UC-NRLF $B 527 fibD -rSXHif, > ]iJ-V^-KxawiMil&»it *(tW«*.'.''.-J^KV>'4.'VWS*Tf«V«. IGONOMETI\Y Lyman and Goddars W O i lW;j «< rw i Hj i WMWH »li m i| IW»l i ' IM Il lli | ll tkif.i- - -■>-:a^-gy,'vity;^T»w^ 'W «|iii wina 'Hi ll>m*rl>i ■a««»»»wvTrocwi>«idu o aM >w «>> w » Mw*»v i w noq w w «t wiWrt»WWi<)UCts^ With Tables PLANE TRIGONOMETRY BY ELMER A. LYMAN MICHIGAN STATE NORMAL COLLEGE AND EDWIN C. GODDARD UNIVERSITY OF MICHIGAN 3»' Fig. 1. £ PLANE TRIGONOMETRY. In reading an angle, read first the initial line, then the terminal line. Thus in the figure the acute angle XOE, or xr, is a positive angle, and ROX^ or rx^ an equal negative angle. Ex. 1. Show that if the initial lines for \, f, ^/, — ^, right angles are the same, the terminal lines may coincide. 2. Name four other angles having the same initial and terminal lines as ^ of a right angle ; as f of a right angle ; as f of a right angle. 2. Rectangular axes. Any plane surface may be divided by two perpendicular straight lines XX^ and YY' into four portions, or quadrants. XX' is known as the x-axis, YY' as the y-axis^ and the two together are called axes of refer- X ence. Their intersection is the origin^ and the four portions of the plane surface, XOY, YOX', y" X'OY', Y'OX, are called respec- Fjq, 2. tively the first, second, third, and fourth quadrants. The position of any point in the plane is determined when we know its dis- tances and directions from the axes. 3. Any direction may be considered positive. Then the opposite direction must be negative. Thus, if AB represents any positive line, BA is an equal nega- tive line. Mathematicians usually consider lines measured in the same direction as OX or OY (Fig. 2) as positive. Then lines measured in the same direc- tion as OX' or OY' must he negative. The distance of any point from the ?/-axis is called the abscissa, its distance from the a;-axis the ordinate, of that point ; the two together are the coordinates of the point, usually denoted by the letters x and y respectively, and written (x, y). Y p' P ,/ N p" Y' P'" ANGLES — MEASUREMENT. 3 When taken with their proper signs, the coordinates define completely the position of the point. Thus, if the point P is + a units from YY', and + h units from XX', any convenient unit of length being chosen, the position of P is known. For we have only to measure a distance ON equal to a units along OX, and then from N measure a distance h units parallel to OY, and we arrive at the position of the point P, (a, &). In like manner we may locate P', (— «, ^), in the second quadrant, P", (—a, — Z>), in the third quadrant, and P'", (a, — &), in „ ^ the fourth quadrant. Ex. Locate (2, -2); (0,0); (-8, -7); (0, 5); (-2, 0); (2, 2); (m, n). 4. If OX is the initial line, is said to be an angle of the first, second, third, or fourth quadrant, according as its ter- minal line is in the first, second, third, or fourth quadrant. It is clear that as OR rotates its quality is in no way affected, and hence it is in all positions considered positive, and its ex- tension through 0, OB', negative. The student should notice that the initial line may take any position and revolve in either direction. While it is customary to consider the counter-clockwise rotation as forming a positive angle, yet the condi- V. ^'^' tions of a figure may be such • / that a positive angle may be \/ generated by a clockwise rota- yu ^ ^ ""^B' /V /4^ *io^- Thus the angle X072 in -2^' j^'r \x each figure may be traced as p . a positive angle by revolving the initial line OX to the posi- tion OR. No confusion can result if the fact is clear that when an angle is read XOP, OX is considered a positive line revolving to the position OR. OX' and OR' then are negative lines in whatever direc- tions drawn. These conceptions are mere matters of agreement, and the agreement may be determined in a particular case by the conditions of the problem quite as well as by such general agreements of mathema- ticians as those referred to in Arts. 3 and 4 above. 5. Measurement. All measurements are made in terms of some fixed standard adopted as a unit. This unit must 4 PLANE TRIGONOMETRY. be of the same kind as the quantity measured. Thus, length is measured in terms of a unit length, surface in terms of a unit surface, weight in terms of a unit weight, value in terms of a unit value, an angle in terms of a unit angle. The measure of a given quantity is the number of times it contains the unit selected. Thus the area of a given surface in square feet is the number of times it contains the unit surface 1 sq. ft. ; the length of a road in miles, the number of times it contains the unit length 1 mi. ; the weight of a cargo of iron ore in tons, the number of times it contains the unit weight 1 ton ; the value of an estate, the number of times it contains the unit value f 1. The same quantity may have different measures, according to the unit chosen. So the measure of 80 acres, when the unit surface is 1 acre, is 80, when the unit surface is 1 sq. rd., is 12,800, when the unit surface is 1 sq. yd., is 387,200. What is its measure in square feet ? 6. The essentials of a good unit of measure are : 1. That it be invariable, i.e. under all conditions bearing the same ratio to equal magnitudes. 2. That it be convenient for practical or theoretical pur- poses. 3. That it be of the same kind as the quantity measured. 7. Two systems of measuring angles are in use, the sexa- gesimal and the circular. The sexagesimal system is used in most practical applica- tions. The right angle, the unit of measure in geometry, though it is invariable, as a measure is too large for con- venience. Accordingly it is divided into 90 equal parts, called degrees. The degree is divided into 60 minutes, and the minute into 60 seconds. Degrees, minutes, seconds, are indicated by the marks ° ' ", as 36° 20' 15''. The division of a right angle into hundredths, with subdivisions into hundredths, would be more convenient. The French have proposed such MEASUREMENT OF ANGLES. a centesimal system, dividing the right angle into 100 grades, the grade into 100 minutes, and the minute into 100 seconds, marked ^^ ''\ as 508 70^ 28^\ The great labor involved in changing mathematical tables, instruments, and records of observation to the new system has prevented its adoption. 8. The circular system is important in theoretical con- siderations. It is based on the fact that for a given angle the ratio of the length of its arc to the length of the radius of that arc is constant, i.e. for a fixed angle the ratio arc : radius is the same no matter what the length of the radius. In the figure, for the angle ^, OA OB OQ AA' BB' CQ' That this ratio of arc to radius for a fixed angle is constant follows from the established geometrical principles : 1. The circumference of any circle is 2 tt times its radius. 2. Angles at the centre are in the same ratio as their arcs. The Radian. It follows that an angle whose arc is equal in length to the radius is a constant angle for all circles, since in four right angles, or the perigon, there are always 2 7r such angles. This constant angle., ivhose arc is equal in length to the radius., is taken as the unit angle of circular measure., and is called the radian. From the definition we have 4 right angles = 360° 2 right angles = 180° 2 TT radians, TT radians. Fig. 6. TT 1 right angle = 90° = — radians. TT is a numerical quantity, 3.14159+, and not an angle. When we speak of 180° as tt, 90° as ^, etc., we always mean tt radians, ^ radians, etc. 6 PLANE TRIGONOMETRY. 9. To change from one system of measurement to the other we use the relation, 2 TT radians = 360°. . •. 1 radian = i^ = 57^.2958- ; TT i.e. the radian is 57°.3, approximately. Ex. 1. Express in radians 75° 30'. 75° 30' = 75°.5 ; 1 radian = 57°.3. .-. 75° 30' = — = 1.317 radians. 57.3 2. Express in degree measure 3.6 radians. 1 radian = 57°.3. .-. 3.6 radians = 3.6 x o7°.3 = 206° 16' 48". EXAMPLES. 1. Construct, approximately, the following angles : 50°, — 20°, 90°, 179°, -135°, 400°, -380^ 1140°, | radians, | radians, --radians, q -If) 3 IT radians, — ^ radians, — — ^ radians. Of which quadrant is each angle? ^ ^ 2. What is the measure of : (a) f of a right angle, when 30° is the unit of measure ? (b) an acre, when a square whose side is 10 rds. is the unit ? (c) m miles, when y yards is the unit ? 3. What is the unit of measure, when the measure of 2^ miles is 50? 4. The Michigan Central R.R. is 535 miles long, and the Ann Arbor R.R. is 292 miles long. Express the length of the first in terms of the second as a unit. 5. What will be the measure of the radian when the right angle is taken for the unit ? Of the right angle when the radian is the unit ? 6. In which quadrant is 45°? 10°? -60°? 145°? 1145°? -725°? Express each in right angles ; in radians. 7. Express in sexagesimal measure J, ^. 1, 6.28, I, 1^, -i^, radians. O 12 TT o 3 EXAMPLES. 7 8. Express in each system an interior angle of a regular hexagon ; an exterior angle. 9. Find the distance in miles between two places on the earth's equator which are 11° 15' apart. (The earth's radius is about 3963 miles.) 10. Find the length of an arc which subtends an angle of 4 radians at the centre of a circle of radius 12 ft. 3 in. 11. An arc 15 yds. long contains 3 radians. Find the radius of the circle. 12. Show that the hour and minute hands of a watch turn through angles of 30^ and 6° respectively per minute ; also find in degrees and in radians the angle turned through by the minute hand in 3 hrs. 20 mins. 13. Find the number of seconds in an arc of 1 mile on the equator ; also the length in miles of an arc of 1' (1 knot). 14. Find to three decimal places the radius of a circle in which the arc of 71° 36' 3''.6 is 15 in. long. 15. Find the ratio of - to 5°. 6 16. What is the shortest distance measured on the earth's surface from the equator to Ann Arbor, latitude + 42° 16' 48"? 17. The difference of two angles is 10°, and the circular measure of their sum is 2. Find the circular measure of each angle. 18. A water wheel of radius 6 ft. makes 30 revolutions per minute. Find the number of miles per hour travelled by a point on the rim. CHAPTER II. THE TRIGONOMETRIC FUNCTIONS. 10. Trigonometry, as the word indicates, was originally concerned with the measurement of triangles. It now includes the analytical treatment of certain functions of angles, as well as the solution of triangles by means of cer- tain relations between the functions of the angles of those triangles. 11. Function. If one quantity depends upon another for its value, the first is called a function of the second. It always follows that the second quantity is also a function of the first ; and, in general, functions are so related that if one is constant the other is constant, and if either varies in value, the other varies. This relation may be extended to any number of mutually dependent quantities. Illustration. If a train moves at a rate of 30 miles per hour, the distance travelled is a function of the rate and time, the time is a function of the rate and distance, and the rate is a function of the time and distance. Again, the circumference of a circle is a function of the radius, and the radius of the circumference, for so long as either is constant the other is constant, and if either changes in value, the other changes, since circumference and radius are connected by the relation (7=2 irR. Once more, in the right triangle NOP, the ratio of any two sides is a function of the angle a, because p" N' N ^ ^^^ ^^® right triangles of which a is FiQ. 7. one angle are similar, i,e. the ratio 8 THE TRIGONOMETRIC FUNCTIONS. 9 of two corresponding sides is constant so long as a. is con- stant, and varies if « varies. Thus, the ratios NP ^ N'P' ^ WP'' OP and ojsr NP OP' ON' N'P' OP" ON" , depend on a for their values, i.e. are functions of a. 12. The trigonometric functions. In trigonometry six functions of angles are usually employed, called the trigono- metric functions. By definition these functions are the six ratios between the sides of the triangle of reference of the given angle. The triangle of reference is formed by drawing, from some point in the initial line., or the initial line produced^ a perpendicular to that line meeting the terminal line of the angle. Fig. 8. Let a be an angle of any quadrant. Each triangle of reference of a, NOP, is formed by drawing a perpendicular to OX, or OX produced, meeting the terminal line OB in P. 10 PLANE TRIGONOMETRY. If « is greater than 360°, its triangle of reference would not differ from one of the above triangles. It is perhaps worthy of notice that the triangle of reference might be defined to be the triangle formed by drawing a perpendicular to either side of the angle, or that side produced, meet- ing the other side or the other side produced. In the figure, NOP is in all cases the triangle of reference of a. The principles of the fol- N \ "^ ,''0 P 2f j ,,.-'jv- lowing pages are the same no matter which ^''P of the triangles is considered the triangle of Fig. 9. reference. It will, however, be as well, and perhaps clearer, to use the triangle defined under Fig. 8, and we shall always draw the triangle as there described. 13. The trigonometric functions of a (Fig. 8) are called the sine^ cosine^ tangent^ cotangent^ secant^ and cosecant of a. These are abbreviated in writing to sin a, cos a, tan «, cot a, sec a, CSC «, and are defined as follows : sin a = P^^ = ^, whence y = r sin a ; hyp. r ^ ' base a? i cos a = i: — = ~9 whence x = r cos a ; hyp. r ' tan a = ^^—^ = -> whence y = x tan a ; base oc ^ ' cot a = = —J whence x = y cot a; perp. y ^ ' sec a = —^ = —9 whence r — x sec a; base a? ' CSC a = — ^ = -9 whence r — y esc a. perp. y ^ 1 — cos a and 1 — sin a, called versed-sine a and coversed-sine a, respec- tively, are sometimes used. Ex. 1. Write the trigonometric functions of f3, NPO (Fig. 8), and compare with those of a above. The meaning of the prefix co in cosine, cotangent, and cosecant appears from the relations of Ex. 1. For the sine of an angle equals the cosine, i.e. the complement-sine, of the complement of that angle ; the tangent THE TRIGONOMETRIC FUNCTIONS. 11 of an angle equals the cotangent of its complementary angle, and the secant of an angle equals the cosecant of its complement- ary angle. 2. Express each side of triangle ABC in terms of another side, and some function of an angle in all possible ways, as a = 6 tan A, etc. Fig. 10. 14. Constancy of the trigonometric functions. It is iiiipor- taiit to notice why these ratios are functions of the angle, i.e. are the same for equal angles and different for unequal angles. This is shown by the principles of similar triangles. \ Fig. 11. In each figure show that in all possible triangles of refer- ence for a the ratios are the same, but in the triangles of reference for a and a', respectively, the ratios are different. The student must notice that sin a is a single symbol. It is the name of a number, or fraction, belonging to the angle a ; and if it be at any time convenient, we may denote sin « by a single letter, such as o, or x. Also, sin^a is an abbreviation for (sin «)'-^, i.e. for (sin a) x (sin «). Such abbreviations are used because they are convenient. Lock, Ele- mentary Trigonometry. 15. Fundamental relations. From the definitions of Art. 13 the following reciprocal relations are apparent : sin a = a = tana CSC a 1 sec a' 1 cot a Also from the definitions. tana = sm g cos a C8C a sm a 1 sec a = 1 cos a 1 cot a cot a — tan oL cos a sin a 12 ^ PLANE TRIGONOMETRY. From the right triangle NOP, page 9, y'^ -\- x^ = T^ \ /2 ^2 whence (1) U-j^'L^l^ From (1) sin^a+cos^ a=l; sma= Vl — cos^ a; cos cc=? (2) tan2a + l = sec2a; ^^/^ «= -y/sec^ cc— 1 ; sec a = ? (3) l+cot2a = csc2a; cota=Vcsc^ a—1 ; esc a = ? The foregoing definitions and fundamental relations are of the highest importance, and must he mastered at once. The student of trigonometry is helpless without perfect familiarity with them. These relations are true for all values of a, positive or negative, but the signs of the functions are not in all cases positive, as appears from the fact that in the triangles of reference in Fig. 8 x and y are sometimes negative. The equations sin a = ± Vl — cos^ a, tan a=± Vsec^ a—1, cot a = ± Vcsc^ ct — 1, have the double sign ± . Which sign is to be used in a given case depends on the quadrant in which a lies. 16. The relations of Art. 15 enable us to express any function in terms of any other, or when one function is given, to find all the others. Ex. 1. To express the other functions in terms of tangent : .inct- ^ - ^ - ^^"^^ • CSC a VI + cot2 a VH- tan^ a 1 1 tana sec a = VI + tan2 a ; sec a Vl + tan2a tan a = tan a ; C8C«^^l+**»^«. tan a THE TRIGONOMETRIC FUNCTIONS. 13 In like manner determine the relations to complete the following table ; sm a cos a tan« cot a tan a sm a cos a tana cot a sec a CSC a VI + tan2 a 1 Vl + tan"'^ a tan a 1 tan a Vl + tan2 a Vl + tan2 a tan a 2. Given sin a = f ; find the other functions. a=Vl -^5 = ^V7; tan = fV7; \V7 V7 ^ r- 14/- 14 cot a = —^ = ^ V7 ; sec a = = — = f V7 ; esc « = - = -• fV7 iV7 V7 3; Given tan (f> + cot ^ = 2 ; find sin <^. tan 2, tan2 <^ - 2 tan <^ + 1 = 0, tan <^ = 1. .♦. sin = tan <^ Vl + tan2 <^ = iV2. Or, expressing in terms of sine directly, ?11L2_(_ ^ = 2, cos <^ sin <^ sin^ <^ + cos^ (fi = 2 sin <^ cos + cos^ ^ = ; whence sin <^ — cos <^ = 0, sin = cos . .*. sin ^ = ^ V2. 4. Prove sec^ x — sec^ x = tan^ x + tan^ x. sec^x — sec^x = sec^ a: (sec^ a: — 1) = (1 + tan^ x) tan^ a: = tan^a: + tan* a:. 5. Prove sin^ y + cos® ?/ = 1 — 3 sin^ y cos^ y. sin® y + cos® y = (sin^ y + cos^ y) (sin* y — sin^ y cos^ ?/ + cos* y) = (sin^ 2/ + cos^ ?/)2 — 3 sin^ y cos^ y = 1 —3 sin^ ^ cos^ y. 14 PLANE TRIGONOMETRY. 6. Prove -i^2^ + _22t^ = sec. CSC. + 1. 1 — cot z 1 — tan z sing cos 2 tan z cot z _ cos z sin 2 cot . 1 — tan z I _ cos 2 COS. cos . (sin . — COS .) sin z (cos z — sin z) _ sin^ . — cos^ . _ sin^ . + sin . cos z + cos^ . sin . cos . (sin . — cos z) sin z cos . 1 + sin . cos . 1.1 ,1 = —^. = h 1 = sec . esc 2 + 1. sm . cos . sin z cos z In solving problems like 3, 4, 5, and 6 above, it is usually safe, if no other step suggests itself, to express all other functions of one member in terms of sine and cosine. The resulting expression may then be re- duced by the principles of algebra to the expression in the other member of the equation. For further suggestions as to the solution of trigono- metric equations and identities see page 66. EXAMPLES. 1. Find the values of all the functions of a, if sin a = | ; if tan a = f ; if sec r}t = 2 ; if cos a = ^V3 ; if cot a = | ; if esc ot = V2. 2. Compute the functions of each acute angle in the right triangles whose sides are : (1) 3, 4, 5; (2) 8, 15, 17; (3) 480, 31, 481 ; (4) a,b,c; yr-^ 2 xy x^ + y^ (5) ^, ^ ^ , x+y. X — y X — y 3. If cos a = j\, find the value of si^<^ + ^^^^^ . cos a — cot a 4. If 2 cos a = 2 — sin ct, find tan a. 5. If sec^ a csc^ a — 4 = 0, find cot a. 6. Solve for sin ^ in 13 sin /? + 5 cos^ ^ = 11. Prove 7. sin* <;^ — cos* <^ = 1 — 2 cos^ <^. 8. (sin a + cos a) (sin a — cos a) = 2 sin^ a — 1. 9. (sec a + tan a) (sec a — tan a) = 1. 10. cos2 y8 (sec2 13-2 sin2 ^) = cos* jS + sin* (3. cos V 11. tan V + sect' 12. 1 — sin V sin w 1 + cos w 1 — cos w sin w 13. (sec^ + l)(l-cos^) = tan2^cosA FUNCTIONS OF CERTAIN ANGLES. 15 14. sin* t — siii2 1 = cos* t — cos^ t. 15. -ilH^ + 1+^ = sec^^ (CSC fi + 1). 1 — Sin y8 smfi 16. (tan A + cot Ay = sec2 ^ csc^ ^. 17. sec^ ar — sin^ a; = tan^ a: + cos^ x. In the triangle ABC, right angled at C, 18. Given cos A = ^y BC = 45, find tan B, and AB. 19. If cos A = ^l ~ ""l and AB = m^ + n% find ^ C and ^C. 20. If ^ C = m + n, £C = m — n, find sin A, cos 5. 21. In examples 18, 19, 20, above, prove sin^ ^4 4- cos^ .4 = 1 ; 1 + tan2 A = sec2 A . 17. Functions of certain angles. The trigonometric func- tions are numerical quantities which may be determined for any angle. In general these values are taken from tables prepared for the purpose, but the principles already studied enable us to calculate the functions of the following angles. 18. Functions of O''. If a be a very small angle, the value of y is very small, and decreases as a diminishes. Clearly, when a approaches 0° as a limit, ^ likewise ap- proaches 0, and X approaches r, so that when a = 0°, ^ = 0, and X = r. .-. «mO° = ^ = 0, co^ 0° = — i— = QO, r r tanO"" = ^ = 0, C8C 0° = -r^ = 00. X sin 0° In the figure of Art. 18, by diminishing a it is clear that we can make y as small as we please, and by making a small enough, we can make the value of y less than any assignable quantity, hoivever small, so that sin a ap- proaches as a limit 0. This is what we mean when we say sin 0° = 0. In like manner, it is evident that, by sufficiently diminishing a we can make cot a greater than any assignable quantity. This we express by saying cotO° = co. €OtO° ± tanO° 8ecO° 1 cos 0° nRn 0° 1 16 PLANE TRIGONOMETRY. 19. Functions of 30°. Let NOP be the triangle of refer- ,22 ence for an angle of 30°. Make triangle NOP' = NOP. Then POP' is an equilateral triangle (why?), and ON bisects PP'. Hence Also X = Vr^ — y^ = V3^— y V3. c%G 30° = 2, Fig. 13 nn 30° = ^ = ^ = ^' r 2^ 2 r 2y ^ ^an 30° y = -4^=iV3, «/V3 V3 se'l + cos^' 8. cos^ = 2cos2^-l = l-2sin2:^. 2 2 licc = 0°,l3 = 30°, y = 45°, 8 = 60°, e = 90°, find the values of 9. sin 13 + cos 8. 10. cos y8 + tan 8. 11. sin ^ cos S + cos ;8 sin 8 — sin e. 12. (sin 13 + sin e) (cos a + cos 8) — 4 sin a (cos y + sin e) . VARIATIONS IN THE FUNCTIONS. 19 24. Variations in the trigonometric functions. Signs. Thus far no account has been taken of the signs of the functions. By the definitions it appears that these de- pend on the signs of a;, ?/, and r. Now r is always positive, and from the figures it is seen that x is positive in the first 8&H. + Csc. + X- (X-) (r+) Cot. + Sin. Cos. Tan. Cot. Sec. Csc. \y-) Cos. + Fia. 17. and fourth quadrants, and ^ is positive in the first and second. Hence For an angle in the first quadrant all functions are positive^ since a:, ^, r are positive. In the second quadrant x alone is negative., so that those functions whose ratios involve a:, viz. cosine., tangent^ co- tangent^ secant., are negative; the others, sine and cosecant., are positive. In the third quadrant x and y are both negative., so that those functions involving r, viz. sine., cosine., secant., cosecant., are negative ; the others, tangent and cotangent., ?iVQ positive. In the fourth quadrant y is negative^ so that sine^ tangent., cotangent, cosecant are negative., and cosine and secant., positive. Values. In the triangle of reference of any angle, the hypotenuse r is never less than x or y. Then if r be taken of any fixed length, as the angle varies, the base and perpen- dicular of the triangle of reference may each vary in length X 11 from to r. Hence the ratios - and - can never be greater r r ° r r than 1, nor if x and y are negative, less than —1; and — > - X y 20 PLANE TRIGONOMETRY. cannot have values between + 1 and — 1. But the ratios ^ and - may vary without limit, i.e. from + oo to — oo. X y Therefore the possible values of the functions of an angle are : sine and cosine between + 1 and — 1, i.e. sine and cosine cannot he numerically greater than 1; tangent and cotangent between + oo and — oo, i.e. tangent and cotangent may have any real value ; secant and cosecant between + oo and + 1, and — 1 and — oo, i.e. secant and cosecant may have any real values., except values between + 1 and — 1. These limits are indicated in the following figures. The student should carefully verify. Sin. + 1 Cos. - Tan. —00 90° Y \Sin 0=±0 o /. -X 180 X- 1,4 Sin. Cos. Tan. -1 -0 + 00 + 1 + +00 X 0, +1,-0 360 -1 + F' 370° Fig. 18. 25. In tracing the changes in the values of the functions as a changes from 0° to 360°, consider the revolving line r as of fixed length. Then x and y may have any length between and r. y Sine. At 0°, sin «="=- = 0. As a increases through r r y ^ the first quadrant, y increases from to r, whence - increases from to 1. In passing to 180° sin a decreases from 1 to 0, VARIATIONS IN THE FUNCTIONS. 21 since y decreases from r to 0. As « passes through 180°, y changes sign, and in the third quadrant decreases to nega- tive r, so that sin a. decreases from to — 1. In the fourth quadrant y increases from negative r to 0, and hence sin a increases from — 1 to 0. Cosine depends on changing values of x. Show that, as a increases from 0° to 360°, cos « varies in the four quadrants as follows: 1 to 0, to — 1, — 1 to 0, to 1. Tangent depends on changing values of both y and x. At 0°, ^ = 0, a: = r, at 180°, y = 0,x = -r, at 90°, x = 0,y = r, at 270°, x=0,y = -r, V Hence tan 0° = -^ = - = 0. As a passes to 90°, y increases X r to r, and x decreases to 0, so that tan a increases from to oo. As a passes through 90°, x changes sign, so that tan a changes from positive to negative by passing through oo. In the second quadrant x decreases to negative r, y to 0, and tan a passes from — oo to 0. As a passes through 180°, tana changes from minus to plus by passing through 0, because at 180° y changes to minus. In the third quadrant tana passes from to oo, changing sign at 270° by passing through 00, because at 270° x changes to plus. In the fourth quadrant tan a passes from — oo to 0. Cotangent. In like manner show that cot a passes through the values oo to 0, to — oo, oo to 0, to — oo, as a passes from 0° to 360°. Secant depends on x for its value. Noting the change in X as under cosine, we see that secant passes from 1 to oo, — oo to — 1, — 1 to — 00, 00 to 1. Cosecant passes through the values oo to 1, 1 to oo, — 00 to — 1, — 1 to — 00. The student should trace the changes in each function fully, as has been done for sine and tangent, giving the reasons at each step. 22 PLANE TRIGONOMETRY. a 0° to 90° 90° to 180° 180° to 270° 270° to 360° sin to 1 1 to - to - 1 - 1 to - cos 1 to - to - 1 -1 to -0 to 1 tan to 00 - 00 to - to 00 - 00 to - cot 00 to - to - 00 00 to - to - 00 sec 1 to GO — 00 to — 1 — 1 to — 00 00 to 1 CSC 00 to 1 1 to 00 — 00 to — 1 — 1 to —00 * 26. Graphic representation of functions. These variations are clearly brought out by graphic representations of the functions. Two cases will be considered : I, when a is a constant angle ; II, when a is a variable angle. I. When a is a constant angle. The trigonometric functions are ratios, pure numbers. By so choosing the triangle of reference that the denomi- nator of the ratio is a side of unit length, the side forming the numerator of that ratio will be a geometrical representa- tion of the value of that function, e.g. if in Fig. 19 r = 1, then sin a = ? = ^=^. This may be done by making a a central angle in a circle of radius 1, and drawing triangles of reference as follows : Fio. 19. GRAPHIC REPRESENTATION OF FUNCTIONS. 23 In all the figures A OF = a, and BP BP j.r> OB OB ^j, BP AD AD .J, ''""'^OB^OA^ 1 =^^' OA BO EC T,n OP OB OB r.j. '''''- OB=OA= 1 =^^' OP 00 00 rtn It appears then that, by taking a radius 1, sine is represented by the perpendicular to the initial line, drawn from that line to the terminus of the arc sub- tending the given angle; cosine is represented by the line from the vertex of the angle to the foot of the sine ; tangent is represented by the geometrical tangent drawn from the origin of the arc to the terminal line, produced if necessary; cotangent is represented by the geometrical tangent drawn from a point 90° from the origin of the arc to the terminal line, produced if necessary; secant is represented by the terminal line, or the terminal line produced, from the origin to its intersection with the tangent line ; cosecant is represented by the terminal line, or the terminal line produced, from the origin to its intersection with the cotangent line. 24 PLANE TRIGONOMETRY. These lines are not the functions^ but in triangles drawn as explained their lengths are equal to the numerical values of the functions, and in this sense the lines may be said to represent the functions. It will be noticed also that their directions indicate the signs of the functions. Let the student by means of these representations verify the results of Arts. 24 and 25. II. When a is a variable angle. Take XX' and YY' as axes of reference, and let angle units be measured along the ic-axis, and values of the func- tions parallel to the ?/-axis, as in Art. 3. We may write corresponding values of the angle and the functions thus : a=0°, 30°, 45% 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, sin«=0, i, iV2, iV3, 1, iV3, iV2, i, 0, _ i, _ i V2, a= 240°, 270°, 300°, 315°, 330°, 360°, -30°, -45°, -60°, -90°, etc., sina=-|V3, -1, -iV3, -^^2, -\, 0, -^ -iV2, -|V3, -1, etc. These values will be sufficient to determine the form of the curve representing the function. By taking angles between those above, and computing the values of the function, as given in mathematical tables, the form of the curve can be /^ determined to any required degree of accuracy. Reduc- ing the above fractions to decimals, it will be convenient to make the ?/-units large in comparison with the a:-units. In the figure one a^-unit repre- sents 15°-, and one y-unit 0.25. Measuring the angle values along the rr-axis, and from these points of division measuring the corresponding values of sin a parallel to the ^-axis, as in Art. 3, we have, approximately. Curves of Sine and Cosecant. Cosecant Fig. 20. GRAPHIC REPKESENTATION OF FUNCTIONS. 25 OX^ = 30° = 2 units, OX^ = 45° =3 units, Xi Fi = 1 =2 units, Xg Fg = 0. 71 = 2. 84 units, OXg =60° =4 units, etc., X^Y^=0.S6 = 3.44 units, etc. We have now only to draw through the points F^, Fg, Fg, etc., thus determined, a continuous curve, and we have the sine-curve or sinusoid. The dotted curve in the figure is the cosecant curve. Let the student compute values, as above, and draw the curve. In like manner draw the cosine and secant curves, as follows : i Curves of Cosine and Secant, Cosine Secant ~ FiG. 21. Tangent curve. Compute values for the angle a and for tan a, as before ; a = 0°, 30°, 45°, 60°, 90°, 120°, 136°, 150°, 180°, 210°, 226°, 240°, 270°, tan a = 0, \VS, 1, V3, ±oo, - V3, -1, -^VS, 0, |\/3, 1, V3, ±oo, a = - 30°, - 45°, - 60°, - 90°, etc., tan a = - ^ V3, - 1, - V3, ± oo, etc. Then lay off the values of a and of tan a along the x^ and parallel to the ?/-axis, respectively. It will be noted that, 26 PLANE TRIGONOMETRY. as a approaches 90°, tan a increases to oo, and when a passes 90°, tan a is negative. Hence the value is measured parallel Curves of Tangent and Cotangent. Tangent Cotangent Fig. 22. ' to the ^-axis downward, thus giving a discontinuous curve, as in the figure. 27. The following principles are illustrated by the curves : 1. The sine and cosine are continuous for varying values of the angle, and lie within the limits + 1 and — 1. Sine changes sign as the angle passes through 180°, 360°, ••♦, n 180°, while cosine changes sign as the angle passes through 90°, 270°, •••, (2 7^ + 1) 90°. Tangent and cotangent are discontinuous, the one as the angle approaches 90°, 270°, •••, (2?i + l) 90°, the other as the angle approaches 180°, 360°, •-, 7il80°, and each changes sign as the angle passes through these values. The limiting values of tangent and cotangent are + oo and — oo. 2. A line parallel to the ?/-axis cuts any of the curves in but one point, showing that for any value of a there is but one value of any function of a. But a line parallel to the a?-axis cuts any of the curves in an indefinite number of points, if at all, showing that for any value of the function there are an indefinite number of values, if any, of a. GRAPHIC REPRESENTATION OF FUNCTIONS. 27 3. The carves afford an excellent illustration of the varia- tions in sign and value of the functions, as a varies from to 360°, as discussed in Art. 25. Let the student trace these changes. 4. From the curves it is evident that the functions are periodic^ i.e. each increase of the angle through 360° in the case of the sine and cosine, or through 180° in the case of the tangent and cotangent, produces a portion of the curve like that produced by the first variation of the angle within those limits. 5. The difference in rapidity of change of the functions at different values of a is important, and reference will be made to this in computations of triangles. (^See Art. 64, Case III.) A glance at the curves shows that sine is chang- ing in value rapidly at 0°, 180°, etc., while near 90°, 270°, etc., the rate of change is slow. But cosine has a slow rate of change at 0°, 180°, etc., and a rapid rate at 90°, 270°, etc. Tangent and cotangent change rapidly throughout. Ex. Let the student discuss secant and cosecant curves. ORAL WORK. 1. Express in radians 180°, 120°, 45°; in degrees, J^ radians, 2 it, Itt, f tt. 2. If ^ of a right angle be the unit, what is the measure of | of a right angle? of 90°? of 135°? 3. Which is greater, cos 30° or I cos 60°? tan - or cot-? sin ^ or cos- ? ^ ^ 6 3 4 4 4. Express sin a in terms of sec a ; of tan a ; tan a in terms of cos a ; of sec a. 5. Given sin a = |, find tan a. If tan cc = 1, find sin a, esc a, cot a ; also tan 2 a, sin 2 a, cos 2 a. 6. If cos a = i, find sin -, tan -• 2 2 7. In what quadrant is angle t, if both sin t and cos t are minus ? if sin t is plus and cos t minus ? if tan t and cot t are both minus ? if sin < and CSC t are of the same sign ? Why ? 8. Of the numbers 3, ^, — 5, — 4, a, — 6, oo, 0, which may be a value of sin JO ? of sec j9 ? of tan p ? Why ? 28 PLANE TKIGONOMETRY. EXAMPLES. 1. If sin 26° 40' = 0.44880, find, correct to 0.00001, the cosine and tangent. 2. If tan a = VS, and cot fi = | Vs, find sin a cos ^ — cos a sin /i. 3 Evaluate si" ^0° cot 30° - cos eO'^ tan 60° sin 90° cos 0° Prove the identities : 4. tan^(l -cot2^) + cot^(l -tan2^) = 0. 5. (sin^ + sec^)2 +(cos^ + csc^)2 =(1 + sec^ csc^)^. 6. sin2 X cos a: esc a; — cos^ x esc x sin^ x + cos* x sec a: sin a? = sin^ x cos x 4- cos^ X sin x. 7 . tan^ w + cot^ w = sec^ w csc^ w — 2. 8. sec^ V + cos2 V = 2 -{- tan^ v sin^ v. 9. cos2« + 1 = 2cos3«sec^ + sin2^ 10. csc2 1 — sec2 1 = cos2 « csc^ t - sin2 < sec^ t. 11. The sine of an angle is ^„ ~ ^ i find the other functions. 12. If tan^ + sin J. = m, tan ^ — sin ^ = n, prove m'^ — n^ = 4:Vmn. Solve for one function of the angle involved the equations : 13. sin^ + 2cos^ = 1. 16. 2sin2ar + cosa; - 1 = 0. cosa_3 17. sec^a; — 7tana: — 9 = 0. tana 2 18. 3 cscy + lOcoty - 35 = 0. 15. \/3csc2^ = 4cot^. 19. sin^i; -|cosu- 1 = 0. 20. a sec^ zo + b tan w + c — a = 0. 21. K ^HLd = V2, *HLd = V3, find A and 5. sin ^ tan B 22. Find to five decimal places the arc which subtends the angle of 1° at the centre of a circle whose radius is 4000 miles. 23. If CSC A = f V3, find the other functions, when A lies between — and TT. 24. In each of two triangles the angles are in G. P. The least angle of one of them is three times the least angle of the other, and the sum of the greatest angles is 240°. Find the circular measure of each of the angles. CHAPTER III. FUNCTIONS or ANY ANGLE — INVERSE FUNCTIONS. 28. By an examination of the figure of Art. 24 it is seen that all the fundamental relations between the functions hold true for any value of a. The table of Art. 16 expresses the functions of a, whatever be its magnitude, in terms of each of the other functions of that angle if the ± sign be prefixed to* the radicals. The definitions of the trigonometric functions (Art. 12) apply to angles of any size and sign, but it is always possible to express the functions of any angle in terms of the func- tions of a positive acute angle. The functions of any angle ^, greater than 360°, are the same as those of ^ ± w • 360°, since 6 and 6 ±n • 360° have the same triangle of reference. Thus the functions of 390°, or of 750°, are the same as the functions of 390° — 360°, or of 750°— 2-360°, i.e. of 30°, as is at once seen by drawing a figure. So also the functions of —315°, or of —675° are the same as those of - 315° + 360°, or of - 675° + 2-360°, i.e. of 45°. For functions of angles less than 360° the relations of this chapter are important. 29. To find the relations of the functions of — ^, 90° ± ^, 180° ± 6, and 270° ±6 to the functions of 6, 6 being any angle. Four sets of figures are drawn, I for d an acute angle, II for Q obtuse. III for an angle of the third quadrant, and IV for d an angle of the fourth quadrant. In every case generate the angles forming the compound angles separately, i.e. turn the revolving line first through 30 PLANE TRIGONOMETRY, (a) (6) (c) x' ^r' III in III IV IV Fig. 23. t \r' y Y\ \ oW ] rCA y M~ 1%'i'' IV FUNCTIONS OF ANY ANGLE. 31 / \ Ix' 1^ \ / \ -f t V \#/ y V" N y K^. // , \?.io — fl / y \ y x\ c^y *>0 +8 II II III t [V ry^ y /.X > <^'y' vs= < y »0 =9 IV ^ +^ a;'A/1 N\ X' I v f y / y /f/ '''\ / \ IV Fig. 23. 32 PLANE TRIGONOMETRY. 0°, 90°, 180°, or 270°, and then from this position through ^, or — ^, as the case may be. Form the triangles of refer- ence for (a) the angle (9, (6) - ^, (c) 180° ± (9, (^d) 90° ± (9, (e) 270° ±^. The triangles of reference (a), (6), ()=^ = ^ =cos(9, tan (- 6>) = ^= - ^ = - tan^. ^ a?' X Also in the similar triangles {a) and (c), sin (180° - (9) = ^ = ^ = sin (9, r = = — cos r, cos (180°-^) = =^ tan (180° - ^)= ^ = - ^ = - tan(9, In like manner show that sin (180° + (9) = -sin (9, cos (180° + (9) = - cos ^, tan (180° + ^)= tan ^. FUNCTIONS OF ANY ANGLE. 33 Again, in the similar triangles (a) and ((^), sin (90° + (9) = ^ = - = cos^, cos (90° 4- ^) = ^ = - - = - sin ^, r .f tan (90° + (9) = ^ = - -= - cot ^. Show that sin (90°-^)= cos ^, C cos(90°-6»)=sin(9, | ^ tan (90° -(9) = cot (9. Finally, from the similar triangles (a) and (e), show that sin (270° ± (9)=- cos 6^, cos(270°±^)=±sin^, tan (270° ±^)=Tcot^. From the reciprocal relations the student can at once write the corresponding relations for secant, cosecant, and cotangent. 30. Since in each of the four cases x\ y' of triangles (6) and ( and cos = |f .♦. cos 6 = cos(tan-^ -j^) = if. and 3. If ^ = csc-i a, prove 6 = cos~i — ^ CSC ^ = a cos e =Vl--„ = ^"'^ ~ \ or ^ = cos- . sin ^ = -> a .1 Va^ EXAMPLES. 37 EXAMPLES. 1. Construct sin-^f, tan-ij^, cos-i(— ^). 2. Find tan(sin~ix^j), sin(tan-iy\). 3. If ^ = sin-i a, prove = tan-^ — VI -a2 4. Show that sin"^ a = 90° — cos"^ a. 5. Prove tan-i\/3 + cot-iV3=^. 6. Prove tan-ifsin '^\ = cos-^^^. 7. What angles, less than 360°, have the same tangent numerically as 10°? 8. Given tan 143° 22' = - 0.74357 ; find, correct to 0.00001, sine and cosine. 9. If cot2(90° + /?) + csc(90° - /8) - 1 = 0, find tan fi. 10. Find all positive values of x, less than 360°, when sin x = sin 22° 30' ; when tan 2 a; = tan 60°. 11. When is sin x = possible, and when impossible ? 12. Verify sin-i | + cos'i— + tan-i V3 = sin-i ^. 13. What values of x will satisfy sin-i(.r2 - x)= 30° ? 14. If tan2 e - sec2 a = 1, prove sec $ + tan^ ^ esc ^ = (3 + tan2 a)^. 15. Prove sin ^ (1 + tan A)+ cos ^ (1 + cot A) = sec ^ + esc A. 16. Solve the simultaneous equations : sin-i(2 X + Sy)=30° and 3 a: + 2 y = 2. 17. Verify (a) tan60° = V ^ -cosli ' 1 + cos 1'.: (6) cos 60° = i2!. 120°' 1 -tan2 30° l+tan2 30°* (c) 2 sin2 60° = 1 - cos 120°. 18. Show that the cosine of the complement of - equals the sine of 6 the supplement of -• 38 PLANE TRIGONOMETRY. REVIEW. Before leaving a problem the student should review and master all principles involved. 1. Construct cos'^xV 5 sin-i(— |); tan-i2. 2. Find cos (sin-i f ) ; tan (cos-i [ — i] ) . 3. Prove cot"^ a = cos~^ ^ VI +a2 4. Given a = cot-i|, find tan a + sin (90° + a). 5. Find tan ( sin-i| + cos-^: — )• 6. State the fundamental relations between the trigonometric func- tions in terms of the inverse functions. Thus, 1 sin~i« = csc~^-, sin~ia = cos~^Vl — aK etc. a 7. Find all the angles, less than 360°, whose cosine equals sin 120°. 8. Given cot~i 2.8449, find the sine and cosine of the angle, correct to 0.0001. 9. If tan2 (180° -0)- sec (180° + (9) = 5, find cos 0. irx T£ • n 9 £ J tan^^ + cos^^ 10. If sm 6 = ^, find -— ' -- ^' tan2^-cos2^ 11. Is sin X — 2 cos x + Ssina; — 6 = 0a possible equation ? 12. Verify (a) sin 60°= ^ tan 30° , ^ ^ ^ l + tan230° (b) 2 cos2 60° = 1 + cos 120°. (c) cos 60° - cos 90° = 2 cos2 30° - 2 cos2 45°. 13. If sin X = — ^K^_± 1 — find sec x and tan x. a^ + 2ab + 2 b^ 14. Prove 1 + sin ^ - cos ^ _^ 1 + sin^ + cos^^ ^^^^^^ 1 + sin ^ + cos $ 1 + sin ^ — cos 15. Prove cos 45° + cos 135° + cos 30° + cos 150° - cos 210° + cos 270° = sin 60°. 16. If tan = prove that Va2 _ Ij2 sin ^(1 + tan 6) + cos ^(1 + cot ^ - sec = |- 17. Solve sin2 x + sin^ (x + 90°) + sin2 (^ ^ i80°) = 1. EXAMPLES. 39 18. Given cos^ a = msina — n, find sin a. 19. If sin2y3=-A^, find^. 2 sec p 20. Given tan 238° =1.6, find sin 148°. 21. Prove tan-i m + cot-i m = 90°. 22. Find sin (sin~ij9 + cos~ijo). 23. Solve cot2 ^ (2 esc ^ - 3) + 3 (esc ^ - 1) = 0. 24. Prove sin^ a sec^ ^ + tan^ /? cos^ a = sin^ a + tan2 p. 25. Prove cos^ F + sin^ F = 1 - 3 sin^ F + 3 sin^ F. 26. What values of A satisfy sin 2 A = cos 3 ^ ? 27. If tan C = ^^ ~ '^'^ , and tan D =\ ^ - cos C ^ ^^^^ ^^^ ^ .^ ^^^^^^ ofm. ''^ M+cosC 28. If sin a: — cos x + 4 cos^ a: = 2, find tan x ; sec a:. 29. Does the value of sec x, derived from sec^ x = — — - — - — , give a possible value of a:? 1 - cos x 30. Prove [cot (90° - ^ ) - tan (90° + A)] [sin (180° -A) sin (90° + /I )] = 1 . 31. Prove (1 +sin^)2[cot^ +2sec^(l -csc^)] + csc^ cos^^ = 0. 32. Given sin a: = m sin y, and tan x = n tan y, find cos x and cos y. 33. Given cot 201° = 2.6, find cos 111°. 34. Find the value of cos-H + sin-HV^ + csc-i(- 1)+ tan-U - 2cot-iV3. 35. Solve 2 cos^d + 11 sin ^ - 7 = 0. 36. Prove cos2 B + cos2 {B + 90°) + cos2 (5 + 180°) + cos2(5 + 270°) = 2. CHAPTER IV. COMPUTATION TABLES. 33. Natural functions. It has been noted that the trigo- nometric functions of angles are numbers^ but the values were found for only a few angles, viz. 0°, 30°, 45°, 60°, 90°, etc. In computations, however, it is necessary to know the values of the functions of any angle, and tables have been prepared giving the numerical values of the functions of all angles between 0° and 90° to every minute. In these tables the functions of any given angle, and co^i- versely the angle corresponding to any given function, can be found to any required degree of accuracy ; e.g. by look- ing in the tables we find sin 24° 26'= 0.41363, and also 1 .6415 = tan 58° 39'. These numbers are called the natural functions., as distinguished from their logarithms, which are called the logarithmic functions of the angles. Ex. 1. Find from the tables of natural functions : sin35n4'; cos 54° 46'; tan 78° 29'; cos 112° 58'; sin 135°. 2. Find the angles less than 180° corresponding to : sin-i 0.37865; cos-i 0.37865; tan-i 0.58670 ; cos"! 0.00291 ; sin-^O 34. Logarithms. The arithmetical processes of multi- plication, division, involution, and evolution, are greatly abridged by the use of tables of logarithms of numbers and of the trigonometric ratios, which are numbers. The principles involved are illustrated in the following table : Write in parallel columns a geometrical progression having the ratio 2, and an arithmetical progression having the dif- ference 1, as follows : 40 LOGARITHMS. 41 G. P. A. P. 1 2 1 4 2 8 3 16 4 32 5 64 6 128 7 256 8 512 9 1024 10 2048 11 4096 12 8192 13 16384 14 32768 15 655S6 16 131072 17 262144 18 524288 19 1048576 20 It will be perceived that the numbers in the second column are the indices of the powers of 2 producing the corresponding numbers in the first column, thus : 2^ = 64, 211 = 2048, 218 = 262144, etc. The use of such a table will be illustrated by examples. Ex. 1. Multiply 8192 by 128. From the table, 8192 = 2^% 128 = 2'. Then by actual multiplication, 8192 x 128 = 1048576, or by the law of indices, 21^ x 2^ = 220 = 1048576 (from table). Notice that the simple operation of addition is sub- stituted for multiplication by adding the numbers in the second column opposite the given factors in the first column. This sum corresponds to the number in the first column which is the required product. 2. Divide 16384 by 512. 16384 -4- 512 = 32, which corresponds to the result obtained by use of the table, or 2^^ - 2^ = 2^ = 32. The operation of subtraction takes the place of division. 3. Find V262144. >>^62144 2^^ = 03 — In the table, 262144 is opposite 18. 18 -- 6 = 3, which is opposite 8, the required root ; i.e. simple division takes the place of the tedious process of evolution. 4. Cube 64. 6. Find ^^^2768. 5. Multiply 256 by 4096. 7. Divide 1048576 by 32768. 35. The above table can be made as complete as desired by continually inserting between successive numbers in the first column the geometrical mean, and between the opposite numbers in the second, the arithmetical mean, but in prac- tice logarithms are computed by other methods. The num- bers in the second column are called the logarithms of the numbers opposite in the first column. 2 is called the base of this system, so that the logarithm of a number is the exponent by which the base is affected to produce the number. 42 PLANE TRIGONOMETRY. Thus, the logarithm of 512 to the base 2 is 9, since 29 = 512. Logarithms were invented by a Scotchman, John Napier, early in the seventeenth century, but his method of constructing tables was different from the above. See Encyc. Brit, art. ^'•Logarithms,'''' for an exceedingly interesting account. De Morgan says that by the aid of logarithms the labor of computing has been reduced for the mathematician to about one-tenth part of the previous expense of time and labor, while Laplace has said that John Napier, by the invention of logarithms, lengthened the life of the astronomer by one-half. Columns similar to those above might be formed with any other number as base. For practical purposes, however, 10 is always taken as the base of the system, called the common system^ in distinction from the natural system^ of which the base is 2.71828 •••, the value of the exponential series (^Higher Algebra) . The natural system is used in theoretical discus- sions. It follows that common logarithms are indices^ positive or negative^ of the powers of 10. Thus, 103 = 1000 ; i.e. log 1000 = 3 ; 10-2 = i- = 0.01; i.e. log0.01 = -2. 36. Characteristic and mantissa. Clearly most numbers are not integral powers of 10. Thus 300 is more than the second and less than the third power of 10, so that log 300 = 2 plus a decimal. Evidently the logarithms of numbers generally consist of an integral and a decimal part, called respectively the charac- teristic and the mantissa of the logarithms. 37. Characteristic law. The characteristic of the loga- rithm of a number \^ independent of the digits composing the number, but depends on the position of the decimal point, and is found by counting the number of places the first significant figure in the number is removed from the units'' place, being positive or negative according as the first significant LOGARITHMS. 43 figure is at the left or the right of units' place. This follows from the fact that common logarithms are indices of powers of 10, and that 10", n being a positive integer, contains n -f- 1 places, while 10~" contains n—1 zeros at the right of units' place. Thus in 146.043 the first significant figure is two places at the left of units' place ; the characteristic of log 146.043 is therefore 2. In 0.00379 the first significant digit is three places at the right of units' place, and the charac- teristic of log 0.00379 is - 3. To avoid the use of negative characteristics, such charac- teristics are increased by 10, and —10 is written after the logarithm. Thus, instead of log 0.00811 = 3.90902, write 7.90902 — 10. In practice the — 10 is generally not written, but it must ahvays be remembered and accounted for in the result. Ex. Determine the characteristic of the logarithm of : 1; 46; 0.009; 14796.4; 230.001; lO^ x 76; 0.525; 1.03; 0.000426. 38. Mantissa law. The mantissa of the logarithm of a number is hidependent of the position of the decimal point, but depends on the digits composing the number, is always positive^ and is found in the tables. For, moving the decimal point multiplies or divides a number by an integral power of 10, i.e. adds to or subtracts from the logarithm an integer, and hence does not affect the mantissa. Thus, log 225.67 = log 225.67, log 2256.7 = log 225.67 X 101 = log 225.67 -f 1, log 22567.0 = log 225.67 x 102 ^ i^g 225.67 + 2, log 22.567 = log 225.67 x lO-i = log 225.67 +(- 1), log 0. 22567 = log 225. 67 x 10-3 = log 225. 67 + ( - 3), so that the mantissae of the logarithms of all numbers com- posed of the digits 22567 in that order are the same, .35347. MoviTig the decimal point affects the characteristic only. The student must remember that the mantissa is always positive. 44 PLANE TRIGONOMETRY. Log 0.0022567 is never written - 3 +.35347, but 3.35347, the minus sign being written above to indicate that the characteristic alone is nega- tive. In computations negative characteristics are avoided by adding and subtracting 10, as has been explained. 39. We may now define the logarithm of a number as the index of the power to which a fixed number, called the base, must be raised to produce the given number. Thus, a^ = 5, and x = logab (where log J) is read logarithm of b to the base a') are equivalent expressions. The relation between base, logarithm, and number is always (base)^°^ = number. To illustrate: log28 = 3 is the same as 2^ = 8; log381 = 4 and 3*= 81 are equivalent expressions ; and so are log^QlOOO = 3 and 103 = 1000, and logio0.001= -3 and 10-3= 0.001. Find the value of : log464; log5l25; log3243; log«(«)^; log27 3 ; log^l. 40. From the definition it follows that the laws of indices apply to logarithms, and we have : I. The logarithm of a product equals the sum of the loga- rithms of the factors. II. The logarithm of a quotient equals the logarithm of the dividend minus the logarithm of the divisor. III. The logarithm of a power equals the index of the power times the logarithm of the number. IV. The logarithm of a root equals the logarithm of the number divided by the index of the root. , For if a^ =^n and a^ = m, ■ then n xm = a^"*"^ .*. log nm = x-\-y = log n + log w; and n-^m = a^~y, .-.log— = a; — ^ = logn — logm; m also n""— (a^y= a^^ .-. log n"" =rx = r xlogn; _ Z_ _ -J finally, Vn = Va^ = a% .*. log from this point the elevation is 36° 24'. How high is the kite above the ground ? ^^ = a:, cot 42° 30', ^C = re. cot 36° 24', AC^-AB^ = BC^ = 400. .'. a;2 (cot2 36° 24' - cot^ 42° 30') = 400, whence ^2 _ J00_ and a: = .f^ = 24.84 yds. .6489 .805 Fig. 32. EXAMPLES. 1.. What is the altitude of the sun when a tree 71.5 ft. high casts a shadow 37.75 ft. long ? 2. What is the height of a balloon directly over Ann Arbor w^hen its elevation at Ypsilanti, 8 miles away, is 10° 15'? 3. The Washington monument is 555 ft. high. How far apart are two observers who, from points due east, see the top of the monument at elevations of 23° 20' and 47° 30', respectively? 4. A mountain peak is observed from the base and top of a tower 200 ft. high. The elevation angles being 25° 30' and 23° 15', respec- tively, compute the height of the mountain above the base of the tower. 5. From a point in the street between two buildings the elevation angles of the tops of the buildings are 30° and 60°. On moving across APPLICATIONS. 55 the street 20 ft. toward the first building the elevation angles are found to be each 45°. Find the width of the street and the height of each building. 6. From the peak of a mountain two towns are observed due south. The first is seen at a depression of 48° 40', and the second, 8 miles farther away and in the same horizontal plane, at a depression of 20° 50'. What is the height of the mountain above the plane ? 7. A building 145 ft. long is observed from a point directly in front of one corner. The length of the building subtends tan-i 3, and the height tan-i 2. Find the height. 8. An inaccessible object is observed to lie due N.E. After the ob- sen^er has moved S.E. 2 miles, the object lies N.N.E. Find the distance of the object from each point of observation. 9. Assuming the earth to be a sphere with a radius of 3963 miles, find the height of a lighthouse just visible from a point 15 miles distp,nt at sea. 10. The angle of elevation of a tower 120 ft. high due north of an observer was 35° ; what will be its angle of elevation from a point due west from the first point of observation 250 ft. ? Also the distance of the observer from the base of the tower in each position ? 11. A railway 5 miles long has a uniform grade of 2° 30' ; find the rise per mile. What is the grade when the road rises 70 ft. in one mile? (The grade depends on the sine of the angle.) 12. The foot of a ladder is in the street at a point 30 ft. from the line of a building, and just reaches a window 22^ ft. above the ground. By turning the ladder over it just reaches a window 36 ft. above the ground on the other side of the street. Find the breadth of the street. 13. From a point 200 ft. from the base of the Forefathers' monument at Plymouth, the base and summit of the statue of Faith are at an eleva- tion of 12° 40' 48" and 22° 2' 53", respectively ; find the height of the statue and of the pedestal on which it stands. 14. At a distance of 100 ft. measured in a horizontal plane from the foot of a tower, a flagstaff standing on the top of the tower subtends an angle of 8°, while the tower subtends an angle of 42° 20'. Find the length of the flagstaff. 15. The length of a string attached to a kite. is 300 ft. The kite's elevation is 56° 6'. Find the height of the kite. 16. From two rocks at sea level, 50 ft. apart, the top of a cliff is ob- served in the same vertical plane with the rocks. The angles of eleva- tion of the cliff from the two rocks are 24° 40' and 32° 30'. What is the height of the cliff above the sea ? CHAPTER VI. GENERAL FORMULA — TRIGONOMETRIC EQUATIONS AND IDENTITIES. 49. Thus far functions of single angles only have been considered. Relations will now be developed to express functions of angles which are sums, differences, multiples, or sub-multiples of single angles in -terms of the functions of the single angles from which they are formed. First it will be shown that, sin (a ± p) = sin a cos p ± cos a sin p, cos (a ± p) = cos a cos p T sin a sinpe tan g ± tan p 1 T tan a tan p The following cases must be considered : 1. a, y8, a + yS acute angles. 2. a, y8, acute, but a + yS an obtuse angle. 3. Either a, or y8, or both, of any magnitude, positive or negative. The figures apply to cases 1 and 2. tan (a ± p) Let the terminal line revolve through the angle «, and then through the angle ^, to the position OB, so that angle 56 GENERAL FORMULA. 57 XOB = a-{- 13. Through any point F in OB draw perpen- diculars to the sides of a, DP and (7P, and through C draw a perpendicular and a parallel to OX, MO and JVC, Then the angle QCA = a (why?), and CNP is the triangle of reference for angle QCF = 90° + a. CNP is sometimes treated as the triangle of reference for angle CPN. The fallacy of this appears when we develop cos (« + ^), in which PC would be treated as both plus and minus. Now sm(« + ^)=sinXO£ = |^ = ^+^, or expressiftg in trigonometric ratios, ^MC 00^. NP CP_ OC' OP CP' OP = sin a cos ^ + sin (90° + a) sin ff. Hence, since sin (90° 4- a) = cos a, we have sin (a 4- yQ) = sin a cos ^ + cos a sin ff. In like manner cos(« + ^) = cosXO^ = — = — + -^ or expressing in trigonometric ratios, OM 00 ON OP 00 OP OP OP = cos a cos P + cos (90° + a) sin yS. And since cos (90° + a) = — sin a, we have cos (a + y8) = cos a cos yS — sin a sin y5. It will be noted that the wording of the demonstration ap- plies to both figures, the only difference being that when a + /3 is obtuse OD is negative. ON is negative in each figure. 50. In the case, when a, or /3, or both, are of any magni- tude, positive or negative, figures may be constructed as before described by drawing through any point in the terminal line of P a perpendicular to each side of a, and through the foot of the perpendicular on the terminal line of a a perpendicular and a parallel to the initial line of a. Noting negative lines, 68 PLANE TRIGONOMETRY. the demonstrations already given will be found to apply for all values of a and y8. To make the proof complete by this method would require an unlim- ited number of figures, e.g. we might take a obtuse, both a and (i obtuse, either or both greater than 180°, or than 360°, or negative angles, etc. Instead of this, however, the generality of the proposition is more readily shown algebraically, as follows : Let a^ = 90° + a be any obtuse angle, and a, yS, acute angles. Then ^ sin Qa! + iS) = sin (90° + a + yS) = cos (a + ^S) = cos a cos /3 — sin a sin y8 = sin (90° + a) cosy8 + cos (90° + a) sinyS(why?) = sin a' cos /3 + cos ct' sin y(3. In like manner, considering any obtuse angle ^' = 90° + yS, it can be shown that sin (a' + yS') = sin ex! cos y8' + cos aJ sin/3^ Show that cos (a' + ^8') = cos a' cos fi' — sin a' sin /3^ By further substitutions, e.g. a" = 90° ± a', 0" = 90° ± yS^ etc., it is clear that the above relations hold for all values, positive or negative, of the angles a and yS. Since a and may have any values, we may put — yS for y8, and sin(a+ [— yS]) = sin (a — yS) = sin a cos ( — y5) + cos a sin ( — yS) = sin a cos yS — cos a sin yS (why ?) . Also cos (a — I3}= cos a cos( — yQ) — sin a sin ( — /3) = cos a cos yS + sin a sin /3, Finally, tan r + iS^ — ^"^ C^ ^ )^) _ sin ct cos y9 ± cos ct sin /S cos(a±/3) cosctcosyS^ sinasinyS sinctcosy8 cos«siny8 cos a cos /S cos a cos yS tan a ± tan y8 cosctcosy^ sin a sin y8 1 qp tan a tan y8 cos a cos /3 cos a cos yS EXAMPLES. 59 ORAL WORK. By the above formulae develop : 1. sin (2A +SB). 7. sin 90° = sin (45° + 45°). 2. cos (90° -5). 8. cos 90°. 3. tan (45° + <^). 9. tan 90°. 4. sin 2 yl = sin (A + A), 10. sin (90° + /? + y). 5. cos 2^. 11. cos (270° - m - n). 6. tan (180° + C). 12. tan (90° + m + n). Ex. 1. Find sin 75°. sin 75° = sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30° = ^.^ + ^.Ul±^ = 0.9659. y/2. 2 V2 2 2\/2 2. Find tan 15°. tan 45° - tan 30° tan 15° = tan (45° - 30°) i-X 1 + tan 45° tan 30° ^ = ^-^ = 2 - V3 = 0.2679. 1 + J_ V3 + 1 V3 3. Prove !iEM_£2iM=2. sin A cos A Combining" ^^^ ^ ^ ^^^ ^ —cos 3 ^ sin ^ _ sin (3^4 — A^ sin A cos A sin A cos A _ sin 2 A _ si n (A -\- A) _ sin A cos A + cos A sin A _ g sin A cos A smA cos A sin A cos A 4. Prove tan-^ a + tan-^ b = tan-^ -^-^ — 1 — ah Let a — tan-^a, /8 = tan-i&, y = tan-^ ^ "^ * Hence, tan a = a, tan (3 = b, tan y = -^^^ -• Then a -\- fi = y, and hence tan (« + )8) = tany. Expanding, tan « + tan /? ^ ^^^ 1 — tan a tan yt? Substituting, g + 6 __a_±A. 1 - a6 1 - a6* 60 PLANE TRIGONOMETRY. EXAMPLES. 1. Find cos 15°, tan 75°. 2. Prove cot (a ± (3) = ^ot^^cot^Tl . , ^ ^^"^ cot)8±cota 3. Prove geometrically sin (« + /?) = sin a cos )8 + cos a sin j8, and cos (a + )8) = cos a cos ^ — sin a sin j3, given (a) a acute, y8 obtuse ; (b) a, P, obtuse ; (c) a, /3, either, or both, negative angles. 4. Prove geometrically tan (a + B) = ^^^<^J^^^^P ^ J V A-y l-tanatan/3 Verify the formula by assigning values to a and fi, and finding the values of the functions from the tables of natural tangents. 5. Prove cos (a + jS) cos (a — ft) = cos^ a — sin*^ fi. 6. Show that tan a + tan j8 = sin (a + p\ cos a cos p 7. Given tan a = i, tan )8 = f , find sin (a + )8) 8. Given sin 280° = s, find sin 170°. 9. If a = 67° 22', jS = 128° 40', by use of the tables of natural func- tions verify the formulae on page 56. Prove tan-i ^^ "^ ^ = tan-V^+ tan-^Va. =tan-iV3. 13. If a + /3 = = 2cos-^t_?sin— =-5, COS0 + COS«|> = 2cos-^^cos— ^5 COS - cos<}> = - 2 sin -i-^ sin — ^• Since sin (« + y8) = sin « cos y8 + cos a sin /8, and sin (« — )9) = sin a cos y8 — cos a sin ^, then sin (a + y8) + sin (a — /8) = 2 sin a cos ^9, (1) and sin (a + /S) — sin (a — y8) = 2 cos a sin ^. (2) Also since cos (« + yS) = cos a cos y8 — sin a sin yS, and cos(a — y8)= cosacosy8+ sinasinyS, then cos (a + /3) + cos (a — /3) = 2 cos a cos y8, (3) and cos(a + yS)— cos(a — /3)= — 2sinasin/S. (4) Put a-\-^ = e and a — 13 = cl> 2a = + , and a = ^±-i, 2/3 = ^-^, andyg = ^-=^. A Substituting in (1), (2), (3), (4), we have the above formulae. 62 PLANE TRIGONOMETRY. EXAMPLES. 1. Prove ?HL24±iHi| = tan ^. cos 2 ^ + cos ^ 2 By formulae of last article the first member becomes 2 sm — cos - 2 2 3^ = tan o 3(9 e 2 2 cos — cos - 2 2 2 p sin ct 4- 2 sin 3 g + sin 5 ct _ sin3 a sin 3 cc + 2 sin 5 ct + sin 7 a sin 5 a (sin ct 4- sin 5 g) + 2 sin 3 (z _ 2 sin 3 a cos 2 « + 2 sin 3 ct (sin 3 ct + sin 7 a) + 2 sin 5 a 2 sin 5 cc cos 2 ct + 2 sin 5 a _ (cos 2 (^ + 1) sin 3 ot _ sin 3 a (cos 2 a + 1) sin 5 ct sin 5 a 3. Prove ^^" ^^^ - 2 g)Hh sin (4 ^ - 2 ^) ^ ^^^ cos (4^ -25)+ cos (45 -2^) ^ ^ o- 4^-25+45-2^ 4^-25-45+2^ 2 sin cos ■ 2 2 o 4yl -25 + 45-2^1 4^-25-45 + 2^ 2 cos ;^ COS ■ 2 2 = ^-niM+^ = tan(^+5). COS (.1+5) ^ ^ 4. Prove sin 50° - sin 70° + sin 10° = 0. 2 cos ^^° "^ '^^° sill ^^'^ ~ ^^"^ = 2 cos 60° sin ( - 10°) = - sin 10°. 2. 2 ' ^ 5. Prove ^^^^""^"^^-^^^^^^^"'^^ + ^^^^^^Q"^Q^=cot6(^cot5tt. sin4asin3ct— sin2()isiri 5 a + sin4otsin7a By (3) and (4), p. 61, cos 5 ct + cos a — cos 9a — cos 5 ot + cos 11 ct + cos 9 ct cos a — cos 7 a — cos 3 a + cos 7 a + cos 'S a — cos 11 a cos a + cos 11a 2 cos 6 a cos 5 a ^^4. « ^ «^f k « = ! = — — = cot 6 a cot a. cos a — cos 11a 2 sin 6 a sin 5 a ORAL WORK. By the formulae of Art. 51 transform : 6. cos 5 a + cos a. 8. 2 sin 3 d cos $. 7. cos a — cos 5 a. 9. sin 2 a — sin 4 a. FUNCTIONS OF THE DOUBLE ANGLE. 63 10. cos 9^ cos 2^. 16. cos(30°+2<^)sin(30°--cos2;7. 19. sin 36° + sin 54°. 14. cos(2o + 3o)sin(2p-3o). ^ ^ ^^ ^ -^ ^^ 20. cos 60° + cos 20°. 15 • ?i ' L ' ^^^2 ~^"^2' 21. sin 30° + cos 30°. • Prove: 22. ?HL^^±^ = tan«4J?cot^^:^. sin a — sin y8 2 2 23 cos « + cos ^ ^ cotgL±^cot^^-^. cos /? — cos a 2 2 2^^ sin^ + siny^^^^^+j^^ cos X + COS y 2 25. sin a:- sin y ^ _ ^ot^i^^. cos a: — cos y 2 26. cos 55° + sin 25° = sin 85°. Simplify: 27. sin^ + sin 2 B + sin 3 ^^ cos B + COS 2B +COS 3 5 23 sin C - sin 4 C + sin 7 C - sin 10 C cos C — COS 4 C + cos 7 C — cos 10 C 52. Functions of an angle in terms of those of the half angle. If in sin (a + /3) = sin a cos yS + cos a sin jS, a = j3, then sin (a + a) = sin 2 a = 2 sin a cos a. In like manner cos (a + a) = COS 2 a = cos^ a - sin^ a = 2 cos^ a - 1 ^ = l-2sin»a; and tan 2 a = 1 - tan* a 64 PLANE TRIGONOMETRY. ORAL WORK. Ex. Express in terms of functions of half the given angles : 1. sin 4 a. 4. cos a:. 6. sm(2p — q). 2. cos3». . Q 7. cos (30° + 2 6). 5. sm^. 3. tan5^ 2 8. sin (a; + ?/). 9. From the functions of 30° find those of 60° ; from the functions of 45°, those of 90°. 53. Functions of an angle in terms ^ those of twice the angle. By Art. 52, cos a = 1 - 2 sin2 ^ = 2 cos2^ - 1. -^ 2 2 2sin^| = = 1 — cos «, and 2cos2^ «-r . a sm- a cos- -COS a 2 ' -^ ... u.|= ^^1-cosa ^ 1 + COS a 1=^4 1 + cos a Explain the significance of the ± sign before the radicals. Express in terms of the double angle the functions of 120°; 50°; 90°, with proper signs prefixed. Ex. 1. Express in terms of functions of twice the given angles each of the functions in Examples 1-8 above. 2. From the functions of 45° find those of 22° 30' ; from the functions of 36°, those of 18° (see tables of natural functions). 3. Find the corresponding functions of twice and of half each of the following angles, and verify results by the tables of natural functions : Given sin 26° 42' = 0.4493, tan 62° 24' = 1.9128, cos 21° 34' = 0.9300. -4 4. Prove tan-iA/^— -^^^ = ?. 5. 2 tan-i a; = tan-J ^^ + cos X 2 1 — x^ EXAMPLES. 65 6. Ji Af B, C are angles of a triangle, prove sin ^ + sin C + sinjB = 4 cos — sin — sin -^ 2 2 2 7. K cos2 a + cos2 2a + cos^ 3 a = 1, then cos a cos 2 a cos 3 a = 0. 8. Prove cot ^ — cot 2 ^ = esc 2 ^. 2 tan 9. Prove tan (H) (M) 1 — tan 2 2 l + tan|j 10 tang _ - 2 sin ^ ^ tan (a + <^) sin (2 a + <^) + sin <^ U. lfv = t2^n-i2^I ±^' + ^^^^^\ prove 2:2 = sin 2y. 12. Prove tan-i Vl + x^- 1 ^an-i -1^ = g tan-i x. X 1 - a;2 2 13. If y = sin-i - ^ prove x = tan w. 14. Prove cos2 « + cos2 j8 - 1 = cos (a + fS) cos (a - ^). 15. Prove V(cos a - cos ^) 2 -f- (sin a - sin ^8)2 = 2 sin £LZL^. 16. Prove sin-i V-^— = tan-i J- = - cos-i ^^ ^a+a; ^a 2 a + 17. Prove cos^ - cos^ <^ = sin (<^ + 6) sin ( - 0). 18. Prove tan ^ + tan (A + 120°) + tan (A - 120°) = 3 tan 3 ^. 19. Prove tan a — tan - = tan - sec a. 2 2 20. 3tan-ia = tan-i ^"~^^ 1 - 3 a2 21. cos2 3 A (tan2 3 ^ - tan2 ^) = 8 sin2^ cos 2 ^. 22. 1 + cos 2 (^ - B) cos 2 5 = cos2^ + cos2 (A -2 B). 23. cot2fE + ^U2csc26l- \4 2/ 2csc2^ + sec seed 66 PLANE TRIGONOMETRY. TRIGONOMETRIC EQUATIONS AND IDENTITIES. 54. Identities. It was shown in Chapter I that sin2 e + cos2 = 1 is true for all values of 0, and in Chapter VI, that sin (a + /3) = sin a cos /3 + cos a sin jS is true for all values of a and /3. It may be shown that sin 2 A "^ = tan-4 1 + cos 2 J. is true for all values of A^ thus : sin 2 A _ 2 sin A cos A (by trigonometric transf orma- 1 + cos2J.~l + 2cos2J.-l tion) = J (by algebraic transformation J = tsinA (by trigonometric transformation). Such expressions are called trigonometric identities. They are true for all values of the angles involved. 55. Equations. The expression 2 cos^ a — 3 cos a + 1 = is true for but two values of cos a, viz. cos a= ^ and 1, i.e. the expression is true for a = 0°, 60°, 300°, and for no other positive angles less than 360°. Such expressions are called trigonometric equations. They are true only for particular values of the angles involved. 56. Method of attack. The transformations necessary at any step in the proof of identities, or the solution of equa- tions, are either trigonometric^ or algebraic; i.e. in prov- ing an identity, or solving an equation, the student must choose at each step to apply either some principles of algebra, or some trigonometric relations. If at any step no algebraic operation seems advantageous, then usually the expression METHOD OF ATTACK. 67 should be simplified by endeavoring to state the different functions involved in terms of a single function of the angle, or if there are multiple angles^ to reduce all to functions of a single angle. Algebraic Transformations Trigonometric, f Single function to change to a 1 Single angle No other transformations are needed, and the student will be greatly assisted by remembering that the ready solution of a trigonometric problem consists in wisely choosing at each step between the possible algebraic and trigonometric transformations. Problems involving trigonometric func- tions will in general be simplified by expressing them entirely in terms of sine and cosine. EXAMPLES. T -D sin 3 ^ cos 3 ^ n 1. Prove — : — : — = 2. smA cos A By algebra. sin 3^ cos 3 ^ _ sin 3 ^ cos ^ — cos 3 J sin A sin A cos A sin A cos A ... ., sm (3 ^ — ^ ) sm 2 ^ by trigonometry, = — r^^- 7^ = -: — ;; 7 sin ^ cos A smA cos A _ 2 sin ^ cos A _ n sin A cos A Or, by trigonometry, sin SA cos 3 ^ _ 3 sin ^ - 4 sin» A 4 cos^ A - 3 cos ^ sin -4 cos -4 sin^ cos J. by algebra, =3-4 sin2 A — 4: cos^ ^ + 3 = 6 - 4(sinM + cosM)= 2. sec 8 ^ - 1 tan 8 ^ 2. Prove sec 4 ^ - 1 tan 2 ^ No algebraic operation simplifies. Two trigonometric changes are needed. 1. To change the functions to a single function, sine or cosine. 2. To change the angles to a single angle, 8 yl, 4 ^, or 2 ^. 68 PLANE TRIGONOMETRY. By trigonometry and algebra, 1 - cos 8 ^ sin 8 ^ P cos 8 ^ _ cos 8 e _ tavx - ^^^p. \ cos 4^ cos 2^ iiV^^-v^^ K^ oin.nK,.o cos 4 ^(1 - cos 8 0) sin 8 6 cos^. cr _ <^ ^^ _ by algebra, — ^^ -^ — ^ = ♦ o^ * '^ "= ii-^"*- •? /5«r~ 1 — cos 4 sm2^ / . &^-»^ _ j_r by trigonometry, /^ . ^ COS 4 ^(1 - 1 + 2 sin2 4 ^) Z ^ sin 4 ^ cos 4 ^ cos 2 g . '"' iT&II^T^r^ l-l + 2sin22^ /<" sin2^ ' . , - . « by algebra, /^^^ = 2 cos 2 ^ ; ~ C«^ «r^ . ^!.ui-^&c. ysin 2 - /L / _, S»Vt, frO" C4H7 2. £ and X sin 40 = 2 sin 2 cos 2ft — Co^t^ ' "sT^ItI which is a trigonometric identity. J 3. Solve 2 cos2 + 3 sin = 0. | By trigonometry, 2(1 - sin^ 0) + 3 sin = 0, 3 a quadratic equation in sin 0. -, "I By algebra, 2sin20 - 3sin0 - 2 = 0, ] and (sin0-2)(2sin0 + l) = O. ^ .*. sin = 2, or — ^. Verify. The value 2 must be rejected. Why? ' .-. = 210°, and 330° are the only positive values less than 360° that ■ satisfy the equation. ■ '\ 4. Solve sec — tan = 2. i Here tan = — 0.75, .-. from the tables of natural functions, *, = 143° 7' 48", or 323° V 48". j Find sec 0, and verify. I 5. Solve 2 sin sin 3 - sin^ 2 = 0. j By trigonometry, cos 2 — cos 4 — sin^ 2 = 0, I also cos20-cos2 20 + sin22 0-sin220 = O. j By algebra, cos 2 0(1 - cos 2 0) = 0. | .-. cos 2 = or 1, i and 2 = 90°, 270°, 0°, or 360°, j * whence = 45°, 135°, 0°, or 180°. Verify. i TRIGONOMETRIC EQUATIONS. 69 Or, by trigonometry, 2 sin ^(3 sin ^ - 4 sin^ ^) - 4 sin2 cos^ d = ; by trigonometry and algebra, 6 sin2 ^ - 8 sin* ^ - 4 sin2 ^ + 4 sin4 ^ = 0; by algebra, 2 sin^ ^ - 4 sin'* ^ = 0, and 2 sin^ ^(1 - 2 sin2 $) = 0. .-. sin ^ = 0, or ± V|, and 6 = 0°, 180°, 45°, 135°, 225°, or 315°. The last two values do not appear in the first solution, because only angles less than 360° are considered, and the solution there gave values of 2 0, which in the last two cases would be 450° and 630°. Solve : 6. tan ^ = cot ^. 8. 2 cos 2 ^ - 2 sin ^ = 1. 7. sin^ ^ + cos ^ = 1. 9. sin 2 d cos = sin 0, Prove: 10. 2cot2^ = cot^ — tan^. 11. cos 2 a: + cos 2 y = 2 cos (x + y) cos (x — y). 12. (cos a + sin ay = 1 + sin 2 a. 57. Simultaneous trigonometric equations. 13. Solve cos (x -h y)+ cos (x - y) = 2, sin - + sin ^ = 0. 2 2 By trigonometry, cos x cos y — sin x smy + cos x cos y + sin ar sin y = 2, so that cos a: cos y = 1 ; also, ^ -cosar Jl-cosy_Q 2^2 and .'. cos X = COS y. Substituting, cos2 a: = 1, COS a; = ± 1. .-. X = 0°, or 180°, and y = ar = 0°, or 180°. Verify, 70 PLANE TKIGONOMETRY 14. Solve for R and F. W — Fsini — R cos i = 0, W + F cos i — R sin i = 0. To eliminate F, Wcos i — Fshi i cos i — R cos^i = 0, W sin i + jPcos i sin i — R sin^ i = 0. Adding, TF(sin i + cos i) — R(sm^ i + cos^ i) = 0. .-. R = W(sm i + cos i). Substituting, W — Fsini — W((sin i + cos z)cos i = ET _ W — Ty(sin i + cos i) cos z ' * • sin i Jl W = S tons, and i = 22° 30', compute F and jR. i2 = 3(0.3827 + 0.9239)= 3.9198. F ^ 3 - 3(0.3827 + 0.9239)0.9239 ^_iqoa 0.3827 ■ * Solve : 15. 472 cot e - 263 cot <^ = 490, 307 cot 6 - 379 cot <^ = 0. 16. sin 2 a: + 1 = cos a; + 2 sin a;. 17. cos2 e + sin ^ = 1. 18. If 2;^(cos2^-sin2^)-2asin^cos^ + 26sin^cos^ = 0, prove ^ = itan-i-?-^. a — b Prove : 19. tan y =(1 -{■ sec y) tan ^' 20. 2 cot-i X = csc-i ^ "^ ^^ - 2a: 21. sin(<^ + 45°) + sin (<^ + 135°) = V2 cos <^. 22 cos V + cos 3 y _ 1 cos 3 y + cos 5v 2 cos 2 w — sec 2 1' 23. cos 3 a: — sin 3 a: = (cos x + sin a;) (1 — 2 sin 2 x). Solve : 24. sin 2 ^ + sin ^ = cos 2 ^ + cos 6. 25. 4 cos(^ + 60°) - V2 = Ve - 4 cos (^ + 30°). 26. tan 2 ^ = tan 0-1. 27. cos ^ + cos 2 ^ + cos 3 ^ = 0. TRIGONOMETRIC EQUATIONS. 71 28. sin 2 a; + V3 cos 2 a; = 1. 29. 3 tan'-^jo + 8 cos^p = 7. 30. Determine for what relative values of P and W the following equation is true : cos2^- — cos^-i=0. 2 W 2 2 31. Compute N from the equation iV+ -— cos a — — sin a — TV cos a = 0, o o when W = 2000 pounds and a satisfies the equation 2 sin ct = 1 + cos a. 32. sin 9 — tan (cos 6 + sin 0) = cos 0, sin ^ — tan ^ cos ^ = 1. Prove : 33. coi{t + 15°) - tan (t - 15°) = ^ ^^^ ^ < 2 sin 2 < + 1 34. sin-i f — sin~i y\ = sin"^ ^. 35. tan(^ + ^UV ^+^"^^ . U 2/ >l-sino> 36. 2 sin-i i = cos-i 1. 37. If sin ^ is a geometric mean between sin B and cos B, prove cos 2^ =2sin(45 - 5) cos (45 + B). 38. Prove sin (a + y8 + y) = sin a cos y8 cos y + cos « sin ^ cos y + cos « cos y8 sin y — sin a sin j8 sin y. Also find cos(a + /S + y). 39. Prove tan((. + /3 + y) :^ ^^" ^ + ^^" ^ + ^^^ V " *^^ ^ *^" ^ ^^^ ^. 1 —tan a tan ^— tan )8 tan y— tan y tan « If a, jS, and y are angles of a triangle, prove 40. tan a + tan ^ + tan y = tan « tan y8 tan y. 41. cot- + cot^4-cot^ = cot-cot^cotX 2 2 2 2 2 2 If a + /8 + y = 90°, prove 42. tan a tan ^ + tan ^ tan y + tan y tan a = 1. Prove : 43. sin na = 2 sin (n — 1) a cos a — sin (n — 2)a. 44. cos na = 2 cos (n — 1) a cos a — cos (n — 2)a. 45. tann«= tan (n - 1)« + tan « , 1 — tan (n — 1) a tan a CHAPTER VII. TRIANGLES. 58. In geometry it has been shown that a triangle is determined, except in the ambiguous case, if there are given any three independent pai^s, as follows : I. Two angles and a side. II. Two sides and an angle, ( ,'. v = c sin A, c ^ P sin C= —1 .'. p = a sin (7. Equating values of ^, cs>vn.A = a sin (7, sin A sin C or, = a c By dropping a perpendicular from A^ or (7, on a, or (?, show sin B sin C sin ^ sin B , or whence he a sin A sin B sin (7 6 ' 60. Law of Tangents. The tangent of half the difference of two angles of a triangle is to the tangent of half their sum, as the difference of the sides opposite is to their sum, a __ sin A h~ By Art. 59, or sin j5 By composition and division, g - 5 ^ sin J. — sin ^ ^ 2 cos IQA + B) sin i ( J. - ^) a 4- ^ ~ sin ^ + sill ^ ~ 2 sin i^ ( Jl + ^) cos ^(^A — B^ ^ tan^(J.-jg) , tan|-(^ + J5)' tan ^{A — B) _ a—b tani(^H-5)~a + 6' 74 PLANE TRIGONOMETRY. 61. Law of Cosines. The cosine of any angle of a triangle is equal to the quotient of the sum of the squares of the adjacent sides less the square of the opposite side, divided hy twice the product of the adjacent sides. In each figure a^=p'^-\-DC^ = c^-AD^ + (h-AI>y (in Fig. 34, II, DC is negative ; in III, zero) = c2 - AB^ ^P-2b'Al) + Aiy^ = h'^-\-c^-2h-AD. But AD = ccosA, .'. a^ = P-\-(^-2boGOsA; \osA^'I±^-Z^. 2 be Prove that cos B = ^^ + g^-^^ 2aG ' and 2ab 62. Though these formulae may be used for the solution of the triangle, they are not adapted to the use of loga- rithms (why?). Hence we derive the following: Since cos J. = 2 cos^ -4-1 = 1-2 sin2^, 2 2 we have nA A 2 cos^^ = 1 + cos A, and 2 sin^- = 1 - cos -4. z 2 LAW OF COSINES. 75 From the latter 0.0-^1 524-c2_^2 25^-62-^2 _|.^2 ^^^"2=^- 2hc = Ihc 2 be 2 be Let a + 5 + c = 2s, then a-\-b — e=a + b-}-c—2c=2s—2e; i.e. a + b — e=2(s — c^. In like manner, a — b -\- c = 2 (^s — b^, — a + 5 + (?=2(s-a). Substituting, Show that also From show that also o„in2^_2(«- 6).2Cs-c) -„m 2- 2 be .•.sin| = V^- sinf=? 8in|= ? 2cos2^ = l + cos^, COS ^ 9 cos- = ? and Also derive the formulae ~f-' ^i'^^W^- tan:? = ? tanf=? 76 PLANE TRIGONOMETRY. 63. Area of the triangle. In the figures of Art. 59 the area of the triangle ABC= A = ^pb. But p=csinA. .*. A = ^hc sin A, (i) c sin B Again, by law of sines, h = sin O g^sin^ sin^ 2 sin c^sin^sinj^ Substituting, A = Zt sill w (why?). (ii) 2 sin (^4-^) |^ ~ ^^ ^^ ~ ""^ is clearly applicable, A S yS — d) and is preferred to the formulae for sin— and cos — ; for, first, it is more accurate since tangent varies in magnitude from to 00, while sine and cosine lie between and 1. (See Art. 2T, 5.) Let the student satisfy himself on this point by finding, correct to seconds, the angle whose logarithmic sine is 9.99992, and whose loga- rithmic tangent is 1.71668. Does the first determine the angle ? Does the second? And, second, it is more convenient, since in the complete solution of the triangle by sin -- nx logarithms must be taken A A from the table, by cos — seven^ and by tan — but four. The right triangle may be solved as a special case by the law of sines, since sin (7=1. T8 PLANE TRIGONOMETRY. 65. Ambiguous case. In geometry it was proved that a triangle having two sides and an angle opposite one of them of given magnitude is not always determined. The marks of the undetermined or ambiguous triangle are : 1. The parts given are two sides and an angle opposite one, 2. The given angle is acute. 3. The side opposite this angle is less than the other given side. When these marks are aJl present, the number of solutions must be tested in one of two ways : ((^) P>om the figure it is apparent that there will be no solution when the side opposite is less than the perpendicular p ; one solution when side a equals p ; and two solutions when a is greater than p. M. b A b O A b C C No Solution, One Solution, Two Solutions, Fig. 35. And since sin^ = — , it follows that there will be no solu- c tion, one solution, two solutions, according as sin A = — < c (5) A good test is found in solving by means of loga- rithms ; and there will be no solutions, one solution, two solu- tions, according as log sin O proves to be impossible, zero, possible, i.e. as log sin Q is positive, zero, or negative. This results from the fact that sine cannot be greater than unity, whence log sine must have a negative characteristic, or be zero. 66. In computations time and accuracy assume more than usual importance. Time will be saved by an orderly arrange- ment of the formulae for the complete solution, before open- ing the book of logarithms, thus : SOLUTION OF TRIANGLES. 79 Given J., B^ a. Solve completely. = 180°-(^-h^), , a sin -B « sin (7 A 1 1 • /> sin A sin J. ^ 180° log a= log a = A-\-B = log sin jB = log sin C = .-. C = colog sin A = colog sin A = log 6 = log c = .-.6= .-.0 = Check: loga = l0g(5-&) = log ft = log(5-c) = log sin C = colog 5 = colog 2 = ^ colog (5 — a) = logA = 2) .•.A = logtan:| = .-. A = 67. Accuracy must be secured by checks on the work at every step ; e.g. in adding columns of logarithms, first add up, and then check by adding down. Too much care can- not be given to verification in the simple operations of addition, subtraction, multiplication, and division. A final check should be made by using other formulse involving the parts in a different way, as in the check above. As far as possible the parts originally given should be used through- out in the solution, so that an error in computing one part may not affect later computations. 68. The formulae should always be solved for the unknown part before using^ and it should be noted whether the solu- tion gives one value, or more than one, for each part; e.g. the same value of sin^ belongs to two supplementary angles, one or both of which may be possible, as in the ambiguous case. " 69. Write formulae for the complete solution of the fol- lowing triangles, showing whether you find no solution, one solution, two or more solutions, in each case, with reasons for your conclusion : 80 PLANE TRIGONOMETRY. a b c A B C 1. 81° 26' 28'' 44° 11' 20" 54° 22' 12" 2. 78.54 63° 18' 20" 41° 30' 18" 3. 135.82 26.89 53° 28' 30" 4. 0.75 0.85 0.95 5. 243 562 36° 15' 40" 6. 38.75 25.92 63° 50' 10" 7. 0.058 78° 15' 33° 46' 8. 2986 1493 30° 9. 48 50 26° 15' MODEL SofctJTIONS. 1. Given a = 0.785, b = 0.85, c = 0.633. Solve completely. tan ^a/5 6)0 c) ^ B — , tan 2 4 (s — a){s — c) tan 4 (s-a)(s-b) 2 ~ '^ s(s-a) ' 2~^ s(s-b) ' 2 ^ s{s-c) Check: A + B ■}- C = 180°. A = Vs(s - a){s - b)(s - c). a = 0.735 b = 0.85 c = 0.633 2 )2.268 s = 1.134 s-a = 0.349 s-b = 0.284 s - c = 0.501 log(s-&)= 9.45332 log (s - c) = 9.69984 cologs= 9.94539 colog (s -a)= 0.45717 2 )19.55572 log tan ^^= 9.77786 ^A =30° 56' 49" A = 61° 53' 38" Check: log(s-a)= 9.54283 A = 61° 53' 38" log (s - &) = 9.45332 5 = 72° 46' 4" colog s = 9.94539 C = 45° 20' 20" colog (s-c)= 0.30016 180° 0' 2" 2 )19.24170 logtan^C= 9.62085 22° 40' 10" C = 45° 20' 20" hC log(s-a) log (s - c) colog s colog (s — b) log tan ^ J5 IB B logs log (s - a) log (s - b) log (s - c) log A A = 9.54283 = 9.69984 = 9.94539 = 0.54668 2)19.73474 = 9.86737 = 36° 23' 2" = 72° 46 4" = 0.05461 = 9.54283 = 9.45332 = 9.69984 2 )18.75060 = 9.37530 = 0.2373 Solve :(1) Given a = 30, & = 40, c = 50. (2) Given a = 2159, b = 1431.6, c = 914.8. (3) Given a = 78.54, b = 32.56, c = 48.9. SOLUTION OF TRIANGLES. 81 2. Given A = 57° 23' 12", C = 68° 15' 30", c = 832.56. Solve completely. csin J. B 180 54° 21' 18". sin C (A + C) b = csinB sm C Check : tan ^ A ^ be sin A . ^^(s-bXs-c) logc = 2.92042 log sin A = 9.92548 colog sin C = 0.03204 log a Check . 2.87794 a= 754.98 a= 754.98 b= 728.38 c= 832.56 log c = 2.92042 log sin B = 9.90990 colog sin C = 0.03204 log6 = 2.86236 b= 728.38 A s{s — a) logb= 2.86236 logc= 2.92042 log sin ^ = 9.92548 log2A= 5.70826 = 510811^255405.5 2 )2315.92 s = 1157.96 s-a= 402.98 log(s-6)= 2.63304 s- b= 429.58 log (s - c) = 2.51242 5-c= 325.40 colog s= 6.93634 colog (s- a) = 7.39471 2 )19.47651 log tan i^ = 9.73826 ^^=28° 41' 38" A = 57° 23' 16" Solve : (1) Given a = 215.73, B = 92° 15', C = 28° 14'. (2) Given b = 0.827, A = 78° 14' 20", B = 63° 42' 30". (3) Given b = 7.54, c = 6.93, B = 54° 28' 40". 3. Given a = 25.384, c = 52.925, 5 = 28° 32' 20". Solve completely. ("Why not use the same formulae as in Example 1, or 2?) tan C-A £-:^tan.^+^ b = csin^ 2 c + a 2 180° -B = C-\-A= 151° 27' 40". sinC' Check: b = I ac sin B. asiiiB sin J .'. ^(C + A)= 75° 43' 50". c= 52.925 log (c- a) = 1.43998 .-. l(C-A)= 54° 7'38" a= 25.384 colog (c + a) =8.10619 ^(C+A)= 75°43'50" c+a= 7SM9 logtanKC+^) = 0.59460 ^^^^^^^ C=129°51'28" c-a= 27.541 log tan i(C-^) = 0.14077 subtracting, ^= 21°36'12" log a = 1.40456 log c = 1.72366 log sin 5 = 9.67921 colog sin C= 0.1 1484 log & = 1.51771 b= 32.939 Check: log a = 1.40456 log sin 5 = 9.67921 colog sin .4 =0.43395 log 6 = 1.51772 logc = 1.72366 log sin 5 = 9.67921 log 2 A =2.70743 A=511!^=254.965 82 PLANE TRIGONOMETRY. Solve : (1) Given a = 0.325, c = 0.426, B = 48° 50' 10". (2) Given b = 4291, c = 3194, A = 73° 24' 50". (3) Given b = 5.38, c = 12.45, A = 62° 14' 40". 4. Ambiguous eases. Since the required angle is found in terms of its sine, and since sin a = sin (180° — a), it fol- lows that there may be two values of a, one in the first, and the other in the second quadrant, ^eir sum being 180°. In the following examples the student should note that all the marks of the ambiguous case are present. The solutions will show the treatment of the ambiguous triangle having no solution, one solution, two solutions. (a) Given 5 = 70, c = 40, C= 47° 32' 10''. Solve. Why ambiguous ? . p ^ ^ sin (7 log 5 =1.84510 ^^^ c * logsin (7= 9.86788 cologc = 8.89794 log sin^ = 0.11092 .'. B is impossible, and there is no solution. Why? Show the same by sin > -• (5) Given a = 1.5, c = 1.7, A = 61° 55' 38". Solve. . ^^ csinA log c= 0.23045 ^^^ a ' logsin^= 9.94564 colog«= 9.82391 logsin (7= 0.00000 a=90° and there is one solution. Why ? Show the same by sin A - work. sin J. = -. Solve for the remaining parts and check the SOLUTION OF TRIANGLES. 83 (c) Given a = 0.235, b = 0.189, B = 36° 28' 20^'. Solve. . . a sin ^ b sin O sin A = — = ? e = —-. sin^ log a =9. 37107 log 6 = 9. 27646 9. 27646 log sin ^ = 9. 77411 log sin 0=9. 99772 or 9. 28774 colog b = 0.72354 colog sin B = 0.22589 0. 22589 log sin ^ = 9.86872 log c = 9.50007 or 8.79009 A = 47° 39' 25'' c = 0.31628 or 0.06167 or 132° 20' 35". ... (7 =95° 52' 15" or 11° 11' 5". Solve for A, and check. Show the same by sin B < — Solve : (1) Given 6 = 216.4, c= 593.2, B= 98° 15'. (2) Given a = 22, 6 = 75, 5 = 32° 20'. (3) Given a = 0.353, c= 0.295, A = 46° 15' 20". (4) Given a = 293.445, b = 450, A = 40° 42'. (5) Given b = 531.03, c= 629.20, ^=34° 28' 16". Solve completely, given : a h c A B C L 50 60 78° 27' 47" 2. 10 11 93° 35' 3. 4 5 6 4. 10 109° 28' 16" 38° 56' 54" 5. 40 51 49° 28' 32" 6. 352.25 513.27 482.68 7. 0.573 0.394 112° 4' 8. 107.087 56° 15' 48° 35' 9. V2 117° 45° 10. 197.63 246.35 34° 27' 11. 4090 3850 3811 12. 3795 73° 15' 15" 42° 18' 30" 13. 234.7 185.4 84° 36' 14. 26.234 22.6925 49° 8' 24" 15. 273 136 72° 25' 13" 84 PLANE TRIGONOMETRY. APPLICATIONS. 70. Measurements of heights and distances often lead to the solution of oblique triangles. With this exception, the methods of Chapter V apply, as will be illustrated in the following problems. The hearing of a line is the angle it makes with a north and south line, as determined by the^magnetic needle of the mariner's compass. If the bearing does not correspond to any of the points of the compass, it is usual to express it thus: N. 40° W., meaning that the line bears from N. 40° toward W. EXAMPLES. 1. When the altitude of the sun is 48°, a pole standing on a slope inclined to the horizon at an angle of 15° casts a shadow directly down the slope 44.3 ft. How high is the pole? 2. A tree standing on a mountain side rising at an angle of 18° 30' breaks 32 ft. from the foot. The top strikes down the slope of the moun- tain 28 ft. from the foot of the tree. Find the height of the tree. 3. From one corner of a triangular lot the other corners are found to be 120 ft. E. by N., and 150 ft. S. by W. Find the area of the lot, and the length of the fence required to enclose it. 4. A surveyor observed two inaccessible headlands, A and B. A was W. by N. and B, N.E. He went 20 miles N., when they were S.W. and S. by E. How far was A from B ? 5. The bearings of two objects from a ship were N. by W. and N.E. by N. After sailing E. 11 miles, they were in the same line W.N.W. Find the distance between them. 6. From the top and bottom of a vertical column the elevation angles of the summit of a tower 225 ft. high and standing on the same hori- zontal plane are 45° and 55°. Find the height of the column. 7. An observer in a balloon 1 mile high observes the depression angle of an object on the ground to be 35° 20'. After ascending vertically and uniformly for 10 mins., he observes the depression angle of the same object to be 55° 40'. Find the rate of ascent of the balloon in miles per hour. 8. A statue 10 ft. high standing on a column subtends, at a point 100 ft. from the base of the column and in the same horizontal plane, the same angle as that subtended by a man 6 ft. high, standing at the foot of the column. Find the height of the column. 9. From a balloon at an elevation of 4 miles the dip of the horizon is 2° 33' 40". Required the earth's radius. TRIANGLES — APPLICATIONS. 85 10. Two ships sail from Boston, one S.E. 50 miles, the other N.E. by E. 60 miles. Find the bearing and distance of the second ship from the first. 11. The sides of a valley are two parallel ridges sloping at an angle of 30°. A man walks 200 yds. up one slope and observes the angle of eleva- tion of the other ridge to be 15°. Show that the height of the observed ridge is 273.2 yds. 12. To determine the height of a mountain, a north and south base line 1000 yds. long is measured ; from one end of the base line the sum- mit bears E. 10° N., and is at an altitude of 13° 14'. From the other end it bears E. 46° 30' N. Find the height of the mountain. 13. The shadow of a cloud at noon is cast on a spot 1600 ft. due west of an observer. At the same instant he finds that the cloud is at an ele- vation of 23° in a direction W. 14° S. Find the height of the cloud and the altitude of the sun. 14. From the base of a mountain the elevation of its summit is 54° 20'. From a point 3000 ft. toward the summit up a plane rising at an angle of 25° 30' the elevation angle is 68° 42'. Find the height of the mountain. 15. From two observations on the same meridian, and 92° 14' apart, the zenith angles of the moon are observed to be 44° 54' 21" and 48° 42' 57". Calling the earth's radius 3956.2 miles, find the dis- , ,, , ^ , , ,, { iC.\/\Z= Zenith angle tance to the moon. ' ^ \^ ^ v 16. The distances from a point to three objects are 1130, 1850, 1456, and the angles subtended by the distances between the three objects are respectively 102° 10', 142°, and 115° 50'. Find the distances between the three objects. 17. From a ship A running N.E. 6 mi. an hour direct to a port dis- tant 35 miles, another ship B is seen steering toward the same port, its bearing from A being E.S.E., and distance 12 miles. After keeping on their courses 1^ hrs., B is seen to bear from A due E. Find B's course and rate of sailing. 18. From the mast of a ship 64 ft. high the light of a lighthouse is just visible when 30 miles distant. Find the height of the lighthouse, the earth's radius being 3956.2 miles. 19. From a ship two lighthouses are observed due N.E. After sailing 20 miles E. by S., the lighthouses bear N.N.W. and N. by E. Find the distance between the lighthouses. 20. A lighthouse is seen N. 20° E. from a vessel sailing S. 25° E. A mile further on it appears due N. Determine its distance at the last observation. EXAMPLES FOR ^VIEW. In connection with each problem the student should review all principles involved. The following list of problems will then furnish a thorough review of the book. In solving equations, find all values of the unknown angle less than 360° that satisfy the equation. 1. If tan « = }, tan /? = i, show that tan (/3 - 2 a) = -j^. 2. Prove tan a + cot a = 2 esc 2 a. A A A A 3. From the identities sin^ — |- cos^— = 1, and 2 sin — cos— = sin A. 2 2' 22 prove 2 sin — = ± Vl + siii A ±Vl — sin A, and 2 cos — = ± Vl + sin A T Vl - sin^. 4. Remove the ambiguous signs in Ex. 3 when A is in turn an angle of each quadrant. 5. A wall 20 feet high bears S. 59° 5' E. ; find the width of its shadow on a horizontal plane when the sun is due S. and at an altitude of 60°. 6. Solve sin a: + sin 2 a: + sin 3 a; = 1 + cos x + cos 2 x. 7. Prove tan-i i + tan-i i = ^. 8. If ^ = 60°, B = 45°, C = 30°, evaluate tan A + tan B + tan C tan A tan B -!- tan B tan C + tan C tan A 9 Prove ^Q^ (^^ + ^) <^os C _ 1 — tan A tan B cos (A + C) cos B 1 — tan A tan C 10. Solve completely the triangle whose known parts are b = 2.35, c = 1.96, C = 38° 4:5' A. 11. Find the functions of 18°, 36°, 54°, 72°. Let x = 18°. Then 2a;=36°, 3x = 54°, and 2x + 3a = 90°. P 12. If cot a = -, find the value of sin a + cos a + tan a + cot a + sec a + esc a. 86 EXAMPLES FOR REVIEW. 87 T « -r, sin 3 « sin 2 ^ — sin 3 i8 sin 2 a -, , ^ o 13. Prove — ^— ■, — ^ : — -^-^ = 1 + 4 cos a cos B. sin 2 a sin p — sin 2 /j sin a ' 14. From a ship sailing due N., two lighthouses bear N.E. and N.N.E., respectively; after sailing 20 miles they are observed to bear due E. Find the distance between the lighthouses. 15. Solve 1 — 2 sin a: = sin 3 x, 16. Prove sin-i\'— ^ = tan-i-\p. ^a + b ^b 17. If cos ^ — sin ^ = \/2 sin 6, then cos ^ + sin ^ = V2 cos 9, 18. Solve completely the triangle ABC, given a = 0.256, b = 0.387, C = 102° 20'.5. 2 cos 2 cc - 1 19. Prove tan (30° + a) tan (30°- a) = 2 cos 2 a + 1 20. Solve tan (45° - 0) + tan (45° + ^) = 4. 21. Prove sin^ a cos^ /8 - cos^ a sin^ ft = sin^ a - sin^ ^. 22. Prove cos^ a cos^ /3 - sin^ a sin^ ^ = cos^ « - sin^ p.. 23. A man standing due S. of a water tower 150 feet high finds its elevation to be 72° 30' ; he walks due W. to A street, where the elevation is 44° 50' ; proceeding in the same direction one block to B street, he finds the elevation to be 22° 30'. What is the length of the block between A and B streets. 24. Prove tan-i - 4- tan-i - + tan-i i + tan-i i = -• 3 5 7 8 4 25. If P = 60°, Q = 45°, R = 30°, evaluate sin P cos Q + tan P cos Q sin P cos P + cot P cot R 26. If cos (90° + «) = -!, evaluate 3 cos 2 a + 4 sin 2 a. 27. If sin B + sin C = m, cos J5 + cos C = n, show that tan — ^ — = — . 2 n 28. Show that sin 2 )3 can never be greater than 2 sin )8. 29. Prove sin-^ | + sin-^ ^ = tan-^ f f . 30. Solve cot-ix + sin-i- V5 = ^• o 4 31. Solve sin-^x + sin-i(l — x)= cos~^ar. 32. A man standing between two towers, 200 feet from the base of the higher, which is 90 feet high, observes their altitudes to be the same ; 70 feet nearer the shorter tower he finds the altitude of one is twice that of the other. Find the height of the shorter tower, and his original distance from it. 88 PLANE TRIGONOMETRY. 33. Solve cos 3 /3 + 8 cos^ p = 0. 34. Solve cot m — tan (180 + m) = sin m + sin (90" — m), 35. Solve ljzi!:Bi = 2 cos 2 1. 1 + tan « 36. Prove cot^ + cot 5 =^^-(A±M. sm A sm B 37. Prove cot P - cot Q = - ^^"^^7 ^^ - sin P sm Q 38. In the triangle ABC prove a = 6 sin C + c sin 5, 6 = c sin J. + a sin C, c = a sin .B + 5 sin ^4. 39. Solve completely the triangle, given a = 927.56, b = 648.25, c = 738.42. 40. Prove cos^ a - sin (30° + a) sin (30° - «) = f . -, -D X o J. cos 2 a; — cos 4 a: 41. Prove tan 3 x tan a; = — cos 2 a; + cos 4 x 42. Simplify cos (270° + «) + sin (180° + a)+ cos (90° + a). 43. Simplify tan (270° -$)- tan (90° + 6)+ tan (270° + 0). 44. Solve cos 3 <^ — cos 2 <^ + cos ^ = 0. 45. Solve cos ^ + cos 3 ^ + cos 5 ^ + cos 7 ^ = 0. 46. The topmast of a yacht from a point on the deck subtends the same angle a, that the part below it does. Show that if the topmast be a feet high, the length of the part below it is a cos 2 a. 47. A horizontal line AB is measured 400 yards long. From a point in A B Si balloon ascends vertically till its elevation angles at A and B are 64° 15' and 48° 20', respectively. Find the height of the balloon. sin a 48. If cos d) = n sin a, and cot<^= '* prove cos B= tan^ Vl + n2cos2a 49. Find cos 3 a, when tan 2 a = — f . 50. Solve completely the triangle, given a = 0.296, B = 28° 47'.3, C = 84° 25'. 51. Evaluate sin 300° + cos 240° + tan 225^ 52. Evaluate sec IS - esc ^ + tan 1^. O O O EXAMPLES FOR REVIEW. 89 53. If tan^ = ^^^"^^^V-^"^^^^^Y cos « COS y — cos /8 sin y and tan = sin a sin y - sin ^ cos y^ cos « sin y — cos ^ cos y show that tan(^ + <^) = tan(a + (3). 54. If tan 466° 15' 38" = - ^^, find the sine and cosine of 233" 7' 49". 55 Prove ^^^ ^ ~ ^^^ ^ sec a — tan a sec a + tan a esc a + cot a 56. Prove cos((.-3^)-cos(3«-^) ^ ^ sin(a - fl). sin 2 « + sin 2 ^ ^ '^^ 57. Prove sin 80° = sin 40° + sin 20°. 58. Prove cos 20° = cos 40° + cos 80°. 59. Prove 4 tan-i - - tan"! — = S 5 239 4 60. From the deck of a ship a rock bears N.N.W. After the ship has sailed 10 miles E.N.E., the rock bears due W. Find its distance from the ship at each observation. 61. Find the length of an arc of 80° in a circle of 4 feet radius. 62. Given tan 6 = ^, tan + sin 17 p ^ 2 cos 9;,. sm 10 p + sm 8j9 82. Consider with reference to their ambiguity the triangles whose known parts are : (a) a = 2743, b = 6452, B = 43° 15' ; (b) a = 0.3854, c = 0.2942, C=:38°20^ (c) &= 5, c = 53, 5 = 15°22'; (d) a = 20, b = 90, A= 63° 28'.5. 83. From a ship at sea a lighthouse is observed to bear S.E. After the ship sailed N.E. 6 miles the bearing of the lighthouse is S. 27° 30' E. Find the distance of the lighthouse at each time of observation. 84. Prove sin (^ + 3 <^) + sin (3 ^ + <^) ^ 3 cos (0 + <^). sin 2 d + sin 2 <^ v ^ v'y 85. Prove cos 15° - sin 15° = — • V2 86. Show that cos (a + )8) cos (a — /3)= cos^ a - sin^ p = cos2)8 — sin^a. 87. Show that tan (a + 45°) tan (a - 45°) = ^sin^ot-l ^ ^ ^ ^ 2cos2a-l 88. Solve sin (x + y) sin (x — y)= ^, cos (x + y) cos (x — y) = 0. 89. Prove l + sin«-cos« ^ ^^^ a 1 + sin a + cos a 2 EXAMPLES FOR REVIEW. 91 90. Prove tan 2 ^ + sec 2 ^ = cos + sin 6 cos ^ — sin ^ 91. If tan <}>=-, then a cos 2^ + &sin2d> = a, a 92. Prove sin-i-i + cot-i3 = ^' 93. Solve cos A + cos 7 A = cos 4 A. 94. Two sides of a triangle, including an acute angle, are 5 and 7, the area is 14 ; find the other side. 95. Show that 3cos3g-2cose-cos5g ^ ^^^ ^ ^ sm 5 ^ — 3 sm 3 ^ + 4 sin 6 96. A regular pyramid stands on a square base one side of which is 173.6 feet. This side makes an angle of 67° with one edge. What is the height of the pyramid ? 97. From points directly opposite on the banks of a river 500 yards wide the mast of a ship lying between them is observed to be at an eleva- tion of 10° 28'.4 and 12° 14'.5, respectively. Find the height of the mast. 98. Show that (sin 60° - sin 45°) (cos 30° + cos 45°) = sin2 30°. 99. Find x if sin-i x + sin-i ^ = ^. 2 4 100. Trace the changes in sign and value of sin a + cos a as a changes from 0° to 360°. FIVE-PLACE LOGARITHMIC AND TRIGONOMETRIC TABLES ADAPTED FROM GAUSS'S TABLES i i BY j ELMER A. LYMAN J MICHIGAN STATE NORMAL COLLEGE • AND ^ EDWIN C. GODDARD | UNIVERSITY OF MICHIGAN i >J«io ALLYN AND BACON Boston antJ Chicago V/^ COPYRIGHT, 189 9, BY ELMER A. LYMAN and EDWIN C. GODDARD. Nortoooti iPwaa J. S. Cashing & Co. — Berwick & Smith Norwood Mass. U.S.A. TABLE I. THE COMMON LOGARITHMS OF NUMBERS FROM 1 TO 10009. N. L. 1 2 3 4 5 6 7 8 9 P.P. 100 00000 043 087 130 173 217 260 303 346 389 lOI 432 475 518 561 604 647 689 732 775 817 44 43 42 I02 860 903 945 988 *03o *072 *ii5 *i57 *i99 *242 I 2 103 01 284 326 368 410 452 494 536 tl 620 662 4/4 4/3 4/2 8,8 8,6 8,4 13,2 12,9 12,6 17,6 17,2 16,8 22,0 21,5 21,0 26,4 25,8 25,2 30,8 30,1 29,4 35/2 34,4 33,6 39/6 38,7 37,8 104 703 74S 787 828 870 912 953 ^036 ^078 3 4 105 02 119 160 202 243 284 325 366 407 449 490 106 531 572 612 653 694 735 776 816 857 898 107 938 979 *oi9 *o6o *ioo *i4i *i8i *222 ^262 ^302 7 8 108 03342 383 423 463 503 543 583 623 663 703 109 743 782 822 862 902 941 981 *02I *o6o *ioo 9 110 04139 179 218 258 297 336 376 415 454 493 III 532 571 610 650 689 727 766 805 844 883 41 40 39 112 922 961 999 *038 *077 *ii5 *i54 *i92 *23i ^269 113 05308 346 385 423 461 500 538 576 614 652 I 4/1 4/0 3/9 8,2 8,0 7,8 12.3 12,0 11,7 16.4 16,0 15,6 20.5 20,0 19,5 24/6 24,0 23,4 28.7 28,0 27,3 32.8 32,0 31,2 36.9 36,0 35,1 114 690 729 767 805 843 881 918 956 '994 *032 2 3 4 5 6 115 06 070 108 145 183 221 258 296 333 371 408 116 446 483 521 558 595 633 670 707 744 781 117 819 856 893 930 967 *oo4 *04i *078 *ii5 *i5i 7 8 118 07 188 225 262 298 335 372 408 445 482 518 119 555 591 628 664 700 737 773 809 846 882 9 120 918 954 990 *027 *o63 *099 *i35 *i7i *207 *243 1 121 08279 314 350 386 422 458 493 529 565 600 38 37 36 1 122 636 672 707 743 778 814 849 884 920 955 3/8 3/7 3/6 7/6 7/4 7/2 11,4 II, I 10,8 15,2 14/8 14/4 19,0 18,5 18,0 123 991 *026 *o6i ^096 ^132 *i67 *202 *237 *272 *307 2 124 09342 377 412 447 482 517 552 587 621 656 4 125 691 726 760 795 830 864 899 934 968 *oo3 126 10037 072 106 140 175 209 243 278 312 346 5 22,8 22,2 21,6 127 380 415 449 483 517 551 585 619 653 687 7 26,6 25,9 25,2 128 721 755 789 823 857 890 924 958 992 *025 8 30,4 29,6 28,8 129 II 059 093 126 160 193 227 261 294 327 361 9 34/2 33,3 32,4 130 394 428 461 494 528 561 594 628 661 694 1 131 727 760 793 826 860 893 926 959 992 ^024 35 34 33 1 132 12 057 090 123 156 189 222 254 287 320 352 133 38S 418 450 f3 516 548 581 613 646 678 I 2 3 4 3/5 3/4 3/3 7,0 6,8 6,6 10,5 10,2 '9,9 14,0 13,6 13,2 17/5 I7/0 16,5 21,0 20,4 19,8 24/5 23,8 23,1 28,0 27,2 26,4 31/5 30/6 29,7 134 710 743 775 808 840 872 905 937 969 jifOOI 135 13033 066 098 130 162 194 226 258 290 322 136 354 386 418 450 481 513 545 577 609 640 137 672 704 735 767 799 830 862 893 925 956 I X38 988 *oi9 *o5i *o82 *ii4 *I45 *I76 *208 *239 *270 139 14 301 333 364 395 426 457 489 520 551 582 9 140 613 644 675 706 737 768 799 829 860 891 141 922 953 983 *oi4 *045 *076 *io6 *I37 ^168 ^198 32 31 30 143 •15 229 259 290 320 351 381 412 442 473 503 143 534 564 625 655 685 715 746 776 806 I 6,4 6,2 6,0 9/6 9/3 9,0 12,8 12,4 12,0 16,0 15,5 15,0 19,2 18,6 18,0 22,4 21,7 21,0 25,6 24,8 24,0 28,8 27,9 27,0 144 145 836 866 897 927 957 987 *oi7 *047 *077 *I07 2 3 4 i 16 137 167 197 227 256 286 316 346 376 406 146 43S 465 495 524 554 584 613 643 673 702 147 732 761 791 820 850 879 909 938 967 997 7 8 148 17026 056 085 114 143 173 202. 231 260 289 149 319 348 377 406 435 464 493 522 551 580 9 150 609 638 667 696 725 754 782 811 840 869 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 » 1 150 17609 638 667 696 725 754 782 811 840 869 151 898 926 955 984 *oi3 *04i *070 *099 *I27 »i56 29 28 152 18 184 213 241 270 298 327 35S 384 412 441 2,8 5/6 8,4 11,2 14,0 16,8 153 469 498 526 554 583 611 639 667 696 724 I 2 3 4 5,8 8,7 11,6 14,5 17,4 20.3 154 752 780 808 837 865 893 921 949 977 *oo5 155 19033 061 089 117 14$ 173 201 229 257 285 156 312 340 368 396 424 45^ 479 507 535 562. 157 590 618 645 673 700 728 756 783 811 838 7 8 19/6 22,4 25,2 158 866 893 921 948 976 *oo3 *030 ^058 *o85 *ii2 159 20 140 167 194 222 249 276 303 330 358 385 9 160 412 439 466 493 520 548 575 602 629 656 161 683 710 737 763 790 817 844 871 898 925 27 26 162 952 978 *ooS *032 *o59 *o85 *II2 *I39 *i65 »I92 2,6 163 21 219 245 272 299 325 352 378 405 431 458 ■'■ ^,/ 164 484 511 537 564 590 617 643 669 696 722 2 3 4 5 6 5,4 8,1 10,8 13,5 16,2 5,2 7,8 10,4 13,0 i^ 6 165 748 775 801 827 854 880 906 932 958 985 i6b 22 on 037 063 089 141 167 194 220 246 167 272 298 324 350 376 401 427 453 479 505 7 8 18^9 21 6 i8;2 168 531 557 583 608 634 660 686 712 737 763 20' 8 169 170 789 814 840 866 891 . 917 943 968 994 *oi9 9 24^3 23U 23045 070 096 121 147 172 198 223 249 274 171 300 325 350 r 376 401 426 452 477 502 528 25 172 553 578 603 629 654 679 704 729 754 779 T 2 5 173 805 830 855 880 905 930 955 980 j(t005 ^030 2 c 174 24055 080 105 130 155 180 204 229 254 279 3 4 10,0 1 175 304 329 353 378 403 428 452 477 502 527 12 5 176 551 601 625 650 674 699 724 748 773 5 15 17 20 177 797 822 846 871 89s 920 944 969 993 *oi8 7 5 178 25042 066 091 115 139 164 188 212 237 261 8 179 285 310 334 358 382 406 431 455 479 503 9 22 5 180 527 551 575 600 624 648 672 696 720 744 181 768 792 816 840 864 888 912 935 959 983 24 23 182 26007 031 055 079 102 126 150 174 198 221 I 2,3 4,6 6,9 9,2 11,5 13,8 16 I 183 245 269 293 316 340 364 387 411 435 458 2,4 4,8 9,6 12,0 184 482 505 529 553 576 600 623 647 670 694 2 3 4 5 6 185 717 741 764 788 811 834 858 881 905 928 186 951 975 998 *02i *045 *o68 *09i *II4 #138 *i6i I4!4 16,8 187 27184 207 231 254 277 300 323 346 370 393 7 8 188 416 439 462 485 508 531 554 577 600 623 I9!2 21,6 i8;4 20/7 189 646 669 692 715 738 761 784 807 830 852 9 190 875 898 921 944 967 989 *oi2 *o35 ^058 »o8i 191 28 103 126 149 171 194 217 240 262 285 307 22 21 192 ■330 353 37o 398 421 443 466 48S 511 533 193 556 578 601 623 646 668 691 713 735 758 I 2/2 2/1 194 780 803 825 847 870 892 914 937 959 981 2 3 4 5 6 8,8 11,0 8/4 12,6 195 29003 026 048 070 092 "5 137 159 181 203 196 226 248 270 292 314 336 358 380 403 425 13^2 17,6 19/8 197 447 469 491 513 535 557» 579 601 623 645 I 14^7 168 198 667 688 710 732 754 776 798 820 842 863 199 200 885 907 929 951 973 994 *oi6 ^038 *o6o *o8i 9 i8;9 30103 125 146 168 190 211 233 255 276 298 N. L. 1 2 3 4 5 6 7 8 9 PP 1 N. L. 1 2 3 4 5 6 7 8 9 P.P. 200 30103 125 146 168 190 211 233 255 276 298 20I 320 341 363 384 406 428 471 492 514 22 21 202 53S 557 578 600 621 643 664 \899 707 728 I 2 3 4 2/2 2,1 4,4 4,2 6,6 6,3 8,8 8,4 ii^o 10,5 13,2 12,6 15,4 14,7 17,6 16,8 19,8 18,9 203 750 771 792 814 835 856 878 920 942 204 963 984 *oo6 *027 *048 *o69 *09i *II2 *i33 *i54 20s 31 175 197 218 239 260 281 302 323 345 366 206 387 408 429 450 471 492 513 534 555 576 207 597 618 639 660 681 702 723 744 765 785 7 8 208 806 827 848 869 890 911 931 952 973 994 209 32015 035 056 077 098 118 139 160 181 201 9 210 222 243 263 284 305 32S 346 366 387 408 1 211 428 449 469 490 510 531 552 572 593 613 20 1 212 634 654 675 695 715 736 756 m 797 818 213 838 858 879 899 919 940 960 980 ^ifOoi ^021 I 2,0 214 215 33041 062 082 102 122 143 163 183 203 224 2 3 4 4,0 6,0 8,0. 10 244 264 284 304 325 345 365 385 405 425 216 445 465 486 506 526 546 566 586 606 626 12 217 646 666 686 706 726 746 766 786 806 826 7 8 14^0 16 218 846 866 885 905 925 945 965 985 »oo5 #025 219 34044 064 084 IO.t__I24 143 163 183 203 223 9 18^0 220 242 262 282 301 321 341 361 380 400 420 1 221 439 459 479 498 518 537 557 577 596 616 in 1 222 635 655 674 694 713 733 753 772 792 811 223 830 850 869 889 908 928 947 967 986 *oo5 I 1,9 3,8 1% 9,5 11,4 13,3 15,2 17,1 224 35025 044 064 083 102 122 141 160 180 199 2 3 4 7 8 9 225 218 238 257 276 295 315 334 353 372 392 226 411 430 449 468 488 526 545 564 583 227 603 622 641 660 679 698 717 736 755 774 228 793 813 832 851 870 889 908 927 946 965 229 984 *oo3 ^021 ^040 *o59 *078 *097 *ii6 *i35 *i54 230 36173 192 211 229 248 267 286 305 324 342 231 361 380 399 418 436 455 474 493 511 530 18 232 549 568 586 605 624 642 661 680 698 717 I 2 3 1,8 3,6 5,4 233 234 736 922 754 940 773 959 791 977 810 996 829 *oi4 847 *033 866 884 903 *o5i ^070 *o88 235 37 107 125; 144 162 181 199 218 236 254 273 4 7,2 10,8 236 291 310 328 346 365 383 401 420 438 457 237 475 493 511 530 548 566 585 603 621 639 I 12 6 238 658 676 694 712 731 749 767 785 803 822 \ii 239 840 858 876 894 912 931 949 967 985 *oo3 9 240 38 021 039 057 07S 093 112 130 148 166 184 1 241 202 220 238 256 274 292 310 328 346 364 17 1 242 382 399 417 435 453 471 489 507 525 543 243 561 578 596 614 632 650 668 686 703 721 I 1,7 244 739 757 m 792 810 828 846 863 881 899 2 3 4 5 6 3,4 5,1 6,8 8,5 10 2 245 917 934 952 970 987 *005 *023 *04i #058 #076 246 39094 III 129 146 164 182 199 217 235 252 247 270 287 305 322 340 358 375 393 410 428 I ii!9 13,6 15,3 248 44S 463 498 51S 533 550 568 585 602 249 620 637 655 672 690 707 724 742 759 777 9 250 794 811 829 846 863 881 898 915 933 950 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 250 39 794 811 829 846 863 881 898 915 933 930 251 967 985 #002 ^^019 #037 #054 #071 *o88 *io6 *I23 18 252 40 140 157 175 192 209 226 243 261 278 295 1,8 3,6 5,4 7,2 253 312 329 346 364 381 398 415 432 449 466 1 254 483 500 518 535 552 569 586 603 620 637 2 3 4 I 255 654 671 688 705 722 739 756 773 790 807 256 824 841 858 875 892 909. 926 943 960 976 9/0 10 8 ^=>l 993 *oio *027 #044^*061 #078 »C395 *III *I28 *i45 7 8 I2'6 14,4 16,2 258 41 162 179* 196 212 229 246 263 280 296 313 259 260 330 34r 363 380 397 414 430 447 464 481 9 497 514 531 547 564 581 597 614 631 647 1 261 664 681 697 714 731 747 764 780 797 814 17 1 262 830 847 863 880 896 913 929 946 963 979 I 2 3 4 1,7 3,4 5,1 6,8 8,5 10 2 263 996 *OI2 #029 ^045 *o62 *078 *095 »iii *I27 *I44 264 42 160 177 193 210 226 243 259 275 292 308 26s 325 '341 357 37r 390 406 423 439 45S 472 266 488 504 521 537 553 570 586 602 619 635 267 651 684 700 716 732 749 765 781 797 7 8 11,9 13,6 15,3 268 813 830 846 862 878 894 911 927 943 959 269 975 991 *oo8 *024 »040 #056 ,072 ,088 #104 *I20 9 270 43 136 152 169 185 201 217 233 249 265 281 1 271 297 313 329 345 361 377 393 409 425 441 le 1 272 457 473 489 505 521 537 553 569 584 600 1,6 273 616 632 648 664 680 696 712 727 743 759 I 274 77^ 791 807 823 838 854 870 886 902 917 2 3 4 8 275 933 949 965 981 996 4>oi2 »028 #044 *o59 *o7S 276 44091 107 122 138 154 170 185 201 217 232 9,6 II 2 277 248 264 279 295 3" 326 342 358 373 389 I 278 404 420 436 451 467 483 498 514 529 545 12,8 279 560 576 592 607 623 638 654 669 685 700 9 14^4 280 716 731 747 762 778 793 809 824 840 855 1 281 871 886 902 917 932 948 963 979 994 *oio 15 1 282 45025 040 056 071 086 102 117 133 148 163 1,5 283 179 194 209 225 240 255 271 286 301 317 I 284 332 347 362 378 393 408 423 439 454 469 2 3 4 5 6 3,0 4,5 6,0 7,5 9,0 10,5 12 285 484 500 515 530 545 561 576 591 606 621 286 637 652 667 682 697 712 728 743 758 773 287 788 803 818 834 849 864 879 894 909 924 7 8 288 939 954 969 984 *ooo *oi5 *o3o »o45 *o6o *075 289 290 46 090 105 120 135 150 165 180 195 210 225 9 ^3,S 240 255 270 285 300 315 330 345 359 374 291 389 404 419 434 449 464 479 494 509 523 14 292 538 553 568 583 598 613 627 642 657 672 293 687 716 731 746 761 776 790 805 820 I' ■ ■ A, 4 2,8 4,2 5,6 7fi 8,4 9,8 II 2 294 835 850 864 879 894 909 923 938 953 967 2 3 4 5 6 295 982 997 *oi2 »026 »04i ^^056 ifyjo ip%t, ^100 ^^114 296 47 129 144 159 173 188 202 217 232 246 261 297 276 290 305 319 334 349 363 378 392 407 7 3 298 422 436 451 465 480 494 509 524 538 553 299 567 582 596 611 625 640 654 669 683 698 9 12^6 300 712 727 741 756 770 784 799 813 828 842 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 300 47712 727 741 756 770 784 799 813 828 842 301 857 871 885 900 914 929 943 958 972 986 302 48 001 oiS 029 044 058 073 087 lOI 116 130 303 144 159 173 187 202 216 230 244 259 273 15 304 287 302 316 330 344 359 373 387 401 416 305 430 444 458 473 487 501 515 530 544 558 I '^ '' 2 ^/5 3.0 306 572 586 601 615 629 643 657 671 686 700 3 4,5 307 714 728 742 756 770 785 799 813 827 841 4 6,0 308 855 869 883 897 911 926 940 954 968 982 5 7,5 309 996 ^010 4|f024 ^038 ^052 *o66 *o8o *094 *io8 *I22 7 8 9,0 IO/5 12,0 310 49136 ISO 164 178 192 206 220 234 248 262 311 276 290 304 318 332 346 360 374 388 402 9 13,5 312 415 429 443 457 471 48s 499 513 527 541 313 554 568 582 596 610 624 638 651 679 314 693 707 721 734 748 762 776 790 803 817 14 315 831 845 859 872 886 900 914 927 941 955 316 969 982 996 *OIO *024 *o37 *o5i ^065 ^079 ^092 I 1,4 2 8 317 50 106 120 133 147 161 174 188 202 215 229 2 318 243 256 270 284 297 311 325 338 352 365 3 4 5 6 7,0 8,4 319 379 393 406 420 433 447 461 474 488 501 320 •. 515 529 542 556 569'. , 583 596 610 623 637 321 651 664 678 691 705 718 732 745 759 772 7 9,8 322 786 799 813 826 840 853 866 880 893 907 8 11,2 323 920 934 947 961 974 987 ^001 *oi4 *028 *04i 9 12.6 324 51055 068 081 095 108 121 135 148 162 175 325 188 202 215 228 242 255 268 282 295 308 326 322 33S 348 362 375 388 402 415 428 441 327 45S 468 481 495 508 521 534 548 561 574 13 328 587 601 614 627 640 654 667 680 693 706 329 720 733 746 759 772 786 799 812 825 838 I 2 3 3,9 330 851 865 878 891 904 917 930 943 957 970 331 983 996 *009 *022 *03^ *048 *o6i *o75 *o88 *ioi 4 5,2 332 52114 127 140 153 166 179 192 205 218 231 6 333 244 257 270 284 297 310 323 336 349 362 334 375 388 401 414 427 440 453 466 479 492 I 9 9,1 10,4 11,7 335 504 517 530 543 556 569 582 595 608 621 336 634 647 660 673 686 699 711 724 737 750 337 763 776 789 802 815 827 840 853 866 879 338 892 905 917 930 943 956 969 982 994 *oo7 339 53020 033 046 058 071 084 097 no 122 135 10 340 148 161 173 186 199 212 224 237 250 263 I 1,2 341 27S 288 301 314 326 339 352 364 377 390 2 2,4 342 403 415 428 441 453 466 479 491 504 517 3 36 343 529 555 567 580 593 605 618 631 643 4 4,8 344 656 668 681 694 706 719 732 744 757 769 6,0 7,2 8,4 345 782 794 807 820 832 845 857 870 882 895 346 908 920 933 945 958 970 983 995 *oo8 ^020 8 9,6 347 54033 04S 058 070 083 095 108 120 133 145 9 10,8 348 170 183 195 208 220 233 245 258 270 349 283 295 307 320 332 345 357 370 382 394 350 407 419 432 444 456 469 481 494 506 S18 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 12 3 4 5 6 7 8 9 P.P. 350 54407 419 432 444 456 469 481 494 506 518 351 531 543 555 568 580 593 605 617 630 642 352 654 667 679 691 704 716 728 741 753 765 353 777 790 802 814 827 839 851 864 876 888 354 900 913 925 937 949 962 974 986 998 ^01 I I 2 13 355 55023 035 047 060 072 084 096 108 121 133 356 145 157 169 182 194 206 218 230 242 255 3 3.9 357 267 279 291 303 315 328 340 352 364 376 4 5,2 358 388 400 413 425 437 449 461 473 485 497 5 6,5 359 509 522 534 546 558 570 582 594 606 618 7 8 7,8 9,1 10,4 360 630 642 654 666 678 691 703 715 727 739 361 751 763 775 787 799 811 .823 835 847 859 9 "/7 362 871 883 895 907 919 93/943 955 967 979 3^3 991 ^003 ^015 *o27 j^o38 *oj^ *o62 *074 *o86 ^098 364 56 no 122 134 146 158 17b'" 182 194 205 217 12 365 229 241 253 265 277 289 301 312 324 336 366 348 360 372 384 396 407 419 431 443 455 I I 2 367 467 478 490 502 514 526 538 561 573 4,8 6,0 7,2 368 585 597 608 620 632 644 656 667 679 691 3 4 5 6 369 703 714 726 738 750 761 773 785 797 808 370 820 832 844 855 867 879 891 902 914 926 371 937 949 961 972 984 996 #008 *oi9 ^031 *043 7 8,4 372 57054 066 078 089 lOI 113 124 136 148 159 8 9,6 373 ^v- 183 194 206 217 229 241 252 264 276 9 10.8 374 287 299 310 322 334 34S 357 368 380 392 375 403 415 426 438 449 461 473 484 496 507 376 519 530 542 553 565 576 588 600 611 623 377 634 646 657 669 680 692 703 715 726 738 11 378 749 761 772 784 795 807 818 830 841 852 379 864 875 887 898 910 921 933 944 95S 967 I 2 3 1,1 2,2 3,3 380 978 990 *ooi *oi3 *o^ *035 *047 *o58 *070 *o8i 381 58092 104 115 127 138 149 161 172 184 195 4 4,4 382 206 218 229 240 252 263 274 286 297 309 5 5,5 383 320 331 343 354 36^ 377 388 399 410 422 6 6/6 384 433 444 456 467 478 490 501 512 524 535 I 9 7J 8,8 9,9 385 546 557 569 580 591 602 614 625 636 647 386 659 670 681 692 704 715 726 737 749 760 387 771 782 794 805 816 827 838 850 861 872 388 883 894 906 917 928 939 950 961 973 984 389 995 ^006 *oi7 *028 #040 *o5i *o62 *073 ^084 #095 in 390 59106 118 129 140 151 162 173 184 195 207 I 1,0 391 218 229 240 251 262 273 284 295 306 318 2 2,0 392 329 340 351 362 373 384 395 406 417 428 3 3,0 393 439 450 461 472 483 494 506 517 528 539 4 4,0 394 550 561 572 583 594 605 616 627 638 649 7 5,0 6,0 7,0 395 660 671 682 693 704 715 726 737 748 759 396 770 780 791 802 813 824 83S 846 857 868 8 8,0 397 879 890 901 912 923 934 945 956 966 977 9 9,0 398 988 999 *OIO *02I ^032 *043 *o54 *o65 ^076 *o86 399 60097 108 119 130 141 152 T63 173 184 19S 400 206 217 228 239 249 260 271 282 293 304 N. L. 12 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 400 60 206 217 228 239 249 260 271 282 293 304 401 314 325 336 347 358 369 379 390 401 412 402 423 433 444 455 466 477 487 498 509 520 403 531 541 552 563 574 584 595 606 617 627 404 638 649 660 670 681 692 703 713 724 735 405 746 756 767 778 788 799 810 821 831 842 406 853 863 874 885 895 906 917 927 938 949 11 407 959 970 981 991 *002 *oi3 *o23 *o34 ^045 *o55 408 61066 077 087 098 109 119 130 140 151 162 I 1,1 409 172 183 194 204 215 225 236 247 257 268 2 3 4 2/2 3.3 4/4 410 278 289 300 310 321 331 342 352 363 374 411 384 395 405 416 426 437 448 458 469 479 412 490 500 511 521 532 542 553 563 574 584 I 7,7 8/8 413 595 606 616 627 637 648 658 669 679 690 414 700 711 721 73^ 742 752 763 773 784 794 9 9^9 415 805 815 826 836 847 857 868 878 888 899 41b 909 920 930 941 951 962 972 982 993 *oo3 417 62 014 024 034 045 055 066 C76 086 097 107 418 118 128 138 149 159 170 180 190 20 r 211 419 221 232 242 252 263 273 284 294 304 315 420 325 335 346 356 366 377 387 397 408 418 421 428 439 449 459 469 480 490 500 511 521 10 422 531 542 552 562 572 583 593 603 613 624 423 634 644 655 665 675 685 696 706 716 726 I ' " - 1,0 424 737 747 757 767 778 788 798 808 818 829 2 3 4 2/0 3/0 4/0 5/0 6 425 839 849 859 870 880 890 900 910 921 931 426 941 951 961 972 982 992 5,f002 ^012 *022 j,j033 427 63043 053 063 073 083 094 104 114 124 134 7 8 9 7^0 8/O 9/0 428 144 155 165 175 185 195 205 215 225 236 429 246 256 266 276 286 296 306 317 327 337 430 347 357 367 377 387 397 407 417 428 438 431 448 458 468 478 488 498 508 518 528 538 432 548 558 568 579 589 599 609 619 629 639 433 649 659 669 679 689 699 709 719 729 739 434 749 759 769 779 789 799 809 819 829 839 435' 849 859 869 879 889 899 909 919 929 939 436 949 959 969 979 988 998 *oo8 *oi8 *028 *o38 9 437 64 048 058 068 078 088 098 108 118 128 137 438 147 157 167 177 187 197 207 217 227 237 I 0/9 439 246 256 266 276 286 296 306 316 326 335 2 3 4 1/8 2/7 3/6 4/5 440 34S 355 365 375 385 395 404 414 424 434 441 444 454 464 473 483 493 503 513 523 532 442 542 552 572 582 591 601 611 621 631 5/4 6/3 443 640 650 660 670 680 689 699 709 719 729 7 8 9 444 738 748 758 768 777 787 797 807 816 826 7/2 8/1 445 836 846 856 865 875 885 895 904 914 924 446 933 943 953 963 972 982 992 *002 *OII *02I 447 65031 040 050 060 070 079 089 099 108 118 448 128 137 147 157 167 176 186 196 205 215 449 225 234 244 254 263 273 283 292 302 312 450 321 331 341 350 360 369 379 389 398 408 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 450 65321 331 341 350 360 369 379 389 398 408 451 418 427 437 447 456 466 475 485 495 504 452 514 523 533 543 552 562 571 581 591 600 453 610 619 629 ^39 648 658 667 677 696 454 706 71S 725 734 744 753 763 772 782 792 455 801 811 820 830 839 849 858 868 877 887 456 896 906 916 925 935 944 954 963 973 982 10 457 992 ^^OOI *OII *020 *o3o 5^039 ^049 ^058 *o68 *077 458 66087 096 106 115 124 134 143 153 162 172 I ^P 459 181 191 200 210 219 229 238 247 257 266 2 3 4 5 6 2,0 3,0 4.0 5,0 6 460 276 28S 295 304 314 323 332 342 351 361 461 370 380 389 398 408 417 427 436 445 455 462 464 474 483 492 502 511 521 530 539 549 7 8 7!o 8 463 558 567 577 596 605 614 624 633 642 464 652 661 671 680 689 699 708 717 727 736 9 9!° 465 745 755 764 773 783 792 801 811 820 829 466 839 848 857 867 876 88^ 894 904 913 922 467 932 941 950 960 969 978 987 997 *oo6 *oi5 468 67025 034 043 052 062 071 080 089 099 108 469 117 127 136 145 154 164 173 182 191 201 470 210 219 228 237 247 256 265 274 284 293 471 302 311 321 330 339 348 357 367 376 385 9 472 394 403 413 422 431 440 449 459 .468 477 473 486 495 504 514 523 532 541 550 560 569 I ",9 1.8 4:5 '5.4 8.1 474 578 587 596 605 614 624 633 642 651 660 2 3 4 5 6 7 8 9 475 669 679 688 697 706 715 724 733 742 752 476 761 770 779 788 797 806 815 825 834 843 477 852 861 870 879 888 897 906 916 925 934 478 943 952 961 970 979 988 997 *oo6 *oi5 *024 479 68034 043 052 061 070 079 088 097 106 "5 480 124 133 142 151 160 169 178 187 196 205 481 215 224 233 242 251 260 269 278 287 296 482 305 314 323 332 341 350 359 368 377 386 483 395 404 413 422 431 440 449 458 467 476 484 485 494 502 511 520 529 538 547 556 565 485 574 583 592 601 610 619 628 637 646 655 486 ^4 -7^ 673 681 690 699 708 717 726 735 744 R 487 762 771 780 789 797 806 815 824 833 0.8 2.4 3,2 488 842 851 860 869 878 886 895. 904 913 922 I 489 931 940 949 958 966 975 984 993 *oo2 *oii 2 3 4 490 69 020 028 037 046 05s 064 073 082 090 099 491 108 117 126 135 144 152 161 170 179 188 5 6 7 8 4/0 4.8 5,6 6,4 7,2 492 197 205 214 223 232 241 249 258 267 276 493 285 294 302 311 320 329 338 346 355 364 494 373 381 390 399 408 417 42S 434 443 452 9 495 461 469 478 487 496 504 513 522 531 539 496 548 557 566 574 583 592 601 609 618 627 497 636 644 653 662 671 679 688 697 705 714 498 723 732 740 749 758 767 ITS 784 793 801 499 810 819 827 836 845 854 862 871 880 888 500 897 906 914 923 932 940 949 958 966 975 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 500 69897 906 914 923 932 940 949 958 966 975 501 992 j^OOI *OIO *oi8 *027 *036 *o44 *o53 *o62 502 70 070 079 088 % 105 114 122 131 140 148 503 157 165 174 191 200 209 217 226 234 504 243 252 260 269 278 286 295 303 312 3a.; 505 329 338 346 355 364 372 381 389 398 406 506 415 424 432 441 449 458 467 475 484 492 Q 507 501 509 518 526 535 544 552 561 569 578 S08 586 595 603 612 621 629 638 646 655 663 I 0/9 1/8 2.7 3,6 4/5 5/4 6/3 7/2 8/1 509 672 680 689 697 706 714 723 731 740 749 2 3 4 5 6 I 510 757 766 774 783 791 800 808 817 825 834 511 842 851 859 868 876 885 893 902 910 919 512 927 935 944 952 961 969 978 986 995 *oo3 513 71 012 020 029 037 046 054 063 071 079 088 514 096 105 "3 122 130 139 147 15s 164 172 9 515 181 189 198 206 214 223 231 240 248 257 516 265 273 282 290 299 307 31S 324 332 341 517 349 357 366 374 383 391 399 408 416 425 518 433 441 450 458 466 475 483 492 500 508 519 517 525 533 542 550 559 567 575 584 592 520 600 609 617 625 634 642 650 659 667 675 521 684 692 700 709 717 725 734 742 750 759 8 522 767 11^ 784 792 800 809 817 825 834 842 523 850 858 867 875 883 892 900 908 917 925 If ' " 0,0 1/6 2/4 3/2 524 933 941 950 958 966 975 983 991 999 *oo8 2 3 4 525 72016 024 032 041 049 057 066 074 082 090 526 099 107 115 123 132 140 148 156 165 173 4'° 4/8 5/6 6/4 7/2 527 181 189 198 206 214 222 230 239 247 25s 528 263 272 280 288 296 304 313 321 329 337 9 529 346 354 362 370 378 387 395 403 411 419 530 428 436 444 452 460 469 477 485 493 501 531 509 518 526 534 542 550 558 567 575 583 532 591 599 607 616 624 632 640 648 656 66^ 533 673 681 689 697 705 713 722 730 738 746 534 754 762 770 779 787 795 803 811 819 827 535 835 843 852 860 868 876 884 892 900 908 536 916 925 933 941 949 957 965 973 981 989 7 537 997 *oo6 *oi4 *022 ^030 *038 *046 *o54 Jif062 ^070 538 73078 086 094 102 III 119 127 135 143 151 I 0/7 539 159 167 175 183 191 199 207 215 223 231 2 3 4 1/4 2/1 2/8 540 239 247 25s 263 272 280 288 296 304 312 541 320 328 344 352 360 368 376 384 392 5 6 3/5 542 400 408 416 i^ 432 440 448 456 464 472 4/2 543 480 488 496 504 512 520 528 536 544 552 7 8 9 5/6 6/3 544 560 568 576 584 592 600 608 616 624 632 545 640 648 656 664 672 679 687 695 703 7" 546 719 727 735 743 751 759 767 77.5 783 791 547 799 807 815 823 830 838 846 854 862 870 548 878 886 894 902 910 918 926 933 941 949 549 957 965 973 981 989 997 *ooS *oi3 *020 #028 550 74036 044 052 060 068 076 084 092 099 107 ^ L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 550 74036 044 052 060 068 076 084 092 099 107 551 115 123 131 139 147 155 162 170 178 186 552 194 202 210 218 225 233 241 249 257 265 553 273 280 288 296 304 312 320 327 335 343 554 351 359 367 374 382 390 398 406 414 421 555 429 437 445 453 461 468 476 484 492 500 556 507 515 523 531 539 547 554 562 570 578 557 586 593 601 609 617 624 632 640 648 656 558 663 671 679 687 695 702 710 718 726 733 559 741 749 757 764 772 780 788 796 803 811 560 819 827 834 842 850 858 865 873 881 889 561 896 904 912 920. 927 935 943 950 958 966 8 562 974 981 989 997 *oo5 1 ^012 ^020 *028 *03S *043 I Iy6 2,4 3.2 4,0 4.8 SA 6,4 7/2. 563 75051 059 066 074 082 089 097 105 113 120 564 128 136 143 151 159 166 174 182 189 197 2 3 4 5 6 565 205 213 220 228 236 243 251 259 266 274 566 282 289 297 305 312 320 328 335 343 351 567 358 366 374 381 389 397 404 412 420 427 I 568 435 442 450 458 465 473 481 488 496 504 569 5" 519 526 534 542 549 557 565 572 580 9 570 587 595 603 610 618 626 633 641 648 656 571 664 671 679 686 694 702 709 ■ 717 724 732 572 740 747 755 762 770 778 785 793 800 808 573 815 823 831 838 846 853 861 868 876 884 574 891 899 906 914 921 929 937 944 952 959 575 967 974 982 989 997 *005 *OI2 *020 »027 *035 576 76042 050 057 065 072 080 087 095 103 no 577 118 125 140 148 155 163 170 178 185 578 193 200 208 215 223 230 238 24S 253 260 579 268 275 283 290 298 305 313 320 328 33S 580 343 350 358 365 373 380 388 395 403 410 581 418 425 433 440 448 455 462 470 477 485 7 582 492 500 507 515 522 530 537 545 552 559 583 567 574 582 589 597 604 612 619 626 634 I 0/7 584 641 649 656 664 671 678 686 693 701 708 2 3 4 1/4 2,1 2/8 3/5 4/2 P 6/3 585 716 723 730 738 745 753 760 768 775 782 586 790 797 805 812 819 827 834 842 849 856 587 864 871 879 886 893 901 908 916 923 930 I 588 938 945 953 960 967 975 982 989 997 *oo4 589 77012 019 026 034 041 048 056 063 070 078 9 590 085 093 100 107 115 122 129 137 144 151 591 159 166 173 181 188 195 203 210 217 225 592 232 240 247 254 262 269 276 283 291 298 593 305 313 320 327 335 342 349 357 364 371 594 595 379 386 393 401 408 415 422 430 437 444 452 459 466 474 481 488 495 503 510 517 596 525 532 539 546 554 561 568 576 583 590 597 597 605 612 619 627 634 641 648 656 663 598 670 677 685 692 699 706 714 721 728 735 599 743 750 757 764 772 779 786 793 801 808 600 815 822 830 837 844 851 859 866 873 880 N. L. 1 2 3 4 6 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 600 77 8iS 822 830 837 844 851 859 866 873 880 6oi 887 895 902 909 916 924 931 938 945 952 602 960 967 974 981 988 996 ^003 *oio ^017 ^025 603 78 032 039 046 053 061 068 075 082 089 097 004 104 III 118 125 132 140 147 154 161 168 60s 176 183 190 197 204 211 219 226 233 240 606 247 254 262 269 276 283 290 297 305 312 8 607 319 326 333 340 347 355 362 369 376 383 608 390 398 405 412 419 426 433 440 447 455 I 0^0 2.4 3,2 609 462 469 476 483 490 497 504 512 519 526 2 3 4 610 533 540 547 554 561 569 576 583 590 597 611 604 611 618 625 633 640 647 654 661 668 6 4/0 5/6 6/4 7/2 612 675 682 689 696 704 711 718 725 732 739 613 753 760 767 774 781 789 796 803 810 I 9 614 817 824 831 838 84s 852 859 866 873 880 615 888 895 902 909 916 923 930 937 944 951 616 958 96| 972 979 986 993 *ooo *oo7 *oi4 *02i 617 79029 036 043 050 057 064 071 078 085 092 618 099 106 113 120 127 134 141 148 155 162 619 169 176 183 190 197 204 211 218 225 232 620 239 246 253 260 267 274 281 288 295 302 621 309 316 323 330 337 344 351 358 365 372 7 622 379 386 393 400 407 414 421 428 435 442 623 449 456 463 470 477 484 491 498 505 511 I 0/7 624 518 52s 532 539 546 553 560 567 574 581 2 3 .4 1/4 2/1 2/8 625 588 595 602 609 616 623 630 637 644 650 626 657 664 671 678 68S 692 699 706 713 720 6 3/5 627 727 734 741 748 754 761 768 71^ 782 789 4/2 628 796 803 810 817 824 831 837 844 851 858 7 8 9 4/9. ^/ 6.3 629 865 872 879 886 893 900 906 913 920 927 630 934 941 948 955 962 969 975 982 989 996 631 80003 010 017 024 030 037 044 051 058 065 632 072 079 085 092 099 106 113 120 127 134 633 140 147 154 161 168 175 182 188 195 202 634 209 216 223 229 236 243 250 257 264 271 63s 277 284 291 298 305 312 318 325 332 339 636 346 353 359 366 373 380 387 393 400 407 R. 637 414 421 428 434 441 448 455 462 468 475 v» 638 482 489 496 502 509 516 523 530 536 543 I 0,6 639 5So 557 564 570 577 584 591 598 604 611 2 3 4 1/2 1/8 2/4 640 618 625 632 638 645 652 659 665 672 679 641 686 693 699 706 713 720 726 733 740 747 6 3'? 3/6 642 754 760 767 774 781 787 794 801 808 814 643 821 828 835 841 848 855 862 868 875 882 7 8 9 4/2 4/8 5/4 644 889 895 902 909 916 922 929 936 943 949 645 956 963 969 976 983 990 996 ^003 *OIO 415OI7 646 81023 030 037 043 0^0 057 064 070 077 084 647 090 097 104 III 117 124 131 137 144 151 648 158 164 171 178 184 191 198 204 211 218 649 224 231 238 245 251 258 265 271 278 285 650 291 298 305 3" 318 325 331 338 345 351 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 650 81 291 298 305 311 318 325 331 338 345 351 651 358 365 371 378 385 391 398 405 411 418 652 425 43^ 438 445 45^ 458 465 471 478 485 653 491 498 505 511 518 525 531 538 544 551 654 558 564 571 578 584 591 598 604 611 617 655 624 631 637 644 651 657 664 671 677 684 656 690 697 704 710 717 723 730 737 743 750 657 757 763 770 776 783 790 796 803 809 816 658 823 829 836 842 849 856 862 869 875 882 659 889 895 902 908 915 921 928 935 941 948 660 954 961 968 974 981 987 994 *ooo #007 *oi4 661 82020 027 033 040 046 053 060 066 073 079 7 662 086 092 099 105 112 119 125 132 138 145 663 151 158 164 171 178 184 191 197 204 210 I 0,7 664 217 223 230 236 243 ,249 256 263 269 276 2 3 4 1/4 2/1 2,8 3/5 4/2 4/9 ^'^ 6/3 665 282 289 295 302 308 315 321 328 334 341 666 347 354 360 367 373 380 387 393 400 406 667 413 419 426 432 439 445 452 458 465 471 7 8 668 478 484 491 497 504 510 517 523 530 536 669 543 549 556 562 569 575 582 588 595 601 9 670 607 614 620 627 633 640 646 653 659 666 671 672 679 685 692 698 705 711 718 724 730 672 737 743 750 756 763 769 776 782 789 795 673 802 808 814 821 827 834 840 847 853 860 674 866 872 879 885 892 898 905 911 918 924 675 930 937 943 950 956 963 969 975 982 988 676 995 *ooi *oo8 ^014 j|t020 *027 *033 ^040 #046 *052 677 83059 065 072 078 085 091 097 104 no 117 678 123 129 136 142 149 155 161 168 174 181 679 187 193 200 206 213 219 225 232 238 245 680 251 257 264 270 276 283 289 296 302 308 681 315 321 327 334 340 347 353 359 366 372 R 682 378 385 391 398 404 410 417 423 429 436 O/6 683 442 448 455 461 467 474 480 487 493 499 I 684 506 512 518 525 531 537 544 550 563 2 3 4 1/2 1/8 2/4 685 569 575 582 588 594 601 607 613 620 626 686 632 639 645 651 658 664 670 677 683 689 5 6 3/0 3/6 687 696 702 708 715 721 727 734 740 746 753 688 759 765 771 778 784 790 797 803 809 816 7 8 9 4/2 4/8 5/4 689 822 828 835 841 847 853 860 866 872 879 690 885 891 897 904 910 916 923 929 935 942 691 948 954 960 967 973 979 985 992 998 ^004 6q2 84 on 017 023 029 036 042 048 055 061 067 693 073 080 086 4)2 098 105 III 117 123 130 694 695 136 142 148 155 161 167 173 180 186 192 198 205 211 217 223 230 236 242 248 255 696 261 267 273 280 286 292 298 305 311 317 697 323 330 336 342 348 354 361 367 373 379 698 386 392 398 404 410 417 423 429 435 442 699 448 454 460 466 473 479 485 491 497 504 700 510 516 522 528 535 541 547 553 559 566 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 6 6 7 8 9 P.P. 700 84510 516 522 528 535 541 547 553 559 566 701 572 578 584 590 597 603 609 615 621 628 702 634 640 646 652 658 665 671 677 683 689 703 696 702 708 714 720 726 733 739 745 751 704 757 763 770 776 782 788 794 800 807 813 705 819 825 831 837 844 850 856 862 868 874 706 880 887 893 899 90s 911 917 924 930 936 7 707 942 948 954 960 973 979 985 991 997 T 0,7 1,4 2/1 2.8 3/S 708 85003 009 016 022 028 034 040 046 052 058 2 709 065 071 077 083 089 095 lOI 107 114 120 3 4 5 710 126 132 138 144 150 156 163 169 '71 181 711 187 193 199 20S 211 217 224 230 236 242 6 4/2 712 248 254 260 266 272 278 285 291 297 303 7 4/9 713 309 315 321 327 333 339 345 352 358 364 8 5/6 714 370 376 382 388 394 400 406 412 418 425 9 6/3 715 431 437 443 449 455 461 467 473 479 485 716 491 497 503 509 516 522 528 534 540 546 717 552 558 564 570 576 582 588 594 600 606 718 612 618 625 631 637 643 649 655 661 667 719 673 679 685 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769 775 781 788 721 794 800 806 812 818 824 830 836 842 848 6 722 854 860 866 872 878 884 890 896 902 908 I 2 3 4 0/6 1/2 1/8 2/4 3/6 4/8 5/4 723 914 920 926 932 938 944 950 956 962 968 ,724 974 980 986 992 998 ^004 *OIO *oi6 *022 *028 725 86034 040 046 052 058 064 070 076 082 088 726 094 100 106 112 118 124 130 136 141 147 727 153 159 16s 171 177 183 189 195 201 207 7 728 213 219 225 231 237 243 249 255 261 267 729 273 279 285 291 297 303 308 314 320 326 9 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 S8i 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 738 806 812 817 823 829 835 841 847 853 859 I 0/5 739 864 870 876 882 888 894 900 906 911 917 2 3 4 1,0 1/5 2/0 2/5 3/0 3/5 4/0 4,5 740 923 929 935 941 947 953 958 964 970 976 741 982 988 994 999 *ooS *oii *oi7 ^023 *o29 *035 742 87 040 046 052 058 064 070 075 081 087 093 7 8 743 099 loS III 116 122 128 134 140 f46 151 744 157 163 169 175 181 186 192 198 204 210 9 745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500 750 S06 512 518 523 529 535 541 547 552 558 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 750 87506 512 518 523 529 53S 541 547 552 558 751 564 570 576 581 587 593 599 604 610 616 752 622 628 633 639 645 651 656 662 668 674 753 679 685 691 697 703 708 714 720 726 731 754 737 743 749 754 760 766 772 777 783 789 755 795 800 806 812 818 823 829 835 841 846 756 852 858 864 869 875 881 887 892 898 904 757 910 915 921 927 933 938 944 950 955 961 758 967 973 978 984 990 996 *ooi *oo7 *oi3 *oi8 759 88024 030 036 041 047 053 058 064 070 076 760 081 087 093 098 104 no 116 121 127 133 761 138 144 150 156 161 167 173 178 184 190 6 762 19S 201 207 213 218 224 230 23S 241 247 0,6 763 252 258 264 270 275 281 287 292 298 304 I 764 309 315 321 326 332 338 343 349 355 360 2 3 4 % 1,2 1,8 2.4 3.0 3,6 ^'l 4,8 5/4 765 366 372 377 383 389 395 400 406 412 417 766 423 429 434 440 446 451 457 463 468 474 767 480 485 491 497 502 508 513 519 525 530 768 536 542 547 553 559 564 570 576 581 587 769 593 598 604 610 615 621 627 632 638 643 9 770 649 65s 660 666 672 677 683 689 694 700 771 700 711 717 722 728 734 739 745 750 756 772 762 767 773 779 784 790 795 801 807 812 773 818 824 829 835 840 846 852 857 863 868 774 874 880 885 891 897 902 908 913 919 925 775 930 936 941 947 953 958 964 969 975 981 776 986 992 997 »oo3 *oo9 *oi4 *020 *o25 ^031 #037 m 89042 048 053 059 064 070 076 081 087 092 778 098 104 109 115 120 126 131 137 143 148 779 780 154 159 165 170 176 182 187 193 198 204 209 21S 221 226 232 237 243 248 254 260 781 265 271 276 282 28^ 293 298 304 310 315 5 782 321 326 332 337 343 348 354 360 36s 371 783 376 382 387 393 398 404 409 415 421 426 I 0/5 784 432 437 443 448 454 459 465 470 476 481 2 3 4 1,0 1.5 2,0 2,5 3,0 3,5 4,0 4/5 785 487 492 498 504 509 515 520 526 531 537 786 542 548 553 559 564 570 575 581 586 592 787 597 603 609 614 620 625 631 636 642 647 I 788 658 664 669 675 680 686 691 697 702 789 708 713 719 724 730 73S 741 746 752 757 9 790 763 768 774 779 785 790 796 801 807 812 791 818 823 829 834 840 84S 851 856 862 867 792 873 878 883 889 894 900 905 9" 916 922 793 927 933 938 944 949 955 960 966 971 977 794 982 988 993 998 ♦004 *oo9 #015 *020 *026 *03i 795 90037 042 048 053 059 064 069 075 080 086 796 091 097 102 108 113 119 124 129 135 140 797 146 151 157 162 168 173 179 184 189 195 798 200 206 211 217 222 227 233 238 244 249 799 25s 260 266 271 276 282 287 293 298 304 800 309 314 320 325 331 336 342 347 352 358 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 800 90309 314 320 325 331 336 342 347 352 358 8oi 363 369 374 380 385 390 396 401 407 412 802 417 423 428 434 439 445 450 455 461 466 803 472 477 482 488 493 499 504 509 515 520 804 526 531 536 542 547 553 558 563 569 574 805 580 585 590 596 601 607 612 617 623 628 806 634 639 644 650 655 660 666 671 677 682 807 687 693 698 703 709 714 720 725 730 736 808 741 747 752 757 763 768 773 779 784 789 809 795 800 806 811 816 822 827 832 838 843 . 810 849 854 859 865 870 875 881 886 891 897 811 902 907 913 918 924 929 934 940 945 950 R 812 956 961 966 972 977 982 988 993 998 *oo4 0,6 ?'3 91009 014 020 025 030 036 041 046 052 057 I 814 062 068 073 078 084 089 094 100 105 no 2 3 4 5 6 1,2 1,8 2.4 3/0 3,6 4,2 4,8 5,4 ^'1 116 121 126 132 137 142 148 153 158 164 816 169 174 180 185 190 196 201 206 212 217 I'^l 222 228 233 238 243 249 254 259 265 270 7 8 818 27s 281 286 291 297 302 307 312 318 323 819 328 334 339 344 350 355 360 365 371 9 820 381 387 392 397 403 408 413 418 424 429 821 434 440 445 450 455 461 466 471 477 482 822 487 492 498 503 508 514 519 524 529 535 823 540 545 551 556 561 566 572 577 582 587 824 593 598 603 609 614 619 624 630 635 640 825 64S 651 656 661 666 672 677 682 687 693 826 698 703 709 714 719 724 730 735 740 745 827 751 756 761 766 772 777 782 787 793 798 828 803 808 814 819 824 829 834 840 845 850 829 85s 861 866 871 876 882 887 892 897 903 830 908 913 918 924 929 934 939 944 95° 955 831 960 965 971 976 981 986 991 997 *oo2 ^007 5 832 92 012 018 023 028 033 038 044 049 054 059 833 065 070 075 080 085 091 096 lOI 106 III I o,S 834 117 122 127 132 137 143 148 153 158 163 2 3 4 1,0 1,5 2,0 2,5 835 169 174 179 184 189 195 200 205 210 215 836 221 226 231 236 241 247 252 257 262 267 837 273 278 283 288 293 298 304 309 314 319 I 3,0 3,5 4,0 4,5 838 324 330 335 340 345 350 355 361 366 371 839 376 381 387 392 397 402 407 412 418 423 9 840 428 433 438 443 449 454 459 464 469 474 841 480 490 495 500 505 511 516 521 526 842 531 536 542 547 552 557 562 567 572 578 843 . 583 588 598 609 614 619 624 629 844 634 639 645 650 655 660 665 670 675 681 84s 686 691 696 701 706 711 716 722 727 732 846 737 742 747 752 758 763 768 773 778 783 847 788 793 799 804 809 814 819 824 829 834 848 840 845 850 855 860 865 870 875 881 886 849 891 896 901 906 911 916 921 927 932 937 850 942 947 952 957 962 967 973 978 983 988 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 850 92942 947 952 957 962 967 973 978 983 988 851 993 998 *oo3 *oo8 *oi3 ^018 #024 ^029 #034 *039 852 93044 049 054 059 064 069 075 080 085 090 853 09? 100 105 no 115 120 125 131 141 854 146 151 156 161 166 171 176 181 186 192 85s 197 202 207 212 217 222 227 232 237 242 856 247 252 258 263 268 273 278 283 288 293 6 857 298 303 308 313 318 323 328 334 339 344 0,6 1/2 1/8 2/4 3'2 3/6 4/2 4/8 5/4 858 349 354 359 364 369 374 379 384 389 394 I 3 4 5 6 859 399 404 409 414 420 425 430 435 440 445 860 450 455 460 465 470 47S 480 485 490 495 861 500 50S 510 515 520 526 531 576 581 536 541 546 862 551 556 561 566 571 586 591 596 7 8 863 601 606 611 616 621 626 631 636 641 646 864 651 656 661 666 671 676 682 687 692 697 9 865 702 707 712 717 722 727 732 737 742 747 866 752 757 762 767 772 777 782 787 792 797 867 802 807 812 817 822 827 832 837 842 847 868 852 857 862 867 872 877 882 887 892 897 869 902 907 912 917 922 927 932 937 942 947 870 952 957 962 967 972 977 982 987 992 997 871 94002 007 012 017 022 027 032 037 042 047 ii 872 052 057 062 067 072 077 082 086 091 096 873 lOI 106 III 116 121 126 131 136 141 146 I 0/5 874 151 156 161 166 171 176 181 186 191 196 2 3 4 i 1,0 1/5 2/0 2,5 3/0 3/5 4/0 4/5 875 201 206 211 216 221 226 231 236 240 245 876 250 255 260 265 270 275 280 28S 290 295 877 300 305 310 315 320 325 330 335 340 345 7 8 878 349 354 359 364 369 374 379 384 389 394 879 399 404 409 414 419 424 429 433 438 443 9 880 448 453 458 463 468 473 478 483 488 493 881 498 503 507 512 517 522 527 532 537 542 882 547 552 557 •362 567 571 , 576 581 586 591 883 596 601 606 ^i^^ ^616 621' 626 630 635 640 884 645 650 655 660*^ 665 670 675 680 685 689 88s 694 699 704 709 714 719 724 729 734 738 886 743 748 753 758 763 768 773 778 783 787 d 887 792 797 802 807 812 817 822 827 832 836 888 &41 846 851 856 861 866 871 876 880 88s I °4 1,2 1/6 2/0 "A 889 890 895 900 905 910 915 919 924 929 934 2 3 4 5 6 I 9 890 939 944 949 954 959 963 968 973 978 983 891 993 998 *002 ^OOJ #012 ^017 *022 *027 ^032 892 95036 041 046 051 056 061 066 071 075 080 893 085 090 095 100 105 109 114 119 124 129 i% 894 134 139 143 148 153 158 i6a 168 173 177 895 182 187 192 197 202 207 211 216 221 226 896 231 236 240 245 250 255 260 265 270 274 897 279 284 289 294 299 303 308 313 3^^ 323 898 328 332 337 342 347 352 357 361 366 371 899* 376 381 386 390 395 400 405 410 415 419 900 424 429 434 439 444 448 453 458 463 468 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 900 95424 429 434 439 444 448 453 458 463 468 901 472 477 482 487 492 497 501 506 511 516 902 521 52S 530 535 540 545 550 554 559 564 903 569 574 578 583 588 593 598 612 904 617 626 631 636 641 646 650 655 660 90s 665 670 674 679 684 689 694 698 703 708 906 713 718 722 727 732 737 742 746 751 756 907 761 766 770 775 780 785 789 794 799 804 908 809 813 818 823 828 832 837 842 847 852 909 856 861 866 871 875 880 885 890 895 899 910 904 909 914 918 923 928 933 938 942 947 911 952 957 961 966 971 976 980 985 990 995 5 912 999 *oo4 ^009 *oi4 *oi9 *023 *028 *o33 *038 *042 I o.S 1,0 913 96047 052 057 061 066 071 076 080 085 090 2 914 095 099 104 109 114 118 123 128 133 137 3 4 1.5 2,0 2,5 915 142 147 152 156 161 166 171 175 180 185 916 190 194 199 204 209 213 218 223 227 232 6 3/0 917 237 242 246 251 256 261 265 270 275 280 7 3/5 918 284 289 294 298 303 308 313 317 322 327 8 4/0 919 332 336 341 346 3So 355 360 365 369 374 9 4.5 920 379 384 388 393 398 402 407 412 417 421 921 426 431 435 440 445 450 454 459 464 468 922 473 478 483 487 492 497 501 506 5" 515 923 520 525 530 534 539 544 548 553 558 562 924 567 572 577 581 586 591 595 600 605 609 925 614 619 624 628 633 638 642 647 652 656 926 661 666 670 675 680 685 689 694 699 703 927 708 713 717 722 727 731 736 741 745 750 928 755 759 764 769 774 778 783 788 792 797 929 802 806 811 816 820 825 830 834 839 844 930 848 ^53 858 862 867 872 876 881 886 890 931 895 900 904 909 914 918 923 928 932 937 4 932 ^il 946 951 956 960 965 970 97^ 979 984 I 1/2 1/6 2 933 988 993 997 *002 *007 *OII *oi6 ^021 ^025 ^030 934 97035 039 044 049 053 058 063 067 072 077 2 3 4 935 081 086 090 095 100 104 109 114 118 123 936 128 132 137 146 151 155 160 165 169 2/4 2 8 937 174 179 183 188 192 197 202 206 211 216 7 938 220 225 230 234 239 243 248 253 257 262 te 939 267 271 276 280 285 290 294 299 304 308 9 940 313 317 322 327 331 336 340 345 350 354 941 359 364 368 373 377 382 387 391 396 400 942 405 410 414 419 424 428 433 437 442 447 943 451 456 460 465 470 474 479 483 488 493 944 497 502 506 511 516 520 525 529 534 539 945 543 548 552 557 562 566 571 575 580 585 946 589 594 598 603 607 612 617 621 626 630 947 635 640 644 649 653 658 663 667 672 676 948 681 685 690 695 699 704 708 713 717 722 949 727 731 736 740 745 749 754 759 763 768 950 772 777 782 786 791 795 800 804 809 813 N. L. 1 2 3 4 5 6 7 8 9 P.P. N. L. 1 2 3 4 5 6 7 8 9 P.P. 950 97772 in 782 786 791 795 800 804 809 813 951 818 823 827 832 836 841 845 850 855 859 952 864 868 873 877 882 886 891 896 900 905 953 909 914 918 923 928 932 937 941 946 950 954 955 959 964 968 973 978 982 987 991 996 955 98 000 005 009 014 019 023 028 032 037 041 956 046 050 055 059 064 068 073 078 082 087 957 091 096 100 105 109 114 118 123 127 132 958 137 141 146 ISO 155 159 164 168 173 177 959 182 186 191 195 200 204 209 214 218 223 960 227 232 236 241 245 250 254 259 263 268 961 272 277 281 286 290 295 299 304 308 313 5 962 318 322 327 331 336 340 345 349 354 358 I 0,5 I 963 363 367 372 376 381 385 390 394 399 403 2 964 408 412 417 421 426 430 435 439 444 448 3 4 5 lis 2,0 2,5 9^1 453 457 462 466 471 475 480 484 489 493 966 498 502 507 5^^ 516 520 525 529 534 538 6 3/0 967 543 547 552 556 561 565 570 574 579 583 7 3/5 968 588 592 597 601 605 610 614 619 623 628 8 4/0 969 632 637 641 646 650 655 659 664 668 673 9 4,5 970 677 682 686 691 695 700 704 709 713 717 971 722 726 731 735 740 744 749 758 762 972 767 771 776 780 784 789 793 798 802 807 973 811 816 820 825 829 834 838 843 847 851 974 856 860 865 869 874 878 883 887 892 896 975 900 905 909 914 918 923 927 932 936 941 976 945 949 954 958 963 967 972 976 981 985 977 989 994 998 *oo3 *oo7 *OI2 *oi6 *02I *025 *029 978 99 034 038 043 047 052 056 061 065 069 074 979 078 083 087 092 096 100 105 109 114 118 980 123 127 131 136 140 145 149 154 158 162 981 167 171 176 180 185 189 193 198 202 207 4 982 211 216 220 224 229 233 238 242 247 251 983 •255 260 264 269 273 277 282 286 291 295 I o;t 1/2 2 984 300 304 308 313 317 322 326 330 335 339 2 3 4 9^1 344 348 352 357 361 366 370 374 379 383 986 388 392 396 401 405 410 414 419 423 427 2^4 2/8 987 432 436 441 445 449 454 458 463 467 471 7 8 988 476 480 484 489 493 498 502 506 511 515 3'? 3/6 989 520 524 528 533 537 542 546 550 555 559 9 990 564 568 572 577 581 585 590 594 599 603 991 607 612 616 621 625 629 634 638 642 647 992 651 656 660 664 669 673 677 682 686 691 993 695 699 704 708 712 717 721 726 730 734 994 739 743 747 752 756 760 765 769 774 778 995 782 787 791 795 800 804 808 813 817 822 996 826 830 835 839 843 848 852 856 861 865 997 870 874 878 883 887 891 896 900 904 909 998 913 917 922 926 930 935 939 944 948 952 999 957 961 965 970 974 978 983 987 991 996 1000 00 000 004 009 013 017 022 026 030 035 039 N. L. 1 2 3 4 5 6 7 8 9 P.P. NOTES ON TABLES I AND II. The logarithms of numbers are in general incommensurable. In these tables they are given correct to five places of decimals. If the sixth place is 5 or more, the next larger number is used in the fifth place. Thus log 8102 = 3.908549+; in five-place tables this is written 3.90855, the dash above the 5 showing that the logarithm is less than given. So log 8133 = 3.910251-; in five-place tables this is written 3.91025, the dot above the 5 showing that the logarithm is more than given. In the natural functions of the angles (Table II) all numbers are decimals for sine and cosine (why ?), and for tangent and cotangent, except where the decimal point is used to indicate that part of the number is integral. When no decimal point is printed in the tables it is to be understood. When the natural function is a pure decimal the characteristic of the logarithm is negative. Accordingly, in the tables 10 is added, and in the result this must be allowed for. Thus nat. sin 44° 20' = 0.69883, log sin 44° 20' = 1.84437, or, as printed in the tables, 9.84437, which means 9.84437 — ?0. TABLE n. THE LOGARITHMIC AND NATURAL SINES, COSESTES, TANGENTS, AND COTANGENTS OF ANGLES FROM 0° TO 90°. »5 Nat. Sin Log. d. Nat.CoSLog. Nat.TanLog Log.CotNat. ooooo 029 058 087 116 646373 6.76476 6.94085 7-06579 0014s 175 204 233 262 7.10270 7.24188 7.30882 7.36682 7.41797 00291 320 349 378 407 746373 7-50512 7.54291 7-57767 7-60985 00436 465 495 524 553 7.63982 7.66784 7.69417 7.71900 7.74248 00582 611 640 669 698 7-76475 7.78594 7.8061$ 7-82545 7-8439^ 00727 756 785 814 844 00873 902 931 960 7.861O0 7.87870 7.89509 7.91088 7.92612 7.94084 7-95508 7.96887 7.98223 7.99520 01018 047 076 105 134 8.00779 8.02002 8.03192 8.04350 8.ot;4'78 01 164 193 222 251 280 8.0J57i 8.07650 8.0S696 8.09718 8.10717 01309 338 367 396 425 8.1 1693 8.12647 8.13581 8.14495 8-15391 01454 483 513 542 571 8.16268 8.17128 8.17971 8.18798 8.19610 01600 629 658 687 716 745 8.20407 8.21 189 8.21958 8.22713 8.23456 8.24186 30103 17609 12494 9691 7918 6694 5800 51 15 4576 4139 3779 3476 3218 2997 2802 2633 2483 2348 2227 2 1 19 2021 1930 1848 1773 1704 1639 1579 1524 1472 1424 1379 1336 1297 1259 1223 1 190 1158 1 128 IIOO 1072 1046 1022 999 976 954 934 914 896 877 860 843 827 812 797 782 769 755 743 730 loooo 0.00000 000 0.00000 000 0.00000 000 0.00000 000 0.00000 loooo 0.00000 000 0.00000 000 0.00000 000 0.00000 000 0.00000 loooo 0.00000 99999 0.00000 999 0.00000 999 0.00000 999 0.00000 99999 0.00000 999 0.00000 999 9-99999 999 9-99999 998 9-99999 99998 9.99999 998 9-99999 998 9-99999 998 9-99999 998 9-99999 99997 997 997 997 996 9.99999 9.99999 9.99999 9.99999 9-99998 99996 996 996 995 995 9.99998 9.99998 9.99998 9.99998 9-99998 99995 995 994 994 994 9.99998 9.99998 9.99997 9-99997 9.99997 99993 993 993 992 992 9-99997 9-99997 9.99997 9.99997 9-99996 99991 991 991 990 990 9-99996 9.99996 9-99996 9-99996 9-99996 99989 989 989 9-99995 9-9999$ 9-99995 9-99995 9-99995 99987 9-99994 987 9-99994 986 9-99994 986 9.99994 985 9.99994 985 9.99993 029 058 087 116 6.46373 6.76476 6.94085 7-06579 0014s 175 204 233 262 7.16270 7.24188 7.30882 7.36682 7.41797 00291 320 349 378 407 7.46373 7.50512 7.54291 7-57767 7.60986 00436 46s 495 524 553 7-63982 7.66785 7.69418 7.71900 7.74248 00582 611 640 669 7.76476 7-7859$ 7.80615 7-82546 7-84394 00727 756 785 815 844 7.86167 7.87871 7.89510 7.91089 7-92613 00873 902 931 960 7.94086 7-95510 7.96889 7-98225 7-99522 047 076 105 135 8.00781 8.02004 8.03194 8.04353 8.05481 01 164 193 222 251 280 8.06581 8.07653 8.08700 8.09722 8.10720 01309 338 367 396 425 8.11696 8.12651 8.13585 8.14500 8-15395 01455 484 513 542 571 8.16273 8-17133 8.17976 8.18804 8.19616 01600 629 658 687 716 746 8.20413 8.21 195 8.21964 8.22720 8.23462 8.24192 30103 17609 12494 9691 7918 6694 5800 5115 4576 4139 3779 3476 3219 2996 2803 2633 2482 2348 2228 21 19 2020 193 1 1848 1773 1704 1639 1579 1524 1473 1424 1379 1336 1297 1259 1223 1 190 1159 1128 IIOO 1072 1047 1022 998 976 955 934 915 895 878 860 843 828 812 797 782 769 756 742 730 3-53627 3.23524 3-05915 2.93421 3437-7 171B.9 1145-9 859.44 2.83730 2.75812 2.691 18 2.63318 2.58203 687.55 572.96 491.11 429.72 381.97 2.53627 2.49488 2.45709 2.42233 2.39014 2.36018 2.33215 2.30582 2.28100 2.25752 343-77 312.52 286.48 264.44 ^5:55 229.18 214.86 202.22 190.98 180.93 2.23524 2.21405 2.19385 2.17454 2.15606 171.89 163.70 156.26 149.47 143.24 2.13833 2.12129 2.10490 2.0891 1 2.07387 137-51 132.22 127.32 122.77 118.54 2.05914 2.04490 2.03111 2.01775 2.00478 114-59 110,89 107.43 104.17 lOI.II 1.99219 1.97996 1.96806 1.95647 1.94519 1. 93419 1.92347 1. 91300 1.90278 1.89280 98.218 95.489 92.908 90.463 88.144 85.940 83.844 81.847 79-943 78.126 1.88304 1.87349 1.86415 1.85500 1.84605 76.390 74.729 73-139 71.615 70.153 1.83727 1.82867 1.82024 1.81196 1.80384 68.750 67.402 66.105 64.858 63-657 1.79587 1.78805 1.78036 1.77280 1-76538 1.75808 62.499 61.383 60.306 59.266 58.261 57-290 Nat. Cos Log. d. Nat. Sin Log Nat.CotLog 89' d. Log.TanNat. >i^ Nat. Sin Log. d. Nat. Cos Log Nat .Tan Log. c.d. Log. Cot Nat, 01745 774 803 832 862 8.24186 8.24903 8.25609 8.26304 8.26988 01891 920 949 978 02007 8.27661 8.28324 8.28977 8.29621 8.30255 02036 065 094 123 152 8.30879 8.31495 8.32103 8.32702 8.33292 02181 211 240 269 298 8-33875 8.34450 8.35018 8.35578 8.36131 02327 356 385 414 443 8.36678 8.37217 8.37750 8.38276 8.38796 25 26 27 28 _?9 30 31 32 33 _31 35 36 37 38 39 40 41 42 43 44_ 45 46 47 48 49_ 50 SI 52 53 54 02472 501 530 560 589 8.39310 8.39818 840320 840816 841307 02618 647 676 705 734 8.41792 8.42272 8.42746 843216 8.43680 02763 792 821 850 879 8.44139 8.44594 845044 845489 8.45930 02908 938 967 996 03025 846366 8.46799 8.47226 8.47650 8.48069 03054 083 112 141 170 8.48485 848896 849304 849708 8.50108 03199 228 257 286 316 8.50504 8.50897 8.51287 8.51673 8.52055 03345 374 403 432 461 490 8.52434 8.52810 8.53183 8.53552 8.53919 8.54282 717 706 695 684 673 663 653 644 634 624 616 608 599 590 583 575 568 560 553 547 539 533 526 520 514 508 502 496 491 485 480 474 470 464 459 455 450 445 441 436 433 427 424 419 416 411 408 404 400 396 393 390 386 382 379 376 373 369 367 363 99985 984 984 983 983 9.99993 9-99993 999993 9-99993 9-99992 01746 775 804 833 862 99982 982 981 980 980 9.99992 9.99992 9-99992 9-99992 9.99991 01891 920 949 978 02007 99979 979 978 977 977 9.99991 9.99991 9.99990 9-99990 9-99990 02036 066 095 124 153 99976 976 975 974 974 9-99990 9-99989 9-99989 9.99989 9-99989 02182 211 240 269 99973 972 972 971 970 9.99988 9.99988 9.99988 9.99987 9-99987 02328 357 386 415 444 8.24192 8.24910 8.25616 8.26312 8.26996 8.27669 8.28332 8.28986 8.29629 8.30263 8.30888 8.31505 8.321 12 8.327x1 8.33302 8.33886 8.34461 8.35029 8-35590 8.36143 8.36689 8.37229 8.37762 8.38289 8.38809 99969 969 968 967 966 9-99987 9.99986 9.99986 9.99986 9.99985 02473 502 531 560 589 99966 965 964 963 963 9.99985 9-99985 9-99984 9-99984 9.99984 02619 648 677 706 735 99962 961 960 959 959 9-99983 9-99983 9.99983 9-99982 9.99982 02764 793 822 851 881 8-39323 8.39832 840334 840830 841321 8.41807 8.42287 842762 8.43232 8.43696 844156 99958 957 956 955 954 9.99982 9.99981 9.99981 9.99981 9.99980 02910 939 968 997 03026 99953 952 952 951 950 9.99980 9.99979 9.99979 9.99979 9-99978 03055 084 114 143 172 8.4461 1 8.45061 8.45507 845948 846385 846817 8-47245 424 847669 12 84808^14- flf5?5 412 99949 948 947 946 945 9-99978 9-99977 9-99977 9-99977 9-99976 03201 230 259 288 317 99944 943 942 941 940 939 9.99976 9-99975 9-99975 9-99974 9-99974 9-99974 03346 376 405 434 463 492 8.48917 8.49325 8.49729 8.50130 8.50527 8.50920 8.51310 8.51696 8.52079 8.52459 8.52835 8.53208 8.53578 8.53945 8.54308 718 706 696 684 673 663 654 643 634 625 617 607 599 591 584 575 568 561 553 546 540 533 527 520 514 509 502 496 491 486 480 475 470 464 460 455 450 446 441 437 432 428 424 408 404 401 397 393 390 386 383 380 376 373 370 367 363 .75808 •75090 •74384 •73688 .73004 57.290 56.351 55-442 54-561 53-709 .72331 .71668 .71014 •70371 •69737 52.882 .081 51-303 50.549 49.816 .69112 .68495 .67888 .67289 .66698 49.104 48.412 47-740 -085 46.449 .66114 -65539 .64971 .64410 .63857 45.829 .226 44-639 .066 43-508 63311 ,62771 ,62238 ,61711 ,61191 42.964 -433 41.916 411 40.917 60677 60168 59666 59170 58679 40.436 39.965 .506 .057 38.618 58193 57713 57238 56768 56304 38.188 37.769 .358 36.956 .563 55844 55389 54939 54493 54052 36.178 35.801 431 .070 34.715 53615 53183 52755 52331 519" 34.368 .027 33.694 .366 .045 •51495 .51083 .50675 .50271 .49870 32.730 .421 .118 31.821 .528 49473 49080 48690 48304 •47921 31.242 30.960 .683 412 .145 47541 47165 46792 46422 46055 45692 29.882 .624 •371 .122 28.877 .636 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat. ' 88° f Nat. S in Log. d. Nat. Cos Log. Nat.Tan Log. c.d. Log. Cot Nat. r" 03490 8.54282 360 357 355 351 349 346 343 99939 9-99974 03492 8.54308 361 358 355 145692 28.636 60 I 519 8.54642 938 9.99973 521 8.54669 I-4533I .399 59 2 54a 8.54999 937 9-99973 550 8.55027 1.44973 .166 58 3 577 8-55354 936 9.99972 579 8.55382 1.44618 27.937 57 4 606 8-55705 935 9.99972 609 8.55734 352 349 346 344 1.44266 .712 56 5 03635 8.56054 99934 9.99971 03638 8.56083 143917 27.490 55 b bb4 8.56400 933 9.99971 bbj 8.56429 1.43571 .271 54 7 693 8.56743 932 9.99970 696 8.56773 1.43227 .057 53 8 723 8.57084 341 337 336 931 9.99970 725 8.57114 34 i 338 336 1.42886 26.845 52 9 752 8.57421 930 9.99969 754 8.57452 1.42548 .637 51 10 03781 8-57757 99929 9.99969 03783 8.57788 1.42212 26.432 50 II 810 8.58089 332 927 9.99968 812 8.58121 333 1.41879 .230 49 12 839 8.58419 330 328 325 323 926 9.99968 842 8.58451 330 328 326 323 1.41549 .031 48 13 8b8 8.58747 925 9.99967 871 8.58779 1.41221 25.835 47 H 897 8.59072 924 9.99967 900 8.59105 1.40895 .642 46 15 03926 8.5939$ 99923 9-99967 03929 8.59428 1.40572 25.452 45 lb 955 8.59715 320 922 9.99966 958 8.59749 321 1.40251 .264 44 17 984 8.60033 i-i-o 921 9.99966 987 8.60068 319 316 1-39932 .080 43 l8 04013 8.60349 3^0 919 9-99965 04016 8.60384 1.39616 24.898 42 19 042 8.60662 313 311 918 9-99964 046 8.60698 314 311 310 307 305 303 301 299 297 295 292 291 289 287 285 284 281 280 1.39302 .719 41 20 04071 8.60973 99917 9-99964 04075 8.61009 1.38991 24.542 40 21 100 8.61282 916 9-99963 104 8.61319 1.38681 .368 39 22 129 8.61589 307 305 915 9.99963 133 8.61626 1-38374 .196 38 23 159 8.61894 913 9.99962 162 8.61931 1.38069 .026 37 24 25 188 8.62196 302 301 298 296 912 9.99962 191 8.62234 1.37766 23.859 36 04217 8.62497 999" 9.99961 04220 8.62535 1.37465 23-695 35 2b 24b 8.62795 910 9.99961 250 8.62834 1.37166 .532 34 27 275 8.63091 909 9.99960 279 8.63131 1.36869 .372 33 28 304 8.63385 294 907 9.99960 308 8.63426 .214 32 29 ,333 8.63678 293 290 288 906 9-99959 337 8.63718 1.36282 .058 31 30 30 04362 8.63968 99905 9-99959 04366 8.64009 I-3.599I 22.904 31 391 8.64256 287 284 283 281 904 9.99958 395 S.64298 1-35702 .752 29 32 420 t^^ 902 9-99958 424 8.64585 1.35415 .602 28 33 449 901 9-99957 454 8.64870 1-35130 .454 27 34 47B 8.65110 900 9.99956 483 8.65154 1.34846 .308 2b 25 35 04507 8.65391 99898 9.99956 04512 8.65435 1-3456$ 22.164 3^ 536 8.65670 897 9.99955 541 8.65715 278 276 274 273 271 269 268 1.34285 .022 24 565 8.65947 276 896 9-99955 570 1.34007 21.881 23 38 594 8.66223 894 9-99954 599 8.66269 1.33731 .743 22 39 623 8.66497 272 893 9-99954 628 8.66543 1.33457 .606 21 20 40 04653 8.66769 99892 9-99953 04658 8.66816 1-33184 21.470 41 682 8.67039 270 269 267 266 890 9-99952 687 8.67087 1.32913 .337 19 42 711 8.67308 889 9.99952 71b 8.67356 1.32644 .205 18 43 740 8.67575 888 9-99951 745 8.67624 266 1.32376 .075 17 44 45 769 8.67841 263 2bO 886 9-99951 774 8.67890 264 263 261 1.32110 20.946 lb 04798 8.68104 99885 9.99950 04803 8.68154 1.31846 20.819 15 4b 827 8.68367 883 9.99949 833 8.68417 1. 31583 .693 14 47 856 8.68627 882 9-99949 862 8.68678 260 1.31322 .5^9 13 48 885 8.68886 259 258 256 881 9-99948 891 8.68938 258 257 255 254 252 251 249 248 246 245 244 243 1.31062 .446 12 49 50 914 8.69144 879 9.99948 920 8.69196 1.30804 •325 II 04943 8.69400 99878 9-99947 04949 8.69453 1.30547 20.206 10 51 972 8.69654 254 876 9-99946 978 8.69708 1.30292 .087 9 .S2 05001 8.69907 253 875 9-99946 05007 8.69962 1.30038 19.970 8 53 030 8.70159 252 250 249 873 9-99945 037 8.70214 1.29786 .855 7 54 059 8.70409 872 9.99944 066 8.70465 1-29535 .740 b 55 05088 8.70658 99870 9.99944 05095 8.70714 1.29286 19.627 5 S^ 117 8.70905 247 246 869 9-99943 124 8.70962 1.29038 , .51^ 4 57 146 8.71151 867 9.99942 153 8.71208 1.28792 .405 3 5a 175 8.71395 866 9.99942 182 8.71453 1.28547 .29b 2 ro 205 8.71638 243 864 9.99941 212 8.71697 1.28303 .188 I 234 8.71880 863 9.99940 241 8.71940 1.28060 .081 Nat. Cos Log. d. Nat. S in Log. Nat. Cot Log. c.d. Log. Tan Nat. f 87° 3° Nat. Sin Log. d. Nat. Cos Log, Nat.TanLog. c.d. Log. Cot Nat, 05234 263 292 321 35° 8.71880 8.72120 8-72359 8.72597 8.72834 05379 408 437 466 495 8.73069 8-73303 8-73535 8.73767 8.73997 05524 553 582 611 640 8.74226 8-74454 8.74680 8.74906 8-75130 05669 698 727 756 785 8-75353 8.75575 8.75795 8.76015 8.76234 05814 844 873 902 931 8.76451 8.76667 8.76883 8.77097 8.77310 05960 989 06018 047 076 8.77522 8.77733 8.77943 8.78152 8.78360 06105 134 163 192 221 8.78568 8.78774 8.78979 8.79183 8.79386 06250 279 308 337 366 8.79588 8.79789 8.79990 8.80189 8.80388 06395 424 453 482 5" 8.80585 8.80782 8.80978 8.81 173 8.81367 06540 569 598 627 656 8.81560 8.81752 8.81944 8.82134 8.82324 06685 714 743 773 802 8.82513 8.82701 8.82888 8.83075 8.83261 06831 860 889 918 947 976 8.83446 8.83630 8.83813 8.83996 8.84177 8.84358 240 239 238 237 235 234 232 232 230 229 228 226 226 224 223 222 220 220 219 217 216 216 214 213 212 211 210 209 208 208 206 205 204 203 202 201 201 99 99 97 97 96 95 94 93 92 92 90 90 89 88 87 87 86 85 84 83 83 81 81 99863 861 860 858 857 9.99940 9-99940 9-99939 9.99938 9.99938 05341 270 299 328 357 241 239 239 99855 854 852 851 849 9-99937 9.99936 9.99936 9-99935 9-99934 05387 416 445 474 503 99847 846 844 842 841 9-99934 9-99933 9.99932 9.99932 9-99931 05533 562 591 620 649 99839 838 836 834 833 9-99930 9.99929 9.99929 9.99928 9-99927 05678 708 737 766 795 99831 9.99926 829 9.99926 827 9.99925 826 9.99924 824 9-99923 99822 9.99923 821 9-99922 819 9.99921 817 9.99920 815 9-99920 99813 9.99919 812 9.99918 810 9.99917 808 9.99917 806 9.99916 99804 9-99915 803 9.99914 801 9-99913 799 9-99913 797 9.99912 99795 9-999" 793 9.99910 792 9-99909 790 9-99909 788 9.99908 05824 854 883 912 941 05970 999 06029 058 087 061 16 145 175 204 233 06262 291 321 350 379 06408 438 467 496 525 8.71940 8.72181 8.72420 8.72659 2^9 8.72896 ' ^37 -^ — ^ 236 8.73132 20. 8-73366 I ^34 8-73600 I ^34 8-73832 ! ^3^ 8.74292 1 22Q 8.74521 I f^„ 8.74748 226 8.74974 22? 8-75199 g 8.75423 22! 8.75645 222 8.75867 ^^ 8-76087 ^^° «-76306 ^9 8.76525 217 8.76742 216 8.76958 f^\ 8.77173 2IA 8-77387 ^^\ 8.77600 j \ 8.7781I 2^1 8.78022 f^ 8-78232 f^ "^^78649"' S 8.78855 2^6 8.79061 ^°° 8.79266 ^\ ^•79470 ;g 8-79673 202 8.79875 20? 8.80076 ^^ 8.80277 ^°^ 8.80476 8.80674 99786 784 782 780 778 9.99907 9.99906 9.99905 9.99904 9-99904 06554 584 613 642 671 99776 774 772 770 768 9.99903 9.99902 9.99901 9.99900 9.99899 06700 730 759 788 817 99766 764 762 760 758 756 9.99898 9.99898 9-99897 9.99896 9.99895 9-99894 06847 876 905 934 963 993 8.80872 8.81068 8.81264 8.81459 8.81653 8.81846 8.82038 8.82230 8.82420 8.82610 8.82799 8.82987 8.83175 8.83361 8.83547 8.83732 8.83916 8.84100 8.84282 8.84464 L99 28060 27819 27580 27341 27104 19.081 18.976 .871 .768 .666 26868 26634 26400 ,26168 25937 18.564 .464 .366 .268 .171 25708 25479 25252 25026 24801 18.075 17.980 .886 •793 .702 24577 24355 24133 23913 23694 17.611 .521 .431 •343 .256 23475 23258 23042 22827 22613 17.169 .084 16.999 .915 .832 22400 22189 21978 ,21768 21559 16.750 .668 .587 •507 .428 2i35£ 21145 20939 20734 20530 16.350 .272 •195 .119 •043 20327 ,20125 ,19924 19723 19524 15-969 •895 .821 •748 19326 19128 18932 18736 18541 15-605 .534 .464 •394 .325 18347 18154 17962 17770 17580 15-257 .189 .122 .056 14.990 17390 17201 17013 16825 16639 14.924 .860 .795 •732 .669 16453 16268 16084 15900 15718 15536 14.606 .544 482 421 .361 .301 Nat. Cos Log. d. Nat. Sin Log. Nat.CotLog. c.d. Log. Tan Nat 86° Nat. Sin Log. d. Nat. Cos Log. Nat.Tan Log. Log. Cot Nat. 06976 07005 034 063 092 8.84358 8.84539 8.84718 8.84897 8.85075 07121 150 179 208 237 8.85252 8.85429 8.85605 8.85780 8.85955 07266 295 324 353 382 8.86128 8.86301 8.86474 8.86645 8.86816 0741 1 440 469 498 527 8.86987 8.87156 8.87325 8.87494 8.87661 07556 585 614 643 672 8.87829 8.87995 8.88161 8.88326 8.88490 07701 730 759 788 817 8.88654 8.88817 8.88980 8.89142 8.89304 07846 875 904 933 962 8.89464 8.89625 8.89784 8.89943 8.90102 07991 08020 049 078 107 8.90260 8.90417 8.90574 8.90730 8.90885 08136 165 194 223 252 8.91040 8.91 195 8.91349 8.91502 8.91655 08281 310 339 368 397 8.91807 8.91959 8.921 10 8.92261 8.92411 08426 455 484 513 542 8.92561 8.92710 8.92859 8.93007 8-93154 08571 8.93301 600 8.93448 629 8.93594 658 687 8.93885 716 8.94030 181 179 179 178 177 177 176 175 175 173 173 173 171 171 171 169 169 169 167 168 166 166 165 164 164 163 163 162 162 160 161 159 159 159 158 157 157 156 155 155 155 154 153 153 152 152 151 151 150 150 149 149 148 147 147 147 146 146 145 145 99756 754 752 750 748 9.99894 9.99893 9.99892 9.99891 9.99891 06993 07022 051 080 8.84464 8.84646 8.84826 8.85006 8.85185 99746 9.99890 07139 8.85363 744 9.99889 8.85540 742 9.99888 197 8.85717 740 9.99887 227 738 9.99886 256 8.86069 99736 9.99885 07285 8.86243 734 9.99884 314 8.86417 731 9.99883 344 8.86591 729 9.99882 373 8.86763 727 9.99881 402 8.86935 99725 9.99880 07431 8.87106 723 9.99879 461 8.87277 721 9.99879 490 8.87447 719 9.99878 519 8.87616 716 9.99877 548 8.87785 99714 9.99876 07578 8.87953 712 9.99875 607 8.88120 710 9.99874 636 8.88287 70B 9.99873 665 8.88453 705 9.99872 695 8.88618 99703 9.99871 07724 8.88783 701 9.99870 753 8.88948 699 9.99869 782 8.891 1 1 696 9.99868 812 8.89274 694 9.99867 841 8.89437 99692 9.99866 07870 8.89598 689 9.99865 899 8.89760 687 9.99864 929 8.89920 685 9.99863 958 8.90080 683 9.99862 987 8.90240 99680 9.99861 08017 8.90399 678 9.99860 046 8.90557 676 9.99859 075 8.90715 673 9.99858 104 8.90872 671 9.99857 134 8.91029 99668 9.99856 08163 8.91 185 666 999855 192 8.91340 664 9.99854 221 8.91495 661 9.99853 251 8.91650 659 9.99852 280 8.91803 99657 9.99851 08309 8.91957 654 9.99850 339 8.92110 652 9.99848 368 8.92262 649 9.99847 397 8.92414 647 9.99846 427 8.92565 99644 9.99845 08456 8.92716 642 9.99844 485 8.92866 639 9.99843 514 8.93016 637 9.99842 544 8.93165 635 9.99841 573 8.93313 99632 630 627 625 622 619 9.99840 9.99839 9.99838 9.99837 9.99836 9.99834 08602 632 661 690 720 749 8.93462 8.93609 8.93756 8.93903 8.94049 8.94195 82 80 80 79 78 n 77 76 76 74 74 74 72 72 71 71 70 69 69 68 67 67 66 65 65 65 63 63 63 61 62 60 60 60 59 58 58 57 57 56 55 55 55 53 54 53 152 52 51 51 50 50 49 48 49 47 47 47 46 46 1.15536 1.15354 1.15174 1.14994 1.14815 14.301 .241 .182 .124 .065 1.14637 1.14460 1.14283 1.14107 1.13931 14.008 13.951 .894 .838 .782 1.13757 1.13583 1.13409 1.13237 1.13065 13.727 .672 .617 .563 .510 1.12894 1.12723 1.12553 1.12384 1.12215 13.457 .404 .352 .300 .248 1.12047 1.11880 1.11713 1.11547 1.11382 13.197 .146 .096 .046 12.996 1.11217 1.11052 1.10889 1.10726 1.10563 12.947 .898 .850 .801 .754 1.10402 1.10240 1.10080 1.09920 1.09760 12.706 .659 .612 .566 .520 1.09601 1.09443 1.09285 1.09128 1.08971 12.474 .429 .384 .339 .295 1.08815 1.08660 1.08505 1.08350 1.08197 12.251 .207 .163 .120 .077 1.08043 1.07890 1.07738 1.07586 1.07435 12.035 11.992 .950 .909 1.07284 1.07134 1.06984 1.06835 1.06687 11.826 .785 .745 .705 .664 1.06538 1.06391 1.06244 1.06097 1.05951 1.05805 11.625 .585 .546 •507 .468 .430 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log 86^ c.d. Log. Tan Nat. ' Nat. Sin Log. d. Nat. Cos Log. Nat.Tan Log. c.d. Log. Cot Nat. 08716 745 774 803 831 8.94030 8.94174 8.94317 8.94461 8.94603 08860 889 918 947 976 8.94746 8.94887 8.95029 8.95170 8.95310 09005 034 063 092 121 8.95450 8.95589 8.95728 8.95867 8.96005 09150 179 208 237 8.96143 8.96280 8.96417 8.96553 8.96689 09295 324 353 382 411 8.96825 8.96960 8.97095 8.97229 8.97363 09440 469 498 527 _556. 09585 614 642 671 700 8.97496 8.97629 8.97762 8.97894 8.98026 8.98157 8.98288 8.98419 8.98549 8.98679 09729 758 707 816 845 09874 903 932 961 990 10019 048 077 106 135 9.00082 9.00207 9.00332 9.00456 9.00581 10164 192 221 250 279 9.00704 9.00828 9.00951 9.01074 9.01196 10308 337 366 395 424 453 9.01318 9.01440 9.01561 9.01682 9.01803 9.01923 8.98808 8.98937 8.99066 8.99194 8.99322 I 8.99450 8.99577 8.99704 8.99830 8.99956 99619 617 614 612 609 999834 999833 9.99832 9.99831 9.99830 08749 778 807 837 866 8.94195 8.94340 8.94485 8.94630 8.94773 99607 604 602 599 596 9.99829 9.99828 9.99827 9.99825 9.99824 08895 925 954 983 09013 8.94917 8.95060 8.95202 8.95344 8.95486 99594 591 588 586 583 9.99823 9.99822 9.99821 9.99820 9.99819 09042 071 lOI 130 159 8.95627 8.95767 8.95908 8.96047 8.96187 99580 578 575 572 570 9.99817 9.99816 9.99815 9.99814 9.99813 09189 218 247 277 306 8.96325 8.96464 8.96602 8.96739 8.96877 99567 564 562 559 556 9.99812 9.99810 9.99809 9.99808 9.99807 09335 365 394 423 453 8.97013 8.9715? 8.97285 8.97421 8.97556 99553 551 548 545 542 9.99806 9.99804 9.99803 9.99802 9.99801 09482 5" 541 570 600 8.97691 8.97825 8.97959 8.98092 8.98225 99540 537 534 531 528 9.99800 9.99798 9.99797 9.99796 9.99795 09629 658 688 717 746 8.98358 8.98490 8.98622 8.98753 8.98884 99526 523 520 517 514 9.99793 9.99792 9.99791 9.99790 9.99788 09776 805 834 864 893 8.9901$ 8.9914$ 8.99275 8.99405 8.99534 995 1 1 508 506 503 500 9.99787 9.99786 9.99785 9.99783 9.99782 09923 952 981 lOOII 040 8.99662 8.99791 8.99919 9.00046 9.00174 99497 494 491 488 485 9.99781 9.99780 9.99778 9-99777 9.99776 10069 099 128 158 187 9.00301 9.00427 900553 9.00679 9.00805 99482 479 476 473 470 9.99775 9.99773 9.99772 9.99771 9.99769 102 16 246 275 305 334 9.00930 9.01055 9.01179 9.01303 9.01427 99467 464 461 458 455 452 9.99768 9.99767 9.99765 9.99764 999763 9.99761 10363 393 422 452 481 510 9.01550 9.01673 9.01796 9.01918 9.02040 9.02162 05805 05660 05515 05370 05227 C.430 .392 .354 .316 .279 05083 04940 04798 04656 04514 .242 .205 .168 .132 .095 04373 04233 ,04092 03953 03813 11.059 .024 10.988 .953 .918 03675 03536 03398 ,03261 03123 10.883 .848 .814 .780 .746 ,02987 ,02850 .02715 ■02579 02444 10.712 .678 .645 .6X2 .579 .02309 ,02175 ,02041 ,01908 01775 10.546 .514 .481 •449 .417 ,01642 ,01510 ,01378 ,01247 ,01116 10.385 •354 .322 .291 .260 .00985 .00855 .0072$ .00595 .00466 10.229 .199 .168 •138 .108 .00338 .00209 .00081 0.99954 0.99826 10.078 .048 .019 9.9893 601 0.99699 0.99573 0.99447 0.99321 0.99195 9.9310 021 9.8734 448 164 0.99070 0.98945 0.98821 0.98697 0.98573 9,7882 601 322 044 9.6768 0.98450 0.98327 0.98204 0.98082 0.97960 0.97838 9.6493 220 9-5949 679 411 144 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat. ' 84° 6' f Nat. Sin Log. d. |Nat.CoSLog |Nat.Tan Log. [:i Log. Cot Nat. ^^ 10453 9.01923 120 99452 9-99761 I05IO 9.02162 0.97838 9.5144 60 I 482 9.02043 120 449 9-99760 540 9.02283 0.97717 9.4878 59 2 511 9.02163 446 9-99759 569 9.02404 0.9750 614 58 3 540 9.02283 119 118 443 9-99757 599 9-0252$ 0.97475 352 57 4 5^9 9.02402 440 9-99756 628 9.02645 121 0.97355 090 56 55 5 IOS97 9.02520 99437 9-99755 10657 9.02766 0.97234 9-3831 6 626 9.02639 434 9-99753 687 9-02885 0.9711$ 572 54 7 655 9.02757 "^ 431 9-99752 716 9.03005 0.96995 315 53 8 684 9.02874 428 9.99751 746 9.03124 118 0.96876 060 52 9 10 713 9.02992 117 117 116 424 9-99749 775 9-03242 119 118 0.96758 9.2806 51 50 10742 9-03109 99421 9.99748 10805 9-03361 0.96639 9.2553 II 771 9.03226 418 9.99747 834 9-03479 118 0.96521 302 49 12 800 9-03342 415 9-99745 863 9-03597 0.96403 052 48 13 829 9-03458 412 9.99744 893 9-03714 117 0.96286 9.1803 47 14 858 9-03574 116 115 115 114 "5 "3 114 114 113 409 9.99742 922 9.03832 116 0.96168 555 46 15 10887 9.03690 99406 9.99741 10952 9.03948 0.96052 9.1309 45 lb 916 9-03805 402 9.99740 981 9.04065 117 0.95935 06s 44 17 945 9.03920 399 9-99738 I ion 9.04181 116 0.95819 9.0821 43 i8 973 9.04034 396 9-99737 040 9.04297 116 0.95703 579 42 19 1 1002 9.04149 393 9.99736 070 9.04413 115 0.95587 338 41 40 20 1 103 1 9.04262 99390 9.99734 1 1099 9.04528 0.95472 9.0098 21 060 9-04376 386 9-99733 128 9.04643 115 0.95357 8.9860 39 22 089 9-04490 383 999731 158 9-04758 115 0.95242 623 38 23 118 9.04603 380 9.99730 187 9-04873 115 0.95127 387 37 24 147 9.04715 113 112 377 9-99728 217 9.04987 114 114 0.95013 152 36 35 25 11176 9.04828 99374 9-99727 I 1246 9.05101 0.94899 8.8919 2b 205 9.04940 112 370 9-99726 276 9.05214 113 0.94786 686 34 27 234 9.05052 112 367 9-99724 305 9-05328 0.94672 455 33 28 2b3 9.05164 III 364 9.99723 335 9-05441 113 0-94559 225 32 29 30 291 9-05275 III 360 9-99721 364 9-05553 113 0-94447 8.7996 31 30 1 1320 9-05386 99357 9-99720 "394 9-05666 0-94334 8.7769 31 349 9.05497 354 999718 423 9-05778 0.94222 542 29 32 378 9.05607 351 9-99717 452 9.05890 0.94110 317 28 33 407 9.05717 347 9-99716 482 9.06002 112 0.93998 093 27 34 436 9-05827 no 109 109 109 108 344 9-99714 511 9.061 13 III 0.93887 8.6870 26 25 35 11465 9-05937 99341 9-99713 11541 9.06224 0.93776 8.6648 3t> 494 9.06046 337 9-99711 570 9-0633$ 427 24 37 523 9.06155 334 9-99710 600 9.06445 0.93555 208 23 3a 552 9.06264 331 9-99708 629 9.06556 0.93444 8.5989 22 39 40 580 9-06372 109 327 9-99707 659 9.06666 109 0.93334 772 21 20 1 1609 9.06481 99324 9-99705 I 1688 9.06775 0.9322$ 8.5555 41 638 9.06589 107 108 320 9-99704 718 9.06885 no 0.931 15 340 iq 42 667 317 9.99702 747 9-06994 109 109 108 109 108 108 0.93006 126 18 43 696 9.00004 107 107 106 314 9.99701 777 907103 0.92897 8.4913 17 44 725 9.0691 1 310 9-99699 806 9.07211 0.92789 701 16 15 45 1 1754 9.07018 99307 9.99698 1 1 836 9.07320 0.92680 8.4490 4b 783 9.07124 303 9.99696 865 9,07428 0.92572 280 14 47 812 9.07231 107 300 9.99695 895 9-07536 0.92464 071 13 48 840 9-07337 105 106 105 297 999693 924 9.07643 107 tdR 0.92357 8.3863 12 49 8b9 9.07442 293 9.99692 954 9-07751 107 106 0.92249 656 II 50 11898 9.07548 99290 9.99690 1 1983 9.07858 0.92142 8.3450 10 51 927 9-07653 286 9.99689 12013 9.07964 0.92036 24s 9 52 956 9-07758 9-07863 105 283 9.99687 042 9.08071 107 106 T06 106 106 0.91929 041 8 53 985 105 279 9.99686 072 9.08177 0.91823 8.2838 7 54 12014 9.07968 105 104 276 9.99684 loi 9.08283 0.91717 636 6 55 12043 9.08072 99272 9.99683 12131 9.08389 0.91611 8.2434 5 5t> 071 9.08176 ^269 9.99681 160 9.08495 0.91505 234 4 57 100 9.08280 265 9.99680 190 9.08600 105 0.91400 035 3 5a 129 9-08383 103 262 9.99678 219 9.08705 105 0.91295 8.1837 2 |g 158 9.08486 103 258 9.99677 249 9.08810 105 0.91190 640 I 187 9-08589 103 255 9-99675 278 9.08914 104 0.91086 443 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. C.d. Log. Tan Nat. f 83^ f Nat. S in Log. d. Nat. Cos Log. Nat.Tan Log. c.d. Log. Cot Nat. " 12187 9.08589 103 103 102 99255 999675 12278 9.08914 105 0.91086 8.1443 60 I 216 9.08692 251 9-99674 308 9.09019 0.90981 248 5Q 2 245 9.08795 248 9-99672 .33B 9.09123 104 Tr\A 0.90877 054 58 3 274 9.08897 244 9.99670 3(V 9.09227 103 104 103 0.90773 8.0860 57 4 302 9.08999 102 lOI 240 9.99669 397 9.09330 0.90670 667 56 1233 1 9.09101 99237 9.99667 12426 9.09434 0.90566 8.0476 55 6 360 9.09202 102 233 9.99666 456 9.09537 0.90463 28:; 54 7 3»9 9.09304 lOI 230 9.99664 485 9.09640 0.90360 095 53 8 418 9.09405 226 9.99663 515 9.09742 103 102 0.90258 7.9906 52 9 447 9.09506 100 222 9.99661 544 9.09845 0.90155 718 51 50 10 12476 9.09606 99219 9.99659 12574 9.09947 0.90053 7.9530 II 504 9.09707 100 215 9.99658 603 9.10049 0.89951 344 49 12 9.09807 100 211 9.99656 633 9.10150 0.89850 158 48 13 562 9.09907 99 100 99 99 98 99 98 98 98 98 97 97 97 208 9-99655 662 9.10252 0.89748 7.8973 47 14 15 591 9.10006 204 9.99653 692 9-10353 lOI lOI 0.89647 789 46 12620 9.10106 99200 9.99651 12722 9.10454 0.89546 7.8606 45 lb 649 9.10205 197 9.99650 751 0.89445 424 44 17 678 910304 193 9.99648 781 9.10656 0.89344 243 43 18 70b 9.10402 189 9.99647 810 9.10756 0.89244 062 42 19 735 9.10501 186 9.99645 840 9.10856 100 100 0.89144 7.7882 41 20 12764 9.10599 99182 9.99643 12869 9.10956 0.89044 7.7704 40 21 793 9.10697 178 9-99642 899 9. 1 1056 99 99 99 99 ^2 ^0 98 98 98 97 0.88944 525 39 22 822 9.10795 175 9.99640 929 9.11155 0.88845 .348 38 23 8S1 9-10893 171 9.99638 958 9.11254 0.88746 171 37 24 880 9.10990 ib7 999637 988 9.11353 0.88647 7.6996 36 25 12908 9. 1 1087 99163 9-99635 13017 9.11452 0.88548 7.6821 35 2b 937 9.1 1 184 160 9-99633 047 9.11551 0.88449 647 34 27 966 9.11281 97 96 97 96 96 li 95 95 95 i5f> 9.99632 076 9.11649 0.88351 473 33 28 995 9- "377 152 9-99630 106 9.11747 9.11845 0.88253 301 32 29 13024 9.11474 148 9.99629 r3t 0.88155 129 31 30 13053 9.1 1570 99144 9-99627 13165 9.11943 0.88057 7.5958 30 31 081 9.11666 141 9.99625 195 9.12040 0.87960 787 29 32 no 9.11761 137 9.99624 224 9.12138 0.87862 618 28 33 139 9.11857 133 9.99622 254 9.12235 0.87765 449 27 34 168 9.11952 129 9.99620 284 9.12332 96 96 96 95 95 95 95 95 94 95 94 94 93 94 93 93 93 93 92 92 93 91 92 0.87668 281 26 35 13197 9.12047 99125 9.99618 13313 9.12428 0.87572 7.5113 25 3^ 226 9.12142 122 9.99617 343 0.87475 7.4947 24 37 254 9.12236 95 94 94 93 118 9-99615 372 9.12621 0.87379 781 23 3a 283 9.12331 114 9.99613 402 9.12717 0.87283 (515 22 39 312 9.12425 no 9.99612 432 9.12813 0.87187 451 21 20 40 13341 9.12519 99106 9.99610 13461 9.12909 0.87091 7.4287 41 370 9.12612 102 9.99608 491 9.13004 0.86996 124 19 42 399 9.12706 098 9.99607 521 9.13099 0.86901 7.3962 18 43 427 9.12799 93 93 93 93 094 9.99605 550 9.13194 0.86806 800 17 44 456 9.12892 091 9.99603 580 9.13289 0.86711 639 lb 45 13485 912985 99087 9.99601 13609 9.13384 0.86616 7.3479 15 46 514 9.13078 083 9.99600 639 9.13478 0.86522 319 14 47 543 9.13171 93 92 92 92 92 079 9.99598 bb9 9.13573 0.86427 160 13 48 572 9.13263 075 9.99596 b98 9.13667 0.86333 002 12 49 600 9-13355 071 9-99595 728 9.13761 0.86239 7.2844 II 50 13629 9.13447 99067 9.99593 13758 9.1385+ 0.86146 7.2687 10 ^i 658 063 787 9.13948 0.86052 531 9 52 687 9.13630 91 92 059 9.99589 817 9.14041 0.85959 375 8 ss 716 9.13722 055 9.99588 846 9.14134 0.85866 220 7 54 744 913813 91 91 051 9.99586 876 9.14227 0.85773 066 6 55 13773 9.13904 99047 9-99584 13906 9.14320 0.85680 7.1912 5 .0 802 9-13994 043 9.99582 935 9.14412 0.85588 759 4 57 831 9-14085 91 039 9.99581 965 9.14504 0.85496 607 3 5a 860 9-14175 90 91 035 9-99579 995 9.14597 0.85403 455 2 ^0 889 9.14266 031 999577 14024 9.14688 0.85312 304 1 917 9-14356 90 027 9-99575 054 9.14780 0.85220 X54 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. 'Log. Tan Nat. r 82^ 8= r Nat. Sin Log. d. Nat. Cos Log Nat.Tan Log. c.d. Log. Cot Nat. 13917 9-I4356 89 90 89 90 89 88 99027 9.99575 14054 9.14780 0.85220 7.1154 60 I 946 9-14445 023 9-99574 084 91 91 91 91 91 0.85128 004 59 2 975 9.14535 019 9-99572 113 9.14963 0.85037 7.0855 58 3 14004 9.14624 015 9-99570 143 9.15054 57 4 5 033 9.14714 on 9.99568 173 9.15145 0.84855 558 56 55 1406 I 9.14803 99006 9.99566 14202 9.15236 0.84764 7.0410 b 090 9.14891 89 89 88 002 9.99565 232 9.15327 0.84673 264 54 7 119 9.14980 98998 9.99563 262 9.15417 90 0.84583 117 53 8 148 9.15069 994 9-99561 291 9.15508 91 90 90 89 90 89 89 88 0.84492 6.9972 52 9 177 9-15157 88 88 990 9.99559 321 9.15598 0.84402 827 51 10 14205 9-15245 98986 9.99557 14351 9.15688 0.84312 6.9682 50 II 234 9-15333 88 982 9.99556 381 9.15777 0.84223 538 49 12 263 9.15421 87 88 978 9-99554 410 9.15867 0.84133 395 48 13 292 9-15508 973 9-99552 440 9.15956 0.84044 252 47 14 320 9.15596 87 87 f7 87 86 969 9.99550 470 9.16046 0.83954 110 46 15 14349 9-15683 98965 9.99548 14499 9.16135 0.83865 6.8969 45 lb 378 9-15770 961 9.99546 529 9.16224 0.83776 828 44 17 407 9-15857 957 9-99545 559 9.16312 89 00 0.83688 687 43 i8 436 9-15944 953 9-99543 588 9.16401 0.83599 548 42 19 464 9.16030 86 87 86 948 9-99541 618 9.16489 88 88 0.83511 408 41 20 14493 9.16116 98944 9.99539 14648 9.16577 0.83423 6.8269 40 21 522 9.16203 940 9-99537 678 88 0.83335 131 ■?9 22 551 9-16289 '4 936 9-99535 707 9.16753 88 0.83247 6.7994 38 23 580 9.16374 931 9.99533 737 9.16841 87 88 87 87 87 Of. 0.83159 856 37 24 608 9.16460 85 86 927 9-99532 767 9.16928 0.83072 720 .36 25 14637 9.16545 98923 9-99530 14796 9.17016 0.82984 6,7584 35 2b 666 9.16631 85 85 84 85 84 84 84 84 ?3 84 ^3 83 83 83 83 82 919 9-99528 826 9.17103 0.82897 448 34 27 695 9.16716 914 9-99526 856 9.17190 0.82810 313 33 28 723 9.16801 910 9.99524 886 9.17277 0.82723 179 32 29 752 9.16886 906 9.99522 915 9.17363 87 86 0.82637 045 31 1478 I 9.16970 98902 9.99520 1494s 9.17450 0.82550 6.6912 -3-0 31 810 9.17055 897 9.99518 975 9-17536 86 0.82464 779 29 32 838 9-17139 893 9.99517 15005 9.17622 86 0.82378 646 28 33 867 9.17223 889 9.99515 034 9.17708 86 0.82292 514 27 34 896 9.17307 884 9.99513 064 9.17794 86 85 0.82206 383 26 25 35 14925 9.17391 98880 9.99511 15094 9.17880 0.82120 6.6252 3^ 954 9-17474 876 9.99509 124 9-17965 0.82035 122 24 37 982 9.17558 871 9.99507 153 9.18051 85 85 85 84 l^ 84 84 84 84 83 84 83 83 83 Ro 0.81949 6.5992 23 38 15011 9.17641 867 9.99505 183 9.18136 0.81864 863 22 39 040 9.17724 863 9.99503 213 9.18221 0-81779 734 21 20 40 15069 9.17807 98858 9.99501 15243 9.18306 0.81694 6.5606 41 097 9.17890 854 9.99499 272 9.18391 0.81609 478 19 42 126 9.17973 849 9.99497 302 0.81525 350 18 43 155 9-18055 82 845 9.99495 332 9.18560 0.81440 223 17 44 184 9.18137 83 82 841 9.99494 362 9.18644 0.81356 097 16 45 15212 9.18220 98836 9.99492 15391 9.18728 0.81272 6.4971 15 46 241 9.18302 81 832 9.99490 421 9.18812 0.81188 846 14 47 270 9.18383 82 827 9.99488 451 9.18896 0.81104 721 13 48 299 9.18465 82 823 9.99486 481 9.18979 0.81021 596 12 49 327 9.18547 81 81 818 9.99484 511 9.19063 0.80937 472 11 50 15356 9.18628 98814 9.99482 15540 9.19146 0.80854 6.4348 10 SI 385 9.18709 81 809 9.99480 570 9.19229 0.80771 225 9 52 414 9-18790 81 805 9.99478 600 9.19312 0.80688 103 8 S3 442 9.18871 81 800 9.99476 630 9.19395 0.80605 6.3980 7 54, 55 471 9-18952 81 80 796 9.99474 660 9.19478 0.80522 859 6 15500 9.19033 98791 9-99472 15689 9.19561 0.80439 6.3737 5 Sb 529 9.19113 80 787 9-99470 719 9.19643 82 0.80357 617 4 S7 557 919193 80 782 9.99468 749 9-19725 82 82 82 0.80275 496 3 S8 586 9-19273 80 778 9.99466 779 9.19807 0.80193 376 2 IS 615 9-19353 80 773 9.99464 809 9.19889 0.80111 257 1 643 9-19433 769 9.99463 838 9.19971 0.80029 138 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. C.d. Log. Tan Nat. f 81° r Nat. Sin Log. d. 1 Nat. Cos Log. Nat.Tan Log.| c.d. Log. Cot Nat. 15643 9.19433 80 98769 9.99462 15838 9.19971 82 0.80029 6.3138 60 I 672 9.I95I3 79 764 9.99460 868 9-20053 Rt 0-79947 019 59 2 701 9-19592 760 9-99458 898 9-20134 80 0.79866 6.2901 58 3 730 9.19672 79 79 79 755 9-99456 928 9.20216 81 0.79784 783 57 4 5 758 9.I975I 15787 9.19830 751 9-99454 958 9.20297 8i 8t 0.79703 666 56 55 98746 999452 15988 9-20378 0.79622 6.2549 b 816 9.19909 741 9-99450 I60I7 9.20459 0.79541 432 54 7 845 9.19988 79 737 9.99448 047 9.20540 81 80 0.79460 316 S3 8 873 9.20067 78 78 79 78 78 77 78 78 77 732 9.99446 077 9.20621 0-79379 200 52 9 10 902 9.20145 728 98723 9-99444 9.99442 107 9.20701 81 80 0.79299 085 51 50 1593 1 9.20223 I6I37 9.20782 0.79218 6.1970 II 959 9.20302 718 9.99440 167 9.20862 80 80 8n 0.79138 856 49 12 988 9.20380 714 999438 196 9.20942 0.79058 742 48 13 16017 9.20458 709 9-99436 226 9.21022 0.78978 628 47 14 046 9.20535 704 9-99434 25b 9.21102 80 0.78898 515 46 15 16074 9-20613 98700 999432 16286 9.21182 0.78818 6.1402 45 16 103 9.20691 695 9.99429 316 9.21261 79 80 0.78739 290 44 17 132 9.20768 690 9.99427 346 9-21341 0.78659 178 0.78580 066 43 lb 160 9.20845 77 77 77 686 999425 376 9.21420 79 79 79 42 19 20 189 9.20922 681 999423 405 9.21499 0.78501 6.0955 41 40 16218 9.20999 98676 9.99421 16435 9.21578 0.78422 6.0844 21 246 9.21076 671 9.99419 465 9.21657 79 0.78343 734 39 22 275 9.21153 \l 667 9.99417 495 9.21736 79 78 0.78264 624 38 23 304 9.21229 662 9-99415 525 9.21814 0.78186 514 37 24 333 9.21306 77 76 7^ 76 76 657 98652 9-99413 555 9.21893 79 78 78 78 78 78 78 0.78107 405 36 35 25 16361. 9.21382 9-994" 16585 9.21971 0.78029 6.0296 2b 390 9.21458 648 9.99409 615 9.22049 0.77951 188 34 27 419 921534 643 9-99407 645 9.22127 0.77873 080 33 28 447 9.21610 638 9.99404 674 9.22205 0.77795 5.9972 32 29 476 9.21685 75 76 __633 98629 9.99402 704 9.22283 0.77717 865 31 30 30 16505 9.21761 9-99400 16734 9.22361 0.77639 5.9758 31 533 9.21836 75 76 624 9.99398 764 9.22438. 77 78 0.77562 651 29 32 562 9.21912 619 9.99396 794 9.22516 0.77484 545 28 33 591 9.21987 614 9-99394 824 9-22593 0.77407 439 27 34 620 9.22062 75 75 609 9-99392 854 9.22670 77 77 0.77330 333 26 35 16648 9.22137 98604 9-99390 16884 9.22747 0.77253 5-9228 25 3^ 677 9.22211 74 600 9.99388 914 9.22824 77 0.77176 124 24 37 706 9.22286 75 75 595 9-99385 944 9.22901 77 76 0.77099 019 23 3» 734 9-22361 590 999383 974 9.22977 0.77023 5-8915 22 39 763 9.22435 74 74 585 9.99381 17004 9-23054 76 76 0.76946 811 21 20 40 16792 9.22509 98580 9-99379 17033 9.23130 0.76870 5.8708 41 820 9.22583 74 575 063 9.23206 o.7%94 605 19 42 849 9-22657 74 570 9.99375 093 9.23283 77 76 76 75 76 0.76717 502 18 43 878 9.22731 74 565 9-99372 123 9-23359 0.76641 400 17 44 45 906 9.22805 16935 9-22878 74 73 561 9-99370 153 923435 0.76565 298 15 98556 9.99368 17183 9.23510 0.76490 5.8197 15 46 964 9.22952 74 551 9-99366 213 0.76414 095 14 47 992 9.23025 73 546 9-99364 243 9.23661 75 76 75 75 75 75 75 74 75 74 75 74 74 0.76339 5-7994 13 4« 17021 9.23098 73 541 9.99362 273 9-23737 0.76263 894 12 49_ 50 050 9.23171 73 73 536 9.99359 303 9.23812 0.76188 794 II 17078 9.23244 98531 9.99357 17333 9.23887 0.76113 5.7694 10 51 107 9-23317 73 73 72 526 9.99355 363 9.23962 0.76038 594 9 52 136 9-23390 521 9-99353 393 9.24037 0.75963 495 0.75888 396 8 S3 164 9.23462 516 9-99351 423 9.24112 7 54 193 9-23.'535 73 72 ■511 9.99348 453 9.24186 0.75814 297 6 55 17222 9.23607 98506 9-99346 17483 9.24261 0.75739 5.7199 5 56 250 9.23679 72 73 .501 9-99344 513 9-24335 0.75665 lOI 4 57 279 9-23752 496 9-99342 543 9.24410 0.75590 004 3 58 308 9.23823 71 491 9-99340 573 9.24484 0.75516 5.6906 2 ^0 336 9.23895 72 486 9-99337 603 9-24558 0.75442 809 11 365 9-23967 72 481 9-99335 633 9.24632 1 '-* 0.75368 713 o| Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d.! Log. Tan Nat. LJ 80' 10 r Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d Log. Cot Nat. r 17365 9-23967 72 71 71 72 71 71 71 70 71 70 71 70 70 70 70 70 69 70 69 i^ 69 69 69 69 6S 98481 9-99335 17633 9.24632 0-75368 5-6713 60 I 393 9-24039 476 9-99333 2 663 9.24706 74 73 0.75294 617 59 2 422 9.241 10 471 9-99331 693 9.24779 0.75221 521 ■;8 3 451 9-24181 466 9.99328 723 9.24853 74 0.75147 425 ^7 4 479 9-24253 461 9.99326 2 753 9.24926 71 74 0.75074 329 0.75000 5.6234 56 55 5 17508 9-24324 98455 9.99324 17783 9.25000 6 537 9.24395 450 9.99322 3 2 813 9.25073 IZ 0.74927 140 S4 7 565 9.24466 445 9.99319 843 9.25146 73 0.74854 045 53 8 594 9-24536 440 9.99317 873 9.25219 0.74781 5.5951 S2 9 623 9.24607 435 9-99315 98430 9.99313 2 3 903 9.25292 73 0.74708 857 0.74635 5.5764 51! 10 17651 9.24677 17933 9.25365 II 680 9.24748 425 9-99310 963 9.25437 72 0.74563 671 49 i 12 708 9.24818 420 9-99308 ^ 993 9.25510 Tb 0.74490 578 48' i3 737 9-24888 414 999306 " 18023 9-25582 0.74418 485 47 H 766 9.24958 409 9.99304 3 2 053 9-25655 73 72 72 0.74345 393 46 15 17794 9-25028 98404 9.99301 18083 9-25727 0.74273 5.5301 45 lb 823 9.25098 399 9.99299 "3 9-25799 0.74201 209 44 17 852 9.25168 394 9.99297 3 143 9-25871 72 0.74129 118 43 l8 880 9.25237 389 9.99294 173 9.25943 72 0.74057 026 42 19 909 9-25307 383 9.99292 2 203 9.26015 72 71 0.73985 5-4936 41 20 17937 9-25376 98378 9.99290 18233 9.26086 0.73914 5-4845 40 21 966 9.25445 373 9.99288 3 263 9.26158 7^ 0.73842 755 39 22 995 9.25514 368 9.99285 293 9.26229 0.73771 665 38 23 18023 9.25583 362 9.99283 "^ 323 9.26301 0.73699 575 37 24 25 052 9.25652 357 9.99281 3 353 9.26372 71 0.73628 486 36 1808 I 9.25721 98352 9.99278 18384 9.26443 0.73557 5-4397 35 2b 109 9.25790 347 9-99276 2 414 9.26514 71 0.73486 308 34 27 138 9-25858 69 68 341 9.99274 3 2 444 9.26585 0.73415 219 33 28 166 9.25927 336 9.99271 474 9.26655 70 71 71 0.73345 131 32 29 195 9-25995 68 68 331 9.99269 2 3 504 9.26726 0.73274 043 31 30 18224 9.26063 98325 9.99267 18534 9-26797 0.73203 5-3955 30 31 252 9.26131 68 320 9.99264 564 9.26867 0.73133 868 29 32 281 9.26199 68 315 9.99262 " 594 9.26937 71 0.73063 781 28 33 309 9.26267 68 310 9.99260 3 2 3 2 624 9.27008 0.72992 694 27 34 338 9.26335 68 67 68 304 9-99257 654 9.27078 70 0.72922 607 26 35 18367 9.26403 98299 9.99255 18684 9.27148 0.72852 5.3521 25 3^ 395 9-26470 294 9.99252 714 9.27218 70 69 0.72782 435 24 37 424 9.26538 67 67 67 67 67 67 67 66 67 66 288 9.99250 745 9.27288 0.72712 349 23 3» 452 9.26605 283 9.99248 3 2 775 9-27357 0.72643 263 22 39 40 481 9.26672 277 9.99245 98272 9.99243 805 9.27427 70 69 69 69 69 69 69 68 0-72573 178 21 20 18509 9-26739 18835 9.27496 0.72504 5.3093 41 538 9.26806 267 9.99241 865 9.27566 0.72434 008 19 42 567 9.26873 261 9.99238 3 895 9.27635 0-72365 5-2924 18 43 595 9-26940 256 9.99236 3 2 925 9-27704 0.7220 839 17 44 45" 624 9.27007 250 9-99233 955 9.27773 0.72227 755 lb 18652 9.27073 98245 9.99231 18986 9.27842 0.72158 5.2672 15 4b 681 9.27140 240 9.99229 3 19016 9.2791 1 0.72089 588 14 47 710 9.27206 67 66 234 9.99226 046 9.27980 0.72020 505 13 48 738 9.27273 229 9.99224 3 2 076 9.28049 0.71951 422 12 49 7(y7 9-27339 66 66 223 999221 106 9.28117 69 68 0.71883 339 n 50 18795 9.2740g 98218 9.99219 19 136 9.28186 0.71814 5.2257 10 51 824 9.27471 66 212 9.99217 3 166 9.28254 0.71746 174 9 52 852 9.27537 % 207 9.99214 197 9.28323 0.71677 092 8 53 881 9.27602 20I 9.99212 3 2 3 227 9.28391 68 0.71609 on 7 54 910 9.27668 66 65 65 66 196 9.99209 257 9.28459 68 6H 0.71541 5.1929 6 55 18938 9-27734 98190 9.99207 19287 9.28527 9.71473 5.1848 5 5^^ 967 9.27799 185 9.99204 317 9-28595 67 68 0.71405 767 4 57 995 9-27864 179 9.99202 347 9.28662 0.71338 686 3 5« 19024 9.27930 65 65 174 9.99200 3 378 9.28730 68 0.71270 606 2 il 052 9.27995 168 9-99197 408 9.28798 67 0.71202 526 I 081 9.28060 163 9-99195 438 9.28865 0.7113S 446 Nat. Cos Log. d. 1 Nat. Sin Log. d. 1 Nat. Cot Log. c.d. Log.TanNat. / 79' ir r Nat. Sin Log. d. Nat. Cos Log d. Nat.TanLog. c.d. Log. Cot Nat. 1908 1 9.28060 1 64 65 65 64 64 65 64 64 64 64 63 64 64 63 63 64 63 63 63 98163 9.99195 3 2 19438 9.28865 68 0.71 135 5.1446 60 I 109 9.28125 157 9-99192 468 9.28933 67 67 67 67 67 6(S 0.71067 366 5Q 2 138 9.28190 152 9.99190 3 498 9.29000 0.71000 286 58 3 167 9.28254 146 9-99187 529 9.29067 0.70933 207 57 4 195 9.28319 140 9-99185 3 559 9-29134 0.70866 128 56 5 19224 9.28384 98135 9-99182 19589 9.29201 0.70799 5.1049 55 6 252 9.28448 129 9.99180 3 619 9.29268 0.70732 5.0970 54 7 281 9.28512 124 9.99177 649 9.29335 0.70665 892 53 8 309 9.28577 118 9-99175 3 2 3 680 9.29402 0.70598 814 S2 9 338 9.28641 112 9-99172 710 9.29468 67 66 0.70532 736 51 50 10 19366 9.28705 98107 9-99170 19740 9.29535 0.70465 5.0658 II 395 9.28769 loi 9.99167 770 9.29601 67 66 0.70399 581 4Q 12 423 9.28833 096 9.99165 3 801 9.29668 0.70332 504 48 13 452 9.28896 090 9.99162 831 9-29734 66 0.70266 427 47 14 15 481 9.28960 084 9.99160 98079 9.99157 3 861 9.29800 66 66 66 0.70200 350 46 45 19509 9.29024 19891 9.29866 0.70134 5.0273 I6 538 9.29087 ^3 9-99155 3 921 9.29932 0.70068 197 44 17 566 9.29150 067 9.99152 952 9.29998 66 0.70002 121 43 l8 595 9-29214 061 9.99150 3 2 3 982 9.30064 66 0.69936 045 42 19 623 9.29277 056 9-99147 20012 9.30130 65 66 0.69870 4.9969 41 20 19652 9.29340 98050 9.99145 20042 9.30195 0.69805 4.9894 40 21 680 9.29403 044 9.99142 073 9.30261 ^5 0.69739 819 39 22 709 9.29466 039 9.99140 3 103 930326 0.69674 744 38 23 737 9-29529 033 9-99137 133 9-30391 0.69609 669 37 24 25 766 9-29591 63 60 027 9-99135 3 164 9-30457 65 65 64 % % 64 i^ 64 64 64 64 i^ 64 64 63 64 63 63 63 63 ^3 63 63 62 0.69543 594 3b 19794 9-29654 98021 9.99132 20194 9-30522 0.69478 4.9520 35 2b 823 9.29716 53 016 9.99130 3 3 224 9.30587 0.69413 446 34 27 851 9.29779 010 9.99127 254 9-30652 0.69348 372 33 28 880 9.29841 6^ 004 9.99124 285 9.30717 0.69283 298 32 29 30 908 9-29903 63 60 97998 9.99122 3 315 9.30782 0.69218 225 31 19937 9-2996<5 97992 9-99119 20345 9.30846 0.69154 4.9152 30 31 965 9.30028 6'> 987 9.99117 3 2 376 9.30911 0.69089 078 29 32 994 9-30090 61 981 9.99114 406 9.30975 0.69025 006 28 33 20022 9.30151 6'^ 975 9-99112 3 3 436 9.31040 0.68960 4.8933 27 34 051 9.30213 62 61 969 9.99109 466 9.31104 0.6880 860 26 25 35 20079 9-30275 97963 9.99106 20497 9.31168 0.68832 4.8788 3& 108 9.30336 958 999104 3 527 9.31233 0.68767 716 24 37 136 9-30398 61 952 9-99IOI 557 9.31297 0.68703 644 23 3« 165 9-30459 Ao 946 9.99099 3 3 588 9.31361 0.68639 573 22 39 193 9-30521 6i 61 61 61 61 61 60 61 60 61 60 61 60 60 940 999096 618 9-31425 0.68575 501 21 40 20222 9.30582 97934 9-99093 20648 9.31489 0.68511 4.8430 20 41 250 9.30643 928 9-99091 679 9-31552 0.68448 359 19 42 279 9-30704 922 9.99088 3 709 9.31616 0.68384 288 18 43 307 9-30765 916 9.99086 3 3 739 9-31679 0.68321 218 17 44 336 9.30826 910 9.99083 770 9-31743 0.68257 147 lb 45 20364 9.30887 97905 9.99080 20800 9.31806 0.68194 4.8077 15 46 393 9-30947 899 9.99078 830 9.31870 0.68130 007 14 47 421 9.31008 893 9-99075 3 861 9.31933 0.68067 4.7937 13 48 450 9.31068 887 9.99072 3 891 931996 0.68004 867 12 49 478 9.31129 881 9.99070 3 921 9.32059 0.67941 798 11 50 20507 9.31 189 97875 9.99067 20952 9.32122 0.67878 4.7729 10 SI 535 9-31250 869 9.99064 3 982 9.32185 0.67815 659 9 52 563 9.31310 863 9.99062 3 3 2 21013 9.32248 0.67752 591 8 53 592 9.31370 60 60 857 9-99059 043 9-32311 0.67689 522 7 54 55 620 9-31430 851 9-99056 073 9-32373 63 62 0.67627 453 b 20649 9-31490 97845 9.99054 21104 9.32436 0.67564 4.7385 5 56 (>77 9-31549 60 839 9-99051 3 134 9.32498 t? 0.67502 317 4 57 706 9.31609 833 9-99048 3 164 9.32561 0.67439 249 3 58 734 9-31669 827 9.99046 195 9.32623 62 0.67377 181 2 hi 763 9.31728 6^ 821 9.99043 3 225 9.32685 62 0.67315 114 I 791 9.31788 815 9.99040 3 256 9.32747 0.67253 046 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. / 78' 12° t Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 20791 9.31788 59 6n 97815 9.99040 21256 9.32747 % 0.67253 4.7046 60 I 820 9.31847 809 9-99038 3 3 2 286 9.32810 0.67190 4.6979 59 2 848 9.31907 59 59 59 59 59 59 58 59 59 58 58 59 58 58 58 58 57 58 57 58 57 57 58 57 57 % 57 803 9-99035 316 9.32872 61 0.67128 912 S8 3 877 9.31966 797 9-99032 347 9-32933 6^^ 0.67067 84s 57 4 90s 9.32025 791 9.99030 3 3 2 377 9-32995 62 50 0.67005 779 56 55 5 20933 9-32084 97784 9.99027 21408 9.33057 0.66943 4.6712 6 962 9.32143 778 9-99024 438 9-33119 61 0.66881 646 S4 7 990 9.32202 772 9.99022 3 3 3 2 469 9-33180 50 0.66820 580 53 8 21019 9.32261 766 9.99019 499 9-33242 61 0.66758 514 52 9 10 047 9-32319 760 9.99016 529 9-33303 21560 9-33365 62 61 0.66697 448 51 21076 9.32378 97754 9-99013 0.66635 4-6382 50 II 104 9.32437 748 9-9901 1 3 3 3 2 3 3 3 2 590 9-33426 61 0.66574 317 49 12 132 9.32495 742 9-99008 621 9.33487 61 0.66513 252 48 13 161 9.32553 735 999005 651 9-33548 61 0.66452 187 47 14 189 9.32612 729 9.99002 682 9.33609 61 61 0.66391 122 46 15 21218 9.32670 97723 9-99000 2 17 1 2 9.33670 0.66330 4.6057 45 lb 246 9.32728 717 9-98997 743 9-33731 61 0.66269 4.5993 44 17 27s 9-32786 711 9-98994 773 933792 0.66208 928 43 i8 303 9.32844 705 9.98991 804 9-33853 60 0.66147 • 864 42 19 331 9.32902 698 9.98989 3 3 3 2 834 9-33913 61 fin 0.66087 800 41 20 21360 9.32960 97692 9.98986 21864 9-33974 0.66026 45736 40 21 388 9.33018 686 9.98983 895 9-34034 61 0.65966 673 39 22 417 9-33075 680 9.98980 925 9-3409$ f)n ,0.6590$ 609 38 23 445 9-33133 673 9-98978 3 3 3 2 956 9-34155 60 0.65845 546 37 24 25- 474 9-33190 667 9-98975 986 9.34215 61 60 0-65785 483 36 21502 9.33248 97661 9.98972 22017 9-34276 0.65724 4.5420 35 26 530 9-33305 655 9.98969 047 9-34336 fin 0.65664 357 34 27 559 9-33362 648 9.98967 3 3 3 3 078 9-34396 °° 0.65604 294 33 28 587 9-33420 642 9.98964 108 9-34456 60 \ 0-65544 232 32 29 6i6 9-33477 636 9.98961 139 9-34516 60 0.65484 169 31 21644 9-33534 97630 9.98958 22169 9-34576 0.65424 4.5107 30 31 672 9-33591 623 9-98955 200 9.34635 ^^ ' 0.6536$ 045 29 32 701 9.33647 3 3 3 3 3 231 9-34695 ^° 0.6530$ 4.4983 28 33 729 9-33704 611 9.98950 261 9-34755 ''. :X 0.65245 922 27 34 758 9-33761 57 57 56 57 56 56 57 ^i ^l ^l 56 56 56 55 56 55 56 55 56 55 55 55 55 55 55 55 55 604 9-98947 292 9.34814 2^ 1 0.65186 860 26 25 35 21786 9.33818 97598 9-98944 22322 9.34874 59 59 59 6n 0.65126 4-4799 36 814 9-33874 592 9-98941 353 9-34933 0.65067 737 24 37 843 9-33931 585 9-98938 383 9-34992 0.65008 676 23 3B 871 9-33987 579 9-98936 3 3 3 3 3 2 414 9-35051 0.64949 615 22 39 899 9.34043 573 9-98933 444 9-351" 59 59 59 59 58 59 59 58 59 58 59 58 58 58 58 58 58 57 0.64889 555 21 40 21928 9.34100 97566 9.98930 22475 9-35170 0.64830 4.4494 20 41 956 9.34156 560 9-98927 505 9.35229 0.64771 434 19 42 985 9.34212 553 9-98924 536 9-35288 0.64712 373 18 43 22013 9-34268 547 9-98921 567 9-35347 0.64653 313 17 44 041 9-34324 541 9-98919 3 3 3 3 3 3 3 597 9-35405 0.64595 253 16 15 45 22070 9.34380 97534 9-98916 22628 9.35464 0.64536 4-4194 46 098 9-34436 528 9.98913 658 9-35523 0.64477 134 14 47 126 9.34491 521 9.98910 689 9-35581 0.64419 075 13 48 155 9-34547 515 9-98907 719 9-35640 0.64360 015 12 49 183 9.34602 508 9.98904 750 9-35698 0.64302 4.3956 II 50 22212 9.34658 97502 9.98901 22781 9.35757 0.64243 4-3897 10 SI 240 9-34713 496 9.98898 811 9.35815 0.64x85 838 9 S2 268 9.34769 489 9-98896 3 3 3 842 9-35873 0.64127 779 8 S3 297 9-34824 483 9.98893 0.64069 721 7 54 325 9-34879 476 9.98890 903 9.35989 0.64011 662 b ^5 55 22353 9-34934 97470 9.98887 22934 9-36047 0.63953 4-3604 S6 382 9.34989 463 9.98884 3 3 3 3 3 964 9.36105 0.63895 546 4 S7 410 9.35044 457 9-98881 995 9-36163 0.63837 488 3 ,S8 438 9-35099 450 9-98878 23026 9.36221 0.63779 430 2 S9 467 9-35154 444 9-98875 056 9-36279 0.63721 372 I 60 495 9-35209 437 9-98872 087 9-36336 0.63664 315 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. / 77' Nat. Sin Log. d. 13^ Nat. Cos Log. d. Nat.TanLog. c.d Log. Cot Nat. 22495 523 552 580 608 9-35209 935263 935318 9-35373 9-35427 22637 665 693 722 750 9-35481 9-35536 9-35590 935644 9-35698 22778 807 835 863 892 9-35752 9.35806 9-35860 9-35914 9-35968 22920 948 977 23005 033 9.36022 9-36075 9.36129 9.36182 9-36236 23062 090 118 146 175 9.36289 9-36342 9-36395 9-36449 9.36502 23203 231 260 288 316 9-36555 9.36608 9.36660 9-36713 9-36766 23345 373 401 429 458 9.36819 9-36871 9-36924 9.36976 9.37028 23486 514 542 571 599 9-37081 9-37133 9-37185 9-37237 9-37289 23627 656 684 712 740 9-37341 9-37393 9-37445 9-37497 9-37549 23769 797 825 853 882 9-37600 9-37652 937703 9-37755 9.37806 23910 938 966 995 24023 9-37858 937909 9-37960 9.3801 1 9.38062 24051 079 108 136 164 192 9-381 13 9.38164 9.38215 9.38266 9-38317 9-38368 97437 430 424 417 411 9.98872 9.98869 9.98867 9.98864 9.98861 97404 398 391 384 378 9-98858 9-98855 9.98852 9.98849 9.98846 97371 365 358 351 345 9-98843 9.98840 9.98837 9-98834 9.98831 97338 331 325 318 3" 9.98828 9.98825 9.98822 9.98819 9.98816 97304 298 291 284 278 9-98813 9.98810 9.98807 9.98804 9.98801 97271 264 257 251 244 9.98798 9-98795 9.98792 9.98789 9.98786 97237 230 223 217 210 9-98783 9.98780 9.98777 9-98774 9.98771 97203 196 189 182 176 9.98768 9-98765 9.98762 9-98759 9-98756 97169 162 15s 148 141 9-98753 9.98750 9-98746 9-98743 9-98740 97134 127 120 "3 106 9-98737 9-98734 9.98731 9.98728 9-98725 97100 093 086 079 072 9.98722 9.98719 9.98715 9.98712 9-98709 97065 058 051 044 037 030 9.98706 9.98703 9.98700 9.98697 9-98694 9.98690 23087 117 148 179 209 9-36336 9-36394 9-36452 936509 9.36566 23240 271 301 332 363 9.36624 9.36681 9-36738 9-36795 9.36852 23393 424 455 485 516 9-36909 9-36966 937023 9-37080 9-37137 23547 578 608 639 670 9-37193 9-37250 9-37306 9-37363 9-37419 23700 731 762 793 823 9-37476 937532 937588 9-37644 9-37700 23854 885 916 946 977 9-37756 9-37812 9.37868 9-37924 9.37980 24008 039 069 100 131 9-38035 9.38091 9.38147 9.38202 9-38257 24162 193 223 254 285 9-.38313 9.38368 9-38423 9-38479 9-38534 24316 347 377 408 439 9.38589 9-38644 9-38699 9-38754 9.38808 24470 501 532 562 593 9-38863 9.38918 9.38972 9.39027 9-39082 24624 655 686 717 747 9-39136 9.39190 9-39245 9-39299 9-39353 24778 809 840 871 902 933 9-39407 9.39461 9-39515 9-39569 9.39623 9.39677 0.63664 0.63606 0.63548 0.63491 0-63434 4-331S 257 200 143 086 0.63376 0.63319 0.63262 0.63205 0.63148 4.3029 4.2972 916 859 803 0.63091 0.63034 0.62977 0.62920 0.62863 4.2747 691 635 580 524 0.62807 0.62750 0.62694 0.62637 0.62581 4.2468 413 358 303 248 0.62524 0.62468 0.62412 0.62356 0.62300 4.2193 139 084 030 4.1976 0.62244 0.62188 0,62132 0.62076 0.62020 4.1922 868 814 760 706 0.61965 0.61909 0.61853 0.61798 0.61743 4-1653 600 547 493 441 0.61687 0.61632 0.61577 0.61521 0.61466 4.1388 335 282 230 178 0.61411 0.61356 0.61301 0.61246 0.61192 4.1126 074 022 4.0970 918 0.61 137 0.61082 0.61028 0.60973 0.60918 4.0867 81S 764 713 662 0.60864 0.60810 0.60755 0.60701 0.60647 4.061 1 560 509 459 408 0.60593 0.60539 o.6o48g 0.60431 0.60377 0.60323 4.0358 308 257 207 158 108 Nat. Cos Log. d. Nat. Sin Log. d. 76^ Nat. Cot Log, d. Log. Tan Nat w r Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 24192 9.38368 50 51 50 51 50 50 51 50 50 50 50 50 50 50 50 97030 9.98690 3 3 24933 9-39677 54 0.60323 4.0108 60 I 220 9.38418 023 9.98687 964 9-39731 0.60269 058 59 2 249 9-38469 015 9.98684 995 9-39785 0.60215 009 58 3 277 9-38519 008 9.98681 3 25026 9.39838 53 0.60162 3.9959 57 4 5 305 9-38570 001 9.98678 3 3 056 9-39892 54 53 0.60108 910 56 56 24333 9-38620 96994 9.98675 25087 9-39945 0.60055 3.9861 b 362 9.38670 987 9-98671 118 9.39999 54 0.60001 812 54 7 390 9.38721 980 9.98668 149 9-40052 53 0.59948 763 53 8 418 9.38771 973 9-98665 3 3 180 9.40106 54 0.59894 714 52 9 446 9.38821 966 9.98662 211 9.40159 53 53 0.59841 665 51 60 10 24474 9-38871 96959 9-98659 25242 9.40212 0-59788 3-9617 II 503 9.38921 952 9-98656 3 4 3 273 9.40266 54 53 53 0-59734 568 49 12 531 9.38971 945 998652 304 9.40319 0.59681 520 48 13 559 9-39021 937 9-98649 335 9-40372 0.59628 471 47 14 587 9-39071 930 9.98646 3 3 366 9.40425 53 53 0-59575 423 46 46 16 24615 9.39121 96923 9.98643 25397 9-40478 0.59522 3-9375 I6 644 9.39170 916 9.98640 3 428 9.40531 53 0.59469 327 44 17 672 9.39220 50 909 9.98636 459 9-40584 53 0.59416 279 43 i8 700 9.39270 50 902 9.98633 3 490 9.40636 52 0.59364 232 42 19 728 9.39319 50 894 9.98630 3 3 521 9.40689 53 53 0.5931 1 184 41 40 20 24756 9-39369 96887 9.98627 25552 9.40742 0-59258 3-9136 21 784 9.39418 49 880 9.98623 4 583 9.40795 53 0.59205 089 39 22 813 9-39467 49 873 9.98620 3 614 9.40847 52 0.59153 042 38 23 841 9-39517 50 866 9.98617 3 645 9.40900 53 0.59100 3.8995 37 24 25 869 9-39566 49 49 858 9.98614 3 4 676 9.40952 52 53 0.59048 947 36 24897 9-39615 96851 9.98610 25707 9.41005 0.58995 3.8900 35 26 925 9.39664 844 9.98607 3 738- 9-41057 52 0-58943 854 34 27 954 9-39713 837 9.98604 3 769 9.41109 52 0.58891 807 33 28 982 9.39762 829 9.98601 3 800 9.41161 52 0.58839 760 32 29 25010 9.39811 49 822 9.98597 4 3 831 9.41214 53 52 0.58786 714 31 30 30 25038 9-39860 96815 9-98594 25862 9.41266 0.58734 3.8667 31 066 9.39909 49 807 9.98591 3 893 9.41318 52 0.58682 621 29 32 094 9-39958 49 48 800 9.98588 3 924 9.41370 52 0.58630 575 28 33 122 9.40006 793 9-98584 4 955 9-41422 52 0.58578 528 27 34 151 9.40055 49 48 49 48 786 9.98581 3 3 986 9.41474 52 52 52 51 0.58526 482 0.58474 3-8436 26 26 35 25179 9.40x03 96778 9-98578 26017 9.41526 3^ 207 9.40152 77^ 9-98574 4 048 9.41578 0.58422 391 24 37 235 9.40200 764 9.98571 3 079 9.41629 0.58371 345 23 3« 263 9.40249 48 49 48 48 48 48 48 48 47 48 48 756 9-98568 3 no 9.41681 52 0.58319 299 22 39 40 291 9.40297 749 9-98565 3 4 141 9.41733 52 51 52 51 52 51 51 52 51 51 51 51 51 51 51 51 % 50 51 51 50 0.58267 254 21 25320 9-40346 96742 9.98561 26172 941784 0.58216 3.8208 20 41 348 9.40394 734 9-98558 3 203 941836 0.58164 163 19 42 376 9.40442 727 9-98555 3 235 941887 O.58113 118 18 43 404 9.40490 719 9-98551 4 266 9.41939 0.58061 073 17 44 432 9.40538 712 9.98548 3 3 297 9-41990 0.58010 028 lb 45 25460 9.40586 96705 9.98545 26328 9.42041 0-57959 3-7983 16 46 488 9.40634 697 9-98541 4 359 9-42093 0-57907 938 14 47 516 9.40682 690 9.98538 3 390 942144 0.57856 893 13 48 545 9-40730 682 9.98535 3 421 9.42195 0.57805 848 12 49 573 9-40778 675 9-98531 4 3 452 942246 0-57754 804 II To 50 25601 9.40825 96667 9.98528 26483 9.42297 0-57703 3-7760 SI 629 9.40873 660 9.98525 3 515 9.42348 0.57652 715 9 52 657 9-40921 653 9-98521 546 9-42399 0.57601 671 8 53 685 9.40968 48 47 48 645 9-98518 3 577 9-42450 0-57550 627 7 54 55~ 713 9.41016 638 9-98515 3 4' 608 9.42501 0.57499 583 b 25741 9.41063 96630 9.98511 26639 9-42552 0-57448 3-7539 5 5^ 769 941111 623 9.98508 3 670 9.42603 0.57397 495 4 57 798 9-4"58 615 9.98505 3 701 9-42653 0.57347 451 3 5« 826 9.41205 47 608 9.98501 4 733 9-42704 0.57296 408 2 18 854 9.41252 48 600 9.98498 3 764 9.42755 0-57245 364 1 882 9.41300 593 998494 4 795 942805 0.5719S 321 U Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log. Tan Nat. t w 15: Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d.lLog.CotNat 25882 910 938 966 994 941300 941347 941394 9.41441 9.41488 26022 050 079 107 135 941535 941582 941628 9.41675 941722 26163 191 219 247 275 9.41768 941815 941861 9.41908 941954 26303 331 359 387 415 9.42001 9.42047 9.42093 942140 942186 26443 471 500 528 556 942232 942278 942324 942370 942416 26584 612 640 668 696 942461 942507 942553 9.42599 9.42644 26724 752 780 808 836 942690 9.42735 9.42781 9.42826 942872 26864 892 920 948 976 942917 9.42962 943008 9.43053 943098 27004 032 060 088 116 943143 9.43188 943233 9.43278 943323 27144 172 200 228 2c;6 943367 943412 943457 943502 943546 27284 312 340 368 396 943591 943635 943680 9.43724 943769 27424 452 480 508 536 564 9-43813 943857 9.43901 943946 943990 944034 96593 585 578 570 562 9.98494 9.98491 9.98488 9.98484 9.98481 96555 547 540 532 524 9.98477 9.98474 9.98471 9.98467 9.98464 96517 509 502 494 486 9.98460 998457 9-984$3 9.98450 9.98447 96479 471 463 456 448 998443 9.98440 9.98436 9.98433 9.98429 96440 433 425 417 410 9^98426 9.98422 9.98419 9.98415 9.98412 96402 394 386 379 371 9.98409 9.98405 9.98402 9.98398 9.98395 96363 355 347 340 332 9.98391 998388 9.98384 9.98381 9.98377 96324 316 308 301 293 9.98373 9.98370 9.98366 998363 9.98359 96285 277 269 261 253 9.98356 998352 9.98349 9.98345 9.98342 96246 238 230 222 214 9.98338 9.98334 9-98331 9.98327 9.98324 96206 198 190 182 174 9.98320 9.98317 9.98313 9.98309 9.98306 96166 158 150 142 134 126 9.98302 9.98299 9.98295 9.98291 9.98288 9.98284 26795 826 857 888 920 9.42805 942856 942906 9.42957 9.43007 26951 943057 982 9.43108 27013 943158 044 9.43208 076 9.43258 27107 943308 138 9.43358 169 943408 201 943458 232 943508 27263 9.43558 294 9.43607 326 943657 357 943707 388 943756 27419 9.43806 451 9.43855 482 9.43905 513 943954 545 9.44004 27576 944053 607 9.44102 638 9.44151 670 944201 701 9.44250 27732 9.44299 764 944348 795 944397 826 9.44446 858 944495 27889 944544 921 9.44592 952 944641 983 9.44690 28015 944738 28046 9.44787 077 944836 109 9.44884 140 9.44933 172 9.44981 28203 9.45029 234 9.45078 266 9.45126 297 945174 329 9.45222 28360 945271 391 9.45319 423 945367 454 9.45415 486 945463 28517 549 580 612 643 675 9455" 9.45559 9.45606 9.45654 945702 945750 0.57195 0.57144 0.57094 0.57043 0.56993 3-7321 277 234 191 148 0.56943 0.56892 0.56842 0.56792 0.56742 3.7105 062 019 3.6976 933 0.56692 0.56642 0.56592 0.56542 0.56492 3.6891 848 806 764 722 0.56442 0.56393 0.56343 0.56293 0.56244 3.6680 638 596 554 512 0.56194 0.5614$ 0.56095 0.56046 0.55996 3.6470 429 387 346 30s 0.55947 0.55898 0.55849 0.55799 0-55750 3.6264 222 181 140 100 0.55701 0.55652 0.55603 0.55554 0.55505 3.6059 018 3-5978 937 897 0.55456 0.55408 0-55359 0.55310 0.55262 3.5856 816 776 736 696 0.55213 0.55164 0.551 16 0.55067 0.55019 3.5656 616 576 536 497 0.54971 0.54922 0.54874 0.54826 0.54778 3-5457 418 379 339 300 0.54729 0.54681 0.54633 0.54585 0.54537 3.5261 222 183 144 105 0.54489 0.54441 0.54394 0.54346 0.54298 0.54250 3-5067 028 3.4989 951 912 874 Nat. Cos Log. d. Nat. Sin Log. d. Nat.Cot Log. c.d. Log.TanNat 74' 16 ' ' Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d Log. Cot Nat, 27564 592 620 648 676 9.44034 9.44078 9.44122 9.44166 9.44210 27704 731 759 787 815 9.44253 9.44297 9-44341 944385 9.44428 27843 871 899 927 955 9.44472 9.44516 9-44559 9.44602 9.44646 27983 2801 1 039 067 095 9.44689 9-44733 9.44776 9.44819 9.44862 28123 150 178 206 234 9.44905 9.44948 9.44992 945035 9-45077 28262 290 318 346 374 9.45120 9-45163 9.45206 9.45249 9.45292 28402 429 457 485 513 9-45334 9-45377 9-45419 945462 9-45504 28541 569 597 625 652 9-45547 9-45589 9-45632 9-45674 9-45716 28680 708 736 764 792 9-45758 9-45801 9-45843 9-45885 9-45927 847 875 903 931 9.45969 9.4601 1 9-46053 9-46095 9.46136 28959 987 29015 042 070 9.46178 9.46220 9.46262 9-46303 9-46345 29098 126 154 182 209 237 9.46386 9.46428 9.46469 9-46511 9-46552 9-46594 96126 118 no 102 094 9.98284 9.98281 9-98277 9.98273 9.98270 96086 078 070 062 054 9.98266 9.98262 9-98259 9-98255 9.98251 96046 037 029 021 013 9.98248 9.98244 9.98240 9.98237 9-98233 96005 95997 989 981 972 9.98229 9.98226 9.98222 9.98218 9.98215 95964 956 948 940 931 9.9821 1 9.98207 9.98204 9.98200 9.98196 95923 915 907 898 890 9.98192 9.98189 9.98185 9.98181 9.98177 95882 874 865 857 9.98174 9.98170 9.98166 9.98162 9.98159 95841 832 824 816 807 9-98155 9.98151 9.98147 9.98144 9.98140 95799 791 782 774 766 9-98136 9.98132 9.98129 9.98125 9.98121 95757 749 740 732 724 9.981 17 9-98113 9.981 10 9.98106 9.98102 95715 707 698 690 681 9.98098 9.98094 9.98090 9.98087 9-98083 95673 664 656 647 639 630 9.98079 9-98075 9.98071 9.98067 9-98063 9.98060 28675 706 738 769 801 9-45750 9-45797 9-45845 9.45892 9-45940 28832 864 895 927 958 9-45987 9-46035 9.46082 9.46130 9.46177 28990 29021 053 084 116 9.46224 9.46271 9.46319 9-46366 9.46413 29147 179 210 242 274 9.46460 9-46507 9-46554 9.46601 9.46648 29305 337 368 400 432 •9.46694 9.46741 946788 9-46835 9.46881 29463 495 526 558 590 9.46928 9-46975 9.47021 9.47068 9.47114 29621 653 685 716 748 9.47160 9.47207 9-47253 9.47299 9-47346 29780 811 843 875 906 9-47392 9-47438 9-47484 9-47530 9-47576 29938 970 30001 033 065 9.47622 9.47668 9.47714 9-47760 9.47806 30097 128 160 192 224 947852 9-47897 9-47943 947989 9-48035 30255 287 319 351 382 9.48080 9.48126 9.48171 9.48217 9.48262 30414 446 478 509 541 573 9.48307 9-48353 9.48398 9-48443 9.48489 948534 0.54250 0.54203 0.54155 0.54108 0.54060 3-4874 836 798 760 722 0.54013 0-53965 0.53918 0.53870 0.53823 3.4684 646 608 570 533 0.53776 0.53729 0.53681 0-53634 0-53587 3-4495 458 420 383 346 0.53540 0.53493 0.53446 0.53399 0.53352 3-4308 271 234 197 160 0.53306 0.53259 0.53212 0.53165 0.53119 3.4124 087 050 014 3.3977 0.53072 0.53025 0.52979 0.52932 0.52886 3-3941 904 868 832 796 0.52840 0-52793 0-52747 0.52701 0.52654 3-3759 723 687 652 616 0.52608 0.52562 0.52516 0.52470 0.52424 3-3580 544 509 473 438 0.52378 0.52332 0.52286 0.52240 0-52194 3-3402 367 332 297 261 0.52148 0.52103 0.52057 0.5201 1 0.51965 3-3226 191 156 122 087 0.51920 0.51874 0.51829 0.51783 0.51738 3-3052 017 3-2983 948 914 0.51693 0.51647 0.51602 0-51557 0.51466 3-2879 845 811 m 743 709 Nat. Cos Log. d. Nat. Sin Log. d. 73^ Nat. Cot Log c.d. Log. Tan Nat 17° Nat. Sin Log. d. Nat. Cos Log. d. Nat.TailLog. c.d.lLog. Cot Nat. 29237 265 293 321 348 9.46594 946635 9.46676 9.46717 9.46758 29376 404 432 460 487 9.46800 946841 946882 9.46923 9.46964 10 ' 29515 543 571 599 626 9.4700$ 947045 9.47086 947127 9.47168 29654 682 710 737 765 9.47209 9.47249 9.47290 947330 947371 29793 821 849 876 904 9.4741 1 947452 9.47492 947533 947573 29932 960 987 30015 043 947613 947654 9.47694 947734 9.47774 30071 098 126 154 182 9.47814 947854 9.47894 947934 947974 30209 237 265 292 320 948014 9.48054 9.48094 948133 9.48173 30348 376 403 431 459 30486 514 542 570 597 9.48213 948252 9.48292 948332 948371 94841 1 9.48450 9.48490 9.48529 9.48568 30625 653 680 708 736 9.48607 9.48647 9.48686 9.48725 9.48764 30763 791 819 846 874 902 948803 9.48842 948881 9.48920 9.48959 9.48998 95630 622 613 605 596 9.98060 9.98056 9.98052 9.98048 9.98044 95588 579 571 562 554 9.98040 9.98036 9.98032 9.98029 9.98025 95545 536 528 519 5" 9.98021 9.98017 9.98013 9.98009 9-98005 95502 493 485 476 467 9.98001 9-97997 9-97993 9.97989 9-97986 95459 450 441 433 424 9.97982 9.97978 9-97974 9.97970 9.97966 95415 407 398 389 380 9.97962 9-97958 9-97954 9-97950 9-97946 95372 363 354 345 337 9-97942 997938 9-97934 9-97930 9-97926 95328 319 310 301 293 9.97922 9.97918 9.97914 9.97910 9-97906 95284 275 266 257 248 9.97902 9.97898 9.97894 9.97890 9.97886 95240 231 222 213 204 9.97882 9-97878 9.97874 9-97870 997866 95195 186 177 168 159 9.97861 997857 9-97853 9-97849 9-97845 95150 142 133 124 "5 106 9.97841 9-97837 9-97833 9-97829 9.97825 9.97821 30573 605 637 669 700 9-48534 948579 9.48624 9.48669 9.48714 30732 9-48759 764 9-48804 796 948849 828 9.48894 860 9.48939 30891 948984 923 9.49029 955 9-49073 987 9491 18 31019 9.49163 31051 9.49207 083 949252 "5 9.49296 147 9-49341 178 9-49385 31210 9-49430 242 9-49474 274 9-49519 306 949563 338 949607 31.370 9-49652 402 949696 434 9-49740 466 9.49784 498 9.49828 31530 9.49872 562 9.49916 594 949960 626 9.50004 658 9.50048 31690 9.50092 722 9-50136 754 9.50180 786 9.50223 818 9.50267 31850 9.5031 1 882 9-50355 914 9-50398 946 9.50442 978 9-50485 32010 9.50529 042 9-50572 074 9.50616 106 9-50659 139 950703 32171 9-50746 203 9.50789 235 950833 267 9.50876 299 9.50919 32331 363 396 428 460 492 9-50962 9.51005 9.51048 9.51092 9.5II35 9.51 178 0.51466 0.5I42I 0-51376 0-5I33I 0.51286 3-2709 675 641 607 573 0.51241 0.51 196 0.51151 0.51106 0.51061 3-2539 506 472 438 405 0.51016 0.50971 0.50927 0.50882 0.50837 3-2371 338 305 272 238 0-50793 0-50748 0.50704 0.50659 0.50615 3-2205 172 139 106 073 0.50570 0.50526 0.50481 0-50437 0.50393 3-2041 008 3-1975 943 910 0.50348 0.50304 0.50260 0.50216 0.50172 3-1878 845 813 780 748 0.50128 0.50084 0.50040 0.49996 049952 3.1716 684 652 620 0.49908 0.49864 0.49820 049777 049733 3-1556 524 492 460 429 049689 0.49645 0.49602 0.49558 0.49515 3-1397 366 334 303 271 0.49471 0.49428 0.49384 0.49341 049297 3.1240 209 178 146 "5 0-49254 0.4921 1 0.49167 0.49124 0.49081 3.1084 053 022 3.0991 961 0.49038 04899S 0.48952 0.48908 0.48865 048822 3.0930 899 868 838 807 m Nat. Cos Log. d. Nat. Sin L og, d. |Nat. Cot Log, c.d. Log.TanN at. 72" 18 D r Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 30902 9.48998 39 39 39- 38 39 39 38 39 95106 9.97821 4 5 32492 9.5II78 43 0.48822 3.0777 60 I 929 9.49037 097 9.97817 524 9,51221 0.48779 746 59 2 957 949076 088 9.97812 556 9.51264 43 0.48736 716 58 3 985 9.49115 079 9.97808 4 4 4 588 9.51306 42 43 43 0.48694 686 57 4 5 31012 9.49153 070 9.97804 621 9.51349 0.48651 655 56 55 31040 9.49192 95061 9,97800 32653 9.51392 0.48608 3.0625 6 068 9.49231 052 9-97796 4 685 9.51435 43 0.48565 595 .54 7 095 9.49269 043 9-97792 717 9.51478 0.48522 565 53 8 033 9-97788 . 749 9.51520 0.48480 535 52 9 151 949347 38 38 024 9.97784 5 4 4 4 782 9.51563 43 42 43 43 0.48437 505 51 50 10 3 1 178 949385 95015 9-97779 32814 9.51606 0.48394 3.0475 II 206 9.49424 006 9.97775 846 9.51648 0.48352 445 49 12 233 949462 94997 9-97771 878 9.51691 0.483O9 415 48 13 261 9.49500 988 9-97767 911 9.51734 0.48266 385 47 14 289 9.49539 39 38 38 39 38 38 38 38 38 38 38 38 38 3? 38 38 38 979 9-97763 4 4 5 4 4 4 4 4 5 943 9.51776 43 42 42 43 42 43 42 42 0.48224 356 4b 45 16 31316 9.49577 94970 9.97759 32975 9.51819 0.48181 3.0326 lb 344 949615 961 9-977$4 33007 9.51861 0.48139 296 44 17 372 9.49654 952 997750 040 9.51903 0.48097 267 43 lb 399 949692 943 9-97746 072 9.51946 0.48054 237 42 19 20 427 949730 31454 949768 933 9-97742 104 9.51988 0.48012 208 41 40 94924 9.97738 33136 9.52031 0.47969 3.0178 21 482 9.49806 915 9-97734 169 9.52073 0.47927 149 39 22 510 9.49844 906 9.97729 201 9.52115 0,47885 120 38 23 537 949882 897 9.97725 233 9.52157 43 42 42 42 42 42 42 0.47843 090 37 24 565 9.49920 888 9.97721 4 266 9.52200 0.47800 061 3^ 35 25 31593 949958 94878 9-97717 33298 9..52242 0.47758 3.0032 2b 620 9.49996 869 9.97713 4 5 4 4 4 5 0.47716 003 34 27 648 9.50034 860 9.97708 363 9.52326 0.47674 2.9974 33 28 675 9.50072 851 9.97704 395 9.52368 047632 945 32 29 703 9.501 10 842 9.97700 427 9.52410 0.47590 916 31 30 30 31730 9.50148 94832 9.97696 33460 9.52452 0.47548 2.9887 31 758 9-50185 38 823 9-97691 492 9.52494 42 42 0.47506 858 29 32 786 9.50223 814 9-97687 524 9.52536 0.47464 829 28 33 813 9.50261 805 9.97683 4 557 9.52578 0.47422 800 27 34 35 841 9.50298 37 38 38 37 38 795 997679 5 589 9,52620 41 42 42 42 42 41 42 41 42 0.47380 772 2b 25 31868 9.50336 94786 9.97674 33621 9.52661 0.47339 2.9743 36 896 9-50374 777 997670 4 654 9.52703 0.47297 714 24 37 923 9-50411 768 9.97666 686 9.52745 0.47255 686 23 3H 951 9-50449 758 9-97662 5 4 718 9.52787 0.47213 657 22 39 40 979 9-50486 37 37 38 749 9-97657 751 9.52829 0.47171 629 21 20 32006 9.50523 94740 9-97653 33783 9.52870 0.47130 2,9600 41 034 9-50561 730 9.97649 816 9,52912 0.47088 572 19 42 061 9.50598 37 721 9.97645 4 5 848 9.52953 0.47047 544 i8 43 089 9.50635 ^8 37 37 712 9.97640 881 9.52995 o.470og 515 17 44 116 9-50673 702 9.97636 4 4 4 5 4 913 9.53037 4- 41 42 41 41 0.46963 487 lb 15 45 32144 9.50710 94693 9.97632 33945 9.53078 0.46922 2,9459 4b 171 9-50747 684 9.97628 978 9.53120 0.46880 431 14 47 199 9-50784 37 37 674 9.97623 34010 9.53161 0.46839 403 13 48 227 9.50821 665 9.97619 043 9.53202 0.46798 375 12 49 50 254 9-50858 37 38 656 9.97615 5 4 4 5 4 4 5 4 075 9.53244 41 42 41 41 41 42 41 0.46756 347 II 32282 9.50896 94646 9.97610 34108 9.53285 0.46715 2.9319 10 51 309 9-50933 637 9.97606 140 9.53327 0.46673 291 9 52 337 9-50970 37 % 37 627 9,97602 173 9-53368 0.46632 263 8 53 364 9.51007 618 9.97597 205 9.53409 0.46591 23s 7 54 55 392 9.51043 609 9.97593 238 9.53450 0.46550 208 6 5 32419 9.51080 94599 9.97589 34270 9.53492 0.46508 2.9180 5b 447 9.51117 37 590 9.97584 303 9.53533 0.46467 152 4 57 474 9-5"54 37 580 9,97580 41 41 0.46426 125 3 5« 502 9.51191 'i 571 9.97576 4 5 368 9.53615 0.46385 097 2 ^0 529 9.51227 561 9.97571 400 9.53656 0.46344 070 I 557 9.51264 37 552 9.97567 4 433 9.53697 0.46303 042 Nat.CoSLog. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.Tan Nat. r n 19' Nat. Sin Log. d. Nat. Cos Log. d Nat.TanLog. c.d. Log. Cot Nat. 32557 584 612 639 667 9.51264 9-51301 9-51338 9-51374 32694 722 749 777 804 9-51447 9.51484 9.51520 9-51557 9-51593 32832 859 887 914 942 9.51629 9.51666 9.51702 9.51738 9-51774 32969 997 33024 051 079 9.51811 9.51847 9-51883 9.51919 9-51955 33106 134 161 189 216 9.51991 9.52027 9.52063 9.52099 9-52135 25 26 27 28 30 31 32 33 34 33244 271 298 326 __J53_ 33381 408 436 463 490 9.52171 9.52207 9.52242 9.52278 9-52314 9-52350 9-52385 9-52421 952456 9-52492 33518 545 573 600 627 9-52527 9-52563 9-52598 9-52634 9-52669 33655 682 710 737 764 9-52705 9.52740 9-52775 9.5281 1 9.52846 33792 819 846 874 901 9.52881 9.52916 9-52951 9.52986 9.53021 33929 956 983 3401 1 038 953056 9-53092 9.53126 9-53161 9-53196 34065 093 120 147 175 202 9-53231 9.53266 9-53301 9-53336 9-5337? 9-53405 94552 542 533 523 514 9-97567 9-97563 9.97558 9.97554 9.97550 94504 495 485 476 466 9-97545 9-97541 9.97536 9.97532 9.97528 94457 447 438 428 418 9.97523 9.97519 9-97515 9.97510 9.97506 94409 399 390 380 370 9.97501 9.97497 9.97492 9.97488 9.97484 94361 351 342 332 322 9-97479 9-97475 9.97470 9.97466 9.97461 94313 303 293 284 274 9.97457 9.97453 9.97448 9.97444 9-97439 94264 254 245 235 225 9-97435 9-97430 9-97426 9.97421 9.97417 94215 206 196 186 176 9.97412 9.97408 9-97403 9-97399 9-97394 94167 157 147 137 127 9-97390 997385 9.97381 9.97376 9-97372 941 18 108 098 088 078 9-97367 9.97363 9.97358 9.973.53 9.97349 94068 058 049 039 029 9.97344 9.97340 9.97335 9.97331 9.97326 94019 009 93999 989 979 969 9.97322 9.97317 9.97312 9.97308 9-97303 9-97299 34433 465 498 530 563 9.53697 9.53738 9.53779 9.53820 9.53861 34596 628 661 693 726 9.53902 9-53943 9.53984 954025 9.54065 34758 791 824 8^6 9.54106 9-54147 9.54187 9.54228 9.54269 34922 954 987 35020 052 9.54309 9.54350 9-54390 9-54431 9.54471 35085 118 150 183 216 9.54512 9.54552 9.54593 9.54633 9.54673 35248 281 314 346 379 9.54714 9.54754 9.54794 9.54835 9-54875 35412 445 477 510 543 9-5491$ 9-54955 9.5499$ 9.5503$ 9.55075 35576 608 641 674 707 955"$ 9-5515$ 9-5519$ 9.5523$ 9.55275 35740 772 805 838 871 9-55315 9-55355 9-55395 9-55434 9.55474 35904 937 969 36002 035 9.55514 9.55554 9.55593 955633 9.55673 36068 lOI 134 167 199 9-55712 9.55752 9.55791 9.55831 9.55870 36232 265 298 331 364 397 9.55910 9.55949 9.55989 9.56028 9.56067 9.56107 0.46303 046262 0.46221 0.46180 046139 2.9042 015 2.8987 960 933 046098 046057 0.46016 045975 045935 2.8905 878 851 824 797 045894 045853 0.45813 0.45772 0-45731 2.8770 743 716 689 662 0.45691 0.45650 0.45610 045569 0.45529 2.8636 609 582 556 529 0.45488 0.45448 0.45407 o.4$367 045327 2.8502 476 449 423 397 0.45286 0.45246 045206 045165 0.45125 2.8370 344 318 291 265 045085 045045 045005 0.44965 044925 2.8239 213 187 161 135 044885 0.44845 0.44805 0.44765 0.44725 2.8109 083 057 032 006 0.44685 044645 0.44605 0.44566 044526 2.7980 955 929 903 878 0.44486 044446 0.44407 0.44367 044327 2.7852 827 801 776 751 0.44288 0.44248 0.44209 044169 0.44130 2.7725 700 675 650 625 0.44090 044051 04401 1 043972 043933 0.43893 2.7600 575 550 525 500 475 Nat. Cos Log. d. Nat. Sin Log. d. 70^ Nat. Cot Log. c.d. Log. Tan Nat. Nat. Sin Log. d. 20^ Nat. Cos Log. d. Nat. ;.TanLog. c.d. Log. Cot Nat 34202 229 257 284 3" 9-53405 9-53440 9-53475 953509 9-53544 34339 366 393 421 448 9-53578 9-53613 9-53647 9.53682 9-53716 34475 503 530 557 584 9-53751 9-53785 9.53819 953854 9-53888 34612- 639 666 694 721 9-53922 9-53957 9-53991 9-54025 9-54059 34748 775 803 830 857 9-54093 9.54127 9.54161 9-54195 9-54229 34884 912 939 966 993 9-54263 9-54297 9-54335 9-54365 9-54399 35021 048 075 102 130 9-54433 9-54466 9-54500 9-54534 9-54567 35157 184 211 239 266 9-54601 9-54635 9-54668 9-54702 9-54735 35293 320 347 375 402 9-54769 9.54802 9-54836 9-54869 9-54903 35429 456 484 511 538 9-54936 9-54969 955003 9-55036 9-55069 35565 592 619 647 674 9-55102 9-55136 9-55169 9-55202 9-55235 36701 728 755 782 810 837 9.55268 9-55301 9-55334 9-55367 9-55400 9-55433 93969 959 949 939 929 9-97299 9-97294 9-97289 9-97285 9.97280 93919 909 899 889 879 9.97276 9.97271 9.97266 9.97262 9-97257 93869 859 849 839 829 9.97252 9-97248 9-97243 9.97238 9-97234 93819 809 799 789 779 9-97229 9-97224 9.97220 9-97215 9.97210 93769 759 748 738 728 9.97206 9.97201 9.97196 9.97192 9.97187 93718 708 698 688 677 9.97182 9.97178 9-97173 9.97168 9-97163 93667 657 647 637 626 9-97159 9-97154 9.97149 9-97145 9.97140 93616 606 596 585 575 9-97135 9.97130 9.97126 9.97121 9.971 16 93565 555 544 534 524 9.97111 9.97107 9.97102 9-97097 9-97092 93514 503 493 483 472 9-97087 9-97083 9.97078 9-97073 9.97068 93462 452 441 431 420 9-97063 9-97059 9-97054 9.97049 997044 93410 400 389 379 368 358 9-97039 9-9703S 9.97030 9.9702g 9.97020 9.97015 36397 430 463 496 529 9.56107 9.56146 9.56185 9-56224 9-56264 36562 595 628 661 694 9-56303 9-56342 9-56381 9.56420 9-56459 36727 760 793 826 859 9-56498 9-56537 9-56576 9-56615 9-56654 36892 925 958 991 37024 9-56693 9-56732 9.56771 9.56810 9-56849 37057 090 123 157 190 9-56887 9.56926 9-56965 9-57004 9-57042 37223 256 289 322 355 9.57081 9.57120 9.57158 9.57197 9-57235 37388 422 455 488 521 9-57274 9-57312 9-57351 9-57389 9.57428 37554 588 621 654 687 9-57466 9-57504 9-57543 9-57581 9-57619 37720 754 787 820 853 9-57658 9-57696 9-57734 9-57772 9.57810 37887 920 953 986 38020 9-57849 9.57887 9-57925 957963 9.58001 38053 086 120 153 186 9-58039 9-58077 9-58115 9.58153 9-58191 38220 253 286 320 353 386 9-58229 9.58267 9.58304 9-58342 9.58380 9.58418 Nat. Cos Log. d. Nat. Sin Log, d. |Nat. Cot Log 0.43893 0.43854 0.43815 0.43776 0.43736 2.7475 450 425 400 376 0.43697 0.43658 0.43619 0.43580 0.43541 2.7351 326 302 277 253 0.43502 0.43463 0.43424 0.43385 043346 2.7228 204 179 155 130 0.43307 0.43268 0.43229 0.43190 0.43151 2.7106 082 058 034 009 0.43113 0.4307-^ 0.43035 0.42996 0.42958 2.6985 961 937 913 0.42919 042880 0.42842 0.42803 0.42765 2.6865 841 818 794 770 0.42726 0.42688 0.42649 0.4261 1 0.42572 2.6746 723 699 675 652 0.42534 0.42496 042457 042419 0.42381 2.6628 605 581 558 534 0.42342 0.42304 0.42266 0.42228 0.42190 2.651 1 488 464 441 418 0.42151 0.42113 0.42075 0.42037 041999 2.6395 371 348 325 302 0.41961 0.41923 0.41885 0.41847 0.41809 2.6279 256 233 210 187 041771 041733 0.41696 041658 0.41620 041582 2.6165 142 119 096 074 051 c.d.|Log.TanNat. ' 69 Nat. Sin Log. d. 2r Nat. Cos Log. d. Nat.TanLog. c.d, Log. Cot Nat, 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 35837 864 891 918 945 9-55433 9-55466 9-55499 9-55532 955564 35973 36000 027 054 081 36108 135 162 190 217 33 33 33 32 9-55597 00 9-55630 i ti 9-55663 ' ti 9-55695 00 9-55728 f 9.55761 f 9-55793 L 9-55826 1 33 9.55858 ! 3^ 9-55891 i ^g 36244 271 298 325 352 36379 406 434 461 36515 542 569 596 623 9-55923 00 9-55956 a 9-55988 32 9.56021 ^^ 9-56053 3 9-56085 3 9-56118 33 9-56150 3 9.56182 32 9.56215 2 36650 677 704 731 758 956247 I2 9-56279 ^2 9.563" ^ 956343 9-56375 36785 812 839 867 894 36921 948 975 37002 029 32 32 32 33 32 32 32 32 9-56568 II 9-56599 3 9.56631 i 3 9.56663 3 956695 i II 9.56408 9.56440 9.56472 9.56504 9.56536 37056 083 no 137 164 9.56727 L 9.56759 i 3^ 9.56790 1 3 9.56822 1 II 9.56854 ! II 37191 218 245 272 299 9.56886 3 9.56917 3J 9.56949 3 9.56980 II 9.57012 37326 353 380 407 434 461 9.57044 9.57075 9.57107 9-57138 9-57169 9-57201 9-57232 9-57264 _j 9-57295 3; 9-57326 3^ 9.57358 3^ 93358 348 337 327 316 9.97015 9.97010 9.97005 9.97001 9.96996 93306 9-96991 1 295 9.96986 285 9.96981 274 9.96976 264 9.96971 1 93253 9.96966 243 9.96962 232 996957 222 9.96952 211 9-96947 93201 9.96942 190 996937 180 9.96932 169 9.96927 ! 159 9.96922 93148 9.96917 137 9.96912 127 9.96907 116 9-96903 106 9.96898 93095 l'& 084 074 9.96883 063 9.96878 052 9.96873 93042 9.96868 031 9-96863 020 9-96858 010 9-96853 92999 9.96848 92988 9.96843 978 9.96838 967 9.96833 956 9.96828 945 9.96823 92935 9.96818 924 9-96813 913 9.96808 902 9-96803 892 9.96798 92881 9.96793 870 9.96788 859 9.96783 849 9.96778 838 9-96772 92827 9-96767 816 9.96762 805 9-96757 794 9.96752 784 9-96747 92773 762 751 740 729 718 9.96742 9.96737 9.96732 9.96727 9.96722 9.96717 38386 420 453 487 520 9.58418 9.58455 9.58493 9.58531 9.58569 38553 9.58606 587 9.58644 620 9.58681 654 9-58719 687 9.58757 38721 9.58794 754 9.58832 787 9.58869 821 9-58907 854 9-58944 38888 9.58981 921 9.59019 955 9.59056 988 9-59094 39022 9.59131 39055 9-59168 089 9.59205 122 9-59243 156 9.59280 igo 9-59317 39223 9-59354 257 9-59391 290 9.59429 324 9-59466 357 9-59503 39391 9-59540 425 9-59577 458 9.59614 492 9-59651 526 9.5088 39559 9-59725 593 9.59762 626 9-59799 660 9.59835 694 9-59872 39727 9.59909 761 9.59946 795 9.59983 829 9.60019 862 9.60056 39896 9.60093 930 9.60130 963 9.60166 997 9.60203 40031 9.60240 40065 9.60276 098 9.60313 132 9-60349 166 9.60386 200 9.60422 40234 267 301 335 369 403 9-60459 9.60495 9-60532 9.60568 9.60605 9.60641 0.41582 0.41545 0.41507 0.41469 0.41431 2.6051 028 006 2.5983 961 0.41394 0.41356 0.41319 0.41281 0-41243 2.5938 916 893 871 0.41206 0.41 168 0.41131 0.41093 0.41056 2.5826 804 782 759 737 0.41019 0.40981 0.40944 0.40906 0.40869 2.5715 693 671 649 627 0.40832 0-40795 0.40757 0.40720 0.40683 2.5605 583 561 539 517 0.40646 0.40609 040571 040534 040497 2.5495 473 452 430 408 040460 0.40423 0.40386 0.40349 040312 2.5386 365 343 322 300 0.40275 040238 040201 0.40165 0.40128 2.5279 257 236 214 193 0.40091 0.40054 0.40017 0.39981 0.39944 2.5172 150 129 108 086 0.39907 0.39870 0.39834 0.39797 0.39760 2.5065 044 023 002 2.4981 0.39724 0.39687 0.39651 0.39614 0.39578 2.4960 939 918 897 876 0.39541 O.3950S 0.39468 0.39432 0.39395 0.39359 24855 834 813 792 772 751 Nat. Cot Log. c.d. Log.Tan Nat Nat.CoSLog. d. Nat. Sin Log. d. 68^ 22° ' Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat 37461 488 515 542 569 9-57358 9-57389 9.57420 9-57451 9-57482 37595 622 649 676 703 9-57514 9.57545 9-57576 9-57607 9-57638 37730 757 784 811 838 9-57669 9.57700 9-57731 9.57762 9-57793 37865 892 919 946 973 9.57824 9-57855 9-57885 9.57916 9-57947 37999 38026 053 080 107 9-57978 9.58008 9.58039 9-58070 9.58101 38134 161 188 215 241 9-58131 9.58162 9.58192 9.58223 9-58253 38268 295 322 349 376 9-58284 9-58314 9-58345 958375 9-58406 38403 430 456 483 510 9.58436 9.58467 9.58497 9.58527 9.58557 38537 564 591 617 644 9.58588 9.58618 9.58648 9.58678 9.58709 38671 698 725 752 778 9.58739 9.58769 9-58799 9.58829 9-58859 38805 832 859 886 912 9.58889 9.58919 9.58949 9.58979 9.59009 38939 966 993 39020 046 073 9.59039 9.59069 9.59098 9.59128 9-59158 9.59188 92718 707 697 686 675 9.96717 9.96711 9.96706 9.96701 9.96696 92664 653 642 631 620 9.96691 9.96686 9.96681 9.96676 9.96670 92609 598 587 576 565 9.96665 9.96660 9.96655 9.96650 9.96645 92554 543 532 521 510 9.96640 9.96634 9.96629 9.96624 9.96619 92499 488 477 466 455 9.96614 9.96608 9.96603 9.96598 996593 92444 432 421 410 399 9.96588 9.96582 9.96577 9.96572 9.96567 92388 377 366 355 343 9.96562 9.96556 9.96551 9.96546 9.96541 92332 321 310 299 287 9-96535 9.96530 9-96525 9.96520 9.96514 92276 265 254 243 231 9-96509 9-96504 9.96498 9-96493 9.96488 92220 209 198 186 175 9.96483 9.96477 9.96472 9.96467 9.96461 92164 152 141 130 119 9.96456 9.96451 9.96445 9.96440 9.96435 92107 096 085 073 062 050 9.96429 9.96424 9.96419 9.96413 9.96408 9.96403 40403 436 470 504 538 9.60641 9.60677 9.60714 9.60750 9.60786 40572 9.60823 606 9.60859 640 9.60895 674 9.60931 707 9.60967 40741 9.61004 775 9.61040 809 9.61076 843 9.61112 877 9.61148 409H 9.61184 945 9.61220 979 9.61256 41013 9.61292 047 9.61328 4108 1 9.61364 "5 9.61400 149 9.61436 183 9.61472 217 9.61508 41251 9.61544 285 9.61579 319 9.61615 9.61651 9.61687 41421 9.61722 455 9.61758 490 9.61794 524 9.61830 558 9.61865 41592 9.61901 9.61936 660 9.61972 694 9.62008 728 9.62043 41763 9.62079 797 9.62114 831 9.62150 865 9.62185 899 9.62221 41933 9.62256 968 9.62292 42002 9-62327 036 9.62362 070 9-62398 42105 9-62433 139 9.62468 173 9.62504 207 9-62539 242 9-62574 42276 310 345 379 413 447 9.62609 9-62645 9.62680 9.62715 9.62750 9.62785 0.39359 0.39323 0.39286 0.39250 0.39214 2.4751 730 709 689 668 0.39177 0.39141 0.39105 0.39069 0.39033 2.4648 627 606 586 566 0.38996 0.38960 0.38924 0.38888 0.38852 2.4545 525 504 484 464 0.38816 0.38780 0.38744 0.38708 0.38672 2.4443 423 403 383 362 0.38636 0.38600 0.38564 0.38528 0.38492 2.4342 322 302 282 262 0.38456 0.38421 0.3838.5 0.38349 0.38313 2.4242 222 202 182 162 0.38278 0.38242 0.38206 0.38170 0.38135 2.4142 122 102 083 063 0.38099 0.38064 0.38028 0.37992 0.37957 2.4043 023 004 2.3984 964 0.37921 0.37886 0.37850 0.37815 0.37779 2.3945 925 906 886 867 0.37744 0.37708 0.37673 0.37638 0.37602 2.3847 828 808 789 770 0.37567 0.37532 0.37496 0.37461 0.37426 2.3750 731 712 693 673 0.37391 0.37355 0.37320 0.37285 0.37250 0.37215 2.3654 635 616 597 578 559 Nat. Cot Log. c.d. Log. Tan Nat, Nat. Cos Log. d. Nat. Sin Log. d 67° 23° Nat. Sin Log. d. Nat. Cos Log. d. Nat Tan Log. c.d.Log. Cot Nat, 39073 100 127 153 180 9.59188 9.59218 959247 959277 9-59307 39207 234 260 287 314 9-59336 9-5936<3 959396 959425 9-59455 39341 367 394 421 448 9-59484 9-59514 9-59543 9-59573 9-59602 39474 501 528 555 581 9-59632 9-5061 9.59690 9.59720 9-59749 39608 635 661 688 715 9-59778 9.59808 9-59837 9-59866 9-59895 39741 768 795 822 848 9-59924 9-59954 9-59983 9,60012 9.60041 39875 902 928 955 082 9.60070 9.60099 9.60128 9.60157 9.60186 40008 035 062 088 115 9.60215 9.60244 9.60273 9.60302 9.60331 40141 168 195 221 248 9-60359 9.60388 9.60417 9.60446 9-60474 40275 301 328 355 381 9-60503 9-60532 9.60561 9-60589 9.60618 40408 434 461 488 514 9.60646 9-60675 9.60704 9.60732 9.60761 40541 567 594 621 647 674 9.60789 9.60818 9.60846 9.60875 9-60903 9-60931 92050 039 028 016 005 9.96403 9-96397 9-96392 9-96387 9.96381 91994 9.96376 982 9-96370 971 9-96365 959 9-96360 948 9.96354 91936 9-96349 925 9.96343 914 9-96338 902 996333 891 9-96327 91879 9.96322 868 9.96316 856 9-9631 1 845 9.96305 833 9-96300 91822 9-96294 810 9.96289 799 9.96284 787 9.96278 775 9-96273 91764 9.96267 752 9.96262 741 9.96256 729 9.96251 718 9.96245 91706 9.96240 694 9.96234 683 9.96229 671 9.96223 660 9.96218 91648 9.96212 636 9.96207 625 9.96201 613 9.96196 601 9.96190 91590 9-96185 578 9-96179 566 9-96174 555 9.96168 543 9.96162 91531 9.96157 519 9.96151 508 9.96146 496 9.96140 484 996135 91472 9.96129 461 9.96123 449 9.96118 437 9.961 12 425 9.96107 9I4I4 402 390 378 366 355 9.96101 9-96095 9.96090 9.96084 9.96079 9-96073 Nat. Cos Log. d. Nat. Sin 42447 482 516 551 585 9-62785 9.62820 9.62855 9.62890 9.62926 42619 654 688 722 757 9.62961 9.62996 9.63031 9.63066 9.63101 42791 826 860 894 929 9-63135 9.63170 9.63205 9.63240 9-63275 42963 998 43032 067 loi 9.63310 9-63345 9-63379 9.63414 9.63449 43136 170 205 239 274 9.63484 9-63519 9.63553 9.63588 9.63623 43308 343 378 412 447 9.63657 9.63692 9.63726 9.63761 9.63796 43481 516 550 585 620 9.63830 9-63865 9-63899 9-63934 9.63968 43654 689 724 758 793 9-64003 9.64037 9.64072 9.64106 9.64140 43828 862 897 932 966 9.64175 9.64209 9-64243 9.64278 9.64312 44001 036 071 105 140 9-64346 9.64381 9.64415 9-64449 9.64483 44175 210 244 279 314 9.64517 9-64552 9-64586 9.64620 9.64654 44349 384 418 453 488 523 9.64688 9.64722 9.64756 9.64790 9.64824 9.64858 )073 I 523 9.04050 ^' 0.35142 400 Log. d. Nat.CotLog. c.d.|Log.TanNat 0-37215 0.37180 0.37145 0.371 10 0.37074 2.3559 539 520 501 483 0.37039 0.37004 0.36969 0.36934 0.36899 2.3464 445 426 407 0.36865 0.36830 0.36795 0.36760 0.36725 2.3369 351 332 313 294 0.36690 0.36655 0.36621 0.36586 0.36551 2.3276 257 238 220 201 0.36516 0.36481 0.36447 0.36412 0.36377 2.3183 164 146 127 109 0.36343 0.36308 0.36274 0.36239 0.36204 2.3090 072 053 035 017 0.36170 0.36135 0.36101 0.36066 0.36032 2.2998 980 962 944 925 0.35997 2.2907 0.35963 0.35928 0.35894 0.35860 871 853 835 0.35825 0.35791 0-35757 0.35722 0.35688 2.2817 799 781 763 745 0-35654 0.35619 0.35585 0.35551 0.35517 2.2727 709 691 673 655 0.35483 0.35448 0.35414 0.35380 0.35346 2.2637 620 602 584 566 0.35312 0.35278 0.35244 0.35210 0.35176 0.35142 2.2549 531 513 496 478 460 24 f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 40674 9.60931 29 91355 9-96073 f. 44523 9.64858 34 34 34 34 34 34 0.35142 2.2460 60 I 700 9.60960 343 9-96067 5 558 9.64892 0.35108 443 59 2 727 9.60988 o9 331 9-96062 593 9-64926 0.35074 425 58 3 753 9.61016 29 28 319 9-96056 A 627 9.64960 0.35040 408 57 4 6 780 9.61045 307 9.96050 5 6 662 9.64994 0.35006 390 56 55 40806 9.61073 91295 9.96045 44697 9.65028 0.34972 2.2373 6 833 9.61 lOI 08 283 9.96039 732 9.65062 0-34938 355 54 7 860 9.61 129 29 08 272 9.96034 767 9.65096 34 0.34904 338 53 8 886 9.61158 260 9.96028 f. 802 9.65130 34 0.34870 320 52 9 913 9.61186 28 248 9.96022 5 6 837 9.65164 34 33 34 34 34 0.34836 303 51 10 40939 9.61214 91236 9.96017 44872 9.65197 0.34803 2.2286 50 II 966 9.61242 oO 224 9.9601 1 5 907 9.65231 0.34769 268 49 12 992 9.61270 03 212 9.96005 942 9.65265 0.34735 251 48 13 41019 9.61298 og 200 9.96000 977 9.65299 0.34701 234 47 14 04s 9.61326 28 08 188 9.95994 I 45012 9-65333 34 33 0.34667 216 46 '45 15 41072 9.61354 91176 9.95988 45047 9-65366 0.34634 2.2199 lb 098 9.61382 164 9.95982 082 9.65400 0.34600 182 44 17 125 9.61411 27 08 152 9-95977 117 9-65434 34 33 11 33 34 34 33 34 33 34 33 0.34566 165 43 l8 151 9.61438 140 9-95971 6 152 9.65467 0.34533 148 42 19 178 9.61466 28 28 128 9.95965 5 6 187 9.65501 0.34499 130 41 40 20 41204 9.61494 91 116 9.95960 45222 9.65535 0.34465 2.2113 21 231 9.61522 28 104 9.95954 6 257 9-65568 0.34432 096 39 22 257 9.61550 28 092 9.95948 5 292 9.65602 0.34398 079 38 23 284 9.61578 28 080 9.95942 5 6 6 ,327 9.65636 0.34364 062 37 24 310 9.61606 28 og 068 9-95937 362 9.65669 0-34331 045 36 35 25 41337 9.61634 91056 9.95931 45397 9.65703 0.34297 2.2028 26 363 9.61662 27 og 044 9-95925 5 6 432 9.65736 0.34264 on 34 27 390 9.61689 032 9.95920 467 9.65770 0.34230 2.1994 33 28 416 9.61717 28 28 020 9.95914 f. 502 9.65803 0.34197 977 32 29 443 9-61745 008 9.95908 6 5 5 538 9.65837 34 33 0.34163 960 .31 30 41469 9.61773 90996 9.95902 45573 9.65870 0.34130 2.1943 30 31 496 9.61800 oQ 984 9.95897 608 9.65904 33 34 0.34096 926 29 32 522 9.61828 08 972 9-95891 (=, 643 9.65937 0.34063 909 28 3S 549 9-61856 960 9.95885 5 678 9.65971 0.34029 892 27 34 575 9-61883 27 28 og 948 9.95879 6 5 713 9.66004 33 34 33 0-33996 876 2b 35 41602 9.61911 90936 9.95873 45748 9.66038 0.33962 2.1859 25 36 628 . 9.61939 924 9.95868 784 9.66071 0-33929 842 24 37 655 9.61966 ^8 911 9.95862 6 819 9.66104 33 0.33896 825 23 3B 681 9.61994 899 9.95856 6 854 9.66138 34 33 33 34 0.33862 808 22 39 707 9.62021 27 28 887 9.95850 6 5 A 889 9.66171 0.33829 792 21 20 40 41734 9.62049 90875 9-95844 45924 9.66204 0.33796 2.1775 41 760 9.62076 08 863 9.95839 960 9.66238 0.33762 758 19 42 787 9.62104 851 9-95833 A 995 9.66271 0.33729 742 18 43 813 9.62131 08 839 9.95827 5 46030 9.66304 33 34 33 0.33696 725 17 44 45 840 9.62159 27 28 826 9.95821 6 065 9.66337 0.33663 708 lb 41866 9.62186 90814 9.95815 46101 9.66371 0.33629 2.1692 15 46 892 9.62214 802 9.95810 136 9.66404 0.33596 675 14 47 919 9.62241 27 790 9.95804 6 171 9.66437 33 33 33 34 33 0.33563 659 13 48 945 9.62268 27 28 27 778 9-95798 6 206 9.66470 0.33530 642 12 49 972 9.62296 766 9.95792 6 242 9.66503 0.33497 625 II lo 50 41998 9.62323 90753 9.95786 46277 9.66537 0.33463 2.1609 =^1 42024 9.62350 27 741 9.95780 5 312 9.66570 0.33430 59? 9 52 051 9-62377 28 729 9.95775 348 9.66603 33 33 33 33 0.33397 576 8 ,S3 077 9.62405 717 9.95769 A 383 9.66636 0.33364 560 7 54 55 104 9.62432 27 704 9.95763 6 6 418 9.66669 0.33331 543 b ~5 42130 9-62459 90692 9.95757 46454 9.66702 0.33298 2.1527 ,0 156 9.62486 27 680 9.95751 5 489 9.66735 0.3.3265 510 4 57 183 9-62513 27 28 668 9.95745 6 525 966768 33 33 33 33 0.33232 494 3 5« 209 9.62541 655 9.95739 6 560 9.66801 0.33199 478 2 ^0 235 9-62568 27 643 9-95733 631 9-95728 5 595 9-66834 0.33166 461 I 262 9.62595 27 631 9.66867 0.33133 445 Nat.CoSLog. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.Tan Nat. r 66' 26° f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log.CotNat. 42262 288 315 341 367 9-62595 9.62622 9.62649 9.62676 9-62703 42394 420 446 473 499 9.62730 9.62757 9.62784 9.6281 1 9.62838 42525 552 578 604 631 42657 683 709 736 762 42788 815 841 867 894 42920 946 972 999 43025 27 27 27 27 27 27 27 27 27 27 27 I 26 i 27 ; 27 27 j27 26 1 27 I 27 9-63133 26 9-63159 27 9.63186 % 9-63213 : 26 9-63239 ! 27 26 9.62865 9.62892 9.62918 9.62945 9.62972 9.62999 9.63026 9.63052 9.63079 9.63106 43051 077 104 130 156 9.63266 9-63292 i 27 9-63319 26 963345 27 9-63398 ^ 27 9-63425 26 9-63451 9.63478 9-63504 43182 209 235 261 287 9-63531 9-63557 9-63583 9.63610 963636 43313 340 366 392 418 9.63662 9.63689 9-63715 9.63741 963767 43445 471 497 523 549 9-63794 9.63820 9.63846 9-63872 9-63898 43575 602 628 654 680 9.63924 9-63950 9-63976 9.64002 9.64028 43706 733 759 785 811 837 9.64054 9.64080 9.64106 9.64132 9.64158 9.64184 90631 618 606 594 582 9.95728 9-95722 9.95716 9.95710 9-95704 90569 9.95698 557 9-95692 545 9.95686 532 9.95680 520 9-95674 90507 9-95668 495 995663 483 995657 470 9-95651 458 9-95645 90446 9.95639 433 995633 421 9-95627 408 9.95621 396 9.95615 90383 9-95609 371 9-95603 358 9-95597 346 9-95591 334 9-95585 90321 9-95579 309 9-95573 296 9-95567 284 9-95561 271 9-95555 90259 9.95549 246 9-95543 233 9-95537 221 9-95531 208 9-95525 90196 9-95519 183 9-95513 171 9-95507 158 9-95500 14b 9-95494 90133 9.95488 120 9.95482 108 9-95476 095 9-95470 082 9.95464 90070 9-95458 057 9-95452 045 9.95446 032 9.95440 019 9-95434 90007 995427 89994 9-95421 981 ■§68 9-95415 9.95409 956 9-95403 89943 9^0 918 905 892 879 9-95397 9-95391 995384 9.95378 995372 995366 46631 666 702 737 772 9.66867 9.66900 9.66933 9.66966 9.66999 46808 843 879 914 950 9.67032 9-67065 9.67098 9.67131 9-67163 46985 47021 056 092 128 9.67196 9.67229 9.67262 9.67295 9-67327 47163 199 234 270 305 9.67360 9-67393 9.67426 9.67458 9.67491 47341 377 412 448 483 9-67524 9-67556 9.67589 9.67622 9-67654 47519 555 590 626 662 9-67687 9.67719 9.67752 9.67785 9.67817 47698 733 769 805 840 9.67850 9.67882 9.67915 9-67947 9.67980 47876 912 948 984 48019 9.68012 9.68044 9.68077 9.68109 9.68142 48055 091 127 163 iq8 9.68174 9.68206 9-68239 9.68271 9-68303 48234 270 306 342 378 9.68336 9.68368 9.68400 9.68432 968465 48414 450 486 521 557 9.68497 9.68529 9.68561 9-68593 9.68626 48593 629 665 701 737 773 9.68658 9.68690 9.68722 9-68754 9.68786 9.68818 0.33133 0.33100 0.33067 0-33034 0.33001 2.1445 429 413 396 380 0.32968 0-32935 0.32902 0.32869 0.32837 2.1364 348 332 315 299 0.32804 0.32771 0.32738 0.32705 0.32673 2.1283 267 251 235 219 0.32640 0.32607 0.32574 0.32542 0-32509 2.1203 187 171 IS5 139 0.32476 0-32444 0.32411 0.32378 0.32346 2.1123 107 092 076 060 0.32313 0.32281 0.32248 0.32215 0.32183 2.1044 028 013 2.0997 981 0.32150 0.32118 0.32085 0.32053 0.32020 2.0965 950 934 918 903 0.31988 0.31956 0.31923 0.31891 0.31858 2.0887 872 856 840 825 0.31826 0.31794 0.31761 0.31729 0.31697 2.0809 794 778 763 748 0.31664 0.31632 0.31600 0.31568 0.31535 2.0732 717 701 686 671 0.31503 0.31471 0.31439 0.31407 0.31374 2.0655 640 625 609 594 0.31342 0.31310 0.31278 0.31246 0.31214 0.31182 2.0579 564 549 533 518 503 Nat. Cot Log. c.d. Log. Tan Nat. 60 59 58 57 5^ 55 54 53 52 50 49 48 47 45 44 43 42 40 39 38 37 _36 35 34 33 32 Nat. Cos Log. d. Nat. Sin Log. d. 64^ < 26 f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 43837 9-64184 89879 9-95366 5 48773 9.68818 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 31 32 0.31 182 2.0503 60 I 863 9.64210 05 867 995360 5 809 9.68850 0.31 150 488 59 2 889 9.64236 05 854 9-95354 5 0.31118 473 58 3 916 9.64262 06 841 9.95348 881 9.68914 0.31086 458 57 4 T 942 9.64288 25 05 828 9.95341 7 6 917 9-68946 0.31054 443 5t) 43968 9.64313 89816 9.95335 48953 9-68978 0.31022 2.0428 55 6 06 803 9-95329 f. 989 9.69010 0.30990 413 54 7 44020 9.64365 05 790 9-95323 f. 49026 9.69042 0.30958 398 53 8 046 9.64391 -^6 777 9-95317 062 9.69074 0.30926 383 52 9 072 9.64417 25 06 764 9-95310 6 5 098 9.69106 0.30894 368 51 10 44098 9.64442 89752 9-95304 49134 9.69138 0.30862 2.0353 50 II 124 9.64468 05 739 9-95298 f. 170 9.69170 0.30830 338 49 12 151 9-64494 % 726 9.95292 6 206 9.69202 0.30798 323 48 13 177 9-64519 713 9.95286 242 9.69234 0.30766 308 47 14 203 9.64545 26 % 700 9-95279 7 6 278 9.69266 0.30734 293 4b 45 15 44229 9.64571 89687 9.95273 49315 9-69298 0.30702 2.0278 I6 255 9-64596 674 995267 A 351 9.69329 0.30671 263 44 17 281 9.64622 % 662 9.95261 387 9-69361 0.30639 248 43 i8 307 9-64647 649 9-95254 7 6 423 9-69393 32 32 32 31 0.30607 233 42 19 333 9-64673 25 "6 636 9.95248 6 6 459 9-69425 0.30575 219 4i 20 44359 9-64698 89623 9-95242 49495 9-69457 0.30543 2.0204 40 21 385 9-64724 % 610 9.95236 532 9.69488 0.30512 189 39 22 411 9-64749 597 9-95229 I 6 6 7 5 568 9.69520 32 0.30480 174 38 23 437 9-64775 25 26 25 584 9.95223 604 9-69552 32 0.30448 160 37 24 464 9.64800 571 9-95217 640 9-69584 32 31 32 32 0.30416 145 3t^ 35 25 44490 9.64826 89558 9-95211 49677 9.69615 0.30385 2.0130 2b 516 9.64851 545 9-95204 713 9.69647 0.30353 "5 34 27 542 9-64877 25 25 26 25 25 532 9.95198 6 749 9-69679 0.30321 lOI 33 28 568 9.64902 519 9-95192 786 9.69710 31 0.30290 086 32 29 30 594 9-64927 506 9-95185 7 6 6 822 9.69742 32 32 31 0.30258 072 31 30 44620 9.64953 89493 9-95179 49858 9.6977^ 0.30226 2.0057 31 646 9.64978 480 9-95173 5 894 9.69805 0.30195 042 29 32 672 9.65003 467 9-95167 931 9.69837 0.30163 028 28 33 698 9.65029 25 25 25 "6 454 9-95160 ^ 967 9.69868 0.30132 013 27 34 35 724 9.65054 441 9-95154 6 50004 9.69900 32 32 0.30100 1.9999 2b 25 44750 9-65079 89428 9.95148 50040 9.69932 0.30068 1.9984 3t> 776 9.65104 415 9-95141 ^ 076 9-69963 31 32 0.30037 970 24 37 802 9.65130 25 25 25 25 25 402 9-95135 5 113 9-69995 0.30005 955 23 3a 828 9.65155 389 9-95129 149 9.70026 31 0.29974 941 22 39 854 9-65180 376 9.95122 7 6 185 9.70058 32 31 0.29942 926 21 40 44880 9.65205 89363 9-95116 50222 9.70089 0.29911 1.9912 20 41 906 9.65230 350 9.951 10 258 9.70121 32 0.29879 897 19 42 932 9-65255 337 9-95103 6 295 9-70152 31 32 0.29848 883 18 43 958 9.65281 25 25 25 25 324 995097 331 9.70184 0.29816 868 17 44 984 9.65306 311 9.95090 6 6 I 368 9.70215 31 32 0.29785 854 lb 15 45 45010 9.65331 89298 9.95084 50404 9.70247 0.29753 1.9840 46 062 9.65381 285 9-95078 441 9.70278 31 31 0.29722 825 14 47 272 9-95071 477 9-70309 0.29691 811 13 48 088 9.65406 25 25 25 25 25 25 25 24 259 9.95065 5 514 9-70341 32 31 32 0.29659 797 12 49 50 114 9-65431 245 9-95059 7 6 550 9-70372 0.29628 782 II 45140 9.65456 89232 9.95052 50587 9.70404 0.29596 1.9768 10 51 166 9.6548X 219 9.95046 623 9-70435 31 0.29565 754 9 52 192 9-65506 206 9.95039 I 5 660 9.70466 31 0.29534 740 8 53 218 9-65531 193 9-95033 696 9-70498 32 31 31 0.29502 725 7 54 243 9-65556 180 9.95027 7 6 733 9-70529 0.29471 7" b 65 45269 9.65580 89167 9.95020 50769 9.70560 0.29440 1.9697 6 56 25 25 153 9-95014 806 9.70592 32 31 0.29408 683 4 57 321 9-65630 140 9-95007 6 6 843 970623 0.29377 669 3 5a 347 9-65655 373 9-65680 25 25 127 9.95001 879 9.70654 31 31 0.29346 654 2 U 114 9-94995 ^ 916 9.70685 0.29315 640 I 399 9-65705 25 loi 9-94988 ' 953 9-70717 32 0.29283 626 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.Tan Nat. f 63 27' D / Nat. Sin Log. d. Nat. Cos Log. d.| Nat Tan Log. c.d. Log. Cot Nat. 45399 9-65705 24 25 25 25 24 25 25 89101 9.94988 5 50953 9.70717 31 31 31 31 32 31 31 0.29283 1.9626 60 I 425 9-65729 087 9.94982 7 5 989 9.70748 0.29252 612 59 2 451 9.65754 074 9.94975 51026 9.70779 0.29221 598 58 3 477 9-65779 061 9.94969 063 9.70810 0.29190 584 57 4 503 9.65804 048 9.94962 7 6 099 9.70841 0.29159 570 56 5 45529 9.65828 89035 9.94956 5II36 9-70873 0.29127 1.9556 55 6 554 9-65853 021 9.94949 6 173 9.70904 0.29096 542 54 7 580 9.65878 008 9.94943 209 9.70935 0.29065 528 53 8 606 9.65902 24 25 25 24 25 88995 9.94936 7 6 7 31 31 31 31 31 31 0.29034 514 52 9 632 9.65927 981 9.94930 283 9.70997 0.29003 500 51 50 10 45658 9-65952 88968 9.94923 5I3I9 9.71028 0.28972 1.9486 II 684 9-65976 955 9-94917 (\ 356 9.71059 0.28941 472 49 12 710 9.66001 942 9.949" 393 9-71090 0.28910 458 48 13 736 9.66025 928 9-94904 I 7 6 430 9.71121 0.28879 444 47 14 762 9.66050 25 25 915 9.94898 467 9.71153 32 31 31 31 31 0.28847 430 46 15 45787 9.66075 88902 9.94891 S1503 9.71184 0.28816 1.9416 45 l6 813 9.66099 24 25 888 9.94885 540 9.71215 0.28785 402 44 17 839 9.66124 875 9.94878 7 577 9.71246 0.28754 388 43 l8 865 9.66148 24 862 9.94871 7 6 7 6 614 9.71277 0.28723 375 42 19 891 9.66173 25 24 848 9-94865 651 9.71308 31 31 30 31 31 31 31 31 31 31 31 0.28692 361 41 20 45917 9.66197 88835 9-94858 51688 9.71339 0.28661 1.9347 40 21 942 9.66221 24 25 822 9.94852 724 9.71370 0.28630 333 39 22 968 9.66246 808 9-94845 7 6 761 9.71401 0.28599 319 38 23 994 9.66270 24 795 9-94839 798 9.71431 0.28569 306 37 24 46020 9.66295 25 24 782 9-94832 7 6 835 9.71462 0.28538 292 3^ 25 46046 9.66319 88768 9.94826 51872 9.71493 0.28507 1.9278 35 26 072 9.66343 24 25 755 9.94819 7 6 909 9^71524 0.28476 265 34 27 097 9.66368 741 9-94813 946 9.71555 0.28445 251 33 28 123 9.66392 24 728 9.94806 7 983 9.71586 0.28414 237 32 29 149 9.66416 24 25 715 9.94799 7 6 52020 9.71617 0.28383 223 31 30 46175 9.66441 88701 9.94793 52057 9.71648 0.28352 1.9210 30 31 201 9.66465 24 688 9.94786 I 094 9.71679 0.28321 196 29 32 226 9.66489 24 674 9.94780 131 9.71709 30 31 31 31 31 0.28291 183 28 33 252 9.66513 24 661 9-94773 7 6 7 168 9.71740 0.28260 169 27 34 278 9-66537 24 25 647 9-94767 205 9.71771 0.28229 155 26 35 46304 9.66562 88634 9.94760 52242 9.71802 0.28198 1.9142 25 36 330 9.66586 24 620 9.94753 I 279 9.71833 0.28167 128 24 37 355 9.66610 24 607 9.94747 316 9.71863 30 0.28137 115 23 38 381 9.66634 24 593 9-94740 7 6 7 353 9.71894 31 31 30 31 31 31 30 31 31 30 31 30 31 31 30 31 30 31 30 31 30 3^ 30 0.28106 lOI 22 39 407 9.66658 24 24 580 9-94734 390 971925 0.28075 088 21 40 46433 9.66682 88566 9.94727 52427 9.71955 0.28045 1.9074 20 41 458 9.66706 24 25 553 9-94720 I 464 9.71986 0.28014 061 19 42 484 9.66731 539 9-94714 501 9.72017 0.27983 047 18 43 510 9.66755 24 526 9-94707 7 538 9.72048 0.27952 034 17 44 536 9.66779 24 24 512 9.94700 7 6 575 9.72078 0.27922 020 16 45 46561 9.66803 88499 9.94694 52613 9.72109 0.27891 1.9007 15 46 587 9.66827 24 485 9-94687 7 650 9.72140 0.27860 1.8993 14 47 613 9.66851 24 472 9.94680 7 6 687 9.72170 0.27830 980 i3 48 639 9.66875 24 458 9.94674 724 9.72201 0.27799 967 12 49 664 9-66899 24 23 445 9.94667 7 7 6 761 9.72231 0.27769 953 II 50 46690 9.66922 88431 9.94660 52798 9.72262 0.27738 1.8940 10 =;i 716 9.66946 24 417 9.94654 836 9.72293 0.27707 927 9 f^s 742 9.66970 24 404 9.94647 7 873 9.72323 0.27677 913 8 ';3 767 9.66994 24 390 9.94640 I 7 I 910 9.72354 0.27646 900 7 ^4 793 9.67018 24 24 377 9.94634 947 9-72384 0.27616 887 6 55 46819 9.67042 88363 9.94627 52985 9-72415 0.27585 1.8873 5 ■;6 844 9.67066 24 349 9.94620 53022 9.72445 0.27555 860 4 ^^7 ~ 870 9.67090 24 336 9.94614 059 9.72476 0.27524 847 3 '^S 896 9.671 13 23 322 9.94607 7 096 9.72506 0.27494 834 2 I'o 921 9.67137 24 308 9.94600 7 134 9.72537 0.27463 820 I 947 9.67161 24 295 9-94593 7 171 9.72567 0.27433 807 JNatCoSLog. d. Nat. Sin Log. d. Nat. Cot Log c.d Log.TanNat □ 62^ Nat. Sin Log. d. 2_8^ Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat 46947 973 999 47024 050 9.67161 9.67185 9.67208 9.67232 9.67256 47076 lOI 127 153 178 9.67280 9-67303 9.67327 967350 9-67374 47204 229 255 281 306 9.67398 9.67421 9-67445 9.67468 9.67492 47332 358 383 409 434 9-67515 9-67539 9.67562 9.67586 9.67609 47460 486 511 537 562 9-67633 9-67656 9.67680 9.67703 9.67726 47588 614 639 665 690 9.67750 9-67773 9.67796 9.67820 9.67843 47716 741 767 793 818 9.67866 9.67890 9.67913 9.67936 9.67959 47844 869 895 920 946 9.67982 9.68006 9.68029 9.68052 9.68075 47971 997 48022 048 073 9.68098 9.68121 9.68144 9.68167 9.68190 48099 124 150 175 201 9.68213 9.68237 9.68260 9.68283 9.68305 252 277 303 328 9.68328 9-68351 9-68374 9.68397 9.68420 48354 379 405 430 456 481 9.68443 9.68466 9.68489 9.68512 9-68534 9.68557 88295 281 267 254 240 9-94593 9-94587 9.94580 9-94573 9-94567 88226 213 199 185 172 9.94560 9-94553 994546 9-94540 9-94533 88158 144 130 117 103 9.94526 994519 994513 9-94506 9-94499 075 062 048 034 9.94492 9.94485 9.94479 9.94472 9-94465 88020 006 87993 979 965 9.94458 9-94451 9.94445 9.94438 9.94431 87951 937 923 909 9.94424 9.94417 9.94410 9-94404 9-94397 7882 868 854 840 826 9-94390 9.94383 9-94376 9-94369 9.94362 87812 798 784 770 756 9-94355 9-94349 9-9434? 9-94335 9.94328 87743 729 715 701 687 9.94321 9-94314 9-94307 9-94300 9-94293 87673 659 645 631 617 9.94286 9.94279 9-94273 9.94266 9-94259 87603 589 575 546 9.94252 994245 9.94238 9.94231 9-94224 87532 518 504 490 476 462 9.94217 9.94210 9-94203 9.94196 9.94189 9.94182 53171 208 246 283 320 9-72567 9.72598 9.72628 9-72659 9.72689 53358 395 432 470 507 9.72720 9.72750 9.72780 9.7281 1 9.72841 53545 582 620 657 694 9.72872 9.72902 9.72932 9-72963 9.72993 53732 769 807 844 882 9-73023 9-73054 9.83084 9-73114 9-73144 53920 957 995 54032 070 9-73175 9-7320$ 9-7323$ 9-7326$ 9-73295 54107 145 183 220 258 973326 9-73356 9-73^6 9.73416 9-73446 54296 333 371 409 446 9-73476 9-73507 9-73537 9-73567 9-73597 54484 522 560 597 635 9-73627 9-73657 9-73687 9-73717 9-73747 54673 711 748 786 824 9-73777 9.73807 9.73837 9.73867 9-73897 54862 900 938 975 55013 9.73927 9-73957 9-73987 9.74017 9-74047 55051 089 127 165 203 9-74077 9.74107 9-74137 9.74166 9-74196 55241 279 317 355 393 431 9.74226 9-74256 9.74286 9.74316 9.7434$ 974375 0.27433 0.27402 0.27372 0.27341 0.27311 794 781 768 755 0.27280 0.27250 0.27220 0.27189 0-27159 1.8741 728 715 702 689 0.27128 0.27098 0.27068 0.27037 0.27007 .8676 663 650 637 624 0.26977 0.26946 0.26916 0.26886 0.26856 1.8611 598 585 572 559 0.2682$ 0.26795 0.26765 0.26735 0.26705 1.8546 533 520 507 495 0.26674 0.26644 0.26614 0.26584 0.26554 1.8482 469 456 443 430 0.26524 0.26493 0.26463 0.26433 0.26403 1.8418 405 392 379 367 0.26373 0.26343 0.26313 0.26283 0.26253 0.26223 0.26193 0.26I63 0.26133 0.26103 1-8354 341 329 316 303 1.8291 278 265 253 240 0.26073 0.26043 0.26013 0.25983 0.25953 1.8228 ^ 215 202 190 177 0.25923 0.25893 0.25863 0.25834 0.25804 1.8 165 152 140 127 115 0.25774 0.25744 0.25714 0.25684 0.25655 0.2562.5 1.8 103 090 078 065 053 040 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. | c.d. Log.Tan Nat.| ^ 61° 29° Nat. Sin Log. d. Nat. Cos Log. d. Nat.Tan Log. c.d Log. Cot Nat. 48481 506 532 557 5B3 9-68557 a.68580 0.68603 9.68625 9.68648 48608 634 659 684 710 9.68671 9.68694 9.68716 9.68739 9.68762 48735 761 786 811 837 9.68784 9.68807 9.68829 9.68852 9.68875 913 938 964 9.68897 9.68920 9.68942 9.68965 9.68987 48989 49014 040 065 090 9.69010 9.69032 969055 9.69077 9.69100 491 16 141 166 192 217 9.69122 9.69144 9.69167 9.69189 9.69212 49242 268 293 318 344 9.69234 9.69256 9.69279 9.69301 9-69323 49369 394 419 445 470 9-69345 9.69368 9.69390 9.69412 969434 49495 521 546 571 596 9.69456 9.69479 9.69501 9.69523 9-69545 49622 647 672 697 723 9.69567 9.69589 9.6961 1 9-69633 9-69655 49748 773 798 824 849 9.69677 9.69699 9.69721 9-69743 9.69765 49874 899 924 950 975 50000 9.69787 9.69809 969831 9.69853 9.69875 9.69297 87462 448 434 420 406 9.94182 9.94175 9.94168 9.94161 9.94154 87391 377 363 349 335 9.94147 9.94140 9.94133 9.94126 9-94119 87321 306 292 278 264 9.941 12 9.94105 9.94098 9.94090 9.94083 87250 235 221 207 193 9.94076 9.94069 9.94062 9-94055 9.94048 87178 164 150 136 121 9.94041 9-94034 9.94027 9.94020 9.94012 87107 ^3 079 064 050 9.94005 9.93998 9-93991 9-93984 9-93977 87036 021 007 86993 978 9-93970 9-93963 9-93955 993948 9.93941 86964 949 935 921 906 9.93934 9-93927 9-93920 9.93912 9.93905 86892 878 863 849 834 9.93898 9.93891 9.93884 9.93876 9.93869 86820 805 791 m 762 9.93862 9.93855 9-93847 9.93840 9-93833 86748 733 719 704 690 9.93826 9.93819 9.9381 1 9-93804 9-93797 86675 661 646 632 617 603 993789 9.93782 9-93775 9.93768 9-93760 9-93753 55431 469 507 545 583 9-74375 9-74405 9-74435 9.74465 9.74494 55621 659 697 736 774 974524 9.74554 9-74583 9.74613 9.74643 55812 8:;o 964 9.74673 9.74702 9.74732 9-74762 9.74791 56003 041 079 117 156 9.74821 9.74851 9.74880 9.74910 9.74939 56194 232 270 309 347 9.74969 9.74998 9.75028 9.75058 9.75087 56385 424 462 501 539 9.75"7 9.75146 9.75176 9.75205 9.75235 56577 616 654 693 731 9.75264 9-75294 9-75323 9.75353 9-75382 56769 808 846 885 923 9-754" 9-75441 9-75470 9-75500 975529 56962 57000 039 078 116 9.75558 9.75588 9.75617 9.75647 9.75676 57155 193 232 271 309 9.75705 9-75735 9-75764 9-75793 9-75822 57348 386 425 464 503 9.75852 9.75881 9.75910 9.75939 9.75969 57541 580 619 657 696 9.75998 9.76027 9.76056 9.76086 9.761 15 9.76144 0.25625 0.2559$ 0.2556$ 0.25535 0.25506 1.8040 028 016 003 1.7991 0.25476 0.25446 0.25417 0.25387 0.25357 1.7979 966 954 942 930 0.25327 0.25298 0.25268 0.25238 0.25209 1.7917 905 893 881 0.25179 0.25149 0.25120 0.25090 0.25061 1.7856 844 832 820 808 0.25031 0.25002 0.24972 0.24942 0.24913 1.7796 783 771 759 747 0.24883 0.24854 0.24824 0.2479$ 0.24765 1-7735 723 711 699 687 0.24736 0.24706 0.24677 0.24647 0.24618 1.7675 663 651 639 627 0.24589 0.24559 o.24$30 0.24500 0.24471 1.7615 603 591 579 567 0.24442 0.24412 0.24383 0.24353 0.24324 1.7556 544 532 520 508 0.24295 0.2426^ 0.24236 0.24207 0.24178 1.7496 485 473 461 449 0.24148 0.241 19 0.24090 0.24061 0.24031 1.7437 426 414 402 391 0.24002 0.23973 0.23944 0.23914 0.23885 0.23856 1-7379 367 355 344 332 321 Nat.CoSLog. d. Nat. Sin Log. d. Nat.CotLog. c.d.lLog.TanNat 30 r Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 50000 9.69897 86603 9-93753 57735 9-76144 0.23856 1.7321 60 I 02s 9.69919 22 588 9.93746 8 774 9-76173 29 29 0.23827 309 59 2 050 9.69941 573 9-93738 813 9.76202 0.23798 297 58 3 076 9.69963 559 9.93731 7 851 9.76231 29 30 29 29 29 29 29 29 29 29 0.23769 286 57 4 5 loi 9.69984 22 544 9-93724 7 7 Q 890 9.76261 0.23739 274 56 50126 9.70006 86530 9-93717 57929 9.76290 0.23710 1.7262 55 6 151 9.70028 515 9-93709 7 I 968 9-76319 0.23681 251 54 7 176 9.70050 501 9.93702 58007 9.76348 0.23652 239 S3 8 201 9.70072 486 9.93695 046 9-76377 0.23623 228 52 9 227 9.70093 22 471 9-93687 7 7 8 085 9.76406 0.23594 216 SI 50 10 50252 9.701 15 86457 9.93680 58124 9.76435 0.23565 1.7205 11 277 9-70137 442 9-9367$ 162 9.76464 0.23536 193 49 12 302 9.70159 427 9.93665 201 9.76493 0.23507 182 48 13 327 9.70180 413 9-93658 8 240 9.76522 29 29 0.23478 170 47 14 352 9.70202 22 398 9-93650 7 I 279 9-76551 0.23449 159 46 15 50377 9.70224 86384 9-93643 58318 9.76580 0.23420 1.7147 45 16 403 9.76245 369 9.93636 357 9-76609 0.23391 13b 44 17 428 9.70267 354 9.93628 7 7 8 7 8 396 9-76639 30 29 29 28 29 29 0.23361 124 43 i8 453 9.70288 340 9.93621 435 9-76668 0.23332 113 42 19 478 9.70310 22 325 9.93614 474 9-76697 0.23303 102 41 20 50503 9.70332 86310 9.93606 58513 9-76725 0.23275 1.7090 40 21 528 9-70353 295 9-93599 552 9-76754 0.23246 079 39 22 553 9-70375 28 T 9.93591 591 9-76783 0.23217 067 38 23 578 9.70396 266 9.93584 7 8 631 9.76812 29 29 29 29 29 29 29 29 29 ^8 0.23188 056 .37 24 603 9.70418 21 251 9-93577 670 9.76841 0.23159 045 36 25 50628 9.70439 86237 9-93569 58709 9.76870 0.23130 1.7033 35 26 654 9.70461 222 9.93562 7 8 748 9-76899 0.23101 022 34 27 679 9.70482 207 9-93554 7 8 787 9.76928 0.23072 on 33 28 704 9.70504 192 9-93547 826 9-76957 0.23043 1.6999 32 29 729 9.70525 22 178 9-93539 7 865 9.76986 0.23014 988 31 30 30 50754 9.70547 86163 9.93532 58905 9.77015 0.22985 1.6977 31 779 9.70568 148 9.93525 8 944 9-77044 0.22956 965 29 32 804 9.70590 133 9-93517 983 9-77073 0.22927 954 28 33 829 9.7061 1 119 9-93510 8 59022 9.77101 29 29 0.22899 943 27 34 854 9-70633 21 104 9-93502 7 8 061 9.77130 0.22870 932 26 25 35 50879 9.70654 86089 9.93495 59101 9.77159 0.22841 1.6920 36 904 9.70675 074 9.93487 140 9.77188 1 z 0.22812 90Q 24 37 929 9.70697 21 059 993480 7 8 179 9.-772I7 29 0.22783 898 23 3« 954 9-70718 21 045 993472 218 9.77246 0.22754 887 22 39 "40 979 9-70739 22 030 9-93465 8 258 9.77274 29 29 29 29 28 0.22726 875 21 51004 9.70761 86015 9-93457 59297 9-77303 0.22697 1.6864 20 41 029 9.70782 000 9-93450 8 336 9-77332 0.22668 853 19 42 054 9.70803 85985 9-93442 376 9-77361 0.22639 842 18 43 079 9.70824 970 9.93435 8 415 9-77390 0.22610 831 17 44 104 9.70846 21 956 9-93427 7 8 454 9-77418 29 29 29 '^8 0.22582 820 16 45 51 129 9.70867 85941 9-93420 59494 9-77447 0.22553 1.6808 15 46 154 9-70888 926 9.93412 7 8 533 9-77476 0.22524 797 14 47 179 9-70909 911 9.93405 573 9-77505 0.22495 786 13 48 204 9.70931 896 9-93397 612 9.77533 29 29 "8 0.22467 775 12 49 50 229 9.70952 21 21 881 9.93390 7 8 7 8 651 9.77562 0.22438 764 11 51254 9.70973 85866 9.93382 59691 9.77591 0.22409 1.6753 10 51 279 9-70994 851 9-93375 730 9.77619 29 29 29 28 29 08 0.22381 742 9 S2 304 9-71015 836 9-93367 770 9.77648 0.22352 731 8 53 329 9.71036 821 9.93360 8 809 9.77677 0.22323 720 7 54 55 354 9-71058 21 806 9-93352 8 7 849 9-77706 0.22294 709 b 5 51379 9-71079 85792 9-93344 59888 9.77734 0.22266 1.6698 56 404 9.71 100 777 9-93337 928 9.77763 0.22237 687 4 57 429 9.71 121 762 993329 967 9.77791 29 29 28 0.22209 676 3 5» 454 9.71 142 747 9-93322 8 60007 9.77820 0.22180 665 2 ^0 479 9-71 163 732 9-93314 7 046 9.77849 0.22151 654 1 504 9.71184 1 717 9-93307 086 9.77877 0.22123 643 Nat.CoSLog. d. |Nat. Sin Log. d. Nat. Cot Log. C.d. Log.TanNat. f m 31° f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 51504 9.71184 1 ,^ 85717 9-93307 8 60086 9.77877 29 0.22123 1.6643 60 I 529 9.71205 702 9.93299 8 126 9.77906 0.22094 632 SQ 2 554 9-71226 21 687 9-93291 I 165 9-77935 29 28 0.22065 621 58 3 579 9-71247 672 9.93284 205 9-77963 0.22037 610 0.22008 599 57 4 604 9.71268 21 657 9-93276 7 8 245 9-77992 29 28 29 56 65 5 51628 9.71289 85642 9-93269 60284 9.78020 0.21980 1.6588 b 653 9-71310 627 9.93261 8 324 9-78049 0.21951 577 54 7 678 9-71331 612 9.93253 7 8 364 9-78077 29 29 0.21923 566 53 8 703 9-71352 597 9-93246 403 9.78106 0.21894 555 52 9 728 9-71373 20 21 582 9.93238 8 7 8 443 9-78135 0-21865 545 51 10 51753 9.71393 85567 9-93230 60483 9.78163 29 28 0.21837 1.6534 0.21808 523 50 II 778 9-71414 551 9-93223 522 9.78192 49 12 803 9-71435 21 536 9-93215 562 9.78220 29 28 0.21780 512 48 13 828 9.71456 f. 521 9.93207 7 8 Q 602 9.78249 0.21751 501 47 14 852 9.71477 21 21 506 9.93200 642 9.78277 - 29 08 0.21723 490 46 45 15 51877 9.71498 85491 9-93192 60681 9.78306 0.21694 1.6479 lb 902 9.71519 20 476 9-93184 721 9.78334 28 0.21666 469 44 17 927 9-71539 21 461 9-93177 761 9.78363 0.21637 458 43 i8 952 9.71560 21 446 9.93169 801 9.78391 08 0.21609 447 42 19 977 9-71581 21 20 431 9.93161 7 Q 841 9-78419 29 0.21581 436 41 20 52002 9.71602 85416 9-93154 60881 9.78448 0.21552 1.6426 40 21 026 9.71622 21 401 9.93146 Q 921 9.78476 29 0.21524 415 39 22 051 9-71643 21 385 9-93138 960 9-78505 0.21495 404 38 23 076 9.71664 21 370 9.93131 61000 9.78533 29 28 0.21467 393 37 24 loi 9.71685 355 9-93123 8 7 8 040 9.78562 0.21438 383 3^ 52126 9-71705 '>T 85340 9-93115 61080 9.78590 O.21410 1.6372 35 26 151 9.71726 325 9.93108 120 9.78618 29 0.21382 361 34 27 175 9-71747 310 9.93100 8 160 9.78647 0.21353 351 33 28 200 9.71767 ^1 294 9-93092 200 9.78675 29 28 '^8 0.21325 340 32 29 225 9.71788 21 20 279 9.93084 7 240 9.78704 0.21296 329 31 30 30 52250 9.71809 85264 9-93077 61280 9.78732 0.21268 1.6319 31 275 9.71829 21 249 993069 Q 320 9.78760 29 .0.21240 308 29 32 299 9-71850 20 234 9-93061 360 9.78789 O.21211 297 28 33 324 9.71870 218 9.93053 7 8 8 400 9.788i'7 ^^8 O.21183 287 27 34 349 9-71891 20 21 203 9-93046 440 9.78845 29 08 0.21 155 276 26 35 52374 9-71911 85188 9.93038 61480 9.78874 O.21126 1.6265 25 3b 399 9-71932 173 9-93030 8 520 9.78902 '>8 0.21098 25s 24 37 423 9.71952 157 9-93022 8 561 9-78930 29 '>8 0.21070 244 23 3» 448 9.71973 142 9.93014 601 9.78959 641 9-78987 O.21041 234 22 39 473 9-71994 20 127 9.93007 7 8 8 28 08 O.21013 223 21 40 52498 9.72014 85112 9-92999 61681 9.79015 0.20985 1.6212 20 41 522 9.72034 21 096 9-92991 721 9.79043 29 o9 0.20957 202 19 42 547 9-7205$ 081 9-92983 761 9-79072 0.20928 191 18 43 572 9-72075 21 066 9.92976 801 9.79100 o8 0.20590 066 6 5 55 52869 9.72320 84882 9.92881 62285 9.79438 0.20562 1.6055 S6 893 9-72340 866 9.92874 I 325 9.79466 29 '^8 0.20534 045 4 S7 918 9.72360 851 9.92866 8 366 9-79495 0.20505 034 3 S» 943 9-72381 836 9.92858 8 406 9-79523 "8 0.20477 024 2 SQ 967 9.72401 820 9.92850 8 446 979551 '^H 0.20449 014 I 1 60 992 9.72421 80s 9.92842 487 9-79579 0.20421 003 1 Nat. Cos Log. d. Nat. Sin. Log. d. |Nat.CotLog. C.d. Log. Tan Nat. u 68^ f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 52992 9.72421 20 84805 9.92842 g 62487 9.79579 28 0.20421 1.6003 60 I 53017 9-72441 789 9.92834 8 527 9.79607 28 0.20393 1.5993 59 2 041 9.72461 774 9-92826 8 568 9-79635 28 0.20365 983 58 3 066 9.72482 759 9.92818 8 608 9.79663 -28 0.20337 972 57 4 6 091 9.72502 20 743 9.92810 7 8 649 9.79691 28 08 0.20309 962 56 55 53IIS 9.72522 84728 9.92803 62689 9-79719 0.20281 1.5952 b 140 9.72542 712 9.92795 8 730 9-79747 29 28 0.20253 941 54 7 164 9.72562 " 697 9-92787 8 770 9.79776 0.20224 931 53 8 189 9.72582 ^ 681 9-92779 8 811 9.79804 28 0.20196 921 52 9 214 9.72602 20 666 9.92771 8 Q 852 9-79832 28 28 0.20168 911 51 50 10 53238 9.72622 84650 9.92763 62892 9.79860 0.20140 1.5900 II 263 9.72643 635 992755 Q 933 9-79888 28 0.201 12 890 49 12 288 9.72663 619 9.92747 Q 973 9-79916 28 0.20084 880 48 13 312 9-72683 604 992739 8 63014 9.79944 '-R 0.20056 869 47 14 337 9-72703 20 588 9.92731 8 8 055 9-79972 28 "8 0.20028 859 4b 45 15 53361 9.72723 84573 9.92723 63095 9.80000 0.20000 1.5849 lb 386 9-72743 557 9-92715 136 9.80028 28 0.19972 839 44 17 411 9.72763 542 9.92707 8 177 9.80056 28 0.19944 829 43 I8 435 9-72783 ~ 526 9.92699 8 217 9.80084 28 0.19916 818 42 19 460 9.72803 20 511 9.92691 8 8 258 9.80112 28 -^8 0.19888 808 41 40 20 53484 9.72823 84495 9.92683 63299 9.80140 0.19860 1.5798 21 509 9.72843 480 9.92675 Q 340 9.80168 27 28 0.19832 788 39 22 534 9-72863 464 9.92667 8 380 9.80195 0.19805 778 38 23 558 9.72883 19 20 448 9.92659 8 421 9.80223 '^8 0.19777- 768 37 24 583 9.72902 433 9-92651 8 8 462 9.80251 28 "8 0.19749 757 36 35 25 53607 9.72922 84417 9.92643 63503 9.80279 0.19721 1.5747 2b 632 9.72942 402 9.92635 544 9-80307 -^8 0.19693 737 34 27 656 9.72962 386 9.92627 8 584 9.80335 28 0.19665 727 33 28 681 9.72982 370 9.92619 8 625 9.80363 -^8 0.19637 717 32 29 705 9-73002 20 19 355 9.92611 8 8 666 9.80391 28 08 0.19609 707 31 30 30 53730 9-73022 84339 9.92603 63707 9.80419 0.19581 1.8697 31 754 973041 324 9.92595 748 9.80447 27 28 0.19553 687 29 32 779 9-73061 308 9.92587 789 9-80474 0.19526 677 28 33 804 9.73081 292 9.92579 9 830 9.80502 28 0.19498 667 27 34 35 828 9.73101 20 19 277 9-92571 8 8 871 9.80530 28 '^8 0.19470 657 2b 53853 9-73121 84261 9.92563 63912 9.80558 0.19442 1-5647 25 3(5 877 9-73140 245 9-92555 9 8 953 9-80586 '^H 0.19414 637 24 37 902 9.73160 " 230 9-92546 994 9.80614 28 0.19386 627 23 3» 92b 9.73180 20 214 9.92538 8 64035 9.80642 27 28 28 0.19358 617 22 39 40 951 9.73200 19 198 9-92530 8 076 9,80669 0.19331 607 21 20 53975 9-73219 84182 9.92522 641 17 9.80697 0.19303 1-5597 41 54000 9-73239 167 9.92514 8 158 9.80725 08 0.19275 587 19 42 024 9-73259 19 151 9.92506 8 199 9-80753 28 0.19247 577 18 43 049 9-73278 135 9.92498 8 240 9.80781 27 28 08 0.19219 567 17 44 073 9-73298 20 19 120 9.92490 8 9 8 281 9.80808 0.19192 557 lb 45 54097 9-73318 84104 9.92482 64322 9.80836 0.19164 1.5547 15 46 122 9-73337 088 9.92473 363 9.80864 08 0.19136 537 14 47 146 9-73357 072 9.92465 8 404 9.80892 27 '^8 0.19108 527 13 48 171 9-73377 19 20 19 057 9-92457 8 446 9.80919 0.19081 517 12 49 195 9-73396 041 9.92449 8 8 487 9.80947 28 28 0.19053 507 II 50 54220 9-73416 84025 9.92441 64528 9.80975 0.19025 1.5497 10 51 244 9-73435 009 9.92433 8 569 9.81003 27 28 0.18997 487 9 S2 269 9-73455 " 83994 9.92425 9 8 610 9.81030 0.18970 477 8 =^3 293 9.73474 19 978 9.92416 652 9.81058 28 0.18942 468 7 54 317 9-73494 19 962 9.92408 8 8 693 9.81086 27 "8 O.18914 458 b 55 54342 9-73513 83946 9.92400 64734 9.81 1 13 0.18887 1.5448 5 ,0 366 9-73533 930 9.92392 775 9.81 141 28 0.18859 438 4 57 391 9-73552 915 9.92384 8 817 9.81 169 27 28 O.18831 428 3 58 415 9-73572 899 9-92376 9 858 9.81 196 0.18804 418 2 ro 440 9-73591 19 883 9.92367 899 9.81224 o« 0.18776 408 I 404 9-73611 2° 1 8b7 9-92359 941 9.81252 1 - \ 0.18748 399 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. f 57' 33° 1 Nat. Sin Log. d. Nat. Cos Log d. Nat.TanLog. c.d. Log. Cot Nat. "^ 54464 9.7361 1 19 83867 9.92359 8 64941 9.81252 0.18748 1.5399 60 I 488 9.73630 851 9.92351 8 982 9.81279 28 0.18721 389 59 2 513 9-73650 19 835 9.92343 8 65024 9.81307 0.18693 379 58 3 537 9.73669 819 9.92335 9 8 Q 065 9.81335 0.18665 369 S7 4 561 9.73689 19 19 20 804 9.92326 106 9.81362 27 28 28 0.18638 359 56 55 5 54586 9.73708 83788 9.92318 65148 9.81390 0.18610 1.5350 6 610 9.73727 772 9.92310 189 9.8I4I8 0.18582 340 54 7 635 9.73747 19 19 20 19 19 20 756 9.92302 9 8 231 9.81445 28 27 28 28 0.18555 330 53 8 659 9.73766 740 9.92293 272 9.81473 0.18527 320 52 9 683 9.73785 724 9.92285 8 8 314 9.81500 0.18500 311 51 50 10 54708 9.73805 83708 9.92277 65355 9.81528 0.18472 1.5301 11 732 9.73824 692 9.92269 397 9.81556 0.18444 291 4Q 12 756 9.73843 676 9.92260 9 8 438 9.81583 27 28 0.18417 282 48 13 781 973863 19 19 660 9.92252 8 9 8 8 8 9 8 8 480 9.81611 0.18389 272 47 14 805 9.73882 645 9.92244 521 9.81638 27 28 0.18362 262 46 45 15 54829 9.73901 83629 9.92235 65563 9.81666 0.18334 1.5253 lb 854 9.73921 19 19 19 19 613 9.92227 604 9.81693 27 28 0.18307 243 44 17 878 9.73940 597 9.92219 646 9.81721 0.18279 233 43 18 902 9.73959 581 9.9221 1 688 9.81748 27 08 0.18252 224 42 19 927 9.73978 565 9.92202 729 9.81776 27 28 0.18224 214 41 20 54951 9-73997 83549 9.92194 65771 9.81803 0.18197 1.5204 40 21 975 9.74017 19 19 19 19 533 9.92186 813 9.81831 0.18169 195 39 22 999 9-74036 517 9.92177 9 8 8 9 8 8 854 9.81858 0! 0.18142 185 38 23 55024 9.74055 501 9.92169 896 9.81886 0.18114 175 37 24 048 9.74074 485 9.92161 938 9.81913 27 28 0.18087 166 36 25 55072 9.74093 83469 9.92152 65980 9.81941 0.18059 1.5 156 35 2b 097 9.74113 19 19 19 19 19 19 19 453 9.92144 66021 9.81968 28 0.18032 147 34 27 121 9.74132 437 9.92136 063 9.81996 0.18004 137 33 2b 145 9.74151 421 9.92127 9 105 9.82023 27 0.17977 127 32 29 169 9.74170 405 9.92119 8 147 9.82051 27 28 0.17949 118 31 30 55194 9.74189 83389 9.921 1 1 66189 9.82078 0.17922 1.5108 30 31 218 9.74208 373 9.92102 9 8 8 230 9.82106 0.17894 099 29 32 242 9.74227 356 9.92094 272 9.82133 s 0.17867 089 28 33 266 9.74246 340 9.92086 314 9.82161 0.17839 080 27 34 291 9.74265 ■••y 19 19 19 19 324 9.92077 9 8 9 8 356 9.82188 27 27 28 0.17812 070 26 25 35 55315 9.74284 83308 9.92069 66398 9.82215 0.17785 1.5061 3(' 339 9.74303 •292 9.92060 440 9.82243 0.17757 051 24 37 363 9.74322 276 9.92052 482 9.82270 ^8 0.17730 042 23 3« 388 9.74341 260 9.92044 524 9.82298 0.17702 032 22 39 40 412 9.74360 ••^9 19 19 19 19 244 9.92035 9 8 566 9.82325 27 27 28 0.17675 023 21 55436 9.74379 83228 9.92027 66608 9.82352 0.17648 1.5013 20 41 460 9.74398 212 9.92018 8 8 650 9.82380 0.17620 004 19 42 484 9.74417 195 9.92010 692 9.82407 28 0.17593 1.4994 18 43 509 9.74436 179 9.92002 734 9.82435 0.17565 985 17 44 45 533 9-74455 19 19 163 9.91993 9 8 27 27 28 0.17538 975 lb 15 55557 9.74474 83147 9.91985 66818 9.82489 0.17511 14966 46 581 9.74493 131 9.91976 9 8 860 9.82517 27 27 28 0.17483 957 14 47 605 9.74512 ■^y 115 9.91968 902 9.82544 0.17456 947 13 48 630 9.74531 098 9.91959 9 944 9.82571 0.17429 938 12 49 654 9.74549 19 19 19 082 9.91951 9 8 986 9.82599 27 27 28 0.17401 928 11 10 50 55678 9.74568 83066 9.91942 67028 9.82626 0.17374 1.4919 51 702 9.74587 050 9-91934 071 9.82653 113 9.82681 0.17347 910 9 S2 726 9.74606 034 9-91925 27 27 27 0.17319 900 8 SS 750 9.74625 ■••9 017 9.91917 155 9.82708 0.17292 891 7 54 775 9.74644 19 18 001 9.91908 9 8 197 9.82735 0.17265 882 b 55 55799 9.74662 82985 9.91900 67239 9.82762 0.17238 14872 5 823 9.74681 ^y 969 9.91891 282 9.82790 27 27 0.17210 863 4 '57 847 9-74700 19 953 9.91883 324 9.82817 0.17183 854 3 58 871 9.74719 i"i 936 9.91874 8 366 9.82844 0.17156 844 2 ro 895 9.74737 920 9.91866 409 9.82871 0.17129 835 1 919 9.74756 ■••9 904 9.91857 9 451 9.82899 0.17101 826 Nat. Cos Log. d. Nat. Sin Log d. Nat. Cot Log. cd. Log.TanNat. / 56' 34^ ' Nat. Sin Log. d. NatCoSLosf. d. Nat.TanLog. d. Log. Cot Nat, 55919 943 968 992 56016 9-74756 9-74775 9.74794 9.74812 9.74831 56040 064 088 112 136 9.74850 9.74868 9-74887 , 9-74906 ! g 9-74924 56160 184 208 232 256 9-74943 9.74961 9.74980 9.74999 9.75017 56280 305 329 353 377 9-75036 975054 9.75073 9.75091 9.751 10 56401 425 449 473 497 9.75128 9.75147 9-75165 9.75184 9.75202 56521 545 569 593 617 9.75221 975239 9-75258 9-75276 9-75294 56641 665 689 713 736 9-75313 9-75331 9-75350 9-75368 9-75386 56760 784 808 832 856 9-75405 9-75423 9-75441 9-75459 9.75478 Daao 904 928 952 976 9.75496 9-75514 9-75533 9-75551 9-75569 57000 024 047 071 095 9-75587 975605 9-75624 9.75642 9-75660 57119 143 167 191 215 9-75678 9.75696 9-75714 9-75733 9-75751 57238 262 286 310 334 358 9-75769 9-7.5787 9-75805 9-75823 9.75841 9-75859 82904 887 871 855 839 9.91857 9.91849 9.91840 9.91832 9.91823 806 790 773 757 9.91815 9.91806 9.91798 9.91789 9.91781 8274T 724 708 692 675 9.91772 9.91763 9-91755 9.91746 9.91738 82659 643 626 610 593 9.91729 9.91720 9.91712 9.91703 9.91695 82577 561 544 528 511 9.91686 9.91677 9.91669 9.91660 9-91651 82495 478 462 446 429 9.91643 9.91634 9.91625 9.91617 9.91608 82413 396 380 363 347 9-91599 9.91591 9.91582 9-91573 9-91565 82330 314 297 281 264 9-91556 9-91547 9-91538 9-91530 9.91521 82248 231 214 198 181 9.91512 9.91504 991495 9.91486 9.91477 82165 148 132 115 098 9.91469 9.91460 9.91451 9.91442 9-91433 82082 065 048 032 oiS 9.91425 9.91416 9.91407 9.91398 9-91389 81999 982 965 949 932 915 9.91381 9.91372 9-91363 9-91354 9-91345 9-91336 67451 493 536 578 620 9.82899 9.82926 9-82953 9.82980 9.83008 67663 705 748 790 832 9-83035 9.83062 9-83089 9.83117 9-83144 67875 917 960 68002 045 9.83171 9.83198 9.83225 9-83252 9.83280 130 173 215 258 9-8.3307 9-83334 9-83361 9-83388 9.83415 68301 343 386 429 471 9.83442 9.83470 9.83497 9.83524 9.83551 68514 557 600 642 685 9-83578 9.83605 9.83632 983659 9.83686 68728 771 814 857 900 9-83713 9.83740 9.83768 9-83795 9.83822 68942 985 69028 071 114 9.83849 9.83876 9.83903 9-83930 9-83957 69157 200 243 286 329 9.83984 9.84011 9-84038 9-84065 9.84092 69372 416 459 502 545 9.84119 9.84146 9.84173 9.84200 9.84227 69588 631 675 718 761 9.84254 9.84280 9.84307 9-84334 9.84361 69804 847 891 934 977 70021 9.84388 9.84415 9.84442 9.84469 9.84496 9-84523 7101 1.4826 7074 816 7047 807 7020 798 6992 788 6965 1-4779 6938 770 6911 761 6883 751 6856 742 6829 1.4733 6802 6775 6748 6720 724 715 705 696 6693 1.4687 6666 678 6639 669 6612 659 6585 650 6558 1.4641 6530 632 6503 623 6476 614 6449 605 6422 1.4596 6395 586 6368 577 6341 568 6314 559 6287 1.4550 6260 541 6232 532 6205 523 6178 514 6151 1.4505 6124 496 6097 487 6070 478 6043 469 6016 1.4460 5989 451 5962 442 5935 433 5908 424 5881 1.4415 5854 406 5827 397 5800 388 5773 379 5746 1.4370 5720 361 5693 352 5666 344 5639 335 5612 1.4326 558S 317 5558 308 5531 299 5504 290 5477 281 Nat. Cos Log. d, Nat. Sin Log. d. 66^ Nat. Cot Log. c.d. Log.TanNat. { 35 f Nat. Sin Log. d. Nat. Cos Log d. Nat.TanLog. c.d. Log. Cot Nat. 57358 9-75859 i 18 81915 9.91336 8 70021 9.84523 0.15477 1.428 1 60 I 381 9-75877 i 18 899 9.91328 9 9 9 9 9 9 8 064 984550 06 0.15450 273 59 2 405 9-75895 18 882 9.91319 107 9.84576 27 27 27 27 27 0.15424 264 58 3 429 9.75913 1 t8 865 9-91310 151 9.84603 0.15397 255 57 4 453 9-75931 18 848 9.91301 194 9-84630 0.15370 246 56 55 5 57477 9-75949 81832 9.91292 70238 9.84657 0.15343 1.4237 6 501 9.75967 iH 815 9.91283 281 9.84684 0.15316 229 54 7 524 9-75985 18 798 9-91274 325 9.847II 0.15289 220 S3 8 548 9-76003 iR 782 9.91266 9 9 9 9 9 9 9 9 9 368 9-84738 26 0.15262 211 S2 9 572 9.76021 18 765 9.91257 412 9-84764 27 27 0.15236 202 51 10 57596 9-76039 T« 81748 9.91248 70455 9.84791 0.15209 1.4193 II 619 9-76057 ! ;« 731 9.91239 499 9-84818 0.15182 185 49 12 643 9.76075 18 714 9.91230 542 9.84845 0.15155 176 48 1.3 667 9-76093 18 698 9.91221 586 9.84872 0.15128 167 47 14 691 9.761 1 1 18 681 9.91212 629 9.84899 26 27 27 0.15101 158 46 45 15 57715 9.76129 TT 81664 9-91203 70673 9.84925 0.15075 1.4150 I6 738 9.76146 ^ 647 9.91194 717 9-84952 0.15048 141 44 17 762 9.76164 : 8 631 9.91185 760 9-84979 0.15021 132 43 i8 786 9.76182 1 ;« 614 9.91176 9 804 9.85006 27 0.14994 124 42 19 810 9.76200 18 t8 597 9-91167 9 9 9 8 848 9.85033 27 26 0.14967 115 41 40 20 57833 9-762i« 81580 9.91158 70891 9.85059 0.14941 1.4106 21 857 9-76230 ,, 563 9.91149 935 9-85086 0.14914 097 39 22 881 9.76253 18 546 9.91141 9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 9 9 9 9 9 9 9 979 9-85113 "7 27 26 0.14887 089 38 23 904 9.76271 18 530 9.91 132 71023 9.85140 0.14860 080 37 24 928 9.76289 t8 513 9.91123 066 9.85166 27 27 27 05 0.14834 071 36 35 25 57952 9-76307 18 81496 9.91114 71 no 9.85193 0.14807 1.4063 26 976 9-76324 479 9-91 105 154 9.85220 0.14780 054 34 27 999 9-76342 18 462 9.91096 198 9.85247 0.14753 045 33 28 58023 9.76360 18 445 9-91087 242 9.85273 0.14727- 037 32 29 30 047 9-76378 17 18 428 9.91078 285 9-85300 27 27 27 0.14700 028 31 30^ 58070 9-76395 8 14 1 2 9.91069 71329 9.85327 0.14673 1.4019 31 094 9.76413 18 395 9.91060 373 9-85354 0.14646 on 29 32 118 9.76431 ;? 378 9.91051 417 9.85380 0.14620 002 28 33 141 9-76448 361 9.91042 461 9.85407 27 26 27 27 06 0.14593 1.3994 27 34 35 165 9.76466 1 11 344 9-91033 505 9-85434 0.14566 985 26 58189 9.76484 17 18 81327 9.91023 71549 9.85460 0.14540 1.3976 25 36 212 9.76501 310 9.91014 593 9-85487 0.14513 968 24 37 236 9-76519 18 293 9.91005 637 9-85514 0.14486 959 23 38 260 9-76537 681 9-85540 0.14460 951 22 39 40 283 9-76554 17 18 18 259 9.90987 725 9.85567 27 27 06 0.14433 942 21 20 58307 9-76572 81242 9.90978 71769 9.85594 0.14406 1.3934 41 330 9-76590 17 18 225 9.90969 813 9.85620 0.14380 925 19 42 354 9-76607 208 9.90960 857 9-85647 27 0.14353 916 18 43 378 9.76625 191 9.90951 901 9.85674 06 0.14326 908 17 44 401 9.76642 18 174 9-90942 946 9.85700 27 27 ^6 0.14300 899 16 45 58425 9.76660 81 157 9-90933 71990 9.85727 0.14273 1.3891 15 46 449 9-76677 140 9.90924 72034 9.85754 0.14246 882 14 47 472 9.76695 123 9.90915 078 9.85780 0.14220 874 13 48 496 9.76712 ^8 17 18 106 9.90906 122 9.85807 0.14193 865 12 49 50 519 9-76730 089 9.90896 9 9 9 9 9 9 167 9-85834 26 0.14166 857 11 58543 9-76747 81072 9.90887 72211 9.85860 0.14140 1.3848 10 ■^i 567 9.76765 055 990878 255 9-85887 0.14113 840 9 S2 590 9.76782 18 038 9.90869 299 9-85913 27 27 26 27 0.14087 831 8 ';3 614 9.76800 021 9.90860 344 985940 0.14060 823 7 54 55 637 9.76817 17 18 004 9.90851 388 9-85967 0.14033 814 6 58661 9.76835 80987 9.90842 72432 9.85993 0.14007 1.3806 5 S6 684 9.76852 17 18 970 9.90832 9 477 9.86020 0.13980 798 4 708 9.76870 953 990823 521 9.86046 27 27 '>6 0.13954 789 3 58 731 9.76887 17 936 9.90814 9 9 565 9.86073 0.13927 781 2 i 755 9-76904 18 919 9.90805 610 9.86100 0.13900 772 I 779 9-76922 902 9-90796 9 654 9.86126 0.13874 764 Nat.CoSLog. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.Tan Nat. f 64 t° 36 t Nat. Sin Log. d. Nat. Cos Log. d. Nat. Tan Log. c.d. Log. Cot Nat. 58779 9-76922 80902 9.90796 72654 9.86126 0.13874 1.3764 60 I 802 9.76939 iS 885 9.90787 699 9.86153 06 0.13847 755 59 2 826 9.76957 17 867 9.90777 743 9-86179 0.13821 747 58 3 849 9-76974 850 9.90768 788 9.86206 26 27 '^6 0.13794 739 S7 4 873 9.76991 17 18 17 17 18 833 9.90759 9 9 9 832 9.86232 0.13768 730 56 5 58896 9.77009 80816 9.90750 72877 9-86259 0.13741 1.3722 55 b 920 9.77026 799 9.90741 921 9.86285 % 0.13715 713 54 7 943 9-77043 782 9.90731 966 9.86312 0.13688 705 53 b 967 9.77061 17 17 17 18 765 9.90722 9 9 73010 9.86338 0.13662 697 52 9 990 9.77078 748 9.90713 055 9-86365 27 0.13635 688 51 10 59014 9-77095 80730 9-90704 73100 9.86392 0.13608 1.3680 50 II 037 9-77"2 713 9.90694 . 9 9 144 9.86418 0.13582 672 49 12 061 9-77130 17 696 9.90685 189 9.86445 o(S 0.13555 663 48 13 084 9.77147 679 9.90676 234 9.86471 0.13529 655 47 14 108 9.77164 17 17 18 662 9.90667 9 10 9 278 9.86498 27 26 0.13502 647 46 15 S9131 9.77181 80644 9-90657 73323 9.86524 0.13476 1.3638 45 16 154 9-77199 627 9.90648 368 9.86551 26 05 0.13449 630 44 17 178 9.77216 17 17 18 17 17 17 610 9.90639 9 9 413 9-86577 0.13423 622 43 l8 201 9.77233 593 9.90630 457 9.86603 0.13397 613 42 19 225 9-77250 576 9.90620 9 502 9.86630 26 0.13370 605 41 20 59248 9.77268 80558 9.90611 73547 9-86656 0.13344 1.3597 40 21 272 9.77285 541 9.90602 "6 0.13317 588 39 22 295 9-77302 524 9.90592 9 637 9.86709 27 0.13291 580 38 23 318 9-77319 507 9.90583 681 9.86736 0.13264 572 37 24 342 9.77336 17 17 17 17 489 9.90574 9 9 726 9.86762 27 05 0.13238 564 36 25 59365 9-77353 80472 9.90565 73771 9.86789 0.13211 1.3555 35 2b 389 9-77370 455 9.90555 816 9.86815 0.13185 547 34 27 412 9.77387 438 9.90546 9 9 861 9.86842 o(=, 0.13158 539 33 28 436 9.77405 17 17 17 17 17 420 9.90537 906 9.86868 '^f, 0.13132 531 32 29 459 9-77422 403 9.90527 9 9 951 9.86894 27 2*^ 0.13106 522 31 30 59482 9.77439 80386 9.90518 73996 9.86921 0.13079 1.3514 30 31 506 9.77456 368 9.90509 74041 9.86947 % 0.13053 506 29 32 529 9.77473 351 9.90499 9 086 9.86974 0.13026 498 28 33 552 9-77490 334 9-90490 131 9.87000 27 26 "6 0.13000 490 27 34 35 576 9-77507 17 17 17 17 17 17 17 316 9.90480 9 176 9.87027 0.12973 481 2b 59599 9-77524 80299 9.90471 74221 9-87053 p.12947 1.3473 25 3^^ 622 9.77541 282 9.90462 9 267 9.87079 0.12921 465 24 37 646 9-7755? 264 9.90452 312 9.87106 06 0.12894 457 23 3« 669 9.77575 247 990443 9 9 10 357 9-87132 ^(^ 0.12868 449 22 39 40 693 9.77592 230 9.90434 402 9.87158 27 06 0.12842 440 21 59716 9.77609 80212 9.90424 74447 9-87185 0.12815 1.3432 20 41 739 9.77626 195 9-90415 9 492 9.87211 0.12789 424 19 42 763 9.77643 17 178 9-90405 538 9.87238 27 26 0.12762 416 18 43 786 9.77660 TT 160 9.90396 583 9.87264 06 0.12736 408 17 44 809 9.77677 17 143 9-90386 9 628 9.87290 27 06 0.12710 400 lb 45 59832 9.77694 80125 9.90377 74674 9.87317 0.12683 1.3392 16 4b 856 9.77711 17 108 9.90368 9 719 9.87343 06 0.12657 384 14 47 879 9.77728 16 091 9-90358 764 9-87369 27 06 0.12631 375 13 48 902 9.77744 073 9-90349 9 810 9.87396 0.12604 367 12 49 926 9.77761 17 17 17 17 056 9-90339 9 855 9-87422 26 27 0.12578 359 11 50 59949 9-77778 80038 9.90330 74900 9.87448 0.12552 1.3351 10 51 972 9.77795 021 9.90320 9 946 9.87475 0.12525 343 9 .S2 995 9-77812 003 9.9031 1 991 9.87501 06 0.12499 335 8 S3 60019 9.77829 79986 9.90301 75037 9-87527 27 26 ■2(^ 0.12473 327 7 54 042 9.77846 16 968 9.90292 10 082 9-87554 0.12446 319 b 55 60065 9.77862 79951 9.90282 75128 9.87580 0.12420 1. 33 II 5 St 089 9.77879 17 934 9-90273 9 173 9.87606 % 0.12394 303 4 57 112 9.77896 17 916 9.90263 219 9-87633 0.12367 295 3 5« 135 9.77913 17 899 9-90254 9 264 9-87659 26 0.12341 287 2 ;'J?. 158 9.77930 881 9.90244 310 9.87685 26 0.12315 278 I 60 182 9.77946 864 9.90235 9 355 9-8771 1 0.12289 270 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. C.d. Log.TanNat. lI 63^ Nat. Sin Log. d. 37 Nat. Cos Log. d. Nat.TanLog. c.d Log. Cot Nat, 35 36 37 38 40 41 42 43 44 60182 205 228 251 274 9.77946 977963 9.77980 9.77997 9.78013 60298 321 344 367 390 9.78030 9.78047 9.78063 9.78080 978097 60414 437 460 483 506 9.781 13 9.78130 9.78147 9.78163 9.78180 60529 553 576 599 622 9.78197 9.78213 9.78230 9.78246 9.78263 60645 668 691 714 738 9.78280 9.78296 9.78313 9.78329 9.78346 60761 784 807 830 853 9.78362 978379 978395 9.78412 9.78428 60876 899 922 945 968 9-78445 9.78461 9.78478 9.78494 9.78510 60991 61015 038 061 084 9.78527 9-78543 9.78560 9.78576 9.78592 61107 130 176 199 9.78609 9.78625 9.78642 9.78658 9-78674 61222 245 268 291 314 9.78691 9.78707 9.78723 9-78739 9.78756 61337 360 383 406 429 9.78772 9.78788 9.78805 9.78821 9.78837 6145 1 474 497 520 543 566 9-78853 9.78869 9.78886 9.78902 9.78918 9.78934 79864 846 829 811 793 9.9023.5 9.90225 9.90216 9.90206 9.90197 79776 758 741 723 706 9.90187 9.90178 9.90168 9.90159 9.90149 79688 671 653 635 618 9.90139 9.90130 9.90120 9.90111 9.90101 79600 583 565 547 530 9.90091 9.90082 9.90072 9.90063 9.90053 79512 494 477 459 441 9-90043 9.90034 9.90024 9.90014 9.90005 79424 406 371 353 9-8999$ 9.89985 9.89976 9.89966 9.89956 79335 318 300 282 264 9.89947 9-89937 9.89927 9.89918 9.89908 79247 229 211 193 176 9.89898 9.89888 9.89879 9.89869 9.89859 79158 140 122 105 087 9.89849 9.89840 9.89830 9.89820 9.89810 79069 051 033 016 78998 9.89801 9.89791 9.89781 9.89771 9.89761 78980 962 944 926 908 9.89752 9.89742 9.89732 9.89722 9.89712 78891 873 855 837 819 801 9.89702 9.89693 9.89683 9.89673 9.89663 9.89653 75355 401 447 492 538 9.8771 1 9.87738 9.87764 9.87790 9.87817 75584 629 675 721 767 9.87843 9.87869 9.87895 9.87922 9.87948 75812 858 904 950 996 9.87974 9.88000 9.88027 9.88053 9.88079 76042 088 134 180 226 9.88105 9.88131 9.88158 9.88184 9.88210 76272 318 364 410 456 9.88236 9.88262 9.88289 9.88315 9.88341 76502 548 594 640' 686 9.88367 988393 9.88420 9.88446 9.88472 76733 779 825 871 918 9.88498 9.88524 9.88550 9.88577 9.88603 76964 77010 057 103 149 9.88629 9.88655 9.88681 9.88707 9.88733 77196 242 289 335 382 9.88759 9.88786 9.88812 9.88838 9.88864 77428 475 521 568 615 9.88890 9.88916 9.88942 9.88968 9.88994 77661 708 754 801 9.89020 9.89046 9.89073 9.89099 9.89125 77895 941 988 78035 082 129 9.89151 9.89177 9.89203 9.89229 989255 9.89281 Nat. Sin Log. d. Nat. Cot Log. c.d, Log.TanNat 0.12289 0.12262 0.12236 0.12210 0.12183 1.3270 262 254 246 238 0.12157 0.12131 0.12105 0.12078 0.12052 1.3230 222 214 206 198 0.12026 0.12000 0.11973 0.11947 0.11921 1.3190 182 175 167 159 0.11895 0.11869 0.11842 0.11816 0.11790 1-3151 143 135 127 119 0.11764 0.11738 0.11711 0.11685 0.11659 1.3111 103 095 087 079 0.11633 0.11607 0.11580 0.11554 0.11528 1.3072 064 056 048 040 0.11502 0.11476 0.11450 0.11423 0.11397 1.3032 024 017 009 001 0.11371 0.11345 0.11319 0.11293 0.11267 1.2993 985 977 970 962 0.11241 0.11214 0.11188 0.11162 0.1 1 136 1.2954 946 938 931 923 O.IIIIO 0.11084 0.11058 0.11032 0.11006 1.2915 907 900 892 0.10980 0.10954 0.10927 0.10901 0.10875 1.2876 869 861 853 846 0.10849 0.10823 0.10797 0.10771 0.1074^ 0.10719 I.2fc 830 822 815 807 799 Nat. Cos Log. d 62^ 38 f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 61566 9.78934 16 78801 9.89653 78129 9.89281 05 0.10719 1.2799 60 I 589 9.78950 17 16 783 9-89643 TO 175 9.89307 06 0.10693 792 59 2 612 9.78967 765 9-89633 222 9-89333 06 0.10667 784 58 3 635 9-78983 16 747 9-89624 9 269 9.89359 06 0.10641 776 ^7 4 658 9.78999 16 t6 729 9.89614 10 316 9-89385 26 26 0.10615 769 56 5 6I68I 9.79015 787 1 1 9.89604 78363 9.894II 0.10589 1.2761 55 b 704 979031 16 694 9.89594 410 9-89437 og 0.10563 753 54 7 726 9-79047 16 676 9.89584 457 9-89463 26 0.10537 746 53 8 749 9.79063 16 658 9-89574 504 9.89489 06 0.10511 738 52 9 10 772 9.79079 16 16 640 9-89564 10 551 9.89515 26 "6 0.10485 731 51 50 61795 9-79095 78622 9.89554 78598 9.89541 0.10459 1.2723 II 818 9.791 1 1 17 16 604 9-89544 645 9.89567 og 0.10433 715 49 12 841 9.79128 586 9.89534 692 9.89593 06 0.10407 708 48 13 864 9.79144 16 568 9.89524 739 9.89619 og 0.10381 700 47 14 887 9.79160 16 t6 550 9.89514 10 9 786 9.89645 26 0.10355 693 46 15 61909 9.79176 78532 9.89504 78834 9.89671 0.10329 1.2685 45 lb 932 9.79192 16 514 9.89495 881 9.89697 Ofi 0.10303 677 44 17 955 9-79208 16 496 9.89485 928 9.89723 og 0.10277 670 43 l8 978 9.79224 16 478 9.89475 975 9.89749 og 0.10251 662 42 19 62001 9.79240 16 16 460 9.89465 10 79022 9.89775 26 '^6 0.10225 655 41 40 20 62024 9.79256 78442 9.89455 79070 9.89801 0.10199 1.26^ 0.10173 - "^ 21 046 9.79272 16 424 9.89445 TO 117 9.89827 og 39 22 069 9.79288 16 405 9.89435 TO 164 9.89853 '-'6 0.10147 632 38 23 092 9.79304 15 16 16 387 9.89425 TO 212 9.89879 og 0.I0I2I 624 37 24 115 9.79319 369 9.89415 10 259 9.89905 26 26 0.10095 617 36 25 62138 9.79335 78351 9.89405 79306 9.89931 0.10069 1.2609 35 2b 160 9.79351 16 333 9.89395 354 9.89957 401 9.89983 26 0.10043 602 34 27 183 9-79367 16 315 9.89385 -^6 O.IOOI7 594 33 28 206 9.79383 16 297 9.89375 J J 449 9-90009 ^f) 0.09991 587 32 29 229 9.79399 16 t6 279 9.89364 10 496 9-90035 26 0^ 0.09965 579 31 30 62251 9.79415 78261 9.89354 79544 9.90061 0.09939 1.2572 30 31 274 9.79431 16 243 9.89344 591 9.90086 0.09914 564 29 32 297 9.79447 16 225 9.89334 639 9-90112 og 0.09888 557 28 33 320 9.79463 15 16 16 206 9.89324 686 9.90138 -""^ 0.09862 549 27 34 35^ 342 9.79478 188 9.89314 10 734 9.90164 26 -^6 0.09836 542 2b 25 62365 9.79494 78170 9-89304 79781 9.90190 0.09810 1.2534 3b 388 9.79510 16 152 9.89294 TO 829 9.90216 ^f) 0.09784 527 24 37 411 9.79526 16 134 9.89284 TO 877 9.90242 ^(^ 0.09758 519 23 3H 433 9.79542 16 116 9.89274 TO 924 9.90268 og 0.09732 512 22 39 456 9.79558 15 t6 098 9.89264 10 972 9-90294 26 og 0.09706 504 21 40 62479 9.79573 78079 9.89254 80020 9.90320 0.09680 1.2497 20 41 502 9.79589 t6 061 9.89244 067 9.90346 % 0.09654 489 19 42 524 9.79605 16 043 989233 115 9-90371 0.09629 482 18 43 547 9.79621 15 16 16 025 9.89223 163 9.90397 "6 0.09603 475 17 44 570 9.79636 007 9.89213 10 211 9.90423 26 "6 0.09577 467 lb 45 62592 9.79652 77988 9.89203 80258 9-90449 0.09551 1.2460 15 4b 615 9.79668 16 970 9.89193 10 306 9-90475 '^(^ 0.09525 452 14 47 638 9.79684 952 9.89183 354 9-90501 '>6 0.09499 445 13 48 660 9.79699 934 9.89173 402 9-90527 '>6 0.09473 437 12 49 683 9.79715 16 916 9.89162 10 450 9-90553 25 0.09447 430 II 50 62706 9.79731 77897 9.89152 80498 9.90578 0.09422 1.2423 10 51 728 9.79746 879 9.89142 546 9.90604 og 0.09396 415 9 52 751 9.79762 16 861 9.89132 594 9.90630 og 0.09370 408 8 53 774 9-79778 15 16 16 IS 16 16 843 9.89122 642 9.90656 og 0.09344 401 7 54 796 9-79793 824 9.891 12 II 690 9.90682 26 26 0.09318 393 6 ~5" 55 62819 9.79809 77806 9.89101 80738 9.90708 0.09292 1.2386 56 842 9.79825 788 9.89091 786 9.90734 25 26 0.09266 378 4 57 864 9.79840 769 9.89081 TO 834 9.90759 882 9.90785 0.09241 371 3 5B 887 9-79856 751 9.89071 26 0.0921S 364 2 ro 909 9.79872 15 733 9-89060 TO 930 9.9081 I og 0.09189 356 I 932 9-79887 715 9-89050 978 9.90837 0.09163 349 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. / 61" i 39^ ■^ Nat. Sin Log. d. 1 Nat. Cos Log. d.| Nat.TanLog. =.d. Log.CotNat.| 62932 9-79887 16 77715 9-89050 80978 9-90837 05 0.09163 1.2349 60 I 955 9-79903 15 696 9.89040 81027 9-90863 ^f) 0-09137 342 59 2 977 9-79918 678 9.89030 075 9.90889 S 0.091 1 1 334 58 3 63000 9.79934 16 660 9.89020 123 9.90914 0.09086 327 .57 4 022 9.79950 15 16 641 9.89009 171 9-90940 26 0.09060 320 56 5 63045 9.79965 77623 9.88999 81220 9.90966 0.09034 1.2312 55 6 068 9.79981 15 268 9-90992 05 0.09008 305 54 7 090 979996 586 9.88978 316 9.9IOI8 25 06 0.08982 298 53 8 113 9.80012 15 16 15 568 9-88968 364 9.91043 0.08957 290 52 9 10 135 9.80027 550 9.88958 413 9.91069 26 26 0.08931 283 51 50 63158 9.80043 77531 9.88948 8 146 I 9.91095 0.08905 1.2276 II 180 9.80058 513 9-88937 510 9.91 121 26 0.08879 268 49 12 203 9.80074 15 494 9.88927 558 9.91 147 25 26 0.08853 261 48 i.S 225 9.80089 476 9.88917 606 9.91 172 0.08828 254 47 14 248 9,80105 15 16 458 9.88906 655 9.9II98 26 0.08802 247 46 45 15 63271 9.80120 77439 9.88896 81703 9.91224 0.08776 1.2239 i6 293 9.80136 15 15 16 421 9.88886 752 9.91250 nfS 0.08750 232 44 I? 316 9.80151 402 9.88875 800 9.91276 % 0.08724 225 43 i8 338 9.80166 384 9-88861 849 9.9I30I 0.08699 218 42 19 361 9.80182 15 366 9-88855 898 9-91327 26 0.08673 210 41 20 63383 9.80197 77347 9-88844 81946 9-91353 0.08647 1.2203 40 21 406 9.80213 15 329 9.88834 995 9-91379 % 0.08621 196 39 22 428 9.80228 310 9.88824 82044 9-91404 0.08596 189 38 23 451 9.80244 292 9.88813 092 9.91430 ^6 0.08570 181 37 24 473 9-80259 15 15 273 9.88803 141 9.91456 26 0.08544 174 36 25 63496 9.80274 77255 9.88793 82190 9.91482 0.08518 1.2167 35 26 518 9.80290 15 236 9.88782 238 9-91507 0.08493 160 34 27 540 9.80305 218 9.88772 287 9-91533 ■^f) 0.08467 153 33 28 563 9.80320 199 9.88761 336 9-91559 '^f) 0.08441 145 32 29 30 585 9-80336 15 IS 181 9.88751 385 9-91585 25 0.08415 138 31 63608 9.80351 77162 9.88741 82434 9.91610 0.08390 1.2131 30 31 630 9.80366 144 9.88730 483 9.91636 ->f> 0.08364 124 29 32 653 9-80382 15 15 16 15 15 125 9.88720 531 9.91662 ^f) 0.08338 117 28 33 675 9-80397 107 9.88709 580 9.91688 25 26 '>6 0.08312 109 27 34 698 9.80412 088 9.88699 629 9.91713 0.08287 102 2b 25 35 63720 9.80428 77070 9.88688 82678 9.91739 0.08261 1.2095 36 742 9.80443 051 9.88678 727 9.91765 06 0.08235 088 24 37 765 9.80458 033 9.88668 776 9.91791 S 0.08209 081 23 38 787 9-80473 014 9.88657 10 825 9.91816 0.08184 074 22 39 810 9.80489 15 15 15 76996 9.88647 874 9.91842 26 25 -^6 0.08158 066 21 40 63832 9.80504 76977 9.88636 82923 9.91868 0.08132 1.2059 20 41 854 9.80519 959 9.88626 972 9.91893 0.08107 052 19 42 877 9-80534 940 9.88615 83022 9.91919 06 0.08081 "045 18 43 899 9-80550 15 15 15 15 15 16 15 15 921 9.88605 071 9.91945 "6 0.08055 038 17 44 922 9.80565 903 9.88594 120 9.91971 25 '^6 0.08029 031 16 45 63944 9.80580 76884 '9.88584 83169 9.91996 0.08004 1.2024 15 46 966 9.80595 866 9.88573 218 9.92022 -^6 0.07978 017 14 47 989 9.80610 847 9.88563 268 9.92048 25 0.07952 009 13 48 64011 9.80625 828 9.88552 317 9.92073 0.07927 002 12 49 033 9.80641 810 9.88542 366 9.92099 26 0.07901 1.1995 II 50 64056 9.80656 76791 9.88531 83415 9.92125 0.07875 1. 1988 10 SI 078 9.80671 772 9.88521 465 9.92150 0.07850 981 9 q2 100 9.80686 15 754 9.88510 514 9.92176 26 0.07824 974 8 S3 123 9.80701 15 735 9-88499 564 9.92202 25 26 '>6 0.07798 967 7 54 55 145 9.80716 15 15 717 9.88489 613 9.92227 0.07773 960 6 64167 9.80731 76698 9.88478 83662 9.92253 0.07747 I-1953 S6 190 9.80746 16 679 9.88468 712 9.92279 "6 0.07721 946 4 S7 212 9.80762 661 9-88457 761 9.92304 0.07696 939 3 S8 234 9.80777 15 642 9.88447 811 9.92330 06 0.07670 932 2 IS 256 9.80792 15 623 9.88436 860 9.92356 25 0.07644 925 I 279 9.80807 ^5 604 9-88425 910 9.92381 0.07619 918 _ |Nat. Cos Log. d. |Nat. Sin Log. d. Nat. Cot Log cd .Log.TanNat / 60^ Nat. Sin Log. d. 40° Nat. Cos Log. d. Nat. Tan Log c.d. Log. Cot Nat. 64279 301 323 346 368 9.80807 9.80822 9-80837 9.80852 9.80867 64390 412 435 457 479 9.80882 9.80897 9.80912 9.80927 9.80942 64501 524 546 568 590 9.80957 9.80972 9.80987 9.81002 9.81017 64612 635 657 679 701 9.81032 9.81047 9.81061 9.81076 9.81091 64723 746 768 790 812 9.81 106 9.81121 9.81136 9.81151 9.81166 64834 856 878 901 923 9.81180 9.81 195 9.81210 9.81225 9.81240 64945 967 989 6501 1 033 9.81254 9.81269 9.81284 9.81299 9-81314 65055 077 100 122 144 9.81328 9-81343 9-81358 9.81372 9.81387 65166 188 210 232 254 9.81402 9.81417 9.81431 9.81446 9.81461 65276 298 320 342 364 9.81475 9.81490 9.81505 9.81519 9.81534 65386 408 430 452 474 9.81549 9.81563 9.81578 9.81592 9.81607 65496 518 540 562 584 606 9.81622 9.81636 9.81651 9.81665 9.81680 9.81694 76604 586 567 548 530 9.88425 9-88415 9.88404 9.88394 9.88383 765 1 1 492 473 455 436 9.88372 9.88362 9.88351 9.88340 9.88330 76417 398 380 361 342 9.88319 9.88308 9.88298 9.88287 9.88276 76323 304 286 267 248 9.88266 9.88255 9.88244 9-88234 9.88223 76229 210 192 173 154 9.88212 9.88201 9.88191 9.88180 9.88169 76135 116 097 078 059 9.88158 9.88148 9-88137 9.88126 9.88115 76041 022 003 75984 965 9.88105 9.88094 9.88083 9.88072 9.88061 75946 927 908 889 870 9.88051 9.88040 9.88029 9.88018 9.88007 75851 832 813 794 775 9.87996 9.87985 987975 9.87964 9.87953 75756 738 719 700 680 9.87942 9.87931 9.87920 9.87909 9.87898 75661 642 623 604 585 9.87887 9.87877 9.87866 9.87855 9.87844 75566 547 528 509 490 471 987833 9.87822 9.87811 9.87800 9.87789 9.87778 83910 960 84009 059 108 9.92381 9.92407 9-92433 9.92458 9.92484 84158 208 258 307 357 9.92510 9.92535 9.92561 9.92587 9.92612 84407 457 507 556 606 9.92638 9.92663 9.92689 9.92715 9.92740 84656 706 756 806 856 9.92766 9.92792 9.92817 9.92843 9.92868 84906 956 85006 057 107 9.92894 9.92920 9-92945 9.92971 9.92996 85157 207 257 308 358 9.93022 9.93048 9.93073 9.93099 9.93124 85408 458 509 559 609 9-93150 993175 9-93201 9-93227 9-93252 5660 710 761 811 862 9.93278 9.93303 9.93329 9.93354 9.93380 85912 963 86014 064 "5 9.93406 9.93431 9-93457 9.93482 993508 86166 216 267 318 368 9-93533 9-93559 993584 9.93610 9.93636 86419 470 521 572 623 9.93661 9.93687 9.93712 9.93738 993763 86674 725 776 827 878 929 9.93789 9.93814 9.93840 993865 9.93891 9.93916 26 0.07619 0.07593 0.07567 0.07542 0.07516 1.1915 910 903 896 0.07490 0.07465 0.07439 0.07413 0.07388 1.1882 875 868 861 854 0,07362 0.07337 0.07311 0.07285 0.07260 1.1847 840 833 826 819 0.07234 0.07208 0.07183 0.07157 0.07132 1.1812 806 799 792 785 0.07106 0.07080 0.07055 0.07029 0.07004 1.1778 771 764 757 750 0.06978 0.06952 0.06927 0.06901 0.06876 1.1743 736 729 722 715 0.06850 0.06825 0.06799 0.06773 0.06748 1. 1708 702 695 688 681 0.06722 0.06697 0.06671 0.06646 0.06620 1. 1674 667 660 653 647 0.06594 0.06569 0.06543 0.06518 0.06492 1. 1 640 633 626 619 612 0.06467 0.06441 0.06416 0.06390 0.06364 1.1606 599 592 585 578 0.06339 0.06313 0.06288 0.06262 0.06237 1.1571 565 558 551 544 0.0621 1 0.06186 0.06160 o.o6i3g 0.06109 0.06084 1.1538 531 524 517 510 504 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. 49° Log.TanNat. 41 / Nat. Sin Log. d. Nat. Cos Log. d.| Nat.TanLog. c.d. Log. Cot Nat. 65606 9.81694 15 14 15 75471 9-87778 TT 86929 9.93916 --•6 0.06084 1-1504 60 I 628 9.81709 452 9-87767 980 9.93942 0.06058 497 59 2 650 9.81723 433 9-87756 TT 87031 9.93967 0.06033 490 58 3 672 9.81738 414 9-87745 082 9.93993 25 26 0.06007 483 57 4 694 9.81752 14 15 14 15 14 15 14 15 14 14 15 14 15 14 15 14 14 395 9-87734 II 133 9.94018 0.05982 477 56 55 5 65716 9.81767 75375 9-87723 87184 9.94044 0.05956 1. 1470 6 738 9.8I78I 356 9.87712 236 9.94069 0.05931 463 54 7 759 9-81796 337 9-87701 287 9.94095 25 '^6 0.05905 456 53 8 781 9.81810 318 9.87690 338 9.94120 0.05880 450 52 9 803 9.81825 299 9.87679 II 389 9.94146 25 26 0.05854 443 51 10 65825 9.81839 75280 9.87668 87441 9.94I7I 0.05829 1.1436 50 II 847 9.81854 261 9.87657 492 9.94197 2^ 0.05803 430 49 12 869 9.81868 241 9.87646 543 9.94222 0.05778 423 48 13 891 9.81882 222 9.87635 595 994248 25 26 0.05752 416 47 14 15 913 9.81897 203 9.87624 II 646 9.94273 0.05727 410 46 45" 65935 9-81911 75184 9.87613 87698 9.94299 0.05701 1. 1403 16 956 9.81926 165 9.87601 749 994324 0.05676 396 44 17 978 9.81940 146 9.87590 801 9.94350 % 0.05650 389 43 l8 66000 9.81955 852 9.94375 0.05625 383 42 19 022 9.81969 107 9.87568 II TT 904 9.94401 25 2fS 0.05599 376 41 20 66044 9-81983 75088 9-87557 87955 9.94426 0.05574 1.1369 40 21 066 9.81998 14 14 15 14 14 15 14 14 14 15 14 14 15 14 14 14 069 9-87546 88007 9.94452 % 0.05548 363 39 22 088 9.82012 050 9.87535 059 9-94477 0.05523 356 38 2S 109 9.82026 030 9.87524 no 9.94503 25 26 25 0.05497 349 37 24 25 131 9.82041 on 9.87513 12 162 9.94528 0.05472 343 36 66153 9-82055 74992 9.87501 88214 9.94554 0.05446 1.1336 35 26 175 9.82069 973 9.87490 265 9-94579 0.05421 329 34 27 197 9.82084 953 9.87479 317 994604 0.05396 323 33 28 218 9.82098 934 9.87468 369 994630 25 26 0.05370 316 32 29 240 9.821 12 915 9.87457 II 421 9.94655 0.05345 310 31 30 30 66262 9.82126 74896 9.87446 88473 9.94681 0.05319 1.1303 31 284 9.82141 876 9.87434 524 9.94706 0.05294 296 29 32 306 9.82155 857 9.87423 576 9.94732 25 26 0.05268 290 28 33 327 9.82169 838 9.87412 628 9.94757 0.05243 283 27 34 349 9.82184 818 9.87401 II 680 9.94783 88732 9.94808 25 06 0.05217 276 26 25 35 66371 9.82198 74799 9.87390 0.05192 1,1270 36 393 9-82212 780 9.87378 784 9.94834 25 0.05166 263 24 37 414 9.82226 760 9.87367 836 9.94859 O.05141 257 23 38 436 9.82240 15 14 14 14 14 15 14 14 741 9.87356 J J 888 9.94884 0.051 16 250 22 39 458 9-82255 722 9.87345 II 940 9.94910 25 06 0.05090 243 21 40 66480 9.82269 74703 9.87334 88992 9.94935 0.05065 1. 1 237 20 41 501 9.82283 683 9.87322 89045 9.94961 s 0.05039 230 19 42 523 9.82297 664 9.87311 097 9.94986 0.05014 224 18 43 545 9-8231 1 644 9.87300 149 9.95012 25 25 '^6 0.04988 217 17 44 566 9.82326 625 9.87288 II 201 9.95037 0.0403 211 16 T5 45 66588 9.82340 74606 9.87277 89253 995062 0.04938 1.1204 46 610 9.82354 586 9.87266 306 9.95088 % 0.04912 197 H 47 632 9.82368 14 567 9.87255 358 9.95113 0.04887 191 13 48 653 9-82382 548 9.87243 410 9.95139 25 26 25 25 0.04861 184 12 49 50 675 9.82396 14 14 15 528 9.87232 II 463 9.95164 0.04836 178 II To 66697 9.82410 74509 9.87221 89515 9.95190 0.04810 1.1171 =;i 718 9.82424 489 9.87209 567 9.95215 0.04785 165 9 =;2 740 9.82439 470 9.87198 620 9.95240 0.04760 158 8 S3 762 9-82453 14 14 451 9.87187 672 9.95266 25 26 % 0.04734 152 y 54 783 9.82467 431 9.87175 II 725 9.95291 0.04709 145 6 55 66805 9.82481 74412 9.87164 89777 9.95317 0.04683 1. 1 139 S6 827 9.82495 14 392 9.87153 830 9.9.5342 0.04658 132 4 S7 848 9.82509 14 373 9.87141 883 9.95368 25 0.04632 126 3 S8 870 9.82523 14 353 9.87130 935 9.95393 0.04607 119 2 SQ 891 9-82537 14 334 9.87119 988 9.95418 0.04582 113 I 60 913 9.82551 14 314 9.87107 90040 9.95444 0.04556 106 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. C.d Log.TanNat. t m Nat. Sin Log. d. 42^ Nat. Cos Log. d. Nat. Tan Log. c.d. Log. Cot Nat, 66913 935 956 978 999 9.82551 9.82565 9.82579 9.82593 9.82607 67021 043 064 086 107 9.82621 9.82635 9.82649 9.82663 9.82677 67129 151 172 194 215 9.82691 9.82705 9.82719 9.82733 9.82747 67237 258 280 301 323 9.82761 9.82775 9.82788 9.82802 9.82816 67344 366 387 409 430 9.82830 9.82844 9.82858 9.82872 9.82885 67452 473 495 516 538 9.82899 9.82913 9.82927 9.82941 9.82955 67559 580 602 623 645 9.82968 9.82982 9.82996 9.83010 9.83023 67666 688 709 730 752 9.83037 9.83051 9.8306g 9.83078 9.83092 67773 795 816 837 859 9.83106 9.83120 9.83133 9.83147 9^83161 67880 901 923 944 965 9.83174 9.83188 9.83202 9.83215 9.83229 67987 68008 029 051 072 9.83242 9.83256 9.83270 9.83283 9.83297 68093 115 136 157 179 200 9.83310 9.83324 9.83338 9.83351 9.83365 9.83378 74314 295 276 256 237 9.87107 9.87096 9.87085 9.87073 9.87062 74217 9.87050 198 9.87039 178 9.87028 159 9,87016 139 9.87005 74120 9.86993 100 9.86982 080 9.86970 061 9.86959 041 9.86947 74022 9.86936 002 9.86924 73983 9.86913 963 9.86902 944 9.86890 73924 9.86879 904 9.86867 885 9.86855 865 9.86844 846 9.86832 73826 9.86821 806 9.86809 787 9.86798 767 9.86786 747 9.8677§ 73728 9.86763 708 9.86752 688 9.86740 669 9.86728 649 9.86717 73629 9.86705 610 9.86694 590 9.86682 570 9.86670 551 9.86659 73531 9.86647 511 9.86635 491 9.86624 472 9.86612 452 9.86600 73432 9.86589 413 9.86577 393 9.86565 373 9.86554 353 9.86542 73333 9.86530 314 9.86518 294 9.86507 274 9.86495 254 9.86483 73234 215 195 175 155 135 9.86472 9.86460 9.86448 9.86436 9.86425 9.86413 90040 093 146 199 251 9-95444 9.95469 9.95495 9.95520 9.95545 90304 9.95571 357 410 9.95622 463 9.95647 516 9.95672 90569 9.95698 621 9.95723 674 9.95748 727 9-95774 781 9.95799 90834 9.95825 887 9.95850 940 9.95875 993 9.95901 91046 9.95926 91099 153 206 259 313 91366 419 473 526 580 9.95952 9.95977 9.96002 9.96028 9.96053 9.96078 9.96104 9.96129 9-96155 9.96180 91633 9.96205 687 9.96231 740 9-96256 794 9.96281 847 9-96307 91901 9.96332 955 92008 9.96383 062 9.96408 116 9.96433 92170 9.96459 224 9.96484 277 9.96510 331 9.96535 385 9.96560 92439 996586 493 9.9661 1 547 996636 601 9.96662 655 9.96687 92709 9.96712 763 9-96738 817 9.96763 872 9.96788 926 9.96814 92980 93034 088 143 197 252 9.96839 9.96864 9.96890 9.96915 9.96940 9.96966 0.04556 0.04531 0.04505 0.04480 0.04455 [.II06 100 093 087 080 0.04429 0.04404 0.04378 0.04353 0.04328 1. 1074 067 061 054 048 0.04302 0.04277 0.04252 0.04226 0.04201 I.I04I 035 028 022 016 0.04175 0.04150 0.04125 0.04099 0.04074 1. 1009 003 1.0996 990 983 0.04048 0.04023 0.03998 0.03972 0-03947 1.0977 971 964 958 951 0.03922 0.03896 0.03871 0.03845 0.03820 1.0945 939 932 926 919 0.03795 0.03769 0.03744 0.03719 0.03693 1.0913 907 900 894 0.03668 0.03643 0.03617 0.03592 0.03567 3881 875 869 862 0.03541 0.03516 0.03490 0.03465 0.03440 1.0850 843 837 831 824 0.03414 0.03389 0.03364 0.03338 0.03313 1.0818 812 805 799 793 0.03288 0.03262 0.03237 0.03212 0.03186 1.0786 780 774 768 761 0.03161 0.03136 0.031 10 0.0308^ 0.03060 0.03034 I.07S5 749 742 736 730 724 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. / 470 43 D f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log. Cot Nat. 68200 9.83378 14 13 73135 9.86413 93252 9.96966 25 0.03034 1.0724 60 I 221 9-83392 116 9.86401 306 9.96991 0.03009 717 S9 2 242 9-83405 096 9.86389 360 9.97016 0.02984 711 58 3 264 9.83419 076 9.86377 415 9-97042 25 25 0.02958 705 57 4 5 285 9-83432 056 9.86366 12 469 9.97067 0.02933 699 56 55 68306 9-83446 73036 9.86354 93524 9-97092 0.02908 1.0692 6 327 9-83459 ! \l 016 9.86342 578 9.971 18 25 25 25 26 0.02882 686 54 7 349 9-83473 , .z 370 9.83486 : ;3 72996 9.86330 633 9.97143 0.02857 680 53 8 976 9.86318 688 9.97168 0.02832 674 52 9 391 983500 -t 957 9-86306 11 742 9-97193 0.02807 668 51 50 10 68412 9.83513 13 72937 9-86295 93797 9-97219 0.02781 1.0661 II 434 9-83527 13 14 13 917 9.86283 852 9.97244 25 % 0.02756 655 49 12 455 9-83540 897 9.86271 ~. 906 9.97269 0.02731 649 48 13 476 9-83554 877 9.86259 " 961 9.97295 25 25 26 0.02705 643 47 14 497 9-83567 857 9.86247 12 94016 9.97320 0.02680 637 46 45 15 68518 9.83581 14 72837 9.86235 94071 9.97345 0.02655 1.0630 lb 539 983594 ^6 817 9.86223 125 9-97371 25 0.02629 624 44 17 561 9.83608 14 797 9-8621 1 'I 180 9.97396 0.02604 618 4S i8 582 9.83621 ^3 13 14 13 13 14 13 14 13 13 777 9.86200 235 9.97421 25 oA 0.02579 6X2 42 19 603 983634 757 9-86188 12 TO 290 9-97447 25 0.02553 606 41 20 68624 9.83648 72737 9.86176 94345 9-97472 0.02528 1.0599 40 21 64s 9.83661 717 9.86164 12 400 9.97497 0.02503 593 39 22 666 9.83674 697 9.86152 455 9-97523 25 25 25 26 0.02477 587 38 23 688 9.83688 677 9.86140 /" 510 9.97548 0.02452 581 37 24 709 9-83701 657 9.86128 12 565 9-97573 0.02427 575 36 35 25 68730 9-83715 72637 9.861 16 94620 9.97598 0.02402 1.0569 2b 751 9-83728 617 9.86104 ~ 676 9.97624 25 0.02376 562 34 27 772 9-83741 597 9-86092 ~ 731 9-97649 0.02351 556 33 28 793 9-83755 ^4 13 577 9-86080 786 9.97674 26 0.02326 550 32 29 814 9.83768 557 9-86068 12 841 9.97700 25 25 26 0.02300 544 31 30 30 68835 9-83781 13 14 13 13 13 14 13 13 13 14 13 13 13 14 13 13 13 13 72537 9.86056 94896 9.97725 0.02275 1.0538 31 857 9-83795 517 9.86044 952 9-97750 0.02250 532 29 32 878 9.83808 497 9-86032 95007 9-97776 25 25 25 26 0.02224 526 28 33 899 9.83821 477 9.86020 062 9,97801 0.02199 519 27 34 920 9.83834 457 9-86008 12 12 118 9.97826 0.02174 513 26 25 35 68941 9.83848 72437 9-85996 95173 9-97851 0.02149 1.0507 3^ 962 9.83861 417 9-85984 229 9.97877 25 25 26 0.02123 501 24 37 983 9-83874 397 9-85972 " 284 9-97902 0.02098 495 23 3a 69004 9.83887 377 9-85960 340 9.97927 0.02073 489 22 39 025 9.83901 357 9-85948 12 395 9-97953 25 0.02047 483 21 40 69046 9.83914 72337 9-85936 95451 9-97978 0.02022 1.0477 41 067 9.83927 317 985924 10 506 9.98003 0.01997 470 19 42 088 9.83940 297 985912 562 9.98029 25 25 25 26 O.01971 464 18 43 109 9-83954 277 9-85900 618 9-980M 0.01946 458 17 44 130 9-83967 257 9.85888 12 673 9.98079 0.01921 452 16 15 45 6915 1 9.83980 72236 9.85876 95729 9-98104 0.01896 1.0446 4b 172 9.83993 216 9.85864 TT 785 9-98130 25 0.01870 440 14 47 193 9.84006 196 9.85851 ^3 841 9.98155 0.01845 434 13 48 214 9.84020 ^4 13 13 13 13 13 13 14 176 9-85839 I^ 897 9.98180 0.01820 428 12 49 235 9-84033 156 9.85827 12 952 9.98206 25 25 0.01794 422 II To 50 69256 9.84046 72136 9.85815 96008 9.98231 0.01769 1.0416 51 277 984059 116 9.85803 064 9.98256 120 9.98281 0.01744 410 9 52 298 9.84072 095 9-85791 O.01719 404 8 53 319 9-84085 075 9-85779 176 9.98307 25 25 26 0.01693 398 7 54 340 9.84098 055 9.85766 13 12 232 9-98332 0.01668 392 6 "5" 55 69361 9.841 12 72035 9.85754 96288 9.98357 0.01643 1.0385 5b 382 9.84125 13 015 9-85742 344 9.98383 25 25 25 26 0.01617 379 4 57 403 9.84138 13 13 13 13 71995 9-85730 12 400 9.98408 0.01592 373 3 5a 424 9.84151 974 9.85718 457 9-98433 0.01567 367 2 fo 445 9-84164 954 9-85706 13 513 9-98458 0.01542 361 I 466 9.84177 934 9-85693 0.01516 355 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. C.d. Log.TanNat. r 46' ' Nat. Sin Log. d. 44° Nat. Cos Log. d. Nat.TanLog.lc.d. Log. Cot Nat 69466 487 508 529 549 9.84177 9.84190 9.84203 9.84216 9.84229 69570 591 612 633 654 9.84242 984255 9.84269 9.84282 9-84295 69675 696 717 737 758 9.84308 9.84321 9.84334 9.84347 9.84360 69779 800 821 842 862 9-84373 984385 9.84398 9.8441 1 9.84424 69883 '904 925 946 966 9-84437 9.84450 9.84463 9.84476 9-84489 69987 70008 029 049 070 9.84502 9-84515 9.84528 9.84540 9.84553 70091 112 132 153 174 9.84566 9.84579 9.84592 9.84605 9.84618 70195 215 236 257 277 9.84630 9.84643 9.84656 9.84669 9.84682 70298 319 339 360 381 9.84694 9.84707 9.84720 9-84733 9-84745 70401 422 443 463 484 9.84758 9.84771 9.84784 9.84796 9.84809 70505 525 546 567 587 9.84822 984835 9.84847 9.84860 9-84873 70608 628 649 670 690 711 9.84885 9.84898 9.8491 1 9.84923 9.84936 9.84949 71934 914 894 873 853 9-85693 9.85681 9.85669 9.85657 9.85645 71833 813 792 772 752 9-85632 9.85620 9.85608 9-85596 9-85583 71732 711 691 671 650 9-85571 9-85559 9-85547 9-85534 9.85522 71630 610 590 569 549 9.85510 9.85497 9-85485 9-85473 9-85460 71529 508 488 468 447 9.85448 9-85436 985423 9.8541 1 9-85399 71427 407 386 366 345 9-85386 9-85374 9.85361 9-85349 9-85337 71325 305 284 264 243 9.85324 9.85312 9.85299 9.85287 9-85274 71223 203 182 162 141 9.85262 9.85250 9.85237 9-85225 9.85212 71121 100 080 059 039 9.85200 9.85187 9-85175 9.85162 9.85150 71019 70998 978 957 937 9-85137 9.85125 9.851 12 9.85100 9.85087 70916 896 875 855 834 9.85074 9.85062 9.85049 9.85037 9.85024 70813 793 772 752 731 711 9.85012 9.84999 9.84986 9.84974 9.84961 9.84949 96569 625 681 738 794 9.98484 9.98509 9-98534 9-98560 9-98585 96850 907 963 97020 076 9.98610 9.98635 9.98661 9.98686 9-9871 1 97133 189 246 302 359 998737 9.98762 9-98787 9.98812 9-98832 97416 472 529 586 643 9.98863 9.98888 9.98913 9-98939 9.98964 97700 756 813 870 927 9.98989 9.99015 9.99040 9-99065 999090 97984 98041 098 155 213 9.991 16 9-99141 9.99166 9.99191 9.99217 98270 327 384 441 499 9.99242 9.99267 9.99293 9.99318 9-99343 98556 613 671 728 786 9.99368 9-99394 9.99419 9-99444 9.99469 98843 901 958 99016 073 9-99495 9.99520 9-99545 9.99570 9.99596 99131 189 247 304 362 9.99621 9.99646 9.99672 9.99697 9.99722 99420 478 536 594 652 9.99747 9.99773 9.99798 9.99823 9.99848 99710 768 826 884 942 lOOOO 9.99874 9.99899 9.99924 9-99949 9-99975 0.00000 0.01516 0.01491 0.01466 0.01440 0.01415 1-0355 349 343 337 331 0.01390 0.01365 0.01339 0.01314 0.01289 1.0325 319 313 307 301 0.01263 0.01238 0.01213 0.01188 0.01162 1.0295 289 283 277 271 0.01137 0.01112 0.01087 0.01061 0.01036 1.0265 259 253 247 241 O.OIOII 0.00985 0.00960 o.oo93g 0.00910 1.0235 230 224 218 212 0.00884 0.00859 0.00834 0.00809 0.00783 1.0206 200 194 188 182 0.00758 0.00733 0.00707 0.00682 0.00657 1.0176 170 164 158 152 0.00632 0.00606 0.00581 0.00556 0.00531 1.0147 141 135 129 123 0.00505 0.00480 0.00455 0.00430 0.00404 1.0117 III 105 099 094 0.00379 0.00354 0.00328 0.00303 0.00278 .0088 082 076 070 064 0.00253 0.00227 0.00202 0.00177 0.00152 1.0058 052 047 041 035 0.00126 O.OOIOI 0.00076 0.00051 0.00025 0.00000 1.0029 023 017 012 006 000 Nat. Cos Log. d. Nat. Sin Log. d. 4^ Nat. Cot Log. c.d. Log.TanNat. ■d ■ / / UNIVERSITY OF CAUFORNIA LIBRARY