GB 184 F3H8 IA A o ! o ! 0; 7 = 5 ! 1 I 6 ! 6 1 4 I 4 ■ Notes on the Fenland by :. M C KENNY HUGHES, M.A., F.R.S., F.G.S., F.S.A. Woodwardian Professor of Geology with A Description of the Shippea Man by ALEXANDER MACALISTER, M.A., F.R.S., M.D., Sc.D. Professor ot Anatomy Cambridge : at the University Press 1916 Price Sixpence net Notes on the Fenland by T. M C KENNY HUGHES, M.A., F.R.S., F.G.S., F.S.A. Woodwardian Professor of Geology with A Description of the Shippea Man by ALEXANDER MACALISTER, M.A., F.R.S., M.D., Sc.D. Professor of Anatomy Cambridge : at the University Press 1916 135111 CAMBRIDGE UNIVERSITY PRESS C. P. CLAY, Manager ILonBon: FETTER LANE, E.C. EDinburglj : 100 PRINCES STREET jp.eto iforfc: G. P. PUTNAM'S SONS ISomban, Calcutta nn& fflafiras: MACMILLAN AND Co., Ltd, Toronto: J. M. DENT AND SONS, Ltd. ffofcgo: THE MARUZEN-KAEUSH1KI-KAISHA All rights resei'Ved CONTENTS PAGE Geography of the Fenland .1 Subsidence of the Valley of the Cam . . .2 TlJRBIFEROUS AND ArENIFEROIS SERIES 3 Absence of Elephant and Rhinoceros in Turbd erousS] mi.- 6 Absence of Peat in Areniferous Series .... 6 Fen Beds not all Peat 7 Sections in Alluvium 7 Peat; Trees etc. : Tarn and Hill Peat ; Spongy Peat \m> Floating Islands; Bog-oak and Boo-irox . Marl: Shell Marl and Precipitated Marl The Wash: Cockle Beds (Heacham): Buttery Clay (Little port) .... Littleport District Buttery Clay . The Age of the Fen Beds Palaeontology of Fens . Birds .... Man Description of the Shippea man by Prof. A. Macalisteb 13 17 18 18 19 20 20 25 27 30 Geography of the Fenland. The Fenland is a buried basin behind a breached barrier. It is the "drowned" lower cud of a valley system in which glacial, marine, estuarine, rluviatile, and subaerial deposits have gradually accumulated, while the area has been intermit- tently depressed until much of the Fenland is now many feet below high water in the adjoining seas. The history of the denudation which produced the large geographical features upon which the character of the Fenland depends needs no long discussion, as there are numerous other districts where different stages of the same action can be observed. In the Weald for instance where the Darent and the Medway once ran off higher ground over the chalk to the north, cutting down their channels through what became the North Downs, as the more rapidly denuded beds on the south of the barrier were being lowered. The character of the basin is less clear in this case because it is cut off by the sea on the east, but the cutting down of the gorges pari passu with the denudation of the hinterland can be well seen. The Thames near Oxford began to run in its present course when the land was high enough to let the river flow eastward over the outcrops of Oolitic limestones which, by the denudation of the clay lands on the west, by and by stood out as ridges through which the river still holds its course to the sea — the lowering of the clay lands on the west having to wait for the deepening of the gorges through the limestone ridges. A sub- mergence which would allow the sea to ebb and flow through these widening gaps would produce conditions there similar to those of our fenlands. So also the Witham and the Till kept on lowering their basin in the Lias and Trias, while their h. f. 1 2 Geography of the Feriland united waters cut down the gorge near Lincoln through a barrier now 250 feet high. The basin of the Humber gives us an example of a more advanced stage in the process. The river once found its way to the sea at a much higher level over the outcrops of Jurassic and Cretaceous rocks west of Hull, cutting down and widening the opening, while the Yorkshire Ouse, with the Aire, the Calder and other tributaries, were levelling the New Red Sandstone plain and valleys west of the barrier and tapping more and more of the water from the uplands beyond. The equivalent of the Wash is not seen behind the barrier in the estuary of the Humber, but the tidal water runs far up the river and produces the fertile estuarine silt known as the Warp. The Fenland is only an example of a still further stage in this process. The Great Ouse and its tributaries kept on levelling the Gault and Kimmeridge and Oxford Clays at the back of the chalk barrier which once crossed the Wash between Hunstanton aud Skegness. The lowlands thus formed he in the basin of the Great Ouse which includes the Fenland, while the Fenland includes more than the Fens properly defined, so that things recorded as found in the Fenland may be much older than the Fen deposits. Subsidence of the Valley of the Cam. During the slow denudation which resulted in the formation of this basin many things happened. There were intermittent and probably irregular movements of elevation and depression. Glacial conditions supervened and passed away. The proof of this may be seen in the Sections, Figs. 1, 2 and 3, pp. 8, 9 and 10. At Sutton Bridge the alluvium has been proved to a depth of 73 feet resting on Boulder Clay. At Impington the Boulder Clay runs down to a depth of 86 feet below the surface level of the alluvium. That means that this part of the valley was scooped out before the glacial deposits were dropped in it, and that the bottom of the ancient valley is now far below sea level. Snhsi(ll L5 feet, i.e. L6 feel below o.d. These facts indicate a comparatively recent sub- sidence along the valley, as no river could scoop oul its I>''<1 below sea level. We need not for our present purpose stop to enquire whel her this depression was confined to the line of the valley or was part of more widespread East Anglian movements which are not so easy to detect on the higher ground. From the above- mentioned sections it is clear that the denudation, which resulted in the formation of the basin in the lowest hollow of which the Fen Beds lie, was a slow process begun and carried on long before glacial conditions prevailed and before the gravel terraces were formed. As soon as the sea began to ebb and How through the opening in the barrier, the conditions were greatly altered and we sec the results of the conflict between the mud-carrying upland waters and the beach-forming sea. TURBIFEROUS AND ArEXIFEROUS SeRII>. The Fen Beds belong to the last stage and, notwithstanding their great local differences, seem all to belong to one con- tinuous series. Seeing then that their chief characteristic is that they commonly contain beds of peat it may be convenient to form a word from the late Latin turba, turf or peat, and call them Turbiferous to distinguish them from the Areniferous series which consists almost entirely of sands and gravels. When the land had sunk so far that the velocity of the streams was checked over the widening estuary and on the other hand the tide and wind waves had more free ace some outfalls got choked and others opened; turbid water sometimes spread over the flats and left mud or was elsewhere filtered through rank plant growth so that it stood clear in meres and swamps, allowing the formation of peat unmixed with earthy sediment. 1—2 4 Turbiferous and Areniferous Series Banks are naturally formed along the margin of rivers by the settling down of sand and mud when the waters overflow, as seen on a large scale along the Mississippi, the Po, as well as along the Humber and its tributaries. The effect of a break down of the banks is very different. A great hole is scooped out by the outrush, and the mud, sand and gravel deposited in a fanshape according to its degree of coarseness and specific gravity. A good example of this was seen in the disastrous Mid-Level flood at Lynn in 1862 x and the more recent outburst near Denver in the winter of 1914-15 2 , of which accounts were published in contemporary newspapers. The varied accom- panying phenomena can be well studied in the process of warping in Yorkshire or the colmata in Italy. This was a much commoner catastrophe in old times, before the banks were artificially raised, and, as the streams could never get back into their old raised channel, this accounts for the network of ancient river beds which intersect the Fens. The bottom of the Turbiferous alluvium is always, as far as my experience goes, sharply defined. This of course cannot be seen in a borehole or very small section. The surface of the older deposits seems to have been often washed clean either by the encroaching sea or by the upland flood waters. In saying that there is an absence of sand and gravel in the Fen Beds we must be careful not to force this description too far. For when the first encroaching water was washing away any pre-existing superficial deposits the first material left as the base of the Fen Beds must have depended upon the character of the underlying strata, the velocity of the water and other circumstances. This is well seen in the Whittlesea brickpit where an ancient gravel with marine shells rests on the Oxford Clay and over the gravel there creeps the base of the Turbiferous series. It here consists chiefly of white marl which thins out to the left of the section and above becomes full of vegetable matter 1 Times, Cambridge Chronicle, May 31, 1862. 2 Times, Jan. 16, 1915. Turbiferous . 2, pp. 205—211. <> Absence of Elephant and Rhinoceros Absence of Elephant and Ehinoceros in turbiferous series. The basement beds of the Turbiferous or Newer Alluvial Fen Beds are clearly separated by their stratification from the Areniferous or Older Alluvial Terrace Beds down the sloping margin of which they creep, but there is not anywhere, as far as I am aware, any passage or dovetailing of the Fen Beds into the gravel of the river terraces, while the difference in the fauna is very marked. It is however from such sections as those just described that the erroneous view arose that the Elephant and Rhinoceros occurred in the older Fen Beds. It is true that they have been found under peat in the Fenland, but that is only where the gravel spurs of the Old Alluvial Terraces or Areniferous Series have passed under the newer Fen Beds. I saw the remains of Rhinoceros tichorhinus in the gravel beds belonging to the older or Areniferous Series at Little Downham, and from the base of the gravel in the Whittlesea brickpit I obtained a fine lower molar of Elephas antiquns. This was, however, not in the Gravel, but squeezed into the soft surface of the underlying Jurassic Clay. There have never been any remains of Elephant or Rhinoceros found in the Turbiferous series. Absence of Peat in Areniferous Series. It is not easy to realise what the conditions were during the formation of the later Terrace Gravels (Barnwell type), and, if it is a fact, why there was not then, as in later times, a marshy peat-bearing area here and there between the torrential deposits of the upper streams near the foot of the hills and the region where the tide met the upland waters. A few plants have been found in the Barnwell gravel but they are very rare in this series. The older Terrace Gravel (Barrington type) might be expected to furnish evidence of the existence of abundant vegetation if we are right in assigning it to about the age of the peaty deposits overlying the Weybourn Crag. But at present we have no evidence of any such deposit in the Cambridge gravels. in Turbiferou8 Series 7 Although there are great masses of vegetable matter formed in the swamps of tropical regions, peat is essentially a product of northern climes. Pliny 3 evidently refers to peat, as used in Friesland but not as a thing with which he was la miliar. Fen Beds not all Peat. It must not, however, be imagined that the Fen Beds consist wholly or even chiefly of peat. As we travel north from Cambridge the surface of the alluvium is brown earth for miles and only here and there shows the black surface of peat. The numerous ditches for draining the land confirm this observation, and when we have the opportunity of ex- amining excavations carried down to great depths into the alluvium we usually find only a little peat on the surface or in thin beds alternating with silt and clay and marl. Sometimes, but only sometimes, we have evidence of the growth of peat for a long time, then of the incoming of turbid water leaving beds of clay, then again of the tranquil growth of peat. All this points to changes of local conditions and shifting channels during a gradual sinking of the area, for some of the peat is below sea level. I believe that the volume of clay is much greater than that of peat, although from the common occurrence of peat on the surface and clay in the depth the area over which peat is seen is greater. We have not, however, the data for estimating the proportion of each. In embayed corners along the river even above Cambridge we find little patches of peat, while on the other hand in deep excavations near the middle of the valley we find only thin streaks of peat or peaty silt. In the trial boreholes at the Backs of the Colleges there was only this kind of record of former swamp vegetation. Sections in Alluvium. In digging the foundations for the chimney of the Electric Lighting Works opposite Magdalene College the following section was seen (Fig. 1, p. 8). 1 Lib. xvi, cap. 1. 8 Small proportion of Peat Under the new Tennis Courts in Park Parade facing Mid- summer Common the section was somewhat different (Fig. 2, p. 9). While in the pit dug some years ago by Mr Bullock at the other end of the Parade at the lower end of Portugal Place in the south-east coiner of the Common there was a section very similar to the last (Fig. 3, p. 10). These three sections, immediately north of Cambridge 'ZL __ ZT ~ ^— — "~ Made ground Black silt 7-8' Peaty silt Gravel Gault Fif. 1 Section seen in foundations of chimney for Electric Lighting Works near river opposite Magdalene College, July, 1892. where the valley of the Cam opens out on to the Fens, are important as showing the variations right across the alluvium from side to side and the absence, here at any rate, of any indication of a constant sequence distinctly pointing to impor- tant geographical changes. A section seen under Pembroke College Boat House gave 16 feet of clay and peaty silt on the black gravel which here, as in the borings at the Backs of the Colleges, forms the base of the alluvium. About half way in Turbiferous Series 9 down wore bones of horse and stag, bul I do aol believe tli.it these are of any great antiquity, probably not earlier than mediaeval. Lower down the river near Ely a most important and Thickness Depth sr^^? [rregular made ground -~ ~ -^^- c^ Clayey "^= Alluvium Peal 10-12 2 2 4' 6" 21 Sand .iihI ( :i;i\ el *-*-^»-*?»a * ^.kJS.2: Running Sand 29'6" r GauH Sr„h 8' to 1" Fig. 2. Section seen in digging foundations of Tennis Courts on Midsummer Common. Cambridge. interesting section has recently been exposed. A new bridge was built over the Ouse near the railway station and to obtain material for easing the gradient up to the bridge a pit was sunk close to it on the east side of the river, and was carried down to the Kimmeridge Clay thus giving a clear section through the whole of the alluvium (Fig. 4, p. 1 1). 10 Small proportion of Peat It will be noticed that there is very little peat here and all of it was below o.d. The upper four feet of the clayey peat (/) looked as if the vegetable matter had been transported, perhaps from peat beds being destroyed by the river higher up, and been (anied down in flood with the clay, while the lower four feet of peat (h) was only a cleaner sample of the same, before the Depth ggF ^v^:'^!';; 12' 6* ' 13' 2" 21' 2" 23' 2" Dark clay, with much carbonaceous matter, scattered stones, and freshwater shells ... ... ... 4' 0" Tough clay ... ... ... ... ••• ••• 3' 0" Dark clay full of bits of wood ... ... ... 3' 0" Light coloured clay full of rootlets ... ... ... 2' 6" Rusty sand ... ... ... ... ... ••• 8" False bedded gravel and sand pierced by rootlets 8' 0" Black silt and gravel ... ... ... ... ... 2' 0" Gault 23' 2" Fig. 3. Section seen in Bullock's Pit in S.E. corner of Midsummer Common. in Turbiferou8 Series 11 river had cut down into the clay. The trees in both/ and h were not trees that had grown on the spot and bad been Mown down, but were broken, water worn, and evidently transported. If now we travel about 30 miles a little west of north we shall arrive near the shore of the Wash aboul half way across its southern coast line at Sutton Bridge. Here I had an opportunity of seeing (lie material of which the alluvium is composed. With a view to securing a sound base for the foundation of the piers of the Midland and Greal Northern Railway bridge an excavation was made through the whole of the Fen Beds down to the Boulder Clay which as I have already stated was reached al a depth of 73 feet. The clerk a. Surface soil b. Clayey alluvium c. Peaty alluvium ... d. Brown clayey alluvium e. Peaty alluvium ... /. Brown clayey peat with trees scattered throughout (). and lenticular beds of freshwater shells in it h. Peat with trees to 2' diam. ... Mottled -re. -n and grey clay with lines of Band and gravel giving ou1 water ... j. Yellow clay with springs and much rusty wate at bottom ... (1) Skull and a few other bones of horse. (2) Broken fragments of bone. 7" 7" 9" V 6" 9" 4' 4' 4' is' Scale 8' to 1' Fig. 4. Section seen in pit dug for material for making up the roadway easl of the new bridge over the Ouse by the railway station, Ely, L910. 12 Sun ill proportion of Peat of the works kindly gave me the following measurements I Fig. 5). Depth Thicknesa 12' 6" L2'6" 16' 6" 4'0" 36' 0" 45' 0" 48' 6" 9'0" :',' 6" 5' 6" 54' 0" , , r,7' 6" 3 6 61' 0" 3' 6" 66' 0" 5' 0" — High water ( 12' 6" above o.D.) Ordnance Datum Silt and clay Low water (6' 0" below o.D.) Bed of rivei t- (17' 6" below o.d.) Sand with shells Loam and sand «*^f Ballast with shells Loam and Peal Fine red ballast mixed with clay 5f*ga3*Sp=r^^i^=£' Blue and grey clay mixed with sand *-B Ballast with flint and Fig. 5. Section seen at Sutton Bridge. Here again we see that the only peat is a bed between three and four feet in thickness of mixed loam and peat more than 40 feet below mean sea level. Peat, Trees, Bog-oak, etc. 13 From these sections it is cleai that along the direcl and more permanent outfall from Cambridge to the north, peat tonus but a small part of the Ken Beds. Peat is a substance of so much value as fuel, of such impor- tance to the agriculturist, of such commercial value m wh.it we may call its by-products, and of such scientific interesl m the history of its formation and the remains which its antiseptic properties have preserved, that it has. as might he expected, a large literature of its own. I have before me a list of more than L50 references to peat or to the Fens. Peat; Trees and other Plants; Tarn Peat and Hill Peat; Bog-oak and Bog-iron. When we turn aside into the areas cut off by spurs of gravel and islands of Jurassic rock, we find wide and deep masses of peat which has grown and been preserved from denudation in these embayed and isolated areas. Burwell Fen, for instance, protected on the north and west by the Cretaceous ridge of Wicken and the Jurassic ridge of Upware, furnishes most of the peat used in the surrounding district. If we travel about two miles to the north-west from the pit dug near the railway station (see Fig. 4, p. 11) over the hill on which Ely stands, we shall come to West Fen, where there is a great mass of peat which has grown in a basin now almost quite surrounded by Kimmeridge Clay. In this there is a great quantity of timber at a small depth from the surface. The tree trunks almost all lie with their root-end to the south-west, but some are broken off, some are uprooted, telling clearly a story of growth on the peat which had increased and swelled till the surface was lifted above the level of Hoods. Then some change — perhaps more rapid subsidence, perhaps changes in the outfalls — let in flood water, the roots rotted and a storm from the south-west, which was the most exposed side and the direction of the prevalent winds, laid them low. The frequent occurrence of large funguses, Hypoxyhn, Poly- porus, etc., points to conditions at times unfavourable to the healthy growth of timber. 14 Fenland not Forest It is worth noting when trying to read the story of the Fens as recorded by their fallen trees that in all forests we find now and then a few trees blown down together though the surrounding trees are left. This may be the result of a fierce eddy in the cycloidal path of the storm, but more commonly it seems to be due to the fact that every tree has its "play," like a fishing rod, and recurring gusts, not coinciding with its rhythm, sometimes catch it at a disadvantage and break or blow it down. The story told by the West Fen trees is quite different from that told by the water-borne and water-worn trunks in the section by Ely station. The same variable conditions prevailed also in the more westerly tracts of the Fen Basin, but the above examples are sufficient for our present purpose. From the large numbers of trees found in some localities and from records referring to parts of the Fens as forest it has sometimes been supposed that the Fens were well wooded, but forest did not generally and does not now always mean a wood, as for example in the case of the deer forests of Scotland. When Ingulph 1 says that portions of the Fenland were disafforested by Henry I, Stephen, Henry II, and Richard, who gave permission to build upon the marshes, this probably meant that they no longer preserved them so strictly, but allowed people to build on the gravel banks and islands in them. Dugdale, recording a stricter enforcement of game-laws, quotes proceedings against certain persons in Whittlesea, Thorney and Ramsey for having "wasted all the fen of Kynges- delfe of the alders, hassacks and rushes so that the King's deer could not harbour there." He does not mention forest trees. In the growth and accidents of vegetation in a swamp there are some circumstances which are of importance to note with a view to the interpretation of the results observed in the Fens. For instance in fine weather there is a constant lifting and floating of the confervoid algae which grow on the muddy 1 History of Croyland, Bohn's edition, p. 282. Various conditions of growth 15 bed of the stream. This is brought about by the development of gas under the sun's influence in the thick fibrous growth of the alga. The little bubbles give it a silvery gleam and by and by produce sufficient buoyancy in the mass to tear it out and make it rise to the surface dropping fine mud as il goes and thus making the water turbid. Other plants, such as Utricularia, Duckweed, etc., have their period of flotation, and in the "Breaking of the Mere" in Shropshire we have a similar phenomenon. In the "Floating Island" on Derwent- water the same sort of thing is seen with coarser plants. All these processes are going on in the meres and in the streams which meander through the Fens and did so more freely before their reclamation. But besides this, when the top of the spongy peat is raised above the water level and dries by evaporation, then heath, ferns and other plants and at last trees grow on it. until accident submerges it all again. This at once shows why we often find an upper peat with a different group of plant remains resting upon a lower peal with plants that grow under water. The most conspicuous examples of these various kinds of peat we see in the mountainous regions of the North and West, where the highest hills are often capped with peat from eight to ten feet in thickness, creeping over the brow and hanging on the steep mountain sides. Sometimes, close by, we see the gradual growth of peat from the margin of a tarn where only water- weeds can flourish. The "Hill Peat" is made up of Sphagnum and other mosses and of ferns and heather. The "Tarn Peat" of conferva, potamogeton, reeds, etc. As Hill Peat now grows on the heights and steeps where no water can stand and Tarn Peat in lakes and ponds lying in the hollows of the mountains and moors, so the changes in the outfalls and the swelling and sinking of the peat have given us in the Fens, here the results of a dry surface with its heather and ferns and trees, and there products of water-weeds only, and, from the nature of the case, the subaerial growth is apt to be above the subaqueous. One explanation of the growth of peat under both of these 16 Colour, Preset tec of Iron, etc. two very different geographical conditions is probably the absence of earthworms. The work of the earthworm is to drag down and destroy decaying vegetable matter and to cast the mineral soil on to the surface, but earthworms cannot live in water or in waterlogged land, and where there are no earthworms the decaying vegetation accumulates in layer after layer upon the surface, modified only by newer growths. Some years ago a great flood kept the land along the Bin Brook under water for several days and the earthworms were all killed, covering the paddock in front of St John's New Buildings in such numbers that when they began to decompose it was quite disagreeable to walk that way. It reminded me of the effects of storm on the cocklebeds at the mouth of the Medway, where the shells were washed out of the mud, the animals died on the shore and the empty shells were in time washed round the coast of Sheppey to the sheltered corner at Shellness. Here they he some ten feet deep and are dug to furnish the material for London pathways. In those cases when the storm had passed the earthworms and the cockles came again, but the Hill Peat is always full of water retained by the spongy Sphagnum and similar plants, and the Fens are or were continually, and in some places continuously, submerged and no earthworms could live under such conditions. The blackness of peat and of bog- oak may be largely but certainly not wholly due to carbonaceous matter. Iron must play an important part. There is in the Sedgwick Museum part of the trunk of a Sussex oak which had grown over some iron railings and extended some eight inches or more beyond the outside of the part which was originally driven in to hold the rails. Mr Kett came upon the buried iron when sawing up the tree in his works and kindly gave it to me. From the iron a deep black stain has travelled with the sap along the grain, as if the iron of the rail and the tannin of the oak had combined to produce an ink. The well-known occurrence of bog-iron in peat strengthens this suggestion. An opportunity of observing this enveloping growth of wood round iron railings is offered in front of No. 1, Benet Place, Lensfield Koad, Marl 1 7 The trees in the Pens often lie a1 a 3mall depth and when exposed to surface changes perish by splitting along the medullary rays. It is not clear how long it takes to imparl .1 peaty stain to bone, but we do find a difference between those which are undoubtedly very old and others which we have reason to believe may be more recent. Compare the almost black bones of the beaver, for instance, with the lighl brown bones of the otter in the two mounted skeletons in the Sedgwick Museum. Marl. "Marl," as commonly used, is Clay or Carbonate of Lime of a clayey texture or any mixture of these. Beds of shell marl tell the same tale as the peat. Shells do not accumulate to any extent in the bed of a river. They are pounded up and decomposed or rolled along and buried where mud or gravel finds a resting place. Only sometimes, where things of small specific gravity are gathered in holes and embayed corners, a layer of freshwater shells may be seen. But to produce a bed of pure shell marl the quantity of dead shells must be very large and the amount of sediment carried over the area very small, while the margin of the pond or mere in which the formation of such a bed is possible must have an abundant growth of confervoid algae and other water plants to furnish sustenance for the molluscs. Shell marl therefore suggests ponds and meres. Of course it must be borne in mind that in a region of hard water, such as is yielded in springs all along the outcrop of the chalk, there is often a considerable precipitation of carbonate of lime, especially where such plants as Chara help to collect it, as the Callothrix and Leptothrix help to throw down the Geyserite. These beds of white marls, whether due to shells or to preci- pitation, are thus of great importance for our present enquiry as they throw light on the history of the Fens. We should have few opportunities of examining the marl were it not for its value to the agriculturist. As it consists of clay and lime, it is not only a useful fertiliser bul also helps to retain the dusty peat, which when thy and pulverised is H. F. 2 18 The Wash easily blown away. Moreover, as the marl occurs at a small depth and often over large areas, it can commonly be obtained by trenching on the ground where ii is most wanted. The Wash. We have now carried our examination of the Fen Beds up to the sea, but to understand this interesting area we must cross the sea bank and see what is happening in the Wash. There is no peat being formed there, nor is there any quantity of drifted vegetable matter such as might form peat. There are marginal forest beds near Hunstanton and Holme, for instance, and it is not clear whether they point to submergence or to the former existence of sand dunes or shingle beaches sufficient to keep out the sea and allow the growth of trees below high water- level behind the barrier, such as may be seen at Braunton Burrows, near Westward Ho, or at the mouth of the Somme. What is the most conspicuous character of the Wash is that the upland waters, now controlled as to their outlet, keep open the troughs and deeps while tidal action throws up a number of shifting banks of mud, sand and gravel, many of which are left dry at low water. Along the quieter marginal portions fine sediment is laid down, and relaid when storms have disturbed the surface. On these cockles and other estuarine molluscs thrive. Before the sea banks were constructed these tidal flats extended much further inland. Littleport District. In the light of this evidence let us examine the Fen Beds east of Littleport, a district of great interest not only from its geographical position in relation to the Fens but also from the remains recently discovered there. Looking north and west there is no high ground between us and the Wash. If w T e could sweep out the soft superficial deposits and abolish the sea banks the tide would still ebb and flow over the whole area. If w r e look north and east we see the high ground stretching from Downham Market to Stoke Ferry and sweeping round Jill I Inn ('In if IK to the south by Methwold and Feltwel] and the islands <•! Hilgay and Southery, thus enclosing a greal bay into which the Wissey on the north and the Brandon River on the south deliver the waters collected on the eastern chalk uplands. The island known as Shippea Hill marks the trend of an ancient barrier blocking the northward course of the river Lark. (Fig. 6, p. 29.) Here, then, it seems probable thai we mighl find evidence of a local change from the conditions we now see in the Wash and those which have resulted in the formation of the Fens. Buttery Clay. In deep trenching in the Fen between Littleport and Shippea Hill in order to obtain clay for laying on the peaty surface a very fine unctuous deposit was found at a depth of four or five feet. The overlying Fen Beds were chiefly peat with lenticular beds of white marl and grey clay, obviously laid down from time to time in small depressions in the surface of the peat. This marl was often largely made up of, or was at any rate full of, freshwater shells but sometimes showed evidence of having been gathered on the stems of Char i which on perishing have left small cylindrical hollows pene- trating the partly consolidated marl. Under these beds of peat and marl there was the unctuous clay, which is sometimes referred to as the Buttery Clay. It is an estuarine deposit like that mentioned above as occurring in the Wash off Heacham, for instance. It contains shells of Ca/rdium edule, Tellina (Tacoma) balthiot, $cn>bicul[ Btray individuals or of dr.nl animals which have floated down from dams near Trumpington or Chesterf'ord ; very suitable places lor them. We want more evidence about tin' fen beaver. 1 have heard that there ate heavers in th.' Danube which do not make dams, but anion" those introduced into this country in recent years the dam building instinct seems t<> have survived the change. The beavers on the Marquis of Bute's property in Scotland cut down trees and built dams as did the beavers in Sir Edmund Loder's park in Sussex, and even in the Zoolo- gical Gardens they recently constructed a "lodge." We have not found the beaver in the Gravels. Part of the skull of a Walrus was broughl to us a long time ago and said to have been found in the peat. But it is a very suspicious case. It does not look like a bone that had been long entombed in peat, and we are not so far from the coasl as to make it improbable that it was carried there by some sailor returning home from northern seas. Bones of Cetaceans are thrown up on the shore near Hun- stanton, and Seals are still not uncommon in the Wash, so that we need not attach much importance to the occurrence in marine silt of Whale, Grampus, Porpoise, and such like. Birds. We have paid much attention to the birds of the Fens, partly because of the occurrence of some unexpected species, and also because of the absence, so far as our collection goes, of species of which we should expect to find large numbers. Perhaps the most interesting are the remains of Pelican (P. crispus or onocrataVus) 1 . Of this we have two bones, not 1 Annates des Sciences Naturelles, Zool. (•"-), Vol. vm. PI. It, pp. 285 293. Ibis, ISfis. pp. 363 370, Proc. Zool. Soc. 1868, p. 2. Trans. Norfolk and Norwich Naturalists Soc. Vol. vn. Pt 2, L901 Oeol. Mag. No 147, N B Dec. t. Vol. \ in, No. 9, p. 422. ■2 5 •_><> Birds associated nor in the same state of preservation. The deter- mination we have on the authority of Alphonse Milne Edwards and Professor Alfred Newton. One of the bones is that of a bird so young that it cannot have flown over but shows that it must have been hatched or carried here. Of the Crane (Grits cinerea) we have a great number of bones but of the common Heron not one. I have placed a recent skeleton of heron in the case to help us to look out for and determine any that may turn up. Bones of the Bittern (Botaurus or Ardea stellaris) are quite common, as are those of the Mute or tame Swan (Cygnns olor) as well as of the Hooper or wild Swan (Cygnus musicus or ferns). Goose (Anser) and Duck (Anas) are not so numerous as one might have expected. The Grey Goose (Anser fer us) and the Mallard (Anas boscas) are the most common, but other species are found, as for instance Anas grecca. We have also the Red Breasted Mer- ganser (Mergus senator), and the Smew (M erg us albellus), the Razor Bill (Aha tarda), the Woodcock (Scohpax rusticola), the Water Hen (Gallinula chhropus) and a few bones of a Limicoline bird, most likely a lapwing. We have found the skull, but no more, of the White-tailed or Sea Eagle (Haliaetus albicilla). The whole is a strangely small collection considering all the circumstances. We find in the Fens of course everything of later date, down to the drowned animals of last winter's storm, or the stranded pike left when the flood went down. It is a curious fact and very like instinct at fault that in floods the pike wander into shallow water and linger in the hollows till too late to get back to the river, so that large numbers of them are found dead when the water has soaked in or evaporated. An old man told me that he well remembered when pike were more abundant they used to dig holes along the margin when the flood was rising and when it went down commonly found several fine pike in them. This explains why we so often find the bones of pike in the peat, but where did the pike get into a habit so little conducive to the survival of the species ? Although we notice at the present day a constant change Man 27 in the mollusca, their genera] continuity throughoul the long ages from pre glacial times is a very remarkable fact. The presence of Corbicula fluminalis and Unio littoralis in the Gravels characterized by the cold-climate group of mammals such as Rhinoceros tichorhinus and Elephas primigenius, the absence of those shells from the deposits in which /,'//. merchii and E. antiquus are the representative forms, and I heir existence now only in more southern latitudes, as France, Sicily or the Nile, but not in our Turbiferous Series, lay before us a series of apparent inconsistencies not easy of explanation. Man. Every step in the line of enquiry we have been following, from whatever point of view we have regarded the evidence, has forced upon us the conclusion that a long interval elapsed between the Areniferous and Turbiferous series as seen in the Fens; and yet, having regard to the geographical history of the area with which we commenced, we cannot but feel that the various deposits represent only episodes in a continuous slow development due to changes of level both here and further afield and the accidents incidental to denudation. But the particular deposits which we are examining happen to have been laid down near sea level where small changes produce great effects. We may feel assured that over the adjoining higher ground the changes would have been imper- ceptible when they were occurring and the results hardly noticeable. If the Fen Beds include nearly the whole of the Neolithic stage the idea that glacial conditions then prevailed over the adjoining higher ground is quite untenable. So far everything has taught us that the Fens occupy a well-defined position in the evolution of the geographical features of East Anglia and also that the fauna is distinctive, and, having regard to the whole facies, quite different from that of the sands and gravels which occur at various levels all round and pass under the Turbiferous Series of the Fens. We will now enquire what is the place of t hese deposits in t he "hierarchy" based upon the remains of man and his handiwork. 28 Man No Palaeolithic remains have ever been found in the Fen deposits. We must not infer from this that there is every- where evidence of a similar break or long interval of time between the Palaeolithic and Neolithic ages. There are else- where remains of man and his handiwork which we must refer to later Palaeolithic than anything found in the Areniferous Series just near the Fen Beds, and there are, not far off, remains of man's handiw r ork which appear to belong to the Neolithic age, but to an earlier part of it than anything yet found in association with the Fen Beds. The newer Palaeolithic remains referred to occur chiefly in caves and the older Neolithic objects are for the most part transitional forms of implement found on the surface in various places around but outside the Fens and in the great manu- factures of implements at Cissbury and Grimes Graves, in which we can study the embryology of Neolithic implements and observe the development of forms suggested by those of Palaeolithic age or by nature. The sequence and classification adopted in these groups, both those of later Palaeolithic and those of earlier Neolithic age, are confirmed by an examination of the contemporary fauna; the Areniferous facies prevailing in the caves and the Turbiferous facies characterising the pits and refuse-heaps of Cissbury and Grimes Graves. It is interesting to note that these ancient flint workings, in which we find the best examples of transitional forms, have both of them some suggestion of remote age. The pits from which the flint was procured at Cissbury are covered by the ramparts of an ancient British camp and the ground near Grimes Graves has yielded Palaeolithic implements in situ in small rain-wash hollows close by — as seen near "Botany Bay." Palaeolithic man came into this area some- time after the uplift of East Anglia out of the Glacial Sea and was here through the period of denudation and formation of liver terraces which ensued and the age of depression which followed. But Neolithic man belongs to the later part of that period of depression when the ends of some of the river gravels were again depressed below sea level and the valleys had scarcely sufficient fall for the rivers to flow freely to the sea. In the Man 29 stagnant swamps and meres thus caused the Fen deposits grew, and in this time the Shippea man mel his death mired in the watery peal of the then nndrained fens. Unman bones have not been very often found in the I and when they do occur it is not always easj to •'•• whethei they really belong to the age of the peal in which they are found or may not be the remains of someone mired in the bog or drowned in one of the later filled up ditches. That they have long been buried in the peal is often obvious from the colour and condition of the bone. By the kindness ol oui friends Mt and Mrs Luddington my wife and I received early information of the discovery of human bones in trenching on re. Kimmeridge Clay forming Shippea Sill, on which monastic buildings in connection with Ely Cathedral formerlj sto< d. b. Patches of rusty flint gravel. c. Peat with bones of beaver, boar, arus, etc. d. Shell Marl, occurring in lenticular beds of limited extent in the uppei part of the peat, sometimes in one bed as at d and sometimes in several distinct beds as at d'. e. "Buttery Clay"; full of cockleshells etc. at e, but at e' containing only freshwater shells and pieces of wood. + Position of skeleton.

skull, to likeness. both of which it bears a very strong family Shippea Hill ' I'M Stonehenge L79) Is.", borpe L92 L53 L53 L56 1 35 L32 L33 l L5 1 L2 1 17 128 132 133 '.17 103 106 120 1J7 1 1':. 1 16 1 L3 1 1 l 1 L3 1 1 1 In.-. i::i L27 124 L37 L32 l:;i L04 78-87 L02 82-7 l i:. 81-25 Maximal Length ... „ breadth Auricular beighl ... Biorbital width Bistephanic width Least frontal width Biasterial Auriculo-glabellar radius Auriculo-ophryal ,, Auriculo-metopic ,, Auriculo-bregmatic ,, Auriculo-lambdoid ,, Length and breadth index " The resemblance to the two Round-barrow skulls of the Bronze Age is too great to be accidental, so we may regard this as a representative of that race, possibly at an earlier stage than the typical form of which the two selected specimens are examples (Fig. 10). •■ The mandible also resembles that of the Gristhorpe skull in general shape of angle and prominence of chin. •The measurements are as appended: Condyle- mental Length Gonio mental length Bigoniac Bicondylar Chin height Shippea Stonehon_'e Hdl (No L79) ( Iristhorpe L31 — L30 100 — 99 1 1.-. — 1 L6 l 39 — 141 32 — 33 " 1351U (Eambrtogc : PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS This book is DUE on the last date stamped below L 006 853 791 9 UC SOUTHERN RE j'ONAL LIBRARY FACIEI AA 000 751664