POCKET COMPANION FOR ENGINEERS, ARCHITECTS AND "BUILDERS CONTAINING USEFUL INFORMATION AND TABLES APPERTAINING TO THE USE OF STEEL MANUFACTURED BY CARNEGIE STEEL COMPANY PITTSBURGH, PA. I United *s PaciF ilA N r\ C, Copyright 1913 by CARNEGIE STEEL COMPANY Pittsburgh, Pa. 16th Edition, August 1st, 1913 THIS, the Sixteenth Edition of the Carnegie Pocket Companion, has been rewritten and reset throughout. Since 1903, the date of the last edition, there have been many changes in the art of bridge and building construction with the extension of the use of steel into other lines than those covered by that edition. The endeavor in the present publication has been to eliminate obsolete forms of construction, to revise the forms retained from the last edition so as to make them conformable to present standard practice and to incorporate with the matter so retained such information on the newer lines of manufacture as would be of interest to engineers, architects and builders. From the large number of rolled shapes which we manufacture, we have selected for illustration in the profiles and tables such as are deemed most suitable for use in bridge, building, car and ship construction. A complete list of all the sections rolled on the Structural, Plate, Bar and Rail Mills of the Carnegie Steel Company, together with tables of weights and other data in regard i to those products, is given in our Shape Book, with its supple- ments. 287641 CARNEGIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR STRUCTURAL STEEL FOR BRIDGES ADOPTED AUGUST 16, 1909 I. MANUFACTURE 1. Process. The steel shall be made by the open-hearth process. II. CHEMICAL PROPERTIES AND TESTS 2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: CHEMICAL COMPOSITION Elements Considered Structural Steel Eivet Steel Steel Castings Phosphorus, max., per cent -{ Basic Sulphur, max., per cent O.OG 0.04 0.05 0.04 0.04 0.04 0.08 0.05 0.05 3. Ladle Analyses. An analysis shall be made by the manu- facturer from a test ingot taken during the pouring of each melt, to determine the percentages of carbon, manganese, phosphorus and sulphur. A copy of this analysis shall be given to the purchaser or his representative. 4. Check Analyses. A check analysis shall be made from finished material representing each melt, if called for by the purchaser, in which case an excess of 25 per cent, above the requirements specified in Section .2 shall be allowed. STANDARD SPECIFICATIONS III. PHYSICAL PROPERTIES AND TESTS 5. Tension Tests. The steel shall conform to the following requirements as to tensile properties: TENSILE PROPERTIES Properties Considered Structural Steel Rivet Steel Steel Castings Tensile strength.lbs. persq.in. Elongation in 8 inches, min., per cent Desired 60.000 1 1,500,000* Desired 50.000 1 1,500,000^ 65,000 min. Elongation in 2 inches, min., per cent Tens. str. 22 Tens. str. 18 1 See Section 7. 2 See Section 8. 6. Yield Point. The yield point, as determined by the drop of the beam of the testing machine, shall be recorded in the test reports. 7. Permissible Variations in Tensile Strength. The tensile strength of structural and rivet steel may vary 4,000 pounds per square inch from that specified in Section 5. 8. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in Section 5 for structural steel shall be made for each increase of Y% inch in thickness above % inch. (6) For material under %e inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in Section 5 for structural steel shall be made for each decrease of M.6 inch in thickness below %_& inch. 9. Character of Fracture. All broken tension test specimens of structural and rivet steel shall show a silky fracture; and of steel castings, a silky or fine granular fracture. 10. Bend Tests, (a) The test specimen for structural steel shall bend cold through 180 degrees without fracture on the outside of the bent portion, as follows: For material under 1 inch in thickness, flat on itself; and for material 1 inch or over in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. (6) A rivet rod shall bend cold through 180 degrees flat on itself without fracture on the outside of the bent portion. When nicked and bent around a pin the diameter of which is equal to that of the rivet rod, it shall break gradually with a fine, silky, uniform fracture. CARNEGIE STEEL COMPANY (c) The test specimen for steel castings shall bend cold through 90 degrees around a pin the diameter of which is equal to 3 times the thickness of the specimen, without fracture on the outside of the bent portion. (d) Bend tests may be made by pressure or by blows. 11. Tests of Angles. Angles ^ inch or under in thickness shall open flat, and angles % inch or under in thickness shall bend shut, cold, under blows of a hammer without fracture. This test shall be made only when required by the inspector. 12. Test Specimens, (a) Tension and bend test specimens for plates, shapes, and bars shall be taken from the finished product, and shall be of the full thickness of material as rolled. Tension test specimens may be of the form and dimensions shown in Figure 1; or with both edges parallel; or they may be - About 3'- About 18"- FlG. 1 turned to a diameter of % inch for a length of at least 9 inches, with enlarged ends. Bend test specimens for eye bars shall be of the full-size section as rolled. The sheared edges of bend test specimens shall be milled or planed. (&) Rivet rods shall be tested as rolled. (c) Tension and bend test specimens for pins and rollers shall be taken from the finished rolled or forged bar. The axis of the specimen shall be 1 inch from the surface of the bar, and shall be parallel to the axis of the bar. Tension test specimens shall be of the form and dimensions shown in Figure 2. Bend test specimens shall be 1 by Yz inch in section. (d) Tension and bend test specimens for steel castings shall be taken cold from test bars attached to the castings, or from the sink-heads if they are of sufficient size. All test bars or sink heads so used shall be annealed with the castings. STANDARD SPECIFICATIONS Tension test specimens shall be of the form and dimensions shown in Figure 2. Bend test specimens shall be 1 by ^ inch in section. 4 % '_'_ ^ 2-"_ FIG. 2. 13. Annealed Specimens, (a) Material which is to be used with- out annealing or further treatment shall be tested as rolled or forged. (6) Tension test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section of the piece. 14. Number of Tests, (a) At least one tension and one bend test for structural and rivet steel shall be made from each melt. If material from one melt differs % inch or more in thickness, tests shall be made from both the thickest and the thinnest material rolled. (6) The number of tension and bend tests for steel castings will depend on the character and importance of the castings. 15. Retests. If the tensile strength -of structural and rivet steel varies more than 4,000 pounds per square inch from that specified in Section 5, a retest on the same gage may be made, at the option of the inspector, and this shall not vary more than 5,000 pounds per square inch from that specified. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE 16. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent, from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates: (a) When Ordered to Weight. For plates 12^ pounds per square foot or over: Under 100 inches in width, 2.5 per cent, above or below the specified weight; CARNEGIE STEEL COMPANY 100 inches in width and over, 5 per cent, above or below the specified weight. For plates under 12% pounds per square foot: Under 75 inches in width, 2.5 per cent, above or below the specified weight; 75 to 100 inches in width, 5 per cent, above or 3 per cent, below the specified weight; 100 inches in width and over, 10 per cent, above or 3 per cent, below the specified weight. (6) When Ordered to Gage. The thickness of each plate shall not vary more than 0.01 inch under that ordered. An excess over the nominal weight corresponding to the dimen- sions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound: Thick- ness Ordered, Inches Nominal Weight, Pounds per Square Foot ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WEIGHT) For Width of Plate as follows: Under 50 m. , 50 in. to 70 in. 70 in. and over Under 75 in. 75 in. to 100 in. 100 in. to 115 in. 115 in. and over H to 5/ 32 5.10 to 6.37 10 15 20 % 2 to% a 6.37 to 7.65 8.5 12.5 17 %e to X 7.65 to 10.20 7 10 15 % 10.20 10 14 18 %e 12.75 8 12 .10 % 15.30 7 10 13 17 7 /16 17.85 6 8 10 13 % 20.40 5 7 9 12 %e 22.95 4.5 6.5 8.5 11 % 25.50 4 6 8 10 Over % 3.5 5 6.5 9 V. FINISH 17. Finish. The finished material shall be free from injurious seams, slivers, flaws, and other defects, and shall have a workman- like finish. Plates 36 inches in width and under shall have rolled edges. STANDARD SPECIFICATIONS VI. MARKING 18. Marking. The name of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that each pin and roller shall be stamped on the end. Rivet and lattice steel and other small pieces may be shipped in securely fastened bundles, with the above marks legibly stamped on an attached metal tag. VII. INSPECTION AND REJECTION 19. inspection, (a) The purchaser shall be furnished complete copies of mill orders, and no material shall be rolled, nor work done, before the purchaser has been notified where the orders have been placed, so that he may arrange for the inspection. (6) The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manu- facturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspections shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works. 20. Rejection. Material which, subsequent to the above tests at the mills and its acceptance there, develops weak spots, brittle- ness, cracks or other imperfections, or is found to have injurious defects, will be rejected at the shop and shall be replaced by the manufacturer at his own cost. CARNEGIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR STRUCTURAL STEEL FOR BUILDINGS ADOPTED AUGUST 16, 1909 I. MANUPACTUKE 1. Process, (a) Structural steel, except as noted in Section 1 (6), may be made by the Bessemer or the open hearth process. (6) Rivet steel, and steel for plates or angles over % inch in thickness which are to be punched, shall be made by the open hearth process. II. CHEMICAL PROPERTIES AND TESTS 2. Chemical Composition. The steel shall conform to the follow- ing requirements as to chemical composition: STRUCTURAL STEEL, RIVET STEEL T>hr ! rv 1 r.T.iiJ Kessenier not over 0.10 per cent. "n Open Hearth... " 0.06 " not over 0.06 per cent. 3. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 2, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. III. PHYSICAL PROPERTIES AND TESTS 4. Tension Tests, (a) The steel shall conform to the following requirements as to tensile properties: 10 STANDARD SPECIFICATIONS TENSILE PROPERTIES Properties Considered Structural Steel Rivet Steel Tensile strength, Ibs. per sq. in Yield, point niin Ibs per sq in 55,000-65,000 5 Tens str 48,000-58,000 5 Tens str Elongation in 8 inches, min., per cent 1,400,000* Tens. str. 1,400,000 Tens. str. 1 See Sections 5 and 6 (6) The yield point shall be determined by the drop of the beam of the testing machine. 5. Elongation for Pins. The percentage of elongation for pins shall be 5 less than that specified for structural steel in Section 4. 6. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 1 from the percentage of elongation specified in Section 4 shall be made for each increase of y% inch in thickness above % inch. (6) For material under %e inch in thickness, a deduction of 2.5 from the percentage of elongation specified in Section 4 shall be made for each decrease of ^6 inch in thickness below 5 A& inch. 7. Character of Fracture. All broken tension test specimens shall show a silky fracture. 8. Bend Test, (a) The test specimen for structural steel shall bend cold through 180 degrees around a pin the diameter of which is equal to the thickness of the specimen, without fracture on the outside of the bent portion. (6) A rivet rod shall bend cold through 180 degrees flat on itself without fracture on the outside of the bent portion. (c) Bend tests may be made by pressure or by blows. 9. Test Specimens, (a) Tension and bend test specimens for structural steel shall be taken from the finished product, and shall be of full thickness of material as rolled. Tension test specimens may be of the form and dimensions shown in Fig. 1; or with both edges parallel; or they may be turned to a diameter of % inch for a length of at least 9 inches, with enlarged ends. Bend test specimens for material over % inch in thickness may be 1 by }/2 inch in section. The sheared edges of specimens shall be milled or planed. (6) Rivet rods and small rolled bars shall be tested as rolled. 11 CARNEQIE STEEL COMPANY A u + ft" ""' Parallel section not less than 9 " K- About a--*- gi * /iW About 18" *> FIG. 1 (c) Tension test specimens for pins shall be taken from the finished rolled or forged bar. The axis of the specimen shall be 1 inch from the surface of the bar, and shall be parallel to the axis of the bar. 10. Annealed Specimens, (a) Material which is to be used with- out annealing or further treatment shall be tested as rolled or forged. (6) Tension test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section of the piece. 11. Number of Tests, (a) At least one tension and one bend test shall be made from each melt. If material from one melt differs % inch or more in thickness, tests shall be made from both the thickest and the thinnest material rolled. (6) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted. 12. Retests. If the results of the tension tests do not conform to the requirements specified in Section 4, retests may be made. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE 13. Permissible Variations. The cross section or weight of each piece of steel shall not vary more than 2.5 per cent, from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates : (a) When Ordered to Weight. For plates 12^ pounds per square foot or over: Under 100 inches in width, 2.5 per cent, above or below the specified weight; 100 inches in width and over, 5 per cent, above or below the specified weight; 12 STANDARD SPECIFICATIONS For plates under 12Vo pounds per square foot: Under 75 inches in width, 2.5 per cent, above or below the specified weight; 75 to 100 inches in width, 5 per cent, above or 3 per cent. below the specified weight; 100 inches in width and over, 10 per cent, above or 3 per cent, below the specified weight. (6) When Ordered to Gage. The thickness of each plate shall not vary more than 0.01 inch below that ordered. An excess over the nominal weight corresponding to the dimen- sions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound: Thick- ness Ordered, Inches Nominal Weight, Pounds per Square Foot ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WEIGHT) For Width of Plate as follows : Under 50 in. 50 in. to 70 in. 70 in. and over Under 75 in. 75 in. to 100 in. 100 in. to 115 in. 115 in. and over H to % 2 5. 10 to 6.37 10 15 20 %2to?i e 6.37 to 7.65 8.5 12.5 17 946 to M 7.65 to 10.20 7 10 15 % 10.20 10 14 18 %6 12.75 8 12 16 .. % 15.30 7 10 13 17 7 /io 17.85 .. 6 8 10 13 % 20.40 5 7 9 12 %6 22.95 4.5 6.5 8.5 11 % 25.50 4 6 8 10 Over% 3.5 5 6.5 9 V. FINISH 14. Finish. The finished material shall be free from injurious seams, slivers, flaws, and other defects, and shall have a workman- like finish. 13 CARNEGIE STEEL COMPANY VI. MARKING 15. Marking. The melt number shall be stamped on all finished material and on each test specimen. Rivet and lattice steel and other small pieces may be shipped in securely fastened bundles, with the melt number stamped on an attached metal tag. VII. INSPECTION 16. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment and shall be so conducted as not to interfere unnecessarily with the operation of the works. 14 STANDARD SPECIFICATIONS AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOB STRUCTURAL STEEL FOR SHIPS ADOPTED AUGUST 16, 1909 I. MANUFACTURE 1. Process. The steel shall be made by the open hearth process. 2. II. CHEMICAL PROPERTIES AND TESTS Chemical Composition. The steel shall conform to the following requirements as to chemical composition: CHEMICAL COMPOSITION Elements Considered Structural Steel Rivet Steel Steel -Castings f Acid 06 06 08 Phosphorus, max., per cent.| ^asic ' ' Sulphur max per cent 0.04 0.04 0.05 0.05 3. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 2, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. 4. Check Analyses. A check analysis may be made by the pur- chaser from finished material representing each melt, in which case an excess of 25 per cent, above the requirements specified in Section 2 shall be allowed. 15 CARNEGIE STEEL COMPANY 5. III. PHYSICAL PROPERTIES AND TESTS Tension Tests, (a) The steel shall conform to the following requirements as to tensile properties: TENSILE PROPERTIES Properties Considered Structural Steel Rivet Steel Steel Castings Tensile strength, Ibs. per sq. in ... Yield point, min., Ibs. per sq. in. . . Elongation in 8 in., min., per cent. . Elongation in 2 in., min., percent. . 55,000-65,000 0.5 Tens. str. l.SOO.OOO 1 48,000-58,000 0.5 Tens. str. 1,500,000 60,000 min. 0.5 Tens. str. Tens. str. Tens. str. 18 1 See Section 6. (6) The yield point shall be determined by the drop of the beam of the testing machine. 6. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 1 from the percentage of elongation specified in Section 5 shall be made for each increase of }/$ inch in thickness above % inch. (6) For material under %G inch in thickness, a deduction of 2.5 from the percentage of elongation specified in Section 5 shall be made for each decrease of Vie inch in thickness below 5 /ie inch. 7. Character of Fracture. All broken tension test specimens of structural and rivet steel shall show a silky fracture; and of steel castings, a silky or fine granular fracture. 8. Bend Tests, (a) The test specimen for structural steel shall bend cold through 180 degrees without fracture on the outside of the bent portion, as follows : For material under % inch in thickness, flat on itself; for material % to IMinch in thickness, around a pin the diameter of which is equal to 13/ times the thickness of the specimen; and for material over 134 inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen. (6) A rivet rod shall bend cold through 180 degrees flat on itself without fracture on the outside of the bent portion. (c) The test specimen for steel castings shall bend cold through 90 degrees around a pin the diameter of which is equal to 3 times the thickness of the specimen, without fracture on the outside of the bent portion. (d) Bend tests may be made by pressure or by blows. 16 STANDARD SPECIFICATIONS 9. Tests of Angles. Angles % inch or under in thickness shall open flat, and angles % inch or under in thickness shall bend shut, cold, under the blows of a hammer without fracture. This test shall be made only when required by the inspector. 10. Test Specimens, (a) Tension and bend test specimens for structural steel shall be taken from the finished product, and shall be of the full thickness of material as rolled. Tension test specimens may be of the form and dimensions shown in Fig. 1; or with both edges parallel; or they may be turned to a diameter of % inch for a length of at least 9 inches, with enlarged ends. r - About 3--~ JV J?^nel_sectiqn_npt;_e_ssthan_?:'_^ K.____ About 18" - FIG. 1 The sheared edges of bend test specimens shall be milled or planed. (6) Rivet rods and small rolled bars shall be tested as rolled. (c) Tension and bend test specimens for steel castings shall be taken cold from test bars attached to the castings, or from the sink-heads if they are of sufficient size. Ail test bars or sink-heads so used shall be annealed with the castings. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be 1 by 3^ inch in section. 11. Annealed Specimens, (a) Material which is to be used with- out annealing or further treatment shall be tested as rolled. 17 CARNEGIE STEEL COMPANY (6) Tension test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section of the piece. 12. Number of Tests, (a) At least one tension and one bend test for structural and rivet steel shall be made from each melt. If material from one melt differs % inch or over in thickness, tests shall be made from both the thickest and the thinnest material rolled. (6) The number of tension and bend tests for steel castings will depend on the character and importance of the castings. (c) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted. 13. Retests. If the results of the tension tests do not conform to the requirements specified in Section 5, retests may be made. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE 14. Permissible Variations. The cross section or weight of each piece of steel shall not vary more than 2.5 per cent, from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates: (a) When Ordered to Weight. For plates 12^ pounds per square foot or over : Under 100 inches in width, 2.5 per cent, above or below the specified weight; 100 inches in width and over, 5 per cent, above or below the specified weight. For plates under 12^ pounds per square foot: Under 75 inches in width, 2.5 per cent, above or below the specified weight; 75 to 100 inches in width, 5 per cent, above or 3 per cent. below the specified weight; 100 inches in width and over, 10 per cent, above or 3 per cent. below the specified weight. (6) When Ordered to Gage. The thickness of each plate shall not vary more than 0.01 inch below that ordered. An excess over the nominal weight corresponding to the dimen- sions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound: 18 STANDARD SPECIFICATIONS Thick- ness Ordered, Inches Nominal Weight, Pounds per Square Foot ALLOWABLE EXCESS (EXPRESSED AB PERCENTAGE OF NOMINAL WEIGHT) For Width of Plate as follows: Under 50 in. 50 in. to 70 in. 70 in. and over Under 75 in. 75 in. to 100 in. 100 in. to 115 in. 115 in. and over % to % 2 5.10 to 6.37 10 15 20 .. .. -:':; tOi,, 6.37 to 7.65 8.5 12.5 17 ^10 tO V4 7.65 to 10.20 7 10 15 .. % 10.20 10 14 18 5 /i6 12.75 8 12 16 96 15.30 7 10 13 17 % 17.85 6 8 10 13 % 20.40 5 7 9 12 %6 22.95 4.5 6.5 8.5 11 % 25.50 4 6 8 10 Over % ' 3.5 5 6.5 9 V. FINISH 15. Finish. The finished material shall be free from injurious seams, slivers, flaws, and other defects, and shall have a workman- like finish. VI. MARKING 16. Marking. The melt number shall be legibly stamped or rolled on all finished material and test specimens, except that small pieces may be shipped in securely fastened bundles, with the melt number legibly stamped on an attached metal tag. VII. INSPECTION 17. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works. 19 CARNEQIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR STRUCTURAL NICKEL STEEL ADOPTED JUNE 1, 1912 I. MANUFACTURE 1. Process. The steel shall be made by the Open Hearth process. 2. Discard. A discard of at least 25 per cent, shall be made from the top of each ingot intended for eye bars. If necessary, the shearing shall be continued until sound metal is found. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: CHKMICAL, COMPOSITION Elements Considered Rivets Plates and Bars and Rollers, Bars and Pins, Unannealed Annealed Carbon, max. per cent 0.30 0.45 0.45 0.45 Manganese, max. per cent 0.60 0.70 0.70 0.70 Phosphorus, max. per cent. jg^,j c 0.04 0.03 0.05 0.04 0.05 0.04 0.05 0.04 Sulphur, max. per cent Nickel, min. per cent, 0.04 3.25 0.04 ' 3.25 0.04 3.25 0.04 3.25 4. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 3, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the pur- chaser or his representative. 20 STANDARD SPECIFICATIONS 5. Check Analyses. A check analysis may be made by the pur- chaser from finished material representing each melt, and this analysis shall conform to the requirements specified in Section 3. III. PHYSICAL PROPERTIES AND TESTS 6. Tension Tests, (a) The steel shall conform to the following requirements as to tensile properties: TENSILE PROPERTIES FROM SPECIMEN TESTS Properties Considered Rivets Plates and Shapes Bars and Rollers/ Unannealed Bars a and Pins, c Annealed Tensile strength, Ibs. persq. in... . Yield point, min., Ibs. persq. in .... Elongation in 8 in., min., per cent. Elongation in 2 in., min., per cent. Reduction of area min. , per cent 70,000-80,000 45,000 1,500,000 Tens. Str. 85,000-100,000 50,000 1,500.000^ Tens. Str. 95,000-110,000 55,000 1.500.000^ Tens. Str. 16 25 90,000-105,000 52,000 20 20 35 40 25 a. Tests of annealed specimens of bars shall be made for information only. b See Section 7. c Elongation shall be measured in 2 in. (6) The yield point shall be determined by the drop of the beam of the testing machine. 7. Modifications in Elongation. For plates, shapes and unannealed bars over 1 inch in thickness, a deduction of 1 from the percentage of elongation specified in Section 6 shall be made for each increase of }/8 inch in thickness above 1 inch, to a minimum of 14 per cent. 8. Character of Fracture. All broken tension test specimens shall show either a silky or a very fine granular fracture, of uniform color, and free from coarse crystals. 9. Bend Tests, (a) The test specimen for plates, shapes and bars shall bend cold through 180 degrees without fracture on the outside of the bent portion, as follows : For material % inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over % inch in thick- ness, around a pin the diameter of which is equal to twice the thickness of the specimen. (6) A rivet rod shall bend cold through 180 degrees flat on itself without fracture on the outside of the bent portion. 21 CARNEGIE STEEL COMPANY^ (c) The test specimen for pins and rollers shall bend cold through 180 degrees around a 1 inch pin, without fracture on the outside of the bent portion. (d) Bend tests may be made by pressure or by blows. 10. Tests of Angles, (a) Angles with 4 inch legs or under, and 3^ inch or under in thickness, shall open flat or bend shut, cold, under the blows of a hammer without fracture. (6) Angles with legs over 4 inches, or over Y% inch in thickness, shall open to an angle of 150 degrees, or close to an angle of 30 degrees, cold, under the blows of a hammer without fracture. 11. Drift Tests. Punched rivet holes pitched two diameters from a planed edge shall stand drifting until the diameter is enlarged 50 per cent, without cracking the metal. 12. Test Specimens, (a) Tension and bend test specimens for plates, shapes and bars shall be taken from the finished product, and shall be of the full thickness of material as rolled. Tension test specimens may be of the form and dimensions shown in Fig. 1; or with both edges parallel; or they may be turned -About-3- i 0' ,1*" i jy i i__. About 18 v FIG. 1 to a diameter of % inch for a length of at least 9 inches with enlarged ends. Bend test specimens shall not be less than 2 inches in width. (6) Rivet rods shall be tested as rolled. (c) Tension and bend test specimens for pins and rollers shall be taken from the finished rolled or forged bar. The axis of the specimen shall be 1 inch from the surface of the bar and shall be parallel to the axis of the bar. Test specimens for pins shall be taken after annealing. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be 2 by J^ inch in section. 13. Number of Tests. At least one tension and one bend test shall 22 STANDARD SPECIFICATIONS be made from each melt. If material from one melt differs Y% inch or over in thickness, tests shall be made from both the thickest and the thinnest material rolled. No material under 5 Ae inch in thickness will be used. ----------------- -2%-'- -------------- 2"- FIG. 2. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE 14. Permissible Variations. The cross section or weight of each piece of steel shall not vary more than 2.5 per cent, from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates: (a) When Ordered to Weight. For plates 123/ pounds per square foot or over: Under 100 inches in width, 2.5 per cent, above or below the specified weight; 100 inches in width and over, 5 per cent, above or below the specified weight. (6) When Ordered to Gage. The thickness of each plate shall not vary more than 0.01 inch below that ordered. An excess over the nominal weight corresponding to the dimen- sions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pounds: Thickness Ordered, Inches Nominal Weight, Pounds per Square Foot ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WEIGHT) For Width of Plate as Follows : Under 75 in. 75 in. to 100 in. 100 in. to 115 in. 115 in. and over l a %6 % % % Over % 12.75 15.30 17.85 20.40 22.95 25.50 8 7 6 5 4.5 4 3.5 12 10 8 7 6.5 6 *j 16 13 10 9 8.5 8 6.5 17 13 12 11 10 9 28 CARNEGIE STEEL COMPANY V. FINISH 15. Finish. The finished material shall be free from injurious seams, slivers, flaws and other defects, and shall have a workman- like finish. VI. MARKING 16. Marking. The name of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that each pin and roller shall be stamped on the end. Rivet and lattice steel and other small pieces shall be shipped in securely fastened bundles, with the above marks legibly stamped on an attached metal tag. VII. INSPECTION 17. Inspection, The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works. VIII. FULL SIZE TESTS 18. Tests of Eye Bars, (a) Full size tests of annealed eye bars shall conform to the following requirements as to tensile properties : Tensile strength, Ibs. per sq. in 85,000-100,000 Yield point, min., Ibs. per sq. in 48,000 Elongation in 18 ft., min., per cent 10 Reduction of area, min., per cent 30 (6) The yield point shall be determined by the halt of the gage of the testing machine. 24 STANDARD SPECIFICATIONS AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR BOILER AND FIRE BOX STEEL ADOPTED JUNE 1, 1912 1. Grades. There shall be two grades of steel for boilers, namely: Flange and firebox. I. MANUFACTURE 2. Process. The steel shall be made by the open hearth process. II. CHEMICAL PROPERTIES AND TESTS 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: FLANGE FIREBOX Carbon 0.12-0.25 per cent. Manganese 0.30-0.60 0.30-O.50 Phosphorus (Acid) not over 0.05 not over 0.04 Phosphorus (Basic) " " 0.04 " " 0.035 Sulphur " " 0.05 0.04 Copper " " 0.05 4. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 3, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. 5. Check Analyses. A check analysis may be made by the pur- chaser from a broken tension test specimen representing each platt as rolled, and this analysis shall conform to the requirements speci- fied in Section 3. 25 CARNEGIE STEEL COMPANY III. PHYSICAL PROPERTIES AND TESTS 6. Tension Tests, (a) The steel shall conform to the following requirements as to tensile properties: FLANGE FIREBOX Tensile strength, Ibs. per sq. in 55,000-65,000 52,000-62,000 Yield point, min., Ibs. per sq. in 0.5 Tens. str. 0.5 Tens. str. Elongation in 8 in. , min. , per cent. . . . .^QOOOq 1,500.000 Tens. str. Tens. str. (See Section 7) (6) The yield point shall be determined by the drop of the beam of the testing machine. 7. Modifications in Elongation, (a) For material over % inch in thickness, a deduction of 0.5 from the percentage of elongation specified in Section 6 shall be made for each increase of ^ inch in thickness above % inch. (6) For material ^ inch or under in thickness, the elongation shall be measured on a gage length of 24 times the thickness of the specimen. 8. Bend Tests, (a) Cold-bend Tests. The test specimen shall bend cold through 180 degrees without fracture on the outside of the bent portion, as follows: For material 1 inch or under in thick- ness, flat on itself; and for material over 1 inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen. (6) Quench-bend Tests. The test specimen, when heated to a light cherry red as seen in the dark (not less than 1200 F.), and quenched at once in water the temperature of which is between 80 and 90 F., shall bend through 180 degrees without fracture on the outside of the bent portion, as follows: For material 1 inch or under in thickness, flat on itself; and for material over 1 inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen. (c) Bend tests may be made by pressure or by blows. 9. Homogeneity Tests. For firebox steel, a sample taken from a broken tension test specimen shall not show any single seam or cavity more than % inch long, in either of the three fractures obtained in the test for homogeneity, which shall be made as follows: The specimen shall be either nicked with a chisel or grooved on a machine, transversely, about VIQ inch deep, in three places about 2 inches apart. The first groove shall be made 2 inches from the square end; each succeeding groove shall be made on the opposite side from the preceding one. The specimen shall then be firmly 26 STANDARD SPECIFICATIONS held in a vise, with the first groove about % inch above the jaws, and the projecting end broken off by light blows of a hammer, the bending being away from the groove. The specimen shall be broken at the other two grooves in the same manner. The object of this test is to open and render visible to the eye any seams due to failure to weld up cr to interposed foreign matter, or any cavities due to gas bubbles in the ingot. One side of each fracture shall be examined and the lengths of the seams and cavities determined, a pocket lens being used if necessary. 10. Test Specimens, (a) Tension and bend test specimens shall be taken from the finished product, and shall be of the full thickness of material as rolled. (&) Tension test specimens shall be of the form and dimensions shown in Fig. 1. The sheared edges of bend test specimens shall be milled or planed. r About 3--~ *! r ?arallel_8ectiqn_npt_le88 than_9__^ *& -l-'^l'^ Etc. About 13"- FIG. 1 11. Number of Tests, (a) One tension, one cold-bend, and one quench-bend test shall be made from each plate as rolled. (6) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted. IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE. 12. Permissible Variations. When Ordered to Gage. The thickness of each plate shall not vary more than 0.01 % inch below that ordered. An excess over the nominal weight corresponding to the dimen- sions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound: CARNEQIE STEEL COMPANY Thick- ness Ordered, Inches Nominal Weight, Pounds per Square Foot ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WEIGHT) For Width of Plate as follows: Under 50 in. 50 in. to 70 in. 70 in. and over Under 75 in. 75 in. to *100 in. 100 in. to 115 in. 115 in. and over Vs tO % 2 5.10 to 6.37 10 15 20 %2 tO%6 6.37 to 7.65 8.5 12.5 17 8 /16 tO % 7.65 to 10.20 7 10 15 % 10.20 10 14 18 5 /16 12.75 8 12 16 % 15.30 7 10 13 17 Vie 17.85 6 8 10 13 Va 20.40 5 7 9 12 9 /16 22.95 4.5 6.5 8.5 11 % 25.50 4 6 8 10 Over % 3.5 5 6.5 9 V. FINISH 13. Finish. The finished material shall be free from injurious seams, slivers, flaws, laminations and other defects, and shall have a workmanlike finish. VI. MARKING 14. Marking. The name of the manufacturer, melt or slab number, grade and lowest tensile strength for its grade specified in Section 6, shall be legibly stamped on each plate. The melt or slab number shall be legibly stamped on each test specimen repre- senting that melt or slab. VII. INSPECTION 15. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture * of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works. 28 STANDARD SPECIFICATIONS AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR BOILER RIVET STEEL ADOPTED JUNE 1, 1912 A . Requirements for Rolled Bars I. MANUFACTURE 1. Process. The steel shall be made by the open hearth process. II. CHEMICAL PROPERTIES AND TESTS 2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: Manganese 0.30-O.50 per cent. Phosphorus not over 0.04 " Sulphur " " 0.045 " 3. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 2, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. 4. Check Analyses. A check analysis may be made by the pur- chaser from finished material representing each melt, and this analysis shall conform to the requirements specified in Section 2. III. PHYSICAL PROPERTIES AND TESTS 5. Tension Tests, (a) The steel shall conform to the following 29 CARNEGIE STEEL COMPANY requirements as to tensile properties: Tensile strength, Ib. per sq. in 45,000-55,000 Yield point, min., Ib. per sq. in 0.5 Tens. str. Elongation in 8 in., min., per cent 1.500.000 Tens, str. (But need not exceed 30 per cent.) (6) The yield point shall be determined by the drop of the beam of the testing machine. 6. Bend Tests, (a) Cold-bend Tests. The test specimen shall bend cold through 180 degrees flat on itself without fracture on the outside of the bent portion. (6) Quench-bend Tests. The test specimen, when heated to a light cherry red as seen in the dark (not less than 1200 F.), and quenched at once in water the temperature of which is between 80 and 90 F., shall bend through 180 flat on itself without fracture on the outside of the bent portion. (c) Bend tests may be made by pressure or by blows. 7. Test Specimens. Tension and bend test specimens shall be taken from the finished bars and shall be of the full-size section of material as rolled. 8. Number of Tests. Two tension, two cold-bend, and two quench-bend tests shall be made from each melt. IV. PERMISSIBLE VARIATIONS IN GAGE 9. Permissible Variations. The gage of each bar shall not vary more than 0.01 inch from that specified. V. WORKMANSHIP AND FINISH 10. Workmanship. The finished bars shall be circular within 0.01 inch. 11. Finish. The finished bars shall be free from injurious seams, slivers, flaws and other defects, and shall have a workmanlike finish. VI. MARKING 12. Marking. Rivet steel shall be shipped in securely fastened bundles, with the melt numbers legibly stamped on an attached metal tag. VII. INSPECTION 13. Inspection. The inspector representing the purchaser shall have free entry at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's 30 STANDARD SPECIFICATIONS works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, and shall be so conducted as not to interfere unnecessarily with the operation of the works. B. Requirements for Rivets I. PHYSICAL PROPERTIES AND TESTS 14. Tension Tests. The rivets, if tested, shall conform to the requirements as to tensile properties specified in Section 5, except that the elongation shall be measured on a gage length not less than four times the diameter of the rivet. 15. Bend Tests. The rivet shank shall bend cold through 180 degrees flat on itself, as shown in Fig. 1, without fracture on the outside of the bent portion. FIG. 1 FIG. 2 16. Flattening Tests. The rivet heads shall flatten, while hot, to a diameter 2^2 times the diameter of the shank, as shown in Fig. 2, without cracking at the edges. 17. Number of Tests, (a) If the results of the tension tests of the bars from which the rivets are made cannot be furnished, one tension test from each size in each lot of rivets offered for inspection shall be made. (b) Three bend and three flattening tests shall be made from each size in each lot of rivets offered for inspection. II. WORKMANSHIP AND FINISH 18. Workmanship. Rivets shall be true to form, concentric, and shall be made in a workmanlike manner. 19. Finish. Rivets shall be free from injurious scale, fins, seams and other defects. III. REJECTION 20. Rejection. Rivets which fail to conform to the requirements specified in Sections 14, 15 and 16 will be rejected and the manufac- turer shall be notified. 31 CARNEQIE STEEL COMPANY AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A. AFFILIATED WITH THE INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS STANDARD SPECIFICATIONS FOR STEEL REINFORCING BARS ADOPTED JUNE 1, 1912 1. Classes, (a) There shall be three classes of steel reinforcing bars, namely: plain, deformed and cold-twisted. (6) Plain and deformed bars are of two grades, namely: structural steel and hard. 2. Basis of Purchase, (a) The hard grade will be used only when specified. (6) If desired, cold-twisted bars may be purchased on the basis of tests of the hot-rolled bars before twisting, in which case such tests shall govern and shall conform to the requirements specified for plain bars of structural steel grade. I. MANUFACTURE 3. Process, (a) The steel may be made by the Bessemer or the open hearth process. (6) Bars shall be rolled from new billets. No re-rolled material will be accepted. 4. Cold-twisted Bars. Cold-twisted bars shall be twisted cold with one complete twist in a length not over 12 times the thickness of the bar. 32 STANDARD SPECIFICATIONS II. CHEMICAL PROPERTIES AND TESTS 5. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: not over 0.10 per cent. " 0.05 " 6. Ladle Analyses. To determine whether the material conforms to the requirements specified in Section 5, an analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. 7. Check Analyses. A check analysis may be made by the pur- chaser from finished material representing each melt of open hearth steel and from each melt or lot of ten tons of Bessemer steel, in which case an excess of 25 per cent, above the requirements speci- fied in Section 5 shall be allowed. III. PHYSICAL PROPERTIES AND TESTS 8. Tension Tests, (a) The steel shall conform to the following requirements as to tensile properties: TENSILE PROPERTIES Plain Bars Deformed Bars Cold- Properties Considered twisted Bars Structural Steel Grade Hard Grade Structural Steel Grade Hard Grade Tensile strength Ibs. per sq. in. 55,000-70,000 80,000 min. 55,000-70,000 80,000 min. Recorded Yield point, min. Ibs. per sq. in. 33,000 50,000 33,000 50,000 55,000 Elongation in 8 in., min., per 1,400,000! 1,200,000! 1,250,000! l,000,000 l 5 cent Tens. str. Tens. str. Tens. str. Tens. str. iSee Section 9. (6) The yield point shall be determined by the drop of the beam of the testing machine. 9. Modifications in Elongation, (a) For plain and deformed bars over % inch in thickness or diameter, a deduction of 1 from the percentage of elongation specified in Section 8 shall be made for each increase of % inch in thickness or diameter above % inch. 33 CARNEGIE STEEL COMPANY (6) For plain and deformed bars under %e inch in thickness or diameter, a deduction of 1 from the percentage of elongation specified in Section 8 shall be made for each decrease of Vie inch in thickness or diameter below %e inch. 10. Bend Tests, (a) The test specimen shall bend cold around a pin without fracture on the outside of the bent portion, as follows : BEND TEST REQUIREMENTS Thickness Plain Bars Deformed Bars or Cold- of Bar Structural Steel Grade Hard Grade Structural Steel Grade Hard Grade Bars Under % in . . 180 deg. 180 deg. 180 deg. 180 deg. 180 deg. d=t d = 3t d=t d = 4b d = 2t % in. or over . 180 deg. 90 deg. 90 deg. 90 deg. 180 deg. d=t d = 3t d = 2t d = 4t d=3t EXPLANATORY NOTE: d=the diameter of pin about which the specimen is bent. t=the thickness or diameter of the specimen. (6) Bend tests may be made by pressure or by blows. 11. Test Specimens, (a) Tension and bend test specimens for plain and deformed bars shall be taken from the finished bars, and shall be of the full thickness or diameter of material as rolled; except that the specimens for deformed bars may be planed or turned for a length of at least 9 inches, if deemed necessary by the manu- facturer to obtain uniform cross-section. (6) Tension and bend test specimens for cold-twisted bars shall be taken from the finished bars, without further treatment; except as provided for in Section 2 (6). 12. Number of Tests, (a) At least one tension and one bend test shall be made from each melt of open hearth steel and from each melt, or lot of ten tons of Bessemer steel. If material from one melt differs % mcn or more in thickness or diameter, tests shall be made from both the thickest and the thinnest material rolled. (6) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted. 13. Retests. If the results of the tension tests do not conform to the requirements specified in Section 8, a retest may be made. 34 STANDARD SPECIFICATIONS IV. PERMISSIBLE VARIATIONS IN WEIGHT 14. Permissible Variations. The weight of any lot of bars shall not vary more than 5 per cent, from the theoretical weight of that lot. V. FINISH 15. Finish. The finished bars shall be free from injurious seams, slivers, flaws and other defects, and shall have a workmanlike finish. VI. INSPECTION 16. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reason- able facilities to satisfy him that the material is being furnished in accordance with these specifications. 35 CARNEGIE STEEL COMPANY ORDERING MATERIAL GENERAL INSTRUCTIONS Structural steel for bridges, buildings and ships, steel reinforce- ment bars and open hearth boiler plate and rivet steel are rolled to permissible variations given in the specifications which precede. In cases of design which require close fitting, allowance should be made for such rolling variations so as to insure ample clearance between abutting or interfitting surfaces. All dimensions given on profiles are theoretical. Wherever the profile applies to more than one weight of section, the dimensions are for the minimum weight. Weights of rails are given per lineal yard of section, but unless otherwise indicated, all other weights are per lineal foot. Sections having but one weight specified can be rolled only to the weight given. Structural Beams, H-Beams, Structural Channels, Shipbuilding Channels, Bulb Angles, Bulb Beams, United States Steel Sheet Piling, Tees and Zees should be ordered to weight per foot; Angles may be ordered either to weight per foot or to thickness. Orders for Plates should specify all dimensions in inches. Orders for Rounds, Squares and other Bar Mill Products should specify width and thickness in inches and the length in feet and inches. Rails, Ties and other track accessories should be ordered by section number and not by the weight per foot. The section number should also be specified on orders for all other sections. The Association of American Steel Manufacturers has recom- mended certain angle sections as standard for bridge, car, ship and general building construction, and quicker deliveries can be obtained by ordering these standard sizes and weights. Angles not standard are marked "special" on the profile pages. In the calculation of the areas and weights of the various sections herein shown, the fillets have been disregarded in accordance with the rules of the Association of American Steel Manufacturers. 36 INCREASE IN SECTIONAL AREAS The above figures show the method of increasing the sectional areas and weights of structural shapes. Cross hatched portions represent the minimum sections and the blank portions the added areas. In the case of Channels, I-Beams and Bulb Beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. In the case of Angles and Zees, the effect of spreading the rolls is slightly to increase the length of the legs. Many of the sizes, however, are rolled in finishing passes whereby the exact dimensions are maintained for different thicknesses. Inasmuch, however, as these passes are modified in the wear of the rolls, it is impracticable to stats what the exact dimensions will be, except in the case of the minimum weight sections. Designers and detailers of structural work should, therefore, arrange for ample clearances. 37 CARNEGIE STEEL COMPANY BEAMS AND CHANNELS COMMON DIMENSIONS SUPPLEMENTARY BEAMS 0=3.82t 0.10 1 t =0.01125d+0.12 p, computed n =0.01875d+0.09 r=1.48t+0.02 m=n+ "T? R=16.78t 0.66 Slope of Flange, 1 : 6=16%%=9 27' 42" STRUCTURAL BEAMS n=minimum web=t R=minimum web + 0.10 r = T 8 g minimum web Slope of Flange, 1:6=16%%=9 27' 42" STRUCTURAL CHANNELS n =minimum web =t R=minimum web + 0.10 r = T % minimum web Slope of Flange, 1:6 = 16%% = 9 27' 42" All dimensions are in inches and apply only to the minimum weight Beams or Channels. Dimensions given for Structural Beams are those adopted in 1896, by the Association of American Steel Manufacturers and apply to all Beam Sections shown on the pages which follow , except the American Standard Beam Sections B 1,B2 and B3, Beam Sections B 24 and B81, and Supplementary Beams B 31 to B 38, inclusive. Dimensions shown for Structural Channels are those adopted by the Association of American Steel Manufacturers and apply to all Structural Channel Sections except C20 38 BEAMS STRUCTURAL BEAMS : 7 - SD *j s fc MC _J^ * f~ > r- j *- 1 *B 31 a Hi ^~-^~ 0.208 ~ C ,. i | T *g*- 3.688 ^g i-i . . w , Flange Width. Web Thickneaa, %& ^' pe^l ' I-*- 11101168 i Decimal Fractional Decimal Fractional *B31 27 83.0 7.500 7M 0.424 if * Supplementary Beam. CARNEGIE STEEL COMPANY STRUCTURAL BEAMS Continued - 7.875" ->i K- 7.00" 3 B24 __i Bl Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional 115.0 8.000 8 0.750 H B24 24 110.0 7.938 7if 0.688 H 105.0 7.875 7% 0.625 5 A 100.0 7.254 7M 0.754 74 95.0 7.193 7ft 0.693 li B 1 24 90.0 7.131 7y s 0.631 N 85.0 7.070 7& 0.570 i 9 8 80.0 7.000 7 0.500 y* BEAMS STRUCTURAL BEAMS Continued * 7.00 ,* 6.50-' _5.88 0.60' 'B 32 5.31 "B33 4..J 0.172^-' y ' 3.072 ; S^ '- 0.195-J -; S~ 3.305 Section Index Depth of Beam, Inches Weight 1 per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional *B32 *B33 24 21 69.5 57.5 7.000 6.500 7 6 1 A 0.390 0.357 u N * Supplementary Beams. 41 CARNEQIE STEEL COMPANY STRUCTURAL BEAMS Continued 6.25 = - 0.70 "-- B 2 0.60 *_ B3 W- 3.200" H U- 2.875"--*] Section Depth of FlangeWidth, Web Thickness, Inches Index Beam, per Foot, Inches Pounds Decimal Fractional Decimal Fractional 100.0 7.284 7 5 9 2 0.884 g 95.0 7.210 741 0.810 it B2 20 90.0 7.137 7* 0.737 85.0 7.063 7A 0.663 i 80.0 7.000 7 0.600 41 75.0 6.399 6J3 0.649 ** B3 20 70.0 6.325 6|i 0.575 65.0 6.250 0.500 /^ 42 BEAMS f~" 8 t> *... f" 8 CO t... r (... STRUCTURAL BEAMS Continued n BS, r \ ^ 14 4Q9 ' ^ 1 0.659" 1.195" . % ..j 0.460" 0.922" ""* ; el --.* 0.427" 1 d .i 1- ...i \\ 1 0.562" iy j ' 1 _>/ 0.34 VL. i B8 ,, r 1 c 207 - - -> / V ; ; 0.460" 1 7 / ' "\ J 0.28 VL \*B 34 / ^... ... _.. 139 32'1 ..JM&*L p* ld.932 >p ^* i j ,i,0.322" : jJ.. / -:^\ Se< In no^K r w u+ Flange Width, Web Thickness, f? D B?' pSt, ' '*- I Inches Pounds i Dec5raa! Fractional Decimal Fractional 90.0 7.245 7M 0.807 ft RR1 1S 85.0 7.163 7& 0.725 3 80.0 7.082 7& 0.644 jM- 75.0' 7.000 7 0.562 i A 70.0 6.259 64J 0.719 3 65.0 6.177 6H 0.637 H 60.0 6.095 6& 0.555 T 9 8 55.0 6.000 6 0.460 || *B34 18 46.0 6.000 6 0322 *J * Supplementary Beam. CARNEGIE STEEL COMPANY f~ 1 o 1 1 1 1 1 1 1 * i 1 1 * MS | 1 | 1 I i r~ I STRUCTURAL BEAMS Continued A Bs I 1 L^_ 11 740 ^ / ^0.590* 1.041* V 1 1 0.590 " J 0.69M 4 Uo' 0.834* "A B 7 I VJ 1 0.410" *\J / \ 0.25 ^ ij 1371" o -0.805" y *B 35 \ 11 ^80 " ; ; 1.810/ V^ i ^0.289" : "7" ( ^00' M-/ S .i 0.451 Section Index Depth of Weight Flange Width, Beam, per Foot, Web Thickness, Inches inches Bounds Decjmal Fract onal Decimal Fractional B 5 B 7 *B35 75.0 6.292 6 15 70.0 6.194 6 T 65.0 6.096 63 60.0 6.000 6 55.0 5.746 53- 15 50.0 5.648 5* 45.0 5.550 5g 42.0 5,500 51 15 36.0 5.500 5^ 1 0.882 y 8 8 0.784 j 0.686 H 0.590 3 ^ 0.656 l\ \ 0.558 i 9 B J 0.460 if i 0.410 & i 0.289 if * Supplementary Beam. 44 BEAMS '5 "i r~ L. t f- s t... STRUCTURAL BEAMS Continued A 1 /i \ H :--- / 0.460' 0.859* "7 1 *l 1 __t i 0.350* 0.738* V io.46o" ,y r ' o i> ^/ 0.28"Vl ~\ B, r V 10.350" \J J 0.21'W 1 i CO V \ # . ^0.315" S "* 0.710" ""Tj i "A *B 36 1 \ wz"/ \ & C9" 3^T*^^/ V, i 1 0.255" i _/-- r iP$ | r\ Sec In. De th of Weight Flange Width, Web Thickness, lion T> T? A Inches inches Inches Pounds Decimal | Fractional Decimal Fractional 55.0 5.611 5f| 0.821 50.0 5.489 5gi 0.699 B 8 12 45.0 5.366 5f 0.576 40.0 5.250 5^ 0.460 jjf 35.0 5.086 5& 0.436 & 31.5 5.000 5 0.350 H *B36 12 27.5 5.000 5 0.255 K * Supplementary Beam. 45 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS Continued T" 0.310" Bll K- - 7 959" 5 ! 10.810* 0.673" r L }\ J J 3 ji_ u -4 - "1 *B37 ,/ K OT " \ ,< 7126--- - - ...J.A5T7, rl< / ^ V_ ! 10.232" CO : 0.647 ^ r ^N -"4 \ Si 0.37 \ o,- ; V "o *.... j \ ..J "\ B13 ,r V 10.290" . ^ 87* 0.6 ' / 0.39 A * / \ : i / . 17 Aj,_i K- 9 "** Section Depth of Weight ^TnchT^ Web Thickness, Inches inches Pounds Decimal Frac tional Decimal Fractional 40.0 5.099 5 3 3 j 0.749 H B 11 lf) 35.0 4.952 4 30.0 4.805 4 %l 0.602 }i 0.455 if If 25.0 4.660 4 Si 0.310 *B37 10 22.0 4.670 4 gf 0.232 J| 35.0 4.772 4 If 0.732 cf B 13 9 30.0 4.609 4 If 0.569 T 9 H 25.0 4.446 4 ii 0.406 if 21.0 4.330 4 0.290 M * Supplementary Beam. 46 BEAMS Section Index STRUCTURAL BEAMS Continued .- 5.426 ~---f- Flange Width, Inches Depth of Weight Beam, j per Foot, Inches Pounds Decimal Fractional Web Thickness, Inches Decimal Fractional B 15 *B38 B 17 25.5 23.0 20.5 18.0 17.5 20.0 17.5 15.0 4.271 4.179 4.087 4.000 4.330 3.868 3.763 3.660 3&f 0.541 0.449 0.357 0.270 0.210 0.458 0.353 0.250 1 Supplementary Beam. 47 CARNEGIE STEEL COMPANY STRUCTURAL BEAMS Concluded Section Index Depth of Beam, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional 17.25 3.575 m 0.475 it B19 6 14.75 3.452 3|| 0.352 u 12.25 3.330 3fi 0.230 if 14.75 3.294 3! 0.504 14 B21 5 12.25 3.147 3 S 9 5 0.357 U 9.75 3.000 3 0.210 Ji 10.5 2.880 2% 0.410 if B23 4 9.5 2.807 21i 0.337 Ji 8.5 2.733 2ft{ 0.263 U 7.5 2.660 2H 0.190 T 3 5 7.5 2.521 m 0.361 U B77 3 6.5 2.423 2J 0.263 i! 5.5 2.330 m 0.170 tt 48 BEAMS H-BEAMS Section Beam , per Foot Inches Pounds "TEff" 1 - Web Thickness, Inches Decimal Fractional Decimal Fractional H 4 H 3 H 2 H 1 8 6 5 4 34.0 23.8 18.7 13.6 8.000 6.000 5.000 4.000 I I 0.375 0.313 0.313 0.313 f H-Beams shown on this sheet are particularly adapted for use in inside mine timbering. Full information as to their properties and uses is given in separate pamphlets entitled "Steel Mine Timbers." 49 CARNEGIE STEEL COMPANY fif p ^%' i. K* BULB BEAMS ^ ::j rr\ " m ; iJ. %: i i M"^ o 1 1 . A * T % % i i 1 i -~] %2 i S tj [ -K^ ^ \ \8 L in" I 1 *\ " \ T * B 101 /-^--j 1 , LI i** / V 1 L 2XS /^ ^\ v 1 **' r xj__i *-f I q" * a / J- y ^ 6 14.0 4.375 4?/g 0.281 ^T * Furnished only by special arrangement. 50 BULB SECTIONS BULB ANGLES Section Index Depth, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal j Fractional Decimal Fractional *B 130a *B 130 *B 131 *B 132 *B141 *B133 *B 140 10 10 9 8 7 7 7 32.0 26.6 21.8 19.3 20.0 - 18.3 16.1 3.500 3H 3.500 3y 2 3.500 3*A 3.500 3*A 3.000 3 3.000 3 3.000 3 0.625 0.484 0.438 0.406 0.500 0.438 0.344 H 8 3 1 g * Furnished only by special arrangement. 51 CARNEGIE STEEL COMPANY lit F CO %< 1L _. BULB ANGLES Concluded ~ f" x-x * B 142 J # V 1^ J %" "eo d .._J v L *B 134 L -e'-'- * , 5 x,' T: ^, %[ lk ,K/ /l'I P ^ 1 k tf f- 1 CO f i i ii/ i*J: " *"R 1^^ ff\ 7 1 V_ /8| ^ i k i "? i ^ *B 136 * B 137 c\^^rr\ L ^ / JT 7 v 8 x.\ J S\ v i N^ H_V r"" ! * >? 1 1 % * i i i 5/ T i \N T *1 n ^^ ^v * B122 , x . *B123 r^ PC-tf, L^i/B ffv! , * J i ; L Vj f k 1 Sect Ind Wo . ,. Flange Width, Web Thickness, r ! D x h ' J** Inches Inches rounds Decimal Fractional Decimal Fractional *B 134 6 17.3 3.000 3 0.500 H *B 142 6 15.0 3.000 3 0.406 g *B 135 6 13.8 3.000 3 0.375 % *B 136 6 12.4 3.000 3 0.313 T 5 S *B 137 5 10.0 2.500 2^ 0.313 r 5 g *B 122 4 14.3 3.500 3K 0.500 H *B 123 4 11.9 3.500 3H 0.375 % * Furnished only by special arrangement. r>2 CHANNELS STRUCTURAL CHANNELS T 1 * L L JlO.Zlf 3.000- ri | ci 'a~* cL i i- u ^0.19' _aO|50 13.625" 4 1 C20 880" " - ^?A .^---^i j< 4.00- > it 3.40- H Section Index n . , w . . Flange Width, Web Thickness, Depth of Weight j h Inchea Channel. per Foot, I Inches Pounds | I)ecilDa i Fractional Decimal Fractional C 1 C20 55.0 3.818 50.0 3.720 45.0 3.622 15 40.0 3.524 35.0 3.426 33.0 3.400 50.0 4.416 45.0 4.303 13 40.0 4.190 37.0 4.122 35.0 4.077 32.0 4.000 311 0.818 3M 0.720 35^ 0.622 3U 0.524 3ll 0.426 3M 0.400 4i? 0.791 4if 0.678 4j% 0.565 4^ 0.497 4 S \ 0.452 4 0.375 11 H \ 53 CARNEGIE STEEL COMPANY STRUCTURAL CHANNELS Continued C2 -9.910- .0.280 \ fb.280* T 0.723* "1 o.240* C3 0.633" Index Depth of Channel, Inches Weight per Foot, Pounds Fia &r h ' Web Thickness, Inches Decimal Fractional Decimal Fractional 40.0 3.418 3f| 0.758 12 35.0 3.296 3if 0.636 11 C2 12 30.0 3.173 3H 0.513 33 j 25.0 3.050 3 0.390 11 20.5 2.940 211 0.280 $ 35.0 3.183 3 A 0.823 II 30.0 3.036 3 3 Jj 0.676 64 03 10 25.0 2.889 2f| 0.529 11 20.0 2.742 2H 0.382 y% 15.0 2.600 211 0.240 \i 54 CHANNELS STRUCTURAL CHANNELS - Continued Section Index Depth of Channel, Inches Weight per Foot, Pounds lange Wi< Inches Width, Decimal Fractional Web Thickness, Inches Decimal Fractional C4 C5 C6 25.0 20.0 15.0 13.25 21.25 18.75 16.25 13.75 11.25 19.75 17.25 14.75 12.25 9.75 2.815 2.652 2.488 2.430 2.622 2.530 2.439 2.347 2.260 2.513 2.408 2.303 2.198 2.090 211 2|J 2 0.615 0.452 0.288 0.230 0.582 0.490 0.399 0.307 0.220 2|J 0.633 2Ji 0.528 2J| 0.423 2 0.318 2A 0.210 55 CARNEGIE STEEL COMPANY STRUCTURAL CHANNELS Concluded T0.200' T i y.M* Vi' 30 " C7 4.518" 1 0.200" fli 31 1 J 0.413* 3 Vw 71371 9 jj V; - 7 y-ij^p^ , Section Index Depth of Channel, Inches Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fractional Decimal Fractional 15.5 2.283 2$j 0.563 i n s C 7 Q 13.0 2.160 2 3* 0.440 1 7 5 10.5 2.038 2 3 V 0.318 I 5 a 8.0 1.920 HI 0.200 II 11.5 2.037 2 3 V 0.477 U 8 5 9.0 1.890 IBI 0.330 14 6.5 1.750 1M 0.190 I 3 8 7.25 1.725 IP 0.325 li C 9 4 6.25 1.652 IM 0.252 5.25 1.580 m 0.180 & 6.0 1.602 in 0.362 q C72 3 5.0 1.504 0.264 ii 4.0 1.410 14f 0.170 64 56 CHANNELS SHIP BUILDING CHANNELS I ^.650' T~rs|o. so" -T~T i i i % * C170 I < 530 " v . ^ i " H ojao* T 1 "-' Teoo' "^0.30* T , C160 1 '7 K ISPl" >. T b^" 10.W- U . i 1 e WOO* T Section Index Depth of Weight M Tn e chS dth> Web l^ Channel, per Foot, bickness, ches inches bounds Decimal Fractional Decimal Fractional 50.0 4.140 4/ ? 0.840 H 48.4 4.100 4 3 3 3 0.800 H 46.3 4.050 4^ 0.750 M C 170 12 44.3 4.000 4 0.700 If 40.0 3.895 3|| 0.595 if 35.0 3.773 3if 0.473 H 1 40.0 4.091 4& 0.741 JJ C160 36.9 4.000 4 0.650 34.4 3.925 3|1 0.575 H K 31.8 3.850 33 0.500 j^ 30.0 3.797 3fJ 0.447 1 57 CARNEGIE STEEL COMPANY T" 1 s CO 1 1 1 .A T" i i *i i i i JL-. SHIP BUILDING CHANNELS Continued ^ i* r r C 150 1 * g 126" >l 1 3.450* ~~t J 1 1 _i 3.550" U06" T i i t 1 i i 1 K 0.1-0 /i b- 4 10.500' i J ^ 10" ->i 1 < ^ 0.30" C150b h-" ' 10.375- J J ).469* 1 ] e , J 1 fo.600' r ~~r^o.3o" r~i" | C 140 1 l< 6.824'^ ( tl ' 40 " ,0.450' J '0.700" T Section Index Depth of Weight Flange Width, Web Thickness, Channel, per Foot, ! Inches Inches rounds Decimal Fractional Decimal Fractional C 150 C 150b C 140 30.6 3.600 341 0.600 10 28.9 3.550 3|f 0.550 27.2 3.500 3^ 0.500 10 21.8 3.375 3y s 0.375 34.7 4.000 4 0.650 9 31.7 3.900 3| 0.550 28.6 3.SOO 3gJ 0.450 u H M H S4 If if 58 CHANNELS SHIP BUILDING CHANNELS Co p| 0.30" C130 : I ntinued "i fo.475" CO ^0-35" 10.415" L 0.525" 1 ff T !0.374" ""R0.16" So 1 C 131 1 3 1 r 6.209- ViO.34" i 0.344" jj i * n 578" t i H i ' ' - 1 J C 120 * K 5.262" >) I ' 35 " .10.450' \) w \ 0.525* 1 _ n T 1 l 7 3 De th of Weight Flange Width, Web Thickness, Section Channe , per Foot, Inches Inches ln Ci Inches Pounds Decima i Fractional Decimal Fractional 26.5 3.600 3JI 13 8 23^8 3.500 3Y 2 21.5 3.415 311 C 131 8 17.6 2.875 2% 23.3 3.550 3if C 120 7 22.1 3.500 3>* 20.9 3.450 3| 0.600 0.550 0.500 0.415 0.344 0.550 0.500 0.450 y H 11 U H 1 59 CARNEGIE STEEL COMPANY SHIP BUILDING CHANNELS Continued i... 1 fen* C121 5.462'i ' 1 0.313 " >| 1 10.46 ' T c no s -:0.25* 0.530 a -'.__ 4 ~* ^- if \ ',0.340 *'"r\o.so" j C 109 *S ' 25/ i 0.350 * ,*. ^ 4 07410" ]. 6 " j Section Index C 121 C 110 C 109 Depth of Cnannel, Inches Weight por Foot, Pounds 18.6 16.5 15.6 21.5 19.0 15.0 Flange Width, Inches Decimal 3.438 3.350 3.313 3.685 3.560 3.500 Fractional m Web Thickness, Inches Decimal 0.438 0.350 0.313 0.535 0.410 0.350 Fractional if 60 CHANNELS SHIP Bl i ::!:. L [JILDING CHANNELS >0.25" 1 C 107 1 . , 4.084"- . i V ;0.50" 10.313" \J, Concluded 1 rq.28p" T' ^ i 0.50 t T Vl6" C 108 -4.390-- , ; 0.313" \) 1 fcttS" | 'I J "* 6^488" 1 " *C190 I" .1 U-1.660-, g \~ Q.25^ 0.25V , ; , (438 -* *- * ! ; ~ i "Y M c 200 r % *o s I r 2 - 665 * i v;>28*. io.soo'ij i IT 31" [ ' i 0.5 Section ^P* of Weight per Foot, Pounds Flange Width, Inches Web Thickness, Inches Decimal Fracti onal Decimal | Fractional C 107 6 C 108 6 *C200 4 *C 190 3 18.1 13.0 12.5 13.6 7.1 3.063 3^ 2.813 2f 2.563 2 T 9 , 2.500 2^ 1.984 If, 1 0.563 T 9 S [ 0.313 A j 0.313 T B B 5 0.500 H f 0.25 M * Furnished only by special arrangement. 61 CARNEGIE STEEL COMPANY *_ EQUAL ANGLES r i J /j^'' 4" T-- 6 ->f i i i - 1 / -2 / 8 H ' J *. A 113 C \ ' '" ^/" to A 86 A 103 to A 88 , * A 94 T to i * < L. *A17 > Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds A 113 A 112 A 111 8 8 8 x 8 x 8 x 8 ? 56.9 54.0 51.0 A 110 A 109 8x8 8x8 n 48.1 45 A 108 8 x 8 42.0 A 107 A 106 8x8 8x8 H 38.9 35.8 / ,. 105 8 x 8 V/ 32 7 A 104 A 103 8x8 8x8 % 29.6 26.4 A 86 6x6 1 37.4 A 87 6x6 H 35.3 j L 1 6 x 6 V* 33.1 A 2 6x6 13 31.0 A L 3 6 x 6 M 28.7 A 4 6x6 is 26.5 L 5 6 x 6 % 24.2 A 6 A 7 A 8 6x6 6x6 6x6 1 21.9 19.6 17.2 A 88 6x6 H 14.9 *A 94 5x5 l 30.6 *A 95 *A 9 5x5 5x5 H 28.9 27.2 *A 10 5x5 il 25.4 *A 11 *A 12 5x5 5x5 M is 23.6 21.8 *A 13 *A 14 5x5 5x5 1 20.0 18.1 *./ L 15 5 : < 5 16 2 *A 16 *A 17 5x5 5x5 1 14.3 12.3 * Special, see page 36. 82 ANGLES EQUAL ANGLES Continued i 1 j ! 1* : i ? 1 p%" T *" pv V * A 18 * A 26 J P 5 / 16 ' T %" *A 34 * to H^! to to *A284 *A285 A 40 L. .> i...L Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A 18 A 19 4 4 4 4 u H 19.9 18.5 A 20 4 4 ii 17.1 A 21 4 4 5i 15.7 A 22 4 4 A 14.3 A 23 4 4 H 12.8 A 24 4 4 ts 11.3 A 25 4 4 H 9.8 A 90 4 4 8.2 *A284 4 4 k 6.6 *A 26 3Mx3H u 17.1 *A 27 3J^ x 3H M 16.0 *A 28 3^x3^ H 14.8 A 29 3J^ x 3^ 5^ 13.6 A 30 3H x 3M A 12.4 A 31 3H x 3H H 11.1 A 32 3H x 3H I 7 B 9.8 A 33 3H x 3M ^ 8.5 A 99 3M x 3 1 A A 7.2 *A285 3y 2 x3 l A W 5.8 *A 34 3x3 ^ 11.5 *A 35 3x3. T% 10.4 A 36 3 3 H 9.4 A 37 3 3 TB 8.3 A 38 3 3 H 7.2 A 39 3 3 TO 6.1 A 40 3 3 K * Special, see page 36. CARNEGIE STEEL COMPANY EQUAL ANGLES Concluded -2V 2 - t * A 46 to *A504 j'"\f \K" ^~'\t ry 8 " "jrir^k" 2 *A66 ? * A70 7.JJ*A78 J to t-~U to to A 102 * A 73 * A 80 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A 46 7.7 A 47 2H x 2J^ T 7 S 6.8 A 48 2J^ x 23^ 3^ 5.9 A 49 2^ x 2 l /z T% 5.0 A 50 2^ x 2^ M 4.1 A 100 2M x 2j^ A 3.07 *A504 2>i x 2y z H 2.08 *A 56 2x2 A 5.3 A 57 2x2 N 4.7 A 58 2x2 T5 3.92 A 59 2x2 M 3.19 A 60 2x2 A 2.44- *A506 2x2 H 1.65 *A 61 1M x 1M IS 4.6 *A 62 \% x 1M 1^ 3.99 *A 63 1% x 1M re 3.39 *A 64 1M x 1% M 2.77 *A 65 1M x 1% A 2.12 *A 507 1% x 1M H 1.44 *A 66 IMx 1M 3.35 A 67 1 1/2 x 1 J/2 2.86 A 68 1H x 1J^ M 2.34 A 69 1J^ x 13/J2 1.80 A 102 1J4 x 1^ K 1.23 *A 70 1M x \Y T 5 H 2.33 *A 71 li^ x 1J M 1.92 *A 72 1^ x 1J^ A 1.48 *A 73 1M x 1M 1.01 *A 78 1x1 M 1.49 *A 79 1x1 1.16 *A 80 1x1 \ Y S 0.80 * Specia , see page 36. 64 ANGLES UNEQUAL ANGLES i -1 1 -. : : . 1 ! i * *i i J * J * 7 iatf p*"T** * A 138 * A 320 ^ * A 150 to s oo to to *A 139 *A329 *A310 1...LJ t_ L.U / Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A 138 8x6 1 44.2 *A137 8x6 1$ 41.7 *A 136 8x6 s& 39.1 *A135 8x6 12 36.5 *A 134 8x6 % 33.8 *A 133 8x6 11 31.2 *A132 8x6 6 28.5 *A131 *A130 8x6 8x6 1 25.7 23.0 *A 139 8x6 20.2 *A320 8x3^ 1 35.7 *A321 8 x 33^ 1A 33.7 *A322 8 x 314 T^ 31.7 *A323 8 x 3J/6 i^ 29.6 *A324 8x3^ M 27.5 *A325 8 x 3MJ }i 25.3 *A326 8 x 3V R^ 23.2 *A327 8 x 3V 9 21.0 *A328 8 x 3H H 18.7 *A329 8x3^ A 16.5 *A150 7x3^ 1 32.3 *A 151 7 x 3*4 30.5 *A152 fl 28.7 *A 153 7 x3 l A 13 26.8 *A 154 7x3^ 7^ 24.9 *A 155 li 23.0 *A 156 7 x 3^ sj 21.0 *A157 T% 19.1 *A 158 7 x 3H 7^ 17.0 *A 159 n 15.0 *A310 7 x 3j| K 13.0 * Special, see page 36. 65 CARNEGIE STEEL COMPANY UNEQUAL ANGLES Continued p T~ ' * ->/2 i- ! ___' i- J T J \ J fjl^" '%" 2 I 1 I 1 *A178 *A89 *A 92 to o to * to i *A186 A 168 *A 301 \ \ 1 i ) L- J Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A 89 6x4 1 30.6 *A 91 6x4 28.9 A 160 6x4 % 27.2 A 161 6x4 Iff 25.4 A 162 6x4 23.6 A 163 6x4 it 21.8 A 164 6x4 || 20.0 A 165 6x4 18.1 A 166 6x4 i^ 16.2 A 167 6x4 7_ 14.3 A 168 6x4 *A 12.3 *A 92 6x3^ i 28.9 *A 93 A 169 6 x 3} 6 x 3J ', II 27.3 25.7 A 170 6 x 3J I \l 24.0 A 171 6 x 31 ''> M 22.4 A 172 6 x 3J I 20.6 A 173 6 x 3J ., % 18.9 A 174 6 x 3J \ 9_ 17.1 A 175 6 x 3} 4 > ^| 15.3 A 176 6 x 3J I 7 13.5 A 177 6 x 3J I H 11.7 *A 301 6 x 3) & 9.8 *A 178 5x4 K 24.2 *A 179 5x4 U 22.7 *A 180 5x4 4 21.1 *A 181 5x4 19.5 *A 182 5x4 5/ l 17.8 *A 183 5x4 I 9 6 16.2 *A 184 5x4 14.5 *A 185 5x4 7 12.8 *A 186 5x4 K 11.0 * Special, see page 36. 66 ANGLES UNEQUAL ANGLES Continued f zy 2 " *f 1 in -r* *i j h - t-ij-io He f~ y f 3 *j 'A /io \ i \ (-1%' l Yv>" > * w *A 187 to , *A196 \L * A A 96 to "V A 204 *A212 A28 * A 1 S7 to A "< *A98 LJ- 1-U ^_U Li) Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds \ *A 187 5 x 3)4 y 22.7 *A188 5 x 3)4 \* 21^3 A 189 5 x 3)4 a/ 19 8 A 190 A 191 5 x 3)4 - 5 x 3)4 ff 18^3 16.8 A 192 5 x 3)4 9 15.2 A 193 5 x 3)4 Vx 13^6 A 194 A 195 A 96 5 x 3)4 5 x 3H 5 x 3 1 A : 1 ' 12.0 10.4 8.7 *A196 *A 197 A 198 5x3 5x3 5x3 i 19.9 18.5 17 1 A 199 A 200 5x3 5x3 b 15.7 14.3 A 201 A 202 A 203 5x3 5x3 5x3 1 12.8 11.3 9 g A 280 5x3 IS 8.2 *A204 *A205 *A206 4)4 x 3 4)4 x 3 4)4 x 3 1 18.5 17.3 16.0 *A207 4)3 x 3 Kj 14.7 *A208 4)4 x 3 A 13 3 *A209 4)4 x 3 Hi 11.9 *A 210 *A211 4)4 x 3 4H x 3 I 10.6 9.1 *A 97 4)4 x 3 s 7.7 *A212 4 x 3)4" ,3 18.5 *A213 & 17.3 *A214 4 x 3)| 11 16 *A215 4 x 3)4 M 14.7 *A216 4 x 3)4 9 13.3 *A217 4 x 3)4 V/ 11 9 *A218 *A219 4 x 3)4 4 x 3V* ft 10.6 9.1 *A 98 4 x 3)4 J 7.7 * Special, see page 36. 67 CARNEGIE STEEL COMPANY UNEQUAL ANGLES Continued r* -ZYz' -*i ;"* ., : L_____l f" J * J C\5," tl/ t " ol/" ^ : i I yi6 "'2 i 4 : A""" j ^J *A220 CO *A 238 F 5/i ' Tl/4 " f" 2 T'1 to to f ^ ~^ *A 283^ * A 229 A245 *A252i p^i 1 /*" CO to to ! *A286 *-L J A 257 oo *A258 t.-.L t.._U to ,, *A 262 tL Section Index Size, Inches Thickness Inches Weight per Foot, Pounds *A 220 4x3 H 17.1 *A221 4x3 % 16.0 *A222 4x3 ii 14.8 A 223 4x3 78 13.6 A 224 4x3 rs 12.4 A 225 4x3 y% 11.1 A 226 4x3 T 7 5 9.8 A 227 4x3 y& 8.5 A 228 *A283 4x3 4x3 J! 7.2 5.8 *A229 3y 2 x 3 ii 15.8 *A230 3y 2 x 3 M 14.7 *A231 3y 2 x 3 13.6 *A232 3y 2 x 3 5X 12.5 A 233 3y 2 x 3 T 9 B 11.4 A 234 3y 2 x 3 1^ 10.2 A 235 3y 2 x 3 T 7 5 9.1 A 236 3y 2 x 3 3,g 7.9 A 237 sy 2 x 3 T B g 6.6 *A286 8 5.4 *A238 *A239 3y 2 x 2y 2 ? 12.5 11.5 *A240 31^ x 2y 2 10.4 A 241 3% x 2J/2 \/. 9.4 A 242 7 8.3 A 243 3y 2 x 2y 2 s 7.2 A 244 3 \/ x 21^ 6.1 A 245 3>i x 2Ji 5 4.9 *A 252 3 x 2H A 9.5 *A 253 3 x 2y 2 S 8.5 A 254 3 x2y 2 7.6 A 255 3 x 2y 2 3X 6.6 A 256 3 x2 l / 2 _p 5.6 A 257 o X 2iy% M 4.5 *A 258 3x2 Yi 7.7 *A259 3x2 7 6.8 *A260 3x2 $/ 5.9 *A261 3x2 r. 5.0 *A262 3x2 S 4.1 * Special, see page 36. 68 ANGLES UNEQUAL ANGLES Concluded *A264 to *A523 *A631 to *A525 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds *A264 2^x 2 X 6.8 *A265 2^ x 2 * 6.1 A 266 2^ x 2 5.3 A 267 2 1 A x 2 A 4.5 A 268 2^x 2 M 3.62 A 269 2^x 2 A 2.75 *A 523 2^ x 2 N 1.86 *A610 2^x 1H TB 3.92 *A 611 2H x 1^4 M 3.19 *A612 2 1 A* 1M A 2.44 *A270 2) x 1H M 5.6 *A271 2J x 1H A 5.0 *A272 2M x 1J^ 1^ 4.4 *A 273 2j^ x 1J^ A 3.66 *A 274 2j^ x 1^ M 2.98 *A275 2M x 1H A 2.28 *A631 2x1^ H 3.99 *A614 2 x 1^ A 3.39 *A615 2 x 1H M 2.77 *A616 2 x 1H A 2.12 *A 525 2 x 1 V*> H 1.44 *A646 2 x 1^- M 2.55 *A645 2 x 1M A 1.96 *A618 1M x IJi M 2.34 *A 619 1^ X 1J A 1.80 *A620 1% x 1M H 1.23 *A 670 IHx 1^ A 2.59 *A623 1^ x 1)^ M 2.13 *A624 1H x IJi A 1-64 * Special, see page 36. CARNEGIE STEEL COMPANY EQUAL TEES Tl T2 t 1_ _J%1 o > 'a *| *-- ^2 >. ^ HI >%" ^ SS fc^ eo T3 - T4 v. t -^% ; <- 4 "%' T7 T8 t -% T9 6 /16 Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds Flange Stem Flange Stem T 1 4 4 1 A to T 9 e ^ to T 9 6 13.5 T2 4 4 S /8 tO T 7 B % to T 7 S 10.5 T3 3^ 3^ M to T 9 5 ^ to T 9 5 11.7 T4 3^ 3^ ^ tO T 7 B ^ to / B 9.2 T6 3 3 Yl tO T 9 H M to T 9 H 9.9 T7 3 3 & to H T 7 5 tO H 8.9 T8 3 3 H to T 7 3 % to / B 7.8 T9 3 3 T 8 8 tO % A to % 6.7 70 TEES EQUAL TEES Concluded 2 %- Til ^fejt' 7 U T 19 j T 20 T 21 - T 22 Hf i 3/ ~* Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds Flange Stem Flange Stem T10 2 y 2 2 y 2 MtoA Nto* 6.4 Til 2% 2% A to i ^ to A M to A 10.8 T76 3 3^ 9.7 T77 3 3H H to A ^ to T 7 5 8.5 75 CARNEGIE STEEL COMPANY UNEQUAL TEES Concluded v eo 1 I... r -2~- \Pv" P B "co T 82 --, r--iH--| i<0 -T jj T 87 J T 519 Section Index Size, Inches Thickness, Inches Weight per Foot Flange Stem Flange Stem Pounds T78 T79 tT31 T82 T83 T86 T87 T519 T605 *T 603 3 2^ 3 2V 3 2J4 2 1 A 3 2>i 3 2 1 1 A 1/2 2 % to T 7 s M to T 7 W 7.1 rs to ^ T 5 S to ^ 6.1 34 to T 5 u 34 to /g 5.0 % to T ^ ^ to T 7 J L 3 9 Z 6 i 5 Z 5 3 Z 4 r i y W i J f r 314 3'j Section Index Size, Inches Thickness, Inches Weight per Foot, Pounds Flange Web. Flange Z3 1 6 1B 1 | 34.6 32.0 29.4 Z2 | P 1 Ps T 9 5 28.1 25.4 22.8 Z 1 |H P il I 21.1 18.4 15.7 Z6 3^ P 3% H 28.4 26.0 23.7 Z5 3% P 11 i 22.6 20.2 17.9 Z4 3A P II s 16.4 14.0 11.6 78 ZEES ZEES Concluded Section Index Size, Inches Flange Web Flange Pounds Z 9 Z 8 Z 7 Z12 Zll Z10 *Z 14 *Z 15 *Z 16 2% i i^ s* 2H iff 23.0 20.9 18.9 18.0 15.9 13.8 12.5 10.3 8.2 14.3 12.6 11-.5 9.8 8.5 6.7 9.2 8.6 4.8 * Furnished only by special arrangement. CARNEGIE STEEL COMPANY UNITED STATES STEEL SHEET PILING M 104 ^/'^''^ --^---H -^j i ^K-.. I 'A ;\ -J%'U M 103 .%'-',. *^- H j 0^ W* | J V/'-i 8 i Section Index ^klth, Web Thickness, Weight per Foot, Inches Pounds M 104 12^ M 103 9 Ys 38 1 A 16 This Company manufactures Friestedt Interlocking Channel Bar Piling and Symmetrical Interlock Channel Bar Piling in addition to United States Steel Sheet Piling. Full information as to the properties and uses of these sections is given in a separate pamphlet entitled "Steel Sheet Piling. SO FLOOR PLATES TROUGH PLATE *M 10 Y4". CORRUGATED PLATES *M 33 8%" CHECKERED PLATE M 49 r Section Index Width, Inches Depth, Inches Thickness, Inches Weight per Foot, Pounds Weight per Sq. Ft., Pounds *M 14 9*A 3X K 23.2 *M 13 93^ 3% li 21.4 *M 12 9^3 3% 7* 19.7 *M 11 9M 9 18.0 *M 10 9 1 A 3K 1 A 16.3 *M 35 12 3 2% y* 23.7 *M 34 12y\ 2^3 20.8 *M 33 12A 2% H 17.8 *M 32 8% 1% N 12.0 *M 31 8% j_ A 10.1 *M 30 8% 1H s 8.1 M54 12 to 60 y* 21.4 M 53 12 to 60 7 18.9 M 52 12 to 60 3X 16.3 M 51 12 to 60 A 13.8 M 50 12 to 60 8 11.2 M 49 12 to 48 8.7 * Furnished only by special arrangement. Checkered plates of narrower widths than shown in the above table may be submitted for special consideration. 81 CARNEGIE STEEL COMPANY RECTANGULAR AND CIRCULAR PLATES, EXTREME SIZES SHEARED PLATES, ONE-FOURTH INCH AND OVER Thick- Widths and Lengths in Inches Diam., ness, Inches 132 126 120 114 108 102 96 90 84 78 Inches y 150 200 210 250 280 300 110 \fi 180 200 230 260 275 300 325 380 120 H 200 220 250 265 310 350 400 440 460 126 1 ? 6 190 200 240 265 290 350 380 440 465 475 132 y* 220 230 260 280 300 360 400 450 475 500 132 18 220 230 260 290 300 380 400 450 475 500 132 H 220 230 270 300 320 360 380 420 440 480 134 n 220 230 270 300 320 350 380 420 440 480 134 *A 220 230 270 290 320 350 380 420 440 480 134 16 220 230 270 290 320 350 380 420 440 480 134 H 220 230 260 280 320 350 380 420 440 480 134 i 220 230 250 270 300 320 350 380 400 430 134 iy s 200 220 230 250 280 300 320 350 370 405 132 1 1 A 190 200 210 230 255 275 295 325 340 360 132 1 1 A 180 190 200 210 240 250 275 300 315 340 132 1% 175 180 190 200 225 240 260 285 300 320 132 2 165 170 180 190 210 230 245 270 280 300 130 2^ 132 145 150 160 170 190 200 230 240 260 130 Thick- 1 ness 72 66 60 54 50 48 42 36 30 24 Diam. X 350 350 380 400 400 430 400 400 380 380 110 I B 1 380 400 450 460 460 500 450 450 400 400 120 X 490- 500 540 540 540 540 500 500 480 480 126 T ? 5 520 560 560 560 560 560 550 550 530 530 132 H 525 560 560 560 560 560 550 550 530 530 132 A 525 560 560 560 560 560 550 550 530 530 132 H 520 560 560 560 560 560 560 560 530 500 134 14 500 530 540 540 560 560 560 540 530 500 134 % 490 500 540 540 560 560 580 540 530 500 134 If 480 500 520 540 540 540 560 540 520 480 134 % 480 500 520 520 520 530 530 530 500 480 134 1 460 480 500 520 520 520 500 480 470 460 134 IK 430 450 470 480 480 500 480 480 470 450 132 1M 380 400 420 430 430 450 460 460 450 440 132 IK 360 380 400 420 430 440 440 420 420 420 132 1H 340 360 380 400 420 430 400 380 380 360 132 2 320 340 360 380 400 400 360 350 350 320 130 2y 280 300 320 340 350 330 300 300 250 200 130 Plates 48" wide and under can also be rolled on Universal Mills. For greater length and Universal Mill Sizes, see Universal Mill Plate Table. Plates of greater dimensions than shown in above tables may be submitted for special consideration. 82 FLAT ROLLED STEEL RECTANGULAR AND CIRCULAR PLATES, EXTREME SIZES SHEARED PLATES, THREE-SIXTEENTHS INCH AND UNDER Thick- Widths and Lengths in Inches ness, Diam., Inches, Inches B. \V. G. 74 72 70 68 66 64 62 60 58 A 200 220 240 250 270 290 310 320 330 77 No. 8 200 210 210 220 240 250 260 270 74 No. 9 160 170 180 200 200 220 230 70 No. 10 140 160 170 170 190 200 68 H 140 150 150 160 170 66 No. 11 140 150 150 160 170 66 No. 12 120 130 130 140 150 64 Thick- ness 56 54 52 50 48 42 36 30 24 Diam. T 3 S 340 350 360 370 360 360 360 360 360 77 No. 8 270 280 280 290 290 290 290 290 290 74 No. 9 230 240 240 250 250 250 250 250 250 70 No. 10 220 220 230 230 230 230 230 230 230 68 ft 180 190 190 195 195 200 200 200 200 66 No. 11 180 190 190 195 195 " 200 200 200 200 66 No. 12 160 160 170 176 180 180 180 180 180 64 RECTANGULAR UNIVERSAL PLATES, EXTREME SIZES UNIVERSAL MILL PLATES , ONE-FOURTH INCH AND OVER Widths and Lengths in Inches Thick- ness, Inches 48-^6 45-41 40-36 35-31 30-26 25-20 19-17 16-15 14-12 11 10-6^ H 780 780 780 780 540 540 T 6 5 600 600 600 660 720 840 840 840 840 600 600 H 840 840 960 1140 1140 1140 1080 1080 1080 900 840 T V 960 960 960 1140 1140 1200 1080 ioso 1080 900 840 1 A 960 960 1080 1200 1200 1200 1080 1080 1080 1020 840 T 9 5 960 960 1080 1200 1200 1200 1080 1080 1080 1020 840 H 960 960 1020 1200 1200 1200 1020 1080 1080 1020 840 K 840 840 960 1080 1080 1080 1020 1020 1020 900 840 M 780 840 840 960 960 960 960 960 960 900 840 i 720 720 720 840 840 840 900 960 960 900 840 iH 600 600 660 708 720 780 780 900 900 840 840 'iK 540 540 600 660 660 660 720 840 840 840 840 iM 480 528 540 600 600 600 660 780 840 840 840 i^ 480 504 528 540 540 540 600 720 780 840 840 i* 480 480 480 480 480 480 540 660 720 840 840 IX 420 420 432 420 420 420 480 600 660 720 720 iy* 420 420 432 420 420 420 480 540 600 660 720 2 420 420 420 408 408 408 420 480 540 600 720 Plates of greater dimensions than shown in above tables may be submitted for special consideration. 83 CARNEGIE STEEL COMPANY SQUARE EDGE FLATS y%" to 3", wide, by any thickness W, up to width. Over 3" to 5", wide, by any thickness W to 3", inclusive. Over 5" to 7", wide, by any thickness J4" to 2", inclusive. Sizes not listed will be considered. NUT STEEL FLATS All sizes of Nut Steel Flats within the range of Square Edge Flats can be furnished. Some of the smaller sizes can be furnished in coils. BAND EDGE FLATS W x No. 18 to No. 4 B. W. G, T V x No. 19 to No. 4 B. W. G. Yz" x No. 22 to No. 4 B. W. G. T 9 B " to 1" x No. 23 to No. 4 B. W. G. 1 T V to 2" x No. 22 to No. 4 B. W. G. 2 T y to 3" x No. 21 to No. 1 B. W. G. 3 r y to 3 l / 2 " x No. 20 to No. 1 B. W. G. 3&" to 4" x No. 19 to No. 1 B. W. G. 4 T y to 4H" x No. 18 to No. 1 B. W. G. 4ft" to 5 T y x No. 17 to No. 1 B. W. G. 5K" to 6%" x No. 16 to No. 1 B. W. G. 7" x No. 14 to No. 1 B. W. G. 7 1 A" x No. 14 to No. 1 B. W. G. 7M" x No. 14 to No. 1 B. W. G. 7 5 / 8 " x No. 14 to No. 1 B. W. G. 7M" x No. 14 to No. 1 B. W. G. 7y 8 " x No. 14 to No. 1 B. W. G. 8" x No. 14 to No. 1 B. W. G. 8M" x No. 14 to No. 1 B. W. G. 8M" x No. 14 to No. 1 B. W. G. 8 5 / 8 " x No. 14 to No. 1 B. W. G. Q%" x No. 12 to No. 1 B. W. G. From %" to 6%" intermediate widths can be furnished. From 7" to 9-Mj" the widths listed are the only ones which are rolled, but intermediate widths will be considered. SKELP All sizes within the range of Sheared Plates, Universal Mill Plates and. Band Edge Flats can be furnished. 84 MERCHANT BARS SQUARES WIDTH ACROSS FACES iV to 2". inclusive, advancing by 64tns. 2 3 V" to 3K", inclusive, advancing by 32ds. 3i 9 s " to 5H", inclusive, advancing by 16ths. Squares can also be rolled to decimal dimensions, if so arranged Squares %" and smaller can be furnished in coils. ROUND CORNERED SQUARES WIDTH ACROSS FACES K" to W, inclusive, advancing by 64ths, ROUNDS DIAMETER 3 y to 1%", inclusive, advancing by 64ths. Iff" to 3 1 A", inclusive, advancing by 32ds. 3iV to 7", inclusive, advancing by 16ths. Rounds can also be rolled to decimal dimensions, if so arranged. Rounds y & " and smaller can be furnished in coils. HALF ROUNDS DIAMETER I S 5 " to Ji", inclusive, advancing by 64ths. Jf" to W, inclusive, advancing by 16ths. 2", 2Yz", 3". HEXAGONS WIDTH ACROSS FACES to 1ft", inclusive, advancing by 32ds. to 3j s ", inclusive, advancing by 16ths. 85 CARNEGIE STEEL COMPANY AREAS OF RECTANGULAR SECTIONS SQUARE INCHES Width, Inches Thickness, Inches Ho Vs .031 .063 .094 .125 3 /io % 5 /io % %o Vz 9 /io % Hie % 1 %o % 15 /ie .23 .47 .70 .94 1 .25 .50 .75 1.00 y Yi , K .016 .031 .047 .063 017 063 078 094 .109 .125 .141 .156 .172 .188 .203 .22 .44 .66 .88 .094 .141 .188 .125 .188 .250 .156 .234 .313 .188 .281 .375 .219 .328 438 .250 .375 .500 .281 .422 .563 .313 .469 .625 .344 .516 .688 .375 .563 .750 .406 .609 .813 IS \ % .078 .094 .109 .125 .156 .188 .219 .250 .234 .281 .328 .375 313 .375 .438 .500 .391 .469 .547 .625 .469 .563 .656 .750 .547 .656 .766 .875 .625 .750 .875 1.000 .703 .844 .984 1.125 .781 .938 1.094 1.250 .859 1.031 1.203 1.375 .938 1.125 1.313 1.500 1.016 1.219 1.422 1.625 1.09 1.31 1.53 1.75 1.17 1.41 1.64 1.88 1.25 1.50 1.70 2.05 8 1 H .141 .156 .172 .188 .281 .313 .344 .375 .422 .469 .516 .563 .563 .625 .688 .750 .7,03 .781 .859 .938 .844 .938 1.031 1.125 .984 1.094 1.203 1.313 1.125 1.250 1.375 1.500 1.266 1.406 1.547 1.688 1.406 1.563 1.719 1.875 1.547 1.719 1.891 2.063 1.688 1.875 2.063 2.250 1.828 2.031 2.234 2.438 1.97 2.19 2.41 2.63 2.11 2.34 2.58 2.81 2.25 2.50 2.75 3.00 3M 3>2 3M .203 .219 .234 .250 .406 .438 .469 .500 .609 .656 .703 .750 .813 .875 .938 1.000 1.016 1.094 1.172 1.250 1.219 1.313 1.406 1.500 1.422 1.531 1.641 1.750 1.625 1.750 1.875 2.000 1.828 1.969 2.109 2.250 2.031 2.188 2.344 2.500 2.234 2.406 2.578 2.750 2.438 2.625 2.813 3.000 2.641 2.844 3.047 3.250 2.84 3.06 3.28 3.50 3.05 3.28 3.52 3.75 3.25 3.50 3.75 4.00 18 JK .266 .281 .297 .313 .531 .563 .594 .625 .797 .844 .891 .938 1.063 1.125 1.188 1.250 1.328 1.406 1.484 1.563 1.594 1.688 1.781 1.875 1.859 1.969 2.078 2.188 2.125 2.250 2.375 2.500 2.391 2.531 2.672 2.813 2.656 2.813 2.9G9 3.125 2.922 3.094 3.266 3.438 3.188 3.375 3.563 3.750 3.453 3.656 3.859 4.063 3.72 3.94 4.16 4.38 3.98 4.22 4.45 4.69 4.25 4.50 4.75 5.00 5M 5^ 5M 6 .328 .344 .359 .375 .656 .688 .719 .750 .984 1.031 1.078 1.125 1.313 1.375 1.438 1.500 1.641 1.719 1.797 1.875 1.969 2.063 2.156 2.250 2.297 2.406 2.516 2.625 2.625 2.750 2.875 3.000 2.953 3.094 3.234 3.375 3.281 3.438 3.594 3.750 3.609 3.781 3.953 4.125 3.938 4.125 4.313 4.500 4.266 4.469 4.672 4.875 4.59 4.81 5.03 5.25 4.92 5.16 5.39 5.63 5.25 5.50 5.75 6.00 6H 6H .391 .406 .422 .438 .781 .813 .844 .875 1.172 1.219 1.266 1.313 1.563 1.625 1.688 1.750 1..953 2.031 2.109 2.188 2.344 2.438 2.531 2.625 2.734 2.844 2.953 3.063 3.125 3.250 3.375 3.500 3.516 3.656 3.797 3.938 3.906 4.063 4.219 4.375 4.297 4.469 4.641 4.813 4.688 4.875 5.063 5.250 5.078 5.2S1 5.484 5.688 5.47 5.69 5.91 6.13 5.86 6.09 6.33 6.56 6.25 6.50 6.75 7.00 ?8 S .453 .469 .484 .500 .906 .938 .969 1.000 1.359 1.406 1.453 1.500 1.813 1.875 1.938 2.000 2.266 2.344 2.422 2.500 2.719 2.813 2.906 3.000 3.172 3.281 3.391 3.500 3.625 3.750 3.875 4.000 4.078 4.219 4.359 4.500 4.531 4.688 4.844 5.000 4.984 5.156 5.32S 5.500 5.438 5.625 5.813 6.000 5.891 6.094 6.297 6.500 6.34 6.56 6.78 7.00 6.80 7.03 7.27 7.50 7.25 7.50 7.75 8.00 8^ 8^ ; K .516 .531 .547 .563 1.031 1.063 1.094 1.125 1.547 1.594 1.641 1.688 2.063 2.125 2.188 2.250 2.578 2.656 2.734 2.813 3.094 3.188 3.281 3.375 3.609 3.719 3.828 3.938 4.125 4.250 4.375 4.500 4.641 4.781 4.922 5.063 5.156 5.313 5.469 5.625 5.672 5.844 6.016 6.188 6.188 6.375 6.563 6.750 6.703 6.906 7.109 7.313 7.22 7.44 7.66 7.88 7.73 7.97 8.20 8.44 8.25 8.50 8.75 9.00 \*< \N\HI r-\-5\\ O5O5O5O .578 .594 .609 .625 1.156 1.188 1.219 1.250 1.734 1.781 1.828 1.875 2.313 2.375 2.438 2.500 2.891 2.969 3.047 3.125 3.469 3.563 3.656 3.750 4.047 4.156 4.266 4.375 4.625 4.750 4.875 5.000 5.203 5.344 5.484 5.625 5.781 5.938 6.094 6.250 6.359 6.531 6.703 6.875 6.938 7.125 7.313 7.500 7.516 7.719 7.922 8.125 8.09 8.31 8.53 8.75 8.67 8.91 9.14 9.38 9.25 9.50 9.75 10.00 10 K 10 M JOM .641 .656 .672 .688 1.281 1.313 1.344 1.375 1.922 1.969 2.016 2.063 2.563 2.625 2.688 2.750 3.203 3.281 3.359 3.438 3.844 3.938 4.031 4.125 4.484 4.594 4.703 4.813 5.125 5.250 5.375 5.500 5.766 5.906 6.047 6.188 6.406 6.563 6.719 6.875 7.047 7.219 7.391 7.563 7.688 7.875 8.063 8.250 8.328 8.531 8.734 8.938 8.97 9.19 9.41 9.63 9.61 9.84 10.08 10.31 10.25 10.50 10.75 11.00 11 J* HX !i* .703 .719 .734 .750 1.406 1.438 1.469 1.500 2.109 2.156 2.203 2.250 2.8133.516 2.875,3.594 2.9383.672 3.0003.750 4.2194.922 4.3135.031 4.4065.141 4.50015.250 5.625 5.750 5.875 6.000 6.328 6.469 6.609 6.750 7.031 7.188 7.344 7.500 7.734 7.906 8.078 8.250 8.438 8.625 8.813 9.000 9.141 9.344 9.547 9.750 9.84 10.06 10.28 10.50 10.55 10.78 11.02 11.25 11.25 11.50 11.75 12.00 AREAS OF RECTANGLES AREAS OF RECTANGULAR SECTIONS Continued SQUARE INCHES Width, Thickness. Inches Inches | h.; * %6 H %6 % 7/48 % %e ~s Hie % 1%6 % pi _L 12^ .781 'l.563 2.344 3.13 3.91 4.69 5.47 6.25 7.03 7.81 8.59 9.38| 10.16 10.94 11.72 12.50 13 y2 .M3 1.625 2.438 3.25 4.06 4.88 5.69 6.50 7.31, 8.13 8.94 9.75 10.56 11.38 12.19 13.00 .844 1.68SJ2.531 3.38 4.22 5.06 5.91 6.75 7.59 8.44 9.28 10.13 10.97 11.81 12.66! 13.50 14 .875 1.750 2.625 3.50 4.38 5.25 6.13 7.00 7.88 8.75 9.63 10.50jll.38j 12.25 13.13 14.00 14 i^ .906 1.813 2.719 3.63 4.53 5.44 6.34 7.25 8.16 9.M 9.97 10.88! 11. 781 12.69 13.59 14.50 15 .9381.875 2.813 3.75 4.69 5.63 6.56 7.50 8.44 9.38 10.31 11.25 12.1913.13 14.06 15.00 15J-^ .969 1.938 2.906 3.88 4.84 5.81 6.78 7.75 S.72 9.69 10.66 11.63 ! 12.59 13.56 14.53 15.50 16 1.000 2.000 3.000 4.00 5.00 6.00 7.00 8.00 9.00 lO.OOi 11.00 12.00 13.0014.00 15.00 16.00 16H 1-031 2.063 3.094 4.13 5.16 6.19 7.22 8.25 9.28 10.31 11.34 12.38 13.41 14.44 15.47 16.50 17 1.0632.1263.188 4.25 5.31 6.38 7.44 8.50 9.56 10.63 11.69 12.75 13.81! 14.88 15.94 17.00 17H 1-094 2.1SS '5.2S1 4.38 5.47 6.56 7.66 8.75 9.84 10.94 12.03 13.13 14.22 15.31 16.41 17.50 18 1.1252.2503.375 4.50 5.63 6.75 7.88| 9.00 10.13 11.251 12.38 13.50 14.63 15.75 16.88 18.00 WA 1.1562.313:3.469 4.63 5.78 6.94 8.09 9.25 10.41 11.56' 12.72 13.88 15.03 16.19'l7.34 18.50 19 11.188 2.375 3.563 4.75 5.94 7.13 8.31 9.50! 10.69 11.88 13.06 14.25 15.44 16.63 17.81 19.00 19^ 1.219 2.4383.656i 4.88! 6.09 7.31 8.53 9.75 10.97 12.19 13.41 14.63 15.84 17.0618.28 19.50 20 1.250 2.500 3.750 5.00 6.25 7.50 8.75 10.00 11.25 12.50 13.75 15.00 16.25 17.50 18.75 20.00 20 M 21 1.281 2.5633.844 5.13 6.41 1.313:2.6253.938' 5.25! 6.56 7.69 7.88 8.9710.25 9.1910.50 11.53 11.81 12.81 13.13 14.09! 15.381 16.66 14.44 15.75! 17.06 17.9419.22 18.38119.69 20.50 21.00 2\Y Z 1.344 2.6-Sts 4.031 5.38 6.72 8.06 9.41 10.75 112.09 13.44 14.78 16.13 17.47 18.81 20.16 21.50 22 1.375 2.7504.125 5.50 G.NS 8.25 9.63 11.00 12.38 13.75 15.13 16.50 17.88 19.25 20.63 22.00 22 H 1.406 2.813 4.219 5.63 7.03 8.44 9.84 11.25 12.66 14.06 15.47 16.88 18.28 19.69 21.09 22.50 23 1.438 '2. 875 4.313 5.75 7.19 8.6310.0611.50 12.94J 14.38 15.81 17.25 18.69 20.1321.5623.00 23J/21.469 2.938 4.406 5.88 7.34 8.81 10.28 11.75 13.2214.69 16.16 17.63 19.09 20.56 22.03 23.50 24 1.500 3.000 4.500 6.00 7.50 9.0010.5012.00 13.5015.00 16.50 18.00 19.50 21.00! 22.50 24.00 25 1.563 3.125 4.688 6.25 7.81 9.3810.9412.50 14.06J15.63 17.19 18.75 20.31 21.88*23.44 25.00 26 1.6253.250J4.875 6.50 8.13 9.7511.3813.00 14.63 16.25 17.88 19.50 21.13 22.7524.3826.00 27 1.6S8 3.375 5.063 6.75 8.44J10.13 11.81 13.50 15.19 16.88 18.56 20.25 21.94 23.63 25.31 27.00 28 1.7503.5005.250 7.00 8.75 10.5012.25 14.00 15.75 17.5019.2521.00 22.75 24.50 26.25 28.00 29 1.813 '3.625(5.438 7.25 9.06!l0.88 12.69|l4.50 30 1.875:3.7505.625 7.50 9.3S 11.25 13.1315.00 16.31 16.88 18.1319.9421.75 18.7520.63 22.50 23.56 25.38 24.38 26.25 27.19 29.00 28.13 30.GO 31 1.9383.87515.813 7.7.1 9.6911.6313.5615.50 17.44 19.38 21.31 23.25125.19 27.1329.06131.00 32 2.000 4.000 (.000 8.0010.0012.0014.0016.00 18.0020.0022.00 24.00126.00 28.00 30.00 32.CO 33 '2.063 1.125 34 2.125 4.250 6.188 L375 8.25 10.31 8.50 10.63 12.38 12.75 14.44|l6.50 14.8817.00 18.56 19.13 20.63 21.25 22.69 23.38 24.75 26.81 28.88 25.50' 27.63) 29.75 30.94 33.00 31.88 34.00 35 2.1S8 36 12.250 4.3756.563 4.5006.750 8.7510.9413.1315.3117.50 9.00ill.25 13.50 15.75 18.00 19.69 21.88 20.25 22.50 24.06 26.251 28.44) 30.63 24.75 27.00 29.25i31.50 32.81 35.00 33.75 36.00 37 2.3134.6256.938 38 2.375 4.75(i 7.12.J 9.2511.56 13.88 16.19'18.50 9.5011.8814.2516.6319.00 9.7512.1914.6317.0619.50 20.81 23.13 25.44 27.75 21.38!23.75 26.13 28.50 21.94 24.38 26.81 29.25 30.06 32.38 34.69 37.00 30.88 33.25 35.63 38.00 31.69 34.13>36.56 39.00 40 2!500;5!000>!500 10.00 .12.50 15.00,17.50 20.00 22.50 25.00 27.50 30.00; 32.50| 35.00 37.5040.00 41 2.563 5.1257.688 10.25 12.81 15.38'l7.94 20.50 42 S2.625 5.250 7.875 10.50 13.13 15.75 18.38 21.00 23.06 25.63!28.19'30.75 33.3ll35.88 38.44 41.00 23.63 28.25 ! 28.88 31.50 34. 13! 36.75 39.38 42.00 43 2.688 5.375 8.06310.7513.4416.1318.81 21.50 24.19 26.88 29.56 32.25 34.9437.63 40.31 43.00 44 2.750 5.5008.25011.00 13.7516.5019.25:22.00 24.75127.50 30.2533.00 35.75 38.50:41. 25 44.00 45 2.813 5.625 8.43S 11.25 14.06 16.8819.69 22.50 25.3128.13 30.94' 33.75 36.56 39.38 42.19 45.00 46 2.^75 5.750 8.625 11.50 14.38 17.2520.13 23.00 25.88! 28.75 31.63 34.50 37.38i 40.25 43.13 46.00 47 2.938 5.875 8.813 11.75 14.69 17.63 20.56 23.50 26.44.29.38J32.31 35.25 38.19 41.13 44.06 47.00 48 3.000,6.0009.000 12.00 1 15.00 j 18.0021.00|24.00i27.00 1 30.00 33.00, 36.00, 39.00142.00,45.0048.00 87 CARNEGIE STEEL COMPANY AREAS OF RECTANGULAR SECTIONS Concluded SQUARE INCHES Width, Thickness, Inches Inches Mo Vs 3 /10 V4. 5 /16 % 7 /ie % 9 /io % Hio % 13 /io Vs Ir >i6 1 49 3.06 6.13 9.19 12.25 15.31 18.38 21.44 24.50 27.56 30.63 33.69 36.75 39.81 42.88 45.94 49.00 50 3.13 6.25 9.3812.50 15.63 18.75 21.88 2f).0<) 28.13 31.25 34.38 37.50 40.63 43.75 46.88 50.00 51 3.19 6.38 9.5612.75 15.94 19.13 22.31 25.50 28.69 31.88 35.06 38.25 41.44 44.63 47.81 51.00 52 3.25 6.50 9.7513.00 16.25 19.50 22.75 26.00 29.25 32.50 35.75 39.00 42.25 45.50 48.75 52.00 53 3.31 6.63 9.9413.25 16.56 19.88 23.19 26.50 29.81 33.13 36.44 39.75 43.06 46.38 49.69 53.00 54 3.38 6.75 10.1313.50 16.88 20.2523.63127.00 30.38 33.75 37.13 40.50 43.88 47.25 50.63 54.00 55 56 3.44 3.50 6.88 7.00 10.3l|l3.75 10.5014.00 17.19 17.50 20.63 21.00 24.0627.50 24.5028.00 30.94 31.50 34.38 35.00 37.81 38.50 41.25 42.00 44.69 45.50 48.13 49.00 51.56 52.50 55.00 56.00 57 3.56 7.13 10.6914.25 17.81 21.38 24.9428.50 32.06 35.63 39.19 42.75 46.31 49.88 53.44 57.00 58 59 60 3.63 3.69 3.75 7.25 7.38 7.50 10.8814.50 11.0614.75 11.2515.00 18.13 18.44 18.75 21.75 22.13 22.50 25.38:29.00 25.81)29.50 26.2530.00 32.63 33.19 33.75 36.25 36.88 37.50 39.88 40.56 41.25 43.50 44.25 45.00 47.13 47.94 48.75 50.75 51.63 52.50 54.38 55.31 56.25 58.00 59.00. 60.00 61 3.81 7.63 11.4415.25 19.06 22.88 26.6930.50 34.31 38.13 41.94 45.75 49.56 53.38 57.19 61.00 62 3.88 7.75 11.6315.50 19.38 23.25 27.13 I 31.00 34.88 38.75 42.63 46.50 50.38 54.25 58.13 62.00 63 3.94 7.88 11.8115.75 19.69 23.63 27.56 31.50 35.44 39.38 43.31 47.25 51.19 55.13 59.06 63.00 64 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00 52.00 56.00 60.00 64.00 65 4.06 8.13 12.1916.25 20.31 24.38 28.44 32.50 36.56 40.63 44.69 48.75 52.81 56.88 60.94 65.00 66 4.13 8.25 12.3816.50 20.63 24.75 28.88 33.00 37.13 41.25 45.38 49.50 53.63 57.75 61.88 06.00 67 4.19 8.38 12.5616.75 20.94 25.13 29.31 33.50 37.69 41.88 46.06 50.25 54.44 58.63 62.81 67.00 68 4.25 8.50 12.7517.00 21.25 25.50 29.75 34.00 38.25 42.50 46.75 51.00 55.25 59.50 63.75 68.00 69 4.31 8.63 12.94 17.25 21.56 25.88 30.19 34.50 38.81 43.13 47.44 51.75 56.06 60.38 64.69 69.00 70 4.38 8.75 13.13 17.50 21.88 26.25 30.63 35.00 39.38 43.75 48.13 52.50 56.88 61.25 65.63 70.00 71 4.44 8.88 13.31 17.75 22.19 26.63 31.06 35.50 39.94 44.38 48.81 53.25 57.69 62.13 66.56 71.00 72 4.50 9.00 13.50 18.00 22.50 27.00 31.50 36.00 40.50 45.00 49.50 54.00 58.50 63.00 67.50 72.00 73 4.56 9.13 13.69 18.25 22.81 27.38 31.94 36.50 41.06 45.63 50.19 54.75 59.31 63.88 68.44 73.00 74 4.63 9.25 13.88 18.50 23.13 27.75 32.38 37.00 41.63 46.25 50.88 55.50 60.13 64.75 69.38 74.00 75 4.69 9.38 14.06 18.75 23.44 28.13 32.81 37.50 42.19 46.88 51.56 56.25 60.94 65.63 70.31 75.00 76 4.75 9.50 14.25 19.00 23.75 28.50 33.25 38.00 42.75 47.50 52.25 57.00 61.75 66.50 71.25 76.00 77 78 4.81 4.88 9.63 9.75 14.44 14.63 19.25 19.50 24.06 24.38 28.88 29.25 33.69 34.13 38.50 39.00 43.31 43.88 48.13 48.75 52.94 53.63 57.75 58.50 62.56 63.38 67.38 68.25 72.19 73.13 77.00 78.00 79 80 4.94 5.00 9.88 10.00 14.8119.7524.69 15.00 20.00J25.00 29.63j34.56 39.50 30.0035.0040.00 44.44 45.00 49.38 50.00 54.31 55.00 59.25 60.00 64.19 65.00 69.13 70.00 74.06 75.00 79.00 80.00 81 82 5.06 5.13 10.13 10.25 15.19 15.38 20.2525.31 20.5025.63 30.38 30.75 35.44 35.88 40.50 41.00 45.56 46.13 50.63 51.25 55.69 56.38 60.75 61.50 65.81 66.63 70.88 71.75 75.94 76.88 81.00 82.00 83 5.19 10.38 15.56 20.75 _'.->.',! ! 31.13 36.31 41.50 46.69 51.88 57.06 62.25 67.44 72.63 77.81 83.00 84 5.25 10.50 15.75 21.00 26.25 31.50 36.75 42.00 47.25 52.50 57.75 63.00 68.25 73.50 78.75 84.00 85 5.31 10.63 15.94 21.25 26.56 31.88 37.19 42.50. 47.81 53.13 58.44 63.75 69.06 74.38 79.69 85.00 86 5.38 10.75 16.13 21.50 26.88 32.25 37.63 43.00 48.38 53.75 59.13 64.50 69.88 75.25 80.63 86.00 87 5.44 10.88 16.31 21.75 27.19 32.63 38.06 43.50 48.94 54.38 59.81 65.25 70.69 76.13 81.56 87.00 88 5.50 11.00 16.50 22.00 27.50 33.00 38.50 44.00 49.50 55.00 60.50 66.00 71.50 77.00 82.50 88.00 89 5.56 11.13 16.69 22.25 27.81 33.38 38.94 44.50 50.06 55.63 61.19 66.75 72.31 77.88 83.44 89.00 90 5.63 11.25 16.88 2250 28.13 33.75 39.38 45.00 50.63 56.25 61.88 67.50 73.13 78.75 84.38 90.00 91 5.69 11.38 17.06 22.75 28.44 34.13 39.81 45.50 51.19 56.88 62.56 68.25 73.94 79.63 85.31 91.00 92 5.75 11.50 17.25 23.00 28.75 34.50 40.25 46.00 51.75 57.50 63.25 69.00 74.75 80.50 86.25 92.00 93 5.81 11.63 17.44 23.25 29.06 34.88 40.69 46.50 52.31 58.13 63.94 69.75 75.56 81.38 87.19 93.00 94 5.88 11.75 17.63 23.51) 29.38 35.25 41.13 47.00 52.88 58.75 64.63 70.50 76.38 82.25 88.13 94.00 95 5.94 11.88 17.81 23.75 29.69 35.63 41.56 47.50 53.44 59.38 65.31 71.25 77.19 83.13 89.06 95.00 96 6.00 12.00 18.00 24.00 30.00 36.00 42.00 48.00 54.00 60.00 66.00 72.00 78.00 84.00 90.00 96.00 97 6.06 12.13 18.19 24.25 30.31 36.38 42.44 48.50 54.56 60.63 66.69 72.75 78.81 84.88 90.94 97.00 98 6.13 12.25 18.38 24.50 30.63 36.75 42.88 49.00 55.13 61.25 67.38 73.50 79.63 85.75 91.88 98.00 99 100 6.19 6.25 12.38il8.56 12.50,18.75 24.75 25.00 30.94 37.13 31.25J37.50 43.31 43.75 49.50 50.00 55.69 56.25 61.88 62.50 68.06 68.75 74.25 75.00 80.44 81.25 86.63 87.50 92.81 93.75 99.00 100.0 88 WEIGHTS OF FLAT ROLLED STEEL WEIGHTS OF FLAT ROLLED STEEL POUNDS PER LINEAL FOOT Width, Thickness, Inches Inches tte Vs 9io K He % 7 /io % He % 1%6 % !%6 7 /8 1%0 1 34 .053 .106 .159 .213 .27 .32 .37 .43 .48 .53 .58 .64 .69 .74 .80 .85 3l .106 .213 .319 .425 .53 .64 .74 .85 .96 1.06 1.17 1.28 1.38 1.49 1.59 1.70 X .159 .319 .478 .638 .80 .96 1.12 1.28 1.43 1.59 1.75 1.91 2.07 2.23 2.39 2.55 1 .213 .425 .638 .850 1.06 1.28 1.49 1.70 1.91 2.13 2.34 2.55 2.76 2.98 3.19 3.40 134 .266 .531 .797 1.063 1.33 1.59 1.86 2.13 2.39 2.66 2.92 3.19 3.45 3.72 3.98 4.25 ig .319 .638 .956 1.275 1.59 1.91 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.46 4.78 5.10 .372 .744 1.116 1.488 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.46 4.83 5.21 5.58 5.95 2 * .425 .850 1.275 1.700 2.13 2.55 2.98 3.40 3.83 4.25 4.68 5.10 5.53 5.95 6.38 6.80 234 .478 .956 1.434 1.913 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.74 6.22 6.69 7.17 7.65 2/^ .531 1.063 1.594 2.125 2.66 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.91 7.44 7.97 8.50 2% .584 1.169 1.753 2.338 2.92 3.51 4.09 4.68 5.26 5.84 6.43 7.01 7.60 8.18 8.77 9.35 3 .638 1.2751.913 2.550 3.19 3.83 4.46 5.10 5.74 6.38 7.01 7.65 8.29 8.93 9.56 10.20 3J4 .691 1.3812.072 2.763 3.45 4.14 4.83 5.53 6.22 6.91 7.60 8.29 8.98 9.67 10.36 11.05 Sj .744 1. 48812.231 2.975 3.72 4.46 5.21 5.95 6.69 7.44 8.18 8.93 9.67 10.41 11.16 11.90 .797 1.594 2.391 3.188 3.98 4.78 5.58 6.38 7.17 7.97 8.77 9.56 10.36 11.16 11.95 12.75 4 * .850 1.700J2.550 3.400 4.25 5.10 5.95 6.80 7.65 8.50 9.35 10.20 11.05 11.90 12.75 13.60 434 .903 1.806 2.709 3.613 4.52 5.42 6.32 7.23 8.13 9.03 9.93 10.84 11.74 12.64 13.55 14.45 4H .956 1.9132.869 3.825 4.78 5.74 6.69 7.65 8.61 9.56 10.5211.4812.43 13.39 14.34 15.30 4% 1.009 2.019 3.028 4.038 5.05 6.06 7.07 8.08 9.08 10.09 11.10 12.11 13.12 14.13 15.14 16.15 5 1.063 2.125 3.188 4.250 5.31 6.38 7.44 8.50 9.56 10.63 11.6912.7513.81 14.88 15.94 17.00 534 1.116 2.231J3.347 4.463 5.58 6.69 7.81 8.93 10.04 11.16 12.27! 13.39! 14.50 15.62 16.73 17.85 JH 1.169 1.222 2.3383.506 2.4443.666 4.675 5.84 4.888 6.11 7.01 8.18 7.33 8.55 9.35 9.78 10.52 11.69 1 12.86| 14.03 15.19 1 16.36 17.53 ll.OOj 12.22; 13.44! 14.66 15.88 17.1 1| 18.33 18.70 19.55 6 4 1.275 2.5503.825 5.100 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 1 16.581 17.85 19.13 20.40 634 1.328 2.6563.984 5.313 6.64 7.97 9.30 10.63 11.95 13.28 14.61 15.94! 17.27 18.59 19.92 21.25 1.381 2.763 4.144 5.525 6.91 8.29 9.67 11.05 12.43i 13.81 15.19 16.58; 17.96[ 19.34 20.72 22.10 6M 1.434 2.8694.303 5.738 7.17 8.6110.04 11.48 12.91,14.34 15.78 17.21 18.65,20.08 21.52122.95 7 1.488 2.975 4.463 5.950 7.44 8.9310.41 11.90 13.39! 14.88 16.36 17.851 19.34 20.83 22.31 23.80 734 1.541 3.081 4.622 6.163 7.70 9.24 10.78 12.33 13.87! 15.41 16.95 18.49 1 20.03 21.57 23.11 24.65 rS 8 1.594 1.647 1.700 3.1884.781)6.375 7.97i 9.5611.16 3.2944.9416.588 8.23: 9.8811.53 3.4005.1006.800 8.5010.2011.90 12.75 13.18 13.60 14.34 15.94 17.53 19.13 20.72 22.31i23.91<25.50 14.82 16.47 18.12 19.76 21.41 23.06 24.70 26.35 15.30!7.00, 18.70 20.40^2.10 23.80 25.50 27.20 834 1.753 3.506 5.2597.013 8.77 10.52 12.27 14.03 15.78' 17.53' 19.28 21.04 22.79! 24.54 26.30 28.05 1.806 3.613 5.419J7.225 9.0310.8412.64 14.45 16.26 18.06 19.87 21.68 23.48 25.29 27.09 28.90 3 1.859 3.719 5.57* 7.438 9.3011.1613.02 14.88! 16.73 18.59 20.45 22.31 24.17I26.03I27.89; 29.75 9 1.913 3.8255.738 7.650 9.5611.48,13.39 15.30 17.21 19.13 21.04 22.95 24.86| 26.78 28.69J 30.60 934 1.966 3.931|5.897 7.863 9.83 11.7913.76 15.73 17.69 19.66 21.62 23.59 25.55 27.52 29.48' 31 45 t9 2.019 2.072 4.038!6.056 4.144|6.216 8.07510.0912.1114.13 8.28810.3612.4314.50 16.15 18.17 20.19 22.21 24.23 26.24 28.26 30.28! 32.30 16.58 18.65 20.72 22.79 24.86 26.93 29.01i31.08!33.15 10 2.125 4.250J6.375 8.500 10.63 12.75 14.88 17.00 19.13 21.25 23.38 25.50 27.63 29.75 31.88 34.00 1034 2.178 4.356 6.534 8.713 10.89 13.0715.25 17.43 19.60 21.78 23.96 26.14 28.32 30.49 32.67 34.85 IOH 2.231 4.463 6.694 8.92511.1613.3915.62 17.85 20.08 22.31 24.54 26.78J 29.01 31.24 33.47 35.70 10 M 2.284 4.569 6.853 9.13811.4213.7115.99 18.28 20.56 22.84 25.13 27.41 29.70 31.98 34.27 36.55 11 2.338 4.675 7.013 9.35011.6914.0316.36 1 18.70 21.04 23.38 25.71 28.05 30.39 32.73 35.06 37.40 llM 2.391 4.781 7.172 9.56311.9514.3416.73 19.13 21.52 23.91 26.30 28.69 31.08 33.47 35.86138.25 12 * 2.444 2.497 2.550 4.888I7.331 4.994)7.491 5.10017.650 9.77512.2214.6617.11 9.98812.4814.9817.48 10.20il2.7515.30il7.85 19.55 21.99 24.44 26.88i29.33 31.77 19.98 22.47! 24.97 27.47 29.96 32.46 20.40 22.95125.50[28.05130.60[33.15 34.21 34.96 35.70 36.66 37.45 38.25 39.10 39.95 40.80 89 CARNEGIE STEEL COMPANY WEIGHTS OF FLAT ROLLED STEEL Continued POUNDS PER LINEAL FOOT Thickness, Inches Width, Inches He Vs 3 /io Vi 5/1(5 / 3/8 7/1(5 % %e % 11/10 8/4 13 /1C T /8 lr /ie 1 12 , A 2.66 5.31 7.97 10.63 13.28 15.94:18.59 21.25 23.91 26.56 29.2 31.9 34.5 37.2 39.8 42.5 13 2.76 5.53 8.29,11.05 13.81J16.58 19.34 22.10 24.86 27.63 30.4 33.2 35.9 38.7 41.4 44.2 2.87 5.74 8.61 11.48 14.34 17.21 20.08 22.95 25.82 28.69 31.6 34.4 37.3 40.2 43.0 45.9 14 2.98 5.95 8.93 11.90 14.88 17.8520.83 23.80 26.78 29.75 32.7 35.7 38.7 41.7 44.6 47.6 Uy 2 3.08 6.16 9.24112.33 15.41 18.49 21.57 24.65 27.73 30.81 33.9 37.0 40.1 43.1 46.2 49.3 15 3.19 6.38 9.56 12.75 15.94 19.13 22.31 25.50 28.69 31.88 35.1 38.3 41.4 44.6 47.8 51.0 3.29 6.59 9.8813.18 16.47 19.76'23.06 26.35 29.64 32.94 36.2 39.5 42.8 46.1 49.4 52.7 16 2 3.40 6.80 10.20 13.60jl7.00 20.40 23.80 27.20 30.60 34.00 37.4 40.8 44.2 47.6 51.0 54.4 16^ 3.51 7.01 10.52 14.0317.53 21.0424.54 28.05 31.56 35.06 38.6 42.1 45.6 49.1 52.6 56.1 17 3.61 7.23 10.84 14.4518.06 21.68 25.29 28.90 32.51 36.13 39.7 43.4 47.0 50.6 54.2 57.8 3.72 7.44 11. 16 14.88ll8.59 22.31 26.03 29.75 33.4737.19 40.9 44.6 48.3 52.1 55.8 59.5 18 3.83 7.65 11.48 15.3019.13 22.95 26.78 30.60 34.43 38.25 42.1 45.9 49.7 53.6 57.4 61.2 18H 3.93 7.8611.79 15.73 19.66'23.59 27.52 31.45 35.38 39.31 43.2 47.2 51.1 55.0 59.0 62.9 19 4.04 8.08 12.11 16.1520.19 24.23 28.26 32.30 36.34 40.38 44.4 48.5 52.5 56.5 60.6 64.6 19/^ 4.14 8.29 12.43 16.58,20.72 24.86 29.01 33.15 37.2941.44 45.6 49.7 53.9 58.0 62.2 66.3 20 4.25 8.50 12.75,17.0021.25,25.50 29.75 34.00 38.25 42.50 46.8 51.0 55.3 59.5 63.8 68.0 20^ 4.36 8.71 13.0717.43 21.7826.14 30.49 34.85 39.21 43.56 47.9 52.3 56.6 61.0 65.3 69.7 21 4.46 8.9313.39J17.85 22.3126.78 31.24 35.70 40.16 44.63 49.1 53.6 58.0 62.5 66.9 71.4 21 J/ 4.57 9.14 13.71 1S.2.S 22.84 27.41 31.98 36.55 41.12 45.69 50.3 54.8 59.4 64.0 68.5 73.1 22 4.68 9.35 14.03 18.70 23.38j28.05 32.73 37.40 42.08 46.75 51.4 56.1 60.8 65.5 70.1 74.8 22 y z 4.78 9.56 14.34 19.13 23.91 28.6933.47 38.25 43.03 47.81 52.6 57.4 62.2 66.9 71.7 76.5 23 4.89 4.99 9.7814.66)19.55 9.99|14.9S|l9.98 24.4429.33:34.21 24.9729.9634.96 39.10 39.95 43.99 44.94 48.88 49.94 53.8 54.9 58.7 59.9 63.5 64.9 68.4 69.9 73.3 74.9 78.2 79.9 24 2 5.10 10.20 15.30 20.40 25.50 30.60 35.70 40.80 45.90 51.00 56.1 61.2 66.3 71.4 76.5 81.6 25 5.31 10.63 15.94121.25 26.5631.8837.19 42.50 47.81 53.13 58.4 63.8 69.1 74.4 79.7 85.0 26 5.53 11.05 16.58 22.1027.63 33.15 38.68 44.20 49.73 55.25 60.8 66.3 71.8 77.4 82.9 88.4 27 5.74 11.48 17.21 22.9528.69 34.43 40.16 45.90 51.64 57.38 63.1 68.9 74.6 80.3 86.1 91.8 28 5.95 11.90 17.85|23.80|29.75 35.70 41.65 47.60 53.55 59.50 65.5 71.4 77.4 83.3 89.3 95.2 29 6.16 12.3318.4924.6530.81 36.9843.14 49.30 55.46 61.63 67.8 74.0 80.1 86.3 92.4 98.6 30 6.38 12.75 19.13 25.50i31.88 38.25 44.63 51.00 57.38 63.75 70.1 76.5 82.9 89.3 95.6 102.0 31 6.59 13.18 19.76 26.35132.94 39.53 46.11 52.70 59.29 65.88 72.5 79.1 85.6 92.2 98.8| 105.4 32 6.80 13.60 20.40127.20134.00 40.80147.60 54.40 61.20 68.00 74.8 81.6 88.4 95.2 102.0J 108.8 33 7.01 14.0321.04 28.05'35.06 42.0849.09 56.10 63.11 70.13 77.1 84.2 91.2 98.2 105.2 112.2 34 35 7.23 7.44 14.45 21.68 28.90l38.1343.35l50.58 14.88 22.31 29.75|37.19 44.63152.06 57.80 59.50 65.03 (MM 72.25 74.38 79.5 81.8 86.7 89.3 93.9 96.7 101.2 104.1 108.4115.6 111.6:119.0 36 7.65 15.30 22.95 30.6038.25 45.90 53.55 61.20 68.85 76.50 84.2 91.8 99.5 107.1 114.81 122.4 1 37 38 7.86 8.08 15.73 23.59|31.45|39.3l|47.18|55.04 16.15i24.23!32.30i40.38 48.45 56.53 62.90 64.60 70.76 72.68 78.63 80.75 86.5 88.8 94.4 96.9 102.2 105.0 110.1 113.1 117.9' 125.8 121.l!l29.2 39 8.29 16.58 24.86 33, 15)41.44 49.73 58.01 66.30 74.59 82.88 91.2 99.5 107.7 116.0 124.3 132.6 40 8.50 17.00 25.50 34.0042.50 51.00 59.50 68.00 76.50 85.00 93.5 102.0 110.5 119.0 127.5 136.0 41 8.71 17.4326.14 34.8543.56 52.2860.99 69.70 78.41 87.13 95.8 104.6 113.3122.0 130.7 139.4 42 8.93117.85 26.78 35.70i44.63 53.55162.48 71.40 80.33 89.25 98.2 107.1 116.0 125.0 133.9|142.8 ,43 9.14 18.28 27.41 36.5545.69 f>l.,s:j \\:\.\\\\ 73.10 82.24 91.38 100.5 109.7 118.81127.9 137.1 146.2 44 9.35 18.70 28.05 37.40)46.75 56.10 65.45 74.80 84.15 93.50 102.9 112.2 121.6130.9 140.3 149.6 45 9.56 19.13J28.69 38.2547.81 57.38 66.94 76.50 86.06 95.63 105.2 114.8 124.3 133.9 143.4 153.0 46 9.78 19.55129.33 39.10i48.8858.65i68.43 78.20 87.98 97.75 107.5 117.3 127.1 136.9 146.6 156.4 47 9.99 19.98 29.90 39.9549.94 .V.i.'.i:', 69.!) 1 79.90 89.89 99.88109.9 119.9 129.8139.8 149.8 159.8 48 10.20 20.40|30.60l40.80|51.0061.20|71.40 81.60 91.80 102.0 112.2 122.4 132.6[ 142.8 153.0 163.2 90 WEIGHTS OF FLAT ROLLED STEEL WEIGHTS OF FLAT ROLLED STEEL Concluded POUNDS PER LINEAL FOOT Width, Thickness, Inches Inches H % %6 y* %e % %0 y 2 %6 % ^6 % 1J fto 7 /8 15 Ae 1 49 10.4 20.8 31.2 41.7 52.1 62.5 72.9 83.3 93.7 104.1 114.5 125.0 135.4 145.8 156.2 166.6 50 10.6 21.3 31.9 42.5 53.1 63.8 74.4 85.0 95.6 106.3 116.9 127.5 138.1 148.8 159.4 170.0 51 10.8 21.7 32.5 43.4 54.2 65.0 75.9 86.7 97.5 108.4 119.2 130.1 140.9 151.7 162.6 173.4 52 11.1 22.1 33.2 44.2 55.3 66.3 77.4 88.4 99.5 110.5 121.6 132.6 143.7 154.7 165.8 176.8 53 11.3 22.5 33.8 45.1 56.3 67.6 78.8 90.1 101.4 112.6 123.9 135.2 146.4 157.7 168.9 180.2 54 11.5 23.0 34.4 45.9 57.4 68.9 80.3 91.8 103.3 114.8 126.2 137.7 149.2 160.7 172.1 183.6 55 11.7 23.4 35.1 46.8 58.4 70.1 81.8 93.5 105.2 116.9 128.6 140.3 151.9 163.6 175.3 187.0 56 11.9 23.8 35.7 47.6 59.5 71.4 83.3 95.2 107.1 119.0 130.9 142.8 154.7 166.6178.5 190.4 57 12.1 24.2 36.3 48.5 60.6 72.7 84.8 96.9 109.0 121.1 133.2 145.4 157.5 169.61181.7 193.8 58 12.3 24.7 37.0 49.3 61.6 74.0 86.3 98.6 110.9 123.3 135.6' 147.9 160.2 172.6184.9 197.2 59 12.5 25.1 37.6 50.2 62.7 75.2 87.8 100.3 112.8 125.4:137.9,150.5 163.0 175.5188.1 200.6 60 12.8 25.5 38.3 51.0 63.8 76.5 89.3 102.0 114.8 127.5,140.3 153.0 165.8 178.5 191.3 204.0 61 13.0 25.9 38.9 51.9 64.8 77.8 90.7 103.7 116.7 129.6' 142.6 155.6 168.5 181.5 194.4 207.4 62 13.2 26.4 39.5 52.7 65.9 79.1 92.2 105.4 118.6 131.8 144.9 158.1 171.3 184.5 197.6 210.8 63 13.4 26.8 40.2 53.6 66.9 80.3 93.7 107.1 120.5 133.9 147.3 160.7 174.0 187.4 200.8 214.2 64 13.6 27.2 40.8 54.4 68.0 81.6 95.2 108.8 122.4 136.0 149.6 163.2 176.8 190.4 204.0 217.6 65 13.8 27.6 41.4 55.3 69.1 82.9 96.7 110.5 124.3 138.1 151.9 165.8 179.6 193.4 207.2 221.0 66 14.0 28.1 42.1 56.1 70.1 84.2 98.2 112.2 126.2140.3154.3 168.3 182.3 196.4 210.4 224.4 67 14.2 28.5 42.7 57.0 71.2 85.4 99.7 113.9 128.1 142.4! 156.6 170.9 185.1 199.3 213.6227.8 68 14.5 28.9J 43.4 57.8 72.3 86.7 101.2 115.6 130.1144.5 159.0 173.4 187.9 202.3 216.8i231.2 69 70 14.7 14.9 M 29.8 44.0 44.6 58.7 59.5 73.3 74.4 88.0 89.3 102.6 104.1 117.3 119.0 132.0146.6 133.9148.8 161.3 163.6 176.0 178.5 190.6 193.4 205.3 208.3 219.91234.6 223.1238.0 71 72 15.1 15.3 30.2 30.6 45.3 45.9 60.4 61.2 75.4 76.5 90.5 105.6 91.8 107.1 120.7 122.4 135.8150.9 137.7153.0 166.0 168.3 181.1 183.6 196.1 198.9 211.2 214.2 226.3 229.5 241.4 244.8 73 15.5 31.0 46.5 62.1 77.6 93.1J108.6 124.1 139.6! 155.1 170.6 186.2 201.7 217.2 232.7 248.2 74 15.7 31.5 47.2 62.9 78.6 94.4 110.1 125.8 141.5S 157.3! 173.0; 188.7 204.4 220.2 235.9 251.6 75 15.9 31.9 47.8 63.8 79.7 95.6 1 11.6: 127.5! 143.4 159.4 175.3; 191.3 207.2 223.1 239.11255.0 76 16.2 32.3 48.5 64.6 80.8 96.91113.1 129.2 145.41 161.51 177.71 193.81 210.0 226.1 242.3 258.4 77 16.4 32.7 49.1 65.5 Sl.S 98.2114.5130.9 147.3 163.6180.0196.4212.7 229.1 245.4 261.8 78 16.6 33.2 49.7 66.3 82.9 99.5116.0132.6 149.2 165.8 182.3 198.9 215.5 232.1 248.6 265.2 79 80 16.8 17.0 33.6 34.0 50.4 51.0 67.2 68.0 83.9 100.7'117.5 134.3 151.1 167.9 184.7i201.5!218.2 85.0102.0119.0 136.0 153.0 170.0J 187.0; 204.0 221.0 235.0 251.8 238.0 255.0 268.6 272.0 81 17.2 34.4 51.6 68.9 86.11103.3120.5 137.7 154.9 172.1189.3206.6 223.8 241.0258.2 275.4 82 17.4 34.9 52.3 69.7 87.1 104.6 122.0! 139.4 156.8 1 174.3! 191.7 209.l|226.5 244.0261.4 278.8 83 17.6 35.3 52.9 70.6 88.2105.8123.5 141.1 158.7:176.4194.01211.7229.3 246.9:264.6 282.2 84 17.9 35.7 53.6 71.4 89.3 107.1 125.0 142.8 160.7 178.51196.4214.2 232.1 249.9 267.8 285.6 85 18.1 36.1 54.2 72.3 90.3 108.4 126.4 144.5 162.6 180.6198.7216.8 234.8 252.9 270.9 289.0 86 18.3 36.6 54.8 73.1 91.4 .109.7 127.9 146.2 164.5 182.8 201.01219.3 237.6 255.9 274.1 292.4 87 18.5 37.0 55.5 74.0 92.4 110.9 129.4! 147.9 166.4 184.9 203.41221.9 240.3 258.8 277.3 295.8 88 18.7 37.4 56.1 74.8 93.5 112.2 130.9 149.6 168.3 187.0 205.7 224.4 243.1 261.8 280.5 299.2 89 18.9 37.8 56.7 75.7 94.6113.5132.4 151.3 170.2189.1 208.0 227.0 245.9 264.8 283.7 302.6 90 19.1 38.3 57.4 76.5 95.6114.8133.9153.0 172.1 191.3 210.4 229.5 248.6 267.8 286.9 306.0 91 19.3 38.7 58.0 77.4 96.7:116.0135.4154.7 174.01193.4 212.7 232.1 251.4 270.7 290.1 309.4 92 19.6 39.1 58.7 78.2 97.8J117.3 136.9 156.4 176.0 195.5 215.1 234.6 254.2 273.7 293.3 312.8 93 19.8 39.5 59.3 70.1 98.8118.6 138.3 158.1 177.9 197.6 217.4 237.2 256.9 276.7 296.4 316.2 94 20.0 40.0 59.9 79.9 99.9119.9139.8 159.8 179.8 199.8 219.7 239.7 259.7 279.75299.6 319.6 95 20.2 40.4 60.6 80.8 100.9 121. 1141.31 161.5 181.7 201.9,222.1 242.3,262.4 282.6i302.8 323.0- 96 20.4 40.8 61.2 81.6 102.0 122.4 142.8 163.2 183.6 204.0 224.4 244.8265.2 285.6 306.0 326.4 97 20.6 41.2 51J 82.5 103.1 123.7 144.3 164.9 185.5 206.1 226.7 247.4268.0 288.6 309.2 329.8 98 20.8 41.7 62.5 83.3 104.1 125.0 145.S 166.6 1.S7.4 208.3 229.1 249.9270.7 291.61312.4 333.2 99 21.0 42.1 63.1 84.2 105.2126.2147.3 168.3 189.3 210.4 231.4 252.5273.5 294.5315.6 336.6 100 21.3 42.5 63.8 85.0 106.3 .127.5 148.8 170.0 191.3 212.5 233.8 255.0276.3 297.51318.8 340.0 91 CARNEGIE STEEL COMPANY SQUARE AND ROUND BARS WEIGHTS AND AREAS Weight, Lbs. Area, Square Weight, Lbs. Area, Square Size, per Foot Inches Size, per Foot Inches Inches a D O Inches D D O o 3 30.60 24.03 9.000 7.069 fr .013 .010 .0039 .0031 A 31.89 25.05 9.379 7.366 H .053 .042 .0156 .0123 8 33.20 26.08 9.766 7.670 A .120 .094 .0352 .0276 T 3 6 34.54 27.13 10.160 7.980 y .213 .167 .0625 .0491 y 35.91 28.21 10.563 8.296 T 5 S .332 .261 .0977 .0767 fs 37.31 29.30 10.973 8.618 8 .478 .376 .1406 .1105 H 38.73 30.42 11.391 8.946 i 7 * .651 .511 .1914 .1503 & 40.18 31.55 11.816 9.281 ^ .850 .668 .2500 .1963 1 A 41.65 32.71 12.250 9.621 T 9 e 1.076 .845 .3164 .2485 I 9 e 43.15 33.89 12.691 9.968 s 1.328 1.043 .3906 .3068 8 44.68 35.09 13.141 10.321 14 1.607 1.262 .4727 .3712 H 46.23 36.31 13.598 10.680 3^ 1.913 1.50,2 .5625 .4418 H 47.81 37.55 14.063 11.045 is 2.245 1.763 .6602 .5185 n 49.42 38.81 14.535 11.416 J^ 2.603 2.044 .7656 .6013 % 51.05 40.10 15.016 11.793 IS 2.988 2.347 .8789 .6903 1! 52.71 41.40 15.504 12.177 1 3.400 2.670 1.0000 .7854 4 54.40 42.73 16.000 12.566 T'O 3.838 3.015 1.1289 .8866 TV 56.11 44.07 16.504 12.962 It 4.303 3.380 1.2656 .9940 k 57.85 45.44 17.016 13.364 I 3 3 4.795 3.766 1.4102 1.1075 A 59.62 46.83 17.535 13.772 & 5.313 4.172 1.5625 1.2272 Vi 61.41 48.23 18.063 14.186 A 5.857 4.600 1.7227 1.3530 63.23 49.66 18.598 14.607 N 6.428 5.049 1.8906 1.4849 % 65.08 51.11 19.141 15.033 T 7 * 7.026 5.518 2.0664 1.6230 T 7 a 66.95 52.58 19.691 15.466 7.650 6.008 2.2500 1.7671 y 2 68.85 54.07 20.250 15.904 8.301 6.519 2.4414 1.9175 70.78 55.59 20.816 16.349 5^ 8.978 7.051 2.6406 2.0739 II 72.73 57.12 21.391 16.800 T6 9.682 7.604 2.8477 2.2365 is 74.71 58.67 21.973 17.257 M 10.413 8.178 3.0625 2.4053 M 76.71 60.25 22.563 17.721 |f 11.170 8.773 3.2852 2.5802 78.74 61.85 23.160 18.190 H 11.953 9.388 3.5156 2.7612 j| 80.80 63.46 23.766 18.665 il 12.763 10.024 3.7539 2.9483 it 82.89 65.10 24.379 19.147 2 13.600 10.681 4.0000 3.1416 5 85.00 66.76 25.000 19.635 T l e- 14.463 11.359 4.2539 3.3410 f 87.14 68.44 25.629 20.129 H 15.353 12.058 4.5156 3.5466 H 89.30 70.14 26.266 20.629 T 3 S 16.270 12.778 4.7852 3.7583 r\ 91.49 71.86 26.910 21.135 17.213 13.519 5.0625 3.9761 M 93.71 73.60 27.563 21.648 18.182 14.280 5.3477 4.2000 95.96 75.36 28.223 22.166 2l} 19.178 15.062 5.6406 4.4301 y* 98.23 77.15 28.891 22.691 T 7 6 20.201 15.866 5.9414 4.6664 % 100.53 78.95 29.566 23.221 1 A 21.250 16.690 6.2500 4.9087 M 102.85 80.78 30.250 23.758 i 9 a 22.326 17.534 6.5664 5.1572 I 9 S 105.20 82.62 30.941 24.301 5^ 23.428 18.400 6.8906 5.4119 H 107.58 84.49 31.641 24.850 18 24.557 19.287 7.2227 5.6727 H 109.98 86.38 32.348 25.406 M 25.713 20.195 7.5625 5.9396 % 112.41 88.29 33.063 25.967 if 26.895 21.123 7.9102 6.2126 is 114.87 90.22 33.785 26.535 % 28.103 22.072 8.2656 6.4918 H 117.35 92.17 34.516 27.109 iS 29.338 23.042 8.6289 6.7771 if 119.86 94.14 35.254 27.688 3 30.600 24.033 9.0000 7.0686 6 122.40 96.13 36.000 28.274 92 WEIGHTS OF BAR SQUARE AND ROUND BARS WEIGHTS AND AREAS Size, 1L M Weight, Lbe. per Foot Area, Square Inches Size, T U Weight, Lbe. per Foot Area, Square Inches ncnes D O Inches D P O 6 122.40 96.13 36.000 28.274 9 t 275.40 216.30 81.000 63.617 124.96 98.15 36.754 28.866 279.24 219.31 82.129 64.504 H 127.55 10O.18 37.516 29.465 ^g 283.10 222.35 83.266 65.397 i 3 130.17 102.23 38.285 30.069 T 3 286.99 225.41 84.410 ' 66.296 K 132.81 104.31 39.063 30.680 J 290.91 228.48 85.563 67.201 i 6 * 135.48 106.41 39.848 31.296 5 294.86 231.58 86.723 68.112 H 138.18 108.53 40.641 31.919 iHai 298.83 234.70 87.891 69.029 T 7 140.90 110.66 41.441 32.548 T 7 * 302.83 237.84 89.066 69.953 H 143.65 112.82 42.250 33.183 Vi 306.85 241.00 90.250 70.882 T 9 ft 146.43 115.00 43.066 33.824 1 9 5 310.90 244.18 91.441 71.818 H 149.23 117.20 43.891 34.472 % 314.98 247.38 92.641 72.760 }] 152.06 119.43 44.723 35.125 ii 319.08 250.61 93.848 73.708 M 154.91 121.67 45.563 35.785 % 323.21 253.85 95.063 74.662 H 157.79 123.93 46.410 36.450 if 327.37 257.12 96.285 75.622 H 160.70 126.22 47.266 37.122 331.55 260.40 97.516 76.589 i: 163.64 128.52 48.129 37.800 if 335.76 263.71 98.754 77.561 7 166.60 130.85 49.000 38.485 10 340.00 267.04 100.000 78.540 y l a 169.59 133.19 49.879 39.175 T^ 344.26 270.38 101.254 79.525 M 172.60 135.56 50.766 39.871 H 348.55 273.75 102.516 80.516 I 3 8 175.64 137.95 51.660 40.574 s 352.87 277.14 103.785 81.513 J^ 178.71 140.36 52.563 41.282 M 357.21 280.55 105.063 82.516 J5 fl 181.81 142.79 53.473 41.997 6 361.58 283.99 106.348 83.525 M 184.93 145.24 54.391 42.718 y% 365.98 287.44 107.641 84.541 T 7 5 188.07 147.71 55.316 43.445 A 370.40 290.91 108.941 85.563 H 191.25 150.21 56.250 44.179 \s 374.85 294.41 110.250 86.590 ft 194.45 152.72 57.191 44.918 I 9 e 379.33 297.92 111.566 87.624 y% 197.68 155.26 58.141 45.664 383.83 301.46 112.891 88.664 ik 200.93 157.81 59.098 46.415 i! 388.36 305.02 114.223 89.710 & 204.21 160.39 60.063 47.173 54 392.91 308.59 115.563 90.763 \i 207.52 162.99 61.035 47.937 ia 397.49 312.19 116.910 91.821 n 210.85 165.60 62.016 48.707 /8 402.10 315.81 118.266 92.886 11 214.21 168.24 63.004 49.483 18 406.74 319.45 119.629 93.957 8 217.60 170.90 64.000 50.265 11 411.40 323.11 121.000 95.033 t* 221.01 173.58 65.004 51.054 416.09 326.80 122.379 96.116 k 224.45 176.29 66.016 51.849 L 420.80 330.50 123.766 97.205 A 227.92 179.01 67.035 52.649 I 3 S 425.54 334.22 125.160 98.301 K 231.41 181.75 68.063 53.456 M 430.31 337.97 126.563 99.402 i 5 234.93 184.52 69.098 54.269 6 435.11 341.73 127.973 100.510 H 238.48 187.30 70.141 55.088 iMI 439.93 345.52 129.391 101.623 A 242.05 190.11 71.191 55.914 T 7 9 444.78 349.33 130.816 102.743 H 245.65 192.93 72.250 56.745 M 449.65 353.16 132.250 103.869 j> 249.28 195.78 73.316 57.583 9 454.55 357.00 133.691 105.001 H 252.93 198.65 74.391 58.426 % 459.48 360.87 135.141 106.139 tt 256.61 201.54 75.473 59.276 ii 464.43 364.76 136.598 107.284 5i 260.31 204.45 76.563 60.132 % 469.41 368.68 138.063 108.434 i| 264.04 207.38 77.660 60.994 1$ 474.42 372.61 139.535 109.591 /* 267.80 210.33 78.766 61.863 ^ 479.45 376.56 141.016 110.754 \l 271.59 213.31 79.879 62.737 it 484.51 380.54 142.504 111.923 9 275.40 216.30 81.000 63.617 12 489.60 384.53 144.000 113.098 CARNEQIE STEEL COMPANY COLD TWISTED SQUARE BARS Size, Inches Area, Square Inches Weight per Foot, Pounds 2 1% 1M 1% 1H IH IX IH i 4.0000 3.5156 3.0625 2.6406 2.2500 1.8906 1.5625 1.2656 1.0000 13.600 11.953 10.413 8.978 7.650 6.428 5.313 4.303 3.400 11 0.8789 2.988 0.7656 2.603 ii 0.6602 2.245 M 0.5625 1.913 11 0.4727 1.607 ^ 0.3906 1.328 i 9 * 0.3164 1.076 1 A 0.2500 0.850 I 7 6 0.1914 0.651 ^ 0.1406 0.478 A 0.0977 0.332 K 0.0625 0.213 Cold twisted bars will conform to Specifications of the American Society for Testing Materials, unless otherwise specified. CONCRETE REINFORCEMENT BARS DEFORMED BARS CORRUGATED SQUARE BAR TYPE A CORRUGATED SQUARE BAR TYPE B Rolled for Corrugated Bar Co. CORRUGATED ROUND BAR TYPE C CORRUGATED SQUARE BAR TYPE D Rolled for Corrugated Bar Co. Section Index Size, Inches Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds Corrugated Square Bar Type A Corrugated Square Bar Type B *M 1980 *M 1981 *M 1982 *M 1983 *M 1984 IK 1 4.00- 2.70 1.95 1.35 0.64 *M *M *M *M *M *M *M *M *M 1550 1551 1552 1553 1554 1555 1558 1557 1556 2 5.31 3.40 2.60 1.91 1.33 0.85 0.48 0.37 0.21 Corrugated Round Bar Type C Corrugated Square Bar Type D *M 1618 IK 4.21 *M 1732 *M 1731 *M 1650 jjj 10.48 7.69 5.35 *M 1617 *M 1616 *M 1615 *M 1614 *M 1613 *M 1612 *M 1611 *M 1610 IX 1 H X 3.41 2.69 2.06 1.52 1.05 0.86 0.66 0.38 *M 1651 *M 1652 *M 1653 *M 1654 *M 1655 *M 1656 j *M 1657 *M 1658 IX l X K 4.34 3.43 2.64 1.94 1.35 0.86 0.49 0.22 *Fumished only by special arrangement. 95 CARNEGIE STEEL COMPANY DEFORMED BARS Continued LUG BAR-TYPE A LUG BAR-TYPE B Rolled for General Fireprooflng Co. HERRINGBONE BAR Rolled for General Fireprooflng Co. Section Index Size, Inches Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds Lug Bar Type A Lug Bar Type B *M 1578 1M 5.31 *M 1648 1M 5.31 *M 1577 \y% 4.30 *M 1647 i H 4.30 *M 1576 1 3.40 *M 1646 i 3.40 *M 1575 H 2.60 *M 1645 % 2.60 *M 1574 24 1.91 *M 1644 H 1.91 *M 1573 y% 1.33 *M 1643 5 A 1.33 *M 1572 Yi 0.85 *M 1642 y<2 0.85 *M 1579 I 7 e 0.65 *M 1641 3^ 0.48 *M 1571 N 0.48 *M 1640 M 0.21 *M 1570 0.21 Herringbone Bar . Section Index Size, Inches Weight per Foot, Pounds *M 1673 IK 5.13 *M 1672 1 M 3.62 *M 1671 l 2.38 *M 1670 % 1.72 *M 1669 M 1.28 *M 1668 y% 0.91 *Furnished only by special arrangement. 96 CONCRETE REINFORCEMENT BARS DEFORMED BARS Continued SCOFIELD BAB THACHEB BAB Rolled for Scofield Engineering Co. HAVEMEYEB SQUARE BAB HAVEMEYER ROUND BAR Rolled for Concrete Steel Co. Section Index Size, Inches Weight per Foot, ! Pounds Section Index Size, Inches Weight per Foot, Pounds Scofield Bar Thacher Bar Equivalent to Round *M 1969 l l A 6.01 *M 1546 1 1 A 5.20 *M 1968 IX 4.17 *M 1545 IX 3.55 *M 1967 Hi 3.38 *M 1544 l 2.32 *M 1966 l 2.67 *M 1543 1.79 *M 1965 2.04 *M 1542 H 1.34 *M 1964 K 1.50 *M 1541 K 0.92 *M 1963 N 1.04 *M 1540 Hi 0.58 *M 1962 M 0.67 *M 1961 M 0.38 Equivalent to Square *M 1583 N 1.33 *M 1582 0.85 *M 1581 N 0.48 Havemeyer Square Bar Havemeyer Round Bar *M 1599 1H 7.65 *M 1609 jax 6.43 *M 1608 1/4 5.31 *M 1629 IK 4.17 *M 1607 1M 4.30 *M 1628 i% 3.38 *M 1606 1 3.40 *M 1627 i 2.67 *M 1605 2.60 *M 1626 H 2.04 *M 1604 S/ 1.91 *M 1625 X 1.50 *M 1603 *M 1602 N 1.33 0.85 *M 1624 *M 1623 X H 1.04 0.67 *M 16O1 H 0.48 *M 1622 N 0.38 *M 1621 0.21 *M 1600 M 0.17 *Furnished only by special arrangement. CARNEGIE STEEL COMPANY DEFORMED BARS Continued WING BAR -TYPE A WING BAR TYPE B Rolled for Trussed Concrete Steel Co. NEW RIB BAR ELCANNES BAR ^ ^ -jgjff] /^ A^ / A m Hi \ f fly 1 \!t VI I 1 ' / /*""f / 1 II | )i_|y / \ r \ f |/ Rolled for Trussed Concrete Steel Co. Rolled for Mr. Elie Cannes Sect-ion Index Size, Inches Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds Wing Bar Type A Wing Bar Type B *M 1515 IX 6.90 *M 1509 34 10.2 *M 1514 1 4.80 *M 1510 2% 6.8 *M 1513 % 2.70 *M 1516 2M 4.8 *M 1512 y* 1.40 New Rib Bar Elcannes Bar *M 1918 iy* 5.31 *M 1901 1M 5.31 *M 1917 ly* 4.30 *M 1902 \y% 4.30 *M 1916 i 3.40 *M 1903 1 3.40 *M 1915 H 2.60 *M 1904 H 2.60 *M 1914 % 1.91 *M 1905 % 1.91 *M 1913 H 1.33 *M 1906 % 1.33 *M 1912 K 0.85 *M 1907 M 0.85 *M 1911 */8 0.48 *M 1908 y% 0.48 *M 1910 H 0.21 *M 1909 0.21 *Furnished only by special arrangement. CONCRETE REINFORCEMENT BARS DEFORMED BARS Continued SLANT RIB BAR MONOLITH BAR Rolled for Mississippi Valley Construction Co. Rolled for Monolith Steel Co. CUP BAB Section Index Size, Inches i Weight per Foot, Pounds Section Index Size, Inches Weight per Foot, Pounds Slant Rib Bar Monolith Bar *M 1297 *M 1206 *M 1295 *M 1294 *M 1293 *M 1292 *M 1291 *M 1290 5.31 3.40 - 2.60 1.91 1.33 0.85 0.48 0.21 *M 1500 *M 1508 *M 1507 *M 1517 *M 1506 *M 1505 *M 1504 Cup Bar IK 1 7.65 5.31 3.40 1.91 1.33 0.85 0.48 Section Index Size, Inches Weight per Foot, Pounds *M 1530 *M 1531 *M 1532 *M 1533 *M 1534 *M 1535 *M 1536 *M 1537 5.31 4.30 3.40 2.60 1.91 1.33 0.85 0.48 *Furoished only by special arrangement. 99 CARNEGIE STEEL COMPANY DEFORMED BARS Concluded MONOTYPE BAR f) = Rolled for Philadelphia Steel and Wire Co WING BAR J If _ A Rolled for Thomas Reinforcement Co. Section Size, Index Inches Weight per Foot, Pounds Section Index Size, Weight per Foot, Inches Pounds Monotype Bar Equivalent to Square Monotype Bar Equivalent to Round *M 2151 \y 5.39 *M 2161 1M 4.24 *M 2152 iy 8 4.37 *M 2162 iy 8 3.43 *M 2153 1 3.45 *M 2163 1 2.71 *M 2154 y 8 2.64 *M 2164 y 8 2.08 *M 2155 24 1.94 *M 2165 % 1.53 *M 2156 % 1.35 *M 2166 5 A 1-06 *M 2157 y 2 0.86 *M 2167 y 2 0.68 *M 2158 y 8 0.49 *M 2168 Ys 0.38 Wing Bar Section Index Size, Inches Weight per Foot, Pounds *M 2135 2M 5.08 *M 2134 2 4.02 *M 2133 1M 3.06 *M 2132 1H 2.08 *M 2131 iy* 1.08 *Furnished only by special arrangement. 100 CONCRETE REINFORCEMENT BARG HANGER BARS -Jft- Section Index Size, Inches Weight per Foot, Pounds *M 980 4^xlMxM 4M x 1^ x Ji 5.31 4.18 *M 935 3^ x 1 x M 3^x|ixj| 4.41 3.85 *M 981 2^ x M x X 3 S 2.61 *M 982 2^ x % x y s 1.65 *M 983 2 x M x A 2.29 *M 984 2x^xH 1.43 * Furnished only by special arrangement. 101 CARNEGIE STEEL COMPANY HANGER BARS Concluded 986 Kf WASHBOARD SECTIONS TYPE A *M 1521 TYPE B *M1522 Section Index Size, Inches Weight per Foot, Pounds *M 986 IxMxM 1.30 *M 987 1 x H x ! 3 a - 1.09 *M 1521 VA x 3 9 5 x 3 3 5 3.20 *M 1522 GM x A x ^ 2 3.95 * Furnished only by special arrangement. 102 CROSS TIES 'SJ CROSS TIE SECTIONS M 27 i%" M 20 -5fc- Section Index Depth, Inches Width, Inches Web Thickness, Inches Weight per Foot, Pounds Top Bottom M 21 M 25 M 24 M27 M 20 5M 4^ 3 2^ 2 4H 4 3 5H 4J4 8 6 5 7 6 YA. y* ii ji I 3 8 20.0 14.5 9.5 9.0 6.0 Full information as to uses of steel cross ties is given in a separate pamphlet entitled "Steel Cross Ties and Duquesne Rail Joints. " 103 CARNEGIE STEEL COMPANY A. S. C. E. RAILS AND LIGHT RAILS re - C ^- T g- Jl-- : [ > a 12' Had. i < * ^ r^^^ ^^> \ !<.- b - - J Section Index Weight per Yard, Pounds a b C d e f g h 1 i j k 1 In. In. In. In. In. In. In. In. In. In. In. In. *110A 110 6H &y* 2^ Hi 8li 1 H 2|f T 5 , J4 A A 100 A 100 5% 5% 2% HI Sglj Si 1 9 6 2yVjj I C S M To A *95 A 95 5 is 5 1 9 B 214 "ill- 2 it IS rs 2i B -' 5 g T 5 6 M A A 90 A 90 5^ 5% 2^8 US 2el S! T 9 6 2 I 4 2 5 S T 5 5 /4 A A 85 A 85 5l 3 g 5 r 3 g 2i 9 s Hi 2 M SI i 9 a 2 ii T 5 S M A A 80 A ,80 5 5 2 1 A 1^ 25^ 7 /s 1! 2 T 3 S I S 3 'M T'O A 75 A 75 4if 41S 241 HI 2g| 11 43 2i/s T E 6 y A A 70 A 70 4^8 4^8 2 is 144 2-3-f IS If 2 65 A y 1 A 65 A 65 4re 4i 7 s 241 1?J 9 5 2% ss H 131 T\ M T l e A 60 A 60 4M 4M 2^ ITS 2 24 J tt 11 1141 T 5 6 M A A 55 A 55 4A 4 IB 2M 141 2 si I! 41 lyai i 5 e M iV A 50 A 50 3% 3 K 2H 1^8 2A 14 /H 1| I 5 6 K A A 45 A 45 3}4 3} 5 2 IA HI S4 II in IS M A A 40 A 40 3H 3 1 A 1J^ Hi % 4 ll 7 2S I 5 6 M iV A 35 A 35 3 is 3 15 1M 11 III II Si 141 re M A A 30 A 30 3M 3^8 114 K Hi 45 li Hi A M A A 25 A 25 2M 2/4 1^2 Si Hi SI 11 ITS % A 20 A 20 2^ 2% 14i Si 14 J A 141 M T 3 6 A 16 A 16 2H 2% 111 11 Hi H 32 Ills TS T 3 6 A 14 A 14 2 A 2 is liV 44 M 54 3 5 Z T 3 5 A 12 A 12 2 2 1 I'o IgSj 4i A 11 A T 3 6 A 10 A 10 1% 1% IS II if 4? I 3 6 If 3 5 2 T 3 6 A 8A 8 li S 1A H 41 IS A A 14 365 I 3 e A * Not rolled by Carnegie Steel Company. 104 RAILS AMERICAN r RAILWAY ASSOCIATION RAILS 4r 7 J \ 3 i ^ - u'ltad. i .i I ^ f * b SERIES A Section Index Weight Per Yard, - Pounds ] a | b c d e f g h i j' k 1 n. In. In. In. In. In. In. In. In. In. In. In. 100 R A 90 R A 80RA *70RA *60RA 100 90 5 80 5 70 4 60 4 5^6 y SH y s y* % *x 1 A 4 2! 9 * 2M Ii 9 HI 1 1A 1 II U A ii M 2H 2| 2J1 N X H A A A A A A A A A A * Not rolled by Carnegie Steel Compan i< ^^ y- C - *! | >-. d ' 13 ! i 12'kad. f i i i ""} h "^^-411 f r^fe f if- b SERIES B Section Index Weight Per Yard, - Pounds ,|b c d e In. i g h i j k 1 [n. [ In. In. In. In. In. In. In. In. In. In. 100 RB 90 RB SORB *70RB *60RB 100 90 80 70 60 m 5& HI 4|| Ml 4^ m 4^ Ii 3 3 3H 2ft 2A Ill lit 183 2|f 2y 8 2it 2A 1 if A n 31 Isf K N A A A A A A A A A A A A A A A * Not rolled by Carnegie Steel Company. 105 CARNEGIE STEEL COMPANY SPLICE BARS A. S. C. E. RAILS AND LIGHT RAILS S 110 A to S 55 A S 50 A to S 30 A S 25 A S 20 A S 16 A to S 8 A 1 . | 13 (*"*""*] |_~*.., ^ p- f *: L--j?r^7rN ,." ^-\ " '3 i^-/- mJ-b--- : j~ U--l/b r -> 1 rt^- ! i* | b -> ^ t h b-~ j Y > ^--i h-ct^^^l ..jLi-.-X --. j. t..L-(- M , eci-'-ON ^---O 1 i | -^ ! r Section Weight' j per Foot, j . a b C d e f g h i j k 1 Index In. In. In. In. In. In. In. In. In. In. In. In. Pounds *S 110 A 18.12 3J4 Hi % i-s ii IT T B A 1/4 % li 3 A A S 100 A 15.80 3 B 5 4 H i H i! 15 H ly| 5 Si 3% 3^4 1 A *S 95 A 14.70 2. 3 - U! ii 11 if Hi >2 ill H TS 3 A Yi S 90 A 13.50 2|j \y% ii ii M li b Vi til Si H 2}| Yz S 85 A 12.40 2M HI Si -if if i-. v y& K IS A 2|J Yi S 80 A 11.50 2^ ip Ii % i! J, 1 4 T 7 B K % T 3 B 2M T 7 B S 75 A 10.70 211 i-3i I! si T 7 * i, 1 i TB tsi M A'b 2i T5 S 70 A 10.00 2y 18 J II H 1 1: T ? B Si ii M 2H T 7 S S 65 A 9.20 2^ 14 3 1! 1^ ii U ^ T 7 B M ii A 2-si T 7 5 S 60 A 8.40 2gl IB! il ^g if 1 T 3 B T5 f% 9 3 n TS 2 IB H S 55 A 7.50 24i loi li M H D S T 7 B T 8 5S ^ A 2 3 T o % S 50 A 6.62 2^ lx^ if ii 3 /8 1: 3 13 5^ A 2 A % S 45 A 5.80 Hi lB 3 4 if Mi ! i ', ii ii ii A Hi H S 40 A 5.00 Hf i M if ii 1 ii T 6 2B T 9 B T5 1% TS S 35 A 4.58 Hi -II '-i! T 7 B T 5 B 1 - ii g| |4 3 6 ? 4 igf fs S 30 A 3.97 HI Sl IB ii A If % ii- H 64" Its TS S 25 A 2.20 Hi M i 3 Si 3 9 5 { i 34 T3S S 20 A 1.87 lif ii /" TB S 16 A 1.70 m ii B.f TB S 14 A 1.36 ITJ^J il 35 A S 12 A 1.36 1 3 3 2 ii 3i A S 10 A 0.985 ts is 3 7 ' M S 8 A 0.747 3 7 , * I Splice Bars S 110 A to S 50 A, inclusive, are for A. S. C. I are for Light Rails. :. Rails; S 45 A to S 8 A, inclusive, *Xot rolled by Carnegie Steel Company. 106 SPLICE BARS SPLICE AMERICAN RAII fja | N , ? ~tef - - M BARS Concluded ^WAY ASSOCIATION RAILS -l/Rad. SERIES A j^J tf w ; i U i_ ^...i j Section Index Weight per Foot, a c d e f g h . i j k I In. In. In. In. In. In. In. In. In. In. Pounds ln - ln - S 100 R A S 90 R A S 80 R A *S 70 R A *S 60 R A 18.97 3% lj? 16.78 J3& 1* 13.52 23f H5 11.73 2'3 1|| 10.76 23! Ii 34 K M i 1A M II 4f 1 3 9 3 |144 ft K 14 t% iMlm M M K il 1ft 1* ! 1! ^ f IK IT^ t^V i H [M M IS TV 3 il if a 2^ ji *Not rolled by S 100 ] |-j-j t A"i'" i ^ ~i |~~^?^ i. j. Carnegie Stel Company. ^B v 12 Rad. S 9C 1 T! SERIES B Ii "1 RB to S 60 RB i f *. -eA-d-* Q, _J2 'Rad. ; i L. i, i k ^-1 ' Section Index Weight per Foot, a b Unfinished c d e f g h In. In. In. In. In. In. i j k 1 In. In. In. In. In. In. Pounds S 100 RB S 90 RB S SORB *S 70 RB *S 60 RB 17.14 2J 1J 14.31 2^ 1 12.72 2J| 1% 11.87 2JI 1ft 9.45 2T\j IY 2 34 H 41 HI l& T. M H if 144 UV s% li 5i T 5 A ift if TS il ii T* IT'S gj il Ii A S 9 3^ % ! H 2Hf 55 Si TF 2,% M 3 7 5 2& }} *Not rolled by Carnegie Steel Company. 107 CARNEGIE STEEL COMPANY ingl O OOOO OOOO oo oooqoqoq oqoqoooq ' ' i>- I>-COCO t- >** S^s4< ,_, ,_, t5 T-l 1-H O O ^HfCS OOOiI> S H9 O2 OS OS 02 02 Oi COCOCOCO <*< *-** Tf-^-tf<-^l J0 8 it>a|^^ SSco'co' Sc^S?cV cccc^ cc^cc s^n^[ puB s^og T^HOiOOi OOOCOOO i^l Oi oc^O5(>iio r-i^-1 <^.co-^io 050000 50-HCa^ co so co >d oo us -^H^tlcOCO (MC-lCaiM OOO OOO *ooi>- US 10 -rt CO O CO (M 00 (M t^O Tt^OiOCO OiUSt^- (M - Cfl O O US US O O OO T-( 5OI>;C|119.442J136.172 128.7871146.852 1138.132157.532 80.726 89.27< 86.734 95.95^ 92.742 102.62< 98. 749; 109. 30- 104.757 115.97" 116.772129.331 122.780136.00 128.7871142. 68 140.802156.03 j!52.818 169.38 Il64.833ll82.73 176.848196.08 ) 106.134 1114.144 3122.154 11130.164 3138.174 3154.194 3162.204 3170.215 3186.235 3202.255 3218.275 11234.296 122.654138.842 132.000!l49.522 141.345160.202 150.690;i70.882 I160.035I181.562 178.725J202.923 Furnished w th plain ends and in random lengths, unless otherwise ordered. All weights and dimensions are nominal. 111 CARNEGIE STEEL COMPANY SCREW THREADS AMERICAN BRIDGE COMPANY STANDARD BOLTS, RODS, EYE BARS, TURNBUCKLES, SLEEVE NUTS, AND CLEVISES , p. p >, * ft If* .OlOO /\ -SY "1 r _ T _. --^\ \ ?o f V / o\|/ \ > rQ Zf* v \ / oU \*/ tl ^ c ^ioo T7 Vr v ! w Diameter Area Number Diameter Area Number of nf Total Net, Total Net Threads Total, Net, Total Net Threads d c, Dia., d Dia., c, per d, c, Dia. d. Dia ., c, per In. In. Sq. In. Sq. In. Inch In. In. Sq. In. Sq. In. Inch M .185 .049 .027 20 2y 2 2.175 4.909 3.716 4 N .294 .110 .068 16 2K 2 .300 5.412 4.156 4 H .400 .196 .126 13 2M 2 425 5.940 4.619 4 % .507 .307 .202 11 2K 2 .550 6.492 5.108 4 .620 .731 .442 .601 .302 .419 10 9 3 3M 2 2 .629 .879 7.069 8.296 5.428 6.509 ! M i .838 .785 .551 8 3 .100 9.621 7.549 \\L IK .939 .994 .693 7 3M 3 .317 11.045 8.641 3 1J4 .064 1.2S >7 .890 7 IK .158 1.485 1.054 6 4 3 .567 12.566 9.993 3 1H .283 1.767 1.294 6 4M 3 .798 14.186 11.330 5 !K IK .389 2.074 1.515 4J/ 4.028 15.904 12.741 2% 1M .490 2.405 1.744 5 4M 4.255 17.721 14.221 2K IK .615 2.761 2.049 5 5 4.480 19.635 15.766 2 ^ 2 .711 3.142 2.300 4^2 5J 4.730 21.648 17.574 2 ^ 2K .836 3.547 2.649 4y 2 4.953 23.758 19.268 2K 2M .961 3.976 3.021 4y 2 5M 5.203 25.967 21.262 2 K 2K 2.086 4.430 3.419 4y 2 6 5 .423 28.274 23.095 2M BOLT HEADS AND NUTS AMERICAN BRIDGE COMPANY STANDARD * -f ->, ff^ ^X >V-A / ~^V fol I f i m 3 ^ >|t ir- H i ^?^ I TL ij \^ " V "11 * !\ j L J U-J < 8?-* Rough Nut Finished Nut Rough Head Finished Head f g f g f h f h 1.5d+K" d 1.5d+}le" d-Vio" i.5d+K" 0.5f i.5d+y 16 "o.5f-y 1(J " For Screw Threads, Bolt Heads and Nuts, the American Bridge Company has adopted the Franklin Institute Standard, commonly known as United States Standard. 112 BOLTS BOLT HEADS AND NUTS, DIMENSIONS IN INCHES AMERICAN BRIDGE COMPANY STANDARD 1 11 HEAD Diameter Hex. or Square Long | Short Height Square Long Short NUT Hexagonal iex. or Square Diameter Long Short Height Square Diameter Long Short f n 41-8 '.i p BOLT THREADS, LENGTH IN INCHES AMERICAN BRIDGE COMPANY STANDARD Length, Inches Diameter, Inches 34 H l -2 5 A , K fc 1 134 IK 1 to 134 iy 8 to 2 234 to 234 2^ to 3 334 to 4 434 to 8 834 to 12 1234 to 20 X K y* H I 1 H i i i l l 134 134 134 13/2 134 134 IK 134 2 134 1H 134 IK 2 2 2 2K i 2K 2K 234 3 3 234 2K 3 3 Bolts not listed are threaded about 3 times the diameter ; in no case are standard bolts threaded closer to the head than K inch. 113 CARNEGIE STEEL COMPANY BOLTS WITH SQUARE HEADS AND NUTS AMERICAN BRIDGE COMPANY STANDARD WEIGHT IN POUNDS PER 100 BOLTS Length Diameter of Bolt, Inches Under Head, % % Inches 1/1 5/1C % 7/16 1/2 5 i 1 1 4 7 11 15 22 37 56 1% 4 7 11 16 23 39 59 1J4 5 8 12 17 24 41 62 1M 5 8 13 18 26 43 64 2 5 9 14 19 27 45 67 101 144 6 9 15 20 28 47 71 104 150 2 1 A 6 10 15 21 30 49 74 109 155 2% 6 10 16 22 31 51 77 113 161 3 7 11 17 24 33 54 80 117 167 3^2 7 12 18 25 35 58 86 126 178 4 8 13 20 28 38 62 92 134 189 4^ 9 14 21 30 41 e 6 9 $ 142 198 5 10 15 23 32 43 71 104 151 209 51^ 10 16 25 34 46 75 111 159 220 6 11 17 26 36 49 79 117 168 232 6^ 28 38 52 84 123 176 243 7 29 40 55 g .8 129 185 254 7H 31 42 57 92 136 193 265 8 32 45 60 97 142 202 276 9 34 49 65 105 154 218 298 10 53 71 114 167 235 320 12 61 82 131 192 269 364 14 93 148 217 303 409 Per Inch Additional 1.4 2.2 3.1 4.3 5.6 8.7 12.5 17.0 22.3 SQUARE NUTS AND BOLT HEADS AMERICAN BRIDGE COMPANY STANDARD WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT Diameter of Bolt, Inches 1% 1% 1% 2 2% 3 Square Head and Nut... 2.05 3.51 5.48 8.08 15.5 26.2 Weight of Shank per Inch .3477 .5007 .6815 .8900 1.391 2.003 114 BOLTS BOLTS WITH HEXAGON HEADS AND NUTS AMERICAN BRIDGE COMPANY STANDARD WEIGHT IN POUNDS PER 100 BOLTS Length Diameter of Bolt, Inches Length Diameter of Bolt Inches Under Under Head, Head, Inches ij r> s t % 1 Inches Mi % s /i T ^ 1 1 19 33 52 8 58 92 137 194 264 1M 20 34 54 8J4 60 96 143 202 274 134 22 36 57 9 63 100 149 210 285 1M 23 38 60 9J4 66 105 156 219 296 2 24 40 63 93 132 10 68 109 162 227 307 234 26 43 66 97 137 1034 71 114 168 236 318 234 27 45 69 101 143 11 74 118 174 244 329 2M 29 47 72 105 148 1134 77 122 181 253 341 3 30 49 75 109 154 12 80 127 187 261 352 3M 31 51 78 114 160 12H 82 131 193 270 363 334 33 54 82 118 165 13 85 135 199 278 374 3M 34 5o 85 122 171 13J4 88 139 206 287 385 4 35 53 88 126 176 14 91 144 212 295 396 434 37 60 90 130 180 1434 93 148 218 304 407 434 38 62 94 134 186 15 96 152 225 312 418 4M 39 64 97 138 191 1534 99 157 231 321 430 5 41 66 100 143 197 16 102 161 237 329 441 534 42 68 103 147 202 1634 105 165 243 338 452 5)4 44 71 106 151 208 17 107 170 250 346 463 5M 45 73 109 156 213 1734 110 174 256 355 474 6 46 75 112 160 219 18 113 177 262 364 485 6}4 48 77 115 164 225 1834 116 183 268 372 496 634 49 79 119 168 230 19 119 187 275 381 507 6M 51 81 122 173 236 1934 121 191 281 389 519 7 52 84 125 177 241 20 124 196 287 398 530 7M 53 86 128 181 247 734 55 88 131 185 252 7% 56 90 134 190 258 Per Inch Additional 5.6 8.7 12.5 17.0 22.3 Per Inch Additional 5.6 8.7 12.5 17.0 22.3 HEXAGON NUTS AND BOLT HEADS AMERICAN BRIDGE COMPANY STANDARD WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT Diameter of Bolt, Inches 1V4 iy 2 1% 2 2% 3 Hexagon Head and Nut . . 1.73 2.95 4.61 6.79 13.0 22.0 Weight of Shank per Inch .3477 .5007 .6815 .8900 1.391 2.003 115 CARNEGIE STEEL COMPANY UPSET SCREW ENDS FOR SQUARE BARS AMERICAN BRIDGE COMPANY STANDARD ID i i Pitch and Shape of Thread A. B. Co. Standard BAR UPSET Side of Square d, Inches Area, Sq. Inches Weight Foot, Lbs. Diameter b, Inches Length a, Inches Additional Length for Upset +10%, Inches Diameter at Root of Thread c, Inches Area At Root of Thread, Sq. Inches Excess Over Area of Bar, * *A 0.563 1.91 IK 4 4 0.939 0.693 23.2 * % 0.766 2.60 Ik 4 3^ 1.064 0-890 16.2 1 1.000 3.40 iy 2 4 4 1.283 1.294 29.4 iy & 1.266 4.30 iy 8 4 1.389 1.515 19.7 lk 1.563 5.31 1 7 A ^A 4M 1.615 2.049 31.1 1M 1.891 6.43 2 y* 4 1.711 2.300 21.7 1H 2.250 7.65 2k 5 5 1.961 3.021 34.3 1% 2.641 8.98 2% 5 ^A 2.086 3.419 29.5 1M 3.063 10.41 2 1 A 5^ 4K 2.175 3.716 21.3 IJi 3.516 11.95 2H 5 2.425 4.619 31.4 2 4.000 13.60 2 7 A 6 5 2.550 5.108 27.7 2 1 A 4.516 15.35 3 6 41^ 2.629 5.428 20.2 2k 5.063 17.21. 3k Q 1 A 5^ 2.879 6.509 28.6 2*A 5.641 19.18 3^ 7 6^ 3.100 7.549 33.8 2y> 6.250 21.25 3M 7 7 3.317 8.641 38.3 2% 6.891 23.43 3 S A 7 5^ 3.317 8.641 25.4 2M 7.563 25.71 4 7 1 A 63^ 3.567 9.993 32.1 2% 8.266 28.10 4k 8 7^ 3.798 11.330 37.1 3 9.000 30.60 4k 8 6 3.798 11.330 25.9 3y& 9.766 33.20 4^ 8 1 A 7 4.028 12.741 30.5 3k 10.563 35.91 4M 8X 7H 4.255 14.221 34.6 Upsets marked * are special. 116 UPSET SCREW ENDS UPSET SCREW ENDS FOR ROUND BARS AMERICAN BRIDGE COMPANY STANDARD \ v jlpMlMJl \ i a Pitch and Shape of Thread A. B. Co. Standard BAR UPSET Area Additiona Diameter d, Inches Area, Sq. Inches Weight per Foot, Lbs. Diameter b, Inches Length a, Inches Length for Upset + 10%, Inches at Root of Thread c, Inches At Root of Thread, Sq. Inches Excess Over Area of Bar, * M 0.442 1.50 1 4 4 0.838 0.551 24.7 * V* 0.601 2.04 IK 4 5 1.064 0.890 48.0 1 0.785 2.67 tN 4 4 1.158 i 1.054 34.2 1H 0.994 3.38 IM 4 4 1.283 1.294 30.2 134 1.227 4.17 1% 4 4 1.389 1.515 23.5 1% 1.4S5 5.05 Ifc 4 4 1.490 1.744 17.5 \ 1 A 1.767 6.01 2 4^ 4>S 1.711 2.300 30.2 1% 2.074 7.05 2H 4H 4 1.836 2.649 27.7 1% 2.405 8.18 2M 5 4 1.961 3.021 25.6 1H 2.761 9.39 2H 5 4 2.086 3.419 23.8 2 3.142 10.68 2Ji 5M 4 2.175 3.716 18.3 2i 3.547 12.06 2^J 5H 3/4 2.300 4.156 17.2 2M 3.976 13.52 2J6 6 43^ 2.550 5.108 28.4 2% 4.430 15.06 3 6 4 1 A 2.629 5.428 22.5 2 1 A 4.909 16.69 3 14 6M 5 1 A 2.879 6.509 32.6 2% .5.412 18.40 334 6)^ 43^ 2.879 6.509 20.3 2% 5.940 20.19 3Jj 7 5J-3 3.100 7.549 27.1 2% 6.492 22.07 3M 7 6 3.317 8.641 33.1 3 7.009 24.03 3% 7 5 3.317 8.641 22.2 3^8 7.670 26.08 4 7J^ 6 3.567 9.993 30.3 3M 8.296 28.21 4 7H 5 3.567 9.993 20.5 3H 8.946 30.42 4J4 8 5 1 A 3.798 11.330 26.6 3 1 A 9.021 32.71 4M 8 5 3.798 11.330 17.8 3% 10.321 35.09 4H sn 5H 4.028 12.741 23.4 3% 11.045 ' 37.55 4% 8H 6 4.255 14.221 28.8 3% 11.793 ! 40.10 4^ SHI 5>4 4.255 14.221 20.6 Upsets marked * are special. 117 CARNEGIE STEEL COMPANY EYE B^ AMERICAN BRIDGE CON ORDINARY EYE BAR .US [PANY STANDARD ADJUSTABLE EYE BAR /^ ;\ ^3 Lsiaii 1 L-C-C L, ^ -] J-X 11 ~^- \v "! , : * a ** *-b-n Minimum length of short end from center of pin to end of screw, 6'-6", preferably 7'-0". Thread on short end to be left hand. Pitch and Shape of Thread A. B. Co. Standard. BAR HEAD BAR SCREW END Width In. Thickness Dia. d, In. Maximum Pin Additional Materia a, Ft. and n. Width In. Min. thick- ness In. Dia. u, In. Excess Upset over Bar Length m, In. Additional Material.b, Ft. and In. Max. In. Min. In. Dia. In. Excess Head over Bar, For order- ing Bar For iguring Weight For order- ing Bar 1- 1- 0-11 For igur- ing Wt. 8 8 || % 1 A 2 1 H ,| 3 37.5 1- 1- 4 1- 9 0- 7 0-11 1- 4 2 * M * M 1 | 39.6 36.6 31.4 4 1 6 7 * 8 |H 40.0 1- 3 1- 7 2- 0-10 - 2 - 7 2H | 41.2 38.1 36.7 5 2 5 1- 1- 1- 3 1M N 8y 2 4M 41.7 1- 6 1-11 2- 4 1-11 2- 3 2- 8 - 1 - 5 -10 3 * 3 4 34.3 41.6 23.9 5 1- 1 -1 1- 1 4 IN ? 10 11 *12 43^ 37.5 - 6 -10 2- 2 4 5 6 7 * M 1 8 2^/2 3 4 23.9 32.0 35.7 44.6 6 2 1- 1 0-11 1- 1 1- 2 CO 00 00 g 36.2 24.1 30.2 34.2 38.3 25.8 28.0 33.2 37.3 6 6 f 1- 0-11 1- 1- 1 1- 2 6 7 2 1 1 1 14 37.5 2- 4 2- 6 3- 2 1-10 2- 1 2- 8 2 *is| 7 8 9 35.7 2- 7 2-11 3- 4 2- 2 2- 6 2-11 *1 : 1 A 7 1:8 III 1- 1- 1 1- 2 1- 2 1 8 9 2 18 19 *20 7 8 9 37.5 2- 8 3- 3- 4 2- 3 2- 6 2-11 4 4M 26.9 29.5 32.4 35.4 | 8 93^ o 1 20 22 7H 38.9 2-11 3- 7 2- 6 3- 1 2-10 3- 3 3- 7 10 2 2 24 2 *25 9 IOH 35.0 3- 5 3- 9 4- 1 8 1 434 4 3-' 25.9 27.4 29.3 31.4 35.2 8 9 2 1- Oi 8 1- 1 8^ 1- 1 83^ 1- 2 9 1- 310 12 I lt m My 2 37.5 3- 8 4- 2 4- 8 3- 3 3- 8 4- 1 2 II 31 33 *34 12 14 15 35.7 4- 3 4-10 5- 5 3- 9 4- 4 4- 8 Bars marked * should only be used when absolutely unavoidable. Deduct pin hole when figuring weight. 2 36 14 16 37.5 34.4 4-11 5- 5 4- 5 j 4-10 118 LOOP RODS LOOP RODS AMERICAN BRIDGE COMPANY STANDARD t ~~f / ^~^_^ ~~ fc" - _, Right Thread OP "~^3 -*~~"" Left Thread a J7~ 2 ^ P V Min. Length 4V J-5 T^ ~J i Length 1 ."JForTurnbuckle '.'. JFor Sleeve Nut . Standard :HES FOR ONE Lo Pitch and Shape of Thread A. B. Co ADDITIONAL LENGTH "A" IN FEET AND IN A=4.17p+5.S9r Diam. of Pin, P Diameter or Side "r" of Rod in Inches % % 1 IVs 1% 1% m 1% 1% m 2 IK 0- 9K 0-10 0-11 0-11H IK 2 0-10 0-11 1- 1- 1 0-10H 0-11K i- OK 1- IK 0-11H 1- OK 1- IK 1- 2K 1- 1- 1 1- 2 1- 3 1- 1 1- 2 1- 3 1- 4 1- 2K 1- 3H 1- 4H 1- 4K 1- 5K 1- 5 1- 6 1- 6 1- 7 1- 7H 1- 8K 2K 1- 2 1- 3 1- 4 1- 3 1- 4 1- 6 1- 3K 1- 4H 1- 5K 1 53^ 1- 5 1- 6 1- 7 l- 5K 1- 7 1- 8 i- GK;I- 7 1- 7H 1- 8 1- 8H 1- 9H 1- 8 1- 9 1-10 1- 8K 1- 9H 1-11 1- 9K I-IOH 1-ilK 3 1- 5 1- 6 1- 6H 1_ 7J^ 1- 8 1- 9 1- 9H I-IOH 1-11 2- 2- OK 3H 1- 6 1- 7K 1- 8K 1- 7 1- 8 1- 9 1- 7H 1- 8H 1-10 1- 8K1- 9 1- 9H 1-10 1-10K1-11 1-10 1-11 2- I-IOH l-HK 2- OH 2- IK 2- 2- 1 2- 2 2- 1 2- 2 2- 3 2- IK 2- 2H 2- 3K 4 l- 9K 1-10 1-11 1-11K 2- OH 2- 1 2- 2 J2- 2K 2- 3 2- 4 2- 4K *4M *4i 5 5K 1-11 2-0 2-1 2- 2K 2- 2- 1 . 2- 3 2- 4 2- 5 2- 6 2- OH 2- IK 2- 2K 2- 3K 2- 5 2- 6 2- 7 2- IK 2- 2K 2- 3K 2- 4K 2- 5K 2- 6K 2- 7H 2- 2 2- 3 2- 4 2- 5 2- 6 2- 7K 2- 8K 2-3 ft 2- 6 2- 7 2- 8 2- 9 2- 3K 2- 4K 2- 5H 2- 6K 2- 7K 2- 9 2-10 2- 4H2- 5 2- 5K2- 6 2- 6H ! 2- 7 2- 7K2- 8 2- 8K2- 9 2- 9KJ2-10 2-10H2-11K 2- 6 2- 7 2- 8 2- 9 2-10 2-11 3- 6 2- 7 2- 8 2- 8K 2- 9K 2-10 2-11 2-1 IK 3- OK 3- 1 6H 7 2- 9 2-10 2-11 3- 2- 9H 2-10K 3- 3- 1 2-10K 2-1 IK 3- OH 3- IK 2-11 3- 3-! 3- 2H 3- 3- 1 3- 2 3- 3 3- OH3- 1J. 3- IK 3- 2H3- 3 3- 2H'3- 3H3- 4 3- 3H3- 4K3- 5 Pins marked * are special. Maximum shipping length of ' T'=35 feet. 119 CARNEGIE STEEL COMPANY CLEVISES AMERICAN BRIDGE COMPANY STANDARD All dimensions in inches Grip=thickness of plate + Number of Clevia, Head Diameter of Pin, P w CD Extreme M f e Distance Diameter of Upset, u Nut i! Number of Clevis a d H t Max. Min. Max. Min. n 1) 3 4 5 6 7 3 4 5 6 7 K K K K 2 3 1 IK 2 2K IK 2 2K 3 4K 5K 2M 5 6 7 8 9 IK 2K 1 IK IK 2 2K 3 4K 5 4 8 16 26 3 4 5 6 7 CLEVIS NUMBERS FOR VARIOUS RODS AND PINS Rods Pins Round Square Upset 1 1% 1% 1% 2 2H 2% 2% 3 3H sy 3 K H M 1 IK 3 3 3 3 3 3 4 4 i K 1M IK 4 4 4 4 4 4 4 4 IK IK 1 IK IK IK 4 4 4 4 4 4 4 4 5 5 5 5 IK IK IK 1M IK 2 2K 2^ 2K IK IK IK IK 1M IK 2 1M IK 2 2K 2K 2K 2K 2M 2K 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 5 5 5 5 6 6 6 5 5 5 -f- 6 6 7 7 6 6 6 6 "6" \ 6 6 6 6 tl 7 7 i7 7 7 7 * i 7 Clevises to be used with the Rods and Pins given above. Clevises above and to right of zigzag line may bs used with forks straight, those below and to left of this line should have forks closed so as not to overstrain pin. 120 TURNBUCKLES AND SLEEVE NUTS TURNBUCKLES AND SLEEVE NUTS AMERICAN BRIDGE COMPANY STANDARD All Dimensions in Inches TURNBUCKLES ~d a SLEEVE NUTS a=6"; a=9" for turnbuckles marked *. Pitch and shape of thread, A. B. Co. Standard. ,-b-v Pitch and shape of thread, A. B. Co. Standaid 250 Diam. of Screw H IK IK 2 2K 2M 2K 2K Standard Dimensions IK 2K 2K 2M 3 3 3K 7 7K 7K 8 8 8H 8H 9 9 9>, 9K 10 10 10K 1 3KU 3M UK 4 12 4K12K 4M 13K 5 14 l ? s IH 2 2 2H 3 J , 3M 31, 3', BJ4 6K 6K Us l 2 A 2A 2 3K 7K IK IK IK IK IK IK IK IK 2K 2K 2K 2M 1^ 5 > 2 2^ 3H 3U 3H 3K 4K 4H H ii H !.; l i -.- 3 4 4 5 6 8 9 10 11 14 15 18 19 23 27 28 35 40 47 55 65 75 121 CARNEGIE STEEL COMPANY RECESSED PIN NUTS AMERICAN BRIDGE COMPANY STANDARD All Dimensions in Inches _Distaiice between Shoulders_ Distance Jaehveen_Nuts = Grip To obtain grip, add T y for each bar. l-t-J Nuts threaded 6 threads per inch. To obtain distance between shoulders, add amount given in table to grip. Diameter of Pin, d Pin Thread Add to Grip Nut Diameter 83 " Pattern No. 2, 5, *5j *5M, 6 *6%; 7' 8, 4> *8J 9 10 sy 2 f 2M 13 1.1 1.7 2.5 3.7 4.0 6.2 7.8 9.9 11.8 14.3 18.6 23.8 31.1 PN21 PN 22 PN23 PN24 PN25 PN26 PN27 PN28 PN 29 PN30 PN31 PN32 PN33 Pins marked * are special. COTTER PINS AMERICAN BRIDGE COMPANY STANDARD ^ g. ^ All Dimensions in Inches HORIZONTAL OR VERTICAL PIN FINISHED Pin Head Cotter HORIZONTAL PIN ROUGH OR FINISHED Pin Pi Cotter * ill 3M 2y 8 2% 2% 4 4M 2M 3 122 RIVETS STRUCTURAL RIVETS AMERICAN BRIDGE COMPANY STANDARD Dimensions in Inches 4, / VJ -1 -> * -1% J ' ,-% -H| ! 'S5t~ "%- GENERAL FORMULAS FOR PROPORTIONS OF RIVETS, IN INCHES * a Pull driven head, diameter, a=1.5 d + M" depth, b=0.425a " radius, c=b " " " radius, e=1.5b ^ Countersunk head, depth, f=0.5d diameter, g=l. 577 d 123 CARNEGIE STEEL COMPANY STRUCTURAL RIVETS AMEKICAN BRIDGE COMPANY STANDARD LENGTHS OF FIELD RIVETS FOB VARIOUS GRIPS Dimensions in Inches ^Grip, a^ j* --Grip, a* ; <-Grip, b > ; * Grip, b -i Length---* 1 >* Length >" - Length J <<- Length Diameter 124 RIVETS STRUCTURAL RIVETS AMERICAN BRIDGE COMPANY STANDARD WEIGHT IN POUNDS PER 100 RIVETS WITH BUTTON HEADS Length Diameter of Rivet, Inches !Length Diameter of Rivet, Inches Under Under Head, l Head, i Inches % >, % * % 1 m IV* Inches i % % 1 1% IVi 5 18 33 53 78 109 146 190 252 K 18 34 r,4 80 111 149 193 256 1J4 6 12 X 19 34 55 82 113 152 197 260 H 7 13 % 19 35 56 83 115 155 200 265 \' 7 13 23 35 50 68 91 130 Yt 20 36 57 85 118 157 204 269 H 7 14 24 36 52 71 95 134 H 20 36 58 86 120 160 207 273 ^ 4 8 15 25 37 54 74 98 139 X 20 37 60 88 122 163 211 278 15 26 39 56 77 102 143 H 21 38 61 89 124 166 214 282 2 9 16 27 41 58 80 105 148 6 21 38 62 91 126 169 218 287 H 9 17 28J43 60 109 152 K 22 39 63 93 128 171 222 291 18 29 44 62 85 112 156 M 22 40 64 94 130 174 225 295 H 10 18 30 40 64 88 116 161 % 22 40 65 96 132 177 229 300 10 19 31 i7 67 91 119 165 }i 23 41 66 97 135 180 232 304 Y* 11 20 32 4'.) 69 93 123 169 . . 23 42 07 99 137 182)236 308 5i 11 20 34 50 71 96 126 174 X 24 43 68 100 i 139' 185 239 313 Ji 11 21 35 52 73 99 130 178 H 24 43 69 102 141 188 243 317 3 12 22 36 54 75 102 133 182 7 24 44 70 104 143 191 246 321 IX 12 22 37 .">."> 77 105 137 187 y* 25 45 7L 105 145 194 250 326 K 13 23 38 57 79 107 141 191 y |25 45 73 107 147 196 253 330 % 13 24 39 58 81 110 144 195" y s 26 46 74 108 149 199 257 334 M 13 24 40 60| 84 113 148 200 1-2 26 47 75 110 152 202 260 339 14 25 41 01 8G 116 151 204 1! y s 26 47 70 111 154 205 204 343 Ji 14 26 42 63 88 IIS'155 208 X 27 48 77 113 156 207 267 347 K 15 27 43 64 90 121 158 213 1 % 27 49 78 114 158 210 271 352 4 15 27 44 00 92 124 162 217 8 27 50 79 116 160 213 274 356 M 15 28 45 is 94 127 165 221 H 28 50 80 118 162 216 278 360 \i 16 29 47 69 9fl 130 1 169 226 M 28 51 81 119 164 219 281 365 % 16 29 48 71 98 132! 172 230 % 29152 82 121 166 221 285 369 *2 16 30 49 72 101 135 176 234 H 29 52 83 122 169 224 288 373 5 A 17 31 50 74 103 138 179 239 5 A 29 53 84 124 171 227 292 378 K 17 31 51 75, ! 105 141 183 243 X 30 54 86 125 173 230 295 382 J6 18 32 52 77 107 143 186247 Y* 30 54 S7 127 175 232 299 386 Button Heads Diameter of Rivets, Inches %!%:%!%' % i i m IV* 100 Heads as made on rivets, Pounds. . . 2.4 5.0 9.7 16.0 24.0 35.0 49.0 78.0 100 Heads as driven in work, Pounds. . . 1.9 4.0 7.5 12.5 18.5 27.0 37.5 51.0 125 CARNEGIE STEEL COMPANY AMERICAN BRIDGE COMPANY SPECIFICATIONS FOR STEEL STRUCTURES DESIGN, DETAILS OF CONSTRUCTION AND WORKMANSHIP ADOPTED 1912 DESIGN 1. Loads. The steel frame of all structures shall be designed so as to safely support the dead and live loads. The dead load shall consist of the weight of all permanent construction and fixtures, such as walls, floors, roofs, interior partitions, and fixed or permanent appliances. The live load shall consist of movable loads on floors, loads due to machinery or other appliances, and the exterior loads due to snow on the roof and to wind. 2. For structures carrying traveling machinery, such as cranes, conveyors, etc., 25% shall be added to the stresses resulting from such live load, to provide for the effect of impact and vibrations. 3. The wind pressure shall be assumed acting horizontally in any direction as follows: First: For finished structures A pressure of 20 pounds per square foot on the sides and ends of buildings and on the vertical projection of roof surfaces, or Second: In process of construction A pressure of 30 pounds per square foot on vertical surfaces and the vertical projection of inclined surfaces of all exposed- metal or other frame work. 4. Unit Stresses. All parts of structures shall be proportioned so that the sum of the dead and live loads, together with the impact, if any, shall not cause the stresses to exceed the following amounts in pounds per square inch: 126 CONSTRUCTION SPECIFICATIONS Tension, net section, rolled steel 16000 Direct compression, rolled steel and steel castings . . . 16000 Bending, on extreme fibers of rolled shapes, built sections, girders, and steel castings 16000 Bending on extreme fibers of pins 24000 Shear on shop rivets and pins 12000 Shear on bolts and field rivets 10000 Shear average on webs of plate girders and rolled beams, gross section 10000 Bearing pressure on shop rivets and pins 24000 Bearing on bolts and field rivets 20000 The pressure per linear inch on expansion rollers shall not exceed 600 times the diameter of rollers in inches. Axial compression of gross sections of columns, for ratio of | up to 120 19000100 -p with a maximum of 13000 where 1 =effective length of members in inches, r=corresponding radius of gyration of section in inches. For ratios of up to 120, and for greater ratios up to 200, use the amounts given in the following table. For intermediate ratios, use proportional amounts. Ratio Amount Ratio Amount 60 70 80 90 100 110 120 13000 12000 11000 10000 9000 8000 7000 130 140 150 160 170 180 190 6500 6000 5500 5000 4500 4000 3500 5. For bracing and combined stresses due to wind and other loading, .the permissible working stresses may be increased 25^ provided the section thus found is not less than that required by the dead and live loads alone. PROPORTION OP PARTS 6. General. The effective or unsupported length of main compression members shall not exceed 120 times, and for secondary members 200 times, the least radius of gyration. 127 CARNEGIE STEEL COMPANY 7. In proportioning columns, provision must be made for eccentric loading. 8. In proportioning tension members, net section must be used. Rivet holes deducted must be taken % inch larger than the nominal size of rivets. 9. Members subject to the action of both axial and bending stresses shall be proportioned so that the greatest fiber stress will not exceed the allowed limits in that member. 10. Members subject to alternate stresses of tension and compression shall be proportioned for the stress giving the largest section, but their connections shall be proportioned for the sum of the stresses. 11. Girders. Rolled I-beams and channels, and built-up members used as beams and girders shall be proportioned by their moments of inertia. 12. Plate girder webs shall have a thickness not less than ^leo of the unsupported distance between flange angles. The webs shall have stiffeners, generally in pairs, over bearings, at points of concentrated loading, and at other points where the thickness of the web is less than y@o of the unsupported distance between flange angles, generally not farther apart than the depth of the web plate, with a maximum limit of six (6) feet. 13. The lateral unsupported length of beams and girders shall not exceed 40 times the width of the compression flange. When the unsupported length (1) exceeds 10 times the width (b) of the compression flange, the stress per square inch in the compression flange shall not exceed 19000 300p DETAILS OF STEEL CONSTRUCTION 14. General. Adjustable members in any part of structures shall preferably be avoided. 15. Sections shall preferably be made symmetrical. 16. No connection, except lattice bars, shall have less than two rivets. 17. Trusses shall preferably be riveted structures. Heavy trusses of long span, where the riveted field connections would become unwieldy, or for other good reasons, may be designed as pin-connected structures. 18. Abutting joints in compression members faced for bearing shall be spliced sufficiently to hold the connecting members accu- rately in place. All other joints in riveted work, whether in tension or compression, shall be fully spliced. 128 CONSTRUCTION SPECIFICATIONS 19. Lateral, longitudinal and transverse bracing in all structures shall preferably be composed of rigid members, and shall be designed to be sufficient to withstand wind and other lateral forces when building is in process of erection as well as after completion. 20. Girders. When two or more rolled beams are used to form a girder, they shall be connected by bolts and separators at intervals of not more than 5 feet. All beams having a depth of 12 inches and more shall have at least two bolts to each separator. 21. The flange plates of all girders shall be limited in width, so as not to extend more than 6 inches beyond the outer line of rivets connecting them to the angles, or eight times the thickness of the thinnest plate. 22. Web stiff eners shall be in pairs, and shall have a close bearing against the flange angles. Those over the end bearing or forming the connection between girder and column shall be on fillers. Intermediate stiffeners may be on fillers or crimped over the flange angles. 23. Web plates of girders must be spliced at all points by a plate on each side of the web, capable of transmitting the full stress through splice rivets. 24. Riveting. The minimum distance between centers of rivet holes shall be three diameters of the rivet; but the distance shall preferably be not less than 3 inches for % inch rivets, 2|^ inches for % inch rivets, 2 inches f or % inch rivets, and 1% inches for Y^ inch rivets. The maximum pitch in the line of the stress for members composed of plates and shapes will be 6 inches for % inch rivets, 6 inches for % inch rivets, 4^ inches for % inch rivets and 4 inches for 3^ inch rivets. 25. For angles in built sections with two gauge lines, with rivets staggered, the maximum pitch in each line shall be twice as great as given above. Where two or more plates are in contact, rivets not more than 12 inches apart in either direction shall be used to hold the plates together. 26. The minimum distance from the center of any rivet hole to a sheared edge shall be 1% inches for J^ inch rivets, 134 inches for % inch rivets, 13/g inches for % inch rivets, and 1 inch for Y 2 inch rivets; and to a rolled edge, 1J^, 1J4 1, and J^ inches, respectively. 27. The maximum distance from any edge shall be eight times the thickness of the plate. 129 CARNEGIE STEEL COMPANY 28. The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets for a length equal to one and one-half times the maximum width of the member. 29. Latticing. The open sides of compression members shall be provided with lattice bars, having tie plates at each end and at intermediate points where the lattice is interrupted. The tie plates shall be as near the ends as 'practicable. In main members carrying calculated stresses, the end tie plates shall have a length not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones not less than half this distance. Their thickness shall not be less than one-fiftieth of the same distance. 30. The latticing of compression members shall be proportioned to resist a shearing stress equal to 2% of the direct stress. The minimum thickness of lattice bars shall be for single lattice, one- fortieth, and for double lattice, one-sixtieth of the distance between the end rivets. Their minimum width shall be as follows: For 15 inch channels, or built sections with 33^ and 4 inch angles 23/2 inches (J/g inch rivets). For 12, 10 and 9 inch channels, or built sections with 3 inch angles 2^ inches (% inch rivets). For 8 and 7 inch channels, or built sections with 23^ inch angles 2 inches (% inch rivets). For 6 and 5 inch channels, or built sections with 2 inch angles 1% inches ( l /% inch rivets). 31. The inclination of lattice bars with the axis of the member shall generally be not less than 45 degrees. When the distance between the rivet lines in the flanges is more than 15 inches, if a single rivet bar is used, the lattice shall be double. 32. The pitch of lattice connections, along the flange, divided by the least radius of gyration of the member between connections, shall be less than the corresponding ratio of the member as a whole. 33. Pins. Pin holes shall be reinforced by plates where necessary. At least one plate shall be as wide as the projecting flanges will allow; where angles are used, this plate shall be on the same side as the angles. The plates shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross section of the member. 34. Pins shall be long enough to insure a full bearing of all parts connected upon the turned-down body of the pin. Members packed on pins shall be held against lateral movement. 130 CONSTRUCTION SPECIFICATIONS WORKMANSHIP 35. General. The workmanship shall be equal to the best practice in modern structural works. Shearing shall be done accurately, and all portions of the work exposed to view shall be neatly finished. 36. Punching. The diameter of the punch shall not be more than VIG inch, nor that of the die more than y% inch, larger than the diameter of the rivet. Punching shall be done accurately, but an occasional slight inaccuracy in the matching of holes may be corrected with reamer. Drifting to enlarge unfair holes will not be allowed. 37. Riveting:. The size of rivets shall be as called for on the plans. Rivets shall be driven by pressure tools wherever possible. Pneumatic hammers shall be used in preference to hand driving. Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be centered on the shank and shall grip the assembled pieces firmly. 38. Assembling:. Riveted members shall have all parts well pinned up and firmly drawn together with bolts before riveting is commenced. Contact surfaces shall be painted. Abutting joints shall be cut or dressed true and straight and fitted closely together. In compression joints depending on contact bearing, the surfaces shall be truly faced, so as to have even bearing after they are riveted up complete and when perfectly aligned. The several pieces forming one built member shall be straight and shall fit closely together, and finished members shall be free from twists, bends or open joints. 39. Eye Bars. Eye bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. Before boring, each eye bar shall be perfectly annealed and carefully straightened. Pin holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins %2 inch smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same time. 40. Pins. Pins and rollers shall be turned accurately to gauges, and shall be straight, smooth and entirely free from flaws. Pin holes shall be bored true to gauges, smooth and straight, at right angles to the axis of the member and parallel to each other, unless other- 131 CARNEGIE STEEL COMPANY wise called for. Wherever possible, the boring shall be done after the member is riveted up. The distance from center to center of pin holes shall be correct within %2 inch, and the diameter of the hole not more than %o inch larger than that of the pin for pins up to 5 inches diameter, and ^32 inch for larger pins. 41. Bed Plates. Expansion bed plates shall be planed true and smooth. The cut of the planing tool shall correspond with the direction of expansion. 42. Annealing. Steel, except in minor details, which has been partially heated, shall be properly annealed. Welds in steel will not be allowed. All steel castings shall be annealed. 43. Painting. Steelwork, before leaving the shop, shall be thoroughly cleaned and given one good coating of such paint as may be called for, well worked into all joints and open spaces. 44. In riveted work, the surfaces coming in contact shall be painted before being riveted together. 45. Machine finished bearing surfaces coming in contact with similar surfaces should be coated with white lead and tallow before shipment. 46. inspection. The manufacturer shall furnish all facilities for inspecting and testing the weight, quality of material and work- manship. He shall furnish a suitable testing machine for testing the specimens, as well as prepare the pieces for the machine free of charge. 47. He shall give the inspector for the purchaser free access to all parts of the works where the material under inspection is manufactured. 132 ELEMENTS OF SECTIONS ELEMENTS OF SECTIONS DEFINITIONS In the computations of structural designing, certain mathematical expressions are used to designate the values of structural shapes in the various conditions under which they are subjected to stress. In the pages which immediately follow, these values, usually called properties, are given in United States measurements for shapes common in structural designs, and are defined as follows: A Area of Section, expressed in square inches. r Radius of Gyration. The distance in inches from the center of moments of a section to the point or line at which its area is consid- ered concentrated. The radius of gyration of a section referred to any axis is always the square root of the moment of inertia of the section referred to that axis divided by the area. I Moment of Inertia. The summation, expressed in inches to the fourth power, of the products of the elementary areas of a section by the squares of their distances from its center of gravity or other axis assumed for purposes of computation. s Section Modulus. The moment of inertia divided by the distance (n) from the axis of moments to the extreme fiber. In an unsym- metrical section there are two section moduli for each axis of moments, the least of which determines the safe unit stress. Neutral Axis. Axis of moments through center of area. x and y. The distance or distances in an unsymmetrical section from the back or working line of the section to the center of gravity of the section. The section modulus is used to determine the stress in the extreme fiber of a shape subject to bending by dividing the bending moment by the section modulus, both expressed in like units of measurement. It is also used vice versa in the selection from a table of shapes of the proper section required to support a load by dividing the bend- ing stress by the allowable fiber stress, both in like units of weight. The radius of gyration is used to ascertain the safe load any section or shape will sustain when used in compression as a strut or column. The unbraced length of the section divided by the radius of gyration is denominated the ratio of slenderness. The elements of steel sections are based upon the theoretical dimensions given in the pages which precede. No account has been taken of fillets or rounded corners, neither have any approximations entered into any of the calculations. 133 CARNEGIE STEEL COMPANY SQUARE A = Axis of moments through center X = Si- da d_ d* 12 ds d V12 =0.288675d SQUARE Axis of moments on base !*.._ A x Ii-i d JLL 3 da -d -* =0.577350d SQUARE Axis of moments on diagonal Ii-i Si-i V 2 d* d =0.707107d =0.117851 d 3 i-i = -7ff==0.288675d HOLLOW SQUARE Axis of moments through center 1 d HOLLOW SQUARE Axis of moments on diagonal 0.117851 134 ELEMENTS OF SECTIONS RECTANGLE Axis of moments through center A = bd _ A '1 f l x i i Ii-i Si-! 2 bda 12 bds = ~6~^ d U h >^ ri-t ^12~ - 0.288675d RECTANGLE Axis of moments on base A = bd ? + - d 1* *i x Ii-i Si-i = d bd 8 -3 _ bds d U -b---^' ri-i = ^T* = 0.577350d RECTANGLE Axis of moments on diagonal /v, /\ d - A x = bd bd -^ b2+da bs d i >s/ b li-i 81-1 6 (b2+ds) ba da bd X/ TI-! = V 6 (b2+d2) RECTANGLE Axis of moments any line through center of gravity /K A = bd b sin a + d cos a >/ \ d - 2 bd (b sin2 a + d2 cos2 a ) hSLy^KX* 1-1 q 12 bd (b2 sin2 a + d2 cos2 a ) X \ y^-^ HI-I 6 (b sin a 4- d cos a) t __\/^ -b -\ 1 b 2 sin 2 a + d 2 cos 2 a X v^ Tl-1 - \ 12 HOLLOW RECTANGLE Axis of moments through center A = bd- bi di I .*br- Ti i 2 bd-bi di J T Id di x q 12 bds-bx dis 6d VbdMth di -b -* TI-I 12 (bd-bi di) 135 CARNEGIE STEEL COMPANY TRIANGLE Axis of moments through center of gravity * / \ A ^- A 2 x = f- Xl= _d Jl - 1= "36^" Si-i= -34 d n- 1 = "^= = 0.235702d \/ \ * 1 1* b J TRIANGLE Axis of moments on base A = -- X = d bds Ii-i 12 d n-j = ~r^= = 0.408248d i * / \ *T L-. b ~-J TRAPEZOID Axis of moments through center of gravity , d(b + bi) d (b + 2bi) <3 (b + bi) A 2 d(bi + 2b) : 3(b + bi) d3 (b 2 + 4 bbi + bia) i i / \ i 36 (b + bi) *fi/ V i 12 (bi -f 2 b) L-.-.b- J d ^/ ? (^2 _L 4 bb ibx2) 11-1 6 (b + bi) TRAPEZOID Axis of moments on base d (b -f bi) A 2 x = d d (b -f 3 b i) Ii-i 12 d2 (b + 3 bi) 12 ! ! REGULAR POLYGON Axis of moments through center a-2 V( R 2 -R 2 ) ** ^ n = Number of Sides A = M na2 cot =^z nR 2 sin 2 = nR 5 2 tan^ a a 2 sin $ 2 tan A (6 R2-a2) A (12 R t 2 + a 2) ll-l 24 A 2-2 A(6R2-a2) A(l 48 24R 48Ri r t -y/ 6 R2 a 2 r ,, . -\ / 12 Ri 2 -|- a 2 24 48 136 ELEMENTS OF SECTIONS CIRCLE Axis of moments through center 2 X = 1*1-1= d 2 1 ^ 4 4 - = 0.049087 d* ^ d3 = 0.098175 d d 4 HOLLOW CIRCLE Axis of moments through center A = x = TT (d d t 2) _ 0< 785398 (d2-di2) d 2 u _/y5\v 1 1-1 = *" (( 64^ l4) = O- 049087 (d*-di 4 ) ^ \\l/y Si-i o_Cl U x^^^X \ d 2 + di 2 ri-i= 4 HALF CIRCLE Axis of moments through center of gravity A = X == y ^ 2 = 0.392699 d 2 d(3 67T 4) =- 287793d - xi g d 0.212207d xi S!-i= -^- if xi > x I -di i 1 1 9 if 2 (d 4 di 4 ) (d 2 di 2 )-64 (d^-di 8 ) 2 W~~d- ' 1 X " V (d-di) ELLIPSE Axis of moments through center A = ^y 1 = 0.785398 ddi d t \ / t ^.. / .t x = Si-i= "2~ y ^ dl = 0.049087 d di ^^ dl = 0.098175 d* di ^ w... dr -J r t -i= ~4~ 137 CARNEGIE STEEL COMPANY i:i m n 1 "1 BEAM A = dt + 2a(m+n) X = -o- .L_n j, Ii-i= I 2 -2= 4(m-n) 12 (b*-t*) 2 ri, 1* m n ~} c d CHANNEL A = dt + a (m+n) = b 2 n + -T5 h- (b+2t) I 2 - 2 = -Ays ix-H ZEE A = t(d+2a) = 4 ii t 4 'i-i ! ( K \ i i n i i y = 2a = (b2-bt) 18-3 = bd3-a(d-2t)3 12 d(b+a)3-2a3c-6ab2 ( 12 I 2 - 2 Jp, 2 cos 2 a cos2a-I 2 - 2 sin2a cos 2a 138 ELEMENTS OF SECTIONS 2 i- y-J EQUAL A A = NGLE t (b+c) 2(b+c) X 45 t(b-x)8+bx-a (x-t) \ >r )i y = /* a = / c i / "tt T, , X i_j 3 Ii-i / ; ,'^3 3 " 3 a >{ 12 K ,. fo-d >, 2 12 UNEQUAL 2 . i*- y-*j x = ANGLE t(b+c) t(b+2c)+c2 ^^_ 2(b+c) t(2a+d)+a /__ 2(a+d) t[(2y-t)d(d-2x) +a(2x-t)(b+t-2y)] 8 \ \ IT ^ -T ^ y = , Tan2o= c d \! .^^ <* ii-i = f '-' 1 \ * 2di-i-I 2 - 2 ) t(d-x)+bx3-a(x-t)8 3 t(b-y)8+dy-c(y-t) 3 4 ; ; \ i t , _ I 2 - 2 cos2a-I 1 . 1 sin2a Li 8 cos 2a Ii-icos2g-l 2 - 2 sin2a cos 2a f- a ' "1 T _ ...I, A *' 4 2 TEE ^_ h - 4 - - -i *] A = CVV J" ; +mt+a(m+n) 6an2+2a(m-n) (m+2n)+3td2-(t-u) (3d-e) 1' itF l1 ' " 6A b TT e8(3u+t)+4bm8-2a(m-n)8 e d II ' 1 I 2 - 2 i. * -_i 12 a(m-n)[2a2+(2a+3t)2] 36 , e(t-u)[(t-u)2+2(t-f2u)2] J r 144 139 CARNEGIE STEEL COMPANY COMPOUND SECTIONS MOMENTS OP INERTIA, SECTION MODULI, AND RADII OP GYRATION The moment of inertia of a compound section about i ts neutral axis is equal to the sum of the moment of inertia, I, of the component parts about axes through their own centers of gravity, plus the areas A, of the component parts multiplied by the squares of the distances d, of their own centers of gravity from the neutral axis of the compound section, or 2, 228 " Moment of Inertia Ii = I+Ad2 s\ i r-i-x TI r Section Modulus Si = 1.75 Radius of Gyration ri = 3 S EXAMPLE 1. Required the moments of inertia and the | flection moduli about axes 1-1 and 2-2 of a compound - section to be used as a girder, composed of AXIS 1-1 Plate = 1 x t -i of 4-6"x4"x6, Ad 2 of 4-6"x4"x^ Ii-i of 1-33'W Ii-i of 2-14"xM" Moment of Inertia, gross section Section Modulus, " " = AXIS 2-2 I 2 . 2 of 4-6"x4"x^" Angles = 4 x V'W " = 4 x 1 Web Plate 4 Flange Angles 6"x4"x^" 2 Flange Plates 14"x%" baaing the properties on the gross area of the section. Determine the distances, of the center lines of gravity of plates and angles, from the neutral axes of the compound section, from the dimensions given, then for = 4 x 7.52 = 30.08 Inches * = 4 x 5.86x15.722 = 5792.45 0.50x 3 = 1497.38 14x075* = . 98 = 2x 10.50'x 17.1252 = 6158.58 13479.48"" 13479.48 Inches * 770.26 Inches of I 2 - Plate , 33x0.503 I 2 - 2 of 2-14"x%" " = 2 x Moment of Inertia, gross section Section Modulus, " " 549.47 84.28 Inches 4 121.85 0.34 " 343.00 " 549.47 Inches * 78.50 Inches s If it is desired to calculate the properties of the net section, viz., to deduct the area of the rivet holes, proceed as follows, assuming that y%" holes for ^"rivets are to be deducted and that not more than one rivet will be driven in any one leg of the angles in the same plane of the section. AXIS 1-1 1 1-1 of gross section = 13479.48 Inches * Deduct i-i of 4-0,S75"xl.375"Rectan g les= 4 x 0.875xl.375 12 4 x 1.203x16.81252 = 2x- Ad2 f4-0.875"xl.375' / Ii_iof2-0.875"xl.75" Ad2 f2-0.875"xl.75" " = 2x1.531x14.252 = Moment of Inertia, net section Section Modulus, " " = AXIS 2-2 Is-2 of gross section Deduct Ia- 2 of 4-0.875"xl.375"Rectangles=4 x 1 - 375 1 X 2 - 8753 = Ad2 f4-0.875"xl.375" " =4x1.203x3.752 = I 2 - 2 of2 r 0.875"xl.75" " =2 x 1.75x0.8753 12 11496.59 17.50 0.76 1360.16 0.20 621.77 Moment of Inertia, net section Section Modulus, " " 480.71 _ 11496.59 Inches * 656.95 Inches 549.47 Inches * 0.31 " 67.67 " 0.78 " 480.71 Inches 4 68.67 Inches " 140 ELEMENTS OF SECTIONS COMPOUND SECTIONS Concluded EXAMPLE 2. Required the moments of inertia and radii of gyration about axes 1-1 and 2-2 of a column section composed as follows : 2 Channels 12"x30 pounds per foot, 2 Flange Plates 14"*%", i_ , properties to be based on the gross section, no deduction being made for holes. Determine the distances, d, of center lines of gravity for the various sections from the neutral axes 1-1 and 2-2, in accordance with the dimensions given, then for U of 2-12"Channels301bs.= 2x In of 2-14"x&" Plates = 2 x Ads of 2-14"xM" " = 2 x 10.5 x 6.3752 == 161.65 = 323.30 Inches * 853.45 Moment of Inertia, gross section Radius of Gyration, " " = 1177.73 5.52 Inches * Inches AXIS 2-2 Ia-2 of 2-12" Channels 30 lbs.= 2x 5.22 = 10.44 Inches* Ad-' of 2-12"Channels301bs.= 2x 8.82x4.1642= 305.86 1-2-2 of 2-14"xM" Plates Moment of Inertia, gross section Radius of Gyration, " " = = 343.0 " 659.30 Inches* = 4.13 Inches EXAMPLE 3. Required the radii of gyration about axes 1-1 r 't and 2-2 of a strut section composed as follows : ^ 4^6"x4"x%" Angles latticed by %"^bam, properties to be based on the gross section of angles, no deduc- -*-l tions being made for rivet holes nor any allowance for lattice bars. Determine the distances, d, of center lines of gravity of angles from neutral axes 1-1 and 2-2 in accordance with the dimensions given, then for AXIS 1-1 AXIS 2-2 Ii-i of 4-6"x4"x^" Angles = 4x4.90 = 19.60 Inches* Ad of 4-6"x4"x^" " = 4 x 3.61 x 5.062 = 369.72 Moment of Inertia, gross section Radius of Gyration, " = 5. 389.32 Inches Inches From tables of radii of gyration for 2 angles placed back to back, page 166, r 2 -a of 4-6"x4"x%" angles = 2.87 Inches. Where sections are assembled without any web or flange plates, as, for example, latticed channel columns or latticed angle struts, the radius of gyration, n can be readily obtained without considering the moment of inertia from the radius of gyration, r of one section about the neutral axis, and the distance, d, between the center of gravity of the section and the neutral axis parallel to the axis of section. ri _V^,*..-i^i<**, Thus, in the above example, m = ^5.062+1.172 = 5.19 Inches 141 CARNEGIE STEEL COMPANY ELEMENTS OF STRUCTURAL BEAMS ,-T, 12 Section Index Depth of Beam Weight per Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 I r S I | r S In. Lba. In.2 In. In. In* In. In.3 In> In. In.3 B31 27 83.0 24.41 7.500 0.424 2888.6 10.88 214.0 53.1 1.47 14.1 B24 24 115.0 110.0 105.0 33.98 32.48 30.98 8.000 7.938 7.875 0.750 0.688 0.625 2955.5 2883.5 2811.5 9.33 9.42 9.53 246.3 240.3 234.3 83.2 81.0 78.9 1.57 1.58 1.60 20.8 20.4 20.0 B 1 24 100.0 95.0 90.0 85.0 80.0 29.41 27.94 26.47 25.00 23.32 7.254 7.193 7.131 7.070 7.000 0.754 0.693 0.631 0.570 0.500 2379.6 V2309.0 2238.4 2167.8 2087.2 9.00 9.09 9.20 9.31 9.46 198.3 192.4 186.5 180.7 173.9 48.6 47.1 45.7 44.4 42.9 1.28 1.30 1.31 1.33 1.36 13.4 13.1 12.8 12.6 12.3 B32 24 69.5 20.44 7.000 0.390 1928.0 9.71 160.7 39.3 1.39 11.2 B 33 21 57.5 16.85 6.500 0.357 1227.5 8.54 116.9 28.4 1.30 8.8 B 2 20 100.0 95.0 90.0 85.0 80.0 29.41 27.94 26.47 25.00 23.73 7.284 7.210 7.137 7.063 7.000 0.884 0.810 0.737 0.663 0.600. 1655.6 1606.6 1557.6 1508.5 1466.3 7.50 7.58 7.67 7.77 7.86 165.6 160.7 155.8 150.9 146.6 52.7 50.8 49.0 47.3 45.8 1.34 1.35 1.36 1.37 1.39 14.5 14.1 13.7 13.4 13.1 B 3 20 75.0 70.0 65.0 22.06 20.59 19.08 6.399 6.325 6.250 0.649 0.575 0.500 1268.8 1219.8 1169.5 7.58 7.70 7.83 126.9 122.0 117.0 30.3 29.0 27.9 1.17 1.19 1.21 9.5 9.2 ,8.9 B81 18 90.0 85.0 80.0 75.0 26.47 25.00 23.53 22.05 7.245 7.163 7.082 7.000 0.807 0.725 0.644 0.562 1260.4 1220.7 1181.0 1141.3 6.90 6.99 7.09 7.19 140.0 135.6 131.2 126.8 52.0 50.0 48.1 46.2 1.40 1.42 1.43 1.45 14.4 14.0 13.6 13.2 B80 18 70.0 65.0 60.0 55.0 20.59 19.12 17.65 15.93 6.259 6.177 6.095 6.000 0.719 0.637 0.555 0.460 921.2 881.5 841.8 795.6 6.69 6.79 6.91 7.07 102.4 97.9 93.5 88.4 24.6 23.5 22.4 21.2 1.09 1.11 1.13 1.15 7.9 7.6 7.3 7.1 B34 18 46.0 13.53 6.000 0.322 733.2 7.36 81.5 19.9 1.21 6.6 B 5 15 75.0 70.0 65.0 60.0 22.06 20.59 19.12 17.67 6.292 6.194 6.096 6.000 0.882 0.784 0.686 0.590 691.2 663.7 636.1 609.0 5.60 5.68 5.77 5.87 92.2 88.5 84.8 81.2 30.7 29.0 27.4 26.0 1.18 1.19 1.20 1.21 9.8 9.4 9.0 8.7 B 7 B 35 15 15 55.0 50.0 45.0 42.0 36,0 16.18 14.71 13.24 12._48 10.63 5.746 5.648 5.550 5.500 5.500 0.656 0.558 0.460 0.410 0.289 511.0 483.4 455.9 441.8 405' 1 5.62 5.73 5.87 5.95 6.17 68.1 64.5 60.8 58.9 54.0 17.1 16.0 15.1 14.6^ 13.5 1.02 1.04 1.07 ,1.08 1.13 5.9 5.7 5.4 5.3 4.9 142 ELEMENTS OF SECTIONS ELEMENTS OF STRUCTURAL BEAMS Concluded 1 2 1 IT '2 Section Index Depth of Beam Weight Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 I T S I r S In. Lbs. In.2 In. In. In* In. In.8 In* In. In. B 8 12 ,55.0 50.0 45.0 40.0 16.18 14.71 13.24 11.84 5.611 5.489 5.366 5.250 0.821 0.699 0.576 0.460 321.0 303.4 285.7 269.0 4.45 4.54 4.65 4.77 53.5 5TT6 47.6 ^44.8 17.5 16.1 14.9 13.8- 1.04 1.05 1.06 1.08 6.2 5.9 5.6 5.3 B 9 12 35.0 31.5 10.29 9.26 5.086 5.000 0.436 0.350 228.3 215.8 4.71 4.83 38.0 36.0 10.1 9.5 0.99 1.01 4.0 3.8 B36 12 27.5 8.04 5.000 0.255 199.6 4.98 33.3 8.7 1.04 3.5 B 11 10 40.0 35.0 30.0 25.0 11.76 10.29 8.82 7.37 5.099 4.952 4.805 4.660 0.749 0.602 0.455 0.310 158.7 146.4 134.2 122.1 3.67 3.77 3.90 4.07 31.7 29.3 26.8 24.4 9.5 8.5 7.7 6.9 0.90 0.91 0.93 0.97 3.7 3.4 3.2 3.0 B37 B 13 10 - 9 22.0 35.0 30.0 25.0 21.0 6.52 10.29 8.82 7.35 6.31 4.670 4.772 4.609 4.446 4.330 0,232 0.732 0.569 0.406 0.290 113.9 111.8 101.9 91.9 84.9 4.18 3.29 3.40 3.54 3.67 22.8 24.8 22.6 20.4 18.9 6.4 7.3 6.4 5.7 5.2 0.99 0.84 0.85 0.88 0.90 2.7 3.1 2.8 2.5 2.4 B 15 8 25.5 23.0 20.5 18.0 7.50 6.76 6.03 5.33 4.271 4.179 4.087 4.000 0.541 0.449 0.357 0.270 68.4 64.5 60.6 56.9 3.02 3.09 3.17 3.27 17.1 16.1 15.2 14.2 4.8 4.4 4.1 3.8 0.80 0.81 0.82 0.84 2.2 2.1 2.0 1.9 B38 8 17.5 5.15 4.330 0.210 58.3 3.37 14.6 4.5 0.93 2.1 B 17 7 20.0 17.5 15.0 5.88 5.15 4.42 3.868 3.763 3.660 0.458 0.353 0.250 42.2 39.2 36.2 2.68 2.76 2.86 12.1 11.2 10.4 3.2 2.9 2.7 0.74 0.76 0.78 .7 .6 .5 B 19 6 17.25 14.75 12.25 5.07 4.34 3.61 3.575 3.452 3.330 0.475 0.352 0.230 26.2 24.0 21.8 2.27 2.35 2.46 8.7 8.0 7.3 2.4 2.1 1.9 0.68 0.69 0.72 .3 .2 .1 B 21 B23 5 4 14.75 12.25 9.75/ 10.5 9.5 8^5 7.5 4.34 /3.60 2.87 3.09 2.79 2.50 2.21 3.294 3.147 3.000 2.880 2.807 2.733 2.660 0.504 0.357 0.210 0.410 0.337 0.263 0.190 15.2 13.6 IV 7.1 6.8 6.4 6.0 1.87 1.94 2.05 1.52 1.55 1.59 1.64 6.1 5.5 4.8 3.6 3.4 3.2 3.0 1.7 1.5 1.2, 1.0 0.93 0.85 0.77 0.63 0.63 '0.65 0.57 0.58 0.58 0.59 1.0 0.92 0.82 0.70 0.66 0.62 0.58 B77 3 7.5 6.5 5.5 2.21 1.91 1.63 2.521 2.423 2.330 0.361 0.263 0.170 2.9 2.7 2.5 1.15 1.19 1.23 1.9 1.8 1.7 0.60 0.53 0.46 0.52 0.52 0.53 0.48 0.44 0.40 143 CARNEGIE STEEL COMPANY ELEMENTS OF STRUCTURAL CHANNELS 2 l -1 Ik "*' X 2" Depth Weight Area Width Thick- Axis 1-1 Axis 2-2 Section Index of Channel per Foot of Section of Flange ness of Web X I r S I r S In. Lbs. In.2 In. In. In* In. In.3 In.4 In. In.3 In. 55.0 16.18 3.818 0.818 430.2 5.16 57.4 12.2 0.87 4.1 0.82 50.0 14.71 3.720 0.720 402.7 5.23 53.7 11.2 0.87 3.8 0.80 C-| 45.0 13.24 3.622 0.622 375.1 5.32 50.0 10.3 0.88 3.6 0.79 1 15 40.0 11.76 3.524 0.524 347.5 5.43 46.3 9.4 0.89 3.4 0.78 35.0 10.29 3.426 0.426 319.9 5.58 42.7 8.5 0.91 3.2 0.79 33.0 9.90 3.400 0.400 312.6' 5.62 41.7 8.2 0.91 3.2 0.79 40.0 11.76 3.418 0.758 196.9 4.09 32.8 6.6 0.75 2.5 0.72 35.0 10.29 3.296 0.636 179.3 4.17 29.9 5.9 0.76 2.3 0.69 C 2 12 30.0 ' 8.82 3.173 0.513 161.7 4.28 26.9 5.2 0.77 2.1 0.68 25.0 7.35 3.050 0.390 144.0 4.43 24.0 4.5 0.79 1.9 0.68 20.5 6.03 2.940 0.280 128.1 4.61 21.4 3.9 0.81 1.7 0.70 35.0 10.29 3.183 0.823 115.5 3.35 23.1 4.7 0.67 1.9 0.70 30.0 8.82 3.036 0.676 103.2 3.42 20.7 4.0 0.67 1.7 0.65 C 3 10 25.0 7.35 2.889 0.529 91.0 3.52 18.2 3.4 0.68 .5 0.62 20.0 5.88 2.742 0.382 78.7 3.66 15.7 2.9 0.70 .3 0.61 15.0 4.46 2.600 0.240 66.9 3.87 13.4 2.3 0.72 .2 0.64 25.0 7.35 2.815 0.615 70.7 3.10 15.7 3.0 0.64 .4 0.62 C 4 9 20.0 5.88 2.652 0.452 60.8 3.21 13.5 2.5 0.65 .2 0.59 15.0 4.41 2.488 0.288 50.9 3.40 11.3 2.0 0.67 .0 0.59 13.25 3.89 2.430 0.230 47.3 3.49 10.5 1.8 0.67 0.97 0.61 21.25 6.25 2.622 0.582 47.8 2.77 11.9 2.3 0.60 1.1 0.59 18.75 5.51 2.530 0.490 43.8 2.82 11.0 2.0 0.60 1.0 0.57 C 5 8 16.25 4.78 2.439 0.399 39.9 2.89 10.0 1.8 0.61 0.95 0.56 13.75 4.04 2.347 0.307 36.0 2.98 9.0 1.6 0.62 0.87 0.56 11.25 3.35 2.260 0.220 32.3 3.11 8.1 1.3 0.63 0.79 0.58 19.75 5.81 2.513 0.633 33.2 2.39 9.5 1.9 0.56 0.96 0.58 17.25 5.07 2.408 0.528 30.2 2.44 8.6 1.6 0.57 0.87 0.56 C 6 7 14.75 4.34 2.303 0.423 27.2 2.50 7.8 1.4 0.57 0.79 0.54 12.25 3.60 2.198 0.318 24.2 2.59 6.9 1.2 0.58 0.71 0.53 9.75 2.85 2.090 0.210 21.1 2.72 6.0 0.98 0.59 0.63 0.55 15.5 4.56 2.283 0.563 19.5 2.07 6.5 1.3 0.53 0.74 0.55 C 7 g 13.0 3.82 2.160 0.440 17.3 2.13 5.8 1.1 0.53 0.65 0.52 10.5 3.09 2.038 0.318 15.1 2.21 5.0 0.88 0.53 0.57 0.50 8.0 2.38 1.920 0.200 13.0 2.34 4.3 0.70 0.54 0.50 0.52 11.5 3.38 2.037 0.477 10.4 .75 4.2 0.82 0.49 0.54 0.51 C 8 5 9.0 2.65 1.890 0.330 8.9 .83 3.6 0.64 0.49 0.45 0.48 6.5 1.95 1.750 0.190 7.4 .95 3.0 0.48 0.50 0.38 0.49 7.25 2.13 1.725 0.325 4.6 .46 2.3 0.44 0.46 0.35 0.46 C 9 4 6.25 1.84 1.652 0.252 4.2 .51 2.1 0.38 0.45 0.32 0.46 5.25 1.55 1.580 0.180 3.8 .56 1.9 0.32 0.45 0.29 0.46 6.0 1.76 1.602 0.362 2.1 .08 1.4 0.31 0.42 0.27 0.46 C 72 3 5.0 1.47 1.504 0.264 1.8 .12 1.2 0.25 0.42 0.24 0.44 4.0 1.19 1.410 0.170 1.6 1.17 1.1 0.20 0.41 0.21 0.44 144 ELEMENTS OF SECTIONS ELEMENTS OF SHIP BUILDING CHANNELS f r T .-, r 1 2 Depth Weight Area Width Thick- Axis 1-1 Axis 2-2 Section of per of of ness of X Index Chunnel Foot Section Flange Web I r S I r S In. Lbs. In.2 In. In. In* In. In.3 In.* In. In.3 In. 50.0 14.71 4.416 0.791 313.8 4.62 48.3 16.7 1.07 4.9 0.98 45.0 13.24|4.303 0.678 293.1 4.71 45.1 15.3 1.08 4.6 0.97 40.0 11.76 4.190 0.565 272.3 4.81 41.9 13.9 1.09 4.3 0.97 C 20 13 37.0 10.88 4.122 0.497 259.9 4.89 40.0 13.1 1.10 4.2 0.98 35.0 10.29 4.077 0.452 251.6 4.95 38.7 12.5 1.10 4.1 0.99 32.0 9.30 4.000 0.375 237.6 5.06 36.6 11.6 1.12 3.9 1.01 50.0 14.70 4.140 0. 840 '268.6 4.27 44.8 17.8 1.10 5.8 1.06 48.4 14.22 4.100 0.800 : 262.8 4.30 43.8 17.3 1.10 5.7 1.05 46.3 13.62 4.050 0.750 255.6 4.33 42.6 16.6 1.11 5.5 1.05 C 170 12 44.3 13.02 4.000 0.700 248.4 4.37 41.4 16.0 1.11 5.4 1.05 40.0 11.76 3.895 0.595 233.3 4.45 38.9 14.6 1.11 5.1 1.05 35.0 10.30 3.773 0.473 215.8 4.58 36.0 13.0 1.12 4.8 1.07 40.0 11.77 4.091 0.741 ! 157.1 3.65 31.4 15.4 1.14 5.2 1.11 36.9 10.86 4.000 0.650 149.5 3.71 29.9 14.3 1.15 4.9 1.11 C 160 10 34.4 10.11 3.925 0.575 143.2 3.76 28.6 13.4 1.15 4.8 1.11 31.8 9.36 3.850 0.500 137.0 3.83 27.4 J12.4 1.15 4.6 1.13 30.0 8.83 3.797 0.447 132.6 3.88 26.5 11.7 1.15 4.4 1.14 30.6 9.00 3.600 0.600 117.7 3.62 23.5 8.5 0.97 3.1 0.88 C 150 10 28.9 8.50 3.550 0.550 113.6 3.66 22.7 8.2 0.98 3.1 0.88 27.2 8.00 3.500 0.500 109.4 3.70 21.9 7.8 0.99 3.0 0.89 C 150b 10 21.8 6.38 3.375 0.375 91.3 3.78 18.3 6.2 0.99 2.5 0.87 34.7 10.21 4.000 0.650 115.5 3.36 25.7 13.8 1.16 4.9 1.16 C 140 9 31.7 9.31 3.900 0.550 109.5 3.43 24.3 12.6 .16 4.6 1.17 23.6 8.41 3.800 0.450 i 103.4 3.51 23.0 11.4 .16 4.4 1.19 26.5 7.80 3.600 0.600 67.8 2.95 17.0 8.2 .03 3.1 0.98 C 130 8 25.2 23.8 7.40 7.00 3.550 3.500 0.550 0.500 65.7 63.6 2.98 3.01 16.4 15.9 7.8 7.4 .03 .03 3.0 3.0 0.98 0.99 21.5 6.32 3.415 0.415 60.0 3.08 15.0 6.9 .00 2.9 0.99 23.3 6.85 3.550 0.550 47.5 2.63 13.6 7.5 .05 3.0 1.04 C 120 7 22.1 6.50 3.500 0.500 46.0 2.66 13.2 7.1 .05 2.9 1.05 20.9 6.15 3.450 0.450 44.6 2.69 12.7 6.7 .05 2.8 1.05 18.6 5.46 3.438 0.438 38.7 2.66 11.0 5.7 .02 2.3 0.96 C 121 7 16.5 4.85 3.350(0.350 36.2 2.73 10.3 5.1 .03 2.2 0.99 15.6 4.59 3.313 0.313 35.1 2.77 10.0 4.8 .03 2.1 1.01 C1 1 f\ 21.5 6.33 3.685 0.535 33.3 2.29 11.1 7.8 .11 3.1 1.16 1 1U 6 19.0 5.58 3.560 0.410 31.1 2.36 10.4 6.8 .10 2.9 1.18 C 109 6 15.0 4.46 3.500 0.350 25.0 2.37 8.3 5.2 1.08 2.1 1.08 Ci r*"7 18.1 5.33 3.063 0.563 25.4 2.18 8.5 3.5 0.82 1.6 0.80 ID* 6 13.0 3.83 2.813 0.313 20.9 2.34 7.0 2.6 0.82 1.3 0.81 C 108 6 12.5 3.66 2.563 0.313 19.6 2.31 6.5 2.1 0.75 1.1 0.74 C 200 4 13.6 4.00 2.500 0.500 8.8 1.49 4.4 2.2 0.75 1.3 0.87 C 190 3 7.1 2.05 1.984 0.250 2.8 1.17 1.9 0.75 0.60 0.60 0.72 145 CARNEGIE STEEL COMPANY ELEMENTS OF EQUAL ANGLES 2- T 2 x Ij^ X3 Weight Area \xisl-l ar d Axis 2-S Axis 3-3 Size Per of Section Index Foot Section I r S x r miii. Inches Pounds In.2 In* In. In.s In. In. A 113 8x8 x iyi 56.9 16.73 98.0 2.42 17.5 2.41 1.55 A 112 8x8 X 1ft 54.0 15.87 93.5 2.43 16.7 2.39 1.56 Alll 8x8x1 51.0 15.00 89.0 2.44 15.8 2.37 1.56 A 110 8x8 x if 48.1 14.12 84.3 2.44 14.9 2.34 1.56 A 109 8 x 8 x y 8 45.0 13.23 79.6 2.45 14.0 2.32 1.56 A 108 8 x 8 x if 42.0 12.34 74.7 2.46 13.1 2.30 1.57 A 107 8 x 8 x M 38.9 11.44 69.7 2.47 12.2 2.28 1.57 A 106 8x8 x H 35.8 10.53 64.6 2.48 11.2 2.25 1.58 A 105 8 x 8 x y* 32.7 9.61 59.4 2.49 10.3 2.23 1.58 A 104 8 x 8 x ft 29.6 8.68 54.1 2.50 9.3 2.21 1.58 A 103 8 x 8 x Mi 26.4 7.75 48.6 2.51 8.4 2.19 1.58 A 86 6x6x1 37.4 11.00 35.5 1.80 8.6 1.86 .16 A 87 6 x 6 x If 35.3 10.37 33.7 1.80 8.1 1.84 .16 A 1 6 x 6 x y 8 33.1 .9.73 31.9 1.81 7.6 1.82 .17 A 2 6x6 x ii 31.0 9.09 30.1 1.82 7.2 1.80 .17 A 3 6 x 6 x M 28.7 8.44 28.2 1.83 6.7 1.78 .17 A 4 6 x 6 x H 26.5 7.78 26.2 1.83 6.2 1.75 .17 A 5 6 x 6 x % 24.2 7.11 24.2 1.84 5.7 1.73 .17 A 6 6 x 6 x ft 21.9 6.43 22.1 1.85 5.1 1.71 .18 A 7 6 x 6 x H 19.6 5.75 19.9 1.86 4.6 1.68 .18 A 8 6 x 6 x ft 17.2 5.06 17.7 1.87 4.1 1.66 .19 A 88 6 x 6 x 3 / 8 14.9 4.36 15.4 1.88 3.5 1.64 .19 A 94 5x5x1 30.6 9.00 19.6 1.48 5.8 1.61 0.96 A 95 5x5 x if 28.9 8.50 18.7 1.48 5.5 1.59 0.96 A 9 5 x 5 x J/g 27.2 7.98 17.8 1.49 5.2 1.57 0.96 A 10 5 x 5 x lg 25.4 7.47 16.8 1.50 4.9 1.55 0.97 A 11 5 x 5 x ?4 23.6 6.94 15.7 1.50 4.5 1.52 0.97 A 12 5 x 5 x {& 21.8 6.40 14.7 1.51 4.2 1.50 0.97 A 13 5 x 5 x y s 20.0 5.86 13.6 1.52 3.9 1.48 0.97 A 14 5 x 5 x ft 18.1 5.31 12.4 1.53 3.5 1.46 0.98 A 15 5 x 5 x y 2 16.2 4.75 11.3 1.54 3.2 1.43 0.98 A 16 5x5 x ft 14.3 4.18 10.0 1.55 2.8 1.41 0.98 A 17 5x5x^ 12.3 3.61 8.7 1.56 2.4 1.39 0.99 A 18 4 x 4 x IS 19.9 5.84 8.1 1.18 3.0 1.29 0.77 A 19 4 x 4 x M 18.5 5.44 7.7 1.19 2.8 1.27 0.77 A 20 4 x 4 x H 17.1 5.03 7.2 1.19 2.6 1.25 0.77 A 21 4 x 4 x % 15.7 4.61 6.7 1.20 2.4 1.23 0.77 A 22 4x4 x ft 14.3 4.18 6.1 1.21 2.2 1.21 0.78 A 23 4 x 4 x K 12.8 3.75 5.6 1.22 2.0 1.18 0.78 A 24 4 x 4 x ft 11.3 3.31 5.0 1.23 1.8 1.16 0.78 A 25 4 x 4 x % 9.8 2.86 4.4 1.23 1.5 1.14 0.79 A 90 4x4 x ft 8.2 2.40 3.7 1.24 1.3 1.12 0.79 A 284 4 x 4 x >| 6.6 1.94 3.0 1.25 1.0 1.09 0.79 146 ELEMENTS OF SECTIONS ELEMENTS OF EQUAL ANGLES Concluded hi' 3, 2 V - r .-8 iT\r Weight Area Axis 1-1 and Axis 2-2 Axis 3-3 Section Index Size per Foot of Section I r S x r min. Inches Pounds In.2 In* In. In.3 In. In. A L>6 33^x33^x11 17.1 5.03 5.3 .02 2.3 .17 0.67 A 27 33^ x 33-*j x % 16.0 4.69 5.0 .03 2.1 .15 0.67 A 28 33-^ x33-| x ig 14.8 4.34 4.7 .04 2.0 .12 0.67 A 29 33^2 X 33^ X % 13.6 3.98 4.3 .04 1.8 .10 0.68 A 30 33^ x33^ x T 9 jj 12.4 3.62 4.0 .05 1.6 .08 0.68 A 31 334 x 334 x 34 11.1 3.25 3.6 .06 1.5 .06 0.68 A 32 3 3^ x 3 1 A x T 7 S 9.8 2.87 3.3 .07 1.3 .04 0.68 A 33 334 x 33^ x ^ 8.5 2.48 2.9 .07 1.2 .01 0.69 A 99 3H x33^ x T S 9 7.2 2.09 2.5 1.08 0.98 0.99 0.69 A 285 334 x33- x 34 5.8 1.69 2.0 1.09 0.79 0.97 0.69 A 34 3 x 3 xH 11.5 3.36 2.6 0.88 1.3 0.98 0.57 A 35 3 x 3 x T 9 8 10.4 3.06 2.4 0.89 1.2 0.95 0.58 A 36 3 x 3 xM 9.4 2.75 2.2 0.90 1.1 0.93 0.58 A 37 3 x 3 x T 7 ff 8.3 2.43 2.0 0.91 0.95 0.91 0.58 A 38 3 x 3 x% 7.2 2.11 1.8 0.91 0.83 0.89 0.58 A 39 3 X 3 X r 5 s 6.1 1.78 1.5 0.92 0.71 0.87 0.59 A 40 3 x 3 xM 4.9 1.44 1.2 0.93 0.58 0.84 0.59 A 46 23*j x 234 x 3-2" 7.7 2.25 - 1.2 0.74 0.73 0.81 0.47 A 47 23^ x23^ x T 7 g 6.8 2.00 1.1 0.79 0.65 0.78 0.48 A 48 23^x23^x^1 5.9 1.73 0.98 0.75 0.57 0.76 0.48 A 49 23^x2>ix I s g | 5.0 1.47 0.85 0.76 0.48 0.74 0.49 A 50 23^x23^x34 4.1 1.19 0.70 0.77 0.39 0.72 0.49 A 100 23-2" x23^ x T 3 e 3.07 0.90 0.55 0.78 0.30 0.69 0.49 A 504 23^ x23^ x 3-i 2.08 0.61 0.38 0.79 0.20 0.67 0.50 A 56 2 x 2 xA 5.3 1.56 0.54 0.59 0.40 0.66 0.39 A 57 2 x 2 x^i 4.7 1.36 0.48 0.59 0.35 0.64 0.39 A 58 2 x 2 x !* B 3.92 1.15 0.42 0.60 0.30 0.61 0.39 A 59 2x2 x34 3.19 0.94 0.35 0.61 0.25 0.59 0.39 A 60 2 x 2 X T 3 8 2.44 0.71 0.28 0.62 0.19 0.57 0.40 A 506 2 x 2 x H 1.65 0.48 0.19 0.63 0.13 0.55 0.40 A 61 1% x 1M x , 7 4.6 1.34 0.35 0.51 0.30 0.59 0.33 A 62 1.17 0.31 0.51 0.26 0.57 0.34 A 63 l^i X 1% X i B 8 ! 3.39 1.00 0.27 0.52 0.23 0.55 0.34 A 64 !MxlMx34 2!77 0.81 0.23 0.53 0.19 0.53 0.34 A 65 inxifixft 2.12 0.62 0.18 0.54 0.14 0.51 0.35 A 507 1M x 1M x 3^ 1.44 0.42 0.13 0.55 0.10 0.48 0.35 A 66 l^xl^x^ 3.35 0.98 0.19 0.44 0.19 0.51 0.29 A 67 l^xlMx^j 2.86 0.84 0.16 0.44 0.16 0.49 0.29 A 68 13^x13^x3^1 2.34 0-69 0.14 0.45 0.13 0.47 0.29 A 69 l^xl^xA 1.80 0.53 0.11 0.46 0.10 0.44 0.29 A 102 13-3 x 13^ x 3^ 1.23 0.36 0.08 0.46 0.07 0.42 0.30 A 70 1 34 x 1 34 x i s s 2.33 0.68 0.09 0.36 0.11 0.42 0.24 A 71 134 x 134 x 3^ 1.92 0.56 0.08 0.37 0.09 0.40 0.24 A 72 1 34 x 1 34 x T^K 1.48 0.43 0.06 0.38 0.07 0.38 0.24 A 73 13^ x 134 x 3^ 1.01 0.30 0.04 0.38 0.05 0.35 0.25 A 78 1 x 1 x K 1.49 0.44 0.04 0.29 0.06 0.34 0.19 A 79 1 X 1 X T 3 9 1.16 0.34 0.03 0.30 0.04 0.32 0.19 A 80 i x i xy s 0.80 0.23 0.02 0.31 0.03 0.30 0.19 147 CARNEGIE STEEL COMPANY ELEMENTS OF UNEQUAL ANGLES Eft 3. i 2 -2 \ " ~f j ^3 Size Weight Per Area of Sec- Axis 1-1 Axis 2-2 | A *!f 1 O-O Section Index Foot tion I r S x I r S y rmin. Inches Lbs. In.2 In* In. In.3 In. In.* In. In.3 In. In. A 138 8x6x1 44.2 13.00 80.8 2.49 15.1 2.65 38.8 .73 8.9 1.65 1.28 A 137 8x 6 xii 41.7 12.25 76.6 2.50 14.3 2.63 36.8 .73 8.4 1.63 .28 A 136 8 x 6 x y 8 39.1 11.48 72.3 2.51 13.4 2.61 34.9 .74 7.9 1.61 .28 A 135 8x 6 xig 36.5 10.72 67.9 2.52 12.5 2.59 32.8 .75 7.4 1.59 .29 A 134 8x 6 xM 33.8 9.94 63.4 2.53 11.7 2.56 30.7 .76 6.9 1.56 .29 A 133 8x 6 xH 31.2 9.15 58.8 2.54 10.8 2.54 28.6 .77 6.4 1.54 .29 A 132 8x 6 xy 8 28.5 8.36 54.1 2.54 9.9 2.52 26.3 .77 5.9 1.52 .30 A131 8 x 6 x T 9 S 25.7 7.56 49.3 2.55 8.9 2.50 24.0 .78 5.3 1.50 .30 A 130 8x 6 x l A 23.0 6.75 44.3 2.56 8.0 2.47 21.7 .79 4.8 1.47 .30 A139 8x 6 Xx 7 ,- 20.2 5.93 39.2 2.57 7.1 2.45 19.3 .80 4.2 1.45 1.30 A 320 8 x 3^ x 1 35.7 10.50 66.2 2.51 13.7 3.17 7.8 0.86 3.0 0.92 0.73 A321 8 x 3^2 x }i 33.7 9.90 62.9 2.52 12.9 3.14 7.4 0.87 2.9 0.89 0.73 A322 3 X 3^2 X y 8 31.7 9.30 59.4 2.53 12.2 3.12 7.1 0.87 2.7 0.87 0.73 A323 8 x 3y 2 x fg 29.6 8.68 55.9 2.54 11.4 3.10 6.7 0.88 2.5 0.85 0.73 A 324 8 x 3^/2 x % 27.5 8.06 52.3 2.55 10.6 3.07 6.3 0.88 2.3 0.82 0.73 A 325 8x3y 2 x H 25.3 7.43 48.5 2.56 9.8 3.05 5.9 0.89 2.2 0.80 0.73 A326 8 x 3^2 x % 23.2 6.80 44.7 2.57 9.0 3.03 5.4 0.90 2.0 0.78 0.74 A 327 8 X 3^ X fg 21.0 6.15 40.8 2.57 8.2 3.00 5.0 0.90 1.8 0.75 0.74 A328 Sx3y 2 xy 2 18.7 5.50 36.7 2.58 7.3 2.98 4.5 0.91 1.6 0.73 0.74 A 329 8 x 3^ x /g 16.5 4.84 32.5 2.59 6.4 2.95 4.1 0.92 1.5 0.70 0.74 A 150 7 x3y 2 x 1 32.3 9.50 45.4 2.19 10.6 2.70 7.5 0.89 3.0 0.96 0.74 A151 7 x 3^ x ig 30.5 8.97 43.1 2.19 10.0 2.69 7.2 0.89 2.8 0.94 0.74 A 152 7x3H x ^ 28.7 8.42 40.8 2.20 9.4 2.66 6.8 0.90 2.6 0.91 0.74 A 153 7 x 3>i x jg 26.8 7.87 38.4 2.21 8.8 2.64 6.5 0.91 2.5 0.89 0.74 A 154 7 x 33^ x M 24.9 7.31 36.0 2.22 8.2 2.62 6.1 0.91 2.3 0.87 0.74 A 155 7 x 3H x U 23.0 6.75 33.5 2.23 7.6 2.60 5.7 0.92 2.1 0.85 0.74 A 156 7 X 3J^ X ^8 21.0 6.17 30.9 2.24 7.0 2.57 5.3 0.93 2.0 0.82 0.75 A 157 7 x 3j^ x T H (T 19.1 5.59 28.2 2.25 6.3 2.55 4.9 0.93 1.8 0.80 0.75 A 158 7x3>i x >i 17.0 5.00 25.4 2.25 5.7 2.53 4.4 0.94 1.6 0.78 0.75 A159 7 x 31/2 x & 15.0 4.40 22.6 2.26 5.0 2.50 4.0 0.95 1.4 0.75 0.76 A310 13.0 3.80 19.6 2.27 4.3 2.48 3.5 0.96 1.3 0.73 0.76 A 89 6x4x1 30.6 9.00 30.8 1.85 8.0 2.17 10.8 1.09 3.8 1.17 0.85 A 91 6x 4 xii 28.9 8.50 29.3 1.86 7.6 2.14 10.3 1.10 3.6 1.14 0.85 A 160 6x 4 xK 27.2 7.98 27.7 1.86 7.2 2.12 9.8 1.11 3.4 1.12 0.86 A161 6 x 4 x i| 25.4 7.47 26.1 1.87 6.7 2.10 9.2 1.11 3.2 1.10 0.86 A 162 6x 4 x M 23.6 6.94 24.5 1.88 6.2 2.0&. 8.7 1.12 3.0 1.08 0.86 A 163 6x 4 xiJ 21.8 6.40 22.8 1.89 5.8 2.06 8.1 1.13 2.8 1.06 0.86 A 164 6 x 4 x % 20.0 5.86 21.1 1.90 5.3 2.03 7.5- 1.13 2.5 1.03 0.86 A 165 6x 4 x T 9 g 18.1 5.31 19.3 1.90 4.8 2.01 6.9 1.14 2.3 1.01 0.87 A 166 6x 4 x^ 16.2 ; 4.75 17.4 1.91 4.3 1.99 6.3 1.15 2.1 0.99 0.87 A 167 6 x 4 x T 7 H 14.3; 4.18 15.5 1.92 3.8 1.96 5.6 1.16 1.8 0.96 0.87 A 168 6x 4 x Ji 12.31 3.61 13.5 1.93 3.3 1.94 4.9 1.17 1.6 0.94 0.88 148 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL ANGLES Continued 1 rf 2 H. v i -, ?r ** y 1 ^^ N il ^-3 Scctioi Size Weight per Area of Sec- Axis 1-1 Axis 2-2 Axis 3-3 Index Foot tion I r S X I r S y rmin. Inches Lbe. In.2 In* In. In.3 In. In.* In. In.s In. In. A 92 6 x 3)4 x 1 28.9 8.50 29.2 1.85 7.8 2.26 7.2 0.92 2.9 1.01 0.74 A 93 6 x 334 x \\ 27.3 8.03 27.8 1.86 7.4 2.24 6.9 0.93 2.7 0.99 0.74 A 169 6x314 x K 25.7 7.55 26.4 1.87 7.0 2.22 6.6 0.93 2.6 0.97 0.75 A 170 24.0 7.06 24.9 1.88 6.6 2.20 6.2 0.94 2.4 0.95 0.75 \ 171 6 x 334 x % 22.4 6.56 23.3 1.89 6.1 2.18 5.8 0.94 2.3 0.93 0.75 A 172 6 x 3*4 x \k 20.6 6.06 21.7 1.89 5.6 2.15 5.5 0.95 2.1 0.90 0.75 A 173 6x3)4 x %\ 18.9 5.55 20.1 1.90 5.2 2.13 5.1 0.96 .9 0.88 0.75 A 174 6 x 3}4 x T 9 a 17.1 5.03 18.4 1.91 4.7 2.11 4.7 0.96 .8 0.86 0.75 A 175 6x3*4 x 14 15.3 4.50 16.6 1.92 4.2 2.08 4.3 0.97 .6 0.83 0.76 A 176 6 x 314 x T 7 S 13.5 3.97 14.8 1.93 3.7 2.06 3.8 0.98 .4 0.81 0.76 A 177 6 x 334 x ^ 11.7 3.42 12.9 1.94 3.3 2.04 3.3 0.99 .2 0.78 0.77 A 301 6 X 334 X T % 9.8 2.87 10.9 1.95 2.7 2.02 2.9 1.00 1.0 0.75 0.77 A 178 5 x 4 x ^ 24.2 7.11 16.4 1.52 5.0 1.71 9.2 1.14 3.3 .21 0.84 A 179 5x 4 xii 22.7 6.65 15.5 1.53 4.7 1.68 8.7 1.15 3.1 .18 0.84 A 180 5x 4 x % 21.1 6.19 14.6 1.54 4.4 1.66 8.2 1.15 2.9 .16 0.84 A181 5 x 4 x\k 19.5 5.72 13.6 1.54 4.1 1.64 7.7 1.16 2.7 .14 0.84 A 182 5x 4 xM 17.8 5.23 12.6 1.55 3.7 .62 7.1 1.17 2.5 .12 0.84 A 183 5 x 4 x T 9 16.2 4.75 11.6 1.56 3.4 .60 6.6 1.18 2.3 .10 0.85 A184|5x 4 x ~y<2. 14.5 4.25 10.5 1.57 3.1 .57 6.0 1.18 2.0 1.07 0.85 A 185 OX 4 X I 7 e 12.8 3.75 9.3 1.58 2.7 .55 5.3 1.19 1.8 1.05 0.85 A 186 5x4 x Y% 11.0 3.23 8.1 1.59 2.3 .53 4.7 1.20 1.6 1.03 0.86 A 187 5x3*4 x% 22.7 6.67 15,7 1.53 4.9 .79 6.2 0.96 2.5 1.04 0.75 A 188 21.3 6.25 14.8 1.54 4.6 .77 5.9 0.97 2.4 1.02 0.75 A 189 5x334 x% 19-8 5.81 13.9 1.55 4.3 .75 5.6 0.98 2.2 1.00 0.75 A 190 5x334 xH 18.3 5.37 13.0 1.56 4.0 .72 5.2 0.98 2.1 0.97 0.75 A 191 5x334 x%! 16.8 4.92 12.0 1.56 3.7 .70 4.8 0.99 1.9 0.95 0.75 A 192 5x3J4 X&J15.2 4.47 11.0 1.57 3.3 .68 4.4 1.00 1.7 0.93 0.75 A 193 5 x 334 x 34 13.6 4.00 10.0 1.58 3.0 .66 4.0 1.01 1.6 0.91 0.75 A 194 5 x 334 x T 7 e 12.0 3.53 8.9 1.59 2.6 .63 3.6 1.01 1.4 0.88 0.76 A 195 5 x334 x % 10.4 3.05 7.8 1.60 2.3 .61 3.2 1.02 1.2 0.86 0.76 A 96 5 x 334 x is 8.7 2.56 6.6 1.61 1.9 .59 2.7 1.03 1.0 0.84 0.76 A 196 5x 3 x}| 19.9 5.84 14.0 1.55 4.5 .86 3.7 0.80 1.7 0.86 0.64 A 197 5 x 3 x %l 18.5 5.44 13.2 1.55 4.2 .84 3.5 0.80 1.6 0.84 0.64 A 198 5 x 3 x H 17.1 5.03 12.3 1.56 3.9 .82 3.3 0.81 1.5 0.82 0.64 A 199 ox 3 xy s 15.7 4.61 11.4 1.57 3.5 .80 3.1 0.81 1.4 0.80 0.64 A 200 ox 3 xf e 14.3 4.18 10.4 1.58 3.2 .77 2.8 0.82 1.3 0.77 0.65 A201 ox 3 xy 2 \ 12.8 3.75 9.5 1.59 2.9 .75 2.6 0.83 1.1 0.75 0.65 A 202 ox 3 Xfjll.3 3.31 8.4 1.60 2.6 .73 2.3 0.84 1.0 0.73 0.65 A 203 ox 3 x% 9.8 2.86 7.4 1.61 2.2 .70 2.0 0.84 0.89 0.70 0.65 A 280 5x 3 x 8.2 2.40 6.3 1.61 1.9 .68 1.8 0.85 0.75 0.68 0.66 149 CARNEGIE STEEL COMPANY ELEMENTS OF UNEQUAL ANGLES Continued fi 1 3, J 2 K. T \ -*- * t_S > y 1 ^3 Weight Area of Axis 1-1 Axis 2-2 Axis 3-3 Section feize per Sec- Index Foot tion I r S x I r S y rmin. Inches Lbs. In. 2 In.* In. In.3 In. In. ^ In. In.3 In. In. A 204 4y 2 x 3 x}i 18.5 5.43 10.3 1.38 3.6 1.65 3.6 0.81 1.7 0.90 0.64 A205 4y 2 x 3 x% 17.3 5.06 9.7 1.39 3.4 1.63 3.4 0.82 1.6 0.88 0.64 A206 4y 2 x 3 xlJ- 16.0 4.68 9.1 1.39 3.1 1.60 3.2 0.83 1.5 0.85 0.64 A207 4^x 3 xy% 14.7 4.30 8.4 1.40 2.9 1.58 3.0 0.83 1.4 0.83 0.64 A208 4y 2 x 3 x T 8 e - 13.3 3.90 7.8 1.41 2.6 1.56 2.8 0.85 1.3 0.81 0.64 A209 4. 1/ Y *3. \/ 11.9 3.50 7.0 1.42 2.4 1.54 2.5 0.85 1.1 0.79 0.65 A210 4 l / 2 x 3 x T 7 s 10.6 3.09 6.3 1.43 2.1 1.51 2.3 0.85 1.0 0.76 0.65 A211 9.1 2.67 5.5 1.44 1.8 1.49 2.0 0.86 0.88 0.74 0.66 A 97 4^x 3 x& 7.7 2.25 4.7 1.44 1.5 1.47 1.7 0.87 0.75 0.72 0.66 A212 4 xSKxlf 18.5 5.43 7.8 1.19 2.9 1.36 5.5 1.01 2.3 1.11 0.72 A213 4 x3-J/4x94 17.3 5.06 7.3 1.20 2.8 1.34 5.2 1.01 2.1 1.09 0.72 A214 4 x3y 2 x& 16.0 4.68 6.9 1.21 2.6 1.32 4.9 1.02 2.0 1.07 0.72 A215 4 x3y 2 x% 14.7 4.30 6.4 1.22 2.4 1.29 4.5 1.03 1.8 1.04 0.72 A216 4 X33^Xr L 13.3 3.90 5.9 1.23 2.1 1.27 4.2 1.03 1.7 1.02 0.72 A217 4 x3y 2 xy 2 11.9 3.50 5.3 1.23 1.9 1.25 3.8 1.04 1.5 1.00 0.72 A218 4 x3y 2 xJ- 10.6 3.09 4.8 1.24 1.7 1.23 3.4 1.05 1.3 0.98 0.72 A219 4 x3y 2 x% 9.1 2.67 4.2 1.25 1.5 1.21 3.0 1.06 1.2 0.96 0.73 A 98 4 x3y 2 x& 7.7 2.25 3.6 1.26 1.3 1.18 2.6 1.07 1.0 0.93 0.73 A 220 4x3 xf| 17.1 5.03 7.3 .21 2.9 1.44 3.5 0.83 1.7 0.94 0.64 A221 4 x3 xH 16.0 4.69 6.9 .22 2.7 1.42 3.3 0.84 .6 0.92 0.64 A222 4x3 xU 14.8 4.34 6.5 .22 2.5 1.39 3.1 0.84 .5 0.89 0.64 A223 4 x3 xy s 13.6 3.98 6.0 .23 2.3 1.37 2.9 0.85 .4 0.87 0.64 A224 4x3 x T 9 g 12.4 3.62 5.6 .24 2.1 1.35 2.7 0.86 .2 0.85 0.64 A225 4 x 3 xy 2 11.1 3.25 5.0 .25 1.9 1.33 2.4 0.86 .1 0.83 0.64 A226 4x3 x'& 9.8 2.87 4.5 .25 1.7 1.30 2.2 0.87 1.0 0.80 0.64 A227 4 x 3 x% 8.5 2.48 4.0 .26 1.5 1.28 1.9 0.88 0.87 0.78 0.64 A228 4x3 xA 7.2 2.09 3.4 .27 1.2 1.26 1.7 0.89 0.74 0.76 0.65 A 283 4 x 3 xM 5.8 1.69 2.8 1.28 1.0 1.24 1.4 0.89 0.60 0.74 0.65 A 229 3y 2 x 3 xfg 15.8 4.62 5.0 1.04 2.2 1.23 3.3 0.85 .7 0.98 0.62 A230 3Mx 3 xM 14.7 4.31 4.7 1.04 2.1 1.21 3.1 0.85 .5 0.96 0.62 A231 33/x 3 xJJ 13.6 4.00 4.4 1.05 1.9 1.19 3.0 0.86 .4 0.94 0.62 A232 3%x 3 xjMi 12.5 3.67 4.1 1.06 1.8 1.17 2.8 0.87 .3 0.92 0.62 A 233 3y 2 X 3 X T !< 5 11.4 3.34 3.8 1.07 1.6 1.15 2.5 0.87 .2 0.90 0.62 A 234 3y 2 x 3 xy 2 10.2 3.00 3.5 1.07 1.5 1.13 2.3 0.88 .1 0.88 0.62 A 235 3^x 3 x& 9.1 2.65 3.1 1.08 1.3 1.10 2.1 0.89 0.98 0.85 0.62 A 236 3y 2 x 3 xH 7.9 2.30 2.7 1.09 1.1 1.08 .8 0.90 0.85 0.83 0.62 A237 6.6 1.93 2.3 1.10 0.96 1.06 .6 0.90 0.72 0.81 0.63 A286 3y2X 3 xJJ 5.4 1.56 1.9 1.11 0.78 1.04 .3 0.91 0.58 0.79 0.63 A238 3Kx2^xJJ 12.5 3.65 4.1 1.06 1.9 1.27 .7 0.69 0.99 0.77 0.53 A239 3y 2 x2y 2 x% 11.5 3.36 3.8 1.07 1.7 1.25 .6 0.69 0.92 0.75 0.53 A 240 3y 2 x2y 2 x-f e 10.4 3.06 3.6 1.08 1.6 1.23 .5 0.70 0.84 0.73 0.53 A241 3y 2 x2y 2 xy 2 9.4 2.75 3.2 1.09 1.4 1.20 .4 0.70 0.76 0.70 0.53 A 242 3}/ 2 x2]/ 2 x-f s 8.3 2.43 2.9 1.09 1.3 1.18 1.2 0.71 0.68 0.68 0.54 A 243 3y 2 x2y 2 x% 7.2 2.11 2.6 1.10 1.1 1.16 1.1 0.72 0.59 0.66 0.54 A 244 3%x2y 2 x-fa 6.1 1.78 2.2 1.11 0.93 1.14 0.94 0.73 0.50 0.64 0.54 A 245 32^x2 i^xj-^ 4.9 1.44 1.8 1.12 0.75 1.11 0.78 0.74 0.41 0.61 0.54 150 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL ANGLES Concluded ""v 2 i L ^ >k_j E ^ Q- _ Weight Area of Axis 1-1 Axis 2-2 Axis 3-3 Section oize per Sec- Index Foot tion I r S x I r S y rmin. Inches Lb8. In. In> In. In.3 In. In* In. In.8 In. In. A 252 3 x2^x 1 % 9.5 2.78 2.3 0.91 1.2 1.02 1.4 0.72 0.82 0.77 0.52 A 253 3 x2>2X>i 8.5 2.50 2.1 0.91 1.0 1.00 1.3 0.72 0.74 0.75 0.52 A 254 7.6 2.21 1.9 0.92 0.93 0.98 1.2 0.73 0.66 0.73 0.52 A 255 3 x23^x|^ 6.6 1.92 .7 0.93 0.81 0.96 1.0 0.74 0.58 0.71 0.52 A 256 3 x2^x T s ff 5.6 1.62 .4 0.94 0.69 0.93 0.90 0.74 0.49 0.68 0.53 A 257 4.5 1.31 .2 0.95 0.56 0.91 0.74 0.75 0.40 0.66 0.53 A 258 3 x 2 x^ 7.7 2.25 .9 0.92 1.0 1.08 0.67 0.55 0.47 0.58 0.43 A 259 3x2 x T 7 s 6.8 2.00 .7 0.93 0.89 1.06 0.61 0.55 i 0.42 0.56 0.43 A260 3x 2 x|l 5.9 1.73. .5 0.94 0.78 1.04 0.54 0.56 0.37 0.54 0.43 A261 3x2 x T 5 s 5.0 1.47 .3 0.95 0.66 1.02 0.47 0.57 0.32 0.52 0.43 A 262 3x2xM 4.1 1.19 .1 0.95 0.54 0.99 0.39 0.57 0.25 0.49 0.43 A264 2^x 2 x^ 6.8 2.00 1.1 0.75 0.70 0.88 0.64 0.56 0.46 0.63 0.42 A 265 2^X 2 Xy% 6.1 1.78 1.0 0.76 0.62 0.85 0.58 0.57 i 0.41 0.60 0.42 A 266 2J4x 2 x?^ 5.3 1.55 0.91 0.77 0.55 0.83 0.51 0.58 0.36 0.58 0.42 A 267 2^x 2 x" s 4.5 1.31 0.79 0.78 0.47 0.81 0.45 0.58 i 0.31 0.56 i 0.42 A 268 2^x 2 xJ4 3.62 1.06 0.65 0.78 0.38 0.79 1 0.37 0.59 0.25 0.54 i 0.42 A 269 2J^x 2 X T 3 S 2.75 0.81 0.51 0.79 0.29 0.76 0.29 0.60 0.20 0.51 0.43 A523 2>x 2 x>| 1.86 0.55 0.35 0.80 0.20 0.74 0.20 0.61 0.13 0.49 0.43 A610 2J/xlXx 6 3.92 1.15 0.71 0.79 0.44 0.90 0.19 0.41 0.17 0.40 0.32 A611 2J4xl^xki 3.19 0.94 0.59 0.79 0.36 0.88 0.16 0.41 0.14 0.38 0.32 A612 2>^xl>ix T 3 5 2.44 0.72 0.46 0.80 0.28 0.85 0.13 0.42 0.11 0.35 0.33 A270 2Kxl^x}^ 5.6 1.63 0.75 0.68 0.54 0.86 0.26 0.40 0.26 0.48 0.32 A271 2^xl^x T 7 5 5.0 1.45 0.68 0.69 0.48 0.83 0.24 0.41 0.23 0.46 0.32 A272 2i^xlV^x5^ 4.4 1.27 0.61 0.69 0.42 0.81 0.21 0.41 0.20 0.44 0.32 A273 3.66 1.07 0.53 0.70 0.36 0.79 0.19 0.42 0.17 0.42 0.32 A274 2.98 0.88 0.44 0.71 0.30 0.77 0.16 0.42 0.14 0.39 0.32 A275 2.28 0.67 0.34 0.72 0.23 0.75 0.12 0.43 0.11 0.37 0.33 A 631 2 xlMx% 3.99 1.17 0.43 0.61 0.34 0.71 0.21 0.42 0.20 0.46 0.32 A614 2 xl^x^g 3.39 1.00 0.38 0.62 0.29 0.69 0.18 0.42 0.17 0.44 0.32 A615 2 xl>ixM 2.77 0.81 0.32 0.62 0.24 0.66 0.15 0.43 0.14 0.41 0.32 A616 2 xlHxfg 2.12 0.62 0.25 0.63 0.18 0.64 0.12 0.44 0.11 0.39 0.32 A 525 2 xl>^x>6 1.44 0.42 0.17 0.64 0.13 0.62 0.09 0.45 0.08 0.37 0.33 A 646 2 xljx^ 2.55 0.75 0.30 0.63 0.23 0.71 0.09 0.34 0.10 0.33 0.27 A 645 2 xl^x/s 1.96 0.57 0.23 0.64 0.18 0.69 0.07 0.35 0.08 0.31 0.27 A618 IMxl^xK 2.34 0.69 0.20 0.54 0.18 0.60 0.09 0.35 0.10 0.35 0.27 A619 l^XlMXfg 1.80 0.53 0.16 0.55 0.14 0.58 0.07 0.36 0.08 0.33 I 0.27 A 620 IjJixlMx^ 1.23 0.36 0.11 0.56 0.09 0.56 0.05 0.37 0.05 0.31 0.27 A 670 A 623 i$[}fg 2.59 2.13 0.76 0.63 0.16 0.13 0.45 0.46 0.16 0.13 0.52 0.50 0.10 0.08 0.35 0.11 0.36 0.09 0.40 0.38 0.26 0.26 A 624 IHxltfxA 1.64 0.48 0.10 0.46 0.10 0.48 0.07 0.37 i 0.07 0.35 0.26 151 CARNEGIE STEEL COMPANY ELEMENTS OF EQUAL TEES 1- 2 I r~L -s If __J Section Index Size Weight Foot Area of Sec- tion Axis 1-1 Axis 2-2 Flange Stem Min. Thickness I r S X I r S Flange Stem In. In. In. la. Lbs. In.2 In.* In. In.3 In. In* In. In.3 T 1 4 4 K K 13.5 3.97 5.7 1.20 2.0 1.18 2.8 0.84 1.4 T 2 4 4 M M 10.5 3.09 4.5 1.21 1.6 1.13 2.1 0.83 1.1 T 3 SK 3K K K 11.7 3.44 3.7 1.04 1.5 1.05 1.0 0.74 1.1 T 4 3K 3K K % 9.2 2.68 3.0 1.05 1.2 1.01 1.4 0.73 0.81 T 6 3 3 H Ml 9.9 2.91 2.3 0.88 1.1 0.93 1.2 0.64 0.80 T 7 3 3 T% i 8.9 2.59 2.1 0.89 0.98 0.91 1.0 0.63 0.70 T 8 3 3 ^ H 7.8 2.27 1.8 0.90 0.86 0.88 0.90 0.63 0.60 T 9 3 3 IS A 6.7 1.95 1.6 0.90 0.74 0.86 0.75 0.62 0.50 T 10 2^ 2K H M 6.4 1.87 1.0 0.74 0.59 0.76 0.52 0.53 0.42 T 11 2K 2K A A 5.5 1.60 0.88 0.74 0.50 0.74 0.44 0.52 0.35 T 12 2*A 2M A A 4.9 1.43 0.65 0.67 0.41 0.68 0.33 0.48 0.29 T 13 2 1 A VA M M 4.1 1.19 0.52 0.66 0.32 0.65 0.25 0.46 O.22 T 14 2 2 T B 5 A 4.3 1.26 0.44 0.59 0.31 0.61 0.23 0.43 0.23 T 15 2 2 M M 3.56 1.05 0.37 0.59 0.26 0.59 0.18 0.42 0.18 T 16 1% 1M M M 3.09 0.91 0.23 0.51 0.19 0.54 0.12 0.37 0.14 T 17 iy* IK M M 2.47 0.73 0.15 0.45 0.14 0.47 0.08 0.32 0.10 T 18 iy 2 IK T 3 5 i 3 s 1.94 0.57 0.11 0.45 0.11 0.44 0.06 0.32 0.08 T 19 1M 1M M M 2.02 0.59 0.08 0.37 0.10 0.40 0.05 0.28 0.07 T20 1M 1M T 3 S A 1.59 0.47 0.06 0.37 0.07 0.38 0.03 0.27 0.05 T 21 i l T 3 * i 3 5 1.25 0.37 0.03 0.29 0.05 0.32 0.02 0.22 0.04 T22 i l H H 0.89 0.26 0.02 0.30 0.03 0.29 0.01 0.21 0.02 152 ELEMENTS OF SECTIONS ELEMENTS OF UNEQUAL TEES f i i ; i 1 * \f_ ; Size Wpitrht Area Axis 1-1 Axis 2-2 \f " ' of Section Index Flange Stem Thickness per Foot Sec- tion I r S X I r S Flange Stem In. In. In. In. Lbs. In.2 In> In. In.s In. In* In. In* T 50 5 3 H If 13.4 3.93 2.4 0.78 1.1 0.73 5.4 .17 2.2 T 51 5 2H H A 10.9 3.18 1.5 0.68 0.78 0.63 4.1 .14 .6 T 52 4^ VA T 7 * ii 15.7 4.60 5.1 1.05 2.1 1.11 3.7 0.90 .7 T 54 VA 3 H H 9.8 2.88 2.1 0.84 0.91 0.74 3.0 .02 .3 T 53 *X 3 T'tJ I 5 8 8.4 2.46 1.8 0.85 0.78 0.71 2.5 .01 .1 T 56 VA 2H H N 9.2 2.68 1.2 0.67 0.63 0.59 3.0 .05 .3 T 55 VA 2X A A 7.8 2.29 1.0 0.68 0.54 0.57 2.5 1.05 T 57 4 5 H H 15.3 4.50 10.8 1.55 3.1 1.56 2.8 0.79 T 58 4 5 % H 11.9 3.49 8.5 1.56 2.4 1.51 2.1 0.78 T 59 4 4^ X H 14.4 4.23 7.9 1.37 2.5 1.37 2.8 0.81 , T 60 4 4^ H % 11.2 3.29 6.3 1.39 2.0 1.31 2.1 0.80 T 61 4 3 S A % 9.2 2.68 2.0 U.sf, 0.90 0.78 2.1 0.89 1. T 44 4 3 A A 7.8 2.29 1.7 0.87 0.77 0.75 1.8 0.88 0.88 T 62 4 VA H % 8.5 2.48 1.2 0.69 0.62 0.62 2.1 0.92 1.0 T 63 4 2^ A i s s 7.2 2.12 1.0 0.69 0.53 0.60 1.8 0.91 0.88 T 64 4 2 ^ N 7.8 2.27 0.60 0.52 0.40 0.48 2.1 0.96 1.1 T 65 4 2 A T 6 S 6.7 1.95 0.53 0.52 0.34 0.46 1.8 0.95 0.88 T 66 VA 4 H 12.6 3.70 5.5 1.21 2.0 1.24 1.9 0.72 1.1 T 67 3K 4 H H 9.8 2.88 4.3 1.23 1.5 1.19 1.4 0.70 0.81 T 69 3^ 3 H 1 A 10.8 3.17 2.4 0.87 1.1 0.88 .9 0.77 1.1 T 70 3^ 3 % H 8.5 2.48 1.9 0.88 0.89 0.83 .4 0.75 0.81 T 71 &A 3 A % 7.5 2.20 1.8 0.91 0.85 0.85 .2 0.74 0.68 T 72 3 4 M Yz 11.7 3.44 5.2 1.23 1.9 1.32 .2 0.59 0.81 T 73 3 4 A I 7 F 10.5 3.06 4.7 1.23 1.7 1.29 .1 0.59 0.70 T 74 3 4 K H 9.2 2.68 4.1 1.24 1.5 1.27 0.90 0.58 0.60 T 75 3 3H H H 10.8 3.17 3.5 1.06 1.5 1.12 .2 0.62 0.80 T 76 3 3>i A T 7 B 9.7 2.83 3.2 1.06 1.3 1.10 .0 0.60 0.69 T 77 3 3>3 ^ N 8.5 2.48 2.8 1.07 1.2 1.07 0.93 0.61 0.62 T 78 3 2K N 7.1 2.07 1.1 0.72 0.60 0.71 0.89 0.66 0.59 T 79 3 2H 1% T B B 6.1 1.77 0.94 0.73 0.52 0.68 0.75 0.65 0.50 T 31 3 2H K M 5.0 1.47 0.78 0.73 0.43 0.66 0.61 0.64 0.40 T 82 2 1 A 3 H N 7.1 2.07 1.7 0.91 0.84 0.95 0.53 0.51 0.42 T 83 2X 3 A T S F 6.1 1.77 1.5 0.92 0.72 0.92 0.44 0.50 0.35 T 86 2 1 A 1M T 3 8 A 2.87 0.84 0.08 0.31 0.09 0.32 0.29 0.58 0.23 T 87 2 1^ H H 3.09 0.91 0.16 0.42 0.15 0.42 0.18 0.45 0.18 T 519 1 1 A 2 I 3 * i 3 a 2.45 0.72 0.27 0.61 0.19 0.63 0.06 0.92 0.08 T605 iK l?i H H 1.25 0.37 0.05 0.37 0.05 0.33 0.04 0.32 0.05 T603 IX No.9 H 0.88 0.26 0.01 0.16 0.01 0.16 0.02 0.31 0.04 153 CARNEGIE STEEL COMPANY ELEMENTS OF ZEES 12 /3 f ^\ Section Index Size Weight Foot Area of Sec- tion Axia 1-1 Axis 2-2 Axia 3-3 Depth flanges Thick- ness I r S I r S rmin. In. In. In. Lbs. In.2 In.4 In. In.3 In.* In. In.3 In. Z 3 6 lb 1 I 34.6 32.0 29.4 10.17 9.40 8.63 50.2 46.1 42.1 2.22 2.22 2.21 16.4 15.2 14.0 19.2 17.3 15.4 1.37 1.36 1.34 6.0 5.5 4.9 0.83 0.82 0.81 Z 2 P 1 8 15 28.1 25.4 22.8 8.25 7.46 6.68 43.2 38.9 34.6 2.29 2.28 2.28 14.1 12.8 11.5 16.3 14.4 12.6 1.41 1.39 1.37 5.0 4.4 3.9 0.84 0.82 0.81 Z 1 P 1 I 18.4 15.7 6719 5.39 4.59 34.4 29.8 25.3 2.36 2.35 2.35 11.2 9.8 8.4 12.9 11.0 9.1 1.44 1.43 1.41 3.8 3.3 2.8 0.84 0.83 0.83 Z 6 5 Ib II II ii 28.4 26.0 23.7 8.33 7.64 6.96 28.7 26.2 23.7 1.86 1.85 1.84 11.2 10.3 9.5 14.4 12.8 11.4 .31 .30 .28 4.8 4.4 3.9 0.76 0.74 0.73 Z 5 5 p S 22.6 20.2 17.9 6.64 5.94 5.25 24.5 21.8 19.2 1.92 1.91 1.91 9.6 8.6 7.7 12.1 10.5 9.1 .35 .33 .31 3.9 3.5 3.0 0.76 0.75 0.74 Z 4 P li 1 16.4 14.0 11.6 4.81 4.10 3.40 19.1 16.2 13.4 1.99 1.99 1.98 7.4 6.4 5.3 9.2 7.7 6.2 .38 .37 .35 2.9 2.5 2.0 0.77 0.76 0.75 Z 9 J8 11 If H 23.0 20.9 18.9 6.75 6.14 5.55 15.0 13.5 12.1 1.49 1.48 1.48 7.3 6.7 6.1 11.2 10.0 8.7 1.29 1.27 1.25 4.0 3.6 3.2 0.68 0.67 0.66 Z 8 P 1 | 18.0 15.9 13.8 5.27 4.66 4.05 12.7 11.2 9.7 1.55 1.55 1.55 6.2 5.5 4.8 9.3 8.0 6.7 1.33 1.31 1.29 3.2 2.8 2.4 0.68 0.67 0.66 Z 7 P 1 I 12.5 10.3 8.2 3.66 3.03 2.41 9.6 7.9 6.3 1.62 1.62 1.62 4.7 3.9 3.1 6.8 5.5 4.2 1.36 1.34 1.33 2.3 1.8 1.4 0.69 0.68 0.67 Z12 3 iff % 14.3 12.6 4.18 3.69 5.3 4.6 1.12 1.12 3.4 3.1 5.7 4.9 1.17 1.15 2.3 2.0 0.54 0.53 Zll gft ili Ps 11.5 9.8 3.36 2.86 4.6 3.9 1.17 1.16 3.0 2.6 4.8 3.9 1.19 1.17 1.9 1.6 0.55 0.54 Z 10 !* IS a 8.5 6.7 2.48 1.97 3.6 2.9 1.21 1.21 2.4 1.9 3.6 2.8 1.21 1.19 1.4 1.1 0.56 0.55 154 ELEMENTS OF SECTIONS ELEMENTS OF H BEAMS 2 3 , ' 1 ^ -s 2 Section Index Depth of Beam Weight Foot Area of Section Width of Flange c Thick- ness f Web Axis 1-1 Axis 2-2 I r S I r S In Lbs IP 2 In In. In* In In 3 In.* In. In 8 H4 H3 H2 H 1 8 6 5 4 34.0 23.8 18.7 13.6 10.00 7.00 5.50 4.00 8.0 6.0 5.0 4.0 .375 .313 .313 .313 115.4 45.1 23.8 10.7 3.40 28.9 2.54 15.0 2.08 9.5 1.63 5.3 35.1 1.87 14.7 1.45 7.9 1.20 3.6 0.95 8.8 4.9 3.1 1.8 ELEMENTS OF CROSS TIES 1 I'l T g 2 , * \2 Section Index Depth of Sec- tion Wt. Foot Area of Sec- tion Width of Flange Thick- ness of Web Axis 1-1 Axis 2-2 I r S K I r S Top Bottom In. Lbe. In.2 In. In. In. In.* In. In.8 l r i. In.* In. In.3 M21 M25 M24 5.50 4.25 3.00 20.0 14.5 9.5 5.71 4.10 2.80 4.5 4.0 3.0 8.0 6..0 5.0 .250 .250 .203 30.9 13.0 4.3 2.33 9.7 2. 1.78 5.5 1. 1.24 2.5 1. 53 14.9 1.62 38 6.1 1.22 27 3.1 1.05 3.7 2.0 1.2 (r j 2 I 1 ' I \2 Section Index Depth of Sec- tion Wt. Foot Area of Sec- tion Width of Section Thick- ness Axis 1-1 Axis 2-2 I r S 2 c I r S Top Botton In. Lbe. In.2 In. In. In. In* In. In.s i! i. ID.* In. In.3 M27 M20 2.25 2.00 9.0 6.0 2.62 1.72 5.5 4.5 7.0 6.0 .250 .313 1.3 0.71 0.70 0.79 0.( 0.64 0.50 0.< 53 16.8 2.53 >9 8.4 2.22 4.8 2.8 155 CARNEGIE STEEL COMPANY ELEMENTS OF BULB BEAMS |2 | "I 1 't-y-J.2 Depth Wt. Area _ r Width Thick- Axis 1-1 Axis 2-2 Section Index of Beam Foot ot Sec- tion of Flange ness of Web I r S X I r S y In. Lbs. In.2 In. In. In* In. In.3 In. In.* In. In.3 In. B 100 10 10 36.G 28.1 10.62 8.12 5.500 5.250 0.625 0.375 140.4 118.6 3.64 3.82 25.3 20.7 4.45 4.28 7.6 6.3 0.84 0.88 2.8 2.4 2.75 2.63 9 30.1 8.835.125'0.563 9 ,.s 3.29 19.4 4.06 5.4 0.78 2.1 2.56 B 101 9 24.3 7.154.938 0.375 84.0 3.43 16.6 3.95 4.6 0.80 1.9 2.47 Bi no 8 24.2 7.11 5.156 0.469 62.8 2.97 14.1 3.54 4.5 0.79 1.7 2.58 iUz 8 20.0 5.86 5.0000.313 55.6 3.08 12.2 3.43 3.9 0.82 1.6 2.50 B-i A.Q 7 23.3 6.855.0940.531 45.5 2.57 11.7 3.11 4.3 0.79 1.7 2.55 lUo 7 18.1 5.324.8750.313 3 ,. 2.51 10.0 3.34 2.9 0.71 1.3 0.70 B133 7 18.3 5.37 3.000 0.438 34.9 2.56 9.6 3.36 2.6 0.69 1.1 O.G8 B140 7 16.1 4.71 3.000 0.344 32 .2 2.61 8.7 3.30 2.7 0.76 1.2 0.72 B134 6 17.3 5.06 3.000 0.500 23.9 2.16 7.6 2.84 2.5 0.70 1.1 0.71 B142 6 15.0 4.38 3.000 0.406 21 .1 2.19 6.7 2.84 2.3 0.72 1.0 0.69 B135 6 13.8 4.04 3.000 0.375 20.1 2.21 6.6 2.96 1.9 0.69 0.82 0.65 B136 6 12.4 3.62 3.000 0.313 IS .c 2.28 5.7 2.71 1.8 0.70 0.75 0.64 B137 5 10.0 2.94 2.500 0.313 10.2 1.86 4.1 2.49 0.95 0.57 0.49 0.57 B122 4 14.3 4.21 3.500 0.500 .7 1.44 3.7 1.65 3.9 0.96 1.5 0.99 B123 4 11.9 3.48 3.500 0.375 7.9 1.50 3.5 1.77 3.1 0.94 1.2 0.94 156 ELEMENTS OF SECTIONS ELEMENTS OF TROUGH PLATES b ti -| I f yf^ ^ ^ > Dinw nsions Wei hi ,1 Area of Section Axis 1-1 Section Index a b ( 1 t ti Fot I r S X In. In. I n. In. In. Lbs. In.2 In.* In. In. In. M 14 9J^ 5 2 M 13 9J4 5 3 M 12 QY Z 5 3 M 11 9J4 5 3 M 10 9H 5 3 S A % % 23.2 y H i* 21.4 % ^ ^ 19.7 M A 3 9 -f 18.0 H 1 A H 16.3 6.82 6.30 5.79 5.28 4.78 5.5 5.0 4.6 4.1 3.7 0.90 0.90 0.90 0.91 0.91 2.2 2.0 1.8 1.6 1.4 1.21 1.19 1.16 1.12 1.08 ELEMENTS OF CORRUGATED PLATES , 1 ^^~^-^ ^ i tj::pz^ r;- Dime nsions Wei| M ht ">t Area of Section Axis 1-1 Section Index a b < 1 t r Fo< I r S X In. In. I n. In. In. Lbs. In.2 In.* In. In.3 In. M 35 12 r 3 s 7 T 3 8 2 M 34 12 A 7 A 2 M 33 12A 7fs 2 M 32 8^ 5H 1 M 31 8% 5H 1 M 30 8% 5J^ 1 % Y* 3y 8 23.7 1? i 7 a 3K 20.8 M % 3H 17.8 % H 3% 12.0 I 9 a T 5 S 3^ 10.1 ^ }4 35i 8.1 6.97 6.10 5.22 3 53 2.96 2.38 6.8 5.8 4.8 1.3 0.95 0.64 0.99 0.98 0.96 0.62 0.57 0.52 4.5 3.9 3.3 1.4 1.1 0.80 1.34 1.32 1.31 0.74 0.72 0.70 ELEMENTS OF U. S. STEEL SHEET PILING SECTIONS \~7^\ M 104 M 103 i^ky ^i " f \ I b -*| Di mansions Weight per Area of Axis 1-1 Section Index a b c d t Foot Section I r S In. In. In. In. In. Lbs. In.2 In* In. In.8 M 104 13U 12V4 M 103 Q% 9 2A iH M 38 16 11.24 4.71 8.3 1.5 0.87 0.56 4.3 1.1 157 CARNEGIE STEEL COMPANY ELEMENTS OF A. S. C. E. AND LIGHT RAILS hr . ^ d ^ 5 5U-^_-_-if X 12'Rad. V j, . 1 "4^^ .1 4. / J i * J Section Index Weight per Yard Area of Section Dimensions Axis 1-1 a b c d e f g h I r S X Pounds In.2 In. In. In. In. In. In. In. In. In* In. In.s Ins. *110A 110 10.80 6K 6K 2% lit 344 1 II ~m 55.2 2.26 17.2 2.92 100A 100 9.84 5% SM 2M 143 3 S 6 4 ii Tff 2r% 5 5 44.0 2.11 14.6 2.73 95A 95 9.28 5l 9 5 5! 9 B 2H 111 2 SI Ii I 9 5 2A 5 8 38.8 2.05 13.3 2.65 90A 90 8.83 5% 5% 2^ 145 IS A 2A 8 s 34.4 1.97 12.2 2.55 85A 85 8.33 5 T 3 B 5 T 3 5 2 T % lit 2M SI I 9 5 245 30.1 1.90 11.1 2.47 80A 80 7.86 5 5 2^ 1M 2^ H 11 2/5 26.4 1.83 10.1 2.38 75A 75 7.33 4ii 4*1 24i IH 2 IS 2 41 2ig 22.9 1.77 9.1 2.30 70A 70 6.81 4K 4% 2/5 144 2ii it If 2 S 3 4 19.7 1.70 8.2 2.22 65A 65 6.33 4/5 4/5 241 Ia 9 5 2y s If H Ifi 16.9 1.63 7.4 2.14 60A 60 5.93 4M 4M 2^ 1A 24J M ii liil 14.6 1.57 6.6 2.05 55A 55 5.38 4 A 4 r 1 5 2K 141 241 i 4f liii 12.0 1.50 5.7 1.97 50A 50 4.87 3% 3K 2K IK 2/5 ii A Iff 9.9 1.43 5.0 1.88 45A 45 4.40 314 3H 2 IA 114 ii *I 111- 8.1 1.36 4.3 1.78 40A 40 3.94 3J^ 3K IK IB? ifi % 1 Iffa 6.6 1.29 3.6 1.68 35A 35 3.44 3/5 3 T 5 5 1M Ii ill Ii II I4f 5.2 1.23 3.0 1.60 30A 30 3.00 3K 3K IH K ill 41 H Iff 4.1 1.16 2.5 1.52 25A 25 2.39 2M 2M IM SS in M i! iis 2.5 1.02 1.8 1.33 20A 20 2.00 2% 2% 144 II 1M A M 141 1.9 0.99 1.4 1.27 16A 16 1.55 2% 2M 141 M ill K A lyls 1.2 0.89 1.0 1 15 14A 14 1.34 2A 2A IA K Is 3 5 44 M 11 0.76 0.75 0.73 1.02 12A 12 1.18 2 2 i IB 1;J 3 2 44 A f| 0.66 0.75 0.63 0.96 10A 10 0.96 1M 1M if II ii 41 A II 0.40 0.65 0.46 0.87 8A 8 0.77 IA 1A H 4$ & A. H 0.26 0.58 0.32 0.75 *Not rolled by Carnegie Steel Company. 158 ELEMENTS OF SECTIONS ELEMENTS OF A. R. A. RAILS . 944 38.790 40.698 188.416 193.850 199.389 205.031 210.779 216.634 222.596 44.698 46.793 48.952 51.177 53.468 55.827 5S.254 234.847 241.137 247.538 254.052 260.679 267.421 274.277 y& 1485.893 1507.324, 1528.961 y 2 1550.802 I '1572.851 1595.108 1617.575 281.250 288~340 295.548 1 302.875 1310.323 317.891 325.582 333.396 63.317 65.954 68.665 71.448 74.305 77.238 80.247 1^1663.136 1686.236 2.543 2.861 3.204 3.573 3.970 4.395 4.849 5.849 6.397 6.978 7.594 8.244 8.931 9.655 sr,.4'.s 89.741 93.064 96.469 99.955 103.525 107.178 349.396 357.585 365.900 K 374.344 382.916 391.618 400.452 11.218 12.059 12.941 13.865 14.832 15.843 16.898 !1640.250 33 2994.750 H3028.911 M 3063.329 1709.5471 3^3098.009 1733.0731 H3132.948 1756.814 5^3168.150 1780.770 % 3203. 614 872.294|j % 1804.9431 % 3239.341 887.333! 28 1829.333 34 3275.333 ^3311.592 U 1853. 943 M1878.773 : 3^1903.823 y 2 1929. 094 y s 1954.5881 % 1980.3051 y 8 2006.249! Si33S4.909 1^3421.969 5^3459.300 % 3496.900 K3534.772T 2032.41735 13572.917 ^2058.811 ^2085.434 421 12.285 ^2139.365 ^2166.676! ^2194.218 ^1134.094!! ^2221.992 24 1152.000;30 2250.00036 3888.000 ^3611.334 1^3650.027 ^3688.994 y, 3728. 240 5^3767.763 ^3807.561 ?$ 3847.641 161 CARNEGIE STEEL COMPANY -1 H< Ai 3L1 IE A Ar RE X>W ROUND SI 3 AND RADII OF 7r(D 2 -d 2 ) ACTIONS GYRATION 0.7854 (D 2 - i 2 ) sq. in. in. "1 Q p ea idius of 4 gyrati 4 Dia. Inches QQ Thickness in Inches 1% iy a 1% 1% 1% 2 * He s /s 1/a l >8 94 '/8 1 14* 1/4 2 A r 1.37 _0_63 1,6 0.61 _ j ! : 3 4 A r 2.16 0~98 2.64| 0.96 i ~| ~| . ! ~ A r 2.95 L33 3.62 1.31 4.27 1.29 5.50 1.25 8.59 1.56 - 5 A r 3.73 1.68 4.60 L66 5.45 1.64 7.07 1.60 10.01 1.53 - 14.09 1.84 16.84 2.19 ~ _____ 6 7 A r A r 4.52 2.03 5.30 2.39 5.58 2.01 6.57 2.37 6.63 1.99 7.80 2.35 8.6410.5512.37 1.951 1.91 1.88 10.21,12.52,14.73 15.71 i T80| _ 18.85! 20. 76 22.58 2.15 2.12^2.08 8 A r 6.09 2.74 7.55 2.72 8.98 2.70 10.16 _ap_5 11.34 ~3Tl 11.78 14.4817.08 2.62 2.58 1 9.59121.99 24.30|26.51 2-54| 2.50 2^46 2.43 28.62 2.39 30.03 2.36 9 A r 6.87 3.09 8.53 3.07 Tol 14.92 3.36 16.4419.44 2.97 2.93 22.33 2.89 25.13 ! 2783 2.85 1781 30.43 2.78 34.36 Tl3 32.94 2.74 37.26 a"09 35.34 2.70 37.65 2.67 39.86 2.64 1786 2.95 10 A r 7.66 3.45 9.51 3.43 18.41|21.79 25.08]28.27:31.37 3.32 3.28 3.24 3.20| 3.16 40.06 3^5 42.76 3.02 47.86 3.36 45.36 2.98 50.85 3.33 50.27 2.92 11 A r 8.44'10.4912.52 16.49 20.37!24.15 3.80 3.78 3.76 3.72 3.67^63 27.83 3.59 31.4234.9038.29 3.55 3.51 3.48 34.56 ! 38.44:41.22 41.58 3:44 44.77 ~3.40 53.75 3.29 56.55 3.26 12 A 9.23 11.47 TT3 1216 13.7018.06 22.33 Ip_3 24.30 T3_8 26.26 I&23 T09 301_9 J.44 32.15 IT? w> m 6.50 38.04 6.85 26.51 30.58 45.90 49.48 52.97 56.35 3.68 61.85 59.64 62.83 3."61 r 1001 14.11 14.87 4.07 3.99 3.95 3.91 3.87 41.97 3.83 46.14 3.79 3.75 3.71 3.64 13 A r A r 19.63 28.86 33.3337.70 50.22 54.19 58.07 65.53 69.12 4.51 4.49| 4.471 4.42 10.8013.44:16.0521.21 4.86 4.84 4.82 4.78 4.34 31.22 4.69 4.30 4.26| 4.22 86.0840.84:45.50 4.65 4.61 4.57 4.18 50.07 4.53 4.14 54.54 4.49 4.10 58.91 4.45 4.06 J53.18 4.41 4.03 67.35 4.38 5.99 71.42 4.34 3.95 75.40 4.30 81.68 4.65 87.97 5.00 94.25 5.35 100.53 5.70 106.82 6~.05 113.10 6.40 14 15 10 17 18 19 20 A r A r A r A 1 A r 1 1.58 14.42 1 17.23 22. 78 5.22 5.19 5.17 5.13 12.37 15.40 18.4 1;24.35 ^5.57 5.55 5.53 5.48 1 3.1 6'1 6.38 19.59 25.92 5.92 5.90 5.88|~5l4 1 3.9417.36120.76 27.49 6.28 6.25 6.23 6.19 14.7318.3521.9429.06 6.33 6.61 6.59 6.54 15.5119.3323.1230.63 6.981 6.961 6.94! 6.90 33.5838.83 5.05 5.00 35.93 41.58 5.40 5.36 38.2944.33 T75 5.71 40.6447.07 6.10 6.06 43.0049.82 6.46 6.42 45.36 52.57 6.81 6.77 43.98 ! 49.04:54.00 47l2 1 | 52!5757l2 5.32 5.27 5.23 50.2756.1161.85 5.67 5.63^59 53.4159.6465.78 6.02^98 5^94 56.55 ! 63.18 69.70 6.37 6.33 6.29 59.69 66.71 73.63 6.731 6.691 6.64 58.86 4.84 63.18 5.19 67.50 "5.55 71.82 5.90 76.13 6.25 80.45 6.60 63.62 4.80 68.33 5.15 73.04 77.75 5^86 82.47 87.18 6.56 68.28 4.76 73.39 5.n 78.49 5747 83.60 5.82 88.70 6.1 7 93.81 6.52 72.85 4.73 77.31 4.69 83.20 5.04 89.09 5.39 94.98 5.74 100.87 6.09 [06.77 6.44 78.34 5.08 83.84 5.43 89.34 5.78 94.84 6.13 100.33 6.48 162 ELEMENTS OF SECTIONS HOLLOW SQUARE SECTIONS AREAS AND RADII OF GYRATION Area = D 2 d 2 sq. in. Radius of gyration= 12 8.4411.0013.4415.7517.9420.00 _&7l| 2.66J 2.62| 2.5?| 2.531 2.48J 2.44; 2.40 18.4421.7524.9428.0030.9433. 3.12J 3.07J 3.021 2.98 2.93J 10.75 13.3615. 94 ! 2 1.00 25.94 30. 75 35.44 40.00 44.44 48.75 52.94' 57.00 60.94' 64. 4.3?| 4.34J 4.29; 4.24| 4.20J 4.151 4101 4.06 4.01 1 I 12 14 15 20 A JLK; 14.61 17.44 23.00 28.44 33.75 38.94 44.00 48.94 53.75 5S.44 .75!_170 4.65J 4.60: 4.56^ 4.51 4.46 : 4.42' 4.37| _ . . . : . . ^2.75i 15.86! 18.94:25.00 30.94 36. 75 42.44 48.00 53.44 58. 75; 63.94 _ . r 5.21J 5.18| 5.16| 5.11J 5.06J 5.01J 4.%|T92|1J7| * 27. 00 33.44 39. 75 45.94 52.00 57.94 63. 75j 69.44 94J42.75 49.4456.0062.4468.75 5.871 5.83J 5.78 5.73 : 5.68J 5.64 7552.9460.0066.9473.75 6.41' 6.38' 6.33! 6.2| 6.23! 6.1 9 ! 6.14: 6.09! 6.04 _ ____. . . . I(x75 20.86 24.94 33.00 40.94 48.75 56.44 64.00 71.44 7S.75 6.79 6.74; 6.69! 6.64, 6.59| 6.54 6.50 6.45 A 17.75 22.1126.4435.0043.4451.7559.9468.00 75.94 83.75 7.25 7.22 7.20 7.15 : 7.10| 7.05J 7.00 6.95! 6.90J 686 Q ?^9Q Q 0"" O 4 O~ AA *r n t r i ~r r;o i t ~o AA ori i i no -r A 18.75 23.36 27.94 37.00 45.94 54.75 63.44 72.00 80.44188.75 r | 7.66 7.63 7.61 7.56 7.51 7.46 7.41 7.3(> 7.31; 7.26 5.59| 80.44 6.00 KM 6.40 91.44 6.81 7.22 05.00,112.94! 120.75 128.44,136.00 7.17 7.12 7.08; 7.03 6.99 75 24.61 29.44 39.00 48.44 57.75 66.94 76.00 84.94 93.75 1 02.44 111.00 119.44 12JT.75 1 35.941 44. 00 7.58| 7.53J 7.49J 7.44J 7.39 8.0li 7.96J 7.91) 7.87| 7.82) 7.771 7.72) 7.671 7.62 3.80 3.76 63JO!_67.44 71.75 75.94 80.00 4.33 1 4.29 4.25! 4.20J 4.16 69.00J 73.94| 78.75 83.441 88.00 75-_,__^_,___, 4.97 81.00 86.94 92.75, 98.44104.00 5.55J 5.50 1 5.41 5.37 87.00, 93.44: 99.75:105.94.112.00 5.95; 5.91; 5.82 5.77 93.00, J9.94 106.75113.44120.00 '6.36 6.31! 6.2?| 6.23' 6.18 99O 106.44 113.75! 20.94 128.00 6.72J 6.67J 6.58 163 CARNEGIE STEEL COMPANY RADII OF GYRATION FOR TWO EQUAL ANGLES ( 2! 2 -Vi" to %" i" 77 ^ 7 ,> i ^ I i! 1 J UL 2 Single Angle Two Angles Radii of Gyration, Inches o- Weight, A - OQ Axis 2-2 t?izc, Inches Pounds j per Foot j Area, Inches- Axis 1-1 In Contact /i" Apart' W Apart y 2 " Apart 3 4" Apart 8 x 8 xiy 8 56.9 33.46 2.42 3.42 3.51 3.55 3.60 3.69 T6 42.0 24.68 2.46 3.37 3.46 3.50 3.55 3.64 Yi 26.4 15.50 2.50 3.33 3.41 3.45 ! 3.50 3.59 6x6x1 37.4 22.00 1.80 2.59 2.68 2.72 2.77 2.87 i 1 26.5 15.56 1.83 2.54 2.63 2.67 2.71 2.81 iHs 14.9 8.72 1.88 2.49 2.58 2.62 2.66 2.75 5x5x1 30.6 18.00 1.48 2.19 2.28 2.33 2.38 2.47 i 1 21.8 12.80 1.51 2.13 2.22 2.26 2.31 2.40 3^ 12.3 7.22 1.56 2.09 2.17 2.21 2.26 2.35 4 x 4 xi| 19.9 11.68 1.18 1.75 1.85 1.89 1.94 2.04 M 6.6 3.88 1.25 1.66 1.75 1.79 1.84 1.93 3i^x3?^x}| 17.1 10.06 1.02 1.55 1.65 1.70 .75 1.85 14 5.8 3.38 1.09 1.46 1.55 1.59 .64 1.73 3 x 3 x 5 / 8 11.5 6.72 0.88 1.32 1.41 1.46 .51 1.61 4.9 2.88 0.93 1.25 1.34 1.38 .43 1.53 2j^x2 J^xH 7.7 4.50 0.74 1.09 1.19 1.24 .29 1.39 M 4.1 2.38 0.77 1.05 1.14 1.19 .24 1.34 2x2 x/s 5.3 3.12 0.59 0.88 0.98 1.03 1.08 1.19 y 3.19 1.88 0.61 6.85 0.94 0.99 1.04 1.14 This table and the two following are employed in computing the safe resistance to comprc ssive stress of two angle s, back 1 ;o back , used as a strut or as the compression chord of a roof truss, etc., as follows: Obtain from the compression formula in use the allowed stress per square inch corresponding to the ratio of slenderness of the section, and multiply that value by the area. The result will be the allowable compressive stress. Example 1. Section given. Required the safe load in compression as per formula f =190001 00 1/r on a strut cornpo 3ed of to vo angl es 4" x 4 " x M . back to back, with an unsupported length of 9 feet. Area of Secton, A =3. 88 square inches; Least Radius, r = 1.25. Ratio of Slenderness, 1/r = 9 x 12-^1.25=86.4. Allowed Unit Stress, f = 19000 100 x 86.4 = = 10360 pounds per square inch. Safe Load, Af = 3.88 x 10360=40200 pounds. Example 2. Stress given. Required a section for a member in compression 12' 3" long, made of two angles separated by ^ inch gusset plates, to resist a total gtress of 35000 pounds; ratio of slenderness not to exceed 120. Assume 2 angles, 5" x 3" x r /i ", long legs, back to back. Area of Section, A = 4.80 square inches; Least Radius, r = l .26 inches. Ratio of Slendern ess. 1/r =12.25x 12-J-1.2( )= 116.7 Allowed Unit Stress, f = 19000- 100 x 116. 7=7330 pounds per square inch. Safe Stress, Af =4.80 x 7330 = 35200 pounds. In the first case the least radius is that about axis 1-1 ; in the second case about axis 2-2; in al cases the least radius de .termine 3 the ra tio of sle nderness and therewith the allowed safe compressive stress. In all cases also angles are to be secured together by stay rivets so spaced as to insure section acts as a unit. The ratio of slenderness of any single angle rivets must always be less than that of the strut or compression chord. the two that the between 164 ELEMENTS OF SECTIONS RADII OF GYRATION FOR TWO UNEQUAL ANGLES Long Legs Vertical 2 2 *! *4"to*' 1 If? ^~H P ^ U|U 2! 2' Single Angle Two Angles Radii of Gyration, Inches Size, Inches Weight, Pounds per Foot Inches 2 j A** 81 ' 1 Axis 2-2 In Contact M" Apart %" Apart l /z" Apart %" Apart 8x6x1 44.2 33.8 20.2 26.00 19.88 11.86 2.49 2.53 2.57 2.39 2.35 2.31 2.48 2.44 2.39 2.52 2.48 2.43 2.57 2.52 2.48 2.66 2.61 2.56 8 X3H*| 35.7 27.5 16.5 21.00 16.12 9.68 2.51 2.55 2.59 1.26 1.20 1.15 1.35 1.29 1.23 1.40 1.34 1.28 1.45 1.39 1.32 1.55 1.49 1.41 7 *3Kx 32.3 23.0 13.0 19.00 13.50 7.60 2.19 2.23 2.27 1.31 1.25 1.20 1.40 1.34 1.28 1.45 1.39 1.33 1.50 1.44 1.37 1.60 1.53 1.46 6x4x1 .It 30.6 21.8 12.3 18.00 12.80 7.22 1.85 1.89 1.93 1.60 1.55 1.50 1.69 1.63 1.58 1.74 1.68 1.62 1.79 1.73 1.67 1.89 1.82 1.76 5x4 x% N 28.9 20.6 9.8 24.2 11.0 17.00 12.12 5.74 14.22 6.46 1.85 1.89 1.95 1.52 1.59 1.37 1.31 1.25 1.66 1.58 1.47 1.41 1.33 1.76 1.66 1.51 1.45 1.37 1.80 1.70 1.56 1.49 1.42 1.85 1.75 1.66 1.60 1.50 1.95 1.85 5 x3K 2 x% 22.7 8.7 13.34 5.12 1.53 1.61 1.42 1.33 1.51 1.41 1.56 1.45 1.61 1.50 1.71 1 59 5 x 3 x}| A 19.9 8.2 11.68 4.80 1.55 1.61 1.18 1.09 1.27 1.17 1.32 1.22 1.37 1.26 1.47 1.35 4>^x 3 xli 18.5 7.7 10.86 4.50 1.38 1.44 1.21 1.13 1.31 1.22 1.36 1.26 1.41 1.30 1.51 1.40 x3 2 x}e 18.5 7.7 10.86 4.50 1.19 1.26 1.50 1.42 1.59 1.51 1.64 1.55 1.69 1.60 1.79 1.69 4x3 x}| 17.1 5.8 10.06 1.21 3.38 1.28 1.25 1.16 1.35 1.24 1.40 1.28 1.45 1.33 1.55 1.43 3^x 3 x}f 15.8 5.4 9.24 1.04 3.12 1.11 1.30 1.20 1.40 1.29 1.45 1.34 1.50 1.38 1.60 1.48 2 *M 12.5 4.9 7.30 2.88 1.06 1.12 1.03 0.95 1.13 1.04 1.18 1.09 1.23 1.13 1.33 1.23 2X M 9.5 4.5 5.56 2.64 0.91 0.95 1.05 1.00 1.15 1.09 1.20 1.13 1.25 1.18 1.35 1.28 3x2xj| 7.7 4.1 4.50 2.38 0.92 0.95 0.80 0.74 0.89 0.84 0.94 0.88 l-.OO 0.93 1.10 1.03 X M 6.8 3.62 4.00 2.12 0.75 0.78 0.84 0.80 0.94 0.89 0.99 0.93 1.04 0.98 1.15 1.08 165 CARNEGIE STEEL COMPANY RADII OF GYRATION FOR TWO UNEQUAL ANGLES Short Legs Vertical 2 4j r -%"to%" JT 2 Single Angle Two Angles Radii of Gyration, Inches Size, Inches Weight, Pounds per Foot Area, Inches-' Axis 1-1 Axis 2-2 In Contact Ji" Apart Ys" Apart Yz" Apart K" Apart 8x6x1 44.2 26.00 1.73 3.64 3.73 3.78 3.83 3.92 33.8 19.88 1.76 3.60 3.69 3.73 3.78 ; 3.87 20.2 11.86 1.80 3.55 3.64 3.68 3.73 ; 3.82 8 x3^x 1 35.7 21.00 0.86 4.04 4.14 4.19 4.24 4.34 27.5 16.12 0.88 3.99 4.09 ll 4.13 4.18 | 4.28 16.5 9.68 0.92 3.93 4.02 [ 4.07 4.12 \ 4.22 7 x3J4x 1 32.3 19.00 0.89 3.48 3.58 < 3.63 3.68 3.78 H 23.0 13.50 0.92 3.42 3.52 3.57 3.62 3.72 ^8 13.0 7.60 0.96 3.36 3.46 3.50 3.55 3.65 6x4x1 30.6 18.00 1.09 2.85 2.95 2.99 3.04 3.14 ii 21.8 12.80 1.13 2.79 2.89 2.93 2.98 3.08 H 12.3 7.22 1.17 2.74 2.83 2.87 2.92 3.02 6 x3Hx 1 28.9 17.00 0.92 2.92 3.02 3.07 3.12 3.22 H 20.6 12.12 0.95 2.87 2.96 3.01 3.06 3.16 9.8 5.74 1.00 2.81 2.90 2.95 3.00 3.09 5x4 xj^j 24.2 14.22 1.14 2.29 2.38 2.43 2.48 2.58 % 11.0 6.46 1.20 2.20 2.29 2.34 2.38 2.48 5 x3MxJ^ 22.7 13.34 0.96 2.3G 2.45 2.50 2.55 2.65 is 8.7 5.12 1.03 2.26 2.35 2.39 2.44 2.54 5x3 xig 19.9 11.68 0.80 2.42 2.52 2.57 2.62 2.72 A 8.2 4.80 0.85 2.33 2.42 2.47 2.52 2.61 4 MX 3 x}g 18.5 10.86 0.81 2.15 2.25 2.30 2.35 2.45 i 5 7.7 4.50 0.87 2.06 2.15 2.20 2.25 2.34 4 x3^x}g 18.5 10.86 1.01 1.81 1.91 1.96 2.01 2.11 i 8 ? 7.7 4.50 1.07 1.73 1.81 1.86 1.91 2.00 4 x 3 x|g 17.1 10.06 0.83 1.88 1.98 2.03 2.08 2.18 5.8 3.38 0.89 1.78 1.87 1.92 1.96 2.06 3^x 3 xfi 15.8 9.24 0.85 1.61 1.71 1.76 1.81 1.91 M 5.4 3.12 0.91 1.52 1.61 1.65 1.70 1.80 3Mx2^xH 12.5 7.30 0.69 1.6G 1.75 1.80 1.86 1.96 M 4.9 2.88 0.74 1.58 1.67 1.71 1.76 1.86 3 X 2 i^ x ^ 9.5 5.56 0.72 1.37 1.46 1.51 1.56 1.66 M 4.5 2.64 0.75 1.31 1.40 1.45 1.50 1.59 3 x 2 x^ 7.7 4.50 0.55 1.42 1.52 1.57 1.62 1.72 M 4.1 2.38 0.57 1.38 1.47 1.52 1.57 1.67 2 MX 2 xM 6.8 4.00 0.56 1.15 1.25 1.30 1.35 1.46 M 3.62 2.12 0.59 1.1.1 1.20 1.25 1.30 1.40 166 FLEXURE FORMULAS STRESSES IN BEAMS In the application of the principles of structural mechanics to determine what sections should be used safely to sustain super- imposed loads under specified conditions of loading, it is necessary to ascertain, first, the effects produced on the structure by the loads under those conditions; second, to decide what unit strength the material, the use of which is contemplated, has to resist the stresses produced within the structure by the loading; and, third, to select a section whose section modulus is equivalent to the ratio found to exist between the stresses tending to cause deformation within the structure and the unit strength of the material to resist them. Reactions. In the simple case of a beam supported at both ends, each support reacts with an upward pressure called the reaction of the support. The sum of these two reactions is equal to the total load on the beam. Shear. The loads and the reactions of the supports are vertical forces tending to shear or cut the beam across and the stresses they produce within the beam are, therefore, called shearing stresses. The shear at each support is equal to the reaction of the support; the shear at any point between the supports is equal to the reaction of a support less the total load betvy-ccn that support and the point; or, if the reaction acting upward is considered as positive and the loads, acting downwards, as negative, the shear at any point is the algebraic sum of the vertical forces acting on the beam between that point and either support. If such a simple beam supported at both ends carries a load uniformly distributed over its entire length, the reaction and the shear at each support is equal to one-half the total load on the beam, but the shear decreases uniformly to zero at the center of the span; if the load is concentrated at the center of the span, the reaction and the shear at each support are also equal to one-half the total load, but the shear is uniform throughout the entire length of the beam. Bending Moment. The loads on .the beam and the reactions of the supports constitute external forces which produce bending stress in the beam. The summation of the moments of the external forces about any point is called the bending moment and varies from point to point. It attains a maximum value at a point where the shear is either zero or changes from positive to negative or vice versa. If the loads are concentrated at several points, the maxi- mum bending moment always occurs at the point of application of 167 CARNEGIE STEEL COMPANY one of the loads so located that the sum of all the loads on the beam between one support up to and including that load is equal to or greater than the reaction of the support. Vertical Deflection. Bending stress within a beam produces flexure, and the deflection, or the amount of its departure from a straight line, is the measure of the deformation which the beam has under- gone in its resistance to bending stress. So long as the stress is within the safe limits allowed for the material, the deflection is negligible so far as concerns the beam itself; it may, however, be of sufficient magnitude to cause the disruption of other materials in contact with or supported by the beam but of less strength, such as plaster. In such cases the limit of allowable deflection may determine or at least influence the choice of a section. Lateral Deflection. The stresses within a beam under transverse loading are compressive on one side of the neutral axis and tensile on the other. The tensile stresses tend to hold the beam in a straight line between the supports, while the compressive stresses tend to deflect it in a lateral direction, just as the bending stresses as a whole tend to deflect it in a vertical plane. On long spans unsupported against sidewise deflection, this consideration may influence the choice of sections. Method of Computation. A complete investigation of the strength of beams under transverse loading must take into account all the elements, the bending moment, the vertical deflection, the lateral deflection and the shearing stress; though under the usual loading conditions the first alone determines the size and weight of section. In the calculation of bending stresses, the loads are usually expressed in pounds, the span length and the distance between the loads in feet; the resulting bending moments are in terms of foot pounds, which necessitates conversion to inch pounds before the section can be selected from the tables. The section modulus of the required section is obtained by dividing the maximum bending moment in inch pounds by the allowed fiber stress in pounds per square inch. In such calculations it is assumed that the neutral axis of the section is normal to the line of action of the load. When this is not the case, correction must be made for the eccentricity of the loading. In the pages which immediately follow are given general formulas for the bending moments and vertical deflections of beams under the usual conditions of loading, and also diagrams illustrative of those conditions. The general method for the computation of the maximum bending moment of a beam supported at its ends and loaded at various points is as follows: 168 FLEXURE FORMULAS First. Find the reaction at the left (right) support by multi- plying each load by its distance from the right (left) support and dividing the sum of these products by the length of the span. Second. Starting from the left (right) end of the beam, add the successive loads until a point is reached where the sum of the loads equals or exceeds the reaction of the left (right) support; the point of maximum bending moment is located at this point. Third. Multiply the reaction at the left (right) support by its distance from the point of maximum bending moment and subtract the sum of the products of all loads to the left (right) of this point by the corresponding distance from this point; the difference between these moments is then the maximum bending moment. Example: Required the size of a steel beam to support the following quiescent loads over a clear span of 16 feet between supports, at a maximum fiber stress not to exceed 16000 pounds --16 - 0'"- per square inch. Wi = 16000 pounds, 4 feet from left support. W 2 = 18000 " 9 " " " TV 3 = 2000 " per foot, uniform up to 4 feet from right support. T>4=! 60 " " " assumed weight of beam uniformly distributed over entire span. Left Reaction, 1600 * 12 + < 60 ' 16 > 8 +^ * 7 + (2000 x 4) x 2 =01Q ,, 1Kg Right Reaction, 16000 * 4 + (60 x 16) 8 + 18000 x9 + (2000 x 4) x 14 =216Q5 ^ Sumofreactions=sumofloads=W 1 + W 2 + W 3 + W 4 =42960 Ibs. Points of maximum moment (60 x 4) + 16000 = 16240 < 21355 (60 x 9) + 16000 + 18000 = 34540 > 21355 therefore the point of maximum bending moment is at point of load W 2 . Maximum bending moment, 21355x9-16000x5-(60x9)x4.5 =109765 ft. Ibs. or, 21605x7-(2000x4)x5-(60x7)x3.5 =109765 ft. Ibs. Required section modulus = As the section modulus of the 15 inch 65 pound or the 18 inch 55 pound beam is greater than this, either of these sections may be used. If it is decided that the 18 inch 46 pound supplementary beam is strong enough for the -i o -i *r I or\ purpose, the actual fiber stress on that section would be gy^- = 16162 pounds per square inch. If the allowed fiber stress were 12500 pounds per square inch, the required section modulus would be 12500 = ~T2500~ = 105.38 and the permissible minimum sections would be 20 inch 65 pound, 21 inch 57.5 pound beams, etc. 169 CARNEGIE STEEL COMPANY NOTATION USED IN FORMULAS A =Area of section, in square inches. n =Distance from center line of gravity to extreme fiber, in inches. I =Moment of inertia about center line of gravity, in inches 4 . Ms=Static moment, in inches 3 . S =Section modulus = I/n, in inches 3 . r =Radius of gy ration = VI /A, in inches. f =Bending stress in extreme fiber, in pounds per square inch. fb =Resistance of web, in pounds per square inch. E =Modulus of elasticity, in pounds per square inch. L =Length of section, in feet. 1 =Length of section, in inches. d =Depth of section, in inches. b =Width of section, in inches. t =Thickness of section, in inches. W, Wi, W 2 Superimposed loads supported by beam, in pounds. w =Superimposed load, in pounds per unit length or area. W max =Maximum safe load at point given, in pounds. R, Ri =Reactions at points of support, in pounds. V =Vertical shear, in pounds. M, MI, M 2 =Bending moments at points given, in inch pounds. M max =Maximum bending moment, in inch pounds. Mr = Maximum resisting moment, in inch pounds=f I/n = f S. D, DI =Deflections at points given, in inches. D max =Maximum deflection at point given, in inches. 170 FLEXURE FORMULAS COMPARISON OF VARIOUS LOADING CONDITIONS The formulas and diagrams on pages 172 to 175 give the various stresses in sections used as beams, resulting from usual conditions of loading. Taking as a unit of comparison a uniformly distributed safe load on beams of equal length and section, supported at the extreme ends, the following table gives the relative maximum safe loads or bending moments and deflections. As a check on the accuracy of a computation, the safe load obtained from the formula for any condition of loading may be multiplied by tfee reciprocal given in the table corresponding to such loading condition ; the result should be the maximum allowable uniform load as taken from beam safe load tables. Conditions of Loading Case No. Maximum Safe Load Maximum Deflection Relative Reciprocal Relative BEAM SUPPORTED AT ENDS Load uniformly distributed over span IX 1 1 1 Load concentrated at center of span V 2 2 .80 Two equal loads symmetrically concentrated VII l/4a 4a/l Load increasing uniformly to one end X .9743 1.0264 .976 Load increasing uniformly to center XII % IVs .96 Load decreasing uniformly to center XI % % 1.08 BEAM FIXED AT ONE END, CANTILEVER Load uniformly distributed over span II y* 4 2.40 Load concentrated at end I Vs 8 3.20 Load increasing uniformly to fixed end III % 2% 1.92 BEAM CONTINUOUS OVER Two SUPPORTS EQUIDISTANT FROM ENDS Load uniformly distributed over span XVI 1. If distance a > 0.2071 1 !2/4a2 4a2/l2 2. If distance a <0.2071 1 1 -= r l-4a l-4a 1 3. If distance a =0.2071 1 5.8285 .1716 Two equal loads concentrated at ends XV l/4a 4a/l 171 CARNEGIE STEEL COMPANY BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS I. CANTILEVER BEAM Concentrated load at free end Ri(max. shear) = W M max. ^a) = jK Mjmax. ^rfl III f\ i RiCmax. shear if a>b)== ; I^y^ Mmax., at point of load= T^j^^vlEL 1 + ^ r>| Wmax. AVab (a+2b) ^3a (a+2b) 27EI1 172 FLEXURE FORMULAS BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS V. BEAM SUPPORTED AT ENDS Concentrated load at center M max. R (max. shear) =R X = -- 2 M max., at point of load = W max. = Dmax.- = VI. BEAM SUPPORTED AT ENDS Two unsymmetrical concentrated loads R (max. shear if aa) = Rib=-^p-(l+a-b) M 2 , distance x Wmax. (b>a) = Ra^^-d-a+b) = Rx ^-(x-a) 21fS b(1+a _ b) VII. BEAM SUPPORTED AT ENDS Two symmetrical concentrated loads . - W M'max. -.j M, distance x = M max.atandbetweenloads= Wa 2fS a Wa 12EI (%12-a2) VIII. M SUPPORTED AT ENDS Three concentrated loads f\ 11 -I-- (-a-r~4---b-l- Q> (J Q W Wi W 2 MatW M max. if W MatWi Mmax.if Wi+W M max. if MatW 2 M max. if W 2 173 = Ra. = or>R = Rai-W(ai-a) = Ror>R =Ra-W (a 2 -a)-Wi(a 3 -ai) =Rior>Ri CARNEGIE STEEL COMPANY BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS IX. BEAM SUPPORTED AT ENDS Uniformly distributed load W Mlmax. Ri R(max. shear)=Ri M, distance x M max. at center W max. Dmax. Wx (1 Wl 8fS 5W13 384E1 Pjl X BEAM SUPPORTED AT ENDS Load increasing uniformly to one end R R - 3 2W Wx Ri(max. shear) M, distance x 1 V ^ 2W1 M max., distance ^-~ ~ 9 A/3 27fS 21 A/l .013044 W13 El XI. BEAM SUPPORTED AT ENDS Load decreasing uniformly to center M max. R(max. shear)=R M, distance x M max., distance Wmax. Dmax. W Wl 12 12fS 3W13 320EI XII. BEAM SUPPORTED AT ENDS Load increasing uniformly to center W Mlmax. R(max. shear)=Ri M, distance x M max., distance Wmax. Dmax. _ Wl : -6~ _ 6fS W13 60EI 174 FLEXURE FORMULAS BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS Concluded XIII. BEAM SUPPORTED AT ENDS Uniform load partially distributed R(max. shear if aa, M 2 , dist. x>(a+b), "DV Mmax., W(2c+b)[4al+b(2c+b)l 81 2 8l2fg (2c+b)[4al+b(2c+b)] XIV. BEAM SUPPORTED AT ENDS Uniform load partially discontinuous R(max. shear if W>Wi) 2 M, distance x a, =Rx- 2Wal-Wa2+Wica R2Q W (2x-a) 2 Wmax. XV. BEAM CONTINUOUS OVER TWO SUPPORTS Two exterior symmetrical loads W l\ Ml i i R(max. shear)=:Ri Mlmax. IS M max., from R to RI D, distance a Di, distance-g : Wa Wa(3al-4aa) 12 El Wa(I-2a)2 XVI. BEAM CONTINUOUS OVER TWO SUPPORTS Uniformly distributed load &Mi -4^ - a .. i -.i_ a ..^-l-a--*j. -a--* "> R(mai.shear)=Ri= 2~ --j 2 W(xMx+al) ibr M, distance x = 51 o, ifx=- MI MiatRandRi= gf" max. if a > W(l^ia) M 2 at center = - max W 2 max. ^TZT "^ 175 CARNEGIE STEEL COMPANY SAFE LOADS FOR SECTIONS USED AS BEAMS EXPLANATION OF TABLES The tables of safe loads for structural and supplementary beams, H-beams, cross tie sections and channels, used as beams under conditions of transverse loading, give the uniformly distributed safe loads in thousands of pounds for spans customary in bridge and building construction based upon an extreme fiber stress of 16,000 pounds per square inch. The tables of safe loads for angles, tees and zees give the values at the same fiber stress on spans of one foot from which the safe load for any span length may be obtained by direct division and also the values for those spans at which the allowed safe load will produce a deflection of ^seo of the span length. The loads in all cases include the weight of the section, which should be deducted in order to arrive at the net load which the section will support. In addition to these usual tables of safe loads, there follow, on the same basis, tables of the allowable uniform load in pounds per foot on beams and channels for various span lengths, which may be used in proportioning the floor systems of buildings. The choice between various weights and depths of sections for any given span or any uniform load per running foot may be made on inspection. It is assumed in all cases that the loads are applied normal to the axis 1-1 as shown in the tables of elements of sections, and that the beam deflects vertically in the plane of bending only. If the conditions of loading involve the introduction of forces outside this plane of loading, the allowable safe loads must be determined from the general theory of flexure in accordance with the mode of appli- cation of the load and its character. This applies particularly to unsymmetrical sections, such as zee bars and angles, which should be used only under those conditions of loading where the section can deflect vertically only, being rigidly secured against lateral deflection or twisting throughout the entire span. In all such cases of eccentric loading, the actual safe loads would be considerably lower than the tabulated safe loads which have been based upon the most favorable conditions of loading. Vertical Deflection of Beams. In the case of beams intended to carry plastered ceilings, experience indicates that the vertical deflection to avoid cracking the plaster should be limited to not more than %GO of the span length. This span limit for steel beams is approxi- mately in feet twice the depth in inches and is indicated in the tables by the lower zigzag line. Beams intended for such purposes 176 BEAM SAFE LOADS should not be used for greater spans unless the allowable tabular safe load exceeds the actual load to be supported. As the dead load of the floor is supported by the beams before the plaster is applied, only the deflection due to the live load really needs to be considered. The coefficients given t in inches, of sections subje distributed loads at vari< following formulas, using Deflection, D= 7r \>fr T ' w For symmetrical sections, COEFFICIENTS OF DEFL )elo\v may be used to obtain the deflection, cted to transverse stresses due to uniformly 3us fiber stresses and are based upon the the notation given on page 170, hf>n \V1 ^^ or TV 8f I 2 ISfL 2 ^ 1 N n 76.8 En E X n d D 30fL 2 1 Coefficient 2' Ed depth in niches ECTION UNIFORMLY DISTRIBUTED LOADS Span, Feet Fiber Stress, Pounds per Square Inch Span, Feet Fiber Stress, Pounds per Square Inch 16000 14000 12500 16000 14000 12500 1 2 3 4 5 0.017 0.066 0.149 0.265 0.414 0.014 0.058 0.130 0.232 0.362 0.013 0.052 0.116 0.207 0.323 26 27 28 29 30 11/189 12.066 12.977 13.920 14.897 9.790 10.558 11.354 12.180 13.034 8.741 9.427 10.138 10.875 11.638 6 7 8 9 10 0.596 0.811 1.059 1.341 1.655 0.521 0.710 0.927 1.173 1.448 0.466 0.634 0.828 1.047 1.293 31 32 33 34 35 15.906 16.949 18.025 19.134 20.276 13.918 14.830 15.772 16.742 17.741 12.427 13.241 14.082 14.948 15.841 11 12 13 14 15 \ 2.003 2.383 2.797 3.244 3.724 1.752 2.086 2.448 2.839 3.259 1.565 1.862 2.185 2.534 2.909 36 37 38 39 40 21.451 22.659 23.901 25.175 26.483 18.770 19.827 20.913 22.028 23.172 16.759 17.703 18.672 19.668 20.690 17" 18 19 20 4.237 4.783~ 5.363 5.975 6.621 3.708 4.186 4.692 5.228 5.793 3.310 3.737 4.190 4.668 5.172 41 42 43 44 45 27.824 29.197 30.603 31.954 33.517 24.346 25.548 26.779 28.039 29.328 21.737 22.810 23.909 25.034 26.185 21 7.299 22 8.011 23 8.756 24 9.534 25 10.345 6.387 7.010 7.661 8.342 9.052 5.703 6.259 6.841 7.448 8.082 46 47 48 49 50 35.023 36.562 37.135 39.741 41.379 30.646 31.992 33.368 34.773 36.207 27.362 28.565 29.793 31.047 32.328 To find the deflection in inches of a section symmetrical about the neutral axis, such as beams, channels, zees, etc., divide the coefficient in the table corresponding to given span and fiber stress by the depth of the section in inches. 177 CARNEGIE STEEL COMPANY To find the deflection in inches of a section not symmetrical about the neutral axis, such as angles, tees, etc., divide the coeffi- cient corresponding to given span and fiber stress by twice the distance of extreme fiber from neutral axis obtained from table of elements of sections, pages 142 to 159, inclusive. To find the deflection in inches of a section for any other fiber stress than those given, multiply this fiber stress by any of the coefficients in the table for the given span and divide by the fiber stress corresponding to the coefficient used. Lateral Deflection of Beams. The tabular safe loads are based on the assumption that the compression flanges of the various sections are secured against lateral deflection by the use of tie rods or by other means at proper intervals. According to the Construction Specifi- cations, page 128, the lateral unsupported length of beams and girders should not exceed forty times the width of the compression flanges. When the unsupported length exceeds ten times the width, the tabular safe loads should be reduced in accordance with the ratios given in the following table in order to insure that the stresses in the compression flanges should not exceed the allowed safe unit stress: Length of Span Allowable Safe Load Length of Span Allowable Saf j Load 5 x flange width 10 x 15 x 20 x Full tabular load 90.6% tabular load 81.2% 125 x flange width 30 x 35 x 40 x 71.9% tabular load 62.5% 53.1% 43.8% In addition to this lateral deflection which is induced within the beam by the action of pure bending stresses, lateral deflection may be induced by the thrust of floor arches or other loading acting on an axis perpendicular to the line of principal bending stress. The thrust of these arches should either be neutralized by tie rods, or the safe carrying capacity of the beam should be computed in accordance with the general formulas of flexure to provide for the combined stresses due to the action of both vertical and horizontal forces; that is to say, the safe loads should be figured around both the axes 1-1 and 2-2, and the unit stress computed so as not to exceed 16,000 pounds per square inch. Effect of Impact on Stresses. The formulas upon which the tables of safe loads are based assume all loads to be quiescent or static. The effect of moving loads may be taken care of either by reducing the allowable unit stresses, or else by increasing the theoretical loads. See Construction Specifications, page 126, paragraph 2. 178 BEAM SAFE LOADS When the load is suddenly applied, the resultant stresses are greater than those due to an equal static load. When the load is instan- taneously applied, the resultant stresses are double. When an instantaneously applied load produces impact or percus- sion, the resultant stresses are dynamic and are measured by the laws governing the energy of bodies in motion. The following empirical formulas may be used to ascertain the approximate fiber stress and deflection due to a load falling on the center of ^ beam supported at both ends, when no account is taken of the distortion due to the impact or percussion at the point of application of the load: Let W =Weight of load, in pounds. Wi=W eight of beam, in pounds. h =Height of fall, in inches. f =Extreme fiber stress due to static load, W-|-Wi, in pounds per square inch. fd =Extreme fiber stress due to dynamic load, W, in pounds per square inch. D =Deflection due to static load, W-f-Wi, in inches. Dd =Deflection due to dynamic load, W, in inches. 35 W m 35W+17Wi f d =f (1 -f \?f 1 ) and Dd=D + VsmhD + D2 Shearing stresses. The safe load tables for beams and channels are computed solely with reference to safe unit stresses due to flexure, and the safe loads uniformly distributed on the spans given will not produce average shearing stresses in the web greater than the 10,000 pounds per square inch allowed by the Construction Specifi- cations. W r hen, however, beams are loaded with heavy loads concentrated near the supports, or when beams of short span are loaded with uniformly distributed loads to their full carrying capacity as regards flexure, the bending moments may be small in comparison with the reactions at the supports, and the beams may fail along the neutral plane as a result of longitudinal shearing stresses, or may buckle as a result of the combined longitudinal and vertical web stresses. On such spans the safe shearing or buckling strength of the web may limit the carrying capacity of the beam rather than the resistance of the flanges to bending stresses. Longitudinal Shear. At any point in any section of a beam, the horizontal and vertical components of the web stress are equal to each other and proportional to the vertical shear ; their intensities are 179 CARNEGIE STEEL COMPANY dependent upon the distance of the point from the neutral axis. In order to determine the intensity of the vertical shearing stress at a given point in a vertical section of the beam, therefore, it is sufficient to find the equal intensity of the horizontal shearing stress at the same point in the horizontal plane. The longitudinal unit shear is zero at the upper and lower flanges of the beam and a maximum at the neutral plane. It is greatest at the supports and zero where there is no vertical shear. The intensity of the longitudinal shear at any point in any section is the product of the vertical shear, V, for that section and the statical moment, Ms of the section included between the horizontal plane of shear through that point and the extreme fibers on the same side of the neutral plane divided by the product of the moment of inertia of the beam around the proper axis and the thickness at the plane of shear; or Longitudinal shear per square inch = V~^- t I Example Required the maximum longitudinal shear per square inch in a 24" 80 Ib. beam loaded with two symmetrical loads of 100,000 pounds each, disregarding the weight of the beam. Ms of Flange Rectangle=7x. 60x1 1.7 49.14 Ms of Flange Triangles =3.25x.542xll.219 19.76 Ms of Web =11.40x.50x5.70 = 32.49 ^Ir" Total Static Moment 101.39 Moment of Inertia of Beam 1=2087 .2 Longitudinal Shear- 1( *j^ 5 1 ( f ) =9715 pounds per square inch. Under usual conditions of loading, the vertical shear need not be taken into consideration. Buckling Values of Beam Webs. The vertical shearing stresses or the vertical compressive components of the web stress may under some conditions exceed the safe resistance of the beam to buckling, and there remains the possibility that a web or web plate which is amply secure as against the safe allowed shear of 10,000 pounds per square inch will not be of sufficient strength when considered as a column. In such cases provision must be made for security against buckling either in the way of stiffeners or by increasing the thickness of the web or web plate. A series of experiments have been carried out on beams of various depths and web thicknesses to arrive at a basis for a simpler method of computation to use in the investigation of the safe buckling 180 BEAM SAFE LOADS resistance of beams with unsupported webs, and from these experi- ments the following formulas have been deduced: Safe end reaction R== f b x t (a -| j-) Safe interior load W=2 fb x t (a 1 + ) (mill Uu In these formulas R is the end reaction, W the concentrated load, t the web thickness, d the depth of the beam, a 1 half the distance over which the concentrated load is applied and a the whole distance over which the end reaction is applied, while fb is the safe resistance of the web to buckling in pounds per square inch by the formula 19000 100 d/2r (d/2=l in column formula). The first formula is general and applies to any condition of loading. The second formula covers the case of a single load concentrated at the center of a span; it can be extended to cover a system of concentrated loads provided the sum of the distances a 1 is not less than a. The tables which immediately follow give for beams and channels with unsupported webs: 1. Allowed web resistance fb, in pounds per square inch com- puted from this compression formula. 2. The distance a, or the distance over which the end reaction must be distributed when the shearing stress, V, in the web is the maximum allowable of 10,000 pounds per square inch. 3. The allowable end reaction (R) when a is taken at 3%" which is the usual length of beam actually resting on the 4" angles ordinarily used in building construction for beam seats. 4. The allowable shear V, on the gross area of beam or channel webs at 10,000 pounds per square inch. In addition to these data which have to do with the maximum loads on beams and channels as computed from the web resistance, these tables also give the maximum bending moments in foot pounds, obtained by the multiplication of the section modulus of each section by the allowed fiber stress of 16,000 pounds and the division of the product by 12 in order to reduce to a foot pound basis. These maximum bending moments may be used on inspec- tion instead of the table of properties to ascertain the proper size section to be used in any particular instance. 181 CARNEGIE STEEL COMPANY EXAMPLES OF THE USE OF BEAM SAFE LOAD TABLES Example 1. Direct Bending. Required the proper size of a beam laterally braced to support a superimposed or net load of 30,000 pounds uniformly distributed over a clear span of 20 feet. From the table of safe loads, page 188, it is found that a 15 inch 42 pound beam will support a gross load of 31,400 pounds. The weight -of a beam 20 feet long is 840 pounds. The net safe load is, therefore, 31,400-840 = 30,560 pounds. A 15 inch 42 pound beam will, therefore, carry the net load specified. Example 2. Shear. Required the maximum load which a 20 inch 85 pound beam can support without exceeding the safe web resistance of the section. Prom the table, page 187, the maximum load for this section given in small figures above the upper zigzag line is found to be 205,200 pounds. Example 3. Vertical Deflection. Required the proper size and the deflection of a channel supporting a net load of 10,000 pounds concentrated in the middle of a 14-foot span, assuming that the channel is braced against lateral deflection. The specified load is equivalent on the given span to a uniformly distributed load of 2 x 10,000=20,000 pounds. In the table, page 196, it is found that a 12 inch 30 pound channel will support a gross load of 20,500 pounds or a net load of 20,500 14 x 30 = 20,080 pounds. The net safe load concentrated at the middle -of the span will be one-half this or 10,040 pounds. The deflection produced by a uniformly distributed load of 20,500 pounds is found from the coefficient given in the same table and page 177 to be ^15^=0.270" The deflection for the specified load concentrated in the middle of the span is approximately - 27 x 4 = 0.216". See page 171. Example 4. Vertical Deflection. Required the deflection of a riveted girder 37 inches deep for a span of 35 feet and a fiber stress of 14,000 pounds per square inch. Required deflection, see table, page 177,= ^ = 0.479". Example 5. Vertical Deflection. Required the deflection of an angle 6 x 4 x Vi" about an axis parallel to the short leg for a span of 14 feet and a fiber stress of 16,000 pounds. Required deflection, see table, pages 177 and 178, is 2 x ( 6 _ Q6 ) =0.401". Example 6. Vertical Deflection. Required the deflection of a 10 inch beam for a span of 18 feet with a fiber stress of 11,000 pounds. Required deflection, see table, pages 177 and 178, = ^^^ =0.369". Example 7. Lateral Deflection. Required the safe load on a 12 inch pound beam for a span of 16 feet without any lateral support or bracing. Tabular load, page 189, =24,000 pounds. -p+.-~ Length of span _16 x 12 QQ Ratl Flange width ' 5 =38.4 Reduced safe load, page 178, 24,000x0.468=11,232 pounds. 182 BEAM SAFE LOADS BEAMS MAXIMUM BENDING MOMENTS AND WEB RESISTANCE M U!ax d t V fb a R Maximum Depth Weight Thickness Allowable Allowable Min. End Bending Moment of Beam per Foot of Web Web Shear Buckling Resistance End Bearing Reaction a=W Foot Pounds Inches Pounds Inches Pounds Pounds per Sq. In. Inches Pounds 285300 27 83.0 .424 114480 7970 27.1 34650 328390 115.0 .750 180000 13460 11.8 95880 320390 110.0 .688 165120 12960 12.5 84690 312390 105.0 .625 150000 12350 13.4 73320 264400 ioo.a .754 180960 13490 11.8 96620 256560 24 95.0 .693 166320 13000 12.5 85610 248710 90.0 .631 151440 12410 13.3 74410 240870 85.0 .570 136800 11710 14.5 63410 231920 80.0 .500 120000 10690 16.5 50780 214220 69.5 .390 93600 8340 22.8 30910 ' 155880 21 57.5 .357 74970 8820 18.6 27540 220750 100.0 .884 176800 15080 8.3 113320 214210 95.0 .810 162000 14720 8.6 101370 207680 90.0 .737 147400 14300 9.0 89590 201140 20 85.0 .663 132600 13780 9.5 77630 195510 80.0 .600 120000 13230 10.1 67460 169170 75.0 .649 129800 13660 9.6 75380 162640 70.0 .575 115000 12980 10.4 63420 155930 65.0 .500 100000 12080 11.6 51320 186720 90.0 | .807 145260 15140 7.4 97730 180840 85.0 .725 130500 14700 7.7 85260 174960 80.0 .644 115920 - 14160 8.2 72940 169080 75.0 .562 101160 13450 8.9 60480 136480 18 70.0 .719 129420 14670 7.8 84350 130590 65.0 .637 114660 14110 8.3 71890 124710 60.0 .555 99900 13380 9.0 59420 117860 55.0 .460 82800 12220 10.2 . 44980 108620 46.0 .322 57960 9320 14.8 24020 122890 75.0 .882 132300 16050 5.6 102660 117980 70.0 .784 117600 15690 5.8 89160' 113080 65.0 .686 102900 15210 6.1 75650 108270 60.0 .590 88500 14600 6.5 62440 90850 i; 55.0 .656 98400 15040 6.2 71530 85940 50.0 .558 83700 14340 6.7 58020 81040 45.0 .460 69000 13350 7.5 44520 78530 -42J) .410" 61500 ,12670 8.1 37660 72020 36.0 .289 43350 10010 11.2 20970 183 CARNEGIE STEEL COMPANY BEAMS MAXIMUM BENDING MOMENTS AND WEB RESISTANCES Mmax d t V fb a R Maximum Depth Weight Thickness Allowable Allowable Min. End Bending Moment of Beam Foot of Web Web Shear Buckling Resistance End Bearing Reaction Foot Pounds Inches Pounds Inches Pounds Pounds per Sq. In. Inches Pounds 71330 55.0 .821 98520 16470 4.3 87890 67410 50.0 .699 83880 16030 4.5 72S30 63490 45.0 .576 69120 15390 4.8 57620 ^59770 12 40.0 .460 55200 14480 5.3 43300 50730 35.0 .436 52320 14230 5.4 40330 47960 31.5 .350 42000 13030 6.2 29710 44350 " 27.5 .255 30600 10850 8.1 17990 42320 40.0 .749 74900 16690 3.5 75010 39050 35.0 .602 60200 16120 3.7 5S220 35780 10 30.0 .455 45500 15190 4.1 41470 32560 25.0 .310 31000 13410 5.0 24940 30370 22.0 .232 23200 11540 6.2 16060 33120 35.0 .732 65880 16870 3.1 71010 30180 9 30.0 .569 51210 16260 3.3 53200 27240 25.0 .406 36540 15160 3.7 35390 25160 21.0 .290 26100 13620 4.4 22710 22810 25.5 .541 43280 16440 2.9 48920 21500 23.0 .449 35920 15910 3.0 39290 20190 8 20.5 .357 28560 15120 3.3 29690 18960 18.0 .270 21600 13870 3.8 20600 19450 17.5 .210 16800 12400 4.5 14320 16070 20.0 .458 32060 16350 2.5 39310 14930 7 17.5 .353 24710 15570 2.7 28850 13800 15.0 .250 17500 14150 3.2 18580 11640 17.25 .475 28500 16810 2.1 39930 10660 6 14.75 .352 21120 16050 2.2 28250 9680 12.25 .230 13800 14480 2.6 16650 10260 17.0 .380 19000 16720 1.7 30180 8080 5 14.75 .504 25200 17280 1.6 41370 7260 12.25 .357 17850 16580 1.8 28120 6450 9.75 .210 10500 14870 2.1 14830 4760 10.5 .410 16400 17310 1.3 31940 4500 4. 9.5 .337 13480 16940 1.4 25690 4240 8.5 .263 10520 16360 1.4 19360 3980 7.5 .190 7600 15360 1.6 13130 2590 7.5 .361 10830 17560 1.0 26940 2390 3 6.5 .263 7890 17020 1.0 19020 2210 5.5 .170 5100 15950 1.1 11530 184 BEAM SAFE LOADS CHANNELS MAXIMUM BENDING MOMENTS AND WEB RESISTANCES M max d t V fb a R Maximum Depth Weight Thickness Allowable Allowable Min. End Bending Moment of Channel Foot of Web Web Shear Buckling Resistance End Bearing Reaction Foot Pounds Inches Pounds Inches Pounds Pounds per Sq. In. Inches Pounds 76490 55.0 .818 122700 15820 5.7 93830 71590 50.0 .720 108000 15390 6.0 80350 66680 15 45.0 .622 93300 14820 6.4 66840 61780 40.0 .524 78600 14040 6.9 53350 56880 35.0 .426 63900 12900 7.9 39850 55570 33.0 .400 60000 12510 8.2 36270 64360 50.0 .791 102830 16150 4.8 86250 60110 45.0, .678 88140 15680 5.0 71760 55870 13 40.0 .565 73450 15020 5.4 57260 53320 37.0 .497 64610 14470 5.7 48540 51620 35.0 .452 58760 14020 6.0 42770 48740 32.0 .375 48750 13000 6.8 32900 43760 40.0 .758 90960 16260 4.4 80090 39840 35.0 .636 76320 15730 4.6 65040 35920 12 30.0 .513 61560 14950 5.0 49850 32000 25.0 .390 46800 13670 5.8 34660 28470 20.5 .280 33600 11570 7.4 21060 30800 35.0 .823 82300 16900 3.4 83430 27530 30.0 .676 67600 16440 3.6 66670 24260 10 25.0 .529 52900 15730 3.9 49910 20990 20.0 .382 38200 14470 4.4 33160 17840 15.0 .240 24000 11780 6.0 16970 20950 25.0 .615 55350 16470 3.2 58220 18010 20.0 .452 40680 15550 3.5 ! 40420 15070 9 15.0 .288 25920 13590 4.4 22500 14020 13.25 .230 20700 12220 5.1 16170 15920 21~25 .582 46560 16620 2.8 53200 14610 18.75 .490 39200 16170 2.9 43580 13310 8 16.25 .399 31920 15530 3.2 34070 12000 13.75 .307 24560 14490 3.5 24460 10770 11.25 .220 17600 12700 4.3 15370 12640 19.75 .633 44310 17090 2.3 56780 11490 17.25 .528 36960 16700 2.4 46300 10350 7 14.75 .423 29610 16130 2.6 35830 9210 12.25 .318 22260 15190 2.9 25360 8030 9.75 .210 14700 13230 3.5 14580 8680 15.5 .563 33780 17150 2.0 48280 7700 13.0 .440 26400 16640 2.1 36610 6720 6 10.5 .318 19080 15730 2.3 25010 5780 8.0 .200 12000 13810 2.8 13810 5550 11.5 .477 23850 17180 1.7 38920 4730 5 9.0 .330 16500 16380 1.8 25670 3960 6.5 .190 9500 14450 2.2 13040 3050 7.25 .325 13000 16870 1.4 24670 2790 4 6.25 .252 lOOxo 16250 1.5 18430 2530 5.25 .180 7200 15150 1.6 12270 1840 6.0 .362 10860 17560 1.0 27020 1640 3 5.0 .264 7920 17030 1.0 19110 1450 4.0 .170 5100 15940 1.1 11520 185 CARNEGIE STEEL COMPANY BEAMS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections 1 Span in 27 In. 24 Inch || 21 In. |ol Feet 83 115 110 105 100 95 90 85 80 69% 571/2 6 a Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. ! SGI. 9 352.5 332.6 302.9 [i 0.60 7 860.0 330.2 302.2 293.2 284. ' 273.6 240.0 0.81 8 328.4 320.4 300.0 264.4 256.6 248.7 240.9 231.9 150.0 1.06 9 229.0 291.9 284.8 ; 277.7 235.0 228.0 221.1 214.1 206.1 187.2 138.6! 1.34 10 228.2 262.7 256.3249.9 211.5 205.2 199.0 192.7 185.5 I7T4 124.7 1.66 11 207.5 238.8 233.0227.2 192.3 186.6 180.9 175.2 168.7 155.8 113.4 2.00 12 190.2 218.9 213.6208.3 176.3 171.0 165.8 160.6 154.6 142.8 103.9 2.38 13 175.6 202.1 197.2 192.2 162.7 157.9 153.1 148.2 142.7 131.8 95.9 2.80 14 163.0 187.7 183.1 178.5 151.1 146.6 142.1 137.6 132.5 122.4 89.1 3.24 15 152.2 175.1 170.9 166.6 141.0 136.8 132.6 128.5 123.7 114.3 83.1 3.72 16 i 142.6 164.2! 160.2 156.2 132.2 128.3 124.4 120.4 116.0 107.1 77.9 4.24 17 134.3 154.5150.8 147.0 124.4 120.7 117.0 113.4 109.1 100.8 73.4 4.78 18 126.8 19 !l 120.1 146.0'142.4 138.3 134.9 138.8 131.5 117.5 111.3 114.0 108.0 110.5 104.7 107.1 101.4 103.1 97.6 95.2 90.2 69.3 65.6 5.36 5.98 20 114.1131.4128.2 125.0 105.8 102.6 99.5 96.3 92.8 85.7 62.4 6.62 21 i 108.7 125.1 122.1 119.0 100.7 97.7 94.7 91.8 88.3 81.6 59.4 7.30 22 103.7 119.4116.5 113.6 96.1 93.3 90.4 87.6 84.3 77.9 56.7 8.01 23 99.2(114.2111.4108.7 92.0 89.2 86.5 83.8 80.7 74.5 54.2 8.76 24 95.1 109.5106.8104.1 88.1 85.5 82.9 80.3 77.3 71.4 52.0 9.53 25 91.3 105.1 102.5 100.0 84.6 82.1 79.6 77.1 74.2 68.6 49.9 10.35 26 87.8 101.0 98.6 96.1 81.4 78.9 76.5 74.1 71.4 65.9 48.0 11.19 27 84.5 97.3 94.9 92.6 78.3 76.0 73.7 71.4 68.7 63.5 46.2 12.07 28 81.5 93.8 91.5 89.3 75.5 73.3 71.1 68.8 66.3 61.2 44.5 12.98 29 78.7 90.6 88.4 86.2 72.9 70.8 68.6 66.4 64.0 59.1 43.0 13.92 30 76.1 87.6 85.4 83.3 70.5 68.4 66.3 64.2 61.8 57.1 41.6 14.90 31 73.6 84.7 82.7 80.6 68.2 66.2 64.2 62.2 59.8 55.3 40.2 15.91 32 71.3 82.1 80.1 78.1 66.1 64.1 62.2 60.2 58.0 53.6 39.0 16.95 33 69.2 79.6 77.7 75.7 64.1 62.2 60.3 58.4 56.2 51.9 37.8 18.03 34 67.1 77.3 75.4 73.5 62.2 60.4 58.5 56.7 54.6 50.4 36.7 1 19.13 35 65.2 75.1 73.2 71.4 60.4 58.6 56.8 55.1 53.0 49.0, 35.6 20.28 36 63.4 73.0 71.2 69.4 58.8 57.0 55.3 53.5 51.5 47.6 34.6 21.45 37 61.7 71.0 69.3 67.5 57.2 55.5 53.8 52.1 50.1 46.3 33.7 22.66 38 60.1 69.1 67.5 65.8 55.7 54.0 52.4 50.7 48.8 45.1 32.8 23.90 39 58.5 67.4 65.7 64.1 54.2 52.6 51.0 49.4 47.6 43.9 32.0 25.18 40 57.1 65.7 64.1 62.5 52.9 51.3 49.7 48.2 46.4 42.8' 31.2 26.48 41 55.7 64.1 62.5 61.0 51.6 50.1 48.5 47.0 45.3 41.8' 30.4| 27.82 42 54.3 62.6 61.0 59.5 50.4 48.9 47.4 45.9 44.2 40.8 29.7 29.20 43 53.1 61.1 59.6 58.1 49.2 47.7 46.3 44.8 43.1 39.9 29.0 30.60 44 51.9 59.7 58.3 56.8 48.1 46.6 45.2 43.8 42.2 38.9 28.3 32.04 45 50.7 58.4 57.0 55.5 47.0 45.6 44.2 42.8 41.2 38. li 33.52 46 49.6 57.1 55.7 54.3 46.0 44.6 43.3 41.9 40.3 37.3' 35.02 47 48.6 55.9 54.1 53.2 45.0 43.7 42.3 41.0 39.5 36.5 36.56 48 47.5, 54.7 53.4 52.1 44.1 42.8 41.5 40.1 38.7 35.7 38.14 49 46.6 53.6 52.3 si. 6 43.2 41.9 40.6 39.3 37.9 35.0 39.74 50. || 45.6' 52.5 51.3 50.0 42.3 41.0 39.8 38.5 37.1 34.3 I 41.38 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 182. 186 BEAM SAFE LOADS BEAMS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections - a Span g .2 in 20 Inch 18 Inch Feet 100 95 90 85 80 75 70 65 90 85 80 75 o ^ Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibe. Ibs. Ibs. Ibs. 353.6 5 353.2 0.41 6 294.3 824.0 294.8 265.2 240.0 259.6 230.0 200.0 290.6 261.0 231.8 202.3 0.60 285.627(3.9 225.6216.8 249.0241.1 7 252.3244.8237.7 229.9 223.4 193.3 185.9178.2 213.4206.7200.0193.2 0.81 8 220.7214.2207.71201.1 195.5 169.2 162.6155.9il86.7180.8l75.0169.1 1.06 9 10 11 196.2190.4184.6 176.6171.4,166.1 leo.s'iss.s'isi.o 178.8 173.8 150.4 144.6 138.6 166.0 160. 7J155.5 150.3 160.9|156.4ll35.3jl30.1il24.7|149.4144.7|140.0,135.3 146.3U42.2!l23.o'll8.3113.4!l35.8'l31.5!l27.2'123.0 1.34 1.66 2.00 12 13 14 147.2142.8138.5 135.8131.8127.8 126.1122.4118.7 134.1130.3 123.8 120.3 114.9111.7 112.8 104.1 96.7 108.4 100.1 92.9 104.0:124.5 120.6 116.6 96.01114.9111.3107.7 89.1 106.7103.3100.0 112.7 104; 1 96.6 2.38 2.80 3.24 15 117.7 114.2 110.8 107.3 104.3 90.2 86.7 83.2 99.6 96.4 93.3 90.2 3.72 16 110.4 107.1 103.8 100.6 97.7 84.6 81.3 78.0 93.4 90.4 87.5 84.5 4.24 17 103.9100.8 97.7 94.1 92.0 79.6 76.5 73.4 87.9 85.1 82.3 79.6 4.78 18 98.1 95.2 92.3 89.4 86.9 76.3 72.3 69.3 83.0 80.4 77.8 75.1 5.36 19 92.9 90.2 87.4 84.7 82.3 71.2 68.5 65.7 78.6 76.1 73.7 71.2 5.98 20 88.3 85.7 83.1 80.5 78.2 67.7 65.1 62.4 74.7 72.3 70.0 67.6 6.62 21 84.1 81.6 79.1 76.6 74.5 64.4 62.0 59.4 71.1 68.9 66.7 64.4 7.30 22 80.3 77.9 75.5 73.1 71.1 61.5 59.1 56.7 67.9 65.8 63.6 61.5 8.01 23 76.8 74.5 72.2 70.0 68.0 58.8 56.6 54.2 64.9 62.9 60.9 58.8 8.76 24 73.6 71.4 69.2 67.0 65.2 56.4 54.2 52.0 62.2 60.3 58.3 56.4 9.53 25 70.6 68.5 66.5 64.4 62.6 54.1 52.0 49.9 59.8 57.9 56.0 54.1 10.35 26 67.9 65.9 63.9 61.9 60.2 52.1 50.0 48.0 57.5 55.6 53.8 52.0 11.19 27 65.4 63.5 61.5 59.6 57.9 50.1 48.2 46.2 55.3 53.6 51.8 50.1 12.07 28 63.1 61.2 59.3 57.5 55.9 48.3 46.5 44.6 53.3 51.7 50.0 48.3 12.98 29 60.9 59.1 57.3 55.5 53.9 46.7 44.9 43.0 51.5 49.9 48.3 46.6 13.92 30 58.9 57.1 55.4 53.6 52.1 45.1 43.4 41.6 49.8 48.2 46.7 45.1 14.90 31 57.0 55.3 53.6 51.9 50.5 43.7 42.0 40.2 48.2 46.7 45.2 43.6'l5.91 32 55.2 53.6 51.9 50.3 48.9 42.3 40.7 39.0 46.7 45.2 43.7 42.3 16.95 33 53.5 51.9 50.4 48.8 47.4 41.0 39.4 37.8 45.3 43.8 42.4 41.0 18.03 34 51.9 50.4 48.9 47.3 46.0 39.8 38.3 36.7 43.9 42.6 41.2 39.8 19.13 35 50.5 49.0 47.5 46.0 44.7 38.7 37.2 35.6 42.7 41.3 40.0 38.6i.20.28 36 49.1 47.6 46.2 44.7 43.4 37.6 36.1 34.7 41.5 40.2 38.9 37.6121.45 37 47.7 46.3 44.9 43.5 42.3 36.6 35.2 33.7 40.4 39.1 37.8 36.6'22.6G 38 46.5 45.1 43.7 42.3 41.2 35.6 34.2 32.8 39.3 38.1 36.8 35.623.90 39 45.3 43.9 42.6 41.3 40.1 34.7 33.4 32.0 25.18 40 44.1 42.8 41.5 40.2 39.1 33.8 32.5 31.2 26.48 41 43.1 41.8 40.5 39.2 38.1 33.0 31.7 30.4 27.82 42 42.0 40.8 39.6 38.3 37.2 32.2 31.0 29.7 29.20 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 183i 187 CARNEGIE STEEL COMPANY BEAMS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch Depth and Weight of Sections s Span in 18 Inch 15 Inch i-s'1 Feet 70 1 65 60 55 46 75 70 65 60 55 50 45 42 CJ Q Ibs. | Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. 264.6 196.8 4 258.8 229.3 199.8 245.8 235.2 205.8 177.0 181.7 167.4 138.0 0.27 5 218.4 208.9 199.5 196.6 188.8180.9173.2145.4 13775 I2S77 0.41 135.6 123.0 6 182.0 174.1 166.3 Y57.1 163.8 157.3150.8144.4121.1 114.6 108.1 104.8 0.60 7 8 156.0 136.5 149.2J142. 51134.7 130.6124.71117.9 115.9 108.6 140.4 122.9 134.8!l29.2 118.o|ll3.1 123.7I1G3.8 108.3 90.8 98.2 85.9 92.6 81.0 89.8 78.5 0.81 1.06 9 121.3 116.1 110.9104.896.6 109.2 104.9 100.5 96.2 80.8 76.4 72.0 69.8 1.34 10 109.2 104.5 99.8 94.386.9 98.3 94.4 90.5 86.6 72.7 68.8 64.8 62.8 1.66 11 99.3 95.0 90.7 85.7|79.0 89.4 85.8 82.2 78.7 66.1 62.5 58.9 57.1 2.00 12 91.0 87.1 83.1 78.6 72.4 81.9 78.7 75.4 72.2 60.6 57.3 54.0 52.4 2.38 13 84.0 80.4 76.7 72.566.8 75.6 72.6 69.6 66.6 55.9 52.9 49.9 48.3 2.80 14 78.0 74.6 71.3 67.3 62.1 70.2 67.4 64.6 61.9 51.9 49*1 46.3 44.9 3.24 15 72.8 69.6 66.5 62.957.9 65.5 62.9 60.3 57.7 48.5 45.8 43.2 41.9 3.72 16 68.2 65.3 62.4 58.9 54.3 61.4 59.0 56.5 54.1 45.4 43.0 40.5 39.3 4.24 17 64.2 61.5 58.7 55.5 51.1 57.8 55.5 53.2 50.9 42.8 40.4 38.1 37.0 4.78 18 60.7 58.0 55.4 52.448.3 54.6 52.4 50.3 48.1 40.4 38.2 36.0 34.9 5.36 19 57.5 55.0 52.5 49.6 45.7 51.7 49.7 47.6 45.6 38.3 36.2 34.1 33.1 5.98 20 54.6 52.2 49.9 47.143.4 49.2 47.2 45.2 43.3 36.3 34.4 32.4 31.4 6.62 21 52.0 49.7 47.5 44.9'41.4 46.8 44.9 43.1 41.2 34.6 32.7 30.9 29.9 7.30 22 49.6 47.5 45.3 42.9 39.5 44.7 42.9 41.1 39.4 33.0 31.3 29.5 28.6 8.01 23 47.5 45.4 43.4 41.037.8 42.7 41.0 39.3 37.7 31.6 29.9 2S.2 27.3 8.76 24 45.5 43.5 41.6 39.336.2 41.0 39.3 37.7 36.1 30.3 28.6 27.0 26.2 9.53 25 43.7 41.8 39.9 37.7|34.8 39.3 37.8 36.2 34.6 29.1 27.5 25.9 25.1 10.35 26 42.0 40.2 38.4 36.3'33.4 37.8 36.3 34.8 33.3 28.0 26.4 24.9 24.2 11.19 27 40.4 38.7 37.0 34.9 32.2 36.4 35.0 33.5 32.1 26.9 25.5 24.0 23.3 12.07 28 39.0 37.3 35.6 33.7J31.0 35.1 33.7 32.3 30.9 26.0 24.6 23.2 22.4 12.98 29 37.6 36.0 34.4 32.5 30.0 33.9 32.5 31.2 29.9 25.1 23.7 22.4 21.7 13.92 30 36.4 34.8 33.3 3,, 29.0 32.8 31.5 30.2 28.9 24.2 22.9 21.6 20.9 14.90 31 35.2 33.7 32.2 30.428.0 31.7 30.4 29.2 27.9 23.4 22.2 20.9 20.3 15.91 32 34.1 32.6 31.2 29.5 27.2 30.7 29.5 28.3 27.1 22.7 21.520.3 19.6 16.95 33 33.1 31.7 30.2 28.6 26.3 18.03 34 32.1 30.7 29.3 27.7 25.6 19.13 35 31.2 29.8 28.5 26.9 24.8 20.28 36 30.3 29.0 27.7 26.2 24.1 21.45 37 29.5 28.2 27.0 25.5J23.5 22.66 38 ' 28.7 27.5 26.3 24.8|22.9 123.90 Loads above upper horizontal linea will produce maximum allowable shear in webs. Loads below lower hor zontal lines will produce excessive deflections. For maximum safe loads, see page 18:3. 188 BEAM SAFE LOADS BEAMS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds Per Square Inch Depth and Weight of Sections '! Span in loin. 12 Inch 10 Inch H-sJ Feet 36 55 50 45 40 35 3iy 2 27% 40 35 30 25 22 d Q Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Iba. Ibs. Ibs. Ibs. 197.0 149.8 120.4 3 4 190.2 167.8 142.7134.8 138.2 110.4 104.6 101.5 84.0 112.8104.1 84.6 78.1 ft* 62.0 0.15 0.27 127. 5 114.1107.9,101.6 95TB 81.2 TTTf 67.7 62.5|57.2 5271 0.41 61.2 46.4 6 8C.7 95.1 89.9 84.7 79.7 67.6 63.9 5971 56.4 52.ll47.7 43.4 4O.5i 0.60 823 81.5 77.0 72.6 68.3 58.0 54.8 50.7 48.4 44.6 40.9 37.2 34.7! 0.81 8 72.0 71.3 67.4 63.5 59.8 50.7 4S.O 44.4 42.3 39.0J35.8 32.6 30.4 1.06 9 (54.0 63.4 59.9 56.4 53.1 45.1 42.6 39.4 37.6 34.731.8 28.9 27.0 1.34 10 57. G 57.1 53.9 50.8 47.8 40.6 38.4 35.5 33.9 31.228.6 26.0 24.3 1.66 11 152.4 51.9 49.0 46.2 43.5 36.9 34.9 32.3 30.8 28.4)26.0 23.7 22. li 2.00 12 48.0 47.6 44.9 42.3 39.8 33.8 32.0 29.6 28.2 26.0 23.9 21.7 20.2 2.38 13 '44.3 43.9 4J.5 39.1 36.8 31.2 29.5 27.3 j 26.0 24.0 22.0 20.0 18.711 2.80 14 41.2 40.8 38.5 36.3 34.2 29.0 27.4 25.31 24.2 22.3 20.4 18.6 17.4l| 3.24 15 38.4 38.0, 36.0J 33.9 31.9 27.1 25.6 23.7 22.6 20.8 19.1 17.4 16.2 3.72 16 36.0 35.7! 33.7 31.729.9 25.4 24.0 22.2 21.2 19.5 17.9 16.3 15.2 4.24 17 33.9 33.6 31.7 29.928.1 23.9 22.6 20.9 19.9 18.4 16.8 15.3 14.3 4.78 18 32.0 31.7 30.0 28.2 26.6122.5 21.3 19.7 18.8 17.4 15.9 14.5 13.5 5.36 19 30.3 30.0 28.4 26.7 25.2 21.4 20.2 18.7 17.8 16.4 15.1 13.7 12.8 5.98 20 28.8 j 28.5 27.0 25.4 23.9 20.3 19.2 17.7 16.9 15.6 14.3 13.0 12.1 6.62 21 22 23 27.4 20. 2 25.1 27.2 25.9 24.8 25.7 24.5 23.4 124.2 23.1 22.1 22.8 21.7 20.8 19.3 18.4 17.6 18.3 17.4 16.7 16.9 16.1 15.4 16.1 15.4 14.9 14.2 13.6 13.0 12.4 11.8 11.6 11.0 7.30 8.01 8.76 24 24.0 23.8 22.5 21.2 19.9 16.9 16.0 14.8 1 9.53 25 23.0 22.8 21.6 20.3 19.1 16.2 15.3 14.2 ; 10.35 26 22.2 21.9 20.7 19.5 18.4 15.6 14.8 13.6 11.19 27 21.3 12.07 L'S 20.6 12.98 [".) 19.9 13.92 :;n IV:- 14.90 31 18.6 15.91 32 18.0 1 16.95 Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 184. 189 CARNEGIE STEEL COMPANY BEAMS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch Span in Feet Depth and Weight of Sections Coefficient of Deflection 9 Inch 8 Inch 7 Inch 35 Ibs. 30 Ibs. 25 Ibs. 21 Ibs. 25V 2 Ibs. 23 Ibs. 2oy 2 Ibs. 18 Ibs. 17% Ibs. 20 Ibs. !E 15 Ibs. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 131.8 102.4 73.1 62.2 86.6 60.8 45.6 36.5 30.4 26.1 22.8 20.3 18.2 16.6 15.2 14.0 13.0 12.2 11.4 71.8 57.3 43.0 34.4 28.7 24.6 21.5 19.1 17.2 15.6 14.3 13.2 12.3 11.5 10.8 571 43.2 83.6 64.1 49.4 35.0 0.15 0.27 0.41 0.60 0.81 1.06 1.34 1.66 2.00 2.38 2.80 3.24 3.72 4.24 4.78 5.36 5.98 6.62 88.3 66.2 53.0 44.2 37.9 33.1 29.4 26.5 24.1 22.1 20.4 18.9 17.7 16.6 15.6 14.7 80.5 60.4 48.3 40.2 34.5 30.2 26.8 24.1 22.0 20.1 18.6 17.2 16.1 15.1 14.2 13.4 72.6 54.5 43.6 36.3 31.1 27.2 24.2 21.8 19.8 18.2 16.8 15.6 14.5 13.6 12.8 12.1 53.9 40.4 32.3 26.9 23.1 20.2 18.0 16.2 14.7 13.5 12.4 11.5 10.8 10.1 42.9 32.1 25.7 21.4 18.4 16.1 14.3 12.9 11.7 10.7 9.9 9.2 39.8 29.9 23.9 19.9 17.1 14.9 13.3 11.9 10.9 10.0 9.2 8.5 50.3 40.3 33.6 28.8 25.2 22.4 20.1 18.3 16.8 15.5 14.4 13.4 12.6 11.8 11.2 37.9 30.3 25.3 21.7 19.0 16.9 15.2 13.8 12.6 11.7 10.8 10.1 9.5 27.6 22.1 18.4 15.8 13.8 12.3 11.0 10.0 9.2 8.5 7.9 31.1 25.9 22.2 19.4 17.3 15.6 14.1 13.0 12.0 11.1 10.4 9.7 8.6 8.0 8.0 7.5 7.4 6.9 10.7 10.1 10.1 9.6 9.5 9.0 8.9 8.4 9.2 8.6 13.9 13.3 12.7 12.1 11.5 10.9 10.6 10.1 Span in Feet Depth and Weght of Sections 2 S'-* 3 -g 8 jgcn SO 0.02 0.07 0.15 0.27 0.41 0.60 0.81 1.06 1.34 1.66 2.00 2.38 2.80 3.24 6 Inch 5 Inch 4 Inch 3 Inch 17y 4 Ibs. 14% Itis. 12% Ibs. 14% Ibs. 12% Ibs. 9% Ibs. ioy 2 Ibs. 9% Ibs. 8% Ibs. 7% Ibs. 7% Ibs. ey 2 Ibs. f 1 2 3 4 5 6 7 8 9 10 11 12 13 14 57.0 42.2 27.6 50.4 35.7 21.0 TO 12.9 10.3 8.6 7.4 6.4 5.7 5.2 32.8 19. 12.7 9.5 7.6 6.3 5.4 4.8 ffco 12.0 9.0 7.2 6.0 5.1 4.5 21.0 16.9 11.3 8.5 6.8 5.6 4.8 4.2 JL1 10.6 8.0 6.4 5.3 4.5 4.0 21.7 20.7 10.4 6.9 5.2 4.1 3.5 "'3.0 2.6 15.8 ^F 6.4 4.8 3.8 3.2 "2.7' 2.4 10.2 8.8 5.9 4.4 3.5 2.9 "2."5" 2.2 46.6 31.0 23.3 18.6 15.5 13.3 11.6 10.3 9.3 8.5 7.8 32.3 21.5 16.2 12.9 10.8 9.2 8.1 7.2 6.5 29.1 19.4 14.5 11.6 9.7 8.3 7.3 6.5 5.8 28.4 21.3 17.1 14.2 12.2 10.7 9.5 8.5 7.8 7.1 25.8 19.4 15.5 12.9 11.1 9.7 8.6 7.7 7.0 6.5 4.2 3.8 4.0 3.6 3.8 3.4 3.5 3.2 5.9 5.4 5.3 4.8 4.7 4.3 7.2 6.7 6.6 6.1 6.0 5.5 Loads above upper horizontal lines will produce maximum allowable shear in Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 184. 190 BEAM SAFE LOADS B X -H ici-c-.C?ir:3i^o Oi ic ~ M >c C re ~ c-. -.c~. :e~ re 5^ ?I f; H^ = Vl?,?^?53 2 ^^^ 2;32S:: re -M M x t^ OOOOOOOOO OOOOOOOO 00000000 x r. r. o :c * TT 10 TT "3 -H- CO C ---- CO Tt-*--Ci :-: M o c; c -t ?c xt O CCCCOCCOO M ce C CI^ T X CO ^F t>- T*< re i re M ~ x 'C OOOOCCOO OOCOOOOO CiCiC; CtCCCi-C c ~. x x e-i c o ceejeic-ieirie-irti O CCCCCCOOO O OOOOOOOO OOOOOCCOO x c-n^Oic r- ci re c Ci i^ ic ic t^ ic co Ci X t^ r^ X t^ --c TT i> i-C - re l^ ?! TT X e) -MX i.C 71 X 1C M re 7-1 O X CC O. re t^ 04 b- L7 -f M -M ~. X O (N -H rf M O C-. :C ?1 rt l^ c C re t- C -7 ^ 000000000 OOOOOOCO 000000000 C5 cq x o M - ~ ^r L-: 1.7 o L~ o c: r: L-; o c re x c ^i ~. c -- -* M * xi^--c-^rct-c^r cxt-cxt^sCTf O t^t^CiCiCOLQiOTt* CO -*T} t^ i> :5 -^f co- o t>- ^ Ci -H ce ^}* 'H x ic 7-1 c t>- ce x ICMCTT ciic-n re iciCTj- >-c x c i- 13 ic ic c re re r; c c ei ~. x X t^ t^ I -< c^;q;si,Ht- 1 f-H.-ii-i^ r-< ^r-i,-.^^!^^-!^ ^i ^H ^ ^i o. ooooogogo o oooooooo 0097500000 X ei -c Ci ic r. ri ic i T* f-tocc>OO^ Ci -^ c ic c-. * ci * c CN oiCrj<-(OCiCixt^ M t^t^c--c>cceceej f-r reccoox aad spanoj CO tCOiCOOOiCOCi t^ QiCOiCOiCOiC OiCOiOOCOiC^ X -H C C Ci ~ X X i-C O Ci Ci X X t^ t- C O X X t- l^ C C iC * 191 CARNEGIE STEEL COMPANY o o o o TfH Ttl 1C O 05 X t^ oooooo rfHOOCOO' I ooo Ol^CO o o o 00 t^ 1^ rH OOOOOOOOO (M (M C^ W <-t TH^I-H ^H,T^ OXCD^t^iOCOlMO 1C <* T}H -^ CO CO;CO CO iOTt rH 10 CO l>- i i oooo ^ t> TH IO TH t^ Tf rH T}< CO CO CO GOCOCOCOC-1 OCOOlMOO ooooooo ICrHt^OXCO'* CO O CO N N 00 N rHrHOOXI>t> oooo rHX-^C^l Oi CO 00. CO oooo rH CO O rH *tf O -* rH 1C rJH ^ * OOOOOOOO TH 05 CO CO -H ic CO- co o -: ot^co t^OOiCC; ICT?TJ< cc t t> o 1C 1C * Ills O O Ci O 000 oc T? o sgs 00 00 t^ 00: ooo d -t : ic o c c ic c: * T}< co I ooo o (N r-t OOOOO Lt c; 01 t>- co 000 i-i t CO O CO b- 000 L-: re ^H ^ co CM 000 O OJ 00 C O O o o co 1C 1C id CO CO CO CO CO ss g 111! O O OOO t- T}< - in n o 000 * - I> t- rH CO i I CO 0000 ooooo O5 rt< 00 * i> t> c ooooo i-l iO O ^ O co o io ^ ^ oooooo CO 00 rH CO CO -^ rHOOOJOOGO oooooo 1> 1-1 Tfl rH GO * Ci C5 00 00 I> I> ooo CS I-H t~^ TJH ^HOOOiOiG ooo C5COCO CO iO <# CO C^ CO oooo iOCOOI> 001>COiO-*CO oooooo OiOOOO(Ml>O IO-^COCOJ> oooo 000(N^ l>cocOiO-* oooooo (N 00 IO i-t t>- TF 1-1 O5 00 1> iO iO oooooo ooooo GOCOiOGOCOlO i-l O O O5 GO OOOOO OOOO OCOt>-OOC5 00 O (M O GOt^cOO-* 00000 -*OOCOOO^ CO1^ OOOOOO rH GO iO t> i-l O(MOO5 COfNrHOOO csooocoio oooooo MiOt>O(NOO t^iOCO(MOO5 oooooo oo OJrhdOTHcO CO I-H CO l>COTtOiO^(M^r-i OCOCOiOTt0 OOOt^iOCO 885 ^COrHCiOO oooooo oooooo lOOOOCOCOOT OO^OCOt^i-H Ttl CO CO CO CO CO 00000 COrHOOCCt- Ot^-^Ot^CO oooooo CO t- O5 CO rH (M (NO3COiO-*(M ooooo O5COGO(MOO OOCOCOrHOO OOOOO Tt< CO O5 IO Th oooooo ooooo IO< H>-t>.cOO OO5t>COOO rHOO-^C^rHOi IO rH 00 IO OrH COOlOIM^HOO co >o >o 10 10 Tt< OOOOO OOOOO I>CO OOOOOO iO rH 00 CD >O O5 OIOOSCD-^O OOt-COCCCOCO OOO O O CO S^ GO-^OCOM oo Oi O o i I s - *COOOOO O CO (M IO rHiOOO^lCO 00000 ooooo rH COCO CO CO ^ GO ^ J>iO^COCD GO rH COO O5 CO CO lOrfl CO 88 558 oooo COOT^OO rHOOCI> ^^2 g^g; oooo COOO- CM i i O CM t^coicic-* ^^coco: COCMOJ 3 ;SS^ "^ CD X i* CO X t^* CD CD O O O O t^ ^H co CO CO CM O O O O C iffl'T CO CD 1C Tfl Tf 00 rt< M - OS ' O X 1C 1C rf CO! CO CM (N O 00 CD 1C CO OO x T)< i-O *t I 000 CO * CM O X t> fo ""6"6"6": OS X 1C (N *c ^ co co co oooo Ci t^ C co re H cs X CD L- ^3 oooo o o CM CD O ^ 1-1 IN. * M I-H C5 O t^ 00 CD ^H tf Tf ooooo ooo .H t^ (N r^ ^ Ci X CD Ot^-^CCMO CO i * OS CO(N(N(N-OS 1-HlCOlCOS COi-HOS iCCMOOCO XiCCOOt^ Ost^rJH COCOINWCM (N(N(N(N^ ^ ^ ^ o o o CO iC X CM O X 00 o o o C^ CO i-l ^ CM co ic -^ co co (N 00 C --I * co co ro ^sgg ii COOt^-*-H COOt^iC COfOCMCMe^ CM CM 1-1 -i o o o OS CO X * * CO O * 1C M X * Tt* CO CO X X 0000 t^ CD r}< 1C 0000 T}H O Tt< t> f * * CO CO 00 000 000 t^-CD OOO CO*Ct>- i-iX^C CM^nO t^COC 2g iC CO o o o X OS ^H oo CM C oooo X i-i C X 1-1 t^ (N l> ( oooo o .-H CD 03 - 00 o o t>. T} O O iC (N CO ^H CO CO CO M W 2 Is CO CM 100J j (N t- CM t^- (N t>- CM !> CM t>- C O uO O C O C CM c co'ic'^' 199 CARNEGIE STEEL COMPANY EQUAL ANG: ALLOWABLE UNIFORM LOAD IN Tno^Mps OF POUNDS Neutral Axis Parallel to Either Leg Maximum Bending Stress, 16,000 Pounds per Square Inch Size, Inches Thick- ness, Inches 1 Foot Span Maximum Span 360x Deflection Size, Inches Thick- ness, Inches 1 Foot Span Maximum Span 360 x Deflection Safe Load Safe Load Length, Feet Safe Load Safe Load Length, Feet 8x8 1H 186.99 8.31 22.5 3y 2 x3y 2 is 24.00 2.55 9.4 8x8 1 'a 177.81 7.87 22.6 3y 2 x3y$ H 22.51 2.37 9.5 8x8 1 168.53 7.43 22.7 3y 2 x3y$ H 20.91 2.18 9.6 8x8 8x8 8x8 8x8 8x8 H if it 159.15 149.55 139.84 130.03 120.00 6.98 6.53 6.08 5.63 5.18 22.8 22.9 23.0 23.1 23.2 3y 2 x3y 2 | 19.31 17.60 15.89 14.08 12.27 10.45 2.00 1.81 1.62 1.42 1.23 1.04 9.7 9.7 9.8 9.9 10.0 10.1 8x8 109.87 4.73 23.2 3y 2 x3y 2 M 8.43 0.83 10.2 8x8 8x8 A 99.63 89.28 4.28 3.82 23.3 23.4 3x3 3x3 ft 13.87 12.69 1.69 1.53 8.2 8.3 3x3 "\A 11.41 1.37 8.3 6x6 l 91.41 5.48 16.7 3x3 T 7 e 10.13 1.21 8.4 6x6 li 86.51 5.16 16.8 3x3 H 8.85 1.04 8.5 6x6 81.39 4.84 16.8 3x3 ft 7.57 0.83 8.6 6x6 11 76.27 4.51 16.9 3x3 M 6.19 0.71 8.7 6x6 M 71.04 4.18 17.0 2yx2y i 7.79, 1.15 6.8 6x6 ii 65.81 3.85 17.1 2y 2 x2y 2 f 6.93 1.01 6.9 6x6 % 60.37 3.51 17.2 2y 2 x2y 2 H 6.08 0.87 7.0 6x6 I 9 e 54.83 3.17 17.3 2y 2 x2y 2 ft 5.12 0.72 7.1 6x6 Yz 49.17 2.83 17.4 2y 2 x2y 2 H 4.16 0.58 7.2 6x6 T6 43.41 2.48 17.5 2y 2 x2y 2 ft 3.20 0.44 7.3 6x6 H 37.65 2.14 17.6 2y 2 x2y 2 Ys 2.13 0.29 7.4 2x2 I 7 e 4.27 0.79 5.4 5x5 1 61.87 4.55 13.6 2x2 % 3.73 0.68 5.5 5x5 5x5 5x5 5x5 il K 11 58.56 55.15 51.73 48.32 4.28 4.00 3.73 3.45 13.7 13.8 13.9 14.0 2x2 2x2 2x2 2x2 ft 1 3 S 3.20 2.67 2.03 1.39 0.57 0.46 0.35 0.24 5.6 5.7 5.8 5.8 5x5 H 44.80 3.18 14.1 tMxl^ I ? o 3.20 0.68 4.7 5x5 5x5 5x5 5x5 41.17 37.44 33.60 29.76 2.90 2.62 2.34 2.06 14.2 14.3 14.4 14.5 1x11 1 1 2.77 2.45 .2.03 .49 ; .07 0.60 0.51 0.41 0.30 0.21 4.7 4.8 4.9 5.0 5.1 5x5 /is 25.81 1.78 14.5 /4 74: /o iy 2 x~Ly 2 3^ 2.03 0.51 4.0 4x4 11 32.11 2.95 10.9 iy 2 x iy 2 iy 2 x\y 2 M .71 39 0.42 33 4.1 4.2 4x4 M 29.97 2.73 11.0 iy 2 xiy 2 ft .07 0.25 4.3 4x4 U 27.84 2.51 11.1 ]}/% x 1 1/? Ys 0.77 0.17 4.4 4x4 25.60 2.29 11.2 \.YxiY 1.17 0.36 3.3 4x4 ft 23.36 2.07 11.3 L^|xlM M 0.97 0.29 3.4 4x4 Y% 21.01 1.85 11.4 !MxlJ4 I 3 6 0.76 0.22 3.5 4x4 I 7 s 18.67 1.63 1!.4 IMxlM Ys 0.52 0.14 3.6 4x4 % 16.21 1.41 11.5 1 X 1 M 0.60 0.22 2.6 4x4 A 13.76 1.19 11.6 1 X 1 0.47 0.17 2.7 4x4 M 11.20 0.96 11.7 I X 1 Ys 0.33 0.12 2.8 200 BEAM SAFE LOADS ~^t~ ^fl QUAL ANGLES ALLOWABLE I^^BRM LOAD IN THOUSANDS OF POUNDS ^^^^ Neutral Axis Parallel to Shorter Leg Maximum Bending Stress, 16,000 Pounds per Square Inch iFoot Maximum Span 1 Foot Maximum Span Size, Thick- Span 360x Deflection Size, Thick- Span 360x Deflection Inches ness, Inches Safe Safe Length, Inches ness, Inches Safe Safe Length, Load Load Feet Load Load Feet 8 6 1 161.17 7.49 21.5 6 x3^ 1 83.52 5.57 15.0 8 6 11 152.21 7.04 21.6 6 x3*4 ii 79.04 5.24 15.1 8 6 H 143.04 6.59 21.7 6 x3H % 74.45 4.90 15.2 8 6 H 133.87 6.14 21.8 6 x3M H 69.87 4.57 15.3 8 6 M 124.48 5.68 21.9 6 x3M H 65.07 4.23 15.4 8 6 Ik 114.88 5.22 22.0 6 x3^ li 60.27 3.89 15.5 8x6 X 105.28 4.76 22.1 6 x3H H 55.36 3.55 15.6 8x6 ' i 9 95.47 4.30 22.2 6 x3M i 9 s 50.35 3.21 15.7 8x6 y* 85.55 3.84 22.3 6 x3^ y* 45.23 2.86 15.8 8x6 I 7 S 75.41 3.37 22.4 6 x3M i 7 40.00 2.52 15.9 8 x3^ 8 x3^ i ti. 146.03 138.03 7.53 7.08 19.4 19.5 6 x3^ 6 x3M H A 34.67 29.23 2.17 1.83 16.0 16.0 8 x3^ K 129.92 6.63 19.6 8 x3>^ H 121.60 6.17 19.7 5x4 H 53.23 4.00 13.3 8 x3^ K 113.17 5.72 19.8 5x4 li 50.03 3.73 13.4 8 x3>$ H 104.58 5.23 19.9 5x4 M 46.61 3.46 13.5 8 x3^ K 95.79 4.78 20.0 5x4 ii 43.20 3.19 13.5 8 x3^ I 9 3 86.93 4.32 20.1 5x4 H 39.79 2.92 13.6 8 x3M H 77.97 3.86 20.2 5x4 A 36.16 2.64 13.7 8 x3^ I 7 * 68.80 3.39 20.3 5x4 ^ 32.53 2.36 13.8 7 x3H 7 x3^ 1 It 112.85 106.67 6.52 6.13 17.3 17.4 5x4 5x4 I 7 e H 28.80 24.96 2.07 1.78 13.9 14.0 7 *&A 7 x3H 7 x3^ 7 x3H 7 x3^ 7 x3M 7 x3J* 7 x3H 7 x3>i H li H M I 9 9 H A K 100.48 94.08 87.68 81.07 74.35 67.52 60.59 53.44 46.19 5.75 5.36 4.97 4.58 4.18 3.77 3.37 2.96 2.54 17.5 17.6 17.6 17.7 17.8 17.9 18.0 18.1 18.2 5 x3H 5 x3^ 5 x3^ 5 x3K 5 x3K 5 x3}$ 5 x3^ 5 x3^ 5 3% % li H n H I 9 s H I 7 8 H 52.05 48.85 45.65 42.35 38.93 35.41 31.89 28.16 24.43 4.04 3.76 3.49 3.21 2.93 2.64 2.36 2.07 1.79 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 6x4 i 85.55 5.56 15.4 5 3^ I 5 8 20.69 1.51 13.7 6x4 II 80.96 5.22 15.5 6x4 % 76.27 4.89 15.6 5 3 li 47.47 3.77 12.6 6x4 ii 71.47 4.55 15.7 5 3 M 44.37 3.49 12.7 6x4 M 66.67 4.22 15.8 5 3 ii 41.17 3.22 12.8 6x4 ii 61.65 3.88 15.9 5 3 M 37.87 2.94 12.9 6x4 H 56.64 3.54 16.0 5 3 i 9 * 34.45 2.65 13.0 6x4 A 51.52 3.20 16.1 5 3 H 31.04 2.37 13.1 6x4 M 46.19 2.85 16.2 5 3 /s 27.52 2.09 13.2 6x4 I T 40.85 2.51 16.3 5 3 H 23.89 1.80 13.3 6x4 M 35.41 2.16 16.4 5 3 A 20.16 1.51 13.4 201 CARNEGIE STEEL COMPANY UNEQUAL ANfi ALLOWABLE UNIFORM LOAD IN THO^^NDS OF POUNDS Neutral Axis Parallel to Shorter Leg Maximum Bending Stress, 16,000 Pounds per Square Inch Size, Thick- 1 Foot Span Maximum Span 360 x Deflection Size, Thick- 1 Foot Span Maximum Span 360 x Deflection Inches ness, Inches Safe Safe Length, Inches II CSS, Inches Safe Safe Length, Load Load Feet Load Load Feet 4^x 3 11 38.61 3.36 11.5 3 x2H I 9 e 12.27 1.53 8.0 4i/ x g II 36.05 3.11 11.6 3 x2}/2 11.09 1.37 8.1 4V x 3 33.49 2.87 11.7 3 x2>i JL 9.92 1.22 8.1 4-U x 3 li 30.83 2.62 11.8 3 x2^ y% 8.64 1.06 8.2 4H x 3 28.16 2.38 11.8 3 x2H A 7.36 0.89 8.3 ft 25.28 2.13 11.9 3 x2y 2 k 5.97 0.71 8.4 4j|x 3 22.40 1.87 12.0 41/2 x 3 3/ 19.52 1.61 12.1 3x2 M 10.67 1.39 7.7 4J^ x 3 I E a 16.43 1.35 12.2 3x2 I 7 o 9.49 1.22 7.8 3x2 ^ 8.32 1.05 7.9 4 x3H 11 31.15 2.94 10.6 3x2 B 7.04 0.88 8.0 4 x3j/2 II 29.23 2.73 10.7 3x2 /I 5.76 0.71 8.1 4 x3J^ is 27.20 2.52 10.8 4 x3M> || 25.07 2.30 10.9 2HJX 2 rx 7.47 1.15 6.5 4 x3M 22.93 2.08 11.0 2>ix 2 IS 6.72 1.02 6.6 4 x'3^/2 1/s 20.69 1.86 11.1 2^x 2 / M 5.87 0.88 6.7 4 x3H I 7 5 18.35 1.64 11.2 5.01 0.74 6.8 4 x3J^ 3/ 16.00 1.41 11.3 2^x 2 T 4.05 0.59 6.9 4 x3> A 13.44 1.18 11.4 I 3 o 3.09 0.44 7.0 2^x 2 H 2.13 0.30 7.1 4x3 11 30.61 2.97 10.3 4x3 k 28.59 2.75 10.4 2V'xl 1 -o B 4.69 0.73 6.4 4x3 u 26.56 2.53 10.5 2 \/ x 11^ IX 3.84 0.59 6.5 4x3 R> 24.53 2.31 10.6 2}/xll^ A 2.99 0.45 6.6 4x3 I 9 o 22.40 2.09 10.7 4x3 4x3 4x3 4x3 4x3 M ft ft 20.16 17.92 15.57 13.12 10.67 1.87 1.64 1.42 1.19 0.96 10.8 10.9 11.0 11.0 11.1 234 X iy< 2J4x \Yi 5.76 5.12 4.48 3.84 3.20 1.02 0.90 0.77 0.65 0.53 5.6 5.7 5.8 5.9 6.0 S^ x 3 13 23.47 2.57 9.1 A 2.45 0.40 6.0 3 1 A x 3 33^2 x 3 3J4 x 3 3^ x 3 31/2" x 3 1 I 7 s 21.87 20.37 18.77 17.17 15.47 13.76 2.38 2.19 2.00 1.81 1.62 1.43 9.2 9.3 9.4 9.5 9.5 9.6 55555 X X X X X 2 x 3 l^fl 10.24 1.05 9.8 2 xlM 1 2.45 0.47 5.2 3^ x 3 M 8.32 0.84 9.9 2 xlM ft 1.92 0.36 5.3 3iJx2iJ 3^x23^ 1 19.73 18.24 16.64 15.04 2.19 2.00 1.82 1.63 9.0 9.1 9.1 9.2 lil I 1.92 1.49 1.00 0.42 0.32 0.21 4.6 4.7 4.8 3 V^ x 2V^ 7 13.44 1.44 9.3 31^x21^ % 11.73 1.24 9.4 l^xlJ4 I 5 ff 1.71 0.44 3.9 3J4 x 2J/i 5 9.92 1.04 9.5 1 ^2 X 1 ii M 1.39 0.35 4.0 3>ix2^ M 8.00 0.83 9.6 iHxl* ft 1.07 0.26 4.1 202 BEAM SAFE LOADS UNEQUAL ANGLES ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Neutral Axis Parallel to Longer Leg Maximum Bending Stress, 16,000 Pounds per Square Inch Size, Thick- 1 Foot Span Maximum Span 360 x Deflection Size, Thick- 1 Foot Span Maximum Span 360 x Deflection Inches ness, Inches Safe Safe Length, Inches ness, Inches Safe Safe Length, Load Load Feet Load Load Feet 8 6 1 95.15 5.44 17.5 6 x3H 1 30.93 3.09 10.0 8 6 M 89.92 5.11 17.6 6x3^ il 29.23 2.90 10.1 8 6 H 84.69 4.79 17.7 6 x3M 7 A 27.63 2.71 10.2 8 6 H 79.36 4.45 17.8 6x3^ ii 25.92 2.52 10.3 8 6 N 73.92 4.13 17.9 6 x3J^ H 24.21 2.33 10.4 8 6 H 68.37 3.80 18.0 6 x3^ ii 22.51 2.14 10.5 8x6 H 62.72 3.48 18.0 6 x3K H 20.69 1.95 10.6 8x6 A 56.96 3.15 18.1 6x3^ I 9 6 18.88 1.76 10.7 8x6 H 51.09 2.81 18.2 6x3^ M 16.96 1.57 10.8 8x6 A 45.12 2.47 18.3 6x3^ I 7 * 15.04 1.38 10.9 8 x3^ 8 x3^ i 11 32.21 30.40 3.10 2.90 10.4 10.5 6 x3M 6 x3H N A 13.12 11.09 1.19 1.00 11.0 11.1 8 x3^ 8 x3^ 8 x3K 8 x3^ 8 x3^ 8 x3^ 8x3^ 8 x3H H ii H it H i 9 * H i 7 * 28.69 26.88 25.07 23.15 21.33 19.41 17.49 15.57 2.71 2.52 2.33 2.13 1.94 1.74 1.57 1.38 10.6 10.7 10.8 10.9 11.0 11.1 11.2 11.3 5x4 5x4 5x4 5x4 5x4 5x4 5x4 5x4 7 A ii M n % I 9 5 H I 7 S 35.31 33.17 30.93 28.69 26.45 24.11 21.76 19.31 3.15 2.93 2.71, 2.50 2.28 2.16 1.84 1.62 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 7 x33^ i 31.57 3.10 10.2 5x4 H 16.75 1.40 12.0 7x3^ il 29.87 2.90 10.3 7x3^ % 28.16 2.71 10.4 5 x3M 74 26.88 2.71 9.9 7 x3H ii 26.45 2.52 10.5 5 x3^ n 25.28 2.53 10.0 7 x3H M 24.64 2.33 10.6 5 x3^ K 23.68 2.34 10.1 7 x3M ii 22.83 2.14 10.7 5 x3K H 21.97 2.15 10.2 7x3^ H 21.01 1.95 10.8 5 x3X H 20.27 .97 10.3 7x3^ i 9 * 19.20 1.76 10.9 5 x3^ A 18.45 .78 10.4 7 x3H H 17.28 1.57 11.0 5 x3J^ H 16.64 .60 10.4 7 x3^ i 7 15.36 1.38 11.1 5 x3^ LS 14.83 .41 10.5 7 x3X H 13.44 1.19 11.2 5 x3^ H 12.91 .22 10.6 5 x3^ IS 10.88 .02 10.7 6x4 i 40.43 3.55 11.4 6x4 6x4 6x4 6x4 6x4 il Ji II ii 38.29 36.16 33.92 31.68 29.44 3.33 3.12 2.90 2.69 2.47 11.5 11.6 11.7 11.8 11.9 5x3 5x3 5x3 5x3 n M ii H 18.56 17.39 16.11 14.83 2.16 2.00 .83 .67 8.6 8.7 8.8 8.9 6x4 i 27.09 2.26 12.0 5x3 A 13.55 .51 9.0 6x4 i" 24.64 2.05 12.0 5x3 H 12.27 .35 9.1 6x4 H 22.19 1.84 12.1 5x3 I T 6 10.88 .18 9.2 6x4 I 7 9 19.73 1.62 12.2 5x3 9.49 .02 9.3 6x4 17.07 1.39 12.3 5x3 A 8.00 0.85 9.4 203 CARNEGIE STEEL COMPANY UNEQUAL ANGLES ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Neutral Axis Parallel to Longer Leg Maximum Bending Stress, 16,000 Pounds per Square Inch 1 Foot Maximum Span 1 Foot Maximum Span Size, Thick- Span 360 x Deflection Size, Thick- Span 360 x Deflection Inches ness, Inches Safe Safe Length, Inches ness, Inches Safe Safe Length, Load Load Feet Load Load Feet 4 */ x 3 ii 18.24 2.15 8.5 3 x2y 2 8.75 1.25 7.0 ^{/ x 3 H 17.07 1.99 8.6 Vi 7.89 1.12 7.0 4^x 3 15.89 1.83 8.7 3 x2y 2 I 7.04 0.99 7.1 y& 14.61 1.67 8.8 3 x2y 2 6.19 0.85 7.2 4i| x 3 13.33 1.51 8.8 3 x2y 2 5 5.23 0.72 7.3 4^x 3 3-1 12.05 1.35 8.9 3 x2y 2 M 4.27 0.58 7.4 x 3 E ' 16.43 2.01 8.2 3y 2 x 3 '; 15.36 .85 8.3 2 xiy 2 y 2.13 0.51 4.2 3 l Ax 3 : !) 6 14.19 12.91 .69 .52 8.4 8.5 2 xiy 2 2 xiy 2 i 1.81 1.49 042 0.34 4.3 4.4 <$y 2 x 3 11.73 .36 8.6 2 xiy 2 3 1.17 0.26 4.5 3y 2 x 3 10.45 .20 8.7 2 xiy 2 H 0.80 0.17 4.6 3}/2 x 3 y 9.07 1.04 8.7 3j^x 3 Yi 7.68 6.19 0.87 0.70 8.8 8.9 2 xlJ4 2 x!34 M I 3 s 1.04 0.80 0.28 0.21 3.7 3.8 3y?x2y 2 1 10.56 9.81 8.96 8.11 1.51 1.39 1.26 1.13 7.0 7.1 7.1 7.2 IpxlM M P* 1.01 0.80 0.56 0.28 0.22 0.15 3.6 3.7 3.8 3y 2 x2y 2 I 7 a 7.25 0.99 7.3 sy 2 x2y 2 N 6.29 0.85 7.4 i y 2 x 1 34 16 1.17 0.34 3.4 3y 2 x2% 5.33 0.71 7.5 iy 2 x 134 0.99 0.28 3.5 33-ix23i M 4.37 0.58 7.6 13^x134 I 3 d 0.78 0.22 3.6 204 BEAM SAFE LOADS TEES , . ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Neutral Axis Parallel to Flange Maximum Bending Stress, 16,000 Pounds per Square Inch EQUAL TEES Size IFoot Maximum Span Size IFoot Maximum Span Weight per Span 360 x Deflection Weight per Span 360 x Deflection Flange, Inches Stem, Inches Foot, Pounds Safe Safe Length, Flange, Inches Stem, Inches Foot, Pounds Safe Safe Length, Load Load Feet Load Load Feet 4 4 13.5 21.55 1.89 11.4 2M 2M 4.1 3.41 0.53 6.4 4 4 10.5 16.85 1.45 11.6 2 2 4.3 3.31 0.59 5.6 3J^ 3^2 11.7 16.32 1.65 9.9 2 2 3.56 2.77 0.49 5.7 3H 3^ 9.2 12.69 1.27 10.0 1M 1% 3.09 2.03 0.41 4.9 3 3 9.9 11.73 1.41 8.3 1J-6 1M 2.47 1.49 0.36 4.1 3 3 8.9 10.45 1.24 8.4 1 1 A i*A 1.94 1.17 0.27 4.3 3 3 7.8 9.17 1.08 8.5 1M 1M 2.02 1.01 0.30 3.4 3 3 6.7 7.89 0.92 8.6 1M 1M 1.59 0.78 0.22 3.5 2H 2Ji 6.4 6.29 0.90 7.0 1 l 1.25 0.49 0.18 2.7 2% 2M 5.5 5.33 0.75 7.1 1 l 0.89 0.35 0.12 2.9 2K 2M 4.9 4.37 0.69 6.3 UNEQUAL TEES Size IFoot Maximum Span Size IFoot Maximum Span Weight Span 360 x Deflection Weight Span 360 x Deflection Flange, Stem, Foot, Flange, Stem, per Foot, Inches Inches Pounds Safe Safe Length, Inches Inches Pounds Safe Safe Length, Load Load Felt Load Load Feet 5 3 13.4 11.41 1.25 9.1 3 1 A 3 10.8 12.05 .42 8.5 5 2 1 A 10.9 8.96 1 1.20 7.5 3 1 A 3 8.5 9.49 .09 8.7 4H 3}4 15.7 22.72 2.37 9.6 3H 3 7.5 9.07 .04 8.7 4J^ 3 9.8 9.71 1.07 9.1 3 4 11.7 20.69 .92 10.8 4M 3 8.4 8.32 0.90 9.2 3 4 10.5 18.35 .68 10.9 4^ 2H 9.2 6.72 0.87 7.7 3 4 9.2 16.11 1.47 11.0 4JS 2^i 7.8 5.76 0.74 7.8 3 3^ 10.8 15.89 1.66 9.6 5 15.3 33.39 2.40 13.9 3 3% 9.7 14.19 1.46 9.7 t 5 11.9 25.92 1.84 14.1 3 3% 8.5 12.37 1.26 9.8 i 43^ 14.4 27.09 2.15 12.6 3 2 1 A 7.1 6.40 0.89 7.2 t 4J^ 11.2 21.12 1.65 12.8 3 2% 6.1 5.55 0.76 73 3 9.2 9.60 1.08 8.9 3 2 1 A 5.0 4.59 0.62 7.4 3 7.8 8.21 0.90 9.1 2M 3 7.1 8.96 1.08 8.3 2]/z 8.5 6.61 0.87 7.6 2K 3 6.1 7.68 0.91 8.4 2y 2 7.2 5.65 0.73 7.7 2M 2.87 0.93 0.25 3.7 2 7.8 4.27 0.70 6.1 2 1/4 3.09 1.60 0.36 4.4 4 2 6.7 3.63 0.59 6.2 l l A 2 2.45 2.03 0.37 5.5 3 1 A 4 12.6 21.12 1.90 11.1 1H i> 1.25 0.57 0.15 3.7 3H 4 9.8 16.53 1.46 11.3 ik 5 0.88 0.14 0.07 1.9 205 CARNEGIE STEEL COMPANY ZEES ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Neutral Axis Parallel to Flanges Maximum Bending Stress, 16,000 Pounds per Square Inch Size 1 Foot Maximum Span Weight Span 360 x Deflection Depth, Inches Flanges, Inches Thickness, Inches per Foot, Pounds Safe Safe Length, Load Load Feet 6K 3^ K 34.6 174.93 1.42 12.3 6A 3! 9 S ie 3 32.0 162.35 1.33 12.2 6 3H H 29.4 149.76 1.24 12.1 6H 3^ ie 1 28.1 150.40 1.22 12.3 6A 3A 25.4 136.75 1.12 12.2 6 33^ A 22.8 123.20 1.02 12.1 6H 3^ ^ 21.1 119.68 0.97 12.3 6A 3! 9 e I ? 6 18.4 104.85 0.86 12.2 63^^ 15.7 90.03 0.75 12.1 5H 3^ ii 28.4 119.47 1.16 10.3 5^ 3A M 26.0 110.29 1.08 10.2 5 3Ji JJ 23.7 101.01 1.00 10.1 5H 3^ ^ 22.6 102.08 0.99 10.3 5A 3A A 20.2 91.95 0.90 10.2 5 3M 17.9 81.92 0.81 10.1 5H 3^ A 16.4 79.36 0.77 10.3 5A 3A H 14.0 68.16 0.67 10.2 5 3^ IS 11.6 56.96 0.57 10.1 4H 3A H 23.0 77.44 0.93 8.3 4A 3>i n 20.9 70.93 0.87 8.2 4 3A H 18.9 64.53 0.80 8.1 4H 3!% I 9 e- 18.0 65.92 0.79 8.3 4^ 3^ 15.9 58.67 0.72 3-2 4 3& I 7 8 13.8 51.52 0.64 8.1 4^ 3^ H 12.5 49.81 0.60 8.3 4& 3M A 10.3 41.71 0.51 8.2 4 3A M 8.2 33.49 0.41 8.1 3A 2^ i 9 g 14.3 36.59 0.59 6.2 3 2iJ H 12.6 32.64 0.54 6.1 3A 2M I 7 S 11.5 31.79 0.51 6.2 3 21 e l ^ 9.8 27.41 0.45 6.1 3A 2% T S ff 8.5 25.39 0.41 6.2 3 2H M 6.7 20.48 0.34 6.1 206 STRUCTURAL DETAILS 27' ^ -^=3 -- 1 -r-*- ^ 3- * -- e 5- .,.. a -" <=n J^ BEAM CONNECTIONS 2 Angles 4x 4x3"x l'-8}$" 2 Angles 4 x 4'x ^ 1-5%' 5'/ 2 ': 15"2^" 12" 2 Angles 10," 9f 8" 2 Angles 4"x/xJ{'exO-ll 1 /i" RiVets and bolts-%"diam. er 5 A 2 Angles 6"x4x%"x 0-5\% 2Angles6"x 4x%" ZAngl LIMITING VALUES OF BEAM CONNECTIONS I Beams 27 24 "2T 20 18 15 12 10 '.) 8 Weight Lbs.per Foot 83 80 Value of Web Connection Shop Rivets in Enclosed Bearing, Pounds 66800 57^. 65 '17500 ^2700^ 40200 45000 41400 L".IO()() Values of Outstanding Legs of Connection Angles Field Rivets Field Bolts Rivets or Turned Bolts, Single Shear, Pounds (11 000 53000 53000 44200 35300 35300 35300 Min. Allow- able Span in Feet, Uniform Load 18.4 17.5 16.3 15.5 T7\6" 27 3690O 21.000 23600 17200 35300 35300 26500 26500 27900 20900 1 7700 17700 21 T8~~ ^ 26100 18900 1 1300 10400^ 9500 i 8800 8800 -ggoo iso 8.9 11.1 "8JT 103 7.4 6.9 5.7 4.3 4.4 6.2 -A ^Q " Rough Bolts, Single Shear, Pounds Min. Allow able Span in Feet, niform Load 49500 23.1 42400 42400 21.9 20.2 35300 28300 28300 28300 28300 28300 21200 21200 14100 14100 14100 14100 7100 7TOO~ TTOO" ALLOWABLE UNIT STRESS IN POUNDS PER SQUARE INCH I Shop 30000 .Shop 24000 Single Shear Rough Bolts .Field 8000 Rivets. . ...Shop 1200o!| Rivets andTurnedBolts...FieldlOO^^ Rivets one side Rough Bolts ........... Field 16000 t=Web thickness, in bearing, to develop max. allowable reactions, when beams frame opposite. Connections are figured for bearing and shear (no moment considered). The above values agree with tests made on beams under ordinary conditions of use. Where web is enclosed between connection angles (enclosed bearing), values are greater because of the increased efficiency due to friction and grip. Special connections shall be used when any of the limiting conditions given above are exceeded such as end reaction from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used. 207 CARNEGIE STEEL COMPANY BEAM SEPARATORS AMERICAN BRIDGE COMPANY STANDARD Beams Separator %" Bolts Diagrams 1 f, Weight per Foot, Pounds ter to Center earns, Inches Dut to Out langes, Inches Dimensions a 5 1 1 "S .15 -^ ~ i^ ^^ CT: t S I ight, Pounds Head and Nut it 3 a '6 1? w In. h In. d In. t Ii p #s PH "8 _o I-H J S V . "tr S^H ~ 24 115-110-105 8% 16M S 20 12 5 /s 31 3.6 wy 2 3.4 0.25 100 8 12 y& 2S 3.6 10 3.2 0.25 24 95 and 90 8 15M 12 3.6 10 3.2 0.25 85 8 15M 7H20 12 y& '2c 3.6 9y 2 3.1 0.25 80 8 15 7^ 20 12 29 3.6 ^A 3.1 0.25 20 100 and 95 90 8 [4% \% 16 16 12 12 j|J22 2.9 2.9 10 3.2 3.1 0.25 0.25 85 and 80 7y 2 143/ 16 12 /"8 22 2.9 9 2 3.0 0.25 e> T-R- 75 7y 2 14 }3/ 16 12 5/ 2 2.9 9 3.0 0.25 20 70 7 ) ! .'> 16 12 ^21 2.9 9 3.0 0.25 ^ LJ 65 7 13M ) ' ^ 16 12 ^ 21 2.9 83^ 3.0 0.25 'i 18 90 85 and 80 8 8 L5M 7M 14 14 9 9 !- 20 21 2.5 2 5 10 10 3.2 3.2 0.25 0.25 T* 'rf * 75 8 is 8 ~3. 14 9 21 2.5 10 3.2 0.25 ''-" 70 and 65 7 -334 > T 4 14 9 ; h 18 2.5 9 3.0 0.25 18 60 7 334 >'L> 14 9 's L9 2.5 1^ 3.0 0.25 55 75 7 7 13 !'* 14 9 >8 19 2.5 1r* 3.0 0.25 n occ 15 70 and 65 7 '3M 5V 11 11 iyA 12 12 .D 1.6 9 3.0 3.0 U.Zo 0.25 ^__^,, '^ w _ _^ 60 &y 2 .23^ J?4 11 73^2 H 11 1.6 8 2.7 0.25 15 55 50 and 45 6H 2^ |M 11 11 7M ^ 4 11 12 1.6 1.6 8 8 2.7 2.7 0.25 0.25 J/ 8 " Cored Holes 42 Gy 2 2 4 11 73^ y z 12 1.6 8 2.7 0.25 12 55 6 1/4 *>34 8M 5 i .^ 9 1.3 8 2.7 0.25 50 6 l)i >/4 8M 5 j ^ 9 1.3 8 2.7 0.25 45 6 134 534 8% 5 /^ 9 1.3 7H 2.6 0.25 12 40 and 35 6 134 ,']'., 8M 5 i ~ 9 1.3 7H 2.6 0.25 31.5 5 1 ,'-' 5 ii- 9 1.3 7H 2.6 0.25 40 5 3/2 0% :< ( 7y 2 i _- (i 1.1 7y> 1.3 0.13 10 35 5H OH /'4 7y 2 i r, 1.1 7 1.3 0.13 30 5 y 2 7 A i ~ 7 1.1 7 1.3 0.13 25 5y 2 o 2 7 1 A >2 . 7 1.1 7 1.3 0.13 ^e" IVs 35 5 1 / &y 2 1 .^ r> 0.9 7 1.3 0.13 rr% 9 30 5 9H H 6H 'l " 5 0.9 1.2 0.13 25 5 9J/2 1 2 6H 'I ~ 5 0.9 63/2 1.2 0.13 ! ! "^ 21 5 934 &y 2 }~2 5 0.9 63/ 1.2 0.13 4 0.7 6 1.1 0.13 I*.. L w 15 4H 834 34' 5 }~ 2 4 0.7 6 1.1 0.13 ^6. 6 17.25 14.75 4 4 7H 51 4H \\ 4 4 0.6 0.6 5M 1.1 1.1 0.13 0.13 %" Cored Hole 12.25 4 73/2 3M 4H ') ? 4 0.6 53/2 1.1 0.13 For 5", 4" and 3" beams, use 1" gas pipe 334", 3" and 2%" long respectively. 208 STRUCTURAL DETAILS TIE RODS AND ANCHORS AMERICAN BRIDGE COMPANY STANDARD "Ic. toe. of "beams. INCH TIE RODS LENGTHS AND WEIGHTS FOR VARIOUS DISTANCES C. TO C. OF BEAMS Weights include two Nuts C.toC. Length Weight C.toC. Length Weight C.toC Length Weight C.toC. Length Weight Ft.-In. Ft.-In. Pounds Ft.-In. Ft.-In. Pounds Ft.-In. Ft.-In. Pounds Ft.-In. Ft.-In. Pounds 1-0 1-3 2.30 1-3 1-6 2.67 1-6 1-9 3.05 1-9 2-0 3.42 2-0 2-3 3.80 2-3 2-6 4.17 2-6 2-9 4.55 2-9 3-0 4.92 3-0 3-3 5.30 3-3 3-6 5.67 3-6 3-9 6.05 3-9 4-0 6.42 4-0 4-3 6.80 4-3 4-6 7.17 4-6 4-9 7.55 4-9 5-0 7.92 5-0 5-3 8.30 5-3 5-6 8.67 5-6 5-9 9.05 5-9 6-0 9.42 6-0 6-3 9.80 6-3 6-6 10.17 6-6 6-9 10.55 6-9 7-0 10.92 7-0 7-3 11.30 7-3 7-6 11.67 7-6 7-9 12.05 7-9 8-0 12.42 8-0 8-3 12.80 8-3 8-6 13.17 8-6 8-9 13.55 8-9 9-0 13.92 ANCHORS SWEDGE BOLT O _ Q _ Weight includes Nut GOVERNMENT ANCHOR j Diameter Length Weight Inches Feet - Inches Pounds 1 0-9 1-0 1-0 1-3 1.3 2.3 3.1 6.1 BUILT-IN ANCHOR BOLTS M"Rod 1' 9" long. Wt.,31be. ANGLE ANCHOR W When center to center of anchors is less than width of washer, use washer with two holes. 2 Angles 6" x 4" x "/!" x 0' Weight with H" bolts, 7 Ibe. CARNEGIE STEEL COMPANY BEARING PLATES The size and thickness of steel bearing plates depend on the end reaction, length of bearing, and unit pressure. The following table gives sizes for beams of usual spans, the allowable safe loads in thousands of pounds and the span of beams giving equivalent end reactions. STANDARD BEARING PLATES Beam Wall Bearing, 1 Inches Bearing Plate Lim. Span of Beam, Ft. Beam Wall Bearing, Inches Bearing Plate Lim. Span of Beam, Ft. Depth, In. Wt., Lbs. E Size, In. Wt., Lbs. Max. Safe Load Depth, In. Wt., Lbs. E Size, In. Wt., Lbs. Max. Safe Load 27 24 21 20 18 15 15 12 83 80 57.50 65 55 60 42 31.50 16 16 16 16 16 16 12 12 16x16x1 16x16x1 16x16x1 16x16x1 16x16x1 16x16x1 16x12x1 12xl2x% 73 73 73 73 73 73 55 31 40.2 37.9 35.9 35.0 34.1 34.1 24.4 20.6 28.4 24.5 17.4 17.8 13.8 12.6 12.9 9.3 10 9 8 7 6 5 4 3 25 21 18 15 12.25 9.75 7.50 5.50 8 8 8 8 6 6 4 4 rf^ *> OS O5 00 00 10 tO xxxxxxxx *- ^ Oi Oi 00 00 00 00 xxxxxxxx \WNS5 \--\- \> \Cn\Oi\W 00\ 00\ fcO\ fcO\00\ 00\ 2 2A 2K 2A 2- 2Al2JiJfij2A 2K 2 A 2K 2A 2A 2K- 2% 2K 2K 2 T 9 e- 2K 2% 2K 211 3K it- 21S 3K 2K 3K 2K 2K2K 2HI2K 2K2M 21 i J21I 2%' 21 fj 3K 3 - ): , 21S 2K3 21f 3 A 3K 3K 3K 3K Values below and to right of upper zigzag line are large enough for 91" rivets. Values below and to right of lower zigzag line are large enough for K" rivets. MINIMUM RIVET SPACING Dia. of Rivet, Inches! K K IK K K K K 1 IK x, Minimum, Inches. 1 1*4 2 2K 2K 3 3K 213 CARNEGIE STEEL COMPANY REDUCTION OF AREA FOR RIVET HOLES Area in Square Inches=Diameter of Hole by Thickness of Metal Thickness Diameter of Hole in Inches of Metal, Inches H % %6 % 1 %6 3 /i 13 /io % 15 /16 1 Itte IVs I 3 o .05 .09 .11 .12 .13 .14 .15 .16 .18 .19 .20 .21 K .06 .13 .14 .16 .17 .19 .20 .22 .23 .25 .27 .28 A .08 .16 .18 .20 .21 .23 .25 .27 .29 .31 .33 .35 H .09 .19 .21 .23 .26 .28 .30 .33 .35 .38 .40 .42 I 7 8 .11 .22 .25 .27 .30 .33 .36 .38 .41 .44 .46 .49 y* .13 .25 .28 .31 .34 .38 .41 .44 .47 .50 .53 .56 I 9 e .14 .28 .32 .35 .39 .42 .46 .49 .53 .56 .60 .63 H .16 .31 .35 .39 .43 .47 .51 .55 .59 .63 .66 .70 11 .17 .34 .39 .43 .47 .52 .56 .60 .64 .69 .73 .77 H .19 .38 .42 .47 .52 .56 .61 .66 .70 .75 .80 .84 13 .20 .41 .46 .51 .56 .61 .66 .71 .76 .81 .86 .91 H .22 .44 .49 .55 .60 .66 .71 .77 .82 .88 .93 .98 ii .23 .47 .53 .59 .64 .70 .76 .82 .88 .94 1.00 1.05 i .25 .50 .56 .63 .69 .75 .81 .88 .94 1.00 1.06 1.13 1A .27 .53 .60 .66 .73 .80 .86 .93 1.00 1.06 1.13 1.20 1H .28 .56 .63 .70 .77 .84 .91 .98 1.05 1.13 1.20 .27 Il 3 6 .30 .59 .67 .74 .82 .89 .96 1.04 1.11 1.19 1.26 .34 1M .31 .63 .70 .78 .86 .94 1 .02 1.09 1.17 1.25 1.33 .41 Id .33 .66 .74 .82 .90 .98 1.07 1.15 1.23 1.31 1.39 .48 1% .34 .69 .77 .86 .95 1.03 1 .12 1.20 1.29 1.38 1.46 .55 Il 7 6 .36 .72 .81 .90 .99 1.08 1 17 1.26 1.35 1.44 1.53 1.62 IK .38 .75 .84 .94 1.03 1.13 1.22 1.31 1.41 1.50 1.59 1.69 STAGGER OF RIVETS TO MAINTAIN NET SECTION AMERICAN BRIDGE COMPANY STANDARD 1 Hole Out 2 Holes Out Dimensions in Inches e JHr'*T~ t* JS^'i a %" Rivet %" Rivet ai 8 /i" %" Rivet Rivet ^3E T~r r^p:?q__j b b b b u v_ / 1 i 1 1% 1M 5 3A- 3i 5 U-b-J 1 1 2 5y 2 3J4 3M y=diameter of rivet + J^" 2 2y 2 i 2M 2^ 6 6K 3H 3^2 3^ 3M 3 2, 7 g 2Y K 7 35^ ^7X a-y= V a2 + b2 ~2y ai-2y=V a2+b2 ' 3 y 3* if! |il 7H 3M m 4 /8 4K b =v^y+y^ b=V2ay+y* 43^ 2}| 3i% 8^ 4 4M a=sum of gauges minus thickness of angle. Y%" rivets, can be taken at y%" less than for W rivets. 1" rivets, can be taken at y & " more than for y & " rivets. 214 RIVETS AND PINS STRESSES IN RIVETS AND PINS Rivets. In transmitting stresses between riveted pieces, it is customary to disregard friction and to proportion rivets to the entire stress to be transmitted. They must be of sufficient size and number to resist shear and to afford such bearing area as not to cause distor- tion of the metal at the rivet holes. In the case of beams which frame opposite and of single web girders, this latter condition often necessi- tates a greater thickness of web than required by the shearing stresses. In a plate girder with %s" web, %" rivets connecting the web with the flange angles would have a bearing value at 24,000 pounds unit stress of 5,630 pounds per rivet, while their value in double shear at 12,000 pounds unit stress is 10,600 pounds per rivet; and it might be necessary to increase the web thickness to %" or more in order that the pressure of the rivets upon the metal be not excessive. Pins. Pins must be calculated for shearing, bending and bearing stresses, but one of the latter two will in most cases determine the size. When groups of bars are connected to the same pin, as in the lower chord of truss bridges, the size of the bars must be so chosen and the bars so placed that at no point on the pin will there be any excessive bending stress. When the size of pin has been determined from the bending stress, the thickness of the bars or web of the post should be investigated to provide sufficient bearing area, the bars being thickened or pin plates added if necessary. The following is the formula for flexure applied to pins: M f TT d 3 -^ 32 or =f A d -s- 8, in which M = moment of forces for any section through pin, f=fiber stress per square inch in bending, A = the area of section, d = diameter, IT =3.14159. The forces are assumed to act in a plane passing through the axis of the pin. EXAMPLE 1. A pin, see figure, has to carry a load of 64,000 pounds; required the size at 24,000 pounds fiber stress, assuming the distance between points of support to be 5 inches. Bending moment=64,000 x 5 -=- 4=80,000 inch pounds; use a 334 inch pin; allowed moment: 80,900 inch pounds. EXAMPLE 2. Required the thickness of metal in the top chord of a bridge to give sufficient bearing area to a 3% inch pin, having to transmit a stress of 121,400 pounds at an allowed bearing pressure of 24,000 pounds per square inch. The bearing value of a 3% inch pin for 1 inch thickness of metal is 81,000 pounds; therefore, the thickness of metal required=121,400-=- 81, 000=1 Y 2 inch, or each web of the chord must be y inch thick, including pin plates. 215 CARNEGIE STEEL COMPANY RIVETS SHEARING AND BEARING VALUES Values in Pounds, all Dimensions in Inches % INCH RIVETS Area .1104 Square Inch 1 Un t, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 770 880 990 1100 1210 1320 Double Shear per Rivet 1540 1760 1980 2200 2420 2640 M a 1 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 Thickness in Inches 1 A 1% H 660 980 1310 750 1130 1500 840 1270 1690 940 1410 1880 1030 1550 2060 1130 1690 2250 A H 1640 1910 1880 2250 2110 2530 2340 2810 2580 3090 2810 3380 1/2 INCH RIVETS Area .1963 Square Inch 1 Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 1370 1570 1770 1960 2160 2360 Double Shear per Rivet 2750 3140 3530 3930 4320 4710 I 1 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 I a a M H i 3 s M & % 1310 1750 2190 2630 1500 2000 2500 3000 1690 2250 2810 3380 1880 2500 3130 3750 2060 2750 3440 4130 2250 3000 3750 4500 & y 2 3060 3500 3500 4000 3940 4500 4380 5000 4810 5500 5250 6000 % INCH RIVETS Area .3068 Square Inch & 1 02 Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 2150 2450 2760 3070 3370 3680 Double Shear per Rivet 4300 4910 5520 6140 6750 7360 bD a E Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 Thickness in Inches A M i s s *A i 7 5 1640 2190 2730 3280 3830 1880 2500 3130 3750 4380 2110 2810 3520 4220 4920 2340 3130 3910 4690 5470 2580 3440 4300 5160 6020 2810 3750 4690 5630 6560 ^ I 9 5 M 4380 4920 5470 5000 5630 6250 5630 6330 7040 6250 7030 7810 6880 7730 8590 7500 8440 9380 Values below dotted lines are greater than double shear. 216 RIVETS AND PINS RIVETS SHEARING AND BEARING VALUES Values in Pounds, Dimensions in Inches % INCH RIVETS Area .4418 Square Inch i a Unit, Lbs. per Sq. In 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 3090 3530 3980 4420 4860 5300 Double Shear per Rivet 6190 7070 7950 8840 9720 10600 ! Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 Thickness in Inches M ........... % A Yz & "& "" - 2630 3000 3380 3750 4130 4500 3280 3940 4590 5250 5910 3750 4500 5250 6000 6750 4220 5060 5910 6750 7590 4690 5630 6560 7500 8440 5160 6190 7220 8250 9280 5630 6750 7880 9000 10130 6560 7500 8440 9380 1 10310 11250 y 8 INCH RIVETS Area .6013 Square Inch | Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 4210 4810 5410 6010 6610 7220 Double Shear per Rivet 8420 9620 10820 12030 13230 14430 Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 .3 13 H M I S B 3060 3830 3500 4380 3940 4920 4380 5470 4810 6020 5250 6560 H /B H I 9 6 *A 4590 5360 6130 6890 7660 5250 6130 7000 7880 8750 5910 6890 7880 8860 9840 6560 7660 8750 9840 10940 7220 8420 9630 10830 12030 7880 9190 10500 11810 13130 'n 1 8420 9630 10830 2030 1 13230 14430 1 INCH RIVETS Area .7854 Square Inch 1 Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 5500 6280 7070 7850 8640 9420 Double Shear per Rivet 11000 12570 14140 15710 17280 18850 ! Unit, Lbs. per Sq. In. 14000 16000 18000 20000 22000 24000 a M 1 B S K 3500 4380 5250 4000 5000 6000 4500 5630 6750 5000 6250 7500 5500 6880 8250 6000 7500 9000 & X 1% K ii X 6130 7000 7880 8750 9630 10500 7000 8000 9000 10000 11000 12000 7880 9000 10130 11250 12380 13500 8750 10000 11250 12500 13750 15000 9630 11000 12380 13750 15130 16500 10500 12000 13500 15000 16500 18000 n 11380 13000 14630 16250 17880 19500 Values above upper dotted lines are less than single shear. Values below lower dotted lines aie greater than double shear. 217 CARNEGIE STEEL COMPANY PINS BEAKING VALUES IN POUNDS ON METAL ONE INCH THICK Bearing Value=Diameter pf Pin x Bearing Stress per Square Inch Pin Bearing Stresses in Pounds per Square Inch Diameter, IncheB Area, Sq. In. 12000 15000 20000 22000 24000 1 1M 1)1 .785 1.227 1.767 2.405 12000 15000 18000 21000 15000 18800 22500 26300 20000 25000 30000 35000 22000 27500 33000 38500 24000 30000 36000 42000 2 2) 2H 2M 3.142 3.976 4.909 5.940 24000 27000 30000 33000 30000 33800 37500 41300 40000 45000 50000 55000 44000 49500 55000 60500 48000 54000 60000 66000 3 3M 3^ 3M 7.069 8.296 9.621 11.045 36000 39000 42000 45000 45000 48800 52500 56300 60000 65000 70000 75000 66000 71500 77000 82500 72000 78000 84000 90000 4 4J 4)1 ' 4M 12.566 14.186 15.904 17.721 48000 51000 54000 57000 60000 63800 67500 71300 80000 85000 90000 95000 88000 93500 99000 104500 96000 102000 108000 114000 5 5K 5H 5M 19.635 21.648 23.758 25.967 60000 63000 66000 69000 75000 78800 82500 86300 100000 105000 110000 115000 110000 115500 121000 126500 120000 126000 132000 138000 6 6M 6M 6M 28.274 30.680 33.183 35.785 72000 75000 78000 81000 90000 93800 97500 101300 120000 125000 130000 135000 132000 137500 143000 148500 144000 150000 156000 162000 7M 7M 7M 38.485 41.282 44.179 47.173 84000 87000 90000 93000 105000 108800 112500 116300 140000 145000 150000 155000 154000 159500 165000 170500 168000 174000 180000 186000 8 8M 8H 8M 50.265 53.456 56.745 60.132 96000 99000 102000 105000 120000 123800 127500 131300 160000 165000 170000 175000 176000 181500 187000 192500 192000 198000 204000 210000 in 9M 63.617 67.201 70.882 74.662 108000 111000 114000 117000 135000 138800 142500 146300 180000 185000 190000 195000 198000 203500 209000 214500 216000 222000 228000 234000 1Q 10k 10)| 10 M 78.540 82.516 86.590 90.763 120000 123000 126000 129000 150000 153800 157500 161300 200000 205000 210000 215000 220000 225500 231000 236500 240000 246000 252000 258000 11 i*8 \1 H 95.033 99.402 103.869 108.434 113.097 132000 135000 138000 141000 144000 165000 168800 172500 176300 180000 220000 225000 230000 235000 240000 242000 247500 253000 258500 264000 264000 270000 276000 282000 288000 218 RIVETS AND PINS PINS BENDING MOMENTS IN INCH POUNDS Bending Moment=(Diameter of Pin)a x 0.098175 x Stress per Square Inch Pin Fiber Stress in Pounds per Square Inch Diameter, Inches Area, Sq.In. 15000 18000 20000 22000 22500 24000 25000 1 IK 1^ 1M .785 1.227 1.767 2.405 1500 2900 5000 7900 1800 3500 6000 9500 2000 3800 6600 10500 2200 4200 7300 11600 2200 4300 7500 11800 2400 4600 8000 12600 2500 4800 8300 13200 2 2^ 2 V4 2M 3.142 3.976 4.909 5.940 11800 16800 23000 30600 14100 20100 27600 36800 15700 22400 30700 40800 17300 24600 33700 44900 17700 25200 34500 45900 18800 26800 36800 49000 19600 28000 38300 51000 3 3M 3M 7.069 8.296 9.621 11.045 39800 50600 63100 77700 47700 60700 75800 93200 53000 67400 84200 103500 58300 74100 92600 113900 59600 75800 94700 116500 63600 66300 809001 84300 lOlOOOi 105200 124300 129400 4 4^ 4J^ 4M 12.566 14.186 15.904 17.721 94200 113000 134200 157800 113100 135700 161000 189400 125700 150700 178900 210400 138200 165800 196800 231500 141400 169600 201300 236700 150800 180900 214700 252500 157100 188400 223700 263000 5 h 5H 19.635 21.648 23.758 25.967 184100 213100 245000 280000 220900 255700 294000 336000 245400 284100 326700 373300 270000 312500 359300 410600 276100 319600 367500 419900 294500 340900 392000 447900 306800 355200 408300 466600 6 6J4 6H 6M 28.274 30.680 33.183 35.785 318100 359500 404400 452900 381700 431400 485300 543500 424100 479400 539200 603900 466500 527300 593100 664300 477100 539300 606600 679400 508900 575200 647100 724600 530100 599200 674000 754800 7 7 V 7M 38.485 41.282 44.179 47.173 505100 561200 621300 685500 606100 673400 745500 822600 673500 748200 828400 914000 740800 823100 911200 1005400 757700 841800 931900 1028200 808200 897900 994000 1096800 841800 935300 1035400 1142500 8 8M 8M 8M 50.265 53.456 56.745 60.132 754000 826900 904400 986500 904800 992300 1085300 1183900 1005300 1105800 1 102500 ! 12 12800 1205800 1326400 1315400 1446900 1131000 1240400 1356600 1479800 120640oll256600 1323000' 1378200 1447000i 1507300 1578500^1644200 9 9M 9^ 9M 63.617 67.201 70.882 74.662 1073500 1165500 1262600 1364900 1288300 1431400 1398600 1554000 1515100 1683500 163790011819900 1574500 1709400 1851800 2001900 1610300 1717700 1748300 1864800 18939002020100 2047400 2183900 1789200 1942500 2104300 2274900 10 IOK lOJ^ 10 M 11 HI a 78.540 82.516 86.590 90.763 95.033 99.402 103.869 108.434 113.097 1472600 1767100 1585900 1903000 1704700 2045700 18294002195300 1960100:2352100 2096800 2516100 2239700 2687600 23889002866700 2544700 3053600 1963500 2114500 2273000 2439200 2613400 2795700 2986200 3185300 3392900 2159800 2325900 2500300 2683200 2874800 3075200 32S4900 3503800 3732200 2208900 2378800 2557100 2744100 2940100 3145100 3359500 35S3400 3S17000 2356200 2537400 2727600 2927100 3136100 3354800 3583500 3S22300 4071500 2454400 2643100 2841200 3049100 3266800 3494600 3732800 3981600 4241200 219 CARNEGIE STEEL COMPANY ANGLES ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS Maximum Fiber Stress, 16000 Pounds per Square Inch Net Areas and Stresses Two Holes Deducted Size, Inches Thick- ness, Inches Weight per Foot, Pounds Area, Inches 2 % Inch Rivets M Inch Rivets y% Inch Rivets Area, Inches 2 Stress Area, Inches 2 Stress Area, Inches 2 Stress 8x8 1 51.0 15.00 13.00 208.0 13.25 212.0 8x8 M 48.1 14.12 12.24 195.8 12.48 199.7 8x 8 H 45.0 13.23 11.48 183.7 11.70 187.2 8x8 42.0 12.34 10.72 171.5 10.92 174.7 8x 8 % 38.9 11.44 9.94 159.0 10.13 162.1 8x8 le 35.8 10.53 9.16 146.6 9.33 149.3 8x8 y& 32.7 9.61 8.36 133.8 8.52 136.3 8.67 138.7 8x8 i 9 s 29.6 8.68 7.55 120.8 7.70 123.2 7.84 125.4 8x8 y* 26.4 7.75 6.75 108.0 6.87 109.9 7.00 112.0 8x6 i 44.2 13.00 11.00 176.0 11.25 180.0 8x6 41.7 12.25 10.37 165.9 10.61 169.8 8x6 39.1 11.48 9.73 155.7 9.95 159.2 8x 6 if 36.5 10.72 9.10 145.6 9.30 148.8 8x6 H 33.8 9.94 8.44 135.0 8.63 138.1 8x6 31.2 9.15 7.78 124.5 7.95 127.2 8x6 y% 28.5 8.36 7.11 113.8 7.27 116.3 7.42 118.7 8x6 i 9 a 25.7 7.56 6.43 102.9 6.58 105.3 6.72 107.5 8x6 ^ 23.0 6.75 5.75 92.0 5.87 93.9 6.00 96.0 8x6 i 7 s 20.2 5.93 5.05 80.8 5.16 82.6 5.27 84.3 6x6 Ji 33.1 9.73 7.98 127.7 8.20 131.2 6x 6 is 31.0 9.09 7.47 119.5 7.67 122.7 6x6 M 28.7 8.44 6.94 111.0 7.13 114.1 6x 6 in 26.5 7.78 6.41 102.6 6.58 105.3 6x6 % 24.2 7.11 5.86 93.8 6.02 96.3 6.17 98.7 6x6 I 9 6 21.9 6.43 5.30 84.8 5.45 87.2 5.59 89.4 6x6 /^2 19.6 5.75 4.75 76.0 4.87 77.9 5.00 80.0 6x6 i ? a 17.2 5.06 4.18 66.9 4.29 68.6 4.40 70.4 6x6 M 14.9 4.36 3.61 57.8 3.70 59.2 3.80 60.8 6x4 H 27.2 7.98 6.23 99.7 6.45 103.2 6x 4 If 25.4 7.47 5.85 93.6 6.05 96.8 6x 4 X 23.6 6.94 5.44 87.0 5.63 90.1 6x4 n 21.8 6.40 5.03 80.5 5.20 83.2 6x4 % 20.0 5.86 4.61 73.8 4.77 76.3 4.92 78.7 6x4 A 18.1 5.31 4.18 66.9 4.33 69.3 4.47 71.5 6x4 16.2 4.75 3.75 60.0 3.87 61.9 4.00 64.0 6x4 M 7 14.3 4.18 3.30 52.8 3.41 54.6 3.52 56.3 6x4 12.3 3.61 2.86 45.8 2.95 47.2 3.05 48.8 5x3% H 16.8 4.92 3.67 58.7 3.83 61.3 3.98 63.7 5 x 3*4 15.2 4.47 3.34 53.4 3.49 55.8 3.63 58.1 5x3^ y% 13.6 4.00 3.00 48.0 3.12 49.9 3.25 52.0 5 x3*A JL 12.0 3.53 2.65 42.4 2.76 44.2 2.87 45.9 5 x 3% H 10.4 3.05 2.30 36.8 2.39 38.2 2.49 39.8 5x3% A 8.7 2.56 1.93 30.9 2.01 32.2 2.09 33.4 5x3 H 12.8 3.75 2.75 44.0 2.87 45.9 3.00 48.0 5x3 11.3 3.31 2.43 38.9 2.54 40.6 2.65 42.4 5x3 u 9.8 2.86 2.11 33.8 2.20 35.2 2.30 36.8 5x3 I 5 B 8.2 2.40 1.77 28.3 1.85 29.6 1.93 30.9 220 TENSION VALUES ANGLES ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS Maximum Fiber Stress, 16000 Pounds per Square Inch Net Areas and Stresses One Hole Deducted Size, Inches Thick- ness, Inches Weight per Foot, Pounds Area, Inches 2 K Inch Rivets % Inch Rivets $^j Inch Rivets Area, Inches 2 Stress Area, Inches 2 Stress Area, Inches 2 Stress 6x6 H 33.1 9.73 8.85 141.6 8.96 143.4 6x 6 31.0 9.09 8.28 132.5 8.38 134.1 6x 6 28.7 8.44 7.69 123.0 7.78 124.5 6x 6 ii 26.5 7.78 7.09 113.4 7.18 114.9 6x 6 H 24.2 7.11 6.48 103.7 6.56 105.0 6.64 106.2 6x6 21.9 6.43 5.87 93.9 5.94 95.0 6.01 96.2 6x6 34 19.6 5.75 5.25 84.0 5.31 85.0 5.37 85.9 6x6 I 7 8 17.2 5.06 4.62 73.9 4.68 74.9 4.73 75.7 6x 6 H 14.9 4.36 3.98 63.7 4.03 64.5 4.08 65.3 6x 4 H 27.2 7.98 7.10 113.6 7.21 115.4 6x 4 il 25.4 7.47 6.66 106.6 6.76 108.2 6x4 23.6 6.94 6.19 99.0 6.28 100.5 6x 4 n 21.8 6.40 5.71 91.4 5.80 92.8 6x 4 5 A 20.0 5.86 5.23 83.7 5.31 85.0 5.39 86.2 6x 4 I 9 5 18.1 5.31 4.75 76.0 4.82 77.1 4.89 78.2 6x 4 34 16.2 4.75 4.25 68.0 4.31 69.0 4.37 69.9 6x 4 I 7 S 14.3 4.18 3.74 59.8 3.80 60.8 3.85 61.6 6x4 M 12.3 3.61 3.23 51.7 3.28 52.5 3.33 53.3 5x334 H 16.8 4.92 4.29 68.6 4.37 69.9 4.45 71.2 5x334 & 15.2 4.47 3.91 62.6 3.98 63.7 4.05 64.8 5x3*4 34 13.6 4.00 3.50 56.0 3.56 57.0 3.62 57.9 5x334 x 12.0 3.53 3.09 49.4 3.15 50.4 3.20 51.2 5x334 % 10.4 3.05 2.67 42.7 2.72 43.5 2.77 44.3 5x334 A 8.7 2.56 2.25 36.0 2.29 36.6 2.33 37.3 5x 3 H 15.7 4.61 3.98 63.7 4.06 65.0 4.14 66.2 5x3 14.3 4.18 3.62 57.9 3.69 59.0 3.76 60.2 5x3 ^ 12.8 3.75 3.25 52.0 3.31 53.0 3.37 53.9 5x 3 11.3 3.31 2.87 45.9 2.93 46.9 2.98 47.7 5x3 ^ 9.8 2.86 2.48 39.7 2.53 40.5 2.58 41.3 5x3 8.2 2.40 2.09 33.4 2.13 34.1 2.17 34.7 4x4 H 15.7 4.61 3.98 63.7 4.06 65.0 4.14 66.2 4x 4 A 14.3 4.18 3.62 57.9 3.69 59.0 3.76 60.2 4x 4 12.8 3.75 3.25 52.0 3.31 53.0 3.37 53.9 4x 4 2 11.3 3.31 2.87 45.9 2.93 46.9 2.98 47.7 4x4 % 9.8 2.86 2.48 39.7 2.53 40.5 2.58 41.3 4x4 I S 8 8.2 2.40 2.09 33.4 2.13 34.1 2.17 34.7 4x4 M 6.6 1.94 1.69 27.0 1.72 27.5 1.75 28.0 4x3 34 11.1 3.25 2.75 44.0 2.81 45.0 2.87 45.9 4x3 9.8 2.87 2.43 38.9 2.49 39.8 2.54 40.6 4x3 II 8.5 2.48 2.10 33.6 2.15 34.4 2.20 35.2 4x 3 7.2 2.09 1.78 28.5 1.82 29.1 1.86 29.8 4x3 34 5.8 1.69 1.44 23.0 1.47 23.5 1.50 24.0 221 CARNEQIE STEEL COMPANY ANGLES ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS Maximum Fiber Stress, 16000 Pounds per Square Inch Size, Inches Thick- ness, Inches Weight per Foot, Pounds Area, Inches 2 Net Areas and Stresses One Hole Deducted K Inch Rivets % Inch Rivets % Inch Rivets Area, Inches - Stress Area, Inches 2 Stress Area, Inches - Stress CO 00 CO 00 CO CO CO V-V-V-N^V-X^NM M\fcO\fcO\N\M\b?\fc\ X X X X X X X CO CO CO CO CO CO CO N\ t^\ t^\ IO\ M\ lo\ W\ M 13.6 12.4 11.1 9.8 8.5 7.2 5.8 3.98 3.62 3.25 2.87 2.48 2.09 1.69 3.35 3.06 2.75 2.43 2.10 1.78 1.44 53.6 49.0 44.0 38.9 33.6 28.5 23.0 3.43 3.13 2.81 2.49 2.15 1.82 1.47 54.9 50.1 45.0 39.8 34.4 29.1 23.5 3.51 3.20 2.87 2.54 2.20 1.86 1.50 56.2 51.2 45.9 40.6 35.2 29.8 24.0 co co co co co kc\to\to\to\to\ X X X X X co co co co co I 10.2 9.1 7.9 6.6 5.4 3.00 2.65 2.30 1.93 1.56 2.50 2.2,1 1.92 1.62 1.31 40.0 35.4 30.7 25.9 21.0 2.56 2.27 1.97 1.66 1.34 41.0 36.3 31.5 26.6 21.4 2.62 2.32 2.02 1.70 1.37 41.9 37.1 32.3 27.2 21.9 3^x2^ 3^x2^ 3 3^x2 y, 3 l Ax2y 2 3^x2^ I 9.4 8.3 7.2 6.1 4.9 2.75 2.43 2.11 1.78 1.44 2.25 1.99 1.73 1.47 1.19 36.0 31.8 27.7 23.5 19.0 2.31 2.05 1.78 1.51 1.22 37.0 32.8 28.5 24.2 19.5 2.37 2.10 1.83 1.55 1.25 37.9 33.6 29.3 24.8 20.0 co co co co co X X X X X co co co co co 1 I 9.4 8.3 7.2 6.1 4.9 2.75 2.43 2.11 1.78 1.44 2.25 1.99 1.73 1.47 1.19 36.0 31.8 27.7 23.5 19.0 2.31 2.05 1.78 1.51 1.22 37.0 32.8 28.5 24.2 19.5 2.37 2.10 1.83 1.55 1.25 37.9 33.6 29.3 24.8 20.0 3 x2^ 3 x2^ 3 x2^ s 6.6 5.6 4.5 1.92 1.62 1.31 1.54 1.31 1.06 24.6 21.0 17.0 1.59 1.35 1.09 25.4 21.6 17.4 1.64 1.39 1.12 26.2 22.2 17.9 2^x2^ 2^x2^ 2Mx2M 2^x2^ 5.9 5.0 4.1 3.07 1.73 1.47 1.19 0.90 1.40 1.20 0.97 0.74 22.4 19.2 15.5 11.8 1.45 1.24 1.00 0.76 23.2 19.8 16.0 12.2 2J^x 2 2 MX 2 2 MX 2 2^x 2 1 5.3 4.5 3.62 2.75 1.55 1.31 1.06 0.81 1.22 1.04 0.84 0.65 19.5 16.6 13.4 10.4 1.27 1.08 0.87 0.67 20.3 17.3 13.9 10.7 2x2 2x2 2x2 2x2 4.7 3.92 3.19 2.44 1.36 1.15 0.94 0.71 1.08 0.92 0.75 0.57 17.3 14.7 12.0 9.1 2 xlM 2 xlM 2 xlH t 3.39 2.77 2.12 1.00 0.81 0.62 0.77 0.62 0.48 12.3 9.9 7.7 222 TENSION VALUES BARS ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS ROUND BARS SQUARE BARS Unit Unit Unit Unit Stress Stress Stress Stress Size, Inches Area, Inchesa Weight per Foot, Pounds 16,000 Lbs. per 20,000 Lbs. per Size, Inches Area, Inchesa Weight per Foot, Pounds 16,000 Lbs. per 20,000 Lbs. per Square Square Square Square Inch Inch Inch Inch H 0.012 0.042 0.2 0.3 y* 0.016 0.053 0.3 0.3 A 0.028 0.094 0.4 0.6 A 0.035 0.119 0.6 0.7 8 0.049 0.167 0.8 1.0 M 0.063 0.212 1.0 1.3 0.077 0.261 1.2 1.5 A 0.098 0.333 1.6 2.0 H 0.110 0.375 1.8 2.2 8 0.141 0.478 2.3 2.8 1 6 0.150 0.511 2.4 3.0 0.191 0.651 3.1 3.8 8 0.196 0.667 3.1 3.9 % 0.250 0.850 4.0 5.0 A 0.249 0.845 4.0 5.0 I 9 e 0.316 1.08 5.1 6.3 H 0.307 1.04 4.9 6.1 54 0.391 1.33 6.3 7.8 ii 0.371 1.26 5.9 7.4 ii 0.473 1.61 7.6 9.5 ii 0.442 1.50 7.1 8.8 M 0.563 1.91 9.0 11.3 ie 0.519 1.76 8.3 10.4 ii 0.660 2.25 10.6 13.2 j| 0.601 2.04 9.6 12.0 K 0.766 2.60 12.3 15.3 il 0.690 2.35 11.0 13.8 ii 0.879 2.99 14.1 17.6 1 " 0.785 2.67 12.6 15.7 1 1.00 3.40 16.0 20.0 lA 0.887 3.01 14.2 17.7 1A 1.13 3.84 18.1 22.6 1H 0.994 3.38 15.9 19.9 1M 1.27 4.30 20.3 25.3 1.11 3.77 17.7 22.2 Il 3 8 1.41 4.80 22.6 28.2 1M 1.23 4.17 19.6 24.5 IK 1.56 5.31 25.0 31.3 I A 1.35 4.60 21.6 27.1 1 5 - 1.72 5.86 27.6 34.5 1x4 1.48 5.05 23.8 29.7 1/4 1.89 6.43 30.3 37.8 ITS 1.62 5.52 26.0 32.5 ITS 2.07 7.03 33.1 41.3 1/4 1.77 6.01 28.3 35.3 1/4 2.25 7.65 36.0 45.0 Il 9 e 1.92 6.52 30.7 38.4 IT 2.44 8.30 39.1 48.8 2.07 7.05 33.2 41.5 ill 2.64 8.98 42.3 52.8 l|f 2.24 7.60 35.8 44.7 HI 2.85 9.68 45.6 57.0 2.41 8.18 38.5 48.1 3.06 10.41 49.0 61.3 m ifl 2.58 2.76 2.95 8.77 9.39 10.02 41.3 44.2 47.2 51.6 55.2 59.0 li 3.29 3.52 3.75 11.17 11.95 12.76 52.6 56.3 60.1 65.7 70.3 75.1 2 3.14 10.68 50.3 62.8 2 16 4.00 13.60 64.0 80.0 2 t l 3.34 11.36 53.5 66.8 2 A 4.25 14.46 68.1 85.1 234 3.55 12.06 56.7 70.9 4.52 15.35 72.3 90.3 2i 3 g 3.76 12.78 60.1 75.2 2l 3 B 4.79 16.27 76.6 95.7 2>i 3.98 13.52 63.6 79.5 2M 5.06 17.22 81.0 101.? 2 A 4.20 14.28 67.2 84.0 2 A 5.35 18.19 85.6 107.0 2/4 4.43 15.07 70.9 88.6 294 5.64 19.18 90.3 112.8 2, 7 and at a fiber stress of 16,000 pounds per square inch, the required thickness of slab t \ 3 W (A - a) __ _ \j 3 W (B - b) a ' r ' \ 64,000 B > 64,000 A 225 CARNEGIE STEEL COMPANY fcf f- 6 i ? r -BT *v ft .'..?: <...: ;!J ; :?/ |f m ii ; ; i&: l''i I HTh 1^ i'x>, .;". - > '^Pip h 3|| ._ * K| n '?. V ^ k: | "i,^ iH:^ Steel Slab 36"x 36"x 5K" 4-24" 90 Ib. Beams 10-6" long 1 13 -15" 60 Ib. Beams 13 -6" long EXAMPLE: Kequired to design a grillage foundation for a column load of 1,040,000 pounds on soil with an allowable bearing capacity of 6,000 pounds per square foot. Column composed of 1 web plate, 14" x y & ", 4 flange angles, 6" x 4" x -HI" and 4 flange plates, 14" x %", outside dimensions 14" x 18". Required area of footing= 1,040, 000 -r- 6,000=173.33 square feet. Use area 12' 0" x 15' 0"=180 square feet. Assume 3' 0" square as the dimensions of the rolled steel slab or column base and allow 9" for concrete on the sides and ends of beams, then the dimen- sions of the steel grillage will be 10' 6" x 13' 6", concrete being assumed of sufficient thickness and strength to distribute to the edges. Rolled Steel Slab Thickness required, t, 226 'V 3 x 1,040,000 x 22 g 64,000 X 36 in GRILLAGE FOUNDATIONS Beams Section Modulus Method. Bottom tier L=13.5 feet; a= 3.0 feet. Required total section modulus, S, 3 x 10 ' 5 1,023.75 ln. Use 13 15" 60 Ib. beams Total section modulus=l, 055.6 in.a Average buckling stress- 13 ^f" , Top tier L=10.5 feet; a=3.0 feet. ,.. -3, 5151b s.pe rsq . ln . J,120lbs. persq. in. Required total section modulus, S,= 3 x 1.040,000 x 7.5 32,000 =731.25 in. Use 4 24" 90 Ib. beams Total section modulus=746.0 in.s 1,040,000 Average shear= j^-g Average buckling stress= -\ 7.5 4 x 24 x .63 T- =8,600 Ibs. per sq. in. = 6,140 Ibs. per sq. in. Plate Girder Grillage Foundations. In those cases where columns carry very heavy loads, plate girders are used for the top tier of the grillage rather than beams. In the case of symmetrical foundations, the method of computation is the same as has already been illus- trated in the case of beams. The following example indicates the procedure in the quite frequent case of unsymmetrical loading conditions : 840.000 pounds 1,260,000 pounds -20-0-- 2-6" 2 Plate Girders L 37%" Make up of 1 Plate Girder 4 Flange Angles 6 x 4 x ^ 2 Flange Plates 14 x % 1 Web Plate 36 x % 2 Web Reinf. Plates % thick, each end between Flange Angles 2 Web Reinf. Plates % thick, each end over Flange Angles Stiff ener Angles 5 x 8^ x y z Tie Angles 5 x 3^ x ^ , -s'-o- - -6-0- Wall Column 14' fl 16" Interior Column Steel Slab 4'- 10- I'-J / 18-55 Ib. Beahis ^-S^long g s/?SWv!** : v^ : - ' J^LQ!' *e 1'-$-' - 227 CARNEGIE STEEL COMPANY EXAMPLE: Required to design a grillage foundation under an exterior or wall column carrying a load of 840,000 pounds, and an interior column with a load of 1,260,000 pounds, on soil with an allowable bearing capacity of 8,000 pounds per square foot. Required footing area of wall column= 8 tA^ 1Q5 square feet. Use area 8' 0" x 14' 0"= 112 square feet. Required area of interior column footing= ', < : =157.5 square feet. o.UUU Use area 12' 0" x 14' 0"=168 square feet. With these dimensions and areas, the load on the soil will be uniform at 7,500 pounds per square foot, and the footings the same width, both of which are desirable from the standpoint of uniform settlement. Rolled Steel Slabs for Column Footings: Assume a width of 30" and a length of 32", then the required thickness will be as follows: Wall column, t, = ^^^840,000 x J32 - 14) = 4>g6 , n . use g ,, Interior column, t, = X/^ 1 ' 2 ** ' n ft * f^^ = 5-61 in. ; use 6*". D'ijUUU X Ovl Plate Girders: Maximum bending moment occurs at the inner beams of the respective footings, and is equal to the load on the column multiplied by the distance of its center from the center of moments. M max. from wall column = 840,000 x 2' 6"=2, 100,000 foot pounds. Mmax. from interior column=l, 260,000 x 1' 8"=2, 100,000 foot pounds. o -i f\f\ nnn -v- 12 Required section modulus of two girders= ' 16 QQ Q - =1,575.0 in. 3 Select from girder safe load table, page 244, two girders composed each of 1 web plate 36" x y 2 ", 4 angles 6" x 4" x %", and 2 flange plates 14" x^"; Total section modulus, S = 2 x 792.3=1,584.6 in.s Maximum shear occurs at the inside edge of the steel slab under the interior column, and is equal in total for the two girders to the load carried by the portion of the footing between that point and the inside edge of the footing, Qr 1.260,000 x 68 _ 680> ooo or 340,000 pounds per girder. 126 At 10,000 pounds per square inch, the 36" x H" plate girder web is good for 180,000 pounds; therefore, it is necessary to use reinforcing web plates where the shear exceeds that amount. Beams, Lower Tier, Interior Column: Required total section modulus, S, = 3 X l ' 2 ??^ x 9.67 _ Ifl42<3 i n<3 Use 1318" 55 Ib. beams Total section modulus = 1,149.2 Average shear = x x ____ = 4 . 520 i bs .per sq .in. Average buckling stress = *' 2 ^' 0(K L = 4,900 Ibs. per sq. in. J.O X 'iO X .'iO For exterior column use 918" 55 Ib. beams. NOTE. In order to facilitate manufacture and shipment, it is desirable to use for the entire foundation as few sizes and weights of beams as possible, and the rolled steel slabs should be of the same thickness or at least of as few thicknesses as really convenient. 228 GIRDERS RIVETED BEAM AND PLATE GIRDERS Where single rolled beams are insufficient to carry the loads, the required capacity may be secured by fabrication in various methods. Two beams can be used, connected together by bolts and separa- tors. The total strength of these is twice that of the single beam of the same depth and weight. Care should be taken, however, to see that the loads are applied on them equally, and where it is necessary for the beams to act as a unit, the separators should be of plates and angles and not of cast iron. If the loading is not uniform on the two sections, their strength must be computed separately. The use of single beam girders with plates top and bottom to sustain a given load is often more economical hi material than the use of two beams connected by bolts and separators. Box girders formed of two beams with flange plates riveted thereto are often used for supporting interior walls in buildings. They are not, however, as economical in material as single beams with flange plates or plate girders. Their interior surfaces do not admit of repainting and they should, therefore, not be used in exposed places. The most economical section to sustain heavy loads is the single web plate girder and it is sufficient for all ordinary purposes. When not so, two single web plate girders may be used, together with tie plates extending clear across the angles, or box girders may be made of four flange angles, two web plates and top and bottom flange plates. In case there is unequal distribution of the load, the two girders or half girders must be figured as separate units. In the design of beam or plate girders, care must be taken to see that the web is of sufficient thickness to resist buckling stress and, therefore, attention is called to the construction specifications and to the remarks made on page 180 as to shearing stresses in general. The tables which follow give first, a selected line of riveted beam girders of approximately twice the carrying capacity of the single beams of which the sections are built; second, a selected line of riveted plate girders of various depths and carrying capacities such as are customary in building work; third, elements of riveted plate girders of various depths from which it is possible to select econom- ical sections for almost any ordinary condition of loading. In addition to the properties, the first two tables give the safe loads in thousands of pounds uniformly distributed. In accordance with the construction specifications, these girder tables are based upon the section modulus of the gross area of the section, with bending stress allowed at 16,000 pounds per square inch. 229 CARNEGIE STEEL COMPANY RIVETED BEAM GIRDERS ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress 16000 Pounds per Square Inch ^_ .-10" in" ...jjftl'-* > J- _L, > 1 | i^ >! 1_ j.^1 A^ , 1 r^ ,\ ', 1 l ~ c -^ 1 oo k* 1 Q in Feet l-Beam 27"x83 Ibs. 2-Plates 12"x%" l-Beam 24"x80 Ibs. 2-Plates 12"xM" l-Beam 24"x80 Ibs. 2-Plates 10"x^" l-Beam 20"x80 Ibs. 2-Plates 10"x%" *o "3 Increase Increase Increase Increase 1 in Safe in Safe in Safe in Safe o Loads for Loads for Loads for joads for o Safe Loads Vic Inch Increase in Safe Loads Vie Inch Increase in Safe Loads Vie Inch Increase in Safe Loads Vic Inch Increase in Thickness Thickness Thickness Thickness of Flange Plates of Flange Plates of Flange Plates of Flange Plates 15 317 15.2 270 12.3 224 10.1 204 8.4 3.72 16 297 14.3 253 , 11.5 210 9.5 191 7.9 4.24 17 280 13.4 238 10.9 198 9.0 180 7.4 4.78 18 264 12.7 225 10.3 187 8.4 170 7.0 5.36 19 250 12.0 213 9.7 177 8.0 161 6.6 5.98 20 238 11.4 203 9.2 168 7.6 153 6.3 6.62 21 227 10.9 193 8.8 160 7.2 146 6.0 7.30 22 216 10.4 184 8.4 153 6.9 139 5.7 8.01 23 207 9.9 176 8.0 146 6.6 133 5.5 8.76 24 198 9.5 169 7.7 140 6.3 127 5.3 9.53 25 190 9.1 162 7.4 135 6.1 122 5.0 10.35 26 183 8.8 156 7.1 129 5.9 118 4.8 11.19 27 176 8.4 150 6.8 125 5.6 113 4.7 12.07 28 170 8.1 148 6.6 120 5.4 109 4.5 12.98 29 164 7.9 140 6.4 116 5.2 105 4.3 13.92 30 159 7.6 135 6.2 112 5.1 102 4.2 14.90 31 153 7.4 131 6.0 109 4.9 99 4.1 15.91 32 149 7.1 127 5.8 105 4.8 96 3.9 16.95 33 144 6.9 123 5.6 102 4.6 93 3.8 18.03 34 140 6.7 119 5.4 99 4.5 90 3.7 19.13 35 136 6.5 116 5.3 96 4.3 87 3.6 20.28 Area 42.41 inches 2 41.32 inches 2 35.82 inches 2 38.73 inches 2 Si-i Weight 446.0 inches 3 144.2 Ibs. per ft. 380.0 inches 3 141.2 Ibs. per ft. 315.5 inches 3 122.5 Ibs. per ft. 286.7 inches 3 131.0 Ibs. per ft. Safe loads above horizontal lines exceed the resistance of the web and girders should be provided with stiffeners; for limiting conditions, see explanatory notes, page 180 and specifications, page 128. Weights given for girders do not include stiffeners, rivet heads or other details. 230 GIRDERS RIVETED BEAM GIRDERS Concluded ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16000 Pounds per Square Inch ! 10- i f 9--- r -9^--* 8-'-; F F fNt =3^ n* t4 ^ 1r Vl ** 1 , ^ i 1 \D 1 . _.i c 8 J s ll 1 g s s 8 8 |1| ill ill 1| n\ 00 ^ X V* INSI* * H CO\ X iO\ M 1 ^ X 05\ !j 'xco'Si k5* ^-S"^ CO CO 23 ss CO CO 2! CO O i l l| OO X Flange Angles l-28xH Web Plate 4-5x3>|x^ Flange Angles l-26x^ Web Plate 4-6x4xJ^ Flange Angles 2-14x^ Flange Plates l-26x% Web Plate 4-6x4x% Flange Angles 2-14x>^ Flange Plates l-26x% Web Plate 4-6x4x% Flange Angles 2-14x% Flange Plates & a -SJJ ? "? T 1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Area.in. 2 Wk'nec Ft.,Lb8. 253 241 230 220 211 202 195 187 181 174 169 163 158 153 149 145 141 137 224 214 204 195 187 180 173 166 160 155 150 145 140 136 152 144 138 133 127 121 116 111 106 102 98 95 92 89 86 83 81 78 76 74 72 70 68 66 232 221 211 202 193 186 178 172 159 160 155 150 145 141 136 133 129 125 206 196 187 179 172 165 158 153 147 142 137 133 129 125 182 173 166 158 152 146 140 135 130 126 159 151 144 138 132 127 6.62 7.30 8.01 8.76 9.53 10.35 11.19 12.07 12.98 13.92 14.90 15.91 16.95 18.03 19.13 20.28 21.45 22.66 23.90 25.18 26.48 132 126 121 117 112 108 105 101 98 95 92 89 87 84 82 80 78 76 29.50 284.3 100.5 122 118 114 110 106 103 99 96 93 91 88 86 84 81 79 121 118 114 110 107 104 101 98 96 93 91 132 128 125 121 118 115 112 38.94 420.8 132.5 121 118 114 111 108 106 103 133 130 126 122 119 116 43.50 474.3 148.1 26.50 249.1 90.1 42.75 435.1 145.6 38.19 386.1 130.0 34.69 341.5 118.1 30.95 298.0 105.4 Safe loads above horizontal lines exceed the end resistance and girders should be provided with stiff eners; for limiting conditions, see explanatory notes, page 229, and specifications, page 128. Weights given for girders do not include stiffeners, rivet heads, or other details. 233 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Concluded SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED Maximum Bending Stress, 16000 Pounds Per Square Inch Span in Feet 04 ! ! -d h- r 12 ''-*! 3! 2 it fl fl0 3 /8? i.JL 1 1 Q | O Dimensions in Inches JB ift *! 8 si 1 ! ill CD X ' mined by dividing the bending moment by the permissible J! stress per square inch. I For limiting conditions see explanatory notes, page ; 229, and specifications, page 128. ^ P i Weights given do not include stifleners, rivet heads, [i. or other details. O~^ Section Size in Inches Weight per Foot, Pounds Maximum End MnHiiltifl Reaction JM.OQUIUS, Axis 1-1, Inches^ Web Plate Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates in Thousands of Pounds 136.6 4x 3 xY* 59.5 50.6 168.6 4x 3 xYz 69.9 50.6 198.7 5x3^x^2 79.9 50.6 236.1 24 x %e 5x3^x^8 92.7 50.6 238.0 5x3^x^2 12 x H 79.9 40.8 50.6 372.9 5x3^2X^2 12 x Y* 79.9 51.0 50.6 408.5 5x3%x% 12 x Y& 92.7 51.0 50.6 142.5 4x 3 xYs 64.6 60.8 165.5 5x3J^xi 72.2 60.8 174.5 4x 3 xYz 75.0 60.8 204.5 4x 3 xY% 85.0 60.8 204.6 5x3^x3^ 85.0 60.8 242.0 24 x H 5x3J^x^j 97.8 60.8 270.9 5x3%x% 12 x % 72.2 30.6 60.8 306.1 5x3y%x% 12 x ^ 72.2 40.8 60.8 343.6 5x3^x^2 12 X ^2 85.0 40.8 60.8 378.5 5x3^x^2 12 x % 85.0 51.0 60.8 414.1 bx3 l /$xYs 12 xY* 97.8 51.0 60.8 151.5 4x 3 x% 61.6 56.3 176.8 5x3^x% 69.2 56.3 186.6 4x 3'x^ 72.0 56.3 201.2 6x 4 xYi 76.8 56.3 219.6 5x3J^x^ 82.0 56.3 252.0 6x 4 xYz 92.4 56.3 . 260.7 5x3y$x% 94.8 56.3 291.3 26x^xH 12 x y* 83.1 51.0 56.3 447.4 6x 4 xy 2 14 x H 93.5 47.6 56.3 467.7 5x3y 2 x% 12 x Y* 95.9 51.0 56.3 493.4 6x 4 xy% 14 x % 93.5 59.5 56.3 542.4 6x 4 x% 14 x Y* 108.7 59.5 56.3 588.0 Qx 4 x% 14 x M 108.7 71.4 56.3 193.1 5x3y 2 x*/ 8 76.0 67.5 218.5 6x 4 xK 83.6 67.5 237.8 5x3^x^ 88.8 67.5 271.5 6x 4 xH 99.2 67.5 280.6 5x3^x% 101.6 67.5 311.7 5x3^x% 12 x ^ 76.0 30.6 67.5 322.7 6x 4 x% 114.4 67.5 351.4 5x3*4x% 12 x H 76.0 40.8 67.5 357.1 6x 4 x% 14 x 5i 83.6 35.7 67.5 371.4 27 x Y* 6x 4 xM 128.8 67.5 394.5 5x3Mx^j 12 x^ 88.8 40.8 67.5 403.4 6x 4 x^ 14 x ^ 83.6 47.6 67.5 417.9 6x 4 xK 143.2 67.5 433.8 5x3^xH 12 x ^ 88.8 51.0 67.5 454.6 6x 4 xj^ 14 x ^ 99.2 47.6 67.5 474.8 5x3Hx^ 12 x H 101.6 51.0 67.5 500.5 6x 4 x^ 14 x 5^ 99.2 59.5 67.5 549.5 6x 4 x^ 14 x ^ ' 114.4 59.5 67.5 595.1 6x 4 x% 14 x M 114.4 71.4 67.5 641.2 6x 4 xM 14 x M 128.8 71.4 67.5 245.2 5x3HxH 94.6 78.8 279.0 27 x % 6 6x 4 x>^ 105.0 78.8 288.1 5x3H x ^ 107.4 78.8 330.2 6x 4 xH 120.2 78.8 237 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section Modulus, Axis 1-1, Inches 3 Size in Inches Weight per Foot, Pounds Maximum End Reaction in Thousands of Pounds Web Plate Fla^e Angles Flange Plates Web Plate and Flange Angles Flange Plates 378.8 6x 4 x% 134.6 78.8 401.7 5xsy 2 xy 2 12 x y 2 94.6 40.8 78.8 425.3 6x 4 xy a 149.0 78.8 440.9 5x3y 2 xy 2 12 x ^ 94.6 51.0 78.8 461.8 27 x % 6x 4 xy 2 14 x y 2 105.0 47.6 78.8 482.0 5x3y 2 x% 12, x^i 107.4 51.0 78.8 507.7 6x 4 xy 2 14 x 5^ 105.0 59.5 78.8 556.6 6x 4 x% 14 x % 120.2 59.5 78.8 602.4 6x 4 x% 14 x M 120.2 71.4 78.8 648.2 6x 4 x% 14 x % 134.6 71.4 78.8 194.5 5x3^x^ 71.4 56.3 221.0 6x 4 x% 79.0 56.3 241.1 5x3y 2 xy 2 84.2 56.3 276.3 6x 4 x^ 94.6 56.3 285.8 5x3y 2 x% 97.0 56.3 317.8 5x3y 2 x% 12 x ^g 71.4 30.6 56.3 329.7 6x 4 x^ 109.8 56.3 359.0 5x3y 2 xy 8 12 x Y Z 71.4 40.8 56.3 365.0 28 x % e 6x 4 x;Hi 14 x ^ 79.0 35.7 56.3 404.0 5x3y 2 xy 2 12 x M 84.2 40.8 56.3 413.1 6x 4 xjHs 14 x y 2 79.0 47.6 56.3 444.8 5x3y 2 xy 2 12 x 5^ 84.2 51.0 56.3 466.5 6x 4 xK 14 x M 94.6 47.6 56.3 487.6 5x3y 2 xy 8 12 x ^ 97.0 51.0 56.3 514.2 6x 4 x^ 14 x ^ 94.6 59.5 56.3 565.4 6x 4 x% 14 x ^ 109.8 59.5 56.3 612.7 6x 4 x^ 14 x M 109.8 71.4 56.3 202.5 5x3^x^ 77.3 67.5 229.0 6x 4 xjHi 84.9 67.5 249.1 5x3y^xy 2 90.1 67.5 284.3 6x 4 x^ 100.5 67.5 293.8 5x3y 2 x% 102.9 67.5 325.6 5x3y 2 x% 12 x y s 77.3 30.6 67.5 337.7 28 x % ex 4 X*HJ 115.7 67.5 366.7 5x3y 2 x% 12 x K 77.3 40.8 67.5 372.8 6x 4 x% 14 x y & 84.9 35.7 67.5 388.5 6x 4 xM 130.1 67.5 411.7 5x3%xy 2 12 x ^ 90.1 40.8 67.5 420.8 6x 4 x^i 14 x ^ 84.9 47.6 67.5 437.0 6x 4 x% 144.5 67.5 452.5 5x3Hx^ 12 x y% 90.1 51.0 67.5 238 GIRDERS RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per Foot, Maximum End Modulus, Reaction Axis 1-1, Inches" Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plate* in Thousands of Pounds 474.3 6x 4 x^ 14 x H 100.5 47.6 67.5 495.3 5x3>xi 12 x % 102.9 51.0 67.5 521.9 28 x y 6x 4 x^ 14 x % 100.5 59.5 67.5 573.1 6x' 4 x% 14 x^ 115.7 59.5 67.5 620.4 6x 4 x% 14 x % 115.7 71.4 67.5 668.6 6x 4 x5i 14 x M 130.1 71.4 67.5 257.1 5x3HxH 96.1 78.8 292.4 6x 4 xH 106.5 78.8 301.8 5x3J-3xx2i 12 x jHs 79.9 30.6 74.3 366.2 5x3^xM 117.5 74.3 368.1 6x 4 xjHs 118.3 74.3 397.8 5x3^x-Hj 12 x H 79.9 40.8 74.3 404.7 6x 4 x% 14 x i 87.5 35.7 74.3 423.1 30 x^ 6x 4 x% 132.7 74.3 446.6 5x3J^x*X} 12 x^ 92.7 40.8 74.3 456.1 6x 4 x^ 14 xH 87.5 47.6 74.3 475.8 6x 4 x^ 147.1 74.3 490.3 5x3HxJ^ 12 x ^ 92.7 51.0 74.3 514.0 6x 4 xj^ 14 x H 103.1 47.6 74.3 536.7 - 5x3Hx^g 12 x ^ 105.5 51.0 74.3 565.1 6x 4 x^ 14 x % 103.1 59.5 74.3 620.6 6x 4 x^ 14 x i 118.3 59.5 74.3 671.3 6x 4 x^ 14 x M 118.3 71.4 74.3 723.8 6x 4 xM 14 x 5i 132.7 71.4 74.3 239 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Axis 1-1, Inches" Web Plates Flange Angles Flange Plates Web Plate and Flaiige Angles Flange Plates Reaction in Thousands of Pounds 281.4 5x3^xH 99.0 86.6 319.5 6x 4 xy 2 109.4 86.6 329.7 5x3y 2 xy 8 111.8 86.6 375.5 5x3y 2 x% 123.8 86.6 377.3 Ox 4 x 5 A 124.6 86.6 432.3 Gx 4 xM 139.0 86.6 455.5 5x3y 2 xy 2 12 xy 2 99.0 40.8 86.6 485.0 30 x Vie Gx 4 xH 153.4 86.6 499.2 5x3y 2 xy 2 i2xy s 99.0 51.0 86.6 523.0 6x 4 xy 2 i4xy 2 109.4 47.6 86.6 545.6 5x3y 2 xy 8 12 xy 8 111.8 51.0 86.6 574.0 6x 4 xy 2 14 x y s 109.4 59.5 86.6 629.5 6x 4 xy s 14 x H 124.6 59.5 86.6 680.1 Gx 4 xy s 14 xM 124.6 71.4 86.6 732.6 6x 4 xM 14 x M 139.0 71.4 86.6 290.6 5x3y 2 x*A 105.4 99.0 328.8 6x 4 x^ 115.8 99.0 338.9 5x3y 2 xy s 118.2 99.0 384.7 5x3y 2 x% 130.2 99.0 386.5 Gx 4 x^ 131.0 99.0 441.5 6x 4 xM 145.4 99.0 464.4 5x3^xH 12 x K 105.4 40.8 99.0 494.2 30 x Y 2 6x 4 x% 159.8 99.0 508.0 5x3^xH 12 x y 8 105.4 51.0 99.0 531.9 6x 4 xy 2 14 xK 115.8 47.6 99.0 554.5 5x3y 2 xy s 12 x y 8 118.2 51.0 99.0 582.8 6x 4 xj^ 14 xy 8 115.8 59.5 99.0 638.3 6x 4 x^ i^x y s 131.0 59.5 99.0 688.9 6x 4 xy s 14 x% 131.0 71.4 99.0 741.3 6x 4 xM 14 x % 145.4 71.4 99.0 251.7 5x3^xM 83.7 81.0 283.7 Gx 4 x^g 91.3 81.0 307.7 5x3^x^ 96.5 81.0 308.4 Gx 6 x% 101.7 121.5 350.3 6x 4 xH 106.9 81.0 361.5 33 xy 8 5x3^x^ 109.3 81.0 383.6 6x 6 xy 2 120.5 121.5 396.9 5x3y 2 xy s 12 x % 83.7 30.6 81.0 412.5 5x3y 2 x% 121.3 81.0 414.7 Gx 4 xy 8 122.1 81.0 445.5 5x3y 2 xy s 12 xH 83.7 40.8 81.0 453.4 Gx 4 xy s 14 x^ 91.3 35.7 81.0 240 GIRDERS RIVETED PLATE GIRDERS Continued Section Mnrhiliin Size in Inches Weight per Foot, Maximum End .M.OUU1US, Axis 1-1, Inches 3 Web Plate Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 455.9 6x 6 *y s 138.9 121.5 476.1 6x 4 x% 13G.5 81.0 477.6 6x 6 x% 14 x?* 101.7 35.7 121.5 499.8 5x3^xH 12 xH 96.5 40.8 81.0 510.0 6x 4 * S A 14 xK 91.3 47.6 81.0 525.4 6x 6 xM 156.9 121.5 534.1 6x 6 x^s 14 xK 101.7 47.6 121.5 548.0 5x3^xH 12 x*/ 8 96.5 51.0 81.0 574.7 6x 4 xH 14 xK 106.9 47.6 81.0 590.6 6x 6 x 3 A 14x^ 101.7 59.5 121.5 592.6 33 x % 6x 6 x% 174.5 121.5 599.9 5x3J$x$i 12 x% 109.3 51.0 81.0 607.1 6x 6 x^ 14 xH 120.5 47.6 121.5 630.9 6x 4 x*A 14 x^ 106.9 59.5 81.0 663.1 6x 6 x}4 14x^i 120.5 59.5 121.5 693.0 6x 4 x^i 14 x^ 122.1 59.5 81.0 719.2 Gx 6 xy z 14 xM 120.5 71.4 121.5 732.7 6x 6 x5i 14x^ 138.9 59.5 121.5 748.9 6x 4 x^i 14 x^ 122.1 71.4 81.0 788.3 6x 6 xy s 14 xM 138.9 71.4 121.5 807.6 6x 4 x% 14 x% 136.5 71.4 81.0 854.9 6x 6 xM 14 xH 156.9 71.4 121.5 318.9 5x3Hx^ 103.5 94.5 361.5 6x 4 x^ 113.9 94.5 372.7 5x3Hx^ 116.3 94.5 394.8 6x 6 xJ-3 127.5 141.8 423.7 5x3>4xM 12S.3 94.5 425.8 6x 4 x^ 129.1 94.5 467.0 6x 6 *y s 145.9 141.8 487.2 Gx 4 xM 143.5 94.5 510.7 33 x % 5x3^x3^ 12x*A 103.5 40.8 94.5 536.6 Gx 6 xM 163.9 141.8 558.8 5x3^x^ 12 x^ 103.5 51.0 94.5 585.6 6x 4 x^ 14 xH 113.9 47.6 94.5 603.8 6x 6 xJi 181.5 141.8 610.6 5x3^x^ 12 x^ 116.3 51.0 94.5 617.9 Gx 6 xj^ 14 x^ 127.5 47.6 141.8 641.7 6x 4 x^ 14 x^ 113.9 59.5 94.5 673.9 6x 6 x^ 14x^ 127.5 59.5 141.8 703.8 6x 4 x5i 14x^i 129.1 59.5 94.5 241 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per'Foot, Pounds Maximum End Axis 1-1, Inches* Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 729.9 6x 6 xy 2 14 X % 127.5 71.4 141.8 743.5 6x 6 x 5 / 8 14 x ^ 145.9 59.5 141.8 759.6 33 x Vio 6x 4 x 5 / 8 14 x M 129.1 71.4 94.5 799.0 6x 6 xy 8 14 x M 145.9 71.4 141.8 818.3 6x 4 x% 14 x M 143.5 71.4 94.5 865.6 6x 6 x% 14 x M 163.9 71.4 141.8 330.0 5x3^x2^ 110.5 108.0 372.6 6x 4 xy 2 120.9 108.0 383.9 5x3^x^ 123.3 108.0 406.0 6x 6 xy 2 134.5 162.0 434.9 5x3H x M 135.3 108.0 437.0 6x 4 xy s 136.1 108.0 478.2 Ox 6 xy s 152.9 162.0 498.4 6x 4 xM 150.5 108.0 521.5 5xsy 2 xy 2 12 x H 110.5 40.8 108.0 547.8 6x 6 xM 170.9 162.0 569.5 5x3y 2 xy 2 12 x y 8 110.5 51.0 108.0 596.4 33 x 3/ 6x 4 xy 2 14 x K 120.9 47.6 108.0 615.0 6x 6 xy s 188.5 162.0 621.4 5x3y2xy 8 12 x y 8 123.3 51.0 108.0 628.8 6x 6 x^/2 14 x y 2 134.5 47.6 162.0 652.5 6x 4 xy 2 14 x y 8 120.9 59.5 108.0 684.6 6x 6 xj^ 14 x ^ 134.5 59.5 162.0 714.5 6x 4 xy 8 14: X % 136.1 59.5 108.0 740.6 6x 6 xj^ 14 x M 134.5 71.4 162.0 754.3 6x 6 xy s 14 x y 8 152.9 59.5 162.0 770.3 6x 4 x^ 14 x M 136.1 71.4 108.0 809.7 6x 6 xy 8 14 x M 152.9 71.4 162.0 829.0 6x 4 xM 14 x M 150.5 71.4 108.0 876.3 6x 6 x% 14 x H 170.9 71.4 162.0 318.0 6x 4 x2i 95.1 87.8 344.4 5xsy 2 \y 2 100.3 87.8 346.9 6x 6 x^g 105.5 135.0 391.4 6x 4 x^ 110.7 87.8 403.7 5x3y 2 xy 8 113.1 87.8 430.3 36 x % 6x 6 xj^ 124.3 135.0 460.0 5x3y 2 x% 125.1 87.8 462.4 6x 4 xi 95.1 47.6 87.8 593.2 6x 6 x% 14 x^ 105.5 47.6 135.0 595.3 6x 4 xY 8 154.7 87.8 606.8 5x3H*H 12x^i 100.3 51.0 87.8 636.5 6x 4 xY 2 14 xH 110.7 47.6 87.8 654.9 6x 6 x% 14 x^ 105.5 59.5 135.0 664.2 36 x % oxSXxK 12x5i 113.1 51.0 87.8 674.4 6x 6 xH 14x>i 124.3 47.6 135.0 698.0 6x 4 xy 2 14 xH 110.7 59.5 87.8 735.5 6x 6 x l A 14 x^ 124.3 59.5 135.0 766.6 6x 4 x 5 A 14 x^ 125.9 59.5 87.8 796.8 6x 6 xy 2 14 xM 124.3 71.4 135.0 813.1 6x 6 x 5 A 14 x % 142.7 59.5 135.0 827.6 6x 4 xy s 14 xM 125.9 71.4 87.8 873.8 Gx 6 xy s 14 xM 142.7 71.4 135.0 892.8 6x 4 xM 14 xH 140.3 71.4 87.8 357.7 5x3^xH 108.0 102.4 404.7 6x 4 x^ 118.4 102.4 417.0 5x3Hx^i 120.8 102.4 443.6 6x 6 x*A 132.0 157.5 473.3 5x3^xM 132.8 102.4 475.7 6x 4 xH 133.6 102.4 523.8 6x 6 x^ 150.4 157.5 543.5 6x 4 xM 148.0 102.4 567.2 5x3^xM 12x*A 108.0 40.8 102.4 608.6 36 x tte 6x 4 x^ 162.4 102.4 619.7 5x3^xM 12 x% 108.0 51.0 102.4 649.5 6x 4 x*A 14 x^ 118.4 47.6 102.4 677.1 5x3^xy 9 12x^ 120.8 51.0 102.4 687.3 6x 6 xH 14 xH 132.0 47.6 157.5 710.8 Gx 4 xj^ 14 x % 118.4 59.5 102.4 748.4 6x 6 x*A I4x!i 132.0 59.5 157.5 779.5 6x 4 x^ 14 x^ 133.6 59.5 102.4 809.5 6x 6 xy 2 14 x^ 132.0 71.4 157.5 825.9 6x 6 x^ 14x^ 150.4 59.5 157.5 840.4 6x 4 x^ 14 xM 133.6 71.4 102.4 886.6 6x 6 x^i 14x^ 150.4 71.4 157.5 905.5 6x 4 x% 14xJi 148.0 71.4 102.4 243 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per Foot, Pounds Maximum End M.od.ulus, Axis 1-1, Inches' 5 Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 418.0 6 x 4 x y 2 126.0 117.0 456.9 6 x 6 x H 139.6 180.0 489.0 6 x 4 x y % 141.2 117.0 537.1 6 x 6 x % 158.0 180.0 556.9 6 x 4 x Y 155.6 117.0 614.5 6x 6x M 176.0 180.0 621.9 6x4x^ 170.0 117.0 662.5 6 x 4 x H 14 x M 126.0 47.6 117.0 689.2 6 x 6 x % 193.6 180.0 700.3 6 x 6 x ^ 14 x y z 139.6 47.6 180.0 723.7 6 x 4 x y 2 14x5i 126.0 59.5 117.0 761.3 36 x y 2 6 x6x Y 2 14 x y s 139.6 59.5 180.0 792.3 6x4x^ 14 x % 141.2 59.5 117.0 822.3 6x6x H 14 x% 139.6 71.4 180.0 838.8 6x 6x Y S 14 x y s 158.0 59.5 180.0 853.2 6x4 x ^ 14 x % 141.2 71.4 117.0 899.4 6 x 6 x ^ 14 x M 158.0 71.4 180.0 918.3 6 x 4 x % 14 x M 155.6 71.4 117.0 973.7 6 x 6 x M 14 x M 176.0 71.4 180.0 1039.4 6 x 4 x M 14 x 1 155.6 95.2 117.0 1094.1 6 x 6 x % 14 x 1 176.0 95.2 180.0 1101.1 6 x 4 x K 14 x 1 170.0 95.2 117.0 1164.9 6 x 6 x y 8 14 x 1 193.6 95.2 180.0 444.7 6 x 4 x H 141.3 146.3 483.5 6 x 6 x H 154.9 225.0 515.7 6 x 4 x ^ 156.5 146.3 563.7 6 x 6 x y s 173.3 225.0 583.5 6 x 4 x % 170.9 146.3 641.2 6 x 6 x % 191.3 225.0 648.5 6x4x y s 185.3 146.3 688.4 36 x % 6 x 4 x H 14 x H 141.3 47.6 146.3 715.8 6 x 6 x y s 208.9 225.0 726.2 6 x 6 x y 2 14 x K 154.9 47.6 749.4 6 x 4 x H 14 x y 8 141.3 59.5 146.3 787.0 6x 6x y 2 14 x % 154.9 59.5 225.0 818.1 6 x 4 x ^ 14x^g 156.5 59.5 146.3 847.9 6 x 6 x y 2 14 x M 154.9 71.4 225.0 864.6 6 x 6 x % 14 x y 8 173.3 59.5 225.0 878.8 6x4x % 14 xM 156.5 71.4 146.3 924.9 6x 6x % 14 x % 173.3 71.4 225.0 244 GIRDERS RIVETED PLATE GIRDERS Continued Section MnHnliis Size in Inches Weight per Foot, Pounds Maximum End i&OUUiUS, Am 1-1, Inches* Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 943.9 6x4x % 14 x M 170.9 71.4 146.3 999.3 6 x 6 x % 14 x % 191.3 71.4 225.0 1045.9 6 x 6 x 2i 14 x 1 173.3 95.2 225.0 1064.7 36 x % 6x4x % 14 x 1 170.9 95.2 146.3 1119.3 6 x 6 x % 14 x 1 191.3 95.2 225.0 1126.3 6 x 4 x % 14 x 1 185.3 95.2 146.3 1190.1 6x6x% 14 x 1 208.9 95.2 225.0 390.2 6 x4x % 102.8 101.3 427.5 6 x 6x % 113.2 157.5 477.2 6 x 4 x Yz 118.4 101.3 527.2 6 x 6x Yz 132.0 157.5 561.4 6 x4 x % 133.6 101.3 606.6 6 x 4 x % 14 x % 102.8 35.7 101.3 623.5 6 x 6 x 2i 150.4 157.5 638.3 6x4x % 16 x 23 102.8 40.8 101.3 642.1 6 x 4 x % 148.0 101.3 643.2 6 x 6 x % 14 x % 113.2 35.7 157.5 675.1 6 x 6 x % 16 x % 113.2 40.8 157.5 678.6 6 x 4 x % 14 x 1^ 102.8 47.6 101.3 715.2 6 x 6 x % 14 x H 113.2 47.6 157.5 716.5 6 x 6 x M 168.4 157.5 719.5 6 x 4 x % 162.4 101.3 757.7 6 x 6 x % 16 x Ji 113.2 54.4 157.5 763.7 42 x % 6x4x H 14 x H 118.4 47.6 101.3 787.2 6 x 6 x % 14 x 2i 113.2 59.5 157.5 806.2 6x4x ^ 16 x > 118.4 54.4 101.3 806.4 6 x 6 x J 186.0 157.5 812.7 6 x 6 x Yz 14 x ^ 132.0 47.6 157.5 835.5 6 x 4 x Yz 14 x 23 118.4 59.5 101.3 855.2 6 x 6 x Yz 16 x > 132.0 54.4 157.5 884.2 6 x 6 x Yz 14 x 23 132.0 59.5 157.5 917.3 6 x 4 x 2H 14x23 133.6 59.5 101.3 937.3 6 x 6 x ^ 132.0 68.0 157.5 955.7 6 x 6 x Yz 14 x M 132.0 71.4 157.5 970.4 6 x 4 x 2| 16 x 23 133.6 68.0 101.3 977.6 6 x 6 x % 14 x 2i 150.4 59.5 157.5 988.7 6x4x 2s" 14 x % 133.6 71.4 101.3 1030.8 Gx 6x % 16 x 2i 150.4 68.0 157.5 1048.6 6 x 6 x 26 14 x M 150.4 71.4 157.5 1066.6 6 x 4 x % 14 x M 148.0 71.4 101.3 1112.4 6x6x^ 16 x 2i 150.4 81.6 157.5 245 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Axis 1-1, Inches 3 Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 1130.4 6x4x M 16 xM 148.0 81.6 101.3 1138.5 6 x 6 x M 14 xH 168.4 71.4 157.5 1194.1 6x6x y 8 16 x% 150.4 95.2 157.5 1202.3 42 x^ 6x6x % 16 xM 168.4 81.6 157.5 1283.5 6x 6x % 16 x% 168.4 95.2 157.5 1286.4 6x4x Y & 16 x % 162.4 95.2 101.3 1369.9 6x6x % 16 x^ 186.0 95.2 157.5 495.3 6x4x H 127.3 118.1 545.4 6x6x^ 140.9 183.8 579.5 6 x 4 x 5 / 8 142.5 118.1 641.6 6 x 6 x % 159.3 183.8 660.2 6x4x M 156.9 118.1 734.7 6 x 6 x % 177.3 183.8 737.6 6x4x y 8 171.3 118.1 781.5 6x4x ^ 14 x ^ 127.3 47.6 118.1 824.0 6x4x K 16 xK 127.3 54.4 118.1 824.6 6x 6x y 8 194.9 183.8 830.4 6 x 6 x ^ 14 xy 2 140.9 47.6 183.8 853.1 6x 4x ^ 14 x^ 127.3 59.5 118.1 872.9 6 x 6 x ^ 16 xH 140.9 54.4 183.8 901.8 6 x 6 x J^ 14 x% 140.9 59.5 183.8 934.9 42 x % e 6x 4 x % 14 x^ 142.5 59.5 118.1 954.9 6x 6x ^ 16x^ 140.9 68.0 183.8 973.2 6x 6x Yt 14 xM 140.9 71.4 183.8 988.1 6 x 4 x Y S 16 x ^ 142.5 68.0 118.1 995.3 6x 6x % 14 x% 159.3 59.5 183.8 1006.2 6x4x^ 14 xM 142.5 71.4 118.1 1048.4 6 x 6 x % 16 x% 159.3 68.0 183.8 1066.2 6 x 6 x % 14 xM 159.3 71.4 183.8 1084.1 6 x 4 x % 14 x% 156.9 71.4 118.1 1129.9 6x6x^g 16 x M 159.3 81.6 183.8 1147.9 6x4x % 16 xM 156.9 81.6 118.1 1156.0 6x 6x M 14 xM 177.3 71.4 183.8 1211.6 6 x 6 x y s 16 x % 159.3 95.2 183.8 1219.8 6x 6 x M 16 xM 177.3 81.6 183.8 1300.9 6x 6x M 16 x% 177.3 95.2 183.8 1387.3 6x 6x y s 16 x% 194.9 95.2 183.8 513.5 6x4x% 136.2 135.0 563.5 6x 6x H 149.8 210.0 597.7 42 xK 6 x 4x % 151.4 135.0 659.8 6x6x^ 168.2 210.0 678.4 6 x 4 x % 165.8 135.0 246 GIRDERS RIVETED PLATE GIRDERS Continued Section mr~j,.i,,- Size in Inches , Weight per Foot, Maximum End Modulus, Axis 1-1, Inches", Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 752.8 6x 6x M 186.2 210.0 755.8 6x4x % 180.2 135.0 799.2 6x4x^ 14 xj^ 136.2 47.6 135.0 841.7 6x4x^ 16 x^ 136.2 54.4 135.0 842.7 6x6x% 203.8 210.0 848.1 6x 6x Y 2 14 xH 149.8 47.6 210.0 870.8 6x4x Y Z 14 x% 136.2 59.5 135.0 890.6 6x6x K 16 xH 149.8 54.4 210.0 919.4 6x6x Yz 14x^i 149.8 59.5 210.0 952.6 6x4x% 14 x 151.4 59.5 135.0 972.6 6x6x Yz 16 x^ 149.8 68.0 210.0 990.8 6x6x H 14x5i 149.8 71.4 210.0 1005.7 6x4x y a 16x^i 151.4 68.0 135.0 1012.9 42 xH 6x6xi 14 xM 168.2 59.5 210.0 1023.7 6x4x% 14 xM 151.4 71.4 135.0 1066.0 6x6x^ 16 x^ 168.2 68.0 210.0 1083.7 6x6x % 14 xM 168.2 71.4 210.0 1101.7 6x4xM 14 xM 165.8 71.4 135.0 1147.5 6x6x % 16 xM 168.2 81.6 210.0 1165.4 6x4x H 16 xM 165.8 81.6 135.0 1173.6 6x6x M 14 x% 186.2 71.4 210.0 1229.0 6x6x Y* 16 x% 168.2 95.2 210.0 1237.4, 6x6x % 16 xM 186.2 81.6 210.0 1318.4 6x6x M 16 x% 186.2 95.2 210.0 1321.2 6x4x% 16 x^ 180.2 95.2 135.0 1404.7 6x6x Ji 16x% 203.8 95.2 210.0 466.9 6x4x % 110.4 121.5 512.7 6x6x % 120.8 180.0 567.4 6x4xK 126.0 121.5 628.9 6x6x H 139.6 180.0 664.9 6x4x% 141.2 121.5 714.4 6x4x% 14 x^ 110.4 35.7 121.5 741.3 6 x 6 x s^ 158.0 180.0 750.8 6x4x3-6 16x^ 110.4 40.8 121.5 758.5 48 xH 6x4x M 155.6 121.5 759.5 6x 6x Ys 14x^ 120.8 35.7 180.0 795.9 6x6x Ys 16 x% 120.8 40.8 180.0 > 797.0 6x4x % 14 xj^ 110.4 47.6 121.5 841.9 6x6x ^ 14 xH 120.8 47.6 180.0 848.3 6x4x% 170.0 121.5 850.1 6x6xM 176.0 180.0 890.4 6x6x H 16 xj^ 120.8 54.4 180.0 895.5 6x4xK 14 xH 126.0 47.6 121.5 247 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Continued Section \J-_J--l-._ Size in Inches Weight per Foot, Pounds Maximum End Modulus, Axis 1-1, Inches^ Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates Reaction in Thousands of Pounds 924.3 6 x 6 x M 14x^ 120.8 59.5 180.0 944.0 6 x 4 x YL 16 x^ 126.0 54.4 121.5 955.2 6x6x % 193.6 180.0 955.8 6 x 6x H 14 x Yz 139.6 47.6 180.0 977.7 6 x 4 x H 14 x % 126.0 59.5 121.5 1004.3 6x 6x Yt 16 xy 2 139.6 54.4 180.0 1037.6 6 x 6 x K 14 xy s 139.6 59.5 180.0 1072.7 6 x 4 x ^ 14 x^ 141.2 59.5 121.5 1098.2 6 x 6 x Yi 16x^ 139.6 68.0 180.0 1119.5 6 x 6 x Yi 14 xM 139.6 71.4 180.0 1133.3 6 x 4 x ^g 16 xy s 141.2 68.0 121.5 1147.1 48 xK 6x 6x % 14x^ 158.0 59.5 180.0 1154.4 6x4x % 14 xM 141.2 71.4 121.5 1207.8 6x 6x % 16 x% 158.0 68.0 180.0 1228.4 6x 6x % 14 xM 158.0 71.4 180.0 1245.2 6 x 4 x M 14 xM 155.6 71.4 121.5 1301.2 6x 6x^ 16 xM 158.0 81.6 180.0 1317.9 6 x 4 x % 16 x M 155.6 81.6 121.5 1334.0 6 x 6 x % 14 x% 176.0 71.4 180.0 1394.7 6x6x^i 16 x% 158.0 95.2 180.0 1406.7 6 x 6x % 16 x M 176.0 81.6 180.0 1498.1 6x4x y a 16 x% 170.0 95.2 121.5 1499.7 6x 6 x M 16 xy 8 176.0 95.2 180.0 1601.3 6x 6x y 8 i6*y 8 193.6 95.2 180.0 591.2 6x4x H 136.2 141.8 652.7 6 x 6 x K 149.8 210.0 688.7 6 x 4 x % 151.4 141.8 765.0 6x6x^ 168.2 210.0 782.3 6 x 4 x % 165.8 141.8 872.1 6 x 4 x % 180.2 141.8 873.8 6 x 6 x % 186.2 210.0 918.8 6x4x Yi 14xJ4 136.2 47.6 141.8 967.3 979.0 48 x % e 6x4x Yt 6x 6x % 16 x^ 136.2 203.8 54.4 141.8 210.0 979.0 6 x 6 x ^ 14 xy 2 149.8 47.6 210.0 1000.8 6 x 4 x Yi 14x^ 136.2 59.5 141.8 1027.6 6 x 6 x Yi 16 x^ 149.8 54.4 210.0 1060.8 6 x 6 x Yi 14 xH 149.8 59.5 210.0 1095.8 6 x 4 x % 14 xy s 151.4 59.5 141.8 1121.4 6 x 6 x Yi wxy s 149.8 68.0 210.0 1142.5 6x 6x H 14 xH 149.8 71.4 210.0 1156.5 6x4x% 16x^ 151.4 68.0 141.8 248 GIRDERS RIVETED PLATE GIRDERS Continued Section Size in Inches Weight per Foot, Pounds Maximum End Modulus, Reaction Axis 1-1, Inches* Web Plates Flange Angles Flange Plates Web Plate and Flange Flange Plates in Thousands of Pounds Angles 1170.3 6x6x% 14 x^ 168.2 59.5 210.0 1177.4 6x4x^ 14x^ 151.4 71.4 141.8 1230.9 6x6x % 16x^i' 168.2 68.0 210.0 1251.5 6x 6x % 14 x% 168.2 71.4 210.0 1268.2 6x 4x M 14 x% 165.8 71.4 141.8 1324.3 6x 6x^ 16 xM 168.2 81.6 210.0 1341.0 48 x % 6 6x4x % 16 x% 165.8 81.6 141.8 1357.0 6x6x % 14 x% 186.2 71.4 210.0 1417.7 6 x 6 x y% 16 x% 168.2 95.2 210.0 1429.8 6x 6 x y 16 xM 186.2 81.6 210.0 1521.0 6x4x% 16 x% 180.2 95.2 141.8 1522.7 6x 6x % 16 x% 186.2 95.2 210.0 1624.2 6x6x y 8 16 x% 203.8 95.2 210.0 615.0 6x4x M 146.4 162.0 676.4 6x6xJ^ 160.0 240.0 712.4 6x4x y 8 161.6 162.0 788.8 6x6x5^ 178.4 240.0 806.0 6x4 x % 176.0 162.0 895.8 6x4x y s 190.4 162.0 897.6 6x 6x M 196.4 240.0 942.1 6 x 4 x H 14 xH 146.4 47.6 162.0 990.6 6x4x Yz 16 x^ 146.4 54.4 162.0 1002.3 6x 6x H 14 x^ 160.0 47.6 240.0 1002.7 6x6x % 214.0 240.0 1024.0 6x4x^ 14x^g 146.4 59.5 162.0 1050.8 6x6x H 16 x^ 160.0 54.4 240.0 1083.9 6x 6x M 14x^ 160.0 59.5 240.0 1119.0 6x4x % 14x5i 161.6 59.5 162.0 1144.5 48 xM 6x6x y 2 16 x% 160.0 68.0 240.0 1165.6 6x6x H 14 xM 160.0 71.4 240.0 1179.6 6x4x% 16 x^ 161.6 68.0 162.0 1193.4 6x6x y s 14 x^ 178.4 59.5 240.0 1200.5 6x4xi 14 xM 161.6 71.4 162.0 1254.1 6x6x^ 16 x^ 178.4 68.0 240.0 1274.5 6x 6x y a 14 xM 178.4 71.4 240.0 1291.2 6x4x M 14 xM 176.0 71.4 162.0 1347.3 6x 6x % 16 xM 178.4 81.6 240.0 1364.0 6x 4 x M 16 xM 176.0 81.6 162.0 1380.0 6x 6x % 14 xM 196.4 71.4 240.0 1440.6 6x6x % 16 x % 178.4 95.2 240.0 1452.8 6 x 6 x M 16 xM 196.4 81.6 240.0 1543.9 6x 4x % 16 x Ji 190.4 95.2 162.0 1545.6 6x 6x ^ 16 x^ 196.4 95.2 2400 1647.1 6x 6x Ji 16 xK 214.0 95.2 240.0 249 CARNEGIE STEEL COMPANY RIVETED PLATE GIRDERS Concluded Section Modulus, Axis 1-1, Inches^ Size in Inches Weight per Foot, Pounds Maximum End Reaction in Thousands of Pounds Web Plates Flange Angles Flange Plates Web Plate and Flange Angles Flange Plates 194.7 245.7 294.2 340.7 24 x s/16 6 x 6 x % 6 x 6 x H 6 x 6 x % 6x 6x M 85.1 103.9 122.3 140.3 67.5 67.5 67.5 67.5 200.6 251.5 300.1 346.6 24 x S A 6x 6 x % 6 x 6 x Yz 6 x 6x % 6x 6 X % 90.2 109.0 127.4 145.4 81.0 81.0 81.0 81.0 216.6 272.9 326.7 378.2 26 x % 6 6 x 6x % 6 x 6 x J^ 6 x 6 x y s 6 x 6x % 87.2 106.0 124.4 142.4 78.8 78.8 78.8 78.8 223.5 279.8 333.6 385.2 26 xy s 6 x 6 x % 6 x 6 x ^ 6 x 6 x *Mi 6x6xM 92.8 111.6 130.0 148.0 94.5 94.5 94.5 94.5 230.4 286.7 340.5 392.1 26 x Vie 6x 6 x % 6 x 6 x Yi 6 x 6 x % 6x 6x M 98.3 117.1 135.5 153.5 110.3 110.3 110.3 110.3 227.8 286.8 343.1 397.3 27 x 5/ 16 6 x 6x Y* 6 x 6 x H 6 x 6 x % 6 x 6 x % 88.3 107.1 125.5 143.5 78.8 78.8 78.8 78.8 235.2 294.2 350.6 404.7 27 xM 6 x 6 x H 6 x 6 x H 6 x 6 x % 6 x 6 x % 94.0 112.8 131.2 149.2 94.5 94.5 94.5 94.5 242.7 301.7 358.1 412.2 27 x Vie 6 x 6 x % 6 x 6 x H; 6 x 6 x % 6x 6x M 99.8 118.6 137.0 155.0 110.3 110.3 110.3 110.3 271.2 338.3 402.6 464.4 30 x % 6 x 6 x y 6 x 6 x y z 6 x 6x % 6x 6 x M 97.9 116.7 135.1 153.1 108.0 108.0 108.0 108.0 280.4 347.5 411.8 473.6 30 x 7/i 6 6 x 6 x JHI 6x 6 x Y-2 6x 6x Y* 6 x 6 x % 104.2 123.0 141.4 159.4 126.0 126.0 126.0 126.0 289.6 356.7 421.0 482.8 30 x ^ 6 x 6 x % 6 x 6 x Y-2, 6 x 6x % 6 x 6 x % 110.6 129.4 147.8 165.8 144.0 144.0 144.0 144.0 250 COLUMN SAFE LOADS COLUMNS AND STRUTS Compression members in structures are called posts, struts or columns. No exact theoretical formula has been found which will give the strength of such members under various conditions of loading. The formulas in current use are based on the assumption that the members under stress may fail by direct compression, by compression and bending combined, or by bending alone. The empirical formulas based on these assumptions practically agree with results obtained by experiment on full size members. These experiments show that steel columns of ordinary sizes and lengths fail at nearly a constant stress which corresponds to the yield point of that material, and that the load which will cause a column to fail decreases in the ratio of its length to its least lateral dimension. Radius of Gyration. As the strength of a column depends on its ability to resist flexural stress, the moment of inertia of its cross section is an important factor in the determination of its carrying capacity. For the purpose of computation, however, it is much more convenient to use the radius of gyration which depends on the moment of inertia. Ratio of siendemess. The ratio of slenderness is the unsupported length of a compression member divided by its radius of gyration, and the unsupported length of a column is determined by such points of support as will prevent deflection of the column in the direction which corresponds to the particular radius of gyration under consideration. Columns of unsymmetrical section have more than one radius of gyration. It is, therefore, necessary to determine the ratio of slenderness for the different radii of gyration of such columns and to use the proper ratio in any particular case. The unit stresses for different ratios of slenderness given in the construction specifications and on page 254 are consistent with present practice in column construction and their use does not involve the refinements of the more complicated formulas, which refinements are often vitiated by uncertainties in the application of loads or other practical features. The construction specifications limit the maximum ratio of slenderness to 120 for main members under steady stresses. For secondary members under temporary stress, such as those used in wind bracing, higher ratios may be used, but in no case should the ratio exceed 200. 251 CARNEGIE STEEL COMPANY Form and Size of Section. Important as it may be to have the metal in the column section distributed as far as possible from the neutral axis, that is, with as large a radius of gyration as possible, considera- tions of ease in fabrication and simplicity in connections are of greater weight. The economical column section is not that which affords the least weight of metal in the shaft, but that which, with a reasonable radius of gyration, provides the least weight of member, shaft and details with the minimum amount of riveting. Modern practice, therefore, eliminates earlier forms of construction which represented the minimum amount of metal for the maximum radius of gyration, such, for example, as the column composed of three I-beams or one I-beam and two channels placed either with the flanges in or the flanges out. The Z-bar column has also fallen into disuse, likewise a number of patented sections and other sections shown in earlier editions of this publication. The most practical column is one the surfaces of which are readily accessible for painting and, therefore, it is desirable to use open angle and plate columns rather than closed channel and plate columns. The column sections should be of such size as to permit ready framing of beams and girders thereto and so placed in the construc- tion as to permit the simplest details. Experience indicates that eight inches is the smallest desirable dimension in ordinary building work. For struts and light loads, smaller angle columns are still in use, while the H-beams are excellent for such purposes. I-beams and single angles may be used with economy where the conditions of lengths and loading permit. Explanation of Tables. The tables which immediately follow give the safe loads in thousands of pounds on H-beam and I-beam columns and on a selected line of channel and angle columns which, in the light of experience, seem to be desirable for use in ordinary building and bridge construction. In addition to the safe loads, they give moments of inertia and radii of gyration about both axes of symmetry, areas of sections, and weights in pounds per foot without allowance for rivet heads or other details. These tables have been computed for the least radius of gyration in accordance with the formula given in the construction specifica- tions. The values may be adjusted to other formulas or to different values of the ratio of slenderness by use of the comparative table on page 254. This table is also suitable for use in figuring columns so braced against flexure, that their safe strength may be computed for the greater radius of gyration. 252 COLUMN SAFE LOADS Combined Bending and Compression Stresses. It is assumed in the tables that the loads are direct and equally distributed over the cross section of the column or balanced on opposite sides thereof. In the case of beams carried on brackets or other forms of eccentric loading, bending stresses are produced which should be taken into consideration and the column sections so proportioned that the combined fiber stresses do not exceed the allowable axial compres- sive stresses. There is no direct simple solution of this problem; the following trial method is suited to the tables: Let W= Direct load in pounds. Wi= Eccentric load in pounds. M = Bending moment due to eccentric load in inch pounds = W x x I = Moment of inertia of column in direction of bending. n = Extreme fiber distance in direction of bending. A =Area of column section, in square inches, f = Allowable axial unit compression in pounds per square inch; then f should be equal to or greater than WH ^ Wl + -^jS. the fiber stresses due to compression and bending respectively. RULE: Assume a section in excess of that required for the direct compression W + Wi and compute the combined fiber stress. If it works out too large or too small, try again. EXAMPLE:' Required to select a plate and angle column 20 feet long to sustain a balanced load of 210,000 pounds and an eccentric load of 40,000 pounds applied 15 inches from the column center on axis 1-1. Assume a section made up of 14"x%" web plate, four angles 6"x4"x^46" and two flange plates 14"x%", page 273. A = 32.47, I 1 -i = 1351, r 2 - 2 = 3.09, ratio of slenderness = 20x12 -^3.09 = 77. Allowable fiber stress, 19,000 100 1/r =11,300 pounds per square inch, page 254. Actual fiber stress = 210 ^ 2 + 40 ' 000 + 40.000x^5 x7.625 = 7.700+3.390= 11,090 pounds per square inch. 253 CARNEQIE STEEL COMPANY COMPARISON OF COMPRESSION FORMULAS ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH A. B. Co. A. R.E.Ass'n Gordon New York Philadelphia Boston Chicago j_ r See Construction 16000-70-L r 12500 15200-584- 16250 16000 Specifications 14000 max. 1 + 36000 1-2 r + 11000r~> 1 + 20000 r-2 13000 14000 12500 15200 16250 16000 5 13000 14000 12490 14910 16215 15980 10 13000 14000 12460 14( )20 16100 15920 15 13000 14000 12420 14330 15925 15820 20 13000 14000 12365 14( )40 15680 15690 25 13000 14000 12285 13750 15375 15515 30 13000 13900 12195 13460 15020 15310 35 13000 13550 12090 13 L70 14620 15075 40 13000 13200 11970 12880 14185 14815 45 13000 12850 11835 12, 590 13725 14530 50 13000 12500 11690 12300 13240 14220 55 13000 12150 11530 12010 12745 13900 60 13000 11800 11365 11720 12240 13560 65 12500 11450 11185 11' 130 11740 13210 70 12000 11100 11000 11140 11240 12850 75 11500 10750 10810 10850 10750 12490 80 11000 10400 10615 10560 10275 12120 85 10500 10050 10410 105 270 9810 11755 90 10000 9700 10205 9980 9360 11390 95 9500 9350 9995 9< 390 8930 11025 100 9000 9000 9785 9400 8510 10670 105 8500 8650 9570 9110 8115 10315 110 8000 8300 9355 8820 7740 9970 115 7500 7950 9140 8, 530 7380 9630 120 7000 7600 8930 8. 240 7035 9300 125 6750 7250 8715 6715 130 6500 6900 8510 6405 135 6250 6550 8300 6115 i 140 6000 6200 8095 5840 145 5750 5850 7890 150 5500 5500 7690 155 5250 7495 160 5000 7305 165 4750 7120 170 4500 6935 175 4250 6755 180 4000 6580 185 3750 6410 190 3500 6240 195 3250 6080 200 3000 5920 Maximum Ratio of 1/r N -^H ^P ^"c -Q"O ^a'e "**"e* -a = ""oo &"& 'S ^"e -Q ' -a"- .fl'" 1 2 S M usjC us" 1 ^ _ p J0t-^ 2^ ^|T N 8** 8^ i* ST 5* 8* i* 8^ - 11 116 12 116 153 153 191 191 213 233 2131233 252 252 272 272 289 309 289 309 328 328 348 348 367 367 386 386 405 405 424 424 443 443 463 463 13 116 153 191 213 233 252! 272 289 309 328 348 367 386 405 424 443 463 14 116 153 191 213 233 252 272 2S9 309 328 348 367 386 405 424 443 463 15 116 153 191 213 233 252 272 289 309| 328 348 367 386 405 424 443 463 16 116 153 191 213 233 252 272 289 309 1 328 348367 405 424 443 463 17 j 116! 153 191 213 233 252 272 289 309 1 328 348' 367 386 403 423 437 457 18 file 152 186 213 2332521 271 286 305 324: 343; 359 378' 392 411 424 444 19 115 148 181 208 227 245 264 278 297! 3 15 334! 349 367 381 399 412 431 20 112 144! 176) 203 i221 239 257 271289307 325339 357 370 388 400 418 21 I 109 140 171 197 215 232 250 2632801 298 316329 347 359 376 387 405 22 23 24 25 106 136 165 103 132 160, 100 128 155 98 124 150 192' 209| 226 243 256 186 20321& 236 248 1811 197 213| 229 240 175 191 206| 222 233 272 264 256 248 289 281 272 263 307319 2971310 288! 300 279 290 336! 348 326 337 316 326 305 314 364 353 341 330 375 392 362 379 350' 366 338] 354 26 27 95 92 120 116 145 140 170 185200^215225 164 179 193 208 217 240 231 255 246 270280 2611270 295303 285! 292 318 306 325 313 341 328 28 89 112 134 159 173 187 201 210 223 237 252,260 274 281 295 301 315 29 30 86, 108 83jl04 129 124 153 148 167 161 180, 194 202 174 187 195 215 207 229 220 242 233 251 241 264 253 270 259 2S3 271 288i 302 276 289 31 80 100 119 142 155 167 180 187 199 211 224 231 243 248 260 263 276 32 77 96 114 137 149 161 173 179 191 203 215 221 233 237 248 251 263 33 75 92 109 131 143 154 166 172 183 194 206 211 222 226 237 239 250 34 ! 72 88 103 126 137 148 159 164 174 185 196 201 212f216 227 232 243 35 i 69 2 101 120 131 141 152 157 166 177 187 194 205 211 221 226 237 Area, in.-' 8.92 11.76 14.70 16.42| 17.92 19.42 20.92,22.26123.76 25.26^26.76! 28.20 29.70! 31.14 32.64 34.08 35.58 Ii.i.in/t 134 158 182 333 376 420 465 444 489 534 581 559 606 583 630 608 655 n.i.in. 1 3.87 3.66! 3.52 4.50 4.58 4.65 4.71 4.46 4.53 4.60 4.66 4.45 4.52 4.33 4.39 4.22 4.29 lilLVj 123 148 171 213 231 249 267 274 292 310 328 333 351 354 372 372 390 3.72 3.55! 3.41 3.60 3.59 3.58 3.58 3.51 3.50 3.50 3.50 3.44 3.44, 3.37 3.37 330 3.31 Weight, | Lbs per i 37.8 47.8 57.8 55.5 60.6 65.7 70.d 75.7 80.8 85.9 91.0 95.9 101.0 105.9 111.0 115.9 121.0 Foot 1 1 Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r. 257 CARNEGIE STEEL COMPANY 10 INCH CHANNEL COLUMNS Continued SAFE LOADS IN THOUSANDS OF POUNDS Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. Weights do not include rivet heads or other details. .A 2 ^ U -- !,. ' . V 2 Effective Length in Feet 2-10 in. Channels Latt.ced 2-10 in. Channels, 2-14 in. Plates fl P 116 116 116 116 116 116 116 116 116 -IS 11 ig 11 "1 II ^ if ll ^3 is 1 ll . s Is is 1j || is || 11 ^~- '- 00 || -^"3 i"" || i* 'l $ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 153 153 153 153 153 153 153 153 150 146 142 139 135 131 127 123 119 115 112 108 104 100 96 92 88 191 191 191 191 191 191 191 229 229 229 229 229 229 229 252 252 252 252 252 252 252 252 252 252 252 275 275 275 275 275 275 275 275 275 275 275 298 298 298 298 298 298 298 298 298 298 298 312 312 312 312 312 312 312 312 312 312 312 335 335 335 335 335 335 335 335 335 335 335 358 358 358 358 358 358 358 358 358 358 358 380 380 380 380 380 380 380 380 380 380 380 396 396 396 396 396 396 396 396 396 396 396 419 419 419 419 419 419 419 419 419 419 419 441 441 441 441 441 441 441 441 441 441 441 464 464 464 464 464 464 464 464 464 464 464 453 443 433 423 412 402 392 382 372 361 351 341 331 320 189 184 179 174 169 164 159 154 149 144 139 134 129 124 119 114 109 104 224 218 211 205 199 193 187 180 174 168 162 156 149 143 137 131 125 114 111 109 106 103 100 98 95 92 89 87 84 81 78 75 73 251 246 241 235 230 225 219 214 209 203 198 193 187 182 273 267 261 256 250 244 238 232 226 220 214 209 203 197 295 289 282 276 270 263 257 250 244 238 231 225 219 212 308 302 295 288 282 275 268 261 255 248 241 235 228 221 330 323 316 308 301 294 287 279 272 265 258 251 243 236 352 344 337 329 321 313 306 298 290 282 275 267 259 251 374 365 357 349 341 332 324 316 308 299 291 283 274 266 388 379 371 362 353 345 336 327 319 310 301 293 284 275 410 401 392 382 373 364 355 346 336 327 318 309 300 291 432 422 412 403 393 383 373 364 354 344 335 325 315 306 121 Area,in.2 8.92 11. 7 14.70! 17.64 19.42 21.17 22.92 24.01 491 4.52 442 4.29 81.7 25.76 544 4.59 470 4.27 27.51 29.26 30.45 4.52 541 4.22 32.20 33.95; 35.70 Ii-i.in.4 134 3.87 197 4.70 158 3.66 241 4.53 182 3.52 284 4.39 207 3.42 323 4.28 416 4.63 369 4.36 468 4.70 398 4.33 520 4.76 426 4.31 77.6 597 4.66 499 4.26 652 4.72 527 4.24 676 4.58 570 4.21 732 4.64 598 4.20 790 4.70 627 4.19 Weight, Lbs. per Foot 39.3 49.4 59.4 69.4 65.7 71.7 87.6 93.6 99.5 103.6 109.5 115.5 121.4 Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r. 258 COLUMNS 10 INCH CHANNEL COLUMNS Continued SAFE LOADS IN THOUSANDS OF POUNDS Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. Weights do not include rivet heads or other details. /7\ 2 ^K ^> - 2 I j 2-10 in. Channels, 2-14 in. Plates 30 Ib. Channels, n/lo in. Plates is M 1 1| *P || II 30 Ib. Channels, 1 in. Plates 35 Ib. Channels, i 5 /io in. Plates Ij 35 Ib. Channels, l#e in. Plates is 5 35 Ib. Channels, lHe in. Plates || 11 13 14 15 16 ! 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 480 480 480 480 480 480 480 480 480 480 502 502 502 502 502 502 502 502 502 502 525 525 525 525 525 525 525 525 525 525 548 548 548 548 548 548 548 548 548 548 571 571 571 571 571 571 571 571 571 571 593 593 593 593 593 593 593 593 593 593 609 609 609 609 609 609 609 609 609 609 632 632 632 632 632 632 632 632 632 632 654 654 654 654 654 654 654 654 654 654 677 677 677 677 677 677 677 677 677 677 700 700 700 700 700 700 700 700 700 700 723 723 723 723 723 723 723 723 723 723 477 467 456 446 435 424 414 403 392 382 371 360 350 339 328 500 488 477 466 455 444 432 421 410 399 388 377 365 354 343 522 510 499 487 475 464 452 440 429 417 405 394 382 370 359 544 532 520 508 495 483 471 459 446 434 422 410 398 385 373 567 554 541 529 516 503 490 478 465 452 440 427 414 401 389 589 575 562 549 536 522 509 496 483 469 456 443 430 416 403 602 588 575 561 547 533 520 506 492 479 465 451 437 424 410 624 610 596 582 568 553 539 525 511 496 482 468 454 440 425 647 632 617 603 588 573 559 544 529 514 500 485 470 455 441 669 654 639 624 608 593 578 563 547 532 517 502 487 471 456 691 675 660 644 628 612 596 581 565 549 533 517 502 486 470 714 697 681 665 648 632 616 599 583 567 550 534 518 502 485 lrea,in.-' 36.89 38.64 40.39 42.14 43.89 45.64 46.83 48.58 50.33 52.08 53.83 55.58 Ii-i.in.*! ri-i.in. 1 2-2, in- 4 757 4.53 637 4.16 814 4.59 666 4.15 873 4.65 695 4.15 932 4.70 723 4.14 994 4.76 752 4.14 1056 4.81 780 4.13 1018 4.66 788 4.10 1080 4.72 816 4.10 1144 4.77 845 4.10 1209 4.82 874 4.10 1275 4.87 902 4.09 1343 4.92 931 4.09 Weight, :, Lbs. par j 125.5 131.4 137.4 143.3 149.3 155.2 159.3 165.2 1713 177.1 183.1 189.0 Safe load values above heavy line are for ratios of 1,'r not over 60, those below heavy line are for ratios not over 120 1/r. 259 CARNEGIE STEEL COMPANY 12 INCH CHANNEL COLUMNS Continued -111 ' : >, . "tji SAFE LOADS IN THOUSANDS OF POUNDS s^y ^K^j -8 Allowable Fiber Stress per square inch, 13,000 S3 - 1 pounds for lengths of 60 radii or under; reduced for _._ lengths over 60 radii, see specifications, page 127. -jx Weights do not include rivet heads or other ^\ details. 2 ^1 1 2 - 12 i n at nnels 2-12 in. Channels, 2-14 in. Plates i 11 ^.3 i" "S s JS o .a | a 4 .3 -2 ^9 OD jf 8 s " gf 07 ! es -- |'| II 1 11 esjj II a js |j C "ol 5 || c H} -S 8 63 .! 1 1 .S _Q-2 1 ' o .c.9 6^. . ca S.S 5? ^S o ^ d.g cS O a 2 3 s S I" 1^ ~ i 1 I" 8^ 8 10 8^ S" ^ 11 157 191 229 268 293 316 339 362 384 396 419 441 464 487 12 157 191 229 268 293 316 339 362 384 396 419 441 464 487 13 15 7 191 229 268 293 316 339 362 384 396 419 441 464 487 14 15 7 191 229 268 293 316 339 362 384 396 419 441 464 487 15 157 191 229 268 293 316 339 362 384 396 419 441 464 487 16 157 191 229 268 293 316 339 362 384 396 419 441 464 487 17 157 191 229 268 293 316 339 362 384 396 419 441 464 487 18 15 7 191 229 268 293 316 339 362 384 396 419 441 464 487 19 157 191 229 268 293 316 339 362 384 396 419 441 464 487 20 157 191 229 268 293 316 339 362 384 396 419 441 464 487 21 157 191 229 265 293 316 339 362 384 396 418 440 463 485 22 157 190 225 259 290 312 334 355 377 387 409 431 453 474 23 155 186 220 253 283 305 326 347 369 378 400 421 443 464 24 15 2 182 215 248 277 298 319 339 360 370 390 411 432 453 25 149 178 210 242 271 291 312 332 352 361 381 401 422 442 26 146 174 205 236 265 284 304 324 344 352 372 392 412 431 27 142 170 200 230 258 277 297 316 335 344 363 382 402 421 28 13 9 166 195 224 252 271 290 308 327 335 354 372 391 410 29 136 162 190 218 246 264 282 300 318 326 344 362 381 399 30 133 158 185 212 239 257 275 292 310 318 335 353 371 388 31 129 154 180 206 233 250 268 284 302 309 326 343 361 377 32 126 150 175 200 227 243 260 277 293 300 317 333 350 367 33 12 3 146 170 194 220 236 253 269 285 291 307 323 340 356 34 12 142 165 188 214 230 246 261 277 283 298 314 330 345 35 117 138 160 182 208 223 238 253 268 274 289 304 320 334 i.-ea, in.* 12.0< 14.7C 17.64 20.58 22.56 24.31 26.06 27.81 29.56 30.45 32.20 33.95 35.70 37.45 1 1-1, in.* 256 288 323 359 658 730 803 878 954 910 986 1063 1142 1223 4.f 1 4.43 4.28 4.17 5.40 5.48 5.55 5.62 5.68 5.47 5.53 5.60 5. Go 5.71 1 2-2, in- 4 244 279 316 351 415 444 473 501 530 537 565 594 622 651 T2-2, in. 4.50 4.36 4.23 4.13 4.29 4.27 4.26 4.24 4.23 4.20 4.19 4.18 4.18 4.17 Weight Lbs. per 50.4 59.4 69.4 79.4 76.7 82.7 88.6 94.6 100.5 103.6 109.5 115.5 121.4 127.4 Foot 1 Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r. 260 COLUMNS . u i'___. 12 INCH CHANNEL COLUMNS Continued A i2 A^_ | ~^ SAFE LOADS IN THOUSANDS OF POUNDS 3 - 1 - ~t" 1 Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for 1 lengths over 60 radii, see specifications, page 127. i [ /v. X\ Weights do not include rivet heads or other ^3 details. .g 2-12 in. Channels, 2-14 in. Plates i f| || 03 11 1 11 is || j| 11 ll 11 |S || Js 11 II I H ~. - 5 S'5 -Q-2 !'= ^2 Si ^.S !d' ^.S Si .o*5, ,Q e Si 1 s* 8~ i* z* ^ 3 s* 8- eo' H s~ i* 8* 8 $~ 11 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 12 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 13 502 52 5 548 571 593 609 632 654 677 700 723 745 768 791 814 14 502 52 r> 548 571 593 609 632 654 677 700 723 745 768 791 814 15 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 16 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 17 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 18 502 52 5 548 571 593 609 632 654 677 700 723 745 768 791 814 19 502 52 5 548 571 593 609 632 654 677 700 723 745 768 791 814 20 502 525 548 571 593 609 632 654 677 700 723 745 768 791 814 21 498 521 543 565 588 601 623 645 668 689 712 734 757 779 802 22 487 509 531 553 575 587 609 631 653 674 695 717 739 761 783 23 476 49 7 518 540 561 573 594 616 637 658 679 700 722 743 765 24 465 48 6 506 527 548 559 580 601 fi?,9, 642 663 684 704 725 746 25 453 474 494 514 535 545 566 586 607 626 646 667 687 707 728 26 442 462 482 502 522 532 55?, 571 591 610 630 650 670 689 709 27 431 451 469 489 508 518 537 557 576 594 614 633 652 672 691 28 420 ! 43 .) 457 476 495 504 523 542 561 578 597 616 635 654 672 29 409 | 42 7 445 463 482 490 509 527 545 563 581 599 617 636 654 30 397 415 432 450 468 477 494 512 530 547 564 582 600 618 635 31 386 404 420 438 455 463 480 497 515 531 548 565 583 600 617 32 375 39 1 408 ! 425 442 449 466 483 499 515 532 548 565 582 599 33 364 380 396|412 428 435 452 468 484 499 515 531 548 564 580 34 352 36 S 383 399 415 421 4:^7 453 469 483 499 515 530 546 562 35 341 357 371 386 402 408 423 438 453 467 482 498 513 528 543 Irea.ia.- 1 38.64 40.39 42.14J 43.89 45.64 46.83 48.58 50.33 52.08,53.83 55.58 57.33 59.08 60.83 62.58 Ii. lt in.*|i 1174 1258 1340 1424 1509 1459 1544 1630 1719 18(M 1899 1992 2087 2183 2280 n-i.in. 5.52 BJ U 5.64 5.70 5.75 558 564 569 5.74 5.85 5.89 5.94 5.99 6.04 1 2-2, in.* 659 6J ^ 717 745 774 779 808 837 865 BM 922 951 980 1008 1037 ro-o.in. 4.13 4.13 4.12 4.12 4.12 4.08 4.08 4.08 4.08 4.07 4.07 4.07 4.07 4.07 4.07 Weight, Lbs!per 131.4 137.4 143.3 149.3, 155.2 159.3 165.2 171.2 177.1 183.1 189.0 195.0 2(1(1.9 206.9 212.8 Toot | I 1 Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over 120 1/r. 261 CARNEGIE STEEL COMPANY r 12 INCH CHANNEL COLUMNS Continued SAFE LOADS IN THOUSANDS OF POUNDS Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. Weights do not include rivet heads or other details. J2 A 3 J- --10 1-' T 1 1 h? t lo in. Plates 35 Ib. Channels, 2 in. Plates 11 866 12 866 13 866 14 866 15 1 866 892 892 892 892 892 918 918 918 918 918 944 944 944 944 944 970 970 970 970 970 996 996 996 996 996 1022 1022 1022 1022 1022 1048 1048 1048 1048 1048 1074 1074 1074 1074 1074 1100 1100 1100 1100 liOO 16 17 18 19 20 866 866 866 866 866 892 892 892 892 892 918 918 918 918 918 944 944 944 944 944 970 970 970 970 970 996 996 996 996 996 1022 1022 1022 1022 1022 1048 1048 1048 1048 1048 1074 1074 1074 1074 1074 1100 1100 1100 1100 1100 21 22 23 24 25 866 866 866 892 892 892 918 918 918 944 944 944 970 970 970 996 996 996 1022 1022 1022 1048 1048 1048 1074 1074 1074 1100 1100 1100 864 847 889 872 915 897 940 922 966 947 992 972 1017 997 1042 1022 1068 1047 1093 1072 26 27 28 29 30 830 814 797 780 764 854 837 820 803 785 879 862 844 826 808 903 885 867 848 830 928 909 891 872 853 953 934 914 895 876 977 957 937 917 897 1002 981 961 941 920 1027 1006 985 964 943 1050 1029 1007 986 965 31 32 33 34 35 747 730 713 697 680 768 751 734 716 699 791 773 755 737 720 812 794 775 757 739 834 815 797 778 759 857 837 818 799 779 878 858 838 818 798 900 880 859 839 819 922 901 881 860 839 943 922 900 879 858 irea,in.2 66.58 68.58 70.58 72.58 74.58 76.58 78.58 80.58 82.58 84.58 I i-i.in.* T->->, in. 2443 6.06 1520 4.78 2555 6.10 1562 4.77 2668 6.15 1605 4.77 2783 6.19 1648 4.76 2901 6.24 1690 4.76 3020 6.28 1733 4.76 3141 6.32 1776 4.75 3264 6.36 1818 4.75 3389 6.41 1861 4.75 3516 6.45 1904 4.74 Weight, Lbs. per Foot 226.4 233.2 240.0 246.8 253.6 260.4 267.2 274.0 280.8 287.8 Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over 120 1/r. 263 CARNEGIE STEEL COMPANY *-l2%'-'-- 15 INCH CHANNEL COLUMNS Continued A j2 ^ _ (& SAFE LOADS IN THOUSANDS OF POUNDS 8 - - QT- f r Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. Weights do not include rivet heads or other details. E^I Effective Length in Feet 2-15 in. Channels Latticed 2-15 in. Channels, 2-16 in. Plates II -^l 1 COCO CO ft &i CO is I! .d1| oco is C V3 X'M ** j| CO || Is S CO jl i^ ll CO 1| O _ a IO"0\ CO 528 528 528 528 528 fl rj=i . 554 554 554 554 554 S is a % j2 if 606 606 606 606 606 S 632 632 632 632 632 11 12 13 14 15 257 257 257 257 257 268 268 268 268 268 306 306 306 306 306 344 344 344 344 344 413 413 413 413 413 439 439 439 439 439 465 465 465 465 465 491 491 491 491 491 517 517 517 517 517 580 580 580 580 580 16 17 18 19 20 257 257 257 257 257 268 268 268 268 268 306 306 306 306 306 344 344 344 344 344 413 413 413 413 413 439 439 439 439 439 465 465 465 465 465 491 491 491 491 491 517 517 517 517 517 528 528 528 528 528 554 554 554 554 554 580 580 580 580 580 606 606 606 606 606 632 632 632 632 632 21 22 23 24 25 257 257 257 257 268 268 268 268 306 306 306 306 344 344 344 413 413 413 413 439 439 439 439 465 465 465 465 491 491 491 491 517 517 517 517 528 528 528 554 554 554 580 580 580 606 606 606 632 632 632 343 336 527 517 552 542 578 567 604 592 629 617 257 266 301 407 432 457 482 507 26 27 28 29 30 252 247 243 238 233 261 256 251 246 241 295 289 284 278 272 329 322 316 309 302 400 392 384 376 368 424 415 407 399 390 448 440 431 422 413 473 464 454 445 435 498 488 478 468 458 507 497 486 476 466 531 520 510 499 488 555 544 533 522 511 580 569 557 545 533 605 592 580 568 556 31 32 33 34 35 228 224 219 214 209 236 231 226 221 216 266 260 254 249 243 296 289 282 276 269 360 352 345 337 329 382 373 365 357 348 404 395 386 377 368 426 416 407 398 388 448 438 428 418 408 456 446 436 425 415 478 467 456 446 435 499 488 477 466 454 522 510 498 487 475 543 531 519 507 494 Area, in. 2 19.80 20.58 23.52 26.48 31.80 33.80 35.80 37.80 39.80 40.58 42.58 44.58 46.58 2267 6.98 1058 4.77 48.58 n-i,' in. I 2 -2, in.* ro-2, in. 625 5.62 491- 4.98 640 5.58 504 4.95 695 5.43 552 4.84 750 5.32 597 4.75 1334 6.48 747 4.85 1459 6.57 789 4.83 1586 6.66 832 4.82 120.4 1715 6.74 875 4.81 1847 6.81 917 4.80 1861 6.77 930 4.79 1994 6.84 973 4.78 2129 6.91 1016 4.77 2406 7.04 1101 4.76 Weight, Lbs. per Foot 80.2 84.2 92.1 102.2 106.8 113.6 127.2 134.0 138.0 144.8 151.6 158.4 165.2 Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r. 264 COLUMNS ^12^'-*, 15 INCH CHANNEL COLUMNS Continued ^ 12 ^ f's; Atr SAFE LOADS IN THOUSANDS OF POUNDS i i i 9l' - \ t Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. i-4^ T\ Weights do not include rivet heads or other o~! details. U. -i 6 i'-t ._:_J 1 pj 2-15 in. Channels, 2-16 in. Plates i 11 is 11 3 11 is 11 || 11 || || 11 11 1| J S-iI SJ9 I S |s ^s r.^ * is f ^ 5 *s | S gj Q>- .> O o i o.s O^. O.g $ fl o o H O a (5 a j a S a 6.s Cj jj 1 m II 1* !~ Is p Is |* Is P '*'"' P ~ P 11 644 670 696 722 748 774 786 812 838 864 890 916 942 968 12 644 670 696 722 748 774 786 812 838 864 890 916 942 968 13 644 670 696 722 748 774 786 812 838 864 890 916 942 968 14 644 670 696 722 748 774 786 812 838 864 890 916 942 968 15 644 670 696 722 748 774 786 812 838 864 890 916 942 968 16 644 670 696 722 748 774 786 812 838 864 890 916 942 968 17 644 670 696 722 748 774 786 812 838 864 890 916 942 968 18 644 670 696 722 748 774 786 812 838 864 890 916 942 968 19 644 670 696 722 748 1 774 786 812 838 864 890 916 942 968 20 644 670 696 722 748 774 786 812 838 884 890 916 942 968 21 644 670 696 722 748 774 786 812 838 864 890 916 942 968 22 644 670 696 722 748 774 786 812 838 864 890 916 942 968 23 044 670 696 722 748 774 786 812 838 864 890 916 942 ! 968 24 639 665 690 715 741 767 777 802 827 853 879 904 930 956 25 627 651 677 701 727 752 761 786 811 836 861 886 912 937 26 614 638 663 687 712 737 746 770 794 819 844 868 893 918 27 602 625 649 673 697 721 730 754 778 802 826 850 874 898 28 589 612 636 659 683 706 715 738 761 785 808 832 856 879 29 577 599 622 645 668 691 699 722 745 768 791 814 837 860 30 564 586 609 631 653 676 684 705 728 751 773 796 818 841 31 551 573 595 616 639 661 668 689 711 734 756 778 800 822 32 539 560 581 602 624 646 i 653 673 695 716 738 760 781 803 33 526 547 568 588 609 630 , 637 657 678 699 720 741 763 784 34 514 534 554 574 595 615 622 641 662 682 703 723 744 764 35 501 520 541 560 580 600 606 625 645 665 685 705 725 745 Area, In2 49.52 51.52J 53.52 55.52J 57.52 59.52 60.48 62.48 64.48 66.48! 68.48 70.48 72.48 74.48 Ii-i.in.4 2322 2461 2602 2746 2891 3039 2946 3094 3244 3396 3550 3707 3865 4026 ri-i.in. 6.85 6.91 6.97 7.03 7.09 7.15 6.98 7.04 7.09 7.15 7.20 7.25 7.30 7.35 1 2-2, in.* 1106 1149 1192 1234 1277 1320 1322 1365 1408 1450 1493 1536 1578 1621 ra-o.in. 4.73 4.72 4.72 4.71 4.71 4.71 4.^ 4.67 4.67 4.67 4.67 4.67 4.67 4.67 Weight, Lbsper Foot 188.4 175.2 182.0 188.8 195.6 202.4 205.6 212.4 219.2 226.0 232.8 239.6 246.4 253.2 Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over 120 1/r. 265 CARNEGIE STEEL COMPANY 15 INCH CHANNEL COLUMNS Continued rf-14%; *| -ll| -gr SAFE IjOADS 1JN IHOUttAJNDS OF JTOUJNDS , Allowable Fiber Stress per square inch, 13,000 "IB 1_ pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. /v. i A Weights do not include rivet heads or other t-.jG- 1 1 ' =2, details. ^ 1 o ^ 1 k-i.is- 1 - 2 - -'-J 1 2-15 in. Channels, 2-18 in. Plates ~& 3. is fa i* i- i iS i fj i- s"! i is 43 ij 38 I || G +* II II **> II ll jl ll Js Is Id ll I 1 11 jl j! > 3^ ^.S 6^ O o O.g O o.g O a ^.a o . O ci ^ rj i -a'o ^Q"- j$'~ j W ^Q* rt ^d o 42*^ -Q -.5 ,d-S rQ ~ -rj'xop I eo\ 8^ ^ 8* co 1O^ CO CO ^ 3" x CO rt 3^ >*i rt *& T iS 11 433 462 491 521 550 560 589 619 648 677 686 715 745 774 80S' 832 12 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 13 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 14 433 462 491 521 550 560 589 619 648 677 686 715 745 77-1 803 832 15 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803, 832 16 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803| 832 17 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 18 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 19 433 462 491 521 550 560 589 619 648 677 686 715 745 774 8031 832 20 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803, 832 21 433 462 491 521 550 560 589 619 648 677 686 715 745 774 8031 832 22 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 23 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 24 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 25 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 26 433 462 491 521 550 560 589 619 648 677 686 715 745 774 803 832 27 433 462 491 521 550 560 589 619 648 677 Gsti 715 745 774 8031 832 28 433 462 491(520 549 558 586 615 643 671 680 708 736 764 793 821 29 428 456 484 512 539 549 577 605 632 660 668 696 723 751 779 807 30 421 449 476 503 530 540 567 594 621 649 657 684 711 738 766 793 31 414 441 468 494 521 530 557 584 610 637 645 672 698 725 752 779 32 407 433 459 486 512 521 547 574 599 626 634 660 685 712 738 764 33 400 426 451 477 503 512 537 563 589 615 622 648 673 698 725 750 34 393 418 443 469 494 502 527 553 578 603 610 636 660 685 711 736 35 386 411 435 460 485 493 518 543 567 592 599 624 648 672 698 722 Area, in. 2 33.3035.55 37.80 40.05 42.30 43.08 45.33 47.58 49.83 52.08 52.77 55.02 57.27 59.52 61.77 64.02 Ii-i, in- 4 1423 1564 1707 1852 1999 2014 2164 2316 2470 2627 2525 2682 2841 3002 3166 3332 n-i, in 6.54 6.63 6.72 6.80 6.87 6.84 6.91 6.98 7.04 7.10 6.92 6.98 7.04 7.10 7.16 7.21 I 2 - 2 , in .4 1069 1130 1190 1251 1312 1332 1393 1453 1514 1575 1589 1649 1710 1771 1832 1892 T2-2, in. 5.67 5.64 5.61 5.59 5.57 5.56 5.54 5.53 5.51 5.50 5.49 5.48 5.46 5.45 5.45 5.44 Weight, Lbs.per 111.9 119.6 127.2 134.9 142.5 146.5 154.2 161.8 169.5 177.1 179.5 187.1 194.8 202.4 210.1 217.7 Foot Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r. 266 COLUMNS r ~14^- , /s 2 f\ 15 INCH CHANNEL COLUMNS Continued SAFE LOADS IN THOUSANDS OF POUNDS Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under; reduced for lengths over 60 radii, see specifications, page 127. Weights do not include rivet heads or other details. r n IS -- 1 -Ill' \ IE i v Effective Length in Feet 2-15 in. Channels, 2-18 in. Plates 45 Ib. Channels, I'/io in. Plata b. Channels, /s in. Plates a3 1.1 K 11 II J! 11 JS Q a 11 s "! S3 ~g co eo CO | J 8 J 8 8 s s 8 8 J 8 8 J J J 1 1 % I % o i 1 g> a a a a a c 1 p % i w < < < < < ^ ^ <3- < 6 99J107125 133 149 170 178 198 207 232 236 266 296 312 341 370 386 7 91I107J125 133 149 170 178 198 207 232 236 266 29(5 312 341 370 386 8 82100119 1251 149 170 178 198 207 232 236 266 296 312 341 370 386 9 10 11 12 74 66 58 52 93 86 7!) 71 111 103 95 87 1171142 108 133 99 125 91 116 164 154 145 135 170 192 160 181 150 170 140! 160 207 232 207 232 203 230 194 220 236 236 236 236 266 266 266 266 296 3 12 296 312 296P 312 2961312 341 341 341 341 3^0 370 370 370 386 386 386 386 13 48 64 79 82 108j 126 130 149 185 210' 235 266 296 312 341 370 386 14 44 57| 71 73 991117 121! 138 175 200 226 257 288 302 333 363 378 15 40 34 65 681 91 107 111 127 166 190218 248 278 291 321 350 365 16 30 50 61 641 82 98 101 116 157 180 209 238 267 280 309 337 351 17 18 32 2S 47 43 57 53 60 55 77i 90 73 85 93 88 106 101 148 170 201 139 160 192 229 257 220! 247 269 297 258 285 325 338 312 325 19 24 40 49 51 69 81 83 95 130 ! 150 184 210237 247 274 299 312 20 36 45 47 64 76 90 121 140j 175 201 226 236 262 287 298 21 33 41 42 60 71 84 112 130!l67 191 216 225 250 274 285 22 29 37 38 56 67 68 79 1071 1231 158! 182 206 214 238 261 272 23 25 34 34 51 ft? 63 74 103 118 150 172 195 203 226 249 258 24 30 47 57 58 68 98113141 163 185 192 214 236 245 25 43 52 53 63 93 1081 132 154 175 181 203 223 232 26 27 28 39 34 48 43 g 57 89 52 84 47 80 1 1 103| 1261 144 98 121|139 9311171134 164 157 152 1701 191 164' 181 158 175 210 198 192 218 207 200 29 | 75 88113 130 146 1 53 169 186! 193 30 I i 71 83109 125 141 147 164 179; 187 Area, in.-' 7.741 8.26 9.62 10.25) 11.49| 13.05 13.67J 15.23[ 15.95 17.87 18.19 20.4?! 22.75 24.00 26.2428.44; 29.69 I i Q 4 134 148 176 1 181 201 232 237 267 279 315 319 361 401 412 451 489 i' 500 r 1-1, in. 4.16 4.23 4.28 420 418 4.22 4.17 4.19 4.18 420 419 4,20 420 4.14 4.15 4.15 |j 4.10 10.3 IS. 01 20.2 120.7 303 36.3 37.2 435 706 823 119 139 160 165 186 206 213 r 2 -2,in. 1.15 1.S9J 1.451 1.42 1.62 1.67 i 1.65 1.69 2.10 2.15 2.56 2.61 2.65 2.62 2.66 2.69 2.68 Weight, 1 II ! j Lbs. per Foot 26.5 28.1 32.9: 35.0 39.4 44.6 46.8 52.0 54.4 60.8 62.0 70.0 77.6 81.8 89.4 97.0 101.3 Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r. 270 COLUMNS PLATE AND ANGLE COLUMNS Continued i 2 * : ' i!5 ' SAFE LOADS IN THOUSANDS OF POUNDS -f i_J f 1 AUowable Fiber Stress t>er sauare inch, 13,000 s pounds for lengths of 60 radii or under reduced for jg: _/LU>- lengths over 60 radii, see specifications, page 127. > Weights do not include rivet heads or other 1 details. 1 Web Plate Web PI. Web Plate 12 x% Web Plate 12 xH Web Plate .5 s^ :-- | X * S ^ X C9 S S o Jg S i * * f s ^ eo cc eo eo ^ i 5 I | co eo M * H * ^ >0 CO CO CO CO CO CD CO CO CO fj I 8 3 s 8 s s 1 S S 3 S 8 I 4 4 4 1 4 1 1 -s <& CO Js %3 X X % ** \90 ~J * S ** H ** K M<0 to S3 41 TitO* i * i "O" t_A Weights do not include rivet heads or other -p ' '. details. 1 Two Web Plates 14 x J^ Two Web Plates 14 x ^ ft ft \QO \00 v \po \00 \O) \ \00 v \00 voo g rt\ lrf\\00 ^\ 1*\\00 M\ M\ M\ uK\M I0\ kj\\00 X JS & 8 g 8g 8 g g 86.94 92.75 98.44 104.00 271.7 289.8 307.6 325.0 5.50 5.46 5.41 5.37 722 769 816 862 707 753 799 843 691 737 782 824 676 721 764 806 661 704 746 787 646 688 729 769 631 672 711 750 616 655 694 731 600 639 676 713 585 623 659 694 570 606 642 676 16 1M IK 2K 99.75 105.94 112.00 117.94 311.7 331.1 350.0 368.6 5.86 5.82 5.77 5.73 832 884 934 982 816 866 915 963 800 849 896 943 783 831 878 923 767 814 859 903 751 796 840 883 734 779 822 864 718 761 803 844 702 744 785 824 685 726 766 804 669 709 747 785 282 FLOOR CONSTRUCTION FLOORS AND FLOOR LOADS Kinds of Loads. Two kinds of loads are carried by structures. Live loads consist of the weight of carriages, cranes or other handling devices and their supported loads, machinery, merchandise, persons or other moving objects, the support of which is the purpose of the structure, including also wind stresses. Dead loads consist of the actual weight of the structure itself with the walls, floors, partitions, roofs, and all other permanent construction and fixtures. The dead loads stress the structure at all times and it must, therefore, be proportioned to sustain them at all times without reduction. The live loads may be taken at their full values or reduced in accordance with the probabilities that the structure as a whole or its principal members will not be subject at all times to the full theoretical live loading. Dead Loads. The permanent load should be calculated from known weights per unit of the material composing floors, partitions, walls, or other permanent construction. The weight assumed for the steel frame itself should be checked after the sections are determined and then the sizes readjusted if necessary. Live Loads. Live loads vary with the character of the struc- tures. In buildings they consist of uniform loads per square foot of floor area, concentrated loads, such as heavy safes, which may be applied at any point of the floor, and uniform loads per lineal foot of beams or girders. The load which produces the maximum bending moment or reaction is to be used in proportioning sections. The floor system between beams must of course be of sufficient strength to transmit any concentrated load to the beam. In cities the minimum live loads to be used on the various classes of buildings are fixed by public ordinances, and are given on page 284 for the principal cities of the United States in accordance with the most recent building laws, which are intended to cover general conditions and do not include machinery or other concentrations. If such concentrations, like safes, armatures, generators, or printing presses, occur on floors, special provision should be made for them in the floor framing. Flat roofs of buildings which may be loaded with people, should be treated the same as floors and the same uniform live loads used as given in the table for dwellings, hotels or assembly rooms. 283 CARNEQIE STEEL COMPANY FLOORS AND ROOFS MINIMUM LIVE LOADS, POUNDS PER SQUARE FOOT By Building Laws of Various Cities Kind of Building Is is Is 1 . a IB 85 s T3~ Is J 53 Is o 253 PQ *" jz; I 13 "* PQ 5 d" PH -i 1 Apartments Public Rooms a and Halls Assembly Halls Fixed Seat Auditoriums.. Movable Seat Auditoriums 50 100 125 200 200 200 50 100 50 100 100 125 125 250 100 100 60 125 70 70 40 60 90 90 90 60 60 120 120 150 150 75 150 75 90 300 75 50 30 30 70 120 70 70 120 150 150 120 150 100 30 30 e 60 75 125 75 75 60 60 125 250 125 75 150 75 200 100 40 20 30 50 125 125 125 150 150 150 125 50 70 125 125 200 125 200 70 70 70 50d 50d 50d 25 50 80 100 80 100 150 40 50 80 80 200 125 60 100 60 80 200 80 80 80 40 40 30 e 40 100 100 100 100 100 40 50 100 100 100 50 40 75 100 40 100 25 25 20 60 100 60 60 100 150 150 150 70 150 100 40 30 60 125 75 125 125 125 60 60 125 250 125 250 60 150 75 125 150 75 30 20 20 Churches Dance Halls Drill Rooms Riding Schools Theaters Dwellings Public Rooms a Hotels First Floors Corridors Office Floors Public Rooms a Manufacturing Light Factories Mercantile Heavy Storehouses Retail Stores Warehouses Offices First Floor Corridors Schools (Class Rooms) .... Assembly Rooms Halls Sidewalks Stables Carriage Houses.. Area less than 500 sq. ft. Stairways and Landings. . . Fire Escapes Roofs Flat c Horizontal Projection Steep Roofs Superficial Surface Wind Pressure a Area greater than 500 square feet, b First Floors 200. c Slopes less than 20 degrees, d Dead and live, except for one story steel frame buildings, corrugated iron roofs, 35 pounds. e High Buildings, built up districts, 35 pounds; 14 stories or over, 25 pounds at tenth story, 2 ^ pounds less each story below. Figures for manufacturing establishments do not include machinery. 284 FLOOR CONSTRUCTION Reduced Live Loads. Floor beams in buildings should be computed to sustain floor by floor the full live and dead loads. It is not probable that all the floors will be fully loaded at all times, and, therefore, good practice permits a reduction of the theoretical live load in the computations of column sections. The New York and proposed Pittsburgh building laws permit no reduction on columns supporting the roof and top floor. These building laws permit for buildings more than five stories in height on columns supporting each succeeding floor a reduction of 5 per cent of the total live floor load until 50 per cent is reached, which reduced load is to be used for the columns supporting the remaining floors. Pittsburgh build- ing law, however, does not permit any reduction of live floor loads over 150 pounds per square foot (bulk storage). The Chicago building law requires columns to sustain the full live load on roofs, 85 per cent of the full live floor load on the top floor with a 5 per cent reduction on each succeeding floor down to 50 per cent. When the character of the loading will permit, it is also considered good practice to reduce the live load on the main girders to which the primary supporting beams are framed. The amount of the reduction will depend on the probable distribution of the loads. Foundation Loads. Footings should be so designed that the loads they sustain per unit of area shall be as nearly uniform as possible, and the dead loads carried by the footings should include the actual weight of the superstructure and foundations down to the bottom of the footing. The live load should be assumed to be the same as the live load in the lowest tier of columns or in the footings under walls. According to the proposed New York building law, the area of the footing which has the largest percentage of live load to total load shall be determined by dividing the total load by the unit working stress. From the area thus calculated all the other footings of the building shall be proportioned according to the ratios of their respective dead loads only. In no case shall the load per square foot under any portion of any footing due to the combined dead, live, and wind loads, exceed the safe sustaining power of the soil upon which the footing rests. Fireproof Floor Systems. A modern office or mercantile building is essentially a steel framed structure which supports the dead load of the building and its contents and is itself protected on all sides by refractory materials. The floors are made fireproof by the use of terra cotta tiles or arches or of a composite flooring made of concrete or reinforced concrete. While brick arches may still be used in special locations where great floor strength is needed, and concrete arches are sometimes thrown between the beams, 285 CARNEGIE STEEL COMPANY modern practice is limited substantially to the hollow tile arch sprung between the beams and the reinforced concrete slab laid on their tops, the ceiling construction being modified to suit. Each system has advantages of its own. Terra Cotta Arches. Hollow tile arches fill the total depth of the floor beams, and, therefore, tend to stiffen and brace the building; their weight per square foot is light as compared with other forms of fireproof floor construction of equal strength. Hollow terra cotta floor arches are made either flat or segmental. The segmental arch will develop much greater strength than the flat arch of the same width and depth, and may be designed to carry a given load with tile 'of less depth than flat arches. They are, therefore, more economical, though not always acceptable from the stand- point of architectural appearance. In office buildings the ceilings under such arches are usually suspended. A correctly designed and constructed flat arch will always develop the full strength of the steel beam which supports it. When arch blocks are the same depth as the beams, they are usually laid to project 1% inches below the bottom of the beams, and the space above the arch is filled in either with cinder concrete, in which can be laid pipes, conduits, and wooden nailing strips supporting wood flooring, or with thin terra cotta blocks made for this purpose, or with a layer of plastic composition of cement, which forms the wearing surface for the floor. Thrust of Floor Arches. All forms of terra cotta arches produce side thrust on the floor beams. In the flat arch the blocks have tapered faces and the central block or key wedges the others together; in the segmental arch the thrust is that due to all arch action. These thrusts it is found necessary to counterbalance by means of tie rods which connect the floor beams and relieve them from the tendency to deflect sidewise. In the central bays, owing to the action of adjacent arches, the tie rods are sometimes omitted, but it is necessary to investigate outer beams and channels around openings for additional thrust stresses so that the combined fiber stresses produced by vertical loading and horizontal thrusts may nqt be excessive. With flat arches % inch tie rods spaced apart not over fifteen times the width of the beam flanges will usually be sufficient. The total thrust of arch, the net area of tie rods required, the maxi- mum distance between tie rods and the section of outer beams for any condition, may be found as follows: FLOOR CONSTRUCTION Let w L =load on arch, in pounds per square foot. =span of arch, in feet. Lb =length of floor beam supporting the arch, in feet. R =effective rise of arch, in inches. p =thrust of arch per lineal foot, in pounds. P =total thrust of arch per panel, in pounds. A =total net area of tie rods per panel, in square inches. a =net area of one tie rod, in square inches. L s =spacing of tie rods, center to center, in feet. f =allowable combined fiber stress not to exceed 16,000 pounds per square inch. Si_i =Section Modulus of beam, axis 1-1, in inches 3 . 82-2 =Section Modulus of beam, axis 2-2, in inches 3 . Mi_i=Bending Moment due to vertical loading, inch pounds. M 2 -2=Bending Moment due to arch thrust, inch pounds; then, P =- 3wL 2 Lb wL 2 Lb 2fR ~ 10667! L s = Mi i a 2faR 3wL 2 w. Lb) Lbi2 3wLb 8 4 f _ (pLs) Lsi2 _ L2 12 _ Mi.i _^ M 2 - 2 Si_i 82-2 In the formula given for M2-2, the beam is considered continuous and supported at intervals by the tie rods. In segmental arches the effective rise is equal to the vertical distance between the highest point of the concave surface and the springing line or chord ; the effective rise of a flat arch may be taken at 2.4 inches less than the arch depth. The net areas of the usual size tie rods are as follows: Diameter of Rod, Inches H H H 1 Net area. a. sauare inches . . 0.202 0.302 0.420 0.550 287 CARNEGIE STEEL COMPANY EXAMPLE. A floor panel 18 feet by 6 feet, made of 12 inch flat terra cotta blocks, is to support a uniform load, live and dead, of 150 pounds per square foot. Required the total thrust, total area of rods per panel, maximum spacing of rods, and the proper size beam to carry [one-half of the panel without other lateral support than the tie rods. Entire panel load is 18x6x150=16,200 pounds. Assume a 12 inch 31.5 pound beam and % inch tie rods, then we have Thrust of arch per lineal foot, p 2(12 2 4*) == ^ pounds. Total thrust of arch, P = Total area of tie rods, A = 3x150x6x6x18 2(122.4) 150x6x6x18 10,667(12 2.4) =15,200 pounds. =0.95 square inches. Maximum spacing of tie rods, L s = Bending Moment, vertical loading, Mi_ 3 10667x .302x(12 2.4) 150x6x6 6x18x150x18x12 =5.73 feet. 8x2 =218,700 in. Ibs. Bending Moment, horizontal thrust, M 2 . 2 840x5 - 73x5 - 73xl2 =27,580 in. Ibs. Combined fiber stress, f=- 218,700 - 27,580 ~og 1 o~o ^13,330 pounds per square inch. If tie rods are spaced 6' 0" centers, then the Bending Moment, horizontal thrust, M 2 - 2 =840x6x6=30,240 inch pounds. Combined fiber stress, f ; 218,700 - 30,240 -=14,030 pounds per square inch. 36 * 3.8 When used, tie rods should be placed in the line of thrust if possible, usually 3 inches above the bottom of the beam. MAXIMUM SPACING OF % INCH TIE RODS, LOADS OF 100 POUNDS PER SQUARE FOOT Span Effective Rise of Arch, R, in Inches Feet 4 5 6 7 8 9 10 11 12 13 14 15 3 14.3 4 8.1 10.1 12.1 14.1 5 5.2 6.4 7.7 9.0 10.3 11.6 12.9 14.2 6 3.6 4.5 5.4 6.3 7.2 8.1 8.9 9.8 10.7 11.6 12.5 13.4 7 3.3 3.9 4.6 5.3 5.9 6.6 7.2 7.9 8.5 9.2 9.9 8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.6 9 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 10 3.2 3.5 3.9 4.2 4.5 4.8 For any other loading, multiply tabular values by 100 and divide by total new load per square foot. The tables which follow give the weights per square foot for terra cotta arches, both flat and segmental, of various depths, their area in square inches, and the safe loads they will sustain on various spans. These tables should be used as a general guide only, as conditions may make it possible to design more economical arches for a given load than indicated by the tables. Where a paneled ceiling is not objectionable, for example, a shallow arch may be used on raised skewbacks with a considerable economy in material. 288 FLOOR CONSTRUCTION FLAT TERRA GOTTA ARCHES MANUFACTURERS' STANDARD SAFE LOADS IN POUNDS PER SQUARE FOOT Factor of Safety = 7 Span of Arch, Ft.-In. Depth of Arch, Inches 6 7 8 9 10 12 15 Area of Arch, Square Inches 31 34 37 40 43 49 58 3-0 458 588 735 901 1084 1487 2210 3-3 386 496 622 763 916 1262 1877 3-6 330 424 531 653 785 1083 1612 3-9 284 365 459 565 679 938 1398 4-0 247 318 399 493 593 820 1223 4-3 216 278 350 433 521 722 1079 4-6 190 245 309 382 461 640 951 4-9 168 217 274 340 410 571 855 5-0 149 193 244 304 367 511 767 5-3 172 218 272 330 460 691 5-6 154 196 245 297 416 626 5-9 139 176 222 269 378 569 6-0 159 201 244 344 518 6-3 144 183 222 314 474 6-6 131 166 203 287 435 6-9 152 186 264 400 7-0 139 170 243 369 7-6 144 206 315 8-0 177 272 8-6 153 236 9-0 132 205 9-6 180 10-0 158 This table and the two following are employed in computing the safe loads of floor arches of hollow terra cotta blocks. The area given is that of a cross section at right angles to the webs, and, generally, end-construction blocks of various shapes but of the same depth and cross-sectional area have equal strength. The weight of the terra cotta arch has been deducted from the safe load given in the tables, so that only the dead load of the concrete fill, plastering, etc., must be deducted to obtain the net safe live load for any arch and span ; blocks of different areas and for other factors of safety are calculated as follows: EXAMPLE. Required the load per square foot for a 5 '-6" span and 8 inch arch blocks with three horizontal and four vertical webs, y inch thick, set in end construction, cross-section through webs of blocks parallel to webs of beams. Sectional area of the blocks is 8"xM"x4+(12"-4xM")xM"x3=44.25sq. in. at 0.06 pounds per cu.in., the weight is 44.25x12x0.06=32 pounds. The net safe load 'of the 8 inch block given in the table is 196 pounds. Adding the weight of the block, 37x12x0.06=26 pounds, the total safe load is 222 pounds. The net safe load for blocks with an area of 44.25 sq. in. and a safety factor of 5 is (44.25-^37x222x7/5) 32=340 pounds per sq. ft. 289 CARNEQIE STEEL COMPANY SEGMENTAL TERRA COTTA ARCHES MANUFACTURERS' STANDARD SAFE LOADS IN POUNDS PER SQUARE FOOT Factor of Safety=7 Depth of Arch, Inches Depth of Arch, Inches Span Rise /l 1 fi 1 fi Span Rise of of 4 | 6 1U of of ID Arch, TTt Tn Arch, Tn Area of Arch, Square Inches Arch, Ft Tn Arch, Tn Area of Arch, Square Inches J? t/.-lD.. in. 28 36 43 47 j? i.-in. in. 28 36 43 47 X 702 902 1078 1178 X 366 471 563 615 i 920 1184 1414 1545 1 482 621 741 810 1 l/ i 1155 1485 1774 1939 l H 602 774 925 1011 4-0 i k 1353 1740 2079 2272 7-6 IK 715 920 1099 1201 i % 1545 1986 2373 2593 IX 815 1049 1253 1369 2 1736 2233 2667 2915 2 915 1176 1405 1536 X 616 792 946 1034 X 341 439 525 573 1 812 1044 1247 1363 l 457 588 703 768 l M 1020 1313 1568 1713 1 M 562 724 864 944 4-6 IK 1196 1539 1838 2009 8-0 IK 668 859 1026 1122 l M 1381 1775 2121 2318 l M 767 987 1179 1288 2 1536 1975 2359 2578 2 854 1099 1312 1434 X 551 709 847 926 X 319 411 491 536 1 744 957 1143 1249 1 428 551 658 719 1M 911 1172 1400 1530 1 5'4 527 678 810 885 5-0 1072 1379 1647 1800 8-6 1 K 626 806 963 1052 l % 1238 1592 1902 2078 i k 719 926 1106 1208 2' 1379 1773 2118 2315 2 807 1037 1239 1354 X 499 641 766 837 X 300 386 461 504 1 672 864 1032 1128 l 403 518 619 677 i M 826 1062 1269 1387 1 M 501 645 770 842 5-6 l K 984 1266 1512 1652 9-0 1 K 590 758 906 990 l % 1119 1439 1719 1879 l X 677 871 1041 1137 2' 1258 1619 1933 2113 2 759 977 1167 1275 M 455 585 699 764 X 283 364 435 475 l 612 788 941 1028 l 380 489 584 638 l % 753 969 1157 1265 1 M 472 608 726 793 6-0 1 K 898 1154 1379 1507 9-6 IK 561 721 862 942 l % 1022 1315 1570 1716 l X 639 823 983 1074 2 1148 1476 1763 1927 2 717 923 1102 1204 x4 428 551 658 719 X 267 344 411 449 1 562 724 864 944 l 359 462 552 603 l M 701 902 1077 1177 1 J i 447 576 688 751 6-6 IK 823 1058 1264 1382 10-0 IK 531 683 816 892 l % 947 1218 1455 1590 l X 610 784 937 1024 2 1055 1358 1622 1772 2 683 879 1050 1147 M 394 508 606 662 X 251 330 394 429 1 520 669 799 873 1 1 342 442 528 577 1M 648 834 996 1089 1M 426 547 655 717 7-0 762 981 1171 1280 10-6 1 K 504 646 776 849 1M 876 1127 1346 1471 l % 581 749 891 974 2 983 1264 1510 1650 2 650 837 1000 1092 290 FLOOR CONSTRUCTION SEGMENTAL TERRA COTTA ARCHES CONCLUDED Depth of Arch, Inches G~ T>* Depth of Arch, Inches Span of Rise of 4 | 6 8 10 bpan of Kise of 4 | 6 8 10 Arch, Ft.-In. Arch, In Area of Arch, Square Inches Arch, Ft.-In. Arch, In. Area of Arch, Square Inches 28 36 43 47 28 36 43 47 K 244 315 376 411 K 151 194 232 254 l 327 421 503 550 l 205 265 316 345 1 K 404 519 621 678 IK 256 330 394 430 ll-O IK 479 617 737 805 17-0 IK 304 392 468 512 IK 551 709 847 925 IK 351 452 540 590 2 617 794 948 1036 2 393 506 605 661 K 233 299 358 391 K 141 182 218 238 1 312 401 480 524 1 192 248 296 324 IK 388 499 596 652 IK 240 310 370 404 11-6 460 592 707 773 18-0 287 370 442 482 IK 528 680 812 887 IK 330 425 507 554 2 591 761 909 993 2 371 477 570 623 K 222 285 341 372 K 134 173 206 225 1 297 383 458 500 l 181 233 279 304 IK 370 477 569 622 IK 227 293 350 382 12-0 IK 439 566 676 738 19-0 IK 271 348 416 455 IK 505 649 776 848 IK 312 402 480 524 2 565 727 869 949 2 351 451 539 589 K 212 273 326 356 K 126 163 194 212 1 284 366 437 478 1 172 221 265 289 IK 354 456 545 595 IK 215 277 331 361 12-6 IK 420 541 646 706 20-0 257 330 395 431 IK 483 621 742 811 IK 296 381 455 497 2 541 696 832 909 2 332 427 510 558 K 203 261 312 341 K 119 153 183 200 1 272 351 419 458 l 163 209 250 273 IK 339 437 522 570 IK 205 263 315 344 13-0 IK 403 519 620 677 21-0 IK 243 314 375 409 IK 463 596 712 778 IK 281 361 432 472 2 521 670 801 875 2 315 406 485 530 K 186 240 287 313 K 113 145 174 190 1 253 326 390 426 l 154 199 237 259 IK 315 406 485 530 IK 194 250 298 326 14-0 IK 374 482 575 629 22-0 IK 232 299 357 399 430 553 661 722 IK 268 344 412 450 2 481 619 740 808 2 301 377 462 505 K 174 225 268 293 K 108 139 166 181 1 234 302 361 394 l 147 190 227 247 l K 292 377 450 491 IK 185 238 284 310 15-0 IK 347 447 534 583 23-0 IK 221 284 340 371 401 515 616 673 IK 255 328 392 428 2 * 449 577 690 754 2 286 369 440 481 K 162 209 249 272 K 102 132 157 172 l 218 281 336 367 1 140 181 216 236 IK 274 353 421 460 IK 177 227 272 297 16-0 IK 325 419 500 546 24-0 IK 211 272 325 355 IK 374 481 575 628 IK 244 314 375 410 2 420 540 645 705 2 274 353 421 460 291 CARNEGIE STEEL COMPANY TERRA COTTA ARCHES FOR Floor Load of 150 Pounds per Square Foot d Depth of Depth of Depth of Limiting Q ~ Approx, Weight, Lbs, per Sq. Ft. acn a bD oa aa 1 w Beam, Inches Arch, Inches Floor, Inches fepan, Feet 1 HO 1 E .1 8 1 Wf o g d 6 6 11 5K 6 22 30 4 5 67 i< || 7 6 12 5K 7 22 38 4 5 76 ',':'' lj 8 6 13 5K 8 22 45 4 5 84 ^n^ J2 7 7 12 6 8 24 30 4 5 71 & n i "* 8 7 13 6 8 24 38 4 5 79 *^ ,,. o o 9 7 14 6 8 24 45 4 5 86 EH ?#' ^A==! Jj 8 8 13 6K 8 27 30 4 5 74 "JJ .; DDE .-H 9 8 14 63^ 8 27 38 4 5 82 Sj li: .2 10 8 15 6 y% 8 27 45 4 5 89 ';''. II Hc3 9 9 14 7% 8 29 30 4 5 76 Sjij II II EH"" 4 10 9 15 7K 9 29 38 4 5 85 12 9 17 73^ 9 29 53 4 5 100 .'" II 10 10 15 8 9 31 30 4 5 79 -, II 5 12 10 17 8 9 31 45 4 5 94 4 o 12 12 17 93^ 10 35 30 4 5 84 1?' ^Jd 15 12 20 93^ 10 35 53 4 5 107 15 15 20 11 12 42 30 4 5 93 For flat arches on raised skews, where the top of the arch is level with the top of the floor beam, deduct about 7 pounds per inch of difference between the height of the floor beam and the arch. ffl 1 Depth of Beam, Inches Depth of Arch, Inches Rise of Arch, Inches Limiting Span, Feet Approx. Weight, Lbs. per Sq. Ft, 1 gi f bC .9 I i \J^) ^ 02 HO o E H, 3' : ^or o 6 4 M 4>3 7 20 27 4 5 63 n 1 ipf P iso/ 7 8 9 4 4 4 1 IK 5 6 7 7 8 20 20 20 28 29 30 4 4 4 5 5 5 64 65 67 q VS'nrT g 8 6 M 5 8 26 27 4 5 70 | ioe 6| - Q 9 10 6 6 l IK 5 1 A 6 8 9 26 26 28 29 4 4 5 5 71 73 H fc nn s 12 6 i y/ 5 *^t 10 34 V>7 4 5 80 gi'^t! ^ 12 10 1 6^2 11 34 28 4 5 82 i>!^^ Z/^ 15 10 IK 7 11 34 29 4 5 83 15 10 IK 73^ 12 34 30 4 5 85 TERRA COTTA PARTITION, CEILING, ROOFING AND FURRING BLOCKS Thick- ness, Inches Approx, Weight, Pounds per Sq, Foot Thick- ness, Inches Approx. Weight, Pounds per Sq. Fo t ot Partition Ceiling Roofing Furring Partition Ceiling Roofing Furring 2 3 12-14 15-17 12 20 20 9 10 4 5 6 16-18 18-20 24-26 1 22 292 FLOOR CONSTRUCTION REINFORCED CONCRETE BEAMS AND FLOOR SLABS To give a complete mathematical analysis of the stresses which occur in reinforced concrete structures is not within the scope of this book. For such an analysis reference may be made to standard text books on the theory and practice of reinforced concrete. Girders and Floor Beams. The arrangement of girders and floor beams follows the same principles as in structural steel construction. On short spans floor cross beams may be omitted or used only at columns to secure lateral stiffness. Beams are usually designed as tee beams, and thereby a part of the floor slab is utilized as a part of the beam. The width of the slab thus considered to act as part of the beam should not exceed five times the slab thickness. Floor Slabs. Reinforcement may be of small rods, wires or metal fabric, the latter especially on short spans. Cross reinforcement of small rods or wires about two feet apart laid parallel to the beam supporting the slab should be used to prevent cracks, shrinkage, etc. If the length of the slab exceeds 1^ times its width, the entire load should be carried by transverse reinforcement. The distribution of the load on a rectangular slab supported on four sides and reinforced in both directions may be approximately determined by the formula R=l 4 -s- (! 4 +b 4 ), where R is the ratio of the load, 1 the length and b the width of the slab. An effective bond should be provided at the junction of beam and slab, and if the principal reinforcement of the slab is parallel to the beam, transverse reinforcement should be used extending over the beam and well into the slab. Spacing of Reinforcing Bars. The lateral spacing of parallel bars should not be legs than 2^ diameters, nor should the clear vertical space between layers of bars be less than ^ inch. The distance from the edge or side of the beam or slab should not be less than two diameters. Shear or Web Reinforcement. In the calculation of web reinforcement, concrete may be assumed to carry Y to % of the total shear; the remainder to be taken by additional reinforcement arranged in intervals equal to the depth of the beam. The usual method of reinforcing beams against failure by diagonal tension or shear is to use bent rods or stirrups in either vertical or inclined position. The longitudinal spacing of such rods or stirrups should not exceed % of the depth of the beam. Formulas. The following formulas are those approved by the Committee of the American Society of Civil Engineers on Concrete and Reinforced Concrete (Proceedings. VoL XXXIX No. 2. February. 1913.) 293 CARNEGIE STEEL COMPANY REINFORCED CONCRETE BEAMS NOTATION Rectangular Beams, Reinforcement for Tension only. i s =Tensile unit stress in steel, in pounds per sq. inch. f c =Compressive unit stress in concrete, in pounds per sq. inch. E s =Modulus of elasticity of steel, in pounds per sq. inch. E c =Modulus of elasticity of concrete, in pounds per sq. inch. n ^Elasticity ratio, E s -=-E c . M =Bending moment, in inch pounds. M s =Moment of resistance of steel, in inch pounds. M c =Moment of resistance of concrete, in inch pounds. A =Area of steel section, in square inches. b = Width of beam, in inches. d =Depth of beam to center of steel reinforcement, in inches. k =Ratio of depth of neutral axis to effective depth, d. j =Ratio of lever arm of resisting couple to depth, d. z =Distance, top to resultant of compression, in inches. jd =Arm of resisting couple, in inches=d z. p =Ratio of steel area to area of rectangle, bd,=A-*-bd. kd =Distance from top of beam to neutral axis, in inches. Tee Beams. b =Width of flange, in inches. b' = Width of stem, in inches. t =Thickness of flange, in inches. p =Ratio of steel area to area of rectangle, bd,=A-^bd. Rectangular Beams, Reinforced for Compression. A 7 =Area of compressive steel, in square inches. p' =Steel ratio for compressive steel. f' s =Unit compressive stress in steel, in pounds per sq. inch. C =Total compressive stress in concrete, in pounds persq.inch. C x =Total compressive stress in steel, in pounds per sq. inch. d' =Depth to center of compressive steel, in inches. z =Depth to resultant of C+C', in inches. Shear and Bond. V =Total shear, in pounds. f v =Unit shearing stress in concrete, in pounds per sq. inch, fu =Unit bonding stress in concrete, in pounds per sq. inch. 5 =Sum of the perimeters of the tension bars. 294 FLOOR CONSTRUCTION REINFORCED CONCRETE BEAMS FORMULAS Rectangular Beams, Reinforced for Tension only. r*-fc-! i kd =d(^/2pn+ (pn) 2 -pn) z =ikd M s== f s Ajd = f s pjbda M c== |f c kjbd2 M M Ajd 2M Steel ratio, balanced reinforcement, p = 2nA Neutral axis in flange use formulas for rectangular beams. Neutral axis in stem t(3kd 2t) 3 (2kd t) M s =f s Ajd M Ajd fcn(l-k) f c bt (kd-jt)Jd c ~ " kd f _ c ~ Rectangular Beams, Reinforced for Compression. kd =d l*-fer+i 4k3d+2p'nd' (k- nf c (l-k) 6M Shear and Bond. Rectangular Beams T Beams 295 CARNEGIE STEEL COMPANY The formulas are based upon the following assumptions: 1. The applied forces are perpendicular to the neutral plane. 2. The deformation of any fiber is proportional to its distance from the neutral axis. 3. The resisting moment of the beam is the sum of the moments above the neutral axis, due to the concrete area in compression, and of those below the neutral axis, due to the steel area in tension. 4. The tensile strength of the concrete is negligible. Bending Moments. If slabs and girders are reinforced over supports to take care of negative bending moments, they act as continuous beams, and the bending moment at the center of the span will be reduced. It is considered good practice to use the following values: Floor slabs, M at center and at supports= r V wl 2 . Beams, M at center and at supports= T 1 2 wl 2 for interior spans, and jV wl 2 f r en d spans. If beams are freely supported at ends, M=| wl 2 . Columns. Columns may be reinforced by means of longitudinal bars, by bands or hoops, or by both. The general effect of the banding or hooping is to permit the use of somewhat higher working stresses; the value p, given in the formula which follows, refers to longitudinal steel reinforcement only: P =total load on columns, in pounds. Ac=area of concrete, in square inches. As=area of steel, in square inches. fk =unit compressive stress in steel, in pounds per sq. inch: P =f c (Ac+nA s ) fk=nfc. Working Stresses. The following working stresses are in current use for reinforcing bars of medium structural steel and good Portland cement and gravel concrete of a 1:2:4 or 1:23^:5 mixture: fc=unit compressive stress of concrete 650 Ibs. per sq. in. fv=unit shearing stress of concrete, straight reinforcement 30 to 40 " " " " special shear reinforcement.... 60 to 100 " " " " fu=unit bond stress of concrete, smooth rods 60 to 80 " " " " deformed bars 100 to 175 " " " " fs =unit tensile stress of steel 16,000 " " " " fk=unit compressive stress of steel. . 10,000 " " " " n =E S -E C =15. For approximate calculations, the arm of the resisting couple, jd, may be taken at |d, and ordinarily accepted working stresses will not be exceeded if the steel ratio, p, does not exceed 0.01. 296 FLOOR CONSTRUCTION Explanation of Tables. Reinforced Concrete Slabs: The tables given on page 298 are based upon the preceding formulas for rect- angular beams, and upon fiber stresses of 650 pounds per square inch for concrete, 20,000 pounds for steel wire reinforcement, and 16,000 pounds for steel bar or rod reinforcement. The bending moments are given in foot pounds per foot of width; below and to the left of the zigzag lines the values are determined by the maximum allowable fiber stress on steel; above and to the right they are determined by the maximum allowable stresses in concrete. The first column gives the total thickness of the slab, the sec- ond, the distance from the center of the steel to the bottom of the slab, and the third the approximate weight of concrete slabs one foot square. EXAMPLE. Eequired the reinforcement for a slab continuous at four sides and 5 inches thick to carry a superimposed load of 150 pounds per square foot over a clear span of 8 feet. Assuming the weight of the concrete slab in pounds at twelve times the thickness of the slab in inches, then the weight of the slab per foot is 12x5=60 pounds, and the total weight, W, for a span of 8 feet is (60+150)x8=1680 pounds. M=WL-^- 12 =1680x8 -H 12=1120 foot-pounds. If triangle mesh is used, the steel area required by upper table, page 298, computed for a 5 inch slab, is, by interpolation, 0.185 square inches, equivalent by table, page 299, to triangle mesh style number 41. If medium structural steel bars or rods are used, the required area, by the lower table, page 298, is 0.24 square inches, and the sizes may be taken from page 92. 297 CARNEGIE STEEL COMPANY REINFORCED CONCRETE SLABS BENDING MOMENTS IN FOOT POUNDS PER FOOT OF WIDTH Allowable Fiber Stress: Steel, 20,000 and Concrete, 650 Pounds per Sq. Inch E s - EC = 15 Slab of 1 Sq. Ft. Area of Steel Reinforcement in Square Inches per Foot of Width Is II 3-3 |f ji c II .04 .06 .08 .10 .12 .14 .16 .18 .20 .25 .30 .35 .40 .45 .50 2V, H 30 108 160 211 261 295 311 325 342 353 377 3 /i 36 140 207 273 338 404 468 I 499 520 538 574 599 &A % 42 173 256 338 419 499 578 656 724 V50 808 858 900 4 34 48 205 304 401 498 594 689 783 876 96911068 1135 1194 1245 54 237 352 465 577 688 798 907 1015 1123|l354 1439 1516 1584 1644 5 1 60 377 500 621 740 857 972 1087 1201 1486 1605 1690 1766 1834 1894 1 66 421 560 697 832 965 1097 1228 1359 1682 1950 2056 2151 2236 2312 6 1 1 72 624 777 928 1076 1222 1367 1512 1875 2234 12449 2563 2666 2760 6^1 1 78 691 859 1025 1189 1352 1514 1675 2075 2469 2858 3002 3124 3235 7 1 84 939 1120 1300 1479 1657 1833 2271 ?703 3131 3466 3609 3741 7V4 1/4 90 978 1168 1356 1543 1729 1913 2370 2821 3268 1711)3863 4005 8 ji/ 1?60 1466 1670 187? ?,07? ?568 3057 354? 40231 4387| 4556 1M 102 1358 1578 1797 2015 2231 2765 3292 3815 4334 4850J5122 9 1H 103 1637 1863 2088 2311 2864 3412 3955 4493 502615416 9H iHi 114 1749 1990 2231 2471 3063 3649 4230 4806 53781 5945 10 1H 120 2119 2375 2630 3261 3886 4506 5120! 5730) 6335 Allowable Fiber Stress: Steel, 16,000 and Concrete, 650 Pounds per Sq. Inch Es H- Ec=15 Slab of 1 Sq. Ft. Area of Steel Reinforcement in Square Inches per Foot of Width l! jr 2H 3 VA 4 Wi 5 5H 6 6H 7 7y 2 8 8^ 9 9H 10 wy 2 11 U 1 A 12 Distance, d, Inches fl P= .10 .20 .30 .40 .50 .60 2922 3431 3974 4234 .70 .80 .90 1.00 1.10 1.25 1.50 H % % *A X IX 1 1 A IX VA iy* 1 1 A m i% 1% 2 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 209 272 335 398 461 497 558 621 686 751 783 353 599 858 1135 1235 1412 1600 1787 1975 2162 2257 2446 2634 2730 2919 3109 3205 3395 3586 3681 1245 1584 1766 Yibi 2349 2596 3844 2969 3218 3467 3594 3845 4096 4222 4475 4726 4852 1894 2312 2760 3205 3515 3669 3977 4288 4444 4757 5068 5224 5537 5850 6007 4173 4465 5097 5734 6069 6543 6974 7192 7625 8058 8276 5309 5982 6338 7063 7826 5494 6206 6574 7330 8120 8525 93.)9 5674 6410 6790 7575 8392 8817 9681 10575 11037 9079 9972 10898 11376 9432 10369 11337 11858 9939 10936 119C9 12494 525 650 775 900 961 1087 1213 1340 1466 1531 1658 1785 1849 1977 2104 4728 5099 5283 5656 6027 6213 6588 6960 7148 8163 8652 9145 9393 10224 10500 Concrete mixture 1:2:4 or 1:2^:5 carefully graded. 298 FLOOR CONSTRUCTION TRIANGLE MESH CONCRETE REINFORCEMENT AMERICAN STEEL AND WIRE COM PANT STANDARD :.$$r* S&" Vgj% ;"' Triangle Mesh Reinforcement \|f if , ^S^i'7 ism ,y y y y \JL m Ultimate Strength (minimum), 85,000 Ibs. per square inch vVVvV Longitudinal Wires, Spaced 4" Centers T - A r : * Elastic Limit (mini- { M %fl=3=i rross Wirps mum), 55,000 Ibs. per \J\/\f\7\/ ! s Wires, square inch 7\T\7\7YT\ P *"" Triangle Mesh is a woven fabric of cold drawn steel wire, providing a continuous reinforcement, an even distribution of metal, and a perfect bond. Made with both single and stranded tension members in lengths up to 300 feet and in widths up to 58 inches. TRIANGLE MESH STYLES, AREAS, AND WEIGHTS Style Number Longitudinal Wires Cress Wires Total Area for One Foot Width, Sq.In. Approximate Weight of 100 Sq. Ft., Pounds Number in Each A.S.&W. Co. Gauge No. Area per Foot, Sq.In. A.S.&W. Co. Gauge No. Area per Foot, Sq.In. * 4 6 .087 14 .025 .102 43 5 8 .062 14 .025 .077 34 6 10 .043 14 .025 .058 27 * 7 12 .026 14 .025 .041 21 *23 w .147 12 y 2 .038 .170 72 24 4 .119 12 y 2 .038 .142 62 25 5 .101 12 y 2 .038 .124 55 *26 1 G .087 12 y 2 .038 .110 50 *27 1 8 .062 12 y 2 .038 .085 41 28 1 10 .043 12 y 2 .038 .066 34 29 1 12 .026 12 H .038 .049 28 31 2 4 .238 12 y 2 .038 .261 106 32 2 5 .202 12H .038 .225 92 33 2 6 .174 12 y 2 .038 .196 82 34 2 8 .124 12 H .038 .146 63 35 2 10 .086 12 H .038 .109 50 36 2 12 .052 12 H .038 .075 37 *38 3 4 .358 12^2 .038 .380 151 39 3 5 .303 12 Yi .038 .325 130 40 3 6 .260 12 H .038 .283 . 114 41 3 8 .185 12 H .038 .208 87 *42 3 10 .129 12M .038 .151 66 43 3 12 .078 12 H .038 .101 47 Rolls Lengths: 150, 200 and 300 feet. Widths: 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, and 58 inches. Triangle Mesh is furnished either with or without galvanizing; unless otherwise specified material will be shipped not galvanized. Styles marked* are usually carried in stock by American Steel and Wire Company. 299 CARNEGIE STEEL COMPANY BUCKLE PLATES ZL Buckle Plates, as generally used on highway bridges with paved floors, are subjected to a uniform dead load due to the weight of the roadway paving and in addition a concentrated live load due to the weight of a wagon or truck wheel. Buckle Plates should be placed with the buckle turned down; then the live load which can be placed on a buckle in addition to the uniform dead load can be obtained from the formula given below, using the following notation. W=Total allowable concentrated load on buckle plate, in pounds. w =Uniform load, in pounds per square foot. d =Rise of buckle, in inches. 1 =Length of buckle, in inches. b = Width of buckle, in inches. t =Thickness of buckle plate, in inches, 300 fdt 0.525 wlb 6d+T5t The following table gives for a fiber stress of 9000 pounds the maximum concentrated live load in pounds allowed on buckles (turned down), in addition to a uniform load of 120 pounds per square foot. Thickness of Buckle Plate, Inches Rise, d, in Inches 2 2 1 A 3 3J* % 20000 22000 22000 22500 %6 30000 33000 34000 34000 % 41000 45000 47000 47500 7 /16 53000 58000 61000 63000 The allowable uniformly distributed load per buckle may be obtained from the formula, w = 12 fdt. When the buckles are turned up, use one-third of above values. 300 FLOOR PLATES BUCKLE PLATES AMERICAN BRIDGE COMPANY STANDARD 11 I Size of Buckle Widths of Flanges and Fillets Plates are steel M", ii,", ^" or ^ thick. Plates of greater length than given in table may be made by splicing with bars, angles, or tees. All plates are made with buckles up, unless otherwise ordered. When buckles are turned down, a drain hole should be punched in the center of each buckle and should be shown on sketch. Buckles of different sizes should not be used as it increases the cost of the plate. Connection holes are generally for %", M" or %" rivets or bolts. Different sized holes in same plate will increase the cost of the plate. Spacing for holes length wise of plate should be in multiples of 3" and should not exceed 12". Odd spaces to be at end of plate and in even %". Minimum spacing crosswise 4J^", usually 6". Die number must be shown on drawings. Sketches for Buckle Plates should indicate allowable overrun in length and width. 301 CARNEGIE STEEL COMPANY TROUGH PLATES ELEMENTS OF TROUGH PLATES Single Section Riveted Section Section Index Size, Inches Weight a d, Inches Weight per Square Foot, Pounds Section Modulus, OneFoot Width, Inches 8 M 14 9Hx3M 23.2 8 6^ 34.8 15.58 M 13 91^ x3% 21.4 8 6% 32.1 14.28 M 12 9 V A x 3 % 19.7 8 6J4 29.6 13.00 M 11 9^ x3% 18.0 8 6K 27.0 11.79 M 10 9^x334 16.3 8 6 24.5 10.69 ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT Span in Feet Fiber Stress, 16900 Lbs. per Sq. In. Fiber Stress, 12000 Lbs. per Sq. In. M14 M13 M12 Mil M10 M14 M13 M12 Mil MIO 5 6647 6093 5547 5030 4561 4986 4570 4160 3773 3421 6 4616 4231 3852 3493 3167 3462 3173 2889 2620 2376 7 3392 3109 2830 2567 2327 2543 2331 2124 1925 1745 8 2597 2380 2167 1965 1782 1948 1785 1625 1474 1336 9 2052 1880 1712 1553 1408 1539 1410 1284 1164 1058 10 1662 1523 1387 1258 1140 1246 1142 1040 943 855 11 1373 1259 1146 1039 942 1030 944 860 780 707 12 1154 1058 963 873 792 866 793 722 655 594 13 983 901 821 744 675 738 676 615 558 506 14 848 777 707 642 582 636 583 531 481 436 15 739 677 616 559 507 554 509 462 419 381 16 649 595 542 491 445 487 446 406 368 334 17 575 527 480 435 395 431 395 360 328 296 18 513 470 428 388 352 385 353 321 291 264 19 460 422 384 349 316 345 316 288 261 237 20 415 381 347 314 285 312 286 260 236 214 The values given in above tables are the safe loads per square foot of fioor surface and are based upon the average resistance of the riveted portion within distance a. The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load. Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses. The weight per square foot does not include the weight of rivet heads or other details. 302 FLOOR PLATES CORRUGATED PLATES ELEMENTS OP CORRUGATED PLATES LJJ-U&lG WWVpBi Section Section Index Size, Inches Weight per Foot, Pounds Inches d, Inches Weight per Square Foot, Pounds Modulus, One Foot Width, Inches* M 35 12^ x '2% 23.7 12A 2Ji 23.3 4.39 M 34 12i 3 g x2} 3 , 20.8 12A 21e 3 20.4 3.84 M 33 12A x 2% 17.8 12i 3 a 2M 17.5 3.28 M32 8%x 12-g 12.0 8M 1^ 16.5 1.95 M 31 8^ X Ii 9 g 10.1 8H 1A 13.8 1.55 M 30 8^ x 13^ 8.1 m 1H 11.5 1.10 ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT gpj^ Fiber Stress, 16000 Ibs. per sq. in. Fiber Stress, 12000 Ibe. per sq. in. ** M35 M34 M33 M32 M31 M30 M35 M34 M33 M32 M31 M30 5 1873 1638 1400 832 661 469 1405 1229 1050 624 496 352 6 1301 1138 972 578 459 326 976 853 729 433 344 244 7 956 836 714 425 337 240 717 627 536 318 253 180 8 732 640 547 325 258 183 549 480 410 244 194 138 9 578 506 432 257 204 145 434 379 324 193 153 109 10 468 410 350 208 165 117 351 307 262 156 124 88 11 387 339 289 172 137 97 290 255 217 129 103 73 12 325 284 243 144 115 82 244 213 182 108 86 61 13 277 242 207 123 98 69 208 182 155 92 73 52 14 239 209 179 106 84 60 179 157 134 80 63 45 15 208 182 156 92 74 52 156 137 117 69 51 39 The values given in above tables are the safe loads per square foot of floor surface and are based upon the average resistance of the riveted portion within distance a The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load. Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses. The weight per square foot does not include the weight of splice bars, rivet heads or other details. 303 CARNEGIE STEEL COMPANY CHECKERED PLATES F ELEMENTS OF CHECKERED PLATES Section Index Width, a Thickness, t, Inches Weight per Square Foot, Pounds Section Modulus for OneFoot Width. Inches 3 Minimum, Inches Maximum, Inches M 54 12 60 H 21.4 0.500 M 53 12 60 I 7 f5 18.9 0.383 M 52 12 60 Z A 16.3 0.281 M 51 12 60 i r k 13.8 0.195 M 50 12 60 y* 11.2 0.125 M 49 12 48 A 8.7 0.070 ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT Fiber Stress, 16000 Pounds per Square Inch Fiber Stress, 12000 Pounds per Square Inch in Feet M54 M53 M52 M51 M50 M49 M54 M53 M52 M51 M50 M49 1 5333 4083 3000 2083 1333 746 4000 3064 2248 1560 1000 560 2 1333 1021 750 520 333 187 1000 766 562 390 250 140 3 593 454 333 232 148 83 444 340 250 173 111 62 4 333 255 188 130 83 47 250 191 141 97 63 5 213 163 120 83 53 160 122 90 62 6 148 113 83 58 111 85 62 7 109 83 61 82 63 8 83 64 62 9 66 The values given in above table are the safe loads per square foot of plates supported on two sides only and are based upon the resistance of rectangular sections, 12 inches by the net section, t. The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load. Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses. 304 ROOF CONSTRUCTION ROOFS AND ROOF LOADS The design of roofs and the selection of suitable roofing materials depend on the character of the building, whether monumental, public, residence, mill or shop; permanent or temporary; geo- graphical location as regards allowance for snow and wind loads, and also availability of materials and familiarity of workmen with the construction; atmospheric conditions as concerns presence of industrial or other plants producing deleterious gases; water- tightness or resistance of the roof layers to penetration of water, snow or ice under storm and long continued exposure; wind resistance or the strength of materials to resist displacement of the entire surface or disruption between points of support; type and pitch of roof, whether self-supporting on wide spans or requiring the use of sheathing, and whether materials can be laid safely on steep surfaces. A good roof on a permanent structure should be fireproof from within as well as without, made of refractory materials supported by equally refractory framing. It should last without repair as long as the building stands without repair. Its maintenance cost should be low and its materials purchased on the probable life and service of the structure. Snow Loads. The snow loads on roofs vary with the geographical location, the altitude and humidity of the place, and with the slope of the roof. Where snow is likely to occur, the minimum load per horizontal square foot of roof should be taken at 25 pounds for all slopes up to 20 degrees; this load to be reduced one pound for each degree of increase in slope up to 45 degrees, above which no snow load need be considered. In severe climates these loads should be increased in accordance with actual conditions. Regard should also be taken to the possibility of partial snow load with local concentration. Wind Loads. These vary also with the geographical location and the slope of the roof, and, when not fixed by building laws, are usually taken as acting horizontally at 40 pounds per square foot on vertical surfaces of the most exposed structures, and 30 pounds on less exposed structures. On inclined surfaces only the normal components of the wind pressure need be considered. The following normal pressures are based on the formula given by Hutton: Pn = P(sina) l-84cosa i, w i ier e P is the direct horizontal pressure assumed at 30 pounds per square foot on the vertical surface and Pn the normal pressure on a unit of surface, sloping at angle a with the horizontal. 305 CARNEGIE STEEL COMPANY NORMAL WIND PRESSURE, IN POUNDS PER SQUARE FOOT Slope a Pressure, Pn, per Square Foot, Pounds Slope ct Pressure, Pn, per Square Foot, Pounds Slope a Pressure, Pn, per Square Foot, Pounds Slope a Pressure, Pn, per Square Foot, Pounds 5 10 15 3.9 7.2 10.7 20 25 30 13.8 17.0 19.9 35 40 45 22.6 25.0 27.0 50 55 60 28.6 29.6 30.0 For other pressures than 30 pounds per square foot, the values given above change in proportion. For slopes over 60 the values given for 60 are applied. Combined Roof Loads. In climates corresponding to that of Pittsburgh, and where the roof loads are not fixed by building laws, ordinary roofs up to 80 feet span should carry the following minimum loads per square foot of exposed surface, applied verti- cally, to provide for dead, wind and snow loads combined. Roof Covering 'Roof Load per Square Foot, Pounds Gravel or [on boards, flat slope, 1 to 6 or less Compositionj on boards, steep slope, more than 1 to 6 Roofing [on 3 inch flat tile or cinder concrete Corrugated sheeting on boards or purlins fon boards or purlins Ion 3 inch flat tile or cinder concrete Tile on steel purlins Slate 50 45 60 40 50 65 55 45 For roofs in climates where no snow is likely to occur, reduce these loads by 10 pounds per square foot, but no roof or any part thereof should be designed for a total live and dead load less than 40 pounds per square foot. Roof Covering. As stated above, suitable protection of a building against rain, snow, etc., depends on the character and location of the building, and the slope or pitch of the roof. Tin, tar, gravel, asphalt roofings and similar compositions are used for flat roofs; slate, tiles, and tin are used for slant roofs of public buildings and residences, shingles for smaller dwelling houses, and corrugated sheeting for shops and warehouses. Slate, tile, tin, and shingles are usually attached to a layer of planking, called sheathing, which in turn is supported by rafters, often called jack rafters, resting upon the roof purlins, or placed directly upon the purlins of the roof. ROOF CONSTRUCTION APPROXIMATE WEIGHT OF ROOFING MATERIAL Roofing Material Weight per Sq. Foot, Pounds Copper, Xo. 22 B. W. G Corrugated galvanized iron, No. 20 B. W. G Corrugated galvanized iron, No. 26 B. W. G Felt, 2 layers Felt and asphalt or coal-tar Gass, Ys inch thick Lath and plaster ceiling Lead, J 3 inch thick Mackite, 1 inch thick, with plaster Sheathing, hemlock, 1 inch thick Sheathing, white pine, spruce, 1 inch thick Sheathing, yellow pine, 1 inch thick Shingles, 6x18 inches, 6 inches to weather Skylight, glass ^ to Yi inch, including frame Slag roof, 4-ply, with cement and sand , Slate, K inch thick, 3 inch double lap Slate, i\ inch thick, 3 inch double lap , Terneplate, 1C Terneplate, IX Tiles (plain), 10^x6^x5-6 inches, 5M inches to weather . . Tiles (Spanish), 14^x10^ inches, 7\i inches to weather.. Zinc, No. 20 B. W. G . . Roof Trusses. Trusses are used where wide roof openings are to be spanned; they form a structure of compression and tension members and produce vertical reactions under vertical loads; the total load of the roof, that is, the weight of the truss, purlins, roof covering, ceiling, and often also the snow and wind load, is usually considered a uniformly distributed load, equally divided between the two supports and producing equal and vertical end reactions. The purlins usually rest on the upper chord of the truss, trans- mitting to the latter the load of the roof covering, the wind and snow load, that of the jack rafters and their own, and are often so arranged as to carry the dead load directly to the truss joints or panel points to avoid transverse stresses. The distance between two consecutive joints of the top chord is the panel length, the dis- tance between two adjacent trusses the bay length. The transverse strength of the sheathing or of the corrugated iron used for the roof covering generally determines the spaces between the jack rafters or the purlins. These purlins or rafters are small steel shapes, such as beams, channels and angles, or wooden beams, if the roof is not of fireproof construction. Weight of Trusses. As a basis for the preliminary design of a steel truss for a given span, I., and a roof load of about 40 pounds per square foot, the approximate weight is: Vs ("v/L + Vs L) pounds per horizontal square foot. For greater loads multiply formula by ratio: load per sq. ft. -* 40. 307 CARNEGIE STEEL COMPANY TRUSSES FORMULA FOR STRESSES AND LENGTHS w w W n = L/H = 2 cot a 2W 3W SIMPLE FINK TRUSS SIMPLE FAN TRUSS Member] Stress Length Member Stress Length Aa + R W V r T R 7\ ^A d U- - T 1 w 2W n = L/H = 2 cot a Lr_ 3 Member n = Span-i- Height = 2 cot a Member n = Span -f Height = 2 cot a 3 247 2 cot 30 3.00 2.50 2.60 1.73 0.87 0.87 I 4 24/5 5 6 3 24/7 2 cot 30 4 245 5 6.73 5.59 5.99 6.25 3.75 121 2.50 6 Aa Bb La Lc ab be 2.70 2.15 2.25 1.50 0.83 0.75 2.98 2.47 2.57 1.71 0.86 0.86 3.35 2.91 3.00 2.00 0.89 1.00 3.90 3.52 3.60 2.40 0.92 1.20 4.04 3.67 3.75 2.50 0.93 1.25 4.74 4.43 4.50 3.00 0.95 1.50 Aa Bb Cc La Ld ab.bc cd 4.51 3.54 3.40 3.75 2.25 0.93 1.50 4.98 3.96 3.95 4.30 2.57 0.99 1.71 5.00 4.00 4.00 4.33 2.60 1.00 1.73 5.59 4.55 4.70 5.00 3.00 1.08 2.00 6.50 5.38 5.73 6.00 3.60 1.18 2.40 7.91 6.64 7.27 7.50 4.50 1.34 3.00 ^ !AaV ( V" c : \ g W > f I n=L/H=2cota r t_ W i T? i $ N i^W feu^l g ' 1 r 3 4W 6W Member n = Span -H Height = 2 cot a Member n = Span H- Height = 2 cot a 3 24/7 IS? 4 24/5 5 6 3 24/7 2 cot 30 11.00 10.00 10.00 9.50 8.50 8.50 9.53 7.79 5.20 1.00 2.60 1.73 2.60 4.33 4 12.30 11.25 11.40 10.96 9.91 10.06 11.00 9.00 6.00 1.08 2.68 2. co 3.00 5.00 24/5 5 6 Aa Bb Ce Df La Lc Lg ab.ef cd bc.de dg fg 6.31 5.76 5.20 4.65 5.25 4.50 3.00 0.83 1.66 0.75 1.50 2.25 6.95 6.44 5.94 5.43 6.00 5.14 3.43 0.86 1.73 0.86 1.71 2.57 7.00 6.50 6.00 5.50 6.07 5.20 3.46 0.87 1.73 0.87 1.73 2.60 7.83 7.38 6.93 6.48 7.00 6.00 4.00 0.89 1.79 1.00 2.00 3.00 9.10 6.72 8.33 7.95 8.40 7.20 4.80 0.92 1.85 1.20 2.40 3.60 9.42 9.05 8.68 8.31 8.75 7.50 5.00 0.93 1.86 1.25 2.50 3.75 11.07 10.75 10.43 10.12 10.50 9.00; 6.00 0.95 1.90 1.50 3.00 4.50 Aa Bb Cc Df Eg Fh Ld Li ab, be, fg, gh de cd.ef ei hi 9.92 8.95 8.81 8.25 7.28 7.14 8.25 6.75 4.50 0.93 2.50 1.50 2.25 3.75 10.91 9.91 9.91 9.40 8.41 8.40 9.43 7.71 5.14 0.99 2.59 1.71 2.57 4.29 14.30 13.18 13.53 13.15 12.02 12.38 13.20 10.80 7.20 1.18 2.77 2.40 3.60 6.00 14.81 17.39 13.6616.13 14.0716.76 13.70 16.44 12.55 15.18 12.95 15.93 13.7516-50 11.2513.50 7.50 9.00 1.21 1.34 2.79 2.85 2.50! 3.00 3.75 4.50 6.25 7.50 The pitch of a truss is the ratio of the rise or height to the span length of Pitch = H/L = i/n. n = L/H= 1 /pitch. To obtain the stress in any member of a given truss, multiply the corresponding co< the panel load W. Compression members are designated by + and tension members by the truss, efficient by 309 CARNEGIE STEEL COMPANY TRUSSES FORMULAS FOR STRESSES AND LENGTHS W W 2W = L/H = 2cota 3W PRATT TRUSS 4 PANELS PRATT TRUSS 6 PANELS Member Stress Length Member Stress Length Aa.Bb La Lc ab be + Mi/n2+ 4xW M n xW y% n xW + 1 xW H H H L sec a L L Aa, Bb Cd La Lc Le ab cd be de + %1/n 2 + 4 xwy 8 xwy xW% XW% xwy M xW|% ! L sec a L sec L L L h + 1/112+ 4 S A n n % n + 1 + 8 /2 U-i/n.2+16 /L2+16h2. y t -j/n2+36 4W n=L/H=2cota PRATT TRUSS 8 PANELS PRATT TRUSS 10 PANELS Member Stress Length Member Stress Length Aa, Bb Cd Df La Lc Le Lg ab cd ef be de fg +% 1 /n2+ 4xW y$ L sec a ^ L sec a Vs L sec a % L y s L y 8 L V4 L y 4 h % h % h Aa, Bb Cd Df Eh La Lc Le Lg Li ab +%1/n3 + 4 xW A L sec a A L sec a A L sec a A L sec a A L A L A L A L ^ L % h % h % h s h + 8 /2i/ n2 + 4xW + 2-j/n2+4 xW + 7 /4-y/n 2 +4 xW + 3 /2-j/ii2+4 xW -% n xW -2 n xW % n xW 3/2 n xW % n xW + 1 xW +% xW + 2 xW +% xW +%-J/n2 + 4xW -% n xW -% n xW r /4 n xW - n xW + 1 xW +% xW + 2 xW i/4-/n2 + l6xW 1/4-J/I12 + 36XW y 4 i/n2+64xW ysi/L2+ I6h2 cd y s -/L2+64h2 gh be de fg hi V4-/ n2 + 16xW %i/ n2 + 36 xW A-/L2+18 fa* A-/L 2 + 36h2- Hi/n2+ 64 xW y4-J/n2. + 100xW Ai/I^+lOOM 310 ROOF CONSTRUCTION TRUSSES COEFFICIENTS W OF STRESSES w P \fe \]a\i t 2W n=L/H=2cot a j L 3W Member n = Span -=- Height = 2 cot a Member n = Span -v- Height = 2 cot a 3 24/7 2 cot 30 4 j 24/5 5 6 3 1 2 cot ' 30 J 4 24/5 5 6 Aa, Bb La Lc ab be 2.70 2.25 1.50 1.00 1.25 2.98 2.57 1.71 1.00 1.32 3.00 2.60 1.73 1.00 1.32 3.35 3.00 2.00 1.00 1.41 3.90 3.60 2.40 1.00 1.56 4.04 3.75 2.50 1.00 1.60 4.74 4.50 3.00 1.00 1.80 Aa.Bb Cd La Lc Le ab cd be de 4.51 3.61 3.75 3.00 2.25 1.00 1.50 1.25 1.63 4.96 3.97 4.29 3.43 2.57 1.00 1.50 1.32 1.73 5.00 4.00 4.33 3.46 2.60 1.00 1.50 1.32 1.73 5.59 4.47 5.00 4.00 3.00 1.00 1.50 1.41 1.80 6.50 5.20 6.00 4.80 3.60 1.00 1.50 1.56 1.92 6.73 5.39 6.25 5.CO 3.75 l.CO 1.50 1.60 1.95 7.91 6.32 7.50 6.CO 4.50 l.CO 1.50 1.80 2.12 \ W j =L/H=2cota r ^w w % ^"2" ! i t J 4W n= L--- 5W Member Aa, Bb Cd Df La Lc Le Lg ab cd ef be de fg n = Span -r- Height = 2 cot a Member n = Span -4- Height = 2 cot o 3 24/7 30' 4 24/5 9.10 7.80 6.50 8.40 7.20 6.00 4.80 1.00 1.50 2.00 1.56 1.92 2.33 9.42 8.08 6.73 8.75 7.50 6.25 5.QO 1.00 1.50 2.00 1.60 1.95 2.36 6 11.07 9.49 7.91 10.50 9.00 7.50 6.00 1.00 1.50 2.00 1.80 2.12 2.50 3 24/7 2 cot 30 9.00 8.00 7.00 6.00 7.79 6.93 6.06 5.20 4.33 1.00 1.50 2.00 2.50 1.32 1.73 2.18 2.65 10.06 8.94 7.83 6.71 9.00 8.00 7.00 6.00 5.00 1.00 1.50 2.00 2.50 1.41 1.80 2.24 2.69 245 11.70 10.40 9.10 7.80 10.80 9.60 8.40 7.20 6.00 1.00 1.50 2.00 2.50 1.56 1.92 2.33 2.77 5 12.12 10.77 19.42 8.08 11.25 10.00 8.75 7.50 6.25 1.00 1.50 2.00 2.50 La 1.95 2.36 2.80 6 14.23 12.65 11.07 949 13.50 12.00 10.50 9.00 7.50 1.00 1.50 2.00 2.50 | 1.80 2.12 2.50 2.92 6.31 5.41 4.51 5.25 4.50 3.75 3.00 1.00 1 .50 2.00 1.25 1.68 2.14 6.95 5.95 4.97 6.00 5.14 4.29 3.43 1.00 1.50 2.00 1.32 1.73 2.18 7.00 6.00 5.00 6.06 5.20 4.33 3.46 1.00 1.50 2.00 1.32 1.73 2.18 7.83 6.71 5.59 7.00 6.00 5.00 4.00 1.00 1.50 2.00 1.41 1.80 2.24 Aa.Bb Cd Df Eh La Lc Li ab cd ef gh be de fg hi 8.11 7.21 6.31 5.41 6.75 6.00 5.25 4.50 3.75 1.00 1.50 2.00 2.50 1.25 1.68 2.14 2.61 8.93 7.94 6.95 5.95 7.71 6.86 6.00 5.14 4.29 1.00 1.50 2.00 2.50 1.32 1.73 2.18 2.64 311 CARNEGIE STEEL COMPANY CORRUGATED SHEETS Corrugated sheets are used for roofs and sides of buildings. They are usually laid directly upon the roof purlins and held in place by means of clips of steel hoops which encircle the purlin and are placed about 12 inches apart. Special care must be taken that the projecting edges of the corrugated sheets at the eaves and gable ends of the roof are well secured, otherwise the wind will loosen the sheets. Corrugated sheets are made in the sizes given on opposite page, the size most generally used has nominally 2^ inch corrugations, (actual width 2% inches), about 3^ of an inch in depth. The gauges frequently used for roofing are Nos. 20 and 22, U. S. Standard Gauge. By one corrugation is meant the double curve between corres- ponding points, and by depth of corrugation the greatest deviation of the curved surfaces from the straight line. One and one-half corrugations are allowed for lap in the width of the sheet and 6 inches in the length for the usual quarter pitch roof; one corrugation in width and 4 inches in the length of the sheet is usually allowed for sidings. Corrugated sheets are furnished in standard lengths of 5, 6, 7, 8, 9 and 10 feet and with a covering width of 24 inches, when laid with a lap of either one or one and one-half corrugations. By experiment it has been determined that corrugated sheet steel, 5 /% inch deep and 0.035 inch thick, spanning 6 feet, began to give a permanent deflection with a load of 30 pounds per square foot, and that it collapsed with a load of 60 pounds per square foot. The distance between centers of purlins should, therefore, not exceed 6 feet and should preferably be less than this. Approximately the uniformly distributed safe load of corrugated sheets may be obtained from the formulas given below, using the following notations: W=Total allowable uniform load, in pounds. w=Allowable uniform load, in pounds per square foot. b=Width of sheet, in inches. l=Unsupported length of sheet, in inches. L=Unsupported length of sheet, in feet. t=Thickness of sheet, in inches. d=Depth of corrugations, in inches. Then: w _25,000 tdb w _ 25,000 td_ 312 ROOFS AND ROOFING CORRUGATED SHEETS AMERICAN SHEET AND TIN PLATE COMPANY STANDARD DESCRIPTION OF CORRUGATED SHEETS AREAS OF CORRUGATED SHEETS Corrugations Width, Inches si 1 ~ c, ~GO 72 84 96 108 120 144 Sq. Ft. in 1 Sheet Sheets in 100 Sq. Ft. Width, Inches Depth, Approx. Inches Num- ber per Sheet Full Sheet Covers Approx. Corrugations Corrugations Nomi- nal Actual 5" 3",2^", IK", 5 A" 5" 3",2W, 2" 1M", W 5 3 2M 2 IX *A 45k 2% 2% 2A 1M M H X X y* H A 6 9 10 11 20 26 28 26 26 26 25 25 24 24 24 24 24 24 11.67 14.00 16.33 18.67 21.00 23.33 28.00 10.83 13.00 15.17 17.33 19.50 21.67 26.00 10.42 12.50 14.58 16.67 18.75 20.83 25.00 8.57 7.14 6.12 5.36 4.76 4.29 3.57 9.23 7.69 6.59 5.77 5.13 4.62 3.85 9.60 8.00 6.86 6.00 5.33 4.80 4.00 Standard lengths 5, 6, 7, 8, 9 and 10 feet. Max- imum length, 12 feet for 5" to \W corrug'n. CORRUGATED SHEETS Painted Weights in Pounds per 100 Square Feet Norn. Cor- rug. Inches Thickness, U. S. Standard Gauge and Decimals of an Inch 12 14 16 18 20 21 22 23 24 25 26 27 28 .109 .078 .063 .050 .038 .034 .031 .028 .025 .022 .019 .017 .016 5 3 g 474 339 339 271 271 271 271 217 217 217 217 163 163 163 163 170 150 150 150 150 156 136 136 136 136 142 123 123 123 123 128 110 110 110 110 114 114 96 96 96 96 100 100 83 83 83 83 86 86 76 76 76 76 79 79 68 68 68 68 72 72 CORRUGATED SHEETS Galvanized Weights in Pounds per 100 Square Feet Norn. Cor- rug. Inches Thickness, U. S. Standard Gauge and Decimals of an Inch 12 14 16 18 20 21 22 23 24 25 26 27 28 .109 .078 .063 050 .038 .034 .031 .028 .025 .022 .019 .017 .016 5 3 2X 2 1M y* 488 354 354 286 286 286 286 232 232 232 232 178 178 178 178 185 165 165 165 165 151 151 151 151 157 138 138 138 138 124 124 124 124 129 129 111 111 111 111 98 98 98 98 101 101 91 91 91 91 94 94 85 85 85 85 87 87 The weights per 100 square feet given in preceding tables do not include allowances for end or side laps. The following table gives the approximate number of square feet of sheeting necessary to cover an area of 100 square feet and is based on sheets of standard width, 96 inches long. If longer or shorter sheets are used, the number of square f eet, required will vary accordingly . SQUARE FEET OF CORRUGATED SHEETS TO COVER 100 SQUARE FEET qjfip T __ End Lap, Inches 1 2 3 4 5 6 1 Corrugation 1 1 A " 110 116 111 117 112 118 113 119 114 120 115 121 i 123 124 125 120 127 128 313 CARNEGIE STEEL COMPANY STEEL SHEET PILING The introduction of steel sheet piling in substitution for wood has made possible the extension and indeed the practical rejuvena- tion of the cofferdam method of making excavations. Its use has led to great ultimate economies, greater safety in working and to the extension in size and depth of open excavations to limits which otherwise were regarded as impossible of attainment. The cellular cofferdam, first used in the Black Rock Lock, Buffalo, is a very successful method for the elimination of the expensive, slow, and not always reliable, pneumatic caisson on work of large magnitude. Steel sheet piling by its positive interlock enables the sub-surface diaphragms of diaphragm dams to be made with a certainty not possible with wooden sheet piling, and with an economy not possible with concrete by reason of the elimination of the excavation necessary in the case of the ordinary puddle core, concrete core or masonry core wall. A diaphragm made of such imperishable materials fulfills all the requirements of the ordinary core wall with the additional advantage of accommodating itself, by its flexibility, to slight irregularities of settlement in the dam. It is also used in the construction of curtain walls, sea walls and loading slips, founda- tions for cylinder piers, sewers and trenches, etc. ki addition to temporary cofferdams, steel sheet piling has found large use in the construction of permanent retaining walls for buildings. Driven before excavation in soils containing quick- sand or water-bearing strata, its use prevents the undermining of adjacent building foundations by movement of the strata. It also prevents in many cases the delay, expense and danger of under- pinning adjacent buildings. It may be employed in this way alone or reinforced by steel buckstays as shown in the illustration, which represents the method followed by D. H. Burnham & Company in constructing retaining walls for the Marshall Field and Stevens Building, Chicago, where sheeting with its attached buckstays was driven its full depth and the basement and sub-basement floors placed as the excavation went forward. The rigidity of the buck- stays with the bracing supported by the floors eliminated the necessity and expense of shoring. After excavation concrete was filled in between the buckstays and the total expense did not exceed 60 per cent, of its cost by the ordinary method. Types. The Carnegie Steel Company manufactures United States Steel Sheet Piling, Friestedt Interlocking Channel Bar Piling, and Symmetrical Interlock Channel Bar Piling. 314 STEEL SHEET PILING Section at Buckstay Girder Tie Rod I 1 Waling Channel United States Steel Sheet Piling is a simple, plain, rolled section ready for use as it comes from the mill without further fabrication. Each piece is complete in itself and all pieces of the same width are interchangeable. Its profile incorporates the advantages of the ball and socket joint, with sufficient clearance in the interlock for ease in driving and sufficient space for the use of a packing substance between its adjacent edges to insure watertightness. United States Steel Sheet Piling is more easily driven and pulled than any other section hitherto placed on the market. The reason for this is believed to be the absence of a leading groove combined with the line contact obtained in the joints. Friestedt Interlocking Channel Bar Piling is a fabricated section made of channels and zee bars; unsymmetrical as regards adjacent pieces, one channel having two zee bars full length and the next adjacent channel being plain, that is, without zee bars. Symmetrical Interlock Channel Bar Piling is a fabricated section made of channels and zee bars in which each piece has a short zee bar on one edge and a long zee bar on the other. The long zee bar forms the interlock with the next adjacent section, while the short zee reinforces the top of the pile and serves to distribute the blow from the pile driving hammer over the width of the section. All the sections have positive interlocks continuous throughout the entire length in both lateral and horizontal directions, affording maximum strength against sidewise deflection, distortion or sepa- ration of the pieces due to pressures, deformation in driving, etc. 315 CARNEGIE STEEL COMPANY Strength of Section. When driven and under pressure, steel sheet piling must have strength similar to that possessed by any other beam loaded equally or unequally with earth or water pressure, and the resistance of the piling to transverse bending can be calcu- lated by the known laws of flexure from the properties of the section as given in the tables on page 317. In the case of Symmetrical Interlock Channel Bar Piling, the center line of the assemblement is not the center line of the individual members. Calculations are referred, therefore, to a theoretical neutral axis and give the pro- perties of the sections on the assumption that when interlocked they will act as a unit. In the case of United States Steel Sheet Piling, the properties of the individual pieces are the same as the properties of the sections interlocked in place. During driving the sections are forced to act as loaded columns, and the tables, therefore, show the radius of gyration of the sections for computing their compressive resistance under load or the blow of the pile driving hammer. The radius of gyration of the section, however, need not bear any definite proportion to its length and blocks of wood may be bolted to the leads of the pile driver if the piling shows a tendency to spring. As the piling actually enters the earth, it is supported laterally and stiffened by the adjacent soil, and the blows of the hammer need but overcome the friction. In an ordinary cofferdam braced in the usual manner, strength in the interlock to resist the tearing apart of the sections by direct tension in a longitudinal direction is not often required, but if it is, United States Steel Sheet Piling is recommended for use, as its longitudinal strength is greater than that of the fabricated sections. This interlock strength in a longitudinal direction depends on the type of section, the opening of the jaw, the character of the soil, etc., and can only be determined by tests. The average longitudinal strength per lineal inch of medium steel sections is as follows: 9" United States Steel Sheet Piling 5,600 pounds 12 H" 38 Ib. United 'States Steel Sheet Piling 10,000 " 15" 39 Ib. Symmetrical Interlock Channel Bar Piling 1,500 " Steel sheet piling is usually made of medium steel manufactured to standard specifications. Where the construction is permanent and possible corrosion is a serious factor, it may be made of steel containing about 0.50% copper, experiments on which, as well as analyses of old structures, indicate that such an addition goes very far towards making the steel practically indestructible. Full information on this specialty and its various uses is given in a separate pamphlet entitled "Steel Sheet Piling," copies of which can be had on request. 316 STEEL SHEET PILING UNITED STATES STEEL SHEET PILING I* 1. ELEMENTS OF SECTIONS, Axis x-x Section Index Description Interlocked or Single Sections Regular Corner, Weight, Pounds per Lineal Foot Width b, Inches Single Section Weight, Lbs.per Sq.Ft. I In* r In. S In.3 S* In.s h Lbs.perl Area, Lin. Ft. Sq. In. 2 In. M 104 M 103 12* 38 16 11.24 4.71 35 21 8.35 1.45 0.87 0.56 4.30 1.13 3.97 1.51 13 M 9M 38 16 SYMMETRICAL INTERLOCK CHANNEL BAR PILING COMPOSITION AND DIMENSIONS OF SECTIONS No. Designation 10"x28 Ibs. 10"x34 Ibs. 12"x34 Ibs. 12"x39 Ibs. 15"x39 Ibs. 15"x45 Ibs. Channels In. 10 10 12 12 15 15 Lbs. 15 20 20.5 25 33 40 Zees In. Lbs. K 4.8 4.8 8.6 8.6 9.2 9.2 Dimensions, Inches 1 A 1 I I i ELEMENTS OF SECTIONS, Axis x-x No. Description Sections Interlocked Single Section Regular Comer, Weight, Pounds per Lineal Foot Width, Inches Single Section Weight, Lbs. per Sq. Ft. I In* r In. S In.s S* In.s I In* r In. S In. Lbs. per Lin. Ft. Area, Sq. In. 1 2 3 4 5 6 10 10 12 12 15 15 21 26 30 35 44 51 5.87 7.29 8.54 9.86 12.60 14.46 28 34 34 39 39 45 7.09 10.26 14.59 18.66 28.96 36.82 1.10 1.19 1.31 1.38 1.52 1.60 3.64 5.27 6.63 8.48 11.44 14.55 4.85 7.03 7.32 9.36 10.17 12.93 5.52 6.61 11.18 12.63 19.33 21.60 0.97 0.95 1.14 1.13 1.24 1.22 2.24 2.50 3.95 4.23 5.68 6.07 26 31 38 42 51 58 S* is the average section modulus per horizontal foot of wall interlocked in place. 317 CARNEGIE STEEL COMPANY STRUCTURAL TIMBER The strength of structural timbers depends upon a number of factors; the kind of wood, the age of the tree, the time of the year in which it was felled, the method of sawing, the character of the seasoning and therewith its moisture content, the proportion of heart wood to sap wood and the proportion of knots to clear wood. In consequence of these variable factors, the working unit stresses approved by the building laws of different cities vary widely, as well also as the unit stresses given in the proceedings of the various engineering associations. They go back in some cases to the studies made in 1895 by the Association of Railway Superintendents of Bridges and Buildings. The most recent studies in this direction have been made by the American Railway Engineering Association, and the tables for wooden beams and columns which follow are based on the working unit stresses for structural timbers adopted by that Association. The table of working unit stresses has been reprinted, by permission, from the Manual, edition of 1911. These unit stresses vary with the class of construction. They are intended, as noted, for railway bridges and trestles. For highway bridges and trestles and for buildings and similar structures, the unit stresses may be increased in accordance with the more quiescent character of the loading and freedom from deleterious weather conditions. The values are based on carefully selected timber purchased in accordance with the standard specifications of the Association and subject to careful inspection. The commercial timbers which are in common use in building construction will not meet these specifications, and, therefore, the unit stresses approved by good building practice as evidenced in the building laws of various cities are rightly lower. The tables as they stand are in accord with the average practice as represented by these building laws, and may, therefore, be used as they stand for ordinary building work executed with the commercial grades of timber, such as can be purchased in the open market. The allowable loads may be adjusted to other species of wood than those stated in the headings of the tables and to other unit stresses by the direct proportion which such unit stresses bear to those for which the tables are computed. In the case of columns the values may be adjusted to any working unit stress by direct proportion based on the relations of 1/d. 318 TIMBER SAFE LOADS WORKING UNIT STRESSES FOR STRUCTURAL TIMBER ADOPTED BY THE AMERICAN RAtLWAY ENGINEERING ASSOCIATION The working unit stresses given in the table are intended for railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased 25 per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased 50 per cent. To compute the deflection of a beam under long continued loading instead of that when the load is first applied, only 50 per cent, of the corresponding modulus of elasticity given in the table is to be employed. 319 CARNEGIE STEEL COMPANY WOODEN BEAMS The safe load tables of wooden beams which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the uniformly distributed safe loads for rectangular sections one inch thick; the safe load for a beam of any thickness is found by multiplying the tabular value by the thickness of the beam in inches. The safe loads include the weight of the beams and are computed on the assumption that the beams are braced against lateral deflection. These tables also give mini- mum and maximum spans and coefficients of deflection. The maximum safe loads as limited by the allowable shearing stresses along horizontal axes of beams have been calculated from the formula: Maximum safe load = % x area of section x safe unit stress for longitudinal shear. These limits, indicated also by horizontal lines in the tables, should not be exceeded to avoid failure of the beam in horizontal direction of the grain of the wood. The theoretical deflection in the center of the span for uniformly distributed and permanently applied loads is obtained from the coefficients of deflection by dividing the depth of the beam, in inches, into the corresponding coefficient; the result obtained only approximates the actual deflection, as the modulus of elasticity varies with the moisture content of the wood. The deflection of beams intended to carry plastered ceilings should not exceed Yseo of the span; the tables give the maximum spans for this limit and for uniform and permanently applied loads. For loads concentrated in the center of the span, use one-half the values for the tabular loads and four-fifths of the coefficients of deflection. For special cases of loading, see pages 170 to 175. EXAMPLE 1. Required the thickness and the approximate deflection of a beam of white oak, 14 inches deep, supporting a uniformly distributed and permanent dead and live load of 10,000 pounds over a span of 19 feet. The tabular value for a beam one inch thick and for a span of 19 feet is 1,261 pounds; the required thickness is therefore 10, 000-^-1,261=8 inches, and the deflection is 20.72-=- 14=1. 48 inches. EXAMPLE 2. Required the safe load of a beam of white pine, 8 inches deep and 6 inches thick, without exceeding the longitudinal shearing stress. The table gives for a corresponding beam 1 inch thick a safe load of 747 pounds; the total safe load is therefore 6 x 747=4,482 pounds, or the safe load which can be safely supported over a span of 8.6 feet. EXAMPLE 3. Required the safe load, concentrated in the center of a span 26 feet long, and the deflection of a beam of longleaf pine, 18 inches deep and 12 inches thick. The table gives for a corresponding beam 1 inch thick a uniformly distri- buted safe load of 1,800 pounds, or for a load in center of span 1,800-^2=900 pounds; for a beam 12 inches wide the safe load is therefore 900 x 12= 10,800 pounds, and the deflection is approximately % x 32. 75-^-18=1.46 inches. 320 TIMBER SAFE LOADS RECTANGULAR WOODEN BEAMS ONE INCH THICK MAXIMUM SAFE LOADS AND LIMITING SPANS 1 White Oak Longleaf Pine Shortleaf Pine White Pine Douglas Western Hemlock Spruce if Max. Min. Max. Min. Max. Min. Max. Min . Max. Min. Max. Min. Max. Min. -g. 1 " 1 Load, Span, Load, Span Load, Spj in. Load, Spar uLoad, Span, Load, Span, Load, Span, Lbs. Ft Lbs. Ft. Lbs. F ,. Lbs. Ft. Lbs. Ft. Lbs. Ft. Lbs. Ft. 2 293 1.7 320 1.8 347 1 .5 187 2. L 293 1.8 267 1.8 187 2.4 4 587 3.3 640 3.6 693 3.1 373 4.; J 587 3.6 533 3.7 373 4.8 6 880 5.0 960 5.4 1040 4 .0 560 6.' t 880 5.5 800 5.5 560 7.1 8 1173 6.7 1280 7.2 1387 6.2 747 8.( 3 1173 7.3 1067 7.3 747 9.5 10 1467 8.3 1600 9.0 1733 7 .7 933 10.' 7 1467 9.1 1333 9.2 933 11.9 12 1760 10.0 1920 10.8 20SO 9 .2 1120 12.< ) 1760 10.9 1600 11.0 1120 14.3 14 2053 11.7 2240 12.6 2427 10.8 1307 > 2053 12.7 1867 12.8 1307 16.7 16 2347 13.3 2560 14.4 2773 12 .3 1493 17! L 2347 14.5 2133 14.7 1493 19.0 18 2040 15.0 28SO 16.3 3120 13.8 1680 19.; J 2640 16.4 2400 16.5 1680 21.4 20 2933 16.7 3200 18.1 3467 15 .4 1867 21 i 1 2933 18.2 2667 18.3 1867 23.8 22 24 3227 3520 18.3 20.0j 3520 19.9 3840 21.7 3813 4160 16.9 18.5 2053 2240 23.( 25.' 3 3227 7 3520 20.0 21.8 2933 20.2 2053! 26.2 3200 22.0 1 2240! 28.6 COEFFICIENTS OF DEFLECTION FOR PERMANENT LOADS White Oak Long- leaf Pine Short- Span in Feet Short- Span in Feet leaf Pine, Western Hem- White Pine, Douglas Fir Spruce White Oak Long- leaf Pine leaf Pine, Western Hem- White Pine, Douglas Fir Spruce lock lock 1 0.06 0.05 0.05 0.05 0.05 21 25.31 21.37 19.67 21 .05 20.20 2 0.23 . 1 9 0.18 0.19 0.18 22 27.78 23.44 21.59 23 .1(3 22.17 3 OJ >2 .44 3.40 0.43 3.-1 1 2 3 30.37 25.63 23.5 9 25 .25 2 4.23 4 >2 78 ( 3.71 0.76 3.7 3 2 4 33.06 27.91 25.6 9 27 .49 2 6.38 5 1.44 1 .21 1.12 1.19 1.15 25 35.88 30.28 27.88 29.83 28.63 6 )7 1 .74 1.61 1.72 l.( 5 2 6 38.80 32.75 30.1 5 32 .27 3 0.96 7 2.81 2.37 2.19 2.34 2.24 27 41.85 35.32 32.51 34 .SO 33.39 8 3.e >7 3 .10 H 2.85 3.06 2.1 3 2 8 45.00 37.99 34.9 7 37 .42 3 5.91 9 4.65 3.92 3.61 3.87 3.71 29 48.27 40.75 37.51 40 .14 38.52 10 5.7 4 4 85 t 1.46 4.77 * i.. r 8 3 51.66 43.61 40.1 4 42 96 4 1.22 11 6.c 5 v; , 5.40 5.78 . 5.r 4 3 1 55.16 46.56 42.8 6 45 .S7 4 4.01 12 8.27 6 98 6.42 6.87 6.60 32 58.78 49.61 45.67 48.88 46.90 13 9.7 8 19 ' r.54 8.07 ' -.7 4 3 3 62.51 52.76 48.5 7 51 .98 4 9.88 14 11.25 9 r>o 8.74 9.36 8.98 34 66.35 56.01 51.56 55 18 52.95 15 12.S 2 10 90 1 3.04 10.74 1( 1 3 5 70.32 59.35 54.6 4 58 47 5 6.11 16 14.6 9 12 40 1 1.42 12.22 1 I.'T 3 3 6 74.39 62.79 57.8 (3 61 SO 5 9.36 17 16.59 14 00 12.89 13.79 13.24 37 78.58 66.33 61.06 65.34 62.70 18 18.6 1.5 70 1' 1.45 15.47 1' 4 3 8 82.89 69.96 64.4 68 92 6 6.14 19 20.7 2 17 49 1( 3.10 17.23 1( 3 3 9 87.31 73.69 67.8 4 72 ine 3.0 6.0 9 12.( 315.017.920.923.9i26 .929. 932.9 35.9 Western H emlcx ck 3.0 6.0 9 12.( 315.017.920.923.926 .929. 9,32.9 35.9 White Pine, Douglas Fir 2.8 5.6 8.4 11.2|l4.0|l6.7|l9.522.3i25 .1127. 930.7 34.5 Spruce 2.9 5.8 8.7 ll.( 3J14.6I17.5I20.4I23.3I26 1132.0 37.9 321 CARNEGIE STEEL COMPANY RECTANGULAR WOODEN BEAMS ONE INCH THICK DOUGLAS FIR ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1200 Pounds per Square Inch Span in Feet Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 293 687 880 1173 1467 1760 2053 2347 2640 2933 3227 3520 3491 3339 3200 3072 2954 2844 2743 2648 2560 2477 2400 2327 2259 2194 2133 2076 2021 1969 1920 267 178 133 107 89 76 67 533 427 356 305 267 237 213 194 178 800 686 600 533 480 436 400 369 343 320 300 1067 948 853 776 711 656 610 569 533 502 474 449 427 1333 1212 1111 1026 952 889 833 784 741 702 667 635 606 580 556 1745 1600 1477 1371 1280 1200 1129 1067 1011 960 914 873 835 800 768 738 711 686 2010 1867 1742 1633 1537 1452 1375 1307 1244 1188 1136 1089 1045 1005 968 933 901 871 843 817 2276 2133 2008 1896 1796 1707 1625 1552 1484 1422 1365 1313 1264 1219 1177 1138 1101 1067 1034 1004 975 948 2541 2400 2274 2160 2057 1964 1878 1800 1728 1662 1600 1543 1490 1440 1394 1350 1309 1271 1234 1200 1168 1137 1108 1080 2807 2667 2540 2424 2319 2222 2133 2051 1975 1905 1839 1778 1720 1667 1616 1569 1524 1481 1441 1404 1368 1333 3227 3073 2933 2806 2689 2581 2482 2390 2305 2225 2151 2082 2017 1956 1898 1844 1793 1744 1698 1655 1613 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 322 TIMBER SAFE LOADS RECTANGULAR WOODEN BEAMS ONE INCH THICK LONGLEAF PINE ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1300 Pounds per Square Inch Span in Feet Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 2 3 4 5 6 I 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 820 640 960 1280 1600 1920 2240 2560 2880 8200 8620 8840 289 193 144 116 96 83 72 578 462 385 330 289 257 231 210 193 867 743 650 578 520 473 433 400 371 347 325 1156 1027 924 840 770 711 660 616 578 544 514 487 462 1444 1313 1204 1111 1032 963 903 850 802 760 722 688 657 628 602 1891 1733 1600 1486 1387 1300 1224 1156 1095 1040 991 945 904 867 832 800 770 743 2178 2022 1887 1769 1665 1573 1490 1416 1348 1287 1231 1180 1132 1089 1049 1011 976 944 913 885 2465 2311 2175 2054 1946 1849 1761 1681 1608 1541 1479 1422 1370 1321 1275 1233 1193 1156 1121 1088 1057 1027 2753 2600 2463 2340 2229 2127 2035 1950 1872 1800 1733 1671 1614 1560 1510 1463 1418 1377 1337 1300 1265 1232 1200 1170 3041 2889 2751 2626 2512 2407 2311 2222 2140 2064 1992 1926 1864 1806 1751 1699 1651 1605 1562 1521 1482 1444 3496 3329 3178 3040 2913 2796 2689 2589 2497 2411 2330 2255 2185 2119 2056 1998 1942 1890 1840 1793 1748 3782 3617 3467 3328 3200 3082 2971 2869 2773 2684 2600 2521 2447 2377 2311 2249 2189 2133 2080 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. CARNEGIE STEEL COMPANY RECTANGULAR WOODEN BEAMS ONE INCH THICK SHORTLEAF PINE, WESTERN HEMLOCK AND WHITE OAK ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1100 Pounds per Square Inch Span in Feet 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 347 693 1040 1387 1733 2080 2427 2773 3120 3467 3813 4160 245 163 122 98 82 70 61 652 "489" 391 326 279 245 217 196 178 163 880 "733" 629 550 489 440 400 367 338 314 293 275 1304 1117 978 869 782 711 652 602 559 522 489 460 435 412 391 1528 1358" 1956 1222 1111 1019 940 873 816 764 719 679 643 611 583 556 531 509 1760 Teoo" 1467 1354 1257 1173 1100 1035 978 926 880 838 800 765 733 704 677 652 629 2396 2178 7996 2607 2407 2235" 1843 1711 1597 1497 1409 1331 1261 1198 1141 1089 1042 998 958 921 887 856 826 799 773 749 3046 2829 2086 1956 1841 1738 1647 1564 1490 1422 1361 1304 1252 1203 1159 1118 1079 1043 1009 978 948 920 894 869 2640 2475 3259 3055 3697 3480 3287 2329 2200 2084 1980 1886 1800 1722 1650 1584 1523 1467 1414 1366 1320 1278 1238 1200 1165 1131 1100 1070 1042 1015 990 2876 2716 4141 3911 3705 2573 2444 2328 2222 2126 2037 1956 1880 1811 1746 1686 1630 1577 1528 1482 1438 1397 1358 1321 1287 1254 1222 3113 2958 2817" 2689 2572 2465 2366 2275 2191 2113 2040 1973 1908 1849 1793 1740 1690 1643 1599 1557 1517 1479 3520 3352 3200 3061 2933 2816 2708 2608 2514 2428 i 2348 2271 2200 2133 2071 2011 1956 1903 1853 1805 1760 Upper, middle, and lower horizontal lines indicate the limits for resistance to shear in the horizontal direction of the grain of Shortleaf Pine, White Oak, and Hemlock respectively. 324 TIMBER SAFE LOADS RECTANGULAR WOODEN BEAMS ONE INCH THICK WHITE PINE ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 900 Pounds per Square Inch Span in Feet Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 2 3 4 5 ! 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 187 373 560 747 933 1120 1307 1493 1680 1867 2053 2240 133 100 80 67 57 50 320 267 229 200 178 160 145 133 514 450 400 360 327 300 277 257 240 225 711 640 582 533 492 457 427 400 377 356 337 320 909 833 769 714 667 625 588 556 526 500 476 455 435 417 1108 1029 960 900 847 800 758 720 686 655 626 600 576 554 533 514 1307 1225 1153 1089 1032 980 933 891 852 817 784 754 726 700 676 653 632 613 1422 1347 1280 1219 1164 1113 1067 1024 985 948 914 883 853 826 800 776 753 731 711 1620 1543 1473 1409 1350 1296 1246 1200 1157 1117 1080 1045 1013 982 953 926 900 876 853 831 810 1818 1739 1667 1600 1538 1481 1429 1379 1333 1290 1250 1212 1176 1143 1111 1081 1053 1026 1000 2017 1936 1862 1793 1729 1669 1613 1561 1513 1467 1424 1383 1344 1308 1274 1241 1210 2215 2133 2057 1986 1920 1858 1800 1746 1694 1646 1600 1557 1516 1477 1440 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 325 CARNEGIE STEEL COMPANY RECTANGULAR WOODEN BEAMS ONE INCH THICK SPRUCE ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1000 Pounds per Square Inch Span in Feet Depth of Beam in Inches 2 4 6 8 10 12 14 16 18 20 22 24 2 3 4 5 6 7 8 9 10 11 12 13 14 - 15 16 '17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 187 373 560 747 1120 1307 1493 1680 1867 2053 2240 148 111 89 74 63 56 356 296 254 222 198 178 162 148 500 444 400 364 333 308 286 267 250 711 646 593 547 508 474 444 418 395 374 356 926 855 794 741 694 654 617 585 556 529 505 483 463 1067 1000 941 889 842 800 762 727 696 667 640 615 593 571 1281 1210 1146 1089 1037 990 947 907 871 838 807 778 751 726 703 681 1422 1354 1293 1237 1185 1138 1094 1053 1016 981 948 918 889 862 837 813 790 1636 1565 1500 1440 1385 1333 1286 1241 1200 1161 1125 1091 1059 1029 1000 973 947 923 900 1852 1778 1709 1646 1587 1533 1481 1434 1389 1347 1307 1270 1235 1201 1169 1140 1111 1992 1921 1854 1793 1735 1681 1630 1582 1537 1494 1453 1415 1379 1344 2207 2133 2065 2000 1939 1882 1829 1778 1730 1684 1641 1600 Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain. 326 TIMBER SAFE LOADS WOODEN COLUMNS The safe load tables of wooden columns which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the allowable direct compressive loads for square and round columns. The safe loads of rectangular columns may be found from the safe loads of square columns by direct proportion of areas, using the safe load unit stress of the square column whose side is equal to the least side of the rectangular section. The following table gives the safe load in pounds per square inch of sectional area for ratios of J effective length of column, in inches d least side or diameter, in inches ranging between limits of 15 and 30. UNIT WORKING STRESSES IN POUNDS PER SQUARE INCH i Longleaf Pine, White Oak Douglas Fir, Western Hemlock Shortleaf Pine, Bald P 200 to 250 Jute, compressed 41 8 328 Linen Damask in cases 50 5 250 Linen Goods, in cases 30 8 240 Linen Towels in cases 40 6 240 Sisal, compressed 21 8 168 Tow, compressed 29 8 232 Wool, in bales, compressed 48 Wool, in bales, not compressed 13 8 104 Wool, Worsteds, in cases 27 8 216 332 PHYSICAL PROPERTIES OF SUBSTANCES CONTENTS OF STORAGE WAREHOUSES Material Weights Cub^Foot of Space, Pounds Height of Pile, Feet Weights per Square Foot of Floor, Pounds Recommended Live Loads, Pounds per Square Foot Building Materials Cement, Natural 59 73 53 45 64 31 48 101 278 63 74 75 33 31 45 52 36 45 70 48 38 62 88 53 60 174 86 132 40 20 37 35 60 32 6 6 5 n 4^2 6 6 3V 2 5 6 6 4 5 6 6 2% 3* 6 1% sy 2 4% 3% 8 8- 8 6 6 6 354 438 265 556 425 315 333 450 198 102 226 312 216 180 350 288 228 167 294 318 100 610 408 495 320 160 296 210 360 192 |- 300 to 400 J 300 to 400 200 to 300 | 300 " Portland Lime and Plaster Hardware, Etc. Door Checks . Hingps Locks in cases, packed Sash Fasteners Screws Sheet Tin, in boxes Wire Cables, on reels Wire, Insulated Copper, in coils Wire, Galvanized Iron, in coils Wire, Magnet, on spools Drugs, Paints, Oil, Etc. Alum, Pearl, in barrels Bleaching Powder, in hogsheads Blue Vitriol, in barrels Glycerine, in cases Linseed Oil, in barrels Linseed Oil, in iron drums Logwood Extract in boxes Rosin, in barrels Shellac, Gum... Soda Ash, in hogsheads Soda, Caustic, in iron drums Soda, Silicate, in barrels . . Sulphuric Acid White Lead Paste, in cans White Lead, dry Red Lead and Litharge dry Miscellaneous Glass and Chinaware, in crates Hides and Leather, in bales Hides, Buffalo, in bundles Paper, Newspaper, and Strawboards Paper, Writing and Calendared Rope, in coils 333 CARNEGIE STEEL COMPANY STRENGTH OF MATERIALS STRESSES PER SQUARE INCH MetaJs and Alloys Stresses in Thousands of Pounds Modulus of Elasticity, Pounds 3 Tension, Ultimate 1| h Bending, Ultimate Shearing, Ultimate Aluminum, cast " bars sheets 15 24-28 30-65 20-35 40-50 75 85-100 25 32-35 55-65 36 32.6 28.1 41.1 31 18-24 80 50 28.5 29.4 33 22 5.6 25-55 60 100 50 100 55 75 108 66 80 100 45 68 85 100 20 30 50 1.8 2.2-2.5 3.3 53 32 40 3.5-4.6 11 4-6 7-16 6.5 12-14 16-30 14 25 40 60 6 10 10 8.2 7.6 8.6 17.4 17.9 6 16 19 20 22 5.6 10 30 80 24 40 4 1.5-1.8 4 12 120 40 32 42 75 117 30 42 53 78 114 147 125 6 18 22 23.2 22.3 26.9 39 33.5 20 43.7 34.5 56.7 32 12.1 52 4 7 12 30 36 11,000,000 10,000,000 18,000,000 15,000,000 9,000,000 14,000,000 10,000,000 10,000,000 4,500,000 8,000,000 1,000,000 1,000,000 720,000 4,000,000 13,000,000 26.7 35.8 20.7 20.7 5.0 5.5 3.3 0.04 " wire, hard " " annealed 2 7%Ni, Cu, Fe.etc.... Aluminum Bronze, 5% to 7^% Al . . . 10% Al... Copper, cast plates, rods, bolts wire, hard " wire, annealed Brass 17% Zn 23% " 30% " 39% " 50% " wire, hard " annealed Bronze 8% Sn " 2QO/ " " 30% " gun metal, 9 Cu ISn 44 Manganese, cast \10%Sn.... rolled/ 2% Mn... Phosphorus, cast 19% Sn " wirejl%P " Silicon, cast, 3% Si " 5% Si 44 ' wire " Tobin.cast ] 38% Zn... ' rolled \iy>%Sn... ' cold rolled] V 3 %Pb... Delta Metal, cast ] 5560% Cu . . . . plates 138 40% Zn " bars 2 4% Fe " wire J 1 2%Sn German Silver, 25% Zn, 20% Ni Iron, see page 335 Gold, cast 4 wire '' copper, 5 Au, 1 Cu Lead, cast ' pipe, wire 44 rolled sheets Platinum, wire, unannealed " annealed Silver cast Steel, see page 335 Tin, cast " antimony, 10 Sn, 1 Sb Zinc, cast " rolled sheets 334 PHYSICAL PROPERTIES OF SUBSTANCES STRENGTH OF MATERIALS , STRESSES PER SQUARE INCH Metals and Alloys Stresses in Thousands of Pounds Modulus of Elasticity, Pounds a Reduction of Area, % 1 jji 2.t3 Compression, Ultimate Bending, Ultimate Shearing, Ultimate Steel Structural Shapes, plates*., bridges buildings " ships BoilerPlates* 60 55-65 55-65 55-65 52-62 45-55 50 48-58 55-70 55-70 80 min. 80 min. 65 60 58 75 70-80 80-90 80 80 85-95 80 80 80 min. 70-85 60-68 65-115 120 80 200 48 50 80 60 15-18 18-24 27-35 ^ tens *A tens 33 33 50 50 55 ^tens. 29 37.5 35-40 45-55 40 45-50 55-65 40 50 50 min. 45 min. 37-38 40-70 60 40 95 26 27 27 6 15-20 tensile tensile tensile tensile tensile tensile tensile tensile 80 46 tensile tensile tensile tensile tensile tensile tensile tensile 30 25-33 30 % tens. /item Xtens. xitens. 4 tens, ^tens. 4 tens. /6tens 18-20 40 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 28,000,000 8,000,000 5,000.000 25,000,000 2,000,000 25 25-21 27-23 27-23 29-24 33-27 30 29-24 25-20 22-18 15 12.5 5 18 18 28 18 24-22 23-20 20 24-25 24-21 20 25 20 23-19 23-29 28 30 30-35 40-45 25 40-45 45-50 25 45 48-53 " " fire box " extra soft Riveta* bridges " buildings, ships Reinforcement Bars** " structural, plain deformed . . " hard, plain ' deformed " cold twisted Castings* ; bridges " ships Forgings* soft, low carbon. . . . carbon,notannealed annealed. . . oil tempered locomotive nickel, annealed... . ' oil tempered " axles, carbon steel . " nickel Steel Alloys Nickel Steel, 34% Ni ' shapes, plates ' rivets Copper Steel, 0.5% Cu Steel Springs and Wire Springs, untempered Wire, unannealed " annealed ' bridge cable Wrought Iron Shapes Bars Wire, unannealed " annealed Cast Iron Common Gray. . . Malleable *See Specifications of the Society of Testing Materials, adopted August 16, 1909. **See Specifications of the Association of American Manufacturers, adopted 1910. 335 CARNEGIE STEEL COMPANY STRENGTH OF MATERIALS STRESSES IN POUNDS PER SQUARE INCH Building Materials Ultimate Average Stresses Modulus of Elasticity Safe Working Stresses Compress. Tension Bending Compress. Bearing Shearing Stone 12,000 12,000 8,000 5,000 10,000 10,000 11,000 15,000 6,000 7,040 7,350 1,290 1,490 2,650 1,800 700 2,100 1,500 600 1,700 1,200 500 1,350 1,000 400 30,000 10,000 700 5,000 1,200 1,200 800 150 3,000 200 740 740 320 340 2,500 1,600 1,500 1,200 5.000 600 7,000,000 7,000,000 7,000,000 3,000,000 14,000,000 1,200 1,200 800 500 1,000 1,200 1,200 800 500 1,000 200 200 150 150 175 Limestone, marble Slate Brick Common, good medium burned . . . hard burned Pressed and paving Cement, Portland Neat 28 days " 90 days 1-3 sand 28 days " 90 days Concrete, P. C. 1:1K<:3, hard stone soft stone Reinforced Concrete Safe Working Stresses * [2,000,000 if ult. compression is up to 2 ,200. Elastic Modulus-! 2,500,000 if ult. compression is over 2. 200. 13,000,'000 if ult. compression is over 2,900. n /22.5% of ult. compression on piers or Compression. . . ^ columns of 1 o. o etc., are to be replaced by 2, 3, 4, etc., ciphers. EXAMPLE 1 grain = O.o2083 = 0.002083 oz. t. 1 grain =0.o6480= 0.00006480 kg. 339 CARNEGIE STEEL COMPANY EQUIVALENTS OF MEASURE FORCES OR WEIGHTS PER UNITS OF LENGTH, LINEAR WEIGHTS 1 dyne per centimeter = 0.00101 979 g/cm = 0.000183719 poundal/in. 1 gram per centimeter = 980.5966 dynes/cm = 0.180154 poundal/in. 1 poundal per inch = 5443.11 dynes/cm = 5.55081 g/cm = 0.0310832 pound/in. Grams per Centi- meter g/cm Grains per Inch, gr./in. Pounds per Inch, lb./in. Pounds per Foot, lb./ft. Pounds per Yard, Ib./yd. Kilograms per Meter kg/m Net Tons, 2000 Ibs., per Mile Gross Tons, 2240 Ibs., per Mile Metric Tons, 1000kg, per Kilometer 1 0.02551 178.579 14.8816 4.96054 10 5.63698 6.31342 10 39.1983 1 7000 583.333 194.444 391.983 220.960 247.475 391.983 O.o5600 O.o 1429 1 0.08333 0.02778 0.05600 0.03157 0.03535 0.05600 0.06720 O.ol714 12 1 0.33333 0.67197 0.37879 0.42424 0.67197 0.20159 O.o5143 36 3 1 2.01591 1.13636 1.27273 2.01591 0.10 O.o2551 17.8579 1.48816 0.49605 1 0.56370 0.63134 1 0.17740 O.o4526 31.6800 2.64000 0.88000 1.77400 1 1.12 1.77400 0.15839 O.S4041 28.2857 2.35714 0.78571 1.58393 0.89286 1 1.58393 0.10 O.o2551 17.8579 1.48816 0.49605 1 0.56370 0.63134 1 FORCES OR WEIGHTS PER UNITS OF AREA, PRESSURE 1 dyne per sq. centimeter =0.00101979 g/cm 2 =0.000466646 poundals/in 2 . 1 grampersq. centimeter-^ 980.5966 dynes /cm 2 =0.457592 poundals/in 2 . 1 poundal per sq. inch =2142.95 dynes/cm 2 = 2.18536 g/cm 2 = 0.0310832pound/in 2 . Kilograms per Sq. Centi- meter, kg/cm 2 Pounds per Sq. Inch, lb./in. 2 Pounds per Sq. Foot, lb./ft.2 Net Tons, 2000 Ibs. per Sq. Foot Atmos- pheres, Standard, 760mm Columns of Mercury, Hg. 13.59593 Sp. G. Columns of Water, Max. Density 4 C Milli- meters Inches Meters Feet 1 0.07031 O.o4882 0.97648 1.03329 O.1360 0.03453 0.10 0.03048 14.2234 1 O.o 6944 13.8889 14.6969 0.01934 0.49119 1.42234 0.43353 2048.17 144 1 2000 2116.35 2.78468 70.7310 204.817 62.4283 1.02408 0.07200 0.00050 1 1.05818 1.01392 0.03537 0.10241 0.03121 0.96778 0.06804 O.o4725 0.94502 1 0.31316 0.03342 0.09678 0.02950 735.514 51.7116 0.35911 718.216 760' 1 25.4001 73.5514 22.4185 28.9572 2.03588 0.01414 28.2762 29.9212 0.03937 1 2.89572 0.88262 10 0.70307 O.o 4882 9.76482 10.3329 0.01360 0.34534 1 0.30480 32.8083 2.30665 0.01602 32.0367 33.9006 0.04461 1.13299 3.28083 1 FORCES OR WEIGHTS PER UNITS OF VOLUME, DENSITY 1 dyne per cu. centimeter =0.00101979 gram/cm 3 =0.00118528 poundals/in 3 . 1 gram per cu. centimeter =980.5966 dynes/cm 3 = 1.162283 poundals/in 3 . 1 poundal per cu. inch =843.683 dynes/cm 3 =0.860378g/cm 3 = 0.0310832 pound/in 3 . Grams per Cu. Centi- meter, g/cm 3 Pounds per Cu. Inch, lb./in. 3 Pounds per Cu. Foot, lb./ft 3 Pounds per Cu. Yard, lb./yd. 3 Kilograms per Cu. Meter, kg/m 3 Pounds per Bushel, U. S. Pounds per Gallon, Dry, U.S. Pounds per Gallon, Liquid, U. S. Kilograms per Hectoliter, kg/hi 1 27.6797 0.01602 O.o5933 0.001 0.01287 0.10297 0.11983 0.01 0.03613 1 O.o5787 O.o2143 O.o3613 O.o4650 O.o3720 O.o4329 0.9711 0.125 1 1.16365 0.09711 8.34545 231 0.13368 OT4951 O.o8345 0.10742 0.85937 1 0.08345 100 2767.97 1.60184 0.05933 0.10 1.28718 10.2974 11.9826 1 Notations o> o> o> etc., indicate that the > o> o> etc., are to be replaced by 2, 3, 4, etc. ciphers. EXAMPLE 1 kg/m 3 = 0/o3613 = 0.00003613 lb./in 3 . 340 MEASURES AND WEIGHTS EQUIVALENTS OF MEASURE ENERGY, WORK, HEAT 1 dyne-centimeter=l erg =0.00101979 gram-centimeter=0.o737612 foot-pound. 1 gram-centimeter = 980.5966 ergs=0.o7233 foot-pound. 1 foot-pound = 13557300 ergs= 13825.5 gram-centimeters. Kilogram- meters, kg-m Foot- Pounds, ft.-lbs. Horsepower-hour Poncelet- hours, 100 kg-m-h Kilowatt- hours, kw-h Joules, 107 ergs, j-s Thermal Units U. S., H. P.-h Metric, 75 kg-m-h B. T. U. b. t. u. Calorie, kg-cal 1 0.13826 273745 270000 360000 367123 0.10198 107.577 426.900 7.23300 1 1980000 1952910 2603880 2655403 0.73761 778.104 3087.77 O.o3653 O.o 5051 1 0.98632 1.31509 1.34111 O.o3725 O.o 3930 O.ol559 O.o3704 O.o5121 1.01387 1 1.33333 1.35972 O.o3777 O.o3984 O.oloSl 0.82778 O.S3840 0.76040 0.75 1 1.01979 O.S2833 O.o2988 O.oll86 O.o 2724 O.o3766 0.74565 0.73545 0.98060 1 O.o2778 O.o2930 O.oll63 9.80597 1.35573 2684340 2647610 3530147 3600000 1 1054.90 4186.17 O.o 9296 0.ol2S5 2544.65 2509.83 3346.44 3412.66 O.o9480 1 3.96832 0.2342 O.o3239 641.240 632.467 843.289 859.975 O.S2389 0.25200 POWER, RATE OF ENERGY AND HEAT 1 erg per sec.=l dyne-cm/sec.=0.00101979 gram-cm/sec. =0.o737612 foot-pounds/sec. 1 gram-centimeter per second =980. 5966 ergs/sec. =0.o7238 foot-pounds/sec. 1 foot-pound per second = 13557300 ergs/sec = 13825.5 gram-cm/sec. Kilogram- meters per Second, kg-m/s Foot- pounds per Second, ft.-lbs./s Horsepower Poncelet, 100 kg-m/s Kilowatt, kv. Watts, 10Tergs/s Thermal Unite per Sec. U. S., 550 ft.-lbs./s Metric, 75 kg-m/s B. T. U. btu/'s Calorie kg-cal/s 1 0.13826 76.0404 75 100 101. 97G 0.10198 107.577 426.900 7.23300 1 550 542.475 723.300 737.612 0.73761 778.104 3087.77 0.01315 O.ol818 1 0.98632 1.31509 1.34111 O.ol341 1.41474 5.61412 0.01333 O.ol843 1.01387 1 1.33333 1.35972 O.ol360 1.43436 5.69200 0.01 O.ol383 0.76040 0.75 1 1.01979 O.ol020 1.07577 4.26900 O.o 9806 O.ol356 0.74565 0.73545 0.98060 1 0.001 1.05490 4.18617 9.80597 1.35573 745.650 735.448 980.597 1000 1 1054.90 4186.17 O.o9296 O.ol285 0.70685 0.69718 0.92957 0.94796 0.^9480 1 3.96832 O.o2342 O.o3237 0.17812 0.17569 0.23425 0.23888 O.S2389 0.25200 1 VELOCITIES AND ACCELERATIONS 1 kine=l centimeter per second =0.0328083 foot per second. 1 radian per second =57.2958 degrees per sec.=0.159155 revolutions per sec. 1 gravity=980.5966 centimeters per sec. per sec. =32.1717 feet per sec. per sec. Meters per Second, m/s Feet per Second, ft./s Miles per Hour, M/h Knots per Hour, U. S. Kilo- meters Hour, km/h Meter per sec/sec m/s2 Feet per sec/sec ft./a> Miles per hour/sec M/h-s Kilometer per hour/sec km/h-s 1 0.30480 0.44704 0.51479 0.27778 3.28083 1 1.46667 1.68894 0.91134 2.23693 0.68182 1 1.15155 0.62137 1.94254 0.59209 0.86839 1 0.53959 3.6 1.09728 1.60935 1.85325 1 1 0.30480 0.44704 0.27778 3.28083 1 1.46667 0.91134 2.23693 0.68182 1 0.62137 3.6 1.09728 1.60935 1 Notations o, o> o, etc., indicate that the > o> o, etc., are to be replaced by 2, 3, 4, etc., ciphers. EXAMPLE 1 Calorie=0.oll63=0.001163 kilowatt-hours. 341 CARNEGIE STEEL COMPANY METRIC CONVERSION TABLES INCHES TO CENTIMETERS 1 in. =2.540005 cm ^ 1 2 3 4 5 6 7 8 9 2.540 5.080 7.620 10.160 12.700 15.240 17.780 20.320 22.860 i 25.400 27.940 30.480 33.020 35.560 38.100 40.640 43.180 45.720 48.260 2 50.800 53.340 55.880 58.420 60.960 63.500 66.040 68.580 71.120 73.660 3 76.200 78.740 81.280 83.820 86.360 88.900 91.440 93.980 96.520 99.060 4 101.600 104.140 106.680 109.220 111.760 114.300 116.840 119.380 121.920 124.460 5 127.000 129.540 132.080 134.620 137.160 139.700 142.240 144.780 147.320 149.860 6 152.400 154.940 157.480 160.020 162.560 165.100 167.640 170.180 172.720 175.260 7 177.800 180.340 182.880 185.420 187.960 190.500 193.040 195.580 198.120 200.660 8 203.200 205.740 208.280 210.820 213.360 215.900 218.440 220.980 223.520 226.060 9 228.600 231.140 233.680 236.220 238.760 241.300 243.840 246.380 248.920 251.460 INCHES 2 TO CENTIMETERS 2 1 Hl. 2 =6.451625 Cm 2 ^ 1 2 3 4 5 6 7 8 9 6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065 1 64.516 70.968 77.420 83.871 90.323 96.774 103.226 109.678 116.129 122.581 2 129.033 135.484 141.936 148.387 154.839 161.291 167.742 174.194 180.646 187.097 3 193.549 200.000 206.452 212.904 219.355 225.807 232.259 238.710 245.162 251.613 4 258.065 264.517 270.968 277.420 283.872 290.323 296.775 303.226 309.678 316.130 5 '322.581 329.033 335.485 341.936 348.388 354.839 361.291 367.743 374.194 380.646 6 387.098 393.549 400.001 406.452 412.904 419.356 425.807 432.259 438.711 445.162 7 451.614 458.065 464.517 470.969 477.420 483.872 490.324 496.775 503.227 509.678 8 516.130 522.582 529.033 535.485 541.937 548.388 554.840 561.291 567.743 574.195 9 580.646 587.098 593.550 600.001 606.453 612.904 619.356 625.808 632.259 638.711 INCHES 3 TO CENTIMETERS 3 1 in. 3 =16. 38716 Cm 3 ^ 1 2 3 4 5 6 7 8 9 16.39 32.77 49.16 65.55 81.94 98.32 114,71 131.10 147.48 1 163.87 180.26 196.65 213.03 229.42 245.81 262.19 278.58 294.97 311.36 2 327.74 344.13 360.52 376.90 393.29 409.68 426.07 442.45 458.84 475.23 3 491.61 508.00 524.39 540.78 557.16 573.55 589.94 606.32 622.71 639.10 4 655.49 671.87 688.26 704.65 721.04 737.42 753.81 770.20 786.58 802.97 5 819.36 835.75 852.13 868.52 884.91 901.29 917.68 934.07 950.46 966.84 6 983.23 999.62 1016.00 1032.39 1048.78 1065.17 1081.55 1097.94 1114.33 1130.71 7 1147.10 1163.49 1179.88 1196.26 1212.65 1229.04 1245.42 1261.81 1278.20 1294.59 8 1310.97 1327.36 1343.75 1360.13 1376.52 1392.91 1409.30 1425.68 1442.07 1458.46 9 1474.84 1491.23 1507.62 1524.01 1540.39 1556.78 1573.17 1589.55 1605.94 1622.33 INCHES 4 TO CENTIMETERS 4 1 in. 4 ==41. 62347 CHI 4 ^ 1 2 3 4 5 6 7 8 9 41.62 83.25 124.87 166.49 208.12 249.74 291.36 332.99 374.61 1 416.23 457.86 499.48 541.11 582.73 624.35 665.98 707.60 749.22 790.85 2 832.47 874.09 915.72 957.34 998.96 1040.59 1082.21 1123.83 1165.46 1207.08 3 1248.70 1290.33 1331.95 1373.57 1415.20 1456.82 1498.44 1540.07 1581.69 1623.32 4 1664.94 1706.56 1748.19 1789.81 1831.43 1873.06 1914.68 1956.30 1997.93 2039.55 5 2081.17 2122.80 2164.42 2206.04 2247.67 2289.29 2330.91 2372.54 2414.16 2455.78 6 2497.41 2539.03 2580.66 2622.28 2863.90 2705.53 2747.15 2788.77 2830.40 2872.02 7 2913.64 2955.27 2996.89 3038.51 3080.14 3121.76 3163.38 3205.01 3246.63 3288.25 8 3329.88 3371.50 3413.12 3454.75 3496.37 3537.99 3579.62 3621.24 3662.87 3704.49 9 3746.11 3787.74 3829.36 3870.98 3912.61|3954.23 3995.85 4037.48 4079.10 4120.72 342 MEASURES AND WEIGHTS METRIC CONVERSION TABLES CENTIMETERS TO INCHES 1 cm=0.3937 in. *^ 1 2 3 4 5 6 7 8 9 0.3937 0.7874 1.1811 1.5748 1.9685 ! 2.3622 2.7559 3.1496 3.5433 i 3.9370 4.3307 4.7244 5.1181 5.5118 5.9055 6.2992 6.6929 7.0866 7.4803 2 7.8740 8.2677 8.6614 9.0551 9.4488 9.8425 10.2362 ! 10.6299 11.0236 11.4173 3 11.8110 12.2047 12.5984 12.9921 13.3858 13.7795 114.1732 14.5669 14.9606 15.3543 4 15.7480 16.1417 16.5354 i 16.9291 17.3228 ! 17.7165 18.1102 18.5039 18.8976 19.2913 5 19.6850 20.0787 20.4724 20.8661 21.2598 21.6535 22.0472 22.4409 22.8346 23.2283 6 23.6220 24.0157 24.4094 24.8031 25.1968 25.5905 25.9842 : 26.3779 i 26.7716 27.1653 7 27.5590 27.9527 28.3464 28.7401 29.1338 29.5275 29.9212 1 30.3149 i 30.7086 31.1023 8 31.4960 31.8897 32.2834 32.6771 33.0708 33.4645 33.8582 34.2519 34.6456 35.0393 9 35.4330 35.8267 1 36.2204 36.6141 37.0078 37.4015 37.7952 38.1889 1 38.5826 38.9763 CENTIMETERS 2 TO INCHES 2 1 Cm 2 =0. 15499969 in. 2 . i 1 2 3 4 5 6 7 8 9 0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950 1 1.5500 1.7050 1.8600 2.0150 2.1700 2.3250 2.4800 2.6350 2.7900 2.9450 2 3.1000 3.2550 3.4100 3.5650 3.7200 3.8750 4.0300 4.1850 4.3400 4.4950 3 4.6500 4.8050 4.9600 5.1150 5.2700 5.4250 5.5800 5.7350 5.8900 6.0450 4 6.2000 6.3550 6.5100 6.6650 i 6.8200 6.9750 7.1300 7.2850 7.4400 7.5950 5 7.7500 7.9050 8.0600 8.2150 8.3700 8.5250 8.6800 8.8350 8.9900 9.1450 6 9.3000 9.4550 9.6100 9.7650 9.9200 10.0750 10.2300 10.3850 10.5400 10.6950 7 10.8500 11.0050 11.1600 11.3150 i 11.4700 11.6250 11.7800 11.9350 12.0900 12.2450 8 12.4000 12.5550 12.7100 12.8650 13.0200 i 13.1750 13.3300 13.4850 13.6400 13.7950 9 13.9500 14.1050 14.2600 14.4150 14.5700 i 14.7250 14.8800 15.0350 15.1900 15.3450 CENTIMETERS 3 TO INCHES 3 1 Cm 3 =0. 0610234 in. 3 . ^ 1 2 3 4 5 6 7 8 9 0.06102 0.12205 0.18307 0.24409 0.30512 0.36614 0.42716 0.48819 0.54921 1 0.61023 0.67126 0.73228 0.79330 0.85433 0.91535 0.97637 1.03740 1.09842 1.15944 2 1.22047 1.28149 1.34251 1.40354 i 1. 46456 j 1.52559 1.58661 1.64763 1.70886 1.76968 3 1.83070 1.89173 1.95275 2.01377 2.07480 2.13582 2.19684 2.25787 2.31889 2.37991 4 2.44094 2.50196 2.56298 2.62401 2.68503 2.74605 1 2.80708 2.86810 2.92912 2.99015 5 3.05117|3.11219 3.17322 3.23424 i 3.29526 3.35629 3.41731 3.47833 3.53936 3.60038 6 3.66140 ! 3.72243 3.78345 1 3.84447 ! 3.90550 i 3.96652 4.02754 4.08857 4.14959 4.21061 7 4.27164 4.33266 4.39368 1 4.45471 1 4.51573 4.57675 4.63778 4.69880 4.75983 4.82085 8 4.88187 4.94290 5.00392 5.06494 5.12597 5.18699 5.24801 5.30904 5.37006 5.43108 9 5.49211 5.55313 5.61415 5.67518 5.73620 5.79722 5.85825 5.91927 5.98029 6.04132 CENTIMETERS 4 TO INCHES 4 1 Cm 4 =0. 0240249 in. 4 . Hi 1 2 3 4 5 6 7 8 9 0.02402 0.04805 0.07207 0.09610 0.12012 0.14415 0.16817 0.19220 0.21622 1 0.24025 0.26427 0.28830 0.31232 0.33635 0.36037 0.38440 0.40842 0.43245 0.45647 2 0.48050 0.50452 0.52855 0.55257 0.57660 0.60C62 10.62465 0.64867 0.67270 0.69672 3 0.72075 0.74477 0.76880 0.79282 0.81685 0.84087 0.86490 0.88892 0.91295 0.93697 4 0.96100 0.98502 1.00905 1.03307 1.05710 1.08112 1.10515 1.12917 1.15320 1.17722 5 1.20125 1.22527 1.24930 1.27332 1.29734 1.32137 1.34539 1.36942 1.39344 1.41747 6 1.44149 1.46552 1.48954 1.51357 1.53759 1.56162 1.58564 1.60967 1.63369 1.65772 7 1.68174 1.70577 1.72979 1.75382 1.77784 1.80187 1.82589 1.84992 1.87394 1.89797 8 1.92199 1.94602 1.97004 1.99407 2.01809 2.04212 2.06614 2.09017 2.11419 2.13822 9 2.16224 2.18627 2.21029 2.23432 2.25834 2.28237 2.30639 2.33042 2.35444 2.37847 343 CARNEGIE STEEL COMPANY METRIC CONVERSION TABLES FEET TO METERS 1 ft.=0.3048006 m *& 1 2 3 4 5 6 7 8 9 0.3048 0.6096 0.9144 1.2192 1.5240 1.8288 2.1336 2.4384 2.7432 i 3.0480 3.3528 3.6576 3.9624 4.2672 4.5720 4.8768 5.1816 5.4864 5.7912 2 6.0960 6.4008 6.7056 7.0104 7.3152 7.6200 7.9248 8.2296 8.5344 8.8392 3 9.1440 9.4488 9.7536 10.0584 10.3632 10.6680 10.9728 11.2776 11.5824 11.8872 4 12.1920 12.4968 12.8016 13.1064 13.4112 13.7160 14.0208 14.3256 14.6304 14.9352 5 15.2400 15.5448 15.8496 16.1544 16.4592 16.7640 17.0688 17.3736 17.6784 17.9832 6 18.2880 18.5928 18.8976 19.2024 19.5072 19.8120 20.1168 20.4216 20.7264 21.0312 7 21.3360 21.6408 21.9456 22.2504 22.5552 22.8600 23.1648 23.4696 23.7744 24.0792 8 24.3840 24.6888 24.9936 25.2984 25.6033 25.9081 26.2129 26.5177 26.8225 27.1273 9 27.4321 27.7369 28.0417 28.3465 28.6513 28.9561 29.2609 29.5657 29.8705 30.1753 POUNDS PER FOOT TO KILOGRAMS PER METER 1 Ib./ft.=i.488i6i kg/m VA- s^i. 1 2 3 4 5 6 7 8 9 1.488 2.976 4.464 5.953 7.441 8.929 10.417 11.905 13.393 1 14.882 16.370 17.858 19.346 20.834 22.322 23.811 25.299 26.787 23.275 2 29.763 31.251 32.740 34.228 35.716 37.204 38.692 40.180 41.669 43.157 3 44.645 46.133 47.621 49.109 50.597 52.086 53.574 55.062 56.550 58.038 4 59.526 61.015 62.503 63.991 65479 66.967 68.455 69.944 71.432 72.920 5 74.408 75.896 77.384 78.873 80.361 81.849 83.337 84.825 86.313 87.802 6 89.290 90.778 92.266 93.754 95.242 96.730 98.219 99.707 101.195 102.683 7 104.171 105.659 107.148 108.636 110.124 111.612 113.100 114.588 116.077 117.565 8 119.053 120.541 122.029 123.517 125.006 126.494 127.982 129.470 130.958 132.446 9 133.934 135.423 136.911 138.399 139.887 141.375 142.863 144.352 145.840 147.328 POUNDS PER SQ. INCH TO KG. PER SQ. CM. 1 Ib. /in. 2 =o.0703067 kg/cm 2 *& 1 2 3 4 5 6 7 8 9 0.07031 0.14061 0.21092 0.28123 0.35153 0.42184 0.49215 0.56245 0.63276 i 0.70307 0.77337 0.84368 0.91399 0.98429 1.05460 1.12491 1.19521 1.26552 1.33583 2 1.40613 1.47644 1.54675 1.61705 1.68736 1.75767 1.82797 1.89828 1.96859 2.03889 3 2.10920 2.17951 2.24981 2.32012 2.39043 2.46073 2.53104 2.60135 2.67165 2.74196 4 2.81227 2.88257 2.95288 3.02319 3.09349 3.16380 3.23411 3.30441 3.37472 3.44503 5 3.51534 3.58564 3.65595 3.72626 3.79656 3.86687 3.93718 4.00748 4.07779 4.14810 6 4.21840 4.28871 4.35902 4.42932 4.49963 4.56994 4.64024 4.71055 4.78086 4.85116 7 4.92147 4.99178 5.06208 5.13239 5.20270 5.27300 5.34331 5.41362 5.48392 5.55423 8 5.62454 5.69484 5.76515 5.83546 5.90576 5.97607 6.04638 6.11668 6.18699 6.25730 9 6.32760 6.39791 6.46822 6.53852 6.60883 6.67914 6.74944 1 6.81975 6.89006 6.96036 INCH-POUNDS TO KILOGRAM-CENTIMETERS 1 in-lb. =1.1521 27 kg-cm >&> 'v^ 1 2 3 4 5 6 7 8 9 o 1.152 2.304 3.456 4.609 5.761 6.913 8.065 9.217 10.369 i 11.521 12.673 13.826 14.978 16.130 17.282 18.434 19.586 20.738 21.890 2 23.043 24.195 25.347 26.499 27.651 28.803 29.955 31.107 32.260 33.412 3 34.564 35.716 36.868 38.020 39.172 40.324 41.477 42.629 43.781 44.033 4 46.085 47.237 48.389 49.541 50.694 51.846 52.998 54.150 55.302 56.454 5 57.606 58.758 59.911 61.063 62.215 63.367 64.519 65.671 66.823 67.975 6 69.128 70.280 71.432 72.584 73.736 74.888 76.040 77.193 78.345 79.497 7 80.649 81.801 82.953 84.105 85.257 86.410 87.562 88.714 89.866 91.018 8 92.170 93.322 94.474 95.627 96.779 97.931 99.083 100.235 101.387 102.539 9 103.691 104.844 105.996 107.148 108.300 109 .452 1 110.604 111.756 112.908 114.061 344 MEASURES AND WEIGHTS METRIC CONVERSION TABLES METERS TO FEET 1 m=3.2808333 ft. ^ 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 32.808 65.617 98.425 131.233 164.042 196.850 229.658 262.467 295.275 3.281 36.089 68.898 101.706 134.514 167.323 200.131 232.939 265.748 298.556 6.562 39.370 . 72.178 104.987 137.795 170.603 203.412 236.220 269.028 301.837 9.843 42.651 75.459 108.268 141.076 173.884 206.693 239.501 272.309 305.118 13.123 45.932 78.740 111.548 144.357 177.165 209.973 242.782 275.590 308.398 16.404 49.213 82.021 114.829 147.638 180.446 213.254 246.063 278.871 311.679 19.685 52.493 85.302 118.110 150.918 183.727 216.535 249.343 282.152 314.960 22.966 55.774 88.583 121.391 154.199 187.008 219.816 252.624 285.433 318.241 26.247 59.055 91.863 124.672 157.480 190.288 223.097 255.905 288.713 321.522 29.528 62.336 95.144 127.953 160.761 193.569 226.378 259.186 291.994 324.803 KILOGRAMS PER METER TO POUNDS PER FOOT 1 kg/m=o.67i97 Ib./ft. g 1 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9 6.7197 13.4394 20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 0.6720 7.3917 14.1114 20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 1.3439 8.0636 14.7833 21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212 2.0159 8.7356 15.4553 22.1750 28.8947 35.6144 42.3341 49.0538 55.7735 62.4932 2.6879 9.4076 16.1273 22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 3.3599 10.0796 16.7993 23.5190 30.2387 36.9584 43.6781 50.3978 57.1175 63.8372 4.0318 10.7515 17.4712 24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 4.7038 11.4235 18.1432 24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 5.3758 12.0955 18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 6.0477 12.7674 19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053 66.5250 KG. PER SQ. CM. TO POUNDS PER SQ. INCH 1 kg/cm 2 =i4.2234 lbs./in. 2 ^ 1 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9 142.23 284.47 426.70 568.94 711.17 853.40 995.64 1137.87 1280.11 14.22 156.46 298.69 440.93 583.16 725.39 867.63 1009.86 1152.10 1294.33 28.45 170.68 312.91 455.15 597.38 739.62 881.85 1024.08 1166.32 1308.55 42.67 184.90 327.14 469.37 611.61 753.84 896.07 1038.31 1180.54 1322.78 56.89 199.13 341.36 483.60 625.83 768.06 910.30 1052.53 1194.77 1337.00 71.12 213.35 355.59 497.82 640.05 782.29 924.52 1066.76 1208.99 1351.22 85.34 227.57 369.81 512.04 654.28 796.51 938.74 1080.98 1223.21 1365.45 99.56 241.80 384.03 526.27 668.50 810.73 952.97 1095.20 1237.44 1379.67 113.79 256.02 398.26 540.49 682.72 824.96 967.19 1109.43 1251.66 1393.89 128.01 270.24 412.48 554.71 696.95 839.18 981.41 1123.65 1265.88 1408.12 KILOGRAM-CENTIMETERS TO INCH-POUNDS 1 kg/cm=0.86796 in./lb. s 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 8.6796 17.3592 26.0388 34.7184 43.3980 52.0776 60.7572 69.4368 78.1164 0.8680 9.5476 18.2272 26.9068 35.5864 44.2660 52.9456 61.6252 70.3048 78.9844 1.7359 10.4155 19.0951 27.7747 36.4543 45.1339 53.8135 62.4931 71.1727 79.8523 2.6039 11.2835 19.9631 28.6427 37.3223 46.0019 54.6815 63.3611 72.0407 80.7203 3.4718 12.1514 20.8310 29.5106 38.1902 46.8698 55.5494 64.2290 72.9086 81.5882 4.3398 5.2078 13.0194 13.8874 21.6990 22.5670 30.3786 j 31.2466 39.0582 39.9262 47.7378 48.6058 56.4174 57.2854 65.0970 65.9650 73.7766 74.6446 82.4562 83.3242 6.0757 14.7553 23.4349 32.114d 40.7941 49.4737 58.1533 66.8329 75.5125 84.1921 6.9437 15.6233 24.3029 32.9825 41.6621 50.3417 59.0213 67.7009 76.3805 85.0601 7.8116 16.4912 25.1708 33.8504 42.5300 51.2096 59.8892 68.5688 77.2484 85.9280 345 CARNEGIE STEEL COMPANY METRIC CONVERSION TABLE INCHES TO MILLIMETERS 39.37 inches, IT. S. Standard=l meter=100 centimeters=1000 millimeters. Inches He % 3 /10 % 5 /io % 7 /10 1 2 3 4 5 0.00 25.40 50.80 76.20 101.60 127.00 1.59 26.99 52.39 77.79 103.19 128.59 3.18 28.58 53.98 79.38 104.78 130.18 4.76 30.16 55.56 80.96 106.36 131.76 6.35 31.75 57.15 82.55 107.95 133.35 7.94 33.34 58.74 84.14 109.54 134.94 9.53 34.93 60.33 85.73 111.13 136.53 11.11 36.51 61.91 87.31 112.71 138.11 6 7 8 9 10 152.40 177.80 203.20 228.60 254.00 153.99 179.39 204.79 230.19 255.59 155.58 180.98 206.38 231.78 257.18 157.16 182.56 207.96 233.36 258.76 158.75 184.15 209.55 234.95 260.35 160.34 185.74 211.14 236.54 261.94 161.93 187.33 212.73 238.13 263.53 163.51 188.91 214.31 239.71 265.11 11 12 13 14 15 279.40 304.80 330.20 355.60 381.00 280.99 306.39 331.79 357.19 382.59 282.58 307.98 333.38 358.78 384.18 284.16 309.56 334.96 360.36 385.76 285.75 311.15 336.55 361.95 387.35 287.34 312.74 338.14 363.54 388.94 288.93 314.33 339.73 365.13 390.53 290.51 315.91 341.31 366.71 392.11 16 17 18 19 20 406.40 431.80 457.20 482.60 508.00 407.99 433.39 458.79 484.19 509.59 409.58 434.98 460.38 485.78 511.18 411.16 436.56 461.96 487.36 512.76 412.75 438.15 463.55 488.95 514.35 414.34 439.74 465.14 490.54 515.94 415.93 441.33 466.73 492.13 517.53 417.51 442.91 468.31 493.71 519.11 21 22 23 24 25 533.40 558.80 584.20 609.60 635.00 534.99 560.39 585.79 611.19 636.59 536.58 561.98 587.38 612.78 638.18 538.16 563.56 588.96 614.36 639.76 539.75 565.15 590.55 615.95 641.35 541.34 566.74 592.14 617.54 642.94 542.93 568.33 593.73 619.13 644.53 544.51 569.91 595.31 620.71 646.11 26 27 28 29 30 660.40 685.80 711.20 736.60 762.00 661.99 687.39 712.79 738.19 763.59 663.58 688.98 714.38 739.78 765.18 665.16 690.56 715.96 741.36 766.76 666.75 692.15 717.55 742.95 768.35 668.34 693.74 719.14 744.54 769.94 669.93 695.33 720.73 746.13 771.53 671.51 696.91 722.31 747.71 773.11 31 32 33 34 35 787.40 812.80 838.20 863.60 889.00 788.99 814.39 839.79 865.19 890.59 790.58 815.98 841.38 866.78 892.18 792.16 817.56 842.96 868.36 893.76 793.75 819.15 844.55 869.95 895.35 795.34 820.74 846.14 871.54 896.94 796.93 822.33 847.73 873.13 ' 898.53 798.51 823.91 849.31 874.71 900.11 36 37 38 39 40 914.40 939.80 965.20 990.60 1016.00 915.99 941.39 966.79 992.19 1017.59 917.58 942.98 968.38 993.78 1019.18 919.16 944.56 969.96 995.36 1020.76 920.75 946.15 971.55 996.95 1022.35 922.34 947.74 973.14 998.54 1023.94 923.93 949.33 974.73 1000.13 1025.53 925.51 950.91 976.31 1001.71 1027.11 41 42 43 44 45 1041.40 1066.80 1092.20 1117.60 1143.00 1042.99 1068.39 1093.79 1119.19 1144.59 1044.58 1069.98 1095.38 1120.78 1146.18 1046.16 1071.56 1096.96 1122.36 1147.76 1047.75 1073.15 1098.55 1123.95 1149.35 1049.34 1074.74 1100.14 1125.54 1150.94 1050.93 1076.33 1101.73 1127.13 1152.53 1052.51 1077.91 1103.31 1128.71 1154.11 46 47 48 49 50 1168.40 1193.80 1219.20 1244.60 1270.00 1169.99 1195.39 1220.79 1246.19 1271.59 1171.58 1196.98 1222.38 1247.78 1273.18 1173.16 1198.56 1223.96 1249.36 1274.76 1174.75 1200.15 1225.55 1250.95 1276.35 1176.34 1201.74 1227.14 1252.54 1277.94 1177.93 1203.33 1228.73 1254.13 1279.53 1179.51 1204.91 1230.31 1255.71 1281.11 346 MEASURES AND WEIGHTS METRIC CONVERSION TABLE INCHES TO MILLIMETERS 39.37 inches, U. S. Standard=l meter=100 centimeters=1000 millimeters Inches % %6 % Hie % %6 % 1( He 1 2 3 4 5 12.70 38.10 63.50 88.90 114.30 139.70 14.29 39.69 65.09 90.49 115.89 141.29 15.88 41.28 66.68 92.08 117.48 142.88 17.46 42.86 68.26 93.66 119.06 144.46 19.05 44.45 69.85 95.25 120.65 146.05 20.64 46.04 71.44 96.84 122.24 147.64 22.23 47.63 73.03 98.43 123.83 149.23 23.81 49.21 74.61 100.01 125.41 150.81 6 7 8 9 10 165.10 190.50 215.90 241.30 266.70 166.69 192.09 217.49 242.89 268.29 168.28 193.68 219.08 244.48 269.88 169.86 195.26 220.66 246.06 271.46 171.45 196.85 222.25 247.65 273.05 173.04 198.44 223.84 249.24 274.64 174.63 200.03 225.43 250.83 276.23 176.21 201.61 227.01 252.41 277.81 11 12 13 14 15 292.10 317.50 342.90 368.30 393.70 293.69 319.09 344.49 369.89 395.29 295.28 320.68 346.08 371.48 396.88 296.86 322.26 347.66 373.06 398.46 298.45 323.85 349.25 374.65 400.05 300.04 325.44 350.84 376.24 401.64 301.63 327.03 352.43 377.83 403.23 303.21 328.61 354.01 379.41 404.81 16 17 18 19 20 419.10 444.50 469.90 495.30 520.70 420.69 446.09 471.49 496.89 522.29 422.28 447.68 473.08 498.48 523.88 423.86 449.26 474.66 500.06 525.46 425.45 450.85 476.25 501.65 527.05 427.04 452.44 477.84 503.24 528.64 428.63 454.03 479.43 504.83 530.23 430.21 455.61 481.01 506.41 531.81 21 22 23 24 25 546.10 571.50 596.90 622.30 647.70 547.69 573.09 598.49 623.89 649.29 549.28 574.68 600.08 625.48 650.88 550.86 576.26 601.66 627.06 652.46 552.45 577.85 603.25 628.65 654.05 554.04 579.44 604.84 630.24 655.64 555.63 581.03 606.43 631.83 657.23 557.21 582.61 608.01 633.41 658.81 26 27 28 29 30 673.10 698.50 723.90 749.30 774.70 674.69 700.09 725.49 750.89 776.29 676.28 701.68 727.08 752.48 777.88 677.86 703.26 728.66 754.06 . 779.46 679.45 704.85 730.25 755.65 781.05 681.04 706.44 731.84 757.24 782.64 682.63 708.03 733.43 758.83 784.23 684.21 709.61 735.01 760.41 785.81 31 32 33 34 35 800.10 825.50 850.90 876.30 901.70 801.69 827.09 852.49 877.89 903.29 803.28 828.68 854.08 879.48 904.88 804.86 830.26 855.66 881.06 906.46 806.45 831.85 857.25 882.65 908.05 808.04 833.44 858.84 884.24 909.64 809.63 835.03 860.43 885.83 911.23 811.21 836.61 862.01 887.41 912.81 36 37 38 39 40 927.10 952.50 977.90 1003.30 1028.70 928.69 954.09 979.49 1004.89 1030.29 930.28 955.68 981.08 1006.48 1031.88 931.86 957.26 982.66 1008.06 1033.46 933.45 958.85 984.25 1009.65 1035.05 935.04 960.44 985.84 1011.24 1036.64 936.63 962.03 987.43 1012.83 1038.23 938.21 963.61 989.01 1014.41 1039.81 41 42 43 44 45 1054.10 1079.50 1104.90 1130.30 1155.70 1055.69 1081.09 1106.49 1131.89 1157.29 1057.28 1082.68 1108.08 1133.48 1158.88 1058.86 1084.26 1109.66 1135.06 1160.46 1060.45 1085.85 1111.25 1136.65 1162.05 1062.04 1087.44 1112.84 1138.24 1163.64 1063.63 1089.03 1114.43 1139.83 1165.23 1065.21 1090.61 1116.01 1141.41 1166.81 46 47 48 49 50 1181.10 1206.50 1231.90 1257.30 1282.70 1182.69 1208.09 1233.49 1258.89 1284.29 1184.28 1209.68 1235.08 1260.48 1285.88 1185.86 1211.26 1236.66 1262.06 1287.46 1187.45 1212.85 1238.25 1263.65 1289.05 1189.04 1214.44 1239.84 1265.24 1290.64 1190.63 1216.03 1241.43 1266.83 1292.23 1192.21 1217.61 1243.01 1268.41 1293.81 347 CARNEGIE STEEL COMPANY METRIC CONVERSION TABLE POUNDS AVOIRDUPOIS TO KILOGRAMS 1 Pound=0.45359 Kilograms Pounds 1 2 3 4 5 6 7 8 9 0.45 0.91 1.36 1.81 2.27 2.72 3.18 3.63 4.08 1 4.54 4.99 5.44 5.90 6.35 6.80 7.26 7.71 8.16 8.62 2 9.07 9.53 9.98 10.43 10.89 11.34 11.79 12.25 12.70 13.15 3 13.61 14.06 14.51 14.97 15.42 15.88 16.33 16.78 17.24 17.69 4 18.14 18.60 19.05 19.50 19.96 20.41 20.87 21.32 21.77 22.23 5 22.68 23.13 23.59 24.04 24.49 24.95 25.40 25.85 26.31 * 26.76 6 27.22 27.67 28.12 28.58 29.03 29.48 29.94 30.39 30.84 31.30 7 31.75 32.21 32.66 33.11 33.57 34.02 34.47 34.93 35.38 35.83 8 36.29 36.74 37.19 37.65 38.10 38.56 39.01 39.46 39.92 40.37 9 40.82 41.28 41.73 42.18 42.64 43.09 43.54 44.00 44.45 44.91 10 45.36 45.81 46.27 46.72 47.17 47.63 48.08 48.53 48.99 49.44 11 49.90 50.35 50.80 51.26 51.71 52.16 52.62 53.07 53.52 53.98 12 54.43 54.88 55.34 55.79 56.25 56.70 57.15 57.61 58.06 58.51 13 58.97 59.42 59.87 60.33 60.78 61.23 61.69 62.14 62.60 63.05 14 63.50 63.96 64.41 64.86 65.32 65.77 66.22 66.68 67.13 67.59 15 68.04 68.49 68.95 69.40 69.85 70.31 70.76 71.21 71.67 72.12 16 72.57 73.03 73.48 73.94 74.39 74.84 75.30 75.75 76.20 76.66 17 77.11 77.56 78.02 78.47 78.93 79.38 79.83 80.29 80.74 81.19 18 81.65 82.10 82.55 83.01 83.46 83.91 84.37 84.82 85.28 85.73 19 86.18 86.64 87.09 87.54 88.00 88.45 88.90 89.36 89.81 90.26 20 90.72 91.17 91.63 92.08 92.53 92.99 93.44 93.89 94.35 94.80 21 95.25 95.71 96.16 96.62 97.07 97.52 97.98 98.43 98.88 99.34 22 99.79 100.24 100.70 101.15 101.60 102.06 102.51 102.97 103.42 103.87 23 104.33 104.78 105.23 105.69 106.14 106.59 107.05 107.50 107.96 108.41 24 108.86 109.32 109.77 110.22 110.68 111.13 111.58 112.04 112.49 112.94 25 113.40 113.85 114.31 114.76 115.21 115.67 116.12 116.57 117.03 117.48 26 117.93 118.39 118.84 119.29 119.75 120.20 120.66 121.11 121.56 122.02 27 122.47 122.92 123.38 123.83 124.28 124.74 125.19 125.65 126.10 126.55 28 127.01 127.46 127.91 128.37 128.82 129.27 129.73 130.18 130.63 131.09 29 131.54 132.00 132.45 132.90 133.36 133.81 134.26 134.72 135.17 135.62 30 136.08 136.53 136.98 137.44 137.89 138.35 138.80 139.25 139.71 140.16 31 140.61 141.07 141.52 141.97 142.43 142.88 143.34 143.79 144.24 144.70 32 145.15 145.60 146.06 146.51 146.96 147.42 147.87 148.32 148.78 149.23 33 149.69 150.14 150.59 151.05 151.50 151.95 152.41 152.86 153.31 153.77 34 154.22 154.68 155.13 155.58 156.04 156.49 156.94 157.40 157.85 158.30 35 158.76 159.21 159.66 160.12 160.57 161.03 161.48 161.93 162.39 162.84 36 163.29 163.75 164.20 164.65 165.11 165.56 166.01 166.47 166.92 167.38 37 167.83 168.28 168.74 169.19 169.64 170.10 170.55 171.00 171.46 171.91 38 172.37 172.82 173.27 173.73 174.18 174.63 175.09 175.54 175.99 176.45 39 176.90 177.35 177.81 178.26 178.72 179.17 179.62 180.08 180.53 180.98 40 181.44 181.89 182.34 182.80 183.25 183.70 184.16 184.61 185.07 185.52 41 185.97 186.43 186.88 187.33 187.79 188.24 188.69 189.15 189.60 190.06 42 190.51 190.96 191.42 191.87 192.32 192.78 193.23 193.68 194.14 194.59 43 195.04 195.50 195.95 196.41 196.86 197.31 197.77 198.22 198.67 199.13 44 199.58 200.03 200.49 200.94 201.40 201.85 202.30 202.76 203.21 203.66 45 204.12 204.57 205.02 205.48 205.93 206.38 206.84 207.29 207.75 208.20 46 208.65 209.11 209.56 210.01 210.47 210.92 211.37 211.83 212.28 212.73 47 213.19 213.64 214.10 214.55 215.00 215.46 215.91 216.36 216.82 217.27 48 217.72 218.18 218.63 219.09 219.54 219.99 220.45 220.90 221.35 221.81 49 222.26 222.71 223.17 223.62 224.07 224.53 224.98 225.44 225.89 226.34 348 MEASURES AND WEIGHTS METRIC CONVERSION TABLE POUNDS AVOIRDUPOIS TO KILOGRAMS 1 Pound=0.45359 Kilograms Pounds 01234 56789 50 226.80 227.25 227.70 228.16 228.61 229.06 229.52 229.97! 230.42! 230.88 51 52 231.33 231.79 232.24 232.69j 233.15 235.87 236.32 236.78 237.23)237.68 233.60! 234.05 234.51 238.14 238.59 239.04 234.96 235.41 239.50 239.95 53 240.40 240.86' 241.311 241. 76 242.22 242.67 243.13 243.58 244.03 244.49 54 244.94 245.39 245.85 246.30246.75(247.21 247.66 248.12 248.57 249.02 55 249.48[ 249.93 250.38J 250.84 1251.29251.74 252.20J 252.65 253.10,253.56 56 254.01' 254.47 254.92! 255.37 255.83l256.28 256.73 1 257.19 257.64! 258.09 57 258.55 259.00 259.45 259.91 260.36. 26C.82i 261. 27 261.72 262. 181262. 63 58 263.08 263.54J 263. 99 264.44 264.90J 265.35 265.81 266.26 266.71 267.17 59 267.62 268.07 268.53i 268.98 269.43 269.89 270.34 270.79 271.25 271.70 60 272.161 272.61 273.06 273.52 273.97 274.42 274.88 275.33 275.78 276.24 61 276.69! 277.14 277.6d 278.05 278.51 278.961279.41 279.87 280.32 280.77 62 63 281.23 281.68 285.76! 286.22 282.13 282.59 283.04 286.67 287. 12j 287.58 283.50 283.95; 284.401 284.86[ 285.31 288.03 288.48; 288.94! 289.39! 289.85 64 290.30; 290.75 291.21 291.66 292.11 292.57 1 293.02 293.47 293.93! 294.38 65 294.84 295.29 295.74 296.20! 296.65 297.10! 297.56 298.01 298.46 298.92 66 299.37 299.82 300.28 300.73! 301. 19 301.64 302.09 302.55 303.00 303.45 67 303.91 304.36304.811305.27 305.72 306.17 306.63 307.08 307.54 307.99 68 308.44 308.90 309.35 309.80 310.26! 310.71! 311. 16 311.62 312.07 312.53 69 312.98 313.43 313.89 314.34 314.79 315.25! 315.70! 316.15 316.61 317.06 70 317.51 317.97 318.42 318.88 319.33 319.78 320.24 320.69 321.14 321.60 71 322.05 322.50 322.96 323.41 323.86 324.32! 324.77 325.23 325.68 326.13 72 326.59 327.04 327.49! 327.95 328.40 328.85! 329.31 329.76 330.22J 330.67 73 331.12 331.58 332.03 332.48 332.94 333.39 333.84 334.30 334.75 335.20 74 75 335.66336.11 340.19 340.65 336.57 337.02 341.10 341.56 337.47 342.01 337.93! 338.38 338.83 342.46 342.92 343.37 339.29 343.82 339.74 344.28 76 77 344.73 345.18 349.27 349.72 345.64! 346.09 350.17 350.63 346.54 351.08 347.00 347.45 347.91 351.53 351.99 352.44 348.36 352.89 348.81 353.35 78 353.80! 354.26 354.71! 355.16 355.62 356.071 356.52 356.98 357.43 357.88 79 358.34! 358.79 359.25 359.70 360.15 360.61 361.06 361.51 361.97 362.42 80 362.87 363.33 363.78, 364.23 364.69 365.14 365.60] 366.05 366.50 366.96 81 367.41 367.86 368.32! 368.77 369.22! 369.681 370.13 370.59 371.04 371.49 . 82 371.95 372.40 372.85 373.31 373.76374.21 374.67 375.12 375.57 376.03 83 84 376.48 376.94!377.39 377.84 ; 378.30J 378.75| 379.2OJ 379.66 381.02 381.47 381.92 382.33 382.83 383.29 383.74! 384.19 380.11 380.56 384.65 385.10 85 385.55! 386.01 386.461 386.91 387.37 387.821 388.28 388.73 389.18 389.64 86 390.09' 390.54 391.00i 391.45 391.901 392.36! 392.81! 393.26 393.72 394.17 87 394.63 395.08 395.53! 395.99 396.44 396.89 397.35! 397.8O 398.25 398.71 88 399.16 399.61 400.07 400.52 400.98 401.431401.88 402.34 402.79 403.24 89 90 403.78! 404. 15 408.23 408.69 404.60) 405. 06 405.51 409.14 4O9.59 410.05 405.97 406.42 406.87 410.50 410.95 411.41 407.33 411.86 407.78 412.32 91 92 412.771413.22 417.31)417.76 413.68 414.13 418.21 418.67 414.58 419.12 415.14 415.49 415.94 419.57 420.031420.48 416.40' 416.85 420.93 421.39 93 421.84 422.29 422.75 423.20 423.66 424.11 424.561425.02 425.47 425.92 94 95 426.38 426.83 430.91 431.37 427.28 427.74 428.19 431.82 432.27 432.73 428.64 429. iq 429.55 433.18 433.63 434.09 430.011430.46 434.54 435.00 96 435.45 435.90 436.36 1 436.81 437.26 437.72' 438. 171 438.62 439.08 439.53 97 439.98, 440.44 440.89 441.35 441.80 442.251 442.71 443.16 443.61 444.07 98 99 444.52 444.97 449.06t 449.51 445.43 445.88 446.33 449.961 450.421 450.87 446.79J 447.24 447.70 451.321 451.781 452.23 448.15 448.60 452.69J 453. 14 CARNEGIE STEEL COMPANY PROPERTIES OF THE CIRCLE Circumference of Circle of Dia. 1 = 7r = 3.i4i59265 Circumference of Circle = 2 TT r Dia. of Circle = Circumference x 0.31831 Diameter of Circle of equal periphery as square = side x 1.27324 Side of Square of equal periphery as circle = diameter x 0.78540 Diameter of Circle circumscribed about square = side x 1.41421 Side of Square inscribed in Circle = diameter x 0.70711 x=Vr 2 -(r+y-b) 2 7T 7T2 1 -^ 180 180 7T 3.14159265, log = 0.4971499 0.3183099, log = 7.5028501 9.8696044, log = 0.9942997 0.1013212, log = 1.0057003 1.7724539, log = 0.2485749 0.5641896, log =7.7514251 0.0174533, log =.2418774 57.2957795, log = 1.7581226 350 MENSURATION TABLES AREA OF PLANE FIGURES Base x l /2 perpendicular height. Triangle : Trapezium : Trapezoid : Parallelogram : Regular Polygon : Circle: Sector of Circle: Segment of Circle: sin A Circle of same area as square: diameter = side x 1.12838 Square of same area as circle : side = diameter x 0.88623 Ellipse : Long diameter x short diameter x 0.78540 Parabola : Base x % perpendicular height. Irregular plane surface. V s(s a) (s b) (s c), s=3 2 sum of the three sides a, b and c. Sum of area of the two triangles. % sum of parallel sides x perpendicular height. Base x perpendicular height. 2/2 sum of sides x inside radius. IT r 2 = 0.78540 x dia. 2 = 0.07958 x circumference 2 . = 0.0087266 r 2 A = arc x V<> radius. . _. - IS V fl c 4- d J3 . ' __ _ "^ ^- ' ^^*^** -nd- Divide any plane surface A, B, C, D, along a line a-b into an even number, n, of parallel and sufficiently small strips, d, whose ordinaues are hi, h2, ha, lu, hs h n i, h n , h n +i, and considering contours between three ordinates as parabolic curves, then for section ABCD, Area=-|-[hi+hn+i+4(h 2 +h4+h6. . .+h n )+2 (h 3 +h 5 +h 7 . - -+hn-i)] or, approximately, Area = Sum of ordinates x width, d. 351 6 CARNEGIE STEEL COMPANY TRIGONOMETRIC FORMULAS cotan A U ra,dius =1 -J Radius, 1 = sin 4 A + cos 1 A = sin A cosec A = cos A sec A tan A cot A Sine Cosecant cos A sin A sin (A + B) cos (A B) sin A + sin B sin A sinB cos A + cos B cos B cos A sin 2 A cos 2 A sin H A = sin 8 A = sin* A sin 3 cos A + cos B sin A cos B cos A sin B cos A cos B + sin A sin B 2 sin Ji (A + B) cos H CA B) 2 cos H (A + B) sin H (A B) 2 cos K (A + B) cos H (A B) 2 sin H (A + B) sin H (A B) 2 sin A cos A cos 3 A sin 2 A tan A + tanB cos* A = = sin(A + B)sin(A B) tan(AB) = 1+ - tanAtanB , / A + m _ cot A cotB+1 - cot B cot A sin (A + B) tan A + tan B = tan A tan B = cot A+cot B = cot A cot B = tan2A cot 2 A = tan y 2 A = cos A cos B sin (A B) sin A sinB 2 tan A 1 tan 2 A cot 2 A - 1 2 cot A COt H A : cos* A sin 1 B = cos (A + B) cos (A B) !^ *!!!?= cot M (A + B) Quadrant 1 II III IV Angle Angle a < 90 Angles 0to90 90tol80 180to270 270to360 30 45 60 Angle sin cos tan cot Functions Values vary from Equivalent values <^ * *" * * sin +0to+l +1 to+0 -Oto I -lto-0 H MVT MVT 0+a sina +cosa tana cota cos +1 to +0 -0 to 1 -1 to-0 +0to+l XVS" ^V2 H 90a +cosa +sina +cota +tana tan +0 to+co ooto-0 +0to+oo -ooto-0 ^VT 1 V3 180"a Hasina cos a +tana +cota cot +ooto+0 Oto oo +00 to+0 Oto oo Vs 1 HV? 270a cos a +sin a +cota +tana 352 MENSURATION TABLES TRIGONOMETRIC SOLUTION OF TRIANGLES s^ a / \ s^ a+b+c b b Given Sought | Formulae RIGHT-ANGLED TRIANGLES a, c A, B, b sin A =-% , cos B = -|-, b = / c 2 -a 2 Area Area = A V*~ a2 ^ a,b A, B, c tanA = -^-, tan B = , c = y a 2 + b 2 Area Area = 4^ A, a B, b, c B=90-A, b = aootA. c = -^ Area a 2 cot A Area = % A,b B, a, c B = 90-A, a=btanA, c = -^ Area b 2 tan A A, c B, a, b B = 90 A, a = csin A, b = c cos A Area c 2 sin A cos A c 2 sin 2 A 2 4 OBLIQUE-ANGLED TRIANGLES a, b, c A i i A/te-b) (s-c) ! . -\/s(s-a) . j A \l( sin ^ A= Xi s-i ^,cos 3A= \l j- , tan5A= \/ s-b) (s-c) s (s-a) B iT> A I (s-a) (s-c) ! -p A / s (s-b) . 1 1 A / ( s (s-b) 2 \ac \ac' if C 8in ^C= Y" a T 1> ).coB4C= A/ 1 ^-.*"*^ V-^s^r Area Area = -/ s (s-a) (s-b) (s-c) a. A, B b, c a sin B a sin C a sin (A + B) sin A sin A sin A Area a 2 sin B sin C Area , a b sm C 2 sin A a, b, A B b sin A sin i> a c c = ^sm^C = b J n n B C = -/ a2 + b 2 -2 ab cos C Area Area = a b sin C a, b, C A tan A * b-a'c^C- tan * (A ~ B > - TTF cot * C c / n o | K o _ H rn ^ p a sin C Area Area = 5 ab sin C a 2 = b 2 + c 2 2bc cos A, b 2 =a 2 + c 2 2 a c cos B c 2 = a 2 + b 2 2 ab cos C 353 CARNEGIE STEEL COMPANY AREA OF CIRCULAR SECTIONS Circular Sector, m o n p Area=H (length of arc, mpn x radius, r) =area of circle x arc, m pn in degrees. =0.0087266 x square of radius, r-,x angle of arc, mpn, in degrees Circular Segment, mpn, less than half circle. Area=area of sector, m o n p area of triangle, m o n =(length of arc, m p n, x radius, r) (radius, r, rise, b) x chord, c 2 Circular Segment, m q n, greater than half circle. Area=area of circle area of segment, mnp Circular Segment, from Table I, page 355. Given: rise, b, and chord, c. Area=product of rise and chord, b x c, multiplied by the coefficient given opposite the quotient of -J2-: Intermediate coefficients for values of not given in tables are obtained by interpolation, Example Given: rise =1.49 and chord =3. 52, "c~ = 3*52 = - 4233 - Coefficient = 0.7542. Area=b x c x coeff .=1.49 x 3.52 x 0.7542=3.9556. Circular Segment, from Table II, pages 356 and 357. Given: rise, b, and diameter, d = 2r. Area=square of diameter, d 2 , multiplied by the coefficient given opposite the quotient of j- . Intermediate coefficients for values of j- not given in tables are obtained by interpolation. Example Given: rise=2 7 /io and diameter=5% 2 . A =2Vi *- 5%2= 0.478528. Coefficient by interpolation = 0.371233. Area=d2x coeff. = 25. 94629x0.371233 = 9.6321. Circular Zone, tuwv Area=area of circle (area of segment, t p u + area of segment, v q w) Circular Lune, m p n a Area=segment, mpn segment, m s n. 354 MENSURATION TABLES AREAS OF CIRCULAR SEGMENTS TABLE 1 FOR RATIOS OF RISE AND CHORD ^ ^\ 1 Area=C xbx coefficient A Coeffi- b Ao Coeffi- b Ao Coeffi- b AO Coeffi- b cient C cient c cient "c , cient C" 1 .6667 .0022 46 .6722 .1017 91 .6895 .2097 136 .7239 .3373 2 .6667 .0044 47 .6724 .1040 92 .6901 .2122 137 .7249 .3404 3 .6667 .0066 48 .6727 .1063 93 .6906 .2148 138 .7260 .3436 4 .6667 .0087 49 .6729 .1086 94 .6912 .2174 139 .7270 .3469 5 .6667 .0109 50 .6732 .1109 95 .6918 .2200 140 .7281 .3501 G .6667 .0131 51 .6734 .1131 96 .6924 .2226 141 .7292 .3534 7 .6668 .0153 52 .6737 .1154 97 .6930 .2252 142 .7303 .3567 8 .6668 .0175 53 .6740 .1177 98 .6936 .2279 143 .7314 .3600 9 .6669 .0197 54 .6743 .1200 99 .6942 .2305 144 .7325 .3633 10 .6670 .0218 55 .6746 .1224 100 .6948 .2332 145 .7336 .3666 11 .6670 .0240 56 .6749 .1247 101 .6954 .2358 146 .7348 .3700 12 .6671 .0262 57 .6752 .1270 102 .6961 .2385 147 .7360 .3734 13 .6672 .0284 58 .6755 .1293 103 .6967 .2412 148 .7372 .3768 14 .6672 .0306 59 .6758 .1316 104 .6974 .2439 149 .7384 .3802 15 .6673 .0328 60 .6761 .1340 105 .6980 .2466 150 .7396 .3837 16 .6674 .0350 61 .6764 .1363 106 .6987 .2493 151 .7408 .3871 17 .6674 .0372 62 .6768 .1387 107 .6994 .2520 152 .7421 .3906 18 .6675 .0394 63 .6771 .1410 108 .7001 .2548 153 .7434 .3942 19 .6676 .0416 64 .6775 .1434 109 .7008 .2575 154 .7447 .3977 20 .6677 .0437 65 .6779 .1457 110 .7015 .2603 155 .7460 .4013 21 .6678 .0459 66 .6782 .1481 111 .7022 .2631 156 .7473 .4049 22 .6679 .0481 67 .6786 .1505 112 .7030 .2659 157 .7486 .4085 23 .6680 .0504 68 .6790 .1529 113 .7037 .2687 158 .7500 .4122 24 .6681 .0526 69 .6794 .1553 114 .7045 .2715 159 .7514 .4159 25 .6682 .0548 70 .6797 .1577 115 .7052 .2743 160 .7528 .4196 26 .6684 .0570 71 .6801 .1601 116 .7060 .2772 161 .7542 .4233 27 .6685 .0592 72 .6805 .1625 117 .7068 .2800 162 .7557 .4270 28 .6687 .0614 73 .6809 .1649 118 .7076 .2829 163 .7571 .4308 29 .6688 .0636 74 '.6814 .1673 119 .7084 .2858 164 .7586 .4346 30 .6690 .0658 75 .6818 .1697 120 .7092 .2887 165 .7601 .4385 31 .6691 .0681 76 .6822 .1722 121 .7100 .2916 166 .7616 .4424 32 .6693 .0703 77 .6826 .1746 122 .7109 .2945 167 .7632 .4463 33 .6694 .0725 78 .6831 .1771 123 .7117 .2975 168 .7648 .4502 34 .6696 .0747 79 .6835 .1795 124 .7126 .3004 169 .7664 .4542 35 .6698 .0770 80 .6840 .1820 125 .7134 .3034 170 .7680 .4582 36 .6700 .0792 81 .6844 .1845 126 .7143 .3064 171 .7696 .4622 37 .6702 .0814 82 .6849 .1869 127 .7152 | .3094 172 .7712 .4663 38 .6704 .0837 83 .6854 .1894 128 .7161 .3124 173 .7729 .4704 39 .6706 .0859 84 .6859 .1919 129 .7170 .3155 174 .7746 .4745 40 .6708 .0882 85 .6864 .1944 130 .7180 .3185 175 .7763 .4787 41 .6710 .0904 86 .6869 .1970 131 .7189 .3216 176 .7781 .4828 42 .6712 .0927 s7 .6874 .1995 132 .7199 ! .3247 177 .7799 .4871 43 .6714 .0949 j 88 .6879 .2020 133 .7209 .3278 178 .7817 .4914 44 .6717 .0972 | 89 .6884 .2046 134 .7219 .33O9 179 .7835 .4957 45 .6719 .0995 i| 90 .6890 .2071 135 .7229 .3341 180 .7854 .5000 355 CARNEQIE STEEL COMPANY AREAS OF CIRCULAR SEGMENTS TABLE II, FOR RATIOS OF RISE AND DIAMETER /^~^\ 1 if-- Diam ;ter,d \ Area=d2 x Coefficient b T Coefficient b 3" Coefficient 1 Coefficient b T Coefficient b d Coefficient .001 .000042 i .051 .015119 .101 .041477 .151 .074590 .201 .112625 .002 .000119 .052 .015561 .102 .042081 .152 .075307 .202 .113427 .003 .000219 .053 .016008 .103 .042687 .153 .076026 .203 .114231 .004 .000337 .054 .016458 .104 .043296 .154 .076747 .204 .115036 .005 .000471 .055 .016912 .105 .043908 .155 .077470 .205 .115842 .006 .000619 .056 .017369 .106 .044523 .156 .078194 .206 .116651 .007 .000779 .057 .017831 .107 .045140 .157 .078921 .207 .117460 .008 .000952 .058 .018297 .108 .045759 .158 .079650 .208 .118271 .009 .001135 .059 .018766 .109 .046381 .159 .080380 .209 .119084 .010 .001329 .060 .019239 .110 .047006 .160 .081112 .210 .119898 .011 .001533 .061 .019716 .111 .047633 .161 .081847 .211 .120713 .012 .001746 .062 .020197 .112 .048262 .162 .082582 .212 .121530 .013 .001969 .063 .020681 .113 .048894 .163 .083320 .213 .122348 .014 .002199 .064 .021168 .114 .049529 .164 .084060 .214 .123167 .015 .002438 .065 .021660 .115 .050165 .165 .084801 .215 .123988 .016 .002685 .066 .022155 .116 .050805 .166 .085545 .216 .124811 .017 .002940 .067 .022653 .117 .051446 .167 .086290 .217 .125634 .018 .003202 .068 .023155 .118 .052090 .168 .087037 .218 .126459 .019 .003472 .069 .023660 .119 .052737 .169 .087785 .219 .127286 .020 .003749 .070 .024168 .120 .053385 .170 .088536 .220 .128114 .021 .004032 .071 .024680 .121 .054037 .171 .089288 221 .128943 .022 .004322 .072 .025196 .122 .054690 .172 .090042 !222 .129773 .023 .004619 .073 .025714 .123 .055346 .173 .090797 .223 .130605 .024 .004922 .074 .026236 .124 .056004 .174 .091555 .224 .131438 .025 .005231 .075 .026761 .125 .056664 .175 .092314 .225 .132273 .026 .005546 .076 .027290 .126 .057327 .176 .093074 .226 .133109 .027 .005867 .077 .027821 .127 .057991 .177 .093837 .227 .133946 .028 .006194 .078 .028356 .128 .058658 .178 .094601 .228 .134784 .029 .006527 .079 .028894 .129 .059328 .179 .095367 .229 .135624 .030 .006866 .080 .029435 .130 .059999 .180 .096135 .230 .136465 .031 .007209 .081 .029979 .131 .060673 .181 .096904 .231 .137307 .032 .007559 .082 .030526 .132 .061349 .182 .097675 .232 .138151 .033 .007913 .083 .031077 .133 .062027 .183 .098447 .233 .138996 .034 .008273 .084 .031630 .134 .062707 .184 .099221 .234 .139842 .035 .008638 .085 .032186 .135 .063389 .185 .099997 .235 .140689 .036 .009008 .086 .032746 .136 .064074 .186 .100774 .236 .141538 .037 .009383 .087 .033308 .137 .064761 .187 .101553 .237 .142388 .038 .009764 .088 .033873 .138 .065449 .188 .102334 .238 .143239 .039 .010148 .089 .034441 .139 .066140 .189 .103116 .239 .144091 .040 .010538 .090 .035012 .140 .066833 .190 .103900 .240 .144945 .041 .010932 .091 .035586 .141 .067528 .191 .104686 .241 .145800 .042 .011331 .092 .036162 .142 .068225 .192 .105472 .242 .146656 .043 .011734 .093 .036742 .143 .068924 .193 .106261 .243 .147513 .044 .012142 .094 .037324 .144 .069626 .194 .107051 .244 .148371 .045 .012555 .095 .037909 .145 .070329 .195 .107843 .245 .149231 .046 .012971 .096 .038497 .146 .071034 .196 .108636 .246 .150091 .047 .013393 .097 .039087 .147 .071741 .197 .109431 .247 .150953 .048 .013818 .098 .039681 .148 .072450 .198 .110227 .248 .151816 .049 .014248 .099 .040277 .149 .073162 .199 .111025 .249 .152681 .050 .014681 .100 .040875 .150 .073875 .200 .111824 .250 .153546 356 MENSURATION TABLES AREAS OF CIRCULAR SEGMENTS TABLE 11, FOR RATIOS OF RISE AND DIAMETER Concluded 4 54 36 0.72654 0.73100 0.73547 0.73996 0.74447 0.74900 0.75355 53 37 0.75355 0.75812 0.76272 0.76733 0.77196 0.77661 0.78129 52 38 0.78129 0.78598 0.79070 0.79544 0.80020 0.80498 0.80978 51 39 0.80978 0.81461 0.81946 0.82434 0.82923 0.83415 0.83910 50 40 0.83910 0.84407 0.84906 0.85408 0.85912 0.86419 0,86929 49 41 0.86929 0.87441 0.87955 0.88473 0.88992 0.89515 0.90040 48 42 0.90040. 0.90569 0.91099 0.91633 0.92170 0.92709 0.93252 47 43 0.93252 0.93797 0.94345 0.94896 0.95451 0.96008 0.96569 46 44 0.96569 0.97133 0.97700 0.98270 0.98843 0.99420 1.00000 45 2 60' 50' 40' 30' 20' 10' 0' I I' COTANGENTS I 382 MATHEA1ATICAL TABLES NATURAL TRIGONOMETRIC FUNCTIONS | COTANGENTS 1 0' 10' 20' 30' 40' 50' 60' 1 oo 343.77371 171.88540114.58865 85.93979 68.75009 57.28996 89 1 57.28996 49.10388 42.96408 38.1884634.3677731.2415828.63625 88 2 28.63625 26.43160! 24.54176 22.9037721.4704020.2055519.08114 87 3 19.08114 18.07498 17.16934 16.34986 15.60478 14.92442 14.30067 86 4 14.30067 13.72674 13.19688 12.70621 12.25051 11.82617 11.43005 85 5 11.43005 11.05943 10.71191 10.38540 10.07803 9.78817 9.51436 84 6 9.51436 9.25530| 9.00983J 8.77689 8.55555 8.34496 8.14435 83 7 8.14435 7.95302 7.77035 7.59575 7.42871 7.26873 7.11537 82 8 7.11537 6.96823J 6.82694 6.69116 6.56055 6.43484 6.31375 81 9 6.31375 6.19703 6.08444 5.97576 5.87080 5.76937 5.67128 80 10 5.67128 5.57638 5.48451 5.39552 5.30928 5.22566 5.14455 79 11 5.14455 5.06584 4.98940 4.91516 4.843001 4.77286 4.70463 78 12 4.70463 4.63825 4.57363U 4.51071 4.44942 4.38969 4.33148 77 13 4.33148 4.27471 4.21933^4.16530 4.11256 4.06107 4.01078 76 14 4.01078 3.96165 3.9136JT 3.86671 3.82083 3.77595 3.73205 75 15 3.73205 3.68909 3.647^1 3.60588 3.56557 3.52609 3.48741 74 16 3.48741 3.44951 3.412KI 3.37594 3.34023 3.30521 3.27085 73 17 3.27085 3.23714 3.204p 3.17159 3.13972 3.10842 3.07768 72 18 3.07768 3.04749 3.01713! 2.98869 2.96004 2.93189 2.90421 71 19 2.90421 2.87700 2.85013 2.82391 2.79802 2.77254 2.74748 70 20 2.74748 2.72281 2.698J3 2.67462 2.65109 2.62791 2.60509 69 21 2.60509 2.58261 2.56046 2.53865 2.51715 2.49597 2.47509 68 22 2.47509 2.45451 2.43422 2.41421 2.39449 2.37504 2.35585 67 23 2.35585 2.33693 2.31826 2.29984 2.28167 2.26374 2.24604 66 24 2.24604 2.22857 2.21132 2.19430 2.17749 2.16090 2.14451 65 25 2.14451! 2.12832 2.11233 2.09654 2.08094 2.06553 2.05030 64 26 27 28 2.05030 2.03526 1.962611 .94858 1.88073 .86760 2.02039 1.93470 1.85462 2.00569 1.92098 1.84177 1.99116 1.90741 1.82907 1.97680 1.89400 1.81649 1.96261 63 1.88073 62 1.80405 61 29 1.80405 .79174 1.77955 1.76749 1.75556 1.74375 1.73205 60 30 1.73205 .72047 1.70901 1.69766 1.68643 1.67530 1.66428 59 31 1.66428 .653371 1.64256 1.63185 1.62125 1.61074 1.60033! 58 32 1.60033 .59002i 1.57981 1.56969 1.55966 1.54972 1.53987 57 33 1.53987 .53010 1.52043 1.51084 1.50133 1.49190 1.48256 56 34 1.48256 .47330J 1.46411 1.45501 1.44598 1.43703 1.42815 55 35 1.42815 .41934 1.41061 1.40195 1.39336 1.38484 1.37638 54 36 1.37638 .36800 1.35968 1.35142 1.34323 1.33511 1.32704 53 37 38 1 .32704 1.27994 .31904 1.31110 .27230 1.26471 1.30323 1.25717 1.29541 1.24969 1.28764 1.24227 1.27994 52 1.234901 51 39 1.23490 .22758 1.22031 1.21310 1.20593 1.19882 1.19175 50 40 1.19175 .18474! 1.17777 1.17085 1.16398 1.15715 1.15037 49 41 1.15037 .14363 1.13694 1.13029 1.12369 1.11713 1.11061 48 42 1.11061 .10414 1.09770 1.09131 1.08496 1.07864 1.07237 47 43 1.07237 .06613 1.05994 1.05378 1.04766 1.04158 1.03553 46 44 1.03553 .02952 1.02355 1.01761 1.01170 1.00583 1.00000 45 1 60' 50' 40' 30' 20' 10' 0' 2 I 1 TANGENTS 383 CARNEGIE STEEL COMPANY NATURAL TRIGONOMETRIC FUNCTIONS 1 SECANTS fi U 0' 10' 20' 30' 40' 50' 60' i 2 3 4 1.00000 1.00015 1.00061 1.00137 1.00244 i.ooooo 1.00021 1.00072 1.00153 1.00265 1.00002 1.00027 1.00083 1.00169 1.00287 1.00004 1.00034 1.00095 1.00187 1.00309 1.00007 1.00042 1.00108 1.00205 1.00333 1.00011 1.00051 1.00122 1.00224 1.00357 1.00015 1.00061 1.00137 1.00244 1.00382 89 88 87 86 85 ' 5 6 7 8 9 1.00382 .00551 .00751 .00983 .01247 1.00408 1.00582 1.00787 1.01024 1.01294 1.00435 1.00614 1.00825 1.01067 1.01342 1.00463 1.00647 1.00863 1.01111 1.01391 1.00491 1.00681 1.00902 1.01155 1.01440 1.00521 .00715 .00942 .01200 .01491 1.00551 1.00751 1.00983 1.01247 1.01543 84 83 82 81 80 10 11 12 13 14 .01543 .01872 .02234 .02630 .03061 1.01595 1.01930 1.02298 1.02700 1.03137 1.01649 1.01989 1.02362 .02770 .03213 1.01703 1.02049 1.02428 1.02842 1.03290 1.01758 1.02110 1.02494 1.02914 1.03368 .01815 .02171 .02562 1.02987 1.03447 1.01872 1.02234 1.02630 1.03061 1.03528 79 78 77 76 75 15 16 17 18 19 .03528 .04030 .04569 .05146 .05762 1.03609 1.04117 1.04663 1.05246 1.05869 .03691 .04206 .04757 .05347 .05976 1.03774 1.04295 1.04853 1.05449 1.06085 1.03858 1.04385 1.04950 1.05552 1.06195 1.03944 1.04477 1.05047 1.05657 1.06306 1.04030 1.04569 1.05146 1.05762 1.06418 74 73 72 71 70 20 21 22 23 24 .06418 .07115 .07853 .08636 1.09464 1.06531 1.07235 1.07981 1.08771 1.09606 1.06645 1.07356 1.08109 1.08907 1.09750 1.06761 1.07479 1.08239 1.09044 1.09895 1.06878 1.07602 1.08370 1.09183 1.10041 1.06995 1.07727 1.08503 1.09323 1.10189 1.07115 1.07853 1.08636 1.09464 1.10338 69 68 67 66 65 25 26 27 28 29 1.10338 1.11260 1.12233 1.13257 1.14335 1.10488 1.11419 1.12400 1.13433 1.14521 1.10640 1.11579 1.12568 1.13610 1.14707 1.10793 1.11740 1.12738 1.13789 1.14896 1.10947 1.11903 1.12910 1.13970 1.15085 1.11103 1.12067 1.13083 1.14152 1.15277 1.11260 1.12233 1.13257 1.14335 1.15470 64 63 62 61 60 30 31 32 33 34 1.15470 1.16663 1.17918 1.19236 1.20622 1.15665 1.16868 1.18133 1.19463 1.20859 1.15861 1.17075 1.18350 1.19691 1.21099 1.16059 1.17283 1.18569 1.19920 1.21341 1.16259 1.17493 1.18790 1.20*52 1.21584 1.16460 1.17704 1.19012 1.20386 1.21830 1.16663 1.17918 1M9236 1.20622 1.22077 59 58 57 56 55 35 36 37 38 39 1.22077 1.23607 1.25214 1.26902 1.28676 1.22327 1.23869 1.25489 1.27191 1.28980 1.22579 1.24134 1.25767 1.27483 1.29287 1.22833 1.24400 1.26047 1.27778 1.29597 1.23089 1.24669 1.26330 1.28075 1.29909 1.23347 1.24940 1.26615 1.28374 1.30223 1.23607 1.25214 1.26902 1.28676 1.30541 54 53 52 51 50 40 41 42 43 44 1.30541 1.32501 1.34563 1.36733 1.39016 1.30861 1.32838 1.34917 1.37105 1.39409 1.31183 1.33177 1.35274 1.37481 1.39804 1.31509 1.33519 1.35634 1.37860 1.40203 .31837 .33864 .35997 .38242 .40606 1.32168 1.34212 1.36363 1.38628 1.41012 1.32501 1.34563 1.36733 1.39016 1.41421 49 48 47 46 45 5 1 60' 50' 40' 30' 20' 10' 0' 1 COSECANTS 384 MATHEMATICAL TABLES NATURAL TRIGONOMETRIC FUNCTIONS | COSECANTS B 1 0' 10' 20' 30' 40' 50' 60' 1 X 343.77516 171.88831 114.59301|85.94561 68.75736 57.29869 89 i 57.29869 49.11406 42.97571 38.2015534.3823231.2575828.65371 88 2 28.65371 26.45051 24.56212 22.92559121. 49368 20.23028 19. 10732 87 3 19.10732 18.10262 17.19843 16.38041115.63679 14.95788 14.33559 86 4 14.33559 13.76312 13.23472 12.7455012.29125 11.86837 11.47371 85 5 11.47371 11.10455 10.75849 10.43343 10.12752 9.83912 9.56677 84 6 9.56677 9.30917 9.06515 8.83367 8.61379 8.40466 8.20551 83 7 8.20551 8.01565 7.83443 7.66130 7.49571 7.33719 7.18530 82 8 7.18530 7.03962 6.89979 6.76547 6.63633 6.51208 6.39245 81 9 6.39245 6.27719 6.16607 6.05886 5.95536 5.85539 5.75877 80 10 5.75877 5.66533 5.57493 5.48740 5.40263 5.32049 5.24084 79 11 5.24084 5.16359 5.08863 5.01585 4.94517 4.87649 4.80973 78 12 4.80973 4.74482 4.68167 4.62023 4.56041 4.50216 4.44541 77 13 4.44541 4.39012 4.33622 4.28366 4.23239 4.18238 4.13357 76 14 4.13357 4.08591 4.03938 3.99393 3.94952 3.90613 3.86370 75 15 3.86370 3.82223 3.78166 3.74198 3.70315 3.66515 3.62796 74 16 3.62796 3.59154 3.55587 3.52094 3.48671 3.45317 3.42030 73 17 3.42030 3.38808 3.35649 3.32551 3.29512 3.26531 3.23607 72 18 3.23607 3.20737 3.17920 3.15155 3.12440 3.09774 3.07155 71 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 ^92380 70 20 2.92380 2.90063 2.87785 2.85545 2.83342 2.81175 2.79043 69 21 2.79043 2.76945 2.74881 2.72850 2.70851 2.68884 2.66947 68 22 2.66947 2.65040 --2^3162 2.61313 2.59491 2.57698 2.55930 67 23 2.55930 2.54190 2.52474 2.50784 2.49119 2.47477 2.45859 66 24 2.45859 2.44264 2.42692 2.41142 2.39614 2.38107 2.36620 65 25 2.36620 2.35154 2.33708 2.32282 2.30875 2.29487 2.28117 64 26 2.28117 2.26766 2.25432 2.24116 2.22817 2.21535 2.20269 63 27 2.20269 2.19019 2.17786 2.16568 2.15366 2.14178 2.13005 62 28 2.13005 2.11847 2.10704 2.09574 2.08458 2.07356 2.06267 61 29 2.06267 2.05191 2.04128 2.03077 2.02039 2.01014 2.00000 60 30 2.00000 1.98998 1.98008 .97029 1.96062 1.95106 1.94160 59 31 1.94160 1.93226 1.92302 .91388 1.90485 1.89591 1.88709 58 32 1.88708 1.87834 1.86970 .86116 1.85271 1.84435 1.83608 57 33 .83608 1.82790 1.81981 .81180 1.80388 1.79604 1.78829 56 34 .78829 1.78062 1.77303 .76552 1.75808 1.75073 1.74345 55 35 .74345 1.73624 1.72911 .72205 1.71506 1.70815 1.70130 54 36 .70130 1.69452 1.68782 .68117 1.67460 1.66809 1.66164 53 37 .66164 1.65526 1.64894 .64268 1.63648 1.63035 1.62427 52 38 .62427 1.61825 1.61229 .60639 1.60054 1.59475 1.58902 51 39 .58902 1.58333 1.57771 .57213 1.56661 1.56114 1.55572 50 40 .55572 1.55036 1.54504 .53977 1.53455 1.52938 1.52425 49 41 .52425 1.51918 1.51415 .50916 1.50422 1.49933 1.49448 48 42 .49448 1.48967 1.48491 .48019 1.47551 1.47087 1.46628 47 43 .46628 1.46173 1.45721! .45274 1.44831 1.44391 1.43956 46 44 .43956 1.43524 1.43096 .42672 1.42251 1.41835 1.41421 45 | 60' 50' 40' 30' 20' 10' 0' I SECANTS I 385 CARNEGIE STEEL COMPANY BIRMINGHAM WIRE GAUGE EQUIVALENTS IN INCHES CORRESPONDING WEIGHTS OF FLAT ROLLED STEEL Gauge Number Thickness, Inches Pounds per Square Foot Thickness, Inches Pounds per Square Foot Fractional Decimal 0000 000 '66 i 2 3 "4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 .454 .425 .380 .340 .300 .284 .259 .238 .220 .203 .180 .165 .148 .134 .120 .109 .095 .083 .072 .065 .058 .049 .042 .035 .032 .028 .025 .022 .020 .018 .016 .014 .013 .012 .010 .009 .008 .007 .005 .004 18.5232 17.34 M X if 1 A & i u & 65 A i l s " 3\r A ib rf* .5 .46875 .4375 .40625 .375 .34375 .3125 .296875 .28125 .265625 .25 .234375 .21875 .203125 .1875 .171875 .15625 .140625 .125 .109375 .09375 .078125 .0625 20.4 19.125 17.85 16.575 15.3 14.025 12.75 12.1125 11.475 10.8375 10.2 9.5625 8.925 8.2875 7.65 7.0125 6.375 5.7375 5.1 4.4625 3.825 3.1875 '2.55" 15.504 13.872 12.24 11.5872 10.5672 9.7104 8.976 8.2824 7.344 6.732 6.0384 5.4672 4.896 4.4472 3.876 3.3864 2.9376 2.651 2.3664 1.9992 1.7136 1.428 1.3056 1.1424 1.02 0.8976 0.816 0.7344 0.6528 0.5712 0.5304 0.4896 0.408 0.3672 0.3264 0.2856 0.2040 0.1632 .046875 1.9125 .03125 ' 1.275 .015625 0.6375 .0078125 0.31875 .00396625 ' 6. 159375 Unless otherwise specified, all orders in gauges will be executed to Birmingham Wire Gauge. 386 MEASURES AND WEIGHTS UNITED STATES STANDARD GAUGE FOB SHEET AND PLATE IRON AND STEEL Gauge Number Thickness in Fractions of an Inch Thickness in Decimals of an Inch Approximate Thickness in Millimeters Weight per Square Foot, in Pounds, Iron Weight per Square Foot, in Pounds, Steel Weight per Square Meter in Kilograms- Steel 0000000 000000 00000 H i .5 .46875 .4375 12.70 11.91 11.11 20. 18.75 17.50 20.4 19.125 17.85 99.601 93.376 87.151 0000 000 00 1 .40625 .375 .34375 .3125 10.32 9.53 8.73 7.94 16.25 15. 13.75 12.50 16.575 15.3 14.025 12.75 80.926 74.701 68.476 62.251 1 2 3 4 5 6 7 8 A i .28125 .265625 .25 .234375 .21875 .203125 .1875 .171875 7.14 6.75 6.35 5.95 5.56 5.16 4.76 4.37 11.25 10.625 10. 9.375 8.75 8.125 7.5 6.875 11.475 10.8375 10.2 9.5625 8.925 8.2875 7.65 7.0125 56.026 52.913 49.800 46.688 43.575 40.463 37.350 34.238 9 10 11 12 i .15625 .140625 .125 .109375 3.97 3.57 3.18 2.78 6.25 5.625 5. 4.375 6.375 5.7375 5.1 4.4625 31.125 28.013 24.900 21.788 13 14 15 16 if 8 A .09375 .078125 .0703125 .0625 2.38 .98 .79 .59 3.75 3.125 2.8125 2.5 3.825 3.1875 2.86875 2.55 18.675 15.563 14.006 12.450 17 18 19 20 IBff w .05625 .05 .04375 .0375 .43 .27 .11 0.953 2.25 2. 1.75 1.50 2.295 2.04 .785 .53 11.205 9.960 8.715 7.470 21 22 23 24 I .034375 .03125 .028125 .025 0.873 0.794 0.714 0.635 1.375 1.25 1.125 1. .4025 .275 .1475 1.02 6.848 6.225 5.603 4.980 25 26 27 28 i .021875 .01875 .0171875 .015625 0.556 0.476 0.437 0.397 .875 .75 .6875 .625 .8925 .765 .70125 .6375 4.358 3.735 3.424 3.113 29 30 31 32 i .0140625 0.357 .0125 0.318 .0109375 0.278 .01015625 0.258 .5625 .5 .4375 .40625 .57375 .51 .44625 .414375 2.801 2.490 2.179 2.023 33 34 35 36 i lAn .009375 .00859375 .0078125 .00703125 0.238 0.218 0.198 0.179 .375 .3825 .34375 .350625 .3125 .31875 .28125 1 .286875 1.868 1.712 1.556 1.401 37 38 5~SBff i iff .006640625 .00625 0.169 0.159 .265625 .25 .2709375 .255 1.323 1.245 Unless otherwise specified, all orders in gauges will be executed to Birmingham Wire Gauge, 387 CARNEGIE STEEL COMPANY STANDARD GAUGES COMPARATIVE TABLE Thickness in Decimals of an Inch LT oj 1 & 6 Z | | la Gauge Number Birmingham \\ (B. W. G.) also known a Stubs Iron Wi P11 1 American Wii or Browne & Shar erican Steel & ^ formerly Washburn & M j I^d ijs tandard Birmini Sheet and Ho (B. G.) I ^ a ^ 0000000 .500 .4900 .500 000000 '.46875 .580666 !4615 .464 00000 .500 .4375 .516500 .4305 .450 .432 0000 .454 .40625 460000 .3938 .400 .400 000 .425 .375 .409642 .3625 .360 .372 .5000 00 .380 .34375 .364796 .3310 .330 .348 .4452 .340 .3125 .324861 .3065 .305 .324 .3964 1 .300 .28125 .289297 .2830 .285 .300 .3532 2 .284 .265625 .257627 .2625 .265 .276 .3147 3 .259 .25 .229423 .2437 .245 .252 .2804 4 .238 .234375 .204307 .2253 .225 .232 .2500 5 .220 .21875 .181940 .2070 .205 .212 .2225 6 .203 .203125 .162023 .1920 .190 .192 .1981 7 .180 .1875 .144285 .1770 .175 .176 .1764 8 .165 .171875 .128490 .1620 .160 .160 .1570 9 .148 .15625 .114423 .1483 .145 .144 .1398 10 .134 .140625 .101897 .1350 .130 .128 .1250 11 .120 .125 .090742 .1205 .1175 .116 .1113 12 .109 .109375 .080808 .1055 .105 .104 .0991 13 .095 .09375 .071962 .0915 .0925 .092 .0882 14 .083 .078125 .064084 .0800 .0806 .080 .0785 15 .072 .0703125 .057068 .0720 .070 .072 .0699 16 .065 .0625 .050821 .0625 .061 .064 .0625 17 .058 .05625 .045257 .0540 .0525 .056 .0556 18 .049 .05 .040303 .0475 .045 .048 .0495 19 .042 .04375 .035890 .0410 .040 .040 .0440 20 .035 .0375 .031961 .0348 .035 .036 .0392 21 .032 .034375 .028462 .03175 .031 .032 .0349 22 .028 .03125 .025346 .0286 .028 .028 .03125 23 .025 .028125 .022572 .0258 .025 .024 .02782 24 .022 .025 .020101 .0230 .0225 .022 .02476 25 .020 .021875 .017900 .0204 .020 .020 . .02204 26 .018 .01875 .015941 .0181 .018 .018 .01961 27 .016 .0171875 .014195 .0173 .017 .0164 .01745 28 .014 .015625 .012641 .0162 .016 .0148 .015625 29 .013 .0140625 .011257 .0150 .015 .0136 .0139 30 .012 .0125 .010025 .0140 .014 .0124 .0123 31 .010 .0109375 .008928 .0132 .013 .0116 .0110 32 .009 .01015625 .007950 .0128 .012 .0108 .0098 33 .008 .009375 .007080 .0118 .011 .0100 .0087 34 .007 .00859375 .006305 .0104 .010 .0092 .0077 35 .005 .0078125 .005615 .0095 .0095 .0084 .0069 36 .004 .00703125 .005000 .0090 .009 .0076 .0061 37 .... .006640625 .004453 .0085 .0085 .0068 .0054 38 .00625 .003965 .0080 .008 .0060 .0048 39 .003531 .0075 .0075 .0052 40 .003144 .0070 .007 OO48 Unless otherwise specified, all orders in gauges will be executed to Birmingham Wire Gauge. 388 MEASURES AND WEIGHTS DECIMAL OF AN INCH AND OF A FOOT Fractions of Inch or Foot ill Js| Fractions of Inch or Foot ill Fractions of Inch or Foot Inch Equiva- lents to Foot Fractions Fractions of Inch or Foot Inch Equiva- lents to Foot Fractions .0052 .0104 * .2552 .2604 tfc .5052 .5104 Sft .7552 .7604 8* a .015625 .0208 .0260 A 11 .265625 .2708 .2760 3A ii .515625 .5208 .5260 ii ss .765625 .7708 .7760 il * .03125 .0365 .0417 %| .28125 .2865 .2917 3i y 45 .53125 .5365 .5417 6/s 8 6H H .78125 .7865 .7917 II A .046875 .0521 .0573 f II .296875 .3021 .3073 3A f*? ii .546875 .5521 .5573 \fl SI .796875 .8021 .8073 m A .0625 .0677 .0729 I A .3125 .3177 .3229 3M 31 1 3% I 9 8 * .5625 .5677 .5729 6M 8$ ii .8125 .8177 .8229 9M 911 9% A .078125 .0833 .0885 n 1ft ii .328125 .3333 .3385 11 H .578125 .5833 .5885 ?? ii .828125 .8333 .8385 io x io& A .09375 .0990 .1042 1% H .34375 4% 4 .3490 4^ .3542 4)4 .59375 .5990 .6042 ? ii .84375 .8490 .8542 10% -A .109375 .1146 .1198 1ft Ii .359375 .3646 .3698 1*1" .609375 .6146 .6198 ?! i! .859375 .8646 .8698 Is! H .1250 .1302 .1354 11 % .3750 .3802 .3854 % .6250 .6302 .6354 ?I % .8750 .8802 .8854 11 & .140625 .1458 .1510 \i HI if .390625 .3958 .4010 I Ii .640625 .6458 .6510 $ II .890625 .8958 .9010 IOM ion A .15625 .1615 .1667 in il .40625 .4115 .4167 4% 5 * H .65625 .6615 .6667 P S .90625 .9115 .9167 1011 11 ii .171875 .1771 .1823 2A H .421875 .4271 .4323 5% Ii .671875 .6771 .6823 i! il .921875 .9271 .9323 HlV * .1875 .1927 .1979 II A .4375 .4427 .4479 i U .6875 .6927 .6979 !? il .9375 .9427 .9479 111 if .203125 .2083 .2135 la il .453125 .4583 .4635 |H Ii .703125 .7083 .7135 IA ii .953125 .9583 .9635 111 A .21875 .2240 .2292 || .46875 .4740 .4792 il i .71875 .7240 .7292 Iff 5i .96875 .9740 .9792 llv 51 .234375 .2396 .2448 || .484375 .4896 .4948 51 1 8 II .734375 .7396 .7448 ii .984375 .9896 .9948 ni mi K .2500 3 I % .5000 6 M .7500 9 i 1.0000 12 CARNEGIE STEEL COMPANY SUBJECT INDEX PAGE American Bridge Co ... specifications for steel structures 126-132 A. S. for Testing Mat'ls. standard specifications 25-35 boiler and fire box steel 25-28 boiler rivet steel 29-31 nickel steel 20-24 reinforcing bars, steel 32-35 structural steel for bridges 4-9 " " buildings 10-14 " " ships 15-19 Anchors standard wall and pier anchors 209 Angles elements of sections 139, 146151 formulas for elements 139 profiles, dimensions and weights 62-69 safe loads, explanatory notes 176 safe load tables 200-204 standard connections 207 structural details for punching and riveting. 2 12-2 14 tension values 220-222 Angles, Back to Back . . radii of gyration 141, 164-166 Angle Columns see Columns, Steel Arches, Floor Arches . - . explanatory notes 286-288 terra cotta, safe load tables and weights 289-292 Areas circles, diameters 1 to 999 360-379 circular segments 354-357 method of increasing sectional areas 37 net areas of angles 220-222 plane figures 351 rectangular sections 8688 reduction of area for rivet holes 214 square and round bars 92, 93 structural shapes 142-159 surface of solids 358, 359 Band Edge Flats list of sizes 84 Bars cold twisted square bars, sizes and weights 94 concrete reinforcement bars, sizes and weights 94-102 eye bars, sizes and dimensions 118 hanger bars, sizes and weights 101, 102 lattice bars, dimensions for columns 130 merchant bars, list of sizes 84, 85 rounds and squares, weights and areas 92, 93 splice bars, profiles, dimensions and weights. .106, 107 standard test bars, see A. S. T. M. Specifications 4-35 tension values, rounds and squares 223 upset screw ends, sizes and dimensions 116, 117 Bases for Columns standard design, mill and office buildings 277-279 390 INDEX PAGE Beams, H-Beams see H-Beams Beams, I-Beams bending moments, tables 183, 184 common dimensions 38 details, connection angles 207 " bearing plates 210 " separators 208 elements of sections 142, 143 formulas for elements 138 grillage, notes and calculations 224-228 profiles, weights and dimensions 3948 safe loads, explanation of tables 176-182 safe load tables 187-193 web resistance, tables 183, 184 Beam Columns safe load tables 256 Beam Girders explanatory notes 229 safe load tables 230, 231 Beam Stresses explanatory notes 167-169, 176-182 bending stresses 167, 168 buckling stresses 180, 181 deflection, lateral 128, 168, 178 vertical 172-177 flexure formulas for various loading conditions. . 170-175 impact stresses 178, 179 shearing stresses, longitudinal and vertical. 168, 179, 180 tensile and compressive stresses 168 Bearing: Plates explanatory notes 210 safe resistance 211 standard for beams 210 Bearing Values pins and rivets, explanatory notes 215 pins, tables 218 rivets, tables 216, 217 Bending Moments explanatory notes 167 beams, tables 183, 184 channels, tables 185 pins, tables 219 various loading conditions, formulas 172-175 Bessemer Steel see A. S. T. M. Specifications 25-35 Bolts standard dimensions 112, 113 screw threads, standard dimensions 112, 113 weights, bolts with hexagon heads and nuts. . . 115 weights, bolts with square heads and nuts 114 Bolt Heads and Nuts. . . standard dimensions 112, 113 weights 114, 115 Buckle Plates explanatory notes 300 safe load table 300 sizes and dimensions 301 Buckling of Webs explanatory notes 180-182 web resistance of beams and channels, tables . 183185 Building Laws extract, building laws of various cities 284 Bulb Sections bulb angles, bulb beams angles, elements 156 " profiles, weights and dimensions 51, 52 beams, elements 156 " profiles, weights and dimensions 50 391 CARNEGIE STEEL COMPANY PAGE Cast Iron Columns .... allowable unit stresses 280 hollow round and square, elements 162, 163 safe loads 281,282 Ceilings deflection of plastered ceilings 176, 177 weight of plastered ceilings 292 " terra cotta ceilings 292 Center of Gravity see Neutral Axis Channels, Shipbuilding, elements of sections 145 formulas for elements 138 profiles, weights and dimensions 57-61 Channels, Structural. . . bending moments, table 185 common dimensions 38 elements of sections 144 formulas for elements 138 profiles, weights and dimensions 53-61 safe loads, explanation of tables 176-182 safe load tables 195-199 web resistance, table 185 Channel Columns see Columns, Steel Checkered Plates elements and safe loads 304 profiles, weights and dimensions 81 Circles areas and circumferences, dia. 1 to 999 360-379 properties of the circle 350 Circular Plates extreme sizes 82, 83 Circular Segments areas, tables of coefficients 354-357 Clevises sizes and weights 120 Coefficients circular segments 355-357 deflection under uniform load 177 expansion due to heat 337 Columns, Cast Iron .... allowable unit stresses 280 hollow round and square, elements 162, 163 " safe loads 281,282 Columns, Steel explanatory notes 251-253 calculation of elements 140, 141 ' ' stresses 253 compression formulas '. 254, 255 elements, angle and plate columns 270-276 " channel and plate columns 257-269 " miscellaneous beam columns 256 safe loads, angle and plate columns 270-276 " " channel and plate columns 257269 " " miscellaneous beam columns 256 typical details for mill and office buildings 277-279 Columns, Wood allowable unit stresses 327 square and round, safe loads 328, 329 Concrete, Masonry strength, unit fiber stresses 336 specific gravity and weight 331 Concrete, Reinforced . . . explanatory notes 293-297 beams and slabs, formulas 293296 bending moments of slabs 298 columns, formulas 296 reinforcements, deformed bars 94-102 " round and square bars. . . '. . . . . 92, 93 triangle mesh 299 392 INDEX Compound Sections . . Connection Angles. . . Conversion Tables. . . Corrugated Plates . . Corrugated Sheets . . Cotter Pins Cross Tie Sections . Cubes and Cube Roots . Decimal Table Deflection, Lateral. - . Deflection, Vertical. . Dimensions Elasticity , Elements of Sections. Equivalent Measi Expansion, Heat. Eye Bars Fiber Stresses. Fireproof Floors. . . Flat Rolled Steel . . Flexure of Beams . . Floor Construction Floor Plates. PAGE calculation of elements 140, 141 standard for beams 207 measures and weights 338349 elements of sections 157 profiles, weights and dimensions 81 assembled sections, elements and safe loads. . 303 explanatory notes 312 sizes and weights 313 sizes and dimensions 122 elements of sections 155 profiles, weights and dimensions 103 safe load tables 194 numbers 1 to 999 360-379 equivalents of an inch and of a foot 389 explanatory notes 168-178 formula 128 explanatory notes 176 coefficients, calculation and table 177 coefficients for beams and channels . . 187-190, 194-197 limit for plastered ceilings 176 formulas for loading under various conditions . 172-175 common to beams and channels 38 elastic limit of substances 334-335 modulus of elasticity of substances. . 170, 319, 334-336 explanatory notes 133 formulas 134-141 structural shapes 142-166 metric and U. S. standard 338-341 table of coefficients 337 sizes, dimensions and weights 118 concrete, reinforced concrete 336 masonry, stone 336 metals, alloys 334, 335 miscellaneous substances 336 structural steel 126, 127, 335 structural timber 319 see Floor Construction 283-299 list of sizes 82-84 tables of weights 89-91 explanatory notes and formulas 167175 explanatory notes 283-288 fireproof floor systems 285, 286 live loads, various building laws 284 reinforced concrete beams and slabs 293-299 terra cotta arches, safe loads 289-291 " " " weights 292 thrust in arches 286-288 buckle plates 300-301 checkered plates 304 corrugated plates, assembled 303 trough plates, assembled 302 CARNEGIE STEEL COMPANY PAGE Formulas bending moments, various loading conditions. 170-175 deflection, various loading conditions 170175 elements of sections 134-141 geometric and trigonometric 350-353, 358, 359 roof trusses, stresses and length of members. .308-311 stresses in beams, bending 168-170 buckling 180, 181 " " " impact 179 shearing 179, 180 stresses in columns, cast iron 280 " ' " " structural steel 254,255 " " " structural timber 319 stresses in bearing plates and steel slabs . .210, 224, 225 Functions numbers 1 to 999 360-379 trigonometric 380-385 Gases specific gravity and weight 330 Gauges comparative table of various gauges 388 Birmingham wire gauge 386 United States standard gauge 387 variation, permissible in steel plates. . .8, 13, 18, 23, 27 Girders explanatory notes 229 angle and plate girders, safe loads 232-250 beam and plate girders, safe loads 230, 231 elements of compound sections 140, 141 grillage foundations , 227, 228 Gravity Lines see Neutral Axis Gravity, Specific various substances 330, 331 Grillage Foundations . . explanatory notes and calculation 224228 Grips of Rivets length of field rivets 124 H-Beams beam safe load tables 194 column safe load tables 256 elements of sections 155 profiles, dimensions and weights 49 Half Rounds list of sizes '. 85 Hexagons list of sizes 85 Hollow Sections rounds and squares, elements 162, 163 cast iron columns, allowable unit stresses 280 safe loads 281, 282 I-Beams see Beams Impact Stresses effect on beams 178, 179 Increase of Sections . . . method of rolling 37 Inertia see Moment of Inertia Lateral Deflection explanatory notes 168-178 formula 128 Lattice Bars dimensions for columns 130 Liquids coefficients of expansion 337 specific gravity and weight 330 Live Loads, Floors .... building laws of various cities 284 Logarithms numbers 1 to 999 360-379 Longitudinal Shear. . . . explanation and formula 179, 180 Loop Rods sizes and dimensions 119 394 INDEX PAGE Masonry and Stone .... coefficients of expansion 337 specific gravity and weight 331 strength, unit fiber stresses 336 Materials coefficients of expansion 337 specific gravity and weight 330-333 strength, unit fiber stresses 334-336 Measures and Weights. . equivalents of TJ. S. and metric 338-341 Mensuration mathematical formulas 350-359 Metals and Alloys coefficients of expansion 337 specific gravity and weight 330 strength, unit fiber stresses 334 Metric Tables weights and measures 338-349 Mill Buildings typical details of columns 277 Minerals specific gravity and weight 331 Modulus of Elasticity. . various substances 170, 319, 334-336 Moments of Inertia definition 133 formulas 134139 structural shapes, tables 142-159 Neutral Axis definition 133 formulas 134-139 structural shapes, tables 144-159 Nuts dimensions and weights 112-115 recessed pin nuts, sizes and dimensions 122 sleeve nuts, sizes and dimensions 121 Office Buildings typical column details 278, 279 Open Hearth Steel see A. S. T. M. Specifications 25-35 Ordering Materials .... general instructions 36 Piling, Steel Sheet explanatory notes 314-316 elements 157, 317 profiles and sections 80, 317 Pins explanatory notes 215 bearing values, tables 218 bending moments, tables 219 cotter pins, sizes and dimensions 122 nuts for pins, sizes and dimensions 122 Pipe black and galvanized 110, 111 Plate Girders see Girders Plates, Floor Plates. . . . buckle plates, explanatory notes and sizes .... 300, 301 checkered plates, elements and safe loads 304 " profiles, weights, dimensions 81 corrugated plates, elements and safe loads .... 157, 303 " " profiles, weights, dimensions 81 trough plates, elements and safe loads 157, 302 " " profiles, weights .dimensions. ... 81 Plates, Sheared rectangular and circular, extreme sizes 82, 83 Plates, Universal Mill . . rectangular, extreme sizes 83 Plates, Wall Plates see Bearing Plates 210, 211 Profiles of Sections dimensions and weights 39-81, 94-109 Punching details for punching and riveting 212-214 construction specifications 131 Purlins explanatory notes 307 395 CARNEGIE STEEL COMPANY PAGE Radius of Gyration definition 133 angles back to back, tables 164-166 formulas' for elements of sections 134141 structural shapes, tables 142-159 Rails, A. R. A. elements of sections 159 profiles, weights and dimensions 105 Rails, A. S. C. E elements of sections 158 profiles, weights and dimensions 104 Rails and Accessories . . weights and dimensions 108 Rail Clips profiles, dimensions and weights 109 Ratio of Slenderness . . . definition 251 unit stresses for compression formulas 254 Reciprocals numbers 1 to 999 360-379 Rectangular Plates .... extreme sizes 82, 83 Rectangular Sections. . . areas 86-88 moments of inertia 160, 161 Reinforced Concrete . . . see Concrete, Reinforced Riveting construction specifications 129, 130 details for punching and riveting 212-214 Rivets areas of rivet holes 214 conventional signs 212 dimensions 123 lengths for various grips 124 shearing and bearing values 217 stresses 215 structura details for riveting 212-214 weights 125 Roofs explanatory notes 305-307 loads, snow and wind 305 " live, building laws of various cities 284 trusses, stresses and length of members 308-311 weights, roof covering and roof trusses 306, 307 Screw Threads Franklin Institute, U. S. and A. B. Co. standards 112 Section Modulus definition 133 formulas ' 134-141 structural shapes 142-159 Segments, Circular .... coefficients of areas 355-357 Separators standard for beams 208 Shear see Beam Stresses Sheared Plates extreme sizes 82, 83 Shearing Values, Rivets, tables 216, 217 Shipbuilding Channels . see Channels, Shipbuilding Skelp list of sizes 84 Sleeve Nuts sizes and dimensions 121 Snow Loads roofs and trusses 305 Specific Gravity various substances '. .330, 331 Square and Round Bars area and weight 92, 93 Square Edge Flats list of sizes 84 Squares, Square Roots . numbers 1 to 999 360-379 Strength of Materials. . unit fiber stresses 334, 335 Stresses see Beam Stresses Specifications American Bridge Company 126-132 ^____ American Society for Testing Materials 4-35 396 INDEX PAGE Tees elements of sections 152, 153 profiles, weights and dimensions 70-77 safe load tables 205 Terra Cotta Arches .... see Arches Terra Cotta Material . . . arches, ceilings, furring, partition, roofing 292 Threads length 113 standard dimensions of screw thread 112 Thrust in Arches effect in floor construction 286288 Tie Rods length and weight 209 resistance to thrust in floor arches 286-288 spacing 288 Timber, Structural .... explanatory notes 318 beams, deflections, limiting loads and spans, . . 321 " notes 320 safe load tables 322-326 coefficients of expansion 337 columns, safe load tables 328, 329 " unit stresses 327 specific gravity and weight 330 unit stresses 319 Triangle Mesh concrete reinforcement 299 Trigonometric Formulas functions of angles and triangles 352, 353 Trigonometric Functions natural 380-385 Trough Plates elements of sections 157 profiles, weights and dimensions 81 riveted sections, elements and safe loads 302 Trusses explanatory notes 307 stresses and length of members 308-31 1 weights of trusses 307 Unit Stresses see Fiber Stresses Universal Mill Plates. . . extreme sizes -. . 83 Upset Screw Ends square and round bars 116, 117 Vertical Deflection see Deflection, Vertical Vertical Shear explanation 179 formulas for various conditions of loading 171-175 Volume and Surface . . . solids 358, 359 Warehouses weight of stored materials 332, 333 Web Resistances beams and channels 183-185 Weights flat rolled steel, tables 89-91 rounds and squares 92, 93 shapes 39-81, 94-109 various substances 330-333 metric and U. S. equivalents .338-341 building specifications of various cities 284 roofs and trusses 305 Wire and Sheet Metal . . standard gauges 386-388 Wooden Beams, Columns see Timber, Structural 320-329 Weights and Measures. Wind Loads, Pressure. Zee Bars.. elements of sections 154 profiles, weights and dimensions 78, 79 safe load tables. . , 206 397 CARNEGIE STEEL COMPANY WORKS DUQUESNE STEEL WORKS AND FURNACES. . . .South Duquesne, Pa. EDGAR THOMSON STEEL WORKS AND FURNACES Bessemer, Pa. HOMESTEAD STEEL WORKS Munhall, Pa, CARRIE FURNACES Rankin, Pa. EDITH FURNACE Pittsburgh, N. S., Pa. ISABELLA FURNACES Etna, Pa. LUCY FURNACES Pittsburgh, Pa. NEVILLE FURNACE Neville Island, Pa. CLARK MILLS Pittsburgh, Pa. McCuTCHEON MILLS Pittsburgh, N. S., Pa. PAINTER MILLS Pittsburgh, S. S., Pa. LOWER UNION MILLS Pittsburgh, Pa. UPPER UNION MILLS .Pittsburgh, Pa. HOWARD AXLE WORKS Homestead, Pa. SCHOEN STEEL WHEEL WORKS McKees Rocks, Pa. BELLAIRE STEEL WORKS AND FURNACES Bellaire, O. CLAIRTON STEEL WORKS AND FURNACES Clairton, Pa. COLUMBUS STEEL WORKS AND FURNACES Columbus, O. MINGO STEEL WORKS AND FURNACES Mingo Junction, O. NEW CASTLE STEEL WORKS AND FURNACES. ...New Castle, Pa. OHIO STEEL WORKS AND FURNACES Youngstown, O. SHARON STEEL WORKS AND FURNACE .Sharon, Pa. FARRELL STEEL WORKS AND FURNACES Farrell, Pa. GREENVILLE MILLS Greenville, Pa. MONESSEN MILLS Monessen, Pa. LOWER UNION MILLS Youngstown, O. UPPER UNION MILLS Youngstown, O. NILES FURNACE Niles, O. STEUBENVILLE FURNACE Steubenville, O. ZANESVILLE FURNACE Zanesville, O. PITTSBURGH WAREHOUSE Pittsburgh, Pa. BALTIMORE WAREHOUSE Baltimore, Md. CLEVELAND WAREHOUSE Cleveland, O. WAVERLY WAREHOUSES Waverly, N. J. 398 CARNEGIE STEEL COMPANY PRODUCTS PIG IRON AND FURNACE PRODUCTS FERRO-MANGANESE AND SPIEGEL-EISEN OPEN HEARTH AND BESSEMER STEEL, ALLOY STEELS INGOTS, BILLETS, BLOOMS, SLABS, AND SHEET BARS ARMOR AND VAULT PLATE PLATES FOR BRIDGES, SHIPS, TANKS, BOILERS, AND CARS ROLLED STRUCTURAL SHAPES BEAMS, CHANNELS, ANGLES, TEES, AND ZEES STEEL MINE TIMBERS AND STEEL SHEET PILING BAR MILL PRODUCTS CONCRETE REINFORCEMENT BARS, AGRICULTURAL SHAPES MISCELLANEOUS AND SPECIAL SHAPES MERCHANT BARS SQUARES, ROUNDS, HALF ROUNDS, HEXAGONS, OVALS, HALF OVALS FLATS, SKELP, BANDS, HOOPS, COTTON TIES HOOPS FOR SLACK BARREL COOPERAGE TIRE AND VEHICLE SPRING STEEL TRACK MATERIAL RAILS AND SPLICE BARS, DUQUESNE RAIL JOINTS TRACK ACCESSORIES STEEL CROSS TIES FORCINGS AXLES, WHEELS, GEAR BLANKS CONNECTING RODS, CRANK SHAFTS, AND ARCH BARS OIL DERRICKS AND DRILLING RIGS CARNEGIE STEEL COMPANY OFFICES GENERAL OFFICES: Pittsburgh, Carnegie Building. DISTRICT OFFICES: Birmingham, Brown-Marx Building, Boston, 120 Franklin Street, Buffalo, Marine National Bank Building, Chicago, 208 South La Salle Street, Cincinnati, Union Trust Building, Cleveland, Rockefeller Building, Denver, First National Bank Building, Detroit, Ford Building, New Orleans, Maison Blanche, New York, Hudson Terminal, 30 Church Street, Philadelphia, Pennsylvania Building, Pittsburgh, Carnegie Building, St. Louis, Third National Bank Building, St. Paul, Pioneer Building. EXPORT REPRESENTATIVES: UNITED STATES STEEL PRODUCTS CO., New York, Hudson Terminal, 30 Church Street. PACIFIC COAST REPRESENTATIVES: UNITED STATES STEEL PRODUCTS CO., PACIFIC COAST DEPT Los Angeles, Jackson Street and Central Avenue, Portland, Selling Building, San Francisco, Rialto Building, Seattle, 4th Ave. South and Connecticut Ave. 400 RETURN TO the circulation desk of any University ot California Library or to the NORTHERN REGIONAL LIBRARY FACILITY Bldg 400, Richmond Field Static University of California Richmond, CA 94804-4698 be recharged by bringing recharges may be made 4 days prior to due date. DUE AS STAMPED BELOW 940 05 UNIVERSITY OF CALIFORNIA LIBRARY