UC-NRLF 
 
 $B 527 fibD 
 
 -rSXHif, > ]iJ-V^-KxawiMil&»it 
 
 *(tW«*.'.''.-J^KV>'4.'VWS*Tf«V«. 
 
 IGONOMETI\Y 
 
 Lyman and Goddars 
 
 W O i lW;j «< rw i Hj i WMWH »li m i| IW»l i ' IM Il lli | ll 
 
 tkif.i- - -■>-:a^-gy,'vity;^T»w^ 'W «|iii wina 'Hi ll>m*rl>i 
 
 ■a««»»»wvTrocwi>«idu o aM >w «>> w » Mw*»v i w noq w w «t wiWrt»WWi<)UCts^ 
 
 With Tables 
 
PLANE TRIGONOMETRY 
 
 BY 
 
 ELMER A. LYMAN 
 
 MICHIGAN STATE NORMAL COLLEGE 
 AND 
 
 EDWIN C. GODDARD 
 
 UNIVERSITY OF MICHIGAN 
 
 3»<C 
 
 ALLYN AND BACON 
 
 Boston anti Chicago 
 

 Copyright, 1899, by 
 ELMER A. LYMAN and EDWIN C. GODDARD. 
 
 Korisooti ^rees 
 
 J. S. Gushing & Co. — Berwick & Smith 
 Norwood Mass. U.S.A. 
 
PREFACE. 
 
 The need felt by tlie authors in their class-room for a text-book 
 furnishing sufficient material in analytical trigonometry, and also 
 in the solution of the triangle, is responsible for the appearance 
 of this book. American text-books, for the most part, treat this 
 latter, practical, part of the subject fully; English text-books 
 elaborate the former, theoretical, part ; but no book available 
 seems to meet both needs adequately. To do that is the first aim 
 of the present work. Nearly everything in the book has been 
 worked out in the class-room, and tried by that sure test. 
 
 Once under way the work grew, and other features demanded 
 attention. For some unaccountable reason nearly all books, in 
 the proof of the formulae for functions of a ± p, treat the same 
 line as both positive and negative in the same discussion, thus 
 vitiating the proof ; and in many cases proofs are given for acute 
 angles, and are then supposed to be established without further 
 discussion for all angles. Some books, indeed, suggest that the 
 student can draw other figures and show that the formula holds 
 in all cases. As a matter of fact the student cannot show any- 
 thing of the kind ; and if he could, the proof would still apply 
 only to conditions the same as in those figures actually drawn, 
 and not to all the other indefinite number of possible combina- 
 tions of conditions. These difficulties have been avoided by so 
 stating the proofs that the language applies to figures involving 
 any angles, and to avoid drawing an indefinite number of such 
 figures, as would be necessary fully to establish the formulae 
 geometrically, resort has been made to the algebraic proof for the 
 general case (see page 58). 
 
 Inverse functions have been introduced early, and used through- 
 out the work, so as to familiarize the student with that important 
 
 800555 
 
iv PREFACE. 
 
 notation. From the beginning, wherever computations are intro- 
 duced they are made by means of logarithms. The average stu- 
 dent, using logarithms for a short time and only at the end of 
 the subject, goes away and straightway forgets what manner of 
 things they are. It is hoped, by dint of much practice, extended 
 over as long a time as possible, to give the student a command 
 of logarithms that will stay. The fundamental formulae of trigo- 
 nometry must be memorized. There is no substitute for this. 
 To assist in thus fixing formulae in mind, considerable oral work 
 has been introduced, and frequent lists of review problems in- 
 volving all principles and formulae previously developed. These 
 lists serve the further purpose of throwing the student on his 
 own resources, and compelling him to find in the problem itself, 
 and not in any model solution, the key to its solution, thus devel- 
 oping power, instead of mere ability to imitate. Enough prob- 
 lems are provided so that different selections may be assigned to 
 different members of a class, or to classes in different years. It 
 is not expected that each student will be able to solve all the 
 problems in the time usually given to the subject. Articles 
 marked * {see Art. *26) may be omitted unless the teacher finds 
 time for them without 7ieglecting the rest of the work. Do not assign 
 too much work at first. Make sure the student has complete mastery 
 of the fundamental formulce. 
 
 Special attention is called to the fact that in the solution of 
 triangles, divisions and subdivisions into cases have been aban- 
 doned, and the student is thrown on his own resources to select 
 from the three possible sets of formulae those leading to the solu- 
 tions from the given data. Long experience has shown that this 
 tends to clearness and simplicity. The use of checks is insisted 
 upon in all computations. 
 
 No complete acknowledgment of help received could here be 
 made. The authors are under obligation to many who have con- 
 tributed general hints, and to several who, after going over the 
 manuscript and proof with care, have given valuable suggestions. 
 The standard works of Levett and Davison, Hobson, Henrici and 
 Treutlein, and others, have been freely consulted, and while many 
 of the problems have been prepared by the authors in their class- 
 
PREFACE. V ( 
 
 room work, they have not hesitated to take, from such standard 
 
 collections as writers generally have drawn upon, any problems \ 
 
 that seemed better adapted than others to the work. Quality ] 
 
 has not been knowingly sacrificed to originality in making this j 
 
 book. Corrections and suggestions will be gladly received at any i 
 
 time. 1 
 
 E. A. L. i 
 
 E. C. G. 5 
 
 OCTOBEB, 1899. 1 
 
CONTENTS. 
 
 Chapter I. Angles — Measurement of Angles. 
 
 ^.^^ 
 
 PAGE 
 
 Angles ; magnitude of angles 1 
 
 Rectangular axes ; direction . . . * 2 
 
 Measurement; sexagesimal and circular systems of measurement; 
 
 the radian 3 
 
 Examples 6 
 
 Chapter II. The Trigonometric Functions. 
 
 Function defined 8 
 
 The trigonometric functions 9 
 
 Fundamental relations 11 
 
 Examples 14 
 
 Functions of 0°, 30°, 45°, 60°, 90° 15 
 
 Examples 18 
 
 Variations in the trigonometric functions 19 
 
 Graphic representation of functions , .22 
 
 Examples 27 
 
 Chapter in. Functions of any Angle — Inverse 
 Functions. 
 
 Relations of functions of - 0, 90° ± B, 180° ± Q, 270° ± ^ to the 
 
 functions of ^ 29 
 
 Inverse functions , , , , .35 
 
 Examples 36 
 
 Review 38 
 
 Chapter IV. Computation Tables. 
 
 Natural functions 40 
 
 Logarithms 40 
 
 Laws of logarithms 42 
 
 Use of tables 45 
 
 Cologarithms 49 
 
 Examples 50 
 
 vii 
 
viii CONTENTS. 
 
 Chapter V. Applications. 
 
 PA6B 
 
 Measurements of heights and distances 51 
 
 Common problems in measurement 52 
 
 Examples 54 
 
 Chapter VI. General Formula. — Trigonometric Equa- 
 tions AND Identities. 
 
 Sine, cosine, tangent of a ± )8 . . 56 
 
 Examples . . . ', . . .... . .59 
 
 Sin ± sin cfy, cos 6 ± cos ^ 61 
 
 Examples 62 
 
 Functions of the double angle . . . . ... .63 
 
 Functions of the half angle . .64 
 
 Examples , . .64 
 
 Trigonometric equations and identities 66 
 
 Method of attack 66 
 
 Examples ... 67 
 
 Simultaneous trigonometric equations 69 
 
 Examples . . . . .70 
 
 Chapter VII. Triangles. 
 
 Laws of sines, tangents, and cosines . 72 
 
 Area of the triangle 76 
 
 Solution of triangles 76 
 
 Ambiguous case 78 
 
 Model solutions 80 
 
 Examples 83 
 
 Applications 84 
 
 Review 86 
 
PLANE TRIGONOMETRY. 
 
 CHAPTER I. 
 
 ANGLES — MEASUREMENT OF ANGLES. 
 
 1. Angles. It is difficult, if not impossible, to define an 
 angle. This difficulty may be avoided by telling how it 
 is formed. If a line revolve about one of its points^ an angle 
 is generated^ the magnitude of the angle depending on the 
 amount of the rotation. 
 
 Thus, if one side of the angle ^, as OR^ be originally in 
 the position OX^ and be revolved about the point to the 
 position in the figure, the 
 angle XOR is generated. 
 OX is called the initial line, 
 and any position of OR the 
 terminal line of the angle 
 formed. The angle 6 is 
 considered positive if gener- 
 ated hy a counter-clockwise 
 rotation of OR, and hence negative if generated hy a clockwise 
 rotation. The magnitude of depends on the amount of 
 rotation of OR, and since the amount of such rotation may 
 be unlimited, there is no limit to the possible magnitude of 
 angles, for, evidently, the revolving line may reach the posi- 
 tion OR by rotation through an acute angle 6, and, likewise, 
 by rotation through once, twice, •••, w times 360°, plus the 
 acute angle 6, So that XOR may mean the acute angle 
 (9, ^ -f- 360°, e + 720°, .-, O-^n- 360°. 
 
 1 
 
 i?>' 
 
 Fig. 1. 
 
£ PLANE TRIGONOMETRY. 
 
 In reading an angle, read first the initial line, then the 
 terminal line. Thus in the figure the acute angle XOE, or 
 xr, is a positive angle, and ROX^ or rx^ an equal negative 
 angle. 
 
 Ex. 1. Show that if the initial lines for \, f, ^/, — ^, right angles are 
 the same, the terminal lines may coincide. 
 
 2. Name four other angles having the same initial and terminal lines 
 as ^ of a right angle ; as f of a right angle ; as f of a right angle. 
 
 2. Rectangular axes. Any plane surface may be divided 
 by two perpendicular straight lines XX^ and YY' into four 
 
 portions, or quadrants. 
 
 XX' is known as the x-axis, 
 YY' as the y-axis^ and the two 
 together are called axes of refer- 
 
 X ence. Their intersection is the 
 
 origin^ and the four portions of 
 the plane surface, XOY, YOX', 
 y" X'OY', Y'OX, are called respec- 
 
 Fjq, 2. tively the first, second, third, and 
 
 fourth quadrants. The position of 
 any point in the plane is determined when we know its dis- 
 tances and directions from the axes. 
 
 3. Any direction may be considered positive. Then the 
 opposite direction must be negative. Thus, if AB represents 
 any positive line, BA is an equal nega- 
 tive line. Mathematicians usually 
 
 consider lines measured in the same direction as OX or OY 
 (Fig. 2) as positive. Then lines measured in the same direc- 
 tion as OX' or OY' must he negative. 
 
 The distance of any point from the ?/-axis is called the 
 abscissa, its distance from the a;-axis the ordinate, of that 
 point ; the two together are the coordinates of the point, 
 usually denoted by the letters x and y respectively, and 
 written (x, y). 
 

 
 Y 
 
 
 
 p' 
 
 
 P 
 
 ,/ 
 
 
 
 
 
 
 
 
 N 
 
 
 p" 
 
 Y' 
 
 P'" 
 
 ANGLES — MEASUREMENT. 3 
 
 When taken with their proper signs, the coordinates define completely 
 the position of the point. Thus, if the point P is + a units from YY', 
 and + h units from XX', any convenient 
 unit of length being chosen, the position of 
 P is known. For we have only to measure 
 a distance ON equal to a units along OX, 
 and then from N measure a distance h 
 units parallel to OY, and we arrive at the 
 position of the point P, (a, &). In like 
 manner we may locate P', (— «, ^), in the 
 second quadrant, P", (—a, — Z>), in the 
 third quadrant, and P'", (a, — &), in „ ^ 
 
 the fourth quadrant. 
 
 Ex. Locate (2, -2); (0,0); (-8, -7); (0, 5); (-2, 0); (2, 2); 
 (m, n). 
 
 4. If OX is the initial line, is said to be an angle of the 
 first, second, third, or fourth quadrant, according as its ter- 
 minal line is in the first, second, third, or fourth quadrant. 
 It is clear that as OR rotates its quality is in no way affected, 
 and hence it is in all positions considered positive, and its ex- 
 tension through 0, OB', negative. 
 
 The student should notice that the initial line may take any position 
 and revolve in either direction. While it is customary to consider the 
 counter-clockwise rotation as forming a positive angle, yet the condi- 
 
 V. ^'^' tions of a figure may be such 
 • / that a positive angle may be 
 \/ generated by a clockwise rota- 
 yu ^ ^ ""^B' /V /4^ *io^- Thus the angle X072 in 
 -2^' j^'r \x each figure may be traced as 
 p . a positive angle by revolving 
 
 the initial line OX to the posi- 
 tion OR. No confusion can result if the fact is clear that when an 
 angle is read XOP, OX is considered a positive line revolving to the 
 position OR. OX' and OR' then are negative lines in whatever direc- 
 tions drawn. These conceptions are mere matters of agreement, and the 
 agreement may be determined in a particular case by the conditions of 
 the problem quite as well as by such general agreements of mathema- 
 ticians as those referred to in Arts. 3 and 4 above. 
 
 5. Measurement. All measurements are made in terms 
 of some fixed standard adopted as a unit. This unit must 
 
4 PLANE TRIGONOMETRY. 
 
 be of the same kind as the quantity measured. Thus, length 
 is measured in terms of a unit length, surface in terms of a 
 unit surface, weight in terms of a unit weight, value in terms 
 of a unit value, an angle in terms of a unit angle. 
 
 The measure of a given quantity is the number of times it 
 contains the unit selected. 
 
 Thus the area of a given surface in square feet is the 
 number of times it contains the unit surface 1 sq. ft. ; the 
 length of a road in miles, the number of times it contains 
 the unit length 1 mi. ; the weight of a cargo of iron ore in 
 tons, the number of times it contains the unit weight 1 ton ; 
 the value of an estate, the number of times it contains the 
 unit value f 1. 
 
 The same quantity may have different measures, according 
 to the unit chosen. So the measure of 80 acres, when the 
 unit surface is 1 acre, is 80, when the unit surface is 1 sq. rd., 
 is 12,800, when the unit surface is 1 sq. yd., is 387,200. 
 What is its measure in square feet ? 
 
 6. The essentials of a good unit of measure are : 
 
 1. That it be invariable, i.e. under all conditions bearing 
 the same ratio to equal magnitudes. 
 
 2. That it be convenient for practical or theoretical pur- 
 poses. 
 
 3. That it be of the same kind as the quantity measured. 
 
 7. Two systems of measuring angles are in use, the sexa- 
 gesimal and the circular. 
 
 The sexagesimal system is used in most practical applica- 
 tions. The right angle, the unit of measure in geometry, 
 though it is invariable, as a measure is too large for con- 
 venience. Accordingly it is divided into 90 equal parts, 
 called degrees. The degree is divided into 60 minutes, and 
 the minute into 60 seconds. Degrees, minutes, seconds, are 
 indicated by the marks ° ' ", as 36° 20' 15''. 
 
 The division of a right angle into hundredths, with subdivisions into 
 hundredths, would be more convenient. The French have proposed such 
 
MEASUREMENT OF ANGLES. 
 
 a centesimal system, dividing the right angle into 100 grades, the grade 
 into 100 minutes, and the minute into 100 seconds, marked ^^ ''\ as 508 
 70^ 28^\ The great labor involved in changing mathematical tables, 
 instruments, and records of observation to the new system has prevented 
 its adoption. 
 
 8. The circular system is important in theoretical con- 
 siderations. It is based on the fact that for a given angle 
 the ratio of the length of its arc to the length of the radius 
 of that arc is constant, i.e. for a fixed 
 angle the ratio arc : radius is the same 
 no matter what the length of the 
 radius. In the figure, for the angle ^, 
 
 OA OB OQ 
 
 AA' BB' CQ' 
 
 That this ratio of arc to radius for a fixed angle is constant 
 follows from the established geometrical principles : 
 
 1. The circumference of any circle is 2 tt times its radius. 
 
 2. Angles at the centre are in the same ratio as their arcs. 
 
 The Radian. It follows that an angle whose arc is equal 
 in length to the radius is a constant angle for all circles, 
 since in four right angles, or the perigon, there are always 
 2 7r such angles. This constant angle., 
 ivhose arc is equal in length to the radius., 
 is taken as the unit angle of circular 
 measure., and is called the radian. From 
 the definition we have 
 
 4 right angles = 360° 
 2 right angles = 180° 
 
 2 TT radians, 
 TT radians. 
 
 Fig. 6. 
 
 TT 
 
 1 right angle = 90° = — radians. 
 
 TT is a numerical quantity, 3.14159+, and not an angle. When we 
 speak of 180° as tt, 90° as ^, etc., we always mean tt radians, ^ radians, etc. 
 
6 PLANE TRIGONOMETRY. 
 
 9. To change from one system of measurement to the 
 other we use the relation, 
 
 2 TT radians = 360°. 
 
 . •. 1 radian = i^ = 57^.2958- ; 
 
 TT 
 
 i.e. the radian is 57°.3, approximately. 
 
 Ex. 1. Express in radians 75° 30'. 
 
 75° 30' = 75°.5 ; 1 radian = 57°.3. 
 
 .-. 75° 30' = — = 1.317 radians. 
 57.3 
 
 2. Express in degree measure 3.6 radians. 
 1 radian = 57°.3. 
 .-. 3.6 radians = 3.6 x o7°.3 = 206° 16' 48". 
 
 EXAMPLES. 
 
 1. Construct, approximately, the following angles : 50°, — 20°, 90°, 
 179°, -135°, 400°, -380^ 1140°, | radians, | radians, --radians, 
 
 q -If) 
 
 3 IT radians, — ^ radians, — — ^ radians. Of which quadrant is each 
 angle? ^ ^ 
 
 2. What is the measure of : 
 
 (a) f of a right angle, when 30° is the unit of measure ? 
 
 (b) an acre, when a square whose side is 10 rds. is the unit ? 
 
 (c) m miles, when y yards is the unit ? 
 
 3. What is the unit of measure, when the measure of 2^ miles is 50? 
 
 4. The Michigan Central R.R. is 535 miles long, and the Ann Arbor 
 R.R. is 292 miles long. Express the length of the first in terms of the 
 second as a unit. 
 
 5. What will be the measure of the radian when the right angle is 
 taken for the unit ? Of the right angle when the radian is the unit ? 
 
 6. In which quadrant is 45°? 10°? -60°? 145°? 1145°? -725°? 
 Express each in right angles ; in radians. 
 
 7. Express in sexagesimal measure 
 
 J, ^. 1, 6.28, I, 1^, -i^, radians. 
 
 O 12 TT o 3 
 
EXAMPLES. 7 
 
 8. Express in each system an interior angle of a regular hexagon ; 
 an exterior angle. 
 
 9. Find the distance in miles between two places on the earth's 
 equator which are 11° 15' apart. (The earth's radius is about 3963 miles.) 
 
 10. Find the length of an arc which subtends an angle of 4 radians 
 at the centre of a circle of radius 12 ft. 3 in. 
 
 11. An arc 15 yds. long contains 3 radians. Find the radius of the 
 circle. 
 
 12. Show that the hour and minute hands of a watch turn through 
 angles of 30^ and 6° respectively per minute ; also find in degrees and in 
 radians the angle turned through by the minute hand in 3 hrs. 20 mins. 
 
 13. Find the number of seconds in an arc of 1 mile on the equator ; 
 also the length in miles of an arc of 1' (1 knot). 
 
 14. Find to three decimal places the radius of a circle in which the 
 arc of 71° 36' 3''.6 is 15 in. long. 
 
 15. Find the ratio of - to 5°. 
 
 6 
 
 16. What is the shortest distance measured on the earth's surface 
 from the equator to Ann Arbor, latitude + 42° 16' 48"? 
 
 17. The difference of two angles is 10°, and the circular measure of 
 their sum is 2. Find the circular measure of each angle. 
 
 18. A water wheel of radius 6 ft. makes 30 revolutions per minute. 
 Find the number of miles per hour travelled by a point on the rim. 
 
CHAPTER II. 
 
 THE TRIGONOMETRIC FUNCTIONS. 
 
 10. Trigonometry, as the word indicates, was originally 
 concerned with the measurement of triangles. It now 
 includes the analytical treatment of certain functions of 
 angles, as well as the solution of triangles by means of cer- 
 tain relations between the functions of the angles of those 
 triangles. 
 
 11. Function. If one quantity depends upon another for 
 its value, the first is called a function of the second. It 
 always follows that the second quantity is also a function of 
 the first ; and, in general, functions are so related that if one 
 is constant the other is constant, and if either varies in value, 
 the other varies. This relation may be extended to any 
 number of mutually dependent quantities. 
 
 Illustration. If a train moves at a rate of 30 miles per 
 hour, the distance travelled is a function of the rate and 
 time, the time is a function of the rate and distance, and the 
 rate is a function of the time and distance. 
 
 Again, the circumference of a circle is a function of the 
 radius, and the radius of the circumference, for so long as 
 either is constant the other is constant, and if either changes 
 in value, the other changes, since circumference and radius 
 are connected by the relation (7=2 irR. 
 
 Once more, in the right triangle 
 
 NOP, the ratio of any two sides is 
 
 a function of the angle a, because 
 
 p" N' N ^ ^^^ ^^® right triangles of which a is 
 
 FiQ. 7. one angle are similar, i,e. the ratio 
 
 8 
 
THE TRIGONOMETRIC FUNCTIONS. 
 
 9 
 
 of two corresponding sides is constant so long as a. is con- 
 stant, and varies if « varies. 
 Thus, the ratios 
 
 NP ^ N'P' ^ WP'' 
 OP 
 
 and 
 
 ojsr 
 
 NP 
 
 OP' 
 
 ON' 
 
 N'P' 
 
 OP" 
 
 ON" , 
 
 depend on a for their values, i.e. are functions of a. 
 
 12. The trigonometric functions. In trigonometry six 
 functions of angles are usually employed, called the trigono- 
 metric functions. 
 
 By definition these functions are the six ratios between the 
 sides of the triangle of reference of the given angle. The 
 triangle of reference is formed by drawing, from some point in 
 the initial line., or the initial line produced^ a perpendicular to 
 that line meeting the terminal line of the angle. 
 
 Fig. 8. 
 
 Let a be an angle of any quadrant. Each triangle of 
 reference of a, NOP, is formed by drawing a perpendicular 
 to OX, or OX produced, meeting the terminal line OB in P. 
 
10 PLANE TRIGONOMETRY. 
 
 If « is greater than 360°, its triangle of reference would 
 not differ from one of the above triangles. 
 
 It is perhaps worthy of notice that the triangle of reference might be 
 defined to be the triangle formed by drawing a perpendicular to either 
 side of the angle, or that side produced, meet- 
 ing the other side or the other side produced. 
 In the figure, NOP is in all cases the triangle 
 of reference of a. The principles of the fol- 
 
 N 
 
 \ "^ ,''0 P 2f 
 
 j ,,.-'jv- lowing pages are the same no matter which 
 
 ^''P of the triangles is considered the triangle of 
 
 Fig. 9. reference. It will, however, be as well, and 
 
 perhaps clearer, to use the triangle defined 
 
 under Fig. 8, and we shall always draw the triangle as there described. 
 
 13. The trigonometric functions of a (Fig. 8) are called 
 the sine^ cosine^ tangent^ cotangent^ secant^ and cosecant of a. 
 These are abbreviated in writing to sin a, cos a, tan «, cot a, 
 sec a, CSC «, and are defined as follows : 
 
 sin a = P^^ = ^, whence y = r sin a ; 
 hyp. r ^ ' 
 
 base a? i 
 
 cos a = i: — = ~9 whence x = r cos a ; 
 hyp. r ' 
 
 tan a = ^^—^ = -> whence y = x tan a ; 
 base oc ^ ' 
 
 cot a = = —J whence x = y cot a; 
 
 perp. y ^ ' 
 
 sec a = —^ = —9 whence r — x sec a; 
 base a? ' 
 
 CSC a = — ^ = -9 whence r — y esc a. 
 perp. y ^ 
 
 1 — cos a and 1 — sin a, called versed-sine a and coversed-sine a, respec- 
 tively, are sometimes used. 
 
 Ex. 1. Write the trigonometric functions of f3, NPO (Fig. 8), and 
 compare with those of a above. 
 
 The meaning of the prefix co in cosine, cotangent, and cosecant 
 appears from the relations of Ex. 1. For the sine of an angle equals the 
 cosine, i.e. the complement-sine, of the complement of that angle ; the tangent 
 
THE TRIGONOMETRIC FUNCTIONS. 
 
 11 
 
 of an angle equals the cotangent of its complementary angle, and the secant 
 of an angle equals the cosecant of its complement- 
 ary angle. 
 
 2. Express each side of triangle ABC in 
 terms of another side, and some function of an 
 angle in all possible ways, as a = 6 tan A, etc. Fig. 10. 
 
 14. Constancy of the trigonometric functions. It is iiiipor- 
 taiit to notice why these ratios are functions of the angle, i.e. 
 are the same for equal angles and different for unequal 
 angles. This is shown by the principles of similar triangles. 
 
 \ 
 
 Fig. 11. 
 
 In each figure show that in all possible triangles of refer- 
 ence for a the ratios are the same, but in the triangles of 
 reference for a and a', respectively, the ratios are different. 
 
 The student must notice that sin a is a single symbol. It is the name 
 of a number, or fraction, belonging to the angle a ; and if it be at any 
 time convenient, we may denote sin « by a single letter, such as o, or x. 
 Also, sin^a is an abbreviation for (sin «)'-^, i.e. for (sin a) x (sin «). 
 Such abbreviations are used because they are convenient. Lock, Ele- 
 mentary Trigonometry. 
 
 15. Fundamental relations. From the definitions of Art. 13 
 the following reciprocal relations are apparent : 
 
 sin a = 
 
 a = 
 
 tana 
 
 CSC a 
 
 1 
 sec a' 
 
 1 
 
 cot a 
 
 Also from the definitions. 
 
 tana = 
 
 sm g 
 cos a 
 
 C8C a 
 
 sm a 
 1 
 
 sec a = 1 
 
 cos a 
 
 1 
 
 cot a 
 
 cot a — 
 
 tan oL 
 
 cos a 
 sin a 
 
12 ^ PLANE TRIGONOMETRY. 
 
 From the right triangle NOP, page 9, 
 y'^ -\- x^ = T^ \ 
 
 /2 ^2 
 
 whence (1) U-j^'L^l^ 
 
 From (1) sin^a+cos^ a=l; sma= Vl — cos^ a; cos cc=? 
 
 (2) tan2a + l = sec2a; ^^/^ «= -y/sec^ cc— 1 ; sec a = ? 
 
 (3) l+cot2a = csc2a; cota=Vcsc^ a—1 ; esc a = ? 
 
 The foregoing definitions and fundamental relations are of 
 the highest importance, and must he mastered at once. The 
 student of trigonometry is helpless without perfect familiarity 
 with them. 
 
 These relations are true for all values of a, positive or negative, but 
 the signs of the functions are not in all cases positive, as appears from 
 the fact that in the triangles of reference in Fig. 8 x and y are sometimes 
 negative. The equations sin a = ± Vl — cos^ a, tan a=± Vsec^ a—1, 
 cot a = ± Vcsc^ ct — 1, have the double sign ± . Which sign is to be used 
 in a given case depends on the quadrant in which a lies. 
 
 16. The relations of Art. 15 enable us to express any 
 function in terms of any other, or when one function is 
 given, to find all the others. 
 
 Ex. 1. To express the other functions in terms of tangent : 
 
 .inct- ^ - ^ - ^^"^^ • 
 
 
 CSC a VI + cot2 a VH- tan^ a 
 1 1 
 
 tana 
 
 
 sec a = VI + tan2 a ; 
 
 sec a Vl + tan2a 
 
 tan a = tan a ; 
 
 C8C«^^l+**»^«. 
 
 tan a 
 
THE TRIGONOMETRIC FUNCTIONS. 
 
 13 
 
 In like manner determine the relations to complete the following 
 table ; 
 
 sm a 
 
 cos a 
 
 tan« 
 
 cot a 
 
 tan a 
 
 sm a 
 
 cos a 
 tana 
 cot a 
 sec a 
 CSC a 
 
 VI + tan2 a 
 1 
 
 Vl + tan"'^ a 
 
 tan a 
 
 1 
 tan a 
 
 Vl + tan2 a 
 Vl + tan2 a 
 
 tan a 
 
 2. Given sin a = f ; find the other functions. 
 
 a=Vl -^5 = ^V7; tan 
 
 = fV7; 
 
 \V7 V7 
 
 ^ r- 14/- 14 
 
 cot a = —^ = ^ V7 ; sec a = = — = f V7 ; esc « = - = -• 
 
 fV7 
 
 iV7 V7 
 
 3; Given tan (f> + cot ^ = 2 ; find sin <^. 
 
 tan <f) + 
 
 tan <f> 
 
 2, tan2 <^ - 2 tan <^ + 1 = 0, tan <^ = 1. 
 
 .♦. sin <f> = 
 
 tan <^ 
 
 Vl + tan2 <^ 
 
 = iV2. 
 
 Or, expressing in terms of sine directly, ?11L2_(_ ^ = 2, 
 
 cos <^ sin <^ 
 
 sin^ <^ + cos^ (fi = 2 sin <^ cos <fi, sin^ <^ — 2 sin ^ cos <f> + cos^ ^ = ; 
 whence sin <^ — cos <^ = 0, sin <f> = cos <f>. .*. sin ^ = ^ V2. 
 
 4. Prove sec^ x — sec^ x = tan^ x + tan^ x. 
 
 sec^x — sec^x = sec^ a: (sec^ a: — 1) = (1 + tan^ x) tan^ a: = tan^a: + tan* a:. 
 
 5. Prove sin^ y + cos® ?/ = 1 — 3 sin^ y cos^ y. 
 
 sin® y + cos® y = (sin^ y + cos^ y) (sin* y — sin^ y cos^ ?/ + cos* y) 
 
 = (sin^ 2/ + cos^ ?/)2 — 3 sin^ y cos^ y = 1 —3 sin^ ^ cos^ y. 
 
14 PLANE TRIGONOMETRY. 
 
 6. Prove -i^2^ + _22t^ = sec. CSC. + 1. 
 1 — cot z 1 — tan z 
 
 sing cos 2 
 
 tan z cot z _ cos z sin 2 
 
 cot . 1 — tan z I _ cos 2 
 
 COS. 
 
 cos . (sin . — COS .) sin z (cos z — sin z) 
 
 _ sin^ . — cos^ . _ sin^ . + sin . cos z + cos^ . 
 
 sin . cos . (sin . — cos z) sin z cos . 
 
 1 + sin . cos . 1.1 ,1 
 
 = —^. = h 1 = sec . esc 2 + 1. 
 
 sm . cos . sin z cos z 
 
 In solving problems like 3, 4, 5, and 6 above, it is usually safe, if no 
 other step suggests itself, to express all other functions of one member 
 in terms of sine and cosine. The resulting expression may then be re- 
 duced by the principles of algebra to the expression in the other member 
 of the equation. For further suggestions as to the solution of trigono- 
 metric equations and identities see page 66. 
 
 EXAMPLES. 
 
 1. Find the values of all the functions of a, if sin a = | ; if tan a = f ; 
 if sec r}t = 2 ; if cos a = ^V3 ; if cot a = | ; if esc ot = V2. 
 
 2. Compute the functions of each acute angle in the right triangles 
 
 whose sides are : (1) 3, 4, 5; (2) 8, 15, 17; (3) 480, 31, 481 ; (4) a,b,c; 
 
 yr-^ 2 xy x^ + y^ 
 
 (5) ^, ^ ^ , x+y. 
 
 X — y X — y 
 
 3. If cos a = j\, find the value of si^<^ + ^^^^^ . 
 
 cos a — cot a 
 
 4. If 2 cos a = 2 — sin ct, find tan a. 
 
 5. If sec^ a csc^ a — 4 = 0, find cot a. 
 
 6. Solve for sin ^ in 13 sin /? + 5 cos^ ^ = 11. 
 Prove 
 
 7. sin* <;^ — cos* <^ = 1 — 2 cos^ <^. 
 
 8. (sin a + cos a) (sin a — cos a) = 2 sin^ a — 1. 
 
 9. (sec a + tan a) (sec a — tan a) = 1. 
 
 10. cos2 y8 (sec2 13-2 sin2 ^) = cos* jS + sin* (3. 
 cos V 
 
 11. tan V + sect' 
 12. 
 
 1 — sin V 
 sin w 1 + cos w 
 
 1 — cos w sin w 
 13. (sec^ + l)(l-cos^) = tan2^cosA 
 
FUNCTIONS OF CERTAIN ANGLES. 15 
 
 14. sin* t — siii2 1 = cos* t — cos^ t. 
 
 15. -ilH^ + 1+^ = sec^^ (CSC fi + 1). 
 1 — Sin y8 smfi 
 
 16. (tan A + cot Ay = sec2 ^ csc^ ^. 
 
 17. sec^ ar — sin^ a; = tan^ a: + cos^ x. 
 
 In the triangle ABC, right angled at C, 
 
 18. Given cos A = ^y BC = 45, find tan B, and AB. 
 
 19. If cos A = ^l ~ ""l and AB = m^ + n% find ^ C and ^C. 
 
 20. If ^ C = m + n, £C = m — n, find sin A, cos 5. 
 
 21. In examples 18, 19, 20, above, prove sin^ ^4 4- cos^ .4 = 1 ; 
 
 1 + tan2 A = sec2 A . 
 
 17. Functions of certain angles. The trigonometric func- 
 tions are numerical quantities which may be determined for 
 any angle. In general these values are taken from tables 
 prepared for the purpose, but the principles already studied 
 enable us to calculate the functions of the following angles. 
 
 18. Functions of O''. If a be a very small angle, the 
 value of y is very small, and 
 decreases as a diminishes. 
 Clearly, when a approaches 
 0° as a limit, ^ likewise ap- 
 proaches 0, and X approaches r, so that when a = 0°, 
 
 ^ = 0, and X = r. 
 
 .-. «mO° = ^ = 0, co^ 0° = — i— = QO, 
 
 r 
 
 r 
 
 tanO"" = ^ = 0, C8C 0° = -r^ = 00. 
 
 X sin 0° 
 
 In the figure of Art. 18, by diminishing a it is clear that we can make 
 y as small as we please, and by making a small enough, we can make the 
 value of y less than any assignable quantity, hoivever small, so that sin a ap- 
 proaches as a limit 0. This is what we mean when we say sin 0° = 0. 
 In like manner, it is evident that, by sufficiently diminishing a we can 
 make cot a greater than any assignable quantity. This we express by 
 saying cotO° = co. 
 
 €OtO° 
 
 ± 
 
 tanO° 
 
 8ecO° 
 
 1 
 
 cos 0° 
 
 nRn 0° 
 
 1 
 
16 
 
 PLANE TRIGONOMETRY. 
 
 19. Functions of 30°. Let NOP be the triangle of refer- 
 ,22 ence for an angle of 30°. Make 
 
 triangle NOP' = NOP. Then 
 POP' is an equilateral triangle 
 (why?), and ON bisects PP'. 
 Hence 
 
 Also X = Vr^ — y^ = V3^— y V3. 
 c%G 30° = 2, 
 
 Fig. 13 
 
 nn 30° = ^ = ^ = ^' 
 r 2^ 2 
 
 r 2y ^ 
 
 ^an 30° 
 
 y 
 
 = -4^=iV3, 
 
 «/V3 V3 
 
 se<? 30° = I V3, 
 co^30°=V3. 
 
 20. Functions of 45°. Let NOP be the triangle of refer- 
 ence. If angle NOP = 45°, OPN^ 45°. 
 
 Then 
 
 y = x^ and r = Va^^ + 3/^ = V2 a;^ = a; V2. 
 
 tn 45° = ^- 
 
 sm 
 
 V2 
 
 iV2, 
 
 cos 45' 
 
 a: a; 
 
 -^=i-V2, 
 
 ^ a:V2 
 
 Find cot 45°, sec 45°, esc 45° 
 
 ia^i 45° = ^ = - = 1. 
 
 .T X 
 
FUNCTIONS OF CERTAIN ANGLES. 
 
 17 
 
 21. Functions of 60°. The functions of 60° may be com- 
 puted by means of the figure, or 
 they may be written from the func- 
 tions of the complement, or 30°. 
 Let tlie student in both ways show 
 that 
 
 sm60°=iV3, cos 60° =1 
 
 tan 60° = Vs. 
 Compute also the other functions of 60°. 
 
 Fig. 15. 
 
 22. Functions of 90°. If « be an angle very near 90°, 
 the value of x is very small, and de- 
 creases as a increases toward 90°. 
 Clearly when a approaches 90° as a 
 limit, X approaches 0, and ?/ ap- 
 proaches r, so that when 
 
 "^¥ ^ a = 90°, x=0, y = r. 
 
 , •. sin 90° = 1, cos 90° = 0, tan 90° = oo . 
 
 Fig. 16. 
 
 Compute the other functions. Also find the functions of 
 90° from those of its complement, 0°. 
 
 23. It is of great convenience to the student to remember 
 the functions of these angles. They are easily found by 
 recalling the relative values of the sides of the triangles of 
 reference for the respective angles^ or the values of the other 
 functions may readily be computed by means of the funda- 
 mental relations, if the values of the sine and cosine are 
 remembered, as follows : 
 
 a 
 
 0° 
 
 30° 
 
 45° 
 
 60° 
 
 90° 
 
 sine 
 cosine 
 
 iVo 
 
 K/4 
 
 1 rz 
 
 2 Vo 
 
 iV2 
 
 W2 
 
 
 iVO 
 
18 PLANE TRIGONOMETRY. 
 
 ORAL WORK. 
 
 1. Which is greater, sin 45° or I sin 90=? sin 60° or 2 sin 30°? 
 
 2. ^ From the functions of 60°, find those of 30° ; from the functions of 
 90°, those of 0°. Why are the functions of 45° equal to the co-functions 
 of 45°? 
 
 3. Given sin A = |, find cos A ; tan A. 
 
 4. Show that sin B esc ^ = 1 ; cos C sec C = 1 ; cot x tan x = 1. 
 
 5. Show that sec2 - tan^ = csc2 - cot^ 6 = sin2 $ + cos^ 6. 
 
 6. Show that tan 30° tan 60° = cot 60° cot 30° = tan 45°. 
 
 7. Showthattan60°sin2 45° = cos30°sin90°. 
 
 8. Show that cos a tan a = sin a ; sin ^ cot /3 = cos 13. 
 
 9. Show that 1 -tan2 30° ^ ^^^ g^^ ^ ^ ^os 0°. 
 
 l-|-tan2 30° ^ 
 
 10. Show that (tan y + coty) sin y cos y = 1. 
 
 EXAMPLES. 
 
 1. Show that sin 30° cos 60° + cos 30° sin 60° = sin 90°. 
 
 2. Show that cos 60° cos 30° + sin 60° sin 30° = cos 30°. 
 
 3. Show that sin 45° cos 0° - cos 45° sin 0° = cos 45°. 
 
 4. Show that cos2 45° - sinHS" = cos 90°. 
 
 5. Show that tan 45° + tan 0° ^ ^^^^^o. 
 
 1 - tan 45° tan 0° 
 
 IiA= 60°, verify 
 
 i^-i- 
 
 6. sin^^ ,^-cos^ 
 
 7. tan"^ 
 
 _ /l — cos A 
 2 ~ >'l + cos^' 
 
 8. cos^ = 2cos2^-l = l-2sin2:^. 
 
 2 2 
 
 licc = 0°,l3 = 30°, y = 45°, 8 = 60°, e = 90°, find the values of 
 
 9. sin 13 + cos 8. 
 
 10. cos y8 + tan 8. 
 
 11. sin ^ cos S + cos ;8 sin 8 — sin e. 
 
 12. (sin 13 + sin e) (cos a + cos 8) — 4 sin a (cos y + sin e) . 
 
VARIATIONS IN THE FUNCTIONS. 
 
 19 
 
 24. Variations in the trigonometric functions. 
 
 Signs. Thus far no account has been taken of the signs of 
 the functions. By the definitions it appears that these de- 
 pend on the signs of a;, ?/, and r. Now r is always positive, 
 and from the figures it is seen that x is positive in the first 
 
 8&H. + 
 Csc. + 
 
 X- 
 
 (X-) 
 
 (r+) 
 
 Cot. + 
 
 Sin. 
 Cos. 
 Tan. 
 Cot. 
 Sec. 
 Csc. 
 
 \y-) 
 
 Cos. + 
 
 Fia. 17. 
 
 and fourth quadrants, and ^ is positive in the first and 
 second. Hence 
 
 For an angle in the first quadrant all functions are positive^ 
 since a:, ^, r are positive. 
 
 In the second quadrant x alone is negative., so that those 
 functions whose ratios involve a:, viz. cosine., tangent^ co- 
 tangent^ secant., are negative; the others, sine and cosecant., 
 are positive. 
 
 In the third quadrant x and y are both negative., so that 
 those functions involving r, viz. sine., cosine., secant., cosecant., 
 are negative ; the others, tangent and cotangent., ?iVQ positive. 
 
 In the fourth quadrant y is negative^ so that sine^ tangent., 
 cotangent, cosecant are negative., and cosine and secant., positive. 
 
 Values. In the triangle of reference of any angle, the 
 hypotenuse r is never less than x or y. Then if r be taken of 
 any fixed length, as the angle varies, the base and perpen- 
 dicular of the triangle of reference may each vary in length 
 
 X 11 
 
 from to r. Hence the ratios - and - can never be greater 
 
 r r ° 
 
 r r 
 than 1, nor if x and y are negative, less than —1; and — > - 
 
 X y 
 
20 
 
 PLANE TRIGONOMETRY. 
 
 cannot have values between + 1 and — 1. But the ratios 
 
 ^ and - may vary without limit, i.e. from + oo to — oo. 
 X y 
 
 Therefore the possible values of the functions of an angle 
 
 are : 
 
 sine and cosine between + 1 and — 1, 
 
 i.e. sine and cosine cannot he numerically greater than 1; 
 
 tangent and cotangent between + oo and — oo, 
 
 i.e. tangent and cotangent may have any real value ; 
 
 secant and cosecant between + oo and + 1, and — 1 and — oo, 
 
 i.e. secant and cosecant may have any real values., except 
 values between + 1 and — 1. 
 
 These limits are indicated in the following figures. The 
 student should carefully verify. 
 
 Sin. + 1 
 Cos. - 
 Tan. —00 
 
 90° 
 Y 
 
 \Sin 0=±0 o /. 
 -X 180 X- 
 
 1,4 
 
 Sin. 
 Cos. 
 Tan. 
 
 -1 
 -0 
 
 + 00 
 
 + 1 
 + 
 
 +00 
 
 X 
 
 0, +1,-0 360 
 
 -1 
 + 
 
 F' 
 
 370° 
 
 Fig. 18. 
 
 25. In tracing the changes in the values of the functions as 
 a changes from 0° to 360°, consider the revolving line r as 
 of fixed length. Then x and y may have any length between 
 and r. 
 
 y 
 
 
 
 Sine. At 0°, sin «="=- = 0. As a increases through 
 
 r r 
 
 y ^ 
 
 the first quadrant, y increases from to r, whence - increases 
 from to 1. In passing to 180° sin a decreases from 1 to 0, 
 
VARIATIONS IN THE FUNCTIONS. 21 
 
 since y decreases from r to 0. As « passes through 180°, y 
 changes sign, and in the third quadrant decreases to nega- 
 tive r, so that sin a. decreases from to — 1. In the fourth 
 quadrant y increases from negative r to 0, and hence sin a 
 increases from — 1 to 0. 
 
 Cosine depends on changing values of x. Show that, 
 as a increases from 0° to 360°, cos « varies in the four 
 quadrants as follows: 1 to 0, to — 1, — 1 to 0, to 1. 
 
 Tangent depends on changing values of both y and x. 
 
 At 0°, ^ = 0, a: = r, at 180°, y = 0,x = -r, 
 
 at 90°, x = 0,y = r, at 270°, x=0,y = -r, 
 
 V 
 Hence tan 0° = -^ = - = 0. As a passes to 90°, y increases 
 X r 
 
 to r, and x decreases to 0, so that tan a increases from to oo. 
 As a passes through 90°, x changes sign, so that tan a 
 changes from positive to negative by passing through oo. 
 In the second quadrant x decreases to negative r, y to 0, and 
 tan a passes from — oo to 0. As a passes through 180°, 
 tana changes from minus to plus by passing through 0, 
 because at 180° y changes to minus. In the third quadrant 
 tana passes from to oo, changing sign at 270° by passing 
 through 00, because at 270° x changes to plus. In the fourth 
 quadrant tan a passes from — oo to 0. 
 
 Cotangent. In like manner show that cot a passes through 
 the values oo to 0, to — oo, oo to 0, to — oo, as a passes 
 from 0° to 360°. 
 
 Secant depends on x for its value. Noting the change 
 in X as under cosine, we see that secant passes from 1 to oo, 
 
 — oo to — 1, — 1 to — 00, 00 to 1. 
 
 Cosecant passes through the values oo to 1, 1 to oo, 
 
 — 00 to — 1, — 1 to — 00. 
 
 The student should trace the changes in each function 
 fully, as has been done for sine and tangent, giving the 
 reasons at each step. 
 
22 
 
 PLANE TRIGONOMETRY. 
 
 a 
 
 0° to 90° 
 
 90° to 180° 
 
 180° to 270° 
 
 270° to 360° 
 
 sin 
 
 to 1 
 
 1 to 
 
 - to - 1 
 
 - 1 to - 
 
 cos 
 
 1 to 
 
 - to - 1 
 
 -1 to -0 
 
 to 1 
 
 tan 
 
 to 00 
 
 - 00 to - 
 
 to 00 
 
 - 00 to - 
 
 cot 
 
 00 to 
 
 - to - 00 
 
 00 to 
 
 - to - 00 
 
 sec 
 
 1 to GO 
 
 — 00 to — 1 
 
 — 1 to — 00 
 
 00 to 1 
 
 CSC 
 
 00 to 1 
 
 1 to 00 
 
 — 00 to — 1 
 
 — 1 to —00 
 
 * 26. Graphic representation of functions. These variations 
 are clearly brought out by graphic representations of the 
 functions. Two cases will be considered : I, when a is a 
 constant angle ; II, when a is a variable angle. 
 
 I. When a is a constant angle. 
 
 The trigonometric functions are ratios, pure numbers. 
 By so choosing the triangle of reference that the denomi- 
 nator of the ratio is a side of unit length, the side forming 
 the numerator of that ratio will be a geometrical representa- 
 tion of the value of that function, e.g. if in Fig. 19 r = 1, 
 
 then sin a = ? = ^=^. This may be done by making a a 
 
 central angle in a circle of radius 1, and drawing triangles 
 of reference as follows : 
 
 Fio. 19. 
 
GRAPHIC REPRESENTATION OF FUNCTIONS. 23 
 
 In all the figures A OF = a, and 
 
 BP BP j.r> 
 
 OB OB ^j, 
 
 
 BP AD AD .J, 
 ''""'^OB^OA^ 1 =^^' 
 
 
 OA BO EC T,n 
 
 
 OP OB OB r.j. 
 '''''- OB=OA= 1 =^^' 
 
 
 OP 00 00 rtn 
 
 It appears then that, by taking a radius 1, 
 
 sine is represented by the perpendicular to the initial line, 
 drawn from that line to the terminus of the arc sub- 
 tending the given angle; 
 
 cosine is represented by the line from the vertex of the 
 angle to the foot of the sine ; 
 
 tangent is represented by the geometrical tangent drawn 
 from the origin of the arc to the terminal line, produced 
 if necessary; 
 
 cotangent is represented by the geometrical tangent drawn 
 from a point 90° from the origin of the arc to the 
 terminal line, produced if necessary; 
 
 secant is represented by the terminal line, or the terminal 
 line produced, from the origin to its intersection with 
 the tangent line ; 
 
 cosecant is represented by the terminal line, or the terminal 
 line produced, from the origin to its intersection with 
 the cotangent line. 
 
24 
 
 PLANE TRIGONOMETRY. 
 
 These lines are not the functions^ but in triangles drawn 
 as explained their lengths are equal to the numerical values 
 of the functions, and in this sense the lines may be said to 
 represent the functions. It will be noticed also that their 
 directions indicate the signs of the functions. Let the 
 student by means of these representations verify the results 
 of Arts. 24 and 25. 
 
 II. When a is a variable angle. 
 
 Take XX' and YY' as axes of reference, and let angle 
 units be measured along the ic-axis, and values of the func- 
 tions parallel to the ?/-axis, as in Art. 3. We may write 
 corresponding values of the angle and the functions thus : 
 
 a=0°, 30°, 45% 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 
 sin«=0, i, iV2, iV3, 1, iV3, iV2, i, 0, _ i, _ i V2, 
 
 a= 240°, 270°, 300°, 315°, 330°, 360°, -30°, -45°, -60°, -90°, etc., 
 sina=-|V3, -1, -iV3, -^^2, -\, 0, -^ -iV2, -|V3, -1, etc. 
 
 These values will be sufficient to determine the form of the 
 curve representing the function. By taking angles between 
 
 those above, and computing 
 the values of the function, as 
 given in mathematical tables, 
 the form of the curve can be 
 /^ determined to any required 
 degree of accuracy. Reduc- 
 ing the above fractions to 
 decimals, it will be convenient 
 to make the ?/-units large in 
 comparison with the a:-units. 
 In the figure one a^-unit repre- 
 sents 15°-, and one y-unit 0.25. 
 Measuring the angle values along the rr-axis, and from these 
 points of division measuring the corresponding values of sin a 
 parallel to the ^-axis, as in Art. 3, we have, approximately. 
 
 Curves of Sine and Cosecant. 
 
 Cosecant 
 
 Fig. 20. 
 
GRAPHIC REPKESENTATION OF FUNCTIONS. 25 
 
 OX^ = 30° = 2 units, OX^ = 45° =3 units, 
 
 Xi Fi = 1 =2 units, Xg Fg = 0. 71 = 2. 84 units, 
 
 OXg =60° =4 units, etc., 
 X^Y^=0.S6 = 3.44 units, etc. 
 
 We have now only to draw through the points F^, Fg, Fg, 
 etc., thus determined, a continuous curve, and we have the 
 sine-curve or sinusoid. 
 
 The dotted curve in the figure is the cosecant curve. Let 
 the student compute values, as above, and draw the curve. 
 
 In like manner draw the cosine and secant curves, as 
 follows : 
 
 i 
 
 Curves of Cosine and Secant, 
 
 Cosine 
 
 Secant ~ 
 
 FiG. 21. 
 
 Tangent curve. Compute values for the angle a and for 
 tan a, as before ; 
 
 a = 0°, 30°, 45°, 60°, 90°, 120°, 136°, 150°, 180°, 210°, 226°, 240°, 270°, 
 tan a = 0, \VS, 1, V3, ±oo, - V3, -1, -^VS, 0, |\/3, 1, V3, ±oo, 
 
 a = - 30°, - 45°, - 60°, - 90°, etc., 
 tan a = - ^ V3, - 1, - V3, ± oo, etc. 
 
 Then lay off the values of a and of tan a along the x^ and 
 parallel to the ?/-axis, respectively. It will be noted that, 
 
26 
 
 PLANE TRIGONOMETRY. 
 
 as a approaches 90°, tan a increases to oo, and when a passes 
 90°, tan a is negative. Hence the value is measured parallel 
 
 Curves of Tangent and Cotangent. 
 
 Tangent 
 
 Cotangent 
 
 Fig. 22. ' 
 
 to the ^-axis downward, thus giving a discontinuous curve, 
 as in the figure. 
 
 27. The following principles are illustrated by the curves : 
 
 1. The sine and cosine are continuous for varying values 
 of the angle, and lie within the limits + 1 and — 1. Sine 
 changes sign as the angle passes through 180°, 360°, ••♦, 
 n 180°, while cosine changes sign as the angle passes through 
 90°, 270°, •••, (2 7^ + 1) 90°. Tangent and cotangent are 
 discontinuous, the one as the angle approaches 90°, 270°, •••, 
 (2?i + l) 90°, the other as the angle approaches 180°, 360°, •-, 
 7il80°, and each changes sign as the angle passes through 
 these values. The limiting values of tangent and cotangent 
 are + oo and — oo. 
 
 2. A line parallel to the ?/-axis cuts any of the curves in 
 but one point, showing that for any value of a there is but 
 one value of any function of a. But a line parallel to the 
 a?-axis cuts any of the curves in an indefinite number of 
 points, if at all, showing that for any value of the function 
 there are an indefinite number of values, if any, of a. 
 
GRAPHIC REPRESENTATION OF FUNCTIONS. 27 
 
 3. The carves afford an excellent illustration of the varia- 
 tions in sign and value of the functions, as a varies from 
 to 360°, as discussed in Art. 25. Let the student trace these 
 changes. 
 
 4. From the curves it is evident that the functions are 
 periodic^ i.e. each increase of the angle through 360° in the 
 case of the sine and cosine, or through 180° in the case of 
 the tangent and cotangent, produces a portion of the curve 
 like that produced by the first variation of the angle within 
 those limits. 
 
 5. The difference in rapidity of change of the functions 
 at different values of a is important, and reference will be 
 made to this in computations of triangles. (^See Art. 64, 
 Case III.) A glance at the curves shows that sine is chang- 
 ing in value rapidly at 0°, 180°, etc., while near 90°, 270°, 
 etc., the rate of change is slow. But cosine has a slow rate 
 of change at 0°, 180°, etc., and a rapid rate at 90°, 270°, etc. 
 Tangent and cotangent change rapidly throughout. 
 
 Ex. Let the student discuss secant and cosecant curves. 
 
 ORAL WORK. 
 
 1. Express in radians 180°, 120°, 45°; in degrees, J^ radians, 2 it, 
 Itt, f tt. 
 
 2. If ^ of a right angle be the unit, what is the measure of | of a 
 right angle? of 90°? of 135°? 
 
 3. Which is greater, cos 30° or I cos 60°? tan - or cot-? sin ^ or cos- ? 
 
 ^ ^ 6 3 4 4 
 
 4. Express sin a in terms of sec a ; of tan a ; tan a in terms of cos a ; 
 of sec a. 
 
 5. Given sin a = |, find tan a. If tan cc = 1, find sin a, esc a, cot a ; 
 also tan 2 a, sin 2 a, cos 2 a. 
 
 6. If cos a = i, find sin -, tan -• 
 
 2 2 
 
 7. In what quadrant is angle t, if both sin t and cos t are minus ? if 
 sin t is plus and cos t minus ? if tan t and cot t are both minus ? if sin < 
 and CSC t are of the same sign ? Why ? 
 
 8. Of the numbers 3, ^, — 5, — 4, a, — 6, oo, 0, which may be a value 
 of sin JO ? of sec j9 ? of tan p ? Why ? 
 
28 PLANE TKIGONOMETRY. 
 
 EXAMPLES. 
 
 1. If sin 26° 40' = 0.44880, find, correct to 0.00001, the cosine and 
 tangent. 
 
 2. If tan a = VS, and cot fi = | Vs, find sin a cos ^ — cos a sin /i. 
 
 3 Evaluate si" ^0° cot 30° - cos eO'^ tan 60° 
 sin 90° cos 0° 
 
 Prove the identities : 
 
 4. tan^(l -cot2^) + cot^(l -tan2^) = 0. 
 
 5. (sin^ + sec^)2 +(cos^ + csc^)2 =(1 + sec^ csc^)^. 
 
 6. sin2 X cos a: esc a; — cos^ x esc x sin^ x + cos* x sec a: sin a? = sin^ x cos x 
 4- cos^ X sin x. 
 
 7 . tan^ w + cot^ w = sec^ w csc^ w — 2. 
 
 8. sec^ V + cos2 V = 2 -{- tan^ v sin^ v. 
 
 9. cos2« + 1 = 2cos3«sec^ + sin2^ 
 
 10. csc2 1 — sec2 1 = cos2 « csc^ t - sin2 < sec^ t. 
 
 11. The sine of an angle is ^„ ~ ^ i find the other functions. 
 
 12. If tan^ + sin J. = m, tan ^ — sin ^ = n, prove m'^ — n^ = 4:Vmn. 
 
 Solve for one function of the angle involved the equations : 
 
 13. sin^ + 2cos^ = 1. 16. 2sin2ar + cosa; - 1 = 0. 
 cosa_3 17. sec^a; — 7tana: — 9 = 0. 
 tana 2 18. 3 cscy + lOcoty - 35 = 0. 
 
 15. \/3csc2^ = 4cot^. 19. sin^i; -|cosu- 1 = 0. 
 
 20. a sec^ zo + b tan w + c — a = 0. 
 
 21. K ^HLd = V2, *HLd = V3, find A and 5. 
 
 sin ^ tan B 
 
 22. Find to five decimal places the arc which subtends the angle of 
 1° at the centre of a circle whose radius is 4000 miles. 
 
 23. If CSC A = f V3, find the other functions, when A lies between 
 — and TT. 
 
 24. In each of two triangles the angles are in G. P. The least angle 
 of one of them is three times the least angle of the other, and the sum of 
 the greatest angles is 240°. Find the circular measure of each of the 
 angles. 
 
CHAPTER III. 
 
 FUNCTIONS or ANY ANGLE — INVERSE FUNCTIONS. 
 
 28. By an examination of the figure of Art. 24 it is seen 
 that all the fundamental relations between the functions hold 
 true for any value of a. The table of Art. 16 expresses the 
 functions of a, whatever be its magnitude, in terms of each 
 of the other functions of that angle if the ± sign be prefixed 
 to* the radicals. 
 
 The definitions of the trigonometric functions (Art. 12) 
 apply to angles of any size and sign, but it is always possible 
 to express the functions of any angle in terms of the func- 
 tions of a positive acute angle. 
 
 The functions of any angle ^, greater than 360°, are the 
 same as those of ^ ± w • 360°, since 6 and 6 ±n • 360° have 
 the same triangle of reference. Thus the functions of 390°, 
 or of 750°, are the same as the functions of 390° — 360°, or 
 of 750°— 2-360°, i.e. of 30°, as is at once seen by drawing a 
 figure. So also the functions of —315°, or of —675° are 
 the same as those of - 315° + 360°, or of - 675° + 2-360°, 
 i.e. of 45°. 
 
 For functions of angles less than 360° the relations of this 
 chapter are important. 
 
 29. To find the relations of the functions of — ^, 90° ± ^, 
 180° ± 6, and 270° ±6 to the functions of 6, 6 being any angle. 
 
 Four sets of figures are drawn, I for d an acute angle, II 
 for Q obtuse. III for an angle of the third quadrant, and 
 IV for d an angle of the fourth quadrant. 
 
 In every case generate the angles forming the compound 
 angles separately, i.e. turn the revolving line first through 
 
30 PLANE TRIGONOMETRY, 
 
 (a) (6) 
 
 (c) 
 
 x' 
 
 ^r' 
 
 III 
 
 in 
 
 III 
 
 IV 
 
 IV 
 Fig. 23. 
 
 t 
 
 \r' 
 
 
 y 
 
 Y\ 
 
 \ 
 
 
 
 oW ] 
 
 
 
 rCA 
 
 y 
 
 M~ 
 
 1%'i'' 
 
 IV 
 
FUNCTIONS OF ANY ANGLE. 
 
 31 
 
 
 / 
 
 \ 
 
 
 
 Ix' 
 
 1^ 
 
 
 \ / 
 
 \ -f 
 
 
 t 
 
 V 
 
 \#/ 
 
 
 y 
 
 V" 
 
 N 
 
 y 
 
 
 K^. 
 
 // 
 
 
 
 , \?.io 
 
 — fl / 
 
 
 y 
 
 \ 
 
 
 y 
 
 x\ 
 
 c^y 
 
 
 *>0 
 
 +8 
 
 
 II 
 
 II 
 
 III 
 
 t 
 
 [V 
 
 
 ry^ 
 
 y 
 
 /.X 
 
 > 
 
 <^'y' 
 
 vs= 
 
 < 
 
 y 
 
 »0 
 
 =9 
 
 
 
 
 
 
 IV 
 
 
 ^ 
 
 +^ 
 
 
 a;'A/1 
 
 N\ X' 
 
 
 I v 
 
 
 
 f 
 
 y 
 
 / 
 
 
 y 
 
 
 /f/ 
 
 '''\ 
 
 
 / 
 
 
 
 \ 
 
 IV 
 
 Fig. 23. 
 
32 PLANE TRIGONOMETRY. 
 
 0°, 90°, 180°, or 270°, and then from this position through 
 ^, or — ^, as the case may be. Form the triangles of refer- 
 ence for (a) the angle (9, (6) - ^, (c) 180° ± (9, (^d) 90° ± (9, 
 (e) 270° ±^. 
 
 The triangles of reference (a), (6), (<?), (c?), and (e), in 
 each of the four sets of figures, I, II, III, IV, are similar, 
 being mutually equiangular, since all have a right angle and 
 one acute angle equal each to each. Hence the sides x^ y^ r 
 of the triangles (a) are homologous to x\ y\ r' of the cor- 
 responding triangles (5) and (c), but to ?/', x\ 7•^ of the 
 corresponding triangles (c?) and {e). For the sides x of 
 triangle {a) and x^ of the triangles (6) and (c) are opposite 
 equal angles, and hence are homologous, but the sides y^ are 
 opposite this same angle in triangles (c?) and (e), and there- 
 fore sides y^ of (c?) and (e) are homologous to x of (a). 
 
 Attending to the signs of x and a;', y and ?/' in the similar 
 triangles {a) and (6), 
 
 sin(-^)=|^ = -|=-sin^, 
 cos(-6>)=^ = ^ =cos(9, 
 
 tan (- 6>) = ^= - ^ = - tan^. 
 
 ^ a?' X 
 
 Also in the similar triangles {a) and (c), 
 
 sin (180° - (9) = ^ = ^ = sin (9, 
 
 r 
 
 = = — cos r, 
 
 cos (180°-^) = =^ 
 
 tan (180° - ^)= ^ = - ^ = - tan(9, 
 In like manner show that 
 
 sin (180° + (9) = -sin (9, 
 cos (180° + (9) = - cos ^, 
 tan (180° + ^)= tan ^. 
 
FUNCTIONS OF ANY ANGLE. 33 
 
 Again, in the similar triangles (a) and ((^), 
 
 sin (90° + (9) = ^ = - = cos^, 
 
 cos (90° 4- ^) = ^ = - - = - sin ^, 
 
 r 
 .f 
 
 tan (90° + (9) = ^ = - -= - cot ^. 
 Show that 
 
 sin (90°-^)= cos ^, C 
 
 cos(90°-6»)=sin(9, | ^ 
 
 tan (90° -(9) = cot (9. 
 
 Finally, from the similar triangles (a) and (e), show that 
 
 sin (270° ± (9)=- cos 6^, 
 
 cos(270°±^)=±sin^, 
 
 tan (270° ±^)=Tcot^. 
 
 From the reciprocal relations the student can at once 
 write the corresponding relations for secant, cosecant, and 
 cotangent. 
 
 30. Since in each of the four cases x\ y' of triangles 
 (6) and (<?) are homologous to x^ y of triangle (a)^ while 
 x\ y' of the triangles (cT) and (e) are homologous to y^ x 
 of triangle (a), we may express the relations of the last 
 article thus : 
 
 The functions of -j ^^o , n correspond to the same functions 
 
 of 6^ while those of \ QrT/^o , n correspond to the co functions 
 of 6, due attention being paid to the signs. 
 
 The student can readily determine the sign in any given 
 case, whether 6 be acute or obtuse, by considering in what 
 quadrant the compound angle, 90° ± 0, 180° ± 6, etc., would 
 
84 PLANE TRIGONOMETRY. 
 
 lie if 6 were an acute angle, and prefixing to the correspond- 
 ing functions of the signs of the respective functions for 
 an angle in that quadrant. Thus 90° + ^, if ^ be acute, is 
 an angle of the second quadrant, so that sine and cosecant 
 are plus, the other functions minus. It will be seen that 
 sin (90° + (9)= + cos (9, cos (90° + (9)= - sin^, etc., and this 
 will be true whatever be the magnitude of 6. It will assist 
 in fixing in the memory these important relations to notice 
 that when in the compound angle 6 is measured from the 
 ?/-axis, as in 90° ± ^, 270° ± ^, the functions of one angle 
 correspond to the co-functions of the other, but when in the 
 compound angle 6 is measured from the a;-axis, as in ± ^, 
 180° ± 6^ then the functions of one angle correspond to the 
 same functions of the other. 
 
 These relations, as has been noted in Art. 28, can be 
 extended to angles greater than 360°, and it may be stated 
 generally that 
 
 function (9 = ± function (2 ^ • 90° ± (9), 
 
 function (9 = ± co-function [(2 n + 1) 90° ± (9]. 
 
 Computation tables contain angles less than 90° only. The chief 
 utility of the above relations will be the reduction of functions of angles 
 greater than 90° to functions of acute angles. Thus, to find tan 130° 20', 
 look in the tables for cot 40° 20', or for tan 49° 40'. Why ? 
 
 Ex. 1. What angles less than 360° have the same numerical cosine 
 as 20°? 
 
 cos 20° = - cos (180° ± 20°) = cos (360° - 20°). 
 
 .-. 200°, 160°, 340° have the same cosine numerically as 20°. 
 
 2. Find the functions of 135° ; of 210°. 
 
 sin 135° = sin (90° + 45°) = cos 45° = ^v^, 
 
 cos 135° = cos (180° - 45°) = - cos 45° = - i V2, etc. 
 
 sin 210° = sin (180° + 30°) = - sin 30° = - \. 
 
 Let the student give the other functions for each angle. 
 
INVERSE FUNCTIONS. 35 
 
 ORAL WORK. 
 
 1. Determine the sine and tangent of each of the following angles : 
 30°, 120°, - 30°, - 60°, f TT, 2f tt, - 135°, - ir. 
 
 2. Which is the greater, sin 30° or sin(- 30°)? tan 135° or tan 45°? 
 cos 60° or cos( - 60°) ? sin 22° 30' or cos 67° 30' ? 
 
 3. What positive angle has the same tangent as — ? the same sine 
 as 50°? ^ 
 
 4. If tan^ = -l, findsin^. 
 
 5. Find sin 510°, cos(- 60°), tan 150°. 
 
 6. Reduce in two ways to functions of a positive acute angle, cos 122° 
 tan 140° 30', sin (-60°). ' 
 
 7. Find all positive values of x, less than 360°, satisfying the fol- 
 lowing equations : cos x — cos 45°, sin 2 a: = sin 10°, tan 3 a; = tan 60°, 
 sin X = sin 30°, tan x = tan 135°. 
 
 8. What angles are determined when (a) sine and cosine are + ? 
 (b) cotangent and sine are — ? (c) sine + and cosine — ? (</) cosine — 
 and cotangent + ? 
 
 INVERSE FUNCTIONS. 
 
 31. That a is the sine of an angle 6 may be expressed in 
 two ways, viz., sin 6 = a^ or, inversely, 9 = sin""i a, the latter 
 being read, 6 equals an angle whose sine is a, or, more briefly, 
 is the anti-sine of a. 
 
 The notation sin~ia, cos"^ a, tan-^a, etc., is not a fortunate one, but 
 is so generally accepted that a change is not probable. The symbol may 
 have been suggested from the fact that if ax = b, then x = a~^ b, whence, 
 by analogy, if sin ^ = a, ^ = sin"i a. But the likeness is an analogy only, 
 for there is no similarity in meaning. Sin"^ a is an angle 0, where sin = a, 
 
 and is entirely different from (sin a)-^ = . In Europe the symbols 
 
 sin a 
 arc sin a, arc cos a, etc., are employed. 
 
 32. Principal value. We have found that in sin 6 = a^ 
 for any value of ^, a can have but one value ; but in 
 6 = sin~i a, for any value of a there are an indefinite number 
 of values of 6 (Art. 27, 2). 
 
 Thus, when sin (9 = a, if a = J, (9 may be 30°, 150°, 390°, 
 510°, - 330°, etc., or, in general, wtt +(- 1)"30°. 
 
 In the solution of problems involving inverse functions. 
 
36 
 
 PLANE TRIGONOMETRY. 
 
 the numerically least of these angles, called the principal 
 value^ is always used ; i.e. we understand that sin~i a, tan~i a, 
 are angles between + 90° and — 90°, while the limits of 
 cos-la are 0° and 180°. 
 
 Thus, sin-i i = 30°, sin-i( - J) = - 30°, cos"! J = 60°, 
 cos-i(-i)=120°. 
 
 ORAL WORK. 
 
 How many degrees in each of the following angles? How many 
 radians ? 
 
 1. cos-i:^? 
 
 2 
 
 2. tan-il? 
 
 3. cot-i(-V3)? 
 
 4. sin-i(-iV2)? 
 
 5. cos-i(-iV2)? 
 
 6. sln-.(_^), 
 
 7. tan-iVS? 
 
 8. cos-iQ? 
 
 9. sin-n? 
 
 10. tan-iQ? 
 
 11. tan-i(-l)? 
 
 12. sin-i(-l)? 
 
 Find the values of the functions : 
 
 13. sin(tan-ii\/3). 
 
 14. tan(cos"^ 1). 
 
 15. tan(cot~i[— go]). 
 
 16. cos(tan~iGo). 
 
 17. sin(sin-i|V2). 
 
 18. tan(tan-ia;). 
 
 19. cos(sin-iO). 
 
 20. sin(cos-i[- 1]). 
 
 21. cos(cot-iV3). 
 
 22. tan(sin-i[-l]). 
 
 23. sin(tan-i[-l]). 
 
 Ex. 1. Construct cot-^ f . 
 Construct the right triangle xyr, so that a: = 4, 
 2/ = 3, whence angle xr = cot"^ f . 
 
 2. Find cos(tan-i ^^). 
 Let 6 = tan-i j^, whence 
 
 tan = xV> and cos = |f 
 .♦. cos 6 = cos(tan-^ -j^) = if. 
 
 and 
 
 3. If ^ = csc-i a, prove 6 = cos~i — ^ 
 CSC ^ = a 
 cos e =Vl--„ = ^"'^ ~ \ or ^ = cos- 
 
 . sin ^ = -> 
 a 
 
 .1 Va^ 
 
EXAMPLES. 37 
 
 EXAMPLES. 
 
 1. Construct sin-^f, tan-ij^, cos-i(— ^). 
 
 2. Find tan(sin~ix^j), sin(tan-iy\). 
 
 3. If ^ = sin-i a, prove = tan-^ — 
 
 VI -a2 
 
 4. Show that sin"^ a = 90° — cos"^ a. 
 
 5. Prove tan-i\/3 + cot-iV3=^. 
 
 6. Prove tan-ifsin '^\ = cos-^^^. 
 
 7. What angles, less than 360°, have the same tangent numerically 
 as 10°? 
 
 8. Given tan 143° 22' = - 0.74357 ; find, correct to 0.00001, sine and 
 cosine. 
 
 9. If cot2(90° + /?) + csc(90° - /8) - 1 = 0, find tan fi. 
 
 10. Find all positive values of x, less than 360°, when sin x = sin 22° 30' ; 
 when tan 2 a; = tan 60°. 
 
 11. When is sin x = possible, and when impossible ? 
 
 12. Verify sin-i | + cos'i— + tan-i V3 = sin-i ^. 
 
 13. What values of x will satisfy sin-i(.r2 - x)= 30° ? 
 
 14. If tan2 e - sec2 a = 1, prove sec $ + tan^ ^ esc ^ = (3 + tan2 a)^. 
 
 15. Prove sin ^ (1 + tan A)+ cos ^ (1 + cot A) = sec ^ + esc A. 
 
 16. Solve the simultaneous equations : 
 
 sin-i(2 X + Sy)=30° and 3 a: + 2 y = 2. 
 
 17. Verify (a) tan60° = V ^ -cosli 
 
 ' 1 + cos 1'.: 
 
 (6) cos 60° = 
 
 i2!. 
 120°' 
 
 1 -tan2 30° 
 l+tan2 30°* 
 
 (c) 2 sin2 60° = 1 - cos 120°. 
 
 18. Show that the cosine of the complement of - equals the sine of 
 
 6 
 the supplement of -• 
 
38 PLANE TRIGONOMETRY. 
 
 REVIEW. 
 
 Before leaving a problem the student should review and master all 
 principles involved. 
 
 1. Construct cos'^xV 5 sin-i(— |); tan-i2. 
 
 2. Find cos (sin-i f ) ; tan (cos-i [ — i] ) . 
 
 3. Prove cot"^ a = cos~^ ^ 
 
 VI +a2 
 
 4. Given a = cot-i|, find tan a + sin (90° + a). 
 
 5. Find tan ( sin-i| + cos-^: — )• 
 
 6. State the fundamental relations between the trigonometric func- 
 tions in terms of the inverse functions. Thus, 
 
 1 
 
 sin~i« = csc~^-, sin~ia = cos~^Vl — aK etc. 
 a 
 
 7. Find all the angles, less than 360°, whose cosine equals sin 120°. 
 
 8. Given cot~i 2.8449, find the sine and cosine of the angle, correct 
 to 0.0001. 
 
 9. If tan2 (180° -0)- sec (180° + (9) = 5, find cos 0. 
 
 irx T£ • n 9 £ J tan^^ + cos^^ 
 
 10. If sm 6 = ^, find -— ' -- 
 
 ^' tan2^-cos2^ 
 
 11. Is sin X — 2 cos x + Ssina; — 6 = 0a possible equation ? 
 
 12. Verify (a) sin 60°= ^ tan 30° , 
 
 ^ ^ ^ l + tan230° 
 
 (b) 2 cos2 60° = 1 + cos 120°. 
 
 (c) cos 60° - cos 90° = 2 cos2 30° - 2 cos2 45°. 
 
 13. If sin X = — ^K^_± 1 — find sec x and tan x. 
 
 a^ + 2ab + 2 b^ 
 
 14. Prove 1 + sin ^ - cos ^ _^ 1 + sin^ + cos^^ ^^^^^^ 
 
 1 + sin ^ + cos $ 1 + sin ^ — cos 
 
 15. Prove 
 
 cos 45° + cos 135° + cos 30° + cos 150° - cos 210° + cos 270° = sin 60°. 
 
 16. If tan = prove that 
 
 Va2 _ Ij2 
 
 sin ^(1 + tan 6) + cos ^(1 + cot ^ - sec = |- 
 
 17. Solve sin2 x + sin^ (x + 90°) + sin2 (^ ^ i80°) = 1. 
 
EXAMPLES. 39 
 
 18. Given cos^ a = msina — n, find sin a. 
 
 19. If sin2y3=-A^, find^. 
 
 2 sec p 
 
 20. Given tan 238° =1.6, find sin 148°. 
 
 21. Prove tan-i m + cot-i m = 90°. 
 
 22. Find sin (sin~ij9 + cos~ijo). 
 
 23. Solve cot2 ^ (2 esc ^ - 3) + 3 (esc ^ - 1) = 0. 
 
 24. Prove sin^ a sec^ ^ + tan^ /? cos^ a = sin^ a + tan2 p. 
 
 25. Prove cos^ F + sin^ F = 1 - 3 sin^ F + 3 sin^ F. 
 
 26. What values of A satisfy sin 2 A = cos 3 ^ ? 
 
 27. If tan C = ^^ ~ '^'^ , and tan D =\ ^ - cos C ^ ^^^^ ^^^ ^ .^ ^^^^^^ 
 ofm. ''^ M+cosC 
 
 28. If sin a: — cos x + 4 cos^ a: = 2, find tan x ; sec a:. 
 
 29. Does the value of sec x, derived from sec^ x = — — - — - — , give a 
 possible value of a:? 1 - cos x 
 
 30. Prove 
 
 [cot (90° - ^ ) - tan (90° + A)] [sin (180° -A) sin (90° + /I )] = 1 . 
 
 31. Prove (1 +sin^)2[cot^ +2sec^(l -csc^)] + csc^ cos^^ = 0. 
 
 32. Given sin a: = m sin y, and tan x = n tan y, find cos x and cos y. 
 
 33. Given cot 201° = 2.6, find cos 111°. 
 
 34. Find the value of 
 
 cos-H + sin-HV^ + csc-i(- 1)+ tan-U - 2cot-iV3. 
 
 35. Solve 2 cos^d + 11 sin ^ - 7 = 0. 
 
 36. Prove 
 
 cos2 B + cos2 {B + 90°) + cos2 (5 + 180°) + cos2(5 + 270°) = 2. 
 
CHAPTER IV. 
 
 COMPUTATION TABLES. 
 
 33. Natural functions. It has been noted that the trigo- 
 nometric functions of angles are numbers^ but the values 
 were found for only a few angles, viz. 0°, 30°, 45°, 60°, 
 90°, etc. In computations, however, it is necessary to know 
 the values of the functions of any angle, and tables have 
 been prepared giving the numerical values of the functions 
 of all angles between 0° and 90° to every minute. In 
 these tables the functions of any given angle, and co^i- 
 versely the angle corresponding to any given function, can 
 be found to any required degree of accuracy ; e.g. by look- 
 ing in the tables we find sin 24° 26'= 0.41363, and also 
 1 .6415 = tan 58° 39'. These numbers are called the natural 
 functions., as distinguished from their logarithms, which are 
 called the logarithmic functions of the angles. 
 
 Ex. 1. Find from the tables of natural functions : 
 
 sin35n4'; cos 54° 46'; tan 78° 29'; cos 112° 58'; sin 135°. 
 
 2. Find the angles less than 180° corresponding to : 
 sin-i 0.37865; cos-i 0.37865; tan-i 0.58670 ; cos"! 0.00291 ; sin-^O 
 
 34. Logarithms. The arithmetical processes of multi- 
 plication, division, involution, and evolution, are greatly 
 abridged by the use of tables of logarithms of numbers 
 and of the trigonometric ratios, which are numbers. The 
 principles involved are illustrated in the following table : 
 
 Write in parallel columns a geometrical progression having 
 the ratio 2, and an arithmetical progression having the dif- 
 ference 1, as follows : 
 
 40 
 
LOGARITHMS. 
 
 41 
 
 G. P. 
 
 A. P. 
 
 1 
 
 
 
 2 
 
 1 
 
 4 
 
 2 
 
 8 
 
 3 
 
 16 
 
 4 
 
 32 
 
 5 
 
 64 
 
 6 
 
 128 
 
 7 
 
 256 
 
 8 
 
 512 
 
 9 
 
 1024 
 
 10 
 
 2048 
 
 11 
 
 4096 
 
 12 
 
 8192 
 
 13 
 
 16384 
 
 14 
 
 32768 
 
 15 
 
 655S6 
 
 16 
 
 131072 
 
 17 
 
 262144 
 
 18 
 
 524288 
 
 19 
 
 1048576 
 
 20 
 
 It will be perceived that the numbers in 
 the second column are the indices of the 
 powers of 2 producing the corresponding 
 numbers in the first column, thus : 2^ = 64, 
 211 = 2048, 218 = 262144, etc. The use of 
 such a table will be illustrated by examples. 
 
 Ex. 1. Multiply 8192 by 128. 
 
 From the table, 8192 = 2^% 128 = 2'. Then by 
 actual multiplication, 8192 x 128 = 1048576, or by the 
 law of indices, 21^ x 2^ = 220 = 1048576 (from table). 
 
 Notice that the simple operation of addition is sub- 
 stituted for multiplication by adding the numbers in 
 the second column opposite the given factors in the 
 first column. This sum corresponds to the number 
 in the first column which is the required product. 
 
 2. Divide 16384 by 512. 
 
 16384 -4- 512 = 32, which corresponds to the result 
 obtained by use of the table, or 2^^ - 2^ = 2^ = 32. 
 The operation of subtraction takes the place of 
 division. 
 
 3. Find V262144. 
 
 >>^62144 
 
 2^^ = 03 — 
 
 In the table, 262144 is opposite 18. 18 -- 6 = 3, 
 which is opposite 8, the required root ; i.e. simple division takes the 
 place of the tedious process of evolution. 
 
 4. Cube 64. 6. Find ^^^2768. 
 
 5. Multiply 256 by 4096. 
 
 7. Divide 1048576 by 32768. 
 
 35. The above table can be made as complete as desired 
 by continually inserting between successive numbers in the 
 first column the geometrical mean, and between the opposite 
 numbers in the second, the arithmetical mean, but in prac- 
 tice logarithms are computed by other methods. The num- 
 bers in the second column are called the logarithms of the 
 numbers opposite in the first column. 2 is called the base of 
 this system, so that the logarithm of a number is the exponent 
 by which the base is affected to produce the number. 
 
42 PLANE TRIGONOMETRY. 
 
 Thus, the logarithm of 512 to the base 2 is 9, since 
 29 = 512. 
 
 Logarithms were invented by a Scotchman, John Napier, early in the 
 seventeenth century, but his method of constructing tables was different 
 from the above. See Encyc. Brit, art. ^'•Logarithms,'''' for an exceedingly 
 interesting account. De Morgan says that by the aid of logarithms the 
 labor of computing has been reduced for the mathematician to about 
 one-tenth part of the previous expense of time and labor, while Laplace 
 has said that John Napier, by the invention of logarithms, lengthened 
 the life of the astronomer by one-half. 
 
 Columns similar to those above might be formed with any 
 other number as base. For practical purposes, however, 10 
 is always taken as the base of the system, called the common 
 system^ in distinction from the natural system^ of which the 
 base is 2.71828 •••, the value of the exponential series (^Higher 
 Algebra) . The natural system is used in theoretical discus- 
 sions. It follows that common logarithms are indices^ positive 
 or negative^ of the powers of 10. 
 
 Thus, 103 = 1000 ; i.e. log 1000 = 3 ; 
 
 10-2 = i- = 0.01; i.e. log0.01 = -2. 
 
 36. Characteristic and mantissa. Clearly most numbers 
 are not integral powers of 10. Thus 300 is more than the 
 second and less than the third power of 10, so that 
 
 log 300 = 2 plus a decimal. 
 
 Evidently the logarithms of numbers generally consist of 
 an integral and a decimal part, called respectively the charac- 
 teristic and the mantissa of the logarithms. 
 
 37. Characteristic law. The characteristic of the loga- 
 rithm of a number \^ independent of the digits composing 
 the number, but depends on the position of the decimal 
 point, and is found by counting the number of places the first 
 significant figure in the number is removed from the units'' 
 place, being positive or negative according as the first significant 
 
LOGARITHMS. 43 
 
 figure is at the left or the right of units' place. This follows 
 from the fact that common logarithms are indices of powers 
 of 10, and that 10", n being a positive integer, contains n -f- 1 
 places, while 10~" contains n—1 zeros at the right of units' 
 place. Thus in 146.043 the first significant figure is two 
 places at the left of units' place ; the characteristic of log 
 146.043 is therefore 2. In 0.00379 the first significant digit 
 is three places at the right of units' place, and the charac- 
 teristic of log 0.00379 is - 3. 
 
 To avoid the use of negative characteristics, such charac- 
 teristics are increased by 10, and —10 is written after the 
 logarithm. Thus, instead of log 0.00811 = 3.90902, write 
 7.90902 — 10. In practice the — 10 is generally not written, 
 but it must ahvays be remembered and accounted for in the 
 result. 
 
 Ex. Determine the characteristic of the logarithm of : 
 1; 46; 0.009; 14796.4; 230.001; lO^ x 76; 0.525; 1.03; 0.000426. 
 
 38. Mantissa law. The mantissa of the logarithm of a 
 number is hidependent of the position of the decimal point, 
 but depends on the digits composing the number, is always 
 positive^ and is found in the tables. 
 
 For, moving the decimal point multiplies or divides a 
 number by an integral power of 10, i.e. adds to or subtracts 
 from the logarithm an integer, and hence does not affect the 
 mantissa. Thus, 
 
 log 225.67 = log 225.67, 
 
 log 2256.7 = log 225.67 X 101 = log 225.67 -f 1, 
 log 22567.0 = log 225.67 x 102 ^ i^g 225.67 + 2, 
 log 22.567 = log 225.67 x lO-i = log 225.67 +(- 1), 
 log 0. 22567 = log 225. 67 x 10-3 = log 225. 67 + ( - 3), 
 
 so that the mantissae of the logarithms of all numbers com- 
 posed of the digits 22567 in that order are the same, .35347. 
 MoviTig the decimal point affects the characteristic only. 
 The student must remember that the mantissa is always positive. 
 
44 PLANE TRIGONOMETRY. 
 
 Log 0.0022567 is never written - 3 +.35347, but 3.35347, the minus 
 sign being written above to indicate that the characteristic alone is nega- 
 tive. In computations negative characteristics are avoided by adding 
 and subtracting 10, as has been explained. 
 
 39. We may now define the logarithm of a number as the 
 index of the power to which a fixed number, called the base, 
 must be raised to produce the given number. 
 
 Thus, a^ = 5, and x = logab (where log J) is read logarithm 
 of b to the base a') are equivalent expressions. The relation 
 between base, logarithm, and number is always 
 
 (base)^°^ = number. 
 
 To illustrate: log28 = 3 is the same as 2^ = 8; log381 = 4 and 
 3*= 81 are equivalent expressions ; and so are log^QlOOO = 3 
 and 103 = 1000, and logio0.001= -3 and 10-3= 0.001. 
 
 Find the value of : 
 log464; log5l25; log3243; log«(«)^; log27 3 ; log^l. 
 
 40. From the definition it follows that the laws of indices 
 apply to logarithms, and we have : 
 
 I. The logarithm of a product equals the sum of the loga- 
 rithms of the factors. 
 
 II. The logarithm of a quotient equals the logarithm of the 
 dividend minus the logarithm of the divisor. 
 
 III. The logarithm of a power equals the index of the 
 power times the logarithm of the number. 
 
 IV. The logarithm of a root equals the logarithm of the 
 number divided by the index of the root. , 
 
 For if a^ =^n and a^ = m, 
 
 ■ then n xm = a^"*"^ .*. log nm = x-\-y = log n + log w; 
 
 and n-^m = a^~y, .-.log— = a; — ^ = logn — logm; 
 
 m 
 
 also n""— (a^y= a^^ .-. log n"" =rx = r xlogn; 
 
 _ Z_ _ -J 
 
 finally, Vn = Va^ = a% .*. log</n = - = - log w. 
 
LOGARITHMS. 45 
 
 EXAMPLES. 
 Given log 2 = 0.30103, log 3 = 0.47712, log 5 = 0.69897, find : 
 
 10. logV||. 
 11, 
 
 1. log 4. 
 
 4. log 9. 
 
 7. log 153. 
 
 2. log 6. 
 
 5. log 25. 
 
 8. logf. 
 
 3. log 10. 
 
 6. logVS. 
 
 9. logl5x9. 
 
 •-Vl 
 
 X o** 
 
 xlO 
 
 USE OF TABLES. 
 41. To find the logarithm of a number. 
 
 First. Find the characteristic, as in Art. 37. 
 
 Second. Find the mantissa in the tables, thus : 
 
 (a) When the number consists of not more than four 
 figures. 
 
 In the column N of the tables find the first three figures, 
 and in the row N the fourth figure of the number. The 
 mantissa of the logarithm will be found in the row opposite 
 the first three figures and in the column of the fourth figure. 
 
 Illustration. Find log 42.38. 
 
 The characteristic is 1. (Why ?) 
 
 In the table in column N find the figures 423, and on the 
 same page in row N the figure 8. The last three figures of 
 the mantissa, 716, lie at the intersection of column 8 and 
 row 423. To make the tables more compact the first two 
 figures of the mantissa, 62, are printed in column only. 
 Then log42.38 = 1.62716. 
 
 Find log 0.8734 = 1.94121, 
 
 log 3.5 = log 3.500 = 0.54407, 
 log 36350 =4.56050. 
 
 (5) When the number consists of more than four figures. 
 
 Find the mantissa of the logarithm of the number com- 
 posed of the first four figures as above. To correct for the 
 remaining figures we interpolate by means of the principle of 
 proportional parts, according to which it is assumed that, for 
 differences small as compared with the numbers, the diff'ereiices 
 
46 PLANE TRIGONOMETRY. 
 
 hetiveen several numbers are proportional to the differences be^ 
 tween their logarithms. 
 
 The theorem is only approximately correct, but its use 
 leads to results accurate enough for ordinary computations. 
 
 Ex. 1. To find log 89.4562. 
 
 As above, mantissa of log 894500 = 0.95158, 
 
 mantissa of log 894600 = 0.95163, 
 
 .-. log 894600 - log 894500 = O.OOOOo, called the tabular difference. 
 
 Let log 894562 - log 894500 = x hundred-thousandths. 
 
 Now, by the principle of proportional parts, 
 
 log 894562 - log 894500 ^ 894562 - 894500 
 log 894600 - log 894500 ~ 894600 - 894500' 
 
 X 6'^ 
 or - = — ^, whence x = .62 of 5 = 3.1 
 5 100 
 
 .-. log 89.4562 = 1.95158 + 0.00003 = 1.95161, 
 
 all figures after the fifth place being rejected in five-place tables. If, 
 however, the sixth place be 5 or more, it is the practice to add 1 to the 
 figure in the fifth place. Thus, if a; = 0.0000456, we should call it 
 0.00005, and add 5 to the mantissa. 
 
 2. Find log 537.0643. 
 
 To interpolate we have x : 9 = 643 : 1000, i.e. x = 5.787 ; 
 .-. log 537.0643 = 2.72997 -f 0.00006. 
 
 3. Find log 0.0168342 = 2.22619. 
 
 4. Find log 39642.7 = 4.59816. 
 
 42. To find the number corresponding to a given logarithm. 
 
 The characteristic of the logarithm determines the posi- 
 tion of the decimal point (Art. 37). 
 
 (a) If the mantissa is in the tables, the required number 
 is found at once. 
 
 Ex. 1. Find log~^ 1.94621 (read, the number whose logarithm is 
 1.94621). 
 
 The mantissa is found in the tables at the intersection of row 883 and 
 column 5. 
 
 .-. log-i 1.94621 = 88.35, 
 
 the characteristic 1 showing that there are two integral places. 
 
LOGARITHMS. 47 
 
 (5) If the exact mantissa of the given logarithm is not in 
 the tables, the first four figures of the corresponding num- 
 ber are found, and to these are annexed figures found by 
 interpolating by means of the principle of proportional 
 parts, as follows : 
 
 Find the two successive mantissas between which the given 
 mantissa lies. Then, by the principle of proportional parts, 
 the amount to be added to the four figures already found is 
 such a part of 1 as the difference between the successive 
 mantissse is of the difference between the smaller of them 
 and the given mantissa. 
 
 2. Find log-i 1.43764. 
 
 Mantissa of log 2740 = 0.43775 
 
 of log 2739 = 0.43759 
 Differences 1 16 
 
 Mantissa of log required number = 0.43764 
 
 of log2739 = 0.43759 
 
 Differences x 5 
 
 By p. p. a; : 1 = 5 : 16 and x = ^^- 0.3125. 
 
 Annexing these figures, log-i 1.43764 = 27.3931+. 
 
 3. Find log-i T.48762. 
 
 The differences in logarithms are 14, 6. 
 
 ... a: = A = .4284-, 
 
 14: 
 
 and log-i 1.48762 = 0.307343+. 
 
 4. Find log 891.59; log 0.023; log^; log 0.1867; log V2. 
 
 5. Find log-i 2.21042 ; log-i 0.55115; log-i 1.89003. 
 
 43. Logarithms of trigonometric functions. These might 
 be found by first taking from the tables the natural func- 
 tions of the given angle, and then the logarithms of these 
 numbers. It is more expeditious, however, to use tables 
 showing directly the logarithms of the functions of angles 
 less than 90° to every minute. Functions of angles greater 
 than 90° are reduced 'to functions of angles less than 90° by 
 
48 PLANE TRIGONOMETRY. 
 
 the formulae of Art. 29. To make the work correct for 
 seconds, or any fractional part of a minute, interpolation 
 is necessary by the principle of proportional parts, thus : 
 
 Ex. 1. Find log sin 28° 32' 21". 
 
 In the table of logarithms of trigonometric functions, find 28° at the 
 top of the page, and in the minute column at the left find 32'. Then 
 under log sin column find log sin 28° 32' = 9.67913 - 10 
 
 log sin 28° 33 = 9.67936 - 10 
 Differences 1' 23 
 
 By p. p. a; : 23 = 21" : 60", i.e. a; = — x 23 = 8.4. 
 
 60 
 
 .-. log sin 28° 32' 21" = 9.67913 + 0.00008 - 10 
 
 = 9.67921 - 10. 
 
 Whenever functions of angles are less than unity, i.e. are decimals 
 (as sine and cosine always are, except when equal to unity, and as tan- 
 gent is for angles less than 45°), the characteristic of the logarithm will 
 be negative, and, accordingly, 10 is always added in the tables, and it 
 must be remembered that 10 is to be subtracted. Thus, in the example 
 above, the characteristic of the logarithm is not 9, but 1, and the log- 
 arithm is not 9.67913, as written in the tables, but 9.67913 - 10. 
 
 2. Find log cos 67° 27' 50". 
 
 In the table of logarithms at the foot of the page, find 67°, and in the 
 minute column at the right, 27'. Then computing the difference as 
 above, x = 25. 
 
 But it must be noted that cosine decreases as the angle increases 
 toward 90°. Hence, log cos 67° 27' 50" is less than log cos 67° 27', i.e. 
 the difference 25 must be subtracted, so that 
 
 log cos 67° 27' 50" = 9.58375 - 0.00025 - 10 
 = 9.58350 - 10. 
 
 44. To find the angle when the logarithm is given, find the 
 successive logarithms between which the given logarithm 
 lies, compute by the principle of proportional parts the 
 seconds, and add them to the less of the two angles corre- 
 sponding to the successive logarithms. This will not neces- 
 sarily be the angle corresponding to the less of the two 
 logarithms ; for, as has been seen, the number, and, therefore, 
 the logarithm, may decrease as the angle increases. 
 
LOGARITHMS. 49 
 
 Ex. 1. Find the angle whose log tan is 9.88091. 
 
 log tan 37° 14' = 9.88079 - 10 
 log tan 37° 15' = 9.88105 - 10 
 
 Differences 60" 26 
 
 log tan 37° 14' = 9.88079 - 10 
 log tan angle required = 9.88091 — 10 
 
 Differences x" 12 
 
 .-. a: : 60 = 12 : 26, or x" = if x 60" = 28", approximately, and the 
 angle is 37° 14' 28". 
 
 2. Find the angle whose log cos = 9.82348. 
 
 We find x = ^x 60" = 26", and the angle is 48° 14' 26". 
 
 3. Show that log cos 25° 31' 20" = 9.95541 ; 
 
 log sin 110° 25' 20" = 9.97181 ; 
 log tan 49° 52' 10" = 0.07418. 
 
 4. Show that the angle whose log tan is 9.92501 is 40° 4' 40" ; whose 
 log sin is 9.88365 is 49° 54' 20" ; whose log cos is 9.50828 is 71° 11' 50". 
 
 45. Cologarithms. In examples involving multiplications 
 and divisions it is more convenient, if n is any divisor, to 
 
 add log - than to subtract log n. The logarithm of - is 
 called the cologarithm of n. Since 
 
 log - = log 1 — log n=0 — log n, 
 
 it follows that colog n = — log n^ i.e. logn subtracted from 
 zero. To avoid negative results, add and subtract 10. 
 
 Ex.1. Find colog 2963. 
 
 log 1 = 10.00000 - 
 log 2963= 3.47173 
 
 -10 
 
 .-. colog 2963= 6.52827- 
 
 -10 
 
 2. Find colog tan 16° 17'. 
 
 
 log 1 = 10.00000 - 
 log tan 16° 17'= 9.46554- 
 
 -10 
 -10 
 
 .-. colog tan 16° 17' = 0.53446 
 
50 PLANE TRIGONOMETRY. 
 
 By means of the definitions of the trigonometric functions, the parts 
 of a right triangle may be computed if any two parts, one of them being 
 a side, are given. Thus, 
 
 ■ B given a and A in the rt. triangle ABC. 
 
 Then c = a -^ sin A, b = a ^ tan A , 
 
 B = 90° -A. 
 
 Again, if a and b are given, then 
 
 tan ^ =-,c = a^ sin A^ and B = 90°-A- 
 b 
 
 3. Given c = 25.643, B = 37° 25' 20", compute the other parts. 
 
 ^ = 90° - 37° 25' 20" = 52° 34' 40". 
 
 a = c cos B. b = a tan B. 
 
 log c = 1.40897 log a = 1.30889 
 
 log cos B = 9.89992 log tan B = 9.88376 
 
 log a = 1.30889 log b = 1.19265 
 
 .-. a = 20.365. .-. b = 15.583. 
 
 Check: c^ = a^ -\- b^ = 20.365^ + 15.583^ = 657.57 = 25.6432. 
 
 4. Given b = 0.356, B = 63° 28' 40", compute the other parts. 
 
 A = 26° 31' 20". 
 
 h h 
 
 a = 
 
 sin B tan B 
 
 log b = 9.55145 log b = 9.55145 
 
 colog sin B = 0.04829 colog tan B = 9.6981B 
 
 log c = 9.59974 log a = 9.24961 
 
 c = 0.3979 a = 0.1777 
 
 Check: c^ - a^ = 0.1583 - 0.03157 = 0.12673 = b^ 
 
 EXAMPLES. 
 
 Compute the other parts : 
 
 1. Given a = 9.325, A = 43° 22' 35". 
 
 2. Given c = 240.32, a = 174.6. 
 
 3. Given 5 = 76° 14' 23", a = 147.53. 
 
 4. Given a = 2789.42, b = 4632.19. 
 
 5. Given c = 0.0213, A = 23° 14". 
 
 6. Given & = 2, c = 3. 
 
CHAPTER V. 
 
 APPLICATIONS. 
 
 46. Many problems in measurements of heights and dis- 
 tances may be solved by applying the preceding principles. 
 By means of instruments certain distances and angles may 
 be measured, and from the data thus determined other 
 distances and angles computed. The most common instru- 
 ments are the chain^ the transit^ and the compass. 
 
 The chain is used to measure distances. Two kinds are in 
 use, the engineer'' s chain and the Gunter^s chain. They each 
 contain 100 links, each link in the engineer's chain being 
 12 inches long, and in the Gunter's 7.92 inches. 
 
 Fig. 26. 
 
 The transit is the instrument most used to measure hori- 
 zontal angles, and with certain attachments to measure verti- 
 cal angles. The figure shows the form of the instrument. 
 
 51 
 
52 
 
 PLANE TRIGONOMETRY. 
 
 The mariner^ 8 compass is used to determine the directions, 
 or hearings, of objects at sea. Each quadrant is divided 
 into 8 parts, making the 32 points of the compass, so that 
 each point contains 11° 15^ 
 
 Z^A 
 
 Fig. 27. 
 
 tS^ 
 
 Fig. 28. 
 
 47. The angle between the horizontal plane and the line 
 of vision from the eye to the object is called the angle of 
 
 elevation, or of depression, according 
 as the object is above or below the 
 Eievaiiony^^^ observer. 
 
 It is evident that the elevation 
 angle of B, as seen from A, is equal 
 to the depression angle of J., as seen from B, so that in the 
 solution of examples the two angles are interchangeable. 
 
 PROBLEMS. 
 
 48. Some of the more common problems met with in 
 practice are illustrated by the following : 
 
 To find the height of an object 
 when the foot is accessible. 
 
 The distance BC, and the eleva- 
 tion angle B are measured, and x 
 is determined from the relation ^ 
 X = BC tan B, Fig. 29. 
 
APPLICATIONS. 
 
 63 
 
 Ex. 1. The elevation angle of a cliff measured from a point 300 ft. 
 from its base is found to be 30°. How high is the cliff? 
 
 Then 
 
 BC = 300, B = 30°. 
 
 a; = 300 • tan 30° = 300 • ^ V3 = 100 V3. 
 
 2. From a point 175 ft. from the foot of a tree the elevation of the 
 top is found to be 27° 19'. Find the height of the tree. 
 
 The problem may be solved by the use of natural functions, or of 
 logarithms. The work should be arranged for the solution before the 
 tables are opened. Let the student complete. 
 
 Then 
 
 BC = 
 
 175. 
 
 B-- 
 
 = 27° 19'. 
 
 
 x = BC tan B. 
 
 
 Or by 
 
 natural functions, 
 
 logBC = 
 
 
 
 
 BC = 175 
 
 log tan B = 
 
 
 
 
 tan £ = 0.5165 
 
 logx = 
 
 .-. X = 90.3875. 
 
 .-. X = 90.39. 
 
 
 
 
 
 To find the height of an object 
 when the foot is inaccessible. 
 
 Measure BB\ 6 and 0'. 
 
 Then x = 
 
 BC BB'-hB'C 
 
 cot 6 cot 9 
 
 But B' C = x cot 6', whence substituting, 
 
 BB' 
 
 cot 6- cot 6'" 
 
 which is best solved by the use of the natural functions of 
 e and 6'. 
 
 3. Measured from a certain point at its base the elevation of the 
 peak of a mountain is 60°. At a distance of one mile directly from this 
 point the elevation is 30°. Find the height of the mountain. 
 
 BB' = 5280 ft., e = 30°, 0' = 60°. 
 
 ^ ^ y + 5280 
 cot 30° 
 5280 
 
 But y = xcot 60°. 
 
 X = 
 
 cot 30° - cot 60' 
 
 = 4572.48 ft. 
 
54 
 
 PLANE TRIGONOMETRY. 
 
 In surveying it is often necessary to make measurements 
 across a stream or other obstacle too wide to be spanned by 
 a single chain. 
 
 To find the distance from O to a 
 point B on the opposite side of a 
 stream. 
 
 At O measure a right angle, and 
 take CA a convenient distance. 
 Measure angle A^ then 
 Fi«-3i. " BC=CA.t^nA. 
 
 4. Find CB when angle A = 47° 16', and CA = 250 ft. 
 
 5. From a point due south of a kite its elevation is found to be 
 42° 30'; from a point 20 yds. due west £> 
 
 from this point the elevation is 36° 24'. 
 How high is the kite above the ground ? 
 
 ^^ = a:, cot 42° 30', 
 
 ^C = re. cot 36° 24', 
 
 AC^-AB^ = BC^ = 400. 
 .'. a;2 (cot2 36° 24' - cot^ 42° 30') = 400, 
 whence 
 ^2 _ J00_ and a: = .f^ = 24.84 yds. 
 
 .6489 
 
 .805 
 
 Fig. 32. 
 
 EXAMPLES. 
 
 1.. What is the altitude of the sun when a tree 71.5 ft. high casts 
 a shadow 37.75 ft. long ? 
 
 2. What is the height of a balloon directly over Ann Arbor w^hen 
 its elevation at Ypsilanti, 8 miles away, is 10° 15'? 
 
 3. The Washington monument is 555 ft. high. How far apart are 
 two observers who, from points due east, see the top of the monument 
 at elevations of 23° 20' and 47° 30', respectively? 
 
 4. A mountain peak is observed from the base and top of a tower 
 200 ft. high. The elevation angles being 25° 30' and 23° 15', respec- 
 tively, compute the height of the mountain above the base of the tower. 
 
 5. From a point in the street between two buildings the elevation 
 angles of the tops of the buildings are 30° and 60°. On moving across 
 
APPLICATIONS. 55 
 
 the street 20 ft. toward the first building the elevation angles are found 
 to be each 45°. Find the width of the street and the height of each 
 building. 
 
 6. From the peak of a mountain two towns are observed due south. 
 The first is seen at a depression of 48° 40', and the second, 8 miles farther 
 away and in the same horizontal plane, at a depression of 20° 50'. What 
 is the height of the mountain above the plane ? 
 
 7. A building 145 ft. long is observed from a point directly in front 
 of one corner. The length of the building subtends tan-i 3, and the 
 height tan-i 2. Find the height. 
 
 8. An inaccessible object is observed to lie due N.E. After the ob- 
 sen^er has moved S.E. 2 miles, the object lies N.N.E. Find the distance 
 of the object from each point of observation. 
 
 9. Assuming the earth to be a sphere with a radius of 3963 miles, 
 find the height of a lighthouse just visible from a point 15 miles distp,nt 
 at sea. 
 
 10. The angle of elevation of a tower 120 ft. high due north of an 
 observer was 35° ; what will be its angle of elevation from a point due 
 west from the first point of observation 250 ft. ? Also the distance of 
 the observer from the base of the tower in each position ? 
 
 11. A railway 5 miles long has a uniform grade of 2° 30' ; find the rise 
 per mile. What is the grade when the road rises 70 ft. in one mile? 
 
 (The grade depends on the sine of the angle.) 
 
 12. The foot of a ladder is in the street at a point 30 ft. from the 
 line of a building, and just reaches a window 22^ ft. above the ground. 
 By turning the ladder over it just reaches a window 36 ft. above the 
 ground on the other side of the street. Find the breadth of the street. 
 
 13. From a point 200 ft. from the base of the Forefathers' monument 
 at Plymouth, the base and summit of the statue of Faith are at an eleva- 
 tion of 12° 40' 48" and 22° 2' 53", respectively ; find the height of the 
 statue and of the pedestal on which it stands. 
 
 14. At a distance of 100 ft. measured in a horizontal plane from the 
 foot of a tower, a flagstaff standing on the top of the tower subtends an 
 angle of 8°, while the tower subtends an angle of 42° 20'. Find the 
 length of the flagstaff. 
 
 15. The length of a string attached to a kite. is 300 ft. The kite's 
 elevation is 56° 6'. Find the height of the kite. 
 
 16. From two rocks at sea level, 50 ft. apart, the top of a cliff is ob- 
 served in the same vertical plane with the rocks. The angles of eleva- 
 tion of the cliff from the two rocks are 24° 40' and 32° 30'. What is the 
 height of the cliff above the sea ? 
 
CHAPTER VI. 
 
 GENERAL FORMULA — TRIGONOMETRIC EQUATIONS 
 AND IDENTITIES. 
 
 49. Thus far functions of single angles only have been 
 considered. Relations will now be developed to express 
 functions of angles which are sums, differences, multiples, 
 or sub-multiples of single angles in -terms of the functions 
 of the single angles from which they are formed. 
 
 First it will be shown that, 
 
 sin (a ± p) = sin a cos p ± cos a sin p, 
 cos (a ± p) = cos a cos p T sin a sinpe 
 tan g ± tan p 
 1 T tan a tan p 
 
 The following cases must be considered : 
 
 1. a, y8, a + yS acute angles. 
 
 2. a, y8, acute, but a + yS an obtuse angle. 
 
 3. Either a, or y8, or both, of any magnitude, positive or 
 negative. 
 
 The figures apply to cases 1 and 2. 
 
 tan (a ± p) 
 
 Let the terminal line revolve through the angle «, and 
 then through the angle ^, to the position OB, so that angle 
 
 56 
 
GENERAL FORMULA. 57 
 
 XOB = a-{- 13. Through any point F in OB draw perpen- 
 diculars to the sides of a, DP and (7P, and through C draw 
 a perpendicular and a parallel to OX, MO and JVC, 
 
 Then the angle QCA = a (why?), and CNP is the triangle 
 of reference for angle QCF = 90° + a. 
 
 CNP is sometimes treated as the triangle of reference for angle CPN. 
 The fallacy of this appears when we develop cos (« + ^), in which PC 
 would be treated as both plus and minus. 
 
 Now sm(« + ^)=sinXO£ = |^ = ^+^, 
 
 or expressiftg in trigonometric ratios, 
 
 ^MC 00^. NP CP_ 
 OC' OP CP' OP 
 = sin a cos ^ + sin (90° + a) sin ff. 
 
 Hence, since sin (90° 4- a) = cos a, we have 
 
 sin (a 4- yQ) = sin a cos ^ + cos a sin ff. 
 In like manner 
 
 cos(« + ^) = cosXO^ = — = — + -^ 
 
 or expressing in trigonometric ratios, 
 
 OM 00 ON OP 
 
 00 OP OP OP 
 
 = cos a cos P + cos (90° + a) sin yS. 
 
 And since cos (90° + a) = — sin a, we have 
 
 cos (a + y8) = cos a cos yS — sin a sin y5. 
 
 It will be noted that the wording of the demonstration ap- 
 plies to both figures, the only difference being that when a + /3 
 is obtuse OD is negative. ON is negative in each figure. 
 
 50. In the case, when a, or /3, or both, are of any magni- 
 tude, positive or negative, figures may be constructed as 
 before described by drawing through any point in the terminal 
 line of P a perpendicular to each side of a, and through the foot 
 of the perpendicular on the terminal line of a a perpendicular 
 and a parallel to the initial line of a. Noting negative lines, 
 
68 PLANE TRIGONOMETRY. 
 
 the demonstrations already given will be found to apply for 
 all values of a and y8. 
 
 To make the proof complete by this method would require an unlim- 
 ited number of figures, e.g. we might take a obtuse, both a and (i obtuse, 
 either or both greater than 180°, or than 360°, or negative angles, etc. 
 
 Instead of this, however, the generality of the proposition 
 is more readily shown algebraically, as follows : 
 
 Let a^ = 90° + a be any obtuse angle, and a, yS, acute 
 angles. 
 
 Then ^ 
 
 sin Qa! + iS) = sin (90° + a + yS) = cos (a + ^S) 
 = cos a cos /3 — sin a sin y8 
 
 = sin (90° + a) cosy8 + cos (90° + a) sinyS(why?) 
 = sin a' cos /3 + cos ct' sin y(3. 
 
 In like manner, considering any obtuse angle ^' = 90° + yS, 
 it can be shown that 
 
 sin (a' + yS') = sin ex! cos y8' + cos aJ sin/3^ 
 
 Show that cos (a' + ^8') = cos a' cos fi' — sin a' sin /3^ 
 
 By further substitutions, e.g. a" = 90° ± a', 0" = 90° ± yS^ 
 etc., it is clear that the above relations hold for all values, 
 positive or negative, of the angles a and yS. 
 
 Since a and may have any values, we may put — yS for y8, 
 and sin(a+ [— yS]) 
 
 = sin (a — yS) = sin a cos ( — y5) + cos a sin ( — yS) 
 
 = sin a cos yS — cos a sin yS (why ?) . 
 
 Also cos (a — I3}= cos a cos( — yQ) — sin a sin ( — /3) 
 
 = cos a cos yS + sin a sin /3, 
 Finally, 
 
 tan r + iS^ — ^"^ C^ ^ )^) _ sin ct cos y9 ± cos ct sin /S 
 cos(a±/3) cosctcosyS^ sinasinyS 
 sinctcosy8 cos«siny8 
 cos a cos /S cos a cos yS tan a ± tan y8 
 
 cosctcosy^ sin a sin y8 1 qp tan a tan y8 
 cos a cos /3 cos a cos yS 
 
EXAMPLES. 59 
 
 ORAL WORK. 
 
 By the above formulae develop : 
 
 1. sin (2A +SB). 7. sin 90° = sin (45° + 45°). 
 
 2. cos (90° -5). 8. cos 90°. 
 
 3. tan (45° + <^). 9. tan 90°. 
 
 4. sin 2 yl = sin (A + A), 10. sin (90° + /? + y). 
 
 5. cos 2^. 11. cos (270° - m - n). 
 
 6. tan (180° + C). 12. tan (90° + m + n). 
 
 Ex. 1. Find sin 75°. 
 
 sin 75° = sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30° 
 
 = ^.^ + ^.Ul±^ = 0.9659. 
 y/2. 2 V2 2 2\/2 
 
 2. Find tan 15°. 
 
 tan 45° - tan 30° 
 
 tan 15° = tan (45° - 30°) 
 
 i-X 
 
 1 + tan 45° tan 30° 
 
 ^ = ^-^ = 2 - V3 = 0.2679. 
 
 1 + J_ V3 + 1 
 V3 
 
 3. Prove !iEM_£2iM=2. 
 
 sin A cos A 
 
 Combining" ^^^ ^ ^ ^^^ ^ —cos 3 ^ sin ^ _ sin (3^4 — A^ 
 sin A cos A sin A cos A 
 
 _ sin 2 A _ si n (A -\- A) _ sin A cos A + cos A sin A _ g 
 sin A cos A smA cos A sin A cos A 
 
 4. Prove tan-^ a + tan-^ b = tan-^ -^-^ — 
 
 1 — ah 
 
 Let a — tan-^a, /8 = tan-i&, y = tan-^ ^ "^ * 
 
 Hence, tan a = a, tan (3 = b, tan y = -^^^ -• 
 
 Then a -\- fi = y, and hence tan (« + )8) = tany. 
 
 Expanding, tan « + tan /? ^ ^^^ 
 
 1 — tan a tan yt? 
 
 Substituting, 
 
 g + 6 __a_±A. 
 1 - a6 1 - a6* 
 
60 PLANE TRIGONOMETRY. 
 
 EXAMPLES. 
 
 1. Find cos 15°, tan 75°. 
 
 2. Prove cot (a ± (3) = ^ot^^cot^Tl . 
 
 , ^ ^^"^ cot)8±cota 
 
 3. Prove geometrically sin (« + /?) = sin a cos )8 + cos a sin j8, 
 
 and cos (a + )8) = cos a cos ^ — sin a sin j3, 
 given (a) a acute, y8 obtuse ; 
 
 (b) a, P, obtuse ; 
 
 (c) a, /3, either, or both, negative angles. 
 
 4. Prove geometrically tan (a + B) = ^^^<^J^^^^P 
 
 ^ J V A-y l-tanatan/3 
 
 Verify the formula by assigning values to a and fi, and finding the 
 values of the functions from the tables of natural tangents. 
 
 5. Prove cos (a + jS) cos (a — ft) = cos^ a — sin*^ fi. 
 
 6. Show that tan a + tan j8 = sin (a + p\ 
 
 cos a cos p 
 
 7. Given tan a = i, tan )8 = f , find sin (a + )8) 
 
 8. Given sin 280° = s, find sin 170°. 
 
 9. If a = 67° 22', jS = 128° 40', by use of the tables of natural func- 
 tions verify the formulae on page 56. 
 
 Prove tan-i ^^ "^ ^ = tan-V^+ tan-^Va. 
 
 =tan-iV3. 
 
 13. If a + /3 = <o, prove cos^ « + cos^ j8 — 2 cos a cos j8 cos cu = sin* w. 
 
 14. Solve i sin ^ = 1 — cos 0. 
 
 15. Prove sin (A + B) cos A — cos (A + E) sin A = sin J5. 
 
 16. Prove cos {A + B) cos {A-B)-\- sin(^ + B) sin(^ -B) = cos 2 B. 
 
 17. Prove sin (2 a- ft) cos {a -2 ft) 
 
 - cos (2 a- ft) sin (a - 2 j8) = sin (a + /S). 
 
 18. Prove sin(n — l)acos(n4-l)a + cos(n-l)asin(n + l)a= sin2n«. 
 
 19. Prove sm (135° - 0) + cos (135° + ^) = 0. 
 
 
 1-V^ 
 
 
 .. Prove tan- 
 
 b^/3 
 
 2b-x 
 
 xV3 
 
 !. Prove sec~ 
 
 I "" - sin 
 
 -lE. 
 
 
 y/a^-x^ 
 
 a 
 
ADDITION— SUBTRACTIOX FORMULA. 61 
 
 20. Prove 1 - tan^ « tan^ R = cos^ jg - si^^ ^. 
 
 cos* a cos* /? 
 
 21. Prove t^°« + tan^ ^ j^^ „ ^^^ ^ 
 
 cot a + cot p 
 
 22. 
 
 tan* f ^ - «U l-2sin«cosci, 
 \4 / 1 4- 2 sin a cos a 
 
 51. The following formulae are very important and should 
 be carefully memorized. They enable us to change sums 
 and differences to products, i.e. to displace terms by factors. 
 
 sine + siii<|» = 2 sin^^cos^^, 
 sine - sin<t> = 2cos-^t_?sin— =-5, 
 COS0 + COS«|> = 2cos-^^cos— ^5 
 COS - cos<}> = - 2 sin -i-^ sin — ^• 
 
 Since sin (« + y8) = sin « cos y8 + cos a sin /8, 
 
 and sin (« — )9) = sin a cos y8 — cos a sin ^, 
 
 then sin (a + y8) + sin (a — /8) = 2 sin a cos ^9, (1) 
 
 and sin (a + /S) — sin (a — y8) = 2 cos a sin ^. (2) 
 
 Also since cos (« + yS) = cos a cos y8 — sin a sin yS, 
 
 and cos(a — y8)= cosacosy8+ sinasinyS, 
 
 then cos (a + /3) + cos (a — /3) = 2 cos a cos y8, (3) 
 
 and cos(a + yS)— cos(a — /3)= — 2sinasin/S. (4) 
 
 Put a-\-^ = e 
 
 and a — 13 = cl> 
 
 2a = + <j>, and a = ^±-i, 
 
 2/3 = ^-^, andyg = ^-=^. 
 
 A 
 
 Substituting in (1), (2), (3), (4), we have the above 
 formulae. 
 
62 PLANE TRIGONOMETRY. 
 
 EXAMPLES. 
 
 1. Prove ?HL24±iHi| = tan ^. 
 cos 2 ^ + cos ^ 2 
 
 By formulae of last article the first member becomes 
 
 2 sm — cos - 
 
 2 2 3^ 
 
 = tan 
 
 o 3(9 e 2 
 
 2 cos — cos - 
 2 2 
 
 2 p sin ct 4- 2 sin 3 g + sin 5 ct _ sin3 a 
 
 sin 3 cc + 2 sin 5 ct + sin 7 a sin 5 a 
 
 (sin ct 4- sin 5 g) + 2 sin 3 (z _ 2 sin 3 a cos 2 « + 2 sin 3 ct 
 (sin 3 ct + sin 7 a) + 2 sin 5 a 2 sin 5 cc cos 2 ct + 2 sin 5 a 
 
 _ (cos 2 (^ + 1) sin 3 ot _ sin 3 a 
 (cos 2 a + 1) sin 5 ct sin 5 a 
 
 3. Prove ^^" ^^^ - 2 g)Hh sin (4 ^ - 2 ^) ^ ^^^ 
 
 cos (4^ -25)+ cos (45 -2^) ^ ^ 
 
 o- 4^-25+45-2^ 4^-25-45+2^ 
 
 2 sin cos ■ 
 
 2 2 
 
 o 4yl -25 + 45-2^1 4^-25-45 + 2^ 
 
 2 cos ;^ COS ■ 
 
 2 2 
 
 = ^-niM+^ = tan(^+5). 
 COS (.1+5) ^ ^ 
 
 4. Prove sin 50° - sin 70° + sin 10° = 0. 
 
 2 cos ^^° "^ '^^° sill ^^'^ ~ ^^"^ = 2 cos 60° sin ( - 10°) = - sin 10°. 
 2. 2 ' ^ 
 
 5. Prove ^^^^""^"^^-^^^^^^^"'^^ + ^^^^^^Q"^Q^=cot6(^cot5tt. 
 
 sin4asin3ct— sin2()isiri 5 a + sin4otsin7a 
 
 By (3) and (4), p. 61, 
 
 cos 5 ct + cos a — cos 9a — cos 5 ot + cos 11 ct + cos 9 ct 
 cos a — cos 7 a — cos 3 a + cos 7 a + cos 'S a — cos 11 a 
 
 cos a + cos 11a 2 cos 6 a cos 5 a ^^4. « ^ «^f k « 
 = ! = — — = cot 6 a cot a. 
 
 cos a — cos 11a 2 sin 6 a sin 5 a 
 
 ORAL WORK. 
 By the formulae of Art. 51 transform : 
 
 6. cos 5 a + cos a. 8. 2 sin 3 d cos $. 
 
 7. cos a — cos 5 a. 9. sin 2 a — sin 4 a. 
 
FUNCTIONS OF THE DOUBLE ANGLE. 63 
 
 10. cos 9^ cos 2^. 16. cos(30°+2<^)sin(30°-</)). 
 
 Q 
 
 11. sin $ + sin -. 17. sin (2 r + s) + sin (2 r - s). 
 
 12. sin 75° sin 15°. 18. cos (2 )8 - a) - cos 3 a. 
 
 13. cos7i>-cos2;7. 19. sin 36° + sin 54°. 
 
 14. cos(2o + 3o)sin(2p-3o). 
 
 ^ ^ ^^ ^ -^ ^^ 20. cos 60° + cos 20°. 
 
 15 • ?i ' L 
 
 ' ^^^2 ~^"^2' 21. sin 30° + cos 30°. 
 
 • Prove: 22. ?HL^^±^ = tan«4J?cot^^:^. 
 
 sin a — sin y8 2 2 
 
 23 cos « + cos ^ ^ cotgL±^cot^^-^. 
 cos /? — cos a 2 2 
 
 2^^ sin^ + siny^^^^^+j^^ 
 cos X + COS y 2 
 
 25. sin a:- sin y ^ _ ^ot^i^^. 
 cos a: — cos y 2 
 
 26. cos 55° + sin 25° = sin 85°. 
 
 Simplify: 27. sin^ + sin 2 B + sin 3 ^^ 
 cos B + COS 2B +COS 3 5 
 
 23 sin C - sin 4 C + sin 7 C - sin 10 C 
 cos C — COS 4 C + cos 7 C — cos 10 C 
 
 52. Functions of an angle in terms of those of the half angle. 
 If in sin (a + /3) = sin a cos yS + cos a sin jS, a = j3, 
 then sin (a + a) = sin 2 a = 2 sin a cos a. 
 In like manner 
 
 cos (a + a) = COS 2 a = cos^ a - sin^ a 
 
 = 2 cos^ a - 1 ^ 
 
 = l-2sin»a; 
 
 and tan 2 a = 
 
 1 - tan* a 
 
64 PLANE TRIGONOMETRY. 
 
 ORAL WORK. 
 
 Ex. Express in terms of functions of half the given angles : 
 
 1. sin 4 a. 4. cos a:. 6. sm(2p — q). 
 
 2. cos3». . Q 7. cos (30° + 2 6). 
 
 5. sm^. 
 
 3. tan5^ 2 8. sin (a; + ?/). 
 
 9. From the functions of 30° find those of 60° ; from the functions of 
 45°, those of 90°. 
 
 53. Functions of an angle in terms ^ those of twice the angle. 
 
 By Art. 52, cos a = 1 - 2 sin2 ^ = 2 cos2^ - 1. 
 
 -^ 2 2 
 
 2sin^| = 
 
 = 1 — cos «, 
 
 and 
 
 2cos2^ 
 
 «-r 
 
 . a 
 
 sm- 
 
 a 
 cos- 
 
 -COS a 
 2 ' 
 
 -^ 
 
 ... u.|= 
 
 ^^1-cosa 
 ^ 1 + COS a 
 
 
 1=^4 
 
 1 + cos a 
 
 Explain the significance of the ± sign before the radicals. 
 Express in terms of the double angle the functions of 
 120°; 50°; 90°, with proper signs prefixed. 
 
 Ex. 1. Express in terms of functions of twice the given angles each 
 of the functions in Examples 1-8 above. 
 
 2. From the functions of 45° find those of 22° 30' ; from the functions 
 of 36°, those of 18° (see tables of natural functions). 
 
 3. Find the corresponding functions of twice and of half each of the 
 following angles, and verify results by the tables of natural functions : 
 
 Given sin 26° 42' = 0.4493, 
 
 tan 62° 24' = 1.9128, 
 
 cos 21° 34' = 0.9300. 
 
 -4 
 
 4. Prove tan-iA/^— -^^^ = ?. 5. 2 tan-i a; = tan-J ^^ 
 
 + cos X 2 1 — x^ 
 
EXAMPLES. 65 
 
 6. Ji Af B, C are angles of a triangle, prove 
 
 sin ^ + sin C + sinjB = 4 cos — sin — sin -^ 
 
 2 2 2 
 
 7. K cos2 a + cos2 2a + cos^ 3 a = 1, then 
 
 cos a cos 2 a cos 3 a = 0. 
 
 8. Prove cot ^ — cot 2 ^ = esc 2 ^. 
 
 2 
 
 tan 
 
 9. Prove 
 
 tan 
 
 (H) 
 (M) 
 
 1 — tan 2 
 2 
 
 l + tan|j 
 
 10 tang _ - 2 sin ^ ^ 
 
 tan (a + <^) sin (2 a + <^) + sin <^ 
 
 U. lfv = t2^n-i2^I ±^' + ^^^^^\ prove 2:2 = sin 2y. 
 
 12. Prove tan-i Vl + x^- 1 ^an-i -1^ = g tan-i x. 
 
 X 1 - a;2 2 
 
 13. If y = sin-i - ^ prove x = tan w. 
 
 14. Prove cos2 « + cos2 j8 - 1 = cos (a + fS) cos (a - ^). 
 
 15. Prove V(cos a - cos ^) 2 -f- (sin a - sin ^8)2 = 2 sin £LZL^. 
 
 16. Prove sin-i V-^— = tan-i J- = - cos-i ^^ 
 ^a+a; ^a 2 a + 
 
 17. Prove cos^ - cos^ <^ = sin (<^ + 6) sin (<l> - 0). 
 
 18. Prove tan ^ + tan (A + 120°) + tan (A - 120°) = 3 tan 3 ^. 
 
 19. Prove tan a — tan - = tan - sec a. 
 
 2 2 
 
 20. 3tan-ia = tan-i ^"~^^ 
 
 1 - 3 a2 
 
 21. cos2 3 A (tan2 3 ^ - tan2 ^) = 8 sin2^ cos 2 ^. 
 
 22. 1 + cos 2 (^ - B) cos 2 5 = cos2^ + cos2 (A -2 B). 
 
 23. cot2fE + ^U2csc26l- 
 \4 2/ 2csc2^ + 
 
 sec 
 seed 
 
66 PLANE TRIGONOMETRY. 
 
 TRIGONOMETRIC EQUATIONS AND IDENTITIES. 
 54. Identities. It was shown in Chapter I that 
 sin2 e + cos2 = 1 
 is true for all values of 0, and in Chapter VI, that 
 
 sin (a + /3) = sin a cos /3 + cos a sin jS 
 is true for all values of a and /3. It may be shown that 
 
 sin 2 A "^ 
 
 = tan-4 
 
 1 + cos 2 J. 
 
 is true for all values of A^ thus : 
 
 sin 2 A _ 2 sin A cos A (by trigonometric transf orma- 
 1 + cos2J.~l + 2cos2J.-l tion) 
 
 = J (by algebraic transformation J 
 
 = tsinA (by trigonometric transformation). 
 
 Such expressions are called trigonometric identities. They 
 are true for all values of the angles involved. 
 
 55. Equations. The expression 
 
 2 cos^ a — 3 cos a + 1 = 
 
 is true for but two values of cos a, viz. cos a= ^ and 1, i.e. 
 the expression is true for a = 0°, 60°, 300°, and for no other 
 positive angles less than 360°. Such expressions are called 
 trigonometric equations. They are true only for particular 
 values of the angles involved. 
 
 56. Method of attack. The transformations necessary at 
 any step in the proof of identities, or the solution of equa- 
 tions, are either trigonometric^ or algebraic; i.e. in prov- 
 ing an identity, or solving an equation, the student must 
 choose at each step to apply either some principles of algebra, 
 or some trigonometric relations. If at any step no algebraic 
 operation seems advantageous, then usually the expression 
 
METHOD OF ATTACK. 67 
 
 should be simplified by endeavoring to state the different 
 functions involved in terms of a single function of the angle, 
 or if there are multiple angles^ to reduce all to functions of a 
 single angle. 
 
 Algebraic 
 
 Transformations 
 
 Trigonometric, f Single function 
 to change to a 1 Single angle 
 
 No other transformations are needed, and the student will 
 be greatly assisted by remembering that the ready solution 
 of a trigonometric problem consists in wisely choosing at 
 each step between the possible algebraic and trigonometric 
 transformations. Problems involving trigonometric func- 
 tions will in general be simplified by expressing them entirely 
 in terms of sine and cosine. 
 
 EXAMPLES. 
 
 T -D sin 3 ^ cos 3 ^ n 
 
 1. Prove — : — : — = 2. 
 
 smA cos A 
 
 By algebra. 
 
 sin 3^ cos 3 ^ _ sin 3 ^ cos ^ — cos 3 J sin A 
 sin A cos A sin A cos A 
 
 ... ., sm (3 ^ — ^ ) sm 2 ^ 
 
 by trigonometry, = — r^^- 7^ = -: — ;; 7 
 
 sin ^ cos A smA cos A 
 
 _ 2 sin ^ cos A _ n 
 sin A cos A 
 Or, by trigonometry, 
 
 sin SA cos 3 ^ _ 3 sin ^ - 4 sin» A 4 cos^ A - 3 cos ^ 
 sin -4 cos -4 sin^ cos J. 
 
 by algebra, =3-4 sin2 A — 4: cos^ ^ + 3 
 
 = 6 - 4(sinM + cosM)= 2. 
 
 sec 8 ^ - 1 tan 8 ^ 
 
 2. Prove 
 
 sec 4 ^ - 1 tan 2 ^ 
 
 No algebraic operation simplifies. Two trigonometric changes are 
 needed. 1. To change the functions to a single function, sine or cosine. 
 2. To change the angles to a single angle, 8 yl, 4 ^, or 2 ^. 
 
68 PLANE TRIGONOMETRY. 
 
 By trigonometry and algebra, 
 
 1 - cos 8 ^ sin 8 ^ 
 
 P cos 8 ^ _ cos 8 e _ tavx <f ^ ^ 
 
 ^ l-cos4^-sin2|> - ^^^p. \ 
 
 cos 4^ cos 2^ iiV^^-v^^ 
 
 K^ oin.nK,.o cos 4 ^(1 - cos 8 0) sin 8 6 cos^. cr _ <^ ^^ _ 
 
 by algebra, — ^^ -^ — ^ = ♦ o^ * '^ "= ii-^"*- •? /5«r~ 
 
 1 — cos 4 sm2^ / . &^-»^ _ j_r 
 
 by trigonometry, /^ . ^ 
 
 COS 4 ^(1 - 1 + 2 sin2 4 ^) Z ^ sin 4 ^ cos 4 ^ cos 2 g . '"' iT&II^T^r^ 
 l-l + 2sin22^ /<" sin2^ ' . , - . « 
 
 by algebra, /^^^ = 2 cos 2 ^ ; ~ C«^ «r^ . ^!.ui-^&c. 
 
 ysin 2 - /L 
 
 / _, S»Vt, frO" C4H7 2. £ 
 
 and X sin 40 = 2 sin 2 cos 2ft — Co^t^ ' "sT^ItI 
 
 which is a trigonometric identity. 
 
 J 
 
 3. Solve 2 cos2 + 3 sin = 0. | 
 
 By trigonometry, 2(1 - sin^ 0) + 3 sin = 0, 3 
 
 a quadratic equation in sin 0. -, 
 
 "I 
 
 By algebra, 2sin20 - 3sin0 - 2 = 0, ] 
 
 and (sin0-2)(2sin0 + l) = O. ^ 
 
 .*. sin = 2, or — ^. Verify. 
 
 The value 2 must be rejected. Why? ' 
 
 .-. = 210°, and 330° are the only positive values less than 360° that ■ 
 
 satisfy the equation. 
 
 ■ '\ 
 
 4. Solve sec — tan = 2. i 
 Here tan = — 0.75, .-. from the tables of natural functions, *, 
 
 = 143° 7' 48", or 323° V 48". j 
 
 Find sec 0, and verify. I 
 
 5. Solve 2 sin sin 3 - sin^ 2 = 0. j 
 By trigonometry, cos 2 — cos 4 — sin^ 2 = 0, I 
 
 also cos20-cos2 20 + sin22 0-sin220 = O. j 
 
 By algebra, cos 2 0(1 - cos 2 0) = 0. | 
 
 .-. cos 2 = or 1, i 
 
 and 2 = 90°, 270°, 0°, or 360°, j 
 
 * whence = 45°, 135°, 0°, or 180°. Verify. i 
 
TRIGONOMETRIC EQUATIONS. 69 
 
 Or, by trigonometry, 
 
 2 sin ^(3 sin ^ - 4 sin^ ^) - 4 sin2 cos^ d = ; 
 by trigonometry and algebra, 
 
 6 sin2 ^ - 8 sin* ^ - 4 sin2 ^ + 4 sin4 ^ = 0; 
 by algebra, 2 sin^ ^ - 4 sin'* ^ = 0, 
 
 and 2 sin^ ^(1 - 2 sin2 $) = 0. 
 
 .-. sin ^ = 0, or ± V|, 
 and 6 = 0°, 180°, 45°, 135°, 225°, or 315°. 
 
 The last two values do not appear in the first solution, because only 
 angles less than 360° are considered, and the solution there gave values 
 of 2 0, which in the last two cases would be 450° and 630°. 
 
 Solve : 6. tan ^ = cot ^. 8. 2 cos 2 ^ - 2 sin ^ = 1. 
 
 7. sin^ ^ + cos ^ = 1. 9. sin 2 d cos = sin 0, 
 
 Prove: 10. 2cot2^ = cot^ — tan^. 
 
 11. cos 2 a: + cos 2 y = 2 cos (x + y) cos (x — y). 
 
 12. (cos a + sin ay = 1 + sin 2 a. 
 
 57. Simultaneous trigonometric equations. 
 13. Solve cos (x -h y)+ cos (x - y) = 2, 
 
 sin - + sin ^ = 0. 
 2 2 
 
 By trigonometry, 
 
 cos x cos y — sin x smy + cos x cos y + sin ar sin y = 2, 
 
 so that 
 
 
 cos a: cos y = 1 ; 
 
 also, 
 
 ^ 
 
 -cosar Jl-cosy_Q 
 
 2^2 
 
 and 
 
 
 .'. cos X = COS y. 
 
 Substituting, 
 
 
 cos2 a: = 1, 
 COS a; = ± 1. 
 .-. X = 0°, or 180°, 
 
 and 
 
 
 y = ar = 0°, or 180°. Verify, 
 
70 PLANE TKIGONOMETRY 
 
 14. Solve for R and F. 
 
 W — Fsini — R cos i = 0, 
 
 W + F cos i — R sin i = 0. 
 To eliminate F, 
 
 Wcos i — Fshi i cos i — R cos^i = 0, 
 
 W sin i + jPcos i sin i — R sin^ i = 0. 
 Adding, TF(sin i + cos i) — R(sm^ i + cos^ i) = 0. 
 
 .-. R = W(sm i + cos i). 
 Substituting, W — Fsini — W((sin i + cos z)cos i = 
 
 ET _ W — Ty(sin i + cos i) cos z 
 ' * • sin i 
 
 Jl W = S tons, and i = 22° 30', compute F and jR. 
 
 i2 = 3(0.3827 + 0.9239)= 3.9198. 
 
 F ^ 3 - 3(0.3827 + 0.9239)0.9239 ^_iqoa 
 
 0.3827 ■ * 
 
 Solve : 
 
 15. 472 cot e - 263 cot <^ = 490, 307 cot 6 - 379 cot <^ = 0. 
 
 16. sin 2 a: + 1 = cos a; + 2 sin a;. 
 
 17. cos2 e + sin ^ = 1. 
 
 18. If 2;^(cos2^-sin2^)-2asin^cos^ + 26sin^cos^ = 0, prove 
 
 ^ = itan-i-?-^. 
 a — b 
 
 Prove : 
 
 19. tan y =(1 -{■ sec y) tan ^' 
 
 20. 2 cot-i X = csc-i ^ "^ ^^ - 
 
 2a: 
 
 21. sin(<^ + 45°) + sin (<^ + 135°) = V2 cos <^. 
 22 cos V + cos 3 y _ 1 
 
 cos 3 y + cos 5v 2 cos 2 w — sec 2 1' 
 
 23. cos 3 a: — sin 3 a: = (cos x + sin a;) (1 — 2 sin 2 x). 
 Solve : 
 
 24. sin 2 ^ + sin ^ = cos 2 ^ + cos 6. 
 
 25. 4 cos(^ + 60°) - V2 = Ve - 4 cos (^ + 30°). 
 
 26. tan 2 ^ = tan 0-1. 
 
 27. cos ^ + cos 2 ^ + cos 3 ^ = 0. 
 
TRIGONOMETRIC EQUATIONS. 71 
 
 28. sin 2 a; + V3 cos 2 a; = 1. 
 
 29. 3 tan'-^jo + 8 cos^p = 7. 
 
 30. Determine for what relative values of P and W the following 
 equation is true : 
 
 cos2^- — cos^-i=0. 
 2 W 2 2 
 
 31. Compute N from the equation iV+ -— cos a — — sin a — TV cos a = 0, 
 
 o o 
 
 when W = 2000 pounds and a satisfies the equation 2 sin ct = 1 + cos a. 
 
 32. sin 9 — tan <j>(cos 6 + sin 0) = cos 0, sin ^ — tan ^ cos ^ = 1. 
 Prove : 
 
 33. coi{t + 15°) - tan (t - 15°) = ^ ^^^ ^ < 
 
 2 sin 2 < + 1 
 34. sin-i f — sin~i y\ = sin"^ ^. 
 
 35. tan(^ + ^UV ^+^"^^ . 
 U 2/ >l-sino> 
 
 36. 2 sin-i i = cos-i 1. 
 
 37. If sin ^ is a geometric mean between sin B and cos B, prove 
 cos 2^ =2sin(45 - 5) cos (45 + B). 
 
 38. Prove sin (a + y8 + y) = sin a cos y8 cos y + cos « sin ^ cos y 
 
 + cos « cos y8 sin y — sin a sin j8 sin y. 
 Also find cos(a + /S + y). 
 
 39. Prove tan((. + /3 + y) :^ ^^" ^ + ^^" ^ + ^^^ V " *^^ ^ *^" ^ ^^^ ^. 
 
 1 —tan a tan ^— tan )8 tan y— tan y tan « 
 
 If a, jS, and y are angles of a triangle, prove 
 
 40. tan a + tan ^ + tan y = tan « tan y8 tan y. 
 
 41. cot- + cot^4-cot^ = cot-cot^cotX 
 
 2 2 2 2 2 2 
 
 If a + /8 + y = 90°, prove 
 
 42. tan a tan ^ + tan ^ tan y + tan y tan a = 1. 
 Prove : 
 
 43. sin na = 2 sin (n — 1) a cos a — sin (n — 2)a. 
 
 44. cos na = 2 cos (n — 1) a cos a — cos (n — 2)a. 
 
 45. tann«= tan (n - 1)« + tan « , 
 
 1 — tan (n — 1) a tan a 
 
CHAPTER VII. 
 
 TRIANGLES. 
 
 58. In geometry it has been shown that a triangle is 
 determined, except in the ambiguous case, if there are given 
 any three independent pai^s, as follows : 
 
 I. Two angles and a side. 
 II. Two sides and an angle, 
 (<x) the angle being included by the given sides, 
 (5) the angle being opposite one of the given sides (am- 
 biguous case). 
 III. Three sides. 
 
 The angles of a triangle are not three independent parts, since they 
 are connected by the relation A ■\- B + C = 180°. 
 
 The three angles of a triangle will be designated A^ B, O, 
 the sides opposite, a, b, c. 
 
 But the principles of geometry do not enable us to compute 
 the unknown parts. This is accomplished by the following 
 laws of trigonometry : 
 
 I. Law of Sines, 5«L4 = !ilL? = !iH-2. 
 
 a c 
 
 II. Law of Tangents, tan :^ (^ - ^) ^ a-| 
 •^ ^ tani-(^ + ^) a-\-b 
 
 III. Law of Cosines, cos A = — \^ , ~" ^ , etc. 
 
 2oc 
 
 59. Law of Sines. In any triangle the sides are propor- 
 tional to the sines of the angles opposite. 
 
 Let ABQ be any triangle, p the perpendicular from B 
 on h. In I (Fig. 34), C is an acute, in II, an obtuse, in III, 
 
 72 
 
LAW OF SINES — OF TANGENTS. 
 
 73 
 
 a right angle. The demonstration applies to each triangle, 
 but in II, ^mACB=^\nDOB (why?); in III, sinC=l 
 (why?). 
 
 P 
 Now sin A — —'> ,'. v = c sin A, 
 
 c ^ 
 
 P 
 
 sin C= —1 .'. p = a sin (7. 
 
 Equating values of ^, cs>vn.A = a sin (7, 
 
 sin A sin C 
 
 or, = 
 
 a c 
 
 By dropping a perpendicular from A^ or (7, on a, or (?, show 
 
 sin B sin C sin ^ sin B 
 , or 
 
 whence 
 
 he a 
 
 sin A sin B sin (7 
 
 6 ' 
 
 60. Law of Tangents. The tangent of half the difference 
 of two angles of a triangle is to the tangent of half their sum, 
 as the difference of the sides opposite is to their sum, 
 
 a __ sin A 
 h~ 
 
 By Art. 59, 
 
 or 
 
 sin j5 
 By composition and division, 
 
 g - 5 ^ sin J. — sin ^ ^ 2 cos IQA + B) sin i ( J. - ^) 
 a 4- ^ ~ sin ^ + sill ^ ~ 2 sin i^ ( Jl + ^) cos ^(^A — B^ 
 ^ tan^(J.-jg) , 
 tan|-(^ + J5)' 
 
 tan ^{A — B) _ a—b 
 tani(^H-5)~a + 6' 
 
74 
 
 PLANE TRIGONOMETRY. 
 
 61. Law of Cosines. The cosine of any angle of a triangle 
 is equal to the quotient of the sum of the squares of the adjacent 
 sides less the square of the opposite side, divided hy twice the 
 product of the adjacent sides. 
 
 In each figure a^=p'^-\-DC^ 
 
 = c^-AD^ + (h-AI>y 
 
 (in Fig. 34, II, DC is negative ; in III, zero) 
 
 = c2 - AB^ ^P-2b'Al) + Aiy^ 
 
 = h'^-\-c^-2h-AD. 
 But 
 
 AD = ccosA, .'. a^ = P-\-(^-2boGOsA; 
 
 \osA^'I±^-Z^. 
 2 be 
 
 Prove that cos B = ^^ + g^-^^ 
 
 2aG ' 
 
 and 
 
 2ab 
 
 62. Though these formulae may be used for the solution 
 of the triangle, they are not adapted to the use of loga- 
 rithms (why?). Hence we derive the following: 
 
 Since cos J. = 2 cos^ -4-1 = 1-2 sin2^, 
 2 2 
 
 we have 
 
 nA A 
 
 2 cos^^ = 1 + cos A, and 2 sin^- = 1 - cos -4. 
 z 2 
 
LAW OF COSINES. 
 
 75 
 
 From the latter 
 
 0.0-^1 524-c2_^2 25^-62-^2 _|.^2 
 
 ^^^"2=^- 2hc = Ihc 
 
 2 be 2 be 
 
 Let a + 5 + c = 2s, then a-\-b — e=a + b-}-c—2c=2s—2e; 
 i.e. a + b — e=2(s — c^. 
 
 In like manner, a — b -\- c = 2 (^s — b^, 
 — a + 5 + (?=2(s-a). 
 
 Substituting, 
 
 Show that 
 also 
 From 
 
 show that 
 also 
 
 o„in2^_2(«- 
 
 6).2Cs-c) 
 
 -„m 2- 
 
 2 be 
 
 .•.sin| = V^- 
 
 
 sinf=? 
 
 
 8in|= ? 
 
 
 2cos2^ = l + cos^, 
 
 COS 
 
 
 ^ 9 
 
 cos- = ? 
 
 and 
 
 Also derive the formulae 
 
 ~f-' 
 
 ^i'^^W^- 
 
 tan:? = ? 
 
 tanf=? 
 
76 PLANE TRIGONOMETRY. 
 
 63. Area of the triangle. In the figures of Art. 59 the 
 area of the triangle ABC= A = ^pb. 
 
 But p=csinA. .*. A = ^hc sin A, (i) 
 
 c sin B 
 
 Again, by law of sines, h = 
 
 sin O 
 
 g^sin^ sin^ 
 2 sin 
 
 c^sin^sinj^ 
 
 Substituting, A = 
 
 Zt sill w 
 
 (why?). (ii) 
 
 2 sin (^4-^) 
 
 <x A A 
 
 Finally, since sin^ = 2 sin — cos — , we have from (i) 
 
 ju a 
 
 A 11 o • -4. A z ^ls(s — a)Cs—b^(s — c) 
 
 A = lbc ' 2 sin— cos — = bc\-^ ^ — -^^ ^ 
 
 2 2 2 ^ be ' be 
 
 or A = Vs(s — a)(s — 6)(s — <?). (iii) 
 
 Find A ; (1) Given a = 10, 6 = 12, C = 45°. 
 
 (2) Given a = 4, 6 = 5, c = 6. 
 
 (3) Given a = 2, B = 45°, C = 60°. 
 
 SOLUTION OF TRIANGLES. 
 
 64. For the solution of triangles we have the following 
 f ormulee, which should be carefully memorized : 
 
 T sin^ _ sin B _ sin C 
 a h c 
 
 II. tan|(^-^) = ^^tan|(^ + B). 
 
 III. sm — = \^ ^ ^, or cos — = ^-^ — ^» 
 
 2 ^ be 2 ^ be 
 
 ortan:|=V^ ^^H^-o) . 
 2 ^ s(s- a) 
 
 IV. li=lbcs\nA = ^^^r^^/^^ = V8i8-aK8-bKs-c). 
 ^ 2 sm (A 4- B) 
 
SOLUTION OF TRIANGLES. 77 
 
 Which of the above formulae shall be used in the solution 
 of a given triangle must be determined by examining the 
 parts known, as will appear in Art. 69. It is always pos- 
 sible to express each of the unknown parts in terms of three 
 known parts. 
 
 In solving triangles such as Case I, Art. 58, the law of 
 sines applies; for, if the given side is not opposite either 
 given angle, the third angle of the triangle is found from 
 the relation A -h B -\- = 180°, and then three of the four 
 
 quantities in — — = ^^ — being known, the solution gives 
 
 a 
 
 the fourth. 
 
 In Case II (5) the law of sines applies, but in II (a) two 
 
 only of the four quantities in ^^2 — = EE — are known. 
 
 a 
 
 Therefore, we resort to the formula 
 
 tan i(^ -B) = ^nitanK^ + B), 
 
 in which all the factors of the second member are known. 
 In Case III, tan ^ = >|^ ~ ^^ ^^ ~ ""^ is clearly applicable, 
 
 A S yS — d) 
 
 and is preferred to the formulae for sin— and cos — ; for, 
 
 first, it is more accurate since tangent varies in magnitude 
 from to 00, while sine and cosine lie between and 1. 
 (See Art. 2T, 5.) 
 
 Let the student satisfy himself on this point by finding, correct to 
 seconds, the angle whose logarithmic sine is 9.99992, and whose loga- 
 rithmic tangent is 1.71668. Does the first determine the angle ? Does 
 the second? 
 
 And, second, it is more convenient, since in the complete 
 solution of the triangle by sin -- nx logarithms must be taken 
 
 A A 
 
 from the table, by cos — seven^ and by tan — but four. 
 
 The right triangle may be solved as a special case by the 
 law of sines, since sin (7=1. 
 
T8 
 
 PLANE TRIGONOMETRY. 
 
 65. Ambiguous case. In geometry it was proved that a 
 triangle having two sides and an angle opposite one of them 
 of given magnitude is not always determined. The marks 
 of the undetermined or ambiguous triangle are : 
 
 1. The parts given are two sides and an angle opposite one, 
 
 2. The given angle is acute. 
 
 3. The side opposite this angle is less than the other given 
 side. 
 
 When these marks are aJl present, the number of solutions 
 must be tested in one of two ways : 
 
 ((^) P>om the figure it is apparent that there will be no 
 solution when the side opposite is less than the perpendicular 
 p ; one solution when side a equals p ; and two solutions when 
 a is greater than p. 
 
 M. b A b O A b C C 
 
 No Solution, One Solution, Two Solutions, 
 
 Fig. 35. 
 
 And since sin^ = — , it follows that there will be no solu- 
 c 
 
 tion, one solution, two solutions, according as sin A = — 
 
 < c 
 
 (5) A good test is found in solving by means of loga- 
 rithms ; and there will be no solutions, one solution, two solu- 
 tions, according as log sin O proves to be impossible, zero, 
 possible, i.e. as log sin Q is positive, zero, or negative. This 
 results from the fact that sine cannot be greater than unity, 
 whence log sine must have a negative characteristic, or be 
 zero. 
 
 66. In computations time and accuracy assume more than 
 usual importance. Time will be saved by an orderly arrange- 
 ment of the formulae for the complete solution, before open- 
 ing the book of logarithms, thus : 
 
SOLUTION OF TRIANGLES. 79 
 
 Given J., B^ a. 
 
 Solve completely. 
 
 = 180°-(^-h^), 
 
 , a sin -B « sin (7 A 1 1 • /> 
 sin A sin J. ^ 
 
 180° 
 
 log a= log a = 
 
 A-\-B = 
 
 log sin jB = log sin C = 
 
 .-. C = 
 
 colog sin A = colog sin A = 
 
 
 log 6 = log c = 
 
 
 .-.6= .-.0 = 
 
 
 Check: 
 
 loga = 
 
 l0g(5-&) = 
 
 log ft = 
 
 log(5-c) = 
 
 log sin C = 
 
 colog 5 = 
 
 colog 2 = 
 
 ^ colog (5 — a) = 
 
 logA = 
 
 2) 
 
 .•.A = 
 
 logtan:| = 
 
 .-. A = 
 
 67. Accuracy must be secured by checks on the work at 
 every step ; e.g. in adding columns of logarithms, first add 
 up, and then check by adding down. Too much care can- 
 not be given to verification in the simple operations of 
 addition, subtraction, multiplication, and division. A final 
 check should be made by using other formulse involving the 
 parts in a different way, as in the check above. As far as 
 possible the parts originally given should be used through- 
 out in the solution, so that an error in computing one part 
 may not affect later computations. 
 
 68. The formulae should always be solved for the unknown 
 part before using^ and it should be noted whether the solu- 
 tion gives one value, or more than one, for each part; e.g. 
 the same value of sin^ belongs to two supplementary angles, 
 one or both of which may be possible, as in the ambiguous 
 case. 
 
 " 69. Write formulae for the complete solution of the fol- 
 lowing triangles, showing whether you find no solution, one 
 solution, two or more solutions, in each case, with reasons for 
 your conclusion : 
 
80 
 
 PLANE TRIGONOMETRY. 
 
 
 a 
 
 b 
 
 c 
 
 A 
 
 B 
 
 C 
 
 1. 
 
 
 
 
 81° 26' 28'' 
 
 44° 11' 20" 
 
 54° 22' 12" 
 
 2. 
 
 
 78.54 
 
 
 63° 18' 20" 
 
 
 41° 30' 18" 
 
 3. 
 
 
 135.82 
 
 26.89 
 
 53° 28' 30" 
 
 
 
 4. 
 
 0.75 
 
 0.85 
 
 0.95 
 
 
 
 
 5. 
 
 243 
 
 
 562 
 
 
 
 36° 15' 40" 
 
 6. 
 
 
 38.75 
 
 25.92 
 
 
 
 63° 50' 10" 
 
 7. 
 
 0.058 
 
 
 
 78° 15' 
 
 33° 46' 
 
 
 8. 
 
 2986 
 
 
 1493 
 
 
 
 30° 
 
 9. 
 
 
 48 
 
 50 
 
 
 26° 15' 
 
 
 MODEL SofctJTIONS. 
 1. Given a = 0.785, b = 0.85, c = 0.633. Solve completely. 
 
 tan 
 
 ^a/5 
 
 6)0 
 
 c) ^ B 
 — , tan 2 
 
 4 
 
 (s — a){s — c) 
 
 tan 
 
 4 
 
 (s-a)(s-b) 
 
 2 ~ '^ s(s-a) ' 2~^ s(s-b) ' 2 ^ s{s-c) 
 Check: A + B ■}- C = 180°. A = Vs(s - a){s - b)(s - c). 
 
 a = 0.735 
 b = 0.85 
 c = 0.633 
 
 2 )2.268 
 
 s = 1.134 
 
 s-a = 0.349 
 
 s-b = 0.284 
 
 s - c = 0.501 
 
 log(s-&)= 9.45332 
 
 log (s - c) = 9.69984 
 
 cologs= 9.94539 
 
 colog (s -a)= 0.45717 
 
 2 )19.55572 
 log tan ^^= 9.77786 
 
 ^A =30° 56' 49" 
 A = 61° 53' 38" 
 
 Check: log(s-a)= 9.54283 
 
 A = 61° 53' 38" log (s - &) = 9.45332 
 
 5 = 72° 46' 4" colog s = 9.94539 
 
 C = 45° 20' 20" colog (s-c)= 0.30016 
 
 180° 0' 2" 
 
 2 )19.24170 
 logtan^C= 9.62085 
 
 22° 40' 10" 
 C = 45° 20' 20" 
 
 hC 
 
 log(s-a) 
 
 log (s - c) 
 
 colog s 
 
 colog (s — b) 
 
 log tan ^ J5 
 
 IB 
 
 B 
 
 logs 
 log (s - a) 
 log (s - b) 
 log (s - c) 
 
 log A 
 
 A 
 
 = 9.54283 
 
 = 9.69984 
 
 = 9.94539 
 
 = 0.54668 
 
 2)19.73474 
 = 9.86737 
 = 36° 23' 2" 
 = 72° 46 4" 
 
 = 0.05461 
 
 = 9.54283 
 
 = 9.45332 
 
 = 9.69984 
 
 2 )18.75060 
 = 9.37530 
 = 0.2373 
 
 Solve :(1) Given a = 30, & = 40, c = 50. 
 
 (2) Given a = 2159, b = 1431.6, c = 914.8. 
 
 (3) Given a = 78.54, b = 32.56, c = 48.9. 
 
SOLUTION OF TRIANGLES. 
 
 81 
 
 2. Given A = 57° 23' 12", C = 68° 15' 30", c = 832.56. Solve completely. 
 
 csin J. 
 
 B 
 
 180 
 
 54° 21' 18". 
 
 sin C 
 (A + C) 
 
 b = 
 
 csinB 
 
 sm C 
 Check : tan ^ A 
 
 ^ be sin A . 
 ^^(s-bXs-c) 
 
 logc = 2.92042 
 
 log sin A = 9.92548 
 
 colog sin C = 0.03204 
 
 log a 
 
 Check . 
 
 2.87794 
 a= 754.98 
 
 a= 754.98 
 b= 728.38 
 c= 832.56 
 
 log c = 2.92042 
 
 log sin B = 9.90990 
 
 colog sin C = 0.03204 
 
 log6 = 2.86236 
 b= 728.38 A 
 
 s{s — a) 
 
 logb= 2.86236 
 
 logc= 2.92042 
 
 log sin ^ = 9.92548 
 
 log2A= 5.70826 
 = 510811^255405.5 
 
 2 )2315.92 
 s = 1157.96 
 
 s-a= 402.98 log(s-6)= 2.63304 
 
 s- b= 429.58 log (s - c) = 2.51242 
 
 5-c= 325.40 colog s= 6.93634 
 
 colog (s- a) = 7.39471 
 
 2 )19.47651 
 
 log tan i^ = 9.73826 
 
 ^^=28° 41' 38" 
 
 A = 57° 23' 16" 
 Solve : 
 
 (1) Given a = 215.73, B = 92° 15', C = 28° 14'. 
 
 (2) Given b = 0.827, A = 78° 14' 20", B = 63° 42' 30". 
 
 (3) Given b = 7.54, c = 6.93, B = 54° 28' 40". 
 
 3. Given a = 25.384, c = 52.925, 5 = 28° 32' 20". Solve completely. 
 ("Why not use the same formulae as in Example 1, or 2?) 
 
 tan 
 
 C-A 
 
 £-:^tan.^+^ 
 
 b = 
 
 csin^ 
 
 2 c + a 2 
 
 180° -B = C-\-A= 151° 27' 40". 
 
 sinC' 
 
 Check: b = 
 
 I ac sin B. 
 asiiiB 
 
 sin J 
 
 .'. ^(C + A)= 75° 43' 50". 
 
 c= 52.925 log (c- a) = 1.43998 .-. l(C-A)= 54° 7'38" 
 
 a= 25.384 colog (c + a) =8.10619 ^(C+A)= 75°43'50" 
 
 c+a= 7SM9 logtanKC+^) = 0.59460 ^^^^^^^ C=129°51'28" 
 
 c-a= 27.541 log tan i(C-^) = 0.14077 subtracting, ^= 21°36'12" 
 
 log a = 1.40456 
 
 log c = 1.72366 
 
 log sin 5 = 9.67921 
 
 colog sin C= 0.1 1484 
 
 log & = 1.51771 
 b= 32.939 
 
 Check: log a = 1.40456 
 
 log sin 5 = 9.67921 
 
 colog sin .4 =0.43395 
 
 log 6 = 1.51772 
 
 logc = 1.72366 
 log sin 5 = 9.67921 
 
 log 2 A =2.70743 
 A=511!^=254.965 
 
82 PLANE TRIGONOMETRY. 
 
 Solve : (1) Given a = 0.325, c = 0.426, B = 48° 50' 10". 
 
 (2) Given b = 4291, c = 3194, A = 73° 24' 50". 
 
 (3) Given b = 5.38, c = 12.45, A = 62° 14' 40". 
 
 4. Ambiguous eases. Since the required angle is found 
 in terms of its sine, and since sin a = sin (180° — a), it fol- 
 lows that there may be two values of a, one in the first, and 
 the other in the second quadrant, ^eir sum being 180°. In 
 the following examples the student should note that all the 
 marks of the ambiguous case are present. The solutions will 
 show the treatment of the ambiguous triangle having no 
 solution, one solution, two solutions. 
 
 (a) Given 5 = 70, c = 40, C= 47° 32' 10''. Solve. Why 
 ambiguous ? 
 
 . p ^ ^ sin (7 log 5 =1.84510 
 
 ^^^ c * logsin (7= 9.86788 
 
 cologc = 8.89794 
 
 log sin^ = 0.11092 
 
 .'. B is impossible, and there is no solution. Why? 
 Show the same by sin > -• 
 
 (5) Given a = 1.5, c = 1.7, A = 61° 55' 38". Solve. 
 
 . ^^ csinA log c= 0.23045 
 
 ^^^ a ' logsin^= 9.94564 
 
 colog«= 9.82391 
 
 logsin (7= 0.00000 
 a=90° 
 
 and there is one solution. Why ? Show the same by 
 
 sin A - 
 
 work. 
 
 sin J. = -. Solve for the remaining parts and check the 
 
 
 
SOLUTION OF TRIANGLES. 83 
 
 (c) Given a = 0.235, b = 0.189, B = 36° 28' 20^'. Solve. 
 
 . . a sin ^ b sin O 
 
 sin A = — = ? e = —-. 
 
 sin^ 
 
 log a =9. 37107 log 6 = 9. 27646 9. 27646 
 
 log sin ^ = 9. 77411 log sin 0=9. 99772 or 9. 28774 
 
 colog b = 0.72354 colog sin B = 0.22589 0. 22589 
 
 log sin ^ = 9.86872 log c = 9.50007 or 8.79009 
 
 A = 47° 39' 25'' c = 0.31628 or 0.06167 
 
 or 132° 20' 35". 
 
 ... (7 =95° 52' 15" or 11° 11' 5". 
 
 Solve for A, and check. Show the same by sin B < — 
 Solve : 
 
 (1) Given 6 = 216.4, c= 593.2, B= 98° 15'. 
 
 (2) Given a = 22, 6 = 75, 5 = 32° 20'. 
 
 (3) Given a = 0.353, c= 0.295, A = 46° 15' 20". 
 
 (4) Given a = 293.445, b = 450, A = 40° 42'. 
 
 (5) Given b = 531.03, c= 629.20, ^=34° 28' 16". 
 
 Solve completely, given : 
 
 
 
 a 
 
 h 
 
 c 
 
 A 
 
 B C 
 
 L 50 
 
 60 
 
 
 
 78° 27' 47" 
 
 2. 
 
 10 
 
 11 
 
 
 93° 35' 
 
 3. 4 
 
 5 
 
 6 
 
 
 
 4. 
 
 
 10 
 
 109° 28' 16" 
 
 38° 56' 54" 
 
 5. 40 
 
 51 
 
 
 49° 28' 32" 
 
 
 6. 352.25 
 
 513.27 
 
 482.68 
 
 
 
 7. 0.573 
 
 0.394 
 
 
 112° 4' 
 
 
 8. 107.087 
 
 
 
 56° 15' 
 
 48° 35' 
 
 9. 
 
 
 V2 
 
 117° 
 
 45° 
 
 10. 197.63 
 
 246.35 
 
 
 34° 27' 
 
 
 11. 4090 
 
 3850 
 
 3811 
 
 
 
 12. 3795 
 
 
 
 
 73° 15' 15" 42° 18' 30" 
 
 13. 
 
 234.7 
 
 185.4 
 
 84° 36' 
 
 
 14. 
 
 26.234 
 
 22.6925 
 
 
 49° 8' 24" 
 
 15. 273 
 
 136 
 
 
 72° 25' 13" 
 
 
84 PLANE TRIGONOMETRY. 
 
 APPLICATIONS. 
 
 70. Measurements of heights and distances often lead to 
 the solution of oblique triangles. With this exception, the 
 methods of Chapter V apply, as will be illustrated in the 
 following problems. 
 
 The hearing of a line is the angle it makes with a north 
 and south line, as determined by the^magnetic needle of the 
 mariner's compass. If the bearing does not correspond to 
 any of the points of the compass, it is usual to express it 
 thus: N. 40° W., meaning that the line bears from N. 40° 
 toward W. 
 
 EXAMPLES. 
 
 1. When the altitude of the sun is 48°, a pole standing on a slope 
 inclined to the horizon at an angle of 15° casts a shadow directly down 
 the slope 44.3 ft. How high is the pole? 
 
 2. A tree standing on a mountain side rising at an angle of 18° 30' 
 breaks 32 ft. from the foot. The top strikes down the slope of the moun- 
 tain 28 ft. from the foot of the tree. Find the height of the tree. 
 
 3. From one corner of a triangular lot the other corners are found to 
 be 120 ft. E. by N., and 150 ft. S. by W. Find the area of the lot, and 
 the length of the fence required to enclose it. 
 
 4. A surveyor observed two inaccessible headlands, A and B. A was 
 W. by N. and B, N.E. He went 20 miles N., when they were S.W. and 
 S. by E. How far was A from B ? 
 
 5. The bearings of two objects from a ship were N. by W. and N.E. 
 by N. After sailing E. 11 miles, they were in the same line W.N.W. 
 Find the distance between them. 
 
 6. From the top and bottom of a vertical column the elevation angles 
 of the summit of a tower 225 ft. high and standing on the same hori- 
 zontal plane are 45° and 55°. Find the height of the column. 
 
 7. An observer in a balloon 1 mile high observes the depression angle 
 of an object on the ground to be 35° 20'. After ascending vertically and 
 uniformly for 10 mins., he observes the depression angle of the same object 
 to be 55° 40'. Find the rate of ascent of the balloon in miles per hour. 
 
 8. A statue 10 ft. high standing on a column subtends, at a point 
 100 ft. from the base of the column and in the same horizontal plane, the 
 same angle as that subtended by a man 6 ft. high, standing at the foot 
 of the column. Find the height of the column. 
 
 9. From a balloon at an elevation of 4 miles the dip of the horizon 
 is 2° 33' 40". Required the earth's radius. 
 
TRIANGLES — APPLICATIONS. 85 
 
 10. Two ships sail from Boston, one S.E. 50 miles, the other N.E. by 
 E. 60 miles. Find the bearing and distance of the second ship from the 
 first. 
 
 11. The sides of a valley are two parallel ridges sloping at an angle of 
 30°. A man walks 200 yds. up one slope and observes the angle of eleva- 
 tion of the other ridge to be 15°. Show that the height of the observed 
 ridge is 273.2 yds. 
 
 12. To determine the height of a mountain, a north and south base 
 line 1000 yds. long is measured ; from one end of the base line the sum- 
 mit bears E. 10° N., and is at an altitude of 13° 14'. From the other end 
 it bears E. 46° 30' N. Find the height of the mountain. 
 
 13. The shadow of a cloud at noon is cast on a spot 1600 ft. due west 
 of an observer. At the same instant he finds that the cloud is at an ele- 
 vation of 23° in a direction W. 14° S. Find the height of the cloud and 
 the altitude of the sun. 
 
 14. From the base of a mountain the elevation of its summit is 54° 20'. 
 From a point 3000 ft. toward the summit up a plane rising at an angle 
 of 25° 30' the elevation angle is 68° 42'. Find the height of the mountain. 
 
 15. From two observations on the same 
 
 meridian, and 92° 14' apart, the zenith 
 
 angles of the moon are observed to be 
 
 44° 54' 21" and 48° 42' 57". Calling the 
 
 earth's radius 3956.2 miles, find the dis- , ,, , ^ 
 
 , , ,, { iC.\/\Z= Zenith angle 
 
 tance to the moon. ' ^ \^ ^ v 
 
 16. The distances from a point to three 
 objects are 1130, 1850, 1456, and the angles 
 
 subtended by the distances between the three objects are respectively 
 102° 10', 142°, and 115° 50'. Find the distances between the three objects. 
 
 17. From a ship A running N.E. 6 mi. an hour direct to a port dis- 
 tant 35 miles, another ship B is seen steering toward the same port, its 
 bearing from A being E.S.E., and distance 12 miles. After keeping on 
 their courses 1^ hrs., B is seen to bear from A due E. Find B's course 
 and rate of sailing. 
 
 18. From the mast of a ship 64 ft. high the light of a lighthouse is 
 just visible when 30 miles distant. Find the height of the lighthouse, 
 the earth's radius being 3956.2 miles. 
 
 19. From a ship two lighthouses are observed due N.E. After sailing 
 20 miles E. by S., the lighthouses bear N.N.W. and N. by E. Find the 
 distance between the lighthouses. 
 
 20. A lighthouse is seen N. 20° E. from a vessel sailing S. 25° E. A 
 mile further on it appears due N. Determine its distance at the last 
 observation. 
 
EXAMPLES FOR ^VIEW. 
 
 In connection with each problem the student should review 
 all principles involved. The following list of problems will then 
 furnish a thorough review of the book. In solving equations, 
 find all values of the unknown angle less than 360° that satisfy 
 the equation. 
 
 1. If tan « = }, tan /? = i, show that tan (/3 - 2 a) = -j^. 
 
 2. Prove tan a + cot a = 2 esc 2 a. 
 
 A A A A 
 
 3. From the identities sin^ — |- cos^— = 1, and 2 sin — cos— = sin A. 
 
 2 2' 22 
 
 prove 2 sin — = ± Vl + siii A ±Vl — sin A, 
 
 and 2 cos — = ± Vl + sin A T Vl - sin^. 
 
 4. Remove the ambiguous signs in Ex. 3 when A is in turn an angle 
 of each quadrant. 
 
 5. A wall 20 feet high bears S. 59° 5' E. ; find the width of its shadow 
 on a horizontal plane when the sun is due S. and at an altitude of 60°. 
 
 6. Solve sin a: + sin 2 a: + sin 3 a; = 1 + cos x + cos 2 x. 
 
 7. Prove tan-i i + tan-i i = ^. 
 
 8. If ^ = 60°, B = 45°, C = 30°, evaluate 
 
 tan A + tan B + tan C 
 
 tan A tan B -!- tan B tan C + tan C tan A 
 
 9 Prove ^Q^ (^^ + ^) <^os C _ 1 — tan A tan B 
 cos (A + C) cos B 1 — tan A tan C 
 
 10. Solve completely the triangle whose known parts are b = 2.35, 
 c = 1.96, C = 38° 4:5' A. 
 
 11. Find the functions of 18°, 36°, 54°, 72°. 
 
 Let x = 18°. Then 2a;=36°, 3x = 54°, and 2x + 3a = 90°. 
 
 P 
 
 12. If cot a = -, find the value of 
 
 sin a + cos a + tan a + cot a + sec a + esc a. 
 86 
 
EXAMPLES FOR REVIEW. 87 
 
 T « -r, sin 3 « sin 2 ^ — sin 3 i8 sin 2 a -, , ^ o 
 
 13. Prove — ^— ■, — ^ : — -^-^ = 1 + 4 cos a cos B. 
 
 sin 2 a sin p — sin 2 /j sin a ' 
 
 14. From a ship sailing due N., two lighthouses bear N.E. and 
 N.N.E., respectively; after sailing 20 miles they are observed to bear 
 due E. Find the distance between the lighthouses. 
 
 15. Solve 1 — 2 sin a: = sin 3 x, 
 
 16. Prove sin-i\'— ^ = tan-i-\p. 
 
 ^a + b ^b 
 
 17. If cos ^ — sin ^ = \/2 sin 6, then cos ^ + sin ^ = V2 cos 9, 
 
 18. Solve completely the triangle ABC, given a = 0.256, b = 0.387, 
 C = 102° 20'.5. 
 
 2 cos 2 cc - 1 
 
 19. Prove tan (30° + a) tan (30°- a) = 
 
 2 cos 2 a + 1 
 
 20. Solve tan (45° - 0) + tan (45° + ^) = 4. 
 
 21. Prove sin^ a cos^ /8 - cos^ a sin^ ft = sin^ a - sin^ ^. 
 
 22. Prove cos^ a cos^ /3 - sin^ a sin^ ^ = cos^ « - sin^ p.. 
 
 23. A man standing due S. of a water tower 150 feet high finds its 
 elevation to be 72° 30' ; he walks due W. to A street, where the elevation 
 is 44° 50' ; proceeding in the same direction one block to B street, he finds 
 the elevation to be 22° 30'. What is the length of the block between A 
 and B streets. 
 
 24. Prove tan-i - 4- tan-i - + tan-i i + tan-i i = -• 
 
 3 5 7 8 4 
 
 25. If P = 60°, Q = 45°, R = 30°, evaluate 
 
 sin P cos Q + tan P cos Q 
 sin P cos P + cot P cot R 
 
 26. If cos (90° + «) = -!, evaluate 3 cos 2 a + 4 sin 2 a. 
 
 27. If sin B + sin C = m, cos J5 + cos C = n, show that tan — ^ — = — . 
 
 2 n 
 
 28. Show that sin 2 )3 can never be greater than 2 sin )8. 
 
 29. Prove sin-^ | + sin-^ ^ = tan-^ f f . 
 
 30. Solve cot-ix + sin-i- V5 = ^• 
 
 o 4 
 
 31. Solve sin-^x + sin-i(l — x)= cos~^ar. 
 
 32. A man standing between two towers, 200 feet from the base of 
 the higher, which is 90 feet high, observes their altitudes to be the same ; 
 70 feet nearer the shorter tower he finds the altitude of one is twice that 
 of the other. Find the height of the shorter tower, and his original 
 distance from it. 
 
88 PLANE TRIGONOMETRY. 
 
 33. Solve cos 3 /3 + 8 cos^ p = 0. 
 
 34. Solve cot m — tan (180 + m) = sin m + sin (90" — m), 
 
 35. Solve ljzi!:Bi = 2 cos 2 1. 
 
 1 + tan « 
 
 36. Prove cot^ + cot 5 =^^-(A±M. 
 
 sm A sm B 
 
 37. Prove cot P - cot Q = - ^^"^^7 ^^ - 
 
 sin P sm Q 
 
 38. In the triangle ABC prove 
 
 a = 6 sin C + c sin 5, 
 6 = c sin J. + a sin C, 
 c = a sin .B + 5 sin ^4. 
 
 39. Solve completely the triangle, given 
 
 a = 927.56, b = 648.25, c = 738.42. 
 
 40. Prove cos^ a - sin (30° + a) sin (30° - «) = f . 
 
 -, -D X o J. cos 2 a; — cos 4 a: 
 
 41. Prove tan 3 x tan a; = — 
 
 cos 2 a; + cos 4 x 
 
 42. Simplify cos (270° + «) + sin (180° + a)+ cos (90° + a). 
 
 43. Simplify tan (270° -$)- tan (90° + 6)+ tan (270° + 0). 
 
 44. Solve cos 3 <^ — cos 2 <^ + cos ^ = 0. 
 
 45. Solve cos ^ + cos 3 ^ + cos 5 ^ + cos 7 ^ = 0. 
 
 46. The topmast of a yacht from a point on the deck subtends the 
 same angle a, that the part below it does. Show that if the topmast be 
 a feet high, the length of the part below it is a cos 2 a. 
 
 47. A horizontal line AB is measured 400 yards long. From a point 
 in A B Si balloon ascends vertically till its elevation angles at A and B 
 are 64° 15' and 48° 20', respectively. Find the height of the balloon. 
 
 sin a 
 
 48. If cos d) = n sin a, and cot<^= '* prove cos B= 
 
 tan^ Vl + n2cos2a 
 
 49. Find cos 3 a, when tan 2 a = — f . 
 
 50. Solve completely the triangle, given a = 0.296, B = 28° 47'.3, 
 C = 84° 25'. 
 
 51. Evaluate sin 300° + cos 240° + tan 225^ 
 
 52. Evaluate sec IS - esc ^ + tan 1^. 
 
 O O O 
 
EXAMPLES FOR REVIEW. 89 
 
 53. If tan^ = ^^^"^^^V-^"^^^^^Y 
 
 cos « COS y — cos /8 sin y 
 
 and tan <t> = sin a sin y - sin ^ cos y^ 
 
 cos « sin y — cos ^ cos y 
 show that tan(^ + <^) = tan(a + (3). 
 
 54. If tan 466° 15' 38" = - ^^, find the sine and cosine of 233" 7' 49". 
 55 Prove ^^^ ^ ~ ^^^ ^ sec a — tan a 
 
 sec a + tan a esc a + cot a 
 56. 
 
 Prove cos((.-3^)-cos(3«-^) ^ ^ sin(a - fl). 
 sin 2 « + sin 2 ^ ^ '^^ 
 
 57. Prove sin 80° = sin 40° + sin 20°. 
 
 58. Prove cos 20° = cos 40° + cos 80°. 
 
 59. Prove 4 tan-i - - tan"! — = S 
 
 5 239 4 
 
 60. From the deck of a ship a rock bears N.N.W. After the ship 
 has sailed 10 miles E.N.E., the rock bears due W. Find its distance 
 from the ship at each observation. 
 
 61. Find the length of an arc of 80° in a circle of 4 feet radius. 
 
 62. Given tan 6 = ^, tan <f} = -^^, evaluate sin(^ + <^) + cos(^ — <^). 
 
 63. If tan ^ = 2 tan <^, show that sin(^ + <^) = 3 sin(^ - <^). 
 
 64. Prove cos(a + j8)cos(a-^) + sin(a + /8)sin(a-fi)=i^I*^^. 
 
 ^ '^ '^ l+tan2^ 
 
 65. Solve 4 cos 2 ^ + 3 cos ^ = 1. 
 
 66. Solve 3 sin a = 2 sin (60° - a). 
 
 67. Prove (sin a - esc «)2 — (tan a - cot a) ^ + (cos a — sec «) 2= 1. 
 
 68. Prove 2(sin^ a + cos^ a) + 1 = 3(sin^ a + cos* a). 
 
 69. Prove esc 2 y8 + cot 4 /? = cot )8 - esc 4 p. 
 
 70. If tan » = — , cos 2 g = — , then esc ^^-^ = SVlS. 
 
 ^ 12 ^ 625 2 
 
 71. Solve completely the triangle, given 
 
 a = 0.0654, 6 = 0.092, 5 = 38°40'.4. 
 
 72. Solve completely the triangle, given 
 
 & = 10, c = 26, J5 = 22°37'. 
 
 73. A railway train is travelling along a curve of | mile radius at the 
 rate of 25 miles per hour. Through what angle (in circular measure) 
 will it turn in half a minute ? 
 
90 PLANE TRIGONOMETRY. 
 
 74. Express the following angles in circular measure : 
 
 63°, 4° 30', 6° 12' 36". 
 
 75. Express the following angles in sexagesimal measure : 
 
 6 8 ' 64 ' 
 
 76. Ji A, B, C are angles of a triangle, prove 
 
 ABC 
 
 cos A + cos -B + cos C = 1 + 4 sin — sin — sin -• 
 
 77. Prove sin 2 x + sin 2 y + sin 2 2; = 4 sin a; sin y sin z, when a?, y, z 
 are the angles of a triangle. 
 
 78. Prove sec a = 1 + tan a tan -• 
 
 79. Prove sin^ (« + j8) - sin^ (a _ ^) = sin 2 a sin 2 j8. 
 
 80. Prove cos^ (a + /3) - sin^ (^a - f3)= cos 2 cc cos 2 ^. 
 
 81. Prove sinl9 ;> + sin 17 p ^ 2 cos 9;,. 
 
 sm 10 p + sm 8j9 
 
 82. Consider with reference to their ambiguity the triangles whose 
 known parts are : 
 
 (a) a = 2743, b = 6452, B = 43° 15' ; 
 
 (b) a = 0.3854, c = 0.2942, C=:38°20^ 
 
 (c) &= 5, c = 53, 5 = 15°22'; 
 
 (d) a = 20, b = 90, A= 63° 28'.5. 
 
 83. From a ship at sea a lighthouse is observed to bear S.E. After 
 the ship sailed N.E. 6 miles the bearing of the lighthouse is S. 27° 30' E. 
 Find the distance of the lighthouse at each time of observation. 
 
 84. Prove sin (^ + 3 <^) + sin (3 ^ + <^) ^ 3 cos (0 + <^). 
 
 sin 2 d + sin 2 <^ v ^ v'y 
 
 85. Prove cos 15° - sin 15° = — • 
 
 V2 
 
 86. Show that cos (a + )8) cos (a — /3)= cos^ a - sin^ p 
 
 = cos2)8 — sin^a. 
 
 87. Show that tan (a + 45°) tan (a - 45°) = ^sin^ot-l 
 
 ^ ^ ^ ^ 2cos2a-l 
 
 88. Solve sin (x + y) sin (x — y)= ^, cos (x + y) cos (x — y) = 0. 
 
 89. Prove l + sin«-cos« ^ ^^^ a 
 
 1 + sin a + cos a 2 
 
EXAMPLES FOR REVIEW. 91 
 
 90. Prove tan 2 ^ + sec 2 ^ = cos + sin 6 
 
 cos ^ — sin ^ 
 
 91. If tan <}>=-, then a cos 2^ + &sin2d> = a, 
 
 a 
 
 92. Prove sin-i-i + cot-i3 = ^' 
 
 93. Solve cos A + cos 7 A = cos 4 A. 
 
 94. Two sides of a triangle, including an acute angle, are 5 and 7, 
 the area is 14 ; find the other side. 
 
 95. Show that 3cos3g-2cose-cos5g ^ ^^^ ^ ^ 
 
 sm 5 ^ — 3 sm 3 ^ + 4 sin 6 
 
 96. A regular pyramid stands on a square base one side of which is 
 173.6 feet. This side makes an angle of 67° with one edge. What is 
 the height of the pyramid ? 
 
 97. From points directly opposite on the banks of a river 500 yards 
 wide the mast of a ship lying between them is observed to be at an eleva- 
 tion of 10° 28'.4 and 12° 14'.5, respectively. Find the height of the mast. 
 
 98. Show that (sin 60° - sin 45°) (cos 30° + cos 45°) = sin2 30°. 
 
 99. Find x if sin-i x + sin-i ^ = ^. 
 
 2 4 
 
 100. Trace the changes in sign and value of sin a + cos a as a 
 changes from 0° to 360°. 
 
FIVE-PLACE 
 
 LOGARITHMIC AND TRIGONOMETRIC 
 
 TABLES 
 
 ADAPTED FROM GAUSS'S TABLES i 
 
 i 
 
 BY j 
 
 ELMER A. LYMAN J 
 
 MICHIGAN STATE NORMAL COLLEGE • 
 
 AND ^ 
 
 EDWIN C. GODDARD | 
 
 UNIVERSITY OF MICHIGAN i 
 
 >J«io 
 
 ALLYN AND BACON 
 Boston antJ Chicago 
 
V/^ 
 
 COPYRIGHT, 189 9, BY 
 ELMER A. LYMAN and 
 EDWIN C. GODDARD. 
 
 Nortoooti iPwaa 
 
 J. S. Cashing & Co. — Berwick & Smith 
 Norwood Mass. U.S.A. 
 
TABLE I. 
 
 THE COMMON LOGARITHMS OF NUMBERS 
 FROM 1 TO 10009. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
 100 
 
 00000 
 
 043 
 
 087 
 
 130 
 
 173 
 
 217 
 
 260 
 
 303 
 
 346 389 
 
 
 lOI 
 
 432 
 
 475 
 
 518 
 
 561 
 
 604 
 
 647 
 
 689 
 
 732 
 
 775 817 
 
 44 43 42 
 
 I02 
 
 860 
 
 903 
 
 945 
 
 988 
 
 *03o 
 
 *072 
 
 *ii5 *i57 *i99 *242 
 
 I 
 2 
 
 
 103 
 
 01 284 
 
 326 
 
 368 
 
 410 
 
 452 
 
 494 
 
 536 
 
 tl 
 
 620 662 
 
 4/4 4/3 4/2 
 8,8 8,6 8,4 
 13,2 12,9 12,6 
 17,6 17,2 16,8 
 22,0 21,5 21,0 
 26,4 25,8 25,2 
 30,8 30,1 29,4 
 35/2 34,4 33,6 
 39/6 38,7 37,8 
 
 104 
 
 703 
 
 74S 
 
 787 
 
 828 
 
 870 
 
 912 
 
 953 
 
 ^036 ^078 
 
 3 
 
 4 
 
 105 
 
 02 119 
 
 160 
 
 202 
 
 243 
 
 284 
 
 325 
 
 366 
 
 407 
 
 449 490 
 
 106 
 
 531 
 
 572 
 
 612 
 
 653 
 
 694 
 
 735 
 
 776 
 
 816 
 
 857 898 
 
 107 
 
 938 
 
 979 *oi9 
 
 *o6o 
 
 *ioo 
 
 *i4i 
 
 *i8i 
 
 *222 
 
 ^262 ^302 
 
 7 
 8 
 
 108 
 
 03342 
 
 383 
 
 423 
 
 463 
 
 503 
 
 543 
 
 583 
 
 623 
 
 663 703 
 
 109 
 
 743 
 
 782 
 
 822 
 
 862 
 
 902 
 
 941 
 
 981 
 
 *02I 
 
 *o6o *ioo 
 
 9 
 
 110 
 
 04139 
 
 179 
 
 218 
 
 258 
 
 297 
 
 336 
 
 376 
 
 415 
 
 454 493 
 
 
 III 
 
 532 
 
 571 
 
 610 
 
 650 
 
 689 
 
 727 
 
 766 
 
 805 
 
 844 883 
 
 41 40 39 
 
 112 
 
 922 
 
 961 
 
 999 
 
 *038 
 
 *077 
 
 *ii5 *i54 
 
 *i92 *23i ^269 
 
 
 
 113 
 
 05308 
 
 346 
 
 385 
 
 423 
 
 461 
 
 500 
 
 538 
 
 576 
 
 614 652 
 
 I 
 
 4/1 4/0 3/9 
 8,2 8,0 7,8 
 
 12.3 12,0 11,7 
 
 16.4 16,0 15,6 
 
 20.5 20,0 19,5 
 24/6 24,0 23,4 
 
 28.7 28,0 27,3 
 
 32.8 32,0 31,2 
 
 36.9 36,0 35,1 
 
 114 
 
 690 
 
 729 
 
 767 
 
 805 
 
 843 
 
 881 
 
 918 
 
 956 
 
 '994 *032 
 
 2 
 3 
 4 
 5 
 6 
 
 115 
 
 06 070 
 
 108 
 
 145 
 
 183 
 
 221 
 
 258 
 
 296 
 
 333 
 
 371 408 
 
 116 
 
 446 
 
 483 
 
 521 
 
 558 
 
 595 
 
 633 
 
 670 
 
 707 
 
 744 781 
 
 117 
 
 819 
 
 856 
 
 893 
 
 930 
 
 967 
 
 *oo4 *04i 
 
 *078 
 
 *ii5 *i5i 
 
 7 
 8 
 
 118 
 
 07 188 
 
 225 
 
 262 
 
 298 
 
 335 
 
 372 
 
 408 
 
 445 
 
 482 518 
 
 119 
 
 555 
 
 591 
 
 628 
 
 664 
 
 700 
 
 737 
 
 773 
 
 809 
 
 846 882 
 
 9 
 
 120 
 
 918 
 
 954 
 
 990 *027 
 
 *o63 
 
 *099 
 
 *i35 *i7i *207 *243 
 
 1 
 
 121 
 
 08279 
 
 314 
 
 350 
 
 386 
 
 422 
 
 458 
 
 493 
 
 529 
 
 565 600 
 
 38 37 36 1 
 
 122 
 
 636 
 
 672 
 
 707 
 
 743 
 
 778 
 
 814 
 
 849 
 
 884 
 
 920 955 
 
 
 3/8 3/7 3/6 
 7/6 7/4 7/2 
 11,4 II, I 10,8 
 15,2 14/8 14/4 
 19,0 18,5 18,0 
 
 123 
 
 991 
 
 *026 
 
 *o6i 
 
 ^096 ^132 
 
 *i67 
 
 *202 *237 
 
 *272 *307 
 
 2 
 
 124 
 
 09342 
 
 377 
 
 412 
 
 447 
 
 482 
 
 517 
 
 552 
 
 587 
 
 621 656 
 
 4 
 
 125 
 
 691 
 
 726 
 
 760 
 
 795 
 
 830 
 
 864 
 
 899 
 
 934 
 
 968 *oo3 
 
 126 
 
 10037 
 
 072 
 
 106 
 
 140 
 
 175 
 
 209 
 
 243 
 
 278 
 
 312 346 
 
 5 
 
 22,8 22,2 21,6 
 
 127 
 
 380 
 
 415 
 
 449 
 
 483 
 
 517 
 
 551 
 
 585 
 
 619 
 
 653 687 
 
 7 
 
 26,6 25,9 25,2 
 
 128 
 
 721 
 
 755 
 
 789 
 
 823 
 
 857 
 
 890 
 
 924 
 
 958 
 
 992 *025 
 
 8 
 
 30,4 29,6 28,8 
 
 129 
 
 II 059 
 
 093 
 
 126 
 
 160 
 
 193 
 
 227 
 
 261 
 
 294 
 
 327 361 
 
 9 
 
 34/2 33,3 32,4 
 
 130 
 
 394 
 
 428 
 
 461 
 
 494 
 
 528 
 
 561 
 
 594 
 
 628 
 
 661 694 
 
 1 
 
 131 
 
 727 
 
 760 
 
 793 
 
 826 
 
 860 
 
 893 
 
 926 
 
 959 
 
 992 ^024 
 
 35 34 33 1 
 
 132 
 
 12 057 
 
 090 
 
 123 
 
 156 
 
 189 
 
 222 
 
 254 
 
 287 
 
 320 352 
 
 
 
 133 
 
 38S 
 
 418 
 
 450 
 
 f3 
 
 516 
 
 548 
 
 581 
 
 613 
 
 646 678 
 
 I 
 2 
 3 
 
 4 
 
 3/5 3/4 3/3 
 7,0 6,8 6,6 
 10,5 10,2 '9,9 
 14,0 13,6 13,2 
 17/5 I7/0 16,5 
 21,0 20,4 19,8 
 24/5 23,8 23,1 
 28,0 27,2 26,4 
 31/5 30/6 29,7 
 
 134 
 
 710 
 
 743 
 
 775 
 
 808 
 
 840 
 
 872 
 
 905 
 
 937 
 
 969 jifOOI 
 
 135 
 
 13033 
 
 066 
 
 098 
 
 130 
 
 162 
 
 194 
 
 226 
 
 258 
 
 290 322 
 
 136 
 
 354 
 
 386 
 
 418 
 
 450 
 
 481 
 
 513 
 
 545 
 
 577 
 
 609 640 
 
 137 
 
 672 
 
 704 
 
 735 
 
 767 
 
 799 
 
 830 
 
 862 
 
 893 
 
 925 956 
 
 I 
 
 X38 
 
 988 
 
 *oi9 *o5i 
 
 *o82 
 
 *ii4 
 
 *I45 
 
 *I76 
 
 *208 
 
 *239 *270 
 
 139 
 
 14 301 
 
 333 
 
 364 
 
 395 
 
 426 
 
 457 
 
 489 
 
 520 
 
 551 582 
 
 9 
 
 140 
 
 613 
 
 644 
 
 675 
 
 706 
 
 737 
 
 768 
 
 799 
 
 829 
 
 860 891 
 
 
 141 
 
 922 
 
 953 
 
 983 *oi4 *045 
 
 *076 
 
 *io6 
 
 *I37 
 
 ^168 ^198 
 
 32 31 30 
 
 143 
 
 •15 229 
 
 259 
 
 290 
 
 320 
 
 351 
 
 381 
 
 412 
 
 442 
 
 473 503 
 
 
 143 
 
 534 
 
 564 
 
 
 625 
 
 655 
 
 685 
 
 715 
 
 746 
 
 776 806 
 
 I 
 
 6,4 6,2 6,0 
 9/6 9/3 9,0 
 12,8 12,4 12,0 
 16,0 15,5 15,0 
 19,2 18,6 18,0 
 22,4 21,7 21,0 
 25,6 24,8 24,0 
 28,8 27,9 27,0 
 
 144 
 
 145 
 
 836 
 
 866 
 
 897 
 
 927 
 
 957 
 
 987 
 
 *oi7 *047 *077 *I07 
 
 2 
 3 
 4 
 
 i 
 
 16 137 
 
 167 
 
 197 
 
 227 
 
 256 
 
 286 
 
 316 
 
 346 
 
 376 406 
 
 146 
 
 43S 
 
 465 
 
 495 
 
 524 
 
 554 
 
 584 
 
 613 
 
 643 
 
 673 702 
 
 147 
 
 732 
 
 761 
 
 791 
 
 820 
 
 850 
 
 879 
 
 909 
 
 938 
 
 967 997 
 
 7 
 
 8 
 
 148 
 
 17026 
 
 056 
 
 085 
 
 114 
 
 143 
 
 173 
 
 202. 
 
 231 
 
 260 289 
 
 149 
 
 319 
 
 348 
 
 377 
 
 406 
 
 435 
 
 464 
 
 493 
 
 522 
 
 551 580 
 
 9 
 
 150 
 
 609 
 
 638 
 
 667 
 
 696 
 
 725 
 
 754 
 
 782 
 
 811 
 
 840 869 
 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 3 
 
 4 
 
 5 
 
 6 
 
 7 8 9 
 
 » 1 
 
 150 
 
 17609 
 
 638 
 
 667 696 
 
 725 
 
 754 
 
 782 
 
 811 840 869 
 
 
 
 151 
 
 898 
 
 926 
 
 955 984 
 
 *oi3 
 
 *04i 
 
 *070 *099 *I27 »i56 
 
 29 
 
 28 
 
 152 
 
 18 184 
 
 213 
 
 241 270 
 
 298 
 
 327 
 
 35S 
 
 384 412 441 
 
 
 2,8 
 
 5/6 
 
 8,4 
 
 11,2 
 
 14,0 
 
 16,8 
 
 153 
 
 469 
 
 498 
 
 526 554 
 
 583 
 
 611 
 
 639 
 
 667 696 724 
 
 I 
 
 2 
 3 
 4 
 
 5,8 
 
 8,7 
 
 11,6 
 
 14,5 
 17,4 
 20.3 
 
 154 
 
 752 
 
 780 
 
 808 837 
 
 865 
 
 893 
 
 921 
 
 949 977 *oo5 
 
 155 
 
 19033 
 
 061 
 
 089 117 
 
 14$ 
 
 173 
 
 201 
 
 229 257 285 
 
 156 
 
 312 
 
 340 
 
 368 396 
 
 424 
 
 45^ 
 
 479 
 
 507 535 562. 
 
 157 
 
 590 
 
 618 
 
 645 673 
 
 700 
 
 728 
 
 756 
 
 783 811 838 
 
 7 
 8 
 
 19/6 
 22,4 
 25,2 
 
 158 
 
 866 
 
 893 
 
 921 948 
 
 976 
 
 *oo3 *030 ^058 *o85 *ii2 
 
 159 
 
 20 140 
 
 167 
 
 194 222 
 
 249 
 
 276 
 
 303 
 
 330 358 385 
 
 9 
 
 160 
 
 412 
 
 439 
 
 466 493 
 
 520 
 
 548 
 
 575 
 
 602 629 656 
 
 
 161 
 
 683 
 
 710 
 
 737 763 
 
 790 
 
 817 
 
 844 
 
 871 898 925 
 
 27 
 
 26 
 
 162 
 
 952 
 
 978 
 
 *ooS *032 *o59 
 
 *o85 
 
 *II2 
 
 *I39 *i65 »I92 
 
 
 2,6 
 
 163 
 
 21 219 
 
 245 
 
 272 299 
 
 325 
 
 352 
 
 378 
 
 405 431 458 
 
 ■'■ 
 
 ^,/ 
 
 164 
 
 484 
 
 511 
 
 537 564 
 
 590 
 
 617 
 
 643 
 
 669 696 722 
 
 2 
 3 
 4 
 5 
 6 
 
 5,4 
 
 8,1 
 
 10,8 
 
 13,5 
 16,2 
 
 5,2 
 
 7,8 
 10,4 
 13,0 
 i^ 6 
 
 165 
 
 748 
 
 775 
 
 801 827 
 
 854 
 
 880 
 
 906 
 
 932 958 985 
 
 i6b 
 
 22 on 
 
 037 
 
 063 089 
 
 
 141 
 
 167 
 
 194 220 246 
 
 167 
 
 272 
 
 298 
 
 324 350 
 
 376 
 
 401 
 
 427 
 
 453 479 505 
 
 7 
 8 
 
 18^9 
 
 21 6 
 
 i8;2 
 
 168 
 
 531 
 
 557 
 
 583 608 
 
 634 
 
 660 
 
 686 
 
 712 737 763 
 
 20' 8 
 
 169 
 170 
 
 789 
 
 814 
 
 840 866 
 
 891 
 
 . 917 
 
 943 
 
 968 994 *oi9 
 
 9 
 
 24^3 
 
 23U 
 
 23045 
 
 070 
 
 096 121 
 
 147 
 
 172 
 
 198 
 
 223 249 274 
 
 
 171 
 
 300 
 
 325 
 
 350 r 376 
 
 401 
 
 426 
 
 452 
 
 477 502 528 
 
 25 
 
 
 172 
 
 553 
 
 578 
 
 603 629 
 
 654 
 
 679 
 
 704 
 
 729 754 779 
 
 T 
 
 2 
 
 5 
 
 173 
 
 805 
 
 830 
 
 855 880 
 
 905 
 
 930 
 
 955 
 
 980 j(t005 ^030 
 
 2 
 
 c 
 
 174 
 
 24055 
 
 080 
 
 105 130 
 
 155 
 
 180 
 
 204 
 
 229 254 279 
 
 3 
 4 
 
 10,0 1 
 
 
 
 
 
 
 
 
 
 175 
 
 304 
 
 329 
 
 353 378 
 
 403 
 
 428 
 
 452 
 
 477 502 527 
 
 
 12 
 
 5 
 
 176 
 
 551 
 
 
 601 625 
 
 650 
 
 674 
 
 699 
 
 724 748 773 
 
 5 
 
 15 
 17 
 20 
 
 
 
 177 
 
 797 
 
 822 
 
 846 871 
 
 89s 
 
 920 
 
 944 
 
 969 993 *oi8 
 
 7 
 
 5 
 
 178 
 
 25042 
 
 066 
 
 091 115 
 
 139 
 
 164 
 
 188 
 
 212 237 261 
 
 8 
 
 
 
 179 
 
 285 
 
 310 
 
 334 358 
 
 382 
 
 406 
 
 431 
 
 455 479 503 
 
 9 
 
 22 
 
 5 
 
 180 
 
 527 
 
 551 
 
 575 600 
 
 624 
 
 648 
 
 672 
 
 696 720 744 
 
 
 181 
 
 768 
 
 792 
 
 816 840 
 
 864 
 
 888 
 
 912 
 
 935 959 983 
 
 24 
 
 23 
 
 182 
 
 26007 
 
 031 
 
 055 079 
 
 102 
 
 126 
 
 150 
 
 174 198 221 
 
 I 
 
 
 2,3 
 4,6 
 6,9 
 9,2 
 11,5 
 13,8 
 16 I 
 
 183 
 
 245 
 
 269 
 
 293 316 
 
 340 
 
 364 
 
 387 
 
 411 435 458 
 
 2,4 
 
 4,8 
 
 9,6 
 12,0 
 
 184 
 
 482 
 
 505 
 
 529 553 
 
 576 
 
 600 
 
 623 
 
 647 670 694 
 
 2 
 3 
 
 4 
 5 
 6 
 
 185 
 
 717 
 
 741 
 
 764 788 
 
 811 
 
 834 
 
 858 
 
 881 905 928 
 
 186 
 
 951 
 
 975 
 
 998 *02i *045 
 
 *o68 
 
 *09i 
 
 *II4 #138 *i6i 
 
 I4!4 
 16,8 
 
 187 
 
 27184 
 
 207 
 
 231 254 
 
 277 
 
 300 
 
 323 
 
 346 370 393 
 
 7 
 8 
 
 188 
 
 416 
 
 439 
 
 462 485 
 
 508 
 
 531 
 
 554 
 
 577 600 623 
 
 I9!2 
 21,6 
 
 i8;4 
 
 20/7 
 
 189 
 
 646 
 
 669 
 
 692 715 
 
 738 
 
 761 
 
 784 
 
 807 830 852 
 
 9 
 
 190 
 
 875 
 
 898 
 
 921 944 
 
 967 
 
 989 *oi2 *o35 ^058 »o8i 
 
 
 191 
 
 28 103 
 
 126 
 
 149 171 
 
 194 
 
 217 
 
 240 
 
 262 285 307 
 
 22 
 
 21 
 
 192 
 
 ■330 
 
 353 
 
 37o 398 
 
 421 
 
 443 
 
 466 
 
 48S 511 533 
 
 
 
 
 193 
 
 556 
 
 578 
 
 601 623 
 
 646 
 
 668 
 
 691 
 
 713 735 758 
 
 I 
 
 2/2 
 
 2/1 
 
 194 
 
 780 
 
 803 
 
 825 847 
 
 870 
 
 892 
 
 914 
 
 937 959 981 
 
 2 
 
 3 
 4 
 5 
 6 
 
 8,8 
 11,0 
 
 8/4 
 12,6 
 
 195 
 
 29003 
 
 026 
 
 048 070 
 
 092 
 
 "5 
 
 137 
 
 159 181 203 
 
 196 
 
 226 
 
 248 
 
 270 292 
 
 314 
 
 336 
 
 358 
 
 380 403 425 
 
 13^2 
 
 17,6 
 19/8 
 
 197 
 
 447 
 
 469 
 
 491 513 
 
 535 
 
 557» 579 
 
 601 623 645 
 
 I 
 
 14^7 
 168 
 
 198 
 
 667 
 
 688 
 
 710 732 
 
 754 
 
 776 
 
 798 
 
 820 842 863 
 
 199 
 200 
 
 885 
 
 907 
 
 929 951 
 
 973 
 
 994 
 
 *oi6 
 
 ^038 *o6o *o8i 
 
 9 
 
 i8;9 
 
 30103 
 
 125 
 
 146 168 
 
 190 
 
 211 
 
 233 
 
 255 276 298 
 
 
 N. 
 
 L. 
 
 1 
 
 2 3 
 
 4 
 
 5 
 
 6 
 
 7 8 9 
 
 PP 1 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
 200 
 
 30103 
 
 125 
 
 146 
 
 168 
 
 190 
 
 211 
 
 233 
 
 255 
 
 276 298 
 
 
 20I 
 
 320 
 
 341 
 
 363 
 
 384 
 
 406 
 
 428 
 
 
 471 
 
 492 514 
 
 22 21 
 
 202 
 
 53S 
 
 557 
 
 578 
 
 600 
 
 621 
 
 643 
 
 664 
 
 \899 
 
 707 728 
 
 I 
 2 
 3 
 4 
 
 2/2 2,1 
 4,4 4,2 
 
 6,6 6,3 
 
 8,8 8,4 
 
 ii^o 10,5 
 
 13,2 12,6 
 
 15,4 14,7 
 17,6 16,8 
 19,8 18,9 
 
 203 
 
 750 
 
 771 
 
 792 
 
 814 
 
 835 
 
 856 
 
 878 
 
 920 942 
 
 204 
 
 963 
 
 984 
 
 *oo6 
 
 *027 
 
 *048 
 
 *o69 
 
 *09i 
 
 *II2 
 
 *i33 *i54 
 
 20s 
 
 31 175 
 
 197 
 
 218 
 
 239 
 
 260 
 
 281 
 
 302 
 
 323 
 
 345 366 
 
 206 
 
 387 
 
 408 
 
 429 
 
 450 
 
 471 
 
 492 
 
 513 
 
 534 
 
 555 576 
 
 207 
 
 597 
 
 618 
 
 639 
 
 660 
 
 681 
 
 702 
 
 723 
 
 744 
 
 765 785 
 
 7 
 8 
 
 208 
 
 806 
 
 827 
 
 848 
 
 869 
 
 890 
 
 911 
 
 931 
 
 952 
 
 973 994 
 
 209 
 
 32015 
 
 035 
 
 056 
 
 077 
 
 098 
 
 118 
 
 139 
 
 160 
 
 181 201 
 
 9 
 
 210 
 
 222 
 
 243 
 
 263 
 
 284 
 
 305 
 
 32S 
 
 346 
 
 366 
 
 387 408 
 
 1 
 
 211 
 
 428 
 
 449 
 
 469 
 
 490 
 
 510 
 
 531 
 
 552 
 
 572 
 
 593 613 
 
 20 1 
 
 212 
 
 634 
 
 654 
 
 675 
 
 695 
 
 715 
 
 736 
 
 756 
 
 m 
 
 797 818 
 
 
 
 213 
 
 838 
 
 858 
 
 879 
 
 899 
 
 919 
 
 940 
 
 960 
 
 980 
 
 ^ifOoi ^021 
 
 I 
 
 2,0 
 
 214 
 215 
 
 33041 
 
 062 
 
 082 
 
 102 
 
 122 
 
 143 
 
 163 
 
 183 
 
 203 224 
 
 2 
 
 3 
 4 
 
 4,0 
 
 6,0 
 
 8,0. 
 
 10 
 
 244 
 
 264 
 
 284 
 
 304 
 
 325 
 
 345 
 
 365 
 
 385 
 
 405 425 
 
 216 
 
 445 
 
 465 
 
 486 
 
 506 
 
 526 
 
 546 
 
 566 
 
 586 
 
 606 626 
 
 12 
 
 217 
 
 646 
 
 666 
 
 686 
 
 706 
 
 726 
 
 746 
 
 766 
 
 786 
 
 806 826 
 
 7 
 8 
 
 14^0 
 16 
 
 218 
 
 846 
 
 866 
 
 885 
 
 905 
 
 925 
 
 945 
 
 965 
 
 985 »oo5 #025 
 
 219 
 
 34044 
 
 064 
 
 084 
 
 IO.t__I24 
 
 143 
 
 163 
 
 183 
 
 203 223 
 
 9 
 
 18^0 
 
 220 
 
 242 
 
 262 
 
 282 
 
 301 
 
 321 
 
 341 
 
 361 
 
 380 
 
 400 420 
 
 1 
 
 221 
 
 439 
 
 459 
 
 479 
 
 498 
 
 518 
 
 537 
 
 557 
 
 577 
 
 596 616 
 
 in 1 
 
 222 
 
 635 
 
 655 
 
 674 
 
 694 
 
 713 
 
 733 
 
 753 
 
 772 
 
 792 811 
 
 
 
 223 
 
 830 
 
 850 
 
 869 
 
 889 
 
 908 
 
 928 
 
 947 
 
 967 
 
 986 *oo5 
 
 I 
 
 1,9 
 3,8 
 
 1% 
 
 9,5 
 11,4 
 13,3 
 15,2 
 17,1 
 
 224 
 
 35025 
 
 044 
 
 064 
 
 083 
 
 102 
 
 122 
 
 141 
 
 160 
 
 180 199 
 
 2 
 
 3 
 4 
 
 7 
 8 
 
 9 
 
 225 
 
 218 
 
 238 
 
 257 
 
 276 
 
 295 
 
 315 
 
 334 
 
 353 
 
 372 392 
 
 226 
 
 411 
 
 430 
 
 449 
 
 468 
 
 488 
 
 
 526 
 
 545 
 
 564 583 
 
 227 
 
 603 
 
 622 
 
 641 
 
 660 
 
 679 
 
 698 
 
 717 
 
 736 
 
 755 774 
 
 228 
 
 793 
 
 813 
 
 832 
 
 851 
 
 870 
 
 889 
 
 908 
 
 927 
 
 946 965 
 
 229 
 
 984 *oo3 ^021 ^040 *o59 
 
 *078 
 
 *097 
 
 *ii6 
 
 *i35 *i54 
 
 230 
 
 36173 
 
 192 
 
 211 
 
 229 
 
 248 
 
 267 
 
 286 
 
 305 
 
 324 342 
 
 
 231 
 
 361 
 
 380 
 
 399 
 
 418 
 
 436 
 
 455 
 
 474 
 
 493 
 
 511 530 
 
 18 
 
 232 
 
 549 
 
 568 
 
 586 
 
 605 
 
 624 
 
 642 
 
 661 
 
 680 
 
 698 717 
 
 I 
 2 
 3 
 
 1,8 
 3,6 
 
 5,4 
 
 233 
 234 
 
 736 
 922 
 
 754 
 940 
 
 773 
 959 
 
 791 
 
 977 
 
 810 
 996 
 
 829 
 *oi4 
 
 847 
 *033 
 
 866 
 
 884 903 
 
 *o5i ^070 *o88 
 
 235 
 
 37 107 
 
 125; 
 
 144 
 
 162 
 
 181 
 
 199 
 
 218 
 
 236 
 
 254 273 
 
 4 
 
 7,2 
 
 10,8 
 
 236 
 
 291 
 
 310 
 
 328 
 
 346 
 
 365 
 
 383 
 
 401 
 
 420 
 
 438 457 
 
 237 
 
 475 
 
 493 
 
 511 
 
 530 
 
 548 
 
 566 
 
 585 
 
 603 
 
 621 639 
 
 I 
 
 12 6 
 
 238 
 
 658 
 
 676 
 
 694 
 
 712 
 
 731 
 
 749 
 
 767 
 
 785 
 
 803 822 
 
 \ii 
 
 239 
 
 840 
 
 858 
 
 876 
 
 894 
 
 912 
 
 931 
 
 949 
 
 967 
 
 985 *oo3 
 
 9 
 
 240 
 
 38 021 
 
 039 
 
 057 
 
 07S 
 
 093 
 
 112 
 
 130 
 
 148 
 
 166 184 
 
 1 
 
 241 
 
 202 
 
 220 
 
 238 
 
 256 
 
 274 
 
 292 
 
 310 
 
 328 
 
 346 364 
 
 17 1 
 
 242 
 
 382 
 
 399 
 
 417 
 
 435 
 
 453 
 
 471 
 
 489 
 
 507 
 
 525 543 
 
 
 
 243 
 
 561 
 
 578 
 
 596 
 
 614 
 
 632 
 
 650 
 
 668 
 
 686 
 
 703 721 
 
 I 
 
 1,7 
 
 244 
 
 739 
 
 757 
 
 m 
 
 792 
 
 810 
 
 828 
 
 846 
 
 863 
 
 881 899 
 
 2 
 
 3 
 4 
 5 
 6 
 
 3,4 
 5,1 
 
 6,8 
 
 8,5 
 10 2 
 
 245 
 
 917 
 
 934 
 
 952 
 
 970 
 
 987 
 
 *005 *023 
 
 *04i 
 
 #058 #076 
 
 246 
 
 39094 
 
 III 
 
 129 
 
 146 
 
 164 
 
 182 
 
 199 
 
 217 
 
 235 252 
 
 247 
 
 270 
 
 287 
 
 305 
 
 322 
 
 340 
 
 358 
 
 375 
 
 393 
 
 410 428 
 
 I 
 
 ii!9 
 13,6 
 15,3 
 
 248 
 
 44S 
 
 463 
 
 
 498 
 
 51S 
 
 533 
 
 550 
 
 568 
 
 585 602 
 
 249 
 
 620 
 
 637 
 
 655 
 
 672 
 
 690 
 
 707 
 
 724 
 
 742 
 
 759 777 
 
 9 
 
 250 
 
 794 
 
 811 
 
 829 
 
 846 
 
 863 
 
 881 
 
 898 
 
 915 
 
 933 950 
 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 6 7 
 
 8 
 
 9 
 
 P.P. 
 
 250 
 
 39 794 
 
 811 
 
 829 
 
 846 
 
 863 
 
 881 898 915 
 
 933 
 
 930 
 
 
 251 
 
 967 
 
 985 
 
 #002 ^^019 #037 
 
 #054 #071 *o88 
 
 *io6 
 
 *I23 
 
 18 
 
 252 
 
 40 140 
 
 157 
 
 175 
 
 192 
 
 209 
 
 226 243 261 
 
 278 
 
 295 
 
 
 1,8 
 3,6 
 5,4 
 
 7,2 
 
 253 
 
 312 
 
 329 
 
 346 
 
 364 
 
 381 
 
 398 415 432 
 
 449 
 
 466 
 
 1 
 
 254 
 
 483 
 
 500 
 
 518 
 
 535 
 
 552 
 
 569 586 603 
 
 620 
 
 637 
 
 2 
 3 
 
 4 
 
 I 
 
 255 
 
 654 
 
 671 
 
 688 
 
 705 
 
 722 
 
 739 756 773 
 
 790 
 
 807 
 
 256 
 
 824 
 
 841 
 
 858 
 
 875 
 
 892 
 
 909. 926 943 
 
 960 
 
 976 
 
 9/0 
 10 8 
 
 ^=>l 
 
 993 *oio *027 
 
 #044^*061 
 
 #078 »C395 *III 
 
 *I28 
 
 *i45 
 
 7 
 8 
 
 I2'6 
 
 14,4 
 16,2 
 
 258 
 
 41 162 
 
 179* 
 
 196 
 
 212 
 
 229 
 
 246 263 280 
 
 296 
 
 313 
 
 259 
 260 
 
 330 
 
 34r 363 
 
 380 
 
 397 
 
 414 430 447 
 
 464 
 
 481 
 
 9 
 
 497 
 
 514 
 
 531 
 
 547 
 
 564 
 
 581 597 614 
 
 631 
 
 647 
 
 1 
 
 261 
 
 664 
 
 681 
 
 697 
 
 714 
 
 731 
 
 747 764 780 
 
 797 
 
 814 
 
 17 1 
 
 262 
 
 830 
 
 847 
 
 863 
 
 880 
 
 896 
 
 913 929 946 
 
 963 
 
 979 
 
 I 
 2 
 3 
 4 
 
 1,7 
 3,4 
 
 5,1 
 6,8 
 
 8,5 
 10 2 
 
 263 
 
 996 
 
 *OI2 #029 ^045 
 
 *o62 
 
 *078 *095 »iii 
 
 *I27 *I44 
 
 264 
 
 42 160 
 
 177 
 
 193 
 
 210 
 
 226 
 
 243 259 275 
 
 292 
 
 308 
 
 26s 
 
 325 
 
 '341 
 
 357 
 
 37r 
 
 390 
 
 406 423 439 
 
 45S 
 
 472 
 
 266 
 
 488 
 
 504 
 
 521 
 
 537 
 
 553 
 
 570 586 602 
 
 619 
 
 635 
 
 267 
 
 651 
 
 
 684 
 
 700 
 
 716 
 
 732 749 765 
 
 781 
 
 797 
 
 7 
 8 
 
 11,9 
 13,6 
 15,3 
 
 268 
 
 813 
 
 830 
 
 846 
 
 862 
 
 878 
 
 894 911 927 
 
 943 
 
 959 
 
 269 
 
 975 
 
 991 
 
 *oo8 
 
 *024 »040 
 
 #056 ,072 ,088 
 
 #104 
 
 *I20 
 
 9 
 
 270 
 
 43 136 
 
 152 
 
 169 
 
 185 
 
 201 
 
 217 233 249 
 
 265 
 
 281 
 
 1 
 
 271 
 
 297 
 
 313 
 
 329 
 
 345 
 
 361 
 
 377 393 409 
 
 425 
 
 441 
 
 le 1 
 
 272 
 
 457 
 
 473 
 
 489 
 
 505 
 
 521 
 
 537 553 569 
 
 584 
 
 600 
 
 
 1,6 
 
 273 
 
 616 
 
 632 
 
 648 
 
 664 
 
 680 
 
 696 712 727 
 
 743 
 
 759 
 
 I 
 
 274 
 
 77^ 
 
 791 
 
 807 
 
 823 
 
 838 
 
 854 870 886 
 
 902 
 
 917 
 
 2 
 
 3 
 4 
 
 8 
 
 275 
 
 933 
 
 949 
 
 965 
 
 981 
 
 996 
 
 4>oi2 »028 #044 *o59 
 
 *o7S 
 
 276 
 
 44091 
 
 107 
 
 122 
 
 138 
 
 154 
 
 170 185 201 
 
 217 
 
 232 
 
 9,6 
 II 2 
 
 277 
 
 248 
 
 264 
 
 279 
 
 295 
 
 3" 
 
 326 342 358 
 
 373 
 
 389 
 
 I 
 
 278 
 
 404 
 
 420 
 
 436 
 
 451 
 
 467 
 
 483 498 514 
 
 529 
 
 545 
 
 12,8 
 
 279 
 
 560 
 
 576 
 
 592 
 
 607 
 
 623 
 
 638 654 669 
 
 685 
 
 700 
 
 9 
 
 14^4 
 
 280 
 
 716 
 
 731 
 
 747 
 
 762 
 
 778 
 
 793 809 824 
 
 840 
 
 855 
 
 1 
 
 281 
 
 871 
 
 886 
 
 902 
 
 917 
 
 932 
 
 948 963 979 
 
 994 *oio 
 
 15 1 
 
 282 
 
 45025 
 
 040 
 
 056 
 
 071 
 
 086 
 
 102 117 133 
 
 148 
 
 163 
 
 
 1,5 
 
 283 
 
 179 
 
 194 
 
 209 
 
 225 
 
 240 
 
 255 271 286 
 
 301 
 
 317 
 
 I 
 
 284 
 
 332 
 
 347 
 
 362 
 
 378 
 
 393 
 
 408 423 439 
 
 454 
 
 469 
 
 2 
 
 3 
 4 
 5 
 6 
 
 3,0 
 4,5 
 6,0 
 7,5 
 9,0 
 10,5 
 12 
 
 285 
 
 484 
 
 500 
 
 515 
 
 530 
 
 545 
 
 561 576 591 
 
 606 
 
 621 
 
 286 
 
 637 
 
 652 
 
 667 
 
 682 
 
 697 
 
 712 728 743 
 
 758 
 
 773 
 
 287 
 
 788 
 
 803 
 
 818 
 
 834 
 
 849 
 
 864 879 894 
 
 909 
 
 924 
 
 7 
 8 
 
 288 
 
 939 
 
 954 
 
 969 
 
 984 
 
 *ooo 
 
 *oi5 *o3o »o45 
 
 *o6o 
 
 *075 
 
 289 
 290 
 
 46 090 
 
 105 
 
 120 
 
 135 
 
 150 
 
 165 180 195 
 
 210 
 
 225 
 
 9 
 
 ^3,S 
 
 240 
 
 255 
 
 270 
 
 285 
 
 300 
 
 315 330 345 
 
 359 
 
 374 
 
 
 291 
 
 389 
 
 404 
 
 419 
 
 434 
 
 449 
 
 464 479 494 
 
 509 
 
 523 
 
 14 
 
 292 
 
 538 
 
 553 
 
 568 
 
 583 
 
 598 
 
 613 627 642 
 
 657 
 
 672 
 
 
 293 
 
 687 
 
 
 716 
 
 731 
 
 746 
 
 761 776 790 
 
 805 
 
 820 
 
 I' ■ ■ 
 
 A, 4 
 2,8 
 4,2 
 
 5,6 
 7fi 
 8,4 
 9,8 
 II 2 
 
 294 
 
 835 
 
 850 
 
 864 
 
 879 
 
 894 
 
 909 923 938 
 
 953 
 
 967 
 
 2 
 3 
 4 
 
 5 
 6 
 
 295 
 
 982 
 
 997 *oi2 
 
 »026 
 
 »04i 
 
 ^^056 ifyjo ip%t, ^100 ^^114 
 
 296 
 
 47 129 
 
 144 
 
 159 
 
 173 
 
 188 
 
 202 217 232 
 
 246 
 
 261 
 
 297 
 
 276 
 
 290 
 
 305 
 
 319 
 
 334 
 
 349 363 378 
 
 392 
 
 407 
 
 7 
 3 
 
 298 
 
 422 
 
 436 
 
 451 
 
 465 
 
 480 
 
 494 509 524 
 
 538 
 
 553 
 
 299 
 
 567 
 
 582 
 
 596 
 
 611 
 
 625 
 
 640 654 669 
 
 683 
 
 698 
 
 9 
 
 12^6 
 
 300 
 
 712 
 
 727 
 
 741 
 
 756 
 
 770 
 
 784 799 813 
 
 828 
 
 842 
 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 6 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 300 
 
 47712 
 
 727 
 
 741 
 
 756 
 
 770 
 
 784 
 
 799 
 
 813 
 
 828 
 
 842 
 
 
 301 
 
 857 
 
 871 
 
 885 
 
 900 
 
 914 
 
 929 
 
 943 
 
 958 
 
 972 
 
 986 
 
 
 302 
 
 48 001 
 
 oiS 
 
 029 
 
 044 
 
 058 
 
 073 
 
 087 
 
 lOI 
 
 116 
 
 130 
 
 
 303 
 
 144 
 
 159 
 
 173 
 
 187 
 
 202 
 
 216 
 
 230 
 
 244 
 
 259 
 
 273 
 
 15 
 
 304 
 
 287 
 
 302 
 
 316 
 
 330 
 
 344 
 
 359 
 
 373 
 
 387 
 
 401 
 
 416 
 
 305 
 
 430 
 
 444 
 
 458 
 
 473 
 
 487 
 
 501 
 
 515 
 
 530 
 
 544 
 
 558 
 
 I '^ '' 
 2 
 
 ^/5 
 3.0 
 
 306 
 
 572 
 
 586 
 
 601 
 
 615 
 
 629 
 
 643 
 
 657 
 
 671 
 
 686 
 
 700 
 
 3 
 
 4,5 
 
 307 
 
 714 
 
 728 
 
 742 
 
 756 
 
 770 
 
 785 
 
 799 
 
 813 
 
 827 
 
 841 
 
 4 
 
 6,0 
 
 308 
 
 855 
 
 869 
 
 883 
 
 897 
 
 911 
 
 926 
 
 940 
 
 954 
 
 968 
 
 982 
 
 5 
 
 7,5 
 
 309 
 
 996 
 
 ^010 4|f024 
 
 ^038 ^052 
 
 *o66 
 
 *o8o 
 
 *094 
 
 *io8 
 
 *I22 
 
 7 
 
 8 
 
 9,0 
 IO/5 
 12,0 
 
 310 
 
 49136 
 
 ISO 
 
 164 
 
 178 
 
 192 
 
 206 
 
 220 
 
 234 
 
 248 
 
 262 
 
 311 
 
 276 
 
 290 
 
 304 
 
 318 
 
 332 
 
 346 
 
 360 
 
 374 
 
 388 
 
 402 
 
 9 
 
 13,5 
 
 312 
 
 415 
 
 429 
 
 443 
 
 457 
 
 471 
 
 48s 
 
 499 
 
 513 
 
 527 
 
 541 
 
 
 313 
 
 554 
 
 568 
 
 582 
 
 596 
 
 610 
 
 624 
 
 638 
 
 651 
 
 
 679 
 
 
 314 
 
 693 
 
 707 
 
 721 
 
 734 
 
 748 
 
 762 
 
 776 
 
 790 
 
 803 
 
 817 
 
 14 
 
 315 
 
 831 
 
 845 
 
 859 
 
 872 
 
 886 
 
 900 
 
 914 
 
 927 
 
 941 
 
 955 
 
 316 
 
 969 
 
 982 
 
 996 
 
 *OIO *024 
 
 *o37 *o5i 
 
 ^065 ^079 ^092 
 
 I 
 
 1,4 
 2 8 
 
 317 
 
 50 106 
 
 120 
 
 133 
 
 147 
 
 161 
 
 174 
 
 188 
 
 202 
 
 215 
 
 229 
 
 2 
 
 318 
 
 243 
 
 256 
 
 270 
 
 284 
 
 297 
 
 311 
 
 325 
 
 338 
 
 352 
 
 365 
 
 3 
 4 
 5 
 6 
 
 7,0 
 
 8,4 
 
 319 
 
 379 
 
 393 
 
 406 
 
 420 
 
 433 
 
 447 
 
 461 
 
 474 
 
 488 
 
 501 
 
 320 
 
 •. 515 
 
 529 
 
 542 
 
 556 
 
 569'. 
 
 , 583 
 
 596 
 
 610 
 
 623 
 
 637 
 
 321 
 
 651 
 
 664 
 
 678 
 
 691 
 
 705 
 
 718 
 
 732 
 
 745 
 
 759 
 
 772 
 
 7 
 
 9,8 
 
 322 
 
 786 
 
 799 
 
 813 
 
 826 
 
 840 
 
 853 
 
 866 
 
 880 
 
 893 
 
 907 
 
 8 
 
 11,2 
 
 323 
 
 920 
 
 934 
 
 947 
 
 961 
 
 974 
 
 987 ^001 
 
 *oi4 
 
 *028 
 
 *04i 
 
 9 
 
 12.6 
 
 324 
 
 51055 
 
 068 
 
 081 
 
 095 
 
 108 
 
 121 
 
 135 
 
 148 
 
 162 
 
 175 
 
 
 325 
 
 188 
 
 202 
 
 215 
 
 228 
 
 242 
 
 255 
 
 268 
 
 282 
 
 295 
 
 308 
 
 326 
 
 322 
 
 33S 
 
 348 
 
 362 
 
 375 
 
 388 
 
 402 
 
 415 
 
 428 
 
 441 
 
 
 327 
 
 45S 
 
 468 
 
 481 
 
 495 
 
 508 
 
 521 
 
 534 
 
 548 
 
 561 
 
 574 
 
 13 
 
 328 
 
 587 
 
 601 
 
 614 
 
 627 
 
 640 
 
 654 
 
 667 
 
 680 
 
 693 
 
 706 
 
 329 
 
 720 
 
 733 
 
 746 
 
 759 
 
 772 
 
 786 
 
 799 
 
 812 
 
 825 
 
 838 
 
 I 
 2 
 3 
 
 3,9 
 
 330 
 
 851 
 
 865 
 
 878 
 
 891 
 
 904 
 
 917 
 
 930 
 
 943 
 
 957 
 
 970 
 
 331 
 
 983 
 
 996 
 
 *009 *022 *03^ 
 
 *048 
 
 *o6i 
 
 *o75 
 
 *o88 
 
 *ioi 
 
 4 
 
 5,2 
 
 332 
 
 52114 
 
 127 
 
 140 
 
 153 
 
 166 
 
 179 
 
 192 
 
 205 
 
 218 
 
 231 
 
 6 
 
 333 
 
 244 
 
 257 
 
 270 
 
 284 
 
 297 
 
 310 
 
 323 
 
 336 
 
 349 
 
 362 
 
 334 
 
 375 
 
 388 
 
 401 
 
 414 
 
 427 
 
 440 
 
 453 
 
 466 
 
 479 
 
 492 
 
 I 
 9 
 
 9,1 
 10,4 
 
 11,7 
 
 335 
 
 504 
 
 517 
 
 530 
 
 543 
 
 556 
 
 569 
 
 582 
 
 595 
 
 608 
 
 621 
 
 336 
 
 634 
 
 647 
 
 660 
 
 673 
 
 686 
 
 699 
 
 711 
 
 724 
 
 737 
 
 750 
 
 
 337 
 
 763 
 
 776 
 
 789 
 
 802 
 
 815 
 
 827 
 
 840 
 
 853 
 
 866 
 
 879 
 
 
 338 
 
 892 
 
 905 
 
 917 
 
 930 
 
 943 
 
 956 
 
 969 
 
 982 
 
 994 *oo7 
 
 
 339 
 
 53020 
 
 033 
 
 046 
 
 058 
 
 071 
 
 084 
 
 097 
 
 no 
 
 122 
 
 135 
 
 10 
 
 340 
 
 148 
 
 161 
 
 173 
 
 186 
 
 199 
 
 212 
 
 224 
 
 237 
 
 250 
 
 263 
 
 I 
 
 1,2 
 
 341 
 
 27S 
 
 288 
 
 301 
 
 314 
 
 326 
 
 339 
 
 352 
 
 364 
 
 377 
 
 390 
 
 2 
 
 2,4 
 
 342 
 
 403 
 
 415 
 
 428 
 
 441 
 
 453 
 
 466 
 
 479 
 
 491 
 
 504 
 
 517 
 
 3 
 
 36 
 
 343 
 
 529 
 
 
 555 
 
 567 
 
 580 
 
 593 
 
 605 
 
 618 
 
 631 
 
 643 
 
 4 
 
 4,8 
 
 344 
 
 656 
 
 668 
 
 681 
 
 694 
 
 706 
 
 719 
 
 732 
 
 744 
 
 757 
 
 769 
 
 
 6,0 
 
 7,2 
 
 8,4 
 
 345 
 
 782 
 
 794 
 
 807 
 
 820 
 
 832 
 
 845 
 
 857 
 
 870 
 
 882 
 
 895 
 
 346 
 
 908 
 
 920 
 
 933 
 
 945 
 
 958 
 
 970 
 
 983 
 
 995 
 
 *oo8 
 
 ^020 
 
 8 
 
 9,6 
 
 347 
 
 54033 
 
 04S 
 
 058 
 
 070 
 
 083 
 
 095 
 
 108 
 
 120 
 
 133 
 
 145 
 
 9 
 
 10,8 
 
 348 
 
 
 170 
 
 183 
 
 195 
 
 208 
 
 220 
 
 233 
 
 245 
 
 258 
 
 270 
 
 
 349 
 
 283 
 
 295 
 
 307 
 
 320 
 
 332 
 
 345 
 
 357 
 
 370 
 
 382 
 
 394 
 
 
 350 
 
 407 
 
 419 
 
 432 
 
 444 
 
 456 
 
 469 
 
 481 
 
 494 
 
 506 
 
 S18 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 12 3 4 
 
 5 6 
 
 7 
 
 8 9 
 
 P.P. 
 
 350 
 
 54407 
 
 419 432 444 456 
 
 469 481 
 
 494 
 
 506 518 
 
 
 351 
 
 531 
 
 543 555 568 580 
 
 593 605 
 
 617 
 
 630 642 
 
 
 352 
 
 654 
 
 667 679 691 704 
 
 716 728 
 
 741 
 
 753 765 
 
 
 353 
 
 777 
 
 790 802 814 827 
 
 839 851 
 
 864 
 
 876 888 
 
 
 354 
 
 900 
 
 913 925 937 949 
 
 962 974 
 
 986 
 
 998 ^01 I 
 
 I 
 2 
 
 13 
 
 355 
 
 55023 
 
 035 047 060 072 
 
 084 096 
 
 108 
 
 121 133 
 
 356 
 
 145 
 
 157 169 182 194 
 
 206 218 
 
 230 
 
 242 255 
 
 3 
 
 3.9 
 
 357 
 
 267 
 
 279 291 303 315 
 
 328 340 
 
 352 
 
 364 376 
 
 4 
 
 5,2 
 
 358 
 
 388 
 
 400 413 425 437 
 
 449 461 
 
 473 
 
 485 497 
 
 5 
 
 6,5 
 
 359 
 
 509 
 
 522 534 546 558 
 
 570 582 
 
 594 
 
 606 618 
 
 7 
 8 
 
 7,8 
 9,1 
 10,4 
 
 360 
 
 630 
 
 642 654 666 678 
 
 691 703 
 
 715 
 
 727 739 
 
 361 
 
 751 
 
 763 775 787 799 
 
 811 .823 
 
 835 
 
 847 859 
 
 9 
 
 "/7 
 
 362 
 
 871 
 
 883 895 907 919 
 
 93/943 
 
 955 
 
 967 979 
 
 
 3^3 
 
 991 
 
 ^003 ^015 *o27 j^o38 
 
 *oj^ *o62 
 
 *074 
 
 *o86 ^098 
 
 
 364 
 
 56 no 
 
 122 134 146 158 
 
 17b'" 182 
 
 194 
 
 205 217 
 
 12 
 
 365 
 
 229 
 
 241 253 265 277 
 
 289 301 
 
 312 
 
 324 336 
 
 366 
 
 348 
 
 360 372 384 396 
 
 407 419 
 
 431 
 
 443 455 
 
 I 
 
 I 2 
 
 367 
 
 467 
 
 478 490 502 514 
 
 526 538 
 
 
 561 573 
 
 
 4,8 
 6,0 
 
 7,2 
 
 368 
 
 585 
 
 597 608 620 632 
 
 644 656 
 
 667 
 
 679 691 
 
 3 
 4 
 5 
 6 
 
 369 
 
 703 
 
 714 726 738 750 
 
 761 773 
 
 785 
 
 797 808 
 
 370 
 
 820 
 
 832 844 855 867 
 
 879 891 
 
 902 
 
 914 926 
 
 371 
 
 937 
 
 949 961 972 984 
 
 996 #008 
 
 *oi9 ^031 *043 
 
 7 
 
 8,4 
 
 372 
 
 57054 
 
 066 078 089 lOI 
 
 113 124 
 
 136 
 
 148 159 
 
 8 
 
 9,6 
 
 373 
 
 ^v- 
 
 183 194 206 217 
 
 229 241 
 
 252 
 
 264 276 
 
 9 
 
 10.8 
 
 374 
 
 287 
 
 299 310 322 334 
 
 34S 357 
 
 368 
 
 380 392 
 
 
 375 
 
 403 
 
 415 426 438 449 
 
 461 473 
 
 484 
 
 496 507 
 
 376 
 
 519 
 
 530 542 553 565 
 
 576 588 
 
 600 
 
 611 623 
 
 
 377 
 
 634 
 
 646 657 669 680 
 
 692 703 
 
 715 
 
 726 738 
 
 11 
 
 378 
 
 749 
 
 761 772 784 795 
 
 807 818 
 
 830 
 
 841 852 
 
 379 
 
 864 
 
 875 887 898 910 
 
 921 933 
 
 944 
 
 95S 967 
 
 I 
 2 
 3 
 
 1,1 
 2,2 
 
 3,3 
 
 380 
 
 978 
 
 990 *ooi *oi3 *o^ 
 
 *035 *047 *o58 *070 *o8i 
 
 381 
 
 58092 
 
 104 115 127 138 
 
 149 161 
 
 172 
 
 184 195 
 
 4 
 
 4,4 
 
 382 
 
 206 
 
 218 229 240 252 
 
 263 274 
 
 286 
 
 297 309 
 
 5 
 
 5,5 
 
 383 
 
 320 
 
 331 343 354 36^ 
 
 377 388 
 
 399 
 
 410 422 
 
 6 
 
 6/6 
 
 384 
 
 433 
 
 444 456 467 478 
 
 490 501 
 
 512 
 
 524 535 
 
 I 
 9 
 
 7J 
 8,8 
 9,9 
 
 385 
 
 546 
 
 557 569 580 591 
 
 602 614 
 
 625 
 
 636 647 
 
 386 
 
 659 
 
 670 681 692 704 
 
 715 726 
 
 737 
 
 749 760 
 
 
 387 
 
 771 
 
 782 794 805 816 
 
 827 838 
 
 850 
 
 861 872 
 
 
 388 
 
 883 
 
 894 906 917 928 
 
 939 950 
 
 961 
 
 973 984 
 
 
 389 
 
 995 
 
 ^006 *oi7 *028 #040 
 
 *o5i *o62 
 
 *073 
 
 ^084 #095 
 
 in 
 
 390 
 
 59106 
 
 118 129 140 151 
 
 162 173 
 
 184 
 
 195 207 
 
 I 
 
 1,0 
 
 391 
 
 218 
 
 229 240 251 262 
 
 273 284 
 
 295 
 
 306 318 
 
 2 
 
 2,0 
 
 392 
 
 329 
 
 340 351 362 373 
 
 384 395 
 
 406 
 
 417 428 
 
 3 
 
 3,0 
 
 393 
 
 439 
 
 450 461 472 483 
 
 494 506 
 
 517 
 
 528 539 
 
 4 
 
 4,0 
 
 394 
 
 550 
 
 561 572 583 594 
 
 605 616 
 
 627 
 
 638 649 
 
 7 
 
 5,0 
 6,0 
 7,0 
 
 395 
 
 660 
 
 671 682 693 704 
 
 715 726 
 
 737 
 
 748 759 
 
 396 
 
 770 
 
 780 791 802 813 
 
 824 83S 
 
 846 
 
 857 868 
 
 8 
 
 8,0 
 
 397 
 
 879 
 
 890 901 912 923 
 
 934 945 
 
 956 
 
 966 977 
 
 9 
 
 9,0 
 
 398 
 
 988 
 
 999 *OIO *02I ^032 
 
 *043 *o54 
 
 *o65 
 
 ^076 *o86 
 
 
 399 
 
 60097 
 
 108 119 130 141 
 
 152 T63 
 
 173 
 
 184 19S 
 
 
 400 
 
 206 
 
 217 228 239 249 
 
 260 271 
 
 282 
 
 293 304 
 
 N. 
 
 L. 
 
 12 3 4 
 
 5 6 
 
 7 
 
 8 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 400 
 
 60 206 
 
 217 
 
 228 
 
 239 
 
 249 
 
 260 
 
 271 
 
 282 
 
 293 
 
 304 
 
 
 401 
 
 314 
 
 325 
 
 336 
 
 347 
 
 358 
 
 369 
 
 379 
 
 390 
 
 401 
 
 412 
 
 
 402 
 
 423 
 
 433 
 
 444 
 
 455 
 
 466 
 
 477 
 
 487 
 
 498 
 
 509 
 
 520 
 
 
 403 
 
 531 
 
 541 
 
 552 
 
 563 
 
 574 
 
 584 
 
 595 
 
 606 
 
 617 
 
 627 
 
 
 404 
 
 638 
 
 649 
 
 660 
 
 670 
 
 681 
 
 692 
 
 703 
 
 713 
 
 724 
 
 735 
 
 
 405 
 
 746 
 
 756 
 
 767 
 
 778 
 
 788 
 
 799 
 
 810 
 
 821 
 
 831 
 
 842 
 
 406 
 
 853 
 
 863 
 
 874 
 
 885 
 
 895 
 
 906 
 
 917 
 
 927 
 
 938 
 
 949 
 
 11 
 
 407 
 
 959 
 
 970 
 
 981 
 
 991 
 
 *002 
 
 *oi3 *o23 *o34 ^045 *o55 
 
 
 
 408 
 
 61066 
 
 077 
 
 087 
 
 098 
 
 109 
 
 119 
 
 130 
 
 140 
 
 151 
 
 162 
 
 I 
 
 1,1 
 
 409 
 
 172 
 
 183 
 
 194 
 
 204 
 
 215 
 
 225 
 
 236 
 
 247 
 
 257 
 
 268 
 
 2 
 
 3 
 4 
 
 2/2 
 
 3.3 
 
 4/4 
 
 410 
 
 278 
 
 289 
 
 300 
 
 310 
 
 321 
 
 331 
 
 342 
 
 352 
 
 363 
 
 374 
 
 411 
 
 384 
 
 395 
 
 405 
 
 416 
 
 426 
 
 437 
 
 448 
 
 458 
 
 469 
 
 479 
 
 412 
 
 490 
 
 500 
 
 511 
 
 521 
 
 532 
 
 542 
 
 553 
 
 563 
 
 574 
 
 584 
 
 I 
 
 7,7 
 8/8 
 
 413 
 
 595 
 
 606 
 
 616 
 
 627 
 
 637 
 
 648 
 
 658 
 
 669 
 
 679 
 
 690 
 
 414 
 
 700 
 
 711 
 
 721 
 
 73^ 
 
 742 
 
 752 
 
 763 
 
 773 
 
 784 
 
 794 
 
 9 
 
 9^9 
 
 415 
 
 805 
 
 815 
 
 826 
 
 836 
 
 847 
 
 857 
 
 868 
 
 878 
 
 888 
 
 899 
 
 
 41b 
 
 909 
 
 920 
 
 930 
 
 941 
 
 951 
 
 962 
 
 972 
 
 982 
 
 993 
 
 *oo3 
 
 
 417 
 
 62 014 
 
 024 
 
 034 
 
 045 
 
 055 
 
 066 
 
 C76 
 
 086 
 
 097 
 
 107 
 
 
 418 
 
 118 
 
 128 
 
 138 
 
 149 
 
 159 
 
 170 
 
 180 
 
 190 
 
 20 r 
 
 211 
 
 
 419 
 
 221 
 
 232 
 
 242 
 
 252 
 
 263 
 
 273 
 
 284 
 
 294 
 
 304 
 
 315 
 
 
 420 
 
 325 
 
 335 
 
 346 
 
 356 
 
 366 
 
 377 
 
 387 
 
 397 
 
 408 
 
 418 
 
 421 
 
 428 
 
 439 
 
 449 
 
 459 
 
 469 
 
 480 
 
 490 
 
 500 
 
 511 
 
 521 
 
 10 
 
 422 
 
 531 
 
 542 
 
 552 
 
 562 
 
 572 
 
 583 
 
 593 
 
 603 
 
 613 
 
 624 
 
 
 423 
 
 634 
 
 644 
 
 655 
 
 665 
 
 675 
 
 685 
 
 696 
 
 706 
 
 716 
 
 726 
 
 I ' " - 
 
 1,0 
 
 424 
 
 737 
 
 747 
 
 757 
 
 767 
 
 778 
 
 788 
 
 798 
 
 808 
 
 818 
 
 829 
 
 2 
 3 
 4 
 
 2/0 
 
 3/0 
 4/0 
 5/0 
 6 
 
 425 
 
 839 
 
 849 
 
 859 
 
 870 
 
 880 
 
 890 
 
 900 
 
 910 
 
 921 
 
 931 
 
 426 
 
 941 
 
 951 
 
 961 
 
 972 
 
 982 
 
 992 5,f002 ^012 *022 j,j033 
 
 427 
 
 63043 
 
 053 
 
 063 
 
 073 
 
 083 
 
 094 
 
 104 
 
 114 
 
 124 
 
 134 
 
 7 
 8 
 
 9 
 
 7^0 
 8/O 
 9/0 
 
 428 
 
 144 
 
 155 
 
 165 
 
 175 
 
 185 
 
 195 
 
 205 
 
 215 
 
 225 
 
 236 
 
 429 
 
 246 
 
 256 
 
 266 
 
 276 
 
 286 
 
 296 
 
 306 
 
 317 
 
 327 
 
 337 
 
 430 
 
 347 
 
 357 
 
 367 
 
 377 
 
 387 
 
 397 
 
 407 
 
 417 
 
 428 
 
 438 
 
 
 431 
 
 448 
 
 458 
 
 468 
 
 478 
 
 488 
 
 498 
 
 508 
 
 518 
 
 528 
 
 538 
 
 
 432 
 
 548 
 
 558 
 
 568 
 
 579 
 
 589 
 
 599 
 
 609 
 
 619 
 
 629 
 
 639 
 
 
 433 
 
 649 
 
 659 
 
 669 
 
 679 
 
 689 
 
 699 
 
 709 
 
 719 
 
 729 
 
 739 
 
 
 434 
 
 749 
 
 759 
 
 769 
 
 779 
 
 789 
 
 799 
 
 809 
 
 819 
 
 829 
 
 839 
 
 
 435' 
 
 849 
 
 859 
 
 869 
 
 879 
 
 889 
 
 899 
 
 909 
 
 919 
 
 929 
 
 939 
 
 436 
 
 949 
 
 959 
 
 969 
 
 979 
 
 988 
 
 998 
 
 *oo8 
 
 *oi8 
 
 *028 
 
 *o38 
 
 9 
 
 437 
 
 64 048 
 
 058 
 
 068 
 
 078 
 
 088 
 
 098 
 
 108 
 
 118 
 
 128 
 
 137 
 
 438 
 
 147 
 
 157 
 
 167 
 
 177 
 
 187 
 
 197 
 
 207 
 
 217 
 
 227 
 
 237 
 
 I 
 
 0/9 
 
 439 
 
 246 
 
 256 
 
 266 
 
 276 
 
 286 
 
 296 
 
 306 
 
 316 
 
 326 
 
 335 
 
 2 
 3 
 4 
 
 1/8 
 
 2/7 
 
 3/6 
 
 4/5 
 
 440 
 
 34S 
 
 355 
 
 365 
 
 375 
 
 385 
 
 395 
 
 404 
 
 414 
 
 424 
 
 434 
 
 441 
 
 444 
 
 454 
 
 464 
 
 473 
 
 483 
 
 493 
 
 503 
 
 513 
 
 523 
 
 532 
 
 442 
 
 542 
 
 552 
 
 
 572 
 
 582 
 
 591 
 
 601 
 
 611 
 
 621 
 
 631 
 
 5/4 
 6/3 
 
 443 
 
 640 
 
 650 
 
 660 
 
 670 
 
 680 
 
 689 
 
 699 
 
 709 
 
 719 
 
 729 
 
 7 
 8 
 
 9 
 
 444 
 
 738 
 
 748 
 
 758 
 
 768 
 
 777 
 
 787 
 
 797 
 
 807 
 
 816 
 
 826 
 
 7/2 
 
 8/1 
 
 445 
 
 836 
 
 846 
 
 856 
 
 865 
 
 875 
 
 885 
 
 895 
 
 904 
 
 914 
 
 924 
 
 
 446 
 
 933 
 
 943 
 
 953 
 
 963 
 
 972 
 
 982 
 
 992 *002 *OII 
 
 *02I 
 
 
 447 
 
 65031 
 
 040 
 
 050 
 
 060 
 
 070 
 
 079 
 
 089 
 
 099 
 
 108 
 
 118 
 
 
 448 
 
 128 
 
 137 
 
 147 
 
 157 
 
 167 
 
 176 
 
 186 
 
 196 
 
 205 
 
 215 
 
 
 449 
 
 225 
 
 234 
 
 244 
 
 254 
 
 263 
 
 273 
 
 283 
 
 292 
 
 302 
 
 312 
 
 
 450 
 
 321 
 
 331 
 
 341 
 
 350 
 
 360 
 
 369 
 
 379 
 
 389 
 
 398 
 
 408 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 450 
 
 65321 
 
 331 
 
 341 
 
 350 
 
 360 
 
 369 
 
 379 
 
 389 
 
 398 
 
 408 
 
 
 451 
 
 418 
 
 427 
 
 437 
 
 447 
 
 456 
 
 466 
 
 475 
 
 485 
 
 495 
 
 504 
 
 
 452 
 
 514 
 
 523 
 
 533 
 
 543 
 
 552 
 
 562 
 
 571 
 
 581 
 
 591 
 
 600 
 
 
 453 
 
 610 
 
 619 
 
 629 
 
 ^39 
 
 648 
 
 658 
 
 667 
 
 677 
 
 
 696 
 
 
 454 
 
 706 
 
 71S 
 
 725 
 
 734 
 
 744 
 
 753 
 
 763 
 
 772 
 
 782 
 
 792 
 
 
 455 
 
 801 
 
 811 
 
 820 
 
 830 
 
 839 
 
 849 
 
 858 
 
 868 
 
 877 
 
 887 
 
 456 
 
 896 
 
 906 
 
 916 
 
 925 
 
 935 
 
 944 
 
 954 
 
 963 
 
 973 
 
 982 
 
 10 
 
 457 
 
 992 ^^OOI *OII 
 
 *020 
 
 *o3o 
 
 5^039 ^049 ^058 
 
 *o68 
 
 *077 
 
 
 458 
 
 66087 
 
 096 
 
 106 
 
 115 
 
 124 
 
 134 
 
 143 
 
 153 
 
 162 
 
 172 
 
 I 
 
 ^P 
 
 459 
 
 181 
 
 191 
 
 200 
 
 210 
 
 219 
 
 229 
 
 238 
 
 247 
 
 257 
 
 266 
 
 2 
 
 3 
 
 4 
 
 5 
 6 
 
 2,0 
 
 3,0 
 4.0 
 
 5,0 
 6 
 
 460 
 
 276 
 
 28S 
 
 295 
 
 304 
 
 314 
 
 323 
 
 332 
 
 342 
 
 351 
 
 361 
 
 461 
 
 370 
 
 380 
 
 389 
 
 398 
 
 408 
 
 417 
 
 427 
 
 436 
 
 445 
 
 455 
 
 462 
 
 464 
 
 474 
 
 483 
 
 492 
 
 502 
 
 511 
 
 521 
 
 530 
 
 539 
 
 549 
 
 7 
 8 
 
 7!o 
 8 
 
 463 
 
 558 
 
 567 
 
 577 
 
 
 596 
 
 605 
 
 614 
 
 624 
 
 633 
 
 642 
 
 464 
 
 652 
 
 661 
 
 671 
 
 680 
 
 689 
 
 699 
 
 708 
 
 717 
 
 727 
 
 736 
 
 9 
 
 9!° 
 
 465 
 
 745 
 
 755 
 
 764 
 
 773 
 
 783 
 
 792 
 
 801 
 
 811 
 
 820 
 
 829 
 
 
 466 
 
 839 
 
 848 
 
 857 
 
 867 
 
 876 
 
 88^ 
 
 894 
 
 904 
 
 913 
 
 922 
 
 
 467 
 
 932 
 
 941 
 
 950 
 
 960 
 
 969 
 
 978 
 
 987 
 
 997 
 
 *oo6 
 
 *oi5 
 
 
 468 
 
 67025 
 
 034 
 
 043 
 
 052 
 
 062 
 
 071 
 
 080 
 
 089 
 
 099 
 
 108 
 
 
 469 
 
 117 
 
 127 
 
 136 
 
 145 
 
 154 
 
 164 
 
 173 
 
 182 
 
 191 
 
 201 
 
 
 470 
 
 210 
 
 219 
 
 228 
 
 237 
 
 247 
 
 256 
 
 265 
 
 274 
 
 284 
 
 293 
 
 471 
 
 302 
 
 311 
 
 321 
 
 330 
 
 339 
 
 348 
 
 357 
 
 367 
 
 376 
 
 385 
 
 9 
 
 472 
 
 394 
 
 403 
 
 413 
 
 422 
 
 431 
 
 440 
 
 449 
 
 459 
 
 .468 
 
 477 
 
 
 473 
 
 486 
 
 495 
 
 504 
 
 514 
 
 523 
 
 532 
 
 541 
 
 550 
 
 560 
 
 569 
 
 I 
 
 ",9 
 1.8 
 
 4:5 
 
 '5.4 
 8.1 
 
 474 
 
 578 
 
 587 
 
 596 
 
 605 
 
 614 
 
 624 
 
 633 
 
 642 
 
 651 
 
 660 
 
 2 
 3 
 
 4 
 5 
 6 
 
 7 
 8 
 
 9 
 
 475 
 
 669 
 
 679 
 
 688 
 
 697 
 
 706 
 
 715 
 
 724 
 
 733 
 
 742 
 
 752 
 
 476 
 
 761 
 
 770 
 
 779 
 
 788 
 
 797 
 
 806 
 
 815 
 
 825 
 
 834 
 
 843 
 
 477 
 
 852 
 
 861 
 
 870 
 
 879 
 
 888 
 
 897 
 
 906 
 
 916 
 
 925 
 
 934 
 
 478 
 
 943 
 
 952 
 
 961 
 
 970 
 
 979 
 
 988 
 
 997 
 
 *oo6 
 
 *oi5 *024 
 
 479 
 
 68034 
 
 043 
 
 052 
 
 061 
 
 070 
 
 079 
 
 088 
 
 097 
 
 106 
 
 "5 
 
 480 
 
 124 
 
 133 
 
 142 
 
 151 
 
 160 
 
 169 
 
 178 
 
 187 
 
 196 
 
 205 
 
 
 481 
 
 215 
 
 224 
 
 233 
 
 242 
 
 251 
 
 260 
 
 269 
 
 278 
 
 287 
 
 296 
 
 
 482 
 
 305 
 
 314 
 
 323 
 
 332 
 
 341 
 
 350 
 
 359 
 
 368 
 
 377 
 
 386 
 
 
 483 
 
 395 
 
 404 
 
 413 
 
 422 
 
 431 
 
 440 
 
 449 
 
 458 
 
 467 
 
 476 
 
 
 484 
 
 485 
 
 494 
 
 502 
 
 511 
 
 520 
 
 529 
 
 538 
 
 547 
 
 556 
 
 565 
 
 
 485 
 
 574 
 
 583 
 
 592 
 
 601 
 
 610 
 
 619 
 
 628 
 
 637 
 
 646 
 
 655 
 
 486 
 
 ^4 
 -7^ 
 
 673 
 
 681 
 
 690 
 
 699 
 
 708 
 
 717 
 
 726 
 
 735 
 
 744 
 
 R 
 
 487 
 
 762 
 
 771 
 
 780 
 
 789 
 
 797 
 
 806 
 
 815 
 
 824 
 
 833 
 
 
 0.8 
 
 2.4 
 3,2 
 
 488 
 
 842 
 
 851 
 
 860 
 
 869 
 
 878 
 
 886 
 
 895. 
 
 904 
 
 913 
 
 922 
 
 I 
 
 489 
 
 931 
 
 940 
 
 949 
 
 958 
 
 966 
 
 975 
 
 984 
 
 993 *oo2 
 
 *oii 
 
 2 
 
 3 
 4 
 
 490 
 
 69 020 
 
 028 
 
 037 
 
 046 
 
 05s 
 
 064 
 
 073 
 
 082 
 
 090 
 
 099 
 
 491 
 
 108 
 
 117 
 
 126 
 
 135 
 
 144 
 
 152 
 
 161 
 
 170 
 
 179 
 
 188 
 
 5 
 6 
 
 7 
 8 
 
 4/0 
 4.8 
 5,6 
 6,4 
 7,2 
 
 492 
 
 197 
 
 205 
 
 214 
 
 223 
 
 232 
 
 241 
 
 249 
 
 258 
 
 267 
 
 276 
 
 493 
 
 285 
 
 294 
 
 302 
 
 311 
 
 320 
 
 329 
 
 338 
 
 346 
 
 355 
 
 364 
 
 494 
 
 373 
 
 381 
 
 390 
 
 399 
 
 408 
 
 417 
 
 42S 
 
 434 
 
 443 
 
 452 
 
 9 
 
 495 
 
 461 
 
 469 
 
 478 
 
 487 
 
 496 
 
 504 
 
 513 
 
 522 
 
 531 
 
 539 
 
 
 496 
 
 548 
 
 557 
 
 566 
 
 574 
 
 583 
 
 592 
 
 601 
 
 609 
 
 618 
 
 627 
 
 
 497 
 
 636 
 
 644 
 
 653 
 
 662 
 
 671 
 
 679 
 
 688 
 
 697 
 
 705 
 
 714 
 
 
 498 
 
 723 
 
 732 
 
 740 
 
 749 
 
 758 
 
 767 
 
 ITS 
 
 784 
 
 793 
 
 801 
 
 
 499 
 
 810 
 
 819 
 
 827 
 
 836 
 
 845 
 
 854 
 
 862 
 
 871 
 
 880 
 
 888 
 
 
 500 
 
 897 
 
 906 
 
 914 
 
 923 
 
 932 
 
 940 
 
 949 
 
 958 
 
 966 
 
 975 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
 500 
 
 69897 
 
 906 
 
 914 
 
 923 
 
 932 
 
 940 
 
 949 
 
 958 
 
 966 975 
 
 
 501 
 
 
 992 j^OOI *OIO 
 
 *oi8 
 
 *027 
 
 *036 
 
 *o44 *o53 *o62 
 
 
 502 
 
 70 070 
 
 079 
 
 088 
 
 % 
 
 105 
 
 114 
 
 122 
 
 131 
 
 140 148 
 
 
 503 
 
 157 
 
 165 
 
 174 
 
 191 
 
 200 
 
 209 
 
 217 
 
 226 234 
 
 
 504 
 
 243 
 
 252 
 
 260 
 
 269 
 
 278 
 
 286 
 
 295 
 
 303 
 
 312 3a.; 
 
 
 505 
 
 329 
 
 338 
 
 346 
 
 355 
 
 364 
 
 372 
 
 381 
 
 389 
 
 398 406 
 
 506 
 
 415 
 
 424 
 
 432 
 
 441 
 
 449 
 
 458 
 
 467 
 
 475 
 
 484 492 
 
 Q 
 
 507 
 
 501 
 
 509 
 
 518 
 
 526 
 
 535 
 
 544 
 
 552 
 
 561 
 
 569 578 
 
 
 
 S08 
 
 586 
 
 595 
 
 603 
 
 612 
 
 621 
 
 629 
 
 638 
 
 646 
 
 655 663 
 
 I 
 
 0/9 
 1/8 
 2.7 
 3,6 
 4/5 
 5/4 
 6/3 
 
 7/2 
 
 8/1 
 
 509 
 
 672 
 
 680 
 
 689 
 
 697 
 
 706 
 
 714 
 
 723 
 
 731 
 
 740 749 
 
 2 
 3 
 
 4 
 5 
 6 
 
 I 
 
 510 
 
 757 
 
 766 
 
 774 
 
 783 
 
 791 
 
 800 
 
 808 
 
 817 
 
 825 834 
 
 511 
 
 842 
 
 851 
 
 859 
 
 868 
 
 876 
 
 885 
 
 893 
 
 902 
 
 910 919 
 
 512 
 
 927 
 
 935 
 
 944 
 
 952 
 
 961 
 
 969 
 
 978 
 
 986 
 
 995 *oo3 
 
 513 
 
 71 012 
 
 020 
 
 029 
 
 037 
 
 046 
 
 054 
 
 063 
 
 071 
 
 079 088 
 
 514 
 
 096 
 
 105 
 
 "3 
 
 122 
 
 130 
 
 139 
 
 147 
 
 15s 
 
 164 172 
 
 9 
 
 515 
 
 181 
 
 189 
 
 198 
 
 206 
 
 214 
 
 223 
 
 231 
 
 240 
 
 248 257 
 
 
 516 
 
 265 
 
 273 
 
 282 
 
 290 
 
 299 
 
 307 
 
 31S 
 
 324 
 
 332 341 
 
 
 517 
 
 349 
 
 357 
 
 366 
 
 374 
 
 383 
 
 391 
 
 399 
 
 408 
 
 416 425 
 
 
 518 
 
 433 
 
 441 
 
 450 
 
 458 
 
 466 
 
 475 
 
 483 
 
 492 
 
 500 508 
 
 
 519 
 
 517 
 
 525 
 
 533 
 
 542 
 
 550 
 
 559 
 
 567 
 
 575 
 
 584 592 
 
 
 520 
 
 600 
 
 609 
 
 617 
 
 625 
 
 634 
 
 642 
 
 650 
 
 659 
 
 667 675 
 
 521 
 
 684 
 
 692 
 
 700 
 
 709 
 
 717 
 
 725 
 
 734 
 
 742 
 
 750 759 
 
 8 
 
 522 
 
 767 
 
 11^ 
 
 784 
 
 792 
 
 800 
 
 809 
 
 817 
 
 825 
 
 834 842 
 
 523 
 
 850 
 
 858 
 
 867 
 
 875 
 
 883 
 
 892 
 
 900 
 
 908 
 
 917 925 
 
 If ' " 
 
 0,0 
 1/6 
 
 2/4 
 3/2 
 
 524 
 
 933 
 
 941 
 
 950 
 
 958 
 
 966 
 
 975 
 
 983 
 
 991 
 
 999 *oo8 
 
 2 
 3 
 4 
 
 525 
 
 72016 
 
 024 
 
 032 
 
 041 
 
 049 
 
 057 
 
 066 
 
 074 
 
 082 090 
 
 526 
 
 099 
 
 107 
 
 115 
 
 123 
 
 132 
 
 140 
 
 148 
 
 156 
 
 165 173 
 
 4'° 
 4/8 
 5/6 
 6/4 
 
 7/2 
 
 527 
 
 181 
 
 189 
 
 198 
 
 206 
 
 214 
 
 222 
 
 230 
 
 239 
 
 247 25s 
 
 528 
 
 263 
 
 272 
 
 280 
 
 288 
 
 296 
 
 304 
 
 313 
 
 321 
 
 329 337 
 
 9 
 
 529 
 
 346 
 
 354 
 
 362 
 
 370 
 
 378 
 
 387 
 
 395 
 
 403 
 
 411 419 
 
 530 
 
 428 
 
 436 
 
 444 
 
 452 
 
 460 
 
 469 
 
 477 
 
 485 
 
 493 501 
 
 
 531 
 
 509 
 
 518 
 
 526 
 
 534 
 
 542 
 
 550 
 
 558 
 
 567 
 
 575 583 
 
 
 532 
 
 591 
 
 599 
 
 607 
 
 616 
 
 624 
 
 632 
 
 640 
 
 648 
 
 656 66^ 
 
 
 533 
 
 673 
 
 681 
 
 689 
 
 697 
 
 705 
 
 713 
 
 722 
 
 730 
 
 738 746 
 
 
 534 
 
 754 
 
 762 
 
 770 
 
 779 
 
 787 
 
 795 
 
 803 
 
 811 
 
 819 827 
 
 
 535 
 
 835 
 
 843 
 
 852 
 
 860 
 
 868 
 
 876 
 
 884 
 
 892 
 
 900 908 
 
 536 
 
 916 
 
 925 
 
 933 
 
 941 
 
 949 
 
 957 
 
 965 
 
 973 
 
 981 989 
 
 7 
 
 537 
 
 997 
 
 *oo6 
 
 *oi4 *022 ^030 
 
 *038 *046 
 
 *o54 
 
 Jif062 ^070 
 
 538 
 
 73078 
 
 086 
 
 094 
 
 102 
 
 III 
 
 119 
 
 127 
 
 135 
 
 143 151 
 
 I 
 
 0/7 
 
 539 
 
 159 
 
 167 
 
 175 
 
 183 
 
 191 
 
 199 
 
 207 
 
 215 
 
 223 231 
 
 2 
 3 
 
 4 
 
 1/4 
 
 2/1 
 2/8 
 
 540 
 
 239 
 
 247 
 
 25s 
 
 263 
 
 272 
 
 280 
 
 288 
 
 296 
 
 304 312 
 
 541 
 
 320 
 
 328 
 
 
 344 
 
 352 
 
 360 
 
 368 
 
 376 
 
 384 392 
 
 5 
 6 
 
 3/5 
 
 542 
 
 400 
 
 408 
 
 416 
 
 i^ 
 
 432 
 
 440 
 
 448 
 
 456 
 
 464 472 
 
 4/2 
 
 543 
 
 480 
 
 488 
 
 496 
 
 504 
 
 512 
 
 520 
 
 528 
 
 536 
 
 544 552 
 
 7 
 8 
 
 9 
 
 5/6 
 6/3 
 
 544 
 
 560 
 
 568 
 
 576 
 
 584 
 
 592 
 
 600 
 
 608 
 
 616 
 
 624 632 
 
 545 
 
 640 
 
 648 
 
 656 
 
 664 
 
 672 
 
 679 
 
 687 
 
 695 
 
 703 7" 
 
 
 546 
 
 719 
 
 727 
 
 735 
 
 743 
 
 751 
 
 759 
 
 767 
 
 77.5 
 
 783 791 
 
 
 547 
 
 799 
 
 807 
 
 815 
 
 823 
 
 830 
 
 838 
 
 846 
 
 854 
 
 862 870 
 
 
 548 
 
 878 
 
 886 
 
 894 
 
 902 
 
 910 
 
 918 
 
 926 
 
 933 
 
 941 949 
 
 
 549 
 
 957 
 
 965 
 
 973 
 
 981 
 
 989 
 
 997 *ooS *oi3 *020 #028 
 
 
 550 
 
 74036 
 
 044 
 
 052 
 
 060 
 
 068 
 
 076 
 
 084 
 
 092 
 
 099 107 
 
 ^ 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
 550 
 
 74036 
 
 044 
 
 052 
 
 060 
 
 068 
 
 076 
 
 084 
 
 092 
 
 099 107 
 
 
 551 
 
 115 
 
 123 
 
 131 
 
 139 
 
 147 
 
 155 
 
 162 
 
 170 
 
 178 186 
 
 
 552 
 
 194 
 
 202 
 
 210 
 
 218 
 
 225 
 
 233 
 
 241 
 
 249 
 
 257 265 
 
 
 553 
 
 273 
 
 280 
 
 288 
 
 296 
 
 304 
 
 312 
 
 320 
 
 327 
 
 335 343 
 
 
 554 
 
 351 
 
 359 
 
 367 
 
 374 
 
 382 
 
 390 
 
 398 
 
 406 
 
 414 421 
 
 
 555 
 
 429 
 
 437 
 
 445 
 
 453 
 
 461 
 
 468 
 
 476 
 
 484 
 
 492 500 
 
 556 
 
 507 
 
 515 
 
 523 
 
 531 
 
 539 
 
 547 
 
 554 
 
 562 
 
 570 578 
 
 
 557 
 
 586 
 
 593 
 
 601 
 
 609 
 
 617 
 
 624 
 
 632 
 
 640 
 
 648 656 
 
 
 558 
 
 663 
 
 671 
 
 679 
 
 687 
 
 695 
 
 702 
 
 710 
 
 718 
 
 726 733 
 
 
 559 
 
 741 
 
 749 
 
 757 
 
 764 
 
 772 
 
 780 
 
 788 
 
 796 
 
 803 811 
 
 
 560 
 
 819 
 
 827 
 
 834 
 
 842 
 
 850 
 
 858 
 
 865 
 
 873 
 
 881 889 
 
 561 
 
 896 
 
 904 
 
 912 
 
 920. 
 
 927 
 
 935 
 
 943 
 
 950 
 
 958 966 
 
 8 
 
 562 
 
 974 
 
 981 
 
 989 
 
 997 *oo5 1 
 
 ^012 ^020 
 
 *028 
 
 *03S *043 
 
 I 
 
 Iy6 
 
 2,4 
 3.2 
 
 4,0 
 
 4.8 
 SA 
 6,4 
 
 7/2. 
 
 563 
 
 75051 
 
 059 
 
 066 
 
 074 
 
 082 
 
 089 
 
 097 
 
 105 
 
 113 120 
 
 564 
 
 128 
 
 136 
 
 143 
 
 151 
 
 159 
 
 166 
 
 174 
 
 182 
 
 189 197 
 
 2 
 
 3 
 4 
 5 
 6 
 
 565 
 
 205 
 
 213 
 
 220 
 
 228 
 
 236 
 
 243 
 
 251 
 
 259 
 
 266 274 
 
 566 
 
 282 
 
 289 
 
 297 
 
 305 
 
 312 
 
 320 
 
 328 
 
 335 
 
 343 351 
 
 567 
 
 358 
 
 366 
 
 374 
 
 381 
 
 389 
 
 397 
 
 404 
 
 412 
 
 420 427 
 
 I 
 
 568 
 
 435 
 
 442 
 
 450 
 
 458 
 
 465 
 
 473 
 
 481 
 
 488 
 
 496 504 
 
 569 
 
 5" 
 
 519 
 
 526 
 
 534 
 
 542 
 
 549 
 
 557 
 
 565 
 
 572 580 
 
 9 
 
 570 
 
 587 
 
 595 
 
 603 
 
 610 
 
 618 
 
 626 
 
 633 
 
 641 
 
 648 656 
 
 
 571 
 
 664 
 
 671 
 
 679 
 
 686 
 
 694 
 
 702 
 
 709 
 
 ■ 717 
 
 724 732 
 
 
 572 
 
 740 
 
 747 
 
 755 
 
 762 
 
 770 
 
 778 
 
 785 
 
 793 
 
 800 808 
 
 
 573 
 
 815 
 
 823 
 
 831 
 
 838 
 
 846 
 
 853 
 
 861 
 
 868 
 
 876 884 
 
 
 574 
 
 891 
 
 899 
 
 906 
 
 914 
 
 921 
 
 929 
 
 937 
 
 944 
 
 952 959 
 
 
 575 
 
 967 
 
 974 
 
 982 
 
 989 
 
 997 
 
 *005 *OI2 *020 »027 *035 
 
 576 
 
 76042 
 
 050 
 
 057 
 
 065 
 
 072 
 
 080 
 
 087 
 
 095 
 
 103 no 
 
 
 577 
 
 118 
 
 125 
 
 
 140 
 
 148 
 
 155 
 
 163 
 
 170 
 
 178 185 
 
 
 578 
 
 193 
 
 200 
 
 208 
 
 215 
 
 223 
 
 230 
 
 238 
 
 24S 
 
 253 260 
 
 
 579 
 
 268 
 
 275 
 
 283 
 
 290 
 
 298 
 
 305 
 
 313 
 
 320 
 
 328 33S 
 
 
 580 
 
 343 
 
 350 
 
 358 
 
 365 
 
 373 
 
 380 
 
 388 
 
 395 
 
 403 410 
 
 581 
 
 418 
 
 425 
 
 433 
 
 440 
 
 448 
 
 455 
 
 462 
 
 470 
 
 477 485 
 
 7 
 
 582 
 
 492 
 
 500 
 
 507 
 
 515 
 
 522 
 
 530 
 
 537 
 
 545 
 
 552 559 
 
 
 
 583 
 
 567 
 
 574 
 
 582 
 
 589 
 
 597 
 
 604 
 
 612 
 
 619 
 
 626 634 
 
 I 
 
 0/7 
 
 584 
 
 641 
 
 649 
 
 656 
 
 664 
 
 671 
 
 678 
 
 686 
 
 693 
 
 701 708 
 
 2 
 
 3 
 4 
 
 1/4 
 2,1 
 
 2/8 
 
 3/5 
 
 4/2 
 
 P 
 
 6/3 
 
 585 
 
 716 
 
 723 
 
 730 
 
 738 
 
 745 
 
 753 
 
 760 
 
 768 
 
 775 782 
 
 586 
 
 790 
 
 797 
 
 805 
 
 812 
 
 819 
 
 827 
 
 834 
 
 842 
 
 849 856 
 
 587 
 
 864 
 
 871 
 
 879 
 
 886 
 
 893 
 
 901 
 
 908 
 
 916 
 
 923 930 
 
 I 
 
 588 
 
 938 
 
 945 
 
 953 
 
 960 
 
 967 
 
 975 
 
 982 
 
 989 
 
 997 *oo4 
 
 589 
 
 77012 
 
 019 
 
 026 
 
 034 
 
 041 
 
 048 
 
 056 
 
 063 
 
 070 078 
 
 9 
 
 590 
 
 085 
 
 093 
 
 100 
 
 107 
 
 115 
 
 122 
 
 129 
 
 137 
 
 144 151 
 
 
 591 
 
 159 
 
 166 
 
 173 
 
 181 
 
 188 
 
 195 
 
 203 
 
 210 
 
 217 225 
 
 
 592 
 
 232 
 
 240 
 
 247 
 
 254 
 
 262 
 
 269 
 
 276 
 
 283 
 
 291 298 
 
 
 593 
 
 305 
 
 313 
 
 320 
 
 327 
 
 335 
 
 342 
 
 349 
 
 357 
 
 364 371 
 
 
 594 
 
 595 
 
 379 
 
 386 
 
 393 
 
 401 
 
 408 
 
 415 
 
 422 
 
 430 
 
 437 444 
 
 
 452 
 
 459 
 
 466 
 
 474 
 
 481 
 
 488 
 
 495 
 
 503 
 
 510 517 
 
 596 
 
 525 
 
 532 
 
 539 
 
 546 
 
 554 
 
 561 
 
 568 
 
 576 
 
 583 590 
 
 
 597 
 
 597 
 
 605 
 
 612 
 
 619 
 
 627 
 
 634 
 
 641 
 
 648 
 
 656 663 
 
 
 598 
 
 670 
 
 677 
 
 685 
 
 692 
 
 699 
 
 706 
 
 714 
 
 721 
 
 728 735 
 
 
 599 
 
 743 
 
 750 
 
 757 
 
 764 
 
 772 
 
 779 
 
 786 
 
 793 
 
 801 808 
 
 
 600 
 
 815 
 
 822 
 
 830 
 
 837 
 
 844 
 
 851 
 
 859 
 
 866 
 
 873 880 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 6 
 
 6 
 
 7 
 
 8 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 600 
 
 77 8iS 
 
 822 
 
 830 
 
 837 
 
 844 
 
 851 
 
 859 
 
 866 
 
 873 
 
 880 
 
 
 6oi 
 
 887 
 
 895 
 
 902 
 
 909 
 
 916 
 
 924 
 
 931 
 
 938 
 
 945 
 
 952 
 
 
 602 
 
 960 
 
 967 
 
 974 
 
 981 
 
 988 
 
 996 ^003 *oio ^017 ^025 
 
 
 603 
 
 78 032 
 
 039 
 
 046 
 
 053 
 
 061 
 
 068 
 
 075 
 
 082 
 
 089 
 
 097 
 
 
 004 
 
 104 
 
 III 
 
 118 
 
 125 
 
 132 
 
 140 
 
 147 
 
 154 
 
 161 
 
 168 
 
 
 60s 
 
 176 
 
 183 
 
 190 
 
 197 
 
 204 
 
 211 
 
 219 
 
 226 
 
 233 
 
 240 
 
 606 
 
 247 
 
 254 
 
 262 
 
 269 
 
 276 
 
 283 
 
 290 
 
 297 
 
 305 
 
 312 
 
 8 
 
 607 
 
 319 
 
 326 
 
 333 
 
 340 
 
 347 
 
 355 
 
 362 
 
 369 
 
 376 
 
 383 
 
 
 608 
 
 390 
 
 398 
 
 405 
 
 412 
 
 419 
 
 426 
 
 433 
 
 440 
 
 447 
 
 455 
 
 I 
 
 0^0 
 2.4 
 
 3,2 
 
 609 
 
 462 
 
 469 
 
 476 
 
 483 
 
 490 
 
 497 
 
 504 
 
 512 
 
 519 
 
 526 
 
 2 
 
 3 
 4 
 
 610 
 
 533 
 
 540 
 
 547 
 
 554 
 
 561 
 
 569 
 
 576 
 
 583 
 
 590 
 
 597 
 
 611 
 
 604 
 
 611 
 
 618 
 
 625 
 
 633 
 
 640 
 
 647 
 
 654 
 
 661 
 
 668 
 
 6 
 
 4/0 
 
 5/6 
 6/4 
 
 7/2 
 
 612 
 
 675 
 
 682 
 
 689 
 
 696 
 
 704 
 
 711 
 
 718 
 
 725 
 
 732 
 
 739 
 
 613 
 
 
 753 
 
 760 
 
 767 
 
 774 
 
 781 
 
 789 
 
 796 
 
 803 
 
 810 
 
 I 
 9 
 
 614 
 
 817 
 
 824 
 
 831 
 
 838 
 
 84s 
 
 852 
 
 859 
 
 866 
 
 873 
 
 880 
 
 615 
 
 888 
 
 895 
 
 902 
 
 909 
 
 916 
 
 923 
 
 930 
 
 937 
 
 944 
 
 951 
 
 
 616 
 
 958 
 
 96| 
 
 972 
 
 979 
 
 986 
 
 993 *ooo *oo7 *oi4 *02i 
 
 
 617 
 
 79029 
 
 036 
 
 043 
 
 050 
 
 057 
 
 064 
 
 071 
 
 078 
 
 085 
 
 092 
 
 
 618 
 
 099 
 
 106 
 
 113 
 
 120 
 
 127 
 
 134 
 
 141 
 
 148 
 
 155 
 
 162 
 
 
 619 
 
 169 
 
 176 
 
 183 
 
 190 
 
 197 
 
 204 
 
 211 
 
 218 
 
 225 
 
 232 
 
 
 620 
 
 239 
 
 246 
 
 253 
 
 260 
 
 267 
 
 274 
 
 281 
 
 288 
 
 295 
 
 302 
 
 621 
 
 309 
 
 316 
 
 323 
 
 330 
 
 337 
 
 344 
 
 351 
 
 358 
 
 365 
 
 372 
 
 7 
 
 622 
 
 379 
 
 386 
 
 393 
 
 400 
 
 407 
 
 414 
 
 421 
 
 428 
 
 435 
 
 442 
 
 
 623 
 
 449 
 
 456 
 
 463 
 
 470 
 
 477 
 
 484 
 
 491 
 
 498 
 
 505 
 
 511 
 
 I 
 
 0/7 
 
 624 
 
 518 
 
 52s 
 
 532 
 
 539 
 
 546 
 
 553 
 
 560 
 
 567 
 
 574 
 
 581 
 
 2 
 
 3 
 .4 
 
 1/4 
 
 2/1 
 2/8 
 
 625 
 
 588 
 
 595 
 
 602 
 
 609 
 
 616 
 
 623 
 
 630 
 
 637 
 
 644 
 
 650 
 
 626 
 
 657 
 
 664 
 
 671 
 
 678 
 
 68S 
 
 692 
 
 699 
 
 706 
 
 713 
 
 720 
 
 6 
 
 3/5 
 
 627 
 
 727 
 
 734 
 
 741 
 
 748 
 
 754 
 
 761 
 
 768 
 
 71^ 
 
 782 
 
 789 
 
 4/2 
 
 628 
 
 796 
 
 803 
 
 810 
 
 817 
 
 824 
 
 831 
 
 837 
 
 844 
 
 851 
 
 858 
 
 7 
 8 
 
 9 
 
 4/9. 
 
 ^/ 
 6.3 
 
 629 
 
 865 
 
 872 
 
 879 
 
 886 
 
 893 
 
 900 
 
 906 
 
 913 
 
 920 
 
 927 
 
 630 
 
 934 
 
 941 
 
 948 
 
 955 
 
 962 
 
 969 
 
 975 
 
 982 
 
 989 
 
 996 
 
 
 631 
 
 80003 
 
 010 
 
 017 
 
 024 
 
 030 
 
 037 
 
 044 
 
 051 
 
 058 
 
 065 
 
 
 632 
 
 072 
 
 079 
 
 085 
 
 092 
 
 099 
 
 106 
 
 113 
 
 120 
 
 127 
 
 134 
 
 
 633 
 
 140 
 
 147 
 
 154 
 
 161 
 
 168 
 
 175 
 
 182 
 
 188 
 
 195 
 
 202 
 
 
 634 
 
 209 
 
 216 
 
 223 
 
 229 
 
 236 
 
 243 
 
 250 
 
 257 
 
 264 
 
 271 
 
 
 63s 
 
 277 
 
 284 
 
 291 
 
 298 
 
 305 
 
 312 
 
 318 
 
 325 
 
 332 
 
 339 
 
 636 
 
 346 
 
 353 
 
 359 
 
 366 
 
 373 
 
 380 
 
 387 
 
 393 
 
 400 
 
 407 
 
 R. 
 
 637 
 
 414 
 
 421 
 
 428 
 
 434 
 
 441 
 
 448 
 
 455 
 
 462 
 
 468 
 
 475 
 
 
 v» 
 
 638 
 
 482 
 
 489 
 
 496 
 
 502 
 
 509 
 
 516 
 
 523 
 
 530 
 
 536 
 
 543 
 
 I 
 
 0,6 
 
 639 
 
 5So 
 
 557 
 
 564 
 
 570 
 
 577 
 
 584 
 
 591 
 
 598 
 
 604 
 
 611 
 
 2 
 
 3 
 4 
 
 1/2 
 1/8 
 
 2/4 
 
 640 
 
 618 
 
 625 
 
 632 
 
 638 
 
 645 
 
 652 
 
 659 
 
 665 
 
 672 
 
 679 
 
 641 
 
 686 
 
 693 
 
 699 
 
 706 
 
 713 
 
 720 
 
 726 
 
 733 
 
 740 
 
 747 
 
 6 
 
 3'? 
 
 3/6 
 
 642 
 
 754 
 
 760 
 
 767 
 
 774 
 
 781 
 
 787 
 
 794 
 
 801 
 
 808 
 
 814 
 
 643 
 
 821 
 
 828 
 
 835 
 
 841 
 
 848 
 
 855 
 
 862 
 
 868 
 
 875 
 
 882 
 
 7 
 8 
 
 9 
 
 4/2 
 
 4/8 
 
 5/4 
 
 644 
 
 889 
 
 895 
 
 902 
 
 909 
 
 916 
 
 922 
 
 929 
 
 936 
 
 943 
 
 949 
 
 645 
 
 956 
 
 963 
 
 969 
 
 976 
 
 983 
 
 990 
 
 996 ^003 *OIO 415OI7 
 
 
 646 
 
 81023 
 
 030 
 
 037 
 
 043 
 
 0^0 
 
 057 
 
 064 
 
 070 
 
 077 
 
 084 
 
 
 647 
 
 090 
 
 097 
 
 104 
 
 III 
 
 117 
 
 124 
 
 131 
 
 137 
 
 144 
 
 151 
 
 
 648 
 
 158 
 
 164 
 
 171 
 
 178 
 
 184 
 
 191 
 
 198 
 
 204 
 
 211 
 
 218 
 
 
 649 
 
 224 
 
 231 
 
 238 
 
 245 
 
 251 
 
 258 
 
 265 
 
 271 
 
 278 
 
 285 
 
 
 650 
 
 291 
 
 298 
 
 305 
 
 3" 
 
 318 
 
 325 
 
 331 
 
 338 
 
 345 
 
 351 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 650 
 
 81 291 
 
 298 
 
 305 
 
 311 
 
 318 
 
 325 
 
 331 
 
 338 
 
 345 
 
 351 
 
 
 651 
 
 358 
 
 365 
 
 371 
 
 378 
 
 385 
 
 391 
 
 398 
 
 405 
 
 411 
 
 418 
 
 
 652 
 
 425 
 
 43^ 
 
 438 
 
 445 
 
 45^ 
 
 458 
 
 465 
 
 471 
 
 478 
 
 485 
 
 
 653 
 
 491 
 
 498 
 
 505 
 
 511 
 
 518 
 
 525 
 
 531 
 
 538 
 
 544 
 
 551 
 
 
 654 
 
 558 
 
 564 
 
 571 
 
 578 
 
 584 
 
 591 
 
 598 
 
 604 
 
 611 
 
 617 
 
 
 655 
 
 624 
 
 631 
 
 637 
 
 644 
 
 651 
 
 657 
 
 664 
 
 671 
 
 677 
 
 684 
 
 656 
 
 690 
 
 697 
 
 704 
 
 710 
 
 717 
 
 723 
 
 730 
 
 737 
 
 743 
 
 750 
 
 
 657 
 
 757 
 
 763 
 
 770 
 
 776 
 
 783 
 
 790 
 
 796 
 
 803 
 
 809 
 
 816 
 
 
 658 
 
 823 
 
 829 
 
 836 
 
 842 
 
 849 
 
 856 
 
 862 
 
 869 
 
 875 
 
 882 
 
 
 659 
 
 889 
 
 895 
 
 902 
 
 908 
 
 915 
 
 921 
 
 928 
 
 935 
 
 941 
 
 948 
 
 
 660 
 
 954 
 
 961 
 
 968 
 
 974 
 
 981 
 
 987 
 
 994 *ooo #007 *oi4 
 
 661 
 
 82020 
 
 027 
 
 033 
 
 040 
 
 046 
 
 053 
 
 060 
 
 066 
 
 073 
 
 079 
 
 7 
 
 662 
 
 086 
 
 092 
 
 099 
 
 105 
 
 112 
 
 119 
 
 125 
 
 132 
 
 138 
 
 145 
 
 
 
 663 
 
 151 
 
 158 
 
 164 
 
 171 
 
 178 
 
 184 
 
 191 
 
 197 
 
 204 
 
 210 
 
 I 
 
 0,7 
 
 664 
 
 217 
 
 223 
 
 230 
 
 236 
 
 243 
 
 ,249 
 
 256 
 
 263 
 
 269 
 
 276 
 
 2 
 
 3 
 4 
 
 1/4 
 
 2/1 
 
 2,8 
 3/5 
 
 4/2 
 
 4/9 
 
 ^'^ 
 6/3 
 
 665 
 
 282 
 
 289 
 
 295 
 
 302 
 
 308 
 
 315 
 
 321 
 
 328 
 
 334 
 
 341 
 
 666 
 
 347 
 
 354 
 
 360 
 
 367 
 
 373 
 
 380 
 
 387 
 
 393 
 
 400 
 
 406 
 
 667 
 
 413 
 
 419 
 
 426 
 
 432 
 
 439 
 
 445 
 
 452 
 
 458 
 
 465 
 
 471 
 
 7 
 8 
 
 668 
 
 478 
 
 484 
 
 491 
 
 497 
 
 504 
 
 510 
 
 517 
 
 523 
 
 530 
 
 536 
 
 669 
 
 543 
 
 549 
 
 556 
 
 562 
 
 569 
 
 575 
 
 582 
 
 588 
 
 595 
 
 601 
 
 9 
 
 670 
 
 607 
 
 614 
 
 620 
 
 627 
 
 633 
 
 640 
 
 646 
 
 653 
 
 659 
 
 666 
 
 
 671 
 
 672 
 
 679 
 
 685 
 
 692 
 
 698 
 
 705 
 
 711 
 
 718 
 
 724 
 
 730 
 
 
 672 
 
 737 
 
 743 
 
 750 
 
 756 
 
 763 
 
 769 
 
 776 
 
 782 
 
 789 
 
 795 
 
 
 673 
 
 802 
 
 808 
 
 814 
 
 821 
 
 827 
 
 834 
 
 840 
 
 847 
 
 853 
 
 860 
 
 
 674 
 
 866 
 
 872 
 
 879 
 
 885 
 
 892 
 
 898 
 
 905 
 
 911 
 
 918 
 
 924 
 
 
 675 
 
 930 
 
 937 
 
 943 
 
 950 
 
 956 
 
 963 
 
 969 
 
 975 
 
 982 
 
 988 
 
 676 
 
 995 
 
 *ooi 
 
 *oo8 
 
 ^014 j|t020 
 
 *027 *033 ^040 
 
 #046 
 
 *052 
 
 
 677 
 
 83059 
 
 065 
 
 072 
 
 078 
 
 085 
 
 091 
 
 097 
 
 104 
 
 no 
 
 117 
 
 
 678 
 
 123 
 
 129 
 
 136 
 
 142 
 
 149 
 
 155 
 
 161 
 
 168 
 
 174 
 
 181 
 
 
 679 
 
 187 
 
 193 
 
 200 
 
 206 
 
 213 
 
 219 
 
 225 
 
 232 
 
 238 
 
 245 
 
 
 680 
 
 251 
 
 257 
 
 264 
 
 270 
 
 276 
 
 283 
 
 289 
 
 296 
 
 302 
 
 308 
 
 681 
 
 315 
 
 321 
 
 327 
 
 334 
 
 340 
 
 347 
 
 353 
 
 359 
 
 366 
 
 372 
 
 R 
 
 682 
 
 378 
 
 385 
 
 391 
 
 398 
 
 404 
 
 410 
 
 417 
 
 423 
 
 429 
 
 436 
 
 
 O/6 
 
 683 
 
 442 
 
 448 
 
 455 
 
 461 
 
 467 
 
 474 
 
 480 
 
 487 
 
 493 
 
 499 
 
 I 
 
 684 
 
 506 
 
 512 
 
 518 
 
 525 
 
 531 
 
 537 
 
 544 
 
 550 
 
 
 563 
 
 2 
 
 3 
 4 
 
 1/2 
 
 1/8 
 
 2/4 
 
 685 
 
 569 
 
 575 
 
 582 
 
 588 
 
 594 
 
 601 
 
 607 
 
 613 
 
 620 
 
 626 
 
 686 
 
 632 
 
 639 
 
 645 
 
 651 
 
 658 
 
 664 
 
 670 
 
 677 
 
 683 
 
 689 
 
 5 
 6 
 
 3/0 
 3/6 
 
 687 
 
 696 
 
 702 
 
 708 
 
 715 
 
 721 
 
 727 
 
 734 
 
 740 
 
 746 
 
 753 
 
 688 
 
 759 
 
 765 
 
 771 
 
 778 
 
 784 
 
 790 
 
 797 
 
 803 
 
 809 
 
 816 
 
 7 
 8 
 
 9 
 
 4/2 
 
 4/8 
 5/4 
 
 689 
 
 822 
 
 828 
 
 835 
 
 841 
 
 847 
 
 853 
 
 860 
 
 866 
 
 872 
 
 879 
 
 690 
 
 885 
 
 891 
 
 897 
 
 904 
 
 910 
 
 916 
 
 923 
 
 929 
 
 935 
 
 942 
 
 
 691 
 
 948 
 
 954 
 
 960 
 
 967 
 
 973 
 
 979 
 
 985 
 
 992 
 
 998 ^004 
 
 
 6q2 
 
 84 on 
 
 017 
 
 023 
 
 029 
 
 036 
 
 042 
 
 048 
 
 055 
 
 061 
 
 067 
 
 
 693 
 
 073 
 
 080 
 
 086 
 
 4)2 
 
 098 
 
 105 
 
 III 
 
 117 
 
 123 
 
 130 
 
 
 694 
 695 
 
 136 
 
 142 
 
 148 
 
 155 
 
 161 
 
 167 
 
 173 
 
 180 
 
 186 
 
 192 
 
 
 198 
 
 205 
 
 211 
 
 217 
 
 223 
 
 230 
 
 236 
 
 242 
 
 248 
 
 255 
 
 696 
 
 261 
 
 267 
 
 273 
 
 280 
 
 286 
 
 292 
 
 298 
 
 305 
 
 311 
 
 317 
 
 
 697 
 
 323 
 
 330 
 
 336 
 
 342 
 
 348 
 
 354 
 
 361 
 
 367 
 
 373 
 
 379 
 
 
 698 
 
 386 
 
 392 
 
 398 
 
 404 
 
 410 
 
 417 
 
 423 
 
 429 
 
 435 
 
 442 
 
 
 699 
 
 448 
 
 454 
 
 460 
 
 466 
 
 473 
 
 479 
 
 485 
 
 491 
 
 497 
 
 504 
 
 
 700 
 
 510 
 
 516 
 
 522 
 
 528 
 
 535 
 
 541 
 
 547 
 
 553 
 
 559 
 
 566 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 6 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 700 
 
 84510 
 
 516 
 
 522 
 
 528 
 
 535 
 
 541 
 
 547 
 
 553 
 
 559 
 
 566 
 
 
 701 
 
 572 
 
 578 
 
 584 
 
 590 
 
 597 
 
 603 
 
 609 
 
 615 
 
 621 
 
 628 
 
 
 702 
 
 634 
 
 640 
 
 646 
 
 652 
 
 658 
 
 665 
 
 671 
 
 677 
 
 683 
 
 689 
 
 
 703 
 
 696 
 
 702 
 
 708 
 
 714 
 
 720 
 
 726 
 
 733 
 
 739 
 
 745 
 
 751 
 
 
 704 
 
 757 
 
 763 
 
 770 
 
 776 
 
 782 
 
 788 
 
 794 
 
 800 
 
 807 
 
 813 
 
 
 705 
 
 819 
 
 825 
 
 831 
 
 837 
 
 844 
 
 850 
 
 856 
 
 862 
 
 868 
 
 874 
 
 706 
 
 880 
 
 887 
 
 893 
 
 899 
 
 90s 
 
 911 
 
 917 
 
 924 
 
 930 
 
 936 
 
 7 
 
 707 
 
 942 
 
 948 
 
 954 
 
 960 
 
 
 973 
 
 979 
 
 985 
 
 991 
 
 997 
 
 T 
 
 0,7 
 1,4 
 
 2/1 
 
 2.8 
 
 3/S 
 
 708 
 
 85003 
 
 009 
 
 016 
 
 022 
 
 028 
 
 034 
 
 040 
 
 046 
 
 052 
 
 058 
 
 2 
 
 709 
 
 065 
 
 071 
 
 077 
 
 083 
 
 089 
 
 095 
 
 lOI 
 
 107 
 
 114 
 
 120 
 
 3 
 4 
 
 5 
 
 710 
 
 126 
 
 132 
 
 138 
 
 144 
 
 150 
 
 156 
 
 163 
 
 169 
 
 '71 
 
 181 
 
 711 
 
 187 
 
 193 
 
 199 
 
 20S 
 
 211 
 
 217 
 
 224 
 
 230 
 
 236 
 
 242 
 
 6 
 
 4/2 
 
 712 
 
 248 
 
 254 
 
 260 
 
 266 
 
 272 
 
 278 
 
 285 
 
 291 
 
 297 
 
 303 
 
 7 
 
 4/9 
 
 713 
 
 309 
 
 315 
 
 321 
 
 327 
 
 333 
 
 339 
 
 345 
 
 352 
 
 358 
 
 364 
 
 8 
 
 5/6 
 
 714 
 
 370 
 
 376 
 
 382 
 
 388 
 
 394 
 
 400 
 
 406 
 
 412 
 
 418 
 
 425 
 
 9 
 
 6/3 
 
 715 
 
 431 
 
 437 
 
 443 
 
 449 
 
 455 
 
 461 
 
 467 
 
 473 
 
 479 
 
 485 
 
 
 716 
 
 491 
 
 497 
 
 503 
 
 509 
 
 516 
 
 522 
 
 528 
 
 534 
 
 540 
 
 546 
 
 
 717 
 
 552 
 
 558 
 
 564 
 
 570 
 
 576 
 
 582 
 
 588 
 
 594 
 
 600 
 
 606 
 
 
 718 
 
 612 
 
 618 
 
 625 
 
 631 
 
 637 
 
 643 
 
 649 
 
 655 
 
 661 
 
 667 
 
 
 719 
 
 673 
 
 679 
 
 685 
 
 691 
 
 697 
 
 703 
 
 709 
 
 715 
 
 721 
 
 727 
 
 
 720 
 
 733 
 
 739 
 
 745 
 
 751 
 
 757 
 
 763 
 
 769 
 
 775 
 
 781 
 
 788 
 
 721 
 
 794 
 
 800 
 
 806 
 
 812 
 
 818 
 
 824 
 
 830 
 
 836 
 
 842 
 
 848 
 
 6 
 
 722 
 
 854 
 
 860 
 
 866 
 
 872 
 
 878 
 
 884 
 
 890 
 
 896 
 
 902 
 
 908 
 
 I 
 2 
 3 
 4 
 
 0/6 
 
 1/2 
 
 1/8 
 
 2/4 
 
 3/6 
 
 4/8 
 5/4 
 
 723 
 
 914 
 
 920 
 
 926 
 
 932 
 
 938 
 
 944 
 
 950 
 
 956 
 
 962 
 
 968 
 
 ,724 
 
 974 
 
 980 
 
 986 
 
 992 
 
 998 
 
 ^004 *OIO 
 
 *oi6 
 
 *022 
 
 *028 
 
 725 
 
 86034 
 
 040 
 
 046 
 
 052 
 
 058 
 
 064 
 
 070 
 
 076 
 
 082 
 
 088 
 
 726 
 
 094 
 
 100 
 
 106 
 
 112 
 
 118 
 
 124 
 
 130 
 
 136 
 
 141 
 
 147 
 
 727 
 
 153 
 
 159 
 
 16s 
 
 171 
 
 177 
 
 183 
 
 189 
 
 195 
 
 201 
 
 207 
 
 7 
 
 728 
 
 213 
 
 219 
 
 225 
 
 231 
 
 237 
 
 243 
 
 249 
 
 255 
 
 261 
 
 267 
 
 729 
 
 273 
 
 279 
 
 285 
 
 291 
 
 297 
 
 303 
 
 308 
 
 314 
 
 320 
 
 326 
 
 9 
 
 730 
 
 332 
 
 338 
 
 344 
 
 350 
 
 356 
 
 362 
 
 368 
 
 374 
 
 380 
 
 386 
 
 
 731 
 
 392 
 
 398 
 
 404 
 
 410 
 
 415 
 
 421 
 
 427 
 
 433 
 
 439 
 
 445 
 
 
 732 
 
 451 
 
 457 
 
 463 
 
 469 
 
 475 
 
 481 
 
 487 
 
 493 
 
 499 
 
 504 
 
 
 733 
 
 510 
 
 516 
 
 522 
 
 528 
 
 534 
 
 540 
 
 546 
 
 552 
 
 558 
 
 564 
 
 
 734 
 
 570 
 
 576 
 
 S8i 
 
 587 
 
 593 
 
 599 
 
 605 
 
 611 
 
 617 
 
 623 
 
 
 735 
 
 629 
 
 635 
 
 641 
 
 646 
 
 652 
 
 658 
 
 664 
 
 670 
 
 676 
 
 682 
 
 736 
 
 688 
 
 694 
 
 700 
 
 705 
 
 711 
 
 717 
 
 723 
 
 729 
 
 735 
 
 741 
 
 5 
 
 737 
 
 747 
 
 753 
 
 759 
 
 764 
 
 770 
 
 776 
 
 782 
 
 788 
 
 794 
 
 800 
 
 
 
 738 
 
 806 
 
 812 
 
 817 
 
 823 
 
 829 
 
 835 
 
 841 
 
 847 
 
 853 
 
 859 
 
 I 
 
 0/5 
 
 739 
 
 864 
 
 870 
 
 876 
 
 882 
 
 888 
 
 894 
 
 900 
 
 906 
 
 911 
 
 917 
 
 2 
 3 
 4 
 
 1,0 
 1/5 
 
 2/0 
 
 2/5 
 
 3/0 
 3/5 
 4/0 
 4,5 
 
 740 
 
 923 
 
 929 
 
 935 
 
 941 
 
 947 
 
 953 
 
 958 
 
 964 
 
 970 
 
 976 
 
 741 
 
 982 
 
 988 
 
 994 
 
 999 
 
 *ooS 
 
 *oii 
 
 *oi7 ^023 *o29 *035 
 
 742 
 
 87 040 
 
 046 
 
 052 
 
 058 
 
 064 
 
 070 
 
 075 
 
 081 
 
 087 
 
 093 
 
 7 
 8 
 
 743 
 
 099 
 
 loS 
 
 III 
 
 116 
 
 122 
 
 128 
 
 134 
 
 140 
 
 f46 
 
 151 
 
 744 
 
 157 
 
 163 
 
 169 
 
 175 
 
 181 
 
 186 
 
 192 
 
 198 
 
 204 
 
 210 
 
 9 
 
 745 
 
 216 
 
 221 
 
 227 
 
 233 
 
 239 
 
 245 
 
 251 
 
 256 
 
 262 
 
 268 
 
 
 746 
 
 274 
 
 280 
 
 286 
 
 291 
 
 297 
 
 303 
 
 309 
 
 315 
 
 320 
 
 326 
 
 
 747 
 
 332 
 
 338 
 
 344 
 
 349 
 
 355 
 
 361 
 
 367 
 
 373 
 
 379 
 
 384 
 
 
 748 
 
 390 
 
 396 
 
 402 
 
 408 
 
 413 
 
 419 
 
 425 
 
 431 
 
 437 
 
 442 
 
 
 749 
 
 448 
 
 454 
 
 460 
 
 466 
 
 471 
 
 477 
 
 483 
 
 489 
 
 495 
 
 500 
 
 
 750 
 
 S06 
 
 512 
 
 518 
 
 523 
 
 529 
 
 535 
 
 541 
 
 547 
 
 552 
 
 558 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 750 
 
 87506 
 
 512 
 
 518 
 
 523 
 
 529 
 
 53S 
 
 541 
 
 547 
 
 552 
 
 558 
 
 
 751 
 
 564 
 
 570 
 
 576 
 
 581 
 
 587 
 
 593 
 
 599 
 
 604 
 
 610 
 
 616 
 
 
 752 
 
 622 
 
 628 
 
 633 
 
 639 
 
 645 
 
 651 
 
 656 
 
 662 
 
 668 
 
 674 
 
 
 753 
 
 679 
 
 685 
 
 691 
 
 697 
 
 703 
 
 708 
 
 714 
 
 720 
 
 726 
 
 731 
 
 
 754 
 
 737 
 
 743 
 
 749 
 
 754 
 
 760 
 
 766 
 
 772 
 
 777 
 
 783 
 
 789 
 
 
 755 
 
 795 
 
 800 
 
 806 
 
 812 
 
 818 
 
 823 
 
 829 
 
 835 
 
 841 
 
 846 
 
 756 
 
 852 
 
 858 
 
 864 
 
 869 
 
 875 
 
 881 
 
 887 
 
 892 
 
 898 
 
 904 
 
 
 757 
 
 910 
 
 915 
 
 921 
 
 927 
 
 933 
 
 938 
 
 944 
 
 950 
 
 955 
 
 961 
 
 
 758 
 
 967 
 
 973 
 
 978 
 
 984 
 
 990 
 
 996 
 
 *ooi 
 
 *oo7 *oi3 
 
 *oi8 
 
 
 759 
 
 88024 
 
 030 
 
 036 
 
 041 
 
 047 
 
 053 
 
 058 
 
 064 
 
 070 
 
 076 
 
 
 760 
 
 081 
 
 087 
 
 093 
 
 098 
 
 104 
 
 no 
 
 116 
 
 121 
 
 127 
 
 133 
 
 761 
 
 138 
 
 144 
 
 150 
 
 156 
 
 161 
 
 167 
 
 173 
 
 178 
 
 184 
 
 190 
 
 6 
 
 762 
 
 19S 
 
 201 
 
 207 
 
 213 
 
 218 
 
 224 
 
 230 
 
 23S 
 
 241 
 
 247 
 
 
 0,6 
 
 763 
 
 252 
 
 258 
 
 264 
 
 270 
 
 275 
 
 281 
 
 287 
 
 292 
 
 298 
 
 304 
 
 I 
 
 764 
 
 309 
 
 315 
 
 321 
 
 326 
 
 332 
 
 338 
 
 343 
 
 349 
 
 355 
 
 360 
 
 2 
 
 3 
 4 
 
 % 
 
 1,2 
 1,8 
 2.4 
 3.0 
 3,6 
 
 ^'l 
 4,8 
 
 5/4 
 
 765 
 
 366 
 
 372 
 
 377 
 
 383 
 
 389 
 
 395 
 
 400 
 
 406 
 
 412 
 
 417 
 
 766 
 
 423 
 
 429 
 
 434 
 
 440 
 
 446 
 
 451 
 
 457 
 
 463 
 
 468 
 
 474 
 
 767 
 
 480 
 
 485 
 
 491 
 
 497 
 
 502 
 
 508 
 
 513 
 
 519 
 
 525 
 
 530 
 
 
 768 
 
 536 
 
 542 
 
 547 
 
 553 
 
 559 
 
 564 
 
 570 
 
 576 
 
 581 
 
 587 
 
 769 
 
 593 
 
 598 
 
 604 
 
 610 
 
 615 
 
 621 
 
 627 
 
 632 
 
 638 
 
 643 
 
 9 
 
 770 
 
 649 
 
 65s 
 
 660 
 
 666 
 
 672 
 
 677 
 
 683 
 
 689 
 
 694 
 
 700 
 
 
 771 
 
 700 
 
 711 
 
 717 
 
 722 
 
 728 
 
 734 
 
 739 
 
 745 
 
 750 
 
 756 
 
 
 772 
 
 762 
 
 767 
 
 773 
 
 779 
 
 784 
 
 790 
 
 795 
 
 801 
 
 807 
 
 812 
 
 
 773 
 
 818 
 
 824 
 
 829 
 
 835 
 
 840 
 
 846 
 
 852 
 
 857 
 
 863 
 
 868 
 
 
 774 
 
 874 
 
 880 
 
 885 
 
 891 
 
 897 
 
 902 
 
 908 
 
 913 
 
 919 
 
 925 
 
 
 775 
 
 930 
 
 936 
 
 941 
 
 947 
 
 953 
 
 958 
 
 964 
 
 969 
 
 975 
 
 981 
 
 776 
 
 986 
 
 992 
 
 997 »oo3 *oo9 
 
 *oi4 *020 *o25 ^031 #037 
 
 
 m 
 
 89042 
 
 048 
 
 053 
 
 059 
 
 064 
 
 070 
 
 076 
 
 081 
 
 087 
 
 092 
 
 
 778 
 
 098 
 
 104 
 
 109 
 
 115 
 
 120 
 
 126 
 
 131 
 
 137 
 
 143 
 
 148 
 
 
 779 
 780 
 
 154 
 
 159 
 
 165 
 
 170 
 
 176 
 
 182 
 
 187 
 
 193 
 
 198 
 
 204 
 
 
 209 
 
 21S 
 
 221 
 
 226 
 
 232 
 
 237 
 
 243 
 
 248 
 
 254 
 
 260 
 
 781 
 
 265 
 
 271 
 
 276 
 
 282 
 
 28^ 
 
 293 
 
 298 
 
 304 
 
 310 
 
 315 
 
 5 
 
 782 
 
 321 
 
 326 
 
 332 
 
 337 
 
 343 
 
 348 
 
 354 
 
 360 
 
 36s 
 
 371 
 
 
 
 783 
 
 376 
 
 382 
 
 387 
 
 393 
 
 398 
 
 404 
 
 409 
 
 415 
 
 421 
 
 426 
 
 I 
 
 0/5 
 
 784 
 
 432 
 
 437 
 
 443 
 
 448 
 
 454 
 
 459 
 
 465 
 
 470 
 
 476 
 
 481 
 
 2 
 
 3 
 4 
 
 1,0 
 
 1.5 
 2,0 
 
 2,5 
 3,0 
 3,5 
 4,0 
 4/5 
 
 785 
 
 487 
 
 492 
 
 498 
 
 504 
 
 509 
 
 515 
 
 520 
 
 526 
 
 531 
 
 537 
 
 786 
 
 542 
 
 548 
 
 553 
 
 559 
 
 564 
 
 570 
 
 575 
 
 581 
 
 586 
 
 592 
 
 787 
 
 597 
 
 603 
 
 609 
 
 614 
 
 620 
 
 625 
 
 631 
 
 636 
 
 642 
 
 647 
 
 I 
 
 788 
 
 
 658 
 
 664 
 
 669 
 
 675 
 
 680 
 
 686 
 
 691 
 
 697 
 
 702 
 
 789 
 
 708 
 
 713 
 
 719 
 
 724 
 
 730 
 
 73S 
 
 741 
 
 746 
 
 752 
 
 757 
 
 9 
 
 790 
 
 763 
 
 768 
 
 774 
 
 779 
 
 785 
 
 790 
 
 796 
 
 801 
 
 807 
 
 812 
 
 
 791 
 
 818 
 
 823 
 
 829 
 
 834 
 
 840 
 
 84S 
 
 851 
 
 856 
 
 862 
 
 867 
 
 
 792 
 
 873 
 
 878 
 
 883 
 
 889 
 
 894 
 
 900 
 
 905 
 
 9" 
 
 916 
 
 922 
 
 
 793 
 
 927 
 
 933 
 
 938 
 
 944 
 
 949 
 
 955 
 
 960 
 
 966 
 
 971 
 
 977 
 
 
 794 
 
 982 
 
 988 
 
 993 
 
 998 
 
 ♦004 
 
 *oo9 
 
 #015 *020 
 
 *026 
 
 *03i 
 
 
 795 
 
 90037 
 
 042 
 
 048 
 
 053 
 
 059 
 
 064 
 
 069 
 
 075 
 
 080 
 
 086 
 
 796 
 
 091 
 
 097 
 
 102 
 
 108 
 
 113 
 
 119 
 
 124 
 
 129 
 
 135 
 
 140 
 
 
 797 
 
 146 
 
 151 
 
 157 
 
 162 
 
 168 
 
 173 
 
 179 
 
 184 
 
 189 
 
 195 
 
 
 798 
 
 200 
 
 206 
 
 211 
 
 217 
 
 222 
 
 227 
 
 233 
 
 238 
 
 244 
 
 249 
 
 
 799 
 
 25s 
 
 260 
 
 266 
 
 271 
 
 276 
 
 282 
 
 287 
 
 293 
 
 298 
 
 304 
 
 
 800 
 
 309 
 
 314 
 
 320 
 
 325 
 
 331 
 
 336 
 
 342 
 
 347 
 
 352 
 
 358 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 800 
 
 90309 
 
 314 
 
 320 
 
 325 
 
 331 
 
 336 
 
 342 
 
 347 
 
 352 
 
 358 
 
 
 8oi 
 
 363 
 
 369 
 
 374 
 
 380 
 
 385 
 
 390 
 
 396 
 
 401 
 
 407 
 
 412 
 
 
 802 
 
 417 
 
 423 
 
 428 
 
 434 
 
 439 
 
 445 
 
 450 
 
 455 
 
 461 
 
 466 
 
 
 803 
 
 472 
 
 477 
 
 482 
 
 488 
 
 493 
 
 499 
 
 504 
 
 509 
 
 515 
 
 520 
 
 
 804 
 
 526 
 
 531 
 
 536 
 
 542 
 
 547 
 
 553 
 
 558 
 
 563 
 
 569 
 
 574 
 
 
 805 
 
 580 
 
 585 
 
 590 
 
 596 
 
 601 
 
 607 
 
 612 
 
 617 
 
 623 
 
 628 
 
 806 
 
 634 
 
 639 
 
 644 
 
 650 
 
 655 
 
 660 
 
 666 
 
 671 
 
 677 
 
 682 
 
 
 807 
 
 687 
 
 693 
 
 698 
 
 703 
 
 709 
 
 714 
 
 720 
 
 725 
 
 730 
 
 736 
 
 
 808 
 
 741 
 
 747 
 
 752 
 
 757 
 
 763 
 
 768 
 
 773 
 
 779 
 
 784 
 
 789 
 
 
 809 
 
 795 
 
 800 
 
 806 
 
 811 
 
 816 
 
 822 
 
 827 
 
 832 
 
 838 
 
 843 
 
 . 
 
 810 
 
 849 
 
 854 
 
 859 
 
 865 
 
 870 
 
 875 
 
 881 
 
 886 
 
 891 
 
 897 
 
 811 
 
 902 
 
 907 
 
 913 
 
 918 
 
 924 
 
 929 
 
 934 
 
 940 
 
 945 
 
 950 
 
 R 
 
 812 
 
 956 
 
 961 
 
 966 
 
 972 
 
 977 
 
 982 
 
 988 
 
 993 
 
 998 *oo4 
 
 
 0,6 
 
 ?'3 
 
 91009 
 
 014 
 
 020 
 
 025 
 
 030 
 
 036 
 
 041 
 
 046 
 
 052 
 
 057 
 
 I 
 
 814 
 
 062 
 
 068 
 
 073 
 
 078 
 
 084 
 
 089 
 
 094 
 
 100 
 
 105 
 
 no 
 
 2 
 
 3 
 
 4 
 
 5 
 6 
 
 1,2 
 
 1,8 
 2.4 
 3/0 
 3,6 
 4,2 
 4,8 
 5,4 
 
 ^'1 
 
 116 
 
 121 
 
 126 
 
 132 
 
 137 
 
 142 
 
 148 
 
 153 
 
 158 
 
 164 
 
 816 
 
 169 
 
 174 
 
 180 
 
 185 
 
 190 
 
 196 
 
 201 
 
 206 
 
 212 
 
 217 
 
 I'^l 
 
 222 
 
 228 
 
 233 
 
 238 
 
 243 
 
 249 
 
 254 
 
 259 
 
 265 
 
 270 
 
 7 
 8 
 
 818 
 
 27s 
 
 281 
 
 286 
 
 291 
 
 297 
 
 302 
 
 307 
 
 312 
 
 318 
 
 323 
 
 819 
 
 328 
 
 334 
 
 339 
 
 344 
 
 350 
 
 355 
 
 360 
 
 365 
 
 371 
 
 
 9 
 
 820 
 
 381 
 
 387 
 
 392 
 
 397 
 
 403 
 
 408 
 
 413 
 
 418 
 
 424 
 
 429 
 
 
 821 
 
 434 
 
 440 
 
 445 
 
 450 
 
 455 
 
 461 
 
 466 
 
 471 
 
 477 
 
 482 
 
 
 822 
 
 487 
 
 492 
 
 498 
 
 503 
 
 508 
 
 514 
 
 519 
 
 524 
 
 529 
 
 535 
 
 
 823 
 
 540 
 
 545 
 
 551 
 
 556 
 
 561 
 
 566 
 
 572 
 
 577 
 
 582 
 
 587 
 
 
 824 
 
 593 
 
 598 
 
 603 
 
 609 
 
 614 
 
 619 
 
 624 
 
 630 
 
 635 
 
 640 
 
 
 825 
 
 64S 
 
 651 
 
 656 
 
 661 
 
 666 
 
 672 
 
 677 
 
 682 
 
 687 
 
 693 
 
 826 
 
 698 
 
 703 
 
 709 
 
 714 
 
 719 
 
 724 
 
 730 
 
 735 
 
 740 
 
 745 
 
 
 827 
 
 751 
 
 756 
 
 761 
 
 766 
 
 772 
 
 777 
 
 782 
 
 787 
 
 793 
 
 798 
 
 
 828 
 
 803 
 
 808 
 
 814 
 
 819 
 
 824 
 
 829 
 
 834 
 
 840 
 
 845 
 
 850 
 
 
 829 
 
 85s 
 
 861 
 
 866 
 
 871 
 
 876 
 
 882 
 
 887 
 
 892 
 
 897 
 
 903 
 
 
 830 
 
 908 
 
 913 
 
 918 
 
 924 
 
 929 
 
 934 
 
 939 
 
 944 
 
 95° 
 
 955 
 
 831 
 
 960 
 
 965 
 
 971 
 
 976 
 
 981 
 
 986 
 
 991 
 
 997 *oo2 ^007 
 
 5 
 
 832 
 
 92 012 
 
 018 
 
 023 
 
 028 
 
 033 
 
 038 
 
 044 
 
 049 
 
 054 
 
 059 
 
 
 
 833 
 
 065 
 
 070 
 
 075 
 
 080 
 
 085 
 
 091 
 
 096 
 
 lOI 
 
 106 
 
 III 
 
 I 
 
 o,S 
 
 834 
 
 117 
 
 122 
 
 127 
 
 132 
 
 137 
 
 143 
 
 148 
 
 153 
 
 158 
 
 163 
 
 2 
 
 3 
 4 
 
 1,0 
 
 1,5 
 2,0 
 
 2,5 
 
 835 
 
 169 
 
 174 
 
 179 
 
 184 
 
 189 
 
 195 
 
 200 
 
 205 
 
 210 
 
 215 
 
 836 
 
 221 
 
 226 
 
 231 
 
 236 
 
 241 
 
 247 
 
 252 
 
 257 
 
 262 
 
 267 
 
 837 
 
 273 
 
 278 
 
 283 
 
 288 
 
 293 
 
 298 
 
 304 
 
 309 
 
 314 
 
 319 
 
 I 
 
 3,0 
 3,5 
 4,0 
 4,5 
 
 838 
 
 324 
 
 330 
 
 335 
 
 340 
 
 345 
 
 350 
 
 355 
 
 361 
 
 366 
 
 371 
 
 839 
 
 376 
 
 381 
 
 387 
 
 392 
 
 397 
 
 402 
 
 407 
 
 412 
 
 418 
 
 423 
 
 9 
 
 840 
 
 428 
 
 433 
 
 438 
 
 443 
 
 449 
 
 454 
 
 459 
 
 464 
 
 469 
 
 474 
 
 
 841 
 
 480 
 
 
 490 
 
 495 
 
 500 
 
 505 
 
 511 
 
 516 
 
 521 
 
 526 
 
 
 842 
 
 531 
 
 536 
 
 542 
 
 547 
 
 552 
 
 557 
 
 562 
 
 567 
 
 572 
 
 578 
 
 
 843 
 
 . 583 
 
 588 
 
 
 598 
 
 
 609 
 
 614 
 
 619 
 
 624 
 
 629 
 
 
 844 
 
 634 
 
 639 
 
 645 
 
 650 
 
 655 
 
 660 
 
 665 
 
 670 
 
 675 
 
 681 
 
 
 84s 
 
 686 
 
 691 
 
 696 
 
 701 
 
 706 
 
 711 
 
 716 
 
 722 
 
 727 
 
 732 
 
 846 
 
 737 
 
 742 
 
 747 
 
 752 
 
 758 
 
 763 
 
 768 
 
 773 
 
 778 
 
 783 
 
 
 847 
 
 788 
 
 793 
 
 799 
 
 804 
 
 809 
 
 814 
 
 819 
 
 824 
 
 829 
 
 834 
 
 
 848 
 
 840 
 
 845 
 
 850 
 
 855 
 
 860 
 
 865 
 
 870 
 
 875 
 
 881 
 
 886 
 
 
 849 
 
 891 
 
 896 
 
 901 
 
 906 
 
 911 
 
 916 
 
 921 
 
 927 
 
 932 
 
 937 
 
 
 850 
 
 942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 
 
 973 
 
 978 
 
 983 
 
 988 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 850 
 
 92942 
 
 947 
 
 952 
 
 957 
 
 962 
 
 967 973 
 
 978 
 
 983 
 
 988 
 
 
 851 
 
 993 
 
 998 
 
 *oo3 
 
 *oo8 
 
 *oi3 
 
 ^018 #024 ^029 #034 *039 
 
 
 852 
 
 93044 
 
 049 
 
 054 
 
 059 
 
 064 
 
 069 075 
 
 080 
 
 085 
 
 090 
 
 
 853 
 
 09? 
 
 100 
 
 105 
 
 no 
 
 115 
 
 120 125 
 
 131 
 
 
 141 
 
 
 854 
 
 146 
 
 151 
 
 156 
 
 161 
 
 166 
 
 171 176 
 
 181 
 
 186 
 
 192 
 
 
 85s 
 
 197 
 
 202 
 
 207 
 
 212 
 
 217 
 
 222 227 
 
 232 
 
 237 
 
 242 
 
 856 
 
 247 
 
 252 
 
 258 
 
 263 
 
 268 
 
 273 278 
 
 283 
 
 288 
 
 293 
 
 6 
 
 857 
 
 298 
 
 303 
 
 308 
 
 313 
 
 318 
 
 323 328 
 
 334 
 
 339 
 
 344 
 
 
 0,6 
 
 1/2 
 
 1/8 
 
 2/4 
 
 3'2 
 3/6 
 
 4/2 
 
 4/8 
 5/4 
 
 858 
 
 349 
 
 354 
 
 359 
 
 364 
 
 369 
 
 374 379 
 
 384 
 
 389 
 
 394 
 
 I 
 
 3 
 
 4 
 
 5 
 6 
 
 859 
 
 399 
 
 404 
 
 409 
 
 414 
 
 420 
 
 425 430 
 
 435 
 
 440 
 
 445 
 
 860 
 
 450 
 
 455 
 
 460 
 
 465 
 
 470 
 
 47S 480 
 
 485 
 
 490 
 
 495 
 
 861 
 
 500 
 
 50S 
 
 510 
 
 515 
 
 520 
 
 526 531 
 576 581 
 
 536 
 
 541 
 
 546 
 
 862 
 
 551 
 
 556 
 
 561 
 
 566 
 
 571 
 
 586 
 
 591 
 
 596 
 
 7 
 8 
 
 863 
 
 601 
 
 606 
 
 611 
 
 616 
 
 621 
 
 626 631 
 
 636 
 
 641 
 
 646 
 
 864 
 
 651 
 
 656 
 
 661 
 
 666 
 
 671 
 
 676 682 
 
 687 
 
 692 
 
 697 
 
 9 
 
 865 
 
 702 
 
 707 
 
 712 
 
 717 
 
 722 
 
 727 732 
 
 737 
 
 742 
 
 747 
 
 
 866 
 
 752 
 
 757 
 
 762 
 
 767 
 
 772 
 
 777 782 
 
 787 
 
 792 
 
 797 
 
 
 867 
 
 802 
 
 807 
 
 812 
 
 817 
 
 822 
 
 827 832 
 
 837 
 
 842 
 
 847 
 
 
 868 
 
 852 
 
 857 
 
 862 
 
 867 
 
 872 
 
 877 882 
 
 887 
 
 892 
 
 897 
 
 
 869 
 
 902 
 
 907 
 
 912 
 
 917 
 
 922 
 
 927 932 
 
 937 
 
 942 
 
 947 
 
 
 870 
 
 952 
 
 957 
 
 962 
 
 967 
 
 972 
 
 977 982 
 
 987 
 
 992 
 
 997 
 
 871 
 
 94002 
 
 007 
 
 012 
 
 017 
 
 022 
 
 027 032 
 
 037 
 
 042 
 
 047 
 
 ii 
 
 872 
 
 052 
 
 057 
 
 062 
 
 067 
 
 072 
 
 077 082 
 
 086 
 
 091 
 
 096 
 
 
 
 873 
 
 lOI 
 
 106 
 
 III 
 
 116 
 
 121 
 
 126 131 
 
 136 
 
 141 
 
 146 
 
 I 
 
 0/5 
 
 874 
 
 151 
 
 156 
 
 161 
 
 166 
 
 171 
 
 176 181 
 
 186 
 
 191 
 
 196 
 
 2 
 
 3 
 4 
 
 i 
 
 1,0 
 1/5 
 
 2/0 
 
 2,5 
 
 3/0 
 3/5 
 4/0 
 4/5 
 
 875 
 
 201 
 
 206 
 
 211 
 
 216 
 
 221 
 
 226 231 
 
 236 
 
 240 
 
 245 
 
 876 
 
 250 
 
 255 
 
 260 
 
 265 
 
 270 
 
 275 280 
 
 28S 
 
 290 
 
 295 
 
 877 
 
 300 
 
 305 
 
 310 
 
 315 
 
 320 
 
 325 330 
 
 335 
 
 340 
 
 345 
 
 7 
 
 8 
 
 878 
 
 349 
 
 354 
 
 359 
 
 364 
 
 369 
 
 374 379 
 
 384 
 
 389 
 
 394 
 
 879 
 
 399 
 
 404 
 
 409 
 
 414 
 
 419 
 
 424 429 
 
 433 
 
 438 
 
 443 
 
 9 
 
 880 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 473 478 
 
 483 
 
 488 
 
 493 
 
 
 881 
 
 498 
 
 503 
 
 507 
 
 512 
 
 517 
 
 522 527 
 
 532 
 
 537 
 
 542 
 
 
 882 
 
 547 
 
 552 
 
 557 
 
 •362 
 
 567 
 
 571 , 576 
 
 581 
 
 586 
 
 591 
 
 
 883 
 
 596 
 
 601 
 
 606 
 
 ^i^^ 
 
 ^616 
 
 621' 626 
 
 630 
 
 635 
 
 640 
 
 
 884 
 
 645 
 
 650 
 
 655 
 
 660*^ 665 
 
 670 675 
 
 680 
 
 685 
 
 689 
 
 
 88s 
 
 694 
 
 699 
 
 704 
 
 709 
 
 714 
 
 719 724 
 
 729 
 
 734 
 
 738 
 
 886 
 
 743 
 
 748 
 
 753 
 
 758 
 
 763 
 
 768 773 
 
 778 
 
 783 
 
 787 
 
 d 
 
 887 
 
 792 
 
 797 
 
 802 
 
 807 
 
 812 
 
 817 822 
 
 827 
 
 832 
 
 836 
 
 
 
 888 
 
 &41 
 
 846 
 
 851 
 
 856 
 
 861 
 
 866 871 
 
 876 
 
 880 
 
 88s 
 
 I 
 
 °4 
 
 1,2 
 
 1/6 
 
 2/0 
 
 "A 
 
 889 
 
 890 
 
 895 
 
 900 
 
 905 
 
 910 
 
 915 919 
 
 924 
 
 929 
 
 934 
 
 2 
 3 
 4 
 5 
 6 
 
 I 
 
 9 
 
 890 
 
 939 
 
 944 
 
 949 
 
 954 
 
 959 
 
 963 968 
 
 973 
 
 978 
 
 983 
 
 891 
 
 
 993 
 
 998 *002 ^OOJ 
 
 #012 ^017 *022 *027 ^032 
 
 892 
 
 95036 
 
 041 
 
 046 
 
 051 
 
 056 
 
 061 066 
 
 071 
 
 075 
 
 080 
 
 893 
 
 085 
 
 090 
 
 095 
 
 100 
 
 105 
 
 109 114 
 
 119 
 
 124 
 
 129 
 
 i% 
 
 894 
 
 134 
 
 139 
 
 143 
 
 148 
 
 153 
 
 158 i6a 
 
 168 
 
 173 
 
 177 
 
 895 
 
 182 
 
 187 
 
 192 
 
 197 
 
 202 
 
 207 211 
 
 216 
 
 221 
 
 226 
 
 
 896 
 
 231 
 
 236 
 
 240 
 
 245 
 
 250 
 
 255 260 
 
 265 
 
 270 
 
 274 
 
 
 897 
 
 279 
 
 284 
 
 289 
 
 294 
 
 299 
 
 303 308 
 
 313 
 
 3^^ 
 
 323 
 
 
 898 
 
 328 
 
 332 
 
 337 
 
 342 
 
 347 
 
 352 357 
 
 361 
 
 366 
 
 371 
 
 
 899* 
 
 376 
 
 381 
 
 386 
 
 390 
 
 395 
 
 400 405 
 
 410 
 
 415 
 
 419 
 
 
 900 
 
 424 
 
 429 
 
 434 
 
 439 
 
 444 
 
 448 453 
 
 458 
 
 463 
 
 468 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 900 
 
 95424 
 
 429 
 
 434 
 
 439 
 
 444 
 
 448 
 
 453 
 
 458 
 
 463 
 
 468 
 
 
 901 
 
 472 
 
 477 
 
 482 
 
 487 
 
 492 
 
 497 
 
 501 
 
 506 
 
 511 
 
 516 
 
 
 902 
 
 521 
 
 52S 
 
 530 
 
 535 
 
 540 
 
 545 
 
 550 
 
 554 
 
 559 
 
 564 
 
 
 903 
 
 569 
 
 574 
 
 578 
 
 583 
 
 588 
 
 593 
 
 598 
 
 
 
 612 
 
 
 904 
 
 617 
 
 
 626 
 
 631 
 
 636 
 
 641 
 
 646 
 
 650 
 
 655 
 
 660 
 
 
 90s 
 
 665 
 
 670 
 
 674 
 
 679 
 
 684 
 
 689 
 
 694 
 
 698 
 
 703 
 
 708 
 
 906 
 
 713 
 
 718 
 
 722 
 
 727 
 
 732 
 
 737 
 
 742 
 
 746 
 
 751 
 
 756 
 
 
 907 
 
 761 
 
 766 
 
 770 
 
 775 
 
 780 
 
 785 
 
 789 
 
 794 
 
 799 
 
 804 
 
 
 908 
 
 809 
 
 813 
 
 818 
 
 823 
 
 828 
 
 832 
 
 837 
 
 842 
 
 847 
 
 852 
 
 
 909 
 
 856 
 
 861 
 
 866 
 
 871 
 
 875 
 
 880 
 
 885 
 
 890 
 
 895 
 
 899 
 
 
 910 
 
 904 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 933 
 
 938 
 
 942 
 
 947 
 
 911 
 
 952 
 
 957 
 
 961 
 
 966 
 
 971 
 
 976 
 
 980 
 
 985 
 
 990 
 
 995 
 
 5 
 
 912 
 
 999 *oo4 ^009 *oi4 *oi9 
 
 *023 
 
 *028 
 
 *o33 
 
 *038 
 
 *042 
 
 I 
 
 o.S 
 1,0 
 
 913 
 
 96047 
 
 052 
 
 057 
 
 061 
 
 066 
 
 071 
 
 076 
 
 080 
 
 085 
 
 090 
 
 2 
 
 914 
 
 095 
 
 099 
 
 104 
 
 109 
 
 114 
 
 118 
 
 123 
 
 128 
 
 133 
 
 137 
 
 3 
 4 
 
 1.5 
 2,0 
 
 2,5 
 
 915 
 
 142 
 
 147 
 
 152 
 
 156 
 
 161 
 
 166 
 
 171 
 
 175 
 
 180 
 
 185 
 
 916 
 
 190 
 
 194 
 
 199 
 
 204 
 
 209 
 
 213 
 
 218 
 
 223 
 
 227 
 
 232 
 
 6 
 
 3/0 
 
 917 
 
 237 
 
 242 
 
 246 
 
 251 
 
 256 
 
 261 
 
 265 
 
 270 
 
 275 
 
 280 
 
 7 
 
 3/5 
 
 918 
 
 284 
 
 289 
 
 294 
 
 298 
 
 303 
 
 308 
 
 313 
 
 317 
 
 322 
 
 327 
 
 8 
 
 4/0 
 
 919 
 
 332 
 
 336 
 
 341 
 
 346 
 
 3So 
 
 355 
 
 360 
 
 365 
 
 369 
 
 374 
 
 9 
 
 4.5 
 
 920 
 
 379 
 
 384 
 
 388 
 
 393 
 
 398 
 
 402 
 
 407 
 
 412 
 
 417 
 
 421 
 
 
 921 
 
 426 
 
 431 
 
 435 
 
 440 
 
 445 
 
 450 
 
 454 
 
 459 
 
 464 
 
 468 
 
 
 922 
 
 473 
 
 478 
 
 483 
 
 487 
 
 492 
 
 497 
 
 501 
 
 506 
 
 5" 
 
 515 
 
 
 923 
 
 520 
 
 525 
 
 530 
 
 534 
 
 539 
 
 544 
 
 548 
 
 553 
 
 558 
 
 562 
 
 
 924 
 
 567 
 
 572 
 
 577 
 
 581 
 
 586 
 
 591 
 
 595 
 
 600 
 
 605 
 
 609 
 
 
 925 
 
 614 
 
 619 
 
 624 
 
 628 
 
 633 
 
 638 
 
 642 
 
 647 
 
 652 
 
 656 
 
 926 
 
 661 
 
 666 
 
 670 
 
 675 
 
 680 
 
 685 
 
 689 
 
 694 
 
 699 
 
 703 
 
 
 927 
 
 708 
 
 713 
 
 717 
 
 722 
 
 727 
 
 731 
 
 736 
 
 741 
 
 745 
 
 750 
 
 
 928 
 
 755 
 
 759 
 
 764 
 
 769 
 
 774 
 
 778 
 
 783 
 
 788 
 
 792 
 
 797 
 
 
 929 
 
 802 
 
 806 
 
 811 
 
 816 
 
 820 
 
 825 
 
 830 
 
 834 
 
 839 
 
 844 
 
 
 930 
 
 848 
 
 ^53 
 
 858 
 
 862 
 
 867 
 
 872 
 
 876 
 
 881 
 
 886 
 
 890 
 
 931 
 
 895 
 
 900 
 
 904 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 932 
 
 937 
 
 4 
 
 932 
 
 ^il 
 
 946 
 
 951 
 
 956 
 
 960 
 
 965 
 
 970 
 
 97^ 
 
 979 
 
 984 
 
 I 
 
 1/2 
 
 1/6 
 
 2 
 
 933 
 
 988 
 
 993 
 
 997 *002 *007 
 
 *OII 
 
 *oi6 
 
 ^021 ^025 ^030 
 
 934 
 
 97035 
 
 039 
 
 044 
 
 049 
 
 053 
 
 058 
 
 063 
 
 067 
 
 072 
 
 077 
 
 2 
 3 
 4 
 
 935 
 
 081 
 
 086 
 
 090 
 
 095 
 
 100 
 
 104 
 
 109 
 
 114 
 
 118 
 
 123 
 
 936 
 
 128 
 
 132 
 
 137 
 
 
 146 
 
 151 
 
 155 
 
 160 
 
 165 
 
 169 
 
 2/4 
 2 8 
 
 937 
 
 174 
 
 179 
 
 183 
 
 188 
 
 192 
 
 197 
 
 202 
 
 206 
 
 211 
 
 216 
 
 7 
 
 938 
 
 220 
 
 225 
 
 230 
 
 234 
 
 239 
 
 243 
 
 248 
 
 253 
 
 257 
 
 262 
 
 te 
 
 939 
 
 267 
 
 271 
 
 276 
 
 280 
 
 285 
 
 290 
 
 294 
 
 299 
 
 304 
 
 308 
 
 9 
 
 940 
 
 313 
 
 317 
 
 322 
 
 327 
 
 331 
 
 336 
 
 340 
 
 345 
 
 350 
 
 354 
 
 
 941 
 
 359 
 
 364 
 
 368 
 
 373 
 
 377 
 
 382 
 
 387 
 
 391 
 
 396 
 
 400 
 
 
 942 
 
 405 
 
 410 
 
 414 
 
 419 
 
 424 
 
 428 
 
 433 
 
 437 
 
 442 
 
 447 
 
 
 943 
 
 451 
 
 456 
 
 460 
 
 465 
 
 470 
 
 474 
 
 479 
 
 483 
 
 488 
 
 493 
 
 
 944 
 
 497 
 
 502 
 
 506 
 
 511 
 
 516 
 
 520 
 
 525 
 
 529 
 
 534 
 
 539 
 
 
 945 
 
 543 
 
 548 
 
 552 
 
 557 
 
 562 
 
 566 
 
 571 
 
 575 
 
 580 
 
 585 
 
 946 
 
 589 
 
 594 
 
 598 
 
 603 
 
 607 
 
 612 
 
 617 
 
 621 
 
 626 
 
 630 
 
 
 947 
 
 635 
 
 640 
 
 644 
 
 649 
 
 653 
 
 658 
 
 663 
 
 667 
 
 672 
 
 676 
 
 
 948 
 
 681 
 
 685 
 
 690 
 
 695 
 
 699 
 
 704 
 
 708 
 
 713 
 
 717 
 
 722 
 
 
 949 
 
 727 
 
 731 
 
 736 
 
 740 
 
 745 
 
 749 
 
 754 
 
 759 
 
 763 
 
 768 
 
 
 950 
 
 772 
 
 777 
 
 782 
 
 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
 950 
 
 97772 
 
 in 
 
 782 
 
 786 
 
 791 
 
 795 
 
 800 
 
 804 
 
 809 
 
 813 
 
 
 951 
 
 818 
 
 823 
 
 827 
 
 832 
 
 836 
 
 841 
 
 845 
 
 850 
 
 855 
 
 859 
 
 
 952 
 
 864 
 
 868 
 
 873 
 
 877 
 
 882 
 
 886 
 
 891 
 
 896 
 
 900 
 
 905 
 
 
 953 
 
 909 
 
 914 
 
 918 
 
 923 
 
 928 
 
 932 
 
 937 
 
 941 
 
 946 
 
 950 
 
 
 954 
 
 955 
 
 959 
 
 964 
 
 968 
 
 973 
 
 978 
 
 982 
 
 987 
 
 991 
 
 996 
 
 
 955 
 
 98 000 
 
 005 
 
 009 
 
 014 
 
 019 
 
 023 
 
 028 
 
 032 
 
 037 
 
 041 
 
 956 
 
 046 
 
 050 
 
 055 
 
 059 
 
 064 
 
 068 
 
 073 
 
 078 
 
 082 
 
 087 
 
 
 957 
 
 091 
 
 096 
 
 100 
 
 105 
 
 109 
 
 114 
 
 118 
 
 123 
 
 127 
 
 132 
 
 
 958 
 
 137 
 
 141 
 
 146 
 
 ISO 
 
 155 
 
 159 
 
 164 
 
 168 
 
 173 
 
 177 
 
 
 959 
 
 182 
 
 186 
 
 191 
 
 195 
 
 200 
 
 204 
 
 209 
 
 214 
 
 218 
 
 223 
 
 
 960 
 
 227 
 
 232 
 
 236 
 
 241 
 
 245 
 
 250 
 
 254 
 
 259 
 
 263 
 
 268 
 
 961 
 
 272 
 
 277 
 
 281 
 
 286 
 
 290 
 
 295 
 
 299 
 
 304 
 
 308 
 
 313 
 
 5 
 
 962 
 
 318 
 
 322 
 
 327 
 
 331 
 
 336 
 
 340 
 
 345 
 
 349 
 
 354 
 
 358 
 
 I 
 
 0,5 
 I 
 
 963 
 
 363 
 
 367 
 
 372 
 
 376 
 
 381 
 
 385 
 
 390 
 
 394 
 
 399 
 
 403 
 
 2 
 
 964 
 
 408 
 
 412 
 
 417 
 
 421 
 
 426 
 
 430 
 
 435 
 
 439 
 
 444 
 
 448 
 
 3 
 
 4 
 5 
 
 lis 
 
 2,0 
 
 2,5 
 
 9^1 
 
 453 
 
 457 
 
 462 
 
 466 
 
 471 
 
 475 
 
 480 
 
 484 
 
 489 
 
 493 
 
 966 
 
 498 
 
 502 
 
 507 
 
 5^^ 
 
 516 
 
 520 
 
 525 
 
 529 
 
 534 
 
 538 
 
 6 
 
 3/0 
 
 967 
 
 543 
 
 547 
 
 552 
 
 556 
 
 561 
 
 565 
 
 570 
 
 574 
 
 579 
 
 583 
 
 7 
 
 3/5 
 
 968 
 
 588 
 
 592 
 
 597 
 
 601 
 
 605 
 
 610 
 
 614 
 
 619 
 
 623 
 
 628 
 
 8 
 
 4/0 
 
 969 
 
 632 
 
 637 
 
 641 
 
 646 
 
 650 
 
 655 
 
 659 
 
 664 
 
 668 
 
 673 
 
 9 
 
 4,5 
 
 970 
 
 677 
 
 682 
 
 686 
 
 691 
 
 695 
 
 700 
 
 704 
 
 709 
 
 713 
 
 717 
 
 
 971 
 
 722 
 
 726 
 
 731 
 
 735 
 
 740 
 
 744 
 
 749 
 
 
 758 
 
 762 
 
 
 972 
 
 767 
 
 771 
 
 776 
 
 780 
 
 784 
 
 789 
 
 793 
 
 798 
 
 802 
 
 807 
 
 
 973 
 
 811 
 
 816 
 
 820 
 
 825 
 
 829 
 
 834 
 
 838 
 
 843 
 
 847 
 
 851 
 
 
 974 
 
 856 
 
 860 
 
 865 
 
 869 
 
 874 
 
 878 
 
 883 
 
 887 
 
 892 
 
 896 
 
 
 975 
 
 900 
 
 905 
 
 909 
 
 914 
 
 918 
 
 923 
 
 927 
 
 932 
 
 936 
 
 941 
 
 976 
 
 945 
 
 949 
 
 954 
 
 958 
 
 963 
 
 967 
 
 972 
 
 976 
 
 981 
 
 985 
 
 
 977 
 
 989 
 
 994 
 
 998 *oo3 
 
 *oo7 
 
 *OI2 
 
 *oi6 
 
 *02I 
 
 *025 *029 
 
 
 978 
 
 99 034 
 
 038 
 
 043 
 
 047 
 
 052 
 
 056 
 
 061 
 
 065 
 
 069 
 
 074 
 
 
 979 
 
 078 
 
 083 
 
 087 
 
 092 
 
 096 
 
 100 
 
 105 
 
 109 
 
 114 
 
 118 
 
 
 980 
 
 123 
 
 127 
 
 131 
 
 136 
 
 140 
 
 145 
 
 149 
 
 154 
 
 158 
 
 162 
 
 981 
 
 167 
 
 171 
 
 176 
 
 180 
 
 185 
 
 189 
 
 193 
 
 198 
 
 202 
 
 207 
 
 4 
 
 982 
 
 211 
 
 216 
 
 220 
 
 224 
 
 229 
 
 233 
 
 238 
 
 242 
 
 247 
 
 251 
 
 
 
 983 
 
 •255 
 
 260 
 
 264 
 
 269 
 
 273 
 
 277 
 
 282 
 
 286 
 
 291 
 
 295 
 
 I 
 
 o;t 
 
 1/2 
 
 2 
 
 984 
 
 300 
 
 304 
 
 308 
 
 313 
 
 317 
 
 322 
 
 326 
 
 330 
 
 335 
 
 339 
 
 2 
 3 
 4 
 
 9^1 
 
 344 
 
 348 
 
 352 
 
 357 
 
 361 
 
 366 
 
 370 
 
 374 
 
 379 
 
 383 
 
 986 
 
 388 
 
 392 
 
 396 
 
 401 
 
 405 
 
 410 
 
 414 
 
 419 
 
 423 
 
 427 
 
 2^4 
 2/8 
 
 987 
 
 432 
 
 436 
 
 441 
 
 445 
 
 449 
 
 454 
 
 458 
 
 463 
 
 467 
 
 471 
 
 7 
 8 
 
 988 
 
 476 
 
 480 
 
 484 
 
 489 
 
 493 
 
 498 
 
 502 
 
 506 
 
 511 
 
 515 
 
 3'? 
 
 3/6 
 
 989 
 
 520 
 
 524 
 
 528 
 
 533 
 
 537 
 
 542 
 
 546 
 
 550 
 
 555 
 
 559 
 
 9 
 
 990 
 
 564 
 
 568 
 
 572 
 
 577 
 
 581 
 
 585 
 
 590 
 
 594 
 
 599 
 
 603 
 
 
 991 
 
 607 
 
 612 
 
 616 
 
 621 
 
 625 
 
 629 
 
 634 
 
 638 
 
 642 
 
 647 
 
 
 992 
 
 651 
 
 656 
 
 660 
 
 664 
 
 669 
 
 673 
 
 677 
 
 682 
 
 686 
 
 691 
 
 
 993 
 
 695 
 
 699 
 
 704 
 
 708 
 
 712 
 
 717 
 
 721 
 
 726 
 
 730 
 
 734 
 
 
 994 
 
 739 
 
 743 
 
 747 
 
 752 
 
 756 
 
 760 
 
 765 
 
 769 
 
 774 
 
 778 
 
 
 995 
 
 782 
 
 787 
 
 791 
 
 795 
 
 800 
 
 804 
 
 808 
 
 813 
 
 817 
 
 822 
 
 996 
 
 826 
 
 830 
 
 835 
 
 839 
 
 843 
 
 848 
 
 852 
 
 856 
 
 861 
 
 865 
 
 
 997 
 
 870 
 
 874 
 
 878 
 
 883 
 
 887 
 
 891 
 
 896 
 
 900 
 
 904 
 
 909 
 
 
 998 
 
 913 
 
 917 
 
 922 
 
 926 
 
 930 
 
 935 
 
 939 
 
 944 
 
 948 
 
 952 
 
 
 999 
 
 957 
 
 961 
 
 965 
 
 970 
 
 974 
 
 978 
 
 983 
 
 987 
 
 991 
 
 996 
 
 
 1000 
 
 00 000 
 
 004 
 
 009 
 
 013 
 
 017 
 
 022 
 
 026 
 
 030 
 
 035 
 
 039 
 
 N. 
 
 L. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 P.P. 
 
NOTES ON TABLES I AND II. 
 
 The logarithms of numbers are in general incommensurable. 
 In these tables they are given correct to five places of decimals. 
 If the sixth place is 5 or more, the next larger number is used 
 in the fifth place. Thus log 8102 = 3.908549+; in five-place 
 tables this is written 3.90855, the dash above the 5 showing 
 that the logarithm is less than given. 
 
 So log 8133 = 3.910251-; in five-place tables this is written 
 3.91025, the dot above the 5 showing that the logarithm is more 
 than given. 
 
 In the natural functions of the angles (Table II) all numbers 
 are decimals for sine and cosine (why ?), and for tangent and 
 cotangent, except where the decimal point is used to indicate 
 that part of the number is integral. When no decimal point 
 is printed in the tables it is to be understood. When the 
 natural function is a pure decimal the characteristic of the 
 logarithm is negative. Accordingly, in the tables 10 is added, 
 and in the result this must be allowed for. Thus 
 
 nat. sin 44° 20' = 0.69883, log sin 44° 20' = 1.84437, 
 
 or, as printed in the tables, 9.84437, which means 9.84437 — ?0. 
 
TABLE n. 
 
 THE LOGARITHMIC AND NATURAL SINES, COSESTES, 
 
 TANGENTS, AND COTANGENTS OF ANGLES 
 
 FROM 0° TO 90°. 
 
»5 
 
 Nat. Sin Log. d. 
 
 Nat.CoSLog. Nat.TanLog 
 
 Log.CotNat. 
 
 ooooo 
 029 
 
 058 
 087 
 116 
 
 646373 
 
 6.76476 
 6.94085 
 7-06579 
 
 0014s 
 
 175 
 
 204 
 
 233 
 
 262 
 
 7.10270 
 7.24188 
 7.30882 
 7.36682 
 7.41797 
 
 00291 
 320 
 
 349 
 378 
 407 
 
 746373 
 7-50512 
 7.54291 
 7-57767 
 7-60985 
 
 00436 
 465 
 495 
 
 524 
 553 
 
 7.63982 
 7.66784 
 7.69417 
 7.71900 
 7.74248 
 
 00582 
 611 
 640 
 669 
 698 
 
 7-76475 
 7.78594 
 7.8061$ 
 
 7-82545 
 7-8439^ 
 
 00727 
 756 
 785 
 814 
 
 844 
 
 00873 
 
 902 
 
 931 
 960 
 
 7.861O0 
 7.87870 
 7.89509 
 7.91088 
 7.92612 
 
 7.94084 
 7-95508 
 7.96887 
 7.98223 
 7.99520 
 
 01018 
 047 
 076 
 105 
 134 
 
 8.00779 
 8.02002 
 8.03192 
 8.04350 
 8.ot;4'78 
 
 01 164 
 
 193 
 
 222 
 
 251 
 
 280 
 
 8.0J57i 
 8.07650 
 8.0S696 
 8.09718 
 8.10717 
 
 01309 
 338 
 367 
 396 
 425 
 
 8.1 1693 
 8.12647 
 8.13581 
 8.14495 
 8-15391 
 
 01454 
 483 
 513 
 542 
 571 
 
 8.16268 
 8.17128 
 8.17971 
 8.18798 
 8.19610 
 
 01600 
 629 
 658 
 687 
 716 
 745 
 
 8.20407 
 8.21 189 
 8.21958 
 8.22713 
 8.23456 
 8.24186 
 
 30103 
 17609 
 12494 
 9691 
 7918 
 6694 
 5800 
 51 15 
 4576 
 4139 
 3779 
 3476 
 3218 
 2997 
 2802 
 2633 
 2483 
 2348 
 2227 
 2 1 19 
 2021 
 1930 
 1848 
 
 1773 
 1704 
 1639 
 1579 
 1524 
 1472 
 1424 
 1379 
 1336 
 1297 
 
 1259 
 1223 
 1 190 
 1158 
 1 128 
 
 IIOO 
 
 1072 
 
 1046 
 
 1022 
 
 999 
 
 976 
 
 954 
 934 
 914 
 896 
 877 
 860 
 
 843 
 827 
 812 
 
 797 
 782 
 769 
 755 
 743 
 730 
 
 loooo 0.00000 
 000 0.00000 
 000 0.00000 
 000 0.00000 
 000 0.00000 
 
 loooo 0.00000 
 000 0.00000 
 000 0.00000 
 000 0.00000 
 000 0.00000 
 
 loooo 0.00000 
 
 99999 0.00000 
 
 999 0.00000 
 
 999 0.00000 
 
 999 0.00000 
 
 99999 0.00000 
 
 999 0.00000 
 
 999 9-99999 
 
 999 9-99999 
 
 998 9-99999 
 
 99998 9.99999 
 998 9-99999 
 998 9-99999 
 998 9-99999 
 998 9-99999 
 
 99997 
 997 
 997 
 997 
 996 
 
 9.99999 
 9.99999 
 9.99999 
 9.99999 
 9-99998 
 
 99996 
 996 
 996 
 995 
 995 
 
 9.99998 
 9.99998 
 9.99998 
 9.99998 
 9-99998 
 
 99995 
 995 
 994 
 994 
 994 
 
 9.99998 
 9.99998 
 9.99997 
 
 9-99997 
 9.99997 
 
 99993 
 993 
 993 
 992 
 992 
 
 9-99997 
 9-99997 
 9.99997 
 9.99997 
 9-99996 
 
 99991 
 991 
 991 
 990 
 990 
 
 9-99996 
 9.99996 
 9-99996 
 9-99996 
 9-99996 
 
 99989 
 989 
 989 
 
 9-99995 
 9-9999$ 
 9-99995 
 9-99995 
 9-99995 
 
 99987 9-99994 
 987 9-99994 
 986 9-99994 
 986 9.99994 
 985 9.99994 
 985 9.99993 
 
 029 
 058 
 087 
 116 
 
 6.46373 
 6.76476 
 6.94085 
 7-06579 
 
 0014s 
 
 175 
 204 
 
 233 
 
 262 
 
 7.16270 
 7.24188 
 7.30882 
 7.36682 
 7.41797 
 
 00291 
 320 
 349 
 378 
 407 
 
 7.46373 
 7.50512 
 7.54291 
 
 7-57767 
 7.60986 
 
 00436 
 46s 
 495 
 524 
 
 553 
 
 7-63982 
 7.66785 
 7.69418 
 7.71900 
 7.74248 
 
 00582 
 611 
 640 
 669 
 
 7.76476 
 7-7859$ 
 7.80615 
 7-82546 
 7-84394 
 
 00727 
 756 
 785 
 815 
 844 
 
 7.86167 
 7.87871 
 7.89510 
 7.91089 
 7-92613 
 
 00873 
 902 
 
 931 
 960 
 
 7.94086 
 7-95510 
 7.96889 
 7-98225 
 7-99522 
 
 047 
 076 
 105 
 135 
 
 8.00781 
 8.02004 
 8.03194 
 
 8.04353 
 8.05481 
 
 01 164 
 
 193 
 222 
 
 251 
 280 
 
 8.06581 
 8.07653 
 8.08700 
 8.09722 
 8.10720 
 
 01309 
 338 
 367 
 396 
 425 
 
 8.11696 
 8.12651 
 
 8.13585 
 8.14500 
 
 8-15395 
 
 01455 
 484 
 
 513 
 542 
 571 
 
 8.16273 
 
 8-17133 
 8.17976 
 8.18804 
 8.19616 
 
 01600 
 629 
 658 
 687 
 716 
 746 
 
 8.20413 
 8.21 195 
 8.21964 
 8.22720 
 8.23462 
 8.24192 
 
 30103 
 17609 
 12494 
 9691 
 7918 
 6694 
 5800 
 5115 
 4576 
 4139 
 3779 
 3476 
 3219 
 2996 
 2803 
 2633 
 2482 
 2348 
 2228 
 21 19 
 2020 
 
 193 1 
 1848 
 
 1773 
 1704 
 1639 
 1579 
 1524 
 1473 
 1424 
 1379 
 1336 
 1297 
 
 1259 
 1223 
 1 190 
 
 1159 
 1128 
 
 IIOO 
 
 1072 
 1047 
 1022 
 998 
 976 
 
 955 
 934 
 915 
 895 
 878 
 860 
 
 843 
 828 
 812 
 
 797 
 782 
 769 
 756 
 742 
 730 
 
 3-53627 
 3.23524 
 3-05915 
 2.93421 
 
 3437-7 
 171B.9 
 
 1145-9 
 859.44 
 
 2.83730 
 2.75812 
 2.691 18 
 2.63318 
 2.58203 
 
 687.55 
 572.96 
 491.11 
 429.72 
 381.97 
 
 2.53627 
 2.49488 
 2.45709 
 2.42233 
 2.39014 
 
 2.36018 
 
 2.33215 
 2.30582 
 2.28100 
 2.25752 
 
 343-77 
 312.52 
 286.48 
 264.44 
 ^5:55 
 229.18 
 214.86 
 202.22 
 190.98 
 180.93 
 
 2.23524 
 2.21405 
 2.19385 
 2.17454 
 2.15606 
 
 171.89 
 163.70 
 156.26 
 149.47 
 143.24 
 
 2.13833 
 2.12129 
 2.10490 
 2.0891 1 
 2.07387 
 
 137-51 
 132.22 
 127.32 
 122.77 
 118.54 
 
 2.05914 
 2.04490 
 2.03111 
 
 2.01775 
 2.00478 
 
 114-59 
 110,89 
 
 107.43 
 104.17 
 
 lOI.II 
 
 1.99219 
 1.97996 
 1.96806 
 1.95647 
 1.94519 
 
 1. 93419 
 1.92347 
 1. 91300 
 1.90278 
 1.89280 
 
 98.218 
 95.489 
 92.908 
 90.463 
 88.144 
 85.940 
 83.844 
 81.847 
 
 79-943 
 78.126 
 
 1.88304 
 1.87349 
 
 1.86415 
 1.85500 
 1.84605 
 
 76.390 
 74.729 
 
 73-139 
 
 71.615 
 
 70.153 
 
 1.83727 
 1.82867 
 1.82024 
 1.81196 
 1.80384 
 
 68.750 
 67.402 
 66.105 
 64.858 
 63-657 
 
 1.79587 
 1.78805 
 1.78036 
 1.77280 
 1-76538 
 1.75808 
 
 62.499 
 
 61.383 
 60.306 
 59.266 
 58.261 
 57-290 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log 
 
 Nat.CotLog 
 
 89' 
 
 d. Log.TanNat. 
 
>i^ 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log 
 
 Nat .Tan Log. 
 
 c.d. 
 
 Log. Cot Nat, 
 
 01745 
 774 
 803 
 832 
 862 
 
 8.24186 
 8.24903 
 8.25609 
 8.26304 
 8.26988 
 
 01891 
 920 
 
 949 
 
 978 
 
 02007 
 
 8.27661 
 8.28324 
 8.28977 
 8.29621 
 8.30255 
 
 02036 
 065 
 094 
 123 
 152 
 
 8.30879 
 
 8.31495 
 8.32103 
 8.32702 
 8.33292 
 
 02181 
 211 
 240 
 269 
 298 
 
 8-33875 
 8.34450 
 8.35018 
 
 8.35578 
 8.36131 
 
 02327 
 356 
 385 
 414 
 
 443 
 
 8.36678 
 8.37217 
 8.37750 
 8.38276 
 8.38796 
 
 25 
 
 26 
 27 
 
 28 
 
 _?9 
 30 
 31 
 32 
 33 
 _31 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 43 
 44_ 
 45 
 
 46 
 
 47 
 48 
 
 49_ 
 50 
 
 SI 
 52 
 53 
 54 
 
 02472 
 501 
 530 
 560 
 
 589 
 
 8.39310 
 8.39818 
 840320 
 840816 
 841307 
 
 02618 
 647 
 676 
 705 
 734 
 
 8.41792 
 8.42272 
 8.42746 
 843216 
 8.43680 
 
 02763 
 792 
 821 
 850 
 879 
 
 8.44139 
 
 8.44594 
 845044 
 845489 
 8.45930 
 
 02908 
 938 
 967 
 996 
 
 03025 
 
 846366 
 8.46799 
 8.47226 
 8.47650 
 8.48069 
 
 03054 
 083 
 112 
 141 
 170 
 
 8.48485 
 848896 
 
 849304 
 849708 
 8.50108 
 
 03199 
 228 
 
 257 
 286 
 316 
 
 8.50504 
 8.50897 
 8.51287 
 8.51673 
 8.52055 
 
 03345 
 374 
 403 
 432 
 461 
 490 
 
 8.52434 
 8.52810 
 8.53183 
 8.53552 
 8.53919 
 8.54282 
 
 717 
 706 
 
 695 
 684 
 
 673 
 663 
 
 653 
 644 
 
 634 
 624 
 616 
 608 
 599 
 590 
 583 
 
 575 
 568 
 560 
 553 
 547 
 539 
 533 
 526 
 520 
 
 514 
 508 
 502 
 496 
 491 
 
 485 
 480 
 474 
 470 
 464 
 
 459 
 455 
 450 
 
 445 
 441 
 
 436 
 
 433 
 427 
 
 424 
 419 
 416 
 411 
 408 
 
 404 
 400 
 
 396 
 393 
 390 
 386 
 382 
 
 379 
 376 
 373 
 369 
 367 
 363 
 
 99985 
 984 
 984 
 983 
 983 
 
 9.99993 
 9-99993 
 999993 
 9-99993 
 9-99992 
 
 01746 
 
 775 
 804 
 
 833 
 862 
 
 99982 
 982 
 981 
 980 
 980 
 
 9.99992 
 9.99992 
 9-99992 
 9-99992 
 9.99991 
 
 01891 
 920 
 949 
 978 
 
 02007 
 
 99979 
 979 
 978 
 
 977 
 977 
 
 9.99991 
 9.99991 
 9.99990 
 9-99990 
 9-99990 
 
 02036 
 066 
 
 095 
 124 
 
 153 
 
 99976 
 976 
 975 
 974 
 974 
 
 9-99990 
 9-99989 
 9-99989 
 9.99989 
 
 9-99989 
 
 02182 
 211 
 240 
 
 269 
 
 99973 
 972 
 972 
 971 
 970 
 
 9.99988 
 9.99988 
 9.99988 
 9.99987 
 9-99987 
 
 02328 
 
 357 
 386 
 
 415 
 444 
 
 8.24192 
 8.24910 
 8.25616 
 8.26312 
 8.26996 
 8.27669 
 8.28332 
 8.28986 
 8.29629 
 8.30263 
 8.30888 
 
 8.31505 
 8.321 12 
 
 8.327x1 
 8.33302 
 8.33886 
 8.34461 
 8.35029 
 8-35590 
 8.36143 
 8.36689 
 8.37229 
 8.37762 
 8.38289 
 8.38809 
 
 99969 
 969 
 968 
 967 
 966 
 
 9-99987 
 9.99986 
 9.99986 
 9.99986 
 9.99985 
 
 02473 
 502 
 
 531 
 560 
 
 589 
 
 99966 
 
 965 
 964 
 963 
 963 
 
 9.99985 
 9-99985 
 9-99984 
 9-99984 
 9.99984 
 
 02619 
 648 
 677 
 706 
 735 
 
 99962 
 961 
 960 
 959 
 959 
 
 9-99983 
 9-99983 
 9.99983 
 9-99982 
 9.99982 
 
 02764 
 
 793 
 822 
 
 851 
 881 
 
 8-39323 
 8.39832 
 840334 
 840830 
 
 841321 
 8.41807 
 8.42287 
 842762 
 8.43232 
 8.43696 
 844156 
 
 99958 
 957 
 956 
 955 
 954 
 
 9.99982 
 9.99981 
 9.99981 
 9.99981 
 9.99980 
 
 02910 
 
 939 
 968 
 
 997 
 03026 
 
 99953 
 952 
 952 
 951 
 950 
 
 9.99980 
 9.99979 
 9.99979 
 9.99979 
 9-99978 
 
 03055 
 084 
 114 
 
 143 
 172 
 
 8.4461 1 
 8.45061 
 8.45507 
 845948 
 
 846385 
 846817 
 
 8-47245 424 
 
 847669 12 
 
 84808^14- 
 flf5?5 412 
 
 99949 
 948 
 947 
 946 
 
 945 
 
 9-99978 
 9-99977 
 9-99977 
 9-99977 
 9-99976 
 
 03201 
 230 
 
 259 
 288 
 
 317 
 
 99944 
 943 
 942 
 941 
 940 
 939 
 
 9.99976 
 9-99975 
 9-99975 
 9-99974 
 9-99974 
 9-99974 
 
 03346 
 376 
 405 
 434 
 463 
 492 
 
 8.48917 
 8.49325 
 8.49729 
 8.50130 
 
 8.50527 
 8.50920 
 8.51310 
 8.51696 
 8.52079 
 8.52459 
 8.52835 
 8.53208 
 8.53578 
 8.53945 
 8.54308 
 
 718 
 706 
 696 
 684 
 
 673 
 663 
 654 
 643 
 634 
 625 
 617 
 607 
 599 
 591 
 584 
 
 575 
 568 
 
 561 
 553 
 546 
 540 
 533 
 527 
 520 
 
 514 
 509 
 502 
 496 
 491 
 486 
 480 
 
 475 
 470 
 464 
 460 
 
 455 
 450 
 446 
 441 
 
 437 
 432 
 428 
 424 
 
 408 
 
 404 
 401 
 
 397 
 393 
 390 
 386 
 383 
 380 
 376 
 373 
 370 
 367 
 363 
 
 .75808 
 •75090 
 •74384 
 •73688 
 .73004 
 
 57.290 
 56.351 
 55-442 
 54-561 
 53-709 
 
 .72331 
 .71668 
 .71014 
 •70371 
 •69737 
 
 52.882 
 .081 
 51-303 
 50.549 
 49.816 
 
 .69112 
 .68495 
 .67888 
 .67289 
 .66698 
 
 49.104 
 48.412 
 47-740 
 -085 
 46.449 
 
 .66114 
 
 -65539 
 .64971 
 .64410 
 .63857 
 
 45.829 
 .226 
 
 44-639 
 
 .066 
 
 43-508 
 
 63311 
 ,62771 
 ,62238 
 ,61711 
 ,61191 
 
 42.964 
 
 -433 
 41.916 
 
 411 
 40.917 
 
 60677 
 60168 
 59666 
 59170 
 58679 
 
 40.436 
 
 39.965 
 
 .506 
 
 .057 
 38.618 
 
 58193 
 57713 
 57238 
 56768 
 56304 
 
 38.188 
 37.769 
 
 .358 
 36.956 
 
 .563 
 
 55844 
 55389 
 54939 
 54493 
 54052 
 
 36.178 
 35.801 
 
 431 
 .070 
 
 34.715 
 
 53615 
 53183 
 52755 
 52331 
 519" 
 
 34.368 
 .027 
 
 33.694 
 .366 
 .045 
 
 •51495 
 .51083 
 
 .50675 
 .50271 
 .49870 
 
 32.730 
 .421 
 .118 
 
 31.821 
 .528 
 
 49473 
 49080 
 48690 
 48304 
 •47921 
 
 31.242 
 
 30.960 
 
 .683 
 
 412 
 
 .145 
 
 47541 
 47165 
 46792 
 46422 
 46055 
 45692 
 
 29.882 
 .624 
 •371 
 
 .122 
 
 28.877 
 
 .636 
 
 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat. ' 
 
 88° 
 
f 
 
 Nat. S 
 
 in Log. d. 
 
 Nat. Cos Log. 
 
 Nat.Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 r" 
 
 
 
 03490 
 
 8.54282 
 
 360 
 357 
 355 
 351 
 349 
 346 
 343 
 
 99939 
 
 9-99974 
 
 03492 
 
 8.54308 
 
 361 
 358 
 355 
 
 145692 
 
 28.636 
 
 60 
 
 I 
 
 519 
 
 8.54642 
 
 938 
 
 9.99973 
 
 521 
 
 8.54669 
 
 I-4533I 
 
 .399 
 
 59 
 
 2 
 
 54a 
 
 8.54999 
 
 937 
 
 9-99973 
 
 550 
 
 8.55027 
 
 1.44973 
 
 .166 
 
 58 
 
 3 
 
 577 
 
 8-55354 
 
 936 
 
 9.99972 
 
 579 
 
 8.55382 
 
 1.44618 
 
 27.937 
 
 57 
 
 4 
 
 606 
 
 8-55705 
 
 935 
 
 9.99972 
 
 609 
 
 8.55734 
 
 352 
 349 
 346 
 344 
 
 1.44266 
 
 .712 
 
 56 
 
 5 
 
 03635 
 
 8.56054 
 
 99934 
 
 9.99971 
 
 03638 
 
 8.56083 
 
 143917 
 
 27.490 
 
 55 
 
 b 
 
 bb4 
 
 8.56400 
 
 933 
 
 9.99971 
 
 bbj 
 
 8.56429 
 
 1.43571 
 
 .271 
 
 54 
 
 7 
 
 693 
 
 8.56743 
 
 932 
 
 9.99970 
 
 696 
 
 8.56773 
 
 1.43227 
 
 .057 
 
 53 
 
 8 
 
 723 
 
 8.57084 
 
 341 
 337 
 336 
 
 931 
 
 9.99970 
 
 725 
 
 8.57114 
 
 34 i 
 338 
 336 
 
 1.42886 
 
 26.845 
 
 52 
 
 9 
 
 752 
 
 8.57421 
 
 930 
 
 9.99969 
 
 754 
 
 8.57452 
 
 1.42548 
 
 .637 
 
 51 
 
 10 
 
 03781 
 
 8-57757 
 
 99929 
 
 9.99969 
 
 03783 
 
 8.57788 
 
 1.42212 
 
 26.432 
 
 50 
 
 II 
 
 810 
 
 8.58089 
 
 332 
 
 927 
 
 9.99968 
 
 812 
 
 8.58121 
 
 333 
 
 1.41879 
 
 .230 
 
 49 
 
 12 
 
 839 
 
 8.58419 
 
 330 
 328 
 325 
 323 
 
 926 
 
 9.99968 
 
 842 
 
 8.58451 
 
 330 
 328 
 326 
 323 
 
 1.41549 
 
 .031 
 
 48 
 
 13 
 
 8b8 
 
 8.58747 
 
 925 
 
 9.99967 
 
 871 
 
 8.58779 
 
 1.41221 
 
 25.835 
 
 47 
 
 H 
 
 897 
 
 8.59072 
 
 924 
 
 9.99967 
 
 900 
 
 8.59105 
 
 1.40895 
 
 .642 
 
 46 
 
 15 
 
 03926 
 
 8.5939$ 
 
 99923 
 
 9-99967 
 
 03929 
 
 8.59428 
 
 1.40572 
 
 25.452 
 
 45 
 
 lb 
 
 955 
 
 8.59715 
 
 320 
 
 922 
 
 9.99966 
 
 958 
 
 8.59749 
 
 321 
 
 1.40251 
 
 .264 
 
 44 
 
 17 
 
 984 
 
 8.60033 
 
 i-i-o 
 
 921 
 
 9.99966 
 
 987 
 
 8.60068 
 
 319 
 316 
 
 1-39932 
 
 .080 
 
 43 
 
 l8 
 
 04013 
 
 8.60349 
 
 3^0 
 
 919 
 
 9-99965 
 
 04016 
 
 8.60384 
 
 1.39616 
 
 24.898 
 
 42 
 
 19 
 
 042 
 
 8.60662 
 
 313 
 311 
 
 918 
 
 9-99964 
 
 046 
 
 8.60698 
 
 314 
 
 311 
 310 
 
 307 
 305 
 303 
 301 
 299 
 297 
 
 295 
 292 
 291 
 289 
 287 
 285 
 284 
 281 
 280 
 
 1.39302 
 
 .719 
 
 41 
 
 20 
 
 04071 
 
 8.60973 
 
 99917 
 
 9-99964 
 
 04075 
 
 8.61009 
 
 1.38991 
 
 24.542 
 
 40 
 
 21 
 
 100 
 
 8.61282 
 
 
 916 
 
 9-99963 
 
 104 
 
 8.61319 
 
 1.38681 
 
 .368 
 
 39 
 
 22 
 
 129 
 
 8.61589 
 
 307 
 305 
 
 915 
 
 9.99963 
 
 133 
 
 8.61626 
 
 1-38374 
 
 .196 
 
 38 
 
 23 
 
 159 
 
 8.61894 
 
 913 
 
 9.99962 
 
 162 
 
 8.61931 
 
 1.38069 
 
 .026 
 
 37 
 
 24 
 
 25 
 
 188 
 
 8.62196 
 
 302 
 301 
 298 
 296 
 
 912 
 
 9.99962 
 
 191 
 
 8.62234 
 
 1.37766 
 
 23.859 
 
 36 
 
 04217 
 
 8.62497 
 
 999" 
 
 9.99961 
 
 04220 
 
 8.62535 
 
 1.37465 
 
 23-695 
 
 35 
 
 2b 
 
 24b 
 
 8.62795 
 
 910 
 
 9.99961 
 
 250 
 
 8.62834 
 
 1.37166 
 
 .532 
 
 34 
 
 27 
 
 275 
 
 8.63091 
 
 909 
 
 9.99960 
 
 279 
 
 8.63131 
 
 1.36869 
 
 .372 
 
 33 
 
 28 
 
 304 
 
 8.63385 
 
 294 
 
 907 
 
 9.99960 
 
 308 
 
 8.63426 
 
 
 .214 
 
 32 
 
 29 
 
 ,333 
 
 8.63678 
 
 293 
 290 
 288 
 
 906 
 
 9-99959 
 
 337 
 
 8.63718 
 
 1.36282 
 
 .058 
 
 31 
 30 
 
 30 
 
 04362 
 
 8.63968 
 
 99905 
 
 9-99959 
 
 04366 
 
 8.64009 
 
 I-3.599I 
 
 22.904 
 
 31 
 
 391 
 
 8.64256 
 
 287 
 284 
 283 
 281 
 
 904 
 
 9.99958 
 
 395 
 
 S.64298 
 
 1-35702 
 
 .752 
 
 29 
 
 32 
 
 420 
 
 t^^ 
 
 902 
 
 9-99958 
 
 424 
 
 8.64585 
 
 1.35415 
 
 .602 
 
 28 
 
 33 
 
 449 
 
 901 
 
 9-99957 
 
 454 
 
 8.64870 
 
 1-35130 
 
 .454 
 
 27 
 
 34 
 
 47B 
 
 8.65110 
 
 900 
 
 9.99956 
 
 483 
 
 8.65154 
 
 1.34846 
 
 .308 
 
 2b 
 
 25 
 
 35 
 
 04507 
 
 8.65391 
 
 99898 
 
 9.99956 
 
 04512 
 
 8.65435 
 
 1-3456$ 
 
 22.164 
 
 3^ 
 
 536 
 
 8.65670 
 
 
 897 
 
 9.99955 
 
 541 
 
 8.65715 
 
 278 
 276 
 274 
 
 273 
 271 
 269 
 268 
 
 1.34285 
 
 .022 
 
 24 
 
 
 565 
 
 8.65947 
 
 276 
 
 896 
 
 9-99955 
 
 570 
 
 
 1.34007 
 
 21.881 
 
 23 
 
 38 
 
 594 
 
 8.66223 
 
 894 
 
 9-99954 
 
 599 
 
 8.66269 
 
 1.33731 
 
 .743 
 
 22 
 
 39 
 
 623 
 
 8.66497 
 
 272 
 
 893 
 
 9-99954 
 
 628 
 
 8.66543 
 
 1.33457 
 
 .606 
 
 21 
 20 
 
 40 
 
 04653 
 
 8.66769 
 
 99892 
 
 9-99953 
 
 04658 
 
 8.66816 
 
 1-33184 
 
 21.470 
 
 41 
 
 682 
 
 8.67039 
 
 270 
 269 
 
 267 
 266 
 
 890 
 
 9-99952 
 
 687 
 
 8.67087 
 
 1.32913 
 
 .337 
 
 19 
 
 42 
 
 711 
 
 8.67308 
 
 889 
 
 9.99952 
 
 71b 
 
 8.67356 
 
 1.32644 
 
 .205 
 
 18 
 
 43 
 
 740 
 
 8.67575 
 
 888 
 
 9-99951 
 
 745 
 
 8.67624 
 
 266 
 
 1.32376 
 
 .075 
 
 17 
 
 44 
 45 
 
 769 
 
 8.67841 
 
 263 
 
 2bO 
 
 886 
 
 9-99951 
 
 774 
 
 8.67890 
 
 264 
 263 
 261 
 
 1.32110 
 
 20.946 
 
 lb 
 
 04798 
 
 8.68104 
 
 99885 
 
 9.99950 
 
 04803 
 
 8.68154 
 
 1.31846 
 
 20.819 
 
 15 
 
 4b 
 
 827 
 
 8.68367 
 
 883 
 
 9.99949 
 
 833 
 
 8.68417 
 
 1. 31583 
 
 .693 
 
 14 
 
 47 
 
 856 
 
 8.68627 
 
 
 882 
 
 9-99949 
 
 862 
 
 8.68678 
 
 260 
 
 1.31322 
 
 .5^9 
 
 13 
 
 48 
 
 885 
 
 8.68886 
 
 259 
 
 258 
 256 
 
 881 
 
 9-99948 
 
 891 
 
 8.68938 
 
 258 
 257 
 
 255 
 254 
 252 
 
 251 
 249 
 248 
 246 
 
 245 
 244 
 
 243 
 
 1.31062 
 
 .446 
 
 12 
 
 49 
 50 
 
 914 
 
 8.69144 
 
 879 
 
 9.99948 
 
 920 
 
 8.69196 
 
 1.30804 
 
 •325 
 
 II 
 
 04943 
 
 8.69400 
 
 99878 
 
 9-99947 
 
 04949 
 
 8.69453 
 
 1.30547 
 
 20.206 
 
 10 
 
 51 
 
 972 
 
 8.69654 
 
 254 
 
 876 
 
 9-99946 
 
 978 
 
 8.69708 
 
 1.30292 
 
 .087 
 
 9 
 
 .S2 
 
 05001 
 
 8.69907 
 
 253 
 
 875 
 
 9-99946 
 
 05007 
 
 8.69962 
 
 1.30038 
 
 19.970 
 
 8 
 
 53 
 
 030 
 
 8.70159 
 
 252 
 
 250 
 249 
 
 873 
 
 9-99945 
 
 037 
 
 8.70214 
 
 1.29786 
 
 .855 
 
 7 
 
 54 
 
 059 
 
 8.70409 
 
 872 
 
 9.99944 
 
 066 
 
 8.70465 
 
 1-29535 
 
 .740 
 
 b 
 
 55 
 
 05088 
 
 8.70658 
 
 99870 
 
 9.99944 
 
 05095 
 
 8.70714 
 
 1.29286 
 
 19.627 
 
 5 
 
 S^ 
 
 117 
 
 8.70905 
 
 247 
 
 246 
 
 869 
 
 9-99943 
 
 124 
 
 8.70962 
 
 1.29038 
 
 , .51^ 
 
 4 
 
 57 
 
 146 
 
 8.71151 
 
 867 
 
 9.99942 
 
 153 
 
 8.71208 
 
 1.28792 
 
 .405 
 
 3 
 
 5a 
 
 175 
 
 8.71395 
 
 
 866 
 
 9.99942 
 
 182 
 
 8.71453 
 
 1.28547 
 
 .29b 
 
 2 
 
 ro 
 
 205 
 
 8.71638 
 
 243 
 
 864 
 
 9.99941 
 
 212 
 
 8.71697 
 
 1.28303 
 
 .188 
 
 I 
 
 234 
 
 8.71880 
 
 
 863 
 
 9.99940 
 
 241 
 
 8.71940 
 
 1.28060 
 
 .081 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. S 
 
 in Log. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log. Tan Nat. 
 
 f 
 
 87° 
 
3° 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log, 
 
 Nat.TanLog. c.d. 
 
 Log. Cot Nat, 
 
 05234 
 263 
 292 
 321 
 35° 
 
 8.71880 
 8.72120 
 
 8-72359 
 8.72597 
 8.72834 
 
 05379 
 408 
 
 437 
 466 
 
 495 
 
 8.73069 
 8-73303 
 8-73535 
 8.73767 
 
 8.73997 
 
 05524 
 553 
 582 
 611 
 640 
 
 8.74226 
 
 8-74454 
 8.74680 
 8.74906 
 8-75130 
 
 05669 
 698 
 727 
 756 
 785 
 
 8-75353 
 8.75575 
 8.75795 
 8.76015 
 8.76234 
 
 05814 
 844 
 873 
 902 
 
 931 
 
 8.76451 
 8.76667 
 8.76883 
 8.77097 
 8.77310 
 
 05960 
 
 989 
 
 06018 
 
 047 
 
 076 
 
 8.77522 
 8.77733 
 8.77943 
 8.78152 
 8.78360 
 
 06105 
 
 134 
 163 
 192 
 221 
 
 8.78568 
 8.78774 
 8.78979 
 8.79183 
 8.79386 
 
 06250 
 279 
 308 
 
 337 
 366 
 
 8.79588 
 8.79789 
 8.79990 
 8.80189 
 8.80388 
 
 06395 
 
 424 
 
 453 
 
 482 
 
 5" 
 
 8.80585 
 8.80782 
 8.80978 
 8.81 173 
 8.81367 
 
 06540 
 569 
 598 
 627 
 656 
 
 8.81560 
 8.81752 
 8.81944 
 8.82134 
 8.82324 
 
 06685 
 714 
 743 
 773 
 802 
 
 8.82513 
 8.82701 
 8.82888 
 8.83075 
 8.83261 
 
 06831 
 860 
 889 
 918 
 
 947 
 976 
 
 8.83446 
 8.83630 
 8.83813 
 8.83996 
 8.84177 
 8.84358 
 
 240 
 
 239 
 238 
 
 237 
 235 
 234 
 232 
 232 
 230 
 229 
 228 
 226 
 226 
 224 
 223 
 222 
 220 
 220 
 219 
 217 
 216 
 216 
 214 
 213 
 212 
 211 
 210 
 209 
 208 
 208 
 206 
 205 
 204 
 203 
 202 
 201 
 201 
 99 
 99 
 97 
 97 
 96 
 
 95 
 94 
 93 
 92 
 92 
 90 
 90 
 89 
 88 
 87 
 87 
 86 
 85 
 84 
 83 
 83 
 81 
 81 
 
 99863 
 861 
 860 
 858 
 857 
 
 9.99940 
 9-99940 
 9-99939 
 9.99938 
 9.99938 
 
 05341 
 270 
 
 299 
 
 328 
 
 357 
 
 241 
 239 
 239 
 
 99855 
 854 
 852 
 851 
 849 
 
 9-99937 
 9.99936 
 9.99936 
 9-99935 
 9-99934 
 
 05387 
 416 
 
 445 
 474 
 503 
 
 99847 
 846 
 
 844 
 842 
 841 
 
 9-99934 
 9-99933 
 9.99932 
 9.99932 
 9-99931 
 
 05533 
 
 562 
 
 591 
 620 
 649 
 
 99839 
 838 
 836 
 834 
 833 
 
 9-99930 
 9.99929 
 9.99929 
 9.99928 
 9-99927 
 
 05678 
 708 
 
 737 
 766 
 
 795 
 
 99831 
 
 9.99926 
 
 829 
 
 9.99926 
 
 827 
 
 9.99925 
 
 826 
 
 9.99924 
 
 824 
 
 9-99923 
 
 99822 
 
 9.99923 
 
 821 
 
 9-99922 
 
 819 
 
 9.99921 
 
 817 
 
 9.99920 
 
 815 
 
 9-99920 
 
 99813 
 
 9.99919 
 
 812 
 
 9.99918 
 
 810 
 
 9.99917 
 
 808 
 
 9.99917 
 
 806 
 
 9.99916 
 
 99804 
 
 9-99915 
 
 803 
 
 9.99914 
 
 801 
 
 9-99913 
 
 799 
 
 9-99913 
 
 797 
 
 9.99912 
 
 99795 
 
 9-999" 
 
 793 
 
 9.99910 
 
 792 
 
 9-99909 
 
 790 
 
 9-99909 
 
 788 
 
 9.99908 
 
 05824 
 
 854 
 883 
 
 912 
 
 941 
 
 05970 
 
 999 
 
 06029 
 
 058 
 
 087 
 
 061 16 
 145 
 175 
 204 
 
 233 
 
 06262 
 291 
 321 
 350 
 379 
 
 06408 
 438 
 467 
 496 
 525 
 
 8.71940 
 
 8.72181 
 8.72420 
 8.72659 2^9 
 8.72896 ' ^37 
 -^ — ^ 236 
 8.73132 20. 
 8-73366 I ^34 
 8-73600 I ^34 
 
 8-73832 ! ^3^ 
 
 8.74292 1 22Q 
 8.74521 I f^„ 
 8.74748 226 
 8.74974 22? 
 8-75199 g 
 8.75423 22! 
 8.75645 222 
 8.75867 ^^ 
 8-76087 ^^° 
 
 «-76306 ^9 
 
 8.76525 217 
 
 8.76742 216 
 
 8.76958 f^\ 
 
 8.77173 2IA 
 
 8-77387 ^^\ 
 8.77600 j \ 
 
 8.7781I 2^1 
 8.78022 f^ 
 8-78232 f^ 
 
 "^^78649"' S 
 8.78855 2^6 
 
 8.79061 ^°° 
 8.79266 ^\ 
 
 ^•79470 ;g 
 
 8-79673 202 
 
 8.79875 20? 
 
 8.80076 ^^ 
 
 8.80277 ^°^ 
 8.80476 
 8.80674 
 
 99786 
 
 784 
 782 
 780 
 778 
 
 9.99907 
 9.99906 
 9.99905 
 9.99904 
 9-99904 
 
 06554 
 584 
 613 
 642 
 671 
 
 99776 
 
 774 
 772 
 770 
 768 
 
 9.99903 
 9.99902 
 9.99901 
 9.99900 
 9.99899 
 
 06700 
 730 
 759 
 788 
 817 
 
 99766 
 764 
 762 
 760 
 758 
 756 
 
 9.99898 
 9.99898 
 
 9-99897 
 9.99896 
 9.99895 
 9-99894 
 
 06847 
 876 
 905 
 934 
 963 
 993 
 
 8.80872 
 8.81068 
 8.81264 
 8.81459 
 8.81653 
 8.81846 
 8.82038 
 8.82230 
 8.82420 
 8.82610 
 8.82799 
 8.82987 
 
 8.83175 
 8.83361 
 
 8.83547 
 8.83732 
 8.83916 
 8.84100 
 8.84282 
 8.84464 
 
 L99 
 
 28060 
 27819 
 27580 
 
 27341 
 27104 
 
 19.081 
 
 18.976 
 
 .871 
 
 .768 
 
 .666 
 
 26868 
 26634 
 26400 
 ,26168 
 25937 
 
 18.564 
 .464 
 .366 
 .268 
 .171 
 
 25708 
 25479 
 25252 
 25026 
 24801 
 
 18.075 
 
 17.980 
 
 .886 
 
 •793 
 .702 
 
 24577 
 24355 
 24133 
 23913 
 23694 
 
 17.611 
 .521 
 .431 
 •343 
 .256 
 
 23475 
 23258 
 23042 
 22827 
 22613 
 
 17.169 
 
 .084 
 16.999 
 
 .915 
 .832 
 
 22400 
 22189 
 21978 
 ,21768 
 21559 
 
 16.750 
 .668 
 .587 
 •507 
 .428 
 
 2i35£ 
 21145 
 20939 
 
 20734 
 20530 
 
 16.350 
 .272 
 •195 
 .119 
 •043 
 
 20327 
 ,20125 
 ,19924 
 19723 
 19524 
 
 15-969 
 •895 
 .821 
 
 •748 
 
 19326 
 19128 
 18932 
 18736 
 18541 
 
 15-605 
 .534 
 .464 
 
 •394 
 .325 
 
 18347 
 18154 
 17962 
 17770 
 17580 
 
 15-257 
 .189 
 .122 
 .056 
 
 14.990 
 
 17390 
 17201 
 17013 
 16825 
 16639 
 
 14.924 
 .860 
 .795 
 •732 
 .669 
 
 16453 
 16268 
 16084 
 15900 
 15718 
 15536 
 
 14.606 
 
 .544 
 482 
 421 
 .361 
 .301 
 
 Nat. Cos Log. d. Nat. Sin Log. Nat.CotLog. c.d. Log. Tan Nat 
 
 86° 
 
Nat. Sin Log. d. Nat. Cos Log. 
 
 Nat.Tan Log. 
 
 Log. Cot Nat. 
 
 06976 
 07005 
 
 034 
 063 
 092 
 
 8.84358 
 
 8.84539 
 8.84718 
 8.84897 
 8.85075 
 
 07121 
 150 
 179 
 208 
 237 
 
 8.85252 
 8.85429 
 8.85605 
 8.85780 
 8.85955 
 
 07266 
 295 
 324 
 353 
 382 
 
 8.86128 
 8.86301 
 8.86474 
 8.86645 
 8.86816 
 
 0741 1 
 440 
 469 
 498 
 527 
 
 8.86987 
 8.87156 
 8.87325 
 8.87494 
 8.87661 
 
 07556 
 585 
 614 
 
 643 
 672 
 
 8.87829 
 8.87995 
 8.88161 
 8.88326 
 8.88490 
 
 07701 
 730 
 759 
 788 
 817 
 
 8.88654 
 8.88817 
 8.88980 
 8.89142 
 8.89304 
 
 07846 
 
 875 
 904 
 
 933 
 
 962 
 
 8.89464 
 8.89625 
 8.89784 
 8.89943 
 8.90102 
 
 07991 
 
 08020 
 
 049 
 
 078 
 
 107 
 
 8.90260 
 8.90417 
 8.90574 
 8.90730 
 8.90885 
 
 08136 
 
 165 
 194 
 223 
 252 
 
 8.91040 
 8.91 195 
 8.91349 
 8.91502 
 8.91655 
 
 08281 
 310 
 339 
 368 
 397 
 
 8.91807 
 8.91959 
 8.921 10 
 8.92261 
 8.92411 
 
 08426 
 
 455 
 484 
 
 513 
 
 542 
 
 8.92561 
 8.92710 
 8.92859 
 8.93007 
 8-93154 
 
 08571 
 
 8.93301 
 
 600 
 
 8.93448 
 
 629 
 
 8.93594 
 
 658 
 
 
 687 
 
 8.93885 
 
 716 
 
 8.94030 
 
 181 
 179 
 179 
 
 178 
 177 
 177 
 
 176 
 
 175 
 175 
 173 
 173 
 173 
 171 
 171 
 171 
 
 169 
 169 
 169 
 167 
 
 168 
 166 
 166 
 
 165 
 
 164 
 164 
 
 163 
 
 163 
 
 162 
 162 
 160 
 
 161 
 159 
 159 
 159 
 158 
 
 157 
 157 
 
 156 
 155 
 155 
 155 
 154 
 153 
 153 
 152 
 152 
 151 
 151 
 150 
 150 
 149 
 149 
 148 
 147 
 147 
 147 
 
 146 
 146 
 
 145 
 145 
 
 99756 
 
 754 
 752 
 750 
 748 
 
 9.99894 
 9.99893 
 9.99892 
 9.99891 
 9.99891 
 
 06993 
 07022 
 
 051 
 
 080 
 
 8.84464 
 8.84646 
 8.84826 
 8.85006 
 8.85185 
 
 99746 
 
 9.99890 
 
 07139 
 
 8.85363 
 
 744 
 
 9.99889 
 
 
 8.85540 
 
 742 
 
 9.99888 
 
 197 
 
 8.85717 
 
 740 
 
 9.99887 
 
 227 
 
 
 738 
 
 9.99886 
 
 256 
 
 8.86069 
 
 99736 
 
 9.99885 
 
 07285 
 
 8.86243 
 
 734 
 
 9.99884 
 
 314 
 
 8.86417 
 
 731 
 
 9.99883 
 
 344 
 
 8.86591 
 
 729 
 
 9.99882 
 
 373 
 
 8.86763 
 
 727 
 
 9.99881 
 
 402 
 
 8.86935 
 
 99725 
 
 9.99880 
 
 07431 
 
 8.87106 
 
 723 
 
 9.99879 
 
 461 
 
 8.87277 
 
 721 
 
 9.99879 
 
 490 
 
 8.87447 
 
 719 
 
 9.99878 
 
 519 
 
 8.87616 
 
 716 
 
 9.99877 
 
 548 
 
 8.87785 
 
 99714 
 
 9.99876 
 
 07578 
 
 8.87953 
 
 712 
 
 9.99875 
 
 607 
 
 8.88120 
 
 710 
 
 9.99874 
 
 636 
 
 8.88287 
 
 70B 
 
 9.99873 
 
 665 
 
 8.88453 
 
 705 
 
 9.99872 
 
 695 
 
 8.88618 
 
 99703 
 
 9.99871 
 
 07724 
 
 8.88783 
 
 701 
 
 9.99870 
 
 753 
 
 8.88948 
 
 699 
 
 9.99869 
 
 782 
 
 8.891 1 1 
 
 696 
 
 9.99868 
 
 812 
 
 8.89274 
 
 694 
 
 9.99867 
 
 841 
 
 8.89437 
 
 99692 
 
 9.99866 
 
 07870 
 
 8.89598 
 
 689 
 
 9.99865 
 
 899 
 
 8.89760 
 
 687 
 
 9.99864 
 
 929 
 
 8.89920 
 
 685 
 
 9.99863 
 
 958 
 
 8.90080 
 
 683 
 
 9.99862 
 
 987 
 
 8.90240 
 
 99680 
 
 9.99861 
 
 08017 
 
 8.90399 
 
 678 
 
 9.99860 
 
 046 
 
 8.90557 
 
 676 
 
 9.99859 
 
 075 
 
 8.90715 
 
 673 
 
 9.99858 
 
 104 
 
 8.90872 
 
 671 
 
 9.99857 
 
 134 
 
 8.91029 
 
 99668 
 
 9.99856 
 
 08163 
 
 8.91 185 
 
 666 
 
 999855 
 
 192 
 
 8.91340 
 
 664 
 
 9.99854 
 
 221 
 
 8.91495 
 
 661 
 
 9.99853 
 
 251 
 
 8.91650 
 
 659 
 
 9.99852 
 
 280 
 
 8.91803 
 
 99657 
 
 9.99851 
 
 08309 
 
 8.91957 
 
 654 
 
 9.99850 
 
 339 
 
 8.92110 
 
 652 
 
 9.99848 
 
 368 
 
 8.92262 
 
 649 
 
 9.99847 
 
 397 
 
 8.92414 
 
 647 
 
 9.99846 
 
 427 
 
 8.92565 
 
 99644 
 
 9.99845 
 
 08456 
 
 8.92716 
 
 642 
 
 9.99844 
 
 485 
 
 8.92866 
 
 639 
 
 9.99843 
 
 514 
 
 8.93016 
 
 637 
 
 9.99842 
 
 544 
 
 8.93165 
 
 635 
 
 9.99841 
 
 573 
 
 8.93313 
 
 99632 
 630 
 627 
 
 625 
 
 622 
 619 
 
 9.99840 
 9.99839 
 9.99838 
 9.99837 
 9.99836 
 9.99834 
 
 08602 
 632 
 661 
 
 690 
 720 
 
 749 
 
 8.93462 
 8.93609 
 8.93756 
 8.93903 
 8.94049 
 8.94195 
 
 82 
 80 
 80 
 79 
 78 
 
 n 
 77 
 76 
 76 
 74 
 74 
 74 
 72 
 72 
 71 
 71 
 70 
 69 
 69 
 
 68 
 67 
 67 
 66 
 
 65 
 65 
 65 
 63 
 63 
 63 
 61 
 62 
 60 
 60 
 60 
 59 
 58 
 58 
 57 
 57 
 56 
 55 
 55 
 55 
 53 
 54 
 53 
 152 
 52 
 51 
 51 
 50 
 50 
 49 
 48 
 49 
 47 
 47 
 47 
 46 
 46 
 
 1.15536 
 1.15354 
 1.15174 
 1.14994 
 1.14815 
 
 14.301 
 .241 
 .182 
 .124 
 .065 
 
 1.14637 
 1.14460 
 1.14283 
 1.14107 
 1.13931 
 
 14.008 
 
 13.951 
 
 .894 
 
 .838 
 
 .782 
 
 1.13757 
 1.13583 
 1.13409 
 
 1.13237 
 1.13065 
 
 13.727 
 .672 
 .617 
 
 .563 
 .510 
 
 1.12894 
 1.12723 
 
 1.12553 
 1.12384 
 1.12215 
 
 13.457 
 .404 
 .352 
 .300 
 .248 
 
 1.12047 
 1.11880 
 1.11713 
 
 1.11547 
 1.11382 
 
 13.197 
 .146 
 .096 
 .046 
 
 12.996 
 
 1.11217 
 1.11052 
 1.10889 
 1.10726 
 1.10563 
 
 12.947 
 .898 
 .850 
 .801 
 .754 
 
 1.10402 
 1.10240 
 1.10080 
 1.09920 
 1.09760 
 
 12.706 
 
 .659 
 .612 
 .566 
 .520 
 
 1.09601 
 1.09443 
 1.09285 
 1.09128 
 1.08971 
 
 12.474 
 .429 
 .384 
 .339 
 .295 
 
 1.08815 
 1.08660 
 1.08505 
 1.08350 
 1.08197 
 
 12.251 
 .207 
 .163 
 .120 
 .077 
 
 1.08043 
 1.07890 
 1.07738 
 1.07586 
 1.07435 
 
 12.035 
 
 11.992 
 
 .950 
 
 .909 
 
 1.07284 
 1.07134 
 1.06984 
 1.06835 
 1.06687 
 
 11.826 
 .785 
 .745 
 .705 
 .664 
 
 1.06538 
 1.06391 
 1.06244 
 1.06097 
 
 1.05951 
 1.05805 
 
 11.625 
 .585 
 .546 
 •507 
 .468 
 .430 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. Nat. Cot Log 
 
 86^ 
 
 c.d. Log. Tan Nat. 
 
' Nat. Sin Log. d. Nat. Cos Log. 
 
 Nat.Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 08716 
 745 
 774 
 803 
 
 831 
 
 8.94030 
 8.94174 
 8.94317 
 8.94461 
 8.94603 
 
 08860 
 889 
 918 
 
 947 
 976 
 
 8.94746 
 8.94887 
 8.95029 
 8.95170 
 8.95310 
 
 09005 
 
 034 
 063 
 092 
 121 
 
 8.95450 
 8.95589 
 8.95728 
 8.95867 
 8.96005 
 
 09150 
 179 
 208 
 237 
 
 8.96143 
 8.96280 
 8.96417 
 
 8.96553 
 8.96689 
 
 09295 
 324 
 353 
 382 
 411 
 
 8.96825 
 8.96960 
 8.97095 
 8.97229 
 8.97363 
 
 09440 
 469 
 498 
 527 
 
 _556. 
 
 09585 
 614 
 642 
 671 
 700 
 
 8.97496 
 8.97629 
 8.97762 
 8.97894 
 8.98026 
 
 8.98157 
 8.98288 
 8.98419 
 
 8.98549 
 8.98679 
 
 09729 
 758 
 707 
 816 
 
 845 
 
 09874 
 903 
 932 
 961 
 990 
 
 10019 
 048 
 077 
 106 
 135 
 
 9.00082 
 9.00207 
 9.00332 
 9.00456 
 9.00581 
 
 10164 
 192 
 221 
 250 
 279 
 
 9.00704 
 9.00828 
 9.00951 
 9.01074 
 9.01196 
 
 10308 
 
 337 
 366 
 
 395 
 424 
 
 453 
 
 9.01318 
 9.01440 
 9.01561 
 9.01682 
 9.01803 
 9.01923 
 
 8.98808 
 
 8.98937 
 8.99066 
 8.99194 
 8.99322 I 
 
 8.99450 
 
 8.99577 
 8.99704 
 8.99830 
 8.99956 
 
 99619 
 617 
 614 
 612 
 609 
 
 999834 
 999833 
 9.99832 
 9.99831 
 9.99830 
 
 08749 
 778 
 807 
 
 837 
 866 
 
 8.94195 
 8.94340 
 8.94485 
 8.94630 
 8.94773 
 
 99607 
 604 
 602 
 
 599 
 596 
 
 9.99829 
 9.99828 
 9.99827 
 9.99825 
 9.99824 
 
 08895 
 925 
 954 
 983 
 
 09013 
 
 8.94917 
 8.95060 
 8.95202 
 8.95344 
 8.95486 
 
 99594 
 591 
 588 
 586 
 583 
 
 9.99823 
 9.99822 
 9.99821 
 9.99820 
 9.99819 
 
 09042 
 071 
 
 lOI 
 
 130 
 159 
 
 8.95627 
 8.95767 
 8.95908 
 8.96047 
 8.96187 
 
 99580 
 578 
 575 
 572 
 570 
 
 9.99817 
 9.99816 
 9.99815 
 9.99814 
 9.99813 
 
 09189 
 218 
 247 
 277 
 306 
 
 8.96325 
 8.96464 
 8.96602 
 
 8.96739 
 8.96877 
 
 99567 
 564 
 562 
 
 559 
 556 
 
 9.99812 
 9.99810 
 9.99809 
 9.99808 
 9.99807 
 
 09335 
 365 
 394 
 423 
 453 
 
 8.97013 
 8.9715? 
 8.97285 
 8.97421 
 8.97556 
 
 99553 
 551 
 548 
 545 
 542 
 
 9.99806 
 9.99804 
 9.99803 
 9.99802 
 9.99801 
 
 09482 
 5" 
 541 
 570 
 600 
 
 8.97691 
 8.97825 
 
 8.97959 
 8.98092 
 8.98225 
 
 99540 
 537 
 534 
 531 
 528 
 
 9.99800 
 9.99798 
 9.99797 
 9.99796 
 9.99795 
 
 09629 
 658 
 688 
 717 
 746 
 
 8.98358 
 8.98490 
 8.98622 
 
 8.98753 
 8.98884 
 
 99526 
 523 
 520 
 517 
 514 
 
 9.99793 
 9.99792 
 9.99791 
 9.99790 
 9.99788 
 
 09776 
 805 
 
 834 
 864 
 
 893 
 
 8.9901$ 
 8.9914$ 
 8.99275 
 8.99405 
 8.99534 
 
 995 1 1 
 508 
 506 
 503 
 500 
 
 9.99787 
 9.99786 
 
 9.99785 
 9.99783 
 9.99782 
 
 09923 
 952 
 981 
 
 lOOII 
 
 040 
 
 8.99662 
 8.99791 
 8.99919 
 9.00046 
 9.00174 
 
 99497 
 494 
 491 
 488 
 485 
 
 9.99781 
 9.99780 
 9.99778 
 9-99777 
 9.99776 
 
 10069 
 099 
 
 128 
 158 
 187 
 
 9.00301 
 9.00427 
 900553 
 9.00679 
 9.00805 
 
 99482 
 
 479 
 476 
 
 473 
 470 
 
 9.99775 
 9.99773 
 9.99772 
 9.99771 
 9.99769 
 
 102 16 
 246 
 275 
 305 
 334 
 
 9.00930 
 9.01055 
 9.01179 
 9.01303 
 9.01427 
 
 99467 
 464 
 461 
 
 458 
 455 
 452 
 
 9.99768 
 9.99767 
 
 9.99765 
 9.99764 
 
 999763 
 9.99761 
 
 10363 
 
 393 
 422 
 452 
 481 
 510 
 
 9.01550 
 9.01673 
 9.01796 
 9.01918 
 9.02040 
 9.02162 
 
 05805 
 05660 
 05515 
 05370 
 05227 
 
 C.430 
 .392 
 .354 
 .316 
 .279 
 
 05083 
 04940 
 04798 
 04656 
 04514 
 
 .242 
 .205 
 .168 
 .132 
 .095 
 
 04373 
 04233 
 ,04092 
 
 03953 
 03813 
 
 11.059 
 
 .024 
 
 10.988 
 
 .953 
 .918 
 
 03675 
 03536 
 03398 
 ,03261 
 03123 
 
 10.883 
 .848 
 .814 
 .780 
 .746 
 
 ,02987 
 ,02850 
 .02715 
 
 ■02579 
 02444 
 
 10.712 
 .678 
 .645 
 
 .6X2 
 
 .579 
 
 .02309 
 ,02175 
 
 ,02041 
 ,01908 
 
 01775 
 
 10.546 
 .514 
 
 .481 
 
 •449 
 .417 
 
 ,01642 
 ,01510 
 ,01378 
 ,01247 
 ,01116 
 
 10.385 
 •354 
 .322 
 .291 
 .260 
 
 .00985 
 .00855 
 .0072$ 
 
 .00595 
 .00466 
 
 10.229 
 .199 
 .168 
 •138 
 .108 
 
 .00338 
 .00209 
 .00081 
 
 0.99954 
 0.99826 
 
 10.078 
 .048 
 .019 
 
 9.9893 
 601 
 
 0.99699 
 0.99573 
 0.99447 
 0.99321 
 0.99195 
 
 9.9310 
 021 
 
 9.8734 
 448 
 164 
 
 0.99070 
 0.98945 
 0.98821 
 0.98697 
 0.98573 
 
 9,7882 
 601 
 322 
 044 
 
 9.6768 
 
 0.98450 
 0.98327 
 0.98204 
 0.98082 
 0.97960 
 0.97838 
 
 9.6493 
 220 
 
 9-5949 
 679 
 411 
 144 
 
 Nat. Cos Log. d. Nat. Sin Log. Nat. Cot Log. c.d. Log. Tan Nat. ' 
 
 84° 
 
6' 
 
 f 
 
 Nat. Sin Log. d. 
 
 |Nat.CoSLog 
 
 |Nat.Tan Log. 
 
 [:i 
 
 Log. Cot Nat. 
 
 ^^ 
 
 
 
 10453 
 
 9.01923 
 
 120 
 
 99452 9-99761 
 
 I05IO 9.02162 
 
 
 0.97838 
 
 9.5144 
 
 60 
 
 I 
 
 482 
 
 9.02043 
 
 120 
 
 449 9-99760 
 
 540 9.02283 
 
 
 0.97717 
 
 9.4878 
 
 59 
 
 2 
 
 511 
 
 9.02163 
 
 
 446 9-99759 
 
 569 9.02404 
 
 
 0.9750 
 
 614 
 
 58 
 
 3 
 
 540 
 
 9.02283 
 
 119 
 118 
 
 443 9-99757 
 
 599 9-0252$ 
 
 
 0.97475 
 
 352 
 
 57 
 
 4 
 
 5^9 
 
 9.02402 
 
 440 9-99756 
 
 628 9.02645 
 
 121 
 
 0.97355 
 
 090 
 
 56 
 55 
 
 5 
 
 IOS97 
 
 9.02520 
 
 99437 9-99755 
 
 10657 9.02766 
 
 0.97234 
 
 9-3831 
 
 6 
 
 626 
 
 9.02639 
 
 434 9-99753 
 
 687 9-02885 
 
 
 0.9711$ 
 
 572 
 
 54 
 
 7 
 
 655 
 
 9.02757 
 
 "^ 
 
 431 9-99752 
 
 716 9.03005 
 
 
 0.96995 
 
 315 
 
 53 
 
 8 
 
 684 
 
 9.02874 
 
 428 9.99751 
 
 746 9.03124 
 
 118 
 
 0.96876 
 
 060 
 
 52 
 
 9 
 10 
 
 713 
 
 9.02992 
 
 117 
 117 
 116 
 
 424 9-99749 
 
 775 9-03242 
 
 119 
 118 
 
 0.96758 
 
 9.2806 
 
 51 
 50 
 
 10742 
 
 9-03109 
 
 99421 9.99748 
 
 10805 9-03361 
 
 0.96639 
 
 9.2553 
 
 II 
 
 771 
 
 9.03226 
 
 418 9.99747 
 
 834 9-03479 
 
 118 
 
 0.96521 
 
 302 
 
 49 
 
 12 
 
 800 
 
 9-03342 
 
 
 415 9-99745 
 
 863 9-03597 
 
 
 0.96403 
 
 052 
 
 48 
 
 13 
 
 829 
 
 9-03458 
 
 
 412 9.99744 
 
 893 9-03714 
 
 117 
 
 0.96286 
 
 9.1803 
 
 47 
 
 14 
 
 858 
 
 9-03574 
 
 116 
 
 115 
 115 
 114 
 
 "5 
 "3 
 114 
 114 
 113 
 
 409 9.99742 
 
 922 9.03832 
 
 116 
 
 0.96168 
 
 555 
 
 46 
 
 15 
 
 10887 
 
 9.03690 
 
 99406 9.99741 
 
 10952 9.03948 
 
 0.96052 
 
 9.1309 
 
 45 
 
 lb 
 
 916 
 
 9-03805 
 
 402 9.99740 
 
 981 9.04065 
 
 117 
 
 0.95935 
 
 06s 
 
 44 
 
 17 
 
 945 
 
 9.03920 
 
 399 9-99738 
 
 I ion 9.04181 
 
 116 
 
 0.95819 
 
 9.0821 
 
 43 
 
 i8 
 
 973 
 
 9.04034 
 
 396 9-99737 
 
 040 9.04297 
 
 116 
 
 0.95703 
 
 579 
 
 42 
 
 19 
 
 1 1002 
 
 9.04149 
 
 393 9.99736 
 
 070 9.04413 
 
 115 
 
 0.95587 
 
 338 
 
 41 
 40 
 
 20 
 
 1 103 1 
 
 9.04262 
 
 99390 9.99734 
 
 1 1099 9.04528 
 
 0.95472 
 
 9.0098 
 
 21 
 
 060 
 
 9-04376 
 
 386 9-99733 
 
 128 9.04643 
 
 115 
 
 0.95357 
 
 8.9860 
 
 39 
 
 22 
 
 089 
 
 9-04490 
 
 383 999731 
 
 158 9-04758 
 
 115 
 
 0.95242 
 
 623 
 
 38 
 
 23 
 
 118 
 
 9.04603 
 
 380 9.99730 
 
 187 9-04873 
 
 115 
 
 0.95127 
 
 387 
 
 37 
 
 24 
 
 147 
 
 9.04715 
 
 113 
 112 
 
 377 9-99728 
 
 217 9.04987 
 
 114 
 
 114 
 
 0.95013 
 
 152 
 
 36 
 35 
 
 25 
 
 11176 
 
 9.04828 
 
 99374 9-99727 
 
 I 1246 9.05101 
 
 0.94899 
 
 8.8919 
 
 2b 
 
 205 
 
 9.04940 
 
 112 
 
 370 9-99726 
 
 276 9.05214 
 
 113 
 
 0.94786 
 
 686 
 
 34 
 
 27 
 
 234 
 
 9.05052 
 
 112 
 
 367 9-99724 
 
 305 9-05328 
 
 
 0.94672 
 
 455 
 
 33 
 
 28 
 
 2b3 
 
 9.05164 
 
 III 
 
 364 9.99723 
 
 335 9-05441 
 
 113 
 
 0-94559 
 
 225 
 
 32 
 
 29 
 
 30 
 
 291 
 
 9-05275 
 
 III 
 
 360 9-99721 
 
 364 9-05553 
 
 113 
 
 0-94447 
 
 8.7996 
 
 31 
 30 
 
 1 1320 
 
 9-05386 
 
 99357 9-99720 
 
 "394 9-05666 
 
 0-94334 
 
 8.7769 
 
 31 
 
 349 
 
 9.05497 
 
 
 354 999718 
 
 423 9-05778 
 
 
 0.94222 
 
 542 
 
 29 
 
 32 
 
 378 
 
 9.05607 
 
 
 351 9-99717 
 
 452 9.05890 
 
 
 0.94110 
 
 317 
 
 28 
 
 33 
 
 407 
 
 9.05717 
 
 
 347 9-99716 
 
 482 9.06002 
 
 112 
 
 0.93998 
 
 093 
 
 27 
 
 34 
 
 436 
 
 9-05827 
 
 no 
 
 109 
 109 
 109 
 
 108 
 
 344 9-99714 
 
 511 9.061 13 
 
 III 
 
 0.93887 
 
 8.6870 
 
 26 
 25 
 
 35 
 
 11465 
 
 9-05937 
 
 99341 9-99713 
 
 11541 9.06224 
 
 0.93776 
 
 8.6648 
 
 3t> 
 
 494 
 
 9.06046 
 
 337 9-99711 
 
 570 9-0633$ 
 
 
 
 427 
 
 24 
 
 37 
 
 523 
 
 9.06155 
 
 334 9-99710 
 
 600 9.06445 
 
 
 0.93555 
 
 208 
 
 23 
 
 3a 
 
 552 
 
 9.06264 
 
 331 9-99708 
 
 629 9.06556 
 
 
 0.93444 
 
 8.5989 
 
 22 
 
 39 
 40 
 
 580 
 
 9-06372 
 
 109 
 
 327 9-99707 
 
 659 9.06666 
 
 109 
 
 0.93334 
 
 772 
 
 21 
 20 
 
 1 1609 
 
 9.06481 
 
 99324 9-99705 
 
 I 1688 9.06775 
 
 0.9322$ 
 
 8.5555 
 
 41 
 
 638 
 
 9.06589 
 
 107 
 108 
 
 320 9-99704 
 
 718 9.06885 
 
 no 
 
 0.931 15 
 
 340 
 
 iq 
 
 42 
 
 667 
 
 
 317 9.99702 
 
 747 9-06994 
 
 109 
 109 
 108 
 109 
 108 
 108 
 
 0.93006 
 
 126 
 
 18 
 
 43 
 
 696 
 
 9.00004 
 
 107 
 107 
 106 
 
 314 9.99701 
 
 777 907103 
 
 0.92897 
 
 8.4913 
 
 17 
 
 44 
 
 725 
 
 9.0691 1 
 
 310 9-99699 
 
 806 9.07211 
 
 0.92789 
 
 701 
 
 16 
 15 
 
 45 
 
 1 1754 
 
 9.07018 
 
 99307 9.99698 
 
 1 1 836 9.07320 
 
 0.92680 
 
 8.4490 
 
 4b 
 
 783 
 
 9.07124 
 
 
 303 9.99696 
 
 865 9,07428 
 
 0.92572 
 
 280 
 
 14 
 
 47 
 
 812 
 
 9.07231 
 
 107 
 
 300 9.99695 
 
 895 9-07536 
 
 0.92464 
 
 071 
 
 13 
 
 48 
 
 840 
 
 9-07337 
 
 105 
 106 
 
 105 
 
 297 999693 
 
 924 9.07643 
 
 107 
 
 tdR 
 
 0.92357 
 
 8.3863 
 
 12 
 
 49 
 
 8b9 
 
 9.07442 
 
 293 9.99692 
 
 954 9-07751 
 
 107 
 106 
 
 0.92249 
 
 656 
 
 II 
 
 50 
 
 11898 
 
 9.07548 
 
 99290 9.99690 
 
 1 1983 9.07858 
 
 0.92142 
 
 8.3450 
 
 10 
 
 51 
 
 927 
 
 9-07653 
 
 286 9.99689 
 
 12013 9.07964 
 
 0.92036 
 
 24s 
 
 9 
 
 52 
 
 956 
 
 9-07758 
 9-07863 
 
 105 
 
 283 9.99687 
 
 042 9.08071 
 
 107 
 106 
 T06 
 106 
 106 
 
 0.91929 
 
 041 
 
 8 
 
 53 
 
 985 
 
 105 
 
 279 9.99686 
 
 072 9.08177 
 
 0.91823 
 
 8.2838 
 
 7 
 
 54 
 
 12014 
 
 9.07968 
 
 105 
 104 
 
 276 9.99684 
 
 loi 9.08283 
 
 0.91717 
 
 636 
 
 6 
 
 55 
 
 12043 
 
 9.08072 
 
 99272 9.99683 
 
 12131 9.08389 
 
 0.91611 
 
 8.2434 
 
 5 
 
 5t> 
 
 071 
 
 9.08176 
 
 
 ^269 9.99681 
 
 160 9.08495 
 
 0.91505 
 
 234 
 
 4 
 
 57 
 
 100 
 
 9.08280 
 
 
 265 9.99680 
 
 190 9.08600 
 
 105 
 
 0.91400 
 
 035 
 
 3 
 
 5a 
 
 129 
 
 9-08383 
 
 103 
 
 262 9.99678 
 
 219 9.08705 
 
 105 
 
 0.91295 
 
 8.1837 
 
 2 
 
 |g 
 
 158 
 
 9.08486 
 
 103 
 
 258 9.99677 
 
 249 9.08810 
 
 105 
 
 0.91190 
 
 640 
 
 I 
 
 187 
 
 9-08589 
 
 103 
 
 255 9-99675 
 
 278 9.08914 
 
 104 
 
 0.91086 
 
 443 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. 
 
 Nat. Cot Log. 
 
 C.d. 
 
 Log. Tan Nat. 
 
 f 
 
 83^ 
 
f 
 
 Nat. S 
 
 in Log. 
 
 d. 
 
 Nat. Cos Log. 
 
 Nat.Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 " 
 
 
 
 12187 
 
 9.08589 
 
 103 
 103 
 102 
 
 99255 
 
 999675 
 
 12278 
 
 9.08914 
 
 105 
 
 0.91086 
 
 8.1443 
 
 60 
 
 I 
 
 216 
 
 9.08692 
 
 251 
 
 9-99674 
 
 308 
 
 9.09019 
 
 0.90981 
 
 248 
 
 5Q 
 
 2 
 
 245 
 
 9.08795 
 
 248 
 
 9-99672 
 
 .33B 
 
 9.09123 
 
 104 
 
 Tr\A 
 
 0.90877 
 
 054 
 
 58 
 
 3 
 
 274 
 
 9.08897 
 
 
 244 
 
 9.99670 
 
 3(V 
 
 9.09227 
 
 103 
 104 
 103 
 
 0.90773 
 
 8.0860 
 
 57 
 
 4 
 
 302 
 
 9.08999 
 
 102 
 
 lOI 
 
 240 
 
 9.99669 
 
 397 
 
 9.09330 
 
 0.90670 
 
 667 
 
 56 
 
 1233 1 
 
 9.09101 
 
 99237 
 
 9.99667 
 
 12426 
 
 9.09434 
 
 0.90566 
 
 8.0476 
 
 55 
 
 6 
 
 360 
 
 9.09202 
 
 102 
 
 233 
 
 9.99666 
 
 456 
 
 9.09537 
 
 0.90463 
 
 28:; 
 
 54 
 
 7 
 
 3»9 
 
 9.09304 
 
 lOI 
 
 230 
 
 9.99664 
 
 485 
 
 9.09640 
 
 
 0.90360 
 
 095 
 
 53 
 
 8 
 
 418 
 
 9.09405 
 
 
 226 
 
 9.99663 
 
 515 
 
 9.09742 
 
 103 
 102 
 
 0.90258 
 
 7.9906 
 
 52 
 
 9 
 
 447 
 
 9.09506 
 
 100 
 
 222 
 
 9.99661 
 
 544 
 
 9.09845 
 
 0.90155 
 
 718 
 
 51 
 50 
 
 10 
 
 12476 
 
 9.09606 
 
 99219 
 
 9.99659 
 
 12574 
 
 9.09947 
 
 0.90053 
 
 7.9530 
 
 II 
 
 504 
 
 9.09707 
 
 100 
 
 215 
 
 9.99658 
 
 603 
 
 9.10049 
 
 
 0.89951 
 
 344 
 
 49 
 
 12 
 
 
 9.09807 
 
 100 
 
 211 
 
 9.99656 
 
 633 
 
 9.10150 
 
 
 0.89850 
 
 158 
 
 48 
 
 13 
 
 562 
 
 9.09907 
 
 99 
 100 
 
 99 
 99 
 98 
 
 99 
 98 
 98 
 98 
 98 
 97 
 97 
 97 
 
 208 
 
 9-99655 
 
 662 
 
 9.10252 
 
 
 0.89748 
 
 7.8973 
 
 47 
 
 14 
 15 
 
 591 
 
 9.10006 
 
 204 
 
 9.99653 
 
 692 
 
 9-10353 
 
 lOI 
 lOI 
 
 0.89647 
 
 789 
 
 46 
 
 12620 
 
 9.10106 
 
 99200 
 
 9.99651 
 
 12722 
 
 9.10454 
 
 0.89546 
 
 7.8606 
 
 45 
 
 lb 
 
 649 
 
 9.10205 
 
 197 
 
 9.99650 
 
 751 
 
 
 
 0.89445 
 
 424 
 
 44 
 
 17 
 
 678 
 
 910304 
 
 193 
 
 9.99648 
 
 781 
 
 9.10656 
 
 
 0.89344 
 
 243 
 
 43 
 
 18 
 
 70b 
 
 9.10402 
 
 189 
 
 9.99647 
 
 810 
 
 9.10756 
 
 
 0.89244 
 
 062 
 
 42 
 
 19 
 
 735 
 
 9.10501 
 
 186 
 
 9.99645 
 
 840 
 
 9.10856 
 
 100 
 
 100 
 
 0.89144 
 
 7.7882 
 
 41 
 
 20 
 
 12764 
 
 9.10599 
 
 99182 
 
 9.99643 
 
 12869 
 
 9.10956 
 
 0.89044 
 
 7.7704 
 
 40 
 
 21 
 
 793 
 
 9.10697 
 
 178 
 
 9-99642 
 
 899 
 
 9. 1 1056 
 
 99 
 99 
 99 
 99 
 
 ^2 
 
 ^0 
 98 
 
 98 
 
 98 
 
 97 
 
 0.88944 
 
 525 
 
 39 
 
 22 
 
 822 
 
 9.10795 
 
 175 
 
 9.99640 
 
 929 
 
 9.11155 
 
 0.88845 
 
 .348 
 
 38 
 
 23 
 
 8S1 
 
 9-10893 
 
 171 
 
 9.99638 
 
 958 
 
 9.11254 
 
 0.88746 
 
 171 
 
 37 
 
 24 
 
 880 
 
 9.10990 
 
 ib7 
 
 999637 
 
 988 
 
 9.11353 
 
 0.88647 
 
 7.6996 
 
 36 
 
 25 
 
 12908 
 
 9. 1 1087 
 
 99163 
 
 9-99635 
 
 13017 
 
 9.11452 
 
 0.88548 
 
 7.6821 
 
 35 
 
 2b 
 
 937 
 
 9.1 1 184 
 
 160 
 
 9-99633 
 
 047 
 
 9.11551 
 
 0.88449 
 
 647 
 
 34 
 
 27 
 
 966 
 
 9.11281 
 
 97 
 96 
 
 97 
 96 
 96 
 
 li 
 95 
 95 
 95 
 
 i5f> 
 
 9.99632 
 
 076 
 
 9.11649 
 
 0.88351 
 
 473 
 
 33 
 
 28 
 
 995 
 
 9- "377 
 
 152 
 
 9-99630 
 
 106 
 
 9.11747 
 9.11845 
 
 0.88253 
 
 301 
 
 32 
 
 29 
 
 13024 
 
 9.11474 
 
 148 
 
 9.99629 
 
 r3t 
 
 0.88155 
 
 129 
 
 31 
 
 30 
 
 13053 
 
 9.1 1570 
 
 99144 
 
 9-99627 
 
 13165 
 
 9.11943 
 
 0.88057 
 
 7.5958 
 
 30 
 
 31 
 
 081 
 
 9.11666 
 
 141 
 
 9.99625 
 
 195 
 
 9.12040 
 
 0.87960 
 
 787 
 
 29 
 
 32 
 
 no 
 
 9.11761 
 
 137 
 
 9.99624 
 
 224 
 
 9.12138 
 
 0.87862 
 
 618 
 
 28 
 
 33 
 
 139 
 
 9.11857 
 
 133 
 
 9.99622 
 
 254 
 
 9.12235 
 
 0.87765 
 
 449 
 
 27 
 
 34 
 
 168 
 
 9.11952 
 
 129 
 
 9.99620 
 
 284 
 
 9.12332 
 
 96 
 
 96 
 96 
 
 95 
 95 
 95 
 95 
 95 
 94 
 95 
 94 
 94 
 93 
 94 
 93 
 93 
 93 
 93 
 92 
 92 
 
 93 
 91 
 92 
 
 0.87668 
 
 281 
 
 26 
 
 35 
 
 13197 
 
 9.12047 
 
 99125 
 
 9.99618 
 
 13313 
 
 9.12428 
 
 0.87572 
 
 7.5113 
 
 25 
 
 3^ 
 
 226 
 
 9.12142 
 
 122 
 
 9.99617 
 
 343 
 
 
 0.87475 
 
 7.4947 
 
 24 
 
 37 
 
 254 
 
 9.12236 
 
 95 
 94 
 94 
 93 
 
 118 
 
 9-99615 
 
 372 
 
 9.12621 
 
 0.87379 
 
 781 
 
 23 
 
 3a 
 
 283 
 
 9.12331 
 
 114 
 
 9.99613 
 
 402 
 
 9.12717 
 
 0.87283 
 
 (515 
 
 22 
 
 39 
 
 312 
 
 9.12425 
 
 no 
 
 9.99612 
 
 432 
 
 9.12813 
 
 0.87187 
 
 451 
 
 21 
 20 
 
 40 
 
 13341 
 
 9.12519 
 
 99106 
 
 9.99610 
 
 13461 
 
 9.12909 
 
 0.87091 
 
 7.4287 
 
 41 
 
 370 
 
 9.12612 
 
 102 
 
 9.99608 
 
 491 
 
 9.13004 
 
 0.86996 
 
 124 
 
 19 
 
 42 
 
 399 
 
 9.12706 
 
 
 098 
 
 9.99607 
 
 521 
 
 9.13099 
 
 0.86901 
 
 7.3962 
 
 18 
 
 43 
 
 427 
 
 9.12799 
 
 93 
 93 
 93 
 93 
 
 094 
 
 9.99605 
 
 550 
 
 9.13194 
 
 0.86806 
 
 800 
 
 17 
 
 44 
 
 456 
 
 9.12892 
 
 091 
 
 9.99603 
 
 580 
 
 9.13289 
 
 0.86711 
 
 639 
 
 lb 
 
 45 
 
 13485 
 
 912985 
 
 99087 
 
 9.99601 
 
 13609 
 
 9.13384 
 
 0.86616 
 
 7.3479 
 
 15 
 
 46 
 
 514 
 
 9.13078 
 
 083 
 
 9.99600 
 
 639 
 
 9.13478 
 
 0.86522 
 
 319 
 
 14 
 
 47 
 
 543 
 
 9.13171 
 
 93 
 92 
 92 
 92 
 92 
 
 079 
 
 9.99598 
 
 bb9 
 
 9.13573 
 
 0.86427 
 
 160 
 
 13 
 
 48 
 
 572 
 
 9.13263 
 
 075 
 
 9.99596 
 
 b98 
 
 9.13667 
 
 0.86333 
 
 002 
 
 12 
 
 49 
 
 600 
 
 9-13355 
 
 071 
 
 9-99595 
 
 728 
 
 9.13761 
 
 0.86239 
 
 7.2844 
 
 II 
 
 50 
 
 13629 
 
 9.13447 
 
 99067 
 
 9.99593 
 
 13758 
 
 9.1385+ 
 
 0.86146 
 
 7.2687 
 
 10 
 
 ^i 
 
 658 
 
 
 063 
 
 
 787 
 
 9.13948 
 
 0.86052 
 
 531 
 
 9 
 
 52 
 
 687 
 
 9.13630 
 
 91 
 92 
 
 059 
 
 9.99589 
 
 817 
 
 9.14041 
 
 0.85959 
 
 375 
 
 8 
 
 ss 
 
 716 
 
 9.13722 
 
 055 
 
 9.99588 
 
 846 
 
 9.14134 
 
 0.85866 
 
 220 
 
 7 
 
 54 
 
 744 
 
 913813 
 
 91 
 91 
 
 051 
 
 9.99586 
 
 876 
 
 9.14227 
 
 0.85773 
 
 066 
 
 6 
 
 55 
 
 13773 
 
 9.13904 
 
 99047 
 
 9-99584 
 
 13906 
 
 9.14320 
 
 0.85680 
 
 7.1912 
 
 5 
 
 .0 
 
 802 
 
 9-13994 
 
 
 043 
 
 9.99582 
 
 935 
 
 9.14412 
 
 0.85588 
 
 759 
 
 4 
 
 57 
 
 831 
 
 9-14085 
 
 91 
 
 039 
 
 9.99581 
 
 965 
 
 9.14504 
 
 0.85496 
 
 607 
 
 3 
 
 5a 
 
 860 
 
 9-14175 
 
 90 
 91 
 
 035 
 
 9-99579 
 
 995 
 
 9.14597 
 
 0.85403 
 
 455 
 
 2 
 
 ^0 
 
 889 
 
 9.14266 
 
 031 
 
 999577 
 
 14024 
 
 9.14688 
 
 0.85312 
 
 304 
 
 1 
 
 917 
 
 9-14356 
 
 90 
 
 027 
 
 9-99575 
 
 054 
 
 9.14780 
 
 0.85220 
 
 X54 
 
 
 
 
 Nat. Cos Log. 
 
 d. 
 
 Nat. Sin Log. 
 
 Nat. Cot Log. 
 
 c.d. 'Log. Tan Nat. 
 
 r 
 
 82^ 
 
8= 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log 
 
 Nat.Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 13917 9-I4356 
 
 89 
 90 
 89 
 90 
 89 
 88 
 
 99027 9.99575 
 
 14054 
 
 9.14780 
 
 
 0.85220 7.1154 
 
 60 
 
 I 
 
 946 9-14445 
 
 023 9-99574 
 
 084 
 
 
 91 
 91 
 91 
 91 
 91 
 
 0.85128 004 
 
 59 
 
 2 
 
 975 9.14535 
 
 019 9-99572 
 
 113 
 
 9.14963 
 
 0.85037 7.0855 
 
 58 
 
 3 
 
 14004 9.14624 
 
 015 9-99570 
 
 143 
 
 9.15054 
 
 
 57 
 
 4 
 5 
 
 033 9.14714 
 
 on 9.99568 
 
 173 
 
 9.15145 
 
 0.84855 558 
 
 56 
 55 
 
 1406 I 9.14803 
 
 99006 9.99566 
 
 14202 
 
 9.15236 
 
 0.84764 7.0410 
 
 b 
 
 090 9.14891 
 
 89 
 89 
 88 
 
 002 9.99565 
 
 232 
 
 9.15327 
 
 0.84673 264 
 
 54 
 
 7 
 
 119 9.14980 
 
 98998 9.99563 
 
 262 
 
 9.15417 
 
 90 
 
 0.84583 117 
 
 53 
 
 8 
 
 148 9.15069 
 
 994 9-99561 
 
 291 
 
 9.15508 
 
 91 
 90 
 90 
 89 
 
 90 
 89 
 89 
 88 
 
 0.84492 6.9972 
 
 52 
 
 9 
 
 177 9-15157 
 
 88 
 88 
 
 990 9.99559 
 
 321 
 
 9.15598 
 
 0.84402 827 
 
 51 
 
 10 
 
 14205 9-15245 
 
 98986 9.99557 
 
 14351 
 
 9.15688 
 
 0.84312 6.9682 
 
 50 
 
 II 
 
 234 9-15333 
 
 88 
 
 982 9.99556 
 
 381 
 
 9.15777 
 
 0.84223 538 
 
 49 
 
 12 
 
 263 9.15421 
 
 87 
 88 
 
 978 9-99554 
 
 410 
 
 9.15867 
 
 0.84133 395 
 
 48 
 
 13 
 
 292 9-15508 
 
 973 9-99552 
 
 440 
 
 9.15956 
 
 0.84044 252 
 
 47 
 
 14 
 
 320 9.15596 
 
 87 
 87 
 
 f7 
 87 
 86 
 
 969 9.99550 
 
 470 
 
 9.16046 
 
 0.83954 110 
 
 46 
 
 15 
 
 14349 9-15683 
 
 98965 9.99548 
 
 14499 
 
 9.16135 
 
 0.83865 6.8969 
 
 45 
 
 lb 
 
 378 9-15770 
 
 961 9.99546 
 
 529 
 
 9.16224 
 
 0.83776 828 
 
 44 
 
 17 
 
 407 9-15857 
 
 957 9-99545 
 
 559 
 
 9.16312 
 
 89 
 00 
 
 0.83688 687 
 
 43 
 
 i8 
 
 436 9-15944 
 
 953 9-99543 
 
 588 
 
 9.16401 
 
 0.83599 548 
 
 42 
 
 19 
 
 464 9.16030 
 
 86 
 87 
 86 
 
 948 9-99541 
 
 618 
 
 9.16489 
 
 88 
 88 
 
 0.83511 408 
 
 41 
 
 20 
 
 14493 9.16116 
 
 98944 9.99539 
 
 14648 
 
 9.16577 
 
 0.83423 6.8269 
 
 40 
 
 21 
 
 522 9.16203 
 
 940 9-99537 
 
 678 
 
 
 88 
 
 0.83335 131 
 
 ■?9 
 
 22 
 
 551 9-16289 
 
 '4 
 
 936 9-99535 
 
 707 
 
 9.16753 
 
 88 
 
 0.83247 6.7994 
 
 38 
 
 23 
 
 580 9.16374 
 
 931 9.99533 
 
 737 
 
 9.16841 
 
 87 
 88 
 
 87 
 87 
 87 
 
 Of. 
 
 0.83159 856 
 
 37 
 
 24 
 
 608 9.16460 
 
 85 
 
 86 
 
 927 9-99532 
 
 767 
 
 9.16928 
 
 0.83072 720 
 
 .36 
 
 25 
 
 14637 9.16545 
 
 98923 9-99530 
 
 14796 
 
 9.17016 
 
 0.82984 6,7584 
 
 35 
 
 2b 
 
 666 9.16631 
 
 85 
 85 
 84 
 
 85 
 84 
 84 
 84 
 84 
 
 ?3 
 84 
 
 ^3 
 83 
 
 83 
 83 
 83 
 82 
 
 919 9-99528 
 
 826 
 
 9.17103 
 
 0.82897 448 
 
 34 
 
 27 
 
 695 9.16716 
 
 914 9-99526 
 
 856 
 
 9.17190 
 
 0.82810 313 
 
 33 
 
 28 
 
 723 9.16801 
 
 910 9.99524 
 
 886 
 
 9.17277 
 
 0.82723 179 
 
 32 
 
 29 
 
 752 9.16886 
 
 906 9.99522 
 
 915 
 
 9.17363 
 
 87 
 
 86 
 
 0.82637 045 
 
 31 
 
 1478 I 9.16970 
 
 98902 9.99520 
 
 1494s 
 
 9.17450 
 
 0.82550 6.6912 
 
 -3-0 
 
 31 
 
 810 9.17055 
 
 897 9.99518 
 
 975 
 
 9-17536 
 
 86 
 
 0.82464 779 
 
 29 
 
 32 
 
 838 9-17139 
 
 893 9.99517 
 
 15005 
 
 9.17622 
 
 86 
 
 0.82378 646 
 
 28 
 
 33 
 
 867 9.17223 
 
 889 9.99515 
 
 034 
 
 9.17708 
 
 86 
 
 0.82292 514 
 
 27 
 
 34 
 
 896 9.17307 
 
 884 9.99513 
 
 064 
 
 9.17794 
 
 86 
 85 
 
 0.82206 383 
 
 26 
 25 
 
 35 
 
 14925 9.17391 
 
 98880 9.99511 
 
 15094 
 
 9.17880 
 
 0.82120 6.6252 
 
 3^ 
 
 954 9-17474 
 
 876 9.99509 
 
 124 
 
 9-17965 
 
 0.82035 122 
 
 24 
 
 37 
 
 982 9.17558 
 
 871 9.99507 
 
 153 
 
 9.18051 
 
 85 
 85 
 85 
 
 84 
 
 l^ 
 84 
 
 84 
 
 84 
 
 84 
 
 83 
 
 84 
 
 83 
 
 83 
 83 
 Ro 
 
 0.81949 6.5992 
 
 23 
 
 38 
 
 15011 9.17641 
 
 867 9.99505 
 
 183 
 
 9.18136 
 
 0.81864 863 
 
 22 
 
 39 
 
 040 9.17724 
 
 863 9.99503 
 
 213 
 
 9.18221 
 
 0-81779 734 
 
 21 
 20 
 
 40 
 
 15069 9.17807 
 
 98858 9.99501 
 
 15243 
 
 9.18306 
 
 0.81694 6.5606 
 
 41 
 
 097 9.17890 
 
 854 9.99499 
 
 272 
 
 9.18391 
 
 0.81609 478 
 
 19 
 
 42 
 
 126 9.17973 
 
 849 9.99497 
 
 302 
 
 
 0.81525 350 
 
 18 
 
 43 
 
 155 9-18055 
 
 82 
 
 845 9.99495 
 
 332 
 
 9.18560 
 
 0.81440 223 
 
 17 
 
 44 
 
 184 9.18137 
 
 83 
 82 
 
 841 9.99494 
 
 362 
 
 9.18644 
 
 0.81356 097 
 
 16 
 
 45 
 
 15212 9.18220 
 
 98836 9.99492 
 
 15391 
 
 9.18728 
 
 0.81272 6.4971 
 
 15 
 
 46 
 
 241 9.18302 
 
 81 
 
 832 9.99490 
 
 421 
 
 9.18812 
 
 0.81188 846 
 
 14 
 
 47 
 
 270 9.18383 
 
 82 
 
 827 9.99488 
 
 451 
 
 9.18896 
 
 0.81104 721 
 
 13 
 
 48 
 
 299 9.18465 
 
 82 
 
 823 9.99486 
 
 481 
 
 9.18979 
 
 0.81021 596 
 
 12 
 
 49 
 
 327 9.18547 
 
 81 
 81 
 
 818 9.99484 
 
 511 
 
 9.19063 
 
 0.80937 472 
 
 11 
 
 50 
 
 15356 9.18628 
 
 98814 9.99482 
 
 15540 
 
 9.19146 
 
 0.80854 6.4348 
 
 10 
 
 SI 
 
 385 9.18709 
 
 81 
 
 809 9.99480 
 
 570 
 
 9.19229 
 
 0.80771 225 
 
 9 
 
 52 
 
 414 9-18790 
 
 81 
 
 805 9.99478 
 
 600 
 
 9.19312 
 
 0.80688 103 
 
 8 
 
 S3 
 
 442 9.18871 
 
 81 
 
 800 9.99476 
 
 630 
 
 9.19395 
 
 0.80605 6.3980 
 
 7 
 
 54, 
 55 
 
 471 9-18952 
 
 81 
 80 
 
 796 9.99474 
 
 660 
 
 9.19478 
 
 0.80522 859 
 
 6 
 
 15500 9.19033 
 
 98791 9-99472 
 
 15689 
 
 9.19561 
 
 0.80439 6.3737 
 
 5 
 
 Sb 
 
 529 9.19113 
 
 80 
 
 787 9-99470 
 
 719 
 
 9.19643 
 
 82 
 
 0.80357 617 
 
 4 
 
 S7 
 
 557 919193 
 
 80 
 
 782 9.99468 
 
 749 
 
 9-19725 
 
 82 
 82 
 82 
 
 0.80275 496 
 
 3 
 
 S8 
 
 586 9-19273 
 
 80 
 
 778 9.99466 
 
 779 
 
 9.19807 
 
 0.80193 376 
 
 2 
 
 IS 
 
 615 9-19353 
 
 80 
 
 773 9.99464 
 
 809 
 
 9.19889 
 
 0.80111 257 
 
 1 
 
 643 9-19433 
 
 
 769 9.99463 
 
 838 
 
 9.19971 
 
 
 0.80029 138 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. 
 
 Nat. Cot Log. 
 
 C.d. Log. Tan Nat. 
 
 f 
 
 81° 
 
r 
 
 Nat. Sin Log. d. 1 
 
 Nat. Cos Log. 
 
 Nat.Tan Log.| 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 15643 9.19433 
 
 80 
 
 98769 
 
 9.99462 
 
 15838 
 
 9.19971 
 
 82 
 
 0.80029 6.3138 
 
 60 
 
 I 
 
 672 9.I95I3 
 
 79 
 
 764 
 
 9.99460 
 
 868 
 
 9-20053 
 
 Rt 
 
 0-79947 019 
 
 59 
 
 2 
 
 701 9-19592 
 
 760 
 
 9-99458 
 
 898 
 
 9-20134 
 
 80 
 
 0.79866 6.2901 
 
 58 
 
 3 
 
 730 9.19672 
 
 79 
 79 
 79 
 
 755 
 
 9-99456 
 
 928 
 
 9.20216 
 
 81 
 
 0.79784 783 
 
 57 
 
 4 
 5 
 
 758 9.I975I 
 15787 9.19830 
 
 751 
 
 9-99454 
 
 958 
 
 9.20297 
 
 8i 
 8t 
 
 0.79703 666 
 
 56 
 55 
 
 98746 
 
 999452 
 
 15988 
 
 9-20378 
 
 0.79622 6.2549 
 
 b 
 
 816 9.19909 
 
 741 
 
 9-99450 
 
 I60I7 
 
 9.20459 
 
 
 0.79541 432 
 
 54 
 
 7 
 
 845 9.19988 
 
 79 
 
 737 
 
 9.99448 
 
 047 
 
 9.20540 
 
 81 
 80 
 
 0.79460 316 
 
 S3 
 
 8 
 
 873 9.20067 
 
 78 
 78 
 
 79 
 78 
 78 
 77 
 78 
 78 
 77 
 
 732 
 
 9.99446 
 
 077 
 
 9.20621 
 
 0-79379 200 
 
 52 
 
 9 
 10 
 
 902 9.20145 
 
 728 
 98723 
 
 9-99444 
 9.99442 
 
 107 
 
 9.20701 
 
 81 
 80 
 
 0.79299 085 
 
 51 
 50 
 
 1593 1 9.20223 
 
 I6I37 
 
 9.20782 
 
 0.79218 6.1970 
 
 II 
 
 959 9.20302 
 
 718 
 
 9.99440 
 
 167 
 
 9.20862 
 
 80 
 80 
 8n 
 
 0.79138 856 
 
 49 
 
 12 
 
 988 9.20380 
 
 714 
 
 999438 
 
 196 
 
 9.20942 
 
 0.79058 742 
 
 48 
 
 13 
 
 16017 9.20458 
 
 709 
 
 9-99436 
 
 226 
 
 9.21022 
 
 0.78978 628 
 
 47 
 
 14 
 
 046 9.20535 
 
 704 
 
 9-99434 
 
 25b 
 
 9.21102 
 
 80 
 
 0.78898 515 
 
 46 
 
 15 
 
 16074 9-20613 
 
 98700 
 
 999432 
 
 16286 
 
 9.21182 
 
 0.78818 6.1402 
 
 45 
 
 16 
 
 103 9.20691 
 
 695 
 
 9.99429 
 
 316 
 
 9.21261 
 
 79 
 80 
 
 0.78739 290 
 
 44 
 
 17 
 
 132 9.20768 
 
 690 
 
 9.99427 
 
 346 
 
 9-21341 
 
 0.78659 178 
 0.78580 066 
 
 43 
 
 lb 
 
 160 9.20845 
 
 77 
 77 
 77 
 
 686 
 
 999425 
 
 376 
 
 9.21420 
 
 79 
 79 
 79 
 
 42 
 
 19 
 20 
 
 189 9.20922 
 
 681 
 
 999423 
 
 405 
 
 9.21499 
 
 0.78501 6.0955 
 
 41 
 40 
 
 16218 9.20999 
 
 98676 
 
 9.99421 
 
 16435 
 
 9.21578 
 
 0.78422 6.0844 
 
 21 
 
 246 9.21076 
 
 
 671 
 
 9.99419 
 
 465 
 
 9.21657 
 
 79 
 
 0.78343 734 
 
 39 
 
 22 
 
 275 9.21153 
 
 \l 
 
 667 
 
 9.99417 
 
 495 
 
 9.21736 
 
 79 
 78 
 
 0.78264 624 
 
 38 
 
 23 
 
 304 9.21229 
 
 662 
 
 9-99415 
 
 525 
 
 9.21814 
 
 0.78186 514 
 
 37 
 
 24 
 
 333 9.21306 
 
 77 
 76 
 
 7^ 
 
 76 
 
 76 
 
 657 
 98652 
 
 9-99413 
 
 555 
 
 9.21893 
 
 79 
 
 78 
 
 78 
 78 
 78 
 78 
 78 
 
 0.78107 405 
 
 36 
 35 
 
 25 
 
 16361. 9.21382 
 
 9-994" 
 
 16585 
 
 9.21971 
 
 0.78029 6.0296 
 
 2b 
 
 390 9.21458 
 
 648 
 
 9.99409 
 
 615 
 
 9.22049 
 
 0.77951 188 
 
 34 
 
 27 
 
 419 921534 
 
 643 
 
 9-99407 
 
 645 
 
 9.22127 
 
 0.77873 080 
 
 33 
 
 28 
 
 447 9.21610 
 
 638 
 
 9.99404 
 
 674 
 
 9.22205 
 
 0.77795 5.9972 
 
 32 
 
 29 
 
 476 9.21685 
 
 75 
 76 
 
 __633 
 98629 
 
 9.99402 
 
 704 
 
 9.22283 
 
 0.77717 865 
 
 31 
 30 
 
 30 
 
 16505 9.21761 
 
 9-99400 
 
 16734 
 
 9.22361 
 
 0.77639 5.9758 
 
 31 
 
 533 9.21836 
 
 75 
 76 
 
 624 
 
 9.99398 
 
 764 
 
 9.22438. 
 
 77 
 
 78 
 
 0.77562 651 
 
 29 
 
 32 
 
 562 9.21912 
 
 619 
 
 9.99396 
 
 794 
 
 9.22516 
 
 0.77484 545 
 
 28 
 
 33 
 
 591 9.21987 
 
 
 614 
 
 9-99394 
 
 824 
 
 9-22593 
 
 
 0.77407 439 
 
 27 
 
 34 
 
 620 9.22062 
 
 75 
 75 
 
 609 
 
 9-99392 
 
 854 
 
 9.22670 
 
 77 
 77 
 
 0.77330 333 
 
 26 
 
 35 
 
 16648 9.22137 
 
 98604 
 
 9-99390 
 
 16884 
 
 9.22747 
 
 0.77253 5-9228 
 
 25 
 
 3^ 
 
 677 9.22211 
 
 74 
 
 600 
 
 9.99388 
 
 914 
 
 9.22824 
 
 77 
 
 0.77176 124 
 
 24 
 
 37 
 
 706 9.22286 
 
 75 
 75 
 
 595 
 
 9-99385 
 
 944 
 
 9.22901 
 
 77 
 76 
 
 0.77099 019 
 
 23 
 
 3» 
 
 734 9-22361 
 
 590 
 
 999383 
 
 974 
 
 9.22977 
 
 0.77023 5-8915 
 
 22 
 
 39 
 
 763 9.22435 
 
 74 
 74 
 
 585 
 
 9.99381 
 
 17004 
 
 9-23054 
 
 76 
 76 
 
 0.76946 811 
 
 21 
 20 
 
 40 
 
 16792 9.22509 
 
 98580 
 
 9-99379 
 
 17033 
 
 9.23130 
 
 0.76870 5.8708 
 
 41 
 
 820 9.22583 
 
 74 
 
 575 
 
 
 063 
 
 9.23206 
 
 o.7%94 605 
 
 19 
 
 42 
 
 849 9-22657 
 
 74 
 
 570 
 
 9.99375 
 
 093 
 
 9.23283 
 
 77 
 76 
 76 
 
 75 
 76 
 
 0.76717 502 
 
 18 
 
 43 
 
 878 9.22731 
 
 74 
 
 565 
 
 9-99372 
 
 123 
 
 9-23359 
 
 0.76641 400 
 
 17 
 
 44 
 45 
 
 906 9.22805 
 16935 9-22878 
 
 74 
 73 
 
 561 
 
 9-99370 
 
 153 
 
 923435 
 
 0.76565 298 
 
 15 
 
 98556 
 
 9.99368 
 
 17183 
 
 9.23510 
 
 0.76490 5.8197 
 
 15 
 
 46 
 
 964 9.22952 
 
 74 
 
 551 
 
 9-99366 
 
 213 
 
 
 0.76414 095 
 
 14 
 
 47 
 
 992 9.23025 
 
 73 
 
 546 
 
 9-99364 
 
 243 
 
 9.23661 
 
 75 
 76 
 
 75 
 75 
 75 
 75 
 75 
 74 
 75 
 74 
 75 
 74 
 74 
 
 0.76339 5-7994 
 
 13 
 
 4« 
 
 17021 9.23098 
 
 73 
 
 541 
 
 9.99362 
 
 273 
 
 9-23737 
 
 0.76263 894 
 
 12 
 
 49_ 
 50 
 
 050 9.23171 
 
 73 
 73 
 
 536 
 
 9.99359 
 
 303 
 
 9.23812 
 
 0.76188 794 
 
 II 
 
 17078 9.23244 
 
 98531 
 
 9.99357 
 
 17333 
 
 9.23887 
 
 0.76113 5.7694 
 
 10 
 
 51 
 
 107 9-23317 
 
 73 
 73 
 72 
 
 526 
 
 9.99355 
 
 363 
 
 9.23962 
 
 0.76038 594 
 
 9 
 
 52 
 
 136 9-23390 
 
 521 
 
 9-99353 
 
 393 
 
 9.24037 
 
 0.75963 495 
 0.75888 396 
 
 8 
 
 S3 
 
 164 9.23462 
 
 516 
 
 9-99351 
 
 423 
 
 9.24112 
 
 7 
 
 54 
 
 193 9-23.'535 
 
 73 
 72 
 
 ■511 
 
 9.99348 
 
 453 
 
 9.24186 
 
 0.75814 297 
 
 6 
 
 55 
 
 17222 9.23607 
 
 98506 
 
 9-99346 
 
 17483 
 
 9.24261 
 
 0.75739 5.7199 
 
 5 
 
 56 
 
 250 9.23679 
 
 72 
 73 
 
 .501 
 
 9-99344 
 
 513 
 
 9-24335 
 
 0.75665 lOI 
 
 4 
 
 57 
 
 279 9-23752 
 
 496 
 
 9-99342 
 
 543 
 
 9.24410 
 
 0.75590 004 
 
 3 
 
 58 
 
 308 9.23823 
 
 71 
 
 491 
 
 9-99340 
 
 573 
 
 9.24484 
 
 0.75516 5.6906 
 
 2 
 
 ^0 
 
 336 9.23895 
 
 72 
 
 486 
 
 9-99337 
 
 603 
 
 9-24558 
 
 0.75442 809 11 
 
 365 9-23967 
 
 72 
 
 481 
 
 9-99335 
 
 633 
 
 9.24632 1 '-* 
 
 0.75368 713 o| 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. 
 
 Nat. Cot Log. 
 
 c.d.! Log. Tan Nat. 
 
 LJ 
 
 80' 
 

 
 
 
 10 
 
 
 
 
 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d 
 
 Log. Cot Nat. 
 
 r 
 
 
 
 17365 9-23967 
 
 72 
 71 
 71 
 72 
 71 
 71 
 71 
 70 
 
 71 
 70 
 
 71 
 70 
 70 
 70 
 70 
 70 
 
 69 
 70 
 69 
 
 i^ 
 69 
 69 
 69 
 69 
 
 6S 
 
 98481 9-99335 
 
 
 17633 9.24632 
 
 
 0-75368 5-6713 
 
 60 
 
 I 
 
 393 9-24039 
 
 476 9-99333 
 
 2 
 
 663 9.24706 
 
 74 
 73 
 
 0.75294 617 
 
 59 
 
 2 
 
 422 9.241 10 
 
 471 9-99331 
 
 
 693 9.24779 
 
 0.75221 521 
 
 ■;8 
 
 3 
 
 451 9-24181 
 
 466 9.99328 
 
 
 723 9.24853 
 
 74 
 
 0.75147 425 
 
 ^7 
 
 4 
 
 479 9-24253 
 
 461 9.99326 
 
 2 
 
 753 9.24926 
 
 71 
 74 
 
 0.75074 329 
 0.75000 5.6234 
 
 56 
 55 
 
 5 
 
 17508 9-24324 
 
 98455 9.99324 
 
 17783 9.25000 
 
 6 
 
 537 9.24395 
 
 450 9.99322 
 
 3 
 2 
 
 813 9.25073 
 
 IZ 
 
 0.74927 140 
 
 S4 
 
 7 
 
 565 9.24466 
 
 445 9.99319 
 
 843 9.25146 
 
 73 
 
 0.74854 045 
 
 53 
 
 8 
 
 594 9-24536 
 
 440 9.99317 
 
 
 873 9.25219 
 
 
 0.74781 5.5951 
 
 S2 
 
 9 
 
 623 9.24607 
 
 435 9-99315 
 98430 9.99313 
 
 2 
 3 
 
 903 9.25292 
 
 73 
 
 0.74708 857 
 0.74635 5.5764 
 
 51! 
 
 10 
 
 17651 9.24677 
 
 17933 9.25365 
 
 II 
 
 680 9.24748 
 
 425 9-99310 
 
 963 9.25437 
 
 72 
 
 0.74563 671 
 
 49 i 
 
 12 
 
 708 9.24818 
 
 420 9-99308 
 
 ^ 
 
 993 9.25510 
 
 Tb 
 
 0.74490 578 
 
 48' 
 
 i3 
 
 737 9-24888 
 
 414 999306 
 
 " 
 
 18023 9-25582 
 
 
 0.74418 485 
 
 47 
 
 H 
 
 766 9.24958 
 
 409 9.99304 
 
 3 
 2 
 
 053 9-25655 
 
 73 
 72 
 72 
 
 0.74345 393 
 
 46 
 
 15 
 
 17794 9-25028 
 
 98404 9.99301 
 
 18083 9-25727 
 
 0.74273 5.5301 
 
 45 
 
 lb 
 
 823 9.25098 
 
 399 9.99299 
 
 
 "3 9-25799 
 
 0.74201 209 
 
 44 
 
 17 
 
 852 9.25168 
 
 394 9.99297 
 
 3 
 
 143 9-25871 
 
 72 
 
 0.74129 118 
 
 43 
 
 l8 
 
 880 9.25237 
 
 389 9.99294 
 
 173 9.25943 
 
 72 
 
 0.74057 026 
 
 42 
 
 19 
 
 909 9-25307 
 
 383 9.99292 
 
 2 
 
 203 9.26015 
 
 72 
 71 
 
 0.73985 5-4936 
 
 41 
 
 20 
 
 17937 9-25376 
 
 98378 9.99290 
 
 18233 9.26086 
 
 0.73914 5-4845 
 
 40 
 
 21 
 
 966 9.25445 
 
 373 9.99288 
 
 3 
 
 263 9.26158 
 
 7^ 
 
 0.73842 755 
 
 39 
 
 22 
 
 995 9.25514 
 
 368 9.99285 
 
 293 9.26229 
 
 
 0.73771 665 
 
 38 
 
 23 
 
 18023 9.25583 
 
 362 9.99283 
 
 "^ 
 
 323 9.26301 
 
 
 0.73699 575 
 
 37 
 
 24 
 25 
 
 052 9.25652 
 
 357 9.99281 
 
 3 
 
 353 9.26372 
 
 71 
 
 0.73628 486 
 
 36 
 
 1808 I 9.25721 
 
 98352 9.99278 
 
 18384 9.26443 
 
 0.73557 5-4397 
 
 35 
 
 2b 
 
 109 9.25790 
 
 347 9-99276 
 
 2 
 
 414 9.26514 
 
 71 
 
 0.73486 308 
 
 34 
 
 27 
 
 138 9-25858 
 
 69 
 68 
 
 341 9.99274 
 
 3 
 2 
 
 444 9.26585 
 
 
 0.73415 219 
 
 33 
 
 28 
 
 166 9.25927 
 
 336 9.99271 
 
 474 9.26655 
 
 70 
 71 
 71 
 
 0.73345 131 
 
 32 
 
 29 
 
 195 9-25995 
 
 68 
 68 
 
 331 9.99269 
 
 2 
 3 
 
 504 9.26726 
 
 0.73274 043 
 
 31 
 
 30 
 
 18224 9.26063 
 
 98325 9.99267 
 
 18534 9-26797 
 
 0.73203 5-3955 
 
 30 
 
 31 
 
 252 9.26131 
 
 68 
 
 320 9.99264 
 
 564 9.26867 
 
 
 0.73133 868 
 
 29 
 
 32 
 
 281 9.26199 
 
 68 
 
 315 9.99262 
 
 " 
 
 594 9.26937 
 
 71 
 
 0.73063 781 
 
 28 
 
 33 
 
 309 9.26267 
 
 68 
 
 310 9.99260 
 
 3 
 2 
 
 3 
 2 
 
 624 9.27008 
 
 0.72992 694 
 
 27 
 
 34 
 
 338 9.26335 
 
 68 
 67 
 68 
 
 304 9-99257 
 
 654 9.27078 
 
 70 
 
 0.72922 607 
 
 26 
 
 35 
 
 18367 9.26403 
 
 98299 9.99255 
 
 18684 9.27148 
 
 0.72852 5.3521 
 
 25 
 
 3^ 
 
 395 9-26470 
 
 294 9.99252 
 
 714 9.27218 
 
 70 
 69 
 
 0.72782 435 
 
 24 
 
 37 
 
 424 9.26538 
 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 66 
 67 
 66 
 
 288 9.99250 
 
 
 745 9.27288 
 
 0.72712 349 
 
 23 
 
 3» 
 
 452 9.26605 
 
 283 9.99248 
 
 3 
 2 
 
 775 9-27357 
 
 0.72643 263 
 
 22 
 
 39 
 40 
 
 481 9.26672 
 
 277 9.99245 
 98272 9.99243 
 
 805 9.27427 
 
 70 
 69 
 
 69 
 69 
 69 
 69 
 69 
 
 68 
 
 0-72573 178 
 
 21 
 20 
 
 18509 9-26739 
 
 18835 9.27496 
 
 0.72504 5.3093 
 
 41 
 
 538 9.26806 
 
 267 9.99241 
 
 
 865 9.27566 
 
 0.72434 008 
 
 19 
 
 42 
 
 567 9.26873 
 
 261 9.99238 
 
 3 
 
 895 9.27635 
 
 0-72365 5-2924 
 
 18 
 
 43 
 
 595 9-26940 
 
 256 9.99236 
 
 3 
 2 
 
 925 9-27704 
 
 0.7220 839 
 
 17 
 
 44 
 45" 
 
 624 9.27007 
 
 250 9-99233 
 
 955 9.27773 
 
 0.72227 755 
 
 lb 
 
 18652 9.27073 
 
 98245 9.99231 
 
 18986 9.27842 
 
 0.72158 5.2672 
 
 15 
 
 4b 
 
 681 9.27140 
 
 240 9.99229 
 
 3 
 
 19016 9.2791 1 
 
 0.72089 588 
 
 14 
 
 47 
 
 710 9.27206 
 
 67 
 66 
 
 234 9.99226 
 
 046 9.27980 
 
 0.72020 505 
 
 13 
 
 48 
 
 738 9.27273 
 
 229 9.99224 
 
 3 
 2 
 
 076 9.28049 
 
 0.71951 422 
 
 12 
 
 49 
 
 7(y7 9-27339 
 
 66 
 66 
 
 223 999221 
 
 106 9.28117 
 
 69 
 
 68 
 
 0.71883 339 
 
 n 
 
 50 
 
 18795 9.2740g 
 
 98218 9.99219 
 
 19 136 9.28186 
 
 0.71814 5.2257 
 
 10 
 
 51 
 
 824 9.27471 
 
 66 
 
 212 9.99217 
 
 3 
 
 166 9.28254 
 
 
 0.71746 174 
 
 9 
 
 52 
 
 852 9.27537 
 
 % 
 
 207 9.99214 
 
 197 9.28323 
 
 0.71677 092 
 
 8 
 
 53 
 
 881 9.27602 
 
 20I 9.99212 
 
 3 
 2 
 
 3 
 
 227 9.28391 
 
 68 
 
 0.71609 on 
 
 7 
 
 54 
 
 910 9.27668 
 
 66 
 
 65 
 65 
 66 
 
 196 9.99209 
 
 257 9.28459 
 
 68 
 6H 
 
 0.71541 5.1929 
 
 6 
 
 55 
 
 18938 9-27734 
 
 98190 9.99207 
 
 19287 9.28527 
 
 9.71473 5.1848 
 
 5 
 
 5^^ 
 
 967 9.27799 
 
 185 9.99204 
 
 317 9-28595 
 
 67 
 
 68 
 
 0.71405 767 
 
 4 
 
 57 
 
 995 9-27864 
 
 179 9.99202 
 
 
 347 9.28662 
 
 0.71338 686 
 
 3 
 
 5« 
 
 19024 9.27930 
 
 65 
 65 
 
 174 9.99200 
 
 3 
 
 378 9.28730 
 
 68 
 
 0.71270 606 
 
 2 
 
 il 
 
 052 9.27995 
 
 168 9-99197 
 
 408 9.28798 
 
 67 
 
 0.71202 526 
 
 I 
 
 081 9.28060 
 
 163 9-99195 
 
 
 438 9.28865 
 
 0.7113S 446 
 
 
 
 
 Nat. Cos Log. d. 1 
 
 Nat. Sin Log. d. 1 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.TanNat. 
 
 / 
 
 79' 
 
ir 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log 
 
 d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 1908 1 9.28060 
 
 1 
 
 64 
 65 
 65 
 64 
 
 64 
 
 65 
 64 
 
 64 
 
 64 
 
 64 
 
 63 
 64 
 64 
 63 
 63 
 64 
 63 
 63 
 63 
 
 98163 9.99195 
 
 3 
 2 
 
 19438 9.28865 
 
 68 
 
 0.71 135 5.1446 
 
 60 
 
 I 
 
 109 9.28125 
 
 157 9-99192 
 
 468 9.28933 
 
 67 
 67 
 67 
 67 
 67 
 6(S 
 
 0.71067 366 
 
 5Q 
 
 2 
 
 138 9.28190 
 
 152 9.99190 
 
 3 
 
 498 9.29000 
 
 0.71000 286 
 
 58 
 
 3 
 
 167 9.28254 
 
 146 9-99187 
 
 529 9.29067 
 
 0.70933 207 
 
 57 
 
 4 
 
 195 9.28319 
 
 140 9-99185 
 
 3 
 
 559 9-29134 
 
 0.70866 128 
 
 56 
 
 5 
 
 19224 9.28384 
 
 98135 9-99182 
 
 19589 9.29201 
 
 0.70799 5.1049 
 
 55 
 
 6 
 
 252 9.28448 
 
 129 9.99180 
 
 3 
 
 619 9.29268 
 
 0.70732 5.0970 
 
 54 
 
 7 
 
 281 9.28512 
 
 124 9.99177 
 
 649 9.29335 
 
 0.70665 892 
 
 53 
 
 8 
 
 309 9.28577 
 
 118 9-99175 
 
 3 
 2 
 
 3 
 
 680 9.29402 
 
 0.70598 814 
 
 S2 
 
 9 
 
 338 9.28641 
 
 112 9-99172 
 
 710 9.29468 
 
 67 
 66 
 
 0.70532 736 
 
 51 
 50 
 
 10 
 
 19366 9.28705 
 
 98107 9-99170 
 
 19740 9.29535 
 
 0.70465 5.0658 
 
 II 
 
 395 9.28769 
 
 loi 9.99167 
 
 770 9.29601 
 
 67 
 
 66 
 
 0.70399 581 
 
 4Q 
 
 12 
 
 423 9.28833 
 
 096 9.99165 
 
 3 
 
 801 9.29668 
 
 0.70332 504 
 
 48 
 
 13 
 
 452 9.28896 
 
 090 9.99162 
 
 831 9-29734 
 
 66 
 
 0.70266 427 
 
 47 
 
 14 
 15 
 
 481 9.28960 
 
 084 9.99160 
 98079 9.99157 
 
 3 
 
 861 9.29800 
 
 66 
 66 
 66 
 
 0.70200 350 
 
 46 
 45 
 
 19509 9.29024 
 
 19891 9.29866 
 
 0.70134 5.0273 
 
 I6 
 
 538 9.29087 
 
 ^3 9-99155 
 
 3 
 
 921 9.29932 
 
 0.70068 197 
 
 44 
 
 17 
 
 566 9.29150 
 
 067 9.99152 
 
 952 9.29998 
 
 66 
 
 0.70002 121 
 
 43 
 
 l8 
 
 595 9-29214 
 
 061 9.99150 
 
 3 
 2 
 
 3 
 
 982 9.30064 
 
 66 
 
 0.69936 045 
 
 42 
 
 19 
 
 623 9.29277 
 
 056 9-99147 
 
 20012 9.30130 
 
 65 
 66 
 
 0.69870 4.9969 
 
 41 
 
 20 
 
 19652 9.29340 
 
 98050 9.99145 
 
 20042 9.30195 
 
 0.69805 4.9894 
 
 40 
 
 21 
 
 680 9.29403 
 
 044 9.99142 
 
 073 9.30261 
 
 ^5 
 
 0.69739 819 
 
 39 
 
 22 
 
 709 9.29466 
 
 039 9.99140 
 
 3 
 
 103 930326 
 
 0.69674 744 
 
 38 
 
 23 
 
 737 9-29529 
 
 033 9-99137 
 
 133 9-30391 
 
 0.69609 669 
 
 37 
 
 24 
 
 25 
 
 766 9-29591 
 
 63 
 60 
 
 027 9-99135 
 
 3 
 
 164 9-30457 
 
 65 
 
 65 
 64 
 
 % 
 % 
 
 64 
 
 i^ 
 64 
 
 64 
 
 64 
 
 64 
 
 i^ 
 64 
 
 64 
 
 63 
 64 
 63 
 63 
 63 
 63 
 
 ^3 
 63 
 
 63 
 62 
 
 0.69543 594 
 
 3b 
 
 19794 9-29654 
 
 98021 9.99132 
 
 20194 9-30522 
 
 0.69478 4.9520 
 
 35 
 
 2b 
 
 823 9.29716 
 
 53 
 
 016 9.99130 
 
 3 
 3 
 
 224 9.30587 
 
 0.69413 446 
 
 34 
 
 27 
 
 851 9.29779 
 
 010 9.99127 
 
 254 9-30652 
 
 0.69348 372 
 
 33 
 
 28 
 
 880 9.29841 
 
 6^ 
 
 004 9.99124 
 
 285 9.30717 
 
 0.69283 298 
 
 32 
 
 29 
 30 
 
 908 9-29903 
 
 63 
 60 
 
 97998 9.99122 
 
 3 
 
 315 9.30782 
 
 0.69218 225 
 
 31 
 
 19937 9-2996<5 
 
 97992 9-99119 
 
 20345 9.30846 
 
 0.69154 4.9152 
 
 30 
 
 31 
 
 965 9.30028 
 
 6'> 
 
 987 9.99117 
 
 3 
 2 
 
 376 9.30911 
 
 0.69089 078 
 
 29 
 
 32 
 
 994 9-30090 
 
 61 
 
 981 9.99114 
 
 406 9.30975 
 
 0.69025 006 
 
 28 
 
 33 
 
 20022 9.30151 
 
 6'^ 
 
 975 9-99112 
 
 3 
 3 
 
 436 9.31040 
 
 0.68960 4.8933 
 
 27 
 
 34 
 
 051 9.30213 
 
 62 
 61 
 
 969 9.99109 
 
 466 9.31104 
 
 0.6880 860 
 
 26 
 25 
 
 35 
 
 20079 9-30275 
 
 97963 9.99106 
 
 20497 9.31168 
 
 0.68832 4.8788 
 
 3& 
 
 108 9.30336 
 
 958 999104 
 
 3 
 
 527 9.31233 
 
 0.68767 716 
 
 24 
 
 37 
 
 136 9-30398 
 
 61 
 
 952 9-99IOI 
 
 557 9.31297 
 
 0.68703 644 
 
 23 
 
 3« 
 
 165 9-30459 
 
 Ao 
 
 946 9.99099 
 
 3 
 3 
 
 588 9.31361 
 
 0.68639 573 
 
 22 
 
 39 
 
 193 9-30521 
 
 6i 
 61 
 61 
 61 
 61 
 61 
 60 
 61 
 60 
 61 
 60 
 61 
 60 
 60 
 
 940 999096 
 
 618 9-31425 
 
 0.68575 501 
 
 21 
 
 40 
 
 20222 9.30582 
 
 97934 9-99093 
 
 20648 9.31489 
 
 0.68511 4.8430 
 
 20 
 
 41 
 
 250 9.30643 
 
 928 9-99091 
 
 
 679 9-31552 
 
 0.68448 359 
 
 19 
 
 42 
 
 279 9-30704 
 
 922 9.99088 
 
 3 
 
 709 9.31616 
 
 0.68384 288 
 
 18 
 
 43 
 
 307 9-30765 
 
 916 9.99086 
 
 3 
 3 
 
 739 9-31679 
 
 0.68321 218 
 
 17 
 
 44 
 
 336 9.30826 
 
 910 9.99083 
 
 770 9-31743 
 
 0.68257 147 
 
 lb 
 
 45 
 
 20364 9.30887 
 
 97905 9.99080 
 
 20800 9.31806 
 
 0.68194 4.8077 
 
 15 
 
 46 
 
 393 9-30947 
 
 899 9.99078 
 
 
 830 9.31870 
 
 0.68130 007 
 
 14 
 
 47 
 
 421 9.31008 
 
 893 9-99075 
 
 3 
 
 861 9.31933 
 
 0.68067 4.7937 
 
 13 
 
 48 
 
 450 9.31068 
 
 887 9.99072 
 
 3 
 
 891 931996 
 
 0.68004 867 
 
 12 
 
 49 
 
 478 9.31129 
 
 881 9.99070 
 
 3 
 
 921 9.32059 
 
 0.67941 798 
 
 11 
 
 50 
 
 20507 9.31 189 
 
 97875 9.99067 
 
 20952 9.32122 
 
 0.67878 4.7729 
 
 10 
 
 SI 
 
 535 9-31250 
 
 869 9.99064 
 
 3 
 
 982 9.32185 
 
 0.67815 659 
 
 9 
 
 52 
 
 563 9.31310 
 
 863 9.99062 
 
 3 
 3 
 2 
 
 21013 9.32248 
 
 0.67752 591 
 
 8 
 
 53 
 
 592 9.31370 
 
 60 
 60 
 
 857 9-99059 
 
 043 9-32311 
 
 0.67689 522 
 
 7 
 
 54 
 55 
 
 620 9-31430 
 
 851 9-99056 
 
 073 9-32373 
 
 63 
 62 
 
 0.67627 453 
 
 b 
 
 20649 9-31490 
 
 97845 9.99054 
 
 21104 9.32436 
 
 0.67564 4.7385 
 
 5 
 
 56 
 
 (>77 9-31549 
 
 60 
 
 839 9-99051 
 
 3 
 
 134 9.32498 
 
 t? 
 
 0.67502 317 
 
 4 
 
 57 
 
 706 9.31609 
 
 833 9-99048 
 
 3 
 
 164 9.32561 
 
 0.67439 249 
 
 3 
 
 58 
 
 734 9-31669 
 
 827 9.99046 
 
 
 195 9.32623 
 
 62 
 
 0.67377 181 
 
 2 
 
 hi 
 
 763 9.31728 
 
 6^ 
 
 821 9.99043 
 
 3 
 
 225 9.32685 
 
 62 
 
 0.67315 114 
 
 I 
 
 791 9.31788 
 
 815 9.99040 
 
 3 
 
 256 9.32747 
 
 
 0.67253 046 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. 
 
 d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.TanNat. 
 
 / 
 
 78' 
 

 
 
 12° 
 
 
 
 
 t 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 20791 9.31788 
 
 59 
 
 6n 
 
 97815 9.99040 
 
 
 21256 9.32747 
 
 % 
 
 0.67253 4.7046 
 
 60 
 
 I 
 
 820 9.31847 
 
 809 9-99038 
 
 3 
 3 
 2 
 
 286 9.32810 
 
 0.67190 4.6979 
 
 59 
 
 2 
 
 848 9.31907 
 
 59 
 59 
 59 
 59 
 59 
 
 59 
 58 
 
 59 
 59 
 58 
 58 
 59 
 58 
 
 58 
 58 
 58 
 57 
 58 
 57 
 58 
 57 
 57 
 58 
 57 
 57 
 
 % 
 57 
 
 803 9-99035 
 
 316 9.32872 
 
 61 
 
 0.67128 912 
 
 S8 
 
 3 
 
 877 9.31966 
 
 797 9-99032 
 
 347 9-32933 
 
 6^^ 
 
 0.67067 84s 
 
 57 
 
 4 
 
 90s 9.32025 
 
 791 9.99030 
 
 3 
 
 3 
 2 
 
 377 9-32995 
 
 62 
 
 50 
 
 0.67005 779 
 
 56 
 55 
 
 5 
 
 20933 9-32084 
 
 97784 9.99027 
 
 21408 9.33057 
 
 0.66943 4.6712 
 
 6 
 
 962 9.32143 
 
 778 9-99024 
 
 438 9-33119 
 
 61 
 
 0.66881 646 
 
 S4 
 
 7 
 
 990 9.32202 
 
 772 9.99022 
 
 3 
 3 
 3 
 2 
 
 469 9-33180 
 
 50 
 
 0.66820 580 
 
 53 
 
 8 
 
 21019 9.32261 
 
 766 9.99019 
 
 499 9-33242 
 
 61 
 
 0.66758 514 
 
 52 
 
 9 
 10 
 
 047 9-32319 
 
 760 9.99016 
 
 529 9-33303 
 21560 9-33365 
 
 62 
 61 
 
 0.66697 448 
 
 51 
 
 21076 9.32378 
 
 97754 9-99013 
 
 0.66635 4-6382 
 
 50 
 
 II 
 
 104 9.32437 
 
 748 9-9901 1 
 
 3 
 3 
 3 
 2 
 
 3 
 
 3 
 
 3 
 2 
 
 590 9-33426 
 
 61 
 
 0.66574 317 
 
 49 
 
 12 
 
 132 9.32495 
 
 742 9-99008 
 
 621 9.33487 
 
 61 
 
 0.66513 252 
 
 48 
 
 13 
 
 161 9.32553 
 
 735 999005 
 
 651 9-33548 
 
 61 
 
 0.66452 187 
 
 47 
 
 14 
 
 189 9.32612 
 
 729 9.99002 
 
 682 9.33609 
 
 61 
 61 
 
 0.66391 122 
 
 46 
 
 15 
 
 21218 9.32670 
 
 97723 9-99000 
 
 2 17 1 2 9.33670 
 
 0.66330 4.6057 
 
 45 
 
 lb 
 
 246 9.32728 
 
 717 9-98997 
 
 743 9-33731 
 
 61 
 
 0.66269 4.5993 
 
 44 
 
 17 
 
 27s 9-32786 
 
 711 9-98994 
 
 773 933792 
 
 
 0.66208 928 
 
 43 
 
 i8 
 
 303 9.32844 
 
 705 9.98991 
 
 804 9-33853 
 
 60 
 
 0.66147 • 864 
 
 42 
 
 19 
 
 331 9.32902 
 
 698 9.98989 
 
 3 
 3 
 3 
 2 
 
 834 9-33913 
 
 61 
 
 fin 
 
 0.66087 800 
 
 41 
 
 20 
 
 21360 9.32960 
 
 97692 9.98986 
 
 21864 9-33974 
 
 0.66026 45736 
 
 40 
 
 21 
 
 388 9.33018 
 
 686 9.98983 
 
 895 9-34034 
 
 61 
 
 0.65966 673 
 
 39 
 
 22 
 
 417 9-33075 
 
 680 9.98980 
 
 925 9-3409$ 
 
 f)n 
 
 ,0.6590$ 609 
 
 38 
 
 23 
 
 445 9-33133 
 
 673 9-98978 
 
 3 
 
 3 
 
 3 
 2 
 
 956 9-34155 
 
 60 
 
 0.65845 546 
 
 37 
 
 24 
 
 25- 
 
 474 9-33190 
 
 667 9-98975 
 
 986 9.34215 
 
 61 
 
 60 
 
 0-65785 483 
 
 36 
 
 21502 9.33248 
 
 97661 9.98972 
 
 22017 9-34276 
 
 0.65724 4.5420 
 
 35 
 
 26 
 
 530 9-33305 
 
 655 9.98969 
 
 047 9-34336 
 
 fin 
 
 0.65664 357 
 
 34 
 
 27 
 
 559 9-33362 
 
 648 9.98967 
 
 3 
 3 
 3 
 3 
 
 078 9-34396 
 
 °° 0.65604 294 
 
 33 
 
 28 
 
 587 9-33420 
 
 642 9.98964 
 
 108 9-34456 
 
 60 \ 0-65544 232 
 
 32 
 
 29 
 
 6i6 9-33477 
 
 636 9.98961 
 
 139 9-34516 
 
 60 
 
 0.65484 169 
 
 31 
 
 21644 9-33534 
 
 97630 9.98958 
 
 22169 9-34576 
 
 0.65424 4.5107 
 
 30 
 
 31 
 
 672 9-33591 
 
 623 9-98955 
 
 200 9.34635 
 
 ^^ ' 0.6536$ 045 
 
 29 
 
 32 
 
 701 9.33647 
 
 
 3 
 3 
 3 
 3 
 3 
 
 231 9-34695 
 
 ^° 0.6530$ 4.4983 
 
 28 
 
 33 
 
 729 9-33704 
 
 611 9.98950 
 
 261 9-34755 ''. :X 0.65245 922 
 
 27 
 
 34 
 
 758 9-33761 
 
 57 
 57 
 56 
 57 
 56 
 56 
 57 
 
 ^i 
 
 ^l 
 
 ^l 
 56 
 
 56 
 
 56 
 
 55 
 
 56 
 
 55 
 
 56 
 
 55 
 
 56 
 
 55 
 
 55 
 
 55 
 
 55 
 
 55 
 
 55 
 
 55 
 
 55 
 
 604 9-98947 
 
 292 9.34814 
 
 2^ 1 0.65186 860 
 
 26 
 25 
 
 35 
 
 21786 9.33818 
 
 97598 9-98944 
 
 22322 9.34874 
 
 59 
 59 
 59 
 6n 
 
 0.65126 4-4799 
 
 36 
 
 814 9-33874 
 
 592 9-98941 
 
 353 9-34933 
 
 0.65067 737 
 
 24 
 
 37 
 
 843 9-33931 
 
 585 9-98938 
 
 383 9-34992 
 
 0.65008 676 
 
 23 
 
 3B 
 
 871 9-33987 
 
 579 9-98936 
 
 3 
 3 
 3 
 3 
 3 
 2 
 
 414 9-35051 
 
 0.64949 615 
 
 22 
 
 39 
 
 899 9.34043 
 
 573 9-98933 
 
 444 9-351" 
 
 59 
 59 
 59 
 59 
 58 
 59 
 59 
 58 
 59 
 58 
 59 
 58 
 58 
 58 
 58 
 58 
 
 58 
 57 
 
 0.64889 555 
 
 21 
 
 40 
 
 21928 9.34100 
 
 97566 9.98930 
 
 22475 9-35170 
 
 0.64830 4.4494 
 
 20 
 
 41 
 
 956 9.34156 
 
 560 9-98927 
 
 505 9.35229 
 
 0.64771 434 
 
 19 
 
 42 
 
 985 9.34212 
 
 553 9-98924 
 
 536 9-35288 
 
 0.64712 373 
 
 18 
 
 43 
 
 22013 9-34268 
 
 547 9-98921 
 
 567 9-35347 
 
 0.64653 313 
 
 17 
 
 44 
 
 041 9-34324 
 
 541 9-98919 
 
 3 
 3 
 3 
 3 
 3 
 3 
 3 
 
 597 9-35405 
 
 0.64595 253 
 
 16 
 
 15 
 
 45 
 
 22070 9.34380 
 
 97534 9-98916 
 
 22628 9.35464 
 
 0.64536 4-4194 
 
 46 
 
 098 9-34436 
 
 528 9.98913 
 
 658 9-35523 
 
 0.64477 134 
 
 14 
 
 47 
 
 126 9.34491 
 
 521 9.98910 
 
 689 9-35581 
 
 0.64419 075 
 
 13 
 
 48 
 
 155 9-34547 
 
 515 9-98907 
 
 719 9-35640 
 
 0.64360 015 
 
 12 
 
 49 
 
 183 9.34602 
 
 508 9.98904 
 
 750 9-35698 
 
 0.64302 4.3956 
 
 II 
 
 50 
 
 22212 9.34658 
 
 97502 9.98901 
 
 22781 9.35757 
 
 0.64243 4-3897 
 
 10 
 
 SI 
 
 240 9-34713 
 
 496 9.98898 
 
 811 9.35815 
 
 0.64x85 838 
 
 9 
 
 S2 
 
 268 9.34769 
 
 489 9-98896 
 
 3 
 3 
 3 
 
 842 9-35873 
 
 0.64127 779 
 
 8 
 
 S3 
 
 297 9-34824 
 
 483 9.98893 
 
 
 0.64069 721 
 
 7 
 
 54 
 
 325 9-34879 
 
 476 9.98890 
 
 903 9.35989 
 
 0.64011 662 
 
 b 
 ^5 
 
 55 
 
 22353 9-34934 
 
 97470 9.98887 
 
 22934 9-36047 
 
 0.63953 4-3604 
 
 S6 
 
 382 9.34989 
 
 463 9.98884 
 
 3 
 3 
 3 
 3 
 3 
 
 964 9.36105 
 
 0.63895 546 
 
 4 
 
 S7 
 
 410 9.35044 
 
 457 9-98881 
 
 995 9-36163 
 
 0.63837 488 
 
 3 
 
 ,S8 
 
 438 9-35099 
 
 450 9-98878 
 
 23026 9.36221 
 
 0.63779 430 
 
 2 
 
 S9 
 
 467 9-35154 
 
 444 9-98875 
 
 056 9-36279 
 
 0.63721 372 
 
 I 
 
 60 
 
 495 9-35209 
 
 437 9-98872 
 
 087 9-36336 
 
 0.63664 315 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.TanNat. 
 
 / 
 
 77' 
 
Nat. Sin Log. d. 
 
 13^ 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. c.d 
 
 Log. Cot Nat. 
 
 22495 
 523 
 552 
 580 
 608 
 
 9-35209 
 935263 
 935318 
 9-35373 
 9-35427 
 
 22637 
 665 
 
 693 
 722 
 
 750 
 
 9-35481 
 9-35536 
 9-35590 
 935644 
 9-35698 
 
 22778 
 807 
 
 835 
 863 
 892 
 
 9-35752 
 9.35806 
 9-35860 
 
 9-35914 
 9-35968 
 
 22920 
 948 
 
 977 
 23005 
 
 033 
 
 9.36022 
 
 9-36075 
 9.36129 
 9.36182 
 9-36236 
 
 23062 
 090 
 118 
 146 
 175 
 
 9.36289 
 9-36342 
 9-36395 
 9-36449 
 9.36502 
 
 23203 
 231 
 260 
 288 
 316 
 
 9-36555 
 9.36608 
 9.36660 
 9-36713 
 9-36766 
 
 23345 
 373 
 401 
 429 
 458 
 
 9.36819 
 9-36871 
 9-36924 
 9.36976 
 9.37028 
 
 23486 
 514 
 542 
 571 
 599 
 
 9-37081 
 
 9-37133 
 9-37185 
 9-37237 
 9-37289 
 
 23627 
 656 
 684 
 712 
 740 
 
 9-37341 
 9-37393 
 9-37445 
 9-37497 
 9-37549 
 
 23769 
 
 797 
 825 
 
 853 
 882 
 
 9-37600 
 9-37652 
 937703 
 9-37755 
 9.37806 
 
 23910 
 938 
 966 
 
 995 
 24023 
 
 9-37858 
 937909 
 9-37960 
 9.3801 1 
 9.38062 
 
 24051 
 079 
 108 
 136 
 164 
 192 
 
 9-381 13 
 9.38164 
 9.38215 
 9.38266 
 
 9-38317 
 9-38368 
 
 97437 
 430 
 424 
 417 
 411 
 
 9.98872 
 9.98869 
 9.98867 
 9.98864 
 9.98861 
 
 97404 
 398 
 391 
 384 
 378 
 
 9-98858 
 
 9-98855 
 9.98852 
 9.98849 
 9.98846 
 
 97371 
 365 
 358 
 351 
 345 
 
 9-98843 
 9.98840 
 9.98837 
 
 9-98834 
 9.98831 
 
 97338 
 331 
 325 
 318 
 3" 
 
 9.98828 
 9.98825 
 9.98822 
 9.98819 
 9.98816 
 
 97304 
 298 
 291 
 284 
 278 
 
 9-98813 
 9.98810 
 9.98807 
 9.98804 
 9.98801 
 
 97271 
 264 
 257 
 251 
 244 
 
 9.98798 
 
 9-98795 
 9.98792 
 9.98789 
 9.98786 
 
 97237 
 230 
 223 
 217 
 210 
 
 9-98783 
 9.98780 
 9.98777 
 
 9-98774 
 9.98771 
 
 97203 
 196 
 189 
 182 
 176 
 
 9.98768 
 
 9-98765 
 9.98762 
 
 9-98759 
 9-98756 
 
 97169 
 162 
 
 15s 
 148 
 141 
 
 9-98753 
 9.98750 
 9-98746 
 9-98743 
 9-98740 
 
 97134 
 127 
 120 
 
 "3 
 106 
 
 9-98737 
 9-98734 
 9.98731 
 9.98728 
 9-98725 
 
 97100 
 
 093 
 086 
 079 
 072 
 
 9.98722 
 9.98719 
 9.98715 
 9.98712 
 9-98709 
 
 97065 
 058 
 
 051 
 044 
 
 037 
 030 
 
 9.98706 
 9.98703 
 9.98700 
 9.98697 
 
 9-98694 
 9.98690 
 
 23087 
 117 
 148 
 179 
 209 
 
 9-36336 
 9-36394 
 9-36452 
 936509 
 9.36566 
 
 23240 
 271 
 301 
 332 
 363 
 
 9.36624 
 9.36681 
 9-36738 
 
 9-36795 
 9.36852 
 
 23393 
 424 
 455 
 485 
 516 
 
 9-36909 
 9-36966 
 937023 
 9-37080 
 9-37137 
 
 23547 
 578 
 608 
 
 639 
 670 
 
 9-37193 
 9-37250 
 9-37306 
 9-37363 
 9-37419 
 
 23700 
 
 731 
 762 
 
 793 
 823 
 
 9-37476 
 937532 
 937588 
 9-37644 
 9-37700 
 
 23854 
 885 
 916 
 946 
 977 
 
 9-37756 
 9-37812 
 9.37868 
 
 9-37924 
 9.37980 
 
 24008 
 
 039 
 069 
 100 
 131 
 
 9-38035 
 9.38091 
 9.38147 
 9.38202 
 9-38257 
 
 24162 
 
 193 
 223 
 
 254 
 285 
 
 9-.38313 
 9.38368 
 
 9-38423 
 9-38479 
 9-38534 
 
 24316 
 347 
 377 
 408 
 
 439 
 
 9.38589 
 9-38644 
 9-38699 
 9-38754 
 9.38808 
 
 24470 
 501 
 532 
 
 562 
 
 593 
 
 9-38863 
 9.38918 
 9.38972 
 9.39027 
 9-39082 
 
 24624 
 
 655 
 686 
 717 
 747 
 
 9-39136 
 9.39190 
 9-39245 
 9-39299 
 9-39353 
 
 24778 
 809 
 840 
 871 
 902 
 933 
 
 9-39407 
 9.39461 
 
 9-39515 
 9-39569 
 9.39623 
 9.39677 
 
 0.63664 
 0.63606 
 0.63548 
 0.63491 
 0-63434 
 
 4-331S 
 257 
 200 
 
 143 
 086 
 
 0.63376 
 0.63319 
 0.63262 
 0.63205 
 0.63148 
 
 4.3029 
 
 4.2972 
 
 916 
 
 859 
 803 
 
 0.63091 
 0.63034 
 0.62977 
 0.62920 
 0.62863 
 
 4.2747 
 691 
 
 635 
 580 
 
 524 
 
 0.62807 
 0.62750 
 0.62694 
 0.62637 
 0.62581 
 
 4.2468 
 413 
 358 
 303 
 248 
 
 0.62524 
 0.62468 
 0.62412 
 0.62356 
 0.62300 
 
 4.2193 
 
 139 
 
 084 
 
 030 
 
 4.1976 
 
 0.62244 
 0.62188 
 0,62132 
 0.62076 
 0.62020 
 
 4.1922 
 868 
 814 
 760 
 706 
 
 0.61965 
 0.61909 
 0.61853 
 0.61798 
 0.61743 
 
 4-1653 
 600 
 547 
 493 
 441 
 
 0.61687 
 0.61632 
 0.61577 
 0.61521 
 0.61466 
 
 4.1388 
 
 335 
 282 
 230 
 178 
 
 0.61411 
 0.61356 
 0.61301 
 0.61246 
 0.61192 
 
 4.1126 
 074 
 022 
 
 4.0970 
 918 
 
 0.61 137 
 0.61082 
 0.61028 
 0.60973 
 0.60918 
 
 4.0867 
 
 81S 
 764 
 
 713 
 662 
 
 0.60864 
 0.60810 
 0.60755 
 0.60701 
 0.60647 
 
 4.061 1 
 560 
 509 
 459 
 408 
 
 0.60593 
 0.60539 
 o.6o48g 
 0.60431 
 0.60377 
 0.60323 
 
 4.0358 
 308 
 
 257 
 207 
 
 158 
 108 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 76^ 
 
 Nat. Cot Log, 
 
 d. Log. Tan Nat 
 
w 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 24192 9.38368 
 
 50 
 51 
 50 
 51 
 50 
 50 
 51 
 50 
 50 
 50 
 50 
 50 
 50 
 50 
 50 
 
 97030 9.98690 
 
 3 
 3 
 
 24933 9-39677 
 
 54 
 
 0.60323 4.0108 
 
 60 
 
 I 
 
 220 9.38418 
 
 023 9.98687 
 
 964 9-39731 
 
 0.60269 058 
 
 59 
 
 2 
 
 249 9-38469 
 
 015 9.98684 
 
 995 9-39785 
 
 
 0.60215 009 
 
 58 
 
 3 
 
 277 9-38519 
 
 008 9.98681 
 
 3 
 
 25026 9.39838 
 
 53 
 
 0.60162 3.9959 
 
 57 
 
 4 
 5 
 
 305 9-38570 
 
 001 9.98678 
 
 3 
 3 
 
 056 9-39892 
 
 54 
 53 
 
 0.60108 910 
 
 56 
 56 
 
 24333 9-38620 
 
 96994 9.98675 
 
 25087 9-39945 
 
 0.60055 3.9861 
 
 b 
 
 362 9.38670 
 
 987 9-98671 
 
 
 118 9.39999 
 
 54 
 
 0.60001 812 
 
 54 
 
 7 
 
 390 9.38721 
 
 980 9.98668 
 
 
 149 9-40052 
 
 53 
 
 0.59948 763 
 
 53 
 
 8 
 
 418 9.38771 
 
 973 9-98665 
 
 3 
 3 
 
 180 9.40106 
 
 54 
 
 0.59894 714 
 
 52 
 
 9 
 
 446 9.38821 
 
 966 9.98662 
 
 211 9.40159 
 
 53 
 53 
 
 0.59841 665 
 
 51 
 60 
 
 10 
 
 24474 9-38871 
 
 96959 9-98659 
 
 25242 9.40212 
 
 0-59788 3-9617 
 
 II 
 
 503 9.38921 
 
 952 9-98656 
 
 3 
 4 
 3 
 
 273 9.40266 
 
 54 
 53 
 53 
 
 0-59734 568 
 
 49 
 
 12 
 
 531 9.38971 
 
 945 998652 
 
 304 9.40319 
 
 0.59681 520 
 
 48 
 
 13 
 
 559 9-39021 
 
 937 9-98649 
 
 335 9-40372 
 
 0.59628 471 
 
 47 
 
 14 
 
 587 9-39071 
 
 930 9.98646 
 
 3 
 3 
 
 366 9.40425 
 
 53 
 53 
 
 0-59575 423 
 
 46 
 46 
 
 16 
 
 24615 9.39121 
 
 96923 9.98643 
 
 25397 9-40478 
 
 0.59522 3-9375 
 
 I6 
 
 644 9.39170 
 
 
 916 9.98640 
 
 3 
 
 428 9.40531 
 
 53 
 
 0.59469 327 
 
 44 
 
 17 
 
 672 9.39220 
 
 50 
 
 909 9.98636 
 
 
 459 9-40584 
 
 53 
 
 0.59416 279 
 
 43 
 
 i8 
 
 700 9.39270 
 
 50 
 
 902 9.98633 
 
 3 
 
 490 9.40636 
 
 52 
 
 0.59364 232 
 
 42 
 
 19 
 
 728 9.39319 
 
 50 
 
 894 9.98630 
 
 3 
 3 
 
 521 9.40689 
 
 53 
 53 
 
 0.5931 1 184 
 
 41 
 40 
 
 20 
 
 24756 9-39369 
 
 96887 9.98627 
 
 25552 9.40742 
 
 0-59258 3-9136 
 
 21 
 
 784 9.39418 
 
 49 
 
 880 9.98623 
 
 4 
 
 583 9.40795 
 
 53 
 
 0.59205 089 
 
 39 
 
 22 
 
 813 9-39467 
 
 49 
 
 873 9.98620 
 
 3 
 
 614 9.40847 
 
 52 
 
 0.59153 042 
 
 38 
 
 23 
 
 841 9-39517 
 
 50 
 
 866 9.98617 
 
 3 
 
 645 9.40900 
 
 53 
 
 0.59100 3.8995 
 
 37 
 
 24 
 
 25 
 
 869 9-39566 
 
 49 
 49 
 
 858 9.98614 
 
 3 
 
 4 
 
 676 9.40952 
 
 52 
 53 
 
 0.59048 947 
 
 36 
 
 24897 9-39615 
 
 96851 9.98610 
 
 25707 9.41005 
 
 0.58995 3.8900 
 
 35 
 
 26 
 
 925 9.39664 
 
 
 844 9.98607 
 
 3 
 
 738- 9-41057 
 
 52 
 
 0-58943 854 
 
 34 
 
 27 
 
 954 9-39713 
 
 
 837 9.98604 
 
 3 
 
 769 9.41109 
 
 52 
 
 0.58891 807 
 
 33 
 
 28 
 
 982 9.39762 
 
 
 829 9.98601 
 
 3 
 
 800 9.41161 
 
 52 
 
 0.58839 760 
 
 32 
 
 29 
 
 25010 9.39811 
 
 49 
 
 822 9.98597 
 
 4 
 3 
 
 831 9.41214 
 
 53 
 52 
 
 0.58786 714 
 
 31 
 30 
 
 30 
 
 25038 9-39860 
 
 96815 9-98594 
 
 25862 9.41266 
 
 0.58734 3.8667 
 
 31 
 
 066 9.39909 
 
 49 
 
 807 9.98591 
 
 3 
 
 893 9.41318 
 
 52 
 
 0.58682 621 
 
 29 
 
 32 
 
 094 9-39958 
 
 49 
 
 48 
 
 800 9.98588 
 
 3 
 
 924 9.41370 
 
 52 
 
 0.58630 575 
 
 28 
 
 33 
 
 122 9.40006 
 
 793 9-98584 
 
 4 
 
 955 9-41422 
 
 52 
 
 0.58578 528 
 
 27 
 
 34 
 
 151 9.40055 
 
 49 
 48 
 
 49 
 48 
 
 786 9.98581 
 
 3 
 3 
 
 986 9.41474 
 
 52 
 52 
 52 
 51 
 
 0.58526 482 
 0.58474 3-8436 
 
 26 
 26 
 
 35 
 
 25179 9.40x03 
 
 96778 9-98578 
 
 26017 9.41526 
 
 3^ 
 
 207 9.40152 
 
 77^ 9-98574 
 
 4 
 
 048 9.41578 
 
 0.58422 391 
 
 24 
 
 37 
 
 235 9.40200 
 
 764 9.98571 
 
 3 
 
 079 9.41629 
 
 0.58371 345 
 
 23 
 
 3« 
 
 263 9.40249 
 
 48 
 49 
 48 
 48 
 48 
 48 
 48 
 
 48 
 
 47 
 48 
 48 
 
 756 9-98568 
 
 3 
 
 no 9.41681 
 
 52 
 
 0.58319 299 
 
 22 
 
 39 
 40 
 
 291 9.40297 
 
 749 9-98565 
 
 3 
 
 4 
 
 141 9.41733 
 
 52 
 51 
 52 
 51 
 52 
 51 
 51 
 52 
 51 
 51 
 51 
 51 
 51 
 51 
 51 
 51 
 
 % 
 
 50 
 51 
 51 
 50 
 
 0.58267 254 
 
 21 
 
 25320 9-40346 
 
 96742 9.98561 
 
 26172 941784 
 
 0.58216 3.8208 
 
 20 
 
 41 
 
 348 9.40394 
 
 734 9-98558 
 
 3 
 
 203 941836 
 
 0.58164 163 
 
 19 
 
 42 
 
 376 9.40442 
 
 727 9-98555 
 
 3 
 
 235 941887 
 
 O.58113 118 
 
 18 
 
 43 
 
 404 9.40490 
 
 719 9-98551 
 
 4 
 
 266 9.41939 
 
 0.58061 073 
 
 17 
 
 44 
 
 432 9.40538 
 
 712 9.98548 
 
 3 
 3 
 
 297 9-41990 
 
 0.58010 028 
 
 lb 
 
 45 
 
 25460 9.40586 
 
 96705 9.98545 
 
 26328 9.42041 
 
 0-57959 3-7983 
 
 16 
 
 46 
 
 488 9.40634 
 
 697 9-98541 
 
 4 
 
 359 9-42093 
 
 0-57907 938 
 
 14 
 
 47 
 
 516 9.40682 
 
 690 9.98538 
 
 3 
 
 390 942144 
 
 0.57856 893 
 
 13 
 
 48 
 
 545 9-40730 
 
 682 9.98535 
 
 3 
 
 421 9.42195 
 
 0.57805 848 
 
 12 
 
 49 
 
 573 9-40778 
 
 675 9-98531 
 
 4 
 3 
 
 452 942246 
 
 0-57754 804 
 
 II 
 To 
 
 50 
 
 25601 9.40825 
 
 96667 9.98528 
 
 26483 9.42297 
 
 0-57703 3-7760 
 
 SI 
 
 629 9.40873 
 
 660 9.98525 
 
 3 
 
 515 9.42348 
 
 0.57652 715 
 
 9 
 
 52 
 
 657 9-40921 
 
 653 9-98521 
 
 
 546 9-42399 
 
 0.57601 671 
 
 8 
 
 53 
 
 685 9.40968 
 
 48 
 47 
 48 
 
 645 9-98518 
 
 3 
 
 577 9-42450 
 
 0-57550 627 
 
 7 
 
 54 
 55~ 
 
 713 9.41016 
 
 638 9-98515 
 
 3 
 
 4' 
 
 608 9.42501 
 
 0.57499 583 
 
 b 
 
 25741 9.41063 
 
 96630 9.98511 
 
 26639 9-42552 
 
 0-57448 3-7539 
 
 5 
 
 5^ 
 
 769 941111 
 
 623 9.98508 
 
 3 
 
 670 9.42603 
 
 0.57397 495 
 
 4 
 
 57 
 
 798 9-4"58 
 
 
 615 9.98505 
 
 3 
 
 701 9-42653 
 
 0.57347 451 
 
 3 
 
 5« 
 
 826 9.41205 
 
 47 
 
 608 9.98501 
 
 4 
 
 733 9-42704 
 
 0.57296 408 
 
 2 
 
 18 
 
 854 9.41252 
 
 48 
 
 600 9.98498 
 
 3 
 
 764 9.42755 
 
 0-57245 364 
 
 1 
 
 882 9.41300 
 
 593 998494 
 
 4 
 
 795 942805 
 
 0.5719S 321 
 
 U 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log. Tan Nat. 
 
 t 
 
 w 
 
15: 
 
 Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d.lLog.CotNat 
 
 25882 
 910 
 938 
 966 
 994 
 
 941300 
 941347 
 941394 
 9.41441 
 9.41488 
 
 26022 
 050 
 079 
 107 
 135 
 
 941535 
 941582 
 941628 
 9.41675 
 941722 
 
 26163 
 191 
 219 
 247 
 
 275 
 
 9.41768 
 941815 
 941861 
 9.41908 
 941954 
 
 26303 
 331 
 359 
 387 
 415 
 
 9.42001 
 9.42047 
 9.42093 
 942140 
 942186 
 
 26443 
 
 471 
 500 
 528 
 556 
 
 942232 
 942278 
 942324 
 942370 
 942416 
 
 26584 
 612 
 640 
 668 
 696 
 
 942461 
 942507 
 942553 
 9.42599 
 9.42644 
 
 26724 
 752 
 780 
 808 
 836 
 
 942690 
 
 9.42735 
 9.42781 
 9.42826 
 942872 
 
 26864 
 892 
 920 
 948 
 976 
 
 942917 
 9.42962 
 943008 
 
 9.43053 
 943098 
 
 27004 
 032 
 060 
 088 
 116 
 
 943143 
 9.43188 
 
 943233 
 9.43278 
 
 943323 
 
 27144 
 172 
 200 
 228 
 2c;6 
 
 943367 
 943412 
 
 943457 
 943502 
 943546 
 
 27284 
 312 
 340 
 368 
 396 
 
 943591 
 943635 
 943680 
 
 9.43724 
 943769 
 
 27424 
 452 
 480 
 508 
 536 
 564 
 
 9-43813 
 943857 
 9.43901 
 943946 
 943990 
 944034 
 
 96593 
 
 585 
 578 
 570 
 562 
 
 9.98494 
 9.98491 
 9.98488 
 9.98484 
 9.98481 
 
 96555 
 547 
 540 
 532 
 524 
 
 9.98477 
 9.98474 
 9.98471 
 9.98467 
 9.98464 
 
 96517 
 509 
 502 
 
 494 
 486 
 
 9.98460 
 998457 
 9-984$3 
 9.98450 
 9.98447 
 
 96479 
 471 
 463 
 456 
 448 
 
 998443 
 9.98440 
 9.98436 
 
 9.98433 
 9.98429 
 
 96440 
 433 
 425 
 417 
 410 
 
 9^98426 
 9.98422 
 9.98419 
 
 9.98415 
 9.98412 
 
 96402 
 394 
 386 
 379 
 371 
 
 9.98409 
 
 9.98405 
 9.98402 
 
 9.98398 
 9.98395 
 
 96363 
 355 
 347 
 340 
 332 
 
 9.98391 
 998388 
 9.98384 
 9.98381 
 9.98377 
 
 96324 
 316 
 308 
 301 
 293 
 
 9.98373 
 9.98370 
 9.98366 
 998363 
 9.98359 
 
 96285 
 
 277 
 269 
 261 
 253 
 
 9.98356 
 998352 
 9.98349 
 
 9.98345 
 9.98342 
 
 96246 
 238 
 230 
 222 
 214 
 
 9.98338 
 9.98334 
 9-98331 
 9.98327 
 9.98324 
 
 96206 
 198 
 190 
 182 
 174 
 
 9.98320 
 9.98317 
 
 9.98313 
 9.98309 
 9.98306 
 
 96166 
 158 
 150 
 142 
 
 134 
 126 
 
 9.98302 
 9.98299 
 
 9.98295 
 9.98291 
 9.98288 
 9.98284 
 
 26795 
 826 
 
 857 
 888 
 920 
 
 9.42805 
 942856 
 942906 
 9.42957 
 9.43007 
 
 26951 
 
 943057 
 
 982 
 
 9.43108 
 
 27013 
 
 943158 
 
 044 
 
 9.43208 
 
 076 9.43258 
 
 27107 943308 
 
 138 9.43358 
 
 169 
 
 943408 
 
 201 
 
 943458 
 
 232 
 
 943508 
 
 27263 9.43558 
 
 294 
 
 9.43607 
 
 326 943657 
 
 357 
 
 943707 
 
 388 943756 
 
 27419 
 
 9.43806 
 
 451 
 
 9.43855 
 
 482 9.43905 
 
 513 
 
 943954 
 
 545 
 
 9.44004 
 
 27576 944053 
 
 607 
 
 9.44102 
 
 638 
 
 9.44151 
 
 670 
 
 944201 
 
 701 
 
 9.44250 
 
 27732 9.44299 
 
 764 944348 
 
 795 
 
 944397 
 
 826 
 
 9.44446 
 
 858 944495 
 
 27889 
 
 944544 
 
 921 
 
 9.44592 
 
 952 
 
 944641 
 
 983 9.44690 
 
 28015 944738 
 
 28046 9.44787 
 
 077 
 
 944836 
 
 109 
 
 9.44884 
 
 140 
 
 9.44933 
 
 172 
 
 9.44981 
 
 28203 9.45029 
 
 234 
 
 9.45078 
 
 266 
 
 9.45126 
 
 297 945174 
 
 329 
 
 9.45222 
 
 28360 945271 
 
 391 
 
 9.45319 
 
 423 
 
 945367 
 
 454 
 
 9.45415 
 
 486 945463 
 
 28517 
 
 549 
 580 
 612 
 643 
 675 
 
 9455" 
 9.45559 
 9.45606 
 
 9.45654 
 945702 
 945750 
 
 0.57195 
 0.57144 
 
 0.57094 
 0.57043 
 0.56993 
 
 3-7321 
 277 
 
 234 
 191 
 148 
 
 0.56943 
 0.56892 
 0.56842 
 0.56792 
 0.56742 
 
 3.7105 
 062 
 019 
 
 3.6976 
 933 
 
 0.56692 
 0.56642 
 0.56592 
 0.56542 
 0.56492 
 
 3.6891 
 848 
 806 
 764 
 722 
 
 0.56442 
 0.56393 
 0.56343 
 0.56293 
 0.56244 
 
 3.6680 
 638 
 596 
 554 
 512 
 
 0.56194 
 0.5614$ 
 0.56095 
 0.56046 
 0.55996 
 
 3.6470 
 429 
 387 
 346 
 30s 
 
 0.55947 
 0.55898 
 
 0.55849 
 0.55799 
 0-55750 
 
 3.6264 
 222 
 181 
 140 
 100 
 
 0.55701 
 0.55652 
 0.55603 
 
 0.55554 
 0.55505 
 
 3.6059 
 018 
 
 3-5978 
 937 
 897 
 
 0.55456 
 0.55408 
 0-55359 
 0.55310 
 0.55262 
 
 3.5856 
 816 
 776 
 736 
 696 
 
 0.55213 
 0.55164 
 0.551 16 
 0.55067 
 0.55019 
 
 3.5656 
 616 
 576 
 536 
 497 
 
 0.54971 
 0.54922 
 
 0.54874 
 0.54826 
 0.54778 
 
 3-5457 
 418 
 
 379 
 339 
 300 
 
 0.54729 
 0.54681 
 
 0.54633 
 0.54585 
 0.54537 
 
 3.5261 
 222 
 
 183 
 144 
 
 105 
 
 0.54489 
 0.54441 
 0.54394 
 0.54346 
 0.54298 
 0.54250 
 
 3-5067 
 
 028 
 
 3.4989 
 
 951 
 912 
 
 874 
 
 Nat. Cos Log. d. Nat. Sin Log. d. Nat.Cot Log. c.d. Log.TanNat 
 
 74' 
 
16 ' 
 
 ' Nat. Sin Log. d. Nat. Cos Log. d. 
 
 Nat.TanLog. c.d 
 
 Log. Cot Nat, 
 
 27564 
 592 
 620 
 648 
 676 
 
 9.44034 
 9.44078 
 9.44122 
 9.44166 
 9.44210 
 
 27704 
 731 
 
 759 
 787 
 
 815 
 
 9.44253 
 9.44297 
 
 9-44341 
 944385 
 9.44428 
 
 27843 
 871 
 899 
 927 
 955 
 
 9.44472 
 9.44516 
 
 9-44559 
 9.44602 
 9.44646 
 
 27983 
 2801 1 
 
 039 
 067 
 
 095 
 
 9.44689 
 
 9-44733 
 9.44776 
 9.44819 
 9.44862 
 
 28123 
 
 150 
 178 
 206 
 234 
 
 9.44905 
 9.44948 
 9.44992 
 945035 
 9-45077 
 
 28262 
 290 
 318 
 346 
 374 
 
 9.45120 
 9-45163 
 9.45206 
 9.45249 
 9.45292 
 
 28402 
 429 
 457 
 485 
 513 
 
 9-45334 
 9-45377 
 9-45419 
 945462 
 
 9-45504 
 
 28541 
 569 
 597 
 625 
 652 
 
 9-45547 
 9-45589 
 9-45632 
 9-45674 
 9-45716 
 
 28680 
 708 
 736 
 764 
 792 
 
 9-45758 
 9-45801 
 9-45843 
 9-45885 
 9-45927 
 
 847 
 875 
 903 
 931 
 
 9.45969 
 9.4601 1 
 9-46053 
 9-46095 
 9.46136 
 
 28959 
 987 
 
 29015 
 042 
 070 
 
 9.46178 
 9.46220 
 9.46262 
 9-46303 
 9-46345 
 
 29098 
 126 
 
 154 
 182 
 209 
 237 
 
 9.46386 
 9.46428 
 9.46469 
 9-46511 
 9-46552 
 9-46594 
 
 96126 
 118 
 no 
 102 
 094 
 
 9.98284 
 9.98281 
 
 9-98277 
 9.98273 
 9.98270 
 
 96086 
 078 
 070 
 062 
 054 
 
 9.98266 
 9.98262 
 9-98259 
 9-98255 
 9.98251 
 
 96046 
 
 037 
 029 
 021 
 013 
 
 9.98248 
 9.98244 
 9.98240 
 9.98237 
 9-98233 
 
 96005 
 
 95997 
 989 
 981 
 972 
 
 9.98229 
 9.98226 
 9.98222 
 9.98218 
 9.98215 
 
 95964 
 956 
 948 
 940 
 931 
 
 9.9821 1 
 9.98207 
 9.98204 
 9.98200 
 9.98196 
 
 95923 
 915 
 907 
 898 
 890 
 
 9.98192 
 9.98189 
 9.98185 
 9.98181 
 9.98177 
 
 95882 
 
 874 
 865 
 
 857 
 
 9.98174 
 9.98170 
 9.98166 
 9.98162 
 9.98159 
 
 95841 
 832 
 824 
 816 
 807 
 
 9-98155 
 9.98151 
 9.98147 
 9.98144 
 9.98140 
 
 95799 
 791 
 782 
 
 774 
 766 
 
 9-98136 
 9.98132 
 9.98129 
 9.98125 
 9.98121 
 
 95757 
 749 
 740 
 732 
 724 
 
 9.981 17 
 
 9-98113 
 9.981 10 
 9.98106 
 9.98102 
 
 95715 
 707 
 698 
 690 
 681 
 
 9.98098 
 9.98094 
 9.98090 
 9.98087 
 9-98083 
 
 95673 
 664 
 656 
 647 
 
 639 
 630 
 
 9.98079 
 
 9-98075 
 9.98071 
 9.98067 
 9-98063 
 9.98060 
 
 28675 
 706 
 738 
 769 
 801 
 
 9-45750 
 9-45797 
 9-45845 
 9.45892 
 
 9-45940 
 
 28832 
 864 
 
 895 
 927 
 
 958 
 
 9-45987 
 9-46035 
 9.46082 
 9.46130 
 9.46177 
 
 28990 
 29021 
 
 053 
 084 
 116 
 
 9.46224 
 9.46271 
 9.46319 
 9-46366 
 9.46413 
 
 29147 
 179 
 210 
 242 
 274 
 
 9.46460 
 9-46507 
 9-46554 
 9.46601 
 9.46648 
 
 29305 
 337 
 368 
 400 
 432 
 
 •9.46694 
 9.46741 
 946788 
 9-46835 
 9.46881 
 
 29463 
 
 495 
 526 
 
 558 
 590 
 
 9.46928 
 
 9-46975 
 9.47021 
 9.47068 
 9.47114 
 
 29621 
 
 653 
 685 
 716 
 748 
 
 9.47160 
 9.47207 
 
 9-47253 
 9.47299 
 
 9-47346 
 
 29780 
 811 
 843 
 875 
 906 
 
 9-47392 
 9-47438 
 9-47484 
 9-47530 
 9-47576 
 
 29938 
 
 970 
 
 30001 
 
 033 
 065 
 
 9.47622 
 9.47668 
 9.47714 
 9-47760 
 9.47806 
 
 30097 
 128 
 160 
 192 
 224 
 
 947852 
 9-47897 
 9-47943 
 947989 
 9-48035 
 
 30255 
 
 287 
 
 319 
 351 
 382 
 
 9.48080 
 9.48126 
 9.48171 
 9.48217 
 9.48262 
 
 30414 
 446 
 478 
 509 
 541 
 573 
 
 9.48307 
 
 9-48353 
 9.48398 
 
 9-48443 
 9.48489 
 
 948534 
 
 0.54250 
 0.54203 
 0.54155 
 0.54108 
 0.54060 
 
 3-4874 
 836 
 798 
 760 
 722 
 
 0.54013 
 
 0-53965 
 0.53918 
 0.53870 
 0.53823 
 
 3.4684 
 646 
 608 
 570 
 533 
 
 0.53776 
 0.53729 
 0.53681 
 0-53634 
 0-53587 
 
 3-4495 
 458 
 420 
 383 
 346 
 
 0.53540 
 0.53493 
 0.53446 
 0.53399 
 0.53352 
 
 3-4308 
 271 
 
 234 
 197 
 160 
 
 0.53306 
 
 0.53259 
 0.53212 
 0.53165 
 0.53119 
 
 3.4124 
 087 
 050 
 014 
 
 3.3977 
 
 0.53072 
 0.53025 
 0.52979 
 0.52932 
 0.52886 
 
 3-3941 
 904 
 868 
 832 
 796 
 
 0.52840 
 0-52793 
 0-52747 
 0.52701 
 0.52654 
 
 3-3759 
 723 
 687 
 652 
 616 
 
 0.52608 
 0.52562 
 0.52516 
 0.52470 
 0.52424 
 
 3-3580 
 544 
 509 
 473 
 438 
 
 0.52378 
 0.52332 
 0.52286 
 0.52240 
 0-52194 
 
 3-3402 
 367 
 332 
 297 
 261 
 
 0.52148 
 0.52103 
 0.52057 
 0.5201 1 
 0.51965 
 
 3-3226 
 191 
 156 
 122 
 087 
 
 0.51920 
 
 0.51874 
 0.51829 
 
 0.51783 
 0.51738 
 
 3-3052 
 017 
 
 3-2983 
 948 
 914 
 
 0.51693 
 0.51647 
 0.51602 
 0-51557 
 
 0.51466 
 
 3-2879 
 845 
 811 
 
 m 
 743 
 709 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 73^ 
 
 Nat. Cot Log 
 
 c.d. Log. Tan Nat 
 
17° 
 
 Nat. Sin Log. d. Nat. Cos Log. d. Nat.TailLog. c.d.lLog. Cot Nat. 
 
 29237 
 265 
 
 293 
 321 
 
 348 
 
 9.46594 
 
 946635 
 9.46676 
 9.46717 
 9.46758 
 
 29376 
 404 
 432 
 460 
 487 
 
 9.46800 
 946841 
 946882 
 9.46923 
 9.46964 
 
 10 ' 29515 
 
 543 
 571 
 599 
 626 
 
 9.4700$ 
 
 947045 
 9.47086 
 947127 
 9.47168 
 
 29654 
 682 
 710 
 737 
 765 
 
 9.47209 
 9.47249 
 9.47290 
 947330 
 947371 
 
 29793 
 821 
 849 
 876 
 904 
 
 9.4741 1 
 947452 
 9.47492 
 
 947533 
 947573 
 
 29932 
 960 
 987 
 
 30015 
 043 
 
 947613 
 
 947654 
 9.47694 
 
 947734 
 9.47774 
 
 30071 
 098 
 126 
 
 154 
 
 182 
 
 9.47814 
 
 947854 
 9.47894 
 
 947934 
 947974 
 
 30209 
 237 
 265 
 292 
 320 
 
 948014 
 9.48054 
 9.48094 
 
 948133 
 9.48173 
 
 30348 
 376 
 403 
 431 
 459 
 
 30486 
 514 
 542 
 570 
 597 
 
 9.48213 
 948252 
 9.48292 
 948332 
 948371 
 94841 1 
 9.48450 
 9.48490 
 9.48529 
 9.48568 
 
 30625 
 
 653 
 680 
 708 
 736 
 
 9.48607 
 9.48647 
 9.48686 
 9.48725 
 9.48764 
 
 30763 
 791 
 819 
 846 
 
 874 
 902 
 
 948803 
 9.48842 
 948881 
 9.48920 
 9.48959 
 9.48998 
 
 95630 
 622 
 613 
 605 
 596 
 
 9.98060 
 9.98056 
 9.98052 
 9.98048 
 9.98044 
 
 95588 
 579 
 571 
 562 
 554 
 
 9.98040 
 9.98036 
 9.98032 
 9.98029 
 9.98025 
 
 95545 
 536 
 528 
 519 
 5" 
 
 9.98021 
 9.98017 
 9.98013 
 9.98009 
 9-98005 
 
 95502 
 493 
 485 
 476 
 467 
 
 9.98001 
 9-97997 
 9-97993 
 9.97989 
 9-97986 
 
 95459 
 450 
 441 
 
 433 
 424 
 
 9.97982 
 9.97978 
 
 9-97974 
 9.97970 
 9.97966 
 
 95415 
 407 
 398 
 389 
 380 
 
 9.97962 
 9-97958 
 9-97954 
 9-97950 
 9-97946 
 
 95372 
 363 
 354 
 345 
 337 
 
 9-97942 
 997938 
 9-97934 
 9-97930 
 9-97926 
 
 95328 
 319 
 310 
 301 
 293 
 
 9.97922 
 9.97918 
 9.97914 
 9.97910 
 9-97906 
 
 95284 
 
 275 
 266 
 
 257 
 248 
 
 9.97902 
 9.97898 
 9.97894 
 9.97890 
 9.97886 
 
 95240 
 231 
 222 
 213 
 204 
 
 9.97882 
 9-97878 
 9.97874 
 9-97870 
 997866 
 
 95195 
 186 
 177 
 168 
 159 
 
 9.97861 
 997857 
 9-97853 
 9-97849 
 9-97845 
 
 95150 
 142 
 
 133 
 124 
 
 "5 
 106 
 
 9.97841 
 9-97837 
 9-97833 
 9-97829 
 9.97825 
 9.97821 
 
 30573 
 605 
 
 637 
 669 
 700 
 
 9-48534 
 948579 
 9.48624 
 9.48669 
 9.48714 
 
 30732 
 
 9-48759 
 
 764 9-48804 
 
 796 948849 
 
 828 
 
 9.48894 
 
 860 
 
 9.48939 
 
 30891 
 
 948984 
 
 923 
 
 9.49029 
 
 955 
 
 9-49073 
 
 987 9491 18 
 
 31019 
 
 9.49163 
 
 31051 
 
 9.49207 
 
 083 949252 
 
 "5 
 
 9.49296 
 
 147 
 
 9-49341 
 
 178 9-49385 
 
 31210 
 
 9-49430 
 
 242 
 
 9-49474 
 
 274 
 
 9-49519 
 
 306 949563 
 
 338 949607 
 
 31.370 
 
 9-49652 
 
 402 
 
 949696 
 
 434 
 
 9-49740 
 
 466 9.49784 
 
 498 9.49828 
 
 31530 
 
 9.49872 
 
 562 
 
 9.49916 
 
 594 
 
 949960 
 
 626 
 
 9.50004 
 
 658 9.50048 
 
 31690 9.50092 
 
 722 
 
 9-50136 
 
 754 
 
 9.50180 
 
 786 9.50223 
 
 818 
 
 9.50267 
 
 31850 9.5031 1 
 
 882 
 
 9-50355 
 
 914 
 
 9-50398 
 
 946 9.50442 
 
 978 9-50485 
 
 32010 9.50529 
 
 042 
 
 9-50572 
 
 074 
 
 9.50616 
 
 106 
 
 9-50659 
 
 139 
 
 950703 
 
 32171 
 
 9-50746 
 
 203 
 
 9.50789 
 
 235 
 
 950833 
 
 267 9.50876 
 
 299 
 
 9.50919 
 
 32331 
 363 
 396 
 428 
 460 
 492 
 
 9-50962 
 9.51005 
 9.51048 
 9.51092 
 
 9.5II35 
 9.51 178 
 
 0.51466 
 0.5I42I 
 0-51376 
 0-5I33I 
 
 0.51286 
 
 3-2709 
 675 
 
 641 
 607 
 573 
 
 0.51241 
 0.51 196 
 
 0.51151 
 0.51106 
 0.51061 
 
 3-2539 
 506 
 472 
 438 
 405 
 
 0.51016 
 0.50971 
 0.50927 
 0.50882 
 0.50837 
 
 3-2371 
 338 
 305 
 272 
 238 
 
 0-50793 
 0-50748 
 0.50704 
 0.50659 
 0.50615 
 
 3-2205 
 172 
 
 139 
 106 
 
 073 
 
 0.50570 
 0.50526 
 0.50481 
 0-50437 
 0.50393 
 
 3-2041 
 008 
 
 3-1975 
 943 
 910 
 
 0.50348 
 0.50304 
 0.50260 
 0.50216 
 0.50172 
 
 3-1878 
 845 
 813 
 780 
 748 
 
 0.50128 
 0.50084 
 0.50040 
 0.49996 
 049952 
 
 3.1716 
 684 
 652 
 620 
 
 0.49908 
 0.49864 
 0.49820 
 049777 
 049733 
 
 3-1556 
 524 
 492 
 460 
 429 
 
 049689 
 0.49645 
 0.49602 
 0.49558 
 0.49515 
 
 3-1397 
 366 
 
 334 
 303 
 271 
 
 0.49471 
 0.49428 
 0.49384 
 0.49341 
 049297 
 
 3.1240 
 209 
 178 
 146 
 "5 
 
 0-49254 
 0.4921 1 
 0.49167 
 0.49124 
 0.49081 
 
 3.1084 
 
 053 
 
 022 
 
 3.0991 
 
 961 
 
 0.49038 
 04899S 
 0.48952 
 0.48908 
 0.48865 
 048822 
 
 3.0930 
 
 899 
 868 
 838 
 807 
 
 m 
 
 Nat. Cos Log. d. 
 
 Nat. Sin L og, d. |Nat. Cot Log, c.d. Log.TanN at. 
 
 72" 
 

 
 
 
 18 
 
 D 
 
 
 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 30902 9.48998 
 
 39 
 
 39 
 
 39- 
 
 38 
 
 39 
 
 39 
 
 38 
 
 39 
 
 95106 9.97821 
 
 4 
 5 
 
 32492 9.5II78 
 
 43 
 
 0.48822 3.0777 
 
 60 
 
 I 
 
 929 9.49037 
 
 097 9.97817 
 
 524 9,51221 
 
 0.48779 746 
 
 59 
 
 2 
 
 957 949076 
 
 088 9.97812 
 
 556 9.51264 
 
 43 
 
 0.48736 716 
 
 58 
 
 3 
 
 985 9.49115 
 
 079 9.97808 
 
 4 
 4 
 4 
 
 588 9.51306 
 
 42 
 43 
 43 
 
 0.48694 686 
 
 57 
 
 4 
 5 
 
 31012 9.49153 
 
 070 9.97804 
 
 621 9.51349 
 
 0.48651 655 
 
 56 
 55 
 
 31040 9.49192 
 
 95061 9,97800 
 
 32653 9.51392 
 
 0.48608 3.0625 
 
 6 
 
 068 9.49231 
 
 052 9-97796 
 
 4 
 
 685 9.51435 
 
 43 
 
 0.48565 595 
 
 .54 
 
 7 
 
 095 9.49269 
 
 043 9-97792 
 
 717 9.51478 
 
 0.48522 565 
 
 53 
 
 8 
 
 
 033 9-97788 
 
 
 . 749 9.51520 
 
 
 0.48480 535 
 
 52 
 
 9 
 
 151 949347 
 
 38 
 38 
 
 024 9.97784 
 
 5 
 4 
 4 
 4 
 
 782 9.51563 
 
 43 
 42 
 43 
 43 
 
 0.48437 505 
 
 51 
 50 
 
 10 
 
 3 1 178 949385 
 
 95015 9-97779 
 
 32814 9.51606 
 
 0.48394 3.0475 
 
 II 
 
 206 9.49424 
 
 006 9.97775 
 
 846 9.51648 
 
 0.48352 445 
 
 49 
 
 12 
 
 233 949462 
 
 94997 9-97771 
 
 878 9.51691 
 
 0.483O9 415 
 
 48 
 
 13 
 
 261 9.49500 
 
 988 9-97767 
 
 911 9.51734 
 
 0.48266 385 
 
 47 
 
 14 
 
 289 9.49539 
 
 39 
 38 
 38 
 39 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 
 3? 
 38 
 
 38 
 
 38 
 
 979 9-97763 
 
 4 
 4 
 5 
 4 
 4 
 4 
 4 
 4 
 5 
 
 943 9.51776 
 
 43 
 42 
 42 
 43 
 42 
 43 
 42 
 42 
 
 0.48224 356 
 
 4b 
 45 
 
 16 
 
 31316 9.49577 
 
 94970 9.97759 
 
 32975 9.51819 
 
 0.48181 3.0326 
 
 lb 
 
 344 949615 
 
 961 9-977$4 
 
 33007 9.51861 
 
 0.48139 296 
 
 44 
 
 17 
 
 372 9.49654 
 
 952 997750 
 
 040 9.51903 
 
 0.48097 267 
 
 43 
 
 lb 
 
 399 949692 
 
 943 9-97746 
 
 072 9.51946 
 
 0.48054 237 
 
 42 
 
 19 
 20 
 
 427 949730 
 31454 949768 
 
 933 9-97742 
 
 104 9.51988 
 
 0.48012 208 
 
 41 
 40 
 
 94924 9.97738 
 
 33136 9.52031 
 
 0.47969 3.0178 
 
 21 
 
 482 9.49806 
 
 915 9-97734 
 
 169 9.52073 
 
 0.47927 149 
 
 39 
 
 22 
 
 510 9.49844 
 
 906 9.97729 
 
 201 9.52115 
 
 0,47885 120 
 
 38 
 
 23 
 
 537 949882 
 
 897 9.97725 
 
 
 233 9.52157 
 
 43 
 42 
 
 42 
 42 
 42 
 42 
 42 
 
 0.47843 090 
 
 37 
 
 24 
 
 565 9.49920 
 
 888 9.97721 
 
 4 
 
 266 9.52200 
 
 0.47800 061 
 
 3^ 
 35 
 
 25 
 
 31593 949958 
 
 94878 9-97717 
 
 33298 9..52242 
 
 0.47758 3.0032 
 
 2b 
 
 620 9.49996 
 
 869 9.97713 
 
 4 
 5 
 4 
 4 
 4 
 5 
 
 
 0.47716 003 
 
 34 
 
 27 
 
 648 9.50034 
 
 860 9.97708 
 
 363 9.52326 
 
 0.47674 2.9974 
 
 33 
 
 28 
 
 675 9.50072 
 
 851 9.97704 
 
 395 9.52368 
 
 047632 945 
 
 32 
 
 29 
 
 703 9.501 10 
 
 842 9.97700 
 
 427 9.52410 
 
 0.47590 916 
 
 31 
 30 
 
 30 
 
 31730 9.50148 
 
 94832 9.97696 
 
 33460 9.52452 
 
 0.47548 2.9887 
 
 31 
 
 758 9-50185 
 
 38 
 
 823 9-97691 
 
 492 9.52494 
 
 42 
 42 
 
 0.47506 858 
 
 29 
 
 32 
 
 786 9.50223 
 
 814 9-97687 
 
 
 524 9.52536 
 
 0.47464 829 
 
 28 
 
 33 
 
 813 9.50261 
 
 805 9.97683 
 
 4 
 
 557 9.52578 
 
 0.47422 800 
 
 27 
 
 34 
 35 
 
 841 9.50298 
 
 37 
 38 
 38 
 37 
 38 
 
 795 997679 
 
 5 
 
 589 9,52620 
 
 41 
 42 
 42 
 42 
 42 
 41 
 42 
 41 
 42 
 
 0.47380 772 
 
 2b 
 
 25 
 
 31868 9.50336 
 
 94786 9.97674 
 
 33621 9.52661 
 
 0.47339 2.9743 
 
 36 
 
 896 9-50374 
 
 777 997670 
 
 4 
 
 654 9.52703 
 
 0.47297 714 
 
 24 
 
 37 
 
 923 9-50411 
 
 768 9.97666 
 
 686 9.52745 
 
 0.47255 686 
 
 23 
 
 3H 
 
 951 9-50449 
 
 758 9-97662 
 
 5 
 4 
 
 718 9.52787 
 
 0.47213 657 
 
 22 
 
 39 
 40 
 
 979 9-50486 
 
 37 
 37 
 38 
 
 749 9-97657 
 
 751 9.52829 
 
 0.47171 629 
 
 21 
 20 
 
 32006 9.50523 
 
 94740 9-97653 
 
 33783 9.52870 
 
 0.47130 2,9600 
 
 41 
 
 034 9-50561 
 
 730 9.97649 
 
 
 816 9,52912 
 
 0.47088 572 
 
 19 
 
 42 
 
 061 9.50598 
 
 37 
 
 721 9.97645 
 
 4 
 
 5 
 
 848 9.52953 
 
 0.47047 544 
 
 i8 
 
 43 
 
 089 9.50635 
 
 ^8 
 37 
 37 
 
 712 9.97640 
 
 881 9.52995 
 
 o.470og 515 
 
 17 
 
 44 
 
 116 9-50673 
 
 702 9.97636 
 
 4 
 4 
 4 
 5 
 4 
 
 913 9.53037 
 
 4- 
 41 
 42 
 41 
 41 
 
 0.46963 487 
 
 lb 
 15 
 
 45 
 
 32144 9.50710 
 
 94693 9.97632 
 
 33945 9.53078 
 
 0.46922 2,9459 
 
 4b 
 
 171 9-50747 
 
 684 9.97628 
 
 978 9.53120 
 
 0.46880 431 
 
 14 
 
 47 
 
 199 9-50784 
 
 37 
 37 
 
 674 9.97623 
 
 34010 9.53161 
 
 0.46839 403 
 
 13 
 
 48 
 
 227 9.50821 
 
 665 9.97619 
 
 043 9.53202 
 
 0.46798 375 
 
 12 
 
 49 
 50 
 
 254 9-50858 
 
 37 
 38 
 
 656 9.97615 
 
 5 
 4 
 4 
 5 
 4 
 4 
 5 
 4 
 
 075 9.53244 
 
 41 
 42 
 41 
 41 
 41 
 42 
 
 41 
 
 0.46756 347 
 
 II 
 
 32282 9.50896 
 
 94646 9.97610 
 
 34108 9.53285 
 
 0.46715 2.9319 
 
 10 
 
 51 
 
 309 9-50933 
 
 
 637 9.97606 
 
 140 9.53327 
 
 0.46673 291 
 
 9 
 
 52 
 
 337 9-50970 
 
 37 
 
 % 
 
 37 
 
 627 9,97602 
 
 173 9-53368 
 
 0.46632 263 
 
 8 
 
 53 
 
 364 9.51007 
 
 618 9.97597 
 
 205 9.53409 
 
 0.46591 23s 
 
 7 
 
 54 
 55 
 
 392 9.51043 
 
 609 9.97593 
 
 238 9.53450 
 
 0.46550 208 
 
 6 
 5 
 
 32419 9.51080 
 
 94599 9.97589 
 
 34270 9.53492 
 
 0.46508 2.9180 
 
 5b 
 
 447 9.51117 
 
 37 
 
 590 9.97584 
 
 303 9.53533 
 
 0.46467 152 
 
 4 
 
 57 
 
 474 9-5"54 
 
 37 
 
 580 9,97580 
 
 
 41 
 41 
 
 0.46426 125 
 
 3 
 
 5« 
 
 502 9.51191 
 
 'i 
 
 571 9.97576 
 
 4 
 
 5 
 
 368 9.53615 
 
 0.46385 097 
 
 2 
 
 ^0 
 
 529 9.51227 
 
 561 9.97571 
 
 400 9.53656 
 
 0.46344 070 
 
 I 
 
 557 9.51264 
 
 37 
 
 552 9.97567 
 
 4 
 
 433 9.53697 
 
 
 0.46303 042 
 
 
 
 
 Nat.CoSLog. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.Tan Nat. 
 
 r 
 
 n 
 
19' 
 
 Nat. Sin Log. d. Nat. Cos Log. d 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 32557 
 584 
 612 
 
 639 
 667 
 
 9.51264 
 9-51301 
 9-51338 
 9-51374 
 
 32694 
 722 
 749 
 777 
 804 
 
 9-51447 
 9.51484 
 9.51520 
 9-51557 
 9-51593 
 
 32832 
 
 859 
 887 
 914 
 942 
 
 9.51629 
 9.51666 
 9.51702 
 9.51738 
 9-51774 
 
 32969 
 997 
 
 33024 
 051 
 079 
 
 9.51811 
 9.51847 
 9-51883 
 9.51919 
 9-51955 
 
 33106 
 
 134 
 161 
 189 
 216 
 
 9.51991 
 9.52027 
 9.52063 
 9.52099 
 9-52135 
 
 25 
 
 26 
 
 27 
 
 28 
 
 30 
 
 31 
 32 
 33 
 34 
 
 33244 
 271 
 298 
 326 
 
 __J53_ 
 
 33381 
 408 
 436 
 463 
 490 
 
 9.52171 
 9.52207 
 9.52242 
 9.52278 
 9-52314 
 
 9-52350 
 9-52385 
 9-52421 
 952456 
 9-52492 
 
 33518 
 545 
 573 
 600 
 627 
 
 9-52527 
 9-52563 
 9-52598 
 9-52634 
 9-52669 
 
 33655 
 682 
 710 
 
 737 
 764 
 
 9-52705 
 9.52740 
 
 9-52775 
 9.5281 1 
 9.52846 
 
 33792 
 819 
 846 
 874 
 901 
 
 9.52881 
 9.52916 
 
 9-52951 
 9.52986 
 9.53021 
 
 33929 
 956 
 983 
 
 3401 1 
 038 
 
 953056 
 9-53092 
 9.53126 
 9-53161 
 9-53196 
 
 34065 
 093 
 120 
 
 147 
 175 
 202 
 
 9-53231 
 9.53266 
 9-53301 
 9-53336 
 9-5337? 
 9-53405 
 
 94552 
 542 
 533 
 523 
 514 
 
 9-97567 
 9-97563 
 9.97558 
 9.97554 
 9.97550 
 
 94504 
 495 
 485 
 476 
 466 
 
 9-97545 
 9-97541 
 9.97536 
 9.97532 
 9.97528 
 
 94457 
 447 
 438 
 428 
 418 
 
 9.97523 
 9.97519 
 9-97515 
 9.97510 
 9.97506 
 
 94409 
 399 
 390 
 380 
 370 
 
 9.97501 
 9.97497 
 9.97492 
 9.97488 
 9.97484 
 
 94361 
 351 
 342 
 332 
 322 
 
 9-97479 
 9-97475 
 9.97470 
 9.97466 
 9.97461 
 
 94313 
 303 
 293 
 284 
 274 
 
 9.97457 
 9.97453 
 9.97448 
 
 9.97444 
 9-97439 
 
 94264 
 254 
 245 
 235 
 225 
 
 9-97435 
 9-97430 
 9-97426 
 9.97421 
 9.97417 
 
 94215 
 206 
 196 
 186 
 176 
 
 9.97412 
 9.97408 
 9-97403 
 9-97399 
 9-97394 
 
 94167 
 157 
 147 
 137 
 127 
 
 9-97390 
 997385 
 9.97381 
 9.97376 
 9-97372 
 
 941 18 
 108 
 098 
 088 
 078 
 
 9-97367 
 9.97363 
 9.97358 
 9.973.53 
 9.97349 
 
 94068 
 058 
 049 
 039 
 029 
 
 9.97344 
 9.97340 
 9.97335 
 9.97331 
 9.97326 
 
 94019 
 009 
 
 93999 
 989 
 979 
 969 
 
 9.97322 
 
 9.97317 
 9.97312 
 9.97308 
 9-97303 
 9-97299 
 
 34433 
 465 
 498 
 530 
 563 
 
 9.53697 
 9.53738 
 9.53779 
 9.53820 
 9.53861 
 
 34596 
 628 
 661 
 
 693 
 726 
 
 9.53902 
 9-53943 
 9.53984 
 954025 
 9.54065 
 
 34758 
 791 
 824 
 8^6 
 
 9.54106 
 
 9-54147 
 9.54187 
 9.54228 
 9.54269 
 
 34922 
 954 
 987 
 
 35020 
 052 
 
 9.54309 
 9.54350 
 9-54390 
 9-54431 
 9.54471 
 
 35085 
 118 
 150 
 183 
 216 
 
 9.54512 
 9.54552 
 9.54593 
 9.54633 
 9.54673 
 
 35248 
 281 
 314 
 346 
 379 
 
 9.54714 
 9.54754 
 9.54794 
 9.54835 
 9-54875 
 
 35412 
 445 
 477 
 510 
 543 
 
 9-5491$ 
 9-54955 
 9.5499$ 
 9.5503$ 
 9.55075 
 
 35576 
 608 
 641 
 
 674 
 707 
 
 955"$ 
 9-5515$ 
 9-5519$ 
 9.5523$ 
 9.55275 
 
 35740 
 772 
 805 
 838 
 871 
 
 9-55315 
 9-55355 
 9-55395 
 9-55434 
 9.55474 
 
 35904 
 937 
 969 
 
 36002 
 035 
 
 9.55514 
 9.55554 
 9.55593 
 955633 
 9.55673 
 
 36068 
 
 lOI 
 
 134 
 167 
 199 
 
 9-55712 
 9.55752 
 9.55791 
 9.55831 
 9.55870 
 
 36232 
 265 
 298 
 331 
 364 
 397 
 
 9.55910 
 9.55949 
 9.55989 
 9.56028 
 9.56067 
 9.56107 
 
 0.46303 
 046262 
 0.46221 
 0.46180 
 046139 
 
 2.9042 
 
 015 
 
 2.8987 
 
 960 
 
 933 
 
 046098 
 046057 
 0.46016 
 045975 
 045935 
 
 2.8905 
 878 
 
 851 
 824 
 
 797 
 
 045894 
 
 045853 
 0.45813 
 0.45772 
 0-45731 
 
 2.8770 
 
 743 
 716 
 689 
 662 
 
 0.45691 
 0.45650 
 0.45610 
 045569 
 0.45529 
 
 2.8636 
 609 
 582 
 556 
 529 
 
 0.45488 
 0.45448 
 0.45407 
 o.4$367 
 045327 
 
 2.8502 
 476 
 449 
 423 
 397 
 
 0.45286 
 0.45246 
 045206 
 045165 
 0.45125 
 
 2.8370 
 344 
 318 
 291 
 265 
 
 045085 
 
 045045 
 045005 
 0.44965 
 044925 
 
 2.8239 
 213 
 187 
 161 
 135 
 
 044885 
 0.44845 
 0.44805 
 0.44765 
 0.44725 
 
 2.8109 
 083 
 
 057 
 032 
 006 
 
 0.44685 
 
 044645 
 0.44605 
 0.44566 
 044526 
 
 2.7980 
 955 
 929 
 903 
 878 
 
 0.44486 
 044446 
 0.44407 
 0.44367 
 044327 
 
 2.7852 
 827 
 801 
 776 
 751 
 
 0.44288 
 0.44248 
 0.44209 
 044169 
 0.44130 
 
 2.7725 
 700 
 
 675 
 650 
 625 
 
 0.44090 
 044051 
 04401 1 
 043972 
 043933 
 0.43893 
 
 2.7600 
 
 575 
 550 
 525 
 500 
 475 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 70^ 
 
 Nat. Cot Log. c.d. Log. Tan Nat. 
 
Nat. Sin Log. d. 
 
 20^ 
 
 Nat. Cos Log. d. 
 
 Nat. 
 
 ;.TanLog. c.d. Log. Cot Nat 
 
 34202 
 229 
 
 257 
 
 284 
 
 3" 
 
 9-53405 
 9-53440 
 9-53475 
 953509 
 9-53544 
 
 34339 
 366 
 
 393 
 421 
 448 
 
 9-53578 
 9-53613 
 9-53647 
 9.53682 
 9-53716 
 
 34475 
 503 
 530 
 
 557 
 584 
 
 9-53751 
 9-53785 
 9.53819 
 953854 
 9-53888 
 
 34612- 
 
 639 
 666 
 694 
 721 
 
 9-53922 
 9-53957 
 9-53991 
 9-54025 
 
 9-54059 
 
 34748 
 775 
 803 
 830 
 857 
 
 9-54093 
 9.54127 
 9.54161 
 9-54195 
 9-54229 
 
 34884 
 912 
 
 939 
 966 
 
 993 
 
 9-54263 
 9-54297 
 9-54335 
 9-54365 
 9-54399 
 
 35021 
 048 
 
 075 
 102 
 130 
 
 9-54433 
 9-54466 
 9-54500 
 9-54534 
 9-54567 
 
 35157 
 184 
 211 
 
 239 
 266 
 
 9-54601 
 
 9-54635 
 9-54668 
 9-54702 
 9-54735 
 
 35293 
 320 
 
 347 
 375 
 402 
 
 9-54769 
 9.54802 
 
 9-54836 
 9-54869 
 9-54903 
 
 35429 
 456 
 484 
 511 
 538 
 
 9-54936 
 9-54969 
 955003 
 9-55036 
 9-55069 
 
 35565 
 592 
 619 
 647 
 674 
 
 9-55102 
 9-55136 
 9-55169 
 9-55202 
 
 9-55235 
 
 36701 
 728 
 
 755 
 782 
 810 
 837 
 
 9.55268 
 9-55301 
 9-55334 
 9-55367 
 9-55400 
 9-55433 
 
 93969 
 959 
 949 
 939 
 929 
 
 9-97299 
 9-97294 
 9-97289 
 9-97285 
 9.97280 
 
 93919 
 909 
 899 
 889 
 879 
 
 9.97276 
 9.97271 
 9.97266 
 9.97262 
 9-97257 
 
 93869 
 859 
 849 
 839 
 829 
 
 9.97252 
 9-97248 
 9-97243 
 9.97238 
 
 9-97234 
 
 93819 
 809 
 
 799 
 789 
 
 779 
 
 9-97229 
 9-97224 
 9.97220 
 
 9-97215 
 9.97210 
 
 93769 
 759 
 748 
 738 
 728 
 
 9.97206 
 9.97201 
 9.97196 
 9.97192 
 9.97187 
 
 93718 
 708 
 698 
 688 
 677 
 
 9.97182 
 9.97178 
 
 9-97173 
 9.97168 
 
 9-97163 
 
 93667 
 
 657 
 647 
 
 637 
 626 
 
 9-97159 
 9-97154 
 9.97149 
 
 9-97145 
 9.97140 
 
 93616 
 606 
 596 
 585 
 575 
 
 9-97135 
 9.97130 
 9.97126 
 9.97121 
 9.971 16 
 
 93565 
 555 
 544 
 534 
 524 
 
 9.97111 
 9.97107 
 9.97102 
 9-97097 
 9-97092 
 
 93514 
 503 
 493 
 483 
 472 
 
 9-97087 
 9-97083 
 9.97078 
 
 9-97073 
 9.97068 
 
 93462 
 
 452 
 441 
 
 431 
 420 
 
 9-97063 
 9-97059 
 9-97054 
 9.97049 
 
 997044 
 
 93410 
 400 
 389 
 379 
 368 
 358 
 
 9-97039 
 9-9703S 
 9.97030 
 9.9702g 
 9.97020 
 9.97015 
 
 36397 
 430 
 463 
 496 
 529 
 
 9.56107 
 9.56146 
 9.56185 
 9-56224 
 9-56264 
 
 36562 
 
 595 
 628 
 661 
 694 
 
 9-56303 
 9-56342 
 9-56381 
 9.56420 
 9-56459 
 
 36727 
 760 
 
 793 
 826 
 
 859 
 
 9-56498 
 9-56537 
 9-56576 
 9-56615 
 9-56654 
 
 36892 
 925 
 958 
 991 
 
 37024 
 
 9-56693 
 9-56732 
 9.56771 
 9.56810 
 9-56849 
 
 37057 
 090 
 123 
 
 157 
 190 
 
 9-56887 
 9.56926 
 9-56965 
 9-57004 
 9-57042 
 
 37223 
 256 
 289 
 322 
 355 
 
 9.57081 
 9.57120 
 9.57158 
 9.57197 
 9-57235 
 
 37388 
 422 
 
 455 
 488 
 521 
 
 9-57274 
 9-57312 
 9-57351 
 9-57389 
 9.57428 
 
 37554 
 588 
 621 
 
 654 
 687 
 
 9-57466 
 9-57504 
 9-57543 
 9-57581 
 9-57619 
 
 37720 
 754 
 787 
 820 
 
 853 
 
 9-57658 
 9-57696 
 9-57734 
 9-57772 
 9.57810 
 
 37887 
 920 
 
 953 
 
 986 
 
 38020 
 
 9-57849 
 9.57887 
 
 9-57925 
 957963 
 9.58001 
 
 38053 
 086 
 120 
 
 153 
 186 
 
 9-58039 
 9-58077 
 9-58115 
 9.58153 
 9-58191 
 
 38220 
 
 253 
 286 
 320 
 353 
 386 
 
 9-58229 
 9.58267 
 9.58304 
 9-58342 
 9.58380 
 9.58418 
 
 Nat. Cos Log. d. Nat. Sin Log, d. |Nat. Cot Log 
 
 0.43893 
 0.43854 
 0.43815 
 0.43776 
 0.43736 
 
 2.7475 
 450 
 425 
 400 
 376 
 
 0.43697 
 0.43658 
 0.43619 
 0.43580 
 0.43541 
 
 2.7351 
 326 
 302 
 277 
 253 
 
 0.43502 
 0.43463 
 0.43424 
 
 0.43385 
 043346 
 
 2.7228 
 204 
 179 
 
 155 
 130 
 
 0.43307 
 0.43268 
 0.43229 
 0.43190 
 0.43151 
 
 2.7106 
 082 
 058 
 
 034 
 009 
 
 0.43113 
 0.4307-^ 
 0.43035 
 0.42996 
 0.42958 
 
 2.6985 
 961 
 937 
 913 
 
 0.42919 
 042880 
 0.42842 
 0.42803 
 0.42765 
 
 2.6865 
 841 
 818 
 794 
 770 
 
 0.42726 
 0.42688 
 0.42649 
 0.4261 1 
 0.42572 
 
 2.6746 
 723 
 699 
 675 
 652 
 
 0.42534 
 0.42496 
 
 042457 
 042419 
 0.42381 
 
 2.6628 
 605 
 
 581 
 558 
 534 
 
 0.42342 
 0.42304 
 0.42266 
 0.42228 
 0.42190 
 
 2.651 1 
 488 
 464 
 441 
 418 
 
 0.42151 
 0.42113 
 0.42075 
 0.42037 
 041999 
 
 2.6395 
 371 
 348 
 325 
 302 
 
 0.41961 
 0.41923 
 0.41885 
 0.41847 
 0.41809 
 
 2.6279 
 256 
 
 233 
 210 
 187 
 
 041771 
 
 041733 
 0.41696 
 041658 
 0.41620 
 041582 
 
 2.6165 
 142 
 119 
 096 
 074 
 051 
 
 c.d.|Log.TanNat. ' 
 
 69 
 
Nat. Sin Log. d. 
 
 2r 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d, 
 
 Log. Cot Nat, 
 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 43 
 44 
 
 35837 
 864 
 891 
 918 
 945 
 
 9-55433 
 9-55466 
 
 9-55499 
 9-55532 
 955564 
 
 35973 
 
 36000 
 
 027 
 
 054 
 081 
 
 36108 
 
 135 
 162 
 190 
 217 
 
 33 
 33 
 33 
 32 
 
 9-55597 00 
 9-55630 i ti 
 9-55663 ' ti 
 9-55695 00 
 9-55728 f 
 
 9.55761 f 
 9-55793 L 
 9-55826 1 33 
 
 9.55858 ! 3^ 
 
 9-55891 i ^g 
 
 36244 
 271 
 298 
 325 
 352 
 
 36379 
 406 
 
 434 
 461 
 
 36515 
 542 
 569 
 596 
 623 
 
 9-55923 00 
 
 9-55956 a 
 
 9-55988 32 
 
 9.56021 ^^ 
 
 9-56053 3 
 
 9-56085 3 
 
 9-56118 33 
 
 9-56150 3 
 
 9.56182 32 
 
 9.56215 2 
 
 36650 
 677 
 704 
 731 
 758 
 
 956247 I2 
 9-56279 ^2 
 9.563" ^ 
 956343 
 9-56375 
 
 36785 
 812 
 
 839 
 867 
 894 
 
 36921 
 948 
 
 975 
 
 37002 
 
 029 
 
 32 
 32 
 32 
 33 
 32 
 32 
 32 
 32 
 
 9-56568 II 
 9-56599 3 
 9.56631 i 3 
 9.56663 3 
 956695 i II 
 
 9.56408 
 9.56440 
 9.56472 
 
 9.56504 
 9.56536 
 
 37056 
 083 
 no 
 
 137 
 164 
 
 9.56727 L 
 9.56759 i 3^ 
 9.56790 1 3 
 9.56822 1 II 
 
 9.56854 ! II 
 
 37191 
 218 
 
 245 
 272 
 
 299 
 
 9.56886 3 
 
 9.56917 3J 
 
 9.56949 3 
 
 9.56980 II 
 9.57012 
 
 37326 
 
 353 
 380 
 407 
 
 434 
 461 
 
 9.57044 
 9.57075 
 9.57107 
 9-57138 
 9-57169 
 
 9-57201 
 9-57232 
 
 9-57264 _j 
 
 9-57295 3; 
 
 9-57326 3^ 
 
 9.57358 3^ 
 
 93358 
 348 
 337 
 327 
 316 
 
 9.97015 
 9.97010 
 9.97005 
 9.97001 
 9.96996 
 
 93306 9-96991 1 
 
 295 
 
 9.96986 
 
 285 
 
 9.96981 
 
 274 
 
 9.96976 
 
 264 9.96971 1 
 
 93253 
 
 9.96966 
 
 243 
 
 9.96962 
 
 232 
 
 996957 
 
 222 
 
 9.96952 
 
 211 
 
 9-96947 
 
 93201 
 
 9.96942 
 
 190 
 
 996937 
 
 180 
 
 9.96932 
 
 169 9.96927 ! 
 
 159 
 
 9.96922 
 
 93148 9.96917 
 
 137 
 
 9.96912 
 
 127 
 
 9.96907 
 
 116 
 
 9-96903 
 
 106 
 
 9.96898 
 
 93095 
 
 l'& 
 
 084 
 
 074 
 
 9.96883 
 
 063 9.96878 
 
 052 
 
 9.96873 
 
 93042 
 
 9.96868 
 
 031 
 
 9-96863 
 
 020 
 
 9-96858 
 
 010 
 
 9-96853 
 
 92999 
 
 9.96848 
 
 92988 9.96843 
 
 978 
 
 9.96838 
 
 967 9.96833 
 
 956 
 
 9.96828 
 
 945 
 
 9.96823 
 
 92935 
 
 9.96818 
 
 924 
 
 9-96813 
 
 913 
 
 9.96808 
 
 902 
 
 9-96803 
 
 892 9.96798 
 
 92881 9.96793 
 
 870 9.96788 
 
 859 9.96783 
 
 849 9.96778 
 
 838 9-96772 
 
 92827 9-96767 
 
 816 
 
 9.96762 
 
 805 9-96757 
 
 794 
 
 9.96752 
 
 784 9-96747 
 
 92773 
 
 762 
 
 751 
 740 
 
 729 
 
 718 
 
 9.96742 
 
 9.96737 
 9.96732 
 9.96727 
 9.96722 
 9.96717 
 
 38386 
 
 420 
 453 
 487 
 520 
 
 9.58418 
 9.58455 
 9.58493 
 9.58531 
 9.58569 
 
 38553 9.58606 
 
 587 9.58644 
 
 620 
 
 9.58681 
 
 654 
 
 9-58719 
 
 687 9.58757 
 
 38721 9.58794 
 
 754 
 
 9.58832 
 
 787 9.58869 
 
 821 
 
 9-58907 
 
 854 
 
 9-58944 
 
 38888 9.58981 
 
 921 
 
 9.59019 
 
 955 
 
 9.59056 
 
 988 
 
 9-59094 
 
 39022 9.59131 
 
 39055 
 
 9-59168 
 
 089 9.59205 
 
 122 
 
 9-59243 
 
 156 9.59280 
 
 igo 
 
 9-59317 
 
 39223 
 
 9-59354 
 
 257 
 
 9-59391 
 
 290 9.59429 
 
 324 
 
 9-59466 
 
 357 
 
 9-59503 
 
 39391 
 
 9-59540 
 
 425 
 
 9-59577 
 
 458 
 
 9.59614 
 
 492 
 
 9-59651 
 
 526 9.5088 
 
 39559 
 
 9-59725 
 
 593 
 
 9.59762 
 
 626 
 
 9-59799 
 
 660 
 
 9.59835 
 
 694 9-59872 
 
 39727 
 
 9.59909 
 
 761 9.59946 
 
 795 
 
 9.59983 
 
 829 9.60019 
 
 862 
 
 9.60056 
 
 39896 
 
 9.60093 
 
 930 
 
 9.60130 
 
 963 
 
 9.60166 
 
 997 
 
 9.60203 
 
 40031 
 
 9.60240 
 
 40065 
 
 9.60276 
 
 098 
 
 9.60313 
 
 132 
 
 9-60349 
 
 166 
 
 9.60386 
 
 200 
 
 9.60422 
 
 40234 
 
 267 
 301 
 335 
 369 
 403 
 
 9-60459 
 9.60495 
 9-60532 
 9.60568 
 9.60605 
 9.60641 
 
 0.41582 
 
 0.41545 
 0.41507 
 0.41469 
 0.41431 
 
 2.6051 
 028 
 006 
 
 2.5983 
 961 
 
 0.41394 
 0.41356 
 0.41319 
 0.41281 
 0-41243 
 
 2.5938 
 916 
 893 
 871 
 
 0.41206 
 0.41 168 
 0.41131 
 0.41093 
 0.41056 
 
 2.5826 
 804 
 782 
 759 
 737 
 
 0.41019 
 0.40981 
 0.40944 
 0.40906 
 0.40869 
 
 2.5715 
 693 
 671 
 649 
 627 
 
 0.40832 
 
 0-40795 
 0.40757 
 0.40720 
 0.40683 
 
 2.5605 
 583 
 561 
 539 
 517 
 
 0.40646 
 0.40609 
 040571 
 040534 
 040497 
 
 2.5495 
 473 
 452 
 430 
 408 
 
 040460 
 0.40423 
 0.40386 
 0.40349 
 040312 
 
 2.5386 
 365 
 343 
 322 
 300 
 
 0.40275 
 040238 
 040201 
 0.40165 
 0.40128 
 
 2.5279 
 
 257 
 236 
 214 
 193 
 
 0.40091 
 0.40054 
 0.40017 
 0.39981 
 0.39944 
 
 2.5172 
 150 
 129 
 108 
 086 
 
 0.39907 
 0.39870 
 0.39834 
 0.39797 
 0.39760 
 
 2.5065 
 044 
 023 
 002 
 
 2.4981 
 
 0.39724 
 0.39687 
 0.39651 
 0.39614 
 0.39578 
 
 2.4960 
 
 939 
 918 
 
 897 
 876 
 
 0.39541 
 O.3950S 
 0.39468 
 0.39432 
 0.39395 
 0.39359 
 
 24855 
 834 
 813 
 792 
 772 
 751 
 
 Nat. Cot Log. c.d. Log.Tan Nat 
 
 Nat.CoSLog. d. 
 
 Nat. Sin Log. d. 
 
 68^ 
 
22° 
 
 ' Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. 
 
 c.d. Log. Cot Nat 
 
 37461 
 488 
 515 
 
 542 
 569 
 
 9-57358 
 9-57389 
 9.57420 
 
 9-57451 
 9-57482 
 
 37595 
 622 
 649 
 676 
 703 
 
 9-57514 
 9.57545 
 9-57576 
 9-57607 
 9-57638 
 
 37730 
 757 
 784 
 811 
 838 
 
 9-57669 
 9.57700 
 
 9-57731 
 9.57762 
 
 9-57793 
 
 37865 
 892 
 919 
 946 
 973 
 
 9.57824 
 
 9-57855 
 9-57885 
 9.57916 
 9-57947 
 
 37999 
 38026 
 
 053 
 080 
 107 
 
 9-57978 
 9.58008 
 
 9.58039 
 9-58070 
 9.58101 
 
 38134 
 161 
 
 188 
 
 215 
 241 
 
 9-58131 
 9.58162 
 9.58192 
 9.58223 
 9-58253 
 
 38268 
 
 295 
 322 
 
 349 
 376 
 
 9-58284 
 9-58314 
 9-58345 
 958375 
 9-58406 
 
 38403 
 430 
 456 
 483 
 510 
 
 9.58436 
 9.58467 
 9.58497 
 9.58527 
 9.58557 
 
 38537 
 564 
 591 
 617 
 
 644 
 
 9.58588 
 9.58618 
 9.58648 
 9.58678 
 9.58709 
 
 38671 
 698 
 725 
 752 
 778 
 
 9.58739 
 9.58769 
 9-58799 
 9.58829 
 
 9-58859 
 
 38805 
 832 
 859 
 886 
 912 
 
 9.58889 
 9.58919 
 9.58949 
 9.58979 
 9.59009 
 
 38939 
 966 
 
 993 
 
 39020 
 
 046 
 
 073 
 
 9.59039 
 9.59069 
 9.59098 
 9.59128 
 9-59158 
 9.59188 
 
 92718 
 707 
 697 
 686 
 675 
 
 9.96717 
 9.96711 
 9.96706 
 9.96701 
 9.96696 
 
 92664 
 
 653 
 642 
 
 631 
 620 
 
 9.96691 
 9.96686 
 9.96681 
 9.96676 
 9.96670 
 
 92609 
 
 598 
 587 
 576 
 565 
 
 9.96665 
 9.96660 
 9.96655 
 9.96650 
 9.96645 
 
 92554 
 543 
 532 
 521 
 510 
 
 9.96640 
 
 9.96634 
 9.96629 
 9.96624 
 9.96619 
 
 92499 
 488 
 
 477 
 466 
 
 455 
 
 9.96614 
 9.96608 
 9.96603 
 9.96598 
 996593 
 
 92444 
 432 
 421 
 410 
 399 
 
 9.96588 
 9.96582 
 
 9.96577 
 9.96572 
 
 9.96567 
 
 92388 
 
 377 
 366 
 
 355 
 343 
 
 9.96562 
 9.96556 
 9.96551 
 9.96546 
 9.96541 
 
 92332 
 321 
 310 
 299 
 287 
 
 9-96535 
 9.96530 
 
 9-96525 
 9.96520 
 9.96514 
 
 92276 
 265 
 254 
 243 
 231 
 
 9-96509 
 9-96504 
 9.96498 
 
 9-96493 
 9.96488 
 
 92220 
 209 
 198 
 186 
 175 
 
 9.96483 
 9.96477 
 9.96472 
 9.96467 
 9.96461 
 
 92164 
 152 
 141 
 130 
 119 
 
 9.96456 
 9.96451 
 
 9.96445 
 9.96440 
 
 9.96435 
 
 92107 
 096 
 085 
 
 073 
 062 
 050 
 
 9.96429 
 9.96424 
 9.96419 
 9.96413 
 9.96408 
 9.96403 
 
 40403 
 436 
 470 
 504 
 538 
 
 9.60641 
 9.60677 
 9.60714 
 9.60750 
 9.60786 
 
 40572 
 
 9.60823 
 
 606 
 
 9.60859 
 
 640 9.60895 
 
 674 9.60931 
 
 707 
 
 9.60967 
 
 40741 
 
 9.61004 
 
 775 
 
 9.61040 
 
 809 9.61076 
 
 843 
 
 9.61112 
 
 877 9.61148 
 
 409H 
 
 9.61184 
 
 945 
 
 9.61220 
 
 979 
 
 9.61256 
 
 41013 
 
 9.61292 
 
 047 
 
 9.61328 
 
 4108 1 
 
 9.61364 
 
 "5 
 
 9.61400 
 
 149 
 
 9.61436 
 
 183 9.61472 
 
 217 
 
 9.61508 
 
 41251 
 
 9.61544 
 
 285 9.61579 
 
 319 
 
 9.61615 
 
 
 9.61651 
 9.61687 
 
 41421 
 
 9.61722 
 
 455 
 
 9.61758 
 
 490 
 
 9.61794 
 
 524 
 
 9.61830 
 
 558 9.61865 
 
 41592 
 
 9.61901 
 
 
 9.61936 
 
 660 
 
 9.61972 
 
 694 
 
 9.62008 
 
 728 9.62043 
 
 41763 9.62079 
 
 797 
 
 9.62114 
 
 831 
 
 9.62150 
 
 865 9.62185 
 
 899 
 
 9.62221 
 
 41933 
 
 9.62256 
 
 968 9.62292 
 
 42002 
 
 9-62327 
 
 036 9.62362 
 
 070 
 
 9-62398 
 
 42105 
 
 9-62433 
 
 139 
 
 9.62468 
 
 173 
 
 9.62504 
 
 207 
 
 9-62539 
 
 242 
 
 9-62574 
 
 42276 
 310 
 345 
 379 
 413 
 447 
 
 9.62609 
 9-62645 
 9.62680 
 9.62715 
 9.62750 
 9.62785 
 
 0.39359 
 0.39323 
 0.39286 
 0.39250 
 0.39214 
 
 2.4751 
 730 
 709 
 689 
 668 
 
 0.39177 
 0.39141 
 0.39105 
 0.39069 
 0.39033 
 
 2.4648 
 627 
 606 
 
 586 
 566 
 
 0.38996 
 0.38960 
 
 0.38924 
 0.38888 
 0.38852 
 
 2.4545 
 525 
 504 
 484 
 
 464 
 
 0.38816 
 0.38780 
 
 0.38744 
 0.38708 
 0.38672 
 
 2.4443 
 423 
 403 
 383 
 362 
 
 0.38636 
 0.38600 
 0.38564 
 0.38528 
 0.38492 
 
 2.4342 
 322 
 302 
 282 
 262 
 
 0.38456 
 0.38421 
 0.3838.5 
 0.38349 
 0.38313 
 
 2.4242 
 222 
 202 
 182 
 162 
 
 0.38278 
 0.38242 
 0.38206 
 0.38170 
 0.38135 
 
 2.4142 
 122 
 102 
 083 
 063 
 
 0.38099 
 0.38064 
 0.38028 
 0.37992 
 0.37957 
 
 2.4043 
 023 
 004 
 
 2.3984 
 964 
 
 0.37921 
 0.37886 
 0.37850 
 0.37815 
 0.37779 
 
 2.3945 
 925 
 906 
 886 
 867 
 
 0.37744 
 0.37708 
 0.37673 
 0.37638 
 0.37602 
 
 2.3847 
 828 
 808 
 789 
 770 
 
 0.37567 
 0.37532 
 0.37496 
 0.37461 
 0.37426 
 
 2.3750 
 731 
 712 
 
 693 
 673 
 
 0.37391 
 0.37355 
 0.37320 
 
 0.37285 
 0.37250 
 0.37215 
 
 2.3654 
 635 
 616 
 
 597 
 578 
 559 
 
 Nat. Cot Log. c.d. Log. Tan Nat, 
 
 Nat. Cos Log. d. Nat. Sin Log. d 
 
 67° 
 
23° 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat Tan Log. c.d.Log. Cot Nat, 
 
 39073 
 100 
 127 
 
 153 
 180 
 
 9.59188 
 9.59218 
 959247 
 959277 
 9-59307 
 
 39207 
 
 234 
 260 
 287 
 314 
 
 9-59336 
 9-5936<3 
 959396 
 959425 
 9-59455 
 
 39341 
 367 
 394 
 421 
 448 
 
 9-59484 
 9-59514 
 9-59543 
 9-59573 
 9-59602 
 
 39474 
 501 
 
 528 
 
 555 
 581 
 
 9-59632 
 9-5061 
 9.59690 
 9.59720 
 9-59749 
 
 39608 
 
 635 
 661 
 688 
 715 
 
 9-59778 
 9.59808 
 
 9-59837 
 9-59866 
 
 9-59895 
 
 39741 
 768 
 
 795 
 822 
 848 
 
 9-59924 
 9-59954 
 9-59983 
 9,60012 
 9.60041 
 
 39875 
 902 
 928 
 
 955 
 082 
 
 9.60070 
 9.60099 
 9.60128 
 9.60157 
 9.60186 
 
 40008 
 
 035 
 062 
 088 
 115 
 
 9.60215 
 9.60244 
 9.60273 
 9.60302 
 9.60331 
 
 40141 
 
 168 
 
 195 
 221 
 248 
 
 9-60359 
 9.60388 
 9.60417 
 9.60446 
 9-60474 
 
 40275 
 301 
 328 
 355 
 381 
 
 9-60503 
 9-60532 
 9.60561 
 9-60589 
 9.60618 
 
 40408 
 
 434 
 461 
 488 
 514 
 
 9.60646 
 9-60675 
 9.60704 
 9.60732 
 9.60761 
 
 40541 
 567 
 594 
 621 
 647 
 674 
 
 9.60789 
 9.60818 
 9.60846 
 9.60875 
 9-60903 
 9-60931 
 
 92050 
 039 
 028 
 016 
 005 
 
 9.96403 
 9-96397 
 9-96392 
 9-96387 
 9.96381 
 
 91994 
 
 9.96376 
 
 982 
 
 9-96370 
 
 971 
 
 9-96365 
 
 959 
 
 9-96360 
 
 948 9.96354 
 
 91936 9-96349 
 
 925 
 
 9.96343 
 
 914 
 
 9-96338 
 
 902 
 
 996333 
 
 891 
 
 9-96327 
 
 91879 9.96322 
 
 868 
 
 9.96316 
 
 856 9-9631 1 
 
 845 
 
 9.96305 
 
 833 
 
 9-96300 
 
 91822 
 
 9-96294 
 
 810 
 
 9.96289 
 
 799 
 
 9.96284 
 
 787 9.96278 
 
 775 
 
 9-96273 
 
 91764 9.96267 
 
 752 
 
 9.96262 
 
 741 
 
 9.96256 
 
 729 
 
 9.96251 
 
 718 9.96245 
 
 91706 9.96240 
 
 694 9.96234 
 
 683 9.96229 
 
 671 
 
 9.96223 
 
 660 
 
 9.96218 
 
 91648 
 
 9.96212 
 
 636 9.96207 
 
 625 9.96201 
 
 613 9.96196 
 
 601 
 
 9.96190 
 
 91590 
 
 9-96185 
 
 578 9-96179 
 
 566 9-96174 
 
 555 
 
 9.96168 
 
 543 
 
 9.96162 
 
 91531 
 
 9.96157 
 
 519 
 
 9.96151 
 
 508 9.96146 
 
 496 9.96140 
 
 484 
 
 996135 
 
 91472 
 
 9.96129 
 
 461 
 
 9.96123 
 
 449 
 
 9.96118 
 
 437 
 
 9.961 12 
 
 425 
 
 9.96107 
 
 9I4I4 
 
 402 
 
 390 
 378 
 366 
 
 355 
 
 9.96101 
 
 9-96095 
 9.96090 
 9.96084 
 9.96079 
 9-96073 
 
 Nat. Cos Log. d. 
 
 Nat. Sin 
 
 42447 
 482 
 
 516 
 
 551 
 585 
 
 9-62785 
 9.62820 
 
 9.62855 
 
 9.62890 
 9.62926 
 
 42619 
 
 654 
 
 688 
 722 
 757 
 
 9.62961 
 9.62996 
 9.63031 
 9.63066 
 9.63101 
 
 42791 
 826 
 860 
 894 
 929 
 
 9-63135 
 9.63170 
 9.63205 
 9.63240 
 9-63275 
 
 42963 
 998 
 
 43032 
 067 
 loi 
 
 9.63310 
 9-63345 
 9-63379 
 9.63414 
 9.63449 
 
 43136 
 170 
 205 
 
 239 
 274 
 
 9.63484 
 9-63519 
 9.63553 
 9.63588 
 9.63623 
 
 43308 
 343 
 378 
 412 
 447 
 
 9.63657 
 9.63692 
 9.63726 
 9.63761 
 9.63796 
 
 43481 
 516 
 550 
 585 
 620 
 
 9.63830 
 9-63865 
 9-63899 
 9-63934 
 9.63968 
 
 43654 
 689 
 724 
 758 
 793 
 
 9-64003 
 9.64037 
 9.64072 
 9.64106 
 9.64140 
 
 43828 
 862 
 897 
 932 
 966 
 
 9.64175 
 9.64209 
 
 9-64243 
 9.64278 
 9.64312 
 
 44001 
 036 
 071 
 105 
 140 
 
 9-64346 
 9.64381 
 9.64415 
 
 9-64449 
 9.64483 
 
 44175 
 210 
 244 
 279 
 314 
 
 9.64517 
 9-64552 
 9-64586 
 9.64620 
 9.64654 
 
 44349 
 384 
 418 
 
 453 
 488 
 
 523 
 
 9.64688 
 9.64722 
 9.64756 
 9.64790 
 9.64824 
 9.64858 
 
 )073 I 523 9.04050 ^' 0.35142 400 
 
 Log. d. Nat.CotLog. c.d.|Log.TanNat 
 
 0-37215 
 0.37180 
 
 0.37145 
 0.371 10 
 
 0.37074 
 
 2.3559 
 539 
 520 
 501 
 483 
 
 0.37039 
 0.37004 
 0.36969 
 
 0.36934 
 0.36899 
 
 2.3464 
 
 445 
 426 
 407 
 
 0.36865 
 0.36830 
 
 0.36795 
 0.36760 
 0.36725 
 
 2.3369 
 351 
 332 
 313 
 
 294 
 
 0.36690 
 0.36655 
 0.36621 
 0.36586 
 0.36551 
 
 2.3276 
 257 
 238 
 220 
 201 
 
 0.36516 
 0.36481 
 0.36447 
 0.36412 
 0.36377 
 
 2.3183 
 164 
 146 
 127 
 109 
 
 0.36343 
 0.36308 
 0.36274 
 0.36239 
 0.36204 
 
 2.3090 
 072 
 053 
 035 
 017 
 
 0.36170 
 
 0.36135 
 0.36101 
 0.36066 
 0.36032 
 
 2.2998 
 980 
 962 
 944 
 925 
 
 0.35997 2.2907 
 
 0.35963 
 
 0.35928 
 
 0.35894 
 
 0.35860 
 
 871 
 853 
 835 
 
 0.35825 
 0.35791 
 0-35757 
 0.35722 
 0.35688 
 
 2.2817 
 
 799 
 781 
 
 763 
 745 
 
 0-35654 
 0.35619 
 
 0.35585 
 0.35551 
 0.35517 
 
 2.2727 
 
 709 
 691 
 
 673 
 655 
 
 0.35483 
 0.35448 
 0.35414 
 0.35380 
 0.35346 
 
 2.2637 
 620 
 602 
 
 584 
 566 
 
 0.35312 
 0.35278 
 0.35244 
 0.35210 
 0.35176 
 0.35142 
 
 2.2549 
 531 
 513 
 496 
 478 
 460 
 

 
 
 24 
 
 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. Log. Cot Nat. 
 
 
 
 
 40674 9.60931 
 
 29 
 
 91355 9-96073 
 
 f. 
 
 44523 9.64858 
 
 34 
 34 
 34 
 34 
 34 
 34 
 
 0.35142 2.2460 
 
 60 
 
 I 
 
 700 9.60960 
 
 343 9-96067 
 
 5 
 
 558 9.64892 
 
 0.35108 443 
 
 59 
 
 2 
 
 727 9.60988 
 
 o9 
 
 331 9-96062 
 
 593 9-64926 
 
 0.35074 425 
 
 58 
 
 3 
 
 753 9.61016 
 
 29 
 28 
 
 319 9-96056 
 
 A 
 
 627 9.64960 
 
 0.35040 408 
 
 57 
 
 4 
 6 
 
 780 9.61045 
 
 307 9.96050 
 
 5 
 6 
 
 662 9.64994 
 
 0.35006 390 
 
 56 
 55 
 
 40806 9.61073 
 
 91295 9.96045 
 
 44697 9.65028 
 
 0.34972 2.2373 
 
 6 
 
 833 9.61 lOI 
 
 08 
 
 283 9.96039 
 
 
 732 9.65062 
 
 0-34938 355 
 
 54 
 
 7 
 
 860 9.61 129 
 
 29 
 08 
 
 272 9.96034 
 
 767 9.65096 
 
 34 
 
 0.34904 338 
 
 53 
 
 8 
 
 886 9.61158 
 
 260 9.96028 
 
 f. 
 
 802 9.65130 
 
 34 
 
 0.34870 320 
 
 52 
 
 9 
 
 913 9.61186 
 
 28 
 
 248 9.96022 
 
 5 
 6 
 
 837 9.65164 
 
 34 
 33 
 34 
 34 
 34 
 
 0.34836 303 
 
 51 
 
 10 
 
 40939 9.61214 
 
 91236 9.96017 
 
 44872 9.65197 
 
 0.34803 2.2286 
 
 50 
 
 II 
 
 966 9.61242 
 
 oO 
 
 224 9.9601 1 
 
 5 
 
 907 9.65231 
 
 0.34769 268 
 
 49 
 
 12 
 
 992 9.61270 
 
 03 
 
 212 9.96005 
 
 
 942 9.65265 
 
 0.34735 251 
 
 48 
 
 13 
 
 41019 9.61298 
 
 og 
 
 200 9.96000 
 
 977 9.65299 
 
 0.34701 234 
 
 47 
 
 14 
 
 04s 9.61326 
 
 28 
 
 08 
 
 188 9.95994 
 
 I 
 
 45012 9-65333 
 
 34 
 33 
 
 0.34667 216 
 
 46 
 '45 
 
 15 
 
 41072 9.61354 
 
 91176 9.95988 
 
 45047 9-65366 
 
 0.34634 2.2199 
 
 lb 
 
 098 9.61382 
 
 
 164 9.95982 
 
 
 082 9.65400 
 
 
 0.34600 182 
 
 44 
 
 17 
 
 125 9.61411 
 
 27 
 
 08 
 
 152 9-95977 
 
 117 9-65434 
 
 34 
 33 
 
 11 
 
 33 
 34 
 34 
 33 
 34 
 33 
 34 
 33 
 
 0.34566 165 
 
 43 
 
 l8 
 
 151 9.61438 
 
 140 9-95971 
 
 6 
 
 152 9.65467 
 
 0.34533 148 
 
 42 
 
 19 
 
 178 9.61466 
 
 28 
 
 28 
 
 128 9.95965 
 
 5 
 6 
 
 187 9.65501 
 
 0.34499 130 
 
 41 
 40 
 
 20 
 
 41204 9.61494 
 
 91 116 9.95960 
 
 45222 9.65535 
 
 0.34465 2.2113 
 
 21 
 
 231 9.61522 
 
 28 
 
 104 9.95954 
 
 6 
 
 257 9-65568 
 
 0.34432 096 
 
 39 
 
 22 
 
 257 9.61550 
 
 28 
 
 092 9.95948 
 
 5 
 
 292 9.65602 
 
 0.34398 079 
 
 38 
 
 23 
 
 284 9.61578 
 
 28 
 
 080 9.95942 
 
 5 
 6 
 6 
 
 ,327 9.65636 
 
 0.34364 062 
 
 37 
 
 24 
 
 310 9.61606 
 
 28 
 
 og 
 
 068 9-95937 
 
 362 9.65669 
 
 0-34331 045 
 
 36 
 35 
 
 25 
 
 41337 9.61634 
 
 91056 9.95931 
 
 45397 9.65703 
 
 0.34297 2.2028 
 
 26 
 
 363 9.61662 
 
 27 
 
 og 
 
 044 9-95925 
 
 5 
 6 
 
 432 9.65736 
 
 0.34264 on 
 
 34 
 
 27 
 
 390 9.61689 
 
 032 9.95920 
 
 467 9.65770 
 
 0.34230 2.1994 
 
 33 
 
 28 
 
 416 9.61717 
 
 28 
 28 
 
 020 9.95914 
 
 f. 
 
 502 9.65803 
 
 0.34197 977 
 
 32 
 
 29 
 
 443 9-61745 
 
 008 9.95908 
 
 6 
 
 5 
 5 
 
 538 9.65837 
 
 34 
 33 
 
 0.34163 960 
 
 .31 
 
 30 
 
 41469 9.61773 
 
 90996 9.95902 
 
 45573 9.65870 
 
 0.34130 2.1943 
 
 30 
 
 31 
 
 496 9.61800 
 
 oQ 
 
 984 9.95897 
 
 608 9.65904 
 
 33 
 34 
 
 0.34096 926 
 
 29 
 
 32 
 
 522 9.61828 
 
 08 
 
 972 9-95891 
 
 (=, 
 
 643 9.65937 
 
 0.34063 909 
 
 28 
 
 3S 
 
 549 9-61856 
 
 
 960 9.95885 
 
 5 
 
 678 9.65971 
 
 0.34029 892 
 
 27 
 
 34 
 
 575 9-61883 
 
 27 
 28 
 
 og 
 
 948 9.95879 
 
 6 
 
 5 
 
 713 9.66004 
 
 33 
 34 
 33 
 
 0-33996 876 
 
 2b 
 
 35 
 
 41602 9.61911 
 
 90936 9.95873 
 
 45748 9.66038 
 
 0.33962 2.1859 
 
 25 
 
 36 
 
 628 . 9.61939 
 
 
 924 9.95868 
 
 784 9.66071 
 
 0-33929 842 
 
 24 
 
 37 
 
 655 9.61966 
 
 ^8 
 
 911 9.95862 
 
 6 
 
 819 9.66104 
 
 33 
 
 0.33896 825 
 
 23 
 
 3B 
 
 681 9.61994 
 
 
 899 9.95856 
 
 6 
 
 854 9.66138 
 
 34 
 33 
 33 
 34 
 
 0.33862 808 
 
 22 
 
 39 
 
 707 9.62021 
 
 27 
 28 
 
 887 9.95850 
 
 6 
 
 5 
 
 A 
 
 889 9.66171 
 
 0.33829 792 
 
 21 
 20 
 
 40 
 
 41734 9.62049 
 
 90875 9-95844 
 
 45924 9.66204 
 
 0.33796 2.1775 
 
 41 
 
 760 9.62076 
 
 08 
 
 863 9.95839 
 
 960 9.66238 
 
 0.33762 758 
 
 19 
 
 42 
 
 787 9.62104 
 
 
 851 9-95833 
 
 A 
 
 995 9.66271 
 
 
 0.33729 742 
 
 18 
 
 43 
 
 813 9.62131 
 
 08 
 
 839 9.95827 
 
 5 
 
 46030 9.66304 
 
 33 
 
 34 
 33 
 
 0.33696 725 
 
 17 
 
 44 
 45 
 
 840 9.62159 
 
 27 
 
 28 
 
 826 9.95821 
 
 6 
 
 065 9.66337 
 
 0.33663 708 
 
 lb 
 
 41866 9.62186 
 
 90814 9.95815 
 
 46101 9.66371 
 
 0.33629 2.1692 
 
 15 
 
 46 
 
 892 9.62214 
 
 802 9.95810 
 
 136 9.66404 
 
 0.33596 675 
 
 14 
 
 47 
 
 919 9.62241 
 
 27 
 
 790 9.95804 
 
 6 
 
 171 9.66437 
 
 33 
 33 
 33 
 34 
 33 
 
 0.33563 659 
 
 13 
 
 48 
 
 945 9.62268 
 
 27 
 28 
 27 
 
 778 9-95798 
 
 6 
 
 206 9.66470 
 
 0.33530 642 
 
 12 
 
 49 
 
 972 9.62296 
 
 766 9.95792 
 
 6 
 
 242 9.66503 
 
 0.33497 625 
 
 II 
 
 lo 
 
 50 
 
 41998 9.62323 
 
 90753 9.95786 
 
 46277 9.66537 
 
 0.33463 2.1609 
 
 =^1 
 
 42024 9.62350 
 
 27 
 
 741 9.95780 
 
 5 
 
 312 9.66570 
 
 0.33430 59? 
 
 9 
 
 52 
 
 051 9-62377 
 
 28 
 
 729 9.95775 
 
 348 9.66603 
 
 33 
 33 
 33 
 33 
 
 0.33397 576 
 
 8 
 
 ,S3 
 
 077 9.62405 
 
 717 9.95769 
 
 A 
 
 383 9.66636 
 
 0.33364 560 
 
 7 
 
 54 
 55 
 
 104 9.62432 
 
 27 
 
 704 9.95763 
 
 6 
 6 
 
 418 9.66669 
 
 0.33331 543 
 
 b 
 ~5 
 
 42130 9-62459 
 
 90692 9.95757 
 
 46454 9.66702 
 
 0.33298 2.1527 
 
 ,0 
 
 156 9.62486 
 
 27 
 
 680 9.95751 
 
 5 
 
 489 9.66735 
 
 0.3.3265 510 
 
 4 
 
 57 
 
 183 9-62513 
 
 27 
 28 
 
 668 9.95745 
 
 6 
 
 525 966768 
 
 33 
 33 
 33 
 33 
 
 0.33232 494 
 
 3 
 
 5« 
 
 209 9.62541 
 
 655 9.95739 
 
 6 
 
 560 9.66801 
 
 0.33199 478 
 
 2 
 
 ^0 
 
 235 9-62568 
 
 27 
 
 643 9-95733 
 631 9-95728 
 
 5 
 
 595 9-66834 
 
 0.33166 461 
 
 I 
 
 262 9.62595 
 
 27 
 
 631 9.66867 
 
 0.33133 445 
 
 
 
 
 Nat.CoSLog. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.Tan Nat. 
 
 r 
 
 66' 
 
26° 
 
 f Nat. Sin Log. d. Nat. Cos Log. d. Nat.TanLog. c.d. Log.CotNat. 
 
 42262 
 288 
 315 
 341 
 367 
 
 9-62595 
 9.62622 
 9.62649 
 9.62676 
 9-62703 
 
 42394 
 420 
 446 
 473 
 499 
 
 9.62730 
 9.62757 
 9.62784 
 9.6281 1 
 9.62838 
 
 42525 
 552 
 578 
 604 
 631 
 
 42657 
 683 
 709 
 736 
 762 
 
 42788 
 
 815 
 841 
 867 
 894 
 
 42920 
 946 
 972 
 999 
 
 43025 
 
 27 
 27 
 27 
 27 
 27 
 
 27 
 27 
 
 27 
 27 
 27 
 27 
 
 I 26 
 i 27 
 
 ; 27 
 
 27 
 
 j27 
 
 26 
 
 1 27 
 I 27 
 
 9-63133 26 
 
 9-63159 27 
 9.63186 % 
 
 9-63213 : 26 
 
 9-63239 ! 27 
 
 26 
 
 9.62865 
 9.62892 
 9.62918 
 
 9.62945 
 
 9.62972 
 
 9.62999 
 
 9.63026 
 9.63052 
 9.63079 
 
 9.63106 
 
 43051 
 077 
 
 104 
 
 130 
 
 156 
 
 9.63266 
 
 9-63292 i 27 
 9-63319 26 
 963345 27 
 
 9-63398 ^ 27 
 9-63425 26 
 9-63451 
 9.63478 
 
 9-63504 
 
 43182 
 209 
 
 235 
 261 
 287 
 
 9-63531 
 9-63557 
 9-63583 
 9.63610 
 963636 
 
 43313 
 340 
 366 
 392 
 418 
 
 9.63662 
 9.63689 
 
 9-63715 
 9.63741 
 
 963767 
 
 43445 
 471 
 497 
 523 
 549 
 
 9-63794 
 9.63820 
 9.63846 
 9-63872 
 9-63898 
 
 43575 
 602 
 628 
 
 654 
 680 
 
 9.63924 
 9-63950 
 9-63976 
 9.64002 
 9.64028 
 
 43706 
 733 
 
 759 
 785 
 811 
 
 837 
 
 9.64054 
 9.64080 
 9.64106 
 9.64132 
 9.64158 
 9.64184 
 
 90631 
 618 
 606 
 
 594 
 582 
 
 9.95728 
 9-95722 
 9.95716 
 9.95710 
 9-95704 
 
 90569 9.95698 
 
 557 
 
 9-95692 
 
 545 
 
 9.95686 
 
 532 
 
 9.95680 
 
 520 
 
 9-95674 
 
 90507 
 
 9-95668 
 
 495 
 
 995663 
 
 483 
 
 995657 
 
 470 
 
 9-95651 
 
 458 
 
 9-95645 
 
 90446 9.95639 
 
 433 
 
 995633 
 
 421 
 
 9-95627 
 
 408 
 
 9.95621 
 
 396 9.95615 
 
 90383 9-95609 
 
 371 
 
 9-95603 
 
 358 
 
 9-95597 
 
 346 
 
 9-95591 
 
 334 
 
 9-95585 
 
 90321 
 
 9-95579 
 
 309 
 
 9-95573 
 
 296 
 
 9-95567 
 
 284 9-95561 
 
 271 
 
 9-95555 
 
 90259 9.95549 
 
 246 9-95543 
 
 233 
 
 9-95537 
 
 221 
 
 9-95531 
 
 208 
 
 9-95525 
 
 90196 
 
 9-95519 
 
 183 9-95513 
 
 171 
 
 9-95507 
 
 158 
 
 9-95500 
 
 14b 
 
 9-95494 
 
 90133 
 
 9.95488 
 
 120 
 
 9.95482 
 
 108 
 
 9-95476 
 
 095 
 
 9-95470 
 
 082 
 
 9.95464 
 
 90070 
 
 9-95458 
 
 057 
 
 9-95452 
 
 045 
 
 9.95446 
 
 032 
 
 9.95440 
 
 019 
 
 9-95434 
 
 90007 
 
 995427 
 
 89994 
 
 9-95421 
 
 981 
 ■§68 
 
 9-95415 
 
 9.95409 
 
 956 9-95403 
 
 89943 
 
 9^0 
 918 
 905 
 
 892 
 
 879 
 
 9-95397 
 9-95391 
 995384 
 9.95378 
 995372 
 995366 
 
 46631 
 666 
 702 
 
 737 
 772 
 
 9.66867 
 9.66900 
 9.66933 
 9.66966 
 9.66999 
 
 46808 
 843 
 879 
 914 
 
 950 
 
 9.67032 
 9-67065 
 9.67098 
 9.67131 
 9-67163 
 
 46985 
 
 47021 
 
 056 
 
 092 
 
 128 
 
 9.67196 
 9.67229 
 9.67262 
 9.67295 
 9-67327 
 
 47163 
 199 
 
 234 
 270 
 
 305 
 
 9.67360 
 
 9-67393 
 9.67426 
 9.67458 
 9.67491 
 
 47341 
 377 
 412 
 
 448 
 483 
 
 9-67524 
 9-67556 
 9.67589 
 9.67622 
 9-67654 
 
 47519 
 555 
 590 
 626 
 662 
 
 9-67687 
 9.67719 
 9.67752 
 9.67785 
 9.67817 
 
 47698 
 
 733 
 769 
 805 
 840 
 
 9.67850 
 9.67882 
 9.67915 
 
 9-67947 
 9.67980 
 
 47876 
 912 
 948 
 984 
 
 48019 
 
 9.68012 
 9.68044 
 9.68077 
 9.68109 
 9.68142 
 
 48055 
 091 
 127 
 163 
 iq8 
 
 9.68174 
 9.68206 
 9-68239 
 9.68271 
 9-68303 
 
 48234 
 270 
 306 
 342 
 378 
 
 9.68336 
 9.68368 
 9.68400 
 9.68432 
 968465 
 
 48414 
 
 450 
 486 
 521 
 557 
 
 9.68497 
 9.68529 
 9.68561 
 
 9-68593 
 9.68626 
 
 48593 
 629 
 665 
 701 
 737 
 773 
 
 9.68658 
 9.68690 
 9.68722 
 
 9-68754 
 9.68786 
 9.68818 
 
 0.33133 
 0.33100 
 0.33067 
 
 0-33034 
 0.33001 
 
 2.1445 
 429 
 413 
 396 
 380 
 
 0.32968 
 
 0-32935 
 0.32902 
 0.32869 
 0.32837 
 
 2.1364 
 348 
 332 
 315 
 299 
 
 0.32804 
 0.32771 
 0.32738 
 0.32705 
 0.32673 
 
 2.1283 
 267 
 251 
 235 
 219 
 
 0.32640 
 0.32607 
 
 0.32574 
 0.32542 
 
 0-32509 
 
 2.1203 
 
 187 
 171 
 IS5 
 139 
 
 0.32476 
 0-32444 
 0.32411 
 
 0.32378 
 0.32346 
 
 2.1123 
 107 
 092 
 076 
 060 
 
 0.32313 
 0.32281 
 0.32248 
 0.32215 
 0.32183 
 
 2.1044 
 028 
 013 
 
 2.0997 
 981 
 
 0.32150 
 0.32118 
 0.32085 
 0.32053 
 0.32020 
 
 2.0965 
 950 
 934 
 918 
 
 903 
 
 0.31988 
 0.31956 
 0.31923 
 0.31891 
 0.31858 
 
 2.0887 
 872 
 856 
 840 
 825 
 
 0.31826 
 0.31794 
 0.31761 
 0.31729 
 0.31697 
 
 2.0809 
 
 794 
 778 
 
 763 
 
 748 
 
 0.31664 
 0.31632 
 0.31600 
 0.31568 
 0.31535 
 
 2.0732 
 717 
 701 
 686 
 671 
 
 0.31503 
 0.31471 
 
 0.31439 
 0.31407 
 
 0.31374 
 
 2.0655 
 640 
 625 
 609 
 594 
 
 0.31342 
 0.31310 
 0.31278 
 0.31246 
 0.31214 
 0.31182 
 
 2.0579 
 
 564 
 549 
 533 
 518 
 503 
 
 Nat. Cot Log. c.d. Log. Tan Nat. 
 
 60 
 
 59 
 58 
 57 
 5^ 
 55 
 54 
 53 
 52 
 
 50 
 
 49 
 48 
 47 
 
 45 
 
 44 
 43 
 42 
 
 40 
 
 39 
 38 
 37 
 _36 
 35 
 34 
 33 
 32 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 64^ 
 

 
 
 < 
 
 26 
 
 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. Log. Cot Nat. 
 
 
 
 
 43837 9-64184 
 
 
 89879 9-95366 
 
 5 
 
 48773 9.68818 
 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 32 
 31 
 32 
 
 0.31 182 2.0503 
 
 60 
 
 I 
 
 863 9.64210 
 
 05 
 
 867 995360 
 
 5 
 
 809 9.68850 
 
 0.31 150 488 
 
 59 
 
 2 
 
 889 9.64236 
 
 05 
 
 854 9-95354 
 
 5 
 
 
 0.31118 473 
 
 58 
 
 3 
 
 916 9.64262 
 
 06 
 
 841 9.95348 
 
 
 881 9.68914 
 
 0.31086 458 
 
 57 
 
 4 
 
 T 
 
 942 9.64288 
 
 25 
 
 05 
 
 828 9.95341 
 
 7 
 6 
 
 917 9-68946 
 
 0.31054 443 
 
 5t) 
 
 43968 9.64313 
 
 89816 9.95335 
 
 48953 9-68978 
 
 0.31022 2.0428 
 
 55 
 
 6 
 
 
 06 
 
 803 9-95329 
 
 f. 
 
 989 9.69010 
 
 0.30990 413 
 
 54 
 
 7 
 
 44020 9.64365 
 
 05 
 
 790 9-95323 
 
 f. 
 
 49026 9.69042 
 
 0.30958 398 
 
 53 
 
 8 
 
 046 9.64391 
 
 -^6 
 
 777 9-95317 
 
 
 062 9.69074 
 
 0.30926 383 
 
 52 
 
 9 
 
 072 9.64417 
 
 25 
 
 06 
 
 764 9-95310 
 
 6 
 5 
 
 098 9.69106 
 
 0.30894 368 
 
 51 
 
 10 
 
 44098 9.64442 
 
 89752 9-95304 
 
 49134 9.69138 
 
 0.30862 2.0353 
 
 50 
 
 II 
 
 124 9.64468 
 
 05 
 
 739 9-95298 
 
 f. 
 
 170 9.69170 
 
 0.30830 338 
 
 49 
 
 12 
 
 151 9-64494 
 
 % 
 
 726 9.95292 
 
 6 
 
 206 9.69202 
 
 0.30798 323 
 
 48 
 
 13 
 
 177 9-64519 
 
 713 9.95286 
 
 
 242 9.69234 
 
 0.30766 308 
 
 47 
 
 14 
 
 203 9.64545 
 
 26 
 
 % 
 
 700 9-95279 
 
 7 
 6 
 
 278 9.69266 
 
 0.30734 293 
 
 4b 
 45 
 
 15 
 
 44229 9.64571 
 
 89687 9.95273 
 
 49315 9-69298 
 
 0.30702 2.0278 
 
 I6 
 
 255 9-64596 
 
 674 995267 
 
 A 
 
 351 9.69329 
 
 0.30671 263 
 
 44 
 
 17 
 
 281 9.64622 
 
 % 
 
 662 9.95261 
 
 
 387 9-69361 
 
 0.30639 248 
 
 43 
 
 i8 
 
 307 9-64647 
 
 649 9-95254 
 
 7 
 6 
 
 423 9-69393 
 
 32 
 32 
 32 
 31 
 
 0.30607 233 
 
 42 
 
 19 
 
 333 9-64673 
 
 25 
 
 "6 
 
 636 9.95248 
 
 6 
 6 
 
 459 9-69425 
 
 0.30575 219 
 
 4i 
 
 20 
 
 44359 9-64698 
 
 89623 9-95242 
 
 49495 9-69457 
 
 0.30543 2.0204 
 
 40 
 
 21 
 
 385 9-64724 
 
 % 
 
 610 9.95236 
 
 532 9.69488 
 
 0.30512 189 
 
 39 
 
 22 
 
 411 9-64749 
 
 597 9-95229 
 
 I 
 6 
 6 
 
 7 
 5 
 
 568 9.69520 
 
 32 
 
 0.30480 174 
 
 38 
 
 23 
 
 437 9-64775 
 
 25 
 26 
 25 
 
 584 9.95223 
 
 604 9-69552 
 
 32 
 
 0.30448 160 
 
 37 
 
 24 
 
 464 9.64800 
 
 571 9-95217 
 
 640 9-69584 
 
 32 
 31 
 32 
 32 
 
 0.30416 145 
 
 3t^ 
 35 
 
 25 
 
 44490 9.64826 
 
 89558 9-95211 
 
 49677 9.69615 
 
 0.30385 2.0130 
 
 2b 
 
 516 9.64851 
 
 545 9-95204 
 
 713 9.69647 
 
 0.30353 "5 
 
 34 
 
 27 
 
 542 9-64877 
 
 25 
 25 
 26 
 
 25 
 25 
 
 532 9.95198 
 
 6 
 
 749 9-69679 
 
 0.30321 lOI 
 
 33 
 
 28 
 
 568 9.64902 
 
 519 9-95192 
 
 786 9.69710 
 
 31 
 
 0.30290 086 
 
 32 
 
 29 
 
 30 
 
 594 9-64927 
 
 506 9-95185 
 
 7 
 6 
 
 6 
 
 822 9.69742 
 
 32 
 32 
 31 
 
 0.30258 072 
 
 31 
 30 
 
 44620 9.64953 
 
 89493 9-95179 
 
 49858 9.6977^ 
 
 0.30226 2.0057 
 
 31 
 
 646 9.64978 
 
 480 9-95173 
 
 5 
 
 894 9.69805 
 
 0.30195 042 
 
 29 
 
 32 
 
 672 9.65003 
 
 467 9-95167 
 
 
 931 9.69837 
 
 
 0.30163 028 
 
 28 
 
 33 
 
 698 9.65029 
 
 25 
 25 
 25 
 
 "6 
 
 454 9-95160 
 
 ^ 
 
 967 9.69868 
 
 
 0.30132 013 
 
 27 
 
 34 
 35 
 
 724 9.65054 
 
 441 9-95154 
 
 6 
 
 50004 9.69900 
 
 32 
 32 
 
 0.30100 1.9999 
 
 2b 
 
 25 
 
 44750 9-65079 
 
 89428 9.95148 
 
 50040 9.69932 
 
 0.30068 1.9984 
 
 3t> 
 
 776 9.65104 
 
 415 9-95141 
 
 ^ 
 
 076 9-69963 
 
 31 
 32 
 
 0.30037 970 
 
 24 
 
 37 
 
 802 9.65130 
 
 25 
 25 
 25 
 25 
 25 
 
 402 9-95135 
 
 5 
 
 113 9-69995 
 
 0.30005 955 
 
 23 
 
 3a 
 
 828 9.65155 
 
 389 9-95129 
 
 
 149 9.70026 
 
 31 
 
 0.29974 941 
 
 22 
 
 39 
 
 854 9-65180 
 
 376 9.95122 
 
 7 
 6 
 
 185 9.70058 
 
 32 
 31 
 
 0.29942 926 
 
 21 
 
 40 
 
 44880 9.65205 
 
 89363 9-95116 
 
 50222 9.70089 
 
 0.29911 1.9912 
 
 20 
 
 41 
 
 906 9.65230 
 
 350 9.951 10 
 
 
 258 9.70121 
 
 32 
 
 0.29879 897 
 
 19 
 
 42 
 
 932 9-65255 
 
 337 9-95103 
 
 6 
 
 295 9-70152 
 
 31 
 
 32 
 
 0.29848 883 
 
 18 
 
 43 
 
 958 9.65281 
 
 25 
 
 25 
 25 
 
 25 
 
 324 995097 
 
 
 331 9.70184 
 
 0.29816 868 
 
 17 
 
 44 
 
 984 9.65306 
 
 311 9.95090 
 
 6 
 6 
 
 I 
 
 368 9.70215 
 
 31 
 32 
 
 0.29785 854 
 
 lb 
 15 
 
 45 
 
 45010 9.65331 
 
 89298 9.95084 
 
 50404 9.70247 
 
 0.29753 1.9840 
 
 46 
 
 062 9.65381 
 
 285 9-95078 
 
 441 9.70278 
 
 31 
 31 
 
 0.29722 825 
 
 14 
 
 47 
 
 272 9-95071 
 
 477 9-70309 
 
 0.29691 811 
 
 13 
 
 48 
 
 088 9.65406 
 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 24 
 
 259 9.95065 
 
 5 
 
 514 9-70341 
 
 32 
 31 
 32 
 
 0.29659 797 
 
 12 
 
 49 
 50 
 
 114 9-65431 
 
 245 9-95059 
 
 7 
 6 
 
 550 9-70372 
 
 0.29628 782 
 
 II 
 
 45140 9.65456 
 
 89232 9.95052 
 
 50587 9.70404 
 
 0.29596 1.9768 
 
 10 
 
 51 
 
 166 9.6548X 
 
 219 9.95046 
 
 623 9-70435 
 
 31 
 
 0.29565 754 
 
 9 
 
 52 
 
 192 9-65506 
 
 206 9.95039 
 
 I 
 5 
 
 660 9.70466 
 
 31 
 
 0.29534 740 
 
 8 
 
 53 
 
 218 9-65531 
 
 193 9-95033 
 
 696 9-70498 
 
 32 
 31 
 31 
 
 0.29502 725 
 
 7 
 
 54 
 
 243 9-65556 
 
 180 9.95027 
 
 7 
 6 
 
 733 9-70529 
 
 0.29471 7" 
 
 b 
 
 65 
 
 45269 9.65580 
 
 89167 9.95020 
 
 50769 9.70560 
 
 0.29440 1.9697 
 
 6 
 
 56 
 
 
 25 
 25 
 
 153 9-95014 
 
 806 9.70592 
 
 32 
 31 
 
 0.29408 683 
 
 4 
 
 57 
 
 321 9-65630 
 
 140 9-95007 
 
 6 
 6 
 
 843 970623 
 
 0.29377 669 
 
 3 
 
 5a 
 
 347 9-65655 
 373 9-65680 
 
 25 
 25 
 
 127 9.95001 
 
 879 9.70654 
 
 31 
 31 
 
 0.29346 654 
 
 2 
 
 U 
 
 114 9-94995 
 
 ^ 
 
 916 9.70685 
 
 0.29315 640 
 
 I 
 
 399 9-65705 
 
 25 
 
 loi 9-94988 
 
 ' 
 
 953 9-70717 
 
 32 
 
 0.29283 626 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.Tan Nat. 
 
 f 
 
 
 
 
 
 63 
 
 
 
 
 

 
 
 27' 
 
 D 
 
 
 
 
 / 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d.| 
 
 Nat Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 45399 9-65705 
 
 24 
 25 
 25 
 25 
 24 
 25 
 25 
 
 89101 9.94988 
 
 5 
 
 50953 9.70717 
 
 31 
 31 
 31 
 31 
 32 
 31 
 31 
 
 0.29283 1.9626 
 
 60 
 
 I 
 
 425 9-65729 
 
 087 9.94982 
 
 7 
 5 
 
 989 9.70748 
 
 0.29252 612 
 
 59 
 
 2 
 
 451 9.65754 
 
 074 9.94975 
 
 51026 9.70779 
 
 0.29221 598 
 
 58 
 
 3 
 
 477 9-65779 
 
 061 9.94969 
 
 
 063 9.70810 
 
 0.29190 584 
 
 57 
 
 4 
 
 503 9.65804 
 
 048 9.94962 
 
 7 
 6 
 
 099 9.70841 
 
 0.29159 570 
 
 56 
 
 5 
 
 45529 9.65828 
 
 89035 9.94956 
 
 5II36 9-70873 
 
 0.29127 1.9556 
 
 55 
 
 6 
 
 554 9-65853 
 
 021 9.94949 
 
 6 
 
 173 9.70904 
 
 0.29096 542 
 
 54 
 
 7 
 
 580 9.65878 
 
 008 9.94943 
 
 
 209 9.70935 
 
 0.29065 528 
 
 53 
 
 8 
 
 606 9.65902 
 
 24 
 25 
 25 
 24 
 25 
 
 88995 9.94936 
 
 7 
 
 6 
 
 7 
 
 
 31 
 31 
 31 
 31 
 31 
 31 
 
 0.29034 514 
 
 52 
 
 9 
 
 632 9.65927 
 
 981 9.94930 
 
 283 9.70997 
 
 0.29003 500 
 
 51 
 50 
 
 10 
 
 45658 9-65952 
 
 88968 9.94923 
 
 5I3I9 9.71028 
 
 0.28972 1.9486 
 
 II 
 
 684 9-65976 
 
 955 9-94917 
 
 (\ 
 
 356 9.71059 
 
 0.28941 472 
 
 49 
 
 12 
 
 710 9.66001 
 
 942 9.949" 
 
 
 393 9-71090 
 
 0.28910 458 
 
 48 
 
 13 
 
 736 9.66025 
 
 
 928 9-94904 
 
 I 
 
 7 
 6 
 
 430 9.71121 
 
 0.28879 444 
 
 47 
 
 14 
 
 762 9.66050 
 
 25 
 25 
 
 915 9.94898 
 
 467 9.71153 
 
 32 
 31 
 31 
 31 
 31 
 
 0.28847 430 
 
 46 
 
 15 
 
 45787 9.66075 
 
 88902 9.94891 
 
 S1503 9.71184 
 
 0.28816 1.9416 
 
 45 
 
 l6 
 
 813 9.66099 
 
 24 
 25 
 
 888 9.94885 
 
 540 9.71215 
 
 0.28785 402 
 
 44 
 
 17 
 
 839 9.66124 
 
 875 9.94878 
 
 7 
 
 577 9.71246 
 
 0.28754 388 
 
 43 
 
 l8 
 
 865 9.66148 
 
 24 
 
 862 9.94871 
 
 7 
 
 6 
 
 7 
 6 
 
 614 9.71277 
 
 0.28723 375 
 
 42 
 
 19 
 
 891 9.66173 
 
 25 
 24 
 
 848 9-94865 
 
 651 9.71308 
 
 31 
 
 31 
 30 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 31 
 
 0.28692 361 
 
 41 
 
 20 
 
 45917 9.66197 
 
 88835 9-94858 
 
 51688 9.71339 
 
 0.28661 1.9347 
 
 40 
 
 21 
 
 942 9.66221 
 
 24 
 25 
 
 822 9.94852 
 
 724 9.71370 
 
 0.28630 333 
 
 39 
 
 22 
 
 968 9.66246 
 
 808 9-94845 
 
 7 
 6 
 
 761 9.71401 
 
 0.28599 319 
 
 38 
 
 23 
 
 994 9.66270 
 
 24 
 
 795 9-94839 
 
 798 9.71431 
 
 0.28569 306 
 
 37 
 
 24 
 
 46020 9.66295 
 
 25 
 24 
 
 782 9-94832 
 
 7 
 6 
 
 835 9.71462 
 
 0.28538 292 
 
 3^ 
 
 25 
 
 46046 9.66319 
 
 88768 9.94826 
 
 51872 9.71493 
 
 0.28507 1.9278 
 
 35 
 
 26 
 
 072 9.66343 
 
 24 
 25 
 
 755 9.94819 
 
 7 
 
 6 
 
 909 9^71524 
 
 0.28476 265 
 
 34 
 
 27 
 
 097 9.66368 
 
 741 9-94813 
 
 946 9.71555 
 
 0.28445 251 
 
 33 
 
 28 
 
 123 9.66392 
 
 24 
 
 728 9.94806 
 
 7 
 
 983 9.71586 
 
 0.28414 237 
 
 32 
 
 29 
 
 149 9.66416 
 
 24 
 
 25 
 
 715 9.94799 
 
 7 
 6 
 
 52020 9.71617 
 
 0.28383 223 
 
 31 
 
 30 
 
 46175 9.66441 
 
 88701 9.94793 
 
 52057 9.71648 
 
 0.28352 1.9210 
 
 30 
 
 31 
 
 201 9.66465 
 
 24 
 
 688 9.94786 
 
 I 
 
 094 9.71679 
 
 0.28321 196 
 
 29 
 
 32 
 
 226 9.66489 
 
 24 
 
 674 9.94780 
 
 131 9.71709 
 
 30 
 31 
 31 
 31 
 31 
 
 0.28291 183 
 
 28 
 
 33 
 
 252 9.66513 
 
 24 
 
 661 9-94773 
 
 7 
 6 
 
 7 
 
 168 9.71740 
 
 0.28260 169 
 
 27 
 
 34 
 
 278 9-66537 
 
 24 
 25 
 
 647 9-94767 
 
 205 9.71771 
 
 0.28229 155 
 
 26 
 
 35 
 
 46304 9.66562 
 
 88634 9.94760 
 
 52242 9.71802 
 
 0.28198 1.9142 
 
 25 
 
 36 
 
 330 9.66586 
 
 24 
 
 620 9.94753 
 
 I 
 
 279 9.71833 
 
 0.28167 128 
 
 24 
 
 37 
 
 355 9.66610 
 
 24 
 
 607 9.94747 
 
 316 9.71863 
 
 30 
 
 0.28137 115 
 
 23 
 
 38 
 
 381 9.66634 
 
 24 
 
 593 9-94740 
 
 7 
 6 
 
 7 
 
 353 9.71894 
 
 31 
 31 
 30 
 31 
 31 
 31 
 30 
 31 
 31 
 30 
 31 
 30 
 31 
 31 
 30 
 31 
 30 
 31 
 30 
 31 
 30 
 3^ 
 30 
 
 0.28106 lOI 
 
 22 
 
 39 
 
 407 9.66658 
 
 24 
 24 
 
 580 9-94734 
 
 390 971925 
 
 0.28075 088 
 
 21 
 
 40 
 
 46433 9.66682 
 
 88566 9.94727 
 
 52427 9.71955 
 
 0.28045 1.9074 
 
 20 
 
 41 
 
 458 9.66706 
 
 24 
 25 
 
 553 9-94720 
 
 I 
 
 464 9.71986 
 
 0.28014 061 
 
 19 
 
 42 
 
 484 9.66731 
 
 539 9-94714 
 
 501 9.72017 
 
 0.27983 047 
 
 18 
 
 43 
 
 510 9.66755 
 
 24 
 
 526 9-94707 
 
 7 
 
 538 9.72048 
 
 0.27952 034 
 
 17 
 
 44 
 
 536 9.66779 
 
 24 
 24 
 
 512 9.94700 
 
 7 
 6 
 
 575 9.72078 
 
 0.27922 020 
 
 16 
 
 45 
 
 46561 9.66803 
 
 88499 9.94694 
 
 52613 9.72109 
 
 0.27891 1.9007 
 
 15 
 
 46 
 
 587 9.66827 
 
 24 
 
 485 9-94687 
 
 7 
 
 650 9.72140 
 
 0.27860 1.8993 
 
 14 
 
 47 
 
 613 9.66851 
 
 24 
 
 472 9.94680 
 
 7 
 6 
 
 687 9.72170 
 
 0.27830 980 
 
 i3 
 
 48 
 
 639 9.66875 
 
 24 
 
 458 9.94674 
 
 724 9.72201 
 
 0.27799 967 
 
 12 
 
 49 
 
 664 9-66899 
 
 24 
 23 
 
 445 9.94667 
 
 7 
 7 
 6 
 
 761 9.72231 
 
 0.27769 953 
 
 II 
 
 50 
 
 46690 9.66922 
 
 88431 9.94660 
 
 52798 9.72262 
 
 0.27738 1.8940 
 
 10 
 
 =;i 
 
 716 9.66946 
 
 24 
 
 417 9.94654 
 
 836 9.72293 
 
 0.27707 927 
 
 9 
 
 f^s 
 
 742 9.66970 
 
 24 
 
 404 9.94647 
 
 7 
 
 873 9.72323 
 
 0.27677 913 
 
 8 
 
 ';3 
 
 767 9.66994 
 
 24 
 
 390 9.94640 
 
 I 
 
 7 
 I 
 
 910 9.72354 
 
 0.27646 900 
 
 7 
 
 ^4 
 
 793 9.67018 
 
 24 
 24 
 
 377 9.94634 
 
 947 9-72384 
 
 0.27616 887 
 
 6 
 
 55 
 
 46819 9.67042 
 
 88363 9.94627 
 
 52985 9-72415 
 
 0.27585 1.8873 
 
 5 
 
 ■;6 
 
 844 9.67066 
 
 24 
 
 349 9.94620 
 
 53022 9.72445 
 
 0.27555 860 
 
 4 
 
 ^^7 
 
 ~ 870 9.67090 
 
 24 
 
 336 9.94614 
 
 059 9.72476 
 
 0.27524 847 
 
 3 
 
 '^S 
 
 896 9.671 13 
 
 23 
 
 322 9.94607 
 
 7 
 
 096 9.72506 
 
 0.27494 834 
 
 2 
 
 I'o 
 
 921 9.67137 
 
 24 
 
 308 9.94600 
 
 7 
 
 134 9.72537 
 
 0.27463 820 
 
 I 
 
 947 9.67161 
 
 24 
 
 295 9-94593 
 
 7 
 
 171 9.72567 
 
 0.27433 807 
 
 
 
 
 JNatCoSLog. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log 
 
 c.d 
 
 Log.TanNat 
 
 □ 
 
 62^ 
 
Nat. Sin Log. d. 
 
 2_8^ 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. c.d. Log. Cot Nat 
 
 46947 
 973 
 999 
 
 47024 
 050 
 
 9.67161 
 9.67185 
 9.67208 
 9.67232 
 9.67256 
 
 47076 
 
 lOI 
 
 127 
 
 153 
 
 178 
 
 9.67280 
 
 9-67303 
 9.67327 
 
 967350 
 9-67374 
 
 47204 
 229 
 
 255 
 281 
 306 
 
 9.67398 
 9.67421 
 
 9-67445 
 9.67468 
 9.67492 
 
 47332 
 358 
 383 
 409 
 
 434 
 
 9-67515 
 9-67539 
 9.67562 
 9.67586 
 9.67609 
 
 47460 
 486 
 511 
 537 
 562 
 
 9-67633 
 9-67656 
 9.67680 
 9.67703 
 9.67726 
 
 47588 
 614 
 
 639 
 665 
 690 
 
 9.67750 
 
 9-67773 
 9.67796 
 9.67820 
 9.67843 
 
 47716 
 741 
 767 
 
 793 
 818 
 
 9.67866 
 9.67890 
 9.67913 
 9.67936 
 9.67959 
 
 47844 
 869 
 
 895 
 920 
 946 
 
 9.67982 
 9.68006 
 9.68029 
 9.68052 
 9.68075 
 
 47971 
 
 997 
 
 48022 
 
 048 
 
 073 
 
 9.68098 
 9.68121 
 9.68144 
 9.68167 
 9.68190 
 
 48099 
 124 
 150 
 175 
 201 
 
 9.68213 
 9.68237 
 9.68260 
 9.68283 
 9.68305 
 
 252 
 277 
 303 
 328 
 
 9.68328 
 9-68351 
 9-68374 
 9.68397 
 9.68420 
 
 48354 
 379 
 405 
 430 
 456 
 481 
 
 9.68443 
 9.68466 
 9.68489 
 9.68512 
 
 9-68534 
 9.68557 
 
 88295 
 281 
 267 
 
 254 
 240 
 
 9-94593 
 9-94587 
 9.94580 
 
 9-94573 
 9-94567 
 
 88226 
 213 
 199 
 185 
 172 
 
 9.94560 
 9-94553 
 994546 
 9-94540 
 9-94533 
 
 88158 
 144 
 130 
 117 
 103 
 
 9.94526 
 994519 
 994513 
 9-94506 
 9-94499 
 
 075 
 062 
 048 
 034 
 
 9.94492 
 9.94485 
 9.94479 
 9.94472 
 9-94465 
 
 88020 
 006 
 
 87993 
 979 
 965 
 
 9.94458 
 9-94451 
 9.94445 
 9.94438 
 
 9.94431 
 
 87951 
 937 
 923 
 909 
 
 9.94424 
 9.94417 
 9.94410 
 9-94404 
 9-94397 
 
 7882 
 868 
 
 854 
 840 
 826 
 
 9-94390 
 9.94383 
 9-94376 
 9-94369 
 9.94362 
 
 87812 
 798 
 784 
 770 
 756 
 
 9-94355 
 9-94349 
 9-9434? 
 9-94335 
 9.94328 
 
 87743 
 729 
 
 715 
 701 
 687 
 
 9.94321 
 9-94314 
 9-94307 
 9-94300 
 9-94293 
 
 87673 
 659 
 645 
 631 
 617 
 
 9.94286 
 9.94279 
 
 9-94273 
 9.94266 
 
 9-94259 
 
 87603 
 589 
 575 
 
 546 
 
 9.94252 
 
 994245 
 9.94238 
 9.94231 
 9-94224 
 
 87532 
 518 
 
 504 
 490 
 476 
 
 462 
 
 9.94217 
 9.94210 
 9-94203 
 9.94196 
 9.94189 
 9.94182 
 
 53171 
 208 
 246 
 283 
 320 
 
 9-72567 
 9.72598 
 9.72628 
 
 9-72659 
 9.72689 
 
 53358 
 395 
 432 
 470 
 507 
 
 9.72720 
 9.72750 
 9.72780 
 9.7281 1 
 9.72841 
 
 53545 
 582 
 620 
 
 657 
 694 
 
 9.72872 
 9.72902 
 9.72932 
 9-72963 
 9.72993 
 
 53732 
 769 
 807 
 
 844 
 882 
 
 9-73023 
 
 9-73054 
 9.83084 
 
 9-73114 
 9-73144 
 
 53920 
 957 
 995 
 
 54032 
 070 
 
 9-73175 
 9-7320$ 
 9-7323$ 
 9-7326$ 
 9-73295 
 
 54107 
 145 
 183 
 220 
 258 
 
 973326 
 9-73356 
 9-73^6 
 9.73416 
 9-73446 
 
 54296 
 333 
 371 
 409 
 446 
 
 9-73476 
 9-73507 
 9-73537 
 9-73567 
 9-73597 
 
 54484 
 522 
 560 
 597 
 635 
 
 9-73627 
 9-73657 
 9-73687 
 9-73717 
 9-73747 
 
 54673 
 711 
 748 
 786 
 824 
 
 9-73777 
 9.73807 
 9.73837 
 9.73867 
 
 9-73897 
 
 54862 
 900 
 938 
 975 
 
 55013 
 
 9.73927 
 9-73957 
 9-73987 
 9.74017 
 
 9-74047 
 
 55051 
 089 
 127 
 
 165 
 203 
 
 9-74077 
 9.74107 
 
 9-74137 
 9.74166 
 9-74196 
 
 55241 
 279 
 317 
 
 355 
 393 
 431 
 
 9.74226 
 9-74256 
 9.74286 
 9.74316 
 9.7434$ 
 974375 
 
 0.27433 
 0.27402 
 0.27372 
 0.27341 
 0.27311 
 
 794 
 781 
 768 
 755 
 
 0.27280 
 0.27250 
 0.27220 
 0.27189 
 0-27159 
 
 1.8741 
 728 
 
 715 
 702 
 689 
 
 0.27128 
 0.27098 
 0.27068 
 0.27037 
 0.27007 
 
 .8676 
 663 
 650 
 
 637 
 624 
 
 0.26977 
 0.26946 
 0.26916 
 0.26886 
 0.26856 
 
 1.8611 
 598 
 585 
 572 
 559 
 
 0.2682$ 
 0.26795 
 0.26765 
 0.26735 
 0.26705 
 
 1.8546 
 
 533 
 520 
 
 507 
 495 
 
 0.26674 
 0.26644 
 0.26614 
 0.26584 
 0.26554 
 
 1.8482 
 469 
 456 
 443 
 430 
 
 0.26524 
 0.26493 
 0.26463 
 0.26433 
 0.26403 
 
 1.8418 
 405 
 392 
 379 
 367 
 
 0.26373 
 0.26343 
 0.26313 
 0.26283 
 0.26253 
 
 0.26223 
 0.26193 
 0.26I63 
 0.26133 
 0.26103 
 
 1-8354 
 341 
 329 
 316 
 
 303 
 1.8291 
 
 278 
 265 
 
 253 
 240 
 
 0.26073 
 0.26043 
 0.26013 
 0.25983 
 0.25953 
 
 1.8228 
 
 ^ 215 
 
 202 
 
 190 
 
 177 
 
 0.25923 
 0.25893 
 0.25863 
 0.25834 
 0.25804 
 
 1.8 165 
 152 
 140 
 127 
 115 
 
 0.25774 
 0.25744 
 0.25714 
 0.25684 
 0.25655 
 0.2562.5 
 
 1.8 103 
 090 
 078 
 065 
 
 053 
 
 040 
 
 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. | c.d. Log.Tan Nat.| ^ 
 
 61° 
 
29° 
 
 Nat. Sin Log. d. Nat. Cos Log. d. Nat.Tan Log. c.d 
 
 Log. Cot Nat. 
 
 48481 
 506 
 
 532 
 557 
 5B3 
 
 9-68557 
 a.68580 
 0.68603 
 9.68625 
 9.68648 
 
 48608 
 634 
 659 
 684 
 710 
 
 9.68671 
 9.68694 
 9.68716 
 9.68739 
 9.68762 
 
 48735 
 761 
 786 
 811 
 837 
 
 9.68784 
 9.68807 
 9.68829 
 9.68852 
 9.68875 
 
 913 
 938 
 964 
 
 9.68897 
 9.68920 
 9.68942 
 9.68965 
 9.68987 
 
 48989 
 
 49014 
 
 040 
 
 065 
 
 090 
 
 9.69010 
 9.69032 
 
 969055 
 9.69077 
 9.69100 
 
 491 16 
 141 
 166 
 192 
 217 
 
 9.69122 
 9.69144 
 9.69167 
 9.69189 
 9.69212 
 
 49242 
 268 
 
 293 
 318 
 344 
 
 9.69234 
 9.69256 
 9.69279 
 9.69301 
 9-69323 
 
 49369 
 394 
 419 
 
 445 
 470 
 
 9-69345 
 9.69368 
 9.69390 
 9.69412 
 969434 
 
 49495 
 521 
 546 
 571 
 596 
 
 9.69456 
 9.69479 
 9.69501 
 9.69523 
 9-69545 
 
 49622 
 647 
 672 
 697 
 723 
 
 9.69567 
 9.69589 
 9.6961 1 
 
 9-69633 
 9-69655 
 
 49748 
 773 
 798 
 824 
 849 
 
 9.69677 
 9.69699 
 9.69721 
 
 9-69743 
 9.69765 
 
 49874 
 899 
 924 
 950 
 975 
 
 50000 
 
 9.69787 
 9.69809 
 
 969831 
 9.69853 
 9.69875 
 9.69297 
 
 87462 
 448 
 
 434 
 420 
 406 
 
 9.94182 
 
 9.94175 
 9.94168 
 9.94161 
 9.94154 
 
 87391 
 377 
 363 
 349 
 335 
 
 9.94147 
 9.94140 
 
 9.94133 
 9.94126 
 
 9-94119 
 
 87321 
 306 
 292 
 278 
 264 
 
 9.941 12 
 9.94105 
 9.94098 
 9.94090 
 9.94083 
 
 87250 
 
 235 
 221 
 207 
 193 
 
 9.94076 
 9.94069 
 9.94062 
 
 9-94055 
 9.94048 
 
 87178 
 164 
 
 150 
 136 
 
 121 
 
 9.94041 
 
 9-94034 
 9.94027 
 9.94020 
 9.94012 
 
 87107 
 
 ^3 
 079 
 064 
 050 
 
 9.94005 
 9.93998 
 9-93991 
 9-93984 
 9-93977 
 
 87036 
 021 
 007 
 
 86993 
 978 
 
 9-93970 
 9-93963 
 9-93955 
 993948 
 9.93941 
 
 86964 
 949 
 935 
 921 
 906 
 
 9.93934 
 9-93927 
 9-93920 
 9.93912 
 9.93905 
 
 86892 
 878 
 863 
 849 
 834 
 
 9.93898 
 9.93891 
 9.93884 
 9.93876 
 9.93869 
 
 86820 
 805 
 791 
 
 m 
 762 
 
 9.93862 
 9.93855 
 9-93847 
 9.93840 
 
 9-93833 
 
 86748 
 
 733 
 719 
 704 
 690 
 
 9.93826 
 9.93819 
 9.9381 1 
 9-93804 
 
 9-93797 
 
 86675 
 661 
 646 
 632 
 617 
 603 
 
 993789 
 9.93782 
 
 9-93775 
 9.93768 
 9-93760 
 9-93753 
 
 55431 
 469 
 
 507 
 545 
 
 583 
 
 9-74375 
 9-74405 
 9-74435 
 9.74465 
 9.74494 
 
 55621 
 659 
 697 
 736 
 774 
 
 974524 
 9.74554 
 9-74583 
 9.74613 
 9.74643 
 
 55812 
 8:;o 
 
 964 
 
 9.74673 
 9.74702 
 
 9.74732 
 9-74762 
 9.74791 
 
 56003 
 041 
 079 
 117 
 156 
 
 9.74821 
 9.74851 
 9.74880 
 9.74910 
 9.74939 
 
 56194 
 232 
 270 
 309 
 347 
 
 9.74969 
 9.74998 
 9.75028 
 
 9.75058 
 9.75087 
 
 56385 
 424 
 462 
 
 501 
 539 
 
 9.75"7 
 9.75146 
 9.75176 
 9.75205 
 9.75235 
 
 56577 
 616 
 
 654 
 693 
 731 
 
 9.75264 
 9-75294 
 9-75323 
 9.75353 
 9-75382 
 
 56769 
 808 
 846 
 885 
 923 
 
 9-754" 
 9-75441 
 9-75470 
 9-75500 
 975529 
 
 56962 
 
 57000 
 
 039 
 
 078 
 
 116 
 
 9.75558 
 9.75588 
 9.75617 
 9.75647 
 9.75676 
 
 57155 
 193 
 232 
 271 
 309 
 
 9.75705 
 9-75735 
 9-75764 
 9-75793 
 9-75822 
 
 57348 
 386 
 425 
 464 
 503 
 
 9.75852 
 9.75881 
 9.75910 
 9.75939 
 9.75969 
 
 57541 
 580 
 619 
 
 657 
 
 696 
 
 9.75998 
 9.76027 
 9.76056 
 9.76086 
 9.761 15 
 9.76144 
 
 0.25625 
 
 0.2559$ 
 0.2556$ 
 
 0.25535 
 0.25506 
 
 1.8040 
 028 
 016 
 003 
 
 1.7991 
 
 0.25476 
 0.25446 
 0.25417 
 0.25387 
 0.25357 
 
 1.7979 
 966 
 
 954 
 942 
 
 930 
 
 0.25327 
 0.25298 
 0.25268 
 0.25238 
 0.25209 
 
 1.7917 
 905 
 893 
 881 
 
 0.25179 
 0.25149 
 0.25120 
 0.25090 
 0.25061 
 
 1.7856 
 844 
 832 
 820 
 808 
 
 0.25031 
 0.25002 
 0.24972 
 0.24942 
 0.24913 
 
 1.7796 
 
 783 
 771 
 
 759 
 747 
 
 0.24883 
 0.24854 
 0.24824 
 0.2479$ 
 0.24765 
 
 1-7735 
 723 
 711 
 
 699 
 687 
 
 0.24736 
 0.24706 
 0.24677 
 0.24647 
 0.24618 
 
 1.7675 
 663 
 
 651 
 639 
 627 
 
 0.24589 
 
 0.24559 
 o.24$30 
 0.24500 
 0.24471 
 
 1.7615 
 603 
 591 
 
 579 
 567 
 
 0.24442 
 0.24412 
 0.24383 
 
 0.24353 
 0.24324 
 
 1.7556 
 544 
 532 
 520 
 508 
 
 0.24295 
 0.2426^ 
 0.24236 
 0.24207 
 0.24178 
 
 1.7496 
 485 
 473 
 461 
 
 449 
 
 0.24148 
 0.241 19 
 0.24090 
 0.24061 
 0.24031 
 
 1.7437 
 426 
 414 
 402 
 391 
 
 0.24002 
 
 0.23973 
 0.23944 
 0.23914 
 0.23885 
 0.23856 
 
 1-7379 
 367 
 355 
 344 
 332 
 321 
 
 Nat.CoSLog. d. Nat. Sin Log. d. Nat.CotLog. c.d.lLog.TanNat 
 

 
 
 30 
 
 
 
 
 
 
 r 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 50000 9.69897 
 
 
 86603 9-93753 
 
 
 57735 9-76144 
 
 
 0.23856 1.7321 
 
 60 
 
 I 
 
 02s 9.69919 
 
 22 
 
 588 9.93746 
 
 8 
 
 774 9-76173 
 
 29 
 29 
 
 0.23827 309 
 
 59 
 
 2 
 
 050 9.69941 
 
 
 573 9-93738 
 
 
 813 9.76202 
 
 0.23798 297 
 
 58 
 
 3 
 
 076 9.69963 
 
 
 559 9.93731 
 
 7 
 
 851 9.76231 
 
 29 
 30 
 29 
 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 
 0.23769 286 
 
 57 
 
 4 
 5 
 
 loi 9.69984 
 
 22 
 
 544 9-93724 
 
 7 
 7 
 
 Q 
 
 890 9.76261 
 
 0.23739 274 
 
 56 
 
 50126 9.70006 
 
 86530 9-93717 
 
 57929 9.76290 
 
 0.23710 1.7262 
 
 55 
 
 6 
 
 151 9.70028 
 
 
 515 9-93709 
 
 7 
 
 I 
 
 968 9-76319 
 
 0.23681 251 
 
 54 
 
 7 
 
 176 9.70050 
 
 
 501 9.93702 
 
 58007 9.76348 
 
 0.23652 239 
 
 S3 
 
 8 
 
 201 9.70072 
 
 
 486 9.93695 
 
 046 9-76377 
 
 0.23623 228 
 
 52 
 
 9 
 
 227 9.70093 
 
 22 
 
 471 9-93687 
 
 7 
 
 7 
 8 
 
 085 9.76406 
 
 0.23594 216 
 
 SI 
 50 
 
 10 
 
 50252 9.701 15 
 
 86457 9.93680 
 
 58124 9.76435 
 
 0.23565 1.7205 
 
 11 
 
 277 9-70137 
 
 
 442 9-9367$ 
 
 162 9.76464 
 
 0.23536 193 
 
 49 
 
 12 
 
 302 9.70159 
 
 
 427 9.93665 
 
 
 201 9.76493 
 
 0.23507 182 
 
 48 
 
 13 
 
 327 9.70180 
 
 
 413 9-93658 
 
 8 
 
 240 9.76522 
 
 29 
 29 
 
 0.23478 170 
 
 47 
 
 14 
 
 352 9.70202 
 
 22 
 
 398 9-93650 
 
 7 
 I 
 
 279 9-76551 
 
 0.23449 159 
 
 46 
 
 15 
 
 50377 9.70224 
 
 86384 9-93643 
 
 58318 9.76580 
 
 0.23420 1.7147 
 
 45 
 
 16 
 
 403 9.76245 
 
 
 369 9.93636 
 
 357 9-76609 
 
 0.23391 13b 
 
 44 
 
 17 
 
 428 9.70267 
 
 
 354 9.93628 
 
 7 
 7 
 8 
 
 7 
 8 
 
 396 9-76639 
 
 30 
 29 
 29 
 28 
 29 
 29 
 
 0.23361 124 
 
 43 
 
 i8 
 
 453 9.70288 
 
 
 340 9.93621 
 
 435 9-76668 
 
 0.23332 113 
 
 42 
 
 19 
 
 478 9.70310 
 
 22 
 
 325 9.93614 
 
 474 9-76697 
 
 0.23303 102 
 
 41 
 
 20 
 
 50503 9.70332 
 
 86310 9.93606 
 
 58513 9-76725 
 
 0.23275 1.7090 
 
 40 
 
 21 
 
 528 9-70353 
 
 
 295 9-93599 
 
 552 9-76754 
 
 0.23246 079 
 
 39 
 
 22 
 
 553 9-70375 
 
 
 28 T 9.93591 
 
 
 591 9-76783 
 
 0.23217 067 
 
 38 
 
 23 
 
 578 9.70396 
 
 
 266 9.93584 
 
 7 
 8 
 
 631 9.76812 
 
 29 
 29 
 29 
 29 
 
 29 
 29 
 29 
 
 29 
 29 
 
 ^8 
 
 0.23188 056 
 
 .37 
 
 24 
 
 603 9.70418 
 
 21 
 
 251 9-93577 
 
 670 9.76841 
 
 0.23159 045 
 
 36 
 
 25 
 
 50628 9.70439 
 
 86237 9-93569 
 
 58709 9.76870 
 
 0.23130 1.7033 
 
 35 
 
 26 
 
 654 9.70461 
 
 
 222 9.93562 
 
 7 
 8 
 
 748 9-76899 
 
 0.23101 022 
 
 34 
 
 27 
 
 679 9.70482 
 
 
 207 9-93554 
 
 7 
 
 8 
 
 787 9.76928 
 
 0.23072 on 
 
 33 
 
 28 
 
 704 9.70504 
 
 
 192 9-93547 
 
 826 9-76957 
 
 0.23043 1.6999 
 
 32 
 
 29 
 
 729 9.70525 
 
 22 
 
 178 9-93539 
 
 7 
 
 865 9.76986 
 
 0.23014 988 
 
 31 
 30 
 
 30 
 
 50754 9.70547 
 
 86163 9.93532 
 
 58905 9.77015 
 
 0.22985 1.6977 
 
 31 
 
 779 9.70568 
 
 
 148 9.93525 
 
 8 
 
 944 9-77044 
 
 0.22956 965 
 
 29 
 
 32 
 
 804 9.70590 
 
 
 133 9-93517 
 
 
 983 9-77073 
 
 0.22927 954 
 
 28 
 
 33 
 
 829 9.7061 1 
 
 
 119 9-93510 
 
 8 
 
 59022 9.77101 
 
 29 
 29 
 
 0.22899 943 
 
 27 
 
 34 
 
 854 9-70633 
 
 21 
 
 104 9-93502 
 
 7 
 8 
 
 061 9.77130 
 
 0.22870 932 
 
 26 
 25 
 
 35 
 
 50879 9.70654 
 
 86089 9.93495 
 
 59101 9.77159 
 
 0.22841 1.6920 
 
 36 
 
 904 9.70675 
 
 
 074 9.93487 
 
 140 9.77188 1 z 
 
 0.22812 90Q 
 
 24 
 
 37 
 
 929 9.70697 
 
 21 
 
 059 993480 
 
 7 
 8 
 
 179 9.-772I7 
 
 29 
 
 0.22783 898 
 
 23 
 
 3« 
 
 954 9-70718 
 
 21 
 
 045 993472 
 
 
 218 9.77246 
 
 0.22754 887 
 
 22 
 
 39 
 "40 
 
 979 9-70739 
 
 22 
 
 030 9-93465 
 
 8 
 
 258 9.77274 
 
 29 
 
 29 
 29 
 
 29 
 
 28 
 
 0.22726 875 
 
 21 
 
 51004 9.70761 
 
 86015 9-93457 
 
 59297 9-77303 
 
 0.22697 1.6864 
 
 20 
 
 41 
 
 029 9.70782 
 
 
 000 9-93450 
 
 8 
 
 336 9-77332 
 
 0.22668 853 
 
 19 
 
 42 
 
 054 9.70803 
 
 
 85985 9-93442 
 
 376 9-77361 
 
 0.22639 842 
 
 18 
 
 43 
 
 079 9.70824 
 
 
 970 9.93435 
 
 8 
 
 415 9-77390 
 
 0.22610 831 
 
 17 
 
 44 
 
 104 9.70846 
 
 21 
 
 956 9-93427 
 
 7 
 8 
 
 454 9-77418 
 
 29 
 29 
 29 
 
 '^8 
 
 0.22582 820 
 
 16 
 
 45 
 
 51 129 9.70867 
 
 85941 9-93420 
 
 59494 9-77447 
 
 0.22553 1.6808 
 
 15 
 
 46 
 
 154 9-70888 
 
 
 926 9.93412 
 
 7 
 8 
 
 533 9-77476 
 
 0.22524 797 
 
 14 
 
 47 
 
 179 9-70909 
 
 
 911 9.93405 
 
 573 9-77505 
 
 0.22495 786 
 
 13 
 
 48 
 
 204 9.70931 
 
 
 896 9-93397 
 
 
 612 9.77533 
 
 29 
 29 
 
 "8 
 
 0.22467 775 
 
 12 
 
 49 
 50 
 
 229 9.70952 
 
 21 
 21 
 
 881 9.93390 
 
 7 
 8 
 
 7 
 8 
 
 651 9.77562 
 
 0.22438 764 
 
 11 
 
 51254 9.70973 
 
 85866 9.93382 
 
 59691 9.77591 
 
 0.22409 1.6753 
 
 10 
 
 51 
 
 279 9-70994 
 
 
 851 9-93375 
 
 730 9.77619 
 
 29 
 29 
 29 
 28 
 
 29 
 
 08 
 
 0.22381 742 
 
 9 
 
 S2 
 
 304 9-71015 
 
 
 836 9-93367 
 
 
 770 9.77648 
 
 0.22352 731 
 
 8 
 
 53 
 
 329 9.71036 
 
 
 821 9.93360 
 
 8 
 
 809 9.77677 
 
 0.22323 720 
 
 7 
 
 54 
 55 
 
 354 9-71058 
 
 21 
 
 806 9-93352 
 
 8 
 7 
 
 849 9-77706 
 
 0.22294 709 
 
 b 
 5 
 
 51379 9-71079 
 
 85792 9-93344 
 
 59888 9.77734 
 
 0.22266 1.6698 
 
 56 
 
 404 9.71 100 
 
 
 777 9-93337 
 
 928 9.77763 
 
 0.22237 687 
 
 4 
 
 57 
 
 429 9.71 121 
 
 
 762 993329 
 
 
 967 9.77791 
 
 29 
 29 
 
 28 
 
 0.22209 676 
 
 3 
 
 5» 
 
 454 9.71 142 
 
 
 747 9-93322 
 
 8 
 
 60007 9.77820 
 
 0.22180 665 
 
 2 
 
 ^0 
 
 479 9-71 163 
 
 
 732 9-93314 
 
 7 
 
 046 9.77849 
 
 0.22151 654 
 
 1 
 
 504 9.71184 
 
 1 717 9-93307 
 
 086 9.77877 
 
 
 0.22123 643 
 
 
 
 
 Nat.CoSLog. d. |Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 C.d. 
 
 Log.TanNat. 
 
 f 
 
 m 
 

 
 
 31° 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 51504 9.71184 1 ,^ 
 
 85717 9-93307 
 
 8 
 
 60086 9.77877 
 
 29 
 
 0.22123 1.6643 
 
 60 
 
 I 
 
 529 9.71205 
 
 
 702 9.93299 
 
 8 
 
 126 9.77906 
 
 0.22094 632 
 
 SQ 
 
 2 
 
 554 9-71226 
 
 21 
 
 687 9-93291 
 
 I 
 
 165 9-77935 
 
 29 
 28 
 
 0.22065 621 
 
 58 
 
 3 
 
 579 9-71247 
 
 
 672 9.93284 
 
 205 9-77963 
 
 
 0.22037 610 
 0.22008 599 
 
 57 
 
 4 
 
 604 9.71268 
 
 21 
 
 657 9-93276 
 
 7 
 8 
 
 245 9-77992 
 
 29 
 28 
 29 
 
 56 
 
 65 
 
 5 
 
 51628 9.71289 
 
 85642 9-93269 
 
 60284 9.78020 
 
 0.21980 1.6588 
 
 b 
 
 653 9-71310 
 
 
 627 9.93261 
 
 8 
 
 324 9-78049 
 
 0.21951 577 
 
 54 
 
 7 
 
 678 9-71331 
 
 
 612 9.93253 
 
 7 
 
 8 
 
 364 9-78077 
 
 29 
 29 
 
 0.21923 566 
 
 53 
 
 8 
 
 703 9-71352 
 
 
 597 9-93246 
 
 403 9.78106 
 
 0.21894 555 
 
 52 
 
 9 
 
 728 9-71373 
 
 20 
 21 
 
 582 9.93238 
 
 8 
 
 7 
 
 8 
 
 443 9-78135 
 
 0-21865 545 
 
 51 
 
 10 
 
 51753 9.71393 
 
 85567 9-93230 
 
 60483 9.78163 
 
 29 
 
 28 
 
 0.21837 1.6534 
 0.21808 523 
 
 50 
 
 II 
 
 778 9-71414 
 
 
 551 9-93223 
 
 522 9.78192 
 
 49 
 
 12 
 
 803 9-71435 21 
 
 536 9-93215 
 
 
 
 562 9.78220 
 
 29 
 
 28 
 
 0.21780 512 
 
 48 
 
 13 
 
 828 9.71456 f. 
 
 521 9.93207 
 
 7 
 8 
 
 Q 
 
 602 9.78249 
 
 0.21751 501 
 
 47 
 
 14 
 
 852 9.71477 
 
 21 
 21 
 
 506 9.93200 
 
 642 9.78277 
 
 - 
 
 29 
 
 08 
 
 0.21723 490 
 
 46 
 45 
 
 15 
 
 51877 9.71498 
 
 85491 9-93192 
 
 60681 9.78306 
 
 0.21694 1.6479 
 
 lb 
 
 902 9.71519 
 
 20 
 
 476 9-93184 
 
 
 721 9.78334 
 
 28 
 
 0.21666 469 
 
 44 
 
 17 
 
 927 9-71539 
 
 21 
 
 461 9-93177 
 
 
 
 761 9.78363 
 
 0.21637 458 
 
 43 
 
 i8 
 
 952 9.71560 
 
 21 
 
 446 9.93169 
 
 
 
 801 9.78391 
 
 08 
 
 0.21609 447 
 
 42 
 
 19 
 
 977 9-71581 
 
 21 
 20 
 
 431 9.93161 
 
 7 
 
 Q 
 
 841 9-78419 
 
 29 
 
 0.21581 436 
 
 41 
 
 20 
 
 52002 9.71602 
 
 85416 9-93154 
 
 60881 9.78448 
 
 0.21552 1.6426 
 
 40 
 
 21 
 
 026 9.71622 
 
 21 
 
 401 9.93146 
 
 Q 
 
 921 9.78476 
 
 29 
 
 0.21524 415 
 
 39 
 
 22 
 
 051 9-71643 
 
 21 
 
 385 9-93138 
 
 
 960 9-78505 
 
 0.21495 404 
 
 38 
 
 23 
 
 076 9.71664 
 
 21 
 
 370 9.93131 
 
 
 
 61000 9.78533 
 
 29 
 28 
 
 0.21467 393 
 
 37 
 
 24 
 
 loi 9.71685 
 
 
 355 9-93123 
 
 8 
 
 7 
 
 8 
 
 040 9.78562 
 
 0.21438 383 
 
 3^ 
 
 52126 9-71705 
 
 '>T 
 
 85340 9-93115 
 
 61080 9.78590 
 
 O.21410 1.6372 
 
 35 
 
 26 
 
 151 9.71726 
 
 
 325 9.93108 
 
 120 9.78618 
 
 29 
 
 0.21382 361 
 
 34 
 
 27 
 
 175 9-71747 
 
 
 310 9.93100 
 
 8 
 
 160 9.78647 
 
 0.21353 351 
 
 33 
 
 28 
 
 200 9.71767 
 
 ^1 
 
 294 9-93092 
 
 
 
 200 9.78675 
 
 29 
 
 28 
 
 '^8 
 
 0.21325 340 
 
 32 
 
 29 
 
 225 9.71788 
 
 21 
 20 
 
 279 9.93084 
 
 7 
 
 
 240 9.78704 
 
 0.21296 329 
 
 31 
 30 
 
 30 
 
 52250 9.71809 
 
 85264 9-93077 
 
 61280 9.78732 
 
 0.21268 1.6319 
 
 31 
 
 275 9.71829 
 
 21 
 
 249 993069 
 
 Q 
 
 320 9.78760 
 
 29 
 
 .0.21240 308 
 
 29 
 
 32 
 
 299 9-71850 
 
 20 
 
 234 9-93061 
 
 
 
 360 9.78789 
 
 O.21211 297 
 
 28 
 
 33 
 
 324 9.71870 
 
 
 218 9.93053 
 
 7 
 8 
 
 8 
 
 400 9.788i'7 
 
 ^^8 
 
 O.21183 287 
 
 27 
 
 34 
 
 349 9-71891 
 
 20 
 21 
 
 203 9-93046 
 
 440 9.78845 
 
 29 
 
 08 
 
 0.21 155 276 
 
 26 
 
 35 
 
 52374 9-71911 
 
 85188 9.93038 
 
 61480 9.78874 
 
 O.21126 1.6265 
 
 25 
 
 3b 
 
 399 9-71932 
 
 
 173 9-93030 
 
 8 
 
 520 9.78902 
 
 '>8 
 
 0.21098 25s 
 
 24 
 
 37 
 
 423 9.71952 
 
 
 157 9-93022 
 
 8 
 
 561 9-78930 
 
 29 
 
 '>8 
 
 0.21070 244 
 
 23 
 
 3» 
 
 448 9.71973 
 
 
 142 9.93014 
 
 
 601 9.78959 
 641 9-78987 
 
 O.21041 234 
 
 22 
 
 39 
 
 473 9-71994 
 
 20 
 
 127 9.93007 
 
 7 
 8 
 8 
 
 28 
 
 08 
 
 O.21013 223 
 
 21 
 
 40 
 
 52498 9.72014 
 
 85112 9-92999 
 
 61681 9.79015 
 
 0.20985 1.6212 
 
 20 
 
 41 
 
 522 9.72034 
 
 21 
 
 096 9-92991 
 
 
 
 721 9.79043 
 
 29 
 
 o9 
 
 0.20957 202 
 
 19 
 
 42 
 
 547 9-7205$ 
 
 
 081 9-92983 
 
 
 761 9-79072 
 
 0.20928 191 
 
 18 
 
 43 
 
 572 9-72075 
 
 21 
 
 066 9.92976 
 
 
 
 801 9.79100 
 
 o<? 
 
 0.20900 181 
 
 17 
 
 44 
 
 597 9-72096 
 
 21 
 
 051 9.92968 
 
 8 
 
 Q 
 
 842 9.79128 
 
 28 
 
 29 
 
 08 
 
 0.20872 170 
 
 16 
 
 45 
 
 52621 9.721 16 
 
 85035 9.92960 
 
 61882 9.79156 
 
 0.20844 1.6160 
 
 15 
 
 46 
 
 646 9.72137 
 
 
 020 9.92952 
 
 8 
 
 922 9-79185 
 
 0.20815 149 
 
 14 
 
 47 
 
 671 9.72157 
 
 
 005 9.92944 
 
 
 
 962 9.79213 
 
 o<^ 
 
 0.20787 139 
 
 i3 
 
 48 
 
 696 9.72177 
 
 21 
 
 84989 9.92936 
 
 
 62003 979241 
 
 08 
 
 0.20759 128 
 
 12 
 
 49 
 
 720 9.72198 
 
 20 
 
 974 9-92929 
 
 8 
 8 
 
 043 9-79269 
 
 28 
 29 
 
 -^8 
 
 0.20731 118 
 
 II 
 
 50 
 
 52745 9.72218 
 
 84959 9-92921 
 
 62083 9.79297 
 
 0.20703 1.6107 
 
 10 
 
 51 
 
 770 9-72238 
 
 21 
 
 943 9-92913 
 
 8 
 
 124 9.79326 
 
 0.20674 097 
 
 9 
 
 S2 
 
 794 9-72259 
 
 
 928 9-92905 
 
 8 
 
 
 164 9-79354 
 
 28 
 
 0.20646 087 
 
 8 
 
 S3 
 
 819 9.72279 
 
 
 913 9.92897 
 
 204 9.79382 
 
 '^8 
 
 0.20618 076 
 
 7 
 
 54 
 
 844 9.72299 
 
 21 
 
 897 9-92889 
 
 8 
 
 245 9.79410 
 
 28 
 
 '>8 
 
 0.20590 066 
 
 6 
 5 
 
 55 
 
 52869 9.72320 
 
 84882 9.92881 
 
 62285 9.79438 
 
 0.20562 1.6055 
 
 S6 
 
 893 9-72340 
 
 
 866 9.92874 
 
 I 
 
 325 9.79466 
 
 29 
 
 '^8 
 
 0.20534 045 
 
 4 
 
 S7 
 
 918 9.72360 
 
 
 851 9.92866 
 
 8 
 
 366 9-79495 
 
 0.20505 034 
 
 3 
 
 S» 
 
 943 9-72381 
 
 
 836 9.92858 
 
 8 
 
 406 9-79523 
 
 "8 
 
 0.20477 024 
 
 2 
 
 SQ 
 
 967 9.72401 
 
 
 820 9.92850 
 
 8 
 
 446 979551 
 
 '^H 
 
 0.20449 014 I 1 
 
 60 
 
 992 9.72421 
 
 
 80s 9.92842 
 
 
 487 9-79579 
 
 
 0.20421 003 1 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin. Log. d. 
 
 |Nat.CotLog. 
 
 C.d. 
 
 Log. Tan Nat. 
 
 u 
 
 68^ 
 
f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 52992 9.72421 
 
 20 
 
 84805 9.92842 
 
 g 
 
 62487 9.79579 
 
 28 
 
 0.20421 1.6003 
 
 60 
 
 I 
 
 53017 9-72441 
 
 
 789 9.92834 
 
 8 
 
 527 9.79607 
 
 28 
 
 0.20393 1.5993 
 
 59 
 
 2 
 
 041 9.72461 
 
 
 774 9-92826 
 
 8 
 
 568 9-79635 
 
 28 
 
 0.20365 983 
 
 58 
 
 3 
 
 066 9.72482 
 
 
 759 9.92818 
 
 8 
 
 608 9.79663 
 
 -28 
 
 0.20337 972 
 
 57 
 
 4 
 6 
 
 091 9.72502 
 
 20 
 
 743 9.92810 
 
 7 
 
 8 
 
 649 9.79691 
 
 28 
 
 08 
 
 0.20309 962 
 
 56 
 55 
 
 53IIS 9.72522 
 
 84728 9.92803 
 
 62689 9-79719 
 
 0.20281 1.5952 
 
 b 
 
 140 9.72542 
 
 
 712 9.92795 
 
 8 
 
 730 9-79747 
 
 29 
 28 
 
 0.20253 941 
 
 54 
 
 7 
 
 164 9.72562 
 
 " 
 
 697 9-92787 
 
 8 
 
 770 9.79776 
 
 0.20224 931 
 
 53 
 
 8 
 
 189 9.72582 
 
 ^ 
 
 681 9-92779 
 
 8 
 
 811 9.79804 
 
 28 
 
 0.20196 921 
 
 52 
 
 9 
 
 214 9.72602 
 
 20 
 
 666 9.92771 
 
 8 
 
 Q 
 
 852 9-79832 
 
 28 
 28 
 
 0.20168 911 
 
 51 
 50 
 
 10 
 
 53238 9.72622 
 
 84650 9.92763 
 
 62892 9.79860 
 
 0.20140 1.5900 
 
 II 
 
 263 9.72643 
 
 
 635 992755 
 
 Q 
 
 933 9-79888 
 
 28 
 
 0.201 12 890 
 
 49 
 
 12 
 
 288 9.72663 
 
 
 619 9.92747 
 
 Q 
 
 973 9-79916 
 
 28 
 
 0.20084 880 
 
 48 
 
 13 
 
 312 9-72683 
 
 
 604 992739 
 
 8 
 
 63014 9.79944 
 
 '-R 
 
 0.20056 869 
 
 47 
 
 14 
 
 337 9-72703 
 
 20 
 
 588 9.92731 
 
 8 
 
 8 
 
 055 9-79972 
 
 28 
 "8 
 
 0.20028 859 
 
 4b 
 45 
 
 15 
 
 53361 9.72723 
 
 84573 9.92723 
 
 63095 9.80000 
 
 0.20000 1.5849 
 
 lb 
 
 386 9-72743 
 
 
 557 9-92715 
 
 
 
 136 9.80028 
 
 28 
 
 0.19972 839 
 
 44 
 
 17 
 
 411 9.72763 
 
 
 542 9.92707 
 
 8 
 
 177 9.80056 
 
 28 
 
 0.19944 829 
 
 43 
 
 I8 
 
 435 9-72783 
 
 ~ 
 
 526 9.92699 
 
 8 
 
 217 9.80084 
 
 28 
 
 0.19916 818 
 
 42 
 
 19 
 
 460 9.72803 
 
 20 
 
 511 9.92691 
 
 8 
 
 8 
 
 258 9.80112 
 
 28 
 
 -^8 
 
 0.19888 808 
 
 41 
 40 
 
 20 
 
 53484 9.72823 
 
 84495 9.92683 
 
 63299 9.80140 
 
 0.19860 1.5798 
 
 21 
 
 509 9.72843 
 
 
 480 9.92675 
 
 Q 
 
 340 9.80168 
 
 27 
 
 28 
 
 0.19832 788 
 
 39 
 
 22 
 
 534 9-72863 
 
 
 464 9.92667 
 
 8 
 
 380 9.80195 
 
 0.19805 778 
 
 38 
 
 23 
 
 558 9.72883 
 
 19 
 20 
 
 448 9.92659 
 
 8 
 
 421 9.80223 
 
 '^8 
 
 0.19777- 768 
 
 37 
 
 24 
 
 583 9.72902 
 
 433 9-92651 
 
 8 
 
 8 
 
 462 9.80251 
 
 28 
 "8 
 
 0.19749 757 
 
 36 
 35 
 
 25 
 
 53607 9.72922 
 
 84417 9.92643 
 
 63503 9.80279 
 
 0.19721 1.5747 
 
 2b 
 
 632 9.72942 
 
 
 402 9.92635 
 
 
 
 544 9-80307 
 
 -^8 
 
 0.19693 737 
 
 34 
 
 27 
 
 656 9.72962 
 
 
 386 9.92627 
 
 8 
 
 584 9.80335 
 
 28 
 
 0.19665 727 
 
 33 
 
 28 
 
 681 9.72982 
 
 
 370 9.92619 
 
 8 
 
 625 9.80363 
 
 -^8 
 
 0.19637 717 
 
 32 
 
 29 
 
 705 9-73002 
 
 20 
 19 
 
 355 9.92611 
 
 8 
 
 8 
 
 666 9.80391 
 
 28 
 08 
 
 0.19609 707 
 
 31 
 30 
 
 30 
 
 53730 9-73022 
 
 84339 9.92603 
 
 63707 9.80419 
 
 0.19581 1.8697 
 
 31 
 
 754 973041 
 
 324 9.92595 
 
 
 
 748 9.80447 
 
 27 
 28 
 
 0.19553 687 
 
 29 
 
 32 
 
 779 9-73061 
 
 
 308 9.92587 
 
 
 
 789 9-80474 
 
 0.19526 677 
 
 28 
 
 33 
 
 804 9.73081 
 
 
 292 9.92579 
 
 9 
 
 830 9.80502 
 
 28 
 
 0.19498 667 
 
 27 
 
 34 
 35 
 
 828 9.73101 
 
 20 
 19 
 
 277 9-92571 
 
 8 
 
 8 
 
 871 9.80530 
 
 28 
 
 '^8 
 
 0.19470 657 
 
 2b 
 
 53853 9-73121 
 
 84261 9.92563 
 
 63912 9.80558 
 
 0.19442 1-5647 
 
 25 
 
 3(5 
 
 877 9-73140 
 
 245 9-92555 
 
 9 
 
 8 
 
 953 9-80586 
 
 '^H 
 
 0.19414 637 
 
 24 
 
 37 
 
 902 9.73160 
 
 " 
 
 230 9-92546 
 
 994 9.80614 
 
 28 
 
 0.19386 627 
 
 23 
 
 3» 
 
 92b 9.73180 
 
 20 
 
 214 9.92538 
 
 8 
 
 64035 9.80642 
 
 27 
 28 
 28 
 
 0.19358 617 
 
 22 
 
 39 
 40 
 
 951 9.73200 
 
 19 
 
 198 9-92530 
 
 8 
 
 
 076 9,80669 
 
 0.19331 607 
 
 21 
 20 
 
 53975 9-73219 
 
 84182 9.92522 
 
 641 17 9.80697 
 
 0.19303 1-5597 
 
 41 
 
 54000 9-73239 
 
 
 167 9.92514 
 
 8 
 
 158 9.80725 
 
 08 
 
 0.19275 587 
 
 19 
 
 42 
 
 024 9-73259 
 
 19 
 
 151 9.92506 
 
 8 
 
 199 9-80753 
 
 28 
 
 0.19247 577 
 
 18 
 
 43 
 
 049 9-73278 
 
 135 9.92498 
 
 8 
 
 240 9.80781 
 
 27 
 28 
 
 08 
 
 0.19219 567 
 
 17 
 
 44 
 
 073 9-73298 
 
 20 
 19 
 
 120 9.92490 
 
 8 
 
 9 
 
 8 
 
 281 9.80808 
 
 0.19192 557 
 
 lb 
 
 45 
 
 54097 9-73318 
 
 84104 9.92482 
 
 64322 9.80836 
 
 0.19164 1.5547 
 
 15 
 
 46 
 
 122 9-73337 
 
 088 9.92473 
 
 363 9.80864 
 
 08 
 
 0.19136 537 
 
 14 
 
 47 
 
 146 9-73357 
 
 
 072 9.92465 
 
 8 
 
 404 9.80892 
 
 27 
 
 '^8 
 
 0.19108 527 
 
 13 
 
 48 
 
 171 9-73377 
 
 19 
 20 
 
 19 
 
 057 9-92457 
 
 8 
 
 446 9.80919 
 
 0.19081 517 
 
 12 
 
 49 
 
 195 9-73396 
 
 041 9.92449 
 
 8 
 
 8 
 
 487 9.80947 
 
 28 
 28 
 
 0.19053 507 
 
 II 
 
 50 
 
 54220 9-73416 
 
 84025 9.92441 
 
 64528 9.80975 
 
 0.19025 1.5497 
 
 10 
 
 51 
 
 244 9-73435 
 
 009 9.92433 
 
 8 
 
 569 9.81003 
 
 27 
 28 
 
 0.18997 487 
 
 9 
 
 S2 
 
 269 9-73455 
 
 " 
 
 83994 9.92425 
 
 9 
 
 8 
 
 610 9.81030 
 
 0.18970 477 
 
 8 
 
 =^3 
 
 293 9.73474 
 
 19 
 
 978 9.92416 
 
 652 9.81058 
 
 28 
 
 0.18942 468 
 
 7 
 
 54 
 
 317 9-73494 
 
 19 
 
 962 9.92408 
 
 8 
 
 8 
 
 693 9.81086 
 
 27 
 
 "8 
 
 O.18914 458 
 
 b 
 
 55 
 
 54342 9-73513 
 
 83946 9.92400 
 
 64734 9.81 1 13 
 
 0.18887 1.5448 
 
 5 
 
 ,0 
 
 366 9-73533 
 
 
 930 9.92392 
 
 
 
 775 9.81 141 
 
 28 
 
 0.18859 438 
 
 4 
 
 57 
 
 391 9-73552 
 
 
 915 9.92384 
 
 8 
 
 817 9.81 169 
 
 27 
 28 
 
 O.18831 428 
 
 3 
 
 58 
 
 415 9-73572 
 
 
 899 9-92376 
 
 9 
 
 
 
 858 9.81 196 
 
 0.18804 418 
 
 2 
 
 ro 
 
 440 9-73591 
 
 19 
 
 883 9.92367 
 
 899 9.81224 
 
 o« 
 
 0.18776 408 
 
 I 
 
 404 9-73611 
 
 2° 1 8b7 9-92359 
 
 
 941 9.81252 1 - \ 0.18748 399 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.TanNat. 
 
 f 
 
 57' 
 
33° 
 
 1 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log 
 
 d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 "^ 
 
 
 
 54464 9.7361 1 
 
 19 
 
 83867 9.92359 
 
 8 
 
 64941 9.81252 
 
 
 0.18748 1.5399 
 
 60 
 
 I 
 
 488 9.73630 
 
 851 9.92351 
 
 8 
 
 982 9.81279 
 
 28 
 
 0.18721 389 
 
 59 
 
 2 
 
 513 9-73650 
 
 19 
 
 835 9.92343 
 
 8 
 
 65024 9.81307 
 
 0.18693 379 
 
 58 
 
 3 
 
 537 9.73669 
 
 819 9.92335 
 
 9 
 8 
 
 Q 
 
 065 9.81335 
 
 0.18665 369 
 
 S7 
 
 4 
 
 561 9.73689 
 
 19 
 19 
 20 
 
 804 9.92326 
 
 106 9.81362 
 
 27 
 
 28 
 28 
 
 0.18638 359 
 
 56 
 
 55 
 
 5 
 
 54586 9.73708 
 
 83788 9.92318 
 
 65148 9.81390 
 
 0.18610 1.5350 
 
 6 
 
 610 9.73727 
 
 772 9.92310 
 
 
 
 189 9.8I4I8 
 
 0.18582 340 
 
 54 
 
 7 
 
 635 9.73747 
 
 19 
 19 
 20 
 
 19 
 19 
 20 
 
 756 9.92302 
 
 9 
 
 8 
 
 231 9.81445 
 
 28 
 27 
 28 
 28 
 
 0.18555 330 
 
 53 
 
 8 
 
 659 9.73766 
 
 740 9.92293 
 
 272 9.81473 
 
 0.18527 320 
 
 52 
 
 9 
 
 683 9.73785 
 
 724 9.92285 
 
 8 
 8 
 
 314 9.81500 
 
 0.18500 311 
 
 51 
 50 
 
 10 
 
 54708 9.73805 
 
 83708 9.92277 
 
 65355 9.81528 
 
 0.18472 1.5301 
 
 11 
 
 732 9.73824 
 
 692 9.92269 
 
 
 397 9.81556 
 
 0.18444 291 
 
 4Q 
 
 12 
 
 756 9.73843 
 
 676 9.92260 
 
 9 
 8 
 
 438 9.81583 
 
 27 
 28 
 
 0.18417 282 
 
 48 
 
 13 
 
 781 973863 
 
 19 
 19 
 
 660 9.92252 
 
 8 
 
 9 
 8 
 8 
 8 
 9 
 8 
 8 
 
 480 9.81611 
 
 0.18389 272 
 
 47 
 
 14 
 
 805 9.73882 
 
 645 9.92244 
 
 521 9.81638 
 
 27 
 
 28 
 
 0.18362 262 
 
 46 
 45 
 
 15 
 
 54829 9.73901 
 
 83629 9.92235 
 
 65563 9.81666 
 
 0.18334 1.5253 
 
 lb 
 
 854 9.73921 
 
 19 
 19 
 19 
 19 
 
 613 9.92227 
 
 604 9.81693 
 
 27 
 
 28 
 
 0.18307 243 
 
 44 
 
 17 
 
 878 9.73940 
 
 597 9.92219 
 
 646 9.81721 
 
 0.18279 233 
 
 43 
 
 18 
 
 902 9.73959 
 
 581 9.9221 1 
 
 688 9.81748 
 
 27 
 
 08 
 
 0.18252 224 
 
 42 
 
 19 
 
 927 9.73978 
 
 565 9.92202 
 
 729 9.81776 
 
 27 
 28 
 
 0.18224 214 
 
 41 
 
 20 
 
 54951 9-73997 
 
 83549 9.92194 
 
 65771 9.81803 
 
 0.18197 1.5204 
 
 40 
 
 21 
 
 975 9.74017 
 
 19 
 19 
 19 
 19 
 
 533 9.92186 
 
 813 9.81831 
 
 0.18169 195 
 
 39 
 
 22 
 
 999 9-74036 
 
 517 9.92177 
 
 9 
 8 
 8 
 
 9 
 8 
 8 
 
 854 9.81858 
 
 0! 
 
 0.18142 185 
 
 38 
 
 23 
 
 55024 9.74055 
 
 501 9.92169 
 
 896 9.81886 
 
 0.18114 175 
 
 37 
 
 24 
 
 048 9.74074 
 
 485 9.92161 
 
 938 9.81913 
 
 27 
 28 
 
 0.18087 166 
 
 36 
 
 25 
 
 55072 9.74093 
 
 83469 9.92152 
 
 65980 9.81941 
 
 0.18059 1.5 156 
 
 35 
 
 2b 
 
 097 9.74113 
 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 
 453 9.92144 
 
 66021 9.81968 
 
 28 
 
 0.18032 147 
 
 34 
 
 27 
 
 121 9.74132 
 
 437 9.92136 
 
 063 9.81996 
 
 0.18004 137 
 
 33 
 
 2b 
 
 145 9.74151 
 
 421 9.92127 
 
 9 
 
 105 9.82023 
 
 27 
 
 0.17977 127 
 
 32 
 
 29 
 
 169 9.74170 
 
 405 9.92119 
 
 8 
 
 147 9.82051 
 
 27 
 
 28 
 
 0.17949 118 
 
 31 
 
 30 
 
 55194 9.74189 
 
 83389 9.921 1 1 
 
 66189 9.82078 
 
 0.17922 1.5108 
 
 30 
 
 31 
 
 218 9.74208 
 
 373 9.92102 
 
 9 
 8 
 8 
 
 230 9.82106 
 
 
 0.17894 099 
 
 29 
 
 32 
 
 242 9.74227 
 
 356 9.92094 
 
 272 9.82133 
 
 s 
 
 0.17867 089 
 
 28 
 
 33 
 
 266 9.74246 
 
 340 9.92086 
 
 314 9.82161 
 
 0.17839 080 
 
 27 
 
 34 
 
 291 9.74265 
 
 ■••y 
 19 
 19 
 19 
 19 
 
 324 9.92077 
 
 9 
 8 
 
 9 
 
 8 
 
 
 356 9.82188 
 
 27 
 
 27 
 
 28 
 
 0.17812 070 
 
 26 
 25 
 
 35 
 
 55315 9.74284 
 
 83308 9.92069 
 
 66398 9.82215 
 
 0.17785 1.5061 
 
 3(' 
 
 339 9.74303 
 
 •292 9.92060 
 
 440 9.82243 
 
 
 0.17757 051 
 
 24 
 
 37 
 
 363 9.74322 
 
 276 9.92052 
 
 482 9.82270 
 
 ^8 
 
 0.17730 042 
 
 23 
 
 3« 
 
 388 9.74341 
 
 260 9.92044 
 
 
 524 9.82298 
 
 
 0.17702 032 
 
 22 
 
 39 
 40 
 
 412 9.74360 
 
 ••^9 
 19 
 19 
 19 
 19 
 
 244 9.92035 
 
 9 
 8 
 
 566 9.82325 
 
 27 
 27 
 28 
 
 0.17675 023 
 
 21 
 
 55436 9.74379 
 
 83228 9.92027 
 
 66608 9.82352 
 
 0.17648 1.5013 
 
 20 
 
 41 
 
 460 9.74398 
 
 212 9.92018 
 
 8 
 8 
 
 650 9.82380 
 
 
 0.17620 004 
 
 19 
 
 42 
 
 484 9.74417 
 
 195 9.92010 
 
 692 9.82407 
 
 28 
 
 0.17593 1.4994 
 
 18 
 
 43 
 
 509 9.74436 
 
 179 9.92002 
 
 734 9.82435 
 
 
 0.17565 985 
 
 17 
 
 44 
 45 
 
 533 9-74455 
 
 19 
 19 
 
 163 9.91993 
 
 9 
 8 
 
 
 27 
 27 
 28 
 
 0.17538 975 
 
 lb 
 15 
 
 55557 9.74474 
 
 83147 9.91985 
 
 66818 9.82489 
 
 0.17511 14966 
 
 46 
 
 581 9.74493 
 
 131 9.91976 
 
 9 
 8 
 
 860 9.82517 
 
 27 
 27 
 28 
 
 0.17483 957 
 
 14 
 
 47 
 
 605 9.74512 
 
 ■^y 
 
 115 9.91968 
 
 902 9.82544 
 
 0.17456 947 
 
 13 
 
 48 
 
 630 9.74531 
 
 
 098 9.91959 
 
 9 
 
 
 944 9.82571 
 
 0.17429 938 
 
 12 
 
 49 
 
 654 9.74549 
 
 19 
 19 
 19 
 
 082 9.91951 
 
 9 
 8 
 
 986 9.82599 
 
 27 
 27 
 28 
 
 0.17401 928 
 
 11 
 10 
 
 50 
 
 55678 9.74568 
 
 83066 9.91942 
 
 67028 9.82626 
 
 0.17374 1.4919 
 
 51 
 
 702 9.74587 
 
 050 9-91934 
 
 
 071 9.82653 
 113 9.82681 
 
 0.17347 910 
 
 9 
 
 S2 
 
 726 9.74606 
 
 034 9-91925 
 
 27 
 27 
 27 
 
 0.17319 900 
 
 8 
 
 SS 
 
 750 9.74625 
 
 ■••9 
 
 017 9.91917 
 
 155 9.82708 
 
 0.17292 891 
 
 7 
 
 54 
 
 775 9.74644 
 
 19 
 
 18 
 
 001 9.91908 
 
 9 
 
 8 
 
 197 9.82735 
 
 0.17265 882 
 
 b 
 
 55 
 
 55799 9.74662 
 
 82985 9.91900 
 
 67239 9.82762 
 
 0.17238 14872 
 
 5 
 
 
 
 823 9.74681 
 
 ^y 
 
 969 9.91891 
 
 282 9.82790 
 
 27 
 27 
 
 0.17210 863 
 
 4 
 
 '57 
 
 847 9-74700 
 
 19 
 
 953 9.91883 
 
 324 9.82817 
 
 0.17183 854 
 
 3 
 
 58 
 
 871 9.74719 
 
 i"i 
 
 936 9.91874 
 
 8 
 
 366 9.82844 
 
 0.17156 844 
 
 2 
 
 ro 
 
 895 9.74737 
 
 920 9.91866 
 
 409 9.82871 
 
 0.17129 835 
 
 1 
 
 919 9.74756 
 
 ■••9 
 
 904 9.91857 
 
 9 
 
 451 9.82899 
 
 
 0.17101 826 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log 
 
 d. 
 
 Nat. Cot Log. 
 
 cd. 
 
 Log.TanNat. 
 
 / 
 
 56' 
 
34^ 
 
 ' Nat. Sin Log. d. 
 
 NatCoSLosf. d. 
 
 Nat.TanLog. 
 
 d. Log. Cot Nat, 
 
 55919 
 943 
 968 
 992 
 
 56016 
 
 9-74756 
 9-74775 
 9.74794 
 9.74812 
 9.74831 
 
 56040 
 064 
 088 
 112 
 136 
 
 9.74850 
 9.74868 
 9-74887 , 
 
 9-74906 ! g 
 9-74924 
 
 56160 
 184 
 208 
 232 
 256 
 
 9-74943 
 9.74961 
 9.74980 
 9.74999 
 9.75017 
 
 56280 
 305 
 329 
 353 
 377 
 
 9-75036 
 975054 
 9.75073 
 9.75091 
 9.751 10 
 
 56401 
 425 
 449 
 473 
 497 
 
 9.75128 
 
 9.75147 
 9-75165 
 9.75184 
 9.75202 
 
 56521 
 545 
 569 
 593 
 617 
 
 9.75221 
 975239 
 9-75258 
 9-75276 
 9-75294 
 
 56641 
 665 
 689 
 713 
 736 
 
 9-75313 
 9-75331 
 9-75350 
 9-75368 
 9-75386 
 
 56760 
 784 
 808 
 832 
 856 
 
 9-75405 
 9-75423 
 9-75441 
 9-75459 
 9.75478 
 
 Daao 
 904 
 928 
 952 
 976 
 
 9.75496 
 9-75514 
 9-75533 
 9-75551 
 9-75569 
 
 57000 
 024 
 047 
 071 
 095 
 
 9-75587 
 975605 
 9-75624 
 9.75642 
 9-75660 
 
 57119 
 143 
 167 
 191 
 215 
 
 9-75678 
 9.75696 
 9-75714 
 9-75733 
 9-75751 
 
 57238 
 262 
 286 
 310 
 334 
 358 
 
 9-75769 
 9-7.5787 
 9-75805 
 9-75823 
 9.75841 
 
 9-75859 
 
 82904 
 887 
 871 
 855 
 839 
 
 9.91857 
 9.91849 
 9.91840 
 9.91832 
 9.91823 
 
 806 
 790 
 773 
 757 
 
 9.91815 
 9.91806 
 9.91798 
 9.91789 
 9.91781 
 
 8274T 
 724 
 708 
 692 
 675 
 
 9.91772 
 9.91763 
 
 9-91755 
 9.91746 
 9.91738 
 
 82659 
 
 643 
 626 
 610 
 593 
 
 9.91729 
 9.91720 
 9.91712 
 9.91703 
 9.91695 
 
 82577 
 561 
 544 
 528 
 
 511 
 
 9.91686 
 9.91677 
 9.91669 
 9.91660 
 9-91651 
 
 82495 
 478 
 462 
 446 
 429 
 
 9.91643 
 9.91634 
 9.91625 
 9.91617 
 9.91608 
 
 82413 
 396 
 380 
 363 
 347 
 
 9-91599 
 9.91591 
 9.91582 
 9-91573 
 9-91565 
 
 82330 
 314 
 297 
 281 
 264 
 
 9-91556 
 9-91547 
 9-91538 
 9-91530 
 9.91521 
 
 82248 
 231 
 214 
 198 
 181 
 
 9.91512 
 9.91504 
 
 991495 
 9.91486 
 9.91477 
 
 82165 
 148 
 132 
 
 115 
 098 
 
 9.91469 
 9.91460 
 9.91451 
 9.91442 
 9-91433 
 
 82082 
 065 
 048 
 032 
 oiS 
 
 9.91425 
 9.91416 
 9.91407 
 9.91398 
 9-91389 
 
 81999 
 982 
 965 
 949 
 932 
 915 
 
 9.91381 
 9.91372 
 9-91363 
 9-91354 
 9-91345 
 9-91336 
 
 67451 
 493 
 536 
 578 
 620 
 
 9.82899 
 9.82926 
 
 9-82953 
 9.82980 
 9.83008 
 
 67663 
 
 705 
 748 
 790 
 832 
 
 9-83035 
 9.83062 
 9-83089 
 9.83117 
 9-83144 
 
 67875 
 917 
 960 
 
 68002 
 045 
 
 9.83171 
 9.83198 
 9.83225 
 9-83252 
 9.83280 
 
 130 
 173 
 215 
 258 
 
 9-8.3307 
 9-83334 
 9-83361 
 9-83388 
 9.83415 
 
 68301 
 
 343 
 386 
 429 
 471 
 
 9.83442 
 9.83470 
 9.83497 
 9.83524 
 9.83551 
 
 68514 
 557 
 600 
 642 
 685 
 
 9-83578 
 9.83605 
 9.83632 
 
 983659 
 9.83686 
 
 68728 
 771 
 814 
 
 857 
 900 
 
 9-83713 
 9.83740 
 9.83768 
 
 9-83795 
 9.83822 
 
 68942 
 
 985 
 
 69028 
 
 071 
 
 114 
 
 9.83849 
 9.83876 
 9.83903 
 9-83930 
 9-83957 
 
 69157 
 200 
 
 243 
 286 
 
 329 
 
 9.83984 
 9.84011 
 9-84038 
 9-84065 
 9.84092 
 
 69372 
 416 
 
 459 
 502 
 
 545 
 
 9.84119 
 9.84146 
 9.84173 
 9.84200 
 9.84227 
 
 69588 
 631 
 
 675 
 718 
 761 
 
 9.84254 
 9.84280 
 9.84307 
 
 9-84334 
 9.84361 
 
 69804 
 
 847 
 891 
 
 934 
 
 977 
 
 70021 
 
 9.84388 
 9.84415 
 9.84442 
 9.84469 
 9.84496 
 9-84523 
 
 7101 1.4826 
 
 7074 816 
 
 7047 807 
 
 7020 798 
 
 6992 788 
 
 6965 1-4779 
 6938 770 
 6911 761 
 6883 751 
 6856 742 
 
 6829 1.4733 
 
 6802 
 6775 
 6748 
 6720 
 
 724 
 715 
 705 
 696 
 
 6693 1.4687 
 6666 678 
 6639 669 
 6612 659 
 6585 650 
 
 6558 1.4641 
 6530 632 
 6503 623 
 6476 614 
 6449 605 
 
 6422 1.4596 
 
 6395 586 
 
 6368 577 
 
 6341 568 
 
 6314 559 
 
 6287 1.4550 
 6260 541 
 6232 532 
 6205 523 
 6178 514 
 
 6151 1.4505 
 6124 496 
 6097 487 
 6070 478 
 6043 469 
 
 6016 1.4460 
 
 5989 451 
 5962 442 
 
 5935 433 
 5908 424 
 
 5881 1.4415 
 
 5854 406 
 
 5827 397 
 
 5800 388 
 
 5773 379 
 
 5746 1.4370 
 5720 361 
 5693 352 
 5666 344 
 5639 335 
 
 5612 1.4326 
 558S 317 
 5558 308 
 5531 299 
 5504 290 
 5477 281 
 
 Nat. Cos Log. d, 
 
 Nat. Sin Log. d. 
 
 66^ 
 
 Nat. Cot Log. 
 
 c.d. Log.TanNat. 
 

 
 
 { 
 
 35 
 
 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log 
 
 d. 
 
 Nat.TanLog. 
 
 c.d. Log. Cot Nat. 
 
 
 
 
 57358 9-75859 i 18 
 
 81915 9.91336 
 
 8 
 
 70021 9.84523 
 
 
 0.15477 1.428 1 
 
 60 
 
 I 
 
 381 9-75877 i 18 
 
 899 9.91328 
 
 9 
 
 9 
 
 9 
 
 9 
 
 9 
 
 9 
 8 
 
 064 984550 
 
 06 
 
 0.15450 273 
 
 59 
 
 2 
 
 405 9-75895 18 
 
 882 9.91319 
 
 107 9.84576 
 
 27 
 27 
 27 
 27 
 27 
 
 0.15424 264 
 
 58 
 
 3 
 
 429 9.75913 1 t8 
 
 865 9-91310 
 
 151 9.84603 
 
 0.15397 255 
 
 57 
 
 4 
 
 453 9-75931 
 
 18 
 
 848 9.91301 
 
 194 9-84630 
 
 0.15370 246 
 
 56 
 55 
 
 5 
 
 57477 9-75949 
 
 81832 9.91292 
 
 70238 9.84657 
 
 0.15343 1.4237 
 
 6 
 
 501 9.75967 
 
 iH 
 
 815 9.91283 
 
 281 9.84684 
 
 0.15316 229 
 
 54 
 
 7 
 
 524 9-75985 
 
 18 
 
 798 9-91274 
 
 325 9.847II 
 
 0.15289 220 
 
 S3 
 
 8 
 
 548 9-76003 
 
 iR 
 
 782 9.91266 
 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 
 368 9-84738 
 
 26 
 
 0.15262 211 
 
 S2 
 
 9 
 
 572 9.76021 
 
 18 
 
 765 9.91257 
 
 412 9-84764 
 
 27 
 27 
 
 0.15236 202 
 
 51 
 
 10 
 
 57596 9-76039 
 
 T« 
 
 81748 9.91248 
 
 70455 9.84791 
 
 0.15209 1.4193 
 
 II 
 
 619 9-76057 ! ;« 
 
 731 9.91239 
 
 499 9-84818 
 
 0.15182 185 
 
 49 
 
 12 
 
 643 9.76075 
 
 18 
 
 714 9.91230 
 
 542 9.84845 
 
 
 0.15155 176 
 
 48 
 
 1.3 
 
 667 9-76093 
 
 18 
 
 698 9.91221 
 
 586 9.84872 
 
 
 0.15128 167 
 
 47 
 
 14 
 
 691 9.761 1 1 
 
 18 
 
 681 9.91212 
 
 629 9.84899 
 
 26 
 
 27 
 27 
 
 0.15101 158 
 
 46 
 45 
 
 15 
 
 57715 9.76129 
 
 TT 
 
 81664 9-91203 
 
 70673 9.84925 
 
 0.15075 1.4150 
 
 I6 
 
 738 9.76146 ^ 
 
 647 9.91194 
 
 717 9-84952 
 
 0.15048 141 
 
 44 
 
 17 
 
 762 9.76164 : 8 
 
 631 9.91185 
 
 760 9-84979 
 
 0.15021 132 
 
 43 
 
 i8 
 
 786 9.76182 1 ;« 
 
 614 9.91176 
 
 9 
 
 804 9.85006 
 
 27 
 
 0.14994 124 
 
 42 
 
 19 
 
 810 9.76200 
 
 18 
 
 t8 
 
 597 9-91167 
 
 9 
 9 
 
 9 
 
 8 
 
 848 9.85033 
 
 27 
 26 
 
 0.14967 115 
 
 41 
 40 
 
 20 
 
 57833 9-762i« 
 
 81580 9.91158 
 
 70891 9.85059 
 
 0.14941 1.4106 
 
 21 
 
 857 9-76230 ,, 
 
 563 9.91149 
 
 935 9-85086 
 
 
 0.14914 097 
 
 39 
 
 22 
 
 881 9.76253 
 
 18 
 
 546 9.91141 
 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 10 
 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 9 
 
 979 9-85113 
 
 "7 
 27 
 26 
 
 0.14887 089 
 
 38 
 
 23 
 
 904 9.76271 
 
 18 
 
 530 9.91 132 
 
 71023 9.85140 
 
 0.14860 080 
 
 37 
 
 24 
 
 928 9.76289 
 
 t8 
 
 513 9.91123 
 
 066 9.85166 
 
 27 
 27 
 
 27 
 
 05 
 
 0.14834 071 
 
 36 
 35 
 
 25 
 
 57952 9-76307 
 
 18 
 
 81496 9.91114 
 
 71 no 9.85193 
 
 0.14807 1.4063 
 
 26 
 
 976 9-76324 
 
 479 9-91 105 
 
 154 9.85220 
 
 0.14780 054 
 
 34 
 
 27 
 
 999 9-76342 
 
 18 
 
 462 9.91096 
 
 198 9.85247 
 
 0.14753 045 
 
 33 
 
 28 
 
 58023 9.76360 
 
 18 
 
 445 9-91087 
 
 242 9.85273 
 
 
 0.14727- 037 
 
 32 
 
 29 
 
 30 
 
 047 9-76378 
 
 17 
 18 
 
 428 9.91078 
 
 285 9-85300 
 
 27 
 
 27 
 
 27 
 
 0.14700 028 
 
 31 
 30^ 
 
 58070 9-76395 
 
 8 14 1 2 9.91069 
 
 71329 9.85327 
 
 0.14673 1.4019 
 
 31 
 
 094 9.76413 
 
 18 
 
 395 9.91060 
 
 373 9-85354 
 
 0.14646 on 
 
 29 
 
 32 
 
 118 9.76431 
 
 ;? 
 
 378 9.91051 
 
 417 9.85380 
 
 
 0.14620 002 
 
 28 
 
 33 
 
 141 9-76448 
 
 361 9.91042 
 
 461 9.85407 
 
 27 
 26 
 
 27 
 27 
 
 06 
 
 0.14593 1.3994 
 
 27 
 
 34 
 35 
 
 165 9.76466 1 11 
 
 344 9-91033 
 
 505 9-85434 
 
 0.14566 985 
 
 26 
 
 58189 9.76484 
 
 17 
 18 
 
 81327 9.91023 
 
 71549 9.85460 
 
 0.14540 1.3976 
 
 25 
 
 36 
 
 212 9.76501 
 
 310 9.91014 
 
 593 9-85487 
 
 0.14513 968 
 
 24 
 
 37 
 
 236 9-76519 
 
 18 
 
 293 9.91005 
 
 637 9-85514 
 
 0.14486 959 
 
 23 
 
 38 
 
 260 9-76537 
 
 
 
 681 9-85540 
 
 
 0.14460 951 
 
 22 
 
 39 
 40 
 
 283 9-76554 
 
 17 
 18 
 18 
 
 259 9.90987 
 
 725 9.85567 
 
 27 
 
 27 
 
 06 
 
 0.14433 942 
 
 21 
 20 
 
 58307 9-76572 
 
 81242 9.90978 
 
 71769 9.85594 
 
 0.14406 1.3934 
 
 41 
 
 330 9-76590 
 
 17 
 
 18 
 
 225 9.90969 
 
 813 9.85620 
 
 
 0.14380 925 
 
 19 
 
 42 
 
 354 9-76607 
 
 208 9.90960 
 
 857 9-85647 
 
 27 
 
 0.14353 916 
 
 18 
 
 43 
 
 378 9.76625 
 
 
 191 9.90951 
 
 901 9.85674 
 
 06 
 
 0.14326 908 
 
 17 
 
 44 
 
 401 9.76642 
 
 18 
 
 174 9-90942 
 
 946 9.85700 
 
 27 
 27 
 
 ^6 
 
 0.14300 899 
 
 16 
 
 45 
 
 58425 9.76660 
 
 81 157 9-90933 
 
 71990 9.85727 
 
 0.14273 1.3891 
 
 15 
 
 46 
 
 449 9-76677 
 
 140 9.90924 
 
 72034 9.85754 
 
 0.14246 882 
 
 14 
 
 47 
 
 472 9.76695 
 
 
 123 9.90915 
 
 078 9.85780 
 
 
 0.14220 874 
 
 13 
 
 48 
 
 496 9.76712 
 
 ^8 
 
 17 
 18 
 
 106 9.90906 
 
 122 9.85807 
 
 
 0.14193 865 
 
 12 
 
 49 
 50 
 
 519 9-76730 
 
 089 9.90896 
 
 9 
 9 
 9 
 9 
 9 
 9 
 
 167 9-85834 
 
 26 
 
 0.14166 857 
 
 11 
 
 58543 9-76747 
 
 81072 9.90887 
 
 72211 9.85860 
 
 0.14140 1.3848 
 
 10 
 
 ■^i 
 
 567 9.76765 
 
 
 055 990878 
 
 255 9-85887 
 
 0.14113 840 
 
 9 
 
 S2 
 
 590 9.76782 
 
 18 
 
 038 9.90869 
 
 299 9-85913 
 
 27 
 27 
 26 
 
 27 
 
 0.14087 831 
 
 8 
 
 ';3 
 
 614 9.76800 
 
 021 9.90860 
 
 344 985940 
 
 0.14060 823 
 
 7 
 
 54 
 55 
 
 637 9.76817 
 
 17 
 18 
 
 004 9.90851 
 
 388 9-85967 
 
 0.14033 814 
 
 6 
 
 58661 9.76835 
 
 80987 9.90842 
 
 72432 9.85993 
 
 0.14007 1.3806 
 
 5 
 
 S6 
 
 684 9.76852 
 
 17 
 18 
 
 970 9.90832 
 
 9 
 
 477 9.86020 
 
 0.13980 798 
 
 4 
 
 
 708 9.76870 
 
 953 990823 
 
 521 9.86046 
 
 27 
 27 
 '>6 
 
 0.13954 789 
 
 3 
 
 58 
 
 731 9.76887 
 
 17 
 
 936 9.90814 
 
 9 
 9 
 
 565 9.86073 
 
 0.13927 781 
 
 2 
 
 i 
 
 755 9-76904 
 
 18 
 
 919 9.90805 
 
 610 9.86100 
 
 0.13900 772 
 
 I 
 
 779 9-76922 
 
 902 9-90796 
 
 9 
 
 654 9.86126 
 
 
 0.13874 764 
 
 
 
 
 Nat.CoSLog. d. 
 
 Nat. Sin Log. 
 
 d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.Tan Nat. 
 
 f 
 
 
 
 
 
 64 
 
 t° 
 
 
 
 

 
 
 36 
 
 
 
 
 
 
 t 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat. Tan Log. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 58779 9-76922 
 
 
 80902 9.90796 
 
 
 72654 9.86126 
 
 
 0.13874 1.3764 
 
 60 
 
 I 
 
 802 9.76939 
 
 iS 
 
 885 9.90787 
 
 
 699 9.86153 
 
 06 
 
 0.13847 755 
 
 59 
 
 2 
 
 826 9.76957 
 
 17 
 
 867 9.90777 
 
 
 743 9-86179 
 
 
 0.13821 747 
 
 58 
 
 3 
 
 849 9-76974 
 
 850 9.90768 
 
 
 788 9.86206 
 
 26 
 27 
 
 '^6 
 
 0.13794 739 
 
 S7 
 
 4 
 
 873 9.76991 
 
 17 
 18 
 
 17 
 17 
 
 18 
 
 833 9.90759 
 
 9 
 9 
 9 
 
 832 9.86232 
 
 0.13768 730 
 
 56 
 
 5 
 
 58896 9.77009 
 
 80816 9.90750 
 
 72877 9-86259 
 
 0.13741 1.3722 
 
 55 
 
 b 
 
 920 9.77026 
 
 799 9.90741 
 
 921 9.86285 
 
 % 
 
 0.13715 713 
 
 54 
 
 7 
 
 943 9-77043 
 
 782 9.90731 
 
 
 966 9.86312 
 
 0.13688 705 
 
 53 
 
 b 
 
 967 9.77061 
 
 17 
 17 
 17 
 18 
 
 765 9.90722 
 
 9 
 9 
 
 73010 9.86338 
 
 
 0.13662 697 
 
 52 
 
 9 
 
 990 9.77078 
 
 748 9.90713 
 
 055 9-86365 
 
 27 
 
 0.13635 688 
 
 51 
 
 10 
 
 59014 9-77095 
 
 80730 9-90704 
 
 73100 9.86392 
 
 0.13608 1.3680 
 
 50 
 
 II 
 
 037 9-77"2 
 
 713 9.90694 
 
 . 9 
 9 
 
 144 9.86418 
 
 
 0.13582 672 
 
 49 
 
 12 
 
 061 9-77130 
 
 17 
 
 696 9.90685 
 
 189 9.86445 
 
 o(S 
 
 0.13555 663 
 
 48 
 
 13 
 
 084 9.77147 
 
 679 9.90676 
 
 234 9.86471 
 
 
 0.13529 655 
 
 47 
 
 14 
 
 108 9.77164 
 
 17 
 17 
 
 18 
 
 662 9.90667 
 
 9 
 10 
 
 9 
 
 278 9.86498 
 
 27 
 26 
 
 0.13502 647 
 
 46 
 
 15 
 
 S9131 9.77181 
 
 80644 9-90657 
 
 73323 9.86524 
 
 0.13476 1.3638 
 
 45 
 
 16 
 
 154 9-77199 
 
 
 627 9.90648 
 
 368 9.86551 
 
 26 
 05 
 
 0.13449 630 
 
 44 
 
 17 
 
 178 9.77216 
 
 17 
 17 
 18 
 
 17 
 17 
 17 
 
 610 9.90639 
 
 9 
 9 
 
 413 9-86577 
 
 0.13423 622 
 
 43 
 
 l8 
 
 201 9.77233 
 
 593 9.90630 
 
 457 9.86603 
 
 
 0.13397 613 
 
 42 
 
 19 
 
 225 9-77250 
 
 576 9.90620 
 
 9 
 
 502 9.86630 
 
 26 
 
 0.13370 605 
 
 41 
 
 20 
 
 59248 9.77268 
 
 80558 9.90611 
 
 73547 9-86656 
 
 0.13344 1.3597 
 
 40 
 
 21 
 
 272 9.77285 
 
 541 9.90602 
 
 
 
 "6 
 
 0.13317 588 
 
 39 
 
 22 
 
 295 9-77302 
 
 524 9.90592 
 
 9 
 
 637 9.86709 
 
 27 
 
 0.13291 580 
 
 38 
 
 23 
 
 318 9-77319 
 
 507 9.90583 
 
 681 9.86736 
 
 0.13264 572 
 
 37 
 
 24 
 
 342 9.77336 
 
 17 
 17 
 17 
 17 
 
 489 9.90574 
 
 9 
 9 
 
 726 9.86762 
 
 27 
 05 
 
 0.13238 564 
 
 36 
 
 25 
 
 59365 9-77353 
 
 80472 9.90565 
 
 73771 9.86789 
 
 0.13211 1.3555 
 
 35 
 
 2b 
 
 389 9-77370 
 
 455 9.90555 
 
 
 816 9.86815 
 
 
 0.13185 547 
 
 34 
 
 27 
 
 412 9.77387 
 
 438 9.90546 
 
 9 
 9 
 
 861 9.86842 
 
 o(=, 
 
 0.13158 539 
 
 33 
 
 28 
 
 436 9.77405 
 
 17 
 17 
 17 
 17 
 17 
 
 420 9.90537 
 
 906 9.86868 
 
 '^f, 
 
 0.13132 531 
 
 32 
 
 29 
 
 459 9-77422 
 
 403 9.90527 
 
 9 
 9 
 
 951 9.86894 
 
 27 
 
 2*^ 
 
 0.13106 522 
 
 31 
 
 30 
 
 59482 9.77439 
 
 80386 9.90518 
 
 73996 9.86921 
 
 0.13079 1.3514 
 
 30 
 
 31 
 
 506 9.77456 
 
 368 9.90509 
 
 74041 9.86947 
 
 % 
 
 0.13053 506 
 
 29 
 
 32 
 
 529 9.77473 
 
 351 9.90499 
 
 9 
 
 086 9.86974 
 
 0.13026 498 
 
 28 
 
 33 
 
 552 9-77490 
 
 334 9-90490 
 
 131 9.87000 
 
 27 
 26 
 
 "6 
 
 0.13000 490 
 
 27 
 
 34 
 35 
 
 576 9-77507 
 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 
 316 9.90480 
 
 9 
 
 176 9.87027 
 
 0.12973 481 
 
 2b 
 
 59599 9-77524 
 
 80299 9.90471 
 
 74221 9-87053 
 
 p.12947 1.3473 
 
 25 
 
 3^^ 
 
 622 9.77541 
 
 282 9.90462 
 
 9 
 
 267 9.87079 
 
 
 0.12921 465 
 
 24 
 
 37 
 
 646 9-7755? 
 
 264 9.90452 
 
 
 312 9.87106 
 
 06 
 
 0.12894 457 
 
 23 
 
 3« 
 
 669 9.77575 
 
 247 990443 
 
 9 
 
 9 
 
 10 
 
 357 9-87132 
 
 ^(^ 
 
 0.12868 449 
 
 22 
 
 39 
 40 
 
 693 9.77592 
 
 230 9.90434 
 
 402 9.87158 
 
 27 
 
 06 
 
 0.12842 440 
 
 21 
 
 59716 9.77609 
 
 80212 9.90424 
 
 74447 9-87185 
 
 0.12815 1.3432 
 
 20 
 
 41 
 
 739 9.77626 
 
 195 9-90415 
 
 9 
 
 492 9.87211 
 
 
 0.12789 424 
 
 19 
 
 42 
 
 763 9.77643 
 
 17 
 
 178 9-90405 
 
 
 538 9.87238 
 
 27 
 26 
 
 0.12762 416 
 
 18 
 
 43 
 
 786 9.77660 
 
 TT 
 
 160 9.90396 
 
 
 583 9.87264 
 
 06 
 
 0.12736 408 
 
 17 
 
 44 
 
 809 9.77677 
 
 17 
 
 143 9-90386 
 
 9 
 
 628 9.87290 
 
 27 
 06 
 
 0.12710 400 
 
 lb 
 
 45 
 
 59832 9.77694 
 
 80125 9.90377 
 
 74674 9.87317 
 
 0.12683 1.3392 
 
 16 
 
 4b 
 
 856 9.77711 
 
 17 
 
 108 9.90368 
 
 9 
 
 719 9.87343 
 
 06 
 
 0.12657 384 
 
 14 
 
 47 
 
 879 9.77728 
 
 16 
 
 091 9-90358 
 
 
 764 9-87369 
 
 27 
 
 06 
 
 0.12631 375 
 
 13 
 
 48 
 
 902 9.77744 
 
 
 073 9-90349 
 
 9 
 
 810 9.87396 
 
 0.12604 367 
 
 12 
 
 49 
 
 926 9.77761 
 
 17 
 17 
 17 
 17 
 
 056 9-90339 
 
 9 
 
 855 9-87422 
 
 26 
 27 
 
 0.12578 359 
 
 11 
 
 50 
 
 59949 9-77778 
 
 80038 9.90330 
 
 74900 9.87448 
 
 0.12552 1.3351 
 
 10 
 
 51 
 
 972 9.77795 
 
 021 9.90320 
 
 9 
 
 946 9.87475 
 
 0.12525 343 
 
 9 
 
 .S2 
 
 995 9-77812 
 
 003 9.9031 1 
 
 991 9.87501 
 
 06 
 
 0.12499 335 
 
 8 
 
 S3 
 
 60019 9.77829 
 
 
 79986 9.90301 
 
 
 75037 9-87527 
 
 27 
 26 
 
 ■2(^ 
 
 0.12473 327 
 
 7 
 
 54 
 
 042 9.77846 
 
 16 
 
 968 9.90292 
 
 10 
 
 082 9-87554 
 
 0.12446 319 
 
 b 
 
 55 
 
 60065 9.77862 
 
 79951 9.90282 
 
 75128 9.87580 
 
 0.12420 1. 33 II 
 
 5 
 
 St 
 
 089 9.77879 
 
 17 
 
 934 9-90273 
 
 9 
 
 173 9.87606 
 
 % 
 
 0.12394 303 
 
 4 
 
 57 
 
 112 9.77896 
 
 17 
 
 916 9.90263 
 
 
 219 9-87633 
 
 0.12367 295 
 
 3 
 
 5« 
 
 135 9.77913 
 
 17 
 
 899 9-90254 
 
 9 
 
 264 9-87659 
 
 26 
 
 0.12341 287 
 
 2 
 
 ;'J?. 
 
 158 9.77930 
 
 881 9.90244 
 
 
 310 9.87685 
 
 26 
 
 0.12315 278 
 
 I 
 
 60 
 
 182 9.77946 
 
 
 864 9.90235 
 
 9 
 
 355 9-8771 1 
 
 
 0.12289 270 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 C.d. 
 
 Log.TanNat. 
 
 lI 
 
 63^ 
 
Nat. Sin Log. d. 
 
 37 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. c.d 
 
 Log. Cot Nat, 
 
 35 
 
 36 
 37 
 38 
 
 40 
 
 41 
 42 
 
 43 
 
 44 
 
 60182 
 205 
 228 
 
 251 
 274 
 
 9.77946 
 
 977963 
 9.77980 
 9.77997 
 9.78013 
 
 60298 
 321 
 344 
 367 
 390 
 
 9.78030 
 9.78047 
 9.78063 
 9.78080 
 978097 
 
 60414 
 
 437 
 460 
 
 483 
 506 
 
 9.781 13 
 9.78130 
 9.78147 
 9.78163 
 9.78180 
 
 60529 
 553 
 576 
 599 
 622 
 
 9.78197 
 9.78213 
 9.78230 
 9.78246 
 9.78263 
 
 60645 
 668 
 691 
 714 
 738 
 
 9.78280 
 9.78296 
 
 9.78313 
 9.78329 
 9.78346 
 
 60761 
 784 
 807 
 830 
 853 
 
 9.78362 
 978379 
 978395 
 9.78412 
 9.78428 
 
 60876 
 899 
 922 
 
 945 
 968 
 
 9-78445 
 9.78461 
 9.78478 
 9.78494 
 9.78510 
 
 60991 
 
 61015 
 
 038 
 
 061 
 
 084 
 
 9.78527 
 
 9-78543 
 9.78560 
 9.78576 
 9.78592 
 
 61107 
 130 
 
 176 
 199 
 
 9.78609 
 9.78625 
 9.78642 
 9.78658 
 9-78674 
 
 61222 
 
 245 
 268 
 291 
 314 
 
 9.78691 
 9.78707 
 9.78723 
 
 9-78739 
 9.78756 
 
 61337 
 360 
 
 383 
 406 
 429 
 
 9.78772 
 9.78788 
 9.78805 
 9.78821 
 9.78837 
 
 6145 1 
 474 
 497 
 520 
 
 543 
 566 
 
 9-78853 
 9.78869 
 9.78886 
 9.78902 
 9.78918 
 9.78934 
 
 79864 
 846 
 829 
 811 
 793 
 
 9.9023.5 
 9.90225 
 9.90216 
 9.90206 
 9.90197 
 
 79776 
 758 
 741 
 
 723 
 706 
 
 9.90187 
 9.90178 
 9.90168 
 9.90159 
 9.90149 
 
 79688 
 671 
 653 
 635 
 618 
 
 9.90139 
 9.90130 
 9.90120 
 9.90111 
 9.90101 
 
 79600 
 
 583 
 565 
 547 
 530 
 
 9.90091 
 9.90082 
 9.90072 
 9.90063 
 9.90053 
 
 79512 
 494 
 477 
 459 
 441 
 
 9-90043 
 9.90034 
 9.90024 
 9.90014 
 9.90005 
 
 79424 
 406 
 
 371 
 
 353 
 
 9-8999$ 
 9.89985 
 9.89976 
 9.89966 
 9.89956 
 
 79335 
 318 
 300 
 282 
 264 
 
 9.89947 
 
 9-89937 
 9.89927 
 9.89918 
 9.89908 
 
 79247 
 229 
 211 
 
 193 
 176 
 
 9.89898 
 9.89888 
 
 9.89879 
 9.89869 
 
 9.89859 
 
 79158 
 140 
 122 
 
 105 
 
 087 
 
 9.89849 
 9.89840 
 9.89830 
 9.89820 
 9.89810 
 
 79069 
 051 
 033 
 016 
 
 78998 
 
 9.89801 
 9.89791 
 9.89781 
 9.89771 
 9.89761 
 
 78980 
 962 
 
 944 
 926 
 908 
 
 9.89752 
 9.89742 
 9.89732 
 9.89722 
 9.89712 
 
 78891 
 873 
 855 
 837 
 819 
 801 
 
 9.89702 
 9.89693 
 9.89683 
 
 9.89673 
 9.89663 
 
 9.89653 
 
 75355 
 401 
 
 447 
 492 
 538 
 
 9.8771 1 
 9.87738 
 
 9.87764 
 9.87790 
 9.87817 
 
 75584 
 629 
 
 675 
 721 
 767 
 
 9.87843 
 9.87869 
 9.87895 
 9.87922 
 9.87948 
 
 75812 
 858 
 904 
 
 950 
 996 
 
 9.87974 
 9.88000 
 9.88027 
 9.88053 
 9.88079 
 
 76042 
 088 
 
 134 
 180 
 226 
 
 9.88105 
 9.88131 
 9.88158 
 9.88184 
 9.88210 
 
 76272 
 318 
 364 
 410 
 456 
 
 9.88236 
 9.88262 
 9.88289 
 
 9.88315 
 9.88341 
 
 76502 
 548 
 594 
 640' 
 686 
 
 9.88367 
 988393 
 9.88420 
 9.88446 
 9.88472 
 
 76733 
 779 
 825 
 871 
 918 
 
 9.88498 
 9.88524 
 9.88550 
 9.88577 
 9.88603 
 
 76964 
 77010 
 
 057 
 103 
 149 
 
 9.88629 
 9.88655 
 9.88681 
 9.88707 
 9.88733 
 
 77196 
 242 
 289 
 
 335 
 382 
 
 9.88759 
 9.88786 
 9.88812 
 9.88838 
 9.88864 
 
 77428 
 475 
 521 
 568 
 615 
 
 9.88890 
 9.88916 
 9.88942 
 9.88968 
 9.88994 
 
 77661 
 708 
 
 754 
 801 
 
 9.89020 
 9.89046 
 9.89073 
 9.89099 
 9.89125 
 
 77895 
 941 
 988 
 
 78035 
 082 
 129 
 
 9.89151 
 9.89177 
 9.89203 
 9.89229 
 
 989255 
 9.89281 
 
 Nat. Sin Log. d. Nat. Cot Log. c.d, Log.TanNat 
 
 0.12289 
 0.12262 
 0.12236 
 0.12210 
 0.12183 
 
 1.3270 
 262 
 
 254 
 246 
 238 
 
 0.12157 
 0.12131 
 0.12105 
 0.12078 
 0.12052 
 
 1.3230 
 222 
 
 214 
 206 
 198 
 
 0.12026 
 0.12000 
 0.11973 
 0.11947 
 0.11921 
 
 1.3190 
 182 
 
 175 
 167 
 
 159 
 
 0.11895 
 0.11869 
 0.11842 
 0.11816 
 0.11790 
 
 1-3151 
 143 
 135 
 127 
 119 
 
 0.11764 
 0.11738 
 0.11711 
 0.11685 
 0.11659 
 
 1.3111 
 103 
 
 095 
 087 
 079 
 
 0.11633 
 0.11607 
 0.11580 
 
 0.11554 
 0.11528 
 
 1.3072 
 064 
 056 
 048 
 040 
 
 0.11502 
 0.11476 
 0.11450 
 0.11423 
 0.11397 
 
 1.3032 
 024 
 017 
 009 
 001 
 
 0.11371 
 
 0.11345 
 0.11319 
 0.11293 
 0.11267 
 
 1.2993 
 985 
 977 
 970 
 962 
 
 0.11241 
 0.11214 
 0.11188 
 0.11162 
 0.1 1 136 
 
 1.2954 
 946 
 938 
 931 
 923 
 
 O.IIIIO 
 
 0.11084 
 0.11058 
 0.11032 
 0.11006 
 
 1.2915 
 907 
 900 
 892 
 
 0.10980 
 0.10954 
 0.10927 
 0.10901 
 0.10875 
 
 1.2876 
 869 
 861 
 
 853 
 846 
 
 0.10849 
 0.10823 
 0.10797 
 0.10771 
 0.1074^ 
 0.10719 
 
 I.2fc 
 
 830 
 822 
 
 815 
 807 
 
 799 
 
 Nat. Cos Log. d 
 
 62^ 
 

 
 
 
 38 
 
 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 61566 9.78934 
 
 16 
 
 78801 9.89653 
 
 
 78129 9.89281 
 
 05 
 
 0.10719 1.2799 
 
 60 
 
 I 
 
 589 9.78950 
 
 17 
 16 
 
 783 9-89643 
 
 TO 
 
 175 9.89307 
 
 06 
 
 0.10693 792 
 
 59 
 
 2 
 
 612 9.78967 
 
 765 9-89633 
 
 
 222 9-89333 
 
 06 
 
 0.10667 784 
 
 58 
 
 3 
 
 635 9-78983 
 
 16 
 
 747 9-89624 
 
 9 
 
 269 9.89359 
 
 06 
 
 0.10641 776 
 
 ^7 
 
 4 
 
 658 9.78999 
 
 16 
 t6 
 
 729 9.89614 
 
 10 
 
 316 9-89385 
 
 26 
 
 26 
 
 0.10615 769 
 
 56 
 
 5 
 
 6I68I 9.79015 
 
 787 1 1 9.89604 
 
 78363 9.894II 
 
 0.10589 1.2761 
 
 55 
 
 b 
 
 704 979031 
 
 16 
 
 694 9.89594 
 
 
 410 9-89437 
 
 og 
 
 0.10563 753 
 
 54 
 
 7 
 
 726 9-79047 
 
 16 
 
 676 9.89584 
 
 
 457 9-89463 
 
 26 
 
 0.10537 746 
 
 53 
 
 8 
 
 749 9.79063 
 
 16 
 
 658 9-89574 
 
 
 504 9.89489 
 
 06 
 
 0.10511 738 
 
 52 
 
 9 
 10 
 
 772 9.79079 
 
 16 
 16 
 
 640 9-89564 
 
 10 
 
 551 9.89515 
 
 26 
 
 "6 
 
 0.10485 731 
 
 51 
 50 
 
 61795 9-79095 
 
 78622 9.89554 
 
 78598 9.89541 
 
 0.10459 1.2723 
 
 II 
 
 818 9.791 1 1 
 
 17 
 16 
 
 604 9-89544 
 
 
 645 9.89567 
 
 og 
 
 0.10433 715 
 
 49 
 
 12 
 
 841 9.79128 
 
 586 9.89534 
 
 
 692 9.89593 
 
 06 
 
 0.10407 708 
 
 48 
 
 13 
 
 864 9.79144 
 
 16 
 
 568 9.89524 
 
 
 739 9.89619 
 
 og 
 
 0.10381 700 
 
 47 
 
 14 
 
 887 9.79160 
 
 16 
 t6 
 
 550 9.89514 
 
 10 
 
 9 
 
 786 9.89645 
 
 26 
 
 0.10355 693 
 
 46 
 
 15 
 
 61909 9.79176 
 
 78532 9.89504 
 
 78834 9.89671 
 
 0.10329 1.2685 
 
 45 
 
 lb 
 
 932 9.79192 
 
 16 
 
 514 9.89495 
 
 881 9.89697 
 
 Ofi 
 
 0.10303 677 
 
 44 
 
 17 
 
 955 9-79208 
 
 16 
 
 496 9.89485 
 
 
 928 9.89723 
 
 og 
 
 0.10277 670 
 
 43 
 
 l8 
 
 978 9.79224 
 
 16 
 
 478 9.89475 
 
 
 975 9.89749 
 
 og 
 
 0.10251 662 
 
 42 
 
 19 
 
 62001 9.79240 
 
 16 
 16 
 
 460 9.89465 
 
 10 
 
 79022 9.89775 
 
 26 
 
 '^6 
 
 0.10225 655 
 
 41 
 40 
 
 20 
 
 62024 9.79256 
 
 78442 9.89455 
 
 79070 9.89801 
 
 0.10199 1.26^ 
 0.10173 - "^ 
 
 21 
 
 046 9.79272 
 
 16 
 
 424 9.89445 
 
 TO 
 
 117 9.89827 
 
 og 
 
 39 
 
 22 
 
 069 9.79288 
 
 16 
 
 405 9.89435 
 
 TO 
 
 164 9.89853 
 
 '-'6 
 
 0.10147 632 
 
 38 
 
 23 
 
 092 9.79304 
 
 15 
 16 
 16 
 
 387 9.89425 
 
 TO 
 
 212 9.89879 
 
 og 
 
 0.I0I2I 624 
 
 37 
 
 24 
 
 115 9.79319 
 
 369 9.89415 
 
 10 
 
 259 9.89905 
 
 26 
 
 26 
 
 0.10095 617 
 
 36 
 
 25 
 
 62138 9.79335 
 
 78351 9.89405 
 
 79306 9.89931 
 
 0.10069 1.2609 
 
 35 
 
 2b 
 
 160 9.79351 
 
 16 
 
 333 9.89395 
 
 
 354 9.89957 
 401 9.89983 
 
 26 
 
 0.10043 602 
 
 34 
 
 27 
 
 183 9-79367 
 
 16 
 
 315 9.89385 
 
 
 -^6 
 
 O.IOOI7 594 
 
 33 
 
 28 
 
 206 9.79383 
 
 16 
 
 297 9.89375 
 
 J J 
 
 449 9-90009 
 
 ^f) 
 
 0.09991 587 
 
 32 
 
 29 
 
 229 9.79399 
 
 16 
 t6 
 
 279 9.89364 
 
 10 
 
 496 9-90035 
 
 26 
 
 0^ 
 
 0.09965 579 
 
 31 
 
 30 
 
 62251 9.79415 
 
 78261 9.89354 
 
 79544 9.90061 
 
 0.09939 1.2572 
 
 30 
 
 31 
 
 274 9.79431 
 
 16 
 
 243 9.89344 
 
 
 591 9.90086 
 
 0.09914 564 
 
 29 
 
 32 
 
 297 9.79447 
 
 16 
 
 225 9.89334 
 
 
 639 9-90112 
 
 og 
 
 0.09888 557 
 
 28 
 
 33 
 
 320 9.79463 
 
 15 
 16 
 16 
 
 206 9.89324 
 
 
 686 9.90138 
 
 -""^ 
 
 0.09862 549 
 
 27 
 
 34 
 35^ 
 
 342 9.79478 
 
 188 9.89314 
 
 10 
 
 734 9.90164 
 
 26 
 
 -^6 
 
 0.09836 542 
 
 2b 
 
 25 
 
 62365 9.79494 
 
 78170 9-89304 
 
 79781 9.90190 
 
 0.09810 1.2534 
 
 3b 
 
 388 9.79510 
 
 16 
 
 152 9.89294 
 
 TO 
 
 829 9.90216 
 
 ^f) 
 
 0.09784 527 
 
 24 
 
 37 
 
 411 9.79526 
 
 16 
 
 134 9.89284 
 
 TO 
 
 877 9.90242 
 
 ^(^ 
 
 0.09758 519 
 
 23 
 
 3H 
 
 433 9.79542 
 
 16 
 
 116 9.89274 
 
 TO 
 
 924 9.90268 
 
 og 
 
 0.09732 512 
 
 22 
 
 39 
 
 456 9.79558 
 
 15 
 t6 
 
 098 9.89264 
 
 10 
 
 972 9-90294 
 
 26 
 
 og 
 
 0.09706 504 
 
 21 
 
 40 
 
 62479 9.79573 
 
 78079 9.89254 
 
 80020 9.90320 
 
 0.09680 1.2497 
 
 20 
 
 41 
 
 502 9.79589 
 
 t6 
 
 061 9.89244 
 
 
 067 9.90346 
 
 % 
 
 0.09654 489 
 
 19 
 
 42 
 
 524 9.79605 
 
 16 
 
 043 989233 
 
 
 115 9-90371 
 
 0.09629 482 
 
 18 
 
 43 
 
 547 9.79621 
 
 15 
 16 
 16 
 
 025 9.89223 
 
 
 163 9.90397 
 
 "6 
 
 0.09603 475 
 
 17 
 
 44 
 
 570 9.79636 
 
 007 9.89213 
 
 10 
 
 211 9.90423 
 
 26 
 "6 
 
 0.09577 467 
 
 lb 
 
 45 
 
 62592 9.79652 
 
 77988 9.89203 
 
 80258 9-90449 
 
 0.09551 1.2460 
 
 15 
 
 4b 
 
 615 9.79668 
 
 16 
 
 970 9.89193 
 
 10 
 
 306 9-90475 
 
 '^(^ 
 
 0.09525 452 
 
 14 
 
 47 
 
 638 9.79684 
 
 
 952 9.89183 
 
 
 354 9-90501 
 
 '>6 
 
 0.09499 445 
 
 13 
 
 48 
 
 660 9.79699 
 
 934 9.89173 
 
 
 402 9-90527 
 
 '>6 
 
 0.09473 437 
 
 12 
 
 49 
 
 683 9.79715 
 
 16 
 
 916 9.89162 
 
 10 
 
 450 9-90553 
 
 25 
 
 0.09447 430 
 
 II 
 
 50 
 
 62706 9.79731 
 
 77897 9.89152 
 
 80498 9.90578 
 
 0.09422 1.2423 
 
 10 
 
 51 
 
 728 9.79746 
 
 879 9.89142 
 
 
 546 9.90604 
 
 og 
 
 0.09396 415 
 
 9 
 
 52 
 
 751 9.79762 
 
 16 
 
 861 9.89132 
 
 
 594 9.90630 
 
 og 
 
 0.09370 408 
 
 8 
 
 53 
 
 774 9-79778 
 
 15 
 16 
 16 
 IS 
 
 16 
 
 16 
 
 843 9.89122 
 
 
 642 9.90656 
 
 og 
 
 0.09344 401 
 
 7 
 
 54 
 
 796 9-79793 
 
 824 9.891 12 
 
 II 
 
 690 9.90682 
 
 26 
 
 26 
 
 0.09318 393 
 
 6 
 
 ~5" 
 
 55 
 
 62819 9.79809 
 
 77806 9.89101 
 
 80738 9.90708 
 
 0.09292 1.2386 
 
 56 
 
 842 9.79825 
 
 788 9.89091 
 
 
 786 9.90734 
 
 25 
 
 26 
 
 0.09266 378 
 
 4 
 
 57 
 
 864 9.79840 
 
 769 9.89081 
 
 TO 
 
 834 9.90759 
 882 9.90785 
 
 0.09241 371 
 
 3 
 
 5B 
 
 887 9-79856 
 
 751 9.89071 
 
 
 26 
 
 0.0921S 364 
 
 2 
 
 ro 
 
 909 9.79872 
 
 15 
 
 733 9-89060 
 
 TO 
 
 930 9.9081 I 
 
 og 
 
 0.09189 356 
 
 I 
 
 932 9-79887 
 
 715 9-89050 
 
 
 978 9.90837 
 
 
 0.09163 349 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 c.d. 
 
 Log.TanNat. 
 
 / 
 
 61" 
 
 i 
 
39^ 
 
 ■^ 
 
 Nat. Sin Log. d. 1 
 
 Nat. Cos Log. d.| 
 
 Nat.TanLog. 
 
 =.d. Log.CotNat.| 
 
 
 
 
 62932 9-79887 
 
 16 
 
 77715 9-89050 
 
 
 80978 9-90837 
 
 05 
 
 0.09163 1.2349 
 
 60 
 
 I 
 
 955 9-79903 
 
 15 
 
 696 9.89040 
 
 
 81027 9-90863 
 
 ^f) 
 
 0-09137 342 
 
 59 
 
 2 
 
 977 9-79918 
 
 678 9.89030 
 
 
 075 9.90889 
 
 S 
 
 0.091 1 1 334 
 
 58 
 
 3 
 
 63000 9.79934 
 
 16 
 
 660 9.89020 
 
 
 123 9.90914 
 
 0.09086 327 
 
 .57 
 
 4 
 
 022 9.79950 
 
 15 
 
 16 
 
 641 9.89009 
 
 
 171 9-90940 
 
 26 
 
 0.09060 320 
 
 56 
 
 5 
 
 63045 9.79965 
 
 77623 9.88999 
 
 81220 9.90966 
 
 0.09034 1.2312 
 
 55 
 
 6 
 
 068 9.79981 
 
 15 
 
 
 
 268 9-90992 
 
 05 
 
 0.09008 305 
 
 54 
 
 7 
 
 090 979996 
 
 586 9.88978 
 
 
 316 9.9IOI8 
 
 25 
 06 
 
 0.08982 298 
 
 53 
 
 8 
 
 113 9.80012 
 
 15 
 16 
 15 
 
 568 9-88968 
 
 
 364 9.91043 
 
 0.08957 290 
 
 52 
 
 9 
 10 
 
 135 9.80027 
 
 550 9.88958 
 
 
 413 9.91069 
 
 26 
 
 26 
 
 0.08931 283 
 
 51 
 50 
 
 63158 9.80043 
 
 77531 9.88948 
 
 8 146 I 9.91095 
 
 0.08905 1.2276 
 
 II 
 
 180 9.80058 
 
 513 9-88937 
 
 
 510 9.91 121 
 
 26 
 
 0.08879 268 
 
 49 
 
 12 
 
 203 9.80074 
 
 15 
 
 494 9.88927 
 
 
 558 9.91 147 
 
 25 
 
 26 
 
 0.08853 261 
 
 48 
 
 i.S 
 
 225 9.80089 
 
 476 9.88917 
 
 
 606 9.91 172 
 
 0.08828 254 
 
 47 
 
 14 
 
 248 9,80105 
 
 15 
 16 
 
 458 9.88906 
 
 
 655 9.9II98 
 
 26 
 
 0.08802 247 
 
 46 
 45 
 
 15 
 
 63271 9.80120 
 
 77439 9.88896 
 
 81703 9.91224 
 
 0.08776 1.2239 
 
 i6 
 
 293 9.80136 
 
 15 
 15 
 16 
 
 421 9.88886 
 
 
 752 9.91250 
 
 nfS 
 
 0.08750 232 
 
 44 
 
 I? 
 
 316 9.80151 
 
 402 9.88875 
 
 
 800 9.91276 
 
 % 
 
 0.08724 225 
 
 43 
 
 i8 
 
 338 9.80166 
 
 384 9-88861 
 
 
 849 9.9I30I 
 
 0.08699 218 
 
 42 
 
 19 
 
 361 9.80182 
 
 15 
 
 366 9-88855 
 
 
 898 9-91327 
 
 26 
 
 0.08673 210 
 
 41 
 
 20 
 
 63383 9.80197 
 
 77347 9-88844 
 
 81946 9-91353 
 
 0.08647 1.2203 
 
 40 
 
 21 
 
 406 9.80213 
 
 15 
 
 329 9.88834 
 
 
 995 9-91379 
 
 % 
 
 0.08621 196 
 
 39 
 
 22 
 
 428 9.80228 
 
 310 9.88824 
 
 
 82044 9-91404 
 
 0.08596 189 
 
 38 
 
 23 
 
 451 9.80244 
 
 
 292 9.88813 
 
 
 092 9.91430 
 
 ^6 
 
 0.08570 181 
 
 37 
 
 24 
 
 473 9-80259 
 
 15 
 15 
 
 273 9.88803 
 
 
 141 9.91456 
 
 26 
 
 0.08544 174 
 
 36 
 
 25 
 
 63496 9.80274 
 
 77255 9.88793 
 
 82190 9.91482 
 
 0.08518 1.2167 
 
 35 
 
 26 
 
 518 9.80290 
 
 15 
 
 236 9.88782 
 
 
 238 9-91507 
 
 0.08493 160 
 
 34 
 
 27 
 
 540 9.80305 
 
 218 9.88772 
 
 
 287 9-91533 
 
 ■^f) 
 
 0.08467 153 
 
 33 
 
 28 
 
 563 9.80320 
 
 
 199 9.88761 
 
 
 336 9-91559 
 
 '^f) 
 
 0.08441 145 
 
 32 
 
 29 
 30 
 
 585 9-80336 
 
 15 
 
 IS 
 
 181 9.88751 
 
 
 385 9-91585 
 
 25 
 
 0.08415 138 
 
 31 
 
 63608 9.80351 
 
 77162 9.88741 
 
 82434 9.91610 
 
 0.08390 1.2131 
 
 30 
 
 31 
 
 630 9.80366 
 
 144 9.88730 
 
 
 483 9.91636 
 
 ->f> 
 
 0.08364 124 
 
 29 
 
 32 
 
 653 9-80382 
 
 15 
 15 
 16 
 
 15 
 15 
 
 125 9.88720 
 
 
 531 9.91662 
 
 ^f) 
 
 0.08338 117 
 
 28 
 
 33 
 
 675 9-80397 
 
 107 9.88709 
 
 
 580 9.91688 
 
 25 
 26 
 
 '>6 
 
 0.08312 109 
 
 27 
 
 34 
 
 698 9.80412 
 
 088 9.88699 
 
 
 629 9.91713 
 
 0.08287 102 
 
 2b 
 25 
 
 35 
 
 63720 9.80428 
 
 77070 9.88688 
 
 82678 9.91739 
 
 0.08261 1.2095 
 
 36 
 
 742 9.80443 
 
 051 9.88678 
 
 
 727 9.91765 
 
 06 
 
 0.08235 088 
 
 24 
 
 37 
 
 765 9.80458 
 
 033 9.88668 
 
 
 776 9.91791 
 
 S 
 
 0.08209 081 
 
 23 
 
 38 
 
 787 9-80473 
 
 
 014 9.88657 
 
 10 
 
 825 9.91816 
 
 0.08184 074 
 
 22 
 
 39 
 
 810 9.80489 
 
 15 
 15 
 15 
 
 76996 9.88647 
 
 
 874 9.91842 
 
 26 
 
 25 
 -^6 
 
 0.08158 066 
 
 21 
 
 40 
 
 63832 9.80504 
 
 76977 9.88636 
 
 82923 9.91868 
 
 0.08132 1.2059 
 
 20 
 
 41 
 
 854 9.80519 
 
 959 9.88626 
 
 
 972 9.91893 
 
 0.08107 052 
 
 19 
 
 42 
 
 877 9-80534 
 
 940 9.88615 
 
 
 83022 9.91919 
 
 06 
 
 0.08081 "045 
 
 18 
 
 43 
 
 899 9-80550 
 
 15 
 15 
 15 
 15 
 15 
 16 
 
 15 
 15 
 
 921 9.88605 
 
 
 071 9.91945 
 
 "6 
 
 0.08055 038 
 
 17 
 
 44 
 
 922 9.80565 
 
 903 9.88594 
 
 
 120 9.91971 
 
 25 
 '^6 
 
 0.08029 031 
 
 16 
 
 45 
 
 63944 9.80580 
 
 76884 '9.88584 
 
 83169 9.91996 
 
 0.08004 1.2024 
 
 15 
 
 46 
 
 966 9.80595 
 
 866 9.88573 
 
 
 218 9.92022 
 
 -^6 
 
 0.07978 017 
 
 14 
 
 47 
 
 989 9.80610 
 
 847 9.88563 
 
 
 268 9.92048 
 
 25 
 
 0.07952 009 
 
 13 
 
 48 
 
 64011 9.80625 
 
 828 9.88552 
 
 
 317 9.92073 
 
 0.07927 002 
 
 12 
 
 49 
 
 033 9.80641 
 
 810 9.88542 
 
 
 366 9.92099 
 
 26 
 
 0.07901 1.1995 
 
 II 
 
 50 
 
 64056 9.80656 
 
 76791 9.88531 
 
 83415 9.92125 
 
 0.07875 1. 1988 
 
 10 
 
 SI 
 
 078 9.80671 
 
 772 9.88521 
 
 
 465 9.92150 
 
 0.07850 981 
 
 9 
 
 q2 
 
 100 9.80686 
 
 15 
 
 754 9.88510 
 
 
 514 9.92176 
 
 26 
 
 0.07824 974 
 
 8 
 
 S3 
 
 123 9.80701 
 
 15 
 
 735 9-88499 
 
 
 564 9.92202 
 
 25 
 26 
 '>6 
 
 0.07798 967 
 
 7 
 
 54 
 55 
 
 145 9.80716 
 
 15 
 15 
 
 717 9.88489 
 
 
 613 9.92227 
 
 0.07773 960 
 
 6 
 
 64167 9.80731 
 
 76698 9.88478 
 
 83662 9.92253 
 
 0.07747 I-1953 
 
 S6 
 
 190 9.80746 
 
 16 
 
 679 9.88468 
 
 
 712 9.92279 
 
 "6 
 
 0.07721 946 
 
 4 
 
 S7 
 
 212 9.80762 
 
 661 9-88457 
 
 
 761 9.92304 
 
 0.07696 939 
 
 3 
 
 S8 
 
 234 9.80777 
 
 15 
 
 642 9.88447 
 
 
 811 9.92330 
 
 06 
 
 0.07670 932 
 
 2 
 
 IS 
 
 256 9.80792 
 
 15 
 
 623 9.88436 
 
 
 860 9.92356 
 
 25 
 
 0.07644 925 
 
 I 
 
 279 9.80807 
 
 ^5 
 
 604 9-88425 
 
 
 910 9.92381 
 
 0.07619 918 
 
 
 
 _ 
 
 |Nat. Cos Log. d. 
 
 |Nat. Sin Log. d. 
 
 Nat. Cot Log 
 
 cd 
 
 .Log.TanNat 
 
 / 
 
 60^ 
 
Nat. Sin Log. d. 
 
 40° 
 
 Nat. Cos Log. d. Nat. Tan Log 
 
 c.d. 
 
 Log. Cot Nat. 
 
 64279 
 301 
 323 
 346 
 368 
 
 9.80807 
 9.80822 
 9-80837 
 9.80852 
 9.80867 
 
 64390 
 412 
 
 435 
 457 
 479 
 
 9.80882 
 9.80897 
 9.80912 
 9.80927 
 9.80942 
 
 64501 
 
 524 
 546 
 568 
 590 
 
 9.80957 
 9.80972 
 9.80987 
 9.81002 
 9.81017 
 
 64612 
 635 
 657 
 679 
 701 
 
 9.81032 
 9.81047 
 9.81061 
 9.81076 
 9.81091 
 
 64723 
 746 
 768 
 790 
 812 
 
 9.81 106 
 9.81121 
 9.81136 
 9.81151 
 9.81166 
 
 64834 
 856 
 878 
 901 
 923 
 
 9.81180 
 9.81 195 
 9.81210 
 9.81225 
 9.81240 
 
 64945 
 967 
 989 
 
 6501 1 
 033 
 
 9.81254 
 9.81269 
 9.81284 
 9.81299 
 9-81314 
 
 65055 
 077 
 100 
 122 
 144 
 
 9.81328 
 9-81343 
 9-81358 
 9.81372 
 9.81387 
 
 65166 
 188 
 210 
 232 
 254 
 
 9.81402 
 9.81417 
 9.81431 
 9.81446 
 9.81461 
 
 65276 
 298 
 320 
 342 
 364 
 
 9.81475 
 9.81490 
 9.81505 
 9.81519 
 9.81534 
 
 65386 
 408 
 430 
 452 
 474 
 
 9.81549 
 9.81563 
 9.81578 
 9.81592 
 9.81607 
 
 65496 
 518 
 540 
 562 
 
 584 
 606 
 
 9.81622 
 9.81636 
 9.81651 
 9.81665 
 9.81680 
 9.81694 
 
 76604 
 586 
 567 
 548 
 530 
 
 9.88425 
 
 9-88415 
 9.88404 
 9.88394 
 9.88383 
 
 765 1 1 
 492 
 473 
 455 
 436 
 
 9.88372 
 9.88362 
 
 9.88351 
 9.88340 
 9.88330 
 
 76417 
 398 
 380 
 361 
 342 
 
 9.88319 
 9.88308 
 9.88298 
 9.88287 
 9.88276 
 
 76323 
 304 
 286 
 267 
 248 
 
 9.88266 
 9.88255 
 9.88244 
 9-88234 
 9.88223 
 
 76229 
 210 
 192 
 173 
 154 
 
 9.88212 
 9.88201 
 9.88191 
 9.88180 
 9.88169 
 
 76135 
 116 
 097 
 078 
 059 
 
 9.88158 
 9.88148 
 
 9-88137 
 9.88126 
 9.88115 
 
 76041 
 022 
 003 
 
 75984 
 965 
 
 9.88105 
 9.88094 
 9.88083 
 9.88072 
 9.88061 
 
 75946 
 927 
 908 
 889 
 870 
 
 9.88051 
 9.88040 
 9.88029 
 9.88018 
 9.88007 
 
 75851 
 832 
 
 813 
 
 794 
 775 
 
 9.87996 
 9.87985 
 
 987975 
 9.87964 
 
 9.87953 
 
 75756 
 738 
 719 
 700 
 680 
 
 9.87942 
 
 9.87931 
 9.87920 
 9.87909 
 9.87898 
 
 75661 
 642 
 623 
 604 
 585 
 
 9.87887 
 9.87877 
 9.87866 
 
 9.87855 
 9.87844 
 
 75566 
 547 
 528 
 
 509 
 490 
 471 
 
 987833 
 9.87822 
 9.87811 
 9.87800 
 9.87789 
 9.87778 
 
 83910 
 960 
 
 84009 
 059 
 108 
 
 9.92381 
 9.92407 
 
 9-92433 
 9.92458 
 9.92484 
 
 84158 
 208 
 258 
 307 
 357 
 
 9.92510 
 
 9.92535 
 9.92561 
 9.92587 
 9.92612 
 
 84407 
 457 
 507 
 556 
 606 
 
 9.92638 
 9.92663 
 9.92689 
 9.92715 
 9.92740 
 
 84656 
 706 
 756 
 806 
 856 
 
 9.92766 
 9.92792 
 9.92817 
 
 9.92843 
 9.92868 
 
 84906 
 
 956 
 
 85006 
 
 057 
 107 
 
 9.92894 
 9.92920 
 
 9-92945 
 9.92971 
 9.92996 
 
 85157 
 207 
 
 257 
 308 
 358 
 
 9.93022 
 9.93048 
 
 9.93073 
 9.93099 
 9.93124 
 
 85408 
 458 
 509 
 559 
 609 
 
 9-93150 
 993175 
 9-93201 
 9-93227 
 9-93252 
 
 5660 
 710 
 761 
 811 
 862 
 
 9.93278 
 9.93303 
 9.93329 
 9.93354 
 9.93380 
 
 85912 
 963 
 
 86014 
 064 
 "5 
 
 9.93406 
 9.93431 
 9-93457 
 9.93482 
 993508 
 
 86166 
 216 
 267 
 318 
 368 
 
 9-93533 
 9-93559 
 993584 
 9.93610 
 9.93636 
 
 86419 
 470 
 521 
 572 
 623 
 
 9.93661 
 9.93687 
 9.93712 
 9.93738 
 993763 
 
 86674 
 725 
 776 
 827 
 878 
 929 
 
 9.93789 
 9.93814 
 9.93840 
 993865 
 9.93891 
 9.93916 
 
 26 
 
 0.07619 
 
 0.07593 
 0.07567 
 0.07542 
 0.07516 
 
 1.1915 
 910 
 
 903 
 896 
 
 0.07490 
 0.07465 
 0.07439 
 0.07413 
 0.07388 
 
 1.1882 
 
 875 
 868 
 861 
 854 
 
 0,07362 
 
 0.07337 
 0.07311 
 0.07285 
 0.07260 
 
 1.1847 
 840 
 
 833 
 826 
 819 
 
 0.07234 
 0.07208 
 0.07183 
 0.07157 
 0.07132 
 
 1.1812 
 806 
 799 
 792 
 785 
 
 0.07106 
 0.07080 
 0.07055 
 0.07029 
 0.07004 
 
 1.1778 
 771 
 764 
 757 
 750 
 
 0.06978 
 0.06952 
 0.06927 
 0.06901 
 0.06876 
 
 1.1743 
 736 
 729 
 722 
 715 
 
 0.06850 
 0.06825 
 0.06799 
 0.06773 
 0.06748 
 
 1. 1708 
 702 
 
 695 
 688 
 681 
 
 0.06722 
 0.06697 
 0.06671 
 0.06646 
 0.06620 
 
 1. 1674 
 667 
 660 
 653 
 647 
 
 0.06594 
 0.06569 
 0.06543 
 0.06518 
 0.06492 
 
 1. 1 640 
 
 633 
 626 
 619 
 612 
 
 0.06467 
 0.06441 
 0.06416 
 0.06390 
 0.06364 
 
 1.1606 
 599 
 592 
 585 
 578 
 
 0.06339 
 0.06313 
 0.06288 
 0.06262 
 0.06237 
 
 1.1571 
 
 565 
 558 
 551 
 544 
 
 0.0621 1 
 0.06186 
 0.06160 
 o.o6i3g 
 0.06109 
 0.06084 
 
 1.1538 
 531 
 524 
 517 
 510 
 504 
 
 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. 
 
 49° 
 
 Log.TanNat. 
 
41 
 
 / 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d.| 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 65606 9.81694 
 
 15 
 14 
 15 
 
 75471 9-87778 
 
 TT 
 
 86929 9.93916 
 
 --•6 
 
 0.06084 1-1504 
 
 60 
 
 I 
 
 628 9.81709 
 
 452 9-87767 
 
 
 980 9.93942 
 
 
 0.06058 497 
 
 59 
 
 2 
 
 650 9.81723 
 
 433 9-87756 
 
 TT 
 
 87031 9.93967 
 
 0.06033 490 
 
 58 
 
 3 
 
 672 9.81738 
 
 414 9-87745 
 
 
 082 9.93993 
 
 25 
 26 
 
 0.06007 483 
 
 57 
 
 4 
 
 694 9.81752 
 
 14 
 15 
 14 
 15 
 14 
 15 
 14 
 15 
 14 
 14 
 15 
 14 
 15 
 14 
 15 
 14 
 14 
 
 395 9-87734 
 
 II 
 
 133 9.94018 
 
 0.05982 477 
 
 56 
 55 
 
 5 
 
 65716 9.81767 
 
 75375 9-87723 
 
 87184 9.94044 
 
 0.05956 1. 1470 
 
 6 
 
 738 9.8I78I 
 
 356 9.87712 
 
 
 236 9.94069 
 
 0.05931 463 
 
 54 
 
 7 
 
 759 9-81796 
 
 337 9-87701 
 
 
 287 9.94095 
 
 25 
 '^6 
 
 0.05905 456 
 
 53 
 
 8 
 
 781 9.81810 
 
 318 9.87690 
 
 
 338 9.94120 
 
 0.05880 450 
 
 52 
 
 9 
 
 803 9.81825 
 
 299 9.87679 
 
 II 
 
 389 9.94146 
 
 25 
 
 26 
 
 0.05854 443 
 
 51 
 
 10 
 
 65825 9.81839 
 
 75280 9.87668 
 
 87441 9.94I7I 
 
 0.05829 1.1436 
 
 50 
 
 II 
 
 847 9.81854 
 
 261 9.87657 
 
 
 492 9.94197 
 
 2^ 
 
 0.05803 430 
 
 49 
 
 12 
 
 869 9.81868 
 
 241 9.87646 
 
 
 543 9.94222 
 
 0.05778 423 
 
 48 
 
 13 
 
 891 9.81882 
 
 222 9.87635 
 
 
 595 994248 
 
 25 
 26 
 
 0.05752 416 
 
 47 
 
 14 
 15 
 
 913 9.81897 
 
 203 9.87624 
 
 II 
 
 646 9.94273 
 
 0.05727 410 
 
 46 
 45" 
 
 65935 9-81911 
 
 75184 9.87613 
 
 87698 9.94299 
 
 0.05701 1. 1403 
 
 16 
 
 956 9.81926 
 
 165 9.87601 
 
 
 749 994324 
 
 0.05676 396 
 
 44 
 
 17 
 
 978 9.81940 
 
 146 9.87590 
 
 
 801 9.94350 
 
 % 
 
 0.05650 389 
 
 43 
 
 l8 
 
 66000 9.81955 
 
 
 
 852 9.94375 
 
 0.05625 383 
 
 42 
 
 19 
 
 022 9.81969 
 
 107 9.87568 
 
 II 
 TT 
 
 904 9.94401 
 
 25 
 
 2fS 
 
 0.05599 376 
 
 41 
 
 20 
 
 66044 9-81983 
 
 75088 9-87557 
 
 87955 9.94426 
 
 0.05574 1.1369 
 
 40 
 
 21 
 
 066 9.81998 
 
 14 
 14 
 15 
 14 
 14 
 15 
 14 
 14 
 14 
 15 
 14 
 14 
 15 
 14 
 14 
 14 
 
 069 9-87546 
 
 
 88007 9.94452 
 
 % 
 
 0.05548 363 
 
 39 
 
 22 
 
 088 9.82012 
 
 050 9.87535 
 
 
 059 9-94477 
 
 0.05523 356 
 
 38 
 
 2S 
 
 109 9.82026 
 
 030 9.87524 
 
 
 no 9.94503 
 
 25 
 26 
 
 25 
 
 0.05497 349 
 
 37 
 
 24 
 
 25 
 
 131 9.82041 
 
 on 9.87513 
 
 12 
 
 162 9.94528 
 
 0.05472 343 
 
 36 
 
 66153 9-82055 
 
 74992 9.87501 
 
 88214 9.94554 
 
 0.05446 1.1336 
 
 35 
 
 26 
 
 175 9.82069 
 
 973 9.87490 
 
 
 265 9-94579 
 
 0.05421 329 
 
 34 
 
 27 
 
 197 9.82084 
 
 953 9.87479 
 
 
 317 994604 
 
 0.05396 323 
 
 33 
 
 28 
 
 218 9.82098 
 
 934 9.87468 
 
 
 369 994630 
 
 25 
 26 
 
 0.05370 316 
 
 32 
 
 29 
 
 240 9.821 12 
 
 915 9.87457 
 
 II 
 
 421 9.94655 
 
 0.05345 310 
 
 31 
 30 
 
 30 
 
 66262 9.82126 
 
 74896 9.87446 
 
 88473 9.94681 
 
 0.05319 1.1303 
 
 31 
 
 284 9.82141 
 
 876 9.87434 
 
 
 524 9.94706 
 
 0.05294 296 
 
 29 
 
 32 
 
 306 9.82155 
 
 857 9.87423 
 
 
 576 9.94732 
 
 25 
 26 
 
 0.05268 290 
 
 28 
 
 33 
 
 327 9.82169 
 
 838 9.87412 
 
 
 628 9.94757 
 
 0.05243 283 
 
 27 
 
 34 
 
 349 9.82184 
 
 818 9.87401 
 
 II 
 
 680 9.94783 
 88732 9.94808 
 
 25 
 06 
 
 0.05217 276 
 
 26 
 
 25 
 
 35 
 
 66371 9.82198 
 
 74799 9.87390 
 
 0.05192 1,1270 
 
 36 
 
 393 9-82212 
 
 780 9.87378 
 
 
 784 9.94834 
 
 25 
 
 0.05166 263 
 
 24 
 
 37 
 
 414 9.82226 
 
 760 9.87367 
 
 
 836 9.94859 
 
 O.05141 257 
 
 23 
 
 38 
 
 436 9.82240 
 
 15 
 14 
 14 
 14 
 14 
 15 
 14 
 14 
 
 741 9.87356 
 
 J J 
 
 888 9.94884 
 
 0.051 16 250 
 
 22 
 
 39 
 
 458 9-82255 
 
 722 9.87345 
 
 II 
 
 940 9.94910 
 
 25 
 
 06 
 
 0.05090 243 
 
 21 
 
 40 
 
 66480 9.82269 
 
 74703 9.87334 
 
 88992 9.94935 
 
 0.05065 1. 1 237 
 
 20 
 
 41 
 
 501 9.82283 
 
 683 9.87322 
 
 
 89045 9.94961 
 
 s 
 
 0.05039 230 
 
 19 
 
 42 
 
 523 9.82297 
 
 664 9.87311 
 
 
 097 9.94986 
 
 0.05014 224 
 
 18 
 
 43 
 
 545 9-8231 1 
 
 644 9.87300 
 
 
 149 9.95012 
 
 25 
 25 
 
 '^6 
 
 0.04988 217 
 
 17 
 
 44 
 
 566 9.82326 
 
 625 9.87288 
 
 II 
 
 201 9.95037 
 
 0.0403 211 
 
 16 
 T5 
 
 45 
 
 66588 9.82340 
 
 74606 9.87277 
 
 89253 995062 
 
 0.04938 1.1204 
 
 46 
 
 610 9.82354 
 
 586 9.87266 
 
 
 306 9.95088 
 
 % 
 
 0.04912 197 
 
 H 
 
 47 
 
 632 9.82368 
 
 14 
 
 567 9.87255 
 
 
 358 9.95113 
 
 0.04887 191 
 
 13 
 
 48 
 
 653 9-82382 
 
 548 9.87243 
 
 
 410 9.95139 
 
 25 
 26 
 
 25 
 25 
 
 0.04861 184 
 
 12 
 
 49 
 50 
 
 675 9.82396 
 
 14 
 14 
 15 
 
 528 9.87232 
 
 II 
 
 463 9.95164 
 
 0.04836 178 
 
 II 
 
 To 
 
 66697 9.82410 
 
 74509 9.87221 
 
 89515 9.95190 
 
 0.04810 1.1171 
 
 =;i 
 
 718 9.82424 
 
 489 9.87209 
 
 
 567 9.95215 
 
 0.04785 165 
 
 9 
 
 =;2 
 
 740 9.82439 
 
 470 9.87198 
 
 
 620 9.95240 
 
 0.04760 158 
 
 8 
 
 S3 
 
 762 9-82453 
 
 14 
 14 
 
 451 9.87187 
 
 
 672 9.95266 
 
 25 
 26 
 
 % 
 
 0.04734 152 
 
 y 
 
 54 
 
 783 9.82467 
 
 431 9.87175 
 
 II 
 
 725 9.95291 
 
 0.04709 145 
 
 6 
 
 55 
 
 66805 9.82481 
 
 74412 9.87164 
 
 89777 9.95317 
 
 0.04683 1. 1 139 
 
 S6 
 
 827 9.82495 
 
 14 
 
 392 9.87153 
 
 
 830 9.9.5342 
 
 0.04658 132 
 
 4 
 
 S7 
 
 848 9.82509 
 
 14 
 
 373 9.87141 
 
 
 883 9.95368 
 
 25 
 
 0.04632 126 
 
 3 
 
 S8 
 
 870 9.82523 
 
 14 
 
 353 9.87130 
 
 
 935 9.95393 
 
 0.04607 119 
 
 2 
 
 SQ 
 
 891 9-82537 
 
 14 
 
 334 9.87119 
 
 
 988 9.95418 
 
 0.04582 113 
 
 I 
 
 
 60 
 
 913 9.82551 
 
 14 
 
 314 9.87107 
 
 
 90040 9.95444 
 
 
 0.04556 106 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 C.d 
 
 Log.TanNat. 
 
 t 
 
 m 
 
Nat. Sin Log. d. 
 
 42^ 
 
 Nat. Cos Log. d. 
 
 Nat. Tan Log. 
 
 c.d. Log. Cot Nat, 
 
 66913 
 935 
 956 
 978 
 999 
 
 9.82551 
 9.82565 
 9.82579 
 
 9.82593 
 9.82607 
 
 67021 
 
 043 
 064 
 086 
 107 
 
 9.82621 
 9.82635 
 9.82649 
 9.82663 
 9.82677 
 
 67129 
 
 151 
 172 
 194 
 215 
 
 9.82691 
 9.82705 
 9.82719 
 9.82733 
 9.82747 
 
 67237 
 258 
 280 
 301 
 323 
 
 9.82761 
 9.82775 
 9.82788 
 9.82802 
 9.82816 
 
 67344 
 366 
 
 387 
 409 
 
 430 
 
 9.82830 
 9.82844 
 9.82858 
 9.82872 
 9.82885 
 
 67452 
 473 
 495 
 516 
 538 
 
 9.82899 
 9.82913 
 9.82927 
 9.82941 
 9.82955 
 
 67559 
 580 
 602 
 623 
 645 
 
 9.82968 
 9.82982 
 9.82996 
 9.83010 
 9.83023 
 
 67666 
 688 
 709 
 730 
 
 752 
 
 9.83037 
 9.83051 
 9.8306g 
 9.83078 
 9.83092 
 
 67773 
 
 795 
 816 
 
 837 
 859 
 
 9.83106 
 9.83120 
 
 9.83133 
 9.83147 
 9^83161 
 
 67880 
 901 
 923 
 944 
 965 
 
 9.83174 
 9.83188 
 9.83202 
 9.83215 
 9.83229 
 
 67987 
 
 68008 
 
 029 
 
 051 
 072 
 
 9.83242 
 9.83256 
 9.83270 
 9.83283 
 9.83297 
 
 68093 
 
 115 
 136 
 
 157 
 179 
 200 
 
 9.83310 
 9.83324 
 9.83338 
 9.83351 
 9.83365 
 9.83378 
 
 74314 
 295 
 276 
 256 
 237 
 
 9.87107 
 9.87096 
 9.87085 
 
 9.87073 
 9.87062 
 
 74217 
 
 9.87050 
 
 198 
 
 9.87039 
 
 178 
 
 9.87028 
 
 159 
 
 9,87016 
 
 139 
 
 9.87005 
 
 74120 
 
 9.86993 
 
 100 
 
 9.86982 
 
 080 
 
 9.86970 
 
 061 
 
 9.86959 
 
 041 
 
 9.86947 
 
 74022 
 
 9.86936 
 
 002 
 
 9.86924 
 
 73983 9.86913 
 
 963 9.86902 
 
 944 
 
 9.86890 
 
 73924 
 
 9.86879 
 
 904 
 
 9.86867 
 
 885 9.86855 
 
 865 
 
 9.86844 
 
 846 9.86832 
 
 73826 
 
 9.86821 
 
 806 
 
 9.86809 
 
 787 9.86798 
 
 767 9.86786 
 
 747 
 
 9.8677§ 
 
 73728 
 
 9.86763 
 
 708 
 
 9.86752 
 
 688 
 
 9.86740 
 
 669 9.86728 
 
 649 9.86717 
 
 73629 9.86705 
 
 610 
 
 9.86694 
 
 590 
 
 9.86682 
 
 570 
 
 9.86670 
 
 551 
 
 9.86659 
 
 73531 
 
 9.86647 
 
 511 
 
 9.86635 
 
 491 
 
 9.86624 
 
 472 
 
 9.86612 
 
 452 
 
 9.86600 
 
 73432 
 
 9.86589 
 
 413 
 
 9.86577 
 
 393 
 
 9.86565 
 
 373 
 
 9.86554 
 
 353 
 
 9.86542 
 
 73333 
 
 9.86530 
 
 314 
 
 9.86518 
 
 294 
 
 9.86507 
 
 274 
 
 9.86495 
 
 254 
 
 9.86483 
 
 73234 
 215 
 195 
 175 
 
 155 
 135 
 
 9.86472 
 9.86460 
 9.86448 
 9.86436 
 9.86425 
 9.86413 
 
 90040 
 
 093 
 
 146 
 
 199 
 251 
 
 9-95444 
 9.95469 
 
 9.95495 
 9.95520 
 9.95545 
 
 90304 
 
 9.95571 
 
 357 
 
 
 410 
 
 9.95622 
 
 463 9.95647 
 
 516 9.95672 
 
 90569 9.95698 
 
 621 
 
 9.95723 
 
 674 9.95748 
 
 727 
 
 9-95774 
 
 781 
 
 9.95799 
 
 90834 9.95825 
 
 887 9.95850 
 
 940 
 
 9.95875 
 
 993 
 
 9.95901 
 
 91046 
 
 9.95926 
 
 91099 
 153 
 
 206 
 
 259 
 
 313 
 
 91366 
 
 419 
 
 473 
 526 
 580 
 
 9.95952 
 9.95977 
 9.96002 
 9.96028 
 9.96053 
 9.96078 
 9.96104 
 9.96129 
 
 9-96155 
 9.96180 
 
 91633 
 
 9.96205 
 
 687 
 
 9.96231 
 
 740 
 
 9-96256 
 
 794 
 
 9.96281 
 
 847 9-96307 
 
 91901 
 
 9.96332 
 
 955 
 
 
 92008 
 
 9.96383 
 
 062 
 
 9.96408 
 
 116 
 
 9.96433 
 
 92170 
 
 9.96459 
 
 224 
 
 9.96484 
 
 277 
 
 9.96510 
 
 331 
 
 9.96535 
 
 385 
 
 9.96560 
 
 92439 
 
 996586 
 
 493 
 
 9.9661 1 
 
 547 
 
 996636 
 
 601 
 
 9.96662 
 
 655 9.96687 
 
 92709 
 
 9.96712 
 
 763 9-96738 
 
 817 9.96763 
 
 872 9.96788 
 
 926 9.96814 
 
 92980 
 
 93034 
 088 
 
 143 
 
 197 
 
 252 
 
 9.96839 
 
 9.96864 
 9.96890 
 
 9.96915 
 9.96940 
 
 9.96966 
 
 0.04556 
 0.04531 
 0.04505 
 0.04480 
 
 0.04455 
 
 [.II06 
 100 
 
 093 
 087 
 080 
 
 0.04429 
 0.04404 
 
 0.04378 
 0.04353 
 
 0.04328 
 
 1. 1074 
 
 067 
 061 
 
 054 
 048 
 
 0.04302 
 0.04277 
 0.04252 
 0.04226 
 0.04201 
 
 I.I04I 
 
 035 
 028 
 022 
 016 
 
 0.04175 
 0.04150 
 0.04125 
 0.04099 
 0.04074 
 
 1. 1009 
 
 003 
 
 1.0996 
 
 990 
 983 
 
 0.04048 
 0.04023 
 0.03998 
 0.03972 
 0-03947 
 
 1.0977 
 971 
 964 
 958 
 951 
 
 0.03922 
 0.03896 
 0.03871 
 0.03845 
 0.03820 
 
 1.0945 
 
 939 
 932 
 926 
 919 
 
 0.03795 
 0.03769 
 
 0.03744 
 0.03719 
 0.03693 
 
 1.0913 
 907 
 900 
 
 894 
 
 0.03668 
 0.03643 
 0.03617 
 0.03592 
 0.03567 
 
 3881 
 
 875 
 869 
 862 
 
 0.03541 
 0.03516 
 0.03490 
 0.03465 
 0.03440 
 
 1.0850 
 843 
 837 
 831 
 824 
 
 0.03414 
 0.03389 
 0.03364 
 0.03338 
 0.03313 
 
 1.0818 
 812 
 805 
 799 
 793 
 
 0.03288 
 0.03262 
 0.03237 
 0.03212 
 0.03186 
 
 1.0786 
 780 
 
 774 
 768 
 761 
 
 0.03161 
 0.03136 
 0.031 10 
 0.0308^ 
 0.03060 
 0.03034 
 
 I.07S5 
 749 
 742 
 736 
 730 
 724 
 
 Nat. Cos Log. d. Nat. Sin Log. d. Nat. Cot Log. c.d. Log.TanNat. / 
 
 470 
 

 
 
 43 
 
 D 
 
 
 
 
 f 
 
 Nat. Sin Log. d. 
 
 Nat. Cos Log. d. 
 
 Nat.TanLog. 
 
 c.d. 
 
 Log. Cot Nat. 
 
 
 
 
 68200 9.83378 
 
 14 
 13 
 
 73135 9.86413 
 
 
 93252 9.96966 
 
 25 
 
 0.03034 1.0724 
 
 60 
 
 I 
 
 221 9-83392 
 
 116 9.86401 
 
 
 306 9.96991 
 
 0.03009 717 
 
 S9 
 
 2 
 
 242 9-83405 
 
 096 9.86389 
 
 
 360 9.97016 
 
 0.02984 711 
 
 58 
 
 3 
 
 264 9.83419 
 
 076 9.86377 
 
 
 415 9-97042 
 
 25 
 25 
 
 0.02958 705 
 
 57 
 
 4 
 5 
 
 285 9-83432 
 
 056 9.86366 
 
 12 
 
 469 9.97067 
 
 0.02933 699 
 
 56 
 55 
 
 68306 9-83446 
 
 73036 9.86354 
 
 93524 9-97092 
 
 0.02908 1.0692 
 
 6 
 
 327 9-83459 ! \l 
 
 016 9.86342 
 
 
 578 9.971 18 
 
 25 
 25 
 25 
 26 
 
 0.02882 686 
 
 54 
 
 7 
 
 349 9-83473 , .z 
 
 370 9.83486 : ;3 
 
 72996 9.86330 
 
 
 633 9.97143 
 
 0.02857 680 
 
 53 
 
 8 
 
 976 9.86318 
 
 
 688 9.97168 
 
 0.02832 674 
 
 52 
 
 9 
 
 391 983500 
 
 -t 
 
 957 9-86306 
 
 11 
 
 742 9-97193 
 
 0.02807 668 
 
 51 
 50 
 
 10 
 
 68412 9.83513 
 
 13 
 
 72937 9-86295 
 
 93797 9-97219 
 
 0.02781 1.0661 
 
 II 
 
 434 9-83527 
 
 13 
 14 
 13 
 
 917 9.86283 
 
 
 852 9.97244 
 
 25 
 
 % 
 
 0.02756 655 
 
 49 
 
 12 
 
 455 9-83540 
 
 897 9.86271 
 
 ~. 
 
 906 9.97269 
 
 0.02731 649 
 
 48 
 
 13 
 
 476 9-83554 
 
 877 9.86259 
 
 " 
 
 961 9.97295 
 
 25 
 25 
 
 26 
 
 0.02705 643 
 
 47 
 
 14 
 
 497 9-83567 
 
 857 9.86247 
 
 12 
 
 94016 9.97320 
 
 0.02680 637 
 
 46 
 45 
 
 15 
 
 68518 9.83581 
 
 14 
 
 72837 9.86235 
 
 94071 9.97345 
 
 0.02655 1.0630 
 
 lb 
 
 539 983594 
 
 ^6 
 
 817 9.86223 
 
 
 125 9-97371 
 
 25 
 
 0.02629 624 
 
 44 
 
 17 
 
 561 9.83608 
 
 14 
 
 797 9-8621 1 
 
 'I 
 
 180 9.97396 
 
 0.02604 618 
 
 4S 
 
 i8 
 
 582 9.83621 
 
 ^3 
 13 
 14 
 13 
 13 
 14 
 13 
 14 
 13 
 13 
 
 777 9.86200 
 
 
 235 9.97421 
 
 25 
 
 oA 
 
 0.02579 6X2 
 
 42 
 
 19 
 
 603 983634 
 
 757 9-86188 
 
 12 
 
 TO 
 
 290 9-97447 
 
 25 
 
 0.02553 606 
 
 41 
 
 20 
 
 68624 9.83648 
 
 72737 9.86176 
 
 94345 9-97472 
 
 0.02528 1.0599 
 
 40 
 
 21 
 
 64s 9.83661 
 
 717 9.86164 
 
 12 
 
 400 9.97497 
 
 0.02503 593 
 
 39 
 
 22 
 
 666 9.83674 
 
 697 9.86152 
 
 
 455 9-97523 
 
 25 
 25 
 25 
 26 
 
 0.02477 587 
 
 38 
 
 23 
 
 688 9.83688 
 
 677 9.86140 
 
 /" 
 
 510 9.97548 
 
 0.02452 581 
 
 37 
 
 24 
 
 709 9-83701 
 
 657 9.86128 
 
 12 
 
 565 9-97573 
 
 0.02427 575 
 
 36 
 35 
 
 25 
 
 68730 9-83715 
 
 72637 9.861 16 
 
 94620 9.97598 
 
 0.02402 1.0569 
 
 2b 
 
 751 9-83728 
 
 617 9.86104 
 
 ~ 
 
 676 9.97624 
 
 25 
 
 0.02376 562 
 
 34 
 
 27 
 
 772 9-83741 
 
 597 9-86092 
 
 ~ 
 
 731 9-97649 
 
 0.02351 556 
 
 33 
 
 28 
 
 793 9-83755 
 
 ^4 
 13 
 
 577 9-86080 
 
 
 786 9.97674 
 
 26 
 
 0.02326 550 
 
 32 
 
 29 
 
 814 9.83768 
 
 557 9-86068 
 
 12 
 
 841 9.97700 
 
 25 
 
 25 
 26 
 
 0.02300 544 
 
 31 
 30 
 
 30 
 
 68835 9-83781 
 
 13 
 14 
 13 
 13 
 13 
 14 
 13 
 13 
 13 
 14 
 13 
 13 
 13 
 14 
 13 
 13 
 13 
 13 
 
 72537 9.86056 
 
 94896 9.97725 
 
 0.02275 1.0538 
 
 31 
 
 857 9-83795 
 
 517 9.86044 
 
 
 952 9-97750 
 
 0.02250 532 
 
 29 
 
 32 
 
 878 9.83808 
 
 497 9-86032 
 
 
 95007 9-97776 
 
 25 
 25 
 25 
 26 
 
 0.02224 526 
 
 28 
 
 33 
 
 899 9.83821 
 
 477 9.86020 
 
 
 062 9,97801 
 
 0.02199 519 
 
 27 
 
 34 
 
 920 9.83834 
 
 457 9-86008 
 
 12 
 12 
 
 118 9.97826 
 
 0.02174 513 
 
 26 
 25 
 
 35 
 
 68941 9.83848 
 
 72437 9-85996 
 
 95173 9-97851 
 
 0.02149 1.0507 
 
 3^ 
 
 962 9.83861 
 
 417 9-85984 
 
 
 229 9.97877 
 
 25 
 25 
 26 
 
 0.02123 501 
 
 24 
 
 37 
 
 983 9-83874 
 
 397 9-85972 
 
 " 
 
 284 9-97902 
 
 0.02098 495 
 
 23 
 
 3a 
 
 69004 9.83887 
 
 377 9-85960 
 
 
 340 9.97927 
 
 0.02073 489 
 
 22 
 
 39 
 
 025 9.83901 
 
 357 9-85948 
 
 12 
 
 395 9-97953 
 
 25 
 
 0.02047 483 
 
 21 
 
 40 
 
 69046 9.83914 
 
 72337 9-85936 
 
 95451 9-97978 
 
 0.02022 1.0477 
 
 41 
 
 067 9.83927 
 
 317 985924 
 
 10 
 
 506 9.98003 
 
 0.01997 470 
 
 19 
 
 42 
 
 088 9.83940 
 
 297 985912 
 
 
 562 9.98029 
 
 25 
 25 
 25 
 26 
 
 O.01971 464 
 
 18 
 
 43 
 
 109 9-83954 
 
 277 9-85900 
 
 
 618 9-980M 
 
 0.01946 458 
 
 17 
 
 44 
 
 130 9-83967 
 
 257 9.85888 
 
 12 
 
 673 9.98079 
 
 0.01921 452 
 
 16 
 
 15 
 
 45 
 
 6915 1 9.83980 
 
 72236 9.85876 
 
 95729 9-98104 
 
 0.01896 1.0446 
 
 4b 
 
 172 9.83993 
 
 216 9.85864 
 
 TT 
 
 785 9-98130 
 
 25 
 
 0.01870 440 
 
 14 
 
 47 
 
 193 9.84006 
 
 196 9.85851 
 
 ^3 
 
 841 9.98155 
 
 0.01845 434 
 
 13 
 
 48 
 
 214 9.84020 
 
 ^4 
 13 
 13 
 13 
 13 
 13 
 13 
 14 
 
 176 9-85839 
 
 I^ 
 
 897 9.98180 
 
 0.01820 428 
 
 12 
 
 49 
 
 235 9-84033 
 
 156 9.85827 
 
 12 
 
 952 9.98206 
 
 25 
 25 
 
 0.01794 422 
 
 II 
 To 
 
 50 
 
 69256 9.84046 
 
 72136 9.85815 
 
 96008 9.98231 
 
 0.01769 1.0416 
 
 51 
 
 277 984059 
 
 116 9.85803 
 
 
 064 9.98256 
 120 9.98281 
 
 0.01744 410 
 
 9 
 
 52 
 
 298 9.84072 
 
 095 9-85791 
 
 
 O.01719 404 
 
 8 
 
 53 
 
 319 9-84085 
 
 075 9-85779 
 
 
 176 9.98307 
 
 25 
 25 
 26 
 
 0.01693 398 
 
 7 
 
 54 
 
 340 9.84098 
 
 055 9.85766 
 
 13 
 
 12 
 
 232 9-98332 
 
 0.01668 392 
 
 6 
 "5" 
 
 55 
 
 69361 9.841 12 
 
 72035 9.85754 
 
 96288 9.98357 
 
 0.01643 1.0385 
 
 5b 
 
 382 9.84125 
 
 13 
 
 015 9-85742 
 
 
 344 9.98383 
 
 25 
 25 
 25 
 26 
 
 0.01617 379 
 
 4 
 
 57 
 
 403 9.84138 
 
 13 
 13 
 13 
 13 
 
 71995 9-85730 
 
 12 
 
 400 9.98408 
 
 0.01592 373 
 
 3 
 
 5a 
 
 424 9.84151 
 
 974 9.85718 
 
 
 457 9-98433 
 
 0.01567 367 
 
 2 
 
 fo 
 
 445 9-84164 
 
 954 9-85706 
 
 13 
 
 513 9-98458 
 
 0.01542 361 
 
 I 
 
 466 9.84177 
 
 934 9-85693 
 
 
 
 0.01516 355 
 
 
 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 Nat. Cot Log. 
 
 C.d. 
 
 Log.TanNat. 
 
 r 
 
 46' 
 
' Nat. Sin Log. d. 
 
 44° 
 
 Nat. Cos Log. d. Nat.TanLog.lc.d. Log. Cot Nat 
 
 69466 
 487 
 508 
 529 
 549 
 
 9.84177 
 9.84190 
 9.84203 
 9.84216 
 9.84229 
 
 69570 
 
 591 
 612 
 
 633 
 
 654 
 
 9.84242 
 
 984255 
 9.84269 
 9.84282 
 9-84295 
 
 69675 
 696 
 717 
 737 
 758 
 
 9.84308 
 9.84321 
 9.84334 
 9.84347 
 9.84360 
 
 69779 
 800 
 821 
 842 
 862 
 
 9-84373 
 984385 
 9.84398 
 9.8441 1 
 9.84424 
 
 69883 
 '904 
 
 925 
 946 
 966 
 
 9-84437 
 9.84450 
 9.84463 
 9.84476 
 9-84489 
 
 69987 
 
 70008 
 
 029 
 
 049 
 
 070 
 
 9.84502 
 
 9-84515 
 9.84528 
 9.84540 
 9.84553 
 
 70091 
 112 
 132 
 
 153 
 174 
 
 9.84566 
 
 9.84579 
 9.84592 
 9.84605 
 9.84618 
 
 70195 
 215 
 236 
 
 257 
 277 
 
 9.84630 
 9.84643 
 9.84656 
 9.84669 
 9.84682 
 
 70298 
 319 
 339 
 360 
 
 381 
 
 9.84694 
 9.84707 
 9.84720 
 
 9-84733 
 9-84745 
 
 70401 
 422 
 443 
 463 
 
 484 
 
 9.84758 
 9.84771 
 
 9.84784 
 9.84796 
 9.84809 
 
 70505 
 
 525 
 546 
 567 
 587 
 
 9.84822 
 
 984835 
 9.84847 
 9.84860 
 9-84873 
 
 70608 
 628 
 649 
 670 
 690 
 711 
 
 9.84885 
 9.84898 
 9.8491 1 
 9.84923 
 9.84936 
 9.84949 
 
 71934 
 914 
 894 
 873 
 
 853 
 
 9-85693 
 9.85681 
 9.85669 
 9.85657 
 9.85645 
 
 71833 
 813 
 792 
 772 
 752 
 
 9-85632 
 9.85620 
 9.85608 
 9-85596 
 9-85583 
 
 71732 
 711 
 691 
 671 
 650 
 
 9-85571 
 9-85559 
 9-85547 
 9-85534 
 9.85522 
 
 71630 
 610 
 590 
 569 
 549 
 
 9.85510 
 9.85497 
 9-85485 
 9-85473 
 9-85460 
 
 71529 
 508 
 488 
 468 
 447 
 
 9.85448 
 9-85436 
 985423 
 9.8541 1 
 
 9-85399 
 
 71427 
 407 
 386 
 366 
 345 
 
 9-85386 
 9-85374 
 9.85361 
 
 9-85349 
 9-85337 
 
 71325 
 305 
 284 
 264 
 243 
 
 9.85324 
 9.85312 
 9.85299 
 9.85287 
 9-85274 
 
 71223 
 203 
 182 
 162 
 141 
 
 9.85262 
 9.85250 
 9.85237 
 9-85225 
 9.85212 
 
 71121 
 100 
 080 
 059 
 039 
 
 9.85200 
 9.85187 
 
 9-85175 
 9.85162 
 9.85150 
 
 71019 
 
 70998 
 
 978 
 
 957 
 
 937 
 
 9-85137 
 9.85125 
 9.851 12 
 9.85100 
 9.85087 
 
 70916 
 896 
 875 
 855 
 834 
 
 9.85074 
 9.85062 
 9.85049 
 
 9.85037 
 9.85024 
 
 70813 
 793 
 772 
 752 
 731 
 711 
 
 9.85012 
 
 9.84999 
 9.84986 
 9.84974 
 9.84961 
 9.84949 
 
 96569 
 625 
 681 
 738 
 794 
 
 9.98484 
 9.98509 
 9-98534 
 9-98560 
 9-98585 
 
 96850 
 907 
 
 963 
 
 97020 
 
 076 
 
 9.98610 
 
 9.98635 
 9.98661 
 9.98686 
 9-9871 1 
 
 97133 
 189 
 246 
 302 
 
 359 
 
 998737 
 9.98762 
 
 9-98787 
 9.98812 
 9-98832 
 
 97416 
 472 
 529 
 586 
 
 643 
 
 9.98863 
 9.98888 
 9.98913 
 
 9-98939 
 9.98964 
 
 97700 
 756 
 813 
 870 
 
 927 
 
 9.98989 
 9.99015 
 9.99040 
 9-99065 
 999090 
 
 97984 
 
 98041 
 
 098 
 
 155 
 213 
 
 9.991 16 
 
 9-99141 
 9.99166 
 9.99191 
 9.99217 
 
 98270 
 327 
 384 
 441 
 
 499 
 
 9.99242 
 9.99267 
 9.99293 
 9.99318 
 
 9-99343 
 
 98556 
 613 
 671 
 728 
 786 
 
 9.99368 
 
 9-99394 
 9.99419 
 
 9-99444 
 9.99469 
 
 98843 
 901 
 958 
 
 99016 
 
 073 
 
 9-99495 
 9.99520 
 
 9-99545 
 9.99570 
 9.99596 
 
 99131 
 189 
 247 
 
 304 
 362 
 
 9.99621 
 9.99646 
 9.99672 
 9.99697 
 9.99722 
 
 99420 
 478 
 536 
 594 
 652 
 
 9.99747 
 9.99773 
 9.99798 
 9.99823 
 9.99848 
 
 99710 
 768 
 826 
 884 
 942 
 
 lOOOO 
 
 9.99874 
 9.99899 
 9.99924 
 
 9-99949 
 9-99975 
 0.00000 
 
 0.01516 
 0.01491 
 0.01466 
 0.01440 
 0.01415 
 
 1-0355 
 349 
 343 
 337 
 331 
 
 0.01390 
 0.01365 
 0.01339 
 0.01314 
 0.01289 
 
 1.0325 
 319 
 313 
 307 
 301 
 
 0.01263 
 0.01238 
 0.01213 
 0.01188 
 0.01162 
 
 1.0295 
 289 
 283 
 
 277 
 271 
 
 0.01137 
 0.01112 
 0.01087 
 0.01061 
 0.01036 
 
 1.0265 
 259 
 253 
 247 
 241 
 
 O.OIOII 
 
 0.00985 
 0.00960 
 o.oo93g 
 0.00910 
 
 1.0235 
 230 
 224 
 218 
 212 
 
 0.00884 
 0.00859 
 0.00834 
 0.00809 
 0.00783 
 
 1.0206 
 200 
 
 194 
 188 
 182 
 
 0.00758 
 0.00733 
 0.00707 
 0.00682 
 0.00657 
 
 1.0176 
 170 
 164 
 158 
 152 
 
 0.00632 
 0.00606 
 0.00581 
 0.00556 
 0.00531 
 
 1.0147 
 141 
 
 135 
 129 
 123 
 
 0.00505 
 0.00480 
 0.00455 
 0.00430 
 0.00404 
 
 1.0117 
 III 
 105 
 099 
 094 
 
 0.00379 
 0.00354 
 0.00328 
 0.00303 
 0.00278 
 
 .0088 
 082 
 076 
 070 
 064 
 
 0.00253 
 0.00227 
 0.00202 
 0.00177 
 0.00152 
 
 1.0058 
 052 
 
 047 
 041 
 
 035 
 
 0.00126 
 
 O.OOIOI 
 
 0.00076 
 0.00051 
 0.00025 
 
 0.00000 
 
 1.0029 
 
 023 
 017 
 012 
 006 
 
 000 
 
 Nat. Cos Log. d. 
 
 Nat. Sin Log. d. 
 
 4^ 
 
 Nat. Cot Log. 
 
 c.d. Log.TanNat. 
 
■d ■ 
 
 / 
 
 / 
 
 
 UNIVERSITY OF CAUFORNIA LIBRARY