A.STRONOMY DEPT 
 

 

 
INVESTIGATION OF INEQUALITIES Efc* 
 
 s^*/ 
 
 MOTION OF THE MOON PRODUCED BY 
 THE ACTION OF THE PLANETS 
 
 SIMON NEWCOMB 
 
 ASSISTED BY 
 
 FRANK E. ROSS 
 
 WASHINGTON, D. C.: 
 
 PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON 
 
 JUNE, 1907 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE III. Concluded. 
 MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH. 
 
 The term of long period is omitted. The tabular unit is o".oi in tu and <5f', and 10 8 in Sp and <)//. 
 
 
 System 9. 
 
 System^ 10. 
 
 System ii. 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 du 
 
 8v' 
 
 dp 
 
 S t o> 
 
 du 
 
 dv' 
 
 dp 
 
 V 
 
 du 
 
 dv' 
 
 fy 
 
 8p> 
 
 
 
 - 508 
 
 +447 
 
 + 196 
 
 +563 
 
 - 548 
 
 +407 
 
 + 300 
 
 +495 
 
 - 205 
 
 + 158 
 
 + 341 
 
 +471 
 
 I 1 544 
 
 +3i8 
 
 + 174 
 
 +583 
 
 - 616 
 
 +355 
 
 + 295 
 
 +506 
 
 - 371 
 
 + 169 
 
 + 372 
 
 +454 
 
 2 482 
 
 + 176 + 237 
 
 +552 
 
 660 j +285 
 
 + 355 
 
 +469 
 
 540 
 
 + 175 
 
 + 468 
 
 +393 
 
 3 
 
 444 
 
 + 36 + 357 
 
 +487 
 
 -698 
 
 +200 
 
 + 465 
 
 +398 
 
 - 718 
 
 + 179 
 
 + 591 
 
 +306 
 
 4 
 
 446 
 
 90 
 
 + 493 
 
 +394 
 
 747 
 
 + 109 
 
 + 579 
 
 +301 
 
 -897 
 
 + 176 
 
 + 700 
 
 +207 
 
 5 493 
 
 196 + 613 
 
 +285 
 
 - 811 
 
 + 19 
 
 + 673 
 
 + 193 
 
 -1066 
 
 + 165 
 
 + 767 
 
 + 103 
 
 6 576 
 
 -278 + 699 
 
 +162 
 
 -889 
 
 - 62 
 
 + 727 
 
 + 82 
 
 1208 
 
 + 141 
 
 + 783 
 
 + o 
 
 7 -690 
 
 -338 i + 744 
 
 + 26 
 
 980 
 
 -127 
 
 + 732 
 
 32 
 
 1321 
 
 + 109 
 
 + 757 
 
 -104 
 
 8 
 
 - 828 
 
 370 
 
 + 736 
 
 121 
 
 1073 
 
 171 
 
 + 681 
 
 142 
 
 1409 
 
 + 77 
 
 + 662 
 
 -205 
 
 9 
 
 -981 
 
 371 
 
 + 667 
 
 272 
 
 1164 
 
 194 
 
 + 577 
 
 -254 
 
 -1470 
 
 + 51 
 
 + 5i6 
 
 -300 
 
 10 1138 
 
 335 
 
 + 522 
 
 42O 
 
 1249 
 
 193 
 
 + 4i6 
 
 364 
 
 -1497 
 
 + 39 
 
 + 342 
 
 -384 
 
 ii 1274 
 
 260 
 
 + 298 
 
 -553 
 
 1290 
 
 -166 
 
 + 203 
 
 -472 
 
 1484 
 
 + 41 
 
 + H4 
 
 -456 
 
 12 1360 
 
 147 
 
 3 
 
 661 
 
 1310 
 
 113 
 
 60 
 
 -569 
 
 -1423 
 
 + 59 
 
 147 
 
 517 
 
 13 1372 
 
 i 
 
 351 
 
 740 
 
 1274 
 
 - 29 
 
 - 364 
 
 -648 
 
 -1314 
 
 + 95 
 
 427 
 
 -566 
 
 M 
 
 -1288 
 
 + 164 
 
 - 715 
 
 -783 
 
 1176 
 
 + 83 
 
 -693 
 
 -699 
 
 1154 
 
 + 147 
 
 7H 
 
 -603 
 
 IS 
 
 1106 
 
 +339 
 
 1055 
 
 -786 
 
 IOOO 
 
 +222 
 
 1015 
 
 -716 
 
 - 938 
 
 +220 
 
 -987 
 
 624 
 
 16 
 
 -835 
 
 +504 
 
 -1328 
 
 -753 
 
 741 
 
 +374 
 
 1301 
 
 -695 
 
 - 669 
 
 +311 1237 
 
 620 
 
 17 
 
 493 
 
 +654 
 
 1520 
 
 -682 
 
 - 415 
 
 +530 
 
 1511 
 
 -637 
 
 346 
 
 +420 1438 
 
 -583 
 
 18 
 
 - 106 
 
 +779 
 
 1609 
 
 -576 
 
 40 
 
 +671 
 
 1617 
 
 549 
 
 + 19 
 
 +536 -1561 
 
 -Sio 
 
 19 
 
 + 308 
 
 +876 
 
 -1582 
 
 440 
 
 + 353 +791 
 
 1605 
 
 -431 
 
 + 413 
 
 +651 1579 
 
 403 
 
 20 + 710 
 
 +938 
 
 -1438 
 
 -282 
 
 + 726 +878 
 
 -1469 
 
 293 + 793 
 
 +749 
 
 1479 
 
 270 
 
 21 +IO72 
 
 +904 
 
 1180 
 
 -108 
 
 + 1049 
 
 +933 
 
 1225 
 
 135 +1126 
 
 +821 
 
 1260 
 
 -116 
 
 22 +I3S9 
 
 +948 
 
 - 820 
 
 + 68 
 
 + 1323 
 
 +949 
 
 - 880 
 
 + 33 +1387 
 
 +862 
 
 940 
 
 + 40 
 
 23 | +IS32 
 
 +899 
 
 399 
 
 +242 
 
 + 1501 
 
 +927 
 
 467 
 
 +207 
 
 + 1547 
 
 +867 
 
 544 
 
 +202 
 
 24 \ +I580 
 
 +816 
 
 + 54 
 
 +405 
 
 + 1572 
 
 +863 
 
 13 
 
 +376 +1600 
 
 +835 
 
 IOI 
 
 +359 
 
 25 +1493 
 
 +711 
 
 + 494 
 
 +551 
 
 + 1525 
 
 +765 
 
 + 446 
 
 +530 +1546 
 
 +769 
 
 + 355 
 
 +509 
 
 26 +1278 
 
 +592 
 
 + 885 
 
 +677 
 
 + 1353 
 
 +632 
 
 + 872 
 
 +659 ; +1379 
 
 +667 
 
 + 79' 
 
 +644 
 
 27 
 
 + 957 
 
 +466 
 
 + I2IO 
 
 +778 
 
 + 1070 
 
 +479 
 
 + 1221 
 
 +759 + 1116 
 
 +533 
 
 + "74 
 
 +757 
 
 28 
 
 + 558 
 
 +336 
 
 + 1436 
 
 +849 
 
 + 70i 
 
 +3i6 
 
 + 1471 
 
 +833 : + 766 
 
 +372 
 
 + 1460 
 
 +841 
 
 29 
 
 + 106 
 
 +205 
 
 + 1545 
 
 +884 
 
 + 271 
 
 + 153 
 
 + I&00 
 
 +874 < + 353 
 
 + 192 
 
 + 1627 
 
 +887 
 
 30 
 
 355 
 
 + 73 
 
 + 1534 
 
 +883 
 
 179 
 
 i 
 
 + 1609 
 
 +886 - 84 
 
 + 6 
 
 + I6S9 
 
 +896 
 
 3! 
 
 791 
 
 59 
 
 + 1404 
 
 +848 
 
 - 621 
 
 142 
 
 + 1501 
 
 +867 - 5i5 
 
 -171 
 
 + 1565 
 
 +870 
 
 32 
 
 1164 
 
 -183 
 
 + 1169 
 
 +78o 
 
 1026 
 
 -270 
 
 + 1278 
 
 +815 - 909 
 
 -330 
 
 + 1357 
 
 +814 
 
 33 
 
 1439 
 
 297 
 
 + 861 
 
 +690 
 
 -1358 
 
 -383 
 
 + 96l 
 
 +733 -1234 
 
 -466 
 
 + 1050 
 
 +735 
 
 34 
 
 -1594 
 
 -393 
 
 + 497 
 
 +58i 
 
 1592 
 
 477 
 
 + 574 
 
 +621 : 1476 
 
 573 
 
 + 673 
 
 +632 
 
 35 
 
 1633 
 
 471 
 
 + 134 
 
 +465 
 
 1704 
 
 550 
 
 + 154 
 
 +491 1629 652 
 
 + 250 
 
 +5" 
 
 36 
 
 1560 
 
 537 
 
 225 
 
 +345 
 
 -1684 
 
 -602 
 
 256 
 
 +351 1661 ! 707 
 
 - 183 
 
 +370 
 
 37 
 
 1402 
 
 594 
 
 - 544 
 
 +226 
 
 1549 
 
 630 
 
 620 
 
 +209 : 1579 733 
 
 - 596 
 
 +216 
 
 38 
 
 -1173 
 
 -645 
 
 - 818 
 
 + "5 
 
 1317 
 
 639 
 
 923 
 
 + 77 1384 730 
 
 959 
 
 + 60 
 
 39 
 
 - 879 
 
 -694 
 
 -1058 
 
 + ii 
 
 1017 
 
 -637 
 
 -1149 
 
 43 1098 703 
 
 1232 
 
 - 85 
 
 40 
 
 540 
 
 -740 
 
 1237 
 
 -84 
 
 674 
 
 -631 
 
 1301 
 
 -150 - 752 : -654 
 
 1403 
 
 219 
 
 41 
 
 - 159 
 
 -783 
 
 1347 
 
 169 
 
 303 
 
 627 
 
 
 244 375 595 
 
 1473 
 
 -324 
 
 42 
 
 + 244 
 
 -813 
 
 1390 
 
 -245 
 
 + 80 
 
 -626 
 
 
 324 1 + 3 532 
 
 1450 
 
 403 
 
 43 
 
 + 651 
 
 -838 
 
 -1365 
 
 -315 
 
 + 465 
 
 -626 
 
 1342 
 
 391 ; + 3f>4 477 
 
 1357 
 
 462 
 
 44 
 
 + 1039 
 
 -849 
 
 -1275 
 
 -383 
 
 + 835 
 
 623 
 
 1225 
 
 442 + 697 432 
 
 1208 
 
 504 
 
 45 
 
 + 1399 
 
 -845 
 
 II2I 
 
 449 
 
 +1181 
 
 -617 
 
 1049 
 
 478 +1001 396 
 
 1009 
 
 531 
 
 46 +1708 
 
 -821 
 
 911 
 
 509 
 
 +1482 
 
 -607 
 
 - 832 
 
 502 ; +1264 368 
 
 - 778 
 
 542 
 
 .17 ' +1946 
 
 -768 
 
 642 
 
 -562 
 
 + 1728 
 
 -591 
 
 - 580 
 
 517 : +1480 346 
 
 520 
 
 -536 
 
 48 +2089 
 
 -681 
 
 322 
 
 60 1 
 
 + 1908 
 
 -566 
 
 303 
 
 526 +1640 328 
 
 248 
 
 515 
 
 49 
 
 +2122 
 
 SV 
 
 + 27 
 
 621 
 
 +2014 
 
 -524 
 
 - 15 
 
 527 +1743 312 
 
 + 17 
 
 -481 
 
 50 
 
 +2O26 
 
 393 
 
 + 372 
 
 -6n 
 
 +2027 
 
 460 
 
 + 276 
 
 514 +1784 i 298 
 
 + 265 
 
 434 
 
 51 
 
 + 1803 
 
 207 
 
 + 678 
 
 570 
 
 + 1939 
 
 -371 
 
 + 548 
 
 479 i +1761 i 283 
 
 + 487 
 
 -378 
 
 52 
 
 + 1482 
 
 ii 
 
 + 912 
 
 499 
 
 + 1744 
 
 254 
 
 + 779 
 
 418 , +1679 259 
 
 + 673 
 
 314 
 
 53 
 
 + 1093 
 
 + 178 
 
 + 1054 
 
 396 
 
 + 1454 
 
 -116 
 
 + 942 
 
 327 +1528 i 221 
 
 + 813 
 
 -236 
 
 54 
 
 + 679 
 
 +344 
 
 + 1097 
 
 269 
 
 + 1097 
 
 + 27 
 
 + 1017 
 
 213 +1313 169 
 
 + 895 
 
 145 
 
 55 
 
 + 279 
 
 +477 
 
 + 1042 
 
 -117 
 
 + 709 
 
 + 166 
 
 + 995 
 
 80 +1044 ioi 
 
 + 900 
 
 3i 
 
 56 
 
 71 
 
 +569 
 
 + 906 
 
 + 49 
 
 + 33i 
 
 +284 
 
 + 884 
 
 + 66 +74327 
 
 + 825 
 
 + IOO 
 
 57 
 
 344 
 
 +612 
 
 + 7io 
 
 +217 
 
 + 3 
 
 +37i 
 
 - 716 
 
 +209 ; + 451 i + 43 
 
 + 686 
 
 +234 
 
 58 
 
 - 523 
 
 +603 
 
 + 497 
 
 +370 
 
 254 
 
 +418 
 
 + 536 
 
 +337 
 
 + 189 +99 
 
 + 525 
 
 +354 
 
 59 
 
 - 60 1 
 
 +548 
 
 + 312 
 
 +489 
 
 434 
 
 +430 
 
 + 385 
 
 +437 - 27 +137 
 
 + 397 
 
 +437 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 TABLE IVa. 
 PERTURBATIONS OF THE G-COORDINATE X OF VENUS. 
 
 The tabular unit is io- 8 . 
 
 53 
 
 Sys- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 tem 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 IO 
 
 II 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 + 47 
 
 + 57 
 
 + 92 
 
 + 137 
 
 + 181 
 
 +217 
 
 +218 
 
 +184 
 
 +142 
 
 +107 
 
 + 71 
 
 + 52 
 
 i 
 
 + 37 
 
 + 50 
 
 + 81 
 
 +118 
 
 + 159 
 
 + 197 
 
 +212 
 
 + 183 
 
 +140 
 
 + 92 
 
 + 52 
 
 + 30 
 
 2 
 
 ii 
 
 + ii 
 
 + 41 
 
 + 71 
 
 + 109 
 
 + 149 
 
 + 176 
 
 + 158 
 
 + 114 
 
 + 59 
 
 + 8 
 
 23 
 
 3 
 
 92 
 
 59 
 
 24 
 
 + 5 
 
 + 39 
 
 + 75 
 
 + 112 
 
 fill 
 
 + 72 
 
 + 9 
 
 52 
 
 - 97 
 
 4 
 
 193 
 
 154 
 
 in 
 
 79 
 
 50 
 
 14 
 
 + 26 
 
 + 46 
 
 + 14 
 
 -48 
 
 122 
 
 -183 
 
 5 
 
 305 
 
 -269 
 
 217 
 
 -183 
 
 -156 
 
 122 
 
 79 
 
 - 41 
 
 55 
 
 ill 
 
 -191 
 
 -268 
 
 6 
 
 412 
 
 396 
 
 -338 
 
 290 
 
 -267 
 
 -237 
 
 197 
 
 146 
 
 -136 
 
 179 
 
 26l 
 
 -348 
 
 7 
 
 506 
 
 519 
 
 465 
 
 405 
 
 -380 
 
 354 
 
 -318 
 
 -263 
 
 -230 
 
 251 
 
 -326 
 
 -421 
 
 8 
 
 -581 
 
 -628 
 
 -586 
 
 
 -487 
 
 -468 
 
 -437 
 
 -384 
 
 331 
 
 330 
 
 -386 
 
 482 
 
 9 
 
 -636 
 
 -715 
 
 -696 
 
 629 
 
 -583 
 
 -569 
 
 546 
 
 -502 
 
 -437 
 
 410 
 
 443 
 
 530 
 
 IO 
 
 -668 
 
 -763 
 
 -780 
 
 -718 
 
 -661 
 
 650 
 
 -636 
 
 -599 
 
 539 
 
 -488 
 
 494 
 
 -565 
 
 ii 
 
 674 
 
 777 
 
 -827 
 
 -783 
 
 -718 
 
 -699 
 
 -697 
 
 672 
 
 619 
 
 556 
 
 534 
 
 -582 
 
 12 
 
 -660 
 
 759 
 
 -828 
 
 814 
 
 745 
 
 714 
 
 -722 
 
 710 
 
 -669 
 
 606 
 
 -561 
 
 -580 
 
 13 
 
 -621 
 
 710 
 
 790 
 
 -803 
 
 745 
 
 699 
 
 -707 
 
 712 
 
 -682 
 
 -625 
 
 -569 
 
 -560 
 
 14 
 
 559 
 
 -639 
 
 -713 
 
 -749 
 
 -709 
 
 -652 
 
 652 
 
 -671 
 
 659 
 
 610 
 
 -552 
 
 523 
 
 15 
 
 479 
 
 541 
 
 614 
 
 -659 
 
 640 
 
 -580 
 
 564 
 
 -591 
 
 -596 
 
 -559 
 
 507 
 
 -466 
 
 16 
 
 -383 
 
 431 
 
 -495 
 
 -542 
 
 540 
 
 -487 
 
 452 
 
 -475 
 
 -496 
 
 476 
 
 432 
 
 -389 
 
 17 
 
 279 
 
 -308 
 
 364 
 
 410 
 
 -417 
 
 -374 
 
 -325 
 
 337 
 
 -368 
 
 366 
 
 331 
 
 -298 
 
 18 
 
 171 
 
 -183 
 
 -231 
 
 273 
 
 -283 
 
 -251 
 
 195 
 
 -187 
 
 221 
 
 236 
 
 -213 
 
 -187 
 
 19 
 
 54 
 
 61 
 
 -98 
 
 137 
 
 149 
 
 123 
 
 68 
 
 - 38 
 
 66 
 
 95 
 
 84 
 
 64 
 
 20 
 
 + 60 
 
 + 56 
 
 + 25 
 
 13 
 
 26 
 
 __ T 
 
 + 48 
 
 + 93 
 
 + 80 
 
 + 46 
 
 + 41 
 
 + 58 
 
 21 
 
 + 170 
 
 +160 
 
 + 136 
 
 + 100 
 
 + 82 
 
 +106 
 
 
 +203 
 
 +209 
 
 + 179 
 
 + 155 
 
 + 171 
 
 22 
 
 +269 
 
 +253 
 
 +229 
 
 + 197 
 
 + 174 
 
 +192 
 
 +236 
 
 +288 
 
 +312 
 
 +291 
 
 +262 
 
 +266 
 
 23 
 
 +350 
 
 +330 
 
 +305 
 
 +275 
 
 +249 
 
 +259 
 
 +299 
 
 +350 
 
 +384 
 
 +377 
 
 +348 
 
 +342 
 
 24 
 
 +406 
 
 +392 
 
 +363 
 
 +333 +307 
 
 +306 
 
 +341 
 
 +387 
 
 +430 
 
 +434 
 
 +412 
 
 +398 
 
 25 
 
 +441 
 
 +436 
 
 +407 
 
 +373 +347 
 
 +338 
 
 +367 
 
 +412 
 
 +451 
 
 +466 
 
 +456 
 
 +437 
 
 26 
 
 +461 
 
 +460 1 +435 
 
 +400 
 
 +374 
 
 +361 
 
 +378 
 
 +418 
 
 +457 
 
 +475 
 
 +476 
 
 +464 
 
 27 
 
 +468 
 
 +471 
 
 +451 
 
 +417 
 
 +388 
 
 +372 
 
 +38o 
 
 +418 
 
 +454 
 
 +478 
 
 +483 
 
 +478 
 
 28 
 
 +476 
 
 +475 
 
 +459 
 
 +426 
 
 +394 
 
 +381 
 
 +379 
 
 +411 
 
 +447 
 
 +472 
 
 +481 
 
 +484 
 
 29 
 
 +480 
 
 +475 
 
 +463 
 
 +432 
 
 +397 
 
 +381 
 
 +379 
 
 +405 
 
 +440 
 
 +465 
 
 +475 
 
 +485 
 
 30 
 
 +484 
 
 +479 +467 
 
 +438 
 
 +401 
 
 +380 
 
 +380 
 
 +401 
 
 +434 
 
 +459 
 
 +473 
 
 +479 
 
 31 
 
 +490 
 
 +484 +476 
 
 +445 
 
 +406 
 
 +380 
 
 +38o 
 
 +397 
 
 +431 
 
 +457 
 
 +470 
 
 +476 
 
 32 
 
 +491 
 
 +492 +483 
 
 +455 ' +414 
 
 +380 
 
 +379 
 
 +392 
 
 +426 
 
 +456 
 
 +469 
 
 +473 
 
 33 
 
 +485 
 
 +497 +488 
 
 +460 i +417 +379 
 
 +375 
 
 +387 
 
 +419 
 
 +451 
 
 +467 
 
 +466 
 
 34 
 
 +468 
 
 +492 
 
 +489 
 
 +463 +420 +377 
 
 +362 
 
 +375 
 
 +403 
 
 +437 
 
 +456 
 
 +456 
 
 35 
 
 +439 
 
 +468 
 
 +479 
 
 +458 \ +414 +366 
 
 +341 
 
 +354 
 
 +377 
 
 +4" 
 
 +432 
 
 +436 
 
 36 
 
 +397 
 
 +426 
 
 +448 
 
 +437 
 
 +392 +342 
 
 +3io 
 
 +314 
 
 +338 
 
 +368 
 
 +391 
 
 +399 
 
 37 
 
 +340 
 
 +360 
 
 +394 
 
 +396 
 
 +353 
 
 +301 
 
 +262 
 
 +260 
 
 +282 
 
 4-311 
 
 +331 
 
 +343 
 
 38 
 
 +263 
 
 +270 
 
 +309 
 
 +327 
 
 +293 
 
 +240 
 
 + 196 
 
 + 184 
 
 +208 
 
 +2 3 "6 
 
 + 2 55 
 
 +264 
 
 39 
 
 + 167 
 
 + 166 
 
 + 199 
 
 +230 
 
 +211 
 
 +155 
 
 + 109 
 
 + 90 
 
 + 112 
 
 +141 
 
 +161 
 
 +166 
 
 40 
 
 + 56 
 
 + 47 
 
 + 69 
 
 + 107 
 
 +104 
 
 + 5i 
 
 + 2 
 
 20 
 
 4 
 
 + 33 
 
 + 55 
 
 + 57 
 
 41 
 
 67 
 
 - 80 
 
 74 
 
 - 38 
 
 22 67 
 
 121 
 
 -145 
 
 127 
 
 90 
 
 59 
 
 58 
 
 42 
 
 -188 
 
 -206 
 
 215 
 
 188 j 161 192 
 
 -254 
 
 -283 
 
 -265 
 
 222 
 
 -180 
 
 172 
 
 43 
 
 301 
 
 -325 
 
 344 
 
 336 
 
 -306 
 
 319 
 
 -381 
 
 420 
 
 -407 
 
 357 
 
 304 
 
 282 
 
 44 
 
 -397 
 
 430 
 
 459 
 
 464 
 
 443 
 
 -438 
 
 494 
 
 -549 
 
 543 
 
 486 
 
 423 
 
 -385 
 
 45 
 
 473 
 
 510 
 
 545 
 
 -568 
 
 -557 -544 
 
 -589 
 
 -656 
 
 -665 
 
 -609 
 
 -534 
 
 -475 
 
 46 
 
 -528 
 
 -560 
 
 -605 
 
 634 
 
 -638 -626 
 
 -655 
 
 729 
 
 -760 
 
 712 
 
 628 
 
 555 
 
 47 
 
 -566 
 
 -578 
 
 -626 
 
 -665 
 
 681 i -678 
 
 694 
 
 764 
 
 -818 
 
 791 
 
 702 
 
 -617 
 
 48 
 
 -585 
 
 574 
 
 -611 
 
 -660 
 
 -685 
 
 -692 
 
 703 
 
 759 
 
 -833 
 
 -833 
 
 749 
 
 -657 
 
 49 
 
 -588 
 
 -547 
 
 -566 
 
 619 
 
 -653 
 
 -668 
 
 679 
 
 -723 
 
 -805 
 
 -838 
 
 -775 
 
 -675 
 
 50 
 
 572 
 
 -508 
 
 -506 
 
 549 
 
 -588 
 
 609 
 
 627 
 
 659 
 
 -737 
 
 -796 
 
 -766 
 
 -668 
 
 5i 
 
 539 
 
 457 
 
 431 
 
 -454 
 
 499 
 
 525 
 
 -545 
 
 -571 
 
 639 
 
 -716 
 
 -723 
 
 639 
 
 52 
 
 491 
 
 401 347 
 
 -350 
 
 391 
 
 423 
 
 447 
 
 -470 
 
 -525 
 
 -605 
 
 644 
 
 -589 
 
 53 
 
 431 
 
 339 268 
 
 248 
 
 276 
 
 3" 
 
 333 
 
 -357 
 
 401 
 
 -477 
 
 -535 
 
 -518 
 
 54 
 
 -362 
 
 274 193 
 
 152 
 
 -162 
 
 197 
 
 222 
 
 247 
 
 -281 
 
 -346 
 
 -414 
 
 428 
 
 55 
 
 -283 
 
 205 122 
 
 -69 
 
 -58 
 
 - 88 
 
 III 
 
 137 
 
 -167 
 
 219 
 
 -286 
 
 324 
 
 56 
 
 109 
 
 -134 - 58 
 
 + 2 
 
 + 31 
 
 + 14 
 
 14 
 
 - 37 
 
 - 64 
 
 106 
 
 164 
 
 211 
 
 57 
 
 114 
 
 67 3 
 
 + 60 
 
 + 101 
 
 + 102 
 
 + 73 
 
 + 48 
 
 + 20 
 
 14 
 
 60 
 
 105 
 
 58 
 
 - 38 
 
 - 8 ; + 44 
 
 + 104 
 
 +151 +167 
 
 + 144 
 
 + II5 
 
 + 85 
 
 + 54 
 
 + 16 
 
 18 
 
 59 
 
 + 19 
 
 + 36 | + 78 
 
 + 130 
 
 +179 +208 
 
 + 194 
 
 + 161 
 
 + 128 
 
 + 94 
 
 + 59 
 
 + 36 
 
. . fc . > 
 
INVESTIGATION OF INEQUALITIES IN THE 
 MOTION OF THE MOON PRODUCED 
 THE ACTION OF THE PLANETS 
 
 BY 
 
 SIMON NEWCOMB 
 
 ASSISTED BY 
 
 FRANK E. ROSS 
 
 WASHINGTON, D. C.: 
 
 PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON 
 
 JUNE, 1907 
 
Astron. Oept. 
 
 CARNEGIE INSTITUTION OF WASHINGTON 
 
 PUBLICATION No. 72 
 
 ASTRONOMY 
 
CONTENTS. 
 
 INTRODUCTION I 
 
 PART I. DEVELOPMENT OF THE THEORY 3 
 
 CHAPTER I. Fundamental Differential Equations 5 
 
 1. Notation 5 
 
 2. Dimensions of Quantities in Terms of Time, Length, and Mass 6 
 
 3. Fundamental Differential Equations 6 
 
 4. Transformation to the Moving Ecliptic 6 
 
 5. Preliminary Form of the Potential Function 8 
 
 6. Reduction of the Terms of the Potential Function for the Indirect Action 9 
 
 7. Reduction of /?, the Potential of Direct Action 10 
 
 8. Completed Form of the Fundamental Equations n 
 
 CHAPTER II. Development and Integration of the Differential Equations for the Variation of the 
 
 Elements 13 
 
 9. Fundamental Variables 13 
 
 10. Canonical Form of the Differential Equations 14 
 
 n. Transformation of the Canonical Elements 14 
 
 12. Form of the Partial Derivatives 15 
 
 13. Numerical Values of the Fundamental Quantities 15 
 
 14. Formation of the Transformed Differential Equations 16 
 
 15. Elimination of the Time in Certain Cases 19 
 
 CHAPTER III. Definitive Form of the Differential Variations of the Elements 21 
 
 16. General View of the Problem 21 
 
 17. Reduction of the Equations for the Direct Action 21 
 
 18. Notation of the Planetary Factors 23 
 
 19. Notation of the Lunar Factors 23 
 
 20. Numerical Form of the Fundamental Coefficients 24 
 
 21. Fundamental Differential Equations for the Direct Action 26 
 
 22. Reduction of the Equations for o, e, and y to Numbers 26 
 
 23. Reduction of the Equations for /, IT, and 6 to Numbers 26 
 
 24. Development of the Indirect Action 28 
 
 25. Abbreviated Coefficients for the Indirect Action 30 
 
 26. Integration of the General Equations 31 
 
 27- Inequalities of /, T, and 9 32 
 
 28. Treatment of the Non-periodic Terms in /? 33 
 
 29. Adjustment of the Arbitrary Constants 35 
 
 30. Opposite Secular Effects of the Direct and Indirect Action of a Planet near the Sun 35 
 
 PART II. DEVELOPMENT OF THE PLANETARY COEFFICIENTS 37 
 
 CHAPTER IV. Coefficients for the Direct Action 39 
 
 31. Remarks on the Method of Development by Mechanical Quadratures 39 
 
 32. Action of Venus, Systems of Coordinates 41 
 
 33. Action of Venus, Fundamental Data for the -^-coefficients 42 
 
 34. Explanation of Tables of ^-coefficients for Venus 44 
 
 35. Mechanical Development in a Double Periodic Series., , , ,, 46 
 
 36O5S8 m 
 
PREFACE. 
 
 THE immediate incentive to the present work was the hope of explaining by 
 gravitational theory the observed variations in the mean longitude of the Moon, 
 shown by more than two centuries of observation to exist, but not yet satisfactorily 
 accounted for. The author has published a number of papers and memoirs on this 
 subject during the last forty years, terminating with a summary of the case, which 
 appeared in the Monthly Notices of the Royal Astronomical Society for March, 
 1904. The deviations in question offer the greatest enigma yet encountered in 
 explaining the motions of the heavenly bodies, and the present paper may be 
 regarded as a contribution to the study of the problem thus offered. 
 
 While the work was in progress the completing chapter of Professor Brown's 
 Theory of the Moorfs Motion appeared. The actual work being based on De- 
 launay's theory, it seemed to be desirable to revise and correct it by Brown's 
 results. In doing this the imperfections of Delaunay's theory as a basis became so 
 evident, and the later theory proved to be so much better adapted to the purpose 
 of the investigation, that the completed work gradually became step by step prac- 
 tically based upon Brown's theory, except in those parts requiring derivatives 
 which could not be readily obtained except from Delaunay's literal expressions. 
 Acknowledgment is due to Professor Brown for courteous advice and assistance 
 which facilitated the use of his work for the purpose. 
 
 The theory of the action of the planets on the Moon being, in several points, the 
 most intricate with which the mathematical astronomer has to deal, it is important 
 that its development should be presented in a form to render as easy as possible the 
 detection of errors or imperfections. In the arrangement of the work this end has 
 been kept constantly in view. It is hoped that any investigator desiring to test the 
 processes will find few difficulties except those necessarily inherent in the nature 
 of the work. 
 
 To form a general conception of the arrangement it may be stated that the work 
 naturally divides itself into four parts. One of these treats of the theory of the 
 subject, including under this head not only the general equations, but the numerical 
 details on which all the computations are based. In this part the fundamental 
 quantities are reduced to products of two factors, one of which depends upon the 
 coordinates of the planet; the other upon the geocentric coordinates of the Moon. 
 The first factors, termed planetary, are numerically developed in Part II. This 
 development falls into two parts, one treating the direct action of the planet, the 
 other the indirect action through the Sun. In Part III is found the numerical 
 
 VII 
 
VIII ACTION OF THE PLANETS ON THE MOON. 
 
 development of the factors depending upon the Moon alone, and of their partial 
 derivatives as to the lunar elements. In Part IV is presented the combinations of 
 these two factors and the final results of the work. 
 
 A more complete summary in detail is found in the table of contents. An effort 
 has been made to lessen the trouble of finding the definitions of the symbols used 
 by collecting in the introduction definitions or references to these symbols as to 
 the meaning of which doubt might be felt. 
 
 A word may be added as to the part taken by the author's assistant. At an 
 early stage in the work Dr. Ross made a practically independent computation of 
 the principal periodic inequalities, using the methods of Hill and Radau. In doing 
 this he discovered the error of the Jovian evection as computed by them, which 
 arose from the omission of what we may call the side-terms in the indirect action. 
 His result for the coefficient was i".i6, in exact agreement with that originally 
 found by Mr. Neville. In this early stage of the work the writer did not intend to 
 do much more than revise these computations, and make a thorough investigation 
 of the terms of long period. But he found the theory of the subject so interestingj 
 and the opportunity for recasting the methods so attractive, that he was led to 
 carry the work through, with Dr. Ross's assistance, on the basis of his own 
 developments. 
 
 The next step in logical order is the rediscussion of the moon's mean longitude 
 since 1650, as derived from occultations of stars, with a view of learning what 
 modifications will be produced by the use of the more rigorous data now available, 
 and the addition of thirty years to the period of available observations. This redis- 
 cussion will, the writer hopes, be his next contribution to the subject of the motion 
 of the Moon. 
 
 It remains to add that the work has been prosecuted under the auspices of the 
 Carnegie Institution of Washington, without the help of which it could not have 
 been undertaken. 
 
 SIMON NEWCOMB. 
 WASHINGTON, MAY, 1907. 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 INTRODUCTION. 
 
 MORE than thirty years ago the author proposed to treat the action of the 
 planets on the Moon by using the Lagrangian differential equations for the variation 
 of the elements by considering as simultaneously variable, not only what are com- 
 monly called the elements of the Moon, but those of the orbit of the centre of mass 
 of the Earth-Moon around the Sun also.* Twelve elements would thus come in, 
 and the coordinates both of the Moon and of the Sun would be expressed in terms 
 of the osculating values of all these elements. 
 
 Notwithstanding the favorable opinion of this method expressed at the time by- 
 Professor Cayley, and later, as to some of its processes, by Professor E. W. Brown, 
 the author found that, in applying it unmodified, which he did during the years 
 1872-77, very long and complex computations were required in its application. 
 The result was that the work, so far as it was carried, remained unpublished for 
 nearly twenty years. Hoping that the general developments of the work and some 
 of the details might be of use to subsequent investigators, the incomplete work 
 was finally published in 1895. 
 
 About the same time with the publication of this work appeared the very elabo- 
 rate one of Radau. f This work contains a seemingly exhaustive enumeration of 
 possible inequalities of long period, and the numerical computation of a great num- 
 ber of lunar inequalities due to the action of the planets which had not previously 
 been suspected. 
 
 On recommencing the work in 1904 it became very clear to the author that its 
 completion by his former method, unmodified, would be impracticable, and that 
 satisfactory results could best be reached by regarding the solar elements as con- 
 stants, or known variables from the beginning. In the present investigation, there- 
 fore, the method has been modified so that the final values of the coordinates of 
 the Moon, instead of being expressed as functions of the instantaneous elements 
 of the Earth's disturbed motion, are expressed as functions of the mean elements. 
 As thus modified it is substantially a continuation of that of Delaunay, as applied 
 
 * Liouv Hie, Journal des Mathematiques, 1871, March. 
 
 t Annales tie I' Observatoire de Paris, Me'mofres, vol. XXI. 
 
2 INTRODUCTION. 
 
 first by Hill and then by Radau. In this method the coordinates of the Sun, 
 relative to the centre of gravity of the Earth and Moon, are regarded as known 
 functions of the time. Then, when the action of the Sun alone is considered, 
 the coordinates of the .Moon relative to the Earth are found by the method of 
 Deteiin2y^>c9ftiijBet^d.if necessary, as functions of six purely arbitrary constants. 
 
 This solution of the problem of three bodies is supposed to be complete in 
 advance. When the action of the planets is then taken into consideration, the 
 only elements whose variations are to be determined by the Lagrangian equations 
 are the six final elements of the Moon's motion. The variations in the coordinates 
 of the Sun, due to the same action, are derived with great ease, and enter into the 
 differential equations. In this way a system of six differential equations for the 
 determination of the changes in the lunar elements is all that is necessary. 
 
 In setting forth the subject it is deemed unnecessary to repeat the derivation of 
 the equations already found in astronomical literature. For this branch of the 
 subject, reference may be had to Hill's paper in the American Journal of Mathe- 
 matics, Vol. VI, and to Chapter XIII of the Treatise on the Lunar Theory by 
 E. W. Brown. It is deemed necessary only to explain fully, at each point, the 
 application of the method, and the meaning of the symbols introduced. 
 
PART I. 
 
 DEVELOPMENT OF THE THEORY. 
 
CHAPTER I. 
 
 FUNDAMENTAL DIFFERENTIAL EQUATIONS. 
 
 i. Notation. The following notation is mostly used in this work: 
 G, when designating a point, centre of mass of Earth and Moon; m', mass of the 
 Sun; ; 2 , mass of the Earth; / 3 , mass of the Moon; m 4 , mass of the Planet. 
 
 H = m 2 + m 3 fj.' m' + /* 
 
 x, y, z, r, geocentric coordinates and radius vector of the Moon, referred 
 to the moving ecliptic; 
 
 x', y', z', r', coordinates and radius vector of the Sun, referred to the point 
 G and the moving ecliptic; 
 
 , 17, , and p, the ratios of x, j, z, and r of the Moon to the mean dis- 
 tance of the latter: x = at;, etc. When unmarked the coordinates 
 are referred to a moving J^-axis directed toward the mean Sun; 
 
 #1, jj, Moon coordinates referred to the mean Moon as the Jf-axis; 
 
 A, distance of the Planet from G; 
 
 S, cosine of angle between rand r'\ 
 
 S', cosine of angle between r and A ; 
 
 />(,, potential function of mutual action of Earth and Moon; 
 
 11, potential function for action of Sun on Moon; 
 
 7?, potential function for action of Planet on Moon; 
 
 /, TT, 6, mean longitude, longitude of perigee, longitude of node of Moon; 
 
 TTj, #!, motions of IT and in unit of time (quantities of dimensions T~ l ) ; 
 
 N, motion of argument in unit of time; 
 
 n, ratio of motion of an argument to n, the mean motion of the Moon; 
 
 v, the integrating factor, generally =W/N; 
 
 a, e, g, defined in (43), 22; 
 
 K> C, D, planetary coefficients for the direct action, defined in 20; 
 
 p, y, K 4 , lunar coefficients, 20 Eq. (36) ; 
 
 6r,y, /, planetary coefficients for the indirect action, defined in 24; 
 
 G is also used for a combined lunar and planetary argument; 
 
 a, logarithm of a, the Moon's mean distance; 
 
 v, M, j, s, the mean longitudes of the respective planets, Venus, Mars, 
 Jupiter, and Saturn measured, in each case, from the Earth's peri- 
 helion: TT' for i8oo = 99.5. 
 
 5 
 
6 ACTION OF THE PLANETS ON THE MOON. 
 
 The abbreviation " Action " has been used to designate the previous work of 
 the author on this subject "Theory of the Inequalities in the motion of the Moon 
 produced by the Action of the Planets"; forming Part III of Astronomical Papers 
 of the American Ephemeris, Vol. V. 
 
 2. Dimensions of quantities. In this subject it will be found helpful to the 
 reader and investigator to have, in the case of the principal equations, a statement 
 of their dimensions in terms of the fundamental units of Mass, Time, and Length. 
 In strictness an independent unit of mass is not necessary in gravitational astronomy, 
 because the most convenient unit is that mass which, on an equal mass at unit 
 distance, exerts a unit force of gravitation. But it is still sometimes convenient to 
 use this unit in the equations, although it is a derived one. 
 
 In the case of each system of equations which are regarded as fundamental will 
 be found the dimensions of the terms which form its members, the signification 
 
 being as follows: 
 
 T, Time ; Z, Length ; M, Mass. 
 
 The definition of the unit of mass just given leads to the relation 
 
 In this way it will be much easier than it would be without this help to appreciate 
 the degree of magnitude of small quantities. Considered by itself, no concrete 
 quantity can be regarded as small or great; it is so only when compared with other 
 quantities of the same kind, or, to speak more accurately, of the same dimensions 
 in fundamental quantities. The ratios of two fundamental quantities of the same 
 kind are pure numbers, and these may be large or small to any extent. 
 
 3. Fundamental differential equations. 
 Putting 
 
 x \t y z \i tne geocentric coordinates of the Moon referred to any system 
 
 of fixed axes, 
 P, the total potential 
 
 the differential equations to be integrated may be written 
 
 dP dP dP 
 
 - [ Dimensions = AfZ.-' = LT~*1 (j) 
 
 dx l dy l oz l 
 
 4. Transformation to the moving' ecliptic. In the preceding equations the 
 coordinates are referred to fixed axes. In astronomical practice the coordinates 
 of the heavenly bodies are referred to the moving ecliptic. The latter carries the 
 plane of the Moon's orbit with it in its motion. It therefore seems desirable to 
 refer the motion, in the first place, to the moving ecliptic. 
 
FUNDAMENTAL DIFFERENTIAL EQUATIONS. 7 
 
 To do this let us put 
 
 x, y, z, coordinates referred to the moving ecliptic; 
 K, the speed of motion of the plane of the ecliptic; 
 
 II, the longitude of the ascending node of the moving on the fixed ecliptic, 
 or of the instantaneous axis of rotation of the ecliptic. At the 
 present time we have II = 173, nearly. 
 
 Then, regarding nt as infinitesimal, the expression for the moving coordinates in 
 terms of the fixed ones will be 
 
 x = .*, zjic sin II 
 y = y l + Z^K cos II 
 
 z = z l + x^tic sin II y^K cos 13 
 Putting for brevity 
 
 p = K sin II q = K COS II [Dim. of /, y, and= T~ l ], 
 
 these expressions become 
 
 (2) 
 
 Differentiating them twice as to the time, regarding p and q as constant, we have 
 Dfx = Df x ,-ptDfz l -2pD^ 
 
 ?y, + qtDfz, + 2qD t z, (3) 
 
 Dfz = Df 
 
 Regarding P, originally a function of x i9 y ly and z lt as becoming a function of*, y, 
 and z through the substitution (2) we have 
 
 dP dP dP dP dP dP dP dP dP dP 
 
 dx~ == '6 X + **& =~d~ qt te aF " dz ~^dx + qt S 
 
 Substituting these expressions for D\x^ D\y^ and DIZ^ in (3) and dropping terms 
 of the second order in pt and qt we find 
 
 dP 
 
 + *qD fl (4) 
 
 dP 
 
 D ? z =-B-z + 
 
 Equations of this form were used by Hill for the same purpose. 
 
 * Annalfyf Maihematict, vol. I, 1890, 
 
8 ACTION OF THE PLANETS ON THE MOON. 
 
 It follows that if we add to P the terms 
 
 A* = 2p(zD^ - *D fl ) + 2q(yD^ - zD t y,} (5) 
 
 so that the potential shall become 
 
 P + LR [Dim. = 3/z,-' = z," r-'] 
 
 the fundamental differential equations in x, y, and z, will retain the form (i) 
 unchanged, and the coordinates referred to the moving ecliptic will be determined 
 by the general equations 
 
 dP dP BP 
 
 >'x = -f D?y = if- D t 2 z = - (6) 
 
 dx dy dz 
 
 In A/? the symbols x 1} y 1} and z i have the same meanings as x, y, and z, but they 
 are to be regarded as constant when AT? is differentiated as to the lunar elements. 
 
 5. Preliminary form of the potential function. 
 
 We put fl for the part of the potential P due to the action of the Sun. This 
 part is developed in a series proceeding according to the powers of r\r' in the 
 well-known form 
 
 where S, the cosine of the angle between the radii vectores of the Moon and Sun 
 from the point G, is determined by the equation 
 
 rr'S = xx' + yy' + zz' 
 
 When we assign to x', y', z', and r 1 their elliptic values, we have what may be 
 called the Delaunay part of the potential. We put 
 
 f! , the Delaunay part of fi. 
 
 Op, the increment of fl produced by the action of the planets on the Earth. 
 
 The part /? of P, due to the direct action of the planet in changing the coordi- 
 nates of the Earth relative to the Moon, may be formed from fl in (7) by replacing 
 
 m' ' , r' , x', y', and z' 
 
 by 
 
 m t , A, X, Y, and Z 
 
 where ;., is the mass of the planet, and A, X, K, and Z its distance and coordi- 
 nates relative to the point G. Putting R for this part we have for its principal term 
 
FUNDAMENTAL DIFFERENTIAL EQUATIONS. 9 
 
 where S' is determined by the equation 
 
 r*S' = (*' + xjx + (y' + yjy + + z^z 
 
 *4> J an d ^4 being the heliocentric coordinates of the planet. 
 
 We have thus separated the potential of all the actions changing the coordinates 
 of the Moon relative to the Earth into the following five parts. 
 
 A. The part generated by the mutual action of the Earth and Moon, /> = /*/ r, 
 which taken alone would give rise to an undisturbed elliptic motion of the Moon 
 around the Earth. 
 
 B. The part fig generated by the action of the Sun, assuming the point G to move 
 in an elliptic orbit. 
 
 C. The part ft p , the increment of ft due to the action of the planets on the 
 point G. 
 
 D. The part /? due to the direct action of the planet. Developed in the same 
 way as the highest term of ft the principal term of this part is formed from SI by 
 replacing m', *', y', and z' by the mass and G-coordinates of the planet. The value 
 of its principal term is given in (7). 
 
 E. The part A/? arising from the reference of the coordinates to the moving 
 ecliptic. 
 
 The complete value of P thus becomes 
 
 p= p e + n + n p + j? + A/? (8) 
 
 and we are to consider this expression as replacing P in the equations (6). 
 
 6. Reduction of the terms of the potential function for the indirect action. 
 
 By substituting tor S in (7) its value, the first and principal term of ft becomes a 
 linear Junction of the six squares and products of the lunar coordinates *, y, and z, 
 which we may write 
 
 ft = 7> J + TJ + 7X + * T t xy + a 7>* + 2 T t yz (9) 
 
 Moreover, since we form the part ft p of the potential by assigning increments to 
 T, and the part R by making T & function of the elements of the planet, it follows 
 that both of these parts as well as ft are of this same form. 
 
 For the first and principal term of ft in which the higher powers of rjr' are 
 dropped we have 
 
 -^ x ' y> 
 
 -,-,-- -. . (10) 
 
 r ' 3 \2 r>* 2J 2 r '* r '* 
 
 (S -\ T - 3 m> y' z ' 
 
 r ' s \2 r>> 2) 2 '~ 2 r >*' r >* 
 
io ACTION OF THE PLANETS ON THE MOON. 
 
 The study of the second term, which it may be advisable to examine for sensible 
 results, is postponed, and ft is taken as equal to its principal part. The value of fl p 
 is then found by adding to the preceding values of T t their increments produced 
 by the action of the planets upon the coordinates #', y' , and z' of the Sun. If we 
 
 put 
 
 v', the longitude of the Sun 
 
 and take the moving ecliptic as the plane of reference, we may regard z', the 
 periodic perturbations of the latitude, as infinitesimal and write 
 
 x' = r' cos v' y' = r' sin v' z' = r' sin /S' 
 
 where /3' is the Sun's latitude, a minute purely periodic quantity. 
 
 Substituting these values in (io), the expressions for the coefficients T become 
 
 T, - ^,(t + f cos 2') T t = ~ (i - | cos 2*') T *=-~ 
 
 (LOO) 
 
 3 m' . 3 ;' sin /3' cos z/ ~ 3 '' sin /3' sin r' 
 
 y, = -- s sin 2z' / =- 
 
 r 
 
 i = -- 5 
 
 3 2 r ' 3 
 
 If we assign to these quantities their elliptic values, (7) will become fl for which 
 the integration is assumed in advance. We have now to assign to v' and /' the 
 increments 8v' and r'8p', p' being the Naperian logarithm of r' . The resulting 
 increments of the coefficients are 
 
 87;= ^j {-2 sin 2w'8'-3 cos 2v'&p'-&p'} 87 >= ^73 { 2 sin 2^'Sz;' + 3 cos 2'8/'-V} 
 
 (ii) 
 5 r 3 = -3 V 8 T t = ^3 { 2 cos 2r'Sw' - 3 sin iv'Bp' } 
 
 2^* 4^* 
 
 The values of 8T 5 and 87" 6 will be the original values (9) of 7" 5 and T 6 as they 
 are due wholly to the action of the planet. With them the expression for fl p 
 derived from (9) becomes 
 
 fl f = 8 7> 2 + 8 T 2 y 2 + 8 7> + 28 7>j + 2 7>* + 2 7^* (12) 
 
 7. Reduction of R, the potential of direct action. 
 
 By substituting for S' in the principal term (7) of ./? its expression in terms of 
 the G-coordinates of the planet we shall have 
 
 where 
 
 -f Cz 2 -f 2/?*_y -f lExz + iFyz [Dim. = z,-' 
 
FUNDAMENTAL DIFFERENTIAL EQUATIONS. n 
 
 the values of the coefficients being 
 
 (*' + * 4 ) 2 i i n (*' + 
 
 - ~ 3 
 
 [Dun. = Z, ] (14) 
 
 3 A 3 
 
 It should be noted that these coefficients require the factor f to make them directly 
 comparable with ZJ, T 2 , etc., in (10). 
 
 8. Complete form of the fundamental equations. 
 
 Comparing the expressions (12) to (14) we see that fl p and R are of the 
 same form, and that the principal terms of each are products of two factors, of 
 which one depends solely on the heliocentric coordinates of the Sun and planet, 
 and the other is a square or product of the coordinates of the Moon. Moreover, if 
 we put, for brevity, 
 
 / = o, + R + A;? (is) 
 
 the fundamental differential equations may be written 
 
 where x, y, and z are coordinates referred to the moving ecliptic as the fundamental 
 plane. 
 
 We shall now consider these differential equations as solved for the case when 
 PI is dropped from the second members. The problem will then be that of the 
 solution when P t is included; and this problem will be attacked by the Lagrangian 
 method of variation of elements. 
 
CHAPTER II. 
 
 DEVELOPMENT AND INTEGRATION OF THE DIFFERENTIAL EQUATIONS 
 FOR THE VARIATION OF THE ELEMENTS. 
 
 9. The problem being to integrate equations (16), we shall regard as known 
 quantities the coordinates x', y', z' of the Sun, which enter implicitly into the equa- 
 tions, as well as those of the planets relative to the Sun. The problem then is to 
 express the values of x, y, and z in terms of the fundamental constants implicitly 
 contained in the differential equations, and six other arbitrary constants which we 
 regard as elements of the Moon's motion. 
 
 The solution of the equations is separated into two parts by applying the La- 
 grangian method of the variation of elements. We have first the Delaunay solu- 
 tion, in which P t is dropped. This solution gives the orbit of the Moon around 
 the Earth under the influence of the Sun's and Earth's attraction alone. From it 
 we are to pass, by the method of variation of elements, to a solution when P is 
 taken account of. 
 
 We accept the results of Delaunay, as found in his work, as forming the basis of 
 the first solution, the results needing only certain modifications in the terms depend- 
 ing on the Sun's parallax, arising from the tact that he did not take into account 
 the mass of the Moon, and certain reductions, to reduce them to the required form. 
 This being done we have values of the Moon's coordinates satisfying the differential 
 equations in the case P=p/r-\-tl and expressed as functions of six arbitrary 
 constants 
 
 c, 7 4)' "o> ^o 
 
 and of the time /. The latter enters only through the quantities /, IT, and 0, named 
 and defined thus 
 
 Mean longitude : lt^+nt Long, of perigee : TTTr^+irJ Long, of node : 0=0 +fy (17) 
 
 where n, ir t , and 0, are functions of a, e, and y. 
 
 I use the quantities 7, IT, and 6 instead of Delaunay's /, g, and h, which are the 
 mean anomaly, the angle node to perigee, and the longitude of the node. The 
 expressions for the symbols used here in terms of those used by Delaunay are 
 therefore 
 
 / =3 Delaunay's // + g + J TT = Delaunay's h + g 6 = Delaunay's h (18) 
 
 13 
 
14 ACTION OF THE PLANETS ON THE MOON. 
 
 The fundamental idea of the Lagrangian method, which we propose to apply 
 to the present problem, is that the six arbitrary elements are to become such 
 functions of the time that the solution which satisfies (16) when P t = o shall still 
 satisfy it when the variable values of the elements are substituted for the constant 
 values in the expressions for the coordinates. The derivatives of the elements as to 
 the time may be formed by known processes, but the details of these processes are 
 unnecessary, because Delaunay gives their results in a form most convenient for 
 our purpose. 
 
 10. Canonical form of the differential equations. 
 
 We see from (5), (12), (13), and (15) thatP t is a function of given quantities and of 
 the Moon's coordinates. By substituting for the latter their expressions in terms of 
 the six arbitrary constants of the first integration, /\ becomes a function of a, e, y, /, 
 TT, and 0. The differential variations of the elements are then expressed in the most 
 condensed form by replacing a, e, and y by three other quantities c lf c 2 , and c 3 , func- 
 tions of a, e, y, so chosen that the differential equations to be solved shall be 
 
 (19) 
 
 The variable elements c a , c 2 , and c 3 are functions of Delaunay's Z, G, II. 
 
 CI = L C,= G-L CS = H-G (20) 
 
 [Dim. = L\M* = 
 
 ii. Transformation of the canonical elements. 
 
 The canonical elements c w c 2 , and c s can not be used explicitly in the processes 
 of solution. We have therefore to express them in terms of a, e, and y. The 
 values of Z, ?, and H are not given by Delaunay in terms of the final a, e, and y, 
 but of preliminary ones from which the required expressions are to be derived as 
 follows : 
 
 1. In Vol. II, pp. 235-236, Delaunay gives the expressions for Z, G, and // in 
 terms of the a, e, and y which resulted immediately from his processes of 
 integration. 
 
 2. On p. 800 he gives the transformation of these a, e, y, into the final values of 
 these quantities which appear in the expression for the Moon's coordinates, which 
 are those we are to use. 
 
DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS. 15 
 
 To find from these data the expressions for the derivatives of Z, G, H in terms 
 of the final a, e, y, I shall write a, e, g, n, for the quantities a, e, y, , as found on 
 pp. 235-236 of Delaunay, Vol. II, and shall also put 
 
 n' 
 
 m = - 
 n 
 
 The forms which we have to use are: 
 
 L, G, Jf=/(a, e, g, m) a, e, g =/(, e, 7, z) (21) 
 
 Noticing that m is a function of a and m of a, we shall then have 
 dL (dL dLdm\da dL de dL dg 
 
 ^ I i I i i __o. / 2 2 ^ 
 
 da \ da dm da J da de da dg da 
 with similar forms for G and H. 
 
 12. Form of the partial derivatives. Two points in the use of the partial 
 derivatives are these: 
 
 a. In taking the partial derivatives I use the logarithm of a and of a instead of 
 these quantities as the variables with respect to which derivatives are to be formed. 
 Homogeneity in the equations is thus secured, the variables being all pure numbers, 
 or quantities of dimensions o. We put 
 
 a log a whence a = e a 
 
 ft. The quantities n and n are defined as functions of a and of a respectively by 
 
 the equations 
 
 a'n 2 = oW = p 
 
 It follows that if we have an expression M developed in powers of m or m, 
 
 we shall have 
 
 -fc = a* (iM 9 + (i + f ) Mjn + (i + f ) Mpi* + ) (23) 
 
 13. Numerical v alues of the fundamental quantities. 
 
 Instead of effecting the preceding transformations analytically, to put the equa- 
 tions (21) into numbers, we use the numerical values of e, y, and m given by 
 Delaunay in his Vol. II, pp. 801-802, namely 
 
 e = .054 8993 7 = .044 8866 m = .074 8013 (24) 
 
1 6 ACTION OF THE PLANETS ON THE MOON. 
 
 We then find from his expressions on p. 800 
 
 a = 0.996 4930 = [9.998 474] a 
 an = i.ooi 758072 = [o.ooo 763] an 
 a 2 n = 0.998 245 2 = [9.999 237] J 
 m = 0.994 7437/2 = [9.997 7n]? = 0.074 4082 
 e = 0.054 86 7 g = 0.044 993 
 
 We also find, from these numbers, the following values of the required partial 
 derivatives for the numerical transformation 
 
 ^- = 0.986 6910 s~ = ~ -7 37 e o-ooo 404 -j = + 0.006 857 = o.ooo 308 
 
 da de dg 
 
 ^ = -0.0013750 ^= + 0.99961 ^ = +0.000202 
 
 da de , dg 
 
 ^- = +0.0013530 5- = o.ooi 22e= 0.000067 _j- = + 1.002 324 
 
 Then, from Delaunay, II, p. 236, we find 
 
 L = i .000 197 a 2 n G = 0.998 586a 2 n // = 0.994 
 
 dL dG dH 
 
 a = tS IS a a "" = <499 97 a " = 
 
 f^ T r\ f~* f) J-T 
 
 -^ = o.ooo o88a'n -^- = 0.052 4ioa 2 n = 0.052 185 a 2 n 
 
 dL dG dH 
 
 -v- = 0.0000073 n -- = 0.0000353 n ^- = 0.17947430 
 
 14. Formation of the transformed differential equations. 
 Let us now return to the equations (19), in which we have to replace c^ c 2 , 
 and c 3 by a, e, and y. We have, for any c, 
 
 dc dc da dc de dc dg 
 di = da dt + de dt + dgdt 
 and 
 
 dc dc da dc de dc dg 
 
 f i [ O 
 
 da ~ da da de da dg da 
 In the case of c^ we have from (20) 
 
 da ~ da 
 
DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS. 17 
 
 so that the numerical expressions need not be repeated. For the derivatives of 
 c 2 and c 3 we find 
 
 a ~-* = o.ooo 46ia z n ~ = 0.052 322a 2 n ~ = o.ooo O28a 2 n 
 
 da. de eg 
 
 dc. dc, Be, 
 
 a.fT- = 0.002 ooi a 2 n -^ = + o.ooo 225 a 2 n ~ = 0.179 43a z n 
 
 By substitution in the form (22) we now find 
 
 dc dc. dc' 
 
 -r = 0.494 39 M ~= = o.ooo 777' -~ = o.ooo &jifrn 
 
 -r- 2 = o.ooo 435 2 ~B* ~ ~ -5 2 2 9 2 ~B~~ ~ - oo O2 S a * n ( 2 5) 
 
 ., 3 = 0.002 033 2 ~ = o.ooo igicfn ^~ 3 = 0.179 
 
 We now have the data for transforming the equations (19), p. 14, so as to express 
 the differential variations of tf, , and y instead of c^ c 2 , and c 3 , and to express those 
 of / , TT O , and in terms of the partial derivatives of R as to , , and y. For this 
 purpose we need the nine partial derivatives of a, e, and y as to c lt c 2 , and c s . We 
 shall express these nine derivatives by means of the nine numerical factors 
 
 a < e 1* (* = 1:2:3) 
 defined by the equations 
 
 da &? ^7 
 
 a. = a z ^ c . = a 5 7. = aw 3- 
 
 dc t dc f dc t 
 
 The numerical values of these coefficients are most expeditiously found in the 
 following way. Multiplying the first three equations (19) in order by the respective 
 
 lactors 
 
 da da da 
 
 &; ft; ^ 
 
 we have 
 
 da dP. da dP. da dP. 
 
 li_ \ 
 
 with similar equations in D t e and D t y. From the same three equations we have 
 
 d Cl dc. dc. , dP 
 
 da de 
 
 dc, 7 dc, . dc, , dP 
 ..^ D t a + 5- 3 De + ~ Z>,7 = -33 1 
 da ^ de ' dy " dO 
 
 It follows that if we solve these three equations for D t a, D t e, and D,y the nine 
 partial derivatives required will be the coefficients of the second members in the 
 
1 8 ACTION OF THE PLANETS ON THE MOON. 
 
 solution. Replacing the coefficients of the unknowns by their numerical values 
 (25), we may reduce the solution to that of three numerical equations 
 
 0.494369^ . 000777 Y+ 00067 *Z = P 
 
 .000435^ . 05 2209 Y . 000025.?= Q 
 
 .002033^+ . 000191 Y .179538^= ff 
 
 The solution of these equations so as to express JT, Y, and Z as linear functions 
 of P, Q, and R gives the following values of the factors which we seek. Along 
 with these values is given for comparison the values found in Action of Planets, 
 
 Clffi 
 
 p. 196, where the numbers are the coefficients of - . The two determinations 
 
 JWj*J 
 
 are completely independent, in that the earlier one is derived from the analytic 
 expressions for the coordinates of the Moon, while these last have been obtained 
 from Delaunay's expressions of the canonical elements L G H in terms of a, e, y. 
 
 a, = -f 2.0228 Former value : -f 2.0225 
 
 a 2 = 0.0301 0.0293 
 
 3 = + 0.0075 + 0.0075 
 
 e l = 0.0168 0.0169 
 
 ^=-19.1534 -ip^Si (26) 
 
 e 3 = + 0.0026 +0.0017 
 
 7, = 0.0229 0.0233 
 
 7 2 = O.O2OO O.O2I6 
 
 7 3 =-5-5700 -5-5704 
 
 The fundamental differential equations for the variations of the elements now 
 
 become 
 
 BP. dP. dP. 
 
 ,_-+ v _ + o,^- 
 
 *-st+ t *-ti+ t it 
 
 dP. BP. dP l 
 - 
 
 BP l 
 
 (27) 
 
 = a -3 e. -,- 7. -^~ 
 2 da * ce 2 cy 
 
 -- 
 
 3 da 3 
 
 [Dim. = A/-'] 
 
DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS. 19 
 
 In order that we may, so far as possible, handle only pure numbers, with speci- 
 fications of the units as concrete quantities, we shall substitute nt, the total motion 
 of the Moon in mean longitude, and therefore a pure number, as the independent 
 variable. The first numbers will then take the form a 2 n 2 D Hl a, etc. 
 
 Since 
 
 a'n 2 = - 
 a 
 
 the equations will now give 
 
 ' <*> 
 
 [Dim. =o] 
 
 with five others formed in the same way from (27) which need not be written. 
 
 15. Elimination of t from the partial derivatives of I, TT, and 6. 
 
 An important remark at this point is that since P l is a function of /, TT, and 6, 
 the three quantities a, e, and y enter into P l not only explicitly but implicitly 
 through n, TT, and 0, so that the complete differential variations of these functions 
 are 
 
 dl dL dn dtr dir dtr. dO d6 n dd. 
 
 dt = df + " + 'dt *3t+*> + <-3i ar-rf + . + 'J 
 
 P l being a function of the six quantities 
 
 a, e, 7, / + nt, TT, + TT,*, + Qj 
 
 its complete derivatives as to a, e, and y are 
 
 _ , , 
 
 da ~ da. ^ dl Ba """ chr da "*" d0 da 
 
 with similar expressions for dP^Se and dP^dy. Thus we have for any canonical 
 element c 
 
 dc \ dc 
 
 ^to^a^dPidK 
 
 dl dc + dir dc " h 60 dc) 
 
20 ACTION OF THE PLANETS ON THE MOON. 
 
 The complete derivatives of /, TT, and are therefore 
 
 . t (dn BP^dn BP, d-^ dP^d 
 \dt~' dl d Cl dw d Cl " d0 d Cl 
 
 dt ~ dt 
 
 dir dir ( cfrr dP dn dP STT BP 80 
 
 V d _P^" ^3^ a^e^\ 
 
 " dl ~6c 3 S-n- dc 3 " d0 dcj 
 
 dt - dt ' v dt 
 
 It is a fundamental theorem of the development of the planetary coordinates in 
 periodic series that the terms of these equations containing t as a factor all vanish.* 
 The values of /, TT, and 6 are therefore 
 
 * A demonstration of this theorem in the most general case is found in the author's paper On the General Inte- 
 grals of Planetary Motion : Smithsonian Contributions to Knowledge, 1874. 
 
CHAPTER III. 
 
 DEFINITIVE FORM OF THE DIFFERENTIAL VARIATIONS 
 OF THE ELEMENTS. 
 
 16. The differential equations (27) in the form (28) are the fundamental ones 
 of our problem, the integration of which is to be effected. This need be done only 
 to terms of the first order as to the disturbing function. This amounts to saying that 
 we regard the second members of the equation as known functions of the time, and 
 that the required integration is to be performed by simple quadrature. 
 
 We begin by studying the general form of the function f\. Besides A^?, this 
 function consists of two parts, one, 7?, arising from the direct action shown in 7, 
 and the other fl p arising from the indirect action. We have reduced both these 
 parts to the general form 
 
 Ax 2 + By* + Cz* + 2Dxy + lExz + 
 
 The coefficients, A, J5, etc., are functions of the heliocentric coordinates of two 
 points: the centre of gravity G of the Earth and Moon, and that of the planet. 
 They are, therefore, regarded as independent of the elements of the Moon's orbit. 
 The variables x 2 , y 2 , etc., being functions of the geocentric coordinates of the Moon, 
 are independent of the position of the planet, and contain, besides the six lunar ele- 
 ments proper, the major axis and eccentricity of the Earth's orbit around the Sun. 
 The arguments on which the coefficients A, B, etc., depend are g and g' . The 
 coordinates # 2 , y 2 , etc., depend on the four arguments /, IT, 0, and g' . It follows 
 that the terms of P l depend on the five arguments 
 
 Although the two actions, the direct and indirect, admit of being treated together 
 by combining the corresponding coefficients of # 2 , y 2 , etc., yet the coefficients are 
 so different in their form and origin that it will be better to treat them separately. 
 
 17. Reduction of the equations for the direct action. 
 
 We begin with the development of ^?, as given by (13) and (14). Since 
 
 x 1 , y 1 , etc., each = a pure number x a 2 
 A, B, C, etc., each = a pure number -=- a' 
 
 21 
 
22 ACTION OF THE PLANETS ON THE MOON. 
 
 it follows that R may be developed in the form 
 
 R-fr^H (30) 
 
 H being a pure number. 
 
 When the fundamental equations are taken in the form (28), and /*, is replaced 
 by R expressed in terms of A, the second members will all take the common 
 
 constant numerical factor 
 
 37< 
 2 p a >* 
 
 This factor may be simplified by the fundamental relations 
 
 V as ft a' V 2 = m' + p 
 
 where p. and m' are the respective masses of Earth -j- Moon and of the Sun. 
 
 Owing to the minuteness of fi relative to m' (i 1330000 -(-) we may drop it from 
 the quotient, thus obtaining 
 
 m' <? n ft 2 
 
 i = "- ^= 7W 
 
 M a' 3 * 
 The factor thus reduces to the pure number 
 
 * ^ nf 
 2 me 
 
 The ratio m^\ m' is what is commonly taken as the numerical expression of the 
 mass of the planet. We shall write 
 
 M= ? ->' = 0.008 392 86 ~ 4 
 
 2 ' 2 r 
 
 The numerical values of M for the four planets whose action is to be determined 
 are as follows: 
 
 ' 
 
 ^ M 
 
 Venus 408 ooo o".oo4 242 
 
 Mars 3 093 500 o .000 560 
 
 Jupiter 1047.35 i .653 
 
 Saturn 35OO o .4947 
 
 We have next to consider H and its derivatives. As this quantity has been 
 above introduced we have 
 
 
 (31) 
 
 The terms in E and fare omitted here, owing to their minuteness. 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 23 
 
 We have now to deal with two sets of factors : 
 
 1. The planetary fac 
 
 2. The lunar factors 
 
 i. The planetary factors, a' 3 A, a' 3 !?, etc. 
 
 x 2 y" 1 z 1 2xy 
 ~tf' ~a"~tf' ~~J r> CtC< 
 for which we use 
 
 f 2 , if, 2 , 2l~r), respectively 
 
 1 8. Notation of the Planetary Factors. The development of these requires 
 numerical processes which, owing to their length and their distinctive character, 
 are given in Part II. We shall therefore assume this development to be effected, 
 referring to Part II for the methods and numerical results. Considering the latter 
 in their general form, we remark that these coefficients being of dimensions Z~ 8 , 
 if we compute their values, taking the Earth's mean distance as unity, the numbers 
 obtained for the several coefficients A^B, etc., will readily be the values of a' 3 A, 
 a' 3 B, etc. We shall therefore put 
 
 a'" A = 2 (A. cos JV 4 + A, sin JV t ) 
 
 a' 3 S = 2 ( c cos 7V 4 + B. sin 7V 4 ) (33) 
 
 a'*C = 2 (C t cos 7V 4 + C. sin 
 
 
 
 where each argument is of the general form 
 
 / 4 being the mean longitude of the planet, measured from a point which we shall 
 take as that corresponding to the earth's perihelion. 
 
 19. Notation of the lunar factors. We have shown in Action, Chapter II, 
 how, from Delaunay's results, the squares and products of the Moon's coordinates 
 may be developed in the general form 
 
 r (34) 
 
 2% t] = 2* 4 sin N 2%% == 2* s sin N 277? = 2* 6 cos N 
 
 Here the K are functions of , e, y, a', and e', and the arguments JV may be 
 expressed in the general form 
 
 N= il +I'TT + i" 
 
 These developments comprise all the quantities necessary to the formation of 
 and its derivatives. 
 
24 ACTION OF THE PLANETS ON THE MOON. 
 
 20. Numerical form of the fundamental coefficients. The condition 
 
 A + B + C = o 
 
 enables us to reduce by one the number of terms in //, and at the same time to 
 simplify the computation. We have the identity 
 
 A? + B,f 
 Replacing A -\- B by C there results 
 
 A? + Br? + 
 
 Putting, for brevity, 
 
 K= \a'\A - B) C; = 0' 3 C p = .J = p + i,+(? 
 
 which will make K, C and D l pure numbers, we shall have 
 
 The planetaiy factors, A, C^ and D^ are taken as developed in a double trigo- 
 nometric series from the equations (33), by putting 
 
 We shall then have for //the double trigonometric series 
 //= 2 (K c cos 7V 4 + K t sin 7V 4 ) (*, - ,) cos 7V^ 
 
 -^(\C C cos A r 4 + ^ C. sin /VJ (, + * 2 - 2 s ) cos .V (35) 
 
 + 2 (Z> c cos 7V 4 + /?, sin 7V 4 )* 4 sin N 
 Introducing, for brevity, 
 
 -/* = M*! - * 2 ) ?= a J(l+*l)-"s (3 6 ) 
 
 the terms of the lunar factors will be expressed by 
 
 (f 2 7/ 2 ) = 2/> cos 7V p 1 3? 2 = 2^ cos N ifr = K t sin N. 
 
 Every combination of a planetary argument N t with a lunar argument yV^ will give 
 rise to a set of terms in H of the form 
 
 H= h. cos (JV+ .A 7 ,) + A. sin (A T + /VJ + /// cos (TV- 7V 4 ) + /// sin (IV- N t ) (37) 
 
 where 
 
 ^c = K.I ~ \ C,g - JZ? * 4 ^ = - KJ - J C f? + JZ?.* 4 
 
 (38) 
 //. = K.p-\ C,g + \D f , h> = -JT t p + i C.g 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 25 
 
 The partial derivatives of If as to a, e, and y are to be found from 
 
 Dh c = K c Dp - J C c Dq - 
 
 de 
 
 a% 
 
 dy 
 
 with three other sets formed by replacing p, q, and /c 4 in (38) by their partial deriva- 
 tives. These derivatives of A c , h n A c ', and hi being substituted in (37) give the 
 required partial derivatives of H. In forming the derivatives as to /, TT, and 6 we 
 note that these quantities enter only through the arguments jV, in which they have 
 the respective coefficients 
 
 Their formation is therefore a simple algebraic process after H is developed. 
 
 The elements e and y also enter R only through H. But a appears both in //", 
 which is a function of m, and in the factor a 2 / a' 3 . We therefore have from (30) 
 
 dR a 1 / dH 
 
 For consistency in form and notation we shall put 
 
 D'H= 2H+ (40) 
 
 It may be remarked that the formation of D' H may be effected by the general 
 operation indicated in (23), by supposing H developed in powers of m and putting 
 
 M=d>H 
 
 so that 
 
 /= 2 
 We then have 
 
 and 
 
 dH 
 
 The sum of this -\-^H gives D' H as above expressed. In forming this sum we 
 need not use the analytic development of 2//, which is necessary to form dH/da, 
 but may use the numerical development when it is more accurate. 
 The partial derivatives of R as to a, e, and y are 
 
 a 2 dR a 2 dH dR a 1 dH 
 
 3 ij __ T)t If 
 
 - 9 ffl A '< *-* J -* 
 
 __ _ _ 
 
 1 - 9 ffl A '< *-* J -* ~-^ - iS Irl A ~~^ ~^ tffff, * ~^ 
 
 Da 2 t a > i de 2 4 fl ' 3 de dy 4 a ' s dy 
 
26 ACTION OF THE PLANETS ON THE MOON. 
 
 21. The fundamental equations in the form (28) for the direct action now 
 
 become 
 
 dH dH djf\ 
 
 dH dH dH\ 
 
 i ^ ~^i ~T~ ^~a i" ^a a ZT I 
 
 ol OTT uu f 
 
 dH\ 
 
 -DJ, = 
 
 +e 2 d +y 2 (42) 
 
 22. We have next to show how the second members of these equations may be 
 most readily reduced to numbers. There being a certain number of lunar argu- 
 ments N and also a certain number of planetary arguments N 4 , it will conduce to 
 simplicity to carry forward the quantities depending on the argument of each class 
 as far as possible before making the combination. 
 
 Each lunar argument being of the general form 
 
 and each planetary one of the form 
 
 N t = k'g> + kl t 
 
 it follows that by putting G for the general value of the combined final argument, 
 
 NN 
 
 G=il+ i'-n + i"9 + (j k')g' k? t 
 
 the general iorm (37) of H may be written 
 
 osG + /i i sin G) 
 
 The derivatives of H as to 7, IT, and 6 are 
 
 -^j- = 2 ( t7i c sin G -f ih s cos G) -= = S( i'h e sin G + i'h t cos G) 
 
 -QQ = 2(- f'h t sin G + i"h t cos G) 
 
 Substituting these values in (41) and putting 
 
 a = /a, + t'a 2 + i"a^ e = ie l + i'e^ + i"e t g = f^ + t'j 2 + S"y 3 (43) 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 27 
 
 the equations (41) become 
 
 Dp. = M(a.h t cos G a/i c sin G) 
 
 D nt e = M(eh t cos G eA c sin G) (44) 
 
 Z? n( 7 = M(gh t cos G gh c sin G) 
 
 Every combination of a lunar argument TV with a planetary argument N 4 gives 
 rise in each derivative of an element to four terms, which we shall express in the 
 form 
 
 D M a = /&, . cos (IV + N.) + * . sin (JV+ 7V 4 ) + A, t .' cos (2V- N.) + *.. / sin (2V- Nj (45) 
 Replacing ^, and //,. in (44) by their values (38) we have for each combination 
 
 (46) 
 
 (47) 
 
 - \MC,gq 
 
 + \MD & *< 
 
 (48) 
 
 23. We now reduce in a similar way the group (42). We have for each 
 argument, 
 
 D'H = D'h c cos G + D'h, sinG en e + r*6 = f COS C + sin 6^ 
 
 CC oe 5g ^77 C7 Cy 
 
 Replacing h c and ^ g by their values (38) and substituting the resulting partial 
 derivatives in (42) we have results which we may write in the form 
 
 - Z>,,/ = //,, . cos (N+ 7V 4 ) + A,,, sin (N+ 7V 4 ) + //,,/ cos (IV- N t ) + h lt .' sin (IV- 2Vj 
 -Z> n( 7r = h, ie cos (N+ N,} + h, it sin (^V+ yV 4 ) + h, t .' cos (IV- N,} + A, t ,' sin (IV- JV t ) (49) 
 -1)JS 9 = //, e cos (7T+ A 1 ,) + //,, . sin (yY + JV t ) + h ti / cos (JV- vV 4 ) + A.. / sin (N- JV t ) 
 
28 ACTION OF THE PLANETS ON THE MOON. 
 
 where the values of the coefficients are found by the following computation. For 
 each lunar argument we form 
 
 (50) 
 
 Then for each pair of arguments 
 
 //,, . = MK C L' - \MC C L" - \MD.LI h lt / = + MK C L> - \MC C L" 
 
 h lt , = MK,L' - \MC,L" + \MD C L, h lt / = - ^ff;Z' + \MC t L" 
 
 h fi . = J/^P' - \MCJP" - \MD.P, h, t / = + J/7T/" - \MC C P" 
 
 h, t , = MK t P' - \MC,P" + \MD C P, A Wi .' = - MKf + \MC.P" + \MDJ\ 
 
 h tt , = MK C R' - \MCR" - \MD t Ri h tt c ' = + MK C R' - \MC C R" 
 
 h lt , = MK,R> - \MC,R" + \MD C R, /<, ,' = - MK t R ' + \MC.R" 
 
 24. Development of the indirect action, 
 
 The fundamental equations for the indirect action are found from (28) by replac- 
 ing PI by the function fl p defined in (12). We first replace the coefficients SZ'by 
 the following: 
 
 v etc. 
 
 Taking, as we do throughout this work, the mean Sun as the origin of longi- 
 tudes, the true longitude, v', will be replaced by the Sun's equation of the centre 
 
 = E. We also put 
 
 r' 
 
 With these substitutions the equations (n) will be replaced by others which may 
 be written thus: Put 
 
 G = f 7-j- s sin zElv' + %r- 3 cos 
 
 /- f^rV (52) 
 
 /= | ri -3 cos 2 ESv'-$r- s sin 
 
 Then 
 
 A' = -G-J B' = G-J C' = 2j D' = I 
 
 E' = f^- 3 cos E sin /8' F' = \r~* sin E sin ' 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 29 
 
 These substitutions lead to the replacement of expression (12) by 
 
 n,-=*' (54) 
 
 where 
 
 H' =A'? + B>'n*+C>?+2D'l;r,+ -.- (55) 
 
 This function //', a pure number in dimensions, will hereafter be used as a fun- 
 damental quantity instead of flp. 
 
 By replacing P, by this value of fl p in (27) the second members in the form (28) 
 take the common factor 
 
 Ha' 3 
 
 and the differential variations of the elements become 
 
 dH' dH' dH' 
 
 dH' BH 
 D nt e = 
 
 BH'\ 
 
 -^ J ( 5 6) 
 
 dH' dH' dH' 
 
 (57) 
 
 We have next to develop the values (52) of G, J, and / in terms of the mean 
 anomaly '. This may be done by means of Cayley's tables in the Memoirs of 
 the Royal Astronomical Society, Vol. XXIX, or the development given by 
 Leverrier in Annales de V Obseivatoire de Paris, Vol. I. Dropping unnecessary 
 terms and powers of e' we have 
 
 r~* cos lE = i |e' 2 + (3^' tye'*) cosg' + Ij-e' 1 cos 2g' 
 r~ 3 sin 2E= ($e r - *e'*) sing-' + -^V'sin 2g' 
 
 r~* = i+ | e' 2 + ( 3 e' + Qe' 3 } cos g' + \e<* cos 2g (58) 
 
 r~* cos E = i + $e' cos g' 
 
 r~* sin E= "i 
 
30 ACTION OF THE PLANETS ON THE MOON. 
 
 The expressions for G,j, and /thus become 
 
 G = {(6e' - - 9 /V 3 ) sing-' + -\V 2 sin 2g'}&v' 
 
 + {9 __ 45. e / 2 + (]gt - -VgV 3 ) COS"' + lf^' 2 COS 2g'}Sp' 
 
 /=-(! + &'* +(!' + IX 3 ) cosg-' + -\V 2 cos 2-'}V (59) 
 
 /= {| - -- e ' 2 + (K - W e/s ) cos "' + e/2 cos 2-'}&>' 
 
 - {(9*' - -VgV) sing-' + ifV 2 sin ig'} &p' 
 
 In reducing these expressions to numbers I take, with Delaunay and Brown, the 
 value of e' for 1850 
 
 e' = .016 771 
 
 With this datum the expressions for G,J, etc., become 
 G = (0.10058 sing-' + 0.00359 sin 2g')8v' 
 
 + (2.24842 + O.II3I3 COS-' + O.OO538 COS 2g')Sp r 
 
 J= (0.75032 + 0.03775 cos g 1 + 0.00095 cos 2g-')Sp' (60) 
 
 7= (1.49895 + 0.07542 cos^-' + 0.00359 cos 2g')Sv' 
 (0.15087 sin"' + 0.00538 sin 2g-')$p' 
 
 25. Abbreviated coefficients for the indirect action. Since 
 
 A' + B' + C> = o 
 we have, as in the direct action, 
 
 H> = \(A'- B')(? - rf) - \C> ( 
 
 Replacing A', ', and C' by their values (53) 
 
 H> = - G? - J - 
 
 As the last two terms of H' are important only in some exceptional cases, we 
 postpone their development to Part IV. 
 
 With the notation of (36), we have for each lunar argument 
 
 H' = (- 2 Gp cos N 2jq cos N+ 7* 4 sin N) (61) 
 
 The planetary factors, G,J, and /are to be developed in a periodic series of the 
 same form as that for A, B, and C, so that, for each planetary argument N we 
 shall have 
 
 G = G c cos JV t + G, sin 7V 4 / = J t cos JV t + J. sin 7V 4 / = /. cos 7V 4 + /. sin 7V 4 (62) 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 31 
 
 With these values we shall have H' developed in a double series in which for 
 each pair of arguments j^Vand JV 4 , H' will have the four terms 
 
 H' = h t cos (N+ JV 4 ) + h c ' cos (JV- N t } + h t sin (N '+ 7V 4 ) + h,' sin (IV- vVJ (63) 
 where 
 
 .i V = ~G e p- J c q + K.< 
 
 h. = -G.p- J.q + J/A A/ = G,p + J t q + K* 4 
 
 Expressing the differential variations of the elements in the same form as before 
 we shall find 
 
 Ka/0 h J = \ G.zp 
 
 ( 6 4) 
 
 with two other sets of equations found by replacing a and a by e and e for the set 
 in e, and by y and g for the set in y. Also, 
 
 h t> . = nf(- G e L' -J C L" - J/.A) h^' = m\- G C L' - J C L" 
 
 (65) 
 A lt . = m*(- G.L' -J.L" + KA) *,.' = m 2 (G,L' + J,L" + \I c L t ) 
 
 with two other sets formed by replacing / and L by TT and P, for the set in IT, and 
 by 6 and R for the set in 0. 
 
 Comparing these with the corresponding coefficients (51) for the direct action 
 we see that the equations for the indirect action may be formed from those of the 
 direct action by replacing 
 
 K, \C and D by G, J, and /; and also Mby m? 
 
 It also follows that the two actions may be combined by replacing in the expressions 
 tor the coefficients h, given in (46), (47), (48) and (51), 
 
 MK by MK- m 2 G ; \MC by \MC + n?J ; MD by MD + ntl (66) 
 
 We shall make this combination to save labor in the formation of the products, but 
 shall give the separate parts of the coefficients, so that the parts of each term due 
 to the respective actions may be readily found. 
 
 26. Integration of the equations. The integration is effected by multiplying 
 each coefficient by the quotient of the mean motion of the Moon by the motion of 
 the argument itself, which factor is 
 
 n . , , 
 
 " = in + t'lr, + i"0 l (J + k')n' kn 4 ^ 7 ' 
 
32 ACTION OF THE PLANETS ON THE MOON. 
 
 The reciprocal of this factor, which we may use as a divisor, is 
 
 a form most convenient for numerical computation. 
 
 We shall thus have for the perturbations of the elements corresponding to each 
 pair of lunar and planetary arguments 
 
 Sa = vh^ e sin (IV N^ ) - vh^ t cos 
 
 Se = vh, iC sin (N JV t ) - vh tt . cos (IV JV 4 ) (68) 
 
 S 7 = vh y<e sin (N JV 4 ) - vA y> . cos (JV JV 4 ) 
 
 / = - />&,_ sin (JV JV t ) + vh ti , cos (7V^ 7V 4 ) 
 
 r = - I/A,,, sin (1V JV t ) + ^ ffi . cos (IV 7V 4 ) (69) 
 
 ^ = - i/A, ie sin (N 7V 4 ) + f// 9 ,, cos 
 
 Practically we use the perturbation of n, the mean motion, instead of a. From 
 the relation of 12, {$, we have 
 
 Dfi = \nDp. 
 
 Thus the first equation (68) is replaced by 
 
 Sn = - \vnh^ e sin (IV 7VJ + f wiA.,. cos (^ 7V 4 ) (70) 
 
 27. We pass next to the inequalities of the actual mean longitude, /, and of the 
 perigee and node, IT and 6. Taking the equations (29) for these quantities 
 
 TT = TT O + jrf/ = 0,, 
 
 the complete expressions are 
 
 8/ = S/ + fSndt Btr = 57r + fSv^t 80 = 80 + fse^t (71) 
 
 The motions n, TT^ and ^ are functions of the elements a (or a), e, and y. n is 
 given by the relation a 3 2 = /x, while TTJ and ^ have been developed by Delaunay, 
 whose results are found in Comptes Rendus, Vol. LXXIV, 1872, I, and are repro- 
 duced in part in Action, p. 190. 
 
 *.-*++* >-%+%><+%*> 
 
 From (70) and (71) we thus have, in the variation of/, the terms 
 
 0J* = - ! < . sin (^v W + 1"*., . cos (^ ^*) (7 2) 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 33 
 
 arising from the variation of n. Integrating and including the value of 8/ we 
 shall have for the complete perturbation of the mean longitude 
 
 U = l t cos (N JV t ) + I, sin 
 where 
 
 l c = IM ai c + V h lt , = v (f< . + //,, .) /. = f itt., . - vh lt , = v (f< . - A,, .) (73) 
 
 From the Delaunay developments in powers of m are found 
 
 433 1 
 
 (74) 
 
 BIT. BIT dir. 
 
 - = - .01480 -+ = - .ooio 4 2 = - -433 1 
 
 B0. B0. 80 l 
 
 -^ = + .00377 j* -- .ooi2 9 2 &j = + - 
 
 Substituting these values and the values (68) and (70) we find that by putting 
 
 7T, = .02220/J a .00104/& e .00433^, e 7T 1|4 = .02220/1,, .OOIO^, .00433^,. 
 
 (75) 
 t , .00129^, + . 
 
 we shall have 
 
 STT, = v {ir lt e sin (vV^i TV 7 ;) ir^ . cos 
 
 l = I/M {,, c sn , - lt , cos 
 Then by integrating we have the terms 
 
 STT = - j/V, cos (TV 7 "* ^V 4 ) - i/V, . sin 
 
 (7 6 ) 
 cos i 4 - 1/,, . sn 
 
 Adding the values (69) we have the complete periodic perturbations of IT and 
 expressed in the form 
 
 STT = TT C cos (JV .VJ + w, sin (TV^i 7VJ 8^ = o cos (^Vd= JVJ + 0, sin (JV JVJ 
 
 where 
 
 "c = "^-r, . - "X, e = K 7 ^, . - ^1, ) 7T. = - !///,_ - Z^TT,, , = - !</*, + OTT,, ,) 
 
 (77) 
 
 28. Treatment of the non-periodic terms in R. 
 
 In the preceding integration we have supposed all the arguments to be of the 
 form GQ + N/. We have now to consider the special case in which N vanishes. 
 In the case of the direct action this occurs when, in the pair of arguments which 
 
 form G, 
 
 i=i' = i' = k = o j k' = o 
 
 We shall then have in H a term, H= th n which we shall call h c simply. It will 
 be affected by a minute secular variation which we need not consider at present, 
 
34 ACTION OF THE PLANETS ON THE MOON. 
 
 In the case of the indirect action we note that the coefficients of Sz/, Sp', and S/3', 
 as found in (59), are developed in the general form 2/, sin ig' or k t cos ig', in 
 which /& , being a function of the eccentricity of the Earth's orbit, is a function 
 of the time. The coefficients of all the terms arising from the indirect action are 
 therefore aftected by a secular variation. 
 
 The perturbations 8v ' and 8p' contain terms independent of the mean longitude 
 of the disturbing planet, which may be treated separately, namely: 
 
 (1) A constant term in 8p'. 
 
 (2) Terms of the form c ^ ig' in 8v' and S/>'. 
 
 (3) The secular variation of e' and of p' . 
 
 Omitting for the present the powers of t above the first, we shall have in 8t> ' and 
 
 8p' terms of the general form 
 
 (c + c'f) ig' 
 
 The product of these into (59) gives rise to terms of G, J, and /of the same form. 
 When we form the products of these terms by f 2 , rf, etc., we shall have in H' terms 
 
 of the form 
 
 h + h'nt +; 
 
 Substituting the derivatives of the non-periodic direct term in (41) and (42), and of 
 the indirect term in (56) and (57), omitting terms in /, and putting for brevity 
 
 P % = Mh c + nth 
 we find 
 
 - Djr. - 
 
 (78) 
 
 - . , 3 y 3 . A" 
 
 Adding in the terms multiplied by /, these three equations may be written 
 
 DJ, - - A, - h,Ht D n r, = - h> - h'nt DJ = - V - A^'nt (78') 
 
 The integration of (78) and (78') will give 
 
 ?>a = V ; S/o = V - V - J V 2 ' 2 
 
 Se = V ; &r. = V. ~ >>'* ~ P'V (78") 
 
 By = 8 o7 ; S0 = B a d - h 'nt - J/;/V/< 
 
 8 designating, in each case, the arbitrary constant of integration. 
 
DIFFERENTIAL VARIATIONS OF ELEMENTS. 35 
 
 The completed expressions ior /, rr, and are to be found by the equations 
 
 d * &*, dTr, . dir. , 60. . 80. . 60. . 
 
 Sn = i- &a STT. = ^-' 8a + -, .-' &e + -=- 1 87 80. = -^ Sa + -^ Se + -^ 87 (79) 
 
 da. da de dy da de tty 
 
 87 = 8/ + f $>ndt Sir = STT O + / Str^t $0 = S<? + f W^t (80) 
 
 In these equations the perturbations (78") are to be substituted. In doing this 
 the arbitrary constants 8/ , 8 7r , and 8 # , being merely constant corrections to /, TT, 
 and 0, may be dropped as unimportant to the theory. We shall then have from 
 (78") and (80) 
 
 ' V + 1 V + *o7 - * 
 
 29. Adjustment of the arbitrary constants. Values are next to be assigned to 
 the arbitrary constants 8 a, S g, and 8 y. We shall do this so as to satisfy the condi- 
 tions that the coefficient of/ in S/, of sin g in the mean longitude, and of sin (16} 
 in the latitude, shall all remain unchanged. The first of these conditions gives 
 
 - f V = V or V = - l ( 82 ) 
 
 We thus have 
 
 The determination of 8 e and 8 y must await the computation of the periodic 
 terms depending on the arguments^ and 10, which is found in Part IV. The 
 increments in the motions of TT and now become 
 
 (83) 
 
 30. Opposite secular effects of the direct and indirect action of a planet 
 near the Sun. 
 
 An important theorem of the planetary action on the Moon is that as the planet 
 is nearer the Sun, not only does each form of action become smaller, but the two 
 forms tend to cancel each other, so that when the mass of the planet can be con- 
 sidered as simply added to that of the Sun, the non-parallactic perturbations vanish. 
 
36 ACTION OF THE PLANETS ON THE MOON. 
 
 To find the effect of the direct action in this case, let the values of x 4 , j 4 , and 2 4 
 in (14) be so small that they may be neglected in comparison with x', y', and z'. 
 Then A will merge into r' and we shall have 
 
 For the indirect action we remark that the only effect of the action of the planet 
 on the position of the Earth, after so adjusting the constants of integration that the 
 mean motion shall remain unaltered, is to increase the mean distance, so that 
 instead of 
 
 .3 .2 . 
 
 a' n' = m' 
 
 we shall have 
 
 This gives, for the perturbation of a' 
 
 .3 ,2 . 
 
 a' n' = m -f- / 4 
 
 and the eccentricity e' being unaltered 
 
 - 
 
 3 m> 
 
 The corresponding part of fl p is found from (7) by assigning the increment r'Bp' 
 to r'. We thus have 
 
 ,-- 
 
 This cancels the value of R found above. 
 
PART II. 
 
 NUMERICAL DEVELOPMENT OF THE PLANETARY 
 
 COEFFICIENTS. 
 
40 ACTION OF THE PLANETS ON THE MOON. 
 
 that we could not be sure of this point without actual computation. In the case 
 of the Hansenian inequality of long period due to the action of Venus it was shown 
 that the perturbations in question, considered individually, were nearly of the 
 same order of magnitude as the coefficients to be determined. This proceeded 
 from the fact that, even when we consider only the formulae of the elliptic motion, 
 the coefficients of the term in question are in the nature of minute residual differences 
 of large quantities. In view of the undoubted fact of some apparent inequalities 
 of long period in the motion of the Moon of which theory has yet given no expla- 
 nation, it seems necessary to exhaustively discuss every possible mode of action 
 which might affect the result. 
 
 The most effective and certain way which the author could devise to over- 
 come this difficulty was to employ the purely numerical development sometimes 
 called "mechanical quadratures," but, more exactly, that of induction of general 
 formulas from special values. It is true that the numerical computations required 
 by this method would be very voluminous, possibly more so than those by other 
 methods. But the use of the method has the great advantage that the computations 
 are made on a simple and uniform plan, which can be executed by routine com- 
 puters, and in which the complexity incident to the analytic treatment does not enter 
 at all. Another important advantage of this purely numerical method is that the 
 mutual periodic perturbations of Venus and the Earth can be taken account of from 
 the beginning. This will readily be seen by a statement of the method. 
 
 The values of the planetary coefficients A, S, etc., being functions of the geocen- 
 tric coordinates of Venus, can be computed for any assigned mean longitude of the 
 Earth and Venus. They are therefore to be computed for a certain number of equi- 
 distant values of the mean longitude of each planet. For each of these values 
 there will be a definite perturbation of the coordinates of each planet, which may 
 be computed and applied in advance. Thus the first computation gives at once 
 numerical values of the coefficients in which the effect of periodic perturbation is 
 included. From these are developed by well-known formulae the coefficients of the 
 sines and cosines of the multiples of the mean longitudes. 
 
 The perturbations of Mars are so small that it was assumed that undisturbed 
 values of the coefficients would suffice. But the same method was used owing to 
 its simplicity in theory. 
 
 In the case of Jupiter the analytic development would not have involved the 
 difficulty which I have pointed out. But it was so convenient to apply the numer- 
 ical method that it was adopted for this planet also. 
 
 The action of Saturn is so minute that a very simple development suffices. It 
 was therefore unnecessary to employ the numerical method in this case. 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 4 1 
 
 A. ACTION OF VENUS. 
 
 32. We shall now show how the computations were arranged in the case of 
 Venus. Let us first suppose that the orbits of both planets are circular. Then 
 assume the Earth to be in zero of longitude. We assign in succession 60 equidistant 
 longitudes to Venus, 6 apart. For each of these positions we compute the values 
 of the four principal coefficients. Numerical induction from these special values 
 will then give the values of A, B, etc., in a series proceeding according to the cosines 
 of the multiples of the differences of the mean longitudes. 
 
 Now assign to the Earth a mean 
 longitude equal to any multiple of 6. 
 If we start with Venus at inferior con- 
 junction we shall have the same series 
 of values of the coefficients as before, 
 provided that we now take the line 
 joining the Sun and Earth as the axis of 
 X. Supposing all our coordinates re- 
 ferred to this axis we should then have 
 A, J3, etc., developed according to 
 cosines of multiples of the difference 
 of the mean longitudes. 
 
 It follows that in the actual case of 
 the two orbits having a small eccen- 
 tricity and inclination the other terms 
 which we require will be of the order of 
 magnitude of these quantities and will therefore be smaller than these principal 
 terms. It is therefore not necessary to divide the circle into so many parts in order 
 to obtain them. 
 
 The actual process was to take the direction of the solar perigee for 1800 as the 
 initial line, or axis of X. The way in which the coordinates were defined will then 
 be seen by the diagram. Here on the left, ir' marks the position of the Earth's 
 perihelion. The positive direction of X passes through the Sun and is therefore 
 directed toward the solar perigee. The Earth being in this ( fixed position, the 
 coordinates of Venus are computed for 60 equidistant values of the mean longitude 
 of Venus differing by increments of 6. The initial or zero value corresponds to 
 the mean inferior conjunction of Venus, marked o in the figure, which determines 
 all the other values; a few of the others are numbered in order. 
 
 For each of these mean longitudes, the actual coordinates of Venus, including 
 the effect of perturbations by the Earth, were computed. The position of the Earth 
 at TT', corresponding to the 6 positions of Venus, was then corrected in each of the 
 60 cases by the periodic perturbations due to each position of Venus. With 
 these coordinates 60 numerical values of the ^4 -coefficients are computed. I 
 
 Arrangement of Coordinate Axes, in Systems o, I, etc., 
 for Venus. 
 
42 ACTION OF THE PLANETS ON THE MOON. 
 
 designate this system of 60 values, corresponding, perturbations aside, to one 
 position of the Earth, by the number o; and I distinguish the values by 60 indices 
 o, i, 2, ... 59. 
 
 In the next system, called system i, the Earth has moved through 30 of mean 
 longitude, or mean anomaly, to the position E. The set of 60 heliocentric coordi- 
 nates of Venus to be used will be the same as before, except lor the perturbations, 
 which will now be those for JS lt or for ^-=30. But the position corresponding 
 to the inferior conjunction in this system will be that corresponding to the index 5 
 in system o. A new axis of ^ is now adopted, again passing through the mean 
 Sun, and therefore making an angle of 30 with the initial axis. The coordinates 
 of Venus are all transformed to this axis, and another set of 60 values of the 
 yl-coefficients are computed. 
 
 The remainder of the process consists in assigning to the mean longitude of the 
 Earth successive increments of 30 until it is brought around to the position E IV 
 in mean anomaly 330. In each case the axis of X is taken to pass through the 
 mean Sun. 
 
 From these 720 special values of the ^-coefficients the general values are sepa- 
 rately developed for each of the 12 systems. Then the general development for any 
 system is effected by a second quadrature. The final result will be the values of 
 A y By etc., referred to an axis always passing through the mean Sun. 
 
 Were we to adopt a fixed system of coordinate axes, it would now be necessary 
 to transform these values referred to the moving axis, to the adopted fixed system. 
 But the necessity of this transformation is avoided by referring all the coordinates, 
 those of the Moon as well as of the planet, to the mean Sun from the beginning. 
 This is fully as simple as, perhaps even simpler than, referring them to a fixed axis. 
 The ease of doing it is all the greater from the fact that, in the actual computation of 
 the lunar coordinates, they are first referred to the mean Moon. The transformation 
 from the mean Moon to the mean Sun is probably simpler than the transformation 
 to a fixed axis. 
 
 33. Development of the A-coefficients for Venus. 
 
 The computations relating to Venus are shown in tabular form in Tables I- VIII, 
 and will now be explained. To obtain the 12 undisturbed values of the Sun's 
 coordinates, we derive the equation of the centre and the logarithm of the radius 
 vector from the tables of the Sun found in Astronomical Papers, Vol. VI. 
 
 For the argument of mean anomaly of the Sun the initial value is 
 
 corresponding to g' = o. The increment for each 30 is 
 
 b.M =30.43830 
 resulting in the value 188.0000 for^-' = 180. 
 
COEFFICIENTS FOR DIRECT ACTION. 43 
 
 With the 12 values of M thus found are taken the equation of the centre, , for 
 1800, and log r'. Then 
 
 x' = r 1 cos E y' = r' sin E 
 
 The resulting values of x' and y' are shown in Table I. 
 For Venus, we have 
 
 Initial mean longitude = 99 30' 7" 
 
 this being the longitude of the Earth's perihelion for 1800. . For the same epoch 
 
 we have 
 
 Longitude of perihelion of Venus = 128 45' i7".4 
 
 Initial mean anomaly of Venus = 330 44' 50". 2 
 
 To find the tabular argument corresponding to this mean anomaly we proceed thus: 
 Adding 5 increments of 6, we have 
 
 Mean anomaly of Venus for index 5 = o 44' 50". 25 
 For this mean anomaly the precepts of Tables of Venus, pp. 278-279, give 
 
 Tabular Arg. K ; K^ = 1. 11601 
 Increment of K ior 6 = 3.745014 
 
 We now add one period to A' and subtract 5 increments 
 
 K & = 1. 11601 
 
 P = 224.70084 
 225.81685 
 
 5 increments 18.72507 
 Initial K, 207.09178 
 
 which corresponds to the inferior conjunction of Venus in system o. 
 
 The resulting values of K are found in Table II. With the values of K thus 
 formed the equation of the centre and log r in the elliptic orbit of 1800 are taken 
 from the tables. 
 
 The data lor the rectangular coordinates are: 
 
 Node of Venus, 1800 H= 74 52' 48". 75 
 
 Perihelion of Earth -IT = 99 30 7 .6 
 
 Node referred to Perihelion #=335 22 41 .2 
 Inclination for 1800 7 = 3 2 3 33 -45 
 
 The values of the coordinates x, y, and z in the initial system are now computed 
 by the formulae 
 
 u = Eq. Cent, -f 24 37' i8".8o m sin M '= cos 7 sin m cos M= cos 6 
 
 m' sin M' = sin m' cos M' = cos 7 cos 
 leading to 
 
 Jl/=2 4 35'i".8 4 ^' = 2 4 3 9 '35". 9 i 
 
 log m = 9.9998680 log m' = 9.9993706 
 
 x = ntr cos (M + ) y = m'r sin (M 1 -fa) z = r sin 7 sin u 
 
44 ACTION OF THE PLANETS ON THE MOON. 
 
 Designating the systems by suffixes, and putting c = cos 30, these coordinates 
 were transformed to the axes of the other 1 1 systems by the formulae 
 
 x i = cx <> T jjXo y\ = c y<> % x v 
 
 and then, in general, 
 
 x n == x *-t y* = j-6 
 
 34. Explanation of the tables. The periodic perturbations of the longitudes 
 of the Earth and Venus, and of the logarithms of their radii vectores, omitting 
 terms of long period, are now to be found. 
 
 TABLE III: Mutual periodic perturbations. 
 
 For the perturbations of Venus by the Earth, Su and 8/>, the arguments of the 
 double entry Tables VIII and XVII are: 
 
 Hor. Arg. g = K o d .65o = 206^44 + 3.745* 
 Vert. Arg. II for System o and /= o, 104.35 
 Increment of II for each system All = 20 
 
 " " " " " index A 2 II = 2.461 
 
 For the single entry Tables XI and XX we have 
 
 Arg. A = i.62203(---') 
 
 For the index i g 330. 75 + 6?' 
 
 For the/th system g' = 30 j 
 Hence, for / = o, j = o, Arg. A = 536.49 
 Increment for each unit of t, &A = -f 9.732 
 " " " " " j, AM = 48.661 
 
 With the values of the arguments thus formed the periodic perturbations of Venus 
 by the Earth are taken from the Tables VIII, XVII, XI, and XX. 
 
 For the corresponding perturbations of the Earth by Venus, we have 
 
 Hor. Arg. -=30.43837 
 Vert. Arg. II for/= o; t = o 165.375 
 Increment for each unit of /; JA_-= 3 
 " " " /; -24.383 
 
 Argument A has the same value as in the Tables of Venus. 
 
COEFFICIENTS FOR DIRECT ACTION. 45 
 
 The perturbations of the longitude and log. radius vector of the Earth found with 
 these values of the arguments are given in the columns $v' and 8p. 
 
 TABLE IVa AND IV. The perturbations in Table III are transformed into 
 increments of the rectangular coordinates of Venus and the Earth. 
 
 Neglecting the cosine of the inclination we have for Venus when referred to the 
 initial system of axes 
 
 AA; O = y sin i"Su -f x&p Ay = x sin i"Bu + ySp 
 
 the tabular 8p being multiplied by the modulus of logarithms. For the other 
 systems the transformation is made by the formulas for the transformation of the 
 coordinates themselves. The results are given in full, in units of the 8th place of 
 decimals, in Table IV. Applying them to the undisturbed coordinates, we have 
 the coordinates of Venus for each position of the two bodies. 
 
 TABLE V. The values of the solar coordinates in Table I, of the Venus coor- 
 dinates in Table II, after being transformed to the axis of the system, and of the 
 increments in Table IV, are added so as to form the disturbed geocentric coordi- 
 nates of Venus in each system for each position of Venus. 
 
 TABLE VI. With the perturbations of latitude in the different systems the dis- 
 turbed geocentric coordinate Z was computed and tabulated. 
 
 With these geocentric coordinates are computed the 720 values of the four 
 coefficients A, Z?, C, and D defined in 7. Since 
 
 A + + C=o 
 
 the computation of C might have been dispensed with. It was, however, carried 
 through as an additional check on the accuracy of the work. The latter was, how- 
 ever, done in duplicate, the check being incomplete. 
 
 TABLE VII gives the values of the coefficients thus computed. 
 
 The coefficients E and Flead to appreciable inequalities only in the case of the 
 argument 0, and have been treated separately. Their special values were computed 
 for six systems and thirty indices only, and are found in Table VIII. 
 
 35. The process of developing the general value of each coefficient in a periodic 
 series is given by Briinnow in his S-ph'drischen Astronomic, Taking A as an 
 example we first develop the value for each system in the form 
 
 A k = ' (a k cos iL + b k sin t'L) 
 
 where k is the number of the system and L the difference of the mean longitudes 
 of Venus and the Earth, 
 
 L-v-f 
 
 We thus have 12 values of each of the coefficients a k and b k , one corresponding 
 to each value of g' . These values are then again developed in the form 
 
 ' + b k<j s'mjg-') b h = 2 (a*,/ cos ig 1 + b ki 
 
44 ACTION OF THE PLANETS ON THE MOON. 
 
 Designating the systems by suffixes, and putting c = cos 30, these coordinates 
 were transformed to the axes of the other 1 1 systems by the formulae 
 
 and then, in general, 
 
 34. Explanation of the tables. The periodic perturbations of the longitudes 
 of the Earth and Venus, and of the logarithms of their radii vectores, omitting 
 terms of long period, are now to be found. 
 
 TABLE III: Mutual periodic perturbations. 
 
 For the perturbations of Venus by the Earth, 8u and 8p, the arguments of the 
 double entry Tables VIII and XVII are: 
 
 Hor. Arg. g = K o d .65o = 2o6 rf .44 + 3-745* 
 Vert. Arg. II for System o and i= o, 104.35 
 Increment of II for each system All = 20 
 
 " " " " " index AJI = 2.461 
 
 For the single entry Tables XI and XX we have 
 
 For the index i g= 330. 75 + 6/' 
 
 For the/th system g' = 30 / 
 Hence, for / = o, j = o, Arg. A = 536.49 
 Increment for each unit of i, &.A = + 9.732 
 " " " " " _/, AM = 48.661 
 
 With the values of the arguments thus formed the periodic perturbations of Venus 
 by the Earth are taken from the Tables VIII, XVII, XI, and XX. 
 
 For the corresponding perturbations of the Earth by Venus, we have 
 
 Hor. Arg. = 30.43837 
 Vert. Arg. II for/ = o ; * = o 165.375 
 Increment for each unit of / ; JA < g'= 3 
 " " " " " /; 24.383 
 
 Argument A has the same value as in the Tables of Venus. 
 
COEFFICIENTS FOR DIRECT ACTION. 45 
 
 The perturbations of the longitude and log. radius vector of the Earth found with 
 these values of the arguments are given in the columns v' and Sp'. 
 
 TABLE IVa AND IV. The perturbations in Table III are transformed into 
 increments of the rectangular coordinates of Venus and the Earth. 
 
 Neglecting the cosine of the inclination we have for Venus when referred to the 
 initial system of axes 
 
 A# = y sin i"Su + xSp Ay = x sin i"Su -f- ySp 
 
 the tabular 8p being multiplied by the modulus of logarithms. For the other 
 systems the transformation is made by the formulae for the transformation of the 
 coordinates themselves. The results are given in full, in units of the 8th place of 
 decimals, in Table IV. Applying them to the undisturbed coordinates, we have 
 the coordinates of Venus for each position of the two bodies. 
 
 TABLE V. The values of the solar coordinates in Table I, of the Venus coor- 
 dinates in Table II, after being transformed to the axis of the system, and of the 
 increments in Table IV, are added so as to form the disturbed geocentric coordi- 
 nates of Venus in each system for each position of Venus. 
 
 TABLE VI. With the perturbations of latitude in the different systems the dis- 
 turbed geocentric coordinate Z was computed and tabulated. 
 
 With these geocentric coordinates are computed the 720 values of the four 
 coefficients A, B, C, and D defined in 7. Since 
 
 A + B + C=o 
 
 the computation of C might have been dispensed with. It was, however, carried 
 through as an additional check on the accuracy of the work. The latter was, how- 
 ever, done in duplicate, the check being incomplete. 
 
 TABLE VII gives the values of the coefficients thus computed. 
 
 The coefficients E and F lead to appreciable inequalities only in the case of the 
 argument 6, and have been treated separately. Their special values were computed 
 for six systems and thirty indices only, and are found in Table VIII. 
 
 35. The process of developing the general value of each coefficient in a periodic 
 series is given by Briinnow in his Spharischen Astronomic. Taking A as an 
 example we first develop the value for each system in the form 
 
 A li = 'Z (a k cos iL + b h sin iL) 
 
 where k is the number of the system and L the difference of the mean longitudes 
 
 of Venus and the Earth, 
 
 Z = v--' 
 
 We thus have 12 values of each of the coefficients a k and b k , one corresponding 
 to each value of g'. These values are then again developed in the form 
 
 ' b u = 2 (<**,/ cos ig' + b k ' 
 
46 ACTION OF THE PLANETS ON THE MOON. 
 
 These being substituted in the general expression given above for A k gives the 
 value of A itself in the form 
 
 A = 22 [> cos (iL +jg') + b sin (iL +jg')] 
 
 The development was effected in this way up to i = 8 only, this being the limit 
 for possible sensible terms other than the Hansenian term of long period depending 
 
 on the argument 
 
 2g' -g 
 
 36. The Hansenian Venus-term of long period. The computation of this 
 inequality requires the determination of the coefficients for i = 18, which we obtain 
 trom the general formulae thus. Putting, in any one system, 
 
 AH A lt A v A M 
 for the 60 values of A, and 
 
 A cos i8Z + A sin i8Z 
 
 for the pair of terms depending on the argument i8Z, the general formulae give 
 
 A + A l cos 108 + A 2 cos 216 + . 
 T > oA i = A l sin 108 + A t sin 216 + 
 
 the angles increasing by 108 in each term. The fifth angle will be 180 -j- 2ir, 
 so that the only numerically different values of the coefficients which enter into 
 the series besides i and o are 
 
 sin 18, cos 18, sin 36, and cos 36 
 For example, we have 
 
 A tl A l sin 18 A t cos 36 + A 3 cos 36 + A< sin 18 + 
 30^4, = A l cos 18 A t sin 36 A 3 sin 36 + AI cos 18 + 
 
 From the cyclic order of the coefficients the method of computing A c and A, 
 is as follows: 
 
 With the 60 values of any one coefficient, say A, in any one system, 
 
 A , A lt A v , A M 
 compute 
 
 ' = A 
 
 
 = 
 
 A lt + A it 
 
Next: 
 
 Next: 
 
 COEFFICIENTS FOR DIRECT ACTION. 
 
 J'-Aj-AJ A>'=A,'-A S > 
 
 47 
 
 We then have, in each system 
 2oA c =A " + A Cil s\ni8 + A 
 
 _ . . OQ A * .Q 
 
 with similar values for B, C, and D. 
 
 The numerical results of these processes for each system are shown in Table IX. 
 
 The next step is to develop each set of numerical values of any one pair of coeffi- 
 cients, say A c , and A, in the form 
 
 30^4 c = ,, + , cos g' + a 2 cos 2g' + ft l sin g' + ft t sin 2g' 
 3oA t = a g ' + a/ cos g' + a t f cos 2g' + /3/ sin g' + ft 2 ' sin 2g' 
 
 These are to be substituted in the general form 
 
 A A e cos i8L + A t sin i8L 
 Retaining only terms which may be wanted for our purpose, we shall have 
 
 30^4 = a cos i8L + <*' sin i8L 
 
 + 1 (a, - /) cos (iSL + g') + \ (a/ + /3J sin (i8L + g') 
 + i(a, - /8,') cos (i8Z + 2P-') + i(a,' + ft.) sin (i8Z, + 2^') 
 
 () 
 
 + K 3 - ft') cos (i8Z + 3 -') + HO,' + ft) sin (iSL + Zg') 
 
 TABLE I. 
 
 SUN'S GEOCENTRIC COORDINATES IN THE MEAN ORBIT OF 1800, 
 REFERRED TO MEAN SUN AS DIRECTION OF Axis OF X. 
 
 System. 
 
 g' 
 
 x' 
 
 / 
 
 o 
 i 
 
 o 
 
 o 
 30 
 
 +0.983 2075 
 +0.985 3853 
 
 O.OOOOOOO 
 
 +0.016 8542 
 
 2 
 
 60 
 
 +0.991 3897 
 
 +0.029 1452 
 
 3 
 
 90 
 
 +0.0997183 
 
 +0.033 5823 
 
 4 
 
 1 20 
 
 +1.008 1877 
 
 +0.029 0233 
 
 5 
 
 ISO 
 
 +1.0144741 
 
 +0.016 7321 
 
 6 
 
 180 
 
 +1.0167929 
 
 O.OOOOOOO 
 
 7 
 
 2IO 
 
 +1.0144741 
 
 0.016 7321 
 
 8 
 
 24O 
 
 +1.0081877 
 
 0.029 0233 
 
 9 
 
 27O 
 
 +0.999 7183 
 
 0.033 5823 
 
 10 
 
 300 
 
 +0.991 3897 
 
 0.029 1452 
 
 ii 
 
 330 
 
 +0.985 3853 
 
 0.016 8542 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE II. 
 
 COMPUTATION OF RECTANGULAR COORDINATES OF VENUS IN THE ELLIPTIC ORBIT OF 
 l8OO, REFERRED TO SOLAR PERIGEE AS AXIS OF X. 
 
 i 
 
 Arg. K. 
 
 Eq. Cent. 
 
 log. r 
 
 log. X 
 
 \o g .y 
 
 log. Z 
 
 o 
 
 207.0918 
 
 / n 
 23 15.02 
 
 9.856 7321 
 
 0.856 5920 
 
 +7.7269130 
 
 +8.242 1742 
 
 i 
 
 210.8368 
 
 18 47.49 
 
 9.856 5914 
 
 9.8542879 8.8490901 
 
 +8-33I 7492 
 
 2 
 
 214-5818 
 
 14 7-30 
 
 9.8564812 
 
 9.8470688 9.1638652 
 
 +8401 8640 
 
 3 
 
 218.3268 
 
 9 17.60 
 
 9.856 4028 
 
 9.834 7638 
 
 9.341 2292 
 
 +84579729 
 
 4 
 
 222.0718 
 
 4 21.63 
 
 9-8563570 
 
 9.8170717 
 
 -9.463 1513 
 
 +8.503 3027 
 
 5 
 
 1.1160 
 
 + o 37.28 
 
 9.8563445 
 
 9-793 5309 9-554 3215 
 
 +8.539 9034 
 
 6 
 
 4.8610 
 
 + 5 35.76 
 
 9-856 3653 
 
 9-763 4657 9-625 5304 
 
 +8.569 1404 
 
 7 
 
 8.6060 
 
 + 10 30.48 
 
 9.8564193 
 
 9.725 9000 9.682 4522 
 
 +8.591 9486 
 
 8 
 
 12.3510 
 
 + 15 18.10 
 
 9-856 5057 
 
 9.679 4042 9-728 4252 
 
 +8.608 9752 
 
 9 
 
 16x1961 
 
 + 19 55-43 
 
 9.856 6236 
 
 9.621 8221 9.765 5624 
 
 +8.6206617 
 
 10 
 
 19.841 1 
 
 +24 19.34 
 
 9-8567717 
 
 9-549 7350 9-795 2686 
 
 +8.627 2934 
 
 ii 
 
 23.5861 
 
 +28 26.93 
 
 9.8569481 
 
 9457 3022 9.818 5057 
 
 +8.629 0280 
 
 12 
 
 27.3311 
 
 +32 15-39 
 
 9-857 1509 
 
 9-333 3365 9.835 9401 
 
 +8.625 9108 
 
 13 
 
 31-0761 
 
 +35 42.29 
 
 9-857 3778 
 
 9. 1 5 1 9096 9.848 0289 
 
 +8.6178781 
 
 14 
 
 34-8211 
 
 +38 45-29 
 
 9.857 6261 
 
 8.824 3320 9-855 0707 
 
 +8.6047511 
 
 IS 
 
 38.5661 
 
 +41 2244 
 
 9-8578931 
 
 +7-961 5592 -9-857 2356 
 
 +8.5862194 
 
 16 
 
 42.3112 
 
 +43 32.07 
 
 9-858 1756 
 
 +8.929 0946 9-854 5813 
 
 +8.561 8070 
 
 17 
 
 46.0562 
 
 +45 12.78 
 
 9.858 4706 
 
 +9.203 5288 9-847 0574 
 
 +8.530 8192 
 
 18 
 
 49.8012 
 
 +46 23.54 
 
 9-858 7747 
 
 +9.367 1085 9-834 5015 
 
 +8492 2492 
 
 19 
 
 53.5462 
 
 +47 3-66 
 
 9.859 0846 
 
 +9.482 0030 9.816 6224 
 
 +8.444 6187 
 
 20 
 
 57.2912 
 
 +47 12.78 
 
 9.859 3968 
 
 +9.5688886 9.7929712 
 
 +8.385 6881 
 
 21 
 
 61.0362 
 
 +46 50.89 
 
 9.859 7079 
 
 +9.637 21 13 9.762 8896 
 
 +8.3118851 
 
 22 
 
 64.7812 
 
 +45 58.29 
 
 9.860 0146 
 
 +9.692 0696 
 
 9-725 4250 
 
 +8.2170551 
 
 23 
 
 68.5263 
 
 +44 35-65 
 
 9.8603134 
 
 +9.7365149 
 
 9.679 1841 
 
 +8.0892497 
 
 24 
 
 72.2713 
 
 +42 43.92 
 
 9.8606011 
 
 +9.772 5022 
 
 9.6220691 
 
 +7.900 1224 
 
 25 
 
 76.0163 
 
 +40 24.44 
 
 9.8608748 
 
 +9.801 3428 
 
 -9-550 7649 
 
 +7.5469461 
 
 26 
 
 79.7613 
 
 +37 38.73 
 
 9.861 1314 
 
 +9.823 9406 
 
 9.459 6400 
 
 6.971 8246 
 
 27 
 
 83.5063 
 
 +34 28.65 
 
 9.861 3684 
 
 +9.840 9243 
 
 9.338 oooi 
 
 7-731 3881 
 
 28 
 
 87-2513 
 
 +30 56.31 
 
 9.861 5830 
 
 +9.852 7264 
 
 9.161 4423 
 
 7.9903231 
 
 29 
 
 90.9963 
 
 +27 4.01 
 
 9.861 7733 
 
 +9.859 6294 
 
 -8.8495051 
 
 8.148 1795 
 
 30 
 
 94.7414 
 
 +22 54.28 
 
 9.861 9370 
 
 +9.861 7933 
 
 +7-6393795 
 
 8.260 1046 
 
 31 
 
 98.4864 
 
 + 18 29.84 
 
 9.862 0726 
 
 +9.859 2710 
 
 +8.8997388 
 
 8.345 1900 
 
 32 
 
 102.2314 
 
 + 13 53-52 
 
 9.862 1786 
 
 +9.8520116 
 
 +9.1862719 
 
 8.412 3233 
 
 33 
 
 105.9764 
 
 + 9 8.29 
 
 9.862 2540 
 
 +9.8398567 
 
 +9.354 2638 
 
 8.466 3544 
 
 34 
 
 109-7214 
 
 + 4 17.19 
 
 9.862 2779 
 
 +9-822 5254 
 
 +9-471 5502 
 
 8.5102060 
 
 35 
 
 113.4664 
 
 o 36.64 
 
 9.862 3009 
 
 +9-799 5863 
 
 +9.5600170 
 
 8.545 7583 
 
 36 
 
 117.2114 
 
 5 30.07 
 
 9.862 2899 
 
 +9.770 4104 
 
 +9.629 5228 
 
 8.574 2757 
 
 37 
 
 120.9564 
 
 10 20.01 
 
 9.862 2381 
 
 +9.734 0928 
 
 +9.6853431 
 
 8.596 6294 
 
 38 
 
 124.7015 
 
 -15 3-29 
 
 9.862 1550 
 
 +9.6893188 
 
 +9-7306171 
 
 8.613 4244 
 
 39 
 
 128.4465 
 
 19 36.93 
 
 9.862 0415 
 
 +9.634 1256 
 
 +9-7673464 
 
 8.625 0747 
 
 40 
 
 132.1915 
 
 23 57-o8 
 
 9.8618988 
 
 +9-565 4464 
 
 +9-7968687 
 
 -8.631 8465 
 
 41 
 
 135.9365 
 
 -28 3-60 
 
 9.861 7283 
 
 +0.478 1499 
 
 +9.82O 1022 
 
 -8.6338851 
 
 42 
 
 139.6815 
 
 31 5i-i6 
 
 9-861 5318 
 
 +9.362 7126 
 
 +9.8376839 
 
 8.631 2325 
 
 43 
 
 143.4265 
 
 -35 18.17 
 
 9.8613113 
 
 +9.1982317 
 
 +9.85O O5OO 
 
 8.623 8210 
 
 44 
 
 I47.I7I5 
 
 -38 22.35 
 
 9.861 0693 
 
 +8.921 4921 
 
 +9.8574837 
 
 -8.6114784 
 
 45 
 
 150.9166 
 
 41 1.70 
 
 9.8608081 
 
 +7.912 5788 
 
 +9.860 1443 
 
 8.593 9051 
 
 46 
 
 154.6616 
 
 43 14.42 
 
 9.860 5307 
 
 8.8273540 
 
 +9-858o8l7 
 
 8.570 6520 
 
 47 
 
 158.4066 
 
 44 58.99 
 
 9-860 2398 
 
 9.1518035 
 
 +9.851 2413 
 
 8.541 0589 
 
 48 
 
 162.1516 
 
 46 14.23 
 
 9.8599388 
 
 -0-3323188 
 
 +9.8394597 
 
 8.504 1837 
 
 49 
 
 165.8966 
 
 46 59.22 
 
 9-859 6307 
 
 9-455 9020 
 
 +9.822 4495 
 
 8.458 6539 
 
 50 
 
 169.6416 
 
 47 13.42 
 
 9.8593190 
 
 9.548 1734 
 
 +9-7997714 
 
 8.402 4145 
 
 51 
 
 173-3866 
 
 46 56.56 
 
 9.8590071 
 
 9.620 2216 
 
 +9.770 7859 
 
 8.332 2360 
 
 52 
 
 I77.I3I7 
 
 46 8.76 
 
 9.8586983 
 
 9.6778438 
 
 +9-734 5737 
 
 8.242 6677 
 
 53 
 
 180.8767 
 
 44 50.45 
 
 9.8583962 
 
 9.724 4363 
 
 +9-689 7900 
 
 8.1234525 
 
 54 
 
 184.6217 
 
 -43 2.43 
 
 9.858 1040 
 
 9.762 1421 
 
 +9.634 4660 
 
 7-951 5304 
 
 55 
 
 188.3667 
 
 40 45.82 
 
 9.857 8250 
 
 -9-792 3808 
 
 +9.565 4503 
 
 7-653 3423 
 
 56 
 
 192.1117 
 
 -38 2.06 
 
 9.857 5624 
 
 9.816 1217 
 
 +9.477 5085 
 
 4.049 3707 
 
 57 
 
 195-8567 
 
 34 52.90 
 
 9.8573192 
 
 9.834 0339 
 
 +9.360 8616 
 
 +7.6516300 
 
 58 
 
 109.6017 
 
 31 20.43 
 
 9.8570981 
 
 9.846 5740 
 
 +9-I93 8645 
 
 +7-950 6732 
 
 59 
 
 203.3468 
 
 27 26.94 
 
 9.8569016 
 
 9.854 0381 
 
 +8.9098324 
 
 +8.1228613 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 49 
 
 TABLE III. 
 MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH. 
 
 The term of long period is omitted. The tabular unit is cf'.oi in <! and dv f , and 10 8 in Sp and 
 
 i 
 
 System o. 
 
 System i. 
 
 System 2. 
 
 8u 
 
 8v' dp 
 
 dp' 
 
 Su 
 
 dv' 
 
 dp 
 
 dp' 
 
 du 
 
 dv' 
 
 dp 
 
 8 P ' 
 
 o 
 
 + 239 
 
 169 + 347 
 
 +464 
 
 + 534 
 
 -390 
 
 + 32i 
 
 +472 
 
 + 543 
 
 402 
 
 + 229 
 
 +537 
 
 I 
 
 + 65 
 
 151 + 394 
 
 +440 
 
 + 432 
 
 423 
 
 + 398 
 
 +424 
 
 + 545 
 
 507 
 
 + 331 
 
 +467 
 
 2 
 
 146 
 
 116 + 515 
 
 +365 
 
 + 267 
 
 423 
 
 + 540 
 
 +334 
 
 + 479 
 
 573 
 
 + 5H 
 
 +349 
 
 3 
 
 406 
 
 - 65 + 675 
 
 +254 
 
 + 23 
 
 -379 
 
 + 7i6 
 
 +214 
 
 + 315 
 
 590 
 
 + 724 
 
 +203 
 
 4 
 
 - 705 
 
 + 4 +814 
 
 + 126 
 
 - 295 
 
 303 
 
 + 880 
 
 + 78 
 
 + 58 
 
 -558 
 
 + 910 
 
 + 42 
 
 5 
 
 1018 
 
 + 82 +897 
 
 + o 
 
 - 662 
 
 194 
 
 + 988 
 
 - 62 
 
 -276 
 
 -477 
 
 + 1045 
 
 -"7 
 
 6 
 
 1304 
 
 + 158 + 898 
 
 Ill 
 
 1052 
 
 62 
 
 +1023 
 
 194 
 
 659 
 
 357 
 
 + 1093 
 
 261 
 
 7 
 
 1541 
 
 +219 + 823 
 
 206 
 
 1420 
 
 + 80 
 
 + 941 
 
 -308 
 
 -1058 
 
 204 
 
 + 1044 
 
 -388 
 
 8 
 
 1702 
 
 +264 , + 687 
 
 284 ! 1728 
 
 +221 
 
 + 779 
 
 -397 
 
 1435 
 
 27 
 
 + 895 -49 
 
 9 
 
 -1796 
 
 +289 + SOI 
 
 352 
 
 -1941 
 
 +348 
 
 + 551 
 
 459 
 
 1760 
 
 + 161 
 
 + 658 
 
 -562 
 
 10 
 
 1820 
 
 +301 ; + 281 
 
 414 
 
 2049 
 
 +449 
 
 + 273 
 
 495 
 
 -1991 
 
 +348 
 
 + 349 
 
 602 
 
 n 
 
 1777 
 
 -j-307 + 26 
 
 -468 
 
 2047 
 
 +522 
 
 21 
 
 -5H 
 
 2103 
 
 +517 
 
 + 5 
 
 612 
 
 12 
 
 1674 
 
 +313 234 
 
 510 
 
 1950 
 
 +566 
 
 -316 
 
 -518 
 
 2089 
 
 +657 
 
 - 343 
 
 594 
 
 13 
 
 -1508 
 
 +323 5o6 
 
 -538 
 
 -1767 
 
 +589 
 
 - 596 
 
 -515 
 
 -1956 
 
 +757 
 
 661 
 
 557 
 
 14 
 
 -!286 
 
 +343 767 
 
 549 
 
 -1517 
 
 +599 
 
 -851 
 
 504 
 
 1721 
 
 +818 
 
 - 935 
 
 506 
 
 15 
 
 1013 
 
 +370 1002 
 
 544 
 
 i2ii 
 
 +605 
 
 -1066 
 
 -485 
 
 1417 
 
 +847 
 
 1146 
 
 447 
 
 16 
 
 - 695 
 
 +403 1205 
 
 524 
 
 - 857 
 
 +607 
 
 1236 
 
 454 
 
 1057 
 
 +850 
 
 1298 
 
 -387 
 
 17 
 
 350 
 
 +446 
 
 I36l 
 
 -486 
 
 - 475 
 
 +610 
 
 -1348 
 
 -406 
 
 - 666 
 
 +836 
 
 -1386 
 
 322 
 
 18 
 
 + 19 
 
 +498 
 
 1462 
 
 433 
 
 77 
 
 +611 
 
 1399 
 
 346 
 
 - 260 
 
 +812 
 
 1407 
 
 255 
 
 19 
 
 + 407 
 
 +559 
 
 I486 
 
 353 
 
 + 320 
 
 +613 
 
 -1382 
 
 -269 
 
 + H9 
 
 +78i 
 
 1357 
 
 181 
 
 20 
 
 + 787 
 
 +622 
 
 1417 
 
 -247 
 
 + 70i 
 
 +614 
 
 1302 
 
 -178 
 
 + 535 
 
 +741 
 
 1236 
 
 99 
 
 21 
 
 +1139 
 
 +681 1244 
 
 -113 
 
 +1047 
 
 +616 
 
 1148 
 
 72 
 
 + 883 
 
 +695 
 
 1053 
 
 6 
 
 22 
 
 +1431 
 
 +723 966 
 
 + 40 
 
 +I35I 
 
 +617 
 
 921 
 
 + So 
 
 + 1182 
 
 +643 
 
 825 
 
 + 96 
 
 23 
 
 +1629 
 
 +740 597 
 
 +205 
 
 +1586 
 
 +611 
 
 6l9 
 
 + 189 
 
 + 1417 
 
 +586 
 
 541 
 
 +209 
 
 24 
 
 +1709 
 
 +726 180 
 
 +367 
 
 +1725 
 
 +590 
 
 248 
 
 +338 
 
 + 1578 
 
 +524 
 
 226 
 
 +328 
 
 25 
 
 +1660 
 
 +682 + 263 
 
 +5i6 
 
 +1748 
 
 +550 
 
 + 164 
 
 +489 
 
 + 1652 
 
 +458 
 
 + 121 
 
 +453 
 
 26 
 
 +1489 
 
 +606 + 694 
 
 +646 
 
 +1636 
 
 +484 
 
 + 586 
 
 +630 
 
 + 1623 
 
 +3 & 
 
 + 488 ; +578 
 
 27 
 
 + 1215 
 
 +504 +1074 
 
 +752 
 
 + 1394 
 
 +395 
 
 + 973 
 
 +750 
 
 + 1478 
 
 +288 
 
 + 846 
 
 +695 
 
 28 
 
 + 854 
 
 +37<5 +1381 
 
 +836 
 
 + 1045 
 
 +285 
 
 + 1287 
 
 +844 
 
 + 1212 
 
 +179 
 
 + 1162 
 
 +799 
 
 29 
 
 + 438 
 
 +226 +1583 
 
 +890 
 
 + 616 
 
 +160 
 
 + 1503 
 
 +GOO 
 
 + 8 4 2 
 
 + 56 
 
 + 1399 
 
 +875 
 
 30 
 
 9 
 
 + 58 +1667 
 
 +912 
 
 + 148 
 
 + 24 
 
 + 1608 
 
 +922 
 
 + 397 
 
 - 77 
 
 + 1532 
 
 +918 
 
 3i 
 
 451 
 
 122 + 1616 
 
 +898 
 
 321 
 
 122 
 
 + 1596 +909 
 
 79 
 
 214 
 
 + 1544 
 
 +923 
 
 32 
 
 - 859 
 
 301 +1439 
 
 +843 - 764 
 
 272 
 
 + 1463 
 
 +863 
 
 549 
 
 -342 
 
 + 1437 
 
 +887 
 
 33 
 
 1197 
 
 468 +1142 
 
 +755 i 145 
 
 426 
 
 + 1210 
 
 +784 
 
 - 971 
 
 467 
 
 + 1213 
 
 +815 
 
 34 
 
 1440 
 
 610 + 765 
 
 +637 
 
 1429 
 
 -571 
 
 + 860 
 
 +673 
 
 -1309 
 
 -581 
 
 + 896 
 
 +709 
 
 35 
 
 1577 
 
 -7i8 + 336 
 
 +502 
 
 -1598 
 
 7OO 
 
 + 436 
 
 +536 
 
 1540 
 
 -684 
 
 + Soi 
 
 +576 
 
 36 
 
 1605 
 
 793 103 
 
 +355 
 
 -1636 
 
 -80 3 
 
 14 
 
 +377 
 
 1643 
 
 -777 
 
 + 66 +420 
 
 37 
 
 1529 
 
 833 524 
 
 +204 
 
 1557 
 
 870 
 
 - 453 
 
 +206 
 
 1610 
 
 -849 
 
 - 378 +247 
 
 38 
 
 1357 
 
 -837 
 
 911 
 
 + 51 
 
 1360 
 
 -898 
 
 - 856 
 
 + 33 
 
 -1443 
 
 -893 
 
 797 
 
 + 07 
 
 39 
 
 lotjS 
 
 -811 
 
 1221 
 
 102 
 
 -1085 
 
 -889 
 
 -1183 
 
 132 
 
 1163 
 
 -907 
 
 1148 
 
 "5 
 
 40 
 
 - 770 
 
 -755 
 
 1440 
 
 248 
 
 747 
 
 -844 
 
 1422 
 
 284 
 
 - 800 
 
 -883 
 
 1404 
 
 -288 
 
 41 
 
 - 393 
 
 -675 
 
 -1548 
 
 -380 
 
 370 
 
 -770 
 
 -1557 
 
 418 
 
 - 389 
 
 824 
 
 -I55i 
 
 443 
 
 42 
 
 - 8 
 
 -575 
 
 1540 
 
 -485 
 
 + 19 
 
 -669 
 
 1579 
 
 532 
 
 + 31 
 
 -733 
 
 -1578 
 
 573 
 
 43 
 
 + 360 
 
 467 
 
 1430 
 
 559 
 
 + 395 
 
 547 
 
 1491 620 
 
 + 426 
 
 620 
 
 1503 
 
 -673 
 
 44 
 
 + 681 
 
 359 
 
 1243 
 
 599 
 
 + 730 
 
 410 
 
 1303 678 
 
 + 780 
 
 -487 
 
 -1328 
 
 741 
 
 45 
 
 + 950 
 
 264 
 
 1003 
 
 -608 
 
 + IOO2 
 
 -269 
 
 1035 ! 702 
 
 + 1068 
 
 340 
 
 1067 
 
 -775 
 
 46 
 
 +1160 
 
 -187 
 
 739 
 
 593 
 
 + 1192 
 
 135 
 
 - 731 -688 
 
 + 1273 
 
 -188 
 
 - 750 
 
 772 
 
 47 
 
 + 1318 
 
 130 
 
 463 
 
 -561 
 
 + 1302 
 
 20 
 
 415 641 
 
 + 1383 
 
 - 38 
 
 403 
 
 732 
 
 48 
 
 +1424 
 
 92 
 
 186 
 
 -Si8 
 
 + 1347 
 
 + 68 
 
 - 106 -566 
 
 + 1399 
 
 + 99 
 
 59 
 
 656 
 
 -19 
 
 +1485 
 
 -69 
 
 + 72 
 
 -465 
 
 + 1334 
 
 + 127 
 
 + M8 
 
 -476 
 
 + 1335 
 
 +212 
 
 + 240 
 
 552 
 
 50 
 
 +J497 
 
 59 
 
 + 304 
 
 -398 
 
 + 1284 
 
 + 155 
 
 + 367 
 
 374 
 
 + 1212 
 
 +291 
 
 + 472 
 
 422 
 
 Si 
 
 +1467 
 
 61 
 
 + 450 
 
 319 
 
 + 1206 
 
 + 160 
 
 + 537 
 
 -268 
 
 + I066 
 
 +331 
 
 + 627 
 
 277 
 
 52 
 
 + 1401 
 
 - 74 
 
 + 641 
 
 232 
 
 -j-IIII 
 
 + 148 
 
 + 655 
 
 -163 
 
 + 904 
 
 +336 
 
 + 709 
 
 129 
 
 53 
 
 +1306 
 
 95 
 
 + 739 
 
 -136 
 
 + 1007 
 
 -(-116 
 
 + 719 
 
 - 55 
 
 + 757 
 
 +308 
 
 + 739 
 
 + 14 
 
 54 
 
 +1191 
 
 122 
 
 + 783 
 
 -38 
 
 + 903 
 
 + 65 
 
 + 731 
 
 + 52 
 
 + 634 
 
 +254 
 
 + 701 
 
 + 144 
 
 55 
 
 +1050 
 
 147 
 
 + 777 
 
 + 63 
 
 + 799 
 
 + i 
 
 + 688 
 
 +161 
 
 + 535 
 
 + 182 
 
 + 627 
 
 +264 
 
 56 
 
 + 889 
 
 -I6 5 
 
 + 717 
 
 + 168 
 
 + 728 
 
 - 76 
 
 + 603 
 
 +267 
 
 + 467 
 
 + 92 
 
 + 504 
 
 +371 
 
 57 
 
 + 723 
 
 -175 
 
 + 6n 
 
 +272 
 
 + 670 
 
 -162 
 
 + 494 
 
 +362 
 
 + 443 
 
 - 17 
 
 + 390 
 
 +46l 
 
 58 
 
 + 556 
 
 -179 
 
 + 488 
 
 +367 
 
 + 630 
 
 251 
 
 + 388 
 
 +435 
 
 + 462 
 
 -142 
 
 + 276 
 
 +527 
 
 59 
 
 + 398 
 
 -177 
 
 + 387 +436 
 
 + 591 
 
 -329 
 
 + 320 
 
 +474 
 
 + SGI 
 
 -274 
 
 + 212 
 
 +556 
 
5 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE III. Continued. 
 MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH. 
 
 The term of long period is omitted. The tabular unit is o".oi in 6u and 6v', and 10 8 in 6p and 
 
 i 
 
 System 3. 
 
 System 4. 
 
 System 5. 
 
 3u 
 
 8v' 
 
 ip 
 
 iff 
 
 du 
 
 dv' 
 
 9p 
 
 V 
 
 du 
 
 dv' 
 
 dp 
 
 V 
 
 o 
 
 + 391 
 
 295 
 
 + 106 
 
 +639 
 
 + 249 
 
 194 
 
 20 
 
 +749 
 
 + 110 
 
 - 87 
 
 121 
 
 +839 
 
 i 
 
 + 452 
 
 431 
 
 + 220 
 
 +555 
 
 + 326 
 
 337 
 
 + 89 
 
 +669 
 
 + 223 
 
 - 253 
 
 - 31 
 
 +777 
 
 2 
 
 + 456 
 
 - 543 
 
 + 424 
 
 +419 
 
 + 349 
 
 457 
 
 + 293 
 
 +533 
 
 + 273 
 
 391 
 
 + 170 
 
 +649 
 
 3 
 
 + 375 
 
 619 
 
 + 667 
 
 +251 
 
 + 299 
 
 - 548 
 
 + 547 
 
 +357 
 
 + 245 
 
 493 
 
 + 424 
 
 +477 
 
 4 
 
 + 197 
 
 647 
 
 + 893 
 
 + 66 
 
 + 170 
 
 604 
 
 + 802 
 
 + 156 
 
 + 128 
 
 - 556 
 
 + 665 
 
 -1-277 
 
 5 
 
 - 68 
 
 623 
 
 + 1059 
 
 -118 
 
 - 38 
 
 - 621 
 
 + 1008 
 
 - 53 
 
 - 65 
 
 579 
 
 + 903 
 
 + & 
 
 6 
 
 393 
 
 551 
 
 + "32 
 
 287 
 
 310 
 
 - 596 
 
 + 1132 
 
 251 
 
 3i4 
 
 - 568 
 
 + 1053 
 
 144 
 
 7 
 
 744 
 
 435 
 
 + 1106 
 
 436 
 
 614 
 
 529 
 
 + H45 
 
 430 
 
 - 595 
 
 - 524 
 
 + iiii 
 
 344 
 
 8 
 
 -1097 
 
 - 283 
 
 + 977 
 
 557 
 
 924 
 
 421 
 
 + 1042 
 
 -576 
 
 - 882 
 
 - 447 
 
 + 1062 
 
 523 
 
 9 
 
 1424 
 
 103 
 
 + 700 
 
 -646 
 
 1208 
 
 278 
 
 + 838 
 
 -688 
 
 1148 
 
 339 
 
 + 902 
 
 -672 
 
 10 
 
 1690 
 
 + 97 
 
 + 463 
 
 -701 
 
 1441 
 
 - 108 
 
 + 547 
 
 -761 
 
 1362 
 
 202 
 
 + 637 
 
 -781 
 
 it 
 
 -1876 
 
 + 305 
 
 + 109 
 
 720 
 
 1604 
 
 + 79 
 
 + 200 
 
 799 
 
 -1499 
 
 44 
 
 + 293 
 
 -845 
 
 12 
 
 -1958 
 
 + 507 
 
 - 271 
 
 -702 
 
 -1688 
 
 + 276 
 
 - 180 
 
 799 
 
 -1545 
 
 + 126 
 
 95 
 
 -863 
 
 13 
 
 1919 
 
 + 692 
 
 647 
 
 -654 
 
 -1681 
 
 + 476 
 
 - 563 
 
 -765 
 
 1501 
 
 + 303 
 
 - 489 
 
 -844 
 
 14 
 
 1761 
 
 + 843 
 
 977 
 
 -578 
 
 -1582 
 
 + 667 
 
 921 
 
 -695 
 
 -1372 
 
 + 478 
 
 - 859 
 
 -788 
 
 IS 
 
 -1505 
 
 + 952 
 
 1226 
 
 -487 
 
 -1393 
 
 + 839 
 
 1219 
 
 594 
 
 -1174 
 
 + 648 
 
 1171 
 
 -701 
 
 16 
 
 i 173 
 
 + 1014 
 
 -1378 
 
 -388 
 
 II2O 
 
 + 979 
 
 -1433 
 
 -471 
 
 - 914 
 
 + 805 
 
 1412 
 
 -588 
 
 17 
 
 - 800 
 
 + 1035 
 
 -1458 
 
 -287 
 
 - 787 
 
 + 1078 
 
 1541 
 
 -332 
 
 610 
 
 + 944 
 
 1554 
 
 449 
 
 18 
 
 - 412 
 
 + 1019 
 
 -1448 
 
 -188 
 
 429 
 
 + 1127 
 
 1539 
 
 194 
 
 284 
 
 + 1051 
 
 -1588 
 
 291 
 
 19 
 
 23 
 
 + 080 
 
 -1366 
 
 - 95 
 
 - 6p 
 
 + 1129 
 
 -1431 
 
 - 62 
 
 + 45 
 
 + II2I 
 
 1503 
 
 -125 
 
 20 
 
 + 344 
 
 + 922 
 
 1219 
 
 5 
 
 + 260 
 
 + 1089 
 
 1245 
 
 + 56 
 
 + 347 
 
 + "43 
 
 1313 
 
 + 37 
 
 21 
 
 + 679 
 
 + 853 
 
 1014 
 
 + 84 
 
 + 547 
 
 + 1021 
 
 999 
 
 + 162 
 
 + 595 
 
 + II2O 
 
 1036 
 
 + 188 
 
 22 
 
 + 967 
 
 + 774 
 
 - 758 
 
 + 172 
 
 + 788 
 
 + 931 
 
 713 
 
 +254 
 
 + 778 
 
 + 1056 
 
 706 
 
 +313 
 
 23 
 
 + "95 
 
 + 682 
 
 - 466 
 
 +262 
 
 + 975 
 
 + 827 
 
 403 
 
 +340 
 
 + 893 
 
 + 959 
 
 356 
 
 +416 
 
 24 
 
 + 1349 
 
 + 582 
 
 I5i 
 
 +353 
 
 + IIO2 
 
 + 712 
 
 - 81 
 
 +4'9 
 
 + 942 
 
 + 841 
 
 - 7 
 
 +495 
 
 25 
 
 + 1428 
 
 4 477 
 
 + 171 
 
 +446 
 
 + 1161 
 
 + 587 
 
 + 241 
 
 +492 
 
 + 936 
 
 + 710 
 
 + 322 
 
 +557 
 
 26 
 
 + 1427 
 
 + 364 
 
 + 489 
 
 +542 
 
 +1148 
 
 + 449 
 
 + 546 
 
 +558 
 
 + 875 
 
 + 569 
 
 + 623 
 
 +609 
 
 27 
 
 + 1339 
 
 + 248 
 
 + 786 
 
 +635 
 
 +1067 
 
 + 307 
 
 + 817 
 
 +617 
 
 + 765 
 
 + 422 
 
 + 879 
 
 +650 
 
 28 
 
 + 1164 
 
 + 126 
 
 + 1059 
 
 +726 
 
 + 920 
 
 + 163 
 
 + 1043 
 
 +674 
 
 + 608 
 
 + 258 
 
 + 1086 
 
 +684 
 
 29 
 
 + 003 
 
 4 
 
 + 1273 
 
 +804 
 
 + 719 
 
 + 13 
 
 + 1208 
 
 +726 
 
 + 412 
 
 + 107 
 
 + 1216 
 
 +707 
 
 30 
 
 + 562 
 
 143 
 
 + 1416 
 
 +860 
 
 + 473 
 
 - 138 
 
 + 1313 
 
 +770 
 
 + 194 
 
 - 56 
 
 +1278 
 
 +720 
 
 31 
 
 + 160 
 
 - 288 
 
 + 1454 
 
 +886 
 
 + 186 
 
 290 
 
 + 1341 
 
 +803 
 
 - 36 
 
 219 
 
 +1263 
 
 +726 
 
 32 
 
 - 273 
 
 429 
 
 + 1379 
 
 +876 
 
 - 137 
 
 442 
 
 + 1282 
 
 +814 
 
 - 269 
 
 379 
 
 + "77 
 
 +720 
 
 33 
 
 -692 
 
 - 562 
 
 + "83 
 
 +829 
 
 - 472 
 
 591 
 
 + 1117 
 
 +796 
 
 491 
 
 - 536 
 
 + 1003 
 
 +707 
 
 34 
 
 1052 
 
 -675 
 
 + 887 
 
 +743 
 
 - 781 
 
 730 
 
 + 854 
 
 +742 
 
 - 692 
 
 -685 
 
 + 773 
 
 +676 
 
 35 
 
 -1325 
 
 - 764 
 
 + 514 
 
 +625 
 
 -1038 
 
 - 848 
 
 + 500 
 
 +652 - 857 
 
 824 
 
 + 461 
 
 +624 
 
 36 
 
 -1484 
 
 -832 
 
 + 96 
 
 +479 
 
 1206 
 
 - 937 
 
 + 94 
 
 +526 - 966 
 
 - 948 
 
 + 93 
 
 +540 
 
 37 
 
 -1523 
 
 - 878 
 
 334 
 
 +3" 
 
 1269 
 
 991 
 
 - 329 
 
 +376 1002 
 
 -1047 
 
 - 309 
 
 +425 
 
 38 
 
 -1427 
 
 902 
 
 751 
 
 + 129 
 
 1221 
 
 1007 
 
 - 740 
 
 +207 - 945 
 
 1106 
 
 - 718 
 
 +281 
 
 39 
 
 1212 
 
 906 
 
 III2 
 
 59 
 
 I06S 
 
 991 
 
 -1095 
 
 + 26 - 797 
 
 1124 
 
 1082 
 
 + "4 
 
 40 
 
 - 888 
 
 -884 
 
 1392 
 
 244 
 
 809 
 
 946 
 
 1376 
 
 158 564 
 
 1095 
 
 1373 
 
 - 65 
 
 41 
 
 -482 
 
 -837 
 
 1560 
 
 417 
 
 477 
 
 - 880 
 
 -1558 
 
 339 267 
 
 1026 
 
 1562 
 
 242 
 
 42 
 
 44 
 
 - 759 
 
 1603 
 
 -567 
 
 - 89 
 
 793 
 
 1622 
 
 507 + 61 
 
 920 
 
 1635 
 
 -4" 
 
 43 
 
 + 392 
 
 - 655 
 
 1524 
 
 -689 
 
 + 322 
 
 - 685 
 
 -1563 
 
 -654 
 
 + 408 
 
 - 79i 
 
 -1586 
 
 564 
 
 44 
 
 + 778 
 
 530 
 
 -1338 
 
 -777 
 
 + 715 
 
 - 558 
 
 -1385 
 
 -769 
 
 + 743 
 
 - 643 
 
 1428 
 
 -696 
 
 45 
 
 + 1095 
 
 - 388 
 
 1067 
 
 -828 
 
 + 1054 
 
 418 
 
 1106 
 
 846 +1043 
 
 - 484 
 
 "59 
 
 -800 
 
 46 
 
 + 1319 
 
 240 
 
 749 
 
 -841 
 
 + 1304 
 
 - 268 
 
 762 
 
 -880 
 
 + 1279 
 
 319 
 
 819 
 
 -869 
 
 47 
 
 + 1445 
 
 - 89 
 
 392 
 
 -815 
 
 + 1453 
 
 114 
 
 - 384 
 
 -872 
 
 + 1429 
 
 - 151 
 
 427 
 
 -896 
 
 & 
 
 + 1474 
 
 + 57 
 
 33 
 
 -751 
 
 + J495 
 
 + 33 
 
 - 5 
 
 824 +1481 
 
 + 12 
 
 22 
 
 -876 
 
 49 
 
 + 1405 
 
 + 194 
 
 + 292 
 
 -651 
 
 + 1438 
 
 + i/o 
 
 + 338 
 
 -740 +1430 
 
 + 104 
 
 + 349 
 
 -813 
 
 5<> 
 
 + 1256 
 
 + 3" 
 
 + 56l 
 
 -516 
 
 + 1297 
 
 + 292 
 
 + 618 
 
 620 ! +1288 
 
 + 296 
 
 + 661 
 
 -706 
 
 51 
 
 + 1048 
 
 + 398 
 
 + 741 
 
 354 
 
 + 1085 
 
 + 392 
 
 + 829 
 
 -467 +1078 
 
 + 404 
 
 + 886 
 
 -565 
 
 y- 
 
 + 820 
 
 + 446 
 
 + 825 
 
 177 
 
 + 836 
 
 + 468 
 
 + 930 
 
 286 + 829 
 
 + 484 
 
 -j-IOII 
 
 -395 
 
 53 
 
 + 609 
 
 + 452 
 
 + 819 
 
 + 4 
 
 + 575 
 
 + 5ii 
 
 + 932 
 
 - 87 + 564 
 
 + 534 
 
 + 1031 
 
 -205 
 
 54 
 
 + 432 
 
 + 414 
 
 + 734 
 
 + 177 
 
 + 342 
 
 + Sii 
 
 + 839 
 
 +116 + 313 
 
 + 551 
 
 + 955 
 
 - 3 
 
 55 
 
 + 308 
 
 + 342 
 
 + 600 
 
 +330 
 
 + 159 
 
 + 468 
 
 + 672 
 
 +313 + 97 
 
 + 534 
 
 + 790 
 
 +206 
 
 56 
 
 + 237 
 
 + 245 
 
 + 451 
 
 +463 
 
 + 5i 
 
 + 385 
 
 + 465 
 
 +490 - 55 
 
 + 479 
 
 + 556 
 
 +4" 
 
 57 
 
 + 219 
 
 + 127 
 
 + 292 
 
 +569 
 
 + 26 
 
 + 264 
 
 + 246 
 
 +629 125 
 
 + 384 
 
 + 297 
 
 +597 
 
 58 
 
 + 247 
 
 - 6 
 
 + 161 
 
 +640 
 
 + 66 
 
 + "9 
 
 + 72 
 
 +726 105 
 
 + 249 
 
 + 66 
 
 +742 
 
 59 
 
 + 312 
 
 148 
 
 + 89 
 
 +665 
 
 + 151 
 
 - 38 
 
 - 26 
 
 +768 - 15 
 
 + 87 
 
 - 89 
 
 +827 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 TABLE III. Continued. 
 MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH. 
 
 The term of long period is omitted. The tabular unit is o".oi in fu and 6v', and 10 8 in Sp and Sp'. 
 
 i 
 
 System 6. 
 
 System 7. 
 
 System 8. 
 
 du 
 
 8v' 
 
 *t 
 
 iff 
 
 9* 
 
 3v' 
 
 if 
 
 dp' 
 
 du 
 
 3v' 
 
 if 
 
 ip* 
 
 
 
 57 
 
 + 45 
 
 130 
 
 +838 
 
 225 
 
 + 170 
 
 33 
 
 +759 
 
 422 
 
 + 3i9 
 
 + 73 
 
 +655 
 
 i 
 
 + 73 
 
 129 
 
 94 
 
 +826 
 
 no 
 
 + 5 
 
 39 
 
 +773 
 
 - 316 
 
 + 156 
 
 + 59 
 
 +682 
 
 2 
 
 + 166 
 
 292 
 
 + 58 
 
 +74i 
 
 12 
 
 - 155 + 56 
 
 +726 
 
 - 226 
 
 3 
 
 + 134 
 
 +654 
 
 3 
 
 + 186 
 
 426 
 
 + 296 
 
 +596 
 
 + 38 
 
 301 + 231 
 
 +629 
 
 177 
 
 148 
 
 + 272 
 
 +58l 
 
 4 
 
 + 113 
 
 - 519 
 
 + 558 
 
 +406 
 
 + 21 
 
 422 + 446 
 
 +487 
 
 179 
 
 - 273 
 
 + 434 
 
 +471 
 
 5 
 
 - 55 
 
 -565 
 
 + 794 
 
 +195 
 
 82 
 
 509 +663 
 
 +312 
 
 - 238 
 
 - 375 
 
 + 596 
 
 +334 
 
 6 
 
 294 
 
 - 565 
 
 + 96i 
 
 - 23 
 
 - 266 
 
 552 + 840 
 
 + "5 353 449 
 
 + 733 
 
 + 178 
 
 7 
 
 573 
 
 - 526 
 
 + 1039 
 
 232 
 
 5" 
 
 547 + 943 
 
 94 522 
 
 490 
 
 + 827 
 
 + 5 
 
 8 
 
 - 860 
 
 - 453 
 
 + 1017 
 
 421 
 
 790 
 
 493 I + 950 
 
 -298 
 
 735 
 
 490 
 
 + 845 
 
 175 
 
 9 
 
 1128 
 
 351 
 
 + 892 
 
 -588 
 
 -1066 
 
 400 
 
 + 855 
 
 -483 
 
 973 
 
 442 
 
 + 776 
 
 349 
 
 10 
 
 -1349 
 
 228 
 
 + 668 
 
 -723 
 
 1302 
 
 275 
 
 + 651 
 
 -639 
 
 I2OI 
 
 - 348 
 
 + 605 
 
 -518 
 
 ii 
 
 1496 
 
 - 88 
 
 + 36i 
 
 -823 
 
 1470 
 
 131 
 
 + 368 
 
 -758 
 
 -1378 
 
 217 
 
 + 343 
 
 -659 
 
 12 
 
 1549 
 
 + 64 
 
 9 
 
 -879 
 
 1549 
 
 + 23 
 
 + 23 
 
 -836 
 
 1480 
 
 - 62 
 
 + 13 
 
 -762 
 
 13 
 
 1404 
 
 + 223 
 
 405 
 
 -893 
 
 1524 
 
 + 182 
 
 352 
 
 -876 
 
 1481 
 
 + 107 
 
 - 350 
 
 -828 
 
 14 
 
 1335 
 
 + 38i 
 
 - 790 
 
 -860 
 
 1390 
 
 + 339 
 
 - 732 
 
 -875 
 
 -1378 
 
 + 277 
 
 7U 
 
 -850 
 
 IS 
 
 1089 
 
 + 533 
 
 -1125 
 
 -788 
 
 1150 
 
 + 489 
 
 1076 
 
 -834 
 
 1178 
 
 + 440 
 
 1048 
 
 -831 
 
 16 
 
 - 775 
 
 + 671 
 
 -1382 
 
 -682 
 
 -815 
 
 + 624 
 
 -1355 
 
 -757 
 
 -875 
 
 + 588 
 
 1327 
 
 774 
 
 17 
 
 427 
 
 + 796 
 
 -1541 
 
 -547 
 
 419 
 
 + 742 
 
 1534 
 
 640 
 
 - 500 
 
 + 7i8 
 
 1521 
 
 -680 
 
 18 
 
 73 
 
 + 902 
 
 1592 
 
 -396 
 
 + 2 
 
 + 833 
 
 1595 
 
 496 
 
 75 
 
 + 821 
 
 -1606 
 
 555 
 
 19 
 
 + 266 
 
 + 087 
 
 -1528 
 
 -231 
 
 + 409 
 
 + 90i 
 
 -1538 
 
 -328 
 
 + 370 
 
 + 895 
 
 -1567 
 
 406 
 
 20 
 
 + 563 
 
 + 1046 
 
 -1357 
 
 59 
 
 + 759 
 
 + 944 
 
 1364 
 
 151 
 
 + 782 
 
 + 934 
 
 1402 
 
 -238 
 
 21 
 
 + 799 
 
 + 1073 
 
 -1083 
 
 + 114 
 
 + 1030 
 
 + 966 
 
 1098 
 
 + 29 
 
 + "24 
 
 + 941 
 
 1126 
 
 - 58 
 
 22 
 
 + 957 
 
 + 1062 
 
 - 731 
 
 +277 
 
 + 1205 
 
 + 967 
 
 - 754 
 
 +203 
 
 + 1362 
 
 + 920 
 
 - 766 
 
 + 123 
 
 2.3 
 
 + 1023 
 
 + 1009 
 
 349 
 
 +425 
 
 + 1274 
 
 + 943 
 
 359 
 
 +366 
 
 + 1479 
 
 + 876 
 
 - 356 
 
 +298 
 
 24 
 
 + 1001 
 
 + 919 
 
 + 47 
 
 +544 
 
 + 1232 
 
 + 890 
 
 + 4O 
 
 +512 
 
 + 1467 
 
 + 812 
 
 + 70 
 
 +459 
 
 25 
 
 + 899 
 
 + 801 
 
 + 412 
 
 +632 
 
 + 1087 
 
 + 809 
 
 + 461 
 
 +634 
 
 + 1333 
 
 + 735 
 
 + 486 
 
 +599 
 
 26 
 
 + 737 
 
 + 663 
 
 + 726 
 
 +687 
 
 + 842 
 
 + 696 
 
 + 816 
 
 +726 
 
 + 1083 
 
 + 641 
 
 + 861 
 
 +713 
 
 27 
 
 + 540 
 
 + 5'7 
 
 + 962 
 
 +7l6 
 
 + 541 
 
 + 565 
 
 + 1000 
 
 +784 
 
 + 742 
 
 + 531 
 
 + "65 
 
 +795 
 
 28 
 
 + 3l8 
 
 + 35 
 
 + "42 
 
 +729 
 
 + 207 
 
 + 419 
 
 + 1266 
 
 +809 
 
 + 340 
 
 + 406 
 
 +1368 
 
 +846 
 
 29 
 
 + CO 
 
 + 213 
 
 + 1251 
 
 +728 
 
 121 
 
 + 270 
 
 +J339 
 
 +802 
 
 - 91 
 
 + 268 
 
 +1457 
 
 +861 
 
 30 
 
 139 
 
 + 57 
 
 + 1282 
 
 +721 
 
 422 
 
 + 121 
 
 +1321 
 
 +772 
 
 - 498 
 
 + 126 
 
 +1428 
 
 +843 
 
 3i 
 
 - 359 
 
 IO2 
 
 + 1236 
 
 +705 
 
 - 677 
 
 23 
 
 +1230 
 
 +727 
 
 - 849 
 
 n 
 
 + 1294 
 
 +796 
 
 32 
 
 - 562 
 
 262 
 
 + 1118 
 
 +679 
 
 -884 
 
 164 
 
 +1071 
 
 +673 
 
 1126 
 
 140 
 
 + 1084 
 
 +726 
 
 33 
 
 73i 
 
 422 
 
 + 926 
 
 +645 
 
 1037 
 
 - 306 
 
 + 855 
 
 +615 
 
 1312 
 
 260 
 
 + 813 
 
 +642 
 
 34 
 
 -852 
 
 574 
 
 + 675 
 
 +599 
 
 1128 
 
 445 
 
 + 589 
 
 +553 
 
 1406 
 
 - 370 
 
 + Sio 
 
 +548 
 
 35 
 
 923 
 
 - 718 
 
 + 374 
 
 +545 
 
 "53 
 
 579 
 
 + 284 
 
 +487 
 
 1418 
 
 474 
 
 + 187 
 
 +453 
 
 36 
 
 - 935 
 
 -852 
 
 + 39 
 
 +480 
 
 1108 
 
 709 
 
 40 
 
 +414 
 
 1346 
 
 577 
 
 - 136 
 
 +357 
 
 37 
 
 - 886 
 
 972 
 
 315 
 
 +399 991 
 
 - 828 
 
 365 
 
 +334 
 
 I2O2 
 
 - 676 
 
 449 
 
 +265 
 
 38 
 
 - 773 
 
 1071 
 
 -683 
 
 +300 803 
 
 933 
 
 - 688 
 
 +246 
 
 -982 
 
 - 767 
 
 743 
 
 + 177 
 
 39 
 
 - 589 
 
 i 143 ; 1024 
 
 + 178 - 558 
 
 1024 
 
 -983 
 
 + 150 
 
 697 
 
 -850 
 
 997 
 
 + 88 
 
 40 
 
 335 
 
 1177 1317 
 
 + 33 - 262 
 
 1093 
 
 1240 
 
 + 45 
 
 362 
 
 920 
 
 1203 
 
 3 
 
 41 
 
 - 28 
 
 1165 j 1526 
 
 130 + 79 
 
 "39 
 
 -1436 
 
 72 
 
 + 12 
 
 977 
 
 1354 
 
 -96 
 
 42 
 
 + 313 
 
 noo 1622 
 
 297 + 450 
 
 "47 
 
 1550 
 
 201 
 
 + 407 
 
 1017 
 
 -1438 
 
 -192 
 
 43 
 
 + 650 
 
 989 
 
 1599 
 
 -458 
 
 + 825 
 
 III2 
 
 1556 
 
 337 
 
 + 80S 
 
 1036 
 
 -1454 
 
 -291 
 
 44 
 
 + 959 
 
 - 837 
 
 1456 
 
 -600 
 
 + "72 
 
 1024 
 
 1451 
 
 -473 
 
 +"90 
 
 1024 
 
 -1381 
 
 393 
 
 45 
 
 + 1215 
 
 658 1207 
 
 -717 +1462 
 
 -887 
 
 -1233 
 
 -599 
 
 +1535 
 
 974 
 
 1213 
 
 -491 
 
 46 
 
 + 1400 
 
 - 466 - 83 1 
 
 80 1 +1660 
 
 709 
 
 930 
 
 703 
 
 +1805 
 
 - 878 
 
 - 961 
 
 -581 
 
 47 
 
 + 1505 
 
 269 496 
 
 850 +1753 
 
 502 
 
 564 
 
 773 
 
 + 1974 
 
 - 737 
 
 629 
 
 -655 
 
 48 
 
 + 1524 
 
 - 77 - 87 
 
 -863 +1738 
 
 - 285 
 
 - 167 
 
 807 
 
 +2021 
 
 - 555 
 
 - 248 
 
 -70S 
 
 49 
 
 + 1454 
 
 + 106 + 307 
 
 -837 
 
 +1629 
 
 - 67 
 
 + 222 
 
 803 
 
 + 1941 
 
 342 
 
 + 135 
 
 725 
 
 50 
 
 + 1298 
 
 + 270 
 
 + 651 
 
 -769 
 
 +1433 
 
 + 137 
 
 + 576 
 
 -758 
 
 + 1741 
 
 125 
 
 + 488 
 
 -706 
 
 Si 
 
 + 1070 
 
 + 407 
 
 + 909 
 
 -653 
 
 + 1168 
 
 + 319 
 
 + 866 
 
 -675 
 
 + 1450 
 
 + 9i 
 
 + 785 
 
 650 
 
 52 
 
 + 802 
 
 + 5i3 
 
 + 1062 
 
 500 
 
 + 861 
 
 + 471 
 
 + 1063 
 
 -556 
 
 + 1100 
 
 + 287 
 
 + 998 
 
 -555 
 
 53 
 
 + 52i 
 
 + 582 
 
 + IIOI 
 
 -316 
 
 + 534 
 
 + 586 
 
 +"5i 
 
 403 
 
 + 720 
 
 + 454 
 
 + 1118 
 
 425 
 
 54 
 
 + 256 
 
 + 610 
 
 + 1045 
 
 117 
 
 + 225 
 
 + 654 
 
 + "29 
 
 225 
 
 + 346 
 
 + 58o 
 
 +"38 
 
 -271 
 
 55 
 
 + 34 
 
 + 599 
 
 + 890 
 
 + 93 
 
 43 
 
 + 677 
 
 + 988 
 
 - 27 
 
 + 7 
 
 + 662 
 
 + 1051 
 
 97 
 
 56 
 
 - 135 
 
 + 553 + 671 
 
 +299 
 
 239 
 
 + 651 
 
 + 773 
 
 + 180 
 
 - 266 
 
 + 693 
 
 + 875 
 
 + 90 
 
 57 
 
 224 
 
 + 472 + 414 
 
 +49i 
 
 348 
 
 + 579 
 
 + 520 
 
 +379 
 
 446 
 
 + 670 
 
 + 639 
 
 +273 
 
 58 
 
 237 
 
 + 356 + 163 
 
 +656 
 
 371 
 
 + 467 
 
 + 272 
 
 +552 
 
 - 522 
 
 + 592 
 
 + 392 
 
 +440 
 
 59 
 
 - 174 
 
 + 212 : 33 
 
 +776 
 
 322 
 
 + 328 
 
 + 76 
 
 +683 
 
 504 
 
 + 471 
 
 + 188 
 
 +572 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE III. Concluded. 
 MUTUAL PERIODIC PERTURBATIONS OF VENUS AND THE EARTH. 
 
 The term of long period is omitted. The tabular unit is o".oi in tu and dv', and to 8 in <$/> and 
 
 
 System 9. 
 
 Systen/io. 
 
 System II. 
 
 i 
 
 du 
 
 dv' 
 
 dp 
 
 9ff 
 
 du 
 
 Sv' 
 
 *P 
 
 9p> 
 
 du 
 
 ilp' 
 
 df> 
 
 dp' 
 
 
 
 - 598 
 
 +447 
 
 + 196 
 
 +563 
 
 - 548 
 
 +407 
 
 + 300 
 
 +495 
 
 205 
 
 + 158 
 
 + 341 
 
 +471 
 
 i 
 
 544 
 
 +3i8 
 
 + 174 
 
 +583 
 
 - 616 
 
 +355 
 
 + 295 
 
 +506 
 
 - 371 
 
 + 169 
 
 + 372 
 
 +454 
 
 2 
 
 482 
 
 +176 ; + 237 
 
 +552 
 
 660 
 
 +285 
 
 + 355 
 
 +469 
 
 - 540 
 
 + 175 
 
 + 468 
 
 +393 
 
 3 
 
 444 
 
 + 36 + 357 
 
 +487 
 
 -698 
 
 +200 
 
 + 465 
 
 +398 
 
 - 718 
 
 + 179 
 
 + 591 
 
 +306 
 
 4 
 
 446 
 
 90 
 
 + 493 
 
 +394 
 
 747 
 
 + 109 
 
 + 579 
 
 +301 
 
 -897 
 
 + 176 
 
 + 700 
 
 +207 
 
 5 
 
 493 
 
 -196 
 
 + 613 
 
 +285 
 
 - 811 
 
 + 19 
 
 + 673 
 
 + 193 
 
 -1066 
 
 + 165 
 
 + 767 
 
 + 103 
 
 6 
 
 576 
 
 -278 
 
 + 699 
 
 + 162 
 
 -889 
 
 - 62 
 
 + 727 
 
 + 82 
 
 1208 
 
 + 141 
 
 + 783 
 
 + o 
 
 7 
 
 - 690 
 
 -338 
 
 + 744 
 
 + 26 
 
 980 
 
 127 
 
 + 732 
 
 32 
 
 1321 
 
 + 109 
 
 + 757 
 
 104 
 
 8 
 
 - 828 
 
 370 
 
 + 736 
 
 121 
 
 1073 
 
 -171 
 
 + 681 
 
 142 
 
 1409 
 
 + 77 
 
 + 662 
 
 205 
 
 9 
 
 -981 
 
 -371 
 
 + 667 
 
 272 
 
 1164 
 
 194 
 
 + 577 
 
 -254 
 
 -1470 
 
 + 51 
 
 + 5i6 
 
 300 
 
 10 
 
 -1138 
 
 335 
 
 + 522 
 
 42O 
 
 1249 
 
 193 
 
 + 416 
 
 364 
 
 1497 
 
 + 39 
 
 + 342 
 
 -384 
 
 II 
 
 1274 
 
 260 
 
 + 298 
 
 -553 
 
 1290 
 
 -166 
 
 + 203 
 
 -472 
 
 -1484 
 
 + 41 
 
 + "4 
 
 456 
 
 12 
 
 1360 
 
 -147 
 
 __ ny 
 
 -661 
 
 1310 
 
 113 
 
 60 
 
 -569 
 
 -1423 
 
 + 59 
 
 147 
 
 -517 
 
 13 
 
 1372 
 
 i 
 
 351 
 
 740 
 
 1274 
 
 - 29 
 
 - 304 
 
 648 
 
 1314 
 
 + 95 
 
 427 
 
 -566 
 
 M 
 
 -1288 
 
 + 164 
 
 715 
 
 -783 
 
 1176 
 
 + 83 
 
 693 
 
 699 
 
 "54 
 
 + 147 
 
 - 7" 
 
 603 
 
 IS 
 
 1106 
 
 +339 
 
 1055 
 
 -786 
 
 1000 
 
 +222 
 
 1015 
 
 -716 
 
 - 938 
 
 +220 
 
 -987 
 
 624 
 
 16 
 
 - 835 
 
 +504 
 
 -1328 
 
 753 
 
 - 741 
 
 +374 
 
 1301 
 
 -695 
 
 - 669 
 
 +3H 
 
 -1237 
 
 620 
 
 17 
 
 493 
 
 +654 
 
 1520 
 
 -682 
 
 415 
 
 +530 
 
 15" 
 
 -637 
 
 346 
 
 +420 -1438 
 
 -583 
 
 18 
 
 - 106 
 
 +779 
 
 1609 
 
 576 
 
 40 
 
 +671 
 
 1617 
 
 -549 
 
 + 19 
 
 +536 -1561 
 
 510 
 
 19 
 
 + 308 
 
 +876 
 
 -1582 
 
 440 
 
 + 353 
 
 +791 
 
 1605 
 
 -431 
 
 + 413 
 
 +651 
 
 1579 
 
 403 
 
 20 
 
 + 7io 
 
 +938 
 
 -1438 
 
 -282 
 
 + 726 
 
 +878 
 
 -1469 
 
 293 + 793 
 
 +749 
 
 1479 
 
 270 
 
 21 
 
 + 1072 
 
 
 1180 
 
 -108 
 
 + 1049 
 
 +933 
 
 1225 
 
 135 +1126 
 
 +821 
 
 1260 
 
 -116 
 
 22 
 
 + 1359 
 
 +948 
 
 820 
 
 + 68 
 
 + 1323 
 
 +949 
 
 - 880 
 
 + 33 
 
 + 1387 
 
 +862 
 
 940 
 
 + 40 
 
 23 
 
 + 1532 
 
 +899 
 
 399 
 
 +242 
 
 + 1501 
 
 +927 
 
 467 
 
 +207 
 
 + 1547 
 
 +867 
 
 - 544 
 
 + 202 
 
 24 
 
 + 1580 
 
 +816 
 
 + 54 
 
 +405 
 
 + 1572 
 
 +863 
 
 13 
 
 +376 
 
 + 1600 
 
 +835 
 
 IOI 
 
 +359 
 
 25 
 
 + 1493 
 
 +7U 
 
 + 494 
 
 +551 
 
 + 1525 
 
 +765 
 
 + 446 
 
 +530 
 
 +1546 
 
 +769 
 
 + 355 
 
 +509 
 
 26 
 
 + 1278 
 
 +592 
 
 + 885 
 
 +677 
 
 + 1353 
 
 +632 
 
 + 872 
 
 +659 +1379 
 
 +667 
 
 + 79i 
 
 +644 
 
 27 
 
 + 957 
 
 +466 
 
 + 1210 
 
 +778 
 
 + 1070 
 
 +479 
 
 + 1221 
 
 +759 +1116 
 
 +533 
 
 + U74 
 
 +757 
 
 28 
 
 + 558 
 
 +336 
 
 + 1436 
 
 +849 
 
 + 701 
 
 +3i6 
 
 + M7I 
 
 +833 + 766 > +372 
 
 + 1460 
 
 +841 
 
 29 
 
 + 106 
 
 +205 
 
 + 1545 
 
 +884 
 
 + 271 
 
 + 153 
 
 + 1600 
 
 +874 + 353 
 
 + 192 
 
 + 1627 
 
 +887 
 
 30 
 
 355 
 
 + 73 
 
 + 1534 
 
 +883 
 
 - 179 
 
 I 
 
 + 1609 
 
 +886 - 84 
 
 + 6 
 
 + 1659 
 
 +896 
 
 31 
 
 - 79i 
 
 - 59 
 
 + 1404 
 
 +848 
 
 - 621 
 
 142 
 
 + 1501 
 
 +867 - 515 
 
 -171 
 
 + 1565 
 
 +870 
 
 32 
 
 1164 
 
 -183 
 
 + 1169 
 
 +780 
 
 1026 
 
 -270 
 
 + I2 7 8 
 
 +815 
 
 - 909 
 
 -330 
 
 + 1357 
 
 +814 
 
 33 
 
 1439 
 
 297 
 
 + 861 
 
 +690 
 
 -1358 
 
 -383 
 
 + 96l 
 
 +733 
 
 1234 
 
 -466 
 
 + 1050 
 
 +735 
 
 34 
 
 1594 
 
 393 
 
 + 497 
 
 +58l 
 
 1592 
 
 -477 
 
 + 574 
 
 +621 
 
 1476 
 
 -573 
 
 + 673 
 
 +632 
 
 35 
 
 1633 
 
 -471 
 
 + 134 
 
 +465 
 
 1704 
 
 -550 
 
 + 154 
 
 +491 
 
 1629 
 
 652 
 
 + 250 
 
 +Sn 
 
 36 
 
 1560 
 
 -537 
 
 - 225 
 
 +345 
 
 -1684 
 
 602 
 
 
 +351 
 
 -1661 
 
 -707 
 
 - 183 
 
 +370 
 
 37 
 
 1402 
 
 -594 
 
 
 +226 
 
 1549 
 
 630 
 
 620 
 
 +209 
 
 1579 
 
 -733 
 
 - 596 
 
 +216 
 
 38 
 
 -1173 
 
 -045 
 
 818 
 
 + H5 
 
 -1317 
 
 639 
 
 923 
 
 + 77 -1384 
 
 -730 
 
 959 
 
 + 60 
 
 39 
 
 - 879 
 
 694 
 
 -1058 
 
 + n 
 
 1017 
 
 -637 
 
 1149 
 
 43 
 
 1098 
 
 703 
 
 1232 
 
 - So 
 
 40 
 
 - 540 
 
 -740 
 
 -1237 
 
 -84 
 
 674 
 
 -631 
 
 1301 
 
 -ISO 
 
 - 752 
 
 654 
 
 1403 
 
 219 
 
 4i 
 
 - 159 
 
 -783 
 
 -1347 
 
 169 
 
 303 
 
 -627 
 
 
 -244 
 
 - 37S 
 
 595 
 
 1473 
 
 -324 
 
 42 
 
 + 244 
 
 -813 
 
 1390 
 
 -245 
 
 + 80 
 
 -626 
 
 
 -324 
 
 + 3 
 
 532 
 
 1450 
 
 -403 
 
 43 
 
 + 651 
 
 -838 
 
 1365 
 
 315 
 
 + 465 
 
 -626 
 
 1342 
 
 391 , + 364 477 
 
 1357 
 
 462 
 
 44 
 
 + 1039 
 
 -849 
 
 -1275 
 
 -383 
 
 + 835 
 
 623 
 
 1225 
 
 442 + 697 432 
 
 1208 
 
 504 
 
 45 
 
 + 1399 
 
 -845 
 
 II2I 
 
 449 
 
 + 1181 
 
 -617 
 
 1049 
 
 478 +1001 306 
 
 1009 
 
 531 
 
 46 
 
 + 1708 
 
 821 
 
 911 
 
 509 
 
 + 1482 
 
 -607 
 
 - 832 
 
 502 +1264 368 
 
 - 778 
 
 -542 
 
 4? 
 
 + 1946 
 
 -768 
 
 642 
 
 562 
 
 + 1728 
 
 -591 
 
 - 580 
 
 517 +1480 ; 346 
 
 - 520 
 
 -536 
 
 48 
 
 +2089 
 
 -681 
 
 - 322 
 
 60 1 
 
 + 1908 
 
 -566 
 
 - 303 
 
 526 +1640 328 
 
 248 
 
 515 
 
 49 
 
 +2122 
 
 -S<S 
 
 + 27 
 
 621 
 
 +2014 
 
 -524 
 
 IS 
 
 527 +1743 312 
 
 + 17 
 
 -481 
 
 50 
 
 +2026 
 
 39J 
 
 + 372 
 
 -611 
 
 +2027 
 
 460 
 
 + 276 
 
 -514 
 
 + 1784 -298 
 
 + 265 
 
 434 
 
 Si 
 
 + 1803 
 
 -207 
 
 + 678 
 
 -570 
 
 + 1939 
 
 371 
 
 + 548 
 
 479 
 
 + 1761 i 283 
 
 + 487 
 
 -378 
 
 52 
 
 + 1482 
 
 II 
 
 + 912 
 
 4C9 
 
 + 1744 
 
 -254 i + 779 
 
 418 +1679 259 
 
 + 673 
 
 314 
 
 53 
 
 + 1093 
 
 + 178 
 
 + 1054 
 
 -396 
 
 + 1454 
 
 116 i + 942 
 
 327 +1528 221 
 
 + 813 
 
 236 
 
 54 
 
 + 679 
 
 +344 
 
 + 1097 
 
 269 
 
 + 1097 
 
 + 27 
 
 + 1017 
 
 213 +1313 l69 
 
 + 895 
 
 145 
 
 55 
 
 + 279 
 
 +477 
 
 + 1042 
 
 -117 
 
 + 709 
 
 + 166 
 
 + 995 
 
 8O : +IO44 j IOI 
 
 + 900 
 
 31 
 
 56 
 
 71 
 
 +569 
 
 + 006 
 
 + 49 
 
 + 331 
 
 +284 
 
 + 884 
 
 + 66 + 743 27 
 
 + 825 
 
 + IOO 
 
 57 
 
 344 
 
 +612 
 
 + 7io 
 
 +217 
 
 + 3 
 
 +371 
 
 - 716 
 
 +209 + 451 + 43 
 
 + 686 
 
 +234 
 
 58 
 
 - 523 
 
 +603 
 
 + 497 
 
 +370 
 
 254 
 
 +418 
 
 + 536 
 
 +337 
 
 + 189+99 
 
 + 525 
 
 +354 
 
 59 
 
 - 601 
 
 +548 
 
 + 3t2 
 
 +489 
 
 434 
 
 +430 
 
 + 38S 
 
 +437 
 
 - 27 
 
 + 137 
 
 + 397 
 
 +437 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 53 
 
 TABLE IV. 
 PERTURBATIONS OF THE G-COORDINATE X OF VENUS. 
 
 The tabular unit is io- 8 . 
 
 Sys- 
 tern 
 i 
 
 o 
 
 I 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 II 
 
 
 
 + 47 
 
 + 57 
 
 + 92 
 
 + 137 
 
 + 181 
 
 +217 
 
 +218 
 
 + 184 
 
 +142 
 
 +107 
 
 + 71 
 
 + 52 
 
 i 
 
 + 37 
 
 + 50 
 
 + 81 
 
 + 118 
 
 + 159 
 
 +197 
 
 +212 
 
 + 183 
 
 +140 
 
 + 92 
 
 + 52 
 
 + 30 
 
 2 
 
 ii 
 
 + ii 
 
 + 41 
 
 + 7i 
 
 + 109 
 
 +149 
 
 + 176 
 
 + 158 
 
 +H4 
 
 + 59 
 
 + 8 
 
 23 
 
 3 
 
 92 
 
 59 
 
 24 
 
 + 5 
 
 + 39 
 
 + 75 
 
 + 112 
 
 + iii 
 
 + 72 
 
 + 9 
 
 52 
 
 97 
 
 4 
 
 193 
 
 154 
 
 in 
 
 79 
 
 50 
 
 14 
 
 + 26 
 
 + 46 
 
 + 14 
 
 -48 
 
 122 
 
 -183 
 
 5 
 
 305 
 
 -269 
 
 217 
 
 -183 
 
 -156 
 
 122 
 
 79 
 
 - 41 
 
 55 
 
 in 
 
 -191 
 
 -268 
 
 6 
 
 412 
 
 -396 
 
 -338 
 
 290 
 
 -267 
 
 237 
 
 197 
 
 146 
 
 -136 
 
 -179 
 
 -26l 
 
 -348 
 
 7 
 
 506 
 
 -519 
 
 465 
 
 405 
 
 -380 
 
 -354 
 
 -318 
 
 -263 
 
 230 
 
 -251 
 
 -326 
 
 421 
 
 8 
 
 -581 
 
 -628 
 
 -586 
 
 519 
 
 -487 
 
 -468 
 
 437 
 
 -384 
 
 331 
 
 330 
 
 -386 
 
 482 
 
 9 
 
 -636 
 
 715 
 
 -696 
 
 629 
 
 -583 
 
 -569 
 
 -546 
 
 -502 
 
 -437 
 
 410 
 
 443 
 
 530 
 
 IO 
 
 -668 
 
 763 
 
 -780 
 
 -718 
 
 -661 
 
 650 
 
 -636 
 
 -599 
 
 539 
 
 -488 
 
 494 
 
 -565 
 
 ii 
 
 674 
 
 777 
 
 -827 
 
 -783 
 
 -718 
 
 -699 
 
 697 
 
 672 
 
 619 
 
 -556 
 
 -534 
 
 -582 
 
 12 
 
 -660 
 
 759 
 
 -828 
 
 814 
 
 745 
 
 714 
 
 -722 
 
 710 
 
 -669 
 
 606 
 
 -561 
 
 -580 
 
 13 
 
 621 
 
 710 
 
 790 
 
 -803 
 
 -745 
 
 699 
 
 -707 
 
 -712 
 
 -682 
 
 -625 
 
 569 
 
 -560 
 
 14 
 
 -559 
 
 -639 
 
 713 
 
 749 
 
 709 
 
 -652 
 
 652 
 
 -671 
 
 659 
 
 610 
 
 552 
 
 -523 
 
 IS 
 
 479 
 
 -541 
 
 614 
 
 -659 
 
 640 
 
 -580 
 
 564 
 
 -591 
 
 -596 
 
 559 
 
 507 
 
 -466 
 
 16 
 
 -383 
 
 431 
 
 495 
 
 -542 
 
 -540 
 
 -487 
 
 452 
 
 -475 
 
 496 
 
 476 
 
 432 
 
 -389 
 
 17 
 
 279 
 
 -308 
 
 364 
 
 410 
 
 417 
 
 -374 
 
 -325 
 
 337 
 
 -368 
 
 -366 
 
 331 
 
 -298 
 
 18 
 
 171 
 
 -183 
 
 -231 
 
 -273 
 
 -283 
 
 -251 
 
 -195 
 
 -187 
 
 221 
 
 -236 
 
 -213 
 
 -187 
 
 19 
 
 - 54 
 
 - 61 
 
 -98 
 
 137 
 
 149 
 
 123 
 
 - 68 
 
 -38 
 
 66 
 
 - 95 
 
 - 84 
 
 - 64 
 
 20 
 
 + 60 
 
 + 56 
 
 + 25 
 
 13 
 
 - 26 
 
 i 
 
 + 48 
 
 + 93 
 
 + 80 
 
 + 46 
 
 + 41 
 
 + 58 
 
 21 
 
 + 170 
 
 +160 
 
 + 136 
 
 + IOO 
 
 + 82 
 
 + 106 
 
 +151 
 
 +203 
 
 +209 
 
 +179 
 
 +155 
 
 + 171 
 
 22 
 
 +269 
 
 +253 
 
 +229 
 
 +197 
 
 + 174 
 
 +192 
 
 +236 
 
 +288 
 
 +312 
 
 +291 
 
 +262 
 
 +266 
 
 23 
 
 +350 
 
 +330 
 
 +305 
 
 +275 
 
 +249 
 
 +259 
 
 +299 
 
 +350 
 
 +384 
 
 +377 
 
 +348 
 
 +342 
 
 24 
 
 +406 
 
 +392 
 
 +363 
 
 +333 
 
 +307 
 
 +306 
 
 +341 
 
 +387 
 
 +430 
 
 +434 
 
 +412 
 
 +398 
 
 25 
 
 +441 
 
 +436 
 
 +407 
 
 +373 
 
 +347 
 
 +338 
 
 +367 
 
 +412 
 
 +451 
 
 +466 
 
 +456 
 
 +437 
 
 26 
 
 +461 
 
 +460 
 
 +435 
 
 +400 
 
 +374 
 
 +36i 
 
 +378 
 
 +418 
 
 +457 
 
 +475 
 
 +476 
 
 +464 
 
 27 
 
 +468 
 
 +47i 
 
 +451 
 
 +417 
 
 +388 
 
 +372 
 
 +380 
 
 +418 
 
 +454 
 
 +478 
 
 +483 
 
 +478 
 
 28 
 
 +476 
 
 +475 
 
 +459 
 
 +426 
 
 +394 
 
 +381 
 
 +379 
 
 +411 
 
 +447 
 
 +472 
 
 +481 
 
 +484 
 
 29 
 
 +480 
 
 +475 
 
 +463 
 
 +432 
 
 +397 
 
 +381 
 
 +379 
 
 +405 
 
 +440 
 
 +465 
 
 +475 
 
 +485 
 
 30 
 
 +484 
 
 +479 
 
 +467 
 
 +438 
 
 +401 
 
 +38o 
 
 +380 
 
 +401 
 
 +434 
 
 +459 
 
 +473 
 
 +479 
 
 31 
 
 +400 
 
 +484 
 
 +476 
 
 +445 
 
 +406 
 
 +380 
 
 +38o 
 
 +397 
 
 +431 
 
 +457 
 
 +470 
 
 +476 
 
 32 
 
 +491 
 
 +492 
 
 +483 
 
 +455 
 
 +414 
 
 +380 
 
 +379 
 
 +392 
 
 +426 
 
 +456 
 
 +469 
 
 +473 
 
 33 
 
 +485 
 
 +497 
 
 +488 
 
 +460 
 
 +417 
 
 +379 
 
 +375 
 
 +387 
 
 +419 
 
 +451 
 
 +467 
 
 +466 
 
 34 
 
 +468 
 
 +492 
 
 +489 
 
 +463 
 
 +420 
 
 +377 
 
 +362 
 
 +375 
 
 +403 
 
 +437 
 
 +456 
 
 +456 
 
 35 
 
 +439 
 
 +468 
 
 +479 
 
 +458 
 
 +414 
 
 +366 
 
 +341 
 
 +354 
 
 +377 
 
 +411 
 
 +432 
 
 +436 
 
 36 
 
 +397 
 
 +426 
 
 +448 
 
 +437 
 
 +392 
 
 +342 
 
 +3io 
 
 +314 
 
 +338 
 
 +368 
 
 +391 
 
 +399 
 
 37 
 
 +340 
 
 +360 
 
 +394 
 
 +396 
 
 +353 
 
 +301 
 
 +262 
 
 +260 
 
 +282 
 
 +3ii 
 
 +331 
 
 +343 
 
 38 
 
 +263 
 
 +270 
 
 +309 
 
 +327 
 
 +293 
 
 +240 
 
 + 196 
 
 + 184 
 
 +208 
 
 +236 
 
 +255 
 
 +264 
 
 39 
 
 + 167 
 
 + 166 
 
 + 199 
 
 +230 
 
 +211 
 
 + 155 
 
 + 109 
 
 + 90 
 
 + 112 
 
 + 141 
 
 + 161 
 
 + 166 
 
 40 
 
 + 56 
 
 + 47 
 
 + 69 
 
 + 107 
 
 + 104 
 
 + Si 
 
 + 2 
 
 20 
 
 4 
 
 + 33 
 
 + 55 
 
 + 57 
 
 41 
 
 - 67 
 
 - 80 
 
 74 
 
 - 38 
 
 22 
 
 -67 
 
 121 
 
 -145 
 
 -127 
 
 90 
 
 59 
 
 - 58 
 
 42 
 
 -188 
 
 206 
 
 215 
 
 188 
 
 -161 
 
 192 
 
 254 
 
 -283 
 
 265 
 
 222 
 
 -180 
 
 -172 
 
 43 
 
 301 
 
 325 
 
 344 
 
 -336 
 
 -306 
 
 319 
 
 -381 
 
 420 
 
 407 
 
 -357 
 
 -304 
 
 -282 
 
 44 
 
 -397 
 
 430 
 
 459 
 
 464 
 
 443 
 
 -438 
 
 494 
 
 549 
 
 -543 
 
 -486 
 
 -423 
 
 -385 
 
 45 
 
 473 
 
 510 
 
 545 
 
 -568 
 
 557 
 
 544 
 
 -589 
 
 -656 
 
 -665 
 
 609 
 
 534 
 
 -475 
 
 46 
 
 -528 
 
 -56o 
 
 -605 
 
 634 
 
 -638 
 
 -626 
 
 -655 
 
 729 
 
 -760 
 
 -712 
 
 -628 
 
 -555 
 
 47 
 
 -566 
 
 -578 
 
 -626 
 
 -665 
 
 -681 
 
 -678 
 
 694 
 
 -764 
 
 -818 
 
 -791 
 
 702 
 
 -617 
 
 48 
 
 -585 
 
 574 
 
 -611 
 
 -660 
 
 -685 
 
 692 
 
 703 
 
 759 
 
 -833 
 
 -833 
 
 749 
 
 -657 
 
 49 
 
 -588 
 
 547 
 
 -566 
 
 619 
 
 -653 
 
 -668 
 
 -679 
 
 723 
 
 -805 
 
 -838 
 
 -775 
 
 -675 
 
 50 
 
 572 
 
 -508 
 
 -505 
 
 -549 
 
 -588 
 
 609 
 
 -627 
 
 -659 
 
 -737 
 
 -796 
 
 -766 
 
 -668 
 
 Si 
 
 539 
 
 457 
 
 -431 
 
 454 
 
 -499 
 
 -525 
 
 -545 
 
 571 
 
 639 
 
 -716 
 
 -723 
 
 639 
 
 52 
 
 491 
 
 401 
 
 347 
 
 -350 
 
 -391 
 
 423 
 
 -447 
 
 470 
 
 -525 
 
 -605 
 
 -644 
 
 -589 
 
 53 
 
 431 
 
 339 
 
 -268 
 
 248 
 
 276 
 
 3n 
 
 333 
 
 357 
 
 401 
 
 -477 
 
 -535 
 
 -518 
 
 54 
 
 -362 
 
 -274 
 
 193 
 
 -152 
 
 162 
 
 197 
 
 222 
 
 247 
 
 -281 
 
 -346 
 
 414 
 
 428 
 
 55 
 
 -283 
 
 -205 
 
 122 
 
 -69 
 
 - 58 
 
 -88 
 
 III 
 
 137 
 
 -167 
 
 219 
 
 -286 
 
 -324 
 
 56 
 
 -109 
 
 134 
 
 - 58 
 
 + 2 
 
 + 31 
 
 + 14 
 
 14 
 
 37 
 
 -64 
 
 -106 
 
 164 
 
 211 
 
 57 
 
 114 
 
 - 67 
 
 
 + 60 
 
 + IOI 
 
 + 102 
 
 + 73 
 
 + 48 
 
 + 20 
 
 - 14 
 
 - 60 
 
 -105 
 
 58 
 
 - 38 
 
 - 8 
 
 + 44 
 
 + 104 
 
 +151 
 
 + 167 
 
 + 144 
 
 + H5 
 
 + 85 
 
 + 54 
 
 + 16 
 
 - 18 
 
 59 
 
 + 19 
 
 + 36 
 
 + 78 
 
 +130 
 
 +179 
 
 +208 
 
 + 194 
 
 + 161 
 
 + 128 
 
 + 94 
 
 + 59 
 
 + 36 
 
54 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE IV*. 
 PERTURBATIONS OF THE G-COORDINATE Y OF VENUS. 
 
 The tabular unit is 10 8 . 
 
 Sys- 
 tem 
 i 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 II 
 
 o 
 
 164 
 
 370 
 
 379 
 
 274 
 
 -176 
 
 - 78 
 
 + 42 
 
 + 160 
 
 +300 
 
 +423 
 
 +385 
 
 + 146 
 
 i 
 
 100 
 
 357 
 
 436 
 
 -365 
 
 -275 
 
 -199 
 
 - 87 
 
 + 39 
 
 +181 
 
 +337 
 
 +377 
 
 +202 
 
 2 
 
 22 
 
 310 
 
 454 
 
 430 
 
 -350 
 
 -290 
 
 203 
 
 - 77 
 
 + 68 
 
 +239 
 
 +348 
 
 +251 
 
 3 
 
 + 70 
 
 224 
 
 424 
 
 -458 
 
 394 
 
 -345 
 
 -287 
 
 175 30 
 
 + 145 
 
 +304 +294 
 
 4 
 
 +172 
 
 ill 
 
 350 
 
 -438 
 
 405 
 
 -360 
 
 330 
 
 246 
 
 -108 
 
 + 65 
 
 +252 , +324 
 
 5 
 
 +273 
 
 + 22 
 
 -236 
 
 373 
 
 -378 
 
 341 
 
 -328 
 
 -281 
 
 -162 
 
 + 3 
 
 +200 +339 
 
 6 
 
 +355 
 
 + 164 
 
 97 
 
 -272 
 
 -318 
 
 -294 
 
 -289 
 
 277 -190 
 
 - 38 
 
 + 154 +334 
 
 7 
 
 +410 
 
 +298 
 
 + 53 
 
 148 
 
 231 
 
 228 
 
 225 
 
 239 
 
 -193 
 
 - 65 
 
 + ii5 +313 
 
 8 
 
 +435 
 
 +406 
 
 +202 
 
 II 
 
 124 
 
 146 
 
 144 
 
 171 
 
 -167 
 
 - 72 
 
 + 89 +286 
 
 9 
 
 +436 
 
 + 4 8l 
 
 +340 
 
 + 131 
 
 - 6 
 
 - 54 
 
 - 59 
 
 - 87 -114 
 
 62 
 
 + 73 +258 
 
 10 
 
 +415 
 
 +523 
 
 +452 
 
 +267 
 
 + 114 
 
 + 46 
 
 + 32 
 
 + 7 - 38 
 
 - 31 
 
 + 70 
 
 +232 
 
 ii 
 
 +389 
 
 +531 
 
 +533 
 
 +390 
 
 +230 
 
 + 146 
 
 + 120 
 
 + 98 +49 +19 
 
 + 78 
 
 +214 
 
 12 
 
 +36l 
 
 +519 
 
 +583 
 
 +490 
 
 +339 
 
 +244 
 
 +205 
 
 + 185 i +139 + 86 
 
 + 101 
 
 +205 
 
 13 
 
 +339 
 
 +495 
 
 +602 
 
 +571 
 
 +442 
 
 +338 
 
 +200 
 
 +267 
 
 +227 +165 
 
 + 142 
 
 +207 
 
 14 
 
 +331 
 
 +472 
 
 +600 
 
 +626 
 
 +533 
 
 +429 , +372 
 
 +348 
 
 +315 +254 
 
 +201 
 
 +229 
 
 IS 
 
 +339 
 
 +457 
 
 +590 
 
 +660 
 
 +610 
 
 +515 +454 
 
 +427 
 
 +309 +348 
 
 +279 
 
 + 268 
 
 16 
 
 +363 
 
 +457 
 
 +579 
 
 +673 
 
 +673 
 
 +597 i +536 
 
 +508 
 
 +484 +440 
 
 +371 
 
 +329 
 
 17 
 
 +406 
 
 +472 
 
 +575 
 
 +679 
 
 +721 
 
 +673 
 
 +6l5 
 
 +588 
 
 +568 +534 
 
 +473 
 
 +409 
 
 18 
 
 +469 
 
 +502 
 
 +582 
 
 +678 
 
 +749 
 
 +738 
 
 +600 
 
 +667 
 
 +650 +624 
 
 +579 , +505 
 
 19 
 
 +550 
 
 +548 
 
 +602 
 
 +680 
 
 +76o 
 
 +787 
 
 +757 
 
 +735 
 
 +729 
 
 +710 
 
 +675 +610 
 
 20 
 
 +639 
 
 +606 
 
 +629 
 
 +685 
 
 +759 
 
 +812 
 
 +809 
 
 +792 
 
 +793 
 
 +786 
 
 +76i 
 
 +710 
 
 21 
 
 +729 
 
 +668 
 
 +660 
 
 +692 
 
 +747 
 
 +814 
 
 +837 
 
 +832 
 
 +837 
 
 +845 
 
 +829 
 
 +795 
 
 22 
 
 +804 
 
 +729 
 
 +691 
 
 +698 
 
 +729 
 
 +788 
 
 +835 
 
 +847 
 
 +858 
 
 +877 
 
 +875 
 
 +855 
 
 23 
 
 +848 
 
 +779 
 
 +715 
 
 +606 
 
 +704 
 
 +743 
 
 +799 
 
 +830 
 
 +846 
 
 +875 
 
 +888 
 
 +880 
 
 24 
 
 +854 
 
 +801 
 
 +725 
 
 +681 
 
 +671 
 
 +681 +729 
 
 +778 
 
 +801 
 
 +833 
 
 +861 
 
 +864 
 
 25 
 
 +812 
 
 +786 
 
 +717 
 
 +653 
 
 +621 
 
 +606 +630 
 
 +683 
 
 +7i7 
 
 +752 
 
 +792 
 
 +809 
 
 25 
 
 +723 
 
 +722 
 
 +676 
 
 +602 
 
 +552 
 
 +SI7 +510 
 
 +551 
 
 +594 
 
 +632 
 
 +676 
 
 +7io 
 
 27 
 
 +594 
 
 +609 
 
 +593 
 
 +53i 
 
 +465 
 
 +416 +383 
 
 +397 
 
 +441 
 
 +478 
 
 +522 
 
 +567 
 
 28 
 
 +428 
 
 +455 
 
 +467 
 
 +428 
 
 +360 
 
 +297 +2.48 
 
 +228 
 
 +262 
 
 +301 
 
 +34i 
 
 +390 
 
 29 
 
 +237 
 
 +269 
 
 +301 
 
 +295 
 
 +239 
 
 +174 +H3 
 
 + 66 
 
 + 70 
 
 + 106 
 
 + 138 
 
 + 187 
 
 30 
 
 + 26 
 
 + 67 
 
 + 107 
 
 + 132 
 
 + 100 
 
 + 40 22 
 
 po 
 
 -116 
 
 92 
 
 - 65 
 
 - 27 
 
 31 
 
 -187 
 
 142 
 
 099 
 
 54 
 
 - Si 
 
 - 98 1 -155 
 
 -227 -280 
 
 -283 
 
 -261 
 
 -235 
 
 32 
 
 -388 
 
 340 
 
 300 
 
 250 
 
 216 
 
 -237 ! -284 
 
 346 416 
 
 449 
 
 440 
 
 424 
 
 33 
 
 -565 
 
 523 
 
 -484 
 
 439 
 
 -389 
 
 -375 I -403 
 
 451 i 520 
 
 -580 
 
 -589 
 
 -582 
 
 34 
 
 702 
 
 -673 
 
 -637 
 
 -602 
 
 547 
 
 -505 
 
 -509 
 
 -538 
 
 594 
 
 -667 
 
 -702 
 
 703 
 
 35 
 
 -796 
 
 -785 
 
 -754 
 
 -729 
 
 -685 
 
 625 
 
 -601 
 
 609 
 
 644 
 
 -711 
 
 -770 
 
 -787 
 
 36 
 
 -846 
 
 -852 
 
 -835 
 
 814 
 
 -789 
 
 -728 
 
 -679 
 
 -664 
 
 -675 
 
 -723 
 
 -788 
 
 829 
 
 37 
 
 -857 
 
 -875 
 
 -872 
 
 -860 
 
 -850 
 
 -807 
 
 743 
 
 704 
 
 691 
 
 712 
 
 774 
 
 -830 
 
 38 
 
 -832 
 
 -857 
 
 -869 
 
 -867 
 
 869 
 
 -850 
 
 791 
 
 729 
 
 -695 
 
 -688 
 
 729 
 
 794 
 
 39 
 
 -779 
 
 810 
 
 -833 
 
 840 
 
 850 
 
 -858 
 
 -820 
 
 749 
 
 -690 
 
 659 
 
 -669 
 
 729 
 
 40 
 
 704 
 
 -741 
 
 -769 
 
 -787 
 
 802 
 
 -835 
 
 -827 
 
 -761 
 
 -685 
 
 631 
 
 -608 
 
 647 
 
 41 
 
 -613 
 
 659 
 
 -690 
 
 -713 
 
 -736 
 
 -778 
 
 -810 
 
 -767 
 
 -682 
 
 607 
 
 -554 
 
 -561 
 
 42 
 
 -518 
 
 -568 
 
 -601 
 
 629 
 
 -655 
 
 704 766 
 
 -763 
 
 -680 
 
 -589 
 
 512 
 
 -483 
 
 43 
 
 428 
 
 -475 
 
 513 
 
 -539 
 
 -568 
 
 618 702 
 
 743 
 
 -686 
 
 -582 
 
 -484 
 
 421 
 
 44 
 
 -350 
 
 -383 
 
 426 
 
 -452 
 
 -478 
 
 528 ; 622 
 
 705 
 
 -689 
 
 -586 
 
 -468 
 
 379 
 
 45 
 
 -289 
 
 299 
 
 341 
 
 -369 
 
 -393 
 
 435 ' 530 
 
 -645 
 
 -68 1 
 
 -597 
 
 -469 
 
 353 
 
 46 
 
 249 
 
 -226 
 
 -260 
 
 291 
 
 310 
 
 344 ! 432 
 
 569 
 
 -659 
 
 612 
 
 -480 
 
 345 
 
 47 
 
 227 
 
 -168 
 
 -183 
 
 214 
 
 229 
 
 254 329 
 
 472 
 
 610 
 
 -618 
 
 499 
 
 352 
 
 48 
 
 220 
 
 -126 
 
 in 
 
 -139 
 
 -152 
 
 166 ; 223 
 
 360 
 
 532 
 
 -606 
 
 521 
 
 -363 
 
 49 
 
 227 
 
 103 
 
 47 
 
 - 64 
 
 - 77 
 
 - 79 
 
 -116 
 
 -235 
 
 425 
 
 -566 
 
 -535 
 
 -387 
 
 50 
 
 240 
 
 - 94 
 
 3 
 
 + 9 
 
 2 
 
 + 8 
 
 10 
 
 104 
 
 -295 
 
 -488 
 
 -530 
 
 410 
 
 51 
 
 -2 5 8 
 
 - 96 
 
 + 25 
 
 + 75 
 
 + 74 
 
 + 88 
 
 + 97 
 
 + 30 
 
 148 
 
 377 
 
 497 
 
 424 
 
 52 
 
 -2 7 8 
 
 -105 
 
 + 40 
 
 + 124 
 
 + 143 
 
 + 163 
 
 + 192 
 
 + 160 
 
 + 8 
 
 235 
 
 427 
 
 427 
 
 S3 
 
 297 
 
 -124 
 
 + 35 
 
 + 151 
 
 +200 
 
 +226 
 
 +270 
 
 +276 
 
 + 161 
 
 - 77 
 
 324 
 
 407 
 
 54 
 
 314 
 
 -150 
 
 + 13 
 
 + I5I 
 
 +234 
 
 +272 
 
 +327 
 
 +368 
 
 +299 
 
 + 84 
 
 194 
 
 -359 
 
 55 
 
 319 
 
 184 
 
 21 
 
 + 124 
 
 +237 
 
 +298 
 
 +358 
 
 +428 
 
 +409 
 
 +235 
 
 - 49 
 
 -285 
 
 56 
 
 311 
 
 226 
 
 68 
 
 + 74 
 
 +205 
 
 +291 
 
 +360 
 
 +449 
 
 +483 
 
 +361 
 
 + 92 
 
 192 
 
 57 
 
 2pO 
 
 -273 
 
 -132 
 
 + 8 +136 
 
 +247 
 
 +329 
 
 +427 
 
 +509 
 
 +4-18 
 
 +215 
 
 94 
 
 58 
 
 257 
 
 -319 
 
 212 
 
 __ ** 
 
 + 42 
 
 + 164 
 
 +264 
 
 +365 
 
 +481 
 
 +487 
 
 +305 
 
 + I 
 
 59 
 
 -215 
 
 -355 
 
 -298 
 
 -173 
 
 - 66 
 
 + 50 
 
 + 165 
 
 +274 
 
 +407 
 
 +477 
 
 +36l 
 
 + 81 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 55 
 
 TABLE V. 
 
 RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH 
 SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN. 
 
 i 
 
 System o. 
 
 System i. 
 
 System 2. 
 
 X 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 
 
 +0.264 4388 
 
 +0.005 3159 
 
 +0.267 8642 
 
 +0.0172810 
 
 +0.273 5900 
 
 +0.024 1368 
 
 i 
 
 +0.2682411 
 
 0.070 6564 
 
 +0.271 9461 
 
 0.058 8025 
 
 +0.277 8772 
 
 0.0518927 
 
 2 
 
 +0.280 0227 
 
 -0.1458383 
 
 +0.2840031 
 
 0.1340369 
 
 +0.290 1029 
 
 0.1270162 
 
 3 
 
 +0.299 6585 
 
 0.219 3893 
 
 +0.303 8978 
 
 0.207 5810 
 
 +0.310 1265 
 
 0.200 3988 
 
 4 
 
 +0.326 9346 
 
 0.290 4863 
 
 +0.331 4038 
 
 0.278 6154 
 
 +0.337 7133 
 
 0.271 2285 
 
 5 
 
 +0.361 5487 
 
 0.358 3344 
 
 +0.366 2082 
 
 0.346 3496 
 
 +0.372 5452 
 
 0.338 7248 
 
 6 
 
 +0.403 1159 
 
 0.422 1763 
 
 +0.4079159 
 
 0.4100328 
 
 +0.414 2234 
 
 O.4O2 1483 
 
 7 
 
 +0.451 1712 
 
 0.481 2993 
 
 +0.456 0557 
 
 0.468 9619 
 
 +0.462 2754 
 
 0.460 8077 
 
 8 
 
 +0.505 1754 
 
 0.535 0445 
 
 +0.5100841 
 
 0.522 4898 
 
 +0.5161594 
 
 0.5I4067I 
 
 9 
 
 +0.564 5219 
 
 0.5828139 
 
 +0.569 3924 
 
 0.570 0313 
 
 +0.575 2710 
 
 0.56l 3528 
 
 10 
 
 +0.628 5438 
 
 0.624 0792 
 
 +0.633 3160 
 
 0.61 1 0692 
 
 +0.6389518 
 
 O.6O2 l6O2 
 
 ii 
 
 +0.696 5229 
 
 -0.658 3852 
 
 +0.701 1382 
 
 0.645 1617 
 
 +0.7064955 
 
 0.636 0564 
 
 12 
 
 +0.767 6965 
 
 0.685 3576 
 
 +0.772 1023 
 
 0.671 9440 
 
 +0.777 1566 
 
 -0.662 6856 
 
 13 
 
 +0.841 2692 
 
 0.704 7061 
 
 +0.845 4198 
 
 0.691 1353 
 
 +0.850 1572 
 
 0.68 1 7730 
 
 14 
 
 +0.9164199 
 
 0.716 2270 
 
 +0.920 2784 
 
 0.702 5389 
 
 +0.924 6978 
 
 0.693 1251 
 
 15 
 
 +0.9923125 
 
 0.7198055 
 
 +0.995 8539 
 
 0.706 0456 
 
 +0.9999648 
 
 0.696 6325 
 
 16 
 
 + 1.068 1057 
 
 0.7154169 
 
 + 1.0713157 
 
 0.701 6335 
 
 + 1.075 1404 
 
 0.692 2716 
 
 17 
 
 + 1.1429619 
 
 -0.703 1247 
 
 + 1.1458394 
 
 -0.6893674 
 
 + 1.1494106 
 
 0.680 1025 
 
 18 
 
 + 1.2160577 
 
 -0.683 0801 
 
 + 1.2186136 
 
 0.669 3977 
 
 + 1.2219735 
 
 0.6602691 
 
 19 
 
 + 1.2865933 
 
 0.655 5200 
 
 + 1.2888493 
 
 -0.641 9577 
 
 + 1.2920488 
 
 0.632 9963 
 
 20 
 
 + I-353799I 
 
 0.620 7640 
 
 + 1.3557887 
 
 0.607 3599 
 
 + 1.3588839 
 
 -0.5985883 
 
 21 
 
 + 1.4169464 
 
 0.579 2086 
 
 + 1.4187118 
 
 0.565 0943 
 
 + 1.421 7633 
 
 0.557 4240 
 
 22 
 
 + 1.4753529 
 
 0.531 3238 
 
 + 1.4769448 
 
 0.5183206 
 
 + 14800138 
 
 0.5099523 
 
 23 
 
 + 1.5283911 
 
 0.477 6470 
 
 + 1.5298660 
 
 04648651 
 
 + I.5330I33 
 
 04566884 
 
 24 
 
 + 1-5754942 
 
 0.418 7748 
 
 + 1.5769123 
 
 0.4062148 
 
 + 1.580 1954 
 
 0.398 2084 
 
 25 
 
 + 1.6161628 
 
 -0.355 3577 
 
 + 1.6175843 
 
 0.343 0090 
 
 + 1.6210558 
 
 0.335 1418 
 
 26 
 
 + 1.6499691 
 
 0.2880919 
 
 + 1.6514516 
 
 0.275 9346 
 
 + 1.655 1564 
 
 0.268 1673 
 
 27 
 
 + I.6765593 
 
 0.2177116 
 
 + 1.678 1568 
 
 0.205 7162 
 
 + 1.682 1302 
 
 0.1980049 
 
 28 
 
 + 1.6956592 
 
 0.1449820 
 
 + 1.6974188 
 
 0.133 1099 
 
 + 1.7016857 
 
 0.1254065 
 
 29 
 
 + 1.7070734 
 
 0.070 6903 
 
 + 1.7090351 
 
 0.058 8960 
 
 + 1.7136087 
 
 0.051 1511 
 
 30 
 
 + 1.7106804 
 
 +0.0043615 
 
 + 1.7128842 
 
 +0.016 1297 
 
 + 1.7177659 
 
 +0.023 9652 
 
 3i 
 
 + 1.7064775 
 
 +0.079 3664 
 
 + 1.7089249 
 
 +0.091 1628 
 
 + 1.714 1050 
 
 +0.099 1360 
 
 32 
 
 + 1.6944891 
 
 +O.I535I90 
 
 + 1.6971990 
 
 +0.165 3988 
 
 +1.702 6556 
 
 +0.1735529 
 
 33 
 
 + 1.6748587 
 
 +0.226 0244 
 
 + 1.6778288 
 
 +0.238 0408 
 
 + 1.6835308 
 
 +0.2464124 
 
 34 
 
 + 1.6478008 
 
 +0.296 1060 
 
 + 1.6510177 
 
 +0.308 3085 
 
 + 1.6569253 
 
 +0.3169261 
 
 35 
 
 + 1.6136080 
 
 +0.3630127 
 
 + 1.6170473 
 
 +0-375 4452 
 
 + 1.623 1144 
 
 +0.384 3269 
 
 36 
 
 + 1.5726476 
 
 +0.426 0265 
 
 + 1.5762761 
 
 +0.4387253 
 
 + 1.5824506 
 
 +0.4478781 
 
 37 
 
 + 1-5253583 
 
 +0.484 4694 
 
 + 1.529 1350 
 
 +0497 4622 
 
 + 1.5353622 
 
 +0.506 8825 
 
 38 
 
 + 1.4722450 
 
 +0.537 7122 
 
 + 1.4761240 
 
 +0.5510155 
 
 + 1.4823484 
 
 +0.560 6879 
 
 39 
 
 + 1.4138753 
 
 +0.585 1789 
 
 + 1.4178080 
 
 +0.598 7973 
 
 + 1.4239759 
 
 +0.608 6959 
 
 40 
 
 + 1.3508731 
 
 +0.626 3539 
 
 + 1.3548096 
 
 +0.640 2802 
 
 + 1.3608720 
 
 +0.650 3687 
 
 41 
 
 + 1.2839122 
 
 +0.660 7876 
 
 + 1.2878040 
 
 +O.675 OO2O 
 
 + 1.2937184 
 
 +0.685 2350 
 
 42 
 
 + 1.2137108 
 
 +0.6880995 
 
 + 1.2175124 
 
 +0.702 5721 
 
 + 1.2232454 
 
 +0.7128968 
 
 43 
 
 + 1.1410227 
 
 +0.707 9845 
 
 + 1.1446940 
 
 +0.722 6753 
 
 + 1.1502220 
 
 +0.7330331 
 
 44 
 
 + 1.0666304 
 
 +0.7202157 
 
 + 1.070 1388 
 
 +0.735 0768 
 
 + 1.0754484 
 
 +0.745 4066 
 
 45 
 
 +0.991 3369 
 
 +0.724 6478 
 
 +0.994 6591 
 
 +0.739 6239 
 
 +0.999 7488 
 
 +0.749 8650 
 
 46 
 
 +0.9I5957I 
 
 +0.721 2182 
 
 +0.919 0806 
 
 +0.7362498 
 
 +0.923 9587 
 
 +0.746 3434 
 
 47 
 
 +0.841 3093 
 
 +0.709 9494 
 
 +0.844 2332 
 
 +0.724 9743 
 
 +0.848 9201 
 
 +0.7348666 
 
 48 
 
 +0.7682082 
 
 +0.690 9488 
 
 +0.770 0409 
 
 +0.705 9042 
 
 +0.775 4674 
 
 +0.7155486 
 
 49 
 
 +0.6974541 
 
 +0.664 4077 
 
 +0.7000152 
 
 +0.679 2337 
 
 +0.7044196 
 
 +0.688 5925 
 
 SO 
 
 +0.629 8261 
 
 +0.630 6012 
 
 +0.632 2439 
 
 +0.645 2428 
 
 +0.636 5703 
 
 +0.654 2871 
 
 Si 
 
 +0.5660715 
 
 +0.5898843 
 
 +0.568 3830 
 
 +0.604 2938 
 
 +0.572 6800 
 
 +0.6130068 
 
 52 
 
 +0.5068987 
 
 +0.542 6896 
 
 +0.509 1472 
 
 +0.5568286 
 
 +0.5134653 
 
 +0.565 2062 
 
 53 
 
 +0.452 9685 
 
 +0.489 5225 
 
 +0.455 2029 
 
 +0.503 3636 
 
 +0.459 5903 
 
 +0.5114133 
 
 54 
 
 +0.404 8861 
 
 +0.4309573 
 
 +0.407 1576 
 
 +0.444 4847 
 
 +0.4116602 
 
 +0.452 2270 
 
 55 
 
 +0.363 1948 
 
 +0.3676314 
 
 +0.365 5549 
 
 +0.380 8404 
 
 +0.3702130 
 
 +0.388 3082 
 
 56 
 
 +0.328 3680 
 
 +0.300 2365 
 
 +0.330 8664 
 
 +0.313 1351 
 
 +0.335 7125 
 
 +0.320 3708 
 
 57 
 
 +0.300 8042 
 
 +0.2295127 
 
 +0.303 4856 
 
 +O.242 I2IO 
 
 +0.308 5436 
 
 +0.249 I75i 
 
 58 
 
 +0.280 8207 
 
 +0.1562403 
 
 +0.283 7236 
 
 +O.I68 5895 
 
 +0.289 0073 
 
 +0.1755176 
 
 59 
 
 +0.268 6504 
 
 +0.08 1 2302 
 
 +0.271 8049 
 
 +0.093 3621 
 
 +0.277 3 1 70 +o. loo 2240 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE V .Continued. 
 
 RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH 
 SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN. 
 
 I 
 
 System 3. 
 
 System 4. 
 
 System 5. 
 
 X 
 
 r 
 
 X 
 
 T 
 
 X 
 
 J' 
 
 o 
 
 +0.279 8926 
 
 +0.024 4020 
 
 +0.285 2603 
 
 +0.0184830 
 
 +0.2886591 
 
 +0.0080878 
 
 I 
 
 +0.284 2769 
 
 0.051 3907 
 
 +0.289 6702 
 
 0.0569777 +0.2930191 
 
 0.067 0880 
 
 2 
 
 +0.296 5601 
 
 0.1262430 
 
 +0.301 9298 
 
 0.131 4966 +0.305 1838 
 
 0.141 3542 
 
 3 
 
 +0.316 5918 
 
 0.1993308 
 
 +0.321 8895 
 
 0.204 2627 
 
 +0.325 0091 
 
 0.213 9093 
 
 4 
 
 +0.344 1354 
 
 0.269 8527 
 
 +0.3493160 
 
 0.274 4873 
 
 +0.352 2710 
 
 0.283 9728 
 
 5 
 
 +0.378 8721 
 
 0.337 0406 
 
 +0.383 8974 
 
 0.341 4123 
 
 +0.3866655 
 
 0.350 7937 
 
 6 
 
 +0.420 4078 
 
 0.400 1668 
 
 +0425 2457 
 
 0404 3190 
 
 +0.427 8152 0413 6573 
 
 7 
 
 +0.468 2736 
 
 0458 5510 
 
 +0472 9020 
 
 0.462 5340 
 
 +0.475 2721 0.471 8919 
 
 8 
 
 +0.521 9346 
 
 0.5115674 
 
 +0.5263418 
 
 0.5154368 
 
 +0.528 5222 0.524 8756 
 
 9 
 
 +0.5807952 
 
 -0.5586507 
 
 +0.5849803 
 
 0.5624651 
 
 +0.5869911 -0.5720427 
 
 10 
 
 +0.644 2076 
 
 0.5993022 
 
 +0.648 1798 
 
 0.603 1207 
 
 +0.650 0504 
 
 0.612 8887 
 
 ii 
 
 +0.7114758 
 
 0.633 0942 
 
 +0.715 2549 
 
 0.636 9740 
 
 +0.7170241 
 
 0.646 9765 
 
 12 
 
 +0.781 8659 
 
 0.659 6737 
 
 +0.785 4819 
 
 0.663 6672 
 
 +0.787 1933 
 
 0.673 9389 
 
 13 
 
 +0.854 6132 
 
 -0.678 7647 
 
 +0.858 1036 
 
 0.682 9185 
 
 +0.859 8058 
 
 0.693 4842 
 
 14 
 
 +0.928 9294 
 
 0.690 1730 
 
 +0.932 3397 
 
 -0.694 5257 
 
 +0.934 0825 
 
 -0.705 3977 
 
 IS 
 
 +1.0040113 
 
 0.693 7852 
 
 +1.0073925 
 
 -0.698 3667 
 
 +1.0092254 
 
 0.709 5459 
 
 16 
 
 +1.0790492 
 
 0.6895714 
 
 + 1.0824565 
 
 0.694 4006 
 
 + 1.0844261 
 
 0.705 8759 
 
 17 
 
 +1-1532351 
 
 0.677 5823 
 
 + 1.1567246 
 
 0.682 6691 
 
 +1.1588744 
 
 0.6944182 
 
 18 
 
 +1.2257719 
 
 -0.657 9526 
 
 + 1.2293983 
 
 0.663 2956 + 1.23 1 7646 
 
 0.675 2864 
 
 19 
 
 +1.2958808 
 
 0.630 8962 
 
 + 1.2996944 
 
 0.636 4839 +1.302 3064 
 
 0.648 6759 
 
 20 
 
 +1.3628093 
 
 0.596 7058 
 
 + 1.3668546 
 
 0.6025160 +1-3697311 
 
 0.6148635 
 
 21 
 
 +14258394 
 
 0.555 7489 
 
 + 1.4301522 
 
 0.561 7502 
 
 +14333011 
 
 0.574 2026 
 
 22 
 
 +1.4842931 
 
 0.508 4047 
 
 +14889006 
 
 0.5146175 
 
 +1.4923178 
 
 O.527 1222 
 
 23 
 
 +1.5375412 
 
 0455 3593 
 
 +1.5424596 
 
 0.461 6180 
 
 +1.5461296 
 
 0474 1214 
 
 24 
 
 +1.5850084 
 
 0.397 0007 
 
 + 1.5002425 
 
 0403 3157 
 
 + 1.594 1387 
 
 0.415 7661 
 
 25 
 
 +1.6261801 
 
 0.334 0124 
 
 + 1.631 7225 
 
 0.340 3342 
 
 + 1.6358083 
 
 0.352 6827 
 
 26 
 
 +1.6606072 
 
 0.267 0689 
 
 +1.6664388 
 
 0.273 3482 
 
 + 1.6706690 
 
 -0.285 5523 
 
 27 
 
 +1.6879113 
 
 0.1968867 
 
 + 1.6940012 
 
 0.203 0779 
 
 + 1.6983230 
 
 0.215 1035 
 
 28 
 
 +1.707 7882 
 
 0.1242202 
 
 + 1.7140957 
 
 0.1302819 
 
 + 1.7184514 
 
 0.142 1049 
 
 29 
 
 + 1.7200122 
 
 0.049 8508 
 
 + 1.7264883 
 
 0.055 7493 
 
 + 1.7308162 
 
 0.0673551 
 
 30 
 
 +1.7244388 
 
 +0.0254188 
 
 + 1.7310274 
 
 +0.0197085 +1.7352660 
 
 +0.008 3225 
 
 31 
 
 +1.7210059 
 
 +0.100 7745 
 
 + 1.7276465 
 
 +0.095 2669 
 
 + I-73I 7363 
 
 +0.084 0928 
 
 32 
 
 +1.7097359 
 
 +0.175 3989 
 
 +1.7163660 
 
 +0.1700960 
 
 + 1.7202518 
 
 +0.1591154 
 
 33 
 
 +1.6907351 
 
 +0.2484792 
 
 + 1.6972920 
 
 +0.243 3714 +1.700 9265 
 
 +0.232 5558 
 
 34 
 
 +1.6641950 
 
 +0.3192167 
 
 + 1.6706195 
 
 +0.314 2840 
 
 + 1.6739638 
 
 +0.303 5951 
 
 35 
 
 +1.6303893 
 
 +0.3868336 
 
 +1.6366271 
 
 +0.382 0454 
 
 + 1.6396529 
 
 +0.371 4384 
 
 36 
 
 +1.5896721 
 
 +0.450 5830 
 
 + 1.5956761 
 
 +0.445 9010 
 
 + 1.5983674 
 
 +0.435 3259 
 
 37 
 
 +1.5424753 
 
 +0.509 7560 
 
 + 1.5482079 
 
 +0.505 1363 
 
 + 1.5505612 
 
 +0.4945411 
 
 38 
 
 +1.4893032 
 
 +0.5636915 
 
 + 14947388 
 
 +0.5590849 
 
 + 1.4967627 
 
 +0.548 4197 
 
 39 
 
 +14307300 
 
 +0.6117835 
 
 + 14358543 
 
 +0.607 1386 
 
 + 1-437 5701 
 
 +0.596 3565 
 
 40 
 
 +1.3673923 
 
 +0.653 4880 
 
 + 1.3722027 
 
 +0.648 7530 
 
 +1.373 6443 
 
 +0.6378131 
 
 41 
 
 +1.2999821 
 
 +0.688 3306 
 
 + 1.3044890 
 
 +0.683 4552 
 
 + 1.3056998 
 
 +0.672 3257 
 
 42 
 
 +1.2292412 
 
 +0.7159113 
 
 + 1.2334657 
 
 +0.710 8508 
 
 + 1.2344980 
 
 +0.699 5075 
 
 43 
 
 +1.1559507 
 
 +0.7359II4 
 
 + I.I599243 
 
 +0.730 6274 
 
 + 1.1608358 
 
 +0.7190571 
 
 44 
 
 +1.0809236 
 
 +0.748 0961 
 
 + 1.0846868 
 
 +0.742 5595 
 
 + 1.0855389 
 
 +0-730 7598 
 
 45 
 
 +1.0049938 
 
 +0.752 3188 
 
 + 1.0085958 
 
 +0.7465108 
 
 + 1.0094492 
 
 +0.7344915 
 
 46 
 
 +0.929 0085 
 
 +0.748 5233 
 
 +0.932 5029 
 
 +0.742 4365 
 
 +0.933 4172 
 
 +0.7302183 
 
 47 
 
 +0.853 8157 
 
 +0.736 7446 
 
 +0.857 2595 
 
 +0.730 3837 
 
 +0.8582903 +0.7179976 
 
 48 
 
 +0.780 2560 
 
 +0.717 1082 
 
 +0.783 7064 
 
 +0.7104897 
 
 +0.784 9033 +0.697 9763 
 
 49 
 
 +0.709 1529 
 
 +0.6898295 
 
 +0.712 6639 
 
 +0.682 9817 
 
 +0.7140686 +0.6703895 
 
 50 
 
 +0.641 3017 
 
 +0.6552115 
 
 +0.644 9229 
 
 +0.648 1733 
 
 +0.646 5668 +0.635 5557 
 
 5i 
 
 +0.5774611 
 
 +0.6136402 
 
 +0.581 2344 
 
 +0.606 4605 
 
 +0.583 1378 +0.593 8734 
 
 52 
 
 +0.5183431 
 
 +0.565 5804 
 
 +0.522 3027 
 
 +0.5583153 
 
 +0.5244736 
 
 +0.545 8162 
 
 53 
 
 +0464 6055 
 
 +0.5115714 
 
 +0.468 7755 
 
 +0.504 2817 
 
 +0.471 2105 
 
 +0.491 9264 
 
 54 
 
 +0.4168456 
 
 +04522194 
 
 +0.421 2379 
 
 +0.444 9681 
 
 +0.423 9224 
 
 +0.432 8084 
 
 55 
 
 +0.375 5907 
 
 +0.388 1916 
 
 +0.380 2062 
 
 +0.381 0400 
 
 +0.3831147 
 
 +0.369 1218 
 
 56 
 
 +0.341 2944 
 
 +0.320 2069 
 
 +0.346 1218 
 
 +0.3132132 
 
 +0.349 2206 +0.301 5727 
 
 57 
 
 +0.3143306 
 
 +0.249 0281 
 
 +0.3T93477 
 
 +0.242 2440 
 
 +0.3225952 +0.2309071 
 
 58 
 
 +0.204 9887 
 
 +0.175 4508 
 
 +0.300 1638 
 
 +0.1689220 
 
 +0.303 5124 +0.157 9020 
 
 59 
 
 +0.283 4712 
 
 +0.1002967 
 
 +0.288 7653 
 
 +0.094 0597 
 
 +0.2921646 +0.0833577 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 57 
 
 TABLE V '.Continued. 
 
 RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH 
 SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN. 
 
 i 
 
 System 6. 
 
 System 7. 
 
 System 8. 
 
 X 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 o 
 
 +0.2893812 
 
 0.004 3547 
 
 +0.287 0415 
 
 0.0159849 
 
 +0.281 8724 
 
 0.023 8026 
 
 i 
 
 +0.293 5931 
 
 -0.0793938 
 
 +0.291 OOI2 
 
 0.091 0510 
 
 +0.285 5340 
 
 0.099 0059 
 
 2 
 
 +0.305 5780 
 
 -0.153 578i 
 
 +0.302 7254 
 
 0.1653184 
 
 +0.2969815 
 
 0.1734542 
 
 3 +0.32S 2014 
 
 0.226 1096 
 
 +0.322 0914 
 
 0.2379885 
 
 +0.316 1026 
 
 0.246 3419 
 
 4 +0.352 2490 
 
 0.296 2092 
 
 +0.348 8955 
 
 0.308 2783 
 
 +0.342 7024 
 
 -0.3168787 
 
 5 +0.3864284 
 
 0.363 1251 
 
 +0.382 8548 
 
 -0.375 4297 
 
 +0.376 5054 
 
 0.384 2966 
 
 6 +0.427 3728 
 
 0.426 1400 
 
 +04236113 
 
 0438 7161 
 
 +0.417 1580 
 
 -0.4.178587 
 
 7 +0.474 6443 
 
 0.484 5776 
 
 +0470 7341 
 
 04974515 
 
 +0.464 2316 
 
 0.5068671 
 
 8 +0.527 738o 
 
 -0.537 8098 
 
 +0.523 7240 
 
 0.5509962 
 
 +0.5172268 
 
 0.560 6696 
 
 9 +0.586 0872 
 
 0.585 2627 
 
 +O.5820I78 
 
 0.598 7649 
 
 +0.575 5777 
 
 -0.6086687 
 
 10 +0.649 0693 
 
 0.6264213 
 
 +0.6440946 
 
 0.640 2315 
 
 +0.6386584 
 
 -0.650 3275 
 
 n +0.7160118 
 
 -0.6608369 
 
 +O.7II 9802 
 
 0.674 9360 
 
 +0.705 7897 
 
 0.685 1772 
 
 12 +0.786 1986 
 
 0.688 1308 
 
 +0.782 2554 
 
 0.702 4883 
 
 +0.776 2436 
 
 0.7128211 
 
 13 +0.8588769 
 
 0.707 9983 
 
 +0.855 0617 
 
 0.722 5740 
 
 +0.849 2528 
 
 0.732 9398 
 
 14 
 
 +0.9332651 
 
 0.720 2135 
 
 +0.929 6105 
 
 0.734 9582 
 
 +0.924 0172 
 
 0.745 2958 
 
 15 
 
 +1.0085598 
 
 0.724 6313 
 
 +1.0050902 
 
 0.7394890 
 
 +0.099 7145 
 
 -0.7497373 
 
 16 
 
 +1.0839453 
 
 0.721 1895 
 
 + 1.0806753 
 
 0.736 0095 
 
 +1.075 5o85 
 
 0.746 1991 
 
 17 
 
 +1.1586020 
 
 0.709 9106 
 
 + i. 155 5347 
 
 0.724 8102 
 
 +I.I505579 
 
 0.734 7062 
 
 18 
 
 +1.231 7142 
 
 0.6909018 
 
 + 1.2288424 
 
 0.705 7280 
 
 +1.2240268 
 
 -0.715 3728 
 
 19 
 
 +1.3024807 
 
 0.664 3547 
 
 + 1.2997857 
 
 0.679 0484 
 
 +1.2950946 
 
 0.688 4024 
 
 20 
 
 +1.3701219 
 
 0.630 5443 
 
 + 1-3675740 
 
 0.645 0509 
 
 +1.3629645 
 
 0.654 0862 
 
 21 
 
 +1.4338001 
 
 0.589 8264 
 
 + 1.4314510 
 
 0.604 0981 
 
 +14268752 
 
 0.612 7087 
 
 22 
 
 +1.4930762 
 
 0.542 6339 
 
 + 1.4907009 
 
 0.5566323 
 
 + 1.4861086 
 
 0.564 9945 
 
 23 
 
 +1.5470187 
 
 0.4894723 
 
 + 1.5446576 
 
 0.503 1709 
 
 +1.5399987 
 
 0.5112033 
 
 24 
 
 +1.5951122 
 
 0.4309158 
 
 + 1.5927131 
 
 0.444 2908 
 
 +1.5879409 
 
 0.452 0237 
 
 25 
 
 +1.6368140 
 
 0.367 6003 
 
 + 1.6343252 
 
 0.3806684 
 
 +1.6293973 
 
 0.388 1 167 
 
 26 
 
 +1.6716503 
 
 0.3002166 
 
 + 1.6690214 
 
 0.312 9805 
 
 +1.6639048 
 
 0.320 1963 
 
 27 
 
 + 1.6992228 
 
 0.229 5034 
 
 + 1.6964089 
 
 0.241 9865 
 
 +1.691 0789 
 
 0.249 0223 
 
 28 
 
 +1.7192138 
 
 0.1562412 
 
 + 1.716 1761 
 
 0.1684765 
 
 + 1.7106192 
 
 -0.1753907 
 
 29 
 
 +1.731 3808 
 
 0.081 2404 
 
 + 1.7280986 
 
 0.093 2689 
 
 + 1.7223122 
 
 o.ioo 1249 
 
 30 
 
 +1.7356043 
 
 0.005 3345 
 
 + 1.7320410 
 
 0.0172049 
 
 + 1.7260340 
 
 0.024 0644 
 
 31 
 
 +1.7318010 
 
 +0.070 6309 +1.727 958o 
 
 +0.0588662 
 
 +1.721 7514 
 
 +0.0519430 
 
 32 
 
 +1.7200145 
 
 +0.1458077 +1.7158966 
 
 +0.1340934 
 
 +1.7095212 
 
 +0.1270511 
 
 33 
 
 + 1.7003702 
 
 +0.2 19 3560 +i .695 0944 
 
 +0.207 6356 
 
 +1.6894904 
 
 +0.2004263 
 
 34 
 
 +1.673 0827 
 
 +0.290 4526 
 
 + 1.6684777 
 
 +0.278 6726 
 
 +1.6618933 
 
 +0.271 2560 
 
 35 
 
 +1.6384553 
 
 +0.358 3016 
 
 + 1.6336507 
 
 +0.3464130 
 
 +1.6270482 
 
 +0.3387587 
 
 36 
 
 +1.5968743 
 
 +0.422 1439 +I-59I 9353 
 
 +0.410 1049 
 
 +1.5853540 
 
 +0.402 1930 
 
 37 
 
 +1.5488048 
 
 +0.4812659 +I.S437778 
 
 +0469 0434 
 
 +1.5372837 
 
 4-0.4608658 
 
 38 
 
 +1.4947865 
 
 +0.535 0089 + 1 489 7309 
 
 +0.522 5796 
 
 +14833802 
 
 +0.5141397 
 
 39 
 
 +1.4354258 
 
 +0.582 7755 +i .430 4045 
 
 +0.570 1266 
 
 + 1.4242480 
 
 +0.561 4397 
 
 40 
 
 +1.3713900 
 
 +0.6240380 +1.3664651 
 
 +0.611 1675 
 
 +1.3605472 
 
 +0.602 2588 
 
 41 
 
 +1.303 3980 
 
 +0.6583431 
 
 + 1.2986290 
 
 +0.645 2002 
 
 +1.2929865 
 
 +0.636 1634 
 
 42 
 
 +1.2322125 
 
 +0.685 3171 
 
 + 1.2276529 
 
 +0.672 0417 
 
 +1.2223115 
 
 +0.662 7978 
 
 43 
 
 +1.1586310 
 
 +0.7046608 +1.1543266 
 
 +0.691 2326 
 
 + 1.1493005 
 
 +0.681 8865 
 
 44 
 
 +1.0834752 
 
 +0.716 1979 
 
 + 1.0794622 
 
 +0.702 6377 
 
 + 1.0747540 
 
 +0.693 2381 
 
 45 
 
 +1.0075811 
 
 +0.7197864 
 
 + 1.0038858 
 
 +0.706 1489 
 
 +0.9094847 
 
 +0.696 7453 
 
 46 
 
 +0.931 7009 
 
 +0.7154100 
 
 +0.9284277 
 
 +0.701 7444 
 
 +0.9243115 
 
 +0.692 3855 
 
 47 
 
 +0.8569412 
 
 +0.703 1324 
 
 +0.853 9128 
 
 +0.689 4895 
 
 +0.850 0486 
 
 +0.680 2209 
 
 48 
 
 +0.7838553 
 
 +0.683 1047 
 
 +0.781 1516 
 
 +0.669 5340 
 
 +0.7774975 
 
 +0.660 3960 
 
 49 
 
 +0.713 3338 
 
 +0.655 5634 
 
 +0.7109317 
 
 +0.642 1 1 1 1 
 
 +0.7074383 
 
 +0.633 1359 
 
 50 
 
 +0.646 1446 
 
 +0.620 8269 
 
 +0.644 0104 
 
 +0.607 5322 
 
 +0.640 6223 
 
 +0.558 7436 
 
 Si 
 
 +0.5830165 
 
 +0-579 2912 
 
 +0.581 1065 
 
 +0.566 1862 
 
 +0.577 7638 
 
 +0.5575971 
 
 52 
 
 +0.524 6297 
 
 +0.5314234 
 
 +0.522 8929 
 
 +0.5185316 
 
 +0.5195340 
 
 +0.510 1441 
 
 53 
 
 +0.471 6 no 
 
 +0.4777588 
 
 +04699907 
 
 +0.465 0927 
 
 +0466 5545 
 
 +04568979 
 
 54 
 
 +0.424 5246 
 
 +0.418 8929 
 
 +0.422 9616 
 
 +0.4064538 
 
 +0.4193902 
 
 +0.3084327 
 
 55 
 
 +0.383 8706 
 
 +0.355 4747 
 
 +0.382 3050! 
 
 +0.343 2525 
 
 +0.378 5456 
 
 +0.335 3763 
 
 56 
 
 +0.350 0760 
 
 +O.288 2O02 
 
 +0.3484501! 
 
 +0.276 1738 
 
 +0.3444581 
 
 +0.2684051 
 
 57 
 
 +0.323 4952 
 
 +0.2178039 
 
 +0.321 7545 
 
 +0.205 9419 
 
 +0.3174943 
 
 +0.1982368 
 
 58 
 
 +0.3044032 
 
 +O.I450SI2 
 
 +0.302 4906 
 
 +0.133 3140 
 
 +0.2079461 
 
 +0.1256232 
 
 59 
 
 +0.292 9944 
 
 +0.070 7305 
 
 +0.2908879, 
 
 +0.0590724 
 
 +0.286 0278 
 
 +0.051 3438 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE V .Concluded. 
 
 RECTANGULAR G-COORDINATES X AND Y OF VENUS, REFERRED, IN EACH 
 SYSTEM, TO AN Axis OF X PASSING THROUGH THE MEAN SUN. 
 
 i 
 
 System 9. 
 
 System 10. 
 
 System n. 
 
 X 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 o 
 
 i 
 
 2 
 
 3 
 
 4 
 
 +0.275 0523 
 +0.2784844 
 +0.2897521 
 +0.308 7484 
 +0.335 2831 
 
 -0.025 3633 
 
 o.ioo 7462 
 0.1754000 
 0.248 5086 
 0.3192704 
 
 +0.268 5973 
 +0.271 9768 
 +0.283 2537 
 +0.302 3220 
 +0.328 0878 
 
 0.019 7819 
 0.095 3562 
 0.1702047 
 0.243 5018 
 0.3144354 
 
 +0.264 6365 
 +0.268 1640 
 +0.279 6432 
 
 +0.298 9610 
 
 +0.325 9149 
 
 0.0084260 
 0.084 2045 
 0.1592361 
 0.232 6860 
 
 -0.303 7353 
 
 5 
 6 
 
 8 
 9 
 
 +0.369 0820 
 +0.409 7903 
 +0.4569758 
 +0.510 1331 
 
 +0.568 6886 
 
 0.386 9062 
 0.450 6682 
 0.509 8485 
 -0.563 7854 
 
 0.6118737 
 
 +0.362 9727 
 +0403 9145 
 +0.451 3723 
 +0.504 8294 
 +0.563 7000 
 
 0.3822158 
 04460864 
 0.5053317 
 0.559 2848 
 0.607 3382 
 
 +0.3602162 
 +0401 4913 
 
 +0.4492861 
 +0.503 0724 
 +0.5622517 
 
 0.371 5891 
 0.435 4874 
 0.494 7126 
 -0.548 5982 
 0.596 5386 
 
 10 
 ii 
 
 12 
 
 13 
 14 
 
 +0.632 0062 
 +0.6993951 
 +0.7701160 
 +0.8433898 
 +0.918 4056 
 
 -0.653 5698 
 
 0.688 4000 
 0.7159656 
 0.735 9488 
 0.748 1159 
 
 +0.6273358 
 +0.695 0329 
 +0.766 0396 
 +0.839 5657 
 +0.914 7912 
 
 0.648 0481 
 0.683 6429 
 0.711 0281 
 0.730 7919 
 0.742 7091 
 
 +0.626 1636 
 +0.694 0946 
 +0.765 2841 
 +0.838 9356 
 +0.914 2243 
 
 0.637 9955 
 0.672 5042 
 0.6996795 
 0.719 2203 
 0.7309118 
 
 3 
 
 17 
 
 18 
 
 19 
 
 +0-994 3301 
 + 1.0703171 
 + I.I455I78 
 +1.2190910 
 +1.2902123 
 
 0.752 3209 
 0.748 5084 
 0.736 7126 
 0.717 0597 
 -0.689 7649 
 
 +0.990 8753 
 + 1.0669676 
 + 1.1422168 
 + 1.2157813 
 + 1.2868399 
 
 0.7466441 
 0.742 5523 
 0.730 4812 
 0.7105689 
 0.683 0438 
 
 +0.990 3091 
 +1.0663406 
 +1.1414717 
 +1.2148681 
 +1.2857175 
 
 -0.734 6303 
 0.730 3419 
 0.718 1042 
 0.698 0645 
 0.670 4585 
 
 20 
 21 
 22 
 23 
 
 24 
 
 + 1.3580846 
 + 1.4210480 
 + 1.481 0876 
 + 1.5348440 
 + 1.5826192 
 
 0.655 1320 
 0.613 5482 
 0.565 4803 
 0.511 4688 
 
 O.452 I2IO 
 
 + 1-3545999 
 + 1.4183087 
 + 1.4772619 
 + 1.5308092 
 + 1.5783646 
 
 0.6482193 
 0.6064921 
 
 0.558 3354 
 0.504 2948 
 0.444 9805 
 
 +1.3532374 
 +14166861 
 +1.4753700 
 +1.5286519 
 + 1-5759570 
 
 0.635 6060 
 0.593 9072 
 0.545 8365 
 0.491 9379 
 0432 8169 
 
 25 
 26 
 27 
 
 28 
 29 
 
 + 1.6238856 
 + 1.658 1899 
 + 1.685 1598 
 + 1.7045055 
 + 1.7160249 
 
 0.388 1040 
 0.320 1363 
 0.2489795 
 0.175 4284 
 0.1003034 
 
 + 1.6194111 
 + 1.6535064 
 + 1.6802882 
 + 1.6994769 
 + 1.7108776 
 
 0.381 0500 
 0.3132470 
 0.242 3001 
 0.1690056 
 0.094 1744 
 
 + 1.6167795 
 + 1.6506865 
 + 1.6773221 
 + 1.6964120 
 + 1.7077640 
 
 0.369 1332 
 -0.301 5947 
 0.230 9478 
 0.1570687 
 0.083 456i 
 
 30 
 3i 
 32 
 33 
 
 34 
 
 + 1.7196036 
 + 1.7152172 
 + 1.7029292 
 + 1.6828904 
 + 1.6553370 
 
 0.024 4386 
 +0.051 3259 
 +0.126 1551 
 +O.I992270 
 +0.269 7422 
 
 + 1.7143826 
 + 1.7099702 
 + 1.6977055 
 + 1.6777386 
 + 1.6503021 
 
 0.0186200 
 +0.056 8022 
 +0.131 2957 
 +0.204 0425 
 +0.274 2547 
 
 + 1.7112698 
 + 1.7060075 
 + 1.6947377 
 + 1.6740043 
 + 1.6476325 
 
 0.008 2204 
 +0.066 9225 
 +0.141 1607 
 +0.213 6945 
 +0.283 7444 
 
 35 
 36 
 37 
 38 
 39 
 
 + 1.6205873 
 + 1.5790366 
 + I-53I 1536 
 + 14774737 
 + 1.4185926 
 
 +0.3369322 
 +0.400 0673 
 +0.4584650 
 +0.5II4975 
 
 +0.558 5979 
 
 + 1.6157077 
 + 1-5743442 
 + 1.5266706 
 + 14732125 
 + I.4I45550 
 
 +0.341 1756 
 +0.404 0865 
 +04623116 
 +0.5152296 
 +0.562 2757 
 
 + 1.6132252 
 + 1.5720603 
 + 1.5245861 
 + 14713167 
 + 14128279 
 
 +0.3505588 
 +0.413 4229 
 +0.471 6640 
 +0.524 6595 
 +0.571 8423 
 
 40 
 41 
 42 
 43 
 
 44 
 
 + 1.355 1605 
 + 1.2878735 
 + 1.2174671 
 + 1.1447074 
 + 1.0703837 
 
 +0.599 2658 
 +0.633 0725 
 +0.659 6638 
 +0.678 7636 
 +0.690 1770 
 
 + I.35I337I 
 + 1.2842449 
 + 1.2140031 
 + 1.141 3690 
 + 1.067 1246 
 
 +0.602 9494 
 +0.636 8197 
 +0.663 5280 
 +0.682 7924 
 +0.694 4103 
 
 + 1.3497496 
 + 1.2827595 
 + 1.2125774 
 + I.I399554 
 + 1.0656731 
 
 +0.612 7065 
 +0.646 8129 
 +0.673 7929 
 +0.693 3538 
 +0.705 2806 
 
 4| 
 46 
 
 47 
 48 
 49 
 
 +0.995 2985 
 +0.920 2620 
 +0.8460814 
 +0.773 5541 
 +0.703 4583 
 
 +0.693 7915 
 +0.689 5775 
 +0.6775884 
 +0.657 9598 
 +0.630 9076 
 
 +0.992 0676 
 +0.9170042 
 +0.842 7410 
 +0.7700760 
 +0.699 7507 
 
 +0.6982589 
 +0.6042980 
 +0.682 5604 
 +0.663 1965 
 +0.636 3845 
 
 +0.090 5284 
 +0.915 3290 
 +0.8408858 
 +0.768 0039 
 +0.6974731 
 
 +0.709 4400 
 +0.705 7790 
 +0.604 3282 
 +0.675 2018 
 +0.648 5938 
 
 50 
 51 
 
 52 
 
 53 
 
 54 
 
 +0.636 5464 
 +0.573 5356 
 +0.515 1027 
 +0.461 8752 
 +0.4144269 
 
 +0.506 7255 
 +0-555 7804 
 +0.5085110 
 +0.455 4212 
 +0.397 0772 
 
 +0.632 6437 
 +0.5693612 
 +0.5106299 
 +o. 157 0893 
 +0409 3243 
 
 +0.6024170 
 +0.561 6533 
 +0.5145258 
 +0461 5341 
 +0.403 2415 
 
 +0.6300613 
 +0.566 5049 
 +0.507 5018 
 +0.453 7038 
 +0405 7084 
 
 +0.614 7816 
 +0.574II95 
 +0.527 0362 
 +0474 0329 
 +04156762 
 
 55 
 56 
 57 
 58 
 59 
 
 +0-373 2719 
 +0.3388588 
 +0.311 5656 
 +0.291 6064 
 +0.2794770 
 
 +0.334 10 12 +0.367 86 1 1 
 +0.267 1652 +0.333 1597 
 +0.196 9846 +0.305 6091 
 +0.124 3117 +0.285 5228 
 +0.049 9280 +0.273 1348 
 
 +0.340 2695 
 +0.273 2007 
 +0.203 0240 
 +0.1302265 
 +0.055 6874 
 
 +0.364 0524 
 +0.329 2053 
 +0.301 5630 
 
 +O.28l W/\7. 
 +0.209 0848 
 
 +0.352 5927 
 +0.285 4627 
 +0.215 0136 
 +0.1420126 
 +0.067 2585 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 59 
 
 TABLE VI. 
 
 G-COORDINATE Z OF VENUS. 
 
 Sys- 
 tem 
 i 
 
 o 
 
 I 
 
 2 
 
 3 
 
 4 
 
 5 
 
 
 
 +.0174641 
 
 +.034 6635 
 
 +.0423808 
 
 +.038 5648 
 
 +.0243031 
 
 +.003 5232 
 
 i 
 
 + .021 4657 
 
 +.037 0784 
 
 +.042 5597 
 
 +.0364563 
 
 +.0205041 
 
 .0009384 
 
 2 
 
 +.025 2276 
 
 +.0390785 
 
 +.042 2557 
 
 +.033 9453 
 
 +.0164810 
 
 .005 3894 
 
 3 
 
 +.028 7075 
 
 +.0406417 
 
 +.041 4818 
 
 +.0310603 
 
 +.OI2 2785 
 
 .009 7824 
 
 4 
 
 +.03I866S 
 
 +.041 7509 
 
 +.040 2471 
 
 +.027 8339 
 
 + .0079423 
 
 .014 0692 
 
 5 
 
 + .0346689 
 
 +.0433939 
 
 +.0385664 
 
 +.024 3022 
 
 +.003 5202 
 
 .018 2044 
 
 6 
 
 + .0370834 
 
 +.042 5642 
 
 +.036 4589 
 
 +.020 5043 
 
 .OOO 94OO 
 
 .022 1436 
 
 7 
 
 + .0390828 
 
 +.042 2603 
 
 +.033 9486 
 
 +.0164824 
 
 -.005 3898 
 
 .025 8445 
 
 8 
 
 +.040 6450 
 
 +.041 4861 
 
 +.031 0641 
 
 +.0122809 
 
 .009 7816 
 
 .029 2675 
 
 9 
 
 + .041 7527 
 
 +.040 2507 
 
 +.0278378 
 
 +.0079454 
 
 .014 0672 
 
 .032 3763 
 
 10 
 
 +.042 3943 
 
 +.038 5650 
 
 +.024 3057 
 
 +.003 5235 
 
 .018 2018 
 
 035 1374 
 
 ii 
 
 +.042 5630 
 
 +.0364602 
 
 +.0205072 
 
 .000 9368 
 
 .022 1406 
 
 .037 5214 
 
 12 
 
 +.0422579 
 
 +.033 9485 
 
 +.0164842 
 
 .005 3871 
 
 .025 8416 
 
 039 5028 
 
 13 
 
 +.041 4828 
 
 +.031 0627 
 
 +.012 2814 
 
 .009 7798 
 
 .0292651 
 
 .041 0601 
 
 U 
 
 +.040 2473 
 
 +.0278355 
 
 +.007 9446 
 
 .014 0665 
 
 .032 3746 
 
 .042 1764 
 
 15 
 
 +.038 5660 
 
 +.024 3029 
 
 +.003 5218 
 
 .Ol8 2O22 
 
 .035 1366 
 
 .042 8392 
 
 16 
 
 +.036 4580 
 
 +.020 5046 
 
 .000 9389 
 
 .022 1419 
 
 037 5215 
 
 .043 0410 
 
 17 
 
 +.033 9476 
 
 +.016 4822 
 
 .005 3893 
 
 .025 8434 
 
 -.039 5037 
 
 .042 7792 
 
 18 
 
 +.0310631 
 
 +.012 2804 
 
 .009 7815 
 
 .029 2671 
 
 .041 0620 
 
 .042 0556 
 
 19 
 
 +.027 8370 
 
 +.007 9450 
 
 .0140675 
 
 .032 3762 
 
 .042 1783 
 
 -.040 877S 
 
 20 
 
 +.0243054 
 
 +.003 5233 
 
 .0182021 
 
 .035 1377 
 
 .042 841 1 
 
 .039 2568 
 
 21 
 
 +.020 5072 
 
 .000 9367 
 
 .022 1407 
 
 .037 5218 
 
 .043 0424 
 
 .037 2103 
 
 22 
 
 +.0164847 
 
 .005 3866 
 
 .025 8415 
 
 039 5032 
 
 .042 7800 
 
 034 7593 
 
 23 
 
 + .OI2 2824 
 
 .009 7789 
 
 .029 2648 
 
 .041 0604 
 
 .042 0556 
 
 .031 9296 
 
 24 
 
 + .0079461 
 
 .0140654 
 
 0323739 
 
 .042 1765 
 
 .040 8769 
 
 .0287515 
 
 25 
 
 +.003 5237 
 
 .018 2007 
 
 035 1357 
 
 .042 8391 
 
 -.039 2556 
 
 .025 2500 
 
 26 
 
 .000 9370 
 
 .022 1401 
 
 .037 5204 
 
 .043 0406 .037 2089 
 
 .021 4899 
 
 27 
 
 .005 3875 
 
 .025 8415 
 
 .039 5023 
 
 .042 7786 .034 7578 
 
 .0174848 
 
 28 
 
 .009 7799 
 
 .029 2652 
 
 .041 0600 
 
 .042 0548 
 
 .031 9285 
 
 .OI3 2876 
 
 29 
 
 .0140663 
 
 .032 3746 
 
 .042 1766 
 
 .040 8766 
 
 .028 7508 
 
 .0089440 
 
 30 
 
 .0182014 
 
 .035 1364 
 
 .042 8395 
 
 .0392557 
 
 .025 2588 
 
 .0015014 
 
 31 
 
 .022 1404 
 
 .037 5209 
 
 .0430411 
 
 .037 2091 
 
 .021 4900 
 
 .0000091 
 
 32 
 
 .025 8416 
 
 .039 5026 
 
 .042 7789 
 
 -.0347581 
 
 .0174851 
 
 +.004 4833 
 
 33 
 
 .0292651 
 
 .041 0601 
 
 .042 0550 
 
 .031 9287 
 
 .0132878 
 
 +.0089260 
 
 34 
 
 .032 3744 
 
 .042 1765 
 
 .040 8765 
 
 .028 7508 
 
 .008 9438 
 
 +.013 2696 
 
 35 
 
 035 1363 
 
 .042 8394 
 
 039 2555 
 
 -.025 2585 
 
 .004 5009 
 
 +.0174653 
 
 36 
 
 .0375212 
 
 .0430411 
 
 .037 2089 
 
 .021 4895 
 
 .0000084 
 
 +.0214663 
 
 37 
 
 039 5032 
 
 .042 7792 
 
 .0347581 
 
 .0174846 
 
 +.004 4842 
 
 +.025 2276 
 
 38 
 
 .0410611 
 
 .042 0556 
 
 .0319288 
 
 .013 2874 
 
 +.0089269 
 
 +.028 7069 
 
 39 
 
 .042 1777 
 
 -.0408775 
 
 -.0287513 
 
 .0080438 
 
 +.013 2702 
 
 +.0318651 
 
 40 
 
 .042 8407 
 
 .0392567 
 
 .025 2504 
 
 .004 5015 
 
 +.0174654 
 
 +.0346668 
 
 41 
 
 .043 0424 
 
 .037 2103 
 
 .0214908 
 
 .000 0095 
 
 +.021 4658 
 
 +.0370806 
 
 42 
 
 .042 7801 
 
 034 7594 
 
 .0174861 
 
 +.004 4827 
 
 +.O25 2265 
 
 +.0390797 
 
 43 
 
 .042 0559 
 
 .031 9300 
 
 .013 2889 
 
 +.0089251 
 
 +.028 7052 
 
 +.0406420 
 
 44 
 
 .0408771 
 
 .0287519 
 
 .0089451 
 
 +.013 2684 
 
 +.031 8631 
 
 +.041 7501 
 
 45 
 
 039 2555 
 
 .025 2594 
 
 .004 5022 
 
 +.0174641 
 
 +.034 6648 
 
 +.042 3922 
 
 46 
 
 .037 2085 
 
 .021 4900 
 
 .0000095 
 
 +.021 4650 
 
 +.0370791 
 
 +.042 5618 
 
 47 
 
 .034 7572 
 
 .0174846 
 
 +.004 4835 
 
 +.025 2265 
 
 +.0390788 
 
 +.042 2575 
 
 48 
 
 .031 9278 
 
 .0132869 
 
 +.0089269 
 
 +.028 7061 
 
 +.0406418 
 
 +.041 48.34 
 
 49 
 
 .028 7504 
 
 .0084931 
 
 +.013 2707 
 
 +.031 8649 
 
 +.041 7508 
 
 +.0402487 
 
 50 
 
 .025 2588 
 
 .004 5007 
 
 +.017 4664 
 
 +.034 6672 
 
 +.042 3939 
 
 +.038 5680 
 
 Si 
 
 .021 4907 
 
 .0000088 
 
 +.02 1 4671 
 
 +.037 0818 
 
 +.042 5641 
 
 +.036 4606 
 
 52 
 
 -.0174867 
 
 +.004 4829 
 
 +.025 2277 
 
 +.0390815 
 
 +.042 2603 
 
 +033 9503 
 
 53 
 
 .013 2004 
 
 +.008 9247 
 
 +.028 7061 
 
 +.040 6439 
 
 +.0414862 
 
 +.031 0659 
 
 54 
 
 .008 9473 
 
 +.013 2672 
 
 +.031 8635 
 
 +.041 75i8 
 
 +.0402511 
 
 +.0278396 
 
 55 
 
 .004 5052 
 
 +.0174621 
 
 +.0346645 
 
 +.042 3935 
 
 +.038 5697 
 
 +.024 3076 
 
 56 
 
 .0000130 
 
 + .021 4624 
 
 +.0370779 
 
 +.042 5624 
 
 +.036 461 1 
 
 +.020 5092 
 
 57 
 
 +.004 4797 
 
 +.025 2232 
 
 +.0390768 
 
 +.042 2573 
 
 +-33 9495 
 
 +.0164863 
 
 58 
 
 +.008 9228 
 
 +.028 7024 
 
 +.0406300 
 
 +.041 4822 
 
 +.0310636 
 
 +.012 2834 
 
 59 
 
 +.013 2669 
 
 +.031 8610 
 
 +.041 7474 
 
 +.0402465 
 
 +.0278361 
 
 +.007 9465 
 
6o 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE VI. Concluded. 
 
 G-COORDINATE Z OF VENUS. 
 
 Sys- 
 tem 
 i 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 II 
 
 
 
 .0182000 
 
 .035 1342 
 
 .042 8369 .039 2532 
 
 .025 2572 
 
 .004 5010 
 
 i 
 
 .022 1401 
 
 .037 5194 
 
 .043 0386 .037 2062 
 
 .021 4874 
 
 .000 0076 
 
 2 
 
 .025 8423 
 
 .039 5018 
 
 -.042 7767 -034 7550 
 
 .0174818 
 
 +.0044858 
 
 3 
 
 .029 2668 
 
 .041 0601 
 
 .042 0532 .031 9256 
 
 .013 2840 
 
 +.0089294 
 
 4 
 
 .032 3768 
 
 .042 1773 
 
 .040 8754 .028 748 1 
 
 .008 9400 
 
 +.013 2734 
 
 5 
 
 035 1389 .042 8410 
 
 039 2552 .025 2564 
 
 .004 4976 
 
 +.0174692 
 
 6 
 
 .037 5236 .043 0430 
 
 .037 2094 .021 4882 
 
 .000 0058 
 
 +.021 4697 
 
 7 
 
 .039 5053 
 
 .042 7812 
 
 0347591 .0174841 
 
 +.004 4860 
 
 +.025 2302 
 
 8 
 
 .041 0626 
 
 .0420571 
 
 .031 9302 .013 2877 
 
 +.0089278 
 
 +.028 7085 
 
 9 
 
 .042 1786 
 
 .040 8785 
 
 .028 7525 .008 9446 +.013 2704 
 
 +.031 8658 
 
 10 
 
 .0428409 
 
 .039 2571 
 
 .0252602 .0045023 +.0174650 
 
 +.0346667 
 
 ii 
 
 .0430419 
 
 .0372100 
 
 .0214909 .000 oioo +.0214652 
 
 + .0370801 
 
 12 
 
 .042 7792 
 
 .034 7584 
 
 .017 4855 +.004 4828 
 
 +.025 2260 
 
 + .0390788 
 
 13 
 
 .042 0547 
 
 .031 9285 
 
 .013 2877 +.008 9260 
 
 +.028 7051 
 
 +.O4O 64IO 
 
 14 
 
 -.0408759 
 
 .028 7504 
 
 .0089434 
 
 +.0132608 
 
 +.031 8637 
 
 +.041 7493 
 
 15 
 
 .0392548 
 
 .025 2577 
 
 .004 5004 
 
 +.0174658 
 
 +.034 6659 
 
 +.042 3920 
 
 16 
 
 .0372083 
 
 .021 4886 
 
 .0000078 +.0214667 
 
 +.037 0804 
 
 +.042 5621 
 
 17 
 
 -034 7576 
 
 .0174838 
 
 + .004 4849 + .025 2279 
 
 +.039 0801 
 
 +.042 2582 
 
 18 
 
 .031 9285 
 
 .013 2868 
 
 +.008 9276 +.028 7070 
 
 +.040 6429 
 
 +.041 4843 
 
 19 
 
 .0287511 
 
 -.0089433 
 
 +.013 2707 +.031 8652 
 
 +.041 7515 
 
 +.0402494 
 
 20 
 
 .025 2591 
 
 .004 5010 
 
 +.0174659 +.0346669 
 
 +.0423938 ! +.0385683 
 
 21 
 
 .021 4905 
 
 .0000089 
 
 +.021 4663 +0.37 0806 
 
 +.042 5634 
 
 +.0364601 
 
 22 
 
 .0174858 
 
 +.004 4834 
 
 +.025 2269 +.039 0798 
 
 +.042 2588 
 
 +.033 9492 
 
 23 
 
 .013 2884 
 
 +.0089260 
 
 +.028 7058 +.040 6420 
 
 +.041 4841 
 
 +.031 0639 
 
 24 
 
 .0089445 
 
 +.013 2693 
 
 +.031 8639 
 
 +.041 7503 
 
 +.040 2485 
 
 +.0278371 
 
 25 
 
 .004 5016 
 
 +.017 4648 
 
 +.034 6657 +.042 3926 
 
 +.038 5671 
 
 +.024 3046 
 
 26 
 
 .0000090 
 
 +.021 4657 
 
 +.037 0798 +.042 5622 
 
 +.036 4589 
 
 +.020 5061 
 
 27 
 
 +.004 4836 
 
 +.025 226> 
 
 +.0390792 +.0422578 
 
 +.033 9480 
 
 +.0164835 
 
 28 
 
 +.0089263 
 
 +.028 7059 
 
 +.0406418 +.0414834 
 
 +.031 0630 
 
 +.OI2 28l2 
 
 29 
 
 +.013 2697 
 
 +.031 8640 
 
 +.0417503 +.0402483 
 
 +.0278365 
 
 +.0079453 
 
 30 
 
 +.0174651 
 
 + .0346658 +.0423926 , +.0385671 
 
 +.024 3044 
 
 +.003 5232 
 
 31 
 
 +.02 1 4656 
 
 + .0370798 
 
 +.042 5622 +.036 4589 
 
 +.020 5061 
 
 .000 9372 
 
 32 
 
 +.025 2265 
 
 +.0390700 
 
 +.042 2577 +.033 948i 
 
 +.0164835 
 
 .005 3874 
 
 33 
 
 +.028 7055 
 
 +.O4O 6414 
 
 +.041 4832 +.031 0629 
 
 +.OI2 2813 
 
 -.009 7798 
 
 34 
 
 +.031 8637 
 
 +.041 7499 
 
 +.040 2479 +.027 8362 
 
 +.0079452 
 
 .014 0663 
 
 35 
 
 +.034 6657 
 
 +.042 3924 
 
 +.038 5666 
 
 +.0243039 
 
 +.003 5227 
 
 .0182016 
 
 36 
 
 +.037 0803 
 
 +.042 5624 
 
 +.0364587 
 
 +.020 5053 
 
 .000 9380 
 
 .022 1410 
 
 37 
 
 +.039 0800 
 
 +.0422582 
 
 +.033 948i 
 
 +.OT6 4829 
 
 -.005 3885 
 
 .025 8425 
 
 38 
 
 +.040 6429 
 
 +.041 4843 
 
 +.031 0634 
 
 +.012 28lO 
 
 .0097809 
 
 .029 2663 
 
 39 
 
 +.041 75i6 
 
 +.040 2496 
 
 +.027 8373 
 
 +.007 9454 
 
 .014 0673 
 
 .032 3757 
 
 40 
 
 +.042 3941 
 
 +.038 5686 
 
 +.024 3059 
 
 +.003 5236 
 
 .0182018 
 
 -.035 1375 
 
 41 
 
 +.042 5637 
 
 +.0364607 
 
 +.020 5076 
 
 .000 9364 
 
 .022 1405 
 
 .037 5218 
 
 42 
 
 +.042 2590 
 
 +.033 9500 
 
 +.0164854 
 
 .005 3861 
 
 .0258411 
 
 .039 5031 
 
 43 
 
 +.041 4843 
 
 +.031 0647 
 
 +.012 2833 
 
 .009 7782 
 
 .029 2643 
 
 .041 0603 
 
 44 
 
 +.040 2488 
 
 +.0278377 
 
 +.007 9472 
 
 .014 0645 
 
 .032 3732 
 
 .042 1761 
 
 45 
 
 +.0385672 
 
 +.0243051 
 
 +.003 5245 
 
 .018 1997 
 
 .035 1349 
 
 .042 8386 
 
 46 
 
 +.0364590 
 
 +.020 5062 
 
 .000 9367 
 
 .022 1394 
 
 0375197 
 
 .043 0401 
 
 47 
 
 +.033 948o 
 
 +.0164835 
 
 -.005 3875 
 
 .025 8414 
 
 .039 5020 
 
 .042 7782 
 
 48 
 
 +.031 0631 
 
 +.0122812 
 
 .009 7805 
 
 .029 2657 
 
 .041 0604 
 
 .042 0548 
 
 49 
 
 +.0278367 
 
 +.007 9452 
 
 .0140671 
 
 .032 3758 
 
 .042 1777 
 
 .040 8770 
 
 50 
 
 +.0243049 
 
 +.0035231 
 
 .018 2023 
 
 -.035 1381 
 
 .042 8413 
 
 .0392569 
 
 51 
 
 +JO20 5O7I 
 
 .000 9371 
 
 .022 1413 
 
 .037 5229 
 
 .043 0437 
 
 .0372112 
 
 52 
 
 +.0l6 4852 
 
 .005 3869 
 
 .025 8422 
 
 .039 5045 
 
 0.42 7820 
 
 .034 7610 
 
 53 
 
 +.012 2837 
 
 .009 7786 
 
 .029 2654 
 
 .041 0619 
 
 .042 0581 
 
 .031 9323 
 
 54 
 
 +.007 9482 
 
 .0140642 
 
 .032 3741 
 
 .042 1778 
 
 .0408794 
 
 .028 7548 
 
 55 
 
 +.003 5264 
 
 .018 1987 
 
 .035 1353 
 
 .042 8401 
 
 .039 2580 
 
 .025 2624 
 
 56 
 
 .000 9340 
 
 .022 1376 
 
 .0375193 
 
 .0430411 
 
 .037 2108 
 
 .021 4931 
 
 57 
 
 .005 3844 
 
 -.025 8388 
 
 .039 5006 
 
 .042 7784 
 
 .034 7591 
 
 -.0174875 
 
 58 
 
 .009 7771 
 
 .0292624 
 
 .041 0578 
 
 .042 0538 
 
 .031 9290 
 
 .OI3 2804 
 
 59 
 
 .014 0642 
 
 .032 3720 .042 1740 
 
 .040 8748 
 
 .028 7503 
 
 .0089447 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 6l 
 
 TABLE VII. 
 VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 System o. 
 
 Sjstem i. 
 
 1 
 
 A 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +35.541 47 
 
 17.87647 
 
 -17.66499 + 1.07427 
 
 o 
 
 +32-593 73 
 
 16.607 73 
 
 -15.98599 
 
 + 3-18745 
 
 i 
 
 +27.684 74 
 
 12.48321 
 
 15.20155 11.36932 
 
 i 
 
 +27.372 10 
 
 -13.08833 
 
 14.28378 
 
 9-17780 
 
 2 
 
 + 14.10943 
 
 - 3-81823 
 
 10.291 18 12.81204 
 
 2 
 
 + 14.89321 
 
 - 4-857 J7 
 
 10.03602 
 
 11.99256 
 
 3 
 
 + 6.07222 
 
 + 0.26235 
 
 6.33456 9.16752 
 
 3 
 
 + 6.704 15 
 
 0.37485 
 
 6.32930 
 
 - 9.06478 
 
 4 
 
 + 2.63936 
 
 + 1-25133 
 
 - 3-89071 - 5.85772 
 
 4 
 
 + 3-00334 
 
 + 0.935 15 
 
 3.93850 
 
 - 5-93021 
 
 5 + 1.27090 
 
 + 1.20398 
 
 2.47487 3-74692 
 
 5 
 
 + 147429 
 
 + 1.04697 
 
 2.52125 
 
 3.830 19 
 
 6 
 
 + 0.70797 
 
 + 0.93776 
 
 1.64574 2.48604 
 
 6 
 
 + 0.82746 
 
 + 0.85385 
 
 1.68130 
 
 2.54954 
 
 7 
 
 + 0.45996 
 
 + 0.68285 
 
 I.I428I ! 1.72274 
 
 7 
 
 + 0.53500 
 
 + 0.63364 
 
 1.16865 
 
 1.76704 
 
 8 + 0.341 13 
 
 + 0.48405 
 
 0.82517 I.2433I 
 
 8 
 
 + 0.391 31 
 
 + 045253 
 
 -0.84383 
 
 1.27360 
 
 p 
 
 + 0.27866 
 
 + 0.33795 
 
 0.61661 
 
 0.92936 
 
 9 
 
 + 0.31404 
 
 + 0.316 17 
 
 0.63022 
 
 0.95006 
 
 10 
 
 + 0.24248 
 
 + 0.23228 
 
 - 0.47476 \ 0.71540 
 
 10 
 
 + 0.26852 
 
 + 0.21633 
 
 0.484 84 
 
 0.72959 
 
 ii + 0.21941 
 
 + 0.15584 
 
 0.37525 0.56421 
 
 ii 
 
 + 0.23923 
 
 + 0.14361 
 
 0.382 83 
 
 0.57395 
 
 12 
 
 + 0.20337 
 
 + o.ioo 16 
 
 0.30352 
 
 0.45390 
 
 12 
 
 + 0.21885 
 
 + 0.09046 
 
 0.30932 
 
 046055 
 
 13 
 
 + 0.191 38 
 
 + 0.05922 
 
 0.250 58 0.371 12 
 
 13 
 
 + 0.20373 
 
 + 0.051 35 
 
 0.255 07 
 
 0.375 58 
 
 14 
 
 + 0.181 go 
 
 + 0.02881 
 
 0.21071 0.30744 
 
 14 
 
 + 0.191 91 
 
 + 0.02231 
 
 0.21422 
 
 0.31032 
 
 15 
 
 + 0.174 12 
 
 + 0.00601 
 
 0.180 13 0.25736 
 
 15 
 
 + 0.18233 
 
 + 0.00058 
 
 0.18250 
 
 0.259 10 
 
 16 
 
 + 0.16756 
 
 o.on 23 
 
 0.15632 0.217 19 
 
 16 
 
 + 0.17435 
 
 0.01582 
 
 0.158 53 
 
 0.21809 
 
 17 
 
 + 0.161 93 
 
 0.02438 
 
 0.13755 0.18439 
 
 17 
 
 + 0.16757 
 
 0.02827 
 
 0.13930 
 
 0.18466 
 
 18 
 
 + 0.15705 0.03447 
 
 0.122 s8 0.157 18 
 
 18 
 
 + 0.161 75 
 
 0.03778 
 
 0.123 98 
 
 0.15697 
 
 19 
 
 + 0.15280 
 
 0.04226 - 0.11054 0.13423 
 
 19 
 
 + 0.15672 
 
 0.04508 
 
 O.HI 65 
 
 0.13368 
 
 20 
 
 + 0.14909 
 
 0.04831 ; 0.10078 0.11461 
 
 20 
 
 + 0.152 35 
 
 0.05068 
 
 o.ioi 66 
 
 0.11379 
 
 21 
 
 + 0.14586 
 
 0.05301 ! 0.09286 0.09760 
 
 21 
 
 + 0.14854 
 
 0.05501 
 
 0.093 54 
 
 0.09658 
 
 22 
 
 + 0.14307 
 
 0.05666 i 0.08640 0.08265 
 
 22 
 
 + 0.14524 
 
 0.05833 
 
 0.08692 
 
 0.081 48 
 
 23 
 
 + 0.14067 
 
 0.05951 : 0.081 17 0.06933 
 
 23 
 
 + 0.14239 
 
 0.06086 
 
 0.081 53 
 
 0.06804 
 
 24 
 
 + 0.13864 
 
 0.061 71 0.076 93 0.057 30 
 
 24 
 
 + 0.13995 
 
 0.06278 
 
 0.077 17 
 
 0.05594 
 
 25 
 
 + 0.13693 
 
 0.06338 0.07356 0.04629 
 
 25 
 
 + 0.13789 
 
 0.064 20 
 
 0.07368 
 
 0.04487 
 
 26 
 
 + 0.13558 
 
 0.06464 0.07094 0.03606 
 
 26 
 
 + 0.13616 
 
 O.O6522 
 
 0.07096 
 
 0.03461 
 
 27 
 
 + 0.13453 
 
 - 0.065 55 
 
 0.06898 0.02643 
 
 27 
 
 + 0.13478 
 
 0.06589 
 
 0.06850 
 
 0.02497 
 
 28 
 
 + 0.13377 
 
 0.066 15 
 
 0.06761 0.01722 
 
 28 
 
 + 0.133 71 
 
 0.06626 
 
 0.06744 
 
 0.01578 
 
 29 
 
 + 0.13330 
 
 0.06649 
 
 0.06682 0.00827 
 
 29 
 
 + 0.13294 
 
 0.06638 
 
 0.06655 
 
 0.00688 
 
 30 
 
 + 0.133 12 
 
 0.06657 
 
 0.06655 
 
 + 0.00051 
 
 30 
 
 + 0.13245 
 
 0.06626 
 
 0.06620 
 
 + 0.001 87 
 
 31 
 
 + 0.13322 
 
 0.06641 
 
 0.06681 + 0.00930 
 
 31 
 
 + 0.13225 
 
 0.06589 
 
 0.06636 
 
 + 0.01060 
 
 32 
 
 + 0.13361 
 
 0.06600 
 
 0.06760 + 0.01823 
 
 32 
 
 + 0.13234 
 
 0.055 28 
 
 0.06706 
 
 + 0.01944 
 
 33 
 
 + 0.13428 
 
 0.065 32 
 
 0.06896 + 0.02744 
 
 33 
 
 + 0.132 70 
 
 0.06438 
 
 0.06831 
 
 + 0.02854 
 
 34 
 
 + 0.13525 
 
 0.06433 
 
 0.07091 + 0.03706 
 
 34 
 
 + 0.133 34 
 
 O.O63 19 
 
 0.070 16 
 
 + 0.03803 
 
 35 
 
 + 0.13651 
 
 0.06299 
 
 0.07353 
 
 + 0.04728 
 
 35 
 
 + 0.13427 
 
 O.O6 1 63 
 
 0.07264 
 
 + 0.04808 
 
 36 
 
 + 0.138 10 
 
 0.061 21 
 
 0.07688 : + 0.05827 
 
 36 
 
 + 0.13549 ! 0.05963 
 
 0.07586 
 
 + 0.05887 
 
 37 
 
 + 0.14001 
 
 0.05892 
 
 o.cSi 09 + 0.07027 
 
 37 
 
 + 0.13702 
 
 0.057 10 
 
 0.07991 
 
 + 0.07063 
 
 38 
 
 + 0.14227 
 
 0.05597 
 
 0.086 30 + 0.083 55 
 
 38 
 
 + 0.13886 
 
 0.05392 
 
 - 0.08495 
 
 + 0.08361 
 
 39 + 0.14490 
 
 0.052 19 
 
 0.09272 
 
 + 0.09844 
 
 39 
 
 + 0.14103 
 
 0.04989 
 
 0.091 15 
 
 + 0.098 14 
 
 40 + 0.14795 
 
 0.047 35 
 
 0.10059 
 
 + 0.11535 
 
 40 
 
 + 0.14356 
 
 0.04479 
 
 0.09876 
 
 + 0.11461 
 
 41 + 0.151 43 
 
 0.041 17 0.11028 
 
 + 0.13484 
 
 41 
 
 + 0.14646 
 
 0.03834 
 
 0.108 13 
 
 + 0.133 55 
 
 42 + 0.15543 
 
 O.O33 21 O.I22 23 
 
 + 0.15760 
 
 42 
 
 + 0.14978 
 
 0.030 10 
 
 0.11968 
 
 + 0.15562 
 
 43 + 0.16000 
 
 O.02294 O.I37O6 
 
 + 0.184 57 
 
 43 
 
 + 0.153 57 
 
 0.01953 
 
 0.13403 
 
 + 0.181 71 
 
 44 + 0.165 26 
 
 0.00960 
 
 0.15566 
 
 + 0.21700 44 
 
 + 0.15789 
 
 0.00590 
 
 0.15199 
 
 + 0.21301 
 
 4S + O.I7I35 
 
 + 0.00785 
 
 0.17920 
 
 + 0.25665 
 
 45 
 
 + 0.16286 
 
 + O.OII 84 
 
 0.17471 
 
 + 0.251 18 
 
 46 + 0.17854 
 
 + 0.03087 0.20941 
 
 + 0.30597 
 
 46 
 
 + 0.16867 
 
 + 0.035 14 
 
 0.20381 
 
 + 0.29854 
 
 47 + 0.18724 
 
 + 0.061 51 0.24875 
 
 + 0.368 55 
 
 47 
 
 + 0.17561 
 
 + 0.06601 
 
 0.241 63 
 
 + 0.35846 
 
 48 
 
 + 0.198 20 
 
 + 0.10269 0.30091 
 
 + 0.44999 
 
 48 
 
 + 0.18428 
 
 + 0.10735 
 
 0.291 64 
 
 + 0.43590 
 
 49 
 
 + 0.21280 
 
 + 0.15866 0.37145 
 
 + 0.55751 
 
 49 
 
 + 0.195 77 
 
 + 0.16331 
 
 0.35907 
 
 + 0.53846 
 
 50 
 
 + 0.23370 
 
 + 0.235 44 0469 14 
 
 + 0.70484 
 
 50 
 
 + 0.21225 
 
 + 0.23985 
 
 0.452 1 1 
 
 + 0.67805 
 
 51 
 
 + 0.26643 
 
 + 0.341 67 0.608 10 
 
 + 0.91263 
 
 Si 
 
 + 0.23832 
 
 + 0.34549 
 
 - 0.583 82 
 
 + 0.87409 
 
 52 
 
 + 0.32291 
 
 + 0.48903 0.81195 
 
 + 1.21644 i 52 
 
 + 0.28404 
 
 + 0.491 88 
 
 - 0.77591 
 
 + 1-15930 
 
 53 
 
 + 0.43039 
 
 + 0.691 21 
 
 i. 121 59 
 
 + 1.67867 
 
 53 
 
 + 0.37252 
 
 + 0.69304 
 
 1.06556 
 
 + 1-59084 
 
 54 
 
 + 0.65464 
 
 + 0.95589 
 
 1.61052 
 
 + 241220 
 
 54 
 
 + 0.55982 
 
 + 0.95881 
 
 1.51864 
 
 + 2.271 42 
 
 55 
 
 + 1.16322 
 
 + L25I I? 
 
 2.414.40 
 
 + 3.621 88 
 
 55 
 
 + 0.98862 
 
 + 1.26617 
 
 - 2.254 78 
 
 + 3.38575 
 
 56 
 
 + 2.39922 
 
 + 1.385 II 
 
 - 3.784 32 
 
 + 5-65379 
 
 56 
 
 + 2.03482 
 
 h 145600 
 
 349084 
 
 + 5-25163 
 
 57 
 
 + 5.5H93 
 
 + 0.63808 
 
 6.15001 
 
 + 8.90000 57 
 
 + 4.67267 
 
 + 0.91643 
 
 - 5-58909 
 
 + 8.243 78 
 
 58 
 
 + 12.93286 
 
 2.92359 
 
 10.00926 
 
 + 12.77721 58 
 
 + 11.00705 
 
 2.04409 
 
 8.06205 
 
 +11.98839 
 
 59 
 
 +26.185 67 
 
 11.259 17 
 
 14.92649 
 
 + 12.46123 59 
 
 +22.761 17 
 
 - 9-475 57 
 
 13.28560 
 
 +12.554 18 
 
62 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE VII. Continued. 
 VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 System 2. 
 
 System 3. 
 
 f 
 
 A 
 
 B 
 
 C 
 
 D 
 
 I 
 
 A 
 
 B 
 
 C 
 
 D 
 
 o 
 
 +29.624 12 
 
 15.17831 
 
 1444582 
 
 + 3.98350 
 
 O 
 
 +28.095 38 
 
 14.29079 
 
 13.80459 
 
 + 3-72368 
 
 I 
 
 +26.178 17 
 
 12.85822 
 
 13-31998 
 
 - 7-55334 
 
 I 
 
 +25.IO8 12 
 
 12.24065 
 
 12.86746 
 
 6.97990 
 
 2 
 
 +15.05897 
 
 5-37464 
 
 - 9.68431 
 
 11.06821 
 
 2 
 
 + 14.804 22 
 
 - 5-33468 
 
 9.46955 
 
 1047031 
 
 3 
 
 + 7.08250 
 
 0.82744 
 
 6.25507 
 
 8.775 53 
 
 3 
 
 + 7.I427I 
 
 0.97149 
 
 6.I7I 21 
 
 8.464 1 1 
 
 4 
 
 + 3.272 10 
 
 + 0.673 17 
 
 3.94529 
 
 - 5-88003 
 
 4 
 
 + 3.36804 
 
 + 0.54538 
 
 - 3-9I34I 
 
 5.74732 
 
 5 
 
 + 1.63783 
 
 + 0.90532 
 
 2.543 15 
 
 3.84260 
 
 5 
 
 + 1.70907 
 
 + 0.82100 2.53007 
 
 - 3-78667 
 
 6 
 
 + 0.92681 
 
 + 0.77463 
 
 I-70I45 
 
 2.571 56 
 
 6 
 
 + 0.97332 
 
 + 0.721 94 
 
 1.69525 
 
 2.546 14 
 
 7 
 
 + 0.59776 
 
 + 0.58640 
 
 1.18416 
 
 1.78590 
 
 7 
 
 + 0.627 53 
 
 + 0.553 13 
 
 1.180 66 
 
 1.77284 
 
 8 
 
 + 043283 
 
 + 0.42237 
 
 0.855 20 
 
 1.28747 
 
 8 
 
 + 0452 10 
 
 + 0.40075 
 
 - 0.85285 
 
 1.27974 
 
 9 
 
 + 0.34273 
 
 + 0.295 72 
 
 0.63846 
 
 0.95970 
 
 9 
 
 + 0.35545 
 
 + O.28l 22 
 
 0.63665 
 
 0.95445 
 
 10 
 
 + 0.28909 
 
 + 0.201 73 
 
 040082 
 
 0.73606 
 
 10 
 
 + 0.29760 
 
 + O.I9I 71 
 
 048933 
 
 0.732 10 
 
 ii 
 
 + 0.25443 
 
 + 0.13276 
 
 0.38720 
 
 - 0.578 14 
 
 ii 
 
 + 0.26020 
 
 + 0.12569 
 
 - 0.38589 
 
 0.57491 
 
 12 
 
 + 0.23036 
 
 + 0.082 14 
 
 0.31252 
 
 0.463 12 
 
 12 
 
 + 0.23428 
 
 + 0.07706 0.3II33 
 
 0.4^36 
 
 13 
 
 + 0.21260 
 
 + 0.04482 
 
 0.25741 
 
 0.37700 
 
 13 
 
 + O.2I5 22 
 
 + 0.041 IO : 0.25634 
 
 0.37458 
 
 14 
 
 + 0.19884 
 
 + 0.01709 
 
 0.21594 
 
 0.31093 
 
 14 
 
 + 0.20055 
 
 + 0.01437 
 
 0.21494 
 
 0.30876 
 
 J| 
 
 + 0.18778 
 
 0.00364 
 
 0.184 16 
 
 O.259 12 
 
 15 
 
 + 0.18883 
 
 O.OO5 63 
 
 0.18321 
 
 0.257 16 
 
 16 
 
 + 0.17866 
 
 0.01925 
 
 0.15942 
 
 0.21769 
 
 16 
 
 + O.I792I 
 
 O.02O68 0.15852 
 
 0.21591 
 
 17 
 
 + 0.17099 
 
 0.031 07 
 
 0.13991 
 
 0.18397 
 
 17 
 
 + O.I7I 14 
 
 O.O32O8 O.I3906 I 0.18235 
 
 18 
 
 + 0.16444 
 
 0.04006 
 
 0.12437 0.15606 
 
 18 
 
 + 0.16429 
 
 0.04074 0.12355 
 
 0.15459 
 
 iQ 
 
 + 0.15880 
 
 0.04693 
 
 0.11187 
 
 O.I3262 
 
 19 
 
 + O.I584I 
 
 0.04733 
 
 O.I 1 1 08 
 
 0.131 28 
 
 20 
 
 + 0.15392 
 
 0.052 17 
 
 o.ioi 74 
 
 O.II264 
 
 20 
 
 + 0.15333 
 
 0.05236 
 
 0.10098 
 
 0.11143 
 
 21 
 
 + 0.14968 
 
 0.056 17 i 0.093 50 1 0.095 37 
 
 21 
 
 + 0.14894 
 
 0.056 1 8 
 
 0.092 76 
 
 0.09427 
 
 22 
 
 + 0.14600 
 
 0.05921 
 
 0.08679 0.08024 
 
 22 
 
 + 0.145 14 
 
 0.05907 
 
 0.08606 
 
 0.07925 
 
 23 
 
 + 0.14282 
 
 0.06 1 50 
 
 0.081 32 
 
 0.06680 
 
 23 
 
 + O.I4I 84 
 
 0.06 1 24 
 
 0.08060 
 
 0.06593 
 
 24 
 
 + 0.14009 
 
 0.06320 
 
 0.07689 
 
 0.05470 
 
 24 
 
 + O.I390I 
 
 0.062 82 
 
 0.076 17 
 
 0.05304 
 
 25 
 
 + 0.13775 
 
 0.06441 
 
 0.07334 
 
 O.O4366 
 
 25 
 
 + 0.13659 
 
 0.06395 
 
 0.07263 
 
 O.O.J300 
 
 26 
 
 + 0.13579 
 
 0.06524 
 
 0.07055 
 
 - 0.03345 
 
 26 
 
 + 0.13454 
 
 0.06470 
 
 0.06985 
 
 0.03289 
 
 27 
 
 + 0.134 17 
 
 - 0.065 74 
 
 0.06844 
 
 0.02386 
 
 27 
 
 + 0.13286 
 
 0.065 13 
 
 0.06773 
 
 0.02341 
 
 28 
 
 + 0.13288 
 
 0.06595 
 
 0.06692 
 
 0.01473 
 
 28 
 
 + 0.131 50 
 
 0.065 29 
 
 0.06622 
 
 0.01439 
 
 29 
 
 + 0.131 89 
 
 0.06592 
 
 0.06598 
 
 0.00591 
 
 29 
 
 + 0.13046 
 
 O.O65 21 
 
 0.06526 
 
 000568 
 
 30 
 
 + 0.131 21 
 
 0.06564 
 
 0.06556 
 
 + 0.00275 
 
 30 
 
 + 0.12972 
 
 0.06489 
 
 0.06483 
 
 0.00287 
 
 31 
 
 + 0.13081 
 
 0.065 13 
 
 0.06567 
 
 + 0.01 1 37 
 
 31 
 
 + 0.12927 
 
 0.06434 
 
 0.064 92 
 
 + o.oi i 38 
 
 32 
 
 + 0.13068 
 
 0.06438 
 
 0.06631 
 
 + 0.02009 
 
 32 
 
 + 0.129 10 
 
 0.06357 
 
 0.065 54 
 
 + 0.01998 
 
 33 
 
 + 0.13084 
 
 0.06336 
 
 0.06749 
 
 + 0.02905 
 
 33 
 
 + 0.12921 
 
 0.06253 
 
 0.06669 
 
 + 0.02880 
 
 34 
 
 + 0.131 28 
 
 0.06203 
 
 0.06925 
 
 + 0.03838 
 
 34 
 
 + 0.12960 
 
 0.061 19 
 
 0.06842 
 
 + 0.03800 
 
 35 
 
 + 0.13199 
 
 0.06035 
 
 0.071 65 
 
 + 0.04825 
 
 35 
 
 + 0.13028 
 
 0.05950 
 
 0.070 77 
 
 + 0.04771 
 
 36 
 
 + 0.13299 
 
 0.05823 
 
 0.07476 
 
 + 0.05883 
 
 36 
 
 + 0.131 23 
 
 0.05740 
 
 0.07384 
 
 + 0.058 14 
 
 37 
 
 + 0.13428 
 
 0.05558 
 
 0.07869 
 
 + 0.07035 
 
 37 
 
 + 0.13248 
 
 0.05478 
 
 0.077 7i 
 
 + o.o '19 47 
 
 38 
 
 + 0.13586 
 
 0.05228 
 
 - 0.08359 
 
 + 0.08304 
 
 38 
 
 + 0.13404 
 
 0.051 51 
 
 0.08252 
 
 + 0.081 97 
 
 39 
 
 + 0.13775 
 
 0.048 15 
 
 0.08962 
 
 + 0.09723 
 
 39 
 
 + 0.13590 
 
 0.04744 
 
 0.08846 
 
 + 0.09594 
 
 40 
 
 + 0.13998 
 
 - 0.04295 
 
 0.097 02 
 
 + 0.11330 
 
 40 
 
 + 0.138 10 
 
 0.04235 
 
 0.095 76 
 
 + 0.11177 
 
 41 
 
 + 0.14255 
 
 0.03642 
 
 0.106 13 
 
 + 0.131 75 
 
 4i 
 
 + O.T4066 
 
 0.03593 
 
 0.10473 
 
 + 0.12993 
 
 42 
 
 + 0.14550 
 
 0.028 12 
 
 - 0.11737 
 
 + 0.15323 
 
 42 
 
 + O.I4360 
 
 0.02781 
 
 0.11580 
 
 + 0.15108 
 
 43 
 
 + 0.14885 
 
 0.01755 
 
 0.13131 
 
 + 0.17857 
 
 43 
 
 + 0.14658 
 
 0.01746 
 
 0.12953 
 
 + 0.17604 
 
 44 
 
 + 0.15269 
 
 0.00395 
 
 0.14875 
 
 + 0.20895 
 
 44 
 
 + 0.15085 
 
 0.004 19 
 
 0.14668 
 
 + 0.20595 
 
 45 
 
 + 0.15709 
 
 + 0.013 68 
 
 0.17077 
 
 + 0.24592 
 
 45 
 
 + 0.15533 
 
 + 0.01300 
 
 - 0.16833 
 
 + 0.24236 
 
 46 
 
 + 0.16222 
 
 + 0.03671 
 
 0.19894 
 
 + 0.291 73 
 
 46 
 
 + 0.16059 
 
 + 0.03542 
 
 0.10601 
 
 + 0.28747 
 
 47 
 
 + 0.16834 
 
 + 0.067 12 
 
 0.23547 
 
 + 0.34957 
 
 47 
 
 + O.I66O2 
 
 + 0.06406 
 
 0.231 89 
 
 + 0.34443 
 
 48 
 
 + 0.17598 
 
 + 0.10768 
 
 0.28365 
 
 + 0.424 17 
 
 48 
 
 + 0.17489 
 
 + 0.10427 
 
 0.279 15 
 
 + 0.41786 
 
 49 
 
 + 0.186 10 
 
 + 0.16234 
 
 0.34843 
 
 + 0.52271 
 
 49 
 
 + 0.18554 
 
 + 0.15709 
 
 0.34264 
 
 + 0.51483 
 
 50 
 
 + 0.20072 
 
 + 0.23676 
 
 - 0.43747 
 
 + 0.65644 
 
 50 
 
 + 0.201 00 
 
 + 0.22874 
 
 0.42976 
 
 + 0.64633 
 
 Si 
 
 + 0.22403 
 
 + 0.33893 
 
 0.56296 
 
 + 0.84360 
 
 51 
 
 + 0.22568 
 
 + 0.32664 
 
 0.55232 
 
 + 0.830 17 
 
 52 
 
 + 0.265 29 
 
 + 0.47966 
 
 0.74495 
 
 + 1.11472 
 
 52 
 
 + O.269 1 1 
 
 + 0.46054 
 
 0.72966 
 
 + 1.00602 
 
 53 
 
 + 0.34571 
 
 + 0.671 72 
 
 1.01742 
 
 + 1.52277 
 
 53 
 
 + 0-35301 
 
 + 0.641 40 
 
 0.99442 
 
 + 1.49508 
 
 54 
 
 + 0.51642 
 
 + 0.92341 
 
 143982 
 
 + 2.161 97 
 
 54 
 
 + 0.52902 
 
 + 0.87436 
 
 1-40338 
 
 + 2.11762 
 
 55 
 
 + 0.90636 
 
 + 1.21194 
 
 2.11829 
 
 + 3-20054 
 
 55 
 
 + 0.02556 
 
 + 1-13169 
 
 2.05725 
 
 + 3-12267 
 
 56 
 
 + 1.85077 
 
 + 1.39039 
 
 3.241 16 
 
 + 4-91924 
 
 56 
 
 + 1.87094 
 
 + 1.262 21 
 
 3-133 16 
 
 + 4-76908 
 
 57 
 
 + 4.20451 
 
 + 0.91034 
 
 5-11484 
 
 + 7-64885 
 
 57 
 
 + 4-183 37 
 
 + 0.73285 
 
 4-91623 
 
 + 7-34183 
 
 58 
 
 + 979293 
 
 - 1-71451 
 
 - 8.07843 
 
 + 11.07242 
 
 58 
 
 + 9.55247 
 
 1.83400 
 
 - 7-71848 
 
 + 1047949 
 
 59 
 
 +20.207 75 
 
 8.331 97 
 
 -11.87575 
 
 + 11.86403 
 
 59 
 
 + 19-331 99 
 
 - 8.023 85 
 
 11.308 13 
 
 + 11.06309 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 TABLE VII. Continued. 
 VALUES OB- A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 System 4. 
 
 System 5. 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 f 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +27-753 75 
 
 13.94094 
 
 13.81281 
 
 + 2.71293 
 
 
 
 +27.63990 
 
 13.80676 
 
 -13.833 14 
 
 + 1.162 19 
 
 i 
 
 +24.10807 
 
 11.43147 
 
 12.67662 
 
 7-27193 
 
 i 
 
 +22.709 15 
 
 10.43790 
 
 12.27123 
 
 8.00809 
 
 2 
 
 + M.OgO 02 
 
 4-81177 
 
 9.22826 
 
 10.18594 
 
 2 
 
 +12.86967 
 
 4.11827 
 
 8.75142 
 
 10.01752 
 
 3 
 
 4- 6.82696 
 
 - 0.83885 
 
 - 5.988 13 
 
 8.14397 
 
 3 
 
 + 6.17336 
 
 0.53043 
 
 5.64295 
 
 - 7.784 12 
 
 4 
 
 + 3.24571 
 
 + 0.55049 
 
 3.79620 
 
 5.53629 
 
 4 
 
 + 2.93411 
 
 + 0.64851 
 
 - 3.58261 
 
 5.261 65 
 
 5 
 
 + I.6593I 
 
 + 0.79841 
 
 - 2.45770 
 
 3-661 70 
 
 5 
 
 + 1.50482 
 
 + 0.82485 
 
 2.32966 
 
 - 3.48648 
 
 6 
 
 + 0.94972 
 
 + 0.700 16 
 
 1.64989 
 
 2471 69 
 
 6 
 
 + 0.86547 
 
 + 0.70639 
 
 1.57185 
 
 2.36290 
 
 7 
 
 + 0.6l3gO 
 
 + 0.53734 
 
 1.15126 
 
 1.72669 
 
 7 
 
 + 0.56289 
 
 + 0.53922 
 
 1. 102 12 
 
 I.658o8 
 
 8 
 
 + 0.442 70 
 
 + 0.39037 
 
 0.83307 
 
 1.24977 
 
 8 
 
 + 0.40883 
 
 + 0.392 14 
 
 0.80098 
 
 1.205 16 
 
 9 
 
 + 0.348 10 
 
 + 0.27476 
 
 0.62286 
 
 - 0.934 13 
 
 9 
 
 + 0.32390 
 
 + 0.27725 
 
 0.601 14 
 
 0.90424 
 
 10 
 
 + 0.291 44 
 
 + 0.18792 
 
 0.47937 
 
 0.71780 
 
 10 
 
 + 0.273 1 6 
 
 + 0.191 03 
 
 0.464 1 8 
 
 0.69723 
 
 ii 
 
 + 0.25483 
 
 + 0.12366 
 
 - 0.37848 
 
 0.56454 
 
 ii 
 
 + 0.24042 
 
 + O.I27 12 
 
 0.36755 
 
 0.55008 
 
 12 
 
 + 0.22948 
 
 + 0.076 19 
 
 0.30568 
 
 045265 
 
 12 
 
 + 0.21778 
 
 + 0.07980 
 
 0.29759 
 
 0.44233 
 
 13 
 
 -j- 0.21089 
 
 + 0.041 01 
 
 0.25191 
 
 - 0.368 74 
 
 13 
 
 + 0.201 16 
 
 4- 0.04461 
 
 0.245 78 
 
 0.361 30 
 
 14 
 
 + 0.19660 
 
 + 0.014 79 
 
 0.211 39 
 
 0.30429 
 
 14 
 
 + 0.18836 
 
 4- 0.01828 
 
 0.20664 
 
 0.29891 
 
 IS 
 
 + O.lSS 20 
 
 0.00489 
 
 0.18031 
 
 0.25370 
 
 15 
 
 + 0.178 13 
 
 o.oo i 56 
 
 0.17656 
 
 0.24982 
 
 16 
 
 + 0.175 85 
 
 0.01974 
 
 O.I56 12 
 
 0.21322 
 
 16 
 
 + 0.16973 
 
 0.01661 
 
 0.153 10 
 
 0.21047 
 
 17 
 
 + O.I68O3 
 
 0.031 01 
 
 0.13703 
 
 0.18025 
 
 17 
 
 + 0.16267 
 
 0.028 1 1 
 
 0.13457 
 
 0.17836 
 
 18 
 
 + 0.161 41 
 
 0.03959 
 
 O.I2I 80 
 
 0.15297 
 
 18 
 
 + 0.15668 
 
 0.03692 
 
 0.11977 
 
 0.151 73 
 
 19 
 
 + 0.15571 
 
 0.046 15 
 
 0.10956 
 
 0.13005 
 
 19 
 
 + 0.151 53 
 
 0.04369 
 
 0.10785 
 
 0.12933 
 
 20 
 
 + 0.15082 
 
 0.051 17 
 
 0.09964 
 
 0.11051 
 
 20 
 
 + 0.147 10 
 
 0.04892 
 
 0.098 19 
 
 O.IIO20 
 
 21 
 
 + 0.14657 
 
 0.05501 
 
 O.O9I 56 O.O93 62 
 
 21 
 
 + 0.14328 
 
 0.05295 
 
 0.09031 
 
 0.09364 
 
 22 
 
 + 0.14290 
 
 0.05792 
 
 0.08498 0.07883 
 
 22 
 
 + 0.13997 
 
 0.05607 
 
 0.08390 
 
 O.O79 12 
 
 23 
 
 + 0.13975 
 
 O.O6O 12 
 
 0.079 62 0.065 70 
 
 23 
 
 + 0.137 13 
 
 0.05847 
 
 0.07868 
 
 0.06621 
 
 24 
 
 + 0.13703 
 
 0.06 1 75 
 
 0.07528 0.05388 
 
 24 
 
 + 0.13473 
 
 0.06028 
 
 0.07444 
 
 0.05457 
 
 25 
 
 + 0.13473 
 
 0.06293 
 
 0.071 80 0.043 10 
 
 25 
 
 + 0.13270 
 
 0.06 1 64 
 
 0.071 06 
 
 0.04394 
 
 26 
 
 + 0.13280 
 
 0.06374 
 
 0.069 07 0.033 13 
 
 26 
 
 + 0.131 03 
 
 0.062 62 
 
 0.06842 
 
 0.03409 
 
 27 
 
 + O.I3I 22 
 
 0.06423 
 
 0.06700 ! 0.02377 
 
 27 
 
 + 0.12970 
 
 0.06328 
 
 0.06641 
 
 0.02484 
 
 28 
 
 + 0.12997 
 
 0.06445 
 
 0.065 51 0.01486 
 
 28 
 
 + 0.12869 
 
 0.06369 
 
 0.06500 
 
 0.01602 
 
 29 
 
 + O.I29O4 
 
 0.06444 
 
 0.064 59 0.006 25 
 
 29 
 
 + 0.12798 
 
 0.06385 
 
 0.064 13 
 
 0.00748 
 
 30 
 
 + 0.12840 
 
 0.06421 
 
 0.064 19 ! + O.O02 19 
 
 30 
 
 + 0.12758 
 
 0.06379 
 
 o.o53 79 
 
 + 0.00092 
 
 3i 
 
 + O.I28o6 
 
 0.063 75 
 
 0.06430 + 0.01061 
 
 31 
 
 + 0.12747 
 
 0.06351 
 
 0.06396 
 
 + 0.00930 
 
 32 
 
 + 0.12799 
 
 0.06306 
 
 o. 6494 . 4- 0.01912 
 
 32 
 
 + 0.12764 
 
 0.06300 
 
 0.06465 
 
 + 0.01779 
 
 33 
 
 + 0.12822 
 
 O.O62 12 
 
 0.066 ii 4- 0.027 87 
 
 33 
 
 + 0.128 12 
 
 0.06225 
 
 0.06587 
 
 + 0.02652 
 
 34 
 
 + 0.12875 
 
 0.06089 
 
 0.06784 4- 0.03698 
 
 34 
 
 4- 0.12890 
 
 O.O6 1 22 
 
 0.06768 
 
 + 0.03565 
 
 35 
 
 + 0.12955 
 
 0.05933 
 
 0.07022 + 0.04663 
 
 35 
 
 + 0.12998 
 
 0.05987 
 
 0.070 1 1 
 
 + 0.04533 
 
 36 
 
 + 0.13066 
 
 0.05736 
 
 0.07329 4- 0.05699 
 
 36 
 
 + 0.131 39 
 
 O.058 12 
 
 0.07326 
 
 + 0.055 75 
 
 37 
 
 + 0.13207 
 
 0.05490 
 
 0.077 18 + 0.068 27 
 
 37 
 
 + 0.133 13 
 
 0.05589 
 
 0.07723 
 
 + 0.067 ii 
 
 38 
 
 + 0.13381 
 
 0.05 1 82 
 
 0.082 oo 4- 0.080 73 
 
 38 
 
 + 0.135 23 
 
 0.05305 
 
 0.082 17 
 
 + 0.07968 
 
 39 
 
 + 0.13590 
 
 0.04794 
 
 0.08795 4- 0.09466 
 
 39 
 
 + 0.13772 
 
 0.04945 
 
 0.08825 
 
 + 0.09378 
 
 40 
 
 + 0.13834 
 
 0.04308 
 
 0.09527 + o.i 10 47 
 
 40 
 
 + 0.14062 
 
 0.04489 
 
 0.09573 
 
 + 0.10981 
 
 41 
 
 + O.I4I 20 
 
 0.03693 
 
 0.10426 + 0.12864 
 
 4i 
 
 + 0.14400 
 
 0.03907 
 
 0.10493 
 
 + 0.12828 
 
 42 
 
 + 0.14449 
 
 0.029 13 
 
 0.11536 + 0.14982 
 
 42 
 
 + 0.14793 
 
 0.03163 
 
 0.11628 
 
 4- 0.14986 
 
 43 
 
 + 0.14829 
 
 0.019 17 
 
 0.129 14 4- 0.17486 
 
 43 
 
 + 0.15247 
 
 0.02208 
 
 0.13040 
 
 + 0.17544 
 
 44 
 
 + O.I527I 
 
 0.00634 
 
 0.14636 4- 0.20492 
 
 44 
 
 + 0.15779 
 
 0.00972 
 
 0.14808 
 
 + 0.20620 
 
 45 
 
 + O.IS785 
 
 + 0.01028 
 
 0.168 13 
 
 + 0.241 57 
 
 45 
 
 + 0.16407 
 
 + 0.00638 
 
 0.17044 
 
 + 0.24382 
 
 46 
 
 + 0.16399 
 
 4- 0.032 oo 
 
 0.19597 + 0.28704 
 
 46 
 
 + 0.171 62 
 
 + 0.02748 
 
 0.199 ii 
 
 + 0.29063 
 
 47 
 
 + O.I?! 48 
 
 4- 0.06063 
 
 0.23209 + 0.34455 
 
 47 
 
 + 0.18098 
 
 + 0.05539 
 
 0.23637 
 
 + 0.34998 
 
 48 
 
 + O.lSl 02 
 
 + 0.09873 
 
 0.27974 + 041883 
 
 48 
 
 + 0.19304 
 
 + 0.092 6 1 
 
 0.28564 
 
 + 042686 
 
 49 
 
 + O.I939I 
 
 + 0.14990 
 
 0.34380 + 0.51708 
 
 49 
 
 + 0.20945 
 
 + 0.14264 
 
 0.35207 
 
 + 0.52885 
 
 So 
 
 + O.2I265 
 
 + 0.219 19 
 
 - 0.431 84 + 0.650 55 
 
 50 
 
 + 0.23330 
 
 + 0.21035 
 
 0.44366 
 
 + 0.66781 
 
 SI 
 
 4- 0.24236 
 
 4- 0.31354 
 
 0.55590 + 0.83740 
 
 51 
 
 + 0.27084 
 
 + 0.30233 
 
 0.573 16 
 
 + 0.86291 
 
 52 
 
 + 0.29393 
 
 + 0.441 78 
 
 0.73571 + 1.10789 
 
 52 
 
 + 0.33507 
 
 + 042652 
 
 0.761 61 
 
 + 1.146 ii 
 
 53 
 
 + 0.391 71 
 
 + 0.61299 
 
 1.00472 + 1.51406 
 
 53 
 
 + 0.45469 
 
 + 0.59001 
 
 1.04470 
 
 + 1-572 14 
 
 54 
 
 + 0.59284 
 
 + 0.82829 
 
 I.42I 12 : + 2.I47O2 
 
 54 
 
 + 0.69605 
 
 + 0.78884 
 
 1.48488 
 
 + 2.23629 
 
 55 
 
 + 1.03724 
 
 + 1.051 ii 
 
 2.08836 + 3.16503 
 
 55 
 
 + I.2I939 
 
 + 0.97368 
 
 2.19308 
 
 + 3.301 12 
 
 56 
 
 + 2.07620 
 
 4- 1.11203 
 
 3.18823 + 4.81735 
 
 56 
 
 + 241926 
 
 + 0.94390 
 
 3-363 18 
 
 + 5.01076 
 
 57 
 
 + 4.561 ii 
 
 + 0.45028 
 
 - 5.0II40 + 7-34432 
 
 57 
 
 + 5-21973 
 
 + 0.077 57 
 
 5.29730 
 
 + 7-54759 
 
 58 
 
 +10.15489 
 
 2.290 72 
 
 7.864 16 + 10.250 29 
 
 58 
 
 + 11.281 01 
 
 3.00564 
 
 - 8.275 35 
 
 + 10.19086 
 
 59 
 
 +19.85615 
 
 - 8.398 13 
 
 11.45803 4-10.29566 
 
 59 
 
 +21.04269 
 
 9-19381 
 
 11.84889 
 
 + 9-39027 
 
64 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE VII. Continued. 
 VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 System 6. 
 
 System 7. 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +27.16805 
 
 13.66015 
 
 -13.50787 
 
 0.614 53 
 
 o 
 
 +26.70986 
 
 13-59511 
 
 13.11476 
 
 2.251 50 
 
 i 
 
 +20.933 58 
 
 9.36452 
 
 11.56906 
 
 8.839 67 
 
 i 
 
 +19.44882 
 
 846686 
 
 10.981 95 
 
 9.68240 
 
 2 
 
 +11.41364 
 
 3.29223 
 
 8.121 39 
 
 9.88868 
 
 2 
 
 +10.20337 
 
 2.547 15 
 
 7.65624 
 
 9.92208 
 
 3 
 
 + 5.381 20 
 
 0.147 12 
 
 5-23409 
 
 744099 
 
 3 
 
 + 4.702 14 
 
 + 0.24741 
 
 4-94955 
 
 7.24930 
 
 4 
 
 + 2.541 06 
 
 + 0.80284 
 
 - 3.34388 
 
 4.99086 
 
 4 
 
 + 2.18926 
 
 + 0.993 76 
 
 3.18300 
 
 4-81724 
 
 5 
 
 + I-30I93 
 
 + 0.88985 
 
 2.191 79 
 
 3-31041 
 
 S 
 
 + 1.11288 
 
 + 0.98787 
 
 2.10076 
 
 3-191 27 
 
 6 
 
 + 0.751 59 
 
 + 0.738 57 
 
 M90I5 
 
 2.25264 ' 6 
 
 + 0.64227 
 
 + 0.79477 
 
 1.43702 
 
 2.17589 
 
 7 
 
 + 0.49304 
 
 + 0.55884 
 
 1.05187 
 
 1.58825 7 
 
 + 042478 
 
 + 0.59479 
 
 1.01958 
 
 1-53905 
 
 8 
 
 + 0.36249 
 
 + 040635 
 
 0.76885 
 
 - I.I5995 8 
 
 + 0.31691 
 
 + 0.43149 
 
 0.74840 
 
 1.12806 
 
 9 
 
 + 0.291 15 
 
 + 0.28868 
 
 0.57982 
 
 0.87426 9 
 
 + 0.25897 
 
 + 0.30739 
 
 - 0.56637 
 
 0.85330 
 
 10 
 
 + 0.24883 
 
 + 0.20073 
 
 0.449 54 
 
 0.67695 10 
 
 + 0.225 10 
 
 + 0.21527 
 
 0.44039 
 
 0.66303 
 
 ii 
 
 + 0.221 64 
 
 + 0.13556 
 
 0.357 19 
 
 0.53617 II 
 
 + 0.20354 
 
 + 0.14721 
 
 0.35075 ; 0.52689 
 
 12 
 
 + 0.20285 
 
 + 0.08721 
 
 0.29006 
 
 043271 12 
 
 + 0.18867 
 
 + 0.09673 
 
 0.28540 
 
 042657 
 
 13 
 
 + O.I89O2 
 
 + 0.051 15 
 
 0.240 17 
 
 0.35465 13 
 
 + 0.17768 
 
 + 0.05904 
 
 0.23672 
 
 0.35068 
 
 14 
 
 + 0.17833 
 
 + 0.02406 
 
 0.202 37 
 
 0.24935 14 
 
 + 0.169 10 
 
 + 0.03066 
 
 - 0.19977 
 
 0.291 91 
 
 IS 
 
 + O.I0972 
 
 + 0.003 54 
 
 0.17325 
 
 0.24679 15 
 
 + 0.162 13 
 
 + O.O09 12 
 
 0.171 25 
 
 0.24543 
 
 16 
 
 + 0.16259 
 
 O.OI2 IO 
 
 0.15049 
 
 0.20855 16 
 
 + 0.15630 
 
 0.00738 
 
 0.14893 i 0.20799 
 
 17 
 
 + 0.15658 
 
 O.O24 12 
 
 0.13248 
 
 0.17728 17 
 
 + 0.151 34 
 
 O.02O IO 
 
 0.131 25 
 
 0.17729 
 
 18 
 
 + O.I5I46 
 
 0.033 39 
 
 0.11807 
 
 0.151 29 
 
 18 
 
 + 0.14708 
 
 O.O2998 
 
 0.11709 
 
 0.151 73 
 
 19 
 
 + 0.14705 
 
 0.04059 
 
 0.10646 
 
 0.12937 
 
 19 
 
 + 0.14338 
 
 O.0377I O.IO568 
 
 0.130 i^ 
 
 20 
 
 + 0.14324 
 
 0.04621 
 
 0.09703 
 
 0.11061 
 
 20 
 
 + 0.140 19 
 
 O.04378 0.09642 
 
 O.I 1 1 60 
 
 21 
 
 + 0.13995 
 
 0.05060 
 
 0.08936 
 
 0.09435 
 
 21 
 
 + 0.13745 
 
 0.04856 0.08887 
 
 0.09551 
 
 22 
 
 + 0.137 13 
 
 0.05404 
 
 0.083 10 
 
 0.08005 
 
 22 
 
 + 0.13509 
 
 O.05236 O.08273 
 
 0.081 34 
 
 23 
 
 + 0.13472 
 
 0.05672 
 
 0.07800 
 
 0.06731 
 
 23 
 
 + 0.133 II 
 
 - 0.055 37 - 0.077 73 
 
 0.06868 
 
 24 
 
 + 0.13270 
 
 0.05881 
 
 0.07388 
 
 0.05581 
 
 24 
 
 + O.I3I47 
 
 0.05775 
 
 0.073 71 
 
 0.05724 
 
 25 
 
 + 0.131 04 
 
 0.06043 
 
 0.07060 
 
 0.04528 
 
 25 
 
 + 0.130 15 
 
 0.05964 
 
 0.07051 
 
 0.04674 
 
 26 
 
 + 0.12970 
 
 0.061 66 
 
 0.06804 
 
 0.03551 
 
 26 
 
 + 0.129 14 
 
 0.061 13 
 
 0.06803 0.03698 
 
 27 
 
 + 0.12869 
 
 0.06257 
 
 O.066 12 
 
 0.02631 
 
 27 
 
 + 0.12844 
 
 0.062 27 
 
 o.o65 19 0.027 77 
 
 28 
 
 + 0.12799 
 
 0.063 20 
 
 O.O6478 
 
 0.01752 
 
 28 
 
 + 0.12804 
 
 0.063 12 
 
 0.06493 0.01895 
 
 29 
 
 + 0.127 58 
 
 0.06359 
 
 O.O64OO 
 
 0.00899 
 
 29 
 
 + 0.12793 
 
 0.063 72 
 
 0.06421 0.01037 
 
 30 
 
 + 0.12747 
 
 0.06375 
 
 0.063 73 
 
 0.00059 
 
 30 
 
 + 0.128 II 
 
 0.06408 
 
 0.06402 0.00191 
 
 31 
 
 + 0.12766 
 
 0.06368 
 
 0.06397 
 
 + 0.00782 
 
 31 
 
 + 0.12853 
 
 0.06423 
 
 0.06436 + 0.00658 
 
 32 
 
 + 0.128 14 
 
 0.06340 
 
 0.06475 
 
 + 0.01635 
 
 32 
 
 + 0.12937 
 
 0.064 14 
 
 0.06523 + 0.01522 
 
 33 
 
 + 0.12893 
 
 0.06287 
 
 0.06606 
 
 + 0.025 1 6 
 
 33 
 
 + 0.13046 
 
 0.06382 
 
 0.066 66 , + 0.024 IS 
 
 34 
 
 + 0.13003 
 
 0.06207 
 
 0.06796 
 
 + 0.03439 
 
 34 
 
 + 0.13188 
 
 0.06320 
 
 0.06867 + 0.03352 
 
 35 
 
 + 0.13146 
 
 0.06095 
 
 0.07052 
 
 + 0.044 19 
 
 35 
 
 + 0.13365 
 
 0.06228 
 
 0.071 36 + 0.043 SO 
 
 36 
 
 + 0.13325 
 
 0.05943 
 
 0.07380 
 
 + 0.05476 
 
 36 
 
 + 0.135 77 
 
 0.06097 
 
 0.07481 + 0.05429 
 
 37 
 
 + 0.13538 
 
 0.05746 
 
 0.07793 
 
 + 0.06633 
 
 37 
 
 + 0.13831 
 
 0.059 19 
 
 0.079 12 + 0.066 ii 
 
 38 
 
 + 0.13794 
 
 0.05488 
 
 0.08305 
 
 + 0.079 15 
 
 38 
 
 + 0.141 28 
 
 0.05683 
 
 0.08445 + 0.07925 
 
 39 
 
 + 0.14092 
 
 0.051 56 
 
 0.08935 
 
 + 0.093 57 
 
 39 
 
 + 0.14474 
 
 0.05372 
 
 0.091 01 
 
 + 0.09404 
 
 40 
 
 + 0.14439 
 
 0.04729 
 
 0.097 II 
 
 + O.I 10 00 
 
 40 
 
 + 0.14874 
 
 0.04966 
 
 0.09908 
 
 + 0.11093 
 
 4i 
 
 + 0.14843 
 
 0.041 77 
 
 0.10665 
 
 + 0.12898 
 
 41 
 
 + 0.15339 
 
 0.04438 
 
 0.10300 
 
 + 0.13048 
 
 42 
 
 + 0.153 10 
 
 0.03467 
 
 0.11844 
 
 + O.I5I 20 
 
 42 
 
 + 0.15877 
 
 0.037 5O 
 
 0.121 27 
 
 + 0.15342 
 
 43 
 
 + 0.15855 
 
 0.02546 
 
 0.13311 
 
 + O.I776I 
 
 43 
 
 + 0.16505 
 
 0.02853 
 
 0.13653 
 
 + 0.18072 
 
 44 
 
 + 0.16495 
 
 0.01347 
 
 - 0.15149 
 
 + 0.20947 
 
 44 
 
 + 0.17246 
 
 0.01677 0.15567 
 
 + 0.213 73 
 
 45 
 
 + 0.17257 
 
 + O.OO222 
 
 0.17480 
 
 + 0.24852 
 
 45 
 
 + 0.181 29 
 
 0.00133 0.17997 
 
 + 0.25426 
 
 46 
 
 + 0.181 82 
 
 + 0.02290 
 
 0.20472 
 
 + 0.29723 
 
 46 
 
 + 0.19206 
 
 + O.OI9 II O.2II 17 
 
 + 0.30493 
 
 47 
 
 + 0.19336 + 0.05033 
 
 0.24370 
 
 + 0.359 18 
 
 47 
 
 + 0.205 57 
 
 + 0.04631 
 
 0.251 88 
 
 + 0.36951 
 
 48 
 
 + 0.208 36 + 0.087 oo 
 
 - 0.295 37 
 
 + 0.43967 
 
 48 
 
 + 0.223 17 
 
 + 0.082 74 
 
 0.30590 
 
 + 0.45358 
 
 49 
 
 + 0.22884 + 0.13637 
 
 0.36520 
 
 + 0.54676 
 
 49 
 
 + 0.24721 
 
 + 0.131 82 
 
 0.37903 
 
 + 0.56569 
 
 50 
 
 + 0.25860 + 0.20317 
 
 0461 77 
 
 + 0.693 12 
 
 50 
 
 + 0.282 1 1 
 
 + 0.198 18 
 
 0.48029 
 
 + 0.71923 
 
 5i 
 
 + 0.305 13 + 0.293 60 
 
 0.59874 
 
 + 0.89921 
 
 Si 
 
 + 0.33642 
 
 + 0.28773 
 
 0.624 15 
 
 + 0.93591 
 
 52 
 
 + 0.38393 + 0.41479 
 
 0.798 70 
 
 + I.I99I3 
 
 52 
 
 + 0.42773 
 
 + 0.40676 
 
 0.834 50 
 
 + 1.25184 
 
 53 
 
 + 0.52866 + 0.57144 
 
 1. 100 II 
 
 + 1.651 13 
 
 53 
 
 + 0.59408 
 
 + 0.557 85 
 
 I.I5I93 
 
 + 1.72856 
 
 54 
 
 + 0.81650 
 
 + 0.75357 
 
 1-57007 
 
 + 2.35573 
 
 54 
 
 + 0.92198 
 
 + 0.725 14 
 
 - 1-64713 
 
 + 2471 57 
 
 55 
 
 + 1.43137 
 
 + 0.895 83 
 
 2.327 19 
 
 + 348082 
 
 55 
 
 + 1.61638 
 
 + 0.8274') 
 
 - 2.44383 
 
 + 3.65374 
 
 56 
 
 + 2.81766 
 
 + 0.75750 
 
 - 3-575 16 
 
 + 5.26294 
 
 56 
 
 + 3-16615 
 
 + 0.58408 
 
 3.75022 
 
 + 5.50398 
 
 57 
 
 + 5.97720 
 
 0.36200 
 
 5.61520 
 
 + 7.807 13 
 
 57 
 
 + 6.641 59 
 
 0.78455 
 
 5.85704 
 
 + 8.051 79 
 
 58 
 
 +12.52832 
 
 - 3-86693 
 
 8.661 40 
 
 + 10.10754 
 
 58 
 
 + 13.61205 
 
 4.70484 
 
 8.90720 
 
 +10.018 16 
 
 59 
 
 +22.18774 
 
 10.13334 
 
 12.054 39 
 
 + 8.285 33 
 
 59 
 
 +23.13200 
 
 11.051 60 
 
 12.08040 
 
 + 7-24047 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 TABLE VII. Continued. 
 VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 
 
 System 
 
 8. 
 
 
 
 
 System 
 
 9- 
 
 
 1 
 
 A 
 
 B 
 
 C 
 
 D 
 
 I 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +27.214 80 
 
 13.93826 
 
 -13.27655 
 
 3.50011 
 
 
 
 +29406 78 
 
 14.96887 
 
 14.43791 
 
 4.12709 
 
 I 
 
 + 19.03987 
 
 8.02033 
 
 11.01953 
 
 10.66509 
 
 i 
 
 +20.202 62 
 
 8.251 18 
 
 11.95144 
 
 11.84365 
 
 2 
 
 + 9-631 65 
 
 1.99026 
 
 7.641 36 
 
 10.302 17 
 
 2 
 
 + 9.90242 
 
 1-721 59 
 
 8.18082 
 
 11.10640 
 
 3 
 
 + 4.31063 
 
 + 0.61744 
 
 4.92809 
 
 7-32955 
 
 3 
 
 + 4.28872 
 
 0.911 18 
 
 - 5.19988 
 
 7.71982 
 
 4 
 
 + 1.96054 
 
 + 1.20621 
 
 3.16675 
 
 4-80935 
 
 4 
 
 + 1.89456 
 
 + 140655 
 
 3.301 10 
 
 4.984 16 
 
 5 
 
 + 0.98006 
 
 + 1.10985 
 
 2.08990 
 
 3.16793 
 
 5 
 
 + 0.92598 
 
 + 1.23253 
 
 - 2.15852 
 
 3.24867 
 
 6 
 
 + 0.561 76 
 
 + 0.86813 
 
 1.42989 
 
 2.155 37 
 
 6 
 
 + 0.52426 
 
 + 0.94242 
 
 146667 
 
 2.19556 
 
 7 
 
 + 0.37331 
 
 + 0.64149 
 
 1.01479 
 
 1-52413 
 
 7 
 
 + 0.348 15 
 
 + 0.68736 
 
 1.03553 
 
 1.54604 
 
 8 
 
 + 0.28229 
 
 + 046281 
 
 0.74509 
 
 Li 17 93 
 
 8 
 
 + 0.26537 
 
 + 049196 
 
 0.75734 
 
 1.13104 
 
 9 
 
 + 0.23465 
 
 + 0.32936 
 
 0.56401 
 
 0.84669 
 
 9 
 
 + O.223 12 
 
 + 0.34843 
 
 0.571 56 
 
 0.855 24 
 
 10 
 
 + 0.20740 
 
 + 0.23126 
 
 0.43866 
 
 0.65889 
 
 10 
 
 + 0.19944 
 
 + 0.24406 
 
 - 0.44351 
 
 0.66492 
 
 ii 
 
 + 0.19028 
 
 + 0.159 18 
 
 0.34946 
 
 0.52446 
 
 ii 
 
 + 0.18474 
 
 + 0.16797 
 
 0.352 70 
 
 0.52899 
 
 12 
 
 + 0.17851 
 
 + 0.10591 
 
 0.28442 
 
 042532 
 
 12 
 
 + 0.17464 
 
 + 0.11205 
 
 0.28667 
 
 042889 
 
 13 
 
 + 0.16976 
 
 + 0.06621 
 
 0.23597 
 
 0.35025 
 
 13 
 
 + O.I67O8 
 
 + 0.07053 
 
 0.23761 
 
 0.353 18 
 
 14 
 
 + 0.16285 
 
 + 0.03633 
 
 0.19920 
 
 0.29205 
 
 14 
 
 + O.l6lO5 
 
 + 0.03940 
 
 0.20043 
 
 0.29452 
 
 IS 
 
 + 0.157 17 
 
 + 0.01365 
 
 0.17081 
 
 0.24598 
 
 15 
 
 + 0.15599 
 
 + 0.01580 
 
 0.171 81 
 
 0.248 10 
 
 16 
 
 + 0.15234 
 
 0.003 74 
 
 0.14861 
 
 - 0.20880 
 
 16 
 
 + O.I5I 67 
 
 0.00223 
 
 0.14943 
 
 0.21065 
 
 17 
 
 + 0.148 19 
 
 0.017 17 
 
 0.13102 
 
 0.17830 
 
 17 
 
 + 0.14790 
 
 0.016 16 
 
 0.131 73 
 
 0.17993 
 
 18 
 
 + 0.14458 
 
 0.02763 
 
 0.11696 
 
 0.15286 
 
 18 
 
 + 0.14458 
 
 0.02701 
 
 0.11760 
 
 0.15430 
 
 19 
 
 + 0.14143 
 
 0.03583 
 
 0.105 61 
 
 0.131 33 
 
 19 
 
 + O.I4I 69 
 
 0.03549 
 
 0.10622 
 
 0.13262 
 
 20 
 
 + 0.13871 
 
 0.04229 
 
 0.00641 
 
 0.11285 
 
 20 
 
 + 0.139 16 
 
 0.042 17 
 
 0.09701 
 
 0.11400 
 
 21 
 
 + 0.13636 
 
 0.04743 
 
 0.08894 
 
 0.09678 
 
 21 
 
 + 0.13698 
 
 0.04747 
 
 0.08952 
 
 0.097 79 
 
 22 
 
 + 0.134 36 
 
 0.051 51 
 
 - 0.08285 
 
 0.08260 
 
 22 
 
 + 0.135 12 
 
 0.051 70 
 
 0.08343 
 
 0.083 50 
 
 23 
 
 + 0.13268 
 
 0.05478 
 
 0.07792 
 
 0.06993 
 
 23 
 
 + 0.13357 
 
 0.05508 
 
 0.07850 
 
 0.07072 
 
 24 
 
 + 0.131 33 
 
 0.05738 
 
 0.07394 
 
 0.05846 
 
 24 
 
 + 0.13233 
 
 0.05779 
 
 0.07454 
 
 0.059 14 
 
 25 
 
 + 0.13027 
 
 0.05948 
 
 0.07080 
 
 0.04791 
 
 25 
 
 + 0.131 37 
 
 0.05996 
 
 0.071 41 
 
 0.04850 
 
 26 
 
 + 0.12951 
 
 0.061 14 
 
 0.06837 
 
 0.038 10 
 
 26 
 
 + 0.130 70 
 
 0.061 69 
 
 0.06901 
 
 0.03858 
 
 27 
 
 + 0.12904 
 
 0.06245 
 
 0.06659 
 
 0.02882 
 
 27 
 
 + 0.13031 
 
 0.06305 
 
 0.06725 
 
 0.02921 
 
 28 
 
 + 0.12885 
 
 0.06346 
 
 0.065 39 
 
 0.01993 
 
 28 
 
 + 0.13020 
 
 0.064 12 
 
 0.06608 
 
 O.O2O2I 
 
 29 
 
 + 0.12894 
 
 0.064 21 
 
 0.06475 
 
 0.01127 
 
 29 
 
 + 0.13037 
 
 0.06490 
 
 0.06546 
 
 0.01 1 45 
 
 30 
 
 + 0.12933 
 
 O.O647I 
 
 0.06463 
 
 0.00271 
 
 30 
 
 + 0.13083 
 
 0.06544 
 
 0.06538 
 
 0.00279 
 
 31 
 
 + 0.13002 
 
 0.06498 
 
 0.06504 
 
 + 0.00589 
 
 31 
 
 + 0.131 59 
 
 0.065 74 
 
 0.06583 
 
 + 0.00591 
 
 32 
 
 + 0.131 01 
 
 O.O65 O2 
 
 0.06599 
 
 + 0.01465 
 
 32 
 
 + 0.13263 
 
 0.06582 
 
 0.06683 
 
 + 0.01478 
 
 33 
 
 + 0.13232 
 
 0.06482 
 
 0.06751 
 
 + 0.02372 
 
 33 
 
 + 0.13401 
 
 0.06563 
 
 0.06839 
 
 + 0.02397 
 
 34 
 
 + 0.13397 
 
 0.06432 
 
 0.06963 
 
 + 0.03325 
 
 34 
 
 + 0.135 71 
 
 0.065 15 
 
 0.07057 
 
 + 0.03362 
 
 35 
 
 + 0.13596 
 
 0.06352 
 
 0.07244 
 
 + 0.04341 
 
 35 
 
 + 0.137 77 
 
 0.06435 
 
 - 0.07343 
 
 + 0.04392 
 
 36 
 
 + 0.13834 
 
 0.06233 
 
 0.07602 
 
 + 0.05441 
 
 36 
 
 + 0.14022 
 
 0.063 15 
 
 0.07706 
 
 + 0.05506 
 
 37 
 
 + 0.141 13 
 
 O.o6o66 
 
 0.08048 
 
 + 0.06647 
 
 37 
 
 -j- 0.14308 
 
 0.06 1 47 
 
 0.08 1 59 
 
 + 0.06728 
 
 38 
 
 + 0.14440 
 
 0.05840 
 
 0.08599 
 
 + 0.07989 
 
 38 
 
 + 0.14640 
 
 0.05920 
 
 0.087 18 
 
 + 0.08087 
 
 39 
 
 + 0.148 16 
 
 0.05541 
 
 0.09277 
 
 + 0.09501 
 
 39 
 
 + 0.15022 
 
 0.056 18 
 
 0.09405 
 
 + 0.096 19 
 
 40 
 
 + 0.152 52 
 
 0.05145 
 
 o.ioi 08 
 
 + 0.11229 
 
 40 
 
 + 0.15464 
 
 0.052 18 
 
 0.10246 
 
 + 0.11369 
 
 41 
 
 + 0.15756 
 
 0.04626 
 
 O.I 1 1 29 
 
 + 0.13231 
 
 41 
 
 + 0.15973 
 
 0.04694 
 
 0.11279 
 
 + 0.13396 
 
 42 
 
 + 0.163 40 
 
 0.03947 
 
 0.12392 
 
 + 0.15582 
 
 42 
 
 + 0.16561 
 
 0.04007 
 
 0.125 54 
 
 + 0.15776 
 
 43 
 
 + 0.17020 
 
 0.03058 
 
 0.13961 
 
 + 0.18384 
 
 43 
 
 + 0.17245 
 
 0.03106 
 
 0.141 39 
 
 + 0.186 1 1 
 
 44 
 
 + 0.17822 
 
 0.01889 
 
 0.15931 
 
 + 0.21772 
 
 44 
 
 + 0.18048 
 
 0.01921 
 
 0.161 26 
 
 + 0.22039 
 
 45 
 
 + 0.18779 
 
 0.00348 
 
 0.18430 
 
 + 0.25939 
 
 45 
 
 + 0.19004 
 
 0.00358 
 
 0.18646 
 
 + 0.26254 
 
 46 
 
 + 0.19946 
 
 + 0.01695 
 
 0.21640 
 
 + 0.31152 
 
 46 
 
 + 0.201 66 
 
 + 0.017 16 
 
 0.21884 
 
 + 0.31527 
 
 47 
 
 + 0.214 10 
 
 + 0.044 19 
 
 0.25828 
 
 + 0.37802 
 
 47 
 
 + 0.21618 
 
 + 0.04488 
 
 0.261 04 
 
 + 0.38255 
 
 48 
 
 + 0.233 13 
 
 + 0.08075 
 
 0.31387 
 
 + 0.46469 
 
 48 
 
 + 0.23409 
 
 + 0.082 10 
 
 0.31709 
 
 + 0.47025 
 
 49 
 
 + 0.259 12 
 
 + 0.13004 
 
 0.389 15 
 
 + 0.58041 
 
 49 
 
 + 0.26056 
 
 + 0.13243 
 
 - 0.39209 
 
 + 0.58739 
 
 50 
 
 + 0.20674 
 
 + 0.10672 
 
 0.49344 
 
 + 0.739 12 
 
 50 
 
 + 0.29746 
 
 + 0.20073 
 
 0.40820 
 
 + 0.748 16 
 
 51 
 
 + 0.35509 
 
 + 0.28662 
 
 0.641 69 
 
 + 0.06340 
 
 Si 
 
 + 0.35463 
 
 + 0.29326 
 
 0.64789 
 
 + 0.975 66 
 
 52 
 
 + 0.45286 
 
 + 0.40576 
 
 0.85863 
 
 + I.2OO97 
 
 52 
 
 + 0.450 50 
 
 + 0.41679 
 
 0.86729 
 
 + 1.30862 
 
 53 
 
 + 0.63050 
 
 + 0.55578 
 
 1.18620 
 
 + 1.786 19 
 
 53 
 
 + 0.625 31 
 
 + 0.57426 
 
 - I.I9957 
 
 + 1.81371 
 
 54 
 
 + 0.980 18 
 
 + 0.71766 
 
 - 1.69783 
 
 + 2.55944 
 
 54 
 
 + 0.971 84 
 
 + 0.74881 
 
 1.72064 
 
 + 2.60676 
 
 55 
 
 + 1.72092 
 
 + 0.80056 
 
 2.52146 
 
 + 3.791 24 
 
 55 
 
 + 1.71305 
 
 + 0.851 55 
 
 - 2.565 51 
 
 + 3-88150 
 
 56 
 
 + 3.37687 
 
 + 0.495 10 
 
 - 3-871 98 
 
 + 5-7i6i9 
 
 56 
 
 + 3-39986 
 
 + 0.56678 
 
 -3-96664 
 
 + 5-903 18 
 
 57 
 
 + 7.09411 
 
 1.04890 
 
 6.04521 
 
 + 8.33290 
 
 57 
 
 + 7.271 80 
 
 1.00883 
 
 6.26296 
 
 + 8.721 65 
 
 58 
 59 
 
 +14.50438 
 
 +24.307 55 
 
 5.33643 
 -11-95739 
 
 9.16795 
 12.350 17 
 
 + 10.174 19 
 + 6.72653 
 
 58 
 59 
 
 +15.22832 
 +26.10678 
 
 5.57039 
 12.841 66 
 
 9.65791 
 13.26509 
 
 + 10.830 84 
 + 7-I8745 
 
66 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE Mil. Concluded. 
 
 VALUES OF A, B, C, AND D FOR THE ACTION OF VENUS ON THE MOON. 
 
 System 10. 
 
 System n. 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +32.96968 
 
 16.56997 
 
 16.399 71 
 
 - 3-66844 
 
 
 
 +35-831 31 
 
 17.896 16 
 
 17.935 12 
 
 1.71241 
 
 i 
 
 +22.87840 
 
 - 9-29885 
 
 13-57954 
 
 12.86257 
 
 i 
 
 +25.08088 
 
 10.06956 
 
 15.01132 
 
 12.871 70 
 
 2 
 
 +11.01961 
 
 1.89825 
 
 9.121 36 
 
 12.14882 
 
 2 
 
 +12.64960 
 
 2.65575 
 
 9-99385 
 
 12.89708 
 
 3 
 
 + 4-64991 
 
 1.01842 
 
 - 5.66834 
 
 8.32679 
 
 3 
 
 + 5-31222 
 
 0.803 15 
 
 6.II536 
 
 8.902 19 
 
 4 
 
 + 2.00491 
 
 + 1.52568 
 
 - 3.53058 
 
 - 5-29455 
 
 4 
 
 + 2.27438 
 
 + 148038 
 
 - 3-754 76 
 
 5.628 18 
 
 5 
 
 + 0.961 50 
 
 + 1-31385 
 
 2.275 35 
 
 - 340808 
 
 5 
 
 + 1.08448 
 
 + 1.30802 
 
 2.39250 
 
 - 3-59521 
 
 6 
 
 + 0.53767 
 
 + 0.991 88 
 
 - 1-52955 
 
 2.28306 
 
 6 
 
 + 0.602 79 
 
 + 0.991 77 
 
 1-59455 
 
 2.39023 
 
 7 
 
 + 0.35496 
 
 + 0.71640 
 
 1.071 36 
 
 1.59699 
 
 7 
 
 + 0.39457 
 
 + 0.715 16 
 
 1.10973 
 
 1.661 64 
 
 8 
 
 + 0.270 14 
 
 + 0.50875 
 
 0.77890 
 
 1.16257 
 
 8 
 
 + 0.29706 
 
 + 0.50583 
 
 0.80290 
 
 1.20341 
 
 9 
 
 + 0.22724 
 
 + 0.35797 
 
 0.58520 
 
 0.875 82 
 
 9 
 
 + 0.24704 
 
 + 0.35397 
 
 0.60 1 02 
 
 0.90267 
 
 10 
 
 + 0.20327 
 
 + 0.24927 
 
 - 0.45255 
 
 0.67894 
 
 10 
 
 + 0.21868 
 
 + 0.24478 
 
 0.46347 
 
 0.697 18 
 
 ii 
 
 + 0.18839 
 
 + 0.17058 
 
 0.35896 
 
 - 0.53889 
 
 ii 
 
 + 0.20085 
 
 + 0.16598 
 
 0.36683 
 
 0.551 59 
 
 12 
 
 + 0.178 13 
 
 + 0.11307 
 
 0.291 19 
 
 0.43609 
 
 12 
 
 + 0.18848 
 
 + 0.10859 
 
 0.29707 
 
 0.44509 
 
 13 
 
 + 0.17040 
 
 + 0.07059 
 
 0.241 oo 
 
 0.358 52 
 
 13 
 
 + 0.179 19 
 
 + 0.06636 
 
 0.245 53 
 
 0.36497 
 
 14 
 
 + 0.16420 
 
 + 0.03887 
 
 0.20307 
 
 0.298 55 
 
 14 
 
 + 0.171 75 
 
 + 0.03492 
 
 - 0.20668 
 
 0.303 18 
 
 IS 
 
 + 0.15900 
 
 + 0.01493 
 
 0.17392 
 
 0.251 17 
 
 IS 
 
 + 0.16557 
 
 + o.oi i 29 
 
 - 0.17686 
 
 0.25449 
 
 16 
 
 + 0.15452 
 
 0.00331 
 
 0.151 19 
 
 0.21301 
 
 16 
 
 + 0.16028 
 
 0.00665 
 
 0.153 64 
 
 - 0.21535 
 
 17 
 
 + 0.15059 
 
 0.01736 
 
 0.13325 
 
 0.181 73 
 
 17 
 
 + 0.15570 
 
 0.02038 
 
 O.I353I 
 
 0.18333 
 
 18 
 
 + 0.147 15 
 
 0.02823 
 
 0.11892 
 
 - 0.15568 
 
 18 
 
 + 0.151 69 
 
 0.03098 
 
 O.I2O 7O 
 
 0.15670 
 
 19 
 
 + 0.144 13 
 
 0.03672 
 
 0.10739 
 
 0.13365 
 
 19 
 
 + 0.148 17 
 
 O.O39 22 
 
 0.10896 
 
 0.13421 
 
 20 
 
 + 0.141 48 
 
 0.04340 
 
 0.09808 
 
 o.i 14 75 
 
 20 
 
 + 0.145 09 
 
 0.045 66 
 
 - 0.09945 
 
 0.11495 
 
 21 
 
 + 0.139 19 
 
 0.04867 
 
 0.09050 
 
 0.09831 
 
 21 
 
 + 0.14243 
 
 0.05070 
 
 0.091 72 
 
 0.09823 
 
 22 
 
 + 0.13722 
 
 0.05286 
 
 0.08436 
 
 0.08381 
 
 22 
 
 + 0.140 12 
 
 0.054(18 
 
 0.08545 
 
 0.083 50 
 
 23 
 
 4- 0.135 57 
 
 0.05620 
 
 0.07938 
 
 0.07086 
 
 23 
 
 + 0.138 16 
 
 0.05781 
 
 0.08036 
 
 0.07035 
 
 24 
 
 + 0.13422 
 
 0.058 85 
 
 - 0.075 38 
 
 0.059 13 
 
 24 
 
 + 0.13653 
 
 0.060 27 
 
 0.07626 
 
 0.05846 
 
 25 
 
 + 0.133 17 
 
 0.06096 
 
 0.07222 
 
 0.04836 
 
 25 
 
 + 0.13522 
 
 O.O')220 
 
 0.07.1 01 
 
 - 0.04755 
 
 26 
 
 + 0.13241 
 
 0.06263 
 
 0.06979 
 
 0.03832 
 
 26 
 
 + 0.13420 
 
 0.063 70 
 
 0.070 =;o 
 
 0.03741 
 
 27 
 
 + 0.131 93 
 
 0.06393 
 
 0.06801 
 
 0.02884 
 
 27 
 
 + 0.13348 
 
 0.06483 
 
 0.06864 
 
 0.02783 
 
 28 
 
 + 0.131 73 
 
 0.06492 
 
 0.06681 
 
 0.01975 
 
 28 
 
 + 0.13305 
 
 0.06565 
 
 0.06738 
 
 0.01866 
 
 29 
 
 + 0.131 82 
 
 0.06563 
 
 0.066 18 
 
 0.01090 
 
 29 
 
 + 0.13289 
 
 O.O6620 
 
 - 0.06668 
 
 o.oop75 
 
 30 
 
 + 0.132 18 
 
 0.066 10 
 
 0.06608 
 
 O.OO2 15 
 
 30 
 
 + 0.13302 
 
 0.05651 
 
 0.06651 
 
 0.00096 
 
 31 
 
 + 0.13284 
 
 0.06632 
 
 0.06651 
 
 + O.OO662 
 
 3i 
 
 + 0.13344 
 
 0.06656 
 
 0.06687 
 
 + 0.00785 
 
 32 
 
 + 0.13379 
 
 0.06631 
 
 0.06749 
 
 + 0.01557 
 
 32 
 
 + 0.134 15 
 
 O.O6637 
 
 0.06777 
 
 + 0.01682 
 
 33 
 
 + 0.13506 
 
 0.06603 
 
 0.06903 
 
 + 0.02482 
 
 33 
 
 + 0.135 15 
 
 0.065 91 
 
 0.06923 
 
 + 0.02608 
 
 34 
 
 + 0.13664 
 
 0.06545 
 
 0.071 18 
 
 + 0.03454 
 
 34 
 
 + 0.13646 
 
 0.065 16 
 
 0.071 30 
 
 + 0.035 78 
 
 35 
 
 + 0.13857 
 
 0.06454 
 
 0.07402 
 
 + 0.04489 
 
 35 
 
 + 0.138 10 
 
 0.06405 
 
 0.07404 
 
 + 0.046 ii 
 
 36 
 
 + 0.14086 
 
 0.063 24 
 
 0.07763 
 
 + 0.05608 
 
 36 
 
 + 0.14007 
 
 0.06254 
 
 0.07755 
 
 + 0.05724 
 
 37 
 
 + 0.14355 
 
 0.061 43 
 
 0.082 13 
 
 + 0.06834 
 
 37 
 
 + 0.14242 
 
 0.060 50 
 
 0.081 92 
 
 + 0.06942 
 
 38 
 
 + 0.14668 
 
 0.05901 
 
 0.08767 
 
 + 0.081 06 
 
 38 
 
 + 0.145 15 
 
 0.05784 
 
 0.08732 
 
 + 0.08293 
 
 39 
 
 + 0.15029 
 
 0.05581 
 
 0.09447 
 
 + 0.09730 
 
 39 
 
 + 0.14832 
 
 0.05437 
 
 0.09395 
 
 + 0.098 1 1 
 
 40 
 
 + 0.15444 
 
 - 0.051 63 
 
 0.10280 
 
 + 0.11480 
 
 40 
 
 + 0.15196 
 
 0.04987 
 
 0.10209 
 
 + 0.11540 
 
 41 
 
 + 0.15920 
 
 0.046 17 
 
 0.11305 
 
 + 0.13504 
 
 41 
 
 + 0.156 14 
 
 0.04406 
 
 0.11208 
 
 + 0.13536 
 
 42 
 
 + 0.16470 
 
 0.03903 
 
 0.12568 
 
 + 0.158 78 
 
 42 
 
 + 0.16093 
 
 0.03652 
 
 0.12442 
 
 + 0.15873 
 
 43 
 
 + 0.171 06 
 
 0.02969 
 
 0.141 37 
 
 + 0.18703 
 
 43 
 
 + 0.16646 
 
 0.02671 
 
 0.13973 
 
 + 0.18647 
 
 44 
 
 + 0.17850 
 
 0.01745 
 
 0.161 05 
 
 + O.22I l6 
 
 44 
 
 + 0.17285 
 
 0.01391 
 
 0.15804 
 
 + 0.21993 
 
 45 
 
 + 0.18729 
 
 o.ooi 31 
 
 0.18599 
 
 + 0.26306 
 
 45 
 
 + 0.18036 
 
 + 0.00293 
 
 0.18328 
 
 + 0.26093 
 
 46 
 
 + 0.19790 
 
 + O.O2O 12 
 
 0.21801 
 
 + 0.31543 
 
 46 
 
 + 0.18932 
 
 + 0.02521 
 
 0.214 53 
 
 + 0.31208 
 
 47 
 
 + O.2II OS 
 
 + 0.04873 
 
 - 0.25978 
 
 + 0.382 19 
 
 47 
 
 + 0.20031 
 
 + 0.05497 
 
 0.255 27 
 
 + 0.377 IS 
 
 48 
 
 + O.22798 
 
 + 0.08726 
 
 0.31523 
 
 + 0.469 15 
 
 48 
 
 + 0.21431 
 
 + 0.09504 
 
 0.30935 
 
 + 0.461 76 
 
 49 
 
 + O.25O86 
 
 + 0.13952 
 
 0.39037 
 
 + 0.58526 
 
 49 
 
 + 0.23309 
 
 + 0.14953 
 
 0.38262 
 
 + 0.57453 
 
 50 
 
 + 0.283 78 
 
 + O.2I084 
 
 0.49461 
 
 + 0.74461 
 
 50 
 
 + 0.26004 
 
 + 0.22424 
 
 0.48)27 
 
 + 0.729 10 
 
 5i 
 
 + 0.33481 
 
 + 0.30836 
 
 0.643 17 
 
 + 0.97029 
 
 Si 
 
 + 0.301 96 
 
 + 0.32727 
 
 0.62923 
 
 + 0.94779 
 
 52 
 
 + 0.42084 
 
 + 0.44062 
 
 0.861 46 
 
 + I.3OI 21 
 
 52 
 
 + 0.37330 
 
 + 0.46914 
 
 0.84244 
 
 + 1.26849 
 
 53 
 
 + 0.57924 
 
 + 0.614 18 
 
 I-I9343 
 
 + I.8(D5 20 
 
 53 
 
 + 0.50661 
 
 + 0.66075 
 
 I.I6737 
 
 + 1.75769 
 
 54 
 
 + 0.89775 
 
 + 0.81982 
 
 I-7I755 
 
 + 2.602 39 
 
 54 
 
 + 0.77960 
 
 + 0.00268 
 
 1.68227 
 
 + 2.53509 
 
 55 
 
 + I.5929I 
 
 + 0.08393 
 
 2.57684 
 
 + 3-90143 
 
 55 
 
 + 1.38811 
 
 + 1.14402 
 
 2.532 13 
 
 + 3-81521 
 
 56 
 
 + 3-2I360 
 
 + 0.81477 
 
 4.02836 
 
 + 6.01562 
 
 56 
 
 + 2.84329 
 
 + 1.14104 
 
 - 3-98524 
 
 + 5-94655 
 
 57 
 
 + 7.07792 
 
 0.596 54 
 
 6.481 38 
 
 + 9-12585 
 
 57 
 
 + 6.43787 
 
 + 0.05782 
 
 6.495 70 
 
 + 9-252 71 
 
 58 
 
 + 15.48372 
 
 5.18993 
 
 IO.2Q-58O 
 
 +11.00597 
 
 58 
 
 + 14.71782 
 
 4.16263 
 
 IO.W20 
 
 + 12.78088 
 
 59 
 
 +28.021 10 
 
 13.352 48 
 
 -14.66860 
 
 + 8.801 20 
 
 59 
 
 +28.397 74 
 
 12.84884 
 
 -15.54889 
 
 +10.00673 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 6 7 
 
 TABLE VIII. 
 DEVELOPMENT OF A, B, C, AND D FOR VENUS IN PERIODIC SERIES. 
 
 Coeff. of 
 V, g' 
 
 ^ 
 
 1 
 
 
 ? 
 
 < 
 
 f~* 
 
 1 
 
 9 
 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 o o 
 
 +2.1947 
 
 o.oooo 
 
 -0.5886 
 
 o.oooo 
 
 i .606 1 
 
 O.OOOO 
 
 0.0005 
 
 0.0000 
 
 0+ I 
 
 +0.1742 
 
 0.0428 
 
 0.0314 
 
 +0.0085 
 
 0.1428 
 
 +0.0343 
 
 +0.0080 
 
 +0.0774 
 
 O+ 2 
 
 +0.0523 
 
 0.0556 
 
 0.0086 
 
 +0.0084 
 
 0.0438 
 
 +0.0471 
 
 +0.0124 
 
 +0.0131 
 
 o+ 3 
 
 +0.0046 
 
 0.0075 
 
 0.0008 
 
 +0.0012 
 
 0.0038 
 
 +0.0063 
 
 +O.OO22 
 
 +0.0016 
 
 o+ 4 
 
 +O.OOOI 
 
 0.0015 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOI 
 
 +O.OOI2 
 
 +0.0004 
 
 o.oooo 
 
 o+ 5 
 
 O.OOOI 
 
 O.OOO2 
 
 0.0000 
 
 +O.OOO2 
 
 O.OOOO 
 
 +0.0002 
 
 0.0000 
 
 o.oooo 
 
 o+ 6 
 
 0.0000 
 
 o.oooo 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOO 
 
 O.OOOO 
 
 O.OOOO 
 
 o.oooo 
 
 i- 7 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOI 
 
 +O.OOOI 
 
 o.oooo 
 
 X O.OOOO 
 
 +O.OOOI 
 
 0.0000 
 
 6 
 
 0.0004 
 
 +0.0003 
 
 0.0003 
 
 o.oooo 
 
 +O.OOOI 
 
 0.0003 
 
 0.0000 
 
 O.OOOI 
 
 5 
 
 +0.0004 
 
 +0.0014 
 
 O.OOO2 
 
 0.0005 
 
 O.OOOI 
 
 O.OOIO 
 
 +0.0005 
 
 0.0005 
 
 4 
 
 +0.0049 
 
 +0.0084 
 
 0.0013 
 
 0.0017 
 
 0.0038 
 
 0.0068 
 
 +0.0031 
 
 O.OO2I 
 
 3 
 
 +0.0546 
 
 +0.0552 
 
 0.0127 
 
 0.0115 
 
 0x5423 
 
 0.0441 
 
 +0.0182 
 
 0.0199 
 
 2 
 
 +0.2534 
 
 +0.0552 
 
 0.0820 
 
 0.0156 
 
 0.1708 
 
 0.0393 
 
 +O.O2OI 
 
 0.1214 
 
 I 
 
 +4.0006 
 
 0.0006 
 
 1.1590 
 
 +0.0004 
 
 2.8416 
 
 0.0000 
 
 0.0015 
 
 I.I002 
 
 1+ 
 
 +0.0924 
 
 0.0288 
 
 +0.01 18 
 
 +0.0030 
 
 0.1036 
 
 +0.0255 
 
 O.OOIO 
 
 +0.0525 
 
 1+ I 
 
 +0.0501 
 
 0.0549 
 
 0.0058 
 
 +0.0060 
 
 0.0445 
 
 +0.0490 
 
 +0.0063 
 
 +0.0068 
 
 1+ 2 
 
 +0.0038 
 
 0.0064 
 
 O.OOO2 
 
 +0.0008 
 
 0.0036 
 
 +0.0059 
 
 +0.0013 
 
 +0.0009 
 
 1+3 
 
 O.OOOO 
 
 0.0014 
 
 O.OOOO 
 
 +0.0005 
 
 O.OOOO 
 
 +0.0013 
 
 +0.0004 
 
 +O.OOOI 
 
 1+ 4 
 
 0.000 1 
 
 O.OOO2 
 
 O.OOOO 
 
 o.oooo 
 
 +O.0002 
 
 +0.0004 
 
 O.OOO2 
 
 0.0000 
 
 i+ 5 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOI 
 
 +O.OOOI 
 
 0.0000 
 
 0.0000 
 
 +O.OOOI 
 
 0.0000 
 
 2- 8 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOI 
 
 O.OOOI 
 
 +O.OOOI 
 
 o.oooo 
 
 +O.OOOI 
 
 0.0000 
 
 2 7 
 
 O.OOOO 
 
 +0.0004 
 
 O.OOO2 
 
 O.OOOI 
 
 +O.OOOI 
 
 0.0006 
 
 +O.OOO2 
 
 O.OOOO 
 
 2- 6 
 
 +0.0004 
 
 +0.0015 
 
 O.OOOO 
 
 0.0005 
 
 O.OOO2 
 
 O.OOI I 
 
 +O.OOO2 
 
 OXIOOI 
 
 2- S 
 
 +0.0054 
 
 +0.0092 
 
 o.oo 1 6 
 
 0.0025 
 
 0.0036 
 
 0.0065 
 
 +0.0037 
 
 0.0027 
 
 2 4 
 
 +0.0567 
 
 +0.0542 
 
 0.0174 
 
 0.0144 
 
 0.0398 
 
 0.0308 
 
 +0.0223 
 
 0.0252 
 
 2 3 
 
 +0.3093 
 
 +0.0648 
 
 0.1281 
 
 0.0245 
 
 0.1826 
 
 0.0402 
 
 +0.0315 
 
 0.1729 
 
 2 2 
 
 +3.7105 
 
 0.0014 
 
 1.3562 
 
 +0.00 1 1 
 
 2.3535 
 
 o.oooo 
 
 0.0018 
 
 1.6716 
 
 2 I 
 
 +0.0402 
 
 -0.0173 
 
 +0.0321 
 
 +O.OOIO 
 
 0.0730 
 
 +0.0162 
 
 00016 
 
 +0.0516 
 
 2+ O 
 
 +0.0483 
 
 0.0536 
 
 0.0049 
 
 +0.0052 
 
 0.0430 
 
 +0.0486 
 
 +O.OOOI 
 
 +O.OOI2 
 
 2+ I 
 
 +0.0032 
 
 0.0054 
 
 0.0003 
 
 +0.0003 
 
 0.0028 
 
 +0.0048 
 
 +0.0008 
 
 +0.0007 
 
 2+ 2 
 
 +0.0001 
 
 O.OOIO 
 
 o.oooo 
 
 +O.OOO2 
 
 .00000 
 
 +O.OOII 
 
 +O.OOOI 
 
 0.0000 
 
 2+ 3 
 
 O.0002 
 
 0.0002 
 
 0.0003 
 
 O.OOOI 
 
 +0.0003 
 
 O.OOO2 
 
 +0.0002 
 
 o.oooo 
 
 2+ 4 
 
 O.OOOO 
 
 O.OOOO 
 
 O.OOOI 
 
 O.OOOI 
 
 +O.OOOI 
 
 O.OOOO 
 
 +O.OOOI 
 
 0.0000 
 
 3 9 
 
 O.OOOI 
 
 +O.OOOI 
 
 O.OOOI 
 
 O.OOOO 
 
 +O.OOOI 
 
 o.oooo 
 
 +O.OOOI 
 
 +O.OOOI 
 
 3-8 
 
 o.oooo 
 
 +0.0006 
 
 o.oooo 
 
 0.0003 
 
 +O.OOOI 
 
 0.0003 
 
 +O.OOOI 
 
 0.0000 
 
 3- 7 
 
 +0.0004 
 
 +O.OO2O 
 
 +0.0001 
 
 0.0007 
 
 0.0003 
 
 O.OOI I 
 
 +0.0007 
 
 O.OOO2 
 
 3-6 
 
 +0.0062 
 
 +0.0093 
 
 O.OO2O 
 
 0.0032 
 
 0.0041 
 
 0.0064 
 
 +0.0046 
 
 0.0033 
 
 3- 5 
 
 +0.0586 
 
 +0.0524 
 
 0.0217 
 
 0.0168 
 
 0.0366 
 
 0.0354 
 
 +0.0252 
 
 0.0305 
 
 3- 4 
 
 +0.3454 
 
 +0.0705 
 
 0.1657 
 
 0/5317 
 
 -0.1789 
 
 0.0387 
 
 +0.0408 
 
 0.2154 
 
 3- 3 
 
 +3.3553 
 
 0.0017 
 
 -14697 
 
 +O.OOI2 
 
 -1.8858 
 
 +0.0003 
 
 0.0014 
 
 1.8630 
 
 3 2 
 
 +0.0042 
 
 0.0079 
 
 +0.0456 
 
 0.0014 
 
 0.0490 
 
 +0.0004 
 
 +0.0008 
 
 +0.0547 
 
 3 i 
 
 +0.0454 
 
 0.0516 
 
 0.0044 
 
 +0.0049 
 
 0.0410 
 
 +0.0463 
 
 0.0056 
 
 0.0043 
 
 3- o 
 
 +0.0030 
 
 0.0045 
 
 O.OOO2 
 
 O.OOOO 
 
 0.0030 
 
 +0.0044 
 
 O.OOOO 
 
 +0.0003 
 
 3 i 
 
 0.0003 
 
 O.OOIO 
 
 +0.0004 
 
 +O.OOO2 
 
 +O.OOOI 
 
 +O.OOII 
 
 +O.OOO2 
 
 OJOOOO 
 
 3 2 
 
 0.0004 
 
 O.OOOO 
 
 0.0002 
 
 O.OOOI 
 
 +.OOOO2 
 
 O.OOO2 
 
 o.oooo 
 
 +O.OOOI 
 
 3- 3 
 
 O.OOOI 
 
 +O.OOOI 
 
 O.OOOI 
 
 o.oooo 
 
 +O.OOOI 
 
 0.0000 
 
 +O.OOOI 
 
 +O.OOOI 
 
 4 10 
 
 O.OOOI 
 
 +O.OO02 
 
 +O.OOOI 
 
 +O.OOOI 
 
 +O.OOO2 
 
 o.oooo 
 
 +O.OOOI 
 
 0.0000 
 
 4 9 
 
 O.OOOI 
 
 +0.0004 
 
 +0.0003 
 
 +O.OOOI 
 
 O.OOOO 
 
 O.OOO2 
 
 O.OOOO 
 
 O.0002 
 
 4-8 
 
 +0.0003 
 
 +0.0018 
 
 o.oooo 
 
 0.0008 
 
 O.OOOI 
 
 0.0014 
 
 +0.0013 
 
 0.0003 
 
 4- 7 
 
 +0.0064 
 
 +0.0096 
 
 0.0025 
 
 0.0036 
 
 0.0038 
 
 0.0060 
 
 +0.0052 
 
 0.0036 
 
 4- 6 
 
 +0.0584 
 
 +0.0408 
 
 0.0252 
 
 0.0190 
 
 0.0332 
 
 0.0308 
 
 +0.0267 
 
 0.0344 
 
 4- S 
 
 +0.3605 
 
 +0.0726 
 
 0.1938 
 
 0.0370 
 
 0.1671 
 
 0.0355 
 
 +0.0468 
 
 0.2442 
 
 4 4 
 
 +2.9597 
 
 0.0013 
 
 -1.4783 
 
 +O.OOI2 
 
 -1.4817 
 
 +O.OOO2 
 
 0.0014 
 
 1.8596 
 
 4 3 
 
 0.0206 
 
 0.0005 
 
 +0.0526 
 
 0.0043 
 
 0.0330 
 
 +0.0045 
 
 +0.0037 
 
 +0.0580 
 
 4 2 
 
 +0.0424 
 
 0.0483 
 
 0.0058 
 
 +0.0059 
 
 0.0369 
 
 +0.0420 
 
 0.0090 
 
 0.0075 
 
 4 I 
 
 +0.0023 
 
 0.0034 
 
 o.oooo 
 
 O.OOOI 
 
 0.0025 
 
 +0.0034 
 
 O.OOOO 
 
 +0.0003 
 
68 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE VIII. Concluded. 
 DEVELOPMENT OF A, B, C, AND D FOR VENUS IN PERIODIC SERIES. 
 
 Coeff. of 
 V, g' 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 cos 
 
 sin 
 
 4+ o 
 
 O.OO02 
 
 0.0010 
 
 +O.OOOI 
 
 +O.OOOI 
 
 +0.0002 
 
 +0.0013 
 
 O.OOO2 
 
 0.0003 
 
 4+ i 
 
 o.oooo 
 
 +O.OOO2 
 
 O.OOOI 
 
 O.OOOI 
 
 O.OOOO 
 
 +0.0003 
 
 O.OOOI 
 
 0.0000 
 
 4+ 2 
 
 +O.OOOI 
 
 +O.OOO2 
 
 O.OOOI 
 
 +O.OOOI 
 
 +0.0004 
 
 o.oooo 
 
 +0.0001 
 
 O.OOOO 
 
 s ii 
 
 O.OOOO 
 
 o.oooo 
 
 O.OOOI 
 
 o.oooo 
 
 +O.OOOI 
 
 O.OOOI 
 
 O.OOOO 
 
 O.OOOI 
 
 S-io 
 
 0.0004 
 
 o.oooo 
 
 O.OOOI 
 
 0.0004 
 
 +O.OOOJ 
 
 +O.OOOI 
 
 +O.OOO2 
 
 o.oooo 
 
 S- 9 
 
 +0.0004 
 
 +0.0018 
 
 O.OOOI 
 
 0.0008 
 
 O.OOOO 
 
 o.ooii 
 
 +0.0011 0.0003 
 
 5-8 
 
 +0.0063 
 
 +0.0095 
 
 0.0028 
 
 0.0036 
 
 0.0037 
 
 0.0056 
 
 +0.0057 
 
 0.0040 
 
 5- 7 
 
 +0.0579 
 
 +0.0465 
 
 0.0284 
 
 O.0200 
 
 0.0298 
 
 0.0268 
 
 +0.0276 
 
 0.0374 
 
 5-6 
 
 +0.3602 
 
 +0.0712 
 
 0.2094 
 
 0.0400 
 
 0.1501 
 
 0.0313 
 
 +0.0497 
 
 0.2587 
 
 5- 5 
 
 +2.5539 
 
 0.0014 
 
 1.4070 
 
 +O.OOI2 
 
 -1.1467 
 
 +O.OOO2 
 
 0.0015 
 
 1.7422 
 
 5 4 
 
 0.0350 
 
 +0.0047 
 
 +0.0564 
 
 0.0068 
 
 0.0205 
 
 +0.0016 
 
 +0.0067 
 
 +0.0598 
 
 5 3 
 
 +0.0389 
 
 0.0445 
 
 0.0064 
 
 +0.0069 
 
 0.0328 
 
 +0.0375 
 
 O.OI22 
 
 0.0108 
 
 5 2 
 
 +0.0018 
 
 0.0028 
 
 +O.OOOI 
 
 +O.OOOI 
 
 0.0018 
 
 +0.0029 
 
 +O.OOO2 
 
 +O.0002 
 
 5 i 
 
 +0.0004 
 
 O.OOI I 
 
 o.oooo 
 
 +O.OOOJ 
 
 +O.OOO2 
 
 +O.OOI2 
 
 0.0002 
 
 O.OOOO 
 
 5+ o 
 
 O.OOOI 
 
 +O.OOO2 
 
 0.0002 
 
 +O.OOO2 
 
 O.OOOI 
 
 +0.000 1 
 
 +O.OO02 
 
 O.OOOO 
 
 5+ I 
 
 o.oooo 
 
 O.OOOO 
 
 O.OOOI 
 
 O.OOOO 
 
 +0.0001 
 
 O.OOOI 
 
 O.OOOO 
 
 O.OOOI 
 
 6-12 
 
 O.OOOI 
 
 o.oooo 
 
 o.oooo 
 
 o.oooo 
 
 +O.OOO2 
 
 o.oooo 
 
 +O.OOOI 
 
 O.OOO2 
 
 6-n 
 
 O.OOOI 
 
 +0.0003 
 
 +O.OOO2 
 
 OJOOOO 
 
 +0.0004 
 
 +O.OOOI 
 
 +O.COO2 
 
 o.oooo 
 
 6io 
 
 +0.0003 
 
 +0.0018 
 
 O.OOO2 
 
 0.0008 
 
 0.0005 
 
 0.0009 
 
 +O.OOI2 
 
 0.0005 
 
 6-9 
 
 +0.0061 
 
 +0.0091 
 
 0.0035 
 
 0.0038 
 
 0.0033 
 
 0.0050 
 
 +0.0060 
 
 0.0040 
 
 6- 8 
 
 +0.0557 
 
 +0.0428 
 
 0.0295 
 
 0.0203 
 
 0.0264 
 
 0.0225 
 
 +0.0274 
 
 0.0380 
 
 6- 7 
 
 +0.3455 
 
 +0.0684 
 
 0.2150 
 
 0.0414 
 
 0.1312 
 
 0.0274 
 
 +0.0500 
 
 0.2590 
 
 6- 6 
 
 +2.1645 
 
 0.0007 
 
 -1.2859 
 
 +0.0009 
 
 -0.8788 
 
 O.OOOI 
 
 0.0009 
 
 1.5648 
 
 6- 5 
 
 0.0436 
 
 +0.0086 
 
 +0.0558 
 
 0.0084 
 
 0.0128 
 
 +O.OO02 
 
 +0.0086 
 
 +0.0588 
 
 6-4 
 
 +0.0356 
 
 0.0403 
 
 0.0075 
 
 +0.0078 
 
 0.0282 
 
 +0.0321 
 
 O.OI39 O.OI2O 
 
 6-3 
 
 +0.0016 
 
 0.0022 
 
 O.OOOO 
 
 O.OOOI 
 
 0.0018 
 
 +O.O02I 
 
 +O.OOO2 O.OOOI 
 
 6- 2 
 
 O.OOOO 
 
 0.0009 
 
 +O.0002 
 
 +O.OOO2 
 
 0.0005 
 
 +0.0009 
 
 o.oooo 
 
 +0.0005 
 
 6- i 
 
 O.OOOI 
 
 +O.OOO2 
 
 O.OOO2 
 
 +O.OOOI 
 
 O.OOOI 
 
 +O.OOOI 
 
 O.OOO2 
 
 0.0006 
 
 6+ o 
 
 O.OOOI 
 
 0.0000 
 
 o.oooo 
 
 o.oooo 
 
 O.O002 
 
 o.oooo 
 
 O.OOOI 
 
 O.OOO2 
 
 713 
 
 0.000 1 
 
 0.0000 
 
 O.OOOO 
 
 O.OOOI 
 
 O.OOOI 
 
 o.oooo 
 
 0.0002 
 
 O.OOOO 
 
 712 
 
 o.oooo 
 
 +0.0005 
 
 +0.0003 
 
 O.OOOI O.OOOI 
 
 O.OOOI 
 
 +0.0004 
 
 +0.0002 
 
 7 ii 
 
 +0.0006 
 
 +0.0017 
 
 +0.0001 
 
 0.0009 O.OOO2 
 
 0.0009 
 
 +0.0007 
 
 O.OOOI 
 
 7io 
 
 +0.0064 
 
 +0.0088 
 
 0.0033 
 
 0.0042 0.0030 
 
 0.0046 
 
 +0.0058 
 
 0.0043 
 
 7 9 
 
 +0.0532 
 
 +0.0392 
 
 0.0305 
 
 O.O2OO O.0223 
 
 0.0184 
 
 +0.0260 
 
 0.0386 
 
 7-8 
 
 +0.3227 
 
 +0.0632 
 
 O.2IIJ 
 
 0x1407 0.1116 
 
 0.0226 
 
 +0.0486 
 
 0.2508 
 
 7 7 
 
 +1.8074 
 
 0.0006 
 
 -1.1384 
 
 +0.0008 0.6689 
 
 O.OOO2 
 
 0.0009 
 
 1.3643 
 
 7-6 
 
 0.0458 
 
 +0.0106 
 
 0.0547 
 
 O.OIO2 O.OO74 
 
 o.ooog 
 
 +0.0105 
 
 +0.0567 
 
 7 5 
 
 +0.0315 
 
 0.0359 
 
 0.0074 
 
 +0.0082 0.0240 
 
 +0.0274 
 
 0.0148 
 
 0.0129 
 
 7 4 
 
 +O.OOI2 
 
 0.0015 
 
 +O.OOOI 
 
 0.0004 0.0012 
 
 +0.0016 
 
 +O.OO02 
 
 +O.OOO2 
 
 7 3 
 
 O.OOOO 
 
 O.OOII 
 
 +0.0003 
 
 +0.0003 o.oooo 
 
 +0.0008 
 
 0.0005 
 
 +O.0002 
 
 7- 2 
 
 O.OOOI 
 
 0.0002 
 
 O.OOOI 
 
 +0.0002 0.0000 
 
 +0.0001 
 
 O.OOOI 
 
 O.OOOO 
 
 7- i 
 
 O.OOOI 
 
 o.oooo 
 
 o.oooo 
 
 O.OOO2 O.OOOI 
 
 o.oooo 
 
 O.OO02 
 
 O.OOOO 
 
 814 
 
 O.OOOI 
 
 O.OOOO 
 
 0.0000 
 
 O.OOOI O.OOOO 
 
 O.OOO2 
 
 +O.COOI 
 
 o.oooo 
 
 8-13 
 
 O.OOO2 
 
 +O.OOO2 
 
 +O.OOO2 
 
 O.OOO2 O.OOOO 
 
 O.OOOI 
 
 +O.OO02 
 
 0.0003 
 
 8-12 
 
 +O.OO02 
 
 +0.0014 
 
 0.0002 
 
 0.0008 0.0002 
 
 0.00 10 
 
 +0.0013 
 
 0.0006 
 
 8-ii 
 
 +0.0058 
 
 +0.0080 
 
 0.0034 
 
 0.0044 0.0027 
 
 0.0037 
 
 +0.0050 
 
 0.0041 
 
 8io 
 
 +0.0496 
 
 +0.0351 
 
 0.0306 
 
 0.0190 0.0193 
 
 0.0155 
 
 +0.0250 
 
 0.0374 
 
 8- 9 
 
 +0.2941 
 
 +0.0577 
 
 0.1996 
 
 0.0385 0.0942 
 
 0.0192 
 
 +0.0459 
 
 0.2335 
 
 8- 8 
 
 +14892 
 
 O.OOOI 
 
 0.9842 
 
 +0.0003 0.5050 
 
 O.OOOI 
 
 0.0006 
 
 1.1634 
 
 8- 7 
 
 0.0461 
 
 +0.0118 
 
 +0.0500 
 
 0.0104 0.0048 
 
 O.OOI 2 
 
 +0.0115 
 
 +0.0508 
 
 8- 6 
 
 +0.0278 
 
 0.0316 
 
 0.0081 
 
 +0.0085 o.o ic 
 
 +0.0228 
 
 0.0144 
 
 O.OI22 
 
 8- 5 
 
 +O.OOIO 
 
 0.00 10 
 
 +O.OOOI 
 
 0.0004 0.00 T 2 
 
 +0.0012 
 
 0.0005 
 
 .0.0000 
 
 8-4 
 
 O.OOOI 
 
 0.0009 
 
 o.oooo 
 
 O.OOOI O.OOO2 
 
 +0.0009 
 
 +O.OOOI 
 
 +O.OOO2 
 
 8- 3 
 
 +O.OOO2 
 
 o.oooo 
 
 o.oooo 
 
 O.OOO2 O.OOOI 
 
 +O.OO02 
 
 O.OOOI 
 
 +0.0005 
 
 8- 2 
 
 O.OOOI 
 
 o.oooo 
 
 o.oooo 
 
 O.OOOI O.OOOO 
 
 0.0002 
 
 +O.OOOI 
 
 O.OOOO 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 69 
 
 TABLE IX. 
 
 COMPUTATION OF THE COEFFICIENTS FOR THE HANSENIAN VENUS-TERM OF 
 
 LONG PERIOD. 
 
 System. 
 
 A" 
 
 A, 
 
 A, 2 
 
 A, 
 
 A, 2 
 
 O 
 
 +33-3948 
 
 48.0672 
 
 15.2486 
 
 + 1.6810 
 
 + 1.6959 
 
 I 
 
 +30.4226 
 
 44.3154 
 
 -14-3087 
 
 + 5-2845 
 
 + 5.6929 
 
 2 
 
 +27.3802 
 
 404460 
 
 13-3384 
 
 + 6.9388 
 
 + 7-7952 
 
 3 
 
 +25.7695 
 
 3&3437 
 
 -12.7915 
 
 + 6.7824 
 
 + 7.8308 
 
 4 
 
 +25.3715 
 
 37-7570 
 
 12.6090 
 
 + 5-0267 
 
 + 5.8930 
 
 5 
 
 +25.2326 
 
 37-5000 
 
 -12.5055 
 
 + 1-9933 
 
 + 2.3924 
 
 6 
 
 +24.7525 
 
 36-8595 
 
 12.3300 
 
 - 14599 
 
 1.0609 
 
 7 
 
 +24.2976 
 
 36.3246 
 
 12.2190 
 
 4.35i6 
 
 5.1130 
 
 8 
 
 +24.8273 
 
 37-1237 
 
 -12.4835 
 
 6.2219 
 
 - 7.2996 
 
 9 
 
 +27.0732 
 
 -40.1587 
 
 13-3322 
 
 6.9149 
 
 7.9252 
 
 10 
 
 +30.7124 
 
 44.8651 
 
 14.5505 
 
 5-9534 
 
 6.5819 
 
 II 
 
 +33.6483 
 
 48.4814 
 
 154035 
 
 - 2.7899 
 
 3-0391 
 
 
 B" 
 
 A, 
 
 ** 
 
 B.. 
 
 A, 
 
 o 
 
 19.9136 
 
 +27.3868 
 
 + 7-9770 
 
 1-3391 
 
 1.2601 
 
 i 
 
 18.5130 
 
 +25.9046 
 
 + 7.7612 
 
 4.0210 
 
 4.0255 
 
 2 
 
 16.9031 
 
 +24.1227 
 
 + 74655 
 
 5-0839 
 
 - 5.2866 
 
 3 
 
 -15.8666 
 
 +22.8730 
 
 + 7.2028 
 
 4-7701 
 
 5.0902 
 
 4 
 
 154249 
 
 +22.2499 
 
 + 7-0232 
 
 34567 
 
 - 3.7608 
 
 5 
 
 -15.2448 
 
 +21.9597 
 
 + 6.9235 
 
 14491 
 
 1.6516 
 
 6 
 
 15.0836 
 
 +21.7873 
 
 + 6.9008 
 
 + 0.8330 
 
 + O.SIQI 
 
 7 
 
 15.0404 
 
 +21.8370 
 
 + 6.9698 
 
 + 2.9218 
 
 + 3.1445 
 
 8 
 
 -15-4663 
 
 +22.4592 
 
 + 7-1627 
 
 + 4.4869 
 
 + 4.9005 
 
 9 
 
 -16.6559 
 
 +23.9194 
 
 + 74839 
 
 + 5.2206 
 
 + 5.6178 
 
 10 
 
 18.4569 
 
 +25.9344 
 
 + 7.8260 
 
 + 4-5771 
 
 + 4.7687 
 
 ii 
 
 19.9292 
 
 +27.4474 
 
 + 8.0139 
 
 + 2.I2OI 
 
 + 2.1782 
 
 
 C" 
 
 
 
 c* 
 
 c c 
 
 Ql 
 
 c.* 
 
 o 
 
 13.4811 
 
 +20.6804 
 
 + 7.2716 
 
 - 0.3420 
 
 0.4358 
 
 i 
 
 11.9096 
 
 +18.4107 
 
 + 6.5475 
 
 1.2636 
 
 1.6673 
 
 2 
 
 10.4771 
 
 +16.3233 
 
 + 5-8729 
 
 - 1.8550 
 
 2.0586 
 
 3 
 
 9.9030 
 
 +15-4707 
 
 + 5.5887 
 
 2.OI22 
 
 - 2.7407 
 
 4 
 
 9.9466 
 
 +15-5072 
 
 + 5-5856 
 
 1.5700 
 
 - 2.1323 
 
 S 
 
 - 9.9878 
 
 +15.5402 
 
 + 5.5820 
 
 0.5442 
 
 0.7409 
 
 6 
 
 9.6689 
 
 +15.0722 
 
 + 54291 
 
 + 0.627O 
 
 + 0.8508 
 
 7 
 
 9.2573 
 
 +14.4877 
 
 + 5-2492 
 
 + 14209 
 
 + 1.9685 
 
 8 
 
 - 9.3611 
 
 +14.6645 
 
 + 5-3207 
 
 + I-735I 
 
 + 2.3991 
 
 9 
 
 104173 
 
 +16.2394 
 
 + 5.8483 
 
 + 1.6943 
 
 + 2.3074 
 
 10 
 
 12.2555 
 
 +18.9306 
 
 + 6.7244 
 
 + 1-3762 
 
 + 1.8132 
 
 ii 
 
 13.7191 
 
 +21.0340 
 
 + 7.3897 
 
 + 0.6699 
 
 + 0.8608 
 
 
 A" 
 
 A, 
 
 A, 
 
 A. 
 
 A. 
 
 o 
 
 + 1.1897 
 
 - 1-3484 
 
 0.2485 
 
 29.8546 
 
 38.9716 
 
 i 
 
 + 3-5868 
 
 4-2373 
 
 0.8724 
 
 27.5111 
 
 -36.6653 
 
 2 
 
 + 4.5580 
 
 5-5349 
 
 1.2117 
 
 24.9093 
 
 34.0089 
 
 3 
 
 + 4-3152 
 
 5-3345 
 
 I-2I53 
 
 23.3292 
 
 32.2553 
 
 4 
 
 + 3.1531 
 
 3-9457 
 
 0.9269 
 
 22.7393 
 
 314609 
 
 5 
 
 + 1.3233 
 
 1.7080 
 
 0.4334 
 
 -22.5117 
 
 31.0906 
 
 6 
 
 0.7706 
 
 + 0.8979 
 
 + 0.1689 
 
 22.2069 
 
 30.7822 
 
 7 
 
 2.6659 
 
 + 3-3202 
 
 + 0.7653 
 
 22.0282 
 
 30.7403 
 
 8 
 
 4-0554 
 
 + 5-1025 
 
 + 1.2108 
 
 22.6267 
 
 -31.5788 
 
 9 
 
 -4-6896 
 
 + 5.8349 
 
 + 1.3576 
 
 24.5324 
 
 33.7503 
 
 10 
 
 4-1057 
 
 + 4.9831 
 
 + 1.1038 
 
 274981 
 
 36.8202 
 
 ii 
 
 1.9060 
 
 + 2.2816 
 
 + 04940 
 
 29.9252 
 
 39.1222 
 
70 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE X. 
 COEFFICIENTS OF cos iSL AND SIN i8L FOR A, B, C, AND D IN EACH OF 
 
 12 SYSTEMS (L = V "') 
 
 System. 
 
 3oA c 
 
 3^. 
 
 30^ e 
 
 30^. 
 
 3oC. 
 
 30 c. 
 
 3oA 
 
 3oA 
 
 o 
 
 +6.2049 
 
 +0.6020 
 
 4.9971 
 
 -0.5329 
 
 1.2077 
 
 0.0692 
 
 +0.5720 
 
 -54864 
 
 I 
 
 +5-1524 
 
 +1.6797 
 
 4.2291 
 
 14580 
 
 0.9233 
 
 0.2217 
 
 +1-5716 
 
 4-6133 
 
 2 
 
 +4.0908 
 
 +2.0174 
 
 3-4091 
 
 1.7277 
 
 -0.6816 
 
 0.2896 
 
 +1-8673 
 
 3-7002 
 
 3 
 
 +3-5721 
 
 +1.8476 
 
 2.9712 
 
 1-5447 
 
 0.6009 
 
 0.3028 
 
 +1-6835 
 
 3.2281 
 
 4 
 
 +3-5031 
 
 +1.3168 
 
 -2.8674 
 
 1.0770 
 
 -0.6358 
 
 0.2398 
 
 +1.1840 
 
 3-1341 
 
 5 
 
 +3-5273 
 
 +0.4896 
 
 -2.8577 
 
 04074 
 
 0.6697 
 
 0.0821 
 
 . +0.4448 
 
 3-1352 
 
 6 
 
 +3-3871 
 
 04122 
 
 2.7680 
 
 +0.3160 
 
 0.6191 
 
 +0.0962 
 
 0.3565 
 
 3-0267 
 
 7 
 
 +3-1874 
 
 1.1332 
 
 2.6537 
 
 +0.9305 
 
 -0.5337 
 
 +0.2028 
 
 1.0208 
 
 -2.8813 
 
 8 
 
 +3-2562 
 
 1.6267 
 
 2.7313 
 
 + 1.3868 
 
 0.5250 
 
 +0.2401 
 
 -1.2991 
 
 2.9577 
 
 9 
 
 +3-8775 
 
 1.9181 
 
 3-2097 
 
 +1.6630 
 
 -0.6677 
 
 +0.2552 
 
 -1.7883 
 
 34938 
 
 10 
 
 +5.0768 
 
 1-7932 
 
 4.1114 
 
 +I-550I 
 
 0.9655 
 
 +0.2431 
 
 1.6730 
 
 -4-5098 
 
 ii 
 
 +6.2050 
 
 0.8671 
 
 4.9641 
 
 +0.7360 
 
 1.2409 
 
 +0.1311 
 
 0.8012 
 
 -54650 
 
 a. 
 
 +4-2534 
 
 +0.0169 
 
 -3-4808 
 
 0.0138 
 
 0.7726 
 
 0.0031 
 
 +0.0154 
 
 3.8026 
 
 at 
 
 +1-3404 
 
 +04237 
 
 1.0631 
 
 0.3618 
 
 0.2773 
 
 0.0620 
 
 +0.3915 
 
 -1.1728 
 
 . 
 
 0.2170 
 
 +1.9499 
 
 +0.1657 
 
 -1.6577 
 
 +0.0512 
 
 0.2923 
 
 +1.7968 
 
 +0.1855 
 
 at 
 
 +0.5358 
 
 +0.0646 
 
 0.3961 
 
 0.0834 
 
 0.1397 
 
 +0.0188 
 
 +0.0796 
 
 04480 
 
 
 
 0.3789 
 
 +0.2585 
 
 +0.2565 
 
 0.2410 
 
 +0.1224 
 
 0.0174 
 
 +0.2547 
 
 +0.3019 
 
 ai 
 
 +0.0682 
 
 +0.0800 
 
 0.0512 
 
 0.0602 
 
 0.0170 
 
 0.0107 
 
 +0.0698 
 
 0.0569 
 
 0. 
 
 0.0679 
 
 +0.0673 
 
 +0.0488 
 
 0.0540 
 
 +O.OIO2 
 
 0.0133 
 
 +0.0611 
 
 +0.0554 
 
 
 The coefficients A c , A,, etc., have a separate value for each ol the 12 systems. 
 These special values are developed in a periodic series proceeding according to the 
 sines and cosines of multiples of g"', in the form (a) 36 with results shown in the 
 last seven lines above. The final development is then shown below in the form (b}. 
 
 TABLE XI. 
 
 COMPUTATION OF A- AND K-COEFFICIENTS FOR THE HANSENIAN INEQUALITY OF 
 
 LONG PERIOD. 
 
 Arg. 
 
 30^ 
 
 3oA t 
 
 30^ c 
 
 302?. 
 
 30 c c 
 
 30 c. 
 
 y>*>. 
 
 3oZ>. 
 
 iSv-iSg 7 
 i8v 17^ 
 i8v 16^ 
 iSv-is?' 
 
 +4-2534 
 0.3048 
 +0.1387 
 +0.0005 
 
 +0.0169 
 +0.1034 
 0.1572 
 +0.0061 
 
 -3.4808 
 
 +0.2973 
 0.0775 
 +0.0014 
 
 0.0138 
 0.0981 
 +0.0865 
 0.0057 
 
 0.7726 
 +0.0075 
 0.06 1 1 
 0.0019 
 
 0.0031 
 0.0054 
 +0.0706 
 0.0003 
 
 +0.0154 
 +0.1030 
 
 o.nu 
 +0.0072 
 
 -3.8026 
 +0.3120 
 0.0966 
 
 +O.002I 
 
 Arg. 
 
 30*; 
 
 30*; 
 
 \<?MK e 
 
 i<?MK t 
 
 io*MC c 
 
 io 3 MC t 
 
 io 3 AfD c 
 
 ioWZ>. 
 
 i8v 18/ 
 i8v 17^ 
 i8v 16^ 
 i8v-is' 
 
 +3.8671 
 0.3010 
 
 +0.1081 
 0.0004 
 
 +0.0104 
 +0.1008 
 
 0.1218 
 +0.0059 
 
 +0.5469 
 0.0426 
 +0.01528 
 0.00006 
 
 +0.0015 
 +0.0142 
 0.01723 
 +0.00083 
 
 0.1093 
 
 +0.00 1 1 
 
 0.00864 
 0.00027 
 
 0.0004 
 0.0008 
 +0.00998 
 0.00004 
 
 +O.OO22 
 +O.OI46 
 O.OI57I 
 +O.OOI02 
 
 -0^5376 
 +0.0441 
 0.01366 
 +0.00030 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 37. Coefficients E and F for Venus. Some preliminary computations ren- 
 der it doubtful whether the planetary coefficients E and F would lead to sensible 
 inequalities in any case. But, in order to leave no doubt, they are computed for 
 six ot the twelve systems and thirty alternate values of the index for Venus. The 
 separate numerical results are shown in Table XII. The general development 
 will be, so far as it seemed useful to use it, found in Part IV. 
 
 TABLE XII. 
 SPECIAL VALUES OF E AND F FOR THE ACTION OF VENUS ON THE MOON. 
 
 Coefficient E. 
 
 Coefficient F. 
 
 i 
 
 System 
 O 
 
 System 
 
 2 
 
 System 
 4 
 
 System 
 6 
 
 System 
 
 8 
 
 System 
 10 
 
 l 
 
 System 
 
 
 
 System 
 
 2 
 
 System 
 4 
 
 System 
 6 
 
 System 
 8 
 
 System 
 IO 
 
 O 
 
 +3.528 
 
 +6.997 
 
 +3.567 
 
 2.569 
 
 6.300 
 
 -4.684 
 
 o 
 
 +0.071 
 
 +0.617 
 
 +0.231 
 
 +0.039 
 
 +0.532 
 
 +0.345 
 
 I 
 
 +2.2 16 
 
 +3-683 
 
 + 1.277 
 
 -1.664 
 
 2.541 
 
 1.248 
 
 i 
 
 -I.I54 
 
 1.613 
 
 0.556 
 
 +0.836 
 
 +1484 
 
 +0.750 
 
 2 
 
 +0.643 
 
 +0.872 
 
 +0.160 
 
 0.545 
 
 0.620 
 
 0.150 
 
 2 
 
 0.571 
 
 +0.701 
 
 0.126 
 
 +0.459 
 
 +0.574 
 
 +0.144 
 
 3 
 
 +0.218 
 
 +0.233 
 
 0.006 
 
 0.198 
 
 0.179 
 
 o.ooo 
 
 3 
 
 0.229 
 
 0.226 
 
 0.005 
 
 +0.198 
 
 +0.192 
 
 o.ooo 
 
 4 
 
 +0.094 
 
 +0.078 
 
 0.024 
 
 0.089 
 
 0.064 
 
 +0.019 
 
 4 
 
 O.IOO 
 
 -0.077 
 
 +0.023 
 
 +0.090 
 
 +0x169 
 
 O.02I 
 
 5 
 
 +0.049 
 
 +0.030 
 
 O.022 
 
 0.046 
 
 0.026 
 
 +0.018 
 
 5 
 
 0.048 
 
 0.028 
 
 +O.02O 
 
 +0.045 
 
 +0.026 
 
 0.019 
 
 6 
 
 +0.028 
 
 +O.OI2 
 
 O.OlS 
 
 0.027 
 
 0.024 
 
 +0.015 
 
 6 
 
 0.025 
 
 O.OIO 
 
 +0.015 
 
 +0.024 
 
 +O.OIO 
 
 0.014 
 
 7 
 
 +0.017 
 
 +0.004 
 
 O.OI4 
 
 0.017 
 
 0.004 
 
 +0.013 
 
 7 
 
 0.014 
 
 +0.003 
 
 +O.OI I 
 
 +0.013 
 
 +0.003 
 
 O.OIO 
 
 8 
 
 +O.OII 
 
 0.000 
 
 0.012 
 
 O.OII 
 
 o.ooo 
 
 +O.OII 
 
 8 
 
 0.007 
 
 0.000 
 
 +0.007 
 
 +0.007 
 
 o.ooo 
 
 0.007 
 
 9 
 
 +0.007 
 
 0.002 
 
 0.009 
 
 0.007 
 
 +0.002 
 
 +0.009 
 
 9 
 
 0.004 
 
 +O.OOI 
 
 +0.005 
 
 +0.004 
 
 0.001 
 
 0.005 
 
 10 
 
 +0.004 
 
 0.003 
 
 0.008 
 
 0.004 
 
 +0.003 
 
 +0.008 
 
 10 
 
 0.002 
 
 +O.002 
 
 +0.003 
 
 +O.OO2 
 
 O.OOI 
 
 0.004 
 
 ii 
 
 +0.003 
 
 O.OO4 
 
 O.OO7 
 
 0.003 
 
 +0.004 
 
 +0.006 
 
 ii 
 
 O.OOI 
 
 +O.OOI 
 
 +O.OO2 
 
 +O.OOI 
 
 O.OOI 
 
 O.OO2 
 
 12 
 
 +O.OOI 
 
 O.OO4 
 
 0.005 
 
 O.OOI 
 
 +0.004 
 
 +0.005 
 
 12 
 
 0.000 
 
 +0.001 
 
 +0.001 
 
 0.000 
 
 0.001 
 
 0.002 
 
 13 
 
 o.ooo 
 
 0.005 
 
 0.005 
 
 0.000 
 
 +0.004 
 
 +0.004 
 
 13 
 
 o.ooo 
 
 +O.OOI 
 
 +O.OOI 
 
 o.ooo 
 
 O.OOI 
 
 O.OOI 
 
 14 
 
 0.00 1 
 
 0.005 
 
 0.004 
 
 +0.001 
 
 +0.005 
 
 +0.004 
 
 14 
 
 0.000 
 
 0.000 
 
 0.000 
 
 o.ooo 
 
 O.OOI 
 
 o.ooo 
 
 IS 
 
 O.OO2 
 
 0.005 
 
 O.OO3 
 
 +O.OO2 
 
 +0.005 
 
 +0.003 
 
 IS 
 
 0.000 
 
 o.ooo 
 
 0.000 
 
 0.000 
 
 0.000 
 
 0.000 
 
 16 
 
 0.003 
 
 0.005 
 
 O.OO2 
 
 +0.003 
 
 +0.005 
 
 +O.OO2 
 
 16 
 
 o.ooo 
 
 O.OOI 
 
 o.ooo 
 
 o.ooo 
 
 o.ooo 
 
 o.ooo 
 
 17 
 
 0.004 
 
 0.005 
 
 0.001 
 
 +0.004 
 
 +0.005 
 
 +0.001 
 
 17 
 
 O.OOI 
 
 O.OOI 
 
 o.ooo 
 
 +O.OOI 
 
 +O.OOI 
 
 o.ooo 
 
 18 
 
 0.005 
 
 0.005 
 
 O.OOO 
 
 +0.005 
 
 +0.005 
 
 0.000 
 
 18 
 
 O.OOI 
 
 O.OOI 
 
 0.000 
 
 +O.OOI 
 
 +0.001 
 
 0.000 
 
 19 
 
 0.006 
 
 0.005 
 
 +O.OOI 
 
 +0.006 
 
 +0.005 
 
 O.OO2 
 
 19 
 
 O.OO2 
 
 O.OO2 
 
 o.ooo 
 
 +O.OO2 
 
 +O.O02 
 
 O.OOI 
 
 20 
 
 0.008 
 
 0.004 
 
 +0.003 
 
 +0.007 
 
 +0.005 
 
 0.003 
 
 20 
 
 0.004 
 
 O.OO2 
 
 +O.OOI 
 
 +0.003 
 
 +O.OO2 
 
 O.OO2 
 
 21 
 
 0.0 10 
 
 0.004 
 
 +0.005 
 
 +0.009 
 
 +0.004 
 
 0.006 
 
 21 
 
 0.006 
 
 O.002 
 
 +0.003 
 
 +0.005 
 
 +0.002 
 
 0.003 
 
 22 
 
 0.012 
 
 0.003 
 
 +0.009 
 
 +O.OI2 
 
 +0.002 
 
 O.OIO 
 
 22 
 
 0.008 
 
 O.OOI 
 
 +0.006 
 
 +0.008 
 
 +O.OO2 
 
 0.007 
 
 23 
 
 0.016 
 
 o.ooo 
 
 +0.014 
 
 +0.015 
 
 o.ooo 
 
 0.017 
 
 23 
 
 O.OI2 
 
 o.ooo 
 
 +0.01 1 
 
 +O.OI2 
 
 o.ooo 
 
 O.OI2 
 
 24 
 
 O.O2I 
 
 +0.005 
 
 +0.024 
 
 +O.020 
 
 0.007 
 
 0.029 
 
 24 
 
 0.019 
 
 +0.005 
 
 +0.022 
 
 +0.017 
 
 0.006 
 
 0.025 
 
 25 
 
 0.028 
 
 +0.018 
 
 +0.043 
 
 +0.027 
 
 0.023 
 
 0.053 
 
 25 
 
 0.028 
 
 +0.018 
 
 +0.043 
 
 +0.026 
 
 O.02I 
 
 0.050 
 
 26 
 
 0.039 
 
 +0.050 
 
 +0.084 
 
 +0.037 
 
 0.065 
 
 0.108 
 
 26 
 
 0.042 
 
 +0.055 
 
 +0.090 
 
 +0.038 
 
 0.064 
 
 0.109 
 
 27 
 
 0.050 
 
 +0.152 
 
 +0.194 
 
 +0.045 
 
 0.208 
 
 0.264 
 
 27 
 
 0.053 
 
 +0.167 
 
 +0.205 
 
 +0.044 
 
 0.198 
 
 0.260 
 
 28 
 
 o.ooo 
 
 +0.569 
 
 +0.561 
 
 0.017 
 
 0.799 
 
 0.819 
 
 28 
 
 0.000 
 
 +0-543 
 
 +0.507 
 
 0.014 
 
 0.623 
 
 0.672 
 
 29 
 
 +0.730 
 
 +2.564 
 
 +1.885 
 
 -0.681 
 
 3.325 
 
 2.919 
 
 29 
 
 +0.406 
 
 + 1-557 
 
 +1.061 
 
 0.325 
 
 1.402 
 
 1.331 
 
 B. ACTION OF MARS. 
 
 38. For Mars the coefficients A, B, C, and D were developed much in the same 
 way as for Venus. But, owing to the supposed absence of terms having a high mul- 
 tiple of the mean longitude of Mars, it was considered sufficient to divide the mean 
 orbit of Mars into 24 parts for the special computations of the yl-coefficients. The 
 adopted number of systems was 12, as in the case of Venus. 
 
 The following statements, with the diagram, will make clear the method of carry- 
 ing out the computation. In system o the Earth remains at rest at its perihelion 
 
7 2 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 and is, therefore, in longitude approximately TT O ' = 99.5. Mars starting from this 
 same mean longitude, TT O ', takes the twenty-four consecutive mean longitudes TT O ', 
 IT O ' -f- 15, TT O ' -j- 30, etc., to if 1 ' -f- 345. These twenty-four positions are designated 
 by the twenty-four indices o, i, 2, 3, ... 23. 
 
 In system i the Earth is in mean anomaly 30. Then, as before, Mars takes the 
 successive mean longitudes TT O ' + 30, TT O ' -\- 45 , . . . up to TT O ' -f- 15. 
 
 The same plan is carried through; the constant mean anomaly of the Earth in 
 the tth system being i X 30, while Mars, starting with the same mean longitude, 
 goes through its twenty-four consecutive mean positions, the indices which express 
 the mean longitude of Mars always starting with the value o when Mars is in mean 
 conjunction with the Earth. 
 
 As in the case of Venus, the elements were taken with their values for 1800, in 
 order to correspond to the mean of the period during which the longitude of the 
 Moon has been observed. The numbers and data for computing the longitude of 
 Mars are, then, as follows: 
 
 TT O ' ; long, of 's perihelion for 1800; .... 99 30' 7". 6 
 7T 4 ; " " Mars' " " ";.... 332 22 42 .9 
 
 7r '-7r 4 ; initial mean anom. of Mars for 1800; 127 7 24 .7 
 Initial mean anomaly of Mars in system j 
 
 x/ 
 
 M 
 
 For system j and index i 
 
 Equinox 
 
 7'2 4 ".7 + 3o x/+ 15 x i 
 
 From the numbers found in Tables 
 of MarS) page 397, it is found that to 
 this initial mean anomaly corresponds 
 
 Fund. Arg. N= 243^.0948 
 
 and that the increment of JVfor 15 of 
 mean anomaly is 
 
 Arrangement of Coordinate Axes in Systems o, i, etc., 
 
 for Mars. have : 
 
 For the numbers arising from the 
 inclination of the orbit of Mars we 
 
 Long, of node, 1800; . 6 = 48 o' 52". 5 
 Node from e's perihelion ; 308 30' 44". 9 
 Inclination, 1800; .... /=i5i' 3". 6 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 73 
 
 The results of the main steps in the computation of the coordinates of Mars are 
 shown in the following table. The first column corresponds to the indices of 
 system o. In they'th system they are diminished by 2;. 
 
 The second column shows the value of N actually used in entering the tables. 
 The discrepancy of two units in the fourth place results from using two computa- 
 tions of N. Columny gives the mean anomaly as taken from the tables, reduced 
 by the secular variation to 1800. Column u is formed by adding to^ the distance 
 from the node to the perihelion of Mars and applying the reduction to the ecliptic. 
 This reduction was applied in order to use for x and y simple formulae for the 
 ecliptic longitude. Actually, through a misapprehension, the rectangular coordi- 
 nates were computed on the supposition that u was counted along the orbit, as in 
 the case of Venus. There is therefore an error in the last figures of the coordinates, 
 the amount of which can readily be determined, but which has been deemed too 
 small to need correction for the present problem. 
 
 TABLE XIII. 
 COMPUTATION OF HELIOCENTRIC COORDINATES OF MARS. 
 
 i 
 
 N 
 
 / 
 
 U 
 
 log. r 
 
 X 
 
 y 
 
 z 
 
 o 
 
 243.0946 
 
 i it 
 
 135 3 17 
 
 59 24 20 
 
 0.208 749 
 
 1.601 16 
 
 O.222 32 
 
 +0.04497 
 
 i 
 
 271.7194 
 
 148 7 I 
 
 72 28 19 
 
 0.214918 
 
 1.53086 
 
 0.58691 
 
 +0.050 53 
 
 2 
 
 300.3442 
 
 160 52 ii 
 
 85 13 52 
 
 0.219 143 
 
 1.37661 
 
 -0.919 51 
 
 +0.053 32 
 
 3 
 
 328.0600 
 
 173 26 7 
 
 07 48 12 
 
 0.221 310 
 
 1.14904 
 
 1.20324 
 
 +0.053 27 
 
 4 357-5939 
 
 185 56 13 
 
 no 18 38 
 
 O.22I 364 
 
 0.86 1 21 
 
 -1.42386 
 
 +0.05043 
 
 5 
 
 386.2187 
 
 198 29 47 
 
 122 52 26 
 
 0.219 303 
 
 0.528 30 
 
 -1.56981 
 
 +0.04495 
 
 6 
 
 414.8435 
 
 211 14 12 
 
 135 36 56 
 
 0.2I5I79 O.I6745 
 
 1.63228 
 
 +0.03708 
 
 7 
 
 4434683 
 
 224 16 54 
 
 148 39 31 
 
 O.209 102 +0.202 38 
 
 1-60553 
 
 +0.027 19 
 
 8 
 
 472.0932 
 
 237 45 02 
 
 162 7 24 
 
 0.201 264 +0.560 38 
 
 148737 
 
 +0.015 76 
 
 9 
 
 500.7180 
 
 251 45 55 
 
 176 7 52 
 
 0.191962 +0.88448 
 
 1-27995 
 
 +0.00339 
 
 10 
 
 529.3428 
 
 266 25 53 
 
 190 47 23 
 
 O.lSl 634 
 
 +1-151 73 
 
 0.090 76 
 
 0.009 19 
 
 ii 
 
 557-9676 
 
 281 49 50 
 
 206 10 58 
 
 0.170884 
 
 +1.33964 
 
 -0.633 72 
 
 O.O2I 13 
 
 12 
 
 586.5024 
 
 298 o 12 
 
 222 21 9 
 
 0.160502 
 
 +142836 
 
 0.230 06 
 
 0.031 49 
 
 13 
 
 615.2172 
 
 314 55 23 
 
 239 16 26 
 
 O.I5I4I9 
 
 + 1.40360 
 
 +0.191 54 
 
 -0.03935 
 
 14 
 
 643.8421 
 
 332 28 46 
 
 256 50 12 
 
 0.144609 
 
 +1.26023 
 
 +0.50686 
 
 0.043 88 
 
 15 
 
 672.4669 
 
 350 28 12 
 
 274 50 II 
 
 O.I40 9IO 
 
 +1-00534 
 
 +0.94909 
 
 0.044 52 
 
 16 
 
 14.0061 
 
 8 37 13 
 
 292 59 42 
 
 O.I408I7 
 
 +0.65923 
 
 + 1.21507 
 
 0.041 12 
 
 17 
 
 42.7209 
 
 26 37 36 
 
 311 oo 19 
 
 0.144343 
 
 +0.253 23 
 
 + 1.37065 
 
 0.033 99 
 
 18 
 
 71-3457 
 
 44 12 35 
 
 328 35 12 
 
 O.I5IOI4 
 
 0.17528 
 
 + 1.40475 
 
 0.023 84 
 
 19 
 
 09.9705 
 
 61 9 53 
 
 345 32 8 
 
 O.I6OOO6 
 
 -0.58917 
 
 +1.31988 
 
 0.011 66 
 
 20 
 
 128.5954 
 
 77 22 34 
 
 I 44 20 
 
 0.170346 
 
 0.956 46 
 
 +1.12979 
 
 +0.001 45 
 
 21 
 
 157 2202 
 
 92 48 50 
 
 17 10 10 
 
 O.lSl O98 
 
 1.25306 
 
 +0.85563 
 
 +0.01447 
 
 22 
 
 185.8450 
 
 107 30 54 
 
 31 Si 56 
 
 O.I9I 465 
 
 1.46347 
 
 +0.522 13 
 
 +0.026 50 
 
 23 
 
 214.4608 
 
 121 33 36 45 54 32 
 
 0.200829 1.57994 
 
 +0.154 73 
 
 +0.036 84 
 
74 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XIV. 
 
 G-COORDINATES OF MARS REDUCED TO THE DIFFERENT SYSTEMS. 
 
 
 System o. 
 
 System i. 
 
 System 2. 
 
 System 3. 
 
 jr 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 o 
 I 
 
 2 
 
 3 
 
 4 
 
 0.617 95 
 -0.54765 
 0.393 40 
 0.165 83 
 
 +O.I220O 
 
 0.22232 
 
 0.586 91 
 0.919 Si 
 1.203 24 
 142386 
 
 0.666 54 
 0.61133 
 047237 
 0.25703 
 +0.024 24 
 
 0.091 17 
 0450 67 
 0.785 65 
 1.07849 
 1-31303 
 
 0.672 31 
 0.632 25 
 0.505 93 
 0.297 85 
 0.016 52 
 
 +0.063 05 
 0.298 23 
 0.641 98 
 0.948 87 
 1.19984 
 
 0.632 56 
 0.605 8 1 
 0487 65 
 0.280 23 
 +0.00896 
 
 +O.2OI 03 
 O.l688o 
 O.526 8O 
 
 0.850 go 
 1.11815 
 
 5 
 6 
 
 8 
 9 
 
 +0.45491 
 +0.8I5 76 
 + I-I85S9 
 
 + 1-54359 
 + 1.86769 
 
 -1.56981 
 1.63228 
 -1.60553 
 -1.48737 
 -1-27995 
 
 +0.35789 
 
 +0.727 02 
 + I.III 41 
 + 1.48744 
 + 1.82870 
 
 147477 
 
 I-35I 44 
 -1.53386 
 1.41703 
 1.201 79 
 
 +0.325 iC 
 +0.709 23 
 +1.11239 
 + 1-50633 
 + 1-85907 
 
 -1.37681 
 146366 
 144788 
 1.32288 
 1.09063 
 
 +0.366 oo 
 +0.76966 
 +1.191 26 
 + 1-59658 
 +1.94881 
 
 1.30606 
 1.39478 
 1.37002 
 1.22665 
 0.971 76 
 
 10 
 ii 
 
 12 
 
 13 
 
 14 
 
 +2.134 94 
 +2.322 85 
 +2.41157 
 +2.38681 
 +2.243 44 
 
 0.99076 
 0.633 72 
 0.230 06 
 +0.191 54 
 +0.59686 
 
 +2.107 36 
 
 +2.29671 
 
 +2.375 22 
 
 +2.330 58 
 +2.16383 
 
 -0.89657 
 0.51907 
 0.096 37 
 +0.336 12 
 +0.739 52 
 
 +2.13839 
 +2.31600 
 +2.373 28 
 
 +2.305 02 
 +2.I203O 
 
 0.763 82 
 0.366 96 
 
 +0.065 77 
 +0495 16 
 +0.883 32 
 
 +2.214 79 
 +2.370 37 
 +2404 47 
 +2.31960 
 +2.129 51 
 
 0.625 65 
 0.219 65 
 +0.20886 
 +0.622 75 
 +0.990 04 
 
 IS 
 16 
 17 
 18 
 19 
 
 + 1.98855 
 +1.64244 
 + 1.23644 
 +0.80793 
 +0.39404 
 
 +0.04900 
 + 1.21507 
 +1-37065 
 + 1-40475 
 +1-31988 
 
 +1.89002 
 
 +1.53596 
 +1-13509 
 +0.721 96 
 +0.32801 
 
 + 1.07726 
 + 1.32104 
 + 1.45449 
 + I-4735I 
 + 1-38438 
 
 + 1.83987 
 
 +I-49I 59 
 + 1.10586 
 +0.71184 
 +0-335 42 
 
 +I-I9933 
 + 1.42236 
 + 1-542 IS 
 +i.5576i 
 + 1.47478 
 
 + 1-85535 
 + 1.52185 
 +I-I5445 
 +0.777 40 
 +0.41281 
 
 +1.28664 
 +1-49705 
 +1.61352 
 +1.63474 
 +1.56444 
 
 20 
 21 
 22 
 23 
 
 +0.026 75 
 0.26985 
 0.480 26 
 0.596 73 
 
 +1.12979 
 +0.85563 
 +0.522 13 
 +0.154 73 
 
 0.020 95 
 
 0.305 52 
 0.51242 
 0.63383 
 
 + 1.20076 
 +0.040 82 
 +0.624 89 
 +0.274 oo 
 
 o.oo i 73 
 0.282 32 
 0.493 23 
 0.625 17 
 
 + 1.30464 
 + 1.06147 
 +0.761 58 
 +0.422 63 
 
 +0.08021 
 0.203 52 
 0424 14 
 0.570 09 
 
 +1.410 19 
 +1.18262 
 +0.894 79 
 +0.561 88 
 
 
 System 4. 
 
 System 5. 
 
 System 6. 
 
 System 7. 
 
 O 
 
 I 
 
 2 
 3 
 
 4 
 
 0.560 10 
 0.542 52 
 0.425 69 
 0.210 45 
 +0.094 77 
 
 +0.28739 
 0.09700 
 0473 03 
 0.814 29 
 1.092 95 
 
 0478 34 
 0462 56 
 0.337 56 
 0.105 31 
 +0.221 50 
 
 +0.29889 
 0.104 27 
 
 0.498 21 
 
 0.850 95 
 1.13027 
 
 -0.4II57 
 0.38681 
 0.243 44 
 +0.0 1 1 45 
 +0.357 56 
 
 +0.230 06 
 0.191 54 
 -0.59686 
 0.94909 
 1.21507 
 
 0.37S 36 
 0.330 72 
 0.16397 
 +0.10984 
 +0.463 90 
 
 +0.09649 
 0.336 oo 
 0.73940 
 1.07714 
 1.32092 
 
 S 
 6 
 
 8 
 9 
 
 +0472 27 
 +0.89497 
 +1.32746 
 +1.73086 
 +2.06860 
 
 1.282 30 
 1.36081 
 1.316 17 
 1.14942 
 0.875 61 
 
 +0.618 36 
 +1.05109 
 +148048 
 +1.86864 
 +2.18465 
 
 -1.30788 
 1.365 16 
 1.29690 
 
 1. 112 l8 
 
 -0.831 75 
 
 +0.763 56 
 +1.19207 
 + 1.60596 
 + 1.97325 
 +2.26985 
 
 1.37065 
 1.40475 
 -1.31988 
 1.12979 
 0.855 63 
 
 +0.864 77 
 + 1.27790 
 + 1.67185 
 
 +2.O2O 8l 
 +2.305 38 
 
 1-454 37 
 1-473 39 
 1.38426 
 1.20064 
 0.040 70 
 
 10 
 ii 
 
 12 
 
 13 
 14 
 
 +2.31238 
 +2.445 83 
 +2.46485 
 +2.375 72 
 +2.192 10 
 
 0.521 55 
 0.12068 
 +0.292 45 
 +0.68640 
 +1.03536 
 
 +2.407 68 
 +2.52747 
 +2.54293 
 +2.460 10 
 +2.289 96 
 
 0483 47 
 0.097 74 
 +0.296 28 
 +0.672 70 
 + 1.00985 
 
 +2.480 26 
 +2.596 73 
 
 +2.61795 
 +2.547 65 
 +2.323 -10 
 
 0.522 13 
 0.15473 
 
 +O.222 32 
 +0.586 91 
 +0.9I95I 
 
 +2.51228 
 +2.633 69 
 
 +2.666 40 
 +2.61 1 19 
 +2.47223 
 
 0.624 77 
 0.273 88 
 +0.091 29 
 +0.450 79 
 +0.785 77 
 
 11 
 
 17 
 18 
 19 
 
 +1.932 16 
 +1.61623 
 +1-26534 
 +0.900 17 
 
 +0.54067 
 
 +I.3I993 
 + 1.52683 
 + 1.64824 
 + 1.68095 
 +1.625 74 
 
 +2.04679 
 + 1.74690 
 +1.40795 
 +1.04837 
 +0.687 09 
 
 +1.29044 
 + I-50I 35 
 + 1.63329 
 
 + 1.68043 
 +1.64037 
 
 +2.16583 
 + 1.87800 
 + 1-54509 
 + 1.18424 
 +0.81441 
 
 + 1.20324 
 + 142386 
 + I.5698I 
 + 1.63228 
 
 +1-605 53 
 
 +2.256 89 
 +1.97562 
 + 1.64197 
 + 1.27284 
 +0.88845 
 
 + 1.07861 
 + I.3I3I5 
 + 1.47489 
 + I.55I 56 
 + 1.53398 
 
 20 
 
 21 
 22 
 23 
 
 +0.205 69 
 0.087 15 
 0.321 69 
 048343 
 
 +148678 
 +1.271 44 
 +0.090 17 
 +0.656 52 
 
 +0.343 34 
 +0.03645 
 0.214 52 
 0.391 49 
 
 +1-51405 
 + 1-30597 
 + 1.02464 
 +0.682 96 
 
 +0.456 41 
 +0.13231 
 0.134 94 
 0.322 85 
 
 +148737 
 + 1-27995 
 +0.990 76 
 +0.633 72 
 
 +0.51242 
 +0.171 16 
 0.107 50 
 0.296 85 
 
 + I.4I7I5 
 
 + I.2OI 91 
 +0.89669 
 +0.519 19 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 75 
 
 TABLE XIV. Concluded. 
 
 G-COORDINATES OF MARS REDUCED TO THE DIFFERENT SYSTEMS. 
 
 
 System 8. 
 
 System 9. 
 
 System 10. 
 
 System n. 
 
 ^ 
 
 f 
 
 X 
 
 r 
 
 X 
 
 r 
 
 X 
 
 r 
 
 o 
 
 I 
 
 2 
 
 a 
 
 4 
 
 0.373 70 
 0.305 44 
 0.12072 
 +O.I597I 
 +0.507 99 
 
 0.065 64 
 0495 03 
 0.883 19 
 1.19920 
 1.422 23 
 
 0.405 03 
 0.320 16 
 0.13007 
 +0.14409 
 +0.47759 
 
 0.20886 
 
 0.622 75 
 0.090 04 
 1.28664 
 1497 05 
 
 0.465 27 
 
 0.376 14 
 0.192 52 
 +0.067 42 
 +0.383 35 
 
 0.29258 
 
 -0.686 53 
 1.035 49 
 1.32006 
 1.52696 
 
 0.54307 
 0460 24 
 0.290 10 
 0.046 93 
 +0.252 96 
 
 029640 
 0.672 82 
 1.00997 
 1.20056 
 
 1.501 47 
 
 5 
 6 
 
 8 
 9 
 
 +0.893 72 
 + 1.28774 
 + 1.664 16 
 
 +2.001 31 
 
 +2.281 90 
 
 1.54202 
 -1.55748 
 147465 
 I.3045I 
 1.06134 
 
 +0.84499 
 + 1.22204 
 +1.58663 
 + 1.91923 
 
 +2.2O2 96 
 
 1.613 52 
 1.634 74 
 1.56444 
 1.41019 
 1.18262 
 
 +0.734 24 
 + 1.09941 
 +145891 
 + 1.79389 
 +2.08673 
 
 -1.64837 
 1.681 08 
 1.62587 
 148691 
 -1.271 57 
 
 +0.591 91 
 +0.95149 
 +1.31277 
 +1.65652 
 +1.96341 
 
 1-63341 
 1.680 55 
 1.640 49 
 -I.5I4 17 
 1.30609 
 
 10 
 
 it 
 
 12 
 
 13 
 14 
 
 +2.49281 
 +2.624 75 
 +2.671 89 
 +2.631 83 
 +2.505 51 
 
 0.761 45 
 0.422 50 
 0.062 92 
 +0.298 36 
 +0.642 1 1 
 
 +2.423 58 
 +2.56953 
 
 +2.632 oo 
 
 +2.605 25 
 +2.487 09 
 
 0.804 79 
 0.561 88 
 
 O.2OI O3 
 +0.l688o 
 +0.52680 
 
 +2.321 27 
 +2483 01 
 +2.55968 
 +2.542 10 
 +2.425 27 
 
 0.99030 
 
 0.656 65 
 0.287 52 
 +0.096 87 
 +0472 90 
 
 +2.214 38 
 
 +2.391 35 
 +2478 20 
 +2.462 42 
 +2.33742 
 
 1.02476 
 -0.68308 
 0.29901 
 +0.104 15 
 +0.49809 
 
 15 
 
 16 
 
 11 
 
 19 
 
 +2.29743 
 +2.016 10 
 +1.67442 
 +1.29035 
 +0.887 19 
 
 +0.94900 
 +I.I9997 
 +1.37694 
 + 1.46379 
 +144801 
 
 +2.27967 
 +1.09048 
 +1.63344 
 +1.22978 
 +0.808 18 
 
 +0.850 oo 
 
 + I.II8I5 
 + I.3O6o6 
 + 1.39478 
 + 1.37002 
 
 +2.21003 
 +1.00481 
 + 1-52731 
 + 1.10461 
 
 +0.672 12 
 
 +0.814 16 
 +1.09282 
 +1.282 17 
 +1.36068 
 +1.31604 
 
 +2.105 17 
 + 1.77836 
 +1.381 50 
 +0.94877 
 +0.51938 
 
 +0.85083 
 +M30 15 
 +1.30776 
 + 1.36504 
 +1.20678 
 
 20 
 21 
 22 
 23 
 
 +0.493 25 
 +0.14051 
 0.13881 
 0.316 42 
 
 +I.3230I 
 +1.09076 
 +0.763 95 
 +0.36709 
 
 +0.402 86 
 +0.050 63 
 0.215 35 
 0.37093 
 
 + 1.22665 
 +0.971 76 
 +0.625 65 
 +0.21965 
 
 +0.268 72 
 0.069 O2 
 O.3I2 8O 
 0.446 25 
 
 +1.14929 
 +0.87548 
 +0.521 42 
 +0.120 55 
 
 +O.I3I 22 
 
 0.18479 
 0407 82 
 0.527 61 
 
 + 1.11206 
 +0.831 63 
 +0483 35 
 +0.097 62 
 
 TABLE XV. 
 SPECIAL VALUES OF A, B, C, AND D FOR MARS. 
 
 System o. 
 
 System i. 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 I 
 
 2 
 
 3 
 
 4 
 
 + 1.92041 
 +0.250 33 
 0.17822 
 0.175 IS 
 
 O.I 1 1 SO 
 
 0.768 57 
 +0.382 65 
 +0.507 19 
 +0.35960 
 +0.225 06 
 
 1.15195 
 0.63303 
 0.32897 
 0.18443 
 0.11356 
 
 +i.iii 16 
 +0.954 82 
 +0.358 95 
 +0.075 13 
 0.029 05 
 
 O 
 I 
 
 2 
 
 3 
 4 
 
 +2.08860 
 
 +0.705 52 
 
 -0.08866 
 
 0.204 72 
 
 0.14686 
 
 1.02497 
 +0.038 62 
 
 +0.515 53 
 +0.447 51 
 +0.293 Si 
 
 1.06403 
 0.744 19 
 
 0.426 83 
 0.242 79 
 0.146 66 
 
 +043399 
 +1.07690 
 +0.56893 
 +0.16480 
 0.008 13 
 
 6 
 
 8 
 9 
 
 0.058 53 
 0.021 97 
 +0.002 45 
 
 +0.01880 
 +0.029 90 
 
 +0.13450 
 +0.076 72 
 +0.039 44 
 +0.01503 
 o.ooi 19 
 
 0.076 06 
 0.054 76 
 0.041 89 
 0.033 83 
 0.028 72 
 
 0.06 1 07 
 0.065 74 
 0.060 08 
 0.050 72 
 0.040 17 
 
 5 
 6 
 
 8 
 9 
 
 0.079 42 
 0.030 47 
 +0.001 61 
 
 +O.O22 O2 
 
 +0.034 83 
 
 +0.17465 
 +0.096 73 
 +0.04744 
 +0.016 43 
 0.003 03 
 
 0.095 23 
 0.066 25 
 0.049 04 
 0.038 44 
 0.031 80 
 
 0.065 51 
 
 0.076 39 
 0.069 91 
 0.057 60 
 0.043 79 
 
 10 
 it 
 
 12 
 
 13 
 
 14 
 
 +0.037 54 
 +0.042 79 
 +0.046 23 
 +0.048 05 
 +0.04795 
 
 0.01198 
 0.01892 
 0.02281 
 0.023 80 
 0.021 35 
 
 0.025 57 
 0.023 87 
 0.023 43 
 0.024 25 
 0.026 60 
 
 0.029 29 
 0.018 19 
 0.006 65 
 +0.005 80 
 +0.01984 
 
 10 
 ii 
 
 12 
 13 
 
 14 
 
 +0.042 73 
 +0.04731 
 +0.049 46 
 +0.049 46 
 +0.04697 
 
 0.014 99 
 
 O.O2I 8 1 
 
 0.024 68 
 0.023 96 
 0.019 12 
 
 0.027 72 
 0.025 51 
 0.024 77 
 0.025 49 
 0.027 83 
 
 0.029 08 
 0.01646 
 0.003 01 
 +0.0108 1 
 +0.025 58 
 
 15 
 16 
 17 
 18 
 19 
 
 +0.044 92 
 +0.036 65 
 +0.01830 
 0.019 93 
 0.006 22 
 
 0.013 81 
 +0.002 37 
 +0.034 61 
 +0.098 16 
 +0.223 72 
 
 0.031 10 
 0.03901 
 0.052 92 
 0.078 25 
 0.127 50 
 
 +0.036 30 
 +0.056 01 
 +0.079 oo 
 -fo.ioi 49 
 +0.10486 
 
 11 
 17 
 18 
 
 19 
 
 +0.040 91 
 +0.029 03 
 +0.007 '9 
 0.031 63 
 0.097 28 
 
 0.008 56 
 
 +O.OI I O4 
 
 +0.045 88 
 +0.10709 
 +0.212 09 
 
 0.032 35 
 0.040 06 
 0.053 06 
 0.075 45 
 0.11569 
 
 +0.041 77 
 +0.05944 
 
 +O.077 22 
 
 +0.08944 
 
 +0.077 88 
 
 20 
 21 
 22 
 23 
 
 0.230 56 
 0.33621 
 +0-347 58 
 +2.549 oo 
 
 +0461 52 
 +0.797 25 
 +0.580 43 
 1.148 74 
 
 0.23095 
 0.461 05 
 0.927 87 
 1.400 16 
 
 +0.016 40 
 0.30696 
 1.39090 
 1.02700 
 
 20 
 21 
 22 
 23 
 
 0.192 14 
 0.245 44 
 +0.12735 
 + 1.52082 
 
 +0.384 18 
 +0.58762 
 +0495 62 
 0.53246 
 
 0.192 04 
 
 O.342 21 
 
 0.622 oo 
 
 0.98831 
 
 o.oio 06 
 0.302 42 
 0.922 oo 
 1.091 63 
 
7 6 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XV .Continued. 
 SPECIAL VALUES OF A, B, C, AND D FOR MARS. 
 
 System 2. 
 
 System 3. 
 
 i 
 
 ^4 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 i 
 
 2 
 
 3 
 
 4 
 
 +2.IOI 41 
 + I40O 17 
 +0.08945 
 
 0.247 49 
 0.192 78 
 
 1.045 67 
 0.44244 
 +0.515 34 
 +0.585 27 
 +0.385 57 
 
 1.055 73 
 0.957 75 
 0.604 76 
 0.337 75 
 0.192 79 
 
 0.297 76 
 +1.11788 
 
 +0.885 66 
 +0.289 97 
 +0.007 96 
 
 o 
 i 
 
 2 
 
 3 
 
 4 
 
 +1-94747 
 +2.37680 
 +0.345 55 
 -0.32752 
 0.238 32 
 
 -0.823 38 
 1.04803 
 +0.55368 
 +0.791 16 
 +047668 
 
 1.12408 
 1.32882 
 -0.899 15 
 
 0.463 59 
 0.238 32 
 
 0.979 52 
 +1.03457 
 +1.34603 
 +0.41324 
 
 0.005 73 
 
 6 
 
 8 
 9 
 
 0.09908 
 0.033 27 
 +0.00621 
 +0.028 67 
 +0.04097 
 
 +0.21683 
 +0.1 10 73 
 +0.048 52 
 +0.012 65 
 0.007 72 
 
 O.H774 
 -0.077 45 
 -0.054 73 
 0.041 33 
 0.033 24 
 
 0.079 02 
 0.091 19 
 0.07934 
 0.06 1 50 
 0.043 55 
 
 6 
 
 I 
 9 
 
 0.104 37 
 0.024 71 
 +0.01621 
 +0.036 14 
 +0.045 21 
 
 +0.237 83 
 +0.10704 
 +0.039 39 
 +0.00461 
 0.013 oo 
 
 0.13343 
 0.082 30 
 0.055 58 
 0.04075 
 
 0.032 22 
 
 0.10406 
 
 0.10454 
 0.082 65 
 
 0.059 12 
 
 0.038 63 
 
 10 
 ii 
 
 12 
 13 
 
 14 
 
 +O.O47 22 
 
 +0.049 75 
 +0.04971 
 +0.04748 
 +0.042 80 
 
 0.01880 
 0.023 94 
 0.024 83 
 0.022 06 
 0.015 30 
 
 0.02843 
 0.025 8 1 
 0.024 87 
 0.025 41 
 0.027 49 
 
 0.027 03 
 0.01198 
 
 +O.O02 O7 
 
 +0.015 66 
 +0.02929 
 
 10 
 
 ii 
 
 12 
 13 
 14 
 
 +0.048 58 
 +0.048 76 
 +0.046 87 
 +0.043 26 
 +0.037 75 
 
 O.O2I 27 
 O.024 O7 
 
 0.023 1 8 
 
 O.OI9 21 
 O.OI2 O2 
 
 0.027 30 
 
 0.024 68 
 0.023 70 
 0.024 06 
 0.025 74 
 
 0.021 44 
 0.006 8 1 
 +0.006 13 
 +0.01807 
 +0.029 52 
 
 IS 
 16 
 17 
 18 
 19 
 
 +0.034 78 
 +0.021 75 
 
 +O.OOOO2 
 
 0.031 96 
 0.082 07 
 
 0.003 32 
 +0.016 33 
 +0.04785 
 +0.09826 
 +0.178 16 
 
 0.031 46 
 0.038 07 
 0.048 76 
 0.066 29 
 0.09609 
 
 +0.043 18 
 +0.05704 
 +0.06929 
 
 +0.075 22 
 +0.062 41 
 
 15 
 16 
 
 19 
 
 +0.029 7O 
 +0.017 96 
 +0.00066 
 0.025 10 
 0.063 25 
 
 0.000 75 
 +0.016 27 
 +0.041 06 
 +0.081 14 
 +0.141 60 
 
 0.028 96 
 0.03424 
 0.042 62 
 0.056 05 
 +0.078 35 
 
 +0.040 68 
 +0.05137 
 +0.060 55 
 +0.065 29 
 +0.058 10 
 
 20 
 21 
 22 
 23 
 
 0.149 84 
 
 O.2OI 17 
 
 0.051 76 
 +0.807 50 
 
 +0.299 14 
 +045032 
 +0491 04 
 0.049 04 
 
 0.14931 
 0.249 17 
 043933 
 0.75848 
 
 O.OOO6O 
 0.18647 
 0.605 51 
 -1.06638 
 
 20 
 21 
 22 
 23 
 
 0.11689 
 -0.175 77 
 0.15423 
 
 +0.334 45 
 
 +0.23443 
 +0.366 06 
 +0493 56 
 +0.306 39 
 
 O.II753 
 0.19120 
 0.33931 
 0.640 8 1 
 
 +O.O2O OS 
 
 0.096 25 
 
 0.306 04 
 
 0.96723 
 
 System 4. 
 
 System 5. 
 
 o 
 
 I 
 2 
 3 
 4 
 
 + 1.832 10 
 +3-797 02 
 +0.44209 
 0.454 66 
 0.246 47 
 
 0.50077 
 1.806 10 
 +0.849 47 
 + 1.01321 
 +049794 
 
 I-33I 96 
 1.99000 
 1.29202 
 0.558 66 
 -0.251 49 
 
 1.62480 
 + 1.03488 
 + 1.92787 
 +0.406 52 
 0.065 O4 
 
 O 
 I 
 
 2 
 
 3 
 
 4 
 
 +2.148 15 
 +5-764 33 
 0.089 37 
 0.503 27 
 0.19356 
 
 0.293 03 
 -2.665 97 
 + 1.600 16 
 +1.02700 
 +0.410 28 
 
 -1.855 19 
 -3-098 75 
 1.51072 
 -0.523 75 
 0.21673 
 
 2.502 41 
 
 +2.0O2 IO 
 +2.II620 
 +0.192 32 
 0.12306 
 
 5 
 6 
 
 8 
 9 
 
 0.083 76 
 0.00731 
 +0.026 10 
 +0.040 16 
 +0.045 38 
 
 +0.213 91 
 +0.084 19 
 +0.024 79 
 0.003 05 
 0.01600 
 
 0.130 15 
 0.076 89 
 0.050 89 
 0.037 10 
 0.02938 
 
 O.I2683 
 O.IO605 
 O.076 42 
 
 0.051 33 
 0.031 65 
 
 6 
 
 8 
 9 
 
 0.040 74 
 +0.007 54 
 +0.030 46 
 +0.039 37 
 +0.042 28 
 
 +0.15937 
 +0.057 46 
 +0.013 21 
 0.006 08 
 0.016 18 
 
 0.10963 
 0.065 oi 
 0.043 66 
 0.032 40 
 0.020 09 
 
 0.12733 
 0.00438 
 0.064 96 
 O.O42 72 
 0.026 O3 
 
 10 
 ii 
 
 12 
 13 
 
 14 
 
 +0.046 40 
 +0.045 24 
 +0.042 68 
 +0.038 98 
 +0.033 97 
 
 0.021 39 
 0.022 53 
 0.02089 
 0.016 95 
 0.010 59 
 
 0.025 oi 
 
 O.022 70 
 O.02I 80 
 O.O22 O4 
 0.023 38 
 
 0.016 ii 
 0.003 35 
 +0.007 65 
 +0.017 63 
 +0.027 09 
 
 10 
 
 ii 
 
 12 
 
 13 
 14 
 
 +0.042 40 
 +0.041 09 
 +0.038 92 
 +0.035 97 
 +0.032 ii 
 
 0.019 89 
 0.02051 
 0.019 06 
 0.015 89 
 o.oio 87 
 
 O.022 51 
 O.O2O 60 
 
 0.01985 
 
 O.020 07 
 O.O2I 23 
 
 O.OI3 03 
 
 0.002 39 
 +0.006 85 
 +0.015 33 
 +0.023 53 
 
 IS 
 16 
 
 H 
 
 19 
 
 +0.027 18 
 +0.017 72 
 +0.004 14 
 0.015 94 
 0.046 43 
 
 o.ooi 19 
 +0.012 55 
 +0.032 90 
 +0.063 85 
 +0.11241 
 
 0.025 99 
 0.030 27 
 0.037 05 
 0.04791 
 0.065 99 
 
 +0.03551 
 +0.045 37 
 +0.053 75 
 +0.05991 
 +0.059 39 
 
 15 
 16 
 17 
 18 
 19 
 
 +0.026 95 
 +0.01975 
 +0.009 24 
 0.006 86 
 0.032 71 
 
 0.003 45 
 +0.007 46 
 +0.023 92 
 +0.049 63 
 +0.091 80 
 
 0.023 48 
 O.0272I 
 
 0.033 15 
 0.042 78 
 0.059 09 
 
 +0.031 81 
 +0.040 39 
 +0.04924 
 +0.057 70 
 +0.063 25 
 
 20 
 
 21 
 22 
 23 
 
 0.092 87 
 0.15848 
 -0-357 45 
 +0.032 96 
 
 +0.19096 
 +0.31861 
 + 1.20062 
 +0.579 17 
 
 -0.09808 
 0.160 13 
 0.843 21 
 0.612 03 
 
 +0.040 04 
 0.032 86 
 1.00468 
 0.87868 
 
 20 
 21 
 22 
 23 
 
 0.075 96 
 0.14903 
 -0.253 88 
 0.17633 
 
 +0.16481 
 +0.208 19 
 +0.544 16 
 +0.859 Si 
 
 -0.08886 
 0.149 19 
 0.290 26 
 
 0.683 21 
 
 +0.057 56 
 +0.012 49 
 
 0.17474 
 
 0.884 34 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 77 
 
 TABLE XV '. Continued. 
 SPECIAL VALUES OF A, B, C, AND D FOR MARS. 
 
 System 6. 
 
 System 7. 
 
 i 
 
 ^ 
 
 B 
 
 C 
 
 D 
 
 1 
 
 A 
 
 B 
 
 C 
 
 D 
 
 o 
 
 +4-029 84 
 
 -0.912 73 
 
 -3.11674 
 
 4.018 27 
 
 o 
 
 +9.99063 
 
 4.58621 
 
 5404 24 
 
 4.012 20 
 
 i 
 
 +5-687 73 
 
 -1.695 28 
 
 3.992 42 
 
 +4.843 56 
 
 i 
 
 +145390 
 
 +1.601 76 
 
 -3.055 56 
 
 +4.666 10 
 
 2 
 
 0.709 S3 
 
 + 1.92811 
 
 1.2187.) 
 
 +1.29050 
 
 2 
 
 0.656 79 
 
 +1.41386 
 
 -0.757 IS 
 
 +0.48293 
 
 3 
 
 -0.38833 
 
 +0.774 20 
 
 0.385 94 
 
 0.014 03 
 
 3 
 
 0.254 14 
 
 +0.515 57 
 
 0.261 46 
 
 0.07932 
 
 4 
 
 0.12466 
 
 +0.287 92 
 
 0.163 25 
 
 0.13292 
 
 4 
 
 0.081 45 
 
 +0.202 75 
 
 O.I2I 32 
 
 0.11385 
 
 5 
 
 0.024 99 
 
 +O.III 12 
 
 O.O86 12 
 
 0.10995 
 
 5 
 
 0.014 79 
 
 +0.083 51 
 
 0.068 73 
 
 0.09063 
 
 6 
 
 +0.013 63 
 
 +0.039 63 
 
 0.053 26 
 
 0.07885 
 
 6 
 
 +0.012 94 
 
 +0.032 oo 
 
 0.04493 
 
 0.066 72 
 
 7 
 
 +0.029 34 
 
 +0.007 77 
 
 0.037 10 
 
 0.054 60 
 
 7 
 
 +0.025 42 
 
 +0.007 18 ! 0.032 59 
 
 0.048 03 
 
 8 
 
 +0.035 71 
 
 0.007 35 
 
 0.028 35 
 
 0.03668 
 
 8 
 
 +0.031 23 
 
 0.00558 . 0.02565 
 
 0.033 80 
 
 9 
 
 +0.037 98 
 
 0.014 63 
 
 0.023 35 
 
 O.023 12 
 
 9 
 
 +0.033 91 
 
 0.012 35 0.021 58 
 
 O.O22 65 
 
 10 
 
 +0.038 32 
 
 0.017 86 
 
 O.O2O 46 
 
 0.012 38 
 
 10 
 
 +0.035 04 
 
 0.015 85 0.019 18 
 
 0.013 49 
 
 ii 
 
 +0.037 65 
 
 0.018 73 
 
 O.OI892 
 
 0.003 37 
 
 ii 
 
 +0.035 30 
 
 0.01736 ' 0.01792 
 
 0.005 54 
 
 12 
 
 +0.03633 
 
 0.017 98 
 
 O.OI83S 
 
 +0.004 65 
 
 12 
 
 +0.035 oo 
 
 0.01748 
 
 0.017 52 
 
 +0.001 80 
 
 13 
 
 +0.034 45 
 
 0.015 82 
 
 O.OI862 
 
 +0.012 23 
 
 13 
 
 +0.034 24 
 
 0.016 35 
 
 0.017 88 
 
 +0.00900 
 
 14 
 
 +0.031 88 
 
 0.012 14 
 
 0.01973 
 
 +0.019 84 
 
 14 
 
 +0.032 oo 
 
 0.013 83 
 
 0.019 06 
 
 +0.016 52 
 
 IS 
 
 +0.02828 
 
 0.00641 
 
 O.O2I 87 
 
 +0.027 88 
 
 IS 
 
 +0.030 68 
 
 0.00942 
 
 O.O2I 27 
 
 +0.024 84 
 
 16 
 
 +0.023 oo 
 
 +0.002 40 
 
 O.O25 42 
 
 +0.036 73 
 
 16 
 
 +0.02696 
 
 0.002 02 
 
 0.024 94 
 
 +0.034 5i 
 
 17 
 
 +0.014 84 
 
 +0.016 27 
 
 O.03I II 
 
 +0.046 70 
 
 17 
 
 +0.020 46 
 
 +0.010 52 
 
 0.030 99 
 
 +O.046 22 
 
 18 
 
 +0.001 39 
 
 +0.039 19 
 
 0.040 59 
 
 +0.05791 
 
 18 
 
 +0.008 52 
 
 +0.032 70 
 
 0.041 23 
 
 +0.06066 
 
 iQ 
 
 O.O22 OS 
 
 +0.079 14 
 
 0.057 07 
 
 +0.069 1 1 
 
 19 
 
 +0.008 53 
 
 +0.032 71 
 
 0.041 24 
 
 +0.06067 
 
 20 
 
 0.065 65 
 
 +0.154 13 
 
 0.08847 
 
 +0.074 45 
 
 20 
 
 0.063 61 
 
 +0.16008 
 
 0.097 38 
 
 +0.093 42 
 
 21 
 
 0.154 98 
 
 +0.315 09 
 
 0.160 14 
 
 +0.04951 
 
 21 
 
 -0.175 09 
 
 +0.361 07 
 
 0.186 02 
 
 +0.07793 
 
 22 
 
 -0.315 17 
 
 +0.648 46 
 
 0.333 30 
 
 0.133 72 
 
 22 
 
 0432 50 
 
 +0.882 46 
 
 0450 02 
 
 0.15994 
 
 23 
 
 -0.353 82 
 
 +1.27669 
 
 0.922 91 
 
 1. 121 87 
 
 23 
 
 0.40883 
 
 +1.93710 
 
 1.528 17 
 
 -1.99273 
 
 System 8. 
 
 System 9. 
 
 
 
 + 11.25307 
 
 5.464 71 
 
 -5.78803 
 
 +3.030 oo 
 
 
 
 +4.78203 
 
 1.30327 
 
 -347885 
 
 +4.27464 
 
 i 
 
 0.29587 
 
 + 1.96385 
 
 -1.66747 
 
 +2.25142 
 
 I 
 
 0.362 oo 
 
 +I-33I 70 
 
 0.96966 
 
 +I.I8354 
 
 2 
 
 0.44425 
 
 +0.913 37 
 
 046909 
 
 +0.189 10 
 
 2 
 
 +0.31773 
 
 +0.652 46 
 
 0.334 77 
 
 +0.12970 
 
 3 
 
 0.17840 
 
 +0.366 62 
 
 0.18819 
 
 0.073 90 
 
 3 
 
 0.14787 
 
 +0.301 39 
 
 0.153 52 
 
 0.050 95 
 
 4 
 
 0.06393 
 
 +0.16071 
 
 0.096 78 
 
 0.091 97 
 
 4 
 
 0.062 08 
 
 +0.14789 
 
 0.085 80 
 
 0.074 57 
 
 S 
 
 0.01447 
 
 +0.073 33 0.058 87 
 
 0.076 63 
 
 5 
 
 0.019 55 
 
 +0.074 61 
 
 0.055 06 
 
 -0.067 95 
 
 6 
 
 + 0.00879 
 
 +0.03156 0.04036 
 
 0.059 48 
 
 6 
 
 +0.002 94 
 
 +0.036 19 
 
 0.039 12 
 
 0.056 34 
 
 7 
 
 + 0.02061 
 
 +0.009 67 
 
 0.030 29 
 
 0.045 12 
 
 7 
 
 +0.015 67 
 
 +0.014 40 
 
 0.030 06 
 
 0.045 14 
 
 8 
 
 + 0.02700 
 
 0.002 58 
 
 0.024 40 
 
 0.033 52 
 
 8 
 
 +0.023 35 
 
 +O.OOI 26 
 
 0.024 62 
 
 0.035 28 
 
 9 
 
 + 0.03062 
 
 0.009 76 
 
 O.O20 87 
 
 0.023 97 
 
 9 
 
 +0.028 30 
 
 0.007 oi 
 
 O.O2I 28 
 
 0.026 63 
 
 10 
 
 + 0.03279 
 
 0.014 oo 
 
 0.018 79 
 
 0.015 76 
 
 10 
 
 +0.031 67 
 
 0.012 37 
 
 O.OI9 3O 
 
 0.018 82 
 
 ii 
 
 + 0.03409 
 
 0.016 39 
 
 0.01771 
 
 0.008 34 
 
 ii 
 
 +0.034 10 
 
 0.015 80 
 
 O.OlS 29 
 
 O.OI I 46 
 
 12 
 
 + 0.03485 
 
 0.017 42 
 
 0.01743 
 
 o.ooi 23 
 
 12 
 
 +0.035 9i 
 
 0.01780 
 
 0.01811 
 
 0.004 13 
 
 13 + 0.035 17 
 
 0.017 25 
 
 0.01791 
 
 +0.006 02 
 
 13 
 
 +0.037 22 
 
 0.0 1 8 50 
 
 0.0 1 8 72 
 
 +0.003 63 
 
 14 
 
 + 0.03495 
 
 0.015 70 
 
 0.019 25 
 
 +0.013 89 
 
 14 
 
 +0.03706 
 
 0.017 67 
 
 O.O2O 28 
 
 +0.012 31 
 
 IS 
 
 + 0.03390 
 
 O.OI22I 
 
 O.O2I 69 
 
 +0.022 97 
 
 IS 
 
 +0.037 78 
 
 0.014 65 
 
 0.023 14 
 
 +0.022 74 
 
 16 
 
 + 0.031 36 
 
 0.005 56 
 
 0.025 8 1 
 
 +0.03403 
 
 16 
 
 +0.035 87 
 
 0.007 85 
 
 0.028 oi 
 
 +0.035 88 
 
 17 
 
 + 0.02684 
 
 +0.00688 
 
 0.032 72 
 
 +0.048 15 
 
 17 
 
 +0.030 24 
 
 +0.006 33 
 
 0.036 58 
 
 +0.053 56 
 
 18 
 
 + 0.01399 
 
 +0.03088 
 
 0.044 86 
 
 +0.066 76 
 
 18 
 
 +0.016 16 
 
 +0.035 63 
 
 0.051 78 
 
 +0.077 10 
 
 19 
 
 0.01233 
 
 +0.080 37 
 
 0.068 02 
 
 +0.09094 
 
 19 
 
 0.018 70 
 
 +0.101 31 
 
 0.082 60 
 
 +0.10859 
 
 20 
 
 0.07503 
 
 +0.193 18 
 
 0.11815 
 
 +0.1 16 14 
 
 20 
 
 0.10951 
 
 +0.263 59 
 
 0.154 08 
 
 +0.13735 
 
 21 
 
 0.23787 
 
 +048697 
 
 0.249 14 
 
 +0.094 95 
 
 21 
 
 0-357 72 
 
 +0.716 16 
 
 0.358 39 
 
 +0.056 10 
 
 22 
 
 0.64095 
 
 + 1.34280 
 
 0.701 91 
 
 0.372 76 
 
 22 0.781 89 
 
 +1.91271 
 
 1.13082 
 
 I.O52 12 
 
 23 
 
 + 0.77527 
 
 +2.043 47 
 
 -2.818 93 
 
 -4-2S3 90 
 
 23 +4-977 43 
 
 -0.931 5i 
 
 -4.045 08 
 
 -5.38850 
 
8o 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 C. ACTION OF JUPITER. 
 
 39. The action of Jupiter being computed on the same general method as 
 Venus and Mars, but being much simpler, no detailed explanation seems 
 necessary. Six systems, which suffice to carry the coefficients to terms of the 
 third order in the eccentricities, were deemed enough. 
 
 The principal numbers used or derived are shown in the following tables. The 
 fundamental data in the first table were derived from Hill's Tables of Jupiter. 
 
 TABLE XVII. 
 ECLIPTIC COORDINATES OF JUPITER FOR THE 12 POINTS OF DIVISION. 
 
 
 
 _/"+ Red. to 
 
 log. T 
 
 
 
 
 
 
 
 Arg. i. 
 
 Ecliptic 
 (Table 37). 
 
 (Table 60). 
 
 1 
 
 / a. 
 
 X 
 
 y 
 
 z 
 
 o 
 
 1062.6047 
 
 ota 
 
 93 49 10 
 
 0.716 624 
 
 JOS I 44 
 
 185 31 36 
 
 -5.1832 
 
 0.5015 
 
 +0.0137 
 
 I 
 
 I423-6537 
 
 123 o 50 
 
 0.726 798 
 
 134 13 23 
 
 214 43 16 
 
 4-3816 
 
 3.0364 +0.0714 
 
 2 
 
 1784.7027 
 
 151 3 o 
 
 0.733 92 
 
 162 15 33 
 
 242 45 26 
 
 24808 
 
 4.8184 , +0.1114 
 
 3 
 
 2145.7517 
 
 178 26 SS 
 
 0.736 696 
 
 189 39 28 
 
 270 9 21 
 
 +0.0148 
 
 5-4537 +0.1248 
 
 4 
 
 2506.8007 
 
 205 48 41 
 
 0.734514 
 
 217 I IS 
 
 297 31 7 
 
 +2.5072 
 
 4-8125 
 
 +O.IO9I 
 
 5 
 
 2867.8497 
 
 233 44 42 
 
 0.727 800 
 
 244 57 16 
 
 325 27 8 
 
 +4.4010 
 
 3.0300 
 
 +0.0675 
 
 6 
 
 3228.8987 262 47 7 
 
 0.717865 
 
 273 59 41 
 
 354 29 33 
 
 +5.1982 
 
 0.5012 +0.0092 
 
 7 
 
 3589.9477 : 293 16 53 
 
 0.707018 
 
 304 29 26 
 
 24 59 19 
 
 +4.6167 
 
 +2.1517 0.0512 
 
 8 
 
 3950.9967 
 
 325 13 29 
 
 0.608 343 
 
 336 26 2 
 
 56 55 55 
 
 +2.7242 
 
 +4.1841 
 
 0.0969 
 
 9 
 
 4312.0457 ' 358 7 4 
 
 0.694 769 
 
 9 19 38 
 
 89 49 30 
 
 +0.0151 
 
 +4.9518 
 
 0.1 134 
 
 10 
 
 340.5067 
 
 31 3 59 
 
 0.697 634 
 
 42 16 32 
 
 122 46 24 
 
 -2.6083 
 
 +4.1912 
 
 0.0948 
 
 ii 
 
 701.5557 
 
 63 9 2 
 
 0.705 860 
 
 74 21 36 
 
 154 Si 28 
 
 -4.5987 
 
 +2.1583 
 
 -0.0474 
 
 TABLE XVIII. 
 JUPITER; DIRECT ACTION; SPECIAL VALUES OF THE A-COEFFICIENTS FOR 6 SYSTEMS. 
 
 System o. 
 
 System i. 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 
 
 +0.008 62 
 
 0.004 22 
 
 0.004 40 
 
 +0.001 56 
 
 
 
 +0.007 65 
 
 0.003 80 
 
 0.003 83 
 
 +0.00060 
 
 i 
 
 +0.002 35 
 
 o.ooi 17 
 
 0.003 52 
 
 +0.005 25 
 
 I 
 
 +0.003 28 
 
 +0.000 13 
 
 0.003 40 
 
 +0.004 86 
 
 2 
 
 o.ooi 91 
 
 +0.004 50 
 
 0.002 59 
 
 +O.OO2 2O 
 
 2 
 
 0.001 51 
 
 +0.004 27 
 
 0.002 76 
 
 +0.002 97 
 
 3 
 
 o.oo i 76 
 
 +0.003 72 
 
 o.ooi 95 
 
 o.ooi 04 
 
 3 
 
 O.O02 13 
 
 +0.004 33 
 
 O.OO2 20 
 
 o.ooo 70 
 
 4 
 
 +0.000 05 
 
 +0.001 53 
 
 o.ooi 58 
 
 O.002 26 
 
 4 
 
 o.ooo 13 
 
 +0.001 95 
 
 o.ooi 82 
 
 O.OO2 52 
 
 5 
 
 +O.OOI 81 
 
 o.ooo 39 
 
 o.ooi 41 
 
 o.ooi 8 1 
 
 5 
 
 +0.002 06 
 
 o.ooo 46 
 
 O.OOI 6l 
 
 0.00206 
 
 6 
 
 +0.002 77 
 
 0.001 37 
 
 o.ooi 40 
 
 0.00034 
 
 6 
 
 +0.003 II 
 
 0.001 55 
 
 o.ooi 56 
 
 o.ooo 19 
 
 7 
 
 +0.002 49 
 
 0.00095 
 
 0.001 54 
 
 +0.001 55 
 
 7 
 
 +0.002 43 
 
 0.000 76 
 
 o.ooi 67 
 
 +0.001 93 
 
 8 
 
 +O.OOO 61 
 
 +0.001 30 
 
 o.ooi 91 
 
 +O.OO2 84 
 
 8 
 
 +O.OOO IO 
 
 +0.001 87 
 
 o.ooi 97 
 
 +0.00281 
 
 9 
 
 O.OO2 28 
 
 +0.004 86 
 
 O.OO2 58 
 
 +0.001 SO 
 
 9 
 
 0.002 39 
 
 +0.004 87 
 
 O.OO2 48 
 
 +0.00081 
 
 10 
 
 0.002 O4 
 
 +0.005 63 
 
 0.003 58 
 
 0.003 77 
 
 10 
 
 o.ooi 40 
 
 +0.004 56 
 
 0.003 15 
 
 0.00368 
 
 ii 
 
 +0.005 41 
 
 o.ooo 95 
 
 0.004 46 
 
 0.005 89 
 
 II 
 
 +0.004 49 
 
 0.00075 
 
 -0.003 73 
 
 0.004 95 
 
 System 2. 
 
 System 3. 
 
 O 
 
 +0.007 67 
 
 0.003 8 1 
 
 0.003 85 
 
 0.00069 
 
 o 
 
 +0.008 73 
 
 0.004 27 
 
 0.004 46 
 
 0.001 58 
 
 I 
 
 +0.004 63 
 
 o.ooo 83 
 
 0.003 8 1 
 
 +0.005 02 
 
 I 
 
 +0.005 47 
 
 o.ooo 95 
 
 0.004 51 
 
 +0.005 97 
 
 2 
 
 0.001 42 
 
 +0.004 67 
 
 0.003 25 
 
 +0.003 80 
 
 2 
 
 0.002 06 
 
 +0.005 67 
 
 0.003 60 
 
 +0.003 79 
 
 3 
 
 0.002 45 
 
 +0.005 oo 
 
 0.002 55 
 
 0.00084 
 
 3 
 
 O.OO2 28 
 
 +0.004 86 
 
 O.O02 58 
 
 o.ooi 50 
 
 4 
 
 +O.OOO 12 
 
 +0.001 88 
 
 O.OO2 OO 
 
 O.OO2 87 
 
 4 
 
 +0.000 61 +0.001 29 
 
 o.ooi 90 
 
 0.002 82 
 
 5 
 
 +O.O02 46 
 
 o.ooo 78 
 
 o.ooi 68 
 
 o.ooi 92 
 
 5 
 
 +0.002 47 
 
 o.ooo 94 
 
 o.ooi 53 
 
 o.ooi 54 
 
 6 
 
 +0.003 09 
 
 0.001 54 
 
 0.001 55 
 
 +O.OOO 21 
 
 6 
 
 +0.002 74 
 
 o.ooi 36 
 
 0.001 39 
 
 +0.000 33 
 
 7 
 
 +O.OO2 01 
 
 0.00043 
 
 o.ooi 58 
 
 +O.002 04 
 
 7 
 
 +0.001 79 
 
 o.ooo 39 
 
 0.001 40 
 
 +0.001 80 
 
 8 
 
 o.ooo 15 
 
 +0.001 92 
 
 o.ooi 76 
 
 +O.OO2 46 
 
 8 
 
 +0.00006 
 
 +0.001 52 
 
 o.ooi 58 
 
 +O.OO2 25 
 
 9 
 
 O.OO2 08 
 
 +0.004 23 
 
 O.OO2 15 
 
 +0.00068 
 
 9 
 
 o.ooi 76 
 
 +0.003 7i 
 
 0.001 95 
 
 +o.ooi 04 
 
 10 
 
 o.ooi 49 
 
 +0.004 19 
 
 O.OO2 70 
 
 O.OO2 OO 
 
 10 
 
 o.ooi 92 
 
 +0.004 52 
 
 O.O02 OO 
 
 O.OO22I 
 
 ii 
 
 +0.003 18 
 
 +0.000 19 
 
 0.003 36 
 
 0.004 82 
 
 II 
 
 +O.OO2 36 
 
 +O.OOI 19 
 
 0.003 55 
 
 0.005 30 
 
COEFFICIENTS FOR DIRECT ACTION. 
 
 8l 
 
 TABLE XVIII. Concluded. 
 JUPITER ; DIRECT ACTION ; SPECIAL VALUES OF THE A-COEFFICIENTS FOR 6 SYSTEMS. 
 
 System 4. 
 
 System 5. 
 
 i 
 
 A 
 
 B 
 
 c 
 
 D 
 
 i 
 
 A 
 
 B 
 
 C 
 
 D 
 
 o 
 
 +0.010 47 
 
 O.OOS 21 
 
 0.005 26 
 
 0.00094 
 
 o 
 
 +0.01036 
 
 0.005 IS 
 
 O.OO5 21 
 
 +0.001 06 
 
 I 
 
 +0.004 29 
 
 +0.00044 
 
 0.004 73 
 
 +0.00684 
 
 I 
 
 +0.002 55 
 
 +0.001 57 
 
 O.OO4 12 
 
 +0.006 16 
 
 2 
 
 0.002 58 
 
 +0.005 91 
 
 0.003 33 
 
 +O.OO2 64 
 
 2 
 
 0.002 34 
 
 +0.005 16 
 
 O.OO2 82 
 
 +0.001 95 
 
 3 
 
 o.ooi 75 
 
 +0.004 oo 
 
 0.002 25 
 
 o.ooi 77 
 
 3 
 
 0.001 58 
 
 +0.003 55 
 
 0.001 97 
 
 0.001 48 
 
 4 
 
 +0.00068 
 
 +0.00096 
 
 o.ooi 65 
 
 O.OO2 46 
 
 4 
 
 +0.00041 
 
 +O.OOI II 
 
 o.ooi 51 
 
 O.OO2 24 
 
 5 
 
 +0.002 l6 
 
 0.00080 
 
 o.ooi 35 
 
 0.001 39 
 
 5 
 
 +0.001 88 
 
 0.000 57 
 
 0.001 30 
 
 0.001 52 
 
 6 
 
 +0.00251 
 
 o.ooi 25 
 
 o.ooi 25 
 
 +0.000 14 
 
 6 
 
 +O.002 51 
 
 0.001 25 
 
 0.001 26 
 
 0.000 16 
 
 7 
 
 +0.001 90 
 
 0.000 59 
 
 o.ooi 31 
 
 +0.001 52 
 
 7 
 
 +O.OO2 2O 
 
 0.00083 
 
 0.001 37 
 
 +0.001 39 
 
 8 
 
 +O.OOO 43 
 
 +O.OOI II 
 
 o.ooi 54 
 
 +O.OO2 28 
 
 8 
 
 +0.000 72 
 
 +0.00096 
 
 0.00168 
 
 +0.002 52 
 
 9 
 
 o.ooi 6 1 
 
 +0.003 62 
 
 O.OO2 O2 
 
 +O.OOI 52 
 
 9 
 
 0.001 79 
 
 +0.004 10 
 
 O.OO2 31 
 
 +O.OOI 82 
 
 10 
 
 0.002 41 
 
 +0.005 30 
 
 0.00290 
 
 O.O02 OI 
 
 IO 
 
 O.O02 64 
 
 +0.00606 
 
 0.00342 
 
 O.OO2 72 
 
 ii 
 
 +0.002 68 
 
 +0.001 55 
 
 0.004 23 
 
 0.006 32 
 
 II 
 
 +0.00444 
 
 +0.00036 
 
 0.004 80 
 
 0.006 91 
 
 TABLE XIX. 
 JUPITER ; DIRECT ACTION ; DEVELOPMENT OF THE A-COEFFICIENTS. 
 
 Arg. 
 
 ufA 
 
 10* 8 
 
 io C 
 
 ioZ> 
 
 LJ, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 O O 
 
 +1347 
 
 o 
 
 +1237 
 
 O 
 
 -2583 
 
 O 
 
 I 
 
 O 
 
 O I 
 
 4 
 
 -58 
 
 i 
 
 19 
 
 + 4 
 
 + 76 
 
 - 18 
 
 + 3 
 
 12 
 
 7 
 
 - 77 
 
 + 17 
 
 + 86 
 
 12 
 
 IO 
 
 + 82 
 
 13 
 
 I I 
 
 + III2 
 
 o 
 
 + 358 
 
 o 
 
 1470 
 
 o 
 
 o 
 
 + 539 
 
 I O 
 
 II 
 
 211 
 
 - 16 
 
 -184 
 
 + 28 
 
 +395 
 
 o 
 
 + 2 
 
 I+I 
 
 3 
 
 O 
 
 __ j 
 
 + 2 
 
 + 5 
 
 o 
 
 
 
 + I 
 
 23 
 
 3 
 
 - 82 
 
 + 8 
 
 + 82 
 
 4 
 
 i 
 
 + 83 
 
 5 
 
 2 2 
 
 +3878 
 
 + 2 
 
 -3526 
 
 u , C 
 
 - 355 
 
 + 2 
 
 3 
 
 +3699 
 
 21 
 
 7 
 
 -165 
 
 5 
 
 S3 
 
 + 12 
 
 +217 
 
 + 53 
 
 2 
 
 2 O 
 
 - 16 
 
 + 2 
 
 IS 
 
 + 3 
 
 + 30 
 
 5 
 
 + i 
 
 II 
 
 
 o 
 
 O 
 
 o 
 
 o 
 
 
 
 o 
 
 o 
 
 O 
 
 34 
 
 + 13 
 
 40 
 
 12 
 
 + 40 
 
 3 
 
 o 
 
 + 42 
 
 + 12 
 
 33 
 
 + 1779 + I 
 
 I7OO 
 
 3 
 
 - 79 
 
 + I 
 
 2 
 
 + 1737 
 
 32 
 
 28 
 
 -6 7 2 
 
 + 24 
 
 +S9S 
 
 + 5 
 
 + 77 
 
 +633 
 
 - 25 
 
 3-1 
 
 - 18 
 
 + 3 
 
 - 6 
 
 + i 
 
 + 24 
 
 4 
 
 O 
 
 - 6 
 
 4-5 
 
 + 10 
 
 IO 
 
 - 8 
 
 + 10 
 
 
 
 + I 
 
 + 21 
 
 + 9 
 
 4-4 
 
 + 587 
 
 3 
 
 570 
 
 + I 
 
 - 18 
 
 + I 
 
 + 2 
 
 + 575 
 
 43 
 
 - 18 
 
 434 
 
 + 16 
 
 +412 
 
 + 2 
 
 + 22 
 
 +423 
 
 17 
 
 42 
 
 - 80 
 
 + 7 
 
 + 70 
 
 6 
 
 + H 
 
 
 
 - 6 
 
 - 76 
 
 5-6 
 
 + 2 
 
 + 16 
 
 3 
 
 14 
 
 + I 
 
 I 
 
 + 26 
 
 + 6 
 
 5-5 
 
 + 176 
 
 2 
 
 172 
 
 + 2 
 
 3 
 
 
 
 + 3 
 
 + 154 
 
 5-4 
 
 - 8 
 
 -185 
 
 + 7 
 
 +180 
 
 
 
 + 5 
 
 +184 
 
 - 8 
 
 53 
 
 - 66 
 
 + 6 
 
 + 64 
 
 - 6 
 
 + 4 
 
 i 
 
 - 6 
 
 - 67 
 
82 ACTION OF THE PLANETS ON THE MOON. 
 
 D. ACTION OF SATURN AND MERCURY. 
 
 40. The inequalities due to the direct action of Saturn are so minute that an 
 approximate development will suffice. I have therefore used the development of 
 A~ 3 and A~ 5 by spherical harmonics. We put a^ for the mean distance of Saturn, 
 Z, as usual, for the difference of mean heliocentric longitudes of the planet and 
 Earth (L s g'}, and a for the ratio of the mean distances. With this notation 
 the developments to a 4 are 
 
 J = i + fa* + -Yi 6 - 4 + + (3 + -V- 2 + ) cos L 
 
 + ( + -Vg 5 -" 2 )* 2 cos 2 ^ + Y* 3 cos 3 Z + W* 4 cos 4 Z 
 
 ^ o, i + -Y- 2 + HI 40 * + + (5 + J F 2 + ) cos Z 
 
 * cos 2Z + 1 - a ' cos Z + 1la4 cos Z 
 
 This development is valid when the eccentricities are taken account of, provided 
 we use the true radii vectores and true longitudes instead of the mean ones. But 
 this is unnecessary in the present case. For Saturn we have 
 
 a = 0.1070 
 Reducing to numbers this gives 
 
 
 
 s = 1.0262 + 0.328 cos L + 0.044 cos 2 -^ + -o5 cos 3^ 
 
 
 TT= 1.0741 + 0.557 cosZ + o.no cos 2Z + .016 cos 3Z + 
 
 For the geocentric coordinates X, Y, Z, of Saturn we have 
 
 X= a' a, cos Z = a l (a cos Z) Y= a l sin Z Z = o 
 
 Then 
 
 2^= ^.(X* - Y 2 ) = a 3 ^ (a 2 - 2<z cos Z + cos 2 Z) 
 
 /- /'^ a3 i* 
 
 C. = ' C = -- 
 
 3 & 
 
 Z>, = a' 3 /? = o|i- (} sin 2Z - a sin Z) 
 Reducing to numbers, and performing the necessary multiplications we find 
 
 = -f .0027 + .031 cos Z + .620 cos 2Z 
 io s C, = .419 .135 cos Z .018 cos 2Z 
 io 3 Z>, = .029 sin Z -(- .607 sin 2Z 
 
COEFFICIENTS FOR DIRECT ACTION. 83 
 
 Then, the principal terms are 
 
 io 3 MK= + .0013 + .015 cos L + .307 cos zL 
 loU/C, = .208 .067 cos L .009 cos 2Z, 
 io s MD l = .014 sin L + .302 sin 2.Z, 
 
 41. The mass of Mercury is so minute that its action upon Venus, the only 
 planet whose motion it can sensibly affect, has never been determined with cer- 
 tainty. There is every reason to believe that the uncertain determinations of the 
 mass which have been made were too great by 2 or 3 times their entire amount. 
 From Hill's estimate, based on the volume and probable density of the planet, it is 
 very probable that the mass is less than i -=- 10000000 that of the Sun. From the 
 results of 30 it is inferred that its secular effect on the motion of the lunar elements 
 is proportionally yet smaller than its mass. 
 
 The only periodic inequalities that could become sensible are those of compara- 
 tively long period. Their probable limiting values are considered in Action, 
 p. 273, from which it appears that the largest inequality is that depending on the 
 
 argument 
 
 / + TT + T,M' + g' 
 
 and that the limiting value of the coefficient was estimated at o".i. For another 
 argument the limiting value was o".o4. These estimates rest on a mass double of 
 what may now be considered the most probable value. For these reasons it was 
 intended to leave the action of Mercury entirely out of consideration in the present 
 investigation. But, for the sake of completeness, and to leave open as few questions 
 as possible, it was at length decided to compute the action in the same way as that 
 of Venus. Twelve systems and twelve indices were used. With 144 special 
 values, it is easy to compute not only the secular, but the principal periodic terms. 
 Among the results are the following constant terms and terms depending on the 
 above argument, the form being 
 
 A = A + A e cos (3M' -|- ') + A, sin (3*1' + g') 
 A = + 0.867 A c = .00059 A. = o 
 
 B 0.381 B c = + .00035 B. = + -00008 
 
 C = 0.486 C c = + .00026 C t = .00006 
 
 Z> = -f 0.0022 D c = + .0005 D t = .0023 
 
 K^ == + 0.624 K e = .00047 K t = .00004 
 
 42. K-coefficients. From the preceding developments of A, B, C, and D for 
 the four disturbing planets the coefficients K = y z (A B) are formed, and 
 K, 0^ and D t are multiplied by M. 
 
 This special set of coefficients, containing the factor M, are designated as K- 
 coefficients. Their values are tabulated for Venus, Mars, and Jupiter as follows. 
 The values for Saturn are found at the end of 40 preceding. 
 
82 ACTION OF THE PLANETS ON THE MOON. 
 
 D. ACTION OF SATURN AND MERCURY. 
 
 40. The inequalities due to the direct action of Saturn are so minute that an 
 approximate development will suffice. I have therefore used the development of 
 A~ 3 and A~ 5 by spherical harmonics. We put a 1 for the mean distance of Saturn, 
 Z, as usual, for the difference of mean heliocentric longitudes of the planet and 
 Earth (L = s g'}, and a for the ratio of the mean distances. With this notation 
 the developments to a 4 are 
 
 J- = i + fa* + *-a< + . . . + (3 + _45 a 2 + . . . )a CQS L 
 
 + ( + 1 i<r a *) af cos 2L + -^ cos 3^ + - 3 e- a4 cos 4 Z 
 J - I + -V- 2 + iff** 4 + . . . + (s + IJia* + . . .) a cos L 
 
 ' cos 2L + 1Aa * cos 3^ + JL - a< cos Z 
 
 This development is valid when the eccentricities are taken account of, provided 
 we use the true radii vectores and true longitudes instead of the mean ones. But 
 this is unnecessary in the present case. For Saturn we have 
 
 OL = O.IO7O 
 
 Reducing to numbers this gives 
 
 a 3 
 
 A = i .0262 + 0.328 cos L + 0.044 cos 2j L + 0.005 cos 3- 
 
 Ty = 1.0741 + 0.557 cos L + o.uo cos iL + .016 cos 3-Z, + 
 
 For the geocentric coordinates X, Y, Z, of Saturn we have 
 
 X '= a' a, cos L = a l (a cos L) Y= a, sin L Z =o 
 
 Then 
 
 '* a, 5 
 
 - F 2 ) = a?-~ (of 20. cos Z -f cos 2Z) 
 
 1 3 A 
 
 Z>, = ' 3 Z> = of i- (i sin 2Z - a sin Z) 
 
 Reducing to numbers, and performing the necessary multiplications we find 
 
 io 3 /if = + .0027 + .031 cos Z + .620 cos 2Z 
 lo'C 1 , = .419 .135 cos Z .018 cos 2Z 
 io 3 D 1 = .029 sin Z -f .607 sin 2Z 
 
COEFFICIENTS FOR DIRECT ACTION. 83 
 
 Then, the principal terms are 
 
 io 3 MK= + .0013 + .015 cos L + .307 cos iL 
 loWC, = .208 .067 cos L .009 cos 2L 
 ioWZ>, = .014 sin L + .302 sin iL 
 
 41. The mass of Mercury is so minute that its action upon Venus, the only 
 planet whose motion it can sensibly affect, has never been determined with cer- 
 tainty. There is every reason to believe that the uncertain determinations of the 
 mass which have been made were too great by 2 or 3 times their entire amount. 
 From Hill's estimate, based on the volume and probable density of the planet, it is 
 very probable that the mass is less than i -r- 10000000 that of the Sun. From the 
 results of 30 it is inferred that its secular effect on the motion of the lunar elements 
 is proportionally yet smaller than its mass. 
 
 The only periodic inequalities that could become sensible are those of compara- 
 tively long period. Their probable limiting values are considered in Action, 
 p. 273, from which it appears that the largest inequality is that depending on the 
 
 argument 
 
 / + TT + $M' + g' 
 
 and that the limiting value of the coefficient was estimated at o".i. For another 
 argument the limiting value was o".o4. These estimates rest on a mass double of 
 what may now be considered the most probable value. For these reasons it was 
 intended to leave the action of Mercury entirely out of consideration in the present 
 investigation. But, for the sake of completeness, and to leave open as few questions 
 as possible, it was at length decided to compute the action in the same way as that 
 of Venus. Twelve systems and twelve indices were used. With 144 special 
 values, it is easy to compute not only the secular, but the principal periodic terms. 
 Among the results are the following constant terms and terms depending on the 
 above argument, the form being 
 
 A = A + A e cos (3f' + g') + A t sin (311' -f g') 
 A a = + 0.867 -A c ~ ~ -oooSP A t = o 
 
 B^ = 0.381 B e = + .00035 B, = + -00008 
 
 C = 0.486 C c = + .00026 C t = .00006 
 
 D a = + 0.0022 D c = -f .0005 D t = .0023 
 
 Jf Q = + 0.624 K e = .00047 K t = .00004 
 
 42. K-coefficients. From the preceding developments of A, B, C, and D for 
 the four disturbing planets the coefficients K '= ^4 (A .?) are formed, and 
 K, C\, and D^ are multiplied by M. 
 
 This special set of coefficients, containing the factor M, are designated as K- 
 coefficients. Their values are tabulated for Venus, Mars, and Jupiter as follows. 
 The values for Saturn are found at the end of 40 preceding. 
 
8 4 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XX. 
 
 K-COEFFICIENTS FOR DlRECT ACTION OF VENUS. 
 
 v, g' 
 
 10 s MK e 
 
 io 3 MK, 
 
 % io s MC c 
 
 ^io 3 MC, 
 
 io 3 MD c 
 
 io 3 MD t 
 
 
 li 
 
 a 
 
 
 m 
 
 tl 
 
 
 o, o 
 
 + 5-903 
 
 o.oo 
 
 3.406 
 
 0.000 
 
 o.ooo 
 
 o.ooo 
 
 0, I 
 
 + 0.44 
 
 O.I I 
 
 0.30 
 
 +0.07 
 
 +0.03 
 
 +0.33 
 
 0, 2 
 
 + 0.13 
 
 0.14 
 
 0.09 
 
 +0.10 +0.05 
 
 +0.06 
 
 I, -2 
 
 + 0.71 
 
 +0.15 
 
 0.36 
 
 0.08 +0.08 
 
 0.52 
 
 I, I 
 
 +10.95 
 
 o.oo 
 
 6.03 
 
 o.oo 
 
 O.OI 
 
 4.92 
 
 I. 
 
 + 0.17 
 
 0.07 
 
 O.22 
 
 +0.05 
 
 O.OO 
 
 +O.22 
 
 2, 4 
 
 + 0.16 
 
 +0.14 
 
 0.08 
 
 0.08 
 
 +0.09 
 
 O.I I 
 
 2, 3 
 
 + 0.93 
 
 +0.19 
 
 0.39 
 
 0.08 
 
 +0.13 
 
 0.73 
 
 2, 2 
 
 +10.75 
 
 o.oo 
 
 4.99 
 
 o.oo 
 
 0.01 
 
 7.09 
 
 2, I 
 
 + O.O2 
 
 0.04 
 
 0.16 
 
 +0.03 
 
 O.OI 
 
 +0.22 
 
 3, -6 
 
 + O.O2 
 
 +0.03 
 
 O.OI 
 
 O.OI 
 
 +O.O2 
 
 O.OI 
 
 3, -5 
 
 + O.I7O 
 
 +0.147 
 
 0.078 
 
 0.075 
 
 +O.II 
 
 0.13 
 
 3, -4 
 
 + 1.08 
 
 +0.22 
 
 -0.38 
 
 0.08 
 
 +0.17 
 
 0.91 
 
 3, -3 
 
 + 10.24 
 
 O.OO 
 
 4.00 
 
 O.OO 
 
 O.OI 
 
 -7.91 
 
 4, 6 
 
 + 0.18 
 
 +0.15 
 
 0.07 
 
 0.07 
 
 +0.1 1 
 
 0.15 
 
 4, -5 
 
 + 1.17 
 
 +0.24 
 
 0.36 
 
 -0.08 
 
 +0.20 
 
 1.04 
 
 4, -4 
 
 + 9-42 
 
 o.oo 
 
 3.14 
 
 o.oo 
 
 O.OI 
 
 -7.89 
 
 5, -8 
 
 + 0.019 
 
 +0.028 
 
 0.007 
 
 O.OI2 
 
 +0.024 
 
 0.017 
 
 S, -7 
 
 + 0.19 
 
 +0.14 
 
 0.06 
 
 0.06 
 
 +O.I2 
 
 0.16 
 
 5, -6 
 
 + 1.21 
 
 +0.24 
 
 0.32 
 
 0.07 
 
 +O.2I 
 
 -1.05 
 
 S, -5 
 
 + 8.40 
 
 O.OO 
 
 2.43 
 
 0.00 
 
 O.OI 
 
 7-39 
 
 6, -7 
 
 + 1.19 
 
 +0.24 
 
 0.28 
 
 0.06 
 
 +O.2I 
 
 O.I I 
 
 6, -6 
 
 + 7-32 
 
 o.oo 
 
 -1.86 
 
 o.oo 
 
 o.oo 
 
 -6.64 
 
 
 TABLE XXI. 
 
 K-COEFFICIENTS FOR DlRECT ACTION OF MARS. 
 
 M, g' 
 
 IO 3 MK C 
 
 io 3 MX, 
 
 i^lO 3 MC C 
 
 y 2 io> MC, 
 
 io 3 MD c 
 
 io 3 MD, 
 
 0, 
 0, I 
 
 + 0*0465 
 
 O.O2O 
 
 H 
 
 O.OOO 
 
 0.024 
 
 0.1006 
 +0.028 
 
 0.000 
 
 +0.029 
 
 O.OOO 
 
 0.008 
 
 O.OOO 
 +O.OIO 
 
 I, -2 
 I, I 
 I, O 
 
 O.OI2 
 + O.IIO 
 O.O25 
 
 +0.014 
 +0.001 
 0.029 
 
 +0.017 
 0.169 
 +0.042 
 
 0.0 18 
 
 0.000 
 
 +0.045 
 
 0.008 
 
 o.ooo 
 
 O.OOO 
 
 O.OI 2 
 
 +0.054 
 
 0.000 
 
 2, 3 
 
 2, 2 
 2, -I 
 2, 
 
 O.O02 
 + 0.194 
 
 0.035 
 o.ooo 
 
 o.ooo 
 
 +O.O02 
 
 0.039 
 
 +O.OI I 
 
 +0.009 
 0.129 
 +0.049 
 +0.003 
 
 O.OIO 
 +0.001 
 
 +0.053 
 0.016 
 
 +0.006 
 o.ooo 
 +0.013 
 
 +O.O02 
 
 O.OO2 
 
 +0.165 
 
 0.014 
 
 O.002 
 
 3, 3 
 
 3, 2 
 
 + 0.233 
 0.064 
 
 +0.004 
 0.070 
 
 0.093 
 
 +0.049 
 
 +O.OOI 
 
 +0.053 
 
 O.OO2 
 
 +0.050 
 
 +0.217 
 0.048 
 
 4, 4 
 4, 3 
 4, -2 
 
 + 0.229 
 
 0.094 
 
 O.OO2 
 
 +0.004 
 0.103 
 +0.030 
 
 0.064 
 +0.044 
 +0.003 
 
 +0.001 
 
 +0.049 
 0.028 
 
 0.003 
 
 +0.000 
 
 0.019 
 
 +O.22I 
 
 0.083 
 0.003 
 
 5, -4 
 5, 3 
 
 5, -2 
 
 0.115 
 0.005 
 + 0.009 
 
 0.126 
 +0.051 
 0.004 
 
 +0.037 
 +0.003 
 0.006 
 
 +0.042 
 0.030 
 +0.005 
 
 +0.119 
 0.042 
 +0.003 
 
 0.107 
 0.004 
 +0.007 
 
 6, -5 
 6, -4 
 6, -3 
 
 O.I22 
 0.009 
 + O.OI5 
 
 0.134 
 
 +0.074 
 0.009 
 
 +0.030 
 
 +O.OO2 
 O.007 
 
 +0.034 
 0.029 
 +0.006 
 
 +0.131 
 0.068 
 +0.008 
 
 0.117 
 0.007 
 
 +O.OI I 
 
COEFFICIENTS FOR DIRECT ACTION. 
 TABLE XXII. 
 
 K-COEFFICIENTS FOR DlRECT ACTION OF JUPITER. 
 
 J, g 1 
 
 io 3 K e 
 
 ioAT. 
 
 tfio'AfC. 
 
 ^jo 3 MC t 
 
 ioWZ> c 
 
 ioWZ>. 
 
 
 lt 
 
 tt 
 
 H 
 
 tt 
 
 II 
 
 // 
 
 0, 
 
 + 0.091 
 
 O.OOO 
 
 2.135 
 
 OJOOO 
 
 O.OOO 
 
 0.000 
 
 0, I 
 
 O.OO2 
 
 0.032 
 
 +0.003 
 
 +0.063 
 
 0.030 
 
 +0.005 
 
 I, 2 
 
 O.O2O 
 
 0.135 
 
 O.OIO 
 
 0.008 
 
 +O.I3S 
 
 O.02I 
 
 I. I 
 
 + 0.623 
 
 O.OOO 
 
 1.215 
 
 O.OOO 
 
 O.OOO 
 
 +0.593 
 
 I, O 
 
 + 0.004 
 
 O.O22 
 
 +0.023 
 
 +0.326 
 
 O.OOO 
 
 +0.003 
 
 I, +1 
 
 O.O02 
 
 O.OOI 
 
 +0.004 
 
 o.ooo 
 
 O.OOO 
 
 +O.OO2 
 
 2, 3 
 
 0.009 
 
 0.135 
 
 0.003 
 
 O.OOI 
 
 +0.137 
 
 0.008 
 
 2, 2 
 
 + 6.II9 
 
 +0.006 
 
 0.293 
 
 +0.001 
 
 0.005 
 
 +6.114 
 
 2, -I 
 
 O.OOI 
 
 0.093 
 
 +O.OIO 
 
 +0.179 
 
 +0.087 
 
 0.003 
 
 2, 
 
 O.OOI O.OOI 
 
 +0.025 
 
 0.004 
 
 +O.OOI 
 
 0.018 
 
 3, 3 
 
 + 2.875 
 
 +0.003 
 
 0.065 
 
 +O.OOI 
 
 0.003 
 
 +2.875 
 
 3, 2 
 
 0.043 
 
 1.048 
 
 +0.004 
 
 +0.064 
 
 +1.046 
 
 0.041 
 
CHAPTER V. 
 
 PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION. 
 
 43. Our next step is to form the coefficients G, J, and / which are the planetary 
 coefficients for the indirect action, and correspond to K, ^C, and D. These we have 
 found to be linear functions of the perturbations in the motion of the Earth around 
 the Sun produced by the action of all the planets. From the way in which they 
 are formed it will be seen that they should include all deviations in the motion of 
 the Sun from the actual formulae adopted for the expression of fl as used in deter- 
 mining the action of the Sun itself. It would therefore be necessary, in strictness, 
 to include the effect of any corrections that may be necessary to the elements of 
 the Sun's motion employed by Delaunay. But as the eccentricity of the Earth's 
 orbit enters as a symbolic quantity into the theories of both Delaunay and Brown, 
 it will not be necessary to apply any correction on this account. The same remark 
 applies to the position of the Earth's perihelion. But as the solar elements are 
 assumed to be constant in the first integration it is necessary to take into account 
 the eftects of their secular variations, as well as of the periodic inequalities. 
 
 Moreover, in developing the action of the Sun upon the Moon for the first inte- 
 gration, it is assumed that the mean distance of the Earth's orbit is strictly connected 
 with its mean motion by the fundamental relation 
 
 It is therefore necessary to include in 8p' the constant correction arising from the 
 action of the planets. 
 
 We may conveniently classify the various terms of 8v' and 8p which are to be 
 used in the expressions (60) as follows: 
 
 1. The terms arising from the secular variation of the eccentricity of the 
 Earth's orbit. 
 
 2. Constant and periodic terms independent of the mean longitude of the dis- 
 turbing planet. 
 
 3. Periodic terms containing that mean longitude. 
 
 44. Secular terms arising' from the variation of the eccentricity of the 
 Earth's orbit. 
 
 The action of the Sun upon the Moon being a function of the eccentricity of the 
 Earth's orbit it follows that the indirect action will vary with that element. The 
 variation may be taken account of by assigning to 8v' and 8p' the increments of the 
 
 87 
 
88 ACTION OF THE PLANETS ON THE MOON. 
 
 Earth's polar coordinates due to the variation of the eccentricity. It is not necessary 
 to take into account the variation of the solar perigee, because this element is 
 retained in its general form in the final expressions of all the perturbations. 
 
 To find the required values of oV and 8p' we differentiate the expressions for v' 
 and p' in terms of the eccentricity, thus obtaining 
 
 =-7 = (2 %e' ) sin^' + (|-' ^-e' ) sin 2g' + *e' sin %g' + Vr^' s ' n 4"' 
 
 (84) 
 - Hk' V***) cos zer' yc' 2 cos 3^-' 14-c' 3 cos $g' 
 
 Putting Ae' for the increment of e' due to secular variation, the values of 6V and 
 Sp' to quantities of the first order are found by multiplying these derivatives by Ae '. 
 To determine what terms of higher order are necessary we remark that for an 
 interval of 1000 years before or after 1900 we have 
 
 A*' = .000418 = 86".o 
 whence 
 
 (A*') 2 = o".o 35 
 
 This quantity is so small that the powers of Ae' above the first order may be dropped. 
 But Ae' will contain terms in T 2 which it will be well to include for the sake of 
 approximation to rigor in the theory. 
 
 Substituting in the values of the differential coefficients just found the numerical 
 value of e' for 1850, 
 
 e' = .0167711 
 we shall have 
 
 8v' 
 
 5-7 = 1.999 79 sin^-' -f .041 92 sin 2g' + .000 91 sin T,g' -\- .000 02 sin 
 
 e p > 
 
 , = .008 39 .999 68 cos^-' .025 15 cos 2g' .000 60 cos 3^-' .000 01 cos $g' 
 
 The value of Ae' by which these expressions are to be multiplied is that used in 
 the author's Tables of the Sun: 
 
 Ae' = - 8".595 T- o".026o T 2 
 
 T being counted in centuries from 1850. 
 
 The corresponding portions of G, J, and /are found by substituting for oV and 
 Sp' in the expressions (60) the quantities 
 
 e 
 
COEFFICIENTS FOR INDIRECT ACTION. 89 
 
 If we suppose that G, J, and /are expressed in the form 
 
 G=G 
 
 with similar forms for J and /, we find by developing to e' 2 
 
 - -* cos *g - i - e cos 
 
 /, = - K - (I + i^'") cos^' - ff' cos 25-' - ^' 2 cos 3^' 
 7 i = (3 ~ W*'*) ' + -V-*' sin 2g' + *&e' 2 sin $g' 
 
 The following numerical values have not been formed from these, but by multi- 
 plying the numerical values of the factors given in (60) and (85), which are derived 
 from developments to e' . 
 
 <9, = -f .06238 2.24517 cos^' .21296 cos 2g' .01115 cos 3g' 
 
 /, = .01257 0.75039 cosg-' .03771 cos 2g' .00140 cos 3g' (86) 
 
 /, = + 2.96280 sin g' + .21366 sin 2g' + .04342 sin $g' 
 
 45. Terms independent of the mean longitude of the disturbing planet. 
 These terms arise from the terms of Sv ' and 8/>' which are either constants, or func- 
 tions of g' alone. In the case of the longitude the eccentricity and perihelion of 
 the Earth's orbit are so adjusted that both the constant terms and those dependent 
 on Arg. g' shall vanish, leaving the only terms of 8v' to be considered those depend- 
 ing on Arg. 2g' etc. Both these terms themselves and the factors by which they 
 are subsequently multiplied to form G, f, and / are so minute that the results are 
 assumed to be insensible; we have, therefore, only to consider the terms of 8p' 
 which remain after the adjustment of the eccentricity and perihelion just mentioned. 
 These might be derived from the numbers in Tables of the Sun; but the author 
 finds that the results have not been carried out with the precision desirable in 
 the present problem. He has, therefore, computed these terms independently from 
 theory, using the method of variation of elements, and carrying the results to terms 
 of the second order in the eccentricities and mutual inclination. The general for- 
 mula are as follows.* The accented quantities refer to the outer planet. 
 
 Action of an outer on an inner planet. 
 
 Bp = m'a{p a + jOj cos II + (/ 0>c + ft,,, cos II) cos^ + ft,, sin TI sing-} 
 where 
 
 
 *The derivation has appeared in the Astronomical Journal, vol. xxv. 
 
90 ACTION OF THE PLANETS ON THE MOON. 
 
 Action of an inner on an outer planet. 
 
 V = m{pj + pj cos IF + (p a / 4- p liC ' cos IF) cosg-' 4- p lt , sin IF sing'} 
 where 
 
 IF = TT' - TT 
 
 , r 
 
 Pl= 2J 
 
 e e 
 
 Pi c C 2 -^ + -^Mi ft / = ~ 
 
 4 4 
 
 The two actions are mutually interchanged by replacing Z> by (i + D) in 
 either. They were, however, developed independently in order that this relation 
 might serve as a test of the accuracy of both. 
 
 The coefficients A and A are functions of the mutual inclination of the orbits 
 (<r = sin -j/) and of the coefficients b^ defined by the development 
 
 (i 20. cos L 4 a 2 )' = JS^ cos iL 
 
 D n means the nth derivative as to log a, or the symbolic value of [a(5/5a)] n . 
 If it be desired to use the usual successive derivatives as to a itself, we may do so 
 by the substitutions 
 
 D = Z> a Z? 3 = aZ? a 4- / D\ IP = aD a + T > <D\ 4- a?D\ 
 
 From the numerical values of the coefficients A , A^ and their Z>'s we have the fol- 
 lowing results: 
 
 Action of Venus io g &p' = + 1443.0 + 31 cosg-' 17 sing-' 
 
 Mars 30. 4- ncosg-' Ssing-' 
 
 Jupiter 1183.1 + 90 cosg-' 4- 50 sin g-' 
 
 Saturn 55.4 
 
 Uranus i.o 
 
 Total + 173.5 + 132 cos g-' + 25 sing' 
 
 Additional to these we have, for Mercury, with mass io~ 7 
 
 io 9 V = + 38.0 7 cos g' + 3 sing-' 
 which I treat separately. 
 
COEFFICIENTS FOR INDIRECT ACTION. 
 
 From these (60) gives the following coefficients for G,J, and /, these quantities 
 being expressed in the torm 
 
 G=G,+ G e cos g' + G, sing' 
 
 Action of 
 
 ioG 
 
 
 10 9 <? c 
 
 ioG. 
 
 lo'/o 
 
 icPJc io*J, io 9 /o io 9 / c 
 
 I0 9 /. 
 
 Venus 
 
 +3 2 4 6 
 
 .8 
 
 + 233-3 
 
 - 3 8.2 
 
 + 1083.3 
 
 + 77- 
 
 8 
 
 -12.8 
 
 + 1 
 
 3 
 
 -217.7 
 
 Mars 
 
 - 66 
 
 .8 
 
 + 21.4 
 
 - 18.0 
 
 - 22.3 
 
 + 7- 
 
 2 
 
 - 6.0 
 
 + 
 
 .6 
 
 + 4-5 
 
 Jupiter 
 
 -2655 
 
 .0 
 
 + 68.8 
 
 + 112.3 
 
 - 886.0 
 
 + 22. 
 
 8 
 
 + 37-5 
 
 3 
 
 7 I 
 
 + 178.2 
 
 Saturn 
 
 - 124 
 
 .6 
 
 - 6.3 
 
 o 
 
 41.6 
 
 2. 
 
 i 
 
 
 
 o 
 
 
 + 8.4 
 
 Uranus 
 
 2 
 
 .2 
 
 .1 
 
 
 
 - .8 
 
 
 
 
 o 
 
 o 
 
 
 + .2 
 
 Total 
 
 + 397 
 
 .6 
 
 +316.8 
 
 + 56.1 
 
 + 132-7 
 
 + I05- 
 
 5 
 
 + 18.7 
 
 i 
 
 .9 -.1 
 
 - 26.6 
 
 Mercury 
 
 85 
 
 .1 
 
 - 11.4 
 
 + 6.7 
 
 + 28.4 
 
 - 3- 
 
 9 
 
 + 2.2 
 
 o 
 
 .2 O 
 
 - 5-7 
 
 (87) 
 
 The totals here given are not formed by addition, but by an independent com- 
 putation of the entire amount. Hence small discrepancies between the totals and 
 the sums. 
 
 46. Periodic perturbations of the -point G, containing the mean longitude 
 of the disturbed planet. 
 
 These are taken from Astronomical Papers^ Vol. Ill, Part V, where they are 
 
 found : 
 
 For Venus, on pp. 486-488 
 For Mars, " " 527-530 
 For Jupiter, " " 550-551 
 
 The perturbations by Venus are diminished by the factor .015 for reduction to the 
 adopted value of the mass. 
 
 The expressions thus found are shown in tabular form below. In the original 
 the constituents of the arguments were the mean anomalies alone, but, in the present 
 work, the longitudes of the disturbing planets are reckoned from the Earth's perihe- 
 lion. In order that the arguments for the direct and indirect inequalities may coin- 
 cide, these perturbations have been transformed so that the planet's mean longitude 
 shall be reckoned from the Earth's perihelion. The following are the numbers used: 
 
 Earth 
 Venus 
 Mars 
 Jupiter 
 
 129 27 
 
 333 18 
 ii 56 
 
 o o' 
 29 6 
 
 232 57 
 271 35 
 
 Then, if any pair of terms in 8v' or 8p' be represented by 
 
 v, cos (t'g t + i'g') + v, sin (ig^ + t'g ') 
 
9 2 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 we have to compute 
 
 to transform them into 
 
 b c = v e cos t(-7r t IT') v t sin t(ir t TT') 
 b t = v c sin t(v t IT') + v t cos i(ir 4 TT') 
 
 6, cos(/7 4 + i'g') + b, sm(t7 t + i'g') 
 
 / 4 being the mean longitude of the planet from TT', designated by v, M, j, and s in 
 the cases of the individual planets. 
 
 The original and transformed values of &V' and 8p' are shown in Tables XXIII 
 to XXVI. 
 
 The subsequent steps are shown in Tables XXVII-XXXIV in the following 
 order: 
 
 The values of G,J, and / given in Tables XXVII-XXX are formed from the 
 expressions of 8z>' and Sp in terms of g by the formulae (60). These are then sub- 
 jected to the transformation of 46 and multiplied by the constant coefficient 
 io 3 w 2 = 5.595. The factor io 3 is introduced in order to have the most convenient 
 unit in subsequent computation. As a check upon the work the values ofy, G, and 
 /were also computed using the transformed expressions for &V and Sp', and the 
 results compared with the others. It has not been deemed necessary to set forth 
 the steps of this simple duplicate computation. 
 
 TABLE XXIII. 
 ACTION OF VENUS ON THE EARTH. 
 
 
 Arg. 
 
 do' 
 
 dp' 
 
 Arg. 
 
 d'j' 
 
 iff 
 
 "4 g' 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 V, g' 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 
 JM 
 
 tl 
 
 // 
 
 u 
 
 
 u 
 
 // 
 
 // 
 
 a 
 
 -I, 
 
 +0.03 
 
 O.OI 
 
 0.041 
 
 0.018 
 
 I, 
 
 o.oo 
 
 0.07 
 
 -0.045 
 
 +0.004 
 
 I, I 
 
 +2.35 
 
 -4-23 
 
 0.980 
 
 0.544 
 
 i, i 
 
 O.OI 
 
 -4.84 
 
 I.I2I 
 
 +O.OOI 
 
 I, 2 
 
 0.06 
 
 0.03 
 
 +0.032 
 
 0.006 
 
 I, 2 
 
 006 
 
 O.OO 
 
 +0.025 
 
 O.O2I 
 
 -2, I 
 
 O.IO 
 
 +0.06 
 
 +0.041 
 
 +0.065 
 
 2, I 
 
 o.oo 
 
 +O.II 
 
 +0.077 
 
 O.OOI 
 
 2, I 
 
 4.70 
 
 +2.00 
 
 +1.709 
 
 +2.765 
 
 2, 2 
 
 O.O2 
 
 +5.52 
 
 +3.251 
 
 +0.004 
 
 2, 3 
 
 +1.80 
 
 -1.74 
 
 0.282 
 
 0.300 
 
 2, 3 
 
 0-53 
 
 -2.45 
 
 0404 
 
 +0.082 
 
 2, 4 
 
 +0.03 
 
 0.03 
 
 +0.018 
 
 +0.016 
 
 2, 4 
 
 O.OI 
 
 0.05 
 
 +0.023 
 
 0.007 
 
 3, 3 
 
 0.67 
 
 +0.03 
 
 +O.O2O 
 
 +0.406 
 
 3, 3 
 
 o.oo 
 
 +0.67 
 
 +0497 
 
 +0.003 
 
 3, 4 
 
 +I.5I 
 
 0.40 
 
 0.181 
 
 0.689 
 
 3, 4 
 
 0.33 
 
 -1-53 
 
 0.697 
 
 +0.149 
 
 -3. 5 
 
 +0.76 
 
 -0.68 
 
 +0.059 
 
 +0.069 
 
 3. 5 
 
 0.64 
 
 -0.79 
 
 +0.072 
 
 0.056 
 
 -3, 6 
 
 +0.01 
 
 O.OI 
 
 +0.006 
 
 +0.006 
 
 -3, 6 
 
 O.OI 
 
 O.OI 
 
 +0.006 
 
 0.006 
 
 -4, 4 
 
 0.19 
 
 0.09 
 
 0.079 
 
 +0.160 
 
 4, 4 
 
 O.OO 
 
 +0.21 
 
 +0.178 
 
 0.000 
 
 4, 5 
 
 0.14 
 
 0.04 
 
 0.024 
 
 +0.089 
 
 -4, 5 
 
 +O.02 
 
 +0.15 
 
 +0.091 
 
 0.018 
 
 4, 6 
 
 +0.15 
 
 0.04 
 
 O.OI2 
 
 0.04 >, 
 
 -4, 6 
 
 O.I I 
 
 O.I I 
 
 0.034 
 
 +0.030 
 
 -S, 6 
 
 0.03 
 
 O.O2 
 
 0.018 
 
 +O.020 
 
 -5, 6 
 
 +O.OI 
 
 +0.04 
 
 +0.026 
 
 0.006 
 
 -5, 7 
 
 O.I 2 
 
 0.03 
 
 0.018 
 
 +0.065 
 
 -5, 7 
 
 +0.08 
 
 +0.09 
 
 +0.052 
 
 0.044 
 
 -5, 8 
 
 +0.154 
 
 0.001 
 
 o.ooo 
 
 0.013 
 
 -5, 8 
 
 0.128 
 
 0.086 
 
 0.007 
 
 +O.OI I 
 
 -8, ii 
 
 o.ooo 
 
 O.OO2 
 
 O.OOI 
 
 o.ooo 
 
 -8, ii 
 
 +0.002 
 
 +0.001 
 
 +O.OOI 
 
 O.OOI 
 
 -8, 12 
 
 0.008 
 
 0.041 
 
 0.0205 
 
 +0.003 9 
 
 -8, 12 
 
 +0.038 
 
 +0.019 
 
 +0.0093 
 
 0.018 7 
 
 -8, 13 
 
 +1.268 
 
 +1416 
 
 +0.004 23 
 
 0.003 66 
 
 -8, 13 
 
 -1.895 
 
 +0.153 
 
 +0.000 36 
 
 +0.005 58 
 
 -8, 14 
 
 +O.02I 
 
 +0.024 
 
 +0.0106 
 
 +0.004 3 
 
 -8, 14 
 
 0.032 
 
 +O.O02 
 
 0.0098 
 
 +0.0058 
 
COEFFICIENTS FOR INDIRECT ACTION. 
 
 93 
 
 TABLE XXIV. 
 ACTION OF MARS ON THE EARTH. 
 
 Arg. 
 
 oV 
 
 w 
 
 Arg. 
 
 <V 
 
 <y 
 
 g< s 1 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 M, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 I, I 
 
 I, O 
 
 0.216 
 0.008 
 
 0.167 
 -0.047 
 
 0.043 
 +0.013 
 
 +0^056 
 0.003 
 
 i, -I 
 
 I, 
 
 0.003 
 0.033 
 
 +0*273 
 +0.034 
 
 +o!o7l 
 O.OIO 
 
 o'.000 
 0.008 
 
 2, -3 
 
 2, 2 
 2, I 
 2, 
 
 +0.040 
 
 +1.963 
 -1.659 
 
 0.024 
 
 O.OIO 
 
 0.567 
 0.617 
 +0.015 
 
 0.006 
 0.272 
 +0.030 
 0.008 
 
 0.024 
 0.937 
 0.065 
 
 O.OI2 
 
 2, -3 
 
 2, 2 
 2, I 
 2, O 
 
 o.ool 
 +0.007 
 +1.048 
 0.007 
 
 +0.041 
 +2.043 
 1427 
 0.027 
 
 +0.025 
 
 +0.977 
 +0.054 
 +0.014 
 
 +O.OOI 
 
 0.005 
 +0.047 
 0.005 
 
 3, -3 
 3, 2 
 
 +0.053 
 +0.396 
 
 0.118 
 O.IS3 
 
 -0.073 
 0.037 
 
 0.032 
 0.006 
 
 3, 3 
 3, -2 
 
 +0.006 
 +0.314 
 
 0.129 
 0.286 
 
 0.080 
 0.070 
 
 0.004 
 0.077 
 
 4, 4 
 4, 3 
 4, 2 
 
 +0.001 
 
 0.131 
 +0.526 
 
 +0.032 
 +0.483 
 0.256 
 
 +O.O22 
 +O.2I9 
 +O.O2I 
 
 0.008 
 +0.059 
 +0.045 
 
 4, -4 
 4, -3 
 
 4, 2 
 
 +0.008 
 +0.366 
 -0.582 
 
 0.033 
 -0.342 
 0.059 
 
 0.023 
 
 -O.I5S 
 +0.006 
 
 0.005 
 0.165 
 0.049 
 
 S, -4 
 5, 3 
 
 +0.049 
 0.038 
 
 +0.069 
 
 +O.20O 
 
 +0.041 
 +0.041 
 
 0.029 
 +0.008 
 
 S, -4 
 5, -3 
 
 0.064 
 
 O.2O2 
 
 +0.055 
 
 O.02O 
 
 +0.033 
 0.004 
 
 +0.038 
 +0.042 
 
 6, -S 
 6, -4 
 6, -3 
 
 O.O2O 
 0.104 
 O.OII 
 
 O.002 
 O.II3 
 +O.IOO 
 
 O.OOI 
 O.O48 
 0.013 
 
 +0.014 
 +0.045 
 
 O.OO2 
 
 6, -5 
 6, -4 
 6, -3 
 
 0.016 
 0.153 
 +0.059 
 
 +O.OI2 
 O.OI4 
 +0.08 1 
 
 +0.008 
 0.006 
 
 O.OII 
 
 +O.OII 
 
 +0.065 
 +0.008 
 
 IS, -9 
 IS, -8 
 
 +0.018 
 +O.2OI 
 
 0.023 
 0.030 
 
 O.OOS 
 O.OOO 
 
 O.007 
 O.OO3 
 
 IS, 9 
 IS, -8 
 
 0.027 
 0.083 
 
 O.OII 
 
 0.184 
 
 0.005 
 0.003 
 
 +0.010 
 
 +O.OOI 
 
 TABLE XXV. 
 ACTION OF JUPITER ON THE EARTH. 
 
 Arg. 
 
 3* 
 
 / 
 
 */ 
 
 9? 
 
 Arg. 
 
 to 
 
 / 
 
 <* 
 
 o' 
 
 "4 g' 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 J, g' 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 
 // 
 
 
 
 // 
 
 // 
 
 
 II 
 
 H 
 
 H 
 
 a 
 
 3 
 
 0.003 
 
 O.OOI 
 
 0.001 
 
 +O.O02 
 
 I, -3 
 
 O.OOI 
 
 +0.003 
 
 +O.OO2 
 
 +O.OOI 
 
 2 
 
 0.155 
 
 0.052 
 
 0.037 
 
 +O.O92 
 
 I, 2 
 
 0.056 
 
 +0.154 
 
 +O.O9I 
 
 +0.040 
 
 I 
 
 7.208 
 
 +0.059 
 
 +0.026 
 
 +3.3S6 
 
 I, I 
 
 0.140 
 
 +7.207 
 
 +3.356 
 
 +0.067 
 
 O 
 
 0.307 
 
 -2.582 
 
 +0.108 
 
 0.042 
 
 I, 
 
 -2.589 
 
 +0.236 
 
 0.039 
 
 0.109 
 
 + 1 
 
 +0.008 
 
 0.073 
 
 +0.037 
 
 +0.004 
 
 I, +1 
 
 0.073 
 
 O.OIO 
 
 +0.005 
 
 0.037 
 
 2 3 
 
 +O.OII 
 
 +0.068 
 
 +0.049 
 
 -0.008 
 
 2, -3 
 
 0.008 
 
 0.069 
 
 0.049 
 
 +0.005 
 
 2 2 
 
 +0.136 
 
 +2.728 
 
 +1.910 
 
 0.097 
 
 2, 2 
 
 +0.014 
 
 2.731 
 
 1.912 
 
 0.008 
 
 2 I 
 
 -0.537 
 
 +1.518 
 
 +0.654 
 
 +0.231 
 
 2, I 
 
 +0.619 
 
 1486 
 
 0.640 
 
 0-267 
 
 2, 
 
 O.022 
 
 0.070 
 
 O.OOO 
 
 0.004 
 
 2, 
 
 +0.018 
 
 +0.071 
 
 O.OOO 
 
 +0.004 
 
 3, 4 
 
 0.005 
 
 +O.OO2 
 
 +O.OOI 
 
 +0.004 
 
 3, 4 
 
 O.O02 
 
 0.005 
 
 0.004 
 
 +O.OOI 
 
 3, 3 
 
 0.162 
 
 +0.027 
 
 +O.O2I 
 
 +0.132 
 
 3, 3 
 
 0.014 
 
 0.164 
 
 0.134 
 
 +O.OIO 
 
 3, 2 
 
 +0.071 
 
 +0.551 
 
 +0.378 
 
 0.049 
 
 3, 2 
 
 -0.555 
 
 +0025 
 
 +0.018 
 
 +0.381 
 
 3, -I 
 
 0.031 
 
 +0.208 
 
 +0.082 
 
 +O.OI2 
 
 3, -I 
 
 0.205 
 
 0.048 
 
 0.019 
 
 +0.08 1 
 
94 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XXVI. 
 ACTION OF SATURN ON THE EARTH. 
 
 Arg. 
 
 3v' io'<J/>' 
 
 Arg. 3v' dp' 
 
 g* g' 
 
 COS 
 
 sin 
 
 cos 
 
 sin 
 
 *, g' 
 
 COS 
 
 sin 
 
 cos 
 
 sin 
 
 I, I 
 
 I, 
 
 -0.077 
 0.003 
 
 +0412 
 0.320 
 
 +972 
 
 + 18 
 
 + 182 
 
 2 
 
 I, I 
 I, 
 
 0.003 
 0.060 
 
 +0419 
 0.314 
 
 +0.204 
 +0.004 
 
 +O.OOI 
 O.OOI 
 
 2, 2 
 2, I 
 
 +0.038 
 +0.045 
 
 O.IOI 
 O.IO3 
 
 -350 
 -236 
 
 -132 
 IOI 
 
 2, 2 
 2, I 
 
 O.OOI 
 
 +0.006 
 
 0.108 
 0.113 
 
 0.077 
 0.053 
 
 0.000 
 O.OO2 
 
 TABLE XXVII. 
 PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION OF VENUS. 
 
 Arg. 
 
 G 
 
 J 
 
 / 
 
 gl g' 
 
 sin 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 cos 
 
 I. 
 
 0.190 
 
 0^359 
 
 0.024 
 
 0.049 
 
 -0.33 
 
 +o.'i75 
 
 I, I 
 
 1.220 
 
 2.203 
 
 0.408 
 
 0.735 
 
 6.34 
 
 +3-52 
 
 I. 2 
 
 +0.074 
 
 +0.229 
 
 0.014 
 
 +0.005 
 
 0.125 
 
 0.04 
 
 -2, I 
 
 +0.533 
 
 +0.330 
 
 +O.IOI 
 
 +0.062 
 
 +0.32 
 
 -0.53 
 
 -2, 2 
 
 +6.1 13 
 
 +3-737 
 
 +2.069 
 
 +1.278 
 
 +4.26 
 
 -6.96 
 
 2, 3 
 
 0.755 
 
 -0.683 
 
 0.173 
 
 0.180 
 
 -2.63 
 
 +2-73 
 
 2, 4 
 
 +0.108 
 
 +O.IIO 
 
 +0.007 
 
 +0.009 
 
 O.IO 
 
 +0.09 
 
 -3. 3 
 
 + I.OOI 
 
 +0.014 
 
 +0.359 
 
 +O.OI2 
 
 +0.016 
 
 -0.895 
 
 3. 4 
 
 1.590 
 
 0439 
 
 0.507 
 
 0.133 
 
 0.62 
 
 +2.30 
 
 3. 5 
 
 +0.191 
 
 +0.143 
 
 +0.039 
 
 +O.O4I 
 
 i. 02 
 
 + I-I45 
 
 -3, 6 
 
 +0.056 
 
 +0.051 
 
 +0.005 
 
 +O.005 
 
 0.045 
 
 +0.05 
 
 4, 4 
 
 +0.372 
 
 -0.181 
 
 +O.I22 
 
 0.059 
 
 0.13 
 
 0.30 
 
 4, 5 
 
 +0.100 
 
 0.057 
 
 +0.069 
 
 0.019 
 
 0.06 
 
 O.2O 
 
 -4, 6 
 
 0.099 
 
 0.026 
 
 0.030 
 
 0.009 
 
 0.06 
 
 +0.23 
 
 -5, 6 
 
 +0.061 
 
 0.042 
 
 +O.OII 
 
 0.013 
 
 0.03 
 
 -0.055 
 
 5, 7 
 
 +0.136 
 
 0.040 
 
 +0.049 
 
 0.013 
 
 0.04 
 
 0.17 
 
 -5, 8 
 
 0.031 
 
 O.OOO 
 
 0.009 
 
 O.OOO 
 
 O.OOO 
 
 +0.231 
 
 8, 12 
 
 0.0550 
 
 +0.025 
 
 +O.O02 9O 
 
 0.015 
 
 0.007 
 
 +0.036 
 
 -8, 13 
 -8. 14 
 
 0.0093 
 +0.073 
 
 +O.OI22 
 
 -0.047 
 
 0.002 6O 
 
 +0.003 
 
 +0.00298 
 +0.008 
 
 +2.126 
 +0.093 
 
 +1.903 
 +0.079 
 
COEFFICIENTS FOR INDIRECT ACTION. 
 
 95 
 
 TABLE XXVIII. 
 PLANETARY COEFFICIENT FOR THE INDIRECT ACTION OF MARS. 
 
 Arg. 
 
 
 
 / f 
 
 &< g' 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 cos 
 
 I, I 
 
 I, 
 
 u 
 +O.I26 
 +O.OIS 
 
 o!oo8 
 +0.035 
 
 M 
 
 +0.042 
 
 O.OOI 
 
 o!c>33 
 +0.009 
 
 0.251 
 
 0.073 
 
 0^324 
 0.016 
 
 2, 3 
 
 2, 2 
 2, I 
 2, 
 
 0.209 
 2.026 
 O.IOO 
 
 0.113 
 
 0.057 
 0.641 
 +0.082 
 +0.015 
 
 0.036 
 0.704 
 0.067 
 
 O.OIO 
 
 0.009 
 0.203 
 +0.017 
 0.005 
 
 0.058 
 0.871 
 0.924 
 0.003 
 
 +0.208 
 +2.884 
 -2485 
 ox>io 
 
 3, 3 
 3, 2 
 
 0.097 
 0.215 
 
 0.174 
 0.08 1 
 
 0.026 
 0.072 
 
 0.056 
 0.029 
 
 -0.186 
 
 0.227 
 
 +O.IOI 
 
 +0.594 
 
 4, 4 
 4, 3 
 4, 2 
 
 0.009 
 
 +O.III 
 
 +0.097 
 
 +0.085 
 +0480 
 +0.035 
 
 0.005 
 +0.045 
 +0.035 
 
 +O.O2O 
 
 +0.164 
 
 +O.O2O 
 
 +0.083 
 +0.714 
 -0.383 
 
 +0.008 
 0.180 
 
 +0.788 
 
 5, -4 
 S, -3 
 
 0.063 
 +0.018 
 
 +0.104 
 +0.091 
 
 O.O22 
 +O.O06 
 
 +0.032 
 +0.032 
 
 +0.114 
 +0.299 
 
 +0.071 
 -0.057 
 
 6, -5 
 6, 4 
 6, -3 
 
 +0.039 
 
 +O.IO2 
 O.O06 
 
 O.OII 
 
 0.104 
 0.026 
 
 +O.OI2 
 
 +0.034 
 
 O.OOI 
 
 O.O02 
 OX36 
 O.OII 
 
 o.on 
 -0.166 
 +0.150 
 
 -0.037 
 0.156 
 0.017 
 
 IS, -9 
 15, -8 
 
 0.026 
 O.006 
 
 O.O2O 
 
 +0.001 
 
 0.005 
 0.003 
 
 O.O06 
 O.OOO 
 
 0.036 
 0.046 
 
 +0.035 
 +0.301 
 
 TABLE XXIX. 
 
 PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION OF JUPITER. 
 
 Arg. 
 
 G 
 
 / 
 
 / 
 
 "4 g' 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 i, 3 
 
 0.007 
 
 +0.039 
 
 // 
 O.O02 
 
 // 
 +0.006 
 
 o'.039 
 
 O.OO6 
 
 I, 2 
 
 0.084 
 
 +0-759 
 
 0.028 
 
 +0.132 
 
 0.757 
 
 0.079 
 
 I, I 
 
 0.064 
 
 +7-554 
 
 +O.O2O 
 
 +2.518 
 
 10.813 
 
 O.OOO 
 
 I, 
 
 +0.238 
 
 -0.266 
 
 +0.082 
 
 +0.032 
 
 0479 
 
 -3*70 
 
 I, +1 
 
 +0.218 
 
 O.OI2 
 
 +O.O29 
 
 +O.OO4 
 
 0.007 
 
 0.214 
 
 2, 3 
 
 +0.360 
 
 O.O30 
 
 +0.073 
 
 0.008 
 
 + 0.026 
 
 +0.352 
 
 2, 2 
 
 +4.407 
 
 0.177 
 
 + 1-447 
 
 0.069 
 
 + 0.167 
 
 +4-104 
 
 2, I 
 
 + 1437 
 
 +0.522 
 
 +0.527 
 
 +O.I7I 
 
 0.808 
 
 +2.231 
 
 2, 
 
 0.039 
 
 0.023 
 
 +0.013 
 
 +O.OOI 
 
 0.036 
 
 -0.097 
 
 3, 4 
 
 +0.006 
 
 +O.O24 
 
 +O.OOI 
 
 +0.005 
 
 0.023 
 
 +0.008 
 
 3, 3 
 
 +0.096 
 
 +0.290 
 
 +0.023 
 
 +0.008 
 
 0.236 
 
 +0.090 
 
 3, 2 
 
 +0.865 
 
 O.IO9 
 
 +0.286 
 
 0.035 
 
 + 0.109 
 
 +0.839 
 
 3, I 
 
 +0.177 
 
 +0.028 
 
 +0.069 
 
 +0.008 
 
 0.047 
 
 +0.304 
 
9 6 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XXX. 
 PLANETARY COEFFICIENTS FOR THE INDIRECT ACTION OF SATURN. 
 
 Arg. 
 
 G 
 
 / 
 
 / 
 
 *' J 
 
 s, g' 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 COS 
 
 sin 
 
 Ii I 
 I, O 
 
 +0-443 
 
 O.OOI 
 
 +o"oo5 
 
 O.OO2 
 
 +o.'iS3 
 +0.007 
 
 +O.OOI 
 O.OOI 
 
 0.006 
 0.090 
 
 +0.616 
 0.471 
 
 2, 2 
 2, I 
 
 0.182 
 0.1 18 
 
 o.ooo 
 0.004 
 
 0.059 
 0.041 
 
 O.OOO 
 O.O02 
 
 +O.OOI 
 
 +0.009 
 
 0.171 
 0.167 
 
 TABLE XXXI. 
 
 G-COEFFICIENTS FOR VENUS. 
 
 Arg. 
 
 itfntG 
 
 lo'w^y 
 
 IO 3 ? 2 / 
 
 V, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 I, 
 
 a 
 2.272 
 
 a 
 +0.048 
 
 0.304 
 
 +0.016 
 
 II 
 
 0.042 
 
 2!o89 
 
 I, I 
 
 14.09 
 
 +0.031 
 
 4-703 
 
 +0.005 
 
 0.043 
 
 40.572 
 
 I, 2 
 
 + 1.320 
 
 0.261 
 
 0.014 
 
 -0.082 
 
 0.536 
 
 0.502 
 
 2, I 
 2, 2 
 
 + 3-508 
 +40.100 
 
 +O.O02 
 
 +0.253 
 
 + 0.663 
 +13.764 
 
 +0.003 
 
 +O.I2I 
 
 0.071 
 0.263 
 
 + 3-510 
 +45-655 
 
 2, 3 
 
 5.607 
 
 + 1.024 
 
 1-354 
 
 +0.346 
 
 4-457 
 
 -20.735 
 
 2, 4 
 
 + 0.838 
 
 0.205 
 
 + 0.060 
 
 O.O22 
 
 0.209 
 
 0.723 
 
 -3. 3 
 3, 4 
 
 + 5-002 
 9.004 
 
 +1.186 
 +2.036 
 
 + 2.OIO 
 - 2.869 
 
 +0.028 
 +0.609 
 
 0.146 
 - 2.855 
 
 + 5.006 
 13-017 
 
 3, 5 
 
 + 1.106 
 
 0.749 
 
 + 0.229 
 
 0.219 
 
 5400 
 
 6.668 
 
 *" f 
 
 -3, 6 
 
 + 0.326 
 
 0.270 
 
 + O.029 
 
 O.O27 
 
 0.239 
 
 0.292 
 
 4. 4 
 
 + 2.314 
 
 0.018 
 
 + 0.759 
 
 O.OOS 
 
 + 0.095 
 
 + 1-827 
 
 4, 5 
 
 + 1*94 
 
 0.180 
 
 + 0.393 
 
 -0.077 
 
 + 0.197 
 
 + 1.152 
 
 ^ 
 4, 6 
 
 0431 
 
 +0.378 
 
 0.128 
 
 +O.I2I 
 
 - 0.873 
 
 1.003 
 
 -5, 6 
 
 + 0.389 
 
 0.148 
 
 + 0.095 
 
 O.OIO 
 
 + 0.159 
 
 + 0.312 
 
 Si 7 
 
 + 0.616 
 
 0.500 
 
 + 0.215 0.185 
 
 + 0.657 
 
 + 0.723 
 
 -5, 8 
 
 0.098 
 
 +0.143 
 
 0.029 +0.042 
 
 1.065 
 
 0.732 
 
 -8, ii 
 
 + 0.016 
 
 O.OI I 
 
 + 0.005 0.006 
 
 0.788 
 
 + 1-039 
 
 -8, 12 
 
 + 0.1611 
 
 +0.2094 
 
 + 0.039 
 
 -0.077 7 
 
 0.091 
 
 + 0.184 
 
 -8, 13 
 
 + 0.0045 
 
 +0.0661 
 
 + 0.00145 
 
 +O.O22 OS 
 
 15-912 
 
 + 1.289 
 
 -8. 14 
 
 - 0.166 
 
 -0.4588 
 
 0.040 
 
 +0.024 6 
 
 0.681 
 
 + 0.037 
 
 
 
 
 
 
 
COEFFICIENTS FOR INDIRECT ACTION. 
 
 97 
 
 TABLE XXXII. 
 
 G-COEFFICIENTS FOR MARS. 
 
 Arg. 
 
 io'w 2 <9 
 
 lO'/M 2 / 
 
 io 3 w 2 / 
 
 M, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 I. I 
 
 + 0.893 
 
 +O.OI2 
 
 +0.300 
 
 +0.006 
 
 0^)65 
 
 + 2.293 
 
 I, 
 
 0.185 
 
 O.IO5 
 
 0.035 
 
 0.036 
 
 0.272 
 
 + 0.318 
 
 2, -3 
 
 + I.2II 
 
 +0.013 
 
 +0.207 
 
 +0.007 
 
 0*06 
 
 + 1.208 
 
 2, 2 
 
 + 12.777 
 
 0.089 
 
 +4.100 
 
 0.014 
 
 +0.073 
 
 +17.531 
 
 2, I 
 
 + 0413 
 
 +0.595 
 
 +0.335 
 
 +0.194 
 
 +1.161 
 
 +14.821 
 
 2, O 
 
 0.309 
 
 o.ooo 
 
 +0.062 
 
 O.OI2 
 
 0.019 
 
 + 0.129 
 
 3, 3 
 
 1.205 
 
 0.155 
 
 0.344 
 
 O.O22 
 
 +0.151 
 
 1-175 
 
 3, 2 
 
 - 0.857 
 
 0.958 
 
 0.296 
 
 O.3l8 
 
 +2.641 
 
 - 2.384 
 
 4, 4 
 
 0431 
 
 0.208 
 
 0.109 
 
 0.035 
 
 +0.207 
 
 0418 
 
 4, 3 
 
 I-956 
 
 -1-943 
 
 -0.638 
 
 -0.695 
 
 +2.961 
 
 - 2.864 
 
 4, 2 
 
 + 0.119 
 
 -0.565 
 
 +0.009 
 
 0.224 
 
 -4.877 
 
 0.502 
 
 5, -4 
 
 + 0404 +0.548 
 
 +0.139 
 
 +0.167 
 
 0.600 
 
 + 0.452 
 
 5, -3 
 
 - 0.054 
 
 +0.516 
 
 0.018 
 
 +0.181 
 
 I.69S 
 
 0.166 
 
 6-4 
 
 0.047 
 
 +0.815 
 
 O.O2I 
 
 +0.276 
 
 1.271 
 
 o.ioo 
 
 6, -3 
 
 0.130 
 
 +0.073 
 
 0.05O 
 
 +0.038 
 
 +0495 + 0.685 
 
 IS, 9 
 
 0.109 
 
 +0.147 
 
 0.018 
 
 +0.041 
 
 0.246 0.135 
 
 IS, -8 
 
 0.035 
 
 +0.003 
 
 0.016 
 
 +0.005 
 
 0.704 
 
 - I-55I 
 
 TABLE XXXIII. 
 
 G-COEFFICIENTS FOR JUPITER. 
 
 Arg. 
 
 IO 3 i 
 
 rfG 
 
 10 s * 
 
 V 
 
 I0 3 
 
 ; 2 / 
 
 J, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 
 It 
 
 H 
 
 H 
 
 H 
 
 m 
 
 n 
 
 , 3 
 
 + 0.2 18 
 
 +0.039 
 
 + O.O22 
 
 +O.OII 
 
 0.039 
 
 + 0.217 
 
 , 2 
 
 + 4.240 
 
 +0-594 
 
 + 0.738 
 
 +0.173 
 
 0.553 
 
 + 4.241 
 
 , -I 
 
 +42.237 
 
 + 1-534 
 
 + 14.088 
 
 +0.274 
 
 1.672 
 
 +60471 
 
 , 
 
 1459 
 
 1.376 
 
 + 0.196 
 
 -0458 
 
 21.709 
 
 + 2.097 
 
 , +1 
 
 0.040 
 
 1.225 
 
 + 0.017 
 
 -0.168 
 
 1.203 
 
 + 0.006 
 
 2, 3 
 
 2.OI2 
 
 +0.050 
 
 O408 
 
 +O.O22 
 
 0.061 
 
 I-99I 
 
 2, 2 
 
 -24.668 
 
 -0.358 
 
 8.096 
 
 0.061 
 
 + 0.363 
 
 -23488 
 
 2, I 
 
 - 7.872 
 
 3-363 
 
 - 2.887 
 
 1. 119 
 
 + 5-192 
 
 12.225 
 
 2, 
 
 + 0.218 
 
 +0.140 
 
 O.O67 
 
 O.OII 
 
 + 0.173 
 
 + 0.542 
 
 3, 4 
 
 O.I4O 
 
 +0.017 
 
 0.034 
 
 +0.006 
 
 0.017 
 
 0.129 
 
 3. 3 
 
 1.677 
 
 +0.403 
 
 - 0.559 
 
 +0.078 
 
 0.397 
 
 - 1.365 
 
 3, i 
 
 + O.2I2 
 
 +474 
 
 + 0.06 1 
 
 +1.611 
 
 4-733 
 
 + O.2I2 
 
 3. I 
 
 0.24O 
 
 +0.984 
 
 0.078 
 
 +0.380 
 
 1.672 
 
 O402 
 
 TABLE XXXIV. 
 
 G-COEFFICIENTS FOR SATURN. 
 
 Arg. 
 
 icfufG 
 
 icfm 2 j 
 
 IO 3 #/ 2 / 
 
 s, g' 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 COS 
 
 sin 
 
 I, -I 
 I, 
 
 +248 
 
 +O.OI 
 
 +0.03 
 O.OI 
 
 +0.86 
 +0.03 
 
 // 
 +0.01 
 +O.OI 
 
 0.03 
 0.50 
 
 +345 
 +2.64 
 
 2, 2 
 2, I 
 
 I.O2 
 
 -0.66 
 
 o.oo 
 
 O.02 
 
 -0.33 
 0.23 
 
 o.oo 
 
 O.OI 
 
 0.00 
 
 +0.05 
 
 0.96 
 0.94 
 
 t 
 
PART III. 
 
 FUNCTIONS OF THE COORDINATES 
 OF THE MOON. 
 
CHAPTER VI. 
 
 FORMATION OF THE LUNAR COEFFICIENTS. 
 
 47. In attacking the problem before us it has been assumed that we have 
 expressions of the Moon's coordinates relative to the centre of the Earth as func- 
 tions of the six arbitrary constants introduced through integrating the differential 
 equations in these coordinates. Moreover, the constants in question enter the 
 expressions for the disturbing function R only through these coordinates. It 
 follows from the general expression of R that if c represents any one of the six 
 lunar elements, the partial derivatives of the disturbing function may be derived 
 from the form 
 
 A n ^ 
 
 = A -sr + B-i: + C-.-+ z> -..-+ (i) 
 
 oc dc dc dc 
 
 It is therefore necessary to have such expressions tor the squares and products of 
 the coordinates of the Moon that each of the required derivatives can be found as 
 easily as may be. 
 
 When the present work was commenced it was intended to make use of the 
 developments of the powers and products x 2 , y 1 , etc., as derived from Delaunay's 
 theory, and found in Action, pp. 154-172 and 213-224, where the processes by 
 which these quantities may be expressed are fully set forth. But, before the work 
 was put into final shape, Brown's work on the Lunar Theory was completed and 
 published so far as the action of the Sun was concerned; and it therefore became 
 a question whether to use Brown's expressions instead of those of Delaunay, or to 
 go on with the latter. Each course was found to have its drawbacks. The former 
 developments from Delaunay's theory being intended mainly to make an exhaustive 
 search for possible terms hitherto unknown in the Moon's motion, were not com- 
 pleted beyond the third order, though the constant term was carried to the sixth 
 order. To speak more exactly, the development was carried to such a point that 
 the square of each coefficient would be correct to the sixth order. 
 
 It was found, however, that the use of Brown's more rigorous theory would be 
 quite convenient except in a single point. In this theory the coordinates are explicit 
 functions of all the lunar elements except the Moon's distance, which enters into /, 
 and of which Brown used only the numerical value in his developments. Brown 
 has shown how it is possible from the data and methods of his theory to form the 
 complete derivatives as to this element without using an analytic development in 
 powers of m. But as the application of this method would require a longer and 
 more laborious study of the subject than the author was prepared to enter upon, it 
 was decided to use the Delaunay developments for obtaining the derivatives as to 
 
102 ACTION OF THE PLANETS ON THE MOON. 
 
 > \ 
 
 log a. The outcome of these considerations has been that, for the sake of trial and 
 3onipa r Json, both Delaunay's and Brown's developments have been to a large extent 
 independently used, and the results compared with a view of facilitating an esti- 
 mate of the errors to which the analytic development is subject. 
 
 48. Reduction of coordinates to the radius vector of the Mean Sun as 
 X-axis. 
 
 In the developments in Action the Sun's perihelion was taken as the origin 
 from which longitudes were measured. When the present work was undertaken, it 
 being found that the development of the vl-coefficients would be most easily effected 
 by taking the direction of the mean Sun as the axis of X, the same origin had to 
 be taken for the lunar coordinates. This has been done throughout the work; and 
 it must be understood in the subsequent developments that x and y are referred to 
 the radius vector of the mean Sun as axis of X except in terms arising from the 
 motion of the ecliptic. 
 
 In the use of either theory we 'take, as the initial data of the problem, the rec- 
 tangular coordinates of the Moon referred to the mean Moon as the axis of X, 
 which coordinates we represent by x l and y^ These coordinates are those which 
 Brown's theory gives in the first instance, and they are also those which I have 
 developed in powers of /, etc., from Delaunay's theory in Action, pp. 167 and 169. 
 The notation of arguments from the latter paper is: 
 
 gi the Moon's mean anomaly; g' ', the Sun's mean anomaly; 
 X, the mean elongation of the Moon from the Moon's ascending node, 
 equivalent to Delaunay's f, or the mean argument of latitude ; 
 X', the same for the mean Sun ; 
 0, the longitude of the Moon's node; 
 / = g -\- IT -f- 6, the Moon's mean longitude; /' = g' + X' + 0, the Sun's 
 
 mean longitude ; 
 D = / /' = X X', as in Delaunay, the mean Moon's departure from the 
 
 mean Sun. 
 Putting Sv for the excess of the true longitude over /, we then have 
 
 x l = r cos ft cos f = aS,k cos N 
 
 y l = r cos ft sin &v = d2,k' sin N (2) 
 
 z = r sin ft = aLc sin N' 
 
 where k, ', and c of dimensions o are developed in powers of e, e',y, and m. 
 The general form of the arguments TV^and N' is 
 
 N or N' = ig + i'g' +j\ +/X' (3) 
 
 where g = I - v , g' = /' - TT', X = / - 0, X' = /' - 0. 
 
 The equations for transforming x l and y L into x and y are 
 
 ,v = x l cos D y l sin D y = x 1 sin D + y l cos D (4) 
 
FUNCTIONS OF LUNAR COORDINATES. 103 
 
 If we put 
 
 h = \(k + V) h' = $(k - k') 
 
 the substitution of the development will give 
 
 - = 2A cos (D + N) + 2/*' cos (D - JV) = 
 
 (5) 
 y - = 2A sin (D + JV) + 2A' sin (D - N} = r, 
 
 
 49. There are now two ways of proceeding in order to form the squares and 
 products. We may either form the last expressions for x and y and square them, 
 or we may torm the squares and products of x and y ly and transform them from 
 the mean Sun to the mean Moon. Following the latter method we have 
 
 x? = %( x ? + y?) + \(x? - y?) cos 2D - x l y l sin 2D 
 
 / = K*, 2 + y*) - \(x? - j, 2 ) cos 2D + Xl y, sin 2D 
 
 (6) 
 x 1 J 2 = (x* jKi 2 ) cos 2D 2x^y l sin 
 
 2xy = 2x l y l cos 2D + (^ 2 jy, 2 ) sin 
 
 The three junctions required in the work being 
 
 (x 2 y 2 ), r 2 3^ 2 and 2xy 
 
 we see from the preceding equations that the first and third can be formed at once 
 from the corresponding functions of x* and y* by a transformation through the angle 
 2D. If we have, for any argument ^V, 
 
 *, 2 y? = h y cos N 2x l y l = h 2 sin N (7) 
 
 the corresponding terms referred to the mean Sun are 
 
 ** _ / = J(* + A) cos (iD + N) + $(*, - /y cos 
 
 (8) 
 2xy = J(A, + /4 2 ) sin (2Z> + ^V) 4- i(A, - A,) sin (2.O - TV) 
 
 There are some cases in which a reference to a fixed axis is convenient. Let us 
 
 put, 
 
 x , y , coordinates referred to any fixed axis. 
 
 So long as this axis is unrestricted the coefficients for x and y will be equal, as 
 is seen from (5). Hence, if we write for any term of x and of y depending on 
 any argument N 
 
 x a = A, cos N y = A t sin N (9) 
 
 this term will be transformed into the corresponding term of AT and of y, and vice 
 versa, by means of the equations 
 
104 ACTION OF THE PLANETS ON THE MOON. 
 
 x = x t cos /' + y sin /' y = y a cos /' x sin /' 
 
 or 
 
 * = x cos I' y sin /' y g = y cos /' + x sin /' (10) 
 
 The special term (9) will, therefore, transform into the terms of x and of y 
 
 l') (n) 
 
 For the special functions required in the lunar theory we shall have the follow- 
 ing transformations of the same form as (6) 
 
 x 2 - / = (* 2 - jr 2 ) cos 2/' + 2x y v sin 2/' 
 
 (12) 
 2xy = 2x y Q cos 2l' (x* jy 2 ) sin 2/' 
 
 ^ 2 y 2 = (x* jK 2 ) cos 2l' 2Ary sin 2/' 
 
 (13) 
 2x y Q = 2xy cos 2!' + (x? y 2 ) sin 2l' 
 
 The transformation of any one term may be made by the equations (6) by writ- 
 ing + 2/' or 2/' for 2D. 
 
 If, as in most of the present work, the solar perigee is taken as the fundamental 
 fixed Jf-axis, we write g' instead of/' in these equations. 
 
 An important remark to be made on these transformations of terms from 
 one axis to the other is that the equality of coefficients expressed in the equations (9) 
 and (n) is true only when the fixed axis of J^is unrestricted. If, as will sometimes 
 be more convenient, we take the direction of the so'ar perigee for this axis, some 
 values of argument N in (9) will be equal with opposite signs. By combining the 
 terms depending on these arguments the equality in question will cease to hold. 
 If, however, the Sun's eccentricity is dropped, the general equations will remain 
 valid for the Sun's perigee also. 
 
 It thus happens that, in the developments given in Action, pages 213-215, the 
 coordinates are quite general, while the expressions for their squares and products 
 given on pp. 217-223 are not general, because the solar perigee is here taken as the 
 fundamental axis. 
 
 50. Recalling that throughout the work we use the symbol D to represent the 
 logarithmic derivative as to a of any function, a serious question is that of determin- 
 ing the value of this derivative with the necessary precision in each special class 
 of terms. In actually performing the work so many tentative combinations have 
 been made, as better and better methods were found, that it is difficult to present 
 any one process as the definitive one. The following method was at length seen 
 to be the best under the circumstances I have described. Let 
 
 u = a'<f>(i) 
 be any function of the coordinates of which D is to be formed. Practically i will 
 
FUNCTIONS OF LUNAR COORDINATES. 
 
 be equal to i or 2 according as the expression we are dealing with is of the first or 
 second degree in the rectangular coordinates. If we can compute the value of 
 D(j)(m} with sufficient precision the complete value of Du will be 
 
 Du = /*<(*) -f a l D<f>(m) (14) 
 
 If it is developed in powers of m, <f>(tn) = OQ + a i m + <V 2 + and we shall have 
 
 ><j>(m) = f otjW + 3<x 2 7 2 + 
 
 the coefficient of each term being f of the exponent of m. (v. 12, Eq. 23.) 
 
 If we have the numerically accurate value of any tf>(m) from Brown's theory 
 and an approximate one from the analytic development, the comparison of the two 
 will furnish a rude index to the probable value of the omitted powers of m in the 
 development. It follows that the nearest approximation to the value of Du will 
 be obtained by using in the first term of the second member of (14) the numerical 
 value of a { (j)(m) = u, the analytic development being used only for the second term. 
 Moreover, having an approximate estimate of the value of the omitted terms of the 
 analytic development of the second member of (14), we may use it to correct the 
 last term of this member. I conceive that no lack of theoretical rigor pertaining 
 to this process will lead to an error of the slightest importance in the present work. 
 
 51. Formation of the D's from Delaunay's Theory. 
 
 In the final formation of the /^-derivatives I have extended the developments 
 given in Act to*, by the aid of Delaunay's results, as follows. Delaunay expresses 
 the reciprocal of the Moon's radius vector in a form which we may write 
 
 a 
 - 
 
 where tt\, is put for the sum of an infinite' series of terms, each developed in powers 
 of ?, as well as of e, e' ', and y. This quantity 77^ is related to the Moon's parallax TT 
 by the equation 
 
 sin TT = (i -f TT.) 
 a ^ 
 
 #! being the Earth's equatorial radius. 
 
 It is to be remarked that Delaunay's expression for the parallax was only carried 
 to terms of the fifth order, so that it does not suffice for all theoretical purposes. 
 It is indeed fairly probable that it would suffice for the object now in view. In 
 order, however, to lessen the danger of any insufficiency in this respect I have, in 
 forming the value of TT^ compared each coefficient in the expression of Delaunay's 
 parallax found in my transformation of Hansen's lunar theory with the more accu- 
 rate value derived from Hansen's or Brown's expression. We may conceive that 
 the correction necessary to reduce Delaunay's coefficient to Hansen's value is of 
 the form 
 
 STT, = ajn* + <+l w' +1 -\ ---- 
 
106 ACTION OF THE PLANETS ON THE MOON. 
 
 in which i is the power of m next above the highest to which Delaunay has carried 
 his coefficient. From what we have already shown it follows that the corresponding 
 correction to Dtr^ is 
 
 an approximate value of which is 
 
 In order to make this correction rigorously exact we should know the values of 
 the coefficients of the omitted powers of i. This being unknown, the minute cor- 
 rection is to a certain extent a matter of estimation. I do not conceive, however, 
 that the uncertainty is at all important in the present investigation. 
 
 We have next to consider the Z>-derivatives of the three functions 
 
 p 2 3? 2 ; fi* '"li > an d 2 fi 7 ?i 
 
 Starting with the equations (2) the values of 8v and ft, developed in powers of m, 
 are given at the end of Delaunay's TAeorie, Vol. II. The values of Dv are 
 formed from these with great lacility by means of the form (23) of 12, because 
 Delaunay gives the numerical value of each part of every term of the longitude. 
 
 The steps of the subsequent process consist in simple trigonometric multiplica- 
 tions, and are presented in tabular form on the following pages. The fundamental 
 
 quantities are 
 
 a a 
 
 7T. = i, Sz', ft and D -, Dov. Dfj 
 
 r r 
 
 which are formed from Delaunay's numbers in the way just shown. 
 
 The following functions are then formed by trigonometric multiplication 
 
 P = I TTj + 7T, 2 7T, 3 + p~ = I 27T, + 37T, 2 4^,' + p*= I 377-, + 67T, 2 IO7r, 3 + 
 
 In the final work, however, p has been formed from Brown's theory. Then 
 
 p> = ? + r,* + t;* 
 
 2 \/3' C os 2 /3 = i - S in 2 # 
 
 sinSz; = 8-|8^ cos &v = i - iSz; 2 
 
 %? V? /* cos 2 /8(i 2 sin 2 8z>) ^,17, = p* cos 2 ft cos Sv sin Sv 
 
 S=ps'mft ? 2 = /) 2 sin 2 y3 D p 2 = - 2p^hr l 
 
 > sin = cos ftDft D sin 2 ft = 2 sin ftD sin ft Z>p 2 cos* ft = cos 2 ft Dp 2 + pW cos 2 ft (16) 
 Z7 sin 2 Sz> = 2 sin Sz^Z? sin Sy = 2 sin 8>v cos SvDSv 
 %? - *)*) = (i - 2 sin 2 fo) Dp- cos 2 /9 - 2/> 2 cos 2 ftZ> sin 2 w 
 
 ? Stfi = sin Sy cos BvDp 2 cos 2 y3 + p 2 cos 2 /9(i 2 sin 2 Sv)2)&v 
 D C = p*D sin 2 ft + sin 2 ftZ) p 2 
 
FUNCTIONS OF LUNAR COORDINATES. 107 
 
 The same method might be used to form the derivatives as to the e and y, but 
 this has been deemed unnecessary, as they can be formed with entire precision 
 from Brown's Theory, and probably with all necessary precision from the develop- 
 ments found in Action with some extensions in special cases. As a matter of 
 fact they have been formed by both methods. 
 
 52. Derivatives from Brown's theory. To form the partial derivatives as to 
 Delaunay's e and y from Brown's expressions it is to be noted that Brown uses 
 instead of e and y two constants e and k which, omitting unimportant terms, are 
 expressed thus in terms of the Delaunay elements: 
 
 e = (2.000543 + ,o^e n )c .3668^ 2.oi2ey* 
 k = (1.000128 .O004e' 2 )7 .4967* 0.499^7 
 
 A distinction is to be made between the a of the present work, defined by the con- 
 dition a 3 n? = p, and Brown's a, used in his work. Brown's e is defined as the 
 coefficient of sin g in the development of jj/a, or, using the notation of the present 
 
 paper, in the development of 
 
 a r . a 
 
 cos p sin 0v = i} 
 a a a 
 
 This will enable us to make a comparison of the preceding value of e with that 
 to be derived from the analytic development in Action, p. 168, from which we find 
 
 - e = (2 - ^' + ^ '' + *firW> 4 + V''> - (| + i7 2 - T\VV - (2 
 
 Brown's 2k is the coefficient of sin X, X being the mean argument of latitude, in 
 the development of r/a sin ft, tound on p. 159 of Action. From the coefficient as 
 developed in Action we find 
 
 a 2 
 
 
 
 Brown also gives 
 
 ^=.999093; ^=1.000908 
 
 The two results are as follows, B indicating those from Brown's formulae, A those 
 Irom the analytic development. 
 
 B; e = 2.000557^ .367^ 2.oi2^y 2 B ; k = 1.0001287 .499^7 .4967* 
 
 A ; e = 2.000426^ .371^ 2.OO4C7 2 A ; k = 1.0001087 .501^7 .5007* 
 
 The difference, arising from the dropping of higher powers of m in the analytic 
 development, is too small to affect the solution of our present problem. 
 
 To find the partial derivatives of any function u of e and k with respect to e and 
 y we have from the preceding expressions 
 
io8 ACTION OF THE PLANETS ON THE MOON. 
 
 du dude dudVi du du 
 
 d~e = dede + dkfo = I '9 9 3 2 fe~ 99d]i 
 
 (17) 
 
 du du de du 5k Bu du 
 
 a~ = 5-=- + 5r=-= o.ggSo 5l .0025; -5- 
 dy de dy T 3k 7 /yo 3k a de 
 
 These equations enable us to find the derivatives as to e and y from Brown's as to 
 e and k. 
 
 53. Tables of the functions and derivatives of the Moon's coordinates. 
 
 The numerical processes by which the required functions of the coordinates 
 were developed may be followed and tested by the aid of the following tables. 
 The notation of the arguments, expressed by the indices in the first column, has 
 been defined in 48. 
 
 Owing to the circumstances mentioned in 46, and to the widely different degree 
 of precision required in the coefficients of different arguments, the numbers of these 
 tables are not always consistently continuous. The terms of many, perhaps more 
 than half the arguments, lead to no sensible inequalities; with these pains were not 
 always taken to reach a higher degree of precision than was required to show the 
 order of magnitude of the results. In the preliminary steps of the investigation it 
 was deemed sufficient to carry the expressions for the Moon's coordinates to the 
 5th place of decimals, and those for the derivatives to the 3d or 4th place. But 
 when the inequalities of the elements themselves were reached by integration, it 
 was found that this degree of precision, while more than sufficient for the periodic 
 terms in general, was not sufficient either in the terms related to the evection, or 
 in those determining the secular variations and accelerations of /, IT, and 6. A 
 number of successive revisions was found to be necessary, in which the coefficients 
 depending on the argument g' were carried to the yth place of decimals. As the 
 last place was always more or less doubtful only the sixth place has been included 
 in the printing. 
 
 It may also be remarked that in commencing the tables it was supposed that the 
 analytic development in Action would suffice for the work. This expectation 
 proving ill-founded, the developments of the Moon's coordinates given by De- 
 launay, then those by Hansen, and finally those by Brown were successively 
 used in the case of those terms in which greater precision was needed. Finally 
 the /^-derivatives were, in their important terms, recomputed by formula; proposed 
 by Dr. Ross, which were much briefer than those already given in (16) of 51. 
 
 The want of homogeneity thus arising in the tables could be cured by a fresh 
 development from the fundamental data of Brown and Delaunay, but I do not think 
 any important change would thus result in the expressions for the inequalities of 
 the Moon's elements found in Part IV. 
 
FUNCTIONS OF LUNAR COORDINATES. 
 
 TABLE XXXV. 
 
 FUNCTIONS OF THE LATITUDE AND THEIR DERIVATIVES. 
 
 109 
 
 Arg. 
 
 ft 
 
 4 
 
 sin/9 
 
 Z>sin/9 
 
 C=/> sin ft 
 
 zc 
 
 dflde 
 
 W 
 
 ****** 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 2 O I O 
 I O I O 
 O O O 
 I O O 
 2O O 
 
 .000154 
 .004842 
 +.089 503 
 +.004898 
 -j-.ooo 301 
 
 +.00009 
 +.00032 
 .00000 
 .00005 
 .000 01 
 
 .000 154 
 .004 840 
 +.089413 
 +.004896 
 + 000301 
 
 +.OOOOO 
 +.00032 
 .OOOOO 
 .00005 
 
 .000088 
 .007 240 
 +.089474 
 
 +.002 466 
 
 +.00008 
 +.00044 
 .00018 
 +.00003 
 
 .0049 
 .1304 
 .0049 
 +0454 
 
 0.0030 
 0.161 5 
 +1.998 
 +0.055 
 
 O I O 
 I I O 
 
 +.000023 
 
 .000038 
 
 +.000023 
 
 .OOO 038 
 
 +.OOOO29 
 
 .000 017 
 
 +.000052 
 
 +O.000642 
 
 I I O 
 
 
 
 
 
 
 
 
 
 O I O 
 0030 
 
 .000 032 
 
 .000 030 
 
 +.000013 
 
 +.OOO OI 
 
 .000 030 
 ooo 030 
 
 +.000013 
 + OOO 
 
 .OOOO24 
 
 +.000031 
 
 .000079 
 
 0.000 535 
 
 I 032 
 
 I I ^ 2 
 
 +.000968 
 
 +.OO2O2 
 
 +.000968 
 
 +.O02 OI 
 
 +.000545 
 
 +.00124 
 
 +.0097 
 
 +O.OI2 2 
 
 O 03 2 
 
 + 000568 
 
 + ooi 80 
 
 + 000568 
 
 + 001 80 
 
 
 _L nm 58 
 
 
 
 I I I 2 
 
 
 
 
 
 
 
 
 
 O I I 2 
 
 +.000 144 
 
 +.OOO3O 
 
 4-.OOO idd 
 
 + ooo 30 
 
 +.000 165 
 
 + ooo 18 
 
 
 
 I O I 2 
 O O I 2 
 I O I 2 
 Oil 2 
 
 +.000808 
 
 +.OO3 O22 
 
 +.000 161 
 .000060 
 
 +.001 75 
 +.00542 
 +.00028 
 
 .OOO 12 
 
 +.000808 
 +.003 020 
 +.000 161 
 000060 
 
 +.001 74 
 +.005 40 
 +.00028 
 
 .OOO 12 
 
 +.001 179 
 +.003308 
 +.000080 
 
 .000061 
 
 +.00244 
 +.00647 
 +.OOOI2 
 
 +.000 18 
 
 +.02 1 i 
 .0007 
 
 4-0.0261 
 +0.0739 
 +0.0017 
 
 
 
 
 
 
 
 
 
 
 TABLE XXXVI. 
 FUNCTIONS OF THE RADIUS VECTOR AND LATITUDE. 
 
 Arg. 
 
 DK, 
 
 /) 2 =r 2 /a 2 
 
 c 
 
 f>* cos 2 /3 
 
 D. ff 
 
 D.C 
 
 D. f> 2 cos *p 
 
 g g* I * 
 
 cos 
 
 cos 
 
 COS 
 
 COS 
 
 COS 
 
 COS 
 
 COS 
 
 O O O 
 
 +.002 638 
 
 +1.002866 
 
 +.004 038 
 
 +.908828 
 
 -.00443 
 
 +.OOOOI 
 
 -.00444 
 
 I O O O 
 
 .OOI40 
 
 -0.10858 
 
 .00042 
 
 .108 17 
 
 +.00480 
 
 +.00006 
 
 +.00474 
 
 2 O O O 
 
 .OOOl6 
 
 0.001 52 
 
 .00002 
 
 .001 51 
 
 +.00008 
 
 +.OOOOI 
 
 +.00008 
 
 I I O 
 
 +.000917 
 
 0.00070 
 
 .OOOOO 
 
 .00070 
 
 .ooi 77 
 
 .OOOOO 
 
 .00176 
 
 O I O O 
 
 .OO0267 
 
 +0.000 266 
 
 +.OOOOOI 
 
 +.000266 
 
 +.000 713 
 
 +.000001 
 
 +.000712 
 
 I I O O 
 
 .000 637 
 
 +0.000 54 
 
 .OOOOO 
 
 +.00054 
 
 +.001 27 
 
 .OOOOO 
 
 +.001 26 
 
 I O 2 O 
 
 +.OOOIO 
 
 +0.000 32 
 
 +.00065 
 
 .00033 
 
 .000 19 
 
 .00003 
 
 .00015 
 
 O O 2 O 
 
 +.00006 
 
 O.OOOO2 
 
 .00398 
 
 +.003 97 
 
 .00010 
 
 +.000 O2 
 
 .OOO 12 
 
 1020 
 
 +.OOOOO 
 
 +O.OOOOO 
 
 .00022 
 
 +.OO022 
 
 .OOOOO 
 
 .OOOOO 
 
 +.OOOOI 
 
 2 O 2 2 
 
 .00032 
 
 +0.001 83 
 
 .OOOOO 
 
 +.001 82 
 
 +.00380 
 
 +.OOOO2 
 
 +.00377 
 
 I O 2 2 
 
 +.019 66 
 
 0.018 91 
 
 .00003 
 
 .01888 
 
 .035 22 
 
 .00006 
 
 -.035 15 
 
 O O 2 2 
 
 +.02643 
 
 0.014 86 
 
 .00029 
 
 -.014 57 
 
 .049 46 
 
 .00054 
 
 .04892 
 
 I O2 2 
 
 +.002 91 
 
 o.ooo 48 
 
 .00002 
 
 .00046 
 
 .00154 
 
 .00003 
 
 .001 50 
 
 2 O 2 2 
 
 +.00027 
 
 0.00004 
 
 .OOOOO 
 
 .00004 
 
 .00007 
 
 .OOOOO 
 
 .00007 
 
 I I 2 2 
 
 +.000216 
 
 +0.00006 
 
 .OOOOO 
 
 +.00006 
 
 .00048 
 
 .OOOOO 
 
 -.00047 
 
 O 2 2 
 
 .000441 
 
 +0.000 144 
 
 +.000005 
 
 +.000 139 
 
 +.00084 
 
 .000016 
 
 +.000856 
 
 I 2 2 
 
 .000 058 
 
 0.00000 
 
 .OOOOO 
 
 .OOOOO 
 
 +.OOOOI 
 
 .OOOOO 
 
 +.OOOOI 
 
 I 2 2 
 
 +.000844 
 
 0.00080 
 
 .OOOOO 
 
 .00080 
 
 .001 40 
 
 .OOOOO 
 
 .OOI 40 
 
 O 2 2 
 
 +.OO2 O27 
 
 o.ooi 043 
 
 .000015 
 
 .001 028 
 
 -.00386 
 
 .00002 
 
 .00384 
 
 I 2 2 
 
 +.000260 
 
 O.OOOOO 
 
 .OOOOO 
 
 .OOOOO 
 
 .00015 
 
 .OOOOO 
 
 .00015 
 
 I O O 2 
 
 .00002 
 
 0.000 05 
 
 .00002 
 
 .00003 
 
 .00002 
 
 .00004 
 
 +.OOOOI 
 
 0002 
 
 .00008 
 
 +0.0005 
 
 +.000287 
 
 .00023 
 
 +.00016 
 
 +.00056 
 
 .00040 
 
 1002 
 
 .00004 
 
 +0.0006 
 
 + .OOOII 
 
 .00005 
 
 .00007 
 
 +.00023 
 
 .00030 
 
 O 2 O O 
 
 .000 018 
 
 
 
 
 +.000 036 
 
 
 +.000 036 
 
 O 2 2 2 
 
 +.000 106 
 
 
 
 
 .OOO 212 
 
 
 .OOO 212 
 
 O 22 2 
 
 .000 004 
 
 
 
 
 +.000 008 
 
 
 +.000008 
 
 
 
 
 
 
 
 
 
no 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XXXVII. 
 FUNCTIONS OF THE LONGITUDE AND THEIR DERIVATIVES. 
 
 Arg. 
 
 sin Sv 
 
 cos Sv 
 
 isin 2<?Z>, 
 
 sin 2 dv 
 
 D.tiifdv 
 
 Dto 
 
 \D sin 2<Jz> 
 
 g g* it 
 
 sin 
 
 COS 
 
 sin 
 
 cos 
 
 cos 
 
 sin 
 
 sin 
 
 
 
 -4- <v/i8i 
 
 
 
 
 
 
 I O O O 
 2000 
 I I O O 
 O I O O 
 I I O O 
 I O 2 O 
 O O 2 O 
 
 +.IOQ58 
 +00371 
 .00072 
 .003 233 
 .00053 
 .00019 
 .00199 
 
 .00035 
 +.00300 
 +.00017 
 .00002 
 .00018 
 
 +XXXJII 
 .00001 
 
 +.10903 
 +.00365 
 .00071 
 .00320 
 .00053 
 .00019 
 .001 97 
 
 -(-.OUO33 
 +XWO7O 
 .00597 
 +.00033 
 +.00004 
 +.00036 
 .00022 
 +.000 02 
 
 +.001 55 
 +.000 20 
 .000 19 
 +.000 249 
 +.00036 
 +.00003 
 
 XXX) OI 
 
 .000000 
 
 .000138 
 .002 052 
 
 .002 8437 
 
 .001 199 
 +.000215 
 +.000091 
 
 .OOO 320 
 .000314 
 .002008 
 .002 7902 
 .OOI 2OO 
 +.OOO2I2 
 +.OOOOOO 
 
 2 O 2 2 
 I O 2 2 
 O 2 2 
 I O 2 2 
 2 O 2 2 
 I 2 2 
 O 2 2 
 I 2 2 
 
 +.001 03 
 
 +.O22 17 
 +.OII45 
 +.OOO96 
 +.00009 
 OOOI4 
 .OOOI2 
 
 JOOI 25 
 
 .00058 
 +.001 17 
 +.00067 
 +.00007 
 
 XXX) 03 
 
 .00003 
 
 +.001 O7 
 
 +.02203 
 +.01135 
 + 00008 
 
 +.000 15 
 .000 14 
 .00012 
 
 +.00249 
 +.001 16 
 .00234 
 .00134 
 .00015 
 +.00007 
 +.00006 
 
 +.00531 
 
 +.003 77 
 .00483 
 .00427 
 .00048 
 +.000 20 
 +.000148 
 +.00008 
 
 +.002 545 
 
 +.047405 
 +.037838 
 
 +.003 056 
 +.000228 
 +.000482 
 .0003608 
 
 +.OO2 7O5 
 +.046777 
 
 +037 341 
 +.003 273 
 +.000469 
 +.000400 
 .000 3662 
 xxx) 075 
 
 I 2 2 
 O 22 
 I 2 2 
 I O O 2 
 
 +.OOIOO 
 
 +.00080 
 +.00007 
 
 .0000 1 
 +.00007 
 +.00005 
 
 +.00009 
 +.00080 
 +.00008 
 
 +.000 02 
 .00016 
 
 .000 IO 
 
 +.00007 
 .000451 
 .00039 
 
 +.O02 274 
 
 +.002 9357 
 +.000271 
 
 +.002 223 
 
 +.0020079 
 
 +.000305 
 
 O O 2 
 I O O 2 
 
 .00027 
 
 -J-.OOOOI 
 
 .00027 
 
 .00002 
 
 .OOOO8 
 
 .000204 
 
 .000300 
 + ooo 008 
 
 O 2 O O 
 
 ooo 036 
 
 
 
 
 
 
 
 O 2 2 2 
 
 + 000039 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 TABLE XXXVIII. 
 
 COORDINATES REFERRED TO MEAN MOON AND THEIR DERIVATIVES. 
 
 Arg. 
 
 f, 
 
 Brown. 
 
 z* t 
 
 Anal. 
 
 %J3e 
 
 Brown. 
 
 *Ar 
 
 Brown. 
 
 f, 
 
 Brown. 
 
 A, 
 
 Anal. 
 
 fyjde 
 Brown. 
 
 W*T 
 
 Brown. 
 
 g g' i v 
 
 cos 
 
 cos 
 
 cos 
 
 cos 
 
 sin 
 
 sin 
 
 sin 
 
 sin 
 
 O O O O 
 
 +995 47 
 
 .00302 
 
 0^8 
 
 080/4 
 
 
 
 
 
 I O O O 
 
 JOU 4O 
 
 -L- OOI 27 
 
 One e 
 
 
 
 
 
 
 2 O O O 
 
 +.001 51 
 
 +.OOOOI 
 
 4- OSS 01 
 
 
 
 
 
 
 I I O O 
 
 .000 174 
 
 +.000 04 
 
 OOt 17 
 
 
 
 
 
 
 O I O O 
 I I O O 
 
 +xxx>iO34 
 
 -KOODOOS 
 
 +.00033 
 00004 
 
 .000346 
 
 xxx) 063 
 
 .003 2283 
 
 .003 12 
 
 O.OO2 508 
 
 +.OOI5II 
 
 I O 2 O 
 O O 2 O 
 
 +.00004 
 +.001 09 
 
 .00000 
 +.OOO 01 
 
 +.0008 
 
 +xx>i8 
 
 4- nnS i 
 
 .00025 
 
 .00000 
 
 0.004 4 
 
 .OIO9 
 
 OO78 
 
 I O 2 O 
 
 2 O 2 2 
 
 +.00005 
 .000 so^ 
 
 .00000 
 ooo 63 
 
 +.OOIO 
 
 +.0025 
 
 .OOOO5 
 
 XXX) OO 
 
 O.OOIO 
 
 .OO25 
 
 I O 2 2 
 O O 2 2 
 I O2 2 
 
 .010 16 
 
 XXX) 36 
 
 +xxi8 
 
 x>i93i 
 .022 85 
 +.00029 
 
 -.1844 
 +.0237 
 +.0048 
 
 +.0019 
 +XXX58 
 
 +.022 24 
 -j- .OIO 32 
 
 +XH488 
 +.03521 
 
 +04037 
 
 +0.010 6 
 
 4-OOO4. 8 
 
 0047 
 jooy? 
 
 2 O 2 2 
 
 +.000 02 
 
 
 
 
 
 
 
 
 I 2 2 
 
 +.000028 
 
 +.000 19 
 
 + ooo 52 
 
 
 
 
 
 
 O 22 
 I 2 2 
 
 +.0000478 
 .000002 
 
 +.000 20 
 
 .000262 
 ooo 04 
 
 .OOOIlS 
 
 .0000042 
 
 .00031 
 
 0.000 169 
 
 +XXXM32 
 
 I 2 2 
 
 .000400 
 
 .00044 
 
 
 
 
 
 
 
 O 2 2 
 I 2 2 
 
 .000 4506 
 +.000013 
 
 .001 55 
 
 +.001 256 
 -j- ooo 24 
 
 +.000337 
 
 + .000 7327 
 
 +.00225 
 
 +0.000 504 
 
 +o 00026 
 
 .000406 
 
 O O O 2 
 
 .000 10 
 
 .OOO 17 
 
 
 
 
 + 00008 
 
 
 
 
 
 
 
 .OO45 
 
 
 
 
 
FUNCTIONS OF LUNAR COORDINATES. 
 
 TABLE XXXIX. 
 FUNCTIONS OF COORDINATES REFERRED TO MEAN MOON. 
 
 in 
 
 Arg. 
 
 *,' 
 Brown. 
 
 Brown. 
 
 Brown. 
 
 2 ^i ! ?i 
 Brown. 
 
 7~\fl; 2 w 2\ 
 .Z-/1 V. ~~Yl ) 
 
 Delaunay. 
 
 2-Z?(C l !0 I ) 
 Delaunay. 
 
 f g' * V 
 
 cos 
 
 cos 
 
 cos 
 
 sin 
 
 cos 
 
 sin 
 
 O O O 
 
 i o o o 
 
 2 O O O 
 
 i i o o 
 
 O I O O 
 I I O O 
 1020 
 O O 2 O 
 I O 2 O 
 2 O 2 2 
 I O 2 2 
 O 022 
 I O 2 2 
 2 O 2 2 
 I 122 
 122 
 I 122 
 I I 2 2 
 O I 2 2 
 I I 22 
 I O O 2 
 O O 2 
 1002 
 
 2 044 
 i 044 
 004 4 
 
 +.992 529 
 .10850 
 +.004504 
 .000 35 
 +.000 217 
 +.000 19 
 .000 ii 
 +.003 97 
 
 .OOOOOO 
 
 .000 637 
 .01990 
 
 .012 13 
 
 +.00069 
 .00002 
 +.00006 
 +.000092 
 
 .OOOOO 
 
 .00080 
 .000875 
 
 .OOOOO 
 
 .00005 
 .00021 
 
 .OOOOO 
 
 +.000 187 
 +.00006 
 
 +.OOOO2 
 
 +.006299 
 +.00033 
 .005989 
 .00035 
 +.000049 
 
 +.00035 
 .00022 
 
 .OOOOO 
 +.OOO22 
 +.002444 
 +.OOI O2 
 .00244 
 
 .001 15 
 
 .OOOO2 
 
 +.986230 
 .10883 
 +.010493 
 
 .OOOOOO 
 
 +.000168 
 
 .000 16 
 
 +.000 II 
 
 +00397 
 .00022 
 .003081 
 .02092 
 .00969 
 +.00184 
 
 .OOOOO 
 
 +.00006 
 +.000036 
 
 .OOOOO 
 
 .00080 
 .000721 
 .00000 
 .00005 
 .00019 
 +.00003 
 +.000440 
 +.00029 
 +.00008 
 
 
 
 -.007345 
 +.00195 
 .00018 
 .001 36 
 +.000198 
 
 +.00054 
 .00021 
 .000 ii 
 +.00003 
 .00670 
 .04209 
 .03863 
 +.00632 
 
 +.00012 
 .00091 
 +.000587 
 .OOOI2 
 
 .001 50 
 .002889 
 +.00055 
 .000 14 
 .00024 
 +.00006 
 .000 ii 
 +.00264 
 +00074 
 
 
 +217 74 
 .004501 
 .OOI IO 
 -.006386 
 .00070 
 .OOO 12 
 
 .003 95 
 
 +.OOO 22 
 
 +.001 843 
 +.04434 
 +.018 19 
 .00082 
 +.00004 
 .00024 
 .000154 
 
 .OOOOO 
 
 +.001 97 
 +.001336 
 
 .OOOOO 
 
 .00005 
 .00056 
 
 .OOOOO 
 
 .000 175 
 .00016 
 .00006 
 
 .00070 
 
 +.OOO 12 
 
 .00384 
 .005 552 
 .002 10 
 +.00041 
 +.00016 
 .00003 
 +.00432 
 +09472 
 +.065 56 
 .00303 
 +.00019 
 
 +.OOI 12 
 
 .000 553 
 +.00007 
 +.00441 
 +.005 097 
 .00026 
 .000 1 1 
 .00060 
 +.00008 
 .00102 
 .00051 
 +.00004 
 
 + .O00056 
 .OOOOOO 
 .OOOOOO 
 
 .000154 
 
 .00000 
 JOOO O2 
 
 .00003 
 .coo 253 
 .00023 
 .00006 
 
 Arg. 
 
 
 a A 1 
 
 d.tf 
 
 **J& 
 
 dj 
 
 d.tf 
 
 23 A?, ! 5-c s 
 
 
 d-c 
 
 de 
 
 de 
 
 de 
 
 dr 
 
 dr 
 
 d r 
 
 de 
 
 d r 
 
 g g' X X' 
 
 COS 
 
 cos 
 
 sin 
 
 COS 
 
 COS 
 
 sin 
 
 cos 
 
 cos 
 
 o o o o 
 
 I O O O 
 2000 
 I I O O 
 O I O O 
 I I O 
 I O 2 
 2 O 
 I O 2 
 2 O 2 2 
 I O 2 2 
 022 
 I 022 
 O I 2 2 
 I I 2 2 
 O I 22 
 O 2 
 
 0.058 598 
 1.9784 
 +O.I63 69 
 O.OO64 
 0.000419 
 
 +0.001 8 
 
 +.227 700 
 
 +.0084 
 
 21735 
 
 
 .178059 
 
 +.01 1 7 
 +.0006 
 
 .000 281 
 
 .0247 
 
 .000695 
 .0076 
 
 +.179588 
 
 .0192 
 
 +3.040 o 
 0.16464 
 0.023 5 
 0.003 478 
 0.015 9 
 
 0.002 
 
 
 
 
 
 +000040 
 
 +.001 537 
 
 .000067 
 
 .000014 
 
 +.001786 
 
 +.000004 
 
 .0039 
 
 
 +.0107 
 
 .0054 
 .1948 
 +.016 I 
 
 +.01 1 5 
 +.0018 
 -0039 
 
 +.0290 
 
 .1781 
 .0098 
 
 
 +.195 6 
 
 
 +.0039 
 +.08881 
 +.017 7 
 .087766 
 .021 7 
 +.000877 
 
 +0.005 8 
 +0.0263 
 +0.7969 
 0.066 474 
 0.0087 
 +0.000 230 
 0.036 2 
 
 O.OO2 870 
 
 .010 7 
 
 0.023 02 
 0.360 o 
 +0.067 295 
 +0.014 3 
 o.ooo 620 
 0.014 7 
 +0.003 395 
 
 
 +.0053 
 +.014 604 
 
 
 .013 7 
 .016 720 
 
 
 
 +.000597 
 
 +.000 i 
 
 .013 2 
 
 .OOO 121 
 
 .000044 
 
 +.000 106 
 
 
 
 
 
 .004482 
 
 +.000375 
 .0090 
 
 +.000049 
 
 +.000432 
 XG44 
 
 
 
 
 +0132 
 
 
 
 
 
 
112 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 TABLE XL. 
 FUNCTIONS OF COORDINATES REFERRED TO MEAN SUN. 
 
 Arg. 
 
 P-lf 
 
 />'-3C 2 
 
 2651 
 
 D(?-f) 
 
 >(/> 2 -3C 2 ) 
 
 2Z>,-jy 
 
 g g' * * 
 
 COS 
 
 cos 
 
 sin 
 
 cos 
 
 cos 
 
 sin 
 
 o o o o 
 
 I O O O 
 2000 
 I I 
 O I O O 
 I I O O 
 I O 2 O 
 O O 2 O 
 I O 2 O 
 2 O 2 2 
 I O 2 2 
 O O 2 2 
 I O 2 2 
 2 O 2 2 
 112 2 
 O I 2 2 
 112 2 
 I I 2 2 
 O I 2 2 
 I I 22 
 I O O 2 
 O O O 2 
 I O O 2 
 O 2 O O 
 
 .01396 
 .031 26 
 .00250 
 +.00013 
 .000933 
 -.00135 
 .00004 
 .00038 
 .00002 
 +.007 809 
 
 .163 02 
 +.086I9 
 
 +.05444 
 +.00300 
 .00055 
 .003 18 
 .00042 
 +.00027 
 
 +.OO3 22 
 
 +.00054 
 .00020 
 +.00396 
 
 +.OOO IO 
 
 .000 059 
 
 +.99074 
 -.10860 
 
 +.00096 
 .00071 
 +.000264 
 
 +.00055 
 .00032 
 +.01196 
 +.00066 
 +.001807 
 .018 60 
 01399 
 .00042 
 .00002 
 +.00015 
 +.00003 
 .00000 
 00087 
 .00006 
 .00000 
 .00032 
 .00084 
 .00004 
 +.000005 
 
 .033 92 
 .00243 
 .00008 
 .001 123 
 .00134 
 
 + .000 10 
 
 .00038 
 .00002 
 +.007 185 
 163 54 
 +.98611 
 
 +.05444 
 +.00300 
 .00056 
 .003 17 
 .00042 
 +.00028 
 +.003 14 
 +.00054 
 +.00024 
 .00396 
 
 +.OOO IO 
 
 .000059 
 
 .052095 
 
 .063 73 
 .005 55 
 .00058 
 .003 423 
 .003 04 
 .00001 
 .00042 
 
 .OOO 12 
 +.00030 
 +.00291 
 .00700 
 +.OOO62 
 .00003 
 .00260 
 .00276 
 
 .00077 
 +.001 33 
 +.00289 
 +.001 24 
 +.00003 
 .000 13 
 .00031 
 .000 258 
 
 .004447 
 +.004 62 
 +.00007 
 .001 76 
 +.000 710 
 +.00126 
 .00009 
 .000 15 
 +.000 01 
 +.003 73 
 .035 03 
 .04784 
 .001 53 
 .00007 
 aoo 47 
 +.00089 
 
 +.OOO 01 
 
 .001 40 
 .00398 
 .00015 
 .00076 
 .001 52 
 +.00008 
 +.000036 
 
 -.07308 
 .005 47 
 +.001 37 
 .004 563 
 .00289 
 .00001 
 .00042 
 
 .OOO 12 
 .00060 
 .00025 
 .O07 70 
 +.00062 
 .00003 
 .00260 
 .00276 
 
 00077 
 +.001 33 
 +.00289 
 +.001 23 
 .00003 
 +.00013 
 .00031 
 .000266 
 
 Arir 
 
 a(-/,') 
 
 ^-ac 2 ) 
 
 #3 
 
 a^-tf) 
 
 3(/> 2 -3C 2 ) 
 
 aej 
 
 Arg. 
 
 de 
 
 de 
 
 2 de 
 
 dr 
 
 ^ 
 
 df 
 
 g 1 * * 
 
 cos 
 
 cos 
 
 sin 
 
 cos 
 
 cos 
 
 sin 
 
 
 
 
 
 
 _.. ct7 r^r 
 
 
 I O O O 
 
 -0.565 7 
 
 1-955 i 
 
 -0.6088 
 
 +.0094 
 
 +.050 2 
 
 +.0095 
 
 
 
 
 
 
 
 
 O I O O 
 
 +0.004 519 
 
 +0.001 109 
 
 +O.OO6 22O 
 
 +.000 287 
 
 .000 161 
 
 +.000469 
 
 
 
 
 
 
 058 o 
 
 
 
 
 o 003 6 
 
 
 OI71 
 
 -4-.cei6 
 
 .CIS I 
 
 
 
 
 
 
 _j_ QIQ 6 
 
 
 
 
 
 
 
 
 
 I O 2 2 
 O O 2 2 
 
 2.964 i 
 0.2863 
 
 0.343 1 
 
 0.021 5 
 
 2.964 2 
 0.2864 
 if) rfjfi Q 
 
 +.0182 
 .1782 
 0066 
 
 +.0052 
 + .0410 
 
 +/>l83 
 .1780 
 
 006 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -f-OOO88 
 
 
 
 
 
 
 
 
 
 
 
 
 TOt 2 
 
 
 
 
 
 
 
 
PART IV. 
 
 DERIVATION OF RESULTS. 
 
CHAPTER VII. 
 
 CONSTANT AND SECULAR TERMS. 
 
 We recall the arrangement of the present work. In Part I, the general equations 
 have been formed, the theory outlined, and the methods developed so far as could 
 be done. Nearly all the fundamental quantities were developed as sums of prod- 
 ucts of two factors, one factor of each pair being a function of the Moon's coordi- 
 nates, the other a function of the coordinates of the planets. The latter functions 
 are developed in detail in Part II, one chapter of which is devoted to the develop- 
 ments of the coefficients of the direct action, the other to the coefficients of the 
 indirect action. In Part III, Chapter VI, have been developed the numerical 
 functions for the lunar coefficients. These are the same for both actions. The 
 present concluding Part is devoted to the combination of these factors and the 
 derivation and discussion of results. 
 
 We may divide the matter of this part into three chapters. In the first chapter 
 we consider the terms not purely periodic. By a purely periodic term is meant 
 one of which the coefficient of the sine or cosine is constant. We may, therefore, 
 define the terms to be first considered as constant and secular, two classes which 
 need not be considered separately. 
 
 54. The arguments on which the planetary and lunar factors depend are all 
 distinct except g', which is common to both. It follows that no constant or secular 
 term in the variations of the elements can arise by the multiplication of factors 
 depending on any other variable argument than^''. In all cases in which another 
 argument than this enters into either factor, the results will be periodic in form, the 
 coefficient, however, having, in the general case, a secular variation. Since no 
 terms of the class in question contain /, TT, or 0, they give 
 
 D. = o D = o Z>7 = o 
 
 
 To form the constant and secular terms we begin by collecting those planetary 
 factors which are either constant or depend on the argument g'. We shall con- 
 sider the direct and indirect actions separately. The planetary factors for the 
 direct action, as collected from 42, with some revision of the numbers there 
 found, are shown on the next page. 
 
 "5 
 
Il6 ACTION OF THE PLANETS ON THE MOON. 
 
 FACTORS FOR DIRECT ACTION. 
 
 Action of Venus. 
 
 ' = + 5". 9045 + o".44 cosg-' o".n sing-' 
 = 3 .4072 .30cosg-'+o .07 sing-' 
 == + o''.33 sing-' + o".O3 cosg-' 
 
 Action of Mars. 
 
 = + o".0468 o".O2O cosg-' o".O24 sing-' 
 = o .1006 + .028 cosg-' + o .029 sing-' (18) 
 
 = + o".oiosing-' o".oo8 cosg-' 
 
 Action of Jupiter. 
 
 \o*MK= + o".O9i3 o".oo2 cosg-' o".o32 sing-' 
 %io 3 AfC 2 .1348 + .oO4Cosg-' + o .062 sing-' 
 = + o".oo5 sing-' o".O3O cos g 1 
 
 Action of Saturn, 
 = + p".ooi3 ioWC' = o".i040 io*J/Z> = o 
 
 The corresponding factors for the indirect action have been combined for the 
 five disturbing planets, Venus to Uranus. From the combined values of G, J, 
 and 7, reached in 44, we find, including Uranus, but omitting Mercury: 
 
 io*m*G = + o".459 + o".36 cosg-' + o".o6 sing-' 
 io s /w 2 /= + o .153 + .12 cosg-' + o .02 sing-' 
 io'wz'/= o .03 sing-' 
 
 55. Lunar Factors. If, for brevity, we put F for any one of the three lunar 
 factors, say 
 
 F=?-f F'={t-tf* F" = 2fr (19) 
 
 the terms of the fundamental equations (42) or (57) corresponding to each F will be : 
 
 From the tabular values of the functions of the coordinates and their derivatives 
 in Table XL, p. 112, noting that symbolically, D' D-\-2, we have the following 
 values of the terms of these functions which are independent of the lunar arguments 
 
 F= 2 ?? 2 = .013 96 .000 933 cosg-' .000 06 cos 2g-' 
 F' = p* 3? 2 = .990 74 + .000 264 cosg-' 
 F" 2^rj = .001 123 sing-' .000 06 sin 2g-' 
 
CONSTANT AND SECULAR TERMS. 117 
 
 D'F = D'(? r) 2 ) = .080 02 .005 288 cosg' - .000 38 cos 2g' 
 D' F' = -D'(p 2 3? 3 ) = 1-9770 + .001 239 cosg-' + .000 04 cos 2g' 
 D' F" = iD'ty) = .006 809 sing' .000 39 sin 2g' 
 
 de ' de 
 
 = + .1705 + .001 109 
 
 dF" 
 
 -^ = = = + .006 220 sin g' 
 de de 
 
 
 = + .0154 + .000 287 cos g' 
 
 <5375 ~ ' C S 
 
 = + .000469810^-' 
 
 The factors a,, e,-, etc., are derived in 14, and found in (26). From the preceding 
 scheme we find by using the preceding values and their derivatives in (20) 
 
 FI = 0.1641 .010 92 cosg-' .000 77 cos 2g' 
 
 F t = 2.1194 .086 40 COS-' + .OOO OI COS 2g' 
 
 FS = 0.0859 - 001 63 cos g' 
 FI = + 4.0086 + .002 49 cosg-' + .000 08 cos 2g' 
 FJ = -3- 3 J 4 2 -.021 36 cos g' (20) 
 
 FJ = + 3.0093 .000 90 cosg"' 
 
 F" = .013 89 sin g' .000 79 sin 2g' 
 
 FJ' = .118 94 sing-' + .000 01 sin 2g' 
 
 F" = .002 64 sing-' 
 
 56. Secular motions of I, TT, and 6. The function Aflf,as defined in 20, may 
 now be written 
 
 MH= MKF- \MCf + MD.F" 
 
 and introducing the linear functions of its derivatives which we have just formed 
 we have from (42) 
 
 DJ, = - MKF, + IMC^F' - MDF>' 
 
 Djf^ = - MKFi + \MCFJ - MDF? (21) 
 
 DJ = - MKF, + \MCFj - MDFl' 
 
 of all which factors we have just given the numerical values. For the indirect 
 action the second members are 
 
 ..-(1=1,2,3) (22) 
 
Il8 ACTION OF THE PLANETS ON THE MOON. 
 
 Performing the multiplications we find the following secular motions of /, TT O , and 
 arising from the terms of direct and indirect action under consideration. 
 
 Direct Action of io 5 /? n( /o 
 
 Venus 12.66 + 23.846 9-747 
 
 Mars 0.41 + 0.433 0.300 
 
 Jupiter 8.54 -}- 7.269 6.416 
 
 Saturn 0.42 + 0.346 0.318 
 
 Uranus o.oi -f- 0.007 0.006 
 
 Sum 22.04 + 3 1 -9 I 16.786 
 
 Indirect + 0.54 J-495 4- 0.422 
 
 Total 21.50 + 30.406 16.364 
 
 Taking the Julian century as unit of time n = 8400. The centennial motions 
 arising from the factors here employed are therefore: 
 
 Centennial motion of / = -- i8o".6, of TT O = + 255.41, of = 137.46. (23) 
 From the vanishing of D t a, D t e, and D t y we have 
 
 Sti = const. STTJ = const. B0 l = const. 
 
 the constants being functions of the arbitrary constants of integration, determined 
 at the end of this chapter. 
 
 57. Terms arising from the secular variation of the earth's eccentricity, 
 Both the direct and indirect actions contain, in rigor, terms of this class. They 
 enter into the direct action because the direct action of the planet on the Moon varies 
 with the variation of the orbit of the earth around the Sun. But the effect of this 
 variation is found to be so slight that it will be left out of consideration in the 
 present work. We therefore begin with the indirect action. The terms of the 
 coefficients G, /, and J, on which the action depends, have been developed in 
 Chapter V, 44. 
 
 Our fundamental quantity for the indirect action is H' of 25, of which the 
 only terms required are 
 
 H' = - G(? - O -J( P * - 3 O + 2/f, = - GF-JF' + IF" (24) 
 
 The terms of G, /, and / required for the present purpose are 
 
 G = Ge' I = 7,Ac' / = J^e' 
 
 G lt /i, andyi being found in 44 and 
 
 be' = - 8".595 T o".o26oT 2 = - 8". 595 T(i + .00302 T) 
 The secular terms of these coefficients thus become 
 
 + i".8^ cos 2g-')T(i + .00302 T) 
 /=(4-o".io8o4-6".44cos-' +o".32cos 2g')T(i + .00302 T) (25) 
 
 /= (- 25". 4 5 sin^-' - i".8 4 sin 2g')T(i + .00302 T) 
 
CONSTANT AND SECULAR TERMS. 119 
 
 Using these values in (56) we find 
 
 If we put G',J', and /' ior the coefficients of Tin (25) we shall have from (20) 
 and (22) the following computation for the secular accelerations from the funda- 
 mental equations (57), in which only the non-periodic terms are to be used : 
 
 [/] = G'F, + J'F{ - I'F," = + o".2 4 67 
 M = G'F, + J'Fj - I'F," = - i .6378 
 Iff] = G'F, + /'/7 - f'F," = + o .3246 
 
 Then, postponing the terms in Z 12 
 
 DJ=m*[l]T Djr=m*\*]T DJ = m 2 [0]T (26) 
 
 The terms in T 2 in (25) are only those arising from the term of e' in T 2 . To find 
 the complete values we note that all the terms of [/], [TT], and [0] contain e' as a 
 factor, and may therefore be expressed in the form e'k, k being a quantity which, 
 though containing minute terms in e' 2 , may be regarded as a constant. Then 
 
 D e' 
 /?,[/] = kDff = [/] -^- = - .002495 [/] 
 
 and the actual values of [/], [TT], and [0] may be written in the form 
 
 IX] = [/](! .00250 T) (I +.00302 T)= [/](! + . 0005 2 T) 
 
 [/], etc., being the values computed above. Multiplying by T we find that the 
 terms of D t l, D,TT, and D t O in T 2 are found from those in T by multiplying the 
 latter by the factor -|- .00052 T. 
 
 Taking the Julian century as the unit of time, w 2 = 46.998, whence 
 
 D l /= + ii".6oT + o".oo6oT 2 D t ir= -76". 98 T-o". 040 T 1 Z>,0= + i5. 25^+0.00797^ 
 Then by integration 
 8/=5".8or 2 + o".oo2or 3 S 7 r=-38".497 12 -o".oi3r 3 W = f .62 T* + o" .0026 T* (27) 
 
 This value of the secular acceleration of the mean longitude is, I believe, 
 markedly smaller than any heretofore found. Delaunay's last result was 6".n, 
 which, reduced to the now adopted value of the secular diminution of e', would 
 become 6".O2. The necessity of using Delaunay's development of the parallax in 
 forming the Z>'s of some of the coefficients leads to some uncertainty in the present 
 result. But my rough estimate would lead to the conclusion that the uncertainty 
 should be less than one per cent, of the whole amount. The question of the pre- 
 cision of the value here reached I must leave to other investigators.* 
 
 * As this work is going through the press the author notices that Brown's value found in Monthly Notices Royal 
 Astronomical Society, vol. LVir, is reduced from $".<)i to 5".8i when the now adopted Die' is used. 
 
120 ACTION OF THE PLANETS ON THE MOON. 
 
 58. We have next to consider the secular variations of the periodic terms in 
 general. Taking any set of such terms depending on any argument N 
 
 ?* i;*= 2p cos JV p* 3%* = 2q cos JV 2%i) = K 4 sin JV 
 
 we shall have the terms of H' in (24) 
 
 (i".o72/-o".2i6?) Tcos A'-(i9".3/+6".4sr+ 12".7 4 ) Tcos (W-g 1 
 
 Forming the partial derivatives of these terms of H' as to /, TT, 0, a, e, and y, and 
 carrying them into the fundamental equations (64) and (65) by the processes of 
 22 and 23 we shall be led to 
 
 D ,a=m\i".o'j2ap+o".2i6ag)Tsin 7T+ w 2 ( I 9"-3 a /+ 6 "-4 a ?+ I2 "-7 a *<)^ sin (Wg 1 ) 
 
 (28) 
 
 with similar equations for e and y formed by writing e and g respectively for a. 
 Also, we shall have 
 
 (20) 
 -7 l (i9". 3 Z' + 6". 4 Z"- i.2".>]L t ) ' v 
 
 with similar equations for D^ ir and D, u 6 Q formed by writing P and R respectively 
 forZ 
 
 59. The special values of N of most importance in the present connection are 
 
 on which depend, respectively, the constant term, the annual equation, the equation 
 of the center, and the evection 
 
 CASE I; 7V=o. 
 
 The factors for Z^a, D nt e, and D nt y all vanish. The values of the Z-coefficients 
 are found in the first line of Table XLIX, p. 147. The first or purely secular term 
 of (29) has already been computed. The remaining terms give 
 
 Z>/ = w s ( 3 8".6Z' + i2". 9 L")Tcosg-' 
 Z? ( 7r = 2 2 (38 .6P' +12 .<)P")Tcosg' 
 Dfa = m 2 n (38 .6ft' + 1 2 .9^?") T cos g' 
 
 Substituting the numerical values of Z, /"*, /?, and 7 2 = 47.oo; 
 /?,/= + 1062" T cos g' Z> ( TT O -- 2 9 6i"Tcosg' >&= +82f'Tcosg-' 
 
 We cite, for convenient reference, the following indefinite integrals 
 
 /it C if 
 
 t sin titdt = , sin N/ -- cos N I / cos wtdt = t cos N/ + - sin N/ 
 
 N N J N N 
 
CONSTANT AND SECULAR TERMS. 121 
 
 The unit of t in these equations being 100 years, N is the motion of g' in this 
 period, for which we may take 200 TT, or N =628. 
 Integration by the above formulas then gives 
 
 S/ = + i". 69 T sin g' + o".oo3 cos^' 
 
 87r = 4 .71 Ts'mg-' .ooScosg-' (30) 
 
 S0 = -f i .32 T sing' + .002 
 
 CASE II; N=g'; the annual term. 
 
 Here also the variations of a, e, and y vanish, so that only those of / , ir , and 
 are affected. Carrying into the equations (29) the numerical values of the lunar 
 coefficients for the Arg. g' we find, dropping the constant terms, which have been 
 already computed, 
 
 m^n T(o".oo6i cosg-' o".o82 cos 2g') = o".2gTcosg' 3".8o Tcos 2g' 
 m 2 nT(o .0485 cos g' + o .131 cos 2g') = 2 .28 T cos g' + 3 .^Tcos 2g' 
 nfn T(o".ooio cosg-' + o".O22 cos 2g) = o".tf Tcosg' + i .03 Tcos 2g' 
 
 Then, integrating, and dropping insignificant constant coefficients 
 
 8/ = -f o".ooo47 Tsing' o". 0036 T sin 2g' 
 8-7r = + 0.0037 Tsin g-' 0.0028 7"sin 2g' 
 S0 g = + 0.0008 T sin g-' o. 0016 T sin 2g' 
 
 CASE III; N-ff. 
 
 For this argument I have used the following preliminary values of the lunar 
 
 coefficients, differing from those of Tables XLVIII and XLIX by amounts here 
 unimportant 
 
 L' = 0.1197 L" = 0.1962 Z. 4 = 0.2648 
 
 P'=+ 5.403 P" = + 18.734 PI = + "-688 
 
 7?'== 0.0028 R" = 0.1431 7? 4 = 0.0560 
 
 ap =0.03223 &q = 0.11049 a* 4 = 0.06970 
 
 e/ = 0.300 45 6^= 1.03340 e* 4 = 0.650 66 
 
 gp = + o.ooo 09 g?= + o.ooo 31 g*4= + o.ooo 10 
 
 Carrying these values into the equations (28) and (29) we find, for the terms depend- 
 ing on the argument g alone, 
 
 D t e= + 
 , = + ^".o^Tcosg- Z?,7r = - 82". 2 Tcosg- 
 
 For the motion of^f, N =8329. 
 Integration then gives 
 
 8ot= o".ooo 062 T cos -+(7 4"-r- io')sin^- Be = o".oo$6Tcosg- 
 
 S/ 9 = + o".ooo 485 Ts'm g- b* =- o".oo9 87 Tsin g- 
 
122 ACTION OF THE PLANETS ON THE MOON. 
 
 We drop the terms with constant coefficients, owing to their minuteness, and 
 find, with # = 8400; 
 
 Sn = - |Sa = + o"-78 T cosg 
 Then by integration 
 
 = + o".ooo 
 
 This, added to 8/ , gives for the entire term in S/ 
 
 8t= + o".ooo 578:Tsin- (31) 
 
 60. In order to determine the complete expressions for the coordinates them- 
 selves, the terms computed in the present section, together with those which may 
 be found in a similar way for the other periodic terms, are to be carried into the 
 expression for the Moon's true longitude in terms of the elements. I have not, 
 however, deemed it necessary to do this in the case of the secular variations of 
 the periodic terms, because these can be most readily determined by varying the 
 value of e' in the Delaunay or Brown expressions for the Moon's longitude. 
 
 I have, however, computed the preceding variations of some terms owing to the 
 theoretical interest which attaches to the relations implied by the equality of the 
 result of the present method to those of the other method. The two methods 
 correspond to the two methods by which the secular acceleration ma}' be deter- 
 mined. In Action, p. 191, it is shown that the secular acceleration of /, TT, and 6 
 may be derived from the secular change of e' by determining the corresponding 
 secular changes in a, e, and y. This theorem has been discussed and extended by 
 Brown in his paper on Transmitted Motions and Indirect Perturbations.* 
 
 By this method the secular variations in question appear as variations of , rr^ and 
 &i, the latter being functions of the variables a, e, and y. But, in the present theory, 
 a, e, and y remain constant so far as the secular change of e' is concerned, and the 
 changes are thrown wholly upon / , TT O , and 6 . 
 
 There is therefore a seeming contradiction in that the lunar elements a, e, and y 
 are affected by a secular variation in one theory, while in the other they are prac- 
 tically constant. Referring to Brown's paper for the theory of the subject it will be 
 instructive to show the relation between the two methods. 
 
 In what I have, for brevity, called the Delaunay solution of the problem, the 
 Moon's coordinates appear as functions of the lunar elements, introduced as arbi- 
 trary constants, and of the Sun's eccentricity, which is regarded as a quantity given 
 in advance. But, when the action of the planets is introduced, the solar element 
 e', as well as the lunar elements a, e, and y, become variable. In what I may call 
 method A of treating the planetary action, which was that adopted in Action, 
 the final values of the coordinates as affected by planetary action are determined 
 by introducing the simultaneous variations of all four elements into the Delaunay 
 
 * Transactions of the American Mathematical Society, vol. vi, p. 332. See also, Monthly Notices, Roval Astro- 
 nomical Society, vol. LVII. 
 
CONSTANT AND SECULAR TERMS. 123 
 
 expressions. But in method J3, adopted in the present work, the entire variations 
 have been thrown upon the lunar elements, the solar elements being regarded as 
 constant. In the case of the periodic perturbations this course is practically a 
 necessity, owing to the extreme complexity introduced into the formulae if we sup- 
 pose the coordinates expressed in terms of the value of e' affected by periodic 
 inequalities. But it is different in the case of the secular motion of e'. Here it 
 is more logical to consider that at any epoch the action of the Sun is computed 
 with the actual eccentricity at that epoch, and so to use method A. 
 
 Not having done this in the present work, but having regarded the value of e' at 
 the epoch 1850 as a fundamental constant, the values of G, J, and /, though func- 
 tions of e', and therefore variable, have appeared in the theory as constants. 
 
 In the present investigation the author has not, for want of time, investigated the 
 modifications which would be made in the problem if these coefficients were taken 
 as affected by their secular variations. One reason for refraining from this course 
 was that the determination of the secular acceleration from the equations given in 
 Action, page 191, require a much more extended development of the canonical 
 elements in terms of e' than it was practicable to undertake in the present paper. 
 The question is therefore left to others, reference being made to Brown's paper on 
 the variation of given and arbitrary constants.* 
 
 A comparison of the secular variation of the coefficient of sin g' with that found 
 by Delaunay's value of this term will, however, be of interest. With the eccen- 
 tricity of 1850 the coefficient of this annual term is 670". It contains e' as a 
 factor, the portion arising from higher powers of this element being unimportant in 
 the present case. It follows that the secular variation of the coefficient of sin g' 
 in 8v is 
 
 -670"^ = + i".6>jT 
 
 e' 
 
 The term found in (30) for 8/ is i".69 T. I have not computed 8v itself. 
 
 The two methods of treating the effect of the motion of the ecliptic are related 
 to each other in the same way as this just discussed. Had the method of the 
 present paper been strictly followed throughout, the coordinates of the Moon would 
 have been referred to a fixed ecliptic, because the ecliptic remains fixed when 
 planetary action is omitted. But it was seen that by a very slight and easily deter- 
 mined change, the coordinates could be referred to the actually moving ecliptic, and 
 and the work was carried on accordingly. In concluding the work, it is a matter 
 of regret to the author that he did not investigate the question whether the Moon's 
 coordinates could not, on the same principle, be expressed in terms of a varying 
 solar eccentricity, ab initio, thus simplifying the problem in conception at least. 
 Owing, however, to the theoretical interest attaching to the relation between the 
 two methods, the effect of the motion of the ecliptic might be treated by both methods. 
 
 * L. c., vol. iv, p. 333. 
 
124 ACTION OF THE PLANETS ON THE MOON. 
 
 61. Adjustment of the Arbitrary Constants. The problem before us may be 
 outlined thus. The preliminary solution of the problem of three bodies leads to 
 expression of the Moon's coordinates as functions of six arbitrary constants, through 
 the intermediary of three other functions of these constants /, IT, and 6. The solu- 
 tion in terms of the six elements a, e, y, /, TT, 6 takes the form: 
 
 the functions <jt being of a form not necessary to specify at present. As already 
 mentioned, n, TT^ and 6 l are functions of a (or ), e, and y. The solution of our 
 problem is now completed by adding to the expressions for the Moon's coordi- 
 nates = v, r, and /8, the quantities 
 
 dv - dv - dv . dv 
 
 with similar forms for r and /8, which we need not write. For our present purpose 
 it will be necessary and sufficient to consider the following terms in v, the true 
 
 longitude. 
 
 v = / + 2e sin (/ TT) 
 
 We then have 
 
 dv dv dv 
 
 dv . dv dir dv dv dl dv dir 
 
 de~ dir de da~ dl da dir da 
 
 Substituting in (32) and emitting unimportant terms 
 
 Bv = fyit(\ + 2e cos-)8a 2c COS^TT + (i + ze cos^)8/ + 2 sing-Se 
 We put 
 
 H' 8< *o' ^o' 8/ o' 
 
 the arbitrary constants to be added to the perturbations 8a, 8e, STT, and 87. We then 
 have the following perturbations depending on the purely lunar arguments 
 
 Sa = Sa o".ooi6 sing- Be = Sc o".oi$o cosg 
 
 &I= &t g ",02i2nt + ".0059 sin- STT = STT O + ".o$i$nt ".272 
 
 Substituting in the derivatives we have the result that the mean sidereal motion 
 of the Moon is 
 
 nt(i o".O2i2 |S a) 
 
 We now determine 8 a by the condition that the mean motion shall be repre- 
 sented by n. Thus 
 
 S a = o". 0141 8 = o".o2i2 = + 178" (33) 
 
CONSTANT AND SECULAR TERMS. 125 
 
 Also, the coefficient of sin g- in the expression for the longitude becomes 
 
 2e -f o 
 
 We now determine S e by the condition that the expression for the coefficient shall 
 remain unchanged. This gives 
 
 V = o".oo3 
 
 The longitudes, perigee, and node being given by the equations 
 
 ir = w, + V e = e a + oj 
 
 the introduction of the perturbations of the elements will give rise to the increments 
 
 *,-'&, + >& + ' *y W, = f' Bn + % Be + %**, 
 
 on ffe cy dn de dy 
 
 The eftects 8 e and 8 y are inappreciable. Taking only 8 from (33) we have 
 
 STT I .014 8oS n = o".ooo 3i4 &0 t = .001 oiS a n = ".ooo O2i 
 
 Taking the century as the unit, the adjustment gives 
 
 S7r 1= -2".6 S0 = -o".i8 and Sir -- 2".6T S6 -- o".i8T 
 
 Adding thereto the secular terms of IT O and already found, we have the following 
 results, tor the entire secular effect of the action of the planets on TT and 6 
 
 D,v D& 
 
 Direct action of the planets Venus to Uranus + 267". 97 141". oo 
 
 Indirect action of the planets Venus to Uranus 12 .56 + 3 .54 
 
 Total action of Mercury (/ == io~ 7 ) + o .45 o .21 
 
 Adjustment of elements 2 .64 o .18 
 
 Sum + 253 .22 137 .85 
 
 This motion of the perigee, greater by 5" than that found by Brown, goes to 
 confirm his conclusion that the gravitation of the Earth does not deviate from 
 Newton's law of the inverse square. 
 
 62. As the reason for the last correction may not be quite clear, it may be of 
 interest to state in a general way how it enters into the theory. The action of the 
 planets on the Moon is found on the supposition of what we may call an undisturbed 
 orbit of the Moon, meaning thereby an orbit in which the action of the Sun is com- 
 pletely taken account of, on the supposition that no other extraneous action enters. 
 We thus have a certain mean motion n determined from observations, and a certain 
 undisturbed mean distance, a, determined by the relation a s n 2 = /i, which requires a 
 constant A of correction to the mean distance computed from the action of the 
 Sun, giving rise to an expression for the constant of the Moon's radius vector 
 a -)- A^ = #! completely representing the action of the Sun on the supposition of 
 no planetary action. 
 
126 ACTION OF THE PLANETS ON THE MOON. 
 
 It is with this mean distance a, that the actions of the planets, both direct and 
 indirect, are computed. But, as a matter of fact, the action of the planet modifies 
 the relation between a^ and n, so that we must change either the mean motion or 
 the mean distance according to what values of the elements we assume. If we 
 take the arbitrary constants so that the mean motion remains unchanged, then the 
 actual mean distance will require a constant correction on account of the action of 
 the planets. If we regard the mean distance as an invariable quantity, then there 
 will be a correction to the mean motion. 
 
 It follows by either method that when we compute the motion of the perigee and 
 node under the action of the Sun alone, we must make one or the other of these 
 modifications produced by the action of the planet, and determine the effect upon 
 the motion of ir and 0. If we regard the actually observed mean motion as that 
 due to the Sun alone then we must introduce a correction to the mean distance, and 
 determine its effect upon -n v and 6^ But if, which is the more natural method, we 
 regard the mean distance of the Moon as the given actual element, then we must 
 compute that part of the motion of the perigee and node due to the Sun alone with 
 a different n from that given by observation; that is, with a value found by sub- 
 ducting the planetary effect from the observed value. 
 
 We ma)' therefore regard the corrections -- 2" .64 and o".i8 to 77^ and l as 
 reducing ir^ and 0, to their true values under the action of the Sun alone. 
 
 63. Secular Variation of e. If we require, as we should, that the coefficient 
 of sin g in the Moon's true longitude should be represented by a function of e then 
 the expression (31) shows that this element will be affected by the secular variation 
 
 This being less than o".oi in a thousand years, is of no practical importance, though 
 of theoretical interest. 
 
 It may also be remarked in the present connection that the existence of this 
 variation, and the approximate algebraic expression for its amount, was first made 
 known by Adams.* 
 
 * Monthly Notices, Royal Astronomical Society, vol. XIX, p. 207. 
 
CHAPTER VIII. 
 
 SPECIAL PERIODIC INEQUALITIES. 
 
 64. Reduction to the moving ecliptic. Since when the Sun is the disturbing 
 body the plane of the ecliptic remains fixed, the inequalities of the coordinates so 
 lar reached are referred to the ecliptic of any date regarded as fixed. The only 
 way in which they are affected by the motion of the ecliptic is through the secular 
 variations of the coordinates of the planet arising from that motion. The effects of 
 these are supposed to be too small to need consideration at present. It is, however, 
 necessary to refer the elements to the moving ecliptic. I have shown in 4 how 
 this may be done by the simple device of adding to the perturbative function the 
 terms 
 
 AT? = 2z(pD i x l - qD t y^) + 2 (qy - j>x) Dft (33) 
 
 and then integrating the portions of the differential equations thus arising. In this 
 expression p and q are the coefficients expressing the speed of rotation of the 
 ecliptic around the axes of y and x respectively, and are found by putting 
 
 II, the longitude of the ascending node of the moving on the fixed ecliptic; 
 
 K, the speed of rotation. 
 Then 
 
 p = K sin II q = K cos II (34) 
 
 It is to be noted that K is here used as the speed of rotation, and not as the actual 
 angle rotated through. It is, therefore, of dimension Z 1 " 1 and the expression for 
 AT? is of dimensions Z* 2 T^~~, which, by introducing the dimensions of mass, become 
 identical with the dimensions of P as hitherto used. 
 
 The partial derivatives of AT? as to the lunar elements are to be taken only as they 
 enter through x, y, and z, so that the Z>, of the Moon's coordinates, the latter being 
 called for this purpose x lt y v , and z lf are to be regarded as numerically given 
 quantities. 
 
 To form the partial derivatives of x, y, and z we use the developments of these 
 coordinates in terms of the lunar elements already given, substituting in x, y, and z 
 the values of , TJ, and . But in this part of the work it will be convenient to refer 
 the coordinates x and y to a general fixed X-axis, instead of the mean Sun, as here- 
 tofore. When this is done the expressions for the ratios of the coordinates to a 
 take the torm 
 
 7, = 2/&sinyV =2csinJV' (35) 
 
 127 
 
128 ACTION OF THE PLANETS ON THE MOON. 
 
 where N and N' are of the general form 
 
 N= il + /> + i,0 +j'P +/X N 1 = i 7 / -f ,V + i t '0 +//' 
 the indices satisfying the conditions 
 
 * + *, + *; + j + /, = o i r + *,' + 1/ +/ + // = i 
 
 Informing the Z>,'s of these expressions we put n, n', the ratios of the motion of 
 the arguments N or N' to n, that of the Moon. We then have 
 
 sin TV -^(Ji = anS.kn cos TV -O^, = an"S.cn' cos TV' 
 
 The values (34) of ^> and q then give 
 
 //>,#, - gD t y l = anicZkn cos (TV - II) (36) 
 
 qypx = aiCLk sin (TV II) (37) 
 
 Our next step is to form the derivatives of z and qypx as to the lunar elements. 
 The partial derivatives as to z are found from the last equation (35) 
 
 Dz = alD'c sin TV' ~=2^sinTV' f = S^sinTV' (38) 
 
 cte fo dy dy 
 
 dz dz dz 
 
 =-. = aZt'c cos TV' a~ = aSz'.V cos TV' ~ = a2/c cos TV' (39) 
 
 Ol CTT VO 
 
 By differentiating (37) on the same system we have 
 
 D(qy -PX) = aKLD'k sin (TV- H) 
 
 ., { ^_n) ( 4 o) 
 
 
 cos y_ 
 
 
 = a 2^ cos (TV- H) 
 
 We next have to form the products of (36) by the derivatives (38) and (39) and 
 of D t z by (40) and (41), and form their several sums. We thus find that the 
 
MOTION OF THE ECLIPTIC. 129 
 
 combination of any term of argument TV 7 " with any term of argument N' gives rise 
 to the following terms in the partial derivatives as to e and /: 
 
 -^ 2 w/c I nV^ nk^ \ sin (N -f N' II) + 2 /c I n'c^r + nk^ \ sin (TV 7 " N' II) 
 
 cte , oe oe ) oe Be } 
 
 d ~~^ = a>nKck{m' - t'n} {cos (N+ N'- H) + cos (N - N'- II)} (42) 
 
 The derivatives as to log a and y are formed from the first of these equations by 
 simple substitution. Those as to ir and 6 are formed from the last equation by 
 writing t\ and / 2 for z, and z'^ and z'' 2 for i' . 
 
 The derivatives thus formed being substituted in the fundamental equations the 
 integration of the latter will give the inequalities of the elements. It will be con- 
 venient to use the following formulae of substitution. We first put, in the combina- 
 tion of any term of argument JV with any term of argument JV' : 
 
 k a = n'cD'k + nkD'c k' = n'cD'k - nkD'c 
 
 , dk Be , dk dc 
 
 K = n'c -^ (- n ^- k ' = n'c^ -- nk =- 
 
 oe oe de oe 
 
 *, 
 
 , dk 7 dc , dk ,dc 
 
 k = rf c jr- + nk jr- t'**n'c-s -- n^- 
 
 oy dy ey oy 
 
 The quantities k a , /&', etc., will then be the coefficients of the constant factor 
 crnK in the expressions for the derivatives of the elements. Substituting AT? for 
 P 1 in the differential equations (27), p. 18, the latter will reduce to the form 
 
 Dp = (a/-, + OLJI, + a/,)* {cos (JV+ N' - II) + cos (N-N 1 - 
 
 D f = (eft + e 2 k, + e 3 k,} K { cos (N +JV'-U) + cos (N- N' - II) } (44) 
 
 ft = (7,*, + 7A + 7s*f) {cos (JV+ N' - H) + cos (N- N' - II)} 
 
 sin (^~ N> - n ) + (,*.'+ ?,*.'+ 7,V) sin 
 sm (N- JV'-U) + (of.' + e&+ t&')e sin 
 
 sin (N- N' - H) + (a/ a '+ '&+ 7^')* sin (^+ N> ~ D ) 
 
 By integrating these equations we shall have, in the case of each argument, a 
 divisor which we may call N, equal to the motion of the argument in the unit of 
 time. The quotient K -^- N expresses the angular motion of the ecliptic during the 
 time required for the argument to move through the unit radian. 
 
 In the above differential equations we substitute for a,, e t , and y h their numerical 
 values and write, for brevity, 
 
 C t = 2.023^ 0.017^ 0.0229^ 
 
 C, = - 0.0301^ - 19.153*. - o.o2o y (45) 
 
 C t = 0.0075^,, + o.oo26 e 5.570^ 
 
ACTION OF THE PLANETS ON THE MOON, 
 with similar expressions for the accented quantities, and 
 
 C a = 2.023-6, - 0.0301^ + 0.0075^ 
 
 C e = 0.0168^, 19.153^, + O.0026/6, 
 
 C v = 0.0229/6, 0.0200/6,, 5.570/6, 
 
 (46) 
 
 We also put for brevity 
 
 A = TV- N' - 
 
 A' = TV+TV' -n 
 
 The values of N and N', the coefficients of the time in A and A' respectively take 
 the form 
 
 N = (n n') N' = (n + n') 
 
 and the differential variations become 
 
 Dp. = Cjc (cos A + cos A') Z>,/ = C> sin A + C/K sin A' 
 
 Df = Cjc (cos A + cos A') 
 D t y = C y x(cos A + cos A') 
 
 We shall then have by integration 
 
 K 1C 
 
 : = - C a sin A + , C sin 
 
 if if 
 
 Se = - C e sin A H -, C t sin A* 
 
 N N 
 
 5 7 = ~ C y sin ^ + ~ C y sin ^' 
 
 Z> ( TT O = C> sin .,4 + C> sin ^4' 
 
 D t = C> sin A + C t 'ic sin A' 
 
 /, = C, cos ^4 + C/ cos A' 
 
 K K 
 
 i = N ' C S + N"' ' C S 
 
 > <=-C t cosA + ^Qcos 
 
 (47) 
 
 (48) 
 
 The largest terms which enter into the theory are shown in Table XLI, for 
 Arg. TV, and Table XLI for Arg. TV'. The coefficients of the principal terms of 
 each have been derived from the numbers given in Part III. 
 
 TABLE XLIa. 
 COEFFICIENTS FOR FORMING pxqy ; ARG. TV. 
 
 NA 
 
 / JT /' ff' 
 
 
 k 
 
 D'k 
 
 dkldf 
 
 dklBf 
 
 nt 
 
 
 Z ! '* ^1 ^ 
 
 
 
 
 
 VKjUf 
 
 
 i 
 
 I O O O O 
 
 + I.OOOOO 
 
 +-995S 
 
 +.9925 
 
 0.0588 
 
 +9955 
 
 +9955 
 
 2 
 
 2 I O O O 
 
 + 1.091 55 
 
 +.0275 
 
 +.0275 
 
 +04980 
 
 .0000 
 
 +0547 
 
 3 
 
 O I O O O 
 
 +0.008 45 
 
 .0820 
 
 .0815 
 
 14934 
 
 .0000 
 
 .00069 
 
 4 
 
 I 2 O O O 
 
 0.983 i 
 
 +.0004 
 
 +.0004 
 
 +0.0142 
 
 xxwo 
 
 .0004 
 
 5 
 
 2 I O I I 
 
 +1.9168 
 
 +.O002 
 
 +.000 1 
 
 +0.0038 
 
 .0000 
 
 +.0003 
 
 6 
 
 O I O I I 
 
 +0.083 2 
 
 .0004 
 
 .0000 
 
 0.0070 
 
 .0000 
 
 .0000 
 
 7 
 
 I 02 O O 
 
 1.0080 
 
 +.OO2O 
 
 +.OO2O 
 
 +O.OOO2 
 
 +.0980 
 
 .0020 
 
 8 
 
 I 0020 
 
 0.850 4 
 
 .0083 
 
 .0081 
 
 +0.0052 
 
 +.0072 
 
 +0071 
 
MOTION OF THE ECLIPTIC. 
 
 TABLE XLI3. 
 COEFFICIENTS FOR ; ARG. N' . 
 
 7 a it ^.t 
 
 
 
 
 
 No. 
 
 
 n' 
 
 c 
 
 D'c 
 
 Be/Be 
 
 dc/d r 
 
 n'c 
 
 i 
 
 2 
 
 O I I O O 
 I O I O O 
 
 0.0125 
 1.00402 
 
 .0072 
 
 +.0895 
 
 -.0068 
 +.0893 
 
 131 
 .0050 
 
 0.165 
 +1.989 
 
 .0001 
 +.0899 
 
 3 
 
 4 
 
 211 00 
 I O 120 
 
 1-995 56 
 0.8464 
 
 +.00247 
 +.0033 
 
 +.0025 
 
 +.0098 
 
 +.045 
 
 .000 
 
 +0.055 
 +0.068 
 
 +.0050 
 +.0028 
 
 It should be added that the coefficients of the smaller terms show only the order 
 of magnitude in each case, and not the precise numerical value. The latter will be 
 required only in the case of terms found to be sensible. 
 
 The theorem that all the inequalities have, as a coefficient, the motion of the 
 ecliptic during nearly one-sixth the period of the argument will enable us to limit 
 the combinations of the arguments to be considered. 
 
 In the case of any argument N N' containing the Moon's mean longitude, 
 one-sixth the period will never materially exceed 5 days, for which we have 
 
 - = o".oo64 
 
 N 
 
 In none of the terms of this class is there a factor C so large as to bring the coefficient 
 up to o."o5. It follows that all the combinations N =t N' which contain the Moon's 
 mean longitude may be omitted. 
 
 Of the terms which remain none can have a period several times greater than 
 that of the node, for which the ratio K : N = i".5. It follows that no combinations 
 of arguments giving products of coefficients less than o.oi need to be computed. 
 
 Numbering the arguments N as in the first column of the tables, these two rules 
 will be found to leave the following combinations as the only ones to be considered: 
 
 A; + Ay = e jv t + Ay = 2-* - A; - Ay = a/' - e A; + Ay = 2/' - 
 
 Using these numbers the computation of the formulae (43) gives the following 
 values of the coefficients , k M etc., for the argument 9. 
 
 Arg. 
 
 A; - AV 
 A;-A? 
 
 A; + A;' 
 
 Sum 
 
 h 
 
 *. 
 
 fc 
 
 *a 
 
 *. 
 
 *Y 
 
 .000358 
 
 O 
 
 + 0.0891 
 
 + 0.1779 
 
 O.OIO2 
 
 + 1.972 
 
 I 
 
 O 
 
 I 
 
 + .0002 
 
 + .0050 
 
 + .003 
 
 
 
 O 
 
 
 oooo 
 
 + .0002 
 
 .000 
 
 I 
 
 O 
 
 + .0002 
 
 + .0004 
 
 + oooo 
 
 + .013 
 
 
 
 O 
 
 .0002 
 
 oooo 
 
 oooo 
 
 .001 
 
 .000359 
 
 O 
 
 + 0.0889 
 
 + 0.1785 
 
 0.0050 
 
 + 1.987 
 
132 ACTION OF THE PLANETS ON THE MOON. 
 
 It will be remarked that the only accented coefficients are those of the last two 
 lines; and that, as the combined argument 6 II is the only one included in sum- 
 mation, the accented and unaccented a , etc., may all be combined. 
 
 For these numbers we derive by (45) and (46) 
 
 C,= + 0.3157 C, = + 0.0506 C, = - 11.067 
 
 C a = + 0.001393 C t = + 0.000187 c -,= - -49S 2 
 We have from the adopted elements of motion of the ecliptic: 
 * = o". 4 7i 4 n = 173 30' + o'.59(/ - 1850) 
 
 The following are then the results for the argument 0: 
 
 8/ -- o". 44 i cos (0 - II) $7r = - o".oi cos (6 - II) 80 = + i5". 4 5 cos (6 - II) 
 
 (4Q/) 
 8a = - o".ooi945 sin (6 II) Se = o".ooo By = + o".6^i sin (0 - II) 
 
 To these expressions for 8/ , Sir , and 80 are to be added the respective increments 
 fSndt f&v^t and JX7 
 
 arising from substituting the values of 8(= f8a), 8e(= o), and 8y in the ana- 
 lytic expressions for n, TT,, and 0,. 
 
 The value of 8a gives the inequality of n 
 
 BH = |w8ot = o".oo292 sin (6 II) 
 This adds to the mean longitude the inequality 
 
 /= o". 002921; cos (6 II) 
 
 where v is the ratio n:(6 1 Z> ( H) = 248.7. 
 
 The complete inequality of the mean longitude thus takes the coefficient o".285. 
 We have from 27, (74) 
 
 BTT I = (.02283 . 0043387) n 
 
 The substitution of the preceding values of Sot and Sy gives the increments 
 
 &ir l = .00304 sin (6 H) and 8?r = o".'j6 cos (0 II) 
 We find, in the same way, the increment 
 
 80= + o".n cos(0-II) 
 
 The inequalities of /, TT, and 6 now become 
 87= +o". 285 cos (6- H) 87r = -o".77cos(0-n) 80 = + is".s6 cos (6 - II) (50) 
 
 The coefficients of the arguments 2-rr 6 and 2/' 6 seem so small that we leave 
 them out of consideration. 
 
NODAL TERMS. 133 
 
 65. Inequalities arising from the coefficients E and F. 
 
 These inequalities have been considered separately on account of their minute- 
 ness, and on their depending on arguments different from those of the other in- 
 equalities. Some special values of the coefficients E and /''for Venus are given in 
 tabular form in Table XII. In these expressions the axis of X passes through the 
 mean Sun, as in the case of the inequalities depending on the mean longitudes. 
 But, on essaying the computation of the principal inequalities arising from E and 
 F, it was found that a fixed axis of X would be more convenient to use. The ex- 
 pressions were therefore transformed so as to refer them to the Sun's perigee as the 
 initial axis. From the form of the expressions the equations of the transformation 
 for x and y are readily found to be 
 
 x' = x cos g' y sin^' y' = x sing-' + y cos g' 
 
 where the accents refer to the fixed solar perigee. It follows that if 
 E = a cos N + b sin N F= a' cos N+ b' sin N 
 
 be any pair of the terms E and F depending on the argument A, the correspond- 
 ing transformed terms, which we represent by E' and F', will be 
 
 E' = l(a+ b') cos (N+g r ) 4- 1( - b') cos (JV-g f ) 
 
 + l(b- a') sin (N+ g'} + %(b + a') sin (JV- g') 
 
 F' = \(a' - b) cos (N + g 1 ) + \(a' + b} cos (IV -g') 
 
 The transformed expressions thus arising are shown subsequently in Table XLII. 
 As a check against any large accidental error in the development of the coeffi- 
 cients, their approximate values, neglecting the small eccentricities of Venus and 
 the Earth, were also computed by analytic development as follows: Taking the 
 mean radius vector of the Earth as the unit of distance, and putting a for the corre- 
 sponding numerical expression for the radius vector of Venus, the Laplace-Gauss 
 form of development will give 
 
 A- 5 = J23w cos t'L 
 
 L being the difference of the heliocentric longitudes of Venus and of the Earth 
 which we represent for the present by / and /' respectively. 
 
 The expressions for the rectangular geocentric coordinates of Venus will then 
 be, when powers of the eccentricities and inclination are dropped in the development 
 
 X = cos I' + a cos / Y = sin /' 4- a. sin / Z = a sin /sin (/ V ) 
 
 where / is the inclination of the orbit of Venus, and 6 V the longitude of its node, 
 reckoned from an arbitrary fixed origin. Forming the product of the several fac- 
 tors which form E and F, noting that the summation changes from positive to 
 
134 ACTION OF THE PLANETS ON THE MOON. 
 
 negative, changing and transforming the indices so as to reduce the summation to 
 its simplest form, the values of E and F take the following general form: 
 
 - a 2 6 fi+2) ) sin (iL zl' 4- V )} 
 
 sin I 
 F= 2{ -(a6 f <*+ l > - a 2 6 >) cos (iL + <? v ) 4- W +1) - 2 6 ( '+ 2) ) cos (iL - zl' + V )} 
 
 If we put, for brevity 
 
 fi. = J(ot3 e (l ' +1) 2 5 (<) ) sin / /8/ = i(a^ 5 ( ' +l) o 2 3 s (<+2) ) sin / 
 
 we shall have 
 
 E = 2/3. sin (iL 4-0)4- 2/3.' sin (iL zl' + V ) 
 
 F= - 2/3 4 cos (iL 4- V ) 4- 2/3.' cos (iL - zl' 4- 6> v ) 
 
 The numerical values of the coefficients b (i} may be taken from any one of various 
 publications. In Astronomical Papers of the American Epkemeris, Vol. V, Pt. 
 IV, p. 343, are found values of c 5 (i) = 2 (i) for Venus and the Earth, as follows: 
 
 *= o i 2 3 4 
 
 c 5 ( "= 44.88 43.64 40.61 36.52 31.99 
 
 From these we find: 
 
 i = 2 
 fi<5 6 ( '-*- 1) = 15.10 
 
 ft -f- sin 7= 4.95 
 ft'-*-sin/= 3.88 
 
 We thus have the following general expressions for E and /% the axis of X, in the 
 ecliptic, being arbitrary. 
 We use 
 
 sin /= .0592 
 Then 
 
 E= + .293 sin ( zL 4- V ) 4- .229 sin ( zL zl 1 4- V ) 
 + .273 sin (- L 4- V ) 4- .273 sin (- L zl' 4- <? v ) 
 4- .229 sin V + .293 sin ( 2/'4- V ) 
 
 4- .186 sin (L 4- # v ) 4- -291 sin ( L zl' 4- V ) 
 4- .148 sin (zL 4- V ) 4- -274 sin (zL zl' 4- V ) 
 F= .293 cos ( zL 4- V ) 4- -229 cos ( 2Z zl' 4- V ) 
 
 .273 cos ( L 4- V ) 4- .273 cos ( L zl' 4- V ) 
 
 .229 cos V 4- .293 cos ( zl' 4- V ) 
 
 .186 cos (L + V ) + .291 cos (L zl' + V ) 
 
 .148 cos (zL + V ) 4- .274 cos (zL zl' 4- V ) 
 
 Measuring # v from the solar perigee, in longitude 279. 5, we have 
 
 V = 1550.4 P=g' 4-180 
 
 I 
 
 o 
 
 4- i 
 
 4-2 
 
 15-53 
 
 15.10 
 
 14.05 
 
 12.64 
 
 10.91 
 
 11.22 
 
 10.91 
 
 10.15 
 
 4.62 
 
 3 .88 
 
 3-H 
 
 2-51 
 
 4.62 
 
 4-95 
 
 4.92 
 
 4.64 
 
NODAL TERMS. 
 
 135 
 
 The results both of this computation and of the analytic development are shown 
 in tabular form as follows: 
 
 TABLE XLII. 
 
 E AND F FOR THE ACTION OF VENUS. 
 
 Arg. 
 
 
 1 
 
 ? 
 
 
 Arg. 
 
 
 j 
 
 F 
 
 
 T rfl 
 
 CC 
 
 s 
 
 si 
 
 ! 
 
 T rrl 
 
 C< 
 
 >s 
 
 s 
 
 n 
 
 L g 
 
 Num. 
 
 Anal. 
 
 Num. 
 
 Anal. 
 
 L S 
 
 Num. 
 
 Anal. 
 
 Num. 
 
 Anal. 
 
 o o 
 
 +.088 
 
 -4- OO7 
 
 +095 
 
 .OOO 
 + 008 
 
 .OOO 
 
 
 O I 
 
 +.197 
 
 -4- oiJ. 
 
 +.208 
 
 .OOO 
 
 .005 
 
 .OOO 
 
 O 2 
 I 2 
 
 +.124 
 
 +.I2O 
 
 +.122 
 +.121 
 
 +.259 
 
 .252 
 006 
 
 +.266 
 -.264 
 
 O 2 
 I 2 
 j i 
 
 .255 
 .252 
 
 +.Q2O 
 
 -.266 
 -.264 
 
 +.116 
 .113 
 + on 
 
 +.122 
 .121 
 
 I 
 
 +.183 
 
 +.IQI 
 
 +.078 
 
 +.078 
 
 I O 
 
 I I 
 
 +.398 
 
 -4- oio 
 
 +417 
 
 .034 
 008 
 
 .036 
 
 I 2 
 2 2 
 2 I 
 2 O 
 2 I 
 2 2 
 
 +.U3 
 
 +.112 
 +.OIO 
 +.174 
 +.OIO 
 
 +.096 
 
 +.114 
 
 +.114 
 
 +"183 
 
 +.095 
 
 +.237 
 -.236 
 .002 
 +.129 
 +.014 
 +.198 
 
 +.248 
 249 
 
 +Ti32 
 +^208 
 
 I 2 
 2 2 
 2 I 
 2 O 
 2 I 
 2 2 
 
 28 
 
 .236 
 
 +.022 
 +.382 
 +.006 
 .200 
 
 .248 
 249 
 
 +401 
 -^08 
 
 +.104 
 .104 
 -.008 
 -.058 
 -.008 
 +.087 
 
 +.114 
 .114 
 
 -!o6o 
 +.095 
 
 The largest terms arising from E and F are those whose arguments are inde- 
 pendent of the mean longitude of the Moon, Sun, and Earth. These arise from the 
 constant terms of E and F, which are, when referred to the solar perigee 
 
 E= + .088 
 
 = + .197 
 
 The computation of the inequalities arising from this pair of terms will be yet 
 further simplified by taking the node of Venus as the axis of A. By transforming 
 
 to this axis we shall have 
 
 .ZT= .002 F 
 
 We may regard this value of E as evanescent, thus confining the terms we have 
 to determine to the expression 
 
 From the expressions for , 77, and we find the largest terms of the products 
 and their derivatives to be : 
 
 2 = .0895 sin .0039 sin (2/' 6) + .0006 sin (ZTT 6) 
 2Z>'^= .1786 " .0135 " +.0012 " 
 
 ^ = .0137 " +.0006 " +.0218 " 
 
 Be 
 
 - . 089 
 
 
 
 + -014 
 
136 ACTION OF THE PLANETS ON THE MOON. 
 
 27;?= + .0895 COS + .0039 COS (2/' 0) .OO06 COS (27T 0) 
 yrj% = + .1786 " + .0135 " .0012 " 
 
 = + .0137 " .0006 " .0218 " 
 
 Brit 
 
 " +.089 .014 
 
 The resulting terms of H, heretofore omitted, are 
 
 Taking the node of Venus as origin, we have, as shown on p. 135, the following 
 terms of E and F 
 
 E = .285 sin 2/' F= -.216+ -285 cos 2/' 
 
 With these numbers we find for argument 6 
 
 H = .0182 cos D'H= .0348 cos -=r- = .0032 cos 
 
 - d Ji- d Ji- 5H _ 
 
 These derivatives are to be substituted in the fundamental equations (41) and (42), 
 21, and each equation integrated. For the latter process the factor of integration is 
 
 j=- 248.8 
 i 
 
 The product of this into M for Venus ( 17) is i".o55 
 We thus have the following results: 
 
 = + .o6iMcos D^FQ = .o'joMcos -A.A = 2. 24^" cos 
 
 S/ = o".o64 sin 8ir = + ".074 sin 80 Q = -f 2". 36 sin 
 
 ~) , = + .oooi36.fl/"sin D.e= + .ooood.'jMs'm0 D .7 = .loi^Ms'm ' 
 
 *t( v nt it nt * i 
 
 Sa= + o". 000144 cos Be = -f ".000050 cos By = o".io7 cos 
 
 To find the complete inequalities in /, TT, and 6 we must add the respective quantities 
 
 f&ndt 
 
 of which the expressions in terms of 8, 8e, and 8y are formed by 27, Eq. 74. 
 We thus have, dropping unimportant terms, 
 
 = !8ot = o".ooo2i6w cos STT, = o.oi488w o.oo4387 = + o".ooo46w cos 
 &0 l = + .00388^ -f .ooo66&y = .00007 1 M cos ^ 
 
NODAL TERMS. 137 
 
 The completed values of 8/, 8?r, and 80 thus become 
 
 S/ = -f o".054 sin + 8/ = o".oio sin 6 
 
 STT = 0.115 sin & + ^""o = ~ o".O4i sin 6 (52) 
 
 80 = + 0.018 sin 6 + 80 = + 2".38 sin 
 
 in all which expressions 6 is reckoned from the ascending node of Venus. 
 
 The coefficients of the term in 2ir 6 are, for 8y and 80, less than one hundredth 
 those for 0, and the integrating factor v is less than 0.3 as great. The coefficients 
 in 2/' 6 are but a fraction of those in 0, and the integrating divisor is nearly 40 
 times as great. We therefore conclude that the inequalities depending on these 
 arguments are inappreciable. 
 
 66. Action of Mars and Jupiter. In Mars the product J/sin /is about .08 
 that for Venus. I have therefore not computed the terms. 
 
 In the case of Jupiter the largest quantities which enter into the constant part 
 of F are 
 
 -^-=1.26 YZ = \a*ya\I sin 7=0.0231 
 
 Hence 
 
 a'*jF= 1.26 x .02310'= + .000103 
 
 The product io 3 J// r is, approximately, 
 
 For Venus o"-92 For Jupiter + o".i7o 
 
 The inequalities depending on 6 are proportional to this product. We conclude 
 that the inequalities arising from the action of Jupiter may be derived from those 
 of Venus by multiplying the coefficients by 0.185. We thus have, from the 
 action of Jupiter, 
 
 8(9 = - o".43 sin (0 - 0,) 87 = + 0.020 cos (0 - 6,) (53) 
 
 where 0j is the longitude of the ascending node of Jupiter on the ecliptic. The 
 inequalities of the other elements are unimportant. 
 
 67. Combination of terms depending' on the longitude of the Moorfs Node. 
 The inequalities (49), (50), (51), (52), and (53), all depending on the same argument 
 0, may now be combined. We shall do this for the two epochs, 1800 and 1900. 
 The value of II which I have derived in Elements and Constants, p. 186, there 
 
 called Z', is 
 
 n = i732 9 '.7 -f S4'-4^ ( fr om 1850) 
 
 Taking approximate values of the nodes of Jupiter and Saturn, and this value of II, 
 
 we have 
 
 1800 1900 
 
 n 173 2' 1 73 57' 
 
138 ACTION OF THE PLANETS ON THE MOON. 
 
 We take the nodes of Venus and Jupiter as constant, using the values for 1850 
 
 0y = 75-3 9, = 98. 9 
 
 Carrying these values into the inequalities of the elements in question and combin- 
 ing them, we find: 
 
 SI = + o".029 sin o".27i cos 
 STT= o.io sin + 0.80 cos 
 50 = + 2.55 sin 17.33 cos (for 1800) 
 80 =+ 2.31 sin 17.34 cos ^ ' ' ' (* or 1900) 
 &y = o". 1 14 cos 0.769 sin (for 1800) 
 &y = 0.103 cos 0.770 sin (for 1900) 
 
 68. Special computation of the Hansenian Venus-term of long period. 
 The following are the planetary and lunar arguments whose differences make 
 
 up the argument 
 
 i8v i6g-' g 
 of the term in question. 
 
 Planetary Lunar 
 
 (1) l8v l&g-' g 2g' 
 
 (2) 18 17 g g' 
 
 (3) 18 -16 g 
 
 (4) 18-15 ff + g' 
 
 The coefficients h^, h^, etc., are computed by 22 and 23. The planetary 
 coefficients MK, MC, and MD are found in Table X. The lunar coefficients ap, 
 etc., are given in the next chapter, Tables XLVIII and XLIX. For the argument 
 g g' we change the signs of a, e, g and k, as given for the argument g-\-g'. 
 
 I have not computed the coefficients for the argument^ 2g' believing their 
 effect to be insensible. Their characteristic is ee'" 1 = .000050, and, in the principal 
 term of 17, this is in Brown's theory multiplied by a factor of the order of magnitude 
 .04. The largest planetary coefficient being 0.5 -=- io 3 , the value of h^ will be of 
 the order of magnitude i" -=- 10, which would result in a term in 8/ of the order of 
 magnitude o".o2. Actually, the computation shows that the combinations (2) and 
 (4) are also much smaller than (3). 
 
 We have now all the data for computing the coefficients h^, h^,', etc., from 
 the formulae of 22. The results are: 
 
 *.'-- "-5597 - 10 " A., .' = + ".4880 -4-io 6 
 
 h ec ' = .0052 -4- io 3 k e ,'=+ .0047 -4- io s 
 
 h liC ' = .00081 -T- io 3 k, / = .00094 "^ IC>3 
 
 h, c = + .084 -T- io 3 k^ > ,'= + .095 -T- io 3 
 
 The coefficients for y and are much smaller, and are omitted. The coefficients 
 we have given correspond to the argument 
 
 N A r 4 = g + i6g' i8v = A 
 
HANSENIAN INEQUALITIES. 139 
 
 of which the annual motion is 
 
 N = - 4 747".8 
 giving 
 
 " = - 3649 
 We therefore have the following inequalities in I M IT, and e 
 
 S/ = o".oo3 sin A + o".oo3 cos A 
 STT + o .31 sin A o .35 cos A 
 Be = o .019 sin A o .017 cos A 
 
 The term of 8/ is so minute as to be unimportant. For the term in the mean 
 longitude arising from 8 we have 
 
 which gives 
 
 8/= - n".i8cos^ + 9".7Ssin^ = i4".83 sin (A 4855'.2) 
 
 It will be convenient to use the negative of this argument in order that its motion 
 may be positive. We shall therefore write 
 
 8/= i4".83 sin (i8v i6g' g+ 2285s'.2) 
 
 where v is the mean longitude of Venus measured from the earth's perihelion. 
 
 It will be of interest to compare this result with those reached by other investi- 
 gators. The following are arranged in the order of time. Putting 
 
 Z, the mean long, of Venus that of Earth 
 
 M= i8Z + ig' g 
 
 and reducing all results to the mass 1-^408,000 of Venus, there has been found, for 
 the direct action, by 
 
 Hansen* 8/ = 15". 34 sin (M + 229. 2) 
 
 Delaunayf = 16 .34 sin (M+ 228 .5) 
 
 NewcombJ = 14 .80 sin (M -f 229 .5) 
 
 Radau = 14 .14 sin (M+ 229 .o) 
 
 Newcomb (above) = 14 .83 sin (M '+ 228 .9) 
 
 To judge the precision of this value we have to estimate the error to which the 
 development by mechanical quadratures is liable. The circle being divided into 
 60 parts, any coefficient which we have taken as A 18 is really the sum of an infinite 
 series of which the first two terms are A a A i . We have dropped all the terms 
 after the first. From the progression of the coefficients it would seem that the 
 
 * Tables de la Lune, p. 9. t Conn, des Temps, 1862, App., p. 58. 
 
 ^Action of Planets, p. 286. \Inegalitts Planitaires, p. 113. 
 
140 ACTION OF THE PLANETS ON THE MOON. 
 
 ratio A ( : A i+ i is approximately i : 1.26, whence the ratio A w : A& would be about 
 250. The error of the computed term may therefore well be o".o6. It has 
 been only as this work is in press that the author has looked into the possible effect 
 of the slow convergence ; and while it seems likely that the error entering through 
 the coefficients J*C and C will not exceed that just stated, the same may not be true 
 of the coefficient D. 
 
 A quantitative estimate of the correction may be made in various ways; but 
 the author is unable to enter upon the subject in the present work. 
 
 It is also to be noted that the term as above computed contains the effect, what- 
 ever it may be, of the mutual perturbations of Venus and the Earth. A separate 
 computation has been made of the fundamental numbers due to these perturbations, 
 but as the final result of the coefficients amounts to only a fraction of a second, the 
 computation has not been completed. The effect being included in the computed 
 term, a knowledge of its amount is necessary to compare the result with that reached 
 by the ordinary method of development. 
 
 The change in the term as computed is too minute to account for the observed 
 variation of long period in the Moon's mean motion. As the period of this varia- 
 tion seems to be nearly the same as that of the inequality under consideration, the 
 question naturally arises whether the effect of the indirect action may be appreciable. 
 This being the most important question in the lunar theory, a computation of the 
 principal part of the indirect term has been made. The result being altogether un- 
 important, it seems unnecessary to do more than present such a brief statement of 
 the method as will enable the subject to be taken up by another in case the author's 
 conclusion is not well founded. The required perturbations of the Earth by Venus 
 are most easily computed for the case in question by using, instead of the Lagrangian 
 brackets, the corresponding functions of the coordinates. The formulae necessary 
 for the purpose are found in Moulton's Celestial Mechanics, p. 291. The eccen- 
 tricities have been dropped as unnecessary, and attention was confined to the longi- 
 tude elements. The terms dependent upon the action of the planet on the Sun are 
 also dropped, being appreciable only in terms depending on small multiples of mean 
 
 a' 3 
 longitude. The development of -g- used in the computation is that in Action, 
 
 pp. 248-251. The result for the indirect action is 
 
 81= + o".O44 cos A o".036 sin A. 
 This, being added to the terms already found, gives for the entire term 
 
 S/= i4"-77 sin (i8v \6g' g + 228 54') 
 which is the definitive result of the present investigation. 
 
RADAU'S TERMS. 141 
 
 69. The Radau terms oj long -period, Radau has computed certain addi- 
 tional terms of long period due to the action of Venus, with the following results, 
 the arguments being reduced to those adopted in the present work: 
 
 Sv = + o".i40 sin (ITT +g 2ov -f 19^-' + 171) Per. = 34^.8 
 
 -f o .no sin (g 26v + 29g-' + 62) 127.2 
 + o .056 sin (g 2iv + 2ig) 8.35 
 
 + o .019 sin (ir.+ g- 23V -f 24^' + 295) 55. 
 
 + O .016 sin (TT + g I5v + ng' + 219) 71. 
 
 o .012 sin (27r g + 24V 26g' + 159) 58. 
 + o .012 sin (g 23v + 24g-' + 14) 7.6 
 
 + o .008 sin (tr Q+g 23V + 24^+ 101) 28.2 
 
 + o .004 sin (20---f 23V -24^-+ 183) 42. 
 
 + O .003 sin (TT g+ 2IV 2lg' + 288) 148. 
 
 The first three of these terms are the only ones that need be considered for the 
 practical applications of the lunar theory. The third might also be omitted, but is 
 easily computed in connection with the first. 
 
 For all the terms except the second the planetary coefficients A, B, C, and D 
 may be derived with all necessary precision from the special values of these coef- 
 ficients given in Table VII, by the following process. Putting 
 
 let the value of the planetary arguments for which we desire the coefficients be 
 
 N= hL + kg' 
 
 Recalling that the 720 special values of each coefficient, say A, are arranged in 
 12 systems of 60 indices each, the special value of N~ corresponding to they'th sys- 
 tem and the index i will be 
 
 7Vy = 6 x hi+ 30 x kj 
 
 We may mark each special value of A in the same way. The values of the 
 coefficients A c and A, will then be given by the equations 
 
 = 2 AU cos N^ 
 360^4, = 2 Afj sin JV itJ 
 
 The terms of A for the special argument TV will then be 
 
 A = A c cos N+ A t sin TV 
 
 In most cases the computation may be simplified, as in the usual method of 
 executing periodic developments, by adding together in advance the special values of 
 A which are to be multiplied by the same sine or the same cosine. Another method 
 
142 ACTION OF THE PLANETS ON THE MOON. 
 
 may be used in computing these terms by the developments found in Action, 
 Chapter III, 18. Some modification is, however, necessary owing to the circum- 
 stance that in that work the rectangular coordinates are reckoned from a fixed axis 
 passing through the earth's perihelion or the solar perigee, while in the present 
 case the axes pass through the mean sun. It is therefore necessary to use the ex- 
 pressions for the geocentric coordinates of Venus referred to this moving axis, a 
 development which may readily be made from the special values already given 
 for the coordinates of Venus and the sun. It is necessary to transform the table 
 so that the arguments shall be the mean anomaly of Venus instead of its mean 
 longitude because the development for A" 5 which are tabulated on p. 25 of 
 Action have the mean anomaly of Venus as an argument. 
 
 I have applied the method of development from special values to the first term 
 with the following results: 
 
 Planetary Coefficients for Arg. 2OV 2ig' '. 
 
 A C = + -03562 A.= + .00694 
 
 B c =- .02999 B t = - .00583 
 
 C c = .00563 C t = .001 1 2 
 
 D c = + .00634 D . = -3 2 S4 
 
 K e = -f .03280 K t = + .00638 
 
 C e = .00282 C t = .00056 
 
 The lunar portion of the argument is equivalent iD g, of which the indices in 
 Table XL are ( i, o, 2, 2). From the numbers in this table we find for the 
 
 direct action 
 
 7r 2ov + 19^ + 10) 
 
 IT being measured from the earth's perihelion. 
 
 This coefficient is less than that found by Radau ; but the lunar argument is one 
 to which the present method is not well adapted and a redetermination is desirable. 
 
 None of the other Radau terms are completely computed in the present work. 
 Such computations as I have made seem to indicate even smaller coefficients than 
 those found by Radau. 
 
CHAPTER IX. 
 
 PERIODIC INEQUALITIES IN GENERAL. 
 
 70. For convenience we mention the formulae derived in Part I, giving 
 them the special form adopted in the actual numerical work. We recall that the 
 combination of any lunar argument N with a planetary argument N gives rise to 
 two arguments G, N+N^ and N JV 4 . For each argument there are two terms 
 in the D nt of each of the elements, one a cosine term; the other a sine term. We 
 represent the coefficients of these terms for the element a by 
 
 &a,c, ^,. A *,c', and h^ 
 with a similar notation for the remaining elements, 
 
 e, 7 / *> and e o 
 
 except that the coefficients for the angular elements have the negative sign. 
 
 The expressions of these coefficients for the direct action are given in extenso in 
 Part I by the equations (46), (47), (48), (50), and (51). For the indirect action the 
 coefficients are given in (64) and (65), but we may use the equations for direct 
 action by making the substitution indicated in 25 (66), which gives the expres- 
 sions for the sum of the two actions. 
 
 For convenience in computation the coefficients are so used as to give the result 
 in terms of o".ooi as the unit. The numerical values of the planetary coefficients 
 practically used for the purely periodic inequalities are these 
 
 K t ' = \MK c - m*G c ) CJ = io\(\MC c + </J A' = 3 (MD e + VJ 
 
 with corresponding values of Kj, C s ', and D,'. 
 
 Since each combination of a lunar with a planetary argument gives rise to two 
 combined arguments, one equal to their sum the other equal to their difference, 
 the coefficients relating to the latter are distinguished by accents. 
 
 The numerical values of the planetary coefficients, as derived from the numbers 
 of Part II, and just defined, are shown in the following tables. 
 
i 4 4 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 Values of the Planetary K' -Coefficients, Combining Direct and Indirect Action. 
 
 TABLE XLIII. 
 ACTION OF VENUS. 
 
 Arg ^ 
 
 v, g 1 
 
 K: 
 
 c; 
 
 D: 
 
 *: 
 
 c. f 
 
 D: 
 
 12 
 
 0.61 
 
 o'tf 
 
 O.O2 
 
 o!ii 
 
 It 
 
 .00 
 
 0.46 
 
 I I 
 
 +25.04 
 
 10.73 
 
 +35-66 
 
 +0.03 
 
 .01 
 
 0.05 
 
 I O 
 
 + 2.44 
 
 0.52' 
 
 + 2.31 
 
 O.O2 
 
 +.03 
 
 0.04 
 
 2 4 
 
 - 0.68 
 
 O.O2 
 
 + 0.61 
 
 O.O6 
 
 -.06 
 
 0.12 
 
 2 3 
 
 + 6.53 
 
 - 1-74 
 
 +20.01 
 
 + I.2I 
 
 47 
 
 4-33 
 
 22 
 
 29-33 
 
 + 8.77 
 
 52.76 
 
 +0.25 
 
 .12 
 
 0.27 
 
 21 
 
 349 
 
 + 0.50 
 
 3-29 
 
 O.O2 
 
 +.03 
 
 0.08 
 
 3-6 
 
 0.31 
 
 + O.O2 
 
 + 0.28 
 
 0.24 
 
 +.02 
 
 O.22 
 
 3-5 
 
 0.94 
 
 + 0.15 
 
 + 6.54 
 
 0.61 
 
 +.15 
 
 5.29 
 
 34 
 
 +10.08 
 
 3.25 
 
 + 12.11 
 
 +2.25 
 
 -.69 
 
 2.69 
 
 3 3 
 
 + 4-64 
 
 1-99 
 
 12.92 
 
 +0.19 
 
 03 
 
 0.16 
 
 4-6 
 
 + 0.61 
 
 O.2O 
 
 + 0.85 
 
 +0.53 
 
 -.19 
 
 0.76 
 
 4 - 5 
 
 + 0.68 
 
 + 0.03 
 
 2.19 
 
 +0.05 
 
 .00 
 
 + 0.40 
 
 4 4 
 
 + 7-1 1 
 
 2.38 
 
 9-72 
 
 O.O2 
 
 +.01 
 
 + 0.08 
 
 5 -8 
 
 + O.I2 
 
 0.04 
 
 + 0.71 
 
 +0.17 
 
 -.05 
 
 1.04 
 
 5-7 
 
 043 
 
 + 0.16 
 
 - o.8S 
 
 0.36 
 
 +.12 
 
 + 0.78 
 
 5 -6 
 
 + 0.82 
 
 0.23 
 
 - 1.36 
 
 +0.09 
 
 -.06 
 
 + 0.37 
 
 5-5 
 
 + 840 
 
 2.43 
 
 7-39 
 
 
 
 
 6-9 
 
 + O.O2 
 
 O.OI 
 
 O.O2 
 
 +0.03 
 
 .01 
 
 + 0.03 
 
 6-8 
 
 + 0.18 
 
 0.06 
 
 0.16 
 
 +0.14 
 
 .05 
 
 + O.I2 
 
 6-7 
 
 + 1.19 
 
 0.28 
 
 O.I I 
 
 +0.24 
 
 -.06 
 
 + 0.21 
 
 6-6 
 
 + 7.32 
 
 1.86 
 
 - 6.64 
 
 o.oo 
 
 .00 
 
 0.00 
 
 7-9 
 
 + 0.18 
 
 0.05 
 
 0.16 
 
 +O.I2 
 
 .04 
 
 + O.II 
 
 7-8 
 
 + 1.13 
 
 0.24 
 
 O.II 
 
 -j-O.22 
 
 -.05 
 
 + 0.21 
 
 7-7 
 
 + 6.25 
 
 1.42 
 
 - 5-79 
 
 0.00 
 
 .00 
 
 0.00 
 
 8 -13 
 
 0.0045 
 
 + 0.003 
 
 1.289 
 
 +O.o66l 
 
 .022 
 
 15.92 
 
 NOTE. The units in these tables are o".ooi. 
 
PLANETARY COEFFICIENTS. 
 
 TABLE XLIV. 
 ACTION OF MARS. 
 
 Arg. 
 M . g* 
 
 *7 
 
 c> 
 
 D: 
 
 K: 
 
 CY 
 
 D: 
 
 I I 
 I 
 
 0.78 
 
 + 0.18 
 
 +0.13 
 -0.31 
 
 + 2.34 
 + 0.32 
 
 a 
 
 O.OI 
 
 +0.08 
 
 +.01 
 +.01 
 
 II 
 
 0.05 
 0.27 
 
 2 2 
 2 I 
 
 11.70 
 - 0.45 
 
 +3-97 
 +0.38 
 
 +17.04 
 
 -11.08 
 
 +0.34 
 0.63 
 
 .01 
 
 +.24 
 
 +0.26 
 
 +8.80 
 
 3 3 
 3 2 
 
 + 1.38 
 + 0.8 1 
 
 0.43 
 
 0.25 
 
 0.95 
 2.44 
 
 +0.16 
 +0.89 
 
 J02 
 
 27 
 
 +0.15 
 +2.69 
 
 4 4 
 4 3 
 4 2 
 
 + 0.66 
 + 1.86 
 
 0.12 
 
 0.17 
 0.60 
 
 +O.OI 
 
 O.2O 
 2.Q4 
 0.50 
 
 +O.22 
 + 1.84 
 
 +0.59 
 
 .04 
 
 -.64 
 
 -25 
 
 +O.2I 
 
 +3-05 
 4.90 
 
 5 4 
 5 3 
 
 0.52 
 
 + 0.04 
 
 +0.18 
 
 0.02 
 
 + 0.34 
 0.19 
 
 -0.68 
 0.47 
 
 +.21 
 
 +.15 
 
 0.48 
 -1-73 
 
 6 -5 
 6 -4 
 6 -3 
 
 O.22 
 
 + 0.04 
 + 0.15 
 
 +0.07 
 
 O.O2 
 0.05 
 
 0.03 
 
 O.I I 
 
 + 0.69 
 
 0.33 
 0.74 
 0.08 
 
 +.09 
 
 +.25 
 
 +.05 
 
 0.06 
 
 1-34 
 +0.50 
 
 IS -9 
 IS -8 
 
 + O.I I 
 
 + 0.04 
 
 O.O2 
 O.O3 
 
 0.13 
 
 1-55 
 
 0.15 
 
 O.OO 
 
 +.04 
 
 +.01 
 
 0.25 
 0.70 
 
 TABLE XLV. 
 ACTION OF JUPITER. 
 
 Arg. 
 
 J, S' 
 
 K: 
 
 c: 
 
 *>: 
 
 A'/ 
 
 c-: 
 
 D: 
 
 + 1 -2 
 
 4-25 
 
 + o'-72 
 
 + 4-20 
 
 072 
 
 +o."i9 
 
 043 
 
 + 1 -I 
 
 -41.87 
 
 +12.87 
 
 +61.07 
 
 1.53 
 
 +0.28 
 
 1.67 
 
 + 1 
 
 + 1.45 
 
 + O.2I 
 
 + 2.08 
 
 +1.35 
 
 0.12 
 
 21.72 
 
 +2 -3 
 
 + 2.OI 
 
 0.41 
 
 - 1.98 
 
 O.2O 
 
 +O.O2 
 
 + O.IO 
 
 +2 -2 
 
 +30.81 
 
 - 8.39 
 
 -17.37 
 
 +0.38 
 
 O.o6 
 
 + 0.35 
 
 +2 -I 
 
 + 7-86 
 
 - 2.88 
 
 12.22 
 
 +3.26 
 
 0.94 
 
 + 5-29 
 
 +2 
 
 0.21 
 
 0.04 
 
 + 0.53 
 
 O.I4 
 
 O.OI 
 
 + 0.17 
 
 +3 3 
 
 + 4-53 
 
 0.63 
 
 10.71 
 
 0^0 
 
 +0.08 
 
 0.39 
 
 +3 -2 
 
 0.15 
 
 + 0.06 
 
 + 0.18 
 
 5-93 
 
 +1.67 
 
 3-69 
 
 +3 -i 
 
 + 0.24 
 
 0.08 
 
 0.40 
 
 0.97 
 
 +0.38 
 
 - 1.67 
 
 TABLE XLVI. 
 ACTION OF SATURN. 
 
 Arg 
 
 s, g 1 
 
 K: 
 
 c: 
 
 D; 
 
 K: 
 
 c.' 
 
 D: 
 
 I I 
 I 
 
 246 
 
 +O.OI 
 
 +o&3 
 +ox>3 
 
 +348 
 2.64 
 
 0.03 
 
 +O.OI 
 
 +o'.oi 
 
 O.OI 
 
 0.03 
 0.50 
 
 2 2 
 
 2 I 
 
 +1-33 
 +0.66 
 
 0.33 
 0.23 
 
 -I-S7 
 0.94 
 
 O.OO 
 +O.O2 
 
 O.OO 
 0.01 
 
 O.OO 
 
 +0.05 
 
146 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 71. The lunar coefficients fall into two classes, one determining the elements 
 a, e, and y and called, for brevity, the a-coefficients; the other determining /, TT, 
 and 0, and called the Z-coefficients. Those of the first class are computed by 
 the formulae of 20 and 22 ; those of the second class by the formulae of 23, 
 Eq. (50). In the computation we write k for 4 . 
 
 The a-coefficients are the nine products of the factors a, e, and g defined in 22, 
 Eq. 43, into p, y, and k. 
 
 From 22, (46) to (48), it will be seen that by using the planetary factors in the 
 form just given and taking the a-coefficients 
 
 a<7, 
 
 etc. 
 
 the coefficients of the terms of D Rt (a., e, and y) will each be the sum of three prod- 
 ucts of two factors each. But the quantities we actually compute are the values 
 of 2e and zSy. We therefore double the coefficients for 8e and Sy, using 
 
 2eg, 
 
 and gk 
 
 We have also multiplied the inequalities of TT and 6 by the factors 2e and 2y, 
 required to reduce them to inequalities of the actual longitude and latitude. To do 
 this we take for the nine Z-coefficients 
 
 L', L", 
 
 2cP", eP 
 
 t 
 
 Each of the coefficients to form a term of D nt l w 2eD, tl ir or 2yD nl 6 t> will then be 
 the sum of three products formed by taking one factor from one of the Tables XLIII 
 to XLVI, and the other from Table XLIX, the product Z>'Z 4 being divided by 2. 
 
 TABLE XLVII. 
 DATA FOR a-coEFFiciENTs. 
 
 Arg. 
 ***.* 
 
 Arg. 
 
 i i' i" 
 
 a 
 
 e 
 
 g 
 
 o o o o 
 
 
 
 000 
 
 0.0000 
 
 oo.oooo 
 
 00.0000 
 
 O I O O 
 
 g' 
 
 O O 
 
 o.oooo 
 
 00.0000 
 
 oo.oooo 
 
 I I O O 
 
 g-ff 
 
 I I O 
 
 +2.0529 
 
 +19-137 
 
 00.0029 
 
 I O O O 
 
 g 
 
 I I 
 
 +2.0529 
 
 +19.137 
 
 00.0029 
 
 I I O O 
 
 g+e' 
 
 I I 
 
 +2.0529 
 
 +19.137 
 
 00.0029 
 
 2 O O O 
 
 2g 
 
 2 2 O 
 
 +4.106 
 
 +38.274 
 
 00.0058 
 
 2 O 2 2 
 
 2n2g 
 
 O 2 
 
 0.0602 
 
 38.307 
 
 00.0400 
 
 I O 2 2 
 
 2Dg 
 
 I I O 
 
 +1.9927 
 
 19.170 
 
 00.0429 
 
 O 022 
 
 2D 
 
 2 O O 
 
 +4.0456 
 
 00.0336 
 
 00.0458 
 
 I 022 
 
 2D+g 
 
 31 
 
 +6.098 
 
 +19.103 
 
 00.0487 
 
 O I 2 2 
 
 20 g" 
 
 200 
 
 +4.046 
 
 00.0336 
 
 00.0458 
 
 O I 2 2 
 
 20+g' 
 
 2 O O 
 
 +4.046 
 
 00.0336 
 
 00.0458 
 
 I O 2 
 
 2\-g 
 
 I I 2 
 
 +1.978 
 
 19-175 
 
 +11.0971 
 
 O 2 O 
 
 2\ 
 
 2 O 2 
 
 +4.0306 
 
 00.0388 
 
 +11.0942 
 
 1020 
 
 2\+g 
 
 3 i 2 
 
 +6.083 
 
 +19.098 
 
 +11.0913 
 
 O O O 2 
 
 2\' 
 
 O O 2 
 
 +0.015 
 
 0.005 
 
 +11.140 
 
VALUES OP THE LUNAR COEFFICIENTS. 
 
 TABLE XLVIII. 
 LUNAR H-COEFFICIENTS FOR a, e, AND 7-. 
 
 Arguments. 
 
 a/ 
 
 zq 
 
 y^k 
 
 e# 
 
 e? 
 
 y^k 
 
 st 
 
 g? 
 
 y*& 
 
 g, g'^ * 
 
 /, 1C, 9, g' 
 
 o o o o 
 
 O O O 
 
 
 
 o 
 
 o 
 
 o 
 
 o 
 
 
 
 o 
 
 o 
 
 o 
 
 I O O 
 
 + 1 I 
 
 0.032 09 
 
 .11147 
 
 0.034 8 1 
 
 0^299 i 
 
 1.039 i 
 
 0.324 6 
 
 +.00005 
 
 +.00016 
 
 +.00005 
 
 2 O O 
 
 +22 
 
 0.005 13 
 
 +.00197 
 
 0.004 99 
 
 0.047 84 
 
 +0.018 37 
 
 0.046 50 
 
 +.OOO OI 
 
 o 
 
 +.OOOOI 
 
 I I O 
 
 -I +1 +1 
 
 +0.000 13 
 
 .00073 
 
 +0.00008 
 
 +0.001 24 
 
 0.006 79 
 
 +0.00077 
 
 o 
 
 o 
 
 o 
 
 I I O O 
 
 + 1 -I +1 
 
 0.001 39 
 
 +.00056 
 
 0.001 38 
 
 O.OI2 92 
 
 +0.005 26 
 
 0.01282 
 
 o 
 
 o 
 
 o 
 
 r 020 
 
 + 1 +1 2 
 
 o.ooo 04 
 
 .00032 
 
 +O.OOO IO 
 
 +0.000 38 
 
 +0.003 17 
 
 0.00096 
 
 .00022 
 
 .00178 
 
 +.00056 
 
 O O 2 O 
 
 +2 O 2 O 
 
 o.ooo 77 
 
 +.024 10 
 
 0.00077 
 
 +O.OOO OI 
 
 o.ooo 23 
 
 +0.000 01 
 
 .002 II 
 
 +.06634 
 
 .002 1 1 
 
 I O 2 O 
 
 +3 I 2 
 
 0.00006 
 
 +.00199 
 
 0.00006 
 
 o.ooo 19 
 
 +0.00630 
 
 0.000 19 
 
 .000 1 1 
 
 +.00366 
 
 .000 1 1 
 
 2 O 2 2 
 
 0+2 O 2 
 
 o.ooo 235 
 
 .000 054 
 
 o.ooo 216 
 
 O.I49 20 
 
 0.034 28 
 
 0.13790 
 
 xioo 16 
 
 .00004 
 
 .000 14 
 
 I O 2 2 
 
 + 1 +1 2 
 
 0.16243 
 
 .018 53 
 
 0.162 95 
 
 +1.562 6 
 
 +0.1783 
 
 +1.5675 
 
 +.003 So 
 
 +.00040 
 
 +.003 51 
 
 O O 2 2 
 
 +2 O O 2 
 
 +1.9949 
 
 .028 26 
 
 +1.99470 
 
 0.016 56 
 
 +0.000 23 
 
 0.016 56 
 
 .02258 
 
 +.00032 
 
 -.02258 
 
 I O 2 2 
 
 +3 +1 -2 
 
 +0.1660 
 
 .001 28 
 
 +0.1660 
 
 +0.519 98 
 
 0.004 01 
 
 +0.51998 
 
 .00132 
 
 +.OOOOI 
 
 .00132 
 
 I 22 
 
 +2 O O I 
 
 0.00643 
 
 +.00006 
 
 0.006 41 
 
 +0.000 05 
 
 35 * 10" 
 
 +0.00005 
 
 +.0^007 
 
 68y-!-io 
 
 +.00007 
 
 O I 22 
 
 2 O O 3 
 
 +0.00651 
 
 .00012 
 
 +0.006 35 
 
 0.00005 
 
 708 -s- io 9 
 
 0.000 05 
 
 .oo< > 07 
 
 i37-;-io 8 
 
 .00007 
 
 O O 2 
 
 O O 2 +2 
 
 +297-t-io 7 
 
 63 -no 1 
 
 297-j-io 7 
 
 99-t-lo' 
 
 + 2I-S-IO 7 
 
 +99-*-io 7 
 
 +.02206 
 
 .00468 
 
 .02206 
 
 TABLE XLIX. 
 
 LUNAR Z.-COEFFICIENTS FOR /, n, AND 0. 
 
 Arguments. 
 
 L' 
 
 L" 
 
 L> 
 
 *eP' 
 
 2eP" 
 
 eP, 
 
 ifR 
 
 2 r J?" 
 
 r^ 
 
 g, s' i, i 
 
 /, ff, e, ff ' 
 
 o o o o 
 
 I O O O 
 2 O O O 
 I I O O 
 O I O O 
 I I O O 
 I O 2 O 
 O O 2 
 I O 2 
 2 22 
 I O 22 
 O O 2 2 
 I O 2 2 
 2022 
 I I 2 2 
 O 22 
 I 22 
 I 2 2 
 22 
 I 22 
 I O O 2 
 O O 2 
 I O O 2 
 2 I 2 2 
 2 I 2 2 
 
 o o o o 
 
 + 1 I 
 +2 2 O O 
 -I +1 4 
 O O O +1 
 + 1 -I +1 
 + 1 +1 2 
 +2 O 2 O 
 
 +3 I 2 o 
 
 0+2+02 
 + 1 +1 O 2 
 +2 O O 2 
 +3 I 2 
 +4 I 2 
 + 1 +1 -I 
 +2 O O I 
 
 +3 -i o -i 
 + 1 +1 3 
 2 O O 3 
 
 0.08204 
 
 0.123 05 
 0.010 05 
 0.000 32 
 0.005 454 
 -0.005 59 
 0.00009 
 0.00099 
 o.ooo 16 
 +0.013 67 
 0.302 23 
 +1.09222 
 +0.10262 
 
 +0.005 12 
 
 0.003 614 
 0.00922 
 0.001 58 
 +0.001 810 
 +0.00943 
 
 +O.OO2 27 
 O.OOO 1 1 
 
 +0x05 65 
 0.00037 
 o.ooo 019 
 
 +O.OOO IOI 
 
 +2.004 31 
 0.199 14 
 
 +O.OO2 48 
 
 0.003 16 
 +0.001 241 
 
 +O.OO2 42 
 +0.000 1 1 
 
 +0.01775 
 
 +0.001 OS 
 
 +0.00684 
 
 O.070 22 
 
 0.076 97 
 0.002 34 
 
 O.OOOII 
 
 o.ooo 172 
 +0.000 94 
 
 +0.000 OI 
 
 0.003 176 
 0.004 14 
 o.ooo 15 
 0.00007 
 o.ooi 69 
 0.000 95 
 +0.000 130 
 0.000006 
 
 
 0.11635 
 +0.595 03 
 +0.077 07 
 o 
 0.004 743 
 +0.02651 
 
 0.181 96 
 +2.05609 
 +0.057 30 
 +0.006 73 
 o.ooi 172 
 0.00039 
 +0.024 25 
 +0.003 15 
 0.008 24 
 0.06908 
 +0.36088 
 
 +O.O22 69 
 +O.OO7 90 
 
 
 GO"? 8^ 
 
 +135 12 
 .012 85 
 
 
 0.27507 
 
 0.019 74 
 +0.002 44 
 0.014 128 
 0.01086 
 +0.00038 
 0.00203 
 o.ooo 32 
 
 +0.02351 
 
 0.612 74 
 +3-984 14 
 +0.205 24 
 +0.010 24 
 0.007 273 
 0.018 40 
 0.003 16 
 +0.003 66 1 
 +0.01866 
 +0.004 54 
 
 O.OOO 22 
 
 o.on 29 
 
 +0.00090 
 
 o.ooo 207 
 +0.000 224 
 
 +0.6404 
 +0.072 8 
 
 .00246 
 .000 oi 
 
 .00250 
 .00004 
 
 
 0.00653 
 +0.027 o 
 
 .000073 
 
 +.000041 
 
 .00012 
 
 
 +.014 50 
 
 13790 
 
 .00490 
 
 +XXJOOI 
 
 .001 36 
 .010 28 
 
 
 +O.OOO 02 
 
 +O.O0002 
 
 +.00433 
 
 +.00378 
 
 0.29875 
 +3-11720 
 +0.298 oo 
 1.027 38 
 0.11462 
 +0.015 989 
 
 +0.000 02 
 
 +0.006 73 
 0.009992 
 o.ooo 02 
 0.008 927 
 
 -0.275 19 
 +3-1 17 4 
 +0.2981 
 1x1273 
 0.1146 
 +0.015 785 
 
 +XWOO4 
 .00500 
 +.045 17 
 +.00180 
 
 +.OOO OI 
 
 .000003 
 
 +.00004 
 .005 03 
 
 +045 14 
 +.001 75 
 
 +.00001 
 
 .000002 
 
 
 
 
 
 +0.0063 
 
 O.OIO I 
 O.OOOO2 
 0.0088 
 
 
 
 
 +O.OI5 462 
 +O.OOOOI 
 0.00464 
 
 +.000 002 
 
 XXX) OO3 
 
 +.000 ooi 
 
 
 
 
 3 i o 3 
 
 I +1 2 +2 
 02+2 
 + 1 I 2 +2 
 
 
 
 
 0.000 23 
 
 +0.000 04 
 
 +O.OOO 22 
 
 -.04875 
 
 +.00885 
 
 +.04880 
 
 +0.000 915 
 0.002 797 
 
 0.002766 
 0.000042 
 
 +0.002 976 
 0.002966 
 
 o 
 o 
 
 o 
 o 
 
 o 
 o 
 
 
 
148 ACTION OF THE PLANETS ON THE MOON. 
 
 72. From these two tables the four coefficients for each element are formed by 
 the following computation, an adaptation of (46) to (51) 
 
 The inequalities of e have received the factor 2, and those of TT the factor 2e in 
 order to transform them into the principal terms of the true longitude without 
 further multiplication. 
 
 Two other points which may be recalled are these: (i) We use k instead of K t 
 in the formulae; (2) it is to be recalled that C c ' and C,' contain only ^C, as that 
 symbol is used in Part I. 
 
 Element a. 
 , = *>.# - C,'ag 2 = - JT'a/ + C^q 
 
 Element e 
 y *, = - 2/T/e/ 
 
 Element y 
 
 Element / 
 \ = K c 'L'-C c 'L" \ = X i 
 
 h lt c = \- \D:L, h lt / = x, 
 
 + \ *i. / = i 
 
 Element TT O 
 
 - \ 
 
 - 2 C'eP" 
 
 = TT, - D.'eP t 
 = D c 'eP t + 7r 2 
 
 Element 6 
 
 In the exceptional cases when one of the constituent factors of either class, 
 planetary or lunar, is a constant, there will be a merging of the accented and unac- 
 cented arguments and terms. 
 
PERIODIC INEQUALITIES IN GENERAL. 149 
 
 For the case JV = o, a, e and g all vanish, and we have 
 
 A ( = A/ = A,7 = o = o 
 
 while (49) of 23 may be written 
 
 - DJ. = (tK.'LJ -2C c 'L a ") cos 7V 4 + (iK.'LJ - 2C.'L 9 ") sin N t 
 We have, therefore, in this case, only to double the values of the Z-coefficients 
 for argument o. 
 
 In the combination of a constant planetary factor (7V 4 = o)Vith a periodic lunar 
 factor we may use, instead of (46) 
 
 Then 
 
 Sa = vh^ , cos N 
 
 with similar equations for e and y, formed by writing e and g for a. We also have, 
 instead of (51) 
 
 Then 
 
 8/ = - vh lc> sin N 
 
 with similar equations for IT and 6. 
 
 As neither D nor /has a constant term, there are only cosine-terms of this class 
 in a, e, and y, and only sine-terms in /, TT, and 0. 
 
 From these coefficients for the D nt of the elements we have those for the ele- 
 ments themselves by multiplication by the integrating factor v. The motion of the 
 
 lunar argument is 
 
 in + i'ir l + t"0 l + jn' = N 
 
 and that of the planetary argument 
 
 k'n' + kn t = N 4 
 We compute 
 
 I 
 
 v = 
 
 Then the coefficients which we compute are 
 
 . = Vk a,c = - "/',, .' = "'^, ' / = - V 'kJ 
 
 2e,' = 2v'h etC ' 2e c ' = - 2v'/i ti , f 
 
 27, = 2v/l yiC 2J C = 2V/l y> , 2y,' = 2v'k yc ' 
 
 r s = i/ x 
 T r = -f- 1/ x 
 
 with similar forms for when required, 
 
150 ACTION OF THE PLANETS ON THE MOON. 
 
 The inequalities of the elements are then 
 
 SI = l c cos (N+ N,} + 1. sin (N + N^ + // cos (N- JV t ) + // sin (N - 1VJ 
 
 STT = 7T C " + TT. " +7T/ " + IT.' " 
 
 $0 = e c " + e. " + <?' " + e.' " 
 
 A similar computation was made for y and 0; but the results were unimportant in 
 all but one of the arguments. 
 
 73. The motions of the arguments from which the integrating factors v or v 
 are to be computed are the following. The sidereal motion for a Julian year is 
 given in revolutions for the lunar, and in seconds for the planetary arguments. 
 Then follows the ratio of each to the mean motion of the Moon. 
 
 Motions of Arguments. 
 
 Mot. in 365 d .25 n 
 
 ;".= i3'-255 523 0.9915452 
 
 /; = 13 .368 513 i. 
 
 TT ;?!,= 0.112990 0.0084518 
 
 ; 1 = o .053 765 0.004 021 8 
 
 Venus 2106 64i".38 0.121 5913 
 
 Earth 1295 977 .43 0.074 8013 
 
 Mars 689 050 .9 0.039 777 
 
 Jupiter 109 256 .6 0.006 3061 
 
 Saturn 43 996 .2 0.002 5394 
 
 The elemental inequalities computed from these formulae are shown in tabular 
 form on the following pages. On making the computation it was found that the 
 coefficients for a were so minute that no terms in the parallax would need to be 
 considered, and only in some exceptional cases, generally terms of long period, did 
 the inequality of y affect the longitude. The coefficients for these elements are 
 therefore omitted in the tables of longitude elements. The given coefficients are 
 those for the mean longitude, 8/, 280, e8ir. It must be remembered that the accented 
 e' and ir' do not refer to solar elements, but designate only the coefficients depending 
 upon the differences between the lunar and the planetary arguments, while the 
 unaccented coefficients depend upon their sum. 
 
 It was also found that the inequalities of y and 6 were insensible in nearly all 
 cases. The few terms of these elements found to be sensible are therefore given 
 separately. 
 
 74. Terms -with purely Lunar Arguments. We here make a single com- 
 putation for the combined action of all the planets. To include the effect of the 
 indirect action, we have only to modify the values of MK, etc., as indicated in (66). 
 
INEQUALITIES OF ELEMENTS. 151 
 
 Then, from the values of the constant term already given for the four principal dis- 
 turbing planets in 54 we find 
 
 io'2y]/^T = + 6".o7o io s I.MC -- 5".76 
 
 - io 3 w 2 = - 0.459 loW/, = + 0.153 
 
 lo 3 /^' = + 5.611 io 3 C ' = 2.727 
 
 For the terms in question we now have, for each lunar argument 
 
 and 
 
 the terms in y and 6 being omitted as unimportant. 
 
 The inequalities of / , e, and IT may now be computed as in 26 and 27. The 
 most condensed formulae of computation are 
 
 ioV -- 
 
 The elemental inequalities then are 
 
 SI = / t sin TV e&ir = eir i sin TV Se = e e cos TV 
 
 The results of this computation for the only terms which I have found to give 
 any appreciable result are, in units of o".ooi; 
 
 Arg. 
 
 g 
 ?,D2g 
 
 2Z>* 
 
 The only corrections of the true longitude to be considered are the following 
 to the evection and variation. 
 
 I0 3 /. 
 
 I0e c 
 
 icfeir. 
 
 3-8 
 
 - 9 .0 
 
 - 9 .0 
 
 + 1.5 
 
 + 14.0 
 
 -I 3 .6 
 
 + 8.2 
 
 + 21.6 
 
 -21.5 
 
 22. 
 
 O.I 
 
 - 0.9 
 
 + 0.4 
 
 + 2.O 
 
 + 2.0 
 
 sn 2 
 
 o".O2i sin 2D. 
 
 75. Elemental Inequalities. The miscellaneous inequalities of the mean 
 longitude, the eccentricity and the perigee, as given by the preceding formulae and 
 data, are tabulated in the following pages. 
 
 It may be repeated that the mean longitudes, v, M, j, and s, are measured from 
 the solar perigee. 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 Periodic Elemental Inequalities in Units of o,"ooi. 
 TERMS INDEPENDENT OF THE LUNAR ARGUMENTS. (1V= o.) 
 
 Action of Venus. 
 
 Action of Mars. 
 
 Arg. 
 
 V 
 
 I. 
 
 I. 
 
 2<?7T t 
 
 1<?7T. 
 
 Arg. 
 
 V 
 
 I. 
 
 '. 
 
 2r. 
 
 2r. 
 
 V 
 
 + 8.22 
 
 - 14 
 
 i 
 
 + 6 
 
 O 
 
 M 
 
 + 25.1 
 
 30 
 
 i 
 
 + 4 
 
 o 
 
 v-/ 
 
 + 21-37 
 
 -831 
 
 + i 
 
 +208 
 
 
 
 M-Z- 
 
 28.6 
 
 II 
 
 + I 
 
 + 7 
 
 
 
 V 2/ 
 
 35-70 
 
 + 56 
 
 i 
 
 
 
 I 
 
 2*1 g" 
 
 +2II.O 
 
 +308 
 
 -181 
 
 -48 
 
 +49 
 
 2V 2^ 
 
 + 10.69 
 
 +324 
 
 + 5 
 
 107 
 
 I 
 
 2VL2& 
 
 - 14.27 
 
 200 
 
 
 
 +60 
 
 
 
 2V 3^ 
 
 + 53-25 
 
 -314 
 
 + 90 
 
 +114 
 
 -24 
 
 3M 2g 
 
 33-o 
 
 + 29 
 
 - 3i 
 
 9 
 
 + 10 
 
 2V 4^ 
 
 - 17-85 
 
 + 3 
 
 4 
 
 + 3 
 
 O 
 
 3M-3^ 
 
 9-5 
 
 + 14 
 
 
 
 4 
 
 o 
 
 3V 3^ 
 
 + 7-12 
 
 - 5i 
 
 + i 
 
 + 13 
 
 o 
 
 4M 2g' 
 
 + 105-5 
 
 + 2 
 
 + 95 
 
 3 
 
 -24 
 
 3V-4S' 
 
 + 15.25 
 
 173 
 
 + 36 
 
 + 54 
 
 12 
 
 4M 3^ 
 
 - 15-3 
 
 + 32 
 
 35 
 
 10 
 
 + 10 
 
 SV-Sg" 
 
 -108.3 
 
 -48 
 
 + 54 
 
 + 30 
 
 21 
 
 SM 3g' 
 
 39-1 
 
 + 23 
 
 20 
 
 i 
 
 - 6 
 
 SV-Sg" 
 
 +105 
 
 15 
 
 + 18 
 
 + 4 
 
 - 6 
 
 ISM-Sg' 
 
 540.5 
 
 + 39 
 
 + 22 
 
 9 
 
 2 
 
 8v-i3/ 
 
 +310-4 
 
 + 16 
 
 +246 
 
 - 5 
 
 -74 
 
 
 
 
 
 
 
 Action of Saturn. 
 
 Action of Jupiter. 
 
 Arg. 
 
 V 
 
 I. 
 
 '. 
 
 ar. 
 
 2/r. 
 
 Arg. 
 
 V 
 
 t. 
 
 1. 
 
 2en g 
 
 27r c 
 
 S 
 
 + 39-4 
 
 + 48 
 
 + 16 
 
 4 
 
 o 
 
 J 
 
 +1586 
 
 + 171 
 
 + 41 
 
 + 4i 
 
 57 
 
 s-s- 
 
 - 13-8 
 
 40 
 
 
 
 + ii 
 
 o 
 
 1-* 
 
 - 14.6 
 
 652 
 
 + 13 
 
 +2IO 
 
 7 
 
 25 g' 
 
 14-3 
 
 + " 
 
 i 
 
 - 3 
 
 
 
 1-of 
 
 7-0 
 
 15 
 
 + 4 
 
 + 9 
 
 2 
 
 252? 
 
 - 6.9 
 
 + 8 
 
 o 
 
 - 3 
 
 o 
 
 2}~g' 
 
 16.1 
 
 +165 
 
 - 52 
 
 -46 
 
 -18 
 
 
 
 
 
 
 
 2}2g' 
 
 7.30 
 
 +208 
 
 i 
 
 - 74 
 
 i 
 
 
 
 
 
 
 
 2J3g' 
 
 4-7 
 
 + 6 
 
 o 
 
 3 
 
 o 
 
 
 
 
 
 
 
 3J-S 1 
 
 17-9 
 
 + 5 
 
 24 
 
 2 
 
 - 6 
 
 
 
 
 
 
 
 31 2g" 
 
 - 7-6 
 
 2 
 
 + 42 
 
 + I 
 
 -15 
 
 
 
 
 
 
 
 3J3S" 
 
 4.9 
 
 + 9 
 
 + I 
 
 - 6 
 
 + i 
 
 LUNAR ARGUMENT N=. 
 
 Planetary 
 Argument. 
 
 V 
 
 I/ 
 
 /. 
 
 I, 
 
 /; 
 
 c 
 
 . 
 
 a*. 
 
 *;. 
 
 2C c > 
 
 2 ex, 
 
 2<? ' T c 
 
 2C7T,' 
 
 2ex c ' 
 
 V-/ 
 
 +0.9631 
 
 + 1.0585 
 
 + I 
 
 O 
 
 +16 
 
 o 
 
 o 
 
 -13 
 
 o 
 
 -63 
 
 13 
 
 
 
 -63 
 
 o 
 
 2V-3^ 
 
 +0.9898 
 
 + I.028I 
 
 4 
 
 +1 
 
 + 6 
 
 + I 
 
 + i 
 
 + 5 
 
 + 5 
 
 22 
 
 + 5 
 
 I 
 
 22 
 
 - 5 
 
 2V2g r 
 
 +O.92I6 
 
 +I-II37 
 
 I 
 
 o 
 
 22 
 
 o 
 
 o 
 
 + i 
 
 o 
 
 +77 
 
 + i 
 
 o 
 
 +77 
 
 o 
 
 3V Sg" 
 
 + 1.0180 
 
 +0.0993 
 
 + i 
 
 +1 
 
 + I 
 
 + 1 
 
 + 3 
 
 + 5 
 
 + 3 
 
 - 3 
 
 + 5 
 
 - 3 
 
 3 
 
 ^_ ij 
 
 3V-4S" 
 
 +0.9460 
 
 +1.0800 
 
 o 
 
 o 
 
 + 4 
 
 o 
 
 o 
 
 - 5 
 
 + 4 
 
 23 
 
 5 
 
 
 
 -23 
 
 4 
 
 3V 3^ 
 
 +0.8814 
 
 +I.I750 
 
 + 3 
 
 o 
 
 I 
 
 o 
 
 o 
 
 -13 
 
 o 
 
 + i 
 
 13 
 
 o 
 
 + 1 
 
 O 
 
 2M 2g" 
 
 +1.0853 
 
 +0.9420 
 
 - 6 
 
 o 
 
 + i 
 
 o 
 
 o 
 
 +29 
 
 o 
 
 + 5 
 
 +29 
 
 
 
 + 5 
 
 o 
 
 2M g' 
 
 + 1.0038 
 
 + 1.0134 
 
 + 2 
 
 o 
 
 2 
 
 tj 
 
 - 6 
 
 + 9 
 
 I 
 
 o 
 
 + 7 
 
 + 5 
 
 + 9 
 
 + 5 
 
 J-f 
 
 + 1.0834 
 
 +0.9434 
 
 23 
 
 o 
 
 O 
 
 o 
 
 + 2 
 
 +98 
 
 I 
 
 + 10 
 
 +97 
 
 2 
 
 + 11 
 
 o 
 
 J 
 
 + I.OO22 
 
 +1.0150 
 
 O 
 
 +5 
 
 O 
 
 +13 
 
 + 5 
 
 o 
 
 +15 
 
 2 
 
 
 
 13 
 
 2 
 
 -IS 
 
 2J2g' 
 
 + I.I703 
 
 +0.8861 
 
 + 150 
 
 o 
 
 +40 
 
 o 
 
 o 
 
 -54 
 
 o 
 
 21 
 
 -54 
 
 
 
 21 
 
 o 
 
 2Jg' 
 
 + I.076I 
 
 +0.9490 
 
 + 40 
 
 I 
 
 oo 
 
 - 8 
 
 - 8 
 
 21 
 
 + i 
 
 3 
 
 21 
 
 + 8 
 
 3 
 
 I 
 
INEQUALITIES OF ELEMENTS. 
 LUNAR ARGUMENT N= iD 2g = in ig' (EVECTION-TERMS). 
 
 '53 
 
 Planetary 
 Argument. 
 
 V 
 
 i/ 
 
 I, 
 
 1. 
 
 // 
 
 V 
 
 2e, 
 
 2C , 
 
 **: 
 
 *; 
 
 2 en. 
 
 2en e 
 
 2671,' 
 
 */ 
 
 V-g' 
 
 11.64 
 
 5-572 
 
 i 
 
 
 
 + 6 
 
 o 
 
 o 
 
 - 19 
 
 o 
 
 + 101 
 
 + 18 
 
 O 
 
 101 
 
 o 
 
 2V 3^ 
 
 - 8.779 
 
 - 6.602 
 
 2 
 
 o 
 
 + 3 
 
 + I 
 
 ^_ ty 
 
 30 
 
 II 
 
 + 50 
 
 + 30 
 
 - 8 
 
 - 51 
 
 ii 
 
 2V 2^ 
 
 - 2S-S7 
 
 4419 
 
 + 9 
 
 o 
 
 - 6 
 
 o 
 
 O 
 
 + 134 
 
 __ J 
 
 106 
 
 -130 
 
 o 
 
 + 107 
 
 i 
 
 3V Sg' 
 
 7-046 
 
 8.100 
 
 i 
 
 + I 
 
 + i 
 
 + I 
 
 12 
 
 - IS 
 
 IO 
 
 + 12 
 
 + IS 
 
 12 
 
 13 
 
 ii 
 
 3V 4^ 
 
 14-90 
 
 5-045 
 
 
 
 
 
 + 2 
 
 o 
 
 O 
 
 i 
 
 7 
 
 + 33 
 
 o 
 
 I 
 
 33 
 
 7 
 
 3V 3g" 
 
 + 129.9 
 
 - 3-66 
 
 +72 
 
 o 
 
 
 
 
 
 2 
 
 -661 
 
 
 
 7 
 
 +659 
 
 2 
 
 + 7 
 
 o 
 
 6v-8/ 
 
 625.0 
 
 - 3-79 
 
 +50 
 
 37 
 
 
 
 
 
 +49 
 
 + 64 
 
 
 
 
 
 -64 
 
 +49 
 
 o 
 
 o 
 
 SV-8^ 
 
 +737-7 
 
 3-43 
 
 o 
 
 o 
 
 o 
 
 o 
 
 - 5 
 
 - 24 
 
 o 
 
 o 
 
 + 24 
 
 - 5 
 
 o 
 
 
 
 H-* 
 
 - 5-062 
 
 10.24 
 
 o 
 
 o 
 
 
 
 o 
 
 o 
 
 - 5 
 
 o 
 
 + 4 
 
 + 5 
 
 
 
 4 
 
 o 
 
 2M 2g" 
 
 4-932 
 
 - 15-96 
 
 2 
 
 o 
 
 + i 
 
 o 
 
 + i 
 
 - 42 
 
 o 
 
 + IS 
 
 + 42 
 
 o 
 
 15 
 
 
 
 2M g" 
 
 - 7-815 
 
 - 7-276 
 
 + I 
 
 2 
 
 5 
 
 2 
 
 + 17 
 
 + 25 
 
 + 19 
 
 25 
 
 - 25 
 
 + 17 
 
 + 25 
 
 + 19 
 
 3M 3g' 
 
 - 4-205 
 
 36-23 
 
 O 
 
 
 
 o 
 
 
 
 o 
 
 + 3 
 
 o 
 
 + 6 
 
 _ .j 
 
 o 
 
 6 
 
 
 
 3M 2g' 
 
 - 6.135 
 
 - 9-766 
 
 o 
 
 o 
 
 
 
 O 
 
 + 6 
 
 + 6 
 
 + 4 
 
 4 
 
 - 6 
 
 + 6 
 
 + 4 
 
 + 5 
 
 4M 3^ 
 
 5.050 
 
 - 14.84 
 
 o 
 
 
 
 
 
 O 
 
 + 7 
 
 + 7 
 
 + 4 
 
 3 
 
 7 
 
 + 7 
 
 + 4 
 
 + 5 
 
 4M 2^ 
 
 8.116 
 
 7-034 
 
 
 
 
 
 
 
 o 
 
 + 9 
 
 + I 
 
 ii 
 
 i 
 
 i 
 
 IO 
 
 + i 
 
 ii 
 
 iStf-Sg- 
 
 7429 
 
 - 7.64S 
 
 o 
 
 o 
 
 o 
 
 o 
 
 I 
 
 + 3 
 
 i 
 
 3 
 
 i 
 
 29 
 
 o 
 
 o 
 
 6M-5S 7 
 
 3-73 
 
 +3704 
 
 o 
 
 
 
 i 
 
 - 8 
 
 i 
 
 
 
 22 
 
 + 29 
 
 + o 
 
 i 
 
 29 
 
 23 
 
 J 2^ 
 
 - 3-6232 
 
 + 94-3396 
 
 o 
 
 
 
 o 
 
 i 
 
 i 
 
 - 9 
 
 IO 
 
 + 15 
 
 + 9 
 
 i 
 
 - 16 
 
 9 
 
 J-S' 
 
 4.9702 
 
 - 15.5763 
 
 - 8 
 
 o 
 
 + 3 
 
 
 
 5 
 
 -151 
 
 O 
 
 + 54 
 
 +I5i 
 
 5 
 
 - 53 
 
 o 
 
 J 
 
 7-9II4 
 
 - 7-1942 
 
 o 
 
 + 2 
 
 O 
 
 + 3 
 
 44 
 
 I 
 
 - 4 6 
 
 + 7 
 
 + i 
 
 44 
 
 - 7 
 
 - 46 
 
 2J 3^ 
 
 2.9028 
 
 +' 12.6422 
 
 o 
 
 o 
 
 o 
 
 O 
 
 o 
 
 + 3 
 
 I 
 
 i 
 
 - 3 
 
 O 
 
 o 
 
 I 
 
 2J 2^ 
 
 - 3-7078 
 
 +232.720 
 
 + 3 
 
 o 
 
 +256 
 
 + I 
 
 + i 
 
 + 54 
 
 + 5 
 
 -1158 
 
 - 54 
 
 + I 
 
 +1164 
 
 + 3 
 
 2Jg" 
 
 - 5.1308 
 
 14.1844 
 
 + 2 
 
 I 
 
 I 
 
 o 
 
 +13 
 
 + 30 
 
 + 6 
 
 12 
 
 31 
 
 +13 
 
 + IS 
 
 + 6 
 
 3J-3/ 
 
 2.9568 
 
 + 13.7363 
 
 + I 
 
 o 
 
 + I 
 
 o 
 
 + 11 
 
 + 13 
 
 o 
 
 + 22 
 
 13 
 
 I 
 
 21 
 
 
 
 3J-2^ 
 
 3.7965 
 
 497.760 
 
 o 
 
 + I 
 
 - 8 
 
 -258 
 
 ii 
 
 o +429 
 
 14 
 
 o 
 
 II 
 
 + 15 
 
 +43i 
 
 SJ-g' 
 
 5-3022 
 
 13.0208 
 
 o 
 
 o 
 
 o 
 
 o 
 
 - 4 
 
 + i 
 
 2 
 
 
 
 i 
 
 4 
 
 + i 
 
 2 
 
 LUNAR ARGUMENT N= 2D g=g'+ 2n 2g-'. 
 
 Planetary 
 Argument. 
 
 V 
 
 !/ 
 
 I, 
 
 / 
 
 // 
 
 V 
 
 2*. 
 
 2g e 
 
 M.> 
 
 / 
 
 2 en, 
 
 2en c 
 
 2 en,' 
 
 2en c ' 
 
 V-g' 
 
 1.1042 
 
 I-23I 
 
 - 6 
 
 o 
 
 +47 
 
 o 
 
 
 
 - 33 
 
 o 
 
 +239 
 
 + 32 
 
 o 
 
 237 
 
 o 
 
 2V 3^ 
 
 1. 1395 
 
 I.I9O 
 
 IO 
 
 + 4 
 
 +20 
 
 + I 
 
 IO 
 
 -48 
 
 20 
 
 + IOO 
 
 + 47 
 
 ii 
 
 99 
 
 21 
 
 2V 2^ 
 
 1.0500 
 
 1-307 
 
 +10 
 
 o 
 
 -69 
 
 
 
 o 
 
 + 75 
 
 3 
 
 342 
 
 74 
 
 o 
 
 +341 
 
 3 
 
 3v se" 
 
 I.I770 
 
 I.I52 
 
 - 4 
 
 + S 
 
 + 4 
 
 + 4 
 
 21 
 
 - 28 
 
 -16 
 
 + 21 
 
 + 27 
 
 22 
 
 20 
 
 -17 
 
 3V-4S" 
 
 1.0828 
 
 I.26I 
 
 i 
 
 o 
 
 +18 
 
 + 5 
 
 I 
 
 - 5 
 
 19 
 
 + 89 
 
 + 5 
 
 I 
 
 -89 
 
 -19 
 
 3V 3^ 
 
 1. 008 
 
 1.392 
 
 + 10 
 
 o 
 
 - 7 
 
 o 
 
 + I 
 
 + 57 
 
 i 
 
 35 
 
 - 55 
 
 + I 
 
 + 35 
 
 i 
 
 2M 2^ 
 
 1.2679 
 
 1.0765 
 
 23 
 
 o 
 
 + 3 
 
 o 
 
 + 3 
 
 -116 
 
 o 
 
 + 17 
 
 + 121 
 
 O 
 
 - 16 
 
 o 
 
 2M g' 
 
 1.1581 
 
 I.I708 
 
 + 9 
 
 6 
 
 9 
 
 7 
 
 +30 
 
 + 42 
 
 +35 
 
 -46 
 
 - 42 
 
 +29 
 
 + 44 
 
 +34 
 
 4M 3g" 
 
 1.2602 
 
 I.082I 
 
 + 2 
 
 2 
 
 o 
 
 o 
 
 +20 
 
 + 19 
 
 + 4 
 
 3 
 
 - 19 
 
 +19 
 
 + 3 
 
 + 4 
 
 1-2S" 
 
 1.3976 
 
 0.9979 
 
 + 9 
 
 - 6 
 
 9 
 
 o 
 
 - 5 
 
 - 38 
 
 + i 
 
 i 
 
 + 36 
 
 5 
 
 
 
 + i 
 
 J-/ 
 
 1.2653 
 
 1.0784 
 
 -8 1 
 
 
 
 + 10 
 
 o 
 
 -13 
 
 416 
 
 o 
 
 + 59 
 
 +415 
 
 13 
 
 - 59 
 
 o 
 
 J 
 
 I-I559 
 
 I.I730 
 
 i 
 
 +16 
 
 + i 
 
 +16 
 
 -74 
 
 2 
 
 -84 
 
 + 14 
 
 + I 
 
 -74 
 
 13 
 
 84 
 
 2J 3g~ 
 
 I-S456 
 
 0.9340 
 
 + 3 
 
 
 
 o 
 
 o 
 
 2 
 
 + 19 
 
 + i 
 
 
 
 19 
 
 2 
 
 o 
 
 + i 
 
 2J2g' 
 
 1.3854 
 
 1.0042 
 
 +44 
 
 o 
 
 + 8 
 
 
 
 + 3 
 
 +215 
 
 o 
 
 + 45 
 
 211 
 
 + 3 
 
 45 
 
 o 
 
 zjg" 
 
 1.2553 
 
 1.0858 
 
 +15 
 
 5 
 
 4 
 
 4 
 
 +34 
 
 + 81 
 
 + 8 
 
 13 
 
 - 81 
 
 +34 
 
 + 13 
 
 + 8 
 
 3J 3g" 
 
 1-5307 
 
 0.9395 
 
 +17 
 
 
 
 3 
 
 o 
 
 3 
 
 + 73 
 
 o 
 
 - 19 
 
 72 
 
 - 3 
 
 + 18 
 
 
 
 3J 2g" 
 
 1-3734 
 
 i. 0106 
 
 
 
 + 10 
 
 o 
 
 I 
 
 42 
 
 3 
 
 + 7 
 
 o 
 
 + 3 
 
 42 
 
 o 
 
 + 7 
 
 M-i* 
 
 i. 2455 
 
 1.0933 
 
 o 
 
 
 
 o 
 
 o 
 
 IO 
 
 + 2 
 
 2 
 
 o 
 
 2 
 
 10 
 
 o 
 
 2 
 
ACTION OF THE PLANETS ON THE MOON. 
 
 LUNAR ARGUMENT zD = ig + in 2g' . 
 
 Planetary 
 Argument. 
 
 V 
 
 V> 
 
 I. 
 
 (i 
 
 I.' 
 
 ? 
 
 2e, 
 
 2e c 
 
 *.' 
 
 2*.' 
 
 2<r7r ( 
 
 2OT C 
 
 2C7T/ 
 
 2en c ' 
 
 v-S 
 
 +527 
 
 +554 
 
 + 21 
 
 
 
 122 
 
 o 
 
 o 
 
 o 
 
 O 
 
 I 
 
 + 2 
 
 
 
 10 
 
 o 
 
 2V 2? 
 
 +.514 
 
 +-569 
 
 43 
 
 o 
 
 + 172 
 
 
 
 
 
 T 
 
 O 
 
 +2 
 
 4 
 
 
 
 +14 
 
 o 
 
 2M 2^ 
 
 +.562 
 
 +521 
 
 + 59 
 
 + 2 
 
 II 
 
 
 
 o 
 
 +i 
 
 o 
 
 I 
 
 + 5 
 
 
 
 i 
 
 o 
 
 J-e" 
 
 +.56I 
 
 +521 
 
 +212 
 
 - 6 
 
 -36 
 
 
 
 o 
 
 +2 
 
 
 
 I 
 
 + 17 
 
 o 
 
 3 
 
 o 
 
 J 
 
 +539 
 
 +542 
 
 + I 
 
 39 
 
 7 
 
 45 
 
 +1 
 
 O 
 
 +1 
 
 ! + I 
 
 -4 
 
 I 
 
 -4 
 
 212? 
 
 +.584 
 
 +-503 
 
 106 
 
 + 2 
 
 23 
 
 o 
 
 
 
 2 
 
 o 
 
 o 
 
 9 
 
 o 
 
 3 
 
 o 
 
 LUNAR ARGUMENT 
 
 2n 2g' . 
 
 Planetary 
 Argument. 
 
 V 
 
 v' 
 
 I 
 
 I 
 
 i: 
 
 V 
 
 26, 
 
 2C c 
 
 *'.' 
 
 2eJ 
 
 2en t 
 
 2en , 
 
 Mr/ 
 
 2r/ 
 
 v-f 
 
 +.346 
 
 +.358 
 
 +1 
 
 O 
 
 -4 
 
 o 
 
 O 
 
 3 
 
 
 
 +22 
 
 4 
 
 o 
 
 +23 
 
 o 
 
 2V 2^ 
 
 +341 
 
 +.364 
 
 I 
 
 o 
 
 +6 
 
 o 
 
 
 
 + 8 
 
 o 
 
 31 
 
 + 8 
 
 o 
 
 31 
 
 o 
 
 2tt2g' 
 
 +.361 
 
 +343 
 
 +2 
 
 
 
 i 
 
 o 
 
 o 
 
 ii 
 
 o 
 
 + 2 
 
 ii 
 
 o 
 
 + 2 
 
 
 
 J-f 
 
 +.36I 
 
 +344 
 
 +7 
 
 o 
 
 i 
 
 o 
 
 I 
 
 -39 
 
 o 
 
 + 7 
 
 -38 
 
 +1 
 
 + 7 
 
 o 
 
 2J2S" 
 
 +370 
 
 +.336 
 
 3 
 
 o 
 
 i 
 
 o 
 
 
 
 +18 
 
 o 
 
 + 5 
 
 +18 
 
 o 
 
 + 5 
 
 o 
 
 LUNAR ARGUMENT i\ 2D. 
 
 
 r. 
 
 r c 
 
 r/ 
 
 r/ 
 
 
 r. 
 
 r c 
 
 r/ 
 
 r/ 
 
 v-g" 
 
 
 
 +13 
 
 
 
 - 5 
 
 4X3S' 
 
 _! 
 
 T 
 
 I 
 
 + I 
 
 2V Sg" 
 
 +1 
 
 + 7 
 
 +1 
 
 4 
 
 4M 2g" 
 
 + 1 
 
 o 
 
 +1 
 
 +14 
 
 2V 2g" 
 
 3V 4^ 
 3V Sf 
 4V 4g' 
 
 o 
 
 +1 
 +1 
 
 o 
 
 14 
 + 4 
 
 + 2 
 
 o 
 
 o 
 o 
 
 +2 
 
 o 
 
 +17 
 i 
 
 2 
 
 24 
 
 1-21? 
 1-8? 
 
 I 
 O 
 
 +6 
 
 o 
 
 +11 
 + I 
 
 o 
 
 +1 
 
 +6 
 
 I 
 
 19 
 
 
 
 
 
 
 
 
 2 J 3 / 
 
 o 
 
 
 
 o 
 
 o 
 
 M g' 
 
 o 
 
 + I 
 
 o 
 
 I 
 
 2J 2^ 
 
 
 
 +25 
 
 
 
 + 7 
 
 2M2g' 
 
 o 
 
 + 3 
 
 o 
 
 5 
 
 2j e" 
 
 I 
 
 2 
 
 2 
 
 + 4 
 
 2V. g 
 
 o 
 
 3 
 
 o 
 
 - 4 
 
 3J 3^ 
 
 o 
 
 - 6 
 
 
 
 + 2 
 
 3M 3^ 
 
 o 
 
 o 
 
 o 
 
 
 
 3J 2^ 
 
 -3 
 
 o 
 
 +1 
 
 o 
 
 3M 2g" 
 
 I 
 
 i 
 
 I 
 
 + 1 
 
 3J-S- 
 
 o 
 
 o 
 
 +1 
 
 o 
 
 76. Reduction to inequalities of true longitude and collection of results. 
 
 To complete the work it is necessary to transform the elemental inequalities into 
 inequalities of the coordinates. As already remarked, the parallax appears to 
 contain no sensible terms arising from the action of the planets; only inequalities 
 of longitude and latitude are therefore considered. In the case of terms of very 
 long period the transformation to true longitude is unnecessary, because these terms 
 can best be used and compared as elemental inequalities. A precise classification 
 can not, however, be made between the terms which are to be transformed and those 
 which are not. What has actually been done is to retain as elemental inequalities 
 those depending on the longitude of the Moon's node, because though they may 
 
INEQUALITIES OF ELEMENTS. 155 
 
 ultimately be transformed for use into the inequalities of the coordinates, they are 
 to be combined with terms arising from the compression of the Earth having the 
 same argument. The two Venus-terms of very long period have not been trans- 
 formed because, as already remarked, they can be most conveniently applied to the 
 elements. To transform the other terms put Sv, the perturbations in longitude in 
 orbit. Then 
 
 v = I + 2e sin g + %# sin 2g 
 Sv = 8/ -f zSe sin g- + $e8e sin 2g + 2eSg cos g -f \ e 2 Sg cos 2g 
 
 Substituting 
 81= l c cos G + /, sin G STT = TT. cos G + ir t sin G Be = e c cos G + e t sin G 
 
 SI$Tr=8g=g- t cos G+G,sin G 
 we shall have 
 
 Sv = S/ + 2<? f sin G sin g + 2e e cos G sin g 
 
 + 2eg c cos G cos g + 2eg t sin G cos g 
 + \ee a sin G sin 2g + ^ce c cos G sin 2g 
 + \ e 2 g c cos G cos 2g + f 2 g", sin G cos 2^ 
 = g/ _ (e, - eg c ) cos (6! + g) + (e c + eg) sin (G + g) 
 + (. + eg.) cos (G-g)- (e c - eg,) sin (G - g) 
 - \e(e, - eg) cos (G + 2g) + \e(e c + eg,) sin (G + 2g) 
 cos ^ - 2 - . - eg'. sin - 2^-) 
 
 In nearly or quite all cases we may drop terms of the second order in e and use 
 
 Sv = l c cos G + l.sinG + [_e(l c - TT,) - .] cos (G + g) + [>(/. - TT,) + e e ] sin (G + *) 
 
 T) + .] cos (^ - ^) + [(/. - TT.) - e,-] sin(G- g) 
 
 The subsequent processes are so simple and familiar as to scarcely need statement. 
 All terms of 8v depending on the same argument are combined into two, one 
 depending on the sine, the other on the cosine of the argument. Their values are 
 shown for each argument in the following table. The two terms are then combined 
 into a monomial satisfying the equation 
 
 v t sin G + v c cos G = Sv sin (G + A) 
 
 Terms of which the coefficient St> was less than o".oo3, have generally, but not 
 always, been dropped. It will be seen that even exceeding this limit there are 
 more than 150 periodic inequalities. These are so arranged that any one argument 
 can, it is hoped, readily be found on a system which will be evident by a little 
 examination. 
 
 The constituents of the arguments, including ir, are all measured from the 
 Earth's perihelion (7r = 99.5). The secular variations of the coefficients of the 
 periodic terms are omitted, because they can better be derived by varying the 
 eccentricity of the Earth's orbit in the expressions for the inequalities due to the 
 Sun's action. 
 
156 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 PERIODIC INEQUALITIES OF THE TRUE LONGITUDE. 
 ACTION OF VENUS. 
 
 
 
 
 
 
 
 
 
 
 Argument. 
 
 v. 
 
 i 
 
 9f 
 
 A 
 
 Argument. 
 
 z> c 
 
 v, 
 
 dv 
 
 A 
 
 V 2g 
 
 II 
 .001 
 
 +.055 
 
 n 
 
 .055 
 
 359o 
 
 g+2TT 3V+g" 
 
 .000 
 
 .014 
 
 .014 
 
 
 
 180.0 
 
 V-g- 
 
 +.OOI 
 
 -.882 
 
 .882 
 
 179.9 
 
 g+2ir3V+2g r 
 
 + .012 
 
 +.051 
 
 053 
 
 13.2 
 
 V 
 
 .000 
 
 .014 
 
 .014 
 
 184.0 
 
 g+2TT3V+3g' 
 
 +.014 
 
 +.016 
 
 .021 
 
 41.2 
 
 2V 4^ 
 
 .004 
 
 +.003 
 
 .005 
 
 306.8 
 
 g+2TT2V 
 
 + .OOI 
 
 -.174 
 
 .174 
 
 180.0 
 
 2V Sg* 
 
 +.096 
 
 340 
 
 354 
 
 164.3 
 
 g+2ir2V+g' 
 
 + .OII 
 
 +.070 
 
 .071 
 
 9.0 
 
 2V 2^ 
 
 +.005 
 
 +401 
 
 401 
 
 0-7 
 
 g+2ir v g" 
 
 .000 
 
 +.146 
 
 .146 
 
 O.O 
 
 3V -Sg" 
 
 +.060 
 
 .056 
 
 .082 
 
 133-0 
 
 g+2ir+ V Sg" 
 
 .000 
 
 -.025 
 
 .025 
 
 180.0 
 
 3V-4/ 
 
 +.040 
 
 .191 
 
 .197 
 
 168.3 
 
 g+2ir+2VSg' 
 
 + .011 
 
 .040 
 
 .041 
 
 164.5 
 
 3V 3^ 
 
 +.001 
 
 .037 
 
 037 
 
 178.4 
 
 g+2ir+2V4g' 
 
 .000 
 
 +.142 
 
 .142 
 
 O.O 
 
 Sv-Sg' 
 
 +.018 
 
 -.015 
 
 .023 
 
 129.8 
 
 g+2ir+3V-7g' 
 
 +.017 
 
 .019 
 
 .026 
 
 138.2 
 
 
 
 
 
 
 g+2w+3v-sg' 
 
 +.OO2 
 
 -.646 
 
 .646 
 
 179.8 
 
 g-Sv+Sg" 
 
 +.004 
 
 +.003 
 
 .005 
 
 53-2 
 
 g+2Tr+Sv-8g' 
 
 +.005 
 
 .024 
 
 .025 
 
 168.3 
 
 e-sv+sg' 
 
 .000 
 
 +.008 
 
 .008 
 
 O.O 
 
 g+2ir+6v log' 
 
 .051 
 
 +.066 
 
 .083 
 
 322.3 
 
 g3V+4g' 
 
 +.008 
 
 +.040 
 
 .041 
 
 II-3 
 
 
 
 
 
 
 gSV+Sg* 
 
 +.015 
 
 +.018 
 
 .023 
 
 39-8 
 
 
 
 
 
 
 g2V+2g" 
 
 +.OOI 
 
 -.093 
 
 093 
 
 180.0 
 
 2g+2ir3v+g' 
 
 .000 
 
 035 
 
 035 
 
 180.0 
 
 g-2V+3g' 
 
 +.018 
 
 +.080 
 
 .082 
 
 12.6 
 
 2g+2lT3V+2g' 
 
 +.019 
 
 +.090 
 
 .092 
 
 11.9 
 
 
 
 
 
 
 2g+2ir3V+3g' 
 
 +.016 
 
 +.020 
 
 .026 
 
 38-7 
 
 gv 
 
 .000 
 
 .004 
 
 .004 
 
 180.0 
 
 2g-\-21T2V 
 
 +.003 
 
 -.142 
 
 143 
 
 178.8 
 
 eV+f 
 
 .000 
 
 +.166 
 
 .166 
 
 O.O 
 
 2g+2ir2V+g' 
 
 +.O2O 
 
 +.IOO 
 
 .102 
 
 1 1-3 
 
 g- V +2g" 
 
 .000 
 
 .003 
 
 .003 
 
 180.0 
 
 2g+2lT V g" 
 
 .000 
 
 +096 
 
 .096 
 
 0.0 
 
 g+ V 2g- 
 
 .000 
 
 +.003 
 
 .003 
 
 O.O 
 
 2g+2ir+ v -tf 
 
 .000 
 
 .008 
 
 .008 
 
 180.0 
 
 g+V g' 
 
 .000 
 
 .149 
 
 149 
 
 180.0 
 
 2g+2lT+2V5g' 
 
 +.OIO 
 
 .048 
 
 049 
 
 168.3 
 
 g+v 
 
 .000 
 
 -.004 
 
 .004 
 
 180.0 
 
 2g+21T+2V-4g' 
 
 .000 
 
 +.024 
 
 .024 
 
 O.O 
 
 
 
 
 
 
 2g+2ir+3V7g r 
 
 +.O22 
 
 .027 
 
 035 
 
 140.8 
 
 g+2V3g' 
 
 +.018 
 
 .078 
 
 .080 
 
 167.0 
 
 2g+2ir+3V6g' 
 
 +.OOI 
 
 .005 
 
 .005 
 
 168.7 
 
 g-\-2V2g" 
 
 +.001 
 
 +.071 
 
 .071 
 
 0.6 
 
 2g+2ir+3V5g' 
 
 .001 
 
 +.056 
 
 .056 
 
 359-0 
 
 e+SV-Sg" 
 
 +.015 
 
 .016 
 
 .022 
 
 136.9 
 
 
 
 
 
 
 +3V-4 / 
 
 +.008 
 
 .036 
 
 037 
 
 167-5 
 
 
 
 
 
 
 g+3V-3g" 
 
 .000 
 
 -.006 
 
 .006 
 
 180.0 
 
 3g+2ir2V 
 
 .000 
 
 +.009 
 
 .009 
 
 0.0 
 
 g+SV-Sg- 
 
 +.004 
 
 .003 
 
 .005 
 
 126.8 
 
 3g+2ir- V -g- 
 
 .000 
 
 -.006 
 
 joo5 
 
 180.0 
 
 27T 2V 
 
 .000 
 
 .009 
 
 .009 
 
 180.0 
 
 
 
 
 
 
 21T 2V+g' 
 
 + .001 
 
 +.003 
 
 .003 
 
 184 
 
 4g+2TT2V 
 
 .000 
 
 +.003 
 
 .003 
 
 O.O 
 
 27T V ff 
 
 .000 
 
 +.007 
 
 .007 
 
 O.O 
 
 4g+2TT V g" 
 
 .000 
 
 .002 
 
 .002 
 
 180.0 
 
 27T+2V 4g" 
 
 .000 
 
 +.008 
 
 .008 
 
 O.O 
 
 
 
 
 
 27T+3V $g" 
 
 .000 
 
 +.072 
 
 .072 
 
 O.O 
 
 
 
 
 
 
 
 
 
 
 
 2ir- g +3V-5/ 
 
 .000 
 
 +.003 
 
 .003 
 
 O.O 
 
 27T+6V lOg' 
 
 -.037 
 
 +.050 
 
 .062 
 
 323-5 
 
 2TT g +6V IO/ 
 
 .002 
 
 +.002 
 
 .003 
 
 315-0 
 
INEQUALITIES OF THE TRUE LONGITUDE. 
 
 '57 
 
 ACTION OF MARS. 
 
 Argument. 
 
 v c 
 
 v. 
 
 8v 
 
 A 
 
 Argument. 
 
 V c 
 
 f. 
 
 8v 
 
 A 
 
 
 
 H 
 
 n 
 
 
 
 
 II 
 
 II 
 
 II 
 
 o 
 
 M-g- 
 
 +.OOI 
 
 .Oil 
 
 .Oil 
 
 174-3 
 
 2ir 2M g' 
 
 .000 
 
 +.OO2 
 
 .002 
 
 O.O 
 
 M 
 
 .OOI 
 
 .030 
 
 .030 
 
 l8l.9 
 
 
 
 
 
 
 2M 2g" 
 
 .OOO 
 
 .224 
 
 .224 
 
 180.0 
 
 27T 2M 4^ 
 
 .000 
 
 .004 
 
 .004 
 
 180.0 
 
 2Mg' 
 
 -IQ3 
 
 +.317 
 
 372 
 
 328.7 
 
 
 
 
 
 
 3M3S' 
 
 .OOO 
 
 +.014 
 
 .014 
 
 0.0 
 
 S+21T 4M 
 
 + .011 
 
 .OOI 
 
 .Oil 
 
 95-2 
 
 3M-2g' 
 
 .031 
 
 +.029 
 
 .042 
 
 313.1 
 
 g+2ir 4M+/ 
 
 .004 
 
 .003 
 
 .005 
 
 233.2 
 
 4M3g' 
 
 .035 
 
 +.032 
 
 .047 
 
 312.4 
 
 +2?r 3M 
 
 .004 
 
 .004 
 
 .006 
 
 225.0 
 
 4M 2^ 
 
 +.095 
 
 + .OO2 
 
 095 
 
 88.8 
 
 g+27T-3M+g / 
 
 .000 
 
 +.006 
 
 .006 
 
 o.o 
 
 SM 3^ 
 
 .020 
 
 +.023 
 
 .030 
 
 319.0 
 
 2+27T 2M+^ 
 
 .026 
 
 .034 
 
 043 
 
 217.4 
 
 
 
 
 
 
 +27T 2M 
 
 .000 
 
 +.017 
 
 .017 
 
 O.O 
 
 f 4M + 22' 
 
 +.017 
 
 .002 
 
 .017 
 
 96.8 
 
 g+2lT M g" 
 
 .000 
 
 +.004 
 
 .004 
 
 o.o 
 
 S-4M+3/ 
 
 .007 
 
 .007 
 
 .010 
 
 225.0 
 
 g+2TT+ M 3^ 
 
 .000 
 
 .005 
 
 .005 
 
 180.0 
 
 2 3ii+2g- 
 
 -.006 
 
 -.006 
 
 .009 
 
 225.0 
 
 g+21T+2M 4g' 
 
 .000 
 
 -.066 
 
 .066 
 
 180.0 
 
 g3M+3g' 
 
 .000 
 
 .003 
 
 .003 
 
 180.0 
 
 g+2ir+2U3g' 
 
 .023 
 
 +034 
 
 .041 
 
 325.9 
 
 g2tt+g- 
 
 .035 
 
 .O42 
 
 055 
 
 2194 
 
 g+2ir+3U5g r 
 
 .000 
 
 +.003 
 
 .003 
 
 0.0 
 
 g2U+2g- 
 
 .000 
 
 +043 
 
 043 
 
 o.o 
 
 g+2ir+3U4g' 
 
 -.006 
 
 +.006 
 
 .009 
 
 315.0 
 
 gM 
 
 .000 
 
 +.003 
 
 .003 
 
 0.0 
 
 g+2ir+4USg' 
 
 -.009 
 
 +.009 
 
 .013 
 
 315.0 
 
 g-M+g~ 
 
 .000 
 
 +.004 
 
 JOO4 
 
 0.0 
 
 g+2ir+4U4g' 
 
 +.009 
 
 +.OOI 
 
 .009 
 
 83.7 
 
 g+ M ^ 
 
 .000 
 
 .004 
 
 .004 
 
 180.0 
 
 
 
 
 
 
 g+M 
 
 .000 
 
 .003 
 
 .003 
 
 180.0 
 
 2g+2ir4M+g' 
 
 .004 
 
 .003 
 
 .005 
 
 233.2 
 
 +2M 2g~ 
 
 .000 
 
 .048 
 
 .048 
 
 180.0 
 
 2g+2TT2TAg' 
 
 035 
 
 .046 
 
 .058 
 
 217.3 
 
 g+2U-g' 
 
 .036 
 
 +.042 
 
 055 
 
 3194 
 
 2g+21T2M. 
 
 .000 
 
 +.006 
 
 .006 
 
 0.0 
 
 +3M 2^ 
 
 .006 
 
 +.006 
 
 .009 
 
 3i5.o 
 
 2g+21T+2ll4g' 
 
 .000 
 
 .050 
 
 .050 
 
 180.0 
 
 2+3M 3g' 
 
 .000 
 
 +.003 
 
 .003 
 
 o.o 
 
 2g+2lT+2M3g' 
 
 .030 
 
 +.042 
 
 .052 
 
 324.5 
 
 g+4U 2g" 
 
 +.017 
 
 +.002 
 
 .017 
 
 83.2 
 
 2g+2ir+4V5g' 
 
 .020 
 
 +.019 
 
 .028 
 
 313.5 
 
 g+wss" 
 
 .007 
 
 + .007 
 
 .010 
 
 315.0 
 
 3g+2TT+2M4g' 
 
 .000 
 
 +.004 
 
 .004 
 
 o.o 
 
'58 
 
 ACTION OF THE PLANETS ON THE MOON. 
 
 ACTION OF JUPITER. 
 
 Argument. 
 
 . 
 
 *, 
 
 8v 
 
 A 
 
 Argument. 
 
 *. 
 
 v, 
 
 9v 
 
 A 
 
 'j-2g- 
 
 // 
 
 +.004 
 
 !ois 
 
 .016 
 
 165.1 
 
 g+2TT-3J 
 
 445 
 
 tl 
 
 0.015 
 
 0445 
 
 26&JO 
 
 j-e' 
 
 +.015 
 
 .741 
 
 741 
 
 178.8 
 
 g+2TT-3]+g' 
 
 .000 
 
 +0.018 
 
 0.018 
 
 O.O 
 
 J 
 
 +.070 
 
 +.169 
 
 .183 
 
 22.5 
 
 g+2ir2]g' 
 
 .010 
 
 0.016 
 
 0.019 
 
 2I2.O 
 
 2J-3S' 
 
 .000 
 
 +.006 
 
 .006 
 
 O.O 
 
 S+21T2J 
 
 .005 
 
 1.140 
 
 1.140 
 
 180.2 
 
 2J 2? 
 
 .001 
 
 +.242 
 
 .242 
 
 359-8 
 
 
 
 
 
 
 21 g? 
 
 -059 
 
 +.183 
 
 193 
 
 342.2 
 
 g+2TT ] 2g- 
 
 +.062 
 
 +0.008 
 
 0.062 
 
 82.7 
 
 3J-3^ 
 
 +.001 
 
 +.000 
 
 .009 
 
 6.4 
 
 S+2TT J g" 
 
 .000 
 
 +0.064 
 
 0.064 
 
 O.O 
 
 3J 2^ 
 
 +042 
 
 002 
 
 .042 
 
 177.2 
 
 g+2lt J 
 
 +.OIO 
 
 +0.015 
 
 0.018 
 
 33-7 
 
 3J -e" 
 
 -.024 
 
 +.005 
 
 .024 
 
 281.8 
 
 g+2TT+ J 4g" 
 
 + .001 
 
 0.018 
 
 0.018 
 
 176.8 
 
 
 
 
 
 
 g+2TT+ J 3g" 
 
 +.004 
 
 0.230 
 
 0.230 
 
 179.0 
 
 
 
 
 
 
 g+2ir+ j 2g" 
 
 +.060 
 
 0.003 
 
 0.060 
 
 92.9 
 
 e 3J+g r 
 
 +.OO2 
 
 .002 
 
 .003 
 
 135-0 
 
 g+2ir+2j-4g' 
 
 +.OOI 
 
 +0.098 
 
 0.098 
 
 0.7 
 
 g3J+2g / 
 
 +.OIO 
 
 .000 
 
 .010 
 
 90.0 
 
 g+2V+2J3g' 
 
 .018 
 
 +0.045 
 
 0.048 
 
 338.2 
 
 ?-3J+3^ 
 
 .OOO 
 
 .004 
 
 .004 
 
 180.0 
 
 g+2TT+3J-Sg' 
 
 +.001 
 
 +0.030 
 
 0.030 
 
 1.9 
 
 ff-2J+^ 
 
 +.005 
 
 .032 
 
 .032 
 
 179.1 
 
 g+2ir+3J4g- 
 
 +.021 
 
 0.001 
 
 O.O2I 
 
 92.8 
 
 21+2^ 
 
 .000 
 
 .045 
 
 045 
 
 1 80.0 
 
 g+2ir+3J3g' 
 
 +.004 
 
 +O.OOI 
 
 0.004 
 
 75-9 
 
 t-J+i' 
 
 +.004 
 
 +.140 
 
 .140 
 
 1.6 
 
 
 
 
 
 
 e J +2g' 
 
 +.001 
 
 +.006 
 
 .006 
 
 9-6 
 
 2g+2ir-3J 
 
 .007 
 
 o.ooo 
 
 0.007 
 
 270.0 
 
 * j 
 
 +.036 
 
 +.OII 
 
 .038 
 
 73-0 
 
 2g+2ir-3J+g' 
 
 .000 
 
 0.018 
 
 0.018 
 
 180.0 
 
 *+ J 2? 
 
 +.OOI 
 
 .006 
 
 .006 
 
 1704 
 
 2g+2TT2Jg' 
 
 -.008 
 
 0.013 
 
 0.015 
 
 21 1.6 
 
 g+j-g' 
 
 +.004 
 
 -.163 
 
 .163 
 
 178.6 
 
 2g+2lT2J 
 
 .000 
 
 +0.018 
 
 0.018 
 
 0.0 
 
 e+'j 
 
 +.036 
 
 JOll 
 
 .038 
 
 107.0 
 
 2g+2lT J 2g" 
 
 +.040 
 
 +0.006 
 
 0.040 
 
 81.5 
 
 g+2J2g' 
 
 .000 
 
 +.064 
 
 .064 
 
 O.O 
 
 2g+2ir J g" 
 
 .000 
 
 +0.016 
 
 0.016 
 
 O.O 
 
 +21 g 1 
 
 +.005 
 
 +.036 
 
 .036 
 
 7-9 
 
 2+27T+ J 4 / 
 
 +.005 
 
 0.038 
 
 0.038 
 
 172.5 
 
 g+SJSg* 
 
 JOOO 
 
 +.003 
 
 .003 
 
 O.O 
 
 2g+2ir+ J Sg" 
 
 +.006 
 
 -0.168 
 
 0.168 
 
 177.9 
 
 g+3J2g' 
 
 +.OIO 
 
 .000 
 
 .010 
 
 90.0 
 
 23+21T+ J 2g- 
 
 +.036 
 
 O.OOO 
 
 0.036 
 
 90.0 
 
 g+SJ-g' 
 
 +.OO2 
 
 +.002 
 
 .003 
 
 45-0 
 
 2g+2ir+2]Sg" 
 
 +.OO2 
 
 +0.019 
 
 0.019 
 
 6.0 
 
 
 
 
 
 
 2g+2TT+2] 4g" 
 
 .001 
 
 +0.092 
 
 0.092 
 
 359.3 
 
 
 
 
 
 
 2g+2ir+2J3g' 
 
 -.035 
 
 +0.082 
 
 0.089 
 
 336.9 
 
 21T3J 
 
 -.258 
 
 -.008 
 
 .258 
 
 268.2 
 
 2g+2TT+3J5g' 
 
 +.003 
 
 +0.074 
 
 0.074 
 
 2-3 
 
 2TT2J 
 
 .000 
 
 +.256 
 
 .256 
 
 O.O 
 
 2g+2TT+3J4g' 
 
 +.042 
 
 0.003 
 
 0.042 
 
 94.0 
 
 2ir J 2g" 
 
 +.004 
 
 .000 
 
 .004 
 
 90.0 
 
 22+27T+3J 3g" 
 
 +.OIO 
 
 +O.OO2 
 
 0.010 
 
 78.5 
 
 2*+ J 3^ 
 
 .000 
 
 .on 
 
 .on 
 
 180.0 
 
 35+21T+ J Sg" 
 
 .000 
 
 +O.OII 
 
 O.OII 
 
 O.O 
 
 27T+ J 2^ 
 
 +.004 
 
 .000 
 
 .004 
 
 90.0 
 
 3g+2ir+2J4g' 
 
 .000 
 
 0.006 
 
 0.006 
 
 180.0 
 
 2TT+2]4g' 
 
 .000 
 
 +.004 
 
 .004 
 
 O.O 
 
 27T g 2J 
 
 .000 
 
 +O.OIO 
 
 O.OIO 
 
 0.0 
 
 21T+2J 3^ 
 
 .001 
 
 +.003 
 
 .003 
 
 341.6 
 
 2ir g3J 
 
 -.015 
 
 O.OOI 
 
 0.015 
 
 183.8 
 
 ACTION OF SATURN. 
 
 Argument. 
 
 v < 
 
 
 
 to 
 
 A 
 
 Argument. 
 
 V , 
 
 , 
 
 8v 
 
 A 
 
 
 II 
 
 // 
 
 II 
 
 o 
 
 
 II 
 
 It 
 
 a 
 
 
 
 S 
 
 +.016 
 
 +.048 
 
 x>5i 
 
 184 
 
 +S 
 
 +.001 
 
 +0.004 
 
 0.004 
 
 14.1 
 
 s-gf 
 
 XXX) 
 
 .040 
 
 .040 
 
 180.0 
 
 g+S-g- 
 
 .000 
 
 0.008 
 
 0.008 
 
 180.0 
 
 asg' 
 
 .001 
 
 +.011 
 
 .on 
 
 354-8 
 
 
 
 
 
 
 252? 
 
 .000 
 
 +.008 
 
 .008 
 
 0.0 
 
 g-s 
 
 +.OOI 
 
 0.004 
 
 0.004 
 
 165.9 
 
 
 
 
 
 
 4T-S+/ 
 
 .000 
 
 +0.008 
 
 0.008 
 
 O.O 
 
INEQUALITIES OF LONG " "PERIOD. 159 
 
 77. Inequalities of the elements -which have not been reduced to inequali- 
 ties of the longitude, 
 
 Mean longitude. 
 
 sin(8v 13^' + 86. 4) + o".O3O sin0 o".273 cos 
 
 Longitude' of Perigee. 
 
 TT = TT O -f vj + 253". 22 T 38".49r 2 - o".oi3 T 3 + o".tf sin (i8v - i6g'g + 228.5) 
 o".67 sin (8v 13^'+ 86.4) o".io sin + o".8o cos 
 
 Longitude of Node. 
 
 =, + #,/ - i37".8s T+ f'.62 T z + o".oo262 rs + 2".55 sin - i7"-33 cos (1800) 
 
 -f 2". 31 sin 17". 36 cos (1900) 
 
 Sin y 2 Inclination. 
 By = o".ii5 cos o". f ]6c) sin (1800) 
 
 o".iO4 cos o".77o sin (1900) 
 
 Hence: 
 
 Inclination. 
 
 87= o".230 cos i".S39 sin (1800) 
 
 o".2o8 cos i"-54i sin (1900) 
 
 It may be found advisable, in the construction of new lunar tables, to include 
 also the term 
 
 S/ = o".2S6 sin (27r 2/) 
 
 in the mean longitude. The effect of including this term in the preceding trans- 
 formations is that the Jovian evection, and the coefficient of the term of argument 
 27r ^J g, have each received the increment -|-o".oi4. Hence, if the term 
 were included in the mean longitude, the coefficient of the Jovian evection would 
 be i". 154, and of the other term named o".oo4. 
 
 78. Remarks on the Possibility of Unknown Terms of Long Period. In his 
 Researches on the Motion of the Moon, published in 1878,* the author found that 
 the representation of the Moon's mean longitude during the period from 1650 to 
 1875 showed a discrepancy between existing theory and observation which might 
 be represented by a term having a period of two or three centuries, and a coefficient 
 of about 15". This coefficient may be somewhat reduced by the introduction of 
 the improved values of the terms of short period now available, but it does not 
 seem likely that the deviation can be brought below 10". One hypothesis on 
 which the discrepancy might be explained is that of minute fluctuations in the 
 
 * Washington Obseri'ations for 1875, App. II, p. 268. See also Monthly Notices, Royal Astronomical Society, 
 vol. i.xiri. March, 1903, p. 316. 
 
160 ACTION OF THE PLANETS ON THE MOON. 
 
 Earth's diurnal rotation, which might be produced by the motion of solids and fluids 
 on its surface. Observations of transits of Mercury leave scarcely more than a 
 possibility of changes in the measure of time having the magnitude required to 
 explain the deviation. The observed phenomena, therefore, point very strongly 
 to the inference that there must be some term of long period still undiscovered 
 in the actual mean motion of the Moon. The preceding researches seem to 
 remove the possibility that there can be any undiscovered term in the action of the 
 planets. It is true that there are two possible classes of inequality which are not 
 considered in the present work. One of these has the solar parallax as a factor, 
 and may arise from two sources; one the development of the potential to terms of 
 higher order than the principal ones; the other to the parallactic terms in the 
 Moon's coordinates. The author had intended to carry the development of R and 
 fl p one step further, so as to include these terms. But, on examining the periods 
 of the inequalities that might thus arise, none were found that could lead to any 
 important term. 
 
 Yet another class of terms comprises those of the second order arising from the 
 action of the planets being modified by their mutual perturbations. An examina- 
 tion which I believe to be exhaustive was therefore made for terms of long period 
 of this class. None have been found, and the writer believes that none can exist 
 more important than one of o".oi8 computed by Radau. This term has the argu- 
 ment $S ij of the great inequality between Jupiter and Saturn. In this connec- 
 tion it may be again remarked that, in determining the action of Venus in the 
 present work, the mutual perturbations of Venus and the Earth have been taken 
 account of. But no change is thus produced except in the Hansenian term of long 
 period. 
 

 

 UNIVERSITY OF CALIFORNIA LIBRARY 
 BERKELEY 
 
 Return to desk from which borrowed. 
 This book is DUE on the last date stamped below. 
 
 UNOMY LIBRARY 
 
 LD 21-100m-ll,'49(B714616)476 
 
A 
 
 THE UNIVERSITY OF CALIFORNIA LIBRARY