C-IJf /""Yl 
 _1^1 ! iiiiii :fe 
 
 ^ilRNQRMA 
 
 > *p:;\Jf JO^1N;:%^I^I T I/ \ 
 
 H. GOD DA 
 
 ll 
 
 HNBffl 
 
 HHH^
 
 PSYCHOLOGY 
 
 OF THE 
 
 NORMAL AND SUBNORMAL
 
 PSYCHOLOGY 
 
 OF THE 
 
 NORMAL AND SUBNORMAL 
 
 BY 
 HENRY HERBERT GODDARD, A.M., Pn D. 
 
 Director Ohio Bureau of Juvenile Research, formerly 
 Director Vineland Laboratory, author of "Kallikak 
 Family," "Feeble Mindedness : its Causes and Con- 
 sequences," "The Criminal Imbecile," "School Train- 
 ing of Defective Children." 
 
 NEW YORK 
 
 DODD, MEAD AND COMPANY 
 1919
 
 COPTBIGHT, 1919 
 
 BT DODD, MEAD AND COMPANY, INC. 
 
 PJUHTBD IN T7.8.A.
 
 TO 
 THE MEMORY 
 
 OF 
 ALFRED BINET
 
 PEEFACE 
 
 THE writer was once asked in what work he was engaged. 
 When he replied, " Psychology, " he was met by the re- 
 mark, "Do you believe in that stuff? I used to, but I be- 
 came convinced that it was all a f ake. " It turned out that 
 to this man psychology meant hypnotism. 
 
 This is a fair illustration of one of the many different 
 connotations the term psychology has in the popular 
 mind. It is unfortunate that a science of such funda- 
 mental importance for human welfare should be so little 
 understood. 
 
 Psychology is the science of mind; and mind deter- 
 mines human conduct. It would seem therefore highly 
 desirable that the science of mind should be so formu- 
 lated as to contribute to useful behaviour. 
 
 Geology is of value to civilization in that it enables 
 man not only to understand the earth's history but also to 
 build, to mine, to cultivate it intelligently, in short to use 
 the earth efficiently. 
 
 Zoology enables us to know the nature of animals and 
 to use them for our purposes. 
 
 Likewise psychology should enable us to understand 
 the nature of mental processes and to use that knowledge 
 to improve our behaviour and to increase our efficiency. 
 
 Psychology should enable us to control our conduct 
 both thru our understanding of ourselves and thru 
 an understanding of the motives and actions of others. 
 
 [vii]
 
 PREFACE 
 
 That psychology has never reached this plane of func- 
 tioning needs no proof. 
 
 Even psychologists, as a group, have not impressed 
 their associates with any superior ability wisely to 
 direct their own energies or to interpret the actions of 
 others. Indeed it is to be feared that they are more gen- 
 erally considered as decidedly unpractical theorists, 
 1 'highbrows," or even visionaries. The exceptions are 
 probably considered exceptional men rather than excep- 
 tional psychologists. As for interpreting the actions 
 and motives of others the case is no better. Some of 
 those who are considered our greatest psychologists are 
 known as the poorest judges of men. 
 
 No more surprising instance of this can be found than 
 that afforded by the world war. For a generation we 
 had thought the Germans were the greatest living psy- 
 chologists. Yet no small cause of their downfall has been 
 their inability to comprehend the minds of their oppon- 
 ents. This is shown conclusively by their methods of 
 making war. 
 
 When one asks the reason for this failure of psychol- 
 ogy to have practical value one is apt to get the answer 
 that psychology is a young science. But psychology is as 
 old as Aristotle and Plato. If someone should reply that 
 psychology has until recently been tied to philosophy, he 
 only proves the point. The fact that psychology re- 
 mained for centuries enveloped in the mists of philosophy 
 only shows that it was not virile enough to escape not 
 of enough practical value to be in demand. 
 
 It seems to us that the explanation is to be found in one 
 of the facts of mind itself. 
 
 There seem to be two types of human beings; those 
 
 [viii]
 
 PREFACE 
 
 who deal mainly with concrete experiences and those who 
 chiefly use symbols. 
 
 There are mathematicians who can do wonders with 
 figures but are not able to master the calculus. 
 
 Most " captains of industry" have "started at the bot- 
 tom" and worked through all the concrete phases of the 
 business. 
 
 Undoubtedly human development has progressed by 
 the increased use of symbols. Symbols are time savers 
 and energy conservers. Nevertheless symbols have their 
 dangers. One may become so enamoured of the symbols 
 that he forgets what they symbolize he even gets to the 
 point where he cares nothing for the thing symbolized. 
 He is quite content with a clear and logical array of sym- 
 bols. Now this may be very good for those who under- 
 stand the symbols and enjoy their manipulation. We 
 do not even deny that it is useful to pure science pro- 
 vided it does not become a mere juggling of symbols ; and, 
 we think we should add, provided the handler of the sym- 
 bols occasionally comes back to earth to see what his new 
 symbols stand for. 
 
 But all this symbolizing takes the subject out of reach 
 of that much larger group who must have the matter in 
 concrete form. Moreover there will inevitably be a group 
 who can handle the symbols fairly well but who have no 
 notion of their significance. Who does not feel that the 
 average graduate from a course in psychology is merely 
 a more or less successful juggler with psychological 
 terms ! 
 
 Unfortunately for the practical use of psychology, our 
 text books have generally been written by those who are 
 capable of handling the symbols with, we suspect, an 
 
 fix]
 
 occasional one written by a mere juggler with words. 
 
 If our explanation is correct, it follows that psychol- 
 ogy must eventually be written from the practical stand- 
 point, in terms that can be appreciated by those who be- 
 long to the second type those who do not enjoy symbols 
 to the extent now used in psychological works. 
 
 If the present book in any degree paves the way for 
 this, it will serve its purpose. 
 
 If the writer has achieved any success in developing a 
 picture of the mental processes in any way more graphic 
 than that usually drawn it is probably due to the fact that 
 for twelve years he has been in a position where he has 
 been compelled by the nature of the work to look for such 
 a picture. 
 
 In September, 1906, we opened the Vineland laboratory 
 for the investigation of feeble-mindedness. It was not 
 a problem of formulating a consistent theory, nor yet of 
 applying existent theories, but rather of observing what 
 actually occurred in the functioning of these minds. 
 
 In one particular the problem proved easy. These 
 feeble minds were so simple that it was relatively easy to 
 follow the various processes. It was not so easy to work 
 it altogether into a complete picture. Indeed there are 
 many lacuna which it has been necessary to bridge by 
 more or less bald assumptions. In making these assump- 
 tions, however, we have constantly kept in mind one rule, 
 namely, never to assume anything that was inconsistent 
 with known facts. 
 
 If this book has any distinguishing characteristics we 
 believe they are mainly two : first, the recognition of the 
 unity of mind which we have tried to picture more consist- 
 ently than is usually done ; and second, in the view of the 
 
 M
 
 PREFACE 
 
 emotions which so far as we know has never been pre- 
 sented in a text on psychology. 
 
 Perhaps Mosso 's discovery made twenty years ago was 
 too surprising to be readily accepted in psychology or 
 perhaps its announcement hidden away in a volume of 
 "proceedings" did not get to the attention of the psy- 
 chologists. Be that as it may, the recent work of Can- 
 non so completely corroborates Mosso, and the view fits 
 so well with our observations of feeble minds that we can- 
 not doubt its correctness. 
 
 So important is this discovery that we have obtained 
 permission to reprint Mosso 's lecture. It will be found 
 in the appendix, complete except for the description of his 
 apparatus for which anyone interested must refer to the 
 volume mentioned. 
 
 This view like much of the rest is destined to be much 
 more fully elaborated as scientific experimentation is 
 carried on. 
 
 It is hoped that this book will prove useful not only to 
 those beginning the study of psychology in Normal 
 Schools and Colleges but also to teachers who read for 
 themselves, to parents who desire to understand their 
 children, to the general reader who finds he needs to un- 
 derstand something of psychology in order to follow cur- 
 rent discussions in pedagogy, sociology, feeble-minded- 
 ness, vocational guidance and allied subjects, and finally 
 to all who wish to increase their own efficiency by under- 
 standing something of the workings of their own minds 
 as well as the minds of their associates. 
 
 Acknowledgements are due to so many persons that 
 the task of naming them all is hopeless. The book is es- 
 sentially a product of the Vineland laboratory and all 
 
 [xi]
 
 PREFACE 
 
 who have helped in that work have contributed to the re- 
 sult. This includes not only those who have been mem- 
 bers of the laboratory staff but the Paidological Staff, the 
 Board of Directors, Officers of the Institution and those 
 who have helped in a financial way to make the work of 
 the laboratory possible. My thanks and appreciation are 
 hereby expressed to one and all. 
 
 My debt to the literature is only partly indicated by the 
 Bibliography. The rest will be evident to the reader. 
 
 HENRY HERBERT GODDARD. 
 
 VlNELAND, AugUSt 1918. 
 
 OH]
 
 CONTENTS 
 
 PART I 
 
 CHAPTER PAGE 
 
 I NERVOUS SYSTEM 3 
 
 II THE BEGINNINGS OF MIND 19 
 
 III ARRESTED MENTAL DEVELOPMENT 52 
 
 IV SOME PROPERTIES INHERENT IN THE NERVOUS MECH- 
 
 ANISM 69 
 
 V HIGHER MENTAL PROCESSES 90 
 
 VI HIGHER MENTAL PROCESSES Continued .... 110 
 
 VII THE AFFECTIVE SIDE OF EXPERIENCE 123 
 
 VIII COMPLEX EMOTIONS 140 
 
 IX THOT 158 
 
 X THOT Continued 174 
 
 XI ACTION 193 
 
 XII HABIT 212 
 
 XIII TEMPERAMENT 226 
 
 PART II 
 
 I APPLICATIONS 233 
 
 II THE DETERMINATION OF MENTAL LEVELS .... 249 
 
 III INTELLIGENCE AND WILL 264 
 
 IV INTELLIGENCE AND EMOTION 270 
 
 V EXPERIENCE 277 
 
 VI PEDAGOGICAL APPLICATIONS 288 
 
 VII MORAL TRAINING 310 
 
 APPENDIX 
 
 THE MECHANISM OF THE EMOTIONS, BY PROFESSOR 
 
 ANGELO Mosso 329 
 
 II 330 
 
 III 334 
 
 BIBLIOGRAPHY 337 
 
 INDEX 343 
 
 [xiii]
 
 ILLUSTRATIONS 
 
 PAGE 
 
 General view of the cerebro-spinal nervous system . Facing 4 
 Profile of a human embryo of six weeks .... Facing 5 
 The sympathetic system Facing 6 
 
 Relation of the sympathetic ganglia to the spinal 
 
 cord and spinal nerves Facing 1 
 
 Profile view of a human embryo of six weeks . . Facing 8 
 
 Lateral views of human embryo at four, five and 
 
 one half, and six months Following 8 
 
 Lateral view of adult human brain .... Following 8 
 Brain of a fifteen year old idiot Following 8 
 
 Section of human brain parallel to mesial surface Following 8 
 
 Section from the cortex of a two months' human 
 
 fetus Following 8 
 
 Section from the cortex of a human fetus at the 
 
 beginning of the third month Following 8 
 
 Adult human cortical cell, showing dendrite cell 
 
 body and neurite Following 8 
 
 Phylogenetic and octogenetic development of neu- 
 rons Following 8 
 
 Development from birth to 110 days of a Purkinje 
 
 nerve cell from the cerebellum of a white rat Following 8 
 
 Sections from the cortex of rats of different ages 
 
 from birth to 20 days Facing 9 
 
 A few of the many types of neurons in the human 
 
 nervous system Facing 10 
 
 Section thru a convolution of the cortex of a one 
 
 month old child Following 10 
 
 OJ
 
 ILLUSTRATIONS 
 
 VAGI 
 
 Diagram showing the simplest neuron pattern from 
 a stimulus applied to the toe, producing sensa- 
 tion in cortex and returning to the muscle that 
 moves the toe Following 10 
 
 Central connections of the olfactory neurons . Following 10 
 
 Diagram to show the layers of cells and fibres in 
 
 the gray matter of the human cerebral cortex Following 10 
 
 Human cerebral hemisphere seen from the left side . Facing 12 
 
 Some of the chief association tracts of the cerebral 
 
 hemisphere Facing 12 
 
 Lateral and median views of the human cerebral 
 
 hemispheres Facing 14 
 
 Development from birth to 110 days of a Purkinje 
 
 nerve cell Facing 15 
 
 Sections thru brain of child at end of second week 
 
 and second month of life Facing 16 
 
 Curves showing the thickness of the cortex in four- 
 teen different areas of each hemisphere of the 
 brain of Laura Bridgman in comparison with 
 the average thickness of similar areas from ten 
 normal brains Facing 18 
 
 Section of spinal cord showing simple reflex arc 
 
 from skin to muscle Facing 20 
 
 Diagram of the simplest possible reflex arc from 
 
 epidermis thru cerebral cortex to striped muscle Facing 22 
 
 Showing the extra synapse in the thalamus and 
 
 the pyramidal tract Following 22 
 
 Value of synapses in reducing the number of neu- 
 rons needed to associate stimuli Facing 23 
 
 Diagram of telegraph relay as illustration of way 
 
 nerve cells transmit energy Facing 24 
 
 The probable course of impulses and the inter- 
 
 neuronal connections in the cortex . . . Following 24 
 
 Neuron pattern slightly more complex . . . Following 24 
 A relatively complex neuron pattern .... Following 24 
 
 Section from the brain illustrating a highly complex 
 
 neuron pattern Following 24 
 
 fxvij
 
 ILLUSTRATIONS 
 
 Section of cortex showing the multiplicity of possi- 
 ble patterns Facing 25 
 
 Section of spinal cord showing simple reflex arc 
 
 from skin to muscle Facing 26 
 
 Diagram to illustrate possible curves of development 
 
 of intelligence from birth to 20 years . . . Facing 34 
 
 Some of the chief association tracts of the cerebral 
 
 hemisphere Facing 36 
 
 Diagram to illustrate what happens in brain when 
 
 ideas are associated Facing 44 
 
 Curves showing the successive tests of several chil- 
 dren who are in the slowing-down stage . . Facing 62 
 Dorsal views of two brains Facing 64 
 
 Comparison of four types of brain cells, normal and 
 
 idiot Facing 65 
 
 Microcephalic idiot boy 22 years old Facing 78 
 
 Brain of case pictured in Fig. 38 Facing 79 
 
 Curves showing development of ability as measured 
 
 by the Adaptation Board Facing 104 
 
 The sympathetic system Facing 126 
 
 More important distributions of the autonomic ner- 
 vous system Facing 128 
 
 McDougall's theory of the emotions Facing 142 
 
 Diagram of the mechanism of re-enforcement . . 151 
 
 High grade Moron, and a sample of his work . . Facing 190 
 
 Possible neuron connections in instructive, automatic 
 
 and deliberative action Facing 200 
 
 Curve of distribution 235 
 
 Reproduction of Millet's Man with the Hoe . . . Facing 240 
 
 Attempts of five and six year old children to draw 
 
 a diamond Facing 256 
 
 Attempts of seven and eight year old children to 
 
 draw a diamond Facing 257 
 
 [xvii]
 
 INTRODUCTION 
 
 PSYCHOLOGY is the science of mind. It may be subdi- 
 vided into human psychology and animal psychology. 
 Human psychology may be divided into child psychology 
 and adult psychology, and again into normal and abnor- 
 mal psychology. Obviously these last overlap so that we 
 may have normal and abnormal child psychology, and 
 normal and abnormal adult psychology. 
 
 As long as psychology was confined to introspection for 
 its data it was limited to normal adult human individual 
 psychology. 
 
 In some respects this was unfortunate since it doomed 
 the psychologist to work on the most complicated type of 
 mind instead of the simplest. 
 
 The biologist does not seize upon the first animal or 
 plant that comes to hand and attempt to solve his prob- 
 lem. Instead he seeks a plant or animal of the simplest 
 structure that can furnish the data needed. He proceeds 
 from the simple to the complex. The history of psychol- 
 ogy shows the opposite procedure. The psychologist has 
 seized upon the first material at hand. He has attempted 
 to solve his problem by studying the adult human mind 
 and usually a very highly developed adult. He has thus 
 attacked the problem by the use of the most complex ma- 
 terial possible. As a natural result, there has been much 
 confusion, many controversies have arisen and the de- 
 velopment of the science has been very slow. 
 
 [xix]
 
 INTRODUCTION 
 
 The study of the child was a great step forward since 
 the child mind is vastly simpler than that of the adult. 
 But child study has had two significant limitations. The 
 first comes from the fact that children are both normal 
 and abnormal. But this fact was not recognized in early 
 investigations. It is safe to say that in practically every 
 statistical study of children 2% of the subjects were 
 feeble-minded; and perhaps an equal per cent were ab- 
 normally bright. Such being the case the results must 
 be contradictory and disappointing and often erroneous. 
 It was like attempting to learn the normal human temper- 
 ature by taking the temperature of a group of people 
 some of whom had fever. 
 
 The second limitation comes from the fact that the 
 normal child develops so rapidly that it is exceedingly 
 difficult to ascertain his actual condition at any one time. 
 It is now possible to eliminate both these difficulties. 
 We can ascertain the normality or abnormality of the 
 children that we study, and thus separate them into 
 groups and study each group by itself. 
 
 In the feeble-minded we have a group of people who 
 are not developing and consequently are more easily 
 studied. A child arrested in his mental development at 
 eight years has eight year mentality the rest of his life. 
 We can therefore devote as much time as we wish to 
 studying the actual conditions of the mind at the eight 
 year level. The advantages of this are many. A per- 
 son, who stands near-by and watches a passing train go- 
 ing at sixty miles an hour, can see very few of its details. 
 If it passes at five miles an hour he can see much more ; 
 while, if it is side-tracked and stopped, the amount he can 
 see is limited only by his time and his methods of inves- 
 tigation. The feeble-minded are stopped in their de- 
 
 [xx]
 
 INTRODUCTION 
 
 velopment and there are almost no limitations to the op- 
 portunities they afford for study. 
 
 In taking up such study a question at once arises as 
 to the validity of conclusions drawn from abnormal ma- 
 terial. Can we conclude that what we learn from these 
 cases of arrested development gives us a true picture of 
 normal mind ? The question can be best answered by con- 
 sidering the general nature of the feeble-minded. First 
 it must be noted that the feeble-minded are not cases of 
 disease. It is true that the feeble-minded may become 
 diseased just as do other people ; but such cases must be 
 ruled out or allowed for. The feeble-minded may be- 
 come insane, they are subject to epilepsy and hydro- 
 cephalus, hemiplegias, and the like. But pure feeble- 
 mindedness is free from these and closely approximates 
 the mental state of the normal child of the same mental 
 age. Moreover, observation, such as a year's residence 
 among a group of the feeble-minded permits, shows 
 clearly that as far as they go their minds function much 
 like the normal mind. While, as we shall see later, they 
 are limited in the various mental processes, yet they have 
 memories, they pay attention, they see, hear, taste and 
 smell ; they have instincts ; they are glad and sorry, they 
 exercise judgment and reason to a certain extent, show 
 some choice and volition. They are good natured, happy, 
 care free individuals interested in their work and their 
 play. So that, if one is ignorant of their actual age, and 
 their physical growth does not make the discrepancy ob- 
 vious, one easily forgets that they are not normal. In- 
 deed, visitors to an institution for the feeble-minded often 
 think that some of the children must be the normal chil- 
 dren of the officers of the institution. 
 
 We have just said, that if their physical growth did not 
 
 [xxi]
 
 INTRODUCTION 
 
 make it evident that they were defective, one could forget 
 the fact. This matter of physical growth is important. 
 By physical growth we do not refer to deformities. A 
 case of pure feeble-mindedness, uncomplicated by dis- 
 ease, shows no physical deformities that are worth con- 
 sidering. The group of children in the school department 
 of any institution for the feeble-minded look like any 
 other group of school children. In the case of the defect- 
 ives of adult age, however, the body grows to adult form 
 and stature, while the mind remains that of a child. 
 What effect does this adult body have upon the mind? A 
 child of six with a six year old body is normal, but a mind 
 of six in a body of twenty must be something different. 
 The possession of greater muscular power must produce 
 a different mental content. For example, a larger hand 
 with a stronger grasp must give a greater sense of power. 
 Adult sex development with the strong instincts must 
 modify the mental make-up to some degree. All this 
 has to be allowed for in the final analysis ; and fortunately 
 experience indicates that it is relatively easy to make 
 this allowance. Moreover the safety of our conclusion, 
 that we may consider what we learn from defectives 
 valid for normal mind, is strengthened by the fact that 
 approximately two-thirds of such cases are cases of her- 
 editary defect. Hence, according to the doctrine that ac- 
 quired characteristics are not transmitted, we may feel 
 sure that we do not have in these cases any gross devi- 
 ation from the natural functioning of the human mind; 
 but only a stopping of the development at an early point. 
 Still further, we are not limited to our study of the de- 
 fectives themselves since it is always possible to turn 
 from these to the normal child and compare the two, with 
 the result that, having seen a trait or a process in the de- 
 
 [xxii]
 
 INTRODUCTION 
 
 fective, we are now able to see it in the normal child. 
 Whereas not having first seen the trait in the defective 
 we would not be able to see it in the normal child be- 
 cause of the complexity of his activity. 
 
 It may not be without value also to state that, from 
 what we now know, the variation from the normal in the 
 brains of defectives is exceedingly minute. That is to 
 say, the gross anatomy has every appearance resembling 
 the normal brain. Even the microscopic structure is to 
 a large extent and in large areas apparently normal. 
 From this we may safely conclude that up to a certain 
 point the functioning of the brain will be normal. It is 
 true that our knowledge of the brain of the defective is 
 still limited, but from what we do know, we find that it is 
 safe to reason to the normal brain; and from what we 
 find of the mental make-up of these cases, coupled with 
 what we know of normal brain and normal mind, we are 
 able to draw certain conclusions and make certain analo- 
 gies and inferences that tell us much about the condition 
 of the feeble-minded. With these precautions we shall 
 proceed in the following chapters to draw a picture of the 
 workings of the human mind, taking into consideration 
 at each step such facts as we have been clearly able to 
 observe in these cases of arrested mental development. 
 
 Since a nervous system conditions the mental processes 
 and it is easier to understand an abstract concept if we 
 understand the concrete thing from which it was ab- 
 stracted, we shall devote the first two chapters to a 
 working plan of the nervous mechanism, using such facts 
 as are generally accepted by neurologists and supplement- 
 ing these by such hypotheses as are necessary to com- 
 plete the picture and at the same time are not contra- 
 dicted by any known facts. 
 
 [xxiii]
 
 INTRODUCTION 
 
 It will be well for the student always to differentiate 
 very carefully between what is known fact and what is 
 an hypothesis assumed for the sake of completing the 
 picture. Joseph Cook used to say that he did not like 
 to call himself a seeker after truth because "truth" too 
 often means one's own opinion. But he thought it was 
 much safer to be a seeker after clearness. In the fol- 
 lowing pages we have sought for clearness with the under- 
 lying thought that while there is no expectation that our 
 formulation is the final truth, yet if we violate no known 
 facts, our formulation will be helpful in proportion as it 
 is clear. 
 
 [xxiv]
 
 PART I 
 
 PSYCHOLOGY OF THE 
 NORMAL AND SUBNORMAL
 
 CHAPTER I 
 NERVOUS SYSTEM 
 
 THE human nervous system is the most elaborate and 
 complicated structure in the entire body. It consists of 
 two main parts, the cerebro-spinal and the sympathetic. 
 The latter is sometimes called the vegetative and more 
 recently the autonomous, nervous system. 
 
 The cerebro-spinal system is again sub-divided for con- 
 venience into the central nervous system composed of 
 the brain and spinal cord, and the peripheral system 
 composed of the nerves extending to the surface of the 
 body and modified as special sense organs or as the nerve 
 endings attached to muscles. 
 
 The central nervous system, and especially the brain, 
 has usually been considered the main and almost the only 
 organ of mind. More recent studies, however, have 
 shown the importance of the sympathetic system for an 
 understanding of certain phases of mind. This will be 
 discussed in its place. 
 
 Of the central nervous system the spinal cord is rela- 
 tively simple. It may be thot of as a tube of nervous 
 tissue, enclosed in and extending about two-thirds the 
 length of, the spinal column. The wall of this tube is 
 relatively very thick and the canal very small. From the 
 anterior side of each segment of this cord, corresponding 
 
 [3]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 with each vertebra in the spinal column, nerves pass out 
 to the muscles. At the posterior side of each segment 
 enter nerves from the sensory organs at the surface of 
 the body the skin, tendons, etc. The nerves, passing up 
 and down the cord, constitute the principal part of the 
 cord itself. 
 
 The brain is so enormously complicated that it has 
 taken years for scientists to understand as much as is 
 now known about its structure. The problem is much 
 simplified if we understand that the brain is the modified 
 upper end of the spinal cord contained within the skull. 
 The complication arises from the fact that within the 
 skull this long, comparatively simple spinal cord has be- 
 come bent up, its different parts have grown at different 
 rates, and the whole has crowded itself into the generally 
 spherical shape of the skull cavity. The result is the 
 solid mass that we recognize as the brain. 
 
 The number and direction of the flexures that have 
 taken place may be more easily understood if one thinks 
 of a person in a closely crouching position. The foot 
 will represent the spinal cord as it enters the skull; the 
 ankle is the first bend, the knee the second and the hip the 
 third. The under side of the thigh represents the part 
 that develops into the cerebellum. Think now of the 
 head which represents the cerebrum growing back and 
 covering the body as far as the hips and one has a con- 
 venient, if crude, picture of the growth of the encephalon 
 the part within the head. . 
 
 The arrangement of nerves going out from the cord 
 and coming in from the surface may still be made out 
 within the skull, tho because of the irregular growth and 
 crowded condition their course is very much complicated 
 and has been very difficult to trace. This part of the 
 
 [4]
 
 Fig. 1. A, General view of the cerebro-spinal nervous system 
 showing location in the head and spinal column. 
 
 Fig. 1. B, the same removed. Seen from the front with the 
 hrain (the encephalon) turned back so as to show its un- 
 der side. The paired branches are the spinal nerves. The 
 slight swelling at the end of each indicates the spinal 
 ganglion. At these points the nerves have been severed 
 from the peripheral nervous system. 
 
 From Van Geliuchten
 
 CEPHALIC 
 FLEXURE 
 
 V,|| CERVICAL 
 PONTINF. FLEXURE 
 
 .-'* FLEXURE 
 
 Fig 1 . 2. Profile view of a human embryo of 6 weeks. As 
 growth advances the cerebellum will appear as an 
 outgrowth at B; arid F, cerebrum (sometimes called 
 the pallium mantle) will rapidly extend until it en- 
 velops all that is here shown except a part of A and 
 the cerebellum, which tho partly covered by the cere- 
 brum is nevertheless distinctly visible in such a view 
 as Fig. 1. A and B. 
 
 From Dunlap
 
 THE CENTRAL NERVOUS SYSTEM 
 
 primitive spinal cord which is situated within the skull is 
 called the brain, or often the encephalon. It comprises 
 three main divisions, counting from the point where the 
 cord enters the skull: the medulla oblongata, the cere- 
 bellum and the cerebrum. 
 
 Fig. 1 shows a picture of the central nervous system, 
 that is, the spinal cord with the encephalon. A pictures 
 it as it is located in the body. B the same removed. The 
 position of the spinal nerves is shown and the points at 
 which the peripheral nerves have been cut off. 
 
 Fig. 2 shows the encephalon while still in a primitive 
 condition ; it is possible to trace the several turnings and 
 to note where the medulla, the cerebellum and the cere- 
 brum develop. It will be noted in this figure that at this 
 period the cerebrum is relatively small and located at 
 the very extreme front end of the cord; and also that 
 this outgrowth takes place on the two sides of the an- 
 terior end of the cord. From this it results that the com- 
 plete cerebrum is in two parts known as the cerebral 
 hemispheres. As development proceeds, the various 
 parts become very much more closely crowded together 
 with the result that in the adult brain it is impossible to 
 trace the curves and bends of the cord. 
 
 The cerebellum develops from the part marked B in 
 Fig. 2, and covers the medulla. The cerebrum grows so 
 much faster and becomes so much larger than the rest 
 of the encephalon that it grows over everything that is 
 seen in Fig. 2, as far back as the part marked B, from 
 which the cerebellum develops, and even covers a large 
 part of that organ. We shall presently discuss this 
 growth of the cerebrum and picture its development at 
 various stages, both its external shape and its size and 
 internal structure. 
 
 [5]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The Sympathetic System. Fig. 3, A and B, gives a 
 general view of the arrangement of the nerves of the 
 sympathetic system. This also is a very elaborate sys- 
 tem in that it extends to all the organs within the abdom- 
 inal cavity as well as to the involuntary muscles, and so 
 extensive is it in each organ, that the statement has been 
 made that were all the other tissue of each organ re- 
 moved leaving only the sympathetic nerves, that they 
 alone would preserve completely the shape of the organ. 
 This will give some idea of its extent. 
 
 The cerebro-spinal system and the sympathetic are con- 
 nected at a series of points. The nerves that pass in 
 and out from the spinal cord at each vertebra, as already 
 described, send off two branches each to what are known 
 as the sympathetic ganglia. One of these branches is 
 evidently outgoing and the other incoming. Fig. 4 A 
 shows this connecton. Fig. 4 B shows it in detail. There 
 is no other known connection between the two systems. 
 We shall now turn to consider more in detail the growth 
 and structure of the cerebrum. 
 
 Just as the body as a whole grows from about 6 pounds 
 weight at birth to say 140 pounds at age of twenty and 
 from a helpless weakling to a man of strength, so the 
 brain grows from 360 grams (12 ounces) average weight 
 at birth to about 1400 grams (3 Ibs.) at age of twenty. 1 
 
 Coincident with this growth of brain is a growth of 
 mind from infant to adult intelligence. 
 
 The development of mind is dependent upon the growth 
 of the brain. 
 
 1 Professor Marchand, of Marburg, in a study of 1169 cases, finds the 
 average weight of the brain at birth of a male child is 360 grams and of a 
 female child 353 grams. The maximum brain weight is usually attained 
 about the twentieth year, when the male's average is about 1400 grams. 
 The female maximum is usually reached about the seventeenth year, when 
 the average is 1275 grams. 
 
 [6]
 
 'Qttaffufffu 
 
 ''.e,^iu,,.,>f'^,::-Sft,,tf,/,t,,,(tlKi,i,J f nfti,, 
 
 Coccyyeal 
 
 Fig. 3. A, the sympathetic system showing its location in the body. 
 
 Fig. 3. B, the same removed. The black knots in the chain are the sym- 
 pathetic ganglia : the paired lines extending to the left from each gan- 
 glion are the rami communicant es or connecting branches that join the 
 sympathetic system to the cerebro-spinal. This chain is just outside 
 the spinal column. 
 
 From Van Gehiichten after Scliwabbe
 
 I'pper limb 
 
 Fig. 4. A, detail showing the relation of the chain of sympathetic gan- 
 glia (black) to the spinal cord and spinal nerves. At the top, the 
 brain seen from the front. 
 
 From Morat 
 
 Fig. 4. B, detail. Cross section at a segment of the spinal cord, show- 
 ing spinal nerves and spinal ganglion and sympathetic ganglion. 
 
 From Santee
 
 GROWTH OF THE BRAIN 
 
 Fig. 2 shows the brain of the human embryo at 6 weeks. 
 We pointed out (p. 3) that the part marked cerebral hemi- 
 sphere would, as development proceeded, largely cover 
 the other parts here shown. At 16 weeks this has actually 
 taken place. Fig. 6 A shows this stage, while B, C, & D 
 show the further growth up to adult life. An idea of the 
 amount of growth can be had from comparing these cuts, 
 since each shows the actual size at the time given. From 
 the stage shown in Fig. 6 A, the brain and especially the 
 cerebrum grows faster than the skull which surrounds it. 
 The result is that the cerebrum "folds in" making 
 wrinkles or as they are technically called convolutions or 
 gyri (singular gyrus). The space between two gyri is 
 called a fissure or sulcus (plural sulci). 
 
 Fig. 6 B C D, shows the increasing development of 
 these convolutions. These figures show only the outside 
 convolutions: there are also mesial surfaces where the 
 two hemispheres meet. These mesial surfaces have their 
 convolutions the same as the outside surfaces. These 
 mesial surfaces can be seen in figure 7 bottom right 
 where the hemispheres have been cut through the median 
 line and laid out flat. If one imagines the two parts 
 here shown, hinged at their adjacent edges and folded 
 together he will understand the true relationship. 
 
 In Fig. 8 can be seen the cerebrum extending over the 
 cerebellum, the attachment of both to the "brain stem" 
 (the end of the primitive spinal cord), and the layer of 
 gray matter known as the cortex that constitutes the 
 outer layer of the cerebrum and cerebellum. 
 
 The brain grows not only in bulk, as the weights given 
 on page 6 would indicate, but also in complexity of struc- 
 ture and this is by far the most important fact. 
 
 Turning now to the internal structure and development 
 
 [7]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of the brain we find conditions and changes no less strik- 
 ing than the change in external appearance. The brain 
 is made up principally of two kinds of tissue. The nerve 
 tissue comprises an enormous number of individual cells 
 called neurons. The child at birth has ten thousand mil- 
 lion (10,000,000,000) brain cells or neurons, which number 
 is never increased throughout the life of the individual. 
 The growth and increase is in size, not in number. Since 
 the brain is relatively well developed at birth, we must 
 go back to an earlier period to see these cells in their 
 simplest form. Fig. 9 shows a section from a two months 
 old fetal brain. The nerve cells appear in ordinary cell 
 form, microscopic, globular masses each with its nucleus 
 and nucleolus. Fig 10 shows a section of the brain of a 
 three months fetus. Here is seen the beginning of the 
 development of these cells into the specialized neuron 
 form. Fig. 11 shows the fully developed cortical brain 
 cell of the adult. Fig. 12 (lower part) shows the various 
 stages of brain development of cells from their earliest 
 appearance in the embryo to full maturity. 
 
 Fig. 12 (upper part) shows the development of the 
 same type of cell in the animal series, from which it will 
 be seen that the human adult has the most elaborately 
 developed cortical cell of all animals. 
 
 Not all the original cells develop into the same type. 
 There are many forms. Fig. 13 A shows the development 
 of another type, the Purkinje cell, found in the cerebellum. 
 It is characterized, as will be seen, by the enormous 
 branching of its dendritic process. B shows the develop- 
 ment of the cortex in thickness and in complexity. 
 
 A nerve cell or neuron is compo.sed of three parts, the 
 cell body, the dendrite or tree-like portion and the neu- 
 rite. See Fig. 11. In the cortical cell shown and in the 
 
 [8]
 
 CEPHALIC 
 FLEXURE 
 
 VIM CERVICAL 
 PONTINF. FLEXURE 
 
 FLEXURE 
 
 Fig. 5. Profile view of a human embryo of 6 weeks. As 
 growth advances the cerebellum will appear as an out- 
 growth at B; and F, cerebrum (sometimes called the 
 pallium mantle^ will rapidly extend until it envelops 
 all that is here shown except a part of A and the 
 cerebellum, which tho partly covered by the cerebrum 
 is nevertheless distinctly visible in such a view as Fig. 
 1, A and B. 
 
 From Dunlap
 
 Fig. 6. A, lateral view of human embryo at about 4 months. Natural size. 
 Fig. 6. B, similar view of brain of human embryo at about 5y 2 months. 
 Natural size. 
 
 Fig. 6. C, similar view of child born at 7 months. Natural size. Note the 
 rapid growth and increase of the number of convolutions and gyri. 
 
 From Van GehucJiten
 
 a 
 
 fl 
 S3 
 
 j 
 
 CO 
 
 &b
 
 >(JR F ACES 
 LEFT HEMISPHERE RIGHT 
 
 
 Fig. 7. The brain of a 15 year old idiot viewed from every posi- 
 tion above, below, right and left side, anterior and posterior 
 ends, and mesial surface. For the latter the two hemispheres 
 nave been cut apart. 
 
 From Vhielatid Laboratory
 
 J?ig. 8. Section of human brain parallel to mesial surface and 
 about Vi inch to the right of it. The section not only cuts 
 across the convolutions of the external surface but it also cuts 
 off the fissures from the mesial surface. Bounding 1 these con- 
 volutions and fissures is the coiiex (the gray band). The 
 cerebellum is seen at the lower right. The central mass fron: 
 which the cerebellum seems to grow is the brain stem the 
 upper end of the primitive spiral c n rd. Note that the cere- 
 brum is attached to it only ft thf V&TV front (left) end. Sec- 
 tion is about % natural size. Made from a preparation by 
 the author.
 
 mSKw^V 
 
 SfM) f\i ill 
 
 ^L^ $..^--"'.JzL.<iL a 
 
 aj 
 .JL 
 
 e 
 
 Fig. 9. Section from the cortex ot 
 
 a two months' human fetus. 
 Figs. 9 and 10 from Bailey 
 and Miller after His. Cajal 
 
 mms 
 
 Fig. 10. Section from the cortex of 
 a human fetus at the beginning 
 of the third month. Compare 
 with Fig. 9 and note the rapid 
 development of the nerve cells.
 
 Plume 
 
 Bas. dendriies 
 
 Collat 
 
 Axis, cylind. 
 
 Fig. 11. Adult human cortical cell, showing dendrite (tree 
 like portion) cell body and neurite (fine vertical line and 
 its branches the "collaterals"). Arrows show the direc- 
 tion of the flow of nervous energy. 
 
 From Mo rat
 
 Fig. 12. Phylogenetic and ontogenetic development of neurons with long 
 axones from pyramidal cells of cerebral cortex. Upper series represents 
 phylogenetic development of these cells: A, in frog; B, in newt; C, 
 rat; D, man. The lower series shows the ontogenetic development of 
 the neuroblasts of those cells in five successive stages a, b, c, d, e. 
 
 From Cajal
 
 ' 
 ; " W^K^s-^rf^r-^-rff^& 
 
 Jl^Bi^^^ 
 
 iSntP *V' #*? f : f "J*S *"' 5e ^tf : '* 
 
 -?if f: 'fe' : Jf ^ xp;. f * t . ' & ' r 
 
 '*& 
 
 f 'C b 
 
 ^^i 
 
 Birth 
 
 3 day 
 
 \0 ; 2*. * '. ^*,%^ ?t~ 4S> "^ 
 ^]^ tfw - ' ( *' tl rt, ; tf^ 
 
 Mday 
 
 . 
 
 8 clay 
 
 //. 
 
 
 
 
 Fig. 13. B, sections from the cortex of rats of different ages from 
 birth to 20 days, showing rapidity of growth in thickness of 
 cortex and of the cells. 
 
 From Addition,
 
 NEURITES AND DENDEITES 
 
 Purkinje cell the dendrite and the neurite have a dis- 
 tinctly different appearance, but in many types no such 
 difference is apparent. Different views have been held as 
 to the functions of these two, but at present there is no ac- 
 cepted difference except that the dendrite is the part 
 that receives the energy and the neurite passes it on. 
 The cell body is approximately the same in all cells but 
 the dendrites and neurites take many different forms. 
 Whereas the cell body and the cross section of the neurite 
 or dendrite are microscopic, the length of the neurites or 
 dendrites may be relatively great. For example a sen- 
 sory neuron may have its dendrite in the toe and the end 
 of its neurite in the neck (see Fig. 16) a cortical cell 
 (motor) has its dendrite and cell body in the cortex but 
 its neurite may extend to the lowest segment of the spinal 
 cord. 
 
 We must think of the ten thousand million neurons as 
 divided into many groups. Some of the many different 
 types are shown in Fig. 14. The tracing of these dif- 
 ferent groups and the inter-relations of their fibres and 
 the functions of each constitutes a study by itself, the 
 science of neurology. For our present purpose we 
 need only a very crude and simple statement of the gen- 
 eral plan. Those who aspire to a more thoro under- 
 standing of the system (and it is a most commendable as- 
 piration) are referred to special books on the subject. 
 Perhaps the most convenient for the beginner is Her- 
 rick (23), where will also be found abundant references to 
 larger works. 
 
 Each neuron generates and transmits nerve energy, 
 called neurokyme. The whole nerve system is perhaps 
 best understood by likening it to an elaborate telephone 
 system, where the cell body is the battery and the neu- 
 
 [9]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 rites and dendrites are the wires. The neurites and den- 
 drites are often called nerve processes or nerve fibres and, 
 whether long or short, when fully developed they gener- 
 ally end in many branches, each branch being in close re- 
 lation to the branches of other neurites or dendrites. 
 This point of contact or proximity of the endings of the 
 branches of different neurons is called the synapse. By 
 this arrangement, each neuron is in possible connection 
 with a large number of other neurons just as in the tele- 
 phone system one may call in over his line and become 
 connected with any other line in the whole system. 
 
 Fig. 15 gives a good idea of the way these neurons are 
 placed and the possibilities of inter-communication from 
 one neuron to any one of many others. To make the mat- 
 ter still clearer we give in Fig. 16 the neuron connections 
 for a simple sensori-motor experience. Something 
 presses against my toe and I immediately move it to es- 
 cape the pressure. The object touching my toe stimulates 
 the end of the dendrite that is just under the skin. That 
 dendrite extends from that point to a point just outside 
 the spinal cord where the leg joins the trunk. Here will 
 be found the cell body in what is known as a sensory 
 ganglion or spinal ganglion. The neurite from that cell 
 body passes into the spinal cord and up the cord to its 
 very top in the neck. Here it ends in many branches. 
 One of these is close to the very short dendrite of an- 
 other neuron whose neurite extends on to the very top of 
 the brain, just about at the top-most point of the head, in 
 the cortex. Here it too ends in many branches, one of 
 which is in contact with a very short dendrite, whose cell 
 body lies near by, but whose neurite extends down 
 thru the brain and thru the spinal cord to a point on 
 the front side of the cord opposite the sensory ganglion 
 
 [10]
 
 Fig. 15. Section thru a convolution of the cortex of a one month 
 old child, showing structure and arrangement of neurons. 
 Numbers at side show the layers into which the cortex lias been 
 divided. 
 
 From Cajal
 
 Fig. 16. Diagram showing the simplest neuron pattern from a 
 stimulus applied to the toe producing sensation in cortex and 
 returning to the muscle that moves the toe. Note the possible 
 length of the various neurons. All these neurons would have 
 many other possible connections not shown here.
 
 '-;i;ft:l'iS : ;4%J 
 
 SyjS'v^f^ll 
 
 Fig. 18. Diagram to show the layers of cells and fibres in the grey 
 matter of the human cerebral cortex, according to three histo- 
 logical methods: (a) Golgi; (b) Nissl; (c) We^gert. 
 
 From Luciani
 
 NEURITES AND DENDRITES 
 
 first spoken of. Here it also ends in several branches, 
 one of which is in contact with a dendrite which is very 
 short and whose cell body lies close at hand but whose 
 neurite passes out thru the spinal cord and all the way 
 down to the muscle of the great toe. Thus the stimulus 
 from the pressure on the toe has travelled over this entire 
 system and finally produces the movement of the toe. 
 
 It should be carefully noted that, whereas we have 
 shown that at each point where one neuron comes in con- 
 nection with another tlie neurokyme has taken a particular 
 path, yet at each such point there are many possibilities, 
 and innumerable other paths might have been followed. 
 For example, the stimulus that we described as leading to 
 a movement of the toe might by following other paths 
 have led to an exclamation, or to a movement of the hand 
 to remove the stimulus, or to any one of almost innumer- 
 able responses. Fig. 17 will give the reader a further ap- 
 preciation of the complexity of neuron arrangement and 
 the possibilities for different paths. 
 
 The reader must understand that in making these pic- 
 tures of parts of an actual brain it is necessary to stain 
 the different structures and that no one dye stains all the 
 parts alike. Consequently it is necessary to use one stain 
 for the dendrites and another for the cell bodies and 
 different stains bring out different cell bodies in different 
 ways. In Fig. 18 we have three sections from the same 
 region prepared in three different ways. The right hand 
 third shows the fibres, the middle and left hand parts show 
 different kinds of cell bodies. These should really all be 
 superposed except that the section would thus become 
 so complicated that it would be impossible to see anything 
 at all. 
 
 We must now return and consider our statement that 
 
 [11]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the ten thousand million neurons are divided into groups 
 each having its own rate of growth and its own function, 
 or work to do. Let us consider the latter part first the 
 work to be done by each group. As is well known, we use 
 the brain to hear with, to see with, to have sensations of 
 pressure, to move various parts of the body and, as we 
 say, to think with. There is one group of neurons that 
 has particularly to do with seeing. The cortical cells that 
 have to do with seeing are located at the very back of 
 the brain in the occipital lobes. Those that have to do 
 with hearing are located in the temporal lobes, parts of 
 the cerebrum lying at the sides directly under the tem- 
 ples; and so on with the various other functions that will 
 be best understood by a study of the diagram, Fig. 19. 
 
 This mapping, in the brain, of the different functions 
 is called brain localization, that is, the different mental 
 experiences are localized in definite areas or "centres" 
 of the brain. It will be noted that there are large areas 
 here that have no functions assigned. Of these we shall 
 have to speak later for they are of very great importance. 
 We may call attention at this point to the fact that all 
 these different areas are connected by what are called 
 association neurons, that is, they connect or associate one 
 part of the brain with another. Some idea of this will 
 be obtained from Fig. 20, which shows the fibres (but not 
 the cell bodies) connecting one part of the brain with an- 
 other by various pathways. Besides this localization of 
 function in different surface areas of the brain, it has 
 been found that structurally it is possible to divide the 
 cortex into layers and recently.it has been suggested that 
 these different layers have different functions. The fol- 
 lowing quotation from Her rick (23, p. 289) will show the 
 theory. 
 
 [12]
 
 Fig 1 . 19. The human cerebral hemisphere seen from the left side, 
 upon which the functional areas of tiie cortex are indicated. 
 This is brain localization. Xote the large areas where no 
 function is marked. These are the association areas. 
 
 From Herrick after Starr 
 
 Fig. 20. Diagram illustrating some of the chief association tracts- 
 of the cerebral hemisphere. Note how every part is connected 
 with every other part of the brain. 
 
 From Herrick
 
 NEURON LAYERS IN CORTEX 
 
 " Several English neurologists, notably Bolton, from 
 studies on the development and adult structure of the cor- 
 tex in normal and abnormal men and in other mammals, 
 have been led to the conclusion that, in addition to the 
 mosaic localization pattern of which we have been speak- 
 ing, there is a functional difference between the different 
 layers of neurons of the cortex in general. Bolton be- 
 lieves that the granular layer marks an important bound- 
 ary between functionally different cortical mechanisms. 
 The infragranular portion of the cortex is thot to be con- 
 cerned especially with the performance of the simpler 
 sensori-motor reactions, particularly those of the instinct- 
 ive type, while the supragranular layers serve the higher 
 associations manifested by the capacity to learn by indi- 
 vidual experience and to develop the intellectual life. 
 
 1 ' The infragranular layers mature earlier in the devel- 
 opment of the brain, and they are the last to suffer degen- 
 eration in the destruction of cortical cells in the acute de-. 
 mentias or insanities. The supragranular layers (no- 
 tably the pyramidal neurons of Brodmann's third layer) 
 mature later than any other layers. They are thinner 
 in lower animals and in feeble-minded and imbecile men 
 than in the normal man, and they are the first to show de- 
 generative changes in dementia. 
 
 "This doctrine is controverted by some other neurol- 
 ogists, but the evidence seems to show that the supragran- 
 ular pyramidal neurons are physiologically the most im- 
 portant elements in the higher associative processes of 
 the cortex. In this connection it is significant that the 
 granular and infragranular layers are thicker in the pro- 
 jection centres, while in the association centres the supra- 
 granular layers of pyramidal cells are thicker. But all 
 of the layers in each region are very intimately related, 
 
 [13]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the processes of most of the cells of the deeper layers ex- 
 tending thruout the thickness of the more superficial 
 layers to reach the most superficial layer, and in the pres- 
 ent state of our knowledge a functional difference between 
 the layers cannot be said to have been established, save in 
 very general terms. ' ' 
 
 We must now return to our other statement that these 
 different groups of neurons grow at different rates and 
 mature at different times. It is obvious that the particu- 
 lar mental process that is to result from the function- 
 ing of any particular group of cells cannot manifest itself 
 until that group of neurons is developed. For example, 
 a person could not see until the neurons in the sight cen- 
 tre 'had reached their complete development. Many ani- 
 mals are born blind. Their eyes do not open for several 
 days after they are born. This is because the eye mech- 
 anism, probably including the cortical cells of the brain, is 
 not ready for the stimulus of light. When it is ready 
 the eyelids open and the animal sees. We shall find this 
 principle playing a very important role in our later con- 
 sideration of the mental processes. Fig. 21, A and B, 
 will be found instructive in this connection as showing 
 what one investigator has considered the order in which 
 the various centres of the brain come to maturity and to 
 complete functioning. This growth to complete maturity 
 may be by one of several means, perhaps by an extension 
 of the neurite and dendrite, or by the growth of the little 
 branches at the ends so that the neuron can come in con- 
 tact with other neurons. 
 
 By reference to Fig. 13 A, it will be seen that if the 
 right hand neuron is the normal, fully developed form, a 
 neuron like any one of those to the left of this would not 
 
 [14]
 
 (771 
 
 Fig. 21. A, B, Lateral and median views of the human cerebral hemi- 
 spheres, to illustrate the sequence of maturity of the myelinated 
 fibres of the cortex during the development of the brain, according 
 to Flechsig's observations. The numbers indicate approximately 
 the order in which the different parts of the cortex acquire their ma- 
 ture fibres. Areas 1-12 (double cross hatched) constitute the pri- 
 mordial region and include the olfactory area (1, 3, 4 and 4a), the 
 somesthetic area (2, 2b, 2c, and 8), the visual area (7 and 7b) and 
 the gustatory area (4b and 6). The remainder of the cortex is 
 made up of association centres, of which there are two groups, those 
 which mature soon after birth (lightly shaded areas 13-28) and 
 the terminal areas (unshaded areas 28-36) which are the last to 
 mature, and whose development may continue, according to Kaes, 
 to the forty-fifth year of life. 
 
 From Herrick after Lewandotvsky
 
 MEDULLARY SHEATH 
 
 have as complete connection with the other neurons in 
 the system and so would not be as able to receive or to 
 transmit the neurokyme necessary to do its work. A per- 
 son, therefore, with any group of neurons in the condition 
 of these earlier ones, would be more or less deficient in 
 whatever function was carried on by that group. 
 
 Besides being incomplete in size, neurons may also be 
 incomplete in medullation. Each neurite and den- 
 drite is surrounded by a covering known as its medullary 
 sheath or medullation. Many neurons do not get this 
 sheath until sometime after they have otherwise attained 
 their maturity and it is believed that in the cerebro- 
 spinal nervous system the neuron does not function, that 
 is do its work, until it gets that sheath. Consequently, 
 neurons that have not yet developed the medullary sheath 
 could not do their work. The function that was to be per- 
 formed by that group would therefore be lacking. Flech- 
 sig (16) has shown (Fig. 22 A and B) that the child at 
 birth has compa.ratively few medullated neurons in the 
 whole brain but the medullation of certain fundamental 
 tracts takes place very rapidly so that in a few hours, 
 days or weeks there is a large amount of medullation. 
 As we watch the child and see him develop and note his 
 ever increasing mental capacity, we may easily imagine 
 that new groups of neurons are becoming medullated. 
 
 The neurons have been divided into afferent and ef- 
 ferent, sometimes called sensory and motor. More re- 
 cently they are spoken of as receptors and effectors. 
 Whatever terminology is adopted we understand that 
 there is one group, the sensory neurons, or receptors that 
 receive impressions (stimuli) ; there is another group that 
 stimulate the muscles to action ; these are the motor neu- 
 rons or the effectors, and the system is so organized that 
 
 [15]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 we find it convenient to conceive that the goal of every 
 stimulus is a muscle, that is, the circuit is complete when 
 the energy that is started inward by the stimulus passes 
 outward to a muscle. We shall see later that this goal is 
 sometimes reached very quickly by a direct pathway, at 
 other times by a very circuitous, round-about way. We 
 shall also see that the more intelligent the being the more 
 of this latter form of action we find. 
 
 Specific Stimuli. While there are a great many neu- 
 rons ready to receive impressions or stimuli and there are 
 many kinds of stimuli to be applied, yet each different 
 group of neurons responds only to its particular group 
 of stimuli. The different receptors are modified for the 
 purpose of reacting each to its specific stimulus. For in- 
 stance, the neurons that are in connection with the visual 
 centre of the cortex are modified to receive the stimula- 
 tion of light. This special modification gives rise to what 
 we know as the retina of the eye. Similarly we have a 
 special modification for receiving the stimuli of wave mo- 
 tions in air which make sound. The ear does not respond 
 to light, nor the eye to sound. Likewise we have special 
 modifications in the skin for the sense of touch, in the 
 nose for odours, in the tongue for taste. The structure 
 and anatomy of these different end organs will be found 
 in the proper books. 
 
 Not only does each group of neurons have its specific 
 stimulus, but it is dependent upon such stimulation for its 
 development. When the end organs such as eye or ear 
 have been destroyed in early life by disease, it is found 
 that the corresponding area of the cortex does not de- 
 velop. Donaldson found from a study of the brain of 
 the blind deaf mute Laura Bridgman that the cortex was 
 
 [16]
 
 Fig. 22. A, section thru brain of child in the second week of life, 
 showing medullated tibres (deep black) extending from visual 
 area to contrai portion. 
 
 Oyrus centrala posterior. -...._ 
 
 Cyrus centralis anterior. _^ 
 
 tiutcu* centralis Rolandi. 
 
 frnntnlis inferior . / 
 Fossa certbri laterally ( 
 
 ^ ", 
 
 Oyrus temporali* tram- 
 vrits anterior. 
 
 Fig. 22. B, similar section of brain of child at end of second 
 month of life, showing medullated tracts in auditory area and 
 in the sensori-motor region. In both A and B note the large 
 areas as yet unmedullated. 
 
 Barker after Flechsig
 
 LAUEA BRIDGMAN'S BRAIN 
 
 noticeably thin in those areas corresponding to the senses 
 which had been lost. Laura Bridgman was a normal 
 child who, as a result of a severe attack of scarlet fever 
 at the age of two years became deaf and blind ; and taste 
 and smell were also impaired. She lived to be sixty 
 years old. At autopsy the brain showed various abnor- 
 malities. Later it was carefully studied by Donaldson 
 ( 13 ) . The thickness of the cortex was carefully measured 
 in fourteen different regions in each hemisphere and com- 
 pared with the average normal thickness found by meas- 
 uring homologous areas in nine normal brains. 
 
 Fig. 23 shows the result. The deviations from normal 
 are greatest in the sight centres, in the hearing centres 
 and centres for taste and smell. The nearest agreement 
 with the normal is found in the " touch" centre, centre 
 for head movements and other centres not so definitely 
 located but which are probably motor centres. A very 
 striking bit of evidence is seen in the difference between 
 the sight centres of the right and left hemispheres. The 
 cortex is much thinner in the sight centre of the right 
 hemisphere than in that of the left. On referring to the 
 history of her life it is found that while she was blind in 
 the left eye at two years she had some sight in the right 
 eye until she was eight years old. The optic nerves 
 cross, hence this thin right hemisphere corresponds to 
 blindness in left eye, and the better developed 
 left hemisphere corresponds to partial sight in right eye 
 until eight years of age. The evidence seems conclusive 
 that the centres of the brain not stimulated did not de- 
 velop. 
 
 Summary. We have now laid out very schematically, 
 
 [17]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 and yet it is to be hoped with sufficient clearness, the 
 plan of the nervous system. The facts that are important 
 for our further understanding of mental processes are the 
 following : 
 
 1. The brain grows to the age of approximately twenty 
 years. 
 
 2. It not only grows in bulk but it grows in complexity. 
 
 3. There are a great many different groups of neurons, 
 each having its own function, its own rate of growth. 
 
 4. There is a very elaborate system of intercommuni- 
 cation between these neurons, so that every part of the 
 brain is connected with every other part. 
 
 5. Because these neurons grow at different rates and 
 come to maturity at different times, the different phases 
 of the mind are developed at different rates and at dif- 
 ferent times. 
 
 6. There is an incoming and an outgoing movement of 
 the nerve energy. 
 
 7. Each group of neurons has its specific stimulus and 
 cannot be aroused to activity by any other stimulus. 
 
 We are now ready to understand what we mean by 
 mind, first, in its simple processes and then, as it gradu- 
 ally develops, in its more complex processes. 
 
 [18]
 
 3 ram. 
 
 3 mm* 
 
 \ 
 
 I 
 
 V V 
 i 
 
 \\ 
 
 Controls. 
 
 / * v* 
 
 \\ 
 
 to 
 
 (D 
 
 < C/3 -3 
 
 o 5 p 
 
 (!) 
 
 O 
 
 A x ^ 
 
 % > 
 
 X \ \ /*' K* 
 
 . / A \Xy 
 
 V/ X A 
 
 
 ^ 
 r % 
 
 V 
 
 Fig. 23. Curves showing the thickness of the cortex in fourteen 
 different areas of each hemisphere of the brain of Laura 
 Bridgman in comparison with the average thickness of similar 
 areas from ten normal brains. Figures at the side represent 
 millimeters (and tenths) of thickness. Note that the cortex is 
 thin in the areas corresponding to the lost senses; and nearly 
 normal in the other areas. Compare also the sight areas of 
 the two hemispheres. (See text.) 
 
 From Donaldson
 
 CHAPTER II 
 THE BEGINNINGS OF MIND 
 
 IN the previous chapter we have given a brief outline of 
 the mechanism of the nervous system from which the 
 student will understand something of the machinery which 
 underlies mind. 
 
 Our next step is to try to see how the development of 
 mind follows the growth of the nervous system. Some- 
 thing is known of the development of the nervous system 
 and something is known of the development of mind. 
 Our problem is to fit the two together to make as complete 
 a picture as possible. We have two parts to our task: 
 First, a consideration of the facts of nervous system 
 and of mind ; second, a consideration of such logical infer- 
 ences as may be deduced from the facts. These deduc- 
 tions will enable us to form concepts from which further 
 facts may be predicted. Certain facts of the nervous sys- 
 tem enable us to formulate certain concepts in regard to 
 mind and vice versa. 
 
 We will now consider the functions of the nervous sys- 
 tem in the course of its development. 
 
 When a stimulus to the peripheral system, such as a 
 pressure or a ray of light or a sound wave, is applied to 
 any sensory dendrite, the nerve fibre is affected in such a 
 way that some kind of transmission of energy takes place. 
 This energy reaches the cell body and there liberates the 
 stored up energy of the cell which passes on thru the neu- 
 rite. It may then reach the nearby dendrite of some other 
 
 [19]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 neuron and the process be repeated. This energy, called 
 neurokyme, is thus transmitted until it finally passes into 
 a neurite which is in contact with a muscle and produces 
 a contraction of that muscle. The nature of this energy 
 for which we have adopted the suggested term neuro- 
 kyme (nerve wave) is still a matter of dispute. Accord- 
 ing to some it is physical in the nature of an electrical 
 transmission ; according to others it is chemical. It may 
 be both. The term neurokyme must be understood as 
 standing merely for a wave of energy passing thru the 
 neuron not that any substance passes from one neuron 
 to another. 
 
 There are infinite possibilities of connection between 
 all the different individuals of the ten thousand million 
 nerve cells, or such of them as are sufficiently developed 
 to function. The simplest illustration of this is shown in 
 Fig. 24, and may illustrate what takes place in a simple 
 reflex such, for instance, as the well known patella reflex 
 or knee jerk; the stimulus, applied in the form of a slight 
 tap upon the nerve endings in the tendon, is transmitted 
 to a cell body which is located just outside the spinal cord 
 in a group of cell bodies known as a spinal ganglion. 
 The neurite of this cell is within the spinal cord near or 
 in contact with the dendrite of another cell which is thus 
 stimulated. That cell body in turn is made to discharge 
 its energy, which passes out over the neurite ending in 
 a muscle which causes the foot to kick. This, as stated, 
 is the simplest type of action known in the human body. 
 From this simple circuit we progress to combinations so 
 extensive, elaborate and complicated that no one can 
 trace them. 
 
 It must be understood that while the afferent or sen- 
 sory neuron is shown here in connection with only the 
 
 [20]
 
 Sensory nern 
 
 Spiriai ganyl. 
 
 - AM. root 
 
 MoU* ntrn 
 
 Fig. 24. Section of spinal cord showing .simple reflex are from 
 skin to muscle.
 
 THE NEURON PATTERN 
 
 nearest motor neuron, in reality it has many branches 
 and each branch may be in direct connection with another 
 motor neuron, or there may be several or many inter- 
 mediate neurons before the final motor neuron is reached. 
 Thus the energy, started in the sensory neuron by the 
 origial stimulus, has the possibility of travelling any one 
 of a countless number of different paths. We shall here- 
 after speak of the group of neurons followed in any par- 
 ticular case as the neuron pattern. 
 
 The classic experiment with the pithed frog well illus- 
 trates not only some of the possibilities but the order fol- 
 lowed. A frog is chloroformed and the spinal cord is 
 cut behind the brain, thus removing all conscious or un- 
 conscious brain control. A drop of acid is now placed on 
 the skin of the right side just in front of the hind leg. 
 Immediately the right hind leg moves to wipe off the 
 acid (remove the stimulus). Hold that leg and the other 
 hind leg moves to the same end; hold this and the right 
 fore leg takes up the action ; hold this and the left fore 
 leg moves in the same way. Apparently we can trace 
 the course of the energy thru the different paths. When 
 the right hind leg muscle contracts, the neuron pattern 
 followed is the simple one pictured in Fig. 21. In the 
 second case the neurokyme flows across the segment of 
 the cord and out over the motor neuron to the muscle of 
 the left hind leg. Thirdly, the neurokyme flows up the 
 cord on the right side to the fore leg segment and out 
 to the muscle of the right fore leg. Lastly, all these 
 proving unavailable, it goes up the cord and across to 
 the motor neuron leading to the muscle of the left fore 
 leg. All these (and many other possibilities) are pure 
 reflexes. 
 
 In man all these reflexes and many more occur. More- 
 
 [21]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 over, it is but a step to a most important phenomenon. 
 Sometimes the neurokyme flows on up the cord thru the 
 medulla to the cortex. Then consciousness may result. 
 See Fig. 25 A and B. We shall consider that later. 
 
 The reader may ask why there is this multiplicity of 
 neurons in a path instead of a single neuron extending 
 from the stimulus directly to the muscle to be moved. 
 The answer is two-fold : first, a saving of nerve material ; 
 and second, a saving of nerve energy. 
 
 For the first let us take the telephone as an illustration. 
 If six homes are to be connected by single wires we 
 should have something like Fig. 26 A. But if a single 
 relay station or switchboard is introduced we have the 
 much simplified 26 B. 
 
 For the saving of energy we may take our illustration 
 from the telegraph. Almost every one understands that 
 telegraphy is a system of clicks on an instrument which 
 is actuated by electricity. The apparatus necessary is a 
 galvanic battery, wires, a telegraph sounder and a key 
 for making and breaking the circuit. If the key is open 
 (circuit disconnected) the sounder is up. When the key 
 is pressed down (closed) the circuit is closed, the cur- 
 rent passing along the wire makes the magnet pull the 
 sounder down causing the click. The key may be in one 
 city and the sounder in another ; the only thing necessary 
 is to have the wires lengthened to reach between the cities. 
 But, few people understand that in practice this is not 
 exactly the situation. The reason for this is that elec- 
 trical energy is lost as it passes over miles of wire and 
 the cells of battery which would operate a telegraph sys- 
 tem from one room to another, or from one building to 
 another one nearby, would not operate it if the key, 
 sounder and battery were miles apart, for the reason 
 
 [22]
 
 - ..SPINAL 
 
 GANG LI ON 
 
 Fig. 25. A, diagram of the simplest possible reflex arc from epi- 
 dermis thru cerebral cortex to striped muscle. The arc as 
 drawn involves four neurons. According to some, there is 
 another synapse between E and the cortex (see B). There 
 may be intermediate neurons in the cortex, forming links be- 
 tween the afferent neuron E and the efferent neuron A.
 
 cerebral 
 
 cortex 
 
 tricjeminal lemmscus 
 sKin 
 
 medial lemmscus 
 
 nucleus of dorsal 
 
 funiculus 
 
 spinal lemniscus 
 
 ventral pyramidal 
 tract 
 
 dorsal funtculus 
 lateral pyramidal tract 
 spinal cj an g lion 
 sKin 
 
 muscle 
 
 Fig. 25. B, similar to A but showing the extra synapse in the 
 thalamus and showing the pyramidal tract (motor, efferent) 
 heavy line part of which crosses over as do most tracts from 
 left side of the brain to right side of cord; and another part 
 which does not cross. The latter is known as the direct 
 pyramidal tract.
 
 2 5 
 
 -2 
 
 if. 
 
 as C 

 
 NEURON PATTERNS 
 
 that the battery would not be strong enough. Increasing 
 the size of the battery offers only a partial solution. 
 The difficulty is obviated by the use of what is known as 
 a relay. The relay is an electro-magnet with an arma- 
 ture so delicately balanced that it requires only an exceed- 
 ingly small current to move it. The electric current, 
 which would not move the telegraph sounder sufficiently 
 to make any sound whatever, will actuate the relay. The 
 relay throws into the circuit a local battery which will 
 actuate the local sounder. If it is a question of tele- 
 graphing a long distance, the relay throws into circuit an- 
 other length of wire and another battery which will 
 work for a certain number of miles, throw in another 
 relay, and so on across the country, sounders being 
 placed wherever they are wanted. 
 
 This will be easily understood from the accompanying 
 diagram, Fig. 27, and it is only necessary to change the 
 name to make this illustrate what may be assumed to be 
 the operation of nerve energy in the nervous system. 
 Call each battery a cell body, each bit of wire a nerve 
 fibre and each relay a synapse or point where one nerve 
 fibre either touches or comes so close to another nerve 
 fibre that the energy passes across and so sets the new 
 cell body into activity. In some such way apparently 
 nerve energy is transmitted thruout the nervous system. 
 
 It must be remembered that all that we actually know 
 about this in the nervous system is the fact that there 
 are these elements, the neurons with their cell bodies and 
 projecting fibres, and the fact that energy is transmitted 
 and that movements result from the stimuli. 
 
 Neuron Patterns. On page 12 we set forth the gen- 
 erally accepted facts of brain localization, that is, that 
 one part of the cortex gives rise to consciousness of sight, 
 
 [23]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 another to hearing, another to taste, another to smell, 
 another to skin sensations, etc. In the immediately pre- 
 ceding pages we have developed the idea that the sim- 
 plest possible neuron action, that of two neurons, sen- 
 sory and motor, gives rise to a simple reflex act. It has 
 also been stated that this separate act may be complicated 
 by the inclusion of more neurons. We have shown a sim- 
 ple cortical path in which there were four neurons in- 
 volved (Fig. 25). 
 
 All the foregoing as well as the evolution of the nerv- 
 ous system as we go up the animal series warrant us in 
 concluding that the fewer the neurons involved, the 
 simpler the action ; and the more neurons, the more com- 
 plex the action ; and we may safely assume that when we 
 are considering consciousness, the same relation holds a 
 fairly simple neuron pattern will underlie a fairly 
 simple state of consciousness, a more elaborate state 
 of consciousness will be dependent upon a more elab- 
 orate neuron pattern. To make this clear we picture the 
 accompanying hypothetical neuron patterns ; Figs. 28 to 
 31, some simple, some more complex and some rather 
 highly complex. 
 
 The reader must understand that, while these pictures 
 are actual drawings of sections of the cortex, our use 
 of them to illustrate neuron patterns is purely hypothet- 
 ical and made simply to enable us to have some kind of 
 mental picture of what may be the brain condition for 
 various states of thot and mental processes 
 
 Consciousness. Mind is almost universally considered 
 as in some way synonymous with consciousness. Yet 
 psychology has been compelled always to go somewhat be- 
 yond the limits of consciousness in attempting to explain 
 mental phenomena. Long ago popular usage developed 
 
 [24]
 
 "I 
 
 R 
 
 / Z ~ 
 
 
 0} 
 
 o . 
 
 
 
 " ' 
 
 , ; 
 
 Q 
 
 O) 
 
 
 
 n "S 
 
 
 
 
 
 o ^ 
 
 
 
 w f* 
 
 ^ 
 
 
 ^ fe 
 
 
 
 3 
 
 it 
 
 i 
 
 "i 
 
 -T3 
 
 g^ 
 
 
 
 DO 
 
 p 
 
 JS 
 
 -4J 1/3 
 
 
 
 SB 
 
 -^ 
 
 
 C .T3 
 
 r OD 
 
 
 ' 
 
 s 
 
 yl 
 
 CO 
 
 6fi fl 
 cs w 
 
 S -^ 
 
 
 
 M 
 
 ^ 
 
 
 " B 
 
 
 
 
 ^ 
 
 "j^ 
 
 "S CO 
 
 
 
 "sL 
 
 
 - 
 
 sj 
 
 "-N 
 
 
 *_ w% Cd 
 
 
 "c 
 
 G a 
 
 tfl 
 
 V 
 
 / ~ 
 
 2 
 
 09 
 
 
 
 m 
 
 
 
 V 
 
 /J* .^ 
 
 ~n 
 
 V 
 
 09 
 
 
 
 G 
 
 
 
 V- 
 
 K 
 
 1: 
 
 aj 
 
 ._5 
 
 ^ 
 
 
 
 O 
 
 , 
 
 s 
 
 2 
 
 
 ":; 
 
 
 
 S 
 
 
 
 ^ 
 
 -? 
 
 ~ 
 
 H 
 
 
 
 
 
 
 S 
 
 "c 
 
 
 
 i 
 
 i ~ 
 
 r' 
 
 c 
 
 
 c 
 
 N 
 
 T 
 Q 
 
 09 
 
 
 O 
 it 
 
 
 r 
 
 
 11 
 
 -= 
 
 08 
 
 5 
 
 
 
 C 
 
 
 
 t> 
 
 H" 
 
 CO 
 
 OJ 
 
 0) 
 
 = 
 
 
 
 <M 
 
 
 
 DB 
 
 
 o 
 
 
 ^J "J, 
 
 it 
 
 1+11 
 
 3 
 
 E- 

 
 Fig. 30. Illustrating a relatively complex neuron pattern. The 
 widely branching sensory neuron (marked e) is seen reach- 
 ing to many different types of association and motor neurons. 
 
 From Edinger
 
 IV I -TO i / 
 
 Fig. 31. B, detail of A. Section of cortex showing the multi- 
 plicity of possible patterns. 
 
 From Cajal
 
 CONSCIOUSNESS 
 
 the term unconscious mind to explain certain phenomena 
 that were not conscious and yet to the layman seemed to 
 be so much a part of mind as to deserve to be designated 
 in this way. The term unconscious mind is of course a 
 ridiculous contradiction. More recently scientists have 
 gotten around this absurdity of terminology by speaking 
 of "the unconscious" or "the sub-conscious." The 
 study of the behaviour of animals and of man gets away 
 from this difficulty by saying nothing about consciousness 
 but putting all the emphasis upon the behaviour. 
 
 It seems clear that whatever be the difficulties of ter- 
 minology they must be somehow surmounted, because 
 psychology must deal with all the phenomena that result 
 from nerve action, whether they be conscious or not. 
 The figure of the iceberg has been used as a suggestive il- 
 lustration of the true status of things; just as seven- 
 eighths of the iceberg is below the surface and out of sight 
 and only one-eighth is visible, so there is a great sub- 
 merged element which is part and parcel of what we call 
 mind, and our preference for applying the term mind to 
 the visible part only, must not blind us to the existence 
 of the other part or to the importance of understanding 
 it in order to know fully about the visible part, 
 
 Starting then with nerve action, we found the simplest 
 mechanism in what is known as the reflex-arc. We have 
 seen that Fig. 21 shows the simplest form of this nerve 
 action. It represents (1) the organ for receiving the 
 stimulus, for example, the skin, or tendon; (2) the sen- 
 sory neuron whose cell body is in the spinal ganglion and 
 whose neurite passes into the posterior part of the spinal 
 cord and crosses over on the same level to the anterior 
 side where it comes in contact with (3) a motor neuron 
 thru which the neurokyme flows out directly to (4) the 
 
 [25]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 organ involved, the muscle. Here we have only two neu- 
 rons, the stimulation of the sensory or afferent neuron 
 leads directly to the movement of the muscle thru the 
 motor or efferent neuron. 
 
 From this simple beginning we shall find the mechanism 
 for most elaborate extensions increasing the number of 
 neurons indefinitely. This first action, as pictured in 
 Fig. 21, is a pure reflex and is believed to be absolutely 
 without consciousness; but somewhere in the series, we 
 do not at present know where, consciousness enters, and 
 we have first a simple consciousness and then a more elab- 
 orate form and finally the most elaborate of which the 
 mind of man is capable. The various steps must be 
 traced out as carefully and elaborately as our knowledge 
 will permit. 
 
 We must now consider briefly the advent of conscious- 
 ness in relation to our problem. Reflexes take place 
 whether the person is conscious or not. A child sound 
 asleep and entirely unconscious will withdraw his foot 
 if it be tickled. While awake we close the eyelids every 
 few seconds to wash the eye ball and we are never con- 
 scious of doing so unless something definite calls it to 
 our attention. It is a reflex and as such is normally un- 
 conscious. 
 
 Similarly a great many functions and activities of vari- 
 ous organs of the body are controlled by reflexes and the 
 normal man in good health has no consciousness in regard 
 to them. On the other hand, a loud noise or a bright flash 
 of light in the eye or pressure upon the skin produces 
 consciousness. 
 
 We have already suggested that when cortical neurons 
 are involved in the nerve path we get consciousness. 
 Two cautions are here necessary. We are not sure that 
 
 [26] *
 
 Sensory nerve 
 
 Spinal qamgl. 
 
 Ant. root 
 
 Motor nerre 
 
 Muscle 
 
 Fig. 24. Section of spinal cord showing .simple reflex arc from 
 skin to muscle.
 
 CONSCIOUSNESS 
 
 all cortical action results in consciousness and secondly 
 the statement does not necessarily mean that the cortex 
 is the "seat of consciousness"; but both clinical experi- 
 ence and cortical structure make it fairly clear that at 
 least there is no consciousness without cortical action. 
 
 Herrick (23, p. 291) says: "The higher mental proc- 
 esses undoubtedly require the activity of association cen- 
 tres of the cerebral cortex, and the integrity of the associ- 
 ated mechanism as a whole is essential for their full effi- 
 ciency. The cerebral cortex differs from the reflex cen- 
 tres of the brain stem chiefly in that all of its parts are 
 interconnected by inconceivably complex systems of asso- 
 ciational connections, many of which are probably ac- 
 quired late in life under the influence of individual experi- 
 ence, and any combination of which may, under appropri- 
 ate conditions of external excitation and internal physi- 
 ological state, become involved in any cerebral process 
 whatever." 
 
 Just how consciousness results from nerve action 
 whether that action be in the cortex or elsewhere is not 
 known. So little is known in fact that there are not even 
 accepted theories. Yet it may be helpful to consider 
 some crude analogies. We have drawn upon the tele- 
 phone and telegraph for illustrations of nerve action. 
 The temptation is strong to see still other analogies. 
 When two wires charged with a strong current are con- 
 nected by a small wire or are allowed to barely touch each 
 other the current, formerly imperceptible to any human 
 sense, suddenly becomes manifest as heat. May it be 
 that two nerve fibres (neurite and dendrite) in contact or 
 in close juxtaposition make manifest the energy otherwise 
 imperceptible? If so Herrick has furnished us with a 
 ready understanding of why * ' consciousness is located in 
 
 [27]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the cortex" because of the "inconceivably complex sys- 
 tems of associational connections." In the cord and in 
 the encephalon with the exception of the cortex the con- 
 nections are few and simple. The ''consciousness" re- 
 sulting from two or even twenty neurons is too faint to be 
 consciousness, but when thousands are involved it rises 
 above the threshold. 
 
 The foregoing suggestions are in accord with existent 
 hypotheses. For example, it has often been suggested 
 by psychologists who deal with this phase of the prob- 
 lem that consciousness, especially in the higher thot 
 processes, is in some unknown way the result of some 
 interference with the free flow of the neurokyme. On 
 the neurological side there is some evidence, not yet con- 
 clusive, that the nerve processes, the ends of the neurites 
 and dendrites, have what is called ameboid movements, 
 that is, they push out and also contract, the former move- 
 ment of course bringing the various ends closer together, 
 enabling the neurokyme to flow more easily, the latter 
 movement drawing them apart and offering greater 
 resistance. The following quotation from Herrick (23, 
 p. 104) states the matter very concisely yet clearly: 
 
 "The numerous theories regarding the neurological 
 processes taking place in the cerebral cortex during the 
 progress of such mental functions as attention, association 
 of ideas, etc., are likewise as yet entirely unproved. It 
 has been suggested that during cerebral functions the re- 
 sistance of some pathways may be diminished by the ame- 
 boid outgrowth of the dendrites so as to effect more inti- 
 mate synaptic union with the physiologically related neu- 
 rons, while the resistance of the other paths may be in- 
 creased by the retraction of dendrites from their syn- 
 apses. Others believe that the neuroglia may participate 
 
 [28]
 
 AMEBOID MOVEMENTS IN NEURONS 
 
 in the process by thrusting out ameboid processes be- 
 tween the nervous terminals in the synapses and thus in- 
 creasing the resistance. Lugaro has suggested a dif- 
 ferent interpretation, in accordance with which during 
 sleep there is a generally diffused extension of all nerv- 
 ous processes, thus providing for the uniform diffusion of 
 incoming stimuli, while in the state of attention all of 
 these processes retract save those which are directed in 
 some definite direction, thus narrowing the stream of 
 nervous discharge so as to intensify it and direct it into 
 the appropriate centres. There is no direct evidence for 
 any of these theories, and the scientifically correct atti- 
 tude toward them is frankly to admit that at present we 
 do not know what physiological processes are involved 
 in any of these functions." 
 
 The view of Lugaro above referred to by Herrick would 
 seem to account nicely for the difference between spinal 
 cord neuron patterns and cerebral patterns. It also ex- 
 plains fairly well what has been a very difficult problem ; 
 why so many of our common activities, which are at first 
 performed with very decided consciousness, later come to 
 be performed with practically no consciousness. For ex- 
 ample, the first time one winds a watch he attends to the 
 winding to the exclusion of practically everything else, 
 but he soon comes to the point where he winds it so uncon- 
 sciously that he does not know afterwards whether he has 
 wound it or not. We could imagine that on the first oc- 
 casion he is establishing a new neuron pattern, and since 
 it is new, the nerve endings have not grown out into con- 
 tact with other nerve endings and consequently there is 
 considerable difficulty in the passage of the nerve energy. 
 But upon the second occasion these neurons are found in 
 a little better contact, and upon third and successive occa- 
 
 [29]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 sions still better, until finally they are in such close con- 
 tact that the stimulus has only to be given by the sight of 
 the watch or the time of day when it is usually wound for 
 the whole process to run smoothly from beginning to end 
 without any impediment or interrupton and consequently 
 without any noticeable consciousness. 
 
 Spinal cord and other inherited patterns would also be 
 explained. Since they underlie actions long since per- 
 fected in the history of the race, those nerve endings de- 
 velop of themselves into close contact so that the neuro- 
 kyme flows very directly and with practically no inter- 
 ruption. We shall see as we come further to consider the 
 sympathetic system that this view would account for 
 the nerve action there also. 
 
 There is a bit of evidence from another field that has 
 an interesting association with this problem. Green- 
 man (21) has shown that if the peroneal nerve of the al- 
 bino rat be severed and allowed to heal naturally, the 
 nerve to regenerate, the result is an enormous branching 
 of the nerve at the point of section. He says (p. 63) : 
 
 1 ' Following the degeneration in the operated nerve, re- 
 generation, accompanied by branches of axons, takes 
 place and there is an increase of from 64 to 249 per cent 
 in the number of fibres on the proximal side of the lesion, 
 more than 7,000 fibres appearing in some cases just prox- 
 imal to the lesion in a nerve which should show about 
 2,300 fibres." 
 
 This enormous branching was thought to be due to the 
 intrusion of a large mass of connective tissue which 
 seemed to interfere with the easy growth and regenera- 
 tion of the nerve. The experiment was then tried of 
 surrounding the cut end of the nerve with a celluloid 
 tube, thus protecting it against the interference of the 
 
 [30]
 
 ORIGIN OF CONSCIOUSNESS 
 
 connective tissue and allowing it to develop in a simple 
 way. The result here was a great reduction in the 
 branching and consequent number of fibres. The experi- 
 ment was still in progress at the time of the report. 
 This seems to indicate that operative interference with 
 the natural course of the nerve results in an enormous 
 branching. Just as trees when cut back increase the 
 number of their branches. Of course this is very re- 
 mote from our problem and is only cited because it helps 
 one to form a picture of the way nerve fibres grow and 
 one may easily conceive that something somewhat analo- 
 gous may happen in the ordinary development of func- 
 tions in neurons. 
 
 We may therefore conclude from our present knowl- 
 edge that consciousness is somehow connected with the 
 passage of the neurokyme from one neuron to another 
 and that, since the cerebral cortex is the latest to develop 
 (therefore at any given period most likely to be incom- 
 pletely developed), and second, since the number of neu- 
 rons is here inconceivably greater than anywhere else, we 
 may very properly conclude that while we may not say 
 that the cortex is the seat of consciousness, at least it is 
 of vital importance to consciousness. 
 
 That consciousness develops and is somehow, some- 
 where located in the nervous system we know; but if we 
 do not know how or where neither do we know when. It 
 has often been said that we know no consciousness but our 
 own. "We think we have good reason for believing other 
 people are conscious as well as ourselves, both because 
 they tell us so and because they act as tho conscious. 
 The latter however is not always a safe basis for the con- 
 clusion. A person walking and talking in his sleep may 
 appear fully conscious and, while it may be true that he 
 
 [31]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 is partially conscious, yet he surely is not so conscious as 
 he seems. Movement cannot be taken as a criterion of 
 consciousness. Consequently when we are considering 
 those who cannot talk and tell us, whether it be the human 
 infant or an animal, we find ourselves on very uncertain 
 ground. 
 
 The infant is commonly assumed to be conscious as 
 soon as born but of this there is no certainty. He may 
 be or he may not be. His activities for some time may 
 be pure reflexes. If we could remember our life at that 
 early period we might have some basis for a conclusion, 
 but no one can remember his infancy. There are a few 
 people who can remember as far back as the age of two, 
 but for most persons little is remembered before the age 
 of six, except a few isolated experiences. It may further 
 be urged "if conscious at birth why not before birth!" 
 The question is not so absurd as it at first appears. At 
 the middle of the fifth month of fetal life occurs the phe- 
 nomenon of the * ' quickening. ' ' This is probably the first 
 reflex. There are still four months or more until birth, 
 during which time nerve fibres are getting medullated and 
 coming to function. At birth there are a few fully medul- 
 lated cortical fibres and since the moment of birth cannot 
 be considered as producing any sudden change in the 
 amount of medullation, we must assume that there were 
 medullated cortical fibres before birth. 
 
 By the foregoing discussion we do not mean to argue 
 either that there is consciousness before birth or that 
 there is none shortly after birth but only to emphasize 
 the fact that no one knoius; and secondly to bring out the 
 point that there is clearly a gradual development. There- 
 fore we may safely picture to ourselves a first appearance 
 of a very simple reflex, perhaps at the time of quickening, 
 
 [32]
 
 NEURON MATURITY 
 
 and following this a development of ever increasingly 
 complex reflexes : then somewhere in the series, probably 
 not long after birth, the first gleams of consciousness 
 to be followed by a more or less gradual increase in com- 
 plexity until we arrive at what may be called maturity of 
 consciousness, which may be located at the point of physi- 
 cal maturity or perhaps should be placed at the point of 
 man's highest efficiency just before mental deterioration 
 sets in the onset of senility. 
 
 The parallel development of the nervous system is 
 probably complete. We have seen the beginnings of brain 
 and neuron development and have found that the brain 
 continues to increase in weight until the twentieth year on 
 the average. Beyond this we cannot go and even here 
 we are on uncertain ground. On the one hand there may 
 be a development of function of the brain thruout life, 
 and on the other hand increase of weight does not neces- 
 sarily mean increase of function. The limit of brain cell 
 development may be reached some years before twenty. 
 On the other hand, one authority claims that neurons may 
 develop until forty-five. However, in the midst of this 
 uncertainty there can be no harm in assuming the age of 
 twenty as the average time for neuron maturity. 
 
 When we assume twenty as the average of matu- 
 rity, we, by the very term average imply that some reach 
 maturity later than twenty and some earlier, indeed we 
 believe that for some it is very much earlier. 
 
 Let us turn now to the other side of the picture and 
 see what are the first movements or reactions that we get 
 and how these become complicated as we go up the scale. 
 
 The first movement of the human being takes place in 
 utero at about the middle of the uterine period and is 
 known technically as the quickening 4he time when the 
 
 [33]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 child in the womb first moves. This is probably a reflex 
 movement and may indicate the first moment when the 
 simple reflex arc is complete, the neurons developed and 
 ready for functioning. 1 
 
 At birth we have a great extension of activity usually 
 considered reflex, such as crying, sucking and movements 
 of arms and legs. Then follow grasping, eye co-ordi- 
 nation, turning of head and many other movements all of 
 which lead us to conclude not only that the infant is con- 
 scious but that mind is developing. 
 
 It is not necessary at this point to enumerate in detail 
 the signs of mental development in the child. They are 
 familiar to all. It is sufficient to note that from these 
 early beginnings there is a constant and regular develop- 
 ment up to maturity. 
 
 One thing not surely known is whether that devel- 
 opment takes place at a constant rate of increase, i.e. 
 whether the child mind normally develops as fast from 
 say age 6 to age 7 as from 2 to 3 : from 11 to 12 as from 
 8 to 9. In other words is the curve of mental develop- 
 ment to be represented by A, B, C, or D, in the accom- 
 panying diagram (Fig. 32) ? 
 
 We can only say that it is almost certainly not C, not 
 likely to be A, and is probably either B or D or some 
 form of the D plan. 
 
 We must next try to picture to ourselves how this de- 
 velopment of mind is related to the nervous system or, 
 
 i Quickening may of course have no close connection with the develop- 
 ment of the nervous system. It may me_an that the muscle has become suf- 
 ficiently developed so that it can contract as the result of a general stimu- 
 lation, since we know that normal muscle tissue from which the nerve 
 connections have been removed may contract when stimulated either elec- 
 trically or mechanically. However, it seems rather more natural to con- 
 clude that there is a direct nerve connection. These movements of the fetus 
 gradually increase until the time of birth. 
 
 [34]
 
 * e 
 
 s 3 
 
 S 01 a, 
 
 rt ^. w 
 
 O O 
 
 ^ <>] So 
 
 o* 
 
 co C 
 
 SH 
 
 bi.
 
 SIMPLE NEURON PATTERNS 
 
 stated differently, what takes place in the nervous system 
 as the physical basis of each step of mental attainment. 
 
 We know very accurately, as already explained, what 
 nerve action underlies a simple reflex such as the knee- 
 jerk. We have also pictured a somewhat longer nerve 
 path extending to the cortex and we have shown that the 
 cortex has abundant neurons for the most elaborate 
 neuron patterns. 
 
 We may now draw some imaginary pictures to help us 
 understand what may take place. 
 
 If we wish to attract a baby's attention, we clap our 
 hands or otherwise make a rather loud noise. The air 
 waves the physical basis of sound strike the ear drum 
 and by means of the ear mechanism stimulate the audi- 
 tory nerve; i.e., set into activity one or more sensory 
 neurons. The neurokyme thus started passes to the cor- 
 tex and into motor neurons leading to muscles that move 
 the eye or turn the head. This is a relatively simple 
 neuron pattern. We may imagine something like Fig. 28, 
 where the energy aroused by the stimulus enters the cor- 
 tex over the sensory neuron shown at the extreme right 
 (E), and passes across to the series of motor neurons 
 as indicated by the arrows (A, B, C, D). According to 
 the laws of localization, this pattern lies in the auditory 
 centre in the temporal lobe. See Fig. 19, p. 12.) 
 
 Again suppose one attracts the child by touching his 
 cheek so that he turns his head. Fig. 29 might be an- 
 other simple pattern that pictures this process. 1 
 
 Once more, let us assume a bright light flashed in baby's 
 
 i The student must understand that we have represented only a few fibres 
 for the sake of simplicity. It is probable that even the simplest conscious 
 act involves large groups of neurons and the complex processes to be 
 discussed later involve correspondingly larger areas comprising an appre- 
 ciable part of the 10,000,000,000 neurons. 
 
 [35]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 eyes with his resulting movements to escape the glare. 
 Fig. 30 is a section of the visual cortex and may be taken 
 to illustrate the possible pattern. 
 
 These are all simple patterns. We may next consider 
 a more complicated situation. 
 
 Suppose a stranger approaches the baby and baby sees 
 him but does not at once move we say he does not know 
 whether to go to the stranger or to cry. Here apparently 
 is a more complex state of mind and we may picture a neu- 
 ron pattern involving as complicated a system as that 
 shown in Fig. 31 A and B. 
 
 Finally we may consider a case that will be typical of 
 the higher mental processes. I am writing at my desk 
 when I smell a peculiar odour ; it is the odour of burning 
 wool ; I remember the fire on the hearth ; I recall hearing 
 it snap a few seconds ago; I am sure that a spark has 
 fallen on the carpet and the carpet is burning ; I imagine 
 the whole room ablaze; I think of the fire extinguisher 
 and see myself running with it to put out the fire ; but the 
 baby is asleep in a far corner of the room, I must carry 
 him to a place of safety before I run for the fire ex- 
 tinguisher ; already I imagine I hear him crying and see 
 him squirming in his cradle. 
 
 All this ' ' has gone thru my brain ' ' while I am dropping 
 my pen and getting on my feet. What is the neuron pat- 
 tern? Very complicated indeed. No neurologist could 
 trace it. Fig. 33 is only a diagram to indicate some of 
 the paths and to show by comparison with the previous 
 patterns Figs. 28-31 something of the relative complexi- 
 ties. 
 
 It will be noted that in our simpler illustrations the 
 neuron patterns were located in a single cortical area 
 e.g., the auditory centre, the visual, etc., but in this last 
 
 [36]
 
 Fig. 33. Diagram illustrating some of the chief association tracts 
 of the cerebral hemisphere. Note how every part is connected 
 with every other part of the brain. 
 
 From Herrick
 
 ELABORATE NEURON PATTERNS 
 
 case all the different centres are involved, including 
 those not yet named. How these get connected we shall 
 now consider. 
 
 How did it come about that when I smelled the strange 
 odour I thought of ("saw," had a visual image of) the 
 fire ? I smelled the odour (was conscious of an olfactory 
 sensation) because my nose was assailed by a vaporous 
 or gaseous substance that stimulated the sensory neurons 
 of the nose and the energy thus aroused was transmitted 
 to the olfactory centre of the cortex. When I saw "in 
 my mind" the fire, the cells of the occipital lobe 
 were in activity. But those cells were not set into activ- 
 ity by the stimulations of the eye. How then? Before 
 undertaking to answer this question we must consider 
 another topic of fundamental importance. 
 
 On page 16 we defined specific stimulus and called at- 
 tention to the fact that each localized area of the cortex 
 responds to its own specific stimulus. We may now go 
 further and cite the work of Brodmann. He has shown 
 that each area has its peculiar type and arrangement of 
 cells. This still further emphasizes the fact that the 
 cortex has developed for specific functions. It is this 
 idea that we must now extend in order to understand the 
 mental processes that are related to this condition. 
 
 It is only a step from the fact of cortical localization 
 (each type of stimulus has its area of the cortex prepared 
 to respond) and Brodmann J s discovery of a peculiar type 
 and arrangement of cells in each region of the cortex 
 (special cell structure provided for each special stimulus) 
 to the further fact that there are what we may call spe- 
 cific neuron patterns (certain stimuli find neuron paths 
 already marked out for them) . 
 
 We have seen, page 20, Fig. 24, that stimulation of the 
 
 [37]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 patella tendon results in the activity of a simple reflex 
 arc composed of two neurons. Similarly there are defi- 
 nite neuron patterns for the other reflexes. 
 
 But we need not stop with reflexes as usually defined. 
 There is a great group of stimuli that are so universally 
 followed by specific reactions that it is certain there is a 
 specific neuron pattern for each. Such patterns give rise 
 to actions that are said to be instinctive. These are the 
 instincts. 
 
 Instincts probably differ from reflexes mainly in being 
 more complex having a more elaborate neuron pattern 
 and in that they are more or less closely connected with 
 consciousness, perhaps from the fact that their neuron 
 patterns extend into the cerebral cortex. Instinct has 
 been defined by McDougall (34) as "An inherited or in- 
 nate psycho-physical disposition which determines its 
 possessor to perceive, and pay attention to, objects of a 
 certain class, to experience an emotional excitement of 
 a particular quality upon perceiving such an object, and 
 to act in regard to it in a particular manner, or, at least, 
 to experience an impulse to such action." 
 
 We need to emphasize, at the present stage of our dis- 
 cussion, the "innate psycho-physical disposition which 
 determines its possessor" to do certain things, perceive, 
 attend and act or have an impulse to act even if for any 
 reason the act itself does not take place. This is easily 
 translated into the language we have been using. Many 
 of the neuron patterns such as we have described are 
 innate, inherited, that is, they either are ready formed at 
 birth or are potentially there, and do not have to be ac- 
 quired by any kind of learning process. When the right 
 stimulus is applied the complete reaction takes place and 
 takes place just as it has taken place countless times be- 
 
 [38]
 
 INSTINCTS 
 
 fore in the history of the race. So sure is this, that one 
 can predict with practical certainty what will happen. 
 Like a set piece of fireworks the plan is all worked out 
 and only the stimulus is necessary to set it all going. 
 
 The number of these patterns is unknown and there 
 has never been any agreement among psychologists as to 
 the number and character of the human instincts. It is 
 agreed in a general way that they cover the necessary 
 activities for the preservation of the individual and the 
 race. Flight, pugnacity, curiosity, repulsion, self-asser- 
 tion, self-abasement and parental instinct are primary 
 instincts according to McDougall. These we shall discuss 
 later. 
 
 We must now emphasize a point already referred to, 
 viz., the late appearance of some instincts. We have 
 already seen that the neurons and consequently the neuron 
 patterns are in a process of development for a number of 
 years after birth possibly up to adult life. Many simple 
 reflexes and some instincts are fully developed at birth. 
 The rest of the reflexes probably take longer, since these 
 instincts appear only after the lapse of months and even 
 years. This is no contradiction of the fact that they are 
 inborn. The inherited factor is the potential poiver of 
 the neurons to grow into a predetermined pattern just as 
 e.g., teeth are not present at birth but there are tissue 
 cells with all the inherent prescribed mode of development 
 whereby teeth must appear at the proper time. The 
 same thing is true with instinct. Certain neuron patterns 
 are innate and sure to appear in due time. This leads us 
 to the observation that there are other neuron patterns 
 not innate but acquired. 
 
 Thus we come to divide neuron patterns and with them 
 the mental processes into two great groups the innate 
 
 [39]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 and the acquired. The former has been called by Thorn- 
 dike the original nature of man; the latter man's acquisi- 
 tions. Together they comprise the complete nature of 
 man. 
 
 Thus we are brought face to face with the many phased 
 question of heredity and environment nature and nur- 
 ture. 
 
 The first sign that the new born infant is alive is a cry. 
 This is considered a pure reflex. The change in tempera- 
 ture from the warm body of the mother to the surround- 
 ing atmosphere stimulates the nerves of temperature and 
 produces a contraction of the diaphragm and activity of 
 the lungs which produces the cry. No other assumption 
 is possible than that there is at this time a thoroly 
 developed nerve pattern which makes possible the pas- 
 sage of the energy from the stimulus of cold to the con- 
 traction of the muscles which means the cry. When the 
 infant is placed to the breast he immediately suckles and 
 here again we have a thoroly formed neuron pattern 
 which is the underlying basis for this reflex or instinctive 
 act. These and many other patterns are well formed at 
 birth, but from this time on new patterns are constantly 
 being formed thru the growth and delevlopment of the 
 neurons necessary to complete the various patterns. The 
 neuron patterns involved in the instincts whatever they 
 may be, or wherever they may be, certainly involve but 
 part of the infant 's ten thousand million neurons. What 
 is the function of those neurons not involved in these in- 
 herited patterns ? 
 
 We have said that the neuron pattern underlying an in- 
 stinct will be set into activity whenever the appropriate 
 stimulus is applied. There are, therefore, a limited num- 
 ber of stimuli or external influences for which there arc 
 
 [40]
 
 ACQUIRED NEURON PATTERNS 
 
 in the human heing already prepared receptors ; but the 
 number of stimuli to which he is subjected must be in- 
 finite. What of that great number of stimuli that do not 
 find in the nervous system a ready prepared pattern! 
 Evidently they must either be without any response, 
 make no impression upon the sensorium, or they must 
 make their own pathway thru the brain, that is, create 
 their own pattern more or less at random. As a matter 
 of fact, both of these things happen. There are many 
 stimuli that so far as we know make no impression what- 
 ever upon the sensorium of man. There are wave mo- 
 tions in the air, sound waves, that are so frequent that 
 we never hear the sound. There are wave motions in the 
 ether which we have no eye mechanism to receive. There 
 are many solutions that, applied to the organ of taste, pro- 
 duce no sensation of taste. There are many vapours that, 
 applied to the olfactory surface, produce no sensation of 
 odour. Indeed it is probably true that only a small frac- 
 tion of the stimuli that are constantly being applied to us 
 have any effect whatever upon the mind of man. 
 
 There are, on the other hand, a great many stimuli 
 that do make their impressions, not by setting into ac- 
 tivity any inherited neuron pattern but by creating their 
 own patterns. As I turn my eye in a certain direction 
 the retina is stimulated by rays of light which, for the 
 convenience of the reader, I must describe as dark red, 
 but the single stimulus described would not give me any 
 such reaction. It would indeed stimulate the retina and 
 set into activity certain neurons. But what pattern that 
 energy would follow or what neurons would be stimu- 
 lated it is impossible to say. According to current psy- 
 chology it would give me a sensation. It is possible that 
 it would be entirely dissipated in the brain. There are 
 
 [41]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 many facts which tend to force upon us the conclusion 
 that a single stimulus reaching the brain but not finding 
 one of the already formed inherited patterns is lost. A 
 young child makes no response to countless numbers of 
 different stimuli, regardless of their frequency or 
 strength. And it is not difficult to find stimuli that do 
 not provoke a response even in older children. This 
 cannot be due to entire absence of nerve cells since the 
 brains of these children are by no means wanting in 
 neurons and there is every reason to believe that there 
 are, even in quite young children, enough neurons to 
 respond to a large number of stimuli, if a single non- 
 specific stimulus could produce a response. 
 
 If we accept for the time being this view of the case, 
 the next question that arises is, how do these stimuli ever 
 produce a response? The explanation is found in the 
 fact that stimuli do not come singly but in multiples and 
 not thru one sense organ but thru two or more and it is 
 by this means that neuron patterns that fit the child's 
 special environment are built up. How this is done we 
 must now study. 
 
 Acquired Neuron Patterns. In the foregoing discus- 
 sion it was suggested that the nerve effect of a single 
 stimulus was probably lost in the brain. The more com- 
 mon way of expressing this is to say that the nerve energy 
 started by a single stimulus tends to radiate in all direc- 
 tions, to all parts of the brain, at least to all of the princi- 
 pal localized centres. If the auditory centre is stimulated 
 by a sound wave, some of this energy radiates to the optic 
 centre, some perhaps to the taste and smell centres, some 
 to the kinesthetic or skin centres and perhaps others to 
 the other regions that we have not yet named. But the 
 energy thus divided up is so weakened that it arouses no 
 
 [42]
 
 SUMMATION OF STIMULI 
 
 great activity in any one centre and consequently pro- 
 duces no particular result. If we wish to include con- 
 sciousness in our discussion, we can say, "no definite 
 consciousness in any particular centre." If the optic 
 centre is stimulated by rays of light on the retina, the 
 energy likewise would radiate to all the different centres 
 and become lost. If, however, both centres are stimu- 
 lated at the same time, we may readily conceive that the 
 line or pathway from the auditory centre to the sight 
 centre and from the sight centre to the auditory centre 
 gets a double stimulation, double activity; the pathway 
 is twice as well worn as in a single instance. 
 
 There is a principle in neurology as well as in physics 
 known as the summation of stimuli, a term used to ex- 
 press the fact that a nerve path once having been used, 
 the nerve energy having once passed over a certain line of 
 neurons, those neurons are somehow modified or changed 
 by that passage and the effect is permanent. It is never 
 entirely lost. When a second stimulus comes it not 
 only passes over that line somewhat more easily because 
 the pathway has been used before, but the effect is added 
 to the previous effect, the effects are summed up, and that 
 path has become the favoured path. 
 
 If this be true, it is clear that when the eye and the 
 ear are stimulated at the same time the lines of neurons 
 connecting these two centres in the brain will at once 
 have an advantage over any other pathway which has 
 not thus been doubled. If after such an experience the 
 auditor centre alone is stimulated, the energy which was 
 formerly dissipated thruout all of the centres will be now 
 more easily transmitted to the visual centre than else- 
 where, with the result that the same centre is stimulated 
 as was formerly stimulated by the visual stimulus. It 
 
 [43]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 will accordingly produce to a degree the same result as 
 the original stimulus or will arouse the same conscious- 
 ness. 
 
 It is to be expected, however, that while it will pro- 
 duce the same kind of result or arouse the same con- 
 sciousness it will not produce so great a result or 
 arouse so vivid a consciousness. It is reasonable to ex- 
 pect that the direct stimulation of the visual centre of 
 the cortex thru its own particular nerve, the optic, would 
 be more vivid, more intense, greater energy would be 
 developed than when the stimulation comes by way of 
 the auditory or some other centre, because in all prob- 
 ability more or less nerve energy is lost in thus trans- 
 mitting from one centre to the other. Moreover this 
 agrees well with experience. 
 
 Considering this matter from the standpoint of con- 
 sciousness we have the following : My retina is stimulated 
 by the brilliant rays of light and I say, "I see a bright 
 light. " If I now see a bright light and hear a loud noise 
 at the same time, this pathway as above described be- 
 tween the auditory and visual centres is deeply worn, 
 speaking figuratively. Now, having had that experi- 
 ence, suppose I again hear the same loud noise, I will at 
 once think of the same bright light that I saw before. 
 But we know that this bright light "thot of," will 
 not be so vivid, so clear or last so long in consciousness 
 or produce the same motor effect as the bright light 
 "actually seen." 
 
 It is customary to describe -these two experiences by 
 saying that when the centre is directly stimulated by its 
 appropriate stimulus we have a perception of the light, 
 we perceive the light, we see it. But when the centre is 
 stimulated directly from another centre of the brain 
 
 [44]
 
 V~o. 
 
 X- a 
 
 Fig. 34. Diagram to illustrate what happens in brain when ideas 
 are associated. A, an auditory stimulus arouses thru the ear 
 the auditory centre E. The energy radiates in all directions 
 and is dissipated. B, a visual stimulus to the retina arouses 
 the visual centre 0. The energy radiates in all directions and 
 is dissipated. C, auditory and visual stimuli simultaneously 
 arouse their respective centres. The tract joining them is 
 doubly active. Another time when E or is aroused alone 
 by the external stimulus, the other will be aroused by way of 
 this association path.
 
 ASSOCIATION OF IDEAS 
 
 we have an idea of the light, a mental picture or a men- 
 tal image. We say, "There is no light there but I 
 imagine one, or I thot of one." And we know that 
 such an experience is apparently quite different from 
 the direct experience. There is a difference between 
 the real thing and an imaginary thing. The accompany- 
 ing diagram, Fig. 34, A, B, and C will help to make this 
 clear. 
 
 This whole process is commonly called association of 
 ideas, but is in reality, as Titchener points out, not an 
 association of ideas but an association of experiences. I 
 think of the bright light when I hear the sound, or I 
 think of the sound when I see the flash of light, not be- 
 cause I have done anything, not because I will to do so 
 or' plan to, but because originally the bright light and 
 the sound were together and they entered my sensorium 
 at the same time, producing the result as above ex- 
 plained. 
 
 Extension of the Principle. In our example we have 
 simplified the matter as much as possible. But if the 
 principle is clear, in the example given, it is easy to ex- 
 tend it in all directions, that is, between all centres of the 
 brain. We are not necessarily confined to two stimuli 
 since there may be more, as many as there are sense or- 
 gans or receptors. 
 
 We thus see that it is a question of what stimuli reach 
 the sensorium and start a neuron pattern; and that 
 wherever two or more stimuli occur at the same time or 
 in immediate succession they become associated, and a 
 neuron pattern is developed. These neuron patterns 
 may, and will, become elaborated by every new experi- 
 ence. For example, the same loud noise that was asso- 
 ciated with a bright flash may be followed by other 
 
 [45] '
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 noises of different quality in such rapid succession as to 
 be practically simultaneous. They thus enter into the 
 neuron complex and at the same time the consciousness 
 becomes more elaborate. The bright flash may in the 
 same way be associated with colour stimuli of different 
 sources, until the whole may be grouped together into 
 an elaborate neuron pattern which may underlie in con- 
 sciousness an elaborate picture, for instance, a man fir- 
 ing a gun. 
 
 If all the neurons have developed in a normal way 
 there seems to be no limit to the possibility of such elab- 
 oration of neuron patterns. And this elaboration may go 
 on thruout life. The simple pattern is extended by every 
 experience that may later be associated with the original. 
 The man firing a gun may become a Mexican, a French- 
 man or a German firing a flintlock, a rifle, a machine gun, 
 a cannon. He may be firing at a target, at an animal, 
 at a man, in war, etc., etc. And thus the mind is built 
 up; and man's acquired nature added to his original 
 nature, the inherited instinct, makes the complete nature 
 of man. 
 
 For the sake of clearness we have left out a step in 
 the foregoing discussion. This step is logically import- 
 ant. It seems that we must assume that in the first in- 
 stance of an association between two stimuli one of them 
 must be specfic; i.e., having its own inborn neuron pat- 
 tern. Thus the process is a simple extension of the in- 
 stinctive system. The first acquisitions are thus made 
 by connecting them with original nature. These new 
 acquisitions then become a part of the mind and a basis 
 for any further associations that may be made with it; 
 and so on indefinitely. 
 
 If now we consider children in the various stages of 
 
 [46]
 
 NEURON PATTERNS OF THE CHILD 
 
 their development, we find abundant confirmation of 
 this view. Let us take some illustrations. The child 
 sees a man with his head, body, arms and legs. For the 
 sake of simplicity let us assume that each arm and each 
 leg, the head and the body, each is a stimulus ; and that 
 they become associated together in the making of the 
 outline of the complete figure. When once that com- 
 plete association has taken place it is possible for the 
 child, having any one of these applied as a stimulus, to 
 fill out the rest of the picture. For example, thinking 
 of the head he easily imagines the body and the arms 
 and the legs. But we now know with some accuracy 
 that there is a rather definite time when the neuron sys- 
 tem has developed to the point where such an association 
 is possible. 
 
 It is found by experience and experiment that a child 
 under seven may be given a drawing of a human figure 
 with the arms left out and he cannot imagine the arms. 
 His neuron pattern is incomplete. The different parts 
 of it are so imperfectly associated that the "arm pat- 
 tern" is not aroused tho all the rest are in activity from 
 direct stimulation by the picture itself. At the age of 
 three his neuron system is apparently very simple. 
 For, when shown a picture, he sees only a few details. 
 He does not associate the different parts together, and 
 name the whole picture. He gives the simplest re- 
 sponses which have been built up by experience. He will 
 point to the man and say, "Man," "Another man." At 
 a little later age he will enumerate everything in the pic- 
 ture but he does not put them all together and tell what 
 is going on in the picture. This may easily be explained 
 in accordance with the above view, that his neuron pat- 
 terns are not so well elaborated that when a given stim- 
 
 [47]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ulus enters the sensorium it arouses to activity the large 
 number of neurons that would mean the consciousness 
 of the picture as a whole. But rather each little detail 
 that catches his eye arouses its little pattern which most 
 frequently involves only the name of the object. 
 
 Earl Barnes (3) has shown that the child's first draw- 
 ing of a man is a circular head ; soon he adds eyes, then 
 nose and mouth and finally a body. It is considerably 
 later that he adds clothes, with buttons and when he 
 discovers buttons he is apt to put them everywhere. 
 Evidently he puts in these various details as he gets con- 
 scious of them, as his neuron patterns develop. Altho 
 the whole man has been before him all the time he at 
 first saw only the round face, then eyes. It is of interest 
 to note also that eyes are significant to animals. Wild 
 animals will approach a man if his eyes are closed, when 
 they will not do so if the eyes are open. 
 
 In the case of the normal child the neuron patterns 
 are constantly increasing in complexity and in number 
 and the greater the complexity and number, the greater 
 is the capacity for more. Upon this view it is easy to see 
 the fundamental importance of wide experience for the 
 growing child, for it is experience, and experience only 
 that develops the neuron patterns. Even the instincts 
 cannot manifest themselves until their appropriate stimu- 
 lus is applied. And only the widest possible experience 
 can ever utilize even a part of the large number of neu- 
 rons that are capable of functioning. If a child were to 
 be shut up and limited to only a few stimuli there would be 
 no possibility of more than a few neuron patterns devel- 
 oping. 
 
 The story of Caspar Hauser is familiar. It is sup- 
 posed that this person had been imprisoned practically 
 
 [48]
 
 NEURONS OF THE FEEBLE-MINDED 
 
 all his life, about sixteen years, and when he finally es- 
 caped and came out into the world he was, to all intents 
 and purposes, an imbecile, if not an idiot. He had been 
 shut away from the thousands and millions of stimuli 
 that should have developed the neuron patterns and con- 
 sequently he had no capacity at his age for meeting the 
 environment in which he suddenly found himself. 
 
 In the feeble-minded we have the same condition 
 brought about thru other factors. The stimuli are 
 indeed present. The feeble-minded child lives in a nor- 
 mal world where the usual stimuli meet him. But be- 
 cause of the failure of a great many of his neurons to de- 
 velop to complete functioning capacity, he is not able to 
 acquire the neuron patterns which mean adaptation to a 
 large environment. 
 
 One of the most noticeable things about a group of 
 idiots is their constant repetition of the same move- 
 ments; and oftentimes these movements are so indi- 
 vidual and peculiar that they attract one's attention. 
 The writer spent months observing this group of de- 
 fectives and attempting to account for these very pe- 
 culiar activities. They were so striking that it seemed 
 that they must be significant of something much more 
 important than they proved to be. It was thot that 
 there might be traces of a hidden past, in the race if 
 not the individual, ''reverberations from the ancestral 
 sea." It was a long time before the simple explanation 
 dawned that they are merely accidental performances, 
 which being once learned the neuron pattern being once 
 formed, the child, not having the capacity for learning 
 new combinations or for developing new patterns, is 
 condemned all his life to go thru with that one activity. 
 For instance, here is a boy that delights to lie on his back 
 
 [49]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 on the floor or on a bench, and twirl a string in his fingers 
 above his face. Another one seems to delight to get 
 hold of an old rag and play with it and roll it about and 
 handle it. Another one sits by the hour and moves his 
 foot in a particular way. Many of them sway back and 
 forth constantly. Some utter continually the same 
 sound, the same grunt. Those that approach to the use 
 of language have certain phrases that they constantly 
 repeat. And so, one might go thru a long list. There 
 is no significance to these things, they simply represent 
 the individual's one accomplishment. 
 
 As we go up the scale of intelligence we have precisely 
 the same thing except that it is more elaborate. The 
 low grade imbecile has a few more accomplishments and 
 these he repeats continually. The middle and high grade 
 imbeciles can do a little more. The high grade moron 
 can develop quite a good many of these neuron patterns 
 and can learn to do a great many things, but he is never 
 able to adapt himself to a new environment without very 
 special effort on the part of the trainer. Having 
 learned one activity, to do a thing in a particular way, 
 he cannot modify it to suit changed conditions. His 
 neuron pattern is formed and it has little or no con- 
 nection with any other neuron pattern and consequently 
 there is no change. Even dull normals show the same 
 tendency in their constant use of a few phrases or their 
 repetition of limited activities. Perhaps we need not 
 stop even here ! 
 
 Summary. 
 
 1. The development of mind follows the development 
 of the nervous system. 
 
 [50]
 
 SUMMARY 
 
 2. Somewhere in the course of development conscious- 
 ness appears. 
 
 3. Different parts of the cortex respond to different 
 types of stimuli localization. 
 
 4. The child is born with inherited neuron patterns 
 which need only their specific stimuli to set them into 
 activity. There are also other neuron patterns which 
 while not complete at birth have inherited potentiality 
 for development. 
 
 5. The neuron patterns are first simple reflexes, then 
 gradually more and more complex instinct, perception 
 and idea. 
 
 6. To the inherited patterns are gradually added ac- 
 quired patterns built up by experience. 
 
 7. Two stimuli applied at the same time thru differ- 
 ent sense organs (e.g., eye and ear) reach their re- 
 spective cortical areas and become associated con- 
 tiguity. Afterwards whenever one is aroused by its ap- 
 propriate stimulus the other is set into activity by as- 
 sociation. 
 
 8. The feeble-minded are deficient in the acquired 
 neuron patterns. 
 
 [51]
 
 CHAPTER III 
 ARRESTED MENTAL DEVELOPMENT 
 
 IN the previous chapters has been described the course 
 of brain development including the ever increasing 
 elaboration of neuron patterns. We have traced in a 
 general way the development of mental processes as the 
 nerve cell mechanism becomes elaborated from simple 
 patterns to the most complex imaginable. We have as- 
 sumed that there is a time when this neuron develop- 
 ment becomes complete, at which time there is, so far 
 as the brain is concerned, the possibility of the highest 
 known mental development. Theoretically, every human 
 being has the possibility of reaching this limiting point ; 
 but many things may intervene to stop the develop- 
 ment of the brain before it has reached this ultimate 
 mature condition. Just as the body itself may cease to 
 develop in stature with the result that we have dwarfs, 
 so we have dwarfed brains with the accompanying 
 dwarfed intelligence. 
 
 The feeble-minded have long been described as cases 
 of arrested mental development. They are, it is true, 
 marked examples of the principle, but we wish for the 
 present to consider arrested mental development from 
 a broader standpoint than that of the feeble-minded. 
 For the sake of definiteness we have provisionally taken 
 the arbitrary age of twenty years as the upper limit of 
 development. If, therefore, we assume that the human 
 brain ought to develop, continue to elaborate its neurons 
 and neuron patterns until the age of twenty, at which 
 
 [52]
 
 MENTAL AGE 
 
 time we might assume that there is a perfect mechanism 
 developed, it is clear that any brain that ceased to de- 
 velop prior to that time would be a case of arrested 
 brain development, with its necessary arrest of mental- 
 ity. Once this concept is grasped, it is easy to see that, 
 as a matter of fact, human society is made up of in- 
 dividuals with every degree of arrested development 
 from those just short of perfect development down to 
 the lowest grade idiot who has only the mentality and 
 practically only the brain growth of the new born in- 
 fant. 
 
 Since we have no unit for measuring mentality, it has 
 become customary to indicate the grade of intelligence by 
 referring to the mental attainment commonly found in 
 children of various ages. For example, a child who has 
 developed normally until the age of eight has what we 
 may call eight year intelligence, the nine year child, 
 nine year intelligence, and so on up and down the scale. 
 According to this hypothesis no one has more than 
 twenty year intelligence since that is the maximum and 
 if all brains developed to the maximum, everybody would 
 have twenty year intelligence, while the person who had 
 only nineteen year intelligence would be arrested men- 
 tally and would be one year retarded. Others have 
 stopped with a mentality of eighteen, still others at 
 sixteen and fifteen and at every age, down to one year 
 or even less. On this view it is easy to see that if twenty 
 year intelligence is the maximum, that is to say, rep- 
 resents the mentality of the most intelligent, then the 
 intelligence of the average person would be consider- 
 ably below this. It is evident that the proportion of 
 people who have exceptionally high intelligence is rela- 
 tively very small. Terman (50 p. 140) in his studies of 
 
 [53]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 this problem has placed the intelligence of the average 
 man at sixteen: this may be not far from correct since 
 studies of the brain indicate that the neuron development 
 has gone so far by that time that at sixteen years there 
 are enough elaborate neuron patterns to underlie not 
 only the reflexes and instincts but also a great many ac- 
 quired patterns, sufficient for the ordinary reactions 
 of life. These, however, might not be sufficiently elaborate 
 to account for a Newton, a Leonardo Da Vinci, a Plato, 
 an Aristotle, a Spencer or the Brownings and all the 
 rest of the great men and women past and present. 
 Just as the average is considerably below the maximum, 
 so there may be many who are below the average. That 
 there are many persons of less than average intelligence 
 is obvious. 
 
 A difficulty occurs here, however, which must be ex- 
 plained. It is a common error to think of an intelligence 
 below the average, or even below the maximum, as due 
 to a lack of education. In other words, it is common to 
 confuse intelligence with education. Altho the relation 
 between the two is not easy to explain in all its details, 
 yet they are by no means the same. We can perhaps 
 make the relation fairly clear by a few rather general 
 statements, all of which should be modified to cover the 
 exceptional cases, but which in the main express the rela- 
 tionship. Intelligence is a matter of inborn capacity, of 
 neurons and neuron patterns ; education is largely a mat- 
 ter of environment, of opportunity for the exercise of the 
 inborn capacity the development of elaborate patterns 
 from the neurons that one has. 
 
 It is probably true that most people whose short-com- 
 ings we account for on the ground of lack of education 
 are really lacking in intelligence. Those who have the 
 
 [54]
 
 intelligence as a rule get the education in one way or an- 
 other, if not in a formal way thru schools and colleges, 
 then thru the practical affairs of life, such as travel, busi- 
 ness, association with people who have education, use of 
 libraries, public lectures, journals, and even newspapers. 
 There are, it is true, many and marked exceptions to this 
 rule. But they are exceptions and in these days of op- 
 portunity the exceptions are easily discovered by any 
 one who makes the effort to determine whether such an 
 individual is actually lacking in intelligence or only lack- 
 ing in knowledge is ignorant. In the first place it is not 
 at all uncommon to hear the expression, "He is an 
 ignorant man, but very intelligent along his line." In 
 fact, these intelligent ignorant people have usually made 
 a success of life or of some trade or profession and 
 they are perfectly able to succeed along any line that 
 does not require a wide knowledge and broad education. 
 On the other hand the individual who lacks intelligence 
 or, in terms of our neurological explanation, who lacks 
 the necessary neuron patterns, cannot become educated 
 in any large sense. It is true that he may have a memory 
 for facts and accumulate a large amount of informa- 
 tion, but he makes very little practical use of it, and does 
 not show judgment and good sense in the ordinary af- 
 fairs of life. 
 
 The best method of determining who is intelligent and 
 who is merely uneducated is the scientific method of 
 measuring the intelligence. Thanks to the genius of Al- 
 fred Binet of Paris, we now have measuring scales for 
 intelligence that determine with a high degree of accuracy 
 the mental level of an individual. Up to the present time 
 these scales are more valuable for the younger years, up 
 to perhaps twelve, altho they are being extended and 
 
 [55]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 will eventually be applicable to all grades. It is thru the 
 use of these scales for measuring intelligence that we 
 have arrived at the concept of intelligence levels and have 
 learned that in human beings these levels range the en- 
 tire length of the scale from the intelligence of one year 
 to the upper limit, whether that be twenty years, or more 
 or less. 
 
 If now we accept twenty year intelligence as the upper 
 limit and sixteen year, according to Terman, as the 
 average intelligence, we may properly call all those who 
 do not attain to at least the mentality of sixteen as per- 
 sons who are arrested in their mental development, and 
 in accordance with the teachings of the previous chapters 
 we shall conclude that their neuron patterns are incom- 
 plete. The neurons have failed to develop sufficiently to 
 enable the individual to have the necessary patterns. 
 
 It is now a demonstrated fact that many people do not 
 reach the sixteen year level, there are many at fifteen, al- 
 most as many at fourteen and thirteen, a great many at 
 twelve and below. Before we can appreciate arrested 
 mental development we must understand normal intelli- 
 gence better. 
 
 What is Intelligence? In the previous pages we have 
 used the term intelligence in the popular sense as being 
 readily understood by all readers. It now becomes de- 
 sirable to attempt to define it scientifically in order to be 
 able to speak with greater accuracy of its manifestations 
 and to relate it more closely to neuron development. 
 
 We have tried to make clear in the foregoing pages 
 the conception that intelligence is dependent upon and 
 correlative with neuron activity; that the more elaborate 
 and complicated the neuron pattern, the higher the pos- 
 sible intelligence; and conversely, the greater the intelli- 
 
 [56]
 
 INTELLIGENCE 
 
 gence displayed, the more elaborate must be the neuron 
 pattern that underlies it ; also the opposite, the lower the 
 intelligence the less the neuron patterns are developed. 
 
 Inasmuch as intelligence is considered to involve con- 
 sciousness we may say that intelligence is the summation 
 of consciousness. Conceived as an abstract mental pro- 
 cess, it is the sum total of all the related consciousnesses 
 that one is able to bring to bear upon a particular occa- 
 sion. From the standpoint of activity, intelligent action 
 is action resulting from the most elaborate neuron pat- 
 tern that is involved in the situation. From the stand- 
 point of efficient living, the intelligent person is one who 
 has had sufficiently good inherited neuron patterns, and 
 has had sufficient experience, to develop an abundance of 
 acquired patterns ; and as a result is able at any moment 
 to bring enough of these into connection to enable him to 
 adapt himself to the most complicated situations of life. 
 
 Conversely, the relatively unintelligent person is one 
 who is unable to adapt himself to new conditions, either 
 because he has not inherited the necessary neurons, or be- 
 cause the conditions of his life have been so unusual and 
 abnormal that he has not had the experience to bring his 
 neurons into co-operation and thus develop sufficiently 
 elaborate patterns. The latter condition, sometimes 
 called defect by deprivation, is so rare that the few in- 
 stances of it are usually marked cases, such as that of 
 Caspar Hauser already referred to or cases of the deaf 
 and blind who have not been specially educated. We 
 may easily conceive that Helen Keller and Laura Bridg- 
 man would have been of low intelligence had not special 
 means been used to reach the brain and develop neuron 
 patterns thru the senses that remained intact. 
 
 The Feeble-Minded. In our discussion of intelligence 
 
 [57]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 we have used the expression " ability to adapt one's self 
 to one's environment or to new situations." We may 
 quote Stern who defines intelligence as "the general 
 capacity of an individual consciously to adjust his think- 
 ing to new requirements." According to this, intelli- 
 gence consists in a general adaptability to new problems 
 and conditions of life. It will be seen at once that this 
 adaptability is a good measure of intelligence, and those 
 people who are best able to adapt their thinking and their 
 actions to the most elaborate situations are the most in- 
 telligent; while those of less intelligence, altho able to 
 adapt themselves to the ordinary conditions of life, are 
 confused and rendered helpless by the more complex 
 situations. Still lower : there are those of whom James 
 says that they are " nonplussed by all but the very sim- 
 plest situations." 
 
 Now the ability to live an independent existence, to 
 make a living, and to conduct one's self with reasonable 
 propriety in a modern community involves a certain 
 amount of this power of adaptation and there is a cer- 
 tain minimum below which one cannot succeed. That 
 point is usually taken as marking the line between the 
 normal individual and the feeble-minded. 
 
 Tredgold's definitions are based upon this principle. 
 He defines feeble-mindedness in the generic sense (Amen- 
 tia) as: 
 
 ' * A state of mental defect from birth, or from an early 
 age, due to incomplete cerebral development, in conse- 
 quence of which the person affected is unable to perform 
 his duties as a member of society in the position of life 
 to which he is born. ' ' He describes a high grade feeble- 
 minded, now called a moron, as : 
 
 "One who is capable of earning a living under favor- 
 
 [58]
 
 FEEBLE-MINDEDNESS 
 
 able circumstances, but is incapable, from mental defect 
 existing from birth, or from an early age, (a) of com- 
 peting on equal terms with his normal brothers; or (b) of 
 managing himself and his affairs with ordinary pru- 
 dence." From the examination of hundreds of children 
 with the earlier forms of the measuring scales of intelli- 
 gence it was found that no inmates of institutions for the 
 feeble-minded had an intelligence above twelve years, 
 except a few who had been placed in the institution 
 mainly for delinquency and whose ability otherwise to get 
 along in the world was demonstrated. From this it has 
 come about that twelve year intelligence is usually con- 
 sidered the upper limit of feeble-mindedness or the lower 
 limit of normality. 
 
 As a matter of fact it is impossible to draw any hard 
 and fast line. That is evident from the definitions of 
 Tredgold already quoted; since it is clear that some en- 
 vironments require much higher intelligence than others 
 and it is common to say that people who could get along 
 fairly well in the world a hundred years ago when con- 
 ditions were much simpler would be utterly incapable 
 in the present day and would therefore be considered, 
 according to the definition, as feeble-minded. 
 
 Perhaps more careful study may eventually show that 
 the line is to be drawn at the beginning of the adolescent 
 period and that those persons who are arrested in their 
 brain development previous to the onset of puberty must 
 be considered mentally defective, while those whose de- 
 velopment goes on into the adolescent period, but stops 
 before its completion, will range from a dull mentality 
 (the so called dull normal person) up to a level of consid- 
 erable intelligence but short of complete development, 
 and only those whose mental growth (the elaboration of 
 
 [59]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 whose neuron patterns continues thru the adolescent 
 period will be capable of the highest intelligence. This 
 latter point brings us back to our hypothetical assump- 
 tion of twenty years as the limit of brain development. 
 If this view should prove to be a fact it would emphasize 
 the importance of what Dr. Crampton calls physiological 
 age. This principle of physiological age, the fact that 
 children vary widely in the time when new physiological 
 functions such as those of puberty develop, has not been 
 made use of to the extent that it deserves. 
 
 Going down the scale of mental development it has be- 
 come customary to call those mental defectives who have 
 a mentality of from eight to twelve years, morons ; those 
 who range from three to seven, imbeciles; and those of 
 two or under, idiots. 
 
 In the foregoing we have been speaking of cases of ar- 
 rested development, and have stated that it is now pos- 
 sible to ascertain the mental age or intelligence level of 
 any person. Our next problem is, given the intelligence 
 level of a person, how do we know that his development 
 has absolutely ceased? In answer, two things must be 
 noted : First, theoretically we can never be certain from 
 a singe examination that the person is arrested in his 
 development. He may be slowing down but not yet 
 stopped. The smallest amount of data from which we 
 could draw a conclusion would be two examinations suf- 
 ficiently far apart to warrant us in concluding that there 
 should have been development; and if the examination 
 shows none, we may conclude that complete arrest has 
 taken place. But secondly, experience with such people 
 has enabled us to make more or less probable guesses. 
 
 Binet says that for children under nine years of age, 
 those whose mental age is found to be two years below 
 
 [60]
 
 ARREST OF DEVELOPMENT 
 
 their chronological age are to be considered mentally de- 
 fective. Those nine years and older must be three years 
 backward before it is safe to draw that conclusion. Ex- 
 perience has abundantly proved that Binet was well with- 
 in the facts in his rules. But care must be taken as to 
 what inferences are drawn from this conclusion. Binet 's 
 dictum implies nothing as to whether the individual has 
 come to complete arrest. As stated, experience has 
 proved that such persons will be mentally defective ; but 
 it does not show that they will never have a higher mental 
 age than at the time they are tested. In other words, 
 one examination, tho it shows that a child is more than 
 two or three years backward, does not yet show us that 
 he has come to an absolute arrest, but only that he is so 
 far backward that he will ultimately be arrested in de- 
 velopment. We may have caught the child when he is 
 slowing down but has not yet stopped. 
 
 Again experience has proved that these cases have 
 a slowing down period of probably from one to three 
 years. Moreover the slowing down process may begin 
 at any time during childhood. The exact limits are 
 as yet unknown. Of course, with the idiot the matter 
 is relatively quickly settled; with the imbecile less 
 quickly and with the moron it becomes a problem 
 for a number of years. Some morons are appar- 
 ently normal in development until five or six years of 
 age, possibly up to seven or eight, and then have a period 
 of three or four years of slowing down until they come 
 to complete arrest. A child now in the Vineland Train- 
 ing School admitted at the age of two, showed at that 
 time a normal mentality of 2, at the age of two and a 
 half he tested 2.5 ; at the age of three years nine months 
 he tested 4.4, but at the age of five he tested 4.2. At five 
 
 [61]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 and a half he tested 4.8. Now at the age of six and a half 
 he tests 4.6. We give the exact results of the test. It is 
 not probable that he gained and lost as the figures would 
 seem to indicate. A single test question accidentally 
 gained or lost would cause the difference. It is clear 
 that he is slowing down and if one dared predict it seems 
 probable that he will come to complete arrest somewhere 
 around eight years. 
 
 It does not appear likely that all such defectives have 
 the same rate of slowing down; some probably reach 
 the stopping point more quickly than others, just as some 
 begin the slowing down process at an earlier age than 
 others. In Fig. 35 is shown the curve of the above case 
 (D) and also several others showing similar slowing 
 down but at different ages and rates. Also it must be 
 noted that the path by which the child comes to his com- 
 plete arrest of development is dependent upon the cause 
 of the condition. The above is a case of hereditary 
 feeble-mindedness and what has been said has been with 
 the hereditary feeble-minded in view. In the cases of 
 disease or injury there is a different state of affairs. 
 The child who becomes feeble-minded from a fall or an 
 injury to the head would of course stop development 
 almost at once, as would probably those cases that are 
 the result of disease such as cerebro-spinal meningitis. 
 
 The condition of neurons in the feeble-minded and 
 other cases of arrested mental development. 
 
 It will further elucidate both the problem of arrested 
 development and the neuron basis of mind to consider 
 briefly the brain condition in cases of arrested develop- 
 ment. The study of the feeble-minded, while still very 
 incomplete, has given us some very important data bear- 
 ing upon this topic. First, in gross anatomy, the brain 
 
 [62]
 
 THE BRAIN OF DEFECTIVES 
 
 of a case of arrested development does not usually differ 
 from the normal brain; size and shape of head have as 
 a rule no correlation with arrest of development. There 
 is one marked exception, a type of mental defective 
 known as microcephalic (small headed) ; they are, how- 
 ever, so few as to be marked cases in any group of de- 
 fectives. 
 
 Even the external appearance of the brain itself 
 shows no condition characteristic of feeble-mindedness. 
 The number of convolutions is not markedly different 
 from the normal. Indeed, of a hundred brains, half of 
 which would be the brains of mental defectives, ranging 
 from idiocy up, it is probable that no neurologist, how- 
 ever familiar with brain convolutions, would be able to 
 group the brains accurately, not even those of the idiots. 
 We do not mean that many idiot brains are not mark- 
 edly " defective, " and unmistakably abnormal, but we 
 mean to say that many an idiot brain is in outward ap- 
 pearance well within the limits of variation found in 
 normal brains ; and the more experience one has had with 
 normal brains the less likely he is to feel sure that a 
 certain brain that is more or less atypical is the brain of 
 an abnormal person. Compare the two brains here pic- 
 tured (Fig. 36). 
 
 This only means that the difference between the brain 
 of a case of mental arrest and that of a normal person, 
 for there is a difference, is to be sought, not in the gross 
 structure but in the finer microscopic condition and pos- 
 sibly even only in the chemistry of the neuron. Unfor- 
 tunately there has been as yet very little comparative 
 study of the brains of defectives and normals. 
 
 Hammarberg (22), who made one of the earliest and 
 most careful studies of the brains of defectives, found 
 
 [63]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 some differences that are classical, but unfortunately the 
 number of brains upon which he worked are too few and 
 too heterogeneous for safe conclusions. His study is 
 based upon the investigation of four idiots, two low grade 
 and three middle to high grade imbeciles. Of these one 
 idiot was only thirty-two months old at death, one "low 
 grade imbecile ' ' twenty months, one idiot three years, the 
 rest twelve to twenty-six years. One low grade imbecile 
 was an epileptic. Several were clearly cases of disease. 
 
 The accompanying picture, Fig. 37, shows the differ- 
 ence in cell bodies as Hammarberg found them. He con- 
 cluded that in his idiots development of neurons had 
 ceased between six and nine months of fetal life ; and in 
 the imbeciles during either late fetal life or first year 
 after birth. When it comes to the brains of morons, no 
 study has yet shown any difference between these brains 
 and the brains of normals. This is undoubtedly due to 
 the fact that we have as yet no adequate technique for de- 
 tecting the differences, since we have every reason to 
 infer from the psychological conditions distinct neurolog- 
 ical differences. We shall take up these points more in 
 detail in later chapters, but it will be of interest and 
 value to point out here the general conclusions as they 
 have been worked out, especially since they illustrate the 
 principle of brain development, neuron growth and 
 neuron patterns. 
 
 From what has already been said, it will be clear that 
 the degree of mentality or the mental level in any case of 
 arrested mental development will depend upon the time 
 when that arrest occurs, that is, at what stage of develop- 
 ment of the neurons the arrest takes place. 
 
 Children whose neuron development ceases while only 
 a few of the neurons are mature will not have the mechan- 
 
 [64]
 
 o 
 O 
 
 p 
 
 Ht 
 
 o 
 
 c 
 
 1 
 
 5
 
 B 
 
 //O V ?77 tf 
 
 D 
 
 C 
 
 Fig. 37. Comparison of four types of brain cells from a normal man 
 28 years old with similar ceils from imoecJes and a 14-year idiot. 
 Note relative size all are magnified in the same proportion and 
 number of processes. A. Giant cells from gyrus centrulis anterior. 
 B. Pyramid cells from yyrus frontalis. C. Spindle cells from 
 gyrus centralis. D. Ganglion cells from yyni* occipitalis superior. 
 
 From llanunarbery
 
 ASSOCIATION CENTERS 
 
 ism necessary for a high grade of mentality, while thoce 
 whose arrest occurs at a time when the neurons are al- 
 most completely matured will lack only a little of normal 
 mentality. Fortunately we know something of the de- 
 velopment of the brain at various ages of childhood. 
 The spinal cord, and what is sometimes called the brain 
 stem (the medulla, the cerebellum and the basal ganglia, 
 all that develops from the primitive cord except the very 
 anterior portion), are well developed at birth; and Flech- 
 sig (16) has shown (Fig. 22) that there are even some 
 medullated, mature fibres in the cerebrum itself and that 
 others develop very rapidly in the first few weeks or 
 months. This means that the reflexes and many if not 
 most of the instincts are functioning at birth. It follows 
 from this that we have to do mostly with the cerebral 
 cortex in considering the physical condition of various 
 stages of mental arrest. 
 
 Turning to the cortex, we find that the localized centres 
 as described on page (12) seem to be fairly well de- 
 veloped even in cases of early arrest ; that is, low grade 
 defectives, even idiots, see and hear, taste and smell, with 
 approximately normal capacity. It is true that they 
 seem to be somewhat dull in taste and smell, but that 
 may easily be because there is an intelligence factor in 
 normal capacity in these lines, involving the higher 
 centres and that the pure sensation is as strong in these 
 cases as in normal people. 
 
 In our chart of brain localization (Fig. 19, p. 12), we 
 found that there were large areas where no mental func- 
 tion had been located. These have been called by Flech- 
 sig association centres, and have long been considered the 
 seat of the so called higher mental processes. On the 
 authority of those who have studied these regions of the 
 
 [65]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 cortex most carefully, we are safe in assuming that 
 they contain vast numbers of association fibres whose 
 function is to bring into relation all the other centres 
 that record sensations and originate muscular move- 
 ment. 
 
 Herrick (23, p. 290) says: "It must be borne in mind 
 that the most significant parts of the human cerebral 
 cortex are the association centres. These alone are 
 greatly enlarged in the human brain as compared with 
 those of the higher apes. In the latter animals the pro- 
 jection centres are fully as large as those of man, the 
 much smaller brain weight being chiefly due to the rela- 
 tively poor development of the association centres." 
 
 Bolton (7) says: "The frontal association centre is 
 the last part of the cerebrum to be developed, and is the 
 first to undergo dissolution; it is under-developed in 
 amentia of all grades, and atrophied in dementia accord- 
 ing to its degree." 
 
 James has said that one difference between man and 
 the lower animals is that the lower animals take in and 
 give out, while man takes in, works over, and gives out ; 
 which means that in the animals, action is largely reflex 
 or akin to reflex, that is to say, energy coming in over a 
 sensory neuron passes out directly over a motor neuron ; 
 whereas in man sensation coming in over a sensory neu- 
 ron may pass thru these association centres, thus de- 
 veloping the elaborate neuron patterns already described, 
 before it passes out and results in motion. From this it 
 would follow that persons in whom these centres were not 
 developed would be incapable of the working-over proc- 
 ess, or of making the associations referred to. Their 
 mentality would be only such as could be carried on by 
 simpler neuron patterns; and the elaborate patterns 
 
 [66]
 
 SUMMARY 
 
 which are assumed to underlie deep thot, abstract 
 principles, careful judgment and logical reasoning are 
 impossible. 
 
 Referring again to Flechsig and other students we find 
 that these association centres are, as a matter of fact, the 
 last to develop. We may therefore complete our picture 
 of brain development and brain functioning by imagining 
 that arrest of development at various ages of childhood 
 finds these association centres correspondingly incom- 
 plete. The details of this must be worked out in con- 
 nection with later topics, but it is important at this time 
 to grasp the concept of the limitation of brain patterns 
 owing to incomplete development of these centres, which 
 leads us to the very important point of view that cases of 
 arrested development who lack judgment, reasoning 
 power and volition are not simply cases of lack of edu- 
 cation but are persons of little judgment because they 
 have not the developed brain cells necessary for the 
 elaboration of mental processes sufficient to give the judg- 
 ment. 
 
 We are now ready to take up the consideration of vari- 
 ous mental processes. We shall note the development of 
 those processes in various degrees of mental defect and 
 try to picture to ourselves the reason for that defect in 
 the condition of the neurons. 
 
 Summary. 
 
 1. The growth of neurons often stops before complete 
 development is reached, giving rise to mental defectives. 
 
 2. Society is made up of persons of all grades of intel- 
 ligence. 
 
 3. Mental defectives are not simply ignorant. They 
 either lack neuron development or in rare instances 
 
 [67]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 have not had the proper stimuli to arouse their neuron 
 patterns defectives by deprivation. 
 
 4. If mental arrest occurs at twelve years or less 
 perhaps before the beginning of puberty the person is 
 feeble-minded. 
 
 5. The feeble-minded are divided into idiots, imbeciles 
 and morons. 
 
 6. The mental level can be determined by suitable tests. 
 
 7. In the feeble-minded the three " association areas" 
 are probably the parts of the brain most deficient in 
 growth. Other parts of brain and nervous system are 
 relatively little affected except in very low grades. 
 
 8. Since the higher mental processes depend upon the 
 association areas, the cause of feeble-mindedness may be 
 sought in the defective development of these areas. 
 
 [68]
 
 CHAPTER IV 
 
 SOME PROPERTIES INHERENT IN THE 
 NERVOUS MECHANISM 
 
 ANY mechanism as elaborate as the nervous system has 
 some properties inherent in its very nature. These prop- 
 erties must now be considered because they are funda- 
 mental for the beginnings of mind. 
 
 First we note that out of this mechanism, consciousness 
 arises. No one knows just how this comes about; but 
 we have tried by more or less plausible hypotheses to give 
 the reader a working plan of how it might be, so that he 
 may have something concrete and tangible to think about. 
 We have assumed that there are neuron patterns, some 
 comparatively simple and some exceedingly complex, 
 with all gradations between. Just as the child starts in 
 life with muscles ready to contract, digestive organs 
 ready to function, and many other mechanisms ready to 
 work, so he has numerous neuron patterns fully de- 
 veloped needing only the proper stimulus to arouse them 
 to action. These neurons have certain properties and 
 are organized to work in definite ways. 
 
 At least one mental process is the direct consequence 
 of the nature of the neuron and at least two fundamental 
 processes are the natural consequences of the fact that 
 neurons are organized into patterns. 
 
 Memory. Of the properties inherent in nervous tissue, 
 we shall consider irritability because this is the basis of 
 memory. Irritability is that property of living matter 
 by which it responds to a stimulus. Nervous tissue is 
 
 [69]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 probably the most high organized substance in the world. 
 Therefore we have a right to assume it is the most irri- 
 table responds most delicately and characteristically 
 to stimulation. A further consequence must be that in 
 such a highly organized substance, stimulation must pro- 
 duce not only a temporary response but a more or less 
 permanent effect. 
 
 Herrick (23) (p. 294-5) says: "All functions of the 
 nervous system are facilitated by repetition, and many 
 such repetitions lead to an enduring change in the mode 
 of response to stimulation which may be called physio- 
 logical habit. This implies that the performance of 
 every reaction leaves some sort of residual change in the 
 structure of the neuron systems involved. These ac- 
 quired modifications of behaviour are manifested in some 
 degree by all organisms, and this capacity lies at the basis 
 of all associative memory (whether consciously or un- 
 consciously performed) and the capacity of learning by 
 experience. This modifiability thru individual experi- 
 ence is possessed by the cerebral cortex in higher degree 
 than by any other part of the nervous system; and the 
 capacity for reacting to stimuli in terms of past experi- 
 ence as well as of the present situation lies at the basis of 
 that docility and intelligent adaptation of means to ends 
 which are characteristic of the higher mammals." 
 
 When a stimulus is applied and neurokyme flows over 
 a given line of neurons, those neurons are somehow 
 changed, and changed more or less permanently. 
 Whether this is the result of a change in their chemical 
 composition or in their molecular arrangement we can 
 only guess. This condition, however, is not without anal- 
 ogies in other realms of nature. For example, when a 
 piece of steel is heated and cooled it is found to be radi- 
 
 [70]
 
 INHERENT MEMORY 
 
 cally changed. Whereas before heating it was elastic and 
 springy, after heating it is pliable and ductile. Again, 
 when a steel rod or wire has had a current of electricity 
 sent through it in a definite way, it is changed. It has 
 become magnetized. In this case the change is supposed 
 to be due to a change in the molecular arrangement. 
 
 To return to our nerve cells, the important fact for 
 present consideration is that the change in the condition 
 of the neuron shows in consciousness when the stimulus 
 is again applied. The neurokyme appears to flow under 
 changed conditions. Perhaps it flows faster; perhaps 
 slower ; it may be with greater difficulty or possibly with 
 greater ease. The new element in consciousness, usually 
 described as a feeling of familiarity, results in a recogni- 
 tion of the fact that we have had this experience before, 
 and we say we remember it. Memory as thus described 
 is therefore a property of nervous tissue. 
 
 The first time a loud sound strikes the baby's ear it 
 arouses the inherited neuron pattern in the auditory cen- 
 tre and he has, as we have explained, a sensation of 
 sound. The next time the same stimulus is applied it 
 comes with that changed condition which gives the new 
 element of consciousness that we call the feeling of famil- 
 iarity, and the baby is conscious that he has heard that 
 sound before. 
 
 Because of this property, any neuron pattern once 
 aroused by a given stimulus tends to be aroused in the 
 same way again, giving rise to the same consciousness 
 with the added feeling of familiarity, in which case the 
 stimulus is remembered. This may be called inherent 
 memory inherent in the nature of nervous substance. 
 It is also called natural retentiveness. 
 
 Wherever there are neuron patterns, be they simple or 
 
 [71]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 elaborate, there will be this memory. It is not subject to 
 training or education. It is not influenced by intelli- 
 gence. It may be a factor in intelligence since it enables 
 one to recall many experiences, and experiences are of 
 fundamental importance for intelligence. Good natural 
 retentiveness means that every neuron pattern that has 
 been in activity may be aroused again in the same way. 
 Poor natural retentiveness means that the nervous tissue 
 is of such quality that the impression is not retained in 
 all cases. Disease and fatigue may affect the condition 
 of the nervous tissue and thus interfere with its reten- 
 tiveness, but among healthy persons there is apparently 
 very little difference in the quality of the nervous tissue 
 hence very little difference in the capacity for retentive- 
 ness. 
 
 What is thot to be poor memory is first, poor as- 
 sociative memory which will be considered later; and 
 second, poor stimulation. The experience that we do 
 not remember was never adequately in consciousness 
 the neuron pattern was not fully aroused or was not 
 aroused with sufficient energy; to revert to our illustra- 
 tion of the magnetized iron, the magnetism is weak be- 
 cause the electric current sent thru it was not of sufficient 
 strength. 
 
 Imagination. The feeling of familiarity may be lost. 
 The neuron pattern if not soon aroused again seems to 
 lose the impression originally made and when finally 
 aroused, the same consciousness results but without the 
 added feeling of familiarity; hence the experience is not 
 remembered. 
 
 Imagination is literally imaging, and the image has 
 been defined by Binet as "a phenomenon which results 
 from an excitation of the cortex." This makes it cover 
 
 [72]
 
 IMAGINATION 
 
 the two concepts of perception and idea. It has more 
 often been considered synonymous with idea. That is, 
 we use the term mental image as descriptive of a simple 
 state of consciousness aroused, not directly by an external 
 stimulus, but indirectly from another centre of the brain. 
 For instance, at the present moment I have a mental 
 image (visual) of a building in another city. I have a 
 mental image (auditory) of Lohengrin's Wedding 
 March; I have a mental image (olfactory) of the odour 
 of coffee, of the taste of sugar (gustatory), of a cater- 
 pillar crawling over my neck (tactual). All of these are, 
 of course, previous experiences revived, and run so 
 closely into memory that it is possible to describe all of 
 them by saying I remember them. 
 
 It has been said that imagination is memory minus the 
 date, that is to say, the image is not referred to a definite 
 past experience. The image of the aroma of coffee is not 
 the image of the coffee that I had for breakfast this morn- 
 ing, or on any other particular occasion, but just the 
 aroma of coffee without being located in any past time ; 
 likewise my image of a building in a distant city. I may 
 be conscious that I have seen such a building, but I can- 
 not tell when and indeed I may be forced to say that I 
 am not sure that I have ever seen it. But if my image is 
 reasonably true to the facts, it is certain that I have at 
 some time actually had the experience. 
 
 In other words, all these cases are simply instances 
 of an old neuron pattern revived, either by word or by 
 association with something else that is now present in 
 experience. This kind of imagination is called repro- 
 ductive imagination. I have simply reproduced an old 
 experience and as already stated, if that old experience is 
 definitely located in past time, I properly say I remember 
 
 [73]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 it. But if the fact of its having been experienced has been 
 lost, and the image comes into my mind without being 
 definitely located in time, I call the experience repro- 
 ductive imagination. 
 
 Such imagination involves only simple neuron pat- 
 terns and therefore is possible for undeveloped minds 
 and even for animals. Any neuron pattern once devel- 
 oped may be revived at any time, and may be revived un- 
 der such circumstances that it is not located in time or 
 place. This, however, is not what is popularly consid- 
 ered imagination. This is imagination in the psycho- 
 logical sense of a reproduced image. 
 
 Every one knows that children have both memory and 
 imagination, but the reader may be surprised, as are many 
 people, to learn that the feeble-minded also have both 
 memory and imagination ; and yet it is clear that, as only 
 simple neuron patterns of the inherited type are involved, 
 there is no reason why defectives who have any neuron 
 patterns at all should not have both memory and imagin- 
 ation as we have so far described them. It is very com- 
 mon to hear teachers or parents question the diagnosis of 
 f eeble-mindedness for any particular child, because he has 
 a remarkable memory. But any one who has become fam- 
 iliar thru experience with feeble-minded children, knows 
 that this is not incompatible with f eeble-mindedness. In- 
 deed there are occasionally truly remarkable feats of 
 memory among the feeble-minded. The writer spent a 
 day in an institution for the feeble-minded several years 
 ago. Two years later he returned for another visit and 
 was amazed to find several of the children remembered 
 him and called him by name. Marjorie B. was born in 
 China. She can recite to you a long story about her birth- 
 place and her family. Kobert was very fond of recitation 
 
 [74]
 
 MEMORY IN DEFECTIVES 
 
 and learned a great many selections. He never forgot 
 them, could at any time repeat any selection that was 
 called for. Feeble-minded children are very fond of 
 music and in one school the children are taught all the 
 hymns and new songs. As new ones are learned, the old 
 ones are not sung. A few years ago the teacher of music 
 was asked to find out how many of the old songs the chil- 
 dren could still sing. Accordingly, some weeks were de- 
 voted to singing the old songs. More than two hundred 
 were thus revived, many of which the leader himself had 
 long since forgotten. Not only were there children who 
 remembered the words, but there were always some who 
 could remember the tune. 
 
 "Fire-alarm Joe" remembered the exact dates of all 
 the fires that had occurred within a certain radius of his 
 home in the city, could tell just what engines responded, 
 and other facts about each fire. Occasionally one finds in 
 some of these institutions a child that remembers birth- 
 days. He asks the birth date of everybody that he meets 
 and then never forgets it. 
 
 Even idiots very clearly show memory, tho of course, 
 for very simple things. In the nature of the case it is not 
 so easy to prove that they have imagination, since the 
 only difference between reproductive imagination, of 
 which we have thus far spoken, and memory is the date ; 
 and it requires introspection to tell whether the date has 
 been lost or not. An observer is unable to satisfy him- 
 self whether it is imagination or memory. There are, 
 however, instances where children repeat an action that 
 they have performed before and yet very evidently have 
 no conscious memory of the previous experience. 
 
 The explanation of the remarkable feats of memory 
 of the feeble-minded seems to be that, since, as we shall 
 
 [75]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 see later, they do not have the elaborate associations that 
 normal people have, the entire nerve energy must run in 
 a few patterns, thus keeping them all active. The busi- 
 ness man does not remember all the fire alarms because 
 so many other stimuli that arouse more elaborate pat- 
 terns come to him. It is sometimes said that modern 
 man is losing the power of memory and in proof certain 
 wonderful memory feats of the ancients are cited. This 
 is simply an illusion. In ancient times there were no 
 telephones, telegraph, airplanes, or railroad trains. The 
 brains of the ancients did not have to respond to so many 
 stimuli, hence what did come to them could be lived over 
 and remembered. Today people who live in isolated 
 communities remember quantities of details that the man 
 of affairs forgets because his mind is occupied with other 
 things. 
 
 We have seen that memory and imagination in their 
 simple forms are mental processes resulting from, or in- 
 herent in, the nature of nervous tissue. We next con- 
 sider those processes that are inherent in the nature of 
 the mechanism of the nervous system the fact that 
 there are neurons and synapses, neurokyme, stimuli and 
 muscles. 
 
 Attention. We have made much of nerve action the 
 neurokyme flowing thru the neuron patterns. This ac- 
 tion when sufficiently complex results in consciousness. 
 It is a logical deduction that the more complex patterns 
 give rise to larger and more i-ntense consciousness; and 
 further, that if a number of these patterns happen to be 
 aroused at the same time there would generally be some 
 stimulus so much stronger than the rest as to arouse a 
 more intense consciousness and thus obscure the others, 
 and we should be conscious of that stimulus to the more 
 
 [76]
 
 ATTENTION 
 
 or less complete neglect of the others. This is attention ; 
 and it is customary to say that we are attending to that 
 particular stimulus ; or that we are in a state of attention. 
 It is common to define attention as the focus or the focus- 
 ing of consciousness. We prefer to describe it as above, 
 and thus avoid the implication that "we" do any focus- 
 ing or concentrating or attending. The stimulus arouses 
 the consciousness and that consciousness is the attention. 
 
 Which one of the many stimuli constantly reaching the 
 brain will arouse the stronger consciousness and therefore 
 "hold the attention" depends upon first, the strength of 
 the stimulus and, second, the degree of ease with which 
 the nerve energy flows into an elaborate neuron pattern. 
 
 Other things being equal, the stronger stimulus will 
 arouse the greater consciousness and we attend to that 
 stimulus. On the other hand the inherited neuron pat- 
 terns, being ready prepared to receive their specific 
 stimuli, will in general respond more easily l than ac- 
 quired patterns. Therefore, "we attend" to those stim- 
 uli for which we have an inherited pattern to the exclu- 
 sion of those stimuli for which we have only an acquired 
 pattern. Nevertheless, it is probably true that an ac- 
 quired pattern may, by use, become so easy of arousal 
 that the consciousness accompanying it becomes even 
 greater than that of an inherited pattern especially if, 
 on the one hand, the latter has been relatively little used, 
 
 i "Ease of flow" of the neurokyme is a convenient concept to explain 
 the changes in consciousness. It must be kept in mind, however, that we 
 really know nothing of the actual changes in the transmission of energy 
 thru the neurons or even whether the difference is in the neurons or at the 
 synapses. In another place we have suggested the latter. Moreover, if for 
 convenience we adopt the concept of degree of ease of flow, it must be 
 remembered that the degree that means the acme of consciousness is per- 
 haps not the greatest ease, since we also conceive that when the neurokyme 
 flows with the highest degree of ease, there being no resistance, there is 
 no consciousness. 
 
 [77]
 
 or on the other, has been used so much that the stimulus 
 leads to its natural action with so little interference that 
 a minimum of consciousness is aroused. 
 
 We call the state of attention that results from the ac- 
 tivity of an inherited neuron pattern, instinctive or in- 
 herited attention and that which comes from an acquired 
 pattern, acquired attention. The former has usually 
 been called involuntary or passive attention and the latter, 
 voluntary or active attention. We prefer our terminol- 
 ogy because the other implies a directing force for the 
 attention which is a purely gratuitous assumption and 
 leads to much confusion. According to this view, atten- 
 tion is only a name for the maximum consciousness at 
 any given moment and is dependent upon the character 
 of the stimulus and the neuron pattern. 
 
 There apparently may also be a second centre in ac- 
 tivity, giving rise to a vague consciousness which we rec- 
 ognize as a marginal consciousness. There may even be 
 an alternation between these two, now one predominating 
 and now another. Then we say our attention fluctuates, 
 as for instance when one tries to listen to a friend and 
 also think what one will say in reply, or when one tries 
 to attend to the task in hand but some other matter " per- 
 sists in forcing itself on the attention." 
 
 Immature mind is capable of instinctive attention. The 
 lowest idiot, like the normal infant, turns his head at a 
 loud sound or a bright light. Of course it is impossible 
 always to say that such movements are not reflex, but if 
 conscious in the normal infant they are probably so in 
 the idiot. Moreover, the range of stimuli to which de- 
 fectives attend gradually increases as we ascend the in- 
 telligence scale and parallels more or less closely the 
 development of the same process in the growing normal 
 
 [78]
 
 ft S 
 co o 
 
 c 
 
 <D 
 
 S 
 
 Q $J 
 
 . c 
 oo - 

 
 Fig. 39. Brain of ease pictured in Fig. 38. The occipi- 
 tal cortex is little moje than a membrane. Micro- 
 scopic examination showed that the cells had never 
 developed.
 
 child. Inasmuch as the idiot often has limited brain 
 areas it is again evident that instinctive attention is com- 
 patible with very simple brain mechanism. 
 
 The accompanying picture, Fig. 38, is that of an idiot 
 twenty-two years old, mentality 1 to 2. Fig. 39 repre- 
 sents the brain of the same case. It will be noted that the 
 cortex of the occipital region is almost entirely lacking. 
 The child was microcephalic and also hydrocephalic, yet 
 so "normal," for his grade, were his reactions that no one 
 ever suspected such a condition. According to accepted 
 views of brain localizaton he could have had only the 
 slightest if any consciousness of vision; yet he smiled 
 when one approached his chair as well as when spoken to. 
 He seemed to respond to the smell of food and gave other 
 indications of instinctive attention. 
 
 It is easy to understand, once this view has been mas- 
 tered, that we do not focus our attention upon any one 
 thing; but rather, when a stimulus is applied, a certain 
 group of neurons are set into activity and consciousness 
 results. For example, no matter what one is doing a loud 
 noise will instantly " attract attention." We shall more 
 accurately describe what happens, if we say there is a 
 ready formed, instinctive pattern to which the stimulus 
 of a loud noise instantly leads, arousing strong activity 
 with its accompanying consciousness. But what becomes 
 of the consciousness existent when the loud noise inter- 
 rupted us? The answer is, it is eclipsed by the greater 
 consciousness aroused by the new stimulus, and this 
 principle must be borne in mind thruout: the greater 
 eclipses the less. 
 
 Of two neuron patterns, each in activity, that one 
 which is more active, which is developing the greater 
 amount of energy will monopolize consciousness. That 
 
 [79]
 
 is the reason that as a rule the sudden loud noise holds our 
 attention in spite of everything else. And yet there are 
 circumstances under which one's consciousness is so in- 
 tense that even a fairly loud noise is not heard. This 
 only means that the neuron pattern, that was at the in- 
 stant active, is stronger than that which is set into ac- 
 tivity by the stimulus of the loud sound. Nevertheless 
 there may be activity in the second area as is evidenced 
 by the fact that while there is no consciousness accom- 
 panying it, nevertheless there is action. An observer 
 might report that the loud noise produced a tremor, 
 start, or even a jump in the individual who declared that 
 he had not heard the noise. 
 
 Indeed we may go further; it is a common experience 
 for a person to declare that he has not heard a question 
 asked when in fact he had actually replied to it. In that 
 case it is clear that the neuron pattern corresponding 
 to the question asked was in activity, and even led to a 
 response and the formation of words in reply; and yet 
 because some other centre was more active and was pro- 
 ducing a greater consciousness there was no conscious- 
 ness connected with the first: or, one probably should 
 say, such slight consciousness that it did not occupy the 
 centre of the field and this explains why we are often 
 able to utilize the experience without having been really 
 conscious of the stimulus. 
 
 Another common experience is like the following: One 
 is asked what time it is, "A little past three," "How da 
 you know, did you hear the clock strike?" "No, I did 
 not hear the clock strike, but yes, I believe it did strike." 
 The explanation of this would seem to be that what the 
 individual was doing at the time so engrossed his atten- 
 tion, that he was not attentive to the clock. Expressed 
 
 [80]
 
 DIVIDED ATTENTION 
 
 in our terminology: here are two neuron patterns in ac- 
 tivity ; the one corresponding to the particular thing that 
 he was doing at the time was so much more strongly in 
 activity that the striking clock was not able to arouse 
 vivid consciousness. And yet there was some little con- 
 sciousness, as is evidenced by the fact that later he is able 
 to say, "Yes, I believe I did hear the clock strike." 
 Again the strength of the conviction that he heard the 
 clock strike varies all the way from almost nothing to a 
 high degree. This may be explained by the relative 
 strength of the activities in the two centres. If they are 
 nearly equal then he is able to say, "Yes, I heard the 
 clock strike, altho I was occupied with something else." 
 If the other stimulus is exceptionally strong so that rel- 
 atively the consciousness aroused by the striking clock 
 is weak, he is in very great doubt and may even declare 
 that the clock has not struck. 
 
 Similarly a great many common experiences are ex- 
 plained. Who has not had the experience of trying to 
 recall a name, and being constantly baffled by the intru- 
 sion of a name which he knows is not correct. The re- 
 sults of what is called free association abundantly demon- 
 strate the action of this principle, and are easily ex- 
 plained in this way. For example, let the reader get 
 some one to pronounce a list of words to him with the un- 
 derstanding that he is to respond to each word with the 
 first word that comes into his mind; and after each re- 
 sponse let him stop and ask himself how he happened to 
 make that response, how he came to think of that particu- 
 lar word. In every case he will find that the word has 
 come to him in such a way that it is easy to see that the 
 nerve energy aroused by the stimulus word has run into 
 its own neuron pattern and given rise to a consciousness 
 
 [81]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 which was expressed by the word with which he re- 
 sponded. 
 
 The chief objection to the foregoing view is the insist- 
 ent feeling that we do somehow direct our attention; 
 whereas the above view makes us helpless in the matter, 
 and we become the victims of pure chance, or better, of 
 our previous experience. Many an intelligent reader 
 will be inclined to say, "I know that isn't true. My own 
 experience contradicts it." And yet, it is quite possible 
 that our first or "common sense" view of the situation 
 is a mistaken one ; that we are under a delusion. It is not 
 the only case, either in the realm of psychology or else- 
 where, that we think certain results are due to our own 
 activity when as a matter of fact our activity has nothing 
 whatever to do with them. Let us take the instance last 
 cited, of trying to think of a word. Do we not direct our 
 attention first to one word and then to another until we 
 finally get hold of the right one! At first thot it seems 
 so, but let us see how we would explain this on the other 
 theory. 
 
 According to the view here presented, the stimulus is 
 the person, possibly in the form of a mental picture, 
 whose name we wish to find. At once comes to mind 
 the name Joseph but we know that "Joseph" is not cor- 
 rect, then comes James, and John and Judith and Jere- 
 
 
 
 miah, we say we have thought of each one of these and 
 discarded them in turn. What actually happened was, 
 the stimulus aroused the neuron pattern which spelled 
 ' ' Joseph, ' ' but the circuit could not be completed. Then 
 the nerve energy flowed into another group of neurons 
 which spelled "James," and then "John," and so on 
 thru the list. "We" were doing nothing, the nerve 
 energy was doing it all. Finally, the nerve energy flowed 
 
 [82]
 
 ASSOCIATION 
 
 into the neuron pattern which spelled " Justus," and 
 that pattern was worked out because it was asociated with 
 the individual 'a face or his activity or with other experi- 
 ences with him, so that the whole picture was consistent. 
 
 Consciousness has simply told us what has happened 
 but without telling us how it happened; and we have 
 made the mistake of thinking that the consciousness it- 
 self was the cause of the whole procedure. We shall 
 have occasion to explain and discuss this principle more 
 fully later on. 
 
 Another mental process inherent in the nature of the 
 nervous mechanism is association. We have shown in a 
 previous chapter how stimuli become associated. It is 
 only necessary to refer to the subject here as another ex- 
 ample of a property inherent in the nature of the neuron 
 mechanism. Because the neuron patterns are what they 
 are, two stimuli of about the same intensity, occurring at 
 almost the same time, become connected in the brain and 
 consequently connected in consciousness, and we say they 
 are associated. If the stimuli are not of approximately 
 the same intensity, the one predominates to the exclusion 
 of the other and that one alone holds the field of con- 
 sciousness or attention. 
 
 Since one or both of these neuron patterns may be 
 stimulated indirectly from another centre of the brain, 
 and such indirect stimulation results in the consciousness 
 that has been given the name idea, as distinguished from 
 consciousness aroused directly by an external stimulus 
 which is called perception, it is common to speak of the 
 association of ideas. 
 
 We have already shown that when two stimuli act at 
 the same time each setting into activity its own brain pat- 
 tern, those brain patterns become connected or associ- 
 
 [83]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ated, and therefore the two consciousnesses aroused by 
 the two stimuli are associated, as when I hear a sound 
 emanating from an object which I see, the sound is associ- 
 ated with the object ; and hereafter if I hear the sound I 
 think of the object, or as I see the object I think of the 
 sound. This process is of fundamental importance. In- 
 deed this possibility of the association of the different 
 mental patterns, the yoking them up together thru experi- 
 ence, underlies the whole mental life of an individual. 
 Because of its importance it becomes desirable to discuss 
 this process further. 
 
 The case cited is an illustration of what is commonly 
 called association by contiguity, that is, the two stimuli 
 are contiguous (literally touching). I see the object and, 
 at the same time, hear the sound that it produces. With- 
 out this fact of contiguity, no association could take place, 
 since each stimulus would arouse its own neuron pattern 
 independently and lead to its specific action; or the en- 
 ergy would be dissipated and no connection would occur 
 in the mind of the person. Life is full of such unassoci- 
 ated experiences. For example: In my daily walk to 
 business I frequently meet a certain gentleman. He be- 
 comes a familiar sight to me, but here the experience ends. 
 It also happens that in conversation with various friends 
 they speak of a certain Mr. X and I become thoroly famil- 
 iar with the name of X; but I may never connect the 
 name of X with the gentleman that I meet on the street, 
 unless in some way the two experiences of seeing the 
 man and hearing his name come at the same time. This 
 may come about as follows. While walking along the 
 street I meet the gentleman and some one with me says, 
 "That is Mr. X." Now the association is made and 
 ever after when I meet him, I will think * * Mr. X, ' ' when 
 
 [84]
 
 CONTIGUITY 
 
 my friends speak of Mr. X, I will have a visual image 
 of the gentleman as I have met him on the street. The 
 two neuron patterns in my brain have become thoroly con- 
 nected. This is the simplest and most direct way of mak- 
 ing the connection. But it may be made in many other 
 ways. From a neuron pattern standpoint the matter is 
 always the same ; the two neuron patterns are excited. 
 
 It matters not whether the pattern is actually aroused 
 by the external stimulus or whether it is aroused indi- 
 rectly from some other centre of the brain. That is to 
 say, instead of actually seeing the gentleman, his image 
 may be called up and that image connected with the name. 
 As for example, some one says to me, " You know Mr. X," 
 I say, "Yes, by reputation, I have often heard him spoken 
 of." To which it may be replied, "But you know him, 
 you meet him every day ; he is that tall, broad-shouldered 
 man that you meet as you go to business." The descrip- 
 tion of a broad-shouldered man calls up the mental imago 
 of the gentleman, and now my friend says, "That is Mr. 
 X." 
 
 It will be seen that this type of occurrence is constantly 
 happening; we thus learn the names of people and objects, 
 and associate various qualities and characteristics of ob- 
 jects. If one arouses a neuron pattern by the word iron, 
 I immediately think "heavy," and it is easy to see that I 
 have at some time lifted or attempted to lift something 
 that I knew was called iron. I got certain sensations or 
 had a certain neuron pattern aroused which meant mus- 
 cular exertion of a high degree, and which gives the con- 
 sciousness "heavy." Without the experience it would 
 be impossible to think "heavy." It would not be impos- 
 sible for me to say "heavy" because the association iron 
 heavy may have been made for me in a purely verbal 
 
 [85]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 i 
 
 way. I may have been told that iron is heavy, conse- 
 quently when some one says iron, I say heavy. But it 
 will be recognized that I do not have the same mental 
 content that I had when I actually lifted iron. If I know 
 what the word heavy means from the actual lifting of 
 other heavy objects, I may be able to think of the iron as 
 heavy with a considerable degree of accuracy. Neverthe- 
 less, my knowledge that iron is heavy is not quite the 
 same and not quite so satisfactory as tho I had actually 
 had the experience of lifting iron. Nevertheless, much 
 of the experience that enters into our mental life is of 
 this vicarious kind. For example, I am quite satisfied 
 that common white arsenic is sweet. I have never tasted 
 white arsenic, but I have tasted things that are 
 sweet, and I know what is meant by sweet; conse- 
 quently when I am told that arsenic is sweet I have 
 the ability to think of arsenic in much the same way as I 
 would if I had actually tasted it. Nevertheless, it will 
 be recognized that it is not exactly the same and should I 
 taste it I would probably find that I knew arsenic in quite 
 a different way from what I had known it before. 
 
 Some writers have distinguished these two experi- 
 ences as knowledge of the "first order" and knowledge 
 of the "second order." If I have actually seen Bar- 
 nard's statue of Lincoln I have knowledge of that statue 
 of the first order, but if I am told that there is a statue of 
 Lincoln by Barnard, that it represents him standing, and 
 the peculiarities of that statue are described more or less 
 in detail, I have a knowledge of the statue of Lincoln, but 
 it is knowledge of the second order. 
 
 In our illustrations of the memory of the feeble-minded, 
 the reader will see that much of it involves simple asso- 
 ciation. The name of a person, of course, is an associa- 
 
 [86]
 
 ASSOCIATION IN DEFECTIVES 
 
 tion between the visual perception of the face and the 
 auditory image of the name. The lower grade defectives 
 make only a few associations of the simplest character 
 and practically always by contiguity and as the result of 
 a greater or less number of identical experiences. Even 
 the highest grade defectives associate largely by contigu- 
 ity, the difference between them and the lower cases being 
 that they make more associations and form them more 
 quickly ; that is, as a result of fewer experiences, in many 
 instances apparently forming them as quickly and easily 
 as normal people. 
 
 Florence was being given one of the Norsworthy Tests 
 (Genus Species Test) where, given the name of the 
 genus, the child is required to name a species ; e.g., plant 
 rose. When the test was about half done the examiner 
 remembered that Florence had had the test the previous 
 year, whereupon he asked her if she remembered having 
 the test the year before. "Yes," she replied, "but I'm 
 not giving you the same answers that I did a year ago." 
 "What was your answer to this question at that time?" 
 Her reply was recorded, and w r hen the records of the 
 previous examination were looked up, was found to be 
 correct. She not only remembered having had this list, 
 but remembered her exact answers. It is evident from 
 such experiences that the simple association fibres con- 
 necting the different centres are sufficiently developed, 
 especially in the feeble-minded of higher grade, to enable 
 them to make a great many associations by contiguity. 
 
 We have now seen how some of what are called the 
 simpler mental processes are the direct outcome of the 
 nature and structure of the nervous system. There is 
 still another manifestation of mind which, tho somewhat 
 more complicated, seems also to be inherent in the nature 
 
 [87]
 
 PSYCHOLOGY OP THE NORMAL AND SUBNORMAL 
 
 of the nervous mechanism and therefore belongs in this 
 group. This is emotion. But its concideration will be 
 postponed until we have discussed the elaboration brot 
 about in the foregoing processes by the development of 
 the great association centres. 
 
 Summary. 
 
 1. Because nervous substance is the most highly 
 organized matter known, it is most highly irritable, a 
 stimulus produces not only temporary but permanent 
 change. This is the basis of memory, natural retentive- 
 ness. 
 
 2. The mark of memory is a feeling of familiarity, 
 due apparently to the greater ease with which the 
 neurokyme flows thru a pattern already in use. 
 
 3. If the pattern is unused for a time this feeling of 
 familiarity may be lost. One may then reproduce the 
 image without being conscious that it has been experi- 
 enced before. This is reproductive imagination. 
 
 4. Both inherent memory and reproductive imagina- 
 tion are possible in the feeble-minded because they in- 
 volve relatively simple neuron patterns. 
 
 5. Because nerve substance is what it is we have 
 memory and imagination ; because it is arranged as it is 
 (neurons, synapses, etc.) we have attention and associa- 
 tion. 
 
 6. Attention is the most vivid consciousness. This 
 vividness depends upon strength of stimulus, nature of 
 neuron pattern (inherited or acquired), elaborateness of 
 neuron pattern (simple or complicated), and upon fre- 
 quency, recency and emotional content. 
 
 7. Two or more centres of the brain, being stimulated 
 simultaneously or nearly so, become connected by as- 
 
 [88]
 
 SUMMARY 
 
 sociation neurons, and therefore the stimuli arousing 
 these centres are associated in mind. Thereafter the 
 activity of either one will set into activity the other thru 
 association by contiguity. 
 
 8. This association process thru, the functioning of 
 great areas of association neurons becomes the condition 
 for a great extension of all the mental processes. 
 
 9. Both inherent attention and association by con- 
 tiguity are within the capacity of the feeble-minded. 
 
 [89]
 
 CHAPTER V 
 HIGHER MENTAL PROCESSES 
 
 WE have now completed our survey of the simpler mental 
 processes. While some of these may involve rather com- 
 plex neuron patterns, they are nevertheless connected 
 with and depend upon the more primitive parts of the 
 brain. These parts are very early developed and many 
 of the neuron patterns are inherited, ready made, while 
 the rest are quickly formed by the simple experiences 
 of every day life. 
 
 This agrees thoroly with the obvious fact that very 
 young children and animals, even fairly well down the 
 scale, have all these mental processes. That is to say, 
 they remember, they attend, and they associate. That 
 these are phylogenetically the older, more primitive por- 
 tions of the nervous system is also attested by the fact 
 that many animals have the processes of memory, atten- 
 tion, etc., who have what are relatively very elemental 
 nervous systems very small and simple cortical areas 
 and only a fraction of the convolutions that are found 
 in human beings. 
 
 All this marks what may be considered from one point 
 of view a rather sharp break between these more ele- 
 mental manifestations of mind and the more elaborate de- 
 velopment of the higher processes of thot, reasoning, judg- 
 ment and will. While from a broad consideration it is 
 perfectly true that there is no radical break but rather 
 a gradual development into those higher processes, yet 
 
 [90]
 
 HIGHER PROCESSES 
 
 we shall see later that a marked absence of them char- 
 acterizes various stages of immature mind. 
 
 We must now proceed to trace as fully as our knowl- 
 edge will permit the development of these higher proc- 
 esses. The logical place to look for this development 
 is in the extension of the association system. For the 
 processes already described we have needed only the 
 comparatively simple neuron patterns located in any one 
 centre or in two or more of the localized centres with 
 simple association fibres connecting them. We repeat 
 the observation made earlier that the completion of the 
 process started by any stimulus involves muscular ac- 
 tivity; and as long as the force of the neurokyme is rela- 
 tively unimpeded from the stimulation of the first sen- 
 sory neuron thru the various synapses over to the motor 
 neuron with the resulting muscular activity, no other 
 pathway is needed and none other will be followed. It 
 is generally held that we should look for the condition 
 which leads to the extension of this system in some kind 
 of blocking of this simple path of the nerve energy. 
 This may readily be conceived as coming about from 
 the interference of two or more stimuli. In the com- 
 plexities of the environment of the higher animals and 
 especially of man, a familiar stimulus may have for its 
 natural result an action which is antagonistic to some 
 other instinctive tendency, for example, instinctive 
 curiosity leads a child to explore a new object, but the 
 object, possibly a dog, emits a sound which arouses the 
 primitive emotion of fear. The natural outcome would 
 be movement away from the object rather than toward 
 it. One has often seen this conflict going on in young 
 children as well as in animals. Curiosity leading them 
 to approach, fear leading them away. The conflict be- 
 
 [91]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 tween the two results in no movement whatever, and a 
 common description of the situation is more or less cor- 
 rect; we are very apt to say, "He doesn't know what 
 to do and is trying to decide, he is thinking about it." 
 
 Going back to our picture of the neuron patterns we 
 may say that the course of the neurokyme is blocked ; not 
 being able to flow into its usual channels, it flows in a 
 new direction ; and we may for the moment omit a number 
 of difficult intermediate steps and say that the neurokyme 
 has flowed into the great association centres, and we 
 have therefore developed more elaborate patterns than 
 ever before; some of the higher mental processes such 
 as thot, reason and judgment are the result. 
 
 We cannot, however, leave the matter just here, but 
 must make an attempt to picture to ourselves how it 
 may be possible for this development to take place. We 
 have already explained (p. 84) association by con- 
 tiguity; that is, when two stimuli A and B are presented 
 at the same time, there is a tendency for the nerve energy 
 aroused by each stimulus to pass back and forth over the 
 path connecting the two centres A and B, so that when 
 on a later occasion stimulus A is presented, the centre 
 originally aroused by the stimulus B will be again 
 aroused, but this time indirectly from centre A. It must 
 be emphasized that the contiguity is a contiguity of the 
 two stimuli ; that is of the situations or experiences which 
 give rise to the stimuli ; so that in reality it is contiguity 
 of experiences that gives rise to the association. 
 
 One has only to review his experiences to see how large 
 a part in life this kind of association plays. One sees 
 two people together; if upon a second occasion he meets 
 one of those persons he is very apt to think also of the 
 other one. One visits a new place in winter when there 
 
 [92]
 
 ASSOCIATION BY SIMILARITY 
 
 is snow on the ground; he may visit the same place the 
 next summer, and will be apt to think of the snow that 
 was on the ground on the former occasion. One may 
 meet with an accident during which many things happen ; 
 upon a later occasion the reappearance of any one of the 
 objects or persons is apt to recall more or less completely 
 the other persons or objects or circumstances involved 
 in the original experience; and so on ad libitum. 
 
 Now let us turn to another kind of experience. While 
 walking with a friend you meet a stranger. After pass- 
 ing you say to your friend, "Of whom does that person 
 remind you?" the friend says, "Of no one." "Does not 
 his walk remind you of X!" "Why, yes, he does walk 
 like X." In your mind that person was instantly as- 
 sociated with X. In the mind of your friend there was 
 no such association. Why the difference? In the first 
 place, why did you associate him with X? Your question 
 gives the answer. It was his walk. You are well ac- 
 quainted with X, you have seen him many times, and 
 more or less unconsciously his walk has made an impres- 
 sion upon you, there has been an association of con- 
 tiguity between the walk and X simply because it is 
 X's walk. You cannot see him without seeing his walk. 
 Now you see that same walk in some one else, but it sug- 
 gests X, because there is a connection in your neuron 
 patterns. That walk is tied up, so to speak, with X. 
 The neurokyme flows into the nerve pattern that has been 
 so many times aroused by seeing X walk. 
 
 But your first question was not, "Of whom does that 
 walk make you think?" that is, with whom is that walk 
 associated, but, "Of whom does that person make you 
 think?" with whom is that person associated in your 
 mind; and your friend had no association with any per- 
 
 [93]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 son. It is clear that in your own case the one thing 
 that you noted about the stranger was his walk and, 
 as already stated, that walk was by past experience as- 
 sociated in your mind with X. On the present occasion 
 it is associated with the stranger. We therefore find 
 that by the medium of the walk the stranger is associated 
 with X. This is called association by similarity. The 
 stranger is similar to X. The similarity is not marked, 
 in fact it is very slight; it pertains only to his manner 
 of walking, a minute detail which had never entered into 
 consciousness with your friend. The friend did not see 
 any similarity between the two people because he did not 
 become especially conscious of the walk. When you brot 
 it into his consciousness by your question, then it was 
 evident that there was an association by contiguity in 
 his mind between X and X's walk and that he also had 
 noticed the stranger's walk and he was able to say, "Yes, 
 he does walk like him. ' ' 
 
 This is the essence of all association by similarity. 
 Two things are similar when they have some point of 
 identity. When we associate by similarity we are always 
 able to pick out the identical points; and if we do not 
 associate two things that are similar it is because the 
 point in which they are identical does not come into our 
 consciousness. Your friend was perhaps looking at the 
 eyes, or at the clothing, or at some other feature rather 
 than the walk, hence there was nothing to arouse the 
 association by similarity which, as has often been pointed 
 out, is in reality only a special form of association by 
 contiguity. But it is convenient to separate the two and 
 consequently we shall follow the usual custom. It is a 
 common experience to say, ' ' That person makes me think 
 of so and so"; "Your house reminds me of the one I 
 
 [94]
 
 SIMILARITY 
 
 lived in years ago"; "That tree makes me think of the 
 elms that grew on the home place. ' ' When we remember 
 that life is experience, and ask ourselves why the one 
 thing reminds us of the other becomes associated with 
 it we are apt to say they are similar, hence the expres- 
 sion association by similarity. But just what is similar- 
 ity and how can we picture what happens in terms of 
 neuron patterns? 
 
 Always, when one thing suggests another or when we 
 say two things are similar, it will be found that there 
 is some point in which they are exactly alike. The fact 
 that the one reminds us of the other, or that we notice 
 the similarity, proves that the particular feature is the 
 one that has aroused our attention, or in other words, 
 set into activity a particular brain pattern. That par- 
 ticular brain pattern is now associated (by contiguity) 
 with other brain patterns which together make up our 
 consciousness of the whole object. All the different 
 features of the object are present to us at the moment; 
 but the particular brain pattern involved in the similar- 
 ity has in time past been a part of another picture also 
 associated by contiguity. 
 
 Our association by similarity then is simply the con- 
 nection of a present elaborate neuron pattern with a past 
 elaborate neuron pattern by means of one part of each 
 pattern that is common to both. There is thus nothing 
 new involved. It is simply the matter of contiguity 
 which, as we have stated, is the basis of all association. 
 Nevertheless, it is convenient to separate this group from 
 the other because of the somewhat round-about way in 
 which the association occurs. It will be seen at once how 
 this concept enlarges our appreciation of the role that 
 association plays in the building up of mental life. 
 
 [95]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 We shall see later that logical memory is entirely a 
 matter of association, and we shall see still further why 
 memory becomes as elaborate as it does, and how it comes 
 about that we are able to recall so many different things 
 that would seem at first utterly impossible to remember. 
 For example, upon thinking of Harvard I think of Yale, 
 not because they are contiguous or have ever been to- 
 gether in my experience, but they are both universities 
 and Yale University by way of the concept university 
 at once suggests Harvard University. 
 
 It should be noted that here, as in many other cases, 
 there may be a direct association by contiguity by way 
 of words, what we may call a verbal contiguity. While 
 I have never seen Harvard University and Yale Univer- 
 sity at the same instant, I have seen or heard the two 
 words, Harvard and Yale, at the same time. So that it 
 is not always possible to say definitely whether the as- 
 sociation is of the pure contiguity type or of the similar- 
 ity type, unless one knows at the same time what we 
 might call the natural history of the experience. Again 
 it may be pointed out that even verbal associations may 
 be by similarity as well as by contiguity. This is the 
 basis of all punning, where we have an association by 
 similarity of sound. 
 
 It is thus seen again that in the last analysis the 
 capacity of making associations depends upon two 
 factors. First, experience ; and second, a neuron system 
 that is able to respond to the different stimili. Either 
 factor being absent, no association is possible. Either 
 factor being weak, the association is weak and incomplete, 
 unsatisfactory and inefficient. 
 
 Now, undeveloped mind, either of the child or of the 
 mental defective, in proportion to the incompleteness of 
 
 [96]
 
 ASSOCIATION IN CHILDREN 
 
 its development, is incapable of elaborate associations. 
 The child under about seven years of age may be in- 
 capable of elaborate associations because of lack of brain 
 development; but if, as is generally supposed, the brain 
 has attained nearly its complete development by the age 
 of seven, thereafter any inability to make elaborate as- 
 sociations will be due to lack of adequate experience. 
 It is probable, however, that the brain normally develops 
 much beyond the seven year period, because the phenom- 
 enon of mental defectiveness shows us that people who 
 are adult in years and have had all the necessary experi- 
 ences are nevertheless not able to make the elaborate as- 
 sociations that underlie thot, reasoning and judgment. 
 Their experience is adequate but there is somewhere an 
 incapacity in the brain system, consequently the desired 
 results do not follow. 
 
 From this it is possible to make two very fundamental 
 and important deductions. The one is, that the capacity 
 of the individual for higher associations and elaborate 
 thot is absolutely limited by the state of his mental 
 development, and that all attempts to develop those 
 higher processes are and must ever be futile. Con- 
 versely, when experience has shown us that it is impos- 
 sible to teach a child those things which children of his 
 age ought to learn, we may be satisfied that there are 
 in that brain defective neurons; and it is as impossible 
 to develop those defective neurons as to make a success- 
 ful athlete out of a cripple. These considerations give 
 the answer to the question, "Why is he so stupid, why 
 can he not learn!" 
 
 We have described in an earlier chapter what is now 
 accepted in brain localization, that is, the parts of the 
 brain that are known to be essential to certain functions. 
 
 [97]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The remaining areas of the brain, the great frontal 
 region, the region between the kinesthetic and the optical 
 centres, and the large area between the optical and the 
 auditory centres have been designated by Flechsig as 
 association areas. It is thot that in these areas are found 
 the neurons that are involved in the higher and more 
 elaborate associations. 
 
 Herrick (23, p. 290) says: "It must be borne in 
 mind that the most significant parts of the human cere- 
 bral cortex are the association centres. These alone are 
 greatly enlarged in the human brain as compared with 
 those of the higher apes. In the latter animals the pro- 
 jection centres are fully as large as those of man, the 
 much smaller brain weight being chiefly due to the rela- 
 tively poor development of the association centres. " 
 
 And on page 294: "It is a fact of common observa- 
 tion that those animals which possess the capacity for 
 intelligent adjustments of this sort have larger associa- 
 tion centres in the cerebral cortex than do other species 
 whose behaviour is controlled by more simple reflex and 
 instinctive factors, that is, by inherited as contrasted with 
 individually acquired organization. This is brot out 
 with especial distinctness by a comparison of the brains 
 of the higher apes with that of man, and of the lower 
 races of men as contrasted with the higher." 
 
 It seems logical to conclude that, in the case of mental 
 levels below the normal, these centres must be considered 
 lacking in development. We may picture more or less 
 of the cells in these regions as like the smaller ones 
 in Fig. 13, whereas they should be like the larger ones. 
 The exact mechanism, the way in which these centres 
 operate in the elaborate associations of the intelligent 
 man, is of course far beyond our knowledge at the 
 
 [98]
 
 VALUE OF ASSOCIATION BY SIMILARITY 
 
 present time. We do not even have the evidence that 
 these centres are undeveloped in the defective, but it is 
 believed by our best neurologists that when our technique 
 is able to grapple with this problem it will clearly show 
 a defect in these regions. 
 
 Again one has only to recall his experiences to realize 
 that this association by similarity plays a very large part 
 in one's life and it plays not only a large part but a vitally 
 important one. In fact it is the fundamental step in 
 the larger development of mind. If we were limited to 
 4 'association by contiguity" a large proportion of our 
 experiences would be meaningless to us and consequently 
 useless. We should never know how to act in a new 
 situation. One thing would never suggest another to 
 us unless the two actually had been presented to us 
 previously in contiguity. The law of gravitation would 
 never have been discovered because it required the per- 
 ception of the similarity of the apple falling to the earth 
 and the earth falling to the sun. Inventions would be 
 impossible because the inventor must see the similarity 
 between something that is already experienced by him 
 and the new thing that he wishes to accomplish. The 
 burnt child would not dread the fire unless it was pre- 
 cisely the same kind of fire as burned him the first time. 
 He would not see the similarity between the red hot blaze 
 and the red hot piece of iron. 
 
 There are all degrees of similarity. In our first ex- 
 ample of the stranger's walk we said that the similar- 
 ity between the stranger and X was not marked. It 
 was very slight. It is clear that the more marked the 
 similarity the more easily association is made; so that 
 when we say that without the association by similarity 
 we would be deprived of all these possibilities, we are 
 
 [99]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 speaking in general terms and with only a partial view, 
 merely for the sake of illustration and simplicity. 
 
 As a matter of fact it is unthinkable that we should 
 not reason by similarity to a certain extent if we as- 
 sociate by contiguity; because many times nothing about 
 the new object arouses our consciousness except the 
 phase that we have experienced in some other connection. 
 In other words, association by similarity passes imper- 
 ceptibly into association by contiguity. Two houses are 
 so nearly alike as to be practically identical as houses. 
 The one suggests the other strictly by similarity because 
 they are not the same house; and yet because they look 
 so much alike it is practically a matter of contiguity. 
 Even undeveloped mind may associate by similarity in 
 such instances. We shall understand later that it is in 
 a sense a measure of intelligence to perceive similarities 
 of the more difficult types. 
 
 All this is clearly understood again by reference to 
 our neuron patterns. That is to say, it depends upon 
 how elaborate has been the neuron pattern aroused by 
 the earlier experience or experiences of contiguity. My 
 neuron pattern of X had been elaborated to include his 
 walk. My friend's neuron pattern of X had not so 
 definitely included that feature ; hence the difference be- 
 tween us. With me the stimulus of the walk aroused the 
 entire X pattern; with my friend, the stimulus of the 
 walk aroused no such pattern, either because it never had 
 aroused the pattern or because the walk part had been 
 so light, so vague, so indefinite, that it did not arouse 
 enough energy to set going the whole pattern. Or it 
 might be that my friend's neurons are not sufficiently 
 developed so that he could have as elaborate a pattern 
 as I have. 
 
 [100]
 
 LIKENESSES VERSUS DIFFERENCES 
 
 This brings us again to our fundamental principle of 
 brain and neuron development. The person whose 
 neurons have not developed properly cannot possibly 
 have those more elaborate patterns. Consequently we 
 are safe in concluding that they never can associate by 
 similarity to the fine extent that other persons can whose 
 neurons are better developed. There seem to be people 
 in whom it is impossible to develop any artistic sense. 
 We may readily conclude that their neurons are not suf- 
 ficiently elaborate for them to have these more extensive 
 patterns which enable them to perceive those similari- 
 ties which go to make up artistic appreciation. Further- 
 more it seems clear from what we know of brain de- 
 velopment and the age at which these finer associations 
 are possible, that these elaborate neuron patterns re- 
 quire an extension into the association areas of which we 
 have spoken. 
 
 When we study the actual performance of various 
 stages of undeveloped mind, we find evidences of very 
 definite development of the association process. Speak- 
 ing in broad, general terms we can state that the feeble- 
 minded associate by contiguity but not by similarity. 
 Children do not easily see similarities. Differences are 
 perceived before similarities. Ask a child of seven in 
 what way coal is like a stone and he will tell you we 
 can burn coal and we can't burn a stone. It is the differ- 
 ence that he notices. Not until eight years will he give 
 the correct answer. And not until eleven will he see like- 
 nesses as often as differences (see p. 294). This agrees 
 well with what we have already pointed out that as- 
 sociation by similarity involves more elaborate neuron 
 patterns than association by contiguity. 
 
 This helps to establish the view already hinted at that 
 
 [101]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the neurons lacking complete development in the feeble- 
 minded are those that are located in the great associa- 
 tion centres; and further that since the upper limit of 
 feeble-mindedness is somewhere around twelve years, or 
 at the beginning of puberty, it would follow that the 
 great association areas get their complete development 
 after that period. Of the whole brain, these neurons are 
 the latest to develop and consequently most likely to be 
 affected by anything that causes arrest of growth. 
 
 When one realizes to what extent the ability to adapt 
 one's self to environment, to meet the various situations 
 that arise in the course of the day, is dependent upon 
 association by similarity, one easily understands why 
 the feeble-minded are incapable of managing their own 
 affairs with ordinary prudence ; and one understands the 
 otherwise puzzling experiences and peculiar limitations 
 of the feeble-minded. A common way of distinguishing 
 the feeble-minded from the normal is to say that they 
 cannot adapt themselves to changed conditions. The 
 higher grades of feeble-minded can be trained to do 
 quite elaborate tasks and seemingly ought to be capable 
 and efficient workers, but it is just this limitation that 
 makes them fall short of efficiency. There are relatively 
 few situations in life that do not require some variation 
 from previous experience. 
 
 In other words, the normal individual solves the new 
 problem because of its similarity to a previous problem. 
 The feeble-minded can solve a problem if he has been 
 trained to solve exactly the same kind of problem on a 
 previous occasion. Let us illustrate : We have devised a 
 test for this, a piece of apparatus which we call the Adap- 
 tation Board (20). It consists of a piece of half inch 
 wood 22 x 28 cm. Thru this are bored four holes. Three 
 
 [102]
 
 ADAPTATION BOARD 
 
 of the holes have a diameter of 63 mm.; the fourth has 
 a diameter of 65 mm. The whole is finished (painted, or 
 stained), so there is no obvious difference between the 
 two sides. A circular block is prepared, preferably 
 about an inch thick, and 64 mm, in diameter, so that it will 
 fit easily into the larger hole, but will not go into any of 
 the other three. 
 
 The method of procedure for the use of the test is as 
 follows : The child to be tested stands at the left side of 
 the examiner ; the board is in front of them on a table, in 
 such a position that the hole into which the block will 
 fit is in the upper left-hand corner. Directions are given 
 as follows: 
 
 Examiner : You see this block, and you see these holes 
 The block will fit into only one hole. Find which one. 
 
 By trial the child discovers the correct hole in the up- 
 per left-hand corner and places the block in. The block 
 is removed by the examiner, who says, "Do it again. 
 Once more place the block into the only hole it will fit." 
 This may be repeated until the child places the block, 
 without hesitaton and without trying in any other place, 
 in the correct hole. 
 
 Examiner: Now you take the block. Now watch me 
 carefully. 
 
 The examiner turns the board over from left to right, 
 slowly, taking about 2 or 3 seconds for the turn; then 
 turns to the child, ' ' Now put the block into the only hole 
 that it will fit. " Those of sufficient intelligence will place 
 the block at once into the upper right-hand hole. An- 
 other group, however, attempt to place the block still in 
 the upper left-hand hole, not having been able to adapt 
 themselves in the slighest degree to the changed condi- 
 tion. Failing to get the block into this hole, the child 
 
 [103]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 tries until he discovers that it goes into the upper right- 
 hand hole. 
 
 The examiner now places the board back in its original 
 position, with the large hole in the upper left-hand corner. 
 Proceeding as before, he shows the child that the block 
 goes in the upper left-hand hole. This being learned, he 
 again says, "Now watch me carefully," and turns the 
 board at the same rate as before, but instead of turning 
 the board from left to right, he turns it from back to 
 front, that is the side farthest away from him to the 
 position nearest, and says, "Now place the block in 
 the only hole into which it will fit. ' ' We now have three 
 groups: first, those who succeed promptly; second, those 
 who fail entirely, still trying to block in the upper left- 
 hand hole ; and third, an intermediate group, who try the 
 block in the upper right-hand hole. Apparently, these 
 last are children who are not able to adapt themselves 
 perfectly to the charged condition ; but who do remember 
 that, after the board was turned the first time, the block 
 went into the upper right-hand corner. Not having been 
 able to distinguish the difference in the directions in 
 which the board was turned, they again try the block in 
 that position. The accompanying chart Fig. 40 shows 
 how the ability to adapt to the changed position of the 
 board increases with the mental age of the child. It is 
 seen that almost 90% of defectives with a mentality of 
 eight or above, having learned which hole the block will 
 fit into, are able to fit that block into the hole when they 
 have seen the board turned over, but under eight the 
 percentage able to adapt themselves to the changed posi- 
 tion of the board grows steadily less. 
 
 Success with the adaptation board obviously requires 
 a very simple adaptation. Consider a somewhat more 
 
 [104]
 
 ADAPTATIOH BOARD 
 -OHJCil AHD DEFECTIVE CHILDREN 
 PIP.CEHTAGE 0? SUCCESSES OE SECOKD IUHH. 
 
 Ages 4 
 
 60 AT ACE 
 
 Ei:?AI AGE * 
 
 CHROHOIOGICAL 
 
 NUMBER Or CASE? 
 
 AGES 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 Defectives 
 
 ZZ 
 
 26 
 
 22 
 
 37 
 
 58 
 
 31 
 
 20 
 
 3 
 
 
 llormal Chronological 
 
 
 
 16 
 
 29 
 
 24 
 
 29 
 
 49 
 
 46 
 
 38 
 
 22 
 
 normal Mental Age 
 
 7 
 
 8 
 
 13 
 
 46 
 
 43 
 
 60 
 
 64 
 
 27 
 
 14 
 
 Normal at Age 
 
 
 
 5 
 
 16 
 
 18 
 
 19 
 
 31 
 
 30 
 
 14 
 
 6 
 
 14 
 
 TOTAL 
 
 219 
 
 6 272 
 Z72 
 137 
 
 Fig. 40. Curves showing development of ability as measured by the Adap- 
 tation Board
 
 ADAPTATION BOARD 
 
 difficult adaptation. A girl with a mentality of 11 had 
 been trained to make beds; she could by herself make 
 a bed almost perfectly. One day a normal adult offered 
 to assist her in making the bed. The girl was totally un- 
 able to do her part. She could make the bed alone but 
 was unable to adapt herself to the changed condition of 
 having some one else assist in smoothing out the bed 
 clothes. It was a new problem to her and she was un- 
 able to see the similarity and adapt herself to it. A per- 
 son of this mental development, trained carefully and 
 patiently to do the work in a certain kitchen, is utterly 
 confused and helpless if placed in a kitchen where the 
 arrangement of apparatus is different from the one to 
 which she is accustomed. The kitchens are closely simi- 
 lar but not the same, and she is incapable of perceiving 
 the similarity and adapting herself to the changed condi- 
 tions. 
 
 Classification is a process that involves perceiving the 
 similarities between things, and arranging them accord- 
 ing to some principle of similarity. The feeble-minded 
 are incapable of making any useful classifications except 
 those of the most extreme simplicity. If children under 
 twelve years of age are asked to name sixty objects it is 
 found that only the older ones are able to associate one 
 name with another by similarity or according to any 
 classification or common grouping. If a child under nine 
 names "pen" he will not think of "pencil" or "paper" 
 or "ink" or any of the objects that an adult would natur- 
 ally associate with the pen. If the child is of rather low 
 grade we find him absolutely limited to the things that he 
 can see. He looks around the room and names the ob- 
 jects in sight and then stops. The objects that he sees 
 do not even suggest to him similar objects that he has 
 
 [105]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 seen elsewhere or on other occasions. The neuron pat- 
 terns that are involved in making these associations by 
 similarity have never developed in his brain and conse- 
 quently he is incapable of thinking things out that way. 
 We need not dwell further on this at the present time, 
 for we shall see the same thing in a closely allied mani- 
 festation of mind, namely attention. 
 
 Attention. We have described what we call instinctive 
 attention as the consciousness that is aroused by any 
 stimulus that sets into activity an inherited nerve pat- 
 tern. But just as we have seen that there is an exten- 
 sion of the simple association, so there is an extension of 
 the attention. We find ourselves attending to many situ- 
 ations that certainly make no instinctive appeal. That 
 is to say, they cannot by any possibility be considered as 
 belonging to any inherited neuron pattern. For example, 
 in a drawing room where many people are talking in 
 groups I am talking with a friend. Suddenly I catch 
 the word "psychology" uttered by somebody in a group 
 near-by. Instantly my attention is held or attracted, so 
 much so that I entirely miss the remark that my friend is 
 making and have to call myself back and beg his pardon 
 and ask him to repeat. What happened is this: In the 
 midst of my consciousness of my friend's conversation, 
 the stimulus of the word psychology suddenly aroused a 
 neuron pattern which swamped all the other patterns that 
 were active in my brain. 
 
 Why did that word psychology change my thinking or 
 my consciousness? Certainly not because I was born 
 with a neuron pattern ready made to respond to the sound 
 of the word psychology. That is an acquired pattern. It 
 is true that if we could trace the etiology of that new ex- 
 perience we would find it ran back to something instinet- 
 
 [106]
 
 ACQUIRED ATTENTION 
 
 ive, but we need not here attempt to trace that course be 
 cause we have already done so under the head of associ- 
 ation. This bit of acquired attention comes thru the 
 extended association. As the result of experience the 
 word psychology has come to be associated with some- 
 thing that is instinctively significant for my life. It may 
 be that I earn my living by teaching psychology and so 
 it comes about that the fundamental instinct of self-pres- 
 ervation has become associated with this newly acquired 
 technical subject of psychology. The original inherited 
 neuron pattern has become elaborated to take in this mat- 
 ter of psychology, consequently when I now hear the word 
 psychology it arouses a very large and important neuron 
 pattern, the consciousness connected with which is so 
 strong that it swamps all other matters for the time 
 being. 
 
 Again we note that this capacity for attending to all 
 these things that do not directly appeal to instinctive 
 interest is a mark of higher development of mind and of 
 neuron patterns. And again we may see that one may be 
 lacking in this capacity either from never having had the 
 experiences which would develop these patterns, or from 
 not having neurons sufficiently developed to -accomplish 
 it. A person whose association centres had not developed 
 would not be capable of making these acquisitions or of 
 having what we call acquired attention. We must repeat 
 the caution that we are speaking broadly. The transition 
 is gradual from instinctive to acquired attention. Even 
 children make many acquisitions but of course are not 
 capable of the concentration we find in adults. 
 
 One of the complaints most often made of mental de- 
 fectives is that they cannot concentrate their attention. 
 Teachers and parents, not understanding the nature of 
 
 [107]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the human mind, often say, "If we can only make this 
 child concentrate his attention he will be all right," 
 which is a perfectly true statement but meaningless. He 
 cannot concentrate his attention because he has not the 
 necessary neuron patterns. What is meant is, that the 
 child has acquired few associations; he attends to those 
 things that appeal to him instinctively. But those things 
 that depend for the arousal of consciousness, which 
 means attention, upon the combinations of elaborate neu- 
 ron patterns based upon experience, he cannot do. He 
 may have had the individual experiences but he has not 
 woven them together in such a way that they make a 
 complex picture because he does not have the association 
 neurons. 
 
 This lack of acquired attention is characteristic of 
 the feeble-minded. It is this that makes their conversa- 
 tion and their actions so childish. The brain being ar- 
 rested in its growth before the neurons in the association 
 areas have developed, the feeble-minded are not able to 
 build up those elaborate neuron patterns which must un- 
 derlie the elaborate consciousness that means attention to 
 larger problems or interest in the greater affairs of life. 
 The feeble-minded are thus characteristically lacking in 
 all these higher mental processes. Their association by 
 similarity is very limited, consequently associative mem- 
 ory is weak, acquired attention has limited range, and 
 constructive imagination is largely lacking. Moreover, 
 the capacity for each and all of these processes varies as 
 the mental development. Of all classes of defectives,, 
 the moron has the most development of these processes, 
 the imbeciles less, and the idiots least, indeed practically 
 none. 
 
 The best explanation of all this, in view of what is 
 
 [108]
 
 SUMMARY 
 
 known of the nervous system, is found in the view that 
 these higher processes depend upon the development of 
 the association centres, and that these centres probably 
 develop mainly after the beginning of adolescence. Con- 
 sequently any arrest in that development previous to that 
 time leaves the child without the necessary neurons for 
 making these higher associations. And the earlier the 
 arrest, the fewer the neurons. We see exactly the same 
 condition of things in still another manifestation of mind ; 
 namely, memory. 
 
 Summary 
 
 1. The development of the great association areas 
 marks a great advance in mental functions. 
 
 2. Animals, young children and mental defectives are 
 differentiated from normal adults by the absence or weak 
 development of these areas and the consequent marked 
 deficiency in the higher mental processes. 
 
 3. Association by similarity is little manifested in im- 
 mature mind. Ability to see obscure points of similarity 
 is a mark of intelligence. 
 
 4. The ability to adapt one 's self to new situations and 
 new problems depends upon association by similarity. 
 
 5. Attention is greatly extended by the elaborate asso- 
 ciations resulting from the perceptions of similarities. 
 This is acquired attention. 
 
 6. Persons of incompletely developed minds cannot 
 ' ' concentrate their attention" because their association 
 fibres are not developed. 
 
 7. The feeble-minded are characteristically deficient in, 
 acquired attention and association by similarity. 
 
 [109]
 
 CHAPTER VI 
 HIGHER MENTAL PROCESSES Continued 
 
 Memory. We have described inherent memory, or 
 what some have called natural retentiveness, a condition 
 depending upon the nature of nerve matter and upon di- 
 rect experience. But we remember many things that 
 are not matters of direct experience. We might stop and 
 consider what would be our condition if we were limited 
 to the kind of memory already described. We could re- 
 member only the things that came to us thru the senses. 
 The neurokyme would flow into these simple neuron pat- 
 terns that had been aroused by the original experience 
 and we would have the feeling of familiarity and remem- 
 ber that experience. Thru these acquired associations 
 and the great extension of the nueron patterns into the 
 association centres, we get a condition which permits the 
 nerve energy to run into this elaborate pattern, arousing 
 the corresponding consciousness and arousing it with 
 that greater ease which means the feeling of familiarity, 
 the mark of memory. Memory thus becomes enormously 
 elaborated and we speak of this elaborate form as associ- 
 ative or acquired memory, because it is dependent upon 
 acquired association, association by similarity. This is 
 also called logical association. 
 
 Her rick (23 p. 295) says: "In our own mental life we 
 recognize the persistence of traces of previous experience 
 subjectively as memory, and memory lies at the basis of 
 all human culture. From this it follows that psycho- 
 logical memory is probably a function of the association 
 
 [110]
 
 ASSOCIATIVE MEMORY 
 
 centres; but it must not be assumed that specific mem- 
 ories reside in particular cortical areas, much less that 
 they are preserved as structural traces left in individual 
 cortical cells, as has sometimes been done. 
 
 "The simplest concrete memory that can appear in 
 consciousness is a very complex process, and probably 
 involves the activity of an extensive system of associa- 
 tion centres and tracts. That which persists in the cere- 
 bral cortex between the initial experience and the recol- 
 lection of it is, therefore, in all probability a change in 
 the interneuronic resistance such as to alter the physio- 
 logical equilibrium of the component neurons of some 
 particular associational system. What the nature of this 
 change may be is unknown, but it is conceivable that it 
 might take the form of a permanent modification of the 
 synapses between the neurons which were functionally 
 active during the initial experience such as to facilitate 
 the active participation of the same neurons in the same 
 physiological pattern during the reproduction." 
 
 The writer once met a patient in a hospital who, thru 
 an injury to the head, had been made practically aphasic ; 
 he was unable to remember the names of common objects 
 or of familiar persons and places. If one pointed to his 
 coat and asked him what it was he could not answer. If 
 he were told that it was a coat and then his vest was 
 pointed to, he could say vest, and could name the other 
 articles of clothing. But if one pointed to the pencil in 
 his hand, he could not name it. When told that it w r as a 
 pencil he could then name the paper, the ink, etc. Asked 
 where he lived, he could not tell, but after some little time, 
 during which he seemed to be struggling hard to recall 
 the address, he finally said "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
 12, 13, 1313 South Street," which was correct. When 
 
 [111]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 asked the name of his nurse he went thru the same 
 struggle and finally said, "Sunday, Monday, Tuesday, 
 Wednesday, Thursday, Friday, fish, Miss Fischer." 
 
 We have in these examples an illustration of memory 
 and recall by means of a logical association. In the case 
 of the coat or pencil, it was an association to the general 
 concept of clothing or writing material and while he 
 could not get it even this way at first, when once that gen- 
 eral centre was aroused by his being told that the first 
 object was a coat, it was then easy to arouse the neuron 
 pattern that stood for vest or other articles of clothing; 
 similarly with the writing material. When asked for the 
 place where he lived he could not make the direct associa- 
 tion between "where I live," and "1313 South Street," 
 but he knew that he wanted a number and counting being 
 a relatively automatic matter had not been destroyed by 
 the disease, so that he was able to say 1, 2, 3, and when 
 he got to 13, was able to say 1313 South Street. The last 
 illustration is perhaps the most interesting of all since 
 it shows a very roundabout way of associating his nurse's 
 name with fish, and fish with Friday of the week. Again, 
 the names of the week being automatic he was able to get 
 hold of them, and starting with the first to enumerate 
 them until he got to the one he wanted. We see the situ- 
 ation clearly in this special instance, where the disease 
 had destroyed the extraneous associations and left only 
 the fundamental ones which have been used most. 
 
 But the plan, once understood from this special case, is 
 easily discernible in many of our ordinary memories. 
 Who, for instance, has not had the experience of going to 
 another room for some desired object and arriving in the 
 room, not being able to remember why he came. His 
 method of recall will be exactly like that of the aphasic 
 
 [112]
 
 ASSOCIATIVE MEMORY 
 
 patient. He will recall what he was working on, what he 
 was thinking about, how far he had gotten in his problem 
 and what it was that he needed, and by this roundabout 
 process it will finally result that the nerve pattern that 
 underlies the name or appearance of the object that he 
 wants will come to consciousness and the problem is 
 solved. 
 
 One reads in the paper of Vladivostock and he asks 
 himself what and where is Vladivostock. The probabili- 
 ties are that his school geography association has long 
 since been obliterated, but he is reading about Eussia. 
 He concludes that it is somewhere in Russia ; the context 
 indicates that it is a city, a city in Russia ; he thinks of the 
 cities of Russia ; he thinks how he would go by rail from 
 Moscow to St. Petersburg, from St. Petersburg some- 
 where else; he thinks of the great Trans-Siberian Rail- 
 way, and gradually and, at first vaguely, it comes to his 
 mind that Vladivostock is the Pacific terminal of the 
 Trans-Siberian Railway, and his question is answered. 
 
 We have already seen how names of objects are ac- 
 quired by association; seeing the object and hearing it 
 named at the same time results in a connection between 
 two neuron patterns, so that whenever either part of the 
 combined neuron pattern is stimulated, it arouses the 
 other part and the name results ; or, given the name, the 
 visual image of the object results. Now the ability to 
 make these elaborate and complicated associations, 
 which result in such memories as we have illustrated 
 or even more complex ones, depends upon the com- 
 pleteness of the development of the neuron pattern. An 
 individual, whose neuron systems have fully developed in 
 the brain and have been actively used in the making of 
 thousands and millions of associations, has the mechan- 
 
 [113]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ism for recalling these things that have once been in his 
 consciousness. 
 
 On the other hand, the individual, whose brain has 
 ceased to develop before these more elaborate neuron 
 centres have developed, can never make these associa- 
 tions. It must be clearly understood that this does not 
 mean that a person of undeveloped mind could not re- 
 member that Vladivostock is the Pacific terminal of the 
 Trans-Siberian Railway ; he can make that direct associ- 
 ation as easily as he can make many others that sound 
 more simple. What we are saying is, that not having 
 that association directly available, he could never get at 
 the goal he seeks by the roundabout associations that we 
 illustrate. 
 
 The idiot associates the sight of food with the process 
 of eating, he associates the sight of his attendant with 
 certain activities and pleasures perhaps. The idiot can 
 learn to say 7 and 6 are 13, but if he ever forgets that di- 
 rect association he can in no way discover how many are 6 
 and 7. And of course it is perfectly clear that if he gets 
 it, it means nothing whatever to him. 
 
 The writer has heard idiots, or at least low grade 
 imbeciles, with a mentality of from 2 to 4, recite 
 Psalms as long as one was willing to listen. This prob- 
 ably came about from the fact that under the older psy- 
 chology it was thot that we trained the mind by training 
 the memory; and we trained the memory by using it. 
 The man in charge of this particular group of idiots, be- 
 ing a clergyman, naturaRy concluded that the best thing 
 for the child to exercise his memory upon was the Scrip- 
 tures, and consequently these children were laboriously 
 taught to make those associations. That it had any 
 meaning whatever for them is of course unthinkable. 
 
 [114]
 
 MEMORY IN THE FEEBLE-MINDED 
 
 The principle here involved also explains many of 
 the spectacular feats of memory of young children and of 
 the feeble-minded in the public schools. It is not uncom- 
 mon to find feeble-minded children in the high schools. 
 Now a strictly high school pupil, that is, one who can in- 
 telligently do first year high school work, is not feeble- 
 minded; but the feeble-minded child gets into the high 
 school by virtue of his good memory. The teacher in the 
 lower grades makes the associations for him, the child 
 memorizes them, is able to answer the questions and pass 
 the examinations, and so gets promoted to the high 
 school. But he can make none of the indirect associa- 
 tions, he has none of the wealth of associations which 
 underlie good judgment and reasoning processes. 
 
 There are thus all degrees of capacity for memory 
 and recall and the person that has the highest degree, 
 what we might for the sake of illustration call a perfect 
 memory, will be able to reason out the most abstruse 
 problems, provided his neuron patterns have ever been 
 stimulated, that is to say, provided he has in mind the 
 necessary facts. He may not be able to go directly to the 
 solution of his problem by a simple association, but he is 
 able to work it out by a roundabout method. To illus- 
 trate further, a certain student was asked how many 
 cubic inches in a gallon; he did not remember, a simple 
 association that an idiot might repeat, altho as already 
 said, unintelligently. This student, not being able to 
 recall the direct association, began to think if there was 
 any way by which he could arrive at the desired number. 
 He could not think of any association to bring this meas- 
 ure, but he remembered the metric system. He knew 
 accurately the length of the meter, consequently the deci- 
 meter, consequently the liter, and therefore could find the 
 
 [115]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 number of cubic inches in the liter; he also knew that the 
 liter was almost exactly one quart. Hence he had the 
 answer within a fraction of a cubic inch. It may not be 
 too much to say that no feeble-minded child of any grade 
 could have worked out such a series of associations and 
 have arrived at the result, even tho he had memorized 
 the metric system and knew all the other facts that are in- 
 volved in the above illustration. 
 
 Altho there is more involved and much that will 
 have to be discussed later, it may be of value to point out 
 here that this is one of the elements in our testing of 
 intelligence. It is only necessary to devise a series of 
 questions that cannot be answered by direct association 
 but must be worked out by a process of roundabout asso- 
 ciation and then by grading these questions from the 
 simple and direct response to the very indirect one, to de- 
 termine how far along this scale the individual has gone. 
 
 For example, suppose we have this problem: " There 
 are three men desiring to cross the river, one of them 
 weighs 300 pounds, the other two each weigh 150 pounds. 
 A boat is at hand but it will carry only 300 pounds safely, 
 how will they cross the river?" Undeveloped mind at a, 
 certain stage says, "I don't know the answer," and 
 that is all there is to it. Not knowing the answer he has 
 no conception that it is possible, by any roundabout 
 method of reasoning, to work out the solution. Another 
 person may have had some experience that enables him 
 to remember that you can take two people over and bring 
 one person back, and he tried to apply that but, not se- 
 lecting the right persons, he cannot get the solution, and 
 so gives it up. The person with a highly developed log- 
 ical memory and logical association sees at once the 
 solution of the problem. 
 
 [116]
 
 CREATIVE IMAGINATION 
 
 Imagination. In a previous chapter we discussed re- 
 productive imagination a reproduction of simple im- 
 ages. We now come to the consideration of another kind. 
 Popularly, imagination is a symbol for the wildest va- 
 garies of the human mind images of things that never 
 have been experienced, indeed never existed in the world. 
 Furthermore it is popularly supposed that the possibili- 
 ties of imagination are unlimited. This is the creative 
 imagination of psychology, and is expressive of the pos- 
 sibilities of unlimited combinations of neuron patterns. 
 It underlies invention, elaboration of thot, and all the 
 higher mental processes. It is a very fundamental condi- 
 tion for intelligence and that power of adaptation to a 
 new situation which characterizes the intelligent man. 
 
 But imagination is not unlimited in the way the popular 
 conception holds. One can indeed create imaginary pic- 
 tures to an unlimited extent, but the elements that enter 
 into any imaginary picture are all matters of experience. 
 In other words, one forms new associations by bringing 
 together the neuron patterns that have already been 
 formed in the brain, but it is impossible to put into this 
 picture anything that has not been experienced using 
 experience in the broad sense to include what we have 
 referred to as vicarious experience. I may never have 
 seen St. Peter's Cathedral in Rome, but I have heard it 
 described or I have seen pictures of it and thus have a 
 kind of image with its neuron pattern. That image, such 
 as it is, I can weave into any imaginary picture that I 
 may wish to formulate. 
 
 The statement that one cannot imagine what he has not 
 experienced is very easily verfied by trying to imagine 
 a colour that one has never seen, or by attempting to draw 
 or describe an imaginary animal. In such an experiment 
 
 [117]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 one quickly discovers that lie cannot put into his imagi- 
 nary picture anything, the details of which have not al- 
 ready been experienced. But how are these different ele- 
 ments brot together? How do they become associated? 
 The answer is, either by contiguity or by similarity, more 
 often of course the latter, since more of our adult asso- 
 ciations are of that kind. One difference between the 
 more intelligent and the less intelligent person is a differ- 
 ence in the ability to perceive the similarity, which in turn 
 is dependent upon the elaborateness of the original neu- 
 ron pattern. 
 
 Wit consists in the ability to see the similarity between 
 things not usually thot of as similar; thus bringing to- 
 gether, by this discovered point of similarity, things that 
 are incongruous and that hold the attention and interest 
 because of their absolute newness. Punning furnishes an 
 excellent illustration of this process. Here two incongru- 
 ous things are brot together in thot by the similarity in 
 sound of the words describing them. When the English 
 Bible was being revised it was thot desirable to improve 
 the passage " And they received every man a penny," be- 
 cause " penny" gives the wrong impression of the amount 
 of wages paid. Some one suggested that they use the 
 English form of the original word " Denarius," making it 
 read, * * They received every one a Denary, ' ' to which one 
 member of the board of revision replied that he should 
 object to having the Bible state that "they received every 
 man a Deanery. ' ' Oliver Wendell Holmes in The Auto- 
 crat of the Breakfast Table interrupts the young man 
 who begins to talk about capital punishment by saying, 
 4 'Oh! I thot you said, 'A capital pun is meant.' The 
 visual pun is illustrated in all of those instances where 
 the matter has to be seen in order to be appreciated. 
 
 [118]
 
 WIT 
 
 Holmes' famous pun, when he said that a man should 
 never laugh because man's laughter is the same thing as 
 man-slaughter, well illustrates this point. 
 
 When the association between two incongruous situa- 
 tions or concepts is made thru the similarty of ideas, in- 
 stead of the auditory or visual words, we have wit. To 
 quote Holmes again, he says that a pun is often called the 
 lowest form of wit, but that is because it is the foundation 
 of all wit. The witticism here comes about thru the ap- 
 preciated similarity between the foundation and the low- 
 est part of a structure. 
 
 All ingenuity involves constructive imagination, since 
 it consists in perceiving the similarity between two 
 things, one of which is a matter of experience and the 
 other something desired. Efficiency, or the ability to 
 solve new problems, to adapt one's self to new situations 
 by means of past experience, consists in perceiving the 
 similarities between two situations. In all these we have 
 the same principle which we described under association 
 by similarity. A new situation is presented to the senses 
 and a neuron pattern is thereby set into activity. Some 
 part of this pattern is the same as that which entered 
 into a past experience. It therefore connects with the 
 past experience and that experience comes into conscious- 
 ness and becomes the solution of the present situation. 
 The possession of the adequate neuron pattern is thus 
 the underlying condition for all these various forms of 
 intelligent action, and as before, the possession of this 
 adequate neuron pattern is itself contingent upon: first, 
 the possession of fully developed neurons; and second, 
 the necessary experience which has combined them into 
 a pattern. 
 
 One further question may arise in the mind of the 
 
 [119]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 reader at this point, namely, how does it happen that one 
 selects the right pattern? The new situation may bear a 
 resemblance to a great many past experiences, most of 
 which would be useless at the present time. The usual 
 answer to this question is that we somehow have the 
 power of selection, or choice. What this actually means 
 we shall leave for a future chapter. 
 
 Let us now picture the imagnation of the defective. 
 The reader is doubtless already able to give an adequate 
 answer to the question, "To what extent are defectives 
 imaginative?" since it is clear that reproductive imag- 
 ination involving only the revival of images in simple 
 neuron patterns is easily possible for all minds who have 
 the simple patterns; and we have already pointed out 
 that even defectives have these patterns. But since con- 
 structive or creative imagination involves elaborate as- 
 sociation processes, with the elaborate neuron patterns 
 which can have been developed only by extensive experi- 
 ence, we may expect here to find the defective decidedly 
 lacking ; and such proves to be the case. 
 
 One of the most obvious facts about defectives is their 
 inefficiency, their inability to adapt themselves to new 
 situations. We have given many examples and could 
 continue them indefinitely. The feeble-minded are not 
 inventive; they are not witty, except by accident; they 
 never make puns except of the simplest and most obvious 
 kinds and their jokes are of the crudest. A high grade 
 moron was asked about his "brother." He replied, "He 
 is my half brother, not my full brother, tho I have often 
 seen him full." The writer was, on one occasion at- 
 tempting to entertain the inmates of an institution for the 
 feeble-minded. He happened to mention that while moun- 
 tain climbing he had often eaten bean soup. These chil- 
 
 [120]
 
 UNITY OF MIND 
 
 dren had a well developed neuron pattern for bean soup, 
 since it is an occasional article of diet in the institution. 
 Seeing that the children appreciated this reference, the 
 writer repeated it for their amusement a great many 
 times in the course of the entertainment, and every time 
 it met with increasing response. Not only that, but even 
 to this day, after eight years, many of these defectives 
 who heard that story still enjoy the joke; and some of 
 them never fail to refer to it day after day whenever we 
 meet. This fairly indicates the level of mental defectives 
 so far as humour is concerned. 
 
 The foregoing considerations give us some very defi- 
 nite principles for the care and training of defectives. 
 But this will be considered in a later chapter. 
 
 The reader has doubtless been conscious of certain diffi- 
 culties in the foregoing discussion amounting almost to 
 confusion. Not only does imagination differ very 
 slightly from memory but both seem like association, the 
 latter also seems like attention. It is difficult to dis- 
 tinguish one from the others. And indeed there is no 
 possibility of differentiating because they are all one 
 and the same thing. There is no better evidence that 
 what we call memory and attention and association and 
 imagination are only different phases of the same mental 
 process, than just this confusion. Nevertheless it seems 
 convenient to have the varied terminology partly because 
 it is a matter of popular speech, and partly because it is 
 convenient to think of mind as now memory, now imagi- 
 nation, now association, now attention. 
 
 There is still another mental state that we spoke of as 
 belonging to the very nature of the nervous system; it 
 is emotion. We have now to consider this new phase of 
 mental life and the effect upon consciousness or mind of 
 
 [121]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 this extension of nerve activity into an entirely new nerv- 
 ous mechanism. 
 
 Summary 
 
 1. The extension of nerve action into the large associa- 
 tion areas enormously extends memory, giving us associ- 
 ative memory. 
 
 2. Similarly reproductive imagination becomes supple- 
 mented by creative imagination. 
 
 3. Wit is creative imagination a bringing together 
 thru association by similarity, of things not usually asso- 
 ciated. 
 
 4. The mental defective is deficient in creative imag- 
 ination as in associative memory. 
 
 5. The lack of creative imagination explains their gen- 
 eral lack of wit and humour. 
 
 6. The recognized difficulty of clearly differentiating 
 association, memory, attention and imagination as mental 
 processes point strongly to the unity of mind. 
 
 [122]
 
 CHAPTER VII 
 THE AFFECTIVE SIDE OF EXPERIENCE 
 
 WE have so far considered only the mental processes that 
 depend upon the activity of the cerebro-spinal nervous 
 system. Now we turn to a wholly different phase of 
 mind, and yet one that is not only prominent, but also 
 very important in all mental life, since it has to do with 
 the comfort or the discomfort, the happiness or the un- 
 happiness of the individual. 
 
 In McDougall's (34) definition of instinct (quoted p. 
 38) he says that the inherited psycho-physical disposi- 
 tion determines its possessor to "pay attention to objects 
 of a certain class, to experience an emotional excitement 
 of a particular quality upon perceiving such an object." 
 Our task now is to attempt to understand something of 
 the origin and nature of that "emotional excitement." 
 
 One phase of mental life familiar to every one is the 
 feelings, technically called the affective side, the affec- 
 tions. Up to the present time we have spoken of the 
 neuron patterns as tho they were simple machines; the 
 stimulus starts the energy which flows thru the pattern 
 and the circuit is complete when it has led to the contrac- 
 tion of a muscle. We described the course of energy 
 when something presses upon the toe and the toe is moved 
 or the foot withdrawn. So far the process seems to be a 
 rather complicated mechanical device for getting some- 
 thing done, but there is always another element. Not 
 only is there an action in response to a stimulus, but also 
 
 [123]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 a certain feeling about it; there is a stronger or weaker 
 feeling of pleasure, or of displeasure, in connection with 
 the process. In certain cases, notably in connection with 
 instinctive action, this feeling takes on a particular char- 
 acter and strength and becomes what we recognize as 
 emotion. Every one knows better than he can describe 
 what is meant by fear, anger, wonder and similar feel- 
 ings or emotions. 
 
 Just what this feeling is or whence it arises has never 
 been clearly understood ; but there are a few known facts 
 which will enable us to formulate an hypothesis that will 
 help us to clear thinking. 
 
 We would best look first at some of the stronger emo- 
 tions in order to see the characteristics most fully de- 
 veloped. If we consider any strong emotion, such as 
 fear or anger, we are at once struck by the fact that we 
 have a completely new set of phenomena. It is no longer 
 a simple case, such as we have described, of a ray of light 
 striking upon the retina and passing to the cortex, arous- 
 ing a sensation with a consequent movement, all of which 
 we have explained by simple neuron patterns; but we 
 have large areas of the body affected, whole systems of 
 tissues, of muscles, of blood vessels ; and a physical effect 
 seemingly out of all proportion to the stimulus. 
 
 Let us take fear as an example. We have the neuron 
 pattern as already described. This may be excited di- 
 rectly by an external stimulus or indirectly from some 
 other centre of the brain. But besides the simple mus- 
 cular activity in response to the stimulus we may have 
 a changed heart beat ; either an acceleration or a slowing, 
 a flushing of the face or other parts of the skin, or a pale- 
 ness ; perhaps a choking in the throat ; the mouth becomes 
 dry, due to a cessation of the secretion of the salivary 
 
 [124]
 
 EMOTION 
 
 glands. Little muscles under the skin begin to contract 
 all over the body and we have the condition known as 
 goose flesh. Larger muscles contract violently and we 
 have a rigour. Respiration is affected and we breathe 
 rapidly or else the breath comes slowly. These and other 
 effects are among the most noticeable results. But be- 
 sides these there are others. A state of fear may destroy 
 the appetite and interfere with digestion. Sweat glands 
 may become active and we have the cold perspiration. 
 Organs of excretion are uncontrolled and we may have 
 involuntary urination or defecation. The lachrymal 
 glands may be affected and tears flow. 
 
 Not all of these effects always appear in the same indi- 
 vidual nor are they the result of fear alone. There are 
 great individual differences. But all the facts indicate 
 that these emotions are somehow connected with some 
 very fundamental functions of the human organism. In 
 general it is agreed that unpleasant emotions interfere 
 with normal activities of the organism, while pleasant 
 emotions help and promote these functions. With many 
 people digestion is markedly affected; they are thrown 
 into a serious condition of indigestion by unpleasant emo- 
 tion such as comes, for example, from the reception of 
 bad news at meal time. Some people faint at the sight 
 of blood ; certain odours produce the same effect in others. 
 Our language is full of expressions that indicate this, 
 such as being paralyzed by fear, blind with rage; some 
 cry for joy as well as for grief. 
 
 Moreover, these physical conditions aroused by the 
 stimulus do not stop when the stimulus is removed. The 
 indigestion produced by bad news is not at once cured 
 when the bad news is suddenly shown to be false. The 
 evil consequences accompanying the " seeing a ghost" 
 
 [125]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 do not always cease as soon as it is discovered that the 
 ghost is one's friend clad in a sheet. 
 
 It is clear that we have, in the foregoing, facts that 
 are difficult of explanation by any adaptation of the mech- 
 anism so far described. That the explanation has been 
 difficult is attested by the fact that no subject has been so 
 vaguely and unsatisfactorily treated by writers as the 
 psychology of the emotions. Years ago Prof. James and 
 about the same time Prof. Lange of Denmark gave us an 
 hypothesis that has caused much discussion. These men 
 made the chief element in emotion the flood of sensa- 
 tions coming from the great body of muscles that were, 
 set into activity by the stimuli that would usually be con- 
 sidered as "causing the emotion." While having its de- 
 fenders, this theory has never come into universal ac- 
 ceptance. 
 
 In 1899 Angelo Mosso, (41) the Italian physiologist, 
 announced the results of some very original experiments 
 on the effect of emotional states on the contractions of 
 the bladder. In that connection he stated : "The seat of 
 the emotions lies in the sympathetic nervous system." 
 
 Quite recently Cannon (8) and also Crile (11) have 
 demonstrated physiological connections between emotion 
 and glandular influence by way of the sympathetic sys- 
 tem. 
 
 The extreme delicacy of the mechanism of the sympa- 
 thetic system was shown by Mosso 's experiments. He 
 says: "It was sufficient to speak kindly to the animals 
 or to caress them, to make the curve express the psychic 
 influence upon their affective movements. ' ' 
 
 To one of his women subjects he said: "Now I am 
 going to pinch you," but without doing so. "Imme- 
 diately the bladder contracted without the slightest 
 
 [126]
 
 /nrrocAsmic riavs 
 
 Ganglion 
 
 Fig. 3. A, the sympathetic system showing its location in the body. 
 
 Fig. 3. B, the same removed. The black knots in the chain are the sym- 
 pathetic ganglia : the paired lines extending to the left from each gan- 
 glion are the rami communicantes or connecting branches that join the 
 sympathetic system to the cerebro-spinal. This chain is just outside 
 the spinal column. 
 
 From Van Geliuchten after Schivabbe
 
 EMOTION AND THE SYMPATHETIC SYSTEM 
 
 change in the thoracic and abdominal respiration. ' ' This 
 simple arithmetical problem: "How many eggs are 7 
 dozen?" produced the same result. He sums it up by 
 saying: "We understand now that the constant and fun- 
 damental movements taking place in emotions are the 
 movements of the internal organ of vegetative life. This 
 end could be obtained only thru the sympathetic system. ' ' 
 
 We must therefore extend our view of neuron action 
 beyond the cerebro-spinal system, to which we have so 
 far confined ourselves, into the great and intricate sym- 
 pathetic system. 
 
 Science has not yet explained many of the details of 
 the way the sympathetic system functions, but we may as- 
 sume certain hypotheses which will give us a working 
 plan. 
 
 We have shown, Fig. 3, that the sympathetic is con- 
 nected with the cerebro-spinal system at every vertebra 
 along the spinal stem by connecting branches, the rami 
 communicant es. The white ramus conveys outgoing 
 stimuli, the grey ramus, the incoming. The neurons from 
 each of the two systems pass thru these rami into the 
 other system, thus making the connection complete. It 
 was pointed out that the neurons of the spinal cord, thru 
 their branches, were in connection with a great many dif- 
 ferent neurons. Among these different neurons are those 
 of the sympathetic system; so that it is easy to uder- 
 stand that a stimulus coming in over a sensory neuron, 
 passing to various parts of the cord or up to the cortex, 
 also sends some of the energy by one of its branches 
 into the sympathetic system. 
 
 Moreover, comparative anatomy of the nervous sys- 
 tem shows that the sympathetic is the oldest of all nerv- 
 ous structures and therefore it is safe to assume that the 
 
 [127]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 neuron patterns here are practically all inherited. 
 Therefore the neurokyme flows naturally and easily into 
 the sympathetic system and in accordance with the the- 
 ory of development we may conclude that it produces 
 such action as is beneficial for the individual or the race. 
 Fig. 3 gives some idea of the elaborateness of the sympa- 
 thetic system, the enormous extent to which it ramifies 
 to the internal organs and glands. 
 
 We must now go a little more into detail. The follow- 
 ing is condensed from Cannon (8) : 
 
 "The skeletal muscles receive their nerve supply di- 
 rectly from the central nervous system. The neurons 
 distributed to these muscles are parts of neurons whose 
 cell bodies lie within the brain or spinal cord. The 
 glands and smooth muscles of the viscera, on the con- 
 trary, are, so far as is now known, never innervated di- 
 rectly from the central nervous system. The neurons 
 reaching out from the brain or spinal cord never come 
 into immediate relation with the gland or smooth-muscle 
 cells; there are always interposed between the cerebro- 
 spinal neurons and the viscera extra neurons whose 
 bodies and processes lie wholly outside the central nerv- 
 ous system. They are represented in dotted lines in Fig. 
 41. I have suggested that possibly these outlying neu- 
 rons acted as 'transformers,' modifying the impulses 
 received from the central source (impulses suited to call 
 forth the quick responses of skeletal muscle), and adapt- 
 ing these impulses to the peculiar, more slowly-acting tis- 
 sues, the secreting cells and visceral muscle, to which 
 they are distributed. 
 
 ' ' The outlying neurons typically have their cell bodies 
 
 [128]
 
 Fig. 
 
 Tear gland 
 Dilator of pupil 
 
 Artery of salivary gland 
 
 Hair 
 
 Surface artery 
 
 Sweat gland 
 
 Heart 
 
 Hair 
 
 Surface artery 
 Sweat gland 
 
 Liver 
 
 Stomach 
 
 Visceral artery 
 Spleen 
 
 Intestine 
 
 Adrenal gland 
 
 Hair 
 
 Surface artery 
 
 Sweat gland 
 
 Colon 
 
 Bladder 
 
 Rectum 
 
 Artery of external 
 genitals 
 
 41. Diagram of the more important distributions of the 
 autonomic nervous system The brain and spinal cord are 
 represented at the left. Note the little plus and minus 
 signs, -f~ indicates stimulating effect; indicates inhibi- 
 tory effect.
 
 CANNON QUOTED 
 
 grouped in ganglia (G's, Fig. 41) which, in the trunk 
 region, lie along either side of the spinal cord and in the 
 head region and in the pelvic part of the abdominal 
 cavity are disposed near the organs which the neurons 
 supply. In some instances these neurons lie wholly 
 within the structure which they innervate (see e.g., the 
 heart and the stomach, Fig. 41). In other instances the 
 fibres passing out from the ganglia the so-called 'post- 
 ganglionic fibres' may traverse long distances before 
 reaching their destination. The innervation of blood ves- 
 sels in the foot by neurons whose cell bodies are in the 
 lower trunk region is an example of this extensive distri- 
 bution of the fibres. 
 
 "As suggested above, the outlying neurons are con- 
 nected with the brain and spinal cord by neurons whose 
 cell bodies lie within the central nervous organs. These 
 connecting neurons, represented in continuous lines in 
 Fig. 41, do not pass out in a continuous series all along the 
 cerebrospinal axis. Where the nerves pass out from the 
 spinal cord to the fore and hind limbs, fibres are not given 
 off to the ganglia. Thus these connecting or 'pregangli- 
 onic' fibres are separated into three divisions. In front 
 of the nerve roots for the fore limbs is the head or cranial 
 division, between the nerve roots for the fore limbs and 
 those for the hind limbs is the trunk division (or tho- 
 radico-lumbar division, or, in the older terminology, the 
 'sympathetic system') ; and after the nerve roots for the 
 hind limbs the sacral division. 
 
 ' * This system of outlying neurons, with postganglionic 
 fibres innervating the viscera, and with preganglionic 
 fibres reaching out to them from the cerebrospinal sys- 
 tem, has been called by Langley, to whom we are in- 
 
 [129]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 debted for most of our knowledge of its organization, the 
 autonomic nervous system. 1 This term indicates that 
 the structures which the system supplies are not sub- 
 ject to voluntary control, but operate to a large de- 
 gree independently. As we have seen, a highly potent 
 mode of influencing these structures is thru condi- 
 tions of pain and emotional excitement. The parts of the 
 autonomic system the cranial, the sympathetic, and the 
 sacral have a number of peculiarities which are of 
 prime importance in accounting for the bodily manifesta- 
 tions of such affective states. 
 
 "The fibres of the sympathetic division differ from 
 those of the other two divisions in being distributed thru 
 the body very widely. They go to the eyes, causing di- 
 lation of the pupils. They go to the heart and, when 
 stimulated, they cause it to beat rapidly. They carry 
 impulses to arteries and arterioles of the skin, the abdom- 
 inal viscera, and other parts, keeping the smooth muscles 
 of the vessel walls in a state of slight contraction or tone, 
 and thus serving to maintain an arterial pressure suf- 
 ficiently high to meet sudden demands in any special re- 
 gion ; or, in times of special discharge of impulses, to in- 
 crease the tone and thus also the arterial pressure. They 
 are distributed extensively to the smooth muscle attached 
 to the hairs ; and when they cause this muscle to contract, 
 the hairs are erected. They go to sweat glands, causing 
 the outpouring of sweat. These fibres pass also to the 
 entire length of the gastro-iritestinal canal. And the in- 
 hibiton of digestive activity which, as we have learned, 
 occurs in pain and emotional states, is due to impulses 
 
 i What we, following the popular terminology, have called the sympa- 
 thetic system, Cannon here calls the autonomic nervous system; he more- 
 over divides it into three parts, the cervical, the sympathetic and the 
 sacral autonomic nervous systems. 
 
 [130]
 
 CANNON QUOTED 
 
 which are conducted outward by the splanchnic nerves 
 the preganglionic fibres that reach to the great ganglia 
 in the upper abdomen (see Fig. 41) and thence are 
 spread by postganglionic fibres all along the gut. They 
 innervate likewise the genito-urinary tracts, causing a 
 contraction of the smooth muscle of the internal genital 
 organs, and usually relaxation of the bladder. Finally 
 they affect the liver, releasing the storage of material 
 there in a manner which may be of great service to the 
 body in time of need. The extensiveness of the distri- 
 bution of the fibres of the sympathetic division is one of 
 its most prominent characteristics. 
 
 4 'The cranial and sacral autonomic divisions differ 
 from the sympathetic in having only restricted distribu- 
 tion (see Fig. 41). The third cranial nerves deliver im- 
 pulses from the brain to ganglia in which lie the cell 
 bodies of neurons innervating smooth muscle only in the 
 front of the eyes. The vagus nerves are distributed to 
 the lungs, heart, stomach, and small intestine. As shown 
 diagrammatically in Fig. 41, the outlying neurons in the 
 last three of these organs lie within the organs them- 
 selves. 
 
 "In this sacral division the preganglionic fibres pass 
 out from the spinal cord to ganglia lying in close prox- 
 imity to the distal colon, the bladder, and the external 
 genitals. And the postganglionic fibres deliver the nerve 
 impulses only to the near-by organs. Besides these in- 
 nervations the cranial and sacral divisions supply indi- 
 vidual arteries with 'dilator nerves' nerves causing re- 
 laxation of the particular vessels. 
 
 "The cranial autonomic, represented by the vagus 
 nerves, is the part of the visceral nervous system con- 
 cerned in the psychic secretion of the gastric juice. Pav- 
 
 [131]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 lov showed that when these nerves are severed psychic 
 secretion is abolished. The cranial nerves to the salivary 
 glands are similarly the agents for psychic secretion in 
 these organs, and are known to cause also dilation of the 
 arteries supplying the glands, so that during activity 
 the glands receive a more abundant flow of blood. 
 
 ' * Great emotion, such as is accompanied by nervous dis- 
 charges via the sympathetic division, may also be accom- 
 panied by discharges via the sacral fibres. The involun- 
 tary voiding of the bladder and lower gut at times of vio- 
 lent mental stress is well-known. Veterans of wars tes- 
 tify that just before the beginning of a battle many of 
 the men have had to retire temporarily from the firing 
 line. And the power of sights and smells and libidinous 
 thoughts to disturb the regions controlled by the nervi 
 erigentes proves that this part of the autonomic system 
 also has its peculiar affective states. 
 
 "Lying anterior to each kidney is a small body the 
 adrenal gland. It is composed of an external portion or 
 cortex, and a central portion or medulla. From the 
 medulla can be extracted a substance, called variously 
 suprarenin, adrenin, epinephrin or " adrenalin," which, 
 in extraordinarily minute amounts, affects the structures 
 innervated by the sympathetic division of the autonomic 
 system precisely as if they were receiving nervous im- 
 pulses. For example, when adrenin is injected into the 
 blood it will cause pupils to dilate, hairs to stand erect, 
 blood vessels to be constricted, the activities of the ali- 
 mentary canal to be inhibited, and sugar to be liberated 
 from the liver. These effects are not produced by action 
 of the substance on the central nervous system, but by 
 direct action on the organ itself. And the effects occur 
 
 [132]
 
 CANNON QUOTED 
 
 even after the structures have been removed from the 
 body and kept alive artificially. 
 
 1 'The adrenals are glands of internal secretion, i.e., 
 like the thyroid, parathyroid, and pituitary glands, for 
 example ; they have no connection with the surface of the 
 body, and they give out into the blood the material which 
 they elaborate. 
 
 ' ' The foregoing brief sketch of the organization of the 
 autonomic system brings out a number of points that 
 should be of importance as bearing on the nature of the 
 emotions which manifest themselves in the operations of 
 this system. Thus it is highly probable that the sympa- 
 thetic division, because arranged for diffuse discharge, 
 is likely to be brought into activity as a whole, whereas 
 the sacral and cranial divisions, arranged for particular 
 action on separate organs, may operate in parts. Also, 
 because antagonisms exist between the middle and 
 either end division of the autonomic, effective states may 
 be classified according to their expression in the middle 
 or an end division and these states would be, like the 
 nerves, antagonistic in character. And finally, since the 
 adrenal glands are innervated by autonomic fibres of the 
 mid-division, and since adrenal secretion stimulates the 
 same activities that are stimulated nervously by this 
 division, it is possible that disturbances in the realm of 
 the sympathetic, although initiated by nervous discharge, 
 are automatically augmented and prolonged thru chem- 
 ical effects of the adrenal secretion. 
 
 "That the adrenal glands are subject to splanchnic in- 
 fluence has been demonstrated anatomically and by the 
 physiological effects of their secretion after artificial 
 stimulation of the splanchnic nerves. Impulses are nor- 
 
 [133]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 mally sent along these nerves, in the natural conditions 
 of life, when animals become greatly excited, as in fear 
 and rage and pain. There is every probability, there- 
 fore, that these glands are stimulated to extra secretion 
 at such times. Both by an exceedingly delicate biological 
 test (intestinal muscle) and by an examination of the 
 glands themselves, clear evidence has been secured that 
 in pain and deep emotion the glands do, in fact, pour 
 out an excess of adrenin into the circulating blood. 
 
 "Here, then, is a remarkable group of phenomena a 
 pair of glands stimulated to activity in times of strong 
 excitement and by such nerve impulses as themselves 
 produce, produce at such times profound changes in the 
 viscera; and a secretion given forth into the blood stream 
 by these glands, which is capable of inducing by itself, 
 or of augmenting, the nervous influences which induce 
 the very changes in the viscera which accompany suffer- 
 ing and the major emotions." 
 
 Cannon has shown that a stimulation of the adrenal 
 gland produces all the phenomena of anger and rage, 
 and conversely that production of anger or rage by any 
 other method effects the secretions of the adrenal glands ; 
 and we know that the phenomena above enumerated are 
 controlled by the sympathetic system. 
 
 Cannon worked with adrenin, the secretion of the 
 adrenal gland. This is one of the glands of internal 
 secretion. There are a number of other such glands 
 the thyroid, thymus, pineal, pituitary, parathyroid, ca- 
 rotid and coccygeal, areas of Langerhaus of the pancreas, 
 interstitial cells of the testicle and corpora lutea of the 
 ovary. 
 
 There is no reason to doubt that some, if not all, of 
 
 [134]
 
 THE FEELINGS 
 
 these other glands may have similar relations to emo- 
 tion. 
 
 It is clear from the foregoing quotation that we have 
 in the sympathetic system a -nervous mechanism little 
 if any inferior to the cerebrospinal, and fully capable of 
 producing all the phenomena of the affective life. 
 
 We are now ready to complete our working plan of 
 emotional activity. Every stimulus to a sensory neuron 
 arouses nerve energy which runs into the nerve pattern 
 as already described. But a part of this energy passes 
 over the rami communicantes into the sympathetic sys- 
 tem. The sympathetic system, thus set into activity, 
 influences more or less strongly the glands of internal 
 secretion and other organs. The activities thus aroused 
 result in various modifications of function which are for 
 the benefit of the individual. If the original stimulus 
 is of a character to be injurious, one type of activity 
 (special set of glands e.g.) results; if beneficial, another 
 type of response occurs; but always with a tendency 
 toward the final welfare of the organism. These activi- 
 ties are reported back to the central nervous system ac- 
 companied by more or less of consciousness. 
 
 We may readily assume that there is always a mini- 
 mum of consciousness which ordinarily does not come 
 strongly to the surface, that is, arouse attention, because 
 it is usually followed by some more direct effect on the 
 cortical neuron pattern aroused by the original stimulus. 
 A mild feeling of satisfaction or comfort is the common 
 result of ordinary activity; nevertheless, it may at any 
 time come into the focus of consciousness, in which case 
 we speak of the feeling accompanying the situation. For 
 example, the sight of food to a hungry man may, so far as 
 consciousness is concerned, lead only to his active move- 
 
 [135]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ment to secure such food; but it may also give him a 
 very distinct feeling of pleasure. The stimulation of 
 the auditory nerve by an unusual sound may lead exclu- 
 sively, so far as consciousness is concerned, to movements 
 calculated to discover the origin of the sound. But it 
 may also lead to a very distinct feeling of fear or, if it 
 is recognized as a sound associated with some pleasing 
 object, the feeling may be one of pleasure. 
 
 All such experiences of satisfaction, mild pleasure, and 
 on the other hand moderate anxiety, worry and fear, 
 constitute what are usually called the feelings and must 
 be thought of, as already stated, as resulting from a 
 moderate inflow of energy from the sympathetic system 
 which in turn resulted from a moderate overflow into that 
 system from the neuron pattern aroused by the original 
 stimulus. One of the feelings that has received a definite 
 name, and consequently will serve us as a further illustra- 
 tion of this mild degree of the affective consciousness, is 
 interest. 
 
 What we call interest is only the feeling accompany- 
 ing an ordinary state of attention. It is a contribution 
 of the sympathetic system to the work of the cerebro- 
 spinal system. As we have said, every state of con- 
 sciousness has this feeling side. The old question for- 
 merly so learnedly discussed at Teachers' Institutes as to 
 which is first, attention or interest; whether the teacher 
 should strive to interest her pupils and thereby make 
 them attentive or whether she 'should vigorously require 
 attention, and they would thus become interested, has 
 long since been shown to be one of those fanciful prob- 
 lems born of ignorance. 
 
 Attention and interest are but two phases of the same 
 mental experience. One does not exist without the 
 
 [136]
 
 INTEREST AND ATTENTION 
 
 other. Sometimes one is a little more in evidence than 
 the other and then we are apt to describe the state of 
 consciousness in terms of that phase which is more 
 prominent. If the feeling side is predominant we de- 
 scribe a particular experience as interesting, if on the 
 other hand the attention is the stronger phase, as evi- 
 denced by the bodily expressions of attention, the feeling 
 of effort as we try to keep the matter in consciousness, 
 then we describe the experience as one to which we give 
 our best attention. 
 
 We also apply these terms when we observe the con- 
 duct of another. Interest is a pleasant feeling and is 
 shown in certain facial expressions which always ac- 
 company pleasant emotions. Therefore, if we see these 
 expressions of countenance, we are apt to say the per- 
 son is interested. On the other hand the attentive state 
 of consciousness manifests itself in certain muscular 
 strains and bodily attitudes, which, being just as easily 
 recognized as the other, enable us to say that the per- 
 son paid strict attention. From a practical standpoint 
 it makes little difference which phase we observe since we 
 know whichever one is observed the other is present. 
 
 When the original stimulus is a very violent one, or, 
 because of inherited tendencies or acquired experiences, 
 arouses a very elaborate neuron pattern in the central 
 system, a vastly greater flow of energy into the sym- 
 pathetic takes place, resulting in rather serious disturb- 
 ance of the organs and glands controlled by that system. 
 For instance, when the adrenal gland is affected and its 
 secretion is poured into the blood, we get decided and un- 
 usual activities of the heart, the liver and other organs, 
 which violent activity is again transmitted over the other 
 ramus into the central system with an accompanying in- 
 
 [137]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 tense consciousness which we know as the emotion, either 
 of fear which may amount to terror, or of anger which 
 may rise to the height of rage. It can be shown, as 
 Cannon has done, that all this is for the benefit of the 
 individual. The fear leads him to run away, the rage 
 impels him to fight; either movement calls for an un- 
 usual amount of energy on his part. The effect of the 
 adrenal secretion has been to quickly deposit energy, 
 in the form of sugar, in the blood for the use of the 
 various muscles and organs involved; for the control of 
 the products of fatigue; and for the rapid coagulation 
 of the blood which may easily be caused to flow as the 
 result of the combat that the anger may lead to, especially 
 in primitive man and animals. 
 
 If this hypothetical picture is even roughly correct 
 it at once becomes clear that the James-Lange theory 
 of emotions is true so far as it goes, but that it is only 
 part of the story because it confines itself to the central 
 nervous system and does not take into account the 
 enormous part played by the sympathetic. It required 
 a Mosso to show us that such organs as the bladder do 
 actually respond to situations that give rise to emotions ; 
 and then a Cannon to complete the picture by demonstrat- 
 ing to us that the secretions of the glands, which are in- 
 nervated by the sympathetic, react quickly upon the 
 various organs, thus producing the incoming sensation 
 which James and Lange were the first to recognize. 
 
 It is convenient to consider the affective side of con- 
 sciousness in two parts as we did the action side. First, 
 that which goes with the activity of inherited neurons 
 (including such acquired patterns as are formed by 
 simple association neurons within the localized centre, or 
 between the cortical centres) ; and, second, those activi- 
 
 [138]
 
 SUMMARY 
 
 ties resulting from the participation of the great associa- 
 tion areas. Just as this participation gave us more ex- 
 tended attention, memory and imagination, so it gives us 
 more elaborate emotional states. These will be consid- 
 ered in the next chapter. 
 
 Summary. 
 
 1. The mental processes discussed in the previous 
 chapters belong to the sensation side of consciousness 
 and are conditioned by the structure and functioning of 
 the cerebrospinal nervous system. 
 
 2. There is another side of consciousness known as the 
 affective side the feelings. 
 
 3. Strong feelings are called emotions and every 
 primary instinct is accompanied by its characteristic 
 emotion. 
 
 4. "The seat of the emotions lies in the sympathetic 
 nervous system." 
 
 5. The glands of internal secretion are apparently im- 
 portant factors in the production of emotion. 
 
 6. When the affective phase of consciousness is 
 pleasant, but falls short of an emotion in intensity, it is 
 called interest. Since we speak of the consciousness 
 aroused by any particular stimulus, or group of as- 
 sociated stimuli, as a state of attention, it is frequently 
 said that interest and attention are two phases of the 
 same consciousness. 
 
 7. The extension of nerve action into the great associa- 
 tion areas of the brain results in "higher emotions" just 
 as we had second or higher types of memory, associa- 
 tion, imagination, etc. 
 
 [139]
 
 CHAPTEE VHI 
 COMPLEX EMOTIONS 
 
 IT is a necessary consequence of the extension of the 
 association process, by the involvement of the large as- 
 sociation areas of the brain, that experience should bring 
 about extensive association between the instincts. 
 Whereas each instinct taken by itself is accompanied by 
 its specific affective quality, that is its own emotion, when 
 two or more instincts are aroused at the same time there 
 will naturally result a much more complicated emotional 
 state. 
 
 Since Des Cartes, emotions have been divided into 
 primary emotions, those accompanying the primary in- 
 stincts, and complex emotions. The accompanying 
 diagram, Fig. 42, prepared by the writer from Mc- 
 Dougall's (34) description of instinct and emotion, shows 
 in graphic form his scheme. Within the rectangles we 
 have in the upper line the primary instinct and in the 
 lower line the corresponding emotion. Below this, at 
 the point of convergence of the various oblique lines we 
 have the complex emotions. For example, when the in- 
 stinct of flight is associated with the instinct of repul- 
 sion we have the emotion of fear combined with that of 
 disgust, which results in the emotion of loathing. When 
 to this is added the instinct of curiosity with its feeling 
 of wonder we get fascination. Eepulsion with pugnacity 
 gives scorn. Curiosity with self-abasement gives ad- 
 miration. Add to this the instinct of flight and we get 
 awe. The parental instinct combined with self-abase- 
 
 [140]
 
 COMPLEX EMOTIONS 
 
 ment gives gratitude and when this is added to that which 
 gives awe we have reverence; similarly with the other 
 combinations indicated. 
 
 It is interesting to note that it seems possible to analyse 
 these higher emotions into their elements by process of 
 introspection. For instance, it seems that one can per- 
 ceive that reverence is a combination of awe and grati- 
 tude, and gratitude a combination of the feeling of sub- 
 jection and the tender emotion, and so on. It would, 
 however, seem very doubtful whether psychologically we 
 ought to say that reverence is a combination of awe and 
 gratitude, and not rather that it is a complex emotion re- 
 sulting from an intricate association between the parental 
 instinct, self-abasement, flight and curiosity. 
 
 There is little agreement among psychologists as to 
 what should be considered the fundamental instincts or 
 what should be included in the list of emotions. But 
 we may accept provisionally this scheme of McDougall's 
 and leave it for future investigation to revise by exten- 
 sion or reduction. 
 
 That these complex emotions are the result of exten- 
 sive associations between the primary centres is sug- 
 gested if not proved by certain facts ; such as the notice- 
 able decrease of these emotions as we get into lower 
 forms where the association centres are developed little 
 or not at all. Those primary instincts which are most 
 naturally brot together by the environment have de- 
 veloped complex emotions farther down the series than 
 have those instincts less often brot together. For 
 example, flight and curiosity are very often aroused at 
 the same time even in animals, with the result that fascin- 
 ation is quite common among them and in children. 
 From this it may be concluded that there is an inherited 
 
 [141]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 neuron pattern bringing together the neurons involved 
 in these instincts. 
 
 On the other hand, no one would ascribe reverence to 
 any animal or even to young children. The reason is 
 clear. The four instincts involved do not often come to- 
 gether in animal or child experience. It may be a ques- 
 tion whether loathing, scorn or admiration can be at- 
 tributed to animals. Of the three it may be that ad- 
 miration develops earlier in the child than the other 
 two. Contempt would seem to have a very late develop- 
 ment in childhood and is probably absent from animals. 
 Likewise reproach, altho certain animals, for example, 
 the dog, do have attitudes and expressions of eyes that 
 we are inclined to say indicate reproach. 
 
 Speaking in the same broad and general way that we 
 have done before, we may say that the simple primary 
 emotions are characteristic of animals and undeveloped 
 humans, while the complex emotions are characteristic 
 of mature or fully developed human beings. From our 
 neurological point of view this would mean that beings 
 without well developed cortical association areas cannot 
 have the complex emotions. 
 
 We have still to consider a plausible tho hypothetical 
 picture of the nerve action underlying the complex emo- 
 tions. If the situation which arouses the instinct of 
 flight starts a neuron pattern from which a certain 
 amount of energy overflows into the sympathetic system 
 and there liberates more nervous energy or causes cer- 
 tain glands to secrete, and these secretions further stimu- 
 late other glands and smooth muscle, and this augmented 
 energy then flows back into the muscles and shows it- 
 self in consciousness as the emotion of fear or terror; 
 and if at the same time a situation arouses the instinct 
 
 [142]
 
 0) C J 3 
 
 O-rt *-!'- 
 
 h C 
 
 (X 0> -H 
 
 O. N >-i 
 
 o) 05 a) o 
 
 >>>> o 
 
 0) I--, 
 
 CO W 
 
 4) pl C 
 MM O TH 
 (0 OB MO 
 
 <B -o 
 
 >a P>>+> Pi 
 0) 4) 02 O 4> 
 X X O M C 
 f-f> r-! P. O 
 
 <H <H <H O 
 
 O t-l I 
 
 S 0) I 
 o> 
 
 M > 
 
 c a x M t>>ca 
 
 -t: 41 
 
 w sj : 
 "bife * 
 ^ I 
 
 S " 
 
 41 O 
 
 2 .2 ^ 
 
 a be x 
 
 \ 
 
 / 
 
 \ 
 / 
 
 \ 
 
 /: 
 
 
 
 
 
 c 
 
 i 
 
 <u 
 r. 
 
 theory of the emotions, 
 r word is the correspon< 
 
 3 
 
 _5 
 
 
 
 ^. 
 
 c 
 
 -c 
 c 
 
 S 
 
 CH 
 
 E 
 
 seination. Reverence is 
 
 / 
 
 
 
 V 
 
 
 j 
 
 V 
 
 o 
 
 r. 
 
 
 
 a) 
 o 
 
 C 
 o 
 
 H 
 
 +j 
 
 o 
 
 
 "5 
 ic 
 
 = 
 
 _c 
 
 DC 
 
 a 
 
 "o 
 tt 
 
 
 a 
 
 H 
 
 h 
 
 +j a> 
 
 O <H 
 J<H 
 
 a) 
 
 O 
 
 Q 
 o 
 
 Tt 
 
 = 
 
 4> 
 
 Oj 
 0)i-l 
 P-H 
 
 B 
 
 h 
 
 a) 
 
 iH 
 H 
 
 M 
 
 0) 
 rH 
 
 
 S 
 
 it 
 
 ^ 
 
 9) 
 
 'z 
 
 
 
 C 
 
 e3 
 
 a 
 
 iH 
 +J 
 
 3 
 
 n 
 
 H 
 0} 
 
 CO 
 
 o 
 o 
 
 S-H 
 
 H e 
 
 CO *H 
 CO 
 
 m 
 
 <D " 
 
 ' 
 x 
 i- 
 
 i 
 5 
 
 \ 
 
 'S 
 
 ^ 
 
 M 
 
 o> 
 
 -r 
 c 
 o 
 
 1 Si 
 O 13 
 a 2 
 
 o a> 
 
 3 
 
 o 3 
 
 fj 
 
 09 
 
 Z 
 
 ^S 
 
 V 
 
 
 
 Pseu 
 estion i 
 r belief 
 
 fl 
 
 H 
 
 a 
 
 
 
 -> 
 
 0} 
 
 athy ind 
 xciteraen 
 
 =, 
 OB 
 
 
 
 X 
 
 "x 
 
 2 
 
 >J 
 h 
 
 >> 
 
 
 
 * 
 
 V 
 
 bo 
 
 ^~ 
 
 "H 
 
 _ 
 
 too + p<a> 
 
 to -H B 
 
 =! S Pa 
 
 5 
 
 E 
 
 ~ 
 
 _ 
 
 
 CO 
 
 n 
 
 CO 
 
 
 p 
 
 *C 
 
 u- 
 
 
 
 
 
 
 
 CM 
 
 c^ 
 
 
 
 ~ 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 ej 
 
 v: 
 
 08 
 
 
 
 
 
 
 e 
 
 
 
 
 
 
 
 
 
 S 
 
 

 
 NEUROLOGY OF EMOTIONS 
 
 of repulsion which in a similar manner causes an over- 
 flow to and from the sympathetic system, resulting in the 
 emotion of disgust, it is not difficult to imagine that 
 when both of these instincts are aroused at once, the 
 sympathetic system would be either more strongly 
 aroused or at least very differently aroused; and as a 
 consequence the muscular system would be differently 
 affected and also there would be a different quality of 
 consciousness, a new emotion. 
 
 It is easy to see that the presence at the same time 
 of the specific stimuli for the two instincts may lead 
 to an interference, a blocking, which may result in an 
 extension of the neuron patterns into the large associa- 
 tion areas. This of itself would lead to an increase of 
 nerve energy which we might expect would overflow into 
 the sympathetic system with results already described. 
 
 At first sight it seems a little difficult to explain why 
 the complex emotion would not always be much more 
 violent than the simple emotion. For, given the exten- 
 sive association between two fundamental instincts re- 
 sulting in a very much enlarged and complicated neuron 
 pattern in the brain, we might expect a greater overflow 
 into the sympathetic system with consequent greater 
 disturbance there and greater returns and greater mus- 
 cular activity and consciousness. For all we know this 
 may be literally true and while we cannot say that loath- 
 ing, for example, is always a stronger emotion than dis- 
 gust or fear, it may be true that a situation that would 
 arouse a certain degree of fear, combined with a situa- 
 tion that would arouse a certain degree of disgust, would 
 when combined arouse a degree of loathing that would 
 be vastly greater than either the fear or the disgust. 
 
 In other words, our feeling that the emotion of loath- 
 
 [143]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ing is not necessarily more intense than the emotion of 
 disgust may be the result of comparing two very differ- 
 ent situations. The case where the disgust is stronger 
 than the loathing may be the result of a situation where 
 the stimulus is enormous, while the loathing may result 
 from a situation where the stimuli to the instincts of 
 repulsion and flight are very mild; similarly, of course, 
 for the other emotions. 
 
 But this is not all ; we may properly assume that there 
 are certain compensations or neutralizing effects. To 
 take a gross illustration, one instinct or its emotion may 
 cause a certain gland to secrete, the secretion of which 
 gland would result in a tremendous activity of the 
 sympathetic system; but the other emotion acting at the 
 same time may cause the secretion from some other gland 
 to flow and the effect might be to actually neutralize the 
 first, or perhaps to form in the blood a new compound 
 whose action is quite different from that of either of the 
 originals. That there is antagonism between different 
 parts of the sympathetic (autonomic) system has been 
 shown by Cannon. It will thus be seen that there are 
 almost infinite possibilities. 
 
 In brief, then, we see that the higher or complex emo- 
 tions are dependent upon the development of the great 
 association areas for the mechanism necessary to bring 
 together the separate experiences, which but for such con- 
 nection would produce only a series of simple emotions. 
 Moreover, the entire affective phase of mind is depend- 
 ent upon the sympathetic nervous system for that par- 
 ticular quality which characterizes feeling. It is of in- 
 terest to note that the relative independence of the 
 sympathetic nervous system from the cerebrospinal 
 nervous system parallels the common result of introspec- 
 
 [144]
 
 EMOTIONS IN THE FEEBLE 
 
 tion that feelings and emotions are somehow distinct 
 from the other phases of mind. 
 
 Again it is the feeble-minded who have given us this 
 concept and whose condition is most clearly explained by 
 this view. All the primary instincts with their accom- 
 panying emotions according to McDougall's list, are 
 present in the feeble-minded. Many of these at first 
 sight seem to be over-developed, but that is probably in 
 appearance only, the appearance being due to the lack 
 of control. 
 
 Flight with its emotion of fear is found well down the 
 scale, possibly even to the lowest. 
 
 Repulsion with its emotion of disgust is clearly present 
 in all but the lowest grade. Here it would seem to be 
 absent, especially in that function from which the emotion 
 takes its name, namely the gustatory sense, since idiots 
 are known to eat most disgusting things. 
 
 Curiosity (wonder) is also noticeably less as we go 
 down the scale. Indeed, it would seem that even the 
 morons are possessed of less of this instinct than the 
 normal child. 
 
 Pugnacity and anger are in evidence in all grades. 
 
 Self-abasement tho present is not so manifest as some 
 of the others. 
 
 Self-assertion on the other hand is prominent, indeed 
 it is so well developed in the defectives that it is one of 
 the most useful instincts in connection with their train- 
 ing. They can be induced to do a great many things that 
 they would not otherwise undertake by the knowledge 
 that they will have an opportunity to "show off," to as- 
 sert themselves. 
 
 The parental instinct with its tender emotion is clearly 
 developed in the chronologically older cases, and extends 
 
 [145]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 fairly well down the mental scale. Morons, both boys 
 and girls, delight to take care of the younger children 
 and then manifest toward them what seems to be real 
 parental feeling. It is evident that this instinct, like 
 some of the others, cannot be manifested by the lowest 
 grade, even tho it may be present in rudimentary form. 
 
 Sympathy, or what McDougall calls sympathetic pain 
 is also manifest in the higher grades. 
 
 A question arises as to why these different instincts, 
 if they are primary, which, according to McDougall, 
 means that they are present in animals as well as in 
 humans, should not be all equally manifest in even the 
 low grade feeble-minded. It is quite possible that they 
 are present, indeed if one reasons a priori one must con- 
 clude that they are present just as in normal children. 
 But they are not so much in evidence, because in the 
 first place the specific stimulus for each emotion is 
 not so often applied to defectives; and our understand- 
 ing of these instincts in normal people is largely in- 
 fluenced by our observation of their instinctive reactions, 
 not to the original, the specific stimulus, but to associated 
 stimuli. 
 
 McDougall shows that in normal people these instincts 
 are modified in various ways. The instincts, according 
 to him, are normally modified on the afferent or receptive 
 side, that is to say, in the kind of stimulus that can arouse 
 the instinct. One method is by ' * specialization. ' ' For in- 
 stance, primitively any loud noise will excite the emotion 
 of fear, but with experience one learns that some loud 
 noises are not causes for fear. There is also the opposite 
 process of an extension of stimuli by association. If the 
 specific stimulus for the instinct is constantly associated 
 with some other stimulus, it will not be long until the 
 
 [146]
 
 MODIFICATION OF INSTINCTS 
 
 second stimulus starts the instinct just as the original 
 one did. This is the so called conditioned reflex and 
 Mateer (37) has shown that it can be developed even in 
 the lowest idiots. 
 
 Moreover, this association between the specific 
 stimulus and some associated stimulus may be by con- 
 tiguity and also by similarity with the same differences 
 that we have noted in other connections ; contiguity being 
 much more common and direct, but similarity having a 
 wider range. 
 
 Now it is evident in the first place that the feeble- 
 minded will not modify their instincts as will normal 
 people ; and secondly, and what is more important, there 
 will be a great difference in the extent to which the 
 different instincts are modified. The instinct for flight, 
 the emotion of fear, will be slightly modified, because in 
 the very nature of the case the yielding to the impulse 
 to run away from the stimulus takes away the oppor- 
 tunity of discovering that the stimulus is not properly 
 fearful. The defective will not use association by simi- 
 larity here any more than elsewhere, and association by 
 contiguity in the way of substituting new stimuli as 
 arousers of the instinct would be practically the only way 
 in which it would be modified and we may imagine that 
 the effect of this would be slight. 
 
 As a matter of fact we find that the feebleminded show 
 about a normal amount of fear until we get up to those 
 things that depend upon intelligence. The feeble-minded 
 do not fear microbes and germs because they have not 
 enough intelligence to understand them. They do fear 
 loud noises and bright lights and grotesque appearances 
 and strangers. Idiots and imbeciles do not fear the 
 lower forms of animal life, except when they are in active 
 
 [147]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 motion. The morons have evidently learned these fears 
 from more intelligent people. For example, low grade 
 imbeciles and idiots have no fear of snakes. From this 
 it is evident that the so-called instinctive fear of snakes 
 is not instinctive but acquired. 
 
 Disgust is primitively the emotion that accompanies 
 the repulsion of something that does not taste right, but 
 the term has come to have a figurative use. We speak 
 of certain kinds of conduct as being disgusting or even 
 of disgusting ideas. Expression of disgust in this sense 
 is of course not to be thot of with idiots or imbeciles and 
 only slightly with morons. Low grade defectives, being 
 somewhat deficient in the sense of taste, do not display 
 the repulsion even for those things that the adult finds 
 disgusting in the literal sense of the term. Moreover, 
 this instinct is enormously extended in normal people 
 thru association by similarity. 
 
 Still confining ourselves to the original meaning, re- 
 lating to food, the extent to which a thing may become 
 disgusting because it looks similar to something that is 
 known to be distasteful is well recognized. Contiguity 
 also plays a part with normal people, which it undoubt- 
 edly does not do with defectives. For instance, if com- 
 pelled to eat in a filthy place, or if while eating in a 
 comfortable place, some disagreeable scene has tran- 
 spired, it is quite likely that one will not be able to eat 
 the same things even under favourable conditions. The 
 emotion of disgust is aroused by associations with the 
 previous experience. 
 
 Curiosity is another instinct that is greatly elaborated 
 in normal people thru association by similarity. Conse- 
 quently we would expect it to be, as we find it, much less 
 manifest in defectives. 
 
 [148]
 
 MODIFICATION OF INSTINCTS 
 
 Pugnacity on the other hand, or the emotion of anger, 
 is one of the few emotions that remains fairly constant. 
 It is mainly aroused by its specific stimulus. As a result 
 this instinct appears normally developed in defectives. 
 
 In self-abasement we have another instinct that is 
 largely modified and in a normal person many stimuli 
 not naturally specific for self-abasement come to produce 
 the instinct. With the feeble-minded this is not the case, 
 consequently self-abasement is less often in evidence. 
 On the other hand, the instinct for self-assertion is in the 
 normal person modified in the direction of suppression. 
 The child is early taught modesty, and the stimuli that 
 would naturally arouse this instinct are turned into other 
 channels so that these self-assertions are not so promi- 
 nent. With the feeble-minded, on the other hand, as 
 already said, this is used as an exceedingly useful in- 
 stinct in their training, development and discipline. 
 
 McDougall (34) also points out that instincts are 
 normally modified on the conative side, that is to say, in 
 the form of the action as the expression of the instinct. 
 Here again there is a marked difference between the 
 normal and the defective. The normal person early 
 learns to control some instincts and to extend others. 
 He acts upon the one, but fails to act upon the other be- 
 cause the consequences are unpleasant. The feeble- 
 minded because of their weak association processes are 
 much less liable to learn these methods of control. 
 
 Another influence to be considered is the conflict of 
 emotion. A casual glance shows that some of these emo- 
 tions are contradictory to others and if the stimuli for 
 two opposite emotions should come at the same time, 
 there would at once be a conflict. But the possibility 
 for this conflict depends upon there being a reasonably 
 
 [149]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 strong association between the two. If there is no such 
 association, the one instinct is acted upon and the other 
 dies out. We can see therefore why it is that these con- 
 flicts occur more in normal people than in defectives, 
 since the latter do not have the necessary association 
 neurons. For instance, a normal child quickly learns to 
 control his fear because of his pride. Fear and curiosity 
 or wonder are also somewhat antagonistic. In the case 
 of the normal' child his whole effort is to control fear and 
 to extend curiosity. 
 
 We said in the previous chapter that a strong stimulus, 
 or one that aroused an inherent pattern or an elaborate 
 acquired pattern, would cause a heavy overflow into the 
 sympathetic system with a resulting violent emotion. It 
 is a familiar fact that violent emotion is often aroused 
 by an extremely insignificant stimulus. A single word 
 innocently uttered may call forth intense rage or pro- 
 found fear. A sound that would pass unnoticed by most 
 persons may in one with the right experience produce all 
 the outward manifestations of terror; likewise a visual 
 stimulus or an odour, or in fact, almost any stimulus 
 whatever. The western cowboy jumped to his saddle and 
 rode for his life upon the perception of a certain sound 
 which was utterly ignored by the inexperienced. He had 
 heard the ominous sound which to him meant a prairie 
 fire. On one occasion the writer was sitting comfortably 
 before an open fire in a hotel in the Canadian Rockies, 
 chatting pleasantly with his Swiss guide. He mentioned 
 the fact that he had climbed the Jungfrau just ten days 
 after a notorious accident in which several tourists 
 and guides had been killed. Instantly the guide 
 turned pale and showed all the outward signs of intense 
 pain and fear. As soon as he could get his voice he told 
 
 [150]
 
 AVALANCHE CONDUCTION 
 
 us that he was one of the two guides who had been in 
 that catastrophe and had escaped. 
 
 In both these instances elaborate neuron patterns had 
 been built up by experience. The sound or the word 
 was enough to start into activity this pattern with all 
 its multitude of associatons. From numerous neurons, 
 energy passed over into the sympathetic system arousing 
 that to strong activity, causing glandular secretions, the 
 effect of which was to produce the recognized physical ef- 
 fect of the emotion. 
 
 How this is brot about in 
 the neuron system may be 
 better understood by refer- 
 ence to what Cajal (23, p. 
 101) has called "Avalanche 
 Conduction." The accom- 
 panying diagram, Fig. 43, 
 will make this clear. The 
 neuron patterns involved 
 in these cases have been 
 built up by experience. 
 Consequently a person 
 without such an experience 
 
 Cannot have this Conscious- impulses into a single final path. 
 
 ., ,. The final path might be a ramus 
 
 neSS Or tne emotion. communicans conveying the neuro- 
 
 The well known apathy kyme to the sympathetic system 
 
 * J From Hemck. 
 
 of undeveloped or diseased 
 
 mind is probably to be explained by the foregoing prin- 
 ciple. A situation, a conversation or a word that regu- 
 larly arouses strong emotion in an experienced adult, 
 arouses none in the defective because he has no elaborate 
 neuron pattern to be aroused, and consequently no great 
 overflow into the sympathetic system. One of the 
 children of a certain institution, who is probably more 
 
 [151] 
 
 Fig. 43. Diagram of the mechan- 
 ism of reinforcement whereby a sin- 
 gle weak afferent nervous impulse 
 may be received by several neurons of
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 a case of mild insanity than of arrested development, 
 recently said to the writer, "I am very unhappy, I am 
 homesick, I am very miserable all the time. ' ' Evidently 
 from his words he was very sincere, but thruout the whole 
 expression he had a pleasant smile on his countenance 
 and a quiet natural tone of voice. He was only using 
 language that he had heard. There were no elaborate 
 neuron patterns underlying it and consequently no emo- 
 tions. 
 
 Juries and judges are often nonplussed by the lack of 
 emotion in certain criminals brot before them who have 
 confessed their guilt but who can talk about the circum- 
 stances as nonchalantly as one speaks about the ordinary 
 affairs of the day. Two murderers, studied by the writer 
 (20a) each displayed this condition to a remarkable de- 
 gree. Even the photographs of these criminals taken 
 in prison show a smile on each of their faces. Such a 
 state of mind amazes the inexperienced observer and he 
 says, "What a hardened criminal. How can he be so 
 heartless, and have so little feeling?" The explanation 
 is entirely simple. These murderers are both feeble- 
 minded and as such have very incomplete neuron pat- 
 terns. The circumstances as they are narrated do not 
 arouse any great activity ; there is therefore none of that 
 disturbance of the sympathetic system which results in 
 strong emotion. They can therefore contemplate any 
 phase of the subject without any feeling that expresses 
 itself in the bodily symptoms of emotion or even in their 
 own consciousness. While the second murderer re- 
 ferred to above was in prison and after he had confessed 
 his crime he was, as the jailer remarked, more concerned 
 as to how he should collect sixty cents that somebody 
 owed him than he was about his own punishment or 
 
 [152]
 
 THE EMOTIONS OF DEFECTIVES 
 
 anything connected with the crime. Similarly of the 
 other boy we have recorded (20a, p. 31). "Even when 
 the experts introduced by his own counsel were examin- 
 ing him, and when, had he been intelligent he should 
 have known that it was to his advantage to make the 
 best possible appearance, to give them every possible 
 help, yet when his dinner was brot into his cell, he ignored 
 the people who had been sent to help him. As one of 
 the experts testified, 'As between soup and safety, Jean 
 preferred soup.' " 
 
 Whenever a strong emotion is aroused in these de- 
 fective persons, it is either thru an appeal to some in- 
 stinctive fear or anger or else it may happen to be con- 
 nected with something in which the person has had some 
 experience, as for instance the case of the low grade boy 
 who was afraid of the dentist (p. 274). 
 
 The foregoing considerations will make it clear why 
 the manifestations of emotion are different in the feeble- 
 minded than in the normal and conversely, why an un- 
 usual display of certain emotions indicates a lack of modi- 
 fication which, under such conditions, may be of itself 
 indicative of mental defect. 
 
 When we come to consider the complex emotions, we 
 must expect, from what has been said about the origin 
 of these emotions, that the feeble-minded will be sig- 
 nificantly lacking. Such is in fact the case. The pov- 
 erty of neurons in the association areas has a marked 
 effect here. 
 
 To begin with the highest, one is perhaps not sur- 
 prised to find no evidence of reverence among the feeble- 
 minded. However, there are certain concrete situations 
 that we might expect would arouse at least a reverent 
 attitude. For example, one usually speaks reverently of 
 
 [153]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the dead. Even this is lacking in the feeble-minded. 
 We must not however conclude that they are irreverent : 
 they are merely un-reverent lacking reverence. George 
 is forty years old, mentally 6, his closest friend had 
 just died and after the funeral George remarked with a 
 chuckle, "Well, I want to go home but I don't want to go 
 that way. ' ' 
 
 Willie, aged forty, mentally 6 said the day after a 
 funeral, "We buried John yesterday," in much the same 
 tone that he would have said, "Yesterday we ploughed 
 that field." 
 
 Lil is a feeble-minded woman thirty-five years old, 
 mentality 10, with a large family. A visitor asked, 
 "Have you lost 'any children?" Lil replied, "Yes, lost 
 three in two weeks. That's going some, ain't it?" The 
 reply well expresses the extent of the emotion produced 
 by the death of three children. 
 
 Another feeble-minded woman, whose husband had 
 been killed in a drunken brawl, was asked how much 
 money she got for it. When she said she got nothing, a 
 neighbour, also feeble-minded, remarked in all serious- 
 ness, "What's the use of having your husband killed if 
 you don't get no money for him?" 
 
 Awe seems quite as lacking as reverence. 
 
 Reproach, tho a relatively simple compound of pug- 
 nacity and the parental instinct, is hardly found, prob- 
 ably because the tender emotion neutralizes the anger, as 
 it obviously does in many fond parents who are never 
 angry at anything their children do "they love them 
 so." John, forty-three years old, mentally 7, has 
 "adopted" two of the small helpless children. He 
 dresses and undresses them, feeds them, and carries them 
 
 [154]
 
 THE EMOTIONS OF DEFECTIVES 
 
 about. He has seldom been known to show any signs of 
 anger at either child. 
 
 Contempt and scorn are hard to differentiate but are 
 both in evidence in some high grade morons. In the 
 imbecile they are noticeably absent. 
 
 Patriotism and vengeance, involving as they do a per- 
 manent enduring sentiment, can hardly be expected in 
 the feeble-minded. Indeed true patriotism as a mental 
 state is probably lacking in many adults. Many persons 
 act patriotically thru imitaton, but that the feeling is 
 absent is often proved in critical moments. Similarly 
 vengeance probably requires more persistent attention 
 than is withn the capacity of the moron. 
 
 Resentment on the other hand being more momentary 
 is more possible and is doubtless experienced by some 
 morons. Just where the feeling passes over into simple 
 anger is difficult to say. But it seems certain that the 
 feeling of resentment is not experienced by the imbecile. 
 
 Of the remaining emotions of McDougall's list, 
 fascination is most in evidence, and some degree of it 
 seems to be present farther down the scale than any of 
 the other complex emotions. 
 
 Loathing shares the weakness of disgust, that is be- 
 cause the form of disgust is so primitive, the loathing is 
 limited and hard to detect. 
 
 Envy, admiration and gratitude likewise are affected 
 by the element of self-abasement which is difficult to 
 evaluate. They are, to a small degree, doubtless within 
 the capacity of the moron and seem to be sometimes mani- 
 fested in the high grades. The lack of gratitude, how- 
 ever, is often remarked in this type of person. 
 
 Pity is another emotion that is so easily simulated that 
 
 [155]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 there is little or no conclusive evidence for it. Morons 
 often express pity in language, but this may be only re- 
 peating words that they have heard from others. 
 
 Thus making ample allowances for errors of clinical 
 observation, it is reasonably safe to conclude that the a 
 priori argument holds that because these complex emo- 
 tions require the activity of more or less elaborate as- 
 sociation neurons, the feeble-minded who lack these neu- 
 rons are for the most part wanting in these emotions. 
 Lloyd Morgan (39) says, relative to the study of animal 
 psychology: "In no case may we interpret an action as 
 the outcome of the exercise of a higher psychical faculty, 
 if it can be interpreted as the outcome of the exercise of 
 one that stands lower in the psychological scale." 
 
 If we apply this dictum to the study of the outward 
 expression of emotion in the feeble-minded it is doubt- 
 ful if we could credit them with any of the complex emo- 
 tions, since almost if not quite all their affective life 
 can be classified under the primary emotions. Indeed it 
 is somewhat startling to realize how much of the emo- 
 tional life of the average man comprises greater or less 
 degrees of fear, disgust, wonder, anger, subjection, ela- 
 tion, and tender feeling! 
 
 Summary 
 
 1. The seven primary emotions fear, disgust, wonder, 
 anger, subjection, elation and tender emotion, are com- 
 bined by means of the elaborate association processes into 
 the complex emotions: loathing, fascination, scorn, ad- 
 miration, envy, reproach, gratitude, pity, vengeance, re- 
 sentment, patriotism, contempt, awe and reverence. 
 
 2. The primary emotions are characteristic of animals 
 and undeveloped humans. 
 
 [156]
 
 SUMMARY 
 
 3. The complex emotions are dependent upon the de- 
 velopment of the great association areas and upon the 
 sympathetic system. 
 
 4. Undeveloped mind experiences the complex emo- 
 tions to only a slight degree and some such as awe and 
 reverence not at all. 
 
 5. Normal adults modify the emotions (1) by reacting 
 to new or different stimuli and (2) by reacting in a differ- 
 ent way from the primitive one. 
 
 6. Defectives modify very little, hence they are more 
 primitive. 
 
 7. Experience, thru the law of association, builds up 
 elaborate neuron patterns, so that a single word, sound, 
 sight or other sensation may set off an elaborate mechan- 
 ism and give rise to a violent emotion. 
 
 8. The emotional life of defectives and to a large 
 extent of even dull normals can be readily referred to the 
 primary emotions. 
 
 9. Only higher intelligences have the highest emotions. 
 
 [157]
 
 CHAPTER IX 
 THOT 
 
 Do Animals Think? Some will answer, it depends upon 
 the animal. Some will say, it depends upon the defini- 
 tion of thot. Does the hen think when she lays an 
 egg? Does the bird think when she flies away at the 
 sound of a gun? Does the new-born chick think when it 
 pecks at the bright spot? Does the dog think when he 
 gulps down a piece of meat that he finds ? Does the man 
 think when he winds his watch at night? Does the 
 amoeba think when it surrounds a food particle? Is 
 there a thot connected with the knee-jerk? Does a 
 bird think when it builds its nest? Does a carpenter 
 think when he drives a nail? Does a man think when he 
 gets his finger into a gas flame and draws it away sud- 
 denly? Most of these questions the reader has answered 
 promptly in the negative. To some of them he has given 
 the answer, it depends upon the definition of thot. 
 And finally, a few readers will have answered some of 
 the questions in the affirmative. 
 
 Practically every one agrees that the lower forms of 
 animal life do not think, and certainly every one believes 
 that normally developed adult human beings do think. 
 Where between these two extremes is the line to be 
 drawn? if it can be drawn. Thomas Burnet said, "No 
 man thinks but he is conscious that he thinks." More- 
 over, all would agree that there is no thot connected 
 with the kneejerk, or with other similar actions, because 
 
 [15&]
 
 THOT 
 
 they are at once classified as reflexes. They take place 
 even when the brain is severed from the body; and by 
 common consent the brain is necessary to thought. Most 
 people would agree also that the bird does not think 
 when it flies away at the sound of a loud noise, or when 
 it is building a nest, because these are instinctive ac- 
 tions. This brings us nearer to our goal, but we may go 
 even further. 
 
 It is conceded, by psychologists at least, that a man 
 does not necessarily think when he winds his watch, since 
 it is well known that he may wind his watch while think- 
 ing intently about something else; and often when the 
 act is completed he does not know what he has done. 
 Moreover, a very common explanation of why one does 
 many things that were not desirable or advantageous is 
 that he "did not think," which is undoubtedly in many 
 instances literally true. We have now ruled out of our 
 early concept of thot all reflex action, all instinctive 
 action, and a good many other actions, which we com- 
 monly explain as being due to habit, or to what the 
 psychologist calls automatic action. 
 
 These actions all agree in at least the one point that 
 the action itself takes place immediately upon the appli- 
 cation of the stimulus. If now we turn to our nerve 
 pattern concepts we can see that in all these cases there 
 is a definite, ready prepared neuron pattern and an un- 
 interrupted flow of nerve energy from the first applica- 
 tion of the stimulus to the final muscular activity. We 
 may therefore conclude, at least provisionally, that under 
 such circumstances of nerve action there is no thot. 
 
 But suppose the man in winding his watch finds that he 
 cannot turn the stem, or that it turns without the usual 
 resistance or clicking that means that the spring is being 
 
 [159]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 wound up; at once a definite state of consciousness is 
 aroused and he says, "What is the matter?" He is now 
 thinking. Suppose the man who would draw his hand 
 away from the gas flame finds, before he gets it fully 
 away, that something impedes his action and he can- 
 not withdraw his hand far enough to entirely escape the 
 flame. He looks around to see what is the matter and 
 finds some other way of escape. He has evidently been 
 thinking. Suppose the meat which the dog would eat 
 is in a box with a glass cover and when he attempts 
 to grab it he strikes his nose against the glass. If he 
 should examine the situation, discover that the glass 
 cover was hinged and proceed to raise it up and get the 
 meat, or if he should step aside and pick up a stick or a 
 stone and break the glass and get the meat, we should 
 be very apt to conclude that he was thinking. 
 
 In these and similar actions there is again a common 
 element, there is an interference with the normal comple- 
 tion of the action. The flow of neurokyme which, started 
 by the stimulus, would lead thru a simple neuron pattern 
 to a proper action, has been interrupted or impeded and 
 the action cannot be performed. Again we may conclude 
 provisionally that thot results when the action which 
 would naturally follow from the stimulus is impeded, pre- 
 vented, or delayed ; in other words, when the natural path 
 of the nerve energy is temporarily blocked and the usual 
 action does not follow promptly. This conclusion, how- 
 ever, is not quite safe; because the dog who thrusts his 
 nose against the glass, thus being prevented from get- 
 ting the meat and swallowing it, would riot necessarily 
 make any further attempt to get it. The natural flow 
 of his nerve energy is impeded but he simply stops. We 
 would not conclude that he had thot. Even the man 
 
 [160]
 
 THOT 
 
 winding his watch might be conscious that he had not at- 
 tained the end the stimulus had not led to the usual re- 
 sult, but even so, he might put the watch back in his 
 pocket still without thinking. 
 
 Evidently the mere interruption of the flow of the nerve 
 energy does not make thinking a necessary consequence. 
 Let us then examine further. The man who finds that 
 his watch does not wind may very probably say, "Oh! 
 a mainspring broken." This we understand from our 
 previous study means that the neurokyme has now flowed 
 across into an associated neuron pattern a neuron pat- 
 tern established by previous experience. That neuron 
 pattern was complete in itself and led to its appropriate 
 action. Now that the nerve energy started by our 
 original stimulus, watch winding, has found its way into 
 this other pattern, it also attains its end and the circuit 
 is complete. 
 
 We made another assumption, however, that the man 
 might have put the watch back into his pocket, balked 
 in his effort to wind it, but doing nothing. In such a case 
 it is easy to conclude that the nerve energy which had 
 been started by the original stimulus is simply dissipated, 
 as happens when a stimulus is applied for which there 
 is no pattern or no association. Also, in the case of the 
 dog, he would most likely not find a way to open the 
 box, or to break the glass, but would rub his nose against 
 the glass until something else attracted him and a new 
 stimulus led to another line of action again the original 
 energy is dissipated. 
 
 The feeble-minded regularly show this dissipation of 
 mental energy this failure to make a useful association. 
 Eddie is a twenty-year old imbecile of mentality 6. He 
 has been trained to scrub floors. Every week he 
 
 [161]
 
 scrubbed an unvarnished floor in the laboratory. He 
 started in the corner where he had been told to start, 
 washed and wiped what he could reach; moved over, 
 washed and wiped the next section ; and so on. He could 
 easily see where he had just washed and properly joined 
 on the next section. After a time the floor was varnished 
 and then Eddie was told to wash it up in the same way, 
 using now only cold water without soap. Because the 
 water did not change the colour of the varnished floor, 
 Eddie could no longer tell where he had washed and 
 where not; consequently he could never learn to wash 
 the floor. He would either stay in the same place, wash- 
 ing and wiping it over and over again, or he would 
 wander around at random, washing here a spot and there 
 a spot as the fancy took him. His motions were auto- 
 matic or impulsive ; he used no thot to discover a way to 
 tell what part he had washed and what part not. 
 
 Tom is a talkative imbecile thirty-four years old, 
 mentality 6. He will tell you with great enthusiasm that 
 he had a perfectly splendid dinner, but when asked what 
 he had for dinner he becomes speechless. He is unable 
 to think of anything that was on the table. Altho the 
 writer has talked with him almost daily for a dozen years, 
 when he recently playfully pretended not to know him, 
 Tom was thoroly puzzled and speechless. After a faint, 
 "You know me, I am Tom," he turned and left the room, 
 unable alike to think that it was a joke or of any further 
 way of proving his identity. 
 
 Bert is a high grade imbecile, twenty-seven years old, 
 mentality 7, who always has a way out that is satis- 
 factory to him, but it is automatic and not thotful. 
 Asked on Lincoln's birthday, "Whose birthday is it to- 
 day?" he answered, "Lincoln's." "How do you know 
 
 [162]
 
 THOT 
 
 it is Lincoln's?" "Because the flag is flying.'* 
 ' ' Who was Lincoln ? ' ' (Emphatically) 1 1 Washington. ' ' 
 "How often does his birthday come?" "Oh, I don't 
 know. Perhaps once every two years." Bert picks up 
 scraps of conversation and strings them together with- 
 out any thot. He heard some one talk about Vernon 
 Castle's accident and came in with the announcement. 
 "Vernon Castle fell four feet out of an aeroplane and was 
 killed." From which he concluded that as for him he 
 "would stay on the earth or under the earth, but not up in 
 the air." 
 
 Garry, a high grade moron, twenty years old, mentality 
 about 10, writes to the Superintendent : ' ' Dear Profes- 
 sor : Am sorry to say that I am getting my mind up to 
 run away again." 
 
 Two high grade morons who had run away were acci- 
 dentally met by the superintendent of the institution in 
 the railroad station in the city. It would have been per- 
 fectly easy for them to escape, but they could think of 
 no way out of the difficulty and passively followed him 
 back to the institution. Evidently the blocking of the 
 neurokyme is not of itself indicative of thot. 
 
 If our assumptions are correct we at least have a clue, 
 since it is possible to see a plausible explanation in the 
 view that when the neurokyme is blocked in its natural 
 course it flows into some other ready made pattern, if 
 any such pattern is available; that is to say, if the per- 
 son has had experiences in any way associated with the 
 present one. The man could not say, "Broken main- 
 spring," unless sometime he had had the experience of a 
 broken mainspring. 
 
 Putting all this together we should have to conclude 
 that thot appears when the neurokyme in a simple neuron 
 
 [163]
 
 PSYCHOLOGY OF THE NOEMAL AND SUBNORMAL 
 
 pattern is interrupted under conditions where there are 
 associated neuron patterns into which that nerve energy 
 may flow and lead to action. Two facts will help make 
 this conclusion plausible; first our hypothesis assumes 
 the presence of neuron patterns, the result of associated 
 experiences. This fits well with what we know of thot. 
 It is the person with large experience that is able to 
 think out a problem, while poverty of thot and poverty 
 of experience go together. 
 
 The second point is that our view is thoroly consistent 
 with the history of those actions which are neither reflex 
 nor instinctive and yet do not involve thot. Take the 
 watch-winding itself. It is certainly not instinctive, and 
 in the beginning, the first time one winds a watch, it does 
 require thot and illustrates all that we have said. But 
 once the new path is established and the nerve energy 
 finds a way out so that the stimulus, the sight of the 
 watch, leads to the act of winding, there is no longer an 
 interruption of the flow of the neurokyme and it becomes 
 automatic. 
 
 Now that we have a picture of the thot process itself, 
 we may discuss some terms in common use and usually 
 considered to be psychological topics. These are percep- 
 tion, judgment and reasoning. 
 
 We have just seen that when the simple flow of the 
 neurokyme from the stimulus to the muscular activity 
 is interrupted we have thot, provided the neurokyme finds 
 another pathway leading to muscular activity and is not 
 entirely dissipated. It will be evident that there are 
 varying degrees of elaborateness in the neuron patterns 
 that are substituted for the original ones and that on 
 this basis it is possible to classify or discuss different 
 degrees of thot. 
 
 [164]
 
 PURE SENSATION 
 
 We have already used the term sensation and con- 
 trasted it with idea, but we have not as yet denned it. 
 Sensation is the consciousness of a stimulus the con- 
 sciousness that results from the flow of neurokyme, which, 
 started by the stimulus in the sensory neuron and being 
 conveyed to the cortex, passes at once, by way of an as- 
 sociation neuron, to a motor neuron and out to the 
 muscle. Thus it is the simplest kind of cortical neuron 
 pattern. 
 
 It is often stated that adult human beings seldom 
 hav3 pure sensation. This is because experience has 
 built up so many associations with every kind of stimulus 
 that the neurokyme started by the stimulus does not stop 
 with the simple pattern but goes on to a more elaborate 
 one which makes the situation mean something. A loud 
 noise, a bright light, a taste or an odour is no longer a 
 sensation to us because it is immediately the sound of a 
 gun, an electric light, the taste of bitter, the odour of 
 illuminating gas. That is to say, each one is something 
 more than pure sensation. 
 
 Even when we recognize the stimulus as a sound, a 
 light, a taste, or a smell, we have gone beyond the limit 
 of pure sensation. We probably come the nearest to a 
 pure sensation in the case of certain vague and indefinite 
 pains, for these are unnamed and often indefinitely lo- 
 cated and seem to be nothing but, as we describe them, 
 sensation of pain. A blow on the back of the head which 
 results in " seeing stars" is perhaps nearly pure sensa- 
 tion of brightness. For since it does not come thru the 
 eye we do not think of it as being an eye sensation of 
 colour or brightness, and one so seldom has the experi- 
 ence that it has not become associated even with its cause. 
 Even in these cases, however, the neurokyme does flow 
 
 [165]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 into another nerve pattern and we have something more 
 than pure sensation. This is inevitable since the pure 
 sensation can have no meaning for us unless it is as- 
 sociated with something else. With this attempt to in- 
 dicate what a pure sensation is, we may pass on to the 
 next step; and here we have simply to follow the 
 neurokyme aroused by the stimulus into the nearest 
 neuron pattern. 
 
 When rather strong air vibrations which we call sound 
 strike the ear of the infant, he turns his head in the 
 directon of the sound. This is probably a pure reflex, 
 since the turning of the head is not the result of any 
 thot or judgment, plan or determination. Yet the con- 
 sequences are of great importance. For when he turns 
 his head, rays of light stimulate his retina and arouse 
 another simple neuron pattern in the brain. This, like 
 the other, taken by itself might be a simple reflex and 
 arouse no consciousness. But the two taken together 
 are associated as we have already explained and we have 
 a sound-sight association. 
 
 Even here it is difficult for us not to pass over a large 
 amount of experience and say, he now sees what caused 
 the sound; but we must try to realize that in the first 
 instance there is no such conclusion. The sight, the 
 sound, simply exist for him together, the one the other. 
 It is true as we have already explained that the next 
 time this sound stimulus strikes his ear he will "think 
 of" the stimulus that formerly aroused his visual area. 
 Or if he sees the object that aroused the visual area, he 
 will "think of" the sound that aroused the auditory area 
 on the previous occasion. 
 
 Thus the two simple neuron patterns, each of which 
 by itself would have no meaning, now come together to 
 
 [166]
 
 PERCEPTION 
 
 form a larger neuron pattern and we have the first ele- 
 ments of thot. Until language appears there is nothing 
 else. These two sensations are associated and either one 
 suggests the other. The psychological name for this 
 process is perception. It is also called judgment. 
 
 The higher grades of feeble-minded make this con- 
 nection comparatively easily, but as we go down the scale 
 to the middle and low grades the association is made with 
 increasing difficulty. 
 
 On three successive occasions, Kirk, a middle grade 
 imbecile, deliberately put his hand on a hot radiator and 
 held it there until it was burned. Evidently he was un- 
 able to make any association between the familiar 
 radiator and the burned hand. Even with the higher 
 grades of children it is often necessary to point out the 
 connection definitely and consciously in order to make 
 an association which is necessary for their comfort or 
 well-being. 
 
 Unfortunately for our psychology, we adults can never 
 know just how the primitive associations come together 
 and have meaning for us, in other words, how a percep- 
 tion is formed. But we do have a description of the 
 process by one in whom, on account of blindness and 
 deafness, the process was delayed so that she remembers 
 it. Helen Keller (29) has given us a graphic description 
 of the way in which it dawned upon her mind that things 
 have names. It must be remembered that this is not 
 quite the way it comes to the infant, because Helen Keller 
 had begun to talk a little before the illness had left her 
 blind and deaf and she herself says, "Suddenly I felt 
 a mystic consciousness as of something 1 forgotten a 
 thrill of returning thot. ' ' Following is her wonderful de- 
 scription of this process. 
 
 [167]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 "The morning after my teacher came she led me into 
 her room and gave me a doll. The little blind children 
 at the Perkins Institution had sent it and Laura Bridg- 
 man had dressed it; but I did not know this until after- 
 ward. When I had played with it a little while, Miss 
 Sullivan slowly spelled into my hand the word ' ' d-o-1-1. ' ' 
 I was at once interested in the finger play and tried 
 to imitate it. When I finally succeeded in making the 
 letters correctly I was flushed with childish pleasure and 
 pride. Eunning downstairs to my mother I held up my 
 hand and made the letters for doll. I did not know that 
 I was spelling a word or even that words existed ; I was 
 simply making my fingers go in monkey-like imitation. 
 In the days that followed I learned to spell in this un- 
 comprehending way a great many words, among them 
 pin, hat, cup, and a few verbs like sit, stand and walk. 
 But my teacher had been with me several weeks before 
 I understood that everything has a name. 
 
 ' ' One day, while I was playing with my new doll, Miss 
 Sullivan put my big rag doll into my lap also, spelled 
 f d-o-1-1' and tried to make me understand that 'd-o-1-1' 
 applied to both. Earlier in the day we had had a tussle 
 over the words 'm-u-g' and 'w-a-t-e-r.' Miss Sulli- 
 van had tried to impress it upon me that 'm-u-g' is mug 
 and that 'w-a-t-e-r' is water, but I persisted in confound- 
 ing the two. In despair she had dropped the subject for 
 the time, only to renew it at the first opportunity. I had 
 become impatient at her repeated attempts and, seizing 
 the new doll, I dashed it upon the floor. I was keenly 
 delighted when I felt the fragments of the broken doll 
 at my feet. Neither sorrow nor regret followed my pas- 
 sionate outburst. I had not loved the doll. In the still, 
 dark world in which I lived there was no strong senti- 
 
 [168]
 
 HELEN KELLER QUOTED 
 
 ment or tenderness. I felt my teacher sweep the frag- 
 ments to one side of the hearth, and I had a sense of 
 satisfaction that the cause of my discomfort was re- 
 moved. She brought me my hat, and I knew I was 
 going out into the warm sunshine. This thot, if a word- 
 less sensation may be called a thot, made me hop and skip 
 with pleasure. 
 
 ' * We walked down the path to the well-house, attracted 
 by the fragrance of the honeysuckle with which it was 
 covered. Some one was drawing water and my teacher 
 placed my hand under the spout. As the cool stream 
 gushed over one hand she spelled into the other the word 
 water, first slowly, then rapidly. I stood still, my whole 
 attention fixed upon the motions of her fingers. Sud- 
 denly I felt a misty consciousness as of something for- 
 gotten a thrill of returning thot; and somehow the 
 mystery of language was revealed to me. I knew then 
 that 'w-a-t-e-r' meant the wonderful cool something that 
 was flowing over my hand. That living word awakened 
 my soul, gave it light, hope, joy, set it free ! There were 
 barriers still, it is true, but barriers that could in time 
 be swept away. 
 
 "I left the well-house eager to learn. Everything had 
 a name, and each name gave birth to a new thot. As we 
 returned to the house every object which I touched 
 seemed to quiver with life. That was because I saw 
 everything with the strange, new sight that had come to 
 me. On entering the door I remembered the doll I had 
 broken. I felt my way to the hearth and picked up the 
 pieces. I tried vainly to put them together. Then my 
 eyes filled with tears; for I realized what I had done, 
 and for the first time I felt repentance and sorrow. 
 
 ' * I learned a great many new words that day. I do not 
 
 [169]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 remember what they all were ; but I do know that mother, 
 father, sister, teacher were among them words that 
 were to make the world blossom for me, 'like Aaron's 
 rod, with flowers.' It would have been difficult to find 
 a happier child than I was as I lay in my crib at the 
 close of that eventful day and lived over the joys it had 
 brot me, and for the first time longed for a new day to 
 come." 
 
 It is worth while also to quote her teacher, Miss Sulli- 
 van, on the same event. Miss Sullivan 's letter : 
 
 ' 'April 5, 1887. 
 
 "I must write you a line this morning because some- 
 thing very important has happened. Helen has taken 
 the second great step in her education. She has learned 
 that everything has a name, and that the manual alphabet 
 is the key to everything she wants to know. 
 
 "In a previous letter I think I wrote you that 'mug' 
 and 'milk' had given Helen more trouble than all the 
 rest. She confused the nouns with the verb 'drink.' 
 She didn't know the word for 'drink' but went through 
 the pantomime of drinking whenever she spelled 'mug' 
 or 'milk.' This morning, while she was washing, she 
 wanted to know the name for 'water.' When she wants 
 to know the name of anything, she points to it and pats 
 my hand. I spelled 'w-a-t-e-r' and thought no more 
 about it until after breakfast. Then it occurred to me 
 that with the help of this new word I might succeed in 
 straightening out the 'mug-milk' difficulty. We went 
 out to the pump-house, and I made Helen hold her mug 
 under the spout while I pumped. As the cold water 
 gushed forth, filling the mug, I spelled 'w-a-t-e-r' in 
 
 [170]
 
 PERCEPTION 
 
 Helen's free hand. The word coming so close upon the 
 sensation of cold water rushing over her hand seemed 
 to startle her. She dropped the mug and stood as one 
 transfixed. A new light came into her face. She spelled 
 'water' several times. Then she dropped on the ground 
 and asked for its name and pointed to the pump and the 
 trellis, and suddenly turning round she asked for my 
 name. I spelled ' Teacher.' Just then the nurse 
 brought Helen's little sister into the pump-house, and 
 Helen spelled 'baby' and pointed to the nurse. All the 
 way back to the house she was highly excited, and learned 
 the name of every object she touched, so that in a few 
 hours she had added thirty new words to her vocabulary. 
 Here are some of them : Door, open, shut, give, go, come, 
 and a great many more. 
 
 "P. S. I didn't finish my letter in time to get it posted 
 last night ; so I shall add a line. Helen got up this morn- 
 ing like a radiant fairy. She has flitted from object to 
 object, asking the name of everything and kissing me for 
 very gladness. Last night when I got in bed, she stole 
 into my arms of her own accord and kissed me for the 
 first time, and I thot my heart would burst, so full was 
 it of joy." 
 
 This is perception and it is perfectly described in 
 Titchener's definition of perception as "a group of sen- 
 sations having a meaning for us. ' ' 
 
 One difficulty still remains and is found even in the 
 foregoing description of Miss Keller's experience. We 
 must remember that in her case the association was not 
 between the feel of the cold water and the sound of the 
 word water. She tells us that Miss Sullivan spelled the 
 word doll into her hand, but she also said, "I did not know 
 
 [171]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 that I was spelling a word or even that words existed. 
 I was simply making my fingers go in monkey-like imita- 
 tion." The associaton that was made in Helen Keller's 
 mind or brain was between the feel of the cold running 
 water and the group of pressure sensations that were 
 made by Miss Sullivan's fingers upon Helen's palm. 
 What actually happened to her at that glad moment was 
 that these two centres in her brain had become so thoroly 
 associated that she at last realized that they belonged to- 
 gether, that that cold flowing substance was always to be 
 called to mind whenever a certain series of pressures were 
 made in her hand, or as we say, that that substance had a 
 name, and then came the further generalization made by 
 her that everything has a name, that another group of 
 pressures on her hand constituted the name of the doll 
 which she had broken. Let us look a little further into 
 this matter of names. It is a confusing point in psy- 
 chology, and we shall do well if we can clear it up. 
 
 Summary 
 
 1. Reflex, instinctive, impulsive and automatic action 
 involve no thot. 
 
 2. Even man " rarely thinks" (James) since so much 
 of his activity is to be classified under one or the other of 
 the above heads. 
 
 3. There must be an interruption of the natural flow 
 of nerve energy before we can have thot. 
 
 4. Yet mere interruption does not produce thot. 
 
 5. Thot appears when the neurokyme in a simple neu- 
 ron pattern is interrupted under conditions where there 
 are associated patterns into which the nerve energy may 
 flow and lead to action. 
 
 6. Experience, which develops the more complicated 
 
 [172]
 
 PERCEPTION 
 
 neuron patterns, is the condition for thot. Poverty of 
 thot and poverty of experience go together. 
 
 7. Perception, judgment and reasoning are different 
 phases of the thot process. 
 
 [173]
 
 CHAPTER X 
 THOT Continued 
 
 What are Names? It has been said that the sole con- 
 dition for the enormous mental development of man as 
 compared to the lower animals is in his invention of lan- 
 guage. Perhaps it would be better to say his extension 
 of language, for even animals have the elements of lan- 
 guage. Psychologically considered, language is an asso- 
 ciation, such as we have described, between common ob- 
 jects, actions, or feelings and certain sounds, visual sym- 
 bols, or as in the case of Helen Keller, tactual sensations. 
 The great fact that led to the extension of language was 
 its marvellous usefulness. One has only to think of the 
 great difficulty, the enormous waste of time and energy, 
 that we experience in attempting to communicate with a 
 person who does not understand our language, in order 
 to see something of the significance of language for the 
 race. 
 
 Let us follow this thot a little further. We have said 
 that animals have the elements of language ; that is to say, 
 there are certain sounds or certain sights that are clearly 
 associated in their brains with certain objects or certain 
 actions. Domestic animals come when called because the 
 sounds used in the call are associated in their minds usu- 
 ally with food. If they are always fed by the same per- 
 son the sight of the person is associated with food and is 
 to them the symbol. Many of these associations are built 
 up in the brain of the animal rather accidentally, but they 
 may also be brot about by training. The extent to which 
 
 [174]
 
 DO ANIMALS THINK? 
 
 this is possible has led people to think that amimals under- 
 stand language and think. The question as to whether 
 this belief is true or not brings us back to the statement 
 that we made earlier ; it depends upon what we mean by 
 thot and what we mean by language. 
 
 If thot is what we have denned it, it is not likely that 
 animals can be properly said to think to any extent worth 
 mentioning, since it is not likely that they have more than 
 one reaction to the same stimulus. If language means 
 having a few auditory and visual stimuli definitely asso- 
 ciated with corresponding objects or acts, then it cannot 
 be denied that animals have the rudiments of language. 
 Not only do they in this sense understand certain words 
 and signs that man makes to them, but they have to the 
 same degree their own language. The sentinel crow has 
 one note that seems to say * ' All is well, ' ' and another that 
 says, "It is time to fly away." The cock says "Come 
 here, here is some food," and also, "Be on your guard, 
 danger is near." The cat has a cry of hunger, a cry of 
 anger, a cry of fear and a call to her mate. Many other 
 instances will occur to the reader. 
 
 If on the other hand language is thot of as having any- 
 thing like the practical value that it has for man, then it 
 is a waste of time to discuss the question, for animals 
 have at most only a few symbols, whereas man has de- 
 veloped thousands and hundreds of thousands of combi- 
 nations. 
 
 Turning our attention to the language of man, it is 
 helpful to remember that a large part of his early per- 
 ceptions consist in what is in reality learning language, 
 that is to say, learning the names of things ; or again in 
 establishing associations between the auditory, the visual 
 or the tactual stimulus and the name of the thing that 
 
 [175]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 gives rise to the stimulus as when one hears a piano, 
 sees a piano or touches it. The child sees a certain ani- 
 mal and is told it is a horse. It is common to say that he 
 perceives a horse. As a matter of fact he has only learned 
 the name, has formed an association between a certain 
 visual image that he gets from looking at the horse and 
 an auditory sound that comes from the word horse as 
 some one tells him "That is a horse," and also an associ- 
 ation with the motor expression as he repeats to himself 
 the word horse. 
 
 Some have spoken of this tendency to name things as 
 the naming instinct. The persistence of the naming habit 
 and the satisfaction which seems to go with it would give 
 some colour to the suggestion that it is instinctive, were 
 it not for the fact that it so clearly has to be learned. 
 Altho none of us can remember it, every infant undoubt- 
 edly has to go thru a long period similar to the one de- 
 scribed by Helen Keller. There is a long period before 
 the fact is appreciated that things have names and prob- 
 ably the joy accompanying this discovery is the main ele- 
 ment in perpetuating the process. Just as Helen Keller 
 learned' many words in the next few hours and days, so 
 every child who has discovered that everything has a 
 name is interested in learning new names. 
 
 The unfortunate part, for the development of knowl- 
 edge, is that so many persons are satisfied with the mere 
 name, apparently believing that to know the name is to 
 know the thing itself. Of course, no more serious mis- 
 take can be made. It is not many years since certain sub- 
 jects of study in our schools were almost entirely a matter 
 of learning names. Take for example botany as it was 
 frequently taught from twenty-five to forty years ago. 
 The whole purpose of the study was to learn the termin- 
 
 [176]
 
 NAMES AS SYMBOLS 
 
 ology so that a person could take a plant and find its 
 name. Today many a person is considered a botanist 
 whose only claim to the designation is that he knows the 
 names of the common plants or has a portfolio of dried 
 specimens properly named. 
 
 The same is almost as true of mineralogy and to quite a 
 degree of astronomy, and even geography, especially all 
 that part of geography which consists in knowing the 
 name of the city that is on a river with a name or the 
 name of the country that lies west of another country 
 named , or the name of the city that is called the capi- 
 tal of a State with a given name. 
 
 Even today there is much of this kind of teaching more 
 or less unconsciously retained in the schools; and the 
 popular interest in knowing the names of plants, birds, 
 animals, stars is strong testimony to the fact that, with a 
 great many people, something of the original joy of find- 
 ing that everything has a name persists into adult life. 
 All this would be superseded, if the fact was fully appre- 
 ciated that words are only symbols and are of no value ex- 
 cept as one understands the thing symbolized. They are 
 a convenient medium of exchange like paper money ; but 
 if there is nothing back of them they are valueless. 
 
 Prof. Rugh of the University of California has summed 
 the matter up in a single sentence, " Words do not convey 
 ideas, they arouse experiences. ' ' As we have said, words 
 are symbols and as symbols for experiences they are con- 
 venient; but without the thing symbolized they are not 
 only useless but dangerous. 
 
 Much has been made of words in psychology under the 
 head of verbal-types, verbal-associations, verbal-memory, 
 etc. All of which only means that the word, the symbol 
 for the experience, can be associated, remembered and 
 
 [177]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 dealt with just as the original experience. It is probable 
 that this subject has been given so much importance in 
 psychology because of the fact that there is a so-called 
 "centre" in the brain for visual word images, another for 
 auditory word images and one for motor word images. 
 
 Moreover, clinical experience has proved that injury 
 to any one or all of these centres destroys one or all of 
 these functions. A person whose visual verbal centre 
 is destroyed, loses the ability to read and write. He is 
 said to have word blindness or alexia. One whose audi- 
 tory verbal centre is destroyed cannot understand spoken 
 words ; and one whose motor verbal centre is destroyed is 
 unable to form words and speech. The former condition 
 is called word deafness and the latter dumbness or aphasia 
 in a specific sense. The term aphasia is also used in a 
 generic sense to cover all the foregoing verbal defects. 
 
 The accompanying table from Church & Peterson (9) 
 gives in condensed form the main facts about the different 
 aphasias. 
 
 Judgment. Keturning now to consideration of the thot 
 process, we recall that we said that the process defined 
 as perception was sometimes called judgment. Stout 
 says, "Judgment is the yes-no consciousness. Under it 
 I include every mode of affirmation and denial every- 
 thing in the nature of an acknowledgment explicit or im- 
 plicit of objective existence." Titchener calls judgment 
 the simplest thot process. Both these definitions make 
 it clear that judgment as used by the psychologist includes 
 much more than the popular conception which makes 
 judgment very largely synonymous with reasoning, or 
 the result of reasoning. 
 
 It has been said that the difference between what we 
 call judgment and what we call perception is a difference 
 
 [178]
 
 
 
 
 a-o 
 
 
 
 
 
 03 03 
 
 
 3 . 
 
 
 
 <j CO 
 M 
 
 
 Jj 
 
 
 
 
 gd 
 
 .2* 
 3 
 
 11 
 
 
 - 
 
 a> 
 J 
 
 A 
 
 03 
 
 M 
 
 "^ 
 
 
 
 K 
 
 g-g . 
 
 03 
 
 |j 
 
 
 6 
 
 03 
 
 CQ jH ** 
 
 03 
 
 
 g 
 
 s 
 
 a. 
 
 PU 
 
 S a 
 '%* 
 
 . 
 
 V 
 
 
 . 
 
 ** 
 
 X 
 
 >< 
 
 ^ 
 
 * 
 
 il 
 
 
 
 
 2' 
 
 ft3 
 
 
 
 
 o3'm 
 
 
 6 
 
 6 
 
 a 
 
 S ^ 
 PH A 
 
 o 
 OQ 
 
 Written. 
 
 Paragraphia 
 or agraphia. 
 
 Exceptionally. 
 
 6 
 
 Paragraphia. 
 
 O 
 
 ft 
 
 M 
 
 a 
 m 
 
 .5 
 
 
 
 ^3^2 
 03 "OQ 
 
 
 03 
 I 
 
 
 At 
 
 
 ^ OQ 
 
 
 
 
 
 
 
 5 6 
 
 
 ft 
 
 
 ft 
 
 If ! 
 
 2 ft 
 
 
 03 
 
 
 03 
 
 s 
 
 G c 
 
 f- ~ 
 
 B 
 
 E 
 
 03 
 
 
 
 PH ' 
 
 ^ rt 
 
 H 
 
 PM 
 
 - 
 
 a 
 
 
 
 
 
 ft 
 
 '5 
 
 8 
 
 f 
 
 ^ 
 
 S 
 
 
 
 -* 
 
 H 
 
 PH 
 
 * 
 
 tS 
 
 a 
 
 03 
 
 
 
 E 
 
 a* 
 
 
 
 
 
 1 
 
 a> 
 M 
 
 o 
 ft 
 OQ 
 
 1 
 
 1 
 
 S 
 
 00 
 
 || 
 
 deafness. 
 
 <o 
 
 a 
 
 i 
 
 a 
 3 
 
 . 03 
 
 .22 
 
 OQ CL 
 
 a j$ 
 fl S 
 
 ^ 
 
 d 
 1 
 
 ft 
 S 
 
 a 
 
 TS 
 fi 
 
 O 
 
 Pf to 
 
 03 o: 
 
 t. h 
 
 03 0! 
 
 
 ^ 
 
 a 
 
 ^ 
 
 PbOi 
 
 
 
 
 
 j 
 
 I 
 
 Auditory 
 Aphasia. 
 
 Motor 
 Aphasia. 
 
 03 
 
 .I.,,| 
 
 'o s P 
 
 a os 3 
 O* I) "-' 
 
 [179]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of degree only. We have said that when two stimuli, 
 each arousing a sensation, become firmly associated, the 
 sensations come to have meaning and this is called per- 
 ception, or judgment. It is a question whether we should 
 apply the term judgment to this most elemental thot 
 process ; whether we should not in fact call this perception 
 and reserve the term judgment for the next higher, more 
 complicated process. 
 
 We must now attempt to understand the process itself. 
 Let us take an example. A child gets a stimulation of 
 the retina which gives him a sensation of brightness, 
 called white. He is also conscious of the wide extent of 
 this whiteness, that it covers the ground. He learns that 
 this white something on the ground is called snow. Pass- 
 ing over certain intermediate processes, let us say that he 
 perceives this object that is called snow in short he per- 
 ceives snow. In the brain he has therefore a fairly 
 simple neuron pattern which gives rise to the conscious- 
 ness * * snow. ' ' He has previously, and as the result of en- 
 tirely different experiences, perceived that some things 
 are cold; we say he has a concept of coldness with its un- 
 derlying neuron pattern. Now it happens that he takes 
 some of the snow into his hand. The neuron pattern un- 
 derlying the concept "snow" and the neuron pattern un- 
 derlying the concept "cold" are at once brot together, 
 associated. The two patterns become so closely associ- 
 ated that they form one pattern. The consciousness is 
 also extended to cover what is expressed by snow cold ; 
 or "the snow is cold." This is a judgment. 
 
 It will be seen that the only difference between this 
 neuron pattern and the one that gave rise to the first per- 
 ception is in the elaborateness of the pattern. In the 
 first place there were simple patterns underlying sensa- 
 
 [180]
 
 JUDGMENT 
 
 tions. Next there were two patterns each underlying a 
 perception. Now there is one elaborate pattern under- 
 lying a judgment. As already stated, perception and 
 judgment really differ only in degree, and yet it seems de- 
 sirable to make this simple distinction. If we accept this 
 distinction it would follow that just as we said that a per- 
 ception is a group of sensations, so we could say that a 
 judgment is a group of perceptions. 
 
 Moreover we recognize that it is possble to make a 
 great many judgments in regard to one subject, such as : 
 snow melts, snow is frozen water, snow falls in winter. 
 In each one of these judgments we have enlarged our neu- 
 ron pattern by the addition of smaller patterns gained 
 from experience, until somewhere in the process this pat- 
 tern becomes so elaborate and the consciousness resulting 
 from its activity is so complex that we cannot hold it all, 
 and some one phase of it becomes stronger than the rest, 
 is the centre of the consciousness, " holds our attention." 
 
 It will be seen that, viewed from the standpoint of con- 
 sciousness, this is all a question of association ; moreover, 
 that the original associations making up the perception 
 and the simple associations forming the judgment are as- 
 sociations by contiguity. It is equally clear, however, 
 that many of our judgments are associations by similar- 
 ity. For example, the child seeing snow for the first 
 time may say, ' * The ground is covered with sugar. ' ' His 
 judgment is based upon an association by smilarity, be- 
 cause snow and sugar are identical in colour. 
 
 This makes clear the definition given by Binet (4) who 
 says: "Perception is a synthetic operation resulting from 
 the uniting of information actually furnished by the 
 senses with information furnished by preceding experi- 
 ences." The information actually " furnished by the 
 
 [181]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 senses" is the new neuron pattern aroused by the stimu- 
 lus, which becomes connected with a neuron pattern al- 
 ready formed, that is, "furnished by preceding expe- 
 riences." Every simple declarative sentence is the ex- 
 pression of a judgment, but it should be noted that it is 
 not necessarily the expression of the judgment of the per- 
 son who utters the sentence. One may simply repeat the 
 sentence which is the expression of a judgment which 
 some one else has originated. Indeed much of our con- 
 versation is precisely that. One does not actually form a 
 judgment unless he has the experience underlying it. 
 
 The feeble-minded, having as we have seen good nat- 
 ural memories, often repeat judgments and are given 
 credit for intelligence. This is the explanation of the oft 
 heard paradox "He talks intelligently but he acts fool- 
 ishly." 
 
 Just as perception blends into judgment, so judgment 
 blends into reasoning. It is clear that the illustration of 
 the child who called the snow sugar might just as well 
 have been described as a case of childish reasoning. And 
 this is true, because, as a matter of fact, we are dealing 
 with one and the same process a proccess of association 
 between neuron patterns which have been built up by ex- 
 perience. The difference is one of degree and not of 
 kind. 
 
 Reasoning has sometimes been denned as a train of 
 judgments. It will be clear at once that this will require 
 more experience, more neuron patterns to be associated; 
 and the result of the association is a more elaborate pat- 
 tern than before. But this is- not all. It is not enough to 
 say that reasoning is a train of judgments. The judg- 
 ments must be associated according to some principle. 
 
 There are two kinds of reasoning, inductive and de- 
 
 [182]
 
 REASONING 
 
 ductive. Inductive reasoning is reasoning from a par- 
 ticular instance to a general conclusion ; it is generalizing. 
 In inductive reasoning we state all we know based on our 
 experiences. A child was given cream to eat. It hap- 
 pened that the cream was a little sour. He reasoned in- 
 ductively that all cream tasted sour, not liking it he would 
 never taste cream again. Not until he was a man did he 
 discover that cream is usually sweet. He had generalized 
 from the only experience he had. 
 
 In deductive reasoning we reason from the general 
 law to a particular case. It is an attempt to decide how 
 to act by referring the particular instance to a class for 
 which we have a general rule. The child in the above 
 illustration had formed the general rule that he did not 
 like cream. Therefore he would never eat anything that 
 was called cream. A is a case of B. In B situations we 
 always act in a particular way, therefore we will act that 
 way in A. In either induction or deduction the validity 
 of our reasoning is dependent upon our experience and 
 the corresponding elaborateness of the neuron pattern. 
 
 The inductions of undeveloped mind are often neces- 
 sarily erroneous, as in the above case of the child and 
 the cream, and often ludicrous. A child sees an animal 
 that is brown and is told that it is a horse ; he necessarily 
 concludes that all horses are brown because he has no ex- 
 perience of any other colour. His neuron pattern under- 
 lying the concept horse does not include anything but 
 brownness. Not until he has had experience, either di- 
 rectly or vicariously, with horses or other colours will he 
 understand that the generalization that a horse is always 
 brown is not correct, and that his concept of horse must 
 not be limited to brown colour. 
 
 Such mistakes are often ludicrous from the standpoint 
 
 [183]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of one 's own superior knowledge, that is, greater experi- 
 ence; and yet they are phenomena of daily occurrence 
 with the most intelligent people. The story of the Chi- 
 nese tailor, who was shown a pair of European trousers 
 and was asked to make a pair like them, and who, seeing 
 the patch upon the sample trousers, made the new trous- 
 ers with a patch, is an amusing one. When, however, 
 the present writer sent to the engraver a chart drawn on 
 paper purposely cross-ruled in blue lines because he did 
 not wish the cross-lines to appear in the finished cut, and 
 the engraver carefully re-drew the cross-lines in black and 
 returned the cut with all the lines in, the situation was not 
 humorous, but annoying. Yet it was a perfectly natu- 
 ral reasoning on the part of the engraver. Such expe- 
 riences are of daily occurrence and perfectly illustrate 
 the truth that one generalizes from his experience ; if the 
 experience is limited, the generalization is quite likely 
 to be false. The feeble-minded are continually making 
 errors of this kind. Jay, eighteen years old, mentally 8, 
 when asked what a dowel is, replied, "A piece of wood 
 you drill with." In his wand drill at school the wands 
 were long dowel sticks from the carpenter shop. Jay had 
 worked in the shop and knew these sticks as dowels. He 
 generalized from his experience. He had used dowels 
 to drill with therefore dowels are things you drill with. 
 An imbecile or a normal child under nine years of age 
 regularly defines common objects in terms of use and 
 the particular use that his experience has taught him 
 a fork is to eat with. The scientist surrounds himself 
 with certain rules or precautions so that he may not make 
 faulty generalizations. Even then it is rare that a man 
 publishes a work in which he has made generalizations, 
 that some one does not point out errors. 
 
 [184]
 
 DEDUCTIVE REASONING 
 
 Inductive reasoning is thus a question of the more or 
 les complete neuron pattern, the result of experience more 
 or less extensive. Deductive reasoning on the other hand 
 is more directly an association between different neuron 
 patterns. Let us examine this statement further. De- 
 ductive reasoning is best studied from taking its typical 
 logical form. This is known as a syllogism, which is 
 made up of three parts, the major premise, the minor 
 premise and the conclusion. The following is a classical 
 syllogism : 
 
 Major premise All men are mortal. 
 Minor premise Socrates is a man. 
 Conclusion Therefore Socrates is mortal. 
 
 It will be noted that the major premise is a generaliza- 
 tion and has the same liability to error that all generaliza- 
 tions have. A person of limited experience will make 
 some generalizations that are false, then of course, his 
 conclusion is false. The child that saw the snow for the 
 first time really reasoned thus: "All things that look 
 like that are sugar, sugar is nice to eat, therefore, this is 
 nice to eat. ' ' The major premise is thus a matter of ex- 
 perience and like all experience is really an association 
 by contiguity. 
 
 The minor premise, however, is a case of association by 
 similarity. When we say, Socrates is mortal, we are, in 
 effect, saying he is similar to other men who have died, 
 therefore we substitute, "Socrates" for "all men" in our 
 major premise and come to the conclusion that Socrates is 
 mortal. There is in deductive reasoning then the possi- 
 bility of error from imperfect generalization in the major 
 premise, or from mistaken ideas of similarity in the 
 minor premise. 
 
 [185]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 Let us now trace the course of the nerve energy in a 
 case of deductive reasoning. 
 
 A four year old child is brought in for a diagnosis of 
 his mentality. The examiner looks at him and says: 
 1 'He will be an imbecile; he will never have more than 
 7 year mentality." "Why?" "Because he is of the 
 Mongolian type." Put in syllogistic form this would 
 stand thus : 
 
 All children of Mongolian type have a mentality of 
 7 years or less. 
 
 This child is a Mongolian. 
 
 Therefore this child will have a mentality of 7 or 
 less. 
 
 The Neuron Picture. The examiner has an elaborate 
 neuron pattern built up from past experience of associ- 
 ations between, on the one hand, visual perceptions of a 
 face with oblique eyes, a head almost as broad as it is long, 
 short stubby fingers, skin that shows poor circulation, 
 weak eyes and sore eye-lids, and the other characteristic 
 appearances of the Mongolian type of defective ; and on 
 the other hand, a neuron pattern for the name "Mon- 
 golian," for the concepts ''imbecile," "mental ages 3 
 to 7." This, it will be seen, is the neuron basis of our 
 major premise. All Mongols have a mentality of 7 or 
 less. At sight of this particular child the "oblique 
 eyes" starts the above neuron pattern which may or 
 may not be interrupted by a conscious judgment in the 
 form of the minor premise "this child is a Mongolian" 
 (is similar to the type called mongol) and when the pat- 
 tern is completely aroused there is inevitably the con- 
 cept "mentality of 7 or less" which we have seen 
 is the conclusion of our syllogism. 
 
 As we have stated it, it is impossible to distinguish 
 
 [186]
 
 REASONING AND JUDGMENT 
 
 the process from a judgment, the process being stimulus 
 Mongol mentally 3 to 7. Just when the formal steps 
 of the syllogism will occur, seems to depend on the com- 
 pleteness of the neuron pattern. If the pattern is 
 closely co-ordinated as the result of frequent use, the 
 process will be so nearly simultaneous as to be in the 
 form of a judgment ; if, on the other hand, the experience 
 has been so limited that the part of the pattern that gives 
 the outward appearance is loosely connected with the 
 neurons giving the concept ''Mongol" and this weakly 
 connected with " mentality 3 to 7 years," the association 
 may be slow and we get the formal steps. It will show 
 in consicousness something as follows: "oblique eyes: 
 stubby fingers : peculiar expression of countenance : looks 
 a little like a Mongolian yes, he is a Mongolian. But 
 Mongolians are never very bright mentality usually 4, 
 sometimes 7, never above that : therefore I can assert con- 
 fidently that this child who is now only four years old 
 will never develop beyond a mentality of 7." 
 
 One may even see the process develop still more slowly. 
 Consider that the examiner calls in a student and 
 says: 
 
 Examiner: What do you say about this child? 
 
 Student: Queer looking boy. 
 
 E. Yes, in what way? 
 
 S. Eyes are unusual. 
 
 E. Yes, what else? 
 
 S. Fingers are short; head is queer shape. 
 
 E. Well, what type does he look like? 
 
 S. Is he a Mongolian? 
 
 E. Well, what do you think? 
 
 S. He looks like it. 
 
 E. Look at him closer. 
 
 [187]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 S. (After careful examination.) Yes, I think lie is a 
 Mongol. 
 
 E. Very well, what does that tell you! 
 
 S. Why, let me see Mongols are very affectionate 
 and not very trainable. 
 
 E. Yes, what mentality? 
 
 S. About 4. 
 
 E. What is the highest? 
 
 S. 7, I think. 
 
 E. Can you therefore say that this child of four years 
 is not likely ever to have a mentality above 7? 
 
 S. Yes. 
 
 Here we see the neuron patterns so incompletely asso- 
 ciated that the neurokyme flows from one to the other 
 only after continual stimulation by the questions of the 
 examiner. If the student were working alone he would 
 arrive at the conclusion still more slowly and perhaps 
 only after considerable more experience. 
 
 If we follow the process in the other direction we may 
 find it so rapid as to be easily considered a perception, 
 and the expert may properly say he perceives a Mongol 
 of not more than 7 year mentality. 
 
 Thus again perception, judgment and reasoning are 
 seen to be the same process, differing only in the ease or 
 speed with which the association takes place. 
 
 The view of judgment and reasoning set forth in the 
 foregoing pages offers an easy explanation of the defect 
 in these processes seen in the feeble-minded. The most 
 common characterization of a feeble-minded person is 
 ' ' One who is lacking in reasoning or in judgment. ' ' Why 
 do they reason so badly? The all embracing answer is 
 because they lack experience. We have seen that experi- 
 ence is fundamental to good judgment and reasoning. 
 
 [188]
 
 THE REASONING OF THE FEEBLE-MINDED 
 
 But the question arises, why do they lack experience when 
 they live in the same world as the rest of us? To answer 
 this we must realize that while they do live in the same 
 world, their environment does not mean to them what it 
 means to the intelligent person, because of their weak as- 
 sociations with their resulting incapacity for abstractions 
 and generalizations. 
 
 We have seen that in inductive reasoning the great 
 source of error is hasty generalization generalizing 
 from a single experience. But the normal person quickly 
 makes a generalization from these very facts, that is to 
 say, finding that his generalizations are often incorrect, 
 he forms the concept that it is unsafe to generalize from 
 a few experiences. He therefore refrains and seeks more 
 experiences, either direct or vicarious, that is, if he him- 
 self cannot get the experience he asks of others. Even 
 when quite young the normal child learns to do this, and 
 if he sees a zebra for the first time, may ask, "Are they 
 always striped!" The incessant questioning of the 
 normal child gives him information which he uses in his 
 reasoning. His curiosity leads him to explore and get 
 a great deal of direct experience which the feeble-minded 
 child never obtains. 
 
 The feeble-minded child is lacking in energy ; possibly 
 his instinctive curiosity is weak, altho the lack of energy 
 would probably account for the result. Because of that 
 lack he does not ask so many questions, and he does not 
 explore. This same condition may account for his not 
 seeing the similarity in things and consequently not asso- 
 ciating where the normal child does. When he comes to 
 deductive reasoning this error of generalization is fun- 
 damental; his major premse is apt to be entirely false. 
 But even if he has a true major premise, his weakness 
 
 [189]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 in seeing the similarity of things results in a failure to 
 formulate the minor premise, or he sees similarities that 
 are unimportant and not significant. Consequently his 
 conclusions do not follow. 
 
 Theodore, twenty-three years old, mentally 5, helps in 
 the poultry department. One day he announced that he 
 had found out how to make a hen lay an egg. As a result 
 of his manipulations several hens died. Killing the 
 goose that laid the golden egg is typical feeble-minded 
 reasoning. 
 
 A moron woman was helping in the pantry. Several 
 plates of oysters on the shell came back from the table 
 untouched. She promptly threw them into the garbage. 
 Asked why she did it, she replied, " Nobody seemed to 
 want them. ' ' 
 
 The accompanying picture speaks for itself. The let- 
 tering on the wagon was done by the moron who stands 
 beside it. Fig. 44. 
 
 Another reason why the mental defective shows poor 
 judgment and reasoning is that his neuron patterns are 
 so simple that he is unable to keep the whole matter in 
 mind so as to see the connection or relation of the differ- 
 ent parts. A low grade imbecile boy if asked whether he 
 is a boy or a girl will say "girl," not because he thinks he 
 is a girl but because he has in mind only the last word 
 said to him and he replies with that. If he were asked 
 if snow was white or black, he would say " black." 
 
 Even a high grade moron, when told the following 
 story, "A man walking in the park suddenly stopped, 
 terrified, ran to the nearest police station, and reported 
 that he had seen hanging from the limb of a tree 
 what f ' ' may answer, * * A leaf. ' ' He has failed to keep in 
 mind all the conditions ; does not see that his answer does 
 
 [190]
 
 o> 
 
 05 
 
 JS O 
 as fl 
 o> v 
 
 1'S 
 
 "o 2 
 
 _ ; CM 
 
 a, o 
 
 j co 
 
 s j: 
 
 .2r -O ^^ 
 rrl co 
 
 "^ ' *. Q 
 
 bib 
 
 r-t 
 fi 
 
 .
 
 SUMMARY 
 
 not account for the person being terrified or for his going 
 to the police station. He has in mind only the last state- 
 ment that was made, that "something was hanging from 
 the limb of the tree.'* A moron under eleven years of 
 age sees nothing absurd if I tell him "I have three 
 brothers ; they are John, Henry and myself. ' ' He is not 
 able to hold the whole situation in mind until the incon- 
 gruity is felt. Charles, a moron of about 8 years' men- 
 tality, was milking; the cow switched him with her tail, 
 whereupon he cut off the hairy portion of the tail; and 
 he did this not only to the cow that he was milking, but to 
 every cow in the barn. This was an impulsive action un- 
 controlled by any reason or judgment. 
 
 Summary 
 
 1. Language is an association between objects, actions 
 or feelings and certain sounds, visual symbols or tactual 
 sensations. 
 
 2. Animals have a few such associations, hence they 
 have the elements of language. 
 
 3. Since animals probably have as a rule but one reac- 
 tion to each stimulus they cannot properly be said to 
 think. 
 
 4. Words, names, are convenient symbols for experi- 
 ences, but for them to be of value one must have had the 
 experiences. 
 
 5. Once the words are established as symbols of ex- 
 periences, they may be associated, remembered, etc., just 
 as the original experience and with a great saving of 
 nerve energy. 
 
 6. Perception is a realized (conscious) relation between 
 two or more sensations, or between a sensation and its 
 word symbol. 
 
 [191]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 7. Judgment is a realized (conscious) relation between 
 two or more perceptions. 
 
 8. Reasoning is a realized (conscious) relation between 
 two or more judgments. 
 
 9. Inductive reasoning is a statement of experience a 
 generalizing. Undeveloped mind generalizes from a 
 single experience and must, nothing else is possible. 
 
 10. Deductive reasoning is substituting, by an associ- 
 ation by similarity, a particular experience (or its sym- 
 bol) for a generalized rule. 
 
 11. Perception, judgment and reasoning are different 
 degrees of the same process. 
 
 12. Immature mind has difficulty with this process be- 
 cause of deficient association neurons. His difficulty in- 
 creases with the increasing complexity of the process : he 
 perceives badly, his judgment is worse and his reasoning 
 the poorest of all. 
 
 [192]
 
 CHAPTER XI 
 ACTION 
 
 THE nervous system with all its wonderful and elaborate 
 mechanism has one function or purpose; viz.: to enable 
 the organism to act. Whether we consider the most 
 primitive nerve structure in the lowest animal in which 
 nerve substance has been found, or the most elaborate 
 brain of the most intellectual man, it is the same. To 
 facilitate action is the end and aim of all nerve structure 
 of all the processes that go to make up what we call 
 mind. The sensations, the perceptions, the ideas, the at- 
 tention, the memory, the judgment, the reason, the imag- 
 ination, all are processes that exist not for their own 
 sake but purely and solely for action. The actions which 
 stimuli produce vary in complexity according to (1) the 
 complexity and (2) the use made of the nervous system. 
 In other words, the perfection of action depends upon the 
 elaborateness of the neuron pattern which in turn is the 
 result of (1) inheritance and (2) the experience of the 
 individual. 
 
 The simplest action is the reflex already described, 
 where a stimulus arouses the simplest type of neuron 
 pattern and leads directly to muscular action, without 
 delay or interference. These reflex arcs are found thru- 
 out the nerve mechanism, especially in the spinal cord and 
 in the sympathetic system. There are great numbers of 
 them and they play a very important part in the vegeta- 
 tive functions the life processes. 
 
 Next is instinctive action, already described and prob- 
 
 [193]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ably differing in no way from reflex except that it involves 
 a somewhat more extensive neuron pattern, and may be 
 accompanied by consciousness. 
 
 Impulsive action or conscious reflex, as it is sometimes 
 called, differs from reflex and instinctive action in that 
 the neuron pattern underlying it is not inherited, but is 
 acquired. When this pattern is once acquired, however, 
 the stimulus leads to its action without any interruption 
 or interference. 
 
 Impulsive action is characteristic of childhood and of 
 undeveloped mind but is also common in adult life. If a 
 child, having a stone in his hand, sees a glass window and 
 the thot of breaking the window comes to him, he throws 
 the stone ; or it may be it is a penny and he has the im- 
 pulse to give it to a beggar and he hands it to him. A 
 man, standing on a station platform intending to take a 
 train, suddenly discovers that the train is moving away. 
 He has an impulse to run and jump on the train. Im- 
 pulsive action has been described as an action following a 
 single idea. 
 
 The most complex of all is volitional action, commonly 
 described as action in response to thot, judgment, will. 
 It is preceded by a state of deliberation (literally a 
 weighing of the inducements). It is an action that one 
 deliberately thinks of and decides to do. It is an action 
 that is the final result of a conflict between two or more 
 ideas (or between a perception and an idea). It is a sub- 
 stitute for an impulsive action. The man who has the im- 
 pulse to run and catch the train will so act if no other thot 
 comes to his mind ; but if it occurs to him that he may fall 
 and get killed, then there is a conflict ; and it has to be de- 
 cided which idea he will follow. If the first idea wins 
 he will run after the train, if the second one wins he will 
 
 [194]
 
 VOLITIONAL ACTION 
 
 stop. It is a thoroly conscious action, indeed it is charac- 
 terized by the fact that the attention is held now upon this 
 phase and now upon that. 
 
 Viewed from the standpoint of the brain activity, voli- 
 tional action is the most complex of all actions and gives 
 us the most complex, elaborate and interesting picture 
 of nerve action that can be imagined. As our example 
 would indicate, it is as tho one had two impulses leading 
 to actions that are contradictory and cannot both be per- 
 formed. Therefore, there is a conflict. Which one will 
 win depends upon several factors. First, it is a question 
 of the elaborateness of the first neuron pattern the one 
 that would have led to impulsive action if the second idea 
 had not appeared. Second, it depends upon how fre- 
 quently one has acted in accordance with either one of 
 the ideas. Third, upon how recently he may have acted 
 upon either one. Fourth, it depends upon the emotional 
 content, that is, the result and emotional tone of a pre- 
 vious action along the same line. Consider these in turn. 
 
 First, the elaborateness of the neuron pattern. This 
 may indeed be so simple that no volitional action is pos- 
 sible, that is to say, it is only impulsive. The child seeing 
 the train start would undoubtedly jump upon it im- 
 pulsively. He has had no experience that has developed 
 an elaborate neuron pattern such as includes the possible 
 danger. The man's pattern, however, includes, in a 
 vague sort of way, the fact that people are sometimes 
 killed from trying to jump on moving trains. But he has 
 frequently done so and never met with an accident, there- 
 fore he makes the attempt. Or it may be that his neuron 
 pattern includes a very elaborate picture of some one fall- 
 ing under a train and being killed. In that case he hesi- 
 tates and perhaps refrains. But his pattern may, besides 
 
 [195]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 this vivid picture, include a vivid picture of the necessity 
 of his taking the train. His business will suffer, there is 
 no other way he can get to where he wishes to go ; he has 
 promised to arrive on that train and he never breaks his 
 promise and so on almost without limit. 
 
 Frequency of action comes in either for or against his 
 first impulse. If he has frequently jumped on trains and 
 never had an accident, that fact will be a powerful in- 
 centive to do the same thing again. If, on the other hand, 
 he has seldom acted in this way but on the contrary has 
 frequently let trains go and leave him, then the probabil- 
 ity is strong that he will act the same way now. It may 
 be that without any direct experience himself he has read 
 or known of a great many people who have been injured 
 by attempting to board moving trains. If that phase of 
 the neuron pattern develops, it in turn will be a strong 
 deterrent to his boarding the train. 
 
 Recency plays a similar role. It may be that he has 
 usually refrained from boarding a moving train, but yes- 
 terday he jumped the train with satisfactory result; 
 there will be a strong tendency for him to do the same to- 
 day. Because the neurokyme has so recently flowed 
 into the pattern leading to that action, it now flows more 
 easily there than elsewhere. On the other hand, he may 
 have frequently boarded moving trains but has very 
 recently learned of some one who had an accident from 
 such procedure; therefore that phase of his nerve pat- 
 tern, having been recently stimulated, may now deter- 
 mine the result. 
 
 Finally the emotional accompaniment to the situation, 
 the pleasantness or unpleasantness accompanying either 
 line of action, will have a strong determining influence 
 in solving the problem. If the overflow of nerve action 
 
 [196]
 
 from the sympathetic system is of a pleasant nature, it 
 augments the flow of energy thru the nerve pattern that 
 leads to the action. If, on the other hand, the emotional 
 content relating to either act is unpleasant, we may have 
 an inhibitory action of the sympathetic, whereby the path 
 to that action is blocked. James says one of the most 
 interesting discoveries of physiology was the discovery of 
 nerves of arrest. The pneumogastric nerve, for example, 
 when stimulated arrests the movements of the heart, the 
 splanchnic nerve arrests those of the intestines. That 
 this inhibitive action may overflow to the motor neurons 
 of the central system is quite possible. If so, we have 
 an explanation of the "blocking"of these paths. 
 
 A distinction has sometimes been made between decid- 
 ing to act or not to act and deciding which of two acts to 
 do. Inasmuch as deciding not to act is in reality decid- 
 ing to continue to do what one had been doing, it all re- 
 solves itself to do the same thing psychologically. The 
 process is not different if, instead of there being two al- 
 ternatives, there are many. The same factors enter into 
 the determination. 
 
 It is customary to call the state of mind that one is in 
 before he finally acts in such case a state of deliberation. 
 The term is convenient and without objection except in so 
 far as it seems -to imply an ego, an "7," that does the de- 
 liberating. Much time has been wasted trying to dis- 
 cover what we do when we deliberate, and how we finally 
 choose. While the process in any particular case is enor- 
 mously complicated and involves such a complex neuron 
 pattern that no one can follow it, yet the general plan is 
 simple. 
 
 ^hat happens when we deliberate seems to be that the 
 nerve energy started by the original stimulus is, because 
 
 [197]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of the elaborateness of the neuron pattern and the 
 other factors that we have spoken of, delayed in its flow 
 and does not lead promptly to the motor paths which 
 would result in action in one direction or the other. 
 
 In other words, in deliberation we are in the very na- 
 ture of the case inactive until the neurokyme finds its 
 outlet over a motor path in accordance with the conditions 
 that we have described. Since consciousness accom- 
 panies the passage of the neurokyme into each part of the 
 pattern, even those that do not lead to action, it is inevit- 
 able that we should feel that we are directing the process, 
 rejecting one idea after another until we finally choose 
 the right one the one that actually leads to the action. 
 
 It may contribute to our understanding of how helpless 
 we are, to recall some of those instances where we cannot 
 decide, tho our will to do so is strong. The following 
 from David Ha rum is typical: 
 
 Julius. Which soup should I take? 
 
 Mary. I should say the consomme. 
 
 Julius. I thought I should like the broth better. 
 
 Mary. I don 't think it will disagree with you. 
 
 Julius. Perhaps I had better have the consomme. 
 Which would you take, Mary? 
 
 Mary. I prescribe champagne for you, Julius. 
 
 Julius. Don't you think a red wine would be better for 
 me, or perhaps some sauterne? I'm afraid I sha'n't 
 sleep if I drink champagne. In fact, I don't think I 
 had better take any wine. Perhaps some ginger ale or 
 Apollinaris water. 
 
 Still better is Mary's description of Julius' struggle 
 with the shoes : 
 
 [198]
 
 OVER INHIBITION 
 
 "When I went back to the room I found my brother-in- 
 law sitting on the edge of the lounge, or what you call it, 
 all dressed but his coat, rubbing his chin between his 
 finger and thumb, and gazing with despairing perplexity 
 at his feet. It seems that my sister had got past all the 
 other dilemmas, but in a moment of inadvertence had 
 left the shoe question to him, with the result that he had 
 put on one russet shoe and one black one, and had laced 
 them up before discovering the discrepancy. 
 
 "His first notion was to take off both shoes and begin 
 all over again, and perhaps if he had been allowed to 
 carry it out he would have been all right; but Alice was 
 silly enough to suggest the obvious thing to him to take 
 off one, and put on the mate to the other and then the 
 trouble began. First he was in favour of the black shoes 
 as being thicker in the sole, and then he reflected that 
 they hadn't been blackened since coming on board. It 
 seemed to him that the russets were more appropriate 
 anyway, but the blacks were easier to lace. Had I noticed 
 whether the men on board were wearing russet or black as 
 a rule, and did Alice remember whether it was one of the 
 russets or one of the blacks that he was saying the other 
 day pinched his toe f He didn 't quite like the looks of a 
 russet shoe with dark trousers, and called us to witness 
 that those he had on were dark; but he thot he remem- 
 bered that it was the black shoe that pinched him. He 
 supposed he could change his trousers and so on, and 
 so on, al fine, de capo, ad lib,, sticking out first one foot 
 and then the other, lifting them alternately to his knee 
 for scrutiny, appealing now to Alice and now to me, and 
 getting more hopelessly bewildered all the time. It 
 went on that way for, it seemed to me, at least half an 
 hour, and at last I said, 'Oh, come now, Julius, take off 
 
 [199]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the brown shoe it's too thin, and doesn't go with your 
 dark trousers, and pinches your toe, and none of the 
 men are wearing them and just put on the other black 
 one, and come along. We're all suffocating for some 
 fresh air, and if you don't get started pretty soon we 
 sha'n't get on deck today.' 'Get on deck!' he said, 
 looking up at me with a puzzled expression, and holding 
 fast to the brown shoe on his knee with both hands, as 
 if he were afraid I would take it away from him by main 
 strength 'get on deck! Why why I believe I'd bet- 
 ter not go out this morning, don't you?' 
 
 Julius belongs to what James has called the "over in- 
 hibited type," his neuron patterns are incomplete because 
 they do not lead to action. It were better that he act 
 wrongly half the time than never to act at all. 
 
 Let us try to diagram Julius' state of mind, assuming 
 that the shoe incident were a part of his preparation for 
 breakfast. 
 
 First, hunger arouses the instinct to eat. Had it been 
 possible (food at hand), Julius might have instinctively 
 satisfied his hunger (short circuit A, Fig. 45) but since 
 he must go in search of food, acquired habits prompted 
 him to dress (longer circuit B, Fig. 45). If he had had 
 good habits of action he would have dressed promptly 
 and gone where he could have eaten. But not having 
 fixed habits in relation to dressing, every step was a 
 conscious one. When he came to shoes, for example, he 
 had two kinds, tan and black. Here habit did rule for 
 a time and he automatically laced his shoes without be- 
 ing conscious that he had put on one black and one tan. 
 When he was once conscious of the two alternatives, a 
 decision must be arrived at (Diagram C, Fig. 45). Again 
 
 [200]
 
 Fig. 45. Scheme to illustrate possible neuron connections in in- 
 stinctive, automatic and deliberative action. A. Short circuit 
 instinctive action : Hungry Eat. B. Longer circuit auto- 
 matic action : Hungry dress eat. C. Deliberative action : 
 "Tan shoes or black shoes" which? Black shoes pattern re- 
 inforced by idea of dark trousers. Tan shoes reinforced by 
 idea that tan are more "appropriate" than the black. No so- 
 lution is indicated. One or the other would finally connect up 
 with the "dressing" pattern. N.B. A single neuron is taken 
 to symbolize a whole idea or neuron pattern.
 
 WEAK WILL 
 
 if he had had a fixed habit of wearing black shoes with 
 dark trousers, the neurokyme would have flowed freely 
 in that direction; or had the black shoes pinched his 
 feet so severely that action in that direction was blocked 
 he would have put on the tan. Similarly the other 
 things that came to mind should have re-enforced one 
 path or the other sufficiently to lead to action. But he 
 had a habit of inaction, hence his dilemma was not 
 solved. We can predict that it was solved finally by one 
 of two methods: either (1) some overwhelmingly strong 
 stimulus (argument) forced action in one neuron pattern 
 or in the other; or (2) consciousness was entirely diverted 
 by some extraneous circumstance (wholly new pattern 
 aroused), with the result that when he came back 
 to " shoes" he automatically put on one pair or the 
 other. 
 
 Volitional action or will is a matter of the neuron 
 patterns, which in turn is a matter of inheritance plus 
 experience. Prof. James has stated the same thing in 
 different form when he says that "the elements of will 
 are ideas, habit of attention and habit of action." The 
 ideas are the organized consciousness that comes from 
 the neuron pattern. Habit of attention means that the 
 neuron pattern involved in the situation holds the centre 
 of consciousness. Habit of action means that the 
 neurokyme has a definite pathway over which it passes 
 into the motor side, leading to action. The absence or 
 weakness of any of these elements results in lack or weak- 
 ness of will. 
 
 Many familiar facts are intelligible if this view is ap- 
 preciated. For example, a man is always weak willed, 
 that is, slow to action, in directions where he has no ideas. 
 For example, I find my house has been robbed. I want to 
 
 [201]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 catch the thief and secure my property, but the days and 
 weeks and months go by and I do nothing. Why? Be- 
 cause, having no experience in the work of a detective, I 
 have no ideas of how to proceed. The neuron pattern 
 underlying the process of catching the thief has never 
 been developed in my brain. The thot of my stolen 
 goods arouses a very simple pattern about a thief and 
 the possibility of catching him. If I could see him I 
 would seize him, but that is about the limit of my experi- 
 ence in such matters. Therefore, altho I may be known 
 as a man of action, as strong willed, as full of ingenuity 
 and efficiency and what-not, nevertheless in this particu- 
 lar matter I manifest weak will. 
 
 James's expression, that the result is determined by the 
 amount of voluntary attention that one can exert in hold- 
 ing to the right ideas, is of course a question of the as- 
 sociated neuron paths. Voluntary attention is, as we 
 have seen, a matter of neuron patterns formed by experi- 
 ence, so that if one has an idea of acting in a certain di- 
 rection he can keep that idea in attention only as the re- 
 sult of having a good many associations which will con- 
 stantly bring up that idea. A man may form a very 
 definite idea of building a fence around his lot. If the 
 neuron pattern underlying the idea of building the fence 
 is connected in his brain with enough neuron patterns 
 so that some one of them will be continually aroused, now 
 by one circumstance and now by another, he will prob- 
 ably be able to keep his attention on the idea of building 
 the fence until it is done, provided he is able to get it done 
 within a reasonable length of time. This latter is an 
 important point. Many times one keeps a certain line 
 of action in mind for considerable period of time, but, if 
 he is baffled in his effort to put in into execution, after 
 
 [202]
 
 STRONG WILL AND WEAK WILL 
 
 a while circumstances of life force other matters into con- 
 sciousness and this line of action is forgotten. 
 
 This brings us naturally to the third clause of James's 
 statement :the " several habits of acting definitely on 
 these ideas to which they have been successfully trained. ' ' 
 A man may have a very definite idea about building a 
 fence, he may keep that idea before himself constantly 
 and day after day repeat to himself that he is going 
 to build the fence, but if he is not a man of action, and 
 especially if he is not in the habit of attending to such 
 things as building fences, the probabilities are that he 
 will build no fence and in that particular at least will be 
 weak willed. 
 
 This view also solves the difficulty we get into when 
 we attempt to classify ourselves or others as persons of 
 strong will or weak will. If we do not make a snap judg- 
 ment and decide upon a single experience we are very 
 apt to find ourselves saying, "He generally does what 
 he sets out to do, still there was that matter that he said 
 he was going to do; there was that other matter that 
 he really ought to have done ; there is something else he 
 has fallen down on." Can we say he is a man of strong 
 will when there are several things of this kind that he 
 does not accomplish? It will be found that, if we could 
 analyse his consciousness, we would find that in each of 
 those instances he was lacking either in ideas or atten- 
 tion or action. 
 
 It is, therefore, impossible to say that one has a 
 "strong will" or "weak will" unless we are speaking in 
 very general terms, which in the end could only mean 
 that, on the one hand, he is a man of ideas and a man 
 of action and usually carries out what occurs to him to 
 do; or, on the other hand, that he has few ideas or so 
 
 [203]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 many interests that he cannot keep his attention upon 
 any one very long, or that he is not in the habit of act- 
 ing, or that sometimes one and sometimes another of 
 these lacks interferes with execution, so that on the whole 
 he is considered a majt who does not often carry out his 
 determination. 
 
 There is undoubtedly another element in volitional ac- 
 tion which has been perhaps too little considered, that is 
 the emotional content of the experience. We have al- 
 ready stated that it seems highly probable that every 
 stimulus which starts activity in a sensory neuron sends 
 a part of its energy into the sympathetic system, which 
 energy returns more or less re-enforced and adds some- 
 thing which we call an element of feeling to the con- 
 sciousness that results directly from the stimulus. If 
 the return element is moderate, it gives rise to a mild 
 feeling of pleasure or displeasure; if it is intense, then 
 we have the emotion. This affective element seems to 
 play a real part in the whole question of volitional action. 
 In considering a particular line of action the neuron pat- 
 tern may be elaborate and complete, one's attention may 
 hold strongly and one may have the habit of action suffi- 
 cient to perform the volitional act. Indeed one may have 
 performed similar acts many times. But now there 
 comes in the consciousness of unpleasant consequences, 
 or a definite feeling of discomfort. Such affective con- 
 sciousnsss very seriously deters one from carrying out 
 the action. 
 
 On the other hand the feeling may be pleasant; even 
 arising to a strong emotion, in which case the action will 
 be performed with unusual and perhaps unnecessary 
 vigour. All the possible degrees and combinations of 
 this influence of the affective state are met with. One 
 
 [204]
 
 THE WEAK WILL OF THE FEEBLE-MINDED 
 
 sometimes sees an angry man, who desires to attack his 
 opponent but is restrained by argument or by force, make 
 repeated efforts to accomplish his purpose, seemingly 
 stimulated thereto each time by a fresh wave of emotion ; 
 and one can easily imagine a new flow of energy from 
 the sympathetic system as each new outbreak appears. 
 
 We have so far drawn our examples and illustrations 
 from the normal adult, but the one source of data which 
 is most convincing is found in persons of immature mind 
 and particularly the feeble-minded. They are so notori- 
 ously lacking in will power that we sometimes reason 
 in the other direction, and when we find a person of ex- 
 ceptionally weak will we are apt to conclude that he is 
 feeble-minded. 
 
 The reason for the weak volitional action of the feeble- 
 minded will be clear from what has already been said. 
 They lack ideas, that is, elaborate neuron patterns, con- 
 sequently they lack the power of acquired attention ; and 
 they lack action, partly because they are naturally lack- 
 ing in energy, and partly because their habits of action 
 are few and limited. 
 
 One of the facts about morons, so characteristic that 
 it is helpfully diagnostic, is their inability to hold a job. 
 
 Every intelligent person knows that there are very 
 few occupations in which one does not at times have to 
 exert all his reason and judgment and will-power to make 
 himself keep at work. The intelligent man keeps at work 
 because he is able to appreciate more or less thoroly the 
 whole situation and to realize that in every occupation 
 there are hardships that have to be borne. The weak 
 minded do not have this foresight these larger ideas 
 and consequently give up the job upon the slightest prov- 
 ocation. It may be a word of correction from the over- 
 
 [205]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 seer; it may be a physical condition which makes the 
 work of the day seem unusually arduous; it may be the 
 attraction of some other job, or any one of scores 
 of things which do not affect the normally intelligent 
 man but will induce the weak minded to leave the 
 work. 
 
 This applies not only to the job that one is employed 
 to do, but, with younger persons especially, it applies 
 even to the task in hand. Every teacher or trainer of 
 the backward or defective child knows that if the task 
 is a little long or a little monotonous it requires an im- 
 mense amount of encouragement to keep the child at it 
 and sometimes even the strongest inducements fail. And 
 the successful teacher knows also that the most success- 
 ful handling of such cases consists in hitting upon an 
 effective inducement, that is to say, in enlarging the 
 child's stock of ideas and in keeping these ideas in his 
 consciousness until the action is completed. Sometimes 
 a single new thot suggested by the teacher is sufficient 
 to keep the child at his work until it is finished. 
 
 It will perhaps occur to the reader that there are 
 many weak minded people who go plodding on, day after 
 day, and year after year at the same job of drudgery with 
 never a complaint and never a suggestion of quitting. 
 It will be found that these are usually cases either of 
 very weak emotion; or of very strong habit, if the job is 
 one that the person has worked at for a long time (as 
 in exceptional cases does occur even with the feeble- 
 minded) and his habit of action keeps him at it. So 
 that in reality these apparent exceptions only prove the 
 correctness of this view. Professor James (28 p. 187) 
 has summed this all up and connects it with what we 
 have already studied by the statement, "To think, in 
 
 [206]
 
 FREEDOM OF THE WILL 
 
 short, is the secret of will just as it is the secret of 
 memory." 
 
 An objection is frequently raised to the view that we 
 have presented, that it makes man a slave to his neuron 
 patterns, whereas every one knows that he can determine 
 his own action, that if he acts in one way he knows that 
 he could have acted in the opposite. It is probably very 
 natural that this feeling should arise and yet it is alto- 
 gether possible that it is a complete delusion. The fact 
 is, that while we have attempted to simplify the process 
 for the sake of a working conception, yet in reality it is 
 so enormously complicated that we inevitably lose our- 
 selves in the mazes ; and not being able to follow in detail 
 the workings of this marvellously intricate mechanism of 
 the nervous system we give up in despair and cut the 
 Gordian knot by weakly assuming a mystical something 
 which we call the will as the power which we use in these 
 cases. Thus we think we have solved the problem. 
 
 This procedure differs only in degree from that of the 
 uncivilized Indian who could not understand the eclipse 
 of the sun and assumed the presence of a powerful animal 
 that was eating it up. It is not a scientific procedure, 
 we really have no right to expect to understand this 
 matter thoroly because the thing we are trying to under- 
 stand is the very tiling that we understand with. We 
 are in the same difficulty as the poet that cried, "Oh wad 
 some power the giftie gie us to see ourselves as ithers 
 see us." We cannot see ourselves, because it is we our- 
 selves who are trying to do the seeing. The eye cannot 
 see itself. There are, however, other people acting be- 
 sides ourselves and we ought to be able to understand 
 their action if not our own. 
 
 It is an interesting fact that when we look at the action 
 
 [207]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of other people we are much more inclined to admit that 
 they could not act differently than they do. In fact when 
 we do not admit it, it is because we carry over to them 
 our own feeling; we know we can act as we wish, there- 
 fore they can do the same. It is true, we do this to a 
 large extent, nevertheless we often do admit that others 
 are the victims of circumstances the slaves of their en- 
 vironment. We are quite accustomed to think of children 
 in this way and especially of the feeble-minded. 
 
 Automatic Action. We have already alluded to auto- 
 matic action and we are now in a position to understand 
 clearly what it is. In discussing volitional action we said 
 that the stimulus which, if unimpeded, would naturally 
 result in an impulsive action, is opposed by an idea which 
 of itself would lead to a different action. We have 
 also seen that in such a case no action is possible 
 until the nerve energy has found an outlet by following 
 the neuron patterns that have already been worked out 
 thru experience. Now, such a pattern once having been 
 followed by the nerve energy will be followed again and 
 the second time naturally more quickly and easily, and 
 still more quickly and easily upon later occasions; so 
 that ultimately this new path becomes as quickly and 
 promptly followed as that of an impulsive action or an 
 instinctive action or even a pure reflex. 
 
 Stated in more popular language, this says that once 
 we have decided a question and acted in a certain way, 
 the next time the question comes up we do not deliberate 
 but act as we did before. We do not go thru the labour 
 of deciding it again. Such an action is called automatic. 
 A single illustration will be sufficient. Suppose one lives 
 in a, city with the streets laid out at right angles; the 
 Post Office to which he goes daily is, let us say, three 
 
 [208]
 
 blocks east and four blocks south ; there are consequently 
 a large number of different ways that he can get from his 
 home to the Post Office. The distance will be the same 
 by all routes. Several of them are equally interesting 
 and satisfactory. The first time he goes from his house 
 to the Post Office he has to decide which way he will go. 
 But having decided and gone a particular way, the next 
 day he will probably go the same way ; and if so, the third 
 day and upon all later occasions he follows that route 
 without the slightest deliberation, without even being con- 
 scious of where he has gone and we say commonly and 
 correctly, he has gone automatically. 
 
 It may be well to note that at any time something may 
 occur to raise the question again and something may 
 determine him to go by a different route, in which case 
 the action again becomes volitional only again to be re- 
 duced to an automatic action. It may also be pointed 
 out that the liability of the question having to be decided 
 a second time depends upon attention, reason, judgment, 
 which in the last analysis is experience an elaborate 
 neuron pattern. 
 
 In automatic action immature mind is sharply differ- 
 entiated from mature mind. The feeble-minded person, 
 having a habit fixed upon him, changes the habit with the 
 greatest difficulty if at all. The feeble-minded man who 
 had gone to the Post Office by a particular route would 
 continue to go by that route, tho it were flooded and he 
 had to wade thru ice-water. This shows constantly in 
 the training of such a person. Having been trained to 
 do a thing in a particular way, he will continue to do it 
 that way even when conditions are changed and to the 
 intelligent mind the fact is most obvious that it should 
 be done differently. 
 
 [209]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 This is at once the strength and weakness of the feeble- 
 minded. With the limitations that they have, it is ex- 
 tremely fortunate that we can train them to certain lines 
 of action and be sure that once trained they will follow 
 those same lines. On the other hand, circumstances are 
 always liable to occur which make it desirable, and often 
 imperative, that a variation should be made. There- 
 fore it is necessary that such immature minds should be 
 under the oversight of some one who knows their habits, 
 who knows what they will do and who can, so far as pos 
 sible, see to it that they change their procedure when the 
 circumstances require it. 
 
 Automatic action is one of the types of action that 
 constitute habitual actions. We shall therefore consider 
 the subject of habit in the next chapter. 
 
 Summary. 
 
 1. The purpose of a nervous system is to enable the 
 organism to act. 
 
 2. The perfection of action depends on the elaborate- 
 ness of the neuron patterns. These depend on the in- 
 herited neurons and the acquistions from experience. 
 
 3. The inherited neuron patterns are the bases for re- 
 flex, instinctive and impulsive action. 
 
 4. Volitional action and automatic action depend upon 
 acquired neuron patterns. 
 
 5. Volitional action is the result of a conflict between 
 two ideas or between a perception and an idea. 
 
 6. Volitional action is preceded by a state of delibera- 
 tion the neurokyme interrupted in its natural flow 
 seeks new outlets to motor neurons. 
 
 7. The neuron pattern that will be finally followed (end 
 of the deliberation) is determined by the elaborateness 
 
 [210]
 
 SUMMARY 
 
 of the patterns involved, by frequency, recency and emo- 
 tional content by how much the sympathetic system en- 
 ters into the process. 
 
 8. Consciousness merely makes us aware of what is 
 going on : it has nothing to do with determining the final 
 direction of the flow. 
 
 9. Immature mind including mental defectiveness ia 
 weak in volitional action, because of lack of association 
 neurons or in James' terms, few ideas, weak attention 
 and few habits of action. 
 
 10. When the circumstances, giving rise to a volitional 
 action, occur a second time one does not again deliberate 
 but acts as he did before, automatically. This is auto- 
 matic action. 
 
 [211]
 
 CHAPTER XII 
 HABIT 
 
 Habit is a term to conjure by. It has been the theme 
 of orators and essayists, lecturers and preachers. James 
 in his famous chapter makes it society's "most precious 
 conservative agent," and for the individual the "spin- 
 ning our own fates, good or evil, and never to be undone. ' ' 
 Rousseau inveighed against it, saying that Entile should 
 be so educated as to "form no habits except the habit 
 of forming no habits. ' ' We excuse our shortcomings by 
 pleading an unfortunate habit. Too often the emphasis 
 is laid on bad habits and we are urged not to become the 
 slaves of habit. 
 
 Much of the confusion has arisen, like Rousseau's ab- 
 surd doctrine, from erroneous conceptions of the nature 
 of habit and its place in human economy. It is true that 
 habit is in a sense opposed to thot ; and a person who is 
 too much given over to habit, fails to use his intelligence. 
 
 What is this habit that is so much talked about and 
 so little appreciated! Psychologically considered, habit 
 is an automatic or impulsive action, or a group of such 
 actions, so co-ordinated as to result in the performance 
 of a more or less complicated act, with a minimum of con- 
 sciousness. 
 
 Habit has sometimes been called an acquired instinct, 
 just as instinct has been defined as an inherited habit. 
 The only value of these expressions, however, is that they 
 call attention to a certain relation between instinct and 
 habit and probably have arisen because an instinctive 
 
 [212]
 
 HABIT 
 
 action and a habit are in outward appearance the same, 
 differing only in origin. The instinct, as we have seen, 
 is the result of activity in an inherited neuron pattern, 
 while habit is more often the result of action in a neuron 
 pattern that is acquired, but which has been stimulated 
 so often that the neurokyme flows easily, and little or no 
 consciousness results. 
 
 The natural history of a habit is as follows: First 
 there is an impulse to act in a certain way, fully con- 
 scious but unopposed; hence the action occurs; the next 
 time the same impulse comes, action follows with a little 
 less consciousness; soon the action is habitual. For 
 example, in Heidelberg I had an impulse to ride my 
 bicycle along the Hauptstrasse. I did so, very conscious 
 of the narrow crowded street and of the rather strange 
 fact that there were no other bicyclists in sight. Next 
 morning I repeated it, but thot less about the crowd and 
 the absence of bicyclists. The third morning I thot of 
 nothing but my plans for the day. The habit was 
 formed. The fourth morning I was astonished at being 
 stopped by a policeman. For some time I could not com- 
 prehend his gestures or his words. My riding a bicycle 
 on the Hauptstrasse had become so habitual, so uncon- 
 scious, that it did not occur to me that the policeman re- 
 ferred to that when he said "Verboten." At last how- 
 ever, it was clear ! I must not ride on the Hauptstrasse, 
 but could turn down a side street, etc. I did so, fully re- 
 solved to obey the law, and did obey it all day. The fifth 
 morning found me a block and a half down the Haupt- 
 strasse and a couple of small boys calling, "Verboten! 
 Verboten!" I promptly dismounted and walked to the 
 next side street. My habit, following that first impulse, 
 had carried me where I had no intention of going. 
 
 [213]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The foregoing shows a habit based on an impulse and 
 many habits are of that type. There is, however, another 
 class of habits those based on a volitional action. Had 
 that impulse to ride along the Hauptstrasse been met by 
 an idea such as, "It is not safe to ride along so crowded 
 a street," the act would at once have become a subject 
 for deliberation and, whatever the outcome, it would have 
 been a volitional action. Had I decided to go ahead and 
 ride down the street, the remaining history would have 
 been the same as it was under the impulse, except that 
 I probably would have more quickly understood the 
 policeman. Having myself deliberated as to the wisdom 
 of riding on that street, more or less elaborate neuron 
 patterns would have been aroused, so that when the 
 policeman stopped me I would almost certainly have had 
 an association by which I would have thot of the bicycle 
 riding and would have been ready for his explanation. 
 It is also possible that the habit would not have been so 
 quickly formed and hence would have been more easily 
 broken on that fourth morning. Having deliberated the 
 first morning, some memory of that would have remained 
 the second and third and later mornings. I would not 
 have lapsed into unconscious habitual action so soon 
 the fourth morning. 
 
 This difference between impulsive habits and voluntary 
 habits is of considerable importance, since the failure 
 to recognize this difference may account for some of the 
 confused ideas and irrational treatment of the subject of 
 habit. For example, had Rousseau said let Emile form 
 no impulsive habits, he would have contributed a valuable 
 suggestion and one which is probably well worth follow- 
 ing. Let us see. 
 
 Habit, like fire, is a good servant but a bad master. 
 
 [214]
 
 Aside from the fact that any impulsive action, being ir- 
 rational, is dangerous ; the fact that it may start a habit, 
 and thus the danger be perpetuated, surely renders the 
 impulsive habit most undesirable. 
 
 Moreover, when we classify habits as is popularly done 
 into good and bad, we find that most of the bad habits 
 are of the impulsive kind. An intelligent man neither 
 deliberately starts a bad habit nor keeps it up. 
 
 Undesirable habits are either (1) impulsive, or (2) if 
 deliberative, are the result of a deliberation where there 
 was incomplete knowledge, or (3) they are habits that 
 were once useful but have become disadvantageous thru 
 change of circumstances. An example of (2) would be 
 my bicycle riding on the Hauptstrasse, following delibera- 
 tion. My deliberation resulted in a wrong decision be- 
 cause I did not know that riding on the Hauptstrasse was 
 against the law ; an example of (3) is the well-known story 
 of the ex-soldier with his arms full of bundles. When 
 some one shouted "attention," his army habit asserted 
 itself and down went his hands to his side spilling all the 
 bundles. The habit had been deliberately formed and 
 was essential to success in the army, but was very much 
 in the way outside the army. 
 
 It is thus evident that impulsive habits are at least 
 dangerous. It would be far wiser to form the habit of 
 not acting impulsively. This brings us to habits that are 
 deliberately formed. 
 
 The deliberate forming of useful habits is the most 
 important work of education, both self-education and edu- 
 cation by preceptors. It has been too much neglected. 
 It is a matter, as James says, of "making our nervous 
 systems our allies instead of our enemies." It is turn- 
 ing over to our lower nerve centres the performance of 
 
 [215]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 as much of the routine of life as possible, so that the 
 higher centres may be free to deal with new problems. 
 
 Fortunately an immense amount of our daily activity 
 becomes habitual without any effort on our part. But 
 much more benefit could be derived from this power if we 
 consciously planned for it. The business of childhood 
 and youth should be the deliberate formation of useful 
 habits. Compared to this, the mere acquisition of knowl- 
 edge is a waste of time. 
 
 From this standpoint one is compelled to regard the 
 frenzied efforts to make children into precocious scholars 
 as a pitiable perversion of child nature. A nervous 
 system trained to function usefully is the all-important 
 foundation for future greatness. Nervous systems grow 
 and acquire their co-ordinations slowly but surely. To 
 ignore the development of these lower nerve centres and 
 the formation of valuable habits, and instead to waste 
 the time in a futile attempt to hasten the functioning of 
 the great association areas, is nothing less than a perver- 
 sion of nature. Such efforts invariably prove disastrous 
 in one way or another. Sometimes they result in in- 
 sanity, sometimes they produce useless prigs, and some- 
 times early death. 
 
 There are gifted children, children who have exception- 
 ally good nervous systems, who have, accidentally or 
 otherwise, exceptionally good early environment and op- 
 portunities, and as a consequence are precocious. Such 
 precocity means that the child can, if rightly treated, 
 form an unusually large number of useful nerve habits 
 and perhaps in less than the usual time; and thus be 
 ready with a nervous mechanism remarkably equipped 
 for application to the great problems of life as soon as 
 his great association areas are developed. With such 
 
 [216]
 
 possibilities it is nothing less than tragedy when parental 
 pride or pedagogical conceit steps in and, ignorant of 
 fundamental necessities, attempts to develop precocious 
 attainments along so-called academic lines. 
 
 Nothing can be sadder than the sight of a gifted child 
 exhibiting unusual advancement in reading, writing or 
 arithmetic, but without any well formed habits of eating, 
 sleeping, dressing, playing, working in short without 
 any evidence of having reduced to the automatic action 
 of his lower nerve centres that great mass of routine 
 activities which must underlie all future greatness. 
 
 For the sake of emphasizing this point let us put in 
 parallel columns the activities of the beginning of the 
 day, first for the man who has reduced them to habit, and 
 beside it for the man who has no habits of action in re- 
 gard to these matters of daily routine. 
 
 HABIT 
 
 Wake 7 o'clock. Out of bed. 
 
 Bath. 
 
 Dress in clothes habitually worn 
 on the road. 
 
 Breakfast at the club, 
 eggs, rolls, coffee. 
 
 Cereal, 
 
 NO HABIT 
 
 (Wake 7 o'clock.) Time to get 
 up. More comfortable here in bed. 
 Have work to do, but there is no 
 rush. Breakfast will get cold 
 don't know that I care for break- 
 fast. However, I will get up. 
 
 (Sees bath tub.) Shall I take a 
 bath? Water is pretty cold. I had 
 one yesterday. I like a bath but it 
 takes time. Tomorrow I shall be 
 on the road and have no chance 
 therefore I must take a bath now. 
 
 Shall I put on the brown suit or 
 the grey? The brown is prettier 
 but the grey is a little better for 
 travelling because it does not show 
 the dust. The brown is newer but it 
 doesn't fit quite so well as the grey. 
 Think I will wear the grey. Oh, it 
 is at the tailor's! 
 
 Let me see, what shall I eat? 
 Shall I take coffee? I like it but 
 
 [217]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 HABIT yo HABIT 
 
 am not sure whether it is healthy. 
 Dr. Blank says: etc., etc., etc. 
 (Think of the endless possibilities 
 of a Menu Card for a man who has 
 no habits for eating.) 
 
 Having now glimpsed something of the importance of 
 habit we come back to our concept of voluntary habits. 
 
 Every act that, in the course of the daily life, is likely 
 to be repeated should be consciously considered and a de- 
 cision reached as to whether it would be desirable as a 
 habit. If the decision is in the negative the action should 
 not be performed, or if it must be done once let it not be 
 repeated, or at least let it never be done without full con- 
 sciousness and deliberation, keep it always a voluntary 
 action required by the exigencies of the situation. If it 
 be decided that this habit will be a desirable one, then 
 devote all energies to the formation of such habit. 
 
 James' (28) maxims for habit forming should be fol- 
 lowed to the letter. We repeat them here, but without 
 his masterly comments. 
 
 First, in the acquisition of a new habit, or the leaving 
 off of an old one, we must take care to launch ourselves 
 with as strong and decided an initiative as possible. 
 
 Second, Never suffer an exception to occur till the new 
 habit is securely rooted in your life. 
 
 Third, Seize the very first possible opportunity to act 
 on every resolution you make, and on every emotional 
 prompting you may experience in the direction of the 
 habits you aspire to gain. 
 
 Fourth, Don't preach too much to your pupils or 
 abound in good talk in the abstract. 
 
 Fifth, Keep the faculty of effort alive in you by a little 
 gratuitous exercise every day. 
 
 Just as one should not repeat an act that would be un- 
 
 [218]
 
 KEEPING GOOD HABITS 
 
 desirable as a habit, so one frequently will repeat an 
 habitual act for no other reason than to keep up the 
 habit. The intelligent man often inconveniences himself 
 rather than run the risk of breaking a useful habit. For 
 example one is in the habit of taking a walk for exercise 
 at a certain hour each day. But there comes a day when 
 business seems to demand that he give up his walk for 
 once. To which he replies, "No, this is an important 
 habit, I will not risk breaking it, by omitting it for a 
 single day. ' J Some rise always at the same hour, summer 
 and winter, Sundays and week days, rather than break 
 the habit. Some insist on eating at precisely the same 
 hours every day and there is little doubt that such 
 regularity is beneficial to the organism. The organism 
 adapts itself to these regular habits in beneficial ways 
 that are too little appreciated. Stanley Hall used to say 
 that, always having given his academic lectures at 11 
 A. M., he found he not only lectured better at that hour, 
 but when not lecturing he was more vivacious in conversa- 
 tion at that time of day. Most people who have a regular 
 place as well as a regular time for work, find that they 
 work better in their accustomed place than elsewhere. 
 Undoubtedly this all means a saving of energy ; hence the 
 importance of considering all such matters in the light 
 of habit formation. 
 
 We have given three reasons why we have undesirable 
 habits: First, because they were formed impulsively; 
 second, altho deliberative, they were formed on the basis 
 of imperfect knowledge; and third, circumstances have 
 changed so that habits that were once useful are now 
 detrimental. This raises the question of the possibility 
 of breaking a habit. We are often told that habits are 
 easily formed but broken with difficulty. This is one of 
 
 [219]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 those half truths that may work much harm thru the 
 potent suggestion that it is almost useless to try to break 
 a well formed habit. We have only to recall our 
 psychology and the nature of habit to see a way out. 
 
 It is true that the more firmly a habit is rooted the 
 more difficult it is to uproot. If we have gotten to the 
 condition where the presentation of the stimulus results 
 promptly in a neuron activity that leads to the perform- 
 ance of the act entirely without consciousness, it most 
 certainly will be only by special effort that we shall be 
 able to block this action. But that it can be blocked is a 
 matter of every day experience. In fact, we do change 
 our habits daily. A habit most easily formed is that of 
 sleep. A healthy person can very quickly establish the 
 habit of going to sleep at a certain hour and awakening 
 at a certain hour in the morning. The habit is some- 
 times so strong that persons will go to sleep at the regular 
 hour no matter what the circumstances, and they will 
 sleep until their usual hour in the morning no matter how 
 much noise or disturbance there may be around them. 
 But let a man change his occupation or his routine of 
 life and, while he may experience some difficulty for a 
 day or two, usually in a surprisingly short period of time 
 he has entirely readjusted his habits in this particular. 
 It is just as easy to rise at six o'clock in the morning as 
 it has been to rise at seven. 
 
 Moreover, we change a great many habits uncon- 
 sciously, as is testified to by the common experience of 
 discovering that we once had the habit of doing so-and-so 
 but we have gotten out of it, we know not how or why. 
 We can see the method best by considering a deeply 
 rooted habit that is really difficult to break. Psychologi- 
 cally the rule for breaking a habit is easily stated. It 
 
 [220]
 
 BREAKING BAD HABITS 
 
 is only necessary to restore the consciousness in connec- 
 tion with the action. That is to say, bring it back again 
 to a deliberative voluntary act. Under this new delibera- 
 tion the new data resulting from experience and the con- 
 viction that the habit is bad will result in a decision 
 against the action. 
 
 The difficulty, of course, comes from the fact that, once 
 the action has become unconscious, it is performed upon 
 the presentation of the stimulus before we have time 
 to think about it. But here the law of association comos 
 to our rescue, and it is only necessary to call up the 
 stimulus and persistently associate with it the conse- 
 quences of the undesirable habit so that the next time 
 the stimulus is presented it will arouse the new neuron 
 pattern, which brings to consciousness the undesirable 
 result, and then to act promptly in the new way. 
 
 James has given us the key to the situation in his il- 
 lustration of the man who wished to reform his drink 
 habit and who advertised that he would give any one fifty 
 dollars who should see him in a saloon after a certain 
 date. By this drastic procedure he has associated with 
 the stimulus the sight of a saloon or the feeling of thirst 
 the unpleasant consequences the loss of his $50.00. 
 This will inevitably bring to consciousness the whole situ- 
 ation and enable him to voluntarily walk away from the 
 saloon instead of into it. 
 
 There will, of course, be a conflict here between the 
 old neuron pattern and the new; and something will de- 
 pend, as we have already intimated, upon the prompt- 
 ness with which he is able to act upon the new suggestion. 
 If he stands before the saloon door too long he may forget 
 his $50.00, in which case he has failed to break his habit. 
 If, however, he walks promptly past, he has won. 
 
 [221]
 
 It will be seen that in most cases the breaking of an old 
 undesirable habit is best accomplished by the formation 
 of a new and contradictory habit. Therefore James' 
 rules for habit formation are, in reality, the solution of 
 the problem of breaking old habits. In other words, bar- 
 riers must be built up to prevent action in the direction 
 of the undesirable habit. If I am in the habit of cross- 
 ing my neighbour 's lot on my way to business, but, upon 
 finding that he objects to my passing that way, decide to 
 go around, I may nevertheless find myself half way across 
 the lot before I remember that I had intended to go by 
 a different way. If, however, upon the next occasion I 
 find a barrier has been built up and I cannot get thru, 
 then I retrace my steps and probably never go that way 
 again. The habit has been broken. 
 
 This may suggest a rule for breaking a bad habit. We 
 must build barriers so that we cannot act in the direction 
 of the old habit. It may not be feasible to offer a re- 
 ward of fifty dollars if we are caught acting upon the 
 habit, but it is always possible to find some way of estab- 
 lishing a barrier which will compel us to reform. We 
 have urged that, so far as possible, habits should all be- 
 long to the voluntary class, that we should not act im- 
 pulsively. 
 
 In all this we are thinking of adults who would con- 
 sciously direct their own habit formation or of normal 
 children whose habits should be moulded by intelligent 
 adults. There seems to be no reason why these facts 
 about habit and the principles about habit formation 
 should not be taught to children fairly early, to the end 
 that they may intelligently co-operate in the establish- 
 ment of useful habits for themselves. 
 
 Let us now turn to the feeble-minded. Here we have 
 
 [222]
 
 HABIT AND FEEBLE-MINDEDNESS 
 
 an entirely different problem. We have seen that the 
 feeble-minded are lacking in the higher intellectual 
 processes. It is therefore useless to expect them to de- 
 liberate and decide intelligently in regard to the forma- 
 tion of habits. 
 
 But on the other hand, because they are lacking in rea- 
 son and judgment and the ability to deliberate and act 
 rationally in new situations, they are all the more the 
 creatures of habit. It results from both these facts that 
 the wise and intelligent training of the feeble-minded 
 consists largely in establishing in them good habits ; and 
 this means of course, not appealing to their reason, which 
 they have not, but in requiring of them such action as 
 will result in good habits. Left to themselves their 
 habits are as apt to be bad as good, but under wise treat- 
 ment they can be kept from forming the bad habits and 
 made to form useful ones. In this way their lack of judg- 
 ment and ability to meet new situations is partially 
 counteracted. 
 
 A difficulty still exists, of course, in the fact that the 
 feeble-minded person will always act in accordance with 
 his habits, even in those situations where the intelligent 
 person would use judgment and modify his habitual ac- 
 tion. There is no way of overcoming this difficulty ex- 
 cept by keeping the feeble-minded person in an environ- 
 ment where new situations do not arise; but where, in- 
 stead, it will always be right for him to act in accord- 
 ance with the habits that he has acquired. If his lack 
 of reason and initiative prevents him from acting prop- 
 erly in the new situation, it also is a safeguard in that 
 it keeps him from breaking the good habit and forming 
 a bad one. 
 
 Among the feeble-minded, habits are unusually persist- 
 
 [223]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ent. It must be noted, however, that while the feeble- 
 minded man himself is unable to break his good habits 
 and go wrong, it is entirely possible for intelligent per- 
 sons of evil mind to lead him astray. They can block his 
 good action and establish in him the habit of acting 
 wrongly in accordance with their own suggestions. This 
 points once more to the necessity of keeping these child- 
 minds away from the influence of bad persons. The in- 
 stitution or colony managed by good and intelligent adults 
 accomplishes this in the most thoro way. Where such a 
 solution is impracticable there should be in the child's 
 home group some person or persons who would have the 
 responsibility of guiding and protecting him and prevent- 
 ing evil-minded persons from disturbing his well estab- 
 lished good habits. When the psychology of habit is thus 
 fully appreciated and applied to all grades of immature 
 mind many social problems will be greatly lessened. 
 
 Summary. 
 
 1. Habits are of two kinds, impulsive and volitional. 
 
 2. Impulsive habits resulting from an unimpeded im- 
 pulse are, like impulsive action itself, dangerous be- 
 cause they are as likely to be to the disadvantage of the 
 individual as to his benefit. Most bad habits are impul- 
 sive. 
 
 3. Voluntary habits may be of the highest value. 
 When not useful it is either because the original choice of 
 action was based on imperfect knowledge resulting in a 
 wrong decision or because of a change of circumstances. 
 
 4. The deliberate formation of useful habits is the most 
 important work of education. 
 
 5. It is not impossible and usually not difficult to break 
 habits, if one goes about it rationally with an understand- 
 ing of the psychology involved. 
 
 [224]
 
 SUMMARY 
 
 6. The feeble-minded form habits easily and change 
 them with difficulty. 
 
 7. Therefore habits are of the highest importance in 
 the training, care and control of the defective. 
 
 [225]
 
 CHAPTER XIII 
 TEMPERAMENT 
 
 IN the foregoing discussion of various mental processes 
 or manifestations of mind, we have invariably been 
 driven back to two sources of man's mental make-up: 
 heredity and environment sometimes called nature and 
 nurture, or as we have repeatedly used the terms, the 
 natural and the acquired. 
 
 Under natural endowment we have emphasized the fact 
 that man is born with certain neuron patterns ready for 
 action and that whenever the proper stimulus is applied, 
 the corresponding action takes place. This is necessarily 
 the same in the child as in the parent, the same that has 
 been in the race from the beginning. 
 
 Under acquisitions we have referred to the neuron pat- 
 terns that have been developed thru experience. The 
 acquired neuron patterns are dependent upon the experi- 
 ences the individual has had, and the way in which differ- 
 ent events are coupled up. It is evident that the pos- 
 sibilities here are infinite, limited only by the way things 
 occur in nature or can be brot together. 
 
 Up to the present time we have laid the greatest stress 
 upon this matter of experience because it is more possible 
 of control; and being of such profound significance for 
 the individual, it constitutes a problem of education. 
 Since all the possibilities of reason, judgment and will, in 
 the higher forms at least, are dependent upon experience, 
 it should be the function of education to see to it that the 
 child has all of the most desirable experiences. 
 
 [226]
 
 It now becomes necessary to consider a little more fully 
 the question of inheritance. It is entirely possible that 
 the variations in inheritance are quite as great as those 
 of environment. In other words, human beings differ 
 enormously in their original nature. It has been custom-> 
 ary to consider some of these fundamental differences in 
 mental make-up as temperamental. 
 
 So little is known of temperament that it is hardly a 
 scientific subject. It is still spoken of as a doctrine. 
 Galen, who flourished in the second century of our era, 
 recognized four temperaments, and the terms are still 
 used in popular language. There were the full-blooded, 
 or sanguine, which is warm, impressional and change- 
 able ; the phlegmatic, which is quiet, slow and persistent ; 
 the bilious, or choleric, which is energetic and pre- 
 dominantly objective; and the melancholic, which is 
 sentimental and has a marked tendency to subjectivity in 
 excessive form. 
 
 It will be noted that these terms are all taken from 
 either real or imaginary fluids of the body, such as the 
 blood, the phlegm, the yellow bile, and the black bile. 
 While the names of the temperaments are still used with 
 the significance above indicated, the connection with body 
 fluids is no longer taken seriously. 
 
 Titchener (51) makes temperament dependent upon the 
 rapidity of thot and the strength of the affection, the 
 combination of these giving the four possibilities. For 
 instance, strong affection and quick thot is the choleric, 
 strong affection and slow thot the melancholic; weak af- 
 fection and quick thot, the sanguine; weak affection and 
 slow thot the phlegmatic. 
 
 Eecent discoveries make it not impossible that we may 
 ultimately have a theory of temperament which will com- 
 
 [227]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 bine these two views, the ancient and the modern. The 
 modern is reasonable since rapidity of thot would be a 
 question of neurons and neuron conductions, especially 
 in the cortex. While strength of the affection can easily 
 be correlated with Mosso's view which we have accepted, 
 that the emotions are located in or conditioned by the 
 sympathetic nervous system. This view, as a whole then, 
 recognizes the possibility of hereditary differences in the 
 neurons of the cortex and in the structure of the sym- 
 pathetic nervous system. 
 
 Moreover, Cannon's and Crile's discoveries and other 
 work with the ductless glands make it entirely possible 
 that, while we may not be dealing with blood, yellow bile, 
 and whatever fluids the ancients thot of under the name 
 of black bile and phlegm, we may nevertheless be deal- 
 ing with such fluids as are secreted by adrenal glands, 
 thyroid glands, the thymus, and the other glands of in- 
 ternal secretion. It would seem quite probable then that 
 we are to think of different individuals as having in- 
 herited different constitutions in these particulars. 
 
 Differences in neurons may be in their chemical 
 composition and the rapidity with which they transmit 
 impulses, the quickness or slowness with which they are 
 restored after being fatigued, their tendency to branch- 
 ing, affecting the number or synapses and probably other 
 conditions little appreciated today. 
 
 Differences in the sympathetic system may also be 
 along these same lines. There may be differences in con- 
 ductivity here, resulting in different influences upon dif- 
 ferent glands ; and perhaps most variable and important 
 of all, differences in the glands themselves. For ex- 
 ample, Cannon's (8) work makes it entirely possible that 
 
 [228]
 
 TEMPERAMENT IN THE FEEBLE-MINDED 
 
 a difference in the influence of a nerve impulse upon the 
 adrenal gland, may make a difference in the amount of 
 secretion poured into the blood, with the result that one 
 person gets violently angry, or is subject to strong fear, 
 whereas another person is moderate in these emotions. 
 
 The effect of the glandular secretions upon the whole 
 organism is very definitely known in at least one case, 
 that is, the result of the absence of, or lack of function in, 
 the thyroid gland, giving rise to the very peculiar in- 
 dividual, known as the Cretin. 
 
 About all we can do at the present time is to recognize 
 that there are actually these differences in what we call 
 temperament, to attempt to classify individuals, and to 
 note how the presence of the sanguine, the choleric, the 
 phlegmatic, and the melancholic temperaments affects the 
 individuals in their relations to each other and to society. 
 
 The problem has not, as yet, been studied in connec- 
 tion with the feeble-minded, altho it is evident that these 
 temperaments are all found among these people and have 
 marked influence upon their social career and bearing; 
 and in that connection are of great importance in the 
 whole question of what is to be the solution of the feeble- 
 minded problem. The sanguine and choleric feeble- 
 minded persons are the ones who are most apt to get 
 into trouble and be the most serious menace to society; 
 while the phlegmatic and melancholic are much less 
 dangerous. 
 
 It should be noted that the whole problem is much 
 complicated by the fact that there is no sharp line be- 
 tween these four temperaments and most persons are 
 more or less a combination of two or three. Evidently 
 the underlying glandular or nervous conditions are unit 
 
 [229]
 
 characters which are transmitted in accordance with the 
 Mendelian formula, with the result that we have all pos- 
 sible combinations. 
 
 Summary. 
 
 1. Temperament relates to inherited conditions of the 
 nervous system both cerebrospinal and sympathetic 
 and of the glands of internal secretion. 
 
 2. Recent discoveries, notably Cannon's, of the role of 
 the glands of internal secretion paves the way for a 
 modern theory of temperament combining the classical 
 one of connection with body fluids and Titchener's 
 modern view of the combinations of quick and slow thot 
 and strong or weak affection. 
 
 3. Temperament undoubtedly plays an important role 
 among the feeble-minded determining to a large extent 
 their social adaptation. 
 
 4. Eoughly speaking, the phlegmatic and melancholic 
 are rather easily controlled while the choleric and 
 sanguine cause most of the trouble met with in their care. 
 
 [230]
 
 PART II
 
 CHAPTER I 
 
 THE test of any theory is the completeness with which 
 it explains known facts. The presentation of the facts 
 of mental processes as set forth in the preceding chapters 
 is in some respects different from that usually found. 
 We have been led to this point of view by the study of 
 the feeble-minded; and have been confirmed in these 
 views by the wide application they seem to have, not only 
 to the feeble-minded but to many common phenomena of 
 life. We shall attempt in the following chapters to point 
 out some of these applications. 
 
 Perhaps the most important and far reaching of all 
 the concepts developed is that of mental levels and the 
 arrest of mental development. We have assumed in an 
 earlier chapter that brain and mind develop normally 
 until about the age of twenty, with the average, according 
 to Terman, at about sixteen. The feeble-minded have 
 long been considered cases where development is arrested 
 previous to the point of complete maturity; more 
 specifically, previous to the beginning of adolescence, or 
 as it is more commonly stated, previous to the age of 
 twelve. The discovery of the moron, that is, the recogni- 
 tion of high-grade defectives who differ from normal 
 individuals only in having less intelligence and not by 
 characteristic physical development such as the stigmata 
 of degeneration, led at the same time to the discovery 
 of the border-line cases and then of the dull normal, 
 which leads directly to the concept of arrest of develop- 
 
 [233]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ment of all degrees. In other words, the intelligence of 
 human beings ranges all the way from that of the idiot 
 or person of the mentality of a child of 1 or 2 years 
 up to the highest point attained by man twenty years 
 or more. 
 
 This concept once grasped, the desirability of deter- 
 mining the distribution of the different grades of in- 
 telligence is evident. The first studies showed the 
 number of persons of relatively low intelligence to be so 
 great as to cast doubt upon the procedure by which the 
 intelligence of various groups was determined. 
 
 The result has been a division of students into two 
 camps; the one, following the hypothesis wherever it 
 leads, accepts the conclusion that vast numbers of people 
 are of less intelligence than was supposed, and finds 
 in this fact an explanation of the careers of those whose 
 conduct has long been a problem, those whose inability 
 to get along in the world has been attributed to ignorance, 
 lack of education, accident or misfortune. The other 
 group takes the other horn of the dilemma and denies 
 the hypothesis, saying that the whole view is ridiculous 
 because it makes half the human race little above the 
 moron. Logicians have always claimed that it is not safe 
 to reject any hypothesis because it seems ridiculous, or 
 because the conclusions there from contradict " common 
 sense." We have been led to adopt the first of the two 
 views, not because of a blind acceptance of the hypothesis, 
 but because the conclusion, surprising as it is, and dif- 
 ficult to believe in some cases, on the whole explains the 
 facts of modern civilization more clearly than anything 
 that has been proposed. 1 
 
 i Since the above was written the use of mental testa in the U. S. Army 
 has established them beyond dispute. 
 
 [234]
 
 THE CURVE OF DISTRIBUTION 
 
 Let us present the situa- 
 tion as it appeals to us. 
 Fig. 46 is called the curve 
 of distribution. The rela- 
 tive height of the perpen- Fig 48 Curve of digtributiolu 
 diculars shows the propor- 
 tions of the different degrees of whatever trait is being 
 examined. For example suppose we were considering 
 the stature of human beings. The height of the longest 
 vertical line would represent that stature which is exactly 
 attained by the largest number of human beings, very 
 nearly what we call the average height. There are al- 
 most as many who are just a little taller, a smaller num- 
 ber are much taller, and finally a very few are extremely 
 tall. In the same way to the left are those who are only 
 a little shorter than the average, then those who are con- 
 siderably shorter, and finally a few who are very short. 
 
 Our problem concerns intelligence and applied to this 
 curve of normal distribution it means that there is a 
 certain degree of intelligence which is possessed by more 
 people than any other one degree ; approximately what we 
 would call average intelligence. There are almost as 
 many that are just a little higher than the average, there 
 are not so many that are considerably higher, and finally 
 there are a few of extremely high intelligence. On the 
 other hand, there are almost as many that are just a 
 little below the average, there are fewer that are consid- 
 erably below, and finally there are a few that have 
 extremely little intelligence. 
 
 Such, roughly, is the theory of mental levels. Many 
 interesting questions at once arise. Most of them do not 
 concern our present theme. There are two, however, 
 that are of vital importance. First, what is the degree 
 
 [235]
 
 PSYCHOLOGY OF THE NORMAL AND -SUBNORMAL 
 
 of intelligence that will be found at the top of the curve ? 
 What is the average intelligence of man I Is it sixteen 
 years as Terman suggests, or is it more or is it less? 
 There is no answer as yet, but the indications are strong 
 that it is much lower than we have supposed. The work 
 now going on in testing the drafted men in the army, 
 will, when published, give us a mass of data that will 
 throw a flood of light on this problem. 
 
 If it is ultimately found that the intelligence of the 
 average man is thirteen instead of sixteen it will 
 only confirm what some are beginning to suspect; viz., 
 that the average man can manage his affairs with only 
 a moderate degree of prudence, can earn only a very 
 modest living, and is vastly better off when following di- 
 rections than when trying to plan for himself. In other 
 words it will show that there is a fundamental reason 
 for many of the conditions that we find in human society 
 and further that much of our effort to change conditions 
 is unintelligent because we have not understood the 
 nature of the average man. 
 
 It is not necessary here to point out the far-reaching 
 effect of such a discovery should it prove true. We 
 may, however, allow ourselves one observation. Some 
 may think that this doctrine of mental levels, especially 
 if it leads to such facts as above indicated, is an argu- 
 ment against democracy. It certainly is an argument 
 against certain theories of democracy. Democracy 
 means the people rule (Demos, people; Kratos, ruler). 
 To maintain that mediocre or average intelligence should 
 decide what is best for a group of people in their struggle 
 for existence is manifestly absurd. We need the advice 
 of the highest intelligence of the group, not the average, 
 any more than the lowest. 
 
 [236]
 
 DEMOCRACY AND ARISTOCRACY 
 
 Democracy is historically a rebellion against a so 
 called aristocracy (Aristos, best) a rule by divine right, 
 the divine right of kings. The trouble with the old aris- 
 tocracy is in the answer to the question, "Who decides 
 who is the best?" In the aristocracies of the past a 
 small group of people have said, "We are the best, we 
 have the right to rule. ' ' Democracy says : ' * The entire 
 group must decide who is best, wisest, who can give us 
 the best advice." But will average intelligence select 
 highest intelligence and submit to its rule? It depends 
 upon the character of the highest intelligence, and its atti- 
 tude toward mediocre and low intelligence. The moron 
 in the community will not select and obey the man who 
 tests high but who uses his intelligence for Ms own ag- 
 grandisement and mistreats those of lower intelligence. 
 But the morons and imbeciles in an institution would 
 select and do obey the superintendent and his helpers be- 
 cause they are working unselfishly to make the morons 
 and imbeciles happy. 
 
 Democracy, then, means that the people rule by select- 
 ing the wisest, most intelligent and most human to tell 
 them what to do to be happy. Thus Democracy is a 
 method for arriving at a truly benevolent aristocracy. 
 Such a consummation will be reached when the most in- 
 telligent learn to apply their intelligence. In other 
 words instead of securing power by such political 
 methods as are now too often resorted to, or by the use 
 of money and ' ' influence, ' ' high intelligence must so work 
 for the welfare of the masses as to command their re- 
 spect and affection. 
 
 This is not difficult, once the problem is understood and 
 the right attitude taken. The reason the moron is a 
 menace in society is that he is misunderstood and conse- 
 
 [237]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 quently mistreated. The reason he is a happy, contented, 
 obedient, and useful member of an institution for the 
 feeble-minded, is that he is understood and treated with 
 consideration. His mental level is recognized and every 
 effort made to secure his happiness. The truest democ- 
 racy is found in an institution for the feeble-minded and 
 it is an aristocracy a rule by the best. 
 
 Another consequence of the discovery that average 
 intelligence is thirteen instead of sixteen is that it pre- 
 pares us to accept a much larger group of morons, since 
 they are thus brot nearer the apex of the curve and, un- 
 less the curve is a very steep one, must be nearly equal in 
 numbers to the average group. The recognition of this 
 fact, if it proves to be a fact, will prepare us to accept the 
 findings of investigations already made and many others 
 being made and to follow, showing that large groups of 
 so-called menials really fall into the moron class. This 
 again enables us to understand their shortcomings, their 
 follies, their blunders and failures. And, what is still 
 more important, it points the way to a wise and satis- 
 factory treatment of these classes by the more intelligent 
 group. 
 
 A second question of importance in connection with the 
 doctrine of intelligence levels is: What is the cause of 
 the low intelligence of human beings? Here again there 
 are two views. One group says it is lack of education or 
 training. Therefore, according to them, if the average 
 intelligence is low, it only emphasizes the need of better 
 educational facilities. The other group says that in- 
 telligence is something quite different from education; 
 that it is primarily dependent upon the inherited nervous 
 system and neuron patterns; and while education is im- 
 portant and can do much, yet as a rule people display 
 
 [238]
 
 MILLET'S PICTURE 
 
 the intelligence that they do, because of the condition of 
 their neurons; and they behave as they do because of 
 lack of sufficient intelligence to do better. 
 
 Every reader of this book knows of a great many 
 people who repeatedly act unintelligently. We are con- 
 stantly asking, "Why does Blank make such stupid 
 blunders?" "Why doesn't X get along better than he 
 does?" Usually one leaves the question unanswered or 
 else concludes that the person is either uneducated or 
 unfortunate. The hypothesis of mental levels says that 
 as a rule such cases are instances of arrested develop- 
 ment of mentality; that they do as they do because they 
 have not enough intelligence to do better. They are not 
 feeble-minded necessarily, but they are more or less below 
 the average intelligence or at least and what is more 
 likely to be true so much below the intelligence of the 
 observer that they cannot with any possibility act as 
 wisely as he would in a similar situation. Such a person 
 does as he does because he has not intelligence enough 
 to adapt himself to the complicated environment in which 
 he is placed. 
 
 Millet painted a famous picture, known as The Man 
 With the Hoe. Fig. 47. Edwin Markham wrote a poem 
 about it in which he seems to imply that the man Millet 
 painted came to his condition as the result of social con- 
 ditions which held him down and made him like the 
 clods that he turned over. This is undoubtedly the popu- 
 lar view. The doctrine of mental levels, on the other 
 hand, while not denying that there are men whom circum- 
 stances have held down, would lead to the conclusion that 
 the majority of such people as the man with the hoe are 
 where they are because of lack of intelligence. Millet's 
 Man With the Hoe is a man of arrested mental develop- 
 
 [239]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ment the painting is a perfect picture of an imbecile. 
 Markham's poem thus becomes a pertinent question as 
 to the cause of feeble-mindedness, and how society is 
 solving the problems involved. 
 
 We ask the reader to read again the poem with this thot 
 in view. 
 
 THE MAN WITH THE HOE 
 
 Bowed by the weight of centuries he leans 
 Upon his hoe and gazes on the ground, 
 The emptiness of ages in his face, 
 And on his back the burden of the world. 
 Who made him dead to rapture and despair, 
 A thing that grieves not and that never hopes, 
 Stolid and stunned, a brother to the ox? 
 Who loosened and let down this brutal jaw? 
 
 Whose was the hand that slanted back this brow ? 
 
 Whose breath blew out the light within this brain ? 
 
 Is this the Thing the Lord God made and gave 
 
 To have dominion over sea and land ; 
 
 To trace the stars and search the heavens for power; 
 
 To feel the passion of Eternity? 
 
 Is this the Dream He dreamed who shaped the suns 
 
 And marked their ways upon the ancient deep? 
 
 Down all the stretch of Hell to its last gulf 
 
 There is no shape more terrible than this 
 
 More tongued with censure of the world's blind greed 
 
 More filled with signs and portents for the soul 
 
 More fraught with danger to the universe. 
 
 What gulfs between him and the seraphim ! 
 Slave of the wheel of labour, what to him 
 Are Plato and the swing of Pleiades? 
 What the long reaches of the peaks of song, 
 The rift of dawn, the reddening of the rose? 
 
 [240]
 
 i-C ' 
 
 - <u 
 
 b 

 
 EDWIN MARKHAM 
 
 Through this dread shape the suffering ages look; 
 Time's tragedy is in that aching stoop; 
 Through this dread shape humanity betrayed, 
 Plundered, profaned, and disinherited, 
 Cries protest to the Judges of the World, 
 A protest that is also prophecy. 
 
 O masters, lords and rulers in all lands, 
 
 Is this the handiwork you give to God, 
 
 This monstrous thing distorted and soul-quenched? 
 
 How will you ever straighten up this shape; 
 
 Touch it again with immortality; 
 
 Give back the upward looking and the light; 
 
 Rebuild in it the music and the dream; 
 
 Make right the immemorial infamies, 
 
 Perfidious wrongs, immedicable woes? 
 
 O masters, lords and rulers in all lands, 
 How will the Future reckon with this Man? 
 How answer the brute question in that hour 
 When whirlwinds of rebellion shake the world? 
 How will it be with kingdoms and with kings 
 With those who shaped him to the thing he is 
 When this dumb Terror shall reply to God, 
 After the silence of the centuries? 
 
 While, as we have said, the poem seems to imply that 
 environment has made the man what he is, our view 
 makes the cause heredity. But that does not make less 
 pertinent the question "Who made him dead to rapture 
 and despair?" It only pushes back the query to "What 
 is heredity?" Is it the accumulation thru long ages of 
 slight variations downward or is it some sudden muta- 
 tion or yet again is it a strain of primitive human nature 
 that has never developed? Science has as yet no sure 
 answer. 
 
 [241]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The view that lack of ability to act intelligently is due 
 to lack of education must not be dismissed without one 
 very important fact that bears upon the question. Edu- 
 cation as a solution for inefficiency has been tried from 
 time immemorial. Not all, it is true, but many, of those 
 who manifest low intelligence have had the same op- 
 portunities, the same school facilities as their more in- 
 telligent associates, and yet they have never been able 
 to profit by these opportunities. 
 
 Not only have dullards in school had the best efforts 
 of their teachers, but parents have spent their lives and 
 fortunes trying to " educate" these children. Special 
 methods, special schools, special institutions have all 
 tried, and tried with all the zeal that goes with perfect 
 faith. Even institutions for the feeble-minded for years 
 believed that they could improve the mentality of their 
 pupils all to no avail. 
 
 The counter argument is of almost equal force. Hun- 
 dreds of men, past and present, have displayed high in- 
 telligence and yet have had little or no opportunities for 
 education, as education is usually understood. They are 
 called self-educated, or self-made men, which in the last 
 analysis can only mean that, being men of natural in- 
 telligence, they have made use of such opportunities as 
 came to them to acquire experience, to develop their 
 neuron patterns ; and have actually been able to equal per- 
 haps the highest intelligence known certainly often- 
 times to go far ahead of the average. And that is as true 
 of men living today and functioning in our most com- 
 plex society, as of men who lived in the past when social 
 conditions were vastly simpler. 
 
 Let us turn now to see what the practical acceptance 
 of this view would mean. It means at first, of course, 
 
 [242]
 
 RESPONSIBILITY 
 
 a radical change of attitude toward our fellows. It 
 means a complete change of ideas of responsibility. We 
 have learned that the idiot is so little intelligent that he 
 is no more responsible for his actions than an infant. 
 The imbecile of a little higher intelligence has only a 
 very moderate degree of responsibility. The moron has 
 more intelligence, but in the larger affairs of life we no 
 longer hold him responsible. The mere fact that a per- 
 son is recognized as feeble-minded, whether imbecile or 
 moron, is sufficient to excuse him from punishment for 
 crimes or misdemeanours. 
 
 When we pass that imaginary line that separates the 
 feeble-minded from the so-called normal, we come to those 
 who are supposed to be responsible, but who in fact are 
 only responsible to a degree slightly above that of the 
 high grade feeble-minded. This being understood, it at 
 once becomes incumbent upon those who have intelligence, 
 to recognize the limitations of those of arrested develop- 
 ment. 
 
 Once this condition is appreciated, society must be so 
 organized that these people of limited intelligence shall 
 not be given, or allowed to hold, positions that require 
 more intelligence than they possess. And in the posi- 
 tions that they can fill, they must be treated in accord- 
 ance with their level of intelligence. A society organized 
 on this basis would be a perfect society. Because we do 
 not recognize mental levels, we put men in positions in- 
 volving more responsibility than they are capable of 
 carrying and then trouble arises. We are learning now 
 that there are relatively few things that the moron can 
 do. We are learning that he must be treated as a child. 
 
 We must next learn that there are great groups of 
 men, laborers, who are but little above the child, who 
 
 [243]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 must be told what to do and shown how to do it ; and who, 
 if we would avoid disaster, must not be put into positions 
 where they will have to act upon their own initiative or 
 their own judgment. We must learn that the distribu- 
 tion curve applies to every community. There are only 
 a few leaders, most must be followers. 
 
 We have partially recognized the foregoing facts, and 
 in a crude way have attempted to meet the situation. 
 There are certain trades, occupations and professions 
 that no man can enter without a State license. Why? 
 Because it has been discovered that these are positions 
 of great responsibility. Errors of judgment or lack of 
 intelligence may result in great loss of property or of 
 life. A man must be licensed to practise medicine be- 
 cause if he does not have a certain amount of intelligence 
 he may do untold harm to the community. A man must 
 be licensed to run an engine because it has been discov- 
 ered that an unintelligent engineer may cause enormous 
 loss of life and property. But our methods are as yet 
 too crude and empirical. 
 
 The ideal solution of the problem involves two things. 
 First, the knowledge of the amount of intelligence re- 
 quired in any work; and second, the knowledge of the 
 amount of intelligence possessed by the would-be worker 
 in that line. Then it will be relatively easy to fit the 
 individual to his work. We have come to this practice 
 in certain dangerous professions. Human welfare de- 
 pends upon the right procedure in many cases where 
 danger is not recognized. Efficiency has come to be a 
 great word. 
 
 Efficiency comes from having every man fitted to his 
 job, so that no mistakes and no consequent losses come 
 from lack of intelligence. Let us take an illustration. 
 
 [244]
 
 EFFICIENCY 
 
 Suppose two men start into the manufacturing business. 
 The one chooses his employes in what we may call the old- 
 fashioned way, with the result that many men are given 
 jobs that require more intelligence than they possess. It 
 is inevitable that these men will sooner or later make 
 mistakes ; will spoil work ; will, at a critical moment, do 
 the wrong thing, with resultant loss. All those losses 
 must somehow be covered and the consumer of the 
 product of that factory must, in the long run, pay for 
 them. Another employer selects his men according to 
 some plan, based on a determination of intelligence. He 
 knows the amount of intelligence required in each job, 
 he ascertains the intelligence of his would-be employes 
 and gives them jobs accordingly. Each man is trained, 
 not simply to do his work, but to do it intelligently. He 
 meets all the exceptional situations with good judgment. 
 The result is no losses, no accidents. The manufactured 
 product is produced at the lowest cost. That factory is 
 efficient, the other is not. The first man cannot honestly 
 compete with the second. Fortunately some plants are 
 now being run on the new plan. But the great mass of 
 our industries, and much of our social organization today 
 are on the former plan. It is largely an accident if a 
 man gets a job that he is thoroly competent to do. It 
 must be noted that many jobs are filled by men who are 
 competent to manage them when all goes well, but when 
 the unexpected happens, the emergency arises, they 
 break down. We are surrounded on all sides by incom- 
 petency, largely because we do not recognize mental 
 levels. 
 
 This is a day of social uplift. Thousands of people 
 have become interested in these social problems and are 
 working to uplift the masses. Many of the efforts have 
 
 [245]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 come to naught, are coming to naught, and will continue 
 to come to naught until this principle of mental levels is 
 recognized. 
 
 Many a philanthropically inclined man or society has 
 cleaned up a community or a family only to find that in 
 a few weeks or months conditions were as bad as they 
 were before. One investigation in New York City found 
 one family that had been the recipients of charity from a 
 charity organization society for thirty years; this story 
 could be multiplied many times, probably in every com- 
 munity. What does it mean! That the family has not 
 enough intelligence to profit by the help that is given 
 them. An intelligent man may sometimes be overcome 
 by circumstances and need to be helped on his feet, but 
 once helped to get control of circumstances, he is able to 
 go alone. It is useless to set the unintelligent man up in 
 business and expect him to manage his affairs satis- 
 factorily. 
 
 As a rule the drudgery of the world is done by these 
 people of low intelligence, simply because more intelli- 
 gent people will not do such work. They seek for work 
 where their intelligence counts and the people who are 
 doing the drudgery are, as a rule, in their proper places. 
 This fact should be recognized and they should be helped 
 to keep their proper places, encouraged and made happy, 
 but not promoted to work for which they are incom- 
 petent. A certain mother had a feeble-minded boy of 
 moron grade. She secured him employment as a messen- 
 ger boy. This was well within his capacity. He was 
 of a quiet temperament, obedient and faithful, and did 
 his work well; so well in fact, that the manager was so 
 much pleased that he promoted him to the office. In a 
 
 [246]
 
 CAUTIONS 
 
 short time the boy had to be discharged for incompetency 
 and dishonesty. The mother brot him back and this con- 
 versation occurred. "Was not my boy a good messenger 
 boy?" "Yes, excellent." "Then will you not employ 
 him as a messenger boy on a task that he can do, and not 
 attempt to make out of him that for which he has not the 
 intelligence f ' ' 
 
 We have said that we have learned to recognize the 
 mental levels of the feeble-minded, but we must learn to 
 do the same for a large proportion of the community. 
 
 In conclusion, two cautions are necessary. First, the 
 reader must not forget the distinction we have made be- 
 tween education or training and intelligence. In what 
 we have said we do not refer to those persons who under- 
 take a piece of work that requires training, but for which 
 they have had no training. The man who employs a 
 carpenter to build a house may be much more intelligent 
 than the carpenter and yet not be able to do the car- 
 penter's work because it requires training, in addition 
 to a certain degree of intelligence. But it does not 
 necessarily require as much intelligence as the house- 
 holder possesses. In the institutions for the feeble- 
 minded one may find feeble-minded men and women do- 
 ing tasks that the college man could not perform with- 
 out training. This only means that the various tasks 
 that have to be performed call for a combination of in- 
 telligence and training ; and this in all proportions, some 
 requiring little intelligence and much training, others 
 much intelligence and little training. It must not be for- 
 gotten either that as a rule the greater the intelligence, 
 the less training it requires to master a particular trade. 
 
 The second caution is, that it cannot be denied that 
 
 [247]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 there are people of good intelligence who are incompetent, 
 ne'er-do-wells, criminals, or other anti-social persons. 
 At present we know little scientifically about this group, 
 yet we cannot deny the existence of such a group. They 
 constitute a real problem in education. 
 
 [248]
 
 CHAPTER II 
 THE DETERMINATION OF MENTAL LEVELS 
 
 IN Part I, we attempted to show how the various mental 
 processes develop pari passu with the development of the 
 nervous system. It follows that just as we have stages 
 of growth physically so we have levels of intelligence. 
 In a general way this is not a new thot, since every one 
 knows that a ten year old child is more intelligent than 
 an eight year old, and an adult more intelligent than a 
 youth. It is, however, not appreciated that these levels 
 are as definite as the physical stages; just as a child 
 should be of a certain height at a certain age, so he should 
 have a certain degree or level of intelligence. Nor is it 
 appreciated that this development of intelligence this 
 growth from one level to the next higher is inherent 
 in the nature of the growing organism, and is not a 
 matter of education or training. White (55) says: 
 
 " Every individual born into the world has, if it could 
 be determined, a definite potentiality for development.'* 
 
 We have also emphasized the fact that a consider- 
 able proportion of the human race have not developed 
 to the full capacity or to average mentality, but, on the 
 contrary, have been arrested in various stages or at 
 various levels. In the foregoing chapter we have shown 
 the significance of this arrest in many practical affairs 
 of life. These familiar facts of differences of intelligence 
 among adults as well as between children of different 
 ages have recently received new significance and great 
 importance from the fact that we have learned to measure 
 
 [249]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 and determine these mental levels with much accuracy. 
 
 It was the great French scientist, Alfred Binet (5 & 6), 
 that showed us how to measure intelligence, and it was 
 his genius that gave us the first measuring scale. The 
 practical application of the doctrine of mental levels de- 
 pends upon the ability to measure the intelligence of the 
 individual. If intelligence cannot be measured, there is 
 little practical value in knowing that there are levels of 
 mental development ; if it can be measured, then the sug- 
 gestions of the previous chapter are not only practical 
 but of vital importance. 
 
 That intelligence can be measured is no longer in doubt. 
 Aside from the thousands of children that have been 
 tested in the past ten years and the results confirmed 
 the present use of mental tests in the United States Army 
 has settled the question. Army officials testify that the 
 psychologist with his measuring scale of intelligence dis- 
 covers in an hour's time a soldier's ability more ac- 
 curately and more certainly than the officers can deter- 
 mine it in weeks of observation. The value of this to 
 the army cannot be overestimated. First there is the 
 prompt recognition of high intelligence, with the result- 
 ant possibility of having responsible positions filled by 
 competent men; and second, the equally important 
 recognition of those men whose intelligence is so low that 
 they can be trusted only in the most menial positions. 
 How far the actually feeble-minded can be utilized in 
 the army is yet to be worked out. The greatest difficulty 
 here will be that the army officers, having had no experi- 
 ence with the feeble-minded, will not understand how to 
 treat them to get the best out of them. 1 
 
 i Twelve per cent. (12%) of the drafted army of the U. S. was found to 
 have too low intelligence to be sent over seas. 
 
 [250]
 
 MENTAL LEVELS 
 
 It is probable that there is plenty of work in the army 
 that requires no more intelligence than that possessed 
 by the least intelligent drafted man. But these low in- 
 telligence men must be handled like children if they are 
 to be kept at work at their best. They must be con- 
 tinually encouraged and praised. New work must be as 
 carefully explained to them as to a child. They must not 
 be scolded or punished in the usual sense. Deprivation 
 of privileges will accomplish all that can be accomplished 
 in the way of correction of mistakes or misdemeanours. 
 Some who have acquired bad habits before entering the 
 army will undoubtedly have to be discharged. Such dis- 
 charge should, however, be in the form of a commitment 
 to an institution for the feeble-minded. These men, once 
 under the control of the government as they are in the 
 draft, should never again be turned loose in society to live 
 on their own responsibility. 
 
 Not only has the use of mental tests in the army 
 settled the question of their value, but we may expect 
 still greater benefits in the form of data that will, first, 
 enable us to extend and perfect the scales themselves; 
 and second, give us a reliable answer to our question 
 discussed in an earlier chapter: what is the average in- 
 telligence of man? Present indications point to a level 
 much below our assumed level of 16 years. What- 
 ever this proves to be, it cannot but modify profoundly 
 our views of the relation of intelligence to citizenship. 
 For example let us assume for the sake of argument that 
 it is discovered that the average intelligence of the army 
 is 12 years the level of the high grade feeble- 
 minded, high grade moron. We could conclude that the 
 average intelligence of the whole population is not much, 
 if any, above this, since the army of drafted men is prob- 
 
 [251]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ably a fair sample of the general population. We seem 
 to be impaled on the horns of a dilemma : either half the 
 population is feeble-minded; or 12 year mentality does 
 not properly come within the limits of feeble-mindedness. 
 Of the two possibilites most people would take the latter. 
 Should then all who test 12 be turned out of our institu- 
 tions? We do not think so. Such findings would com- 
 pel us to look for another factor than mental age as de- 
 termining which of these persons of 12 year mentality 
 need the care of an institution for the feeble-minded. In- 
 deed this factor is already recognized. 
 
 Every careful student of feeble-mindedness knows that 
 there are thousands of people of 12 year mentality who 
 are getting on in the world and who do not need to go to 
 an institution for the feeble-minded. What is the differ- 
 ence between these and those who must be cared for in 
 an institution? There is no definite answer. It may be 
 any one of several factors. It may be that vague some- 
 thing that we call temperament. It may be the accident 
 of a favourable environment. In any borderline condi- 
 tion we often see the status determined by a slight in- 
 fluence. A person near the climax of a disease is fre- 
 quently saved or lost by the slightest favourable or un- 
 favourable circumstance. One who has inherited a con- 
 stitution favourable to tuberculosis may by judicious 
 selection of environment (or it may be accidental) en- 
 tirely escape; or he may carelessly get into an environ- 
 ment that will surely prove fatal. Undoubtedly many 
 morons are in a favourable environment. 
 
 This brings us to the view that we have expressed else- 
 where (20B) that perhaps moronity is a problem of edu- 
 cation rather than of segregation. The probable dis- 
 covery that the average intelligence of the army and the 
 
 [252]
 
 MEASURING INBORN CAPACITY 
 
 general population is low even if not so low as 12 
 years would certainly force us to this view and to this 
 solution. The formula would then be: recognize the 
 mental level of each person ; understand its significance ; 
 educate accordingly. 
 
 The theory of measuring intelligence has sometimes 
 been misunderstood; and even the possibility of such 
 measurement has been denied. Judge Goff of New York 
 is reported to have said in connection with a case brot be- 
 fore him, "You can no more measure intelligence than 
 you can measure electricity"! 
 
 Needless to say that errors of this kind are due to a 
 misunderstanding of the underlying principles of the 
 measuring scales, and to a misconception of the nature of 
 mind. The first difficulty comes from the fact that we 
 more or less unconsciously assume that in measuring in- 
 telligence we are measuring a child's attainments. As a 
 result of this error it is constantly objected that 
 "children differ so much in their opportunities," "in 
 their schooling" and "in their environments" that it is 
 impossible to compare them. One even hears the test 
 questions themselves objected to on the ground that "my 
 child has never been taught that. ' ' The irrelevancy of all 
 this appears when it is understood that in using mental 
 tests we are testing, not attainment but inborn capacity. 
 
 If we could inspect the brain of the living subject and 
 determine that in certain areas the neurons were not de- 
 veloped, the fact would be accepted as easily as the 
 physician's diagnosis when he says, "This boy's heart is 
 weak." Since we cannot examine the neurons we are 
 limited to noting how they function. But from what 
 we discover in that way we can infer the condition of the 
 neurons just as tho we had seen them. 
 
 [253]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The theory of mental tests is that they measure in- 
 born capacity and the success of measuring scales de- 
 pends upon the skill with which tests are found that de- 
 pend for their solution upon inborn capacity and not 
 upon special attainments. For example, it is well known 
 that the ability to walk depends upon the development 
 of a neuro-muscular co-ordination which is complete nor- 
 mally at about fourteen months ; that no amount of train- 
 ing can hasten this development and that nothing but 
 the most extremely unnatural environment can prevent 
 it or retard it. The child of the untutored savage learns 
 to walk as quickly as a child of the most cultured parents 
 in the highest civilization. Playing the piano, however, 
 is an attainment, an accomplishment, and comes only as 
 the result of definite purpose and practice. If, therefore, 
 we were examining a ten year old child and found that 
 he could not walk, we should properly conclude that 
 there was something wrong with his development, but 
 the fact that he could not play the piano would have no 
 significance whatever, merely indicating that here was an 
 accomplishment to which he had not devoted himself. 
 
 There is no better evidence of the limitations of our 
 psychology than the recognized inability to decide be- 
 forehand whether a particular test measures this in- 
 herent capacity or is influenced by training and special 
 environment. We can indeed rule out a great many tests, 
 such as piano playing, as obviously a matter of educa- 
 tion; but beyond that we are largely restricted to the 
 laborious process of trying out each test with properly 
 selected groups of children and thus ascertaining to what 
 extent training affects the test. 
 
 Nowhere does the genius of Binet show more clearly 
 than in the success with which he selected tests, which 
 
 [254]
 
 THE SQUARE AND DIAMOND TESTS 
 
 experience has proved are of the right kind. It is true 
 that not all of his tests are entirely free from the influence 
 of training; but very few, if any, are so much influenced 
 as to be useless. Perhaps 'the best illustration of an ideal 
 test is Binet's " copying the square" and " copying the 
 diamond." Experience seems to demonstrate clearly 
 that the ability to do these tests depends upon a neuro- 
 muscular development either of the eye or of the hand or 
 both, somewhat comparable to the co-ordination neces- 
 sary for walking. A child can copy a square at the age 
 of five, he does not copy the diamond until the age of 
 seven. The difference is apparently due to the fact that 
 horizontal and vertical lines are both seen and drawn by 
 relatively simple muscular co-ordination, while oblique 
 lines require a double co-ordination both for seeing and 
 for drawing. That it is a matter of eye movement in 
 following the lines more than of hand movement in draw- 
 ing them, would seem to be indicated by the fact that 
 many a child who has drawn the square with reason- 
 able accuracy declares the moment he looks at the dia- 
 mond, that he cannot draw it. Often he will not even 
 try to draw it. 
 
 The accompanying illustrations Fig. 48, are reproduc- 
 tions of the attempts of children of ages five, six, seven, 
 and eight years to copy these forms. A two-inch square 
 is placed in front of the child and he is asked to draw one 
 like it; then a diamond of the same size is given him. 
 Plenty of time is allowed. Often the child is urged to 
 make successive trials tho only the first is scored * except 
 when he himself sees his failure and asks for a second 
 trial. It rarely happens that the second trial is accept- 
 able tho sometimes a little better than the first. 
 
 i Terman gives three trials and scores the best one. 
 
 [255]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 The reader is urged to study these forms carefully. 
 Note the good square and beside it the same child's 
 failure on the diamond; these failures ranging from al- 
 most success (one or two were credited to the child's 
 score tho counted here as failures to make sure that the 
 percentages were conservative) to absolute failure a 
 mere line. The beginning is often good; frequently the 
 upper half of the diamond is excellent only to be spoiled 
 by a single line, straight or curved, for the lower half. 
 The last "diamond" in second column of six-year old 
 children is a type frequently found. It shows lack of co- 
 ordination necessary to make the hand go where the eye 
 shows that it should go compare your own attempt to 
 draw a diamond seen in a mirror. 
 
 That these two tests depend upon inherent capacity 
 and not upon training is evidenced by two facts, first, 
 the normal child of eight years or older copies the figures 
 without ever having been taught; and second, a feeble- 
 minded child or a child just a little below the proper age 
 as a rule cannot be taught to copy them. 
 
 A study of this point by Miss Elizabeth Foote of the 
 Vineland Laboratory gives the following results: 
 
 Mental Age 45678 
 
 Number of Cases 34873 
 
 Per cent, trained 33 50 75 100 100 
 
 Apparently the chronologically older oases have 
 greater difficulty in learning to draw the diamond. At 
 mental age 5 the failures average 17 years chronologi- 
 cally, the successes average 11 years. 
 
 At mental age 6, the failures average twenty-nine years 
 chronologically, the successes average eighteen years. 
 
 [256]
 
 0<i> 
 
 Q 
 
 a 
 
 D 
 
 
 D 
 
 n 
 
 00 
 D 
 
 a 
 
 a 
 
 
 
 
 
 
 
 
 
 
 "5 ~~ s 2 
 g i'u * 
 
 C S i 
 
 "o 'S o* 
 
 w w 
 
 ^ ir, o 
 
 .= _~ en Ji cw 
 
 " ~ w 73 su - o 
 
 42 5 
 
 S jg ^ s 
 
 ^ CO Ol r^ 
 
 h 2 
 
 . e - 
 <5.5 -r 5 
 
 " 
 
 ac 
 
 r- x 
 
 ox:
 
 o o 
 
 
 
 
 
 
 
 o o 
 
 
 
 
 
 & TS \^ /\ /\ $ 
 
 If &. 
 
 o^o 
 
 Fig. 48. C. Seven year old children. Of 320 chil- 
 dren 256 copied the diamond satisfactorily. Up- 
 per section shows 5 samples. Middle section: 
 26 more or less unsatisfactory. Lower section : 
 44 failures. 
 
 Fig. 48. D. Eight year old children. Shows the 14 
 failures out of 150 children. The remaining 136 
 copied diamond satisfactorily. 
 From original records in the Vineland Laboratory
 
 THE PASSAGE OF TIME TESTS 
 
 The 4-year olds (mentally) who failed were absolutely 
 unable to draw the oblique lines. 
 
 The average time required to teach those who finally 
 succeeded was : Mental age 6, 44 minutes ; Mental age 7, 
 26 minutes ; Mental age 8, 20 minutes. 
 
 Let us examine a few more of these test questions with 
 the view to clearing up some of the difficulties commonly 
 met with. Binet has introduced four questions involving 
 the development of the ability to appreciate time. These 
 questions have been as much objected to as any in the list, 
 apparently because the real nature of the test is not 
 understood. Because we sometimes teach the days of the 
 week, days of the month, months of the year, it is assumed 
 that they would never be learned if we did not teach them. 
 
 Binet discovered that the appreciation of the passage 
 of time develops with age. To the young child time is 
 nothing. Gradually he comes to appreciate time in small 
 quantities. As his development proceeds he has need 
 for measuring time in increasingly larger quantities. 
 The first stage is the appreciation of the difference be- 
 tween forenoon and afternoon. This comes at six years 
 of age. In other words the child of six, living in any 
 ordinary environment, has acquired enough experience 
 to find it useful to make the distinction between morning 
 and afternoon. If, in the morning, he is told that he 
 may do something in the afternoon, he is able to ap- 
 preciate when that will be; or in the afternoon he can 
 recall what happened in the forenoon of that day. Be- 
 cause that is useful to him, it gets into his consciousness 
 as a part of his working experience. Bat he cannot yet, 
 nor can he for two years, comprehend so large a division 
 of time as a week. Consequently he has no use for 
 Mondays and Tuesdays and Wednesdays. At the age 
 
 [257]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 of eight, however, he has developed to this stage and 
 without ever having been taught, he has, thru the prac- 
 tical experiences of life, learned that Tuesday comes 
 after Monday and then comes Wednesday, and so on. 
 
 It is unfortunate perhaps that, thru a mistaken 
 pedagogy, we are in the habit of teaching the days of 
 the week. We say unfortunate advisedly because it is a 
 waste of time, has no value for the child; for, altho he 
 can recite the days of the week, they mean nothing to 
 him until he has developed to that stage where he ap- 
 preciates this larger period of time and realizes the 
 value of sub-dividing it into days each with its own name. 
 When he has arrived at that development he will learn 
 the days of the week without being taught them. In 
 another year his appreciation of time has enlarged 
 so that he has some use for the divisions of the year. 
 Previous to nine years of age, years are little more than 
 words to children, and months as divisions of the year 
 are meaningless. Gilbert, mentality 7, age twenty-seven, 
 being asked how often Washington's birthday came, said 
 he thot once in two years. This is pure verbalism; he 
 had no conception whatever. With this appreciation of 
 the year and the division into months the child has all 
 the elements for the date; so that at the age of nine he is 
 able to give the exact date with reasonable accuracy ; that 
 is, with that same leeway of two or three days which 
 almost any of us may at times require. 
 
 Objection has been made to this test, based upon the 
 superficial observation that we adults sometimes, when 
 on a vacation, pay no attention to the passage of the days 
 and lose count; therefore, why expect a child to know. 
 Aside from the general fact that there is no arguing 
 from the adult to the child, we have the very interesting 
 
 [258]
 
 MISCONCEPTIONS 
 
 fact that the part of the date most difficult for the child 
 is not the day of the month (within two or three days, 
 as we have already indicated) nor yet the month itself, 
 but the year. One often gets the answer to the question. 
 "What is the date?" "The 20th" (correct). "Yes^ 
 what month?" "I don't know." A little older child 
 will say; "April 20th." "Yes, what year?" "I don't 
 know." Sometimes it goes like this: "What is the 
 date?" "The 20th." "Yes, what month?" "April." 
 "Yes, what year?" After some delay "1918." If it is 
 January or February, 1918, he may say 1917. Probably 
 no adult in his right mind ever had sufficiently long vaca- 
 tion to forget what year it was! 
 
 There is no doubt that the average normal child de- 
 velops these capacities at about the ages stated. There- 
 fore these questions in regard to time are valuable 
 measures of the child's development. It is true, as in- 
 dicated, that teaching may enable the child to recite 
 days of the week and months of year some time before 
 he has the actual appreciation of their meaning. This 
 can usually be checked, however, by a little questioning 
 such as, "What day comes before Wednesday, etc., or 
 what month comes before December?" 
 
 These tests also illustrate another point that is often 
 missed when considering tests of intelligence. Some per- 
 sons have felt it desirable to analyse the tests and deter- 
 mine what is tested by each question; whether memory, 
 attention, imagination, reasoning, judgment, or what-not. 
 We have explained what the above questions test, but to 
 show that they do not test mere memory, the following 
 experience may be worth recording. "A child who was 
 being examined was asked, in course, to give the date. 
 He was totally unable to do so. The child's teacher, who 
 
 [259]
 
 was observing, interrupted to say, 'Why, Willie, you 
 know the date. What was it you wrote at the head of 
 your paper this morning f ' Whereat the child gave cor- 
 rectly the date. When it was written down, the teacher, 
 drew a circle around the figures indicating the year and 
 pointing to it, said to the child, 'What does that part 
 mean?' He looked at it intently for some seconds and 
 then said inquiringly, 'Spring'? It is evident that the 
 child, given the proper cue, remembered what he had 
 written at the top of his paper that morning. This to 
 the teacher was the date, but to the child it was nothing 
 but words and figures. He could not give the date be- 
 cause he had not come to that mental development that 
 enabled him to grasp and appreciate the fact that time 
 is divided into years, months and days." 
 
 We have emphasized the point that children acquire 
 the ability to do many things without being taught copy 
 square and diamond, appreciating time forenoon, after- 
 noon, days of week and months of year. Another study 
 by Miss Foote shows this very clearly. The opposing 
 of thumb to fingers is rarely if ever taught. Yet it is 
 seen to have a very regular development. The follow- 
 ing table shows the results of testing 176 normal Public 
 School children and 111 feeble-minded children. Public 
 School children were from the first four grades, and de- 
 fectives mostly between the chronological ages of eight 
 to forty-seven. 
 
 It will be seen that all Public School children can 
 do this at age seven and all defectives at age eight. It is 
 also seen that sight helps only a little the positions out 
 of sight behind back being done by almost as many rs 
 those in front. Both hands at once is also a little more 
 difficult than one at a time. 
 
 [260]
 
 THUMB-FINGER OPPOSITION 
 
 THUMB-FINGER OPPOSITION. PERCENT PEBFECT. 
 PUBLIC SCHOOL. 
 
 R. Front R. Back L. Front L. Back Both Front Both Back 
 
 5 91 80 94 74 74 60 
 
 6 98 93 98 93 83 90 
 
 7 100 100 100 100 100 100 
 
 8 100 100 100 100 100 100 
 
 9 100 100 100 100 94 94 
 10 100 100 100 100 100 100 
 
 Mental INSTITUTION FOB FEEBLE MINDED. 
 Age 
 
 2 33 33 17 17 17 8 
 
 3 37 25 37 12 12 12 
 
 4 53 40 53 40 40 26 
 
 5 77 44 66 77 77 44 
 
 6 93 93 93 93 80 80 
 
 7 96 92 96 92 92 92 
 
 8 100 100 100 100 100 100 
 
 9 100 100 100 100 100 100 
 
 The reader will do well to keep in mind that measuring 
 scales of intelligence test intelligence; not attention, or 
 memory, or reasoning, or any other one thing. 
 
 It has already been suggested that intelligence is 
 adaptation to environment. If we accept this, we must 
 conclude that a test of intelligence is a test of a person's 
 ability to adapt himself to a situation; and the grade of 
 intelligence, the mental level, or mental age, is determined 
 when we ascertain the highest degree of complexity of 
 environment to which he can adapt himself, in terms of the 
 age of the average person who can just adapt himself 
 to the same environment. To revert to our questions of 
 time, when we ask a child, "What is the date?" we are 
 attempting to ascertain if he can adapt himself to his 
 environment as well as nine year old children usually 
 can, when they need to use the date. 
 
 We have said that tests of intelligence do not test 
 memory, reasoning, etc. To avoid misunderstanding let 
 
 [261]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 us explain more fully. Tests of intelligence of the higher 
 levels must necessarily test ability to make adaptations 
 that involve the use of the mental processes memory, 
 imagination, reasoning, etc. But this is very different 
 from testing these processes themselves. Let us take a 
 somewhat imperfect analogy. Suppose we wish to 
 measure a man's efficiency as a citizen good citizenship. 
 We ascertain how much money he has ; what knowledge of 
 civic duties, of public affairs, of science, of esthetics; 
 what his ideas of honesty, truthfulness and friendship 
 are; and as many more " elements" as we wish. Have 
 we measured his citizenship! Obviously not. The real 
 question is, how does he use all these? He may have 
 millions of money, but if he never uses any of it for civic 
 purposes he is a poor citizen. He may have the most 
 correct ideas of honesty, but if he does not practise it, 
 he is not a good citizen. He may have very little money 
 or education, and yet be high in the scale of citizenship.. 
 Not what a man has but how he uses it ! 
 
 The weakness of the foregoing analogy lies in the fact 
 that it seems to grant too much. Even if memory, rea- 
 soning, etc., were entities like money, education and the 
 rest, the measurement of them would not measure a man's 
 intelligence since the real question would be how does he 
 use them. James sums it all up in a sentence: "The 
 total mental efficiency of a man is the resultant of the 
 working together of all his faculties." Therefore in 
 measuring intelligence we must have the mind at work. 
 This every good test does. 
 
 We have emphasized the fact that mental tests test 
 the degree of development of the natural endowments in 
 distinction from the acquisitions or attainments. There 
 are, however, tests of the latter. These are called 
 
 [262]
 
 DIAGNOSIS 
 
 pedagogical tests, or special ability tests. The reader 
 who has followed the psychology of Part I, will ap- 
 preciate that both of these involve mentality. A child 
 may not be up to standard sixth grade work in school 
 for one of two reasons; either because he has not been 
 to school, or because he has not the inherent capacity. 
 It is often possible to evaluate the two factors. That 
 is, it is possible to ascertain whether the child has been 
 in school six years or not. If he has attended school 
 six years under normal, ordinary conditions and is not 
 up to sixth grade, it is fair to assume that his failure 
 is due to lack of mentality unless some other explana- 
 tion is known. It consequently comes about that 
 pedagogical tests and even school experience are often 
 a valuable indication of the mental level of the child. 
 
 In conclusion we may say that the measurement of 
 the mental level is an assured fact. Moreover for the 
 average child almost any one of the current scales is en- 
 tirely satisfactory and gives the trained person all the 
 information he needs. It is the exceptional case, the 
 border-line case, or the diseased child, that constitutes 
 the problem for the psycho-clinician. In such cases one 
 has all the difficulties that confront the physician in 
 diagnosing an obscure disease with complications. The' 
 greatest care must be exercised; all possible data must 
 be secured and a diagnosis given with caution. But 
 the fact that there are exceptional and difficult cases, 
 and even that mistakes are made, should not deter us 
 from extending the work of ascertaining the mental level 
 of all children and ultimately of all adults for the pur- 
 pose of fitting every man intelligently to his work. 
 
 [263]
 
 CHAPTER III 
 INTELLIGENCE AND WILL 
 
 IN the application of our psychology to the care, train- 
 ing and management of persons of undeveloped mind, 
 many problems are simplified by a clear understanding 
 of the relations of will to intelligence. Much unneces- 
 sary anxiety exists, in the minds of those who have the 
 training of such persons, from the common belief that 
 will is a power possessed by the individual sometimes 
 feebly and sometimes to a great degree a concept, it 
 must be admitted, not wholly dissipated by current 
 psychology. 
 
 Fortunately the old religious dogma that the child's 
 will must be broken has almost passed away. The idea 
 still prevails, however, that there is a will that must be 
 carefully trained and directed and that it is so little 
 understood as to be largely a matter of chance whether 
 such training and direction will be successful. When it is 
 clearly recognized that will is only an abstraction, ex- 
 pressive of the fact that one is capable of volitional or 
 selective action, the difficulty largely disappears. We 
 have seen that volitional action results when a natural 
 impulse is met by an opposing impulse or by a tendency 
 to an acquired action which conflicts with the original 
 impulse. 
 
 In the words of Prof. James, "Voluntary action then is 
 at all times a resultant of the compounding of our im- 
 pulsions with our inhibitions." James has also shown 
 that will is dependent upon ideas, .attention and habit of 
 
 [264]
 
 IMPULSE OF THE FEEBLE-MINDED 
 
 action, all of which he sums up in a sentence previously 
 quoted, "To think, in short, is the secret of will just as 
 it is the secret of memory." From all this the conclusion 
 is easy, that the way to control and direct the will is (1) 
 to furnish plenty of suitable ideas, (2) to connect those 
 ideas by proper association processes so that they will 
 arouse consciousness in the state of active attention ; and 
 (3) to develop right habits of action. It might seem to 
 be unnecessary to say more; but there is another consid- 
 eration that will be helpful in this connection. 
 
 Much of what is properly considered will is psychologi- 
 cally only impulse. Whether there are wide differences 
 in the strength of impulses in different individuals, or 
 whether the apparent difference is only due to a differ- 
 ence in the control exercised, it is difficult to say. There 
 seems, however, to be no good reason to deny that there 
 may be very wide individual differences. Be that as it 
 may, the solution of the problem, as Prof. James's 
 dictum clearly implies, is to build up inhibitions, that is, 
 counteracting ideas. The idiot is entirely a creature of 
 impulse, since he has few ideas and what few he has 
 cannot be connected with the impulses by any natural 
 association, because he is deficient in association neurons. 
 
 In the case of the imbecile, the difficulty is only slightly 
 decreased. He has a few more ideas, it is true, but it is 
 difficult to connect them with the impulses in such a way 
 that the latter are controlled. To say it is difficult, is 
 not to say that it is impossible. It is not impossible ; but 
 it can only be done with the greatest effort, most constant 
 attention and constant direction. The normal person 
 sees the consequences of his impulsive act ; and those con- 
 sequences, being remembered, on a later occasion act as 
 inhibitors. With the imbecile the consequences must be 
 
 [265]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 definitely pointed out and the connection firmly made by 
 constant repetition. 
 
 With the moron the problem is more hopeful but still 
 requires long and painstaking effort and great care in 
 the building of proper associations. Even with the dull 
 normals there are still difficulties, due probably more to 
 the early formation of unfortunate habits than to any 
 lack of ideas or failure to connect them with the im- 
 pulse. 
 
 Since the ideas, attention and action upon which will 
 depends are the elements which enter into intelligence, 
 it follows that if we know the intelligence level of an 
 individual we know by far the largest factor of his will. 
 The other factor is his habit of action. (For the effect 
 of emotion see the next chapter.) Knowing these two 
 factors, the intelligent person can estimate to a nicety 
 how much volitional action a particular individual will 
 exercise in any particular situation. 
 
 Moreover, it is significant that such foresight is con- 
 stantly used by intelligent people in managing their re- 
 lations to other people. Take a single example : X owes 
 $100 to each of three men A, B, and C. The debts to A 
 and B are of long standing and ought to be paid. X 
 comes into possession of $100 and has to decide which 
 one of the three he will pay. He reasons as follows: 
 "I'll not bother with A because he does not know how to 
 proceed to collect the money, consequently will not trouble 
 me. B is a lawyer and knows how to collect, but he is not 
 in the habit of bringing suit for bad debts, consequently 
 he will not disturb me. C is a hard headed business man. 
 He knows how to collect his debts and he is in the habit of 
 doing it. If I don't pay him he will make me trouble. 
 Therefore I shall pay C." From the standpoint of 
 
 [266]
 
 THE MORAL IMBECILE 
 
 psychology, A and B are weak willed for different reasons 
 A from a lack of ideas ; B from lack of the habit of ac- 
 tion. In this particular direction, C is strong willed in 
 this particular matter because he has the ideas and the 
 habit of action. 
 
 The old doctrine of will-breaking can be defended only 
 on the following assumptions: First, that will means 
 impulse ; second, that it is impulse toward a line of action 
 that is indubitably bad; and third, that the "breaking" 
 consists in building up a set of experiences which result 
 in inhibitions that will control the impulse. It must be 
 admitted that there are apparently many instances where 
 it is exceedingly difficult and requires greaflt intelligence 
 to accomplish this result. 
 
 The Moral Imbecile. A consideration of the moral im- 
 becile will further illustrate some of the points discussed 
 in the previous paragraphs. 
 
 In the older literature on feeble-mindedness can be 
 found discussions of a type of defective described as 
 having normal intellectual faculties but lacking moral 
 faculties. A person of this type, tho he evidently had 
 normal intelligence, would lie, steal, commit sex offences 
 or other immoralities in spite of punishment and all ef- 
 forts to correct the tendency. 
 
 Perhaps we should first ask the question, are there 
 such beings! To which the answer must be given, it is 
 somewhat doubtful. It is now accepted by those who 
 have studied feeble-mindedness, that a large proportion 
 of the so-called moral imbeciles are not of normal intelli- 
 gence. The explanation of the old view, that such per- 
 sons are normal intellectually, is found in the fact that 
 they are of relatively high intelligence, and in the earlier 
 days when less accurate methods of measuring intelli- 
 
 [267]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 gence were known, and when the typical mental defective 
 was the idiot or the low grade imbecile, these high grade 
 defectives easily passed for normal, just as today the 
 morons pass for normal with the layman. 
 
 On the other hand, it apparently must be admitted that 
 there are persons who do not at all come within the 
 present definition of feeble-mindedness, and yet who seem 
 to lack what we popularly call moral sense. It goes with- 
 out saying that the old explanation of "normal in- 
 tellectual faculties" and "lacking in moral faculties" is 
 no longer permissible, since neither does psychology allow 
 that there are intellectual faculties nor does modern 
 ethics allow the concept of moral faculties. Morals are 
 merely volitional actions in accordance with the customs 
 of the social group ; hence this comes under the problem 
 of the will which, as we have already seen, is mainly 
 a question of intelligence. Logically then, a person who 
 has normal intelligence should be able to so control his 
 action as to be "moral" rather than "immoral." It 
 must be admitted that little is understood of this type of 
 immoral person and in this field little is to be gained from 
 speculation. 
 
 Future studies of this problem will probably have to 
 deal with the habit of action and must ascertain whether 
 these are cases where an unusually strong habit has been 
 developed before attempts were made to supply ideas and 
 furnish inhibitions. Also investigations must be under- 
 taken to determine what efforts have been made to de- 
 velop inhibitions. The question inevitably arises when 
 one meets a "moral imbecile," "What efforts have been 
 made to correct these tendencies? Was the child ever 
 punished? Did he ever suffer the consequences of his 
 action?" The answers that one gets are usually either 
 
 [268]
 
 THE PROBLEM UNSOLVED 
 
 vague or of uncertain application. One father says, 
 1 'Yes, I have whipped him until I was ashamed to whip 
 him any more. " In which case one has the natural doubt 
 as to whether whipping is the kind of inhibition that 
 should have been applied. 
 
 Healy has introduced the expressions pathological 
 liars, and pathological thieves. Perhaps we should con- 
 sider these cases also pathological. Perhaps there is a 
 lesion in the brain which has destroyed the specific as- 
 sociation neurons (if there are such) which should as- 
 sociate action with its consequences and thus bring about 
 the inhibition. It is a possibility that our concepts of 
 arrest of development might be made to cover the case 
 by assuming such a definite localization of the arrest 
 as to account for the condition found. That is to say, 
 instead of there being a general arrest of development 
 of the neurons of the association areas, there may have 
 been a narrowly limited, localized arrest of certain fibres 
 which connect the centres that give rise to the impulse 
 to lie or steal with those centres which give the conscious- 
 ness of consequences. This, however, is a difficult concept 
 in view of what we know of the growth of the cortex, and 
 until we have more definite clinical evidence it can give 
 little satisfaction. 
 
 [269]
 
 CHAPTER IV 
 INTELLIGENCE AND EMOTION 
 
 IN the previous chapter we have discussed some of the 
 implications of the relation of intelligence to will. We 
 now come to the consideration of a problem that is still 
 more in need of elucidation. We perhaps cannot better 
 bring the problem before the reader than by quoting the 
 oft heard remark, "It is not enough to know a child's 
 intelligence, his mental level, but we ought also to know 
 his emotional life. Tests of intelligence are not enough, 
 we must also have tests of the emotions." This view has 
 far more to justify it than the views about the will 
 already discussed. 
 
 While to the lay mind the part that the emotions play 
 in human life may not seem to be any greater than that 
 played by the will, yet when we come to the physical basis 
 of the problem we find an absolute difference. There is 
 nothing in the nervous system that can by any pos- 
 sibility be considered the organ of will, but there is a very 
 definite, elaborate and complicated nervous system that 
 has been definitely recognized by Mosso as the "seat of 
 the emotions"; namely, the sympathetic system. More- 
 over, definite connections have been established, as we 
 have already shown, between this sympathetic system and 
 the glands of internal secretion, by which they are known 
 to react upon each other. Since it is easy to conceive of 
 differences in structure and function of the sympathetic 
 system and the glands, and since we have the clinical 
 evidence in at least one case, that of the effect of the 
 
 [270]
 
 INTELLIGENCE CONTROLS EMOTION 
 
 absence, or the hypertrophy of the thyroid gland produc- 
 ing the symptoms recognized as cretinism, it is not only 
 logical, but we are practically forced to accept the view 
 that there must be enormous individual differences in the 
 emotional life of individuals and that such differences, be- 
 ing fundamental and inherent, are not easily regulated 
 but must be reckoned with. From this it seems logical 
 to conclude that until we can understand conditions in 
 this realm and analyze and measure the emotions, it is 
 unsafe to conclude that we know all about the individual. 
 
 However, the situation is not nearly so bad as it at 
 first appears. It is a common experience in all science, 
 when there are two factors, one of which is unknown and 
 uncontrollable, to more or less successfully control the 
 situation by manipulating the other factor. A chemist 
 has a solution and finds by simple tests that it contains 
 an acid. He does not know what acid or how much of it 
 is present. He can neither filter it out nor allow for it, 
 but he can neutralize it and render it harmless by adding 
 an alkali. It is one of the fundamental facts of psy- 
 chology that there are two phases of mind, the intellectual 
 and the emotional, each so important and so strong that 
 we commonly speak of an emotional life and an intel- 
 lectual life. 
 
 But a further fact is not so commonly recognized; 
 namely, it is a scientific fact and a common experience 
 that the intellectual life regularly controls, to some de- 
 gree, the emotional life, and probably is capable of com- 
 plete control of action no matter what the condition of the 
 emotion. From this the conclusion is inevitable that if 
 there is little intelligence there will be little control, 
 whether the emotional life is strong or weak. If the 
 chemist's solution is decidedly acid and he has only a 
 
 [271]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 single drop of weak alkali, we can predict with certainty 
 that he will not be able to neutralize or control the acid. 
 
 We have drawn some hypothetical pictures for the sake 
 of illustrating how the neuron action of the cerebro-spinal 
 nervous system influences, and is influenced by, the 
 sympathetic system. We shall not go further into that 
 subject at the present time, but shall confine ourselves 
 to reminding the reader of some of the instances which 
 show (1) that the intelligence controls the emotions and 
 (2) that the emotions are controlled in proportion to the 
 degree of intelligence. It follows that if there is little 
 intelligence the emotions will be uncontrolled and whether 
 they be strong or weak will result in actions that are un- 
 regulated, uncontrolled and, as experience proves, usually 
 undesirable. Therefore, when we measure the intelli- 
 gence of an individual and learn that he has so much 
 less than normal as to come within the group that we call 
 feeble-minded, we have ascertained by far the most im- 
 portant fact about him. While not denying that it would 
 be highly desirable to know more about his emotional life, 
 to be able to measure it and evaluate it and determine its 
 influence upon the intellectual life, we may yet satisfy 
 ourselves that a knowledge of the intellectual condition 
 gives us, within limits, enough information for our 
 guidance in the care, control and regulation of such defec- 
 tive individuals. 
 
 We have already cited, page 146, McDougall's view 
 of the way in which the primary emotions are normally 
 modified. We have also called attention to the wonder- 
 ful power of ideas in increasing emotions. Let us con- 
 sider still another case. Three or four people are con- 
 versing; one of them utters a sentence which produces 
 practically no effect upon A, arouses a strong sense of 
 
 [272]
 
 EXPERIENCE MODIFIES EMOTION 
 
 humour in B, and an intense emotion of anger in C. 
 The explanation is obvious. The resultant emotion or 
 lack of emotion depends upon the ideas with which each 
 one has received the remark. A has no experience which 
 can combine with the remark and make it especially 
 significant. In B it calls up a whole train of ideas and 
 experiences so connected, so related to him and his wel- 
 fare, that it arouses an intense degree of pleasure. C, 
 on the other hand, has had the opposite experience. He 
 may see in the remark a significance that touches him or 
 his family in a way that means decided annoyance or dis- 
 comfort. He is accordingly angry. Without their re- 
 spective experiences B and C might have been as passive 
 as was A. It is unnecessary to multiply instances, the 
 experience is so familiar that every one must recognize 
 it. 
 
 Let us take a little different example and see how the 
 situation and experience modifies the emotion. A man is 
 alone in the forest and meets a wild and ferocious animal. 
 He may easily be " paralysed with fear" but if he has a 
 gun in his hand he will probably exhibit scarcely even a 
 trace of fear; while if he is hunting that particular 
 animal, the sight will produce intense joy. Consider for 
 a moment the sex emotion, supposed to be the most un- 
 controllable of all human instincts ; yet it is notorious that 
 the intelligent man controls even this. While there are 
 intelligent men who claim that they have such a strong 
 instinct in this direction that they cannot control it, and 
 this is their excuse for an immoral life, undoubtedly, if 
 we could measure and ascertain the facts, we would find 
 that there are just as many men with just as strong sex 
 impulses who do maintain complete control. Because 
 they are intelligent, they appreciate their relations to 
 
 [273]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 their fellow men and are able to bring to bear upon every 
 situation sufficient inhibiting ideas to enable them to re- 
 frain from acting immorally. 
 
 The writer has seen idiots who had suffered pain from 
 having teeth extracted and were, upon another occasion, 
 terrified at the visit of the dentist. The imbecile seats 
 himself in the chair with fear and trembling but with no 
 terror. The moron has sufficient intelligence to know 
 that his teeth are not hurting him and that probably none 
 will be extracted ; and so he sits down, opens his mouth, 
 submits to the examination with calm composure. The 
 normal man, with his superior intelligence, seeks the 
 dentist, asks for an operation that he knows will be pain- 
 ful; yet his mental state is one of real satisfaction, not 
 to say joy, because he knows that it will be for his benefit 
 finally. 
 
 Twelve years' association with the feeble-minded, and 
 study of their condition has convinced the writer that the 
 fundamental emotional conditions are not so variable as 
 is commonly supposed. The feeble-minded want to be 
 comfortable and happy and they are not hard to please. 
 When treated in a manner to produce happiness, they 
 seldom manifest violent emotions. In all these years 
 the writer has never seen such paroxysms of anger as he 
 has seen among normal boys. Even the sex instinct is 
 much less in evidence among mental defectives than 
 among a similar group of -normal persons. The social 
 relations between the sexes in most institutions for the 
 feeble-minded are much the same as in a co-educational 
 boarding school. The boys' cottages are separated from 
 the girls' cottages; many of the boys at their work or 
 on errands come in contact with the girls ; in some of the 
 shops they work together; they are together in school; 
 
 [274]
 
 THE MORON NOT VICIOUS 
 
 they all meet in the same hall two or three times a week 
 for entertainments, Sunday assembly, etc. Yet in the in- 
 stitution best known to the writer, there have been in 
 twelve years not more than two or three instances that 
 indicate any special sex activity, and those were rela- 
 tively unimportant. If one compares this with condi- 
 tions in public schools or co-educational schools, the con- 
 clusion seems to be inevitable that the feeble-minded do 
 not have abnormal sex impulses. 
 
 The reader must appreciate the difference between the 
 fundamental, natural strength of the instinct, if we can 
 so speak, and acquired conditions. We have dwelt upon 
 the fact of the modinability of the instincts, both in the 
 direction of strengthening and of weakening them. The 
 instincts and emotions of the feeble-minded may be 
 strengthened, as is evidenced from the experiences of the 
 feeble-minded who are not cared for in institutions and 
 made happy. It is commonly believed, by those whose 
 only experience is with morons outside of institutions, 
 that they are a dangerous, vicious, bad group of people, 
 full of the strongest instincts and emotions. But we 
 can only conclude that this is the result of their having 
 had their emotions stirred and developed by the necessity 
 of reacting against unfair treatment which tended to 
 make them unhappy and consequently resistant to all 
 efforts at control. The feeble-minded person is not 
 naturally wicked or bad, but when misunderstood and 
 mistreated, he does have enough of the primitive 
 human instincts to react; and constant reaction to bad 
 treatment does develop his emotions to a strength not 
 usually found in those of higher intelligence who have 
 been more wisely treated. 
 
 Thus the facts of every day life, when carefully inter- 
 
 [275]
 
 THE MORON NOT VICIOUS 
 
 preted, seem to point to the view presented, Jiat while 
 action is modified and reinforced by the energy of the 
 sympathetic system, which appears in consciousness as 
 emotion, yet it is intelligence that modifies and controls 
 the action of the sympathetic system or, as we say for 
 brevity's sake, the emotions. 
 
 [276]
 
 CHAPTER V 
 EXPERIENCE 
 
 THE reader who has followed our discussion and explana- 
 tion of mental processes will have noted the fundamental 
 part played by experience. The normal human organism 
 includes an elaborate nervous system with either actual 
 or potential neuron patterns capable of responding to all 
 the important stimuli and directing all the necessary ac- 
 tions of life. But even those inborn neuron patterns can- 
 not function without being set into activity by an ap- 
 propriate stimulus. Indeed, there seems good reason to 
 believe, that if the stimulus is never presented, these 
 specific neuron patterns either degenerate or become so 
 subordinate to other patterns that are exercised, that for 
 all practical purposes it is as tho such patterns did not 
 exist. 
 
 But we have seen that while the inborn neuron pat- 
 terns form the starting point, the basis for reflexes and 
 instinctive actions, and probably cover all those activities 
 that are vitally necessary for the perpetuation of the race 
 and for the safety of the individual under simple con- 
 ditions; yet, the ability to protect one's self in a more 
 complicated society, that is to say, the capacity for what 
 we have called the higher mental processes, elaborate 
 thinking, reason, judgment, will and all that constitutes 
 the higher levels of intelligence, depends upon the group- 
 ing together of these relatively few primary instinctive 
 patterns to form larger and ever more elaborate and com- 
 plex neuron patterns. 
 
 [277]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 We have also seen how this whole extension and 
 elaboration is brot about by experience. Perhaps no- 
 where is one brot so face to face with the importance of 
 experience as in the consideration of imagination. We 
 have found that imagination, while popularly supposed 
 to be unlimited in its functioning, is, on the contrary 
 definitely limited by the experience of the individual. 
 Ideas are exceedingly useful in the elaboration of thot 
 and reasoning and judgment; but " ideas arouse experi- 
 ences." Without the experience back of the idea there 
 can be no neuron pattern that can function as a part of the 
 elaborate pattern that we have assumed underlies thot. 
 
 This fact seems to be generally recognized by all in- 
 telligent people except some teachers and trainers of 
 children. There is, for instance, a sharp distinction be- 
 tween book knowledge and practical knowledge ; between 
 knowing about a thing and knowing the thing itself. 
 We say of a man, he has had large experience, or he has 
 had no experience, and our estimate of his efficiency is 
 determined by this fact. The average college graduate 
 is notoriously helpless and useless when he knows things 
 only from books and has had no practical experience. 
 The intelligent man who takes up any new line of work 
 prepares himself by seeing what others are doing, by 
 getting experience. Hence, the vast amount of travel 
 and visiting. The school superintendent visits other 
 school systems. The teacher visits other classes; the 
 manufacturer visits other plants to get new experiences 
 so that he will have ideas. Societies are formed by the 
 leaders in every industry, occupation, and profession, for 
 the exchange of experiences. All of which comes back 
 to the fundamental fact that no man can imagine new 
 lines of activity without first getting new experiences. 
 
 [278]
 
 EXPERIENCE 
 
 And yet the teacher, and often the parent, thinks that 
 he educates and trains the child by telling about things. 
 The mother who thru fear of accident keeps the child 
 close at home, or the father who is too busy to take his 
 boy with him and show him things, is dooming that child 
 to incapacity and inefficiency vastly more than he would 
 be by keeping him out of school and not allowing him 
 to learn to read. Now the positive side of all this is, that 
 immature mind gets its development and training thru 
 experience. Therefore, every provision should be made 
 consciously and definitely for giving the child all pos- 
 sible experiences that will help to build up useful neuron 
 patterns. The child should see everything, hear every- 
 thing, taste everything, smell everything, handle every- 
 thing in order that he may have a complete equipment 
 of sensations, perceptions and experiences that he can 
 use and build up into his more complex creative imagina- 
 tions. All these experiences should have a certain 
 orderly or logical arrangement, so that they can be found 
 when wanted. This orderly arrangement of experiences 
 is science, enabling one to meet the needs of life. The 
 lack of this makes the difference between a department 
 store and a junk shop. A junk shop is infinitely better 
 than an empty barn, but efficiency would be greatly in- 
 creased if the articles in the junk shop were classified and 
 arranged according to some logical principle. So it is 
 with experiences. Without experience, one's mind is an 
 empty barn. The untrained man of affairs who has 
 picked up his experiences by himself is apt to have a 
 mind that is more or less of a junk shop ; valuable, and 
 often relatively efficient, he would have been vastly more 
 efficient if he could have been scientifically trained. It 
 is the business of formal education to supply the neces- 
 
 [279]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 sary experiences and to furnish them in logical arrange- 
 ment. 
 
 In the previous chapter we have used the term vicari- 
 ous experiences, meaning those cases where we use the 
 experience of another. This must be explained, else it 
 will lead to just the practice that we are condemning. 
 It is the unwarranted confidence in the value of the ex- 
 perience of others that has led to our careless practices 
 in education. We can use the experiences of others, but 
 only to a relatively limited degree. The limitations must 
 be understood. 
 
 The most important condition for making use of an- 
 other's experience is that one shall have had some experi- 
 ences that are somewhat related to those by which he 
 wishes to profit. He must have had the details of the 
 other's experience tho he has not experienced all the ele- 
 ments together. In other words, we are apparently deal- 
 ing with the same problem of imagination. I can build 
 up an imaginary picture of my friend's experience if I 
 have some time myself experienced the details. I may 
 never have seen a certain institution for the feeble- 
 minded, consequently I cannot reproduce any image of it. 
 But if a friend describes it to me as located on sloping 
 ground, at the foot of rather high wooded hills, composed 
 of a large number of buildings of red brick, the separate 
 buildings connected by wooden corridors and arranged 
 around a square court, and so on, I can imagine the in- 
 stitution because I have actually experienced all the de- 
 tails mentioned. My image will be accurate in propor- 
 tion as my friend has gone into details accurately, and 
 as I have carefully attended to all he said and repro- 
 duced each image with reasonable completeness. Thus. 
 I have a vicarious experience of that institution. 
 
 [280]
 
 EXPEEIENCE 
 
 All this information may be conveyed to me with con- 
 siderable degree of accuracy, and very quickly by the 
 presentation of a photograph; and in proportion as I 
 study and understand the photograph, I shall have a 
 fairly good experience of the institution. It will be seen 
 at once that we have an immense amount of this kind of 
 experience, but it will be admitted almost as quickly 
 that such experience is never quite equal to first- 
 hand experience. Occasionally one has an experience 
 of something that he has built up in imagination, 
 and he is able to say, "This is exactly as I had 
 pictured it; seems to me I have been here before." 
 But it is comparatively rare that one can have this 
 feeling. Vastly more frequent is the discovery that 
 the actual thing is very different from one's imagi- 
 nary picture. As already impled, this discrepancy 
 arises as a result, first, of lack of actual experience of 
 details; and second, of failure to attend closely to the 
 description or to study the picture; or third, of actual 
 inability, due perhaps to lack of neurons, to bring to- 
 gether all these different parts into one co-ordinate whole. 
 
 From these considerations it is possible to see clearly 
 where we fail in our attempt to use vicarious experience 
 with immature minds. First, we take no account of the 
 fact that the child has not had the elementary experi- 
 ences that go to make up the picture. And we very often 
 make no effort to ascertain that fact. Secondly, we are 
 apt to be extremely careless in enumerating the details. 
 And thirdly, it is almost impossible to assure ourselves 
 that the child has attended to these details and has as- 
 sociated them together into a complete whole. 
 
 Still more reprehensible is the practice of relying upon 
 a verbal description and being quite satisfied if the child 
 
 [281]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 is able to repeat our language. Worse still, perhaps, is 
 the use of symbols other than words; such as maps, 
 diagrams, drawings, etc., which in no way represent the 
 original experience, but only symbolize it. Such is the 
 method of teaching geography by means of map ques- 
 tions, now fortunately largely eliminated in our best 
 schools. There are many people to whom Paris, London 
 and Berlin mean simply little black dots on a map ; and 
 the rivers Seine, Thames and Spree are black lines on the 
 same map. These are cases where the attempt to give 
 children the vicarious experience has proved a failure. 
 But the most unfortunate part of it all is, not that the 
 child has failed to get anything useful, but that he is 
 himself misled into thinking that he has gained knowl- 
 edge. . 
 
 The writer once saw a class of fifty Normal School 
 girls tested as to their knowledge of the St. Lawrence 
 River. More than half of them declared that the water 
 in the St. Lawrence flows southwest. When reminded 
 that the river connects the ocean with the Great Lakes, 
 more than a quarter of them still persisted that the river 
 flows from the ocean into the Lakes. It is easy to see 
 how this confusion came about; the river was to them 
 merely the line on the map, and since this line runs 
 from near the top of the map toward the bottom, and 
 water does not run up hill, it must be that the St. 
 Lawrence River flows down from the Atlantic Ocean to 
 the Great Lakes. But in spite of all the bad teaching, 
 we may admit that it is only bad teaching and that under 
 good conditions the child may be enabled to profit by 
 vicarious experience to a large extent. 
 
 We have been speaking of normal children. When we 
 turn our attention to the feeble-minded, the problem ia 
 
 [282]
 
 CONCRETE AND ABSTRACT 
 
 quite different. The reader has now a clear picture of 
 the feeble-minded child with his undeveloped association 
 neurons; from which it follows that the defective is in- 
 capable of bringing together and associating the different 
 elements of his experience, which would go to make up 
 the new picture. But more than that, he is usually de- 
 ficient in the elementary experiences. Tho he has lived 
 in the same environment as his normal brother, because 
 of his undeveloped neurons the environment has not 
 made the same impression upon him. The sensations 
 that came through his eyes and ears have not meant for 
 him the definite experiences that they have meant for the 
 normal boy ; therefore, the vicarious experience is almost 
 nil for the feeble-minded boy. Moreover, if we would 
 be sure that he gets the elemental experiences, we must 
 be very careful to see that the stimuli make sufficient im- 
 pression upon him to arouse what neuron patterns he 
 possesses. Hence his training must be a radically differ- 
 ent process from that of the normal child. It must be 
 concrete and never abstract. This necessitates a defini- 
 tion of these terms. 
 
 It has been customary to define concrete as a term 
 applicable to anything that exists; abstract, to the non- 
 existent. Pedagogically the definitions are incomplete. 
 They should add the idea of relationship to the individual. 
 What is concrete to one person who has had the neces- 
 sary experience is abstract to another who has had no 
 such experience. If I have never looked thru a micro- 
 scope, brain cells are as much abstractions to me as 
 atoms, hormones or goodness. The following experience 
 will illustrate this. John, aged thirty-five, mentally 7, 
 was being examined by the writer as to his proficiency 
 in numbers. 
 
 [283]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ' ' John, how many are 7 and 6 ? " No answer. 
 
 "How many are 3 and 2?" "Don't know." 
 
 John evidently cannot handle abstract numbers. 
 
 "How many are 3 loads of coal and 2 loads of coal!'* 
 "Five." 
 
 "Good! Suppose you give your horse 6 ears of 
 corn " 
 
 "We don't give him six ears of corn." 
 
 "Well, just suppose you did." 
 
 "But we don't." 
 
 "Well, let's play you do." 
 
 "No, I can't, because we don't give him six ears." 
 
 (Note that John cannot imagine what is outside his 
 experience. Clearly we must come to his terms.) 
 
 ' * Well how many do you give him ? ' ' 
 
 "Oh, ten or twelve." 
 
 "Very well, suppose you start to give him fourteen 
 ears of corn and the hostler says give him only twelve. 
 How many ears will you carry back to the bin?" 
 
 "Two" (promptly). 
 
 "Good." Here followed some other combinations, 
 then this: "John, suppose you took fourteen loaves of 
 bread from the bakery to the kitchen, and when you got 
 to the kitchen the cook wanted only twelve, how many 
 loaves of bread would you carry back to the bakery 1 ' ' 
 
 John (very slowly and doubtfully). "Three?" 
 
 John had never handled loaves of bread. The problem 
 was abstract. 
 
 John hauls coal two loads in the forenoon and two in 
 the afternoon. 
 
 "John, suppose you have four loads of coal in one bin 
 and three in another, how long will it take you to haul 
 it!" 
 
 [284]
 
 "A day and a half and then a load" (promptly). 
 
 John had had the necessary experience. 
 
 The following account of Lewis's attempt to make a 
 concrete experience out of an abstract test is a further 
 illustration. Lewis is twenty-five years old, mentality 
 8. The Porteus tests are a series of mazes, the first very 
 easy, the later ones difficult. The test is to trace with 
 a pencil the most direct way out, and without touching 
 the sides. An S shows where to start. 
 
 Lewis's experience is clearly in evidence. He knows 
 Scranton, Pa., from experience, not from geography, 
 which he has never studied. 
 
 Normal children often give a " setting" to their tasks, 
 but it is not often so clear that it is a real help to them 
 in making the task concrete. 
 
 Lewis and the Porteus Tests 
 
 The examiner had explained what was desired, but the 
 boy could not seem to understand in the least. All of 
 a sudden he looked up quickly, saying: 
 
 Lewis. Oh, I see, it's a train! S stands for station, 
 don 'tit? 
 
 E. That's right. It's a train starting from the 
 station and you're running the train. Now keep your 
 train on the main line and don't sidetrack. 
 
 Lewis. All right. I'll take Ethel home to Washing- 
 ton. (Finds opening at the finish.) Here it is. It's a 
 terminal. Write Washington there, please. Thanks. 
 Here we go Toooot Pssseee Chu, chu, chu, chu (etc. 
 to the end of the line without a mistake). Here we are. 
 Ethel got home without getting hurt. Washington, 
 Washington, all change cars. 
 
 With each maze he did the same thing, taking a differ- 
 
 [285]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 ent person each time. When he made a mistake he would 
 say, "Too bad, too bad. Got her hurt that time, must 
 get her out this time or she'll have to go to the hospital 
 and get killed. " 
 
 After that he would start again and finish without 
 a mistake. On the last test he was to take Miss W. to 
 Scranton, Pa. 
 
 Lewis (finding terminal). Write Scranton here, 
 please. 
 
 (Examiner wrote Scranton.) 
 
 Lewis. Write Pa., please, Scranton 's in Pennsylvania. 
 Don't you know it! You'll have to write Pa. Write it, 
 please. 
 
 (The examiner wrote it.) 
 
 Lewis. All right. Here we go Toot-toot, Pssseee 
 Chu, chu, chu. 
 
 But he failed this one and was very much disturbed be- 
 cause he had "landed Miss W. in a hospital and she'll get 
 killed and I can't get her home." 
 
 He kept worrying and talking about Miss W. and the 
 examiner had difficulty in getting him to pay attention 
 to the next test which was the Knox Cube. After he 
 got the idea of it he said: "Oh, I know. This is the 
 electric train. I can get Miss W. home on this, can't I?" 
 
 After he had been told that he could, he paid close at- 
 tention and proceeded to "get Miss W. out by the electric 
 trains." 
 
 From all this it seems that anything is abstract that 
 is away from experience, and that the only way to deal 
 with abstractions, at least in the beginning, is to know 
 the concrete experience. 
 
 It is highly probable that we begin the teaching of ab- 
 
 [286]
 
 ABSTRACTIONS TOO EARLY 
 
 stractions far too early with the normal child. The defec- 
 tive child, who is never able to handle abstractions to any 
 great extent, must be trained wholly by concrete material. 
 But of that we shall speak in the next chapter. 
 
 [287]
 
 CHAPTER VI 
 PEDAGOGICAL APPLICATIONS 
 
 THE facts of the growth, development, structure and 
 function of the nervous system, some of which have been 
 set forth in the preceding pages, are sufficient to warrant 
 some conclusion in regard to the training of immature 
 minds; and many more tentative hypotheses that can 
 either be confirmed or contradicted by appeal to experi- 
 ence. 
 
 Let us first consider the normal child the child whose 
 mind, tho undeveloped, is growing. The first principle 
 in the development of the child is to provide for the 
 normal functioning of his inherited neuron patterns in a 
 way that will be most useful to him and to the social 
 group in which he lives. This means above all else that 
 he must have the right kind of experience, since it is 
 experience and experience alone that sets these patterns 
 into activity. All the natural instincts that still remain 
 useful in modern society should be developed. Those 
 that have ceased to be useful, and on the contrary are in- 
 jurious, should be allowed -to lapse thru disuse. 
 
 It is always desirable to stress the positive side by 
 substituting a desirable action rather than the negative 
 side by trying to destroy the bad action "do this" 
 rather than " don't do that." Nevertheless those in- 
 stincts that begin to function in spite of efforts to the con- 
 trary must be discouraged by making the consequences so 
 undesirable that a new neuron path will be established. 
 
 [288]
 
 LYING AND STEALING 
 
 For example, deceiving and hoarding are instinctive ac- 
 tions. They are found in animals and in primitive 
 human beings. Where each one lives for himself, they 
 are among the highest virtues. In the more highly de- 
 veloped human society they are called lying and stealing 
 and as such are undesirable and must be shunted off. 
 
 Both animals and primitive man survive largely thru 
 their success in deceiving their enemies and in accumulat- 
 ing what they need for their own subsistence. It is only 
 when men come to live together in groups, the family 
 and the tribe and the nation, and become mutually de- 
 pendent, thru each one specializing and doing some part 
 of the work for the common group, that truth in dealing 
 with one's fellows becomes necessary, and the institution 
 of property becomes developed. Under these conditions 
 it is reprehensible to take for one's own use that which 
 belongs to another or to deceive another of your own 
 group. 
 
 There has been a gradual development along this line. 
 First it was thoroly ethical to deceive or steal from any 
 one outside the family, then outside the tribe, then the 
 nation. The present World War is developing a world 
 unit. Witness President Wilson's conditions of Peace 
 all treaties and diplomatic procedure shall be open and 
 above board world honesty. That even the most civil- 
 ized man has not yet fully acquired these habits, to the 
 exclusion of the old primitive instinct, is at once evident 
 in view of certain indisputable facts. In spite of all our 
 ethics and our ideals we still feel, and constantly hear 
 expressed, that it is a little bit worse to lie to, and steal 
 from, our relatives than from those outside of the family ; 
 a little worse to indulge in these practices in our own 
 nation than with a foreign nation. Only recently has 
 
 [289]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the ideal of honesty in diplomacy in the treatment of 
 other nations been declared as the ideal. Moreover, once 
 war is declared, deceiving the enemy and stealing from 
 him become the highest virtues. 
 
 These tendencies probably come under the instinct that 
 McDougall describes as the self-assertive. It is when 
 the individual begins to develop a sense of self and to 
 feel the necessity of asserting himself in his group, that 
 he begins to work for his own aggrandizement by deceiv- 
 ing others as to his intentions, desires and actions, and 
 to accumulate for himself everything that he conceives 
 he wants. Experience teaches that this phase of the de- 
 velopment of the child comes, on the average, at about 
 the age of nine or ten. Naturally it appears much earlier 
 in many individual cases and indicates its presence in 
 certain small ways in practically all children at an earlier 
 age than nine. Fortunately at that age there are usually 
 enough well developed neurons, and the association 
 centres are sufficiently developed to make it entirely pos- 
 sible to overcome these tendencies. This is done, as we 
 have already explained, by building up other paths and 
 developing habits of action that together constitute 
 honesty and truthfulness. 
 
 As already explained under the head of the moral 
 imbecile, when a youth past this age of nine to ten still 
 persists in these primitive practices, we are compelled 
 to conclude that there has somehow been bad training. 
 The primitive instincts have not been overcome, the new 
 neuron paths have not been properly developed. This 
 does not always mean that wise and good teachers and 
 parents have not done the best they know; but rather, 
 that in spite of themselves they have somehow made a 
 mistake. 
 
 [290]
 
 HABITS OF ACTION 
 
 The first principle in dealing with these conditions 
 is that the inherited neuron paths underlying immoral 
 conduct must be blocked. Second, we must provide for 
 the development of acquired paths. 
 
 Passing now to a consideration of general pedagogy 
 the conscious help that should be given to the growing 
 organism we may state some general principles. We 
 have already discussed at length the importance of ex- 
 perience. The child must be given those experiences 
 that will set into activity all inherited neuron patterns 
 that are useful, and also those that will develop his ac- 
 quired neuron patterns in such a way as to be in the 
 future most valuable to him. Suitable habits of action 
 must be developed in reference to all the stimuli that the 
 child is likely to meet. Rightly interpreted, this does 
 away at once with a practice formerly considered wise, 
 namely, that of keeping the child away from those experi- 
 ences that are considered undesirable. The logical con- 
 clusion is, not that the child should not know about the 
 things that we call evil, but rather that there should be 
 developed in him the proper neuron patterns for right 
 actions in the presence of these evils. To interpret by 
 elaboration the prayer of Jesus, it would be, "Not that 
 thou shouldst take them out of the world of evil, but that 
 thou shouldst keep them from evil action." 
 
 The whole doctrine of the gradual growth and develop- 
 ment of the nervous system ; of the elaboration of neuron 
 patterns as the child increases in age; the fact that the 
 higher association centres do not develop until ado- 
 lescence, and are not complete perhaps until the end of 
 the adolescent period; all lead very clearly to the con- 
 clusion that we should not attempt to develop an ap- 
 preciation of abstract moral principle or require the child 
 
 [291]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 to deal too much in abstractions until at least the begin- 
 ning of adolescence. 
 
 When it comes to a consideration of school discipline 
 or studies, an ideal procedure will first ascertain the 
 mental level of the child, then the level of intelligence 
 necessary to master each school subject and finally will 
 fit the two together. It should be noted that while, on 
 the one hand, a child of a lower mental level than that 
 required for the understanding of a particular subject 
 cannot possibly succeed in that line ; on the other hand, 
 it is equally an error to keep a child at work that is 
 below his mental level. His instinct of self-assertion 
 makes 'him rebel at this and he seeks by every device 
 known to him to escape. When the subject will have re- 
 ceived more scientific study than it has as yet, it is 
 probable that we shall find that the truant group is 
 largely made up of children who belong to one or the 
 other of the two classes mentioned namely : those whose 
 mentality is below that required for the task and those 
 whose mentality is far above the task. 
 
 Finally, in view of the facts of physiological and 
 neurological development of the child, the question may 
 be very seriously raised as to whether we are not, in our 
 present practice, rushing him into abstractions too early 
 and wasting his time by having him memorize things 
 which he can only understand later; whereas we should 
 be using the time in carefully developing neuron patterns 
 of fundamental importance which are best and most 
 easily acquired in the early years. If this question is 
 to be answered in the affirmative it points most emphati- 
 cally in the direction of the present tendency to industrial 
 and occupational education. 
 
 The pre-adolescent years should be occcupied by the 
 
 [292]
 
 PEDAGOGY OP THE FEEBLE-MINDED 
 
 child in doing things; in getting wide experience with 
 the world about him; in getting thousands of neuron 
 patterns in his sensory and motor centres, that will 
 furnish the bases for elaborate thot, reason and judg- 
 ment when his association neurons begin to develop and 
 are ready to connect up these different experiences. 
 
 So much for the normal child. Now we must consider 
 the feeble-minded, the backward, those who are arrested 
 in the development of their neurons. In considering the 
 pedagogy of the feeble-minded and backward child we 
 must remember one very important fact, we are no longer 
 dealing with a developing organism. The brain has 
 ceased to grow and that stoppage has caught a great 
 many of the neurons undeveloped and in such an im- 
 mature condition that they will never be able to function. 
 From what we know of brain growth and neuron develop- 
 ment; and from what we observe, on the mental side, 
 of the condition of the intelligence in these individuals 
 our studies have shown that the feeble-minded manifest 
 all the simpler mental processes but are noticeably de- 
 ficient in those that depend upon elaborate association 
 from all these data we conclude that the neurons most 
 affected are located in the association areas. 
 
 The feeble-minded see and hear, taste and smell as do 
 normal children. They meet and respond to a simple en- 
 vironment in a very natural childlike way. They profit 
 by experience to the extent that they will repeat or re- 
 fuse to repeat the experience according as it brot 
 pleasure or displeasure, provided the second situation 
 is identical with the first. They can neither generalize 
 nor perceive similarities except those that are most 
 obvious. The result is that a second situation, essentially 
 like the first experience but presenting some different 
 
 [293]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 phases, is not recognized by the defective as similar, and 
 consequently he does not know how to act. In general, 
 it is the differences that he notes and not the similarities. 
 Ask a child of eight why snow is like sugar and he may 
 tell you that snow is cold and sugar is sweet. In what 
 way are a butterfly and a fly alike, and he will tell you 
 the butterfly is bigger. Even a child of nine or ten still 
 sees differences more easily than likenesses. 
 
 Twenty-one boys from fourteen to forty-seven years 
 old of mental ages 9, 10 and 11 were asked to give the 
 following likenesses and differences: 
 
 a. What is the difference between a cannon and a rifle? 
 
 b. In what way are a hat and a coat alike? 
 
 c. In what way are a hoe and a razor alike 1 
 
 d. What is the difference between a hatchet and a 
 hammer? 
 
 e. In what way are a rose, a potato and a tree alike? 
 
 f . In what way are a table, a chair and a bed alike ? 
 
 g. What is the difference between a president and a 
 king? 
 
 h. In what way are a cat, a snake, a bird and a fish 
 alike? 
 
 i. In what way are the eye and the ear alike ? 
 
 j. What is the difference between character and reputa- 
 tion? 
 
 The following table shows the result. 
 
 20 BOYS 
 
 Mental Average No. Likenesses Differences 
 
 Age Life Age Cases Correct Correct 
 
 9 20 4 21% 44% 
 
 10 25 11 38% 59% 
 
 11 25 5 73% 75% 
 
 From this it will be seen that not until mental age 
 11 do we get practically as many likenesses as differences 
 
 [294]
 
 SIMILARITIES AND DIFFERENCES 
 
 recognized. This inability to see similarities has some 
 curious results especially noticeable in moral conduct. 
 A feeble-minded child of mentality 7 or 8 steals a 
 handkerchief and gives it to somebody she likes very 
 much. She is caught and corrected, told that it is steal- 
 ing and is wrong. It is highly probable that she will 
 never steal a handkerchief from that person again; but 
 it is quite possible that she will steal something else from 
 that same person or will steal a handkerchief from some- 
 body else. She is not able to appreciate the generaliza- 
 tion that it is wrong to steal, or even that it is wrong 
 to steal from that particular person, or that it is wrong 
 to steal a handkerchief from anybody. Because of her 
 lack of neuron development, and the consequent impos- 
 sibility of building up neuron patterns that would mean 
 stealing is wrong, we cannot hope that she will ever grow 
 out of her present condition. This has important bear- 
 ings upon the problem of training. 
 
 Whenever a child cannot profit by experience, or has 
 to be corrected a great many times for not doing right 
 in situations that are similar to those he has experienced 
 before, we may suspect feeble-mindedness or backward- 
 ness, or at least that the association neurons whereby he 
 perceives similarities have not yet developed. This is 
 in striking contrast to the usual normal child. The 
 normal child of the proper age might manifest exactly the 
 same state of mind ; but, almost while we are correcting 
 him and teaching him the moral principle, his neurons 
 are developing and he is no longer the same child that 
 he was when we began with him. He gradually develops 
 the power of appreciating the abstract principle. Be- 
 cause his neurons are constantly growing, the possibili- 
 ties of new patterns are just ahead. It is evident that 
 
 [295]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the only thing to be done in the case of the feeble-minded 
 is to teach them the right action in each particular case. 
 Where one or two illustrations or one or two experiences 
 would be sufficient for the normal child, the feeble-minded 
 child must have scores. 
 
 When it comes to the question of formal education, 
 this fact that the feeble-minded is not developing has 
 another significant bearing. Many things that we teach 
 the normal child require an ever increasing intelligence 
 as we go farther into the process. But because the 
 normal child is ever getting an increased intelligence, 
 he is able to keep pace with the increasing difficulty of 
 the subject. With the feeble-minded this is not true. 
 Here is a subject or a process that requires, let us say, 
 only 6 year intelligence to understand and manage the 
 elements. But as we proceed with the subject, we quickly 
 get to the place where it requires 7 year intelligence 
 and then 8 and 9 and 10. Here is a child of 7 year 
 intelligence; he is able to begin the subject, but we 
 know he will never get very far in it because he has only 
 7 year intelligence, and very soon the subject will 
 require more intelligence than that, if it is to be com- 
 prehended. Shall we begin it? Certainly not, if the 
 child is never going to be able to get far enough in it 
 to be of any use. 
 
 This leads us to an extension of the principle that 
 we laid down in considering the normal child. We must 
 find out the amount of intelligence required for the prob- 
 lem in hand; we must ascertain the mental level of the 
 child, and if his mental level is too low to begin the sub- 
 ject, it is obvious that we are wasting time in attempting 
 to teach it to him. But more than that, if the problem 
 in hand, altho in the beginning within his mental grasp, 
 
 [296]
 
 TRAINING FOR THE FEEBLE-MINDED 
 
 quickly develops to a point that requires intelligence 
 greater than he possesses, it is useless to begin it unless 
 it is of such a character that even an elementary knowl- 
 edge, such as he can obtain, is useful. 
 
 From these general principles and considerations let 
 us pass to more specific suggestions as to how to train 
 the feeble-minded. It will be helpful to take them by 
 grades beginning with the idiots. No one any longer 
 thinks of trying to educate idiots; that has been suffi- 
 ciently tried in the past to make it perfectly safe to ap- 
 cept as a fact that it cannot be done. Practical experi- 
 ence has formulated as the limit to be striven for in his 
 training, the following : * ' To try to fix upon him a few 
 simple habits so that he will eat a little less like an animal 
 and make known his physical wants to the end that he 
 may be kept clean and comfortable." Even this is un- 
 attainable in the lowest grade. 
 
 The low grade imbecile can be taught to do all the 
 things just mentioned, to amuse himself with simple play, 
 to take some care of himself, such as buttoning his cloth- 
 ing, lacing his shoes ; and to do very simple errands in the 
 sight of the parent or teacher. 
 
 There is a gradual development thru the middle grades 
 up to the high grade imbecile, who can, with patience, 
 be trained to do some work of simple character or to 
 participate in more important work by doing the simpler 
 parts of it. But everything must be concrete and 
 definite, the instructions must be explicit, and the trainer 
 must expect a great many failures and mistakes until 
 finally a definite neuron pattern is established. With 
 careful training, long persisted in, a person of this level 
 of mentality may learn to wash dishes, scrub floors, dust' 
 furniture, make beds, dig dirt, pile stones, do special er- 
 
 [297]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 rands for which he has been especially trained and under 
 circumstances where the conditions will not vary from 
 time to time. But the moment variations occur the child 
 is helpless. 
 
 The low grade moron is often found doing many of the 
 things just enumerated, but he learns them more quickly 
 and easily, is more reliable and can adjust himself to 
 slight variations. He will perform longer tasks and 
 somewhat more complicated ones, and with sufficiently 
 long and painstaking training can do quite a good deal of 
 work about the house or on the farm, provided he is con- 
 stantly watched and told how to meet the situations that 
 vary a little from the usual. 
 
 Finally, the high grade moron can be trained to do al- 
 most any kind of work that does not require special skill, 
 provided again, the training be carefully and painstak- 
 ingly and persistently carried on until the process, what- 
 ever it is, is learned. He is able to adapt himself some- 
 what better to changed conditions and will often meet 
 new situations fairly well if the new situation does not 
 involve too much that is not within his direct experience. 
 For the things in which he has been trained he needs 
 only occasional supervision. His great lack is that he 
 cannot plan. High grade morons can be trained to be 
 excellent assistants in a great many Hues of work ; such as 
 assistant janitors, assistant cooks, assistant painters, 
 and so on thru a long list. 
 
 In fact, it is now known as we have already shown, 
 that there are a great many men and women that work 
 in these various occupations who are mentally only 
 morons. They have, by lucky chance, fallen in with some 
 one who was able to train them; and once trained, they 
 go on very well until some situation arises for which their 
 
 [298]
 
 FIRST PRINCIPLES 
 
 training has not been specific and which requires judg- 
 ment. For instance, Eddie has learned to handle a paint 
 brush and can paint a plain surface or varnish a floor 
 in a reasonably satisfactory manner, so much so, that he 
 is useful in that capacity. But if set to paint the floor 
 of a room that had only one entrance he would be quite 
 apt to begin at the entrance and paint away from it, 
 so that when he was thru he could not get out without 
 walking over the wet paint. 
 
 These facts, which have been found out by those who 
 have spent years in the training of feeble-minded children 
 in institutions, point to some very definite lines of action 
 for those who have to train such children either in insti- 
 tutions or in public schools, or in the home. First, as 
 we have already insisted, the grade of mentality of the 
 child must be discovered; then certain tasks that are 
 within his reach must be definitely selected and put be- 
 fore him and he must be carefully and persistently and 
 patiently trained to do them. There are many things to 
 be done in every community that require no more mental- 
 ity than that of a middle grade imbecile. A decision 
 must be made as to which of these things shall be selected. 
 This will depend partly upon the temperament of the 
 child in addition to his mentality and partly upon the 
 environment in which he lives. The occupation selected 
 should be such as fits any special interest or ability he 
 may have, and secondly such as he is likely to have an 
 opportunity to work at, in order to earn such wages as 
 he is capable of earning. 
 
 "We may generalize by saying that beginning with the 
 younger and lower grade children the training should be : 
 first, in the direction of self-help; then in the direction 
 of helping others; and lastly of doing things that will 
 
 [299]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 enable them to earn so much of their living as is pos- 
 sible. Now the first of this concerns naturally their care 
 of themselves. Every child who, for any reason, does 
 not learn to keep himself clean must be taught it. If 
 he does not learn it at home it is a fitting subject for 
 school training. First, to keep his body clean, by wash- 
 ing hands and face, and by bathing ; secondly, to care for 
 his clothing, both in the way of cleanliness and in the way 
 of simple mending. While the latter suggests training 
 for girls, it is equally fitting for boys. They may quite 
 well learn to sew on buttons, to sew up rents in clothing 
 and to do other simple work. 
 
 From this care of themselves we next proceed to care 
 of their surroundings. Scrubbing floors, sweeping, dust- 
 ing, even washing windows and washing clothes are all 
 suitable subjects for the school curriculum for the feeble- 
 minded. We may pause to call attention to the fact, 
 which may be overlooked, that all this is not only practical 
 and useful, but it is mental training of the best possible 
 sort for these children. It is giving them definite con- 
 crete experience; it is developing neuron patterns that 
 will always be useful. 
 
 Next to cleanliness of themselves and their surround- 
 ings is training in the simpler activities of life. Here 
 comes in the preparing of meals ; setting of table, wash- 
 ing the dishes, table manners, such preparation of the 
 food itself as can be trusted to them ; even simple cooking. 
 To this end, every special school should have a kitchen 
 where may be done all the work that is done in the homes 
 of these children. Then there is the provision for sleep- 
 ing. The care of the bedroom and the bed, the washing 
 of the bed linen, mending it, et cetera. 
 
 Next comes the out-of-doors. A certain amount of 
 
 [300]
 
 SPECIAL TRAINING 
 
 farm work or at least garden work may properly be 
 taught to all. Farm work is the great opportunity for 
 these children. They like it and can do much under 
 supervision. Those who live and are likely to live in 
 cities may soon be turned in the direction of such oc- 
 cupations as those at which they are likely to be em- 
 ployed. This brings us to a large topic; that of train- 
 ing them in some work whereby they can help to earn 
 their living. 
 
 Here again we must clearly appreciate the difference 
 between the normal and the feeble-minded boy or girl 
 of working age. The normal boy or girl may go into a 
 factory, secure a job, be set to work by the foreman, who 
 shows what is to be done and how to do it, and in the 
 course of a few hours, or at most a couple of days, has 
 mastered the job and is earning his wages a permanent 
 employe. On the contrary, the feeble-minded boy or girl 
 cannot do this. He does not learn the job the first day, 
 nor the second, probably not the first week. The re- 
 sult is that at the end of the week he is dismissed. No 
 foreman has time to put up with such " inefficiency. " 
 Now the only way this situation can be met is for the 
 children to be trained in the schools to do these things. 
 In other words, ordinary factory work, piece work, is to 
 the feeble-minded boy or girl what the skilled mechanic's 
 work is to him. It requires careful training, long and 
 painstakingly worked out. A simple experiment made 
 in the Vineland Laboratory will illustrate this. 
 
 The Bogardus Factory Test consists of a board about 
 two feet square, in the centre of which is a standard from 
 which two arms rotate. These have on the ends of them 
 pieces of steel to simulate knives. A pair of inch cubes 
 are provided; a square inch is painted on the board in 
 
 [301]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the path of the knives. The knives are rotated by a 
 motor at a suitable speed and the person is required 
 to take one of the cubes in his right hand, place it on 
 the square, pick up the other cube with his left hand, 
 transfer it to the right hand, and when the knife knocks 
 the first cube off the square, place the second cube on the 
 square, pick up with the left hand the one that was 
 knocked off, transfer it to the right hand and so on. The 
 requirement each time is to place the cube on the square 
 and get the hand out of the way without getting hit. 
 The whole procedure is intended to simulate a good many 
 factory operations. Most normal people do the test at 
 once. A few require a little time to get the rhythm and 
 the new muscular co-ordination which enables them to 
 shift the block from one hand to the other and place it 
 on the square at the right moment so as not to get hit. 
 Four moron girls of ages ranging from sixteen to twenty- 
 two were practised on this apparatus for about a half 
 an hour a day, with the result that an entire week passed 
 before any of them was able to do it successfully. It is 
 easy to see that any employer who was paying these 
 girls wages for that kind of work would have discharged 
 them at the end of the week if not before. And yet, hav- 
 ing once learned this process, they could do it as easily 
 and successfully as any one else. The point is, they 
 needed to be trained to do. a simple task which the normal 
 person can do without any training. This is a maxim 
 worth remembering in the training of the feeble-minded. 
 They must be trained to do things that the normal child 
 does without ever having been taught, without knowing he 
 has learned to do them. 
 
 In all this we have said nothing about the usual school 
 work, reading, writing and numbers. It is evident from 
 
 [302]
 
 BEADING 
 
 what we said several pages back that only the very high- 
 est grades are to be considered for these subjects at all. 
 The others either have not intelligence enough to begin, 
 or their mentality is such that they will never get far 
 enough in these subjects to make it worth while for them 
 to begin. A certain number of high grade morons can 
 be taught to read and write and make use of simple 
 numbers, altho always at great expense of time and ef- 
 fort ; but of those who can be thus taught, very few ever 
 make any real use of such accomplishments afterwards. 
 Every institution for the feeble-minded has abundant op- 
 portunity to investigate this problem. 
 
 Practically all the morons who enter such an institu- 
 tion have been trained in these subjects, either in school 
 or at home, and usually come with the statement that 
 they can read and write and do elementary arithmetic. 
 Miss Lindley (31) recently made an investigation of their 
 reading with this result: Of 108 moron girls and boys 
 who had been taught to read and who declared they could 
 read, only 10 were found to ever actually make any use 
 of reading; and many of those who said they could read 
 and probably had once been able to read a little, were 
 totally unable to read anything except a few of the com- 
 monest words. 
 
 The following is an abstract of Miss Lindley 's report: 
 
 Mental Age No. Investigated Readers 
 
 Boys Girls Total Boys Girls Total 
 
 VIII 28 10 38 112 
 
 IX 22 9 31 527 
 
 X 16 12 28 84 12 
 
 XI 4 7 11 347 
 
 Grand Totals 70 38 108 17 11 28 
 
 It was first made certain that all children upon whom 
 
 [303]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the investigation was based had been taught to read, and 
 had at some time read fairly well. 
 
 If we select from the list of those that do read the 
 ones who do so voluntarily and in preference to doing 
 other things, we have but seven boys and three girls. 
 
 Those children who are easily disturbed seem to find 
 reading too exciting. One boy said in substance that he 
 is afraid to read since he had had a * ' spell. ' ' A girl of 
 this type became so excited over The Shepherd of the 
 Hills, a book that she had read again and again, that 
 she tore it. Another girl burst into tears whenever she 
 came upon a word that suggested one of her many com- 
 plexes. 
 
 It is interesting to find that a number sit with books 
 and pretend to read; also that many who can read very 
 well prefer to be read to. 
 
 One may be very easily deceived in respect to the 
 children's reading if their word is taken regarding it. 
 They tell many exaggerated stories of the amount of 
 reading they do. There is, as a rule, a tendency to pre- 
 tence that is quite amusing. Most of those who cannot 
 read are loth to admit it. A boy thirty-eight years old, 
 with a mentality of 4, sits for hours with a book and 
 pretends to read. As a matter of fact, he cannot read a 
 word. One day, after being called three times to come 
 and be shaved, he slammed the book and grumbled dis- 
 gustedly, exclaiming, ' ' John can 't read ! ' ' 
 
 The following conversations illustrate the pride felt 
 in regard to being able to read and the subterfuge re- 
 sorted to. A boy thirty-eight, mentally 8, cannot read at 
 all. Yet this is the conversation verbatim: 
 
 E. " Charley, do you read?" 
 
 C. "Oh, yes. I'm a great reader." 
 
 [304]
 
 READING 
 
 E. "What kind of books do you like best?" 
 
 C. "'Tain't no difference, just so there is readin* in 
 them." 
 
 E. "Which do you like better, to read for yourself or 
 have some one read to you ! ' ' 
 
 C. "Oh, I'd rather read to myself. I like to go off in 
 the corner and stand and read for an hour or two at a 
 time." 
 
 Here the examiner began to wonder if after all Charley 
 could read, so taking a letter from her pocket she showed 
 him the envelope and said, "Read this to me, Charley." 
 
 C. "Well (scratching his head), that's pretty hard." 
 
 He examined it closely for quite a while, then his face 
 suddenly brightened and he said, ' * Oh, I know that ; that 's 
 care of the Training School." 
 
 He had evidently learned the sign for "Care of." 
 
 E. "Fine, Charley. Now read the line above." 
 
 C. "Oh, that's your name, and I don't know your 
 name. ' ' 
 
 E. "Of course not, Charley. That isn't fair, is it! 
 But here is some printing on the back of the envelope. 
 Bead that." 
 
 C. "I could, but it's too fine and I can't see it very 
 well." 
 
 Gilbert, twenty-seven years, mental age 7, who can 
 read little, if at all, reports daily on current events, say- 
 ing that he gets his information from the newspapers. 
 He is much interested in the war, and here is a report 
 of one of his conversations: 
 
 E. "Well, Gilbert, what's the news from the front to- 
 day?" 
 
 G. "The war's getting worse. Hollum's goin' in now 
 and take it." 
 
 [305]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 E. "Take what?" 
 
 G. "The war. She's got a big army." 
 
 E. "Yes, but so has Germany." 
 
 G. "I know, but Germany's on her last feet. She's 
 got submarines and she can 't use them. ' ' 
 
 E. "Why can't she!" 
 
 G. ' ' She can 't keep them up. ' ' 
 
 E. "How's that?" 
 
 G. " 'Cause she can't get the power." 
 
 E. "What about the United States!" 
 
 G. "We got awful good guns. If we go in we can help 
 a lot. We got machine guns that shoot nine miles and the 
 bullets go twelve yards. ' ' 
 
 James is eight years mentally and has never learned 
 to read, yet here is what he says about it: 
 
 E. "James, can you read!" 
 
 J. "Oh, yes." 
 
 E. "What do you like to read best!" 
 
 J. "First readers, second readers, third readers." 
 
 E. * * Take this paper and read to me. ' ' 
 
 J. "I can't read journals, only books." 
 
 E. "Bead this line for me, it's quite easy." 
 
 J. (Examining it closely.) * ' I can 't read that 'cause the 
 letters are different in papers than in books. Books is 
 what I read. ' ' 
 
 In strong contrast to this pride in reading is one boy 
 who can read quite well, but says he never does because 
 "only sissy-boys read, and I'm a man now and I'm not 
 going to be a sissy-boy any more." 
 
 This investigation has been based upon 108 subjects 
 who have painstakingly, and often with the greatest diffi- 
 culty, been taught to read. Twenty-eight, or about 25 
 
 [306]
 
 MISS LINDLEY QUOTED 
 
 per cent, still read to some extent, while but 9 per cent, 
 care enough for it to do any amount of it voluntarily. 
 
 There are no noticeable sex differences. Boys from 
 the same kind of homes and with the same sort of environ- 
 ment here seem to read fully as much and as difficult 
 material as do the girls. 
 
 Not more than two or three do reading more difficult 
 than that of the fifth grade. Most of it is very simple, 
 and the average would not be beyond third grade. 
 
 No children of seven-year mentality seem to read. 
 While there are two eight-year-old readers, one is a 
 psychopathic case and has, without doubt, tested much 
 higher. Twenty-three per cent, of nine-year-olds and 42 
 per cent, of ten-year-olds read. There are so few cases 
 in the eleven-year group that it is scarcely fair to con- 
 sider them as representative. However, out of twenty- 
 eight readers, nineteen, or nearly 68 per cent., are found 
 in the ten-year and eleven-year groups. Such results 
 seem to warrant the conclusion that these are the only 
 mental ages that will ever get much from knowing how to 
 read. It is, we feel, these children who should have the 
 attention, while with those whose mental development will 
 evidently stop before this age, it is useless to spend time 
 and labour. With our present knowledge regarding the 
 defective child it is possible in most cases to make 
 early, and rather accurate prognoses, and it is not neces- 
 sary to continue wasting time with them. This is a point 
 that is just as valuable for the Special Class teacher as 
 it is for those who work with the child in an average 
 institution. If the child is to remain at large it may 
 be of advantage to him to do simple reading, but the 
 results here seem to show that if he has that knowledge 
 he is not likely to be able to use it to any real advantage. 
 
 [307]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 He is much more likely to use it to his disadvantage, for, 
 as we have seen, his taste runs to the things that are 
 not good for him. Besides, here as everywhere else a 
 little knowledge may easily prove to be a dangerous thing. 
 Those of us who have laboured in vain to teach the 
 defective child to read may find some comfort in the fact 
 that so few of those who have learned, derive either 
 pleasure or benefit from the accomplishment, and we may 
 give with a clear conscience our time to things that for 
 him are much more worth while ! 
 
 Writing is in even a worse state. We have given else- 
 where (20a) samples of the handwriting of the high grade 
 feeble-minded. In institutions a few more feeble-minded 
 children can write than actually read because of the con- 
 stant pressure to " write home." But if they were left 
 to themselves, very few letters would ever be written 
 home and very little use ever made of the ability to write. 
 The penmanship of the feeble-minded has peculiarities 
 easily recognizable by any one familiar with their writ- 
 ing. This is, of course, to be expected since penmanship 
 requires fine co-ordinations that are usually lacking in de- 
 fectives. This lack of co-ordination resulting in angular, 
 irregular lines is quite a different thing from the care- 
 less or hasty writing of a business man whose letter may 
 be hard to decipher. 
 
 In number work the story is quite similar. We have 
 shown elsewhere (20c) feeble-minded children " rarely if 
 ever develop a true number concept." Because of their 
 good natural retentiveness they can memorize certain 
 combinations and processes addition, subtraction, multi- 
 plication. I have never known one to master long divi- 
 sion. Written problems involving anything more than 
 
 [308]
 
 WRITING AND ARITHMETIC 
 
 simple addition or subtraction are quite beyond their 
 abilities except in school where they may have mem- 
 orized the problem and its solution. 
 
 The fact is, of course, that all these subjects are highly 
 abstract, they involve elaborate associations and neuron 
 patterns that, if not utterly impossible for the feeble- 
 minded, at least are made with very great effort. It is 
 probably easier to make these children happy and useful 
 in some other way than by trying to teach them reading, 
 writing and counting. But one thing is evident, if these 
 subjects are to be taught them they should come as ex- 
 tensions of their other work. There should be just such 
 use made of these accomplishments as the house-wife or 
 the farmer boy makes. Making memoranda of house- 
 hold articles to be purchased; reading and writing the 
 names of the things they work with ; counting the number 
 of people, the number of plates, horses, loads of coal, and 
 what not; perhaps simple measurements of things they 
 work with. Moreover, in this way will be discovered 
 most easily what the child is capable of in these lines. 
 Those that show some capacity may be helped according 
 to the judgment of the teacher. Those who are not able 
 to learn a little reading and writing and numbers in 
 connection with their daily work, will be found incapable 
 of receiving any more elaborate instruction in these lines. 
 
 [309]
 
 CHAPTEE VII 
 MORAL TRAINING 
 
 THE necessity for definite moral training of the develop- 
 ing mind lies in the fact, already discussed at length, 
 that the child is born with inherited neuron patterns 
 which lead to impulsive and instinctive actions. While 
 adapted to man's welfare in a more primitive condition 
 of society, many of these actions are no longer tolerable 
 because of changed conditions and especially because of 
 the development of the gregarious instinct and the habit 
 of living in co-operative societies. Consequently the 
 neuron patterns must be modified. 
 
 In attacking the problem of moral training there are 
 three questions to be answered, three groups of facts that 
 must be understood. First, what is the nature of the 
 child who is thus to be trained to a different habit of 
 action than that which his inborn capacities would 
 naturally lead to? Second, what kind of training do we 
 wish to substitute, in other words, what is our ideal? 
 Third, what are the means by which these results can 
 be brot about? 
 
 It is well recognized (and everything we have said in 
 this book emphasizes the consideration) that moral train- 
 ing must begin early. As' soon as the child is born he 
 begins to react to his environment and as we have already 
 seen, the action tends to become habitual. All those ac- 
 tions that will be useful may be allowed to take care of 
 themselves; altho conscious appreciation of the value of 
 these actions may result in their being more quickly re- 
 
 [310]
 
 NATURE OF THE CHILD 
 
 duced to habit and more securely established. But we 
 are more especially concerned with those natural reac- 
 tions which, if not corrected, would lead to habits that 
 would be of decided disadvantage both to the individual 
 and to society. Hence, moral training cannot begin too 
 early. We proceed then to consider our three prob- 
 lems in order. 
 
 Nature of the child. We have only to recall that the 
 child is a growing and developing organism to realize 
 that our moral training must be gradually applied and 
 must be adapted to the child's stage of development. 
 In other words, the time to modify an undesirable natural 
 reaction is when that reaction takes place, and not when 
 the teacher or parent arbitrarily decides that it is time 
 for the child to develop this new accomplishment. With 
 the normal child this is not such a difficult matter for the 
 intelligent trainer. 
 
 The age of the child and his physical development are 
 a rough but fairly satisfactory guide to the thot- 
 ful parent. One is not apt to try to impress ten 
 year old conduct upon a two year old child. Never- 
 theless both parents and teachers often err in fol- 
 lowing this guide. Many are ambitious and want 
 to force the child into conduct that is beyond his capacity 
 to appreciate. We are as a rule ignorant of the capacity 
 of children at various ages. We are prone to interpret 
 the actions of the child in terms of our own experience 
 and to ascribe to him motives, intelligence, and respon- 
 sibility which he does not possess. Others go to the op- 
 posite extreme and, blinded by love and affection, excuse 
 and pass over conduct which should be corrected. 
 
 Besides the age and physical development, we have 
 the fact that the normal child is active ; constantly doing 
 
 [311]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 something. This is helpful because it shows to the in- 
 telligent disciplinarian the stage of development that 
 the child has reached. All these facts render the train- 
 ing of the normal child more or less difficult ; but the prob- 
 lem, tho requiring thot and intelligence, is nevertheless 
 not an insolvable one, as is evidenced by the fact that 
 most parents who devote themselves definitely and con- 
 sciously to the training of their children achieve a rea- 
 sonable, and often a high, degree of success. 
 
 It is a dull, backward, or feeble-minded child that 
 presents the great problem. Here his age and physical 
 growth deceive us, and his lack of activity deprives us 
 of very sure indications of the state of his natural im- 
 pulses. In such cases the nature of the child can only 
 be made out by most careful and wise psychological 
 study. We must ascertain by careful tests the mental 
 development of the child and adapt our treatment to his 
 mental level and not to his chronological age or physical 
 condition. We should ever bear in mind the facts of 
 neuron development and neuron patterns as set forth in 
 the earlier chapters of this book; and remember that it 
 is futile to attempt to develop a habit of action, the 
 neurons for whicty are not yet full grown. The difficulty 
 of carrying out this principle increases directly as the 
 chronological age and inversely as the mental age. By 
 that we mean that the older and larger the child grows, 
 the more apt we are to insist that he is big enough and 
 old enough to carry out a prescribed line of conduct, un- 
 less his mental age is extremely low, in which case we 
 readily recognize the condition and excuse him. We 
 recognize the idiots and low grade imbeciles and do not 
 hold them responsible for conduct that is befitting a six, 
 eight or ten year old child. When, however, the mental 
 
 [312]
 
 THE IDEAL 
 
 age of the child is higher than that of the low grade or 
 middle grade imbecile, the difficulty becomes correspond- 
 ingly greater, partly because we do not recognize that he 
 is backward, and partly because we do not know ac- 
 curately what is the proper conduct for children of 
 various ages. 
 
 When we come to the moron grade we have the great 
 problem, as yet unappreciated by the masses of parents 
 and teachers. A sixteen year old boy with a mentality 
 of from 10 to 12 is not recognized as defective by 
 any but experts. His conduct is attributed to careless- 
 ness, indifference, indolence, pure wickedness, or natural 
 depravity. In such cases we are apt to treat the 
 symptoms rather than the underlying conditions. While 
 it would be folly to maintain that every youth who does 
 not manifest conduct becoming his chronological age is 
 mentally defective, yet we now know that this is the true 
 explanation in such a large proportion of cases that it is 
 by all odds the wisest procedure to suspect mental defect 
 until the contrary is proved. An entire change of atti- 
 tude on the part of parents and society in general in this 
 respect would result in an enormous simplification of our 
 problems of delinquency, not only among the youth but 
 among the so-called adults adults in years but often 
 children in mind. To go on treating as responsible in- 
 dividuals, once the facts are known, persons who are 
 arrested in development and have only the mentality of 
 children with the consequent child's responsibility, is to 
 ignore the dictates of common sense. 
 
 The Ideal. Strangely enough our second problem, the 
 ideal, or what kind of training we wish to give and what 
 we wish to accomplish, is probably the least definite of 
 the three problems. Earl Barnes has said that if we 
 
 [313]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 could agree upon a body of doctrine that we wished to 
 teach children, we could transform the nation in a gener- 
 ation. This is perfectly true, but the fact is we do not 
 agree, at least we cannot get beyond glaring generaliza- 
 tions. We are agreed that we want to make "good and 
 useful citizens," "honest," "truthful," "humane," 
 "efficient," etc., etc., but when it comes to the definition 
 of these qualities we are widely divergent. 
 
 We can only say that from the psychological stand- 
 point our ideal is, as we have stated in the chapter on 
 habit, to fix in the lower nerve centres as large a group 
 of habitual actions as possible, and such a group as will 
 insure the individual's acting in a way that will be 
 most useful to himself and to society. This will include 
 something of the virtues above mentioned and many 
 others. It has all been summed up in the expression, 
 "preparation for life." With the normal child this 
 means, of course, preparation for an independent exist- 
 ence ; that is to say, the ability to manage his own affairs, 
 to take his place in the world, to provide for himself 
 and to contribute something to the general welfare. 
 With the feeble-minded, however, the case is again dif- 
 ferent. With all but a very few of the highest grade, 
 it is useless to have such an ideal as just expressed. 
 Vfe cannot prepare them for a life of independent action. 
 They cannot provide for themselves, much less contribute) 
 anything to the general welfare. Consequently, our ideal 
 must be to so train them that they will be as little a 
 menace to, and as little a burden upon, society as pos- 
 sible, and, in their own life, as happy as possible. 
 
 Method. Passing to our third problem we have to con- 
 sider the question, how is our ideal to be accomplished. 
 We have shown in the previous chapters how the instincts 
 
 [314]
 
 MOTIVE 
 
 are to be modified, neuron patterns formed, experience 
 given, so that the individual has all the necessary 
 mechanism for reason and judgment and thot, and the 
 neuron patterns underlying right action So far, how- 
 ever, we have said nothing about motive. We have said 
 that all the nerve mechanism and all the mental processes 
 have for their sole purpose the accomplishment of an act ; 
 but what is the purpose of the act ? If it has no purpose 
 then there is no need of modification. The nervous ma- 
 chine is what it is, the stimuli produce certain results 
 in the form of actions, and nothing more is to be said. 
 Mere actions, whether impulsive, instinctive or reflex, 
 involve no problem such as we are now discussing. 
 There is no need for modification of the instinct or for 
 control. 
 
 But the moment the action which results from any 
 nerve activity has to fit in with other actions and corre- 
 late with a larger whole, that moment we begin to have 
 a problem of adjustment. The intelligent adult, realizing 
 the problem, proceeds to make the necessary adjustments 
 in accordance with his experience, judgment and reason. 
 But unfortunately by the time man reaches this stage 
 he has already formed a vast number of habits of action, 
 many of which would be exceedingly detrimental to his 
 adult ideals. Consequently we conclude that it is a kind- 
 ness to the adult of the next generation for the present 
 adults, with their experiences and ideals, to exercise a 
 control and a directing influence over the development 
 of immature mind. 
 
 Persons of undeveloped mind not being sufficiently in- 
 telligent to have ideals for themselves, intelligent adults 
 must have ideals for them and must see that the develop- 
 ment is in accordance with those ideals. But experience 
 
 [315]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 quickly teaches that it is one thing to have ideals for the 
 child, and it is quite another thing to induce him to follow 
 those ideals. Experience also teaches us that a cardinal 
 principle of all training of children is: first to secure 
 their co-operation. 
 
 This brings us to the fundamental problem of disci- 
 pline ; and the question comes, how shall we secure the co- 
 operation of the child in our efforts to bring about the 
 necessary modifications of such of his natural instincts 
 as experience has taught must be modified. Fortunately 
 the answer is at hand, at least, in general terms. 
 
 Biology teaches us that evolution, or development, in 
 both the plant and animal world, has come about thru a 
 system of rewards and punishments. In unconscious 
 organisms this is simply life or death, survival or non- 
 survival. That organism that varied in such a way as 
 to best adapt it to its environment survived; those that 
 were not thus favoured perished. The reward is life 
 and the punishment death. With conscious organisms 
 and especially with man there is a wider range of possi- 
 bilities thru an appreciation of the tendencies of actions 
 that in themselves are not of sufficient importance to re- 
 sult in a question of life or death. Thru the function- 
 ing of the sympathetic system, feelings arise. 
 
 These feelings serve as guides for future action. If 
 they are pleasant they encourage the activity that gave 
 rise to them; if unpleasant they discourage it. This 
 gives rise to a natural system of rewards and punish- 
 ments. This system has been efficient in the evolution 
 of the race, but it is costly for the individual. The re- 
 wards and punishments are often so remote that the 
 individual cannot appreciate them, and consequently does 
 not attempt to modify his conduct until it is too late. 
 
 [316]
 
 REWARDS AND PUNISHMENTS 
 
 The next generation will profit by his experience, but 
 he is lost. To obviate this we have developed a system 
 of artificial rewards and punishments. It is these and 
 their application that we have especially to consider. 
 
 By punishment is meant anything that causes pain or 
 discomfort, unhappiness or loss. Reward is anything 
 that gives happiness, pleasure, or gain. There is an 
 ascending scale of both rewards and punishments. The 
 lowest form is that which appeals mainly or solely to the 
 physical, bodily pain or bodily comforts. At the upper 
 end we have the highly abstract form of subjective hap- 
 piness or unhappiness. Obviously the lower forms are 
 applicable to the earlier stages of development and the 
 higher forms only to the later stages. 
 
 A question often raised is, which is preferable, the 
 discipline of rewards or the discipline of punishments. 
 Since the two are often reciprocal it is in many cases 
 only a question of emphasis. In practice it has come 
 about, in the past at least, that we have laid the emphasis 
 on punishments in the lower levels and on rewards in the 
 higher. We punish a child for wrong conduct; we re- 
 ward an adult for good conduct. There is, however, an 
 encouraging tendency in later years to lay greater stress 
 upon the positive side with a consequent greater use of 
 reward and less of punishment. Formerly trainers of 
 animals punished the animal when he did not do the 
 thing that was wanted. Animal trainers have, however, 
 learned that better and quicker results are obtained by 
 rewarding the animal when he does the right thing. The 
 reason for this seems obvious, once one's attention is 
 called to it. There are innumerable wrong actions for 
 every one that is right. Consequently the chances are 
 far greater that an animal will do the wrong thing than 
 
 [317]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the right. If we are using the punishment method we 
 will be continually punishing him; and as a consequence 
 numerous associations are made with the wrong reaction 
 and none with the right one. 
 
 Moreover, we have learned that the emotional content 
 of an experience has much to do with the strength of the 
 association; therefore, punishment for an action makes 
 the neuron pattern underlying that action all the more 
 strongly affected and more likely to be used again. On 
 the other hand, when all the wrong actions are ignored 
 they are easily forgotten, and then if the right action 
 is rewarded it becomes the one association that remains 
 fixed in the mind. There seems to be no reason why this 
 is not as true of children as of animals. Indeed there are 
 reasons to think that it is more important. Punishment 
 puts the child into an unhappy frame of mind which in 
 many cases seems to make it impossible for him to con- 
 ceive the right action ; or even if he does finally act right 
 and gets rewarded, the reward is insignificant in com- 
 parison with several punishments. Moreover, it is a 
 demonstrated fact that punishment takes away energy, 
 while reward increases it. Gilchrist (19) tried the fol- 
 lowing experiment : 
 
 A class of fifty young women in educational psychology 
 were given the Curtis English Test 4 B. Immediately 
 after taking the test, the class was divided at random 
 into two groups and seated in different rooms. To the 
 first group the examiner said, "A hasty examination of 
 the papers in the test just given shows that the members 
 of this group did not do so well in the test as the average 
 twelve-year-old child would do. I ask you to take the 
 test again." To the other group he said, "A hasty ex- 
 amination of the papers in the test just given shows that 
 
 [318]
 
 EFFECT OF PRAISE AND BLAME 
 
 the members of this group did exceptionally well. I ask 
 you to take the test again." The first group made no 
 improvement on the second test, while the second group 
 improved seventy-nine per cent. 
 
 The writer has repeatedly made the experiment of 
 speaking encouragingly or discouragingly to subjects 
 who were using the ergograph. The results were always 
 the same ; the subject always lifts the weight higher when 
 praised, and he always falls below when he is criticized. 
 Say to a bystander, but so that the subject hears it, "He 
 is making a fine curve," and the next pull goes higher 
 than any he has made. Then say, "Pretty poor," and 
 the next stroke will be lower than those each side of it. 
 These and many other considerations certainly justify 
 the rule, never scold. We cannot, however, go quite so 
 far as to say never punish; tho it is undoubtedly true 
 that on the whole vastly better results are obtained by 
 the method of reward than by that of punishment. But 
 it should always be remembered that it takes the highest 
 wisdom to punish wisely. A fundamental principle in all 
 punishment is that the form and degree of punishment 
 must fit the offence to a nicety. As much harm is done 
 by overpunishing as by not punishing at all. The 
 psychology of punishment should always be kept in mind. 
 The purpose, of course, is to associate such unpleasant 
 consequences with an undesirable action that that line 
 will be blocked in the future. In view of this it is 
 obvious that the punishment should not be too far re- 
 moved in time, from the offence; otherwise the child 
 makes no association between the two. A punishment 
 that has no direct connection in the mind of the child, 
 with his offence, is not punishment but brutality. 
 
 Rewards have the advantage, as already indicated, of 
 
 [319]
 
 increasing the energy, strengthening the association, and 
 encouraging the highest degree of co-operation on the 
 part of the subject. The reward must be carefully 
 selected and, like the punishment, wisely adapted to the 
 action. It also must be used sufficiently close to the ac- 
 tion to make the association complete, otherwise it will 
 have no effect upon action. By reward, we do not mean 
 bribe. While a child may occasionally be promised a re- 
 ward, as a rule the reward should follow the action with- 
 out previous promise. The action performed, the reward 
 should be forthcoming, and should not be withheld on 
 account of any later misdemeanour. Punishing a mis- 
 demeanour by withholding the reward for a previous good 
 act produces a confusion in the mind of the child, and 
 neither the reward nor the punishment gets its proper 
 associations. Give the reward as deserved for the thing 
 done ; punish the later misdemeanour on its own account. 
 With very young children the reward must be definite, 
 concrete and prompt. The one thing that often fulfils all 
 these conditions is something to eat. This appeals to a 
 fundamental instinct and makes a strong association. 
 It is the procedure now followed in the training of 
 animals, as above indicated, and wonderful results are 
 achieved by it. To promise a young child something in 
 the future is absolutely futile. We have already shown 
 that a child does not know the difference between morn- 
 ing and afternoon until he is six years old. Therefore, 
 to promise a young child something "this afternoon" 
 or "tomorrow morning'* is meaningless to him. Simi- 
 larly, things more remote are equally useless to an older 
 child. To promise something next month or next spring 
 to a child who has not yet arrived at the stage where he 
 appreciates "the date" is equally useless; while to hold 
 
 [320]
 
 USE OF COMMENDATION 
 
 out to the child the idea that a certain line of conduct will 
 make him "a respected man when he grows up," is un- 
 doubtedly utterly lost any time previous to the beginning 
 of adolescence. 
 
 The writer has tried the experiment a number of times 
 and has never found a school group that would not choose 
 a half -holiday " today " in preference to a whole holiday 
 next week. There are probably other factors present 
 in such a test, but undoubtedly the one under discussion 
 is prominent. The food reward, which is the only proper 
 one for the very youngest children, may, as the child 
 grows older, be replaced by things of value to him. Still 
 later may come in the appeal to the self-assertion instinct, 
 the showing off, in the form of honour, rank, position, 
 or privilege. Under this head come also words of ap- 
 proval or praise, especially if made in public. 
 
 Commendation and approval given to the child in 
 private should be freely bestowed when he has reached 
 the age to appreciate it; but this probably comes rather 
 late, certainly does not reach its highest efficiency until 
 the adolescent period or even adult life. Lastly that 
 "virtue is its own reward," or that a person should be 
 satisfied with the consciousness of having done right, has 
 no place with children and not often even with adults. 
 It may perhaps serve for a time with some persons of 
 highly evolved consciousness for abstract ideals; but 
 every normal man wants the approval of his fellows 
 and must occasionally, at least, hear the word of com- 
 mendation; and most men are more efficient if this com- 
 mendation comes pretty frequently. The most success- 
 ful leaders of men are those who see most to praise in 
 their followers. 
 
 It is sometimes feared that too much praise makes 
 
 [321]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 the child conceited. This is probably not true, but even 
 if so, the evil is far less than that which comes from lack 
 of appreciation. Praise brings out the best that is in a 
 child, while censure or disparagement discourages him 
 from attempting what he really could do. 
 
 What we have said of normal children is also true of 
 the feeble-minded according to their mental age rather 
 than their chronological. But more than that, because of 
 the lack that we have described in the feeble-minded, they 
 are unable to formulate for themselves any ideals and 
 consequently the only incentive to action is the rewards 
 that they get, either material ones or, in the highest cases, 
 the word of public commendation. Without working it 
 out psychologically, the caretakers of the feeble-minded 
 have learned empirically that the most successful way of 
 handling them is to constantly praise them. It is found 
 that to praise a child even for a piece of work that is 
 not quite satisfactory is the surest way to make him do 
 it better the next time. 
 
 We have seen that participation of the sympathetic 
 system in our nervous activities seems to reinforce the 
 action of the central neurons and when the affective ele- 
 ment is strong, the experience is more vivid in conscious- 
 ness, and is better remembered, and the different parts 
 of the neuron pattern are more firmly linked together. 
 It would follow that when the interest phase of the atten- 
 tion interest state is so strong as to be noticeable, the 
 effect is better. This is borne out by the common experi- 
 ence that interesting experiences make life more worth 
 living ; make the body function better ; conduce to health 
 and long life. 
 
 This conclusion is abundantly reinforced from the 
 study of the feeble-minded. The motto of a certain 
 
 [322]
 
 HAPPINESS FIRST 
 
 school for the feeble-minded is "Happiness first, all else 
 follows." This is not a philosophical dictum but an 
 empirical formula, the result of long experience in the 
 care, training and study of mental defectives. It means 
 that when the child is so treated that its sympathetic 
 system augments the action of the cerebrospinal system 
 by that something, which shows in consciousness as 
 pleasant emotion, interest, or happiness, the resulting 
 action of the entire system is more nearly normal, more 
 satisfactory than under the opposite conditions. 
 
 Children learn better, work better, act better when they 
 are happy. Ever since this principle began to be ap- 
 preciated, the institution has been organized for happi- 
 ness. If a new plan or a new policy or some new ar- 
 rangement is under consideration, the first question asked 
 is, "Will it make the children happy ?" If a child is 
 under consideration, the first question is, "Is he happy, 
 or will the treatment proposed make him happy?" This 
 does not mean a soft pedagogy or weak discipline, nor 
 that the child gets necessarily what his momentary whim 
 leads him to think he wants. But neither does it mean 
 that some matron or teacher or superintendent in his 
 superior wisdom decides that this thing, in the long run, 
 will make the child happy and therefore he must submit 
 to it, trusting that he will live long enough to enjoy the 
 happiness and appreciate the wisdom of the treatment. 
 
 "Happiness first" means that the nature of the child 
 is considered, his temperament and disposition and 
 habits; that the treatment best suited to him is pre- 
 scribed; and then by careful handling he is gently led 
 away from the thing that he thinks he wants, and his 
 interest is aroused in the thing that will actually make 
 him happy. That this is a real and definite achievement 
 
 [323]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 will be appreciated by any one who knows of feeble- 
 minded children that are not thus treated; who knows 
 how cross and stubborn and ugly, out of sorts and un- 
 comfortable and irritating, feeble-minded people can be- 
 come. Indeed, those who know feeble-minded children 
 as they are usually met with, handled by those who do 
 not understand them, find it hard to believe that children 
 in an institution for the feeble-minded are happy. 
 Nevertheless, it is true ; and every institution that works 
 upon this principle of happiness, as most of them do, 
 contains one of the happiest groups of people that can 
 be found. 
 
 The children in institutions are fundamentally like the 
 defectives outside. They have their bad ways and their 
 bad days, their bad dispositions, their annoyances and 
 vexations, their unhappy moments ; but it is the business 
 of the first one that comes in contact with them to change 
 all that and make them happy. Let us see how it is 
 done. 
 
 John, age thirty-five, mentally 7, is one of the farmer 
 boys, he has been carefully trained and can plough and 
 harrow and drive a team and do various other work 
 when once it is planned out for him. One morning he 
 came over to the stable and the farmer said to him, 
 "John, you can plough that field today,'* but John was 
 not feeling happy. Perhaps he had a bit of indigestion, 
 or he had not slept well. He did not appear with his 
 usual good nature, and as a consequence he replied to 
 the farmer, ' ' Ain 't goin ' to plough that field today. ' ' To 
 which the farmer replied pleasantly, "Not going to 
 plough the field, what do you want to do?" "Nothing." 
 "Nothing! well, all right, do you want to go back to the 
 cottage and rest today?" "I don't know, I don't know, 
 
 [324]
 
 MAKING A MORON HAPPY 
 
 I don't want to do nothing." "All right, John, you just 
 do nothing today. You just have a good time doing noth- 
 ing. I'll find somebody to plough the field and you can 
 do nothing all day. Of course, I am sorry that you 
 don't feel like ploughing the field, because while I can 
 find somebody to plough it, there isn't anybody that can 
 plough it quite so nicely as you can." And the farmer 
 worked about, pretending to do something but in reality 
 waiting for John. John could not withstand that little 
 bit of flattery any more than a normal person. The 
 fact is, it made him happy and the moment he was happy 
 the whole situation changed. After a few minutes he 
 came along, perhaps rather sheepishly and said, "Well, 
 I guess I'll plough the field." He got the thing that 
 made him happy. 
 
 Tom is a high grade moron. He has been trained to 
 use the paint brush. There are two painters, one of 
 whom he likes very much but the other one irritates him. 
 It happened that his friend had gone for a short vaca- 
 tion, so that Tom had to work with the painter whom 
 he dislikes. One day he came to the administration 
 building very angry and excited and wanted to see the 
 superintendent. The superintendent was busy with the 
 director of the laboratory, talking over important mat- 
 ters, but these matters could wait. Anything can wait 
 when the happiness of a feeble-minded boy is at stake! 
 Tom came in and, almost crying with anger, he shouted, 
 "Ain't going to work with Jim any more. I want you 
 to give me a note saying that I don't have to work with 
 Jim. " " All right, Tom, but tell me what is the matter. ' ' 
 Tom explained his grievances as well as he could, he 
 said he liked to paint and he would paint when his friend 
 came back, he would work with him but he would not 
 
 [325]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 work with Jim. The superintendent proceeded to write 
 out the orjler for his transfer to another line of work. 
 Tom was gradually getting over his anger. He seemed 
 to be getting what he wanted, what would make him 
 happy. Presently he said, "I can come back to the paint- 
 ing when my friend comes back, can't I?" To which the 
 superintendent replied, "Well, now I don't know about 
 that, Tom. You see there is a lot of painting to be done, 
 and I must have boys working with Mr. Blank who will 
 be willing to take his place and work with Jim when 
 Blank goes away. He has to have a vacation, you know. 
 You wouldn't want him to stay home from his vacation, 
 would you?" "No, I wouldn't want that, but I want 
 to work with him when he comes back." "Well, you see 
 how it is, I must have boys working with him when he 
 is here who will be willing to work with Jim when Mr. 
 Blank is away." And the superintendent continued to 
 write the order. I could see that Tom was thinking hard. 
 Presently he said, "Well you needn't write the order, I'll 
 go back and work with Jim." He got what he wanted 
 and was happy. Not that he wanted to work with Jim, 
 but he wanted to work with Mr. Blank and the smaller 
 thing is swallowed up in the greater. 
 
 "Happiness first, all else follows," is surely based 
 upon sound, scientific facts the physiology of the sym- 
 pathetic nervous system. Perhaps the reader will ask, 
 what is to be done with those persons, normal or defec- 
 tive, who cannot be made happy. To which we shall re- 
 ply briefly; that is a problem for the physician, not for 
 the psychologist. In other words, the person who can- 
 not be made happy is diseased and it is for the physician 
 to discover the disease, its proper treatment and its cure. 
 
 One might sum up the problem of discipline among 
 
 [326]
 
 MAKING A MORON HAPPY 
 
 the feeble-minded by saying: Treat them as children 
 according to their mental age, constantly encourage and 
 praise, never discourage or scpld; and keep them 
 happy. 
 
 [327]
 
 APPENDIX 
 THE MECHANISM OF THE EMOTIONS 
 
 BY 
 
 PROFESSOR ANGBLO Mosso 
 
 TODAY I may be permitted to express my own ideas about the 
 mechanism of the emotions. 
 
 "We are sometimes surprised by a sad or a joyful piece of news. 
 We all know what happens in a state of fear and distress. 
 Physiological phenomena occur that cannot be described. But 
 when we learn suddenly that the news which has troubled us 
 is false, that our fear and distress had no foundation, the in- 
 ternal disturbance does not cease, the physiological phenomena 
 continue in the organism in spite of all efforts of the will to 
 suppress them. 
 
 The investigation of these processes has shown that the seat 
 of the emotions lies in the sympathetic nervous system. 
 
 Before we were born, and for a long time after birth, our life 
 was entrusted to the activity of the sympathetic system and 
 the reflex movements derived from the spinal cord. We need 
 not be surprised at this, when we reflect how great an impor- 
 tance nature has attributed to the vegetative and generative life 
 processes in the formation of the organism. 
 
 In decisive moments of life, when the emotions are most 
 violent, it is just the sympathetic nervous system that comes 
 into action. The intestines and the smooth muscular fibres con- 
 tract in order to raise the pressure of the blood, and to utilize 
 the blood better for the brain and the muscles. 
 
 The first observations concerning this subject were made by me 
 more than twenty years ago. I was able to see that in sleep 
 a contraction of the blood-vessels always takes place as soon as 
 the sense organs and the skin are stimulated, even when the 
 
 [329]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 stimulation is so weak that the subject does not wake up. 
 These changes, which result without our knowledge, form one of 
 the most remarkable arrangements which we can observe among 
 the perfections of our organization. During the interruption 
 of consciousness our body does not remain helplessly exposed 
 to the influences of the external world, or in danger of be- 
 coming the prey of its enemies. Even in sleep a portion of the 
 nerve centres watches over the operation of the external world, 
 and prepares in good time the material conditions for the awak- 
 ing of consciousness. If we glance back at the unconscious 
 processes which we saw take place in sleep under external in- 
 fluences, we shall see that they are all co-ordinated in corre- 
 spondence with a final object; they all coincide in favouring the 
 circulation of the blood in the brain, and thereby making it pos- 
 sible that, in case of danger, the organ may awake to full 
 activity. 
 
 I do not believe myself far from the truth in maintaining that 
 the totality of the reflex movements to be observed during sleep 
 forms a real defensive apparatus for the organism. 
 
 Other investigators have since demonstrated the same thing. 
 Two years later, in 1881, Dr. Pellacani and I found that even 
 very weak sensations caused a contraction of the bladder. 
 These facts had, in general, been already known, for these 
 contractions have become proverbial in connection with fear 
 and other emotional conditions; but no one had previously ob- 
 served that this organ reacts with such facility to all sense im- 
 impressions that its tonicity changes in consequence of attention 
 and inconsiderable psychic processes. 
 
 II 
 
 The organs of the abdomen and the pelvic cavity are just 
 as sensitive to the emotions as the heart. I have studied the 
 movements of the abdominal organs, the stomach, and the 
 rectum. In the smallest emotions movements of the intestines 
 and stomach always occur. 
 
 [330]
 
 EMOTIONS 
 
 In movements of the bladder, we must distinguish between 
 active and passive, i.e. between such as are peculiar to the 
 bladder itself, and such as are transferred to it from the 
 diaphragm and from the walls of the abdomen. 
 
 In order to investigate with exactness these movements of the 
 bladder itself, I have carried on experiments both on the dog 
 and on woman. I shall first explain the construction of the 
 apparatus employed, and then give an account of the experi- 
 ments performed. 
 
 The instrument made use of was my plethysmograph, which 
 has the advantage of maintaining the pressure constant and of 
 registering the slightest movements of contraction and relaxa- 
 tion of the bladder. . . . (Here follows description of the ap- 
 paratus.) 
 
 Another day while we were recording the movements of the 
 bladder, a servant, to whom the dog was much attached, entered 
 the laboratory. Immediately the curve showed an active con- 
 traction of the bladder, as may be seen in Fig. 3, at G. In 
 abe we see passive movements of the bladder, which have become 
 weaker because the respiration is more superficial. 
 
 When, shortly before, another person, whom the dog did not 
 know so well, had entered the room, we had also noticed another, 
 but stronger contraction of the bladder. In order to keep the 
 dog quiet, one of us laid his hand on his head. (See P in curve 
 of Fig. 3.) When the hand was taken awa'y, and the servant 
 laid his upon the dog, there occurred again an active, but less 
 marked, contraction of the bladder. As soon as the respiration 
 became more superficial, the passive movements of the bladder 
 became also less distinct. 
 
 After these observations, the dog lay with eyes half closed, 
 as if he was about to go to sleep. His tail was touched, and 
 immediately afterward the curve showed an active contraction 
 of the bladder, while what is noteworthy the rhythm and 
 depth of the respiratory movements did not change. After the 
 bladder had again assumed its full volume, and while the dog 
 was perfectly quiet, his skin was touched, and the curve record 
 
 [331]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 showed at once a stronger, active contraction of the bladder. 
 In like manner, sensations of pain, which we produced by pull- 
 ing the dog's ears, caused strong, active contraction of the 
 bladder. 
 
 Such experiments were many times repeated. They were also 
 carried on with bitches, the bladder being directly connected 
 with the plethysmograph by the introduction of a catheter, with- 
 out previous establishment of a fistula. The results which we 
 obtained were always the same. It was sufficient to speak kindly 
 to the animals, or to caress them, to make the curve express the 
 psychic influence upon their active movements. 
 
 But I could not rest content with these results obtained from 
 animals. I needed to corroborate them by experiments on 
 human beings. Naturally this can be done better with woman, 
 since with her the bladder can be easily brought into connec- 
 tion with the plethysmograph by the introduction of a catheter. 
 My clinical colleagues were kind enough to place at my disposal 
 some girls from the hospitals, who readily offered themselves for 
 the purposes of these experiments. 
 
 I may be permitted to give an account of these experiments 
 also. These experiments were carried on, otherwise, as the first. 
 Again I had the thoracic and abdominal respiration and the 
 movements of the bladder independently recorded. The subject 
 lay comfortably on a bed. Here, in state of complete rest, the 
 whole curve of the bladder was, at times, horizontal, showing, 
 at others, slight active undulations. To touch the hand of the 
 subject lightly sufficed, however, to produce at once an active 
 contraction of the bladder. (See T in the curve of Fig. 4.) 
 
 While the subject was lying quietly on the bed, the clock- 
 work of the kymograph was wound up (see C). The noise re- 
 sulting was entirely unknown to the subject, but the impression 
 sufficed to cause itself to be reflected in the bladder, and to in- 
 duce a contraction, visible in the curve. When the subject was 
 addressed (see P), it could be seen that the bladder contracted 
 immediately, while, if she herself spoke (see R), a series of 
 such contractions took place. All these contractions were move- 
 
 [332]
 
 EMOTIONS 
 
 ments proper to the bladder. As wag shown by other experi- 
 ments as well, they were not transferred to the bladder from 
 the abdominal walls as from the diaphragm, and were not, there- 
 fore, passive movements F. The lower line T marks the 
 seconds. 
 
 I was particularly interested in the movements produced in 
 the bladder by purely psychic influences. These are shown, e.g., 
 by the following experiment. While the girl lay quietly on the 
 bed, and respiration was quiet and normal this is always shown 
 by the curve, some one said to her, "Now I'm going to pinch 
 you," but without doing so. Immediately the bladder con- 
 tracted, without the slightest change being noticed in the 
 thoracic and abdominal respiration. After rest had been again 
 restored, a jest was spoken to the girl, and again we perceived 
 a contraction of the bladder on the curve, without seeing any 
 modification whatever of the two respiratory curves. 
 
 Beyond all doubt, then, the contractions of the bladder which 
 we observed were movements proper to that organ itself. 
 
 All these phenomena may be considered the most delicate re- 
 flex movements which occur in the organism. I was particularly 
 interested to know what influence a direct activity of the brain 
 would exercise upon the movements of the bladder, and I carried 
 on experiments to that end. The subject had only a slight edu- 
 cation ; she was especially a bad mental arithmetician, very easy 
 problems in arithmetic causing her difficulties. She needed, 
 therefore, in such work to exert her brain very much. 
 
 While she lay quietly on the bed and her respiration was 
 quite normal, she was given the following example in arithmetic : 
 "How many eggs are seven dozen?" Immediately the bladder 
 was seen to contract (Fig. 5). After this problem was solved 
 (see W), we had her multiply in her head thirteen by twelve, 
 and then a relaxation of the bladder was to be seen. 
 
 I noticed, also, that merely speaking to the girl, without her 
 answering, was sufficient to produce a contraction of the bladder. 
 
 [333]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 III 
 
 The preponderating activity of the sympathetic system in the 
 emotions is so great that the brain effort is not able to sup- 
 press it. Many men feel a contraction in the abdomen when 
 they look down from a tower or other high place. These trouble- 
 some sensations, which are connected with the idea of a possible 
 fall, are simply caused by the contraction of the bladder and the 
 intestines. 
 
 When we investigate, by means of the plethysmograph, the 
 movements of the intestines during emotional states, we obtain 
 the same curves as we received from the movements of the blood- 
 vessels of the extremities or of the brain, or from the movements 
 of the bladder. All these facts enable us to understand the 
 mechanism of the emotions better. Emotion signifies movement 
 We understand now that the constant and fundamental move- 
 ments taking place in emotions are the movements of the in- 
 ternal organs of vegetative life. 
 
 The investigations carried on in my laboratory by Dr. Kiesow 
 have convinced me that in certain emotions the blood pressure 
 increases, and the blood-vessels and smooth muscular fibres con- 
 tract in order to prevent the blood from being dammed up in the 
 abdominal cavity. 
 
 In order to increase the circulation of the blood in the brain 
 and muscles our bodily machine has to work under a high blood 
 pressure. This end could be attained only thru the sym- 
 pathetic system, which sends its fibres everywhere to the smooth 
 musculature. During blushing a paling of the skin can be 
 noticed before the blood-vessels expand, and the blush proper 
 takes place. 
 
 In the study of the emotions the reflex movements of the 
 striped musculature of the face, the extremities, and the trunk 
 are of secondary significance to the physiologist. They are 
 simply accompanying phenomena and, just because they are 
 more complicated, less fundamental. 
 
 However useful the first reactions of the nervous system are, 
 
 [334]
 
 EMOTIONS 
 
 yet we all know that they do not suffice for the defence of the 
 organism in strong emotions. The nerve substance is so ir- 
 ritable that a small shock is enough to disturb the equilibrium. 
 I will not enter into detail here, since I have already shown in 
 my book on Fear, how unstable is the equilibrium of the nervous 
 system, and how easily the brain and the sympathetic system 
 go beyond the proper measure in their activity when danger 
 threatens, and existence is at stake. 
 
 Even a practiced observer is often unable to decide from the 
 gestures and facial expression of an individual whether he is 
 enraged or in a state of the greatest joy. 
 
 To recall the expressions of two so opposite emotional condi- 
 tions suffices to convince us that the reflex phenomena accom- 
 panying them are not only useless, but even injurious. Indeed, 
 in great pain and great pleasure we have seen the same 
 phenomena ; trembling of the muscles, secretion of tears, expan- 
 sion of the pupils, decrease of visual acuity, buzzing in the ears, 
 oppression of the breathing, palpitation of the heart, inability 
 to speak, exclamations, convulsive movements of the diaphragm, 
 etc. All these phenomena are injurious. After the emotion 
 is over we feel nervous fatigue, have headache, and suffer from 
 insomnia. I am sorry to find myself in this matter in disagree- 
 ment with Darwin, but I cannot concede that the unconscious 
 processes occurring during the emotions (at least the best known 
 and most characteristic) have always a physiological purpose. 
 
 If we compare the expressions of pleasure and satisfaction in 
 their highest degree with those of pain, it will be seen that there 
 is one and the same mechanism for both. In my book on Fear 
 I have shown that it is the quantity and not the quality of the 
 excitation which disturbs the equilibrium of our organism. Only 
 the processes which take place in the system of the great sym- 
 pathetic are purposive and advantageous for the preservation of 
 life. And it cannot be otherwise. The animals, whose invol- 
 untary movements preserved them from destruction in danger, 
 won in the struggle for existence over others who possessed in 
 less marked degree this capacity. 
 
 [335]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 Whatever the emotions may be, we always see that in these 
 states the blood pressure increases, the heart beats become 
 stronger, and the respiration deeper. These advantageous effects 
 are the same in man as in animals, when they fix the attention, 
 are passionately excited, curious or jealous, or when they run 
 at play or in pursuit of prey. 
 
 But so soon as the emotion becomes more intense, the equilib- 
 rium of the organs ceases. The condition of excitability is in- 
 creased and becomes more complicated, contractions of the 
 muscles and changes in the sense organs take place, from which 
 it results that the capacity for resistance of the organism is 
 lowered. In strong emotions, as in rage and anger, we are 
 overpowered by unconscious and disco-ordinated movements, 
 and a penetrative and irresistible transformation occurs in us, 
 as if the influence of education had been extinguished, as if our 
 reason had suffered an eclipse. We are no longer able to sup- 
 press the internal excitement, the voice refuses its office, and 
 we utter a wild cry. Many persons in such states gnash their 
 teeth like wild beasts, others act foolishly, like children. 
 
 These disturbances occur not only in the reflex movements, 
 but also in the conscious processes, and more even in the latter 
 than in the former. Education has taught us that we must 
 seek to master and to calm ourselves during this internal excite- 
 ment, for in these states we lack mental clearness and power 
 of judgment, and consciousness cannot again regain control until 
 these disco-ordinated reflex movements have ceased. Even the 
 ancients knew that strong emotions resembled a suddenly oc- 
 curring sickness. The legend of ancient Rome idealized a king 
 in order to represent war. They gave him the name Hostilius, 
 which is derived from hostis. Tradition further informs us that 
 this king erected a temple to "Pallor and Fear," for pallor 
 and fear were looked upon as malevolent, destructive deities 
 who must be appeased in order that the soldiers might be 
 victorious in battle. 
 
 Reprinted by permission from the Decennial Celebration of Clark Uni- 
 versity, Worcester, Mass., 1899, pp. 396-407. 
 
 [336]
 
 BIBLIOGRAPHY 
 
 1. Anderson, Meta L. Education of Defectives in the Public 
 
 Schools. Yonkers-on-Hudson, World Book Co., 1917. 
 104 p. 
 
 2. Bailey, Frederick R., and Miller, Adam Marion. Text- 
 
 book of Embryology. New York, Wm. Wood & Co., 
 1909. 672 p. 
 
 3. Barnes, Earl. A Study in Children's Drawings. Stan- 
 
 ford University, Studies in Education, 1896-7, vol. 1. 
 Philadelphia, 1902, vol. 2. (See also Ped. Sem., 1893, 
 vol. 2, no. 3, pp. 455-463.) 
 
 4. Binet, Alfred. The Psychology of Reasoning. Chicago, 
 
 Open Court Publishing Co., 1912. 191 p. 
 
 5. and Simon, Th. The Development of Intelligence in 
 
 Children. Translated by Elizabeth S. Kite. Vine- 
 land, The Training School, publication no. 11, 1916. 
 336 p. 
 
 6. and Simon, Th. The Intelligence of the Feeble- 
 minded. Translated by Elizabeth S. Kite. Vine- 
 land, The Training School, publication no. 12, 1916. 
 328 p. 
 
 7. Bolton, J. S. A Contribution to the Localization of Cere- 
 
 bral Function. Brain, 1911, vol. 33, pp. 26-148. 
 
 8. Cannon, Walter B. Bodily Changes in Pain, Hunger, 
 
 Fear and Rage. An account of recent researches 
 into the function of emotional excitement. New 
 York, D. Appleton & Co., 1915. 311 p. 
 
 9. Church, Archibald, and Peterson, Frederick. Nervous 
 
 and Mental Diseases. Philadelphia, W. B. Saunders 
 Co., 1905. 937 p. 
 
 10. Crile, George W. Man an Adaptive Mechanism. New 
 York, Macmillan Co., 1916. 387 p. 
 
 [337]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 11. Crile, George W. The Origin and Nature of the Emo- 
 
 tions. Philadelphia, W. B. Saunders Co., 1915. 
 240 p. 
 
 12. Doll, Edgar A. Clinical Studies in Feeble-mindedness. 
 
 Boston, Badger, 1917. 233 p. 
 
 13. Donaldson, Henry Herbert. Anatomical Observations on 
 
 the Brain and Several Sense-organs of the Blind 
 Deaf-mute, Laura Dewey Bridgman. Am. Jour, of 
 Psy., 1890, vol. 3, pp. 293-342; 1891, vol. 4, pp. 248- 
 294. 
 
 14. The Growth of the Brain. A study of the nervous 
 
 system in relation to education. New York, Chas. 
 Scribner's Sons, 1895. 374 p. 
 
 15. Dunlap, Knight. An Outline of Psychobiology. Balti- 
 
 more, Johns Hopkins Press, 1914. 121 p. 
 
 16. Flechsig, Paul. Gehirn und Seele. Leipzig, Veit u. 
 
 Comp., 1896. 112 p. 
 
 17. Freeman, Frank Nugent. The Psychology of the Common 
 
 Branches. Boston, Houghton Mifflin Co., 1916. 
 275 p. 
 
 18. Gesell, Arnold L., and Gesell, Beatrice Chandler. The 
 
 Normal Child and Primary Education. Boston, Ginn 
 & Co., 1912. 342 p. 
 
 19. Gilchrist, Edward P. The Extent to Which Praise and 
 
 Reproof Affect a Pupil's Work. School and Society, 
 1916, vol. 4, no. 101, pp. 872-874. 
 
 20. Goddard, Henry Herbert. The Adaptation Board as a 
 
 Measure of Intelligence. Tr. Sch. Bull., 1915, vol. 
 11, no. 10, pp. 182-188. 
 
 20a. The Criminal Imbecile. New York, Macmillan Co., 
 
 1915. 157 p. 
 
 20b. Feeble-mindedness: Its Causes and Consequences. 
 
 New York, Macmillan Co., 1914. 599 p. 
 
 20c. A Group of Feeble-minded Children with Special Re- 
 gard to Their Number Concepts. Supplement to the 
 Tr. Sch., 1908, March, pp. 1-16. 
 
 [338]
 
 21. Greenman, M. J. Regeneration of Peripheral Nerves. 
 
 Jour, of Nerv. and Ment. Dis., 1916, vol. 43, no. 1, 
 pp. 62-68. 
 
 22. Hammarberg, Carl. Studien iiber Klinik und Pathologic 
 
 der Idiotie nebst Untersuchungen iiber die normale 
 anatomie der Hirnrinde. Upsala, 1895. 126 p. 
 
 23. Herrick, C. Judson. An Introduction to Neurology. 
 
 Philadelphia, W. B. Saunders Co., 1916. 355 p. 
 
 24. Hobhouse, L. T. Mind in Evolution. New York, Mae- 
 
 millan Co., 1901. 415 p. 
 
 25. Hollingworth, H. L., and Hollingworth, Leta S. Voca- 
 
 tional Psychology. New York, D. Appleton & Co., 
 1916. 308 p. 
 
 26. and Poffenberger, A. T. Applied Psychology. New 
 
 York, D. Appleton & Co., 1917. 337 p. 
 
 27. Huey, Edmund B. Backward and Feeble-minded 
 
 Children. Baltimore, Warwick & York, 1912. 
 221 p. 
 
 28. James, William. Talks to Teachers on Psychology and to 
 
 Students on Some of Life 's Ideals. New York, Henry 
 Holt & Co., 1904. 301 p. 
 
 29. Keller, Helen. The Story of My Life. New York, Double- 
 
 day, Page & Co., 1903. 441 p. 
 
 30. Lapage, C. Paget. Feeble-mindedness in Children of 
 
 School age. Manchester, England, University Press, 
 1911. 359 p. 
 
 31. Lindley, Martha. The Reading Ability of Feeble-minded 
 
 Children. Tr. Sch. Bull., 1917, vol. 14, pp. 90-94. 
 
 32. Loeb, Jacques. The Organism as a Whole. From a 
 
 Physio-chemical Viewpoint. New York, G. P. Put- 
 nam's Sons, 1916. 379 p. 
 
 33. Luciani, Luigi. Human Psychology. New York, Mac- 
 
 millan Co., 1915. 667 p. 
 
 34. McDougall, William. An Introduction to Social Psychol- 
 
 ogy. Boston, John W. Luce & Co., 1915. 431 p. 
 
 35. McMurrich, J. Playfair. The Development of the Human 
 
 [339]
 
 PSYCHOLOGY OF THE NORMAL AND SUBNORMAL 
 
 Body. A manual of human embryology. Philadel- 
 phia, P. Blakiston's Sons & Co., 1903. 527 p. 
 
 36. Macnamara, N. C. Instinct and Intelligence. London, 
 
 Henry Frowde with Hodder & Stoughton, 1915. 
 216 p. 
 
 37. Mateer, Florence. Child Behavior. A critical and ex- 
 
 perimental study of young children by the method of 
 conditioned reflexes. Boston, Badger, 1918. 239 p. 
 
 38. Morat, J. P. Physiology of the Nervous System. 
 
 Chicago, W. T. Keener & Co., 1906. 680 p. 
 
 39. Morgan, C. Lloyd. An Introduction to Comparative Psy- 
 
 chology. New York, Chas. Scribner's Sons, 1896. 
 382 p. 
 
 40. Mosso, Angelo. Fear. New York, Longmans, Green & 
 
 Co., 1896. 278 p. 
 
 41. The Mechanism of the Emotions. Worcester, Mass., 
 
 Clark University Decennial Celebration Volume, 1899. 
 pp. 396-407. 
 
 42. Pillsbury, W. B. The Psychology of Reasoning. New 
 
 York, D. Appleton & Co., 1910. 306 p. 
 
 43. Ribot, Th. Essay on the Creative Imagination. Chicago, 
 
 Open Court Publishing Co., 1906. 370 p. 
 
 44. The Psychology of the Emotions. New York, Chas. 
 
 Scribner's Sons, 1897. 455 p. 
 
 45. Santee, Harris E. Anatomy of the Brain and Spinal Cord 
 
 with Special Reference to Mechanism and Function. 
 Philadelphia, P. Blakiston's Son & Co., 1915. 474 p. 
 
 46. Shand, Alexander F. The Foundations of Character. 
 
 London, Eng., Macmillan & Co., Ltd., 1914. 532 p. 
 
 47. Sherlock, E. B. The Feeble-minded. A guide to study 
 
 and practice. London, Eng., Macmillan & Co., Ltd., 
 1911. 327 p. 
 
 48. Sherrington, Charles S. The Integrative Action of the 
 
 Nervous System. New York, Chas. Scribner's Sons, 
 1906. 411 p. 
 
 49. Shuttleworth, G. E., and Potts, W. A. Mentally Deficient 
 
 [340]
 
 BIBLIOGRAPHY 
 
 Children, Their Treatment and Training. Philadel- 
 phia, P. Blakiston's Son & Co., 1910. 236 p. 
 
 50. Terman, Lewis M. The Measurement of Intelligence. 
 
 Boston, Houghton Mifflin Co., 1916. 362 p. 
 
 51. Titchener, Edward Bradford. A Primer of Psychology. 
 
 New York, Macmillan Co., 1900. 316 p. 
 
 52. Thorndike, Edward L. The Elements of Psychology. 
 
 New York, A. G. Seiler, 1905. 351 p. 
 
 53. Tredgold, A. F. Mental Deficiency (Amentia). London, 
 
 Eng., Balliere, Tindall & Cox, 1914. 491 p. 
 
 54. Watson, John B. Behavior. An introduction to com- 
 
 parative psychology. New York, Henry Holt & Co., 
 1914. 439 p. 
 
 55. White, William. Outlines of Psychiatry. Jour, of Nerv. 
 
 and Ment. Dis. Mon. no. 1, New York, 1915. 320 p. 
 
 THE END 
 
 [341]
 
 INDEX 
 
 Accident, fear of, 279 
 Action, automatic, 159 
 
 impulsive, 194 
 
 instinctive, 193 
 
 perfection of, depends upon the 
 neuron pattern, 193 
 
 reflex, 193 
 
 volitional, 195 
 
 Adaptability, a measure of intelli- 
 gence, 58 
 
 Adaptation Board, 102 
 Admiration, 140, 155 
 Adrenal gland, 132 
 
 secretion, effect of, 138 
 Affections, the, 123 
 Age, physiological, 60 
 Alexia, 178 
 
 Ambitious, parents and teachers, 311 
 Ameboid processes, 29 
 Anger, 124 
 
 Anger and adrenal glands, 134 
 Animals have language, 174 
 
 think, 158 
 
 wild, approach if eyes are closed, 
 
 48 
 Antagonism between different parts 
 
 of the sympathetic, 144 
 Aphasia, 178 
 
 case of, 111 
 
 Aphasias, table of simple, 179 
 Aristocracy, 236 
 Arrested mental development, 52 
 
 limitations of persons of, 243 
 Artistic sense, impossible to develop, 
 
 101 
 Association areas, 98 
 
 necessary for complex emotions, 
 
 142 
 
 Association areas, to hasten the 
 functioning of the great, 216 
 
 poverty of neurons in the, 153 
 Association centers, 65 
 
 higher processes depend upon, 109 
 
 last to develop, 67 
 
 Association, free, 81 
 
 of ideas, 45, 83 
 
 inherent in the nature of the nerv- 
 ous mechanism, 83 
 
 logical, 110 
 
 neurons, 12 
 
 by similarity, 94 
 
 importance of, 99 
 Attention, 76 
 
 acquired, 107 
 
 and interest, 136 
 
 lack of acquired, characteristic of 
 the feeble-minded, 108 
 
 objection to our view, 82 
 
 voluntary, 202 
 Automatic action, 208 
 
 in a mature mind, 209 
 " Avalanche Conduction," 151 
 Awe, 140, 154 
 
 B 
 
 Barnes, Earl, 48 
 
 Binet, Alfred, 55, 72, 181, 250, 254, 
 257 
 
 on who is mentally defective, 60 
 Bladder, contractions of the, 126 
 Blocking, explanation of, 197 
 Bolton, 13 
 
 Bogardus factory test, 301 
 Brain of arrested development, 63 
 Brain of embryo, 7 
 
 necessary to thought, 159 
 
 patterns, limitation of, 67 
 
 weight, 6 
 Bridgman, Laura, 16 
 
 cortex of, 17 
 Brodmann, 37 
 Burnet, Thomas, 158 
 
 Cajal, 151 
 Cannon, W. 
 
 228 
 Cell body, 8 
 
 C 
 
 B., 126, 128, 138, 144, 
 
 [343]
 
 INDEX 
 
 Charity, recipients of, 246 
 Child, nature of, 311 
 
 without well formed habits, 217 
 Children, gifted, 216 
 
 without reverence, 142 
 Chinese tailor, 184 
 Church & Peterson, 178 
 Citizenship, good, 262 
 Crampton, C. Ward, 60 
 Cretinism, 271 
 Crile, 126, 228 
 Criminals, 248 
 
 lack of emotion in, 152 
 Commendation and approval, 321 
 Concrete, abstract, 283 
 Conditioned reflex, 147 
 Conflict, 195 
 Consciousness, 24 
 
 as cause, 83 
 
 complex patterns give rise to 
 
 larger, 76 
 
 Consciousness, connected with the 
 passage of neurokyme, 31 
 
 cortex is the seat of, 31 
 
 marginal, 78 
 
 maturity of, 33 
 
 the result of interference, 28 
 
 seat of, 27 
 Conscious reflex, 194 
 Contempt, 154 
 Contiguity, association by, 84, 92 
 
 verbal, 96 
 Convolutions, 7 
 Cortex, 7 
 
 of Laura Bridgman, 17 
 
 neuron layers in, 13 
 Cowboy, 150 
 Cretin, 229 
 Curiosity, 145, 148 
 
 leads a child to explore, 91 
 Curve of distribution, 235 
 
 of mental development, 34 
 
 D 
 
 Deductive, 183 
 Defect by deprivation, 57 
 Defectives never able to handle ab- 
 stractions, 287 
 associate by contiguity, 87 
 cannot concentrate, 107 
 Deliberate, what happens when we, 
 197 
 
 Deliberation, 194 
 
 objection to the term, 197 
 Democracy, 236 
 Dendrite, 8 
 Dentist and idiot, 274 
 Deprivation, defect by, 57 
 Des Cartes, 140 
 Diamond, copying the, 255 
 Differences are perceived before 
 similarities, 101 
 
 more easy than likenesses, 294 
 Discipline, 292 
 
 among the feeble-minded, 326, 327 
 
 fundamental problem of, 316 
 Diplomacy, honesty in, 290 
 Disgust, 148 
 Donaldson, H. H., 16 
 Drawing, child's first, 48 
 Dull normal person, 59 
 
 E 
 
 Education, 242 
 
 and intelligence, 54 
 Efficiency, 244 
 
 total mental, 262 
 Ego, 197 
 Emotion, 124 
 
 Emotional accompaniment, 196 
 Emotions, conflict of, 149 
 
 complex, 140 
 
 complex, result of extensive as- 
 sociations, 141 
 
 complex, not much more violent 
 than the simple, 143 
 
 distinct from the other phases of 
 mind, 145 
 
 intelligence controls the, 272 
 
 manifestation of, different in the 
 feeble-minded, 153 
 
 nerve action underlying the com- 
 plex, 142 
 
 primary, in the feeble-minded, 145 
 
 the mechanism of the, 329 
 Encephalon. 4, 5 
 Encouragement, effect of, 318 
 End organs, 16 
 Environment to which one can adapt 
 
 himself, 261 
 Envy, 155 
 Experience, 277 
 
 child must be given, 291 
 
 develops neuron patterns, 48 
 
 [344]
 
 INDEX 
 
 Experience (Continued) 
 
 fundamental to good judgment, 
 188 
 
 poverty of, 164 
 
 school, 263 
 
 sets patterns into activity, 288 
 
 vicarious, 280 
 Eye cannot see itself, 207 
 
 Factory test, 301 
 Fascination, 140, 155 
 Fear, 124 
 
 and curiosity antagonistic, 150 
 paralyzed by, 125, 273 
 Feeble-minded, 52, 57 
 
 child steals a handkerchief, 295 
 dissipation of mental energy of, 
 
 161 
 
 fond of music, 75 
 have memory and imagination, 74 
 have very incomplete neuron pat- 
 terns, 152 
 
 how to train the, 297 
 in the army, 250 
 in the high schools, 115 
 lack neurons for emotions, 155 
 lacking in reasoning, 188 
 limitations of the, 102 
 not hard to please, 274 
 not able to build up elaborate 
 
 neuron patterns, 108 
 Feeble-minded, the great problem, 
 
 312 
 who need to go to an institution, 
 
 252 
 
 often repeat judgments, 182 
 not naturally bad, 275 
 lacking in energy, 189 
 do not modify their instincts, 147 
 pedagogy of the, 293 
 vicarious experience nil, 283 
 reason for the weak volitional 
 
 action of, 205 
 
 Feeble-mindedness defined, 58 
 upper limit of, 59 
 we may suspect, 295 
 Feeble-minded children cited: Bert, 
 162; Charles, 191; Eddie, 161, 
 299; Fire-alarm Joe, 75; Flor- 
 ence, 87; Garry, 163; George, 
 153; Jay, 184; John, 324; 
 
 Feeble-minded children (Continued) 
 John's proficiency in numbers, 
 283; Kirk, 167; Lewis, 285; 
 Lil, 154; Marjorie B., 74; Rob- 
 ert, 74; Theodore, 190; Tom, 
 162, 325; Willie, 154 
 
 Feeling of familiarity, 71 
 
 Feelings, 123, 136 
 as guides for future action, 316 
 
 Flechsig, 15, 65, 98 
 
 Flight, 145 
 
 Foote, Elizabeth, 255, 260 
 
 Frog, experiment with, 21 
 
 Frequency, 196 
 
 G 
 
 Galen, 227 
 Ganglion. 10 
 
 sympathetic, 6 
 
 spinal, 20 
 Generalizing, 183 
 Geography, teaching, 282 
 Gilchrist, 318 
 
 Glands of internal secretion, 133 
 Goff, Judge, 253 
 Gordian knot, 207 
 Gratitude, 141, 155 
 Greenman, M. J., 30 
 
 H 
 
 Habit, 212 
 
 vs. no habit, 217 
 
 based on an impulse, 214 
 
 an acquired instinct, 212 
 
 Habits easily broken, 219 
 good and bad, 215 
 of inaction, 201 
 of the feeble-minded, 222 
 why we have undesirable, 219 
 
 Harum, David, 198 
 
 Harvard and Yale, 96 
 
 Hauser, Caspar, 48 
 
 Hammarberg, 63 
 
 Happiness first. 323 
 
 Healy, Wm., 269 
 
 Heidelberg, 212 
 
 Heredity, what is. 241 
 
 Herrick', 9, 12, 27, 28, 66, 70, 98, 
 110 
 
 Holmes, Oliver Wendell, 118 
 
 [345]
 
 INDEX 
 
 Iceberg, figure of, 25 
 Idea, 45 
 
 Ideas, association of, 45, 83 
 Ideal of training, 313 
 Idiot, 60 
 
 a creature of impulse, 265 
 
 capable of instinctive attention, 78 
 
 microcephalic and hydrocephalic, 
 
 79 
 Idiots associate, 114 
 
 recite Psalms, 114 
 
 repetition of movements, 49 
 
 see and hear, 65 
 Image, a mental, 45 
 Imagination, 72 
 
 creative, 117 
 
 not unlimited, 117 
 
 possible for undeveloped minds, 
 74 
 
 reproductive, 73 
 Imbeciles, 60 
 
 define in terms of use, 184 
 
 few accomplishments of, 50 
 Impulsive action, 194 
 
 action dangerous, 215 
 
 habits, 214 
 Impulse, individual differences of, 
 
 265 
 
 Inductive, 182 
 Industrial education, 292 
 Infant, conscious as born, 32 
 
 new born, 40 
 Inhibitory action, 197 
 Instinct, 38 
 
 an inherited habit, 212 
 
 strength of, 275 
 
 Instincts according to McDougall, 
 30 
 
 are modified, 146 
 
 Intelligence of the average person, 
 53, 235, 251 
 
 and emotion, 270 
 
 and training, 247 
 
 and will, 264 
 
 can be measured, 250 
 
 cause of low, 238 
 
 confused vith education, 54 
 
 defined, 56 
 
 different from education, 238 
 
 eight year, etc., 53 
 
 level, 60 
 
 Intelligence (Continued) 
 
 losses come from lack of, 244 
 
 measuring, 55, 116 
 
 of various groups determined, 234 
 
 ranges of, 234 
 
 twenty year, the maximum, 53, 56 
 Interest, 136 
 
 and attention, 136 
 Irritability, 69 
 
 James, Wm., 58, 66, 126, 197, 200, 
 
 201, 202, 203, 206, 212, 215, 221, 
 
 262, 264 
 
 James-Lange theory, 138 
 James' maxims for habit forming, 
 
 218 
 
 Jesus, prayer of, 291 
 Judgment, 167, 178 
 why the mental defective shows 
 
 poor, 190 
 
 Judgments, reasoning a train of, 182 
 Junk shop, 279 
 Juries nonplussed, 152 
 
 Keller, Helen, 167 
 
 Knee jerk, 20 
 
 Knowledge of the "first order," 86 
 
 Lange, 126 
 
 Lange- James theory, 138 
 
 Language, 174 
 
 Levels of intelligence, 56, 249 
 
 Lindley, Martha, 303 
 
 Loathing, 140, 155 
 
 Localization, brain, 12 
 
 Lugaro, 29 
 
 Lying and stealing, 289 
 
 M 
 
 Man with the Hoe, 239 
 Markham, Edwin, 239 
 Mateer, Florence, 147 
 McDougall, Wm , 123. 155, 140, 146, 
 
 149. 200 
 instinct defined by, 38 
 
 [346]
 
 INDEX 
 
 Measuring scales for intelligence, 55, 
 
 250, 261 
 
 Medicine, license to practise, 244 
 Medullation, 15 
 Memory, 69, 110 
 
 acquired, 110 
 
 of the feeble-minded, 75 
 
 inherent, 71 
 
 idiots show, 75 
 
 man losing the power of, 76 
 
 poor, 72 
 
 a property of nervous tissue, 71 
 Mental age, 53, 60 
 Mental, arrest, 52 
 
 defect, wisest procedure to sus- 
 pect, 313 
 
 image, 73 
 
 levels, 233, 246 
 
 Mental levels depend upon the time 
 when arrest occurs, 64 
 
 determined with much accuracy, 
 250 
 
 educate according to, 253 
 
 theory of, 235 
 Mental tests in the army, 251 
 
 the theory of, 254 
 Mesial surfaces, 7 
 Messenger boy, 246 
 Metric system remembered, 115 
 Microcephaly, 63 
 Microcephalic idiot, 79 
 Millet, 239 
 Mind, apathy of undeveloped, 151 
 
 two phases of, 271 
 Mongolian type, 186 
 Moral imbecile, 267 
 Moral training, 310 
 Morgan, Lloyd, 156 
 Moron, defined, 58 
 
 a menace, 237 
 
 the discovery of the, 233 
 
 develops some neuron patterns, 50 
 
 a problem of education, 252 
 Morons, 60 
 
 apparently normal until 7 or 8 
 years, 61 
 
 brains of, 64 
 
 not vicious, 275 
 
 who had run away, 163 
 
 inability to hold a job, 205 
 Mosso, 126, 138, 228, 270 
 Motive, 315 
 Movement of the heart arrested, 197 
 
 Murderers studied by the writer, 
 
 152 
 Muscle, goal of neurokyme, 16 
 
 N 
 
 Name, recall of a, 81 
 Names, what are, 174 
 Naming instinct, 176 
 Natural retentiveness, 71 
 Nerve action underlying the com- 
 plex emotions, 142 
 
 degeneration in, 30 
 
 energy dissipated, 161 
 Nervous system, 3 
 
 the autpnomic, 130 
 
 properties inherent in, 69 
 Neurite, 8 
 Neurokyme, 9, 20 
 
 is blocked, 92 
 
 Neuron action and sympathetic sys- 
 tem, 127 
 
 development at sixteen years, 54 
 
 paths must be blocked, 291 
 Neuron pattern, 21 
 
 and association by similarity, 95 
 
 in instincts, 142 
 
 elaborateness of, 195 
 
 inductive reasoning a question of, 
 185 
 
 simple, 35 
 
 simplest kind of cortical, 165 
 
 very complicated, 36 
 Neuron patterns, 23 
 
 acquired, 39, 42 
 
 built up by experience, 48, 151 
 
 elaborated by experience, 45 
 
 innate, 38 
 
 increasing in complexity, 48 
 
 patterns, man a, slave to his, 207 
 
 in the feeble-minded, 49 
 
 specific, 37 
 Neurons, 8 
 
 at birth, 15 
 
 changed permanently, 70 
 
 condition of, in the feeble-minded, 
 62 
 
 dependent upon stimulation, 16 
 
 develop until forty-five, 33 
 
 grow at different rates, 14 
 
 impossible to develop the defective, 
 97 
 
 in contact, 29 
 
 [347]
 
 INDEX 
 
 Neurons (Continued) 
 
 layers of the cortex, 13 
 
 motor, 15 
 
 sensory, 15 
 
 Norsworthy, Naomi, 87 
 Number work of feeble-minded chil- 
 dren, 308 
 
 O 
 
 Over inhibited type, 200 
 P 
 
 Parental instinct, 145 
 
 Patriotism, 154 
 
 Pathological liars, 26& 
 
 Pavlov, 131 
 
 Penmanship of the feeble-minded, 
 
 308 
 Perception, 44, 167, 171, 
 
 definition, 181 
 
 sometimes called judgment, 178 
 
 and judgment differ only in de- 
 gree, 181 
 
 judgment and reasoning the same 
 
 process, 188 
 
 Peterson, Church and, 178 
 Pity, 155 
 
 Pleasure, feeling of, 124 
 Pneumogastric nerve, 197 
 Porteus tests. Lewis and the, 285 
 Pugnacity, 145, 149 
 Punishment, 318 
 
 vs. brutality, 319 
 Punning, 118 
 
 Quickening, 32, 33 
 R 
 
 Rage and adrenal glands, 134 
 
 blind with, 125 
 Rami communicantes, 127 
 Reading, an investigation of, 303 
 Reasoning, 182 
 
 course of nerve energy in deduct- 
 ive, 186 
 
 deductive, 183 
 
 dependent upon experience, 183 
 
 inductive, 183 
 
 Recency, 196 
 
 Relay, 23 
 
 Reflex-arc, 25 
 
 Reflex, patella, 20 
 
 Reflexes, neuron patterns for, 38 
 
 Reproach, 154 
 
 Repulsion, 145 
 
 Resentment, 155 
 
 Responsibility, ideas of, 243 
 
 Retina, 16 
 
 Reverence, 141 
 
 no evidence of, among the feeble- 
 minded, 153 
 
 Rewards or punishments, 317 
 Reward must be definite, 320 
 Rousseau, 212 
 Rugh, 177 
 
 Scorn, 140, 154 
 Secret of will, 207 
 Self-abasement, 145, 149 
 Self-assertion, 145, 149 
 Self-made men, 242 
 Sensation, 41 
 
 adults seldom have pure, 165 
 
 is consciousness of a stimulus, 166 
 
 of pressure, 172 
 
 of sound, 71 
 Sex emotion, 273 
 Sheath, medullary. 15 
 Similarities, children do not easily 
 
 see, 101 
 Similarity, association by, 94 
 
 degrees of, 99 
 Snakes, imbeciles and idiots do not 
 
 fear, 148 
 
 Society, a perfect, 243 
 Sound-sight, 166 
 Splanchnic nerves. 131 
 Square, copying the, 255 
 State license, 244 
 Steel, heated and cooled, 70 
 Stern, 58 
 
 St. Lawrence River, 282 
 Stout, 178 
 Stimulus, 16 
 
 single, tends to radiate in all di- 
 rections, 42 
 Stimuli do not come singly, 42 
 
 infinite number of, 41 
 
 interference of two or more, 91 
 
 [348]
 
 INDEX 
 
 Stimuli, specific, 16 
 
 summation of, 43 
 Subnormals, training for, 300 
 Sullivan, Miss, 170 
 Swiss guide, 150 
 Syllogism, 185 
 Symbols, 282 
 Sympathy, 146 
 Sympathetic system, 6 
 'the seat of the emotions, 126 
 
 the oldest of all nervous struc- 
 tures, 127 
 Synapse, 10 
 
 Telegraphy, 22 
 Temperament, 226 
 Temperaments, four, 227 
 
 of the feeble-minded, 229 
 Terman, 53, 56, 235 
 Tests, pedagogical, indication of the 
 mental level, 263 
 
 what is tested by each question, 
 
 259 
 
 Thorndike, 40 
 Thought, 158, 163 
 
 poverty of, 164 
 
 results when the action is im- 
 peded, 160 
 
 Thumb, opposing, to fingers, 260 
 Thyroid gland, 271 
 Time, an important point, 202 
 
 ability to appreciate, 257 
 Titchener, 45, 171, 178, 227 
 Touch, sense of, 16 
 Train, impulse to jump on, 194 
 Tredgold defines feeble-mindedness, 
 
 58 
 Truant, the, 292 
 
 U 
 
 United States Army, use of mental 
 tests in, 250 
 
 Vengeance, 154 
 
 Verbal associations, 177 
 
 description, 281 
 
 memory, 177 
 
 types, 177 
 Vicarious experience when valuable, 
 
 280 
 Vineland Training School, child in, 
 
 61 
 
 Virtue is its own reward, 321 
 Visual center, 16 
 Vladivostok, 113 
 Volitional action, 194, 201 
 
 emotional content of, 204 
 Voluntary habits, 214 
 
 W 
 
 Watch, winding, 159 
 
 automatic, 164 
 White, Wm. A., 249 
 Will, the elements of, 201 
 
 breaking defended, 264, 267 
 
 a matter of the neuron patterns, 
 201 
 
 strong or weak, 203 
 
 the way to control, 265 
 
 relations of, to intelligence, 264 
 
 lacking in feeble-minded, 205 
 Wilson, President, 289 
 Wit, 118 
 Word blindness, 178 
 
 deafness, 178 
 
 trying to think of a, 82 
 Words arouse experiences, 177 
 
 are only symbols, 177 
 Writing of the feeble-minded, 308 
 
 [349]
 
 Bf 
 
 /a/ 
 
 University of California 
 
 SOUTHERN REGIONAL LIBRARY FACILITY 
 
 305 De Neve Drive - Parking Lot 17 Box 951388 
 
 LOS ANGELES, CALIFORNIA 90095-1388 
 
 Return this material to the library from which it was borrowed. 
 
 DUE
 
 LIBRARY FACILITY 
 
 Af\n J I "l I III III Illl 
 
 001 027 834 9