■ ■■^,'/-V ' '- -i ,* V / A E Y TO THE COMPLETE PRACTICAL ARITHMETICIAN. CONTAINING ANSWERS TO ALL THE QIJESTIONS IN THAT WORK, With the Solutions at full Length, wherever there is the faialleft Appearance of Labour or Difficulty; THE WHOLE INTERSPERSED WITH Several ufeful Notes and Obfervations. TO WHICH IS A D 1) E r-j A N APPENDIX, CONTAINING, A Synopiis oPLogarichiTiical Arithmetic, Sliev/ing chcir Natu.c, Couilrrudion, and Uie, in the piaineft. Manner poifiblc. Tables of Comoo^ind Intereft and Annuities, Kxlending froiu One to Foity Vears. Alfj, Gciicral and univcynl Demon i>iatioiis of the principal RULES IN TK^ COMPLETE PRACTICAL ART r H M E 1' I C I A N. The whole tog-etlier forming the moil: Complete Sydem of Arithmetic extant, both in Thec--^- •^■■'•A V-^'i^^t-i^^e. :riE-Xafy Inrro- B V T_H O -M A S Teichcr of the Mathematics, Author cr ^ dudlon to ti:e Sc'.cnc- of Cii.oGR avh y, the .^RJTHMETICIAN, ic<. ^h '-V- 1— 4^..-^^- -i: /, LONDON: FRINTEO BY JOHN CROWDER, F 'J K r. LAW, A V E - M A R I A - L A N E, 4qo. PREFACE. A S this work makes its appearance with ■*• ^ the approbation, and by the particular defire of feveral eminent Mathematicians and Schoolmafters, it would be fuperfluous for me to fay any thing farther in its commendation, than^ that I have paid every attention to corredlnefs and brevity, confident with per- fpicuity.— 'In working the feveral queftions, I have, in general, made ufe of the Ihorteft, and mofl fimple method of folution I could devife, and where neceffary, have explained the feveral fleps thereof — I have fometimcs folved the queftions by the rules, and fome- times by the notes, in order to exemplify both ; this will be of cqnfiderable advantage to thofe who are not proficients in Arith- metic, and it can be no detriment to the a 2 ingenious f^JL ^-.v O. 'O / V/ 'if IV r R E F A c r. ingenious Teacher, who is at liberty to ufc what inethod of folution he pleafes, for I have not the vanity to luppofe that my ib- lutions are fo complete as not to admit of improvement. The Appendix commences with a Synopfis of Logarithmical Arithmetic, which I have had by me in manufcript above feven years. This fynopfis I intended to prefix to a fmall fet of rabies, on the plan of thofe publiHicd by M. VAhhe de la Caille, The utility of fuch a work was firft pointed out to me by Mr. Landmann, ProfeiTor of Fortification and Ar- tillery, in the Royal Military Academy at IVoolwich, For, at that time, Sherwins Tables, publifbed in 1705 and 17065 and Gardiner's editions of the fame book, in 1741 and 1742, were the only tables to be depended upon. On the appearance of Dr, Hutton\ Tables, which 1 believe are exceedingly corred, I laid afide my defign. In the year 1789 I publiihed the fub{l:ance o{ xkixs fynopfis y in the fixft number of a pe- riodical work, but by the unexpecled death of l^REFACE. V of the ingenious condudtor thereof (Mr, J, Davi/cnJ, the fecond number was never pub- lifhed. At the inftance of fcveral refpe^'^able contributors to that work, xhxs fynopfts is now republifhed, as containing the plained r.nd mofl comprehenfive indru^lions extant, for performing Multiplication, Divifion, Involu^ tion, Evolution, &c. — Then follows, in order, a complete fet of Tables of Compound Interefb and Annuities, accurately calculated from i to 40 years. This was hinted to me as a mate- rial improvement, by Mr. Hardy, an eminent teacher of the Mathematics, at CottingbamyU^diV Hull I thought it quite unnecefiary to dem.on- flrate every rule in the Complete Practical Arithmetician, becaufe many of the opera- tions carry their rationale along with them, and an attempt to demonftrate a propofuion, which is nearly felf-evident, fom.etimes occa- fions obfcurity. I have nothing further to add, than my fincere thanks to thofe gentlemen, from whom 1 have received fuch liberal encouragement ; a 3 and VI Preface and more particularly to thofe, who have fa- voured me with remarks, tending to render this work as complete and perfedl as pof- fiblc. THOMAS KEITH. Londeriy 21th September^ ^79^' The C O N T E N T S. The Contents of Part I. and II. follow in the fame manner as in the COMPLETE PRACTICAL ARITHiMETIClAN.- THE CONTENTS OF THE APPENDIX^'- THE nature and formation of the Logarithni^ page i: A Jhort and eafy rule for the conftruSlwn of Logarith?ns^ . either common or hyperbolic^ tllujt rated by examples 4 The ufe of a table of Logarithnn — """ 7 To find the logarithm of a FraB'ion — ——8 To find the logarithm of a Circulating Deci?nal ib Two or more nmnbers being giveny to find their produ^ by logarithms — — — 9 T^o find the quotient of one number by another^ by loga^ rithms — — — — 1 1 To involve a giv£n numd>er to any power — ] 5 To extracl any root of any given power — jg The application of logarithms to Compoufid Inter ejl 22 The conjiru^ion of Table I. being the amount of il. from 'I to 40 years^ at 3, 3f, 4, 4^5 and 5 per cent. ib. The conjirutlion of Table ll. being the amount of ll. for The conftruSlion of Table III. being the prefent worth of ll. for years — — — ib. The conJtru5}ion of Table IV . being the amount of I /. per annum^ or annuities for years — 23 The \\\i The Conten-ts of the Appentdix. 7 he conf.ni5iiQn of Table V. hc'ing the prefent ivorth of \L per annum-t or annuities for years — 23 The conJlrvMion of Table VI, being the annuity which li.' will purchafe for any number of years — ib. ihe life of Table I. II. and HI. — — 33 The uf of Table IV, and V. — ^ '31 The tfe of Table VI. - — _ 32 I. De?nonJ}ration of the method of proving j^ddition^ hy cajiing out the 7jines — — — 34, II. DernoYiflration of the method of proving Aiultiplicatiouy by cajVing out the nines — — 35. III. Demon/haticn of the Rule of Three — ib. IV. Demonp.raticn of the Rule of Five ^ i^c. 36 V. General princiyies and theory of FraBions 37 VI. ^emonjl rations of the rules of Circulating Decijtiah 40 VII. Demonfiratian of the ccnimon rule of Equation of Payments^ on Cocker's, Hatton's, and Moreland*s, or Burrow's, principle — — 42, 43 VIII. Demorifiration of the Rules of Fellowjhip^ by Air. Adamfori — — — 44 IX. Demorflration cf the Rules of Lrfs and Gain 47 X. Demonj'iration of the Rules of Alligation -. 50 XL Dejmnjlration of the rulei of Pofition — 51 XII. Deimnjlraticn of the rules in Arithmetical Pro- greffon — . — -- _« 53 XI II. Demoiifl ration of the rides m Geometrical Prc^ grejpon — . — ^ ^6 XIV. Demonjiration of the rules of Variations 61 XV. Demorijlration of the rules of Combinations 62 XVI. Demonjiration of the rules of Siinple Inter ejl^ by Dicimals — — — ^3 XVII. Demonjiration ^Malcolm's rule of Equation of Payments — — — ib. XV III. Demonjiration of the ru'cs of Compound Inter eji^ hy Decimals — — •— 64 xix; J The Contents of the Appen"dix, ix XIX. J general Demonftratlon of the rule of Equation of payments^ at Compound Interefi^ on Moreliind's or Burrow's principle \ alfo on Kerfey's, Malcolm's, Cocker's, and Hatton's — — 64 XX. Demonjlration of the rules for Annuities in Arrears^ at Simple Inter ejl — — — 65 XXI. Demonjlration of the rules for the prefent worth of Annuities^ at Simple Interejl — — ib. XXII. Demonftration of the rules for Annuities in Ar- rears^ at Compound Intereji — — 66 XXill. Demonjlration of the rules for the prefent worth of Aunuitiss in Arrears^ at Compound Interejl ib* BOOKS printed for and fold by B. LA\\''^ At No. 13, Ave-Maria-Lane, Price 3s. neatly bound, THE COMPLETE PRACTICAL A R IT H M E r I C I A N. CONTAl NING Several new and ufeful Improvements, ADAFTEB T© tHi V%t OP leHOQLI ANB r&IVATll TUITION. By THOMAS KEITH, Teacher of the Mathematics* * This work, which was underta'.cn with a vi6w to fur^ nilTi a complete fyltem of Pradicai Arithmetic, for the ufe of Schools, contains more ufeful rules and obferfationa than are to be met with in any fyftem of Arithmetic ex- tant, of double the fize and price ; and thefc rules are fucceeded by near two thou (and ufeful and inftrud\ive Examples; bcfides a variety of Bills of Parcels, Invoices, Bills of Exchange, &c. &c. — The nature and praftice of Circulating Decimals ; and the rules of Lofb and Gain,, Fello".\fliip, Exchange, Sec. are here thoroughly confi- dered, and treated of in a different manner to what tluy have hitherto been. Books printed for B. Law, Price IS. 6d. bound, A SHORT AND EASY INTRODUCTION TO THE SCIENCE O F GEOGRAPHY. CONTAINING A concife and accurate defcription of the fituation, extent, boundaries, divifion, chief cities, &c. of the feveral^ em- pires, kingdoms, ftates, and countries, in the known v.'orld : with the ufe of the terreftrial globe, and geographical liiaps. Sec, DESIGNED FOR THE USE OF SCHOOLS AND PRIVATE TUITION. llluftrated with the neceiTary engravings, and an accurate map of the world, including the modern difcoveries. The SECOND EDITION, correded and improved. By THOMAS KEITH, Teacher of the Mathematics, Sec, ^^ The favourable reception which this little treatife has met with from the public, has induced the author to re- vife the whole with the greateft care, and to make fuch alterations and additions as h,e conceives will be a mean of rendering this edition more extenfivelv ufeful than the former. ^ OK S PRINTED F R B. L A W, THE ACCIDENCE, or FIRST RUDIMENTS OF INGUSH GRAMiMAR, defigncd for the ufe of young Xadies. By ELLIN DEVIS. The Sixth Edition, ^with confiderable Additions. Price AS. 6d. MISCELLANEOUS LESSONS on fynonimous Exprcf- ?fions, defigned for the ufe of young Ladies. By ELLIN DEVIS. Price 2s. 6d. A PRACTICAL ENGLISH GRAMMAR, for the •ufe of Schools and private Gentlemen and Ladies ; with Exercifes of falfe Orthography, and Syntax at large. By the late Rev. Mr. HODGSON, Mailer of the Grammar School in Southampton. JFifth Editioa, with Improvements. Price is. 6d. A NEW SYSTEM OF READING : or, THE ART OF READING ENGLISH, praaicrlly exemplified in almoft every word in ufe : and farther illuftrated from the beauties of tl:ie whole Bible, arranged under different heads, according to the moral virtues therein recommended, or vices reproved ; with every word accented, and rules for placing the accent. A f)ltematical arrangement, on a plan fo entirely new as not to bear the lealt refemblance to any thing of the kind hitherto atiemptcd by other Grammarians : and, by the help of whic , pupils, whether F^nglifh or F'oreigners, may be taught to read Englifh in one-tenth part of the time ufually devoted to that purpofe. By Mr. DU MITAND, Author of a fimilar Syftem for reading French and oth«M- grammatical works ; Teacher of Greek and Latin, anA of the tciip 'ncipal turopcai living tongues. Pxicc 2s, K E TO THE COMPLETE PRACTICAL \ R I T H M E T I C I A N PART NUMERATION. FORTY-NINE.—Seventy-five.—One thoufand and feventy-five. — Three hundred and feventy-eight. — Four hundred and thirty- fevcn. — T hree hundred and live. — One thoufand and eighty -feven. — Forty-feven thoufand, three hundred and eighteen. — Seventeen thoufand, three hundred and forty-nine. — Ten thoufand, eight hundred and feven. — Three hundred and fourteen thoufand, eight hundred and fifteen. — One hundred and feven thoufand, and forty-eight. — One hundred and forty-nine thoufand, three hundred and eighty- feven. — One million, feventy-eight thoufand, four hundred. — Thirty million, one hundred and eighty thoufand, and feventy. — One hundred and eight million, three hundred and feventy-four ihoufand, one hundred and eight. (2.) 89. 750. 5,007. 10,087. 20,005. 685, .^60. 1,500,001, 27,365,000. 585,748,305. IT,000-f-I,J03 fji = 12,111, 50,000,0004-50,000-1- 5,coo + 50 =^ 50,05^,050. B Simple Addition, Subtraction, kc. SIMPLE ADDITION. NL>t. Answers. (I.) 26038 (2.) 180212 ij.) 1673039 {4.) 86S6587 (5.) 29S295769 NiTM. Answers. (6.) 6898970405 (7.) 2079^-501 (S.) 81 Peterborough, 132 Lincoln, and 173 Hull, SIMPLE SUBTRACTION. KuM. Answers. (I.) 8087801 (2.) 280007 (3.) 299S86 . (4..) 212201 Num. Answers, (5-) 33892 (6.) 45396 (7.) 4835656 (8.) 1344138 (9-) Chriil: came into the world 4C00 years after the creation ; hence 4000+ il^9=S'1^9 Y^^^^ ^^"^^ ^^^ creation. (10.) 89 years old, 62 years I (11.) 34 years, and 46 years, fincehedied. — 1789. | (12.) A + B + C won 97 B + C won 6q A won 37 B -j- C won B won A + B + C won 97 A f- C won 62 B won 33 C won 60 35 25 SIMPLE MULTIPLICATION KuM. Products, (1.) 942694650 (2.) I ' 144SC221 (3.) 1R8194972 (4.) 28,^674870 (5.) 223C84518 (6.) 343353-^oo43 (7.) 297r949749<^ Num. Products, (8.) 42378429339 (9-) 5;H937H3o (10.) 40872864296 (it.) 179245888S - (12.) 2639559272 (13.) 989830464 (14.) 8172S6228 Part I. Simple Division. Num. Products. Num. Products. (15.) 1132497912 (57.) 1 8765700000c oco {16J 472087728 {38.) 191 69700000 (17.) 302020848 (39.) 15463500000 (18.) 244512951 (40.) 28610266500000 (19.) 3276600516 (41.) 93807952920000 (20.) 684S734752 (42.) 23190200250000® (21.) 62244248^:^8 (43-) 330043 (22.) 10139541C480 (44.) 4459128 (23.) 2072213S22625 (45.) 8235460800 (24.) 320021 195962 (46.) 26156958360000 (25.) 556321146764 (47.) 2400355079025000 (26.) 17681 97301755 (48.) 137829543416436 (27.) 269510713983 (49.) 152415787501905210 (28.) 17529177479355 (50.) 1 21932631 11 26352690 (29.) 17464274403363 { 51 ) 86439657760572480000 (30.) 26885596435656 (52.) 777'5 (31.) 260232989070535 {53.) lolhort {33.) 287523274925880 (54.) 160010532 i33') 2734390884446865 {^^.) 40 difference (34.) 2r20503567i869797 {56.) 17624 fum, 76945744 (35.) 16651582419409925 produd (36.) 21153742978114592 SIMPLE DIVISION. Num. Qjjot, Rem. Num. Quot. Rem. (1.) 874671172—1 (18.) 35685129—126 (2.) 157116523—2 (19.) 10823637 — 12 {3.) 101776234— I (20.) 4760566—38 (4.) 1408142S— 3 (21.) 364993—43 (5.) 28341563— (22.) 407294 — 1080 (6.) 70534296—3 (23-) I3I95133--1S42 (7.) 38588S1342-7 (24.) 125139201 I3CIO (8-) 4597301659—6 (25.) 269577255S82 — 5561 (9.V 7 100057 147—9 (26.) 14243757748— 35411 (10.) 3400653124—10 (27-) 15395919— I22I4 (ii-) 3925476122— II (28.) 3COOICOO 6347 {It.) 2859/3914-9 (29.) 131809655 104990 (13.) 272202735—12 (30.) 300335575 — 273118 (14.) 5203802—61 {31.) 9948157977—81605 (15.) 11805558—53 (32.) 101489 62899 {16.) 39096821—64 (3 3-) 15655794—9075 {'7') 34297^82—58 (34.) 2667376—42700 B z S I XI r L E Division. Num. Quot. Rem. iSS-} 16871651—2944 (36.) 4C24416— 263149 (37-) 8909748—722934 (38.} 7264348958— 125715 {39.) 93191497743— 95257 {40.) 4087692937— 381715 (41.) 7943859—39 {42.) 1 19092— 12348 i)348 97 (5^0 2)194 97 471 greater J I by 77 lers 5 note 6tli. Num. Quot. Rem. (43.) 59085714—84 (44.) 1258127— 1578— s {45-) 123456789 (46.) 123456789 (47.) 714007 14374 (48.) 937143718740 149-) 1924530—652547 {50.) 119191753— 90107 (52.) 865 ,5J-) 942 (14.) 8117119^^865^ Tto'niJ+Tr4'-i^5-=4^4 Anf. ider. Then 5889454-237 = 589182 A I '<^5 4 c = 237 remainder, 1185 X 497 ^ 58694I niwer. ^56.) i^ I 2 2)144 a dozen dozen 6 S64 fix dozen dozen 7 2 half a dozen dozen 792 difference. (57O 17^493745-^759 gi^'es 2:5946 for the quo- tient, and 731 re- mainder ; hence 731 —5001=231 exceeds, Anfvver. Parti. Compound Addition 8c Surtr action. KuM Answkrs, COMPOUND ADDITION, M. Answers. 509 a. 2 1. 1 8 p. 4797 a. 2 r. II p. 403 a. I r. I p. 12.) (3.) (4.) (5-) (6.) (7-) (9.) (10.) (II.) (12.) US') (»4.) ('5.) (16.) (17.) (18.) (19-) (20.) (21.) (22.) (23.) (24.) (25.) (26.) (27.) (28.) £' 779 976 1709 567 684 205 223 240 d. H o 10 4 5 3 12 6 » I 10 si 8i 23821b. 1 oz. i6d\vt. 41290Z. i9dwt. 20gr. .4621b. 907.. i4dwt. 407 oz. i4dvvt. 5gr. 51 1 lb. II oz. 3 dr. 35280Z. 6 dr, I fcr. 3J02 dr. I fcr. 18 gr. 464 lb. 5 dr. 3833 ton. 7cwt. iqr. 3030 cwt. 1 qr. 27 lb. 370 qr. 151b. looz. 347 lb. 7 oz. 6 dr. 471 yd. 2 qr. 1 n. 484611. Eng. 2 qr. 3821 ell. Fr. 4768 cll. Fl. 2n. 489 lea. I m. 6 f. 4487 fur. 35P- 5y^^s. 47 08 p. I yd. 644 f t . lb. c. Nu (29 (30 (3' (32 (33 (34 (3S (36 (37' (38, (39' (4a (41 (42 (43 (44 (45 (46 (47 (4B (49 (50 (5^ (52 (53 (54 (55 (56 m 5P- 3209 tuns. 27 gall. 5422 p. 57g^^l- 2qt. 460 tier. 29 gall. I qr. 297 gall. 2 qt. 249 B.B. I fr. 6 gall. 323 A.B. 2 fr. 3i(foAhhd. 46gal. iqt 522oBhhd. 4gal. 2 qt. 529 ch. I b. 2 p. 3200 ch. iqr. 7 b. 3842 qr. 6 b. 2 p. 409 f. i2ch. 19 b. 4299 yrs. 8 m. 2 vv. 525 m. 4d. ii27d. 2 hrs. 50 m. 4444 hrs. 23 m. 50 f. X.2490 16 si £' 397 I 4t /•1729 19 3 >C- 551 15 3 £•^^^1 7 9 1241b. 10 oz. 3d\vt. 37 cwt. oqr. 17:5:1b. 255 yds. 1 qr. i n. COMPOUND SUBTRACTION Ni^M. Answers. £' s. d, (r.) 800 18 9^ (2.) 3254 19 ii,i (3-) 75 o 8f (4.) 497 ^o 71- Num. Answers. (5.) 26 17 c| (6.) 30 II IOy (7-)^ 34 13 9i (8.)* 32 13 'i In this Example, fo. ii^-j £, read 747/. B3 Compound Subtraction, Num. Answers, (9 (iO 2-) d. oi 3i £■ ■'■ lOJ I 474 J 9524 8 in all. 62223 3 mains to pa) 8073 19 4| out in all. paid 7i re- laid 63365 12 Lr re- mains in hand. (15.) (16.) (17O (18.) (19.) (20.) (21.) (22.) (24 (25 (26 {28 (29 (30 2464 16 lance. 3 lb. ooz. i^dvvt. 90Z. 17 dwt. 20 gr. 1 5 lb. 3 oz. 1 6 dwt. 20Z. 18 dwt. 21 gr. 791b. I ooz. 6 dr. 1 2 oz. 4 dr. 2 fcr. 13 dr. 15 gr. 81b. looz. 7dr. .) 12 ton, I7cwt. 3 qr. .) 2 cwt. 2 qr. 261b. .) 69 qr. 2 lb. 140Z. .) 1341b. i4'Oz. 13 dr. .) 134 yd. 2qr. 3n. .) i24cllEng. 3qr. 3 n. .) 96 ell Fr. 2 qr. i n. ell Fl. I qr. 2 n. Nu (3'. (32- (33- (34- i3S' {36. (37- (3«. (39- (40. (41. (42. (43- (44- (46. (47. (48. (49- (90. (51- (52- iS3' (54. (55- (56. (58. (59- (60.) M. Answers. 1 7 lea. 2 m. 6 f . I f. 34 p. 5 yds. 4 p. 3 1 yd. 2 ft. oin. 1 b. c. 2 r. 1 8 p. 2r. 34 p. I r. 26 p. 2r. 39 p. ;oa. 37 a. I a. 4a. 7t. 2hhd. 55 g. 67 pun. i4g. 3qt. I tier. I g. 3 qt. 6 gal. 2 qt. I pt. 1 A.B. 3f. 6g. 1 07 B. B. I f. 4 g. 221 A. hhd. 1 g. 3 qt. 63 B.hhd. 2 g. 3 qt. * 27 ch. ob. I p. 2ch. 3 qr. 2 b. 52 qr. 6 b. 3 p. 32 fcore, I ch. 13 b. 2 yrs. 1 1 m. 3 w. 127 m. 3 w. 6d. 147 d. 21 h. ^6 m. 79 h. 50 m. 5:4 fee. 3I. 9s. I21I. 17s. 0;^d. 1500I. 2S. 6d. Dr. 520I. OS. 5d. Cr. 980I. 2S. id. ba- lance. 1 80 1. II cwt. 1 2lb. J y. II m. o w. 6 d. 8 h. 22 m. difF.lat. 34° 35^ long. 165° i8^ * In. this Example the 74 ch. ought to be uppcrmoft. Parti. Compound Multiplication, See. COMPOUND MULTIPLICATION, Num. Answers. (l.) I 10 2 (2.) I 9 2 (3-) 2 o 5 (4-) -2 ' Si (5-) 3 2 8 (6.) 5 6 Hi (?•) 8 3 9 {8.j i6 8 7-i (9.) 22 13 o (lo.j 133 y^«' 3qr- 2n. (ir.) 138 oz. 9dwt. i2gr. (12.) (13-) ^-3 19 4z- (14.) 59 10 8 (15:.) 8 19 o (16.) 60 14 pi (17.) 208 13 9 (/8.) 154 12 3 (19.) 42 I 6 (20.) 123 17 9 fzi.) 819 6 o (22.) 82 lb. 8 oz. iS dwt. i6gr. (23O 75a. 3^- 39P- (24.) X.16 19 3 (25.J 19 10 81 Num. Answers. /. s. d, (26.) 12 18 A,k 14 8 (27-) 33 3 (28.J 83 2 (29-) ^37 7 3 (30.) 698 2 o (31. j 743m. i^d. 6Ii. (32.) 222 cwt. 1 8 lb. (33.} 15 cwt. 271b. II oz, 7 dr. (34-) ;^-343 18 7 (3S.) 2684 18 9 (36.) Z<^i 2 7i (37.) 257 12 4 (38.) 62 I 7i (39.) 15299 18 4 (40.) ^i 7 2f (41.} 344 o 6 (42.) 1364 o o (43-J 98 7 4f (44-) I 14 2 (45-) ?66 5 3f (46.) 17038 10 iii-| (47.) 12422 2 7^-J. (48.) 2875 o 7i (49.) 1292 I 6|.i (50.} 658 o \iy.x COMPOUND DIVISION, Num. Ans. Rem. ^. .. d. (I.) '3 9 I (2.) 15 19 9^—1 (3.) I II 5^—16 (4.) o 15 i|— 15 (5.) o 4 7I-- 122 (6.) 65 18 7i-,3_ (7.) 41 5 2 .>^ (8.) 9 ,8 3I--92 Num. Ans. Rem. (9.) 9 yds. 2 qr. in — I (ic.j 41 a. 3r. I p.— 5 (11.) 8 lb. 7 dwt. 15 gr. — 45 (12.) 7 cwt. 3 qr. 6 lb. — 30 (13.) 2Eng. ell, 3qr.— 107 (14.} 8ch. 13 b. ip.-||ij (15.) ioz.7dwt.9gr.~-|J| (16.JX1 17 6 (n-) o o 6^-^ 8 Num. Answers £.s. d. (18.) o 17 III (19.) 024 (20.) 7 j6 8| (21.) O O 5I: (22.) o o loj (23.J o 4 9i Compound D i v 1 s i o -x. Num. Answers. (24.) 1050— 175 -7- 150 = X.516 8 (25.) 10 oz. ijdwt. 4gr.-i^V (2f'.) I7cwt. 2qr. lilb. -^| (27.) 36 fl. ell, I qr. 311. -/j (2S.) 2a. or, i7i\-p. (-9) lb. oz. dw. gr. 2^)34 3 J I Hfilb. 30Z. i6dwt. 14^53 gr. wt. of each — . wedge. 12 26)99(3 oz. 21 20 26)43 1( 16 dwt. lb. oz. dw. gr. 02. dwt. gr. 34 3 II 14= 411 II 14 3f 171 24 26)374(i4gr. 114 m I 10 rem. 1234 14' 18 308 13 16I: Guineas 1 543 8 lof A nfwer 1 5:43 guineas, and 2 dwt. 6gr. over ; or 1 54314^ guineas. — For if wc divide 8 dwt. lOj gr. by 3I the quo- tient will be 2 dwt, 6gr. = H guin. (3C.) Admit the weight of the drofs and hhd. to be t, then the weight of pure fu^ar will be 13, and both together 14: cwt. qr. lb. Hence 14)7 3 14 whole weight 027 wt. of the drofs and hhd. 7 I 7 wt. of purefuL:^.r. Part I. Reduction, . (3'-) il. 3s. lo^^gd. the value of a fhekel, and i^6oz. lydwt. 1 2 o-r. wt. of a talent. (32-) AnAver REDUCTION. Num. Answirs. (1.) 1055. i26od. 5:04c f. (2.) I200d. IOCS. 5I. (3.) 380s. 4.56od. 1 8240 f. (4.) 1 1 55s. r386od. ^544of. (5.) 524.0J farthings (6.) 37249 halfpence (7.; 22736d. f8.) ^726 twopences (9.) ^767 threep. SjOid. (lo.) 2879 groau, n|i6d. 4006^ f, (11,) 4343 fixpences III,) 216 crowns, 432 half= crowns, loS'o Ihill. ai^ofijtp. i296od. (13.) 1493 s. 5975 ihreep. 7 1 700 f. (14.) 288od. 24CS. 12I. (15.; 74I. I OS. (16.) 100 guineas (17.) 105I. (18.) 2410 cr. 602I. los. (19.) 77760 groats, 25920s. 5184 crowns, 1296I. (20.) 282 of each {2f.} loi 1 69groats, 337235. 134H9J halt" crowns, 6744I cr. i6S6i^l (l2.) 9968 farthings (23.) 100320 grs." (24.) 14 oz. (25.) 184800 grs. (26.) 13841b. Num. Answebs. (27.) 23 pints, and 3 oz. i4dwt. over (23.) 42 tea-fpoons (29.) 7200 fcr* i4400ogrs. (30.) 204 oz. 17 lb. (31.) 86962 grs. (32.) 3cilb. 40Z. 3drs. iicr. (jj.) 69 of each, and jjgf. over (34.) 368801b. 14 tons lb. 30 t. 13 cwt. I qr. 312 lb. 4OZ, 131 cwt. 2 qr, 141b* 14625 cwt. 168 parcels - 853 common lb. 350 great lb. 105840 lb. (36.) 4207 (37 (38.) (39-) (40.) (41.) (42.) (45.) (4+.) (45-) (46.) (47.) (48.) (49-) (5^0 (530 27 II parcels 5024 nails 864 yards 78 f fing. ells 23940 nails 9996 yards 9160^- yards 36516! yards 3768 f. 1 507 20 poles 70 miles 88000 yd. 264000ft. 3 1 68000 in 9504000b. c. i« Reduction. NvM. Answers. Num. Answers. (5^0 m. f. p. f. 37 z 57 5 298 f. 40 1 1957 poles 16k 71747^6 ^^957 f978 6 197296 feet C56.) i74of. 2 1 71 miles (57-) 4755801600 barley. corns, or 1 008 qr. 1 6 cpt, 5268 b. c. (58. (59. (60. (61. (62. (64. (65. {66, (67. (68. (69. (70. (71. (72- (73. (7+. (75- (76, (77r 126720 times 12374 perches 108 acres 5726 perches 19 tenements 8064 quarts 13 tuns 4725 g'*^- 37800 pts. 970I half anchois 8 of each 14592 pints 15504. pints 297216 half pints 17Q0 gallons 1408 pecks 12 lafts 7200 pecks 2320 facks 31556935 feconds 30617316^ feconds (78-) 1789 4004 5793 years fince the 365-^ creation. 2115893^ days 24 50781438 hours 60 3046886280 minutes 60 182813176800 feconds (79*) 25395102 hours y. d. 1815 o 1788 89 (8c.) 10 Feb. 31 Mar. 30 Apr. 1 8 May 89 days (81.) 26 276 977 2| days ft. lb. 234 4 8 908 22 23)41976(341 507 156 lb. 26 22 30 16 '5 23 33 341 of each, and 331b. over. Part I. Reduction, (82.) For 5s. 4d. (as printed) read 5s. 4fd. II I. s. 58 14 d. 6 a each s. d. 5 4i 4 ' ■ s. d. I 8 6 4 57 12 20 1152 12 6 ople 11 I 1 6 parifii. 2 6=30 d* 013832 461 pe^ 4 1S44 people, in all, partook of the charity. (83-) lb. oz. dw.gr, lb. oz, dw. gr. 371421X18 — 657718 From which fubtradl the drofs= o 7 i 14 oz. dw. gr. 65 o 6 4 =: 374548 gr. 18 14 10 ' ■ 19 15 II 24 10 14 Then 374548^43297=811411 of 412 o each, or 8 of each, and 58 oz, 22 II 14 I3dwt. 20 gr. 90 4 i=43297|;rs. (84.) 365 d. 6 hrs. = 525960 minutes in a year. 500 X 100 X 525960 = ^.26298000000 the 500 men would count in i year. 2629 8000000 ) I, ooo,ooo.ooo>oQo [sS^ll^j years, Anfwcr. Rem. 676 12 R EDUCTION, (85.) d. h. / // d. h. 365 600 5 48 55 2)365 6 1S2 15 II 5 60 66^ 24 4383 hours 60 262980 minutes 60 665) 1 5:77880c (23727111 years Rem. 34; (86.) oz. dw. gr. lb. 07. 5)14 II 15! = : I i ivoird. 44-^ ) 1 2 in a lb. troy. . 6 ijf wt. of a halfpenny 5^w. lo^yygr. wt. of a guinea 15KI rs. difference (87.) I. s. d. 500 o o he left in cafh /. 84 10 6 y. S =i 422 12 6 in bills 92212 6 he left in all 120 + 20 == 140 o o his debts 4) 782 12 6 the refidue 1 95 1 3 1 1 the eldeil fon's (hare 4 )586 19 4 1 1 46 14 10 each of the other's fharc rsrtl. The Role OF Three Direct. 13 The rule of THREE DIRECT. If 2cwt. 3qr. 141b. : 61. 14s. 2d. : : I2cwt. 3qr. : 29I. ijs. (2.) If I2cwt. 3qr. : 29I. 15s. : : 2 cv/t. 3 qr. 141b. : 61. 148. id. (3-) If 61. 14s. 2d. '. 2cwt. 3qr. 141b. : : 29I. 1 js. : I2cwt. 34r. (+•) If 29I. 15s. : I2cwt 3qr. :: 61. 145,24!. : 2c\vt. 3qr. 14 lb, (S-) If 1 12 lb. : gl. i6s. :: i lb. : is. 9J. (6.) If lib. : jjd. : : 561b. : il. 63. lod, (7-) ]f jlyds. : 2I. i6s. ^d, :: 28Jyds. : 23I. 2S. oid. |, If40guln. : 56 yds,:: 1135-1. los.; 1514yds. p 201 SFIcin, eils, 2qr. (9-) From the 14th of May, 1 780, to the 1 1 th of December, 1783, are 1 306 days. If 28 days : 25s. :: 1306 days : 5SI. 65. o|d. ^ (10.) If IS. 6d. : I w, : : lool. : 1333^ ^* = 25 yrs. 8 m. i\ w. (II.) If III-. 5s. : 22oqrs. (ir 55yds.) : : looguin. : 2053jqri ==410 Eng. ells, 3jqrs. (12.) 1. s. d. 30 quarters coft 76 17 6 150 ^ 361 II 8 gain 20 !lfi8oqrs. ; 458 9 2 : : i bu. : 63. 4id. J|* 14 The Ruli or Three Direct. (.3-) If I ell : 7s. 6d. : : 27 pieces each 34 ells : 344I. 51. (14O If il. : los. 6d. :: 475I. los. : 249I. 12s. pd. (15.) If 53cwt. 2qr. 51b. : 18I. 143. 9|d. :: i lb. : -'d. (16.) If 2547I. 14s. 9d. : loooiguin. :: il. : 8s. 2jd. 4^||.f| (I7-) If47i4l. IIS. icd. : 117]. 17s. 3id. :: il. : 5H ||HH (IB.) If 4714I. IIS. icd. : 235I. 14s. 7d. :: 350I. 14?. : 17I. los, (19-) Ifil. : 9d. :: 350I. 14s. : 13I. 3s. ojd.-j- (20.) If I cwt. : 2I. 14s. 9d. :: i4hhds, each 17 cwt. i qr. 141b, ; 282I. 1 25. ii^d. (2..) If 1 todd : 17s. 6d. : : 2 cwt. 2qr. i4ib. : 9I. 3s. 9d, (22.) If I cwt. : 5I. 5s. 4 : 157 foth. each 19^ cwt. : 16072I. 17s. 6d. to which add 5I. 5s. the fum is 16078I. 2S. 6d. the whole expence of the lead. Again, If 1 57 foth. : 1607SI. 2S. 6d. : : I lb. : i i^d. :rtKi Anf. (23.) If I oz. : 3I. : : 14 ing. each 31b. 11 oz. 15 dwt. i3gr. : 2C06I. I2S. 9d. (24.) If4s. gd. : I yd. :: 722I. : 3040 yds. = 2432 ells Engliih, which divided by 76, gives 32 ells Eng. in each piece. (2v) If 4 tons lefs 64 gall. : 247I. i;§, ;; j gall, : 5s. z^d. f*. Part I. The Rule of Three Direct, ij (26.) If I yd. : 17s. 9^. :: ii'ji yds. : 104I. 5s. -jld. value of the broad cloih, which deduced from i 24I. gives 19I. 14s. 4td. value of the baize. If 5 yds. : liyd. : : 11 7-'- yds. : 35! yds. of baize he bought. If 35|yds. : 19I. 14s. 47^.' :: i yd. : lis. z^d. ^'y the vaitie of a yard of baize. I. s. If I hhd, ; 12 guin. : : 59 tuns : 2973 12 The freight - - 47 i «> Loading and unloading 7 10 Cudom - - 24 o Charges of the cellar 3 3 Prime coft of the wine 3055 15 The gain 150 o 3205 j; If 59 tuns : 3055I. 15s. : : 1 gall. : 4s. i *:d. -jV/^ prime coft of 1 gallon. If 59 tuns : 3205I. 15s. : : i gall. : 4s. 3id. ||f|hemuft fell it per gallon. (28.) Firfl 1 5 ells Eng. zqr. 3n. = 3iin. 311 X 15X7X5 = 163275 nails. If ^yds. : 4I. 7s. 9d. : : 163275 nails : 8954I. 12s. 3i'^d. (29.) If 2^ hrs. 56m. : 36odeg. each 691 miles : : i hr. : 1045 miles, 3 ^y^ furlongs, the inhabitants upon the equator are carried per hour. Again, If '23 hrs. 56 m. : 360 deg. each 37 m. 2 f. 37 p. 5t ft. : : 1 hr. : 562 ra. 18 p. 8 yds. lift.^Y* ^^^ v^^- bitants oi Londofi are carried per hour, {30.) ^^ 3 + 3 + 3 + 2 =z II. If II : 225I. los. : : 3 : 61I. ics. A, B, and C each If 3d. : 61I. ics. :: 2d. : 41I. Dpaid. C 2 %6 The Rule or Three Direct, d. '^-^ I 20 -f- 3 = 40 1 20 -7- 2 ~ 60 If I ood. : 240 eggs : : ^d. : 12 eggs. Anf. Tlie eggs cofl 1 00 Fir/?, While the hour-hand gees once round, the minute- hand goes 12 times round, therefore the minute-hand gains J I rounds eery 12 hours. If II r. : izhrs. : : 2 r. : 2 hrs. loj-ymin. hence the hands will be together loj^ minutes paft 2 o'clock. SecoAaJj, While the minute-hand moves 5 minutes, the hour-hand moves -j^^j of a minute, then 5 — ^K- = 4,\ minutes, the minute-hand gains of the hour-hand every 5 minutes. If4/jm. : 5m. :: I5ra. : 2 7y\min. hence the hands Vrijl be 1 5 minutes (or 90 degrees) apart at 27-j\. minutes pafl 2 o'clock. 77?/>i//y, If J I r. : 12 hrs. :: 3 r. : 3 hrs. i6/,-min. hence the hands will be together a fecond time at 1 6/1 minutes paft 3 o'clock. (33-) IfzG.lps. : 3H. Ips. :: 3G.Ips. : 4l:H. Ips. Here 3 greyhounds' leaps are equal, in diftance, 104!: hare's leaps ; hence every 3 leaps the greyhound took he gained ^ a hare's lenp, for while the greyhound took 3 leaps, the hare took 4. IfiH.Ip. : 3 dps. :: J 44 H. Ips. : 864 G. Ips. Anf. s. d. (34-) I. s. d. If I p. : If I yd. : 4 S •• 3 7 • : i7sop. : i749y^s. : 3S6 9 2 ' 3^3 1 3 Shipped for Jamaica goods to the value of 699 1 6 5 I. s. d. L s. d. trig. : o 6 9 :: 47f g. : 161 6 o^ Ificw. : 3 15 7 :: 2-hd, each 7CW. 3qr. 151b. : S04 9 Jt-i^ Received frcm y<7'/rff;V^ - - - 9^5^52 A 699 16 5 Balance 265 18 9 v'j Part I. The Rule of Three Direct. 17 (35.) Ifiw. : 32I. 15s. :: 52 w. : 1703I. yearly expences. 3780 -T- 9 = 420I. land-tax. 3780 — 1703 -f- 420 divided by 20 = 82I. 17s. charit. dona. If I d. : il. IIS. 6d. : : 365 d. : 574I. 17s. 6d. pock. ex. Whole expences 2780!. 14s. 6d. this de- duced from 3780!, leaves 999I, 5s. 6d. he lays up at the year's end. (36.) s. d. g. I. s. d. t. hd. g. If 3 7 : I :: 571 i 8 : 12 2 37|| quan. of wine bought If 7 6 : I :: 419 no: 41 47^^ quantity of wine fold 8 o S'^zl^T quality of wine loft. (37-) cwt. 1. s. d. cwt. I. s. d. If I : 14 19 7 : : 22i : 337 o 7^ 90 cwt. Is, d. cwt. If I : 12 17 6 ; : 17-;- ;f-427 7^ : 222 90 I 10^ £-312 I lOj cwt. If22i- : If 17;- : 1. s. d. oz. 427 7I : : I 312 I o| : : I d. 9I. 675 T s. d. If 5 6 : (38.) g. 1. s. d. ; I : : 41 14 6 : gall. 1 5 i-f\ of rum and water. 84 of rum. ^Vtt of water put in. C ) I 5 1 K V 1 » £ E P R O F O R T 1 O v. (39-) guin. If 47p. : 21 X 2 : : 62 p. : 55^9 guinea! worth at 17I guineas per hhd. guin. I^ 55tU- : i7t X 2 : : 65g. : 43I. 2». 3id.i°. Anf. (40.) If i7cwt. 3qr. lolb. : i6cwt. 141b. :: ilb. : 140Z. 7/,/^5^dr. which fubtraded from ilb. leave loz. SJlf f dr. loit in every pound. If lib. :'Sid.-f i^d. :: I7cwt. 3 qr. lolb. : 81I. 3s. 4id. the tobacco ftood him in. If i6cwr. 14.1b. : 81I. 3s.41d.-j- lol. los. :: ilb. : is.cd. -Jiilhemulllellitpsrlb. INVERSE PROPORTION. (2.) If 20m. ; 6d. : : icm. : i2d. (3.) If2S. : Soz. :: 2S. 6d. : 6oz. 6]^ dr. (+■) If 3 m. : i8oof. : : i m. : ^400 f. Then 5400 — 1 8co =: 3600 foldiers. Anfwer. If I yd. ^qr. : jyds. 2qr. :: :Jyd. : 24iyds. Then a+^yds. + :| yd. = 25iyds. Anfwer. (6.) If 20cl. : 12 m. :: 150!. : 16 m. (7-) If 22 yds. : 220 yds. :: 40yds. : 121yds. If 1 m. : 72cm. :: 5 ra. : 144 mCD, which dedud^ed from 720, leaves 576 men, Anfwer, Part I. T H E R u L E OF F I V s. 19 (9) If (^ox. ; 7 colts. : : 2 ox. : 5-f colts. If 7 colts. ; 87 d. :: 5-^ colts. : 105 days. Anfwer. (10.) yds. If i;Jyd. : 1000X2!: :: |yd. : 4166yds. 2* qrs. (II.) From II Dec. 1786, to May 10, 1787, are i^o days. From Sept. 5, 1788, to Chriftmas, 1789, are 478 days. If 91 g. : 150 d. . : 661, 13s. 4d. : 214^! days. 478 — 2i4|§ = 263^Vdays. .1 If 661. 15s. 4d. : 2633-'od.. :: 4ol.^^438|-J days, hence A is the perfon obliged , and mud lend Bij.ol. for438i-5-days. (12.) IfiSIb. : 100 ft. :: z+lb. : 75 ft. The rule op FIVE, (3-) If 7 m. : 1 2d. : 126 a. 7X12X72 = 6048 dividend. 16 m. : * : 72a. 16 X i zS = 2016 divifor. Then 6048 -7- 2016 nj days. Anfwer, (4-) If4it, : iSm. : 15I. 12s. (=3123.) 4JxiSx42o=:34oio dividend. * t. : 72 m. ; 21I. os. (—420s.) 72 x 312 — 22464 divifor. Then 34020 divided by 22464— I ^i^^ll ton. rr It. locwt. iqr. 4lb.-|-'^ (;•) Ifiool. : 12 m. : 4I. 100 X 12 X 20 = 24000 dividend. * : 19m. : 20I. 19 X 4 = 76 divifor. Then 24000—76=315^51. = 315!. 15s. 9id.-j|- Anfwer, (6.) 1 1 cwt. 2 qr. = 1 288 lb. 15 cvvt. I qr. 22 lb. = 1730 lb. and 61. 14s. 2d. = i6i6d. If r 2881b. : 150 m. : i6i6d. 17301b. : 64m. : *d. 1730 X 64 X 1616 z= 178923520 dividend. 1288 X 150 1= 193200 divifor. Thenr78923520-rj93200=926TVAV=3l»i7S'2iVTV'Anf 20 Uniffrsal Proportiok, (7-) IfiSySfol. : 336 d. : 702 qrs. a2 536 x 112x702=: 1771S70464 div, 22536 fol. : ii2d. : *4rs. 1878x336 iz 63100S divifor. Then 1771870464-a- 63 1008 :r 2808 fcldiers. Anfwcr. 100!. — 240c d 144I. 14s. 9d. — 34737 d. If 2400 d. : 365 d. : 5I. 34737 x 495 X 5 r: 859740-5 dividend. 34737 : 495 d. : *1. 2400 X 365 rr: 8760)000 divifor. Then S5974075-T-876C0001Z97 j^£^.7^1. - 9I. i6s. 3id.-f|f Anf. (9.) Ifiztaylors : 7 d. : 13 fuits. * taylors : 19 d. : 494 faits. 12 X 7 X 494 =: 41496 dividend. 19 X 13 = 247 divifor. Then 41496 -r- 247 = 168 taylors. Anfwer. (ic.) If ICO m. : 2s. 6d, : 20I. * m. : IS. 9d. : 7I. 100 X 30 X 7 = 21000 dividend. 21 X 20 r:: 420 divifor. Then 210CO — 420 zz 50 men, Anfwer. UNIVERSAL PROPORTION. Ifi261K : ioorr..Vs\^ 6s. 126 X 100X21 = 264600 dividerul *lb. : 750 m. rN 21s. 750 X 6 = 4500 divifor. Then 264600 -^ 4500 = 5S4lb. Anfwer. (3.) feive dtviillhd. If24mea. : 3s.4d,Ly(i6m. t 6d. 24x40 (=3^- 4«I0 X48X4=i8432o * mea..:2s.8d.^^48m. : 4d. 32(^=23. 8d.) X i6x6=::307zdivifo^> • ferve Then 18432c -7- 3072 =60 mcafurcs, Anfwer. Part I. Universal Proportion. 21 (4-) eat If 3600m. : 35 d. : 240Z. k^ I quantity. * m. : 43 d. : 140Z. rS 2 quantity. eat 3600 X 3^ X 24 X 2=:6o48ooodividend, 45 X r4~63odivifor 'ihen 6048000 -f- 630 zz 9600 men. Anfwer. If36coom. : 24 oz. : 35d. k>^ i quantity of bread. 4800m. : * oz. : 45 d. rN i (the fame) quantity. eat -3600 X 24 X 3 5 =3024000 div. 4800 X 4? == 2 1 6000 divifor. Then 3024000 -r 216000 z: 14 oz, Anfwcf. (6.) coft If 150ft. : 3ft. : 40m. Kr>3l. 5:4X 8 X 25 X 3=32400 divid, 54 ft. ; 8ft. : 25m. rS*l. 150X3X40=18000 divifor, coji Then 32400 -r 18000 = i\^%\*zz il. i6s. Anfwer, (7.) If lool. : 365 d. y^ 5I. 1627I. 103.: zijd. ^'^ *\, gain 32550 (=31627!. los.) X2I9X5 = 35642250 dividcnJ. 20C0 ( — locl.) X 365 =r 730000 divifor. Then 3 5642250 -r 730000 = 48 ——-1. zz 48I. i6s. 6d. Anfwer. 73000 (S.) 3yv.l3. -^qr. 11 I5qrs. Ss. gd. n 105 d. 257yds. 2 qr. rr l03oqrs. • c.Ji 1? 15 qrs. ^^^^ I05d. 1030x105 — 108150 dividend. I03cf qrs. ^^S *d. Then 108150 -i- 15 .-=: 72iod. — 30I. 8:, 4d. cofl (90 drink If 336 m. : 4d. : i pt. : 30]. k^ 20I. ' 250 m. : *d. : i^:pt. : 24I. rS 500I. drifik 336x4X30X500 zz 20160000 dividend. 2 50 X I i: X 24 X 20 =: 1 80000 divifor. Then 20160000 ^ 1 80C00 zz 1 12 days. Anfwer. 2 2 Universal P r o r o r t i o n» (10.) - (iig a trench If^-^Sm. : 5d. : johrs. k^ 5 deg. : 70yds. : 3 w. : 2d. s4om. : 9 d. : lahrs. j^^ 6 dcg. : * yds. ; 5 w, : 3d. dig a trer.cb 24CX9X I2X 5X''CX3x"- — 544320CO dividend. ■ 55<^X5Xiox6x5X3 = i5i2cooaivifor. Then 5443204,0 -j- 1512CCO zr 36 yards. Anfwcr. (II.) huild If 96m. : 48 d. k>( 1 wall. *m. : 384 d. KS I wall. huild 96 X 48 rr 4608 dividend. Then 460S -T- 384 zz \i men. Anfwer. (12.) I cwt. = r 1 2 lb. il. 17s. 4d. = 448d, ccji If 1 12 lb. k^ 448d. J lb. rS * cofi 448 -^- 1 12 z: 4d. Anfwer. (I3-) hatter domon Ifi2C. : iSpo. : 1 hr. k^ i caftle. 9C. : 24 po. : *hr. rN i caftle. halter doixin 12x18 = 216 dividend, 9 x 24 — 216 divifor. Hence tl:e nine 24 pounders would batter down the caftle in the fame time. (140 eat If 1 2 ox. : 4 w. k^ 3 J a. 21 ox. : 9 w. ri * a. eat 21 X 9 X 3-] =630 dividend, 12 X 4 = 48 divifor. Then 630 -^-48 = 13^ acres, 21 oxen will eat in 9 weeks, admitting the grafs does not grow ; but by the queftion 21 oxen will eat only 10 acres in 9 weeks; therefore, in (9 — 4 = ) 5 weeks, 10 acres by the growth of the grafs are ecjuivalcnt to 13I acres; hence 131 — 10 :=l ^\ acres, the Parti. Reduction op Vulgar Fractions. increafe upon lo acres in 5- weeks. Now the real quantity which 12 oxen eat in 4 weeks without any increafe was {^ acres ; hence the /mvc" of increafe upon 24 acres is only If 10 a. 24 a. (18 — 4zr)i4weeks. Again, h/crea/e pv. k^ 3ia. 4W. rS * a. 24 X 1 4 X 3i = 1 050 dividend, 10X5 — 50 divifor. Then 1050 -^- 50 =1 21 acres, the increafe on 24 acres in 14 weeks; hence 24 -f- 2: =45 acres, the whole quantity of grafs which is to feed the required number of oxen 18 weeks. Therefore, eat If 12 ox. : 4 w. k^ 3|a. * ox. : 18 w. rS 45 a. eai 12 X 4 X 45 rr 2160 dividend, i8 X 33-21:60 divifor. Then 2i6o-r-6o = 36 oxen. Anfvver. Note. This queftion may be folved by feveral different methods, but I apprehend the above Iblution to be the moft intelligible that can be ^iven, for thofe who uuderftaiid Arithmetic only. REDUCTION OF VULGAR FRACTIONS, (^0 (3-) (4.) (5.) (6.) (7.) (8.) (9-) (10.) Common meafure 3 Common meafure 6 Common meafure 9 Common meafure 375 . ai6 ^ Anfwer. 1080 540* 410 41 Anfwer. 10)-^ — ZZ-^. Anfwer. '510 51 5) rr — . Anfw. ^745 349 i?) zz--^, Anfw. 9747 361 •^'7143 2381 T26 (la.) 14 ir — . Anlvv'cr. 9 (13.) 15 = ^^' Anfwer. 3094 (14.) 34ir . Anfwert 3 (15.) ^-5^ = -^ ro3 Anfwer. (16.) 149 J — . Anfwer. 24 Reduction op Vulgar Fractions. 94^ 375'^- -375+ 94 _o7:^^ Anfwer. y9 99 99 (i8.) 543 _ i74;4^^ccc — 174^4 + '-^1 _ 174938^^49 .., 99999 5^999 99999 (190 473... ^- 9. (20.) 1 6106 - - 1 - 80 ^ = . Ani wer. ' ^' 9 (21.) ^ = I. Therefore 7 7 -J = 78. Anf^ver. (22.) 97vV Example is ivorked* (23-) ^5 )4790 I ^9^U = '9^1* Anfwer. (24.) )o8 } 1 5 12 { 14. Anuver. 999)37S9+i( 376 -9W Anfwer. (26.) 349 ) 374517+ ( ^^ll^i^y' Anfwer. (27.) T'i'/V Example is fJJorheJ, * Should the reader not immediately comprehend the manner in wliich this and the following Example are worked, he may confult Note 6th, p=gc 40th, of the Complete PraQlcal Arithmetician. Part I. Reduction- of Vulgar Fractions. 25 (28.} (29.) ^t_ = --S.= -i^^^ := ^\ =-^^-. Anrwcr. (50.) ; " I 5 5 (31.) 1789 'V^ SHXi7^9 9^9546 (32.) 394^^ _ 'IV! __^9^!i>l7i9_ 2 80985^0 894)!^-"' VtV 643333x^9^^89967' (33-) TZv'j Ex a '■/■pic is njoorkciL (3+-) 4 9 lOI 13 4;. 2 ;< 101X13 IC5C4 41 ^ 41 X 4^ ''41 l6Sr ^ ^ -— X— X~T. X -'^rr : ~ — -— . Anf. no 19 /p'8 7 110x19X12X7 175560 12 (36.) l^X ^ y, -J-^- X ^^z^ "9 X j; X3 X 7 _ 50J S S^ ^c < — - — , — — » and ^ . 4032 4032 4032 4032 (43.) J. —A. 11j —III fi_ _il^ i 5J" _^ 15 "105' 94 ""470* 89|~7i7' 5f~~93* 105 . 470 . 717 . 93 denominators. 94 • 717 • 93 94 • 239 . 3; 5X3x7X94x239x311^73126830 the leafl: common denominator* 105)73126830 470)73126830 717)73126830 93)73126830 696446 1555S9 101990 786310 4 171 512 128 278 5784 num. 26605719 num. 5221S880 num. 100647680 num Hence the new Fraftions in their lowefl: terms are, 7857S4 26605719 52218880 1006476.80 ■ and 73126830 73126830' 73126830 73126830 Had I not reduced thefe Fradlions, the refult of each numerator, Scc» would have been 45 times greater than it is. * To find the Icaft common multiple of two or more numbers, or to find the leaft number that can be divided by two or mo.e given numbers without a remainder. Rule. Divide the given numbers by any number that will divide two or more of them v/ithout a remainder, and fet the quotients, together with the undivided numbers, in a line underneath j divide this fecond line as before, ahd {0 on till there are no two numbers that can be divided, then the continual products of the divifois and quotients will give the multiple required* D a x. 28 Reduction of Vulgar Fractions. (4+0 3X3X7X2 = 1 26 2X5X7x2 = 140 1X5X3x2= 30 1x7x3X5 = 105 J New numerators. 5X3X7X2 = 210 Common denominator. "5 Hence t!ie Fraftions are — -, — - 210 2IO - — , and 10 210 (45-) 4 9 _36 8 _2SS 5 7 _35 8 _28o_ 7 9 03 8 504. 9 7 63 8 504 ._X^:rii25 7^63^44^ 524^9^76 Hence th. S 03 504 8 03 504' ^ 504 504 Frafljons in their loweft terms are 0576 7^4" 1S9 2S8 2S0 i^4i 5C4' 5^* 5-4' 5^4* {46.) This Example is nvorhd, (47-) This Ex an: tic is 7 7 24 60 6o ^233600. , . ^ -^ X-^ X— X-- X—zz:^^ feconds. Anfwcr. 71 I I 1 I 71 - (84.) — X -7- zi: of a hhd. Anfvver. 13 63 bi9 ADDITION OF VULGAR FRACTIONS, T'Z/y Example is -•« . Anfwer, 39299b3z 4of-^=-i., JorIl=^L, 4of^=^-l. £^ 5 15 4 I 4 $ I 2 3 2 2 4 15 4 ^5 60 60 Addition of Vulgar Fractioj:*. (6.) 9 ^ i ^UL —112] ffi ^11 "* 8 -176- 2 '76 {7-) 5 176 bSo Sto s. d. 41. = II ii-/f is. =: o 4T -id. — o ot-il Sum 1 1 6i;-i\ (8.) I. s. d. ^ of ll. lOS. s= I 2 6 ~ of 5I. los. = 017 6 3^0 of icoguin. = 220 Sum 420 (9-) oz. dut. f lb. tr. = 2 8 ^ oz. tr. zz o 2 J Sum 2 lOv- (10.) 5 I 80—335 p«Tf — 9cwt. 1 qr. 6 J lb. AnC -^ X-^ =-^ells Eng. Jj x-^=: -ells Eng. 2 3 Then -^ -f - =-y- ells Ene. = 2 ells Eng. 4—- qr; 236" 6 (12.) I X T7oo = 450 mile. } X ^,Vo = Tjy^c mile. -A + :i':c + izhc = llMlmile = 3^"^- 25?. 37yo->-ds. rof¥=vf<- = r. p. ft. in. 2 20 3 7 Sum, 2 20 U yi^T Fart I. Subtraction of Vulgar Fractions. ^j (hO Jx-^-3 hhds. Then 3 + - = 3-^ hhd. =: 4 ' 5 5 226— gallons. Anfvver. 4 ^-^ X— = 20 budi. to which add -^ b. and the anfw^r i ' 7 20 -=^ bufliels* 7 (16.) 1 7 _ 7 J ' ' — ' J 4 I 4.5 24 ~" 120 ' J. 4- -j — ~-i = 2d, 2 hrs. Anfwer. 4. 120 3 12 (17.) JLx-ixiLii2d.-f x-^=id. ^41 4 8 gf 24 852 //^ 6^0 8 21Q ? 273 106339 1 iQi . /. 4 24 640 1920 "^80 SUBTRACTION of VUL.GAR FRACTIONS. (I.) T'^is Example is ^doorkcdt (2.) ■^-^4:=f' Anfwer. 34 Subtraction of Vulgar Fractions. (3.) 3 8 24* ^ 8 8 "-24* Then -7-^^=12 =3!. Anfwer. 24 24 24 24 97 776* H5tt 799<^* Theni^-ii^=i±llii. AnAver. 776 7990 3100120 (J-) (6.) II ^8 ^^8 ^^4 I 713 713 (7-) S6^ = 3^4— • Anfweib 15 ^15 (8.) m, 288 2 C18 ? A r Then — -^ — = cn-^. Anfwer* 5 45 9 9 (9-) -J- zz—. Anfwer. 8 5 40 (10.) ^ 7-5 — ' 7tt ^i — _ I o ;t — 7.T 9i-*- Anfwer* lof^zzl, Jof4:=i-^ II 9 99 5 8 40 rru 5 21 33761 „2o8r . - Then -^- + 9 =^^i-^ == 8 — -- . Anfwer. 99 40 39^0 3960 Parti. Subtraction OF V^ULGAR Fractions, ^p (12.) s. d. ■II ~ 15 o 4s. - o SH Anfwer 14 3^-^ oz. dvvt. 4 lb. rz 10 o 1 oz. n — 1 2 I- Anfwcr 9 - ^- (14.) — of -^ =z— lb. — ton. = 7 cwt, 2 qr. from which take !- lb. ;S 4 2 S 2 the remainder will be 7 cwt. i qr. 27-i-lb. Anfwer. Cv) 2 10 pt. gal. pt. |hhd. = 2S 1} i of -"- ~ -5- Anfwef 25 I (.6.) i X^ =-2 miles. -2 _ J =11 = , 1 miles. Anf^r. J 1 5 5 8 40 40 (•7-) -I of ~I— =— !^ days, -^of ^ of-r-, =z^ days. ^ 4 12 ^ 7 16 /^ 896 ^ r-T = — 7T^ = 202—7—0. =: 202 days, 12 896 2638 2688 21 hrs. 45 m. 32y fee. ^6 Multiplication of Vulgar Fractions. MULTIPLICATION of VULGAR FRACTIONS. T'.Js JixaTnjle is ivcrhd^ ' (2.) ~ X — = — . Ajilvver. 7 A^ 35 5 ^ xj^=^ - 252 4. AnAvcr. I ^^ 6 ^6 '6 111 il =1jS —111 — j^l Anfwer 27 '31 3 13 (6.) Anfwer, J X^ X-^ X^; xi- xi =^. Anfwer. $ 7 ^ / II I 308 4 (7.) 4__._3. 7j'-_!i.. 35s __ 424? ^" si ""4* 15 ""25' i29-j\ 15512* ^hen-lx^X-^=:-^. Anfwer. ? 3878 -^ X 1- X^' x^^ x^,^ =ii^^= 62-li. Anfw 5 II I ^^ $ 220 220 4 er. Part I. Division of Vulgar Fractions. : (9.) 7ft. 9 in. = 2^ ft. 3 ft. II in, = ^, eft. 3 in. = — . 4 II ^ -^ 4 31 xi-7 x^'zzl^ = i59r'- Anfwer. 4 (10.) 12 ft. gin. = ~, eft. 7 in. = — . ^ 4 -' ' 12 il^p-im=.,l. Anfwer. 4 - ^/ 16 '16 4 (ir.) r . • 160 „ . 30 1 7 ft. q 1^ in. = . Q ft. Q in. = ^. ' ^' 9 4 if xi'=i^=i73irt. Anfwer. 3 DIVISION OF VULGAR FRACTIONS, (I.) T/v's Example is ivorkcdt (2.) 16 7 112 cc . _ ^9 3 57 57 (3.) 3 CJ ; X -; = - . Anfwer. ~ ; X — =: — -> Anfwer. 37 7 259 E 3.3 Division of Vulcax FiACTiow*. I?; X ^=z^ = .-. Anfwer. (6.) 2 7/' X 1^=^. 7 7 An{v,tT (7.) • ■^X-^;xi: 7 9 $ 16 F28 . . X— =-T~' Anfwer. 3 (8.) 20 9 ' 8 II X -: X — ^ 3 __i76o (9.) = 6s-^^ Ar "! = ■? 1 54I ' 93A «.4763 8224* 239 7 ' 8224 X — z^ — 4763 1965536 33341 (10.) - = 58^'^^'. 33341 ?'A _ S6z 7' _ 568 95 ^045 H9f ^^95 281 239 Then i^i . yr^M. -tll31 - , ^!?I. Anfwer 209 284 (II.) r^Jx^i'; xix^x-l=i^=,-il. ;tnr. $ ^ gf ' I I 19 114 114 ^ 3 3 Parti, The Rule of Three Direct in, &c, fg (12.) 21 tc-i z=J, Tlien &; X -^ = 21. Anfwer. 4 4 4 3 (13.) •^ ; X — ^ = — ^. ' Anfwer. 12 108 1296 (14.) -~ ; X ~ X — X = -%-. Anfwer. RULE OF THREE DIRECT im VULGAR FRACTIONS. Tlis Example is I 1 quantity * deals : V f^* • i ^"- *^ i J wood. of 200 c'0'p;:^ K 7 5^ 4 6ccoo „ ,^ . - V^T^7' X ^^X~ = -^=857^?ft. Anf. (5.) coji If 1 3I ells : f yd. k> 5I guin, 33*: X| ells ; I X|yd. rN *guin.- cojl -ii-X-^X-^X-^X-7; X -^ X-^ = -^guin, 1= 4 i 3 4 i 27 3 486 ^ 2 15I. 1 6s. o|d.-||, Anfwer. (6 ) 'dig a tre7tch lf*4«m. : 5id. : iihrs. k^ 7^. : 232iyd. :3jyd.:2ivd. ym. : *d. ; 9^^^- ^ 4^1. : 337iyd. rsly^- = 3iyd. dig a treJ2ch X^ J^Zt 4 i^^X-rX— X — X^Xi3^x-^; X-7-. X — X I i I \ i t i a ^ E3 4* Promiscuous Questions in PROMISCUOUS QUESTIONS in VULGAR FRACTIONS. 3ofi=-d. Theni-r5=i. Anfwer. 0^3 3*9 3 (2.) s. d. 17 o I of Vs. = 14 2 3 of Vs. = 129 jf . 2 511 This fum multi- plied by 7 J gives 16I. 16s. 8Jd.-j. Anfwer. (3.) 47A 141 = Hll 62t'^ Anfwer. (4.) 1 1 200I. Anfwer. i!£ 2I_ = i?l the part I have left. 16 2816 2816 '^ 80c 16000 2012CO, , ■ J 1 .V 2010 1 44 yaluc of the part I have left. Parti. Vulgar Fractioks. (6.) loa =11. io(L =2i-. 8 7 56 II 19 209 Then i|+li=^, and ii|5_ ±L= J^llii = 45 2211 56 1 56 56 209 XI7O4 11704 43 .Anf As 6— d. » 2 i-td. (7-) work : ; id. ; — of the work A can do in x day. 13 work : : id. : — ■ J? ± X 'I 3 — d. : — work : : id. ; — Then j- A + -1. — _Li of the work they all can do In i day 13 17 10 2210 ' working together. Tr '5^3 , 1 , J , 2210 687 , , . If work : — day : : — work : — ZZ i days. Anf. 2210 I I 1523 1523 (8.) In the fourth line of this Example, /or A, B, C, D, and E, In ii days, read A, B, C, D, and E, in 12 days. days, work dayi 19 13 : IS .. — l» : — : : X ; I :-l 1 13 I : Then, "a+b+c+d+* A + B + C+»+E •* ' ■ 19 — yf^ A + B + * + D + E^ A + * + C + D + E 14 : — : : j : — J4 * +B+C + D + E > 44 Promiscuous Questions ii^ Then — ^ H 1 +• — z; — ^— ^ part of the work they 13 15 la 19 14 311220 would do in 4 * days all working together, tonfequently they would do 1 109233 109233 — of ^ or -— - part of the work b 1 dav. 4 311220 1244880 109233 1 I 1244880 43317 As — ^-—- work : — day : : — work : -^^ = ii 1244880 I I 109233 109233 days, the time in which they would all finifh the work. Again, 109233 20313 I244SS0 14 ~ I244SS0 "^ 109233 1 - 43713 1244880 1244880 1C9233 1 12 = 5493 1244880 12448S0 109233 1244880 1 = 26241 1244880 109233 I __ 13473 1244880 13 1244880 part of the work A could do In i day. B C D ^ E Hence it appears that B would finifli the work the fooneft if left to hixnfelf, the fra^iM^ii^ 6929241725 25615 fra^on required. (12.) Flrft, Let — reprefcnt the number of marbles in the ring* — of— = — A fnatchedoutofthe ring* 515 -I of -^ =: — B fnatchcd from A. « 5 ao at T — 1— — z: — rcmamdcr in A's hands* 5 20 4 •1 of -i =: i. C got from A. 5 4 20 J. — -^ =: — A had then left, 4 20 20 123 — — — n: — A left in the ring. 1 5 5 — of ~ := — E got. 12 5 20 3 1 II ^ «. . , — — — . — — D ran oft with. 5 20 20 2 Hence at the end of this fcuffle there remained with A —-, with B 20 — , with C — , with D — , and with E — 20 20 20 ao J*art I. Vulgar Fractions. 47 Second, -Z- of — =: — A and C fnatched from Dt II 20 20 20 20 20 100 -i of -Z = -Z-. B got. 5 20 100 2. ^ 20 7 28 -^ = E got. 100 100 ^ + _L zr -^ B had in aU. 100 100 33 100 II 26 = C had in alt. 100 100 i-of II ,22 2 ^ 100 100 2 2 12 . -\ — A had in all. 100 20 100 — — — 13 B had in all. 100 100 100 Hence at the end of this fcuffle there remained with A , with 100 ^20 . , « 26 . , ^ 20 , . , ^ 22 B , with C — — , with D , and with E ♦ 100 100 100 lob Third, J , 22 2 ^, 22 2 20 — of = Then = E had left. J I 100 100 100 100 100 12 2 14 1 — — A rr ■ A had, after receiving — of E's. 100 100 ICO II 3 ^ 26 6 _. 26 6 20 J. of = Then = C had left. 13 100 100 100 100 100 ^14 6 20 5 '■ ■ ■ + — ZI ■ A had, after receiving ~ of C*s. 100 100 100 *' 13 Heace after their difpute was thus fettled, there remained with A - 100 with B , with C — , with D , and with E : fo that 100 100 100 100 there might be loo marbles in the ring at firft, and if fo, each boy put in 20. This queftion is unlimited, but the above folution is the molt natural that can be given, at leaft in tiiis place. 48 Addition op Decimals. ('3.) , 11 of — =: 1^ left the elder fon ; -i— li ^^ — the remainder. 79 I 79 I 79 79 35 44 _ J540 of:^ = 79 79 6241 left the younger fon. 3S r542 -.|l£i left to both the fons. 79 624.1 6241 -i «- 12£i — iiL rcfidue allotted to the Vfldow. I 6241 6241 U ^ iil2 = iii2 of the Eftatc worth 500I. 79 6241 0241 If IliiE. : 5£?1. f. I22!e. : 7901- 4S. oJd..ti what was 6241 I 6241 * 49 allotted to the widow. If 4^'e. : i^l. : : -^E. : 25471. 6s. iiW.-l the value 6241 I I •' 49 ef the whole Eftatc. If 4w. : 57-l-yds. : 12/^ ft. : ifb. ccj} 4w. : 57-l-yds. : 12/^ft. : if b. L^ 342II. . 4w. : 34|yds. : ii^ft. : 2^b. KS *l cojl By working this ftating, the Anfwer will be found 308I. 4s. 2|d..|||f DECIMAL FRACTIONS, ADDITION OF DECIMALS. Num. Answers. (i.) This is do7ie at length, (2.) 27-2087 (3.) 88-76257 X Num. Answers. (5-) '835-599 (6.) 397*547 {7.) 31-02464 Prirt I. Subtraction, &c. of Decimals. 49 SUBTRACTION of DECIMALS. Num. Answers. ( [ . ) This is done* (2.) 51-722 (3.) 2-7696 (4.) 1571-8; (5.) -6946 Num. Answers, (6.) -89575 (7.) 603-925 (8.) i379'25922 (g.j 99'7o5 (10.) 17-949 MULTIPLICATION of DECIMALS. Num. Answers. ( r . ) This is -ojorkcd at length, (2.) Ditto. (3.) 26-99178 (4.) 10376-283913 (5-i 2'7S?39^"^65 Num. Answers. (6.) '020621 1250 (7.) -28033797099 (8.) 175-26788396 (9.) -00043204577 (10.; 215-67436625 CONTRACTED MULTIPLICATION of DECIMALS. (I.) This Example is ivorkcd at length. (2.) (3.) 54*7494367 475"7io5<54 357427-4 4946143- 21899775: 142713 3S32460 19028 109499 476 21900 285- 274 ^9 16 4 2^8*67756 62-525 5^ Division of Decimals, &c. 3754-+078 ^75437' 262S08546 11263223 1501763 187720 26281 2253 2757-89786 (v) 4745*679 9454-157 332^975 23728+ 4746 1898 237 19 4 3^66163. DIVISION OF DECIMALS. (I.) T^is Example is 'worked. Num. Quot. Rem. KuM. Quot. Rem. (2.) 487-74—37378 (3-) •13956—583 (4.) 1918;!. 528—696 (5.) -004735—0 (6.) '01666, &c. — 640 (7.) -006944, &c. 680 (8.) i-36832?i7— 3425 (9.) 12976*8062 — 474 (10.) '004958x31 — 69466 CONTRACTED DIVISION of DECIMALS. This Example is inorkai at length. (i- (3-: (3 80C06 . 8864 495'783i69)i7493«407704962(35'2843 14-7 261990 662 14008 65 41S2 5 216 18 3 Part I. Reduction of Decimals, (j i (4.) 5-476 56 i8)98'i874^7poco( 1 1 '5834036625 i34aiS-lL^ 494525720 (5.) 706976300 28S5I3560 14-7349 5)47i94-375457(3202-8S6a 2989529 4^539 13069 lie I ICZ 2 34216706 310459 56161 5303 ai; 47 IlEDUCTION or DECIMALS. T/:is ExaiTiple is ivothd. NwM. QuoT. Rem. (2 (3 (4 (9 (6 (7 {« (9 (10 ; .•57142^—4 ) '0041152263 — 91 ) 'IS ) '20835, &^c.— 8 ) 15-38461—7 ) •^241379— 9 ) -026178010471 — 79 ) This Example is do?ie, ) -37291666, &C. 1. Num. Quot. (ii.j -0062^1. (12.) ii'9- 12 7-818181, &c. 20 4-65 1 51 5, &c, •2325757, &c. I (13.) •12968751b, (14.} -05 oz. (15- 50Z. 4 dr. = •3281251b. avoirdupois. Now i lb. avoir- dupois = 6999-5 gr» troy. _. "■ 6qqq*c •328r2c „ „ Hence -^-^ H^ ^= '39873453 lb. troy. Anf. 5760 (16.) •168751011. Aafwer, (17.) -•6339285714 cwt. Anfwer. F a 52 Reduction of Decimals. (i8.) 51b. I oz, 3dw-t. i3grs. =: 33685 grains. Then 33685 -^ 6999*5 = 4'8i 24866061 86 lbs. avoirdu- pois, which divided by 112 lb. give '04296863 cwt. the decimal required. Nu (19. (20. (21. (22. (23- (24. (25- (26. (27- (28. (29. (30. i32' M. Answers, Num. Answers. ) -3125 yards. ) '55 ellsEng. ) '0084359217 miles. ) '48125 acres. ) 'C099206349 hhds. ^33') I qr- 23 lb. 3 oz, 13-44 drs. (34.) 3 cwt. 2 qrs. {3S') 15*04 drs. [36.) 6dwt. 4-32 grs. ) '1 171 875 chaldron. (37.) 1-2 n. } '07472051165 hrs. (38.) 2qr. i-5n. ) -12251. (39.) i4p. 2 yds. 2 ft. 5 in. ) -2685 acres. i'i2S b. c. ) -10:051136 miles. (40.) 2r. 22 p. ) This Example is nMorked. ) 15s. I|d, -2 } 9-o522d. (41.) 30 gall. 3qt. i-968pt. (42.) 156 d. 12 hrs. i-^ m, 5 if. 36 thirds. ) 7s. loid. (430 '475 20 f. 9-500 *375 add .b. 9-875 12 d. 10-500 4 f. 2-000 9s. lo^d. A (44-) •75' £ ft. 2-255 3*036 •573 add. . in. 3-609 3 b. c. 1-827 . V 2 ft. 3 in. i-82 7b. c. Anii Part I. C I » c o L A T I N o Decimals. jj 'AS-) 3 fur. 2j p. (46.) 4cwt. 3qr. 41b. 1 1 cz. 4*224drs, (47.) 3Cwt. 2qr. 261b. 12*8 drs. - (48.J 70Z. i4dvv't. 2i'6grs. CIRCULATING DECIMALS, ___ 3 I 135 5 ~" _ ^ _ ^ , an I ^ _ ^^^^ _ ^^. .^ 6 2 , 162 6 , 769230 10 9 3 999 37 999999 ^3 999 39 99 i^ (3.) ' 999999 ^43 ' 99 ^^ 142857 1 (4.) T^i^/V Example is luorhd, ,,38. =IiizLi2=Iii=±; 7.54,3.= mirZi - ■ 900 (;oo 37 990 746S_ 3734 — 7 ll2; 043'54' = ^^^^4 — 4 _. 435° _. 990 495 495' '^ c^yc^GO 99900 ^9 . .„..,> ^ 3754—371 _ 3379 _ 49 666 ' ^7 i4 — ^^ — ^^^ .— 37 ■^- i 990 990 330' ^^^^^—999990 333330 F 3 ^4- Reduction op (6.) Tor '7' 5', read '75'; and/c/r '4'5', read '45'. Th^ . / — ILZLl— ^— 11. .4V8' = lli^=^=:— " '^ 90 90 45' 990 990 217 , 93 — 9 S4 7 47543 — 47 — ; •093' — ^zr rr — ; 4*75'43' n: ■ 495 9C0 9-0 75 ^ '^^^ 9990 ^74 134 .^^.o,., _ 9S7--9 _ j6?_. ~ — r- rr 4—7- j •oc9b'7' zr rr -7 ; 1S5 185 99000 16500 90 so (7-) ^his Example is ivorkedm (8.) )2I0 3 ~2-f-3-T-2-r2 771^-76' ^^'"^ 16 =rS =:4 =2 = 1. Here the denominator vanifhes after four divifions ; hence the decimal will be 21C £nite, and conf.ft of four places, viz. — iz •1S75. ^This Ix- 1120 ample is the fame as the firft in Mr, Bcnrycajile'^s Arithmetic, page 154, third ed tion, where, by inadveitency, he makes the decimal infinite, and to confift of fix circulating fijjures. 4')-4- =— i tlien /iibo 290' {9-) -7- 10 290'^ 290 — 29. 29 ) 9999» &^c. to 28 nines. Here 28 nines are made ufe of be- fore o remains, and the denominator has been abridged once 5 hence the tlcc'mal wiil c.nfift of one finite decimal, and 2S pure repetends, viz, -It- rr •co'344Sz75S62o689655i724i3793i/ IIOO (10.) \ 12 T Firft, 12 — =-. /132 II J I ) 99 ( Here are two nines made ufe of } hence tlie decimal will b& J2 infi.iite, and confiii of two pure repetends, viz. — - r: •c'9'. Parti. Circulating Decimals, ^^ Secondly, > 80 _ lb V 1T5 "" 27' '^7 ) 999 ( Here are three nines made ufe of before o remains j hence the decimal will be infinite, and confift of three pure repetend>, 80 VIZ. m s'92'. 135 Thirdly, 9") — — — . Then yi35 15 8 a^u„_ -^ 5 15 = 3 3 ) 9 ( Here is one 9 made ufe of, and the denominator has been abridged once, therefore the decimal will contain two places, one finite, , .... . 72 the otner mnnite, viz. zz "\V» 135 Fourthly, -^. Then f ^ "^"^ ^^ '^.! "^* 8544 8544 — 4272 — 2136 — 1068 zz 534 = 267. 267 ) 9999, &c. to 44 nines. ( Here the decimal will confift of 5 finite decimals, and 44 pure repetends. Fifthly, 3)'-^=^; thenV "' "J ■'/792 264' 264 ~ 132 ~ 66 — 33. 33 ) 99 ( Here the decimal will confift of five figures, three finite, 255 and two infinite, viz. zn "12JQ'6'% 792 ADDITION OF CIRCULATING DECIMALS. ('.) 77'/V Example h nuorked^ (a.) D'ljfimilart S'lm'ilar. Similar and Conterminous* 67-34'5' — 67-34'5/ = 67-34'54545/ 4545 9«6'5i' =: 9'65'i6' rr 9'65'i65i6' 5165 •2'5' — •25'2' — •25/25252 ..... 5252 17*47' = 17-47' = I7*47'77777' 7777 •5' =z -55' — -SSS'SSSS' 5555 I'he corrcB fum gs'^^' '^9^4-7' two to carry, 55 A D D I T r o N o p (3-) DiJfi>nUar, Sitr.'ilar. Similar and Cc7iternnnous, •4'75' = •47547' =: •47547547' — • 5475^ 3-754'3' — 3'754'3' = - 3*754'34343' •— 4343 64-7'5' n 64-757'5' — H"JSYS1^1S' •— 7575 •5'7' = .:75y = 'SlS'-^SlSl" •— 5757 i7'88' = •i78'87' =: •i78'S7887' .... SS7S Sum 6q'742'o3ii2' three to carry^ (+•) DlJfrrMar. 5 nilar. Similar ar.d C'^v.tcrmimui. •5' = •55' = •55'55555555555' •— 555^ 4-37' , = 4-37' = ^-hi'iiiiniiiii' '• in 49*45 7 = 49 •457' . = 49'45'7 57 5757 575?' — • 575 •49' 54' = •49 54 — -49-54954954954' .... 954 •7-345' = •73'457' = •73'45734573457' .— 345 55-62'0978c43-^5C-3' three to carry is-) DiJltr.Uar. Similar. Similar and C»nt€rrr.irBUS. •l'75' ~ •1/51 = •I7'5i75»' •••• 7517 4*-5'7' \ — 42-57'5' = 42-57'57575' — • 7575 •37'53' — •57'5: s' = •??'53753' •— 7537 •59'45' — •59%5' = •59'45945' •••• S459 3 75V 3-75 4' = 3*75 45454 •— 5454 Sum. 47'4-''544Si' three te carry^ (6.) Dijfnilar. Similar, 1 65- 1 'C- 4' ri i65'i6'4i' 147 -oV — 1 47 -040' 4-9'5' = 4-95'9' S4-37' — 94-37' Similar end Conterminous, n i65«i6'4i64i6, See* zz I47«c4'c40404, See. — 4-95'959595i- ^^- — 94-37'777777, -^'C 4-7'i23456' — 4-7i'234567' — 4-7i'234567', &c. •"aw 4i6'25'42S76i, &c. * If thefe Girculatirg Figures were made conterminous, they ;v:.uld .■^un cut to 42 p'aces of pare repetcr.d. 5 for the left common mukiplc of th - number of figures contained in each circulating decimal (by the Ruk, page 27th, o.'thisKeyj is 42. Thus, The iff, 2d, 3d, 4th, 5th, Ciicu'aring decimal Confiftsof2)3 ,2,2,1,7 piacs of pure repeteads* Then 2 X 3 X 7 — 42,—— The aLove f^iution is carried far enough for acy pra(^ical p urpofe» Part I. Circulating Decimals, ^-j SUBTRACTION of CIRCULATING DECIMALS, (I.) ^'^is Example is njoorked, (2.) Di[Jlm'dar. Similar, Similar and Contcrmlnsus* 47-53' = 47-53' = 47*53'33' .— 333 i-7'57' =: i7S'77' = i-75'77' —• 577 ■D'ff' 45*77'55' one to carry* (3-) ViJJimtlar, Similar, Similar and Conterminous, i7-5'73' = i7-57'35' = i7-57'35' •••• 735 34-57' = H-57' = i4-57'77' •••• 777 Diff* 2*99'57' one to carry* ■ ■! ■ (4-) ^ijjlmilar. Similar and Conterminous* 17*43' = 17*433' •••• 33?- iz-345' = 12*345' •••• 555 Diff, 5-087' one to carry* Is'-) Dijffimilar, Similar, Similar and Conterminous* l-i27'S4' = i*i27'54' = i*i27'54754754754' ••• 73^ •47'3S4' = •473'247' = *473'S473S473S47' — 3^4 •653'70oi62So907' (6.) DiJJlmilar, Similar and Conterminous, 4-75 = 4750' •••• 000 •375' = '375' •— 555 DiJ^, 4*374' one to carry. 58 Multiplication or (7-) VifftniUar* Simlar and Conterminous^ 4-704 rr 4*794o'oo' .... 000 .J7'44' ~ •i744'74' •— 474 Pif. 4'6i95'25' one to carry^ DljfitnUar, Sml'ar amd'Corterminout* J-457' = 1*45777' •••• 777 •3754 = '3754° •►" ^^^ t>lg. i-og2<;7' (9.) D'ljfmilaf* Similar. Similar and Cttitermncuu J-49'S7' = i-49379'37' = i-49379'37' .••• 93 •J47S zz '14750' "zz .147 5000' .... 00 Dlff. 1-3462/37' .-. 9S MULTIPLICATION of CIRCULATING DECIMALS. {•■■) This Example is ^jL'Gfked, (^-> (.3-T •3754' 4-753' ^4*75 7-437 18772' ... 2Z 33273' ..• 35 26z8i'i ... TI 14260'© ... 00 i5oi7'77 ... 77 i90i3'33 .. 33 3754'444 ... 44 sne tc carry^ 33273'333 — 33 5-537S05' 3 5 '3 50540' ^r.etoi Part I. Circulating (4.) 66 88 2Z 92 1 1 6' 2i4938'8 12282222 prod, '014523727' one ^0 curry. (5.) -14752' •1497 303125 ... 55 i3259o'o ... 00 58928'88 ... 88 14732'222 ... 2'2 Prcd- 022054136' one to carry. (6-: 337890' .. i5oi73'3 •• 37543'33 •• 262So3'333 .. 00 33 33 33 •268397290' one to carry* Th^ next Example is iccrked. IS printed No. 6, by niijlake, (7.) zdpericd, •37'54' — 754 17-43 ii2'64' ... 264 i5o'i9'o ... 190 262'83'28 ... 32S 37'54'754 — 754 ^•5445'37' one to carry. Decimals. (8.) 59 zd period, 4*73'5' "• 35 7-349 42 6 1 '8' iS94'i'4 i42o'6'o6 33i4'7'474 .. 181S .. 1414 .. 0606 •• 7474 34«8ooii'3' one to c-Hrry, (90 id period. 4.i'42857' ... 142857 • 1797 29o'ooooo'* 372'857i4'2 290'cooco'oo 4i'42S57'i42 000 857 000 S57 '74447'i4-iS5' tne to carry* (10.) zd period, 7'H'93' ••• 493 5-43 2144'So' ... 4S0 2S59'73'9 — 739 3574'67'46 ... 74^ 38-8209'66' one to carry. (II.) zd period, .40'705' ... 0705 7-345 203 525' l62'820'2 35^ 820 I22'lI5'2I ... 152 284'935'493 «.• 549 2.98978'742' one to carry. (12.) Thii Example is ivorked. * See the note to the rule, p. 42. 6o M u (130 1-475 1-754' LTI P L I C A T] [ON OF (MO 173-715 ■ 3-7545' • 9)5900 9)86.8575 6555' 7375 10325 1475 2.5S7805' 9650S3' 694860 86S575 1216005 521145 652«2226i83' (»50 •37504 •7153' 9)112512 i25ei3' 187520 37504 262528 Prod. '26827861 3' (16,] 5-" 534 •^735' 9)287670 319633' 172602 402738 57534 Prcd. -99553453' (170 (20O 9)262451 291612' 187465 262451 Prod* '28411362' 54; (18.) ^I'li Exatrfle is iccrked* (19O *Tl''is Example is worked* 4-7157 3-754 3-7 540;rfuWJ ^^' 37 35^8 new divifor 5-716 ) "3482622 new dividend Rem. 730 (...) quotient •4'5678' ) 17*34200000 ( 37*965, kc. 17342 new divifor '45678 ) i7'34i82658 new dividend Rem. 17388 G 3 65 Division or. Sec, (12.) quotient 1 V^j*;' ) '374530000 ( -26309, &c. ' 37453 new divifor 1*4234 ) '374492547 new dividend Rem. 10241 (13.) .- this Example, for I3*5'j69533', read iS'S^'^S'iSS'y '^'^ i^e Example is ^worked right. ^his Example is ^worked. This Example is <^csrked. (16.) This Example is ivorked* (17.) For 357V, read'SSl'i'- Then -357'-*'-= •357'^72'* and 49'5'735'. = 49'573'557 quotient 49'573'557' ) 'SSl'^l^' ( -0072, &c. 4957 35 new divifor 49-568600 ) 'S'il^}'! new dividend Rem. 34308 (18.) S — ^ SS' , '555 ) '1 5400000 ( 'i-]7AT quotient Rem. 41 5 Part I. Practice. "3' ^ 'Si's' quotient 5 3 new divifor '^O '33° new dividend Rem. 1 9 i 6^ (20.) The divifor nxjants a point before it. Then '7' = •7^7 77' quotient •7'777' ) 4'5'732' ( 5'8799» &c. 4 new divifor '7777 ) 4*5728 new dividend Rem. 177 PRACTICE. This Example is nvorked. Num. Answers. d. U (3 (+ (5 (6, (7 (B <9 (la (II (12 ('3 o o 17 7 8^ TT'M /f ivorked, IS 12 5 3 31 7 29 43 . 77»;V is ^worked, 29 5 2t Num. Answ (14.) I (I?.) 16 7 (16.) I 7 (17.) 66 7 (18.) 23 13 (I9-) 8 7 (20.) 27 6 (21.) 13 S (22.) 32 ^5 {23.) 74 3 (24.) 3 12 (25.) 3 3 ERS. 1 1 n li lot 1 lol- 68 P R A Num. Answers. NUM £. s, d. (26.) 85 14 7i (68. {^7-) 35 15 4j (69. (28.) 19 iO Ji (70. (29.J 47 3 Oi (71- (30.) 9 16 33. (72- (3I-) '5 19 ' (73. (32.) 11 5 Hi 74. {33.) 171 II lO^ (75- (34-) 53 4 iij (76. (35.) 49 18 8 (77- (36.) 25- r4 II J (78. (37-) 167 2 7i (79. (38O 63 13 lOX (80. (39.) ,85 15 6 (81. (40.) 275 6 oi . (82. (41.) 19 II I (83. (42.) 15 3 loi: (84. (43.) 19 12 6 ^ll' (44.) 160 3 ii| . (86. (45.) 217 6 il (87. (46.) 227 16 9 (88. (47-) 283 13 3t^ (89. (48.) * This is ivaried. (90. (49.) 16 H 4l (9i-> (50.) IS 8 Hi (92- (51.) 31 J ^o. (93- (52-) 37 5 3f (94- (53-) 278 7 7i ■ (99- (54.) 32 17 8i (96. (55.) 28 17 6 ■ (97- (S6.) 339 5 4f (9^- (57-) 22 8 3i: (99- (S8.) 289 14 3i (100. (59-) 232 8 9, (lOI. (60.) II I li (102. (61.) 306 14 it (103.; (62.) 24 10 lOi (104. {6i.) 33 4 (105:. (64.) 251 9 4i (106.J (65.) 392 ^6 9, (107.J (66.) 34 9 6a (108.J (67.) 265 13 »i (109.J * lo-tbis Example, ^ 'or 4576, Answers, £' s, d. 10 I 6 10 II 4 12 o 18 15 S 11 5 12 3 35 27 428 371 28 44 293 37 29 38 47 39 42 32 455 33 33S 44 545 549 40 ,51 689 532 69 493 483 367 lOt 3t Ik I I J. II O II 11 15 16 4 2 17 2 17 10 5 8 4i 2+ 10 oi o t si 3 2 4i T 10 18 4 4 ^ , 10 ,_ Ti6;> /V 'worked* 47 10 o 56 17 350 16 447 o 536 14 144 J 8 2165 3237 172 436 .256 06 4 6 o 14 4 ^7 read ^7 $6* Part I. P R A T I C E. 69 NUM . Answers. , , /• J. d. (no.) 2^9 14 (IM) 371 5 {n2.) 2992 16 (1 13.) 674 18 (m4.) 444 12 ([15-.) 35:2 {116.) This isiuoyked. [W].) This is rworked. (n8.) 82 10 (n9.) 160 4 10 (120.) 616 (lii.j 237 6 8 (122.) 192 (I23-) 495 11 (124.) 841 14 6 (125.) 78 I 2 (126.) 213 9 (127.) This is ivorked. (128.J This is ^worked. (129.) 3091 8 (130.) 1910 13 (131. j 1370 16 ('32.) 3833 10 (I33-) 2349 6 (^340 J82 18 (135.) 2764 16 (136.J 1043 (163.) 1. s. d. 4 'I 9 6 , 27 10 6 3 qr. lb. 82 n 6 2 ^ 4 II 9, I - r 2 5 10^ ^ 7 , \ I 2 I'i ° 4, ^ 5 81 -2^ 3 3i -28^ 91 I • o| -53^ Num. Answers, ^. - ^. (I3-.) 900 (138.) 877 4 (I39-) 691 4 (140.) 1632 3 (141.) 2348 8 (142.) 1023 {143J 1333 i^ ('44.) 580 18 (Hi--) 894 18 (i,6.j ' 7461 6 (147O This is ivorked* (148.) 2702 17 o|- (149O 10023 18 7J: (^50.) 1906 8 it (i?i.) 1940 ^ w^ (1,52.) 81637 15 3 (I53-) 4004^9 13 loj (1 54-) 105668 4 4I: (I55:-) T^/> is ivorhed. (156.) 13B5 9'-f (157.) 24309 8|-i (158.) 4125 4 8 1 (159-) 22799 4|-.'- (r6o.) 11247 '5 lol-i (16..) 8732 13 3 1^. (idz.) This is nvorked. (.6+0 I. s. d. 2 ♦ 8 S lb. I n 3 4 4 i- 44 13 4 Add 5° 3 2;--,4^,&c. < o o 4^- '142, iScx. Sub. 037 '28;, &'c. Anf. 44 9 8|. -714, &c. 10 o 161^ P R (165.) I. 5. d. I I A C T 1 C fl, (.68.r qr. lb. 1. s. d. 2 oi II 12 5i 36 11 9 38 3 3J-I (166.) lb. i6i I. s. I 18 9 10 19 7 6 6J:'7i4, &c. S;^ '214, Sec, o 6 2|:'928, &-C. Anf. 19 I 5|: '071, &c. (167.) cw.qr.lb. 10 o I. s. 14 15 4 J oz. 5 16 2 18 ' 9 o 8 o 2 O I o o ^i , -5 3i-5 of '62; Oi -812, Sec. 3 '453* &c. 10 15 o^ '640, Arc. (169.) 1. s. d. o 4 11* 6 d\v. gr. 2 c o 12 To I 9 9 12 t7 17 9 o II 51-8 •9^ 18 7 6^-7- dw 10 o 8 10 o o 33 I 9 7 7 10^ I 16 11^ 'J I o 18 si -25 o I 10 '725 o o 7I -687, &c. (170.) s. d. 7 6i 5i-4S '43 7- ^ 3 7 5i -95 7 7 •l62,&C. ■ ■ ^— « Part I. P> R A C T I C E. (11 I.) ' (' 72.) 1. S. d. 1. s. d. 3 II 9iXi 2 11 9 X ; 10 10 35 17 8^X7 2i 17 6X2 10 10 ' r. p. 3S8 17 I 2 i 258 15 5 16 - ' i8ii 7 1794 5 5, 5 251 3 Hi 02 51 IS dw.gr. 3 11 9t I 4 12 18 9 10 JL I 19 ioi-5 i I 5 lof 4 I T H 4i 52-4 16 "5 2 4; -83* &c. 7l*o^ A 1-58, &c. &c. 1877 3j-i:2; 2051 13 10 -92, 10 9 -97; (■73 (174.) 1. s. 4 10 - 1. s. d. 10 3 II 10 8 4; ■■ 5 , 28 14 8 r. p. 12 2 i 22^ 4 10 2 p. 344 16 f IO[ * ■ - - - i? 3 ii 10 1 2 229 10 2 9 2 1 4 «0| •! 10 c J. 4 i I 2 r 6 9i 2 1 T lOj •! 2 348 14 'i7 233 ^ iri 71 P R A C T c 6 i o 3 i o i i yds. 8 411 4 25 14 12 17 6 18 6 I I 5 15 6J-25 qr. n 2 o 1 o o 2 c t. s. d. 17 91 8 I£>| 4 5i-5 IS 61-25 458 o si '25 (176.) qr. n. 1. s. d. 1 i.il I II 9^ 12 19 I 6 10 190 15 o 7 18 III 7 i^i '^ 199 I lol -5 qr. n I 2 (1770 3 19 lit 4 15 19 4 4 63 19 o 3 19 ii| 9 iii*25 3 31*875 69 3 -125 (178.) s. d. 10 2 1 To -L 349 174 17 8 10 9 . 10 6 18 4i qr. n I 2 1 I 3 ± 1 I. s. d, III 6 I c • 6 10 6 551 11 IO-5; 18 4i artr. P R A C T I c E > yds. 47 S 4- (»79.) qr. n. 3 2 5)^903 I. s. d. 380 3 2 at I 14 9i 10 <: jr. .. I J. c i 5 •7 7 8i 10 »73 »7 I 3 5-1 II 3 139 I 8 17 4i:'y 6 11^-8 661 17 3 '3 (I So.) ells. qr. n. s. d. ?75 • 3i- 18 Hi 5 4)i8;6 469 9 lit ■2 3, 2 I 4 4i'87.- 2 •937>^'^^- 7 '46$, &c. i| -281, &c — — «— ■'- ■ -« s. 422 2l , 9i' id d. 75 '44) I 9 9H a.; !- 4 i| -281 44? 5 4i -281 II Tare and Tret. TARE AND TRET. (I.) This Example is njcorlied. Num. Answers. (2.) apcwt. 3qr. 13^ lb. (3.) 418 cwt. 1 qr. 10 lb. (4.) 143 cwt. iqr. 251b. (^,) 26 cwt. oqr. 10 lb. (6.) 6ocwt. oqr. 12 lb. {-,) 76 cwt. 3 qr. II lb, (■3-) cwt. qr. lb. I 3 18 7 4 53 2 o I 3 18 55 I i8lb. grofs 3 3 23 '^H I 3 25 -642 5 3 20 '928 tare 49 I 25 -071 neat lb. 14 I Num. Answers. (8.) 1 15 cwt. 3qr. 141b. (9.) M243lb. (10.) i8Qoolb. (^ ^O 357 c^^f* 1 8 lb. (12.) 'This is 2 O 4 cwt. gr. lb. 12 "3 19 grof: 1 g tare 78 o o .4 3 14 lb. o I 26 -23 tree 82 3 i4gror3 12 oil '76 neat 10 ^ I r I I 29 -7^- i_ l-j o 2 26 •875' 14, o 6 '625 tare 68 3 7 '375 neat (19') cwt. qr. lb, 7 3 19 9 7» lb. 16 (2C.) cwt. qr. lb. 4 i »4 9 59 ' H 2 78 3 o 4 I H lb. 42 2 6 7 3 rg 150 I 2j grofs i *^ 10 2 27 -78, &c. 5 113 -89 16 o 13 '67 tare 83 o 14 grofs 2 s I ' 314 I i 1 I 26 •25' o 2 27 '125 O O 20 -781 14 I 4 '1^6 tare 26 j68 3 9 •S43 tret 2 216 '532 futtle 26)134 I II '32 futtle 5 018 '74 tret 129 o 20 '57 neat 66 o 2 I '3 1 1 neat (zr.) T;^.- ;^ .c-;n:../. H 2. 7C Tare and T r e t; (22. lb. (23.) cwt. 5 41 qr. lb. 3 17 7 1 7 grofs cwt. 7 qr. lb. 39 2 11 X5= 2 26)36 I qr. lb. 3 II 5 27 grofs 3 27 tare 1 futtle I i6'i5 tret 2 3 22-5 2 26-62 I 13-31 6-43 tare 4 168)34 3 1 1 -84 fee. f. 23-24 cloff )37 I 0-56 futile I I 20-48 tret ■168)35 3 8-07 fecond futtle o o 23-88 cloff 35 2 12*19 ^^^^ 34 2 1 6*59 neat (z+. cwt. qr. lb. 19 I 27 ' ' 9 18 o 18 1. s. d. 5 4 X18 m ID. '6;j.9o 6 14 4 I 9i 01 2 li 73 9 3 J64 ri 4i- Anfwer. cwt . qr. lb. 1* 3 19 grofs 1 20 • tare 12 I 26 ^ neat I. s. d. q^ .lb. 5 17 8 I 16 4 I y 12 70 12 7 4. I 9 5 3i i 16 7 9i-S 4i 3 8 -5 73 9 3 '3 Fait r. Tar A* N D T R E r. (26.) lb. cwt. qr. lb. 10 I 14 ib. 16 cwt. qr. lb. 4 3 n 7 54. I 7 grofs 7l-/-gji78 3 24-5' grots II o 20*781, d'c. tare ' -'-- 4- 3 n 167 3 3-718 luttle qr. lb. o r 6-/^ 6 I 22*758 tret 2 o break 315^- d ama. 5 o 2 3 ^ tare 161 I 8-960, ^jc. neat 1 i ifl 29 on f-g- futtle ' I I I5i|l^reak, &c.. If I cwt. : il. 1 2gS. : : i6j cwt. J qr. 8*96 lb* : 259l.cs. 5|d. 13 j 5 neat lb. (27-) ^wt. qr. lb. 3 3 i> X 29 Sj,-V|ri2 I 14 grofs 8 o tare 26)104 I II futtle 4 o It tret If iCAr. : il. 175. 6d. :: 27 cw. 2qr. 2341 : 51I. 19s. 3d. Anf. (28.) 1. s. d. 414 6 neat value 211 4 cuftoms^ &c, I I 6 freight 059 factorage 8 13 I 168)100 I 10-5 fecond fut. If rcwt. : 1 1 1 lb. :: 1 1 cwt. o 2 10*595 clofF ^99 2 27-604 neat If icw, : il. I IS. 6d. :; 99 cw. 2qr."2 7*6o4!b, ; 157!. 2s. Anfwer, iqr. I 51b. : i cw. oqr. 1 5ilb.. 1 cwt. qr. lb. I o 15V tare lo o 27f neat Jfiocwt. 27^ lb. : 81. i3.<;. id. : : f cwt. : i6s. lo^d. ^ °*| the fugar flood him in. per cwt. neat. f 3 7S S 1 M P L (29.) cwt. qr. lb. lb. N T E R E S T. (30.) 87. 57.. 14UJ25 1 14 grofs m 3 o I9-J I 2 9I- 4 2 oj tare 2C 2 13I neat If 7ilb. : 1 gal. . . ^yj^y>^. 2qr. i3slb. : 307!^ gal. neat, which at 5s. 4d. pergal. amount to 82I. 2S. oid. 7^. I049S9 g^^^- gro^^ 450i\ tare 45o8y\ gall, neat 338ii-A-lb. neat If 1 12 lb. : 5s. 3d. :: 33811/ylb. : 79I.4S. io|d. 20CWt. SIMPLE INTEREST. T^is Example is n.vorled. Num. Answer*. (2.) 9-71. 13s. id. (3.) 128I. 17s. 4id. {4.) 87I. I2S. old. (c.) 42i-+s. 5id. -75 (6.) 282I. 2S. 9d. Num. Answers. (7.} ic61. I IS. 6d. (8.) J17I. OS. ii^d. (9.) 17I. 8s. gid. -75 (10.) Sn6/> ;> (worked. ('0 As 365d. : 81. 15s. i^d. '64 :i 3i5d. : 7L 11s. ifd, 70^. X 1+.^ X 4I -^ 36^00 = 13111111. z= 13I. IIS. jii. (13.) As 3^500 : 4 4L iz?. i< d. X 5 1 : 29 X 7 '• J?^' i5»- i<^<^' Cr, 7300 : 4,41. iz.» Kd. ; ; i^X 7 • 'S'* 'S* i^«^' •Ac^- Part I. Simple Interest. 7.9 (T4.) As 36500 : 347I. los. y 4 : : iS X 7 ! 4I. 163. 2jcl. From Jan. ift, to Sept. 22d, are 264 days. As 36500(1. : 540I. los. X 4 :: 2646. : 15I. 12s. S^d, (.6.) (■7-) d. 400 60 3 i 1200 I 200 14,00 2i 28 7 i 14 2 6 8 ^p 9 2 5 101 35 o o d. 3lil294- 2o)73_ 6 Anfu'er 3 13 6 Anf. 37 5 loi (18.) This is nxjorkcJ. .20)500 4+ - 1-24)93 15 20 s. 18)75 12 d. 9)00 I9-) m. 6 X 3 X d. 30 i. 3 3 TO I. s. d. 24 18 9 5 124 13 9 12 9 42: 6 4 8|: 2 I 61 145 9 4i: o 4 i| '5 H5 5 21 -5. Anf. So Simple (20.) INTEREST. (21.) From May 15th, 1787, to Sept. 2 2d, 1789,316 2yrs. 4111. icd. 5.15)00 I. 500^ m 4 d. 10 ± 3 1 1. S. iS 15 d. 5i 15C0 375: 57 10 ro 5 .18)75 20 Anf. 44 5 ^ I. 100 4 1. 4)00 ID. 2 d. IC 6 J 1. s. d. 400 o 13 4 ToO , 4 i 10 O 2 ICO o ['66 rremiuni o 10 o Anf. ici 7 jJ-33 y. m. d. 2100 ^8 7 3 2 4 27 t's 10 1-43) 77 »o 20 £.15)50 12 d. 6)00 22.) in. I. s. d. 4 i 43 '5 6 2 d 30 87 II 14 II 10 jVol 3 12 i:i 1C5 '5 9f 7 3i'2 l^'S 8 5l *8 IS 10 o 980 18 5^-8 (23.) S'ZvV Example is ivorkeJ, Paft I. SimpleInterest. 8t (24O 100 -f 4 X 5 = 120I. As 120I. : lool. : : 570I. i6s. 6d. ; 47 5I. \p, gd, Anf. 100 + si X /\.i— 1 1 61. 17s. 6d. As 1 1 61. 17s. 6d. : lool. :: 205I. iis. 7|d.-f : 175!. i8s, Anfwer. (26.) 100 -f 4t X 3| = 1 1 61. 17s. 6d. As 1 1 61. 175, 6d, : igol. : ; 350I. 12s. 6d. : 300I. Anfwer, Tiif Examph is ^worked* (28.) 1. s. d. 465 8 3 amount 344 15 o principal 120 13 3 intereft As ^44!. 15s. : 120I. 13s. 3d. :: tool. : 28I. Then 28-7-7 =4^' percent, Aufwer. (29.) For 175I. los. read I "^^h iSs. 1. s. d. 205 II 7 1 'I amount 175 18 o principal 29 13 7^ 'I intereil .As 175I. iBs. ; 29I. 13s. 7jd. 'I : : 100 : 1 61. 17s. 6d. Then 16I. 17s, 6d, -J- 3.J = n-I, ics. An(\vzx, Bx Simple Interest. (30.) I. s. d. 350 12 6 300 o o 50 12 6 As 300I. : 50I, I2S. 6 J. :: ico : 16I. 17s. 6d» Then j6I. 17s. 6d. -^ 41 =1: -J. 15s. Aufwer. 1.7191 II 20 s.jSjji 12 4 1. s. 475 n (31.) d. 9 4 7>?7.r is 370 16 6 amount 475 13 9 principal I. 19!C2 1^ 20 s.o'si- 12 d. 6!6o 4 9^ 2 9 intereil As 19I. cs. 6i^. 'I : I y. : ; 05I. lu 2(40 9d. ; 5}TS. I. s. i^cr 17 5I. I OS. rf ^^175!. I Ss,^ 175 i3 4^- I. s. ■ 2C5 I! 7I •* amount 703 12 175 18 o principal 87 19 ^ 29 13 tI *t infcrelt As 7I. 78s. 3f-TVo •• ly- •• • 29I. 15s. «iSS 7^ borrowed 15c s. 400 2600 Bal. 280 rz 5600 21ft JuJ^', 1785, pa-d 15 18 Bal. 264 2 rz 5282 21II Aug. 17S5, paid 40 B.il. 224. 2 iz: 4482 ... ftifl O^. 17S5, jra'd 50 Bal, J74 2 ^ 34S2 ... Days. 579 69 356 31 61 115 Produft-s. 2316CO 179400 1993600 163742 25^.3402 400430 Carried oyer* 8+ Simple Interest. 1. S, S. Bal. brought over 174 2 n 3482 13th Feb. 1786, paid 9 12 Bal. 164 io ~ 3290 13th June, 1786, paid iii 1070 Bal. 13th Jan. 1787, paid 53 10 =: ic So Bal. due to me Intereft due to my friend 26 10 23 6 i^ Bal. in my favour 3 3 lof . Days. 214 Produfts. 394800 Sum 3634354 Subt. 231600 7300)3402754 s. 3 lof Anf. Intereft due 23 6 i^d, 500 gui {37.) 1. s. 700 15 Amount 525 o Principal [75 15 Intereft The intereft of 52 5I. for one year, at 4^ per cent, is 23!. 12s. 6d, Then 23I. I2S. 6d. : I yr. : : 175 15s. : 7 yrs. 16036yd. Now by counting 7 yrs. 160 days back, from the 25th September, 3788, the bond will be found dated April iStii, 1781. (38.) 1. s. .11)38 10 310 rate per cent, or intereft of lool. for one year. Now to anfwer the conditions of the queftion, it is evident that th( intereft muft be four times the principal, or 400I. Hence, As 3|1. : 1 yr. t: 4CCI. : ii4yyrs. Anfwer. (39-) The intereft of 50ol.,fjr 4} years, at 5 per cent, is 11815 c The intereft of 2 50I. fu" 9I years, at 2^ per cent, is 59 7 ^ Difference 59 7 ^ Part I. Brokerage, (40.) !. s. d. To a bin dated ift Auguft, 1786, 7 „ payable lit Oaobcr, 1786, J ^^^ 5tli Odlobcr, 17S6, received 94 17 o Bal. 863 I o 27th November, 1786, received 47 19 6 Bal. 815 I 6 i^h December, 1786, received 105 o o Bil. 710 I 6 tft January, 1787, received 55 I ' A- Bal. 654 10 2 J5th March) 17S7, received 101 14 o Bal. 552 16 2 [4th May, 1787, received 110 50 BjI. 44Z II 2 T9:h Auguft, 17S7, received 140 2 6 Bal. 302 8 8 1 1 ;h September, 1787, received 50 6 6 Bal. 252 8 2 ijth March, 178S, received 2!;2 8 2 Days. 4 53 18 17 73 58 99 23 185 Sum Prod'jas. 3^31 la o 45741 13 o 14671 7 o 12071 5 6 47779 3 ?' 32064 17 8 4^813 5 6 695s 19 4 46695 10 IQ 253<322 13 o I. S. 253622 13 X 4 _ , ^^^'" ^6^0 = '71. 15^. lold. Anr.vcr 'BROKERAGE. This Example rs iMorked, Num. A^'swERs, (2.) 20I. los. 3-025(1. (5.) 2I. 8s. 5i-27d. UO 37^» 4s» ii*4ud. Num. Answers. (9.) 4* MS. icil. (6.) Ill IS. oj • J9'? 86 Commission, I n s u r a n c e, &c. COMMISSION, Num. Answers* (2.) 28I. 8s. 3|d. -2 (3.) 61. 17s. 8|d. -22 (4.) 51L 8s. 8id. •+ (I.) This Example is nxorhed. Num. Answers. (5.) 74I. IIS. 3ld. -28 (6.) 965I. 6s. 8id, "9 INSURANCE. Num. Answers. (i.) i^. ics. 4fd. (2.) il. 6s. lod. of '35 (3.) 8504I. 3s. lod. of '44 (4.) 557I. 8s. lid. -84 Num. Answers. (^. ) 1 157I. I2S. 6d. (6.) 7s. 6|d. -08 (7.) 6;1. i8s. iiid. -45 TURCHASING STOCKS. - ^Ti/V Exam-pie is - ii^--i- (4-) If loci. : Sg;i. :: gcel. : S03I, 5s. (;.) If lool. : >96^l. :: 1759!. i8s. gd. ; 3+53!. 175. 6fd.-;. ?art I, Purchasing S t o c k ai 87 5000 85I 8 150 loo 6 5 4268 15 brokerage 4275: the purchafe or) 7159 10 20 ' 1 1190 12 10180 4 3I20 1. s. 8|7 11 d. 10| *2 18 487 19 1 1 1 '4 brokerage 6|-6 488 18 6| the purchafc 425-000 : - ^8 75 4268I75: 20 1 5 loo I. s. 759 ^o 8 6076 o 8 48608 o 189 17 6 487197 17 6 20 19I57 12 6.90 4 3160 61 — ^61 = 4I: per cent, the difference, or lofs, * 700C0 8 )7oo|oo 4i 87 10 brokeriTge for buying 280000 87 10 ditto for felling 350CO 3150I00 J7J 175I. the ^o»^ broker gained 3325I. the gentleman loft I 2 £S 3) I s c o u DISCOUNT. 5 15 2 (I.) TI:is "Example is iV2riiJ» ' it-) ;)»i 10 3 16 ICO 8 As 103 16 8 : 100 ; : 594I. 14s. 9d, : 572]. i^^> 6 ill. im. ij 8 u i 13 4 4 13 4. 100 As '104 13 4 : 4J. 13s. 4d. ;: 915I. 178. ; 40I. 6s. S-iVyd- 6 m. 5 2 10 im. I 8 4 7 18 4 I CO As 107 18 4: 100 :: 75I. :691.9s. ii;d.-,yg. (>■•) From 22 Sept. to Chrillmas, arc 94 days. As 365d. : 61. :: 94d. : il. ics. lojd. intereftof iccl. for 94 days. As loil. los. ic|d. : lool. :: 900I. : 8861.6s. 2-^y^\%d. Anrvver. Part I. I> I S C O U N T« H (64 If36;d.: 7-1-1. :: J7d. : d. 3U gld. If loil. 3s. 9^d. : 15000I. : : il, 3s. gfd. : 176I. 9s. in 5 6Da ^ (7.) From the 5th of July, 1788, to the 24th of June, 17893 are 354 days. If 365 d. : 711. :: 554d. : 7I. 3s. ofd. If 107I. 3s. old. : looh : : 1797I. lof/ : 1640!, 33^. 10 s^Vji^* Anfwer. (^0 3 } 747 18 R. d. 249 6 due immedi r. s. ately, -< I-. c-n ^ 00 t^ CO t • Add ^'i-O CO VC O r-.oc O I 8 N M O O -1"-+* go VC 00 1 o ^ o H c •^i- p.1 M - o oo H)C> »-.icl M r^ l - vO ro :r I H* SIS oo oc ri- VO VO , IH -* o o o o -o 1- O 2 J 5 rt 1. s. d. U s.- d. Firft, If ICO i6 8 : O i6 8 : Secoad, If loi 5 0:1 5 o : Third, If 103 15 o : 3 15 o : Fourth, If 104 ij 8:411 8 : Fifth, It 10- o 0:5 O O : 1. s. d. 1. s. d. 200- 4 : I ^3 I 133 9 4 : 1 12 "J 114 8 : 4 2 S| 300 6 : 13 3^ ^i 5^ 8 8 : 2 9 I If The Difcount .3 I ic| Parti. Discount. 91 (10.) I. s. d. 576 = 5|I. 3 |=:Jof3Ji6 2 6 365:d. : 5I. 7s. 6d. :: 41 d. o 12 oj 100 o o IX I2S. o|d. 120 15 2-5: : 100 ;: 1789I, 19s. lod. : 1482I. 5s, 7d* Anfwer. (II.) The difference is 500!. The intereft of loooL for 2oyrs, is loool. but the difcount of the fame fum is only 500I. (12.) For 5 per cent, in this queftion> read 6. 1. I. 1. I. s. d. 106 : 100 : : 100 94 6 9i '20 112 : 100 : : 100 89 5 8t-28 118 : TOO : : 100 84 14 lol -92 124 : 100 : : 100 80 12 ^^l'3S 130 : : 100 : : 100 76 18 5t*i4 The prefent vakie of the debt, al- ") lowing each perfon a difcount i 425 18 9^ of 6 per cent. 3 Now, 100 + 1064- 112 4- 1184- 124 = 560!. the money which may be made by receiving the payments as they become due, &c. Again, The intereft of 425I. i8s. 9^d. for 5 years, at 6 per cent, is J27I. I js. 7-id. which added to 425I. i8s. g^d. gives 553I. 14s. 4|d. this fubtrafted from 560I. leaves 61. 5s. 7id. advantage, by receiving the debts as they become due. 92 Eq^uation of Payments* EQUATION OF PAYMENTS. This Example is ^worked. (z.) 4I months. | (5.) 6 months* (4.) 6^ months^ (5-) 1. s. s. d. J 50 o X 2 m. = 3000 X 60 = 1 80000 147 17 X 74d. = 2957 X 74 =z 2 1 881 8 137 18 X 95 d. =r 2758 X 95 = 262010 65 OX 5 m. z= 1300 X 150 =: 195C00 10015 ) 855828 85^. tWiV" or 2 m. 25 days. Anfwer* (6.) (7.} J 2 90 = 6 X 4 = 24 i = 18 =: 3 X ^ = 15 4 = 15 X 25 = 375 z: 2 X 7 = H X 9 10 X 90 = 900 I X 10 rz 10 47 X 137 = 6431 12 )63 90 7706 *^ — ■ Ji months. 85-11 days. (8.) I. s. d. f. d. 50018 oxfyr. =: 480864x1X21= S7757680 9C0 17 6 X I yr. i'4d. zr 864.840 x 479 :=: 41^258360 1700 18 4|X 2|yr. =: 1632883 x 91^1= »450<^05737i »978527 ) 199202^7771 668 d. 2325661! rem* Cr I yr. 303 days. Part I. Compound iNTtREST^ 93 COMPOUND INTEREST, (I.) This Example is ivorked, m (2.) I. s. d. 5I. i'-o ) 700 1 8 o principal 35 o loj '2 intereft forthe iftyear a' feparatc 187 10 oj gain» r4 fum 62 y gallori 83 -]^ ditto ,D ditto 4- 3 + 5 = ^o1. 10 19090 10 19090 10 ; 19C90 I. 3818 A's part 5727 5's 9545 ^^ Part I. Single F e l l o w s h i Pi 10 1 (II.) 689, 5 ■ 50, ,, 3 129I. ns. Ad. ir — ^I. 5— =: — '• A'spart. 4 -i ^ ^ ^ 3 9 9 7 = 111. n' . ^ _ 37, „ 2 B 3 part. 4 — n — 1. 3 — 9 9 3 AslZ IC23 "257 3 C's part. 50 31 1023 90650 72261 64449 227360 5 7 259 16317 16317 16317 16317 By reje I > 4 15 6^' 12 To* + — +— 4-~ — — fum. 60 60 60 60 . 60 By rejedling the common denominator, &:c. 1. s. d. rem. 30 : 194 16 I 76 A's fliarc 20 : 129 17 4I 25 B's — — 15 : 97 8 o\ 38 C's 77 18 5I i5D's— r- 77 ^ool. 77 : 500I. 77 : 500I. 77 : 500J. 12 (13.) 1. s. 57 18 A's gain 29 14 B's ~— 28 4 dlfterence of their g.ilns. 28I. 4s. •. 51!. IIS. 6d. : ! 57I. i8s. : 105I. 17s. lo^d. '^y A's flock, from which fubtraft 51I, lis. 6d. the remainder is 54I. 6s. 4{9cc-8 3 ^^ L 104-1 rr 104 2 o Cs — — (3-) 7 X 13 = 91 prod, of A's oxen and time Q X 14 = 126 B's ^ II X 25 n: 275 C's »5 X 57 = 55^' I^'s 1047 fum of their produds 1C47 : 21 :: 91 : i 16 6 216 A's (hare 1047 : 21 :: 126 : 2 10 6t 158 B's 1047 : 21 :: 275 : 5 10 3! 135 ^'s IC47 : 21 :: SS5 '■ ^^ ^ 7t 558 D's (4.) . weeks 26 time the family lodged 26 — 14 n 12 the firft 4 12 — 3 m 9 ■ ■ " thefccond 4 9 — 3 m 6 — the third 4 6 — 3—3 — the laft 4 Sum of the produfts 380 380 w. : 261. 2s. 6(?t : : I w. : is. 4^3» the fum paid per week by each ledger. Then, s. d. L s. d. 260 X i 41 n 17 17 6 for the family to pay 48 X I 4i = 3 6 o for the li^ four ^6x1 It = 2 9 6 for the 2d four 24 X I 4f = 1 13 o for the 3d four 12 X I 4t =; o 16 6 for the lad four ;6 X 10 zz 260 12 X 4= 48 9 X 4= 36 6 X 4 = 24 3 X A-— rz Part I. Double Fellowship. lo; (5-) 150 X 7 = 1050 ~.o ■ ICO X 5 = 500 170 270 X 6 = iCio Prod, of A*s flock 1 31^ X 6 = 1890 KO 165 X 9 = 14S5 500 665 X 3 = 1995; Prod. ofC'sft-ock ? and lime j ^ ^ and time j -^'^' ioj X 5 == 1C25 no 315 X 4 = 1260 150 165 X 9 = 1485* I377Q Prod, of B's {lock and time 3170 3770 5370 1 23 10 fumoftheproc I2JI0 ! 450 : 12JI0 : 450 : 12310 ; 450 : I. I. s. d. 115 17 7I- 137 1^ 3k" 196 6 oi- By, Note 4th, Piop. I. 3170 3770 5370 fern. • 1740 A's n»ar« .2380 B'l «-— J. s. d. 29 1^. 7 "9 I, 500 X 3 400 X 2 : 29 12 79 '. ' 350 X 5 1. s. d. ^s II ^^ A' 3 ga n 64. 16 3^ B*s — 29 12 75 C'3 — [50 o o whole gain. (7-) By Note 5th, Prop. II. J- s- d. 1. s. d. 4+40 X 6x12=3182 8 o A's gain X by B's and C's time 42 16 9f X S X 5i ^n 4112 12 5I- B'sgain X by A's andC's time 79 II Zy X S X 6=13818 17 75- C'sgain X byA'saiiJB's time 11113 18 4f- furn of the produds io6 Double Fellowshi?. I. s. d. 1. 11113 18 4t : 227 111 13 18 4f : 227 iiij $ iS 4| : 227 J. s. d. 1. 3182. 8 65 A'aftock 41 12 12 9l : 84 B's 3818 17 7i : 78 G's (8.) By Note 2d, Single Fellowfhlp. A. B. C. 2 + 3 + 4 = 9 ^""^ °^ ^^^^^ proportional gains. 1. 2 ; 52 A's gain ) So far Meff. Hili and Bidt 3 ' 78 B's — ;. 234 234 254 are right ; the reft is to- 4 : 104 C's j tally falle in principle Again, by Note 5th, Prop. II. 52 X 5 X 7 =: 1820 A's gain X by B's and C's time 78 X 3 X 7 =z 1638 B's gain X by A's and C's time 104 X $ X ^ =z 1560 C's gain X by A's and B's time' 5018 fum of .tiic produfts. 50 Id fol8 1. 1. s. 3822 : : 1820 : 1386 4 JS21 : : i6$% i 1*47 11 $Hi I : 1560 ; nS8 3 844 C'i T?7 (9.) By Note 2d, Single Fellowfiiip, X. Y. Z. 2 + 3+4 = 9 ^"^ of their proportional gains, 420 420 420 1. s. 93 6 T40 o iS6 13 1. s. 93 6 140 o iS6 13 8 X's gain ^ So far Mr. ^'j/ts' fo- o Y's > lution is right; the 4 Z's J reft is totally falfe in principle. Again, by Note 5th, Prop. II. d. 8 X 6 X 9 ZZ 5040 X's gain X by Y's and Z's time o X 4 X 9 iz: 5040 Y's gain x by X's and Z's time 4 X 4 X 6 — 4480 Z's gain X by X's and Y's time 14560 fum of the produfts» it I. D y B LE Fellow SHIP, 10 I. I. s. d. 14560 14560- 14560 : 4262 : : 4262 : : 4262 ; : 5040 : 1475 ^ : 5040 : 1475 6 : 4480 : ijri 7 11-.'/.°^ XV (lock il-iW. Y's S^iW^ Z's — , (10.) By Note 6th, Prop. III. 1. s. 1. 1. s. I. s. 7815:210X9:: 76 4 : 1828 16 pr. of A'sftockandtime 7815:210x9:: 5710:1380 B's 78 15 : 210X9 :: 105 0:2520 C's _ 1. s. I. s. Then 1828 16 -^ 6 = 304 16 A's ftock 1380 -r 5 = 276 B's ■ 2520 O-r- 12 ~ 210 C's: . 210 D's » in.) By Note 7th, Prop. IV. 1. s. 89 S 9^ 15 38 10 s. 1. s. s. — 17S5 A's ftock. 7.!^ 10 IT 510 A's gain. — 1855 B's 37 2 — 742 B's -1 770 C's 24 4 — 484 C's 510 X 1855 742 X 1785 Produa of X 770 = 728458500 A's gain X by B's aad C's ftock X 770 — 1019841900 B's gain x by A's and C's -— 484 X 1785 X 1855 — 1602608700 C's gain X by A's and B' 3350909100 fum of the produdls. 33509P9JC0 ^350909100 3350909100 23 23 23 728458500 1019841900 1602608700 5 m. A's time 7 m. B's -. — r- ii m. C's — - (12.) By Note 8th, Prop. V. " 1 12 5 X 1400 X 1800 zr 28350C0000 B's gAiii X by C's and D's ftock 210 X 5000 X 1800 zi 1S90000000 C's gain x "y B's ind D's ao2'5 X 5000 X I4<^0— 1417500000 D's gain x by B's daid C's 2835000000 t 2835000000 : If 5000!. : 1125I per annum. : : 189000C000 : : 1^17500000 lool. : 22I, los. each Merchants' gain per cen 8 C's money was In trade 6 D's . loS Loss A :: D G a i x. Here 315I. is to be divided into two parts, as 12 to 8. 12 -J- 8 zz 20 fum of the proportional nun)bers. 20 : 315 ; : 12 : i8q B's ftock, 1 For the gains are 20 : 315 : : 8 : 126 A's j equal, therefore the flocks are reciprocally as the times. (I4-) a. s. d. a, r. p. 1. s. If I : 18 o : : 394 3 34 •* 35^ 9*32^ val.of A'sprop. If I : 19 6 : : 417 i 14 : 406 18-08125 B's If I 121 o : : 714 3 o : 750 9*75 C's Whole ^uant. 1527 o 8 1512 17*15625 whole value. If il. 5;s. 6d. : : 1512I. 17W5625S. : 416I. 14s. 4jd. '25 value of the land allotted for the tithes. If 19s. 9id. : 1 a. : : 416I. 14s. 4^d. '25 : 421 a. or. 16^1 p. quantity of land allotted for the tithes. LOSS AND GAIN. This Example is ivorked, (2.) I. s. d. I5cwt, at il. us. 6d. percvvt. amounts to 23 12 6 i5twt. at 4-^d. per lb. — — 31 10 o Diff. Gain 7 17 6 (3-) s. d. 3 4 value of 1 20 eggs at three a penny ^ o — 1 20 ■ two a penny. 8 4 prime coft of 240 eggs 8 o felling price of 240 eggs at five for 2d. o 4 lofs. Part I. Loss and Gain, lOf (4-) 12X2 — I =23 pipes faleable, I. s. 1014 6 value of 23 pipes at 7s. per gallon. 907 4 = 75I, I2S. X 1 2 prime coll of the wine. 107 2 gain. 7s. 6d, — 5s. 4d. =: 2s. 2d. gain per yard. Then 340 yds. at 2s. 2d. per yard, amount to 36I. i5s, 8d, whole gain. (6.) This Example is n/jsrked, (7.) If i7^d. : lool. :: i3fd. : 78I. ^s. 2|:d.-ff- which de- duced trom lool. leaves 2 1 1. 14s. 9|d.-|;| lofs per cent. (8.) If 27yds. : 17I. i;3. :; i yd. : 13s, 2|d.-f prime coH; per yard. If 13s. 2td.-4 : lool. :: 9s. lod. : 74I. 7s. 4id.-J-I4- which dedu<5led from lool. leaves 25!. 12s. 7;id.-T.T9 lofs per cent. Or thus, 27 yds. at 9s. lod. peryard, amount to 13I. 5s. 6d. If 17I. 17s. : lool. : ; 13I. 5s. 6d. : -4I. 7s. 4id.-H^ &-C, as above. {90 If6ol. : lool. : ; 75I. : 125I. 25 gain per cent, Mr. MaU col/ns anfwcr by mi/lake (probably in i\v^ prefi) is only 5I. (10.) If 7s.6d. : lool. : : 6s. zH, : 82I. los. whichdevlufted from lOol. leavca 17I. los, Icfs per cent, L 110 Loss AND Gain. (II.) ^hii Example is nMorked. If lool. : 120I. :: iis.6d. : 13s. 9*d.-| pcryard. (13.) If lOol. : 94I. i: 6s. : 5s. 7-|d.-i| perbundle. (I4-) Ifiool. : 115I. : : 12I. 12s. : 14L 9s. g^^d.-lpercwt. Cv) If lOol. : 82I. los. : : 7s. 6d. : 6s. 2 ^d. per yard* (16.) This Example is ^^juorled, (17.) IfSs. 9d. : 112I. :: ics. 6d. : 13+I. 8§. 34 8 gain per cent. (18.) If 15s. : §61. : : 21s. : 120I. 'b%, 100 20 8 gain per cent. (I9-) If 20I. 93. 6d. : 112I. los. : : 17I. is. 3d. : 93I. 15s. which deduced from lool. leaves 61. 5s. lofs percent. (20.) This Example is nvorked, J. s. d. If I lb. : 7fd. : : i5cwt. 3qr. i81b. : 55 U 9 ^^Id for 125I. ; icol. : : 55I. 13s. gd. : 44 ' » opnmecoft. II 29 whole gain. Part L L o s 3 and Gain. i m (22.) 1. s. d.- coodeals,ati5d.perpiece,amountto 31 5 o felling pricpon Mr.. Dih':orth, L 2 JiJ Loss AND Gain. (26.) 475 yards, at 10s. 6d. per yard, amount to 249I. 7s. 6d, prime cod. If lool. : 130I. : : 249I. 7s. 6d. : 324I. 3s. gd. felling price. Then 324I, 3s. 9d, — 249I. 7s. 6d. zz 74I. i6s, 3d. gain in the whole. (^70 If icwt. : 3I.cs.8d. :: 127X470^1. : 1733I. irs. prime coft of the fugar, £733!. IIS. 4- 52I. los. =: 1786I. IS. felling price of the fiigar. If 571I cwr. ; 1786I. js. :: ilb. : 6id.-4tf per lb. Anfvver, (28.) I. 1400 cafks, at 2I. 5s. per calk, amount to — 3150 7C0 diito, at 2I. 15s. " ■■ ■ 1925 Value of the 700 remaining cafks 1225 Then 122^ 4- 70G =s iK ip. per cafk. Or thu% Since he gained 1 o% per caik by one half, he of courfe muft lofe I OS. per eafk W the other, to make his purchafc money ofi/j. Therefore zL 5s, -- iqs, =; il, 1554 as above, (29.) In order to gain as much by the v/hole quantity as four yards are Md for, it is evident the merchant mull fell 96 yds. at the prime coft of 100 yds. (for 100 — 4 = 96.) Then 96yds. ; jizl. :: i yd, ; il. 3s. 4d. Anfwer. (30.) ^ If 80I. : looI. : : 20I. : 25I. prime coft of the fnake-root. If looI. : 125K : : 25I. : 31I. 5s. the money he ou^i>t to have made of it, which being fold for only zoITtislofy, in point of trade, is iil. 5s. Part I, L O S 3 A N D G A I K, I J - *ofi2olb. = 481b. of good tea, and | of 120 lb. =: 721b. of damaged tea. 48 lb. at los. 6d. per lb. amount to 25I. 4s. — Now in order to make a balance, the gain upon 481b. muft evidently be equal to the lofs upon 721b. viz. 3I. 12s. Therefore, 25I. 4.S. — 3I. t2s. zz 21I. 12s. the prime coft of 48 lb. hence the tea coil 9s. per lb. And 25I. 4s. + 3I. I2S. =1 28I. 1 6s. the damaged tez fold for. (32.) 800 X H^z 1 1 200 lb. at i2i;perlb. amount to i4ooood. = 583I. 6s. 8d. the value of the anchovies, or what I re- ceived for my 7490 lb. of tobacco. If 117I. * : lool. : : 583I. 6s. 8d. : 4.98I. lis. 6j\\i, the real value of my tobacco, which divided by 7490, givc^ i^|d.-||-5|} the real value per lb. (35.) If lool. : 140!. :: 347^1. 15s. : 4866I. i s. flerling, the Englifh goods fold for in France. If lOol. : 85I. : : 4866I. is. : 4136I. 2s, io|d. the French goods fold for in England. Then 4136I. 2s. lo^d. — 3-l75l» 15s. =z 660I. 7s. lofd, theEnglifti Merchants' gain, (34.) FIrfl 50C0 ells Flem. = 3000 ells Eng. = 3750 yards, and 42 50 guineas ~ 4462I. 10s. Then, ells. I. s. ell. 1. s. d. I^ -^— + 3000 : 4462 10 : : 1 : 1 5 ^.^J the prime coft of an Englifh ell. el!. I. s. d, ells. I. s. d whole piece Uood me in. • Thrs (jueftlon is in Meflirs. Blrki and Vyf^i' Arithmetic, ,(cjtnd!cd from Clare's Introduftion to Trade and BuUnefs) with a folution upon falje principles, fimilar to the 23d qucftion ; their error may be fccn by comparing their fclutions with the ftating marked wi;h ;hc alkrlfm. B X » r E (t. BARTER. CO This Example is ^corked, (a.) e^ual equal 93 X 400 :e 37200. Then 37200 -r 9 = 4^333 gallons, AnlVver, (3-) 5cvvt. I qr. 10 lb. at 2s. ^.Jd. per lb. amount to 70I. 7s. 9|d. If 5s. 9d. : I b. : : 70I. 7s. 94d. : i^i^\\^ bufhels. Anf. (4-) equal If 5000 yds. at i3l:d. k^ i value. • at 1 8s, 6d. rS I value. equal 500 y. 13! = 57500, this divided by 222 ( = i8s. 6d.) gives 304 -jy yards. Anfvver. (5-) 6 hhds. at 6s. 8d. per gallon^ amount to 12 61. If 252 yds. : 126I. :: 1 yd. : los. Anfwer. (6.) 288 ells, at [OS. 3d. per ell, amount to 18I. If 19s. : I cwt. :: 18I. : i8cwt. 3^1, 2t/ylb. (7-) 14 cwt. 3 qr. at il. 17s. per cwt. amount to 27I. 5s. 9d. If 3s. 9d. : I gal. : : 27I. 1%, 9d. : 145 ^*j gallons. Ahf, (8.) 3 cwt. 2qr. i61b. at il. 173. 4d. amount to 61. j6s. If 5s. jd, : 1 2 lb, :: 61. i6s,- ; 315^-1^. Anfwer. Parti. Barter. tij (9;) This Example is ivorked, fio.) This Example is nxjorked, (II.) I. s. 700 gall, at 4s. 6d. amount to 157 ^o Paid down — — 287 To account for 129 3 Ifiifd. : I lb. : : 129L 3s. : 2695^^3 lbs. Anfwer. (12O 1. s. d. 57 qr. 61b. at il. lis. 6d. amount to 90 19 if- i4cwt. 3qr. i81b. at 4I. 14s. 70 i 7^-^ Balance 20 17 6 f If 7d. : I lb. : : 20I. 178. 6d.4 : 7155J lb. Anfwer. (13.) 1. s. d. 27 cwt. at il. IIS. 6d. amount to 41 6 o ,25 pieces at il. 19s. lofd. 49 16 lof Balance due to B. 7 i© lof- If3lyds. : 15s. gd. : : 120yds. : 27I. valueof A'skerfey. . If 7s. -f* 6s. 6d. : I ; : 27I. : 40 hats and 40 pairs of (lockings. Anfwer, 1. s. d. 73 J yards, at 8s. 6d. amount to 31276 Example is er cent. SIMPLE ARBITRATION ok EXCHANGE. {77-) Tihis Example is ivorked. . (78.) If 3-35. 7d. : 24od. : : 51 ^d. : 3oJ|5d. for 20 vintins^ Of 400 rez. Then 3o|-7^ x 2-1- = 76 J^fd. fterling, p. milre.. (79.) (This Example will be more properly exprcfTed, if' in the thiid line, inltead of that Corrcj'pcndent, you read Rotterdam ; and in the feventh line, inllead oi Parisy tczd Rot terdam. •^•'Thc '^z pence Flcm. Jhouid be ^z piUings.) Then inuerfely ^^A, : 32s. : : 54d. : 31^73. Flem. per pound fterling. (go.)- In-ver/elj ^od, : 4.zd. :: 53id. : 39 -j'/^^d. per dollar. (81.) First, By remitting to Amfieidam and drawing tipon If 52d. Flem. : 3i^d. fter. : : 34s, 5 d. Flem. : 9924if. r: il. OS. 8fid. the merchant made of iL fterling.. If il. ,: II..OS. 8|id. : : looI. : 103I. 8s. 3ld.-f[. Then io3J..8s..3id.-A^ — icol. := 3I. 8s. 3;d.-f{ gain per cent. M3, 126 Simple Arbitration of Exchange* Secondly, By remitting to Paris and drawing upon Amjierdam. If3ijd. fter. : ^id. Flem. :: 24od. fler. : 399 i^ pence Flem. If34s. 5d. : il. :: 39Q-j^d. : 19s. 4~'^d. the merchant would have made of il. fterling. Ifil. : 195. 4^VJ^3d. :: lool. : 96I. 13s. nid.-^. Then looI. — 96I. 13s. u Jd.-i|l = 3I. 6s. o Jd..|lf lofs, per cent. (82.) If I due. : ^o^d. : : 9C0 due. : 4^225 pence. If I due. : p d. : : 900 due. : 45900 pence. d. pia. d. If 41 : I :: 45225 : iioj^t piaflres. If 42J : I :: 45900 : 1086/^*9 piaft res. Lofs i6|4f^piaftres. (83.) d. gu. 1. ]f 18 : I : : 500 : dSd^^ guilders. ifiOQ : 3 :: 6666 j ; 22^ commiflion. Diff. 6644I to remit. If3ig. : icr. :: 6644|g. : 1 898 1| crowns. If jcr. : 55d. :: 1898?,^ cr. : 43 5I. is. o|:d.-|f. Then 500 — 43 5I. is. Oad.-|f = 64I. 18s, iijd.-|| the ir.erchants' real lofs. I. s. d. I ool. 1 -i 1 64 18 II i-ll whole lofs. 12 19 9 J-|J the lofs percent. Anfwer. OflstRVATicK. If the Faftor could have remitted to Bourdeaux accordiiTg to the merchant's ord»r, he would have gained 7I. lis. i^d.-^y, Jo that the variat'on in exchange nude 7x1. 103, ^^^i■g^^ ditVcrencf, or comparative iof-. Parti. Compound Arbitration of Exchange. 127 (84.) If I04gu. : 100 gu. :: 3000 gu. : 2884/3- gwilcl. Bank. Ifgo-id. : 1 ecu. :: 28841^3 gu. : 127401. 58s. i-Y_5Lden. Ifi05:gu. : 100 gu. :: 30oogu. : 2 857-} guild. Bank. If 89?d. : I ecu. : : 2857! gu. : i276cr. 56s. r-^Y-den. Then 1276 or. 56s. id. — 127401. 58s. id. =: i crown, jSfols, the Paris merchant gained. COMPOUND ARBITRATION OF EXCHANGE. (85-) 7his Example is ivorked. (86.) An^cedents. I FrecK^h crown 65 Eng. pence 100 Stampt crowns 105 Ducats Banco I Piaftre * Flemilh pence Confequents^ rz 30 Engli/h pence, rz I Stanapt crown, rz 142 Ducats Banco, rr ICO Piaftres. rr 87 Fie mi Hi pence j — 7547 cr. 15 fols. 4oyS4o||| 6 29 ^g^Xi42X/';^;;^X$^X7?4.7i _ 1 864774^3 _ iX0^X/^0X/0^ ■" 455 ^3 35 Flem. pence, zz 10246 guild, o ft. 4*||: pen. at Anv. fterdam. Then, If I ecu. : jid. :: 'jU'J cr. i^fol. : 9622 guild. 14ft. 1 4 pen. by the dired exchange. Hence io246g. oft. 4||^p. — 9622g. 14ft. 14 pen-. =2 623 guild, 5 ft. 6 511 pen. gained by the circular ex- change. 128 Compound Arbitration of Exchange; (87.) Antecedents. 56 pence fteding 100 French crowns T40 Ducats Banco IJ5 Stampt crowns * Pezzos 25 990 Confequcnts. I French crowTit 60 Ducats Banco^ 100 Stampt crowns. ia<; Pezzos. i32i6od. iz. 7591* fterllng. ^$:5X/g^^XX/^XX$//^p' _ 5 X^;X 990 ,^ 74250 _ ^ rs X/pfSX^40X^/^ 7 7 ^3 pezzos by the firft method Anteeedents. ll. fterling 165. Flemifh J I P.ix dol. J40 Ducats Banco J 1 5 Stampt crowns * Pezzos Again, Confequents. ~ 33s. Flemifh. zn t Rix dol. — 12 Ducats. — 100 Stampt crowns.- — 125 Pezzos. — 759I. fterliog. 5 25 Z^ /^a//x^^P^x//^ 14 1-4 4 1 iz 2 13 2:65 r y-J: by the fecond method. Then 2651 \\ — 1515^5 = io86|f-| pezzos,. advantage by tlie fecond method. (88.) AnteccdentSi 95^ Piaftres :^ I Ducat rr 272 Maravedies, or i Piaftre rr i^oo Rez, or i CrutaJc zz 56 Flemifh pence rr I Ecu l^ * pence, flcrling ^ Confequents. ICO Ducats Banco. 521 Maravedies. 631 Rcz. 50 Fiemifli pcnc^.- I Ecu. 3i|d. fterling. I 'Piaftre. /dp' X 32 1 X 63 1 X ^.d X jij _ 321x631 y:^xzr\ ^^xifiixi^<^xi6 19 136 4 6380396 5 __ 133805 I9XI3-X4XS6 d. fterling, p. piaftrCr Parti. Compound Arbitration OF Exchange. 129 K s. d. 7J47pia{!res, at ^j/.^VWi^^- P- ?^^^^^> = ^733 3 J^l" 754.7 ditto, at 52d. p. piaftre, z= 1635 3 8 Whole gain 97 » 9 si If 1635I. 3s. 8d. : 1733I. 3s. lid. : : lool. : 105I. 19s. 9?d. from which take lool. there remains 5I. 19s. gjd. the gain per cent. (39.) Bj the Note. — For the Circular Exchange ^ s 00 : t ; : i : '005 general multiplier for the commiffion. d. cr. 1. If 54 : I :: I'JSl'l'y • 7812*2' crowns. For commiffion |: per cent. X '005 — 39*o6i' fub. Cro^^ns to remit to Venice 7773-161' cr. d. or. If 100, : 56 : : 7773*161' : 4352*9702' ducats. For commiflion \ per cent. X '005 — 2 1 •764851' fub. Ducats to remit to Hamburgh 4331 '205371' du. d. du. If I : 100 :: 4331*205371' : 433i20*537i'd. Flem. For commiflion j per cent. X '005 — 2 165*60265' fub. Flemifli pence to remit to Portugal 430954*934 f 5' d. rez. d. If 4C : 400 '/ 4309^4-93445' • 3S307'0'534»23 For commiffion \ per cent. X *oo5 — 19153*5526:0 Rcz. to remit to London 3S 11 556*98 rjjj,--^' ijo Compound Aubitsation of Exchange. If locorez. : 63d. :: 38115^6-981453 : 240128-089831539 = I cool. I OS. Sd, received in London, Or thus. Antecedents. 540. FIcmiih 100 French cr. • I Ducat 45d. Flemi/h loco Rez. Cdn^cjuents. i«Ecu zz : 56;Ducats — io4>d. Flemifti zr 406 Re z. iz 6;jd. llerling-cr The product of the fccond confequcnts is 24 dividend ; and tlie produft of the antecedence Ji quotient is 1000-5 3 3795, &c^ I. — icooi. lo- fey the circular exchange, as above. The found by dedufting the commijjion from the firft ing them hi the ratio of zco : J99. Sec. Confequenti. •995 Crowns. 55'72 Ducats. 99*5d. Ficmi/h 398 Rez. 63d. '757-75 I .3i2969058o'i93;5, the i 243000000 divifor J the s. Sd. received in London : fee nd confequenfs are confcquenls> or diminilh- Bj the DifeSl Excha?ige, If 34.S. 7d. : il. : : 1757I. 15s. : 1016I. 10s. 7d. Then 1016I. los. 7d. — loool. los, 8d. =: 15I. 19s. nd. advantage by the dired method. Antecedents. lb. 100 Engh'fh 78 Rouen 69 Lyons 72 Geneva 121 Marfeilles 103 Hamburgh ♦ Paris (90.) Confcqucnts, lb. 88 Rouen. 9^ Lyons. 53 Geneva. 100 Marfeilles. 100 Hamburgh, 1 01 Paris. 1 London* 47X53x100x10 1 ^ 39X69X9X11 X103 ^ // 47 $$X^-^X53X/jE^^Xiooxioi /^5T7fx69X^x7?>loo3 39 9 '« L^li?-o j^^ ^^ p^^.^ ^ ^ j^^ ^^ ^^^^^^^ ^^^^ ^ 25159100 27440127 27440127 2281027 7700245 , .1. r> • iu n '- = 1 oz. c -!-!■ ^ drs. the Pans lb. ex- 27440127 •'27440127 ceeds the Englilh avoirdupois lb. Or the Englifh lb, is to the Paris lb. as lOO : 109 nearly. Part I. Involution. '3t INVOLUTION. This Example is 'worked^ (2.) '754 X 1754= 307^5:i'5- (3.) 549 X 549 = 3^1401- (4.) 3^1416 X 3*1416 X 3-1416 = 3 1 •006494199296. (5.) •7854 X -7854 X '7854 = -484476471864. (6.) I + I = 2. 57'*5 X 57*5 = 3306-23% 2 + 2 =1 4. 3306-25 X 3306-25 = io93i289-o62y. (7-) I + I = 2. 1*732 X 1-732 =: 2-999824. 24-2+1= 5. 2*999824 X 2-999824 X 1-732 zi 15*586171061650432, (8.) I + I + I = 3. 735 X 735 X 735 = 39706537?- Z -\- Z + 3 = 397065375 X 397065375 X 397065375 = 9- 6260 1 689 1 5 5608 1 39974609375. (9.) ^l + I + I r= 3. . 365^ X 365 X i^^s — 48627125. 3 + 3 = 6. -48627125 X 48627125 = 236459728. I J2 E V O L U T I O N. — S QJJ A R L R O O E V O L U T I O N.— S Q^u A R E Root. STit/V Example is muorked^ 7'>6/> Exa'mple h ^worked. (3.) . . . root 393129(627 (4v) • . ... root 3272869681 ( 57209 122)33 107)772 1247)8729 1142)2386 1 14409 ) 1 02968 J (5-1 , root 5241578750190521 (12345-6789 22)52 243)*4» 2464)11257 24685)140187 246906)1676250 2469127 )i948i4i9 24691348)219753005 216915569)2222222121 (6.) root 57i32*oocooo(239*e23,&c, 43)'/' 469)4232 47802 )iioooo 478043 ) 1 439600 o I + 8 o proof 5471 rem. part I. EvoLUTio N.— S a,u a s e Ro o T. 1 3 j (7-) , root 75* :547 0000000 (8- 6 802 6497 29, &c. 166)113+ (8.) 1728)13870 ... ... root i788-57'777777{42-29i5»&c- 173602)460000 82)188 6 1736046)11279600 7 + 8 8449 )77377 6 ^ 168906 • proof 84581)133677 863324 12662 See contracted r lo 7 845825)4909677 Divifion of 680552 rem. Decimals. (9O •4325000000 root ( -65764 L, &c. 125)725 1307 ) 1 0000 5 1+4 •X- 13146)85-100 131524)622400 proof 96304 rem. N / ji34 Evolution. — S <^u a r e Root, root 5'3'3353333 ( 2-3094.. &<:. 4609)43335 ^ ^^ 43)133 2 o -f 2 X 46184)^85233 2 ' proof 497 rem. (II.) This Example is ^worked. This Example is ivorkei, 567 81 V 8j 9 (14.) or , \/i4822C 38c f 27; X 539 = 14822: and 1 i = ^-^ =-^root. ill =.15 ,,d /ir^-iroot. 539 49 V 49 7 (^50 45 X 94 = 4230 and 2LL^ = - ^ ^^ = ^^ ^^ "^ 94 94 •6918984, &c. root. ('6.) -V/15I = >/i5'625 = 3*9 > 2^4 root" (17-) V29>5 = 'v/29-i6 = 5*4 root. Parti. Evo L u Ti o N.— Sq^u A RE Root. 135^ (18.) (2oL IS. = 2401s. and v' 240 1 = 49s. = 2I. 9s, 3oJ;d. = 121 farth. and ^^ 121 = 11 men, they fpent each 1 1 farthings, confequently each man drank a pint and a pennyworth, or it pint. (20.) £4 X 24 =: 576 =: A B x A B 18 X 18 = 3^4 = B C X B C v'goo nz 30 ~ A C the. length of the ladder* (zu) 50 X 50 r: 2500 zr E C x EC 30 X JO iz 900 = B C X B C ^1600 iz 40 — BE 50 X 50 = 2500 zr E C X EC 40 X 40 ZZ. 1 600 zz A C X AC V500 zz 30 zz A E Then ABzzAE + EBzz 4o + 3oz= 70 ft. zz23|yd5. the breadth of the tlreet. Firft, ^•449 zz B G 64- —AD B E z6-249 iz E G 97 X 97 = 9409 zz D G X D G 26-249 X 26-249 — 689-01 — E G X E G N 2 156 E V O L U T I O N. S QJU ARE R O O T, ^8719-98 — 93-3808 ri D E = A B the iiitsnce of the httom of the tower A f-om ttat of B i 76 -f 93*3803 rr 169-3808 r: A C the ci.lance of the bcrtcm of the tower A Irom tbat of C zr K K. Secondly, 64—50—14 — DK=:AD — CH ^ 369-3808 X 169-3808 — 28689-8554:1: KH X KH 14 X 14 — ^S^" z:DK X DK ^^28885-8554— 169-958 — DH the dlftance of the t':b of the tower A from tLat of C. Thirdly, 90*249 -^ 5c = 40*249 — LG — BG — CH And HL —EC 76 X 76 — 5776 = HL X HL 40*249 X 40*2-49 =^ 1619*982 ::: LG x LG v^7395-9S2 r:"85-999, &c. = 86 «jr/jfj the diA»ace of the /op of the tower B from ibat of C. '3-> For that of C 50teet, -ead thit, of C 28 feet. D Then, The fide of aa 3 cq«l lateral trian- gle divided by the- fqaare root of 3> gives the radius of .t? circumicri- bing circle. 50 v: i*73Z,£L-c. — aS-SSy feet ir AG the diftance of each tower from the centre of the garden, and 30 + 54 + 28 __ — 3o| the height of a mean tower. 30^ X 3 of = 940*444444 a8-S67 X 28*867 — 833*;c5689 •f the ladder nearly Vj773-748i33 =: 4Ji»ii5 = PD the length Part I. E V o L u T I n. — C ubeRoot, 137 1773-745133 — PD X PD 30 X 30 m 9<^'0« ~ AD X AD n/S73-748i33 = 19-559 = AP 177^742133 = PD X PD 34 X 34 zr'iisO^ = BD X B D v'617.748133 = i4'S54 = B P i77r74Si33 rr PD X PD 28 X 22 iz: 784* = CD X CD v/989-748i33 lt 31-46 = C P. Observation. Had the height of A been 38, B 42, and C 45, and the diftance from A to B z= 50, B to C zz 40, and from C to A rr 47 feet, the operation wouVi have been more difficult.— The length of a ladder in this caft would have been 49*552j and hence, the didances would have been found as above. CUBE ROOT. T^is Exa?n^le is -■= 6coo 7625 fub. 25 X 25 X 3C0 = 187500 ) 1 91 5000 refol, 9X9X9 = 729 25 X 30 X 81 =: 60750 187500 X 9 zz 1687500 1748979 fub. 259 X 259 X 300 = 20124300) 1 6602 1 000 refoL 8 X 8 X 8 = 512 259 X 30 X 64 = 497^80 20124300 X 8 = 1609944.00 1 61 492 1 92 fub. Rem, V4528808 1^0 Evolution. — Cube Root. (6.) 254358061056000 ( 63360 rooti 6 X 6 X 6 =z aj6 6 X 6 X SCO n loSoo ) 3S35S rex"'!. 3X3X3 = ^7 6 X 30 X 9 = ^^^^ icSoo X 3 == 3MQ3 34C47 fub. 63 X 63 X 3C0 => 1190700)4311061 refoU 3X3X3 = 27 63 X 30 X 9 = 17^10 11907C0 X 3 = 3572TOO 35S9137 fub. 633 X 633 X 300 m 120206700)721924056 refoU 6x6x6 rr 216 633 X 30 X 36 =. 683640 120Z06700 X 6 zz. 72124020a 721924056 fub, ••• • ceo (7-) . . . root. •573450000000 ( '830^, &c» 8X8x8 = 512 8 X 8 X 300 — 19200 ) 61450 reW, 3X3X3= 27 8 X 30 X 9 = 2j6o 19200 X 3 = 57600 59787 fub; 83c X 830 X 3C0 :^ 206670CC0 ) 1663C00000 refol, 8 X 8 X 8 rr 512 83c X 30 X 64 r= 15936C0 »o66700oo X 8 = 1653360000 1 6549 541 12 Alb. 8045888 rcmr Parti. Evolution. — Cube P. o o t, 141 (3.) .... . root. 75:'3857ooooo ( 4*224, Sec, 4X4X4 = 64 4 X 4 X 300 = 4800 ) 1 138 J refol. 10088 fub» 42 X 42 X 300 = 529200 ) 1297700 refol, 1:6344^ Tub. 422 X 422 X jco zii 55425x00) 2342520C0 refol. 213903424 fub. 20348576 rem. «^ (9) root, •785400000000 ( -9226, Sec, 9x9X9= 729 9 X 9 X 3C0 zz 24300) 564.00 refol. 49688 fub. 92 X 92 X 300 = 2539200 ) 6712000 refol. 5089448 fub. 922X922X300 z= 255025200 ) 1622552C00 refol. 1531147176 fub. 91404S24 rem.' 14*'. E V o t u T I N, — C e B E Root, (10.) root, 517-375475000000 (8*0278, &c, 8x8x8 = 512 80 X 80 X 300 =z 1920000)5375475 refoL 3849608 Tub. 802X802X300= 192961200)1529867000 refoL 1351907683 fub. fo27xSo*7X 300 = 19329818700)173959317000 rcfolr I546<;396i952 fub. 19305355048 renit- (n.J roof. 20874107909304)27534 2x2X2 = 8 2 X 2 X 300 = 1200 ) 12874 refoU 1 1 683 fub. 27 X 27 X 300 = 218700 ) 1 191 107 refol, 1 1 1 3 87 5 fub. 275 X 275 X 300 = 22687500} 77232909 refol. 68136777 fub. i7 S3 X 2753 X 300 = 2273702700 ) 9096 1 32304 refol. 9C961 32304 fub» Part I. EroLUTio n. — C u b s R o o t. 1 43 (,2.) root. 1551328-2159785156^5 (115.7625 X X I X I = I X X I X 3^0= 300)551 refol. 331 fub. ji X u X 300 :::^ 36300 ) 2Z0328 refol. 189875 fub. 115 X 115 X 300 — 3967500) 30453215 refol. 27941893 fub. 3157 X 1157 X 300 — 401594700)2511322978 refol. 2410817976 fub. I1576 X 11576 X 300 — 40201132800) 100505002515 refol. 20403654728 fub. 115762X115762X300—4020252193200)20101347787625 refol. 20101347787625 fub. (13.) *Tbts Example is ivorked (14.) 7i54'i09i6753o ( 19*26921, &c, 1 X I X I = 1 jy, ZOO zz 300)6154109 19 "\20513 NoTi. The 3d figure In the •\- 9 JiS root by the rule would be 5, but ■ .■ by Involution I find that too big. 285 ) 1 5 1 3 —-See the Note to the Rule. 1425 144 E V O L U T I O N.— C U B E R O O T. 7I54MC9I675300COOCO IC2 X 19a X 192 ~ 7Q778SS 192. X 3CCC0 zz 5760000 ) 7682116753C000000 1926 \ 13337008251 4- 6 / 11556 J9329 \ I78IOO + 9 / 173961 193382 \ 413982 -|- 2 / 336764 1933841 ) 272I85I I933S4I 7SS010, &c. (•5-) Flrft, root. 8302348CCCC00, &c. ( 20248'8475, See* 2X2X2 = 8 2 X 300 = ^^° ) 3^^348 2C2 ) 503 99 Second, S3C234S0COCOOOOOOOCO00000 2C2 X 202 X i02 — S24240S SO^XSCCOCCO— 6060COOCO ) 59C4QOCOOCOOOOOOOCCOOGO 2024 ) 98910891089108 40288 ) I7950S 402968 ) I72049I 2029764 ) 965870S 20297687 ) 1 53965291 202976945 ) IIS8I4820S J73263483, fcc. Fart I. Evolution. — Cube Root. 14J (16.) Flrft, . . • root. I'oooooo ( i'25992io49S94, &c. 1 X 1 X I = I I X 300 zi 3c>o ) 1000000 ^^ ) 3333 '^^''^ 3^ figure would be a 6, • but that, by Involution, is to* 14^ ) 933 ^'§> ^ therefore take 5. 57 Second, 2 '000000000000000000 125 X 125 X 125 — 1953125 S25 X 30C00 n 375^000 ) 4637500COC0000000 1259 ) 1250000000Q 12689 ) 116900 ;269S2 ) 269900 1269841 ) 1593600 323759, &c. Tiiird, •^ 2 '000000000000000000000000000000000000 [259921] =r 1999999762590486961 i2.:;oc2iX 3000C00 \ c _Y775;630ococo ) ^37609513039000000000000000000 12599I104 ) 6-863600982125069, &c, 1259921089 ) 12466759332 12599210988 ) II274695SII2 125992109969 ) ii9532702o35o X25992I0997S4 ) 6I39803II2969 1100118713833, dtc. This laft operation would give the root true to n;ar twenty placet of ilLcimals, if neceflary. o 146 Evolution. — Cube Root. (.7-) Firft, .... root. •0C0135700CO0 ( •05i387799i2> &c. 5X5X5 = 125 5 X 300 = 1500 ) 10700C00 51 ) 6666 523 ) 1566 Second, I 357oooooooocooooocoooooooe 513 X 513 X 513 = 1350^5697 513 X 3CCCC00 — 15350CCC00 ) 6943040000000C00CC000000 5135)451139670110461, &c. 51467 ) 400996 5H747 ) 4072770 5147549 ) 469 541 " 51475581 ) 63617004 514755222 ) 1214142361 JS4630717, Sec. (18.) Firft, . . . root. J3'666666 ( 2'39cS6o3o, &c. a X 2 X a = S a X 300 zz 600)5666666 23 ) 9444 ^69 ) 2544 123, &c. Part I. EvoLUTio n. — C u b e Root. 147 Second, . ........ 13-666666666666666666666666 239 X 239 X 239 = 13651919 239 X 3C00000 — 717000000 ) 14747666666666666666666 23908 ) 2056E572756857, &c. 239166 ) 1442172 23917203 ) 71767568 : 505957, Sec. (r9.) Firft) . . . • . root. 92398647506217 ( 45208*6846, &c, 4 X 4 X 4 = 64 4 X 300 zz 1200 ) 28398647 45 ) 23665 5C2 ) 1165 161 Second, • ....?. . . 9239?. 647 5062 1 70C00000000CO 452 X 452 X 452 = 9^345408 45^ X 3000000 =. 13560C0000 ) 5323950621700C0000COCOC 45208 ) 3926217272640] 452166 ) 30 ,5772 4521728 ) 3827767a 45217364 ) 210384804 452173686 ) 2951540801 2384- 8685, .^'C. Observation. When the reader has cnce m ide this n-.eth- d of ex- trading the Cube Root fam;i'ar to hitn^ i am peiluad-d he will ftnd it not only th-.- <., 3 /';coo X Sooo ai7 : 2c)* : : 9000 : / r: 69*2294. length. V ^'7 217 rTfl' : : 9000 : / — . '. r: 5i'922 breadth. — PAI ^ /90OO X 5 '2 Z17 •. 8p : : 9000 : / — r: 27*69x7 depth. FIrft, V 3 X i^5;^ rr i-SV^S =: 180*28 the keel. v/3 X ~T|'^ = 25\/3 = 36-05 miJA'p beam. v^3 X T5I' n 15 \/ 3 ;= 21*6 depth of the hold. Secondly, V^:- X 12^^ 1= iz$\/^ rr 99-21 the kee!. V/ I X 25I rr 25 V^l zn i9"?4 midfnip beam, v/i X 15)^ — 15 V^'t^ r: 11-905 depth of the hoU. (3^.) Admit the folidity of the coine t? be i, then I '."^ : : 1 : / -— = 20 ^T - 13.^672 the heigh cf the (op part. 3 ibcoo I7'47i6 -- i3*S672 — 3-6044 }-.e"ght of the middle par:. ; ^°l - i = J ~~r = ^^ l/^ ~ 17-47I and Alfo 20 — 13-8672 + 3.6044 — 2.5284 height of the bottom part, ia tnchei, Anfwer, This Example is nxorJic£i. o 3 150 E V O L U T I O N. A NY R O O T. (34-) . . . . root. a«oooooo ( I "414, Sec, "14,* z: 196 fab. 14 X 1 — -8 ) 40 fecond div. 14?!* — 198S1 fub. 141 X 2 — 2S2 ) 1190 third div. 1414I* rr 1999396 fub. Rem. 604, &c. i3S') .... root. 5'ocooocooo ( I '709, &c. X X I X I = I I* X 3 1:1 3)4° fif^ <^*^* TtI^ z: 49^3 ^^^• T70]* X 3 ~ 867CO ) 870C00 fecond div. "1705]^ = 4-991443S29 l"'-b' Rem. S556171, &c. {36.) root. i728*oooococooooo ( 6'447, &c. 6x6x6x6r= 1296 ""^^ X 4 m 864 ) 4320 firft div» 64*4 zr 16677216 fiib. 64^3 X 4 ~ X048576 ) 6017S40 fecond div, _ "'v>44^* ZZ 172005949696 fub. 644!^ X 4= 1063359936 ) 7940503040 thrrd^iv. ^447)4 r: 17275502185S8481 fub. Rem. 449731411519, &c. Fart I. Evoi. UTI9N. — Any Root. 154 (37-) . . . . rout. 5y54ccooo6cooooco ( i*2<-9, ic:r 2X2X2xaxz r: 3* T|4 X 5 = So) 255 firftdiv. 22 1> -zi 515363a fub. 12^+ X 5 ~ 1 171280 ) 6003680 fccond div. 224^ S ~ 563949338624 fub. "22^'^ X 5 — 12588154880 ) 1 1450661 3760 third dlv. Z249V rz 57537008386886249 fub. Rem. 2991613:13751, &c. (38.) . • root. 3 '141600000000000000000000 ( 1*2102, &C, TXIXIXIXIXI = 1 1^X6 ir 6)21 firft div. T2,6 — 2985984 fub. 7?|5 X 6 IT 1492992 ) 1556160 fecond div. I2i\^ ZZ 3138428376721 fub. .55l^476l6oc7oo}3'"«^3»790ocoooo tlnrd div. 12102^5 — 31415421541C9890900723264 fub. Rem. 57845890109099276736, &c, In order to make room for more ufeful matter, I rtiall only fct down pirt of the following folutlons. (39-) root. 547'5oooooooocococoococoo ( 1*461, &c. '5^ Duodecimals. (40.) root. 547»30ooooooocoooococcoocooo ( 2' 199, &c. (4'.) i-53i328ii557^5>5625 ( 1-05 r3«t. DUODECIMALS. (I.) 'hlj 'Example h ivorked. (2.) 33 ft. II in. iTpts. (3.) 81 ft. 6 in. 6pt5. (-4.) 38 ti. 6 in. 2 pts. (y) 8^6 ft. I in. 6 pts. (6.) 92 ft, 2 in. 5 pts. (-J 2 2:;2 ft. 4 in. 6 pts. (S.) 4203 ft. 3 in. 3 pts. o" Ci"\ (9.) 253 ft. II in. opts, ii'^ 1 ]'" 2IV IV, {10.) 80 ft. I in. 7 pts. 7" 9'". (II.) f. in. pt5. 25 II 6 S" 7'' 25 II 6 8 7 649 OHIO 7 23 9 7 I ^o 5^^- 1 o II 9 4 3 6''' 1538 5 8 8yi. 13 T 8 II O ivii. 674 I i' 4" 7'" 11^^ I'' 8^^ 1^". (12.) 24 ft. 9 in. 5 pts. Part I. Duodecimals, . (13.) S5 m, ^ 'M Heights ^ ^ f add 4 3J 16 115 6 heights together. Mult, by 3 6 breadth. Prod. 404 3 = 404*25 feet area. Then 404-25 X 14*5 = 5861*625 pence, zz 24I, Ss. 5 [d. Anfwer. ft. in. 24 5 length. 12 7 breadth. 9)307 2 II area. yds. 34 I 2 II (14.) ft. in. 2 8" 3 4 5. d. yds, 3 4 lil 34 4i '777 i-962 •987 '370 d, 5f '096 5 '3 4 si add (15.) Firft, Find the value of the whole court at half-a-crown a foot, and the foot-path at fixpencej the fum of thefe values will be th« whole colt. '54- D U O D E C I ft. in. 62 7 length 44 5 breadth Prod. 2779 8 II area of the whole yard. s. d. ft. 2 6 III 2779 6 347 7 6 o 1 loj 347I. 9s. 4:Jd. val. c' I ^ 6' 4' 1' 6 4 s. d. 2 6 I 3 5 i: of the court-yard at 2s. 6d, And I '333 •833 IS. ioJ.d. -166 ft. in. 62 7 length Si 344 2 6 area of the foot-path, in. d. d. ft. 6 l,VI 344 8 12 id. 812 I J value of the footpath at 6d. per foot. 347 9 4J; ditto of the court-yard at 2s. 6d. 356I. IS. cfd. whole value. Anfwer. (16.) 230219796I. -s. gd. 1= 227828377*5:ii'qo476' guineas, or fquare inches; theie divided by 1296 fquare inches, or gu neas in a fquare yard, ^ive 175793*501166593, Sec. yds. rr 99 miles, 7*0633, Sec. furlongs ; fo that the national debt would pave a foot-^ath of a yard wide r/earh from London to Baih» Part I. Duodecimals. ijj (>7-) ft. in. 22 7 = "-583; 7 Mult. 13 II = i3'9io j 9 ) 3I4.-28472' feet « 34.'920524, &:c. yards Mult. Ill- Prod. 401-586053 pence, r= il. 13s. ^fd. Anf, (18.) #fc. in. ft. in. ft. ft. 74 loxii 7 ==: 74*83'xii-5S3' — 866'Sic4' area ofthe whflle room 7 6x 3 9 Z= 7*5 X 3-75 — 2,2' 1250' area of the door once 6 8x 3 4X5rz6'6' X 3'3'X5 — lUMiii'dittoofthe ihuttersoncc 8 + 8 + 3*3' + 3-3' X I* 16' X 5 n 131-222^' ditto of the breaks once Sum of tlie areas ii38'2777' Dedud 6 ft. 9 in. X 5 ft. zr 33'75 ditto of ttie chimney Area of the whole work iio4'5277' feet 122 7253 yds. X 81i. — io43'j65 pence — 4I. 6s. iid. Anfwer. (19O ft. in. 31 5 o breadth of the building 15 8 6 half the breadth 47 I 6 breadth of the roof 57 7 o length of ditto 100)2713 7 4 6 area 27 fq. 13 ft. 7 in. 4pts. 6" at half-a-guinea per fquare, amounts to 14I. 4s. ii'ii6d. Anfwer. (20.) ft. in, 14 II height •947 2 6 5 3) 4736 6 272) 1578 8 2 5 rods. 21 8 ft. (2r.) ft. in. ft. in. ft. in. 28 10 28 10 ^5 8 20 20 28 10 8 4f42 576 8 576 8 45^ 8 10 5 4 *r 3 28 10 1883 2306 8 ^3SS 2 302 9 ft. in. 2SS3 4 content of the firft 20 feet X by i bricks 2306 8 ditto of the fecond 20 feet x by t ditto 1355 2 ditto of the i j ft. 8 in. x by -j- ditto 302 9 ditto of the gable X by t ditto. 3)6847 II fum. 2282 7 B content of the wall, reduced to theHandard thicknefs. Then If 272 ft. : 5I. i6s. : : 2282ft, 7 in. 8 pts, ; 48I. 135 5-2d. Anfwer, Part I. Bills of Parcels, &c. lyy BILLS OF PARCELS, exercising COM- POUND MULTIPLICATION, the RULE OF THREE, PRACTICE, TARE AND TRET, &c. ' ♦ (!•) (2.) (3.) rames Lamb, Efq. Sir John Guchim. Andrew Wines, Ef^, 1. s. d. I. s. d. ,. 1. s. d. 3 17 6 2 II ^1 109 8 2i lo 9 8 15 151 13 2 8 i6 Si 8 10 I 157 14 io| 91 10 9i 11 8 i 8 I li 13 2 257 5 59 19 iii * 15 90 5 3 284 1170 17 ol 50 9 I — ^— 660 (4.) (5.) (6.) rge VereS; ,Efq. Hugh Abbot. MifsEvltt. * I. s. d. 1. B. d. I. s. d. 6 5i 651 18 8 9 6 J 9 °i 92 9 7.1 21 7 oi 14 8| 374 7 ?e-j 12 13 7 3S 5 ^i 13 15 9? 80 9 io| 7 ^t 35 10 5 5 5i 10 4 o| 169 10 5|- (7.) (8.) (9.) Mr. Crowl J. s. ^ 14 3 19 378 12 7 12 30 17 J22 S :her, d. i 6i Mrs. J. 13 11 79 189 ^3 Mertown. s. d. 8 8 19 6^ 7 II 5 6:- 19 7 Mr. Ochterlony I. s. d. 405 3 4 369 IS 10 15 6 267 .4 4^ So 10 5 318 I 3 3j.-; ^3 4 5^^ 5 Jl 1476 :i II J * In the firft line of this bill, /or per ell, read per yard, P 158 Bills of Parcels, &c. ' (10.) (11.) (12.) lir George Lovell. Mr. Meafure ;well. Mr. Cudworth. 1. s. ' d. 1. s. d. h s. d. 3 12 o 14 14 8 9 10 7 9 10 6 5 7 8 6 12 6 15 3i 6 70 135 66 13 6 5i 15 I 19 6i 40 14 ai 9 5 '1 29 16 ?! 2 89 8 1; 12 4 96 62 I-l (13.) Anthony How, Efq. 1. s. d. 122 8 o a82 19 6 133 17 6 (14.) (15.) Dr. 539 5 *59 13 10 I 9 3 Cr. 539 5 Geo. Germaine, Efq. William Weft, Efq. 3 7i 7i 1. s. d. 71 4 9i 66 II 4i 15 2 4i 41 13 74: 88 13 5 56 II s\ 339 1. s. 7 17 4 9 9 19 36 z 12 9 5 I 76 (16.) Theodore King, Efq. I. s. d. 12 18 3l 4 8 2 99 14 2 rl3X 17 3 7 5 126 13 4 {17.) (18.) Mr. Torin. Valentine Fawkes, 1 1. s. d. J. s. d. 29 15 10 55 17 7f 19S 3 H 37 4 H 17 3 iot 31 7 H II 9 » 39 19 4 9 6 4| '6 3 4i 8 I 6 34 5 31: 382 16 ai J13 375 16 5I •art I. BiLLi OF Parcels, &c, iS9 (19.) Mr. Carpenter. 1. s. d. i8z 10 7^ 66 s 2 63 8 3 14 9 10 98 424 13 lOl (21.) Mr. Cole. Neat we ght. cwt. qr. lb. 15 I 7 20 I 20 18 Z 9 XI n 4 3 26 7 r Value. 1. s. d 53 " 85 16 i( 43 13 27 19 26 3 37 6 ( 20.) Mr. WiUet. 1. s. d. 158 14 7| 39 5 55 12 i°i 9? II 4 148 10 4 214 9 711 14 i^T (21 •) Mr. George Lane. cwt. qr. lb. 29 1 27 grofs 2 9 tare 27 I 18 neat and the value is I 351- US. 4id. 274 (230 Meflrs. Langton and Co Neat weight. cwt. qr. lb. 1520 *3 18 8 8 I 2 oX* I 25 3 7 I iX 1 3I Value. 1. s. d. 75 u 3 123 7 111 28 o 4|: 27 I 2| 23 16 6? 8 17 4^ 286 14 71 Mr. Henry Chapman. Neat weight. Value, cwt. qr. lb- 1. s. d. 9 3 i3i' II o 13 II 22 ^672 i6 o 8 3 21 9 i ^S{ * In working this (and every one of the following Examples which do not divide even in lbs.) I have taken the neareft ^ or I lb. and rejefted the reft, frQlumingtbat fufficiently accurate for Bufinefs.— Thus 16 lb. \-j\ 27 cwt. I qr. 191b. now the true tare would be 3 cwt. 3 qr. 18-7 lb. but the 5 that is over I multiply by 4, and then divide that produft (20) by 7, and the quotient is 2 or i, lo that I make it 3 cwt. 3 qr. 18^ lb. Had the quotient been 1, I (hould have called it i, or 3 iz !> Sec. P Z tSy Bills of Parcel*^ 3tc» (J5-) {2.6,) FrancU Clarice, Efij^ Neat weight, ewt. qr. lb. 3 1 i^Jl Value 7 a 4t 7 2 26i > 70!. 6 X 19^ 8 I iSL Mr. Amuitie. Neat weight. Value cwt. qr. lb. k s. d. II 2 14 58 19 X 1204 11 H 33 (27.) (28.) J Granville -King, Efq. Mr. Jolm Grant. Neat weight. Value. cwt. qr. lb. L s. i, o 3 iifl o 3 "f I o 2 2i|: S 23 5 iij Neat weight. Value. cwt. qr. lb. 1. s. d. 18 18 — 91 2 li 4 2 7i 73 9 S 35 5t 15 4 71 13 4i 19 3 12 41 S 7i 45 7 7{ a 3 2i| 357 iS 3i o 3 22i 2 2l|: S 1 o 23 3 2:iJ 22^ (29.) (30.) (31._) Wiimer WiUct, Efq. Mr. Fenton. Sir James Lawfon Neat weight. Value . 1. s. d. I. s. d. cwt. qr. lb. ]. s. d. 2 10 3^ 10 19 jI 9 2 i3n 2 7 II 1 2^ 2 7| 9 ' 5i| 3 3 8 oj 8 2231J 54 I 17 i| 5 I 15 17 I 16 6i I J3 5;: 5 5: ■ 24 13 53 n '1 27 16 4|. Part L Bills of Parcels, Sec, i6i (3^0 (33.). Mr. Adams. Mr. L. ThirKvall 1. s. d. 1. s. d. 62 3 z} 61 14 31* 60 8i 9 9;; 016 2 ' 5 9l 4 16 9i r83 18 (34.) Lumley Tutt, Efq. { I. s. d. 19 4i 3 14 8 4 3l 19 7i 17 19 10 23 17 * In this ftating, for 9d. per dozen, rfj 529 JO If loolb. : 2I. 17s. 7d. : : i839i^Ib. : ^29 liv. ics. 5d. the value of the prunes. 1. s. d. Cuflom, &c. of the wine 10 o o Ditto of the prunes ^ 118 15- o , Sledage, &c. - o 15; o )»I5'8 Ditto for the prunes - 1 1 ^ o To the Ship Broker - 500* Poor's box, &c. - 12 5 7* Commiflion (on 7 62 liv. us.) at 2| per cent. 20 19 4 Sum 7^3 10 4 ^ If 3 liv. : (;4td. : : 783 liv. ics. 4d. ; 59I. 6s. i ^d. fter- ling. Anfwer. * The reader will obferve that the tonnage is taken on the whole grofs weight, and that I have made ufc of the Englijh lb. i64 Invoices, Sec, No. 45, 46, 47, 48, and 49, being drafts, &rc. require no anfwer. (50.) If il. : 34s. 4d. : : 571I. 18s. : 981I. 15s. 2|d. Flemifh. Anfwer. (5>-) If 35s. 4d. : il. : : 7494 g. 14ft. : 707I. os. iijd. fler- ling. Anfwer. " (52.) If I cr. : 4s. 3d. : : 5000 cr. : 1062I, los. fterling. Anf, (53.) If I p. : 54id. : : 1576 : 357I. 17s. Sd. (54-) If54^d. : r due. :: 174.9I. iSs. : 7741 i|-J due. Anf. Th^ reji require ?i$/olution. K E TO t. H B COMPLETE PRACTICAL A R I T H M E T I CI- A N. - < PART II. ALLIGATION. ( I.) rf>:s Example is nuorked. (2.) (3.) qrs.- s. lb. d. 16 X 5S = 928 50 X iri- = n5 30 X S3 =: 15^90 4-0 X 14 =r 560 21 X 39 = 819 27 X 30 1= 810 I J X 34. =2 510 87 X ^6 1=3132 82 )3847{4-6|i«. 204. }5:o77(24i,?^d. "— = 2I. 6s. ioJd..|-^ Anf. = 2S. oJd.-|*. Aafwer. 66 Alligation. (4.) qr. 1. 2-5X2 = 5- 4*5 X 1-2 = 5-4 5* X -8 = 4- i2 ) 14*4 ( I'zl. = ll. 4s. Sd. Car. 19. Ts-T] Ti&/V Example is nvorhdm (6.) r= 6 ib. at lod. "J rr 2 — at 6 i — a— at 4 3 (7.) 5 I sofasT s r 2+i|3of2ol3l I iofi8>.5^^ I lof 17 I ^1 4 4ofi4J"L 24-4= 6 ib. 2 2 Anfwer* Anfwert Other anfvvers may be found by Unking the fimples drfferently, (8.) Firft, 4S — 36— 24— I Anfwer. 8 8 or 2 4 4—1 4 16+4 28 4— I 20—5 28 — 7 Second, 4 28+4 16 Anfwer. 4 or I 8 — 2 4— I 32-8 16 — 4 Third, Anfwer. 48 8 8 or 2 1 36—1 4 4—1 ao. 24-T- 8 8 — 2 16—! 16 16-4 12 28+4 32-8 or wheat Of rye Of barley Of peas Of oats Ofvrheat Of rye Of barley Of peas Ofoate Of wheat Of rye Of barley Of peas Of oats Part II. ao. A L A T I Fourth, 48 8 8 4 4 28 + 16 8 or 2 8— 2 44—11 24—, 16— 1 12 Fifth, !1— I 28 i I 16+4 Anfwer. 4 or I 8 — 2 8—2 28 — 7 2Q 5 Sixth, Anfwer. 8 8 or 2 8+ 4 12— 3 4 4— I 164. 4 20— 5 28 + 16 44—11 N. Of wheat Of rye Of barley Of peas Of oats Of wheat Of rye Of barley Of peas Of oats Of wheat Of rye Of barley Of peas Of oats 167 The following Anfwers, in addition to the above, may be found by linking the prices difterentiy. 7th, 4 or 1 4— 1 8— 2 44—11 4— I 8 th, 12 or 3 4— I 8— 2 44 — 11 32- 8 9th, 8 or 2 4— 1 12—3 20— 5 32—8 loth, 12 or 3 4— I 4— I 48 — 12 28- 7 Of wheat Of rye Of barley Of peas Of oats nth, 4 or I 12— 3 4— I 48 — 12 16 — 4 15th, 12 or 3 8— 2 8— 2 28—7 48 — 12 r2th, 4 or I 4— I 12—3 48 — 12 4— I 1 6th, 12 or 3 8— 2 12— 3 32—8 48 — 12 8 or 2 8— 2 12— 3 4— I 48—12 17th, 12 or 3 12— 3 8— 2 44—11 48 — 12 [4th, 8 or 2 12— 3 8^ 2 16—4 48 — 12 1 8 th, 8 or 2 12— 3 12— 3 20—5 i 48 — 12 Of wheat Of rye Of barley Of peas Of oats Of wheat Ot rye Of barley Of peas Or eats More anfwers may be found by nnklng, and thelc may Ic infri'ttdj increafed by obfervirg the Note given to this Rule. x6S A L i I ^ T I • M. (9-) ^his Example is icorked. 8. -J 4 — diff. 4 + 1 =: 5- (lO.) difF. gal. dlff. rr 4- As 5 : So n 4- 5 •• 80 : 4 : 64 ga! : 4 : 64 gal •I Anfwer, 12 8-, 6—1 s. 12 diff. I. difF. I. 2|. 5-" I. (II.) diff. lb. diff. As 5 : 28 : : 2I : 5 : 28 : : r : < : 28 : : 1 : 14 lb. 5|Jb. 5|lb. Anfwer. diff. As 1 I : aS I : 28 Or thus, lb. diff. 28 5 2S)b."-> 70 lb. >An 140 lb. 3 fww. Orher Ajifwers may be obtained by linking differently. (12.) 40. d. 48 T 36-i 24 — 18 diff. diff. b. 224-44-16^=42 As 8 : 24 S rz 8. 8 : 24 8 — 8. 8 : 24 8 — 8. (13.) 7his Example is nvorkej. diff. 42 : 126 b. 8 8 : : 126 b. 7 : 24b4 : 24b.i Anf. (14.) j6. d. 24" ao- 12- diff. s. diff. lb. 8 As 24 4 i4 4 24 8 24 diff. : 72 : t 8 : 24 lb. *> : 72 : : 4 : 12 lb. / : 72 : ■• 4 : 12 lb. J : 72 J : 8 : 24 lb. J Anfwer. Sum of the 'if. 24 Other Anfwert «iiy be oltained. Part II. Single Position. 16'} $• (15-) s. dlf?. s. diif. gal. diff. 8 . 5 As 14 ; 16 •• 5,- 5 f g^l 7— 1 4 14 : 16 • 4 •• 4yg^^ 5- 1-1 2 14 : 16 : 2 : 27 gal 10 i 3 14 : 16 : 3 : sH'^i Sum of the dift'. 14- "*■ Or thus. s. diff. s. diff. 1:19 As28 : 16 : iiff. 8 i 5+4 . 9 • 5 7 1 5+4 = 9 28 : 16 : 9 • 5 1 1 3+2 = 5 =^S : 16 :• 5 •• 2- n _ 34-2 = S 2S : 16 :. 5 = 2- Sum of the diff. a 8 Other Anfwers may be found. H (i5.) . d;ff. s. diff. 6+5 = 11 As 31 : 64- : II 22|t carats. 10 n 10 31 : 64: : 10 20jx carats. 10 zz 10 Anf. ^Anf. Sum of the diff". 31 31 : 64 : : 10 : aof? carats. SINGLE POSITION. T^is Example is 'worhd* (2.) _ Sappofe 12 to be divided according (o thefe parts, asbe'iig the leaft whole number divifible by 2, 3 and 4, without a remainder. i = jcsi !-"• cUm 13 fhoald be 20. I70 Sing L E Position. I. s. d. 13 : 20 : : 6 : 9 4 -j'^.J^ A'sfliare) 13 : 20 : : 4 : 6 3 ol--.^ B's i^Anfwi 13 ^ 20 :: 3 : 4 12 3^4? C's ] (3-) Suppofe they could finidi it in 210 days. days. work. days. 7 • I ; : 210 30 by A 5 • I : : 210 : 42 by B 6 : I : : 210 35byC Sum 07 Hence it appears that A, B, and C working together for 210 days (the time fuppofed) can perform 107 times the work. Confequently work. days. work. If 107 : 210 :: I : i4|ydays. Anfwer. (4.) Suppofe the army confided of 30 men. Then j of 30 = 6 \ =5 TO — 3 Sum 14 And 30 — 14 = 16, but — fhould be 4000. ' Hence, If i6m. ; 4000 m. :.: 30 m. : 7500 men. Anfwer. (50 Suppofe the cidern would be emptied in 1287 hours, h. cif. h. 9 ■ I : : 1287 : 143 by D II : I : : 1287 : 117 by E >3 : I : : 1287 : '99 by F Sum 35:9 Part ir. Double Position. 17: Hence it appears that D, E, and F fet open for 1 287 hours, would run out 3^9 times the contents of the ciftern. Ifjjgc. : 1287 h. :: ic. : 3||| hours. Anfwer. See the 9th of die Promifcuous Examples, at the end of Vulgar Fradions. (6.) Suppofc the fum delivered was 5'cr, Int€reft thereon for 3 yrs. at 4 per cent, 6 The amount is 56I. but ihould be 17 61. 8s. Hence, If ^6U : 116U 8s. : : 50I. : 157I. los. Anfsvcr.' DOUBLE POSITION. (I •) T^is Example ii tiiarlcd^ (2.) FIfft, Second, 1. I Suppofe. the firft horfe worth 30 Chaife, furninare, &c. 150 I. Suppofe the firft horfe worth 1 50 Chaife, &c. J 50 3)180 3 )3oo Vali\? of the fccond horfe 60 Chaife, <«c» 150 Value of the fecond horfe 100 Chaife, &c. 150 2 ) 210 2)250 105 Should be 30 125 Should be 1 50 Error. — 75 Error. +25 CL2 172 Double Position. By Rule I. itfertor, ift fuppofit'on 30 Kvyl — 75 2d fup£of)tion 150 1^^ H-25 75 i.'S frrcr. 30 lJ^$o 750 ^5 + 75 m 100 ) J2CCO izoi. value of the firft horfe, and 50I. :^ value of the fecoci. (5-) First, Suppofe it was 8 o'clock in the morning, then it v.as 4 hours after fun-rife, and 12 hours before fuu-fet; ••; I + 4 of 12 = II, but fnould be 8, hence the error is — 3. Second, Suppofe it was 12 o'clock, then it was 8 hours after fun- rife, and 8 hours before fun-fet ; •.* | -f i of S =? 1 - but ihould be 1 2, hence the error is -f 2. By Ruje I. its error, ift fuppofition 8 k>< — 3 2d fuppoiition 12 rS 4-2 3 //J- S Arithmetical Progression, 2^3 ___ 2 -: = '} common difF. 8 — 1 ^ 2 lea. firil day's journey ,- 2 -h 3 =r 5 2 — 5-^3 = 8 3 8 -f 3 =z II 4 11+3 =14 5 — . 14 -4- 3 = 17 6 f] + 3 =20 7 20 + 3 = 23 8 ^"his Example is n^orhed,- (9-) i2 — mi zz 21, and 21 + i = 22 the number of terms, 5 (10.) ?i_ir — ri 7, and 7 4- i = 8 the number of terms. 3 9^/V Example is ^worked, (12.) 22 1 X 5 r= 105^, and loS — 10 j = 3 theleail term, (T3.) (^ I X 4 — 20, and 40 — 20 = 20 the lead term, (14.) This Example is ^werhed* (15.) ,22 — I X ^ , 1221 -f- 22 = 555:, ^^ = 52 a- And ^5i — 52i = 3 ^^^ leaft term. Fart II. Geometrical Progression. 177 (16.) 12 1X4 , T 300 -T- 1 2 = 25, ^ = 22, and 25 — 22 z= 31. Aufwer. (^70 This Example is lAJorked, (18.) 22 X 5 +3 =113, and 113 — 5 5s 108 the greateft term, (19O JOG X I 4- 2 =s 102, and 10a — i =: lois. sa 5I, is. Anlwer, GEOMETRICAL PROGRESSION. ('■) This Example is ^worked, 1.2.3.4.5.6.7, &c. indices 2 . 4 . 8 . 16 . 32 . 64 . 128, Sec, leading terms -y -f. -7 4. ^ 2= 19 index to the igth term 12S X 128 X 3^ = 524288 the 19th term, Anfvvcr. (3.) 1.2.3.4, 5;. 6. 7, &c. indices 3 . 9 . 27 . 81 , 243 . 729 . 2187, &c. leading terra* 7 + 7 -f 6 = 20 index to the 20th term 2187X2187X729 = 3486784401 the 20th terra. Anfwer. (4-) This Example is < ^'' = 4649045868 the to* .e™. 4 7680 X 64 r: 491520 barley-corns in a bu(hel, barley-corns d. barley-corns 451520 : 30 : : 4649045S68 t 1182I. 6s. 3d. AnfMrw^ M This Example ;i Vfcrked. (8.) 0.1.2.3.4, &c. indices 4 . 12 . 36 . loS . 324, &c. leading terms 44-2— 6 index to the 7th term 324 X ^6 , , , ^—^ zr 2916 the 7th term. 4 Then — ^^— — ^ zr i456,and J456 4--JniG— 4--? fumof the term:* 6.1.2.-;. 4 . 5 . 6 . 7 J . 2 . 4 . 8 . 16 . 32 . 64 . I2S . ^, ); .C 8 -f- 7 n 15 index to the J 6th tt. 256 X 128 — 32768 the 16th term. J5 4. 8 -|- 8 :=: i^ jrdex to the 320 r. 3=768x256 X 256 n 2147433,6.3 -- ^- --'-^ 2147483648 — I -f- 2147483648 rr4-9V o^ ^^ 4473!;24l. 55. s^d. value of ths fir" Part 11. Geometrical Progression. 179 Again, , 3x768 — I -f 32763 rn 65535 ftrthlngs, — CSl. 5s. ^IJ. value -of t^e fecond iiorfe— T he dillcrcncc ot their values is 47738561. Anlwer. (10.) I . z . 3 . 4 . 5 . 6, &c. Jnuircs 10 . 100 . 1000 . icoco . loocoo . lOOOOOO, Sec. leading terrns 6 + 51= II index to the nth term 1000000 X icoooo zz looooooocooo the nth term. loooooooocoo — lo — iiiiiiliiio and luiiliiiio + 10 — I loooooooocoo rZ IIIIIIIIIIIO wh-a. . nv jr. Vi' '.vh.;i.- = 7680 X 64 — 491520 wheal-C'-ra: ' : .1 bu'hci. 1^491520 : 4s. :: iiiiniiiiio : 452111. 4s. 6|:J. Anfwer. (II.) 0.1.2.3.4.5, &c. iid'czs 1024 . 1536 . 2304 . 3456 . 5184 . 7776, ^c. leauing terms 5 -H 5 n: 10 index to the nth term. 7776x7776 . zz 59041;}. the eldeft fon's fortune. 1024 59049 — • 1024 f rr 29C12-4!. which incieafcd by 59049I. gives SS061I. los. the nobleman died worth. ® (.2.) This Example is 'worked. in-) T I , — X — = 2 2 ium required. (14.) 1 i_* ' ' '. '.* ^ \, c "3 9*" "9* 3 I" 9' 9*9""'» ""^ required. JO «— 9 n I and 10 X 10 — 100, then 100 -r i n iccinilcs. Anf. I So Variations and Combinations. VARIATIONS. (I.) This Example is nvcrked^ (^•) 1X2X3X4x5X6x7x8X9= 362880. Anf\V-r» (3-) 1X2x3X4X5X6x7 = 5<^40 variations or days, r: 13 years, -95 .88oo, the divilbr gives fbr the quotient 17 3 10309456440 farthings zz. 18031572350I. 9s. zd. Anfw-er. i^art IL SiMFLE iNThSEST BY DECIMALS. iSi SIMPLE INTEREST by DECIMALS. T.his Example is ivorked, (2.) '^35 X yiS X •<^5 + 23^- =1 279-06251. = 279I. IS. 3d. .maunt. (3-) 550 X 5 X '035 = 96-251. =z 96I. 5s. iritereft. ■ (4.) 700*5 X 5-25 X 'oi -\- 700-5 =:: 810*828751. = 810I. 1 6s. 63d.-}. ^?-) 715-75 X 7-5 X -04.25 -f 715-75 ~ 943*S953i25l. = 943I. 17 s. lo^d.-^. the amount. (6.) •002739726 X 240 = -65753424. 71 5-75 X-05X -65753424 1=23-5315066141. =231. 1C3, 7 Id. -246. AniVer. (7-) •002739726 X.6!^ =''17808219. 357-5 X •I78082I9 X -05 1= 5-183219146251. = 3I. -y. 7]d. -89. (8.) '002739726 X 120 -f 5 = 5»328767i2. 510 X 5-32876712 X ^05 -f 510 = 645-883561561. =: 645I. 17s. S*055d. . (9-) This Example is ivoih\^* R i82 Simple Interest by Decimals. (lO.) This Ex auntie is ivorked* (II.) 279I. IS. 3d. = 279 0625I. j'75 X '05 + I = 1*1875' divifo:. Then 279-0625 H- 1*1875 = 235I. Anfwer. (12.) 96I. 5s. = 96*251. 5 X -035 rr '17^ divifor* Then 96-25 -r- '175 ^ 550I. Anfwer. (13-) ^ Siol. 163. 6-|J.-| = 810-S2875I. 5-25 X -03 -f I == i-i;;75 divifor. Then 810-82875-7- 1*1575 = 700-51. =: 700I. los. Anf, (M-) 943I. 17s. io3d.-i=: 943-8953x251. 7-5 x-o+25 + I == 1-31875 divifor. Then 94-3'S953i25 "^ 1*31875 = I^^'IS^- = 7^5^- ^S^^ Anfvver. (I5-) 23I. 10s.7id.-fl n 23*5315067 dividend. •002739726 X 240 X -o; = -032876712 divifor. Then 23-5315067 -r -032876712 =: 7i5-75l- = 7'$^* 15s. Anfwer. (16.) , 3I. 3s. 7|d.-|i- = 3'i832r96I. dividend. •002739726 x6^ X -05 = -0089041095. Then 3-1 b32 196 -^ •0089041095 ~ 357'5l. = 357l. losc Anfwer. (17.) 679I. 8:J. 4y-7V = 679*417808221. •002739726 X 120 + 5 = 5-32876712 the time. 5*328-6712 X -05 + I =z 1*266438356. Then 679-41780822 -7- 1*266438356 =: 536*4791781. 3 536I. 9s. 7-oo27d. Part II. Simple Interest by Decimals. i?3 (i8.) This Example is ivorked, 279]. IS. 3d. = 279'o625l. and 279*0625 — 235 :« 44."o625l. dividend. 235 X 3'75 = 881*29 divifor. Then 44-0625 -^ 881*25 = '05 the ratio, hence the rata is 5 per cent. (20.) 96*25 -r 5 5o"r^ 5 := '035 the lotlo, hence the rnte is jl- per cent. (21.) 810I. i6s. 6|d.-| = 810*828751. Then 810*82875 — 700*5 ~ 1 10*32875 dividend. 110*32875 -^ 700*5 X 5-25 z=. '03, hence the rate is 3 per cent. (22.) 943I. 17s. I o|d.-f = 943*89^3125!. from which fubtraft 7i5'75, there remains 228*1453125 dividend, 715*75 X 7*5 = 5368*125 divifor. Then 228*1453125 -i- 5368*125 = '0425 the ratio, hence the rate is 4^. (23-) •002739726 X 240 = '65753424, 23I. 10s. 7 Id. z= 23-53125- •65753424 X 715*75 = 470-63013228 divifor. 23*93125 -^- 470-6301-3228 HI *o49999, ii6 (fide Ex, 11.) this divided continually by 1-04, will fliew the time, 4 years. {16.) Theamonnt -r principal = 1 '5 91 3282 15978^1 5625 ("j/dt Ex. T 2.) this divided continually by I'O^, will ihew the time^ 9 years. discounTat cOxMpound interest. ^his YjXawfh is ^jjorked. 1*05 X vo^ X 1*05 X roj =: 1-21550625 the amount of il. for 4 years. Then 4C0 -H r'2r 550^25 = 329*081 -f - 3291. is. 7 id. '76 the prefent w'orti^ which deduced from 400L leaves 70I. 1 8s. 4£d. '2 difcount. (3-) i-C5\fi in I '340095640625, and 643I. 4s, lid. — 643*24583'. Then 643'24583' -r- 1*340095640525 — 4S0I. (nearly) t'le prefcir* worth. i'art II. Eqjjation of Payments at. Sec, iSg M Ratio — : i«o6 ) ioo.( 94- 3 3962.2 prefent worth for the ift year I o^'^n i'i236 ) 100. ( 88*999644 ditto for the 2d year I'obj ^zz i'i9ioi6 ) loO'C 83*961928 ditto for the 3d year J -06 4ri: 1*26247656 ) 100. ( 79*209366 ditto for the 4th year i-o6^5:^ 1*3382255776) 100.(74*725817 ditto fertile 5th year The fqm is the prefent wortli 4^1*236378 — 421I. 4s. 8*73Td, Anfwer. EQUATION OF PAYMENTS at COM^, POUND INTEREST. Th's Example is •worked, (2.) ^•051^ X 3^*^ "^^ 408*4101 amount of the ift payment 96* laft payment 504-4101 fumofthe amounts 320 + 96 rr 416I. fum of the debts _. /3P-. 504-4101 — /opr. 416 „ ^ Tnen '^ ^ ^ ^ ^ . — -0836905 -r '021 1893 n kg. 1-05 3*90496, hence 5 — 3*90496 zzL 1*09504 years, the true equated time. (3-) 1-05]- X 100 -zz. 110*25 amount of the firft payment 105 laft payment 215-25 fum of the amounts [CO 4. 105 zr. 205I. fum of the debts henca 3 — 1 — 2 years, the true equated time. /o.T. 215-25 — /o^. 205 - - Then .^ i — l i^ 2 — .0211893 -r •0211S93 =: i, /.^. 1*05 ^^ 1^0 Annuities in Arrears (+■) J. 05^4 X ICO r: 121*550625 amount of the ift payment ditto of the 2d ■*"<-'5i* X 3^° ^^ 35^*"5 '^'"o of the 3d fee laA paynieRt iiS3'825625 fum of the amounts ICC -f- 2CO -f 3CC + 5C0 zi iiccl. fum ef the debts. „, /»r. ii83'82!:62C — /rff-. iioo Trcn -i i 1 - t — •031S950 -7- -0211893 r:: h^g. 1-05 2-50554, hence 5— i*Soi*4 — 3*49475 years, the true equated time. ANNUITIES IN ARREARS at SIMPLE INTEREST. 77'/; Example is nxarled* 142 + 3+4+5 + 6+7 + 8 = 36 One year's intereft of Sol. =4 Whole intereft due - - 1 44. 80 X 9 =^ '20 The amount /. ^64 i + 2 + 3 + 4 + r+^ = 2* One year's intereft ot 560I. zr 22*4 Whole Intereft - - 470'4 560 X 7 = 3920 £' 4390'4 = 4390' 8s. the a mo u at.. Part II. AT Simple Interest. 191 (4.) 1+2 + 34-^ -i- 5+6 + 7 = 28 One year's intereil of 173I. at 2^ percent. = 3*937^ Whole intereft 1 10-25 17^ X 8 = 1400* 15101. 5s. the amount, is-) 1 + 2 + 3+4, ; Then 302C'5 -^ 17*44 — '18 IZ 175I. the half-yearly payment, hence the annuity i. 350I. (/o.) 39^*5625 X 2 = 733-125 ~ xa the dividend j 20 x 20 x '0125 -f- 20 x2 = 45 :r ffr -f. zr, and -0125x20 — -25 nrr. Then 783-125 ~5" 45 •— • **5 -^ I7*5l« the quarterly payment, hence the annuity is 70!^ 192 Annuities in Arrears (II.) This Exn^rple is ivorhed, •864x2 2/j 2 — -05 2 — r -43-=— J _- ^ I - 19-5- — — i So X '05 r.r -05 X Then v/43- -{- 19-5'.* — i9'5 "TL \/ 812-25 — i9'5 =9 years. (13.) 4390*4 X 2 _ ^ , _ f;f . - — '^4 _ , _^ 2 — r 560 X -04 ~ ^^^ "" ^r' -04 X 2 •+ 5 — ^^ » Then v/ 39^ + -4-5r "" --'■*-5 = "' >'"^'** JC1C-25X2 61136 la 2 — '0225 395'5 - — ' 175 X 02-5 — Si ~" 7r' '0225 X 2 ~ 9 ~ ^^ Then /^^-^36 ^ 595->" 395" 5 _ 467-S_ ^9^5 7^ _, /'s/Sx 9. 9 9 9—9 8 payments, hence the time is 4 years. (i;.) 39,-56.5 X 2^33S,^^. i^:£!is ^ L,-^^. 17.5 X 0125 i.r -0125 X 2 ZT Then VX3580 + 79-5' ^ — 79'5 rz 20 payments, hence the time is 5 years. (16.) This Example is ^worked, ('70 S64— bo X 9 = 144 = ^— «r j 9 — I X 00x9= 576c = f — X tr. j Then 144X2 -r 720 r= -os, hence the rate is 5 per cent. (18.) 439c«4— 500 X l — L-iO'Xzza^nt^ 7 — 1 X 5^° X 7 = 23520 — ; — I X f« 5 470*4x2 -r 23520 :z: '04, hence the rate is 4 percent. Part lU AT Simple Inter Es«r. tg$ (I9-) ISI0'25--»I7$X« = no-25 rStf — nf ; 8^i K 175x8 = 9800 *^ f — I X ffi'i iiO'2 5X^ -f 9*00 it 'oaajh theintercftof tool, for I year, hence the rate is 4^ per cent. (26.) 391*5625 — 17-5X20 tfr 41*5625 :=ta-^itti 20— t X iJ'SX tn 6650 -- f— I X f«i 4i-562SKi -r 6650 ;2: •oii^l. the iatsreft of looi. for ^ year^ hence the rate is 5 per centt The present vtoKtU ot ANNUlTIiES m ARREARS AT SIMPLE INTEREST* This Exam/)/e is ivorkedi M *Thc amount of this annuity (vide Ex. id of the precedift|[ Art*) is 864!* and 9X*o5 + i d i*45 ^^ amount of lU for 9 years. Then 864 -r- 1*45 = 5:95;*862o6897l. &c, = 595I. 175. i|d, •58621 the preicnt value. 1+2 + 3 + 4+5 + 6 = 21 One year's intereft of 560I. = 28 Whole intereft 588 560 X 7 ^ 3920 The amount 4508 7 X'05 + I = 1*35 the amount of il. for 7 year* Then 4508 •+ r35 sz 333r^'i9'^' = 3339'* 5^. 2$d. ♦he prefent value* S 194- The PRESENT WORTH OF AMNUltllS IN ' - (4-) , ..rXhe amount^of .this annuity (vide Ex. 4th cfthe^ preceding ^ty) is)i5io'25L,;and4X*045 + i = ri8, the aniSunt of il. for 4 years. .. • .' i; : -.1 ,.. Ihen I 910-25 -i- i-i8 rz 1279-8728813, &c. n 1279]. 17s. 5'492d. the prefent value. The amoi'int of this annuity (vide Ex. 5th of the preceding Art.) is 39i*5625l. and 5 X '05 + i = 1*25, the amount of 1 1, for 9 years. Then^ 391 -^625 —1*25 zz 5 13*251. rr 313I. 5s. tlie prcfent'^'Qrthfc ■•■ ■ ' (6.) This Example, is C.ax-o5 + 2 =: 2-9 z= 2^r + 2; 9 + -o5 + 2— -05— 2*4:^ (8.) rr -f 2 — r. Then — ~ X 66'2o6896552' zi Sol. the annuity, 2-4 Firft, 3339^* 5^' i-f'^' ^^ 3339'*'59'^' '^'^ divided by 7 gives 477'o'37'l. = -^i 7X2X-05 -f2zz2-7=:2/r4 2j 7 X'os+i — 05=1 » 3 n fr + 2 — r; Then — - X 477'0'37' ~ 560I. the annuity. 2-3 (9-) 1279I. 17s. 5'492d. — I279»37288i3l. this divided by S zr i59«.984iioi625 rr -y 8 x^ X •^^225 + 2 — 2«36.rz a/r-f 2 ; 2.36 . — X 2-1575 ^59*9^41101625-— 175I. the half-yearly payment, hence the annuity i^ 350^- SX'0225 + 2 — '0215 — 2*1575 n rr+ 2 — r ; Then ■■ Fart II. Arrears, AT Simple Int»erb8'T. 19J (io.) ■p ' 3T3'25 -r 20 = 15-6625 — : — "j 20X 2 X -0125 +2 =z a'5 n 2;r 4. 2 ; aox*ci25 + a.— • ^— r-^-^^i-^^-il-?— -I = 12-05172414=: i — li i>o X -05 ^ • rn Then V 297*931034485 -f 12-05172414V — 12*05172414 — 9' yeai-s. (H-) , I2791' ^7^* 5"492d« r: 1279*8728813!. 1179-8728813X2 £ /: ^Z* — : zz 650-09416193 iz -^ ; I75X-0225 ^ ^^ ^^ r« ' 175—28-70713982025 . r o " — '/' T ^ — J zz 36-63o8i)5i2 — ^~'; i75X'0225 . J J :) ^^ .> Then V 650-09416193 + 3^^^88512] ^ — 36-63088512 — 8 payments, -hence the tinae is 4 yearB. 1^ The FKBiKK'i^ WORTH or Anwuities i7'5X*oiz5 "" -iiBys "" 49 "" ra * ^7-5 — 3-9'5625 _ ^ _ ^3-475 _ 43 ^'it _ n-^r^ ^ ^^ ^ lTSXO}zs ^""•21875"" 7 ~~ rn *' Then / ^OS^^ . 43^-2.Y 43'-g _ S?!'^ ^^^ 43'-^ _ N/49 yj 7""7 7"" ~ 20 payments, hence the time is 5 years. (.6.) This Exavt^le is ivorked* (I7-) 595!. 17^. 2d. 3'5S6i ~ 595'862o6897l. 80x9 — 595*86206897 — i24»i3793io3 m fit-^fi 595-86206897x2 + 20 — 80X9 = 551-72413754= */ + « — »r/ J Then 124/13793103 ~ 551-72413794 X "I = '05, hence the rate is 5 per cent. (18.) 33391. 5s. 2|d. r= 3339-2'59'l- 560x7— 3339-2'59' = 58o.7'4o' =«?—/>} Ts39*2'59'X2+56o — 560x7 = 33iS'5'iS' zz zp^»^ rt j 58o'7'4o' H- 33i8.5'i8' x y zz ii6i'4'8i' -J- 23229*6'a9' n '05, hence the rate is 5 per cent. 1279I. 17s. 5«492d. n: 1279.87288131. 175 x 8 — 1279-8728813 = 120-1271187 =r vt — />j 1279-8728813 X 2 -h 175 — 175x8 ir: 1334*74576-6 zn zf-^t n — w^ ; 120-1271187 -^ 1334.7457626 X |- n -0225, the intereft of il. for I year, hence tlie rate is 4^ per cent. (20.) i7'5 X20 — 3i3'25 r= 36-75 =: rr— / ; 313-25 X 2+ i7'5 — 17-5x20 — 254 — 2;) + «--wf J 36-75 + 294 X a\ = '0125, the intereft of il. for^yeaj, hence the rate is 5 per cent. Part ir. Rev£Rsion, AT Simple Interest. 197 The' prf.sent worth of ANNUITIES int REVERSION AT SIMPLE INTEREST. ^lis Example is ^worked, (2.) Fir ft, i-^2-f-3-f-4+ 5 + 6-I-7 — 2^j fum of the Teries. 20X '04x28 + 20 X^ n 182-41. amount of the reverfion. Ani i82'4 -=8^ '04 + 1 rr; \i%*ii%' the piefent worth of the legacy were it to commerce immediately. Secondly, i3S«i'8' -7- 5X'04 + I — i^S'i's'^* — 115^' 3'o'3's« the value of the legacy, (5.)- i + 2 + 3^4'ir:*lo, fum of the feries. 50 X "05 X 10 4- 50 X 5 rz 275l» amount of the reverfion. And 275 -7- 5X'05 4- I r= 220I. the prefent worth of the leafe, fuppofmg. it to commence immediately* Secondly, 220 -~ 3X'05 4- I ~ i9i'3043478i6 zn 191I. 6s. i«C4 3478d. &c» the value of the leafe. (4.). Firff, T+2 + 3+4, &c. to iQ rr 190, fum of the feries. ^icooX'OSX 190 -f- 1000x201:129500, amount of the reverfion. 29500 -7- 2CX'05 + I rz: 14'' 50 the prefent wor-th of the revcifioo, fappofing it to oomnren«€ inunediately. , Secondly, T^IS^ -r 5X'05 + I — I iSool. the value of the leafe. . (,'.) ^his Example is 'VJorked^ S.3 ... 198 Annuities in Arreaas (6.) 115I. 3-o'3's. =: iis-i's'i- = /> ^ = 8,7=: 5. SX2X-04 + 2 X 5X-04+ I n 3'*68 — 2rr + 2 X Tr + i> 8x8x-o4 + 2x8 — 8x-o4=: 18-24 zi rrr + 2^— rr; Then 3- 168 -r 18-24. X iiS'i's' = 20I. the legacy. (7.) 191I. 6s. i'0435d. r: i9i'3043479 + = /> /=5>7'=:3. 5X2X'05 + 2 X 3X'05 + I zz 2-875 = a/r + 2 >^ Tr + i j 5X 5 X -05 + 2x5 — 5X'05=: II =ur + zt — rrj 2*87C Then x 19»*S043479 + = 50I. the annuity. (8.) 11800 = /, f~20, andTn5. 20X2X-05 X a X 5X05 + 1 — s — 2rr + 2 X Tr 4-15 aoX2oX'05 + 20x2 — aox*o5z= 59 r:/rr+ 2r— rrj Then -^ X 11800 iz loool. the yearly rent. 59 ANNUITIES IN ARREARS at COM- POUND INTEREST. ('.) This Example is fworked, (2.) l + i*05+'i-o5)*4. 1.05P + I05J4+ 1^5+ i:^t +1^7 + t'^Srz '^^ "" ■4- ^05]' = ii»0265634, this X 80 produwa -i 1.05^—1 t8zM25]. — 882I. 2S. 6d. amount. (3.) !• + 1*05 +1-05)* +■^05]'+ I^4+ 7^ J +ro5i6 = V^^^ ^ +"i^o5J* = 8*1420076, this X 560 produces 4559-5242561, zz 4559l« xos* 5i^« Part II. AT CoMPoVND Interest. ig^ (4-) ^his Example is ExamJ>/e is ^worked, (II.) 1515I. 6s. I'id. -zz 1515-3451. = a-. By the 5th Example, r — i = 1-02251^ — i rz '19483 .' Log. r— J =: log. -012^ —: — 2-3921825 log.a-Iog.isiS'HS =+ 3"i8o5iij H- 1-5326940 ir?^. '19483 ZZ — 1-2896558 Sum -f 0-2430382, the num- ber anfwering to which is 175I. the half-yearly payment, hence the annuity is 350I. (,2.) 394I. i6s. icid. — 394'8428I. =.a', By the 6th Example, r — i = ioi25i'° — i=:'282035 Zcg..r — I ^zlog. -0125 =: — 2-0969100 Log. fl =:- /og. 354-8428 n + 2-5^)64242 4- 0-6933342 Log. '282035 = — 1-4503030 Sum -4 r24303i2,thenuni^ ber anfuering to which is 17-5 {»earlj) the quarterly pay- ment, heucc the annuity is 70I. (13.) ^his Example is worked. Part II. AT COMFOVND InTIREST, 201 (h) 882I. 2S. 6*04^. = 882'J2^l6l. =r &« Example is ^worked, ill') 1515I. 6s. i-id. = 1515*3451. =5^; i5i5*34-5 X 1-0225 — 1515-345 + 175 = 209'0952 = ar — a -{- n; Log. 209-0952 = 2-3203441 Log, nz=. log, i""!^ = 2-2430380 L'yg, 1-0225 == -0096633 ) 0-0773061 ( 8 pay- ments, hence the time is 4 years. (iS.) 394I. 165. lojd. ir: 394*8428 =: ^; 394- ^4^^ X 1-0125 — . 394-8428 + 17-5 = 22*43554 = ar — a -\- n i Log. 22-43554 = 1-3509366 Log, 17-5 ;= 1-2430380 Log, 1*0125 = -0053950 ) 0-1078986 (20 payments, hence the time is 5 years. lot ThEPRTSEN-T WORTH OF AkNUITIES I" ^h:i Examplt is ivoried. . 882I. 2s. 6d. -0+ =: 882-12516 = c; 882'i2fi6xr Q 88'2-i2ci6 — So : — — r^ Zi : now ov tnai ^O .... ;•..! 8.Q. . '. • -' and frror, as in Example 6th of Double Fofition, I find r ss 1 05, hence the rate h 5 per i:ent. The present worth of ANNUITIES in AR- REARS, AT COMPOUND INTEREST. (^•). 7^/j Example is nvcrked^ (2.) The amount of 80I. for 9 years, at 5 per cent, is 882*1 25I. (vide Example 2d of the preceding Article, and 1*051 9 = 1*551528216 + the amount of 1 1. for 9 years. - Then 882-125 : il. •• i'55i3282i6 4- : 568*62564l. = 568I. I2S. 6-i54d, the prcfent worth. (3.) The amount of 560!. for 7 years, at 5 per cent, is 4J59-?242~561. (vide 3d Ex. of the foregoing Art.) and 1-05V — ■ I -407 1004 the amount, of il. for 7 years. Then 1-4071004 : il. :: 4559-524256 : 3240*368821. = 3240I. 7s. 44d. the prefent worth. This Example is ivorked, (5-). Here « m 175, r n I '0225, and /rr S. L:g. i*c2Z5x8«rr •0773064, this fubtradlcd from the%. of i rr o, iji%es — I*9226q3'6 for the kg. cT — , the number anAvering to which r ■V36938G, hence, i — -— ::z: i — •8569386 — •163061-:. r Part lI/'Ai^REA**, AT Compound -Interest. 20 j Log. -1630613 ' =:: — i'2i23509 Log, n-z^ og. 175 - + 2-24303550 ,\ ,.\ i + 1-4553289 Log. r — I •=: log. -022.$ ~ — 2-35-1^25 Leg. of the prcfcnt wortli -f" 3*1032064, the number anfwcring to which is i268«254l. zz 1268I. f-oSs. Anfwer. Here ^«?^ J7'»5, r— i-oizj, and f n 20. L^l^. I'0I2 5X20 — •10,79000, this fubtratted from the Ys^. of t — o, leaves — i •8921000 for the 7?^. of --, the number anrweriiig to which r h •7800097, hence i — i* — -7800097 — •2199903. - r r. . • . . , lo^. •2199903 =—1-3424035 Log. n zzlog. IJ'S ZZ + 1-2430380 + o 5854415 . Lo^, r — I zz log. ^0125 zz — 2-09.09100 , Lijj;. of the prefent wortli. 4-2-4835315, the number anfwering to which is 307-986 3I. zz 307I. 19s. 8^-d. Anfwer. (7-) 'This "Example is ivorked, 568!. 12s. 6-i77d. IT 568-62571. zi p\ 5681-6257x-t)5 =r28-43i2»5 zz r—i xp-y I -05] 9 11: 1-551328216 = r J I — 1-7- i'55i3282ib ZZ 1 — -6446089 ir •3553911 ilr 1 } Then 28-431285-7- * ' - r^ 'j'553911 — So^' the annuity. 2842!. 7s. g-oiSifd. =: 2842-38757 rr /> ; *_a842«387'57X'05 = i42'ii93785 zz r — i x /> j 1 -05) 7^— ' i' '407 icro4 rr r j I — 1 -r 1-4071004 r: i — '7106813 = -2893187 = i'—_L} Then i42«ii937'S5 ^ •2893187 — r 491 '2208561. 13 49 il. 4s. 5d. the annuity. to4 The TxisitfT wotra of AuMfftrtti tn (ro.) Thit Example it wjorked* (...) Utxtt nS, rz: I'oaaj, and 1268I. 5'o8s. 2^ I468»254J. ~/> j By the 5th Example, l — — — — •1630613, t Log. r-^ t 1^ log. '02%$ r:— i*?S*>S25 Leg. f n log. 1168 '154. ir + 3 '1032064 + 1-455388-9 Log, »x63o6i3 rr — i*2i235o9 Diff* 4- 2-2430380, the number •Tifvverlng to which is 175I. the half-yearly payment, hence the annuity k 3501. (12.) Hercr^ao, rr:i*oi25, 307I. 19s. 9»6d. i= 3o7*99l»=^} By the 6th Example, i — «-— -^z •2199903, r Leg. r— I :zz leg. '0125 zz — 2*0969100 Log. p zn log, 307-99 rr + 2-4885366 4- o 48 5446 6 Log, •S199903 :i — 1 •3424035 Sum + J '2430431, the number •ofwcring to which is 17-5 {nearty) hence the annuity is 70). (>3) Ty?"// E-xample is nvorkeJ, (14O 5fr81. 12s. 6.i77d. -jz 568«6257l. zr /* } 80+568-6257 — 568-6257 X I-C5 = 5i'5687i5 ~ w+j>— /r j £0 -7- 5i'56S7i5 ir: i'55i3282 — zz. i-05\'» hence the vaVieof r may be found by repeated divifions, or rather by logarithms, r: $ yeari. Part IL Arrears at Compound Interect. to^ ('$■) $842!. 7s. 9'oi83d. r: 2842'38757U -r /» j $6o+2S42-38757— 2«42-38757Xi'05r: 4-i7-88o62i5i::b+/>— ^rj 560-^417-8806215 — 1*34000956 zz i-ojy hence the value off nKyr be fouad as above, zH 6 year*. (16.) Ti^/j Example is nvorked, (■7.) 1*681. 5-o8s. n 1268-254!. zz^i 175 + 1268-254— I268-254X i«oa25 — i46'4643— fi-f^ '— ^^ j Lig* n ~ log. 175 — ?.-243038o ii^. 146-4643 ~ zibsT^ii Log. r ir 1.0225 rS •0096633 ) '0773064 ( ^paymcnu, hence the time Is 4 years. (»8.) 307I. 195. 9-6d. =^ 307-991- = /; 17.5 ^ 307-99 — 307-99 X 1-0125= 13-65 nr+^—^rr Lo^. n -n log* 17 •$ zz Ji 4430380 Log. 13-65 — 1.13513x7 Log, Tzz log. 1-0125 — •005395 ) 0-1079053 (20 payments, hence tlie time is 5 years. Tiis Example ij n,jorifd, (20.) 568I. I2S. 6-i77d. = 568-62571. =: /> ; 568-625 7 -i- bo 9 9+1 80 „ , «. 563.6257 ■' +'■-•'■ = j^TelTi' ^^ ''^"^"" 648-6a57 x '-9 — 568-6257 X r^"" :=. ''>o, by trial and error r miy be found zz 1-05, hence the jate is 5 per cent* zo6 The irREsrNT worth of Akkwities in, 5tc. The present worth of ANNUITIES in RE- VERSION AT COMPOUND INTEREST. Th's Exajfiple is fworked* (2.) 5.515631*5, this X 50 producesi76*»Si562 5l. amount of die reverfion, i'05^,5 rr i'i7628i6, amoount of il. for 5 years. As 1-2760816 : 11. ! : 276-2815625 ! 2i6«47383, tlic prcfcnt worth of the lekfe were it to Commence immediately. As i-o^]^ ,= I»157625 : il. •• : 2i6'473S3 : 187I. (nearly) the p.efent wortli of the reverflon. (5-) — V -. I -Of; ^9 — I . — ^. i«4-i'05 + i-05i*-&c. to 19 — — -^ — + i«o5V9 =: 33'^)954'*» *^*^ X l^^co produces 33o65«9542l. the amount of the reverfion. As i"^05"*<==i 4*6531977 •• iJ. • •• 33°6S*9542 ' i2462'iio3l. the ^refent ^v^rth of the leafe, fup^ofirtg it to commence immediately. As 1^05^5 =: 1-2762816 : ij. : : i2462'Zio3 : 9764*46781. — 9764I. 9s. 4id. "088, the prefent worth «f the leafe, (4.) 7 his Example is *workfJ, M 187I. 0».©| ^^^^ ^^*^o ^**s I. 1 760 X '045 =: 79'il. = 79I. 4s. T/t// Example is loorked, 2^0^4166*6'— '06, and '06 + 1 z: i*o6 the ratio. Hence the rate is 6 per cent. (10.) 60 -f- 1200 = *05, and *C5 -f 1 z= 1*05 the ratio. Hence the rate is 5 per cent. The buyikg and selling FREEHOLD estates, according to a number of year's rent for the purchase-money. 0*) Ihh Example is n/jorked, I2C0 ~- 20 = 60I. (3-) 7hiS Example is ^worked, M 6iy -i- 2j = 2j years. (5-) This Exa?nple h iforked, (6.) 45 X 2j =: 625I. Anfwer. Partll. The PUHCRASE Of Freehold EsTATts. 20Q (7-) This. Example is ivorked, (8.) 22|-f- 1 4- 22| = 209 4- 200 = I '04^ the ratio. Hence the rate is 4^ per cent. (9-) This Example is ivorked, (10.) I -f- *04 = 25 years, Anfwer. The purchase of FREEHOLD ESTATES, or PERPETUAL ANNUITIES, m reversion. This Example is njoorked, 6o*5 -4- 'O^ = 1 210, value of the eftate if entered on im- mediately. As iToT''^ = 1*6288946 : il. : : 1210I. : 742 83504!. r= 742I. 16s. 8;^d. the prefent worth of the reverfion, (3-) 290 -r '04 = 72501. value of the eftate if entered on immediately. 'As I -041* = IM698586 : il. : : 7250 : 6i97*33l. = 6x97!, 6s. 7d. the prefent worth of the reverfion. (4.) This Example is fworkedv 210 The Purchase of Freehold Estates, M 742I. 1 6s. 8:Jd. '8 = 742-8351. i-o5Vo X 742*835; = 1*6288946 X 742*835 =: 1210 (nearly) the amount of the purchafe-money to the time when the reverlion begins. 1 210 X '05 = 60*51. = 60I. 10s. the yearly rent. (6.) 6197I. 6s. 5|d. = 6197*32292 -f £. "i'04'|4 X 6197*32292 = n698586 X 6197*32292 = 7249*991 5 1 5> the amount of the purchafe-money to the time when the reverfion begins. 7249*99/515 X '04 = 289*9996, &c, = 290L (nearly) the yearly renl. rhe End of th SOLUTIONS. A N APPENDIX TO THE COMPLETE PRACTICAL ARITHMETICIAN. CONTAINING A SYNOPSIS OF LOGARITHMICAL ARITHMETIC, Shewing their Nature, Conftrudlion, and Ufe, in the plaineft Manner poflible. TABLES OF COMPOUND INTEREST anb ANNUITIES, Extending from One to Forty Years, A L S 0> GZNZRAL AND UNIVERSAL DEMONSTRATIONS OF TKK PRINCIPAS, RULES IN THE -COMPLETE PR ACTICALARITHiMETICI AN. By THOMAS KEITH, Teacher of the Mathematics, &c. Mathejis mentis expurgatio, H I E R o C L . LONDON: miNTED FOR B, LAW, AVE-MARIA-LilNE* MOCCXCi A N APPENDIX, Sc. $. I. The nature aad formation of Logarithms, Definitioft,T OGARITHMS are a feries of numbers fo J J contrived, that by thetn the work, of malti- plication is performed by addition, and diviUon by fub- traftlon. If a feries of numbers in arithmetical progreffion be placed jis indices, or exponents, over a feries of numbers in geome- trical progreffion, the fum or diiference of any two of the former willanfwer to, or Handover, theprodud, or quotient, of any two of the latter. Thus 0.1.2.3. 4* 5* ^» ^^' ^"'^5^' feries, or indices. 1.2.4.8. 16. 32. 64, &c. geom. feries. a 4- 3 = 5» or 3 — I =: z. 4 X 8 — 32, or 8 -r 2 rz 4' Now the arithmetical feries, or indices, have the fame properties* as logarithms, and therefore fucb a feries may be taken for their foundation. Conlidering logarithms as indices to a feries of numbers in geometrical progreffion, it isevident that there may be as many kinds of logarithms as there can be taken geometrical feries; and it is equally evident, that if any one fy. em of logarithms be once obtained, an infinite number of others may eafily be derived from it. But, though ail thefe different fyflems will be equally perfeft, if calculated with equal accuracy, yet the moft convenient rank of con- tinual proportionals is a decuple progreifion. » Thus o, I, 2, 3, 4, 5, &c. indices, or logs, I, 10, 100, 1000, 10000, 100000, nat. numbers. But if the natural number be lefs than an unit, its index, or log. will be negative, ^c.— 4, --3, —2, —I, o, I, 2, 3, &c. 'ooooi, •ooor, 'ooi, 'oi, i, 10, 100, 1000, 4, &c. indices, or lo^s. 10000, &c, natural numbers. * Thefe properties of numbers, which arc the foundation of l.garltlrtst are declared by Archimedci in his Arcnarius i but the invention ot'toga- richms belongs to Lord Njpier. 4 ASyncpsisof From this feries-it appears, that the index to any logarithm will always be an unit lefs than the number of figures in the natural whole number to which it belongs; hence fiat index will always determine how far the tirft figure of the ahfolute number is diflant from the unit's place, of which 1 fhall have occaiion to fpeak more particularly farther on: I now proceed to the confrrufticn of logarithms. ♦ ^. II. A Jhcrt and eafy RitJe for the Conjiritff ion cf Logarithmic either common or loyferholiCy illujir cited by E.^amplei, The Rule*. 1. Let the fum of the propofed number, and its next kfs, be called n^ by which divide '8685889638, &-c. and referve the quotient. 2. Divide the referved quotient by the fquare of zr, re- ferring this quotient, which divide by the fquare of «r, as be- fore. Proceed thus as long as divifion can he ma-^e, and write the referved quotients under each other. 3. Divide thefe quotients refpeftively by the odd numbers'^ I, 3, 5-, 7, 9, II, \^y 15-, 17, &c. viz. divide the firflf referved quotient by i.thefecond by 5, the third by 5:, ^lC, Let the quotients found by thefe divifions be written regu- larly under each other, and added together; to this fum add the logarithm of the whole number, next lefs than the pro- pofed one, and the fum will be the logarithm required. Note. If, inftead of the nuir.ocr •8685^^^9638, &c. we irake uii of the number 2, ihe. rule will fervc fj/ the conftni^ion of hyperbolic loga- rithms. Ex. I, Required the common logarithm of 2. Here the next lefs number to the propoft-d one is i ; hence 2 + 1 z= 3 ~ w, and ■i,y.'3^ IT 9 rr the fqu.ire of //. •S635889638 ~3zz*2895296546-i- i =-28952965:46 •2899296946-r 9 — •032i6996r6T- 3 •0107233205 •O32i6996i6-7-9rz:*C035'74440i-i- 5 = *ooo7i4888o •003 574440 1 -T- 9 == '000397 ■' 600-f. 7 = '0000567 3 7 1 •0003971600-^ 9ir-occo44i2 88-r- 9 = -cooc 049032 •0000441 288-1. 913-0000049032^ 1 1 = -0000004457 •0000049032-^ 9::^ •0000005448— 1 3 rz '00000004 1 9 •0000005448-^-911: '000000060^-7- 1 5 — '0000000040 Sum '3010299950 To which add the log. of i =: •coocoooooo Common logarithm of 2 rr '30102999^0 ♦ An inreftigation of this rule was given in the original eflay, but is here omitted as b.-ing of little or no ufe to tho yoiir.g Arithmeticiaa, who cianoc Log ARi THMi c AL Arithmetic. 5 Ex. 2. Reaj/ired the €om?n:n logarithm of ^, Here the next lefs nuinber to the prc-vjfed one is 2 ; hence 3 -f 2 — 5 nz^, and 5 X 5 := 25 zz ihc fquareof », •8685889638 -r $ — '\l^l 111^,^1 -^ I := -1737177927 •173 ; 177927 -^ 25 rr '0069487 116 *j- 3n ooi3 162377. •000)4871:6 -r 25 ii •000277,4^4 -~ $ zn 'ooo ,555896 •0002771,484-;- 25 — •ooonijji79 ^ 7 rr 6000015882, •C000111179 -^ 25 — •000000-. j.43 -^ 91::; 000D000493 •0000004443 -r 25 rr '0000000177 -^ n tz: •0000000016 Sum •1760912586 To which add the log. 01 2 rr -3010299956 Common log. of 3 — : '4771212541 Ex.5. Required the common logarithm of /^, Here 2 X 2 =: 4. *.• 2 X /<5i. 2 n %. 4." Hence '301029995X2 = '602059990, corr-mon log. of 4. Ex. 4. Required the common logarithm of ^. Here 10 -r 2 := 5. •.* Log. id — hg. 2 ri log, ^, I — '30102999; zz -698970004, common log. of j, Ex. C. Required the common logarithm of 6. Here 3 X 2 =z 6. •.' %. 2 -j- leg. 3 z= log. 6. Hence '301029995 + '4771212542 = '7781512492, com- mon log. of 6. Ex. 6. Required the common logarithm of '^, Here the next lefs number to the propofed one is 6 ; hence •7 + 6= 13 z= », and 13 X 13 = 169 zz the fqiiare of;/. •8685880638 -r 13 — '0668145356 -r I — '0668145356 •0668145356 -r 169 z=. -0003053522 -r 3 r: '0001317840 •0003953522 -r- 169 rr '0000023393 -f- 5 n: •ooccoo4r.78 •0000023393 -f- 169 ~ •0000000138 -r 7 n: '0000000019 Sum •0669467893 To which add the log. of 6 — •7781 5 12492 Common log. of 7 zz '8450980385 Ex. 7. Required the common logarithm of ^. Here 4x2 — 8. •.' log. 2 + log. 4 = log..^. Hence '301029995 + '602059991 zz '903089956, com- mon log. of 8. canrrot reafonably be fuppofcd to be acquainted cither with the method of JiuxiarSi or the ftature and properties of the iyftrinlaf whence this ralr is dedaccd. 6 A Synopsis or Ex. 8. Refuired the common logarithm of(^. Here 3x^ = 9. *.• /o^. 3 -f log. ^zzlog.^; or 2 X tog, j = V- 9- Hence '4771 2 1 2 J47 X 2= '9 5424.25094., common log* of 9. Ex. 9. Required the common logarithm of \o. Here 2x5 = 10. '.• %. 2 + Ir.g. 5 = /o^. 10 ; but the common logarithm of 10 is known to be i» Ex. 10. Required the common logarithm of \\, Here the next lefs number to the propofed one is ic ; hence 11 -f 10— 21 = », and 21 x 21 n 441^ the Iquacc of/-/. •868588963R -^ 21 tr •0413C13792 -^ I iz •0413613792 •C41 361 3792 -T- 441 zr •0C00937S9.. ■4- 3 ir: '0000312633 •0000937899 -i- 441 ^ •ocOoot)2»26 -r 5 ±r •O«oc0ooo425 Sum •e4i39268 5X To which add the log. of 10 :fi i-ooooooooo» Common log. of 1 1 -r 1*041 3926851 I In this manner may be found the logarithms of any other rime numbers; it may be obferved that the operation wiH e fhorter the larger the prime numbers arc; for any number exceeding 350, tne firft quotient, added to the logarithm of its next lefs number, will give the logarithm fought, true to 7 or 8 places of decimals. The logarithms of the compofite numbers are found, by addition or fubtra6lion, as above; hence it will be eafy to examine any logarithm in the tables which we fufpecl to be falfe ; or, if any logarithms be torn out or obliterated, we can readily calculate them, and fupply the defea. Observation. If JV~ any number, as 1, 2, 3, 4, 5, &c. then will A' X ^ — 1» ^"'l A^ X 6 4- 1, coniVitute a feries which will contain ail the prime numbers above tlie prime number 3. Ex. 1 1 . Suppo/e a per/on ^working a mathematical problem ^ nvhereiti he has occnjion to make u/e of the logarithm of ^-ji ; but^ up'jn locking in the tables, finds that logarithm obliterated , or fufpe^s it to be falfe, hoiu mufi he find jt ? Here the next lefs number to the propofed one is 570 ; hence 571 -|- 570 =: 1 141 = n, •8685S89638 -i- 1T41 zr •0C07611520 -7- 1 rn •0007612520 By Sherwin's tables, the log. of 570 — »'7 558749 Su.-n 1$ the tr« log. of 571 :r 2*7 566361 L O G A R I THMICAL ARITHMETIC. *J §. III. The ufe of a Table of Logarithmic The methods of difpofing the logarithms (when made) into tables are various, and therefore no general direftions can be given here for taking a logarithm out of thefn ; nor, indeed, is it neceflary, fmce in every book which contains tables there is, or fhould be, a rule given for that purpofe. — Before I proceed farther, it may be proper to obferve that every logarithm confifts of two parts, an integer, or whole number, and a decimal fradion. The decimal part is always ajfr^ mati'ue, but the ;>//^^^r, which is generally called the index, or ckarafleriftic, may be either affirmati've or negati've ; for, if the natural number be greater than r, the index of its lo^^a- rithm will be affirmative, (or -f ;) but if the natural number be lefs than i, the index of its logarithm will be negative, (or — ,) as I have already obferved. This index is not put down in fe.eral books of logarithms, as Sherwin's, &c. be- caufe all natural numibers, (confifting of the fame fignif.cant figures,) whether they be whole numbers, or pure or mixed decimals, have the decimal part of their logarithms the fame, the only difference being in the indtx, or whole number, as in the following examples. Nat. numb. Logarithms. •94621 = — 1-0743320 •094261 - — 2-97433^(5 •0-9426! = — j.974.3320 •0-09^261 = — 4-9743 ;;20 •000094261 = 9*9743320 •0000094261= — ^'9743320 From the preceding Examples it appears, that, if the /irft figrihcant figure of the natural number (r ckoning fr -rn fhc lefi hand towards the right) be units ^ te\s, hundreds, ihjujands, &:c. the index to its logarithm will be c, i, 2, 3, 6cc. re- fpedively ; or, if the index to any logarithm be o, 1,2, ^,- &c.'the firft figurt* of the natural nuaijcr will be Lnir, tens, hundreds, thoufan-'.s, Sec. refpecflively. Likewife, if the finl fignificant figure of the natural nuuiber be te,'it,b., J:un^ dndths, tUufandths, Sec, the ind x to i ; Ic'garithm v. ill be — i, — 2, — 3, &c. and, confe-]uentiy, \i ihc index to any logarithm be — 4, — 2, — 3, -—4, — 5, &c. tho irrft i.gni- ficant figure of the aumber anfwering is \Y.z jirJi,fscoiid, thirds fourth, fyih, Sec, place of decimals. u Nat. numb. uogariihms. 9-4261 =:= 0-9743320 94-261 ~ 1*9743320 942-61 ~~ 2*97433^0 9426-1 •~- 3-9743320 9f26ir •*-* 4-9743320 942610* rz 5-9/-43320 9426100 -z:z 6-9743320 S ASynopsisof Proposition i. To Jin d the logarithm of a 'vulgar fraHion* RcLi. Subtraft the logarithm of the denominator from the logarithm of the numerator: if you carry i, add to it the index of the logarithm 1 of the denominator; then take the aitfercnces of the indxes for the ^ index of the bgari:hi:n of the fraftion; prefix the fign of— or -f before k, according as the fraftion is proper or improper. Obferve to reJucc compound, mixed, &c. fraftions to limple ones. In this and the following propofitions, whenever an index is written without a fign, it is always affirmative or +. Ex, I. To find the logarithm 5/" -Jl. Log. of 93 = J '9684829 Log. of 94 = 1-9731279 Log, of II = —1-9953550 Ex. 2. To find the logarithm of •^-^* 48 ^6^ 36x3 + 2 no . , r ». » • Here -^ = ^ ^^ = , the log. of which is 48 48x3 144 — rS83«302. PROPOSIT40N 2. To find the logarithm of a ciicuUting decimaU RpLE. Reduce the decimal to its equivalent vulgar fra^ioa, and thc» ikid it3 logantkm by prop. i. 1. Required the logarithm of *i^6^\ Here •c6,/ = I^lHi^ = i£2, the log. of which is ^ -* 900 900 ^17507655. 2. Required the logarithm ^5"3'54'» Here ^3^5+' = ^^^^=^^ = -^^» ^^« ^^S- o^'^^'^^ ^ ^^^+ 999 999 ^ 0*7287071. 3. Required the logarithm of 'C 6^2 S 803 . Here -o^'ziio^' = '^iH£3 = 1^1^ ,he H- cf 9999990 3/0370 which is —i' 7975 1 50. LoC A R I TH M I C AL ARITHMETIC. ^ 4. Required the logarithm of •oo84'9 7133'. Here -oog+'gy . 33' = il?IIl^ = -ll2I^ = 4, . 999999000 999999COO 9768 the log. of which is — 3-9292724. Proposition 3. T^ot':? cr worr numbers being given ^ to Ji?id their prcduf! by logarithms. Rule. Add the logarichnQS of t'le nurTibcrs together ; when you come to the indices, add the affiimatives and wha: you carry into one i'am, and the negatives (if any) into ani-ther, and take t!ie difference of the fums, to which put the fign of the grer.tcr fum, and this will be the index for the fum of the bgirithms, the correfponding number to which witl be the produfti E X . I . Required the produB c/ 84X^6X37X8. log. 84 = 1-9242793 log, j6 = 1*7481880 % 37 == 1*5682017 log, 8 =: 0*9030900 Prod. 1392384 log, = 6*1437590 Ex. 2. Reqm 'red the ? produa (7/ '84 X ' 05 6 X •37' log. •84 = — 1-9242793 l;g> •056 = — 2'748i88o log. •37 = — 1*5682017 Sum of the decimals = •\- 2*2406690 Sum of the neg. indices = — 4* Log. of the produfl '=■ — 2*2^06690, the number anfvvering to which is 'oi 74048. Ex. 3. Required the produd of '37 X 426 X '5 X '004 X •275x336. hg. "37 n — i'56820i7 ^ kg. 426 — 4- 2-6294096 log. '5 — — i'698o70o Lg, '004 n — 3 '6020600 /er.-27 5 = — i-43933a7 leg. 336 tz + 2-5263391 Sum of the decimals and affirm, indices n + 7'4643i33 Sum of the negative indices r: — 6- Logarithm of the produdl: — 4- i*4643i3J> the numbef anfwering to which is 29«i28i76. U z to ASynopsisof Ex. 4. Required the produS 0/ 56]- X /© X 'J X ^ X 47 Log, ^e\ = hg,^i^ - + 1-75076^:4 leg. 7^ =: — 1-8450980 log. 4d = — 1-9777236 L.g. f^ =z log. 11^ = -1-9778857 S'^raofthedecimais and affirm, ind. zr +5'3473528 Sum of the negative indices =1 — 4* -Logarithm of the prod 11(51 rr -f 1-3473528, the num- ber anAvcri.ig to which is 22*25 n 6. Kx. 4. Renuir^d the produfi of •0594405' X •583'x •OJ229I6' X -423571' X -I'S'. Log. -0/94405' n: %. ;^^ = %. ~ =-2-774o829 995-^9^^ 2SO Z.?-.-c8y=:%.li-^-^=^=%^^ =%.-! = — 1-7659168 * ^ "^ "* 9OQ "^900 ^12 * ^^ , 322016— 32291 "* -^ ^ "^ 9COCOCO 1 8 Loy.'i'^'-hg. — = —1-2596373 99 Sum of the decimals = -42-9407508 Sum of the negative indices = — 7* -Logarithm of the produci = — 5'94^7SO^« the number anfwcring to which is •000087247. LOGARITHMICAL ARITHMETIC. II Proposition 4. To find the quotient of one mimher by another, by logarithms. Rule. From the logarithm of the dividend fubtraft the logarithm of the divifor ; but take care when you come to the index of the divifor to change it from affirmative to nega- tive, or from negative to affirmative; then, if the indices have unlike figns, take their difference*, prefixing the figa of the greater index to it; but, if they have like figns, take their fum, prefixing the common fign thereto, for the index of the logarithm of the quotient. Obferve, when there is an unit to carry from the decimal part of the logarithm of the divifor, to add it to the index of that logarithm, if affirmative, or fubtrad it from it, if nega- tive, before you change the indices as above. Examples 'wherein the indices of the logarithms of the divifon and dividends are affirmati. •9213743 Log. •001 12 zz — 3-04.92180 Quotient 745000 Jog. z=z +5*8 7 21565 Ex. 16. Divide 19-206 by '0194. Log, 19*206 = 41*2834369 Log. '0194 = —2*2878017 Quotient 990 log. = +2-9956352 Ex. 17. Divide 9?5*68 by -oSSS. Log. 985-68 = +2*9937359 Log, -0888 := — 2*94.84130 Quotient 11100 /(3g-. =z +4-0493229 Ex. 18. Divide 9890*1 by •00999. Log, 9890*1 ~ +3-9952007 Log, -00999 = — 3*9995<^55 Quotient 9900CO log. zz +5*9956352 From the 6 preceding examples we may infer, that, when- ever a logarithm with a negative index is to be fubtrafted from one with an affirmative index, if there is nothing to carry from the decimal part, the index to the logarithm of the difference will always be equal to the fum of the indices ; and, if there is i to carry, it will be equal to the fum lefs i, ^d in both cafes affirmative* LOGARITHMICAL ARITHMETIC. I5 Zxamples 'wherein the indices of the di-uidtnds are negat've, and thofe of the divifrs affirinativt. Ex. 19. Divide 11^ by ^\\^. Leg. \\^ = —1-6930450 Log. -\\- =: +2'0-oiSco Quotient '00419628 log. r= — 3-6228650 Ex. 20. Divide 1- by 7^°- Leg. 4 = — 1-744727^ Log. 75^00 _ ^^.Q„,g.,3 Quotient •0005^92' log. = — 4*7727562 Hence, by a comparifon of thefe examples with fome of the preceding, we may inter, that, if a:W logarith:n with an atfirmative index is to be fubtracted i'rom one with a nega- tive index, the index to the iogarithm of the diftereiice ^yill always be equal to the fum of the indices, if there is nothing to carry from the decimal ; but, if there is i to carry, it will be equal to the Turn more i, and in both cafes negative* Proposition ^. 71? involve a gi'ven nwnher to any poiver. Rule. Cafe I. Wheu the index to the logarithm of the frfi pi^vji^^ or ront, is afirmnti--ve, {or -f-.) Multiply the l:)^arithm of the root (rejedino- its Index) bv the index of the po\ver re- quired, and referve the produ, of the prefent worths in this table. FOR Compound Interest. 23 fable. Thus i — •0256744.= — 1-974325:6, the number anfwering to which is '9425959, the prefent worth of il, for 2 years, at 5 per cent, &c. T^e cor^Jiruakn of Table IV. This table fhews the amount of il. a-nnulty, and is cor- ^ruded from the firft table thus, I '0000000 1-0300000 amount of il. for r year at 3 per cent. 2*0300000 amount of il. annuity for 2 years. 1 '0609000 amount of the feeond year. 3*0909000 amount of il. annuity for 3 years, 5cc, "^he conjiruahn of Talle V. Thi? tabic (hews the prefent worth of i-l. annuity, and^ is conitru^d thus, Firft year, table III., at y per cent, is '9708738 Second year, ib. — — '9425959 Sum.. Second ycar^ table V. i-9i34/)97" Third year, table III.. -(^i^i^iy Sum- Third year in tabic V- &c.. 2*82861 14, Th€ conflruaimi of Table VI. This table is eonftruCled from the 5th table by fubtracling the log. of the prefent worth of il. from an unit;, thus the log. of 2*82861 14 is 0*4515732, this fubt rafted from i leaves -=- 1*5484268, the number anfwering to v.hich is •3535304y the annuity which il, will purchafe for 3 years at 3 per cent, X 3 TABLE I. The amount of il. for years. •r.^i ■; per cenc. ] 3^ uer Cent. I|l .0300000 2jI.o6o900C^ I 0927270 [255088 1.194052;. 229873^ 1. 266770c ^•304773^ ^•3439^63 1-384233^ 1. 425760c 1.4685337 .5125S97 1.557967.1 i.6o47o6.:j I 6528476 1.702433: 1.753506c 1. 8061 1 1: 1.0350000 1. 0712250 1.0871780 1.147523c I 1876865 '29-555 1.2722791 1. 3 1 6809: I 362897; 1.410598- ^•4599^: 1.51 1068^ 1.563956c I 61S694; ^•67534^^ 1.733986. 1.794^755 I 857489: I 92250J ' 1.989708;- I 8602945 1.9 16 1034 1.9735865 2.0327941 2-093777^ 2.156591 2.221 2 89'j 2.287927 2-3565655 2 427262 2.5000803 2.575082-^ 2-652335 2.7319055 2.8138624 2.8982783 2.9852266 3.0747834 3.1670269 3.262037; 4 per ^,^{\i 2.059131. 2 . I 3 I 5 I I C 2.2061I4J 2 283328. 2-363244' 2.44595b 2.531567] 2.62CI7IC 2.71 1877c 2.8067937 2.90503 u; 3.0067075 3.1 II 9425 3.2208603 V3335904 3.4502661 3.5710254 j. 6960 II 3-82537^7 ? 9592597 1 .040000c 1 .0816000 1.124864c 1. 1698586 1.2166529 1.265319c 315931*^ 3685691 4233 1 1 c^ 1.4802445 1.0450000 1.092025c 1. 141 1661 I 1. 1925186 I I 2461819 1539454^ 1.601032: 1 6650735 1.7316764 1.8009435 4|perCenr. I 3022601 360861:8 I 4221006 I 4860951 ij_i29^9. 1.6228530 1. 6958814 1.7721961 I 8519449 1.9352824 1.8729812 1 9479005 2.0258165 2.106849: 2.1911231 2.3699188 24647155 2 5633042 2.665 8363 2.7724697 2.8833685 29987033 3.1 1 865 14 3-243397 5 3-3731334 3 50B0587 3.6483811 3-7943^63 3.9460889 2.022370 2.1133768 2.2084787 2.3078603 2 41 1714c 2.520241 1 2.633652c 7521665 .876013^ 3.0054344 3.14C679C 3.2820095 3.4296999 3.5840364 3-7453iSi 4-1039325 4 2680898 4.4388134 46163659 4.8010206! 5 p'. rCei.t. 050OOOC .IO250OC .157625^ .2155063 .2762816 .3400956 .4071004. •4774554 •55132 .6288946 •7103393 7953563 .8856491 .9799316 0780282 3-9138574 4.089981c 4.2740301 4.4663615 4^7147^ . 37737"84 5.0968604 5.3262192 5.5658990,0 .1828746 .29^018^ .4066192 .5269502 •6532977 7.^59626 .9252607 .071523! 2251000 3^63549 •7334563 9201291 1161356 3219424 •5380395 7649415 0031885 .2533480 .5160154 7918161 0814069 3854773 704751 039988- TABLE II. The amount of i1. for davs. 3 \ er Cent. 1 .OOO0B09 1 .00016 I 9 I 0002429 c.ooo324'j I 0004050 1.000486c 1.000567c 1 .000648c 1 .0C07291 1 .0008101 3-^ v-crCcnC. 1.0016209 1.0024324 1.0032445 1.0040573 I.OO4870S 7 80 90 160 no 120 3 14c 150 1 6c 1-0000942 1 .0001 885 1.0002827 I 0003770 I 0004713 I 0005656 1 .0006600 1.0007542 I 0008486 1.0C09420 i.ooi'8867 1.00283 1.0037771 1.0047236 1.005671C 4 p;r Lent I.OOCIO74 1. 0002 I 49 1.0003224 I 0004299 1.00053 1 .0006449 1.0007524 1 .0008600 1.0009675 1. 00 1 07 5 1 4.-^ [:er Cent. l-OOOI2C6 I.COO24I2 1.0003618 I.COO4824 1.000603 1.0007238 1.000844 1.0009652 I .0010859 1.0012066 5 per C.:u 1.0056849 1.0064996 1.0073151 1.008131 1 1.0089479 1.0097653 1.010583^ 1 .01 1402'! 1 .012221 c; 1.0130415 17CI1.6138623 1.0146.837 1.0155057 I. 0163284 1.017151S 18c 19c 20c 210 22c 23c 240 25e 26c 28c 29c SO 31c 32c 34'^ 36 1.0179759 1.0188006 1.0196260 1.0204520 1. 0212788 1.OC66193 1.007^685 1. 008 j 1 86 i .0094696 1.C104214 I 0021513 1 .003228b 1.0043074 1.0053871 1.006468c 1.0001336 1.0002673 1 .000401 1 1.0005348 1 .000668; 1.0008023 1.00C9361 1. 00 1 0699 1 .001203} 1. 001 3376 1 .0075501 I 0086333 1 .0097 1 77 I oio8®33 1. 01 1890C 1 .0024148 1.0036243 1.0048354 1.0060479 I 0072618 rToc84773 1.0096942 1 .0109125 1.0121324 I-OI33537 1.CI1374 1.0123279 1.0132825 1.0142379 1.0151945 1.0129779 1.014067c 1 .01 5 1 572 1.0162487 1.0173412 1.0221062 1.0229342 1.0237630 1 0245924 1:0254225 1.0262532 1.0270847 1. 02791^68 1.028749 i.o29q83c 1.0161516 1.C17109S 1.01806S9 1.0190288 I. 0199897 I. 0209515 1. 02 1 9 142 1.022877S 1.0238424 1.024807S 1.0257741 I 0267414 1.0277096 1.0286786 1.0296486 1. 0306195 1.0315914 1.0325641 1-033537^' lo^^i^iz 1.002677c I.OC40I82 1 .005 36 1 1 1.0067059 1 0080525 1.0094009 1.010751 1 1.0121031 1. 0144565 1.0 148*25 1.0145765 1.0158007 1.0170265 1.0182537 1-0194824 1.018435c 1. 019.5299 1.0206261 I.02I7233 1.0228218 1.0239215 1.0250223 1. 026 1 243 1.0272275 ^ 02833^9 1.0294375 IC305443 1 0316522 I.03276I4 I 0338717 1 0349832 1.036596 1.0372099 I 038325 1.0207126 1.0219442 1.0231774 1.0244120 I.02564S1 1 .026885S 1.0281249 1.0293655 4.0306076 1.03I85I2 1.0330963 I 0343429 I.03559IO 1.0368406 1.038001 i 0393444 1.040598.5 i 0418542 1.0431114 1.03944131-1 C44370C 1 .0161699 1.0175291 1 .01 88902 1.0202531 1.0216178 1.0229843 1.0243527 1.0257228 1.0270949 1.0284687 1.0312219 1.03^6013 1. 0339^25 I •0353 -^56 1.0367^05 1-0381373 i -^^395^59 1.0409164 1.0422087 1.04^629 1.0450900 1 .0464969 1.0478967 1 0402084. TABLE IIT, The prefcnt worth of il. for years. I 3 pciCenc. .9708738 3ipeiCe.nc. 4 per Cent 41 per Cent. 5 per Cent. .9661836 .9615385 .9569378 .9523809 2 .9425959 .9335107 9245562 .9157299 .9070295 3 •9i5H'7 .9019427 .8889964 .8762966 Mi^i-je 4 .8884870 .8714422 .8548042 .8385613 .8227025 5 6 .8626088 .8419732 .8219271 .8024511 .7835262 .7462154 •8374843 .8135006 .7903145 .7678957 7 .8130915 .7S5992O .7599178 •7348285 .7106813 8 .7894092 .7594116 .7306902 .7031851 .6768594 9 .7664167 •73373IC .7025867 .6729044 .6446089 lO II •744^939 .7224213 7089188 .6755642 •0439277 .6139133 .6849457 .6495809 .6161988 .5846793 I 2 .7313799 .6617833 .6245971 .5896639 .5568374 »3 6809513 .6394041 .6005741 .5642716 .5303214 H .6611178 ,6177818 •5774751 •5399729 5050679 ^5 i6 .6418619 .6231669 5968906 .5552645 .5339082 .5167204 .4810171 .5767059 .4944693 .4581115 .171.6050164! .5572038 •5133733 .4731764 •4362967 18 .5873946 .5383611 .4936281 .4528004 .4155207 19 .5702860 .5201557 .4746424 4433018 •3957340 20 21 •5536758 .5025659 .5855709 .4563870 .4146429 3768895 •5375493 •4388336 .3967874 .3589424 2;i .5218925 .4691506 .4219554 .3797009 .3418499 23 .5066917 .4532856 .4057263 •3633501 •3255713 H •4919337 '^119'^!'^ .3901215 •3477035 .3100679 25 26 .4770056 .4231470 .3751168 .3606892 .3327306 .2953028 .4636947 .4088378 .3184025 2812407 27 .4501891 .3950123 .3468166 .3046914 .ze-jz^'^oi 28 .4370768 .3816543 ^^^^h^lls .2915707 .2550936 2r> .4243464 .3687482 .3206514 .2790150 .2429463 1° 31 .4119868 .3562784 .3083187 .2964603 .2670000 •2313775 .3999871 .3442304 .2555024 2203595 J2 .3883370! .3325897 .2850579 .2444999 .2098662 33 •3770263. .3213427 .2740942 .2339712 .1998726 34 .3660449 .3104761 .2635521 .2238959 .1903548 35 36 •3553834 •34503^4! .2999765 .2898327 •2534155 ,2436687 .2142544 .2050282 .1812903 .1726574 37 •3349829I .2800316 .2342969 .1961992 .1644356 38 .3252262! .2705619 .2252854 .1877504 .1566054 39 •3157536I .2614125 .2166206 .1796655 .1491479 40 .3065568- .2525725 .2082890 .1719287 .1420457 TABLE IV. The amount of il. per annum^ or annuities for years. 3 per Cent. n ?«-•-'■" I ooooooo 2.0300000] 3 0909000J 4 1836270] J-J2211SS 6.4684090 7.6624622 8.8923360 ^10.1591061 lOji 1 .4638793 12 8077"^ -_ 14.1920296 13^5-6177904 I4I17. 0863242 IJ 16 17 18 »9 ^^•5989139 20 1568813 21.7615877 23 4H4354 25.116868^ 1 .ooooooo 2 O35OOOC 3. 1062250 42149429] 5 362+659 4 per Cent 1 OOOOOOO 2 0400000 3.12 16000 4.24.^464 5.4163226 6 5501522 6.6329755 7-7794075 7-8982945 9.0516866 9.2142:63 10.36S4958 10582795. II. 7313931 12.0061071 13.1419979 13.4863514 14. 6019616 15.0258055 16.1130303 16.6268377 17.6769864 iS. 29191 12 1 9 29 56809 20.0235 ^ 20. 9710297J21. 8245311 22.7050i58j23-6975i24 24.4996913 24.6454129 26.3571805 27.67 12294 20-26 870.3745 28 2796818129.7780786 21128.6764857 30 269470713 1.969201 22j3o»5367.So3l3 2.3289022!34-24r^698 23132.4528837134.4604137136.6178886 2 r_, __■ ._' _'_'j ._^^ ■ i. 04. 5:0003 4^ per Cent. 5 pir Csot. 1 .OOOQOOOl 2.0450000! 3.1370250' 4 278191 1 5.4707097 I. ooooooo 2.050COO; 3.1525000 4.310125c 5.5256312 6.7i689!7l 8.0191 58! I 9.3800156; 10.8021 142' 12.2S82094 4I34. 4264702 36 6665282139 082604 2 5 1 3M5 9i^3 j 3^-949^567! 4i-6|5 9o" 26|3a.553o.;..22;4i 3131017144.3117446 27'40.7096335|43.759o6o2i47-o^42i44 2.^142.9309225 29:45.2188502 30 47_5754i57 3 IJ50. 0026782 ^027585 34s 46.29o6273;49-96'^85< 48.9107993 52.9662863 51. 6 226773: 56.0 849-^77 54.4294710 59-32833'i2 57-334502562 7oi4C)87 3155.0778413:60 3412101 66 2095274 34157-7301765163.4531 524169.8579085 35!6o. 4620818 66.6740127173 6522248 3^|63-27T9H3 37|66. 1742226 "^'169.1594493 39!72. 2342327 4075.4012597 70.007603 2! 77 -59^3 '3'^ 73 4578693IS1. 7022464 77. 028894-J85.9703362 80.724906c 90.409 1 497 84.5502778I95 0255[57l 13.8411788 15.4640318 17 1599133 18.9321094 .20 784 0543 22.7193367 24.7417069 26.8550837 29.0635625 31. 3714228 I 337^3'368 363033779 38.9370299 41.6891963' 44.5652101' 6.8019128 8.142C084 9.5451089 1 1.0265643 12.5778925 14.2067871 15.9171265 17.7129828 19.5986320 21.5785636 47.5706446 50.7113236 53-9;33332 57-4^30332 61.0070697 64 7523878 68.6662452 72 7562263 77.0302565 81.49661 Ko 80.1639658 91.0413443 96.13S2048I 01.4644240: 07.030323 I'l 23.6574918 25.840366^ 28.1323847 30.5390039 33-065954 35.7192518 38.5052144 4>-430475» 44.5019989 47.7270988 51.1134538 54.6691265 58 402582^ 62 3227 J ig _66__4388475 70.7607899 75.2^88294 80 o63:'7oS 85 0669594 90 3203073 95.8363227 01.6281388 07.7095458 14.095023; 20.799774- TABLE V. TI\e prefcnt worth of il. per annum, or annuity fpr years. yr.- 3 per Cent. 3i per Cent. 4 per Cent. 4^ per Cent. 5 per Lent. 1 0.9523800! I.8594JC ' 2. 7232. > 3-54593^ 4-329470/ 1 0.9708738 2 I.9I34697 3 2.82861 14 4 3.7170984 J 4-5797072 6 5.4171914 7 6.25C2S29 8 7.0196922 9 7.7861089 10 8.5302028 11 9.2526241 12 9.9540040 13 10.6349553 14 1 1. 2960731 Li '^-9379351 0.9661 836 1.8996943 2.8016370 3-6730792 4.5150524 0.9615385 1.8860947 2-7750910 3.6298952 4.4518223 O.956937I 1.8726678 2.7489644 3-5«75257 4.389976; 5-3285530 6.1145439 6-8739555 7.6076865 8.3166053 9.0015^10 9-6633343 10.3027385 10.9205203 IJ.5174IC9 I 2. 0941x68 12.6513206 I3.1896817 13.7098374 14.2124033 14.6979742 I 5.167I248 15.620410; 16.0583676 16.4815146 5.2421369 6.0020547 6-7327448 7-4:533'4 8.1 1089;; 5 8.7604763 9-5850733 9-9^56473 [0.5631223 11.1183868 5.157872s 5.8927C09 6.595SS61 7.2687905 7.9127182 8.5289:69 9. 1 1 85808 9.6820524 10.2228253 ^0.7395457 1 1.234c I 51 11.7071914 12.1599918 12.5932936 13.0079365 5.07; 69 21 5-7^63734 6.4632128 7.1078217 7-7 2 17349 8.3064142 8.8632516 9-3935750 9.8986409 10.3796580 10.8377695 11.2740622 1 1.6895869 12.0853208 12.4622105 16 12.561 1020 17 13.1661185 '8 ^3'7S3Sn^ '9 '4-3237991 20 14.877474F 11.6522949 12.1656680 12.6592961 13-13393^5 13-5903253 14.029158c 14.451 1142 1 4.8 568405 15.2469619 15.6220787 21 15.41 50241 22 15.9369166 23 16.4436084 2416.9555421 25 17-4131477 13.4047239 13.7844248 '4-1477749 14.4954784 14.8282089 15.14661 15 15.45,3028 15.7428735 16.0218885 16.2888885 12.8211 527 13.163002' 13.488573. ' 13.7986418 14-0939445 26 17.8768424 27 18.3270315 28 18.7641082 29 19.1884546 so 19.6004413 31 20.00042 8 ^ 3220.3S8765S 33 20.765791S 34 21.1318367 3r 21.4S722CO 36 21.8322525 37 22.1672354 38 22.4924616 39 22.80S215] 4c 23.1147719 16.8903523 17.2853645 17.6670188 18.0357670 18.3920434 18.7362758 19.0688656 19.3902082 19.7006842 20.ccc66i 2 15.9827678 16.3295844 16.663061 b 16.9837132 17.292031 S '4-375^853 14.6430336 14.8981272 15.1410735 15.3724510 17.5884921 17. 873550c 18.1476441 18.41 1 1962 I 8.66461 I 6 16.5443909 16.7888909 17.0228621 17.2467580 17.4610124 15.5928104 15.8026766 16.0025491 16.1929039 16.3741942 2o.290493h 20.5705254 20.8410874 21.1024990 21-3550723 .8.9082S03 19.1425771 19.3678625 19.5844831 19.7027721 17.6660406 17.8622398 I 8.0499902 18.2296557 18.4015844 16.5468516 16.7112872 16.8678926 17.0170406 17. 1 590867 TABLE VT. The annuity which il. will purchafe for any number of years. yrs 3 pc. C Bt. I .0300000 3i per Cent. 1.0350000 4 per Cent. 1 .04000.00 4.{- per Cent. 5 perfent. 1.0450000 1.0500000 2 .5221)108 .5264005 .5301901 •5339976 •5378049 3 -3535304 •3569342 •3603485 •3637734 .3672086 4 .2690271: .2722511 .27549^.1 •'2-l'^l\ll .2820118 5 6 .2I83S46; .2214814 2.' 46271 .1907619 2277916 .1938784 .2309748 .1970175 .IS45975] .1876682 7 .1605064' .1635445 .1666096 .1697015 .1728198 8 .1424504! .1454767 1485279 .1516097 .1547218 9 .12^4339 .1314460 .1344930 •1375745 .1406901 IC .1172305 .1202414 .1232909 .263788 .1295046 u .1080775 .1110920 .1141490 .1 172482 .1203889 I2 .1004621 .1034840 .1065522 .1096662 .1128254 13 .0940295 .0970616 .1001437 .1032754 .1064558 H .0885263 .0915707 .0946690 .0978203 .1010240 IS 16 .0837666 .0796109 .0868251 .0899411 .0858200 .0931138 .0890154 .0963423 .0922699 .0826848 17 •075^525 .0790431 .0821985 .0854176 .0S86991 18 .0727087 .0758168 •0789933 .0822369 .0855462 '9 .0698139 .0729403 .0761386 .0794073 .0827450 20 21 .0672157 .070361 I .0735818 .0712801 .0768761 .0802426 .0648718 .0680366 .0746006 .0779961 22 .0627474 .0659321 .0691988 .0725457 •0759705 23 .0608139 .0640188 .0673091 .0706825 .0741368 24 .0590474 .0622728 .0655868 .0689870 .0724709 ^5 .0574279 06c 674c .0640120 •0674390 .0709525 26 .0559383 .0592054 .0625674 .0660214 .0695643 27 .0545642 .0578524 .0612385 .0647195 .0682919 28 •0532932 .0566027 0600130 .0635208 .0671225 29 .6521147 .0554454 0588799 .0624146 .0660455 3? .0510193 /05437^3 .0578301 .G613915 .0650514 31 .0499989 •0533724 .0568554 ,0604435 .0641321 32 70490466 .0524415 .0559.^86 .0595632 .0632804 33 .0481561 .0515724 .0551036 .0587445 .0624900 34 .0473220 .0507597 .054314*^ .0579819 .0617554 35 36 •0465393 .0499984 •0535773 .0572705 .0610717 .0458038 .0492842 .0528869 .0566058 .0604345 37 .0451116 .0486133 .0522396 .0559840 .0558398 3^ .0444593 .0479821 .0516319 .0554017 .0592842 39 0438439 .0473878 .0510608 .0548557 .0587646 40 .0432624 .0468273 .0505235 •O54343J .0582782 30 The use of the Decimal Tables. The ufe of the preceding Talks, TABLE I. AND II. Proposition i, GI-VC72 the pHncipaly rate, and timey to find the amount. Rule. Multiply the amount of il. (in table I or II.) at tlie rale and for the time given, by the principal, and the produd will give the amount. Note. If the amount be required for any number of year:- or days exceeding thofe in the tables, divide the given num- ber of years or days into two or more fuch numbers as are in the tables, and multiply the amounts anfwering thereto into one another continually, and the laft produft by the prin- cipal, which will give the amount required. Example. Vvhat will 2Col. amount to in 6 years, at j per cent per annum. Compound Intereft. Vide Ex\ I.. Co?n- pound Intereji. Agaiaft 6 y. under 5 per cent, ftands 1.3400956 amount of il 200 principal. a681' OS. 4{d. ~ Prod. ^T. 268'Oi9i2oo amountrequired. In a fimilar manner the amount of 70I. for 40 days, at 5 per cent, will be found to be 7o*37(j277l. per table II. And the amount of 82-51. for 75 years, at 5 per cent, will be found, by the note, to be 3203*69661. Observation. Anfwcrs to qnellions in any of the other three propofitions in Compound Intereft, may be eafily ob- tainted by "a little attention to the preceding Rule and Ex- amples. TABLE III. Proposition. Any fum of money , due fame time hence , being given, to find its prejent Kjalne to the creditor y difcounting at any rate per tent. Compound Interefi, Rule. Find the prefent worth of il. at the rate and for the time given (by tabic III.) which multiply by the debt, aad the piodud will be the prefent worth required. The use of the Decimal Tables, 31 Example. What ready money will difcharge a debt of 243I. 2^*55. due 4 years hence, difcounting at 5 per cent. Compound Intereit ? f^'ide Ex. i. Difcuunt at Com^mni hitereji, Agaiuft 4y. under 5 percent, (lands •82270^5 prefent worth Oi' il. 243!. 2^V' = 243 '1012 5 the debt. Produft £,- 2CO the prefent worth. TABLE IV. Proposition i. Cii'eu the annuity ^ the rale per cent, and time, to find the amount. Rule. Find the amount of il. per annum at the rate and for the time given (by table IV.) which multiply by the annuity, and the produdt will be the amount required. Example. What is the amount of an annuity of 80I. to continue 9 years, at 5 per cent, per annum, Compouatl Ivk'* tereft ? Fide Ex, 2. Annuities in An cars, Againft 9 y. under 5 per cent, ftands ii'Qz6^(]^7, amour.t oi' il. So annuity, S82I. 2,s. 6d. — ProJud /. S82T251440 amount. Observation-. Anfwcrs to queftions in any of the other 3 Vropofitiom in Annuities in Arrears may eaiily be obtained, by paying a little attention to the above Rule and Example, TABLE V. Proposition i. To^nd the frrfi:ni luorth of an antmity at Compound Interejf, tee lime of its con'tinuance and the rate per ant, beijig given. RuLK. Find the prcfent worth of il. at the far the time given (by table V.), which multiply by rats and ^ the an- p:i Y 52 The use of ihe Decimal Tables. Example. Required the prerent worth of an annuity of Sol. to continue 9 years, at 5 per cent, per annum. Com- pound Intered, Vide Ex. z. Pre/ent Worth 0/ Annuities. Againft 9y. under § per cent, ftands 7 '10782 17 prcfent worth of il. 8.0 annuity. 568I. J2S, 6d. n Produft ;^. 568-6257360 the prefent worth. Proposition 1, ^ofind the frefent tvorth of mi Aumiity in Reaver/ion at Com" Poiind Initreji, Rule. Find the prefent worth of il. per annum, at the given rate, for the time being, and alfo for that time and the time in reverfion added together (by table V.). Sub- traemoTijiratiott cf the Rule of Five, ^c. All queftions that come under this rule may be fohed by two ftatings in the fmgle Rule of Three, either both dired, or one diretft, and the other inverfe. The reafon of this rule will therefore appear obvious from the firll, fecond, and third example. I. Hen- the blank falls under the third term. If 7m. :izd.^i.6a. ^ _,6X3XIZ6 7 X la Ey fwo zi 5. Cor. 2. —Qi A — A X — of u Ex. | of 2=1 of iriaXiot i- n n " Cor. 3. — of » n -5 of I. Ex. \ of il. — | of il. A A Cor. 4. — of/?: zi — of ^. Ex. 4- of 2 zr ^ of 3. n n ^ CoR. 5. — of b zn — of axb. Ex. I of 5 zz |of 10. n n Proposition 8. The numerator and denominator of each fraftion are equally multiplied, viz. by the denominators of all the other frac- tions, confequenily the fradions produced are equivalent. Thus in the firll example, ^7X11—303' 7 4Xii'~3oS'ii 7x4 3^^' The fecond rule under this propofition is equally obvious, for -^of 5o8r2-of3oSx3 = -X ^t!' ^'- ^^' ^' 4 4 - 4 7 >vii Note. The following rules in vulgar I'raaions will appear fufficiciilly plain, from an attentive obferNancc of the nature 40 The THEORY of Circulating Decimals. of the examples. — Tfee truth of the rules for working finite- decimals will llkewile appear more clearly from the defini- tions, and the nature of the operations, than they can be rendered by a multiplicity of words. \I. Demonjirathns of the rules of Circulating Decimals » D E F I N I T I o K I. ** It is afferted that if the denominator of a vulgar fradion, in its loweft terms, is not compounded of 2 or 5^ the decimal produced from fuch. a vulgar £ra for its time. Now the fum of the amounts according to the fuppofitiou muft be J 4- J X d — x X r, putting s {or A -\- B -{- C -{- D, A X d—a X r -Y B X. d-^b x r + C X d—c X r -f Z) X d — d X r = s X d — X X r, by di\'iding by ;• and re- ducing the equation, we obtain A d — Aa-\-B d — B b -\- C d ^Cc-{-Dd—Ddzzsd-^sx, then A+Bi-C-^-D^d ^Aa-^Bb-^Cc^Ddzz sd-^s,\\ Z 44 Demonstration of the Hence x = =: - — - — - — -- — -- — ■ s - A'+B + C + D tv-hich is the rule. ^ E. D. Hence the rule is univerfally true according to any of the fuppofiiions, anc^asthefe fcveial pi-inciples produce the fame final fimple equation : it there- ore follows that they are ma- nifeft confequences of each other, as I have aiferted at note 5th to the rule, VIII. Demon/? rat ion of the Rules of FelloivJJjip, BY MR. V/. ADAMSON, TFACHLR OF THE MATHEMATICS, AT BURLINGTON, YORKSHIRE. I. Shigle FellQnx>Jhip, Merchants. Stocks. Gains A o B h y > Notation. C c z. ) Ey the general definition of Fellowlhip it muft be As i7 : A- : : ^ : _>• : : t' .: z, hence by the dod\rine -of proportion we have a-\-b\c : a 4-j-f 2 : : a \ x, ^E, D. II. Double Fellonjc/bip. chants " I. n > Notation. Admit u4 . B . c. Sec. merchants 1 Put in a . b . ey &c. ftoclis 1 For i • P ' 9^ &c. months j And gain x • y Zy Sec. pounds J Now ;f ~ J's gain in the time /; and by Single Fel- lowfl:iip, bx _, .... zz B s gain in the time /. a ex a •zz C's gain in the time /. — '.: p : -^ = J — -^'s gain or lofs in his time/. a ta — '.'. q : -^-~ :zi z zz C's gain or lofs in his time y. ia Rules of Fellowship. 45 Hence we (hall have their refpedive gain expreficd three ways. I. II. III. A. x—x B, y-x X — •^ at C K-=zx X ~ tp x—y X c q x—z X ^—2; X qc a t Let G = the whole gain, then wtf' fhall have the three following equations. bp I. X ■\- x X— +XX -^ zzG-, or at + bp -^c-^ XX ::z:aiG. at at II. yx'r -fv+J x\^ — G, or at -i-op-^ca Xy=.bpG. hp ' op III. XX-- ■\-7^-k~-\-z — G)OVat-\-vp-^cqX^—cqG, cq cq Now let. the fum of thefe produds be put = s, and wc *^ sx = atG '.' s : G :: ai : X ) sy = bpG -,' s ', G -.'. bp ', y >^ E. D. jz :ii c gG •.' f ; G :: C7 : z} Proposition i. Note 4. By the rule <)f Double Fellowlhip we have the following proportions {x being given). at + [>/> : X -^y :: at : -v 7 j_j^^^g a t -^ c q : X -{- z, : : a t : X I bpx •=! aty '.' at '. X : : bp :y 1 ^ j^^ ^^ cqx zz atz. '.• at '. x :: cq : ~J Proposition 7. Note ^. ^ut .v-f-j-f 2 rz G the whole gain, and at^b p -^-c q-= m the fum of the pr jdufts of each man's itock and time, per Double Fellowlhip. m : G m : G m : G : at : x'i : bp '. y^ : c a \ ^\ Hence ^, = - — ^ * ^"^^ G X y ^ from thefe equations we deduce the following. Z a 46 Demonstration of the I. A' a :n a C. i — aX — II. a — by, b- b c-b X 9y III. qx a-=.c X — t s Now putting s for the fum of the ftocks, we have I. o-^uX — -^+'f ~X:i IT / J .V i. fiX^--tqy\tpz.Xo — t:-\-tqy-\-lp^X C ZZ t p % t. P p qx '. al t qy : b L'^ £. D. Proposition 3. Note 6. '^ By prop. I. f/e have hpx zz c/r, and cjx zzatz* Now let a l'€ given. TliCn A- : ^ / ; : y ; hp, and — = ^ ;«■ ;. Proposition 4. Note 7. By prop. 2. we have — = -^^ = - , and from thefe e- ;c J a quations we deduce the following. II. I. A. t — t ^ ^y C. q — t X — bx t—p X — ay P -P b^ qZZp X — cy III. q X 'y ? = ? k tf LE S O F L OS S A N D G A I N. 4^ Xow by putting j for the fum of the times, we fhall have -ay , z- I. /+ X 7^ + r X - =15 II. p X — 4-/>4-/X — = 5. ay cy III y X — H ?x 7^3 + ? — i. i^TA-rf 'it-y-j-ii ^ • '. p >^ E. D. ••• Zt^ + <2f_y + <^bx, : i :: abz, : qy By prop. I. we have bpx rr city, and c^x = /7/^; multiply the firft of thefe equations by c, ami the fecond by b, and we (hail have cb^x rr c atjy and c bqx ::=. batj,^ let / be given. Then b c x : t : : c cy : p} ^^ p ^ And ^ r .V : / : : ^ rt 2 : 5^ f "^* The method of demonftration made ufe of above is very general, and will be the fame let the number of partners be ever fo many. IX, Demoyiftration of the Rules of Lof and Gaiiu Proposition i. This rule is felf-evident. Proposition 2. p.' r Prrprime coft ) of an f to find G tliegain, \ S — felhng price ) integer, [ L the lo's per c^n or nt. r : d : : loo : — - — or f : loo : I GO S S : -— l,y the rule, and agreeable to reafon. — Mow if 6" be greater than F, ioo5 .„.,,, , „ 100.9 — —- will evidently be greater than lOO. Hence — — 100 n G, for — - — is the amount of loolr Z 3 4$ Demonstration of the Again, if 3" be lefs than P, then will — -- be lefs tha» 100. ••• ICO — — p— = ^ t"^ ^0" per cent. Proposition 3. ^. J P=primecoft of an integer 7 to find 5 the I G=thegain,orZ = the lofs per cent. ) fellingprice. It has been already (hewn that — p- — 100 1= G, and 100 — — ^ zi L, Hence 100 X S = P x G ■■\- 1 00, nd 100 XS zz P X 100 — L. ••• I CO : 1 00 -f G : : P : .S if gain, and 1 00 : i co — Z. ; P : ^ if lofs. ^E,D. Proposition 4. or /the given fei- ^. V 5 rrfeUmg price of an integer 7 f"/"'^ ^ '^'.^'»'"! Given -^ ^ — , • T ►u I r ^ * ?■ 'ofs at any other gi |G:=thegaiii,Lir thelofspercent. ^,5^^ p^. J^^ & From the equations in the preceding propofition, we have 100 4- G looS ... ! 100 : : 5 : P ZI if gain, or 100 — L : JOO : : 5 : P lOO+G "=°^ if loft. 100 — 1/ Nov;, by propofition 2. we have ^ lOQp , ioo/> P : 100 \ '. p '. — — i i then — — i- — 100 zr ^, and loo — — •' n /, in thefe equations for P, fubftitute its values ■ — -, ioo5 ico-i-Gx/' , -. Then w.U — 100 zz r, and 100 — and 100 — L S ^ zz 1} or joop 4- Gp — 100 5 4- Sgi and ico* — i/> o ICO S — SI. •.• 5 : ICO 4. G : : /> : 100 + ? if gain, and 5 : 100 — • L : : /> : JOO— /if lofs. i^£. £>. Rules of Lossand Gain. 49 Proposition ^, ^. 5" S =the feUing price of an integer 7 ^^ ^"^ ^}'' wjiole grn ^■'''"j G zzche gain, or L = thelofs per cent. \°' ^^^' by the fale of (, 3 ^"y qi^antity ^ By the firft dating in the l?.ft: propofitioa we have lOO ^- G : lOO : : 5 : P the prime coil of an integer, if gnin, loo — L t loo : : S : P , if iofs. Now if S and P be equally Increafed hj any quantity P, the proportion will evidently continue the Cun.c, . . J TOO + G : loo : : 5 X ^: Z' X ^if gain ) ^ _ • J loo — Z, : loo : : 6" X i^: /- X i^if Iofs | ^^"^ '^ ^ ^is the whole value at which the goods were fold, and P X i^is the whole prime cod.— ^Hence the difference l)e- rveen S x i^and P X ^ mull be the whole eain or Iofs. 9. E. D, Proposition 6. ?^= che quantity of goods bought 1 to find the P — the prime coil of an integer > whole gain ^ G n the gain, or Z-zz the Iofs per cent. J or Iofs. Here P X i^ =: the whole prime coft of the goods. From the lail propofition we have loo : lOO + G :: Px^: 5 X ^ if gain. ICO : loo — I :: P X^: 5 X ^ if Iofs. Hence the difference between S % ^ and P x ^ = the whole gain or Iofs. i^ E. D. The rules of Barter and Exchange will appear plain by obferving the nature of the feveral Examples. — The rule of Compound Arbitration of {'Exchange may feem to want de- monltration; but whoever takes the trouble to folve any one of the examples by two, or more flatings, in the fingle Rule of Three, in the fame manner as I have proved the Rule of Five bv ingle flaiings, will immediately fee the truth and nature of the rule. Any perfon who can extra*?l the fquare and cube-root in Algebra, will not be at a Iofs to demonftrate the rules of fquare and cube- root J and to thofe who cannot, a demon- ilratioQ 50 Demonstration or the flration would be of little or no ufe. It may not be amifs to remind the reader, that the 2d rule for extrafting the cube-root is deduced from Mr. Ward's Mathematician's Guide, page 151. Sch edition. X. Demonjiration of the Rules of Alligation. PROPOSITION I, This rule needs no demoi\ftration. Proposition 2. Suppofe four fimples A, B, C, D are to be mixed ; let the mean price be m, the price oi A =^ m -\- a, of /? = m -\- b, of C = m — Cy and oi D z=l m — d. And let the quantities to be taken of A, B, C, D, be x, j, z, nj refpedively. Then prices, quantities. m -f n mean m -\- b m m — c m — d Now if each quantity be multi- ^ plied by its price, the fum of the produfts will evidently be equal to the fum of a.l the quantities multiplied by the mean price. Viz. m -{- a X X -\- m -j- b X y -{■ m — c X. z. -{- m zn X -\-/v -\- y -\- z X m. dX Let m -^ a X X -\- m — dX'vrzLX-^-HJXm, And rn -\- b Xy + m — c X z z= y -\- z X m. Then mx -f ax -f- m^v — d -z! =■ mx + m'v. Alfo fny -J- by -f fnz — c z '^. my -\- mz. \ A 1^— ^!*but here are four unknown quan- tities and but two equations, •.* x and y may be taken at pleafure. Take xzza and y—c, then will ^vzza and z=b, and confequently the work will ftand thus. m + a" m + b- m — c- ^1 c /Which is the rule. Rules of Position. 51 Cor. Since ax = dn; and by = cz^ take x :=s m d and y :=z uc \ then will — = ; -zz , which IS r-\-s r + s r+s the fecond rule, ••• the rules are univerfally agreeable to their principles. ^ E. D, Scholium. It has been fhewn that the nuoiber fought will come out exadly by this rule, when the errors are cxadly proportional to the differences of the fuppofed num- bers from the true one. It therefore follows, that when the errors are nearly proportional to thefe diferences, that the anfwer will come out nearly true. And thefe proportions will be the nearer to an equality the nearer thefe fuppoled numbers are taken to the true one. Hence we fee the reafon of the fecond note to this rule. Rules in Arithmetical Progression, XII. Demonjiration of the Rules in Arithinetical Progrejfion, ^Z f/ = the leaft term g =■ the greateft . n = the number of ten I J = the fum of the ten [ ^/ = the common dirlei Then will /+/+^+/+2^+/+3^-f/+4^, &c. be In Arithmetical Progreffion. Now it is evident that the fum of the extremes will always be equal to the fum of any two means that are equidiftant from the extremes; and confcquently if the number of terms be odd, the fum of the extremes will be equal to double the mean ; That is /+/-f 3^=/-f^+/+2./= 2l-\-2d I-}-l+4.d=zI-i-2d+/-i-2d=2/+^d l+l-^-zd—l-^d^l-^d— 2l+zd, Sec, Hence Propofition i. s = i-\-gx~. For 2 r /4-/-I- d 4- 1 A- id -^rTTd ■+ Add V /+/+^ + i+zd +l-\jd -hI-\.^d,Scc.zz{um I l^^d-\rTTTd +/+2^ -{- /+7 + / zrfum 2/+4^+2/ + 4^/-f 2/+-y-{-2/++^+2/+4^, &C. *.♦ twice the fum is equd to as many times / -f / 4- ^d, or I -\- g as there are terms in », confequently s rz l-{-g x ^. E. D. n 2 Inferences deduced from this equation \ c T 7 2/ — 712 Interence I. / iz ^, n II. n = ^. Tir i!—"^ m. i = -;;-. IV. s = "J±:i. ^4- Demonstration of th Propofition 2. g — I zz n — i X d, 1.2.3 .4 • 5> &^c. to n, l^TTd-^T+n-\rJTTd-\-JTTdl &c. to^. Here the common difference d is evidently as often re- peated as there are terms in the feries wanting one ; that is, evexy terra, except the firft, is equally increafed by dy *,• J-— / = «— r X^. ^E.D, Inferences deduced from this equation. Inference J. I =z g — « — i x d, n. . = -^±^. HI. d- ^^^. IV. g=: I + n—l X d. Kow by the afliftance of the above deraonllrations, if any three of the iive terms /, g^ », s, d he given, the other tw© are readily found. Proposition i« Given /, g, and n, to find s and d. (Prop. 2, Inf. 3.) d= ^^^^; and (prop. i. inf. 4.) s =: 7 '^ /+; X -. Pro position 2. Given /, g, and /, to find n and (prop. i. Inf. 2« Hence we deduce Theo. V. and VI, Rules in Arithmetical Progression. $$ Profosition 4. Given /, «, and /, to find g and d. Prop. I. Inf.3,)^ = ^~-^ = ^+^— ix^ (Prop. 2. Inf. 4.) plence we deduce Theo. VII. and VIII. Proposition 5. Given /, », and d, to find g and s. {Prop. 2. Inf. 4.) ^ = / + «— I X^= (Prop, i. Inf. 3.) Hence Theo. IX. and X. are deduced. Proposition 6. Given /, s, and J, to find g and ^, (Prop. I. Inf. 3.J ^ =z =/-f //— I Xd (Prop. 2 . Inf. 4.) (Prop. I. Inf. 2.) «r=-ii=rC±4ll^ (Prop. 2. Inf. 2.) Hg d From tbefe equations we deduce Theo. XI. and XII. Proposition 7. Given gy ;/, and s, to find / and d, fProp. I. Inf. I.) / ~ 1-11^=: ^— ^117 Xi (Prop. 2, h.i'. i.) Plence v/c deduce Theo. XIII. and XI'v' . Proposition 8. Given gy 7/, and d, to find /and s» (Prop. 2. Inf. I.) l—g-^n-^i Xdzz-- ''^ (Prop. i» Inf. I.) Hence we deduce Theo. XV. and XVI, A a 5-6 Demonstration of the Proposition 9. Given j-, j, and d, to find / and 11, (Prop. 1. Inf. 2.) '^=;A^ = '^^^~^ (Prop. 2. Inf. 2.) (Prop. 2. Inf. I.) / =:^— a— i X ^ z= J^^'^ (Prop, u Inf. I.) From thefe equations we deduce Theo- XVIL and XVIII. Proposition 10. Given ;/, /, and dy to find / and g. Prop. 2. Inf. 4.) g =:i-i- n — i Xdzz (P^op* '• Inf. 3.) (Prop. 2. Inf. I.) 7=:^— ;J^ X^=: ^i^— ^ (Prop. i. iQf. I.) From thefe equations are deduced Theo, XIX. and XX. XIII. DemonJIratlon of the Rules in G^oinetrkal ProgreJJion, Before I proceed to invefligate the Theorems, it may not he improper to explain the rules to the firft and fecond pro- pofition, page 95, — In the firil propofition, where the firft term is equal to the ratio, the reafon of the rule is evident ; for as every term is fome power of the ratio, and the indices point out the number of multipiiers, it is plain, from the nature of multiplication, that the produd of any two terms, will be another term correfponding with that index, which is the fum of the indices ftanding over tliefe refpedtive terms. And, in the fecond propofition, where the feries dees not begin with the ratio, it appears that every term, except the firlt and fecond, contains fome power of the ratio mul- tiplied into the firft term, -.• this rule is equally evident %\ith the former. Holes in Geometrical Progression-. ^y La /r:the leaft teniT ^r=:the greatell vnthe number of" terms j~rhe fum of the terms r— :the ratio log. iiilogarithm of any let- [tcr, or term. Then /, /r, /V% /r% /;4, Geom. Progreflion. [hen /, /r, /V% /r% /;4, &^'. -J Or, /, — , ~, — , --, &:c. ( r r^ i^ r^ \. Kow fincc the above progreflion is compofed of two ranks. The equals /, /, /, /, /, 1 .... , Geometrical proportionals i, ^, rS r^ ^4^ J &«^ »t 'oUows th.t the moft natural Geometrical Progrefiioii is that which bcg'ns wlr.h i,. both incieafing and dccreatinjr. Proposition r. Demon. For / : /r : : s — g : s — /) By Geometrical But / I Ir : : I : r 3 Proportionals. "Whence 1 : r : : s — g • ^ — ^« '.• s — I^ s — g X r. i^ E. D. Inferences deduced from this equation. Inference I. s =: ^^i^^ z= ^-^ + g. r — I r — I II. r zz .. HI. / = s -h ^g — rs = rg — r — I X /» ,-- sXr — 1+/ * s-i-/ IV. g = =z s . ^ r r Pr OFOSITION 2. r X / = g. For /, ir, Ir^, lr\ /r^ &r. And I^ = /r^-' ... //-^ =^. ^ £. Z>. j;8 DlMONSTRATlON OF THE Inferences deduced from this equatidn. n — I liiference I. ^ = /r T II. / = -'^. /; — I r , III. „ = !£I:f=i£I:> + ,. for/-=-f. Jog, r i IV. rzn-^p' Hence by the affiflance of the preceding demonftrations, if any three of the terms /, g, », ;, r be given, the other two are readily found. Proposition i. Gi^en /, g, and », to find / and r, 1 (P/op. 2. Inf. 4.) r = 4i'*""' and (Prop, i. Inf. i.) ; = ~ — . Hence we deduce Theo. I. and IT, r — I Proposition 2. Given /, g, and r, to find » and r, (Prop. J. Inf. 2.) r=: ^-^^, and (Prop. 2. Inf. 5.) » =r ^'^ ^^ — {-/. Hence we have Theo. III. and IV, l;>g. r Proposition 3. Given /, ^, and r, to find « and s, (Prop. I. Inf. 1.) / = ^— z= -^ + g- r — I r — I /Prop. 2. Inf. 3.) « =: -^f ~-^?:- + i, the fame wirh Theo. V, end VI, Rules in Geometrical Procressioit, 59 Proposition 4. Given /, », and /, to find g and r, (Prop. 1. Inf»4.) g n ^ = Ir (Prop. 2r Inf. 1.) Hence we deduce Theo.. VIIT, ft I (Prop. 2. Inf. I.) ^ = ir (Prop. i. Inf. 2.) r = J / . Hence by fubftitution and redudion we deduce Theo. VIL Proposition 5*. Given /, /?, and r, to find g and /• (Prop. 2. Inf. 1.) g — Ir which is Theo. IX» Hence r^ = /?•. But (Prop. I. Inf. I.) ;=: ^^^llll/ =: ^llH^ bv fubai- r — I r — I r" — I tution, V • y, 1 =z s, which is Theo. X. r — 1 Proposition 6. Given /, s, and r, to find'^ and //. (Prop. I. Inf. 4.) g z=. . (which is Theoi XI.) =: /r (.Ptop. 2. Inf. i.) Hence we deduce Theo. Xir» Proposition 7. Given g, k, and j, to find / and r. (Prop. 2. Inf. 2.) / = — ^ (Prop, i. Inf. i.) s = « — I r -^ , by fubftitution and redudion we get j r r— x ;■ != gr — g, and hence we deduce Theo. XIV. Theo, XIII. is the fame as Theo. VIII. Aa 3 6o Demonstration: '. 7 run Proposition 8. Given g, », and /•, to find / and r* From 'the preceding propofitlon we have Theo. XV. and from the equation sr — sr =^^ — g* I" the fame prop. \^e get Theo. XVI, by divilion. Proposition 9, Given g, s, and r, to find / and «. (Prop. I. Inf. 3.) Izzrg + s — rs, which is Theo. XVIL (Prop. 1. Inf. 3 and 4.}4 = ^ = ""^ (Prop. 2. Inf. I.) which is Theo. XVIII. Proposition 10. Given n^ s, and r, to find / and g^ (Prop. I. Inf. 4.) g = i^irjuH:/ -- // ^ (P,op. 2. Inf. 1.) Hence we deduce Theo. XIX. Eyprop. S, sr — sr =z gr — g. Hence by divifion we eet Theo. XX. Cor. In the original equation s — /= rX s — g, when. the !eaft term /:= o, then s = -l^, which is Theo. XXI* r — I and hence the reft are deduced. In the demonftration to prop. I. in tlie theory of circulating decimals, it is afferted , n R R R , . ^ . R liiat — -i — - -{ — : -] , &c. ad infinitum, rz . r ?•* r' r+ r — i Demon, x ~ r x s — Rj from above, hence by rcduc- n ti«nj=: . ^£. Z), Rules of Variations, Sec, 6i XIV. DemonJI ration of the Rules of Variations, Pro position i. The reafon of the rule to this propofition is evident. For one thing, as a^ is capable of bat one ppfition a. And if there are two things, a and h^ they are only capable of thefe two variations aby bay and thefe may beexpreffcd by i X2. Suppofe there are three things, abc\ abc | be a then any two of them leaving out the acb cab tiiird will have 1X2 variations; and bac \ cba confequently when the three are taken in, there will be 1X2x3 variations. Sec, Sec, PROroaiTION 2. " The nunnber of changes of ^ things, taken » at a time, is equal to m changes of «i — i things, taken k — i at a time." •* For fuppofe ^ things, a b c d e be given, firfl leave out <7, then we (hall have the four b c d e, out of v/hich let there be taken all the 2's bcy b dy &c. put 'v = the number of variations of every two out of the four quantities bcde. Now if <7 be put in the finl place of each of them, it wilt znake abcy a bd, See. then will each confift of three letters, viz. t; = number of variations of every 3 out of 5, abcde, when a is firft, "In like manner, if b, c, d, e be fucceffivcly left out, the number of the variations of all the 2's will alfo be ru ; and putting be de in the firft place to make 3 quantities out of 5-, there will ftill be 'v variations as before. But thefe are all the Tariations that can happen of 3 things out of 5, when a, by e, dye are fucceffivcly put firft ; and therefore the fum of aTl thefe is the fura of all the changes of 3 things out of 5-. But the fum of thefe is fo many times ~o as is the number (A things; that is, jo; or m'v zz all the changes of 3 things out of 5. And it is evident the fame way of reafoning may be applied to any numbers ;;;, ?i." This being premifed, we deduce a dired demonftration of the rule, for " Suppofe any number of things a b c d e fg\ here fn=z-i, and let // = 3, Subtra(5l i from 3, and there remains 2; fubtraiii 2 froii; 7, and there rcTi^iLns 5. Hence it is evi- dent. 6z Demonstration of the dent, that the number of changes that can be made by taking I by I out of 5 things, will be 5=-^. ** Then when »i = 6, w =: 2, the number of changes = r/n/ ^ 6 X 5 zz 1; a fecond time* " Again,, when m = 'j^ n z::z ^, the number of changes = m'v IT 7 X 6 y 5, that is rzTwX m — i x m — 2, con- tinued to 3 or « terms. And the like may be ihewn for any other numbers." ^. E. D. Vide Mr. E?nerfon^ permu^ tations, prop. 2, and prop. 3. XV. Demonjlratlon of the Rule of Cjmhi nations. The number of combinations of 2 things out of 5, ah cde are 10, as follow. For with Ul V^'V;uV: the different < c >are combined J •• v ^f, ^^, ''^^ things 1^1 \— ''''/; Hence the combination of 2 tilings in 5p ~ la The number of combinations of 2 things in 5 is fhewa to be 1 + 2 + 3 + 4, and by the fame manner of reafoning the combination of 2 in 6 will be 1+2 + 3+4+5, hence univerfally the number of combinations of m things taken 2 by 2 will be 1+2 + 3+4+5, &c. \q m — 1 terms, an- fwering to a figurate number of tlie third order, the fum- , . . m m — I whereof is — X . 1 2 Again, the combination of 3 things out of 5 are 10, as follow. With a. With h. With r. a b c, a b dy a b e \ ^ • .., a c dy a c e \ 2 • . ., . . ., a d e\ I bcdy ^f ^ I 2 I cde I I I , . ,. bde\i Rules of Simple Interest, Sec, 6j The number of combiRations of 3 things out of 5, are fr.evvn to be i -f 3 -f 6 zz 10, and the number of 3 things at a time out of 6, by the fame manner of reaioning, will be i-f3 + 6-fiozz2o; this ieries anuvers to a figurate number of the 4th order> the fum whereof is — X I 2 — — , which is the rule, P. £, />• 3 ^ XVI. Demoriftration of the Rules of Shnple Interefly by Decimals. Ufing the notation prefixed to the rules, we have, by proportion, i : r : : p : rp, the inferell of / for one year ; and I '. rp :; t I prt, the intereH ©f p for the tiir.e /;. alfo p -\- prt HZ the arrear at the end of the time /. Hence prtzzi, and prt -\- p = a, from which equations the rules are deduced. The rule of Difcount is the fame- with the rule to prop. 2, putting D in the place of a. XVII. Dsmonf} ration of Malcolm'j Rule of Equation of Paymerits. The principles on which this rule is founded are given in the note to the rule. Let / n the firft payment, P = the fecond, / = the time between the two payments ; r zz the ratio, or rate per cent, divided by 100, and ,v zr the equated time from t!fte firlt payment. Then prx = the intereft of/ for the time x. And zz difcount of P for the time / — .v. rt — rx -\- I Hence, according to the fuppofition on which the rule is Pr* Prx founded, /r A- = 1. Now by reducing th& rt — r.v 4- I equation, Scq. we get xzzt^ 4- — + / ^^ + -H — I" but it will be found, upon examination of the problem, that only one of thefc values will aufwer the conditions of the queftion; and by a fynthetical demonftration that value is < + /^-5-. + — — l-l, which is the rule. ^E.D^ 64 , Demonstration of the XVIII. Demonfiration of the P^ulcs of Compound Inter £ji^ by Dtcimals. Here we fliall ufe the fame notation as is prefixed to the rules. r zz the amount of il. for i year,, and by proportion,. 1 : r :: r : r^ amount of il. for 2 yeari;. I : r :: r^ : r^ ditto • for 3 years, I : r : : r^ : r"^ ditto for 4 years. And if the number of years, or payments, be denoted by /, the amount of il. for / years will be r , hence it appears that the amount of any other principal fum / for'/ years,. will be /;- for I : r : : / : pr ,\- ^r z= a, and hencc all the rules are deduced* XIX, Demonfiration of the Rule of Equation of Pay- mentis at Compound Interej}, Let Ay By Cy D debts be payable at the end of a, hy Cy d years, x =: the equated time from the firft payment. Then d — X zz. the time from the equated time to the laft term. j4-\-B-\- C-^- D = s. Then by Moreland's or Burro'vj's prin- ciple (vide demon. 3 of Equation of Payments at Simple Intereft,) we get ^/~''-f b/~~^^ c/'^' + D =z P = sr ; by dividing by s and extrafting the root by loga- rithms, we get x = d Qg- — og.s ^ which is the rule log. r exadly. ^ E. D^ Cor. I. If we divide the equation by r we get yr ZZ Ar -f- —b ——c D i •Br •\- Cr + — :, hence by the nature of negative indices — zr A , B C B V ' + — 7 + + — ; ^P, ••• Pr^ = 5, and x — ra / ^c ^d log. 5 — lo g. P , . , . ^ ^ ,. , , which IS Kerfy% rule. Cor. z. By Malcolm'^ prindple j fuppoling x tKe equated time to fall between the fecond and third payment, we have At — X — ^ r D A+Br — B fum of the intcreft zn C — H -^ "— '. Sum of the diCcov«t$. By tranfpofition ^r'^"^^+ ^r*"" +■ II Rules for Annuities in Arrears at, &-c. 65; CD X h -— — J-\-B4-C-^D zz ^J divid:; by r and we havs rr— X d — .V y r ^a ^b C D S S yj B Ar + 5 r ^ + = > or — ^ (r j,c ^a ^x J.X ^.a ^o — - A , the very fame exprefllon as we deduced from Ktrfty'^ principle. Cor. 3. Hence we may obferve that the rule is univeifally tin?, whether we argue from Burrc'zv''s, ATer/Vy's, or Malcolm^ s principle. But if we argue from Cockex^^ or Hattons principle, we deduce a different theorem. For in the former cafe we get ^/""'— >^+Br'"~*— J^zrc/"""^— C+Z?/""""— D, and In the By proportion < latter y/+5+C+^ X^ — Ar ^Br +Cr +Dr - Scholium. From what has been demonftrated, Art. 7, 17, and 19, it plainly appears, that all the rules are true according to the fuppnfitioni on which their refpeftive authors have founded their demonitrations ; and the reafon why they differ, arifes only from the injuftice of Simple Intereft. I fhall only remark, that what ^'fr. Todd has written on this fubjeft, in his folution to his own problem, at page 39 of the Ladiei' Diary for 1789, is a compofitioa of error arid inconfifliincy. XX. Dejnonjlration of the Rids s for Annuities in Arrears at Simple Intercfi, Here we ihall ufe the notation prefixed to the rules. J- I : r : : n '. rn the fecond year's intereft, I : r : : 2« : trn the third year's intereft. I : r : : 3« *• 3r« tlie fou.th year's inteteii. I : r : : 4" : \rn the fifth year's intereft. 1 : r :: t — JX« : r—iX»'' the rth year's intereft. J 4. 2 ^ 3 4.4, &c. to /—I years x '«> gives thcwho'e intereft due orv the annuity agreeable to the rule to prop, i, or ttj -p 2 rn + 3 r« -t- 4r.«, &c. to /— 1 years zz — ^"j the rules of progrefiion. Hence -f" '" — ^> ^"*^ hence all the theorems are deduced. XXI. Demonji ration of the Rules for the prcfcnt worth of Annuities at Simple Interejt, By Art. i 5, ^r r +/' = <»> and by the preceding article '— 4- t rznay ••• prt ■{■ p zz + tity and hence al the rules arc<4c>luced,— The truth of the rule to prop, i, is evident. Demonstration of, ice. r> r- L . t:r-\-Zt — tr , 1 Cor. From above we get p zr X «» and h — ■ putting T in the place of /, and a zz l, then '-^ " ■ x r+3 Tr + 1 ZZ p, the prefent worth of an annuity in reverfion at' Simple Interell, and hence the tules are deduced, XXIL DemonJiraUon of the Rules for Annuities in ylrrears at Compound Inter eft. Here we fliall ufe the notation prefixed to the rules. « rr the money due at i years end. » + r» rr arrear at 2 years end. « + rfi + r*«rr arrenr due at 3 ye^rs end. n -^ r >i •\' r^ n ■]- r' n ZZ. arrears at 4 years end. K+rw-fr^w -}- r's + &c. to «/•' ' rz:. arrears due at the end of t years. By the rules of geometrical progreflion the Turn of i -|- / + r^ 4- r^, Sec, ... to r'""'ziLlZi ^^^ .unount of il. for / years. r — I rf I *.* X «Zl^j and hence air tlie other theorems arc deduced. XXIII. Demonjlration of the Rules for the prefent worth cfAtinuitiei at Compound interejl^ ^c. By Art i?. ^/ zz^j and by the preceding Art. X « — 'J* / »■' — I '*• t r zz. X «> from this equation all the theorems are deduced. 1— V Cor. I. From the above equation we get X nznf, by ■dividing the former part of this equation by r we get ,_ix.-^+^ X rZZ py which" is Theo. I. of the prefent worth of Annuities in Rever- fion at Compound Jnteieft j and hence we deduce Theo. II. Cor. 2. From Cor. i. we have X « — ^5 but when t is infinite, r^ is infinitely greater than i, or i is infinitely fmall in com- parifonwithr ••• ?— i ZZ r , and hence X n ZZ py from which equation all the rules are deduced for buying and felling Freehold FINIS. .m I IP lamiv ""^^-^O^- -Vl^-' .h:' '%■ 1^* ^ ^■\ ^' ■:-•.■ ^■■:.^: ■'/:'''■' ^■^' ":','•. ; . / "