SB 5flO 137 LO OO O- o co w Def lecfion Angles t FYpm From From From From From icmg.l Curve Tcmq. Curve Ton. Curve Olj - EnW End End End Er?d End O 000 4-35 000' 2 55' O'OO'jl'ss' I 002 424: 005' 243 005 ' I'e 3 009 358t 0|4' 2 14/2 O235i O47y 4 0I5J 34-3 0ssy z |5T' O37^ OZ5' 5 0*22' 3*27 033' l37^ O55' OOO 6 O e 30'!3 09 O^sne' 9 IO3 208 l"35' 10 r IT' 4-s 0"55 25 OOO 'n A*<~. &r- Co/o, info o/c/ track where ou must- -So/v& >ras, ^replacing a ^ircuicir t^urve^ wihhouh changing Hie length of Hhe line. /Vp. of Spiri 50A--T //>e follo IOOA-IOON // e /? e *v ///? < This problem fh , vvh/'/*> fhi r ' 6* 7 0-40' 2T&0' 1*00' 0*52'/i 8 0*5 1*. 2*30 \'\6fc 0*27 9 1"03' 208' 1*33' O*OO* 10 TI7' I '45 11 r32' I'EI* 12 I" 4-8 055 13 2*O6 028 14 2*25 000 O5 B 00 One writer has furnished us a table of corrections to apply to the more important functions, but it requires .interpolation, and is confusing when taken with the distractions of field-work. Another has given us volu- minous tables for curve functions, for curves of integral 117655 3 ROBERT DRUMMOND, PRINTER, NEW YORK. PREFACE. OUR forefathers began laying out curves with loo-ft. chords, because it was a little easier to do field-work that way. In their practice the errors were not so seri- ous as they now are, and their link chains made it more difficult to measure arcs (or anything else) than with steel tapes now used. We have followed their example too long. This prac- tice is responsible for countless shocking kinks in rail- road curves that are covered up, whitewashed, and unknown. The average transit party does not expect to close on the P. T. closely when it had been previously set according to tables. No matter how carefully they may do their work they know there are errors in the tables that will make fudging necessary. The method is known to be inaccurate, and is made the excuse for careless work. The errors have been characterized as "inappreciable" or "negligible," but they are cumula- tive and increase as the square of the degree ; have made much trouble, and have thrown discredit upon the pro- fession. One writer has furnished us a table of corrections to apply to the more important functions, but it requires interpolation, and is confusing when taken with the distractions of field-work. Another has given us volu- minous tables for curve functions, for curves of integral 117655 3 4 PREFACE. degrees from i to 10. That work (Butts) has been highly appreciated and ought to be in the hands of every conscientious transitman, but it is limited to the integral degrees i to 10, and only demonstrates the impracticability of chord measurements. The mere idea of measuring across a chord 100 feet and calling it the length of the curve is revolting. The error for a 20 curve is a half of a foot. It might be excusable if it resulted in ease and simplicity in doing the work. But it results in difficulties and uncertainties. As one indi- cation of the difficulties, there is not a curve shown on any of the filed plats of surveys for irrigation canals in Colorado. They aggregate 10,000 miles; some of them cost a half million dollars, and are fine examples of engineering, but their alinements are all attempted to be shown by straight lines and angles because chord measuring cannot be used on the sharp curves. The excuse for this book is to advocate arc measurements. A new table of i Curve Functions is here given, in accordance with a new definition for "Degree of Curve," which is found in the first paragraph of the text. With measurements on the curve the table is exact for all degrees. With measurements on chords, results are as close with this table as with similar published tables. So this table is prefectly applicable on work where the errors of chord measuring is considered negligible. Logarithms and tables of natural functions are not given because they should not be used in the field. Transit work is, or should now be, in trained hands, which are supplied with such tables as those published by Professor Jones, of Cornell University, by Von Vega, or by the U. S. Geo. Survey. Special problems, too, are considered as belonging in the classroom. The subject of transition curves is made a prominent feature. The discussion is much longer than necessary, because there has been so much literature on the sub- PREFACE. 5 ject which has to be referred to. There seems to be no other subject upon which engineers are so divided. A section on vertical curves, too, is added, so that the ground may be better covered, as indicated in the title. While this subject applies especially to railroads, it should be applied to city street grades much more than it is. Street cars are unable to follow safely the grades that are established by the city engineer, and the unsightly appearance of sharp angles in street grades is discreditable. The engineer's practice is of two kinds: one of loca- tion, the other of construction; one of planning, the other of executing; one dealing only with nature, the other with men, manufactured materials, and machines. This work is to assist in the first-named practice ; in the location of a center or base line, both horizontally and vertically, from which all detail plans and measure- ments may be made. A line which will pay due respect to the inertia of moving objects and to civic aesthetics, thus to ''make the dollars earn more interest." For nature abhors an angle. A. M. HAYNES. DENVER, COLO., October, 1903. CONTENTS. CHAPTER I. CIRCULAR CURVES. PAGE 1 . Definition of degree of curvature 9 2. Method of projecting curves on the ground 9 3. General definitions 10 CHAPTER II. ALINEMENTS OF ENGINEERING WORKS. 4. Method of staking out 10 5. Transit points and plusses 1 1 6. Markings on stakes 1 1 CHAPTER III. LINEAR MEASUREMENTS. 7. Tools 12 8. Manner of using 12 9. Slope measuring 13 10. Curve measuring 13 CHAPTER IV. GENERAL DISCIPLINE. 11. Rules of conduct 14 12. Orders few and considerate 14 CHAPTER V. ANGULAR MEASUREMENTS. 13. Transitmen should be relieved from discipline and manage- ment 15 14. Care to be taken 15 CHAPTER VI. TRUE MERIDIAN. 15. To obtain observations upon Polaris 16 CHAPTER VII. FIELD WORK. 16. To stake out curves connecting tangents 17 17. Definitions of functions of curves 17 18. Plan of operations where curves predominate 18 7 8 CONTENTS. CHAPTER VIII. TEANSITION CURVES. 19. Requirements for a system 19 20. Description to meet requirements 19 21. Selection of suitable curves 21 22. Deflection angles for spirals 22 23. Elements of spirals 23 24. Description not needed in practice 23 25. General equation and formulas 24 26. General deflection table . 25 CHAPTER IX. PLATTING. 27. Duties of transitmen regarding same 26 28. Order of platting 27 29. Compound curves, special treatment 27 CHAPTER X. TURNOUT CURVES. 30. Description 28 31. Complications to avoid 29 CHAPTER XI. VERTICAL CURVES. 32. Definitions and description 30 33. Compensation for curves on grades 32 34. Vertical curves too little used 32 TABLES AND DIAGRAMS. Table I. Differences in lengths of Arcs and Chords 34 II. Diagram. Sample transit notes 35 III. " Superelevation of Outer Rail 30 " IV. " Corrections in Chaining 40 V. Emergency Table for Determining Natural Func- tions of angles 41 " VI. Curve Characteristics 43 " VII. Ordinates for Vertical Curves 44 " VIII. Azimuth of Polaris when at Elongation 44 " IX. Functions of a i Curve 45 CURVES OF CIVIL ENGINEERING. CHAPTER CIRCULAR CURVES. 1. The Degree of a Curve is a term applied to circitlar curves in a plane and is the change of direction in degrees per one hundred feet; or, in other words, is the number of degrees in an arc of the curve one hundred feet long. The radius of a curve = 572Q ' 5 . degree The radius of a i curve = = 5729.57795. 7T 2. Circular curves are projected on maps by means of their radii with the compass. On the ground it is generally found necessary to make use of the geo- metrical theorem that an arc subtends an angle on the circumference equal to one half the angle at the center subtended by the same arc. A transit is placed on the curve (or circumference) and the curve is located in loo-ft. arcs by turning angles for each arc equal to one half the degree of the curve. The work can be commenced and carried on at an unknown distance from the transit, but it is generally required to begin at the transit so that it may conform with a previously located tangent. 9 IO CURVES OF CIVIL ENGINEERING. When there is special reason for doing so, arcs of less than TOO ft. can be located by deflecting angles pro- portional to the length of arc measured. It is bad practice to try to locate points on a curve more than 60 from the transit, because one end of the tape line is held on the curve, while the other end describes an arc .with the tape as a radius, and the new point being fixed on the curve, is at the intersection of this arc with the line of colimation from the transit. This angle of intersection is o at 180 from transit, and is too acute for accuracy beyond 60 from transit. Tt is impracticable to have the measuring line on the curve. So it is placed on the chord in a straight line, but the end is held back, distances given in Table I, so that the result is the same as though actually measured on the arc. 3. A curve of uniform degree in one direction is a Simple Curve. Two or more curves in the same direction connected, and with a common tangent at point of con- nection, is a Compound Curve. If such curves are in opposite directions they form a Reverse Curve. A Tangent to a curve is a straight line which intersects it but does not cross. CHAPTER II. ALINEMENT OF ENGINEERING WORKS. 4. Engineering works, such as railways, canals, boulevards, dams, tramways, etc., are surveyed and staked out with a line of stakes one hundred feet apart and numbered consecutively, beginning with station at one end of the work. Such points are called stations; when it is necessary to have points between two stations the distance is measured from the last station and this distance is called a plus. The CURVES OF CIVIL ENGINEERING. I I stake is marked the last station + the distance from it in feet and tenths thereof. 5. At station and at other points along the line where it is necessary to set up the transit, a hub is driven flush with the ground and a tack put in the hub to mark the exact point. The stake is driven in the ground vertically one foot left, or if to be on a curve, on the convex side of the curve and facing the hub. Such points are called transit points, and the stakes to the side are witness stakes, which have markings on the back side as follows: 6. P. O. T., for a point on tangent. P. R. C., for a point of reverse curve. P. R. S., for a point of reverse spiral. P. C. C., for a point of compound curve. P. O. C., for a point on curve. P. S., for a point at beginning of a spiral. P. C., for a point at beginning of a circular curve. P. T., for a point at beginning of a tangent. P. I., for a point at intersection of tangents. Sometimes the degree of the curves and the whole alinemerit is indicated on the stakes from which any one can take notes and plat the whole line. It is not advisable to give to the public such information, and friends of the enterprise do not need transit notes in that form. Until late years such alinements have con- sisted only of circular curves and tangents. But the refinements of railway operation now demand that rapidly moving heavy objects shall not pass directly from tangents to sharp circular curves and back again but must have their direction changed gradually over transition curves. The transition curve has had a long, hard birth, but it is now so easy to handle that it may be introduced into the alinement of canals, roads , streets, and where the only gain is in appearance. 12 CURVES OF CIVIL ENGINEERING. CHAPTER III. LINEAR MEASUREMENTS. 7. All measurements should be made with a loo-ft. steel tape, eleven steel marking pins, a hand level, and a plumb bob. The work is done by a head tapeman, rear tapeman, stake-marker, and axman, all under the direction of the head tapeman, who re- ceives his instructions from the transitman or assistant locating engineer. The end of the tape is kept behind and if plusses are to be taken the stake-marker drags the tape ahead until the end is at the last station. Then the head tapeman reads the plus and sets the point. 8. The rear tapeman should not be allowed to hold his end of the tape at any plus stakes or hubs, but should always remain at the last station point until the next one ahead is set. This obviates the uncer- tainty of mental calculations on the part of tapemen. The tapemen do not handle stakes but fix the points in the ground with the steel pins. The head tapeman carries a range pole by which the transit- man puts him on line when the steel pins are not visible. The stake-marker drops a properly marked stake at ^each pin. The tapemen check these markings by calling out the numbers found on these stakes when they make the measurement. The axman follows, pulls up the pins and drives the stakes in their places. The tapemen should work as close to the ground as possible and thus avoid sags in the tape, wind, swinging plumb bobs, irregular tension, mistaken horizon and loss of time in trying to locate points of plumb bobs. A tapeman who dislikes to stoop is unreliable. Sometimes, in grass or brushy land where the middle of the tape is supported, it is CURVES OF CIVIL ENGINEERING. 1 3 best to work from the tops of stakes if there be soil to hold them firmly. Even plumb bobs may some- times be used, and all work done in the air to avoid cut- ting brush. But work in the air and plumbing down by either tapemen or transitmen should be avoided as much as possible. 9. When on a slope the rear tapeman ''lets out'" the tape enough to give horizontal measurements and when measuring on a chord of a curve "pulls in" the tape enough to give arc measurements. The amounts to give or take are shown in Table I and Diagram IV. The rise or fall per 100 is noted with the hand level; one tapeman uses the other as a level rod. They soon learn where the graduations are on each man, though he be riot marked. The correction is inappreciable, for gentle slopes. When the slope becomes more than 6 per hundred it becomes expedient to "break chain," using not more than 50 ft. of the tape at one time, holding one end up to horizontal and plumbing down. But the previ- ous remarks regarding plusses should be borne in mind and the rear end of the tape kept at the last station. Table I is essentially the rear tapeman 's table. No one else has any use for it except to know that the tapemen use it properly. 10. The end of the tape should extend 0.5 beyond the mark and the back of the tape graduated for slope and chord measuring. Manufacturers are pre- pared to furnish them, giving the graduations back from the mark for the different slopes and ahead from the mark for each degree of curve. The mov- able clamped index point (Lallie's patent) should be used on the tape to insure against the rear tapeman's forgetfulness when on curves. If errors are thus made by his forgetfulness it would be no more serious than if made by the engineer's design, as has been >done for a century. 14 CURVES OF CIVIL ENGINEERING. CHAPTER IV. GENERAL DISCIPLINE. 11. Each man should attend strictly to his own duties. Willingness to help others is an undesirable qualification here. Few words should be the rule, and distracting talk prohibited. When a signal or instruction is given it should always receive a response by motion of arms or saying "All right" when under- stood. Rank goes with salary, and no two should have the same" rank, so that it will be well understood who controls movements when working in detach- ments. They should work as one man. Shouting indicates lack of skill. 12. Orders should be few as possible and in the form of casual remarks or questions until it appears that an assistant does not try to please. Then im- perative orders become necessary; but they should always indicate a condition that cannot long endure. Keep watch for the one man who often disaffects the whole party. No one man should be allowed, in peace, to be habitually the last at breakfast or at work. The men should be required to bunk together, and their baggage limited to simple necessities. Each assistant should feel sure of exact justice and impartiality; that his comfort and welfare are given careful consideration. If called upon to suffer hard- ship and exposure, he is not to reason why, but feel that it is unavoidable. Results are obtained by thought and management, not by long hours and labor alone. The day's work should be planned the evening before, and started immediately after breakfast without any ques- tions or confusion. Strict discipline is for the good of all, and should be distasteful to none. CURVES OF CIVIL ENGINEERING. 1 5 CHAPTER V. ANGULAR MEASUREMENTS. 13. The transitman should be relieved from the discipline and management of the party as far as possible, so that he [can give ^his undivided attention to th'e mathematics of his work and the adjustments of his instrument. A close record should be kept of the azimuth (or corrected courses) of all tangents. If they are true all his work must be correct unless there be balancing errors, which is very improbable.' He should commence with a true meridian, deter- mined astronomically. Then, as he progresses with his survey, he can check in the same way as often as desired. The magnetic needle gives a rough check and a very useful one because it is so easily and often applied. He should be given every opportunity to make complete ties with lines that may have been run through the country before. If there be none, it may be expedient to run one (without chaining), simply for the purpose of checking azimuth. Angles are measured to the nearest minute, so there is a possible allowable error in azimuth equal to as many half minutes as there are transit points, but such a possibility should not be considered. It is the grossest carelessness to allow the azimuth to go unchecked. 14. A complete* tie is illustrated in the sample transit notes, top of page 37. The transitman should be given vistas close to the ground when setting transit points, so that he will not have to rely upon the head tapeman's skill in plumbing down. The rear flag should always be on the point last occupied by the transit. Otherwise the angles will depend upon the work of the tapemen. He should not be required to locate short spirals and 1 6 CURVES OF CIVIL ENGINEERING. should never be forced into short sights. If transit hubs come near together on the line he should be given time to fix sights upon distant objects, even if men have to be sent to set such sights. If chord measurements are used plusses for transit points should be avoided as much as possible. Plusses on curves cause errors, unless Table I is used. Such errors become magnified if the back flag is not always on the point last used by the transit. The transitman snould be given large discretion in everything that pertains to the accuracy of the transit work. Detailed' in- structions relieve him of responsibility. The chief is apt to be rusty and behind the times in transit work. He may advise but should not crowd his ideas or assist- ants upon the transitman. He only cares to have the azimuth check first, and speed afterwards. CHAPTER VI. A TRUE MERIDIAN. 15. Is generally best obtained by means of the eastern or western elongation of Polaris. This happens twice a day at times in this country when it is not incon- venient to make the observation after dark during the seasons of field-w r ork. The elongation occurs when the handle of the " Great Dipper" is due east or west of Polaris. The exact time can be determined by watching the star until it apparently ceases to move and changes its direction. The true pole is then between Polaris and the "Great Dipper," the angle from Polaris being given in Table VIII. The cross hairs may be illuminated by a common candle held near the object glass. The transit holds the line until daylight, when the result of the observation is secured. The vertical angle to Polaris gives the latitude to be used in the table. CURVES OF CIVIL ENGINEERING. 17 CHAPTER VII. FIELD-WORK. 1 6. To locate a curve on the ground (either with or without spirals) connecting two tangents, the tangents should be run out to an intersection if practicable. It is not necessary, but it promotes accuracy to work from the point of intersection. The P. I. is also useful as a permanent monument of the survey since it is generally out of the way of grading operations which destroy the rest of the line. 17. The shortest line from the P. I. to the curve is the External Secant. From the P. I. to the ends of the curve is the Tangent Distance, and between the ends of the curve is the Long Chord. These three functions of the curve are found in Table IX. Even if the P. I. is not located on the ground this tangent distance must be shown in the field-notes before the platting is done. When the P. I. is located {the station stakes being set up to the P. I.), the transitman measures the whole angle. From Table IX he takes the tangent distance corresponding to this whole angle. If he is to put in transition curves he adds the amount shown in the Table IX for the spiral selected. This total he divides by the degree of curve to be used which gives his tangent distance. He then instructs the head tapeman to measure this distance along the unmeasured tangent ahead and set the P. T. While the party is doing this and returning, he checks and completes his calculations for the curve. He sub- tracts the tangent distance from the station of the P. I., which gives him the station of the P. C. or P. S. This 1 8 CURVES OF CIVIL ENGINEERING. he has marked on a stake in his presence and sends the party back to put it in, pulling up the stakes as they go. He then moves his transit to the P. C. or P. S. and runs in the curve. By adding the length of the curve to the P. C. or P. S. he has the station of the P. T. first set. This gives him a perfect check on the whole work. The long chords are often useful in passing obstacles that prevent measuring on the curve. If the P. I. is not used as above described, a trial curve or curves have to be first located. Then, noting how far to the right or left the temporary P. T. is from the tangent desired, he divides that distance by the sine of the whole angle of the curve or curves run. This gives him the distance the P. S. or P. C. has to be moved along the first tangent to bring the P. T. on the second tangent desired. This has been called the "butting process." It is practicable only where the alinement is easy and tangents predominate. l^ 1 8. To locate a long piece of crooked line, a prelim- inary line has to be run, from which complete to- pography notes are taken. An accurate contour map is then prepared on a scale of about 200 ft. to one inch. On this plat the locating engineer is able to project the line for an economical location, and determine in the office upon the position and character of all curves. It then becomes the transitman's simple duty to put the line on the ground. No attention is then paid to P. L's, as they are usually out of reach in elevation if not in horizontal distance on such lines. But their location has to be known by the draftsman, and the transitman should make his notes complete in this respect. When the transit is on a P. O. C. the vernier should always read when ranged to the P. C. CURVES OF CIVIL ENGINEERING. 19 CHAPTER VIII. TRANSITION CURVES. 19. To be successful a system for placing transition curves in railway tracks must be simple, flexible, trigo- nometrical calculations avoided, and the work must be easily recorded. The whole alinement of a tortuous line should be easily shown on a scale of 1000 ft. to one inch. The system should run automatically. It is not difficult to make a special study of an individual curve and, with time, fit it out with satisfactory easement curves, but a plan for keeping a record of them and for putting them in by wholesale has not been unanimously accepted. Each railroad seems to have a plan of its own. Before transition curves were used the engineer had to fix rules and give much attention to the ' ' run off ' ' of the superelevation of the outer rail at the ends of curves. With the advent of the transition curve the homely term fortunately becomes obsolete. Transition curves should not be made to fit the old ' ' run off. ' ' The lengths of curves is unimportant in comparison with the con- venience in handling them. The economical length of a transition curve will not admit of mathematical demonstration. It is a matter of taste. The longer the better, if it fits the ground; as long as the circular portion, is a rule that favors tran- sit work and looks well. By bringing train speeds into the problem and fixing lengths arbitrarily the require- ments for a successful system cannot be met . 20.- So the plan here offered is to make transition curves long enough, and their lengths and other func- tions are made to vary with the main or circular curve ; 2O CURVES OF CIVIL ENGINEERING. that is, inversely as the degree. This property makes it possible to tabulate all the dimensions of the com- bined curves and of the individual spirals for i curves, and all the calculation that is necessary is division by the degree of curve. Table IX not only gives the usual functions for a i curve, but gives the same functions for the i curve, combined with three different types of spirals a No. 5, No. 9, and No. 14 which is believed to be all that are ever needed in railway practice. They have unreason- able dimensions for a i curve, but they are not expected to be used with a i curve. When used with sharp curves their dimensions, being divided by the degree of curves, become manageable. Chords are 100 ft. long for a i curve, but only 10 ft. long for a 10 curve, 25 ft. long for a 4 curve, etc. The No. 5 consists of 5 chords, No. 9 consists of 9 chords, No. 14 consists of 14 chords, etc. They are always located by the same deflection angles given on page 2 2 . No. 5 is suitable for the easy curvature of ''prairie roads," and No. 14 is designed for the sharp curva- ture of mountain lines. These curves are "cubic par- abolas practically," with a maximum curvature of i when loo-ft. chords are used, and in all cases equal the curvature of the main or central curve. By reference to Table I it will be seen that the difference between lengths of the chords and curves are truly negligible on account of the short chords. Since there are no finite arcs, chord measurements are used in this connection. The No. 5 is " Searles spiral," and the No. 9 is used on the Union Pacific Railway after Holbrook's plan. They have the deflections figured so that the spiral can be located from each chord-point. But it is seldom convenient and never necessary to set the transit on the middle portion of the spiral. It should not tax the ingenuity of the transitman much to get around CURVES OF CIVIL ENGINEERING. 21 all obstacles by means of the dimensions given on page 23, though the general deflection table, page 25, will ac- commodate the most exacting. 21. Selection. There is no necessity for a great variety of spirals. On a given line of railroad the variety of circular curves is generally small. The maximum curves predominate, because the locating engineer can generally save distance and total curva- ture by using the sharpest curves allowable. On tor- tuous mountain lines often 75% of the curves are of maximum degree. So if a spiral be selected that is suitable for the maximum degree of curvature, it may be generally considered suitable for the whole line. It may be unnecessarily long for some of the easier cur- vature, but the objection (if it be an objection) is not serious nor frequent, and the advantage of a system is great. Theoretically the longer the spiral the sharper the central curve has to be. But since the longer spirals are in connection with the easier curves that objection is void. The theory that the length of " run off " should vary as the degree of curve is false, because it rests on the assumption that train velocity is as high on sharp as on easy curves. A 6o-mile velocity requires twice the superelevation and length of "run off" as a 42- mile velocity, per Diagram III. So, when variation in speed is considered, the old "run off" is often longer on the easier curvature. If a superelevation of more than 7 inches be prohibited (which is customary) and if it be undesirable to have an excessive load on the outer rail, it is undesirable to have a velocity of more than 30 miles per hour on a 12 curve. '" " " 40 " " " " 6 30' " tt it tt 5Q (t it tt tt 4 o (( (I It /: ft (I It (( o (I tl It it o (i it tt tl o tt 22 CURVES OF CIVIL ENGINEERING. This is apparent from Diagram III and probably gives higher velocities than is practiced, or than is safe on ordinary track. A i curve is too easy anywhere. A i-J curve is preferable and needs no easement, and may generally be made to take the place of a 2. The No. 5 spiral may be used on curves of less than 5, the No. 9 on curves from 4 to 9, the No. 14 on curves from 7 to 14, making spirals between 100 and 200 ft. long. 22. DEFLECTION ANGLES. No. 5 Spiral is located by the following deflection angles : From tangent end o 05', o 12^', o 23^', o 37^', o 55' " curve " o 25', o 47*', i 6f, i 22*', i 35' Whole angle, 2 30' No. 9 Spiral is located by the following deflection angles : From tangent end 3', 7^', 14', 22%', 33', 45i'> i o', i 16*', i 35' From curve end 27', 52^', i 16', i 37i', i 57', 2i 4 4', 2 30', 243i / . 2 55' Whole angle, 4 30' No. 14 Spiral is located by the following deflection angles : From tangent end 2', 5', 9^', 15', 22', 30 J', 40', 51', i 3 f f i 17', i 32', i 48^, 2 6', 2 25'. From curve end 28', 55', i 20^, i 45'. 2 08', 2 2 9 f, 2 50', 3 09', 3 26J', 3 43', 3 5*', 4 n*^4 35'- CURVES OF CIVIL ENGINEERING. 23 23. ELEMENTS OF INDIVIDUAL SPIRALS FOR A i c CURVE. For elements of spirals for other curves divide by the degree. \ / A 500 900 B C D E F G H / 2 30 4 30 J o r o 55 i 35 No. 5 spiral. . . No. 9 spiral. . . 499-95 899-74 8.00 24.86 183.3 316.9 183.2 315-9 66.7 133.6 250.0 449.9 2.55 7 . 20 No. 14 spiral. . 1400 1399- i 58.90 484.0 480.4 218.34 699.1 16.3 7 oo 2 25 Ordinates from tangent to each 100 ft. from P. S: No. 5 Spiral 0.14, 0.73, 2.00, 4.40, 8.00. No. 9 " .09, .4, 1.2, 2.6, 4.8, 7.9, 12.2, 17.8, 2 48. No. 14 " .06, .29, .81, 1.74, 3.20, 5.29, 8.14, 11.86, 16.57, 22.38, 29.41, 37.78, 47-59. 5 8 -99- 24. Space is left in the table for inserting the ele- ments of other spirals should the three given fail to meet all requirements. The street railway people are not fully provided for, because their needs are not under- stood and they are wedded to a system of ordinates. But with arc measurements they can lay out their 24 CURVES OF CIVIL ENGINEERING. sharp curves in the same way as do other engineers, as they have not been able to do before. So this article will be continued for the benefit of those who wish to analyze and fix the tables for a special use, to accord with individual tastes and opinions; about "run off" for instance, which has been a live subject and may be kept alive indefinitely. 25. THE GENERAL POLAR EQUATION of this curve is (r 2 r i \ _. _j 1 ) w here 6 4 i2/ a = first deflection angle from tangent (for first chord), 6 = any other deflection angle from tangent to chord point, r = number of chords distant (corresponds to radius vector) . The second differential coefficient of this equation is 2d -, by which the first column in the table of deflections is o readily obtained. Let N the number of a spiral, which corresponds to the number of loo-ft. chords that are necessary to make a maximum curvature of i at the end, then N Whole angle of spiral - a 30 a N + i , 5 ' sin (2^' +5)'. CURVES OF CIVIL ENGINEERING. Spirals increase tangent distances G +11 tan -J whole angle. Spirals increase external secants - . cos -j whole angle Thus figures relating to spirals are inserted in Table IX 26. GENERAL DEFLECTION TABLE. (A table of coefficients.) Different Positions of Transit. i 2 3 4 5 6 7 8 9 10 p. s. i 3i 7i 12* 19 26f 36 46* 58* 74 i i O 2 sri io| 16* 24 32* 43 S4* 67* 2 *i 2 O 3 7* 13* 20* 29 38| So 62^ t/3 3 4* 4} 3 4 9* i6J 2 4i 34 44l 57 g 4 7i 73 8* 4 O 5 i 19* 28^ 39 Sot 5 ii "i *oj *i .S 6 13* 224 32* 44 13 6 is* 16 15* 31 10* 6 7 Mi 2Si 36* 7 20 2i* 21 iQ* 1 6-4 12^ 7 8 I7t 28i y 8 2 5i 27 27* 26 23* IQ8 I4i 8 Q iQi 9 31! 33* 34 33* 31 27* 22-^ 16* Q 10 10 3i 405 4il 41 39* 36 3ii 25? * 10 This is an actual table for a No. 29 spiral where a = i. To use the table for any spiral multiply all the tabular quantities by a ; or 3 . That is, for a No. 5 spiral multiply the tabular quantities" by 5', for a No. 9 spiral by 3', for a No. 14 by 2', etc. The different positions of transit are shown thus , from which read up for deflections toward the tangent and down for deflections toward the curve. This table is easily extended by use of the constant differences which exist in the diagonal rows of figures parallel with . These constant differences equal the number of rows from . Other interesting properties of this curve are ably- presented by Torrance, Vial and Fulton in Vol. VII. No. 2 Journal of the Western Society of Engineers. ' 26 CURVES OF CIVIL ENGINEERING. CHAPTER IX. PLATTING. 27. The draftsman should plat the line under the direction of the transitman. The transitman should not lay his more or less perfect notes upon the drafts- man's table and feel that he is through with them. The draftsman should not handle the transit notes, but they should be read to him, leaving him free to watch his points and handle his tools, and allowing the transitman to keep his books until full, and making the notes continuous. With proper system a day's work can thus be platted in half an hour. The chief of the party has much to do with the draftsman directly, and he should be careful that the draftsman does not get a wrong idea of his position, that he may not think that instrument-men are under his care, or that he is independent of them. When lines do not come together on paper as they do on the ground it is the transitman 1 s duty to find the error with the draftsman's assistance, and himself explain to the chief of the party. Much confusion is caused by separating the field-work and drafting both in camp and on maintenance work. Draftsmen and fieldmen too often make trouble for each other and the company. The transitman should prepare a schedule from his notes showing the courses and distances of all tan- gents from P. I. to P. I., and on long chords of com- pound curves. From this sheet the draftsman can plat alone if the transitman is pressed for time. He first draws a light, straight line through the center of the roll of detail paper. A course is given to this line corresponding to the general direction of the survey. CURVES OF CIVIL ENGINEERING. 2J From this line all courses are taken by means of the protractor and transferred with the triangle and straight- edge or parallel rule to any part of the map desired. 28. When the lines are all platted as described in the schedule then the tangents are scaled off from the P. I.'s, and the centers of curves located. When transition curves are used it is more convenient to draw the secant lines and to locate the centers of curves on them by scaling first from the P. I. the external secant to the curve, then the radius to the center required. Then draw the circular curves with the compass and the tran- sition curves with the spiral rule. Write the station and plus for each P. C., P. S., and P. T. in the radial lines, and the angles and degrees between the radial lines. Then, with the spring ^dividers and scale, locate every even tenth station from 0. This is done only for a check, and need not be inked in if there be crowding of figures. If the work is done in the order named any possible error in platting or calculating will be detected. The transitman may then leave the work to the draftsman and topographer. The line should be inked in with vermilion water color, but the station numbers should be left in pencil so their position may be shifted if they be found to interfere with topography notes. Letters and figures of all kinds should be made to read from the southerly side of the plat. A simple record of the spiral angle gives complete information regarding the spiral. The number might be given, but that would be twice the whole angle of the spiral in degrees. 29. As has been intimated, when compound curves with spirals are encountered, the long chords of curves are platted instead of the tangents. Because tables can- not then be used in determining tangent distances, so it becomes a special problem quite complicated. First the chord of the spiral is platted, then of the first cir- 28 CURVES OF CIVIL ENGINEERING. cular curve, then of the next circular curve or curves, and finally of the last transition curve. This method of platting also has to be used if the locating engineer thinks there should be different kinds of spirals at the two ends of a simple curve, or if a spiral has to be located between two parts of a compound curve. These complications ought to be avoided, and can be with a little ingenuity. Compound curves can- not be avoided, but connecting curves of great difference in degree, necessitating a spiral, can be avoided by put- ting in one or two additional P. C. C.'s. For those . who disagree and have time for the confusing calcula- tions use the No. 9 or No. 14 spirals. The chord-lengths are made to correspond to the sharper curve; that is, 100 divided by the degree. A part is taken off from the tangent end of the spiral proportional to the smaller degree. That is if a 3 is connected with a 9 curve three chords will be taken off the tangent end of the No. 9 spiral. Here the complete deflection table is necessary to turn deflections from the third-chord point. The field-work is simple. The computations for platting are by main strength and awkwardness of latitudes and departures. Convenience of platting should be considered in all field-work. A large percentage of surveys are wasted because they cannot be easily, intelligently platted. CHAPTER X. TURNOUT CURVES. 30. An ordinary standard-gage turnout from tan- gent first makes an angle of about 2, then runs straight 1 6 ft. along the split rail, then there should be a true circular curve to the wing of the frog, then a tangent CURVES OF CIVIL ENGINEERING. 29 for the full length of the frog, about 13 ft., and on to clearance or to the next frog if it be a cross-over. The lines of a frog are straight and rigid. This alinement is further complicated by widening the gage on the curve and at the point of frog. So it is impractical to do this work with the transit. The lead rail is located by ordinates from the main- line rail. The whole angle of the lead-rail curve equals the angle of the frog, minus the angle of the split rail. The length of the curve depends upon the dimensions of the frog, the split rail, and the pattern of rail. It is quite simple to design a standard plan when all these data are known. There would be only two or three such plans for a large railroad system. Crotch' frogs are generally prohibited. If used they break up the lead into two curves with a tangent over the frog. Turn- outs from curves are avoided if possible, but if unavoid- able the standard plan may be used the same as if on tangent. The transit work should begin at the P. I. where the tangent passing the frog intersects the center of main line. There turn the frog angle, run past the frog, after which curves may be started as desired. Tables cannot be used except for approximate work. There are no practicable special problems. They are all spoiled by the frog tangents, if not by the split rails. 31. The transitman should not be intimidated by the mass of figures and formulas that are sometimes used to illuminate this subject. The problems are all quite simple and not different from those encountered -elsewhere in curve location. For example, to stake out the grading the turnout curves may be considered ,as having a whole angle equal to the frog angle, and an external secant equal to J gage. With these data enter Table IX and find the degree and length of curve as close to the truth as can be obtained by any special turnout tables, or formulas, but only close enough to use 30 CURVES OF CIVIL ENGINEERING. in grading. Yard maps cannot be made until after track laying, since rail- joints fix the location of switches. Ill-founded theories] and formulas regarding turn- outs has done much to take track-work out of the hands of engineers. It has been one cause of the vexatious reference to the difference between theory and practice . There would be no difference if the engineer was left to figure out his own special problems and understand the foundation of all theories. Rules and tables are dangerous in the hands of those unable to reproduce them independently. CHAPTER XI. VERTICAL CURVES. 32, Vertical curves are laid out by vertical ordinates from a horizontal line with the level. They are usually very flat on railroads in comparison with horizontal curves. The sharpest vertical curve allowed on at least two prominent railroad main lines has a radius of 1 14, ooo ft. This accounts for the simple formulas and definitions in this connection. The curvature of vertical curves is designated by num - bers in place of degrees. The Number of a Curve is its change in its rate of grade, expressed in hundredths of a foot, per hundred feet. For example, a No. 7 curve changes its rate of grade .07 each successive 100 ft. This .07 corresponds to the chord deflection in hori- zontal curves. If the grade be assumed to run on the loo-ft. chords of the curve the rate of grade on the first chord from tangent will be changed in hundredths, only one half the number of the curve, for the same rea- son that the tangent deflections are half of chord deflec- tions. But for all succeeding chords the rate of grade CURVES OF CIVIL ENGINEERING. 3! changes as many hundredths as the number of the curve. The Whole Angle is designated by tenths of a foot per hundred in place of degrees. For example, if a 0.8 grade intersects a +0.9 grade the angle formed will be 17 tenths. If A = whole angle, N = number, 5 = external secant in tenths, and L = length of curve in stations, then and S=AL. Approximate radius in inches on Plate A profile T2 5 paper = -^-. wi By these formulas and Table VII the engineer plats the grade line on the profile and calculates the eleva- tion of grade for each station before going into the field. The P. I.'s should be made at even stations, and the ends of curve can usually be made at stations without causing faulty grades. This greatly simplifies the calculations which have to be tried and repeated until the grade line is satisfactory. Straight grades can usually be expressed with one decimal place, and never more than two should be used, except when compensating for curvature on maximum grades. 33. When laying a maximum grade, or where uniform resistance is desired, the rate of grade should be made less on curves than on tangents by the amounts shown in column 8, Table VI. In the lower portions of such a grade, where high velocities are admissible, and can be had, compensation for curvature is unnecessary. But where the velocity may fall to eight miles per hour curve resistance should be fully compensated in the grade, so that the resistance and velocity will be uniform. If the velocity drops so the centrifugal force is lost the 32 CURVES OF CIVIL ENGINEERING. train "stalls." A maximum grade in a district is not necessarily one of maximum ratio, but one which pro- duces a maximum tractive power, where curves and velocity are considered. It is desired to avoid enter- ing the field so ably covered by the late A. M. Welling- ton in his Economic Theory of Railway Location; but that statement is necessary to support the new principle advocated, viz. : 34. That more easy vertical curves should be intro- duced into railway grades to supersede long, straight grades which cause sharp summits and sags. Long, easy, vertical curves, reversing in the middle of a hill, can be used with great advantage, especially if the rate of grade at the P. R. C. be not held down to the same rate allow- able on a straight grade several miles long. '' Mo- ment um " grades can be used nowhere to a better advan- tage than at a P. R. C. of vertical curves. Curves are more difficult to plot upon the profile, but they are well worth the trouble. A large percentage of straight grade generally causes sharper curves, which are very objectionable in a grade line. This is for the same reason that a sharper curvature gives larger percentage of tangent in horizontal alinement. Establishing grade is a capital service, where skill, time, and care are well spent in projecting curves. TABLES AND DIAGRAMS. 33 TABLE I. DIFFERENCES IN LENGTHS OF ARCS AND CORRESPONDING CHORDS. "o 6 V > F Lengths of Arc. 100 90 80 70 60 50 40 30 20 10 1 .OOI .OOI .OOI .OOI 2 .005 .004 .003 .002 .001 3 .Oil .009 .006 .OO4 .002 .001 4 .020 .015 .010 .007 .004 .002 .001 5 .031 .023 .016 .Oil .007 .004 .002 6 .045 033 .023 .015 .010 .006 .003 .001 7 .062 045 .031 .021 .013 .008 .004 .002 8 .081 59 .041 .028 .017 .010 .005 .002 9 .103 75 .053 .036 .022 .013 .006 .003 10 .127 093 .065 .044 .027 .016 .008 .003 .OOI 11 .154 113 .079 .053 033 .019 .010 .004 .OOI 12 .184 .134 .094 .063 .040 .022 .012 .005 .OOI I3 o .216 .158 . no .074 .046 .027 .014 .006 .002 14 .250 .183 .127 .086 54 032 .016 .007 .OO2 15 .286 . 209 . 146 .099 .062 .036 .018 .008 .OO2 16 .324 .236 .166 . 112 .070 .041 .021 .009 .003 I7 o .365 .266 .187 . 126 .079 . 046 .023 .010 .003 18 .409 .298 .209 .141 .088 051 .026 .Oil .003 19 45 6 333 .233 .157 .098 .057 .029 .012 .OO4 20 507 370 .259 .174 . 109 .064 .032 .014 .004 25 o .792 .580 .407 *73 .172 099 .051 .021 .OO6 30 1.136 .830 .580 39 245 .142 .072 .031 .OO9 .OOI 40 2.018 i .480 1 .036 695 435 .252 .130 .054 .Ol6 .002 50 3**44 2 . 270 1 .60 i .086 .686 393 . 200 .085 .025 .003 60 4.507 3.300 2.31 i-55o .970 .564 ,290 .121 .036 004 100 12 .2l8 180 36.3 This table^was calculated by the following formula. 1 1459.1 6 X sin jf degree ov , degree; 34 erence = 100 II. SAMPLE TRANSIT NOTES. *7an. 5 '03 STATION DEF. C.C. M.C. + 44 P.T. 9 255' 222' N. 2020' E. 8 08' Whole Cir. Cur Angle 'e 1612' 4- 94 P.S. 7 806' 517' 3 Spirals Tots 900' 1 2512 / 6 217' $ is. Tang. 288.7 4- 24 P.O. 5 135' 109' A CO ."ti 1 P.I. 286 H - 62.7 not set ^ 4 oe' iM f- 74 P.S. 3 ' 2 1 280 9 P.O.T. N. SS^SO'V 8 N. 45 32'^E. 7 -f- 00 P.T. 255' 6 157' 5- 027' ^2 J S Whole Cir. Cur Angle re 500' + 75 P.S. 4 230' Too' "n E M h ^ Spirals Tot 900' il 1400 / + 50 P.O. 3 1 35' l^' s* * * Tang. 288.6 ^%/ ^ M Whole ^ Tang. ngle 300' 150.1 6 18' P.I. 266 -90.1 + 40 P.C. 265 N. 5632'E. Jan. 5 ''OS STATION DEF C.C. M.C. 4 N. 8929' E. -f- 40 P.T. 3 435' 309' 2 4- 00 P.S. 1800' Whole Cir. Curv Angle e 3600' 1 1300' CO ti 1 Spirals Tot uW 1 50 OQ' no 800' g & % 3 9 300' O ^ o g Secant 61.00 4- 40 P.O. 8 225' oV P Tang. P.I. 31C 337.8 -f- 37.8 & 7+0 P.S. S^P ^Y<$> 6 1ST. 3929' E. 5-h 00 P.T. 135' N. 2930'"E. 4 4- 00 P.S. 8ioH' ; Whole Cir. Cur\ Angle e 162l' 3 540^' CO ^ 1 Spirals Tot* 500' y&z 1 212l' 4- 50 P.O.C. 2 425^' 310^' o P* fc ^ g Ex. Sec. 20.7' HifX $?$* 1 040J4' U * ^ H '{>. Tang. 266.1 I 4- 73 P.O. 00 055' 005' 4 73P.R.C. 9 255 / l4l' 4- 48 P.S. 8 1545' 13 C 50' Cir. Cur\ e 31 30' 7 950' 1 Spirals Toti 900' 1 4030 / 6 5 50' 2 o P.I. 296- 1-50 set 5 150' oo 3 *fc Tang. 320.8 4& ^LJjfJPliu 4- 54.2 P.O. 4- 135' 32' <^ b /c\* %Y^' 4- 29.2 P.S.' 3 2 1 N. 2020' E. DO N. 1015' E. 4- 44 P.T. II. SAMPLE TRANSIT NOTES. Lin B 264+ v/ m. * * 266 + 30 25 +20, 248+12 jar Ston 38 III. SUPERELEVATION OF OUTER RAIL ON CURVES. STANDARD GAUGE TRACK. IN INCHES = DEGREE x VELOCITY 2 (IN MI.^PER H.) x .00065. Superelevation for other gauges are proportional to gauge. INCHES SUPERELEVATION 01 2345 67 39 IV. DIAGRAM OF CORRECTIONS FOR MEASURING. ON SLOPES ADD TENTHS OF FOOT' 1 .4 A ON CHORDS OF ARCS DEDUCT TENTHS OF FOOT. 2 12 18 40 TABLE V. AN EMERGENCY TABLE FOR DETERMINING NATURAL FUNCTIONS OF ANGLES. Sine obtained directly from the table; Cosine =sine of complement of angle; sine Tangent = or cos _ tangent distance for double the angle in Table IX. lL57 2 9-6 I ^ j. COS I Cotangent = = ; sine tang becant = ; ; Cosecant = ; sine Versine = i cosine ; Coversine = i sine. EXAMPLE. Required sine of From table 36 09^' =.59000 Correct to four decimal places. 41 TABLE V. NATURAL SINES. Angle, o / Sine. Dif. i'. Angle. / Sine. Dif. i'. Angle. f Sine. Dif. i'. o 344 .01 .00029 20 29 35 .00027 42 5 1 .68 .00021 i 09 .02 * ' 21 06 .36 < i 43 38 .69 .OOO2I I 43 03 t < 21 43 37 1 ' 44 26 .70 .OOO2I 2 174 .04 22 20 38 " 45 14 7 1 .00621 2 52 05 ' * 22 57 39 ' ' 46 034 72 .OOO2O 3 26J .06 ' * 23 35 .40 ' ' 46 53 73 .OOO2O 4 01 .07 < c 24 124 .41 ' ' 47 44 74 .OOO2O 4 354 .08 (i 24 50 .42 .00026 48 354 75 .00019 5 10 .09 " 25 28 43 ' ' 49 28 .76 .OOOI9 5 44i .10 * * 26 06 .44 ' ' 50 21 77 .OOOI9 6 19 .11 26 444 45 * ' 51 16 .78 .OOOlS 6 534 . 12 27 23 .46 52 ii 79 .00018 7 28 13 ** 28 02 47 53 08 .80 .OOOI7 8 03 .14 * * 28 41 .48 .00025 54 06 .81 .OOOI7 8 374 15 ' ' 29 24 .49 ' ' 55 05 .82 .OOOI7 9 124 .16 '* 30 oo 5 '* 56 06 83 .00016 9 47 17 * * 30 40 -5i " 57 084 .84 .OOOl6 10 22 .18 * * 31 20 52 11 58 13 85 .OOOI5 10 57 .19 * * 3 2 oo 53 ' ' 59 19 .86 .OOOI5 II 32 . 2O ' * 32 41 54 .00024 60 274 .87 .00014 12 074 .21 " 33 22 55 " 61 39 .88 .OOOI4 12 434 .22 .00028 34 034 56 11 62 52 .89 .OOOI3 13 18 23 * * 34 45 57 M 64 10 .90 .OOOI3 13 53 .24 ** 35 27 58 11 65 30 .91 .00012 14 29 25 11 36 094 59 .00023 66 56 .92 .OOOI I 15 4 .26 " 36 52 .60 " 68 26 93 .OOOII 15 40 .27 * * 37 354 .61 " 70 03 .94 .OOOIO 16 154 .28 " 38 IQ .62 11 7i 48 95 .00009 16 514 .29 39 03 63 *' 73 45 .96 .00008 17 274 30 * * 39 474 .64 .OOO22 75 56 97 .00007 18 034 31 * * 40 324 65 ' ' 78 3i4 .98 .00006 18 40 32 " 41 18 .66 M 81 54 99 .00004 19 16 33 .00027 42 04 .67 " 90 oo i .00 .00000 19 5 2 4 34 42 TABLE VI. CURVE CHARACTERISTICS. For a i oo -Foot Arc. Grade D^> Diff. in of Track De- gree. Radius. Middle Ordi- nate. Quar- ter Or- dinate. Tang. Dis- tance. Chord. of Rails per 100 Feet. alent Re- sist- ance. Gauge. i 2 3 4 5 6 7 8 9 / // i 11459.16 .109 .082 .44 100.000 .0410 0.015 4 8* I 5729-58 .218 .163 .87 99.999 .0820 0.03 4 8 if 3819.72 .327 .245 I-3I 99-997 .1230 0.045 4 8* 2 2864.79 -436 .328 1.74 99-995 . 1640 0.06 4 8i 2* 2291 .84 -545 .408 2.18 99.992 . 2050 0.075 4 8f 3 1909.86 .655 .490 2.62 99.989 . 2461 0.09 4 8|- si 1637 .02 .764 -573 3-05 99.985 .2871 0. 10 4 8* 4 I 43 2. "40 -873 -655 3-49 99 . 980 .3281 0. II 4 83- S 1145-92 i . 090 .82 4.36 99.969 .4101 0.14 4 8* 6 954-93 1.309 .98 5.23 99-955 .4922 o. 16 4 8* 7 818.51 1-53 -15 6. 10 99.938 5742 0.18 4 8* 8 7l6. 20 i-75 -38 7.0 99.919 .6562 0. 20 4 8f 9 636.62 i .96 47 7-9 99.897 .7383 0. 22 4 9 10 572.96 2.18 .63 8.7 99.873 .8203 o. 24 4 9 II 520.87 2.40 .80 9.6 99.846 .9024 o. 26 4 9 12 477.46 2.62 -97 10.4 99. 816 .9844 0.28 4 9 13 440-74 2.84 13 ii.3 99.784 i .0664 0.30 4 9i 14 409.25 3-05 .29 12.2 99-750 1.1484 0.32 4 9* 15 381.98 3-27 .46 13.0 99.714 i . 2300 0.34 4 9* 16 358.10 3-49 .62 13-9 99.676 1.3124 0.36 4 9 18 3I8.3I 3-92 2.94 15-6 99-591 1.4766 0.38 4 9i 20 286.48 4-36 3.28 17.4 99-493 i .6406 0.40 4 9* 25 229.18 5-43 99. 208 30 190.99 6.51 98.864 35 163.70 7.6i 98.464 40 143.24 8.64 97.98i 50 114-59 10.75 96.856 60 95-49 12.80 95-493 180 31-83 31-83 63.66 Columns 7, 8, and 9 refer to standard gauge railroad track. Column 5 is the distance of curve from tangent 100 feet from point of tangency and equals half the chord deflection. To find any radius not here shown, divide 5729.58 by the degree of curvature. To find radius of an old-style curve located witu IOO-IT;. cnords, add 07 X degree of curve to tabular quantity. 4? TABLE VII. ORDINATES FROM TANGENT TO VERTICAL CURVES FOR EACH 100 FEET FROM P. C. 6 fc 100 200 300 400 500 600 700 800 900 1000 IIOO .60 1200 1300 Q . 1400 n c 2 .OI .04 .09 .16 25 .36 49 .64 .81 .50 I.OO 1. 21 7 2 1.44 .04 I .69 9 1 .96 2* .01 OS .11 .20 .31 45 .61 .80 1. 01 1.25 i-5i 1. 80 2. II 2-45 3 .01 .06 .14 24 .38 54 74 .96 1. 21 1.50 1.81 2.16 2.53 2.94 3* .02 .07 .16 .28 44 63 .86 .12 1.42 1.75 2.12 2.52 2.96 7 78 3-44 4* .02 .09 .20 .36 .56 .81 .10 44 1.82 2.25 2.72 3.24 6 -o 3.80 3.92 4-41 5 03 .10 .22 .40 .62 .90 .22 .60 2.02 2.50 3-02 3.60 4.22 4-89 Si 03 .11 25 .44 .69 99 35 .76 2.23 2.75 3-33 3.96 4-65 5-39 6 03 .12 .27 .48 75 .08 47 .92 2.43 3-oo 3.63 4.32 5-07 5-38 6* 03 13 .29 52 .81 17 59 .08 2.63 3-25 3-93 4.68 5-49 6-37 7 .04 .14 31 .56 .87 .26 71 .24 2.83 3-50 4-24 5-05 5-91 6.86 7* .04 IS 34 .60 93 35 .84 .40 3-04 3-75 4-54 5-40 6.34 7-35 8 .04 .16 .36 .64 .00 44 .96 56 3-24 4.00 4.84 5.76 6.76 7.84 8* .04 .17 -38 .68 .06 53 .08 72 3-44 4-25 5.14 6.12 7.18 8.33 9 05 .18 .40 .72 .12 .62 .20 .88 3-64 4-50 5-44 6.48 7.60 8.82 9* OS .19 43 .76 .19 .71 33 3-04 3-85 4-75 5-75 6.84 8.03 9-3i 10 05 .20 45 .80 25 .80 45 3.20 4-05 5-oc 6.05 7.20 8-45 9.80 ii .06 .22 49 .88 .40 .98 .69 3-52 4-45 5-50 6.65 7.92 9.29 10.78 12 .06 .24 54 .96 50 .16 94 3-84 4.86 6.00 7.26 8.64 10.14 11.76 13 .07 .26 59 .04 -63 34 3.i8 4.16 5-27 6.50 7-87 9.36 10.99 12.74 14 .07 .28 63 .12 75 52 3-43 4.48 5.67 7.00 8.47 O.IO 11.83 I3-72 15 .08 30 67 .20 .87 .70 3.6 7 4.80 6.07 7-50 9.08 0.80 12.67 14.70 16 .08 32 .72 .28 .00 .88 3-92 5-12 6.48 8.00 9.68 1.52 13.52 15-68 17 .OQ 34 -76 .36 .12 3-o6 4.16 5-44 6.88 8.50 10.28 2.24 14.36 16.66 18 .Op .36 .81 .44 25 3-24 4.41 5.76 7.29 9.00 10.89 2.96 15-21 17.64 19 .10 .38 -85 52 37 3-42 4-65 6.08 7.69 9-50 11.49 3-68 16.05 18.62 20 .10 .40 .90 1. 60 2.50 3-6o 4-90 6.40 8.10 10.00 12.10 14.40 16.90 19.60 TABLE VIII. AZIMUTH OF POLARIS WHEN AT ELONGATION. 3 1903. 1904. 1905. 1906. 1907. 1908. 1909. 1910. 1911. rt 8 12 I" 14' 3 I4 ; :-; Ill', :-; S> 12' 11' 1 2' 4 8 i6 w is 7 IS' is' 14' 14' 14' I3' 13' 1 6 20 ITi7' I 7 / I7' 16' 1 6' 16' 15' IS 7 I 4 / 20 24 2?' 20' 2^ ^ I9' i8 ; i8 ; 24 3 32 1 26' 2 5 ' 2 5 ' 2 4 ' 2 4 ' 2 4 ' 2 3 / 23' 23' 30 32 34 1 28' 2 7 / 2 7 / 26' 26' 26' 2 5 ' 2 5 ' 25' 36" i 3 o' 29' 2 9 ' 2 9 ' 28' 28' 2 7 ' 2 7 ' 2 7 ' 36 38 I32' 1 32' o 31 ' o ^j' 3o' 3t3'^ 2 Q ' I2 9 ' 38 40 i 35' 1*34' 34' I 34' 33' i 33' I32 / 32' I32 40 i 3' 1*37' o 37 ' I 37' i36' i35' 35' i34 42 44 1 41' i 41' 40' l 4 o' 39' i39 / i 3' 38' i37 44 46 48 i45 / i49 / i44' i 4 8' i44 r I 4 8' I 43' i47' 43' 47' i 42 ' IJ.46J I 4 2' i 4 6 / i4S' i 4 i T45 46 48 50 i53' i53' I52' I52 / i5o' I . 50' i49 / 50 44 TABLE IX. TANGENT DISTANCES, LONG CHORDS, AND EX- TERNAL SECANTS OF A ONE-DEGREE CURVE. Also amounts to be added to same when No. 5, No. 9, and No. 14 Spirals are to be used. To find corresponding functions of any other curve divide tabular number by degree of curvature. Formulas used in construction of table: Long chord = 2X5729.58X8^0, Tangent =5729.58 Xtan a; External sec = 5729.58 -i-cos 5729.58; where a = J whole angle of curve. With Metric System. Using 20-meter chords, divide tabular quantities by five times the proposed metric degree of curve for corresponding quantities in metric measure. This table is exact for arc measurements and is as accurate as any table like it for the chord-measurement method for laying out curves. 45 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 1 50.0 100 .0 O . 22 1 2' 5I-67 103.3 0.24 2' 4'' 53-33 106 . 7 0.25 4' 6' 55-0 IIO.O 0,27 6' 8' 56.67 II3-3 0.28 8' 10' 58.33 116 .7 0.30 10' 12' 60 .00 I2O .O 0.31 12' 14' 61.67 123.3 0-33 14' 16' 63-33 126.7 0-35 16' 18' 65.00 130.0 0-37 18' 20' 66 .67 *o o ^ 133-3 0.39 v;; 20'' 22' 68.33 *"* 136.7 22 r 24' 7 - 00 ^ :: 5 140.0 -43 %~ " 24' 26' 71-67 a 143.3 0-45 a 26' 28' 73-34 J: - 146.7 0-47 | : r 28' 30' 75.00*8 150.0 0.49 * 30' 32 76.67.3. : 153-3 0.51 |: : 32' 34' 78.34^ 156.7 0-54 +> 34' 36' 8o.oo.S : s 160 .0 o . 56 -* s : 36' 38' 81.67 1^ _ 163-3 0.58 * 38' 40' 8 3 . 3 4! :: 166.7 0.60 ^" " 40' 42' 170.0 0.63 42' 44' 86!67 1 173-3 0.65 . 44' 46' 88. 34 1 s s 176.7 0.68 |"' 46' 48' 90.01 * 180.0 0.71 - 48' 50' 91.68^= = 183.3 o.73 ^ " 50' 52 93-34*8. [ 186.7 0.76 -g. 52 54' 95.01 3~ " 190.0 o.79 3"" 54' 5 6 ', 96. 68 .2: = 193-3 0.81 .S2 : = 56' 58' 98.34 *? 196.7 0.84 ""2 O-- - 58' 2 100 .01 *" 200 .0 0.87 *- 2 2' 101 .67 ' - 203.3 0.90 'g 2' 4' 103.34^ = 206.6 0.93 ^ = 4' 6' 105 .01 JH 210.0 0.96 c 6' 8' I06.68|: : 213.3 0.99 |: s 8' 10' 108.35^ 216.6 I .02 " 10' 12' no. 02 220 .0 I .06 12' 14' 1 1 1. 68 223.3 I .09 14' 16' 113-35 226.6 I .12 16' 18' 115.01 230.0 1 I 5 18' 20' 116.68 233.3 1 .19 20' 22' 118.35 236.6 1.23 22' 24' I2O .02 240 .0 1.26 24' .26' 121.68 243-3 1.30 26' 28' 123.35 246.6 i-33 28' 46 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 2 30' 125 .02 250.0 1.36 2 30' V' 126 .69 253-3 39 32' 34' 128.35 256.6 -43 34' 36' 130.02 260 .0 47 36' 38' 131.69 263.3 5 1 38' 40' I33-36 266.6 -55 40' 42' I35- 3 270.0 -59 42' 44' 136.70 273.3 1.63 44' 46' 138.36 276.6 1.67 46' 48' 140.03 280.0 1.71 48' 5 : 141.70 283.3 i75 S' 52 143.36 286.6 1.79 5*' 54' I45-03 290.0 1.83 54' 56 ,' 146 . 70 293-3 1.88 56' 58' 148.37 296.6 i .92 58' 3 150 .04 300.0 i .96 3 2' JS 1 -? 1 303.3 2 .OI 2' 4' 153.38 306.6 2 .05 4' 6' 155-04 309.9 2 .09 6' 8' 156.71 313.3 2.14 8' 10' 158.38 316.6 2 . 19 10' 12' 160.05 3I9-9 2 .24 12' 14' 161 .72 323.3 2 . 29 14' 16' 163.38 326.6 2.34 16' 18' 165.05 329.9 2.38 1 8' 20' 166.72 333.3 2.43 20' 22' 168.38 336.6 2.48 22' 24' 170.05 339-9 2.52 24' 26' 171.72 343-3 2-57 26' 28' 173-39 346.6 2 .62 28' 30' 175.06 349.9 2 .67 30' 32' 176.73 353-3 2 . 72 32' 3 < 178.40 356.6 2.77 34' 36' 180 .07 359-9 2.82 36' 38' 181.74 363.3 2.8 7 38' 40' 183.40 366.6 2.93 40' 42' 185.07 369.9 2.98 42' 44' 186.74 373-3 34 44' 46' 188.40 376.6 3.10 46' 48' 190.07 379-9 3.15 48' 50' 191.74 383-3 3.21 S' 5 ^ 193.40 386.6 3.26 52' 54' !95-o7 389-9 3.32 54' 56' 196.74 393-3 3.38 56' 58' 198.41 396.6 3.44 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle . Tangent Distance. Long Chord. External Secant. Whole Angle. 4 200.08 399-9 3-49 4 2' 201.75 403-3 3.55 2' 4' 203.42 406 .6 3.6l 4' 6' 205 .09 409.9 3.67 6' 8' 206.76 4i33 3-73 8' 10' 208.43 416 .6 3-79 10' 12' 2IO . IO 419.9 3-85 12' 14' 211.77 423-3 3-92 14' 16' 213-43 426.6 3.98 16' 18' 215.10 429.9 4.04 18' 20' 216.77 433-3 4. 10 20' 22' 218 .44 436.6 4. 16 22'. 24' 22O . II 439-9 4. 22 24' 26' 221 .78 443-2 4.28 26' 28' 223.45 446 .6 4.35 28' 30' 225 . 12 449-9 4.42 30' 32' 226.79 453-2 4.48 32' 34' 228.46 456.6 4-55 34' 36' 230.13 459-9 4 .62 36' 38' 231 .80 463.2 4.69 38' 40' 233-47 466.6 4.76 40' 42' 235.14 469.9 4.82 42' 44' 236.81 473-2 4.89 44' 46' 238.48 476.6 4.96 46' 48' 240.15 479-9 5-3 48' 5' 241 .81 483.2 5.10 50' 52' 243.48 486.5 5-17 5 2/ 54' 245 -IS 489.9 5-24 54' I*' 246.82 493-2 5-3i 56' #' 248.49 496.5 5-38 58' 5 250. 16 499-9 5-46 5 a' 251-83 503-2 5-53 2' 4' 253-50 506.5 5.60 4' 6' 2 55- i 7 ^ 509-9 5-68 ^ 6' 8' 256.84 I- 5I3-2 5-75 6 8' 10' 258.51 -g 5*6-5 5' 8 32 10' 12' 260.18 , 5*9-9 5-9o| 12' 14' 261.85 < 523-2 5 -98 & 14' 16' 263.52 526.5 6.06 g 16' 18' 265.19 o- 529.8 6.13^ 18' 20' 266.86 533-2 6.21 ^ 20' 22' 268.53 3 536.5 6.293 22' 24' 270.20 ^ 539-8 6.37 24' 26' 271.87 543-2 6.45 26' 28' 273-54 546.5 6.53 28' 48 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 5 30' 275.21 549-8 6.61 5 30' 32' 276 88 553-2 6.69 32' 34' 278 56 S5 6 -5 6.77 34' 36; 280.23 559-8 6-85 36' 38' 281 . 90 5 6 3-2 6-93 6 38' 40' 283-57 566.5 7-0x5 40' 42' 285.24 569-8 7-o 9 . 42' 44' 286.91 573-2 7 J 7 co! 44' 46' 288.58 576.5 7-25 o 46' 48' 290.25 579-8 7-34 48' 50' 291.92 583-1 7-43 | 50' 5 2 ' 293-59 586.5 52' 54 295 . 26 589.8 7 .60 54' 56' 296.93 593-1 7.68 56' S 8 298 .60 596.5 7-77 58' 6 300 . 28 599-8 7-85 6 2' 301 -95 603.1 7-94 2' 4' 303-63 606.5 8.03 4' 6' 305-30 'o 609.8 8.12 6' 8' 306.97 1 613. i 8.21 8'- 10' 308.6413 616 .4 8.30 10' J2 7 3 10 3 1 -a 619.8 8-39 12' 14' 311.98 C 623.1 8.48 14' 16' 3*3-66 .0 626 .4 8-57 16' 18' 3J5-33 2 629.7 8.66 r8' 20' 317.00 E 633-1 8-75 20.' 22' 318.67 5 636.4 8.84 22' 24' 320.34 < 639.7 8-94 . 24' 26' 322 .01 643.1 9-03 26' 28' 323.68 646 .4 9-13 5zi 28' 3' 325.35 649-7 9-23 1 30' 32' 327.02 653-0 9-32 $ 32 34 328.70 656.4 9.42 34' 36' 330.37 659-7 9-52 S 36' 38' 332-04 663.0 9 .62 N 38' 40' 333.71 666.3 9.7i | 40' 42' 335-39 669.7 ' 9.81 * 42' 44' 337-o6 673.0 9.91 44' 46' 338.73 676.3 IO .OO 46' 48' 340.40 679.6 IO . IO 48' 50' - 342.08 $83-0 IO . 2O 5 0/ 52' 343-75 686.3 10.30 52 ^ 54' . 345-42 689.6 10.40 54 56' 347-io 692 .9 10.50 56 58' 348.77 696.3 10 .60 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 7 350-44 699.6 10 . 71 7 2' 352.ii 702.9 io.il 2' 4' 353.78 706 . 2 10 .91 4' 6' 355-45 79-5 II .01 6' 8' 357-12 712.9 II . II 8' 10' 358.8o 7l6 . 2 11.22 10' 12' 360.47 7 T 9-5 11.32 12' 14' 362 .14 722.8 n-43 14' 16' 363-82 726 . 2 IJ -53 16' 18' 365-49 ^ 729-5 ii . 64 18' 20' 367-I7 5 732-8 n-75 20' 22' 368.84^ 736.1 ii .85 22" 24' 370.51 .b 739-5 ii . 96 24' 26' 372.19 742.8 12 .07 26' 28' 373-86 746.1 12 .18 28' 3; 375-54 ; 749-4 12 .29 30' 32' 377-21 ^ 752.8 12 .40 32' 34' 378-88 ^ 756.1 12 . 51 34' 36' 380. 56 ^ 759-4 I2 -63 ^ 36' 38' 382.23 762.8 12.74 6 38' 40' 383-91 766.1 12.85^ 40' 42' 385.58 769-4 I2. 9 6| 42' 44' 387-25 772.7 13.08 44' 46' 388.93 776.1 13-19 o 46' 48' 390.61 779-4 13-30 o 48' 50' 392.28 782.7 13.41 -d 50' 52' 393-95 786.0 13.53 3 52' 54' 395-62 789.4 13.64 54' 56' 397-30 792.7 13.76 56' 58' 398.97 796.0 13.88 58' 8 400 .65 799-4 13.99 8 2' 402.33 802.7 14. 10 2' 4' 404.00 806.0 14.22 4' 6' 405.67 -- 809.3 14.34 6' 8' 407-35 g 812.6 14.46 8' 10' 409.03 -g 816.0 14.58 10' 12' 410.70 -a 819-3 14.70 12' 14' 412.38^ 822.6 14.82 14' 16' 414 .06 825.9 14.94 i6' 1 8' 415-74 d 829.3 15 .06 18' 20' 417.41 5 832.6 15.18 20' 22' 419.08 ? 835.9 15-30 22' 24' 420.76 < 839.2 15-43 24' 26' 422 .44 842.6 J 5-55 26' 2.8' 424 . IT 845-9 T 5 -67 28' 50 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 8 30' 425.79 849.2 15.80 8 30' 32' 427.47 852.5 15-93 32' 34' 429.I5 855-8 16 .06 34' 36' 430.83 859.2 16. 19 36' 38' 432.50 862.5 16 .31 38' 40' 434.17 865.8 16.43 40' 42' 435.85 869.1 16.56 42' 44' 437-53 872.5 16.69 44' 46' 439.20 875.8 16.81 46' 48' 440.88 879.1 16.94 48' 50' 442.55 882.4 17.07 50' 5*' 454-23 885.7 17 .20 52' 54' 455-90 889. I 17-33 54' 56' 437-5S 892.4 17.46 56' 58' 459.26 895-7 J 7-59 58' *> 450.93 899 .0 17.72 9 2' 452 .60 902.3 17-83 2' 4' 454.28 u^a 905-6 17.97 "> 4' 6' 455^6 o*. 909 .0 18.10 d 6' 8' 457-64* 912.3 18.26 * : 8' io' 459-32 : 9I5-7 i8. 3 8.1 : 10' 12' 4f i .00 w 919.0 18.52 & 12' 14' 4^2.68 .0: 922.4 18.65 J3: 14' 16' 4^4.36 ? 925-7 18.79 16' 18'. 4^6.04 & 929.0 18.93 ^r 18' 20' 467-71 g. 932.3 19 .06 S; 20' 22' 469.39 < 935-6 19.19 < 22' 24' 471-07 939-o *9'33 24' 26' 472.75 942.3 19.49 26' 28' 474.42 945-6 19.62 28' 3' 476.10 948.9 J 9-75 30' 3^' 477-78 952.2 19.89 32' 34' 479.46 955-5 20.03 34' 36' 481 .13 958.9 20. 17 36' 38' 482.81 962 . 2 20.31 38' 40' 484 . 49 965.5 20.45 40' 42' 486.17 968.9 20.59 42' 44' 487.84 972.2 20.74 44' 46' 489.52 975-5 20.88 46' 48' 491 . 20 978.8 21 .02 48' 5' 492.88 982.1 21 . l6 5' 52' 494.56 985-4 21.30 S^' 54' 496.24 988.7 21.45 54' 56' 497.92 992.0 21.59 56' 58' 499 .60 995-3 21 74 58' 51 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 10 501 .28 998.7 21 .89 1O 2' 502.96 IOO2 .O 22 .04 2 f 4' 504.64 1005 .4 22.18 4' 6' 506.32 I008.-7 22.33 6' 8' 508.0 IOI2 .O 22.48 8 7 10' 509.68 IOI5.3 22 .63 10' 12' 5H-36 1018. 7 22.78 12' 14' 5*3-04 IO22 .O 22.93 14' 1 6' 514-72 I02 5-3 23.08 16' 1 8' 516 .40 1028.6 23.23 18' to' 518.08 1031 .9 23-38 20' 22' 5I9-76 1035.3 23-53 22' 24' 52i -44 1038.6 23.69 24' 26' 523-12 1041 . 9 23.84 26' 28' 524.80 1045.2 23.99 28' 30' 526.48 1048.5 24.14 30' 32/ , 528.16 1051 .8 24.30 32; 34 529.84 xAo 1055-2 24-45 34 36 53I-52 o- 1058.5 24.60 ^ 36' 38' 533-20 1061.8 24-75 6. 38' 40' 534- 88 4= 1065 . i 24.91 * 40' 4V 536. #6 cc 1068 .4 25.06 |- 42' 44' 538.4.4 : 1071.7 25.22 c& 44' 46' 540.CJ2 t 1075 .0 25-37 c: 46' 48' 541.60 1078.4 25.54 *p 48' 50' 543-29 ?- 1081 . 7 25.70 *" 50' 52 544-97 < 1085 .0 25-86^ 52' 54' 546.65 1088.4 26.02 54 56' 548.33 1091.7 26.18 56' 58' 550.02 1095.0 26.34 58' 11 55I-70 1098.3 26 . ^o 11 2' 553.38 noi .6 26.66 2' 4' 555-o6 1105.0 26.83 4 r 6' 556.74 1108.3 26 .99 6' 8' 558.43 mi .6 2 7- I 5 8' to' 560.11 1114.9 27- 3 1 10' 12' 561.80 1118.3 27.47 12' 14' 563-48 II2I .6 27.64 14' 16' 565-16 1124.9 27 . 80 i6 f 18' 566.84 1128 . 2 27.97 18' 20' 568.53 H3I.5 28.14 20 r 22' 570.22 II34.8 28.30 22 7 24' 571-9 ; 1.138.1 28.47 24' 26' 573.58 1141.4 28.64 26' 28' 575-26 1144.7 28.80 28' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 11 3' 576.95 1148 .0 28.97 11 30' 32' 578 . 63 1151.4 29.14 32' 34' 580.32 ri 54-7 29.31 34' 36' 582 .00 ^os 1158.0 29.48 36' 38' 583.69 |: 1161.3 29.65 38' 40' 585-37 g 1164.6 29.82 40' 42' 587.05 ' : 1168.0 30.00 42' 44' 588.73^ 1171 .3 30.17 44' 46' 590.42 - 1174.6 30.34 46' 48' 592.io 2| 1177.9 30.51 48' 50' 593-79 1181.2 30.68 50' 52' 595-47 S: 1184.6 30.85 5 2/ 54' 597.16 < 1187.9 31.02 5 < 56' 598.84 II9I .2 31 . 2O 56 58' 600.53 II94-5 31-37 58' 12 602 .21 II97.8 3I-56 12 2' 603.89 I2OI . 2 31-73 2' 4' 605.58 1204 . 5 3L9I 4' 6' 607 . 27 1207 .8 32.09 u^a 6' 8' 608.96 I2II . I 32.27 6. 8' .10' 610 .64 I2I4.4 32.45 -g 10' 12' 612.32 I2I7.7 12' 14' 614.01 1221 .O 32 .81 & 14' 1 6' 615.70 1224.3 33-00 JD: 16' 1 8' 617.38 .Ac* 1227.6 33.18 ^^ 1 8' 20' 619.07 6- 1230.9 33-35 |," 20' 22' 620.76 Ij 1234.3 33-53 < 22' 24' 622 .45 .-. 1237.6 33-71 24' 26' 624.13 1240.9 33.89 26' 28' 625.82 |- 1244.2 34.07 28' 3' 627.50 *? *r 1247-5 34.26 30; 32' 629.19 aft 1250.9 34.44 32 34' 630.87 ^ 1254.2 34.62 34 36' 632-56 < 1257.5 34.80 3 38' 634.24 1260.8 34-99 38' 40' 635-93 1264. I 35.18 40' 42' 637.62 1267.4 35-36 42' 44' 639-3 1270.7 35-55 44' 46' 640.09 1274.0 35-73 46' 48' 642.68 I2 77-3 35-92 48' 5' 644.37 1280.6 36.12 5' 52' 646 .06 1284.0 36.31 52' 54' 647-75 1287.3 36.5 54 56' 649.44 1290 .6 36.69 56 58' 651-13 1293.9 36.88 58' 53 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance: Long Chord. External Secant. Whole Angle. 13 652.81 1297.2 37.07 13 2' 654-50 1300.5 37.26 2' 4' 656. 19 1303-8 37-45 4' 6' 657.88 1307.1 37-64 6 7 8' 659-57 1310.4 37.83 8' 10' 661 .25 !3i3.7 38.03 10' 12' 662 .94 1317.0 38.22 12' 14' 664-63 1320.4 38.41 14' 16' 666 .32 1323.7 38.60 16' 18' 668.01 . . O O\ 1327.0 38.80 18' 20' 669 . 70 6, !330-3 39-00 ^ 20 7 ' 22' 671-395" J 333.6 33.19^ 22' 24' 673.08!, 1336.9 39-391 24' 26' 674.77c&' 1340.2 39-59;^ 9# 28' 676.46^. 1343-5 39-79^ 28' 3o' 678.15^ 1346.8 39-99^ 30' 32' 679.84 1350-2 40 . 19 N *- 32' 34' 681.53^ 1353.5 40-3955 34' 36' 683.22^- 1356.8 40.59^ 36' 38' 684.91 1360.1 40.79 38' 40' 686.60 1363-4 40.99 40' 42' 688.29 1366.7 41.19 42' 44' 689.98 . 1370.0 .41-39 44' 46' 691 .67 J373-3 4L59 46' 48' 693.36 1376.6 41 .80 48' 50' 695-05 J379-9 42 .00 50' 52' 696.74 1383-3 42 . 20 52' 54' 698.43 1386.6 42.40 54' 56' 2fOO . 12 1389.9 42 .61 56' 58' ^OI .8l 1393-2 42.82 58' 14 703.5I 1396.5 43.03 14 2' 705.20 1399.8 43.24 2' 4' 706 .89 >" o*4 1403.1 43-44 ,^4 4' 6' 708.58 6 ( ; 1406 .4 43.65 . M 6' 8' 710.27 ~ " 1409.7 43-86^:: 8 X to' 7"- 97 |: = 1413.0 44.07 ^ 10' 12' 7i3.66c& 1416.4 44.27 ;a : : I2 X 14' 715-36^: : 1419.7 44-48^ 14' 1 6' 717.05 ^oo H 1423.0 44.7o^ : = 1 6' 18' 718.74 aas 1426.3 44.91 trZo 18' 20' 720.43^ 1429.6 45.12 g 20' 22' - 722.12 ^ ! 1432.9 45-33<" : 22' 24' 723.81 1436.2 45-54 24' 26' 725.50 1439.5 45-75 26' 2g' 727.20 1442 .8 45-97 28' 54 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance Long Chord. External Secant. Whole Angle. 14 30' 728 .90 1446. I 46.18 14 30' 32' 730-59 1449-5 46 .40 3^' 34' 732 .28 1452 .8 46 .61 34' 36' 733-98 1456.1 46.83 36' 33' 735- 6 7 1459-4 47.04 38' 40' 737-37 1462.7 47-25 40' 42' 739.06 1466 .0 47-46 4=' 44' 740.76 1469.3 47-68 44' 46' 742.45 1472.6 47.90 46' 48' 744-15 1475-9 48.12 48' 5' 745 - 8 4 1479.2 48.34 5' 52' 747-54 1482.5 48.56 S^' 54' 749- 2 3 1485.9 48.78 54' 56' 750-93 1489.2 49 .00 56' 58' 752 .62 1492.5 49.22 58' 15 754.3 2 1495.8 49.44 15 2' 756.02 1499.1 49.68 2' 4' 757-7 1 Aont 1502.4 49-90 ^^^ 4' 6' 759-40 6 ^ ^ I 55-7 5" I 3 6' 8' 761 . 10 1509 .0 5-34: : 8' 10' 762.80 J_ , i5 I2 -3 SO-SS'g 10' 12' 764.49'd" " I5I5-6 50.77 &= = 12' 14' 766.18 fc. 5 1518.9 51.00* 14' 16' 767. 88 - 1522 . 2 51.23^- : 16' 1 8' 769-58 OOH I 5 2 5-5 1:1 AC; ^^^" S* 'T-J W 0*C 18' 20' _ !- i> 771.28.3 1528.8 51.67^ 20' 22' 772.983- 1532.1 5i9o<- - 22' 24' 774-68 1535.4 52.14 24' 26' 776.37 1538.7 52.37 26' 28' 778.07 1542.0 5 2 .60 28' 3' 779-77 1545.3 52.82 3' 32' 781.47 1548.6 53-05 32 34' 783-17 i55i-9 53-30 34' 36' 784.86 1555-2 53-53 36' 38' 786.56 1558-5 53.75 38' 40' 788.26 1561.8 53-97 40' 42' 789.96 1565-1 54-20 42' 44' 791 .66 1568.4 54-43 44' 46' 793-35 i57 J -7 54.67 46' 48' 795-05 i575-o 54-90 48' SO'' 796.75 1578.3 55-J3 5' S^' 798.45 1581.6 55-36 S^' 54' 800 . 15 1584.9 55-6o 54 56' 801 .85 1588.2 55-84 56 58' 803.55 i59i.5 56-08 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 16 805.25 1594.8 56.3 1 16 2' 806.95 1598.1 56.55 2' 4' 808.65 1601 .4 56.80 4' 6' 810.35 1604. 7 57.03 6' 8' 812 . 05 1608 .0 57.27 8' 10' 813.75 1611.3 57-5 10' 12' 815-45 1614 .6 57-74 12' 14' 817.15 1617.9 57-98 14' 16' 818.85 l62I .2 58.22 16' 18' 820 55 1624.5 58.46 18' 20' 822 .25 4 1627.8 58-70 20' 22' 823.95 6 1631 .1 58.95 22' 24' 825.65 1634.4 59.20 24' 26' 827.35 1 1637.7 59-43 26' 28' 820.06 'a a: 1641 .O 59.67 28' 3o' 830.76 1644.3 59-9 1 30' 32' 832.46 ^ 1647 -6 60 . 16 32' 34' 834-16 . .5 1650.9 60.40 ^4 34' 36' 835.86--- 1654.2 60.65 36' 38' S37.56:| J657-5 60 .90 ^ : - 38' 40' 839.27?. 1660.8 61 . 14 ^ 40' 42' 840. 97 |T 1664. i 6l -39|< : " 42' 44' 842 .67 t^ 1667 .4 61 .64 v. 44' 46' 844. 3 7^0 . 1670.7 61.89^^ 46' 48' 846 . 07 6 6 -t 1674 .0 62 . 14 oi t^vc' 48' 50' 847-78^ 1677-3 02 .38 ^ 50' 52' 849.483- 5; 1680.6 62 .63 . 1772.8 69.82 48' 50' 898:95 3R 1776.1 70.09 5' 52' 900.66 ?- 1779.4 70.36 52' 54' 902-37 "*' 1782.7 70.63 54' 56' 904.08 1786.0 70.90 56 58' 905-79 1789.3 71.17 58' 18 907.49 1792.6 7* -42 18 2'* 909 . 2O 1795-9 71.68 2' 4' 910.91 4 1799.2 7*-95 4' 6' 912 .62 1802 .5 72.22 iA 4 6' 8' 9*4-33 & 1805.8 7 2 .49 -_ f 8' TO' 916.03 ** 1809. I 72 . 76 ^ 10' 12' 9*7-74 $ 1812 .4 73 . 03 ^.^ 12' 14' 9*9-45 fc I8I5.7 73.30^ " 14' 16' 921 . 16 1819.0 73.58 fe: . 16' 18' 922.87 1822.2 73.86^ 18' 20' 924.581 - 1825-5 74.12 ^^ 20' 22' 926 . 29 I2T J2 1828.8 74.40?, , 22' 24' 928.00^ 1832.1 74.67^ 24' 26' 929.71 -a : I835.4 74.94 26' 28' 931-42^ 1838.7 75.22 28' 30' 933.13 ^~ 1842 .0 75-49 30' 32' 934.84 c ~4 1845-3 75-76 3 2/ 34' 936.55 * W 6 1848.6 76.03 34' 36' 938.26 -0: ^ 1851.9 76.30 36' 38' 939- 98 < 1855.2 76-58 38' 40' 941-69 1858.5 76.87 40' 42' 943.40 J5 1861.8 77 *5 42' 44' 945 * * 1865.1 77-43 44' 46' 946.82 1868.4 77-7o 46' 48' 948.53 1871.7 77.98 48' 50' 950.25 3 1875-0 78.26 50' 52' 95L96 1878.3 78.55 52' 54'. 953 -67 1881.6 78.84 54' 56' 955-39 1884.9 79-*3 56' 58' 957-10 1888.2 79.40 58' 57 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 19 958.81 1891 .4 79.67 19 2' 960.52 1894.7 79-95 2> 4' 962.23 1898.0 80 . 24 4' 6' 963-95 1901 . 2 80.52 6' 8' 965.67 1904.5 80.80 8' 10' 967.38 1907 .8 81 .09 10' 12' 969. 10 1911 . i 8i.37 12' 14' 970.82 1914.4 81.66 14' 16' 972.53 1917.7 81.95 16' i$ f 974.24 1921 .0 82.23 18' 20' 10 Qv TJ- 975-95 1924 . 2 82.52 20' 22' 977.66: : I927-5 82 .80 22' 24' 979-38- 1930 .8 83.09 24' 26' 981.09.^: : 1934.0 83-38 26' 28' 982.81 & 1937-3 83-67 28' 30' 984- 53 & : 1940.6 83.97 30' 32' 986.24 r~* 1943-9 84.26 32' 34 987.96 3 1947.2 84-55 34' 36' 989-675. . !95 -5 84 84 *r> O* *t 36' 38' 99*-39< 1953-8 85.13 6 _ W 38' 40' 993 - 11 I 957- 1 85.43S"~ 40' 42' 994.83 1960.4 85-72 | : , 42' 44' 996.55 1963 .6 86.oi 44' 46' 998 . 26 1966 .9 86.30 fc. . 46' 48' 999.98 1970.2 B6v6--5^u 48' 50' 1001 . 70 1973-5 86.90 "^ 50' 52' 1003.42 1976.8 87-20^, : 52' 54' 1005.13 1980. i 87.50^ 54' 56' 1006.85 1983-3 87.80 56' 58' 1008 . 56 1986.6 88.10 58' 2O 1010.3 1989.9 88.39 2O 2' IOI2 . I 1993.2 88.69 2' 4' IOI3.8 ^j 1996.5 88.99 4' 6' IOI5-5 6- 6 1999.7 89.29 6' 8' 1017.3 " ^ 2003 .0 89.59 8' 10' 1018.9 |= 4 2006 .3 89.89 10' 12' 1020.6 <*;* 36' 38' 2542.0 146.4 6. . 38' 40' 1305.2 2545-2 146.8^ 40' 42' 1307.0 2548.5 147-2-g: : 42' 44' 1308.7 255J-7 147 .6 Ao4 2581 .0 151.1 2' 4' 1326.3 2584.2 I 5 I -5 4 f 6' 1328.1 55- = 2587-5 i5i-9 6' 8' 1329.8-3 2590.7 152.3 8' 10' I 33 I -5 : : 2593-9 152.7 10' 12' J 333-2 g. , 2597.2 i53.i 12' 14' i335-o-" ^ 2600 .4 J 53-5 14' 16' 1336.7 6*? 2603.7 16' 18' 1338. 5|3 2607 .0 154.3 18' 20' 1340.3 |: : 26lO . 2 154.7 20' 22' 1342.0 ' 2613.5 22' 24' 1343-8 26l6.8 J 55-5 24' 26' 1345-6 262O .O 155 .9 26' 28' 1347-4 2623 . 2 156.3 28' IX. FUNCTIONS OF A ONE-DEGREE CURV 'E. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 26 30' I349- 1 2626 .4 156.7 26 30' 32' I350-9 2629.7 I57-I 32' 34' l35 2 -7 2632.9 157-5 34' 36' 1354-4 2636 . I 157-9 36' 38' KSS 6 - 2 2639.4 158.3 38' 40' 1357-9 2642 .6 158.7 40' 42' 1359-7 2645.9 I59- 1 42' 44' !36i.5 2649. J 159-5 44' 46' 1363.2 2652.4 160 .0 46' 48' 1365-0 2655.6 160 .4 48' 5 0/ 1366.7 4 2658.9 160.8 50' 5 2 ' 1368.5 2662 .2 161 . 2 52' 54' 1370-2 2665 .4 161.6 54' 56' i372.o -3 2668.7 162 .0 56' 58' 1373-8 2671.9 162 .4 58' 27 K) 1375-5 * 2675.1 162.8 27 2' 1377-3 * 2678.4 163.2 2' 4' 1379.0 * 2681.6 I6 3.6^ 4 4' 6' 1380.8 AdR 2684.9 164.0 6' 8' 1382.6 c : ; 2688.1 164.5!- : 8' 10' 1384.4^ ^ 2691 .3 164. 9g 10' 12' 1386.2-^ 2694 .6 165. 3 -a' : 12' 14' 1388.0^ 2697.8 165.7^. 14' 16' 13*6*7-* 2701 . i 166.1 - - 1 6' 18' i39i.5]^4 2704.3 166.5-- 25 18' 20' 1393-2 j^d 2707.5 166 .9 ^d 20' 22' 1395-03: Jz: 2710 .8 167. 4<~ : 22' 24' 1396.7^ g 2714.0 167.8 24' 26' J 398-5 i| 2717.2 168.2 26' 28' 1400.3 ^ 2720.4 168.6 28' 30' 1402.0 ^ 2723.6 169 .0 30' 32' 1403.8 ? 2726.8 169.4 32' 34' J 405.6 ^ 2730.0 169.8 34' 36' I 47-3 ^ 2733-3 170.3 36' 38' 1409. i 2736.5 170.7 38' 40' 1410.8 2739.8 171.1 40' 42' 1412 .6 2743.0 171.6 42' 44' 1414.4 2746.3 172 .0 44' 46' 1416 . i 2749-5 172.4 46' 48' 1417.8 2752.7 172.9 48' 5 : 1419.6 2756.0 !73-3 5' 5* 1421.4 2759.2 173.7 52' 54 1423.1 2762 .5 174.2 54' 56' 1424.9 2765.8 174.6 56' 58' 1426.7 2769 .0 175-0 58' 63 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 28 1428.5 2772.2 J 75-4 28 2 f I430-3 2775-5 175-8 2' 4' 1432.0 2778.7 176.3 4' 6' 1433-8 2782 .0 176.7 6' 8' 1435-6 2785-2 177.2 8' 10' 1437-4 2788.4 177.6 10' 12' 1439.2 2791.7 178.0 12' 14' 1441 .0 2794.9 178.5 14' 16' 1442.7 2798.1 178.9 16' 18' 1444-5 2801.3 179-3 jS f 20' 1446.2 4 2804. 5 179.7 . 20' 22' 1448.0 ^ 2807.8 l8o.2 22' 24' 1449.7 ^ 2811 .0 180.6 24' 26' i45 J -5 "g 2814. 2 iSl.O 26' 28' 1453-3 2817.5 181.5 28' 3o' I 455- 1 | 2820 . 7 181 .9 30' 32' 1456.9 2824 .0 182.3 ;t 32' 34' 1458.7 - -o 2827 . 2 182.8 . . . 34' 36' 1460.5 ;?* 2830.5 183.2 $$t 36' 38' 1462. 3- ^ 2833-7 183-7^: : 38' 40' 1464.0 2836.9 184.1 -^ 4o' 42' 1465- 8 : 2840 . 2 184.6-^ : 42' 44' 1467.6 g. 2843-4 185-0^ 44 7 46' 1469.3 ooo 2846.6 185. 4 : : 46' 48' I47 1 -* 4 2849.8 l8 5-9^22 48' 5o' 1472.9^** 2853.0 186.3^ 50' 52' 1474. 7 3 : , 2856.3 186.7^ - 52' 54' i47 6 -5 -5 2859.5 187.2 54' S^' '478-3 | 2862.7 187.6 56 58' 1480.0 co 2866.0 188.1 58' 29 1481.8 1 2869.2 188.5 29 a' 1483-6 ^ 2872.5 189 .0 2' 4' 1485-4 a 2875-7 189.4 4' 6' 1487.1 ^ 2878.9 189.9 6' 8' 1488.9 < 2882.1 190.3 8' 10' 1490.7 2885.3 190.7 10' 12' 1492.5 2888.5 191 .2 12' 14' 1494.3 2891.8 191 .6 14' 16' 1496 .0 2895 .O 192 . i 16' 18' 1497.8 2898.2 192.5 18' 20' 1499.6 2901 .4 193.0 20' 22' 1501 .4 2904 . 6 193-5 22' 24' 1503-2 2907.9 193-9 24' 26' 1505-0 2911 . i 194.4 26' 28' 1506.7 2914.3 194.8 28' 64 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 29 30' 1508.5 2917.5 195-3 29 30' 32' I5I0.3 2920 .8 195.7 32; 34' 1512 .0 2924.0 196.2 34 36' I5I3.8 . . 2927.2 196 .6 36 38' 1515-6"** 2930.5 197.1 38' 40' 1517.4^= = 2933.7 197-5 40' 42' 1519.2-3 2937.0 198 .0 42' 44' 1521.0-*: : 2940 . 2 198.4 44' 46' 1522 . 7 ^ 2943.4 198.9 46' 48' 1524.5 = = 2946 .6 199.3 48' O GO Tf 50' 1526.3 C i-' rr> 2949.8 199.8 5 52' 1528.0 '^R 2953.0 200.2 52 ^ 54' 1529.8?, : 2956.3 200.7 54 56' 1531 .6 "^ 2959.5 2OI . I 56 58' 1533.4 2962 .7 2OI .6 58' 30 1535.2 2965.9 2O2 . I 30 2' 1537.0 2969.1 2O2 .6 2' 4' 1538.8 2972.3 203.0 . . 4' 6' 1540.6 ^_ 2975.6 203.5 ^^^ 6' 8' 1542.4 2978.8 203. 9^3 : 8' 10' 1544.2 z 2982 .0 204.4^3 10' 12' 1546.0 -g 2985.3 204.9 :r : 12' 14' 1547-8 *a 2988.5 205.3^ 14' 16' 1549.6 t 2991.7 205 .8 z : 16' 18' 1551.4 2994.9 206.3 "3 itv? 18' 20' 1553.2 t^s 2998. i 206.8,3 w 20' 22' 1554.9,6- 3001.3 207.2 5j : = 22' 34' 1556.7^ ^ 3004.5 207.7 24' 26' 3007.7 208.1 26' 28' 1560. 3 1" 3010.9 208.6 28' 30' 1562 .1 jr: 3014.1 2t>9.1 3; 32' 1563 ,9 ^09 . 3017-3 209.5 32 3 < *565-7 5- 3020.5 2IO .O z i 36' 1567-4^ , 3023.8 2IO .5 3 6 38' 1569.23=5 3027.0 211 .O 38' 40' 2 1571.0 3030.2 2II.5 40; 42' 1572.8 3033.4 212 .0 42' 44' 1574.6 3036.6 212 .4 44' sf 46' 1576.4 ^ 3039.9 212 .9 46' 48' 1578.2 ^ c 3043.1 213.4 48' 50', 1580.0 5 3046.3 213.9 5' 52' 1581.8 < 3049.5 214.4 52 ' 54' 1583.6 3052.8 214.8 54' 56' 1585.4 3056.0 215.3 56 58' 1587.2 3059-2 215.8 5 8 65 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angif. Tangent Distance. Long Chord. External Secant. Whole Agnle. 31 1588.9 3062 .4 216.3 31 2' 1590.7 3065.6 216.8 2' 4' 1592.5 3068.8 217.3 4' 6' 1594.3 3072.0 217.7 6' 8' 1596.1 3075-2 218.2 8* 10' 1597-9 3078.4 218.7 10' 12' 1599-7 3081.6 219 . I I2 7 14' 1601 . 5 3084.8 219 .6 14' 16' 1603.3 3088.0 220 . I 16' 18' 1605.1 309L3 22O . 6 18' 20' 1606 .9 3094.5 221 . I 20' 22' 1608.7 3097.7 221.6 22 X 24' 1610.5 3100 .9 222 . I 24' 26' 1612.3 3104.1 222 . 5 26' 28' 1614 . i 3 I0 7-3 223.0 28' 30' 1615.9 3110.5 223.5 3' 32' 1617.7 3113-7 224 .O 3 2 ' 34 l6 *9-5 ^4 3116.9 224.5 ^4 34' 36 1621.3 3120.1 225 .0 36' 38' 1623.1 jO: : 3123.3 225.5 = - 38' 40' 1624.9 13 3126.5 226 .0 15 - 40' 42' 1626 . 7 'Br : 3129.7 226.5 '& : 42' 44' 1628. 5^ m 3132.9 227.0^ 44' 46' 1630.3 ~ : 3136.2 227.5 " " 46' 48' 1632.1 J vo v, O 3139-4 228.0^! 48' 5 0/ 1633.9^*- 3142.6 228.4^ 50' 52/ , 1635 7 ^ : 3I45-8 228. 9^ : : 52' C A 1637-5 3149.0 229.4 54' 56' 1639-3 3i5 2 -2 229.9 56; 58' 1641 .1 3I55-4 230.4 32 1642 .9 3158.6 230.9 32 2 f 1644.7 3161.8 231.4 2 f 4' 1646.5 3165.0 231.9 4' 6' 1^8-8.3 3168.2 232.4 6' 8' 1650. i 3i7i-4 33 2 .9 8' 10' 1651.9 3174.6 233-4 10' 12' 1653.7 3177.8 233-9 I2 7 14' l6 55-5 3181 .0 234-4 14' 16' 1657-3 3184.2 234.9 16' 18' 1659.1 3187.4 235-4 18' 20' 1660. 9 3190.6 235.9 20' 22' 1662 . 7 3193.8 236.4 22' 24' 1664.5 236.9 24' 26' 1666.3 3200. 2 237.4 26' 28' 1668.1 3203.4 237-9 28' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 32 30' 1669.9 3206 . 6 238.4 32 30' 3*' 1671.7 3209.8 238.9 32' 34' 1673.5 3213.0 239-4 34' 36' 1675.3 3216.2 239.9 36' 38' 1677.1 3219-4 240.5 38' 40' 1679 .O 3222 .6 241 .O 40' 4*' 1680.8 3225.8 24L5 42' 44' 1682.6 3229.0 242 .0 44' 46' 1684.4 3232.2 242.5 46' 48' 1686.2 3235.4 243-0 48' 5 0/ 1688.1 3238-6 243-5 5o; 52' 1689.9 3241.8 244.0 54' 1691.7 3245-0 244.6 54' 56' 1693-5 3248.2 245- 1 56' 58' 1695.3 325L4 245-6 58' 33 1697.2 3254.6 246.1 33 2 f 1699.0 3257.8 246.6 2' 4' 1700.8 3261 .0 247 .2 ... 4' 6' 1702 .7 ^ ^^ 3264.2 247-7 ""* 6' 8' 1704.5 ; - 3267.4 248.2 6, : 8 X 10' 1706. 3 ~ : 3270.6 248. 7 -a 10' 12' 1708.1 * 3273.8 249.2-5= = 12' 14' 1709. 9 'ST : 3277.0 249.7^ 14' 16' C/2 1711.7 3280.2 250. 3 : : 1 6' 18' I 7 I 3-5 ^_ : : 3283.4 250.8 1 8' 20' 1715-3 j 3286.6 251-3-0 20' 22' 1717.1 ***- 3289.8 251.83= = 22' 24' 1718.9 *c: : 3293.0 252.3 24' 26' 1720.8 Y 3296.2 252.8 26' 28' 1722 .6 3299.3 253-3 28' 3 0/ 1724.4 3302.5 253-9 30' 32' 1726.2 3305.7 254-4 32 34' 1728.0 3308.9 255.0 34 36' 1729.9 33 12 . i 255.5 36 38' I73L7 3315.3 256.0 38' 40' 1733.5 3318.5 256-5 40' 42' 1735.3 3321.7 257.0 42' 44' 1737.2 3324.9 257.5 44' 46' 3328.1 258.0 46' 48' 1740.8 3331-2 258.5 48' 50' 1742.6 3334-4 259.1 5' I*' 1744.4 3337-6 259.6 52 ', 54'. 1746.2 3340.8 260.2 54' 56' 1748 .0 3344-0 260.7 56' 58' 1749.9 3347-2 261 .3 58' 67 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 34 I75L7 3350.4 261.8 34 2' 1753.6 3353-6 262 .4 2' 4' 1755.4 3356.8 262 .9 4' 6' 1757.2 4 3360.0 263.5 6' 8' 1759-0 ^ 3363.1 264.0 8' 10' 1760.8 g 3366.3 264.5 10' 12' 1762.7 "g 3369.5 265 . I 12' 14' 1764.5 3372.7 265.6 14' 16' 1766.3 3375-9 266 .2 16' 18' 1768.1 ^ 3379-0 266.7 18' 20' 1769.9 o 3382.2 267.2 20' 22' i77i-7 267.8 22' 24' 1773.6 ^ 3388^6 268.3 24' 26' 1775-4 3391-8 268.9 26' 28' 1777.2 3395-0 269.4 28' 30' 1779.0 3398.1 269.9 30' 32' 1780.9 3401.3 270.5 32' 34' 1782.7 ^4 3404.5 270.0 34' 36' 1784.5 3407-7 271 .6 iA4 36' 38' I786.3|= = 3410.9 272.1 ^ _ H 38' 40' 1788.2 * 3414.0 272 .6 2 40' 42' 1790. I :: 3417.2 273.2 .: : 42' 44' I79L9 g- - 3420.4 273-7 & 44' 46' 3423.5 274.3 gs r 46' 48' 1795^12$ 3426.7 274.8^o H 48' 5 ; 1797.4^" 3429.9 275.3 "^ 5; 52' 1799.2^: : 3433-1 275. 9S: : 52 54' 1801 . i 3436.3 276. 4< 54' 56' 1803.0 3439.4 277.0 56' 58' 1804.8 3442.6 277.5 58' ,35 1806. 6 3445 - 8 278.1 35 2' 1808.5 4 3449-0 278.6 2' 4' 1810.3 3452.1 279.2 4' 6' 1812 . i 3455-3 279.7 6' 8' 1813-9 -g 3458.5 280.2 8' 10' 1815.7 346i.7 280.8 10' 12' 1817.6 g 3464.9 281.3 12' 14' 1819.4 * 3468.0 281.9 14' 16' 1821.3 * 347 1 - 2 282.4 16' 18' 1823.1 3474-4 283.0 18' 20' 1824.9 3 3477-6 283.6 20' 22' 1826.8 3480.8 284.1 22 r 24' 1828.6 3484.0 284.7 24' 26' 1830.4 3487.1 285.2 26' 28' 1832.3 3490.3 285.8 28' 68 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. . 35 30' 1834.1 3493-5 286.4 35 30' 3*' 1836.0 3496.6 286.9 32' 34' I837-8 4 3499-8 287.5 34' 36' 1839.7 3503-0 288.0 36' 38' 1841-5 & 3506.2 288.6 38' 40' 1843-3 'S 3509.3 289.2 40' 42' 1845-2 35*2.5 289.7 42' 44' 1847.0 1* 290.3 44' 46' 1848.9 35i8l8 290.8 46' 48' 1850.7 4 3522.0 291.4 48' 5' 1852.5 3525-2 292 .0 50' 5*' 1854.3 3 3528.4 292 .6 52' 54' 1856.2 3531 . 5 293.1 54' 56' 1858,0 3534-7 293-7 56' 58' 1859.9 3537-9 294-3 58' 36 1861.7 354i.i 294.9 36 2' 1863.6 3544-3 295-5 2' 4' 1865.4 3547-4 296.0 4' 6' 1867.3 " 3550-6 296.6 ^<>j 6' 8' 1869.2 g 3553-8 297 . 1 o- . 8' 10' 1870.9 13 3557-0 2 97-7^ " 10' 12' 1872.8 356o.2 298.3 .h- - 12' 14' 1874.6 & 3563-3 298. 8 c&" " 14' 16' 1876.4 3566.5 299. 4J5: : 1 6' 18' 1878.3 5 3569-6 3OO.O J>0 H 1 8' 20' 1880. i " 3572.8 3 ' 6 * 20' 22' 1882. o: ? 3576.0 301 .2 :: : 22' 24' 1883.8* < 3579-1 3 I -7 < 24' 26' 1885.74= 3582.3 302.3 26' 28' .i88 7 . 5 3585.5 302.9 28' 3; 1889. 3 I s 3588.6 303.5 30' 1891 . 2 ^ " 3591.8 304.0 32 !*' 1893.0 $? 3594-9 304.6 34 36' 1894.85, 6 3598.1 305.2 36 38' 1896.7 <" 2 3601.3 305-8 38' 40' 1898.5 4 3604.4 306.4 40' 4 2/ 1900.4 ^ 3607.6 307.0 42' 44' 1902.2 3610.7 307.5 44' 46' 1904.1 IJ ? 3613-9 308.1 4 | 48' 1905.9 o 3617.1 308.7 48' 5' 1907.8 3620.2 309.3 5' S^' 1909.6 < 3623.4 309.9 52 / 54' 1911.5 3626.5 310.4 5 i 56' 1913.3 3629.7 311.0 56' 58' 1915.2 3632 .8 3H.6 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 37 1917.1 3636.0 312.2 37 a' 1919 .O 3639 - 1 312.8 2' 4' 1920 .8 3642.3 313.4 4' 6' 1922.7 ? 3645.5 314.0 6' 8' i 9&4 . 5 6 3648.6 314.6 8' 10' 1926.4 -j 3651-8 3I5. 2 10' 12' 1928.3 3654.9 315.8 12' 14' 1930.1 tw 3658.1 316.4 14' 16' 1932.0 3661.3 3I7-0 16' 18' 1933.8 3664.5 317.6 18' 20' 1935-7 ^ 3667.6 318.1 20< 22' 1937.6 : 3 3670.8 318.7 22' 24' 1939-4- < 3673.9 3*9-3 24' 26' 1941 .3 & 3677.1 3J9-9 26' 28' 1943.1 co 3680 . 2 320.5 28' 30' 1945.0 J : 3683.3 321.1 3o' 32' 1946.9124 3686.5 321.7 32' 34' 1948.7 3 H . 3689.6 322.3 34' 36' 1950.6^ 3692.8 322.9 A j 36' 38' 1952. 4 3740.1 332.o 6' 8' 1980.3,0: : 3743.3 332.6 8' 10' 1982 . 2 'd 3746.4 333-2 10' 12' 1984.0 -g," : 3749-5 333.8 12' 14' 1985.9^ 3752.7 334.5 14' 16' 1987- 72 : : 3755-8 335- 1 16' 18' 1989-6 ?n 3759-o 335-7 18' 20' to u-j O I99I.5 cj^t^ 3762.2 336.3 20' 22' 1993 -4 ?: : 3765.3 336.9 22' 24' 1995. 3^ 3768.5 337-5 24' 26' 1997.1 3771.6 338.i 26' 28' 1999.0 3774-8 338.7 28' 70 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 38 30' 2OOO .8 3777-9 339-3 38 30' 32' 2OO2 . 7 3781.1 339-9 32' 34' 2004.5 3784.2 340.6 34' 36' 2006.4 4 3787-4 341.2 36' 38' 2008 .3 3790.5 341.8 38' 40' 2OIO . 2 3793-7 342.4 40' 42' 2012. I *g 3796.8 343-o 42' 44' 2014.0 3800 .0 343-7 44' 46' 2015.8 C 3803.1 344-3 46' 48' 2017.7 - 3806.2 344-9 48' 50' 2019.6 " 3809.4 345-5 50' 5*' 2021.5 3812.5 346.1 52' 54' 2023.4 5 3815-7 346.8 54' 56' 2025.3 3818.9 347-4 56' 58' 2027 .2 3822.0 348.0 58' 39 2O29 .O 3825.1 348.6 39 2' 2030.9 3828.2 349-3 2' 4' 2032 .8 ... 3831.4 349-9 ^ . . 4' 6' 2034. 7' ^H 3834-5 350.5""? 6' 8' 2036.6 ,o : : 3837-7 351-2 c, 5 8' 10' 2038.4-3 3840.8 35i. 8-g 10' 12' 2040.3 -a : : 3843-9 352. 4 -a : = 12' 14' 2042.2^ 3847-1 353.1^ 14' 16' 2044. i : : 3850.2 353- 7- : : 16' 18' 2046. o||| 3853.4 354.3 ^2 18' 20' 2047 -8 N ^^ 3856.5 354- 9-d 20' 22' 2049.7 S: : 3859-6 355- 5< : : 22' 24' 2051 .6 1 3862.8 356.2 24' 26' 2053-5 3865-9 356.8 26' 28' 2055.4 3869.1 357-5 28' 30' 2057.2 3872.2 358.1 30' 32' 2059.1 4 3875-3 358.7 32' 34' 2061 .0 3878.5 359-4 34 36' 2062.9 j 3881.6 360.0 36' 38' 2064.8 13 3884-7 360.7 38' 40' 2066.6 '& 3887.9 361.3 40' . 42' 2068.5 3891.0 362.0 42' 44' 2070.4 ^ 3894.2 362.6 44' 46' 2072.3 3897-3 363-3 46' 48' 2074.2 *- 3900.4 363-9 48' 50' 2076.0 ^ 3903.5 364-5 50' 52' 2077.9 3906.6 365-2 52 54' 2079.8 3909.8 365-8 54 56' 2081 . 7 3912.9 366.5 56 58' 2083.6 3916.0 367.1 =;8' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 4O 2085 . 4 3919.2 367.7 4O 2' 2087.3 3922.3 368.4 2' 4' 2089 . 2 369.0 4? 6' 2091 . I 3928.6 369.7 6' 8' 2093.0 3931-7 370.3 8' 10' 2094.9 3934-8 371.0 10' 12' 2096.8 3937-9 371-6 12' 14' 2098.7 3941.0 372.3 14' 16' 2100.6 3944-2 372.9 1 6' 18' 2IO2 .5 3947-3 373.6 18' 20' 2104.3 3950-5 374-2 20'. 22' 2IO6. 2 *?< 3953.6 374-9 22' 24' 2I08.I "g 3956.8 375-5 24' 26' 2IIO.O 3959-9 376.2 26' 28' 2111.9 J 3963.0 376.8 28' 3' 2H3.7 ^ 3966.1 377-5 30' 32' 2II5.6 ^ 3969.2 378.1 32' 34' 2117.5 l ? > 3972.4 378.8 ... 34' 36' 2119.4,: .3 3975.5 379.4 100 ? 36' 38' 2121.3^' 3978.6 380.1 c,. : 38' 40' 2123. 2 1, : 3981 .8 380.8^ 40' 42' 2125.1? . 3984.9 381. 4 &- = 42' 44' 2127 .0 <~V 3988.1 382. !< 44' 46' 2128.9 o*- 4115.9 409.7 ^i 6' 8' 2207 . 1 jg: Ig 4119.0 410.4^- . 8' 10' 22O9 .O 'rt 4122 . i 4 ii. i 10' 12' 2210.9 'Sr 4125.2 411. 8 |:: 12' 14' 2212.9^ 4128.3 412.500 14' 16' 2214.8 2* JH ^ iff 18' 2216.7 "5 . 4134.5 4i3.8^t 1 8' 20' 2218. 6^'S- 4I37-7 414.5^- 20' 22' 2220.5 j: 4140 .8 415.25= s 22' 24' 2222.5 < 5 4I43-9 4I5-9 24' 26' 2224.4 4147.0 416.6 26' 28' 2226 .3 w 4150.1 4I7-3 28' 30' 2228.2 4I53-2 418.0 3' 32' 2230.2 4156 .3 418.7 32' 34' 2232 . i R 4I59-4 419.4 34' 36' 2234.0 ; 4162.5 420 . i 36' 38' 2235.9 < 4165 .6 420 .8 38' 40' 2237.8 4168.7 421.5 40' 42' 2239.8 4171.8 422 . 2 42' 44' 2241.7 4174.9 422.9 44' 46' 2243.6 4178.0 423.6 46' 48' 2245-5 4181 . i 424.3 48' 5 0/ 2247.4 4184.3 425.0 5' 52' 2249.4 4187 .4 425.7 52' 54 - 2251.3 4190.5 426.4 54' 56' 2253.2 4193.6 427.1 56' 58' 2255.1 4196.7 427.8 58' 73 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 43 2257.0 4199.8 428.5 43 2' 2259.0 4202 .9 429.2 2' 4' 2260 . 9 4206.0 429.9 4 ; 6' 2262 .8 4209. I 430.6 8' 2264 . 7 4212 . 2 431-3 8' to' 2266 .6 4215.3 432.0 10' 12' 2268.6 42l8 .4 432.7 12' 14' 2270.5 4221 .5 433-5 14' 16' 2272 .4 4224.6 434-2 16' 18' 2274.3 4227.7 434-9 18' **' 2276 . 2 4230.8 435-6 20' 22' 2278 . 2 4133-9 436.3 22' 24' 2280.1 4237.0 437-o 34' 26' 2282 .0 4240 . i 437-8 26' 28' 2283.9 4243.2 438.5 28' 30' 2285.8 4246 . 2 439- 2 30' 32' 2287.7 4249-3 439-9 32' 34' 2289.6 ^ ; 4 4252.4 440.7 . . . 34' 36' 2291 -5 ""'^H 4 2 55 5 441.4 "><*;: 36' 38' 2293. 4|- . 4258.6 442.1 e z . 38' 40' 2295.5 rt 4261 .7 442. 8 ~ 40' 42' 2297 .6 'g,- : 4264 .8 443 5 = : 42' 44' 2299-5^ 4267.9 444 . 2 CG 44' 46' 2301. 4 - 4271 .0 445 -0^ : = 46' 48' 2303-3 4$ 4274.1 445-7 ;? 48' 5' 23 5.2 ^ **" 4277.2 446.4^ M 5o; 5 2/ 2307.2 j : : 4280.3 447.1 j: : 54' 2309.1 ? 4283.4 447-8^ 54' 56' 2311.0 4286.5 448.6 56' 58' 2312.9 4289 .6 449-3 58' 44 2314-9 4292.7 450.0 44 2' 2316.8 4295.8 450-7 2' 4' 2318.8 4298.9 4' 6' 2320.7 4302.0 452.2 6' 8' 2322.7 4305 - 1 452.9 8' 10' 2324.6 4308.1 453-6 10' 12' 2326 .6 4311.2 454-3 12' 14' 2328.5 4314.3 455-1 14' 16' 2330-5 43*7-4 455-8 16' 18' 2332.4 4320.5 456.5 18' 20' 2334-3 4323-5 457-3 20' 22 X 2336.3 4326.6 458.0 22 X 24' 2338.2 4329.7 458.8 24' 26' 2340.2 4332.8 459-5 26' 28' 2342.1 4335 -Q 460.3 28' 74 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 44 30' 2344.0 4338.9 461 .O 44 30' 32' 2346.0 4342 .0 461.8 32' 34' 2347v9 4345 - 1 462.5 34' 36' 2349-8 4348.2 463.3 36' 38' 2351-8 435 J -3 464 .0 38' 40' 2353-7 4354-4 464.7 40' 42' 2355-7 4357-5 465.5 42' 44' 2357- 6 4360.6 466.2 44' 46' 2359- 6 4363-7 467.0 46' 48' 2361.5 4366.7 467.7 48' 50' 2363-5 4369.8 468.4 50' 52' 2365-5 437 2 -9 469.2 52' 54' 2367-4 4376.0 469.9 - 54' 56' 2369.4 4379-0 470.7 56' 58' 237I-3 4382.1 471.4 58' 45 2373-3 4385-2 472.1 45 2' 2375-3 4388.3 ' 472.8 2' 4' 2377-2 t& + 4391-4 473-6 . . . 4' 6' 2379.2.-. M 4394.5 474-3 ^ H 6' 8' 2381.2^: : 4397-6 475-1 js : 8' 10' 2383.il 4400 .6 475-8-g 10' 12' 2385- * " : 4403.7 476.6-g=: 12' 14' 2387.0^ 4406 . 8 477-3^ 14' 16' 2389.0^- 4409.9 478. i- : 16' 18' o oo oo 2390'9 M NXA ui v, O 4413.0 478.8^ 18' 20' 2392.9^ 4416 .0 479-6-d 20' 22' 2394.95: : 4419.0 480. 43 : : 22' 24' 2396. 8^ 4422.1 481.1 24' 26' 2398.8 4425.2 481.9 26' 28' 2400 . 7 4428.3 482.7 28' 30' 2402.7 4431-3 483-4 30; 32' 2404.7 4434-4 484.2 32 34' 2406 .6 4437-5 485.0 3 i 36' 2408.6 4440 . 5 485-7 36 38' 2410.5 4443-6 486.5 38' 40' 2412.5 4446 . 7 487.2 40' 42' 2414.5 4449 - 8 488.0 42' 44' 2416 .4 4452.8 488.8 44' 46' 2418.4 4455-9 489.5 46' 48' 2420.3 4459-0 490.3 48' 50' 2422.3 4462 . i 491 .0 50' 52 : 2424-3 4465.1 491.8 52 54'. 2426 . 2 4468.2 492.5 54 56' 2428.2 4471-3 493-3 56 ; 58' 2430.1 4474-4 494.1 58' 75 IX.- FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 46 2432.1 4477-5 494-8 4G 2' 2434.1 4480 . 6 495-6 2' 4' 2436.0 4483.6 496.3 4' 6' 2438.0 4486.7 497.1 6' r 2439.9 4489.8 497-9 8' 10' 2441.9 4492.8 498.7 10' 12' 2443.9 4495-9 499-5 12' 14' 2445.8 4498.9 5o-3 14' 16' 2447.8 4502 .0 501 .0 16' 18' 2449.7 4505.1 501.8 18' 20' 2451-7 4508. i 502.6 20' 22' 2453-7 4511.2 503.4 22' 24' 2455-7 45*4.3 504-2 24' 26' 2457.6 45*7-3 504.9 26' 28' 2459.6 4520.4 505.7 28' 30' 2461 .6 45 2 3-4 506.5 3' 32' 2463.6 507-3 32' 34' 2465-5 A o,4 4529.6 508.0 34' 36' 2467.5 4532.6 508.8 ^** 36' 38' 2469- 5 : : 4535-7 509-6 6, : 38' .40' 247 I -5l . 4538.8 510.4* 40' 42' 2473.51" " 4541.8 5 II. 2. |: = 42' 44' 2475-4 g. - 4544-9 512 .0 co 44' 46' 2477. 4 ^ a " H 4548.0 512 .7 ,0= 5 46' 48' 2479- 4 ~o 455i.o 5*3-5 ^^ 48' 50' 2481.4.?*" 4554.1 5*4-3 s*t 50' 52 2483.45= = 4557-2 515 . i tfs = 52' 54' 2485.4 4560.2 515 .9 54' 56' 2487-3 4563.3 516.6 56' 58' 2489.3 4566.4 5*7-4 58' 47 2491.3 4569-4 , 518.2 47 2' 2493.3 4572.4 519.0 2' 4' 2495.3 4575-5 519.8 4' 6' 2497.3 4578.5 520.6 6' 8' 2499.2 4581.6 521.4 8' 10' 2501 .2 4584.6 522 . 2 10' 12' 2503.2 4587-7 5 2 3 "O 12' 14' 2505.2 4590.7 523.8 14' 16' 2507.2 4593-8 524.6 16' 18' 2509.1 4596.8 5 2 5.4 18' 20' 2511 . I 4599-9 526 . 2 20' 22' 25I3.I 4602 . 9 527.0 22' 24' 25*5. i 4606 .0 527.8 24' 26' 2517.1 4609 . o 528.6 26' 28' 2519.1 4612 . i 529-4 28' 76 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 47 3' 2521 .O 4615.1 530.2 4:7 3 0' 32' 2523.0 4618.2 53LO 32' 34' 2525-0 4621 .2 53L8 34' 36' 2527 .0 4624.3 532.6 36' 38' 2529.0 4627.3 533-4 38' 4' 2531.0 4630.4 534-2 40' 42' 2533.0 4633.4 535-0 42' 44' 2535.0 4636.5 535-8 44' 46' 2537.0 4639.5 536.6 46' 48' 2539.0 4642 .6 537-4 48' 5' 2541.0 4 4645-6 538.2 5 0/ 52' 2543.0 4648.7 539-0 52 ! 54' 2545.0 4651.7 539-8 54 56' 2547-0 -3 4654-8 540.6 56' 58' 2549.0 . 4657.8 54L4 58' 48 CO 255 1 - K 4660 .9 542.3 48 2' 2553-0 * 4663.9 543-1 2' 4' 2555-0 o 4667 .0 544-0 . . . 4' 6' 2557.0 ^<* 4670.0 544.8 ""*;? 6' 8' 2559-0 |s : 4673-1 545- 6 0; = 8' 10' 2561.0*2 4676 . i 546. 4-g 10' 12' 2563 -o-a : 4679.1 547. 2 -a : : 12' 14' 2565-0^ 4682.2 548.0^ 14' 1 6' 2567.0^ 4685.2 548.9-5= = 16' 18' 4688.2 549-7^25 18' 20' 257 1 - jpd 4691.3 55-5-;g_ _ H 20' 22' 2573-o^: * 4694.3 22' 24' 2575-0^ "g 4697.3 552.2 24' 26' 2577-0 4700.4 553-o 26' 28' 2579.0 g 47 3.4 553-8 28' 3' 2581.0 *> 4706.4 554-6 30; 32' 2583-0 ^ 4709.5 555-4 32 34' 2585-0 47 I2 -5 556.2 34 36' 2587.0 3 47^.5 557-0 36' 38' 2589.0 4718.6 557-9 38' 40' 2591 .0 4721.6 558.7 40' 42' 2593-0 4724.6 559-5 42' 44' 2595-0 4727.6 560.3 44' 46' 2597-1 4730.7 561.2 46' 48' 2599.1 4733-7 562.0 48' 50' 2601 . 4736.8 562.8 5' 52' 2603. 4739-8 563-6 52 ', 54' 2605. 4742.8 564-4 54 56' 2607 . 4745-9 565-3 56 58' 2609. 4748.9 566.1 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 49 26ll .2 4752.0 566.9 49 2' 2613 .2 4755-0 567-7 2' 4' 2615.2 4758'. 5 68.6 4' 6' 2617.2 4761 .0 569-4 6' 8' 2619 . 2 4764. i 57-3 8' 10' 2621 . 2 4767.1 57 1 - 1 10' 12' 2623.3 4770.1 572.0 12' 14' 2625.3 4773-1 572.8 14' 16' 2627.3 4776.2 573-6 16' 1 8' 2629.3 4779-2 574-5 i8 r 20' 2631.3 4 4782.3 575-3 20' 22' 2633.4 4785-3 576.2 22' 24' 2635.4 | 4788.3 577-o 24' 26' 2637.4 - 4791.4 577-9 26' 28' 2639.4 . 4794.4 558.7 28' 30' 2641.4 ^ 4797-4 579-5 30' 32' 2643.5 4800.5 580.4 32' 34' 2645-5 5 4803.5 581.2 . . . 34' 36' 2647.5 xAoR 4806 . 5 582.1 IOCV 2 36' 38' 2649.5 |: ? 4809 .6 582.9^, ; & 40' 2651.5-3 ^ 4812.6 583-8^ 40' 42' 2653.6-*: 4815.6 584. 6. g: : 42' 44' 2655.6* 4818.6 585.5^ 44' 46' 2657 .6 ,0 = 4821.7 sWvs'l; = 46' 48' 2659.6 <^<^^ 4824.7 587 .2 oq e> 48' So' 2661 .6 ' M 4827.7 588.!^" 50' $*' 2663. 7 5. ; 4830.7 588.95= = 52' 54' 2665.7 ^ * 4833-8 589- 7 < 54' 56' 2667.7 -g, 4836.8 590.6 56' 58' 2669.7 < 4839.8 59i-4 58' 5O 2671.7 <~ 4842.9 592.3 5O 2' 2673.7 ^ 4845-9 593-2 2' 4' 2675.8 * 4848.9 594-0 4 r 6' 2677.8 S 4852.0 594-9 6' r 2679.8 4855-0 595-8 8' 10' 2681.9 4858.0 596.7 10' 12' 2683.9 4861 .0 597-6 12' 14' 2686.0 4864.0 598.4 14' 16' 2688.0 4867. 599-3 16' 18' 26^0. i 4870. 600. i 18' 20' 2692 . i 4873- 601 .0 20' 22' 2694. i 4876. 601 .9 22' 24' 2696 . 2 4879. 602 .7 24' 26' 2698.2 4882 .2 603.6 26' 28' 27OO .3 4885.2 604.4 28' 78 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 50 30' 2702.3 4888.2 605-3 50 30' 32' 2704.3 4891 . 2 606 . 2 32' 34' 2706 .4 4894 . 2 607 .O 34' 36' 2708 .4 4897.2 607.9 36' 38' 2710.5 49OO . 2 608.8 38' 4' 2712.5 4903.2 609.7 40' 42' 27M.5 - 4906 . 2 610 . 6 42' 44' 2716.6 c 4909.2 611.5 44' 46' 2718.6 4912.2 612.3 46' 48' 2720.7 | p, 49I5-2 613-2 48' 5' 2722 . 7 ^ 4918 . 2 614. i 50' 52' 2724.8 4921.3 615 .0 52' S4' 2726.8 c>4 4945-3 622 .0 c : - 8' 10' 2743.1 | = : 4948.3 622. Q-g 10' 12' 2745.1- 495J-3 623.8-^= 12' 14' 2747. 2. : - 4954-3 624. 7< 14' 16' 2749.2 & 4957-3 625.6,5= = 16' 1 8' 275J-3.C: : 4960.3 626.4 ^ " ^ W 00 00 18' 20' 2753-3 2S2. 4963-3 627- 3-d 20' 22' 2755-3 3R 4966.3 628.233- = 22' 24' 2757-4;^ s 4969.3 629 . 1 24' 26' 2759-42 2' 2796.6 5026.3 646. I 2' 4' 2798.6 5029.3 647.0 4' 6' 2800.7 4 5032 . 3 647.9 6' 8' 2802.7 o 5035-3 648 . 8 8' 10' 2804.8 5z 5038.3 649-7 10' 12' 2806.8 1J 504L3 650.6 12' 14' 2808.9 '& 5044-3 651 . 5 14' 16' 28ll .O VH 5047.3 652.4 16' 18' 28I3.I <~ 5050-3 653-3 18' 20' 2815.2 ^ ^ 5053.3 654.3 20' 22' 2817 .3 ?o 4J 5056.3 655 2 22' 24' 2819. 3 1' ^ 5059-3 656.1 24' 26' 2821 .4 'g 5062.3 657.0 26' 28' 2823.5 ja : 5065.3 658.0 28' 3' 2825.5 &. 5068.3 658.9 3' 32' 2827 .6 ^ -r 507L3 659.8 32' 34' 2829.7 H.O 4 5074.3 660.7 . . . 34' 36' 2831.7,5*0 5077.3 66 1 .6 "'*'* 36' 38' 2833.8^: fc 5080.3 662.5 o. : 38 40' 2835.9 ' -| 5083.3 663.5-3 40' 42' 2837.9 co 5086.3 664. 4 5 = 42' 44' 2840.0 J5 5089-3 665.3^ 44' 46' 2842.1 5092.3 666 .3 - : 46' 48' 2844.2 S" 5095-3 667-2 ^^^ 48' 50' 2846.3 ; 5098.3 668.1^ H 50' 52' 2848.4 5134. i 679.1 14' 16' 2873.4 ^S- 5 I 37- 680. i 16' 18' 2875.5^^ 5140 .0 681.0 18' 20' 2877.S3- : 5142.9 682.0 20' 22' 2879.6^ 5 J 45-9 682.9 22' 24' 2881.7 5148.9 683.8 24' 26' 2883.8 5151-8 684.8 26' 28' 2885.8 5J54-8 685.7 28' 80 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 53 30' 2887.9 5157.8 686.7 53 30' 32' 2890.0 5160.8 687.6 32' 34' 2892 . I 5163.7 688.6 34' 36' 2894.2 xA^4 5166.7 689.5 36' 38' 2896.3 6 5 l6 9-7 690.5 38' 40' 2898. 4*' 5172.6 691.4 40' 42' 2900.5 * : 5175 .6 692.4 42' 44' 2902 .6 jg" 5178.6 693.3 44' 46' 2904-7 5- : 694.3 46' 48' 2906.8 ^^ 5184.5 695-2 48' 50' 2908.9 5187.4 696. i 50' S^' 2911.0^* 5190.4 697.1 52' 54' 2913.1 3= s 5I93.4 698.0 54 56' 2915.2 5196.3 699 .0 56 58' 5*99-3 700 .0 58' 54 2919.4 5202.3 700.9 54 2' 2921.5 5205.3 701.9 2' 4' 2923.6 52O8 . 2 702.8 4' 6' 2925.7 5211 . 2 703.8 ^j 6' 8' 2927 .8 5214.2 704.7 0; - 8' 10' 2929.9 52I7.I 705.713 10' 12' 2932.0 5220.1 706.6.*: : 12' 14' 2934.1 5223.1 707 .6 co I 4 f 1 6' 2936.2 5226 .O 708.5,= = 16' 1 8' 2938.3 . . 5229.0 709.5 J 18' 20' 2940.4 ^- 5232.0 710.5 ^ ~ M 20' 22' 2942.51: : 5235.0 711. 4 |= : 22' 24 2944. 6 ~ 5237.9 712.4 24' 26' 2946.7.*: : 5240.9 7I3.4 26' 28' 2948.8 co 5243.9 7 J 4.3 28' 3' 2950.9^ : 5246.8 715.3 3' 32' 2953.0^2 5249.8 716 .3 32; 34' 2955.2 3 5252.8 717.2 34 36' 2957. 3I- s 718.2 3 o 38' 2959. 4<" " 5258^ 719.2 38' 40' 2961.5 5261 .6 720 . i 40' 42' 2963.6 5264.6 721.1 42' 44' 2965.8 5267.6 722 .1 44' 46' 2967.9 5 S 70.5 723.1 46' 48' 2970.0 5273.5 724.0 48' 5' 2972.1 5276.5 725.0 5 0/ 52' 2974.2 5279.5 726 .0 $ 2 ', 54' 2976.4 5282.4 727.0 56' 2978-5 5285.4 728.0 56' 58' 2980 . 6 5288.3 728.9 58' 81 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant . Whole Angle. 55 2982.7 529I-3 729.9 55 2' 2984.8 5294.2 73-9 2' 4' 2987 .0 5297.2 731-9 4' 6' 2989.1 4 5300.1 732. -9 6' 8' 2991.2 5303-I 733-8 8' 10' 2993.3 * 5306.0 734-8 10' 12' 2995.4 . 5309-0 735-8 I2 f 14' 2997.6 53 11 -9 736.8 14' 16' 2999-7 53 J 4-9 737-7 16' 18' 3001.8 53I7-8 738.7 18' 20' 3003.9 ^o 5320.8 739-7 20'. 22' 3006.0 6 _ 740.7 22 r 24' 3008.2 K~ J5 5326.7 74L7 24' 26' 3 IO -3 I? 5329 V .6 26' 28' 3012.4 : 5332.6 743-6 28' 30; 3014.5 S: 5335-5 744-6 30' 3016.6 ^ 5338.5 745-6 32' 34 J 3018.8 ~? 534L4 746.6 ^4 34' 36' 3020.9^*6 5344.4 747-6 . 36' 38' 3023. o|: J 5347-3 748.6^: 38' 40' 3025.1 1 5350.2 749.6^ j 40' 42' 3027.3 to 5353-2 750. 6 |r ' 42' 44' 3029.4 .0 5356.1 751-6 . 5 44' 46' 3031.5 r 5359-1 752 .6 ^ w ^ 46' 48' 3033.7 o 5362.0 753.6 ci^oo 48' 5o; 3035-8 : 5365-0 754-6^ : = 5 0/ 3037-9 < 5367.9 52' 54' 3040.0 5370.9 75^6 54 56' 3042.2 5373-8 757-6 56' 58' 3044-3 5376.8 758.6 58' 56 3046.5 5379-7 759-6 56 2 f 3048.6 ^4 5382.7 760.6 2 ' 4' 3050.8 . M 5385-6 761.6 4' 6' 3052.9^" K 5388.6 762.6 6' 8' 3055.1 -j^ _ 5391-5 763.6 8' 10' 3057-2'^" : 5394-4 764.6 io r 12' 3059-2 g. .- 5397-4 765:6 12' 14' 3061. 4^00 5400.3 766.7 14' 16' 3063.6 MC^g. 5403-2 767.7 16' 18' 3065.8 *- 54o6.2 768.7 18' 20' 3067.9^- = 5409.1 769-7 20' 22' 3070.0 5412.0 770.7 22' 24' 3072.2 5415 .0 771.7 24' 26' 3074.4 54I7-9 772.8 26' 28' 3076.5 5420 . 8 773-8 28' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 56 30' 3078.6 5423.7 774-8 56 30' 32' 3080.8 5426.7 775-8 32' 34' 3082.9 5429.6 776.8 34' 36' 3085.1 t*4 5432.5 777-9 36' 38' 3087.3 ^ ^ 5435-5 778.9 38' 40' 3089. 4 2" 5438.4 779-9 40' 42' 3091 .6 g. - 544L3 780.9 42' 44' 3093. 8 '|T 5444.3 782.0 44' 46' 3095.9 fc : - 5447-2 783-0 46' 48' 309S.o-^ 5450.1 784.0 48' 50' 3100.1 i%$ 5453-1 785.0 5' 52' 3102- 3-c 5456.0 786.0 52' 54' 3104. 4^ : = 5458.9 787.0 54' 56' 3106 .6 5461.9 788.1 56' 58' 3108.7 5464.8 789.1 58' 57 3110.9 5467.8 790.1 57 2' 5470.7 791.2 2' 4' 3115-2 5473-6 792.2 4' 6' 3 II 7-4 5476.6 793.2 ">*+ 6' 8' 3119.6 6 5479-5 794.3 d- : 8' io' 3121.7 -2 5482.4 795-3^ 10' 12' 3123.9 5485.3 796.3.*: : 12' 14' 3126.0 5488.3 797-4^ 14' 16' 3128.2 ,0 5491.2 798.4J3-- : 16' 18' 3130.4 ? 5494-1 799-5 <*.^. 18' 20' 3132.5 >?^ 5497.0 wocco 800.5 20' 22' 5499-9 80 1 . 5 d: : 22' 24' 3i36.'82~3 5502.8 802. 6 < 24' 26' 5505-8 803.6 26' 28' 3141 .2 C& 5508.7 804.7 28' 30' 3143.3!' 5511 .6 805.7 30; 32' 3145.5 M CO* 55*4.6 806.7 32 34' 3147.6 S3" 5517 . 5 807.8 i 34 36' 3149-85, 5520.4 808.8 36 38' 3152. oqvo 5752.7 895.4^^ 16' 18' 3328.0 ZZ^ 5755-5 896. 5 ^06 18' 20' 3330.2^^ 5758.4 897.65= r 20' 22' 3332. 4f ' 5761 .3 898.7 ' 6 22 24' 3334-7 5764.2 899.8 * 24' 26' 3336.9 5767.1 901.0 26' 28' 3339-1 5769-9 902.1 J| 28' 30' 3341.4 5772.8 903.2 J5 30' 32' 3343-6 ? 5775-7 904.3 o, 32 34' 3345-9 6 5778.6 905.4 s 34' 36' 3348.1 * 906.6 ^ 36' 38' 3350-3 | 5784.3 907.7 ^ 38' 40' 3352-6 5787-2 908.8 40' 42' 3354-8 579o.i 910.0 42' 44' 3357 - 1 - 5793-0 911.1 44' 46' 3359-3 * 5795-9 912.2 46' 48' 336i.5 5798.7 9 J 3-3 48' s; 3363.8 ? 5801 .6 9 J 4-5 5' 3366.0 5804.5 915.6 52 ', 54' 3368.3 5807.4 916.7 54 56' 3370.5 58lO. 2 917.9 56 58' 3372-8 58I3.I 919.1 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 61 3375-0 5816.0 92O . 2 61 2' 3377-3 5818.9 921.3 2' 4' 3379-5 5821.7 922.5 4' 6' 5824.6 923.6 6' 8' 3384-0 : 5827.5 924.8 V 10' 3386.2 * 5830.3 925.9 10' 12' 3388.5 g 5833.2 927.0 12' 14' 3390.7 5836.0 928.2 14' 16' 3393-0 g 5838.9 929.4 16' 18' 3395-2 5841.8 930.5 18' 20' 3397-5 o 5844.7 931.6 . . 20'. 22' 3399-8 ^ 5847 . 6 932.8 ' - 22' 24' 3402.0 Jj 5850-4 933-9;- = 24' 26' 3404-3 5853.3 935 - 1 -3- 26' 28' 3406.5 5856.2 936.3-^ : 28' 30' 3408.8 5859.0 937-4? 3o' 32' 3411.1 5861.9 938. 6 : : 32' 34' 3413.3 ^.& + 5864-8 939-7 ?5od 34' 36' 34I5.6 6 ^ " 5867-6 940.9 ^ 36' 38' 5870.5 942.1 ^: : 38' 40' 3420.1 |, , 5873.3 943-2 40' 42' 3422. 4 ~ " 5876.2 944-4 42' 44' 3424.6 : : 5879.1 945 5 44' 46' 3426. 9 ^H c* 5882.0 946.7 46' 48' 3429-1 * 5884.8 947-9 48' 50' 343.1. 4 -* 5887.7 949-o 50' 52' 3433- 7 < : : 5890.6 950.2 52' 54' 3435-9 5893 .4 95 J -3 54' 56' 3438.2 5896.3 952.5 56' 58' 3440 . 5 5899.1 953-6 58' 62 3442.7 5902 .0 954.8 62 2' 3445-0 4 5904.8 956.0 . . . 2' 4' 3447-2 5907-7 957.2 l ? 4' 6' 3449-5 59io.5 958.3 o": = 6' 8' 3451-8 -g 59*3-4 959.5^ 8' 10' 3454-1 5916 . 2 960.7 -^: : 10' 12' 3456.4 59i9.i 961.9^ 12' 14' 3458.6 - 592L9 963.1,0: : 14' 16' 3460.9 o> 5924.8 16' 18' 3463.2 5927-6 965.4^^ 18' 20' 3465.5 ^ 5930.5 966 .6 J : : 20' 22' 3467-8 5933-3 967.8 ' 22' 24' 3470.0 5936.1 969.0 24' 26' 3472.3 5939-0 970.1 26' 28' 3474-6 5041 -8 071 -3 28' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 02 30' 3476.9 5944-7 972.5 62 30' 32' 3479-2 5947-5 973-7 32' 34' 348i.5 5950-4 974-9 34' 36' 3483.8 ^^ + 5953-2 976.0 36' 38' 3486.0 6 5956.1 977-2 38' 40' 3488. 3 * : 5958.9 978.4 40' 42' 3490.6 g. 596i.8 979-6 42' 44' 3492. 9 - ' 5964.7 980.8 44' 46' 3495-2 g. . 5967-5 982 .0 46' 48' 3497 5 " H 5970.4 983.1 4 48' 5o' 3499.7 2 5973-2 984.3 50' S*' 3502.0^ 5976.1 985-5 2 52' 54' 3504- 2^ = 5978.9 986.7 a . 54' 56' 3506.5 598i.8 987-9 1 56' 58' 3508.8 5984.6 989.1 58' 63 35 11 - 1 5987-4 990.3 63 2' 3513.4 5990.3 991.5 H 2' 4' 35*5-7 5993-1 992.7 . .3 4' 6' 35*8. o 5996.0 993-9 c - < 6' 8' 35 2 o.3 5998.8 995- i : 8' 10' 3522.6 6001 .6 996. 3.|- 10' 12' 3524.9 6004 .4 997- 5 12' 14' 3527-2 6007 . 2 998.7 fcs 14' , 16' 3529'5 6OIO . I 999-9^ 16' 18' 3531-8 6OI2 .9 IOOI . I ^06 18' 20' w? O> "* 3534-1 ; H 6015.8 1002.3^= 4 20' 22' 3536. 4: : 6018. 6 1003.5 d 22' 24' 3538.7l3 6021 .4 IOO4.7 24' 26' 3541. O.b: : 6024 . 2 1006. o * 26' 28' 3543-3^ 6027 .0 1007.2 Jo, 28' 30' 3545-6 |V 6029.9 1008.4 o 30' 32' 3547-9 H-4 6032 . 7 1009.6 ^ 32' 34' 3550. 2 $ 6035.6 1010.8 34' 36' 35.52.5?- - 6038.4 IOI2 . I ^g 36' 38' 3554- 8T " 6041 .3 IOI3.3 < 38' 40' 3557-1 6044 . i IOI4.5 40' 42' 3559-4 6047 .0 IOI5.7 42' 44' 356i.7 6049 8 1016 .9 44' 46' 3564-0 6052 . 6 1018.2 46' 48' 3566.3 6055.5 1019 .4 48' 50' 3568.7 6058.3 IO2O .6 5 ,' 52' 357 1 - 6o6l .2 IO2I .8 52 54' 3573-3 6064.0 1023.0 54' 56' 3575-6 6066 . 9 1024.3 56 58' 3577-0 ! 6069 . 7 1025.5 58' 87 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 64 3580.2 6072.5 1026.7 64 2' 3582.6 6075.3 1027.9 2' 4' 3584.9 6078.1 IO29 . 2 4' 6' 3587.2 4 6081 .0 1030.4 6' 8' 3589.5 6 6083.8 1031.7 8' 10' 3591-8 * 6086.6 1032.9 10' 12' 3594-2 . 6089.4 I034.I 12' 14' 3596.5 tg 1 6092 . 2 1035.4 14' 16' 3598.8 - 6095 .0 1036.6 16' 18' 3601.1 ^ 6097.8 1037.9 18' 20' 3603.4 *| 6100. 7 I039.I * 20' 22' 3605.7 ^ 6103.5 1040.3 6 22' 24' 3608.1 13 ^ 6106.3 I04I.6 ^ 24' 26' 3610.4 -g, ' 6109.2 1042 .8 * 26' 28' 3612.8 ^ 6112 .0 1044.1 '5. 28' o 30' 3615-1 X 6114.8 1045.3 1 30' 32' 3617.5 % 6117.6 1046.5 co 32' 34' 3619.8 .* + 6120.4 1047.8 . . % 34' 36' 3622 .1 "?? M 6123.2 1049 .0 "* CT & 36' 38' 3624.5^2 6126.0 I0 5-3 6. < 38' 40' 3626.8^ '% 6128.9 1051 .5 - 40' 42' 3629. 2 6131.7 1052.7!: 42' 44' 6i34.5 1054. o & 44' 46' 3633.82 t 6137.3 1055.2.0: .46' 48' 3636.2 M o vo ^ O 6140. i 1056.5 9 y? 48' 50' 3638.^ ' *~~ 6143.0 1057.7 * 50' 52' 3640.9?^| 6145.8 1059. o|: | 52' 54' 3643.2 -"jp 6148.6 IO6O.2 -H 54' 56 : 3645.5 6151.4 I06I.5 .^ 56' 58' 3647.9 | 6154.2 IO62.7 & 58' 65 3650.2 t; 6157.0 1063.9 <~ 65 2 f 3652.6 * . 6159.8 2' 4' 3654.9 ^2 6162.6 1066.4 4' 6' 3657-3 3,6 6165.4 1067.7 | 6' 8' 3659.6 ^ 6168.2 1068.9 8' 10' 3661.9 1 6171 .0 1070. 2 10' 12' 3664.3 cc 6173.8 1071 .4 I2 X 14' 3666.7 1 6176.6 1072.7 14' 16' 3669.0 1? 6179.4 1073.9 16' 18' 367L3 o 6182.2 1075.2 18' 20' 3673.6 5 6185.1 1076.5 20' 22' 3676.0 << 6187.9 1077.7 22' 24' 3678.3 6190 . 7 1079.0 24' 26' 3680.6 6193-5 1080 . 3 26' 28' 3683.0 6196 . 3 1081.6 28' I 88 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 65 30' 3685-4 6199. I 1082 .9 65 30' 32' 3687.7 6201 .9 1084.2 32' 34' 3690.1 . . . 6204.7 1085.5 34' 36' * 10 O> ^ 3692.4 6207.5 1086.7 36' 38' 3694-8 o- s 6210.3 1088.0 38' 40' 3697- 2 -g 6213.2 1089.3 40' 42' 3699- 5 'PT : 6216 .O 1090 .6 42' 44' 37oi. 9*2 6218.8 1091 .9 44' 46' 3704. 2- - 6221 .6 1093.1 46' 48' 3706.6^1 6224 .4 1094.4 48' 50' 3709.0 6227 . 2 1095.7 * 50' 52' 37II-32: : 6230.0 1097.0 . 52' 54' 3713-7^ 6232 .8 1098.3 54' 56' 3716.1 6235.6 1099.6 *g 56' 58' 3718.5 6238.4 IIOO.Q "S, C/2 58' 6O 3720.8 6241 .2 I IO2 . 2 66 2' 3723-2 6244.0 H03.5 X 2' 4' 3725-5 6246.8 IIO4.8 4' 6' 3727-9 * 6249.6 I I O6 .O ^ C"Td 6' 8' 3730-3 c 6252.3 II0 7-3 6. 3 8' 10' 3732.7 * 6255.1 iio8.6ST 10' 12' 3735-1 .b 6257.9 1109.9 .*?. 12' 14' 3737-5 6260.7 I I I I . 2 " 14' 16' 3739-8 & 6263.5 III2.5| : 16' 18' 3742.2 ^ 6266.3 III3 .8 ^ 18' 20' 3744.6 ^f 6269 . I oo III S- I T- 4 20' 22' 3747-0 6. -e 6271 .9 IIl6 .4 r^; M 22' 24' 3749. 4^- < 6274.7 1117. 7< 1 24' 26' 375 I -7l. 6277.5 III9.I J 26' 28' 3754.1'J-- 6280.2 1120.4 .h 28' 30' 3756. 5|: 6283.0 1121.7 ? 30' 32' 3758.9 ^vo . 6285.8 1123.0 ^ 32' 34 3761.3 H^J 6288.6 1124.3 34' 36' 3763-7^^ 6291 .4 II2 5- 6 ^ 36' 38' 3766.0^: 2 "^ rt 6294.1 1126 .9 d *^ 38' 40' 3768.4 6296 .9 1128.2 40' 42' 3770.8 W 6299.7 1129.5 42' 44' 3773-2 ,0 6302.5 1130.8 44' 46' 3775-6 ? 63 5-3 1132.2 46' 48' 3778.0 | 6308.1 II33-5 48' 50' 3780.4 6310.9 1134.8 50' 52 3782.8 < 6313.7 1136.1 52' 54 3785-2 6316.5 H37-4 54' 56' 3787-6 6319.2 1138.8 56' 58' 3790.0 6322.0 II40.I 58' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole 1 Angle. 67 3792.4 6324-8 1141.4 67 2' 3794-8 6327.5 1142.7 2' 4' 3797-2 6330.3 1144 .0 4' 6' 3799-6 2 6333.I 1145.4 6' 8' 3802 .0 o 1146.7 8 r 10' 3804.4 5 6338.6 1148 .0 10' 12' 3806.8 . 6341 .4 1149.4 12' 14' 3809.2 6344.2 1150.7 14' 16' 3811.6 1 6346.9 1152 .0 16' 18' 3814.0 a 6349.7 IJ 53-4 18' 20' 3816.4 ?! 6352.5 1154.7 -04 20' 22' 3818.8 * 6355-3 1156 .0 6. 22' 24' 3821.2 ^< 6358.1 1157.4^" 24' 26' 3823.6 6360.8 H58.7.1 : 26' 28' 3826.0 w 6363.6 28' 30' 3828.4 t 6366.3 Il6l .4 J5: 30' 32' 3830-9 4 6369.1 1162.7 oo 32' 34' 3833-3 :*4 6371.8 1164.1 "'* 34' 36' 3835-7 "?S M . 6374.6 1*65.4^ 36' 38' 3838. i < 6377-3 1166 . 7 TJ H 4' 6' 3945-3 ^ 6498.8 1227.0 "'^ 6' 8' 6501 .6 1228.4^0 8' 10' 3950. 2 ^ 6504-3 1229. 8-g 10' 12' 3952. 7 , 6507.1 1231.2-% 12' 14' 3955 - 1 w 6509.8 1232.6^ 14' 1 6' 3957-6^ 6512 .6 1234. o 16' 1 8' 3960 . o M ' ? 6515 . 3 I2 35-4 18' 20' 3962.5^ [ 6518.0 1236.8^0* 20' 22' 3965-0^^, 6520.8 1238.23^ 22' 24' 3967. 4 J< 6523-5 1239.6 ^ 24' 26' 3969-9 13 6526.3 1241.0 g^ 26' 28' 3972.3 | 6529.0 1242.4 J6." 28' 30' 3974-8 * 653I-7 1243.8 |: 3' 32' 3977-3 ^4 6534.5 1245.2 t^oo 32' 34' 3979-7 *" 6537-2 1246.6 ^ 34' 36' 3982.2 g 6540 .0 1248.0 ;g^ 36' 38' 3984.6 3^ 6542.7 1249.4 <<" 38' 40' 3987.1 3J, 6545-4 1250.8 40' 42' 3989.6 * 6548.2 1252 .2 42' 44' 3992-0 6550-9 1253.6 44' 46' 3994-5 6 6553.7 1255-0 46' 48' 3997-0 6556-4 1256.4 48' So; 3999-5 | 6559-I 1257.9 50' 4002 . o 6561.9 1259.3 52' 54' 4004 . 5 6564.6 1260 . 7 54 56' 4007 . o 6567.4 1262 . 2 56 58' 4009.5 ! 6570.1 1263 .6 58' 91 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 70 4011 .9 6572.8 1265 .0 70 2' 4014.4 1266.4 2' 4' 4016.9 6578^3 1267.8 4' 6' 4019.4 6581 .0 1269.3 6' 8' 4021 . 9 6583.7 1270.7 8' IP' 4024.4 6586.4 1272 . I 10' 12' 4026.9 6589.1 1273-5 12' 14' 4029.4 -g 6591.9 1275.0 14; 16' 4031.9 *a 6594.6 1276 .4 18' 4034.4 "2 6597.3 1277.9 18' 20' 4036.8 ^ 6600.0 1279.3 20' 22' 4039-3 2 6602 .7 1280.7 22' 24' 4041.8 *- 6605.5 1282 . 2 24' 26' 4044 . 3 ? 6608.2 1283.6 26' 28' 4046.8 6610 . 9 I285.I 28' 30' 4049 3 6613.6 1286.5 3 0/ 32' 4051.8 6616.3 1288.0 32 7 34' 4054.3 . . . 6619 .0 1289.4 34' 36' 4056.8 ^^M 6621.8 1290.8 f j 36' 38' 4059-3;: s 6624.5 1292.3 6 : : 38' 40' 4061 .8 *3 6627 . 2 1293 . 7 ^ 40' 42' 4064. 4 : = 6629 . 9 1295. 2- : : 42' 44' 4066.9^ 6632 .6 1296 .6 cc 44' 46' 4069. 4. 2 : = 6635.4 1298 . I J3: s 46' 48' 4071 .9 ^ ^ 6638.1 1299.5 g % 48' 50' 4074.45^ 6640.8 1301.0^^ 50' 52' 4076.9?: - 6643.5 52' 54' 4079. 4^ 6646.2 1303-9^ 54' 56' 4081 .9 6649 .0 1305.3 56' 58' 4084.4 6651.7 1306.8 58' 71 4086.9 6654.4 1308.3 71 2' 4089.5 j 6657.1 1309.7 2' 4' 4O92 .O 6659.9 I3II . 2 4' 6' 4094.5 52 6662.6 I3I2.6 6' 8' 4097.0 | 6665.3 I3I4.I 8' 10' 4099.5 6668.0 I3I5.6 10' 12' 4102 .0 o 6670. 7 I3I7.0 12' 14' 4104.6 o 6673.4 I3I8.5 14' 16' 4107.0 2 6676.1 1320.0 16' 18' 4109.5 6678.8 I32I.4 18' 20' 4112 . I << 6681.5 1322 .9 20' 22' 4114.6 6684.2 1324.4 22' 24' 4117.2 6686.9 1325.8 24' 26' 4119.7 6689.6 I327.3 26' 28' 4122 . 2 6692.3 ' 1328.8 28' IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 71 30' 4124.7 6695.0 1330.3 71 30' 32' 4127.3 6697.7 I33L8 3 2/ 34' 4129 .8 6700 .4 1333.2 34' 36' 4132.4 ^4 6703.1 1334.7 36' 38' 4134.9 6 : 6705.8 1336.2 +** 38' 40' 4137.4 fc" 6708.5 1337.7 ^ : : 40' 42' 4140.0 ^ 6711 .2 1339 . 2 ^ 42' 44' 4142.5 '& : 67I3-9 1340. 6 = : 44' 46' 4I45-0 fcu , 6716.6 1342 - IC L . 46' 48' 4147 .6 " M " a 6719.3 48' 5o; 4150. i 2 6722 .O H 00 O I345.I ^odo- 5o' 4152.7 ^* 6724.7 ' I 346.6, d 52 ,' 54' 4155-2 5= = 6727.4 1348.13= = 54' 56' 4157-8 6730.1 1349.6 56 58' 4160.3 6732.8 I 35 I - 1 58' 72 4162 .8 6735.5 1352.6 72 2' 4165.4 6738.2 I354.I 2' 4' 4167.9 6740.9 1355-6 4' 6' 4170.5 * 6743.6 6' 8' 6746.3 1358*6 8' 10' 4I75-6 6749.0 1360.1 10' 12' 4178.1 675 J .7 1361.6 ia' 14' 4180.7 eg 6754.4 1363-1 14' 16' 4183.2 j> 6757-1 1364.6 16' 18' 4185.8 o 6759.8 1366.1 18' 20' 4188.4 0<> 22' 24' 4270.7 6848.2 1416. 6: : 24' 26' 4273.3 i 6850 . 9 1418.1- 26' 28' 4275-9 -~ 6853.5 1419 -7 -a- : 28' 30' 4278.5 < 6856.2 1421. 2 < 30' 32' 4281.1 6858.9 1422 .8 <-2 : - 32' 34' 4283.7 . .;? 6861 .6 1424.3 J'J 34' 36' 4286.3 ^ a ^ 6864.3 1425 .9 N 36' 38' 4288. 9 k d r ; 6866.9 1427. 4|: : 38' 40' 4291.5-3 ^ 6869.6 1429.0 40' 42' 4294.1 .: 6872.3 1430.6 42' 44' 4296.702 6874.9 1432.1 44' 46' 4299.3 ,0 = 6877.6 1433-7 46' 48' 4301 .9 H 7198.5 1634.4 50' S^' 4628.8^* 7201 . i 1636.1 52' 54' 4631- 5 3j : : 7203.7 1637.9 54' 56' 4634.2 7206.3 1639.6 56' 58' 4637.0 7208.9 1641.3 38' 78 4639-7 7211.5 1643.0 78 2' 4642 .5 7214.1 1644 .8 2' 4' 4645.2 7216.7 1646.5 ^.^ 4' 6' 4648 .0 7219.3 1648.3 t - 6' 8' 4650,8 7221.9 1650.0 j: : 8' 10' 4653-5 7224.4 1651-7 g 10' 12' 4656.3 7227.0 1653. 5 -a : : 12' 14' 4659.0 7229.6 1655.2^ 14' 16' 4661.8 7232.2 1657. o^ = 16' 18' 4664.6 7234-8 '658.7;- So 18' 20' ~* iA <> 4 4667.4 7237-3 1660.5 -a 20' 22' 4670.2^: : 7239-9 1662. 3^^ : 22' 24' 4673.0-3 7242.5 1664 . o 24' 26' 4675.7^ : 7245.0 1665.8 26' 28' 4678 . 5 c/2 7247.6 1667.5 28' 3; 4681. 3 I 55 7250.2 1669.3 30' 32' 4684.1 ^J 7252.8 1671 .0 32' 34' 4686.9 3;: 7255.4 1672.8 34' 36' 4689.6;^ 7258.0 1674.5 36' 38' 4692 .4 40' 42' 5042.4 7570-5 1902.9-3 42' 44' 5045-4 7573-o 1904.8-^: 44' 46' 5048.4 7575-5 1906.8^ 46' 48' 505 1 -3 7578.o 1908. 7 48' 5' 5054-3 7580.6 I9I0.7 2ln 5 0/ 52' 5057.3 7583.1 1912.63. h 52' 54' 5060 . 2 7585.6 1914 .6 0cj i8 r 2O' 5663.3 8055-5 2326.6 3 : : 20' 22' 5666.6 8057.8 2328.9 < 22' 24' 5669.9 8060. 2 2331.2 24' 26' 5673-2 8062 .5 2333-5 26' 28' 5676-5 8064. 9 2335-8 28' 104 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 89 30' 5679.8 8067.3 2338.2 89 30' 32' 5683.1 8069.6 2340.5 32' 34' 5686.4 ^4 8072 .0 2342.8 34' 36' 5689.8 8074.4 2345.1 . 36' 38' 5693. I ^ = 8076.8 2347-4"; - 38' 40' 5696.4'^ ^ 8079 . 2 2349-8^- = 40' 42' 5699.8 '5r : 8081.6 2352.1^ 42' 44' 5703 - 1 fi 8083.9 2354. 4 -a- - 44' 46' 576. 4 ^" " N 8086.3 2356.8^ 46' 48' 5709-7 io 8088.7 2359. i ^ : : 48' 50' 5713-0^^ 8091 .0 vO w c. 2361.5 chocs' 50' 52' 5716.45- = 8093.4 2363-8,3 52' 54' 57I9-7 8095-7 2366 . 2 ^ : : 54' 56' 5723- 8098.1 2368.5 56' 58' 5726.3 8100 . 5 2370.9 58' 9O 5729.6 8102 .9 2373-3 9O 2' 5732.9 8105.2 2375-7 2' 4' 5736.3 ^ 8107 .6 2378.1 4' v 5739-6 8109 . 9 2380.4 4 6' 8' 5743-o | 8112.3 2382.8 - 8 7 10' 5746.3 * 8114.6 2385.1 ! 10' 12' 5749-7 ;g 8117 .0 2387-5 12' 14' 5753-0 ^ 8119.3 2389-8 a 14' 16' 5756.4 8121 .7 2392-2 ^ 16' 18' 5759-7 ^ 8124.0 2394.6 - 18' 20' 5763 .0 Ji< ^^ 8126.4 2397-0 ^o? 20' 22' 5766. 4;g= | 8128.7 2399-4,6, 5 22' 24' 5769 . 7 *3 " 8131.1 2401.8^5 < 24' 26' 5773-0-^ 8i33-4 2404.1 g_ 26' 28' 5776.4^ 8i35-8 2406 . 5 " 28' 30' 5779-8f H 8138.1 2408 .9 ,0: 30' 32' 5783-1 Jt4 8140.5 2411.3^0 e, ^ 32' 34' 5786.5 + 6 8142 .8 2413.7 ^- H 34' 36' 5789.8? : * 8145.2 2416. i 5- 36' 38' 5793.2^ -g 8i47-5 2418. 5 <" 5 38' 40' 5796.6 8149.8 2420.9 -^ 40' 42' 5800.0 8152.2 2423-3 " 42' 44' 5803.3 S 8154-5 2425-7 44' 46' 5806.7 8156.9 2428.1 46' 48' 58IO.I 8159.2 2430.5 | 48' 5' 5813.5 ^ 8161.6 2432.9 5 50' 52' 8163.9 2435-3 52' 54'. 5820.3 8166.2 2437-7 54' 56' 5823.7 8168. 6 2440 . i 56' 58' 5827.0 8170.9 2442.5 58' 105 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 91 5830.4 8173.3 2445.0 91 2' 5833.8 8175.6 2447.4 2' 4' 5837.2 8178.0 2449.8 4; 6' 5840 .6 8180.3 2452.3 8' 5844.0 8182.6 2454.7 + 8' 10' 5847-4 8184.9 2457-1 ro' Mi' 5850.8 8187.2 2459-5 ^ 12' 14' 5854-2 8189.6 2462.0 E 14' 16' 5857.6 8191 .9 2464.4 16' 18' 5861.0 8194.3 2466.8 18' ao' 5864.5 *c>4 8196.6 2469.3 20' 22' 5867.9 - 8199 .0 2471.7 ^o 22 7 24' 5871 -3 : ~ 8201 .3 2474-2 ,: 5 24' 26' 5874.8-3 8203.6 2476 . 6 ^ < 26' 28' 5878. 2 |T = 8205 .9 2479.1 | : 28' 3 0/ 58Si. 6 * :: 8208.2 2481.5^ 30' 32' 5885 . O MOO 8210.6 2484. o- 32' 34' 5888.5 jjrtj 8212 .9 2486 . 4 ^ "? 34' 36' 5892 .O N "*- 8215.2 2488.9 "^ - 36' 38' 5895-4|: : 8217.5 2491.3?: , 38' 40' 5898.8 8219.8 2493-8 g 40' 42' 5902.3 8222 . i 2496 . 2 'a 42' 44' 5905-7 8224.5 2498.7 ^ 44' 46' 5909.2 8226.8 2501.1 46' 48' 5912 .6 8229 . i 2503-6 ^ 48' So' 5916.0 8231.4 2506.1 ^ 5o; 52' 59*9-5 8233.8 2508.6 ^ 54' 5922.9 8236.1 2511 . o 54' 56' 5926.4 8238.4 2513 . 5 56' 58' 5929.8 8240.7 2516 .0 58' 92 5933-2 8243.0 2518.5 92 2' 5936.7 ^4 8245.3 2521 . o 2' 4' 5940.1 . 8247.7 2523-5 "^ 4' 6' 5943. 6 ,g: : 8250.0 2526 .06,- 6' 8' 5947 -o-g 8252.3 2528.5^ " 8' 10' 5950-5 | : : 8254.6 2531. o|: : 10' 12' 5954-0 _ . 8256.9 2533-5^ 12' 14' 5957- 4 xVo 8259.2 2536.0^: = 14' 16' 5960 . 9 oi t^vd 8261.5 2538.5 gtt 16' 18' 5964.3 $ 8263.8 2541.0 4 18' 20' 5967. 8 |= = 8266.1 2543- 5 5 : : 20 X 22' 5971-3 8268.4 2546 .0 22' 24' 5974-8 8270.8 2548.5 24' 26' 5978.2 8273.1 255 1 - 1 26' 28' 598i.7 8275.4 2553 -6 28' 106 IX. FUNCTIONS OF A ONE-DEGREE CURVE. i Whole f Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 92 30' 5985-2 8277.7 2556.1 92 30' 3*' 5988.7 8280.0 2558.6 32' 34' 5992.2 8282.3 2561 . I 34' 36' 5995-7 ^* + 8284.6 2563.7 36' 38' 5999-1 *e ^ 8286.9 2566.2 38' 40' 6002 .6 5" 8289.2 2568.7 40' 42' 6006. i 15. 8291.5 2571.2 42' 44' 6009. 6 " ' 8293.8 2573-8 44' 46' 6013.1 g. . 8296. I 2576.3 46' 48' 6oi6.6^ H 8298.4 2578.9 48' 5o' 6020.1 SjS'S 8300. 7 2581.4 5; 5*' 6023.6^" 8303.0 2584.0 4 52 54' 6027. i j : : 8305-3- 2586.5 6 54 56' 6030.6 8307.6 2589.1 X 56' 58' 6034.1 8309.9 2591.6 "g 58' 93 6037.7 8312.2 2594.1 to 93 2' 6041 .2 8314-5 2596.7 % 2' 4' 6044.7 8316.8 2599.2 vo 4' 6' 6048.3 8319.1 2601.8 ^% 6' 8' 6051.8 8321.4 2604.4^0- ;g 8' 10' 6055.3 8323-7 2606. 9? < 10' 12' 6058.9 8326.0 2609. 5. : 12' 14' 6052 .4 8328.3 26l2 .0 CO 14' 16' 6056.0 8330.6 2614.6 ,: 16' 18' 6059.5 8332.9 2617 .2 ?? . 1 8' . . <$ CO O ^ 20' 6073.0 ^c-" 8335.1 2619.8^ w : 20' 22' 6076.65: : 8337-4 2622 .4^- S5 22' 2 4' 6080. I *-< 8339-7 2625.0 -g 24' 26' 6083.7-*= = 8342.0 2627.5 -a 26' 28' 6087.2 co 8344.2 2630.1 < 28' 30' 6090. 7 : ' 8346.5 2632.7 ^ 30' 32' 6094.3 ": 8348.8 2635.3 y 32' 34' 6097.8 3 8351-1 2637.9 ^ 34' 36' 6ioi.4^ : , 8353-3 2640.4 3j 36' 38' 6104.9 ^ 8355.6 2643.0 38' 4o' 6108.5 8357-9 2645 -6 40' 42' 6112 .0 8360.2 2648.2 42' 44' 6115 .6 8362.4 2650.8 44' 46' 6119.2 8364.7 2653.4 46' 48' 6122 . 7 8367.0 2656.0 48' 50' 6126 . 3 8369-3 2658.6 50' 52' 6129.9 8371.6 266l . 2 52' 54'- 6i33-4 8373-8 2663.8 54' 56' 6137.0 8376.1 2666.4 56' 58' 6140 . 6 8378.4 266Q .O 58' 107 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord . External Secant. Whole Angle. 94 6144. 2 8380.7 2671 .6 94 2' 6147.8 8383-0 2674.2 2' 4' 6151 .4 8385.2 2676.8 4' 6' 6I55-0 8387.5 2679.5 6' 8' 6158.6 8389.8 2682.1 4 8' 10' 6162 . I 8392.1 2684.7 6 10' 12' 6165.7 8394.3 2687.3 ^ 12' 14' 6169.3 8396.6 2690.0 14' 16' 6172 .9 ... 8398.9 2692.6 (g 16' 18' 6176.5 ^:r 8401 . I 2695.3 js 18' 20' 6180. i : = 8403.4 2697.9 ^ 20' 22' 6183.8-3 8405 . 7 2700 .6 *> <> 22' 24' 6187. 4 'E : = 8408.0 2703. 2|: 24' 26' 6191 .0 ^ 8410. 2 2705-9-3 < 26' 28' 6194.6 : = 8412.5 2708.5 .- 28' 30' 6198. 2 w rLvcJ 8414-7 2711 . 2 ^ 3 0/ 32' 6201 .9 ^ 8417 .0 2713. 9-^ : 32' 34' 6205.5^ : 8419.3 2716.5^ 34' 36' 6209. I < 8421.5 2719. 2^^"". 36' 38' 6212 . 7 8423.8 2721 .8 ?: . 38' 40' 6216.3 8426 . o 2724.5 *g 40' 42' 6220.0 8428.3 2727.2 j?- 42' 44' 6223.6 4 8430.5 2729.8 " 44' 46' 6227.3 8432.8 2732.5 ^ 46' 48' 6230.9 8435-0 2735.2 4 48' 5o' 6234.5 I? 8437-3 2737-9 ^ 5o; 52' 6238.2 'a 8439-5 2740.6 < 54' 6241.8 ^ 8441.8 2743-3 54' 56' 6245-5 6-^ 8444. o 2746.0 56' 58' 6249. i " ^ 8446.3 2748.6 ^ 58' 95 6252-7!: 8448.6 2 75 J -3 ^ 95 2' 6256. 4 ^ 8450.9 2754-0 . .;*: 2' 4' 6260 .0 . 8453-1 2756-7 "' a ^ 4' 6' 6263.7^4 8455-4 2 759.4^: 'a 6' 8' 6267.3 ~ 8457-6 2762. i^ " 8' 10' 6271.0^ 8459-8 2764.8.?: 2 10' 12' 6274.7^ -3 8462 . 1 2767-5^ j I2 7 14' 6278.3 a 8464.3 277. 2 ' -c 14' 16' 6282.0 8466.6 2772.9^-5 16' 18' 6285.7 8468.8 2775.6 M 18' id 20' 6289.4 *; 8471.1 20' 22' 6293.1 8473-3 2781.0 22' 24' 6296.7 8475-6 2783-7 24' 36' 6300.4 8477-8 2786.5 26' 28' ' 6304.1 8480. I 2789.2 28' 108 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 95 3*>' 6307.8 8482.3 2791.9 95 30' 32' 63II-5 8484.6 2794.6 32' 34' 6315.2 8486.8 2797.4 34' 36' 6318.9 ^ds4 8489.1 2800.1 . . . 36' 38' 6322 .6 6 8491.3 28O2 .9 * ^M 38' 40' 6326.3 2" 8493-5 2805. 6= = 40' 42' 6330.0 - - 8495-8 2808.3-3 42' 44' 6333- 7 ' ' 8498.0 2811.1-5,= = 44' 46' 6337.4 fc : : 8500. 2 2813.9^ 46' 48' 634L I 00 8502 .4 2816.6^- : 48' 5' 6344-8 B 8504.6 CO t- 28l9 .4 rOO 4 50' 52' 6348.5-0 8506.8 2822 . 2 ^ M 52' 54' 6352. 2 5= =, 8509 .0 2825. ojp = 56' 6356.0 85II.3 2827.7 56' 58' 6359.7 8513.5 2830.5 58' 96 6363.4 8515-8 2833.2 96 2' 6367.1 8518.0 2836.0 2' 4' 6370.8 64 8520.3 2838.7 4' 6' 6374-6 . - 8522.5 2841.5 6' 8' 6378.3 I* ; 8524.8 2844.3 8' 10' 6382.0 -5 8527.0 2847.1 10' 12' 6385-7 & 2849.9 12' 14' 6389-5 ^ 853I-5 2852.7 14' 16' 6393-2 8533-7 2855.4 16' . 18' 6397-0 ^2 8535-9 2858.2 18' 20' 6400.7 ?; 8538.1 2861 .0 ""** 20' 22' 6404- 5 | | 8540.3 2863.8 6, . 22' 24' 6408.3^ < 8542.5 2866.6^ " 24' 26' 6412 .0 % 8544.8 2869.4| : . 26' 28' 6415.8^ 8547-0 2872.2'^" 28' 30' 6419-5! 8549.2 2875.0^: s 3' 32' 6423-3 - 8551 .4 2877 .8 coco ro 32' 34' 6427. o 2 8553-6 2880.6 "23 34' 36' 6430.8^ 6 8555-9 2883.4?- . 36' 38' 6434. 6 < <>2 8558.1 2886. 2 ? 22' 24' 6521 .9 r 5; 8608.9 2951 . 7 o- ;g 24' 26' 6525-7^ 8611.1 '2954.5-3 < 26' 28' 6529. 5 = 8613.3 2957. 4. g: 28' 30' 6533.3 fc. 8615.5 2960.3 ^ 3 O/ 32 6537-2*^ . 8617.7 2963.2 = 32' 34 6541 .0 woo ? 8619 . 9 2966. 1 ^^4 34' 36' 6544.8 "So 8622.1 2968.9 ^' M 36; 38' 6548.7?: 5 8624.3 2971. 8|; | 40' ^2 6552.5 -g 8626.5 < ^ 2974.7 g 40' 42' 6556-4 < 8628.7 2977.6 -ft 42' 44' 6560.2 8630.8 2980.5 r 44' 46' 6564.0 8633.0 2983.4 -2 46' 48' 6567.9 M 8635-2 2986.3 ^ 48' 50' 6571.8 5 8637.4 2989.2 -d 5' 52' 6575.7 < 8639.6 2992.1 ^ $2 f 54' 6579.5 8641 .8 2995.0 54' 56 6583.4 8644.0 2997.9 56' 58' 6587.2 8646.2 3000 . 8 58' 98 6591.1 8648.4 3003.8 98 2' 6595.0 ^4 8650.6 3006.7 . 2' 4' 6598.8 . - 8652.8 3009 . 6 ^<*-* 4' 6' 6602 . 7 : = 8655.0 3012.5 ^6, . 6' 8' 6606.6-3 8657.2 8' 10' 6610.5 c| : ^ 8659.3 30i8. 4 |: : 10' 12' 6614.4 ^ 8661.5 3021.3^ 12' 14' 6618.3 *-" 8663.7 3024.2 ,0: : 14' 16' 6622.2 N^cS 8665.8 3027.2 9 ^ 16' 18' 6626.1 8668.0 3030.1 ^M Jf 18' 20' 6630.05: : 8670.2 TJ 3033. I ^ , 20' 22' 6633.9^ 8672.4 3036.0 22' 24' 6637.8 8674.5 3039.0 24' 26' 6641 . 7 8676.7 3042.0 26' 28' 6645.6 8678.9 3044.9 28' 110 IX. FUNCTIONS OF A ONE-DEGREE CURVE. i Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 98 30' 6649.5 868I.I 3047.9 98 30' 32' 6653-5 8683.3 3050.9 32' 34' 6657.4 8685.5 3053.9 34' 36' 6661.3 u^4 8687.6 3056.8 . . . 36' 38' 666s . 2 . H ^P: : 8689.8 3059.8^? 38' 40' 6669. I g" 86,92 .0 3062 .8 ^ : : 40' 42' 6673 . i 2. 8694 . 2 3065.8-3 42' 44' 6677. og : : 8696.3 3068.8-^ = 44' 46' 6681.0 g. . 8698.5 3071. 8<2 46' 48' 6684 . 9 * V"w 8700. 7 3074.7.0: 5 48' 50' 6688.8 S'S'S 8702 .9 Ov O 00 3077.7 n4 50' 52' 6692.8,5* 8705 .0 3080.7 ^ H 52' 54' 6696.7^ = 8707 . 2 3083.75= = 54' 56' 6700 .6 8709.3 3086.7 56' 58' 6704 . 6 87H.5 3089.7 58' 99 6708.5 8713.7 3092.7 99 2' 6712.5 8715.9 3095.7 2' 4' 6716.5 8718.0 3098.7 4' 6' 6720 .4 8720 .2 3IOI.7 ^ 6' 8' 6724.4 8722.3 3104.8 8' 10' 6728.3 -g 8724.5 3107.8 10' 12' 6732.3 -a 8726.6 3110.8 *g 12' I 4 / 6736.3 < 8728.8 3113-8 '2, 14' 16' 6740.2 S 8730.9 3H6.9 ^ 16' 18' 6744-2 ^ 8733.1 3119.9 1 8' 20' 6748. I "'><> 8735.3 3122.9 + 20' 22' 6752. l|: | 8737.4 3126 .0 o, c 22' 24' 6756.1-3 * 8739.6 3129.0^" ^ 24' 26' 8741.7 3132.0 ^ 26' 28' 6764.0 w 8743.9 3 I 35 I '$" 28' 30' 6768. o| r 8746.0 3138.1^: 3' 32' 6772 .0 3>< 4 8748.2 3141 .1 OvK . 32' 34' 6776.0 3 M 8750.3 3144.2 ^^ M 34' 36' 6780.0 5. 8752.5 3147.25. 6 36' 38' 6784. o 8895.0 3358.6 4--S 50' ??.'; 7058.7 SWg. 8897.1 3361 .8 ^ 52' 54' 7062 -9 ?; : 8899.2 3365. !? : : 54' 56' 7067.!^ 8901.3 3368.3 56' 58' 7071.3 8903.4 337 1 - 6 58' 102 7075-5 8905-5 3374-9 1O2 2' 7079.8 8907 .6 3378.2 2' 4' 7084.0 8909.7 4' 6' 7088.2' 8911 .8 3384.7 6' 8' 7092.4 8913.9 3388.0 8' 10' 7096 .6 8916 ,o 339 J -3 TO' 12' 7100 .9 8918.1 3394-6 12' 14' 7105.1 8920.2 3397-9 14' 16' 8922.3 3401.2 16' 18' 7"3-5 ^^ 8924.4 3404-5 18' 20' 7117.7 ^" 8926 .4 3407.8 ^ j 20' 22' 7122 .0 ,- " 8928.5 34II- I 6. j 22' 24' 7126.2 -3 8930.6 3414.4^' 24' 26' 7130. 4 -|: : 8932.7 34I7-7 fi. - 26' 28' 7134.7 in 8934.8 342i. o|/ * 28' 30' 7138.9^ 8936,9 3424.3,0" = 30' 32' 7143.2 ^ & 8939.0 3427.6 o-.o 32 34' 7147.4 ;: 8941 . i 3431.0 ^H 1 ^ 34; 36' 7151 .72.. 8943.2 3434.3?. : 38' 7156. o<5" : 8945-3 3437 -6 < 38' 40' 7160.2 8947-3 3440.9 40' 42' 7 l6 4-5 8949.4 3444-2 42' 44' 7168.7 895I-5 3447-6 44' 46' 8953.6 3450.9 46' 48' 7177.3 8955-7 3454.2 48' 56* 7181.6 8957.7 3457-6 50' 52' 7185.9 8959.8 3460.9 5 2 54' 7190.2 8961.8 3464.3 54 ! 56' 7*94-5 8963.9 3467.6 56 58' 7198.8 8966.0 347 1 - 58' 113 IX. FUNCTIONS OP A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. 103 7203.1 8968.1 3474-4 IO3 2' 7207.4 8970.2 3477-8 2' 4' 7211.7 8972 . 2 348i .2 4' 6' 7216 .0 8974.3 3484.5 6' 8' 7220.3 ^~ 8976.4 3487.9 -* a' 10' 7224.6 : 8978.4 3491-3 6 10' 12' 7229 .O . ^ 8980.5 3494-7 3 12' 14' ?_ 8982.5 3498.1 14' 16' 7237.6 w 8984.6 3501.5 16' 1 8' 7241.9 ,0 = 8986.7 3504.9 | i8 r 20' 7246.2 a 2 8988.7 3508.3 20'' 22' 7250.6 8990.8 3511.7 ^d N 22' 24' 7254.9 ^ : 8992 .8 3515 . I <2; ^ 24' 26' 7259.2 4' 6' 7346.7 : 9036 .0 3587-4 6- : 6' 8' 735 1 - 1 * g 9038,1 3590.9^ 8' 10' 7355-5 ' 9040 . 2 3594.3-^ : 10' 12' 7360.0 i-^ 9042 .2 3597-8/2 I2 X 14' 7364.4 ' H 9044.3 3601 .21,0- = 14' 1 6' 7368.8 do' 9046.3 3604. 7h^ 16' 18' 7373-2 3" 9048 .4 3608. 2 p: >j i8 r 20' 7377-6 |- 9050.4 3611.71!' : 20' 22' 7382.1 9052.5 3615-2] 22' 24' 7386.5 9054.5 3618.7 24' 26' 7390.9 9056 .6 3622.2 26' 28' 7395-4 9058.6 3625.7 28' 114 IX. FUNCTIONS OF A ONE-DEGREE CURVE. Whole Angle. Tangent Distance. Long Chord. External Secant. Whole Angle. lO4 3 o' 7399-8 9060.6 3629.2 lO4 3 o' 32' 7404.3 9062 . 7 3632.7 32' 34' 36' 7408.8 7413-2 . . . 9064.7 9066.8 3636-2 . . . 3639.7 ">* + 34' 36' 38' 7417-7 "^ 9068.8 3643-3^6, = 38' 4o' 7422.1 - - 9070.8 3646.8-3 40' 42' 7426.613 9072.9 13650.3-5,; : 42' 44* 743*. O-g: = 9074.9 13653-9^ 44' 46' 7435- 5*2 9076.9 3657.4^ = 46' 48' 7440. 0