Euwen (1910) and by Sill (1916). SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS SIMULTANEOUSLY SATURATED WITH OTHER SALTS. The various papers of J. H. van't Hoff and collaborators, on this subject, have been collected by H. Precht and E. Cohn in a volume entitled " Untersuchungen iiber die Bildungsverhaltnisse die Ozeanischen Salzablagerungen," Leipzig, 1912, p. 374- By far the larger part of the new data in these papers are for solutions simultaneously saturated with three or more salts and are, therefore, beyond the limits of complexity of mixture, set for the present volume. The various systems are described in detail and diagrams are given. A table summarizing much of the data (van't Hoff (1905)) is given on the following page. 641 SODIUM CHLORIDE SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS SIMULTANEOUSLY SATURATED WITH OTHER SALTS AT 25. (van't Hoff, 1905.) Mols. per 1000 Mols. HjO. Solution Saturated with Respect to NaCl and: K 2 C1 2 . MgCl 2 . MgSO 4 . . 1 0.5 105 ...... MgCl 2 .6H 2 O -f Carnallite 2 5.5 70. 5 ...... KC1 + Carnallite 44 20 ... ... 4.5 " -|- Glaserite 44 10.5 ...... 14-5 Na 2 SO 4 + " 46 ... ... 16.5 3.0 " + Astrakanite 26 ... 7 34 ... MgSO 4 .7H 2 + Astrakanite 4 ... 67.5 12 ... " +MgS0 4 .6H 2 2.5 ... 79 9.5 ... Kieserite + i ... 101 5 ... " + MgCl 2 .6H 2 O 23 14 21.5 14 ... KC1 + Glaserite + Schonite 19.5 14.5 25.5 14.5 ... " + Leonite -f- 9.5 9.5 47 14.5 ... " + " -f Kainite 2.5 6 68 5 ... " + CarnaUite + " i i 85.5 8 ... Kieserite + Carnallite + Kainite 42 8 ... 16 6 Na 2 SO 4 + Glaserite -f Astrakanite 27. 5 10. 5 16.5 18.5 ... Schonite + Glaserite + Astrakanite 22 10. 5 23 19 ... Leonite + Glaserite + Astrakanite 10.5 7.5 42 19 ... + MgSO 4 .7H 2 O 4- Astrakanite 9 7-5 45 19.5 ... "4- " 4- Kainite 3-5 4 65.5 i3 ... MgS0 4 .6H 2 0+" 4- " 1.5 2 77 10 ... MgSO 4 .6H 2 O + Kieserite + " i 0.5 100 5 ... CarnaUite + MgCl 2 .6H 2 + " 1 0.5 105 ...... MgCl 2 .6H 2 O + Carnallite 2 5-5 70.5 ...... KC1 + CaCl 2 . i ... 51.5 90. 5 ... MgCl 2 .6H 2 O + Tachhydrite i ii ... 146 ... KC1+ CaCl 2 .6H 2 O i ... 35.5 121.5 ... Tachhydrite + CaCl 2 .6H 2 O i 1.5 50.5 90.5 ... MgCl 2 .6H 2 O+Tachhydrite+Carnallite i 9.5 5 141 . 5 ... CaCl 2 .6H 2 O + KC1 + CarnaUite i 2 34.5 121.5 ... CaCl 2 .6H 2 O+Tachhydrite+ Carnallite Carnallite = KMgCl 3 .6H 2 O, Glaserite = K 3 Na(SO 4 ) 2 , Astrakanite = Na 2 Mg- (SO 4 ) 2 .4H 2 O, Kieserite = MgSO 4 .H 2 O, Leonite = MgK 2 (SO 4 ) 2 .4H 2 O, Schonite = MgK 2 (SO 4 ) 2 .6H 2 O, Kainite = MgSO 4 .KC1.3H 2 O. SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE. (Fedotieff, 1904.) f o Wt. of i cc. Mols. per 1000 Gms. H 2 O. Gms. per 1000 Gms. H 2 O. Solution. ' NH4C1. NaCl. ' 'NI^Cl. N^O? o ... o 6.09 o 356.3 .185 2.73 4.89 146.1 286.4 15 .200 o 6.12 o 357-6 191 1.07 5-58 57-3 326.4 183 2.22 5.13 II8.9 300 176 3-48 4.64 186.4 271.6 175 3.72 4.55 198.8 266.8 30 ... o 6.16 o 360.3 1.166 4.77 4.26 255.4 249 45 o 6.24 o 365 6.02 4 322.1 233.9 SODIUM CHLORIDE 642 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS AMMONIA AT 30, (Hempel and Tedesco, 1911.) Gms. per 1000 cc. Sat. Sol. Sat" Sol. ' NH 3 . NaCl. " I.I735 29.535 293.38 1.1656 40-655 292.5 1.160 47.26 289.7 I.I494 60.78 286.5 Data for equilibrium in the system sodium chloride, arsenic trioxide, water, at 30, are given by Schreinemakers and deBaat (1915). dsoof Gms. per 1000 cc. Sat. Sol. Sat. Sol. NH 3 . NaCl. ' I . 1406 72.07 283.38 I-I395 72.715 283.06 I.I30I 81.855 277.49 I.I205 97.49 270.57 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO- CHLORIC ACID. (Engel, 1888; Enklaar, 1901.) AtO. (Engel.) Gms. per Liter. Mg. Mols. per 10 cc. HCl. NaCl. Sp. Gr. of Solution. 0.0 1.0 1.85 9.28 30.75 54-7 53 $ 52.2 48-5 44-0 37-9 23-5 6.1 207 204 202 196 185 173 i .141 i .119 HCl. NaCl". o.o 32.0 0.365 0.674 30-5 1.859 28.4 3-38 25-7 5-49 22.2 ii .20 13-7 20.54 3-6 At I0-I0.5. (Enklaar.) Mols. per Liter. Grams per Liter. HCl. NaCl." o.o 6. ii 0.27 5-77 o-35 5-67 0-43 5-59 o-57 5-43 0.72 5-28 2.60 3-42 2.80 3-i8 3.31 2-74 Results at o and at 25. (Armstrong and Eyre, 1910-11.) Gms. HCl per Liter of Solvent. O 9.II 18.22 36.45 182.25 Gms. NaCl per 100 Gms. Sat. Sol. At o. At 25. 26.35 26.52(^25=1.2018) 25.30 25.45(^25=1.1970) 24.15 25.42(^25=1.1915) 21.93 22.34(^25=1.1822) 7.04(^25=1-1238) NaCl. 35-77 33-76 33-19 32.71 3i-77 30.89 20.01 19.04 16.03 Results at 25. Results at 30. (Herz, 1911-12.) (Schreinemakers, 1909-10.) Gms. per 100 Gms.jSat. Sol. HCl. 0.0 9.84 12.76 15.68 20.78 26.06 94-77 102. 1 I2O.6 Mols. per Liter. HCl. 0.607 1.032 1.590 2.II7 3.283 NaCl. 4.850 4.467 3.782 3-297 2-343 HCl. o 6.93 12.50 17-35 35-60 NaCl. 26.47 16.16 9.35 4.52 O.II Results at 30. (Masson, 1911.) Gm. Mols. per Liter. ^ o f Gms. Mols. per Liter. Sat. Sol. '~HCL NaCl. * 1.1427 3.052 2.463 1.1289 4.152 1.628 1.1188 5-950 0.630 1.1258 7.205 0.268 In the case of the results of Masson equilibrium was approached from above and the solutions were kept in a thermostat and shaken occasionally during 2-6 days. SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS CALCIUM CHLORIDE SOLUTIONS AT 25. (Mills and Wells, 1918.) Sat. Sol. HCl. NaCl. I. 20l8 O 5.400 I . 1906 0-4575 4-932 I . l8oi 0.969 I.I633 1.786 3.589 I.I5I2 2.412 2.978 Gms. per 100 Gms. Sat. Sol. Sat. Sol. CaCl 2 . NaCl. ' I.2O7 I. 103 25.30 I. 210 2.l6o 24.32 1.209 3.220 23-37 1.216 5-451 20.43 I.22O 7.398 19.17 ^ O f Gms. per 100 Gms. Sat. Sol. Sat. Sol, ' CaCl 2 . NaCl. 1.225 9-50 17-55 1.233 "-48 I5-9I 1.241 17.77 IO -54 1.257 21 8.05 1.276 24.58 5.63 643 SODIUM CHLORIDE SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS POTASSIUM NITRATE AT 25. (Ritzel, 1911.) Cms, per 100 cc. Sat. Sol. Cms, per 100 cc. Sat. Sol. KNO 3 . NaCl. KNO 3 . NaCl. " O 31.80 12 30.86 4 3 2 - 2 6 16 30.45 8 1-8 20 30.10 NaCl. 31.80 3 2 - 2 6 31-85 Data for the solubility of NaCl in aqueous MgCl 2 solutions are given by Feit and Przibylla (1909.) Solvent. Water SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND OTHER SALTS IN WATER, ETC. t o Gms. per 100 Gms. Solvent. Authority. 17 25 80 Alcohol (40%) 25 Water 20 25 26.4 NaCl+22.iNH 4 Cl* 34-5 " + 4-iBaCl 2 38.3 +2 9 -5KN0 3 38.5 " +41-14 " 39.81 " +168.8 " I5-78 +13-74 " 30.54 +I3-95 28.90 " +16.12 * Sp. Gr. of solution at 17 = 1.179. (Karsten.) (Soch J. Physic. Ch. 2, 46, '08.) (Quoted by Euler Z. physik. Ch. 49, 315. '04-) SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND POTASSIUM SULFATE IN WATER AT VARIOUS TEMPERATURES. (Precht and Wittgen, 1882.) t o Grams per 100 Grams H 2 O. f Grams per 100 Grams H 2 O. NaCl K 2 S0 4 KCl NaCl K 2 S0 4 KCl 10 33-4 8 .1 3 .2 60 36-4 II 9 2 7 20 34-o 8 -9 3 .1 7o 36.6 12 .8 3 .2 30 34-6 9 .6 2 9 80 36.0 12 3 5 .1 40 35-2 10 4 2 .8 9o 35-9 12 4 7 O 50 35-8 ii .1 2 .8 100 35-6 12 , 6 8 .8 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM BICARBONATE SATURATED WITH CO 2 . (Fedotieff 1904.) 3 1? Wt. of i cc. Solution. I. 208 1.203 1.203 I .196 I.I99 1.189 I.I98 Mols. per 1000 Gms. H 2 O. Gms. per 1000 Gms. H 2 O. NaHCO 3 . NaCl. 6.09 0.09 6 O 6.12 O.I2 6.06 6.16 0.17 6.12 6.24 0.23 6.18 'NaHC0 3 . NaCl. ' O 356.3 7-7 350-1 357-6 IO 354-6 360.3 13-9 358.1 365 19-5 361.5 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SODIUM HYDROXIDE AT 30 Gms. per 100 Gms. Sat. Sol. ' Na 2 0. NaCl. o 26.47 4.47 21.49 12.22 13.62 24.48 4-36 (Schreinemakers, 1909-10, 1910.) Solid Phase. NaCl NasO. NaCl. ' OUUU i 11. Gr. of jluiions. [.200 NaOH. 10 NaCl. ' S 308 ] SO 297 1.230 100 253 .250 150 2I 3 ] .270 200 173 3 .290 300 100 112 3 6l 330 375 500 640 30 -425 18 1.490 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA. (Bodlander, 1891; Nicol, 1891; results at 25 by Soch, 1898.) NaCl in Aqueous NaNOa. Results at 15.5 (B.). NaNO 3 in Aqueous NaCl. Results at 15 (B.). Sp. Gr. of Gms. per ioo cc. Sat. Solution. Sp. Gr. of Gms. per ioo cc. Sat . Solution. Solutions. NaN0 3 . H 2 0. NaCl. Solutions. NaCl. H 2 0. NaN0 3 . 1.2025 O 88. 47 3 1 .78 I 3720 74.82 62 38 I-2305 7 53 87.63 27 .8 9 I 3645 4-0 75-69 56 .76 1.2580 13 .24 86.25 26 31 I 3585 7-24 75-71 S 2 .09 I .2810 21 58 82.66 23 . 9 8 I 3530 11.36 76.86 47 .08 1.3090 28 .18 80.42 22 30 I 3495 15-33 76.96 42 .66 i -3345 33 .80 79-25 20 40 I 3485 I7.8l 77-14 39 .90 1-3465 37 .88* 77-37 19 . 4 0* I 3485 I8. 97 * 77-15 38 73* I-3465 37 .64* 77-34 J 9 .6 7 * I 3485 19.34* 77-49 38. ,02* ) Results at 20 (N.). Grams per ioo Grams H2O. Grams per ioo Grams H2O. NaNO, 14.17 28-33 42.50 54-63* 35.91 NaCl 32.82 " 29.78 26.91 " 24.92* " o NaCl 87.65 NaNO 3 6-5 11 77-34 si 13.0 it 68.50 M 19-5 It 60.49 14 ioo gms. H 2 O dissolve 43.66* gms. NaNO 3 + 26.58* gms. NaCl at 25. ioo gms. H 2 O dissolve 121.6* gms. NaNO 3 + 17.62* gms. NaCl at 80. ioo gms. aq. alcohol of 40 wt. per cent dissolve 22.78 gms. NaNO 3 + 10.17 NaCl at 25. * Indicates solutions saturated with both salts. 645 SODIUM CHLORIDE SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA. (Leather and Mukerji, 1913.) Results at 30. , Gms. per 100 Gms. atsol - -^2_ , S Results at 40. Gms. per 100 Gms. at Sol H ?- S Results at 91. Gms. per 100 Gms. of H? 0. Solid Phase in Each Case >L NaN0 3 . NaCl. .202 36.3 .2j6 24.21 31.16 .343 48.15 26.35 .379 63.08 23.50 . 388 63 .40 23 . 40 .381 67.91 19.69 .394 81.46 9.76 . 406 95 . 90 o "NaN0 3 . NaCl.-- 197 o 36.53 .284 27.31 30.53 .323 54.82 26.50 .409 73.96 21.87 .397 74.01 21.71 .396 75.29 21. 61 .410 89.90 10.80 .421 105.2 o NaN0 3 . NaCl/ [.189 38.72 296 37.43 30.21 .381 79.65 23.17 .487 127.2 17.05 .519 141.4 15.93 .518 141.3 15.83 .504 149.5 9-03 .521 160.8 o NaCl " f NaN0 3 " NaNO 3 Results are also given at 20 which agree satisfactorily with those of Nicol. Additional results at 30, agreeing fairly well with the above, are given by Coppa- doro (1913). Data for the solubility of sodium chloride in dilute solutions of sodium nitrate at o and at 25 are given by Armstrong and Eyre (1910-11). SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS 7.45 PER CENT SODIUM SULFATE SOLUTIONS. (Marie and Marquis, 1903.) 14.8 17.9 25.6 Gms. NaCl per 100 Gms. Sat. Sol. 23-30 23-33 23.485 27-75 32.18 34-28 Gms. NaCl per 100 Gms. Sat. Sol. 23.55 23.68 For additional data on this system see sodium sulfate, pp. 669 and 670. SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL. (Armstrong and Eyre, 1910-11.) Results at o. Results at 25. Solvent Gms. C 2 H 5 OH per 1000 Gms. H 2 O. Gms. NaCl per loo Gms. Sat. Sol. 26.46 11.51 25-97 23-03 46.06 138.18 24.41 20.95 <*25 Of Sat. Sol. Solvent Gms. C 2 H 6 OH per 1000 Gms. H 2 O. Gms. NaCl per 100 Gms. Sat. Sol. I .202 O 26.55 .196 11.51 26.06 .190 23-03 25.63 .179 46.06 24-75 .159 92.12 23.29 .1115 230.3 19.35 SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS ALCOHOL AT 28. (Fontein, 1910.) Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. QH 6 OH. H 2 0. NaCl. O 73-53 26.47 3-8 71.6 24.6 7-7 69.7 22.6 16.1 64.6 19-3 25-3 58-9 15-8 35 52-5 12-5 C 2 H B OH. H 2 0. NaCl. 45-35 45-35 9-3 56.2 37-5 6.3 67.4 28.9 3.7 78.8 19.7 1.5 89.6 10 0.4 Results are also given by Fontein showing the solubility of sodium chloride in mixtures of ethyl alcohol, amyl alcohol and water at 28, both when one liquid phase is present and when conjugated liquid layers are formed. SODIUM CHLORIDE 646 SOLUBILITY OP SODIUM CHLORIDE IN ALCOHOLS. (At 18.5, de Bruyn Z. physik. Ch. 10, 782, '92; Rohland Z. anorg. Ch. i8 9 327, '98.) Gms. NaCl Gms. NaCl t. Alcohol. per too t. Alcohol per 100 Gms . Alcohol . Gms . Alcohol , 18.5 Abs. Methyl 1.41 room temp. Methyl ^15= 0.799 I -33 " Ethyl 0.065 Ethyl 4. (Sackur, 1911-12.) + NaCN. (Truthe, 1912.) -j- NaF. (Ruff and Plato, 1903; Wolters, 1910; Plato, 1907.) + NaOH. (Scarpa, 1915.) -j- Nal. (Ruff and Plato, 1903; Amadori, 19123.) -j- NaNC>2. (Meneghini, 1912.) + Na 4 P 2 O 7 . (LeChatelier, 1894.) -{- Na2SO4. (Ruff and Plato, 1903; janecke, 1908; Wolters, 1910; Sackur, 1911-12.) -j- SrCU. (Vortisch, 1914; Sackur, 1911-12.) -j- SrCO 3 . (Sackur, 1911-12.) -j- T1C1. (Sandonnini, 1911, 1914.) SODIUM CHROMATES 650 SODIUM CHROMATES (Mono, Di, etc.) SOLUBILITY IN WATER. (Mylius and Funk, 1900; see also Salkowski, 1901.) Sodium Monochromate. Sodium Bichromate. Gms. Na 2 Mols. Na 2 Gms. Na 2 Mols. Na 2 . o CrO 4 per CrO 4 per Solid t o Cr 2 O 7 per Cr 2 O 7 per Solid " * TOO Gms. 100 Mols Phase. 100 Gms. 100 Mols. Phase. Solution. H 2 0. Solution. H 2 O. 24 .07 3 a^rC^.ioH^ O 6z. 9 8 II .2 Na 2 Cr 2 O 7 .2H 2 O 10 33 .41 5 55 17 63- 82 12 .1 41 18* 40 .10 7 43 i8| 63- 9 2 12 .l6 " 18. 5 41 65 7 94 34-5 67.36 14 .2 " 19. 5 44 .78 9 .01 " 5 2 71 . 7 6 17 4 M 21 47 .40 10 .00 7 2 76. 9 22 .8 M 25. 6 46 .08 9 a 2 CrO 4 .4H 2 O 8 1 79- 8 27 .1 " 3 1 - 5 47 05 9 .90 93 81. 19 2 9 .6 Na 2 Cr 2 07 36 47 .98 10 2 98 8z. 25 29 .8 " 40 48 97 10 .6 M Sodium Tri Chromate. A ^\O .20 II T"0 V Gms. I s T a 2 Mols. Na 2 49 5 50 93 II 5 to Cr 3 0, per Cr 3 Ojo per Solid 54- 5 52 .28 12 .2 11 100 Gms. Solution. 100 Mols. H 2 Phase. 59- 5 53 39 12 7 o 80. 03 19 9 Na 2 Cr 3 10 .H 2 0. 65 55 23 13 7 Na 2 Cr0 4 15^ 80.44 2O 4 " 70 55 15 13 .6 IS 80.60 2O 56 80 55 53 13 .8 55 82.68 23 7 100 55 74 14 .0 99 85.78 29 9 " * Sp. Gr. of sat. sol. at 18 = 1.432. f Sp. Gr. of sat. sol. at 18 t Sp. Gr. of sat. solution at 18 = 1.745. 2.059 Sodium Tetrachromate. Tetrasodium. Chromate. Gms. Mols. Gms. Mols. 1 ~ N a2 Cr 4 O l3 Na 2 Cr 4 O l3 Solid t. Na 4 Cr0 5 Na 4 CrO 8 per zoo Gms. Solution. per 100 Mols.H 2 O. Phase. per 100 Gms. per 100 Solution. Mols.H 2 O. O 72.96 10.5 Na 2 Cr 4 O, 3 . 4 H 2 O O 33-87 4.II 16 74.19 II .2 it 10 35-58 4.42 18* 74.60 II .27 " i8t 37-50 4.81 22 76.01 12-3 " 27. 7 40-09 5-38 37 45-13 6.62 Solid Phase. * Sp. Gr. of sat. solution at i8= 1.926. t Sp. Gr. of sat. solution at 18 = 1.446. A new hydrate of sodium chromate, Na 2 CrO4.6H 2 O, was found by Salkowski, (1901) and the following data for its range of existence were determined. f. 17.7 19.2 19.525 21.2 24.7 Gms. NajCrO 4 per 100 Gms. Solution. 43.65 44.12 44-2* 44.64 45-75 Mols. per 100 Solid Phase. Mols. H 2 0. 8 . 62 Na2CrO 4 .ioH 2 O 8. 77 " ... " +Na2CrO 4 .6H 2 O 8.96 Na2CrO 4 .6H 2 O 9-37 Gms. Na2CrO 4 per 100 Gms. Sol. 25.9 46.3^ 28.9 29.7 31.2 46.47 46.54 47.08 Mols. Na,CrO per Solid Phase. 100 Mols. H 2 0. 9.57 Na 2 CrO 4 .6H 2 O +Na 2 CrO 4 .4HzO 9.64 9.67 9.88 * This determination by Richards and Kelley (1911). 651 SODIUM CHROMATES SOLUBILITY OF SODIUM CHROMATES IN WATER AT 30. (Schreinemakers, 1906.) Composition in weight per cent: Of Solution. Of Residue. %Cr0 3 . %Na 2 0. o 42 2.00 41.44 2.04 40.89 4-23 35 -5 1 6.64 32-34 15.19 27.06 10-22 29-39 8-93 28.49 8.62 26.91 13 .12 23.91 18.44 22.86 19.26 22.98 17.84 24.21 28.82 17.88 38.93 16.30 48.70 16.49 50.68 15-72 58.08 13-89 66.13 13.70 65.98 14-15 68.46 10.95 66.88 9-85 70.06 11.85 69.04 11.04 67.84 9.81 64.48 4-5 1 62.28 0-0 %Cr0 8 . 27.52 27.72 37-07 I5-48 18.09 %Na 2 0. 5.83 42.64 36.57 34-60 32.20 28.41 26.89 18.57 25.92 21.54 25-31 26.24 24-98 31-97 23-47 40.70 20.83 47-49 19-75 62.76 I7-38 69.48 16.06 69.46 15.15 73.88 I3-38 71.27 10.67 83 -95 9-57 81.80 6-43 82.85 5-42 79-49 2.71 Solid Phase. NaOH.H 2 O NaOH.H 2 + N a2 Cr0 4 Na 2 Cr0 4 N a2 Cr0 4 .4H 2 Na 2 CrO 4 . Na 2 Cr30, .H 2 Na 2 Cr 3 Oio.H 2 + Na 2 Cr 4 Q l3 ^HaO Na 2 Cr30 l3 .4H a O Cr0 8 100 gms. of a saturated aqueous solution contain at 30: 46.627 gms. Na 2 CrO4, or 100 gms. H 2 O dissolve 87.36 gms. Na 2 CrO 4 . 66.4 gms. Na 2 Cr 2 O 7 , or 100 gms. H 2 O dissolve 197.6 gms. Na 2 Cr 2 O 7 . 100 gms. absolute methyl alcohol dissolve 0.345 S m s. Na 2 CrO 4 at 25. (de Bruyn, 1892.) Data for equilibrium in the system sodium chromate, sodium sulfate and water at 15 and at 25 are given by Takenchi (1915). The mixtures were rotated at constant temperature until attainment of equilibrium and both the saturated solutions and the undissolved residues were analyzed. Very extensive tables of results are given. The decahydrates of sodium and chromium are isomorphous and the results show that these two salts are mutually miscible in all proportions at 15. At 25 the solubility curve consists of three branches. The solutions of the first branch are in equilibrium with decahydrated mixed crystals, those of the second branch with anhydrous sulfate and those of the third with both anhydrous sodium sulfate and hexahydrated sodium chromate. SODIUM CHROMATES 652 SOLUBILITY OF SODIUM DICHROMATE IN ALCOHOL AT 19.4. (Reinitzer, 1913.) An excess of Na2Cr 2 O7.2H 2 O was shaken with absolute alcohol for 10 minutes and the mixture filtered. The filtrate contained 5.132 gms. NaaC^Oy^I^O per 100 cc. and its d\$.i was 0.8374. The solution decomposed within a few minutes with production of a brown precipitate and evolution of an aldehyde odor. The results are, therefore, only approximately correct. SODIUM CINNAMATE C 6 H 5 CH:CHCOONa. 100 gms. H 2 O dissolve 9.1 gms. sodium cinnamate at 15.20. 100 cc. 90% alcohol dissolve 0.625 S m - at 15-20. (Squire and Caines, 1905.) SODIUM CITRATE (CH 2 ) 2 COH(COONa) 8 .5iH 2 O. SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25. (Seidell, 1910.) Wt. Per cent , nf Gms. C 6 H 5 O 7 Na 3 .- Wt. Per cent QH 5 OH in c * c i S5H 2 O per 100 Gms. QHsOH in Solvent. Sat. Sol. Solvent. d2Bo{ Gms.C 6 H 5 C 1.276 48.1 40 o-953 4-5 10 I .190 37-4 50 0.918 1-4 20 1. 100 25 60 0.892 0.3 30 1. 006 ii. 8 100 0.789 Data for equilibrium in the system sodium hydroxide, citric acid, phosphoric acid and water at 20 are given by Pratolongo (1913). The author fails to describe clearly the terms in which the results are expressed, consequently their exact meaning is not clear. SODIUM (Ferro) CYANIDE Na 4 Fe(CN) 6 . SOLUBILITY IN WATER. (Conroy, 1898.) t. 20. 4 2. 80. 98-5. Gms. Na4Fe(CN)e per 100 gms. H^O 17.9 30 . 2 59 . 2 63 SODIUM FLUORIDE NaF. 100 gms. sat. aq. solution contain 4.3 gms. NaF at 18. Sp. Gr. of solution = 1.044. (Mylius and Funk, 1897.) SOLUBILITY OF SODIUM FLUORIDE IN AQUEOUS SOLUTIONS OF HYDRO- FLUORIC ACID AT 21. (Ditte, 1896.) Gms. per 1000 Gms. H 2 O. Gms. per 1000 Gms. H 2 0. o HF 4i .7 NaF 83.8 HF 22.9 NaF 10 (i 4i -4 1C 129.7 tt 23.8 (( 45-8 tt 22 5 (I 596.4 tt 48.8 (( 56.5 a 22 -7 ft 777-4 it 81.7 It FUSION-POINT DATA (Solubility, see footnote, p. i) ARE GIVEN FOR THE FOLLOWING MIXTURES. NaF + FeF 3 . (Puschin and Baskov, 1913-) " +ZnF 3 . + Nal. (Ruff and Plato, 1903.) + NaOH. (Scarpa, 1915.) + Na 2 SO 4 . (Wolters, 1910.) SODIUM FLUOSILICATE Na 2 SiF 6 . 100 gms. H 2 O dissolve 0.65 gm. at 17.5, and 2.45 gms. at 100. (Stolba, 1872.) 653 SODIUM FORMATE SODIUM FORMATE HCOONa. SOLUBILITY IN WATER. (Groschuff, 1903.) 20 O + 15 18 18 21 23 Gms. Mols. HCOONa HCOONa per ioo Gms per ioo Mols. Solution. 22.80 30-47 41.88 44.92 44-73 46.86 48.22 H 2 0. 7.82 ii. 6 19.1 21.6 21.4 23-3 24.65 Solid Phase. HCOONa.3H 2 O HCOONa.2H 2 O Gms. HCOONa Mols. HCOONa Solid " per ioo Gms. per ioo Mols Phase. Solution. H 2 0. 25- 5 50-53 27.0 HCOONa. 2 H 3 18 49.22 25-65 HCOONa 29 50-44 26.9 " 54 53-8o 30.8 M 74- 5 56-82 34-8 44 ioo. 5 6l -54 42-35 44 123 66.20 44 Sp. Gr. of the saturated solution of the dihydrate at 18 = 1.317. SOLUBILITY OF SODIUM ACID FORMATE (EXPRESSED AS NEUTRAL SALT) IN AQUEOUS SOLUTIONS OF FORMIC ACID. (Groschuff.) Gms. Mols. t o HCOONa HCOONa ' per ioo Gms. per ioo Mols- Solution. H 2 O. o 22.35 T 9-5 25.5 29.62 28.45 66.5 41.08 47-1 Solid Phase. HCOONa.HCOOH Gms. Mols. t o HCOONa HCOONa Solid ' per ioo Gms. per ioo Mols. Phase. Solution. 'H 2 O. 45-5 70 85 38.8S 41.27 43-09 HCOONa 47-5 51-2 SODIUM GLYCEROPHOSPHATE (Disodium) OP(OC 3 H 7 O 2 )(ONa) 2 .5H 2 O. ioo gms. sat. solution in H 2 O contain 27.38 gms. of the anhydrous salt at 18. (Rogier and Fiore, 1913.) SODIUM HYDROXIDE NaOH. SOLUBILITY IN WATER. (Pickering, 1893; Mylius and Funk (Dietz) Gms. NaOH t. per ioo Gms. Solution , Water. - 7-8 8.0 8-7 20 16.0 19.1 -28 19.0 23-5 -24 22.2 28.5 -17.7 24-5 .32-5 29.6 42 .0 + 5 32.2 47-5 10 34-o 51 .5 15.5 38-9 6 3-53 5 45-5 83-5 12 50-7 103.0 Ice Solid Phase. aOH.7H 2 O NaOH.7H 2 O + NaOH-sH 2 O NaOH. 5 H 2 O + NaOH4H 2 O a NaOH. 4 H 2 O a NaOH. 4 H 2 O a + NaOH 3 iH 2 O NaOH. 3 iH 2 O f. pt. NaOH.s JHjsO -f NaOH-zH^ Dietz) , 1900.) Gms. NaOH ^o. per ioo Gms. Solid Phase. Solution, . Water. " 20 52.2 IOO NaOH-HaO 30 54-3 1 19 44 40 56.3 129 M 50 59-2 145 M 60 63-5 174 M 6 4 . 369.0 222-3 " f . P t. 6l. 874.2 288 NaOH.H 2 O H-NaOH 80 75-8 3 r 3 NaOH (?) no 78.5 365 " 192 83-9 52i M Sp. Gr. of sat. solution at 18 = 1.539. For determinations of the Sp. Gr. of sodium hydroxide solution, see Kohlrausch, 1879; Wegscheider and Walter, 1905. ioo gms. of the sat. solution in water contain 46.36 gms. NaOH at 15. (de Forcrand, SODIUM HYDROXIDE 654 1000 gms. liquid ammonia dissolve 0.0025 S m - NaOH at 40. (Skossareswky and Tchitchinadze, 1916.) Data for equilibrium in the system sodium hydroxide, resorcinol and water at 30 are given by van Meurs (1916). Fusion-point data for NaOH + Nal are given by Scarpa (1915). SODIUM IODATE NaIO 3 . SOLUBILITY IN WATER. t. Gms. NalOs per 100 gms. (Gay-Lussac; Kremers, i8s6a.) o . 2-5 20. 9 40 . 15 60. 21 80. 27 100 , 34 EQUILIBRIUM IN THE SYSTEM SODIUM IODATE, IODIC ACID AND WATER AT 30. (Meerburg, 1905.) ioo Gms. Sat. Sol HIO,. NaI0 3 . ouiiu .rnase. O 9.36 NalOj.iiHjO 1.98 9-52 " 4-86 10.22 " 5.86 11.04 7.40 II. 60 " unstable 9-73 14.73 6.70 II. 21 " +Na2O.2l 2 < 7 .80 10.30 NaA2lC 9.15 9 " 9-93 8.71 " Gms. per TOO Gms. Sat. Sol. Solid Phase. HIO 3 . NaI0 3 . 11.20 7-54 Na2O.2lA 11.82 7.20 " +NaIO 3 .2HIO 3 11.62 5.65 NaI0 3 .2HIO, 23.23 3-69 " 32.68 2.91 " 46.62 2.67 " 55.48 2.12 65.47 1.8 3 " 76.19 1.42 +HIO, 76.7Q HIO, SODIUM IODIDE NaI.2H 2 O. SOLUBILITY IN WATER. (de Coppet, 1883; see also Etard, 1884; and Kremers, i8.<;6a.) t Grams Nal per ioo Gm; 5- Solid Water. Solution. Phase. 2O 148.0 59-7 NaI. 2 H 2 O O I58-7 61 .4 it 10 168.6 62.8 * 20 178.7 64.1 M 25 184.2 64.8 H 30 190.3 65.6 " 40 205.0 67.2 " 50 227.8 ." t. Grams Nal per ioo Gms. Solid Phase. ' Water. Solution. 60 256.8 72.0 NaLaHaO 65 278.4 73-6 " 6 7 ' 293 74.6 Nal 70 294 74-6 " 80 296 74-7 M IOO 302 75.1 It 120 310 75-6 140 3 2I 76.3 The eutectic mixture of Ice + NaI.sH 2 O is at 31.5 and contains about 39 per cent Nal. (Meyerhoffer, 1904.) The tr. pt. for NaI.sH 2 O + NaI.2H 2 O is at 13.5 and the saturated solution contains 60.2 gms. Nal per 100 gms. (Panfiloff, iSgaa.) The tr. pt. for NaI.2H 2 O + Nal is at 64.3 and the saturated solution contains 74.4 gms. Nal per 100 gms. (Panfiloff, 1893.) 100 gms. H a O dissolve 172.4 gms. Nal at 15 and the d\ 6 of the sol. is 1.8937. (Greenish, 1900.) 100 gms. sat. solution in H 2 O contain 65.5 gms. Nal at 30. (Cocheret, 1911.) SOLUBILITY OF SODIUM IODIDE IN ALCOHOLS AT 25. (Turner and Bissett, 1913.) loo gms. Methyl alcohol, CH 3 OH dissolve 90.35 gms. Nal. Ethyl " C 2 H B OH " 46.02 Propyl " C 3 H 7 OH " 28.22 Amyl " C 6 H U OH " 16.30 655 SODIUM IODIDE SOLUBILITY OF SODIUM IODIDE IN AQUEOUS ETHYL ALCOHOL AT 30. (Cocheret, 1911.) Nal. C 2 H 6 OH.' ounu jriioac. 65.52 O NaI.2H 2 O 64 3-42 " 54-2 18. S ii 48.8 28.5 42.35 41.7 " Gms. per 100 Cms. Sat. Sol. '~NaL CzH 6 OH". 38.5 53-2 37-49 55-37 35.65 59.24 33-24 61.78 30.90 68.70 Solid Phase. NaI.2H 2 " + Nal Nal Data are also given for the solubility of mixtures of Nal + Na 2 CO 3 in aqueous ethyl alcohol at 30. SOLUBILITY OF SODIUM IODIDE IN ABSOLUTE ETHYL ALCOHOL AT TEMP- ERATURES UP TO THE CRITICAL POINT. (Tyrer, igioa.) IO 30 IOO Gms. Nal per loo Gms. C 2 H 6 OH 43-77 44-25 44-50 45 45-i f o Gms. Nal per loo Gms. QjHsOH. 1 2O 160 180 45-2 45 44-3 2OO 22O 230 42-3 38.5 36.2 240 250 255 260 261.5* Gms. Nal per loo Gms. 32-7 26.2 21 10.8 8.6 ' crit. t. of solution. The mixtures were placed in sealed glass tubes which were heated in a specially constructed, electrically heated air bath. The temperature at which the last trace of salt just dissolved was determined in each case. The experiments were made with very great care. Results are also given for the solubility of sodium iodide in the vapor of ethyl alcohol above the critical point. SOLUBILITY OF SODIUM IODIDE IN MIXTURES OF ALCOHOLS AT 25. (Herz and Kuhn, 1908.) In CHsOH + C 2 H 6 OH. In CH 3 OH + C 3 H 7 OH. In C 2 H 6 OH + Per cent d of Gms. Nal Per cent A - of Gms Nal Per cent dapoi Gms. Nal CH 3 OH in Mixture. .3.5 Ui> Sat. Sol. per 100 cc. Sat. Sol. C 3 H 7 OHin ( Mixture. U 2A Wi sat. Sol. peri Sat. 30 CC. Sol. C 3 H 7 OHin ( Mixture. >at. Sol. per loo cc. Sat. Sol. .0806 35-15 O 3250 63 22 O .0806 35-15 4.37 .1029 37-68 II. II -2853 58 45 8.1 .0732 34.60 10.4 .1123 38.71 23.8 .2528 54 64 17-85 .0720 34.05 41.02 .1742 45.98 65-2 .1387 40 71 56.6 .0276 28.41 80.69 .2741 57-44 91.8 .0420 29 14 88.6 .0130 26.13 84.77 .2886 58.92 93-75 .0178 26 49 91. 2 .0104 25.88 91.25 -3056 61.10 IOO >.9968 24 ii 95-2 i [.OO2O 24.74 IOO .3250 63.22 IOO < >. 99 68 24.11 SOLUBILITY OF SODIUM IODIDE IN SEVERAL SOLVENTS. (At 22.5, de Bruyn, 1892; at ord. temp. Rohland, 1898; Walden, 1906.) Solvent. Gms. Nal per loo Gms. Solvent. Solvent. Gms. Nal per 100 cc. Sat. Solution. Absolute Ethyl Alcohol 22.5 43 . i Ethyl Alcohol, d\ 5 = 0.810 ord. temp. 58. 8 Absolute Methyl Alcohol 22.5 77 . 7 Methyl Alcohol, d\$ = 0.799 ord. temp. 83 . 3 Propyl Alcohol, d^= 0.816 ord. temp. 26.3 at o. at 25. Acetonitrile 2 2 . 09 1 8 . 43 Propionitrile 9.09 6.23 Nitro Methane 0.34 0.48 Acetone very soluble Furfural ... 25.10 SODIUM IODIDE 6 5 6 SOLUBILITY OF SODIUM IODIDE IN ACETAMIDE. . (Menschutkin, 1908.) Gms. per 100 Gms. Sat. Sol. Solid Phase; NaI.2CH r _ NaT CONH 2 - NaL 82 m.pt.ofpureacetamide CHsCONHj 78 9-5 5-32 74 18 10.08 70 25-5 14 66 3i-9 17.86 62 37-3 20.9 58 41.9 23-44 54 46.1 25-8 50 50 28 46 53-7 30.1 41-5 57-7 32-3 +NaI. 2 CH 3 CONH 2 Gms. per 100 Gms. t. Sat. Sol. Solid Phase. NaI.2CH r CONH 2 = NaI. 50 59 33 NaI.2CH 3 CONH, 60 60. S 33-9 " 70 62.2 34-8 " 80 64.2 35-9 90 66.5 37-2 IOO 69.2 38.7 " no 72.6 40.6 1 20 78.7 44 125 84.7 47-4 " +NaI 150 85.1 47-7 Nal 175 85.5 47-9 " loo cc. anhydrous hydrazine dissolve 64 gms. Nal at room temp. (Welsh and Broderson, 1915.) SODIUM IODOMERCURATE A saturated solution at 24.75, prepared by adding Nal and HgI 2 in excess to water, contained 4.59% Na, 25% Hg, 58.25% I and 12.2% H 2 O, corresponding to 0.20 mol. alkali, 0.12 mol. Hg and 0.45 mol. I. (Duboin, 1905.) SODIUM MOLYBDATE Na 2 MoO 4 . SOLUBILITY IN WATER. (Funk, igooa.) Gms. Mols. Gms. t. Na 2 MoO 4 per loo Gms. Solution. Na 2 MoO 4 per loo Mols. H 2 O. Solid Phase. t. Na 2 MoO 4 per loo Gm Solution. o 30-63 3-86 Na2MoO 4 .ioH 2 O 15-5 39.27 4 33.83 4-47 18 39-40 6 35.58 4-83 32 39.82 9 38.16 5-39 " 5 z -5 41.27 10 39-28 5-65 Na 2 MoO 4 .2H 2 O IOO 45-57 Mols. &-" lols. H 2 O. 5.65 5.70 5.78 6.14 7-32 d of the sat. sol. at 18 is 1.437. 100 gms. H 2 O dissolve 3.878 gms. sodium trimolybdate, Na2Mo 3 Oi , at 20, and 13-7 gms. at 100. lUffik, 1867.) i oo cc.H 2 O dissolve 28.39 gms. Na 2 O.4MoO 3 .6H 2 Oat2i,(fj5 = 1.47. (Wempe, 1912.) Fusion-point data for Na 2 MoO 4 + Na 2 WO 4 and Na 2 MoO 4 + Na z SO 4 are given by Boeke (1907). SODIUM NITRATE NaNO 3 . SOLUBILITY IN WATER. (Mulder; Berkeley, 1904; see also Ditte, 1875; Maumee, 1864; Etard, 1894.) Gms. NaNO 3 per looGms. Mols. per t Gms. NaNOj per 100 Gms. Mols. per Solution. Water. Liter. I . Solution. Water. Liter. O 42 .2 72. 9- 73 * 6. 7 I* 80 59- 7 148 -I 4 8. * 10-35* IO 44 7 80. 8- 80.5 7 .l6 IOO 64- 3 180 -175.8 II-30 20 46 7 87. 5-88 7 .60 1 2O 68. 6 218 -208. 8f I2.22f 25 47 .6 91 - 92 7 .8o 180 78. I 356. 7 30 48 -7 94- 9- 96.2 8.06 220 83. 5 506 40 50 5 IO2 -104.9 8.51 225 91. 5 1076 50 52 .8 112 -114 8-97 3!3t IOO oo 00 54 9 122 -124 9.42 * Berkeley. T at 119. J m.pt. 657 SODIUM NITRATE SOLUBILITY OF SODIUM NITRATE IN AQUEOUS AMMONIA SOLUTIONS AT 15. (Fedotieff and Koltunoff, 1914.) In Aqueous NH 3 . In Aqueous NH 3 + NH 4 NO 3 . d u oi Sat Sol. I.2S3 1-233 I. 212 Cms. per 100 Gms. H 2 O. NH 3 . 13.87 17.28 20.38 NaNO 3 . 75.03 73-99 73.18 d 15 of Sat. Sol. Gms . per 100 Gms. H 2 0. NH 3 . NHUNO-,. NaNO,. 1.324 1-330 12.91 16.97 83.51 128.9 74.10 69.40 SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF NITRIC ACID AT o. (Engel, 1887; see also Schultz, 1860.) valents per 10 cc. Solution. SD. Gr. of Grams per TOO cc. Solut NaNO 3 . HNO 3 . NaNO 3 . HNO 3 . 66.4 -341 56.5 O-OO 63-7 2-65 338 54-2 1.6 7 60.5 5-7 331 51.48 3-59 5 6 -9 8.8 .324 48.42 5-55 52-75 12-57 .312 44.88 7.92 48.7 16.9 308 41.44 10.65 39-5 27.0 .291 33 -61 17.02 35- 1 32-25 .285 29.86 20.33 3i-i 37-25 .282 26.46 23.48 23-5 48.0 .276 20. o 30.26 18.0 57-25 .276 *5-32 36.09 12.9 71.0 .291 10.97 44.76 SOLUBILITY OF MIXTURES OF SODIUM NITRATE AND POTASSIUM NITRATE IN WATER AT 20. (Carnelly and Thomson, 1888.) Per cent NaNO 3 in Mixtures Gms. per 100 Gms. H 2 0. Used. NaN0 3 . KN0 3 . 100 86.8 90 96.4 13.2 80 98.0 38.5 60 90.0 47-6 50 66.0 40.0 Per cent NaNO 3 in Mixtures Gms. per 100 H 2 0. Gms. Used. NaN0 3 . KNO 3 . 45-7 53-3 34.7 40 45 - 6 35-5 20 20.8 33-3 10 9-4 31-5 O o.o 33-6 100 gms. H 2 O dissolve 24.9 gms. NaCl + 53-6 gms. NaNO 3 at 20. (Rudorff, 1873; Karsten; Nicol, 1891.) -UBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT o. (Engel, 1891.) Milligram Mols. per 10 cc. Solution. Sp. Gr. of Grams per 100 cc. Solution. Na 2 0. NaN0 3 . Solutions. NaOH. NaNO 3 . O-O 66.4 I-34I o.o 56-50 2.875 62-5 I-338 2.30 53-19 6.1 57-15 1-333 4.89 48.63 12-75 47-5 327 IO.2I 40.42 26.0 29-5 -326 20.83 25.10 39-o 17-5 332 3I-25 14-89 45-88 I3-I9 356 3 6. 7 6 II .22 60.88 6.05 .401 48-75 5-15 SODIUM NITRATE 658 Data for equilibrium in the system sodium nitrate, sodium sulfate and water at 10, 20, 25, 30, 34 and 35 are given by Massink (1916, 1917). SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM THIOSULFATE. (Kremann and Rodemund, 1914.) Results at 9. Cms. per 100 Gms. Sat. Sol. NaNO 3 . 33-31 22.57 4.22 Na 2 S 2 3 . 12.26 23-4I 34-77 Solid Phase. NaN0 3 " +Na 2 S 2 3 . S H 2 NaaSA.53 Results at 25. Gms. per 100 Gms. Sat. Sol. Solid Phase. NaNO 3 . Na 2 S 2 O 3 . 35-42 12.72 NaN0 3 25.40 19.90 18.02 24.25 3I.8I 32.83 " +Na 2 S 2 3 . S H z O Na 2 S 2 3 .sH 2 4-33 40.50 " SOLUBILITY OF SODIUM NITRATE IN ALCOHOLS. 100 gins. abs. methyl alcohol dissolve 0.41 gm. NaNO 3 at 25. 100 gms. abs. ethyl alcohol dissolve 0.036 gm. NaNO 3 at 25. (de Bruyn, 1892.) SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL AT DIFFERENT TEMPERATURES. (Bodlander, 1891; Taylor, 1897; Bathrick, 1896.) Results at 13 (B.). Sn Or of Gms. per 100 cc. Solution. Results at 16.5 (B.). So.Gr.of Gms. per 100 cc. Solution. Solutions. QsH 6 OH. H 2 0. NaNO 3 . Solutions. C 6 H 5 OH. H 2 O. NaNO 3 . 1.3700 O-O 75 34 6l .66 I 3745 o.o 75 25 62 -2O *-3395 3-08 73 53 57 34 j ,3162 6.16 70 .82 54-64 1.3120 6.01 7i .81 53 39 j .2576 II .60 68 .10 46.06 1.2845 8.30 70 85 49 3o I .2140 16.49 65 .04 39-87 1.2580 10.91 69 47 45 .42 j .1615 22.17 61 -6 7 32-3I 1-2325 13-77 67 .12 42 36 j 0855 32.22 S 2 .92 23-4I I.2OIO 16.46 66 .16 37 .48 I 0558 37-23 48 50 19.85 I .0050 43-98 42 .78 13-74 .9420 52.60 32 13 9-47 .9030 6o.OO 25 65 4-65 .8610 63.16 21 3 1 1.63 Results at 30 (T.). Wt. per cent Alcohol in Gms. NaNO 3 per 100 Gms. Solvent. Solution. Water- 49-10 96.45 5 46.41 9I-I5 10 43-50 85-55 20 37-42 74-75 30 3i-3i 65.10 40 25.14 55-95 50 18.94 46.75 60 12.97 37-25 70 7.81 28.25 90 1. 21 12.25 Results at 40 (Bathrick). Gms. NaNOs per 100 Gms. Aq. Alcohol. Wt. "per cent AlcohoL O 8.22 17.4 26.O 36.0 42.8 55-3 65-1 77-o 87.2 104-5 90.8 73-3 61 48 40.6 27 18 9-4 4.2 659 SODIUM NITRATE SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ALCOHOL AT 25. (Armstrong and Eyre, 1910-11.) Solvent. Mols. C 2 H 5 OH per 1000 Gms. HjO. O 0.25 0.50 I 2 Gms. C 2 H 6 OH per 1000 Gms. H 2 O. O 23.03 46.06 Q2.I2 Gms. NaNO, per loo Gms. Sat. Sol. 47-93 47.32 46.73 45-43 43-04 SOLUBILITY OF SODIUM NITRATE IN AQUEOUS SOLUTIONS OF ACETONE. Results at 30. (Taylor, 1897.) Wt. per cent Acetone in Solvent. 5 Gms. NaNO 3 per ioo Gms Solution. 49-10 46.96 Water. 96.45 93.20 9.09 20 45- 11 40.10 90.40 83.70 3 40 60 29.80 24-34 77-20 70-75 64.40 59-95 70 80 00 7.10 I.Q8 50-50 38.20 20.20 Results at 40. (Bathrick, 1896.) Wt. Gms. NaNOs per cent p er ioo Gms. Acetone. A LQ. Acetone. o.o 105 8.47 91.2 16.8 78-3 25.2 66.4 34-3 57-9 44.1 46.2 53-9 32-8 64.8 23.0 76.0 10.8 87.6 3-2 IOO gms. hydroxylamine dissolve 13.1 gms. NaNO 3 at 17-18. (de Bruyn, 1892.) 100 cc. anhydrous hydrazine dissolve 100 gms. NaNO 3 at room temp. (Welsh and Broderson, 1915.) Fusion-point data for NaNO 3 + NaNOa are given by Bruni and Meneghini (1909, 1910). Results for NaNO 3 + SrNO 3 + KNO 3 are given by Harkins and Clark (1915) and results for NaNO 3 + T1NO 3 by van Eyk (1905). SODIUM NITRITE NaN0 2 . SOLUBILITY IN WATER. (Oswald, 1912, 1914.) Gms. NaNO 2 loo Gms. Sat. 4-5 9 12 -12.5 9.1 23.8 29.6 i5.5Eutec. 39.7 8 40.8 o 41-9 43-8 Solid Phase. Ice +NaNO, NaNOj 10 20 45.8 (d= 1.3585) " 30 40 52 65 81 92 103 128 Gms. NaNO 2 per c , , p aci loo Gms. Sat! Sol. Solld Phase ' 47-8 49-6 51.4 54.6 57.9 59-7 62.6 68.7 NaNOj (Divers, 1899.) ioo gms. H 2 O dissolve 83.3 gms. NaNO 2 at 15. 100 gms. H 2 O dissolve 83.25 gms. NaNO 2 at 15. (v. Niementowski and v. Roszkowski, 1897.) ioo gms. H 2 O dissolve 73.5 gms. NaNO 2 at 15, d i6 = 1.3476. (Greenish and Smith, 1901.) SODIUM NITRITE 660 SOLUBILITY OF SODIUM NITRITE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT SEVERAL TEMPERATURES. (Oswald, 1912, 1914.) Results at o. Results at 21. Results at 52. Results at 103. jms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. 'NaN0 2 . NaN0 3 . ' ' NaNO 2 . NaNOj. NaNO 2 . NaNOj. NaNO 2 . NaNOa. ' 73 84.75 108.8 166 O 68 19 81.1 9 .6 104.3 20.6 153-3 33-2 67 36.3 79-7 23-5 99-5 43-2 148.8 5 8.8 64.9 41.7* 73-8 50.8 98.8 82 * 142.4 116 * 50-3 46.8 54.5* 65.2 88 100 126.8 30.2 55-4 64.2 56.7 44.2 92.9 60. i 142.9 74.2 46.8 62.8 27.2 101.4 181.2 21.6 74-7 14.7 109 o 89.3 118 * Both salts in solid phase. Similar results are also given for 18, 65, 81 and 92. 100 gms. H 2 O, simultaneously saturated with both salts, contain 53.9 gms. NaNO 2 + 1 1. 8 gms. Na 2 SO 4 at 16. (Oswald, 1914.) SOLUBILITY OF MIXTURES OF SODIUM NITRITE AND SILVER NITRITE IN WATER AT 14 AND AT 22. (See also p. 620.) (Oswald, 1912, 1914.) Results at 14. Results at 22. Gms. per 100 Gms. H 2 O. Gms. per 100 Gms. H 2 O. tfaNOT AiNO;. tfaNOT AiN0 2 . SoMPhaaem Each Case. 55 15.2 58.3 21.5 AgN0 2 +Na 2 Ag 2 (N0 2 ) 4 .H 2 74-7 II- 3 78.3 13.4 NaNQ,+NagAg 8 (NOj)4.H,0 100 gms. abs. methyl alcohol dissolve 4.43 gms. NaNO 2 at 19.5. 100 gms. abs. ethyl alcohol dissolve 0.31 gm. NaNO 2 at 19.5. (de Bruyn, 1892.) SODIUM RHODONITRITE Na 6 Rh 2 (NO 2 )i 2 . 100 gms. H 2 O dissolve 40 gms. at 17, and 100 gms. at 100. (Leidie, 1890.) SODIUM OLEATE C 8 Hi 7 CH:CH(CH 2 ) 7 COONa. SOLUBILITY IN WATER AND AQUEOUS BILE SALTS. (Moore, Wilson and Hutchinson, 1909.) c i i. Gms. Oleate per Solvent - 100 Gms. Sat. Sol. Water 5 Aq. 5% Bile Salts 7.6 Aq. 5% Bile Salts + i% Lecithin n .6 SODIUM OXALATE Na 2 C 2 O 4 . SOLUBILITY IN WATER. (Souchay and Leussen, 1856; Pohl, 1852.) t. 15.5. 21.8. f 100. Gms. Na2C 2 O 4 per 100 gms. H 2 O 3.22 3 . 74 6 .33 100 gms. sat. solution of sodium oxalate in water contain 3.09 gms. NajC 2 O4 at 15 and 4.28 gms. at 50. (Colani, 1916.) loo gms. 95% formic acid dissolve 8.8 gms. Na 2 C 2 C>4 at 19.3. (Aschan, 1913.) 66i SODIUM OXALATE SODIUM OXALATE SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OXALIC ACID IN WATER AT 25. (Foote and Andrew, 1905.) Solid Phase. Gms. per 100 Cms. Solution. Mols. per 100 Mols. H 2 O. H 2 C 2 4 . Na 2 C 2 4 ". H 2 C 2 4 . Na 2 C 2 4 . 10.20 2.274 10.50 0.83 2.370 0.130 9.15 0.71 2.032 0.106 6.88 0.86 1-493 0.125 1.14 1.25 0.234 0.172 0.47 3.20 0.098 o . 446 0.42 3.85 0.090 0.541 3.60 0.502 H a C 2 4 .2H 2 + HNaC 2 4 .H20 Double Salt, HNaC 2 O 4 .H2O HNaC 2 O 4 .H 2 O + Na^^ Na 2 C 2 4 SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OTHER SODIUM SALTS IN WATER AT 15 AND AT 50. (Colani, 1916.) Gms. per 100 Gms. Sat. Solution. i5 0. 027 Na 2 C 2 4 + 26.28 NaCl o. 063 H + 26.64 H i5 0. 86 " + IO.26 Na 2 S0 4 0. 22 (( + 31-95 tt 15 0. 051 " + 45.86 NaN0 3 5o o. 047 tt + 53-06 u Solid Phase. NajCA +Na2SO 4 .ioH 2 O " +Na 2 S0 4 EQUILIBRIUM IN THE SYSTEM SODIUM OXALATE, URANYL OXALATE AND WATER AT 15 AND 50. (Colani, 1917.) Results at 50. Gms. per 100 Gms. Sat. Sol. Solid Phase. Gms. per 100 Gms Sat. Sol. Results at 15. Solid Phase. Na 2 C 2 O 4 . 3-09 4-93 I. 80' 0.80 O U0 2 C 2 4 . o 3.14 5.01 2.65 0.47 Na 2 C 2 4 " +2.1.2.5 2.1.2.5+2.4.5.11 2.4.5-11 +U0 2 C 2 4 . 3 H 2 U0 2 C 2 4 . 3 H 2 Na 2 C 2 4 . 4.28 9-03 4.62 3-60 I.OI o U0 2 C 2 4 . o 13.09 12.33 9.84 3.58 I " +2.1.2.5 2.1.2.5+2.2.3.5 2.2.3.5+2.4.5.11 2.4.5-1 1 +UO 2 C 2 O 4 .3H 2 O U0 2 .C 2 4 . 3 H 2 2.1.2.5 = Na2(U0 2 )(C 2 4 ) 2 .5H 2 0, 2.2.3.5 Na 2 (U0 2 ) 4 .(C 2 4 )5.iiH 2 0. Na 2 (U0 2 ) 2 (C 2 4 ) 3 .5H 2 0, 2.4.5.11 = SODIUM PALMITATE CH 3 (CH 2 ) 14 COONa. 100 gms. sat. solution in H 2 O contain 0.2 gm. sodium palmitate. 100 gms. sat. solution in 5% aq. bile salts contain I gm. sodium palmitate. ipo gms. sat. solution in 5% aq. bile salts + i% lecithin contain 2.4 gms. sodium palmitate. (Moore, Wilson and Hutchinson, 1909.) SOLUBILITY OF SODIUM PALMITATE IN PALMITIC ACID. Gms. Na Palmitate per 100 Gms. Solid Phase (Na t. Palmitate + Palmitic Acid). 0.7 71 II. 12 72.9 13-78 73-5 16.36 76 18.70 79.2 26.55 82 (Donnan and White, 1911.) 60.2 62 64.4 66.65 67-75 68.95 Gms. Na Palmitate per zoo Gms. Liquid Phase, 2-3 4.96 7.98 12.28 13.72 15.56 Gms. Na Palmitate per loo Gms. Liquid Phase. 22.60 28.65 29.07 30-7 33.36 36.02 Gms. Na Palmitate per 100 Gms. Solid Phase (Na Palmitate + Palmitic Acid). 25.38 35.05 35-23 35-9 35-66 39.64 The solid phases form three series of solid solutions. A special apparatus was devised for preparing the saturated solutions and filter- ing from the solid phases. SODIUM PHENOLATE 662 SODIUM p NITROPHENOL C 6 H 4 .ONa(i).NO 2 (4). SOLUBILITY IN WATER AND IN AQUEOUS NORMAL SOLUTIONS OF NON- ELECTROLYTES. (Goldschmidt, 1895.) Cms. C6H4.ONa(i).NO 2 (4) per 100 Cms. Solution in: * . Water. Alcohol. Urea. Glycerine. Acetone. Propionitril. Acetonitril. Urethane. 23-7 5-597 5.6I5 6.244 6.188 6. 225 6.257 6 .065 6. 520 28.6 6.721 6.874 7.489 7.440 7- 498 7-571 7 .328 7- 889 30.6 7.256 . 33-6 8.125 8.318 9-000 9.025 9- 025 9.066 8 .886 9- 507 35-9 8.851 . . 3 6.i 8.883 9.683 9.688 9- 665 9.911 9 .667 10. 248 40.2 9.881 10.147 10.666 10.777 10. 695 10.905 10 .667 ii. 379 45-2 ".235 11.513 12.068 12.229 12. 869 So. i 12.730 13.133 13.555 13.785 . , The solid phase is C 6 H 4 ONa.NO 2 .4H 2 below 36, and C 6 H 4 ONa. NO t . 2H 2 O above 36 in each case. SODIUM PHOSPHATE (Ortho) Na 3 PO 4 .i2H 2 O. SOLUBILITY IN WATER. (Mulder). Gms. per 100 1 Gms. H 2 0. t. Gms. per 100 Gms. H 2 O. o 1.5 25 15.5 10 4.1 30 2O 20 II 40 31 50 43 60 80 IOO Gms. per 100 Gms. H 2 O. 55 8l 108 SODIUM Hydrogen PHOSPHATE Na 2 HPO 4 .i2H 2 O. SOLUBILITY IN WATER. (Shiomi, 1908; Menzies and Humphrey, 1912.) Gms. NajHPC ) 4 t. per loo Gms. Solid Phase. H 2 0. -0.43 1.42 Ice 0.24 0.70 " O.5Eutec. . . . "+Na 2 HP0 4 .i2H 2 +0.05' 1.6 7 Na2HPO 4 .i2H 2 O IO.26 3-55(S) " IS-" 5-23(8) " 2O 7.66 " 25 12 " 30.21 20.81(8) " 30.76 23.41(8) " 32 25.7 " 33.04 30.88(8) M 34 33.8 " 35.2 tr.pt. ' " +Na2HPO 4 .7H 2 O 36.45 ' ... (S) i 37-27 47.5i(S) NajHPO 4 .7H 2 O 39.2 51-8 " 45 67.3 47-23 76.58(8) 48.3tr.pt. 48 " ::: (s)i 50 80.2 N 55.17 81.4 (S) 60 82.9 70.26 88.n(S) 80 92-4 89.74 102.87(8) 90.2 IOI.I 95 tr.pt. . . . 95.2 " ... (S) 96.2 104.6 99.77 102.15(8) 105 103.3 1 20 00.2 per loo Gms. Solid Phase. NaaHPO 4 .7H 2 O NajHPO* Results marked (S) by Shiomi, all others by Menzies and Humphrey. 100 gms. H 2 O dissolve 12.2 gms. Na 2 HPO 4 at 25, determined by refractometer. (Osaka, 1903-8.) IOO gms. H 2 O dissolve 5.23 gms. Na 2 HPO 4 at 15, 6?i 6 = 1.049. (Greenish and Smith, 1901.) loo gms. alcohol of ouiiu JT uase. 6.76 4.88 Na 2 HPO 4 .7H 2 O 7-31 5.55 " unstable 6.76 4.88 " +NatHPO 4 .2H 2 O 6.19 4.68 NajHPO^HjO 6.01 4.67 n 5-i2 4.36 4.81 4.22 a 4.36 4.08 a 4.06 4-03 4.19 4.38 " 4.32 4.96 u 4.65 5.89 tt 4.88 6.40 M SODIUM PHOSPHATES 664 SODIUM PyroPHOSPHATE Na4P 2 O 7 .ioH 2 O. SOLUBILITY IN WATER, (Mulder; Poggiale.) O 10 20 Cms. per 100 Cms. H 2 O. 3-16 3-95 6.23 25 30 40 So Gins, per loo Cms. H 2 O. 8.14 9-95 13.50 17.45 60 80 IOO Cms. per zoo Cms. H 2 O. 21.83 30.04 40.26 SODIUM PyroPHOSPHATES. SOLUBILITY IN WATER. (Giran, Salt. Monosodium Pyrophosphate Disodium Pyrophosphate Trisodium Pyrophosphate Formula. NaH 3 P 2 07 Na2H 2 P 2 07.6H 2 O Na3HP 2 7 .6H 2 O 'AO Gms. Anhydrous Salt per loo cc. Sat, Sol. 18 62.7 18 14.95 18 28.17 SODIUM PHOSPHITES SOLUBILITY OF SODIUM PHOSPHITES, ETC., IN WATER. Salt. Formula. Gms. Salt t. per loo Gms. Authority. H,0. Hydrogen Phosphite (NaH)HPO 3 .2iH 2 O o 56 !(Amat. Compt. tt tt 10 66 rend. 106, 1351, '88.) u " 42 *93 Hypophosphate Na 4 P 2 O 6 .ioH 2 cold 3- 3 j Hydrogen Hypophosphate Na 3 HP 2 6 . 9 H 2 ? 4 5 (Salzer Liebig's Tri Hydrogen u NaH 3 P 2 63 H 2 cold 6. 7 -/Vim* 2 1 if Xf o2./ Di Hydrogen Di Hydrogen u tt Na 2 H 2 P 2 O 6 .6H 2 Na 2 H 2 P 2 O 6 .6H 2 O cold b. pt. 2. 20. ; (Salzer Liebig's Ann. 187, 331, '77.) Hypophosphite (NaH)HP0 2 .H 2 O 2 5 IOO. (U. S. P.) Hypophosphite (NaH)HPO 2 .H 2 O b. pt. 830 100 gms. H 2 O dissolve 108.7 gms. anhydrous sodium hypophosphite (NaH 2 PO2) at 15, dis of sat. sol. = 1.388. (Greenish and Smith, 1901.) SODIUM (Double) PHOSPHATE, FLUORIDE Na 3 P0 4 .NaF.i2H 2 O. IOO gms. water dissolve 12 gms. of the double sodium salt at 25, and 57.5 gms. at 70. Sp. Gr. of solution at 25 = 1.0329; at 70 = 1.1091. (Briegleb, 1856.) SODIUM PICRATE C 6 H 2 (NO 2 )3.ONa.H 2 O. SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS AT 25. (Fisher and Miloszewski, 1910.) IOO cc. H 2 O dissolve 4.247 gms. C 6 H 2 (NO 2 ) 3 .ONa.H 2 O at 25. Solubility in Aq. Gms> C6H 2 (NO2)3.ONa.H 2 O per 100 cc. Aq. Solution of Normality: Solution of: O.OI. O.O2. 0.04. 0.066. O.IO. 0.25. 0.5. I. Na 2 C0 3 4.159 4.044 3 .807 3- 434 3.187 2 .017 I.I2O 0.611 NaCl 4.189 3.956 677 3. 335 3.021 I .678 0.846 0.410 Na 2 S0 4 4.246 4.102 3 .879 3- 651 3.195 2 .053 I.I56 0-552 Na 3 PO 4 4.235 4.051 3 .814 3- 562 3.225 2 .219 1.329 0.705 NaOH 4.192 4.048 3 .715 3- 339 2.941 X .781 0.921 0.371 NaNO 3 4.154 4.029 3 .710 3- 363 3.041 I -932 0-943 0.684 NaBr 4.190 4.II7 3 .770 3- 384 3.024 I 777 0.912 0.499 Data for the solubility of sodium picrate and the sodium salts of other nitro- phenols in aqueous alcohol and acetone solutions at 25 are given by Fisher (1914). Wt. Per cent CzHjOH in Solvent. dx of Sat. Sol. Gms. CeB^OH- COONa per 100 Gms. Sat. Sol. Wt. Per cent QH 6 OH in Solvent. da, of Sat. Sol. O 1.256 53-56 60 1. 066 10 1-235 52.10 70 1.016 20 1.205 50.20 80 0-957 30 1.176 48 90 0.885 40 1.142 45-50 92.3 0.864 50 1.106 42.20 IOO 0.805 66s SODIUM SALICYLATE SODIUM SALICYLATE C 6 H 4 .OH. COONa. SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25. (Seideii, 1909, 1910.) Gms. CgEUOH- COONa per 100 Gms. Sat. Sol. 38.40 33 25 15 12 3-82 100 gms. sat. solution in water contain 51.8 gms. C 6 H 4 OHCOONa at 15 and du of the sat. sol. is 1.249. (Greenish and Smith, 1901.) See also last line of first table on p. 590. 100 gms. propyl alcohol dissolve 1.16 gms. C 6 H 4 OHCOONa at ord. temp. (Schlamp, 1894.) Sodium salicylate distributes itself between olive oil and water at 15 in the ratio of 0.156 gm. C 6 H 4 OHCOONa per 100 cc. oil layer and 1.444 gms. per 100 cc. aqueous layer. (Harrass, 1903.) SODIUM SELENATE Na 2 SeO 4 .ioH 2 O. SOLUBILITY IN WATER. (Funk, igooa.) Gms. Mols. Gms. Mols. t o Na 2 Se0 4 per Na 2 SeO 4 per Solid t o Na 2 SeO 4 per Na 2 SeO 4 per Solid 100 Gms. loo Mols. Phase. 100 Gms. 100 Mols. Phase. Solution. H 2 O. Solution. H^. O 11-74 I-26 NaaSeOi-ioHaO 35.2 45-47 7-94 NaaSeO* 15 25.01 3.18 39.5 45.26 7.87 18 29.00 3.90 50 44.49 7-63 2 5-2 36-91 5-57 75 42-83 7.14 27 39.18 6.13 100 42.14 6.93 30 44.05 7.50 Sp. Gr. of saturated solution at 1 8 = 1.315. SODIUM [SILICATE Na 2 SiO 3 .9H 2 O. SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE AND SODIUM CHLORIDE SOLUTIONS. (Vesterberg, 1912.) Gms. per 100 cc. Sat. Solution. Solvent. t. d tt of Sat. Sol. NaaO. SiO 2 = NajSiOs.gHzO. NaCl. Approx. 0.5 n NaOH 17.5 1.129 6.942 5.419 =25.56 NaCl 17.5 1.150 7.347 7.172 33.83 2.297 ^Saturated NaCl Solution 19 1.258 4.563 4.376 20.64 27.91 ~ Solid phase Na 2 SiO3.9H 2 O in each case. Fusion-point data for Na 2 SiO 3 + SrSiO 3 are given by Wallace (1909). Results for Na 2 SiO 3 + Na 2 WO 4 are given by van Klooster (1910-11). SODIUM STANNATE Na 2 SnO 3 .3H 2 O. 100 gms. H 2 O dissolve 67.4 gms. at o, and 61.3 gms. at 20. Sp. Gr. of solution at = 1.472; at 20 = 1.438. COrdway, 1865.) SODIUM SUCCINATE (CH 2 ) 2 (COONa) 2 .6H 2 O. SOLUBILITY IN WATER. (Marshall and Bain, 1910.) Gms. (CH 2 ) r Gms. per, SM Phase. H 2 0. H 2 0. O 21.45 (CH2) 2 (COONa) 2 .6H 2 50 56.3 (CH 2 ) 2 (COONa) 2 .6H 2 O I2.S 27.38 62.5 78.49 2$ 34.90 64.9 83.38 " +(CH 2 ) 2 (COONa), 37-5 43.64 75 86.63 (CHMCOONa), SODIUM SUCCINATES 666 o 2-5 25 37-5 SOLUBILITY OF SODIUM HYDROGEN SUCCINATE IN WATER. (Marshall and Bain, 1910.) Cms. (CH^y (COOH)(COONa) Solid Phase, per 100 Cms. H 2 O. NaHSu*.3H 2 O Cms. (CH2) 2 - (COOH)(COONa) 17-55 27-93 39.82 60. 01 Solid Phase, per loo Cms. H 2 O. 38.7 63 . 99 NaHSu.3H 2 O +NaHSu 50 67.37 NaHSu 62 -5 76.15 75 86 EQUILIBRIUM IN THE SYSTEM SODIUM SUCCINATE, SUCCINIC ACID AND WATER. (Marshall and Bain, 1910.) Results at o. Gms. per too Gms. Sat. Sol. NaaSu. H 2 Su.' O 2.68 H 2 Su' 3-23 4-76 " 5.38 5-83 " 8.2 7 7.12 " 4 8.67 6.27 Na] asu. 3 i 9.68 4-74 11.74 3-49 " 15.62 2-34 18.36 1.90 " 4 18.07 1.67 Na, 17.87 0.94 17.64 Results at 50. 19.27 H 2 Su' 5-95 22.90 " 10*25 25-33 ii 15.49 28.73 " 19.65 31-73 " 20.72 26.51 NaHSu 22.53 18.44 25-53 13.09 * 28.28 9.46 " 30.48 7.38 ii 37-33 4.20 36.85 3-88 Na, 36.67 2.66 36.43 Solid Phase. +NaHSu.3H 2 O +Na2Su.6H 2 +NaHSu +Na 2 Su.6H 2 ' The following double and triple points were located : Results at 25. Gms. per 100 Gms. Sat. Sol. Solid Phase. NajSu. H 2 Su. 7.71 H 2 Su 3-68 10.26 " 8.99 13-35 * 12.64 15-53 " 15.26 16.90 " +NaHSu.3H,O 15.97 13 . 83 NaHSu.3H 2 O 18.89 8.41 " 22.71 5-65 " 26.88 4.08 " +Na2Su.6H a O 26.50 2.38 Na2Su.6H 2 O 26.11 0.85 " 25.87 O " Results at 75. 37-64 H 2 Su 8.22 40.38 " 13.14 42.50 " 16.93 44.38 19.56 45-98 " 4-NaHSu 21.88 35-6o NaHSu 24.30 26.82 " 29-45 15.28 " 36.11 7-79 " 41.26 4-93 " 45-27 4 " +Na 2 Su.H 2 45-36 3-17 NazSu.HaO 45-93 1.23 " 46.42 ' 34.9 37-8 38.7 63.4 64.9 Gms. per 100 Gms. Sat. Sol. 5.6 25.46 16.44 3.64 30.8 19.6 22.47 42.92 45-43 Solid Phase. NaHSu. 3 H 2 O +NaHSu H-N^Sn. NaHSu. 3 H 2 +NaHSu+H 2 Su NaHSu.3H 2 O+NaHSu Na,Su.6H 2 O+Na 2 Su.H 2 O4-NaHSu *In the above tables the abbreviation Su is used for (CH 2 ) 2 (COO) 2 . 66 7 SODIUM SULFATE SODIUM SULFATE Na 2 SO 4 . SOLUBILITY IN WATER. (Mulder; Lowel, 1851; Tilden and Shenstone, 1883; Etard, 1894; Funk, igooa; Berkeley, 1904.) Gms. Na2SO 4 per t. 100 Gms. j; Mols. fa 2 SO 4 pe: Solution. Water/ Liter (B.; 4.76 5-o 0.31 : 5 6.0 6. 4 10 8-3 9-0 0.631 15 n. 8 13-4 20 16.3 19.4 1.32 25 21.9 28.0 27 5 25.6 34-o . . . 30 29.0 40.8 2.63 31 30.6 44.0 32 32-3 47-8 32 75 33-6 50.65 3.II 33 33-6 50.6 35 33-4 50.2 40 32.8 48.8 3.01 N a2 SO 4 Gms. Na2SO 4 t. too Gms. per ] Mols. *a 2 S0 4 p Solution. Water. Liter (I 50 3i .8 4 6 7 2 .92 60 3 1 .2 45 3 2.83 80 3o 4 43 7 2.69 100 29 .8 42 5 2.6o 120 29 5 41 95 I4O 29 .6 42 160 30-7 44 25 230 3i 7 46 4 o 16 .3 19 5 5 19 4 24 10 .23 .1 30 15 27 o 37 20 30 .6 44 25 34 .6 53 ... NaSO N a2 S0 4 . 7 HjO The very carefully determined values of Berkeley are as follows: Gms. d t oi Sat. Sol. Na2SO 4 pe 100 Gms. H 2 0. 0.70 [.0432 4.71 10.25 .0802 9.21 15.65 .1150 14.07 20.35 .1546 . . . 24.90 .2067 27.67 27.65 2459 34-05 30.20 ] [.2894 41.78 31.95 ] [.3230 47.98 Gms. d t of Na,jSO 4 per Sat. Sol. 100 Gms. H 2 0. Solid Phase. 32.5tr.pt. 33-5 38.15 44.85 60. 10 75.05 89-85 [oi . 9* * B. pt. 3307 3229 3136 2918 2728 2571 2450 49.39 48.47 47-49 45-22 43-59 42.67 42.18 Na2SO 4 .ioH 2 O+NajSO 4 NasSO, The following additional data at high temperatures, determined by the sealed tube method, are given by Wuite (1913-14). t Mol. Per cent Gms. Na2SO 4 per Na2SO 4 . IO H 2 O mS 62 5.39 44-92 70 5-27 43.87 80 5.18 43-07 1 2O 5.04 41.84 190 5-255 43.74 192 5-27 43.87 Solid Phase. NazSO, (rhombic) Mol. t. Per cent Na^SO,. Gms. NajSO, per 100 Gms. H 2 0. 208 5.39 44.92 ] 235tr.pt. 241 5-39 250 5.04 279 4.12 319 2.56 44.92 41.84 33.84 20.71 Solid Phase. (rhombic) " +monoclinio monoclinic) Supersolubility curves for the ice phase, Na 2 SO4.7H 2 O phase and Na 2 SO4 phase were determined by Hartley, Jones and Hutchinson (1908) by agitating mixtures of sodium sulfate and water contained in sealed tubes, and noting the points at which spontaneous crystallization occurred while the tubes were gradually cooled. The effect of mechanical friction, produced by bits of glass, garnet, etc., was also studied. SODIUM SULPATE 668 SODIUM SULFATE SOLUBILITY OF MIXTURES OF SODIUM SULFATE AND MAGNESIUM SULFATE IN WATER (ASTRAKANITE) Na 2 Mg(SO4)24H 2 O. (Roozeboom, 1887, 1888.) Solid Phase. Astrakanite Astrakanite + NajSO 4 Astrakanite + MgSO 4 Mols. per 100 Grams per 100 ;. Mols. H 2 0. Grams HaO. fra 2 SO 4 . MgSO 4 . Na 2 S0 4 . M g so 4 : 22 2 95 4 .70 23 3 31 4 24 5 3 45 3 .68 27 .2 24 .6 30 3 59 3 59 28 4 24 .1 35 3 .71 3 .71 29 4 24 .8 47 3 .6 3 .6 28 4 24 .1 22 2 95 4 .70 23 3 31 4 24 5 3 45 3 .62 27 .2 24 .2 30 4 58 2 .91 36 .1 19 .1 35 4 3 2 .76 33 9 18 44 18 5 3 .41 4 .27 45 5 22 2 85 4 63 35 .2 48 9 24 5 2 .68 4 .76 32 5 5 .3 30 2 3 5 .31 25 9 55 o 35 I 73 5 .88 23 5 59 4 SOLUBILITY OF MIXTURES OF SODIUM SULFATE, POTASSIUM CHLORIDE, POTASSIUM SULFATE, ETC., IN WATER. (Meyerhoffer and Saunders, 1899.) *- o Sp. Gr. of Mols. per 1000 Mols. H 2 U. * Solutions. SO, K 9 Na 2 C1 2 *4- 4 5- 42 14. 39 5I-83 60. 8 K 3 Na(SO 4 )2+Na 2 SO 4 .ioH 2 O-r- 0. 2 3- 35 12. 78 50- 93 60.36 Na 2 S0 4 .ioH 2 O+KCl+NaCl 0. 4 3- 59 16. 38 40-75 53- 54 Na 2 S0 4 .ioH20+KCl+K3Na(SO 4 ) 2 16. 3 4- 72 17- 58 50. 56 63.42 K 3 Na(S0 4 ) 2 +KCl+NaCl 24- 8 1.2484 4- 37 20. oo 48. 36 64. 01 K3Na(SO 4 ) 2 +KCl+NaCl *i6. 3 16.29 9- 16 61. 06 53- 93 K 3 Na(S0 4 ) 2 +NaCl-i-Na 2 SO 4 .ioH 2 O+ Na 2 SO 4 24. 5 1.2625 14. 45 9- 90 58. 46 53- 9 1 K 3 Na(S0 4 ) 2 +NaCH-Na 2 SO 4 0. 3 2. 75 25- 77 17- 93 40. 95 K3Na(SO 4 ) 2 +KCl+K 2 SO 4 25- o 1.2034 2. 94 36. 20 14. 80 48. 06 K 3 Na(SO 4 ) 2 +KCl+K 2 SO 4 *i7- 9 1.2474 13- 84 0. 62. 57 48. 70 Na 2 SO 4 .ioH 2 0+Na 2 SO 4 +NaCl i 1 . 2890 IO. 08 40. 33 0. K 3 Na(SO 4 ) 2 +Na 2 SO 4 .ioH 2 O+Na 2 SO 4 21. 4 ... .. . .. . 46. 61 46. 36 NaCl. 2 H 2 O+Na 2 SO 4 .ioH 2 O -23. 7 . 10. 51 39- 58 09 NaCl. 2 H 2 O+KCl 10. 9 I. 45 30. 68 29. 23 KC1+K 2 SO 4 - 3 16. 25 IO. 03 6. 21 K 3 Na(SO 4 ) :r |-Na 2 SO 4 .ioH 2 O - 3 16. 24 10. 03 6. 21 . K3Na(S0 4 )2+K 2 S0 4 -14 i. 39 25- 59 8. 78 3 2 - 94 KsNa(SO 4 )iH-Na 2 SO 4 .ioH 2 O-|-KCl -14 i. 39 25. 59 8. 78 32- 94 K 3 Na(SO 4 ) 2 +K 2 SO 4 +KCl -23. 3 ... o. 4i 15. 15 44. 20 58. 97 Na 2 SO 4 .ioH 2 O+KCl+NaCl.aH 2 O * Indicates transition points. 669 SODIUM SULFATE SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM ACETATE AT 25. (Fox, 1909.) Gms. per 100 Gms. Sat.Sol. Solid Phase. Gms. per too Gms. Sat. Sol. Solid Phase. ' CHjCOONa. Na2SO 4 . CH 3 COONa. j^ajSO 4 . 21-9 Na s S0 4 .ioH 2 12.58 I3-50 Na,SO 4 .ioH,O 4.10 17.72 " 16.26 II .50 " 7.71 16.48 H 20.68 8.10 it SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SODIUM CHLORIDE AT 15. ((Schreinemakers and de Baat, 1909.) Gms. per 100 Gms. Sat. Sol. NaCl. Solid Phase. Gms* per 100 Gms. Sat. Sol. 5-42 11-51 15-97 7.86 5-87 5-23 NajS0 4 .ioH 2 NaCl. 21.03 23-39 25.21 NajSO,. 5.26 Solid Phase. Na 2 S0 4 .ioH,0 5.64 " +NaCl 2 . 26 NaCl SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT DIFFERENT TEMPERATURES. (Seidell, 1902.) Results at 10. Results at 21.5. Results at 27* Sp. Gr. of Gms. per too Gms. H 2 0. Sp. Gr. of Gms. per 100 Gms. H 2 0. Sp. Gr. of Gms. per 100 Gms. HzO. Solutions. NaCl. Na 2 SO 4 . Solutions. Nad. Na 2 SO 4 .' Solutions. NaCl. Na a S0 4 . 1. 080 o.o 9- 14 I 164 O-O 21-33 1.228 o.o 3 1 - 10 1.083 4.28 6. 42 I 169 9-05 15.48 1.230 2.66 28. 73 I .IO2 9.60 4- 76 I 199 17.48 13-73 1.230 5-29 27. 17 I.I50 I5-65 3- 99 I .214 20.41 13.62 1-235 7.90 26. 02 1.164 21.82 3 97 I 243 26.01 15-05 1.259 16.13 24. 83 I .192 28.13 4 I .244 26.53 14.44 1-253 18.91 21. 39 I .207 30.11 4 34 I 244 27-74 13-39 1.249 19.64 2O. ii I .217 32.27 4 59 I .244 31-25 10.64 1.245 20.77 19. 29 1.223 4 75 I 243 31.80 10.28' 1.238 32-33 9- 53 I 245 32.10 8.43 I .219 33-69 4-73 I .212 34.08 2-77 I .197 35-46 o.oo Results at 30. Results at 33. Results at 35. Sp. Gr. of Gms. per 100 Gms. HizO. Sp. Gr. of Gms. per 100 Gms. H ? 0. Sp. Gr. of Gms. per 100 Gms. Solutions. NaCl. Na 2 S0 4 . Solutions. NaCl. Na 2 SO 4 . Solutions. NaCl. Na 2 SO . I.28l o.o 39 .70 I 329 o.o 48.48 1.324 o.o 47 94 1.282 2.45 38 2 5 I 323 1.22 46.49 -34 2.14 43 75 1.284 5-6i 36 I .318 1-99 45.16 1.256 13-57 26 .26 I .290 7.91 35 : 9 6 I 3 r 5 2.64 44.09 1.238 18.78 19 74 1.276 10. 61 3 1 .64 309 3-47 42.61 1.231 71 . OI 8 .28 1.270 12.36 29 -87 265 12.14 29.32 i-i93 3 ? - 63 o .00 1.258 15-65 25 .02 237 21.87 16-83 1.249 18.44 21 30 234 32.84 8.76 1.244 20.66 19 .06 .217 33-99 4.63 1.236 32-43 9 .06 I .208 34-77 2-75 SODIUM SULFATE 670 SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 25. (Cameron, Bell and Robinson, 1907.) ^ O f Gms. per 100 Gms. H 2 O. Sat. Sol. .' I.2I73 I.2l62 I.2I50 1.2275 1.2385 1.2571 1.2476 NaCl. 2.96 5-79 9.90 13-43 15-82 19-13 23.22 NazSO,. 26.60 24.32 21.41 19.62 19.64 20.73 16.28 Solid Phase. Na2SO 4 .ioH 2 O Sat. Sol. NaCl. Na,S0 4 . ouiiu i nase. .2429 26.54 12.64 Na 2 S0 4 .2438 31.06 9.98 " 245 1 32.41 9-93 " 2453 33 9-84 " +NaCl .2309 33-81 6.66 NaCl .2162 34.60 3.38 " .2002 35.8o " Data are also given for the ^ystem sodium sulfate, sodium chloride, calcium sulfate and water at 25. SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 25. (D'Ans and Schreiner, 1910.) Mols. per 1000 Gms. Sat. Sol. Mols. per looq Gms. Sat. Sol. (NaOH) 2 . NajSCv 0.074 1.41 0.70 1. 08 1-47 0.90 2.02 0.59 Solid Phase. NasSO, (NaOH) 2 . 2.82 3-52 5.83 6.62 Na,S0 4 . 0.24 0.126 0.013 O Solid Phase. Na,SO NaOH.H 2 SOLUBILITY OF SODIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (D'Ans, 1906; 19090; 1913.) Mols. per looo Gms. Sat. Sol. Solid Phase. H 2 S0 4 . Na 2 S0 4 . I.54I Na 2 S0 4 .ioH 2 0.286 1.671 " 0.338 1.742 i< O.6o 1.85 " 0.763 2 " 0.884 2.256 4-NajJ 0.423 0.77 NaHSO 4 .H 2 O 0.496 0.47 " 1.666 2-437 Na2SO 4 +Na 3 H(SO 4 ) 2 1.576 2.363 " +Na 3 H(SO 4 ) 2 .H 2 O 2.611 2.091 Na 3 H(S0 4 ) 2 + " 5-91* 0.409 NaHSO 4 6.30 0.332 6.64 0.297 " +NaH 3 (S0 4 ) 2 .H 2 6.90 0.173 NaH 3 (S0 4 ) 2 .H 2 7.36 O.07I " 7-74 0.047 8.12 0.037 8.40 0.046 " Mols. per 1000 Gms. Sat. Sol. Solid Phase. S0 3 . Na 2 SO 4 . 8.70 0.076 NaH 3 (SO 4 ) 2 .H 2 O 8.86 0.156 " 8.93 0.273 " 8.84 0.527 " (unstable) 8.70 0.8o8 " " 8.62 0.844 " " 8.61 0.899 " 8.87 0-445 " +Na,S0 4 . 4 *H 2 S0 4 8-93 0-437 Na 2 S0 4 . 4 |H 2 S0 4 9.08 0-394 " 9-36 0.425 " +NaHS 2 0, 9.18 0.567 NaHSjiO, 9.42 0.728 " 9.48 0.76 " 9.48 0-953 " +? 9-85 0.787 ? 9.98 0.908 ? 9.77 1.03 unstable 10. 16 0.797 10.78 0.302 ' From this point on the figures in this column are Mols.SO 3 = H 2 SO 4 + S0 3 . loo cc. sat. solution of Na 2 SO4 in absolute H 2 SO4 contain 29.99 gms. Na 2 SO 4 and the molecular compound which is formed contains 8 mols. H 2 SO4 per I mol. Na 2 SO 4 and melts at about 40. (Bergius, 1910.) Aqueous H 2 SO 4 containing 0.51 mol. per liter dissolve 2.238 mols. Na 2 SC>4 per liter at 25; Aq. H 2 SO 4 of 0.779 mol- per liter dissolves 2.465 mols. Na 2 SO4 at the same temperature. (Here, 1911-12.) 671 SODIUM SULFATE SOLUBILITY OF SODIUM SULFATE IN AQUEOUS ETHYL ALCOHOL. (de Bruyn, 1900.) r. Concentra- tion of Alcohol in Wt. %. Gms. NajSO 4 per too Gms. Aq. Alcohol. IS 12.7 9.2 6-7 " 19.4 2.6 II 39-7 o-5 " 58.9 O.I (I 72 M 37-4 " II. 2 16.3 " 20.6 7 II 30.2 2 25 28.2 ti 10.6 13-9 tt 24 4-5 ft 54 0.4 36 49-3 8.8 29.2 " 12.8 22.4 II 17.9 15-4 II 18.1 15-3 II 28.9 5-4 II 48.7 0.8 45 o 47-9 *' 9 27-5 ii 14-5 19.2 " 20. 6 12.3 Gms. per 100 Gms. Solution. bond Phase. HA CiH 6 OH. Na 2 S0 4 . 88.7 11.3 NajSO 4 .ioH,O 85.1 8.6 6-3 78.6 18.9 2.5 60 39-5 0-5 4I.I 58.8 O.I 28 72 7 2.8 o 27.2 Na.S04.7HA 76.5 9-5 14 74-3 19.2 6.5 M 68.4 29.6 2 7 8.I o 21.9 Na,SO 4 .ioH,O 78-5 9-3 12.2 " 72.8 22.9 4-3 " 45-6 54 0.4 " +Na 2 S0 4 67 33 NaaSO, 70.6 6.8 22.6 " 71.2 10.5 I8. 3 " 71.1 15-5 13-4 " 71 15-7 13-3 " 66.5 28.4 " 50-9 48.3 o.S ti 67.6 32.4 " 7 1 3 7- I 21.6 71.8 12. I 16.1 70.6 18.4 IO " 65-6 29.5 4.9 " The and de 25 following additional determinations at 25 are given by Schreinemakers Baat (1909): 63.41 34.84 1.75 Na 2 S0 4 .ioH I ... 49 50-5 46.6 34*9 53 64-95 1-75 0.5 0.4 0.15 +Na,S0 4 NajSO, Between certain concentrations of the aqueous alcohol the liquid separates into two layers. The following results were obtained at 25, 36 and 45: Upper Layer. Lower Layer. Gms.H 2 0. Gms.C 2 H 5 OH . Gms.Na 2 SO 4 . Gms.H 2 O. Gms.C 2 H 6 OH . Gms.Na 2 SO 4 . 25 66.5 27-3 6.2 67.4 5- 1 27-5 n 68.1 23-9 8.0 68. 5 6.0 25-5 tt 68.3 23.1 8.6 68.3 6.7 25.0 36 . . . . . . 66.6 4.1 29-3 57-7 38-4 3-9 M 65.0 28.3 6.7 68.8 5-9 25-3 II 68.1 21 .2 10.7 68.9 9-4 21.7 45 61.8 32-9 5-3 ii 65.8 25-3 8.9 68.4 8.8 22.8 tt 66.0 24. Q 10. 68.6 10. 1 21-3 Data for equilibrium in the system Na 2 SO 4 + NaCl + C 2 H 5 OH + H 2 O at 15, 25 and 35 are given by Schreinemakers and de Baat (1909), and Schreinemakers (1910). SODIUM SULFATE 672 SOLUBILITY OF SODIUM SULFATE IN AQUEOUS PROPYL ALCOHOL AT 20. (Linebarger, 1892.) Gms. per ioo Gms. Alcohol-Water Mixture. Gms. Na 2 SC>4 per ioo Gms. Sat. Solution. 1-99 Gms. C 3 H 7 OH per 100 Gms. Alcohol-Water Mixture. Gms. Na 2 SO 4 per ioo Gms. Sat. Solution. 42.20 1-99 50.57 0.55 49-77 I-I5 60.64 0-44 55.65 0.72 62.8l 0.38 ioo gms. H 2 O dissolve 183.7 g ms - sugar + 30.5 gms. Na 2 SO 4 at 31.25, or ioo gms. sat. solution contain 52.2 gms. sugar + 9.6 gms. Na 2 SO 4 . (Kohler, 1897.) ioo gms. 95% formic acid dissolve 16.5 gms. Na 2 SO 4 at 19. (Aschan, 1913.) SOLUBILITY OF SODIUM SULFATE IN AN AQUEOUS SOLUTION OF UREA. (Lowenherz, 1895.) Solvent. ioo gms. H 2 O+i2 gms. urea Gms. Na2SO 4 per The Corresponding Fig- ure for the Solubility t. ioo Gms. Sat. Sol. of Na 2 SO 4 in Pure Water Was Found to be: 20.86 22.36 . . . 24-83 21.21 21.62 28.32 26.50 26.48 29.83 28.23 31.90 32.34 34.85 27-73 33.09 39-92 27.19 32.58 Fusion-point data for Na 2 SO 4 + KC1 are given by Sackur (1911-12). Results for Na 2 SO 4 + SrSO 4 are given by Calcagni (191 2- 1912 a). Results for Na 2 SO 4 + Na 2 WO 4 are given by Boeke (1907). SODIUM BiSULFATE NaHSO 4 . (See also last table, p. 670.) ioo gms. H 2 O dissolve 30 gms. NaHSO 4 at 16. (Aschan, 1913.) ioo gms. H 2 O dissolve 28. 6 gms. NaHSO 4 at 25 and 50 gms. at 100. (U.S.P.VIII.) ioo gms. 95 per cent alcohol dissolve about 1.4 gms. NaHSO 4 at 25. (U.S.P.VIII.) ioo gms. 95% formic acid dissolve 30 gms. NaHSO 4 at 19.3. (Aschan, 1913.) SODIUM SULFIDE Na 2 S.9H 2 O. SOLUBILITY IN WATER. (Parravano and Fornaini, 1907.) Gms. NajS per ioo Gms. Sat. Sol. lOEutec. 9.34 Solid Phase. + 10 15 18 22 28 32 37 45 50 pt. 13-36 14.36 15-30 16.20 17-73 19.09 20.98 24.19 28.48 Gms. NasS t. per ioo Gms. Sat. Sol. 60 29.92 70 3I-38 80 33-95 90 37-20 48 tr. pt. 50 26.7 60 28.1 70 30.22 80 32.95 90 36.42 91 .5tr.pt. ... Solid Phase. +Na 2 S.sJH 2 JO 28.48 NajS.siHzO 9I.5tr.pt. ... " +NajS.si Fusion-point data for Na 2 S + S are given by Thomas and Rule (1917). SODIUM Antimony SULFIDE. See Sodium Sulfoantimonate, p. 627. 673 SODIUM SULFITE SODIUM SULFITE Na 2 SO 3 . t. 0.76 Cms. NajSOs per ioo Gms. H 2 0. 2.15 1-37 1.96 4-21 6.24 2.77 3-5* 9.44 12.48 4-5 17.91 1.9 2 5-9 10.6 13.09 14.82 17.61 2O. OI SOLUBILITY IN WATER. (Hartley and Barrett, 1909.) Solid Phase. Ice 1 +Na 2 S0 3 . 7 H 2 Ice (unstable) Gms. N^SOs t. per 100 Gms. Solid Phase. H 2 0. 18.2 25-3I Na 2 S0 3 . 7 H 2 23.5 29.92 " (unstable) 29 34-99 37- 2 44.08 21. 6f " +Na,SO, 37 28.04 Na,SO, 47 28.13 H 55-6 28.21 59-8 28.76 84 28.26 " t tr. pt. * Eutec. Oxidation was prevented by preparing the material and making the solubility determinations in an atmosphere of hydrogen. Supersolubility curves for the salt are also given. The Sp. Gr. of the sat. solution at 15 is I.2I. (Greenish and Smith, 1901.) SODIUM HydroSULFITE Na 2 S 2 O 4 . SOLUBILITY IN WATER, (jeliinck, 1911.) Solid Phase. Gms. NajSA per 100 Gms. H 2 0. 19 Ice+Na 2 S 2 4 .2H 2 22 (5% error) Na 2 s 2 o 4 .2H 2 o 27.8 " +Na 2 S 2 4 24.1 Na 2 S 2 O 4 (unstable) The pure sample was prepared by salting out the commercial product with NaCl. It is very easily oxidized to Na 2 S 2 O5 and must be kept in an indifferent atmosphere or a vacuum. A special apparatus was required for the freezing-point determinations (ice curve) and for the solubility determinations. Great difficulty was experienced in obtaining concordant results with a given sample of Gms. NajSA <.,., * peri S$; n8 ' Phase. t. O.IO7 0.394 Ice 4.58 Eutec. I.IO 4 + 20 2.21 9 52 tr. pt. -3-15 13 20 -4.17 17 SODIUM SULFONATES SOLUBILITY IN WATER. Salt. Sodium: 2.5 Diiodobenzene Sulfonate Formula. Gms. O Anhydrous ' Salt per ioo Gms. H 2 O. Authority. 3-4 Naphthalene Sulfonate <( <( 2 Phenathrene Sulfonate ~ it 10 " Phenol Sulfonate 1.019. C 6 H 3 I 2 S0 3 Na.H 2 O Ci H 7 .SO 3 Na u Ci 4 H 9 S0 3 Na.|H 2 Ci4H 9 SO 3 Na.H 2 O Ci4H 9 .SO 3 Na.2H 2 O 22.5 22.5 23-9 25 20 20 20 (Boyle, 1909.) 6.82 3-47 6.04 5.87* 0.42 i.i 1.63 14- 7t IQ. 2% K = I.067. t <*25 = SOLUBILITY OF SODIUM /3 NAPHTHALENE SULFONATE IN AQUEOUS HYDRO- CHLORIC ACID AT 23.9. (Fischer 1906.) Normality of Aq. HC1. i.o. 2 n. 3 n. 5 n. Gms.CioHT.SOsNaperioogms. Aq.HCl 6.47 5.35 4.13 2.42 25 (Fischer, 1906.) (Witt, 1915.) (Sandquist, 1912.) (Greenish & Smith,'oi.) (Seidell, 1910.) 1.079 SODIUM SULFONATES 674 SOLUBILITY OF SODIUM PHENOL SULFONATE IN AQUEOUS ALCOHOL AT 25. (Seidell, 1910.) Wt. Per cent j r Gms. CsILXOH). Wt. Per cent CjHiOH in Solvent. o(=H 2 0) 10 20 30 40 50 ms. Sat. Sol. 19.38 17.4 15-5 13-6 ii. 7 9-7 rtveat. 60 70 80 90 95 100 d nf Gms. CjEUCOH) Sa? Sol SO 3 Na. 2 H 2 per loo Gms. Sat. Sol. 0.919 0.886 7-5 0.852 0.820 2.9 i.i 0.810 0.8 0.800 i.S 1.079 1.054 1.030 1.004 0.977 In "the ioo per cent C 2 H 6 OH solution, the solid phase, C 6 H 4 (OH) S0 3 Na.2H 2 O, became opaque. ioo gms. H 2 O dissolve 18.25 gms. C 6 H 4 (OH)SO 3 Na.2H 2 O at 14.8, d u .& of sat. sol. = 1.0675. (Greenish and Smith, 1901.) SODIUM TARTRATES SOLUBILITY IN WATER. Gms. Salt Salt. Formula. t. per ioo Gms. H 2 O. Sodium Neutral Inactive Pyrotartrate C6H6O 6 .Na 2 .6H 2 O 20 Dextro 20 Sodium Dihydroxy Tartrate C 4 H 4 O 8 Na 2 .3H 2 O o SODIUM TELLURATE Na 2 TeO 4 .2H 2 O. ioo gms. H 2 O dissolve o.f 7 gm. Na 2 TeO 4 at 18, and 2 gms. at 100. phase Na 2 TeO 4 .2H 2 O. ioo gms. H 2 O dissolve 1.43 gms. Na 2 TeO 4 at 18, and 2.5 gms. at 50. Solid phase Na 2 TeO 4 .4H 2 O. (Mylius, 1901.) SODIUM THIOSULFATE Na 2 S2O 3 .5H 2 O(I). SOLUBILITY IN WATER. (Young and Burke, 1904, 1906.) Authority. 39.73 (Schlossberg, 1900.) 41.10 " 0.039 (Fenton, 1898.) Solid Gms. NazS-A per iJf. ioo Gms. gelid Phase. t. Gms. NajSA per ioo Gms. Solid Phase. Sat. Sol. Water. Sat. Sol. Water. O 33- 40 50 . l5NaaS 2 O 3 .sH 2 O(I) 60. 47 153 Na iSA-HjOdD 10 37- 37 59 .66 " IO 61. 04 156. 7 " 20 41. 20 70 .07 " 2O 62. ii 163. 9 ** 25 I43> 15 75 .90 " 25 62. 73 168. 3 a 35 47- 71 91 .24 " 30 63- 56 174. 4 ** 45 55-33 123 .87 " 40 65.22 187. 6 ** 48. 17* -. . . . . "+Na 2 S 2 3 . 2 H 2 0(I) 50 66. 82 201. 4 it . o 52. 73 in .6oNa 2 S 2 3 . 2 H 2 0(I) 56.5* . . . . * +Na,SA 10 53- 94 117 . 10 " 46. 14 85 . 67 NajSjOa-GHjOdllandlV) 20 55- IS 122 .68 " IO 66 106. 8 ** 25 56. 03 127 43 " 13 54- 96 122 30 57- 13 138 .84 " 14.35* +Na 2 S 2 O 3 .fH 2 O.(IV) 40 59- 38 146 .20 " 14.3* . . . . . u +Na 2 S 2 3 . 7 H 2 0(III) 50 62. 28 165 .11 o 57- 42 134- 8 Na,SA.7H 2 0(III) 60 65- 68 191 30 . " IO 58. 28 139- 7 " 66. 5* .- . . . "+Na,SA 20 59.28 145.6 o 41. 96 72 . 3 oNa 2 S 2 3 . S H 2 0(ID 25 60. 18 I 10 45- 25 82 65 " 30 60. 78 155 * 20 49. 38 97 55 " 40 62. 60 I6 7 . 4 * 25 52- 15 108 .98 ' 47-5 64. 68 i 30 56.57 130 .26 " 48.5* . . . r- +Na 2 S 2 3 .H 2 0(IID 30.22* ... , . "+Na 2 S t 3 . 4 H 2 0(ID 47-5 64.' 78 l83.9Na 2 S 2 3 .H 2 0(IID 33- 5 58. 59 141 . 4 8Na 2 S 2 3 . 4 H 2 0(II) 65. 3 188. 2 36. 2 60. 5* 153 23 " 55 66. 45 198. I * 36. 6 62. 80 168 .82 " 60 68. 07 213. I * 40. 65*.. . . . "+Na 2 S J O a .H 2 0(II) 61* M, -f-^SA * tr.pt. 675 SODIUM THIOSULFATE SOLUBILITY IN WATER (Continued). Cms. Na 2 SA per Gms. NajSjOs per t". 100 ( jins. Solid Phase. t. 100 1 Lrms. , Solid Phase. Sat. Sol. Water. Sat. Sol. Water. O 57 63 136 Na 2 S 2 3 .iH,0(IV) 30 63- 34 172 .80 Na 2 S 2 0,.H 1 0(V) 10 58 .49 I4O. 9 40 6 4 . 75 183.70 2O 59 57 147- 3 50 66. 58 199 .2 25 60 35 152. 2 55 67. 59 208 5 " 30 61 03 156. 6 43* "+Na s S 2 3 .*H 2 0'(V) 40 62 95 I6 9 . 9 " . 25 64*. 21 179 4 Na 1 S 2 3 .JH J 0(V) 50 65 45 I8 9 . 5 40 64. 99 185 .6 " 55 67.07 203. 7 50 66. 02 194 3 " 58* . . " +Na 2 S 2 3 60 67. 4 2O6 7 O 57 63 136 Na 2 S 2 3 . 2 H 2 0(V) 70 69. 06 223 .2 < 10 59 05 144. 2 70* " +Na 2 S 2 0, 20 61 .02 156. 5 40 67^4 206 7 Na 2 S 2 0, 25 62 30 165- 3 5 67. 76 210 .2 " 30 63 56 174. 4 60 68. 48 217 3 35 65 .27 188 70 69. 05 223 .1 (i 27-5* " +N02S203.H20 (V) 80 69- 86 231 .8 * tr. pt. The authors adopted a new system of naming the hydrates, based upon their mutual transition relations. These transitions occur in such a way that the members of one group undergo transition into members of the same group and not into members of another group. Those hydrates belonging to group (I) are called primary hydrates, those belonging to group (II) are called secondary and those belonging to the (III), (IV) and (V) groups are called tertiary, quaternary and quintary respectively. Commercial sodium thiosulfate is the primary pentahydrate, Na 2 S2O 3 .5H 2 O (I). 100 gms. alcohol dissolve 0.0025 gm. Na 2 S4 recorded in the original table and show the weight of Sr(HCOO) 2 per 100 gms. of saturated solution. STRONTIUM FLUORIDE SrF 2 . One liter of water dissolves 0.1135 S m - SrF 2 at 0.26, 0.1173 g m - at I 7-4 an< 3 0.1193 gm. at 27.4, determined by the conductivity method. (Kohlrausch, 1908.) STRONTIUM GLYCEROPHOSPHATE C 3 H 7 O 2 PO 4 Sr.2H 2 O. 100 gms. sat. solution in water contain 2.09 gms. anhydrous salt at 18 and 0.8 gm. at 60. (Rogier and Fiore, 1913.) STRONTIUM HYDROXIDE Sr(OH) 2 .8H 2 O. SOLUBILITY IN WATER. (Scheibler, 1883.) Grams per 100 Grams Solution. Grams per TOO cc. Solution. V . SrO. Sr(OH) 2 .8H 2 0.' o o-35 0.90 10 0.48 1.23 20 0.68 i-74 30 I .00 2-57 40 1.48 3.80 50 2.13 5 -46 60 3-03 7-77 70 4-35 ii . 16 80 6.56 16.83 90 12 .O 30.78 IOO 18.6 47 .71 SrO. Sr(OH) 2 .8H 2 O. o-35 0.90 0.48 1.23 0.68 1.74 1. 01 2-59 i-S 1 3-87 2.18 5-59 3.12 8.00 4-55 11.67 7.02 18.01 13.64 34-99 22.85 58.61 MUTUAL SOLUBILITY OF STRONTIUM HYDROXIDE AND STRONTIUM NITRATE IN WATER AT 25. (Parsons and Perkins, 1910.) j Gms. per 100 Gms. H 2 O. ,5}**, ' SrO as Sat. Sol. Sr(O H) 2 . Sr(NO.,) 2 . 1.481 o 79.27 1.492 0.38 79-47 1.494 0.78 80.83 1.506 .76 81.06 1.490 71 74.27 1.419 .51 63-71 1.381 .41 56.30 1.327 .27 46.97 Gms. per 100 Gms. H 2 O. Solid Phase. Sr(OH) 2 .8H 2 O ffcot ' at. Sol. SrO as Sr(OH) 2 . sr( NOl >,.' .267 I. II 37.81 Sr(OH) 2 .8H 2 O .217 I.OI 28.80 .178 0.95 23-83 .148 0.91 17.96 .108 0.84 12.78 .079 0.81 8.96 059 0-79 6. 29 1.033 0.78 4-45 STRONTIUM HYDROXIDE 682 SOLUBILITY OF STRONTIUM HYDROXIDE IN AQUEOUS SOLUTIONS AT 25. (Rothmund, 1910.) Aqueous Solution of: Mols. Sr(OH) 2 .- 8H 2 Cms. Sr(OH) 2 per per Liter. Liter. Water alone 0.0835 10.16 0.5 n Methyl Alcohol 0.0820 9-97 " Ethyl Alcohol 0.0744 9-05 " Propyl Alcohol " Amyl Alcohol 0.0708 8.61 (tertiary) 0.0630 7.66 " Acetone 0.0692 8.42 " Ether 0.0645 7-85 Aqueous Solution of: 0.5 n Glycol " Glycerol " Mannitol Urea " Ammonia " Dimethylamine " Pyridine Mols. Sr(OH) 2 . 8H 2 per Liter. O.O922 o. 1094 o. 1996 0.0820 0.0785 0.0586 o . 0694 Gms. Sr(OH) 2 tSu. II. 21 24.29 9-97 9-55 8^44 Data for equilibrium in the system strontium hydroxide, phenol and water at 25 are given by van Meurs (1916). STRONTIUM IODATE Sr(IO 3 ) 2 . 100 gms. H 2 O dissolve 0.026 gm. at*i5, and 0.72-0.91 gm. at 100. ~ -Li (Gay-Lussac; Rammelsberg, 1838.) STRONTIUM IODIDE SrI 2 .6H 2 O. SOLUBILITY IN WATER. (Average curve from the results of Kremers, 1858; and Etard, 1874.) Gms. SrI 2 per TOO Gms. Solid Solution. Water. ' Phase. 62.3 I 6 5-3 SrI 2 .6H 2 20 64.0 177.8 " 40 65-7 I9I.5 60 68.5 217-5 " 80 73-o 270.4 t. Gms. Srls per ioo Gms. Solid Solution. Water. " Phase. 90 78-5 3 6 5- 2 SrI 2 . 2 H 2 O 100 79-3 383-I " 120 80.7 4I8.I it I4O 82.5 47 I -S " J 75 85.6 594-4 < Transition temperature about 90. Sp. Gr. of sat. solution at 20 = 2.15 ioo gms. sat. solution of strontium iodide in absolute alcohol contain 2.6 gms. SrI 2 at 20, 3.1 gms. at +4, 4-3 gms. at 39, and 4.7 gms. at 82. (Etard, 1874.) Data for equilibrium in the system strontium iodide, strontium oxide and water at 25 are given by Milikau (1916). STRONTIUM PerlODIDE SrI 4 . Data for the formation of strontium periodide in aqueous solution at 25 are given by Herz and Bulla (1911). The experiments were made by adding iodine to aqueous solutions of SrI 2 and agitating with carbon tetrachloride. From the iodine content of the CC1 4 layer the amount of iodine in the aqueous layer can be calculated on the basis of the distribution ratio of iodine between water and CCU. This furnishes the necessary data for calculating the amount of the strontium periodide existing in the aqueous layer. STRONTIUM IODOMERCURATE SrI 2 .HgI 2 .8H 2 O. A saturated aqueous solution prepared by adding SrI 2 and HgI 2 in excess to warm water and filtering when the temperature had fallen to 16.5 was found to have the composition i.o SrI 2 .i.24 HgI 2 .i8.O9 H 2 O. The die. 5 was 2.5 (Duboin, 1906.) 68 3 STRONTIUM MALATE STRONTIUM MALATE SrC 4 H 4 O5. SOLUBILITY IN WATER. (Cantoni and Basadonna, 1906.) 20 25 30 35 Gms. per 100 cc. Solution. 0.448 0-550 0.752 1.036 40 45 50 Gms. per 100 cc. Solution. I-385 1-743 2.098 55 60 65 70 Gms. per 100 cc. Solution. 2.460 2.821 3.148 STRONTIUM MALONATE CH 2 (COO) 2 Sr. SOLUBILITY IN WATER. (Cantoni and Diotalevi, 1905.) O IO 20 Gms. per 100 cc. Sat. Sol. 0-541 0.540 0.532 25 30 35 Gms. per 100 cc. Sat. Sol. O.52I 0.499 0.478 40 45 50 Gms. per too cc. Sat. Sol. 0.464 0-453 0-443 STRONTIUM MOLYBDATE SrMoO 4 . 100 gms. H 2 O dissolve 0.0104 gm. SrMoO 4 at 17. STRONTIUM NITRATE Sr(NO 3 ) 2 . SOLUBILITY IN WATER. (Berkeley and Appleby, 1911.) (Smith and Bradbury, 1891.) t. d t oi Sat. Sol. G Sr(N( loo Gr 5 3 )2 pe ns. H 2 3. t. d t oi Sat. Sol. Gms. c i'j Sr(N0 3 ) 2 per p S h ^ 100 Gms. H 2 O. Phase - 0.58 .28561 40. 124 Sr(NO 3 ) 2 . 4 H 2 O 30-74 .51282 90.086 Sr(NO,) 1 14.71 .39380 00. 867 " 47-73 5II50 91.446 26.40 .48831 82. 052 61.34 . 51048 93.856 " 29.06 .51098 8 7 . 648 68.96 51057 95.576 29.3* " +Sr(N0 3 ) 2 78.98 .51091 97.865 30.28 .51441 88 ! 577 Sr(NOj) 2 88.94 5II74 100. 136 " 32.58 .51408 88. 943 " The determinations were made with very great accuracy. SOLUBILITY OF STRONTIUM NITRATE IN AQUEOUS ALCOHOL AT 25. (D'Ans and Siegler, 1913.) Wt. % CAOH Solvent Gms. per 100 Gms. m Sat. Sol. Solid Phase. Wt. % C 2 H B OHiE Solvent. Gms i . per 100 Gms. Sat. Sol. Solid Phase. QzHsOH. Sr(N0 3 ) 2 . C 2 H 5 OH. Sr(NO 3 ) 2 . 44 25 Sr(NO 3 ) 2 .4H 2 O IO 6 40. 05 Sr(NOj) 2 (unstable) 4 i-7 42 .8 " 15 05 9 5 36, >j " (unstable) 6 2.6 42 .1 18 .8* 12 35 34 3 " +Sr(N03) 2 . 4 H 2 10.8 4-95 40 4 " 20 6 13 .8 33 2 SrCNOdi 16 7-95 37 .6 " 40 65 32 35 20. 5 " 20* 12.35 34 3 " +Sr(N0 3 ) J 59 9 53 6 IO, 5 O o 46 .6 Sr(NOa) 2 (unstable) 79 ,2 77 15 2, 6 6 3-45 42 7 " " 99 4 99 38 0, 02 * Tr. pt. 100 cc. anhydrous hydrazine dissolve 5 gms. Sr(NOa) 2 at room temp. (Welsh and Broderson, 1915.) STRONTIUM NITRITE Sr(NO 2 ) 2 .H 2 O. 100 cc. sat. solution in water contain 62.83 gms. Sr(NO 2 ) 2 .H 2 O at 19.5. 41 90% alcohol " 0.42 " " " 20. " abs. alcohol " 0.04 " " " 20. (Vogel, 1903.) STRONTIUM NITRITE 684 SOLUBILITY OF STRONTIUM NITRITE IN WATER. (Oswald, 1912, 1914.) Gms. Sr(NO2) s Gms. t per 100 Gms. Solid Phase. t. per 100 Gins? Solid Phase. Sat. Sol. Sat. Sol. 1.3 II-3 Ice 35 43-1 Sr(NQd,.HiO - 3-1 J 9-6 " 52.5 46.5 - 7-7 35-5 60.5 49.3 -6.8 32.8 " +Sr(N02) 2 .H 2 65.5 50.7 - 2.3 33.4 SrCNO^.HjO 82.5 54 - 0.3 34-5 92 56.6 + 19 39-3* 98 58.1 * d = 1.4461. STRONTIUM OXALATE SrC 2 O 4 .H 2 O. One liter of water dissolves 0.0328 gm. SrC 2 O 4 at 1.35, 0.0444 gm. at 15.9, 0.0461 gm. at 18, 0.0575 g m - at 3 l -7 an d 0.0617 S m - at 37.3, determined by the conductivity method. (Kohkausch, 1908.) One liter of sat. aqueous solution contains 0.057 g m - SrC 2 O 4 at o, 0.077 gm. at 20 and 0.093 S m - at 4- (Cantoni and Diotalevi, 1905.) SOLUBILITY OF STRONTIUM OXALATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26-27. (Herz and Muhs, 1903.) Normality of Acetic Acid. Gms. per 100 cc. Solution. Normality ol Acetic Acid. Gms. per 100 cc. Solution. CH 3 COOH. SrC 2 4 .H 2 O. ' CH 3 COOH. SrCA.H 2 O O.OO9 3.86 23.16 0.0598 0.58 3.48 0.0526 5-79 34-74 o . 0496 1-45 8.70 0.0622 16.26 O.OO6O 2.89 17-34 0.0642 STRONTIUM OXIDE SrO. Fused SrCl 2 dissolves 18.3 gms. SrO per 100 gms. of the fused melt at 910. (Arndt., 1907.) STRONTIUM PERMANGANATE Sr(MnO 4 ) 2 . 100 gms. of the sat. solution in water contain about 2.5 gms. Sr(MnO 4 ) 2 at o. (Patterson, 1906.) STRONTIUM SALICYLATE (C 6 H 4 OH.COO) 2 Sr.2H 2 O. 100 gms. sat. solution in water contain 3.04 gms. (C 6 H 4 OHCOO) 2 Sr at 15 and 20.44 g m S. at IOO. (Tarugi and Checchi, 1901.) SOLUBILITY OF STRONTIUM SALICYLATE IN AQUEOUS ALCOHOL AT 25. (Seidell, 1909, 1910.) Wt. % 2 H,OH in Solvent. d^ol Sat! Sol Gms. (C 6 H 4 .OH.- COO) 2 Sr. 2 H 2 O per 100 Gms. Sat. Sol. Wt. % f CaHsOH in Solvent. Sat. Sol. Gms. (C 6 ILOH- COO) 2 Sr. 2 H 2 per 100 Gms. Sat. Sol. I.O22 5-04 60 0.923 7-15 10 1. 006 4.88 70 0.893 5-90 20 0-993 5-22 80 0.859 4.40 30 0.982 6.20 90 0.824 2.56 40 0.966 7.70 92.3 0.815 2.02 50 0.948 8.08 100 0.790 0.44 The solid phase was (C6H 4 OH.COO) 2 Sr.2H 2 O in all cases except the solution m 100 per cent alcohol, in which partial dehydration and conversion of the crystalline salt to an amorphous bulky white powder occurred. Gms. QHASr Gms. C.H.O t. per 100 cc. t. per zoo cc, Sat. Sol. Sat. Sol. 0.052 2O 0.270 5 0.076 25 0.382 10 O.III 30 0.451 15 0.177 35 0.413 685 STRONTIUM SUCCINATE STRONTIUM SUCCINATE C 4 H 4 O 4 Sr. 100 gms. sat. solution in water contain 0.439 gm. C 4 H 4 O 4 Sr at 15 and 0.215 gm. at IOO. (Tarugi and Checchi, 1901.) SOLUBILITY OF STRONTIUM SUCCINATE IN WATER. (Cantoni and Diotalevi, 1905.) Gms. C^x^OjSr t. per 100 cc. Sat. Sol. 40 0.375 45 0.389 50 0.424 STRONTIUM SULFATE SrSO 4 . One liter of water dissolves 0.1133 gm. SrSO 4 at 2.85, 0.1143 gm. at 17.4 and o. 1 143 gm. at 32.3, determined by the conductivity method. (Kohlrausch, 1908.) SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AT 25. (Marden, 1916.) Gms. per too Gms. Sat. Sol. Gms. per too Gms. Sat. Sol. CHsCOONH*. SrS0 4 . CHaCOONH,. SrSO 4 . " 0.0151 10.68 0.0942 2.13 0.0451 21.37 O.II5 5.34 0.0732 SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS CALCIUM NITRATE AT ROOM TEMPERATURE (Raffo and Rossi, 1915.) Analyzed solutions of Sr(NO 3 )2, Ca(NO 3 )2 and CaSO 4 were mixed at 60 and allowed to stand at room temperature I to 2 days. The resulting SrSO 4 was determined and the difference between the amount found and the amount which would have resulted if all the Sr(NO 3 ) 2 had been converted to SrSO 4f was taken as the amount of SrSO 4 dissolved. Gradually increasing concentra- tions of Ca(NO 3 )2 were used. Gms. per 100 cc. Sat. Sol. Gms. per 100 cc. Sat. Sol. "Ca(NOdj. SrS0 4 . ' 'Ca(NOa) 2 . SrSO 4 . " 0.5 0.0483 4 0.1489 1 0.0619 5 0.1698 2 0.1081 6 0.1955 3 0.1275 SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, NITRIC, CHLORACETIC AND FORMIC ACIDS. (Banthisch, 1884.) ec. of Aq. Acid con- taining i Mg. Equr ineachcasi In Aq. HC1 Gms. per zoo cc. In Aq. HNOs Gms. per 100 cc. Sol. In Aq.CH 2 ClCOOH Gms. per 100 cc. Sol. In Aq. HCOOH Gms. per 100 cc. ^ol. CH 2 C1 COOH. SrS0 4 . I'. ' HC1. SrSO 4 . HN0 3 . SrSO 4 . HCOOH, . SrSO 4 . 0.2 18.23 .161 31 5 2 .381 . . . o-5 7.29 .207 12 .61 307 . . . ... x.o 3-65 .188 6 3o .217 94-47 O.O26 46.02 0.024 2 -O 1.82 .126 3 !5 .138 47-23 O.O22 . . . ... IO.O 0.36 .048 63 .049 ioo gms. 95 per cent formic acid dissolve 0.02 gm. SrSO 4 at 18.5. (Aschan, 1913)- STRONTIUM SULFATE 686 SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SODIUM CARBONATE AT 25. (Herz, rgio.) Freshly prepared and dried SrSO 4 was shaken 5 days with aqueous sodium carbonate solutions and the supernatant clear solutions analyzed. Normality of Aqueous Gm. Mols. per Liter Sat. Sol. M , CQ /Na*COA t NaaCO,. Na 2 SO 4 ' V 2 / 2 2 0.6025 0.0382 0.5643 I.2O5 0.076 I.I29 2-41 0-153 2.257 SOLUBILITY OF STRONTIUM SULFATE IN SULFURIC ACID SOLUTIONS. f. Conc.ofH 2 SO, GmS G S ^ ASd. 100 Authority. ord. concentrated 5 . 68 . (Sturve, 1870.) fuming 9.77 " " 91% O.o8 (Varenne and Paulean, 1881.) 70 Sp. Gr. 1.843 = 99% 14 (Garside, 1875-) ord. Absolute H 2 S0 4 21.7* (Bergius, 1910.) * per 100 cc. Sat. Sol. SOLUBILITY OF STRONTIUM SULFATE IN AQUEOUS SALT SOLUTIONS. (Virck, 1862.) In Aq. NaCl. In Aq. KC1. In Aq. MgCl 2 . In Aq. CaCl 2 . ' (a.) (6.) (a.) (6.) (a.) (6.) ' (a.) (ft.) " ' 8.44 0.165 8.22 0.193 1.59 0.199 8 - 6 7 0.176 15.54 0.219 12.54 0.193 4.03 0.206 16.51 0.185 22.17 0.181 18.08 0.251 13.63 0.242 33.70 0.171 (a) = Cms. salt per 100 gms. aq. solution. (6) = Cms. SrSO 4 per 100 gms. solvent. STRONTIUM TARTRATE SrC 4 H 4 O 6 .3H 2 O. SOLUBILITY IN WATER. , (Cantoni and Zachoder, 1905.) Gms. Gms. Gms. t. SrC 4 H4O 6 .3H 2 p per t. SrC^O^H-sO per t SrC.HA^HaO per 100 cc. Solution. too cc. Solution. 100 cc. Solution. O O.II2 25 0.224 60 0.486 10 0.149 3 0.252 70 0.580 15 0.174 40 0.328 80 0.688 20 0.200 50 0.407 85 0.755 SOLUBILITY OF STRONTIUM TARTRATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 26-27. (Herz and Muhs, 1903.) Normality of Gms. per ico cc. Solution. Normality of Gms. per too cc. Solution. Acetic Acid. CH 3 COOH. SrC 4 H 4 O 6 . 3 H 2 0. Acetic Acid. CH 3 COOH. ' SrC 4 H 4 O 6 . 3 H 2 O. o o 0.227 3-77 21.85 1.051 o-5<55 3-39 0.678 5.65 33.90 0.982 1.425 8.15 0.864 16.89 101.34 0.184 2.85 17.10 0.996 STRONTIUM (Di) TUNGSTATE SrW 2 O 7 .3H 2 O. 100 cc. H 2 O dissolve 0.35 gm. at 15. (Lefort, 1878.) 68 7 STRYCHNINE STRYCHNINE SOLUBILITY IN SEVERAL SOLVENTS. Gms. CnH-aNjOj Gms. QiH^N Solvent. t. per 100 Gms. Solvent. t-. per zoo Gms Solvent. Solvent. Water ord.t. 0.014 C 1 Carbon Tetrachloride 20 0.158 (5) u 20 0.0125(2 Cf 20 0.22 9) " 20 0.0143(3 (t 11 T 7 0.645 IC (C 25 0.016 (4) Chloroform 25 10.25 6] (f 20 0.021 (5) 25 16.6 i/ Aq. io%NHs 2O -33 (3) Diethylamine 20 1-7 (3) Aq. 3% H 3 BO 3 in 50% Glycerol ord. t. 3-5 i Ethyl Acetate Ether 20 20 0.197 (s 0.043 (5 C 2 H 6 OH (^=0.83) 15-20 0.71 7 M 25 0.018 (4 " (^=0.83) 2O 0-833 3 " sat. with H 2 O 2O 0-051 (5 " (<*=o.8 3 ) 25 v *f 0.91 (4 Glycerol 15 0.25 " +10% NHs 20 0.256 (3) Petroleum Ether 2O 0.0093(5] " (^=0.785) 25 0.70 (6 Piperidine 20 0.7 (3) CH 3 OH (^=0.796) 25 0.49 (6 Pyridine 20 i.S (3) Aniline 20 20 (3 26 1.24 (i: Amyl Alcohol 25 / 0-55 (4 Aq. 50 % Pyridine 20-25 2.43 (8) Benzene 2O 0.77 (s Water sat. with Ether 20 0.017 (S> M 25 0.76 (6 Oil of Sesame 20 0.061 (2] (i) Baroni and Barlinetto (1911); (2) Zalai (1910); (3) Scholtz (1912); (4) U. S. P. 8th ed.; (5) Mullet [1903); (6) Schaefer (1913); (7) Squire and Caines (1905); (8) Dehn (1917); (9) Gori (1913); (10) Holty (1905). lindelmeiser (1901); (u) SOLUBILITY OF STRYCHNINE IN AQUEOUS ALCOHOL AT i5-2o a . (Squire and Caines, 1905.) Per cent Alcohol in Solvent 20 45 60 70 Cms. C 2 iH22N 2 O2 per 100 cc. solvent 0.024 0.125 0.25 0.40 90 0-59 SOLUBILITY OF STRYCHNINE IN MIXTURES OF ETHER AND CHLOROFORM AT 25. (Harden and Dover, 1916.) Per cent CHC1 3 in Mixed Solvent. 100 90 80 70 60 Cms. CziH-sNzOz per 100 Gms. Mixed Solvent. 15-3 2.77 i-5 0.65 Per cent CHC1 3 in Mixed Solvent. Gms. QiHaNjOj per 100 Gms. Mixed Solvent. 50 0-35 30 0.21 20 0-15 10 0.09 O O.O2 SOLUBILITY OF STRYCHNINE IN MIXED SOLVENTS AT 25. (Schaefer, 1913.) Gm - One volume of C 2 H 5 OH+4 vols. CHCla One volume of C 2 H 5 OH+4 vols. CeH 6 One volume of CH 3 OH +4 vols. CHCla One volume of CH 3 OH +4 vols. C 6 H 6 per 25 5 25 6. 7 DISTRIBUTION OF STRYCHNINE BETWEEN WATER AND CHLOROFORM AT 25. (Seidell, igioa.) Gm. CK per 15 cc Added 4-iS cc. Gms. C 21 H 2 2N 2 O2 Recovered per 15 cc: 0.00$ 0.025 0.12$ O.62C H 2 O Layer (a). O.0006 O.OOIO O.OO2I 0.0099 CHC1 3 Layer (b). O.OI03(?) 0.0253 0.1299 0.6225 (6) 25.2 61 64 STRYCHNINE 688 STRYCHNINE ARSENATE C 21 H 22 N 2 O 2 .H 3 AsO 4 4H 2 O(.iiH 2 O). loo gms. sat. solution in water contain 4.53 gms. C 2 iH 22 N 2 O 2 .H 3 AsO 4 at 25. (Puckner and Warren, 1910.) IOO gms. CHCU dissolve 0.085 gm. C 2 iH 22 N 2 O 2 .H 3 AsO 4 at 15. (Hill, 1910.) STRYCHNINE FORMATE C 2 iH22N 2 O 2 .HCOOH.2H 2 O. SOLUBILITY IN WATER AND IN ALCOHOL. (Hampshire and Pratt, 1913.) Solubility in Water. Solubility in Abs. Alcohol. t, Gms. Salt per ^.o Gms. Salt per loo Gms. H 2 O. loo Gms. C 2 H 6 OH. 19-5 30-59 18.5 10 24 39-68 20 10.3 27 44-25 22 10.64 STRYCHNINE HYDROBROMIDE CnHEN-A.HBr. IOO CC. H 2 O dissolve 1.54 gms. of the salt at I5-2O. (Squire and Caines, 1905.) loo cc. 90% alcohol dissolve 1.04 gm. of the salt at I5-2O. STRYCHNINE HYDROCHLORIDE IOO cc. H 2 O dissolve 2.86 gms. of the salt at I5-2O. (Squire and Caines, 1905.) loo cc. 90% alcohol dissolve 1.37 gms. of the salt at I5-2O. 100 gms. CHCls dissolve 0.592 gm. of the salt at 15. (Hill, 1910. STRYCHNINE NITRATE SOLUBILITY IN SEVERAL SOLVENTS. Gms. Salt Solvent. Gms. Salt Solvent. t. per 100 cc. t. per 100 cc. Solvent. Solvent. Water 15 1.4 (i) CHaOH 25 0.345 (3 15-20 1.6 (2) CHCU 25 1.25 ( 3 25 2.38(4) i vol. CJfcOH+4 vols. CHO. 25 5 (3 80 12.5 (4) i vol. C 2 HfiOH+4 vols. C 6 H 6 25 0.66 (3 9 o%C 2 H6OH 15-20 0.83 i5 0.77 b. pt. 3.45 2) i vol. CHaOH+4 vols. CHCU 25 4 (3 i) i vol. CHaOH+4 vols. C 6 H 6 25 i (3 i) Glycerol 25 1.66 (4) 100% CzHfiOH 2*5 0.37 (3) (i) Dottdgio); (2) Squire and Caines (1905); (3) Schaefer (1913); (4) U. S. P. VIII ed. DISTRIBUTION OF STRYCHNINE NITRATE BETWEEN WATER AND CHLOROFORM AT 25. (Seidell, igioa.) Gms. CzjH-aNzOis.HNOa Gms. Q^zjNzOz.HNOs per 15 cc.: a Added per 15 cc. t * \ - HjO + 15 cc-CHCla. H 2 O Layer (a). CHC1 3 Layer (b). 0.005 0.0051 o.oo3o(?) 0.025 0.0222 0.0042 5.3 0.125 O.IOI7 0.0243 4-2 0.625 0.3250 0.1698 2 STRYCHNINE OXALATE loo gms. H 2 O dissolve 1.13 gms. of the anhydrous salt at about 15. (Dott, 1910.) STRYCHNINE PERCHLORATE C 21 H 22 N 2 O 2 .HC1O 4 . 100 gms. HaO dissolve 0.022 gm. perchlorate at 15. (Hofmann, Roth, Hobold and Metzler, 1910.) 689 STRYCHNINE SULFATE STRYCHNINE SULFATE SOLUBILITY IN SEVERAL SOLVENTS. Solvent. Water 90% C 2 H6OH 94% " 94% " 100% " CHaOH t. 15-20 25 80 15-20 25 60 25 25 Gms. Salt per ioo cc. Solvent. 2.08 (i) 3-23 (2) 16.6 (2] 0.74 (i) 1.9 (') 6.2 2 0.8 3 8-33 3 Solvent. CHCU i vol. C 2 H50H+4vols. CHCU i vol. C 2 H50H+ 4 vols. CeHe i vol. CHsOH+4 vols. CHCls i vol. CHaOH+4 vols. Glycerol 15 25 25 25 25 25 25 15 Gms. Salt per ioo cc. Solvent. 0.05 0.31 0-43 12.8 0.725 (3) 25 (3) 12.5 18 (4) 8 8 (3) I (i) Squire and Caines (1905); (2) U. S. P. VIII; (3) Schaefer (1913); (4) Hill (1910). d Tartrate. / Tartrate. Racemic Tartrate, 14.14 9.48 14.02 17.72 11.50 19.12 22.9 I4-52 24.70 15.60 17.02 35-18 22.90 38.42 STRYCHNINE TARTRATE SOLUBILITY OF d, I AND OF RACEMIC STRYCHNINE TARTRATE IN WATER. (Dutilh, 1912.) Gms. of Each Separately per 1000 gms. H 2 O. ,. t. d Tarti 7-35 16 25 27 30 40 SOLUBILITY OF MIXTURES OF d AND / TARTRATES AND OF RACEMIC STRYCHNINE TARTRATE IN WATER. (Ladenburg and Doctor, 1899.) Results for d + / Tartrate. Results for Racemic Tartrate. Gms. Anhydrous Gms. Anhydrous. t. Salt per ioo Gms. Solid Phase. t. Salt per ioo Gms. Solid Phase. H 2 0. H 2 0. 7 1.48 S%d+S%l 7 1-39 Racemic Tartrate 19 i-95 *9 i-90 27 2.38 27 2.33 35 3-02 35 3-i7 42 3-75 42 3-92 ioo gms. sat. solution in water contain 0.45 gm. anhydrous strychnine acid tartrate at about 15. (Dott, 1910.) SUBERIC ACID C 6 H 12 (COOH) 2 . SOLUBILITY IN WATER. (Lamouroux, 1899.) t. o. 15. 20. 35. Gms. CeHi 2 (COOH) 2 per ioo cc. sol. 0.08 0.13 0.16 0.45 50. 0.98 65. 2.22 SOLUBILITY OF SUBERIC ACID IN ALCOHOLS AT 4. (Timofeiew, 1894.) Gms. C 6 Hi2(COOH) 2 per ioo Gms. Alcohol. Sat. Sol. Alcohol. Methyl Alcohol 20.32 3 2 . 04 Ethyl Alcohol 15.5 1 8 . 44 Propyl Alcohol 12.2 13.9 ioo gms. 95 per cent formic acid dissolve 2.13 gms. C 6 Hi 2 (COOH) 2 at 19.5. (Aschan, 1913.) Data for the distribution of suberic acid between water and ether at 25 are given by Chandler, 1908. SUCCINIC ACID SUCCINIC ACID (CH 2 ) 2 (COOH) 2 . 690 SOLUBILITY IN WATER. (Miczynski, 1886; van der Stadt, 1902; Lamouroux, 1899; for other concordant results, see Bourgoin, 1874; Henry, 1884.) *- Gms. (CH 2 ) 2 (COOH) 2 per too Gms. Succinic Anhydride (CH 2 ) 2 COCOO per too Gms. Mol. Per cent. Gms. H 2 O. cc. Solution. H 2 0. (CH 2 ) 2 COCOO: H 2 O. 2.80 2. 7 8(L.) 2-34 99.58 0.42 IO 4.51 4 3-80 99-32 0.68 20 6.89 5-8 5-77 98.97 1.03 25 8.06 7 6.74 98.80 1.20 30 10.58 8-5 8.79 98.44 1.56 40 16.21 12.5 13-42 97.64 2.36 50 24.42 18 19-95 96.53 3-47 60 35.83 24-5 28.77 95-07 4-93 70 51.07 40. ii 93.26 6.74 80 70.79 54.08 91.12 8.88 89.4 95-4.' 70.62 88.71 ii. 29 104.8 146.3 IOI.2 84.57 15-43 II5.I 188.5 126.8 81.4 18.6 134-2 335-4 187.8 74-72 ' 25.28 159-5 748.2 295.2 65.27 34-73 180.6 1839 . . . 408.5 57-6 42.4 182.8 00 542-3 5 50 174.4 . . . . . . 808.5 40.7 59-3 153.3 . . . 2239 19.86 80.14 128 . . . 8865. 5-89 94.11 II8.8-II9 00 100 The following very careful determinations of the solubility of succinic acid in water are given by Marshall and Bain (1910). t. o. 12.5. 25. 37. S- 50- 62.5. 75. Gms. (CH 2 ) 2 (COOH) 2 per 100 gms. H 2 O 2.75 4.92 8.35 14 23.83 39.35 60.37 SOLUBILITY OF SUCCINIC ACID IN AQUEOUS SOLUTIONS OF SALTS AND OF ACIDS AT 25. (Herz, igiob, 1911.) In Aq. HBr. Gms. per Liter. In Aq. HC1, Gms. per Liter. In Aq. KBr. Gms. per Liter. In Aq. KC1. Gms. per Liter. HBr. C 4 H 6 4 . HC1. C 4 H 6 O 4 . KBr. C 4 H 6 O 4 . KC1. C 4 H 6 4 . 8l.2I 18.45 66. 25 81. 21 28.34 75.58 79- 3 57-38 45-6 50, , 7 8 65- 45 75- 58 77.56 74-39 274- 4 32.83 87-9 35 ,42 260. 5 69. 68 150.7 69.68 166.6 27 75 502. i 62. 59 267 61.41 In Aq. KI. In Aq. LiCl. In Aq. NaCl. Gms. per Liter. Gms. per Liter. Gms . per Liter. Solid KI. C 4 HeO 4 . LiCl. C 4 H e 4 - ' NaCl. C 4 H 6 4 . Phase. 8l.2I 81. 21 l8. 7 74-39 C 4 H fl 4 4 6, ,48 79-12 7.63 70. 86 32.73 69.68 " 102 9 77-93 23.32 62. 59 64.3 61.41 H , ' , 57-66 47- 24 I32.I 49-55 " ny 29. Si 289.4 27.16 " 176.4 20. 07 3I5-I 22.44 NaCl 231-5 14. 318 4-72 " 691 SUCCINIC ACID SOLUBILITY OF SUCCINIC ACID IN AQUEOUS SOLUTIONS OF POTASSIUM SUCCINATE AND VlCE VERSA AT SEVERAL TEMPERATURES. (Marshall and Cameron. 1907.) Gms. per 100 Gms 4 o. Sat. Sol. Solid Phase. Gms. per 100 Gms. t. Sat. Sol. Solid Phase. H 2 C 4 H 4 4 . K 2 C 4 H 4 O 4 . H 2 C 4 H 4 O 4 . K 2 C 4 H 4 4 . 2 7 1 o H 2 C 4 HA 25 7-88 H 2 C 4 H 4 4 7 ,26 8. 09 " +KH 3 (C 4 HA) 2 25 9- 965 3- 17 " o 7 .86 7- 66 " " 25 12. 77 8. 4 " 8 .24 9- 95 KH 3 (C 4 HA) 2 25 17- 6 14- 15 cc 8, . ii 12. 77 " 25 18. i 14- 3 " +KH,(CJH,04), 7-87 15- 47 " +KHC 4 H 4 O 4 . 2 H 2 O 25 15- 36 18. 48 KH 3 (C 4 H 4 4 ) 2 40. 2 K 2 C 4 H 4 4 . 3 H 2 25 7 23- 6 " H-KHC^O* 14 i .468 41. 3 K 2 C 4 H 4 4 +KHC 4 H 4 O 4 25 13- 06 23- 81 KHC 4 H 4 O 4 +KHC 4 H 4 O 4 . 2 H 2 25 ii. 98 24. 43 " 15. 9 i -7 34- 36 KHC 4 H 4 4 . 2 H 2 O+KHC 4 H 4 O 4 25 9-97 25 " 20 6 39 o H 2 C 4 H 4 O 4 25 6. 61 28. 6 " 20 7 .48 i. 85 " 25 2. 6 38. 2 " 20 14 63 ii. 64 " 25 2. ii 40. 6 CC 20 15 03 13- 32 " +KH 3 (C 4 H 4 4 ) 2 25 I, <>3 48. 7 " +K 2 C 4 H 4 4 . 3 H 2 20 13 32 18. 46 KHsCC^O^z 25 0. 13 56. IS K 2 C 4 H 4 4 . 3 H 2 20 12 -74 22. 45 " +KHC 4 H 4 4 25 O 58. 05 " 20 II -7 22. 91 KHC 4 H 4 O 4 40 12, 9 H 2 C 4 H 4 4 20 I 42. I ' " 40 25 5 16. 83 " +KH 3 (C 4 H 4 O 4 ) 2 20 I 05 47- 3 " +K 2 C 4 H 4 4 . 3 H 2 40 19 25- 481 ^- H-3^ 04^X404) 2"i K. XI (^4X14^ 20 O 985 48. i K 2 C 4 H 4 4 . 3 H 2 40 *5 83 26.56 KHC 4 H 4 O 4 20 .909 48. 75 " 40 o 62. 10 KjC^C^HjO 20 o -159 54- 3 " 20 56.6 SOLUBILITY OF SUCCINIC ACID IN ALCOHOLS AND IN ETHER. (Timofeiew, 1891, 1894; at 15, Bourgoin, 1878.) Solvent. Abs. Methyl Alcohol Abs. Ethyl 90% " Abs. Propyl Abs. Ether Isobutyl Alcohol Gms. (CH2) 2 (COOH) 2 per 100 Gms. Solvent at: 10.51 5.06 2. II +15. 12.59 7-51 1.265 +21-5. 19.40 9-49 4-79 2-73 + 3 9- 28. 7 15 7-53 loo gms. 95 per cent formic acid dissolve 2.06 gms. (CH 2 )2(COOH) 2 at 18.5. (Aschan, 1915.) DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20. (Herz and Fischer, 1904.) Millimols JC 4 HO 4 per 10 cc. Gms. C 4 HO 4 per 100 cc. Millimols iC 4 HO 4 per 10 cc. Gms. C 4 HgO 4 per 100 cc. Alcohol Layer. 0.1888 0.3643 0.7077 1.440 2.715 Aq. Layer. 0.2684 0.5252 1-0373 2.1266 4.0495 Alcohol Layer. o. 1114 0.215 0.418 0.850 1.603 Aq. Layer. 0.1584 0.310 0.612 1.255 2.391 Alcohol Layer. 3.899 5-199 6-334 7.119 Aq. Layer. 6.0795 8.099 10. 170 11.555 Alcohol Layer. 2.302 3.069 3-739 4.202 Aq. Layer. 3-588 4-779 6 6.821 SUCCINIC ACID 692 SOLUBILITY OF SUCCINIC ACID IN AQUEOUS ACETONE AT 20. (Herz and Knoch, 1904.) cc. Acetone per zooicc. Solution. O 10 20 30 40 50 C 4 HgO4 per 100 cc. Solution. Millimols. 107.8 127.4 155-8 186.7 225-4 254-3 Gms. 6.363 7.5I9 9.194 II. O2 I3.30 15.01 cc. Acetone per 100 cc. Solution. C 4 H 6 O 4 per zoo cc. Solution Millimols. Gms. 60 275.7 16.27 70 278.5 16.44 80 265.3 15-66 90 201.9 11.91 iOO 5L5 3-04 SOLUBILITY OF SUCCINIC ACID IN AQUEOUS GLYCEROL SOLUTIONS AT 25. (Herz and Knoch, 1905.) Wt. % Glycerol in Solvent. C 4 H 6 O 4 per 100 cc. Solution. Sp. Gr. of Solutions. Wt. % Glycerol in Solvent. C 4 H iO 4 per zoo cc. solution. Sp. Gr. of Solutions. Millimols. Gms. Millimols. Gms. 133 4 7.874 I .0213 40.95 105. 8 6.244 I. I I 20 7- 15 128 .2 7.566 I .0407 48.70 99. 9 5.896 1.1298 20. 44 118 3 6.982 I .0644 69.20 88. 5 5.223 I . 1804 31- 55 109 7 6.476 I .0897 IOO* 74- 6 4.440 1.2530 * Sp. Gr. of Glycerol = 1.2555. Impurity about 1.5 per cent. DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND ETHER AT AND 25.5. (Pinnow, 1915.) Results at 15 Gm. Mok. per Liter. c c 6. 6. 6. Results at 20 Gm. Mols. per Liter. c c' 6. 6. 6. 6. Results at 25. Gm. Mols. per Liter. c 7- 7- 7- 52 52 7i Aqueous Layer (c). 0.474 0.2585 O.II75 Ether Layer (c*). 0.0783 0.0415 0.0187 05 23 28 Aqueous Layer (c). 0.644 0.312 O.I5I 0.0405 Ether Layer (c')- 0.096 0.046 0.0218 O.OO6 71 87 93 75 Aqueous Layer (c). 0.3293 0.1768 0.0894 Ether " Layer (c'). 0.0438 0.0235 0.0116 Very careful determinations of this distribution at o and at 25, in which the ionization of the succinic acid in the two solvents is taken into consideration, are given by Chandler, 1908. Two determinations at o and two at 15 are quoted by Kolossovsky, 1911. Earlier data for this system are given by Nernst, " Theo- retical Chemistry," 3rd English edition, p. 496. BromSUCCINIC ACID CHBr(CH 2 )(COOH) 2 (m. pt. 159). SOLUBILITY IN ALCOHOLS AT 22. (Timofeiew, 1894.) Gms. CHBr(CH2)(COOH) 2 per 100 Gms. Methyl Alcohol Ethyl Alcohol Propyl Alcohol Sat. Solution. 56-5 45-5 33-1 Alcohol. 129.7 83.6 49.4 Data for the distribution of monobromsuccinic acid between water and ether at 25 and for dibromsuccinic acid between water and ether at 25 are given by Chandler (1908). Data for the melting-points of mixtures of the following pairs of optical anti- podes are given by Centnerszwer (1899). d + / Chlorsuccinic Acid. d 4- i Chlorsuccinic Acid. d Chlorsuccinic Acid + I Bromsuccinic Acid. i Chlorsuccinic Acid + 1 Bromsuccinic Acid. d + / Benzylaminosuccinic Acid. d -f- / Aminosuccinic Acid. 693 SUCCINIMIDE SUCCINIMIDE CO SOLUBILITY IN WATER AND IN ETHYL ALCOHOL. Interpolated from original results. In Water. (Speyers, 1902.) In Ethyl Alcohol. Wt.of Mols. per Cms. per Wt.of Mols. per Gms. per t. I CC. 100 Mols. 100 Gms. I CC. ioo Mols. ioo Gms Solution. H 2 0. H 2 0. Solution. QHfiOH. QH 6 OH o 1.025 1.58 8.69 0.815 0.88 1.89 10 1.035 2.4 14 0.809 i-35 2.7 20 .052 4 23 0.8o6 2 4.1 25 .067 5-9 33 0.805 2-5 5-3 30 .086 8 45 0.804 3-i 6.8 4P .I2O 12.8 70 0.809 4.9 10.5 50 145 17.8 96 0.816 7.8 16 60 .167 22.6 124 0.835 12.3 26.5 70 .189 27.5 152 0.873 80 .204 32-8 0-954 Freezing-point data (solubilities, see footnote, p. i), are given for ethylsuc- cinimide + bromotoluene and for ethylsuccinimide + p xylene by Paterno and Ampola (1897). SUCCINIC NITRILE (Ethylene Cyanide) CNCH 2 CH 2 CN. The solubility of succinic nitrile in water and also in aqueous sodium chloride solutions at various temperatures has been determined by Schreinemakers (1897), and the results presented in terms of mols. of nitrile per ioo mols. of nitrile -j- H 2 O. The following calculations of these results to gram quantities was made by Rothmund. (Landolt and Bernstein's, " Tabellen " 1906.) t. 18.5 20 39 45 Gms. CNCH 2 CH 2 CN per ioo Gms. Gms. CNCH 2 CH 2 CN per ioo Gms. Aq. Layer. IO.2 II 22 Nitrile Layer. 92 91-5 85.2 Aq. Layer. 53-5 33-2 55 40-3 55.4 crit. temp. Nitrile Layer. 66.4 62.8 Very complete data for the system succinic acid nitrile, ethyl alcohol and water, determined by the synthetic sealed-tube method, are given by Schreine- makers (i8o.8c). Results for the system succinic acid nitrile, cane sugar and water are given by Timmermans (1907). SUGAR Ci 2 H 22 O u (Cane Sugar.) SOLUBILITY IN WATER. (Herzfeld, 1892; see also Courtonne, 1877.) per ioo Gms. O 5 10 15 20 25 30 35 Solution. Water. 64.18 179.2 64-87 184.7 65.58 190.5 66.33 197 67.09 203.9 67.89 2II.4 68.70 219.5 69.55 228.4 40 45 70 80 90 ioo Gms. CigHaOu per ioo Gms. Solution. Water. 70.42 238.1 71.32 248.7 72.25 260.4 74.18 287.3 76.22 320.4 78.36 362.1 80. 61 415.7 82.97 487.2 Sp. Gr. of sat. solution at 15 = 1.329; at 25 = 1.340. ioo gms. H 2 O dissolve 212 gms. cane sugar at 25, determined by means of Pulf rich's refractometer. (Osaka, 1903-08.) SUGAR 694 SOLUBILITY OF SUGAR IN AQUEOUS SALT SOLUTIONS AT 30, 50, AND 70. Interpolated from original results. (Schukow, 1900.) Gms. per 100 grams EfeO in Aq. Solution of: loo Gms. H 2 O. KC1. KBr. KN0 3 . Nad. CaCl 2 . 3? 219.5 219.5 219.5 219.5 219.5 10 216 218 217 2IO 197 tt 20 221 22O 216 211 189 " 30 228 224 216 219 I 9 2 M 40 237 228 217 233 20O K 50 218 25O 218 M 60 269 243 50 260.4 260.4 260.4 260.4 260.4 (i 10 26l 262 260 255 239 (I 20 266 266 261 260 228 30 274 272 262 269 228 U 40 284 276 262 284 236 " 50 296 280 263 302 253 (< 60 276 70 320.5 320.5 320.5 320.5 320. (C 10 326 324 321 323 295 u 20 334 328 324 330 286 u 30 345 334 327 344 286 n 40 357 34i 33i 361 295 u 50 37 349 334 384 308 u 00 384 357 337 406 327 SOLUBILITY OF CANE SUGAR IN SATURATED AQUEOUS SALT SOLUTIONS AT 31.25. (Kohler, 1897.) Salt. CH 3 COOK C 3 H 7 COOK C 3 H 4 .OH.(COOK) 3 .K 2 C0 8 KC1 CH 3 COONa NaCl Gms. Sugar per 100 Gms. Solution. 49.19 56.0 62.28 59-93 62.17 Water. 324.8 306.1 265.4 246.5 237.6 236.3 Gms. Sugar per 100 Cms- Solution. Na 2 C0 3 64-73 KNO 3 61.36 K 2 S0 4 66.74 CH 3 COOCa 60.12 Na 2 SO 4 52.20 CaCl 2 42-84 MgS0 4 46-52 Water. 229.2 224.7 219.0 190.0 I83-7 I35-I 119.6 SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS AT 14. (Schrefeld, 1894.) Wt. per cent AlcohoL Wt. per cent Sugar. Gms. Sugar per 100 CC. Alcohol-H 2 O Mixture. Wt. per cent Alcohol. Wt. per cent Sugar. Gms. Sugar per 100 cc. Alcohol-HsO Mixture. 66.2 I 9 5.8 50 38.55 62. 7 5 64.25 179.7 60 26.70 36.4 10 62.20 164.5 70 12.25 13-9 20 58.55 141 .2 80 4.05 4-2 30 54-05 II7.8 90 o-95 0-9 40 47-75 91 . IOO c-oo O-O 695 SUGAR SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS. (Scheibler, 1872; correction, 1891.) Results at o. Results at 14. Results at 40. Per cent Sp. Gr. of Cms. Sugar Sp. Gr. of Cms. per 100 cc. Solution. Gms. Sugar Alcohol Solution a,t per 100 cc. Solution at A per 100 cc. by Vol. 17.5. Solution. 17-5. Sugar. C 2 H 5 OH. H 2 0. Solution. O 1-325 85.8 1.326 87.5 45-iQ IO 1.299 80.7 300 8l-5 3-91 44.82 95-4 20 1.236 74.2 .266 74-5 8.52 43-83 90 30 1.229 65-5 233 67.9 13-74 41.87 82.2 40 1.182 56.7 .185 58 20. 24 40.38 74-9 50 1. 129 45-9 131 47-1 28.13 38.02 63-4 60 1.050 32.9 .058 33-9 37-64 34-47 49-9 70 0.972 18.2 0.975 18.8 46.28 29-57 3i-4 80 0.893 6.4 0.895 6.6 6I.I5 21.95 13-3 90 0.837 0.7 0.838 0.9 7I.I8 12.83 2-3 97-4 0.806 0.08 0.808 0.36 77-39 3-28 0-5 100 gms. absolute methyl alcohol dissolve 1.18 gms. cane sugar at 19. (de Bruyn, 1892.) SOLUBILITY OF CANE SUGAR IN AQUEOUS ACETONE AT 25. (Herz and Knoch, 1904.) Sp. Gr. of cc. Acetone Gms. Sugar Gms. per 100 cc. Solution. Solutions. Solvent. Solution. H 2 0. (CH3) 2 CO CiuHaOn 1.3306 89.8 43-3 89.8 1.2796 20 76.7 42.9 8.4 76.7 1.2491 30 72.1 39-5 13-4 72.1 1.2002 40 59-3 39-8 20.9 59-3 I. 1613 45 52.5 39 24.6 52-5 Above 45 cc. acetone per 100 cc. solvent the solution begins to separate into two layers. The lower of these contains 51 gms. sugar per 100 cc. and has Sp. Gr. 1.1522. The upper layer contains so little sugar that the amount could not be determined by the method employed. 100 cc. evaporated in a vacuum desic- cator left a residue of 3.68 gms. Above the concentration of 80 cc. acetone per 100 cc. solvent the two layers unite. In pure acetone 100 cc. solution gave a residue of 0.18 gm. sugar. Sugar. Cane Sugar (Sucrose) Milk Sugar (Lactose) Grape Sugar (Glucose) Fruit Sugar (Fructose) Galactose Maltose Mannose Raffinose SOLUBILITY OF SEVERAL SUGARS IN PYRIDINE AT 26. (Holty, 1905.) Gms. Sugar Formula. d C 6 H 12 O 6 .H 2 CeHxA C 18 H 32 16 . 5 H 2 J 26 of Sat. Sol. per 100 Gms. Sat. Sol. 6-45 0.981 2.18 1.005 7.62 1.052 18.49+ 1.0065 5-45(?) 98.10* . . . 29.9* 75* (Dehn, 1917.) * It is uncertain whether these figures refer to gms. per 100 gms. sat. solution or gms. per 100 gms. pyridine at 2o-2S. 100 gms. aq. 50 per cent pyridine dissolve the following gms. of sugars at 20- 25; sucrose, 38.5; maltose, 43.07; mannose, 78.70; lactose, 1.98; fructose, 85.42; galactose, 68.3; glucose, 49.17; raffinose, 8.76. (Dehn, 1917.) 100 gms. trichlorethylene dissolve 0.004 gm. cane sugar at I 5- (Wester & Bruins, 1914.) For additional data on Galactose, see p. 305 and on Glucose, see p. 306. SUGARS 696 SOLUBILITY OF MILK SUGAR (LACTOSE) HYDRATE AND ft ANHYDRIDE IN WATER. (Hudson, 1904, 1908.) It was found that the saturation point was reached very slowly with this compound. From the results, it was concluded that "aqueous solutions of milk-sugar contain two substances in equilibrium and that the mutarotation of milk-sugar results from the slow establishment, in cold solutions, of the equi- librium of the balanced reaction, Ci 2 H 2 4Oi 2 (Hydrate) <= H 2 O + Ci 2 H 22 Ou (ft-an- hydride). The final solubility of hydrated milk sugar was determined by approaching saturation from below and from above with mixtures of water and excess of once recrystallized hydrated milk sugar. These were constantly rotated until equilib- rium was reached (one week was allowed in all cases). The filtered saturated solutions were evaporated to dryness and the crystalline residues, consisting of the a and ft anhydrides, weighed. o 15 25 39 Cms. C u HsAi per 100 Gms. Sat. Sol. 10.6 14-5 17.8 24 t-. 49 64 74 89 Gms. per 100 Gms. Sat. Sol. 29.8 39-7 46.3 58.2 The initial solubility, obtained by agitating an excess of milk sugar hydrate with water for a few minutes, was somewhat less than one-half the above figures, at temperatures up to 25. The final solubility of ft anhydrous milk sugar was difficult of determination on account of the high concentration and instability of the saturated solution below 92. At o the final saturation was hastened by addition of o.i n NHaOH solution. At o, 42.9 gms. Ci 2 H 22 On per 100 gms. sat. solution were found and at 1 00, 61.2 gms. SOLUBILITY OF SEVERAL SUGARS IN AQUEOUS ALCOHOL AT 20. (Hudson and Yanovsky, 1917.) Sugar. a. Arabinose ft Cellose ft Fructose ft ft " a Galactose a " ft, a Glucoheptose a Glucose a. a " hydrate ft Glucose a Lactose hydrate a Lyxose ft Maltose hydrate ft Mannose ft ft Mellibose Dihydrate a Rhamnose Hydrate a. " a Xylose Sucrose Trehalose Dihydrate Raffinose Pentahydrate Gms. Anhydrous Sugar Formula. Solvent. per 100 cc. Solution. Initial Final Solubility. Solubility. C S H M 5 80% C 2 H 5 OH 0.74 1.94 CpHaOu 20% 3-2 4-7 C.H^O, 80% " 13-4 27.4 it 95% " 1.8 4-2 " Methyl Alcohol 5-2 ii. i QHtfOg 60% C 2 H 6 OH i.i 3- r " 80% " 0.27 0.65 C 7 Hi 4 O7 20% " 4 4-5 C,H 12 4 80% " 2 4-5 Methyl Alcohol 0.85 1.6 C 6 H 12 6 .H 2 80% C 2 H 6 OH I -3 3 C,H 12 6 . 80% " 4-9 9.1 CaByOuJB^O 4o% i.i 2.4 C 5 H U 5 QO% " 5-4 7-9 CaHaOu.HiO 60% " 3 4-75 80% " 2.4 13 " Methyl Alcohol 0.78 4-4 Ci 2 H22O 4 .2H 2 O 80% C 2 H 5 OH 0.76 j.j C 6 H U 6 .H 2 100% 8.6 9-5 " 70% " 8.2 9.6 C B H 10 5 80% " 2.7 6.2 CaHaOu 80% " 3-7 3-7 CuHaOu.aHtO 70% " 1.8 1.8 CigHszOjg.sHzO 50% " 1.4 1-4 697 SUGARS SOLUBILITY OF SORBOSE AND GULOSE IN WATER AND ALCOHOLS. (de Bruyn and van Ekenstcin, 1900.) Gms. Sugar per 100 cc. Sat. Sol. in: Sugar. M.-pt. H,O at 100. CH 3 OH at 17. QH B OH at 17. d Sorbose 151 0.22 1.70 1.02 / Sorbose 150 0.23 1.68 i / Gulose 150 0.24 1.72 1.04 100 gms. H 2 O dissolve 108 gms. maltose at 2O-25. (Dehn, 1917.) 100 gms. H 2 O dissolve 14.3 gms. raffinose at 2O-25. " SOLUBILITY OF PHENYLHYDRAZONES AND /3 NAPHTHYLHYDRAZONES OF THE SUGARS IN WATER AND IN ALCOHOLS AT i6-i8. (van Ekenstein and de Bruyn, 1896.) The hydrazones were prepared by adding to a concentrated and warm solution of the sugar the equivalent quantity of the hydrazine dissolved in the molecular quantity of glacial acetic acid. The precipitated hydrazones were recrystallized from 30 to 50 per cent alcohol. No details in regard to the method of obtaining saturation or of analysis of the solutions are given. Gms. Compound per too cc. Sat. Sol. in: Phenylhydrazone of: M.-pt. Water. CH 3 OH. QH 5 OH. Methyl Mannose 178 0.2-0.06 0.59 0.05-0.02 Arabinose 161 " Rhamnose 124 " very si. sol. " " Galactose 180 Ethyl Galactose 169 ... ... o. i Mannose 159 ... ... 0.2 " Arabinose 153 ... ... 0.4 " Rhamnose 123 ... very si. sol. Amyl Galactose 116 ... ... 0.6 ' Mannose 134 ... 3.5 ' Arabinose 120 ... 3.6 Rhamnose 99 ... very si. sol. 6.5 Glucose 128 ... ... 1.2 ' Lactose 123 ... ... 0.4 Allyl Galactose 157 ... ... 0.3 " Mannose 142 ... 0.7 " Arabinose 145 ... 0.5 Rhamnose 135 ... ... ... Glucose 155 Lactose 132 ... ... 0.2 " Melibose 192 ... ... 0.3 Benzyl Galactose 154 ... 0.9 0.08 " Mannose 165 ... -5S 0-2 Arabinose 170 ... 0.4 0.06 Rhamnose 121 ... 15.4 6.7 Glucose 150 ... 0.5 o.io " Lactose 128 ... 0.9 0.06 /3 Naphthyl Galactose 167 0.14 ... 0.24* Mannose 157 0.18 ... 0.25* Arabinose 141 0.22 ... 0.62* Rhamnose 170 0.20 ... 0.44* Glucose 95 0.25 ... 5* Xylose 70 0.32 ... 6.62* Lactose 203 0.07 ... 0.2* Maltose 176 ... ... 0.4* Melibose 135 ... ... 1.3* * Solvent 96 per cent CjHjOH. SUGARS 698 SOLUBILITY OF THE BENZALIC COMPOUNDS OF SOME POLYATOMIC ALCOHOLS AT I6-I8. (de Bruyn and van Ekenstein, 1899.) No details of the determinations are given, sufficiently exact for use in identifying hexites. Name of Compound. Dibenzalerythritol Monobenzalarabitol Dibenzaladonitol Dibenzalxylitol Dibenzalrhamnitol Monobenzal-d-Sorbitol Dibenzal-d-Sorbitol Tribenzalmanni tol Tribenzal-Mditol* Tribenzal-d-talitolt Dibenzaldulcitol Dibenzalperseitol M.-pt. 2OI (Fischer) 152 175 203 175 I6 3 213-8 215-8 2IO 215-20 230-5 (Meunier) (Fischer) It is stated that the results are Gms. Compd. Dissolved per 100 cc. Sat. Sol. in: Acetone. Chloroform. Alcohol. 0-34 3.64 0.02 0.64 1*36 O.I4 I. 10 0.85 0.70 .2-55 I. 10 very easily soluble 5-44 o. 16 O.IO 0.42 8-75 0.10 0.47 0.17 O.O5 0.30 4.42 trace 0.42 0.83 trace 0.04 trace O.02 * Prepared from / idonic acid. t Prepared from d talonic acid. ioo gms. sat. solution in pyridine contain 0.47 gm. mannitol at 26. (Holty, 1905.) 100 gms. sat. solution in pyridine_contain 2.5(?) gms. erythritol at 26. SULFANILIC ACID NH2.C 6 H4.S0 3 H.H 2 O. SOLUBILITY IN WATER. (Philip, 1913; results for 60 and over by Dolinski, 1905.) Solid Phase. NH 2 .C 6 H4.SO 3 H.2H 2 O NH 2 .C 6 H 4 .S0 3 H.H 2 O Gms. NH 2 .- C 6 H 4 .S0 3 H t . per ioo Gms. Sat. Sol. 0.444 7.2 0.622 13-3 0.841 18.9 1.093 18.9 I.I37 25-1 1.384 31-1 1.662 37-2 2.0O4 Gms. NH 2 .- 4. C 6 H 4 .S0 3 H per ioo Gms, Solid Phase. Sat. Sol. 44 2.44 NH 2 .C 6 H 4 .S0 3 H.H 2 44 2.36 NH 2 .C 6 H4.SO 3 H 47-5 2.52 " 54-5 2.85 u 60 3.01 " 70 3.65 " 80 4-32 " IOO 6.26 " SULFONIUM PERCHLORATES SOLUBILITY IN WATER. (Hofmann, Hobold and Quoos, 1911-12.) Name. Formula. Trimethyl Ethyl dimethyl Propyl " n Butyl " Ethylene dismeihyl Vinyl dimethyl Trimethylene dismethyl Sulfine Perchlorate (CH 3 ) 3 sciO 4 C 2 H 5 (CH 3 ) 2 SC10 4 C 3 H 7 (CH3) 2 SC10 4 C 4 H 9 (CH 3 ) 2 SC1O 4 C 2 H 4 (C 2 H 6 SC10 4 ) 2 C2H 3 .S(CH 3 ) 2 .C10 4 Per ioo Gms. H 2 O. ' Gm. Mols. = Gms. 16.5 0.0784 13.84 15-9 o. 1191 22.31 15 0.0590 12.04 15 0.0607 13.24 18 0.0423 14.86 18 0.0731 13.75 18 0.0402 14.68 699 SULFONIUM IODIDE TriethylSULFONIUM IODIDE S(C 8 H 6 ),I. IOO gms. H 2 O dissolve 431 gms. S(C2H 5 )3l at 25. (Peddle and Turner, 1913.) IOO gms. CHC1 3 dissolve 47.7 gms. S(C 2 H 6 )3l at 25. (Peddle and Turner, 1913.) SULFUR S. In a series of papers by Aten (1905-06, 1912, 1912-13, 1913, 1914 and I9i4a), the preparation and properties of the four known modifications of sulfur are de- scribed. These are designated by the symbols, S\, S^, S T and S p . S\ is ordinary rhombic sulfur and its molecule is considered to be composed of eight atoms of sulfur, Ss. S M is the insoluble, so-called amorphous sulfur. S^ is obtained when ordinary sulfur is heated above its melting-point and quickly cooled; it is especially easily prepared by warming S\ in sulfur chloride. Its molecule is probably represented by 84. S p was discovered by Engel and is prepared by mixing concentrated HC1, cooled to o, with saturated sodium thiosulfate solution. The precipitated NaCl is removed by filtration and the solution extracted with toluene. The aqueous layer soon yields a cloudy precipitate of S p . The molecule of this sulfur is considered to have the composition S 6 . SOLUBILITY OF SULFUR (S\) IN SULFUR MONOCHLORIDE (SaCk) DETERMINED BY THE MELTING-POINT METHOD. (Aten, 1905-06.) t of Melting. M "* Solid Phase. t of Melting. ' Solid Phase. Mixure 1 6 4.3 Rhombic S 83.5 67 Rhombic S 06" 95.6 8l.8 + 17.9 9-9 " 86 8l.8 MonoclinicS 36.8 I7.I 103.2 88.4 55.2 28.5 110.4 95 65.6 40.3 118.8 loo 77-7 55-4 SOLUBILITY OF SULFUR (S,-) IN SULFUR MONOCHLORIDE (S 2 C1 2 ) (Aten, 1912-13.) A preliminary experiment showed that if a solution of Sx in sulfur monochlo- ride, saturated at 20, is heated to 170 and cooled, it will then dissolve as much Sx as already required to saturate it. The following determinations were made by sealing known amounts of Sx and S 2 C1 2 in tubes, heating them to 100 for several hours and then cooling quickly to the indicated temperatures and shak- ing for \ hour in the case of the o and 25 results and 2 hours in the case of the 60 results. The saturated solutions were analyzed by oxidizing with HC1 + HNO 3 + Br and titrating the H 2 SC>4, after removing the volatile acids. Atoms S per 100 Atoms S+S 2 C1 2 in: Atoms S per 100 Atoms S+SjClj in: Original Saturated Solution at: Original Saturated Solution at; Mixture. ^60. o. +25. ' Mixture. -60. o. +25. o ii. 6 36.1 53.5 79-4 65.2 72 10 18.1 40.1 57.6 80. i 66.1 71.6 28.7 31.9 47.4 62 89.9 ... ... 82.1 49.9 42.9 56 66.4 90.1 80.5 60. i 47.7 59.9 69.4 94.6 87.7 69-1 ... 72.8 98 93.4 Results similar to the above are also given (Aten, 1912), for mixtures previ- ously heated to 50, 75 and 125. All the data confirm the formation of the the new modification S*-. SULFUR 700 SOLUBILITY OF SULFUR (S*-) IN SULFUR MONOCHLORIDE (S2C1 2 ) AT 25. (Aten, 1912, 1913.) The samples were heated to the temperatures indicated and rapidly cooled and powdered. The method of determining the solubilities is not described. Atoms S Dis- Previous Treatment of Sample. solved per 100 Atoms S+S2C1 2 . Unheated Sulfur 53 . 5 Mixture of Rhombic and Amorphous Sulfur 54-5 Rhombic Sulfur heated tO 125 56-58 . 5 (depending on excess of S present.) " " " " 165 60 (determined immediately.) " " " " 165 59.5 " after i hr.) " 165 57.5 " " 24hrs.) " 165 53.2 " 8 days.) SOLUBILITY OF SULFUR (S T ) IN TOLUENE AT o AND AT 25. (Aten, 1913.) Comp. of Mix- Solubility in Atom % S. Comp. of Mix- Solubility in Atom % S. ture in Atom . ture in Atom / * Per cent S. At o . At 25 . p er cent S. At o . At 25 . 35 2.88 5.94 74 4.05 7.52 47 6.65 77 3.90 54 3.26 6.76 80 4.22 57 3-30 6.88 83 ... 7.93 73 7-45 85 8.08 These results show that the greater the excess of S v , the greater the solubility. It was found that under the same conditions, unchanged rhombic sulfur gives constant figures irrespective of the excess of S present. At o, 2.59 atom per cent S\ was found and at 25, 5.65 atom per cent. SOLUBILITY OF SULFUR (S M ) IN CARBON DISULFIDE AND CARBON TETRACHLORIDE. (Wigand, 1910.) When "insoluble" sulfur (S M ) is treated with CS2 or CCU, a small amount dissolves, depending upon the length of time of contact, temperature and nature of the solvent but not on the relative amount of solvent. This action is ex- plained on the assumption that a partial transformation of S M to soluble sulfur S\, takes place. Data for the fusion points of mixtures of rhombic sulfur and "insoluble" sulfur (Sj,) and for monoclinic sulfur and "insoluble" sulfur (S/J are given by Kruyt (1908). SOLUBILITY OF SULFUR IN LIQUID AMMONIA. (Ruff and Hecht, 1911.) At the temperatures o to 40, the solutions were constantly shaken for 3 to 4 days. For the results at the lower temperatures the solutions were saturated at room temperature then cooled, partially evaporated and shaken 4 to 6 hours. The saturated solutions were analyzed by evaporation of the ammonia by means of a current of hydrogen, absorbing in HCl and converting to the platinic chloride for weighing. The S residues were dried at 100, with proper precautions, and weighed. *o Gms. S per 100 Gms. f0 Gms. S per 100 Cms. Sat. Solution. Sat. Solution. -78 38.6* +I6. 4 25.65 -20.5 38.1* 30 21 o 32.34 40 18.5 * This figure corresponds to the compound S(NH 3 ) 3 = 38.5% S. yoi SULFUR SOLUBILITY OF SULFUR IN AQUEOUS SODIUM SULFIDE SOLUTIONS. (Kuster and Heberlein, 1905.) The results are expressed in terms of x which represents the number of S atoms dissolved for each Na2 in the solution. The figures, therefore, show the atomic ratio of S to Naa in the saturated solution and at the same time, the sulfur content of the compound NaaSx which is formed. In order to find the actual amount of sulfur dissolved per liter, it is only necessary to multiply the x value by the normality of the aqueous sodium sulfide solution used as solvent in the particular case. A series of determinations made at 25, by agitating aqueous sodium sulfide solutions with crystalline sulfur until equilibrium was reached, and then diluting each solution with an equal volume of water and shaking with excess of sulfur until equilibrium was again reached, gave the following results: Normality of the Aq. * in the Result- Normality of the Aq. x in the Result- NazS Solution. ing NaaS. NauS Solution. ing NajS-j. 4 4-475 0.125 (32hrs.) 5.225 2 (2 hrs.) 4.666 0.0625 5. 239 i 4.845 0-03125 5.198 0.5 4.984 0.015625 5.034 0.25 5.115 0.007812 (128 hrs.) 4-456 The figures in parentheses in the above table show the number of hours re- quired for attainment of equilibrium in these three cases. The authors also made determinations of the influence of temperature on the amount of sulfur dissolved, and found that for a normal Na 2 S solution, the x value did not vary appreciably from the figure given above, over the range o to 50. Results are also given showing the influence of the presence of NaCl and of KOH on the amount of sulfur dissolved by aqueous Na2S solutions. In the former case the solubility was distinctly lowered, while in the latter it was notably increased. SOLUBILITY OF SULFUR IN: Tin Tetrachloride. Amyl Alcohol. (Gerardin, 1865.) (Gerardin.) ~SJ- as. - -Xar 99 5.8 SolidS 95 1.5 Solid S 101 6.2 " IIO 2.1-2.2 " no 8.7-9.1 " 112 2.6-2.7 Liquids 112 9.4-9.9 Liquids 120 3.0 121 17.0 " 131 5.3 " SOLUBILITY OF SULFUR IN AQUEOUS ACETONE AT 25. (Herz and Knoch, 1905.) Wt. Per cent Sulfur per 100 cc. Solution. Sp. Gr. of in SoKent. Millimols. Cms. ' Solution. ioo 65 2.084 0.7854 95.36 45 1.442 0.7911 90.62 33 1.058 0.8165 85.38 25.3 o.8n 0.8295 SULFUR 702 SOLUBILITY OF SULFUR IN ETHYL AND METHYL ALCOHOLS. Cms. t*. Alcohol. per 100 Gms. Authority. Alcohol. 15 Abs. Ethyl 0.051 (Pohi.) 18.5 O . 053 (de Bruyn Z. physik. Chem. 10, 781, 'pa.) b. pt. O .42 (Payen Compt. rend. 34, 356, '52.) 18.5 Abs. Methyl O.O28 (de Bruyn.) SOLUBILITY OF SULFUR IN BENZENE AND IN ETHYLENE DIBROMIDE. (Etard, 1894; see also Cossa, 1868.) In C 6 H e . In C 2 H 4 Br 2 . Gms. S Gms. S Gms. S Gms. S t. per loo Gms. t. per 100 Gms. t. per 100 Gms. t. per 100 Gms. Solution. Solution. Solution. Solution. o i -o 70 8.0 o 1.2 50 6.4 10 1.3 80 10.5 10 1.7 60 8.4 20 1-7 QO 13.8 20 2.3 70 II.4 25 2.1 100 17.5 25 2.8 80 16.5 30 2,4 no 23.0 30 3.3 90 24.0 40 3.2 120 29.0 40 4.4 100 36.5 50 4-3 130 3 6 -o 60 6.0 RECIPROCAL SOLUBILITY OF SULFUR AND BENZENE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.) Wt. % S in Limiting t of ^Homogeneity. \yt. % S in Limiting t of ^Homogeneity. Mixture. Lower. Upper. Mixture. ' Lowe r. Upper. " 41.5 146 247 79.8 141 230 55.2 158 230 81.4 138 above 246 74.5 157 226 83.4 131 272 loo gms. sat. solution of S in benzoyl chloride, C 6 H 6 .COC1, contain i gm. S at o and 55.8 gms. at 134. (Bogousky, 1905.) SOLUBILITY OF OCTOHEDRAL AND OF PRISMATIC SULFUR IN SEVERAL SOLVENTS. (Brdnsted, 1906.) The solubility of prismatic sulfur could not be determined in the ordinary way on account of its rapid transition to octohedral sulfur. A special apparatus was used which permitted the solvent to remain in contact with the solid for only a short time. Since sulfur dissolves very rapidly, this procedure was found to give satisfactory results. . Gms. each Variety Separately per 100 cc. Saturated Solution. Solvent. t. . TN Prismatic Octohedral Sulfur. Sulfur. Benzene 18.6 2.004 1.512 25.3 2.335 I-835 Chloroform o i.ioi 0.788 15-5 1-658 1.253 40 2.9 2.4 Ethyl Ether o 0.113 0.080 25-3 0.253 0.200 Ethyl Bromide o 0.852 0.611 25.3 1.676 1.307 Ethyl Formate o 0.028 0.019 Ethyl Alcohol 25.3 o . 066 o . 05 2 703 SULFUR SOLUBILITY OF SULFUR IN SEVERAL SOLVENTS. Cms. S Cms. S Solvent. t. per 100 Gms. Solvent. t. per 100 Gms. Solvent. Solvent. Aniline 130 85.3 (i) Glycerol 15.5 0.14(4) Benzene 15.2 1.5 (2) Hydrazine (anhy.) room temp. 54(decom P .)(5) 19.3 1.7 (2) Lanoline (anhy.) 45 0.38(6) 26 0.97(1) Methylene Iodide 10 10 (7) " 7i 4.38(1) Nicotine 100 10.6 (8) Carbon Tetrachloride 25 0.86(3) Phenol 174 16.4 (i) Chloroform 12.2 0.75(2) Pentachlor Ethane 25 1.2 (3) 19.3 0.92(2) Toluene 23 1.48(1) 22 1.21(1) Tetrachlor Ethane 25 1.23(3) Dichlor Ethylene 25 1.28(3) Tetrachlor Ethylene 25 1.53(3) Ethylene Chloride 25 0.84(3) Trichlor Ethylene 25 1.63(3) Ethyl Ether 23.5 0.97(1) 15 1.16(9) (i) Cossa, 1868; (2) Bronsted, 1906; (3) Hoffman, Kirmreuther and Thai, 1910; (4) Ossendowski, 1907; (5) Welsh and Broderson, 1915; (6) Klose, 1907; (7) Retgers, 1893; (8) Kleven, 1872; (9) Wester and Bruins, 1914. SOLUBILITY OF SULFUR IN CARBON DISULFIDE. (Etard, 1894; Cossa, 1865; at 10, Retgers, 1893; below 77, Arctowski, 1895-96.) Gms. S per joo Gms. A0 Gms. S per 100 Gms. ^ Gms. S per 100 Gms. Solution. CS 2 Solution. CS 2 . Solution. CS 2 . " no 3.0 3.1 10 *3-5 15-6 50 59-o 143.9 100 3-5 3-6 o 18.0 22 -O 60 66.0 194.1 - 80 4.0 4.2 10 23.0* 29.9 70 72.0 - 60 3-5 3-6 20 29-5 41.8 80 79.0 376.1 - 40 6.0 6.4 25 33-5 50-4 90 86.0 614.1 20 10.5 11.7 30 38.0 100 92 .0 1150.0 40 50.0 100 .0 * 26.4 R. Sp. Gr. of solution saturated at 15 containing 26 gms. S per 100 gms. solution = 1.372. SOLUBILITY OF SULFUR IN HEXANE (C 6 Hi 4 ). (Etard.) t o Gms. S per t o Gms. S per t <> Gms. S per 100 Gms. Solution. 100 Gms. Solution. 100 Gms. Solution. 20 0.07 60 i.o 130 5.2 o 0.16 80 1.7 140 6.0 20 0.25 100 2.8 160 7.2 40 0.55 120 4.4 180 8.2 SOLUBILITY OF SULFUR- (Sx) IN /3 NAPHTHOL, DETERMINED BY THE SYNTHETIC METHOD. (Smith, Holmes and Hall, 1905.) The mixtures of sulfur and ft naphthol were heated until they were homo- geneous and then cooled to the temperature at which clouding appeared. tof Clouding. Gms. S per loo Gms. Naphthol. tof Clouding. Gms. S per 100 Gms. Naphthol. fof Clouding. Gms. S per 100 Gms. /3 Naphthol. 118 34 154 84.1 164 209.7 132.5 46.6 157 97-4 163-8 238.1 134-5 48.8 160.5 119.3 163-8 264.8* 143-5 59-3 162.5 145.1 I6 3 300* 149-5 70 163.5 177.6 * Solid phase, /3 naphthol. SULFUR 704 CJLFUR IN COAL TAR Oi (Pelouze, 1 86s Grams S per 100 Grams Coal Tar Oil of: G S r 10 SOLUBILITY OF SULFUR IN COAL TAR OIL, LINSEED OIL AND IN OLIVE OIL. (Pelouze, 1869; Pohl.) 4 o Sp.Gr.: 0.87 * b. pt.: 8o-ioo. 0.88 85-i2o. 0.882 I20-220 0.885 . I50-200 . 2IO-300 1.02 . 220-300. OU ' 0.885 Sp.Gr 15 2 .1 2. 3 2-5 2 .6 6.0 7.0 0-4 2-3 30 3 .0 4- 5-3 5 .8 8-5 8-S 0.6 4-3 SO 5 .2 6. i 8-3 8 7 IO.O 12 .O I .2 9.0 80 ii .8 13- 7 15-2 21 .0 37-o 41 -O 2 .2 18.0 100 15 .2 18. 7 23.0 26 4 52-5 54-o 3' 25.0 110 . 23- o 26.2 31 .0 105.0 115.0 3-5 30.0 120 . . . 27. o 32-0 38 .0 00 00 4.2 37-o 130 . . 38.7 43 .8 00 00 5-o 43-o (160) 10-0 100 gms. oil of turpentine dissolve 1.35 gms. S at 16, and 16.2 gms. at b. pt. (Payen, 1852.) SOLUBILITY OF SULFUR IN TRIPHENYL METHANE, DETERMINED BY THE SYNTHETIC METHOD. Results of Smith, Holmes & Hall, 1905. Results of Kruyt, 1908-09. % Triphenyl Methane in t of First Limit of % Triphenyl t of Second Methane in Limit of % Triphenyl t of First % Triphenyl Methane in Limit of Methane in t of Second Limit of Mixture. Mixing. Mixture. Mixing. Mixture. Mixing. Mixture. Mixing. 69.1 108.5 35-5 214.5 66.7 113 7 2II-5 58.8 127 32.5 211 60.2 125.3 9-3 201.5 50.8 136.5 28.4 506 5O. 2 136.8 12 198.8 46.6 141 24.5 203 41 144-2 13.7 199-5 4 2.8 144 21.6 200 30.8 I 4 6 16.4 20O.4 37-8 146 19.2 199 2O 145-2 19.8 2O2. I 33-7 146.5 15.4 I 9 8 13-2 137.6 23-5 203.7 30-3 147 8.1 II8.6 28.7 208 25.4 146 7 crystals 34-5 215.2 SOLUBILITY OF SULFUR IN PHENOL, DETERMINED BY THE SYNTHETIC METHOD. (Smith, Holmes and Hall, 1905.) f he mixtures of sulfur and phenol were heated until they were homogeneous and then cooled to the temperature at which clouding appeared. +0 Gms. S per t< > f Gms. S per t o e Gms. S per Clouding. 'ojGg-. Clouding. '~f Clouding. '~f 89.5 9.1 155 26.3 166 31.6 96.5 10.4 157.5 27.1 167.5 32.4 122.5 15.3 160.5 28.6 170 33.5 138 19.9 162 29.6 172 34.9 148.5 23.6 164.5 30-7 J 75 36.5 RECIPROCAL SOLUBILITY OF SULFUR AND TOLUENE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.) Wt. % S in Limiting t" of Homogeneity. \yt. % S in Limiting t of Homogeneity. Mixture. Lower. Upper. " Mixture. ' Lower. Upper. 50.5 167 250 75.7 178 221 62 179 223 77.9 174 69.6 l8o 222 83.3 l6o 223 73 180 222 90.5 124 above 250 70S SULFUR RECIPROCAL SOLUBILITY OF SULFUR AND META XYLENE, DETERMINED BY THE SYNTHETIC METHOD. (Kruyt, 1908-09.) Wt. % S in Mixture. 50-9 49.1 47-7 44.2 40.4 Limiting t i af Homogeneity. Lower. 181 177 172.5 161.5 153-5 Upper. 213 228 none (?) " (255) " (215) Wt. % S in Mixture. 39-9 84.2 86.1 87 90 Limiting t of Homogeneity. Lower. 152 none 164.5 159 139 Upper. none (230) 199 202.5 none (220) Fusion-point data for the system sulfur-tellurium are given by Pelabon (1909); Pellini (1909); Chikashige (1911, 1911-12); Jaeger and Menke (1912). Data for mixtures of sulfur and each of the following metals are given by Pela- bon (1909); antimony, tin, lead, silver, gold and arsenic. SULFUR DIOXIDE SO 2 SOLUBILITY IN WATER. (Schonfeld, 1855; Sims, 1861; Roozeboom, 1884.) Schonfeld. Sims. Vols. SO 2 (at o and Cms. SO 2 per ~ 760 mm.) per i Vol. I00 Cms? HaO SO 2 per i Gm. H 2 O. Roozeboom. S0 2 Dissolved peript.HaO *. Sat. SO, + Aq. H 2 0. at total pressure t . 760 mm. Cms. Vols.' t . Ul /LKJ Ullll. pressure. O 68 .86 79 79 22 .83 8 0.168 58.7 O 0.236 5 59 .82 67 .48 19 10 0.154 53-9 2 0.218 10 5 1 38 56 65 16 .21 14 0.130 45-6 4 0.201 15 43 56 47 .28 !3 54 20 O.IO4 3 6 -4 6 0.184 2O 36 .21 39 37 II 29 26 0.087 30-5 7 0.176 2 5 30 77 3 2 79 9 .41 30 0-078 27-3 8 0.168 30 25 .82 27 .16 7 .81 36 0.065 22.8 10 0.154 35 21 23 22 49 40 0.058 20.4 40 17 .01 18 77 5 .41 46 0.050 17.4 12 0.142 50 0.045 15.6 Sp. Gr. of sat. solution at o = 1.061; at 10, 1.055; at 20 = 1.024. The results of Sims are discussed and recalculated by Fulda, 1909. I gm. H 2 O dissolves 0.0909 gm. SO 2 = 34.73 cc. (measured at 25) at 25 and 760 mm. pressure. (Walden and Centnerszwer, 1902-03.) FREEZING-POINT DATA FOR THE SYSTEM SULFUR DIOXIDE WATER. Mols. SO, VrLSLm I* 51 I0 M ls ' Solid Phase - Freezing. S O 2 +H 2 O. O O Ice 0.2 0.8 " -3 Eutec. . . . " +S0 2 Hydrate O.2 2.8 SO 2 Hydrate +3.5 3-3 " 6.8 5-5 " (Baume and Tykociner, 1914.) tof Freezing. 7-7 8-3 9-3 12. I 12.2 Mols. SOj per loo Mols. Solid Phase. SO, Hydrate 5-9 ii 95-1 At the temperature +12.1 and extending over the range of concentration n to 95.1 mols. per cent SO 2 a second phase rich in SO 2 separates. This crystal- lizes at 74 and the diagram is consequently composed of two lines parallel to the axis of concentration, the one at the +12.1 level corresponding to the SO 2 hydrate, and the other at the 74 level, to the SO 2 rich phase. The diagram is terminated by a very short branch rising from 74 to the temperature of solidi- fication of pure SO 2 (72.3). SULFUR DIOXIDE 706 SOLUBILITY OF SULFUR DIOXIDE IN WATER AT DIFFERENT PRESSURES. (Lindner, 1912.) Results at o. Results at 25. Results at 50. mm - Hg - ^ItVsoL ' mm. Hg. ^af.^oT nxm. Hg. 'sLufe?' 0.4 0.0537 i-4 0.0534 4.9 0.0525 3-5 0.237 n-75 0.234 30.5 0.2276 29.4 1.227 87.9 I. 212 204.5 I.lSl 109.4 3.804 313 3.750 696 3.628 SOLUBILITY OF SULFUR DIOXIDE IN AQUEOUS SALT SOLUTIONS. (Fox, 1902.) Results in terms of the Ostwald Solubility Expression. See p. 227. A SoJubility Coefficient / of SO2 in aq. Solutions of Concentrations: Aqueous A Salt Solution. r . s Normal 1.0 N. i.V. 2.0 N. 2.5 N. 3-0 N? NH 4 C1 35=34-58 36-37 38-06 39.76 41.37 42.78 NH 4 Br 35=36-25 39.46 42.78 46.06 49.17 52.25 NH 4 CNS 35=37-78 42.74 47.26 52.26 57.01 61.46 NH 4 NO 3 35=33-96 35-o7 36-28 37.27 38.01 39.14 NH 4 NO 3 35=23-35 2 4-23 24.78 25.57 26.66 27.43 (NH 4 ) 2 SO 4 35=33-35 33 -82 34-33 34-95 35-47 35-96 (NH 4 ) 2 SO 4 / 35 =22.9i 23.14 23.49 23.93 24.23 24.60 / 25 =3i.66 30.55 29.46 28.16 27.09 26.06 35=2! -73 21.23 20.55 20.02 19.23 18.68 CdBr 2 / 25 =3i.9i 31.01 30.17 29.27 28.15 27.46 CdBr 2 / 35 =2i.88 21.46 20.81 20.60 19-70 19-17 CdI 2 25=33-27 33-76 34.16 34.74 34.98 35.77 CdI 2 / 35 =22.75 23.06 23.36 23.71 23.99 24.30 CdSO 4 / 25 =3i.ii 29.71 28.24 26.58 25.14 23.76 CdSO 4 / 35 =2i.45 20.43 19-42 18-31 17-41 16.25 25=34-42 36-05 37-76 39.32 40.96 42.27 35=23-74 25.15 26.54 27.94 28.93 30.02 KBr 2 5=35-94 39 - 11 42-41 44-96 48-87 52.26 KBr / 35 =24.83 27.49 29.64 31.93 34.12 36.14 KCNS 25 =37-57 42-38 47 -02 51.81 55.87 61.26 KCNS 35=25-63 28.79 32-03 35-05 38.13 42.94 / 25 = 3 8.66 44-76 50-58 56-75 62.63 68.36 35=26.30 30.25 34-64 38.04 41-87 45-43 KNO, 35=33-80 34-79 35-77 36-66 37.57 38.52 KNO 3 35=23.27 24.03 24.79 25.72 26.54 27.33 K 2 SO 4 35=33-20 33.61 NaBr 25 =33-76 34-54 35-27 36-26 36.84 37.74 NaCl 735=32.46 32.25 31.96 31.76 31.51 31.36 NaCNS 35=35-44 38-24 40-78 43-37 45-86 48-34 Na 2 SO 4 / 25 =3i. 96 31.14 30.45 29.51 28.66 28.44 Na^C^ / 35 =2i.88 21.35 20.81 20.21 19.75 19-27 The author also gives a series of determinations in which a mixture of SO 2 + CO 2 is used for saturating the solutions, thus changing the concentration of the SO 2 and yielding results for certain partial pressures of this gas. m Additional data for the solubility of sulfur dioxide in aqueous salt solutions are given by Walden and Centnerszwer (1902-03) but these authors present their results in terms of the difference between the amount of SO 2 dissolved in water and in the aqueous solution. The exact manner in which these calculations were made is not clearly explained. 707 SULFUR DIOXIDE SOLUBILITY OF SULFUR DIOXIDE IN SULFURIC ACID OF 1.84 SP. GR. Interpolated from original results. o 10 20 25 30 40 Sp. Gr. Coefficient of Sat. of Absorp- t . Solution. tion (760 mm.). 53-o 50 1.8232 35-o 60 1.8225 25 .0 70 I .8221 21 -O 80 I.82I6 18.0 90 1.8205 13.0 (Dunn, 1882.) Sp. Gr. Coefficient of Sat. of Absorp- Solution. tion (760 mm.) I. 8l86 9-5 1.8165 7.0 I.8l40 5-5 1.8112 4-5 I. 8080 4-0 SOLUBILITY OF SULFUR DIOXIDE IN AQUEOUS SULFURIC ACID SOLUTIONS. (Dunn; see also Kolb, 1872.) Sp. Gr. of Approximate Coefficient < >p. Gr. of Approximate Coefficient t H 2 SO 4 Per cent of t H 2 SO 4 per cent of Solution. H 2 S0 4 . Absorption. Solution. H 2 S0 4 . Absorptior 6 9 139 20 48.67 15 2 i 173 25 31.82 6 9 300 40 4S-38 16 8 X I 5 I 21 3I-56 8 .6 .482 58 39 -9 1 14 8 z .277 36 30.41 9 .8 703 78 29.03 15 .1 I 458 S^ 29.87 5 5 .067 10 36.78 15 .6 I .609 70 25-I7 6 .0 .102 15 3.408 15 I 739 81 20.83 For definition of Coefficient of Absorption, see Ethane p. 285. SOLUBILITY OF SULFUR DIOXIDE IN ALCOHOLS AND IN OTHER SOLVENTS. (de Bruyn, 1892; Schulze, 1881.) In Ethyl Alcohol at 760 mm. o Gms. SO 2 per 100 Gms. In Methyl Alcohol at 760 mm. Gms. SO 2 per 100 Gms. Solution. C 2 HsOH. Solution. CH 3 OH. 53 5 115 .0 71.1 246 .0 7 45 o 8l .0 59-9 149 4 12 3 39 9 66 4 52.2 109 .2 18 .2 3 2 .8 48 .8 (17. 8) 44-0 78 ,6 26 O 24 4 32 3 3 I -7 46 4 In Several Solvents at o and 725 mm. (S.) S lve~t SO 2 per i Gm. Solvent Grams. Vols. Camphor o . 880 308 CH 3 COOH 0.961 318 HCOOH 0.821 351 (CH 3 ) 2 CO 2.07 589 SO 2 C1 2 0.323 189 SOLUBILITY OF SULFUR DIOXIDE IN CHLOROFORM. (Lindner, 1912.) Results at o^ Results at 25. Pressure in mm. Hg. Gms. SO; per 100 cc Sat. Sol. 2.7 5-6 22 O.O7OI 0.1790 0.6982 90.2 219.6 3-097 8.217 Pressure in mm. Hg. 5-7 12.9 48 200.2 488.8 Gms. SOz per 100 cc. Sat. Sol. 0.0669 O.I7I2 0.6728 2-954 SULFUR DIOXIDE 708 SOLUBILITY OF SULFUR DIOXIDE IN SEVERAL SOLVENTS. (Lloyd, 1918.) The dry, air free, SO 2 was passed through the solvent until saturation was reached and 5 cc. (usually) of the saturated solution were mixed with a large volume of water and titrated with standardized iodine solution. Gms. SO 2 per Liter of Saturated Solution in: - 5 o + 5 10 15 20 25 3 40 50 00 Benzene. Nitro- benzene. Toluene. o Nitro- toluene. Acetic Anhydride. . . . 196 148(^=1.22) 136 . . . . . . . . . 122 3II-4 . . . 290.8 114 267.4 217-5 236 106 227.9 170.4 192.2 99 127.5 190 124.4 160.7 90 82.9 I 3 2 93-6 II8.5 . . . 60.3 98.7 77.2 8 7 .2 . . . 34 78.6 54-7 68.8 DISTRIBUTION OF SULPHUR DIOXIDE AT 20 BETWEEN: (McCrae and Wilson, 1903.) Water and Chloroform. Aq. HC1 and Chloroform. Cms. SOa per Liter in: Gm. Equiv. iSO 2 per Liter in: Cone. Gms. SOa per Liter in: Gm. Equiv. iSO 2 per Liter in: Aq. Layer. CHC1 3 Layer. Aq. Layer. CHC1 3 Layer. of HC1. Aq. Layer. CHC1 3 Layer. Aq. Layer. CHC1 3 Layer. I-738 I .123 0543 035 1 0.05 1.86 I .46 0-0581 0.0456 i-753 J. .122 0547 O 0350 it 3-07 2.83 0-0960 0.0884 2.346 I 703 .0732 0532 ti 4.28 4.07 0.1336 O.I27I 2.628 I .8 97 .082I .0592 tt 5-34 ,5.42 0-1667 0.1692 3-058 2 .385 0955 0745 0.10 1-25 I.4I 0-039 O.O44 3-735 3 .062 .1166 .0956 2.78 3.08 0.0868 0.0962 4.226 3 .626 'W9 .1132 3.86 4.08 0.1199 0-1275 5.269 4 .798 .1645 .1498 a 5.161 5-72 0.1612 0.1784 6.588 6 .I8 3 .2057 .1930 0.2 1.268 I -5 I 0.0396 0.0471 31.92 33 .8 4 .9968 I .056 if 1.914 2 .27 0.0597 O.O7lo 33-26 37 25 I .038 I .163 (I 2.464 3-4 0.0769 0-0949 a 3-9 6 7 4.90 0.1239 0-I530 0-4 i .202 1.61 0.038 0.0504 it 1.894 2 .26 0.059 0-0706 Freezing-point data for mixtures of sulfur dioxide and sulf uryl chloride (SO 2 C1 2 ) are given by van der Goot (1913). SULFURIC ACID H 2 SO 4 (Sulfur Trioxide, SO 3 ). SOLUBILITY IN WATER. (Landoldt and Bornstein, "Tabellen," 4th Ed., pp. 472-3, 1912.) The available data for the freezing-points of mixtures of sulfuric acid and water have been plotted and the most probable values read from the curves. The data are also calculated to SO 8 . The complete results are given on the following page. 709 SULFURIC ACID SOLUBILITY OF SULFURIC ACID IN WATER, DETERMINED BY THE FREEZING-POINT METHOD. Gms. Gms. H 2 S0 4 Gms. SO 4 H 2 S0 4 Gms. S( \ t. per 100 per 100 Gms. Solid Phase. t. per 100 per 100 Gms. Solid Phase. Gms. Sat. Sol. Gms. Sat. So 1. Sat. Sol. Sat. Sol. IO 16.25 l3-25(i) (S) . Ice IO 77-75 63.5 (3) SO,. 2 H 2 20 24 i9-5(i)( 2) (3) " 80.25 65.5 (2) 30 28.5 23-25 (2) + 8.35 * 84-5 68.98 (2) 40 3I-25 25-5 (2) . " 8.81 84.5 68.98 i 50 33-5 27.25(l) (2) o 88.25 72 2 60 35-25 28. 7 5 " 20 91-5 74-75 70 36.75 3 (2) -30 92-5 75-5 ( 75 38 31 (2) " +S0 3 . S H 2 -38 93 76 (2) "+S0 3 .H 2 70 39 31.75(2) S0 3 . S H 2 -30 93-75 76.5 (4) S0 3 .H 2 60 4i.5 33-75(2) ' 20 95-25 77.75 (4) 50 44 36 (2) IO 96.25 78.5 (i)( 4 ) " 40 47-75 39 (2) " o 97-75 79-75 (4) 30 53-25 43-25 (2) " + 10 99.75 81 (4) 25* 57.65 47.06 (2) " 10.35 100 81.62 (i)( 3 ) (7X4) 30 61 49-75 (2) " 10 ... 82 (4) ' 40 65-25 53-25 (2) " 83.25 (4) " 60 70.75 57-75 (3) " (unstable) IO ... 84.5 (4) " 70 73-25 59-75(3) " " +S0 3 . 2 H 2 12 85 (4) "+S0 3 .*H 2 60 73-50 60 (3 SO 3 . 2 H 2 O (unstable) IO 85.25 (4) S0 3 .*H 2 50 74-25 60.5 (3 Cl O ... 86 (4) 50 68 55-5 (2 SO 3 .sH 2 O+SO 3 . 3 H 2 O + 10 . . . 86.75 (4) 45 68.5 56 (6 SO 3 . 3 H 2 O 20 ... 87.5 (4) 40 58 (6) ' 3 ... 88.5 (4) 38.9* 73.M 59-69 (6) " 36* . . . 89.89 (4) 40 74-25 60.5 (6) 30 ... 90-5 (4) 41 74-75 6 1 (6) " +SO 3 . 2 H 2 O 20 91.5 (4) 40 74-75 6 1 (4) SO 3 . 2 H 2 O 10 . . . 92.25 (4) 3 75-25 6i-5 (4) 6.5 ... 93 (4) " +(?) 20 76.5 62.5 (3). * m. pt. (i) =Pfaundler and Schnegg (1875); (2) = Pickering (1890); (3) = Thilo (1892); Pictet (1894); (4) = Knietsch (1901); (5) = Rudorff (1862); (6) = Biron (1899); (7) = Marignac (1853). See also Pickering (1890-91); Lespieau (1894) and Giran (1913). SOLUBILITY OF SULFURIC ACID IN BENZENE SOLUTIONS OF VALERIC ACID AT 1 8. (Gurwitsch, 1914.) The mixtures were shaken with excess of 95.8% H 2 SC>4 at o and then brought to equilibrium at 1 8. Gms. Valeric Acid per 100 Gms. Valeric Acid+Benzene. o=Pure benzene 0.584 1.62 3-64 7.60 17-5 Gms. H 2 S0 4 per 100 Gms. of the Sat. Solution. O 0.052 O.IO4 0.226 0.378 0.454 TANNIC ACID 710 TANNIC ACID When a sample of tannic acid of apparently very good quality was added to water at room temperature, the solution increased so greatly in viscosity, that even before the saturation point was reached, it became evident that a satisfac- tory separation of liquid and solid could not be made. The solubility in water is variously given in the pharmaceutical literature from about 20 to 300 gms. tannic acid per 100 gms. of water. Similarly, the quoted results for the solubility in alcohol vary from about 50 to 400 gms. acid per 100 gms. of alcohol. (Seidell, 1910.) 100 gms. glycerol dissolve 48.8 gms. tannin at 15-16. (Ossendowski, 1907.) 100 gms. trichlorethylene dissolve 0.012 gm. tannin at 15. (Wester and Bruins, 1914.) TANTALUM Potassium FLUORIDE TaK 2 F 7 . SOLUBILITY IN AQUEOUS HYDROFLUORIC AND POTASSIUM FLUORIDE SOLUTIONS. (Ruff and Schiller, 1911.) The tantalum salt was purified by repeated crystallizations from pure anhydrous HF1. After drying at 120, it was shaken in platinum flasks for 3 hour periods at constant temperature with HF1 or KF1 solutions or both together. The saturated solutions were filtered by means of a platinum funnel and subjected to analysis. Mixture Shaken in Pt. Flask. K 2 TaF 7 +H 2 O " +aq. 4 . 7 7%KF " +aq. 7-35% KF " +aq. 4 .47%HF " +aq. 4-2 %HF " +aq. 24.3 %HF " +aq. 10.44% HF+ ? 2I. 9 2%KF $ " +H 2 ' +aq. 4-77% KF ' +aq. 4 .47%HF ' +aq. 4-2 %HF ' +aq. 23.3 %HF ' +aq. 21.92% KF-f 10.44% HF The solid phases were identified only by their crystal forms and it is possible that still others may be present. TaH 5 . KF. HF. OU11U JTilclbC. i8 0.25 O.I2 O.O29 K z Ta y OzF+K 2 TaF 18 0. 10 4-79 0.074 " 16 0.09 6-73 0.015 " 18 1.33 0.56 4-47 K 2 TaF 7 18.5 1.24 0.52 4-2 " 18 5-35 2.25 24-3 " 18 0.036 21.93 10.44 " 85 2.18 1.69 0.85 K*Ta,AF M +K 2 TaF 7 85 0.96 5-27 1.17 " 90 5-73 2.41 4-47 K 2 TaF 7 90 6 2.52 4.2 " 90 10.9 4-59 24-3 " 90 1.18 22.42 10.44 " TARTARIC ACIDS C 2 H 2 (OH) 2 (COOH) 2 . d, I, and racemic SOLUBILITY OF EACH SEPARATELY IN WATER. (Leidie,i88 2 .) t. Grams Tartaric Acid per iooGms.'H 2 O. t. Gms. Tartaric Acid per 100 Gms. H 2 O. Dextro Racemic Racemic Dextro Racemic Racemic and Laevo Ac. Ac. and Laevo Ac. Ac. Acids. Anhydrous. Hydrated. Acids. Anhydrous. Hydrated o 115.04 8.l6 9-23 50 195.0 5O.O 59-54 10 125.72 12.32 I4.OO 60 217-55 64.52 78.33 20 139-44 18.0 20.6o 70 243 .66 80.56 99.88 25 147.44 21.4 24.61 80 273-33 98.12 124.56 30 156.2 25.2 29.10 90 306.56 117 .20 I52-74 40 176.0 37-o 43-32 100 343-35 137.80 184.91 loo gms. H 2 O dissolve 140.8 gms. tartaric acid at 15 solution is 1.31. The Sp. Gr. of the sat. (Greenish and Smith, 1902.) TARTARIC ACID SOLUBILITY OF TARTARIC ACID IN ALCOHOLS. (Timofeiew, 1894.) Alcohol. Methyl Alcohol Ethyl Alcohol r. Gms. C2H 2 (OH) r (COOH) 2 M . , per 100 Gms. t. per 100 Gms. Solvent. Solvent. - 3 67.5 Ethyl Alcohol + 23 28.9 + 19.2 70.1 39 31.8 23 73 . 2 Propyl Alcohol - 3 8.74 39 77-3 + 19 ,2 10.85 - 3 22.4 " 23 11.85 + 19.2 27.6 39 14.4 SOLUBILITY OF TARTARIC ACID IN AQUEOUS ETHYL ALCOHOL SOLUTIONS AT 25. (Seidell, 1910.) Wt. Percent j , C 2 H B OH cTsol Gms. C 2 H 2 (OH) 2 (COOH) 2 per loo Gms. in Solvent. Sat. Sol. Solvent. I.32I 57-9 137.5 IO 1.300 56 127.3 20 1.276 54-1 II7.9 30 I.25I 52 108.3 40 I.22O 49.6 98.4 50 I.I84 47 88.6 Wt. Per cent Gms. C 2 H 2 (OH) 2 (COOH) 2 per 100 Gms. Solvent Sat. Sol. Solvent. 60 1.142 43.9 78-3 70 1.095 4O.2 66.9 80 1.040 35-3 54-6 90 0-973 29 40.8 95 0-937 25-4 34-1 IOO 0.905 21.6 27.6 SOLUBILITY OF TARTARIC ACID IN SEVERAL SOLVENTS. Solvent. Amyl Alcohol Benzene Carbon Tetrachloride Ether u Dichlorethylene Trichlorethylene Sp. Gr. of Solvent. <*25 Of Sat. Sol. Gms. C 2 H 2 (OH)2- t. (COOH) 2 per 100 Authority. Gms. Solvent. ^20 = 0.817 f/25 = 0.873 dz^ 1.587 dzz = 0.711 0.824 0.875 1.589 0.715 25 25 25 25 3 . 50 (Seidell, 1910.) 0.0086 0.0189 O.6l " 15 . 40 (Bourgoin, 1878.) IS . 005 (Wester & Bruins, '14.) 15 O.O05 DISTRIBUTION OF TARTARIC ACID BETWEEN WATER AND ETHER. Results at 15. Gms. Mols. per Liter. (Pinnow, 1915.) H 2 O Layer, c. I.4O2 0.790 0.446 Ether Layer, c' O.OO72 0.0037 O.OO22 Results at 27. Gms. Mols. per Liter. 197 2l6 2IO H 2 O Layer, c. 1.625 0.857 0.427 Ether Layer, c'. 0.0070 0.0033 0.0016 233 259 268 F.-pt. data are given for mixtures of the d and racemic modifications of dimethyl ether of tartaric acid, and for mixtures of the d and racemic modifications of di- methyl ether of diacetyl tartaric acid by Roozeboom (1899). Results for mixtures of the d and * forms of the diformalic derivative of racemic tartaric acid by Ringer (1902). Results for mixtures of d tartaric acid and racemic acid ester and for d diacetyl tartrate and racemic acid ester are given by Beck (1904). Data for mixtures of d and / tartaric acid and for mixtures of d and i dimethyl ester of tar- taric acid are given by Centnerszwer (1899). PyroTARTARIC ACID (Methyl Succinic Acid) CH 3 .CH(COOH).CH 2 (COOH). loo gms. H 2 O dissolve 51 gms. CH 3 CH(COOH).CH 2 COOH at 19.5. (Timofei imofeiew, 1894.) PyroTARTARIC ACID 712 Alcohol. t. Gms. Acid per loo Gms Solvent. Methyl Alcohol 18.5 53 tt +19 109.8 ii + I9-S II2.5 Ethyl Alcohol + 19 70.8 SOLUBILITY IN ALCOHOLS. (Timofeiew, 1894.) Alcohol. Ethyl Alcohol 19 Propyl Alcohol 19 5 iQ-5 Gms. Acia per 100 Gms. Solvent. 72.4 44-9 47.1 100 gms. 95% formic acid dissolve 17.8 gms. pyrotartaric acid at 18.5. (Aschan, 1913.) TERPIN HYDRATE Ci H 18 (OH) 2 .H s O. 100 cc. H 2 O dissolve 0.36 gm. terpin hydrate at 15-20. . 100 cc. 90% alcohol dissolve 7.1 gms. terpin hydrate at 15-20. (Squire and Caines, 1905.) TELLURIUM Te. 100 gms. methylene iodide, CH 2 l2, dissolve o.i gm. Te at 12. (Retgers, 1893.) DISTRIBUTION OF TELLURIUM BETWEEN AQUEOUS HYDROCHLORIC ACID AND ETHER AT ROOM TEMPERATURE. (Mylius, 1911.) When i gm. of tellurium as the chloride, TeCU, is dissolved in 100 cc. of aqueous HC1 and shaken with 100 cc. of ether, the following per cents of the metal enter the ethereal layers. With 20% HC1, 34 per cent; 15% HC1, 12 per cent; 10% HC1, 3 per cent; 5% HC1, 0.2 per cent and with i% HC1, only a trace of the tellurium. Fusion-point curves for mixtures of tellurium and each of the following metals are given by Pelabon (1909) : Sb, Sn, Pb, Ag, Au and As. Results for mixtures of Te and Zn are given by Kobayashi (1911-12). Mols. "ss^r H 2 0. 4.67 H 2 Te0 4 . 2 H 2 5-33 7.04 9-93 14.52 19 TELLURIUM DOUBLE SALTS SOLUBILITY OF TELLURIUM DOUBLE BROMIDES AND CHLORIDES IN AQUEOUS HYDROCHLORIC AND HYDROBROMIC ACIDS AT 22. (Wheeler, TELLURIC ACID H 2 TeO 4 .2H 2 O. SOLUBILITY IN WATER. (Mylius, 1901.) Gms. Mols. Gms. t. H 2 TeO 4 per H 2 TeO 4 pe 100 Gms. 100 Mols. r Solid Phase. t. H 2 TeO 4 per 100 Gms. Sol. H 2 O. Sol. 13.92 1.51 H 2 TeO 4 .6H 2 O 30 33.36 5 17.84 2.03 " 40 36.38 10 26.21 3.31 60 15 32.79 4-55 80 S'-SS 10 25-29 3-15 H 2 TeO 4 .2H 2 O 100 60.84 18 28.90 3.82 " no 67 Tellurium Double Salt. Formula. Solvent. Gms. Double Salt per too Gms. Solvent Te Caesium Bromide TeBr 4 .2CsBr Aq. HBr Te Potassium Bromide TeBr 4 .2KBr Te Rubidium Bromide Te Caesium Chloride Te Rubidium Chloride TeBr 4 .2RbBr " TeCl 4 . 2 CsCl Aq. HC1* TeCl 4 . 2 RbCl of i .49 Sp. Gr. of i .08 Sp. Gr. O-O2 0.13 6-57 62.90 0.25 3-88 0.05 0.78 o-34 13.09 Sp. Gr. of Aq. HC1 solutions 1.2 and 1.05 respectively. TELLURIUM IODIDE TELLURIUM TetralODIDE TeI 4 . SOLUBILITY IN MIXTURES OF AQUEOUS HYDRIODIC ACID AND IODINE AT 25. (Menke, 1912.) Weighed amounts of TeL + 1+65 wt. % HI solution were shaken in sealed glass tubes for 10 days. Both the clear saturated solution and the solid phase were analyzed. Solid Phase. Small amt. TeL..HI.8H a O tiuch t< < small amt. " TeI<.HI.8H,0 Iodine SOLUBILITY IN WATER AT 25. (Locke, 1901.) Salt per 100 Grams HjO. Composition of Original Mixture in Gms. Gms. per 100 Gms. Solution. TeL.. i. 64% HI. Tel*. i. 3 i-5 I9-25 12 11.7 2 o-5 9.61 13 o 2 o-S 9.61 13-5 8.2 3 3 8.99 20 21.8 Excess None 5 ( cc -) 9 0.19 2 9 9.10 IO 52.4 4 10 9.27 15 47-7 3 7 9.02 J 7-5 47-9 None Excess 5 (cc.) None 61.1 THALLIUM ALUMS Alum. Formula. Tl Aluminum Alum Tl Vanadium Alum Tl Chromium Alum Tl Iron Alum See also pp. 31 and 32. TlAl(S0 4 ) 2 .i2H 2 TlV(S0 4 ) 2 .i 2 H TlCr(S0 4 ) 2 .i2H 2 TlFe(S0 4 ) 2 .i2H 2 Gms. Gms. Gm. Anhydrous. Hydrated. Mols. 7-5 11.78 0.0177 25.6 43-31 0-0573 10.48 16.38 0.0212 3 6 - I 5 64.6 0.0799 THALLIUM BROMATE TlBrO 3 . One liter saturated aqueous solution contains 3.463 gms. TIBrOs at 19.9 (B6tt- ger, 1903) and 7.355 gms. at 39.75. (Noyes and Abbot, 1895.) THALLIUM BROMIDE TIBr. One liter sat. aqueous solution contains 0.238 gm. TIBr at 0.13, 0.289 g m - a * 9.37, 0.4233 gm. at 1 8 and 0.579 gm. at 25.68. (Kohlrausch, 1908.) SOLUBILITY OF THALLIUM BROMIDE IN AQUEOUS SOLUTIONS OF THALLIUM NITRATE AT 68.5. (Noyes, 1890.) Gms. Mols. per Liter. Gms. per Liter. T1NO 3 . O 0.0163 0.0294 0-0955 TIBr. 0.00869 O.OO4IO 0.00289 O.OOI48 T1NO 3 . O 4.336 7.820 25.400 TIBr. 2.469 I.l64 0.821 0.420 F.-pt. data for mixtures of TIBr + T1C1, TIBr + Til and T1C1 + Til are given by Monkemeyer (1906). Results for T1C1 + SnCl 2 and T1C1 + ZnCl 2 are given by Korreng (1914). THALLIUM, CARBONATE T1 2 C0 3 . SOLUBILITY IN WATER. (Crookes, 1864; Lamy, 1863.) t. 15.5- 18. 62. 100. 100.8. Gms. T1 2 CO 3 per 100 gms* H 2 4.2 (C.) 5.23 12.85 2 7- 2 (C.) 22.4 THALLIUM CHLORATE 714 THALLIUM CHLORATE T1C1O 3 . SOLUBILITY IN WATER. (Muir, 1876.) t. 0. 20. 50. 80. 100. Gms. TIClOs per ioo gms. H 2 O 2 3.92 12.67 36-65 57.31 One liter sat. aq. solution contains 38.51 gms. T1C1O 3 at 20. (Noyes and Parrel, 1911.) One liter of aqueous solution, saturated with both salts, contains 30.4 gms. TIClOa + 3443 gms. T1 2 SO 4 at 2O. (Noyes and Farrel, 1911.) SOLUBILITY OF MIXED CRYSTALS OF THALLIUM CHLORATE AND POTASSIUM CHLORATE IN WATER AT 10. (Roozeboom, 1891.) NOTE. Solutions of the two salts were mixed in different proportions and allowed to crystallize, such amounts being taken that not more than one or two grams would separate from one liter. Gms. per 1000 cc. Mg. Mols. per 1000 cc. Sp. Gr. Mols. per cent Solution. ^ Solution. o f KC1O 3 in Mixed 'T1C1O 3 . KC1O 3 . T1C1O 3 . KC1O 3 . Solutions. Crystals. 2 5-637 89.14 ... I.O2IO O 19.637 6.884 68.27 56.15 I.O222 2 12.001 26.100 41.73 212.89 1.0278 12. 6l 9.036 40.064 3 I -4 2 3 2 6.79 i -033 8 25.01 7.885 46.497 27.42 379.26 1.0359 > 36 . 30 _ 97 7.935 46.535 27.60 379-57 1.0360 ) * 6.706 46.410 23.32 378.55 1-0357 99- 2 8 6.723 47-109 23.37 384-25 1-0363 99.60 4.858 47-312 16.89 385-91 1-0345 99-62 2.769 47-134 9-63 3 8 4.46 1.0330 99.67 49.925 ... 407.22 1.0330 ioo SOLUBILITY OF MIXED CRYSTALS OF THALLIUM CHLORATE AND POTASSIUM CHLORATE IN WATER AT -DIFFERENT TEMPERATURES. (Quoted by Rabe, 1902.) ioo gms. H 2 O dissolve 2.8 gms. T1C1O 3 + 3.3 gms. KC1O 3 at o. H 2 O dissolve 10 gms. T1C1O 3 + 1.5 gms. KC1O 3 at 15. H 2 O dissolve 12.67 gms. T1C1O 3 + 16.2 gms. KC1O 3 at 50. H 2 O dissolve 57.3 gms. T1C1O 3 + 48.2 gms. KC1O 3 at 100. THALLIUM PerCHLORATE T1C1O 4 . SOLUBILITY IN WATER. (Carlson, 1910.) c n Gms. T1C1O 4 c r Gms. T1C1O 4 per t. IP-^J per ioo Gms. t. Jg-gS ioo Gms. H 2 0. Sat ' SoL H 2 0. o i. 060 6 50 1.251 39-62 10 1.075 8.04 70 1.430 65.32 30 1.146 I9.72 80 L520 81.49 ioo gms. H 2 O dissolve 10 gms. T1C10 4 at 15 and 166.6 gms. at 100. (Roscoe, 1866.) 715 THALLIUM CHLORIDE THALLIUM CHLORIDE T1C1. SOLUBILITY IN WATER. (Average curve from results of Noyes, 1892; Bottger, 1903; Kohlrausch, 1904; Hebberling; Crookes; Lamy. The results of Berkeley, 1904 are also given.) jo^ Cms. T1C1 per Liter. o 2.1 (av.) 1.7 (B.) 10 2.5 2.4 20 3.3 3-4 t. 25 30 40 50 Gms. T1C1 per Liter . t. Gms - T1C1 per Liter. 3-86 4.2 5-2 6-3 4 4.6 6 8 60 80 IOO 8 12 18 IO.2 16 24.1 (99.3) The results of Berkeley are in terms of gms. of T1C1 per 1000 gms. H 2 O but since the densities of the solutions are approximately I in all cases, except for temperatures above 60, the differences are negligible. The Sp. Gr. of the sat. sol. at 99.3 is 0.9787 and the figure 24.1, therefore, becomes 23.58 gms. per liter. One liter sat. solution in water contains 2.27 gms. T1C1 at 9.54, 3.05 gms. at 17.7, and 3.97 gms. at 25.76. (Kohlrausch, 1908.) SOLUBILITY OF THALLIUM CHLORIDE AT 25 IN AQUEOUS SOLUTIONS OF: Nitric Acid. (Hill and Simmons, 1909.) Normality of Aq. CHsCOOH 0.0501 0.0958 0.263 0.524 Acetic Acid. (Hill, 1917.) T1C1 per Liter. Gms. 3.8515 3.8375 3.8326 3.7503 3.6539 Gm. Equiv. O.Ol6o85 O.OI6027 O.Ol6oo6 0.015662 0.015258 Normality of d^ of Aq. HN0 3 . Sat. Sol. o 0.996 0.4977 1.0184 1.0046 1.0359 T1C1 per Liter. 'Gms. Gm. Equiv." 3.951 0.0165 5-937 2.475 6.882 2.875 2.0452 1.0705 4.0170 1.1362 8.143 3-401 9.925 4.145 SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SALTS WITH A COMMON ION AT 25. (Noyes, 1892.) Aqueous Solution of: Gms. Equiv. Added Salt per Liter. Gms. Equiv. Dissolved T1C1 per Liter. . Water alone O o. 01612 NH 4 C1 0.025 0.00877 " 0.05 0.00593 " 0.20 O.0027I BaCl 2 0.05 O.OO62O " O.IO 0.00425 CdCl 2 0.025 O.OI040 " 0.05 0.00780 " O.IO 0.00578 tt O.2O 0.00427 CaCl 2 0.025 0.00899 " 0.05 0.00624 u O. IO 0.00417 " O. 2O 0.00284 CuCl 2 0.025 0.00905 " 0.05 0.00614 tt O.IO O.OO422 tt O.2O O.OO29I HC1 0.025 0.00869 " 0.05 0.00585 " O.IO 0.00384 tt O.2O 0.00254 Aqueous Solution of: Gms. Equiv. Added Salt per Liter. Gms. Equiv. Dissolved T1C1 per Liter. MgCl 2 0.025 o . 00904 u 0.050 0.0o6l8 " O. 10 0.00413 tt O.20 0.00275 MnCl 2 0.025 0.00898 tt 0.05 0.00617 u O.IO O.OO4I2 u O.2O O.O0286 KC1 0.025 0.00872 u 0.05 0.00593 K O.IO 0.00399 " O.2O O.O0265 tt 0.80 O.OOI70 NaCl 0.025 0.00869 tt 0.05 0.00592 tt O.IO 0.00395 (l O.2O O.OO27I TIClOs 0.025 0.00897 tt 0.025 0.00894 T1N0 3 0.025 0.00883 tt 0.05 O.OO626 tt O.IO 0.00423 THALLIUM CHLORIDE 716 SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25. (Noyes, 1890; Noyes and Abbott, 1895; Geffcken, 1904.) Aq. Salt Solution. Ammonium Nitrate NT^NOa Barium Chloride BaCl 2 u Cadmium Sulfate CdSO 4 u II Hydrochloric Acid HC1 Lithium Nitrate LiNO 3 Potassium Chlorate KC10 3 Potassium Nitrate KNO 8 Sodium Acetate CHsCOONa Sodium Nitrate NaNOs Sodium Chlorate NaClO Thallium BromateTlBrOs (at 39.75) ThaUium Nitrate T1NO 3 ThaUium Sulfate T1 2 SO 4 ThaUium Thiocyanate T1SCN (at 39.75) NOTE. In the case of 'the results for thallium bromate and thallium thio- cyanate at 39.75, the solutions were saturated with respect to these salts as well as with respect to thallium chloride. G. Mols^per Liter. Cms. per Liter. ' Salt. T1C1. " Salt. T1C1. ' o 0.01612 3-86i(G.) o-S 0.02587 40.02 6.209 i 0.03121 80.05 7-473 2 0.03966 160. 10 9-497 0.0283 0.00857 5-895 2.052 (N.) 0.1468 0.00323 30.59 0-773 0.030 0.0206 6.255 4-933(N.) 0.0787 0.0254 16.41 6.081 0.1574 0.0309 32.82 7-399 0.0283 0.00836 1.032 2.002 (N.) 0.0560 0.00565 2.043 1-353 0.1468 0.00316 5-357 0-757 o-5 0.02542 34-53 6.085 (G.) i 0.03035 69.07 7.266 2 0.03785 138-14 9.063 3 0.04438 207.21 10.630 0-5 0.0237 61.28 5-674(0.) 0.015 0.0170 i.5i7 4.070 (N.) 0.030 0.0179 3-033 4.286 0.0787 0.0192 7.775 4-597 0.1574 0.0212 15-920 5.076 o-S 0.0257 50.55 6.i53(G.) i 0.0308 IOI. II 7-375 2 0.0390 202.22 9-340 0.015 0.0168 I.23I 4.023 (N.) 0.030 0.0172 2.462 4.118 0.0787 0.0185 6.46 4-430 0.1574 0.0196 12.92 4-693 0-5 0.02564 42.50 6.i39(G.) I 0.03054 85.01 7.313 2 0.03851 I7O.O2 9. 221 3 0.04544 255-03 10.88 4 0.05128 340.12 12.28 o.S 0.02320 53-25 5-555(G.) i 0.02687 106.5 6-433 2 0.03060 213 7-326 3 0.03303 3I9-S 7.909 4 0.03850 426 9-215 0.01567 0.01959 5-201 4.690(N.&A.) 0.0283 0.0083 7.518 1.987 (N.) 0.0560 0.00571 14.89 1.368 0.1468 0.00332 39-05 0-795 0.0283 0.00886 14.27 2. 121 (N.) 0.0560 0.00624 28.23 1.494 0.0107 0.0119 2.802 2.849 (N.) 0.02149 0.01807 5.632 *.326(N.&A.) 717 THALLIUM CHLORIDE SOLUBILITY OF THALLIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SALTS AT 25 (Bray and Winninghoff, 1911.) Solvent. Saturated Solution. Salt Gms. Equiv. dj>* of Aq. Gms. Equiv. dy. of Sat. Gms. Equiv. Present. Salt, per Liter. Solvent. Salt per Liter. Sol. T1C1 per Liter. None . . . 0-9994 0.01607 KNO 3 O.O200I 0.9973 O.020 I.OO09 0.01716 " O.05000 0.9992 0.04997 1.0028 0.01826 " 0.10005 1.0023 0.09998 1.0063 0.01961 " 0.3002 I.OI45 0.3000 1.0194 0.02313 M 1.0005 1.0568 0.9996 1.0632 0.03072 K 2 SO 4 0.01997 0.9975 0.01996 I. 0012 0.01779 (i O.O5000 0.9995 0.04996 1.0037 0.01942 " 0. IOOO 1.0030 0.09989 1.0074 0.02137 " 0.3000 1.0167 0.29966 I.O22I 0.026OO M I 1.0628 0.9986 1.0698 0.03416 T1 2 S0 4 0.02OO I.OOO7 O.OI999 1.0028 0.01034 " O.05OO 1.0076 0.04999 I . 0090 0.006772 " O. IOOO I.OI9I 0.09997 I.O200 o . 004679 One liter of water dissolves 2.7 gms. thallo thallic chloride 3T1C1.T1C1 3 at I5-I7, and 35 gms. at IOO. (Crookes, 1864; Lamy; Hebberling.) THALLIUM CHROMATE Tl 2 CrO 4 . 100 gms. H 2 O dissolve 0.03 gm. Tl 2 CrO 4 at 60, and 0.2 gm. at 100. (Browning and Hutchins, 1900.) One liter of aq. 31 per cent KOH solution dissolves 18 gms. Tl 2 CrO 4 . (Lepierre and Lachand, 1891.) One liter of H 2 O dissolves 0.35 gm. thallium trichromate, T^CrsOio, at 15, and 2.27 gms. at IOO. (Crookes, 1864.) THALLIUM CYANIDE T1CN and Double Cyanides. SOLUBILITY IN WATER. (Fronmtiller, 1878.) Formula. Cyanide. Tl Cyanide T1CN Tl Cobalti Cyanide Tl 3 Co(CN) 6 3.6 Tl Zinc Cyanide 2 TlCN.Zn(CN) 2 8.7 Tl Ferro Cyanide Tl4Fe(CN) 6 .2H 2 Gms. Salt per 100 Gms. H 2 O. 16.8 at 28.5. at o c at o; 15.2 at 14; 29.6 at 31. 0.37 at l8; 3.93 at IOI. (Lamy.) 5.86 at 9.5; 10.04 at 19.5 THALLIUM FLUORIDE TIP. 100 gms. H 2 O dissolve 80 gms. T1F at 15. THALLIUM HYDROXIDE T1OH. (Bttchner, 1865.) SOLUBILITY IN WATER. (Bahr, 1911.) t o 4lB f Mols. T1OH Gms. T10H t Mols. T1OH Gms. T1OH Sat. Sol. per Liter. per Liter. v * per Liter. per Liter. O .231 I.I5I 254-4 44-5 2.442 539-8 I8. 5 .317 1.554 343-4 54-1 2.940 649.7 29 342 1.803 398.5 64.6 3.601 795-8 32.1 377 1.861 4II.2 78.5 4.673 1033 36 .417 2.075 458.6 90 5.705 1261 40 .446 2.240 495 99.2 6.708 1483 The solutions were stirred by means of a current of hydrogen. The solid phase is the same at all temperatures. THALLIUM IODATE 718 THALLIUM IODATE T1IO 3 . One liter aq. solution contains 0.578 gm. T1IO 3 at 20. (Bottger, 1903.) One liter aqueous solution contains 1.76.10^ mols. TlIOs at 25 = 0.667 g m - determined by means of electrodes of the third kind. (Spencer, 1912.) THALLIUM IODIDE Til One liter sat. solution in water contains 0.0362 gm. at 9.9, 0.056 gm. at 18.1 and 0.0847 S m - at 26 . (Kohlrausch, 1908.) SOLUBILITY OF THALLIUM IODIDE IN WATER. (Average results from Bottger, 1903; Kohlrausch, 1904-05; Werther; Crookes, 1864; Lamy; Hebberling.) t. o. 20. 40. 60. . 80. 100. Cms. Til per liter 0.02 0.06 0.15 0.35 0.70 1.20 One liter of 2^ per cent aq. ammonia dissolves 0.761 gm. T1C1. One liter of 6^ per cent aq. ammonia dissolves 0.758 gm. T1C1. One liter of 90 per cent alcohol dissolves 0.0038 gm. T1C1. One liter of 50 per cent alcohol dissolves 0.027 g m > T1C1. (Long, 1888.) Data for the temperatures of solidification of mixtures of Til and TINOs are given by Van Eyk (1901). THALLIUM NITRATE T1NO 3 . SOLUBILITY IN WATER. (Berkeley, 1904; see also Etard, 1894; Crookes; Lamy.) e Gms. TINOa per 100 Cms. Gms. TINOa per TOO Gms. Solution. Water. Solution. Water. o 3.76 3.91 60 31.55 46.2 10 5-86 6.22 70 41.01 69.5 10 8.72 9.55 80 52.6 in.o 30 12.51 14.3 90 66.66 200. o 40 17.33 20-9 I0 8o -54 4i4-o 50 23.33 3o-4 105 85.59 594.0 Solid phase. TINOs rhombic. loo gms. H 2 O dissolve 43.5 gms. T1NO 3 + 104.2 gms. KNO 8 at 58. (Rabe, 1902.) THALLIUM OXALATE T1 2 C 2 O 4 . One liter of saturated aqueous solution contains 15.77 gms. T1 2 C 2 O4 at 20, and 18.69 gins, at 25. (Bottger, 1903; Abegg and Spencer, 1905.) SOLUBILITY OF THALLIUM OXALATE AT 25 IN AQ. SOLUTIONS OF: Thallium Nitrate. (Abegg and Spencer.) Mol. Concentration. Grams per Liter. Potassium Oxalate. (Abegg and Spencer.) Mol. Concentration. Grams per Liter. T1NO 3 . 0.0 O.O4II4 0.0799 o-i597 T1 2 C 2 4 . 0.03768 0.0264 0.0195 0.01235 T1N0 3 . o.oo 10-95 21 .26 42.51 T1 2 C 2 4 . 18.69 13.10 9.68 6.128 K 2 C 2 4 . 0-0498 0-0996 0.2467 0.4886 0.9785 T1 2 C 2 O 4 . 0.0351 0-03565 0.0390 0-04506 0-05536 K 2 C 2 4 . 8.281 16.57 41 .02 81.25 162.6 T1 2 C 2 4 . 17.42 17.69 19.36 22.37 27.48 THALLIUM PHOSPHATE (ortho) T1 3 PO 4 . One liter of sat. aqueous solution contains 4.97 gms. T1 3 PO 4 at 15 and 6.71 (Crookes, 1864.) 719 THALLIUM PICRATE THALLIUM PICRATE T10C 6 H 2 (NO 2 ) 3 . SOLUBILITY IN WATER. (Rabe, 1901.) Cms. T10C,H 2 (N0 2 ), per 100 Gms. H 2 0. 0.135 0.36 o-575 Gms. t , Solid Phase. Solid Phase. o 18 30 40 47 Monoclinic Red per ioo Gms. H 2 0. 1.04 Triclinic Yellow 1 . 10 " 1.205 0.825 " 60 1.73 2-43 ioo gms. H 2 O simultaneously sat. with both salts dissolve: 0.132 gm. C 6 H 2 (N0 2 ) 3 OT1 + 0.36 gm. C 6 H 2 (NO 2 ) 8 OK at o. 0.352 " + 0.44 " 15. 0.38 +0.23 "20. (Rabe, 1901.) SOLUBILITY OF THALLIUM PICRATE IN METHYL ALCOHOL. 45 47 50 60 70 Gms. t. TlOC,H 2 (NO2)s per loo Gms. CHjOH. o 0.39 I 18 0-S9 25 0.70 30 o-795 35 0.90 40 i. 02 45 1.17 47 1.265 (Rabe, 1901.) Solid Phase. Red Form (monoclinic) Gms. t o T10C,H 2 (NO 2 ) 8 per ioo Gms. CH 3 OH. 45 -195 48 .265 50 325 53 .41 57 54 00 65 65 .84 Solid Phase. Yellow Form (triclinic) THALLIUM SEI,ENATE Tl 2 SeO 4 . SOLUBILITY IN WATER. 9-3 12 20 80 100 Gms. Tl 2 SeO 4 per 100 Gms. H 2 O. 2.13 2.4 2.8 8-5 10.86 Authority. (Tutton, 1907.) (Glauser, 1910.) (Tutton, 1907.) THALLIUM SULFATE T1 2 SO 4 . SOLUBILITY IN WATER. (Berkeley, 1904; see also Crookes; Lamy.) Gms. TljiSC^ per 100 Gms. i . Solution. Water. 2.63 2.70 IO 3-57 3-70 20 4.64 4.87 30 5.8o 6.16 50 8-44 9.21 I . Solution. Water. 60 9.89 10.92 70 II-3I 12.74 80 12.77 14.61 00 14.19 16.53 99-7 15-57 18.45 ioo gms. H 2 O dissolve 3.36 gms. T1 2 SO 4 at 6.5, 4.3 gms. at 12 and 19.14 gms. at 100. (Tutton, 1907.) One liter sat. solution in water contains 48.59 gms. T1 2 SO 4 at 20 (Noyes and Farrel, 1911) and 54.59 gms. at 25 (Noyes and Stewart, 1911). ioo gms. H 2 O simultaneously sat. with both salts dissolve: 4.74 gms. T1 2 SO 4 + 10.3 gms. K 2 SO 4 at 15. 11.5 " " + 16.4 62. 18.52 " " +26.2 " 100. (Rabe, 1902.) THALLIUM SULFATE 720 SOLUBILITY OF THALLIUM SULFATE IN AQUEOUS SOLUTIONS AT 25. (Noyes and Stewart, 1911.) Saturated Solution. Solvent. Salt Present. T1NO 3 Formula Wts. Salt per Liter. tt 0.04995 O.2O NaHSO 4 H 2 SO 4 O.IOI5 0.04967 " 0.09933 Formula Wts. Formula Wts. j _r Gms. Gms. Salt per Liter. T1 2 S0 4 per Liter. Sat Sol. Salt per Liter. T1 2 S0 4 per Liter. o . 0996 0.08365 . . . 26.51 42.17 0.0497 o . 1080 I-053I 7.062 54-44 0.1988 O.II73 1-0754 28.25 59-13 O.IOIO 0.1161 1.0596 12 .12 58.53 o . 0494 0.1172 I . 0540 4.878 59-09 0.0987 0.1249 I . 0604 9-747 62.95 SOLUBILITY OF THALLIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (D'Ans and Fritsche, 1909.) ' H 2 S0 4 . T1 2 SO 4 . ' H 2 S0 4 . T1 2 S0 4 . . ouiiu jriiasc. 0.103 T1 2 S0 4 4.89 o-59 T1HS0 4 2.99 0.46 " +T1 3 H(S0 4 ) 2 4.92 0.66 " 4-25 0.61 T1 3 H(S04) 2 +T1HS0 4 4.78 0-75 it 4-55 0.56 T1HSO, 4.26 1. 01 * 4-79 o-55 " 4-03 i. 08 i THALLIUM DOUBLE SULFATES SOLUBILITY IN WATER AT 25. (Locke, 1901.) Double Sulfate. Tl Copper Sulfate Tl Nickel Sulfate Tl Zinc Sulfate Formula. Tl 2 Cu(SO 4 )2.6H 2 O Tl 2 Ni(S0 4 ) 2 .6H 2 Tl 2 Zn(SO 4 ) 2 .6H 2 O Salt per 100 cc. H 2 O. Gms. Anhydrous. Gms. Mols. 8.1 O.OI22 4.6l O.OO7 8.6 0.0129 THALLIUM SULFIDE T1 2 S. One liter of sat. aqueous solution contains 0.215 g m - T1 2 S at 20. (Bottger, 1903.) A diagram and discussion of the fusion points of T1 2 S + S, T1 2 S + Se and T1 2 S + Te are given by Pelabon, 1907. (Seubert and Elten, 1892.) THALLIUM SULFITE T1 2 SO 8 . 100 gms. H 2 O dissolve 3.34 gms. T1 2 SO 3 at 15.5. THALLIUM THIOCYANATE T1SCN. SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS. (Bottger, 1903; Noyes, 1890; Noyes and Abbott, 1895.) One liter sat. aq. solution contains 3.154 gms. T1SCN at 20, 3.905 gms. at 25* and 7.269 gms. at 39.75. Aq. Salt Solution. Gms. Mols. per Liter. SalT T1SCN. Thallium BromateTlBrOa (excess) 39-75 0.01496 O.O22I Gms. per Liter. Thallium Nitrate T1NO 3 Potassium Thiocyanate, KSCN 25 25 25 0.0227 0.0822 Salt. T1SCN. 4.966 5.793(N.&A.) 0.00852 6.04. 2.233(N.) 0.00406 21.88 . 1.064 0.0083 2.208 2.i76(N.) 721 THALLIUM VANADATES THALLIUM VANADATES. SOLUBILITY IN WATER. Vanadate. Tl. meta vanadate " ortho vanadate " pyro vanadate " vanadate Formula. T1V0 3 (Carnelly, 1873; Liebig, 1860.) Gms. Vanadate per 100 Gms. H 2 O. At 15. 0.087 C 1 * I O.20 (14) 0.107 THEBAINE (Para Morphine) Ci 9 H 2 iNO 3 . SOLUBILITY IN SEVERAL SOLVENTS. Solvent. 92 Wt. % Alcohol Ether Aniline Pyridine Piperidine Diethylamine THEOBROMINE (Dimethyl Xanthine) C 6 H 2 (CH 3 ) 2 N 4 2 . SOLUBILITY IN SEVERAL SOLVENTS. t. Gms. Thebaine per 100 Gms. Solvent. 25 O.I 10 0.71 20 30 20 9 20 2 2O 0.7 At i oo 6 . 0-21 1.74 0.26 - 2 9 Authority. (Scholtz, 1912.) Solvent. Water t. N 4 O 2 per zoo Gms. Solvent. Authority. 18 0.0305 (Paul, 1901.) 15-20 0.059 (Squire & Caines, 1905.) 18 0.047 (Paul, 1901.) 18 0.083 " 18 I. 7 8 it 18 4.56 " 15 3.69 (Brissemoret, 1898.) 21 0.045 (Squire & Caines, 1905.) 15-20 O.O2 " 15 0.005 (Wester & Bruins, 1914.) 15 O.OOS " b. pt. 0.021; (Gockel, 1897.) b..pt. 0.032 " Aq. 0.25 n HC1 " i wHCl " o.i wNaOH " 0.25 n " " i5.6percentNa 3 (PO 4 ) 2 .Sol. 92.3 Wt. % Alcohol 90 Wt. % Alcohol Dichlorethylene Trichlorethylene Carbon Tetrachloride Ether THIOPHENE MonoCARBONIC ACIDS a, ft and a C 4 H 3 SCOOH. The solubility of the three isomers is given by Voerman (1907) as 0.57 gm. of the a acid per 100 cc. sat. solution at 21; 0.445 g m - of the acid at 18, and 0.75 gm. of the a acid at 17. The solvent is not stated. Data for the solidification points of mixtures of the a and /3 acid are also given. THEOPHYLLINE (Theocin) C 6 H 2 (CH3) 2 N 4 O 2 .H 2 O. 100 gms. H 2 O dissolve 0.52 gm. theophylline at 15-20. (Squire & Caines, 1905.) 100 cc. 90 vol. % alcohol dissolve 1.25 gms. theophylline at 15-20. THORIUM EMANATIONS. Data for the solubility of thorium emanations are given by Klaus (1905). THORIUM ChloroACETATES. SOLUBILITY IN WATER AT 25. (Karl. 1310.) Name of Salt. Formula. SS^SfjR Basic Thorium Monochloroacetate (ClCH 2 COO)2Th(OH)2.H 2 O 0.0663 Basic Thorium Dichloroacetate (Cl 2 CHCOO) 2 Th(OH) 2 0.0887 Basic Thorium Trichloroacetate (Cl3C.COO) 2 Th(OH) 2 0.0091 THORIUM BORATE 722 THORIUM BORATE. The precipitate which results when thorium nitrate is added to a solution of borax is not a stable compound. Solubility determinations made by four suc- cessive extractions of it at 18 with water, gave the following gms. of material per 100 gms. H 2 O; 0.5366, 0.1250, 0.0611 and 0.0560. After the fourth ex- traction, the residue then contained 10.14% B 2 O 3 and after boiling 10 gms. with 100 cc. of H 2 O for 6 hrs. and repeating this four times, it contained 9.63- 9.81% B 2 O 3 . (Karl, 1910.) THORIUM HIPPURATE Th(C 6 H 6 .CO.CH 2 .NH.COO) 4 . 100 gms. H 2 O dissolve 0.0318 gm. of the salt at 25. (Karl, 1910.) THORIUM OXALATE Th(C 2 O 4 ) 2 .6H 2 O. SOLUBILITY IN AQUEOUS SOLUTIONS OF AMMONIUM OXALATE AT 25. (Hauser and Wirth, igoga, 1912.) Gm. Mols. per 1000 Gms. Sat. Sol. (NHOzCA. Th(CA),. 0.00033 0.00005 0.00072 O.OOOI2 0.00120 O.OOO2O8 O.OOI53 0.00026 o.6oif 0.195 i.iSif 0.427 1.420} 0.540 i. 4 8ot 0.563 Solid Phase. Th(CA)2.6H 2 [Th(C 2 4 ] 3 (NH 4 ) 2 . 3 H 2 Normality Vjms. J.n\j 2 per 1000 Gms. Sat. Sol. 0.01 0.040 O.IO 0.5* 2.203 7.660 10.63 0.5* 0.5* 0.5* 15.90 17.60 17-75 Solid Phase. [Th,(CA>iKNH l )fr7H l O * In these cases the greater part of the ammonium salt entered the solid phase complex and it was, therefore, necessary to add additional ammonium oxalate until constant results were obtained. t In these cases the solvent was saturated ammonium oxalate solutions containing an excess of the crystals. A thorium ammonium oxalate of the composition Th(C 2 O 4 .NH 4 ) 4 .4H 2 O is described by Brauner (1898). It is partially hydrolytically decomposed in aqueous solution and a solubility determination made by analyzing the solution from which the nearly pure salt began to crystallize, showed that 100 gms. H 2 O contain 90.3 gms. Th(C 2 O 4 .NH 4 ) 4 .4H 2 O and 9.3 gms. of (NH 4 ) 2 C 2 O 4 (= an addi- tional \ mol. wt.) SOLUBILITY OF THORIUM OXALATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID. Solid Phase. Results at 17. Results at 25. (Colani, 1913.) (Hauser and Wirth, 1912.) Gms. per 100 Gms. Sat. Sol. Cone, of Aq. HC1 in Gm. ThO 2 per 1000 Gms. Sc HC1. ThtCjOOj. Per cent. Sat. Sol. o 0.0017 24.8 . 100 3Th(C 1.2 0.0035 37 3-450 3.6 0.0061 37-6 3-492 4.6 0.0094 8.4 0.017 13.1 0.028 16.2 0.038 19.8 0.064 Results at 50. (Colani, 1913.) Gms. per 100 Gms. Sat. Sol. HC1. Th(C 2 4 ) 2 . 0.0017 4.1 8-4 0.010 0.028 12.4 16.1 18 19.9 21.6 0.057 0.103 0.134 0.169 0.232 Data are also given for the solubility of thorium oxalate in aqueous solutions of mixtures of hydrochloric and oxalic acids at the above temperatures. 723 THORIUM OXALATE SOLUBILITY OF THORIUM CHLOROOXALATE, 3Th(C 2 O 4 )2ThCl4.2H 2 O, IN AQUEOUS HYDROCHLORIC ACID. (Colani, 1913.) Cms, per 100 Gms. Sat. Sol. 12 15 12 15 12 IS ' HC1. Th 4 (c 2 o 4 )ci 4 : 23 26.3 O.I2 0.17 29.9 32.5 0.27 0.48 33-1 0-53 35 1.03 50 50 50 50 50 50 Cms, per 100 Gms. Sat. Sol. HCL ' 21.2 23 26.8 29.8 32.3 34-6 0.29 0.34 0.46 0.75 1.51 2.59 Results are also given showing the effect of oxalic acid upon the solubility of the above salt in aqueous hydrochloric acid. SOLUBILITY OF THORIUM OXALATE IN AQUEOUS OXALIC ACID SOLUTIONS. Results at 25. (Hauser and Wirth, 1912.) Normality of Aq.H 2 CA. Gm. ThO 2 per 1000 Gms. Sat.Sol. <, ,. , p , Sohd Phase. Results at 50. (Colani, 1913.) Gms. per 100 Gms. Sat. Sol. H 2 C 2 Q 4 . I 0.0015 Th(C2O4) 2 .6H 2 O 1.7 Sat. Solution 0.0030 " +H 2 c 2 o 4 .2H 2 o 9.3 03 SOLUBILITY OF THORIUM OXALATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25. (Hauser and Wirth, igoga, 1912; Wirth, Th. 0.0002 o.ooi 0.003 Nonnalityof Aq.H 2 S0 4 . 0.25 0.5 i 2.1 3.2 Sat. Sol. 0.07 0.14 0.26 0.418 0.71 Solid Phase. Th(C 2 O 4 ) 2 .6H 2 O 4.32 4-9 6.175 6.885 8.45 Sat . Sol . 1. 10 1.32 1.513 1.794 2.473 Solid Phase. Th(CjO4) 2 .6H 2 O THORIUM PICRATE Th(C 6 H 2 N 3 O 7 ) 4 .ioH 2 O. 100 gms. H 2 O dissolve 0.3052 gm. of the salt at 25. THORIUM SELENATE Th(SeO 4 ) 2 .9H 2 O. 100 gms. H 2 O dissolve 0.498 gm. Th(SeO 4 )4 at o and 1.972 gms. at 100. THORIUM SULFATE Th(SO 4 ) 2 . SOLUBILITY IN WATER. (Roozeboom, 1890; Demarcay, 1883.) (Karl, 1910.) (Cleve, 1885.) Gms. Th(SO 4 ) 2 Per Solid -o Gms. Th(SO 4 ) 2 per 100 Gms. H 2 O. Solid Phase. ' 100 Gms. H2 0. ' Phase. O 74) o i .0 Th(SC>4) 2 .8Ha 50 2-54 1.94 (55") 44 15 i 38 60 1-63 " 25 X 85 44 70 1.09 1.32 (75) 44 3 71 95 0.71 n Additional results for the .8H 2 O and the .9H 2 O salt, in fair agreement with the above, are given by Wyrouboff (1901). THORIUM SULFATE 724 SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF: Ammonium Sulfate at 16. Lithium Sulfate at 25. (Barre, igii.) (Barre, 1912.) Gms. per 100 Gms. H 2 O. Solid Phase. Gms. per 100 Gms. H 2 O. (NH 4 ) 2 SO 4 . Th(SO 4 ) 2 . Li 2 S0 4 . Th(S0 4 ) 2 : 2.13 3.361 TKSO^.gl^O o 1.722 4.80 5.269 " 2-57 4-13 10.02 8.947 " 4-93 6.20 16.56 I3-330 " +1.1.4 6.98 7-95 28 10.359 1.1.4 9.23 9.68 35.20 9.821 " +1.2.2 11.13 11.05 45.14 6.592 1.2.2- 13.18 12.54 49-05 5-750 '' 16.12 14-52 52.88 4.583 1-3-3 2O.49 l6.Q2 69.74 1.653 " 25.18 18.87 1.1.4 = Th(S0 4 ) 2 .(NH 4 ) 2 S0 4 . 4 H 2 0; 1.2.2 = Th(S0 4 ) 2 .2(NH 4 ) 2 S0 4 .2H 2 0; 1.3.3 Th(S0 4 ) 2 . 3 (NH 4 ) 2 S0 4 .3H 2 0. SOLUBILITY OF THORIUM Results at 16. Gms. per 100 Gms. H 2 O. K 2 S0 4 . Th(SOJ 2 . i-39 0.424 1.667 .004 2.193 152 3-i9i .224 2.514 .283 2.222 .348 1.706 -378 I-637 .487 0.870 .844 0.370 3.092 0.070 4- 050 O.O27 4.825 0.003 SULFATE IN AQUEOUS SOLUTIONS OF POTASSIUM SULFATE. (Barre, 1911.) Results at 75. Solid Phase. Gms. per 100 Gms. H 2 O. Th(S04) 2 .K 2 S0 4 . 4 H 2 K 2 SO 4 . O 0.865 1.167 0.9248 i-i37 I - I 73 1 .172 I .121 1 .270 1.296 1.852 0.907 0-495 0.297 3-7 4-659 5-348 O.2OI 0.256 0.170 5-932 0.123 7.177 9.706 0.031 O.O22 Th(S0 4 ) 2 . 3 ^K 2 S0 4 SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF NITRIC ACID AT 30. (Koppel and Holtkamp, 1910.) In Aq. Hydrochloric Acid. Wt. % HC1 in Solvent. Gms. Th(SO 4 )' per too Gms. Sat. Sol. 2.15 4-55 3-541 6-95 3-431 12.14 2.811 15.71 2.360 18.33 2.199 20 2.IIO 20 2.I4I 23-9 1.277 Solid Phase. In Aq. Nitric Acid. Solid Phase. Wt. % HN0 3 in Solvent. oms. iiivov. per zoo Gn Sat. Sol. 5-17 2-15 3-68 IO.O4 16.68 4.20 4.84 21.99 28.33 28.51 4-47 3-88 33-17 38.82 3-34 2.51 725 THORIUM SULFATE SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF: Sodium Sulfate at 16. (Barre, 1910, 1911.) Gms. per 100 Gms. H 2 0. Sulfuric Acid at 25. (Barre, 1912.) Gms. per 100 Gms. H 2 O. Na 2 S0 4 . 1.094 1.960 2.98 4.II 5-79 9-35 12.24 15-36 1 . 743 2 ThtSO^.NajSCVGHjO 2.387 3-962 3-375 2.136 1-379 1.169 i . 048 H 2 S0 4 . O 1.072 I.94I 2.821 3.843 5.212 8.055 10.105 1.722 I.9I9 2.OI7 2.060 2.o6l 2.035 1.863 I.7O2 SOLUBILITY OF THORIUM SULFATE IN AQUEOUS SOLUTIONS OF SULFURIC ACID Results at 25. (Wirth, 1912.) Results at 20 and at the b.-pt. (Koppel and Holtkamp 1910.) Normality Gms. Th(SO 4 ) 2 Wt. % Gms. Th(SO 4 ) 2 of per 100 Gms. Solid Phase. t. H 2 SO 4 in per loo Gms. Solid Phase. Aq. H 2 S0 4 . Sat. Sol. Solvent. Sat. Sol. O 1 . 593 Th(S0 4 ) 2 . 9 H 2 20 5 1.722 Th(SO 4 ) 2 .8H J O I.I 1.831 20 15 0.9752 " 2.l6 1.488 20 25 0.3838 " 4-32 0.8751 2O 40 O.OIO3 ThtSO^^HjO 6.68 0.4312 b. pt. 5 0.7407 TMSOJj.SHjO 9.68 0.1045 Th(SO4).8HaO IO 0.4808 " 10.89 0.0636 IS 0.3882 " 15.15 0.0308 Th(SO4)i.4HjO Results at 30. (Koppel and Holtkamp, 1910.) Wt. % H 2 SO 4 in Solvent. Gms. ThCSOt), per Solid Phase Wt. % H 2 SO 4 Gms. ThCSO^j p 100 Gms. Sat. Sol. in Solvent. looGms. Sat. So f r Solid Phase. 2.152 Th(SO4) t .8 H 2 O 15.03 1.484 TMSO^.SHjO 0.466 2.055 23.64 0.7196 " 0.72 2.085 32.68 0.3364 " 1.468 2.267 37-80 0.077 Th(S04)*.4HtO 2.983 2.3H 43.28 0.0213 " 4.38 2.367 45.69 0.0047 " 4-97 2.323 74 o.i 208 9-95 1 . 961 80.5 " THORIUM m Nitrobenzene SULFONATE Th(C 6 H 4 .NO 2 .SO 3 )4.7H 2 O. 100 gms. H 2 O dissolve 61 gms. of the anhydrous salt at 15. (Holmberg, 1907.) THULIUM OXALATE Tm a (C 2 O 4 )3.9H2O(?.ioH 2 O). 100 cc. aq. 20% methyl amine oxalate dissolve approx. 4.082 gms. thulium oxalate. 100 cc. aq. 20% ethylamine oxalate dissolve approx. 5.728 gms. thulium oxalate. loo cc. aq. 20% triethylamine oxalate dissolve approx. 1 .340 gms. thulium oxalate. (Grant and James, 1917.) THULIUM Bromonitrobenzene SULFONATE Tm(C 6 H 3 Br.NO 2 .SO 3 , 1.4.2)3.- I2H 2 O. 100 gms. sat. solution in water contain 6.379 S m s. of the anhydrous salt at 25. (Katz and James, 1913.) THYMOL (3 Methyl 6 Isopropyl Phenol) C 3 H 7 .C 6 H 3 .OH.CH 3 . SOLUBILITY IN WATER. (Seidell, 1912.) f o Gms. Thymol per f Gms. Thymol per zoo Gms. Sat. Sol. 100 Gms. Sat. Sol. 10 0.067 25 0.0995 37 0.132 15 0.077 3 0.112 40 0.141 20 0.088 35 O.II2 O.I26 Gms. Thymol per 100 Gms. Sat. Sol. THYMOL 726 SOLUBILITY OF THYMOL IN AQUEOUS HYDROCHLORIC ACID. (Seideii, 1912.) Normality of Gm. Thymol per 100 cc. Sat. Sol, at: Aq.HCl. o O.I O.5 I 2.5 5 100 cc. 90 vol. per cent alcohol dissolve about 300 gms. of thymol at I5-2O. (Squire and Caines, 1905.) SOLUBILITY OF THYMOL IN SEVERAL OILS. (Seideii, 1912.) Gms. Thymol per 100 Gms. of: 25. 37.2. 0.0995 O.O968 (^26 = I.OO2) O . 0884 (^25 = I OOg) O.O8O2 (<*2 S = I.Ol8) 0.132 0.129 O.I2I O.II2 0.0612 (1*25 = 1.043) 0.0935 0.0445 O.O772 t. Olive Peanut Cod Liver Liquid Castor Cottonseed Linseed Oil. Oil. Oil. Petrolatum. Oil. Oil. Oil. 10 46.2 73 50 3-i 8l.2 56.2 62.3 IS 50-1 73-8 52 3-95 Q0.2 6 4 63-1 20 56.2 74.6 55-5 5-6 101 .5 74.2 65.1 25 66.9 76.4 63.1 9.78 Il6.5 89.4 6 9 30 84.5 83.2 77 16.3 137 ' II3-7 78.3 35 III 106.7 102 25-5 165 146.5 100 37 124-3 130.5 II6.5 29.9 180 166.5 II6.5 40 I5I-9 212.5 150 38-9 213 217-5 152 The specific gravities of the above saturated solutions and of solutions of lower concentrations of thymol in the several oils are also given. DISTRIBUTION OF THYMOL BETWEEN WATER AND OILS AT 25 AND AT 37. (Seideii, 1912.) Water + Olive Oil. Water + Cod Liver Oil. Water + Peanut Oil. Gms. Thymol per TOO cc. Gms. Thymol per 100 cc. Gms. Thymol per TOO cc. *" ' OH io ' ' oii 5^5 ' ' oii H^T" -r- Layer (c ). Layer (cj. Cw Layer (c ) Layer (c w ). Cv > Layer (c ). Layer (c,). 25 0.1014 44-95 443 0.1079 49 454 0.1077 46.48 43 1 25 0.0848 36.. 34 428 0.0816 32.58 400 0.0786 32.45 413 25 0.0349 16.26 465 0.0371 16.18 436 0.0395 16.16 409 25 0.0106 4.54 430 0.0127 4-57 359 o.oo88(?) 4.63 523 37 0.1087 46.35 427 0.1099 43-8i 399 37 0.0807 33-48 415 0.0862 32.90 380 37 0.0381 16.24 426 0.0574 22.51 392 37 0.0122 4.61 378 0.0250 8.86 357 Freezing-point data for mixtures of thymol and sulfuric acid are given by Kendall and Carpenter (1914). Results for thymol + bromotoluene are given by Paterno and Ampola (1897). TIN Sn. DISTRIBUTION OF TIN BETWEEN AQUEOUS HYDROCHLORIC ACID AND ETHER AT ROOM TEMPERATURE. (Mylius, 1911.) When i gm. of tin as the chloride, SnCl 4 , is dissolved in 100 cc. of aqueous hydrochloric acid and shaken with 100 cc. of ether, the following per cents of the metal enter the ethereal layers. With 20% HC1, 17 per cent; with 15% HC1, 28 per cent; with 10% HC1, 23 per cent; with 5% HC1, 10 per cent and with i% HC1, 0.8 per cent of the tin. 727 TIN CHLORIDE TIN CHLORIDE (Stannous) SnCl*. 100 gms. H 2 O dissolve 83.9 gms. SnCl 2 at o and 269.8 gms. at 15. Sp. Gr. of Solutions 1.532 and 1.827 respectively. (Engel, 1889; Michel and Krafft, 1851.) SOLUBILITY OF STANNOUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID AT o. (Engel.) Milligram Mols. per 10 cc. Sp. Gr. Grams per 100 cc. Solution. of Solution. HC1. iSnCl*. Solution. HC1. SnClj. 74-0 1-532 o.o 70.26 6.6 66.7 1.489 2.405 63-33 13-54 63-7S 1.472 4-935 60.52 24.8 68.4 1.524 9.04 64.95 34-9 8l.2 I .625 12.72 77.11 40-0 94.2 1.724 14.58 89.45 44-o 117.6 1.883 16.04 111-7 49-4 147.6 2.II4 18.01 I 3 8.6 66.0 156.4 2.190 24.05 148.5 78.0 157-0 2.199 28.43 149.0 100 gms. acetone dissolve 55.6 gms. SnCl 2 at 18. (dip = 1.6.) (Naumann, 1904.) 100 gms. ether 100 gms. ethyl dissolve 11.4 gms. SnCl 2 .2H acetate dissolve 31.2 gms. 2 O at o-35.5. SnCl 2 .2H 2 O at -2, 35-53 gms. at +22 and 73-44 gms. at 82. (von Laszynski, 1894.) 100 gms. ethyl acetate dissolve 4.46 gms. SnCl 2 at 18. dip of the sat. solution = 0.9215. (Naumann, 1910.) ioo gms. 95 per cent formic acid dissolve 4.1 gms. SnCl 2 at 19. (Aschan, 1913.) Freezing-point data for mixtures of SnCl 2 + ZnCl 2 are given by Herrmann (1911). TIN CHLORIDE (Stannic) SnCl 4 . DISTRIBUTION OF STANNIC CHLORIDE BETWEEN WATER AND XYLENE. (Smirnoff, 1907.) Very concentrated aqueous stannic chloride solutions were agitated with xylene at various temperatures and the amount of SnCl 4f in terms of Cl, which entered the xylene layer was determined. The amount of Sn and Cl in the xylene was found to correspond to SnCl 4 . Results for Xylene + SnCl 4 .5H 2 0. Results for Xylene + SnCl 4 .4H 2 O. Gms. Cl per ioo Gms. ^ Gms. Cl per ioo Gms. c t. Aq. Layer, c. Xylene Layer, c'. c' r. Aq. Layer, c. Xylene Layer, c'. 66 40.35 0.08 504.4 66 41.9 0.92 45-3 80 39-95 0.18 228.5 80 41.91 1.56 27 97-5 40.24 0-33 122. I IOO 41.85 2.52 !6. 7 in 40.27 0.68 59-3 III 41.68 3-23 12.9 Per cent Cl in SnCl 4 .sH 2 O = 40.38. Per cent Cl in SnCl 4 .4H 2 O = 42.37. Results for Xylene + SnCl 4 .3H 2 O. Gms. Cl per too Gms. t Aq. Xylene ~i' Layer, c. Layer, c'. 80 43.2 . 9.93 4.4 94 42.54 9.32 4.6 ioo 42.64 10.56 4.1 in 42.31 10.03 4-2 Per cent Cl in SnCl 4 .3H 2 O = 45.12. TIN HYDROXIDE 728 TIN HYDROXIDE (Stannous) Sn(OH) 2 . One liter of the saturated solution in water contains 0.0000135 gm. mols. Sn(QH) 2 at 25. (Goldschmidt and Eckhardt, 1906.) SOLUBILITY OF STANNOUS HYDROXIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS AT 25. (Goldschmidt and Eckhardt, 1906.) The authors desired to ascertain whether the mono, NaHSnO 2 , or the disodium salt, Na2SnC>2, predominates in alkaline tin hydroxide solutions. Given amounts of carefully prepared tin chloride, made from tin and HC1, and sodium hydroxide solutions were mixed in vessels containing hydrogen. The mixtures were shaken at 25 and the clear supernatant solutions in contact with the precipitated Sn(OH) 2 , analyzed. Gm. Mols. per Liter. Gm. Mols. per Liter. Total Na. NaHSn0 2 . NaOH. Total Na. NaHSnO 2 . NaOH. 0.00451 0.0009845 0.003525 0.02250 0.00838 O.OI4I2 0.00(58o 0.002l8 0.00462 0.02788 0.01038 0.01755 0.01149 0.003495 0.007995 0.02940 0.00874 O.O2066 0.02143 0.006935 0.014495 O.03OI2 0.00865 0.02147 0.02143 O.00660 0.01483 0.03036 O.OIO82 0.01954 0.02186 0.00628 0-015575 0.03044 0.009405 0.021035 SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. MOIST TIN HYDROXIDE USED. ORDINARY TEMPERATURE. (Rubenbauer, 1902.) Gms. per 20 cc. Mol . Solution. Dilution of the Gms. per 20 cc. Mol. Solution. Dilution of the Na. o . 2480 0.3680 0.6394 Sn. 0.1904 0.2614' 0.4304 NaOH. 1.86 i-*5 0.72 Na. 0.8326 0.9661 2.1234 Sn/ 0.5560 0.7849 1.8934 NaOH. o-55 '0.48 0.23 TIN IODIDE (Stannous) SnI 2 . SOLUBILITY IN WATER AND IN AQUEOUS HYDRIODIC ACID. (Young, 1897.) t*. Gms. Snla per 100 Gms. Aqueous HI Solutions of: ' o^=H 2 0. 5-83%. 9-60%. 15-2%. 20.44%. 24-8%. 30.4%. 36.82%. 2O 0.98 ' O-2O 0.23 0.6O 1.81 4-20 10.86 25 -3 1 30 1.16 0.23 0.23 0.64 1.81 4.06 10.28 23.46 40 i .40 o-33 0.28 0.71 1.90 4-12 10. 06 23-15 5 i .69 0.46 0.38 0.82 2 .12 4-34 10.35 23.76 6o 2.07 0.66 o-55 I .11 2.51 4.78 11.03 24.64 70 2.48 0.91 0.80 I .37 2.92 5-43 11.97 25.72 80 2-95 1.23 1.13 1.83 3-70 6.38 I3-30 27.23 9o 1.65 1.52 2.4O 4.58 7.82 I5-52 29.84 100 4-03 2.23 2.04 3-63 5-82 9.60 34-os TIN; IODIDE (Stannic) SnI 4 . SOLUBILITY IN ORGANIC SOLVENTS. (McDermott, 1911.) + Sp. Gr. Gms. SnL, per Sat. Sol. 100 Gms. Sat. Sol. Carbon Tetrachloride 22.4 1.59 5.25 50 1.63 12.50 Chloroform 28 1.50 8.21 Benzene 20.2 0.95 12.65 729 TIN IODIDE SOLUBILITY OF STANNIC IODIDE IN CARBON DISULFIDE. (Sneider, 1866; Arctowski, iSgs-'gG.) ii4.S. 94. ^-89. 84. 58. Ord. temp. Cms. Snl4 per 100 Gms. Solution 9.41 10.65 9-68 10.22 16.27 59.2(8) 100 gms. methylene iodide, CH 2 I 2 , dissolve 22.9 gms. SnI 4 at 10. Sp. Gr. of solution = 3.481. (Retgers, 1893-) TIN OXALATE (Stannous) Sn(COO) 2 . 100 gms. 95 per cent formic acid dissolve 0.16 gm. Sn(COO) 2 at 19. (Aschan, 1913.) TIN TetraPHENYL (Stannic) Sn(C 6 H 6 )4. Freezing-point data for Sn(C 6 H 6 )4 + Si(C 6 H 6 )4 are given by Pascal (1912). TIN SULFATE (Stannous) SnSO 4 . 100 gms. H 2 O dissolve 18.8 gms. SnSO 4 at 19 and 18.1 gms. at 100. (Marignac.) TOLUENE C 6 H 6 CH 3 . SOLUBILITY IN SULFUR. Figures read from curve, synthetic method used, see Note, page 16. (Alexejew, 1886.) Gms. CeHsCHg per 100 Gms. Gms. CpHsCHa per 100 Gms * - '~S Toluene * * / ~S Toluene Layer. Layer. Layer. Layer. ioo 3 73 150 12.5 59 no 4 71 160 16 53 120 5 68 170 22 47 130 7 66 175 25 43 140 9.5 63 178 crit. temp. 34 NitroTOLUENE o C 6 H 4 .CH 3 .NO 2 . RECIPROCAL SOLUBILITY OF o NITROTOLUENE AND WATER. (Campetti and Delgrosso, 1913.) The original results were plotted and the following figures read from the curve. Gms. o Nitrotoluene per ioo Gms. Gms. o Nitrotoluene per ioo Gms. t. H 2 O Rich Nitrotoluene *" H 2 O Rich Nitrotoluene' Layer. Rich Layer. Layer. Rich Layer. 150 i 98 245 13 81 175 1.5 96 250 16 78 200 3 93 255 20 72 225 6.5 89 260 29 63 240 10.5 84 263. 5 crit. t. 43 ioo gms. 95 per cent formic acid dissolve 13.25 gms. p CeH4.CH 3 .NO 2 at 20.8. (Aschan, 1913.) TrinitroTOLUENE 2,4,6 C 6 H 2 .CH3(NO 2 )3. ioo gms. H 2 O dissolve 0.021 gm. C 6 H 2 .CH 3 (NO 2 )3 at 15 and 0.164 S m - at IOO ' ioo gms. alcohol dissolve 1.6 gms. C 6 H 2 CH 3 (NO 2 ) 3 at 22 and 10 gms. at 58. (Capisarow, 1915-) TOLUENE SULFONAMINES o, m and p. SOLUBILITY OF EACH IN WATER AT 25. (Holleman and Caland (1911-) Compound. Gins. Cgmp'djjer Liter Amine of o Toluene Sulfonic Acid i .624 " " m " " 7.812 " " p " " " 3-156 TOLUENE 730 FREEZING-POINT DATA (Solubility, see footnote, p. i), FOR MIXTURES OF SUB- STITUTED TOLUENES AND OTHER COMPOUNDS. Mixture. Authority. o Bromotoluene + p Bromotoluene (van der Laan, 1907.) Bromotoluene + p Xylene fPaterno and Ampola, 1897.) + Veratrol -f- Tribenzylamine " " p Nitrotoluene + Ortho Nitrotoluene (Holleman, 1914.) + 2, 4 Dinitrotoluene (Giua, 1914, 1915.) + 2, 6 (Giua, 1915.) + 2,4,6 + m Nitrotoluene (Holleman and van den Arend, 1909.) + Urethan (Mascarelli, 1908, 1909.) 2, 4 Dinitrotoluene + 2, 6 Dinitrotoluene (Giua, 1914, 1915.) + 2, 4, 6 Trinitrotoluene (Giua, 1915.) 2, 6 + (Giua, 1914, 1915.) a Trinitrotoluene -f- p Amino Acetophenone (Giua, 1916.) + 7 Trinitrotoluene (Giua, 1915.) o Toluene Sulfochloride + p Toluene Sulfochloride (Holleman and Caland, 1911.) Binary Mixtures of Isomeric Tribromotoluenes (Jaeger, 1904.) " Chloronitrotoluenes (Wjbaut, I9 i 3 ; Holleman and van den Arend, 1909.) TOLUIC ACIDS (Monomethyl Benzole Acids) CH 3 .C 6 H 4 COOH. SOLUBILITY IN WATER AT 25. (Paul, 1894.) Add CH 3 .C 6 H 4 .COOH per Liter Solution. Grams. Millimols. Meta Toluic Acid 0.9801 7.207 Ortho Toluic Acid i . 1816 8 . 683 Para Toluic Acid 0.3454 2.540 One liter sat. solution in water contains 0.42 gram p toluic acid at 25. One liter sat. solution in i n aq. sodium p toluate contains 0.735 g m - P toluic acid at 25. (Sidgwick, 1910.) SOLUBILITY OF TOLUIC ACIDS (EACH SEPARATELY) IN WATER AT VARIOUS TEMPERATURES. (Sidgwick, Spurrell and Davies, 1915.) The determinations were made by the synthetic method, see p. 16; melting- point of o toluic acid = 102.4, of m acid = 110.5 an d of p acid = 176.8. The triple point (solid phase present) for the o acid, is at 93.5 and the concentration of acid in the two layers is 2.5 and 91.2 gms. respectively per 100 gms. sat. solu- tion. The tr. pt. for the m acid is at 91.8 and concentrations are 1.6 and 90.5; the tr.-pt. for the p acid is at 142 and concentrations, 5 and 74. Gms. per 100 Gms. Sat. Sol. Gms. per 100 Gms. Sat. Sol. *- o Toluic m Toluic P Toluic * o Toluic m Toluic * Toluic Acid. Acid. Acid. Acid. Acid. Acid. 80 2 03* 1.16* 140 9- 25 5-77 4.30* 90 2 42* i-54 . . . ISO 13- 7 8.40 9-33 100 2 97 1.98 I .16* 159 . i crit t. . . . . . . 00 no 3 7i 2.52 I .36* 1 60 30 19.4 120 5 .10 3-24 1 75* 161 . i crit. t. 00 130 6 93 4-30 2 .50* 162 . 2 crit. t. 00 * Indicates that a solid phase is present. Additional data for the solubility of the above compounds in water, determined by the synthetic method, are given by Flaschner and Rankin (1910). 731 TOLUIC ACIDS RATIO OF THE SOLUBILITIES OF TOLUIC ACIDS (SEPARATELY DETERMINED) IN WATER AND IN OLIVE OIL AT 25. (Boeseken and Waterman, 1911, 1912.) The solubilities of each acid in water and in olive oil was separately determined and the ratio considered to correspond to the distribution coefficients in each case. The concentrations of the dissolved acids are not given. n t . , Solubility m Olive Oil Acid. Ratio of . .... 17= Solubility m Water o Toluic Acid 40 . 5 m " " 21 * p 39.5 100 gms. 95% formic acid dissolve 2.99 gms. o toluic acid at 20.8. (Aschan, 1913.) Freezing-point data for mixtures of o, m, p and a toluic acids (each separ- ately) and sulfuric acid are given by Kendall and Carpenter (1914). Results for mixtures of o, m and a acids and picric acid are given by Kendall (1916). TOLUIDINE C 6 H 4 CH 3 .NH 2 . SOLUBILITY IN WATER. (Vaubel, 1895; Lowenherz, 1898.) Gms. Gms. t o CeHiCHa-NHa Solid t o CeRkCHjjNHa Solid per 1000 Phase. per 1000 Phase. Gms. H 2 O. Gms. H 2 O. 2O l6.26 Liquid ortho T. 2O-8 7.39 Para T. 20 0.15 Ortho T. 26.7 9.50 " 20 6.54 ParaTc 31.7 11.42 " One liter sat. solution in water contains 15 gms. o toluidine at 25. One liter sat. solution in i n aq. o toluidine hydrochloride, contains 30 gms. o toluidine at 25. (Sidgwick, 1910.) The following results for p toluidine, differing considerably from the above, are given by Walker (1890). t. 22 30 36.7 44 57-5 69 Gms. p Toluidine per 100 Gms. Sat. Sol. in Water 19.6 26.9 35.4 44.5 51.4 58.9 SOLUBILITY OF PARA TOLUIDINE IN ETHYL ALCOHOL. (Interpolated from original results of Speyers, 1902.) Wt. Mols. per Gms. per Wt. Mols. per Gms. per t*. of i cc. 100 Mols. too Gms. t. of i cc. 100 Mols. 100 Gms. Solution. C 2 H 5 OH. C 2 H 6 OH. Solution. C 2 H 6 OH. O 0.8885 20.72 48.1 20 0.9265 47-0 IIO.O 5 0.8982 26.0 60.0 25 0.9360 56.0 132.0 10 0.9080 32.0 74 -o 30 0.9460 66. o 156.0 15 0.9180 38.6 90.0 ioo gms. pyridine dissolve 126 gms, p toluidine at 2O-25. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 96.1 gms. p toluidine at 2O-25. " DISTRIBUTION OF PARA TOLUIDINE BETWEEN WATER AND CARBON TETRACHLORIDE. (Vaubel, 1903.) Gm^Toluidim Votaes of Solvent, Cms. C.H/CH.)NH. in: Used- H 2 O Layer. CCU Layer. i 200 cc. H 2 O+ioo cc. CCU 0.1406 0.8594 i 200 cc. H20-J-200 cc. CCU 0.0666 0.9334 TOLUIDINE 732 DISTRIBUTION OF o, m AND p TOLUIDINE BETWEEN WATER AND BENZENE AT 25. (Farmer and Warth, 1904.) Base. Dist.-Coef.^ nc - in ^. Cone, in H 2 O o Toluidine 13.4 m " 19.1 P '4-1 Aceto TOLUIDINE p CH 3 C 6 H 4 NH.C 2 H 3 O. SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25. (Holleman and Antusch, 1894.) Vol ^ Gms ' P 61 " S P' Gr ' Vol % Gms - P er S P- Gr AI YS ioo Gms. of Ai u i ioo Gms. of Alcohol. Solvent> Solutions. AlcohoL Solvent. Solutions. ioo 10.18 0.8074 50 1.92 0.9306 95 10.79 0.8276 45 1.41 0.9380 90 10.62 0.8440 40 0.96 0.9460 85 9.62 0.8576 35 0.66 0.9544 80 8.43 0.8685 25 0.31 0.9668 75 7.04 0.8803 20 0.23 0.9725 70 5-8i 0.8904 15 0.16 0.9780 65 4.39 0.9021 5 0.13 0.9903 60 3.59 0.9115 o 0.12 0.9979 55 2.69 0.9207 See remarks under a acetnaphthalide, p. 13. TRIPHENYLAMINE, TRIPHENYLPHOSPHINE, etc. F.-pt. data are given by Pascal (1912) for the following mixtures: Triphenylamine + Triphenylarsine Triphenylarsine + Triphenyl Stibene Triphenylamine + Triphenylphosphine Triphenylarsine + Triphenylbismuthine Triphenylarsine -j- Triphenylphosphine Triphenylphosphine -f- aand/S TRITHIOACET ALDEHYDE, (CH 3 CHS) 3 . a. and TRITHIOBENZALDEHYDE, (C 6 H 6 CHS) 3 . SOLUBILITY OF EACH (DETERMINED SEPARATELY) IN SEVERAL SOLVENTS AT 25. (Suyver, 1905.) Gms. per ioo Gms. Solvent. Solvent. , * v (CH 3 CHS) 3 . /3(CH 3 CHS) 3 . (C 6 H B CHS) 3 . ft (C 6 H 5 CHS) 3 . Ether 15-58 13-67 1.09 0.37 Ethyl Alcohol 3 . 86 3.97 o . 20 o . 04 Methyl Alcohol 4 . 04 3 . 89 0.17 o . 04 Acetone 20.96 18.31 2.45 1.12 Chloroform 57-59 5 1 - 22 ii.n 0.20 Carbon Bisulfide 25.50 20.75 5-8i 0-22 Benzene 36.40 26.98 6.08 0.014 Ethyl acetate *7-5 2 15-48 2.05 0.93 Data for the solidification points of mixtures of a and trithioacetaldehyde are also given. Similar data for mixtures of a and /? trithiobenzaldehyde could not be determined on account of decomposition with production of resins. TROPIC ACID ( Phenylhydracrylic Acid) i and /, C 6 H 6 .CH(CH 2 OH)COOH. ioo gms. sat. solution in H 2 O contain 1.975 S ms - l tne * ac jd at 20. ) (Schlossberg. ioo gms. sat. solution in HaO contain 2.408 gms. of the I acid at 20. f 1900.) 733 TURPENTINE TURPENTINE OIL SOLUBILITY IN ETHYL ALCOHOL. (Vezes and Mouline, 1904, 1905-06.) Spirit of turpentine and absolute alcohol are miscible in all proportions and the mixture may be cooled to a very low temperature without ceasing to be homo- geneous. In the case of alcohol containing a small amount of water, the mixture, which is uniform at ordinary temperature, separates into two layers when cooled. The following data were obtained for mixtures of 98 vol. % alcohol ( = 0.968 gm. C 2 HsOH per I gm. aq. alcohol) and spirits of turpentine and for mixtures of 95 vol. % alcohol ( = 0.924 gm. C 2 H 5 OH per I gm. aq. alcohol) and spirits of tur- pentine. Results for 98 Vol. % Alcohol. Results for 95 Vol. % Alcohol. Cms.' 98 Vol. ,o . Cms. 98 Vol. , . * Cms. 95 Vol. f _ f Cms. . 95 Mixture. Mixture. Mixture. uon. Mixture. -35-6 2.7 20.9 32-9 + 20.7 2.4 29.6 48.3 -23 4.8 26.1 42.6 42.2 3-4 23-9 52.8 2O-9 9-5 -30 48.2 " 53 7.2 16-3 61.4 -i8.i 13.2 -45-3 58 IO.2 -15-5 76.6 -17.8 16 -79.2 71.9 44 20.3 -24 81.1 -18.8 24.4 37-2 30.6 -63 87.1 Data in regard to the sample of spirits of turpentine which was used, are not given. URANYL Potassium BUTYRATE The double salt is decomposed by water at ordinary temperatures and the solu- tion gets richer in uranyl butyrate. The solubility at 29.4 in water containing KC 4 H 7 O 2 is 2.10 gms. UCMC^C^) + 0.38 gm. KC^H-jOz per 100 gms. solution. The atomic relation being 1 : 0.64. (Rimbach, 1904.) URANYL Ammonium CARBONATE SOLUBILITY IN WATER. (Giolitti and Vecchiarelli, 1905.) A large excess of the double carbonate was agitated with water at constant temperature and the clear saturated solutions analyzed. Gms. per 100 Gms. Sat. Sol. Mol. Ratio. U! CO 2 . NH 3 . / U I COT : NH 3 . " 18.6 2.71 1.54 0.795 I 3-o8 4.10 36.5 3.09 2.29 1.188 i 4.01 5.35 48.3 3.03 2.71 1.35 i 4-95 6.35 62 ... 3-*7 i -62 ... ... 87-3 3-95 3-9 6 2.027 i 5.42 7.15 Theoretical molecular ratio for UO 2 CO3.2(NH 4 ) 2 CO3 = 1:3:4. Thus at the lower temperature, the composition of the dissolved salt is very near the ratio corresponding to the formula. The author calculates that 6.04 gms. of UO-jCOs^CNH^COs are contained in loo gms. of the sat. solution at 18.6 (a recalculation from the U value, 2.71, in- dicates that this figure should be 5.26 gms.). URANYL CHLORIDE UO 2 C1 2 .3H 2 O. IOO gms. H 2 O dissolve 320 gms. UO 2 C1 2 at 18. (Mylius and Dietz, 1901.) URANYL CHLORIDES 734 SOLUBILITY OF URANYL AMMONIUM CHLORIDE, U. TETRA METHYL AMMONIUM CHLORIDE, U. TETRA ETHYL AMMONIUM CHLORIDE, U. CAESIUM CHLORIDE, U. RUBIDIUM CHLORIDE, AND U. POTASSIUM CHLORIDE IN WATER. (Rimbach, 1904.) Formula^ of Double ^.o Gms. per 100 Gms. Sat. Sol. Atomic Relation in Sol. Solid Phase. U0 2 C1 2 .2NH4C1.2H 2 O 15 40.67UO 2 +3.5iNH4+i9.i5Cl I U0 2 :z.59NH 4 : 3 .590 ^^Sgg UO 2 Clj.2N(CH3) 4 O 29.8 19.85 " +io.44O 2 =41.24* iUO 2 : 4-020 Double salt 80.7 20.23 " +io.52O 2 =41.91* iU0 2 : 3.980 * UO 2 O 2 .2N(C 2 H 5 ) 4 O 27.1 15-02 + 7-8iO 2 =37-i5t iU0 2 : 3-97C1 " 80.7 15.12 + 7.78O 2 =37-23t iU0 2 : 3-940 . (i UO 2 O 2 .2CsO 29.75 22.11 UO 2 O 2 .2RbC1.2H 2 O 24.8 27.18 +22.5 Cs =56.04$ +16.6 Rb +i3.8O iUO 2 : 2.o7Cs iU0 2 :i.96Rb:3.9od 80.3 30.66 +ig.iRb +I5.8OH iU0 2 :i.98Rb: 3-95C1 u U0 2 2 .2KC1. 2 H 2 0.8 38.57 14-9 33-71 +13-590 + 3-86K iUO 2 : 2.690 : o.69K iUO 2 : 3.o6O :i.o6K The double salt I7-S 37-36 +i4.'soCl + 5-27K iU0 2 : 2.960 : o.96K is decomposed 25 35.01 +15.260 + ... K lUCy. 3-330 : I.33K by water at 4I-S 35-27 +15.920 + 7-39K iU0 2 : 3-440 : I.44K temperatures So 34-18 +16.560 + . . . K iUO 2 :3.7id :i.7iK below 60. 60 34-19 +17.250 + 9.I4K iU0 2 : 3-850 : i.8sK 71.5 33.55 +I7.44C1 + Q.28K iU0 2 : 3-96C1 : I.96K Double salt 78.5 35-26 +18.240 + 9-95K iU0 2 : 3-950 : I.95K UO 2 C1 2 .2N(CH 3 )4C1. f UO 2 C1 2 .N(C 2 H 6 ) 4 O. * UO 2 O 2 .2CsCl. =57-9 gms. UO 2 O 2 .2RbO 2 . || =65.8 gms. UO 2 O 2 .2RbO 2 . URANYL Sodium CHROMATE 2(UO 2 )CrO4.Na 2 CrC>4.ioH 2 O. 100 gms. sat. aqueous solution contain 52.52 gms. 2(UO 2 )CrO4Na 2 CrC>4 at 20. (Rimbach, 1904.) URANYL IODATE UO 2 (IO 3 ) 2 . SOLUBILITY OF THE DIFFERENT CRYSTALLINE FORMS IN WATER AT 18. (Artmann, 1912-13.) Gms. UO 2 (IO 3 ) 2 per loo Gms. H 2 O. o . 1049 U0 2 (I03)2.H 2 UO 2 (IO 3 ) 2 .2H 2 O Appearance of Crystals. Type I warty, later prismatic needles Type II pyramids, sphenoids 0.1214 o . 2044 URANYL NITRATE UO 2 (NO 3 ) 2 .6H 2 O. SOLUBILITY IN WATER. (Wasilieff, 1910.) Gms. UO 2 (NO 3 )i t. per 100 Gms. Solid Phase. Gms. UO 2 (NO3) 2 t. per 100 Gms. Sat. Sol. Sat. Sol. - 1.6 IO . 83 Ice 2.2 48.77 . 2.1 12.24 " 49.46 ~ 2.9 17.19 " 5-5 50-55 - 4.4 23.52 12.3 52.88 - 6 26 . 20 21. 1 55.98 - 7.9 32.53 " 25.6 57.17 II .2 37.09 36.7 6l.27 -18.1 43.12 " +U0 1 (N0 3 ) 2 .6H 2 45-2 65.12 12. 1 45-53 U0 2 (N0 3 ) 2 .6H 2 51-8 67.76 Solid Phase. UO 2 (NO S ) 2 .6H 2 loo gms. abs. acetone dissolve 1 .5 gms. UO 2 (NO 3 ) 2 .6H 2 O at 12. (de Coninck, 1900.) 100 gms. 85% alcohol dissolve 3.3 gms. UO 2 (NO 3 ) 2 .6H 2 O at 12. Data for the densities of uranyl nitrate solutions in water and other solvents are given byde Coninck (1900). 735 URANYL NITRATE SOLUBILITY OF URANYL NITRATE IN ETHER. (Lebeau, 1911.) When a large excess of uranyl nitrate is shaken with ether at 7, two liquid layers are formed. The ethereal layer contains 59 gms. UO 2 (NO 3 ) 2 per 100 gms. of solution and the aqueous layer contains 62.5 gms. per 100 gms. of solution. An elevation of temperature was noted when ether and UO 2 (NO 3 ) 2 .6H 2 O were mixed at room temperature, therefore, indicating that solution is accompanied by com- bination and elimination of the water of the salt. URANYL DOUBLE NITRATES. SOLUBILITY OF URANYL AMMONIUM NITRATE + URANYL NITRATE; U. CAESIUM NITRATE + CAESIUM NITRATE; U. POTASSIUM NITRATE + POTASSIUM NITRATE AND U. RUBIDIUM NITRATE + RUBIDIUM NITRATE IN WATER. (Rimbach, 1904.) Formulci of Stilt Gms. per 100 Gms. Sat . Solution. Atomic Relation ' 'U0 2 . Total Salt. in Solution. UO 2 (N0 3 ) 2 .NH 4 NO 3 0.5 29.71 + 2.92 NH 4 = . .. i U ? 2 i.47NH 4 :3.47NO 3 24.9 36.46 + 3.54 " = 68.95 1.46 " 13.46 " (i 59 44.37 + 2.90 ' 0.98 " : 2.98 " U 80.7 44.95 + 2.98 ' = 78.95 i w : t UO2(NO 3 ) 2 .CsNO 3 16 31. 39 + 6. 59 Cs = 55-4 0.44 Cs UO 2 (NO 3 ) 2 .KNO 3 o-5 2.37 NO 3 :o.37K 13 33.40 + 2.72 ' = . . . 2-57 ' ' :o.57' 25 37.07+4.01 ' = 64.82 i. 60 " =0.76' 45 42.18 + 5.16 ' = ... 2.84 " :o.8 4 ' 59 41.65 + 6.03 ' = 3 " :i ' 80.6 43.71 + 6.38 ' = 80. i 3.01 ' n.oi 1 U0 2 .(N0 3 ) 2 .RbN0 3 25 35.41+4.65 Rbf = 59.60 i. 40 " :o.45Rb 80 34.66 + 11.01 " = 69.49 3 " n.oi " * + 23-SN0 3 . t + I9-74NO,. URANYL OXALATE UO 2 .C 2 O 4 .3H 2 O. 100 gms. H 2 O dissolve 0.7401 gm. UO 2 C 2 O 4 .3H 2 O at 25. (Dittrich, 1899.) EQUILIBRIUM IN THE SYSTEM URANYL OXALATE, AMMONIUM OXALATE AND WATER. (Colani, 1917.) Results at 15. Results at 50. Gms. per 100 Gms. Sat. Solution. Solid Phase. Gms. per 100 Gms. Sat. Solution. Solid Phase. 0.47 o U0 2 C 2 4 . 3 H 2 i 7.19 2.14 " +(NH 4 ) 2 (U0 2 ) 2 (Q ! 4 )3.3H 2 5-II 8.78 2.99 (NH 4 ) 2 (U0 2 )(C 2 O 4 ) 2 .2H 2 O + " 19.89 Q.66 6.43 " +(NH 4 ) 2 C 2 4 .H 2 23.82 O 3-^9 (NH 4 ) 2 C 2 O 4 .H 2 O O Two determinations at 75 are also given. EQUILIBRIUM IN THE SYSTEM URANYL OXALATE, POTASSIUM OXALATE AND WATER. (Colani, O U0 2 .C 2 4 . 3 H 2 1-36 " +(NH 4 ) 2 (U0 2 ) 2 (C 2 4 ), 8.52 (NH 4 ) 2 (U0 2 )(C 2 4 ) 2 + " 15.90 " +(NH 4 ) 2 C 2 4 .H 2 9-36 Results at 15. Results at 50. Gms. per 100 Gms. Sat. Solution. Solid Phase. U0 2 C 2 4 . 3 H 2 " +K 2 (U0 2 ) 2 (C 2 4 ) 3 .4H 2 " +K e (U0 2 ) 2 (C 2 4 ) B .ioH 2 K 2 C 2 O 4 .H 2 O+ K 2 C 2 0.H 2 Gms. per 100 Gms. Sat. Solution. Solid Phase. " +K,(U0 2 ) 2 (C 2 4 ) 8 . 4 H 2 K 2 (U0 2 )(C 2 4 ) 2 + " " +K,(U0 2 ) 2 (C 2 4 ) 6 .ioH 2 O K 2 C 2 4 .H 2 0+ U0 2 C 2 4 . 0.47 1-34 3.89 3.76 0.10 K 2 c 2 o 4 : 0.42 1.83 1.85 24.30 24.09 U0 2 P 2 4 . I 3-45 9.82 9-59 I. 22 K 2 Q0 4 . I. II 4.83 5-6l 32.65 32.75 URANYL OXALATE 736 SOLUBILITY OF URANYL OXALATE IN AQUEOUS SODIUM OXALATE AT 25. (Dittrich, 1899.) Cms. UO 2 .C 2 O 4 .3H 2 O per 100 cc. Sat. Solution. 2.0125 0.9867 0.6059 Gms. Na 2 C 2 O 4 per lop cc. Solution. 0.6706 0-3353 0.2235 URANYL Ammonium PROPIONATE URANYL Potassium PROPIONATE UO 2 (C3H 5 O 2 ) 2 .KC 3 H 6 O 2 . 100 gms. aq. solution contain 16.48 gms. 2UO 2 (C3H5O 2 ) 2 .NH 4 C3H 6 O 2 at 29.8. 100 gms. aq. solution contain 2.362 gms. UO^CsHsO^ + 0.82 grn. KCsH5O 2 at 29.4, atomic relation, i: 1.29. (Rimbach, 1904.) URANYL SULFATE UO 2 SO 4 .3H 2 O. SOLUBILITY IN SEVERAL SOLVENTS. (de Coninck, 1901, 1903.) Gms. UO 2 SO 4 .- t. sH 2 O per zoo Gms. Solvent. 13.2 18.9 15-5 20.5 12.3 2.6 30 Solvent Water Water 16.2% Alcohol 10 85% Alcohol 1 6 Cone. HC1 13 Solvent. Cone. HBr (J=i.2i) Cone. HN0 3 Cone. H 2 SO 4 (d= 1.138) i Vol. HCl+i Vol. HNO 3 Selenic Acid (d= 1.4) Gms. UO 2 S0 4 .- t. 3H 2 O per 100 Gms. Solvent. 16.8 12 12 13 16 IS 9.1 24-3 18 27 URANYL Potassium SULFATE U0 2 SO4.K 2 SO4.2H 2 O. 100 gms. sat. aq. solution contain 10.41 gms. UO 2 SO4.K 2 SO4 at 25 and 23.13 gms. at 70.5. (Rimbach, 1904.) SOLUBILITY OF UO 2 SO4.2K 2 SO 4 .2H 2 O + UO 2 SO 4 .K 2 SO.2H 2 O IN WATER. Gms. per 100 Gms. Solution. Atomic Relation in Sol. Mol. % in Solid Phase. UO, 14 0.85 50 6 . 70 80 14. 29 K. 4.19 8.15 8-54 S0 4 . 5-71 12.37 15-53 U0 2 . K. S0 4 . I 35-75 18.88 I 5.20 8.40 I 4-i3 3.06 Mono Salt. Di Salt. 29 71 76 2 4 12 88 URANIUM SULFATE (ous) U(S0 4 ) 2 . i SOLUBILITY IN WATER. (Giolitti and Bucci, 1905.) Gms. U(SO 4 ) 2 Solid Phase. t. per 100 Gms. Sat. Sol. 93 63 . 2 2 4 9 .8 37 8.3 48.2 8.1(7.8) 63 7.3 18 25.6 37 48.2 62 Gms. U(SO 4 ) 2 per loo Gms. Sat. Sol. 10. 17 I3-32 19.98 28.72 36.8 Solid Phase. U(SO 4 ) 2 .8H 2 O The determinations were made with difficulty on account of the considerable tend- ency towards formation of basic sulfate and simultaneous clouding of the solution. APPROXIMATE SOLUBILITY OF URANIUM SULFATE, IN AQUEOUS SOLUTIONS. (de Coninck, 1903.) Solvent. Water n Dilute HC1 (1:4) 9 Dilute HN0 3 (1:4) 10.5 Gms. U(S0 4 ) 2 . 4 H 2 O per 100 Gms. Solvent. 23.2 17.2 18.2 Solvent. Gms. U(S0 4 ) 2 . 4 H 2 per 100 Gms. Solvent. Dilute Selenic Acid (1:4) 11.4 21.7 Dilute H 2 SO 4 (1:4) 10 15.6 Dilute Alcohol (i: 4) 11.3 12.3 737 UREA UREA CO(NH 2 ) 2 . SOLUBILITY IN WATER AND IN ALCOHOLS. (Campetti, 1902; Speyers, 1902.) NOTE. Speyer's original results are in terms of Mols. CO(NH 2 ) 2 per 100 mols. H 2 O at irregular temperatures. In Water. In Methyl Alcohol. In Ethyl Alcohol. t. Wt. of i cc. Solution. Cms. CO(NH 2 ) 2 per Wt. of i cc. 100 Cms. H 2 O. Solution. Gms. CO(NH 2 ) 2 per 100 Gms. Gms. Wt. of ice. CO(NH 2 ) a Solution, per 100 Gms CH 3 OH. (J 2 H 5 OH. o I .121 55-9 0.861 13.8 0.8213 2 -5 IO I-I34 66.0 8 S !o(C) 0.863 16.0 0.8l4 3-5 20 1.146 79.0 io8. 2 (C) 0.869 20.0 0.809 5-o 3 I .156 93-o 0.876 24.0 0.8o6 6-5 40 I .165 106.0 . . . 0.890 30.0 0-804 8-5 5 I-I73 I2O-O 0.908 37-o 0.803 10.5 60 I.lSo 132.0 0.928 47.0 13.0 70 I.lSy 145.0 17-5 100 gins. abs. methyl alcohol dissolve 21.8 gms. CO(NH 2 ) 2 at 19.5. loogms.abs. ethyl alcohol dissolve 5.06 gms. CO(NH 2 ) 2 at 19.5. (de Bmyn, 1903.) SOLUBILITY OF UREA IN ALCOHOLS. (Timofeiew, 1894.) Gms. 100 Gms. olvent. Isopropyl Alcohol Alcohol. t. per zoo Gn Solvent. Methyl Alcohol 12 II tt O 14.2 " 19 20.9 M 40 36.4 " 62 66.6 " 71 107.4 Ethyl Alcohol - 9 2.69 u o 3-26 " 18 5 " 41 9-45 " 60 16.3 tt 81 30.8 Propyl Alcohol 1.65 tt 20 2.56 tt 40 5-12 " 60 7.72 tt 80 12.28 " 9 8 18.06 Alcohol. Isobutyl Alcohol Isoamyl Alcohol tt it (C It Capryl Alcohol a Ally Alcohol SOLUBILITY OF UREA IN ETHYL ACETATE CONTAINING SMALL AMOUNTS Gms. CCXNHj) t. per 100 Gms. Solvent. 19 4 5.76 20 6.1 7 Si 23.46 1. 01 19 1.65 41 3-12 60 4.40 80 6-34 98 10 20 1.18 60 3-41 80 4.88 83 5-24 6.15 10 4 0.56 OS 2 19 4 9-37 OF WATER AT 25. (Lewis and Burrows, 1912.) Gms. H 2 O per 100 Gms. Urea Gms. H 2 O per Gms. Urea Gms. Solvent. (Ethyl Acetate +H 2 O). per TOO Gms. Sat. Sol. 100 Gms. Solvent. (Ethyl Acetate +HjO). per too Gms. Sat. Sol. O.oSo 1.677 0.308 0.652 0.148 2.0O6 0.328* I. 112 0.198 2.138 0.342 1.638 0.296 3-234 o-343t A second liquid phase was suspected here. t A second liquid phase could be distinguished. UREA 738 SOLUBILITY OF UREA IN ETHYL ETHER. (Gortner, 1914.) When 0.3255 gm. urea was extracted in a Soxhlet apparatus with anhydrous ether for 48 hours, the extract was found to contain 0.072 gm. urea. An approxi- mate estimate, based on the volume of liquid and the number of siphonings per hour indicates a solubility of 0.0004 gm. urea per 100 cc. of ether. 100 gms. glycerol dissolve about 50 gms. urea at 15. 100 gms. pyridine dissolve 0.96 gm. urea at 20-25. (Dehn, 1917.) 100 gms. aq. 50% pyridine dissolve 21.53 gms. urea at 20-25. Diphenyl UREA. 100 gms. H 2 O dissolve 0.015 g" 1 ' diphenyl urea (sym or uns.?) at 20-25. " pyridine dissolve 6.85 gms. diphenyl urea (sym or uns.?) at 20-25. " aq. 50% pyridine dissolve 5.3 gms. diphenyl urea (sym or uns.?) at 20-25. (Dehn, 1917.) ThioUREA NH 2 .CS.NH 2 . loo gms. H 2 O dissolve 9.1 gms. thiourea at 20-25. " pyridine dissolve 12.5 gms. thiourea at 20-25. " aq. 50% pyridine dissolve 41.2 gms. thiourea at 20-25' (Dehn, 1917.) Allyl ThioUREA (Thiosinamine) NH 2 .CS.NH.C 3 H 6 . 100 cc. H 2 O dissolve about 5.9 gms. NH 2 .CS.NH.C 3 H 6 at 15-20. 100 cc. 90% alcohol dissolve about 50 gms. NH 2 .CS.NH.C 3 H 6 at 15-20. (Squire and Caines, 1905.) Phenyl ThioUREA (Phenyl thiocarbamide) CS.NH 2 .NHC 6 H 6 . SOLUBILITY IN WATER. (Rothmund, 1900; Biltz, 1903; Hollman and Antusch, 1894; Bogdan, 1902-03.) One liter aq. solution contains 2.12 gms. CS(NH 2 ).NHC 6 H 6 at 20 (B.), (R.) and 2.4 gms. at 25. (H. and A.). Bogdan gives 2.547 gms. at 25. SOLUBILITY OF PHENYL THIOUREA AT 25 IN AQUEOUS SOLUTIONS OF. Potassium Nitrate. Sodium Nitrate. (Bogdan, 1902-03.) (Bogdan, 1902-03.) Gms. Mols. KNOa per jooo Gms. HzO. Gms. per 1000 Gms^. H 2 O. Gms. Mols. NaNO 3 per jooo Gms. H 2 0. Gms. per looo Gms. H2O. KNO,. CS(NH2) .NHCftHg. NaNO 3 . CS(NH 2 ) NHQH 5 . 1.045 0.5123 O.2O26 0.1007 105-7 5I-84 20.50 IO.I9 2-38 2.48 2-54 2-56 1.024 0.5065 0.2031 0-0986 87.14 43.10 17.28 8-39 2.26 2 .46 2.51 2-53 0.0503 0-0333 5-09 3-36 2-55 2-55 0-0540 0-0335 4-59 2.84 2-54 2-54 739 Phenyl ThioUREA SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SALT SOLUTIONS AT 20. (Biltz, 1903; Rothmund, 1900.) Millimols and the Equivalent Cms. CSCNH^NHCjHs Dissolved per Liter of Aqueous Salt Solution of Concentration: 0.125 Normal 0.25 Normal 0.5 Normal. i Normal Millimols. Gms. Millimols. Gms. Millimols. Gms. Millimols. Gms. IAIO, 12 95 1.97 12.82 I .96 12.03 I 83 10 .69 1.61 NH 4 N0 3 14 2.15 14.4 2.21 14-53 2 .22 14 .91 2.27 i(NH 4 ) 2 S0 4 J 3 5 1 2 -05 12.84 1.96 11.78 I 79 9 .98 1.52 iBaC! 2 13 .12 1-99 12 .92 i-97 12.22 I .86 10 .44 1 -59 iBa(N0 3 ) 2 13 .98 2.13 13.98 2.13 13.90 2 .12 CsNO 3 14 53 2 .21 14.90 2.27 15.23 2 33 . .. LiNO 3 13 .96 2.13 13.96 2.13 13-93 2 .12 13 73 2.10 MgSO 4 *3 .40 2.04 12.78 I .95 n-54 I 75 9 43 i-43 KC 2 H 3 O 2 .40 2 .04 12-95 1-97 12.14 I 85 10 74 1.62 KBr 13 5 2 .05 13-35 2 .04 12.80 X 95 ii .76 1.79 KC10 3 I 3 .86 2. II 13.60 2 .06 13.12 I 99 KC1 *3 .40 2 .04 12.73 1.94 12.19 X 85 10 54 i. 60 Kl 14 .12 2.15 14.48 2 .21 I4-3 1 2 .18 14 .60 2.23 KNO 3 13 .89 2.12 I3-85 2 .11 I3-52 2 05 12 .82 i .96 KN0 2 14 5 2 2.21 14.65 2.23 13.80 2 .11 12 .51 1.92 JK 2 SO 4 13 25 2 -03 12.49 I.9I ii .11 I .69 8 73 i-33 RbN0 3 14 .22 2.l6 14.44 2.19 14-39 2 .18 14 .22 2.17 iNa 2 C0 3 13 .29 2 .04 12.52 I.9I ii .05 I .68 8 58 1.32 NaClO 3 13 75 2 .09 I3-65 2.08 13.07 I .98 12 .21 1.86 NaClO 4 14 2.15 14.05 2.14 I3-58 2 .06 12 56 1.92 NaCl .28 2 .02 12.83 i-95 ii .90 X .81 10 .02 1.52 Nal 13 .98 2.13 14.07 2.14 14.29 2 .18 13 .96 2.13 NaNO 3 94 2.12 13-77 2.10 13 .32 2 .04 12 57 1.92 NaNO 2 14 34 2.18 13.82 2 .11 13.06 I .98 II 5 2 i .75 JNa 2 S0 4 13 2 .00 12.35 1.87 10.85 I 63 8 30 1.27 SOLUBILITY OF PHENYL THIOUREA IN ETHYL ALCOHOL SOLUTIONS OF SEVERAL SALTS AT 28. (Thorin, 1915.) Normality Mols. Normality Mols. Salt. of Salt in NHj.CS.NHQHg per 100 Gms. Salt. of Salt in NHs.CS.NH.QHj per too Gms. QHBOH. Sat. Sol. QH B OH. Sat. Sol. None (pure C 2 H 5 OH) o . 2065 Nal 0.043 O.2I02 LiCl 0.168 0.2274 n 0.086 0.2148 tt o-337 0.2360 t( 0.172 0.2198 (C 0.673 o . 2440 n 0-343 0.2271 tc 1.346 0.2494 it 0.685 0.2359 CaCl- 0.061 0.2IOI NaBr 0.022 o . 2098 ft 0.122 0.2135 tt 0.043 0.2194 tt 0.244 0.2194 tt 0.086 0.2165 tt 0.487 0.2279 tt O.I72 0.2257 u 0.975 0.2372 Phenyl ThioUREA 740 SOLUBILITY OF PHENYL THIOUREA IN MIXTURES OF ETHYL ALCOHOL AND WATER AT 25. (Holleman and Antusch, 1894.) Cms. Vol. CS(NH 2 ) Sp. Gr. per cent NHCsHs of Alcohol, per 100 Cms. Solutions. Solvent. Cms. Vol. CS(NH 2 ) Sp.Gr. per cent NHCH 5 of Alcohol, per 100 Cms. Solutions. Solvent. 100 3-59 95 4-44 0.8200 90 4.69 0.8389 85 4-99 0.8544 80 4-70 0.8679 75 4-45 0.8810 70 3-92 0.8915 65 3-40 0.9018 60 2.80 0.9128 50 1.87 0.9317 40 i -13 o . 9486 25 0.56 0.9679 IS 0.38 0.9788 o 0.24 0.9979 See remarks under a. acetnaphthalide, p. 13. SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SOLUTIONS OF PROPYL AND OF ETHYL ALCOHOL AT 25. (Bogdan, 1902-03.) In Aq. Propyl Alcohol. In Aq. Ethyl Alcohol. G. Mols. Gms. per loop Gms.H 2 O G. Mols. Gms. per 1000 Gms. H 2 O CjHrOH per 1000 GDIS. H 2 O. C 3 H 7 OH. CS(NH 2 )' NHC 6 H 6 . C 2 HfiOH per 1000 Gms. H 2 0. C 2 H 5 OH. CS(NH 2 ) 1-035 62 .IO 3.587 I .IOIO 49.60 3-*93 0.5448 32.688 3.124 0-5355 24.12 2.931 0.1059 6-354 2.643 o . 1094 4-932 2 .629 0.05526 3-3 l6 2-599 0.05018 2 .26 2.589 0-04854 2 .912 2.586 0.03271 1-473 2-577 In Propyl Alcohol at o. i .000 60.06 I .21 o.ioo 6.01 1.047 SOLUBILITY OF PHENYL THIOUREA IN AQUEOUS SOLUTIONS OF ACETONE, MANNITOL, CANE SUGAR, DEXTROSE, AND UREA. (Bogdan, 1902-03.) Aqueous Non Electro- Gms. per 1000 t o H ? Gms. Aqueous Non Electro- to Gms. per 1000 Gms. H 2 0. lyte. Non Elec- trolyte. S S H Conc -ii H 2 O Olive Oil 7^ -- Layer. Layer. Conc -H 2 o Ethyl Urethan NHiCOOQH, ord. 4.52 0.615 0.136(1) Methyl Urethan NH 2 COOCH 3 ord. 7.50 0.275 0.037(1) Aceturethan CHsCONH.COOCjHs 17-20 2.94 0.389 0.132(2) Epronal (QHsXCjHOCH.CO.NH.CO.OCjHj ". 0.076 0.257 3.3(2) Detonat (QHj.CH.co.NH.co.OCiH. " Veronal (diethylbar- [ rrvxrwrm r C(C 2 H 6 ) 2 . See also p. 742. 100 cc. H2O dissolve 0.625 gm. veronal at 15-20. (Squire & Caines, 1905.) 100 cc. 90% alcohol dissolve 11.7 gms. veronal at 15-20. 100 cc. ether dissolve 8.7 gms. veronal at 15-20. " VESUVIN. loo gms. water pyridine . 50% pyridine dissolve 8.5 gms. vesuvin at 20-25. (Dehn, 1917.) i. K .t 31-4 745 WATER WATER H 2 O. SOLUBILITY OF WATER IN BENZENE, PETROLEUM AND PARAFFINE OIL. (Groschuff, 1 91 1.) The synthetic, sealed tube method was used and the experiments were made with very great care. The mixtures were first superheated sufficiently to bring all the water into solution and then cooled until a fine mist was formed. The temperature of appearance and disappearance of this fine mist was determined re- peatedly. The benzene was of dm = 0.8799. The petroleum was American water white, of d = 0.792. It was freed from HzO by distilling 3 times from melted Na and boiled at 190-250 at atmospheric pressure. The paraffine oil was first heated to 120-130 and then distilled twice under vacuum over melted Na and once without Na. Its du = 0.883 and b.-pt. was 2OO-3OO at 10 mm. pressure. Results for: H 2 O + Benzene. H 2 + Petroleum. H 2 O + Paraffine Oil. t. + 3 23 40 55 66 77 Cms. H 2 O per 100 Gms. Sol. 0.030 0.061 0.114 0.184 o-255 o-337 t. + 18 23 30 36 53 Gms. H 2 O per 100 Gms. Sol. 0.0012 0.005 O.OO7 0.008 O.OI2 O.O26 t. 59 61 66 79 85 94 Gms. H 2 O per 100 Gms. Sol. 0.031 0.035 0.043 0.063 0.075 O.OQ7 ''per + 16 5 65 73 77 94 Gms. H 2 O 100 Gms. Sol. 0.003 O.OI3 0.022 O.O3O 0.035 0.055 Observations on the solubility of water in essential oils are given by Umney and Bunker (1912). XENON Xe. SOLUBILITY IN WATER. (von Antropoff, 1909-10.) The results are in terms of the coef. of absorption /3, as defined by Bunsen (see p. 227) and modified by Kuenen in respect to the substitution of mass for volume of water. t. 0. 10. 20. 30. 4. 50. Abs.Coef.j9 0.2180 0.1500 0.1109 0.0900 0.0812 0.0878 NitroXYLENES. loo gms. 95% formic acid dissolve 0.71 gm. trinitro-w-xylene (m. pt. 173) at 18.5. (Aschan, 1913.) F.-pt. data for mixtures of 2.3, dinitro--xylene and 2.6, dinitro--xylene are given by Blanksma (1913). XYLENOL 1.3.4, C 6 H3.(CH 3 )2.0H. MISCIBILITY OF AQUEOUS ALKALINE SOLUTIONS OF XYLENOL WITH SEVERAL ORGANIC COMPOUNDS, INSOLUBLE IN WATER. (Sheuble, 1907.) To 5 cc. portions of aq. KOH solution (250 gms. per liter) were added the given amounts of the aq. insoluble compound from a buret and the xylenol, dropwise, until solution occurred. Temperature not stated. Composition of Homogeneous Solution. cc. Aq. KOH. cc. Aq. Insol. Cmpd. Gms. Xylenol. 5 2 (= 1.64 gms.) Octyl Alcohol (i) i S 5 ( = 4-io ) 1.7 5 2 (=1.74 " ) Toluene 4.1 5 3 (=2.61 " ) 5 (i) The normal secondary octyl alcohol, i.e., the so-called capryl alcohol, CH 3 (CH2)5.CH(OH)CH,. YTTERBIUM 746 YTTERBIUM CobaltiCYANIDE Yb 2 (CoC 6 N 6 ) 2 .9H 2 O. 1000 gms. aqueous 10% HC1 (^15 = 1.05) dissolve 0.38 gm. of the salt at 25. (James and Willand, 1916.) YTTERBIUM OXALATE Yb 2 (C 2 O 4 ),.ioH 2 O. SOLUBILITY IN WATER AND IN SEVERAL AQUEOUS SOLUTIONS. Aqueous- Solution of: Per cent Cone. +<> Gms. YbztQOOs A fl , . ofAq.Sol. * per 100 cc. Solvent. Authonty. Water ... 25 O.OOO334 (Rimbach and Schubert, 1909.) (NH4)2C 2 O4.H 2 O 3.26 Ord. 0.095 (Cleve, 1902.) Methylamine Oxalate 20 5 . 24* (Grant and James, 1917.) Ethylamine Oxalate 20 5.86* Triethylamine Oxalate 20 2.05* Sulfuric Acid (i n) 4.9 -372 (Cleve, 1902.) * The authors do not state whether their figures are for anhydrous or hydrated salt. YTTERBIUM Dimethyl PHOSPHATE Yb 2 [(CH 3 ) 2 PO 4 ] 6 . loo gms. H 2 O dissolve 1.2 gms. Yb 2 [(CH 3 ) 2 PO 4 ] 6 at 25 and 0.25 gm. at 95. (Morgan and James, 1914-) YTTERBIUM SULFATE Yb 2 (S0 4 ) 3 .8H 2 O. SOLUBILITY IN WATER. (Cleve, 1902.) Gms. Yb2(S0 4 ) 3 t. per 100 Gms. H 2 0. 80 6.92 90 S-83 100 4-67 YTTERBIUM Bromonitrobenzene SULFONATE Yb(C 6 H 3 Br.NO 2 .SO 3f 1.4.3)3.- I2H 2 O. 100 gms. sat. solution in water contain 7.294 gms. of the anhydrous salt at 25. (Katz and James, 1913.) YTTRIUM CHLORIDE YC1 3 . 100 gms. alcohol dissolve 61.1 gms. YC1 3 at 15. (Matignon, 1906.) 60.5 gms. YC1 3 at 2O. (Matignon, 1909.) pyridine dissolve 6.5 gms. YC1 3 at 15. (Matignon, 1906.) YTTRIUM CobaltiCYANIDE Y 2 (CoC 6 N 6 ) 2 .9H 2 O. 1000 gms. aq. 10% HC1 (d^ 1.05) dissolve 2.78 gms. of the salt at 25. (James and Willand, 1916.) YTTRIUM GLYCOLATE Y(C 2 H 3 O 3 ) 3 . 2 H 2 O. One liter of water dissolves 2.447 g ms - of the salt at 20. (Jantsch and GrUnkraut, 1912-1913.) YTTRIUM IODATE Y(IO 3 ) 3 .3H 2 O. 100 gms. H 2 O dissolve 0.53 gm. yttrium iodate. (Berlin.) YTTRIUM MALONATE Y 2 (C 3 H 2 O 4 ) 3 .8H 2 O. SOLUBILITY IN AQUEOUS MALONIC ACID AND AMMONIUM MALONATE SOLUTIONS. (Holmberg, 1907.) Gms. YjCCsH/jO^j Solvent. t. per 100 Gms. Solvent. 1 Gm. Am. Malonate per 10 cc. Solution 20 0.3 2 Gms. Malonic Acid per 10 cc. Solution 20 2.3 Gms. Yb2(S0 4 ) 3 t. per TOO gms. t. H 2 0. Gms. Yb2(S0 4 ) 3 per 100 Gms. H 2 0. O 15-5 44.2 34-6 55 60 10-4 35 19.1 70 7 .22 747 YTTRIUM NITRATE YTTRIUM Basic NITRATE 3Y 2 O 3 .4N 2 O 5 .2H 2 O. EQUILIBRIUM IN THE SYSTEM YTTRIUM NITRATE, YTTRIUM, HYDROXIDE AND WATER AT 25. (James and Pratt, 1910.) The determinations were made with very great care. The mixtures were ro- tated 4^ months. Sat. Sol. ' Gms. per 100 Gms H 2 O. Solid Phase. g^ 5 g ol Gms. per 100 Gms. H ? 0. s Solid Phase. Y(NO 3 ) 3 . Y 2 3 as Y(OH) 3 . Y(N0 3 ) 3 . Y 2 3 as Y(OH),. 1.0260 3-13 014 Y(OH) 3 1.4867 73 03 0.078 3 Y 2 3 4 N 2 6 .2H 2 .1106 13.87 o 034 " .5587 89 .06 074 " .1907 24.94 o 063 " .6259 103 .80 075 " 2517 33-02 160 "+ 3 Y 2 3 . 4 N 2 5 .2H 2 .6931 122 .40 o 080 -3268 44-35 114 3 Y 2 3 . 4 N 2 5 . 2 H 2 .7440 137 .IO o 083 " +y(N0 3 ) 3 .4104 58.61 095 " .7446 141 .6 o 1 f(NQOs YTTRIUM OXALATE Y 2 (C 2 O4)3.9H 2 O. One liter H 2 O dissolves o.ooi gm. Y 2 (C 2 O 4 )s at 25, determined by the elec- trolytic method. (Rimbach and Schubert, 1909.) 100 gms. aqueous ammonium oxalate solution (3.26% (NH 4 ) 2 C 2 O 4 .H 2 O) dissolve 0.01714 gm. Y 2 (C 2 O 4 ) 3 .9H 2 O at room temp. (Cleve, 1902.) loo gms. aq. 2.16 n H 2 SO 4 dissolve 0.6884 gm. Y 2 (C 2 O 4 ) 3 at 25. (Wirth, 1912.) loo gms. aq. 4.32 n H 2 SO 4 dissolve 1.4 gms. Y 2 (C 2 O 4 ) 3 at 25. 100 cc. aq. 20% methylamine oxalate dissolve 0.877 gm. yttrium oxalate at ord. temp. loo cc. aq. 20% ethylamine oxalate dissolve 1.653 gms. yttrium oxalate at ord. temp. 100 cc. aq. 20% triethylamine oxalate dissolve 1.006 gms. yttrium oxalate at ord. temp. (Grant and James, 1917.) YTTRIUM Potassium OXALATE Y 2 (C 2 4 )3.4K 2 C 2 O 4 .i2H 2 O. SOLUBILITY IN WATER AT 25. (Pratt and James, 1911.) The determinations were made with great care. The mixtures were constantly rotated for 8 weeks. ^ 5 o f Gms. per 100 Gms. H 2 O. Solid Phase. Sol. ^ ^(CA), K 2 C 2 4 . .008 Trace 1.31 Solid Solution 035 O.O2 5-30 059 O.O6 8.88 .096 0.27 14.50 .132 0.72 20.27 .166 i-37 26 . 02 Y 2 (C 2 O 4 ) 3 .4K 2 C 2 O 4 .i2H 2 O ^ 5 O f Gms. per 100 Gms. Sat. H 2 O. Solid Phase. Sol. Y 2 (CA)i. K,CA- .174 .50 27 . 44 Y J (C 2 4 ) 3 .4K 2 C 2 O4.i2H 2 O .199 . 222 49 32-83 .48 37-68 K .231 .42 39.12 K 2 Q0 4 .228 .09 38.77 .218 o 37.87 " YTTRIUM DimethylPHOSPHATE Y 2 [(CH 3 ) 2 PO 4 ] 6 . 100 gms. H 2 O dissolve 2.8 gms. Y 2 [(CH 3 ) 2 PO 4 ] 6 at 25 and 0.55 gm. at 95. (Morgan and James, 1914.) YTTRIUM SULFATE Y 2 (SO 4 ) 3 . SOLUBILITY OF YTTRIUM SULFATE IN AQUEOUS SOLUTIONS OF SODIUM SULFATE AT 25. (James and Holden, 1913.) Equilibrium was reached very slowly and it was necessary to rotate the mixtures for 14 months before final equilibrium was reached. Gms. per 100 Gms. H 2 0. Y 2 (S0 4 ) 3 . Na 2 S0 4 . ' 5-6i 1.29 6.38 3-85 7.40 6.21 8.43 8.53 5-86 7-57 4-75 7.72 3-42 10.14 2.36 11.36 2.02 13.42 Solid Phase. Y 2 (S0 4 ), " +Y 2 (S0 4 ) 3 .Na 2 S0 4 . 2 H 2 Y 2 (SO 4 ) 3 .Na i SO 4 .2H 2 O Gms. per 100 Gms. H 2 0. Y 2 (S04) 3 . Na 2 S0 4 . 1.90 14.89 1.79 16.51 1.86 18.44 2.99 19.96 3-4 21.05 2.27 27.14 i-52 28.22 1.61 28.13 5.38 o Solid Phase. Y 2 (SO 4 ) s .Na 2 SO 4 .2H s O YTTRIUM SULFONATES 748 SOLUBILITY OF YTTRIUM SULFONATES IN WATER. Gms. Anhy. Sulfonate. Formula. t. S ^ I n c ^ te Authority. Gms. H 2 O. Yttrium Benzene Sulfonate Y(C 6 H S SO3)3.9H 2 O 15 60.4 (Holmberg, 1907.) " m Nitro- benzene Sulfonate Y(C 6 H4.NO 3 .SOs)3.7H 2 O 15 48.3 Yttrium Bromonitrobenzene Sulfonate Y(C 6 H 3 Br.NO 2 .SO 3 .i. 4 .2) 3 .ioH 2 O 25 3.88 (Katz& James, '13.) YTTRIUM TARTRATE Y 2 (C4H 4 O 6 )3.5H 2 O. SOLUBILITY IN AQUEOUS TARTARIC ACID AND AMMONIUM TARTRATE SOLUTIONS AT 2O . (Holmberg, 1907.) Gms. Gms. Aq. Solvent. pe^Gms. Aq. Solvent. JgJi Sat. Sol. Sat. Sol. 1 gm. Am. Tartrate per 10 cc. 2 gms. Tartaric Acid per 10 cc. solution 0.6 solution 0.02 2 gms. Am. Tartrate per 10 cc. i . i 4 gms. Tartaric Acid per 10 cc. solution solution 0.02 ZEIN (Protein from Corn). SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 25. (Galeotti and Giampalmo, 1908.) Dry powdered zein was added to the alcohol + water mixtures and the solutions kept at 25 and shaken frequently during 24 hrs. The removed undissolved resi- due was dried to constant weight and weighed. Vol. % CiHjOH" Gms. Zein per Vol. % Ci,H 5 OH Gms. Zein per in Solvent. 100 Gms. Sat. Sol. in Solvent. 100 Gms. Sat. Sol. 10 0.05 60 18.57 20 O.II 70 I9-87 30 O.2I 80 7.8l 40 0.51 90 4.51 5O 1.43 IOO 0.02 Similar results are given for the solubility of zein in mixtures of C 2 H 6 OH + H 2 O + CHC1 3 at 20 and C 2 H 5 OH + H 2 O + acetone at 25. ZINC ACETATE Zn(C 2 H 3 O 2 ) 2 .2H 2 O. SOLUBILITY IN AQUEOUS ETHYL ALCOHOL AT 25. (Seideii, 1910.) TTT. m Gms. Zn- W4 . m Gms. Zn- rHOTT ^ of (C2H 3 2 ) 2 .2H 2 O rn'oH 4 of (C 2 H 3 O 2 ) 22 H 2 O &S, Sat. Sol. per zoo Gms. Jt&SS Sat. Sol. per 100 Gms. in Solvent. ^ Sat Sd in Solvent. * Sat Sol o .168 30.80 60 0.920 10. 60 10 .127 27.20 70 0.880 7.80 20 .090 23.70 80 0.850 5.50 30 .055 20.40 90 0.830 4.20 40 .015 17 95 0.825 4 50 0.970 13.80 loo 0.796 1.18* * = gms. anhydrous salt. The solid phase was Zn(C2H 3 O 2 ) 2 .2H 2 O in all cases except this solution. ioo gms. H 2 O dissolve 41.6 gms. Zn(C 2 H 3 O 2 ) 2 .H 2 O at 15, d of sat. sol. = 1.165. (Greenish and Smith, 1902.) ioo cc. anhydrous hydrazine dissolve 4 gms. zinc acetate with separation of a white suspension at ordinary temperature. (Welsh and Broderson, 1915.) ZINC ARSENATE Zn 3 (AsO 4 ) 2 .8H 2 O. ioo gms. 95% formic acid dissolve 0.26 gm. Zn 3 (As0 4 ) 2 at 21. (Aschan, 1913.) ZINC ARSENITE Zn 3 (AsO 3 ) 2 . ioo gms. 95% formic acid dissolve 0.36 gm. Zn 3 (AsO 3 ) 2 at 21. (Aschan, 1913.) 749 ZINC BENZOATE ZINC BENZOATE Zn(C 7 H 6 O a )a. SOLUBILITY IN WATER. (Pajetta, 1906.) t. 15-9. 17. 27-8. 31-3. 37-5. 49-8. 59- Cms. Zn(C 7 H 5 O2)2 per 100 gms. aq. solution 2.55 2.49 2.41 2.05 1.87 1.62 1.45 ZINC BROMIDE ZnBr 2 .2H 2 O. SOLUBILITY IN WATER. (Dietz, 1900; see also Etard, 1894.) t. Gms. ZnBrg per too Gms. Solution. Mols. ZnBr 2 per TOO Mols.H 2 0. Solid Phase. t. Gms. ZnBr 2 per 100 Gms. Solution. Mols. ZnBr 3 per 100 Mols.H 2 O. Solid Phase. - T 5 77-^3 27.0 ZnBr 2 .3H 2 O 25 82.46 37-6 ZnBr 2 .2H 2 O 10 78-45 29.1 " 30 84.08 42-3 - 5 80.64 33-3 " 37 86.20 50.0 " - 8 79.06 30.2 ZnBr 2 .2H 2 O 35 85-45 46.9 ZnBr a o 79-55 3 1 - 1 " 40 85-53 47-4 " + 13 80.76 33-5 " 60 86.08 49-5 " 18 81.46 35-i " 80 86.57 5I-S M 100 87.05 53-8 M ZINC BICARBONATE Zn(HCO 3 ) 2 . SOLUBILITY OF ZINC BICARBONATE IN WATER CONTAINING CARBON DIOXIDE. (Smith, 1918.) For description of the experimental method see iron bicarbonate, p. 336. Results at 25. Results at 30. Atmospheres Pressure of C0 2 , Calc. by Henry's Law. Gm. Mols. Free H 2 CO 3 per Liter. Gm. Mols. Zn(HCO3) 2 per Liter. Gm. Mols. Free H 2 CO 3 per Liter. Gm. Mols. Zn(HC0 3 ) 2 per Liter. 4.12 0.1390 0.00194 0.1838 O.OO2I5 5-33 0.1797 O.OO2II 0.3838 0.00277 7.64 0.2579 0.00242 0.4038 0.00286 10.61 0.3580 O.OO27O 0.4601 o . 00308 12. 16 0.4103 0.00278 o . 6064 0.00324 13.29 o . 4480 O.OO29I 0.6257 0.00337 19-73 0.6657 0.00317 0.7470 0.00352 20.65 0.6969 0.00319 0.8351 0.00376 22.56 0.7610 0.00343 I . 0840 0.00339 40.61 I.370I 0.00445 I.I275 0.00429 The calculated pressures are lower than the actual pressures since Henry's Law does not hold at very high pressures. " If zinc carbonate were not hydrolytically dissociated, its solubility in pure water at 25, would be 4.58 X io~* gms. mols. per liter." (Smith, 1918.) ZINC CARBONATE ZnC0 3 . Ageno and Valla (1911) report that the solubility of ZnCO 3 in water at 25 is 1.64. io~ 4 mols. = 0.206 gm. per liter. One liter of aq. 5.85% NaCl solution dissolves 0.0586 gm. ZnCO 3 at 14. One liter of aq. 745% NaCl solution dissolves 0.0477 gm. ZnCO 3 at 14. (Cantoni and Passamanik, 1905.) ZINC CHLORATE 750 ZINC CHLORATE ZnClO 3 . SOLUBILITY IN WATER. (Meusser, 1902; at 18, Mylius and Funk, 1897.) -18 o 8 15 18 Cms. Zn(ClO3) 2 too Cms. per 100 Mols. Zn(C per Solution. 55-62 59-19 60.20 67.32 66.52 Solid Phase. H 2 0. 9 . 70 Zn(ClO3) 2 .6H 2 O II.08 11.72 15.96 15.39 Zn(C10 3 ) 2 . 4 H 2 13 Sp. Gr. of solution saturated at 18 = 1.916. Cms. Mols. Zn(C10 3 ) 2 Zn(C10 3 ) 2 Solid Phase per 100 Cms. per 100 Mols. " ^nase. Ice Solution. 30 67.66 4O 69 . 06 H 2 0. 16.20 17.29 55 75-44 Ice curve 24 13 30.27 9 26.54 3-36 2.80 ZINC CHLORIDE ZnCl 2 . SOLUBILITY IN WATER. (Mylius and Dietz, 1905; see also Dietz, 1900; Etard, 1894.) A0 Gms.ZnCl 2 per looGms. Solid Gms.ZnCkper looGms. Solid Water. Solution. Phase. ' Water. Solution. Phase. - 5 14 12.3 Ice 9 360 78.3 .aiH 2 O + .H 2 O 10 25 20- o 6 385 79-4 ZnCl 2 .2iH 2 O -40 83 45-3 6 298 74-9 ZnCljj.iJHjjO -62 104 51.0 Ice + ZnI 2 . 4 H 2 10 330 76.8 " -5o "3 53.0 ZnCl 2 .4H 2 O 20 368 78.6 -40 127 55-9 26 423 80.9 .i}H 2 0+ZnCl 2 .H 2 O -30 1 60 6l-5 ^H 2 + . 3 H 2 26.3 433 81.2 .iJH 2 O + ZnCl a -10 189 65.4 ZnCl 2 . 3 H 2 O 342 77-4 ZnCl 2 .H 2 O o 208 67.5 10 3 6 4 78.4 " + 5 230 69.7 20 39 6 79.8 " 6-5 252.4 71.6 28 43 6 81.3 ZnCl 2 .H 2 + ZnCla 5 282 73-8 3 1 477 82.7 ZnCl 2 JH 2 O 309 25 432 81.2 ZnCla o 235 70 I ZnCl 2 .2iH2O .40 452 81.9 6.5 252 71-6 . 2 }H 2 O + . 3 H 2 O 60 488 83.0 10 272 73 * ZnCla-aiHaO 80 543 84.4 12.5 303 75.2 100 615 86.0 $ 335 262 CO IOO.O SOLUBILITY OF OXYCHLORIDES OF ZINC IN AQUEOUS SOLUTIONS OF ZINC CHLORIDE AT ROOM TEMPERATURE. (Driot, 1910.) ZnCl 2 . ZnO. ouiiu jriiase. 8.22 0.0137 ZnCl,.4ZnO.6H 2 O 23.24 0.138 " 45-95 0.497 " 51.5 0.604 " 56.9 0.723 ' ' ZnCl 2 . ZnO. ' 62.85 0.884 ZnCl 2 . 4 Zn0.6H 2 9 6 1.792 " 124.7 3-213 " 144.8 2.64 " 203 i-59 ZnClj.Zn0.iiH 2 O Results are also given for mixture of the oxychloride and oxide in aqueous zinc chloride solutions at various temperatures. 751 ZINC CHLORIDE SOLUBILITY OF ZINC CHLORIDE-AMMONIUM CHLORIDE MIXTURES IN WATER. (Meerburg, 1903.) Isotherm for o. Cms. per ioo Gms. Solution. Solid ZnCl 2 . NH4C1. 22.8 NH4C1 3-5 23.0 " 7 - 1 23-5 H 10.2 23-9 " 15-1 24.7 " 18.0 25-3 " 22.4 26.0 " 24.2 26.1 " 25-7 26.3 NH4C1 + 27-5 26.4 a 30-7 25-7 " 33-9 25-3 38.8 24.4 " 42.6 24.6 a + b 44-3 21-3 b 49-2 15 .3 " 52.6 11.9 " 55-4 IO.O " 59-3 7-5 62.1 6.8 M Isotherm for 20. Isotherm for 30. Gms. per ioo Gms. Solution. ZnCl 2 . NH4C1. ' o.o 26.9 5-i 27.1 9-5 27.4 12.7 27-5 J 5-7 27.7 18.0 27.9 23-5 29.0 26.0 29-5 2 9-5 28.1 32-3 27.7 35-8 27.0 38-7 26.9 40.2 26.6 41.9 26-3 43-2 26.0 46.9 21 .O 53-2 14-5 58-4 II .1 62 .7 8.7 66.6 7-9 Solid Phase. NHiCl Gms. per ioo Gms. Solution. NH4C1 + . a a + b b ZnCI 2 . NH4C1. 0-0 29-5 9 .2 29.4 16.0 29.7 2O. 2 30.1 24.7 30-4 26.3 30.8 27.2 30.2 30.1 29.6 3 6.8 28.2 42.4 27-3 43-8 27-3 45-o 24.4 5 r -2 I 7 .6 61 .9 10-4 66.9 9-2 75-6 6.1 7o-3 7.6 78.5 3-2 76.9 3-5 79-8 1.6 81.6 o.o Solid Phase. NHiCl ZnClj a = ZnCl 2 . 3 NHCl 3 ,. b = IOO gms. abs. acetone dissolve 43.5 gms. ZnCl 2 at 18, d& of sat. sol. = 1.14. (Naumann, 1904.) ioo gms. glycerol dissolve 50 gms. ZnCl 2 at 15.5. (Ossendowski, 1907.) loo cc. anhydrous hydrazine dissolve 8 gms. ZnCl 2 at room temp. (Welsh and Broderson, 1915.) When I gm. of zinc as chloride is dissolved in ioo cc. of aq. 10% HC1 and shaken with ioo cc. of ether, 0.03 per cent of the metal enters the ethereal layer. (Mylius, 1911.) ZINC CHROMATES. EQUILIBRIUM IN THE SYSTEM ZINC OXIDE, CHROMIUM TRIOXIDE AND WATER AT 25. (Groger, 1911.) An excess of ZnO was, in each case, shaken for 3 days at 25, with gradually in- creasing concentrations of chromic acid. Gms. per Liter Sat. Sol. Solid Phase. Gms. per Liter Sat. Sol. ZnO. Cr0 3 . ' 0.409 0.604 4ZnO.CrO 3 .3H 2 O 2.24 4.19 " 5- .86 II.5 " +3ZnO.CrO 3 .2H 2 O 10.7 22.2 3ZnO.CrO 3 .2H 2 O 26.7 57-5 " 30-4 66.7 " +4ZnO.CrO 3 .3H 2 O 32.2 70 . 6 4ZnO.CrO 3 .3H 2 O ZnO. 66.1 CrO 3 . 151 ouuu jruase. 4ZnO.CrO 3 .3H 2 O 83.7 123 192 285 " + 3 Zn0.2Cr0 3 .H 2 3ZnO.2CrO 3 .H 2 O 193 196 450 4 6l " +ZnO.CrO 3 .H 2 O 202 389 475 940 ZnO.CrO 3 .H 2 ZINC CINNAMATE 752 ZINC CINNAMATE Zn(C 6 H 6 CH:CHCOO) 2 . 100 cc. sat. solution in water contain 0.144 m zmc cinnamate at 26.5. (De Jong, 1909.) ZINC CYANIDE Zn(CN) 2 . 100 cc. concentrated Zn(C 2 H 3 O 2 )2 + Aq. dissolve 0.4 gm. Zn(CN) 2 . 100 cc. concentrated ZnSO 4 -j- Aq. dissolve 0.2 gm. (Joannis, 1882.) loo gms. H 2 O dissolve 0.24 gm. zinc mercuric thiocyanate, ZnHg(CNS) 4 at 15. (Robertson, P. W., 1907.) ZINC FLUORIDE ZnF 2 . 4 H 2 O. One liter of water dissolves 16 gms. at 18. (Dietz, 1900.) ZINC HYDROXIDE Zn(OH) 2 . One liter of water dissolves 0.0042 gm. ZnO at 18, conductivity method. (Dupre and Bialas, 1903.) One liter of water dissolves o.oi gm. at 25. (Bodlander, 1898.) SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS SOLUTIONS OF: Ammonia and Ammonia Bases at I7-I9. (Herz, 1902.) Sodium Hydroxide at Ord. Temp. (Rubenbauer, 1902.) Normality of Normality of Dis- Gms. ZnO Gms. per 20 cc. Solution _ MoL the Base. solved Zn. Solution. Na. Zn. the NaOH. 0.0942NH 3 O-OOII 0.00185 0.1012 0-0040 4 .50 0.236 " O.OIIO O.OlSo 0.1978 O.OI5O 2.33 0.707 " 0.059 0.0958 0.4278 O.O442 I .06 O.O005 O-OOoS 0-6670 O.I77I 0.70 0.472 O-OoSl 0.0132 0.9660 0.9630 0.48 0.944 O.O3 0.0484 1.4951 0.2481 0.31 0.068 NH 2 C 2 H 5 0.0003 0.0005 2.9901 0.3700 0.16 0.51 O.0045 O.OO74 Moist Zn (OH) 2 used. So- 0.68 0-0098 0-0161 lutions shaken 5 hours. SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM HYDROXIDE. Results of Euler (1903). Results of Bonsdorff (1904) at 25. t. Normality of Aq. Ammonia. Mols. Zn per Liter. Normality of Aq. Ammonia. Gms. ZnO per Liter. Normality of Aq. Ammonia. Gms. ZnO per Liter. 15-17 0.485 O.OI3-O.OIO* 0.3II 0.85 0.321 0-34 15-17 0.97 0.034 0.825 3-84 0.643 0.845 21 0-253 O.OO29 1.287 7 .28 I.2I5 2.70 21 0.259 0.0022* 1.928 5-07 21 0.500 O.OO97 2.570 7.01 21 0.518 O.OO7O 3-213 10. 16 f Euler states that the higher results of Herz are due to incompletely purified zinc hydroxide and uses material precipitated from the nitrate for his experiments. Different preparations of Zn(OH) 2 containing from 55 to 77 per cent H 2 O were used and in the two cases marked * ZnO was used. Bonsdorff used for his second series of determinations, Zn(OH) 2 precipitated from the nitrate and brought in moist condition into the ammonia solutions. 753 ZINC HYDROXIDE SOLUBILITY OF ZINC HYDROXIDE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS. (Klein, 1912.) The determinations were made by adding aq. ZnSO4 solution (containing one gm. mol. per liter) to aq. KOH solutions until a permanent precipitate just appeared. The titrations are also recalculated to mols. per liter and correction made for the dilution of the KOH solution by the aq. ZnSO 4 . Normality of Aq. KOH. cc. ZnSO 4 Sol. per 50 cc. Aq. KOH. t^aicu tacea iviois. per i^uer 01 oat. aoi. Oric Cone. KOH. Corrected Cone, of KOH. Cone, of Zn. I 5-5 t 0.9 O.IO 1.78 13-1 I. 7 8 1.42 0.209 2 14-3 2 I.S6 0.223 2.22 17.9 2.22 1-63 0.266 2 -5 18.8 2-5 I.8l 0.272 3 24.6 3 2.02 0.330 3-6 29.1 3-6 2.28 0.368 4 34 4 2. 3 8 0.405 6 56 (?) 6 2. 7 8 0.540 SOLUBILITY OF ZINC HYDROXIDE IN ONE PER CENT AQUEOUS SALT SOLUTIONS AT i6-2o. (Snyder, 1878.) The CO 2 free Zn(OH) 2 dissolved is calculated as milligrams Zn per liter of the given salt solution. Additional determinations are also given. Aq. Salt Mgs. Zn per Aq. Salt Mgs. Zn per Aq. Salt Mgs. Zn per Solution. Liter Solution. Solution. Liter Solution. Solution. Liter Solution. Nad 51 K 2 S0 4 37.5 K 2 C0 3 o KC1 43 MgS0 4 27 NH 4 C1 95 CaCl 2 57.5 KN0 3 17.5 NH 4 N0 3 77 MgCl 2 65 Ba(N0 3 ) 2 25 (NH 4 ) 2 S0 4 88 BaCl 3 38 ZINC IODATE Zn(IOi)i. 100 gins. H 2 O dissolve 0.87 gm. Zn(IO 3 )2 cold and 1.31 gms. hot. (Rammelsberg, 1838.) ZINC IODIDE ZnI 2 . SOLUBILITY IN WATER. (Dietz, 1900; see also Etard, 1894.) Gms. ZnI 2 Mols. ZnI 2 Gms. ZnI 2 Mols. ZnI 2 t. per 100 Gms. per 100 Solid Phase. t. per 100 Gms. per 100 Mols. Solid Phase. Solution. Mols.H 2 O. Solution. H 2 O. IO 80.50 23.3 ZnI 2 .2H 2 O O 8l.II 24.2 ZnI 3 5 80.77 2 3-7 " *8 81.20 24.4 " o 81.16 24.3 " 40 81.66 25.1 " + 10 82.06 25.8 " 60 82.37 2 ^-4 22 83.12 27.8 " 80 83.05 27.5 27 89.52 50.3 " TOO 83.62 28.7 Sp. Gr. of sat. solution of the anhydrous salt at 18 = 2.725. loo gms. glycerol dissolve 40 gms. ZnI 2 at 15.5. (Ossendowski, 1907.) ZINC NITRATE 754 ZINC NITRATE Zn(N0 3 ) 2 . SOLUBILITY IN WATER. (Funk, 1900.) Gms. Mols. Gms. Mols. * Zn(NO 3 )oper ZnNO 3 per Solid * TOO Gms. 100 Phase. t . Zn(N0 3 ) 2 per 100 Gms. Zn(N0 3 ) 2 100 per Solid Phase. Solution. Mols. H 2 O. Solution. Mols. H 2 0. -25 40.12 6.36 Zn(NO 3 ) 2 . 9 H 2 O 18 53-50 IO-9 Zn(N0 3 ) 3 .6H20 22 5 40-75 6-54 44 25 55-90 12 -O 44 20 42.03 6.89 M 36-4 63.63 I6. 7 " -18 43-59 7-34 " 36 64.63 17.4 41 -18 44-63 7.67 Zn(NO 3 ) 2 .6H 2 O 33.5 65 . 83 I8. 3 44 ~~ I 5 45.26 7.86 it 37 66.38 z8. Zn(N0 3 ) 2 . 3 H 2 -13 45-51 7-94 * 40 67.42 19.7 12 45-75 8.01 (i 4i 68.21 20.4 M 48.66 9.01 41 43 69.26 21.4 44 -1-12 5 52-0 10,3 4 45-5 77-77 33-3 M ZINC OXALATE ZnC 2 O 4 .2H 2 O. One liter H 2 O dissolves 0.0057 S m - ZnC 2 O 4 at 9.76, 0.0064 m - at I 7-92 and O.OO7I5 gm. at 26.15. (Kohlrausch, 1908.) SOLUBILITY OF ZINC OXALATE IN AQUEOUS AMMONIUM OXALATE SOLUTIONS AT 25. (Kunschert, 1904.) Mol. Normal (NH 4 ) 2 C 2 04 Mol. Zn per Liter 0.05 o.io 0.15 0.20 0.25 0.0022 0.0055 - OIO 55 0.0174 0.0257 Complex ammonia zinc oxalates are formed. When more than 0.15 free oxalate is present the complex has the formula, (NH4)4Zn(C 2 O4)3. In the more dilute solutions it has the composition, (NH 4 ) 2 Zn(C 2 O 4 ) 2 . ZINC Ammonium PHOSPHATE ZnNH 4 PO 4 . One liter sat. solution in water contains 0.0136 gm. ZnNH 4 PO 4 at 10.5 and 0.0145 gm. at 17.5. (Artmann, 1915.) ZINC SULFATE ZnSO 4 . SOLUBILITY IN WATER. (Cohen, 1900; at 50; Callender and Barnes, 1897; Etard, 1894; Poggiale, 1843; Mulder.) t. Gms. ZnSO 4 per 100 Gms. Solid . o Solution. Water. Phase. - 5 28.21 39-30 ZnSO 4 .7H 2 O 25 O.I 29-54 41-93 39 9.1 32.01 47-09 " 5 I S 33-81 50.88 70 25 36.67 57-90 80 35 39-98 66.61 90 39 41 .21 70.05 100 - 5 32.00 47-oS ZnSO 4 .6H 2 O 1 2O 01 33-09 49.48 140 1 60 ns. ZnSO 4 per 100 Gms Solid Phase. Solution. Water. 38-94 63.74 ZnSO 4 .6H 2 O 41 .22 70.06 .6H 2 O + .?H 2 O 43-45 76.84 ZnS0 4 .6H 2 47-5 88.7 .6H 2 + .H 2 O 46.4 86.6 ZnSOvHzO 45-5 83-7 44 44-7 80.8 44 41 .7 71 .5 44 38.0 61-3 44 33-o 49-3 44 TheSp. Gr. of a sat. sol. of ZnSO 4 in water at 15 is 1.452. (Greenish and Smith, i Data for the solubility of ZnSO 4 in water at high pressures are given by Cc and Sinnige (1909, 1910.) 902.) Cohen 755 ZINC SULFATE SOLUBILITY OF ZINC SULFATE SODIUM SULFATE MIXTURES IN WATER. (Koppel, Gumpery, 1905.) Gms. per 100 Gms. Solution. Gms. per 100 Gms H 2 O. Mols. Mols. 3er 100 H 2 O. Solid t . ZnSO 4 . Na 2 SO 4 ZnSO 4 . Na 2 SO 4 . ZnSO 4 . Na 2 S0 4 : Phase ' o 27 .19 5 33 40.30 7.90 4 50 I . OI ( ZnSO 4 .7H 2 O + 5 27 85 6 .27 42.28 9-52 4 7 1 1 2 j j Na 2 SO 4 .ioH 2 O 25 17 58 15 63 26.32 23.40 2 94 2 .96 ZnNa 2 (SO 4 ) 2 .4H 2 O 30 17 .66 15 58 26.47 23-44 2 95 2 97 35 17 59 15 .70 26.36 23-52 2 94 2 . 9 8 40 17 75 15 72 26.68 23-63 2 .98 2 99 10 29 .16 7 .16 45-79 ii .24 5 .11 I .42 15 30 .70 6 .40 48.81 10.17 5 45 I .29 20 25 32 Si 5 4 36 .41 52-34 56-15 8.62 7.22 6 .84 27 I O .09 .91 3o 36 ^28 3 .80 60-55 6-34 6 .76 0.8l 35 38 .18 3 30 65-25 5-64 7 .28 O .71 J 38 40 38 38 83 .26 2 2 .90 .78 66.64 64.89 4.98 4.71 7 7 44 .24 63 .60 10 27 .91 7 .92 43-50 12.34 4 85 I 565 20 24 19 .28 .14 10.90 14.58 36.92 28.77 16.71 21.95 4 3 .12 .21 2 2 .12 79 25 13 3 1 19 94 J 9-93 29.87 2 .22 3 785 30 6 .96 27 75 10.67 42-51 I .19 5 39 J 35 5 .61 30 03 8.72 46.61 O .971 5 .91 ZnNa 2 (SO 4 ) 2 4H 2 O 40 5 .96 28 65 9.16 43-83 I .02 5 555 . "7~N = l a + /*, where l a and 4 are the ionic conductivities of the anions and kations. These values are known for all the principally occurring ions. The observed specific conductivity K is, however, connected with the equivalent conductivity and the concentration t\ by the equation A = -, in which 77 represents the concentration in gram-equivalents V per cubic centimeter. Rearrangement and substitution give TJ = j r T- . From this equation the solubility of the substance I'a T i'k under investigation is calculated by substituting the measured specific conductivity of the solution and the known values of the ionic conductivities. The Solubility of Gases in Liquids. When a gas and a liquid are intimately mixed by shaking, a definite amount of the gas will be dissolved by the liquid and, simultaneously, the vapor of the liquid will mix with the gas in the space above the liquid. The partial pressure of the liquid in the gas space is almost exactly the same as that of the pure liquid at the solution temperature, since the in- fluence of the relatively slight amount of dissolved gas is insignifi- cant in by far the most cases. The amount of gas which is dissolved depends both on the nature of the gas and of the liquid and is, furthermore, a function of the temperature, and pressure. In regard to the influence of pressure, the absorption law of Henry holds for the most part, when the gas solubility is not too great. According to it, the amount of pure gas, which is taken up at con- stant temperature by a given amount of liquid is proportional to the pressure of the gas. The temperature acts almost always in the sense that the solu- bility decreases as the temperature rises. The solubilities of gases are usually expressed either in terms of the Bunsen "Absorption Coefficient" /3, or the Ostwald "Solubility Expression" /. Definitions of these are given on p. 227. The experimental methods for the determination of the solubility of gases vary according to the nature of the gas. For those which dissolve in relatively large amounts and can be analytically deter- mined with accuracy, the saturated solution may be analyzed by ordinary quantitative methods. Thus, in the case of the solubility of sulfur dioxide in aqueous solutions of salts (see p. 706, results by Fox, 1902), the solutions were saturated by passing a stream of the 779 METHODS FOR THE DETERMINATION OF SOLUBILITY gas through them at atmospheric pressure and, when equilibrium was attained, a measured portion of the solution was withdrawn, transferred to an excess of standardized iodine solution and the excess of the latter titrated with thiosulfate. A gravimetric pro- cedure was used by Christoff (1905) for the determination of the solubility of carbon dioxide in aqueous salt solutions. In this case the solutions were weighed before and after the passage of the gas through them and the increase in weight, after applying necessary corrections, taken to represent the solubility at the temperature of the experiment and at atmospheric pressure. The absorption flasks were of special shape and the gas was previously passed through a series of U tubes, containing the same aqueous solution, in order to prevent loss of water from the experimental solution which, otherwise, would have occurred. In the great majority of cases, however, gas solubility is deter- mined by a method based upon the measurement of the volume of the gas absorbed. The apparatus consists essentially of an absorp- tion flask for the liquid, connected by means of a tube of small bore to a graduated buret in which the gas is measured above mercury, the level of which can be altered by raising or lowering a container connected with the buret by means of a rubber tube. Many forms of this apparatus have been described and the disadvantages of the earlier forms have gradually been remedied. A relatively simple form of this apparatus, but one which embodies the essential features required for accuracy, is that described by McDaniel (1911) for the determination of the solubility of methane, ethane and ethylene in a large number of organic solvents at various tem- peratures. This apparatus is shown in Fig. 13. A is an ordinary gas buret and B an absorption pipet of the form first used by Ostwald. "The buret and pipet are connected by means of the glass capillary M sealed directly onto each, so that the whole forms one solid piece of glass apparatus without rubber or cement connections of any kind; thus any possibility of leaks from these extremely troublesome sources is entirely avoided. The whole apparatus is clamped solidly to a rigid support so that it can be taken up in the hands and shaken for the purpose of bringing the gas into intimate contact with the liquid. The pipet and buret are each provided with a three-way stopcock, C and D. These can be turned in such a way as to allow the gas to sweep out the air from the connecting capillary. By the same means the two vessels may also be connected directly with each other as well as separately with the outside air or source IETHODS FOR THE DETERMINATION OF SOLUBILITY of gas supply. The pipet and buret are each provided with a water jacket, P and Q. The temperature of each is regulated by means of the electrically heated coils K and L." These coils are of manganin wire and are connected in series. The rate of evolution of heat in the jackets was adjusted in the first place by varying the length of the manganin wire, until the temperature was the same in each jacket. Stirring was accomplished by blowing air through the tubes I and /. The differences in temperature between the pipet and buret were never greater than 0.1. T M B FIG. 13. FIG. 14. In carrying out a determination by this method it is, of course, necessary that the solvent be completely free of dissolved air or other gas. This is perhaps the most important part of the deter- mination and a special form of apparatus for the purpose is described by McDaniel (1911) and is shown in Fig. 14. "The liquid was boiled under diminished pressure in the flask C attached directly 781 METHODS FOR THE DETERMINATION OF SOLUBILITY to the lower opening of the pipet by means of the rubber stopper as shown in the figure. Connection with the air pump is made at D. During the boiling the lower opening of the inlet tube E is above the surface of the liquid in C, the stopcock B being closed. When the air has been completely expelled, the screw pinchcock F is closed while the air pump is still in operation. The flask C is now raised until the lower end of E reaches nearly to the bottom of the flask. The air pump is now connected at G and the cock H opened so as to make connection with the pipet. B is now opened and the inflow of air through D regulated by gradually opening F in such a manner that the liquid is very slowly forced up into the pipet. In this manner the liquid never comes into contact with the air under full atmospheric pressure but only under greatly diminished pressure. The absorption of air under these conditions can only be inappre- ciable, especially since the liquid in the flask remains perfectly quiet, and only the lower portion is used." Having filled the pipet B, Fig. 13, with the air-free solvent as just described, "T is connected with the source of gas supply and the cocks C and D are turned in such a way as to allow the gas to sweep out the air from the capillary, M. The buret is then filled in the usual manner by lowering the leveling tube F, the cock D having been turned so as to connect T with E. Care is taken to keep the entering gas under a slight pressure by keeping the mercury level in F slightly above that in A . This prevents air from entering through any leaks in the train connecting the gas generator with the buret." The gas must be completely saturated with the vapor of the solvent and this, with other than aqueous solvents, may require, in addition to drawing it through some of the solvent in H, that a thin layer be placed in the buret and time allowed for it to saturate the gas sample. "After again allowing the current of gas to flow through the capillary M for a short time the buret and pipet are connected with each other by turning the three-way cocks D and C in the proper direction. The determination of the amount of absorption is then made as follows: A portion of the gas is passed into the pipet by raising F and opening G, the displaced liquid being caught in a graduated cylinder. The cock C is closed and the gas and liquid in the pipet brought into intimate contact with each other by shaking the whole apparatus. C is now opened to allow gas to enter from the buret to replace that absorbed. This process is repeated until, on opening C, there is no further decrease in the volume of gas in A. The volume absorbed is found by subtracting from the original 782 METHODS FOR THE DETERMINATION OF SOLUBILITY volume of gas, the volume remaining in the buret plus the volume in the pipet. The volume of gas in the pipet is equal to the volume of liquid drawn off. The volume of liquid remaining is easily calculated from the known volume of the pipet. The absorption coefficient or ' solubility ' is the ratio of the volume of gas absorbed , measured at the temperature of the experiment, to the volume of the saturated liquid. It may be reduced to the coefficient used by Bunsen by dividing by (i + a/)." In the case of the majority of investigators who have used this method, particularly for determinations at high or low tempera- tures, the absorption pipet has been kept at the temperature of the experiment and the gas measuring buret at room temperature, the two being connected by means of a flexible capillary which permits the absorption pipet to be independently shaken. This arrange- ment makes it necessary, in calculating the absorption coefficients, to apply the usual corrections for temperature and vapor pressure to the volume of gas in the buret. This is a complication which in some cases causes uncertainties in regard to the accuracy of the results as finally calculated. A somewhat more elaborate form of apparatus than that just described was developed by Drucker and Moles (1910) for determi- nations in cases where the solubility is very small. These authors give results for hydrogen and nitrogen in aqueous solutions of glycerol. The particular feature of the apparatus is that only about one-tenth the usual amount of solvent is employed and solubilities as low as only one-tenth that of nitrogen in water at 25 can be measured. An apparatus designed for determinations at very high pressures, using a Caillet compression tube, is described by Sander (1911-12). It was used for determination of the solubility of carbon dioxide in water, alcohols, and other organic solvents. The principle involved TS that the pure gas is first compressed above mercury in a graduated tube and the volumes corresponding to given pressures noted. Simi- lar readings are then taken for the same gas after a small accurately measured amount of solvent has been introduced into the graduated tube. The difference between the two volumes at the same tem- perature and pressure, reduced to I kg. per sq. cm. and I cc. of liquid, represents the solubility of the gas in the given solvent. Finally, attention should be called to the method of determination of gas solubility based on the principle that, for volatile solutes which obey the laws of Dalton and Henry, the amount which is carried away by an inert gas when known volumes are bubbled 783 METHODS FOR THE DETERMINATION OF SOLUBILITY through solutions of known strength of volatile solute, can be used to measure the comparative solubilities in solvents of different con- centrations. An example of this method is the determination of the solubility of ammonia in aqueous salt solutions by Abegg and Riesenfeld (1902). The very ingenious apparatus consists of a generator for developing a stream of H 2 + O 2 from aqueous NaOH, by means of an electric current measured with the aid of a copper voltmeter, and the volume of gas thus determined. This was passed through a spiral in the vessel containing the ammonia solution of known concentration. The mixed gases passing out of this were received in a third vessel containing 5 cc. of o.oi n HC1. Electrodes were provided in this' vessel and, by means of conductivity measure- ments, the point determined at which all of the HC1 became satu- rated with NH 3 . Since the volume of the H 2 + O 2 required for this purpose was known, the partial pressure of the NH.s in the mixture could be directly ascertained. Comparative determinations of the vapor pressure of the ammonia in water and a series of salt solutions made in this way were calculated to ammonia solubilities on the basis of the relation that, for two solutions of equal ammonia con- tent, the ammonia pressure is reciprocally proportional to the solu- bility of the ammonia in them. 784 AUTHOR INDEX Abbott, G. A. and Bray, W. C. (1909) J.Am.Chem.Soc., 31, 729-763- Abe, Ryuji. (1911) Mem.Coll.Sci.Eng. (Kyoto), 3, 212. (1911) J.Tok.Chem.Soc., 32, 980. (1911-12) Mem.Coll.Sci.Eng. (Kyoto), 3, 13. (1912) J.Tok.Chem.Soc., 33, 1087. Abegg, R. (1903) Z.Elektrochem., 9, 550. Abegg, R. and Cox, A. J. (1903) Z.physik.Chem., 46, n. Abegg, R. and Pick, H. (1905) Ber., 38, 2573. (1906) Z.anorg.Chem., 51, I. Abegg, R. and Riesenfeld, H. (1902) Z.physik.Chem., 40, 84. Abegg, R. and Sherrill, M. S. Z.Elektrochem., 9, 550. Abegg, R. and Spencer. (1905) Z.anorg.Chem., 46, 406. Acree, S. F. and Slagle, E. A. (1909) Am.Chem.Jour., 42, 135. Adrian!, J. H. (1900) Z.physik.Chem., 33, 453-476. Ageno, F. and Valla, E. (1911) Atti accad.Lincei, 20, II, 706. (1912) ist.Ven.[VIII], 14, II, 331. (1913) Gazz.chim.ital., 43, II, 168. d'Agostino, E. (1910) Rend. soc.chim.ital. (Roma), 2, II, 171. Aignan, A. and Dugas, E. (1899) Compt.rend., 129, 643. Alexejew, Wladimir. (Alexejeff.) (i886)Wied.Ann.Physik.,28,305,338. Allen, E. T. and White, W. P. (1909) Am.Jour.Sci.[4], 27, I. Altschul. (1896) Monatsh.Chem., 17, 575. Alluard. (1864) Compt.rend., 59, 500. (1865) Liebig's Ann., 133, 292. Amadori, M. (1912) Atti accad.Lincei, 21, II, 67, 184, 769, 690. (i9i2a) Atti accad.Lincei, 21, I, 467, 667-73. (1913) Atti accad.Lincei, 22, I, 453, 609; 22, II, 333. (1915) Atti accad.Lincei, 24, II, 204. Amadori, M. and Becarelli, R. (1912) Atti accad.Lincei, 21, II, 698. Amadori, M. and Pampanini, G. (1911) Atti accad.Lincei, 20, II, 475, 572. Amat, L. (1887) Compt.rend., 105, 809. Anderson. (1888-89) Proc.Roy.Soc.(Edin.), 16, 319. Andrae. (1884) J.prakt.Chem. [2], 29, 456. Andrews, L. W. and Ende, C. (1895) Z.physik.Chem., 17, 136. Anon. (1903) Bull.soc.pharm. (Bordeaux), p. 7. (1904) Pharm.Jour.(Lond.), 72, 77. 1 The abbreviations of the names of the journals referred to in this index agree, for the most part, with those adopted for Chemical Abstracts. They will, there- fore, be readily understood in all but a few cases. One abbreviation which differs from that used in Chemical Abstracts is Proc. k. Akad. Wet. (Amst.) instead of Proc. Acad. Sci. Amsterdam. It refers to the English edition of Verslag koninkl ke Akademie van Wetenschappen te Amsterdam. Another abbreviation which has been adopted for the present index is the use of "Tables arinuelles " for the French title, Tables annuelles de Constantes et Donnees Numerique de Chemie, de Physique et de Technologic, of the Interna- tional Tables of Constants and Numerical Data published in Paris under the direction of the general secretary, Professor Marie. Of the three volumes which have been published, Vol. I contains data for the year 1910 and was issued in 1912; Vol. 2 is for the year 1911 and appeared in 1913; and Vol. 3 contains data for 1912 and was issued in 1914. 785 AUTHOR INDEX Anthony, C. G. (1916) Bonfort's Wine and Spirit Circular, Apr. loth, von Antropoff, A. (1909-10) Proc.Roy.Soc. (London), A 83, 474-83. Armstrong, H. E. and Eyre, J. V. (1910-11) Proc. Roy. Soc. (London), (A), 84, 123-135. (1913) Proc. Roy. Soc. (London), (A), 88, 234. Armstrong, H. E., Eyre, J. V., Hussey, A. V., and Paddison, W. P. (1907) Proc. Roy. Soc. (London), (A), 79i 564-576. Ange, see Auge. d'Ans, see D'Ans. d'Anselme. (1903) Bull.soc.chim. [3], 29, 372. Archibald, E. H., Wilcox, W. G. and Buckley, B. G. (1908) J.Am.Chem.Soc., 30, 747-60. Arctowski, H. (1894) Z.anorg.Chem., 6, 267, 404. (1895) Compt.rend., 121, 123. (1895-6) Z.anorg.Chem., n, 272-4. Armit, H. W. (1907) Jour.Hygiene, 7, 525-51. Arndt, K. (1907) Ber., 40, 427. Arndt, K. and Loewenstein, W. (1909) Z.Elektrochem., 15, 784-90. Arrhenius, S. (1893) Z.physik.Chem., n, 396. Arth, G. and Cretien. (1906) Bull.soc.chim. [3], 35, 778. Artmann, P. 1912-13) Z.anorg.Chem., 79, 333. (1915) Z.anal.Chem., 54, 90. Aschan, Ossian. (1913) Chem.Ztg., 37, 1117. AssBlin, E. (1873) Compt.rend., 76, 884. (1873) Jahresber.Chem., 1063. Aten, A. H. W. (1905) Z.anorg.Chem., 47, 387. (1905-06) Z.physik.Chem., 54, 86, 124. (1909) Z.physik.Chem., 68, 41. (1912) Proc.k.Akad.Wet. (Amst.), 15, (1912-13) Z.physik.Chem., 81, 268. (1913) Z.physik.Chem., 83, 443. (1914) Z.physik.Chem., 86, 1-35. (i9Ha) Z.physik.Chem., 88, 321-379. Atkins, W. R. G. and Werner, E. A. (1912) J.Chem.Soc.(Lond.), 101,1167. Aubert, A. B. (1902) J.Am.Chem.Soc., 24, 690. Auerbach, F. (1903) Z.anorg.Chem., 37, 353-77. (1904) Z.Elektrochem., 10, 163. Auerbach, F. and Barschall, H. (1908) Arb.Kais.Gesundheitsamt., 27, 183-230. (1908) Chem.Abs., 2, 1125. Auge, E. (1890) Compt.rend., no, 1139. Bagster, L. S. (1911) J.Chem.Soc.(Lond.), 99, 1218. Bahr, F. (1911) Z.anorg.Chem., 71, 85. Bakunin, M. and Angrisani, T. (1915) Gazz.chim.ital., 45, I, 204. Ballo, Rezso. (1910) Z.physik.Chem., 72, 439. Baly. (1900) Phil.Mag. [5], 49, 517. Bancroft, W. D. (1895) Phys. Rev., 3, 31, 122, 193, 205. Banthisch. (1884) J.prakt.Chem., [2], 29, 54. Barker, T. V. (1908) J.Chem.Soc.(Lond.), 93, 15. Barnes, H. T. (1900) J.Phys.Chem., 4, 19. Barnes, H. T. and Scott. (1898) J.Phys.Chem., 2, 542. Baroni, T. and Barlinetto, V. (1911) Giorn.farm.chim., 60, 193. (1911) " Tables annuelles," 2, 474. Barre, M. (1909) Compt.rend., 148, 1604-6; 149, 292. (1910) Compt.rend., 150, 1321, 1599; 151, 871-3. (1911) Ann.chim.phys., [8], 24, 149- 167, 202, 210-223. (1912) Bull.soc.chim. [4], n, 646. Basch. (1901) Dissertation (Berlin), p. 17. Baskov, A. (1913) Jour.Russ.Phys.Chem.Soc., 45, 1608. (1914) Ann.inst.Electrotechnique (Petrograd), n, 143. (1915) J.Russ.Phys.Chem.Soc., 47, 1533-5- Bassett, H. Jr. (1908) Z.anorg.Chem., 59, 1-55. (1917) J.Chem.Soc.(Lond.), in, 620-42. Bassett, H. Jr. and Taylor, H. S. (1912) J.Chem.Soc.(Lond.), 101, 576. (1914) J.Chem.Soc.(Lond.), 105, 1926-41. Bathrick. (1896) J.Phys.Chem., I, 159. Battelli and Martinetti. (1885) Atti accad.sci.Torino, 20, 844. Baubigny, H. (1908) Bull.soc.chim. [4], 3, 772. (1908) Compt.rend., 146, 1263. 786 AUTHOR INDEX Baud, E. (1909) Bull.soc.chim. [4], 5, 1022. (1909) Compt.rend., 148, 96. (1912) Ann.chim.phys. [8], 27, 95-8. (i9i2a) Bull.soc.chim. [4], n, 948. (i9i3a) Compt.rend., 156, 317. (i9i3b) Ann.chim.phys. [8], 29, 131- 136. (19130) Bull.soc.chim. [4], 13, 436. (1913) Ann.chim.phys., [8], 29, 131. Baud, E. and Gay, L. (1910) Compt.rend., 150, 1688. (1911) Bull.soc.chim. [4], 9, 119. Baum, Fritz. (1899) Archiv. exp.Path.u Pharm., 42, 119-137- Baume, G. (1911) J.chim.phys., 9, 245. (1914) J.chim.phys., 12, 216. Baume, G. and Borowski, W. (1914) J.chim.phys., 12, 276-81. Baume, G. and Georgitses, N. (1912) Compt.rend., 154, 650. (1914) J.chim.phys., 12, 250. Baume, G. and Germann, F. O. (1911) Compt.rend., 153, 569. (1914) J.chim.phys., 12, 242. Baume, G. and Pamfil, G. P. (1911) Compt.rend., ?5 2 > IO 95- (1914). J.chim.phys., 12, 256. Baume, G. and Perrot, F. L. (1911) Compt.rend., 152, 1763-5. (1914) J.chim.phys., 12, 225. Baume, G. and Tykociner, A. (1914) J.chim.phys., 12, 270-5. Baup. (1858) Ann.chim.phys. [3], 53, 468. Baxter, G. P., Boylston, A. C. and Hub- bard, R. A. (1906) J.Am.Chem.Soc., 28, 1343. . Bechold and Ziegler. (1910) Z.angew.Chem., 23, 29. Beck, K. (1904) Z.physik.Chem., 48, 657. Beck, K. and Stegmiiller, Ph. (1910) Arb.Kais.Gesundheitsamt., 34, 447- (1911) Z.Elektrochem., 17, 843-48. Beckmann, E. and Stock, A. (1895) Z.physik.Chem., 17, 130. Behrend, R. (1892) Z.physik.Chem., 10, 265. (1893) Z.physik.Chem., u, 466. Bell. (1867) Chem.News., 16, 69. Bell, J. M. (1905) J. Phys. Chem., 9, 544. (1911) J.Am.Chem.Soc., 33, 940. Bell, J. M. and Buckley, M. L. (1912) J.Am.Chem.Soc., 34, 10. Bell, J. M. and Taber, W. C. (1907) J.Phys.Chem., n, 637-8. (1908) J.Phys.Chem., 12, 174. Bellucci, I. (1912) Atti accad.Lincei, [5], 21, II, 610. (1913) Gazz.chim.ital., 43, I, 521. Bellucci, I. and Grassi, L. (1913) Gazz.chim.ital., 43, II, 712. (1913) Atti accad.Lincei [5], 22, II, 676. (1914) Gazz.chim.ital., 44, I, 559. Benedicks. (1900) Z.anorg.Chem., 22, 409. Bennett, R. R. (1912) Pharm. Jour. (Lond.), 89, 146. Bergius, F. (1910) Z.physik.Chem., 72, 338-61. Berju and Kosminiko. (1904) Landw.Vers.Sta., 60, 422. Berkeley, Earl of. (1904) Phil.Trans.Roy.Soc.(Lond.), 203, A., 189-215. Berkeley, Earl of, and Appleby, M. P. (1911) Proc.Roy.Soc., 85, 503. Bernardis, G. B. (1912) Atti accad.Lincei [5], 21, II, 442. Bernfeld. (1898) Z.physik.Chem., 25, 72. Bertheaume, J. (1910) Compt.rend., 150, 1064. Berthelot, M. (1904) Ann.chim.phys. [8], 3, 146. (1904) Compt.rend., 138, 1649. Berthelot, M. and Jungfleisch. (1872) Ann.chim.phys. [4], 26, 400. Bertrand. (1868) Monit.Scient. [3], 10, 477. Beurath, A. (1912-3) J.prakt.Chem. [2], 87, 423. Bevade, J. (Bewad). (1884) Ber., 17, R., 406. (1885) Bull.soc.chim. [2], 43, 123. Bianchini, G. (1914) Atti accad.Lincei [5], 23, I, 609. Biginelli, P. (1908) Gazz.chim.ital., 38, I, 559-82. Billitzer, J. (1902) Z.physik.Chem., 40, 535. Biltz, W. (1903) Z.physik.Chem., 43, 42. Biltz, W. and Marcus, E. (1911) Z.anorg.Chem., 71, 167. Biltz, W. and Wilke. (1906) Z.anorg.Chem., 48, 299. Birger, Carlson, see Carlson, Birger. Biron. (1899) J.Russ.Phys.Chem.Soc., 31, 5 T 7- Bissell, D. W. and James, C. (1916) J.Am.Chem.Soc., 38, 873. Blanksma, J. J. (1910) Chem.Weekblad., 7, 418. (1912) Chem.Weekblad., 9, 787 AUTHOR INDEX Blanksma, J. J. (1913) Chem.Weekblad., 10, 136. (1914) Chem.Weekblad., n, 28. Blarez. (1891) Compt.rend., 112, 434, 939, 1213. Blarez and Deniges. (1887) Compt.rend., 104, 1847. Bodlander, G. (1891) Z.physik.Chem., 7, 317, 361. (1892) Z.physik.Chem., 9, 734. (1898) Z.physik.Chem., 27, 66. Bodlander, G. and Eberlein, W. (1903) Ber., 36, 3948. Bodlander, G. and Fittig, R. (1901-02) Z.physik.Chem., 39, 597- 612. Bodlander, G. and Storbeck. (1902) Z.anorg.Chem., 31, 22, 460. Bodtker, E. (1897) Z.physik.Chem., 22, 510, 570. Boeke, H. E. (1907) Z.anorg.Chem., 50, 335. (1911) NJahr.Min., i, 48, 61. (1911) Sitzber.k.Akad.Wiss. (Berlin), 24, 632-8. Boeseken, J. (1912) Rec.trav.chim., 31, 354-360. Boeseken, J. and Carriere. (1915) Rec.trav.chim., 34, 181. Boeseken, J. and Waterman, H. (1911) Verslag.k.Akad.Wet.(Am3t.), 2 <> SSS- (1912) Proc.k.Akad.Wet.(Amst.), 14, 620. Boericke, F. (1905) Z.Elektrochem., n, 57. Bogdan, P. (1902-3) Ann. Sci. Univ. Jassy, 2, 47. (1905) Z.Elektrochem., n, 825. (1906) Z.Elektrochem., 12, 490. Bogitch, B. (1915) Compt.rend., 161, 790-1. Bogojawlensky, A. and Winogradow,N. (1907) Z.physik.Chem., 60, 433. (1916) Sitzber.Natur.Ges. Univ. Dor- pat., 15, 230-37. Bogojawlensky, A., Winogradow, N. and Bogolubow. (1906) Sitzber.Natur.Ges. (Dorpat.), (1916) Sitzber.Natur.Ges. (Dorpat.), 15, 216-29. Bogorodsky. (1894) J.Russ.Phys.Chem.Soc., 26, 209. (1894) Chem.Centralbl., II, 514. Bogousky. (1905) J.Russ.Phys.Chem.Soc., 37, 92. Bohling. (1884) Z.anal.Chem., 23, 518. Bohr, C. (1899) Wied.Ann.Physik. [3], 68, 50.3- (1910) Z.physik.Chem., 71, 47-50. Bohr, C. and Bock. (1891) Wied.Ann.Physik [2], 44, 318. Boks. (1902) Dissertation, Amsterdam. Bonner, W. D. (1910) J.Phys.Chem., 14, 738-789. Bonsdorff, W. (1904) Z.anorg.Chem., 41, 180. Bornwater, J. T. and Holleman, A. F. (1912) Rec.trav.chim., 31, 230. Borodowski, W. and Bogojawlenski. (1904) J.Russ.Phys.Chem.Soc., 36, 559-6o. Botta. (1911) Zentralbl.Min.Geol., p. 123. Bottger, W. (1903) Z.physik.Chem., 46, 521-619. (1906) Z.physik.Chem., 56, 83-94. Boubnoff, N. and Guye, Ph. A. (1911) J.chim.phys., 9, 304. Bougault. (1903) J.pharm.chim. [6], 18, 116. Boulouch, R. (1902) Compt.rend., 135, 165. (1906) Compt.rend., 142, 1045. Bourgoin. (1874) Bull.soc.chim. [2], 21, no. (1878) Ann.chim.phys. [5], 13, 406; I5> 165. (1884) Bull.soc.chim. [2], 42, 620. Boutaric, A. (1911) Compt.rend., 153, 876-7. Bowen, N. L. (1914) Am.Jour.Sci. [4], 38, 207-264. Bowen, N. L. and Anderson, Olaf . (1914) Am.Jour.Sci. [4], 37, 487. Boyle, Mary. (1909) J.Chem.Soc.(Lond.), 95, 1696. Boyle, R. W. (1911) Phil. Mag. [6], 22, 840-854. Bradley, W. P. and Alexander, W. B. (1912) J.Am.Chem.Soc., 34, 17. Bramley, A. (1916) J.Chem.Soc.(Lond.), 109, 469-96. Brand, H. (1911) Neues Jahrb.Min.Geol.(Beil. Bd.), 32, 627-700. (1912) Zentralbl.Min.Geol.and Pal., 26-32. (1913) Neues Jahrb.Min.Geol., I, 9-27. Brandan. (1869) Liebig's Ann., 151, 340. Braun, L. (1900) Z.physik.Chem., 33, 732. Brauner, B. (1898) J.Chem.Soc.(Lond.), 73, 955. 788 AUTHOR INDEX Bray, Wm. C. (1905-06) Z.physik.Chem., 54, 569- 608. Bray, W. C. and Connolly, E. L. 1(1910) J.Am.Chem.Soc., 32, 937. (1911) J.Am.Chem.Soc., 33, 1485. Bray, W. C. and MacKay, G. M. T. (1910) J.Am.Chem.Soc., 32, 914, 1207. Bray, Wm. C. and Winninghoff. (1911) J.Am.Chem.Soc., 33, 1663. Breithaupt, J. ( ) These, Univ. of Geneve., 38, No. 446. Briegleb. (1856) Liebig's Ann., 97, 95. Brinton, Paul H. M. P. (1916) J.Am.Chem.Soc., 38, 2365. Brissemoret, M. (1898) J.pharm.chim. [6], 7, 176-8. Bronsted, J. N. (1906) Z.physik.Chem., 55, 377. (1909) 7th Int. Congress Applied Chem., 10, no. (1911) Z.physik.Chem., 77, 132. (1912) Z.physik.Chem., 80, 208, 214. Brown, J. C. (1907) Proc.Chem.Soc., 23, 233. (1907) J.Chem. Soc.(Lond-), 91, 1826-31. Brown, O. W. (1898) J.Phys.Chem., 2, 51. Browning and Hutchins. (1900) Z.anorg.Chem., 22, 380. Bruner, L. (1898) Z.physik.Chem., 26, 147. Bruner, L. and Zawadski, J., el al. (1909) Bull.Internat.acad.Sci. Cra- covie, [3], 9, A, 267-312, 377. (1910) Z.anorg.Chem., 67, 454-5. (1910) Chem. Abs., 4, 980, 2758. Bruni, G. (1898) Gazz.chim.ital., 28, II, 508- 5 2 9- (1899) Atti accad.Lincei, [5], 8, II, 141. (1900) Gazz.chim.ital., 30, I, 25-35. Bruni, G. and Berti, P. (1900) Gazz.chim.ital., 30, II, 324. Bruni, G. and Finzi, F. (1905) Gazz.chim.ital., 35, II, in- 131- Bruni, G. and Gorni, F. (1899) Atti accad.Lincei, [5], 8, II, 188. (1900) Atti accad.Lincei, [5], 9, 11,326. Bruni, G. and Meneghini. (1909) Z.anorg.Chem., 64, 193. (1910) Gazz.chim.ital., 40, I, 682. de Bruyn, C. A. Lobry. (1890) Rec.trav.chim., 9, 188. (1892) Z.physik.Chem., 10, 782-789. (1892) Rec.trav.chim., n, 29, 112- 156. de Bruyn, C. A. Lobry. (1894) Rec.trav.chim., 13, 116, 150. (1899) Rec.trav.chim., 18, 87. (1900) Z.physik.Chem., 32, 63, 85, 92, 101. (1903) Rec.trav.chim., 22, 411. de Bruyn, C. A. Lobry, and van Eken- stein, W. A. (1899) Rec.trav.chim., 18, 150. (1900) Rec.trav.chim., 19, 7. Bubanovic, F. (1913) Med.K.Vetenskapsakad.No- belinst, 2, No. 33. '(1913) Chem.Abs., 7, 2886. Bube, Kurt. (1910) Z.anal.Chem., 45, 525-96. Buchner, E. H. (1865) Sitzber.k.Akad.Wiss.(Wein), 52, 2, 644. (1905-06) Z.physik.Chem., 54, 665- 88. Buchner, E. H. and Karsten, B. J. (1908-9) Proc.k.Akad.Wet.(Amst.), n, 504. Buchner, E. H. and Prins, Ada. (1912-13) Z.phys.Chem., 81, 113-120 Bugarszky, S. (1910) Z.physik.Chem., 71, 753. Bunsen, Robert. (1877) " Gasometrische Methoden," 2nd Ed. Bunsen-Heurich. (1892) Z.physik.Chem., 9, 438. Bylert, V. ( ) These, Amsterdam. Cabot, G. L. (1897) J.Soc.Chem.Ind., 16, 417. Cady, H. P. (1898) J.Phys.Chem., 2, 168, 206. Caille. (1909) Compt.rend., 148, 1461. Calcagni, G. (1912) Gazz.chim.ital., 42, II, 653, 661. (i9i2a) Atti accad.Lincei, [5], 21, II, 72. Calcagni, G. and Mancini, G. (1910) Atti accad.Lincei, [5], 19, II, 424. Calcagni, G. and Marotta, D. (1912) Gazz.chim.ital., 42, II, 669- 680. (1912) Atti accad.Lincei, [5], 21, II, 93, 243, 284. (1913) Gazz.chim.ital., 43, II, 380. (1913) Atti accad.Lincei, [5], 22, II, 373, 443- (1914) Gazz.chim.ital., 44, I, 487. Callender and Barnes. (1897) Proc.Roy.Soc., 62, 149. Calvert, H. T. (1901) Z.physik.Chem., 38, 521-540. 789 AUTHOR INDEX Calzolari, F. (1912) Gazz.chim.ital., 42, II, 85-92. ( ) Acc.sc.med.e.nat.di Ferora, 85, 150. Cambi, L. (1912) Atti accad.Lincei, [5], 21, I, 776, 791. (1912) Atti accad.Lincei, [5], 21, II, 839- Cambi, L. and Speroni, G. (1915) Atti accad.Lincei, [5], 24, I, 736. Cameron, F. K. (1898) J.Phys.Chem., 2, 413. (1901) J.Phys.Chem., 5, 556. Cameron, F. K. and Bell, J. M. (1905) J.Am.Chem.Soc., 27, 1512. (1906) J.Am.Chem.Soc., 28, 1220, 1222. (i9o6a) J.Phys.Chem., 10, 210. (1907) J.Phys.Chem., n, 363. (1910) J.Am.Chem.Soc., 32, 869. Cameron, F. K., Bell, J. M., and Robin- son, W. O. (1907) J.Phys.Chem., n, 396-420. Cameron, F. K. and Breazeale, J. F. (1903) J.Phys.Chem., 7, 574. (1904) J.Phys.Chem., 8, 335. Cameron, F. K. and Patten, H. E. (1911) J.Phys.Chem., 15, 67. Cameron, F. K. and Robinson, W. O. (1907) J.Phys.Chem., n, 577, 641, 691. (i9O7a) J.Phys.Chem., n, 273-8. (1909) J.Phys.Chem., 13, 157, 251. Cameron, F. K. and Seidell, A. (1901) Bull. No. 18, Division of Soils, U. S. Dept. Agr. (igoia) J.Phys.Chem., 5, 643. (1902) J.Phys.Chem., 6, 50. Campetti, A. (1901) Atti accad.Lincei., [5], 10, II, 99-102. (1902) Z.physik.Chem., 41, 109, (abstract). (1917) Atti accad.sci.Torino, 52, 114-21. Campetti, A. and Del Grosso, C. (1913) Nuovo cimento, [6], 6, 379- 417 (1913) Mem. R.accad.Sci. (Torino), [II], 61, 187. (1911) "Tables annuelles," 2, 433. Cantoni, H. and Basadonna. (1906) Bull.soc.chim., [3], 35, 731. Cantoni, H. and Diotalevi, D. (1905) Bull.soc.chim., [3], 33, 27-36. Cantoni, H. and Goguelia, G. (1905) Bull.soc.chim., [3], 33, 13. Cantoni, H. and Jolkowsky. (1907) Bull.soc.chim. [4], i, 1181. Cantoni, H. and Passamanik. (1905) Ann.chim.anal.appl., 10, 258. Cantoni, H. and Zachoder. (1905) Bull.soc.chim., [3], 33, 747. Cap and Garot. (1854) J.pharm.chim., [3], 26, 81. Capin, J. (1912) Pharm.Jour.(Lond.), 88, 65, from (1911) Bull.soc. pharm. (Bordeaux), 414. Carlinfanti, E. and Levi-Malvano, M. (1909) Gazz.chim.ital., 39, II, 353- 75- Carlson, Birger. (1910) Klason-Festschrift, 247-66 (Stockholm). (1910) " Tables annuelles," i, 379. Carnelly. (1873) Liebig's Ann., 166, (116?), 155- (1873) J.Chem.Soc.(Lond.), [2], n, 323- Carnelly and Thomson. (1888) J.Chem.Soc.(Lond.), 53, 799. Caro. (1874) Arch.Pharm., [3], 4, 145. Carpenter. (1886) J.Soc.Chem.Ind., 5, 286. Carr, F. H. and Pyman, F. L. (1914) J.Chem.Soc.(Lond.), 105, 1 602-1 1. Carrara and Minozzi. (1897) Gazz.chim.ital., 27, II, 955. Carveth, H. R. (1898) J.Phys.Chem., 2, 213. Caspari, W. A. (1915) J.Chem.Soc.(Lond.), 107, 162-171. Cassuto, L. (1913) Nuovo cimento, 6, 1903. Cavazzi, A. (1916) Gazz.chim.ital., 46, II, 122-35 (1917) Gazz.chim.ital., 47, II, 49-63. Centnerszwer, M. (1899) Z.physik.Chem., 29, 715. (1910) Z.physik.Chem., 72, 437. Centnerszwer, M. and Teletow, I. (1903) Z.Elektrochem., 9, 799. de Cesaris, P. (1911) Atti accad.Lincei, [5], 20, I, 597, 749" Chancel and Parmentier. (1885) Compt.rend., 100, 473, 773- Chandler, E. E. (1908) J.Am.Chem.Soc., 30, 696. Chattaway, F. D. and Lambert, Wm. J. (1915) J.Chem.Soc.(Lond.), 107, 1768, 1776. Chavanne, G. and Vos, J. (1914) Compt.rend., 158, 1582. Chikashigi, M. (i9ii-i2)Mem.Coll.Sci.Eng.(Kyoto), 3, 197-206. (1911) Z.anorg.Chem., 72, 109. 790 AUTHOR INDEX Chikashigi, M. and Yamanchi, Y. (1916) Mem.Coll.Sci. Kyoto, 1,341-7. Chilesotti, A. (1908) Atti accad.Lincei, [5], 17, II, 475- Christensen. (1885) J.prakt.Chem., [2], 31, 166. Christoff, A. (1905) Z.physik.Chem., 53, 321. (1906) Z.physik.Chem., 55, 627. (1912) Z.physik.Chem., 79, 459. Christy, S. B. (1901) Elektrochem.Ztschr., 7, 205. Chugaev, L. and Khlopin, W. (1914) Z.anorg.Chem., 86, 159. Cingolani, M. (1908) Gazz.chim.ital., 38, I, 305. (1908) Atti accad.Lincei., [5], 17, I, 265. Ciusa, R. and Bernard!, A. (1910) Gazz.chim.ital., 40, II, 159. Claasen, H. (1911) Z.Ver.Zuckerind.,6i, 489-509. Cleve. (1866?) K. Svenska Vetenskaps- Akad.Handl.(Stockholm), 10, 9, 7. (1874) Bull.soc.chim., [2], 21, 344. (1885) Bull.soc.chim., [2], 43, 166. Cleve, Astrid. (1902) Z.anorg.Chem., 32, 157. Cloez. (1903) Bull.soc.chim. [3], 29, 167. Clowes, F. and Biggs, J. W. H. (1904) J.Soc.Chem.Ind., 23, 358. Cocheret, D. H. (1911) Dissertation, Leiden. (1911) "Tables Annuelles"2, 439, 444. Cohen, Ernst. (1900) Z.physik.Chem., 34, 189, 622. (1903) Z.Elektrochem., 9, 433. (1909) Z.Elektrochem., 15, 600. Cohen, E. and Inouye, K. (1910) Z.physik.Chem., 72, 411-424. (1910) Chem.Weekblad., 7, 277. Cohen, E., Inouye, K. and Euwen, C. (1910) Z.physik.Chem., 75, 257. Cohen, E. and Sinnige, L. R. (1910) Trans. FaradaySoc., 5, 269. Conn, E. (1895) Z.physik.Chem., 18, 61. Colani, A. (1913) Compt.rend., 156, 1075, 1908. (1916) Bull.soc.chim., [4], 19, 405. (19163) Compt.rend., 163, 123-5. (1917) Compt.rend., 165, 111-3, 234-6. Colson, A. (1907) Compt.rend., 145, 1167,. Comanducci, E. (1912) Rend.soc.chim.ital., [2], 4, 313. de Coninck, Oechsner. (1893) Compt.rend., 116, 758. (1894) Compt.rend., 118, 471. (1900) Compt.rend., 130, 1304; 131, 1219. (1901) Bull.acad.roy.(Belgique), 350. (1903) Ann.chim.phys., [7], 28, 7. (1905) Chem.Centralbl., 76, II, 883. (1905) Bull.acad.roy.(Belgique), pp. 257, 359- (1906) Compt.rend., 142, 571. Conroy. (1898) J.Soc.Chem.Ind., 17, 104. Cooper, H. C., Shaw, R. I., and Loomis, N. E. (1909) Am.Chem.Jour., 42, 461. (1909) Ber., 42, 3991. Copisarow, M. (1915) Chem.News., 112, 247. Coppadoro, A. (1909) Gazz.chim.ital., 39, II, 625. (1911) Rend.soc.chim.ital., [2], 30, 207. (1912) Gazz.chim.ital., 42, I, 240. (1912) Atti accad.Lincei, [5], 21, II, 842. (1913) Gazz.chim.ital., 43, I, 138. de Coppet, L. C. (1872) Ann.chim.phys., [4], 25, 528, 532. (1883) Ann.chim.phys., [5], 30, 417. (1899) Ann.chim.phys., [7], 16, 275. Corliss, Harry P. (1914) J.Phys.Chem., 18, 681. Cossa, A. (1868) Ber., i, 138. (1869) Z.anal.Chem., 8, 145. Costachescu, N. (1910) Ann.Sci.Univ.(Jassy), 7, I. Coste, J. H. (1917) J.Soc.Chem.Ind., 36, 846-53. (1918) J.Soc.Chem.Ind., 37, 170. Cottrell, et al (1901) Sitzber.k.Akad.Wiss. (Berlin), P- 1035. Couch, J. F. (1917) Am.Jour.Pharm., 89, 243-51. Courtonne, H. (1877) Ann.chim.phys., [5], 12, 569. (1882) Compt.rend., 95, 922. Cowper, R. (1882) J.Chem.Soc.(Lond.), 41, 254. Creighton, H. J. M., and Ward, W. H. (1915) J.Am.Chem.Soc., 37, 2333. Croft. (1842) Phil.Mag., [3], 21, 356. Crompton, H. and Walker, M. (1912) J.Chem.Soc.(Lond.), 101, 958. Crompton, H. and Whiteley, M. A. (1895) J.Chem.Soc.(Lond.), 67, 327. Crookes, Wm. (1864) J.Chem.Soc.(Lond.), 2, 134. 791 AUTHOR INDEX Crowell, R. D. (1918) J.Am.Chem.Soc., 40, 455. Cuno, E. (1908) Ann.physik., [4], 25, 346-76. (1908-09) Ann.physik., [4], 28, 663-4. (1907) Ber.physik.Ges., 5, 735~8. Curtis, H. A. and Titus, E. Y. (1915) J.Phys.Chem., 19, 740. Curtius and Jay. (1889) J.prakt.Chem., [2], 39, 39. Dahms, A. (1895) Wied.Ann.Physik., 54,486-519. (1896) Wied.Ann.der Physik., 60, 122. (1899) Ann.chim.phys., [7], 18, 140. Dakin, H. D., Janney, N. W. and Wakemann, A. J. (1913) J.Biol.Chem., 14, 241. van Damm, W. and Donk, A. D. (1911) Chem.Weekblad, 8, 848. Dancer. (1862) J.Chem.Soc.(Lond.), 15, 477. D'Ans, J. (1908) Ber., 41, 1776-7. (1909) Z.anorg.Chem., 62, 129-167. oga) Z.anorg.Chem., 63, 225-9. ogb) Z.anorg.Chem., 65, 228. 19090) Z.anorg.Chem., 61, 91-5. (1913) Z.anorg.Chem., 80, 235. D'Ans, J. and Fritsche, O. (1909) Z.anorg.Chem., 65, 231. D'Ans, J. and Schreiner, O. (1910) Z.anorg.Chem., 67, 437. (i9ioa) Z.physik.Chem., 75, 95-107. D'Ans, J., Shepherd, L. D'Arey and Gunther, P. (1906) Z.anorg.Chem., 49, 356-61. D'Ans, J. and Siegler, R. (1913) Z.physik.Chem., 82, 35-44. Davidsohn, J. and Wrage, W. (1915) Chem.Rev.Fett.Harz.Ind., 22, 9-14. Davis, H. S. (1916) J.Am.Chem.Soc., 38, 1169. Dawson, H. M. (1901) J.Chem.Soc.(Lond.), 79, 242. (1902) J.Chem.Soc.(Lond.) 81, 1086- 1097. (1904) J.Chem.Soc.(Lond.), 85, 467. (1906) J.Chem.Soc.(Lond.), 89, 1668. (1908) J.Chem.Soc.(Lond.), 93, 1310. (1909) Z.physik.Chem., 69, 110-122. (i909a) J.Chem.Soc.(Lond.), 95, 370-81. (19095) J.Chem.Soc.(Lond.), 95,874. Dawson, H. M. and Gawler, R. (1902) J.Chem.Soc.(Lond.), 81, 524. Dawson, H. M. and Goodson, E. E. (1904) J.Chem.Soc.(Lond.), 85, 796. Dawson, H. M. and Grant. (1901) J.Chem.Soc.(Lond.), 81, 512. Dawson, H. M. and McCrae, J. (1900) J.Chem.Soc.(Lond.), 77, 1239-62. Dawson, H. M. and McCrae, J. (igoia) J.Chem.Soc.(Lond.), 79, 493. (1901 b) J.Chem.Soc.(Lond.), 79, 1069. Dehn, Wm. M. (1917) J.Am.Chem.Soc., 39, 1400. (i9i7a) J.Am.Chem.Soc., 39, 1378. De Jong (see de Jong). Delange, Leon. (1908) Bull.soc.chim., [4], 3, 910-5. Delepine. (1892) J.pharm.chim., [5], 25, 496. (1895) Bull.soc.chim., [3], 13, 353. (1908) Bull.soc.chim., [4], 3, 904. Demarcay. (1883) Compt.rend., 96, 1860. Demassieux, N. (1913) Compt.rend., 156, 892. (1914) Compt.rend., 158, 183, 702. Denham, H. G. (1917) J.Chem.Soc.(Lond.), in, 39. Derick, C. G. and Kamm, O. (1916) J.Am.Chem.Soc., 38, 415. Dernby, K. G. (i9i8)Medd.k.Vetenkapsakad.Nobel inst., 3, No. 1 8. Derrien. (1900) Compt.rend., 130, 722. Deszathy. (1893) Monatsh.Chem., 14, 249. De Visser, L. E. O. (1898) Rec.trav.chim., 17, 182, 346. Dewey, F. P. (1910) J.Am.Chem.Soc., 32, 318. Dhar, N. and Datta, K. (1913) Z.Elektrochem., 19, 584. Diacon. (1866) Jahrsber.Chem., 61. Dibbits. ^1874) Z.anal.Chem., 13, 139. 74) J.prakt.Chem., [2], 10, 417, 439- Dieterich. (1890) Pharm.Centrh., 31, 395. Dietz. (1898) Pharm.Ztg., 43, 290. (1899) Z.anorg.Chem., 20, 260. (1899) Ber., 32, 95. (1900) Wiss.Abt.p.t.Reichanstalt, ;, 433- Dimroth, O. and Mason, F. A. (1913) Liebig'sAnn., 399, 108. Ditte, A. \io/$} v^umpt.i ciiu. (1877) Compt.rend. (1881) Compt.rend. (1881) Ann.chim.ph (1896) Compt.rend. (1897) Compt.rend. OU, 1 l 123. Puschin, N. A. and Baskow, A. (1913) Z.anorg.Chem., 81, 347-63. Puschin, N. A. and Glagoleva, A. A. (1914) Ann.Inst.Electrotechnique (Petrograd), n, 284. (1915) J.Russ.Phys.Chem.Soc., 47, 100-13. Pushin, N. A. and Grebenschikov, I. V. (1913) J.Russ.Phys.Chem.Soc., 45, 741-5- Pushin, N. and Kriger, J. (1913) Ann.Inst.Electrotechnique (Petrograd), 9, 235. (1914) J.Russ.Phys.Chem.Soc., 46, 559- Pushin, N. A. and Mazarovich, G. M. (1914) J.Russ.Phys.Chem.Soc., 46, 1366-72. (1914) Ann.Inst.Electrotechnique (Petrograd), 10, 205. Quercigh, E. (1912) Atti accad.(Lincei), [5], 21, I, 417, 786. (1914) Atti accad.(Lincei), [5], 23, I, 449, 825. Rabe, W. O. (1901) Z.physik.Chem., 38, 175-184. (1902) Z.anorg.Chem., 31, 156. Rack, G. (1914) Centr.Min.Geol., 326-8. Radan. (1889) Liebig's Ann., 251, 129. 811 AUTHOR INDEX Raffo, M. and Rossi, G. (1915) Gazz.chim.ital., 45, I, 45- Rammelsberg. (1838) Pogg.Ann., 43, 665; 44, 575- (1841) Pogg.Ann., 52, 81, 96. (1892) J.prakt.Chem., [2], 45, 153. Ramstedt, Eva. (1911) Radium, 8, 253^6. Rankin, G. A. and Merwin, H. E. (1916) J.Am.Chem.Soc., 38, 568. Rankin, G. A. and Wright. (1915) Am.Jour.Sci., [4], 39, i~79. Raoult. (1874) Ann.chim., [5], i, 262. Raupenstrauch, G. A. (1885) Monatsh.Chem., 6, 585. Rebiere, G. (1915) Bull.soc.chim., [4], 17, 268, Regnault and Wiilejean. (1887) Chem.Centralbl., 18, 252. Reich. (1891) Monatsh.Chem., 12, 464. Reichel, H. (1909) Biochem.Ztschr., 22, 156. Reicher, L. T. and van Deventer, C. M. (1890) Z.physik.Chem., 5, 560. Reid. (1887-88) Proc.Roy.Soc.(Edin.), 15, 151- Reid, H. S. and Mclntosh, D. (1916) J.Am.Chem.Soc., 38, 615-25. Reinders, W. (1900) Z.physik.Chem., 32, 494, 514. (1906) Z.physik.Chem., 54, 609. (1914) Proc.k.Akad.Wet.(Amst.), 16, 1065. (1915) Z.anorg.Chem., 93, 202. Reinders, W. and de Lange, S. (1912-13) Z.anorg.Chem., 79, 230. (1912) Proc.k.Akad.Wet.(Amst.), 15, 474- Reinders, W. and Lely, Jr. D. (1912) Proc.k.Akad.Wet.(Amst.), 15, 486. Reinitzer, D. (1913) Z.angew.Chem., 26, 456. Reissig. (1863) Liebig's Ann., 127, 33. Retgers, J. W. (1893) Z.anorg.Chem., 3, 253, 344. (1893) Rec.trav.chim., 12, 229. Rex. (1906) Z.physik.Chem., 55, 355. Reychler, A. (1910) J.chim.phys., 8, 618. Reynolds, J. E. and Werner, E. A. (1903) J.Chem.Soc.(Lond.}, 83, 5. Richards, T. W. (1897) Z.anorg.Chem., 3, 455. Richards, T. W. and Archibald, E. H. (1901-02) Proc.Am.Acad., 37, 345. (1902) Z.physik.Chem., 40, 385-98. Richards, T. W. and Churchill. (1899) Z.physik.Chem., 28, 314. Richards, T. W. and Faber, H. B. (1899) Am.Chem.Jour., 21, 167-172. Richards, T. W. and Kelley. (1911) J.Am.Chem.Soc., 33, 847. Richards, T. W., McCaffrey and Bisbee. (1901) Z.anorg.Chem., 28, 85. Richards, T. W. and Meldrum, W. B. (1917) J.Am.Chem.Soc., 39, 1821-2. Riedel. (1906) Z.physik.Chem., 56, 243. Riesenfeld, E. H. (1902) Z.physik.Chem., 41, 346. (1903) Z.physik.Chem., 45, 461. Riley, W. A. (1911) Jour.Inst. Brewing, 17, 124. (1911) " Tables annuelles," 2, 428. Rimbach, E. (1897) Ber., 30, 3079. (1902) Ber., 35, 1300. (1904) Ber., 37, 463. (1905) Ber., 38, 1553-7, 1570. Rimbach, E. and Korten, F. (1907) Z.anorg.Chem., 52, 407. Rimbach, E. and Schubert, A. (1909) Z.physik.Chem., 67, 183-200. Rindell, A. (1910) Z.physik.Chem., 70, 452-8. Ringer, W. E. (1902) Z.anorg.Chem., 32, 212. (1902) Rec.trav.chim., 21, 374. Ritzel, A. (1911) Z.Kryst.Min., 49, 152. Robertson, B. (1908) J.Biol.Chem., 5, 147-54. Robertson, P. W. (1907) Chem.News, 95, 253. Robinet. (1864) Compt.rend., 58, 608. Robinson, F. W. (1909) J.Chem.Soc.(Lond.), 95, 1353-9- Robinson, W. O. and Waggaman, W.H. (1909) J.Phys.Chem., 13, 673-8. Rodt, V. (1916) Mitt.k. Materials prufungs- amt, 33, 426-33. (1916) Chem.Zentr., I, 1270. Rodwell. (1862) J.Chem.Soc.(Lond.), 15, 59. Roelofsen. (1894) Am.Chem.Jour., 16, 466. Rogier and Fiore. (1913) Bull.sci.Pharmacologique, 20, 7, 72. Rohland, P. (1897) Z.anorg.Chem., 15, 412. (1898) Z.anorg.Chem., 18, 328. Roloff, M. (1894) Z.physik.Chem., 13, 341. (1895) Z.physik.Chem., 17, 325-56. (1895) Z.physik.Chem., 18, 572-84. 812 AUTHOR INDEX Roozeboom, H. W. B. (1884) Rec.trav.chim., 3, 29-87. (1885) Rec.trav.chim., 4, 69. (1887) Rec.trav.chim., 6, 342. (1888) Z.physik.Chem., 2, 459, 518. (1889) Rec.trav.chim., 8, 1-146. (1890) Z.physik.Chem., 5, 201. (1891) Z.physik.Chem., 8, 532. (1891) Rec.trav.chim., 10, 271. (1892) Z.physik.Chem., 10, 477. (1893) Rec.trav.chim., 12, 205. (1899) Proc.k.Akad.Wet.(Amst.), I, 466. Roscoe. (1866) J.Chem.Soc.(Lond.), 19, 504. Roscoe and Dittmar. (1859) Liebig's Annalen, 112-234. Rosenbladt. (1886) Ber., 19, 2531. Rosenheim, A. and Bertheim, A. (1903) Z.anorg.Chem., 34, 430. Rosenheim, A. and Davidsohn, I. (1903) Z.anorg.Chem., 37, 315. Rosenheim, A. and Griinbaum. (1909) Z.anorg.Chem., 61, 187. Rosenheim, A. and Pritze, M. (1908) Ber., 41, 2708. (1909) Z.anorg.Chem., 63, 275-81. Rosenheim, A., Stadler and Jakobsohn. (1906) Ber., 39, 2841. Rosenheim, A. and Weinheber, M. (1910-11) Z.anorg.Chem., 69, 263. Roshdestwensky, A. and Lewis W. C. McC. (1911) J.Chem.Soc.(Lond.), 99, 2144. (1912) J.Chem.Soc.(Lond.), 101, 2098. van Rossem, C: (1908) Z.physik.Chem., 62, 681-712. Rossler. (1873) J.prakt.Chem., [2], 7, 14. Roth. (1897) Z.physik.Chem., 24, 123. Rothmund, V. (1898) Z.physik.Chem., 26, 459, 475. (1900) Z.physik.Chem., 33, 406. (1908) Z.Elektrochem., 14, 532. (1910) Z.physik.Chem., 69, 523-546. (1912) Nernst. Festschrift, 391-4. (1912) Chem.Zentr., II, 1261. Rothmund, V. and Wilsmore, N. T. M. (1898) Z.physik.Chem., 26, 475. (1902) Z.physik.Chem., 40, 623. Rotinjanz, L. and Rotarski, T. (1906) J.Russ.Phys.Chem.Soc., 38, 782. Rozsa, M. (1911) Z. Elektrochem, 17, 935. Rubenbauer. (1902) Z.anorg.Chem., 30, 334. Rudorff. (1862) Pogg.Ann., 116, 63. (1869) Ber., 2, 70. Rudorff. (1872) Pogg.Ann., 145, 608. (1873) Ber., 6, 482. (1885) Ber., 18, 1160. Ruer. (1906) Z.anorg.Chem., 49, 365. Ruff, Otto. (1909) Ber., 42, 4029. Ruff, Otto and Fischer, G. (1903) Ber., 36, 418-428. Ruff, O. and Hecht, L. (1911) Z.anorg.Chem., 70, 61. Ruff, Otto and Geisel, E. (1906) Ber., 39, 838. Ruff, Otto and Plato, W. (1903) Ber., 36, 2358-2365. Ruff, O. and Schiller, E. (1911) Z.anorg.Chem., 72, 341. Ruff, O. and Winterfeld. (1903) Ber., 36, 2437. Rupert, F. F. (1909) J.Am.Chem.Soc., 31, 866. (1910) J.Am.Chem.Soc., 32, 748. Rutten and van Bemmelen. (1902) Z.anorg.Chem., 30, 386. Ryd, S. (1917) Z.Elektrochem., 23, 19-23. S. (1905) Apoth.Ztg., 20, 1031. Sackur, O. (1911-2) Z.physik.Chem., 78, 553- 568. (1913) Z.physik.Chem., 83, 297-314. Sackur, O. and Fritzmann, E. (1909) Z.Elektrochem., 15, 842-6. Sackur, O. and Taegener, W. (1912) Z.Elektrochem., 18, 722. Sahmen, R. (1905-06) Z.physik.Chem., 54, m- 120. Sakabe, S. (1914) Mem.Coll.Sci. (Kyoto), i, 57- 61. Salkowski, H. (1883) Ber., 18, 321. (1901) Ber., 34, 1947. Salkower, B. (1916) Am.J.Pharm., 88, 484. Salzer. (1886) Liebig's Ann., 232, 114. Sammet, V. (1905) Z.physik.Chem., 53, 644-48. Sander, W. (1911-12) Z.physik.Chem., 78, 513- 549- Sandonmm, C. (1911) Atti accad.Lincei, [5], 20, I, 173, 253. (1911) Gazz.chim.ital., 41, II, 146. (1911) Atti accad.Lincei, [5], 20, II, 62, 497, 572, 588, 646. (191 la) Atti accad.Lincei, [5], 20, I, 457, 76o. 813 AUTHOR INDEX Sandonnini, C. (1912) Atti accad.Lincei, [5], 21, I, 208-13, 479. (i9i2a) Atti accad.Lincei, [5], 21, II, 197, 524 635. (i9i2b) Atti Ist.Ven., 71, 553. (1913) Atti accad.Lincei, [5], 22, I, 630; II, 21. (1914) Atti accad.Lincei, [5], 23, I, 962. (1914) Gazz.chim.ital., 44, 1, 296, 382 Sandonnini, C. and Aureggi, P. C. (1912) Atti accad.Lincei, [5], 21, I, 493- Sandonnini, C. and Scarpa, G. (191 la) Atti accad.Lincei, [5], 20, II, 62. (191 ib) Atti accad.Lincei, [5], 20, II, 497- (1912) Atti accad.Lincei, [5], 21, II, 77-84. (1913) Atti accad.Lincei, [5], 22, II, 21, 163, 518. Sandquist, H. (1911) Liebig's Ann., 379, 85. (1912) Liebig's Ann., 392, 76. Ark.Kem.Min.Geol., 4, 8-8 1. Saposchinikow, Gelvich et al. (1903) J.Russ.Phys.Chem.Soc., 35, (1904) Z.physik.Chem., 49, 688-96. Savorro, Eglie. (1914) Atti accad.sci. (Torino), 48, 948-59. (1914) Chem.Abs., 8, 340. Sborgi, U. (1913) Atti accad.Lincei, [5], 22, I, 91, 636, 716, 798. (1915) Atti accad.Lincei, [5], 24, I, 1225. Sborgi, U. and Mecacci, F. (1915) Atti accad.Lincei, [5], 24, I, 4438. (1916) Atti accad.Lincei, [5], 25, II, 327, 386, 455. Scaffidi, V. (1907) Z.physik.Chem., 52, 42. Scarpa, G. (1912) Atti accad.Lincei, [5], 21, II, 720. (1915) Atti accad.Lincei, [5], 24, I, 741, 955; II, 476. Scarpa, O. (1904) J.chim.phys., 2, 449. Schachner, Paul. (1910) Biochem.Centralbl., 9, 610. Schaefer, G. L. 1910) Am.Jour.Pharm., 82, 175. 1910) Pharm.Jour.(Lond.), 84, 757. 1912) Am.Jour.Pharm., 84, 389. (1913) Am.Jour.Pharm., 85, 441. Schafer, H. (1905) Z.anorg.Chem., 45, 310. Schaefer, W. (1914) Neues Jahrb.Min.Geol., I, 15- 24. von Scheele, C. (1899) Ber., 32, 415. Scheffer, F. E. C. (1911) Proc.k.Akad.Wet.(Amst.), 13, 829; 14, 195. (1912) Z.physik.Chem., 76, 161. (i9i2a) Proc.k.Akad.Wet.(Amst.), 15, 38o. Scheibler, C. (1872) Ber., 5, 343. (1883) J.pharm.chim., [5], 8, 540. (1891) Ber., 24, 434. Schenck, R. and Rassbach, W. (1908) Ber., 41, 2917. Scheuble, R. (1907) Liebig's Ann., 351, 473-80. Scheuer, Otto. (1910) Z.physik.Chem., 72, 525-35. Schiavor, G. (1902) Gazz.chim.ital., 32, II, 532. Schick, K. (1903) Z.physik.Chem., 42, 163. Schierholz. (1890) Sitzber.k.Akad.Wiss.(Wien.), 101, 2&, 4. Schiff. (1859) Liebig's Ann., 109, 326. (1860) Liebig's Ann., 113, 350. (1861) Liebig's Ann., 118, 365. Schiff and Monsacchi. (1896) Z.physik.Chem., 21, 277. Schindelmeiser. (1901) Chem.Ztg., 25, 129. Schlamp, A. (1894) Z.physik.Chem., 14, 272. Schloesing. (1871) Compt.rend., 73, 1273. (1872) Compt.rend., 74, 1552; 75, 70. Schlossberg, J. (1900) Ber., 33, 1082. Schmidlin, J. and Lang, R. (1910) Ber., 43, 2813. (1912) Ber., 45, 905. Scholl, R. and Steinkopf. (1906) Ber., 39, 4393. Scholtz, M. (1901) Ber., 34, 1623. (1912) Arch.Pharm., 250, 418. Scheme. (1873) Ber., 6, 1224. Schonfeld. (1885) Liebig's Ann., 95, 5. Schoorl, N. (1903) Rec.trav.chim., 22, 40. Schrefeld. (1894) Z.Ver.Zuckerind, 44, 971. Schreinemakers, F. A. H. (1892) Z.physik.Chem., 9, 65, 71. (1897) Z.physik.Chem., 23, 417-41. (1898) Z.physik.Chem., 25, 543-67. 814 AUTHOR INDEX Schreinemakers, F. A. H. (1898) Z.physik.Chem., 26, 237-54. (18980) Z.physik.Chem., 27, 95-122. (1899) Z.physik.Chem., 29, 577. (1900) Proc.k.Akad.Wet.(Amst.), 2, i. (1900) Z.physik.Chem., 33, 79. (1903) Z.anorg.Chem., 37, 207. (1906) Z.physik.Chem., 55, 89. (1907) Z.physik.Chem., 59, 641. (1908-09) Z.physik.Chem., 65, 555, 575- (1908) Chem.Weekblad., 5, 847. (1909) Z.physik.Chem., 66, 687-98. (1909) Chem.Weekblad., 6, 131, 140. (1909-10) Z.physik.Chem., 68, 83- 103. (1910) Arch.neer.sc.ex.nat., [2], 15, 81, 117. 1910) Z.physik.Chem., 69, 557~68. ioa) Z.physik.Chem., 71, 109-16. I9iob) Chem.Weekblad., 7, 333. 1911) Proc.k.Akad.Wet.(AmstJ, 13, 1163. Schreinemakers, F. A. H. and de Baat, W. C. (1908) Chem.Weekbl., 5, 465-72. (1908-9) Z.physik.Chem., 65, 586. (1909) Z.physik.Chem., 67, 551-60. (1910) Chem.Weekblad., 7, 259. (igioa) Arch.neer.sc.ex.nat., [2], 15, 4-15- (1914) Proc.k.Akad.Wet.(Amst.), 17, 533, 78i. (1915) Proc.k.Akad.Wet.(Amst.), 17, mi. (1915) Verslag.k.Akad.Wet.(Amst.), 23, 1097; May. (1917) Chem.Weekblad., 14, 141, 203, 244. (1917) Chem. Weekblad., 14, 262-7, 288. Schreinemakers, F.A.H. and Cocheret, D. H. (1905) Chem.Weekblad., 2, 771-778. Schreinemakers, F. A. H. and Cocheret, D. H., Filippo, H. and de Waal, A. J. C. (1901) Z.physik.Chem., 59, 645. Schreinemakers, F. A. H. and Deuss, J. J. B. (1912) Z.physik.Chem., 79, 554. Schreinemakers, F. A. H. and Van Dorp, W. A. Jr. (1906) Chem.Weekblad., 3, 557-561. (1907) Z.physik.Chem., 59, 641-69. Schreinemakers, F. A. H. and Figee, T. (1911) Chem.Weekblad., 8, 683-8. Schreinemakers, F. A. H. and Filippo, A. Jr. (1906) Chem.Weekblad., 3, 157-165. (1906) Chem.Zentralbl., 77, I, 1321. Schreinemakers, F. A. H. and Hoenen, P. H. J. (1909) Chem.Weekblad., 6, 51. Schreinemakers, F. A. H. and Van der Horn van den Bos, J. L.M. (1912) Z.physik.Chem., 79, 551. Schreinemakers, F. A. H. and Jacobs, W. (1910) Chem.Weekblad., 7, 215. Schreinemakers, F. A. H. and Massink, A. (1910) Chem.Weekblad., 7, 214. Schreinemakers, F. A. H. and Mei- jeringh, D. J. (1908) Chem.Weekblad., 5, 811. Schreinemakers, F. A. H. and Van Provije, D. J. (1913) Proc.k.Akad.Wet., 15, 1326. Schreinemakers, F. A. H. and Thonus, J. C. (1912) Proc.k.Akad.Wet.(Amst.), 15, 472. Schroder. (1893) Z.physik.Chem., u, 449. Schroeder, J. (1905) Z.anorg.Chem., 44, 6. (1908) J.prakt.Chem., [2], 77, 267-8. Schiikarew, A. (1901) Z.physik.Chem., 38, 543. Schukow. (1900) Z.Ver.Zuckerind, 50, 313. Schuler. (1879) Sitzb.k.Akad.Wis. (Berlin), 79, 302. Schultz. (1860) Zeit.Chem., [2], 5, 531. (1861) Pogg.Ann., 113, 137. Schulze. (1881) J.prakt.Chem., [2], 24, 168. Schweissinger. (1884-85) Pharm.Ztg. Schweitzer. (1890) Z.anal.Chem., 29, 414. Schwicker. (1889) Ber., 22, 1731. Sedlitzky. (1887) Monatsh.Chem., 8, 563. Seidell, A. 1902) Am.Chem.Jour., 27, 52. 1907) J.Am.Chem.Soc., 29, 1088-95. 1908) Trans. Am. Electrochem.Soc., 13, 319-329- (1909) J.Am.Chem.Soc., 31, 1164. (1910) Bull.No.67 Hygienic Labora- tory, U. S. Public Health Service, (igioa) Proc.Am.Pharm.Assoc., 58, 1031. (1912) Am.Chem.Jour., 48, 453-67. Seidell, A. and Smith, J. G. (1904) J.Phys.Chem., 8, 493. 815 AUTHOR INDEX Self, P. A. W. and Greenish, H. G. (1907) Pharm.Jour.(Lond.), 78, 327. Seliwanow, Th. (1914) Z.anorg.Chem., 85, 337. Sehnal, J. (1909) Compt.rend., 148, 1394. Serullas. ( ) Ann.chim.phys., 22, 118. Sestini. (1890) Gazz.chim.ital., 20, 313. Setschenow. (1892) Ann.chim.phys., [6], 25, 226. Setterburg. (1882) Liebig's Annalen, 211, 104. Seubert and Elten. (1892) Z.anorg.Chem., 2, 434. Seyler, C. A. (1908) Analyst, 33, 454~7- Seyler, C. A. and Lloyd, P. V. (1909) J.Chem.Soc.(Lond.), 95>I347~ Shad, H. and Bornemann, K. (1916) Metall u.Erz., 13, 251-62. Sharwood, W. J. (1903) J.Am.Chem.Soc., 25, 576. Sherrill, M. S. (1903) Z.physik.Chem., 43, 705-740. Sherrill, M. S. and Eaton, F. M. (1907) J.Am.Chem.Soc., 29, 1643. Sherrill, M. S. and Russ, D. E. (1907) J.Am.Chem.Soc., 29, 1657-61. Shiomi, T. (1908) Mem.Coll.Sci.Eng. (Kyoto), i, 406-13. Sidgwick, N. V. (1910) Proc.Chem.Soc.(Lond.), 26, 60-1. (1911) J.Chem.Soc.(Lond.),99, 1123. (1915) J.Chem.Soc.(Lond.), 107, 672. Sidgwick, N. V., Pickford, P. and Wils- don, B. H. (1911) J.Chem.Soc.(Lond.),9Q,ii22- 1132. Sidgwick, N. V., Spurrell, W. J. and Davies, T. E. (1915) J.Chem.Soc.(Lond.), 107, 1202-13. Siebeck. (1909) Scand.Arch.f.Physiol., 21, 368. Sieger, W. ( ) Dissertation, Delft, 156. (1912) "Tables, annuelles," 3, 337. Sieverts, A. and Co-workers. (1909) Ber., 42, 338. (1910) Ber., 43, 893. (1912) Ber., 45, 221. Sieverts, A. and Bergner, E. "- 4s> (1905) Z.physik.Chem., 51, 577-602. (1916) J.Am.Chem.Soc., 38, 2632. Sims. (1861) Liebig's Ann., 118, 340. Sinnige, L. R. (1909) Z.physik.Chem., 67, 432-45. Sisley, P. (1902) Bull.soc.chim., [3], 27, 905. Skirrow, F. W. (1902) Z.physik.Chem., 41, 144. Skinner, S. (1892) J.Chem.Soc.(Lond.), 61, 342. Skossareswky, M. and Tchitchinadze, (1916) J.chim.phys., 14, 153-175. Skrabal, A. (1917) Monatsh.Chem., 38, 25-9. Slade, R. E. (1912) Z.Elecktrochem., 18, i. Sloan and Mallet. (1882) Chem.News., 46, 194. Slothouwer, J. H. (1914) Rec.trav.chim., 33, 327. Smirnoff, Wladimer. (1907) Z.physik.Chem., 58, 373, 667. Smith. (1912) Landolt and Bornstein "Tab- ellen," 4th Ed., p. 481. Smith and Bradbury. (1891) Ber., 24, 2930. Smith, A. and Carson, C. M. (1908) Z.physik.Chem., 61, 200. Smith, A. and Eastlack, H. E. (1916) J.Am.Chem.Soc., 38, 1500, 1265. Smith, A., Holmes, W. B. and Hall, E.S. (1905) J.Am.Chem.Soc., 27, 805. Smith, A. and Menzies, A. W. C. (1909) J.Am.Chem.Soc., 31, 1183-91. Smith, C. and Watts, C. H. (1910) J.Chem.Soc.(Lond.), 97, 568. Smith, F. Hastings. (1917) J.Am.Chem.Soc., 39, 1309. Smith, G. McP. and Ball, T. R. (1917) J. Am.Chem.Soc., 39, 217. Smith, Herbert, J. (1918) J.Am.Chem.Soc., 40, 879-885. Smith, W. R. (1909) J.Am.Chem.Soc., 31, 245. Smits, A. (1903) Z.Elecktrochem, 9, 663. Smits, A. and Bokhorst, S. C. (1915) Z.physik.Chem., 89, 374. Smits, A. and Kettner, A. (1912) Proc.k.Akad.Wet.(Amst.), 15, 685. Smits, A. and de Leeuw, H. L. (1910) Proc.k.Akad.Wet.(Amst.), 13, 329- Smits, A. and Maarse, J. (1911) Proc.k.Akad.Wet.(Amst.), 14, 192. Smits, A. and de Mooy. (1910) Verslag.Akad.Wet.(Amst.), 19, 293. 816 AUTHOR INDEX Smits, A. and Postma, S. (1914) Proc.k.Akad.Wet.(Amst.), 17, 183- Smolensky, S. (1911-12) Z.anorg.Chem., 73, 293. Sneider. (1866) Pogg.Ann., 127, 624. Snell, J. F. (1898) J.Phys.Chem., 2, 474, 484. Snyder. (1878) Ber., n, 936. Soch, C. A. (1898) J.Phys.Chem., 2, 43. Sommer, F. (1914) Z.anorg.Chem., 86, 85. Sosman, R. B. and Merwin, H. E. (1916) J.Wash.Acad.Sci., 6, 532-537- Souchay and Leussen. (1856) Liebig's Ann., 99, 33. Spencer, J. F. (1912) Z.physik.Chem., 80, 701. (1913) Z.physik.Chem., 33, 293. Spencer and LePla. (1909) Z.anorg.Chem., 65, 14. Speyers, C. L. (1902) Am.J.Sci., [4], 14, 294. Spielrein, C. (1913) Compt.rend., 157, 46. Spring and Romanoff. (1896) Z.anorg.Chem., 13, 34. Squire, P. W. and Caines, C. M. (1905) Pharm.Jour.(Lond.), 74, 720, 784. v. Stackelberg, E. F. (1896) Z.physik.Chem., 20, 337-58. van der Stadt, E. (1902) Z.physik.Chem., 41, 353. Stanley, H. (1904) Chem.News, 89, 193. Stark, G. (1911) Z.anorg.Chem., 70, 174. Steger. (1903) Z.physik.Chem., 43, 595. Stern, Otto. (1912-13) Z.physik.Chem., 81, 468. Staronka, W. (1910) Anzeiger akad.Wis.Krakau. Ser.A., 372-98. (1910) Chem.Zentralbl., 81, 1741. Stasevich, N. (1913) J.Russ.Phys.Chem.Soc., 45, 912-30. Steele and Johnson. (1904) J.Chem.Soc.(Lond.), 85, 116. Steiner, P. ( 1 894) Ann.der. Physik. ( Wiederman) , 52, 275. Stemwehr. (1902) Ann.der Physik. (Drude), [4], 9, 1050. Stepanow, A. (1907) Z.ges.Schiess.u.Sprengstoffw., Stepano, A. (1910) J.Russ.Phys.Chem.Soc., 42, 489. (1910) Liebig's Ann., 373, 219. Stiassny. (1891) Monatsh.Chem., 12, 601. Stich, C. (1903) Pharm.Ztg., 48, 343. (1903) Pharm.Jour.(Lond.), 70, 700. Stock, A. (1904) Ber., 37, 1432. (1910) Ber., 43, 156, 1227. Stock, A. and Kuss, E. (1917) Ber., 50, 159-164- Stoermer, R. and Heymann, P. (1913) Ber., 46, 1255. Stolba. (1865) J.prakt.Chem., 94, 406. (1867) J.prakt.Chem., 101, I. (1872) Z.anal.Chem., n, 199. (1877) Chem.Centralbl., 418, 578. (1883) Chem.Centralbl., 293. (1889) Chem.Techn.Cent., Anz., 7, Stolle. 459 ' (1900) Z.Ver.Zuckerind., 50, 331. Stoltzenberg, H. (1912) Ber., 45, 2248. (1914) Z.physik.Chem., 92, 461-94. Stortenbecker, W. (1888) Rec.trav.chim., 7, 152. (1889) Z.physik.Chem., 3, n. (1897) Z.physik.Chem., 22, 62. (1900) Z.physik.Chem., 34, 109. (1902) Rec.trav.chim., 21, 407. (1907) Rec.trav.chim., 26, 245. Straub, Jan. (1911) Z.physik.Chem., 77, 332. Stromholm, D. (1900) Ber., 33, 835. (1903) Z.physik.Chem., 44, 721-32. (1908) Z.anorg.Chem., 57, 72-103. Struve. 1870) Z.anal.Chem., 9, 34. 1899) J.prakt.Chem., [2], 61, 457. Sudborough, J. J. and Lakhumalani, J.V. (1917) J.Chem.Soc.(Lond.), in, 44. Sudhaus, Kathe. (1914) Neues Jahrb.Min.Geol.(Beil. Bd.), 37, 1-50. Sulc. (1900) Z.anorg.Chem., 25, 401. Siiss, J. (1913) Z.Kryst.Min., 51, 262. Suyver, J. F. (1905) Rec.trav.chim., 24, 381, 397. Swan, Clifford, M. (1899) " Chemistry Thesis," Mass. Inst.Technology, (un- published). (1911) J.Am.Chem.Soc., 33, 1814. 817 AUTHOR INDEX Swinne, R. (1913) Z.physik.Chem., 84, 348. Szathmary de Szachmar, L. v. (1910) Z.Farb.Ind., 7, 215. (1910) Chem.Abs., 4, 1381. de Szyszkowski, Bohdan. (1915) Medd.K.Vetenskapsakad,No- belinst., 3, Nos. 3, 4, 5. Taber, W. C. (1906) J.Phys.Chem., 10, 593. (1906) Bull., 33, Bureau of Soils, U. S. Dept. Agr. Tafel, J. (1901) Ber., 34, 263. Takenchi, J. (1915) Mem.Coll.Sci. (Kyoto), 1,249- 55- Tamm, O. (1910) Z.physik.Chem., 74, 499. Tarugi, N. (1904) Gazz.chim.ital., 34, I, 329. (1914) Gazz.chim.ital., 44, I, 131. Tarugi, N. and Checchi, Q. (1901) Gazz.chim.ital., 31, II, 430, 445- Taverne, H. J. (1900) Rec.trav.chim., 19, 109. Taylor, H. S. and Henderson, W. N. (1915) J.Am.Chem.Soc., 37, 1692. Taylor, S. F. (1897) J.Phys.Chem., i, 301, 468, 720. Tcherniac, J. (1916) J.Chem.Soc. (Lond.), 109,1239. Tetta Polak'van der Goot. (1913) Z.physik.Chem., 84, 419-50. Than. (1862) Liebig's Ann., 123, 187. Thiel. (1903) Z.physik.Chem., 43, 656. Thilo. (1892) Chem.Ztg., 16, II, 1688. Thin, R. G. and Gumming, Alex. C. (1915) J.Chem.Soc.(Lond.), 107, 361-6. Thomas. (1896) Compt.rend., 123, 943. Thomas, J. S. and Rule, A. (1917) J.Chem.Soc. (Lond.), in, 1063-85. Thompson, M. de K. (1910) Met.Chem.Eng., 8, 279, 324. (1910) Proc.Am.Acad., 45, 431-52. Thonus, J. C. (1913) Verslag.k.Akad.Wet.(Amst.), Thorin, E. G. (1915) Z.physik.Chem., 89, 687. Tichomirow, W. (1907) J.Russ.Phys.Chem.Soc., 39, (1908) Chem.Zentralbl., I, n. Tilden, W. A. (1884) J.Chem.Soc.(Lond.), 45, 269, 409. Tilden and Shenstone. (1883) Proc.Roy.Soc.(Lond.), 35, 345 (1884) Phil.Trans., 23-31. (1885) Proc. Roy. Soc. (Lond.), 38, 331- Timofeiew, Wladimir. (1890) Z.physik.Chem., 6, 147. (1891) Compt.rend., 112, 1137, 1224. (1894) Dissertation (Kharkhov.) Timofeiew and Kravtzov. (1915) Chem.Abs., 9, 2896. (1917) Chem.Abs., n, 788. Timmermans, J. (1907) Z.physik.Chem., 58, 129-213. (1910) Proc.k.Akad.Wet.(Amst.) 13, 523- (1911) " Recherches experimentales sur les phenomenes de demixtion des melanges liquides " (These) Brux- elles. Avril, 1911. (1912) Bull.soc.chim.(Belg.), 26, 382. Tinkler, C. K. (1913) J.Chem. Soc. (Lond.), 103, 2176. Titherby, A. W. (1912) Pharm. Jour. (Lond.), 88, 94. Tobler. (1855) Liebig's Ann., 95, 193. Tower. (1906) Z.anorg.Chem., 50, 382. Traube. (1884) Ber., 17, 2304. Traube, I. (1909) Ber., 42, 2185, 4185-8. Trautz and Anschutz. (1906) Z.physik.Chem., 56, 238. Treadwell and Reuter. (1898) Z.anorg.Chem., 17, 185. Treis, K. (i9i4)Neues.Jahr.Min.(Beil.Bd.),37, 766-818. Trevor. (1891) Z.physik.Chem., 7, 470. Truthe, W. (i9i2)Z.anorg.Chem., 76, 129-173. Tsakalotos, D. E. (1909) Bull.soc.chim., [4], 5, 397-49- (1910) Jour.chim.phys., 8, 343. (1912) Bull.soc.chim., 4], 11,287. (1913) Bull.soc.chim., 4], 13, 282. (1914) J.chim.phys., 12, 461-3. Tsakalotos, D. E. and Guye, P. A. (1910) J.chim.phys., 8, 340. Tschugaeff, L. A. and Chlopin W. (Chugaev, L. and Khlopin, W.) (1914) Z.anorg.Chem., 86, 159. Tschugaeff, L. A. and Kiltinovic, S. S. (1916) J.Chem. Soc. (Lond.) 109, 1286. Tuchschmidt, C. and Follenius, 0. (1871) Ber., 4, 583. 818 AUTHOR INDEX Turner, W. E. S. and Bissett, C. C. (1913) J.Chem.Soc.(Lond.), 103,1904. Tutton, A. E. H. (1897) J.Chem.Soc.(Lond.), ?i> 850. (1907) Proc.Roy.Soc.(LoncL), 79, (A) 351-82. Tyrer, Dan. (1910) Jour.Chem.Soc.(Lond.), 97 1778-1788. (igioa) Jour.Chem.Soc.(Lond.), 97, 621-632. (1911) Proc.Chem.Soc.(Lond.), 27, 142. Uhlig, J. (1913) Centr.Min.Geol., 417-22. Ullik. (1867) Liebig's Ann., 144, 244. Umney, J. C. and Bunker, S. W. > (1912) Perf. Essent. Oil Record, 3, ioi;4,38. Unkovskaja, V. (1913) J.Russ.Phys.Chem.Soc., 45, x 1099. u. s. P., vni. (1907) U. S. Pharmacopoeia, 8th, decennial revision. Usher, F. L. (1908) Z.physik.Chem., 62, 622-5. (1910) J.Chem.Soc.(Lond.), 97, 66- 78. Usso. (1904) Z.anorg.Chem., 38, 419. Uyeda, K. (1909-10) Mem. Coll. Sci.Eng. (Ky- oto), 2, 245-261. (1912-13) Mem.Coll.Sci.Eng. (Ky- oto), 5, 147-50. (1912) 8th Int.Cong.Appl.Chem., 22, 237. Valenta. (1894) Monatsh.Chem., 15, 250. Valeton, J. J. P. (1910) Verslag k.Akad.Wet.(Amst.), 18, 755- Valeur, A. (1917) Compt.rend., 164, 818-20. Van de Moer, J. (1891) Rec.trav.chim., 10, 47. Vandevelde, A. J. J. (1911) Bull.soc.chim.(Belg.), 25,210. Van Eyk, C. (1899) Z.physik.Chem., 30, 430. (1900) Proc.k.Akad.Wet.(Amst.), 2, 480. (1901) Proc.k.Akad.Wet.(Amst.), 3, 98. (1905) Z.physik.Chem., 51, 721. (1905) Chem.News., 91, 295. Van Name, R. S. and Brown, W. G. (1917) Am.Jour.Sci., [4], 44, 105-23. Van Slyke, L. L. and Winter, O. B. (1913) Science, 38, 639. Vanstone, E. (1909) J.Chem.Soc.(Lond.), 95, 597. (1913) J,Chem.Soc.(Lond.), 103, 1828. (1914) J.Chem.Soc.(Lond.), 105, 1491-1503. Van't Hofif see van't Hoff. Van Wyk, H. J. (1902) Z.anorg.Chem., 32, 115. (1905) Z.anorg.Chem., 47, 1-52. Varenne and Pauleau. (1881) Compt.rend., 93, 1016. Vasiliev, A. M. (Wasilieff). (1909) J.Russ.Phys.Chem.Soc., 41, 748-53; 953-7- (1910) J.Russ.Phys.Chem.Soc., 42, 423, 562-81. (1910) Chem.Zentralbl.,11, 1527. (1910) " Tables annuelles," I, 381. (1911) J.Russ.Phys.Chem.Soc. (1912) Chem.Abs., 6, 577. (1912) J.Russ.Phys.Chem.Soc., 44, 1076. Vaubel. (1895) J.prakt.Chem., [2], 52, 72. (1896) Z.physik.Chem., 25, 95. (1899) J.prakt.Chem., [2], 59, 30. .(1903) J.prakt.Chem., [2], 67, 472. Vesterberg, A. (1912) 8th Inter.Congr.Appl.Chem., 2, 238, 255. Vezes, M. and Mouline, M. (1904) Bull.soc.chim., [3], 31, 1043. (1905-06) Proc. verb. soc.phys.nat. (Bordeaux), 123. Viala, F. (1914) Bull.soc.chim., [4], 15, 5. Vignon, Leo. (1891) Bull.soc.chim., [3], 6, 387, 656. (1891) Compt.rend., 113, 133. Virck. (1862) Chem.Centralbl., 402. Voerman, G. L. (1906) Chem.Zentralbl., 77, I, 125. (1907) Rec.trav.chim., 26, 293. Vogel, Fritz. (1903) Z.anorg.Chem., 35, 389. Vogel. (1867) Neues Repert.Pharm., 16, 557. (1874) Neues Repert.Pharm., 23, 335. Volkhouskii. (1910) J.Russ.Phys.Chem.Soc., 41, 1763; 42, 1 1 80. Vortisch, E. (1914) Neues Jahrb.Min.Geol.(Beil t Bd.), 38, 185-272. (19143) Neues Jahrb.Min.Geol.(Beil. Bd.), 38, 513-24- Vulpius. (1893) Pharm.Centralh., 34, 117. de Waal, A. J. C. (1910) Dissertation, Leyden. (1910) " Tables annuelles." 819 AUTHOR INDEX Waddell, John. (1898) J.Phys.Chem., 2, 236. (1899) J.Phys.Chem., 3, 160. (1900) J.Phys.Chem., 4, 161. Waentig, P. and Mclntosh, D. (1916) Trans. Roy.Soc. (Canada), 9, 203^9. Wagner. (1867) Z.anal.Chem., 6, 167. Wagner, C. L. (1910) Z.physik.Chem., 71, 430. Wagner, K. L. and Zeraer, E. (1911) Monatsh.Chem., 31, 833. Wagemmann, K. (1912) Metallurgie, 9, 518, 537. Walden, P. T. . (1905) Am.Chem.Jour., 34, 149. (1906) Z.physik.Chem., 55, 712. Walden, P. T. and Centnerszwer, M. (1902-03) Z.physik.Chem., 42, 454. Walker, J. (1890) Z.physik.Chem., 5, 195. iWalker, J. and Fyffe, W. A. (1903) J.Chem.Soc.(Lond.), 83, 179. Walker, J. and Wood, J. K. (1898) J.Chem.Soc.(Lond.), 73, 620. Wallace. (1855) J.Chem.Soc.(Lond.), 7, 80. Wallace. (1909) Z.anorg.Chem., 63, I. Waller, A. D. (1904-05) Proc.Roy.Soc.(Lond.), 74, 55- Walton, J. H. Jr., and Judd, R. C. (1911) J.Am.Chem.Soc., 33, 1036. Walton, J. H., and Lewis, H. A. (1916) J.Am.Chem.Soc., 38, 633. Wartha. (1885) Z.anal.Chem., 24, 220. Warynski, T. and Kourapatwinska, S. (1916) J.chim.phys., 14, 328-35. Washburn, E. W. and Maclnnes. (1911) Z.Elektrochem., 17, 503. Washburn, E. W. and Read, J. W. (1915) Proc.Nat.Acad.Sci.(y. S. A.), i, 191-5- Wasilieff (see Vasiliev). Wedekind, E. and Paschke, F. (1910) Z.physik.Chem., 73, 127. Wegscheider, R. (1907) Liebig's Ann., 351, 87. Wegscheider, R. and Walter, H. (1905) Monatsh.Chem., 26, 685. (1907) Monatsh.Chem., 28, 633-72. Weigel, O. (1906) Nachr.kgl.Ges.Gottingen, p. 525-48. (1907) Z.physik.Chem., 58, 293-300. Weiller, P. (1911) Chem.Ztg., 35, 1063-5. von Weimarn, P. P. (1911) Z.physik.Chem., 76, 218. Weisberg. (1896) Bull.soc.chim., [3], 15, 1097. Wells, H. L. (1892) Am.Jour.Sci., [3], 44, 221. Wells, H. L. and Wheeler, H. L. ( !, 892 ^ Am.Jour.Sci., [3l, 43, 475- Wells, R. C. (1915) J.Wash.Acad.Sci., 5, 617-22. (1915) J.Am.Chem.Soc., 37, 1704. Wells, R. C. and McAdam, D. J., jr. (1907) J.Am.Chem.Soc., 29, 721-7. Welsh, T. W. B. and Broderson, H. J. (1915) J.Am.Chem.Soc., 37, 816. Wempe, G. (1912) Z.anorg.Chem., 78, 298-327. Wenger. (1892) Am.Chem.Jour., 16, 466. Wenger, Paul. (1911) Dissertation, Geneve. (1911) " Tables annuelles," 2, 411. Wentzel. ( ) Dammer's " Handbuch," II, 2, 858. Wenze. (1891) Z.angew.Chem., 5, 691. Werner, E. A. (1912) J.Chem.Soc.(Lond. ), 101,2169. Wester, D. H. and Bruins, A. (1914) Pharm.Weekblad, 51, 1443-6. Wheeler, H. L. 1892) Am.J.Sci., [3], 44, 123. 1893) Am.J.Sci., [3], 45, 267. i893a) Z.anorg.Chem., 3, 432. Wherry, E. T. and Yanovsky, E. (1918) J.Am.Chem.Soc., 40, 1072. Whipple, G. C. and Whipple. M. C. (1911) J.Am.Chem.Soc., 33, 362. Whitby, G. S. (1910) Z.anorg.Chem., 67, 107-9. Whitney, W. R. and Melcher, A. C. (1903) J.Am.Chem.Soc., 25, 78. Wibaut, J. P. (1909) Chemisch Weekblad, 6, 401. (1913) Rec.tr.av.chim., 32, 269. Wigand, A. (1910) Z.physik.Chem., 75, 235. Wildeman. (1893) Z.physik.Chem., n, 421. Willstaetter. (1904) Ber., 37, 3753. Wilsmore. (1900) Z.physik.Chem., 35, 305. Wingard, A. (1917) Svensk.Farm.Tidskrift, 21, 289-93. (1917) Chem.Abs., u, 2748. Winkler, L. W. (1887) J.prakt.Chem., [2], 34, 177; 36, 177- (1891) Ber., 24, 3609. (1899) Chem.Ztg., 23, 687. (1901) Ber., 34, 1409, 1421. 820 AUTHOR INDEX Winkler, L. W. (1905) Landolt and Bernstein " Tab- ellen," 3rd Ed.,- p. 604. (1906) Z.physik.Chem., 55, 350. (1912) Landolt and Bornstein " Tab- ellen," 4th Ed., p. 597, 601. Winteler, F. (1900) Z.Elektrochem., 7, 360. Winterstein, E. (1909) Arch. exp. Path. u.Pharm., 62, Wirth, F. (1908) Z.anorg.Chem., 58, 219. (1912) Z.anorg.Chem., 76, 174-200. (1912-13) Z.anorg.Chem., 79, 357. (1914) Z.anorg.Chem., 87, 1-12. Wirth, F. and Bakke, B. (1914) Z.anorg.Chem., 87, 29, 47. Witt, O. N. (1915) Ber., 48, 767. v. Wittorff, N. (1904) Z.anorg.Chem., 41, 83. Wolfmann. (1897) Oster.Ung.Z.Zuckerind., 25, 997- Wolters. (1910) N.Jahrb.Min.Geol.(Beil.Bd.), jo, 57- Wood, J. Kerfoot. 8) J.< (1908) J.Chem.Soc.(Lond.), 93, 412. Wood, J. K. and Scott, J. D. (1910) J.Chem.Soc.(Lond.), 97, 1573. Wood, T. B. and Jones, H. O. (1907-08) Proc. Cambridge Phil.Soc. 14, 171-6. Worden, E. C. (1907) J.Soc.Chem.Ind., 26, 452. Worley, F. P. (1905) J.Chem.Soc.(Lond.), 87, 1107. Woudstra, H. W. (1912) 8th Int.Cong.Appl.Chem., 12, 251- Wright and Thomson. (1884-85) Phil.Mag. [5], 17,288; 19, i. Wright, Thomson and Leon. (i89i)Proc.Roy.Soc.(Lond.),49, 185. Wroczynski, A. and Guye, P. A. (1910) J.chim.phys., 8, 197. Wroth, B. B. and Reid, E. E. (1916) J.Am.Chem.Soc., 38, 2322. Wrzesnewsky, J. B. (1912) Z.anorg.Chem., 74, 95. Wuite, J. P. (1913-14) Z.physik.Chem., 86, 349- 82. Wiirfel. (1896) Dissertation, Marburg. Wiirgler, J. (1914) Dissertation, Zurich. Wuth, B. (1902) Ber., 35, 2415. van Wyk, see Van Wyk. Wyrouboff, G. (1869) Ann.chim.phys., [4], 16, 292. (1901) Bull.soc.chim., [3], 25, 105, 121. Yamamoto. (1908) J.Coll.Sci.(Tokyo), 25, XI. Young, S. W. (1897) J.Am.Chem.Soc., 19, 851. Young, S. W. and Burke, W. E. (1904) J.Am.Chem.Soc., 26, 1417. (1906) J.Am.Chem.Soc., 28, 321. Zaayer, H. G. (1886) Rec.trav.chim., 5, 316. Zaharia, A. (1899) Bul.soc. de sciinte dia Bu- curesci (Roumania), 8, 53-61- Zalai, D. (1910) Gy6gyszereszi Ertesito (Bu- dapest), 1 8, 366. (1910) " Tables annuelles," i, 410. Zambonini, F. F. (1913) Atti accad.Lincei, [5], 22, I, 523- Zawidzki, V. (1904) Z.physik.Chem., 47, 721. Zemcznzny. (1908) Z.anorg.Chem., 57, 267. Zemcznzy and Rambach. (1910) Z.anorg.Chem., 65, 403. Zukow, A. and Kasatkin, F. J.Russ.Phys.Chenl.Soc., 41, 157-66. 821 SUBJECT INDEX Acenaphthene, I, 2, 16 bromo, 2 chloro, 2 iodo, 2 Acetaldehyde, 2 phenyl hydrazone, 2 trithip, 732 Acetamide, 2 tribromo, 2 trichloro, 2 Acetanilide, 3, 4 chloro and bromo, 4 nitro, 4, 79 oxymethyl, 13 Acetanisidine, 13 Acetic acid, 5-8, 84, 89, 366, 500, chloro, 5, 9-11 cyano, n esters, 12 Acetic anhydride, 5 Acetins, mono, di and tri, 13 Acetnaphthalide, 13 Acetone, 13-15, 50, 125, 197, 248, 480, 511,525,534,648,695 phenyl hydrazone, 487 Acetphenetidine, 477 Acetophenol, 89 Acetophenone, 9, 10, 16, 84 amino, 730 Acetotoluidine, 732 Aceturethan, 742 Acetyl acetone, 16 Acetyldiphenylamine, 283 Acetylene, 16, 17, 438 bi iodide, 17 Acetylsalicylic acid, 101, 593 Acetyl tribromophenol, 486 Aconitic acid, 17 Aconitine, 17 Acrylic acid, trichloro, 1 8 Actinium, 18 Adipic acid, 18 Adipinic acid, 18 Adonitol, dibenzal, 698 Agaric acid, 18 Air, 19 Alanine, 19, 20 phenyl, 486 Albumin, 20 Alcohol (Ethyl), 2, 12, 65, 66, 71 125, 126, 160, 163, 235, 239, 247, 248, 286-294, 2 96, 2 98- 313, 404-5, 438-9, 466-7, 501, io, 530, 533, 571, 574, 628, 671 Alizarin, 20 Allantoin, 20 Allocinnamic acids, 254 Allyl alcohol, 511, 534, 647 isothiocyanic ester, 443 mustard oil, 77 thio urea, 738 Aloin, 20 Alums, 30-32, 67, 180, 249, 582, 587, 713 Aluminium bromide, 21-24 chloride, 25-27 fluoride, 27 hydroxide, 28 oxide, 28, 210 626 rubidium alum, 582 sulfate, 29, 31 sulfide, 29 thallium alum, 713 Aminopropionic acid, 19 Aminosuccinic acid, 692 Ammonia, 33-38, 70, 436 444, Ammonium acetate, 39 acid oxalate, 59 acid sulfate, 64 antimony sulfide, 69 arsenates, 39 alum, 30 benzoate, 39 bicarbonate, 41-43 bismuth citrate, 150 borates, 40 bromide, 40, 99, 504 bromide, propyl, benzyl, etc., 41 bromide, tetraethyl, 41 bromide, tetramethyl, 41 cadmium bromide, 41, 167-8 cadmium chloride, 170-1 cadmium iodides, 177 cadmium sulfate, 67 calcium ferrocyanide, 5 1 calcium sulfate, 214 carbonate, 13, 4^ cerium sulfate, 241, 243 cerium nitrate, 241 chloride, 43, 44-50, 60, 107, 109, 274, 337-8, 353, 643, 7|i iloru chloride carnellite, 48 chloride, ethyl and methyl, 50 , 72, chromates, 51 245, chromium alum, 32 300, chromium sulfate, 67 509- citrates, 51 cobalt chlorides, 256 cobalt malonate, 259 822 636, SUBJECT INDEX Ammonium acetate, cobalt sulfate, 67 copper chloride, 265-6, 270 copper sulfate, 273, 557 didymium nitrate, 281 fluoboride, 51 fluosilicate, 62 formate, 52 glycyrrhizate, 307 indium sulfate, 67 iodate, 52 iodide, 52 iodide phenyl trimethyl, 55 iodide tetra amyl, 55 iodide tetra ethyl, 53, 55 iodide tetra methyl, 54, 55 iodide tetra propyl, 54, 55 iodomercurate, 55 iridium chlorides, 55, 335 iron alum, 67 iron chloride, 337 iron sulfate, 67 lanthanum nitrate, 347 lanthanum sulfate, 348 lead chloride, 353 lead cobalticyanide, 43 lead sulfate, 67 lithium sulfate, 68 lithium tartrate, 69 magnesium arsenate, 39 magnesium ferrocyanide, 389 magnesium nitrate, 59 magnesium phosphate, 61 magnesium sulfate, 68 manganese molybdate, 59 manganese phosphate, 62 manganese sulfate, 68, 404 mercuric bromide, 406 molybdate, tetra, 55 nickel sulfate, 68, 273 nitrate, 45, 55-60 oleate, 59 oxalate, 59, 376, 735 palmitate, 60 perchlorate, 43, 44 perchlorate derivatives, 44 periodate, 52 permanganate, 62 persulfate, 69 phosphates, 60, 61, 62 phosphites, 62 phosphomolybdate, 55 picrate, 62 platinum bromide, 41 platinum chloride, 498 platinous nitrite compounds, 499 ruthenium nitrosochloride, 587 salicylate, 62 selenate, 62 silico fluoride, 62 sodium phosphates, 62 sodium sulfate, 68 sodium sulfite, 69 Ammonium acetate, sulfate, 45, 56, 60, 63-69, 274, 404, 556, 594 sulfoantmionate, 69 sulfonates, 69 stearate, 63 strontium sulfate, 68 tartrate, 69 tetroxolate, 59 thiocyanate, 35, 70 thorium oxalate, 60, 722 thorium sulfate, 724 trinitrate, 57 urate, 70 uranyl carbonate, 43, 733-4 uranyl nitrate, 735 uranyl oxalate, 735 uranyl propionate, 736 vanadate, meta, 70 vanadium sulfate, 69 zinc chloride, 751 zinc oxalate, 754 zinc phosphate, 754 zinc sulfate, 69, 273 Amygdalin, 70 Amyl acetate, 12, 70, 71 alcohol, 71, 72 alcohol, iso, 71, 72, 291 Amylamine, 72 hydrochloride (iso), 72 Amyl ammonium iodide, tetra, 55 ammonium perchlorates, 44 benzene, 84 benzene (iso), 90 bromide (iso), 292 butyrate, 70 Amylene, 72, 73 hydrate, 73 Amyl ether, (iso), 292 formate, 70, 71 malonic acid, 399 propionate, 70 Andromedotoxine, 73 Anethol, 13, 73 Aniline, 21, 72-80, 88, 89, 443 bromo, 21, 79 dimethyl, 21, 123, 132 ethyl, 79 hydrochloride, 74, 78 methyl, 21, 79, 292 nitro, 4, 78, 79, 80 nitro methyl, tetra, 79 nitroso, 79 nitroso dimethyl, 77, 79 propyl, 79 sulfate, 80 Anisaldehyde, 10 Anisic acid, 80 Anisidine, 80 Anisole, 80, 84, 89 nitro, 80, 421 Anthracene, 81, 82 Anthraflavine, 83 823 SUBJECT INDEX Anthraquinone, 82, 83 hydroxy, 83 Anthrarufine, 83 Antimony, 83, 705, 712 ammonium sulfide, 69 lithium sulfide, 366, 373 penta chloride, 94 penta fluoride, 94 potassium sulfide, 500-1 potassium tartrate, 96 selenides, 95 sodium sulfide, 627-8 sulfide, 277, 365 tri bromide, 83-88 tri chloride, 88-94 tri fluoride, 95 tri iodide, 95 tri oxide, 95 tri phenyl, 95 tri sulfide, 95 Antipyrine, 4, 96 Apomorphine, hydrochloride, 97, 442 Arabinose, 696 Arachidic acid, 97 Arbutin, 97 Argon, 97 Aribitol, monobenzal, 698 Arsenic, 98, 705, 712 pentoxide, 100 sulfide (ous), 101 tri bromide, 98 tri chloride, 98 tri iodide, 95, 98 tri oxide, 39, 98-100, 629, 642 Asparagine, 101 Asparaginic acid, 101 Aspirin, 101, 593 Astrakanit, 641, 668 Atropine, 101, 102 methyl bromide, 102 Auric, Aurous, (see Gold) Azelaic acid, 102 Azoanisol, 103 phenetol, 103 Azobenzene, 16, 88, 102, 103, 123, 133, 1 66 amino, 103 hydroxy, 103 Azobenzoic acid ethyl ester, 103 Azolitmine, 104 Azonaphthalene, 103 Azophenetol, 103, 104 Azotoluene, 103 Azoxyanisol, 103 Azoxybenzene, 103 Azoxybenzoic acid ethyl ester, 103 Azoxy phenetol, 103 Barbituric acid, diethyl, 744 Barium acetate, 104 amyl sulfate, 121, 122 arsenate, 104 benzene sulfonates, 122 114 Barium acetate, benzoate, 104 borates, 105 bromate, 105 bromide, 99, 105, 106 butyrate, 106 cadmium chloride, 171 camphorates, 106 cinnamates, 112 citrates, 112 caproate, 107 carbonate, 107, 108, in, 509, 557 chlorate, 108 chloride, 45, 99, 108-111, 643 chromate, in, 112 cyanide, 112 ferrocyanide, 112 fluoride, in, 112 formate, 113 glycerolphosphates, 119 hydroxide, 105, 109, 113, iodate, 114 iodide, 106, in, 112, 114 iodide mercuric cyanide, 423 iodomercurate, 115 iso caproate, 107 iso succinate, 120 laurate, 120 malate, 115 malonate, 115 molybdate, 115 myristate, 120 nitrate, 45, 55, 109, 113, 115-7, 166, 542 nitrite, 117, 118 oxalate, 118, 119 oxide, 106, in, 119 phenanthrene sulfonates, 122 palmitate, 120 perbromide, 106 perchlorate, 108 periodide, 115 persulfate, 122 picrate, 119 potassium ferrocyanide, 112 propionate, 119 salicylate, 119 salicylate, dinitro, 119 silicate, 119 stearate, 120 succinate, 120 sulfate, in, 120, 121, 509, 557 sulfite, 122 sulfonates, 122 tartrate, 122, 123 truxilate, 123 Behenic acid, 123 methyl ester, 123 Benzalaniline, 123 Benzalazine, 123 Benzaldehyde, 10, 84, 89, 123, 287 trithio, 732 hydroxy, 10 nitro, 10, 123, 124 824 SUBJECT INDEX Benzaldoxime, 124 nitro, 124 Benzalic compounds of alcohols, 698 Benzamide, 124 Benzanilide, 124 chloro, 124 Benzaniline, 103 Benzazonaphthalene, 103 Benzene, 2, 5, 9, 10, 21, 77* 79, 83, 90, 103, 124, 125-132, 135, 287, 482, 576, 581, 702 bromo, 14, 21, 90, 129, 288, 436, 572 bromochloro, etc., 129 bromo, chloro, iodo, 85 bromo nitro, 23, 24, 26 chloro, 5, 90, 129, 130 chloro, bromo, iodo and fluoro, 128 chloronitro, 22, 23, 25, 77, 128 disulfone chlorides, 130 dibromo, 21, 91 dichloro, 91 ethyl, 85, 90 fluoro, 90 fluoronitro, 85 hexahydro, 280 iodo, 90 isoamyl, 90 mixed halogen substituted, 129, 130 nitro, i, 4, 5, 21, 22, 25, 77, 79, 90, 91, 103, 128, 131, 132,288,303,408,421 nitro chloro, etc., 129, 130 nitroso, 77, 131 propyl, 85, 91 sulfonic acid, 84, 89 tri nitro, 478 Benzhydrol, 128, 132 Benzil, 2, 9, 10, 88, 103, 124, 132, 136 Benzine, 133 Benzoic acid, 5, 9, 10, 77, 84, 89, 128, I33-H5 amino, 137, 138 amino nitro, 138 bromo, chloro and iodo, 139, 140 chloro, 136, 139 dinitro oxy, 145 fluoro, 136, 140 halogen substituted, 139 iodo, 140 isopropyl, 279 methoxy, 80 methyl, 141 methyl esters, 140 nitro, 136, 141-5, 590 nitro chloro, and bromo, 145 Benzoic aldehyde, nitro, 2 anhydride, 145 Benzoin, 103, 124, 133, 145 Benzonitrile, 21, 84, 90 Benzophenone, 10, 13, 22, 27, 84, 88, 89, 103, 146, 166 tetra methyl diamido, 440 Benzoquinone, 10 Benzosulfonazole, 587-8 Benzosulfonic acids, amino, 136 Benzoyl chloride, 21, 27, 84, 89, 146 Benzoyl phenyl carbinol, 145 phenyl hydrazine, 487 tetra hydroquinaldine, 146 Benzyl acetate, 288 acetone, di, 9 alcohol, 288 Benzylamine, hydrochloride, 147 Benzyl amino succinic acid, 692 Benzylaniline, 123, 145, 147 Benzyl carbamide, 226 chloride, 80 chloride, nitro, 128, 147 ethyl ether, 288 Benzylidene aniline, 124, 145 naphthylamines, 147 Benzylidenes, chloro nitro, 147 Benzyl phenol, 147 Beryllium acetate, 147 fluorides, 148 hydroxide, 148 laurate, 148 meta vanadate, 149 myristate, 148 oxalate, 148 palmitate, 148 phosphate, 148 stearate, 148 sulfate, 148, 149 Betaine, 149 salts, 149 Betol, 149 Bismuth, 150 ammonium citrate, 150 chloride, 150 citrate, 150 double nitrates, 151 hydroxide, 151 iodide, 151 nitrate, 151 oxide, 152 oxychloride, 150 salicylate, 152 selenide, 152 sulfide, 152 telluride, 152 triphenyl, 152 Borax, 629-631 (see Sodium tetra.- borate) Boric acid, 40, 153-57, 189, 367, 630 tetra, 157 Boric anhydride, 157 Borneol, 224 Boron trifluoride, 157 Brassidic acid, 158 Brassidinic acid, 123 Bromal hydrate, 158 Bromethyl propyl aceturea, 742 Bromine, 15, 150, 158-62 Bromoform, 128, 162 Brucine, 162 perchlorate, 162 825 SUBJECT INDEX Brucine, sulfate, 163 tartrate, 163 Butter fat, 302 Butadiene, diphenyl, 163, 254 Butane, 163 Butyl acetate, 12, 163 alcohol, iso, 291 alcohols, 164, 165 ammonium perchlorate, 44 bromide, iso, 292 chloral, 165 chloral hydrate, 165 formate, 163 malonic acid, 399 sulfine perchlorate, 698 Butyric acid, 102, 146, 165-6, 224 trichloro, 166 Butyric aldehyde, 163 Cacodylic acid, 167 Cadmium ammonium bromide, 167-168 ammonium chloride, 170-1 ammonium iodides, 177 barium chloride, 171 bromide, 167 caesium sulfate, 186 chlorate, 169 chloride, in, 167, 169-174 cinnamates, 174 cyanide, 175 fluoride, 170, 175 hydroxide, 175 iodide, 167, 170, 175, 176, 177 magnesium chloride, 171 nitrate, 178 oxalate, 60, 178 ^ potassium bromide, 168 potassium chlorides, 173-4 potassium iodides, 178 potassium sulfate, 179 rubidium bromide, 168 rubidium chloride, 172 rubidium sulfate, 587 silicate, 178 sodium bromide, 169 sodium chloride, 174 sodium iodide, 178 sodium sulfate, 180 sulfate, 170, 178, 179 sulfide, 1 80 Caesium alum, 32, 180 bicarbonate, 181 bromide, 181 carbonate, 181 chlorate, 181 chloraurate, 181 chloride, 182, 183 chromates, 181, 183 cobalt malonate, 259 dihydroxy tartrate, 186 double sulfates, 186 fluoboride, 181 Caesium alum, fluoride, 27, 183 gold chloride, 181, 308 hydroxide, 183 iodate, 183 iodides, 183-4 iridium chlorides, 182 iron chloride, 340 lead bromides, 181 mercuric bromide, 181 mercuric chlorides, 182 nitrate, 184 oxalate, 185 perchlorate, 181 periodate, 183 permanganate, 185 platinum chloride, 182, 498 selenate, 185 sulfate, 185 tartrate, dihydroxy, 186 telluracid oxalate, 185 41, tellurium bromide, 712 tellurium chloride, 182, 712 thallium chloride, 182 uranyl chloride, 734 uranyl nitrate, 735 Caffeine, 186-187 Calcite, 192, 193 Calcium acetate, 187-8 ^ ammomium ferrocyanide, 51 ammonium sulfate, 67, 214 benzoate, 188 bitartrate, 222 borates, 188-9 bromide, 99, 189 bromide mercuric cyanide, 423 butylacetate, 1 88 butyrates, 190 camphorates, 190 caproate, 190 caprylate, 190 carbonate, 191-5, 218 chlorate, 196 chloride, 99, ill, 119, 121, 170, 189, 195-202, 641 chloride acetamidate, 198 chloride acetic acidate, 198 chloride alcoholates, 199 chromates, 199 cinnamates, 200 citrate, 200 ethyl acetate, 188 fluoride, 167, 189, 198, 2OI formate, 201 glycerophosphate, 2OI heptoate, 201 hydroxide, 200-5, 215 iodate, 206 iodide, 198, 201, 206 iodo mercurate, 206 lactate, 206 magnesium chloride, 196 malates, 206-207 malonate, 207 826 SUBJECT INDEX Calcium acetate, methyl acetate, 188 methyl pentanate, 190 nitrate, 203, 207-9, 222 nitrite, 209 oenanthate, 201 oleate, 209 oxalate, 209-10 oxide, 157, 189, 198, 210 pelargonate, 212 perbromide, 189 periodide, 206 phenanthrene sulfonates, 220 phosphates, 210, 211, 212 potassium ferrocyanide, 200 potassium sulfate, 218 propionate, 212 propyl acetate, 188 rubidium sulfate, 218 salicylate, 213 selenate, 213 silicate, 119, 198, 201, 213 sodium thiosulfate, 222 succinates, 213 sulfate, 195, 198, 203, 212, 214-20 sulfate anhydrite, 214 sulfide, 213, 220 sulfite, 220 tartrate,.22i-2 thiosulfate, 208, 222 titanate, 213 valerates, 223 Calomel, 413 (see also Mercurous chloride) Camphene, 10, 128, 223 Camphor, 8, 9, 136, 166, 223-5, 593 benzoyl, 224 bromo, 225, 593 chloro, 225 Camphoric acid, 190, 225, 368, 383, 508, 633, 678 anhydride, 225 Camphoroxime, 225 Cane sugar (see Sugar) Cantharidine, 226 Caoutchouc, 226 Capryl alcohol, 239, 278, 481, 745 Carbamides, 226 Carbazol, 128, 227 Carbinol (see Methyl alcohol) Carbon dioxide, 227-234, 438 disulfide, 5, 128, 235 monoxide, 235-238 oxysulfide, 238 tetrachloride, 125, 239, 288, 435, 572 Carmine, 239 Carnallite, 388, 641 Carnellite, ammonium chloride, 48 potassium chloride, 48 Carvacrol, 239 Carvoxime, 240 Cascarilla oil, 468 Casein, 2JO Catechol, 240 Cellose, 696 Cephaeline salts, 240 Cerium acetate, 241 ammonium nitrate, 241 ammonium sulfate, 241 butyrates, 241 chloride (ous), 242 citrate, 242 cobalticyanide, 242 dimethyl phosphate, 242 double nitrates, 242 double sulfates, 243 fluoride, 242 formate, 241 glycolate, 242 iodate, 242 malonate, 242 oxalate, 242 propionate, 241 selenate, 243 sulfate, 243-4 sulfonates, 244 tartrate, 244 tungstate, 244 Cesium, (see Caesium) Cetyl alcohol, 9, 244, 574 Chloral formamide, 245 hydrate, 96, 244-5 , Chlorine, 15, 150, 160, 239, 245-7 dioxide, 247 monoxide, 247 trioxide, 247 Chloro acetic acid esters, 12 Chloroform, 14, 15, 77, 126, 131, 247 248, 289, 435, 571 Cholesterol, 248-9 acetate, 248 digitonide, 248 stearic acid ester, 249 Cholesteryl benzoate, 103 isobutyrate, 103 propionate, 103 Choline perchlorate, 249 Chromic acid, 51, 250, 372, 584, 651 Chromium alums, 249 ammonium alum, 32 ammonium sulfate, 67 caesium alum, 180 chlorides, 249, 250 double salts, 250 nitrates, 250 sulfates, 250 thiocyanate, 250 potassium cyanide, 531 potassium thiocyanate, 531 rubidium alum, 582 thallium alum, 713 trioxide, 183, 250 Chrysarobin, 250 Chrysene, 250 Cineole, 251 Cinchona alkaloids, 251 827 SUBJECT INDEX Cinchonidine, 251 salts, 252 Cinchonine, 251 salts, 252 Cinchotine salts, 252 Cinnamic acid, 9, 10, 136, 252-254 bromo, 253, 254 chloro, 254 methoxy, 254 Cinnamic aldehydes, chloro and bromo, 254 Cinnamylidene, 123, 147, 163, 254 acetophenone, 16 Citric acid, 51, 254-55 Cobalt acetate, 256 amines, 255 ammonium chlorides, 256 ammonium sulfate, 67 - bismuth nitrate, 151 bromide, 256 caesium sulfate, iS6 cerium nitrate, 242 chlorate, 256 chloride, 45, 256-8 citrates, 258 double salts, 255 fluoride, 258 gadolinium nitrate, 304 iodate, 258 iodide, 258 lanthanum cyanide, 346 lanthanum nitrate, 347 lead cyanide, 357 malate, 259 malonates, 259 neodymium cyanide, 449 neodymium nitrate, 449 nitrate, 259 oxalate, 259 perchlorate, 256 potassium citrate, 258 potassium sulfate, 557 praseodymium nitrate, 568 rubidium nitrite, 259 rubidium sulfate, 587 samarium nitrate, 594 sulfate, 259-60 sulfide, 260 thallium cyanide, 717 ytterbium cyanide, 746 . yttrium cyanide, 746 Cocaine, 261 hydrochloride, 261 perchlorate, 261 Cocaline, 302 Codeine, 261 phosphate, 261 sulfate, 261 Colchicine, 262 salts, 262 Collidine, 262 Congo red, 262 Coniine, 262 Copiapite, 344 Copper acetate, 262-3 ammonium chloride, 265-6, 270 ammonium sulfate, 273, 557 bromide, 167, 263 caesium sulfate, 186 carbonate, 263-4 chlorate, 264 chloride, 109, in, 150, 264-270, 274 chloride (ous), 170, 183, 198 cyanide, 270, 531 hydroxide, 270 iodate, 271 iodide, 177, 271 manganese sulfate, 403 nitrate, 271, 360 oxalate, 272 oxide, 270, 272 potassium carbonate, 264 potassium chloride, 267-8, 270 potassium sulfate, 274, 557 rubidium sulfate, 587 sodium sulfate, 276 - sulfate, 63, 272-7, 403, 454 sulfide, 95, 277 sulfonates, 277 thallium sulfate, 720 tartrate, 277 thiocyanate, 278 Cotton seed oil, 294, 436, 468 Coumarin, 132, 278 Cream of tartar, 564-566 Cresol, 9, 10, 77, 128, 251, 278, 279 trinitro, 279 Crotonic acid, 9, 10, 279 chloro, 279 Cryolite, 28 Cumidine, pseudo, 279 Cuminic acid, 279 Cyanimide, 279 Cyanogen, 280 Cyclohexane, 5, 86, 91, 128, 280 Cyclohexanol, 280 Cyclohexanone, 280 Cymene, 85, 91 pseudo, 86 Cryptopines, methyl, 279 Cytisine, 280 Detonal, 742 Dextrin, 281 Diacetyl morphine, 442 Diacetyl racemic ether, 281 tartaric ether, 281 Diamine mercuric chloride, 419 Dibenzyl, 103, 123, 133, 145, 147, 281 acetone, 9 hydrazine, 147 Dibnal, 742 Dicyandiamidine, 279 Didymium ammonium nitrate, 281 potassium sulfate, 281 828 SUBJECT INDEX Didymium sulfate, 281 sulfonates, 281 Diethylamine (see Ethyl amine), 281 Diethylbarbituric acid, 742, 744 Diethyldiacetyl tartrate, 131 Diethylene ether, 302 Diethylketone, 289 Diethyl oxalate, 10 Dihydro naphthoic acids, 447 Dimethoxystilbene, 103 Dimethyl amine (see Methyl amine) , 437 malonate, 10 oxalate, 9, 10 pyrone, 5, 9, 10, 21, 132, 136, 143, 1 66, 253, 279, 304, 346, 400, 448, 484, 486, 495, 575 succinate, 5, 9, 10 terephthalate, 10 urea, 484 xanthine, 721 Dionin, 281, 442 Diphenyl, 86, 91, 128, 282 acetylene, 123, 254 amine, 130, 132, 282-3 amine blue, 283 amine, hexanitro, 283 butadiene, 123 imide, 227 hydrazine, 123 methylamine, 283 oxide, 282 selenide, 283 sulfide, 283 telluride, 283 urea, 738 Dipyridyl 77, 132 Dipronal, 742 Dipropylazophenetol, 103 Double mercuric chlorides, 420 Dulcitol, dibenzal, 698 Dyes, 283 Dysprosium oxalate, 283 Edestin, 283 Egg albumin, 20 Elaterin, 284 Emetine and salts, 284 Epronal, 742 Erbium dimethyl phosphate, 284 oxalate, 284 sulfate, 284 sulfonate, 284 Erusic acid, 123, 158, 284 Erythritol, 284, 698 dibenzyl, 698 Eserine, 492 Ethane, 285 Ethane, diphenyl, 88 Ether, ethyl, 5, 10, 15, 16, 83, 128, 131, 247, 248, 282, 289-290, 295, 297-9, 313, 323, 425, 541 petroleum, 477 Ethyl acetate, 10, 12, 77, 160, 247, 285-6, 290, 313 Ethyl alcohol (see Alcohol) amine, di, 128 amine hydrochloride, 296 amine, tri, 102, in, 133, 224, 405 amines, 294-6 ammonium bromide, tetra, 41 ammonium chloride, tetra, 50 ammonium iodide, tetra, 53, 55 ammonium perchlorates, 44 benzene, 90 benzoate, 10 bromide, 160, 290, 296, 436, 572 butyrate, 290, 296 carbamate, 296, 741-2 chloracetate, 12 diacetyl tartrate, di, 300 dichlor acetate, 12 Ethylene, 301 bromides, 5, 22, 79, 103, 128, 131, 280, 281, 283, 300, 301, 431 chlorides, 128, 291, 296 cyanide, 302, 693 tetraphenyl, 302 Ethyl ether (see ether) formate, 299 Ethylidene chloride, 291, 296 Ethyl iodide, 296 ketone, di, 300 malonic acid, 399 methyl ketone, 299, 534, 649 morphine, 281, 442 morphine hydrochloride, 443 piperidine, 496 propionate, 290, 300 succinimide, 693 sulfine perchlorate, 698 sulfonium iodide, tri, 699 sulfon methanes, 435 trichlor acetate, 12 Ethyl urethan, 742 valerates, 300 Eucaine and salts, 302 Eucalyptole, 251 Europium sulfonate, 302 ' Fats, 302 Fatty acids, 468 Ferric (see Iron) Ferrous (see Iron) Fluorene, 132, 145, 303 Fluorenone, 132 Fluorescein, 303 Formaldehyde, 303 Formamide, 5, 166, 303 Formanilides, chloro, 303 Formic acid, 5, 126, 130, 303, 304 Fruit sugar, 695-7 Fumaric acid, 304 Furfuralazine, 123 Furfurol, 304 829 SUBJECT INDEX Gadolinium cobalticyanide, 304 dimethyl phosphate, 305 double nitrates, 304 glycolate, 304 oxalate, 304-5 sodium sulfate, 305 sulfate, 305 sulfonates, 305 Galactose, 305, 695-7 Gallic acid, 305-6 Germanium dioxide, 306 potassium fluoride, 535 sulfide, 306 Glass, 306 Glaserite, 559, 641 Globulin, 306 Glucoheptose, 696 Glucose, 306, 695-97 Glutaminic acid, 306 hydrochloride, 307 Glutaric acid, 307 Glycerol, 75, 125 Glycine, in, 307 Glycocoll, 307 trimethyl, 149 Gly colic acid, 307 phenyl, 307 Glycyrrhizic acid, 307 Gold, 308, 705, 712 caesium chloride, 181 chloride, 308 double chlorides, 308 lithium chloride, 369 phosphorus trichloride, 308 Grape sugar, 695-97 Guaiacol, 251, 309 carbonate, 309 Guanidine, triphenyl, 2, 309 Gulose, 697 Gun cotton, 465 Helianthin, 309 Helium, 309-310 Hemoglobin, 309 Heptane, 239, 278, 291, 310, 436, 481 Heptpic acid, ^3 10 Heroine, 442 Hexahydrobenzene, 280 Hexamethylene, 280 tetramine, 310 Hexane, 78, 131, 291, 310, 436 Hexanitrodiphenylamine, 283 Hippuric acid, 310-11 Holocaine hydrochloride, 311 Homatropine hydrobromide, 311 Hydrastine, 311 Hydrastinine hydrochloride, 311 Hydrazides, 312 Hydrazine, 312 dibenzyl, 147 nitrate, 312 perchlorate, 312 sulfate, 312 Hydrazobenzene, 103, 123, 145, 147 Hydriodic acid, 312 Hydrobenzene, 103, 147 tetra, 87 Hydrobenzoic acids, hexa, 140 Hydrobenzoin, 133 Hydrobromic acid, 15, 160, 248, 313 Hydrochloric acid, 247, 248, 298, 313-5, 517, 649 Hydrocinnamic acid, 253, 570 Hydrocyanic acid, 315 Hydrofluoric acid, 315 Hydrogen, 316-21 peroxide, 321-2 selenide, 322 sulfide, 37, 313, 315, 322-3 Hydroquinol, 15, 77, 103, 224, 251, 254, 323-4 chloro and bromo, 324 diacetyl chloro and bromo, 324 Hydroquinone (see Hydroquinol) Hydroxy benzaldehyde, 123 benzoic acids, 140, 141 benzoic acid, dinitro, 145 Hydroxylamine, 324 hydrochloride, 324 Hyoscine hydrobromide, 325 Hyoscyamine, 324 Hypophosphoric acid, 490 Iditol, tribenzal, 698 Indan carboxylic acid, nitro, 325 Indigo, 325 Indium ammonium sulfate, 67 caesium alum, 180 iodate, 325 Inositol, iso, 325 lodic acid, 325, 536, 654 Iodine, 55, 95, 98, 150, 160, 184, 206, 247, 271, 325-34, 429, 537, 713 lodoeosine, 335 lodoform, 335 lodol, 335 Iridium ammonium chlorides, 55, 335 caesium chlorides, 182 chloride, 335 double salts, 335 potassium chloride, 526 rubidium chlorides, 585 Iron ammonium sulfate (alum), 67 bicarbonate, 336 bromide (ous), 335 caesium alum, 180 caesium chloride, 340 caesium sulfate, 186 carbonate (ous), 336 chloride, 150, 267, 270, 336-40 fluoride, 652 formate 340 hydroxide, 341, 342 nitrate, 341 oleate, 342 oxalate, 342 830 SUBJECT INDEX Iron ammonium sulfate (alum), oxide, 210, 342 phosphates, 342 potassium chloride, 339-40 potassium sulfate, 345, 558 rubidium alum, 582 rubidium sulfate, 587 sodium sulfate, 344 sulfate, 29, 64, 179, 343-45 sulfide, 277, 342, 345 sulfonates, 345 thallium alum, 713 thallium cyanide, 717 thiocyanate, 345 Isoamyl alcohol, 574 urethan, 742 Isobehenic acid, 123 Isobutyl acetate, formate, etc., 163 alcohols, 164-5, 574 Isobutylamine hydrochloride, 165 Isobutyric acid, 165-6 Isoerusic acid, 123 Isopentane, 77, 476 Isophthalic acid, 490 Isopropyl aicohol, 511, 533, 571 amine, 573 bromide, 573 chloride, 573 iodide, 573 Itaconic acid, 345 Kainite, 641 Keratin, 345 Kieserite, 641 Krypton, 345 Lactdiethylamide, 744 Lactic acid, 125, 346 trichloro, 346 Lactose, 695-97 Lanthanum ammonium nitrate, 347 bromate, 346 citrate, 346 cobalticyanide, 346 dimethyl phosphate, 348 double nitrates, 347 double sulfates, 348 glycolate, 346 iodate, 346 malonate, 346 molybdate, 347 oxalate, 347 sulfate, 348 sulfonates, 348 tartrate, 349 tungstate, 349 Laurie acid, 349 Lead, 349, 705, 712 acetate, 349-350 ^ ammonium chloride, 353 ammonium cobalticyanide, 43 ammonium sulfate, 67 arsenate, 350 Lead, benzoate, 351 borate, 351 bromate, 351 bromide, 150, 351-2 caesium bromides, 181 caprate, 352 caproate, 352 caprylate, 352 carbonate, 352-3 chlorate, 353 chloride, 46, III, 150, 170, 198, 270, 339, 351, 353-56 chromate, 353, 357 citrate, 357 diphenyl dicyclohexyl, 352 double cyanides, 357 ferricyanide, 357 fluoride, 351, 356, 357 fluoro chloride, 356 formate, 358 heptylate, 352 hexyl bromide, 352 hexyl chloride, 352 hydroxide, 358 hyposulfate, 365 iodate, 358 iodide, 351, 356, 357, 358, 359 laurate, 352, 360 malate, 359 myristate, 352 nitrate, 116, 360-2 Lead nonylate, 352 oxalate, 362 oxides, 351, 356, 357, 362 palmitate, 352, 360, 362 peroxide, 362 persulfate, 365 phosphate, 357, 362 potassium chloride, 355 potassium ferricyanide, 357 potassium iodide, 359 potassium sulfate, 364, 558 stearate, 352, 360, 362 succinate, 363 sulfate, 357, 362-65 sulfide, 95, 277, 345, 356, 365 sulfonates, 365 tartrate, 366 tetraphenyl, 352, 362 tetracyclohexyl, 352 Lecithin, 366 Leonite, 641 Leucine, 366 Lignoceric acid, 97, 366 Ligroin, 366 Lime (see Calcium hydroxide) Linseed oil, 468 Lithium, 37, 366 acetate, 366 ammonium sulfate, 68 ammonium tartrate, 69 antimony sulfide, 366, 373 benzoate, 367 831 SUBJECT INDEX Lithium, bicarbonate, 369 bichromate, 372 borate, 367 bromate, 367 bromide, 100, 367 camphorate, 368 carbonate, 368-9 chlorate, 369 chloraurate, 369 chloride, 100, in, 183, 198, 270, 356, 370-1 chromate, 372 citrate, 372 fluoride, 27, 373 formate, 373 gold chloride, 308, 369 hippurate, 373 hydroxide, 367, 371-3 hypophosphate, 377 iodate, 374 iodide, 373, 374 lodo mercurate, 374 laurate, 374, 375 mercuric iodide, 374 molybdate, 375 myristate, 374, 375 nitrate, 117, 376 nitrite, 376 oleate, 374 oxalate, 60, 376 oxide, 378 palmitate, 374, 375 permanganate, 377 phosphate, 377 potassium sulfate, 377 salicylate, 377 silicate, 119, 213, 367, 378 sodium sulfate, 377 stearate, 374, 375 sulfate, 29, 64, 121, 179, 220, 259, 274, 343, 365, 369, 376, 377, 378 sulfoantimonate, 366, 373 tartrates, 378 Lutidine, 574 Lyxose, 696 Magnesium, 378 acetate, 378 ammonium arsenate, 39 ammonium ferrocyanide, 389 ammonium nitrate, 59 ammonium phosphate, 61 ammonium sulfate, 68 benzoate, 379 bicarbonate, 385-86 bismuth nitrate, 151 bromate, 379 bromide, 379 bromide alcoholates, 379, 381 bromide anilinates, 379, 381 bromide compounds, 379, 382-3 bromide etherate, 379-80 Magnesium, bromide phenylhydrazi- nates, 379, 382 cadmium chloride, 171 caesium sulfate, 186 calcium chloride, 196 camphorate, 383 carbonate, 13, 384-86 cerium nitrate, 242 chlorate, 387 chloride, 46, in, 170, 196, 198, 339, 356, 371, 387-8, 641 cinnamate, 389 chromate, 389 ferrocyanides, 389 fluoride, 389 fluosilicate, 396 gadolinium nitrate, 304 hydroxide, 385, 389, 390 hypophosphate, 395 iodate, 390 iodide, 390 iodide alcoholates, 391, 392 iodide anilinates, 391, 392 iodide compounds, 391, 393, 394 Magnesium iodide etherates, 391, 392 iodo mercurate, 394 lanthanum nitrate, 347 laurate, 394 mercuric iodide, 394 myristate, 394 neodymium nitrate, 449 nitrate, 395 oleate, 395 oxalate, 60, 395 oxide, 28, 210, 378, 395 palmitate, 394 phosphate, 395 platinic cyanide, 389 potassium ferrocyanide, 389 potassium chloride, 388 potassium chromate, 389 potassium sulfate, 396, 397 praseodymium nitrate, 568 rubidium sulfate, 587 salicylate, 395 samarium nitrate, 594 silicate, 213, 378, 396 sodium sulfate, 668 stearate, 394 succinate, 396 sulfate, 273, 388, 396-7, 480, 641, 668 sulfite, 397 sulfonates, 397 Maleic acid, 304, 398 Malaminic acid, 398 Malonic acid, 299, 398-9 Malonic acids, substituted, 399 Maltose, 695-7 Mandelic acid, 398-400 butyl esters, 400 methyl esters, 400 Manganese ammonium molybdate, 59 ammonium phosphate, 62 832 SUBJECT INDEX Manganese ammonium molybdate, am- monium sulfate, 68, 404 bismuth nitrate, 151 borate, 400 bromide, 400 caesium sulfate, 1 86 carbonate, 401 cerium nitrate, 242 chloride, 47, in, 170, 198, 356, 371, 388, 401 cinnamate, 401 copper sulfate, 403 fluosilicate, 401 hydroxide, 401-2 hypophosphite, 402 iodomercurate, 402 lanthanum nitrate, 347 mercuric iodide, 402 neodymium nitrate, 449 nitrate, 402 oxalate, 402 oxide, 402 potassium chloride, 401 potassium vanadate, 405 praseodymium nitrate, 568 . rubidium sulfate, 587 samarium nitrate, 594 silicate, 119, 213, 396, 402 sodium sulfate, 404 sulfate, 274-5, 378, 403-5 sulfide, 405 titanate, 402 Mannitol, 166, 405, 698 tribenzal, 698 Mannose, 695-7 Matico oil, 468 Mellibose, 696 Mellitic acid, hexamethyl, 431 Menthane, 431 Menthol, 128, 131, 224, 245, 431 Menthyl mandelates, 400 Mercury, 378, 598 acetate, 406 ammonium iodide, 55 barium iodide, 115 benzoate, 406 bromide, 131, 158, 351, 406-8 caesium bromide, 181 caesium chlorides, 182 calcium iodide, 206 chloride, 47, 80, no, 182, 268, 409-21, 526 cinnamate, 422 cyanide, 422-4 diphenyl, 95, 152, 430 double cyanides, 423 fulminate, 424 iodide, 170, 177, 408, 421, 424-9, 616 iodide diamine, 429 lithium iodide, 374 magnesium iodide, 394 manganese iodide, 402 nitrate, 429 Mercury, oxide, 429-30 potassium chloride, 410, 420 potassium iodide, 425, 541 rubidium chloride, 412 selenite, 430 sodium chloride, 411 sodium iodide, 656 strontium iodide, 682 sulfate, 430-1 sulfide, 431 zinc thiocyanate, 752 Mesitylene, 86, 92, 292 Meta arsenic acid, 98 Methacetin, 13 Methane, 432-3 diphenyl, 86, 92, 433 triphenyl, 88, 282, 309, 433-4 Methoxybenzoic acid, 80 Methoxycinnamic acid, 103 Methoxystilbene, di, 677 Methyl acetate, 12, 247, 435 alcohol, 5, 37, 72, 128, 160, 235, 247, 248, 280, 286, 299, 313, 315, 323, 435, 436, 50 1 , 5i. 574 amines, 437, 438 amine chloroplatinates, 438 amine hydrochloride, 438 ammonium bromide, tetra, 41 ammonium chloride, tetra, 50 ammonium iodide, tetra, 54, 55 ammonium perchlorates, 44 aniline, 21, 292 aniline, di, 132 anisate, 10 benzoate, 10, 21 benzoic acids, 730 Methylene blue, 439 bromide, 21, 439 Methyl butyrate, 438 carbinol, tri, 227 chloride, 315, 439 cinnamate, 9, 10 cryptopines, 279 ether, 37, 248, 301, 315, 438 ethyl ketone, 299, 534, 649 hexyl carbinol, 574 iodide, 436, 439 iso thiocyanate, 443 malonic acid, 399 mellitic acid, hexa, 431 mustard oil, 223 orange, 309, 459 oxalate, 439 phenyl carbamide, 226 phenyl picramides, 492 picric acid, 495 piperidines, 496 propionate, 439 propyl azo phenol, 103 pyridines, 574 pyridines, tri, 262 pyridine zinc chloride, 574 salicylate, 251, 439 833 SUBJECT INDEX Methyl butyrate, succinic acid, 711-2 sulfate, 440 sulfine perchlorate, 698 sulfone methanes, 435 toluate, 10 urea, 484 urethan, 431, 742 valerate, 438 Michler's ketone, 440 Milk sugar, 695^-97 Molybdenum trioxide, 440 Molybdic acid, 440 Morphine, 441 acetate, 442 hydrochloride, 442 perchlorate, 442 salts, 442 sulfate, 442 tartrate, 442 Mustard oil, 443 Myristic acid, 443 Naphthalene, 5, 9, 13, 21, 79, 86, 92, 98, 123, 128, 130-2, 166, 223-4, 251, 279, 282-3, 300-1, 324, 431, 433-4, 443-7 bromo, 87, 92 chloro, 87, 92 dihydro, 446 nitro, 86, 92, 224, 283, 408, 421, 446 picrate, 126 sulfonic acid, 446 Naphthoic acid, 447 Naphthoic acids, dihydro, 447 Naphthols, 10, 128, 224, 251, 283, 301, 446, 447, 448, 593, 703, Pirate 447 Naphthyl acetate, 10 amine, 79, 224, 240, 283, 309, 446, 448 amine sulfonic acids, 448 benzoate, 448 hydrazones of sugars, 697 salicylate, 149 Narceine, 448 Narcotine, 449 Neodymium chloride, 449 cobalticyanide, 449 dimethyl phosphate, 450 double nitrates, 449 glycolate, 449 molybdate, 449 nitrate, 450 oxalate, 449-50 sulfonates, 450 tungstate, 450 Neon, 450 Neurine perchlorate, 450 Nickel ammonium sulfate, 68, 273 bismuth nitrate, 151 Nickel bromate, 451 bromide, 451 caesium sulfate, 186 Nickel bromate, carbonate, 451 car boxy 1, 451 cerium nitrate, 242 chlorate, 451 chloride, 47, 452 citrate, 452 gadolinium nitrate, 304 hydroxide, 452 iodate, 452 iodide, 453 lanthanum nitrate, 347 malate, 453 neodymium nitrate, 449 nitrate, 453 oxalate, 453 perchlorate, 451 potassium citrate, 452 potassium sulfate, 455, 557 praseodymium nitrate, 568 rubidium sulfate, 587 samarium nitrate, 594 sodium sulfate, 454 sulfate, 453-5 sulfide, 455 thallium sulfate, 720 Nicotine, 456 Nigella oil, 468 Niobium potassium fluoride, 456 Nitric acid, 224, 395, 456-7, 542 oxide, 438, 461, 465 Nitrocellulose, 465 Nitrogen, 457-461 oxide (ic), 461 oxide (ous), 462-5 tetroxide, 465 Nitrophenyl chloroform, 248 Nitrosobenzene, 131 Nitrosopiperidine, 496 Nitrosyl chloride, 247 Nitrous oxide, 462-5 Novocaine, 466 hydrochloride, 466 Octane, 466 Octyl alcohol, 239, 278, 481, 745 Oenanthyl urethane, 742 Oils, 302, 468 baldo leaves, 468 castor, oleic, olive, etc., 249 cotton seed, 294, 436 helianthus annus, 468 olive, 468 turpentine, 440, 733 Oleic acid, 248, 466-7 Olein, tri, 467 Orthovanillin, 744 Osmic acid, 468 Oxalic acid, 59, 185, 348, 376, 468-9 549-51, 66 1 Oxybenzoic acids, 140, 141, 251 Oxybenzoic acid, dinitro, 145 Oxygen, 470-3 834 SUBJECT INDEX Ozokerite paraffin, 475 Ozone, 473-4 Palladium chloride, 474 Palmitic acid, 97, 248, 443, 467, 474~5, 677 acetic ester, 446 acid cetyl ester, 475 Palmitin, tri, 467, 475 Papaverine, 475 Paraffin, 283, 446, 475 Paraformaldehyde, 303 Paraldehyde, 2, 128, 301 Para morphine, 721 Pentane, 476 iso, 77, 131, 282 Peptone, 476 Perchloric acid, 476 Perseitol, dibenzal, 698 Petroleum, 294 benzine, 133 ether, 477 Phenacetin, 477 Phenanthraquinone, 477-8 Phenanthrene, 128, 132, 145, 223, 282, 283, 443, 478-79 picrate, 479 Phenetidine, acet, 477 Phenetol, 86, 93, 292 dinitro, 80 Phenol, 9, 10, 15, 76, 78, 79, 83, 86, 93, 102, 123, 124, 127, 131-3. 135, H6, 156, 224, 227, 251, 280, 283, 295, 300, 301, 310, 315, 373, 397, 423, 433, 445, 446, 448, 466, 479-84, 536, 682, 704 dinitro, 4, 303 Phenols, amino, 136, 251 acetyl tribromo, 486 bromo, 484, 486 chloro, 15, 77, 79, 283, 486 iodo, 486 nitro, 15, 77, 128, 251, 446, 484-6 nitroso, 486 tribromo, 132 Phenolate of phenyl ammonium, 484 Phenolphthalein, 486 Phenyl acetic acid, 9, 12 alanine, 486 amine, di, 21, 80, 128, 282-3 amine, tri, 282 anisyl ketone, 10 benzoate, ip carbinol, tri, 227 diacetylene, di, 163 dibromo propionic acid, 570 Phenylene diamines, 486 Phenyl ether, 132 ethylene, tetra, 302 glycolic acid, 307 glyoxal phenyl hydrazone, 307 guanidine, tri, 2, 309 hydracrylic acid, 732 Phenyl hydrazines, 484, 486-7 hydrazine, di, 163 hydrazones of sugars, 697 methane, di, 433 methane, tri, 282, 309, 433-4, 704 methyl amine hydrochloride, 438 methyl carbamide, 226 piperidines, di, 497 propiolic acid, 570 propionic acid, 254, 570 salicylate, 10, 251, 593 selenide, dibromo, 487 selenium bromide, di, 596 telluride, dibromo, 487 tellurium bromide, di, 596 thiocarbamide, 738-9, 740 thio urea, 738-740 trimethyl ammonium iodide, 55 Phloroglucinol, 487 Phosphomolybdic acid, 488 Phosphoric acid, 224, 489-90 Phosphorus, 488-9 acid, 489 sulfides, 489 triiodide, 95, 98 Phthalic acids, 490 Phthalic acids, nitro, 491 Phthalic anhydride, 491 Phthalide, 2, 309 carbpxylic acid, 492 Phthalimide, 492 Phthalonic acid, 492 Phthalyl hydroxylamine 324 phenyl hydrazides, 312, 487 Physpstigmine, 492 salicylate, 492 sulfate, 492 Phytosterol, 248 Picramides, methyl phenyl, 492 Picric acid, 5, 81, 240, 279, 301, 303, 309, 446-8, 484, 486, 492-5, 731 methyl, 495 Picrotoxine, 495 Picoline, 574 Pilocarpine, 496 hydrochloride, 496 nitrate, 496 Pinacplin, 496 Pimelic acid, 495 Pinene, 293 hydrochloride, 496 Pipecoline, 496 Piperidine, 280, 496 propyl, 262 Piperidines, di phenyl. 497 Piperidine hydrochloride, 496 methyl, 496 Piperine, 496, 497 Piperonal, 9, 10, 136 nitro, ID Piperonilic aldehyde, 2 Platinates, chloro, of hydrocarbon sul- fines, 499 835 SUBJECT INDEX Platino amines, 499 Platinous nitrite ammonium com- pounds, 499 Platinum alloys, 497 ammonium bromide, 41, bromide, 497 caesium chloride, 182 chlorides, 499 double chlorides, 498 magnesium cyanide, 389 potassium bromide, 497 Ponceau, 499 Potasammonium, 500 Potassium, 37, 500 acetate, 500 acid sulfates, 560 alum, 30, 31 amyl sulfate, 564 antimony sulfide, 500-1 antimony tartrate, 96 arsenate, 501 barium ferrocyanide, 112 benzoate, 502 beryllium fluoride, 148 bicarbonate, 508-9 bioxalate, 551 bisulfate, 560, 563 bitartrate, 564-6 bitartrate, dimethyl ester, 566 borates, 502 bromate, 503 bromide, 100, 167, 263, 480, 504-7 bromide, mercuric cyanide, 423 butyrate, 508 cadmium bromide, 168 cadmium chlorides, 173-4 cadmium iodides, 178 cadmium sulfate, 179 calcium ferrocyanide, 200 calcium sulfate, 218 camphorates, 508 carbonate, 13, 35, 264, 353, 369, 508-12, 544, 557 carbonyl ferrocyanide, 531 cerium sulfate, 243 chlorate, 512-15, 714 chloride, 45, 48, 109, in, 121, 170, 174, 183, 196, 198, 267, 270, 274, 307, 339, 340, 356, 371, 388, 410, 480, 504, 505, 507, 509, 512, 516- 26, 531, 543, 552, 637, 641, 643, 668, 672 chloride, carnellite, 48 chloride mercuric cyanide, 423 chloro iridate, 526 chloro platinate, 498 chromate, 353, 526-30, 559 Potassium chromium alum, 249 chromium molybdate, 250 chromithiocyanate, 531 chromocyanide, 531 citrate, 530 cobalt citrate, 258 Potassium chromium alum, cobalt mal- onate, 259 cobalt sulfate, 557 copper carbonate, 264 copper chloride, 267-8, 270 copper sulfate, 274, 557 cyanate, 531 cyanide, 270, 531 dichromate, 527-30 didymium sulfate, 281 dihydroxy tartrates, 566 dipropyl malonate, 512 ethyl sulfate, 563-4 ferricyanide, 531-2 ferrocyanide, 531-2 ferrosulfate, 558 fluoboride, 502 fluoride, 27, 112, 242, 507, 526, 532-4 fluotitanate, 568 formate, 535 germanium fluoride, 535 gold chloride, 308 hippurate, 311 hydroxide, 501, 502, 507, 509, 526, 529, 534-6, 555, 558 hypophosphate, 555 hypophosphite, 555 iodate, 536 iodide, 100, 177, 326, 425, 504, 505, 507, 518, 519, 526, 534, 536, iodide lide mercuric cyanide, 423 iodomercurate, 541 iridium chloride, 526 iron chloride, 339-40 iron sulfate, 345 lanthanum sulfate, 348 lead chloride, 355 lead cobalticyanide, 357 lead ferricyanide, 357 lead iodide, 359 lead sulfate, 364, 558 lithium sulfate, 377 lithium tartrate, 378 magnesium chloride, 388 magnesium chromate, 389 magnesium ferrocyanide, 389 magnesium sulfate, 396, 397 manganese chloride, 401 manganese sulfate, 405 mercuric cyanide, 423 mercuric chloride, 410-11, 420 mercuric iodide, 425, 541 meta borate, 502 meta phosphate, 502, 526, 534, 555 methyl sulfate, 564 molybdate, 529, 530, 541 nickel citrate, 452 nickel sulfate, 455, 557 niobium fluoride, 456 nitrate, 45, 55, 116, 117, 208, 360, 376, 480, 506, 509, 519, 520, 521, 541, 542-8, 552, 643, 657, 659, 718 836 SUBJECT INDEX Potassium chromium alum, nitrite, 548-9 oxalate, 60, 549-52, 735 perborates, 502 perchlorate, 515, 554 periodate, 536 permanganate, 552-4 persulfate, 563 phosphates, 526, 534, 554-5 phosphomolybdate, 555 picrate, 554, 719 platinum bromide, 497 platinum chloride, 498 pyrpphosphate, 526, 534, 555 rubidium perchlorate, 583 rubidium nitrosochloride, 587 selenate, 556 silicate, 378, 556 sodium carbonate, 512 sodium sulfate, 668, 559 sodium sulfite, 564 sodium tartrate, 566 sodium thiosulfate, 568 stannate, 556 stannous chloride, 522 strontium sulfate, 558 succinate, 691 sulfate, 31, 45, 64, 121, 149, 1 66, 179, 220, 259, 274, 365, 378, 388, 397, 405, 480, 509, 512, 522, 526, 529, 530, 534, 541, 544, 552, 556-62, 643, 668, 719 sulfide, 564 sulfoantimonate, 500-1 sulfonates, 564 tantalum fluoride, 710 tartrate, 564-566 tellurate, 566 telluric acid oxalate, 552 tellurium bromide, 712 tetroxalate, 552 thiocyanate, 70, 566-7 thiosulfate, 568 titanium fluoride, 568 thorium sulfate, 724 tungstate, 530, 541, 562 uranyl butyrate, 733 uranyl carbonate, 512 uranyl chloride, 734 uranyl nitrate, 735 uranyl oxalate, 735 uranyl propionate, 736 uranyl sulfate, 736 vanadate, 568 yttrium oxalate, 747 zinc cyanide, 532 zinc sulfate, 557 zinc vanadate, 568 Praseodymium chloride, 568 dimethyl phosphate, 569 double nitrates, 568 glycolate, 568 molybdate, 568 Praseodymium chloride, oxalate, 568 sulfate, 569 sulfonates, 569 tungstate, 569 Probnal, 742 Propione, 300 Propiolic acid, phenyl, 570 Propionic acid, 303, 315, 436, 569-70 acid, amino, 19 acid, iodo, 570 acid, phenyl, 570 aldehyde, 570 Propionitrile, 571 Propyl acetate, 12, 571 alcohol, 5, 128, 511, 571-2, 574, 636, 647 alcohol, iso, 533 ammonium iodine, tetra, 54, 55 . ammonium perchlorates, 44 amine hydrochloride, 573 amines, 572-3 anisole, 73 benzene, 91 bromide, 293, 573 butyrate, 571 chloride, 573 Propylene, 573 Propyl formate, 571 iodide, 573 malonic acid, 399 piperidine, 262, 496 propionate, 571 sulfine perchlorate, 698 Pseudo cumidine, 279 Pyrene, 573 Pyridinamino succinic acids, 575 Pyridine, 21, 127, 136, 258, 279, 439, 446, 484, 486, 574 Pyridines, methyl, ethyl, etc., 574 trimethyl, 262 Pyrocatechol, 15, 77, 146, 224, 251, 324, 446, 575 Pyrogallol, 15, 224, 575 Pyrone, dimethyl (see Dimethylpy- rone Pyrophosphoric acid, 490 Pyrotartaric acid, 307, 711-2 Pyroxylin, 465 Buinaldine, benzoyl tetrahydro, 146 uinidine, 251, 575 salts, 575 sulfate, 576 Quinine, 128, 251, 576, 577 glycerophosphate, 578 hydrochloride, 578 pyrotartrates, 579 salicylate, 578 salts, 577-8 sulfate, 578 tannates, 579 Buinhydrone, 575 uinol, 132, 448 837 SUBJECT INDEX Quinoline, 484, 486 ethiodide, 579 Radium emanations, 579^80 Rape oil, 468 Raffinose, 695-97 Resorcinol, 15, 77, 131, 146, 224, 283, 324, 446, 484, 495, 580-1, 654 Retene, 145 Rhamnitol, dibenzal, 698 Rhamnose, 696 Rhodium salts, 581 sodium nitrite, 660 Rosolic acid, 582 Rosaniline, 581 hydrochloride, 582 Rubidium alum, 32, 582 bicarbonate, 582 bromide, 582 bromiodide, 585 cadmium bromide, 168 cadmium chloride, 172 caesium nitrosochloride, 587 calcium sulfate, 218 carbonate, 582 chlorate, 583 chloride, 183, 270, 356, 371, 412 chromate, 584 cobalt nitrite, 259 dichromate, 584 dihydroxy tartrate, 587 double sulfates, 587 fluoboride, 582 fluoride, 27, 584 fluosilicate, 586 hydroxide, 536, 584-5 gold chloride, 308 iodate, 585 iodide, 585 iridate, 585 mercuric chloride, 412 molybdate, 585 nitrate, 586 perchlorate, 583 periodate, 585 periodides, 585 permanganate, 554, 586 platinum chloride, 498 potassium perchlorate, 583 ruthenium nitrosochloride, 587 selenate, 586 silicotungstate, 586 sulfate, 220, 587 tellurate, 586 telluric acid oxalate, 586 tellurium bromide, 712 tellurium chloride, 584, 712 thallium chloride, 583. thiocyanate, 567 uranyl chloride, 734 uranyl nitrate, 735 Ruthenium salts, 587 251, 575, Saccharin, 587-8 Salicin, 588 Salicylamide, 588 Salicylates, methyl and phenyl, 251 Salicylic acid, 15,, 136, 251, 480, 575, 588-93 aldehyde, 10 Salol, 9, 96, 149, 224, 225, 245, 309, 431, 448, 593 chl Samarium chloride, 594 dimethyl phosphate, 594 double nitrates, 594 glycolate, 594 oxalate, 594 sodium sulfate, 594 sulfate, 594 sulfonates, 595 Santonin, 593 Scandium oxalate, 595 sulfate, 595 Schonite, 641 Scopolamine hydrobromide, 325 Sebacic acid, 595 Selenic acid, 596 Selenious acid, 597 anhydride, 597 Selenium, 334, 408, 421, 596, 720 583 bromide, diphenyl, 596 dioxide, 597 Silica, 210, 362, 378, 395, 402, 556, 597 Silicon, 598 iodides, 598 tetraphenyl, 302, 362, 598, 729 Silicotungstic acid, 598 Silver, 598, 705, 712 acetate, 598-9, 622 acetyl propionate, 617 arsenate, 600 arsenite, 600 benzoate, 600 borate, 600 bromate, 60 1 bromide, 351, 367, 507, 582, 601-4 butyrate, 604 caproates, 605 carbonate, 605 chloroacetate, 599-600 chlorate, 605 chloride, 183, 198, 270, 356, 371, 388, 583, 604-12 chromate, 612 citrate, 613 eyanide, 531, 613 dichromate, 613 ethyl methyl acetate, 600 ferricyanide, 613 fluoride, 613-4 fulminate, 614 heptoate, 614 iodate, 614-5 iodide, 271, 359, 374, 537, 604, 605, 611, 615-6 isobutyrate, 604 838 SUBJECT INDEX Silver, isovalerate, 624 laurate, 617 levulinate, 617 malate, 617 methyl ethyl acetate, 600 myristate, 617 nitrate, 57, 546, 548, 599, 617-9 nitrite, 1 18, 209, 376, 549, 619-20, 660 onanthylate, 614 oxalate, 620 oxide, 620-1 palmitate, 617 permanganate, 621 phosphate, 621 propionate, 621 propyl (di) acetate, 600 salicylate, 621 selenides, 95, 152 sodium cyanide, 613 stearate, 617 succinate, 621 sulfate, 219, 378, 562, 621-3 sulfide, 29, 95, 101, 277, 365, 611, 624 sulfonates, 624 tartrate, 624 thallium cyanide, 613 thiocyanate, 567, 605, 624 valerates, 624-5 vanadate, 625 Sodammonium, 625 Sodium, 37, 625 acetate, 500, 626-7 acid phosphate, 663 alum, 32 ammonium phosphates, 62 ammonium sulfate, 68 ammonium sulfite, 69 antimony sulfide, 627-8 arsenates, 628-9 benzoate, 187, 629 beryllium fluoride, 148 biborate, 630-1 bicarbonate, 43, 634, 637-8 bisulfate, 670, 672 borate, 367 borate (tetra), 629-31 bromate, 631 bromide, 99, 167, 604-5, 631-2, 634-5 cacodylate, 633 cadmium bromide, 169 cadmium chloride, 174 cadmium iodide, 178 cadmium sulfate, 180 caesium sulfate, 186 calcium thiosulfate, 222 camphorates, 633 carbonate, 13, 218, 509, 512, 633-7, 647, 655 cerium sulfate, 243 chlorate, 639 chloride, 45, 49, 109-11, 121, 166, 170, 174, 183, 196-8, 267-8, 270, 274, 339, 356, 371, 388, 411, 48o, 507, 512, 517, 519, 521-2, 526, 544-5, 548, 562, 583, 611, 632, 635, 637, 639-49, 66 1, 669-71, 690 chromates, 649-52 cinnamate, 652 citrate, 652 copper sulfate, 276 cyanide, 270, 531, 613, 649 dichromate, 650-2 diethyl barbiturate, 629 dihydrogen phosphate, 663 ferrocyanide, 532, 652 fluoride, 27, 175, 357, 534, 632, 649, 652 fluosilicate, 652 fluozirconate, 676 formate, 653 gadolinium sulfate, 305 glycerophosphate, 653 gold chloride, 308 hydrogen arsenate, 629 hydrogen phosphate, 662 hydrosulfite, 673 hydroxide, 109, 113, 536, 585, 627, 629, 630, 632, 643, 649, 651-4, 663, 670 iodate, 654 iodide, 177, 616, 632, 634, 649, 652, 654-6 iodide mercuric cyanide, 423 iodomercurate, 656 iron sulfate, 344 lanthanum sulfate, 348 lithium sulfate, 377 lithium tartrate, 378 magnesium sulfate, 668 manganese sulfate, 404 mercuric chloride, 41 1 mercury iodide, 656 meta borate, 502, 631 meta phosphate, 631 meta vanadate, 676 molybdate, 440, 656 nickel sulfate, 454 nitrate, 55, 58, 109, 116-7, 208, 222, 360, 376, 509, 519, 545-6, 548, 618, 632, 635, 644-5, 656-61 nitrite, 649, 659-60 nitrophenol, 662 oleate, 480, 660 oxalate, 552, 660-1 palmitate, 661 perchlorate, 639 phenolate, 662 phenol sulfonate, 674 phosphate, 662 phosphate fluoride, 664 phosphites, 664 picrate, 664 potassium carbonate, 512 potassium sulfate, 559, 668 potassium tartrate, 566 potassium thiosulfate, 568 839 SUBJECT INDEX Sodium, pyrophosphate, 631, 649, 664 rhodonitrite, 660 salicylate, 187, 590, 665 samarium sulfate, 594 selenate, 665 silicate, 119, 213, 378, 396, 631, 665 silver cyanide, 613 stannate, 665 succinates, 665-6 sulfate, 121, 179, 218, 220, 259-60, 274, 365, 378, 397, 405, 522, 526, 559, 562, 623, 632, 637, 641, 649, 651-2, 656, 658, 660-1, 667-72, 747 sulfide, 455, 672 sulfite, 673 sulfoantimonate, 627-8 sulfonates, 673-4 tartrate, 566, 674 tellurates, 674 tetraborate, 367, 629-31 tetrachromate, 650 tetraiodofluorescein, 335 thiocyanate, 567 thiosulfate, 208, 222, 628, 674-5 thorium sulfate, 725 trichromate, 650 tungstate, 656, 665, 672, 675 uranyl chromate, 734 uranyl oxalates, 66 1 urate, 676 yttrium sulfate, 747 zinc sulfate, 755 zirconium fluoride, 676 Sorbitols, benzal, 698 Sorbose, 697 Sparteine, 676 sulfate, 676 Stannous, stannic (see Tin) Stearic acid, 97, 248, 446, 467-8, 475, 676-7 Stearin, tri, 225, 467, 475, 677 Stilbene, 88, 103, 123, 133, 147, 280, 677 Strontium acetate, 677 ammonium sulfate, 68 benzoate, 678 bromate, 678 bromide, 100, 678 camphorate, 678 carbonate, 649, 678-9 chlorate, 679 chloride, 100, in, 119, 170, 198, 356, 371, 388, 526, 649, 679, 680 chromate, 680 cinnamate, 68 1 fluoride, 680, 68 1 formate, 68 1 glycerophosphate, 68 1 hydroxide, 678, 680-2 hyposulfate, 365 iodate, 682 iodide, 682 Strontium acetate, iodide mercuric cy- anide, 423 iodomercurate, 682 malate, 683 malonate, 683 mercuric, iodide, 682 molybdate, 683 nitrate, 361, 546, 548, 659, 68 1, 683 nitrite, 620, 683-4 oxalate, 684 oxide, 157, 198, 680, 684 periodide, 682 permanganate, 684 potassium sulfate, 558 salicylate, 684 silicate, 378, 665 succinate, 685 sulfate, 378, 562, 672, 680, 685-6 tartrate, 686 tungstate (di), 686 Strychnine, 687 salts, 688-9 Suberic acid, 689 Succinic acid, 136, 480, 666, 690-2 acid, amino, 692 acid, bromo, 692 acid, chloro, 692 acids, pyridinamino, 575 acid nitrile, 102, 133, 135, 224, 299, 405,445, 618, 649,693 Succinimide, 693 Sucrose (see Sugar) Sugar, 166, 187, 198, 205, 397, 512, 548, 627, 636, 648, 672, 693-8 Sulfanilic acid, 698 Sulfine chloroplatinates, 499 Sulfonal, 435, 448, 593 Sulfonium perchlorates, 698 iodide, triethyl, 699 Sulfur, 76, 127, 130, 150, 160, 247, 334, 421, 446, 489, 564, 596, 672, 699-705, 720, 729 dioxide, 160, 224, 247, 315, 436, 438, 705-8 Sulfuric acid, 5, 9, 10, 16, 124, 136, 145, 146, 278, 279, 484, 486, 575, 708-9, 726, 731 Sulfon methanes, ethyl, and methyl, 435 Sulfur trioxide, 708-9 Sulfuryl chloride, 247, 708 "Superphosphates," 212 Syngenite, 218 Tachhydrite, 196, 641 Talitol, tribenzal, 698 Tannic acid, 710 Tantalum potassium fluoride, 710 Tartaric acid, 480, 481, 710-11 Telluric acid, 712 Telluric acid caesium oxalate, 185 acid potassium oxalate, 552 acid rubidium oxalate, 586 Tellurium, 334, 596, 705, 712, 720 840 SUBJECT INDEX Tellurium, bromide, diphenyl, 596 caesium chloride, 182 chromium alum, 249 double salts, 712 rubidium chloride, 584 tetra iodide, 713 Terephthalic acid, 490 Terpin hydrate, 712 Tetra hydrobenzene, 89 iodo pyrrol, 335 Tetronal, 435 Thallium alum, 32, 713 bisulfate, 720 bromate, 713, 716 bromide, 713 caesium chloride, 182 carbonate, 713 chloride, in, 150, 170, 183, 198, 270, 339, 356, 371, 388, 526, 583, 611, 649, 680, 713, 715-8 chlorate, 714 chromate, 717 cyanide, 717 double cyanides, 717 double sulfates, 720 fluoride, 717 hydroxide, 717 iodate, 718 iodide, 713, 718 mercuric cyanide, 423 nitrate, 547, 548, 619, 659, 718 oxalate, 718 perchlorate, 714 phosphate, 718 picrate, 719 platinum chloride, 498 rubidium chloride, 584 selenate, 719 silver cyanide, 613 sulfate, 31, 719-20 sulfide, 720 sulfite, 720 thiocyanate, 716, 720 vanadates, 721 Thallo thallic chloride, 717 Thebaine, 721 Theobromine, 187, 721 Theocin, 721 Theophylline, 721 Thiocarbamide (thiourea), 70 diodo di, 226 Thiophene, 128 carbonic acids, 721 Thiophenylazine, 123 Thiosinamine, 738 Thiourea (thiocarbamide), 70, 738 Thorium ammonium oxalate, 60, 722 ammonium sulfate, 724 borate, 722 chloro acetates, 721 chloro oxalate, 723 emanations, 721 hippurate, 722 Thorium ammonium oxalate, nitroben- zene sulfonate, 725 oxalate, 722-3 picrate, 723 potassium sulfate, 724 selenate, 723 sodium sulfate, 725 sulfate, 723-5 Thoulet solution, 541 Thulium bromo nitrobenzene sulfo- nate, 725 oxalate, 725 Thymol, 5, 10, 146, 227, 251, 446, 484, 495, 593, 725-6 Tin, 334, 705, 712, 726 chloride, 170, 198, 247, 270, 356, 371, 388, 401, 522, 713, 726-7 diphenyl, 430 hydroxide, 728 iodide, 728-9 oxalate, 729 potassium chloride (ous), 522 sulfate, 729 sulfide (ous), 95 tetraphenyl, 598, 729 triphenyl, 95 Titanium potassium fluoride, 568 silicate, 119 Tolane, 103, 123, 147 Toluene, 21, 87, 88, 93, 239, 247, 278, 293, 301, 313, 481, 704, 729-30, 745 bromo, 128, 227, 293, 301, 484, 572, 693, 726, 730 chloro, 87, 93 chloro nitro, 730 dinitro, I nitro, 24, 26, 27, 77, 79, 87, 93, 128, 132, 283, 293, 300, 303, 408, 421, 446, 465, 478, 729-30 sulfonamines, 729 sulfochloride, 730 trinitro, I, 16, 224, 495, 575 Toluic acids, 9, 10, 12, 136, 575, 730, 731 Toluidines, 79, 136, 224, 240, 283, 293, 324, 431, 446, 448, 484, 486, 581, 731-2 Tolyl carbamide, 226 Trehalose, 696 Tribenzylamine, 730 Triethylamine, 102, in (see Ethyl- amine) Trimethylamine, 437 (see Methyl- amines) Trimethylethylene, 72 Triolein, 467 Trional, 435 Trioxymethylene, 303 Tripalmitin, 467, 475 Triphenylamine, 282, 732 Triphenyl arsine, 732 Triphenylbismuthine, 732 841 SUBJECT INDEX Triphenyl phosphine, 732 guanidine, 2 stibene, 732 Tristearin, 467, 475, 677 Trithioacetaldehyde, 732 Trithiobenzaldehyde, 732 Tropaeolin, 309 Tropic acid, 732 Tungsten trioxide, 675 Turpentine, 294, 440, 733 Ulexine, 280 Uranyl ammonium carbonate, 43, 733-4 ammonium oxalate, 735 ammonium propionate, 736 caesium chloride, 734 chloride, 733-4 double nitrates, 735 iodate, 734 nitrate, 734-5 oxalate, 66 1, 735-6 potassium butyrate, 733 potassium carbonate, 512 potassium chloride, 734 potassium oxalate, 735 potassium propionate, 736 potassium sulfate, 736 rubidium chloride, 734 sodium chromate, 734 sodium oxalates, 66 1 sulfate, 736 tetra methyl ammonium chloride, 734 Uranium sulfate, 736 Urea, 279, 484, 486, 737-8 diphenyl, 738 Urethan, 80, 128, 283, 296, 421, 446, 484. 593, 730, 741-2 derivatives, 742 methyl, 431 Uric acid, 742-3 Ureide of glucose, 741 Valeramides, 744 Valeric acid, 743 Vanadium ammonium sulfate, 69 caesium alum, 180 rubidium alum, 582 thallium alum, 713 Vanillic aldehyde, 2 Vanillin, 9, 10, 744 Vaselin, 5 Veratrine, 744 Veratrol, 730, 744 Veronal, 742, 744 Vesuvin, 744 Vinyl sulfine perchlorate, 698 Water, 5, 125, 131, 133, 138-42, 144, 164-6, 227, 235, 245, 248, 280, 282, 285, 287, 294-5, 297, 299, 302, 468, 487, 589, 593, 729, 730, Weldmint oil, 468 Xanthine, dimethyl, 721 Xanthone, 132 Xenon, 745 Xylenes, 2, 5, 21, 88, 94, 128, 281, 294, 301, 484, 581, 693, 705, 730, 744 nitro, 745 Xylenol, 745 Xylidene, 79, 484 Xylitol, dibenzal, 698 Xylose, 696 Ytterbium benzene sulfonate, 746 cobalticyanide, 746 dimethyl phosphate, 746 oxalate, 746 sulfate, 746 Yttrium chloride, 746 cobalticyanide, 746 dimethyl phosphate, 747 glycolate, 746 hydroxide, 747 iodate, 746 malonate, 746 nitrate, 747 oxalate, 747 potassium oxalate, 747 sodium sulfate, 747 sulfate, 747 sulfonates, 748 tartrate, 748 Zein, 748 Zinc, 150, 712 acetate, 748 ammonium chloride, 751 ammonium oxalate, 754 ammonium phosphate, 754 ammonium sulfate, 69, 273 arsenite, 748 benzoate, 749 bicarbonate, 749 bismuth nitrate, 151 bromide, 749 caesium sulfate, 186 carbonate, 749 cerium nitrate, 242 chlorate, 750 chloride, in, 150, 170, 198, 270, 339, 356, 388, 401, 680, 713, 727, 750-1 chromates, 751 cinnamate, 752 cyanide, 531, 752 fluoride, 652, 752 gadolinium nitrate, 304 hydroxide, 752-3 iodate, 753 iodide, 753 lanthanium nitrate, 347 mercuric thiocyanate, 752 neodymium nitrate, 449 nitrate, 395, 754 oxalate, 60, 754 842 SUBJECT INDEX Sine, oxychlorides, 750 Zinc, sulfate, 274-5, 404. 754~5 phenol sulfonate, 756 sulfide, 277, 345, 365, 624, 755 potassium cyanide, 532 sulfite, 755 potassium sulfate, 557 sulfonates, 755-6 potassium vanadate, 568 tartrate, 756 praseodymium nitrate, 568 thallium cyanide, 717 rubidium sulfate, 587 thallium sulfate, 720 samarium nitrate, 594 valerate, 756 silicate, 178, 378 Zirconium sodium fluoride, 676 sodium sulfate, 755 sulfate, 756 843 Table Showing the Volume Number and Corresponding Year (Those journals marked (*) were examined page by page for solubility data. In last number recorded for each journal is that 1900 1901 1902 1903 1904 IQ05 1906 Am Chem Jour. (*) 23-4 72 W 9 -io 25 310-14 l7llQ-2I W?- 3 238 1% 33 25-6 73 1 1-2 26 314-19 22-24 6 4-6 239 10 34 27-8 74 13-4 27 320-26 25-27 7 7-9 240 n 35 29-30 75 15-6 28 326-30 28-30 8 IO-I2 241 12 36 3 J ~ 2 76 17-8 29 rf 9 13-15 242 13 37 33-4 77 19-20 30 338-43 4-6 10 16-18 243 14 38 35-6 78 21-2 31 344-51 7-9 ii 19-21 244 15 39 i 35 20 Am Jour Pharm. (*) Am. Jour. Sci. (t) Analyst (t) Ann Chem (Liebig's) (t) Ann chim phys.* (*) Ann chim anal, (t) ". Ann. Physik (Wied.) (t) Arch. Pharm. (f) - Atti accad Lincei (*) Ber (*) Biochem, J. (t) Bull soc chim (*) l3] 23 14 25 IS 27 16 29 17 i 33 19 Bull. soc. chim. belg. (*) Chem. Abs. (*) Chem. News (t) . . . 81-2 83-4 85-6 87-8 89-90 I 28 138-9 IO-II 34 91-2 2 29 I4O-I 11-12 35 93-4 3 30 142-3 12-13 36 6th 28 1-2 8 9 4 Chem. Weekblad (*) Chem. Ztg 24 130-1 6-7 30 4th 22 25 132-3 7-8 3i 23 26 134-5 8-9 32 24 27 136-7 9~IO 5 3 ti 25 Compt. rend, (f) Elektrochem Z (f) Gazz chim ital (*) Intern. Congr. Appl. Chem. (t) J Am Chem. Soc (*) . . 26 27 i 87 3 J Biol. Chem. (t) J. Chem. Soc. (Lond.) (*) . . 77 79 81 83 i 85 2 T. chim. Dhvs. (*) . J. Ind. Eng. Chem. (*) . . J. pharm. chim. (t) J. Phys. Chem. (*) I 6 hl-12 big ' W6I-2 32 19 21 64-5 i3~ I 4 5 10 63-4 33 20 22 66-7 15-16 6 M r 65-6 34 21 68-9 17-18 7 2 67-8 35 22 I. . I9-2O 8 3 69-70 36 23 21-22 9 4 71-2 37 24 23-24 10 5 73-4 38 25 J. physique (f) J. prakt. Chem. (t) J. Russ. Phys. Chem. Soc J. Soc. Chem. Ind. (f) Mem. Coll. Sci. Eng. Kyoto 2 (*) Monatsh. Chem. (f) 24 7O-I '5 : 6 16-17 5-6 24-25 71-2 22 3-4 42 16 33-37 9 37 42-46 37-40 25 72-3 '7-8 18-19 6-7 25 73-5 23 5-6 43 17 38-42 10 38-9 47-50 40-43 26 74-5 9-10 2O-2I 7-8 25-26 76(A) 24 7-8 44 18 43-48 ii 40 50-54 43-46 27 76-7 i 11-12 22-23 8-9 26-27 77-8(A) 25 9-10 45 19 48-51 12 41-2 54-57 47-50 Pharm. Jour. (Lond.) (*)... Philippine J Sci (A) (t) Phil. Mag. (f) . 151 SO IO-II 2 23 66-7 iQ Wl-2 12-13 3 23-24 68-9 20 3-4 14-15 4 24 69-71 21 1-2 41 IS 29-33 8 35-6 39-42 34-7 Phys. Rev. (t) . . . . Proc. k. Akad. Wet. (Amst.) (*) Proc. Roy. Soc. Edinburgh (f) . Proc. Roy. Soc. (Lond.) (f) . . . Rec. trav. chim. (*) Trans. Am. Electrochem. Soc.(f) Z. anal. Chem. (*) . . 39 13 22-25 6-7 33 32-35 30-1 40 14 26-29 7 34 36-39 3i-4 Z. angew. Chem. (f) Z. anorg. Chem. (*) Z. Elektrochem. (*) Z. Kryst. Min. Z. physik. Chem. (*) Z physiol Chem (f) 1 Changed to Ann. chim. in 1914. Changed to Mem. Coll. Sci. (Kyoto) in 1914. of Publication of Fifty Chemical and Related Periodicals. the case of those marked (f), the tables of contents only were searched. The of the last complete volume examined.) 1907 1908 1909 1910 1911 1912 1913 1914 I9I5 1916 1917 37-8 39-40 41-2 43-4 45-6 47-8 49-50 79 80 81 82 83 84 85 "86" '87' 'ss' 89' 23~4 25-26 27-8 29-30 31-2 33-4 35-6 37-8 39-40 41-2 43- 3 2 33 34 35 36 37 38 39 40 351-58 358-64 364-71 371-78 378-86 386-94 395-402 402-4 IO-I2 1315 16-18 19-21 22-24 25-27 28-30 1-2 3-4 12 j? J 4 15 16 17 18 19 20 22-24 25-27 28-30 34-36 37-40 40-43 43-46 46-48 48- 245 246 247 248 249 250 251 252 253 16 I 7 18 19 20 21 22 23 24 25 40 42 43 44 45 46 47 48 2 3 4 5 5 6 7 8 9 10 Ml 3 5 7 9 ii 13 15 17 19 2 T 22 24. 2? 26 2 7 i 2 3 T" 4 o 5 6 7 8 9 IO ii 95-6 97-8 99-100 IOI-2 103-4 105-6 107-8 109-10 III-I2 "3-14 4 5 6 7 8 9 IO ii 12 13 14 3 1 144-5 32 146-7 33 148-9 34 150-1 35 152-3 36 154-5 37 156-7 158-9 39 160-1 162-3 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22- 37 38 39 40 41 42 43 44 45 46 7th 8th 29 30 / ** 3 1 32 33 34 35 36 37 38 39 2-3 4-5 5-7 7-8 11-13 13-16 16-19 20-23 24-28 28-32 9 1 93 95 97 99 IOI 103 105 107 109 in 5 6 7 8 9 IO ii 12 13 14 i 2 3 4 5 6 7 8 9 25-26 27-28 29-30 3-4 5-6 7-8 9-10 11-12 ii 12 13 14 IS 16 17 18 19 20 21 6 7 8 9 [sir 2 3 4 75-6 77-8 79-80 81-2 83-4 85-7 87-9 89-90 91-2 39 40 42 43 44 45 46 47 26 27 28 29 30 3 1 32 33 34 35 36 1-2 2-3 3-4 4~5 5 [new series Vol. ii 28 29 3 3 1 32 34 35 36 78-9 80-1 82-3 84-5 86-7 88-9 90-1 92-3 94-5 2 3 4 5 6 7 8 9 10 ii 12 13-14 15-16 17-18 19-20 21-2 24-25 26-27 28-29 30-31 32-33 34-35 Nl-2 3-4 5-6 7 9-IO 10-11 11-12 12-13 14-15 15-16 16-17 17- 27-28 79(A) 28-29 8o-i(A) 29-30 82- 3 (A) 30-31 8 3 -4(A) 84^6(A) 32-33 86- 7 (A) 88%(A) 34- 89-91 (A) 91- 26 27 28 29 30 31 32 33 34 11-12 15-16 17-18 19-20 21-22 23-24 25-26 27-28 29-30 31- 4 6 47 48 49 50 51 52 53 54 2O 21 22 23 24 25 26 27 28 52-56 56-60 61-65 65-69 69-73 73-79 79-84 84-90 90-93 14 15 16 17 18 19 20 21 42-4 44-5 46 47 48-9 50 51-2 53 57-61 61-65 65-68 68-75 75-78 78-81 8 1-86 86-89 89-90 50-54 55-58 59-64 64-70 70-76 77-82 83-88 89-93 93-95 D. VAN NOSTRAND COMPANY 25 PARK PLACE NEW YORK SHORT-TITLE CATALOG OP publications ana Jmjwrtatums OF SCIENTIFIC AND ENGINEERING BOOKS This list includes the technical publications of the following English publishers: SCOTT, GREENWOOD & CO. JAMES MUNRO & CO., Ltd. CONSTABLE&COMPANY,Ltd. TECHNICAL PUBLISHING CO. BENN BROTHERS, Ltd. for whom D. Van Nostrand Company are American agents. DECEMBER, lt)lij SHORT-TITLE CATALOG OF THE Publications and Importations OF D. VAN NOSTRAND COMPANY 25 PARK PLACE, N. Y. All Trices in this list are JVE,T. bindings are in cloth unless otherwise noted. Abbott, A, V, The Electrical Transmission of Energy 8vo, *$s oo A Treatise on Fuel i5mo, o 75 Testing Machines i6mo, o 75 Abraham, Herbert. Asphalts and Allied Substances 8vo, 5 oo Adam, P. Practical Bookbinding iirao, 2 50 Adams, H. Theory and Practice in Designing Svo, *2 50 Adams, H. C. Sewage- of Sea Coast Towns 3vo, *2 50 Adams, J. W. Sewers and Drains for Populous Districts 8vo, 2 50 Addyman, F. T. Practical X-Ray Work 8vo, 5 oo Adler, A. A. Theory of Engineering Drawing 8vo, 2 50 Principles of Parallel Projecting-line Drawing Svo, i 25 Aikman, C. M. Manures and the Principles of Manuring 8vo, (Reprinting.) Aitken, W. Manual of the Telephone 8vo, *8 oo d'Albe, E. E. F. Contemporary Chemistry i2mo, i 50 Alexander, J. Colloid Chemistry lamo, i oo Allan, W. Strength of Beams Under Transverse Loads i6mo, 075 Theory of Arches i6mo, Allen, H. Modern Power Gas Producer Practice and Applications. 12010, (Reprinting.) Anderson, J. W. Prospector's Handbook izmo, i 75 Andes, L. Vegetable Fats and Oils 3vo, *6 oo Animal Fats andi Oils Svo, 5 oo - Drying Oils, Boiled Oil, and Solid and Liquid Driers Svo, *6 oo Iron Corrosion, Anti-fouling and Anti-corrosive Paints Svo, <5 oo Oil Colors, and Printers' Ink Svo, 4 oo Treatment of Paper for Special Purposes i2rao, 3 oo Andrews, E. S. Reinforced Concrete Construction iamo, *2 oo - Theory and Design of Structures Svo, *3 50 Further Problems in the Theory and Design of Structures. .. .8vo, *2 50 The Strength of Materials .8vo, *4 oo Elastic Stresses in Structures Svo, 9 oo Andrews, E. S., and Hey wood, H. B. The Calculus for Engineers. i2mo, *2 oo Annual Reports on the Progess of Chemistry. Fifteen Volumes now ready. Vol. I., 1904, Vol. XV., 1919 Svo, each, 2 oo Argand, M. Imaginary Quantities , i6mo, o 75 Armstrong, R., and Idell, F. E. Chimneys for Furnaces and Steam Boilers. o 75 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 3 Arnold, E. Armature Windings of Direct-Current Dynamos 8vo, 2 oo- Asch, W., and Asch, D. The Silicates in Chemistry and Commerce . Svo, 7 50 Ashe, S. W., and Keiley, J. D. Electric Railways. Theoretically and Practically Treated. Vol. I. Rolling Stock i2mo, *2 50 Ashe, S. W. Electric Railways. Vol. II. Engineering Preliminaries and Direct Current Sub-Stations i2mo, *2 50 Electricity: Experimentally and Practically Applied i2mo, *2 oo Ashley, R. H. Chemical Calculations i2mo, 2 50 Atkins, W. Common Battery Telephony Simplified i2mo, *i 25 Atkinson, A. A. Electrical and Magnetic Calculations 8vo, *i 50- Atkinson, J. J. Friction of Air in Mines i6mo, o 75. Atkinson, J. J., and Williams, Jr., E. H. Gases Met with in Coal Mines. i6mo, o 75 Atkinson, P. The Elements of Electric Lighting i2mo, i 50 The Elements of Dynamic Electricity and Magnetism i2mo, 2 oo Auchincloss, W. S. Link and Valve Motions Simplified 8vo, *i 50 Audley, J. A. Silica and the Silicates 8vo (In Press.) Austin, E. Single Phase Electric Railways -4*0, *s oo Austin and Cohn. Pocketbook of Radiotelegraphy (In Press.} Ayrton, H. The Electric Arc 8vo, 5 50 Baff, W. E. Sale of Inventions i2mo (In Press.) Bailey, R. D. The Brewers' Analyst Svo, *5 oo Baker, A. L. Quaternions Svo, i 50 Thick-Lens Optics i2mo, *i 50 Baker, Benj. Pressure of Earthwork i6mo, Baker, G. S. Ship Form, Resistance and Screw Propulsion Svo, *4 50 Baker, I. 0. Levelling i6mo, o 75 Baker, M. N. Potable Water . . i6mo, o 75 Sewerage and Sewage Purification i6mo, o 75 Baker, T. T. Telegraphic Transmission of Photographs i2mo, (Reprinting.) Bale, G. R. Modern Iron Foundry Practice. i2mo. Vol. I. Foundry Equipment, Materials Used..... *3 oo> Ball, J. W. Concrete Structures in Railways Svo, *2 50- Ball, R. S. Popular Guide to the Heavens Svo, *5 oo Natural Sources of Power Svo, 2 50 Ball, W. V. Law Affecting Engineers: Svo, *3 50 Bankson, Lloyd. Slide Valve Diagrams i6mo, o 75 Barham, G. B. Development of the Incandescent Electric Lamp.. Svo, 2 50 Barker, A. F. Textiles and Their Manufacture Svo, 2 50 Barker, A. F., and Midgley, E. Analysis cf Woven Fabrics Svo, 3 50 Barker, A. H. Graphic Methods of Engine Design i2ino, 2 oo - Heating and Ventilation 4to, 9 oo Barnard, J. H. The Naval Militiaman's Guide i6mo, leather i oa Barnard, Major J. G. Rotary Motion i6mo, o 75 Barnes, J. B. Elements of Military Sketching i6mo. *o 75 Barnett, E. deB. Coal-Tar Dyes and Intermediates Svo, 3 50- Explosives, Matches and Pyrotechny .Svo (In Press.) Synthetic Dyes Svo (In Press.) Barrowoliff, M., and Carr, F. H. Organic Medicinal Chemicals. .Svo, (In Press.) 4 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Barrus, G. H. Engine Tests 8vo, *4 oo Baterden, J. R. Timber 6\o, *2 50 Bates, E. L., and Charlesworth, F. Practical Mathematics and Geometry lamo, Part I. Preliminary Course i oo Part II. Elementary Course i oo Part HI. Advanced Course i 50 Practical Mathematics lamo, *2 oo Practical Geometry and Graphics i2mo, 2 oo Batey, J. The Science of Works Management i2mo, *2 oo Steam Boilers and Combustion i2mo, *2 oo Bayonet Training Manual i6mo, o 30 Beadle, C. Chapters on Papermaking. Five Volumes i2mo, each, *2 oo Beaumont, R. Color in Woven Design 8vo, *6 oo Finishing of Textile Fabrics 8vo, *s oo Standard Cloths 8vo, *6 oo Beaumont, W. W. The Steam-Engine Indicator 8vo, 2 50 Bechhold, H< Colloids in Biology and Medicine 8vo, 5 oo Beckwith, A. Pottery 8vo, paper, o 60 Bedell, F. Airplane Characteristics 8vo, i 60 The Air Propeller 8vo, i oo The Airplane 8vo (In Press.) Bedell, F., and Pierce, C. A. Direct and Alternating Current Manual. 8vo, 2 oo Beech, F. Dyeing of Cotton Fabrics 8vo, 5 oo Dyeing of Woolen Fabrics 8vo, *s 50 Beggs, G. E. Stresses in Railway Girders and Bridges (In Press.} Begtrup, J. The Slide Valve 8vo, *2 o o Bender, 'C. E. Continuous Bridges i6mo, o 75 'Proportions of Pins Used in Bridges i6mo, o 75 Bengouga, G. D. Brass (In Press.) Bennett, EL G. The Manufacture of Leather 8v, 6 oo Animal Proteids 8vo, (In Press.) ^ernthsen, A. A Text-book of Organic Chemistry i2mo, 3 5 ;Bersch, J. Manufacture of Mineral and Lake Pigments 8vo, 6 oo Be^eridge, J. Papermaker's Pocket Book i2mo, *4 ou Binnie, Sir A. Rainfall Reservoirs and Water Supply 8vo, 4 oo Binns, C. F. Manual of Practical Potting 8vo, 8 oo - The Potter's Craft ; i2mo> *2 oo Birchmore. W. H. Interpretation of Gas Analysis i2mo, *i 25 Blaine, R. G. The Calculus and Its Applications ismo, *i 75 Blake, W. H. Brewers' Vade Mecum 8vt>, *4 oo Blanchard, W. M. Laboratory Exercises in General Chemistry. . i2mo, i oo ; Blasdate, W. C. Quantitative Chemical Analysis i2mo, 2 50 Bloch, "L. Science of Illumination 8vo, 2 50 Blyth, A, W. Foods: Their Composition and Analysis 8vo, 8 5* Poisons: Their Effects and Detection 8vo, 8 50 Bikkmaam, F. Celluloid i2mo, *2 50 Bodmer, G. R. Hydraulic Motors and Turbines i2mo, 5 oo Boileau, J. T. Traverse Tables 8vo, 5 oo Bonney, G. E. The Electro-platers' Handbook i2mo, i 50 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 5 Booth, N. Guide to the Ring-spinning Frame i2mo, *2 oo Booth, W. H. Water Softening and Treatment 8vo (Reprinting.) Superheaters and Superheating and Their Control 8vo, *i 50 Bottcher, A. Cranes: Their Construction, Mechanical Equipment and Working 4to (Reprinting.) Bottler, M. Modern Bleaching Agents zamo, 2 50 Bottone, S. R. Magnetos for Automobilists i2mo, *i oo Electro-Motors, How Made and How Use lamo, i oo Boulton, S. B. Preservation of Timber i6mo, o 75 Bourcart, E. Insecticides, Fungicides and Weedkillers 8vo, *6 oo Bourgougnon, A. Physical Problems. i6mo, o 75 Bourry, E. Treatise on Ceramic Industries 8vo, 6 oo Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining 8vo, 5 oo Bowls, 6. Tables of Common Rocks i6mo, o 75 Bowser, E. A. Elementary Treatise on Analytic Geometry i2mo, i 75 Elementary Treatise on the Differential and Integral Calculus . 12 mo, 2 25 - Elementary Treatise on Analytic Mechanics i2mo, 3 oo Elementary Treatise on Hydro-mechanics i2mo, 2 50 A Treatise on Roofs and Bridges i2mo, *2 25 Boycott, G. W. M. Compressed Air Work and Diving 8vo, *4 25 Bradford, G, Whys and Wherefores of Navigation i2mo, 2 oo Sea Terms and Phrases i2mo, fabrikoid (In Press. ) Bragg, E. M. Design of Marine Engines and Auxiliaries 8vo, 4 oo Brainard, F. R. The Sextant i6mo, Brassey's Naval Annual for 1919 8vo, 10 oo Briggs, R., and Wolff, A. R. Steam-Heating i6mo, o 75 Bright, C. The Life Story of Sir Charles Tilsoji Bright 8vo, *4 50 Telegraphy, Aeronautics and War 8vo, 6 oo Brislee, T. J. Introduction to the Study of Fuel. .8vo (Reprinting.) Broadfoot, S. K. Motors: Secondary Batteries i2mo, o 75 Broughton, H. H. Electric Cranes and Hoists Brown, G-. Healthy Foundations i6mo, o 75 Brown, H. Irrigation 8vo (Reprinting.) Brown, H. Rubber 8vo, 2} 50 W. A. Portland Cement Industry 8vo, 3 oo Brown, Wm. N. Dipping, Burnishing, Lacquering and Bronzing Brass Ware i2mo, *i 50 Handbook on Japanning i2mo, *2 oo Brown, Wm. N. The Art of Enamelling on Metal i2mo, *2 oo House Decorating and Painting i2ino, *2 oo History of Decorative Art i2mo *o 50 Workshop Wrinkles 8vo, *i oo Browne, C. L. Fitting and Erecting of Engines 8vo, *i 50 Browne, R. E. Water Meters i6mo, o 75 Bruce, E. M. Detection of Common Food Adulterants i2mo, i 40 Brunner, R. Manufacture of Lubricants, Shoe Polishes and Leather Dressings 8vo, 3 50 Buel, R. H. Safety Valves iGmo, o 75 Bunkley, J. W. Military and Naval Recognition Book i6mo, i oc Burley, G. W. Lathes. Their Construction and Operation 12010, 2 oo Machine and Fitting Shop Practice. 2 vols izmo, each, 2 oo Testing of Machine Tools i2mo, 2 oo Burnside, W. Bridge Foundations i2mo, *2 oo ,6 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Burstall, F. W. Energy Diagram for Gas. With Text 8vo, i 50 Diagram. Sold separately *i oo Burt, W. A. Key to the Solar Compass i6mo, leather, 2 50 Buskett, E. W. Fire Assaying i 2 mo, *i 25 Butler, H. J, Motor Bodies and Chassis . 8vo, *3 oa Byers, H. G., and Knight, H. G. Notes on Qualitative Analysis. . . ,8vo, (New Edition in Preparation.) Cain, W. Brief Course io the Calculus i2mo, *i 75 Elastic Arches i6mo, o 75 . Maximum Stresses i6mo, o 75 Practical Designing Retaining of Walls i6mo, o 75 Theory of Steel-concrete Arches and of Vaulted Structures. iGmo, o 75 Theory of Voussoir Arches i6mo, o 75 Symbolic Algebra i6mo, o 75 Calvert, G. T. The Manufacture of Sulphate of Ammonia and Crude Ammonia i2mo, 4 oo Camm, S.^ Aeroplane Construction xarno, 3 oo Carhart, H. S. Thermo Electromotive Force in Electric Cells, (In Press.} Carey, A. E., and Oliver, F. W. Tidal Lands 8vo, 5 oo Carpenter, F. D. Geographical Surveying i6mo, Carpenter, R. C., and Diederichs, H. Internal Combustion Engines. 8vo, 5 50 Carter, H. A. Ramie (Rhea), China Grass i2mo, *3 oo Carter, H. R. Modern Flax, Hemp, and Jute Spinning 8vo, *3 50 Bleaching, Dyeing and Finishing of Fabrics 8vo, *i 25 Cary, E. R. Solution of Railroad Problems with the Slide Rule. . i6mo, *i oo Casler, M. D. Simplified Reinforced Concrete Mathematics i2mo, *i oo Cathcart, W. L. Machine Design. Part I. Fastenings 8vo, *3 oo Cathcart, W. L., and Chaff e e, J. I. Elements of Graphic Statics. . .8vo, *3 oo Short Course in Graphics i2mo, i 50 Caven, R; M., and Lander, G. D. Systematic Inorganic Chemistry. i2mo, 2 25 Chalkley, A. P. Diesel Engines 8vo, *4 oo Chalmers, T. W. The Production and Treatment of Vegetable Oils, 4to, 7 50 Chambers' Mathematical Tables 8vo, 2 50 Chambers, G. F. Astronomy i6mo, *i 50 Chappel, E. Five Figure Mathematical Tables 8vo, 250 Charnock, Mechanical Technology 8vo, 3 50 Charpentier, P. Timber 8vo, *6 oo Chatley, H. Principles and Designs of Aeroplanes i6mo, o 75 How to Use Water Power i2mo, *i 50 Gyrostatic Balancing 8vo, *i 25 Child, C. D. Electric Arc 8vo, *2 oo Christian, M. Disinfection and Disinfectants i2mo, 2 50 Christie, W. W. Beiler-waters, Scale, Corrosion, Foaming 8vo, *3 oo Chimney Design and Theory 8vo, *3 oo Furnace Draft i6mo, o 75 Water: Its Purification and Use in the Industries 8vo, *2 oo Church's Laboratory Guide 8vo, 2 50 Clapham, J. H. Woolen and Worsted Industries 8vo, 200 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 7 Clapperton, G. Practical Papermaking 8vo (Reprinting.} Clark, A. G. Motor Car Engineering. Vol. I. Construction *4 oo Vol. II. Design 8vo, *3 50 Clark, C. H. Marine Gas Engines. New Edition 2 oo Clarke, J. W., and Scott, W. Plumbing Practice. Vol. I. Lead Working and Plumbers' Materials 8vo, *4 oo Vol. II. Sanitary Plumbing and Fittings (In Press.") Vol. III. Practical Lead Working on Roofs (In Press.} Clarkson, R. P. Elementary Electrical Engineering (In Press.} Clerk, D., and Idell, F. E. Theory of the Gas Engine .i6mo, o 75 Clevenger, S. R. Treatise on the Method of Government Surveying. i6mo, morocco, 2 50 Clouth, F. Rubber, Gutta-Percha, and Balata 8vo, *6 oo Cochran, J. Concrete and Reinforced Concrete Specifications 8vo, *2 50 Treatise on Cement Specifications 8vo, *i oo Cocking, W. C. Calculations for Steel-Frame Structures i2mo, *2 50 Coffin, J. H. C. Navigation and Nautical Astronomy i2mo, 3 oo Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. .. .i6mo, o 75 Cole, R. S. Treatise on Photographic Optics i2mo, 2 oo Coles-Finch, W. Water, Its Origin and Use .' 8vo, *5 oo Collins, C. D. Drafting Room Methods, Standards and Forms Svo, 2 oo Collins^ S. Hoare. Plant Products and Chemical Fertilizers Svo, 3 oo Collis, A. G. High and Low Tension Switch-Gear Design Svo, *3 50 Switchgear i2mo, o 50 Colver, E. D. S. High Explosives Svo, 12 50 Comstock, D. F., and Troland, L. T. The Nature of Electricity and Matter Svo, 2 50 Coombs, H. A. Gear Teeth i6mo, o 75 Cooper, W. R. Primary Batteries 8vo, *6 oo Copperthwaite, W. C. Tunnel Shields 4to, *g oo Corfield, W. H. Dwelling Houses i6mo, 075 Water and Water-Supply i6mo, o 75 Cornwall, H. B. Manual of Blow-pipe Analysis Svo. *2 50 Cowee, G. A. Practical Safety Methods and Devices Svo, 4 oa Cowell, W. B. Pure Air, Ozone, and Water i2mo, *a 50 Craig, J. W., and Woodward, W. P. Questions and Answers Abo*t Electrical Apparatus i2mo, leather, i 50 Craig, T. Motion of a Solid in a Fuel i6mo, o 75 Wave and Vortex Motion i6mo, o 75 Crehore, A. C. Mystery of Matter and Energy Svo, i oo . New Theory of the Atom (In Press.} Crocker, F. B., and Arendt, M. Electric Motors 8vo, *2 50 Crocker, F. B., and Wheeler, S. S. The Management of Electrical Ma- chinery I2H10, *I OO Crosby, E. TJ., Fiske, H. A., and Forster, H. W. Handbook of Fire Protection i2mo, 4 oo Cross, C. F., Bevan, E. J., and Sindall, R. W. Wood Pulp and Its Uses Svo (Reprinting.} Crosskey, L. R. Elementary Perspective Svo, i 50 8 D. VAN NOSTRAXD CO.'S SHORT TITLE CATALOG Crosskey, L. R., and Thaw, J. Advanced Perspective 8vo, 2 oo Culley, J. L. Theory of Arches i6mo, o 75 Gushing, H. C., Jr., and Harrison, N. Central Station Management. ,, *2 oo Dadourian, H. M. Analytical Mechanics i2mo, *3 oo Graphic Statics 8vo, o 75 Danby, A. Natural Rock Asphalts and Bitumens 8vo, *2 50 Darling, E. R. Inorganic Chemical Synonyms ii.mo, i oo Davenport, C. The Book 8vo, 2 oo Davey, N. The Gas Turbine 8vq, *4 oo Davies, F. H. Electric Power and Traction 8vo, *2 oo Foundations and Machinery Fixing i6mo, i oo Deerr, N. Sugar Cane 8vo, 10 oo De la Coux, H. The Industrial Uses of Water 8vo, 5 oo Del Mar, W. A. Electric Power Conductors 8vo, *2 oo Denny, G. A. Deep-level Mines of the Rand 4to, *io oo De Roos, J. D. C. Linkages ifcmo, o 75 Derr, W. L. Block Signal Operation Oblong i2mo, *i 50 Desaint, A. Three Hundred Shades and How to Mix Them 8vo, *g oo De Varona, A. Sewer Qases i6mo, o 75 Devey, R. G. Mill and Factory Wiring i2mo, i oo Dichmann, Carl. Basic Open Hearth Steel Process i2mo, 4 oo Dieterich, K. Analysis of Resins, Balsams, and Gum Resins. .. .8vo, *3 50 Dilworth, E. C. Steel Railway Bridges 4to. *4 oo Dinger, Lieut. H. C. Care and Operation of Naval Machinery. .. lamo, *3 oo Dixon, D. B. Machinist's and Steam Engineer's Practical Calculator. i6mo, morocco, i 25 Dommett, W. E. Motor Car Mechanism 12010, *2 oo Dorr, B. F. The Surveyor's Guide and Pocket Table-book. i6mo, morocco, 2 oo Draper, C. H. Heat and the Principles of Thermo-Dynamics. . i2mo, 2 25 Draper, E. G. Navigating the Ship 12010, 2 oo Dubbel, H. High Power Gas Engines 8vo, *5 oo Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts. 8vo, *5 oo Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. 8vo, *5 oo Dunkley, W. G. Design of Machine Elements. Two volumes. .8 vo,each, 2 oo Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry. i2mo, *i 40 Durham, H. W. Saws. 8vo, 2 50 Duthie, A. L. Decorative Glass Processes 8vo, 2 50 Dwight, H. B. Transmission Line Formulas 8vo, *2 oo Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia, 8vo, 5 oo Dyson, S. S. A Manual of Chemical Plant. 12 parts. .. -4to, paper, 7 50 Dyson, S. S., and Clarkson, S. S. Chemical Woiks 8vo, *g oo Eccles, W. H. Wireless Telegraphy and Telephony i2mo, *8 80 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 9 Eck, J. Light, Radiation and Illumination 8vo, 250 Eddy, L. C. Laboratory Manual of Alternating Currents i2mo, o 50 Edelman, P. Inventions and Patents i2mo, *i 50 Edgctmbe, K. Industrial Electrical Measuring Instruments 8vo, 5 oo Edler, R. Switches and Switchgear 8vo, 4 oo Eissler, M. The Metallurgy of Gold 8vo, 9 oo The Metallurgy of Silver 8vo, 4 oo The Metallurgy of Argentiferous Lead 8vo, 6 25 A Handbook on Modern Explosives 8vo, 5 oo Ekin, T. C. Water Pipe and Sewage Discharge Diagrams folio, *3 oo Electric Light Carbons, Manufacture of 8vo, i oo Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis i2mo, *i 25 Ellis, C. Hydrogenation of Oils 8vo, 7 50 Ultraviolet Light, Its Applications in Chemical Arts i2mo, (In Press} and Meigs, J. V. Gasolene and Other Motor Fuels.. (In Press.} Ellis, G. Modern Technical Drawing 8vo, *2 oo Ennis, Wm. D. Linseed Oil and Other Seed Oils 8vo, 5 oo Applied Thermodynamics 8vo, 5 oo Flying Machines To-day i2mo, *i 50 Vapors for Heat Engines i2mo, *i oo Ermen, W. F. A. Materials Used in Sizing 8vo, *2 oo 'Erwin, M. The Universe and the Atom i2mo (Reprinting.} Ewing, A. J. Magnetic Induction in Iron 8vo, 5 oo Fairchild, J. F. Graphical Compass Conversion Chart and Tables... o 50 Fairie, J. Notes on Lead Ores i2mo, *o 50 Notes on Pottery Clays i2mo, *2 oo Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. .. .i6mo, o 75 Fairweather, W. C. Foreign and Colonial Patent Laws 8vo, *3 oo Falk, K. G. Chemical Reactions: Their Theory and Mechanism. (In Press.} Fanning, J. T. Hydraulic and Water-supply Engineering 8vo, *5 oc Farnsworth, P. V. Shop Mathematics i2mo (In Press.} Fay, I. W. The Coal-tar Dyes 8vo, 5 oa Fernbach, R. L. Glue and Gelatine > 8vo, *3 oo Findlay, A. The Treasures of Coal Tar i2mo, 2 oo Firth, J. B. Practical Physical Chemistry i2mo] i 25 Fischer, E. The Preparation of Organic Compounds i2mo, i 50 Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing. . .8vo, 4 oo ^leischmann, W. The Book of the Dairy 8vo, 4 50 Fleming, J. A. The Alternate-current Transformer. Two Volumes. 8vo. Vol. I. The Induction of Electric Currents *6 50 Vol, II. The Utilization of Induced Currents 6 50 Propagation of Electric Currents 8vo, 3 50 A Handbook for the Electrical Laboratory and Testing Room. Two Volumes 8vo, each, *6 5 Fleury, P. Preparation and Uses of White Zinc Paints 8vo, 3 oo Flynn, P. J. Flow of Water : 12mo> 75 Hydraulic Tables i6tno, o 75 10 D. V*.N NOSTRAND CO.'S SHORT TITLE CATALOG Foster, H. A. Electrical Engineers' Pocket-book. (Seventh Edition.) i2mo, leather, 5 oo Engineering Valuation of Public Utilities and Factories 8vo, *3 oo Fowle, F. F. Overhead Transmission Line Crossings 12 mo, *i 50 The Solution of Alternating Current Problems .... .8vo (In Press.) Fox, W. G. Transition Curves i6mo, o 75 Fox, W., and Thomas, C. W. Practical Course in Mechanical Draw- ing 1 2010, i 25 Foye, J. C. Chemical Problems i6mo, o 75 Handbook of Mineralogy i6mo, 075 Francis, J. B. Lowell Hydraulic Experiments 4to, 15 oo Franzen, H. Exercises in Gas Analysis i2mo, *i oo Fraser, E. S., and Jones, R. B. Motor Vehicles and Their Motors, Svo, fabrikoid, 2 oo Freudemacher, P. W. Electric Mining Installations iamo, i oo Friend, J. N. The Chemistry of Linseed Oil i2mo, i oo Fritsch, J. Manufacture of Chemical Manures .8vo, 5 oo Frye, A. I. Civil Engineers' Pocket-book i2mo, leather, *5 oo Fuller, G. W. Investigations into the Purification of the Ohio River. 4to, *io oo Furaell, J. Paints, Colors, Oils, and Varnishes Svo. Gant, L. W. Elements of Electric Traction Svo, *2 50 Garcia, A. J. R. V. Spanish-English Railway Terms Svo, 3 co Gardner, H. A. Paint Researches, and Their Practical Applications, Svo, *s oo- Garforth, W. E. Rules for Recovering Coal Mines after Explosions and Fires i2mo, leather, i 50 Garrard, C. C. Electric Switch and Controlling Gear Svo, *6 oo Gaudard, J. Foundations i6mo, o 75 Gear, H. B., and Williams, P. F. Electric Central Station Distribution Systems Svo, *s 50 Geerligs, H. C./ P. Cane Sugar and Its Manufacture Svo, *6 oo Chemical Control in Cane Sugar Factories 4to, 5 oo Geikie, J. Structural and Field Geology Svo, 4 50 Mountains. Their Growth, Origin and Decay Svo, 4 50 The Antiquity of Man in Europe Svo, *s oo Georgi, F., and Schubert, A. Sheet Metal Working Svo, 3 50 Gerhard, W. P. Sanitation, Watersupply and Sewage Disposal of Country Houses i2mo, *2 oo Gas Lighting i6mo, o 75 Household Wastes i6mo, o 75 House Drainage i6mo, o 75 Sanitary Drainage of Buildings i6mo, o 75 Gerhardi, C. W. H. Electricity Meters Svo, *y 20 Geschwind, L. Manufacture of Alum and Sulphates Svo, 5 oo Gibbings, A. H. Oil Fuel Equipment for Locomotives. Svo. (Reprinting.} Gibbs, W. E. Lighting by Acetylene . . 12010, *i 50 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG n Gibson, A. H. Hydraulics and Its Application 8vo, 6 oo Water Hammer in Hydraulic Pipe Lines i2mo, 2 50 Gibson, A. H., and Ritchie, E. G. Circular Arc Bow Girder 4to, *s 50 Gilbreth, F. B. Motion Study i2mo, *2 oo Primer of Scientific Management i2mo, *i oo Gillmore, Gen. Q. A. Roads, Streets, and Pavements iamo, i 25 Godfrey, E. Tables for Structural Engineers i6mo, leather, *2 50 Golding, H. A. The Theta-Phi Diagram i2mo, *2 oo Goldschmidt, R. Alternating Current Commutator Motor 8vo, *3 oo Goodchild, W. Precious Stones 8vo, 2 50 Goodell, J. M. The Location, Construction and Maintenance of Roads 8vo, 2 oo Goodeve, T. M. Textbook on the Steam-engine i2mo, 2 50 Gore, G. Electrolytic Separation of Metals 8vo, 4 50 Gould, E. S. Arithmetic of the Steam-engine i2mo, i oo Calculus i6mo, o 75 High Masonry Dams i6mo, o 75 Gould, E. S. Practical Hydrostatics and Hydrostatic Formulas. .16 mo, o 75 Gratacap, L. P. A Popular Guide to Minerals 8vo, *2 oo Gray, H. H. Gas-Works Products 8vo (/;/ Prrss.) Gray, J. Electrical Influence Machines i2mo, 2 oo Marine Boiler Design i2mo (Reprinting.) Greenhill, G. Dynamics of Mechanical Flight 8vo, *2 50 Greenwood, H. C. The Industrial Gases 8vo (/// Press.} Gregorius, R. Mineral Waxes i2mo, 3 oo Grierson, R. Some Modern Methods of Ventilation 8vo, *s oo Griffiths, A. B. A Treatise on Manures i2mo (Reprinting.} Gross, E. Hops 8vo, *5 oo Grossman, J. Ammonia and Its Compounds i2mo, i 50 Groth, L. A. Welding and Cutting Metals by Gases or Electricity. 8vo, 2 50 Grover, F. Modern Gas and Oil Engines .8vo, *3 oo Gruner f A. Power-loom Weaving 8vo, *s 50 Grunsky, C. E. Topographic Stadia Surveying i6mo, 2 oo Guldner, H. Internal Combustion Engines (In Press.) Gunther, C. 0. Integration 8vo, i 50 Gurden, R. L. Traverse Tables folio, half morocco, *y 50 Guy, A. E. Experiments on the Flexure of Beams 8vo, *i 25. Haenig, A. Emery and Emery Industry 8vo, *2 50 Hainbach, R. Pottery Decoration i2mo, 3 50 Hale, A. J. The Manufacture of Chemicals by Electrolysis. 8vo, (In Press.) Hale, W. J. Calculations of General Chemistry i2mo, i 50 Hall, C. H. Chemistry of Paints and Paint Vehicles i2mo, *2 oo Hall, R. H. Governors and Governing Mechanism i2mo, *2 50 Hall, W. S. Elements of the Differential and Integral Calculus 8vo, 2 75 Descriptive Geometry 8vo volume and a 4to atlas, 4 oo Haller, G. F., and Cunningham, E. T. The Tesla Coil i2mo, *i 25 Halsey, F. A. Slide Valve Gears i2mo, i 50 The Use of the Slide Rules i6mo, 075 Worm and Spiral Gearing i6mo, o 75 12 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Hancock, H. Textbook of Mechanics and Hydrostatics 8vo, i 50 Hardy, E. Elementary Principles of Graphic Statics i2mo, *i 50 flaring, H. Engineering Law. Vol. I. Law of Contract 8vo, *4 oo Harper, J. H. Hydraulic Tables on the Flow of Water i6mo, *2 oo Harris, S. M. Practical Topographical Surveying (In Press.) Harrow, B. Eminent Chemists of Our Times: Their Lives and Work. (In Press.) Haskins, C. H. The Galvanometer and Its Uses i6mo, i 50 Hatt, J. A. H. The Colorist square i2mo, *i 50 Hausbrand, E. Drying by Means of Air and Steam 12010, 2 50 Evaporating, Condensing and Cooling Apparatus 8vo, 6 oo Hausmann, E. Telegraph Engineering 8vo, *3 oo Hausner, A. Manufacture of Preserved Foods and Sweetmeats. .. .8vo, 3 50 Hawkesworth, J. Graphical Handbook for Reinforced Concrete Design. 4to, 2 oo Hay, A. Continuous Current Engineering 8vo, ;: 2 50 Hayes, H. V. Public Utilities, Their Cost New and Depreciation. . .8vo, *2 oo Public Utilities, Their Fair Present Value and Return 8vo, *2 oo Heath, F. H. Chemistry of Photography 8vo.. (In Press.) Heather, H. J. S. Electrical Engineering 8vo, 4 50 Heaviside, 0. Electromagnetic Theory. Vols. I and II....8vo, each, (Reprinting.) Vol. Ill 8vo (Reprinting.)- Heck, R. C. H. The Steam Engine and the Turbine 8vo, 4 50 Steam-Engine and Other Steam Motors. Two Volumes. Vol. I. Thermodynamics and the Mechanics 8vo, 4 50 Vol. II. Form, Construction, and Working 8vo, 550 Notes on Elementary Kinematics 8vo, boards, *i oo Graphics of Machine Forces 8vo, boards, *i oo Heermann, P. Dyers' Materials i2mo, 3 oo Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and Cotton. 8vo, *2 oo Bering, C., and Getman, F. H. Standard Tables of Electro-Chemical Equivalents i2mo, *2 oo Bering, D. W. Essentials of Physics for College Students 8vo, 2 25 Herington, C. F. Powdered Coal as Fuel 8vo, 3 oo Herrmann, G. The Graphical Statics of Mechanism i2mo, 2 oo Herzfeld, J. Testing of Yarns and Textile Fabrics 8vo. (New Edition in Preparation.) Hildenbrand, B. W. Cable-Making i6mo, o 75 Hilditch, T. P. A Concise History of Chemistry i2mo, *i 50 Hill, M. J. M. The Theory of Proportion 8vo, *2 50 Hillhouse, P. A. Ship Stability and, Trim .8vo, 4 50 Hiroi, I. Plate Girder Construction i6mo, o 75 ^Statically-Indeterminate Stresses i2mo, 2 50 Hirshf eld, C. F. Engineering Thermodynamics i6mo, o 75 Hoar, A. The Submarine Torpedo Boat i2mo, *2 oo Hobart, H. M. Heavy Electrical Engineering 8vo, *4 50 Design of Static Transformers i2mo, 250 Electricity 8vo, *2 oo Electric Trains 8vo, *2 50 Electric Propulsion of Ships 8vo, *2 50 D. VAN NQSTRAND CO.'S SHORT TITLE CATALOG 13 Hobart, J. F. Hard Soldering, Soft Soldering and Brazing I2mo, i 25 Hobbs, W. R. P. The Arithmetic of Electrical Measurements. .. .i2mo, o 75 Hoff, J. N. Paint and Varnish Facts and Formulas i2mo, i 50 Hole, W. The Distribution of Gas 8vo, *8 50 Hopkins, N. M. Model Engines and Small Boats i2mo, i 25 The Outlook for Research and Invention i2mo. 2 oo Hopkinson, J., Shoolbred, J. N., and Day, R. E. Dynamic Electricity. i6mo. o ?!> Homer, J. Practical Ironf ounding 8vo, *2 oo Gear Cutting, in Theory and Practice 8vo (Reprinting.) Houghton, C. E. The Elements of Mechanics of Materials i2mo, 2 50 Houstoun, R. A. Studies in Light Production 12010, 2 oo Hovenden, F. Practical Mathematics for Young Engineers 12010, *i 50 Howe, G. Mathematics for the Practical Man i2mo, i 50 Koworth, J. Repairing and Riveting Glass, China and Earthenware. 8vo, paper, *o 50 Hoyt, W. E. Chemistry by Experimentation 8vo, * 70 Hubbard, E. The Utilization of Wood-waste 8vo, *2 50 Hiibner, J. Bleaching and Dyeing of Vegetable and Fibrous Materials. 8vo (Reprinting.). Hudson, 0. F f Iron and Steel 8vo, <. ^ Humphreys, A. C. The Business Features of Engineering Practice . 8vo, 2 50- Hunter, A. Bridge Work 8vo. (In Press.) Hurst, G. H. Handbook of the Theory of Color 8vo t *3 50 Dictionary of Chemicals and Raw Products 8vo, *5 oo Lubricating Oils, Fats and Greases 8vo, *$ oo Soaps , 8vo, *6 oo Hurst, G. H., and Simmons, W. H. Textile Soaps and Oils 8vo, 3 50 Hurst, H. E. t and Lattey, R. T. Text-book of Physics 8vo, *3 oo Also published in three parts. Part I. Dynamics and Heat i 50 Part II. Sound and Light , 150 Part in. Magnetism and Electricity *i 50 Hutchinson, R. W., Jr. Long Distance Electric Power Transmission. i2mo, *3 oo Hutchinson, R. W., Jr., and Thomas, W. A. Electricity in Mining. i2mo. (In Press.) Hyde, E. W. Skew Arches i6mo. o 75 Hyde, F. S. Solvents, Oils, Gums, Waxes 8vo, *2 oo Induction Coils i6mo. o 75 Ingharn, A. E. Gearing. A practical treatise 8vo, *2 50 Ingle, H. Manual of Agricultural Chemistry 8vo (In Press.} Inness, C. H. Problems in Machine Design i2mo, *3 oo Centrifugal Pumps i2mo, *3 oo The Fan ...,,, i2mo, *4 oo Jacob, A., and Gould, E. S. On the Designing and Construction of Storage Reservoirs i6mo. o 75 Jacobs, F. B. Cam Design and Manufacture ( In Press.) I 4 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG James, F. D. Controllers for Electric Motors 8vo. * oo Jehl, F. Manufacture of Carbons 8vo. 5 oo Jennings, A. S. Commercial Paints and Painting 8vo. 2 so Jennison, F. H. The Manufacture of Lake Pigments. .8vo (In Press.) Jepson, G. Cams and the Principles of their Construction 8vo, *i 50 Mechanical Drawing 8vo (In Preparation.) Jervis-Smith, F. J. Dynamometers 8vo. 4 oo Jockin, W. Arithmetic of the Gold and Silversmith 12010, *i oo Johnson, C. H., and Earle, R. P. Practical Tests for the Electrical Laboratory ( /;/ Press.) Johnson, J. H. Arc Lamps and Accessory Apparatus i2mo, o 75 Johnson, T. M. Ship Wiring and Fitting i2mo (Reprinting.)' Johnston, J. F. W., and Cameron, C. Elements of Agricultural Chemistry and Geology iimo, 2 60 Joly, J. Radioactivity and Geology i2mo (Reprinting.) Jones, H. C. Electrical Nature of Matter and Radioactivity i2mo, *2 oo Nature of Solution 8vo, *3 50 New Era in Chemistry i2mo, *2 oo Jones, J. H. Tinplate Industry 8vo, *s oo Jones, M. W. Testing Raw Materials Used in Paint i2mo, *2 50 Jordan, L. C. Practical Railway Spiral i2mo, leather, *i 50 Juptner, H. F. V. Siderclogy: The Science of Iron 8vo, *s oo Kapp, G. Alternate Current Machinery i6mo, o 75 Kapper, F. Overhead Transmission Lines. 4to, ^400 Keim, A. W. Prevention of Dampness in Buildings 8vo, *2 50 Keller, S. S., and Knox, W. E. Analytical Geometry and Calculus. .. 2 oo Kemble, W. T., and Underbill, C. R. The Periodic Law and the Hydrogen Spectrum 8vo, paper, *o 50 Kemp, J. F. Handbook of Rocks 8vo, *i 50 Kennedy, A. B. W., and Thurston, R. H. Kinematics of Machinery. i6mo, o 75 Kennedy, A. B. W., Unwin, W. C., and Idell, F. E. Compressed Air. i6mo, o 75 Kennedy, R. Flying Machines ; Practice and Design i2mo, 2 50 Principles of Aeroplane Construction 8vo, *2 oo Kent. W. Strength of Materials i6mo, o 75 Kershaw, J. B. C. Fuel, Water and Gas Analysis. .8vo (In Press.) Electrometallurgy 8vo, 2 50 Electro-Thermal Methods of Iron and Steel Production 8vo, *3 oo Kinzbrunner, C. Continuous Current Armatures 8vo, i 50 - Testing of Alternating Current Machines 8vo, *2 oo Kinzer, H., and Walter, K. Theory and Practice of Damask Weaving, 8vo, 4 oo Kirkaldy, A.. W., and Evans, A. D. History and Economics of Transport 8vo, *s oo Kirkbride, J. Engraving for Illustration 8vo, *i oo Kirschke, A. Gas and Oil Engines i2mo, *i 50 D VAN NOSTRAND CO.'S SHORT TITLE CATALOG 15 Klein, J. F. Design of a High-speed Steam-engine 8vo, *5 oo Physical Significance of Entropy 8vo, *i 50 Klingenberg, G. Large Electric Power Stations 4to, *5 oo Knight, R.-Adm. A. M. Modern Seamanship 8vo, *6 50 Pocket Edition i2mo, f abrikoid, 3 oo Knott, C. G., and Mackay, J. S. Practical Mathematics 8vo, 2 50 Knox, J. Physico-Chemical Calculations. i2mo, i 50 Fixation of Atmospheric Nitrogen. . .7 i2mo, i oo Koester, F. Steam-Electric Power Plants 4to, *5 oo Hydroelectric Developments and Engineering 4to, *5 oo Koller, T. The Utilization of Waste Products 8vo, *5 oo Cosmetics 8vo, *2 50 Koppe, S. W. Glycerine xarno, *s 50 Kozmin, P. A. Flour Milling 8vo, 750 Krauch, C. Chemical Reagents 8vo, ^ oo Kremann, R. Application of the Physico-Chemical Theory to Tech- nical Process and Manufacturing Methods 8vo, 3 oo Kretchmar, K. Yarn and Warp Sizing 8vo, *$ oo Laff argue, A. Attack in Trench Warfare i6mo, o 50 Lallier, E. V. Elementary Manual of the Steam Engine i2mo, *2 oo Lambert, T. Lead and Its Compounds 8vo, *3 50 Bone Products and Manures 8vo, *3 50 Lamborn, L. L. Cottonseed Products 8vo, 4 oo Modern Soaps, Candles, and Glycerin 8vo, **j 50 Lamprecht, R. Recovery Work After Pit Fires .8vo, 5 oo Lanchester, F. W. Aerial Flight. Two Volumes. 8vo. Vol. I. Aerodynamics *6 oo Vol. II. Aerodonetics *6 oo Lanchester, F. W. The Flying Machine 8vo, *3 oo Industrial Engineering: Present and Post- War Outlook. . . i2mo, i oo Lange, K. R, By-Products of Coal-Gas Manufacture xamo, 2 50 La Rue, B. F. Swing Bridges i6mo, o 75 Lassar-Cohn, Dr. Modern Scientific Chemistry i2mo, 2 25 Latimer, L. H., Field, C. J., ,and Howell, J. W. Incandescent Electric Lighting i6mo, o 75 Latta, M. N. Handbook of American Gas-Engineering Practice. .8vo, 5 oo American Producer Gas Practice 4to, *6 oo Laws, B. C. Stability and Equilibrium of Floating Bodies 8vo, 4 50 Law&on, W. R. British Railways. A Financial and Commercial Survey 8vo, 200 Leask, A. R. Refrigerating Machinery i2mo (Reprinting.) Lecky, S. T. S. "Wrinkles" in Practical Navigation 8vo, 10 oo Pocket Edition i2mo, 5 oo Danger Angle i6mo, 2 50 Le Doux, M. Ice-Making Machines i6mo, o 7$ Leeds, C. C. Mechanical Drawing for Trade Schools oblong 4to, 2 25 Mechanical Drawing for High and Vocational Schools 4to, i 50 Principles of Engineering Drawing 8vo (In 'Press.) Lefevre, L, Architectural Pottery 4 to, 7 oc Lehner, S, Ink Manufacture 8vo, 2 50 Lemstrom, S. Electricity in Agriculture and Horticulture 8vo, *i 50 Letts, E. A. Fundamental Problems in Chemistry 8vo, *2 oo Le Van, W. B. Steam-Engine Indicator i6mo, o 7$ !6 D. VAX XOSTRAXD CO.'S SHORT ^ITLE CATALOG Lewes, V. B. Liquid and Gaseous Fuels Svo, 3 oo Carbonization of Coal 8vo, : 5 oo Lewis Automatic Machine Rifle ; Operation of i6mo, *o Go Licks, H. E. Recreations in Mathematics i2mo, i 50 Lieber, B. F. Lieber's Five Letter American Telegraphic Code .8vo, ^15 oo . Spanish Edition 3vo, ^15 oo French Edition 8vo, "15 oo Terminal Index 8vo, *2 50 Lieber's Appendix folio, *i5 oo Handy Tables 4to, *2 50 Bankers and Stockbrokers' Code and Merchants and Shippers' Blank Tables 8vo, *i$ oo 100,000,000 Combination Code .8vo, *io oo Livermore, V. P., and Williams, J. How to Become a Competent Motor- man i2mo, *i oo Livingstone, R. Design and Construction of Commutators 8vo, 450 Mechanical Design and Construction of Generators 8vo, 4 50 Lloyd, S. L. Fertilizer Materials i-zmo, 2 oo Lockwood, T. D. Electricity; Magnetism, and Electro-telegraph. .... STO, 2 50 Electrical Measurement and the Galvanometer i2mo, o 75 Lodge, O. J. Elementary Mechanics i2mo, i 50 Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps.. 5 oo Lomax, J. W. Cotton Spinning 12010, i 50 Lord, R. T. Decorative and Fancy Fabrics Svo, *3 50 Loring, A. E. A Handbook of the Electromagnetic Telegraph. . . i6mo, o 75 Lowy, A. Organic Type Formulas o 10 Lubschez, B. J- Perspective 12010, *i 50 Lucke, C. E. Gas Engine Design Svo, *?. oo - Power Plants: Design, Efficiency, and Power Costs. 2 vols. (In Preparation.) Luckiesh, M. Color and Its Application Svo, 3 50 Light and Shade and Their Applications 8vo, 3 oo Visual Illusions (In Preparation. ) Lunge, G. Coal-tar and Ammonia. Three Volumes .8vo, *25 oo Technical Gas Analysis Svo, *4 $& Manufacture of Sulphuric Acid and Alkali. Four Volumes 8vo, Vol. I. Sulphuric Acid. In three parts (Reprinting.) Vol. I. Supplement Svo (Reprinting.) Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda. In two parts (In Press. ) Vol. III. Ammonia Soda (In Press.) Vol. IV. Electrolytic Methods (In Press.) Technical Chemists' Handbook tamo, leather, *4 oo Technical Methods of Chemical Analysis. Vol. I. In two parts Svo, *i$ oo Vol. II. In two parts , 8vo, *i8 oo Vol. III. In two parts Svo, *i8 oo The set (3 vols.) complete *5o oo Luquer, L. M. Minerals in Rock Sections .. . .8vo, *i 5 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 17 MacBride, J. D. A Handbook of Practical Shipbuilding, i2mo, fabrikoid, 2 oo Macewen, H. A. Food Inspection 8vo, *2 50 Mackenzie, N. F. Notes on Irrigation Works 8vo, *2 50 Mackie, J. How to Make a Woolen Mill Pay 8vo, *2 oo Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing .... 8vo, 4 oo Malcolm, H. W. Submarine Telegraph Cable 9 oo Malinovzsky, A. Analysis of Ceramic Materials and Methods of Calculation (In Press.} Mallet, A. Compound Engines i6mo, Mansfield, A. N. Electro-magnets i6mo, o 75 Marks, E. C. R. Construction of Cranes and Lifting Machinery. i2mo, *2 75 Manufacture of Iron and Steel Tubes i2mo, 2 50 Mechanic*! Engineering Materials 12010, *i 50 Marks, G. C. Hydraulic Power Engineering 8vo, 4 50 Marlow, T. G. Drying Machinery and Practice. .. .8vo (Reprinting.) Marsh, C. F. Concise Treatise on Reinforced Concrete 8vo, *2 50 Reinforced Concrete Compression Member Diagram. Mounted on Cloth Boards *i .50 Marsh, C. F., and Dunn, W. Manual of Reinforced Concrete and Con- crete Block Construction i6mo, cloth, 2 oo Marshall, W. J., and Sankey, H. R. Gas Engines 8vo, 2 oo Martin, G. Triumphs and Wonders of Modern Chemistry 8vo, *3 oo Modern Chemistry and Its Wonders 8vo, *s oo Martin, N. Properties and Design of Reinforced Concrete 8vo, i 50 Martin, W. D, Hints to Engineers i2mo, 2 oo Massie, W. W., and Underbill, C. R. Wireless Telegraphy and Telephony. i2mo, *i oo Mathot, R. E. Internal Combustion Engines 8vo, 5 oo Maurice, W. Electric Blasting Apparatus and Explosives 8vo, *3 50 Shot Firer*s Guide 8vo, *i 50 Maxwell, F. Sulphitation in White Sugar Manufacture i2mo, 4 oo Maxwell, J. C. Matter and Motion i6mo, o 75 Maxwell, W. H., and Brown, J. T. Encyclopedia of Muni.ipal and Sani- tary Engineering 4to, *io oo Mayer, A. M. Lecture Notes on Physics 8vo, 2 oo McCracken, E. M., and Sampson, C. H. Course in Pattern Making. (In Press.) McCullough, E. Practical Surveying i2mo, 2 50 McCullough, R. S. Mechanical Theory of Heat 8vo, 3 50 McGibbon, W. C. Indicator Diagrams for Marine Engineers 8vo, "3 50 Marine Engineers' Drawing Book oblong 4to, *2 50 McGibbon, W. C. Marine Engineers Pocketbook i2mo, *4 50 Mclntosh, J. G. Technology of Sugar 8vo, *6 oo Industrial Alcohol ; 8vo, *3 50 Manufacture of Varnishes and Kindred Industries. Three Volumes. 8vo. Vol. I. Oil Crushing, Refining and Boiling 7 oo Vol. II. Varnish Materials and Oil Varnish Making. (Reprinting.) Vol. III. Spirit Varnishes and Materials (Reprinting.) McKay, C. W. Fundamental Principles of the Telephone Business. 8vo. (In Press.) i8 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG McKillop, M., and McKillop, A. D. Efficiency Methods i2mo, i 50 UcKnight, J. D., and Brown, A. W. Marine Multitubular Boilers.... *2 50 McMaster, J. B. Bridge and Tunnel Centres i6mo, o 75 McMechen, F. L. Tests for Ores, Minerals and Metals i2mo, *i co McNair, Jas. B. Citrus By-Products : (hi press.) Meade, A. Modern Gas Works Practice 8vo, *8 50 Melick, C. W. Dairy Laboratory Guide 12010, *i 25 "Mentor." Self-Instruction for Students in Gas Supply. i2mo. Elementary 2 50 Advanced 2 50 - Self-Instruction for Students in Gas Engineering. i2mo. Elementary 2 oo Advanced 2 oo Merivale, J. H. Notes and Formulae for Mining Students i2mo, i oo Merritt, Wm. H. Field Testing for Gold and Silver i6mo, leather, 2 oo Mertens. Tactics and Technique of River Crossings 8vo, 2 50 Mierzinski, S. Waterproofing of Fabrics 8vo, 2 50 Miessner, B. F. Radio Dynamics i2mo, *2 oo Miller, G. A. Determinants . . i6mo, Miller, W. J. Introduction to Historical Geology i2mo, 2 25 Milrpy, M. E. W. Home Lace-making i2mo, *i oo Mills, C. N. Elementary Mechanics for Engineers 8vo, *i oo Mitchell, C. A. Mineral and Aerated Waters 8vo, *3 oo Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and Allied Industries .'../ ...8vo, 3 50 Mitchell, C. F., and G. A. Building Construction and Drawing. i2mo. Elementary Course 2 oo Advanced Course 3 oo Monckton, C. C. F. Radiotelegraphy 8vo, 200 Monteverde, R. D. Vest Pocket Glossary of English-Spanish, Spanish- English Technical Terms 64mo, leather, *i oo Montgomery, J. H. Electric Wiring Specifications i6mo, *i oo Moore, E. C. S. New Tables for the Complete Solution of Ganguillet and Kutter's Formula 8vo, *6 oo Moore, Harold. Liquid Fuel for Internal Combustion Engines. . .8vo, 5 oo Morecroft, J. H., and Hehre, F. W. Short Course in Electrical Testing. 8vo, i 75 Morgan, A. P. Wireless Telegraph Apparatus for Amateurs I2mo, *i 50 Morrell, R. S., and Waele, A. E. Rubber, Resins, Paints and Var- nishes 8vo (In Press.) Moses, A. J. The Characters of Crystals 8vo, *2 oo and Parsons, C. L. Elements of Mineralogy 8vo, *3 50 Moss, S. A. Elements of Gas Engine Design i6mo, o 75 -The Lay-out of Corliss Valve Gears i6mo, o 75 Mulford, A. C. Boundaries and Landmarks i2mo, *i oo Mulford, A. C. Boundaries and Landmarks 12010, i oo Munby, A. E. Chemistry and Physics of Building Materials. .. .8vo, 2 50 Murphy, J. G. Practical Mining i6mo, i oo Murray, B. M. Chemical Reagents 8vo ( In Press.) Murray, J. A. Soils and Manures 8vo, 200 Nasmith, J. The Student's Cotton Spinning 8vo, 4 50 Recent Cotton Mill Construction i2mo, 3 oo D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 19 tieave, G. B., and Heilbron, I. M. Identification of Organic Compounds. i2mo, i 50 Neilson, R. M. Aeroplane Patents 8vo, *2 oo Kerz, F. Searchlights 8vo (Reprinting.) Newbigin, M. I., and Flett, J. S. James Geikie, the Man and the Geologist 8vo, 3 50 Newbiging, T. Handbook for Gas Engineers and Managers 8vo, 7 50 Newell, F. H., and Drayer, C. E. Engineering as a Career. .i2mo, cloth, *i oo Nicol, G. Ship Construction and Calculations 8vo, *io oo Nipher, F. E. Theory of Magnetic Measurements i2mo, i oo Nisbet, H. Grammar of Textile Design 8vo, 7 50 Nolan, H. The Telescope i6mo, o 75 Norie, J. W. Epitome of Navigation (2 Vols.) octavo, 15 oo A Complete Set of Nautical Tables with Explanations of Their Use octavo, 6 50 North, H. B. Laboratory Experiments in General Chemistry 12010, *i oo <^ O'Connor, H. The Gas Engineer's Pocketbook i2mo, leather, 400 Ohm, G. S., and Lockwood, T. D. Galvanic Circuit i6mo, o 75 Olsen, J. C. Text-book of Quantitative Chemical Analysis 8vo, 400 Ormsby, M. T. M. Surveying i2mo, 2 oo Oudin, M. A. Standard Polyphase Apparatus and Systems 8vo, *3 oo Pakes, W. C. C., and Nankivell, A. T. The Science of Hygiene . .8vo, *i 75 Palaz, A. Industrial Photometry -. 8vo, 4 oo Palmer, A. R. Electrical Experiments i2mo, o 75 Magnetic Measurements and Experiments i2mo, o 75 Pamely, C. Colliery Manager's Handbook 8vo, *io oo Parker, P. A. M. The Control of Water 8vo, 600 Parr, G. D. A. Electrical Engineering Measuring Instruments. .. .8vo, *3 50 Parry, E. J, Chemistry of Essential Oils and Artificial Perfumes. Vol. I. Monographs on Essential Oils 9 oo Vol. II. Constituents of Essential Oils, Analysis 7 oo Foods and Drugs. Two Volumes. Vol. I. The Analysis of Food and Drugs 8vo, 950 Vol. II. The Sale of Food and Drugs Acts 8vo, 3 50 and Coste, J. H. Chemistry of Pigments .8vo, *5 oo Parry, L. Notes on Alloys 8vo, *s 50 Metalliferous Wastes 8vo, *2 50 Analysis of Ashes and Alloys 8vo, *2 50 Parry, L. A. Risk and Dangers of Various Occupations 8vo, *3 50 Parshall, H. F., and Hobart, H. M. Electric Railway Engineering . 4to, 7 50 Parsons, J. L. Land Drainage 8vo, *i 50 Parsons, S. J. Malleable Cast Iron 8vo (Reprinting.) Partington, J. R. Higher Mathematics for Chemical Students. .i2mo, 2 50 Textbook of Thermodynamics 8vo, *4 oo The Alkali Industry 8vo, 3 oo Patchell, W. H. Electric Power in Mines 8vo, *4 oo Paterson, G. W. L. Wiring Calculations i2mo, *2 50 Electric Mine Signalling Installations i2mo, *i 50 Patterson, D. The Color Printing of Carpet Yarns 8vo, *3 50 Color Matching on Textiles 8vo, *3 50 Textile Color Mixing 8vo, *3 50 20 D. VAN NOSTRANt) CO.'S SHORT TITLE CATALOG Paulding, C. P. Condensation of Steam in Covered and Bare Pipes. 8vo, *2 oo - Transmission of Heat through Cold-storage Insulation i2mo, *i oo Payne, D. W. Iron Founders' Manual 8vo, 4 oo Peddle, R. A. Engineering and Metallurgical Books 12010, *i 50 Peirce, B. System of Analytic Mechanics 4to, 10 oo Linear Associative Algebra 4to, 2 50 Perkin, F. M., and Jaggers, E. M. Elementary Chemistry. ...i2mo, i co Perrin, J. Atoms 8vo, *2 50 Perrine, F. A. C. Conductors for Electrical Distribution 8vo, *3 50 Petit, G. White Lead and Zinc White Paints. 8vo, *2 oo Petit, R. How to Build an Aeroplane 8vo, i 50 Pettit, Lieut. J. S. Graphic Processes i6mo, 075 Philbrick, P. H. Beams and Girders '. i6mo, Phin, J. Seven Follies of Science : 12010, *r 50 Pickworth, C. N. Logarithms for Beginners .i2mo, boards, i oo The Slide Rule izmo, i 50 Pilcher, R. B. The Profession of Chemistry lamo (In Press.) Pilcher, R. B., and Butler-Jones, F. What Industry Owes to Chemical Science tamo, i 50 Plattner's Manual of Blow-pipe Analysis. Eighth Edition, revised. 8vo, 4 oo Plympton, G. W. The Aneroid Barometer i6me, o 75 How to Become an Engineer x6oi, o 75 Van Nostrand's Table Book i6ano, o 75 Pochet, M. L. Steam Injectors i6mo, o 75 Pocket Logarithms to Four Places i6mo, o 75 i6mo, leather, i oo Polleyn, F. Dressings and Finishings for Textile Fabrics 8vo, *3 50 Pope, F. G. Organic Chemistry izmo, 2 50 Pope, F. L. Modern Practice of the Electric Telegraph 8vo, i 50 Popplewell, W. C. Prevention of Smoke 8v, *3 50 Strength of Materials 8v, *2 50 Porritt, B. D. The Chemistry of Rubber 12019, i oo Porter, J. R. Helicopter Flying Machine . . izrno, i 50 Potts, H. E. Chemistry of the Rubber Industry 8vo, 2 50 Practical Compounding of Oils, Tallows and Grease 8v, * 3 50 Pratt, A. E. The Iron Industry 8vo (hi Press.) The Steel Industry 8vo (In Press.) Pratt, Jas. A. Elementary Machine Shop Practice (In Press.) Pratt, K. Boiler Draught 12010, *i 25 Prelini, C. Earth and Rock Excavation 8vo, *3 oo Graphical Determination of Earth Slopes 8vo, *2 oo Tunneling. New Edition 8vo, *3 oo Dredging. A Practical Treatise 8vo, *3 oo Prescott, A. B., and Johnson, 0. C. Qualitative Chemical Analysis . . 8vo, 4 oo Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry. Prideaux, E. B. R. Problems in Physical Chemistry 8vo, *2 oo The Theory and Use of Indicators 8vo, 5 oo Prince, G. T. Flow of Water iamo, *2 oo Pull, E. Modern Steam Boilers 8vo, 5 oo Pullen, W. W. F. Application of Graphic Methods to the Design of i2mo, *i 50 Structures I2mo , 3 O o - Injectors: Theory, Construction and Working izmo, *2 oo Indicator Diagrams 8vo, 3 o-> Engine Testing !ttf, *5 50 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 21 Purday, H. F. P. The Diesel Engine Design 8vo (In Press.) Putsch, A. Gas and Coal-dust Firing 8vo, *2 50 Rafter, G. W. Mechanics of Ventilation i6mo, o 75 Potable Water i6mo, o 75 Treatment of Septic Sewage i6mo, . v o 75 and Baker, M. N. Sewage Disposal in the United States. .. .4to, 6 oo Raikes, H. P. Sewage Disposal Works 8vo, *4 oo Randau, P. Enamels and Enamelling 8vo, *s oo Rankine, W. J. M., and Bamber, E. F. A Mechanical Text-book. .8vo, 4 oo Civil Engineering 8vo. 7 50 Machinery and Millwork 8vo, 6 oo - The Steam-engine and Other Prime Movers 8vo, 6 oo Rankine, W. J. M., and Bamber, E. F. A Mechanical Text-book 8vo, 3 50 Raphael, F. C. Localization of Faults in Electric Light and Power Mains. 8vo, 3 50 Rasch, E. Electric Arc Phenomena 8vo, 2 oo Rathbone, R. L. B. Simple Jewellery 8vo, 2 50 Rausenberger, F. The Theory of the Recoil Guns 8vo, *5 oo Rautenstrauch, W* Notes on the Elements of Machine Design. 8 vo, boards, *i 50 Rautenstrauch, W., and Williams, J. T. Machine Drafting and Empirical Design. Part I. Machine Drafting 8vo, i 50 Part II. Empirical Design (In Preparation.) Raymond, E. B. Alternating Current Engineering 12010, *2 50 Rayner, H. Silk Throwing and Waste Silk Spinning 8vo, Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery Trades, Svo, *5 oo Recipes for Flint Glass Making i2mo, *s oo Redfern, J. B., and Savin, J. Bells, Telephones i6mo, o 75 Redgrove, H. S. Experimental Mensuration i2mo, i 50 Reed, S. Turbines Applied to Marine Propulsion *5 oo Reed's Engineers' Handbook Svo, *g oo Key to the Nineteenth Edition of Reed's Engineers' Handbook. .8vo, 4 oo Useful Hints to Sea-going Engineers i2mo, 3 oo Reid, E. E. Introduction to Research in Organic Chemistry. (In Press.} Reinhardt, C. W. Lettering for Draftsmen, Engineers, and Students. oblong 410, boards, i oo Reinhardt, C. W. The Technic of Mechanical Drafting, oblong, 4to, boards, *i oo "Reiser, F. Hardening and Tempering of Steel i2mo, 2 50 Reiser, !N. Faults in the Manufacture of Woolen Goods Svo, 2 50 Spinning and Weaving Calculations Svo, *$ oo Renwick, W. G. Marble and Marble Working Svo (Reprinting.) tteuleaux, F. The Constructor 4to, 400 Rey, Jean. The Range of Electric Searchlight Projectors Svo, (Reprinting.} Reynolds, ., and Idell, F. E. Triple Expansion Engines i6mo, o 75 Rhead, G. F. Simple Structural Woodwork i2mo, *i 25 Rhead, G. W. British Pottery Marks Svo, 3 50 Rhodes, H. J. Art of Lithography Svo, 5 oo Rice, J. M., and Johnson, W. W. A New Method of Obtaining the Differ- ential of Functions i2mo, o 50 22 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Richards, W. A. Forging of Iron and Steel i2mo, 2 oo Richards, W. A., and North, H. B. Manual of Cement Testing. . . . i2mo, *i 50 Richardson, J. The Modern Steam Engine 8vo, *3 50 Richardson, S. S. Magnetism and Electricity i2mo, *2 oo Rideal, E. K. Industrial Electrometallurgy 8vo, 3 oo The Rare Earths and Metals 8vo (In Press.) Rideal, S. Glue and Glue Testing 8vo, *s oo The Carbohydrates 8vo (In Press.) Riesenberg, F. The Men on Deck i2mo, 3 oo Standard Seamanship for the Merchant Marine. i2mo (In Press.) Rimmer, E. J. Boiler Explosions, Collapses and Mishaps 8vo, *i 75 Rings, F. Reinforced Concrete in Theory and Practice i2mo, *4 50 Reinforced Concrete Bridges 4to, *$ oo Ripper, W. Course of Instruction in Machine Drawing folio, *6 oo Roberts, F. C. Figure of the Earth i6mo, o 75 Roberts, J., Jr. Laboratory Work in Electrical Engineering 8vo, *2 oo Robertson, L. S. Water-tube Boilers 8vo, 2 oo Robinson, J. B. Architectural Composition 8vo, *2 50 Robinson, S. W. Practical Treatise on the Teeth of Wheels. .i6mo, o 75 Railroad Economics i6mo, o 75 Wrought Iron Bridge Members i6mo, o 75 Robson, J. H. Machine Drawing and Sketching 8vo, *2 oo Roebling, J. A. Long and Short Span Railway Bridges folio, 25 oo Rogers, A. A Laboratory Guide of Industrial Chemistry 8vo, 2 oo Elements of Industrial Chemistry i2mo, *3 oo Manual of Industrial Chemistry 8vo, *s oo Rogers, F. Magnetism of Iron Vessels i6mo, o 75 Rohland, P. Colloidal and Crystalloidal State of Matter i2mo, (Reprinting.) Rollinson, C. Alphabets Oblong, i2mo, *i oo Rose, J. The Pattern-makers' Assistant 8vo, 2 50 Key to Engines and Engine-running i2mo, 2 50 Rose, T. K. The Precious Metals 8vo, 2 50 Rosenhain, W. Glass Manufacture 8vo, 5 oo Physical. Metallurgy, An Introduction to 8vo, 4 oo Roth, W. A. Physical Chemistry 8vo, *2 oo Rowan, F. J. Practical Physics of the Modern Steam-boiler 8vo, *3 oo and Idell, F. E. Boiler Incrustation and Corrosion i6mo, o 75 Roxburgh, W. General Foundry Practice 8vo, 2 50 Ruhmer, E. Wireless Telephony 8vo, 4 50 Russell, A. Theory of Electric Cables and Networks 8vo, *3 oo Rust, A. Practical Tables for Navigators and Aviators 8vo, 3 50 Rutley, F. Elements of Mineralogy i2mo, i 50 Sandeman, E. A. Notes on the Manufacture of Earthenware. ..i2mo, 3 50 Sanford, P. G. Nitro-explosives 8vo, *4 oo Saunders, C. H. Handbook of Practical Mechanics i6mo, i 50 leather, 2 oo Sayers, H. M. Brakes for Tram Cars 8vo, *i 25 Schaefer, C. T. Motor Truck Design 8vo, 250 Scheele, C. W. Chemical Essays 8vo, *2 50 Scheithauer, W. Shale Oils and Tars 8vo, *4 oo D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 23 Scherer, jR. Casein , M '. 8vo, 3 50 Schidrowitz, P. Rubber, Its Production and Industrial Uses Svo, *6 oo Schindler, K. Iron and Steel Construction Works izmo, *2 oo Schmall, C. N. First Course in Analytic Geometry, Plane and Solid. i2mo, half leather, *i 75 and Shack, S. M, Elements of Plane Geometry xamo, i 25 Schwarz, E. H. L. Causal Geology Svo, *3 oo Schmeer, L. Flow of Water 8vo, 150 Schweizer, V. Distillations of Resins Svo, 5 oo Scott, A. H. Reinforced Concrete in Practice !2mo, 2 oo Scott, W. W. Qualitative Analysis. A Laboratory Manual. New Edition 3 oo Standard Methods of Chemical Analysis Svo, *6 oo Scribner, J. M. Engineers' and Mechanics' Companion. .i6mo, leather, i 50 Scudder, H. Electrical Conductivity and lonization Constants of Organic Compounds Svo, *3 oo Seamanship, Lectures on i2mo, 2 oo Searle, A. B. Modern Brickmaking Svo (In Press,) Cement, Concrete and Bricks , .Svo, 3 oo Searle, G. M. "Sumners' Method." Condensed and Improved. iGmo, o 75 Seaton, A. E. Manual of Marine Engineering Svo, 10 oo Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine Engi- neering i6mo, leather, 5 oo SeeJigmann, T., Torrilhon, G. L., and Falconnet, H. India Rubber and Gutta Percha Svo, 6 oo Seidell, A. Solubilities of Inorganic and Organic Substances .... Svo, 7 50 Sellew, W. H. Steel Rails 4to, *io oo Railway Maintenance Engineering i2mo, 3 oo Senter, G. Outlines of Physical Chemistry i2mo, *2 50 Text-book of Inorganic Chemistry i2mo, *3 oo Sever, G. F. Electric Engineering Experiments Svo, beards, *i oo Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Elec- trical Engineering Svo, *2 50 Sewall, C. H. Wireless Telegraphy Svo, *2 oo Lessons in Telegraphy i2mo, *i oo Sexton, A. H. Fuel and Refractory Materials i2mo (Reprinting.) -Chemistry of the Materials of Engineering ismo, *3 oo Alloys (Nan-Ferrous) Svo, 3 50 Sexton, A. H., and Primrose, J. S. G. The Metallurgy of Iron and Steel. Svo, *6 50 Seymour, A. Modern Printing Inks Svo, 3 oo Shaw, Henry S. H. Mechanical Integrators i6mo, o 75 Shaw, S. History of the Staffordshire Potteries Svo, 2 50 Chemistry of Compounds Used in Porcelain Manufacture. .. .Svo, *6 oo Shaw, T. R. Driving of Machine Tools i2mo, *2 oo Precision Grinding Machines i2mo, 5 oo Shaw, W. N. Forecasting Weather Svo (Reprinting.) Sheldon, S., and Hausmann, E. Dynamo Electric Machinery, A.C. and D.C Svo (In Press.) 1 Electric Traction and Transmission Engineering .i2mo, 2 50 Physical Laboratory Experiments, for Engineering Students. .Svo, *i 25 24 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Sherriff, F. F. Oil Merchants' Manual and Oil Trade Ready Reckoner, Svo, 3 50 Shields, J. E. Notes on Engineering Construction i2mo, i 50 Shreve, S. H. Strength of Bridges and Roofs 8vo, 3 50 Shunk, W. F. The Field Engineer i2mo, fabrikoid, 2 50 Silverman, A., and Harvey, A. W. Laboratory Directions and Study Questions in Inorganic Chemistry 4to, loose leaf, 2 oo Simmons, W. H. Fats, Waxes and Essential Oils. .8vo (In Press.) Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture, 3/0, *4 oo Simmons, W. H., and Mitchell, C. A. Edible Fats and Oils 8vo, *3 50 Simpson, G. The Naval Constructor i2mo, fabrikoid, *$ oo Simpson, W. Foundations , 8vo. (In Press.} Sinclair, A. Development of the Locomotive Engine. . .8vo, half leather, 5 oo Sindall, R. W. Manufacture of Paper 8vo (Reprinting.) Sindall, R. W., and Bacon, W. N. The Testing of Wood Pulp 8vo, ( Reprin ting. ) Wood and Cellulose 8vo (In Press.) Sloane, T. O'C. Elementary Electrical Calculations i2mo, *2 oo Smallwood, J. C. Mechanical Laboratory Methods. .. . i2mo, fabrikoid, 3 oo Smith, C. A. M. Handbook of Testing, MATERIALS 8vo, *2 50 Smith, C. A. M., and Warren, A. G. New Steam Tables 8vo, *i 25 Smith, C. F. Practical Alternating Currents ard Testing 8vo, *3 50 Practical Testing of Dynamos and Motors 8vo, *3 oo Smith, F. E. Handbook of General Instruction for Mechanics . . . izmo, i 50 Smith, G. C. Trinitrotoluenes and Mono- and Dinitrotoluenes, Their Manufacture and Properties i2mo, 2 oo Smith, H. G. Minerals and the Microscope i2mo, 2 oo Smith, J. C. Manufacture of Paint 8vo, *5 oo Smith, R. H. Principles of Machine Work i2mo, Advanced Machine Work i2mo, *3 oo Smith, W. Chemistry of Hat Manufacturing i2mo, *3 50 Snell, F. D. Calorimetric Analysis i2mo (In Press.} Snow, W. G., and Nolan, T. Ventilation of Buildings i6mo, o 75 Soddy, F. Radioactivity 8vo (Reprinting.) Solomon, M. Electric Lamps 8vo, 2 oo Somerscales, A. N. Mechanics for Marine Engineers i2mo, 2 50 Mechanical and Marine Engineering Science 8vo, *$ oo Sothern, J. W. The Marine Steam Turbine Svo, *i2 50 Verbal Notes and Sketches for Marine Engineers Svo, *i2 50 Marine Engine Indicator Cards Svo, 4 50 Sothern, J. W., and Sothern, R. M. Simple Problems in Marine Engineering Design i2mo, Souster, E. G. W. Design of Factory and Industrial Buildings.. .8vo, Southcombe, J. E. Chemistry of the Oil Industries Svo, Soxhlet, D. H. Dyeing and Staining Marble Svo, Spangenburg, L. Fatigue of Metals iGmo, Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topographical Surveying i5mo, Spencer, A. S. Design of Steel-Framed Sheds Svo, Spiegel, L. Chemical Constitution and Physiological Action. .. .i2mo, D. VAN NOSTRAND CO'.'S SHORT TITLE CATALOG 25 Sprague, . E. H. Hydraulics i amo, 2 co Elements of Graphic Statics ; 8vo, 3 co - Stability of Masonry i^rao, 2 oo Elementary Mathematics for Engineers i2mo, 2 co Stability of Arches i?.mo, 2 oo Strength of Structural Elements i2mo, 2 oo Moving Loads by Influence Lines and Other Methods i2mo, 2 oo Stahl, A. W. Transmission of Power i6mo, Stahl, A. W., aad Woods, A. T. Elementary Mechanism i2mo, *2 oo Standage, H. C. LeatherworkersP Manual 8vo, *3 50 Sealing Waxes, Wafers, and Other Adhesives 8vo, *2 50 AgglHtiaants of All Kinds for All Purposes i2mo, 3 50 Stanley, H. Practical Applied Physics (In Press.) Stansbie, J. H. Iron and Steel 8vo, 2 50 Steadman, F. M. Unit Photography i2mo, *2 oo Stecher, G. E. Cork. Its Origin and Industrial Uses i2mo, i oo Steinheil, A., and Voit, E. Applied Optics* Vols. I. and II. 8vo, Each, 5 oo . Two Volumes Set, 9 oo Steinman, D. B. Suspension Bridges and Cantilevers. (Science Series No. 127.) o 75 Stevens, A. B. Arithmetric of Pharmacy i2mo, i 50 Stevens, E. J. Field Telephones and Telegraphs i 20 Stevens, H. P. Paper Mill Chemist i6mo, 4 oo Stevens, J. S. Theory of Measurements i2mo, *i 25 Stevenson, J. L. Blast-Furnace Calculations i2mo, leather, 2 50 Stewart, G. Modern Steam Traps i2mo, *i 75 Stiles, A. Tables for Field Engineers i2mo, i oo Stodola, A. Steam Turbines 8vo, 5 oo Stone, E. W. Elements of Radiotelegraphy i2mo, fabrikoid, 2 50 Stone, H. The Timbers of Commerce Svo, 4 oo Stopes, M. The Study of Plant Life Svo, 2 oo Sudborough, J. J., and James, T. C. Practical Organic Chemistry ,. lamo, 2 50 Suf fling, E. R. Treatise on the Art of Glass Painting Svo, *3 50 Sullivan, T. V., and Underwood, N. Testing and Valuation of Build- ing and Engineering Materials (In Press.) Sutherland, D. A. The Petroleum Industry Svo (In Press.) Svenson, C. L. Handbook on Piping Svo, 4 oo Essentials f Drafting Svo, i 75 Mechanical and Machine Drawing and Design (In Press.) Swan, K. Patents, Designs and Trade Marks Svo, 2 oo Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric Currents. i6mo, o 75 Swoope, C. W. Lessons in Practical Electricity i2mo, *2 oo Tailfer, L. Bleaching Linen and Cotton Yarn and Fabrics 3vo, 7 co Tate, J. S. Surcharged and Different Forms of Retaining- walls. .i6mo, o 75 Taylor, F. N. Small Water Supplies i2mo, *2 50 Masonry in Civil Engineering Svo, *2 50 Taylor, W. T. Electric Cable Transmission and Calculation. (In Press.) Calculation of Electric Conductors 4to (In P,css.) Templeton, W. Practical Mechanic's Workshop Companion. i2mo, morocco, a oo Tenney, E. H. Test Methods for Steam Power Plants i2mo, 3 oo Terry, H. L. India Rubber and its Manrfacture. .8vo (Reprinting.) 26 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Thayer, H. R. Structural Design. 8vo. Vol. I. Elements of Structural Design 350 Vol. II. Design of Simple Structures 4 50 Vol. III. Design of Advanced Structures (In Preparation.) Foundations and Masonry (In Preparation.) Thiess, J. B., and Joy, G. A. Toll Telephone Practice 8vo, *3 50 Thorn, C., and Jones, W. H. Telegraphic Connections.. . .oblong, i2mo, 150 Thomas, C. W. Paper-makers' Handbook . (In Press.) Thomas, J. B. Strength of Ships 8vo, 2 50 Thomas, Robt. G. Applied Calculus ..izmo, 300 Thompson, A. B. Oil Fields of Russia 4to, 10 oo Oil Field Development 10 oo Thompson, S. P. Dynamo Electric Machines i6mo, o 75 Thompson, W. P. Handbook of Patent Law of All Countries i6mo, i 50 Thomson, G. Modern Sanitary Engineering i2mo, *s oo Thomson, G. S. Milk and Cream Testing i2mo, *2 25 Modern Sanitary Engineering, House Drainage, etc 8vo, *3 oo Thornley, T. Cotton Combing Machines. 8vo, *s 50 Cotton Waste 8vo, ^3 50 Cotton Spinning. 8vo. First Year *i 50 Second Year *3 50 Third Year *2 50 Thurso, J. W. Modern Turbine Practice 8vo, *4 oo Tidy, C. Meymott. Treatment of Sewage i6mo, o 75 rilmans, J. Water Purification and Sewage Disposal 8vo, 2 50 Tinney, W. H. Gold-mining Machinery 8vo, *3 oo Titherley, A. W. Laboratory Course of Organic Chemistry 8vo, *2 oo Tizard, H. T. Indicators (In Press.~) Toch, M. Chemistry and Technology of Paints 8vo, 4 50 Materials for Permanent Painting i2mo, *2 oo Tod, J., and McGibbon, W. C. Marine Engineers' Board of Trade Examinations 8vo, *2 oo Todd, J., and Whall, W. B. Practical Seamanship 8vo, 12 oo Townsend, F. Alternating Current Engineering 8vo, boards, *o 75 Townsend, J. S. lonization of Gases by Collision 8vo, *i 25 Transactions of the American Institute of Chemical Engineers, 8vo. Vol. I. to XL, 1908-1918 8vo, each, 6 oo Traverse Tables i6mo, o 75 Treiber, E. Foundry Machinery i2mo, 2 oo Trinks, W. Governors and Governing of Prime Movers 8vo, 3 50 Trinks, W., and Housum, C. Shaft Governors i6mo, o 75 Trowbridge, W. P. Turbine Wheels i6mo, o 75 Tucker, J. H. A Manual of Sugar Analysis 8vo, 3 50 Turnbull, Jr., J., and Robinson, S. W. A Treatise on the Compound Steam-engine i6mo, o 75 Turner, H. Worsted Spinners' Handbook i2mo, *3 oo Turrill, S. M. Elementary Course in Perspective I2mo, *i 25 Twyford, H. B. Purchasing 8vo, *3 oo Storing, Its Economic Aspects and Proper Methods 8vo, 3 50 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 27 Underbill, C. R. Solenoids, Electromagnets and Electromagnetic Wind- ings i2mo, 3 oo Underwood, N., and Sullivan, T. V. Chemistry and Technology of Printing Inks 8vo, *3 oo Urquhart, J. W. Electro-plating i2mo, 2 oo Electrotyping , I2mo, 2 oo Usborne, P. O. G. Design of Simple Steel Bridges 8vo, *4 oo Vacher, F. Food Inspector's Handbook i2mo, Van Nostrand's Chemical Annual. Fourth issue igiS.fabrikoid, i2mo, *3 oo Year Book of Mechanical Engineering Data (In Press.) Van Wagenen, T. F. Manual of Hydraulic Mining i6mo, i oo Vega, Baron Von. Logarithmic Tables 8vo, 2 50 Vincent, C. Ammonia and its Compounds. Trans, by M. J. Salter.Svo, *2 50 Vincent, C. Ammonia and its Compounds 8vo, 2 50 Virgin, R. Z. Coal Mine Management (In Press.) Volk, C. Haulage and Winding Appliances 8vo, *4 oo Von Georgievics, G. Chemical Technology of Textile Fibres 8vo, Chemistry of Dyestuffs 8vo, (New Edition in Preparation.) Vose, G. L. Graphic Method for Solving Certain Questions in Arithmetic and Algebra i6mo, o 75 Vosmaer, A. Ozone 8vo, *2 50 Wabner, R. Ventilation in Mines 8vo, 5 oo Wadmore, T. M. Elementary Chemical Theory i2mo, *i 50 Wagner, E. Preserving Fruits, Vegetables, and Meat i2mo, *2 50 Wanner, H. E., and Edwards, H. W. Railway Engineering Estimates. (In Press.) Wagner, "J. B. Seasoning of Wood 8vo, 3 oo Waldram, P. J. Principles of Structural Mechanics i2mo, 4 oo Walker, F. Dynamo Building i6mo, o 75 Walker, J. Organic Chemistry for Students of Medicine 8vo, 4 oc Walker, S. F. Steam Boilers, Engines and Turbines 8vo, 3 oo Refrigeration, Heating and Ventilation on Shipboard i2mo, *2 50 Electricity in Mining 8vo, *4 50 Electric Wiring and Fitting 8vo, 2 50 Wallis-Tayler, A. J. Bearings and Lubrication 8vo, *i 50 Aerial or Wire Ropeways 8vo (Reprinting.) Preservation of Wood 8vo, 4 oo Refrigeration, Cold Storage and Ice Making 8vo, 5 50 Sugar Machinery i2mo, 3 oo Walsh, J. J. Chemistry and Physics of Mining and Mine Ventilation, i2mo, 2 50 Wanklyn, J. A. Water Analysis i2mo, 2 oo Wansbrough, W. D. The A B C of the Differential Calculus. .. . i2mo, *2 50 Slide Valves i2mo, *2 oo Waring, Jr., G. E. Sanitary Conditions i6mo, o 75 Sewerage and Land Drainage *6 oo Modern Methods of Sewage Disposal i2mo, 2 oo How to Drain a House i2mo, i 25 28 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG Warnes, A. R. Coal Tar Distillation 8vo, *5 oo Warren, F. D. Handbook on Reinforced Concrete i2mo, *2 50 Watkins, A. Photography 8vo, 3 50 Watson, E. P. Small Engines and Boilers lamo, i 25 Watt, A. Electro-plating and Electro-refining of Metals 8vo, 5 oo Electro-metallurgy izmo, i oo Paper-Making 8vo, 3 75 Leather Manufacture 8vo, 6 oo The Art of Soap Making 8vo, 4 oo Webb, H. L. Guide to the Testing of Insulated Wires and Cables. i2mo, i oo Wegmann, Edward. Conveyance and Distribution of Water for Water Supply 8vo, 5 oo Weisbach, J. A Manual of Theoretical Mechanics 8vo, *6 oo Weisbach, J., and Herrmann, G. Mechanics of Air Machinery. .. .8vo, *3 75 Wells, M. B. Steel Bridge Designing 8vo, *2 50 Wells, Robt. Ornamental Confectionery 12 mo, 3 oo Weston, E. B. Loss of Head Due to Friction of Water in Pipes. .i2mo, 2 oo Wheatley, 0. Ornamental Cement Work 8vo, *2 25 Whipple, S. An Elementary and Practical Treatise on Bridge Building. 8vo, 3 oo White, C. H. Methods of Metallurgical Analysis i2mo, 2 50 White, G. F. Qualitative Chemical Analysis i2mo, 140 White, G. T. Toothed Gearing 12120, *2 oo White, H. J. Oil Tank Steamers 121*10, i 50 Whitelaw, John. Surveying 8vo, 450 Whittaker, C. M. The Application of the Coal Tar Dyestuff s . . . 8vo, 3 oo Widmer, E. J. Military Balloons 8vo, 3 oo Wilcox, R. M. Cantilever Bridges i6mo, o 75 Wilda, H. Steam Turbines lamo, 2 oo Cranes and Hoists i2mo, 2 oo. Wilkinson, H. D. Submarine Cable Laying and Repairing 8vo, {Reprinting.) Williamson, J. Surveying 8vo, *3 oo Williamson, R. S. Practical Tables in Meteorology and Hypsometry, 4to, 2 50 Wilson, F. J., and Heilbron, I. M. Chemical Theory and Calculations. i2mo, *i 25 Wilson, J. F. Essentials of Electrical Engineering 8vo, 2 50 Wimperis, H. E. Internal Combustion Engine 8vo, "^3 oo Application of Power to Road Transport i2mo, ::; i 50 Primer of Internal Combustion Engine i2mo, i 50 Winchell, N. H., and A. N. Elements of Optical Mineralogy 8vo, *3 50 Winslow, A. Stadia Surveying i6mo, o 75 Wisser, Lieut. J. P. Explosive Materials iGmo, Modern Gun Cotton . . . . . i6mo, o 75 Wolff, C. E. Modern Locomotive Practice 8vo, *4 20 Wood, De V. Luminiferous Aether i6mo, o 75 Wood, J. K. Chemistry of Dyeing i2mo, i oo Worden, E. C. The Nitrocellulose Industry. Two Volumes 8vo, *io oo Technology of Cellulose Esters. In 10 volumes. 8vo. Vol. VIII. Cellulose Acetate. . *5 oo D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 29 Wren, H. Organometallic Compounds of Zinc and Magnesium, . i2mo, i oo Wiight, A. C. Analysis of Oils and Allied Substances 8vo, *3 50 Wright, A. C. Simple Method for Testing Painters' Materials. . .8vo, 2 50 Wright, F. W. Design of a Condensing Plant.. i2mo (Reprinting.') Wright, H. E. Handy Book for Brewers 8vo, *6 oo Wright, J. Testing, Fault Finding, etc., for Wiremen i6mo, o 50 Wright, T. W. Elements of Mechanics 8vo, *z 50 Wright, T. W., and Hayford, J. F. Adjustment of Observations. ..8vo, *3 oo Wynne, W. E., and Sparagen, W. Handbook of Engineering Mathe- matics i2ino, 2 oo Yoder, J. H., and Wharen, G. B. Locomotive Valves and Valve Gears, 8vo, *3 oo Young, J. E. Electrical Testing for Telegraph Engineers 8vo, *4 oo Young, R. B. The Banket 8vo, 3 50 Youngson. Slide Valve and Valve Gears ' 8vo, 3 oo Zahner, R. Transmission of Power i6mo, Zeuner, A. Technical Thermodynamics. Two Volumes 8vo, 8 oo Zimmer, G. F. Mechanical Handling and Storing of Materials. .. .4to, 15 oo Mechanical Handling of Material and Its National Importance During and After the War 4to, 4 oo iZipser, J. Textile Raw Materials 8vo, 5 oo Zur Nedden, F. Engineering Workshop Machines and Processes. .8vo, 2 oo D. VAN NOSTRAND COMPANY are prepared to supply, either from their complete stock or at short notice, Any Technical or Scientific Book In addition to publishing a very large and varied number of SCIENTIFIC AND ENGINEERING BOOKS, D. Van Nostrand Company have on hand the largest assortment in the United States of such books issued by American and foreign publishers. All inquiries are cheerfully and care- fully answered and complete catalogs sent free on request. 25 PARK PLACE NEW YORK UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY Return to desk from which borrowed. This book is DUE on the last date stamped below. 280ct'49A 2iiVlay T 5lUJ 2lMay54Vlf **> - APR 2019 DEC 12 ' t Jan u3BP\V REC D L DEC 1 3 196^ i,a LD 21-100w-9,'481B399sl6)476