UC-NI 
 


 
88 
 
 A MANUAL 
 
 OF 
 
 USEFUL INFORMATION 
 
 AND 
 
 TABLES 
 
 APPERTAINING TO THE USE OF 
 
 WROUGHT IRON 
 
 AS MANUFACTURED BY 
 
 THE PASSAIC 
 
 ROLLING' MILL co. 
 
 PATERSON, N. J. 
 (New- York Office, Room 45, Astor House.) 
 
 FOR 
 
 ENGINEERS, ARCHITECTS, AND BUILDERS, 
 
 F. A. LEERS, C. E 
 
V 
 
 Copyright, 1884, by 
 
 THE PASSAIC ROLLING MILL COMPANY, 
 Paterson, N. J. 
 
 Press of THEO. L. DE VINNE & Co. New- York. 
 
 i8 
 
OFFICEKS. 
 
 WATTS COOKE, President. 
 
 W. O. FAYERWEATHER, Secretary and Treasurer. 
 
 JOHN K. COOKE, Superintendent. 
 
 F. A. LEERS, Engineer. 
 
 84713 
 
PEEFACE. 
 
 '*~l r *HE present edition of the MANUAL is a new work 
 -*- throughout. It is intended to supply such special 
 information and tables as, it was thought, would prove 
 valuable to workers in wrought iron in general, and the 
 patrons of the publishers, THE PASSAIC ROLLING MILL Co., 
 in particular. 
 
 The tables, with a few exceptions, were computed expressly 
 for this work, and some of them are original in both matter 
 and form. 
 
 The author hopes that they will be found to possess the quali- 
 ties of accuracy and reliability. 
 
 Such of the tables as were not calculated for this work were 
 obtained from two or more works of presumably independent 
 origin, which were compared for the detection of errors. 
 
 The table of weight of a ciibic foot and of the iiltimate 
 strength of substances was derived mostly from Trautwine. 
 
 The list of shapes rolled by THE PASSAIC ROLLING MILLS 
 will be found increased in mimber, and some of the 'sections 
 improved in form. All angle irons are now made with 
 flanges of uniform thickness ; the range between the minimum 
 and maximum weight for a number of the shapes has been 
 increased. 
 
5* 
 
 6 THE PASSAIC ROLLING MILL COMPANY. 
 
 i 
 
 CONTENTS. 
 
 
 PLATES 
 
 1-5 SECTIONS OF I BEAMS 
 
 PAGE 
 
 IOI4 
 
 6 7 SECTIONS OF CHANNEL BARS 
 
 15, 16 
 
 8 SECTIONS OF EQUAL TEES 
 
 17 
 
 8 SECTIONS OF FLATTED ROUND 
 8 SECTIONS OF HALF ROUND 
 
 17 
 
 17 
 
 8 SECTIONS OF ROUNDED FLAT 
 
 17 
 
 9 SECTIONS OF UNEQUAL TEES 
 
 18 
 
 9 SECTIONS OF BEAD IRON 
 
 18 
 
 10 SECTIONS OF UNEQUAL ANGLES 
 
 19 
 
 10 SECTIONS OF SQUARE-ROOT UNEQUAL ANGLES. 
 10 SECTIONS OF OBTUSE A.NGLFS 
 
 19 
 
 IQ 
 
 10 SECTIONS OF GROOVE IRON 
 10 SECTION OF SASH IRON 
 10 SECTION OF HAND-RAIL IRON 
 
 19 
 19 
 19 
 
 10 SECTION OF HEXAGON IRON 
 
 in 
 
 T O SECTION OF PICTURE CORNICE 
 
 19 
 
 ii SECTIONS OF EQUAI ANGLES 
 
 2O 
 
 ii SECTIONS OF SQUARE-ROOT \NGLES 
 
 2O 
 
 12, 13 ILLUSTRATION OF BEAMS USED IN FIRE-PROOF 
 FLOORS 
 
 21, 22 
 
 14 FIRE-PROOF CONSTRUCTION WITH IRON AND 
 HOLI ow BRICK 
 
 23 
 
 15 SECTIONS OF PLATE AND Box GIRDERS 
 
 16 SECTIONS OF COLUMNS 
 
 2 4 
 2^ 
 
 17, 18 DIAGRAMS OF BRIDGE AND ROOF TRUSSES 
 19, 20 STANDARD WROUGHT-IRON TURN-TABLES 
 
 if , 
 
 26, 27 
 28, 29 
 
THE PASSAIC ROLLING MILL COMPANY. 7 
 
 PAGE 
 
 STRENGTH OF BEAMS 34-35 
 
 DIFFERENT MODES OF LOADING BEAMS 36-40 
 
 TABLE OF PROPERTIES OF I BEAMS 41, 42 
 
 TABLE OF PROPERTIES OF CHANNELS 43.44 
 
 TABLE OF PROPERTIES OF TEES 45 
 
 TABLE OF EQUAL ANGLES 46 
 
 TABLE OF UNEQUAL ANGLES 47 
 
 TABLE OF SAFE LOADS ON I BEAMS 49~5 2 
 
 TABLE OF SAFE LOADS ON I BEAMS, UNSUPPORTED 
 SIDEWAYS 53 
 
 FLOORS 54, 55 
 
 BEAMS USED AS JOISTS, LOAD 70 LBS. PER SQ. FT. . . 56 
 BEAMS USED AS JOISTS, LOAD 100 LBS. PER SQ. FT. . . 57 
 BEAMS USED AS JOISTS, LOAD 150 LBS. PER SQ. FT. . . 58 
 BEAMS USED AS JOISTS, LOAD 200 LBS. PER SQ. FT. . . 59 
 STRENGTH OF WOODEN BEAMS 63 
 
 RIVETED GIRDERS 60-62 
 
 COLUMNS, POSTS, AND STRUTS 64,65 
 
 TABLES OF ALLOWED WORKING STRAINS, PER 
 
 SQUARE INCH ; 66,67 
 
 TABLE OF SAFE LOADS FOR ROLLED I BEAMS USED 
 
 AS COLUMNS OR STRUTS 68 
 
 TABLE OF SAFE LOADS FOR HOLLOW CYLINDRICAL 
 
 CAST AND WROUGHT IRON COLUMNS 69 
 
 TABLE OF SAFE LOADS FOR RECTANGULAR TIMBER 
 
 POSTS 7 
 
 ROOFS 71, 72 
 
 TABLE OF STRAINS IN KING AND QUEEN ROOF 
 
 TRUSSES 73 
 
 TABLE OF STRAINS IN BELGIAN OR FINK ROOF 
 TRUSSES 74 
 
 STRAINS IN RECTANGULAR AND TRIANGU- 
 LAR BRIDGE TRUSSES) 75-85 
 
 RIVETS AND PINS 86 
 
 TABLE FOR SHEARING, BEARING, AND BENDING OF 
 
 PINS 87 
 
 TABLE FOR SHEARING AND BEARING OF RIVETS 88,89 
 
 TABLE OF WEIGHT OF RIVETS 90 
 
 SLEEVE NUTS AND UPSET SCREW ENDS OF 
 
 ROUND AND SQUARE RODS 91 
 
8 THE PASSAIC ROLLING MILL COMPANY. 
 
 TABLES OF WEIGHTS, ETC. 
 AREAS AND WEIGHT OF SQUARE AND ROUND 
 
 ROLLED IRON 92, 93 
 
 AREAS OF CIRCLES 123 
 
 AREAS OF FLAT ROLLED IRON 94, 95 
 
 BOLTS, WITH SQUARE HEADS AND NUTS 106 
 
 CAPACITY OF CISTERNS 112 
 
 CIRCUMFERENCE OF CIRCLES 122 
 
 DIFFERENT COLORS OF IRON CAUSED BY HEAT... 118 
 
 DIFFERENT STANDARD WIRE GAUGES 102 
 
 DIMINUTION OF TENACITY OF WROUGHT IRON AT 
 
 HIGH TEMPERATURES 117 
 
 FLAGGING 112 
 
 GALVANIZED AND BLACK IRON 103 
 
 LAP-WELDED IRON BOILER TUBES 109 
 
 LINEAR EXPANSION OF METALS 116 
 
 MELTING POINTS OF METALS 118 
 
 NAILS AND SPIKES 108 
 
 NATURAL SINES, ETC 121 
 
 NOTES ON BRICKWORK 113 
 
 ROOFING SLATE in 
 
 SKYLIGHT AND FLOOR GLASS 112 
 
 SPECIFIC GRAVITY OF VARIOUS SUBSTANCES 114,115 
 
 SQUARE AND HEXAGON NUTS 107 
 
 STANDARD SIZES OF WASHERS 106 
 
 TACKS 108 
 
 ULTIMATE STRENGTH OF MATERIALS 119, 120 
 
 WEIGHT OF SEPARATORS AND BOLTS 55 
 
 WEIGHT PER SQ. FOOT OF SHEETS OF WROUGHT 
 
 IRON, STEEL, COPPER, AND BRASS. 
 
 THICKNESS BY AMERICAN GAUGE 101 
 
 THICKNESS BY BIRMINGHAM GAUGE 100 
 
 WEIGHTS AND MEASURES (U. S AND FRENCH) 124-127 
 
 WEIGHTS OF FLAT ROLLED IRON 96, 97 
 
 WEIGHTS OF PLATE IRON 98, 99 
 
 WEIGHTS OF VARIOUS SUBSTANCES 114, 115 
 
 WINDOW GLASS no 
 
 WIRE 104 
 
 WROUGHT-IRON WELDED TUBES FOR STEAM, GAS, 
 
 OR WATER 105 
 
 PASSAIC R. M. GO'S STANDARD TURN-TABLES 128 
 
TH E 
 
 PATERSON, N.J. 
 
 MANUFACTURERS OF 
 
 I U JUU.Li.LJ 1 
 BEAMS, CHANNELS, ANGLES. TEES 
 
 ALL PARTS OF 
 
 BRIDGES OR FJRE PROOF FLOORS AND ROOFS 
 
 Wade and Fitted lo suit Designs of Engineers and Architects. 
 
 MANUFACTURERS OF 
 
 !R p N 
 
 TOSSES 
 
 To form Bottom Chords for Bridges of any size or Length. 
 MADE VWTHOUT 
 
 WROUGHT IRON TO11TO1LES 
 
 AND 
 
 STANDARD RIGHTED LEFT 
 
 OR SLEEVE NUTS, 
 
 Plans and Estimates furnished. 
 
10 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE 1 
 
 15 '/8 HEAVY BEAM. 
 200 Ibs. pr.Yd. 
 
 I53/J6 LIGHT BEAM 
 ISO Ibs. pr.Yd. 
 
THE PASSAIC ROLLING MILL COMPACT. 11 
 
 PLATE 
 
 K4- HEAVY BEAM . 
 I7O Ibs.pr.Yd. 
 
 5/8 " 
 
 12 '4 LIGHT BEAM 
 125 Ibs.pr.Yd. 
 
 *- r 
 
 10 y 2 ' 
 
 4,3/4 
 
 10 ' 2 EXTRA LIGHT BEAM \ 
 
 90 Ibs.pr.Yd. 
 
12 THE PASSAT C ROLLING MILL COMPANY. 
 
 ^1B ! < 
 
 PLATE 3 
 
 10V2 
 
 IO'/2 HEAVY BEAM 
 I35 lbs.pr.Yd. 
 
 10 V 2 
 
 IO'/2 LIGHT BEAM. 
 I05 Ibs. pr.Yd. 
 
 9* HEAVY BEAM. 
 85 Ibs. pr.Yd. 
 
 9" LIGHT BEAM. 
 7O Ibs. pr.Yd. 
 
 
 ,:..*. 
 
 r\ 
 
THE PASSAIC ROLLING 
 
 8'HEAVY BEAM. 
 80 Ibs-pr.Yd. 
 
 8" LIGHT BEAM. 
 65 Ibs.pr. Yd. 
 
 SO.... 
 
 r 
 
 7" BEAM . 
 60 Ibs.pr.Yd. 
 
 6 EX. HEAVY BEAM 
 90 to 120 Ibs.pr.Yd. 
 
 13/32" 
 
V 
 
 14 THE PASSAIC ROLLING MILL COMPANY. 
 
 6 BEAM. PLATE 5 6 'BEAM. 
 
 50 IbS pr.Yd. 40 Ibs.pp.Yd. 
 
 1 
 
 5' BEAM. 
 30 Ibs.pr. Yd. 
 
 5' BEAM. 
 40 Ibs.pr. Yd. 
 
 4-" BEAM. 
 37 Ibs.pr. Yd. 
 
 4 BEAM 
 30 IbS. pr.Yd 
 
 4- BEAM. 
 18 Ibs. pr.Yd. 
 
THE^PASSAIC ROLLING MILL COMPANY. 15 
 
 PLATE 6 
 
 5"L 17lbs.pp.Yd. 
 
 1ft 
 
 15^16" CHANNEL 
 125 to 150 Ibs.pr.Yd 
 
 1 f * ^ 
 
 I/ 4.-Cl3*tbs.pr.Yd. H 
 
 12 '/4 CHANNEL 12 '/4 CHANNEL 
 
 100 to 140 Ibs.pr.Yd. 80to-95 Ibs.pr.Yd. 
 
16 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE .7 
 
 9 CHANNEL 
 
 6O to 70 Ibs.pr.Yd. -. 
 
 6 CHANNEL 
 50 to 60 tbs.pr.Yd. 
 
 6 CHANNEL 6 CHANNEL 
 
 3Oto45 IbS.pr.Yd. 22'/2to28 Ibs.pr.Yd. 
 
' THE PASSAIC ROLLING MILL COMPANY. 17 
 
 PLATE 8 
 EQUAL- TEE. 
 
 4'x4x*t'to1lB 33 to 33 Ibs.pr.Yd. 
 
 3fex3*fe'xk* 7 ,fe' 28to33 Ibs.pr.Yd. 
 
 'x2yax 5 fatft! ISto 18 Ibs.pr.Yd. 
 
 .Yd. 
 
 T 
 
 9 '/ 2 to 12 Ibs.pr.Yd. 
 
 "^1 (TS 
 
 FLATTED ROUND 
 
 1 3/4 & Smaller 
 l s /8 
 
 "1 jJ^lbsp 
 U 
 
 6'/2to8'/2 Ibs.pr.Yd, 
 
 HALF ROUND 
 
 a'/z&Smaller 
 
 ROUNDED FLATS 
 4 and 3" " 
 
 /2 Ibs.pr.Yd. 
 
18 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE 9 
 
 UN EQUAL TEIE: 
 
 -46 to 60 Ibs pr.Yd. 
 
 5'x3'x*g 30to36 Ibs.pr.Yd. 
 ^ C 
 
 5'x2^'xVS"27to33 Ibs pr.Yd. 
 
 4-'x2"x3/ 8 '2l Ibs. pr.Yd. 
 
 r 
 
 
 3 "x 2x^8 17 Ibs.pr.Yd. 
 
 3'x4<xV2'33 Ibs. pr.Yd. 
 
 15 Ibs.pr.Yd. 
 
 U 
 
 "^ f82 Ibs.pr.Yd 
 
 BEAD IRON. 
 
 i6' 7!/2 Ibs.pr.Yd. 
 
 II Ibs.pr.Yd. 
 
 'x 5 - x i6' 15 Ibs. pr.Yd. 
 
 21 Ibs.pr.Yd. 
 
THE PASSAIC ROLLING MILL 
 
 COMPANY. 19 
 
 PLATE 10 6*4'xtoto* 
 
 42 to 75 Ibs.pr.Yd. 
 
 
 
 UNEQUAL ANGLES ^ 
 
 
 5x3fex%'to%' 30to60 
 
 bs.pr.Yd. 
 
 ! 
 
 C 
 
 _^ | 
 
 5V 3 x 3/8 'to **' 28to 56 Ibs.pr.Yd. 
 
 , 
 
 li 
 
 i 
 
 i 
 
 '^j_ - 
 
 4-'x3"x 3 /8to 3 /4-" 
 
 ^ ! 
 
 45Sx3"x*8'to3/4 1 27to 54 Ibs.pr.Yd 
 
 | 
 
 L 1 
 
 uu 
 
 4x3fci_!totoW 27to54lbs.pr.Yd. 
 
 
 ^ U_ rz 
 
 
 l 
 
 
 24 to 48 Ibs.pr.YcT 
 
 ^1 1 12 to 18 IDs 
 
 SQ. ROOT ANGLE 
 
 r -i 6^tol!lbs.pr.Ydrj 
 
 [j%x^xy8 Glfetolllbs.prYd^ 
 
 . . 
 
 * ijj 
 
 li ' 
 
 c_^~i IJJ ^" m 
 
 4.2to7lbs.pr.Ydl 
 l^xlV'Sx^e' J l^'xVixy* 1 |J L 
 
 c^^^ [rn] GROOVE 
 
 OBTUSE ANGLE GROOVE 
 HEX 
 
 / \lV4t0^6- 
 HAND RAIL \ / 5ASM 
 
 9 W 1V4- V II 
 
 PICTURE CORNICE. 
 
20 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE 11 
 
 4'x4?'x%to%" 28tc58 Ibs.pr.Yd 
 
 3%x31fe'x%loV* 24to5l Ibs.pr.Yd 
 
 SQUARE ROOT ANGLES. |o3.6 lbs.pr.Yd. 
 
 V*x^ 17 Ibs.pr.Yd. 
 
THE PASSAIC ROKLLNG M 
 
 FIG. 2. 
 
 FIG. 8. 
 
22 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE 13 
 
 TrrrTrrmi 
 
 FIG. 9 
 
 FIG. 10. 
 
THE PASSAIC ROLLING MILL COMPANY. 23 
 
 THE FIRE PROOF BUILDING COMPANY OF NEW YORK. 
 
 Fire Proof Construction with Iron and Hollow Brick. 
 PLATE 14 
 
24 THE PASSAIC ROLLING MILL COMPANY. 
 
 PLATE 15 
 
 CM 
 
 L _ld 
 
 F . n ^ 
 
 
 
 
 o o o o o o 
 
 "> H 
 
 1 (o 
 a: 
 
 u 
 
 a 
 
 
 
 
 
 ; 
 
 
 ooooooj 
 
 
 : 
 
 
 ;j 
 
 b] 
 
 
 O 00 
 
 
 oo o 
 
 IL jg 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 o o o o o 
 
 
 
 1 X 
 
 
 
 
 
 : 
 
 
 
 i 
 
 
 C 
 
 
 
 
 
 
 
 
 
 c 
 
 AA^ ^ 
 
 
 C 
 
 
 c 
 
 vX ^n 
 
 
 : 
 
 
 
 
 3 
 
 a 
 
 a V/ '/ 
 
 u L"//'/J ^- 
 
 Q ^2ZL-J s 
 
 
 
 
 
 tt 1 -Q 
 
 
 . 
 
 
 
 
 10 a 
 
 
 o o o o o o 
 
 On 
 
 
 a 
 
 
 
 
 ~7 II M O 
 
 Lu AT 
 
 
 c 
 
 
 
 
 h H 
 
 
 c 
 ; 
 
 
 C 
 
 
 
 5 [SiN < 
 
 
 c 
 
 
 
 
 a j 
 
 
 
 
 
 
 
 
 
 q 
 
 
 
 
 L. 
 
 
 
 
 
 
 
 
 L _i 
 
 
 C; 
 
 
 
 
 d HI C s 
 
 i 
 
 o o o o 
 
 3 
 
 
 a 
 
 
 
 
 
 
 , 
 
 
 
 "^ h 
 
 
 ; 
 
 
 
 
 U 
 
 
 C 
 
 
 
 
 o 
 
 U 
 
 
 ; 
 
 
 ooooc 
 
 vy 
 
 : 
 
 -] [ 
 
 
 
 
 
 8 
 
 
 
 O O O O 
 
 
 A ., J 
 
THE PASSAIC ROLLING MILL COMPANY: 25 
 
 SECTIONS OF COLUMNS 
 PL ATE 16 
 
 FIG I. 
 
 FIG. 2. 
 
 1 
 
 FIG. 8. 
 
 I 1 
 
 FFG.3. 
 
 FIG.4. 
 
 FIG.5. 
 
 n 
 
 F1G.6. 
 I I 
 
 FIG. 7. 
 
 HH 
 
 FIG. 1 1. no.12. 
 I 
 
 FIG - 13 - FIG.I4. 
 
 r i T 
 
 L__jl JL 
 
 FIG.I5- FIG. 16. 
 
 4= 
 
 FIG. 17. 
 
 JL 
 nr 
 
 FIG. 18. 
 
V 
 
 26 THE PASSAIC ROLLING MILL COMPANY. 
 
 PL ATE 17 
 
 FIG. I. 
 
 TRIANGULAR OR WARREN TRUSS. 
 
 7 , 15' 13' L' 9' 1 5' 3' 
 
 18 16 14 12 10 8 
 
 420 
 
 WARREN TRUSS WITH INTERMEDIATE POSTS. 
 
 FIG. 2. 
 
 17' 15' 13' 11' 
 
 1' 5' 3 1' 
 
 18 16 14 12 1O 8 6 4? 
 
 WARREN TRUSS, WITH INTERMEDIATE SUSPENDERS. 
 
 FIG.3. 
 
 Z' 15' 13' 
 
 18 16 14 12 10 8 6 4-2 
 
 RECTANGULAR TRUSS, SINGLE INTERSECTION. 
 
 FIG- 4 
 
 KING AND QUEEN ROOF TRUSS. 
 
 FIG.5. 
 
 36265432 3 
 
PL ATE 18 
 
 CO, 
 
 Z 
 
 TH U 
 
 a: 
 
 Sg 
 to 
 
 S's 
 
 h 
 U , 
 
 X 
 
 MILL COMPANY. 27 
 
 U 10 15 14 13 12 11 1O 9 765 3 2 1 g 
 
 p, G 4 DOUBLE INTERSECTION RECTANGULAR TRUSS. 
 
 13' 12' 11.' 10' 9' 8' 1' 6' 5' 4-' 3' 2' l' 
 
 
 o 
 
 04 
 
 CO 
 
 * 
 
 m 
 
 CD 
 hi 
 
 CD 
 
 Oi 
 
 s 
 SI 
 
 8 
 
 3 
 
 o 
 
 52 
 
 \\ 
 
 \X 
 
 xx 
 
 X><\ 
 
 XX 
 
 XX 
 
 xx\ 
 
 XX, 
 
 XX 
 
 XX 
 
 XX 
 
 XX. 
 
 n 
 
 //^ 
 
 ^^ 
 
28 
 
 THE PASSAIC ROLLING MILL COMPANY. 
 
 2 
 O Q 
 
 O u 
 
 II 
 
 O 
 
 O C_ 
 
 I* 
 
 >- O' 
 
THE PASSAIC ROLLING MILL COMPANY. 29 
 ., PLATE 2( 
 
 
 
30 THE EASSAIC RO LINING MILL CO~MPA*TY. 
 
THE PASSAIC ROLLING MILL COMPANY. 31 
 
32 THE PASSAIC ROLLING MILL COMPANY. 
 
THE PASSAIC ROLLING MILL COMPANY. 33 
 
34 THE PASSAIC ROLLING MILL COMPANY. 
 
 STBENGTH OF BEAMS. 
 
 IF a beam, supported at its ends, is loaded with a weight, 
 this weight will produce reactions on the two supports, the 
 sum of which is equal to the weight. These are the external 
 forces acting on the beam. Under the influence of these ex- 
 ternal forces a bending of the beam occurs, the fibers of the 
 upper half of the cross-section are shortened, and those of the 
 lower half are elongated. These changes are the result of a 
 compressive strain in the upper half and of a tensile strain in 
 the lower half of the cross-section of the beam. In the middle 
 of the heights is a place where no shortening or lengthening 
 of the fibers occurs, and this is called the neutral axis. In 
 wrought iron, as in other homogeneous substances, this neu- 
 tral axis is coincident with the center of gravity of the section, 
 and in symmetrical sections, as in I beams, this is in the 
 middle of the depth of the beam. 
 
 The moment of inertia of a cross-section is an expression 
 which is used in the calculation of the strength of beams. 
 The sum of the products of the infinitely small areas of each 
 fiber, by the square of its distance (taken at right angles) 
 from the neutral axis, is its value with respect to this axis. 
 
 The moment of resistance is the moment of inertia divided 
 by the distance from the neutral axis (or center of gravity of 
 the section) to the most extreme fiber. This is used to deter- 
 mine the maximum strain in the most extreme fiber. 
 
 The radius of gyration is found by extracting the square 
 root of the moment of inertia divided by the area of the cross- 
 section. If all material were concentrated at this distance 
 from the neutral axis (or center of gravity), it would resist 
 against bending the same as the material distributed over the 
 cross-section. 
 
 Twice the radius of gyration may be called the effective 
 depth of the beam. 
 
THE PASSAIC ROLLING MILL COMPANY. 35 
 
 TERMS USED IN FORMULAS: 
 
 W, Load. 
 
 /, Length of beam in inches. 
 
 A, Area of total cross-section of beam. 
 
 h, Depth of beam. 
 
 I, Moment of inertia of cross-section. 
 
 R, Moment of resistance of cross-section. 
 
 e, Distance of the most extreme fiber from the neutral axis 
 
 (usually e = J. 
 
 d, Deflection in inches. 
 
 S, Strain per square inch. 
 
 M, Bending-moment produced by the load W in any cross- 
 section. 
 
 x, The distance of this cross-section from the support or 
 from the load. 
 
 The following tables give general formulas of bending- 
 moments M, maximum loads W, maximum fiber strains S, 
 and deflections d, for beams loaded and supported in different 
 ways. The bending-moments may be calculated with these 
 formulas for any cross-section by substituting the particular 
 value of JT, and from the value thus obtained the strain in this 
 cross-section is found by the general formula 
 
 
 The necessary section of the beam at any place is obtained 
 by reversing this formula, thus : 
 
 I M 
 
 -e OT R =S' 
 
 This gives the moment of resistance required, arid the cor- 
 responding beam may be selected from the table giving the 
 different properties of beams and channels. 
 
36 THE PASSAIC ROLLING MILL COMPANY. 
 
THE EASSAIC ROLLING 
 
THE PASSAIC ROLLING MILL COMPANY. 39 
 
 PKOPEETIES OF PASSAIC EOLLING MILL'S 
 
 I BEAMS, CHANNEL BAKS, ANGLES, 
 
 AND TEE IKON. 
 
 THE following tables give co-efficients, by the use of which 
 the safe, uniformly distributed load for any Beam, Channel, 
 Tee, or Angle Iron can be easily determined. It is only 
 necessary to divide the co-efficient by the span between 
 centers of supports (in feet). This will give the safe, uni- 
 formly distributed load in Ibs. for a beam simply supported 
 on both ends, as in case 8 (see table of formulas for different 
 modes of loading). For any other way of loading, the result 
 has to be multiplied with a factor which is for 
 
 MODE OF LOADING. 
 
 FACTOR. 
 
 1. One end fixed, other end loaded l /$ 
 
 2. Both ends supported, concentrated load in center 
 
 of span y 2 
 
 3. Both ends supported, concentrated load on rny 
 
 point of beam 
 
 4. One end fixed, other end supported, concentrated 
 
 load in center of span %' 
 
 5. Both ends fixed, concentrated load in center of 
 
 span I 
 
 6. Concentrated load at each end, two supports 
 
 between ends of beam y% 
 
 7. One end fixed, uniformly distributed load ^ 
 
 8. Both ends supported, uniformly distributed load. . I 
 
 9. One end fixed, other end supported, uniformly dis- 
 
 tributed load . I 
 
 10. Both ends fixed, uniformly distributed load -3 
 
 n. One end fixed, load distributed, but increasing 
 
 toward the fixed end y% 
 
 12. Both ends supported, load distributed, but decreas- 
 
 ing toward the middle of the span f 
 
 13. Both ends supported, load distributed, but increas- 
 
 ing toward the middle of the span ^ 
 
< 
 
 40 THE PASSAIC ROLLING MILL COMPANY. 
 
 The co-efficients given in the tables for Beams and Chan- 
 nels have been calculated for maximum fiber strains of 12,000 
 Ibs. per square inch and 10,000 Ibs. per square inch, but those 
 for Tees and Angle Iron only for 12,000 Ibs. per square inch. 
 If it be desired to find the carrying capacity for any other 
 strain per square inch, this is simply done by increasing or 
 decreasing the co-efficient given in the tables in proportion 
 to the strains allowed. These tables have been calculated 
 under the supposition that the beams are sufficiently secured 
 against yielding sideways. Usually, it is assumed that this 
 is the case if the free length of the beam does not exceed 
 twenty times its width. If longer beams are required, it is 
 necessary that they should be stayed at intermediate points, 
 or the safe load has to be reduced as given in the table for 
 beams not secured against yielding sideways. 
 
 Beams or Channels in short lengths have to be proportioned 
 so that the section of the web is sufficient to resist the shearing 
 strain. The shearing strain on the web should not be more 
 than the half of the fiber strain allowed on the flanges ; that 
 is, 6000 and 5000 Ibs. resp. per square inch. This gives for 
 short beams a maximum safe load which such beam may 
 support without buckling or crushing of the web. 
 
 The tables show the dimensions and different properties of 
 I Beams, Channels, Tees, and Angle Iron. I Beams are 
 usually rolled heavy, and light weight, as given in the table. 
 Channels and Angle Iron frequently are made of varying 
 weights, but Tee Iron can be rolled only to the weights 
 shown in the lithographed plates. 
 
THE PASSAIC ROLLING MILL COMPANY. 41 
 
 
 
 
 53 
 
 OJ 
 
 8 
 
 8 
 
 OOi 
 
 
 00 
 
 Q 
 
 -^ 
 
 
 
 
 
 
 
 
 
 
 rHO COO 
 00(7J rH 
 
 
 
 3 
 
 J> O 
 
 
 0) 
 
 g 
 
 !N 
 
 O 00 iO 1> 
 
 05 05 COW 
 GO rH rH 
 
 i 
 
 1 
 
 @s 
 
 coo 
 
 
 o> 
 
 8 
 
 . co" 
 
 iC CO iO CO 
 ^ CO CO C^ 
 
 i 
 
 1 
 
 CO O 
 
 
 
 0^ rH 
 
 rH 
 
 rH 
 
 
 
 o 
 
 rH 
 
 
 I- 
 
 O OJ rH 
 rH 
 
 dtf 
 1 
 
 i 
 
 O5C> 
 
 
 
 
 
 CO 
 
 g 
 
 o 
 
 CO Tf 
 
 
 
 
 
 rH 
 
 1 
 
 0^ 
 
 COrH'* 
 
 C<J ^ Tf J> 
 
 00 CO rH 
 
 g 
 
 I 
 
 05 
 
 
 
 
 
 rH 
 
 C*x 
 
 C*x 
 
 
 D 
 
 o 
 
 i 
 
 |5 
 
 OJ i 1 00 
 
 i^co Tf co 
 
 1 
 
 1 
 
 CO r-i 
 rH 
 
 1 
 
 -* 
 
 
 
 * 
 
 CO 00 t^ 
 
 
 
 
 
 8 
 
 4 
 
 rH 
 
 rH 
 
 6^ 
 
 t^ 00 <* CO 
 
 8 
 
 1 
 
 rH 
 
 
 CQ 
 
 O 
 
 SH* 
 
 .*!* 
 
 5" 
 
 cT 
 
 C5rH 
 
 * 
 
 rH 
 
 
 
 
 CO 
 
 1 
 
 rH 
 
 i 
 
 
 * 
 
 O 
 
 s 
 
 CO 00 1> 
 
 | 
 
 1 
 
 ^'g 
 
 H 
 
 rH 
 
 
 o 
 
 O GO lO rt< 
 G<f CO CO 
 
 
 
 1 
 
 rH 
 
 
 
 
 rH 
 
 1 
 
 co^-jx 
 
 6 
 
 s^ 
 
 1 
 
 i 
 
 
 
 
 
 
 J> 
 
 r>. 
 
 to 
 
 
 
 
 
 
 ' "T 
 
 r~^p 
 
 ?~7T 
 
 
 
 r J-- JT QJ 
 
 D 
 
 a 
 
 *"O ^ t- 1 ^ 
 
 
 zi 
 
 o 
 
 w ' i S^c^ 
 
 si, 
 
 
 fl "c 
 
 
 
 
 a 
 
 : | % |.g | 
 
 -| j ^ll '8^ 
 
 c 
 
 .go: g -*- 1 ^H 
 
 *e S S * S 1 ?! 
 
 
 g 
 
 ^5 17??" 
 
 rSJ 
 
 1 2 
 
 (U "t^^~* 
 
 a ? ^ 
 
 
 a 
 
 2 
 
 rt 
 
 ^ &) ! ^ J '^ ~ 
 
 8C o 
 <u 
 
 O c ^ 
 
 .3 
 
 
 ^ 
 
 fi J-r ^ 
 
 c 
 
 
 OJ rt 
 
 < CL W J *0 *~ 
 
 11 2 
 
 11 2 
 
 c ^ 
 
 
 
 
 
 ^ ) J2 'Is 
 g 1 : 'S3 ^^ : 1 
 
 I 1 
 
 o v 
 
 N 
 
 fi ^ H > P4 cr. 
 
 a? >2 i c<5 g 
 
42 THE PASSAIC ROLLING MILL COMPANY. 
 
 
 
 00 
 
 rH to 
 
 rH^SS 
 
 g 
 
 g 
 
 ^ 
 
 
 M 1 
 
 11 
 
 O ^ 
 
 (M rH 0* 
 
 o 
 
 J^ 1 
 
 00 
 
 
 
 
 
 
 Oi 
 
 T 1 
 
 
 
 
 
 3 
 
 o 
 co^ 
 
 o 
 
 oSSS 
 
 1 
 
 o' 
 
 1 
 
 rHO 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 ^ro 
 
 Oi O 1C tO 
 
 8 
 
 g 
 
 8 
 
 
 
 CO 
 
 
 
 Oi -* rH (7* 
 
 8 
 
 
 
 rHO , 
 
 j, 
 
 
 
 8 
 
 s 
 
 rH 
 
 1 
 
 1 
 
 Hd 
 
 
 C 
 
 
 
 ^JH 
 
 Oi ifi 00 
 rH O CS l^ 
 
 i 
 
 8 
 
 
 "^ 
 
 
 
 o 
 
 O 'O rH CO 
 
 oo" 
 
 o 
 
 rH 
 
 i 
 
 
 
 
 
 ** 
 
 Tl< 
 
 
 . 
 
 
 
 ^ 
 
 CO O 
 
 o 
 
 
 
 Sfi 
 
 *2 
 
 a 
 
 CD 
 
 
 
 2^ 
 
 CO 1> C* O 
 
 1 
 
 uO 
 
 CO 
 rHO 
 
 GC 
 
 e 
 
 o 
 
 U3 
 
 o" 
 
 O O rj< 00 
 
 gjoioiio 
 
 1 
 
 1 
 
 ^ ~T 
 
 (7*0 
 
 s 
 
 
 
 
 
 
 
 
 . 
 
 
 
 1* 
 
 (M rH CO l> 
 
 rH J>0* 
 
 lO rH 
 
 1 
 
 rH 
 
 P 
 
 ffl 
 
 ;- 
 
 .8 
 
 I- 
 
 O01 ^10 
 % rH 
 
 8 
 
 1 : 
 
 i 
 
 CO O 
 
 H 
 
 00 
 
 8 
 
 o 
 
 O J> CO OJ 
 
 rH 1> CO 
 
 t^ rH rH 
 
 o 
 
 1 
 
 1 
 
 CO 00 
 O 00 
 
 io d 
 
 
 
 
 
 i rH 
 
 
 
 
 
 
 
 2 T? 
 
 ' "T^ 
 
 ' "T" 
 
 . * 1 
 
 
 in 
 
 1 
 
 g 
 
 en 
 ,Q 
 
 'c 
 
 'rt rt <U 4> 
 
 If 
 
 cj ;- 
 
 D 
 
 'll 
 
 S o 
 
 D 
 
 111 
 
 '5 >> " 
 
 cj 
 
 
 1 1? 
 
 ^rT.S 
 
 lf|. 
 
 f -ss 
 
 ^ ^5 
 
 ef p 1 
 
 
 i ? bfl 
 
 te^S . 
 
 S g o 
 
 8 S 
 
 t.l 
 
 
 M 
 
 -I- C 
 fe cd 
 
 G .J2 S^'H 
 
 II ' 
 
 ifl 
 
 
 
 
 
 
 
 
 
 
 
 | 
 
 g" 
 
 ll 
 
 *j. O O 
 
 S % 2 
 
 1 s 
 
 o 
 
 ^~* "^ 
 
 
 ^4 .2? 
 
 *Q ^ PH ^ r^ cd 
 
 t flj u^ 
 
 rr4 
 
 
 ST <u -~ ! rt"|^ i- ^ *- 
 
 o ^ 
 
 
 
 S(2 
 
 s* 
 
 : -* 
 
THE PASSAIC ROLLING MILL COMPANY. 43 
 
 j 
 
 
 CO CO TH 
 
 tO CO O CD 
 "* 1> tO lO CO CO 
 
 
 
 
 S^S 
 
 Oi 
 
 
 
 otoo 
 
 CDCD04THCOTH 
 
 8 S 
 
 CO 0" 
 
 00 TH 
 
 TH O O 
 
 
 * 
 
 o 
 
 ^ CO iH 
 
 ^ g o jo o 
 
 1 1 
 
 |! 
 
 0400 
 
 010 
 
 OCDtOTHOOO 
 
 --T 
 
 
 ggo 1 
 
 O) -^ 1> O CD TH 
 
 8 
 
 
 
 Tf CO O4 
 <* J> 00 
 
 <M 
 iH 
 
 S 
 
 04 00 
 
 00 OJ l>. O4 * i 1 
 
 CDTH04 0. 
 
 TH" CD" 
 
 S 2 
 
 TH 
 
 tOOO 
 
 OO CO CO 
 
 ^ 
 CO TT 00 Srf 
 
 
 
 
 
 coco^t. 
 
 
 d 
 
 5 
 
 CO O O 
 
 
 3 
 
 co" co 
 
 06 do 
 
 , 
 
 
 
 
 OJ " ^ 
 
 
 rH 
 
 
 
 
 
 CD * O 
 
 Ot -^OJO CO 05 
 
 8 8 
 
 8 8 
 
 oS?? 
 
 j 
 
 
 " 
 
 CO O O 
 
 Tf O> CO Oi ^< 00 
 
 r 3 
 
 of co^ 
 
 ot o o 
 
 OD 
 
 
 
 
 
 3 - 
 
 00 TH 
 
 
 PH 
 
 
 
 c^SS 
 
 uO J> CO tO S CO 
 
 
 8 8 
 
 O5 tO 
 J> O TH 
 
 j 
 
 j2 
 
 
 
 CO O O 
 
 l^ GO OJ OJ iO TH 
 
 
 
 
 O5 TH TH 
 
 i 
 
 rH 
 
 TH 
 
 
 CO TH CD CO 
 
 8 04 
 
 TH 
 
 
 w 
 
 
 
 
 
 to 
 
 "* 
 
 
 
 
 
 TH-C^S 
 
 O t^ tO < 04 
 
 8 8 
 
 8 8 
 
 coiS 
 
 u 
 
 to 
 
 TH 
 
 S 
 
 ^ oo 
 
 Tf COO 04 tO 05 
 O4 TH 1> O4 
 
 CD O4 
 
 CD" co- 
 co TH 
 
 TH TH TH 
 
 
 
 
 
 
 
 
 
 
 
 
 : : ^ ^ ' 
 
 p. "o 
 
 ""^ '. 
 
 ^~ 
 
 
 ^3 
 
 
 - (i, w 
 
 t/3 O 
 
 : i : : : : -~ 
 
 S 5*1 
 
 
 X -*-* 
 
 
 J : : : : 
 
 O 
 
 <S ^ o 
 
 
 
 
 g 
 
 
 li 
 
 Jc 'Sj 
 
 
 S S 
 
 o 
 
 
 ^r 
 
 
 
 .s'S 1 
 
 
 <U C "S 
 
 S ? c 
 
 1 
 
 t 
 
 i 
 
 A 
 O 
 
 o 
 fl 
 
 g 
 
 & 
 
 ^ 
 
 Width of flange, in 
 Thickness of web, i 
 Increase for 10 Ibs. 
 
 Moment of inertia, 
 Increase for 10 Ibs. 
 Moment of resistan< 
 Increase for 10 Ibs. 
 Radius of gyration, 
 
 D "h/)(i 
 
 1 r* &) 
 
 O - i 
 
 ! I 
 
 
 
 'o . 
 
 *-pH rC O 
 
 O tX^G 
 
 6 c V 
 3^0 
 
 II "o 
 
 "2 4J 
 5/5 
 
 ^2J CJ 
 
 Moment of inertia, 
 Center of grav. from 
 Radius of gyration, 
 
 B 
 
44 THE PASSAIC ROLLING MILL COMPANY. 
 
 
 
 
 ^f 1> *O 
 
 ^??Sc5S^ 
 
 8 8 
 
 00 ^* 
 
 5^5! 
 
 
 
 rt 
 
 rHO 
 
 CO rH rH O^rH CO 
 
 CO 10 
 
 TT 
 
 000 
 
 
 
 
 320 
 
 O d OO ** i 1 lO 
 
 !MOrf QOOiCO 
 
 8 8 
 
 8 | 
 
 c^^^ 
 
 
 
 10 
 
 H 
 
 rHOO 
 
 CO<M<MO i-H CO 
 
 oT co" 
 
 rH 
 
 co" o 
 
 1-H 
 
 OOO ' 
 
 
 
 
 OrH 
 
 C00^8^S 
 
 8 8 
 
 8 8 
 
 8 
 
 
 CO 
 
 s 
 
 rHOO 
 
 CO CO -^T rH (M lO 
 rH 
 
 ** 
 
 8* 
 
 000 
 
 
 
 
 
 &8rH 
 
 Ci O CO O rH lO 
 
 8 8 
 
 8 
 
 O -J O 
 t-COCO 
 
 
 CO 
 
 9 
 
 (MOO 
 
 i 1 CO i> i 1 <M *** 
 (M 
 
 oo" oo" 
 *o 
 
 ocf co 
 
 rHOO 
 
 V' 
 
 
 
 
 1 
 
 
 
 | 
 
 
 
 O rH b. 
 
 LT5 CO rH 
 
 COO COOrHO 
 
 8 
 
 8 8 
 
 gr:S 
 
 S 
 
 CO 
 
 S 
 
 (MOO 
 
 ^COCii-H(M^ 
 
 co" cc 
 
 rH CO 
 
 (MOO 
 
 C 
 
 
 
 
 *" 
 
 
 
 CO 
 
 Pn 
 
 00 
 
 i 
 
 rH 00 
 
 t>I tO CO rH CO Ci 
 
 8 8 
 
 CO CO 
 
 s's 
 
 CO* OO" 
 
 ^ 
 
 rH CO 00 
 
 10 
 
 i-HOO 
 
 
 
 
 8S 
 
 rt< CO 00 CO C5 J> 
 
 g 
 
 
 CO rH Tf 
 
 COCO 
 
 W 
 
 00 
 
 3 
 
 (MOO 
 
 CO lO i-H (M 00 
 ^ rH 
 
 co" o^ 
 
 00 rH 
 
 N 
 
 (MOO 
 
 u 
 
 
 
 
 
 ,-W^-N ^ 
 
 /-^N.X-> 
 
 05 "^ 
 
 i 
 
 
 
 
 
 as 
 
 ^'5 
 
 3 ^'53 
 
 X *- 
 
 
 
 
 
 8.9 
 
 tcXi ^ 
 
 "05 rQ ^ 
 
 > 
 
 ( 
 
 in 
 
 I 
 
 
 
 
 
 ^2 
 
 l 
 
 || 
 
 ^~*^ 
 
 
 G 
 
 
 
 ^ ^ 
 
 ^ of S 
 
 ^ c" S 
 
 tl _ l 
 
 
 
 
 05 
 
 r^ ^H 
 
 rH \J 
 
 1-1 ^-1 
 
 
 
 
 ft 
 
 
 JH o bit 
 
 oil tuo 
 
 /^~S^^\ Q 
 
 /^/^x^ O 
 
 r^ 
 
 
 *" 
 
 g 
 
 g 'S 
 
 o ^ <u , 
 
 C **H 4-) 
 
 P te *j 
 
 S 
 
 
 
 of Channel 
 
 | 
 
 oT i> 1 ~* 
 
 ^ g i* * w 
 
 .fljjjsl 
 
 (U O *oj O ci 3 
 fi rH D rH ^ 
 
 5Jrt*,S? 
 
 g.S| 
 
 be aiy 
 
 <u tjjcS 
 
 8 |6 
 
 ! **^ 
 
 
 
 8fa| 
 
 Iral 
 sill 
 
 11 -5 
 
 ,Q 
 .||| 
 
 g > ? 
 
 .S <3 >^ 
 
 o ^ 
 
 "-" O 
 
 
 
 
 4J (U 4-> <U O 
 
 rt ^ 
 
 ^ (U 
 
 t! o 
 
 
 3 
 
 ! 
 
 _M 
 '53 
 
 III 
 
 C t/3 C t/J (/) 
 
 0) ci <u cj ^< 
 
 Isls^ 3 
 S.J3S^"(2 
 
 o | 
 
 ^ 
 
 c^ ^ 
 
 O rt 
 
 OJ 
 
 cj c 
 C/2 HH 
 
 III 
 
 111 
 
 
 
 
 
 
 
V 
 
 THE PASSAIC ROLLING MILL COMPANY. 45 
 
 
 
 he Co-efificients of Strength are calculated for a maximum strain o 
 
 11 
 
 cr 
 
 o o o o o o o 
 
 COOCMlOOCMOCO 
 CO -* O rH |CO O OS O J> 
 
 H 
 
 ' 
 
 
 lift 
 
 O 00 IJ5' 
 i-l O CO 
 
 ^H Tf< l> i^ 
 O O J> J> 
 
 OS O lO CM 
 
 T-H 00 O J> 
 
 CX) ^O 
 
 11 
 
 000 
 O 1* -* 
 
 CIR^^ 
 
 CM CO O QO 
 
 O CO O (M 
 
 CO ^t O rH 
 lO CO <>i t> 
 
 iCt O ^f i O iO OS O CM 
 J>lOOrH J>(7v>O5lOCM 
 
 CO rH rH 
 
 1> rH t>. CO rH 
 
 rHO 00 
 
 rH * lO ?O rH 
 
 CD LO "t CO CO 
 
 O GO J> 
 ^"*1> 
 rH ^ 
 
 CO O O C5 
 CO Ot 00 
 
 o do d 
 
 OrHrHO. OOOO 
 
 O 
 l^rHrHOJ 
 
 XXX X 
 
 xxxx 
 
 CO lO O -^f 
 
 CO CM CD 00 
 CO lO rH -^ 
 1C rH 00 CM 
 
 CM ^t CMrH 
 O Oi Tf O CO 
 "M rH rH rH O 
 
 d odd d 
 
 O GO ^ OJ 
 lO CO CO CO CM 
 CO CM rH O O 
 
 CO CM CM rHO 
 
 XXXX XXXX 
 
 7i CO "* CO 
 
 XXXX 
 
 ^f CO CO CO 
 
 M (M CM rH 
 
 XXXX 
 
 CO CO CM * 
 
 XXX XX 
 
 MHC (TJ * 
 
 CM rH rH rH rH 
 
 xxxxx 
 
46 THE PASSAIC ROLLING MILL COMPANY. 
 
 WEIGHTS AND PROPERTIES OF ANGLE IRON. 
 
 ANGLES WITH EQUAL LEGS. 
 
 Co-efficient of 
 Strength, 
 max. strain 10,000 
 Ibs. per sq. inch. 
 
 "<f CO 5* rH 
 1 1 1 1 
 OOO 
 000 
 -* rH J> 
 
 rH 
 
 1 1 1 1 
 
 CD -^ I -H J.^ 
 
 cq^ 
 I i 
 
 
 COr^S^ 
 
 -rf CC C^ rH 
 
 HI 
 
 $<og>o 
 
 ^^og 
 
 S^^^ 
 
 
 
 rH rH rH rH 
 
 0000 
 
 0000 
 
 Distance of 
 ent. of Grav. 
 
 I| 
 
 88 S ^2 
 
 S^^I3 
 
 S3?3 
 
 rH rH rH rH 
 1 1 1 1 
 
 rH 000 
 
 1 1 1 1 
 
 CO 1 O Ci 
 
 1 1 1 1 
 
 O TT CO CO 
 
 
 
 dodo 
 
 0000 
 
 Moment of 
 Inertia, 
 axis through 
 Center of Gravity. 
 
 O ** iT5 CO 
 
 O O iC 00 
 CO O rH l^ 
 
 GO O o5 CO 
 Tl (7i rH O 
 
 ss 
 
 COrH 
 1 1 1 1 
 
 O Tf CO 00 
 
 COrH rn 
 1 1 1 1 
 
 'O 00 1T3 CO 
 
 0000 
 
 1 1 1 1 
 
 00 rH r3< <7* 
 
 rH rH O O 
 
 o o 
 
 ^ O} 
 
 o o 
 
 OCiTf (M 
 
 i 
 
 O O O O 
 
 
 
 Weights per yard for different thicknesses. 
 
 5* 
 
 r^oo 
 
 
 
 
 ^ 
 
 .sss 
 
 
 
 
 *. 
 
 ^oood 
 
 c4 
 > 
 
 rH 
 
 CO 
 
 
 
 * 
 
 S3S& 
 
 . 
 
 
 S* 
 
 10 
 
 lOCM 
 
 
 
 ^ 
 
 
 \a o QO 
 
 00 
 rH 
 
 
 ^coS 
 
 5frH Ci CO 
 C^ C^ rH rH 
 
 ^00 
 
 
 o <* 
 
 CO 00 
 
 
 oo^ 
 
 rH XCO ^ 
 
 rM rH i 1 T 1 
 
 rHrH 
 
 i 
 
 
 O LO c; uO 
 
 
 GO ifl CO. OJ C^O i> 
 
 -V 
 
 
 CO ** W 00 
 
 
 GOOOi 
 
 COl-COTf 
 
 % 
 
 
 
 CO -^ O CO 
 CO i-O^CO 
 
 CO OJ 
 
 ^ 
 
 1 
 
 C 
 
 
 
 o -<t 
 
 i CO W 
 
 ~H X 
 
 OJI-H : 
 
 1 
 
 O uO -^ CO 
 
 XXXX 
 
 XXXX 
 
 CO OJ Oi OJ 
 
 rH rH rH rH 
 
 XXXX 
 
 rH T-H rH T 1 
 
 ; 
 XX 
 
 i-xrn-r J 
 
[23 
 
 O 
 
 H 
 
 O 
 
 Pn 
 n , 
 
 EH 
 
 W 
 
 
 PASSAIC ROLLING MILL COMPANY. 47 
 
 Co-efficient of 
 Strength, 
 max. strain 10,000 
 Ibs. per sq. inch. 
 
 o o o o 
 
 i T 1 1 
 
 vO~ t) LO QO" 
 
 CO TH TH 
 
 o -~ o o 
 
 Illl 
 
 rH r-1 
 
 o o o o 
 1 1 1 1 
 
 1 i 
 
 12 -J 
 
 o o o o 
 
 SSS88 
 
 ssss 
 
 
 
 r-lTHTHrH 
 
 rHOrHO 
 
 rHrHrHO 
 
 Distance of 
 Cent, of Grav. 
 from outside of 
 flange. Inches. 
 
 33&S5 
 
 iSSS 
 
 CDCS05 
 rr 1 rH -^ Ci 
 
 r3S 
 
 OitH TH 
 1 1 1 1 
 
 CD CD rH CD 
 - i CD 00 
 
 rH O rH O 
 1 1 1 1 
 
 rH rH rH O 
 
 rH 
 
 TH rH 
 
 rHOrHO 
 
 rHOrHO 
 
 00 
 
 Moment of 
 Inertia, 
 axis through 
 Center of Gravity. 
 
 O 
 
 0$tt 
 
 ^40000 
 
 rH CD 1^ CO 
 
 CD O5 
 CO GO 
 
 00 O CD 1> 
 CO rH rH 
 
 1 1 1 1 
 
 00 GO 
 
 rH rH 
 
 OS O 00 Tt 
 1 1 1 1 
 
 2ggg 
 
 COO 
 
 l^ CO 
 
 rH 
 
 IXMlO rH 
 
 -H^OOTH 
 
 rHO 
 
 Weights per yard for different thicknesses. 
 
 !* 
 
 ?i s 
 
 I-N 
 
 s s 
 
 ^ ^ 
 
 
 jfc 
 
 s s 
 
 g 28 
 
 QO ^ 
 
 
 *, 
 
 8 g 
 
 5? ^ 
 
 4 o | 
 
 a 
 
 ^ iO 
 tO Tf 
 
 ^ I 
 
 sT ss 
 
 CO CC 
 
 
 ^ 
 
 58 5 
 
 I? ^ 
 
 ^ gi 
 
 S 
 
 * 
 
 ^' ^ 
 
 -.l-x 
 
 22 S 
 
 Cw CO 
 
 fc<5 
 
 
 g 
 
 5* 
 
 
 
 S ^ 
 
 S 2* 
 
 GO 
 rH 
 
 < 
 
 
 
 
 S 3d- 
 
 ~j7 
 
 
 
 
 J> t^ CO 
 
 CO QO QO lO 
 
 TH 
 
 
 
 
 CO CD -* 
 
 3 
 
 N ^C 
 
 5 jj 
 
 ^ CO* 
 
 X X 
 
 CO CO 
 
 X X 
 
 CO* CO 
 
 X X 
 
 (M rH rH rH 
 
 X XXX 
 
 CO frtcOrH* 
 
48 THE PASSAIC ROLLING MILL COMPANY. 
 
 I BEAMS. 
 
 THE following tables are designed for practical use, to 
 guide the selection of the most economical beam, by simple 
 inspection, when me load and the span between centers of 
 supports are given. The maximum fiber strain assumed is 
 12,000 Ibs. per square inch, which is sufficient for all build- 
 ing purposes. Where beams have to carry moving loads, as 
 in bridges, etc., this maximum fiber strain should be reduced; 
 but for entirely permanent and dead loads, it may be increased 
 with safety up to 16,000 Ibs. per square inch, as the limit of 
 elasticity is at least fifty per cent, larger than this. The 
 corresponding bearing capacity of beams can be easily found 
 by simply multiplying the safe loads given in the table by the 
 proportion of maximum strain allowed. The deflections for 
 each greater load are always in proportion to the loads. 
 
 Another table has been calculated for the safe loads which 
 may be carried by beams not supported sideways. This 
 table is calculated from Rankine's formula, 
 
 1 5000 w* 
 
 in which a = the strain allowed in beams braced sideways, 
 / = length in inches, and w width in inches. 
 
THE PASSAIC ROLLING MILL COMPANY. 
 
 49 
 
 00 
 
 05 
 
 ECTIONS in inche 
 yielding sideways 
 
 tn *Z \^ 
 
 '* I i o 
 " ^ I 
 
 ed, and correspond 
 eams being secure 
 
 *f CO OS rH ^< l> i-H 
 ^OOOrHrHrHCOOiOiCO 
 
 ""oooooiooooo 
 
 CJ 
 
 ^ . 
 
 >% 
 
 p. 
 
 II k 
 
 ^ CO GO O CO I tO OS CO CO O I O OS iO O CO 
 
 o o o o o I o o o o o I o o o o o 
 
 ~|2 CO lO CO CO -^ |COiOl>C01> ICOODtOCOOS 
 .POOuOCOrHOOSG6l>t>lcOCOlOlOO^t 
 
 ' CO UO t- GO rH 
 B O O O O rH 
 
 1-1 o odd d 
 
 < O i> l>. O 00 
 
 ooooo looooo 
 
 ^CO^COOS|COOOCOOSiO 
 COrHOOSo6o6t>lj>COCO 
 
 o 
 
 i> rH OO CO O 
 
 o o 
 
 <n O 00 I> O (M 
 
 * 30 * rH Ci 
 H CO CQ (N ^4 rH 
 
 OSCOCOJ>OS I 50 _i> rH l>. CO 
 COCOrHdosOSG6o6j>l> 
 
 co t- ^ co * 
 
 i> o -^ co t>i 
 
 t 1 rH rH rH rH 
 
 rH ^ CO C5 CM 
 r- rHrHrH (?i 
 
 o 
 
 lO 00 rH CO rH 
 
 r4\O O O5 OS 
 
 GO CO O CO O 
 
 rH OS l^ CO O CO 
 
 I OS r- Tf GO CO 
 CO CO rH O O 
 
 00000 
 
 rH Tf CO OS CO 
 rH rH rH rH CO 
 
 doddd 
 
 s 
 
 IGOCOOSO CO 
 CO O T} rf CO 
 
 I OS i CO lO 00 I rH i 
 O rHrH rHrH CO' 
 
 (N ifl C5 <* O 
 
 H O ^ CO CO CO 
 
 _; | co co LO cc j^ 
 *S I c' o p o o o 
 P i M d d do d 
 
 CO VO rH 
 O "* Tf 
 
 OCD1>OOG5 
 
 lO rH O (M J> 
 
 looooo 
 co co co co o~ 
 
 GO 1>CO LO W 1 
 
 rH CO CO 00 
 rH rH rH rH 
 
 oddd d 
 
 CO O rH GO 1>- 
 
 CO CO CO CO CO 
 
 10 CD J> 00 05 
 
50 THE PASSAIC ROLLING MILL COMPANY. 
 
 for maximum 
 . 
 
 s 
 
 uniformly distributed, and corresponding DEFLECTIONS in inches 
 Ibs. per sq. inch (beams being secured against yielding sidewa 
 
 ons of 20 
 rains of 
 
 , in 
 
 fiber 
 
 I OOCMl^CMOO ijOCMOOOO 
 j-'OrHrHCMcMCO'^flOiOCO 
 
 '"'do odd ddddd 
 
 00 
 
 8 
 
 |2 03 CO rf -^ t>. rH J> CO O J> 
 
 ^d 06 j>co 10 
 
 !CM 00 CM Ci O5 
 
 d 06 i> 
 
 OCOl>0005 
 
 
 rH O Ci iO rH 
 
 t^ CO xC O O 
 
 ^ CM O C5 i^ 
 
 COCO CO CM CM 
 
 J> rf CM O5 l>. 
 
 tH rH r-tiH rH 
 
THE PASSAIC ROLLING MILL COMPANY 
 
 51 
 
 IO 
 
 CTIONS in in 
 yielding sidew 
 
 00 
 
 co 
 
 c rH Oi 1> 
 
 HrT CO CO CO CO 
 
 LE 
 t y 
 
 00 lO O) O5 
 O 1^00 CO 
 
 H- CO CO CO CO 
 
 COrHOOiCO 1> CO lO 
 
 CO CO CO OJ OI I O* O* Oi OJ O* 
 
 ItO OI 
 CO tO tO ^f CO 
 oioioioJoi 
 
 rHOOICO 1> 
 rf rf CO I CO CO CO CO CO CO CO OJ OI Oi 
 
 BE..A.MS Co 
 
 CO CO CO CO 00 
 
52 THE-PASSAIC ROLLING MILL COMPANY. 
 
 4 
 
 H 
 PQ 
 
 inche 
 deway 
 
 1 
 
 Si 
 ' 
 
 J 
 
 nding DEFLECTIONS 
 ured against yielding 
 
 respo 
 ng secu 
 
 SDvil 
 
 nd 
 s b 
 
 uniformly distribu 
 Ibs. per sq. inch ( 
 
 s o 
 
 ain 
 
 , in 
 
 be 
 
 C^ CO L.O 00 O 
 rH CO 1> 
 
 CD 
 
 CD 
 
 |OC:OOO|OOOOO 
 
 " T ^>~s9~"gggs( 
 
 gooooooo 
 H TH d d o d 
 
 3 
 
 CO 
 
 00 
 
 1 
 
 Q ~o 
 
 1 I go ? TJ< coco 
 
 ^ HrHTHrHTHTH 
 
 o o 
 
 !-, 
 
 O i> Ci C7> >O 
 T}< O C 00 Ci 
 
 TH 
 00 
 
 ^ o ot <M o 
 
 * ^ 
 
 CO Oi CO Tt 
 
 OSOiH (N CC 
 
 C^t O) rH O 00 
 
 Hco co co co si 
 
 w i 
 lei oi <?i w <?J 
 
 i-IO 
 
 W HH 
 
 Q I 000 
 
 CO-f CO OJr-l 
 
 ir-tOOOOOO jt>-COCClOuO 
 C^OJTHrHTH ITHTHTH-HTH 
 
 p, 
 
 COt* 00 05 
 
 00 00 00 00 CO 
 
*T 
 THE PASSAIC ROLLING MILL COMPANY. 53 
 
 BEAMS UNSUPPORTED SIDEWAYS 
 
 Are liable to fail under a much lighter load than given in the previous tables, by yielding laterally. 
 Safe Load, in tons, for Beams unsupported sideways. 
 
 SIX ? 
 
 ^ 
 
 rH 
 
 ** 
 
 "^m 
 
 rH 
 
 
 11 
 
 r II II 
 -8 
 
 ; 
 
 .11 
 
 H ~ 
 
 * 
 
 OC X ,,f 
 
 C* lO 
 
 OJTH 
 
 1 rO 
 1, 
 
 LZ X ,,f 
 
 coo. 
 
 0*rH 
 
 ^sss 
 
 rH rH 
 
 II 
 
 ^ c 
 
 ii 
 
 08 X ,,9 
 
 Tt 
 
 O rH 00 CO 
 
 i 
 
 co oi 
 
 -H rH 
 
 Ofr X ,,9 
 
 oo co 
 
 CO <M 
 
 iO CO 
 GO ^ rHODCO 
 
 rH rH rH 
 
 s 2^ 
 g 
 
 Of X ,,9 
 
 1^0* 
 
 iO 
 
 CO 00 rt rHQO 
 
 ss 
 
 ^co 
 
 CQ rH rH rH 
 
 
 03 X ,,9 
 
 ^i 
 
 ^ 
 
 -^ ^05 Ifl ^J 
 
 CO WrH rHrH 
 
 O CO t~ 
 rH 
 
 
 06 X ,,9 
 
 
 rHOlO CO 00 
 
 CO O 1> ift 
 
 
 CO "^ ^ CO W 
 
 GO(Nr-rH 
 
 09 X ,,L 
 
 -. to 
 
 
 (M (M O O CO 
 
 COrHCSOO l^ 
 
 
 T^ CO (^ C4 rH 
 
 rH rH 
 
 Q9X ,,8 
 
 QD 
 J> 
 
 l>. 00 iT5 
 
 CO -^ CO CO CJ 
 
 rH CO tO (MO 
 <N rHrHrHrH 
 
 05 
 
 08 X ,,8 06 
 
 O5 Tj< CO O Oi 
 
 "tf i^ "t 0) 
 
 005 
 
 CO tO "^ CO OJ 
 
 3Q OirHrHrH 
 
 rH 
 
 0X ,,6 
 
 CO 
 00 
 
 Tf O 00 rH LO 
 
 rHt-^rHO 
 
 00 t^CO 
 
 CO if} CO CO <N 
 
 
 
 S8X ,,6 
 
 (N 
 
 
 rH 
 
 blcOiO^CO 
 
 CO CO C5 CO"* 
 20-(?jrH rH ^ 
 
 Oi O O5 
 
 rH rH 
 
 06X 7/ fOl 
 
 o* 
 
 s 
 
 35 rH O t>- J> 
 
 O5 CO O5 lO i 
 
 00 CO-* 
 
 O 00 i> ift Tf 
 
 CO CO <M(NOJ 
 
 rH^rH 
 
 01X^01 
 
 Oi 
 
 lO 
 
 rH 
 
 CQ 1> t> Tf CO 
 
 (M OS J> CO O 
 
 ^ J> <?4 1> CO 
 
 *cococioi 
 
 000 CO 
 ci rH rH 
 
 98lX,,fiH 
 
 
 ^ -^ CO Tf O 
 
 lO C^ 00 i^ 
 
 0. rH CO CO CO 
 CO lO -* CO CO 
 
 O5 lO C* 
 
 cioi oi 
 
 SSIX,,^ 
 
 
 30 CO rH rH 1> 
 
 Tit 10 J> 10 
 
 J>CO 
 
 J> CO rH Oi J> 
 
 rH rH rH 
 
 CO lO -^ TP CO 
 
 COOJC* 
 
 OAIX^SI 
 
 
 70 CO 05 LO 
 
 O5COCO l^O5 
 
 CO 00 TJ< 
 
 coco -^ oi o 
 
 |<N rH rH rH rH 
 
 00 1> CO lO -^ 
 
 ^ coco 
 
 021 X ,,91 
 
 
 00 O5 (M <* OJ 
 
 n< rHC50 (74 
 
 lO O lO 
 
 ^SS2^ 
 
 O5 CO CO CO iO 
 
 Tf -tfCO 
 
 005 X ,,91 
 
 
 lO CO rH rH 
 
 0000 010500 
 
 O5 rH Tft 
 
 ^rH^ 
 
 COrHOCO l>. 
 rH rH rH 
 
 COCOlO 
 
 1.2 $ 
 
 Cfl 
 
 CD 00 
 
 OCQ-^COQO 
 
 Od^CDOO 
 (M<M<M<M(M 
 
 0(M-^ 
 CO 00 CO 
 
 % 
 
54 THE PASSAIC ROLLING MILL COMPANY. 
 
 FLOORS. 
 
THE PASSAIC ROLLING MIL 
 
 construction of openings for stair- wajs, liatc 
 ends of joists or beams should rest 01 
 of iron or of stone, so as to distribute the pPffSflre over the 
 brick- work ; also, anchors have to be connected to the ends 
 in the wall. Tie-rods, three-fourths to one inch in diameter, 
 are used to tie the joists together and take up the thrust of 
 the arches. Concrete is frequently used instead of brick 
 arches. Corrugated iron is placed between the joists, resting 
 on the lower flanges, and concrete is laid top of it. Also, 
 hollow bricks and blocks of different shapes have been used 
 for fire-proof floors. These have the advantage of reducing 
 the dead load considerably. They may be used for flat or 
 segmental arches. 
 
 Girders consisting of two or more beams are used when 
 single beams do not give the necessary strength. Usually, 
 they are bolted together with cast-iron separators. For 
 carrying walls, it is necessary to have girders consisting of 
 at least two beams, so as to give sufficient width. The beams 
 should have separators near the supports, and besides these, 
 from five to seven feet apart. A table of the weight of Cast- 
 iron Separators is given here below. 
 
 APPKOXIMATE WEIGHTS OF SEPARATOKS 
 AND BOLTS. 
 
 Size of 
 
 W-ght of, Increase j 
 
 oS'fiSt '1?,^ for i Sizeof 
 
 i Weight of 
 Sep. and 
 one Bolt, 
 
 Increase 
 in Wt. for 
 
 Beam. 
 
 flanges ^Sr Bean, 
 
 b r p fr? fse p- ; 
 
 Flanges 
 | being %" 
 \ apart. 
 
 1" increase 
 in width 
 of Sep. 
 
 15 " X 200 
 
 20* Ibs. 1 3f Ibs. 9"X 85 
 
 ] 9lbs. 
 
 2f Ibs. 
 
 15 " X 150 
 
 IS* ' 
 
 ; 3 ' 
 
 9"X 70 
 
 - 9 
 
 2* " 
 
 121" X 170 
 
 1 14* ' 
 
 2| 
 
 8"X80 
 
 ! 9 4 L " 
 
 2i 
 
 12k" X 125 
 
 1 14* 
 
 3 
 
 i 8"X65 
 
 1 10 
 
 2f " 
 
 W X 135 
 
 13{ 
 
 ! 2$ ' 
 
 7"X60 
 
 7f " 
 
 2 " 
 
 104" x ior> 
 
 12| 
 
 2 ' 
 
 ! 6"X90 
 
 8| " 
 
 11 " 
 
 10i" X 90 
 
 121 ' 
 
 2| ' 6"X 50 
 
 7i " 
 
 2 
 
 j 
 
 6"X 40 
 
 6i 
 
 i 
 
 1* " 
 
** . 
 
 56 THE PASSAIC ROLLING MILL COMPANY. 
 
 I BEAMS, USED AS FLOOKING JOISTS. 
 
 Load, 7O Ibs. per D ft. 
 
 Clear 
 Span. 
 
 3 
 
 apart. 
 
 3|' 
 
 apart. 
 
 35D' 
 
 4' 
 
 apart. 
 
 4V 
 
 apart. 
 
 5' 5i' 
 
 apart. apart. 
 
 6 
 
 apart. 
 GOD' 
 
 10ft. 
 
 30 D' 
 
 40D' 
 
 45D' 
 
 50D y : 55D' 
 
 Load, tb 
 
 2,100 
 5X30 
 
 2,450 
 5 30 
 
 2,800 
 5 X 30 
 
 3,150 
 5X30 
 
 3,500 3,850 
 5 X 30 5 X 30 
 
 4,200 
 6X40 
 
 12ft. 
 
 36D' 
 
 42D' 
 
 48D' 
 
 54D' 
 
 60CT 6GD' 
 
 72D' 
 
 Load,tb 
 I 
 
 2,520 
 5X30 
 
 2,940 
 5 X 30 
 
 3,360 
 5X30 
 
 3,780 
 6X40 
 
 4,200 4,620 
 6 40 6 40 
 
 5,040 
 6X40 
 
 14ft. 
 
 42 D' 
 
 49LT 
 
 56D' G3D' 
 
 70D': 77D' 
 
 84D' 
 
 Load, tb 
 
 2,940 
 
 5 30 
 
 3,430 
 6X40 
 
 3,920 4,410 
 6 40 6 X 40 
 
 4,900 5,390 
 6 X 50 6 X 50 
 
 5,880 
 
 7 GO 
 
 16ft. 
 
 48 D' 
 
 56D' 64D' 72D' 
 
 80D' 88D' 
 
 96D' 
 
 Load, tb 
 
 3,360 
 6X40 
 
 3,920 
 6X40 
 
 4,480 5,040 
 6 X 50 7 X 60 
 
 5,600 6,160 
 7 X 60 7 X 60 
 
 6,720 
 8 X 65 
 
 18ft. 
 
 54LT 
 
 63D' 
 
 72D' 
 
 810' 
 
 90D' 99D' 
 
 108 D' 
 
 Load, tb 
 
 3,780 
 6X50 
 
 4,410 
 7 X60 
 
 5,040 
 7 X 60 
 
 5,670 
 7X60 
 
 6,300 6,930 
 8 65 8X65 
 
 7,560 
 8 X 65 
 
 20ft. 
 
 60LT 
 
 70LT 
 
 80D' 
 
 90D' 
 
 100 D' HOD' 
 
 120 D' 
 
 Load, tb 
 
 I 
 
 4,200 
 7X60 
 
 4,900 
 7X60 
 
 5,600 
 8 65 
 
 6,300 
 8X65 
 
 7,000 7,700 
 8 X 65 9 X 70 
 
 8,400 
 9 85 
 
 22ft. 
 
 66D' 
 
 77D' 88D' 
 
 99D' 
 
 HOD' 121 D' 
 
 132 D' 
 
 Load, tb 
 I 
 
 4,620 
 7 X60 
 
 5,390 
 8X65 
 
 6,160 
 8 X 65 
 
 6,930 
 9X70 
 
 7,700 8,470 
 9 X 85 \ 9 X 85 
 
 9,240 
 10 X90 
 
 24ft. 
 
 72D' 
 
 84D' 
 
 9GD' 
 
 108 LT 
 
 120D'; 132 D' 
 
 144 a' 
 
 Load, tb 
 
 I 
 
 5,040 
 8 X 65 
 
 5,880 
 8X65 
 
 6,720 
 9X70 
 
 7,560 
 9X85 
 
 8.400 9,240 
 10^x90 104 90 
 
 10,080 
 10 X90 
 
 26 ft 
 
 780' 
 
 91D' 
 
 104 D' 
 
 117 D' 
 
 130 D' 1-13 D' 
 
 156 D' 
 
 Load, tb 
 
 I 
 
 5,460 
 8 X 65 
 
 6,370 
 9 ,\ 85 
 
 7,280 8,190 
 9X85 10^x90 
 
 9,100 10,010 
 10J 90 10% X 105 
 
 10,920 
 
 28ft. 
 
 84D' 
 
 98D' 
 
 112 D' 
 
 126 D' 
 
 140 D' 154 D' 
 
 168 a' 
 
 Load, tb 
 I 
 
 5,880 
 9X85 
 
 6,860 
 
 7,840 8.820 9,800 10,780 
 10^X90 10^X90 10JX105 12 X 125 
 
 11,760 
 
 30ft. 
 
 90LT 
 
 105 D 
 
 120 D' 135 D' 
 
 150D' 165D' 
 
 180 a' 
 
 Load, tb 
 
 I 
 
 6,300 
 10^X90 
 
 7,350 8,400 9,450 10,500 11,550 
 10JX90 10^X105 12JM25 12J\125 12J X 125 
 
 12.600 
 12JM25 
 
THE PASSAIC ROLLING MILL COMPANY. 57 
 
 I BEAMS, USED AS FLOCKING JOISTS. 
 
 Load, 100 Ibs. per D ft. 
 
 Clear 
 Span. 
 
 3' 
 
 apart. 
 
 30Q' 
 
 3,000 
 5X30 
 
 f 
 
 apart 
 
 35D' 
 
 3,500 
 5X30 
 
 4' 
 
 apart. 
 
 4V 
 
 apart. 
 
 5' 
 
 apart. 
 
 5^' 
 
 apart. 
 
 6' 
 
 apart. 
 
 10ft. 
 
 Load, IB 
 
 I 
 
 40D' 45D' 
 
 4,000 4,500 
 5 X 30 6 X 40 
 
 50D' 
 
 5,000 
 6 ,40 
 
 55D' 
 
 5,500 
 6X40 
 
 GOD' 
 
 6,000 
 6 X 40 
 
 12ft. 
 
 Load, lb 
 I 
 
 36D' 42 D' 
 
 3,600 : 4.200 
 6X40 6 XX 40 
 
 48D' ! 54D' 
 
 4,800 5,400 
 6 X 40 6 X 50 
 
 GOD' 
 
 6,000 
 6X50 
 
 66D' 
 
 6,600 
 7X60 
 
 72D' 
 
 7,200 
 7 60 
 
 14ft. 
 
 Load, 16 
 I 
 
 42 n' 
 
 4,200 
 6X40 
 
 49D' 
 
 4,900 
 6X50 
 
 56D' 
 
 5,600 
 6 X 50 
 
 64D' 
 
 6,400 
 7 X 60 
 
 63D' 
 
 6,300 
 7x60 
 
 70 D' 
 
 7,000 
 7X60 
 
 77D' 
 
 7,700 
 
 8X65 
 
 84D' 
 
 8,400 
 8X65 
 
 16ft. 
 
 Load, ft 
 I 
 
 48D' 
 
 4,800 
 6 X 50 
 
 56D' 
 
 5.600 
 7X60 
 
 72D' 
 
 7,200- 
 8X65 
 
 son' 
 
 8,000 
 8X65 
 
 88D' 
 
 8,800 
 8 X 65 
 
 9GD' 
 
 9,600 
 9X70 
 
 18ft. 
 
 Load, ft 
 I 
 
 54D' 
 
 5,400 
 7 60 
 
 63D' 
 
 6,300 
 8X65 
 
 72 D' 
 
 7,200 
 8X65 
 
 81D' 
 
 8,100 
 9X70 
 
 90D' 
 
 9,000 
 9 X 85 
 
 99D' 
 
 9,900 
 9X85 
 
 108 a' 
 
 10,800 
 104 X 90 
 
 20ft. 
 
 Load, lt> 
 I 
 
 60D' 
 
 6,000 
 8X65 
 
 70D' 
 
 7,000 
 8X65 
 
 80D' 
 
 8,000 
 9X70 
 
 90D' 
 
 9,000 
 9X85 
 
 100 D' 
 
 10,000 
 10i 90 
 
 110 D ' 
 
 11,000 
 104X90 
 
 120 a' 
 
 12,000 
 104 X 90 
 
 22ft. 
 
 Load, ft 
 I 
 
 GOD 7 
 
 6,600 
 9 X 70 
 
 77D' 
 
 7,700 
 9 X 85 
 
 88D' 
 
 8,800 
 104 X 90 
 
 99D' 
 
 9,900 
 10J X 90 
 
 HOD' 
 
 11,000 
 
 10 X 90 
 
 121 D' 
 
 12,100 
 
 104X105 
 
 432D' 
 
 13,200 
 12i X 125 
 
 24ft. 
 
 Load, lb 
 I 
 
 72 a' 
 
 7,200 
 9X85 
 
 84D' 
 8,400 
 
 104 X 90 
 
 96D' 
 
 9,600 
 104 X 90 
 
 108 D' 
 
 10,800 
 10JX105 
 
 120 D' 
 
 12,000 
 12JX125 
 
 132 n' 
 
 13,200 
 12i X 125 
 
 J44D' 
 
 14,400 
 12i X 125 
 
 26ft. 
 
 Load, tb 
 
 I 
 
 78D' 
 
 7,800 
 104 X90 
 
 91 D' 
 9,100 
 
 104 <90 
 
 104D' 
 
 10,400 
 10J/105 
 
 117 D' 
 
 11,700 
 12JX125 
 
 130 D' 
 
 13,000 
 12JX125 
 
 143 D' 
 
 14,300 
 12i X 125 
 
 15CD' 
 
 15,600 
 15 X 150 
 
 28ft. 
 
 Load, lb 
 I 
 
 84D' 
 
 8,400 
 10 4 X90 
 
 98D' 
 
 9,800 
 104X105 
 
 112 D' 
 
 11,200 
 12JX125 
 
 126D' 140 D' 
 
 12,600 ! 14,000 
 124X12515X150 
 
 J54D' 
 
 15,400 
 15 X 150 
 
 168 a ' 
 
 16,800 
 15 X 150 
 
 30ft. 
 
 Load, ft 
 I 
 
 
 
 90 a' 
 
 9,000 
 104 105 
 
 105 D' 
 
 10,500 
 12JX125 
 
 120 D' 
 
 12,000 
 
 12JX125 
 
 135 D' 
 
 13,500 
 15 X 150 
 
 icon' 
 
 15,000 
 15 X 150 
 
 165 D' 
 
 16,500 
 15 X 150 
 
 180 a' 
 
 18,000 
 15 X 150 
 
58 THE PASSAIC ROLLING MILL COMPANY. 
 
 I BEAMS, USED AS FLOCKING JOISTS. 
 
 Load, 150 Ibs. per D ft. 
 
 Clear 
 Span. 
 
 3 
 
 apart. 
 
 apart. 
 
 35D' 
 
 5,250 
 6X40 
 
 4 
 
 apart. 
 
 4V 
 
 apart. 
 
 5' 
 
 apart. 
 
 apart. 
 
 55D' 
 
 8,250 
 7 60 
 
 6 
 
 apart. 
 
 10ft. 
 
 Load, tb 
 I 
 
 30n' 
 
 4,500 
 6X40 
 
 40n' 
 
 6,000 
 6 40 
 
 45D' 
 
 6,750 
 6 X 50 
 
 50 D' 
 
 7,500 
 6X50 
 
 9,000 
 7X60 
 
 12ft. 
 
 Load,lb 
 
 I 
 
 36D' 
 
 5,400 
 6 X 50 
 
 42H' 
 
 6,300 
 6X50 
 
 48D' 
 
 7,200 
 7X60 
 
 54n' 
 
 8,100 
 V X 60 
 
 60D 7 
 
 9,000 
 
 8 65 
 
 660' 
 
 9,900 
 8X65 
 
 72Q' 
 
 10,800 
 8 65 
 
 14ft. 
 
 Load, tb 
 I 
 
 16ft. 
 
 Load, ft 
 1 
 
 420' 
 
 6,300 
 7X60 
 
 49n' 
 
 7,350 
 7 X 60 
 
 5GD' 
 
 8,400 
 8 65 
 
 63D X 
 
 9,450 
 
 8X65 
 
 70LT 
 
 10,500 
 9 X 70 
 
 77D X 
 
 11,550 
 9 ,85 
 
 84n' 
 
 12,600 
 9X85 
 
 48H' 
 
 7,200 
 8X66 
 
 56n' 
 
 8,400 
 
 8 65 
 
 64H' 
 
 9,600 
 9X70 
 
 72D' 
 
 10,800 
 
 9 ,85 
 
 80D' 
 
 12,000 
 104X90 
 
 88D' 
 
 13,200 
 104 X 90 
 
 96n' 
 
 14,400 
 104 X 90 
 
 18ft. 
 
 Load.tb 
 
 54LT 
 
 8,100 
 9 70 
 
 63n' 
 
 9,450 
 9X85 
 
 72n' 
 
 10,800 
 104X90 
 
 81D' 
 
 12,150 
 
 10A -10 
 
 90LT 
 
 13,500 
 
 104x90 
 
 99D X 
 
 14,850 
 10A 105 
 
 108 n' 
 
 16,200 
 12J > 12E 
 
 20ft. 
 
 Load, M> 
 
 1 
 
 ,60n' 
 
 9,000 
 9X85 
 
 70n' 
 
 10,500 
 104x90 
 
 son' 
 
 12,000 
 104 90 
 
 90 a' 
 
 13,500 
 104x105 
 
 100 n' 
 
 15,000 
 12i>;125 
 
 lion' 
 
 16,500 
 12J X 125 
 
 121 n ' 
 
 18,150 
 15 X 150 
 
 120 a.- 1 
 
 18,000 
 12^ X 12S 
 
 22ft. 
 
 Load, tb 
 
 I 
 
 G6n' 
 
 9,900 
 104X90 
 
 77H' 
 11,550 
 
 104x105 
 
 88n' 
 
 13,200 
 12^ 125 
 
 99H' 
 
 14,850 
 12^x125 
 
 HOD' 
 
 16,500 
 12^X125 
 
 132 a' 
 
 19,800 
 15 X 150 
 
 24ft. 
 
 Load, tb 
 I 
 
 72n' 
 
 10,800 
 104x105 
 
 84n' 
 
 12,600 
 12iXl25 
 
 96n' 
 
 14,400 
 12^x125 
 
 108 n' 
 
 16,200 
 12iXl25 
 
 120 n' 
 
 18.000 
 15X150 
 
 132 n' 
 
 19,800 
 15 X 150 
 
 144D-' 
 
 21,600 
 15 150 
 
 26 ft 
 
 Load, ft 
 I 
 
 78 D'' 
 
 11,700 
 12^X125 
 
 91D' 
 
 13,650 
 12JX125 
 
 104 D' 
 
 15,600 
 15X150 
 
 117 n' 
 
 17,550 
 15X150 
 
 13D n 7 
 
 19,500 
 15X150 
 
 143 n 
 
 21,450 
 
 15 X 150 
 
 156 n' 
 
 23,400 
 15 > 200 
 
 28ft. 
 
 Load, ft 
 1 
 
 84n' 
 
 12,600 
 12^X125 
 
 98n' 
 
 14,700 
 15X150 
 
 112 a' 
 
 16,800 
 15X150 
 
 126 n' 
 
 18.900 
 15X150 
 
 140 a ' 
 
 21,000 
 15X200 
 
 154 n ; 
 
 23,100 
 15X200 
 
 168 n' 
 
 25,200 
 15 200 
 
 30ft. 
 
 Load, tb 
 I 
 i 
 
 90n' 
 
 13,500 
 15X150 
 
 105 n' 
 
 16,250 
 15X150 
 
 120 a' 
 
 18,000 
 15X150 
 
 135 D' 
 
 20,250 
 15X200 
 
 150 a' 
 
 22,500 
 15X200 
 
 165 n' 
 
 24,750 
 15 X 200 
 
 180 a' 
 
 27,000 
 
 2-lf> 150 
 
I 
 
 Clear 
 Span. 
 
 1'HE PASSAIC ROLLING MILL COMPANY. 59 
 
 BEAMS, USED AS FLOCKING JOISTS. 
 
 Load, 200 Ibs. per D ft. 
 
 3' 
 
 apart. 
 
 8i' 
 
 apart. 
 
 35D' 
 
 7,000 
 6 X 50 
 
 4' 
 
 apart. 
 
 40D 7 
 
 8,000 
 7 X60 
 
 4V 
 
 apart. 
 
 5' 
 
 apart. 
 
 5V 
 
 apart. 
 
 6' 
 
 apart. 
 
 10ft. 
 
 Load, tb 
 I 
 
 son' 
 6,oao 
 
 6X40 
 
 45D' 
 
 9,000 
 
 7 X 60 
 
 50D X 
 
 10,000 
 7 X60 
 
 55LT 
 
 11,000 
 8X65 
 
 60D' 
 
 12,000 
 
 8 X 65 
 
 12ft. 
 
 Load, lt> 
 
 I 
 
 36D' 
 
 7,200 
 7 X 60 
 
 42D' 
 
 8,400 
 7X60 
 
 48D' 
 
 9,600 
 8X65 
 
 54LT 
 
 10,800 
 8 X 65 
 
 60D' 
 
 12,000 
 9X70 
 
 66LT 
 
 13,200 
 9 X70 
 
 72LT 
 
 14,400 
 9X85 
 
 14ft. 
 
 Load, tb 
 
 I 
 
 4.2 D' 
 
 8,400 
 8 X 65 
 
 49D' 
 
 9,800 
 8X65 
 
 5GLT 
 
 11,20C 
 9 ( 70 
 
 83D' 
 
 12,60C 
 
 9 .85 
 
 70D y 
 
 14,000' 
 10^X90 
 
 77D X 
 
 15,400 
 10$ X 90 
 
 84D 7 
 
 16,800 
 10J X 90 
 
 16ft. 
 
 Load, ft 
 
 48D' 
 9,600 
 
 9 ; i j 
 
 56D' 
 
 11,200 
 9X85 
 
 64 D' 
 
 12,800 
 10x9C 
 
 72D' 
 
 14,400 
 10^X90 
 
 son' 
 
 16,000 
 10J <105 
 
 88D' 
 
 17,600 
 lOi X 105 
 
 96D' 
 
 19,200 
 10J X 135 
 
 18ft. 54D' 63D' 
 
 Load, ft 10,800 12,600 
 I 10 90 10^X90 
 
 72D' 
 14,400 
 
 ioj,-ao5 
 
 81D' 
 
 16.20C 
 12i; N 125 
 
 90D 7 
 
 18,000 
 12JX125 
 
 99D' 
 
 19,800 
 124 ,.125 
 
 108 D' 
 
 21,600 
 12i X 125 
 
 20ft. 
 
 Load, tb 
 I 
 
 COD' 70 D' 
 
 12,000 14,000 
 10i X 90,124X125 
 
 80n' 
 
 16,000 
 12JX125 
 
 90D' 
 
 18,000 
 12^X125 
 
 100 D 7 
 
 20,000 
 15X150 
 
 HOD 7 
 
 22,000 
 15 X 150 
 
 120 n' 
 
 24,000 
 15 X 150 
 
 22ft. 
 
 Load, lb 
 I 
 
 66D' 77D' j 88D' 
 
 13,200 ! 15,400 | 17,600 
 12iXl25jl2iXl2512}Xl25 
 
 99 D' 
 
 19,800 
 15X150 
 
 HOD' 
 
 22,000 
 15X150 
 
 121 a' 
 
 24,200 
 15 A 150 
 
 132 D' 
 
 26,400 
 15 X 200 
 
 24ft. 
 
 Load, 05 
 
 I 
 
 72D' 84D' 
 
 14,400 16,800 
 12^X125 15 150 
 
 96D' 
 
 19,200 
 15X150 
 
 108 D' 
 
 21,600 
 15X150 
 
 120 D' 
 
 24,000 
 15x200 
 
 132 a' 
 
 26,400 
 15 X 200 
 
 144D' 
 
 28,800 
 15 X 200 
 
 26ft. 
 
 Load, 11 
 I 
 
 78D' j 91D' 
 
 15,600 18,200 
 15X150 15X150 
 
 104 D' 
 
 20,800 
 15X150 
 
 117 D' 
 
 23,400 
 15X200 
 
 130 D' 
 
 26.000 
 15 x 200 
 
 143 a' 
 
 28,600 
 15 X 200 
 
 156 D' 
 
 31,200 
 2-15 X 150 
 
 28ft. 
 
 Load,lb 
 
 I 
 
 84D' 
 
 16,800 
 15X.150 
 
 ; 98D' ! 112D 7 
 
 19,600 22,400 
 15X150 i 15X200 
 
 126 a' 
 
 25,200 
 15X200 
 
 140 D 7 
 
 i 28,000 
 2-15x150 
 
 150 D' 
 
 30,000 
 2-15X150 
 
 154 D' 
 
 30,800 
 2-15 X 150 
 
 168 D' 
 
 33,600 
 2-15 X 150 
 
 30ft. 
 
 Load, lb 
 I 
 
 fc- 
 
 90 D' 105 D' 
 
 18,000 21,000 
 15X150 j 15X200 
 
 120 D' 
 
 24,000 
 15X200 
 
 135 n x 
 
 27,000 
 2-15 X15C 
 
 1650' 
 
 33,000 
 2-15 X 150 
 
 180 D' 
 
 36,000 
 2-15 X 150 
 
 *2 
 
60 THE PASSAIC ROLLING MILL COMPANY. 
 
 EIYETED 
 
 RIVETED girders are used where rolled beams are not 
 sufficiently strong for carrying the load. Sometimes it may 
 be more economical to use a deeper built beam instead of a 
 solid rolled beam, but generally the Kolledbeam is the cheaper 
 one, if it can be had strong enough to carry the weight. 
 Plate girders have either single or double webs. The latter 
 ones, box girders, have more stiffness sideways ; and plain 
 plate girders, with single webs, are somewhat cheaper. The 
 width of the top flange of the girders should be at least one- 
 twentieth of the span, or the section of the top flange should 
 be increased accordingly. For girders not protected against 
 yielding sideways, box girders are preferable, as they have 
 greater stiffness laterally. Shearing strains in the web should 
 never be more than half of the strains allowed in the flanges ; 
 and if the depth is considerable, stiffeners should be used to 
 prevent buckling of the web-plates. A good rule is to have 
 stiffeners if the depth of the web-plate exceeds eighty times 
 its thickness. Angle irons are better as stiffeners than Tee 
 iron on account of having larger flanges, which allow more 
 space for rivets. The stiffeners should always reach over the 
 vertical sides of the angles forming the chords of the girder, 
 and there should be filling pieces between the stiffening angles 
 and the web-plate. In every case, whether there are web- 
 stiffeners used or not, there should be a reinforcing by angles 
 or plates at the ends of the girders where they rest on columns 
 or on the wall, so that the reaction of the support may be 
 resisted by an increased section of the web. In larger girders, 
 one, two, or more cover-plates are required to make up the 
 necessary section of the, chords or flanges. Frequently all 
 these cover-plates are made the whole length of the girder, 
 but this is only a waste of material, as the outer cover-plates 
 are only required for a part of the length. Plate girders 
 should never be made too shallow, on account of the deflection; 
 they should have at least a depth of one twenty-fourth of the 
 clear span ; if built shallower, more material should be put in 
 the flanges and webs, so as to reduce the strain per square 
 inch, and the deflection in proportion. 
 
THE PASSAIC ROLLING MILL COMPANY. 61 
 
 CALCULATION OF A RIVETED GIRDER. 
 
 Box girder, to carry a wall 20 inches wide. 
 
 Span, 30 feet between centers of supports = 360 inches. 
 
 Total weight to be carried, 100 tons = 200,000 Ibs. 
 
 Depth available, 36". 
 
 Load on each support, X 200,000= 100,000 Ibs. 
 
 100,000 Ibs. 
 
 Web section required, ^ = 20 D . 
 5,000 Ibs. 
 
 Two web-plates, 34/'.X " = 25.^ D". 
 Bending moment in middle of span, 
 
 | X 200,000 X 360 = 9,000,000 inch Ibs. 
 Depth of girders bet. centers of chords or flanges, about 34". 
 
 9,000,000 
 
 Maximum chord strain, - = 264,700 Ibs. 
 34 
 
 Chord section required, ~ 263- D " . 
 
 This section ) ^ of the web-plates. .............. 4j H" 
 
 is made up > 2 L iron, 6 ;/ X 4"X i ............. 9f D" 
 
 as follows : ) I cover plate, 20" X f ............. 12^ D " 
 
 26| D" 
 
 STIFFENERS. Angle iron, 3"X 3 /7 X f", placed about 4 to 
 5 feet apart. 
 
 By the use of the following table, it is easy to find the sec- 
 tion required in the chords of riveted girders, if the load and 
 span are given. This table is calculated for a maximum strain 
 of 10,000 Ibs. per square inch of gross section. If a higher 
 strain per square inch is admissible, as in case of strictly 
 permanent loads for structures which are not exposed to 
 vibrations and sudden applications of heavy weights,-*- it is 
 only necessary to reduce the result obtained in proportion to 
 the higher strain per square inch allowed. 
 
 Plate No. 15, fig. i, shows an elevation of a plain plate 
 girder, built of a web-plate, and four angle irons, stiffened 
 with angle-iron stiffeners. 
 
 Fig. 2. Section of plain plate girder, without cover-plate. 
 
 Fig. 3. Section of plate girder, with top and bottom cover- 
 plates. 
 
 Fig. 4. Section of ordinary box girder, with two web-plates, 
 two cover-plates, and four angle irons in chords. 
 
 Fig. 5. Same with extra angle irons riveted to the side of 
 the web-plate. The floor joists, either iron or wood, are car- 
 ried on these angles. 
 
 Fig. 6. Compound girder, consisting of two ordinary plain 
 plate girders, connected together at intervals with wrought 
 or cast iron separators. 
 
 Fig. 7. Box girder, composed of two vertical plates and 
 two horizontal channel irons. 
 
62 THE PASSAIC ROLLING MILL COMPANY. 
 
 EIVETED GIRDERS. 
 
 Multiply by the load in tons of 2000 Ibs., uniformly dis- 
 tributed, and divide by 1000. The result is the gross area 
 in square inches required for each flange, allowing a maxi- 
 mum fiber strain of 10,000 Ibs. per D inch. 
 
 Span 
 in 
 feet. 
 
 DEPTH OUT TO OUT OF WEB IN INCHES. 
 
 18 
 
 20 
 
 22 
 
 24 
 
 26 
 
 28 
 
 30 
 
 32 
 
 34 36 
 
 38 
 
 40 
 
 42 
 
 10 
 
 11 
 
 12 
 13 
 
 14 
 
 167 
 183 
 200 
 217 
 233 
 
 150 
 165 
 180 
 195 
 210 
 
 136 
 150 
 164 
 177 
 191 
 
 125 
 138 
 150 
 163 
 175 
 
 115 
 127 
 
 138 
 150 
 162 
 
 107 
 118 
 129 
 139 
 150 
 
 100 
 110 
 120 
 130 
 140 
 
 94 
 103 
 113 
 122 
 131 
 
 88 
 97 
 106 
 115 
 124 
 
 83 
 92 
 100 
 108 
 117 
 
 79 
 87 
 95 
 102 
 110 
 
 75 
 83 
 90 
 98 
 105 
 
 71 
 79 
 86 
 93 
 100 
 
 15 
 16 
 17 
 18 
 19 
 
 250 
 267 
 283 
 300 
 317 
 
 225 
 240 
 255 
 
 270 
 
 285 
 
 205 
 
 218 
 232 
 245 
 259 
 
 188 
 200 
 213 
 225 
 238 
 
 173 
 
 185 
 196 
 208 
 219 
 
 161 
 171 
 
 182 
 193 
 204 
 
 150 
 160 
 
 l?i) 
 180 
 190 
 
 141 
 
 150 
 159 
 169 
 
 178 
 
 132 ' 125 
 141 133 
 150il42 
 
 159150 
 
 168 158 
 
 118 
 
 126 
 134 
 142 
 
 150 
 
 113 
 
 120 
 128 
 135 
 143 
 
 107 
 114 
 121 
 129 
 136 
 
 20 
 
 21 
 22 
 23 
 
 24 
 
 333 
 350 
 367 
 383 
 400 
 
 300 
 315 
 330 
 345 
 360 
 
 273 
 286 
 300 
 314 
 327 
 
 250 
 263 
 275 
 
 288 
 300 
 
 231 
 242 
 
 254 
 265 
 
 277 
 
 214 
 
 225 
 236 
 246 
 257 
 
 200 
 210 
 220 
 230 
 240 
 
 188 
 197 
 206 
 216 
 225 
 
 176 
 
 185 
 194 
 203 
 212 
 
 167 
 175 
 183 
 192 
 200 
 
 158 
 165 
 173 
 181 
 189 
 
 150 
 
 158 
 165 
 17:5 
 
 180 
 
 143 
 150 
 157 
 164 
 171 
 
 25 
 26 
 27 
 28 
 29 
 
 417 
 433 
 450 
 467 
 483 
 
 375 
 390 
 405 
 420 
 435 
 
 341 
 355 
 368 
 382 
 395 
 
 313 
 325 
 338 
 350 
 363 
 
 288 
 300 
 312 
 323 
 335 
 
 268 
 279 
 289 
 300 
 311 
 
 250 
 260 
 270 
 280 
 
 290 
 
 234 
 244 
 253 
 263 
 
 272 
 
 221 
 
 229 
 238 
 247 
 256 
 
 208 
 217 
 225 
 233 
 242 
 
 197 
 205 
 213 
 221 
 
 229 
 
 188 
 195 
 203 
 210 
 218 
 
 179 
 186 
 193 
 
 200 
 207 
 
 30 500 
 31 1517 
 32 |533 
 33 550 
 34 567 
 
 450 
 465 
 
 480 
 495 
 510 
 
 409 
 423 
 
 436 
 450 
 464 
 
 375 
 388 
 400 
 413 
 425 
 
 346 
 358 
 369 
 381 
 392 
 
 321 
 332 
 343 
 354 
 364 
 
 300 281 265 
 310 j 291 | 274 
 32013001282 
 330 |309 1291 
 340 319 3U() 
 
 250 
 258 
 267 
 275 
 283 
 
 236 
 244 
 252 
 
 260 
 
 268 
 
 225 
 233 
 
 240 
 248 
 255 
 
 2U 
 221 
 228 
 236 
 243 
 
 35 583 
 36 600 
 37 617 
 38 633 
 39 650 
 40 667 
 * 
 
 525 
 540 
 555 
 570 
 
 585 
 600 
 
 477 
 491 
 
 505 
 518 
 532 
 546 
 
 438 
 450 
 463 
 475 
 
 488 
 500 
 
 404 
 415 
 427 
 
 438 
 450 
 461 
 
 375 
 
 386 
 396 
 407 
 418 
 429 
 
 350 
 360 
 370 
 
 380 
 390 
 400 
 
 328 309 
 338 318 
 3471326 
 356! 335 
 366 344 
 375 353 
 
 292; 276 263 250 
 300 284 270 257 
 308J292'278 264 
 317 2991285 271 
 325 31 )7 [ 293 1278 
 :;:;:} :u:> :jou 286 
 j 
 
-* 
 
 THE PASSAIC ROLLING MILL COMPANY. 63 
 
 STBENGTH OF WOODEN BEAMS. 
 
 The following table is calculated for rectangular beams 
 one inch thick, and for different spans and depth of beams. 
 
 Maximum fiber strain allowed, 1000 Ibs. per square inch. 
 Beams to be braced sideways. For a factor of safety of 5 
 multiply by 
 
 I .o for ash. 
 
 i.o 1.3 for spruce. 
 
 i . 44 1.8 for white oak. 
 
 i.o i . 12 for white pine. 
 
 1.6 for long leaf yellow pine. 
 
 Span 
 
 DEPTH IN INCHES. 
 
 8- 
 
 feet. 
 
 5 
 6 
 
 7 
 8 
 9 
 
 6 
 
 7 
 
 8 
 
 1420 
 1190 
 1020 
 
 890 
 790 
 
 9 
 
 1800 
 1500 
 1290 
 1130 
 
 1000 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 16 
 
 800 
 670 
 570 
 500 
 440 
 
 1090 
 910 
 
 780 
 680 
 610 
 
 2220 
 1850 
 1590 
 1390 
 1230 
 
 2690 
 
 2240 
 1920 
 1680 
 1490 
 
 1340 
 1220 
 1120 
 1030 
 960 
 
 3200 
 2670 
 2290 
 2000 
 
 1780 
 
 1600 
 1450 
 1330 
 1230 
 1150 
 
 1070 
 1000 
 940 
 
 890 
 
 840 
 
 3980 
 3220 
 2840 
 2490 
 2210 
 
 1990 
 1810 
 
 1660 
 1530 
 1430 
 
 1330 
 1250 
 1170 
 1110 
 
 1050 
 
 4380 
 3650 
 3130 
 
 2740 
 2430 
 
 5000 
 4170 
 3570 
 3130 
 
 2780 
 
 5690 
 4740 
 4060 
 3560 
 3160 
 
 2840 
 2590 
 2370 
 2200 
 2040 
 
 10 
 11 
 12 
 13 
 14 
 
 400 
 360 
 330 
 310 
 290 
 
 270 
 250 
 240 
 220 
 210 
 
 540 
 495 
 450 
 420 
 
 390 
 
 360 
 340 
 320 
 300 
 
 290 
 
 710 
 650 
 590 
 550 
 
 510 
 
 480 
 450 
 420 
 400 
 380 
 
 900 
 820 
 750 
 690 
 640 
 
 600 
 560 
 530 
 500 
 
 480 
 
 1110 
 
 1010 
 
 930 
 
 860 
 800 
 
 2190 
 1990 
 
 1820 
 1690 
 
 1570 
 
 1460 
 1370 
 1290 
 1220 
 1150 
 
 1090 
 1040 
 1000 
 950 
 910 
 
 2500 
 2270 
 2080 
 1930 
 1700 
 
 1670 
 1570 
 1470 
 1390 
 1320 
 
 1250 
 1190 
 1140 
 1090 
 1040 
 
 15 
 16 
 17 
 18 
 19 
 
 740 
 700 
 650 
 620 
 590 
 
 900 
 840 
 790 
 750 
 710 
 
 1900 
 1780 
 1680 
 1590 
 1500 
 
 20 
 21 
 22 
 23 
 
 24 
 
 200 
 190 
 190 
 175 
 167 
 
 272 
 260 
 248 
 237 
 
 228 
 
 360 
 340 
 325 
 310 
 297 
 
 450 
 430 
 410 
 390 
 
 380 
 
 560 
 530 
 510 
 
 480 
 460 
 
 450 
 430 
 410 
 
 400 
 380 
 370 
 
 670 
 640 
 610 
 590 
 560 
 
 800 
 760 
 730 
 700 
 670 
 
 990 
 
 950 
 910 
 870 
 830 
 
 1420 
 1360 
 1300 
 1240 
 1190 
 
 1140 
 
 1100 
 1060 
 1020 
 980 
 950 
 
 ? 
 
 25 
 26 
 27 
 28 
 29 
 30 
 
 160 
 154 
 149 
 143 
 138 
 134 
 
 218 
 
 210 
 202 
 195 
 188 
 182 
 
 285 
 275 
 265 
 255 
 246 
 237 
 
 360 
 350 
 330 
 315 
 3' 7 
 297 
 
 540 
 
 520 
 . 500 
 480 
 465 
 450 
 
 640 
 620 
 590 
 570 
 550 
 530 
 
 800 
 770 
 740 
 710 
 690 
 660 
 
 880 
 840 
 810 
 780 
 750 
 730 
 
 1000 
 960 
 930 
 890 
 860 
 830 
 
64 THE PASSAIC ROLLING MILL COMPANY. 
 
 COLUMNS, POSTS AND STRUTS. 
 
 THE following tables of strength of columns are calculated 
 for safe working strains, and not for the ultimate strength, as 
 it is of greater consequence to know what load a column will 
 support with safety, than to know under what load it will 
 fail. 
 
 The first table is copied from a paper read by Mr. Theo- 
 dore Cooper, before the A. S. of C. E., and it is based on 
 experiments made on full size columns at the Watertown 
 Arsenal. The allowed working strains are calculated so that 
 they are in proportion to the limit of elasticity (0.44 of it). 
 For posts which are liable to be struck by passing bodies as 
 f : i, the web-posts in through-bridges, smaller working strains 
 are given. 
 
 The second table shows strains per square inch as allowed 
 by the specifications of the New York, Lake Erie and Western 
 Railroad, which have been adopted by a great many roads all 
 through the United States, and on which base a great number 
 of structures have been designed and executed. The values 
 of ratio of length to diameter for different shapes of struts, 
 are only approximate, but they are sufficient for ordinary use. 
 
 Both of these tables are calculated for moving loads ; for 
 steady loads, as in buildings, the safe working strains may 
 be increased 25 per cent. 
 
 The table of safe loads on rolled I beams used as columns 
 or struts is intended for steady loads only. Such columns 
 are frequently used in buildings, and give very satisfactory 
 results if the length is not too great. If two I beams, well 
 braced together, are used, they will carry a larger load. The 
 co-efficients, as given for box columns, may be used for such 
 columns without great error. 
 
THE PASSAIC ROLLING MILL COMPANY. 65 
 
 Plate 16 shows sections of different types of columns. 
 
 Fig. i. Box column, composed of two channels and two 
 plates. 
 
 Fig. 2. Box column, composed of four angle irons and 
 four plates. 
 
 Fig. 3. Open column, composed of two channels connected 
 with lattice bars or lacing. 
 
 Fig. 4. Open column, built of two plates and four angle 
 irons, connected with lattice bars. 
 
 Fig. 5. Open column, built of two I beams, connected with 
 lattice bars. 
 
 Figs. 6 and 7. Columns built of two C and one I beam, or 
 of three I beams. 
 
 Fig. 8. Columns of similar section ; in place of solid rolled 
 beams and channels, angles and plates are used. 
 
 Fig. ii. Column consisting of two plain bars riveted to- 
 gether with an I beam. 
 
 Fig. 12. Plain I beam used as column. 
 
 Fig. 9. Two I beams connected with cast-iron separators 
 and bolts or rivets. 
 
 Fig. 10. Two channel bars connected in the same way. 
 
 Fig. 1 8. Two flat bars connected in the same way. 
 
 Fig. 13. Open column, built of four angle irons, latticed. 
 
 Fig. 14. Four angles connected with solid web-plate, or 
 latticed. 
 
 Figs. 15 and 17. Two T irons or four angle irons riveted 
 together in star shape. 
 
 Fig. 1 6. Similar column. The angles are separated by 
 cast-iron thimbles. 
 
66 THE PASSAIC ROLLING MILL COMPANY. 
 
 
 !.* 
 
 So 
 S 
 
 I B *!*& 
 
 "2 t/j o 
 !l -tt -O 
 
 O r 
 
 I 
 
 W 
 
 S S 
 
 | j 4J 
 
 o 1 
 
 ^= 
 
 M 
 
 P^ 
 
 n 
 
 I 
 
 o 
 ^ 
 
 w 
 
 j 
 
 t4 
 
 s 
 
 P4 
 
 Q 
 
 u i 
 
 
 
 
 ;] u 
 
 a 
 
 a I 
 
 fl i i 
 
 '1 ; I ' 
 
 O" 1>CO" 
 
 .N 
 
 SS = 
 
 oo'co* > co" 
 
 " s i -.^-* 
 
 o< OOOGO 
 
 rH CO O 
 
 co co ^ 
 uo'rf co" 
 
 GO O J> 
 
 lO CO 
 O^rH CO^ 
 ^ CO CO 
 
 (M CO Tf iO CO CO 
 
 qotCtCUd'to^f 
 
 t> rH CO 
 
 CO C5 
 
 10 -^ 
 
 CO Ct C<t 
 COOO 
 
 CO CO CO 
 i>CO ITS 
 
 Tf O CO 
 
 
 CO 
 
 
 
 10 rf CO" 
 
 COi-lrH 
 
 TH CO 1> 
 
 005 
 1> CO 
 
 O) rH O* 
 
 CO 
 
THE PASSAIC ROLLING MILL COMPANY. 67 
 
 TABLE OF 
 
 ALLOWED WORKING STRAINS ON 
 WROUdHT-IRON COLUMNS. 
 
 Calculated from formulas of the N. Y., Lake Erie, and W. R. R. 
 
 For Square Ends. Pin and Square Ends. 
 8,000 8,000 
 
 Pin Ends. 
 8,000 
 
 I + 
 
 L* 
 
 i + 
 
 lies. R 
 s, as in 
 
 L 8 
 
 
 L 2 
 
 40,000 R* 
 
 = length in inc 
 For dead loac 
 
 30,000 R 2 
 
 = radius of g 
 buildings, allo 
 
 ' 20,000 R 2 
 
 yration in inches, 
 w 25% more. 
 
 Ratio of 
 Length 
 to Rad. 
 of Gyr. 
 L 
 
 R 
 
 Working Strains 
 per sq. inch. 
 
 Ratio of L to Diameter. 
 
 Square. 
 Lbs. per 
 
 sq. in. 
 
 Pin and 
 Square. 
 Lbs. per 
 sq. in. 
 
 Pin - ! Phoenix 
 Lbs. per! Col. 
 sq. in. i 
 
 Ameri- 
 can 
 Col. 
 
 Box 
 Col. 
 
 Open 
 Col. 
 
 JL 
 
 ir 
 
 Col. 
 
 30 
 35 
 40 
 45 
 50 
 
 7,820 
 7,760 
 7,700 
 7,620 
 7,530 
 
 7,770 
 
 7^590 
 7,500 
 7,380 
 
 7,660 
 
 7,540 
 7,410 
 7,260 
 7,110 
 
 10.9 
 12.8 
 14.6 
 16.4 
 
 18.2 
 
 10. 
 11.7 
 13.3 
 15. 
 
 16.7. 
 
 12.3 
 14.3 
 16.4 
 
 18.5 
 20.5 
 
 11.1 
 13. 
 
 14.8 
 16.7 
 18.6 
 
 6.1 
 
 7.2 
 8.2 
 9.2 
 10.2 
 
 55 
 
 60 
 65 
 70 
 75 
 
 7,440 
 7,340 
 7,230 
 7,130 
 
 7,020 
 
 7,260 
 7,140 
 7,010 
 6,880 
 6,740 
 
 6,950 
 6,780 
 6,610 
 6,420 
 6,250 
 
 20.0 
 21.9 
 23.7 
 25.5 
 27.3 
 
 18.3 
 
 20. 
 21.7 
 23.3 
 25. 
 
 22.6 
 24.6 
 26.7 
 
 28.7 
 30.8 
 
 20.5 
 22.3 
 24.2 
 26. 
 
 27.8 
 
 11.2 
 12.2 
 13.3 
 14.3 
 15.3 
 
 80 
 85 
 90 
 95 
 100 
 
 6,9UO 
 6,780 
 6,660 
 6,530 
 6,400 
 
 6,590 
 6,450 
 
 6,300 
 6,150 
 6,000 
 
 6,060 
 5,880 
 5,700 
 5,510 
 5,330 
 
 29.2 
 31.0 
 32.8 
 34.6 
 36.4 
 
 26.7 
 28.3 
 30.0 
 31.7 
 33.3 
 
 32.8 
 34.9 
 36.9 
 39.0 
 41.0 
 
 29.7 
 31.5 
 33.4 
 35.2 
 37.1 
 
 16.4 
 17.4 
 18.4 
 19.4 
 
 20.5 
 
 105 
 
 no 
 
 115 
 
 . 120 
 125 
 
 6,270 
 6,140 
 6,010 
 
 5,880 
 5,750 
 
 5,860 
 5,700 
 5,550 
 5,410 
 5,260 
 
 5,160 
 
 4,980 
 4,820 
 4,650 
 4,490 
 
 38.2 
 40.0 
 41.9 
 43.7 
 45.5 
 
 35.0 
 36.7 
 38.3 
 40.0 
 41.7 
 
 43.1 
 45.1 
 47.2 
 49.2 
 51.3 
 
 39. 
 40.8 
 42.6 
 44.5 
 46.4 
 
 21.5 
 22.5 
 23.5 
 24.5 
 25.5 
 
 130 i 5,620 
 135 1 5,500 
 140 ! 5,370 
 145 5,240 
 
 150 5,120 
 
 5,120 ! 4,340 
 4,980 : 4,180 
 4,840 ! 4,040 
 4,700 i 3,900 
 4,570 3,770 
 
 47.3 
 . 49.2 
 
 51.0 
 52.8 
 54.6 
 
 43.3 
 45.0 
 46.7 
 48.3 
 50.0 
 
 53.3 
 55.4 
 57.4 
 59 5 
 61.5 
 
 48.2 
 50.1 
 52. 
 53.9 
 55.7 
 
 26.6 
 27.6 
 28.6 
 29.6 
 30.6 
 
 155 5,000 4,440 ! 3,630 
 160 4,880 4,320 3,510 
 
 56.4 ! 51.7 
 58.2 53.3 
 
 63.6 
 65.6 
 
 57.5 
 59.4 
 
 31.7 
 32.7 
 * 
 
68 THE PASSAIC ROLLING MILL COMPANY. 
 
 S~ 
 
 TABLE OF SAFE LOADS FOB ROLLED X BEAMS USED AS COLUMNS OB STBUTS. 
 
 Both ends flat and fixed. Calculated from formula 10,000 per sq. inch. 
 This Table is to be used for dead loads only. L 2 
 For moving loads deduct 20%. l " 40,000 r* 
 
 s 
 
 X 
 
 CO CO GO O* 
 
 
 
 * 
 
 C5 O O rH 
 
 OJW rH 
 
 rH rH rH rH 
 
 C5 00 J> CO 
 
 
 CO 
 
 OCO CO iO 
 CO lO Tf CO 
 
 OJ rH d C5 
 
 
 g 
 
 OOJ OJ CO 
 
 COO) rHO 
 
 TH T- < rH rH 
 
 O5QO 1>1>^ 
 
 
 s 
 
 0)0 J> "T 
 
 OJ <M OJ OJ 
 
 
 THrHrHrH 
 
 0>r-lOO5 
 
 co 9 
 
 XO CO rH 
 
 O5 Oi O5 lO 
 
 
 
 
 ! 
 
 a 
 
 0) 
 02 
 
 SSS3 
 
 tycoon. 
 
 O* rH O C5 
 rH rH rH O 
 
 
 
 . 8 
 
 5S 
 
 &SS8 
 
 SSSS 
 
 * S 
 
 ssss 
 
 rHOSOO CO 
 
 Tf Ot rH 
 
 
 
 00 Jg 
 
 siss 
 
 asss 
 
 O5QO l>. 
 rH TH rH rH 
 
 i 
 
 CO CO CO CO 
 
 ?5SSS 
 
 ssss 
 
 o s 
 
 ssss 
 
 SSSS 
 
 i^co-^o* 
 
 rH TH TH rH 
 
 05 ^ 
 GO 
 
 ^s^s 
 
 83S& 
 
 glil 
 
 ^^ o 
 
 TH > 
 
 ^ss 
 
 ss?s 
 
 
 
 
 rH rH 
 
 ^^5 
 
 fe^ 
 
 ssss 
 
 2 
 
 CO CO CC uO 
 
 sss? 
 
 ^5^ 
 
 2 S 
 
 O5 1> tO CO 
 
 O O uO O 
 
 TH C5 CO CO 
 
 5i^SS 
 
 3 
 
 rH O5 J> ^ 
 00 l^ t^l> 
 
 S8SS 
 
 SJ> -^ ' 
 m to o 
 
 '2 s 
 
 rH rH 
 
 gc3 
 
 !!i! 
 
 WO CO CO 
 
 i^cococc 
 
 S i 
 
 CO ^ rH O5 
 O5 Oi O5 00 
 
 Depth of Beam. 
 
 Wgt. per yd. 
 
 Length of Post. 
 Feet. 
 
 
 
 00 OiOrH 
 rHrH 
 
 rH rH rH rH 
 
 1 
 
V 
 
 THE PASSAIC ROLLING MILL COMPANY. 69 
 
 TABLE OF SAFE LOADS 
 
 FOR 
 
 HOLLOW CYLINDRICAL CAST AND 
 WROUGHT IRON COLUMNS. 
 
 CAST-IRON COLUMNS, with factor of safety 6. 
 
 Square Bearing. 
 *3333 
 
 1.2 
 
 1 + 
 
 800 </* 
 
 Pin and Square. 
 13333 
 
 Pin Bearing. 
 13333 
 
 1 + 
 
 400 d 
 
 WROUGHT-IRON COLUMNS, with factor of safety 4. 
 
 Square Bearing. 
 
 IOOOO 
 
 + - 
 
 3000^ 
 
 Pin and Square. 
 
 IOOOO 
 
 i + 
 
 2000 d* 
 
 Pin Bearing. 
 
 IOOOO 
 
 T~2 
 
 i + 
 
 1500 d* 
 
 L, length of columns in inches. 
 d, diameter of columns in inches. 
 
 This table is calculated only for dead loads. For moving 
 loads, deduct. 20% for wrought-iron columns and 2$% for 
 cast-iron columns. 
 
 CAST-IRON COLUMNS. 
 Safe Loads, in Ibs. per D in. 
 
 WROUGHT-IRON COLUMNS. 
 Safe Loads, in Ibs. per D in. 
 
 L 
 
 d 
 
 Square. 
 
 Square 
 and Pin. 
 
 Pin. 
 
 L 
 
 d 
 
 Square* 
 
 Square 
 and Pin. 
 
 Pin. 
 
 12 
 15 
 
 18 
 
 11,300 
 10,410 
 
 9,490 
 
 10,500 
 9,380 
 
 8,300 
 
 9,800 
 8,530 
 7,370 
 
 12 
 15 
 
 18 
 
 9,540 
 9,300 
 9,020 
 
 9,330 
 8,990 
 8,600 
 
 9,125 
 
 8,700 
 8,220 
 
 21 
 
 24 
 
 27 
 
 8,600 
 7,750 
 6,890 
 
 7,600 
 6,410 
 5,630 
 
 6,350 
 5,460 
 4,730 
 
 21 
 24 
 27 
 
 8,720 
 8,390 
 8,050 
 
 8,190 
 7,770 
 7,320 
 
 7,730 
 7,220 
 6,730 
 
 30 
 33 
 36 
 
 6,270 
 5,650 
 5,090 
 
 4,960 
 4,380 
 3,890 
 
 4,100 
 3,580 
 3,140 
 
 30 
 33 
 36 
 
 7,690 
 7,320 
 6,980 
 
 6,900 
 6,480 
 6,070 
 
 6,250 
 5,800 
 5,360 
 
 39 
 
 * 
 
 3,760 
 
 3,460 
 
 2,780 
 
 39 
 
 6,640 
 
 5,680 
 
 4,970 
 
V 
 
 70 THE PASSAIC ROLLING MILL COMPANY. 
 
 TABLE OF 
 
 SAFE LOADS FOE RECTANGULAR 
 TIMBER POSTS, SEASONED. 
 
 This table is calculated for a factor of safety of 5 from the 
 following formulas : 
 
 Square Bearing. 
 
 1 120 
 
 Pin and Square 
 Bearing. 
 
 1 120 
 
 Pin Bearing. 
 
 1 120 
 
 275 
 
 Deducted from Lemande's experiments with posts of 
 French oak, and may be used for American white pine of 
 best quality. 
 
 Ratio of Length 
 to 
 Least Side. 
 
 L 
 d 
 
 Safe Loads, in Ibs. per n inch of Section. 
 
 Square Ends. 
 
 Square and Pin 
 Ends. 
 
 Pin Ends. 
 ' 
 
 12 
 15 
 
 18 
 
 890 
 795 
 
 704 
 
 804 
 
 695 
 594 
 
 736 
 616 
 514 
 
 21 
 24 
 
 27 
 
 623 
 
 548 
 
 482 
 
 509 
 436 
 375 
 
 431 
 
 362 
 307 
 
 30 
 33 
 36 
 
 424 
 376 
 334 
 
 324 
 
 282 
 246 
 
 262 
 226 
 196 
 
 39 
 42 
 45 
 
 297 
 266 
 239 
 
 218 
 192 
 172 
 
 172 
 152 
 134 
 
 L, length of post in inches. 
 d, width of smallest side in inches. 
 
THE PASSAIC ROLLING MILL COMPANY. 71 
 
 EOOFS. 
 
 THE most frequent types of Roof trusses are shown in 
 plates 17 and 18. The strains in the different members of 
 these trusses are easily found by the use of the following 
 tables. They may be built of iron, or of wood and iron com- 
 bined. If iron only is used in the construction, the rafters 
 are made of two channel-bars, with an iron cover-plate, or 
 properly latticed together. This is the best mode of con- 
 structing the rafter. For smaller spans or lighter roofs a 
 single I beam makes a good rafter. If the purlins are sup- 
 ported only at the joints, a T iron or two angle-irons make a 
 satisfactory rafter ; but if the purlins have to be carried on 
 points between the joints of the truss, the bending strains 
 produced are usually too large to be carried on a rafter of 
 this cross section. The bottom end of the rafters usually has 
 a shoe riveted on, or rests on a pin which is supported by a 
 separate shoe. The top connection of the two main rafters 
 is also either a riveted one (the two rafters being cut so as to 
 bear one against the other), or the connection is made by 
 having both rafters bearing against a pin. If the roof is pin- 
 connected throughout, the latter connection at the peak (with 
 the pin simply) is the better one, and the roof is more easily 
 erected. 
 
 The tension members are either flat bars with forged eyes, 
 bored for iron pins, or round or square rods with loop- 
 welded eyes. 
 
 The struts are made in very many different ways. A good 
 construction is to use two light channel-bars connected 
 together to form a strut, which has a pin-hole at its lower end 
 to connect with the bottom chord and the tension braces. 
 
 Sometimes these trusses are built with wooden main-rafters 
 and struts. In this case, the ends of these members are 
 usually fitted to cast-iron pin-boxes, and the tension members 
 constructed in the same way as in all iron trusses. 
 
72 THE PASSAIC ROLLING MILL COMPANY. 
 
 LOADS ON ROOFS SPANS 75 FEET AND LESS. 
 
 Roof covered with corrugated iron, unbearded . 8 Ibs. per D ft. 
 " " " " " on boards .11" " 
 
 " " " slate unboarded or on laths 13 " 
 " " " " on boards i V thick. . .16 " " 
 
 " " " shingles on laths 10 " " 
 
 If plastered below the rafters or tie-beam, add. 10 " 
 
 For the weight of iron construction, add 4 " 
 
 For snow and wind, add 20 " 
 
 The velocity and pressure of wind against surfaces at right 
 angles to the direction of the wind is, as given by Smeaton : 
 
 Vel. in miles 
 per hour. 
 
 Vel. in feet. Pressure per 
 per sec. square foot. 
 
 
 10 
 
 14.67 
 
 0.5 
 
 
 12* 
 
 18.33 
 
 0.78 
 
 Fresh breeze. 
 
 15 . 
 
 22. 
 
 1.12 
 
 
 20 
 
 29.33 
 
 2. 
 
 
 25 
 
 36.67 
 
 3.12 
 
 Brisk wind. 
 
 30 
 
 44. 
 
 4.5 
 
 Strong wind. 
 
 40 
 
 58.67 
 
 8. 
 
 High wind. 
 
 50 
 
 73.33 
 
 12.5 
 
 Storm. 
 
 60 
 
 88. 18. 
 
 Violent storm. 
 
 80 
 
 117.3 32. 
 
 Hurricane. 
 
 100 
 
 146.7 
 
 50. 
 
 Violent hurricane. 
 
 It seems sufficient to calculate for a wind pressure of 30 
 Ibs. per square foot ; but, as the roofs are built with a slope 
 only that component of the 30 Ibs. which acts vertical to the 
 surface of the roof comes into account. In most cases it 
 will be sufficient to calculate simply for a load of 20 Ibs. per 
 square foot for wind and snow together. 
 
 
 
THE PASSAIC ROLLING MILL COMPANY. 
 
 73 
 
 MAXIMUM STRAINS IN KING AND 
 QUEEN ROOF TRUSSES. 
 
 Plate 17, Fig. 5. 
 
 To find the maximum strains in any member of these 
 trusses, multiply the co-efficients given here below. 
 
 _ length of rafter 
 
 2. For bo 
 
 3. For in 
 4. For ve 
 
 Multiply 
 by 
 
 III 
 
 1^-5 
 
 1 
 
 ttom chord, " 
 
 jlined struts, " 
 rtical rod, " 
 
 depth of truss 
 ^ span of truss 
 
 depth of truss 
 length of strut 
 
 length of rod 
 
 x 7 . 
 ,/ 
 
 Member. 
 
 14 12 10 
 Panel. Panel. Panel. 
 
 8 6 
 Panel. Panel. 
 
 4 
 Panel. 
 
 2 
 2 3 
 3 4 
 4 5 
 5 6 
 6 7 
 
 6.5 
 6. 
 5.5 
 5. 
 4.5 
 4 
 
 5.5 
 5. 
 4.5 
 4. 
 3.5 
 
 4.5 
 4. 
 3.5 
 3. 
 
 3.5 
 3. 
 2.5 
 
 2.5 
 2. 
 
 1.5 
 
 y. | 
 
 T3 g 
 ^ 
 
 > 1 - 
 j 
 
 H 
 
 !S 
 
 f, 
 
 1 
 
 o r 
 
 1 ; 2' 
 
 2' 3' 
 3 X 4' 
 
 4' 5' 
 5' 6' 
 6' 7' 
 
 6.5 
 6. 
 5.5 
 5. 
 4.5 
 4. 
 3.5 
 
 5.5 
 5. 
 4.5 
 4. 
 3.5 
 3. 
 
 4.5 
 4. 
 3.5 
 3. 
 2.5 
 
 3.5 
 St.- 
 
 2.5 
 2. 
 
 
 
 1.5 
 
 1.5 
 1. 
 
 K 
 
 "u 
 
 1 c 
 A, j. 
 
 ^o 
 , 
 bi) 
 
 -S 
 
 1' 2 
 
 2' 3 
 3' 4 
 4' 5 
 5' 6 
 
 6' 7 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 
 0.5 
 1.0 
 1.5 
 
 2.0 
 
 0.5 
 1.0 
 1.5 
 
 0.5 
 1.0 
 
 0.5 
 
 -o 
 1. 
 
 ! X 
 
 
 1 M 
 
 2 2' 
 3 3' 
 
 4 4 / 
 
 5 5' 
 6 6' 
 
 7 7' 
 
 
 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 6. 
 
 
 0.5 
 1.0 
 1.5 
 2.0 
 5. 
 
 
 0.5 
 1.0 
 1.5 
 4. 
 
 
 0.5 
 1.0 
 3. 
 
 
 
 0.5 
 2. 
 
 
 1. 
 
 . 
 
PASSAIC ROLLING MILL COMPANY. 
 
 MAXIMUM STRAINS IN BELGIAN 
 OE FINK ROOF TRUSSES. 
 
 Plate 1 8, Figs. I and 2. 
 
 To find the maximum strain in any member of these trusses, 
 multiply the co-efficients given in the table below with the 
 panel load. 
 
 Ratio of depth 0.333 
 to length of span. - 
 
 0.289 
 
 TTiV* 
 
 0.250 
 
 i 
 
 0.200 
 j 
 
 0.167 
 * 
 
 0.125 
 
 1 
 
 Inclinat'n of rafters. 
 
 41 49' 
 
 30 
 
 26 34' 
 
 21 48' 
 
 18 26' 
 
 14 2' 
 
 c/i 
 
 at 
 
 a 
 
 'o 
 
 1 
 
 X 
 
 II 
 
 II 
 
 01 
 12 
 22 
 
 5.25 
 4.50 
 3.00 
 
 6.06 
 5.19 
 3.46 
 
 7.00 
 6.00 
 4.00 
 
 8.75 
 7.50 
 5.00 
 
 10.50 
 9.00 
 6.00 
 
 14.00 
 12.00 
 8.00 
 
 tl 
 
 or 
 
 1'2' 
 2'3' 
 3'4' 
 
 6.30 
 5.75 
 5.20 
 4.65 
 
 7.00 
 6.50 
 6.00 
 5.50 
 
 7.83 
 
 7.38 
 6.93 
 6.48 
 
 9.42 
 9.05 
 
 8.68 
 8.31 
 
 11.08 
 10.76 
 10.45 
 10.13 
 
 14.44 
 14.20 
 13.95 
 13.71 
 
 Tension 
 
 braces. 
 
 23 
 34' 
 12'&32' 
 
 1.50 
 2.25 
 0.75 
 
 1.73 
 
 2.60 
 
 0.87 
 
 2.00 
 3.00 
 1.00 
 
 2.50 
 3.75 
 1.25 
 
 3.00 
 4.50 
 1.50 
 
 4.00 
 6.00 
 2.00 
 
 t/; 
 
 p 
 
 uri 
 
 ll'&33' 
 
 22'' 
 
 0.83 
 1.66 
 
 0.87 
 1.73 
 
 0.89 
 
 1.78 
 
 0.93 
 1.86 
 
 0.95 
 1.90 
 
 0.97 
 1.94 
 
 c/i 
 
 (fi 
 
 3 
 
 Tj 
 
 1 
 
 ^ 
 
 Bottom 
 chord. 
 
 01 
 12 
 
 2.25 
 1.50 
 
 2.60 
 1.73 
 
 3.00 
 2.00 
 
 3.75 
 2.50 
 
 4.50 
 3.00 
 
 6.00 
 4.00 
 
 Top 
 chord. 
 
 or 
 
 1'2' 
 
 2.70 
 2.15 
 
 3.00 
 2.50 
 
 3.35 
 2.90 
 
 4.04 
 3.67 
 
 4.75 
 4.44 
 
 6.19 
 5.95 
 
 Rod 
 strut. 
 
 12' 
 
 11' 
 
 0.75 
 0.83 
 
 0.87 
 0.87 
 
 1.00 
 0.89 
 
 1.25 
 0.93 
 
 1.50 
 0.95 
 
 2.00 
 0.97 
 
 k 
 
THE PASSAIC ROLLING MILL COMPANY. 75 
 
 MAXIMUM STRAINS IN RECTANGU- 
 LAR AND TRIANGULAR TRUSSES. 
 
 BY using the following tables, it will be found easy to de- 
 termine the maximum strains in different trusses or girders 
 with parallel chords, if the dead and moving loads are given. 
 In many cases it will be sufficient to consider only a uniform 
 dead load and a uniform moving load. The third columns 
 give the influence of a heavier load in front of a uniform load ; 
 f. i., a locomotive ahead of a train of cars. 
 
 The panel points are numbered, beginning with o at the 
 abutment, those of the bottom chord with plain numbers, and 
 those of the top chord with a prime ( ' ), so as to indicate the 
 position of the different members without its being necessary 
 to refer to the diagram. 
 
 In the calculation of a double intersection rectangular truss, 
 it is necessary to treat the truss as a combination of two sin- 
 gle intersection trusses ; and if the number of panels is an odd 
 one, there exists some uncertainty in which way the full load 
 is transmitted to the abutments. Sometimes it is assumed 
 that the counter-rods are without strain under full load, and 
 this gives somewhat smaller strains in the top chord and 
 larger strains in the bottom chord than those given in the 
 table. 
 
 But generally the counter-rods are made adjustable, and 
 have always some initial strain, so that it is more consistent 
 to assume that the trusses under full load, as well as under 
 partial loads, act like two separate single intersection trusses. 
 The difference in the results in either case is of no practical 
 importance. 
 
 In calculating these tables, the loads were supposed to be 
 concentrated at the bottom chord joints for through-bridges, 
 and at the top-chord joints for deck-bridges. In through- 
 bridges, the strains in the web-members under compression 
 (web-posts) obtained this way should be increased by the 
 weight of a panel of top-chord and top-lateral bracing. 
 
76 THE PASSAIC ROLLING MILL COMPANY. 
 
 EXAMPLE OF APPLICATION OF TABLE. 
 
 WARREN TRUSS, DECK BRIDGE WITH INTERMEDIATE 
 
 POSTS. 
 
 Span, 150' ; depth, 20'. 
 Number of panels 10, of 15' each. 
 Dead load, 1,200 Ibs. per lin. ft. 
 Live load, 2,400 " " " 
 
 D= Dead load = 9,000 Ibs. per panel and I truss. 
 L = Live " = 18,000 " " " " i " 
 E = Excess of locomotive weight = 10,000 Ibs. for I truss. 
 
 /= 18,000 =1>8oo 
 
 10 
 10,000 
 
 ^=_J = 1,000 
 
 10 
 
 Length of diagonal members, 25' 
 
 Sec. = = ..25 Tang. =^1=0.75 
 
 Strain in middle piece of bottom chord 4-6 
 12. 5 (D + L) = 337,500 
 5 e = 5,000 
 
 342,500 X tang. 256,875 
 Compressive strain in brace, 45'. 
 0.5 D = 4,500 
 15. / = 27,000 
 5. e = 5,000 
 
 36,500 X sec. = 45,625 
 
 Tensile strain in brace, 5' 6, 
 
 0.5 D =4,500 
 
 10. / = 18,000 
 
 4. e = 4,000 
 
 1 7,500 X sec. =21,875 
 
 It will be observed that, by beginning with o at the left- 
 hand abutment, the compression member 45' becomes the 
 tension member 5' 6, and the maximum strains change from 
 45,625 compression to 21,875 tension. The strains in the 
 other members are found in similar way. 
 
THE PASSAIC ROLLING MILL COMPANY. 
 
 77 
 
 3 81 
 
 H S ^c 
 
 53 H 
 
 ri 
 
 ^So 
 
 EH Q 
 
 v CO (7) TH 
 
 
 ift ift ift 
 
 !l 1! ^^oi 
 
 QTHC'O 
 
 Q T-;^ 
 
 ^ <* CO <M TH 
 
 
 <U Tjl CO 
 
 ^ O CO CO rH 
 
 
 r-lOJCO 
 
 1 
 
 
 Q (MCO 
 
 v ift rr CO (M rH 
 
 
 ^ iO * CO 
 
 v^ 1ft O CO CO rH 
 
 
 J^ .*? 
 
 i-H rH 
 
 
 
 B-J S 
 
 IIj-s 
 
 i|s.r5 
 
 S.l'S'sg 
 JIIF 
 
 ift 1ft ift 
 rHlOOO .J 
 
 CJrHrH '"'lOOCOCOt^GO 
 
 S 
 p 
 
 a 
 
 rH 
 
 M 
 
 cc 
 
 >coi>ao SGOCO-^IOCO 
 ;oc*co^iftcoj>aoci oo*co^io 
 
 tn C* CO "* ift CO 
 Ot CO Ttlft CO 
 
 g< 61 co TJ< 
 
 H ^H o* co 
 
 (M CO -^f ift CO 
 
 o co -^ ift cc 
 
78 
 
 THE PASSAIC ROLLING MILL COMPANY. 
 
 LIVE LOADS 
 
 MAXIMUM STRAINS PRODUCED BY DEAD 
 
 GULAR TRUSSES. 
 
 TERSECTION RECT 
 
 DOUB 
 
 ate 1.) 
 LS, FOR THROUGH AND 
 
 GO J> CO lO Tf CO <?* 
 
 lO O O O O O I.O O 
 rt (7^ rH rH I iH 
 
 
 
 I "i 
 
 * 
 
 O (N 
 
 W I H 
 
 Q - 
 
 ^ -|g 
 
 ^D * 00 (M CO -~ 7> 
 COCC CM iHiH 1 TH 
 
 inclined members 
 vertical " 
 
 - ~ 
 
 r-t CO i.t TO T-H 'sf 
 >2 C5 * CO C* (N rH 
 
 gs ssS 
 
 O -t CC (M rH O C5 'X i^ '^ 1.7 "T 
 
 Inclined 
 Memb'rs. 
 
 HP 
 
 ^|&83 
 sll^ 
 
 Ol CO ^f O t- 00 OS 
 OJ CO ^t< -O t^ OD CS 
 
-oc 
 
 THE PASSAIC ROLLING MILL COMPANY. 79 
 
 cs co i> co 10 
 
 CO 
 
 ii o Ci oo i> o 
 
 LOOO (M ioi>oo 
 
 rH TH CM CM Oi CM CO CN 
 
 CO CM rH O O5 00 l> CO 
 
 o o 
 
 -* CO W rH Oi CO b- CO 
 
 iO co r^ co i^ 
 
 _1_O lOCOOuO 
 I^T-H TH CM CO CO 
 
 ~ri> TH t>. CM co as rH o* 
 
 Q rH rH CM CM CM CO CO - 
 
 !! II 
 a i ^ 
 
 CO* 
 
 J> CO O -"^ CO OJ r-l O Oi CO 
 
 , t-^ioio 
 
 9 ' ' co cjoiioo-^t^ajo 
 
 I Q rH TH CM CO CO CO CO ^ 
 
 - 
 00 
 
 <M CO rf O CO 1> CO O5 
 
 W CO ^ O CO l^ 00 
 
 rHCMCO^i 
 
&- 
 
 80 THE PASSAIC ROLLING MILL COMPANY. 
 
 ft 
 
 
 PQ Pn 
 
 iT3 iO O 
 rHdd 
 
 "xa 00 O -^ CQ 
 
 Q WiHO iH 
 
 o iS 
 7 - 
 
 > O GO CO TJ <N 
 ~OJ 
 
 I 
 
 CO O Tti CO 
 
 00 J> CO 1C ' 
 
 H-l 
 
 -l-^t -^ tO CO CD 
 
 BE 
 
 o 10 co c c 
 
 ^7 CO CO CO O 
 
 3^ COW 
 
 I I I 
 
 H-CO t>. 05 (74 CO iC O CO 
 Q ^HrH^rHrt 
 
 CO OJOQOCOTf W 
 
 <* CO (M rH O r-i ( i 
 
 + 
 
 " 7-r 
 
 HTH CO O i> O5 T-H CO 
 
 "-^ Oi O CO GO 
 Q rH i-H rH 
 
 Aq 
 
THE PASSAIC ROLLING MILL COMPANY. 81 
 
 . ^ 
 
 I Q 
 
 Q^o'o 
 
 Cl l> iO CO i-H 
 
 <v OS 00 t^ COO 
 
 1 ~ 
 
 
 
 O iO i 
 OJrHO OrH 
 
 *j TH OS J> lO CO TH 
 
 ^ CO lO CO~OS -t iH^ 
 CO 7* TH 
 
 N QCO WiHOrj 
 
 TH C* 
 
 * 
 
 -OiOifl iT5 
 
 <>i TJ< o co co 
 
 TH O OS CO 1> CO 
 
 -(-CO O J> CO Oi Oi 
 
 Q 
 
 CO i-l OS J> lO CO r-l 1 ^ CO W i-H O OS 00 i> 
 
 rHrO 
 
 -4 co o c i -t co uo 
 
 in co Ib i> oi in co ib 
 
 SUBJL Xq X{dppj\[ 
 
THE PASSAIC ROLLING MILL COMPANY. 
 
 W ~ 
 
 O 
 ^ 
 
 > 
 Q 
 
 PQ 
 Q 
 
 <& < 
 
 t3 
 
 g o* 
 
 w *" 
 
 P-( ^ 
 
 C/5 T 
 
 O 
 
 hH 
 
 EH 
 
 ft 
 i i 
 
 H 
 
 H G 
 
 a | 
 
 ffi o 
 
 ^ CO Oi rH 
 
 do 
 
 ^> lO -<t CO C< rH 
 
 r^ j 
 EH 
 
 H Q 
 
 O CO CO T 1 
 
 T-H O O T-l 
 
 O T-l 
 
 fi iO O 
 
 rHooTHocoTf 
 
 10 T-H 00 CO lO ^ 00 T-H iC CO CO rH 
 OOSt^^uO^COWC^THT-H 
 
 
 09^ Xq X{di}ptu 
 
 pauipuj 
 
PASSAIC ROI.LIN'C M 1 I, f. C 1 n M ]' A X Y . 83 
 
 
 ^ XgCAi 
 
 ii^' 
 
 
 ; iJa 
 
 
 
 i +^ 
 
 
 
 ! Q 
 
 
 
 
 j 
 
 ^ rf CO 
 
 
 3 
 
 1 
 
 +^ '2 
 
 i , 
 
 P3 
 
 \o 
 
 Q o^ 
 
 1 8 | 
 
 1 
 
 Jj 
 
 ^ t- \S> rf 
 
 111 
 
 ^0 
 
 P3 
 
 00 
 
 +ai -o t>: 06 
 
 "1 J 
 
 O 
 
 
 
 
 11 1 
 
 
 
 (fl 
 
 ^ OS CO 1> 
 
 f 
 
 P3 
 
 a 
 
 
 II E- 
 
 
 i 
 
 &H 
 
 
 
 + rji CO ? | 
 
 v T-H o Oi co t> o 
 
 a 
 
 *-< i 
 
 Ci 00 1^ ^ rt< CO CQ TH c: 
 
 w co -^ o o t^ co Oi o ^i 
 
 Xjdrjjmu 'spaotQ 
 
 general live 
 
 E 
 
 n 
 
 of panels 
 d load per panel . 
 ve load per panel. 
 cess of engine loa 
 for 1 panel. 
 L 
 n 
 
 o a; > a 
 
 ^ S503a 
 ii ii n ii 
 
 Q,-1W 
 
 -* 
 
84 THE PASSAIC ROLLING MILL COMPANY. 
 
 Q 
 O 
 
 n 
 
 M iH 
 
 io 10 o 
 
 PrHrHOOO 
 
 . 
 
 Qrt "O o u 
 - (M rH rH O O O rH C > 
 
 _ LJ i-J sg- 
 
 ^OiODi>tO>O'^'COOirH E'S Jj"0 
 
 0* 0* TH rH C iH rH 
 
 CoSwr1rHdodrH!;W 
 ^COC^rHOOiOOt^COlO^COOJrH 
 
 rt jo 
 
 C/3 O" 
 
V 
 
 THE PASSAIC ROLLING MILL COMPANY. 85 
 
 ^f l-O ** lO Tl< CO 
 
 DERS 
 
 RREN G 
 
 NTERSECTION 
 
 DOUBLE 
 
 d o o 
 
 ^* F I ^ 
 
 3J 
 
 -3. 
 
 SP s t: 
 
 i-IO tH OOSQOOiQO J> Ob- 
 
 o)co corHOTH 
 
 ^ I Q TH TH TH TH (M Ot Ol (54 O4 O4 CO CO CO 00 
 
 I 
 
 S TH- 
 
 . 
 T 
 
 r -tf -^ 
 
 i-< iO fi O lO 
 
 T-T (54 CO 
 
 lO 1.O xO 
 
 001^ GO 05. 
 
86 THE PASSAIC ROLLING MILL COMPANY. 
 
 EIVETS AND PINS. 
 
 IN proportioning riveted work it is customary not to take 
 into account the friction between the shapes or plates con- 
 nected. The rivets have to resist the whole strain which has 
 to be transmitted from one part to the other by their resist- 
 ance against shearing. The bearing surfaces of the rivets 
 and of the connected parts must be large enough to avoid 
 damage by crushing. Therefore, it will be always necessary 
 to calculate the rivet connections for shear as well as for 
 bearing. The following tables give shearing and bearing 
 values of rivets of different diameters for shearing strains of 
 6,000 Ibs. and 7,500 Ibs. per square inch section, and for 
 bearing values of 12,000 Ibs. and 15,000 Ibs. per square inch. 
 The smaller values shou^ be used for moving loads, and 
 the larger values may be used for steady loads. 
 
 Pins are subject to strains by shearing, bearing, and bend- 
 ing. The corresponding values for these three different 
 strains are 
 
 SHEARING. BEARING. BENDING, 
 
 For R. R. bridges and iron pins 7,500 12.000 15,000 
 " " " " steel pins 11,250 18,000 22,500 
 
 For steady loads and) iins g 
 
 highway bridges $ 
 
HE PASSAIC ROLLING MILL COMPANY. 87 
 
 GC~tO CO 
 TH !>* CO 
 
 n*! 
 
 (H ! <; 
 
 ozj* 
 
 O* CO CO 
 
 M ^ 
 
 'tits 
 
 O O O O 
 00 lO TH CO 
 
 8i 8 
 
 ; CO 
 ^d-CO^ 
 
 C, Q 
 U I 
 
 Oi 
 
 
 o o 
 
 : 
 
 ! OJ C* 
 
 8SS 
 
 o o 
 
 t^ i> GO CO 00 GO GO 
 
 COCO1> O50*CO*H 
 
 tH 
 
88 THE PASSAIC ROLLING MILL COMPANY. 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 g 
 
 
 
 
 
 
 
 8 
 
 
 1 
 
 
 
 
 
 
 
 o 
 
 
 PH 
 
 
 
 
 
 
 
 
 OQ 
 
 
 
 
 
 
 
 
 
 o o 
 
 u 
 
 1 
 
 * 
 
 
 
 
 
 
 gg 
 
 t> 
 
 2 
 M 
 
 u 
 
 ^ 
 
 
 
 
 
 c o 
 
 00 
 
 
 X 
 H 
 
 ^ 
 
 
 
 
 
 ^^ 
 
 $ 
 
 00 00 
 
 
 h 
 
 
 
 
 
 
 
 
 ^ 
 
 z 
 
 
 
 
 
 
 
 
 
 
 Ej 
 
 i 
 
 
 
 
 
 
 g 
 
 So^ 
 
 
 n 
 
 
 
 
 
 
 
 
 1 
 
 | 
 
 a 
 
 
 
 
 8S 
 
 s^ 
 
 
 h3 
 
 D 
 
 P 
 
 
 
 
 lO O 
 
 00 
 
 o i> 
 
 ^^ 
 
 H 
 
 
 
 
 , 
 
 
 
 
 t> 
 
 B 
 
 E 
 
 ^ 
 
 
 
 .. 
 
 0^ 
 
 
 00 
 
 
 
 Jj 
 
 HM 
 
 
 
 
 O GO 
 
 sa 
 
 
 M 
 
 I 
 
 * 
 
 
 1 
 
 11 
 
 o o 
 
 11 
 
 11 
 
 PQ 
 
 u 
 _i 
 
 5 
 
 
 || 
 
 00 
 Gd O) 
 
 o o 
 r^ o 
 
 coco 
 
 38 
 
 SB 
 
 
 > 
 
 
 
 c^ot 
 
 (MCO 
 
 
 CO^f 
 
 ^^ 
 
 p 
 
 BEARING 
 
 * 
 
 I 
 
 OO rH 
 THOi 
 
 00 
 
 Is 
 
 o o 
 
 TH O 
 
 "00 O 
 CM CO 
 
 11 
 
 000 
 
 1> gj 
 
 CO CO 
 
 1 
 
 
 a. 
 
 1 
 
 tH TH 
 
 TH TH 
 
 TH O 
 
 I! 
 
 IS 
 
 II 
 
 CO CO 
 
 PH 
 
 
 
 
 
 
 
 
 
 3 
 
 <u rt 
 II 
 
 I'D 
 Ju 
 S, 
 
 II 
 
 00 OS 
 
 TH TH 
 
 00 OJ 
 
 TH Ot 
 
 lO TH 
 
 00 
 
 1- 
 
 11 
 
 GO 
 
 a 
 
 1 
 
 TH i-H 
 
 II 
 
 coco 
 
 01 OS 
 
 ^ TH 
 
 11 
 
 00 00 
 J> GO 
 
 
 
 o 
 
 
 
 
 
 
 
 
 i 
 
 
 ht? 
 
 a* 
 
 HJO 
 
 0*0 
 
 ,*0 
 
 ~E 
 
 
 4). 
 
 
 
 
 
 
 
 
 
 E^ 
 
 >.> 
 
 
 
 
 
 
 
 
 9 
 
 
 CCJ30 
 
 ^Kj 
 
 CJ30 
 
 ccj^* 
 
 hJH 
 
 p^ 
 
 
 5 
 
 
 
 
 
 
 
 8 
 
THE PASSAIC ROLLING MILL COMPANY. 89 
 
 SHEARING AND BEARING VALUE OF RIVETS Continued. 
 
 (d 
 
 1 
 
 h 
 o 
 
 8 
 
 3 
 
 u 
 
 H 
 
 h 
 
 z 
 
 
 K 
 
 
 E 
 
 E 
 
 Q 
 
 I 
 
 D 
 
 M 
 1 
 
 E 
 
 <fl 
 
 a 
 
 8 
 1 
 
 H 
 < 
 
 M 
 D 
 J 
 
 O 
 
 z 
 
 M 
 
 < 
 W 
 
 P3 
 
 HB 
 
 
 
 
 
 
 
 M(0 
 
 
 
 
 
 
 O 
 i 1 
 
 (-* 
 
 
 
 
 
 
 i l i 1 
 rH rH 
 
 : 
 
 j 
 
 
 
 
 
 i-l CO 
 r-l r-l 
 
 v 
 
 
 
 
 1> 
 
 II 
 
 C^ Ci 
 
 * 
 
 to 
 * 
 
 
 
 
 11 
 
 CD i 1 
 CO O5 
 
 l>. 1> 
 
 ^t CO 
 ^f Ci 
 CC UO 
 
 Ho* 
 
 
 
 8 
 3 
 
 CO C5 
 tO O 
 
 cb j> 
 
 O 
 
 HP 
 
 
 I 
 
 00 
 
 3! 
 
 8 
 OS CO 
 *f lO 
 
 
 T}< O 
 
 63 
 
 II 
 
 Ml 
 
 
 38 
 
 
 
 11 
 
 00 
 
 11 
 
 ^ iO 
 
 tO lO 
 
 * 
 
 I 
 
 00 
 
 ii 
 
 11 
 
 G^ T 1 
 
 1C 00 
 
 CO CO 
 
 o c^ 
 ^ ^ 
 
 I! 
 
 HTC 
 
 O O 
 1 1 ** 
 
 SS 
 
 rH 
 T 1 
 
 TH CM 
 
 3g 
 
 
 
 T~* iro 
 
 CD <^ 
 
 c^co 
 
 11 
 
 tra QO 
 fe 2? 
 
 CO CO 
 
 U 5 
 "WS" 
 
 ^Ili 
 
 CO CO 
 
 J>- CO 
 
 11 
 
 ^H C"i 
 
 3^ 
 
 00 
 
 T-IOO 
 
 lO r-> 
 *P 10 
 
 kO O 
 
 1 
 
 5 
 
 ^H iO 
 
 CO O5 
 O5 ^* 
 T-H CM 
 
 * iH 
 
 CO CO 
 
 ^S 
 
 ^ 
 
 II 
 
 lO I s * 
 
 00 00 
 1> 00 
 
 
 
 
 
 
 
 \ 
 
 I" 8 ! 
 
 ^ 
 
 -IS 
 
 M|X> 
 
 HS 
 
 HM 
 
 -fo 
 
 H- 1 
 
 <oj 
 
 C^J= 
 
 -H 
 co|Ti- 
 
 wte 
 
 H 
 
 i 
 
 1-1 
 
 Q 
 
 7 
 
90 THE PASSAIC ROLLING MILL COMPANY. 
 
 IRON EIYETS. 
 
 Weight per 100. 
 
 
 DIAMETERS. 
 
 Length 
 
 
 Under 
 
 [ j 
 
 
 1 
 
 Head. 
 
 i 
 
 1 
 
 i 
 
 f 
 
 * 
 
 
 1 
 
 1 
 
 1.895 
 
 4.848 
 
 9.66 
 
 16.79 
 
 26.49 
 
 39.3 
 
 55.2 
 
 i 
 
 2.007 
 
 5.235 
 
 10.34 
 
 17.86 
 
 27.99 41.4 
 
 57.9 
 
 
 2.233 
 
 5.616 
 
 11.04 
 
 18.96 
 
 29.61 
 
 43.5 
 
 60.7 
 
 * 1 
 
 2.410 
 
 6.003 
 
 11.73 
 
 20.03 
 
 31.13 
 
 45.6 
 
 63.4 
 
 
 2.582 
 
 6.402 
 
 12.43 
 
 21.04 
 
 32.74 
 
 47.8 
 
 66.2 
 
 ^ | 
 
 2.754 
 
 6.789 
 
 13.12 
 
 22.11 
 
 34.25 
 
 49.9 
 
 68.9 
 
 | 
 
 2.926 
 
 7.179 13.81 
 
 23.21 
 
 35.86 
 
 52.0 
 
 71.7 
 
 4 7 
 
 g 
 
 3.098 
 
 7.566 1 14.50 
 
 24.28 
 
 37.37 
 
 54.1 
 
 74.4 
 
 2 
 
 3.239 
 
 7.956J 15.19 
 
 25.48 
 
 38.99 
 
 56.3 
 
 77.2 
 
 '* 
 
 3.441 
 3.613 
 
 8.343 15.88 
 8.733! 16.57 
 
 26.56 
 27.65 
 
 40.40 
 42.11 
 
 58.4 
 60.5 
 
 79.9 
 
 82.7 
 
 4 f 
 
 3.785 
 
 9.120| 17.26 
 
 28.73 
 
 43.67 
 
 62.6 1 85.4 
 
 i 
 
 3.957 
 
 9.511 
 
 17.95 
 
 29.82 
 
 45.24 
 
 64.8 
 
 88.2 
 
 5. 
 
 8 
 
 4.129 
 
 9.898! 18.64 
 
 30.90 
 
 46.80 
 
 66.9 
 
 90.9 
 
 f 
 
 4.301 
 
 10.29 
 
 19.33 
 
 31.99 
 
 48.36 
 
 69.0 
 
 93.7 
 
 1 
 
 8 
 
 4.473 
 
 10.67 
 
 20.02 
 
 33.08 
 
 49.92 1 71.1 
 
 96.4 
 
 3 
 
 4.644 
 
 11.06 , 20. 71 
 
 34.18 
 
 51.49 ! 73.3 
 
 99.2 
 
 i 
 
 4.816 
 
 11.44 
 
 21.40 
 
 55.27 
 
 53.05 
 
 75.4 
 
 101.9 
 
 i 
 
 4.988 
 
 11.84 
 
 22.09 
 
 36.35 
 
 54.61 
 
 77.5 
 
 104.7 
 
 a 
 
 8 
 
 5.160 
 
 12.23 
 
 22.78 
 
 37.44 
 
 56.17 
 
 79.6 
 
 107.4 
 
 i 
 
 2 
 
 5.332 
 
 12.62 
 
 23.48 
 
 38.52 
 
 57.74 
 
 81.8 
 
 110.2 
 
 1- 
 
 5.504 
 
 13.01 
 
 24.17 
 
 39.60 
 
 59.30 
 
 83.9 
 
 112.9 
 
 f 
 
 5.676 
 
 13.39 
 
 24.86 
 
 40.69 
 
 60.86 
 
 86.0 i 116.7 
 
 7_ 
 
 8 
 
 5.848 
 
 13.78 
 
 25.55 
 
 41.78 
 
 62.42 
 
 88.1 j 119.4 
 
 4 
 
 6.019 
 
 14.17 
 
 26.24 
 
 42.87 
 
 63.99 
 
 90.3 121.2 
 
 i 
 
 6.191 
 
 14.56 
 
 26.93 
 
 43.94 
 
 65.55 
 
 92.4 123.9 
 
 JL 
 
 4 
 
 6.363 
 
 14.95 
 
 27.62 
 
 45.01 
 
 67.11 
 
 94.5 
 
 126.6 
 
 100 
 
 Heads. 
 
 .519 
 
 1.74 
 
 4.14 
 
 8.10 
 
 13.99 
 
 22.27 
 
 33.15 
 
THE PASSAIC ROLLING MILL COMPANY. 91 
 
 pp 
 
 n 
 
 o* 
 o 
 
 p 
 o 
 
 
 
 I i 
 
 P3 
 o 
 
 -Sti 
 
 COCi 005OOOi-iJ> 00 04 
 
 1C 05 00 Oi rH (M CO l> 1> l^ 
 
 - 
 
 ,0 
 
 1^ l 
 
 sl 
 J z l 
 
 1^1 
 
 S'o ^ 
 
 "Si 
 
 Q D^ 
 
 04 CM CM CQ 01 Oi C^ CO r-l 
 
 rH r-l rH r-l T-l rH rH r-l (M CM 
 
92 THE PASSAIC ROLLING MILL COMPANY. 
 
 AREAS AND' WEIGHTS or SQUARE AND 
 ROUND WROU&HT-IRON BARS. 
 
 Thick- 
 ness, 
 Inches. 
 
 D 
 
 C 
 
 Area. 
 
 ) 
 
 Thick- 
 ness, 
 Inches. 
 
 D 
 
 o 
 
 Area. 
 
 W'ght 
 per ft. 
 
 W'ght 
 per ft. 
 
 Area. 
 
 W'ght 
 per ft. 
 
 Area. 
 
 W'ght 
 per ft. 
 
 
 
 i* 
 
 tV 
 
 0.004 
 .016 
 .035 
 
 0.013 
 .052 
 .117 
 
 0.003 
 .012 
 
 .028 
 
 .049 
 .077 
 .110 
 .150 
 
 0.010 
 
 .041 
 .092 
 
 2 
 
 -h 
 
 >_* 
 
 4.00 
 4.25 
 4.52 
 
 4.78 
 
 13.33 
 14.18 
 15.05 
 15.95 
 
 3.14 
 3.34 
 3.55 
 3.76 
 
 10.47 
 11.14 
 11.82 
 12.53 
 
 1* 
 A 
 
 .062 
 .098 
 .141 
 .191 
 
 ' .208 
 .326 
 .469 
 .638 
 
 .164 
 
 .256 
 .368 
 .501 
 
 !> 
 
 & 
 
 5.06 
 5.35 
 5.64 
 5.94 
 
 16.88 
 17.83 
 18.80 
 19.80 
 
 3.98 
 4.20 
 4.43 
 4.67 
 
 13.25 
 14.00 
 14.77 
 15.55 
 
 *.* 
 
 1 
 
 tt 
 
 .250 
 .316 
 .391 
 .473 
 
 .833 
 1.06 
 1.30 
 
 1.58 
 
 .196 
 .248 
 .307 
 .371 
 
 .654 
 .828 
 1.02 
 1.24 
 
 [ 
 
 tt 
 
 6.25 
 6.57 
 6.89 
 7.22 
 
 20.83 
 21.89 
 22 97 
 24.08 
 
 25.21 
 
 26.37 
 27.55 
 
 28.76 
 
 4.91 
 5.16 
 5.41 
 5.67 
 
 16.36 
 17.19 
 18.04 
 18.91 
 
 V 
 
 z lb 
 
 8 it 
 
 .562 
 .660 
 .766 
 
 .879 
 
 1.87 
 2.20 
 2.55 
 2.93 
 
 .442 
 .518 
 
 .601 
 .690 
 
 1.47 
 1.73 
 
 2.00 
 2.30 
 
 ! 
 _fl 
 
 7.56 
 7.91 
 
 8.27 
 8.63 
 
 5.94 
 6.21 
 6.49 
 
 6.78 
 
 19.80 
 
 20.71 
 21.64 
 22.59 
 
 1 
 
 i* 
 
 A 
 
 1.00 
 1.13 
 1.27 
 1.41 
 
 3.33 
 
 3.76 
 4.22 
 
 4.70 
 
 .785 
 .887 
 .994 
 1.110 
 
 2.62 
 2.95 
 3.31 
 3.69 
 
 3 
 ** 
 
 * 
 
 9.00 
 9.38 
 9.77 
 10.16 
 
 30.00 
 31.26 
 :?2.55 
 33.87 
 
 7.07 
 7.37 
 
 7.67 
 
 7.98 
 
 23.56 
 24.55 
 25.57 
 26.60 
 
 i* 
 ** 
 
 1.56 
 1.72 
 
 1.89 
 2.07 
 
 5.21 
 5.74 
 6.30 
 6.89 
 
 1.23 
 1.35 
 1.48 
 1.62 
 
 4.09 
 4.51 
 4.95 
 5.41 
 
 '* 
 
 1 
 
 A 
 
 10.56 
 10.97 
 11.39 
 11.82 
 
 35.21 
 36.58 
 37.97 
 
 Oi? . O\) 
 
 8.30 
 8.62 
 8.95 
 
 9.28 
 
 27.65 
 
 28.73 
 29.82 
 30.94 
 
 i" 
 
 
 
 2.25 
 2.44 
 2.64 
 
 2.85 
 
 7.50 
 8.14 
 
 8.80 
 9.49 
 
 1.77 
 
 1.92 
 2.07 
 2.24 
 
 5.89 
 6.39 
 6.91 
 7.45 
 
 i 
 
 rV 
 
 8 H- 
 
 12.25 
 12.69 
 13.14 
 13.60 
 
 40.83 9.6232.07 
 42. 3d 9.97*33.23 
 43.8010.32 ! 34.40 
 45.3310.6835.60 
 
 3 
 
 ,*l 
 
 " 
 
 m 
 
 3.06 
 3.28 
 3.52 
 3.75 
 
 10.21 
 10.95 
 11.72 
 12.51 
 
 2.40 
 
 2.58 
 2.76 
 2.95 
 
 8.02 
 8.60 
 9.20 
 9.83 
 
 .3 
 
 ; ;: 
 
 14.06 
 14.53 
 15.01 
 15.50 
 
 46.8811.04 
 48.4511.42 
 50. 05,11.79 
 51.6812.18 
 
 36.82 
 38.05 
 39.31 
 40.59 
 
 * 
 
THE 
 
 PASSAIC 
 
 ROLLING 
 
 MILL 
 
 COMPANY. 
 
 93 
 
 AREAS AND WEIGHTS OF SQUARE AND 
 ROUND WROUGHT-IRON BARS. 
 
 (Continued.) 
 
 rhick- 
 
 ness, 
 inches 
 
 D 
 
 O 
 
 Thick- 
 ness, 
 nches 
 
 D 
 
 O 
 
 Area. 
 
 W'ght 
 per ft. 
 
 Area. 
 
 W'ght 
 
 per ft. 
 
 Area. 
 
 W'ght 
 per ft. 
 
 Area. 
 
 W'ght 
 per ft. 
 
 4 
 
 f 
 
 -h 
 
 16.00 
 16.f>0 
 17.01 
 17.53 
 
 18.06 
 18.60 
 19.14 
 19.69 
 
 53.3312.57 
 55.0l!l2.96 
 56.7213.36 
 58.45ll3.77 
 
 41.89 
 43.21 
 44.55 
 45.91 
 
 6 
 
 ** 
 f 
 
 36.00 
 37.52 
 39.06 
 40.64 
 
 120.0 
 125.1 
 130.2 
 135.5 
 
 28.27 
 29.46 
 30.68 
 31.9* 
 
 94.25 
 98.2^ 
 102.3 
 106.4 
 
 I* 
 
 A 
 
 60.21 
 61.99 
 63.80 
 65.64 
 
 14.19 
 14.61 
 15.03 
 15.47 
 
 47.29 
 48.69 
 50.11 
 51.55 
 
 i 
 
 * \ 
 
 ', 
 
 42.25 
 43.89 
 45.56 
 
 47.27 
 
 140.8 
 146.3 
 151.9 
 157.6 
 
 33.18 
 34.47 
 35.78 
 37.12 
 
 38.48 
 41.28 
 44.18 
 47.17 
 
 110.6 
 114.9 
 119.3 
 123.7 
 
 t* 
 
 'tt 
 
 20.25 
 20.82 
 21.39 
 21.97 
 
 22.56 
 23.16 
 23.77 
 24.38 
 
 67.50 
 69.39 
 71.30 
 73.24 
 
 15.90 
 16.35 
 16.80 
 17.26 
 
 53.01 
 
 54.50 
 56.00 
 57.52 
 
 7 
 
 i. 
 
 \ * 
 
 49.00 
 52.56 
 56.25 
 60. 06 
 
 163.3 
 175.2 
 
 187.5 
 200.2 
 
 128.3 
 137.6 
 147.3 
 157.2 
 
 v 
 
 1 ti 
 
 v-> 
 
 75.21 
 
 77.20 
 79.22 
 81.26 
 
 17.72 
 18.19 
 18.66 
 19.15 
 
 19.63 
 20.13 
 20.63 
 21.13 
 
 59.07 
 60.63 
 62.22 
 
 53.82 
 
 8 
 
 1 
 
 64.00 
 68.06 
 72.25 
 76.56 
 
 213.3 
 226.9 
 240.8 
 255.2 
 
 50.26 
 53.46 
 56.74 
 60-13 
 
 63.62 
 
 67.20 
 70.88 
 74.66 
 
 167.6 
 
 178.2 
 189.2 
 200.4 
 
 5 
 
 .; 
 
 1 6 
 
 25.00 
 25.63 
 26.27 
 26.91 
 
 83.33 
 85.43 
 
 87.55 
 89.70 
 
 65.45 
 67.10 
 68.76 
 70.45 
 
 72.16 
 73.89 
 75.64 
 77.40 
 
 9 
 
 t| 
 
 10 
 
 4 
 
 s 
 
 81.00 
 85.56 
 90.25 
 95.06 
 
 270.0 
 285.2 
 300.8 
 316.9 
 
 212.1 
 
 224.0 
 236.3 
 
 248.9 
 
 .4 
 
 / ff 
 
 8 
 .7 
 
 1 'i 
 
 27.56 
 
 28.22 
 28.89 
 29.57 
 
 91.88 
 94.08 
 96.30 
 98,55 
 
 21.65 
 22.17 
 
 22.69 
 23.22 
 
 100.00 
 105.06 
 110.25 
 115.56 
 
 333.3 
 350.2 
 367.5 
 385.2 
 
 78.54 
 82.52 
 86.59 
 90.76 
 
 261.8 
 275.1 
 
 288.6 
 302.5 
 
 i 
 
 * 
 
 u 
 
 30.25 
 30.94 
 31.64 
 32.35 
 
 100.8 
 103.1 
 105.5 
 107.8 
 
 23.76 
 24.30 
 24.85 
 25.41 
 
 79.19 
 
 81.00 
 
 82.83 
 84.69 
 
 11 
 
 3. 
 
 4 
 
 121.00 
 126.56 
 132.25 
 
 138.06 
 
 403.3 
 421.9 
 
 440.8 
 460.2 
 
 95.03 
 99.40 
 103.87 
 
 108.43 
 
 316.8 
 331.3 
 346.2 
 361.4 
 
 .1 
 
 * ls 
 
 H 
 
 is 
 
 33.06110.2 
 33.78112.6 
 34.521 115.1 
 35.25117.5 
 
 25.97 
 26.53 
 27.11 
 
 27.69 
 
 86.56 
 88.45 
 90.36 
 92.29 
 
 12 
 
 144.0 
 
 480.0 
 
 113.1 
 
 377.0 
 i 
 
94 THE PASSAIC ROLLING MILL COMPANY. 
 
 AREAS OF FLAT EOLLED IRON. 
 
 Thickness 
 in Inches. 
 
 i" 
 
 ii" 
 
 U" 
 
 If" 
 
 2" 
 
 2{" 
 
 2i" 
 
 2*" 
 
 3" 
 
 ** 
 ** 
 
 .063 
 .125 
 
 .188 
 .250 
 
 .313 
 .375 
 
 .438 
 .506 
 
 .078 
 .156 
 .234 
 .313 
 
 .391 
 .469 
 .547 
 .625 
 
 .094 
 .188 
 .281 
 .375 
 
 .109 
 .219 
 .328 
 .438 
 
 .125 
 
 .250 
 .375 
 .500 
 
 .141 
 
 .281 
 .422 
 .563 
 
 .156 
 .313 
 
 .469 
 .625 
 
 .172 
 .344 
 .516 
 
 .688 
 
 .188 
 .375 
 .563 
 .750 
 
 I * 
 i' A 
 
 .469 
 .563 
 .656 
 .750 
 
 .547 
 ,656 
 .766 
 
 .875 
 
 .625 
 
 .750 
 .875 
 1.00 
 
 .703 
 .844 
 .984 
 1.13 
 
 .781 
 .938 
 .09 
 .25 
 
 .859 
 1.03 
 1.20 
 1.38 
 
 .938 
 1.13 
 1.31 
 1.50 
 
 t * 
 
 ; u 
 
 .563 
 .625 
 
 .688 
 .750 
 
 .703 
 
 .781 
 .859 
 .938 
 
 1.02 
 1.09 
 1.17 
 1.25 
 
 .844 
 .938 
 1.03 
 1.13 
 
 .984 
 1.09 
 1.20 
 1.31 
 
 .13 
 
 .25 
 
 .38 
 .50 
 
 1.27 
 1.41 
 1.55 
 1.69 
 
 .41 
 
 .56 
 
 .72 
 
 1.88 
 
 1.55 
 1.72 
 1.89 
 
 2.06 
 
 1.69 
 
 1.88 
 2.06 
 2.25 
 
 li- 
 it 
 
 .813 
 
 .875 
 .938 
 1.00 
 
 1.22 
 1.31 
 1.41 
 1.50 
 
 1.42 
 1.53 
 1.64 
 1.75 
 
 .63 
 
 .75 
 .88 
 2.00 
 
 1.83 
 1.97 
 2.11 
 
 2.25 
 
 2.03 
 2.19 
 2.34 
 2.50 
 
 2.23 
 2.41 
 
 2.58 
 2.75 
 
 2.44 
 
 2.03 
 
 2.81 
 3.00 
 
 U 1 * 
 
 u 1A 
 
 1.06 
 1.13 
 1.19 
 1.25 
 
 1.33 
 1.41 
 1.48 
 1.56 
 
 1.59 
 1.69 
 
 1.78 
 1.88 
 
 1.86 
 1.97 
 
 2.08 
 2.19 
 
 2.13 
 2.25 
 2.38 
 2.50 
 
 2.39 
 2.53 
 2.67 
 2.81 
 
 2.66 
 2.81 
 2.97 
 3.13 
 
 2.92 
 3.09 
 3.27 
 3.44 
 
 3.19 
 3.38 
 3.56 
 3.75 
 
 u 1 * 
 
 U 1 * 
 
 1.31 
 1.33 
 1.44 
 1.50 
 
 1.64 
 1.72 
 
 1.80 
 
 1.88 
 
 1.97 
 
 2.06 
 2.16 
 2.25 
 
 2.30 
 2.41 
 2.52 
 2.63 
 
 2.63 
 2.75 
 
 2.88 
 3.00 
 
 2.95 
 3.09 
 3.25 
 3.38 
 
 3.28 
 3.44 
 3.59 
 3.75 
 
 3.61 
 3.78 
 3.95 
 4.13 
 
 3.94 
 4.13 
 4.31 
 4.50 
 
 H 1 * 
 
 1^ 
 
 1.56 
 1.63 
 1.69 
 1.75 
 
 1.81 
 
 1.88 
 1.94 
 2.00 
 
 1.95 
 2.03 
 2.11 
 2.19 
 
 2.34 
 2.44 
 2.53 
 2.63 
 
 2.73 
 
 2.84 
 2.95 
 3.06 
 
 3.13 
 3.25 
 3.38 
 3.50 
 
 3.52 
 3.66 
 3.80 
 3.94 
 
 3.91 
 
 4.06 
 4.22 
 4.38 
 
 4.30 
 4.47 
 4.G4 
 4.81 
 
 4.69 
 
 4.88 
 5.06 
 5.25 
 
 i w 
 
 S IH 
 
 2.27 
 2.34 
 2.42 
 2.50 
 
 2.72 
 
 2.81 
 2.91 
 3.00 
 
 3.17 
 
 3.28 
 3.39 
 3.50 
 
 3.63 
 3.75 
 
 3.88 
 4.00 
 
 4.08 
 4.22 
 4.36 
 4.50 
 
 4.53 
 4.69 
 
 4.84 
 5.00 
 
 4.98 
 5.16 
 5.33 
 5.50 
 
 5.44 
 5.63 
 
 5.81 
 6.00 
 
 
THE PASSAIC ROLLING MILL COMPANY. 
 
 95 
 
 AREAS OF FLAT ROLLED IRON. 
 
 (Continued. ) 
 
 Thickness 
 in Inches. 
 
 3" 
 
 4" 
 
 4f" 
 
 5" 
 
 6" 
 
 7" 
 
 8" 
 
 9" 
 
 10" 
 
 ft 
 
 .219 
 
 .250 
 
 .281 
 
 .313 
 
 .375 
 
 .438 
 
 .500 
 
 .563 
 
 .625 
 
 1 
 
 .438 
 
 .500 
 
 .563 
 
 .625 
 
 .750 
 
 .875 
 
 1.00 
 
 1.13 
 
 1.25 
 
 ft 
 
 .656 
 
 .750 
 
 .844 
 
 .938 
 
 1.13 
 
 1.31 
 
 1.50 
 
 1.69 
 
 1.88 
 
 i 
 
 .875 
 
 1.00 
 
 1.13 
 
 1.25 
 
 1.50 
 
 1.75 
 
 2.00 
 
 2.25 
 
 2.50 
 
 A 
 
 1.09 
 
 1.25 
 
 1.41 
 
 1.56 
 
 1.88 
 
 2.19 
 
 2.50 
 
 2.81 
 
 3.13 
 
 
 1.31 
 
 1.50 
 
 1.69 
 
 1.88 
 
 2.25 
 
 2.63 
 
 3.00 
 
 3.38 
 
 3.75 
 
 TV 
 
 1.53 
 
 1.75 
 
 1.97 
 
 2.19 
 
 2.63 
 
 3.06 
 
 3.50 
 
 3.94 
 
 4.38 
 
 -> 1.75 
 
 2.00 
 
 2.25 
 
 2.50 
 
 3.00 
 
 3.50 
 
 4.00 
 
 4.50 
 
 5.00 
 
 
 
 
 
 
 
 
 
 
 ft |l-97 
 
 2.25 
 
 2.53 
 
 2.81 
 
 3.38 
 
 3.94 
 
 4.50 
 
 5.06 
 
 5.63 
 
 
 2.19 
 
 2.50 
 
 2.81- 
 
 3.13 
 
 3.75 
 
 4.38 
 
 5.00 
 
 5.63 
 
 6.25 
 
 H 2.41 
 
 2.75 
 
 3.09 
 
 3.44 
 
 4.13 
 
 4.81 
 
 5.50 
 
 6.19 
 
 6.88 
 
 2 |2.63 
 
 3.00 
 
 3.38 
 
 3.75 
 
 4.50 
 
 5.25 
 
 6.00 
 
 6.75 
 
 7.50 
 
 .1 .; 
 
 2.84 
 
 3.25 
 
 3.66 
 
 4.06 
 
 4.88 
 
 5.69 
 
 6.50 
 
 7.31 
 
 8.13 
 
 
 3.06 
 
 3.50 
 
 3.94 
 
 4.38 
 
 5.25 
 
 6.13 
 
 7.00 
 
 7.83 
 
 8.75 
 
 tt 
 
 3.28 
 
 3.75 
 
 4.22 
 
 4.69 
 
 5.63 
 
 6.56 
 
 7.50 
 
 8.44 
 
 9.38 
 
 
 3.50 
 
 4.00 
 
 4.50 
 
 5.00 
 
 6.00 
 
 7.00 
 
 8.00 
 
 9.00 
 
 10.00 
 
 5 
 
 3.72 
 
 4.25 
 
 4.78 
 
 5.31 
 
 6.38 
 
 7.44 
 
 8.50 
 
 9.56 
 
 10.63 
 
 H 
 
 3.94 
 
 4.50 
 
 5.06 
 
 5.63 
 
 6J5 
 
 7.88 
 
 9.00 
 
 10.13 
 
 11.25 
 
 . ift 
 
 4.16 
 
 4.75 
 
 5.34 
 
 5.94 
 
 7.13 
 
 8.31 
 
 9.50 
 
 10.69 
 
 11.88 
 
 li- 4.38 
 
 5.00 
 
 5.63 
 
 6.25 
 
 7.50 
 
 8.75 
 
 10.00 
 
 11.25 
 
 12.50 
 
 ift 
 
 4.59 
 
 5.25 
 
 5.91 
 
 6.56 
 
 7.88 
 
 9.19 
 
 10.50 
 
 11.81 
 
 13.13 
 
 li 
 
 4.81 
 
 5.50 
 
 6.19 
 
 6.88 
 
 8.25 
 
 9.63 
 
 11.00 
 
 12.38 
 
 13.75 
 
 1ft 
 
 5.03 
 
 5.75 
 
 6.47 
 
 7.19 
 
 8.6310.06 
 
 11.50 
 
 12.94 
 
 14.38 
 
 li 
 
 5.25 
 
 6.00 
 
 6.75 
 
 7.50 
 
 9.0010.50 
 
 12.00 
 
 13.50 
 
 15.00 
 
 ift 
 
 5.47 
 
 6.25 7.03 7.81 
 
 9.38]l0.94 
 
 12.50 
 
 14.06 
 
 15 '.63 
 
 If 
 
 5.69 
 
 6.50 
 
 7.31 
 
 8.13 
 
 9.7511.38 
 
 13.00 
 
 14.63 
 
 16.25 
 
 1H 
 
 5.91 
 
 6.75 
 
 7.59 8.44 
 
 10.13jll.81 
 
 13.50 
 
 15.19 
 
 16.88 
 
 ii 
 
 6.13 
 
 7.00 
 
 7.88 8.75 
 
 10. 50112. 25 
 
 14.00 
 
 15.75 
 
 17.50 
 
 lit 6.34 
 
 7.25 
 
 8.16 
 
 9.06 
 
 10.8812.6914.50 
 
 16.31 
 
 18.13 
 
 H 
 
 6.56 
 
 7.50 
 
 8.44 
 
 9.38 
 
 11. 25! 13. 13 15. 00 
 
 16.88 
 
 18.75 
 
 lit 
 
 6.78 
 
 7.75 
 
 8.72 
 
 9.69 
 
 11. 63! 13. 56 15. 50 
 
 17.44 
 
 19.38 
 
 2 
 
 7.00 
 
 8.00 
 
 9.00 10.00 
 
 12. 00 14. 00! 16. 00 
 
 18.00 
 
 20.00 
 
 
96 THE PASSAIC ROLLING MILL COMPANY. 
 
 WEIGHTS OF FLAT ROLLED IRON, 
 PER LINEAL FOOT. 
 
 Iron Weighing 480 Lbs. per Cubic Foot. 
 
 Thickness 
 in Inches. 
 
 
 *i 
 t 
 
 1" 
 
 u" 
 
 U" 
 
 If" 
 
 2" 
 
 sr 2*" 
 
 2f 
 
 3" 
 
 .208 
 .417 
 .625 
 .833 
 
 .260 
 .521 
 
 .781 
 1.04 
 
 .31 
 .62 
 .94 
 1.25 
 
 .36 
 .73 
 1.09 
 1.46 
 
 .42 
 .83 
 1.25 
 1.67 
 
 .47 
 .94 
 1.41 
 
 1.88 
 
 .52 
 1.04 
 1.56 
 
 2.08 
 
 .57 
 1.15 
 1.72 
 2.29 
 
 0.62 
 1.25 
 
 1.88 
 2.50 
 
 i* 
 
 i ^ 
 
 7^ 
 
 I H 
 
 1.04 
 1.25 
 1.46 
 1.67 
 
 1.30 
 1.56 
 1.82 
 
 2.08 
 
 1.56 
 
 1.88 
 2.19 
 2.50 
 
 1.82 
 2.19 
 2.55 
 2.92 
 
 2.08 
 2.50 
 2.92 
 3.33 
 
 2.34 
 
 2.81 
 3.28 
 3.75 
 
 2.60 
 3.13 
 3.65 
 4.17 
 
 2.86 
 3.44 
 4.01 
 
 4.58 
 
 3.13J 
 
 3.75| 
 4.38! 
 5.00! 
 
 1.88 
 2.08 
 2.29 
 2.50 
 
 2.34 
 2.60 
 2.86 
 3.13 
 
 2.81 
 3.13 
 3.44 
 3.75 
 
 3.28 
 3.65 
 4.01 
 4.38 
 
 3.75 
 4.17 
 
 4.58 
 5.00 
 
 5.42 
 5.83 
 6.25 
 6.67 
 
 4.22 
 4.69 
 5.16 
 5.63 
 
 4.69 
 5.21 
 5.73 
 6.25 
 
 5.16 
 5.73 
 6.30 
 
 6.88 
 
 5.63 
 
 6.25 
 6.88! 
 7.50 
 
 8.13 
 
 8.75 
 9.38 
 10.00 
 
 H 
 
 I " 
 
 c 
 
 H 
 
 ^C 
 
 f 
 
 ^ 
 
 2.71 
 2.92 
 3.13 
 3.33 
 
 3.39 
 3.65 
 3.91 
 4.17 
 
 4.06 
 4.38 
 4.69 
 5.00 
 
 4.74 
 5.10 
 5.47 
 5.83 
 
 6.09 
 6.56 
 7.03 
 
 7.50 
 
 6.77 
 7.29 
 
 7.81 
 8.33 
 
 7.45 
 8.02 
 8.59 
 9.17 
 
 3.54 
 3.75 
 3.96 
 4.17 
 
 4.43 
 4.69 
 4.95 
 5.21 
 
 5.31 
 5.63 
 5.94 
 6.25 
 
 6.56 
 6.88 
 7,19 
 7.50 
 
 6.20 
 6.56 
 6.93 
 7.29 
 
 7.08 
 7.50 
 7.92 
 8.33 
 
 7.97 
 
 8.44 
 8.91 
 9.38 
 
 8.85 
 9.38 
 9.90 
 10.42 
 
 9.74 
 10.31 
 10.89 
 11.46 
 
 10.63 
 11.25 
 11.88 
 12.50 
 
 4.37 
 
 4.58 
 4.79 
 5.00 
 
 5.47 
 5.73 
 5.99 
 6.25 
 
 7.66 
 8.02 
 8.39 
 
 8.75 
 
 8.75 9.84 
 9.1710.31 
 9.58)10.78 
 10.0011.25 
 
 10.94 
 11.46 
 11.98 
 
 12.50 
 
 12.03 
 12.60 
 13.18 
 13.75 
 
 13.13 
 
 13.75 
 14.38 
 15.00 
 
 5.21 
 5.42 
 5.63 
 5.83 
 
 6.51 
 
 6.77 
 7.03 
 7.29 
 
 7.81 9.11 
 8.13 9.48 
 8.44! 9.84 
 8.7510.2J 
 
 10.4211.72 
 10.8312.19 
 11.2512.66 
 11.6713.13 
 
 13.0214.32 15.63 
 13.5414.9016.25 
 14.0615.47 16.88 
 14. 58^6. 04(17.50 
 
 lit 
 
 11 
 
 2 iH - 
 
 Of 
 
 6.04 
 6.25 
 6.46 
 6.67 
 
 7.55 
 
 7.81 
 8.07 
 8.33 
 
 9.0610.57 
 9.38)10.94 
 
 9.6911.30 
 10.0011.67 
 
 12. 08| 13. 59 
 12.5014.06 
 12.9214.53 
 13.3315.00 
 
 15.1016.61 
 15.6317.19 
 16.1517.76 
 16.6718.33 
 
 18.13 
 
 18.75: 
 19.38 
 20 . 00 
 
 i 
 
is 
 
 THE PASSAIC ROLLING MILL COMPANY. 97 
 
 WEIGHTS OF FLAT ROLLED IRON, 
 PER LINEAL FOOT. 
 
 Iron Weighing 480 Lbs. per Cubic Foot. 
 
 Thickness 
 in Inches. 
 
 8*" 
 
 4" 
 
 w 
 
 5" 
 
 6" 
 
 7" 
 
 8" 
 
 9" 
 
 10" 
 
 -h 
 ft 
 
 ~4 
 
 0.73 
 1.46 
 2.19 
 2.92 
 
 0.83 
 1.67 
 2.50 
 3.33 
 
 0.94 
 
 1.88 
 2.81 
 3.75 
 
 1.04 
 2.08 
 3.13 
 4.17 
 
 1.25 
 
 2.50 
 3.75 
 5.00 
 
 1.46 
 2.92 
 4.38 
 
 5.83 
 
 1.67 
 3.33 
 5.00 
 6.67 
 
 1.88 
 3.75 
 5.63 
 7.50 
 
 2.08 
 4.17 
 6.25 
 8.33 
 
 , * 
 
 1 ^ 
 
 3.65 
 4.38 
 5.10 
 5.83 
 
 4.17 
 
 5.00 
 5.83 
 6.67 
 
 4.69 5.21 
 5.63 6.25 
 6.561 7.29 
 7.50 8.33 
 
 6.25 
 7.50 
 
 8.75 
 10.00 
 
 7.29 
 8.75 
 10.21 
 11.67 
 
 8.33 
 10.00 
 11.67 
 13.33 
 
 9.38 
 11.25 
 13.13 
 15.00 
 
 10.42 
 12.50 
 14.58 
 16.67 
 
 ft 
 
 f 
 
 H 
 
 6.56 
 7.29 
 
 8.02 
 
 8.75 
 
 7.50 
 8.33 
 9.17 
 10.00 
 
 8.44 9.38 
 9.3810.42 
 10.3111.46 
 11.2512.50 
 
 11.25 
 12.50 
 13.75 
 15.00 
 
 13.13 
 14.58 
 16.04 
 
 17.50 
 
 15.00 
 16.67 
 18.33 
 20.00 
 
 16.88 
 18.75 
 20.63 
 22.50 
 
 18.75 
 20.83 
 22.92 
 25.00 
 
 s 
 
 !_? 
 
 9.48 
 10.21 
 10.94 
 11.67 
 
 10.83 
 11.67 
 12.50 
 13.33 
 
 12.1913.54 
 13.1314.58 
 14.0615.63 
 15.0016.67 
 
 16.25 
 
 17.50 
 18.75 
 20.00 
 
 18.96 
 20.42 
 
 21.88 
 23.33 
 
 21.67 
 23.33 
 25.00 
 26.67 
 
 24.38 
 26.25 
 28.13 
 30.00 
 
 27.08 
 29.17 
 31.25 
 33.33 
 
 u 1 * 
 i* 
 
 u 
 
 12.40 
 13.13 
 13.85 
 14.58 
 
 14.17 
 15.00 
 15.83 
 16.67 
 
 15. 94l 17. 71 
 
 16.8818.75 
 17.8119.79 
 18.7520.83 
 
 21.25 
 
 22.50 
 23.75 
 25.00 
 
 24.79 
 26.25 
 27.71 
 29.17 
 
 28.33 
 30.00 
 31.67 
 33.33 
 
 31.88 
 33.75 
 35.63 
 37.50 
 
 35.42 
 
 37.50 
 39.58 
 41.67 
 
 I* 
 
 l! 
 
 l* 1 * 
 
 15.31 
 16.04 
 16.77 
 17.50 
 
 17.50 
 18.33 
 19.17 
 
 20.00 
 
 19.69 
 20.63 
 21.56 
 
 22.50 
 
 21.88 
 22.92 
 23.96 
 25.00 
 
 26.25 
 27.50 
 
 28.75 
 30.00 
 
 30.62 
 32.08 
 33.54 
 35.00 
 
 35.00 
 36.67 
 38.33 
 40.00 
 
 39.38 
 41.25 
 43.13 
 45.0d 
 
 43.75 
 45.83 
 47.92 
 50.00 
 
 I* 
 
 1^ 
 
 18.23 
 18.96 
 19.69 
 20.42 
 
 20.83 
 21.67 
 22.50 
 23.33 
 
 23.44 
 24.38 
 25.31 
 26.25 
 
 26.04 
 
 27.08 
 28.13 
 29.17 
 
 31.2536.46 
 32.5037.92 
 33.7539.38 
 35.0040.83 
 
 41.67 
 43.33 
 
 45.00 
 46.67 
 
 46.88 
 48.75 
 50.63 
 52.50 
 
 52.08 
 54.17 
 56.25 
 58.33 
 
 U* 
 
 a 
 
 ^ 
 
 21.15 
 
 21.88 
 22.60 
 23.33 
 
 24.17 
 
 25.00 
 25.83 
 26.67 
 
 27. 19! 30. 21 
 28.1331.25 
 29.0632.29 
 30.0033.33 
 
 36.25 
 37.50 
 38.75 
 40.00 
 
 42.29 
 43.75 
 45.21 
 46.67 
 
 48.33 
 50.00 
 51.67 
 53.33 
 
 54.38 
 56.25 
 58.13 
 60.00 
 
 60.42 
 62.50 
 64.58 
 66.67 
 
 - a 
 
98 
 
 THE PASSAIC ROLLING MILL COMPANY. 
 
 WEIGHTS OF PLATE IKON, PEE LINEAL FOOT 
 
 00 
 
 
 CO 
 
 
 o> 
 
 00 
 
 CO 
 
 o 
 
 ? 
 
 tO O tO O 
 rH rH CO 
 
 i> tO CO rH 
 
 *< o <* oi 
 
 CO uO TO O 
 rH 1> CO O 
 
 8888 888 
 
 tO O tO O 
 CO i> i> 00 
 O CS 00 t>.~ 
 
 CO O GO CO 
 
 O5 C5 00 00 
 
 CO CO O CO 
 COCO O CO 
 
 -8 
 
 00 
 CO 
 
 CO I CO rH tO 
 
 iO I O CO CO 
 
 CO ^f ^t 1 uO 
 
 Ci CO l>. rH 
 
 rH (M! OJ CO 
 
 00 CJ CO O 
 rH OJ (D CO 
 
 rH O CS -^T 
 J> CQ l^ CO 
 
 CO CO CO O 
 
 00 ^f C5 tO 
 
 COCO O t^ 
 
 C5 00 t* CO 
 
 OJ O GO O 
 
 050 OS CO 
 
 CO 
 CO 
 
 CO O 
 rt O 
 
 CO CO CO CO I CO 
 
 S8S8 IS8S8 
 
 rH CO CO CO 
 CO 05 CO CO 
 
 ssss 
 
8 
 
 THE PASSAIC ROLLING MILL COMPANY. 99 
 
 IGHTS OF PLATE IEON, PEE LINEAL FOOT 
 
 00 
 
 
 a* 
 
 i 
 
 Thickness 
 in Inches. 
 
 ' W Tf 
 b-OO 
 
 lOO lO O 
 
 en o w 
 
 ^ CO 
 
 ot-coo 
 
 O CO 00 O 
 r-l OJ <* 
 
 rH CM CM CO 
 
 >1 oi *-* co 
 
 Lc CO 00 Ci 
 
 1> CO J> 
 
 lO 
 CO 
 
 O rH rH 
 -^ COTf 
 
 j> o co co 
 
 i-HO COCO 
 
 00 
 00 
 
 S8 
 
 >O 
 CM 
 
 o co CQ ci> 
 
 ^P !MCOO 
 1> . 
 
 rf Tf o 
 
 COOi-H W 
 
 rj* GO CM 1> 
 CO ^P lO CD 
 
 O O O O I 
 
 d8Si 
 
 CO 1> uO CO 
 O T-H t>- CO 
 
 rf Oi i^ rf 
 
 00 O T-H CO 
 
 "O^ss 
 
 CO CO O 
 
 o o o o 
 
 CMOOJO rHl>.COO 
 rH rH C^l CO CO ^T O 
 
 00 CO 1> I rH O O5 * 
 O rH T-H CM CM CM CO 
 
 CO CM 1> CO 
 
 (fc O5 T^l i-H 
 
 81? 81" 
 
 i> 1> 00 O5 
 
 0500 GO i> 
 
 Oi O GO CO 
 OrH rH CM 
 _rH rH rH rH' 
 
 SUpr 
 
 SS 
 
 O CO rH O I 
 1>00 O50 
 
 flil'i 
 
 oOrH 
 
 Oi Ci T-H T 1 
 
 sail 
 
 O iO O 
 O 1> O 
 
 GO 00 O5 rH 
 
 ^ o co < 
 
 lO CO CO 
 
100 THE PASSAIC ROLLING MILL COMPANY. 
 
 WEIGHT PEE SQUARE FOOT or SHEETS OF 
 
 WROUGHT IKON, STEEL, COPPER, 
 
 AND BRASS. 
 
 THICKNESS BY BIRMINGHAM GAUGE. 
 
 No. of 
 Gauge. 
 
 Thickness 
 in Inches. 
 
 Iron. 
 
 Steel. 
 
 Copper. Brass. 
 
 0000 .454 
 
 18.22 
 
 18.46 
 
 20.57 19.43 
 
 uoo 
 
 .425 
 
 17.05 
 
 17.28 
 
 19.25 18.19 
 
 00 
 
 .38 
 
 15.25 
 
 15.45 
 
 17.21 
 
 16.26 
 
 
 
 .34 
 
 13.64 
 
 13.82 
 
 15.40 
 
 14.55 
 
 1 
 
 .3 
 
 12.04 
 
 12.20 
 
 13.59 
 
 12.84 
 
 2 
 
 .284 
 
 11.40 
 
 11.55 
 
 12.87 
 
 12.16 
 
 3 
 
 .259 
 
 10.39 
 
 10.53 
 
 11.73 
 
 11.09 
 
 4 
 
 .238 
 
 9.55 
 
 9.68 
 
 10.78 
 
 10.19 
 
 5 
 
 .22 
 
 8.83 
 
 8.95 
 
 9.97 
 
 9.42 
 
 6 
 
 .203 
 
 8.15 
 
 8.25 
 
 9.20 
 
 8.69 
 
 7 
 
 .18 
 
 7.22 
 
 7.32 
 
 8.15 
 
 7.70 
 
 8 
 
 .165 
 
 6.62 
 
 6.71 
 
 7.47 
 
 7.06 
 
 9 
 
 .148 
 
 5.94 
 
 6.02 6.70 
 
 6.33 
 
 10 
 
 .134 
 
 5-38 
 
 5.45 6.07 
 
 5.74 
 
 11 
 
 .12 
 
 4.82 
 
 4.88 5.44 
 
 5.14 
 
 12 
 
 .109 
 
 4.37 
 
 4.43 4.94 4.67 
 
 13 
 
 .095 
 
 3.81 
 
 3.86 4.30 
 
 4.07 
 
 14 
 
 .083 
 
 3.33 
 
 3.37 3.76 
 
 3.55 
 
 15 
 
 .072 
 
 2.89 
 
 2.93 3.26 
 
 3.08 
 
 16 
 
 .065 
 
 2.61 
 
 2.64 2.94 2-78 
 
 17 
 
 .058 
 
 2-33 
 
 2.36 2.63 2.48 
 
 18 
 
 .049 
 
 1.97 
 
 1.99 2.22 2.10 
 
 19 
 
 .042 
 
 1.69 
 
 1.71 1.90 1.80 
 
 20 
 
 .035 
 
 1.40 
 
 1.42 1.59 1.50 
 
 21 
 
 .032 
 
 1.28 
 
 1.30 1.45 1.37 
 
 22 
 
 .028 
 
 1.12 
 
 1.14 1.27 
 
 1.20 
 
 23 
 
 .025 
 
 l.CO 
 
 1.02 1.13 
 
 1.07 
 
 24 
 
 .022 
 
 .883 
 
 .895 1.00 .942 
 
 25 
 
 .02 
 
 .803 
 
 .813 .906 .856 
 
 26 
 
 .018 
 
 .722 .732 
 
 .815 
 
 .770 
 
 27 
 
 .016 
 
 .642 .651 
 
 .725 
 
 .685 
 
 28 
 
 .014 
 
 .562 i .569 
 
 .634 
 
 .599 
 
 29 
 
 .013 
 
 .522 .529 
 
 .589 
 
 .556 
 
 30 
 
 .012 
 
 .482 l .488 ; .544 
 
 .514 
 
 31 
 
 .01 .401 .407 .453 
 
 .428 
 
 32 
 
 .009 .361 ! .366 
 
 .408 
 
 .385 
 
 33 
 
 .008 .321 .325 
 
 .362 
 
 .342 
 
 34 
 
 .007 .281 
 
 .285 
 
 .317 
 
 .300 
 
 35 
 
 .005 
 
 .201 
 
 .203 
 
 .227 
 
 .214 
 
 Specific Gravity . . 
 
 7.704 
 
 7.806 
 
 8.698 
 
 8.218 
 
 Weight Cubic ft. . 
 
 481.25 
 
 487.75 
 
 543.6 
 
 513.6 
 
 Weight Cubic in. 
 
 .2787 
 
 .2823 
 
 .3146 
 
 .2972 
 
 I 
 
THE PASSAIC ROLLING MILL COMPANY. 101 
 
 WEIGHT PER SQUARE FOOT OF SHEETS OF 
 
 WROUGHT IRON, STEEL, COPPER, 
 
 AND BRASS. 
 
 THICKNESS BY AMERICAN GAUGE. 
 
 No. of 
 Gauge. 
 
 Thickness 
 in Inches. 
 
 Iron. 
 
 Steel. 
 
 Copper. 
 
 Brass. 
 
 0000 
 
 .46 
 
 18.46 
 
 18.70 
 
 20.84 
 
 '19.69 
 
 000 
 
 .4096 
 
 16.44 
 
 16.66 
 
 18.56 
 
 17.53 
 
 00 
 
 .3648 
 
 14.64 
 
 14.83 
 
 16.53 
 
 15.61 
 
 
 
 .3249 
 
 13.04 
 
 13.21 
 
 14.72 
 
 13.90 
 
 1 
 
 .2893 
 
 11.61 
 
 11.76 
 
 13.11 
 
 12.38 
 
 2 
 
 .2576 
 
 10.34 
 
 10.48 
 
 11.67 
 
 11.03 
 
 3 
 
 .2294 
 
 9.21 
 
 9.33 
 
 10.39 
 
 9.82 
 
 4 
 
 .2043 
 
 8.20 
 
 8.31 
 
 9.26 
 
 8.74 
 
 5 
 
 .1819 
 
 7.30 
 
 7.40 
 
 8.24 
 
 7.79 
 
 6 
 
 .1620 
 
 6.50 
 
 6.59 
 
 7.34 
 
 6.93 
 
 7 
 
 .1443 
 
 5.79 
 
 5.87 
 
 6.54 
 
 6.18 
 
 8 
 
 .1285 
 
 5.16 
 
 5.22 
 
 5.82 
 
 5.50 
 
 9 
 
 .1144 
 
 4.59 
 
 4.65 
 
 5.18 
 
 4.90 
 
 10 
 
 .1019 
 
 4.09 
 
 4.14 
 
 4.62 
 
 4.36 
 
 11 
 
 .0907 
 
 3.64 
 
 3-69 
 
 4.11 
 
 3.88 
 
 12 
 
 .0808 
 
 3.24 
 
 3.29 
 
 3.66 
 
 3.46 
 
 13 
 
 .0720 
 
 2.89 
 
 2.93 
 
 3.26 
 
 3.08 
 
 14 
 
 .0641 
 
 2.57 
 
 2.61 
 
 2.90 
 
 2.74 
 
 15 
 
 .0571 
 
 2.29 
 
 2.32 
 
 2.59 
 
 2.44 
 
 16 
 
 .0508 
 
 2.04 
 
 2.07 
 
 2.30 
 
 2.18 
 
 17 
 
 .0453 
 
 1.82 
 
 .84 
 
 2.05 
 
 1.94 
 
 18 
 
 .0403 
 
 1.62 
 
 .64 
 
 1.83 
 
 1.73 
 
 19 
 
 .0359 
 
 1.44 
 
 .46 
 
 1.63 
 
 1.54 
 
 20 
 
 .0320 
 
 1.28 
 
 .30 
 
 1.45 
 
 1.37 
 
 21 
 
 .0285 
 
 1.14 
 
 .16 
 
 1 29 
 
 1.22 
 
 22 
 
 .0253 
 
 1.02 
 
 .03 
 
 1.15 
 
 1.08 
 
 23 
 
 .0226 
 
 .906 
 
 .918 
 
 1.02 
 
 .966 
 
 24 
 
 .0201 
 
 .807 
 
 .817 
 
 .911 
 
 .860 
 
 25 
 
 .0179 
 
 .718 
 
 .728 
 
 .811 
 
 .766 
 
 26 
 
 .0159 
 
 .640 
 
 .648 
 
 .722 
 
 .682 
 
 27. 
 
 .0142 
 
 .570 
 
 .577 
 
 .643 
 
 .608 
 
 28 
 
 .0126 
 
 .507 
 
 .514 
 
 .573 
 
 .541 
 
 29 
 
 .0113 
 
 .452 
 
 .458 
 
 .510 
 
 .482 
 
 30 
 
 .0100 
 
 .402 
 
 .408 
 
 .454 
 
 .429 
 
 31 
 
 .0089 
 
 .358 
 
 .363 
 
 .404 
 
 .382 
 
 32 
 
 .0080 
 
 .319 
 
 .323 
 
 .360 
 
 .340 
 
 33 
 
 .0071 
 
 .284 
 
 .288 
 
 .321 
 
 .303 
 
 34 
 
 .0063 
 
 .253 
 
 .256 
 
 .286 
 
 .270 
 
 35 
 
 .0056 
 
 .225 
 
 .228 
 
 .254 
 
 .240 
 
 As there are many gauges in use differing from each other, and even the 
 thicknesses of a certain specified gauge, as the Birmingham, are not assum- 
 ed the same by all manufacturers, orders for sheets and wire should always 
 state the weight per n foot or the thickness in thousandths of an inch. 
 
102 THE PASSAIC ROLLING MILL COMPANY. 
 
 DIFFEEENT STANDARDS FOR WIRE 
 GlAUdE IN USE IN THE TJ. S. 
 
 DIMENSIONS IN DECIMAL PARTS OF AN INCH. 
 
 Number 
 of 
 Wire 
 Gauge. 
 
 American, or Birm- 
 Brown ingham, 
 & or 
 Sharpe. Stubs'. 
 
 Washburn 
 & Moen 
 Mnfg. Co., 
 Worcester, 
 Mass. 
 
 Trenton 
 Iron Co., 
 Trenton, 
 N.J. 
 
 G. W. 
 
 Prentiss, 
 Holyoke, 
 Mass. 
 
 Old 
 English, 
 from Brass 
 Mfrs. List. 
 
 000000 
 
 
 
 .46 
 
 
 
 
 OGOOO 
 
 
 
 .43 
 
 .45 
 
 
 
 0000 
 
 .46 
 
 .454 
 
 .393 
 
 .4 
 
 
 
 000 
 
 .40964 
 
 .425 
 
 .362 
 
 .36 
 
 .3586 
 
 
 00 
 
 .3648 
 
 .38 
 
 .331 
 
 .33 
 
 .3282 
 
 
 
 
 .32495 
 
 .34 
 
 .307 
 
 .305 
 
 .2994 
 
 
 1 
 
 .2893 
 
 .3 
 
 .283 
 
 .285 
 
 .2777 
 
 
 2 
 
 .25763 
 
 .284 
 
 .263 
 
 .265 
 
 .2591 
 
 
 3 
 
 .22942 
 
 .259 
 
 .244 
 
 .245 
 
 .2401 
 
 
 4 
 
 .20431 
 
 .238 
 
 .225 
 
 .225 
 
 .223 
 
 
 5 
 
 .18194 
 
 .22 
 
 .207 
 
 .205 
 
 .2047 
 
 
 6 
 
 .16-202 
 
 .203 
 
 .192 
 
 .19 
 
 .1885 
 
 
 7 
 
 .14428 
 
 .18 
 
 .177 
 
 .175 
 
 .1758 
 
 
 8 
 
 .12849 
 
 .165 
 
 .162 
 
 .16 
 
 .1605 
 
 
 9 
 
 .11443 
 
 .148 
 
 .148 
 
 . .145 
 
 .1471 
 
 
 10 
 
 .10189 
 
 .134 
 
 .135 
 
 .13 
 
 .1351 
 
 
 11 
 
 .090742 
 
 .12 
 
 .12 
 
 .1175 
 
 .1205 
 
 
 12 
 
 .080808 
 
 .109 
 
 .105 
 
 .105 
 
 .1065 
 
 
 13 
 
 .071961 
 
 .095 
 
 .092 
 
 .0925 
 
 .0928 i 
 
 14 
 
 .064084 
 
 .083 
 
 .08 
 
 .08 
 
 .0816 ! .083 
 
 15 
 
 .057068 
 
 .072 
 
 .072 
 
 .07 
 
 .0726 .072 
 
 16 
 
 .05082 
 
 .065 
 
 .063 
 
 .061 
 
 .0627 .065 
 
 17 
 
 .045257 
 
 .058 
 
 .054 
 
 .0525 
 
 .0546 .058 
 
 18 
 
 .040303 
 
 .049 
 
 .047 
 
 .045 
 
 .0478 : .049 
 
 19 
 
 .03539 
 
 .042 
 
 .041 
 
 .039 
 
 .0411 j .04 
 
 20 
 
 .031961 
 
 .035 
 
 .035 
 
 .034 
 
 .0351 .035 
 
 21 
 
 .028462 
 
 .032 
 
 .032 
 
 .03 
 
 .0321 .0315 
 
 22 
 
 .025347 
 
 .028 
 
 .028 
 
 .027 
 
 .029 .0295 
 
 23 
 
 .022571 
 
 .025 
 
 .025 
 
 .024 
 
 .0261 ! .027 
 
 24 
 
 .0201 
 
 .022 
 
 .023 
 
 .0215 
 
 .0231 i .025 
 
 25 
 
 .0179 
 
 .02 
 
 .02 
 
 .019 
 
 .0212 .023 
 
 26 
 
 .01594 
 
 .018 
 
 .018 
 
 .018 
 
 .0194 1 .0205 
 
 27 
 
 .014195 
 
 .016 
 
 .017 
 
 .017 
 
 .018-2 ! .01875 
 
 28 
 
 .012641 
 
 .014 
 
 .016 
 
 .016 
 
 .017 
 
 .0165 
 
 29 
 
 .011257 
 
 .013 
 
 .015 
 
 .015 
 
 .0163 
 
 .0155 
 
 30 
 
 .010025 
 
 .012 
 
 .014 
 
 .014 
 
 .0156 .01375 
 
 31 
 
 .008928 
 
 .01 .0135 
 
 .013 
 
 .0146 .01225 
 
 32 
 
 .00795 
 
 .009 
 
 .013 
 
 .012 
 
 .0136 i .01125 
 
 33 
 
 .00708 
 
 .008 
 
 .011 
 
 .011 
 
 .013 .01025 
 
 34 
 
 .006304 
 
 .007 
 
 .01 
 
 .01 
 
 .0118 .0095 
 
 35 
 
 .005614 
 
 .005 
 
 .0095 
 
 .009 
 
 .0109 i .009 
 
 1 
 
 
 
 1 
 
THE PASSAIC ROLLING MILL COMPANY. 103 
 
 GALVANIZED AND BLACK IRON. 
 
 Weight in Pounds per Square Foot of Galvanized 
 Sheet Iron, both Flat and Corrugated. 
 
 The numbers and thicknesses are those of the iron before it 
 is galvanized. When a flat sheet (the ordinary size of which 
 is from 2 to 2^ feet in width, by 6 to 8 feet in length) is 
 converted into a corrugated one, with corrugations 5 inches 
 wide from center to center, and about an inch deep (the com- 
 mon sizes), its width is thereby reduced about yjyth part, or 
 from 30 to 27 inches ; and consequently the weight per square, 
 foot of area 'covered is increased about ^th part. When 
 the corrugated sheets are laid upon a roof, the overlapping 
 of about 2.y 2 inches along their sides, and of four inches along 
 their ends, diminishes the covered area about yth part more ; 
 making their weight per square foot of roof about ^th part 
 greater than before. Or the weight of corrugated iron per 
 square foot, in place on a roof, is about l / z greater than that of 
 the flat sheets of above sizes of which it is made. 
 
 Number 
 \. v 
 
 BLACK. 
 
 GALVANIZED. 
 
 oy 
 Birmingham 
 Wire Gauge. 
 
 Thickness 
 in inches. 
 
 Flat. 
 Lbs. 
 
 Flat. 
 Lbs. 
 
 Corrugated. 
 Lbs. 
 
 3or. on Roof. 
 Lbs. 
 
 30 
 
 .012 
 
 .485 
 
 .806 
 
 .896 
 
 1.08 
 
 29 
 
 .013 
 
 .526 
 
 .857 
 
 .952 
 
 1.14 
 
 28 
 
 .014 
 
 .565 
 
 .897 
 
 .997 
 
 1.20 
 
 27 
 
 .016 
 
 .646 
 
 .978 
 
 1.09 
 
 r.so 
 
 26 
 
 .018 
 
 .722 
 
 1.06 
 
 1.18 
 
 1.41 
 
 25 
 
 .020 
 
 .808 
 
 1.14 
 
 1.27 
 
 1.52 
 
 24 
 
 .022 
 
 .889 1.22 
 
 1.36 
 
 1.62 
 
 23 
 
 .025 
 
 1.01 
 
 1.34 
 
 1.49 
 
 1.79 
 
 22 
 
 .028 
 
 1.13 
 
 1.46 
 
 1.62 
 
 1.95 
 
 21 
 
 .032 
 
 1.29 
 
 1.63 
 
 1.81 
 
 2.17 
 
 20 
 
 .035 
 
 1.41 
 
 1.75 
 
 1.94 
 
 2.33 
 
 19 
 
 .042 
 
 1.69 
 
 2 03 
 
 2.26 
 
 2,71 
 
 18 
 
 .049 
 
 1.98 
 
 2.32 
 
 2.58 
 
 3.09 
 
 17 
 
 .058 
 
 2.34 
 
 2.68 
 
 2.98 
 
 3.57 
 
 16 
 
 .065 
 
 2.63 
 
 2.9B 
 
 3.29 
 
 3.95 
 
 15 
 
 .072 
 
 2.91 
 
 3.25 
 
 3.61 
 
 4.33 
 
 14 
 
 .033 
 
 3.36 
 
 3.69 
 
 4.10 
 
 4.92 
 
 13 
 
 .095 
 
 3.84 
 
 4.18 
 
 4.64 
 
 5.57 
 
 NOTE. The galvanizing of sheet iron adds about one-third of a pound 
 to its weight per square foot. 
 
104 THE PASSAIC ROLLING MILL COMPANY. 
 
 WIRE IKON, STEEL, COPPEK, BRASS. 
 
 Weight of 100 Feet in Pounds. 
 
 BIRMINGHAM WIRE GAUGE. 
 
 No. of 
 Gauge. 
 
 PER LINEAL FOOT. 
 
 Iron. 
 
 Steel. 
 
 Copper. 
 
 Brass. 
 
 0000 
 
 54.62 
 
 55.13 
 
 62.39 
 
 58.93 
 
 000 
 
 47.86 
 
 48.32 
 
 54.67 
 
 51.64 
 
 00 
 
 38.27 
 
 38.63 
 
 43.71 
 
 41.28 
 
 30.63 
 
 30.92 
 
 34.99 
 
 33.05 
 
 j 
 
 23.85 
 
 24.07 
 
 27.24 
 
 25.73 
 
 2 
 
 21.37 
 
 21.57 
 
 24.41 
 
 23.06 
 
 3 17.78 
 
 17.94 
 
 20.3 
 
 19.18 
 
 4 
 
 15.01 
 
 15.15 
 
 17.15 
 
 16.19 
 
 5 
 
 12.82 
 
 12.95 
 
 14.65 
 
 13.84 
 
 6 
 
 10.92 
 
 11.02 
 
 12.47 
 
 11.78 
 
 7 
 
 8.586 
 
 8.667 
 
 9.807 
 
 9.263 
 
 8 
 
 7.214 
 
 7.283 
 
 8.241 
 
 7.783 
 
 9 
 
 5.805 
 
 5.859 
 
 6.63 
 
 6.262 
 
 10 
 
 4.758 
 
 4.803 
 
 5.435 
 
 5-133 
 
 11 
 
 3.816 
 
 3.852 
 
 4.359 
 
 4.117 
 
 12 3.148 
 
 3.178 
 
 3.596 
 
 3.397 
 
 13 2.392 
 
 2.414 
 
 2.732 
 
 2.58 
 
 14 1.826 
 
 1.843 
 
 2.085 
 
 1.969 
 
 15 1.374 
 
 1.387 
 
 1.569 
 
 1.482 
 
 16 1.119 
 
 1.13 
 
 1.279 
 
 1.208 
 
 17 .8915 
 
 .9 
 
 1.018 
 
 .9618 
 
 18 .6363 
 
 .6423 
 
 .7268 
 
 .6864 
 
 19 .4675 
 
 .472 
 
 .534 
 
 .5043 
 
 20 .3246 
 
 .3277 
 
 .3709 
 
 .3502 
 
 21 .2714 
 
 .274 
 
 .31 
 
 .2929 
 
 22 
 
 .2079 
 
 .2098 
 
 .2373 
 
 .2241 
 
 23 
 
 .1656 
 
 .1672 
 
 .1892 
 
 .1788 
 
 24 .1283 
 
 .1295 
 
 .1465 
 
 .1384 
 
 25 .106 
 
 .107 
 
 .1211 
 
 .1144 
 
 26 
 
 .0859 
 
 .0867 
 
 .0981 
 
 .0926 
 
 27 
 
 .0678 
 
 .0685 
 
 .0775 
 
 .0732 
 
 28 
 
 .0519 
 
 .0524 
 
 .0593 
 
 .056 
 
 29 
 
 .0448 
 
 .0452 
 
 .0511 .0483 
 
 30 
 
 .0382 
 
 .0385 
 
 .0436 .0412 
 
 31 
 
 .0265 
 
 .0267 
 
 .0303 .0286 
 
 32 
 
 .0215 ! .0217 
 
 .0245 .0231 
 
 33 
 
 .017 .0171 
 
 .0194 
 
 .0183 
 
 34 
 
 .013 
 
 .0131 
 
 .0148 
 
 .014 
 
 35 
 
 .0066 
 
 .0067 
 
 .0076 
 
 .0071 
 
 36 
 
 .0042 
 
 .0043 
 
 .0048 
 
 .0046 
 
 
 
 
 
 
 I 
 
THE PASSAIC ROLLING MILL COMPANY. 105 
 
 JH rj 
 
 P3 
 
 O 
 
 eg <s 
 
 - ! J3 
 s 'C t3 
 
 2 3 
 !w 
 
 s-s 
 
 fl fl 
 
 EH 
 
 GQ 
 
 O J 
 
 OQ 
 
 cq 
 p 
 
 n 
 
 8 
 
 33 
 "d "^ 
 > > 
 
 22 
 
 P 
 
 
 
 
 
 rH r- <M <? CO t- 05 C * 
 
 C J* 00 CO 00 -* O 
 
 Length of 
 Pipe 
 containing 
 1 cubic ft. 
 
 
 . (M rH ?O 00 
 
 ^lOOC^OCOCOC^COO 
 
 fa O5 t- 1O TJI CO < 
 
 gth of 
 pe per a 
 oot inside 
 Surface. 
 
 Le 
 Pip 
 
 External 
 Circum- 
 ference. 
 
 "rt C 
 
 Act 
 ut 
 
 11. 
 
 Sr-IC^TtllCt-OCOt- 
 
 H 'r-irHr-idcO-iiiOtCt-loii-idTjJiOci 
 
 i IM C^ (M <M S ! 
 
 CO * T( IO IO 5O t- 00 Cl O 
 
 -s 
 
- 
 
 106 THE PASSAIC ROLLING MILL COMPANY. 
 
 BOLTS WITH SQUARE HEADS AND 
 NUTS. 
 
 Weight of 100 Bolts. 
 
 ^ength. 
 Inches. 
 
 i" 
 
 1" 
 
 4" 
 
 f i" 
 
 I" 
 
 1" 
 
 H" 
 
 H" 
 
 U 
 
 5.0 
 
 14.6 
 
 28 
 
 ~53~ 
 
 88 
 
 145 
 
 172 
 
 221 
 
 371 
 
 2 5.7 
 
 16.1 
 
 31 
 
 57 
 
 94 
 
 153 
 
 183 
 
 235 i 388 
 
 2 6.4 
 
 17.6 
 
 34 
 
 61 
 
 100 
 
 162 
 
 194 
 
 249 405 
 
 3 
 
 7.1 
 
 19.2 
 
 36 
 
 65 
 
 106 
 
 170 
 
 205 
 
 263 
 
 422 
 
 31 
 
 7.8 
 
 21.7 
 
 39 
 
 70 
 
 112 
 
 178 
 
 216 
 
 276 
 
 439 
 
 4 
 
 8.5 
 
 22.2 
 
 42 
 
 74 
 
 118 
 
 187 
 
 227 
 
 290 
 
 456 
 
 4i 
 
 9.2 
 
 23.7 
 
 44 
 
 78 
 
 125 
 
 195 
 
 238 
 
 304 
 
 473 
 
 5 
 
 9.8 
 
 25.3 
 
 47 
 
 83 
 
 131 
 
 203 
 
 249 
 
 318 
 
 490 
 
 5& 
 
 10.5 
 
 26.8 
 
 50 
 
 87 
 
 137 
 
 212 
 
 260 
 
 332 
 
 507 
 
 6 
 
 11.2 
 
 28.3 
 
 53 
 
 91 1 143 
 
 220 
 
 271 
 
 345 
 
 524 
 
 61 
 
 11.9 
 
 29.9 
 
 55 
 
 95 
 
 149 
 
 228 
 
 282 
 
 360 
 
 542 
 
 7 
 
 12.5 
 
 31.4 
 
 58 
 
 100 
 
 155 
 
 237 
 
 293 
 
 372 558 
 
 7^ 
 
 13.2 
 
 33.0 
 
 61 
 
 104 
 
 161 
 
 245 
 
 304 
 
 397 
 
 576 
 
 8 
 
 13.9 
 
 34 5 
 
 64 
 
 108 
 
 167 
 
 253 
 
 315 
 
 401 
 
 593 
 
 9 
 
 15.3 
 
 37.5 
 
 69 
 
 116 
 
 179 
 
 270 
 
 337 
 
 428 
 
 628 
 
 10 
 
 16.6 
 
 41.6 
 
 74 
 
 125 
 
 192 
 
 287 
 
 359 
 
 456 
 
 660 
 
 11 
 
 18.0 
 
 43.7 
 
 80 
 
 134 
 
 204 
 
 303 
 
 381 
 
 483 
 
 694 
 
 12 19.4 
 
 46.8 
 
 85.4 
 
 142 
 
 216 
 
 320 
 
 402 
 
 511 729 
 
 Add for each foot increase in length. 
 
 16.4 
 
 36.8 
 
 65.4 102 ! 146 
 
 200 | 262 331 409 
 
 STANDARD SIZES OF WASHERS. 
 
 Number in 100 Lbs. 
 
 Diameter. 
 
 Size of i Thickness 
 Hole. 1 Wire Gauge. 
 
 Size of 
 Bolt. 
 
 Number in 
 100 Ibs. 
 
 Inch. 
 
 Inch. No. 
 
 Inch. 
 
 5 
 
 -fe 16 
 
 ^ 29,300 
 
 4 
 1 
 
 u 
 
 1 
 
 Te 
 
 16 
 14 
 11 
 
 ~s 
 
 18,000 
 7,600 
 3,300 ' 
 
 it 
 
 
 11 
 
 "ft" 
 
 2,180 
 
 
 H 
 
 11 
 
 
 
 2,350 
 
 If 
 
 2 
 
 
 11 
 
 10 
 
 1 
 
 1,680 
 1,140 
 
 if 
 
 8 
 
 1 580 
 
 21 H' 8 
 
 li 470 
 
 3 15 
 
 7 
 
 1-1 360 
 
 3 
 
 * 
 
 li 
 
 6 
 
 1| 360 
 
THE PASSAIC ROLLING MILL COMPANY. 107 
 
 FRANKLIN INSTITUTE 
 
 STANDARD SIZES 
 
 SQUARE AND HEXAGTON NUTS. 
 
 Number of Each Size in 100 libs. 
 THESE NUTS ARE CHAMFERED AND TRIMMED. 
 
 Width. 
 
 Thickness 
 
 Hole. 
 
 Size of 
 Bolt. 
 
 Number of 
 Square. 
 
 Number of 
 Hexagon. 
 
 H 
 
 H 
 
 1 
 
 {1 
 
 $ 
 
 8140 
 3000 
 2320 
 
 9300 
 6200 
 3120 
 
 ti 
 
 
 1 
 
 P 
 
 1940 
 1180 
 
 2200 
 1350 
 
 H 
 
 A 
 
 ft 
 
 
 920 
 
 1000 
 
 
 
 2A 
 
 5. 
 
 738 
 
 830 
 
 H 
 
 3. 
 
 | 
 
 a. 
 
 420 
 
 488 
 
 
 7 
 
 
 I 
 
 280. 
 
 309 
 
 H* 
 
 1 
 
 |i 
 
 
 180 
 
 216 
 
 lit 
 
 H 
 
 n 
 
 li 
 
 130 
 
 148 
 
 2 
 
 u 
 
 1ft 
 
 li 
 
 96 
 
 111 
 
 2 1L. 
 
 if 
 
 1-3% 
 
 If 
 
 70 
 
 85 
 
 2f 
 
 H 
 
 
 H 
 
 60 
 
 70 
 
 HEXAGON NUTS. 
 
 SQUARE NUTS. 
 
 REGULAR SIZES. 
 
 REGULAR SIZES. 
 
 Width. 
 
 Thick- 
 ness. 
 
 Hole. 
 
 Size of 
 Bolt. 
 
 Number 
 in 
 100 Ibs. 
 
 Width. 
 
 Thick- 
 ness. 
 
 Hole. 
 
 Size of 
 Bolt. 
 
 Number 
 in 
 100 Ibs. 
 
 | 
 
 i 
 
 A 
 
 1 
 
 8600 
 
 ~^T~ 
 
 i - 
 
 ~~~ 
 
 i 
 
 6680 
 
 
 ft 
 
 ^i 
 
 ^ff 
 
 4260 
 
 1 
 
 ft 
 
 -17- 
 
 fr 
 
 3540 
 
 
 
 f 
 
 H 
 
 1 
 
 25CO 
 
 I 
 
 f 
 
 H 
 
 f 
 
 2050 
 
 I 4 
 
 
 ft 
 
 t 
 
 2180 
 900 
 
 f 
 
 . i 
 
 V 
 
 f 
 
 1380 
 
 840 
 
 1 
 
 TfV 
 
 H 
 
 ft 
 
 880 
 
 u 
 
 ? 
 
 ^ 
 
 P 
 
 650 
 
 U 
 
 f 
 
 H 
 
 5. 
 
 8 
 
 535 
 
 li 
 
 & 
 
 Ii 
 
 
 410 
 
 if 
 
 1 
 
 H 
 
 
 295 
 
 If 
 
 5 
 
 
 
 ^ 
 
 270 
 
 H 
 
 1 
 
 3. 
 
 4 
 
 1 
 
 224 
 
 
 8- 
 
 5. 
 
 i 
 
 215 
 
 
 l-i- 
 
 If 
 
 1 
 
 150 
 
 1| 
 
 
 ":?^ 
 
 1 
 
 140 
 
 2 4 
 
 lf 
 
 
 
 Ii 
 
 100 
 
 2 
 
 H 
 
 s 
 
 H 
 
 95 
 
 2 
 
 If 
 
 i 
 
 H 
 
 96 
 
 2^ 
 
 If 
 
 ITV 
 
 1-4- 
 
 72 
 
 2 4 - 
 
 H 
 
 
 if 
 
 72 
 
 2^ 
 
 Iz" 
 
 
 1| 
 
 45 
 
 1 
 
 i 
 
 1A 
 
 H 
 
 43 
 
 3 
 
 Ii 
 
 4 
 
 4 
 
 32 
 
108 THE PASSAIC ROLLING MILL COMPANY. 
 
 NAILS AND SPIKES. 
 
 Size, Length, and Number to the Pound. 
 
 CUMBERLAND NAIL AND IRON CO. 
 
 ORDINARY. 
 
 CLINCH. FINISHING. 
 
 Size. 
 
 Length. 
 
 No. 
 to Lb. 
 
 716 
 
 588 
 448 
 336 
 216 
 166 
 118 
 94 
 72^ 
 50 
 32 
 20 
 17 
 14 
 10 
 
 Length. 
 
 No. c . 
 to Lb. Slze ' 
 
 Length. 
 
 No. 
 to Lb. 
 
 2 d 
 3 fine 
 3 
 4 
 5 
 6 
 7 
 8 
 10 
 12 
 20 
 30 
 40 
 50 
 60 
 
 i ! A 
 
 1| 6 
 
 2* 
 
 4f 
 5 
 
 2 
 
 O3. 
 
 31 
 
 152 
 133 
 92 
 72 
 60 
 43 
 
 4 d 
 5 
 6 
 8 
 10 
 12 
 20 
 
 if 
 
 2 
 
 3 
 Sf 
 
 31 
 
 384 
 
 256 
 204 
 102 
 80 
 65 
 46 
 
 FENCE. 
 
 CORE. 
 
 f 
 
 3 
 
 96 
 66 
 56 
 
 50 
 40 
 
 6 d 
 8 
 10 
 12 
 20 
 30 
 40 
 
 W H 
 W H L 
 
 2 
 
 n 
 
 4| 
 
 143 
 68 
 60 
 42 
 25 
 18 
 14 
 
 69 
 72 
 
 LIGHT. 
 
 SPIKES. 
 
 4 d 
 5 
 6 
 
 ft 
 
 373 
 272 
 196 
 
 4' 
 
 5 
 
 5* 
 6 
 
 19 
 15 
 13 
 10 
 
 9 
 
 7 
 
 SLATE. 
 
 BRADS. 
 
 6 d 
 8 
 10 
 12 
 
 2" 
 
 163 
 
 96 
 74 
 
 50 
 
 3 d 
 4 
 
 i 
 
 $ 
 
 2 
 
 288 
 244 
 187 
 146 
 
 BOAT. 
 
 ft 
 
 206 
 
 TACKS. 
 
 Size. Length. tQ N L b Size. Length. ^^ Size. Length. 
 
 No. 
 to Lb. 
 
 1 oz. i 16000 4 oz. -fa 4000 14 oz. 
 
 H A 1 666 6 -' 5 6- 2666 1 16 
 2 8000 8 | 2000 18 
 2^ -f s 6400 10 it 1600 20 
 3 | 5333 12 f 1333 1 22 
 
 f 
 
 
 1143 j 
 1000 
 
 888 
 800J 
 727 
 

 
 
 
 
 
 
 
 
 
 THE PASSAIC ROLLING MILL COMPANY. 109 
 
 LAP- WELDED AMERICAN 
 
 CHARCOAL IRON BOILER TUBES. 
 
 TABLES OF STANDARD 
 
 SIZES. 
 
 
 
 MORRIS, TASKER & CO. 
 
 If 
 
 """Q 
 
 i 
 
 li 
 
 % 
 
 >3 o 
 
 
 
 B-1U 
 
 a-" 3 
 
 "rt . 
 p 
 
 T 
 c 
 
 
 i-C o 
 hD o 
 
 
 ^ 
 
 II 
 
 
 
 
 
 i I 
 
 3.8-31 
 
 S 
 
 *<i 
 w 
 
 R 
 
 Inch. 
 
 Inch. 
 
 Inch. 
 
 Inch. 
 
 Inch. 
 
 Feet. 
 
 Feet. 
 
 
 Inch. 
 
 Inch. 
 
 Lbs. 
 
 1 
 
 0.856 
 
 0.072 
 
 3.142 
 
 2.689 
 
 4 
 
 460 
 
 3.819 
 
 0.575 
 
 
 
 785 
 
 0.708 
 
 1# 
 
 1.106 
 
 0.072 
 
 3.927 
 
 3.474 
 
 3.455 
 
 3.056 
 
 0.960 
 
 1 
 
 .227 
 
 0.9 
 
 l/^ 
 
 1.33 
 
 1 
 
 0.083 
 
 4.7 
 
 12 
 
 4.191 
 
 2 
 
 863 
 
 2.54 
 
 7 
 
 1.396 
 
 1 
 
 707 
 
 1.250 
 
 1% 
 
 1.560 
 
 0.095 
 
 54 
 
 98 
 
 4.901 
 
 '2 
 
 448 
 
 2.183 
 
 1.911 
 
 2 
 
 405 
 
 1.665 
 
 2 
 
 1.80 
 
 1 
 
 0.098 
 
 6.2 
 
 83 
 
 5 667 
 
 2 
 
 118 
 
 1.90 
 
 9 
 
 2.556 
 
 3 
 
 143 
 
 1.981 
 
 2*4 2.054 
 
 0.098 
 
 7 069 
 
 6.484 
 
 1 
 
 850 
 
 1.69 
 
 3 
 
 3.314 
 
 3 
 
 976 
 
 2.238 
 
 * V/ 
 
 2.28 
 
 ! 
 
 0.109 
 
 7.8 
 
 51 
 
 7.172 
 
 1 
 
 673 
 
 .52 
 
 3 
 
 4.094 
 
 4 
 
 909 
 
 2.755 
 
 2 H 
 
 2.533 
 
 0.109 
 
 8.639 
 
 7.957 
 
 1 
 
 508 
 
 .390 
 
 5.039 
 
 5 
 
 940 
 
 3.045 
 
 3 
 
 2.78 
 
 ( 
 
 0.109 
 
 9.425 
 
 8.743 
 
 1.373 
 
 .273 
 
 6.083 
 
 7 
 
 069 
 
 3.333 
 
 31^ 
 
 3.01 
 
 1 
 
 0.119 
 
 10.2 
 
 10 
 
 9.462 
 
 1 
 
 268 
 
 .17 
 
 5 
 
 7 125 
 
 8 
 
 296 
 
 3.958 
 
 %y> 
 
 3.26 
 
 1 
 
 0.119 
 
 10.9 
 
 96 
 
 10.248 
 
 1 
 
 171 
 
 .09 
 
 L 
 
 8.357 
 
 9 
 
 621 
 
 4.272 
 
 8# 
 
 3.512 
 
 0.119 
 
 11.781 
 
 11.033 
 
 1 
 
 088 
 
 .018 
 
 9.687 
 
 11 
 
 046 
 
 4.590 
 
 4 
 
 3.741 
 
 0.130 
 
 12.566 
 
 11.753 
 
 1.023 
 
 0.955 
 
 10.992 
 
 12 
 
 666 
 
 5.320 
 
 41^ 
 
 4.24 
 
 1 
 
 0.130 
 
 14.1 
 
 :J7 
 
 13.323 
 
 
 
 901 
 
 0.84 
 
 3 
 
 14.126 
 
 15 
 
 004 
 
 6.010 
 
 5 
 
 4.72 
 
 
 0.140 
 
 15.7 
 
 ON 
 
 14.818 
 
 809 
 
 0.76 
 
 i 
 
 17.497 
 
 19 
 
 .635 
 
 7.226 
 
 G 
 
 5.699 
 
 0.151 
 
 18.849 
 
 17.904 0.670 
 
 0.637 
 
 25.509 
 
 28 
 
 .274 9.346 
 
 7 
 
 6.657 
 
 0.172121.991 
 
 20.914 
 
 
 
 574 
 
 0.545 
 
 34.805 
 
 88 
 
 484| 12.435 
 
 8 
 
 7.636 
 
 0.182|25.13223 989 
 
 
 
 500 
 
 0.478 
 
 45.795 
 
 50 
 
 265 
 
 15.109 
 
 9 
 
 8.61 
 
 ~> 
 
 0.193 
 
 28.2 
 
 74j27.055 
 
 o 
 
 444 
 
 0.42 
 
 i 
 
 58.291 
 
 63 
 
 617 
 
 18.002 
 
 10 
 
 9.573 
 
 0.214 
 
 31.41630.074 
 
 
 
 399 
 
 0.38 
 
 2 
 
 71.975 
 
 78 
 
 540 
 
 22.19 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 WROUGHT-IRON 
 
 WELDED TUBES. 
 
 EXTRA STRONG. 
 
 31 
 
 rt -a * 
 
 i 
 
 I * 
 
 ! 
 
 M 
 
 M 
 
 .3 isi 
 
 O ol 
 
 I'll 
 
 Ml 
 
 WJ 
 
 fill 
 
 
 i^l^ 
 
 
 
 
 H 
 
 ^ 
 
 w 
 
 
 <; ' 35 w 
 
 H 
 
 .405 
 
 .100 
 
 
 .205 
 
 
 
 k 
 
 .54 
 
 
 .123 
 
 
 .294 
 
 
 
 
 .675 
 
 
 .127 
 
 
 .421 
 
 
 
 % 
 
 .84 
 
 
 .149 
 
 .298 
 
 .542 
 
 
 .244 
 
 3 4- 
 
 1.05 
 
 
 .157 
 
 .314 
 
 .736 
 
 
 .422 
 
 l 
 
 1.315 
 
 .182 
 
 .364 
 
 .951 
 
 
 .587 
 
 i^ 
 
 1.66 
 
 
 .194 
 
 .388 
 
 1.272 
 
 
 .884 
 
 IK 
 
 1.9 
 
 
 .203 
 
 .406 
 
 1.494 
 
 
 1.088 
 
 2 
 
 2.375 
 
 
 .221 
 
 .442 
 
 1.933 
 
 
 1.491 
 
 2^ 
 
 2.875 
 
 
 .280 
 
 .560 
 
 2.315 
 
 
 1.755 
 
 3 
 
 3.5 
 
 
 .304 
 
 .608 
 
 2.892 
 
 
 2.284 
 
 3J^ 
 
 4. 
 
 
 .321 
 
 .642 
 
 3.358 
 
 
 2.716 
 
 4 
 
 4.5 
 
 
 .341 
 
 .682 
 
 3.818 
 
 
 3.136 
 
110 THE PASSAIC ROLLING MILL COMPANY. 
 
 WINDOW GLASS. 
 
 Number of Lights per Box of 50 Feet. 
 
 Inches. 
 
 No. 
 
 Inches. 
 
 No. 
 
 Inches. 
 
 No. 
 
 Inches. 
 
 No. 
 
 6X 8 
 
 150 
 
 12X18 
 
 33 
 
 16X44 
 
 10 
 
 26X32 
 
 9 
 
 7 9 
 
 115 
 
 12 20 
 
 30 
 
 18 20 
 
 20 
 
 26 34 
 
 8 
 
 8 10 
 
 90 
 
 12 22 
 
 27 
 
 18 22 
 
 18 
 
 26 36 
 
 8 
 
 8 11 
 
 82 
 
 12 24 
 
 25 
 
 18 24 
 
 17 
 
 26 40 
 
 7 
 
 8 12 
 
 75 
 
 12 26 
 
 23 
 
 18 26 
 
 15 
 
 20 42 
 
 7 
 
 8 13 
 
 70 
 
 12 28 
 
 21 
 
 18 28 
 
 14 
 
 26 44 
 
 6 
 
 8 14 
 
 64 
 
 12 30 
 
 20 
 
 18 30 
 
 13 
 
 26 48 
 
 6 
 
 8 15 
 
 60 
 
 12 32 
 
 18 
 
 18 32 
 
 13 
 
 26 HO 
 
 6 
 
 8 16 
 
 55 
 
 12 34 
 
 17 
 
 18 34 
 
 12 
 
 26 54 
 
 5 
 
 9 11 
 
 72 
 
 13 14 
 
 40 
 
 18 36 
 
 11 
 
 26 58 
 
 5 
 
 9 12 
 
 67 
 
 13 16 
 
 35 
 
 18 38 
 
 11 
 
 28 30 
 
 9 
 
 9 13 
 
 62 
 
 13 18 
 
 31 
 
 18 40 
 
 10 
 
 28 32 
 
 8 
 
 9 14 
 
 57 
 
 13 20 
 
 28 
 
 18 44 
 
 9 
 
 28 34 
 
 8 
 
 9 15 
 
 53 
 
 13 22 
 
 25 
 
 20 22 
 
 16 
 
 28 36 
 
 7 
 
 9 16 
 
 50 
 
 13 24 
 
 23 
 
 20 24 
 
 15 
 
 28 38 
 
 7 
 
 9 17 
 
 47 
 
 13 26 
 
 21 
 
 20 26 
 
 14 
 
 28 40 
 
 6 
 
 9 18 
 
 44 
 
 13 28 
 
 19 
 
 20 28 
 
 13 
 
 28 44 
 
 6 
 
 9 20 
 
 40 
 
 13 30 
 
 18 
 
 . 20 30 
 
 12 
 
 28 46 
 
 6 
 
 10 12 
 
 60 
 
 14 16 
 
 32 
 
 20 32 
 
 11 
 
 28 50 
 
 5 
 
 10 13 
 
 55 
 
 14 18 
 
 29 
 
 20 34 
 
 11 
 
 28 52 
 
 5 
 
 10 14 
 
 52 
 
 14 20 
 
 26 
 
 20 36 
 
 10 
 
 28 56 
 
 4 
 
 10 15 
 
 48 
 
 14 22 
 
 23 
 
 20 38 
 
 9 
 
 30 36 
 
 7 
 
 10 16 
 
 45 
 
 14 24 
 
 22 
 
 20 40 
 
 9 
 
 30 40 
 
 6 
 
 10 17 
 
 42 
 
 14 26 
 
 20 
 
 20 44 
 
 8 
 
 30 42 
 
 6 
 
 10 18 
 
 40 
 
 14 28 
 
 18 
 
 20 46 
 
 8 
 
 30 44 
 
 5 
 
 10 20 
 
 36 
 
 14 30 
 
 17 
 
 20 48 
 
 8 
 
 30 46 
 
 5 
 
 10 22 
 
 33 
 
 14 32 
 
 16 
 
 20 50 
 
 7 
 
 30 48 
 
 5 
 
 10 24 
 
 30 
 
 14 34 
 
 15 
 
 20 60 
 
 8 
 
 30 50 
 
 5 
 
 10 26 
 
 28 
 
 14 36 
 
 14 
 
 22 24 
 
 14 
 
 30 54 
 
 4 
 
 10 -28 
 
 26 
 
 14 40 
 
 13 
 
 22 26 
 
 13 
 
 30 56 
 
 4 
 
 10 30 
 
 24 
 
 14 44 
 
 11 
 
 22 28 
 
 12 
 
 30 CO 
 
 4 
 
 10 32 
 
 22 
 
 15 18 
 
 27 
 
 22 30 
 
 11 
 
 32 42 
 
 5 
 
 10 34 
 
 21 
 
 15 20 
 
 24 
 
 22 32 
 
 10 
 
 32 44 
 
 5 
 
 11 13 
 
 50 
 
 15 22 
 
 22 
 
 22 34 
 
 10 
 
 32 46 
 
 5 
 
 11 14 
 
 47 
 
 15 24 
 
 20 
 
 22 36 
 
 9 
 
 32 48 
 
 5 
 
 11 15 
 
 44 
 
 15 26 
 
 18 
 
 22 38 
 
 9 
 
 32 50 
 
 4 
 
 11 16 
 
 41 
 
 15 28 
 
 17 
 
 22 40 
 
 8 
 
 32 54 
 
 4 
 
 11 17 
 
 39 
 
 15 30 
 
 16 
 
 22 44 
 
 8 
 
 32 56 
 
 4 
 
 11 18 
 
 36 
 
 15 32 
 
 15 
 
 22 46 
 
 7 
 
 32 60 
 
 4 
 
 11 20 
 
 33 
 
 1G 18 
 
 25 
 
 22 50 
 
 7 
 
 34 40 
 
 5 
 
 11 22 
 
 30 
 
 16 20 
 
 23 
 
 24 28 
 
 11 
 
 34 44 
 
 5 
 
 11 24 
 
 27 
 
 16 22 
 
 20 
 
 24 SO 
 
 10 
 
 34 46 
 
 5 
 
 11 26 
 
 25 
 
 16 24 
 
 19 
 
 24 32 
 
 9 
 
 34 
 
 4 
 
 11 28 
 
 23 
 
 16 26 
 
 17 
 
 24 36 
 
 8 
 
 34 52 
 
 4 
 
 11 30 
 
 21 
 
 16 28 
 
 16 
 
 24 40 
 
 8 
 
 34 56 
 
 4 
 
 11 32 
 
 20 
 
 16 30 
 
 15 
 
 24 44 
 
 7 
 
 36 44 
 
 5 
 
 11 34 
 
 19 
 
 16 32 
 
 14 
 
 24 46 
 
 7 
 
 36 50 
 
 4 
 
 12 14 
 
 43 
 
 16 34 
 
 13 
 
 21 48 
 
 6 
 
 36 56 
 
 4 
 
 12 15 
 
 40 
 
 16 36 
 
 12 
 
 21 50 
 
 6 
 
 36 60 
 
 3 
 
 12 16 
 
 38 
 
 16 38 
 
 12 
 
 24 54 
 
 5 
 
 36 64 
 
 3 
 
 12 17 
 
 35 
 
 16 40 
 
 11 
 
 24 56 
 
 5 
 
 40 60 
 
 3 
 
 
THE PASSAIC ROLLING MILL COMPANY. Ill 
 
 BOOFINO SLATE. 
 
 General Rule for the Computation of Slate. 
 
 From the length of the Slate take three inches, or as many 
 as the third covers the first; divide the remainder by 2, and 
 multiply the quotient by the width of the slate, and the prod- 
 uct will be the number of square inches in a single slate. 
 Divide the number of square inches thus procured by 144, 
 the number of square inches in square foot, and the quotient 
 will be the number of feet and inches required. A square of 
 slate is what will cover 100 feet square, when laid upon the 
 roof. 
 
 Weight per Cubic Foot, - 174 Pounds. 
 
 Weight per Square Foot. 
 
 Thickness | ft I >& -ft f i ' f 1 
 
 Weight |l. 812 713.625.437.259.0610.87 
 
 1 inch. 
 14.51bs. 
 
 TABLE OF SIZES AND NUMBER OF SLATE 
 IN ONE SQUARE. 
 
 Size in 
 Inches. 
 
 6X12 
 
 7 12 
 
 8 12 
 
 9 12 
 10 1-2 
 12 12 
 
 7 14 
 
 8 14 
 
 9 14 
 10 14 
 12 14 
 
 No. of 
 Slate in 
 Square. 
 
 530 
 457 
 400 
 355 
 320 
 266 
 374 
 327 
 291 
 261 
 218 
 
 Inches. 
 
 8X16 
 
 9 16 
 
 10 16 
 
 12 16 
 
 9 18 
 
 10 18 
 
 11 18 
 
 12 18 
 14 18 
 
 10 20 
 
 11 20 
 
 No. of 
 Slate in 
 Square. 
 
 277 
 246 
 221 
 184 
 213 
 192 
 174 
 160 
 137 
 169 
 154 
 
 Size in 
 Inches. 
 
 12X20 
 
 14 20 
 
 11 22 
 
 12 22 
 14 22 
 12 24 
 14 24 
 16 24 
 14 26 
 16 26 
 
 No. of 
 Slate in 
 Square. 
 
 141 
 121 
 
 137 
 126 
 
 108 
 114 
 
 98 
 86 
 89 
 
 78 
 
1 
 
 112 THE PASSAIC ROLLING MILL COMPANY. 
 
 CAPACITY OF CISTERNS, 
 
 In Gallons, for Each Foot in Depth. 
 
 Diameter 
 in Feet. 
 
 Gallons. 
 
 Diameter 
 in Feet. 
 
 Gallons. 
 
 2. 
 
 23.5 
 
 9. , 
 
 475.87 
 
 2.5 
 
 36.7 
 
 9.5 
 
 553.67 
 
 3. 
 
 52.9 
 
 10. 
 
 587.5 
 
 3.5 
 
 71.96 
 
 11. 
 
 710.9 
 
 4. 
 
 94.02 
 
 12. 
 
 846.4 
 
 4.5 
 
 119. 
 
 13. 
 
 992.9 
 
 5. 
 
 146.8 
 
 14. 
 
 1,151.5 
 
 5.5 
 
 177.7 
 
 15. 
 
 1,321.9 
 
 6. 
 
 211.6 
 
 20. 
 
 2,350.0 
 
 6.5 
 
 248.22 
 
 25. 
 
 3,570.7 
 
 7. 
 
 287.84 
 
 30. 
 
 5,287.7 
 
 7.5 
 
 330.48 
 
 35. 
 
 7,189. 
 
 8. 
 
 376. 
 
 40. 
 
 9,367.2 
 
 8,5 
 
 424.44 
 
 45. 
 
 11,893.2 
 
 The American standard gallon contains 231 cubic inches, or 8^ pounds 
 of pure water. *A cubic foot contains 62.3 pounds of water, or 7.48 
 gallons. Pressure per square inch is equal to the depth or head in feet 
 multiplied by .433. Each 27.72 inches of depth gives a pressure of one 
 pound to the square inch. 
 
 SKYLIGHT AND FLOOR GLASS. 
 
 Weight per Cubic Foot, - 156 Pounds. 
 
 Weight 
 
 per Square Foot. 
 
 Thickness 
 Weight 
 
 i 
 1.62 
 
 A 
 
 2.43 
 
 .i 
 3.25 
 
 I 
 4.88 
 
 6.508.13 
 
 9.75 
 
 1 inch. 
 13 Ibs. 
 
 FLAGGING. 
 
 Weight per Cubic Foot, - 168 Pounds. 
 
 Weight per Square Foot. 
 
 Thickness 
 
 1 
 
 Q 
 
 3 
 
 4 
 
 o 
 
 6 
 
 7 
 
 8 inch. 
 
 Weight 
 
 14 
 
 28 
 
 42 
 
 56 
 
 70 
 
 84 
 
 98 
 
 112 Ibs. 
 
 i 
 
THE PASSAIC ROLLING MILL COMPANY. 113 
 
 NOTES ON BRICKWORK. 
 
 IN ordinary brickwork, one cubic foot of wall will require 
 21 bricks of 8 in. X 2^ in. X Z 1 A in - 
 
 For .1000 ordinary bricks is required I barrel of good lime, 
 2 cartloads of ordinary sharp sand. 
 
 One brick as above weighs 4 Ibs., dry; if perfectly soaked 
 in water, 5 Ibs. It will absorb I Ib. or I pint of water. 
 
 Edgewise arches will require about 7 bricks per square 
 foot of floor, and endwise arches will require about 14 bricks 
 of the size given above. 
 
 For i cubic yard of concrete is required i barrel, of 
 cement, 2 barrels of good sharp sand, i cubic yard of broken 
 stone. "If 
 
r I 
 
 114 THE PASSAIC ROLLING MILL COMPANY. 
 
 SPECIFIC GRAVITY AND WEIGHTS 
 OF VARIOUS SUBSTANCES. 
 
 NAMES OF SUBSTANCES. 
 
 ^Average Weights. 
 
 Specific 
 Gravity, i 
 
 ' Per 
 
 Cubic Foot. 
 
 Per 
 
 a Foot, i 
 in. thick. 
 
 Anthracite, solid, of Pa 
 
 93 
 54 
 
 58 
 (80 per 
 38 
 87 
 504 
 524 
 150 
 125 
 100 
 140 
 112 
 56 
 50 
 90 
 42 
 41 
 84 
 49 
 (74 per 
 27 
 
 542 
 
 548 
 76 
 95 
 108 
 76 
 35 
 157 
 168 
 1204 
 1217 
 170 
 25 
 53 
 58.7 
 450 
 485 
 480 
 711 
 
 bushel, 
 3& 
 7.25 
 42. 
 43.7 
 
 3.50 
 3.41 
 
 bushel, 
 
 45.2 
 45.7 
 
 6.33 
 2.9 
 13 
 
 ^ 
 4.62 
 
 37.5 
 
 40.6 
 40.0 
 59.25 
 
 1.50 
 
 heaped). 5 
 0.61 
 1.40 
 8.09 
 8.4 
 2.4 
 2.0 
 1.6 
 2.25 
 1.8 
 
 0.67 
 0.66 
 1.35 
 
 heaped).! j 
 
 8.7 
 8.8 
 
 1.22 
 
 0.56 
 2.53 
 2.7 
 19.3 
 19.6 
 2.73 
 0.40 
 0.85 
 0.95 
 7.24 
 7.8 
 7.7 
 11.4 || 
 
 // broken, loose 
 // n shaken 
 // heaped bushel, loose. . . 
 Ash, white, dry 
 Asphaltum 
 Brass, cast 
 
 // rolled 
 Brick, best pressed 
 // common hard 
 // soft 
 
 Brickwork, pressed brick 
 // ordinary 
 Cement, Rosendale (loose) 
 
 // Louisville // ...... 
 // Portland // . . 
 
 Cherry, dry 
 Chestnut, dry .... 
 
 Coal, bituminous, solid 
 // // broken, loose. . . 
 // // // // . . . 
 Coke, loose 
 // heaped bushel, 38 Ibs 
 Copper, cast 
 
 // rolled 
 Earth, common dry, loose 
 // // rammed 
 // soft mud 
 
 Ebony, dry 
 Elm, dry 
 Glass 
 
 Gneiss r . . . , 
 Gold, cast, 24 carat 
 // hammered, 24 carat 
 Granite 
 
 Hemlock, dry 
 
 Hickory, dry 
 Ice . . .... 
 
 Iron, cast ... 
 // wrought (hammered) 
 // // (rolled) 
 Lead 
 
 ff 
 
THE PASSAIC ROLLING 
 
 Mi^lf^id 
 
 >M,.AM' 
 
 ' H 
 
 SPECIFIC GRAVITY 
 OF VARIOUS SUBS^ 
 
 i^^J 
 
 DAMTE 
 
 W1& 
 
 o. -C-6 
 
 
 
 Average \ 
 
 /'eights. 
 
 
 NAMES OF SUBSTANCES. 
 
 Per 
 
 Cubic Foot. 
 
 Per 
 
 a Foot, i 
 in. thick. 
 
 Gravi 
 
 Lime, loose quicklime 
 
 // per bushel, 66 Ibs 
 
 53 
 
 
 
 Limestone and marble 
 Maple 
 Masonry, granite or limestone .... 
 // rubble 
 // dry 
 // sandstone 
 Mercury, at 32 F 
 Mortar, hardened 
 Mud, dry 
 
 168 
 49 
 165 
 154 
 138 
 144 
 849 
 103 
 80-110 
 
 8.6 
 
 2.7 
 0.7 
 
 13.6 
 1.6 
 
 Oak, live, dry 
 
 59 
 
 4 LL 
 
 0.9 
 
 // white 
 Petroleum 
 Pine, white, dry 
 // yellow, Northern 
 // // Southern 
 Quartz 
 
 52 
 55 
 25 
 34 
 45 
 165 
 
 i- 
 
 0.8 
 0.8 
 0.4 
 0.5 
 0.7 
 2.6 
 
 Salt, Syracuse, coarse 
 // fine Liverpool . 
 
 45 
 49 
 
 
 
 Sand, pure dry, loose 
 
 90-106 - 
 
 
 
 // shaken 
 // perfectly wet -t 
 Sandstone 
 
 99^117 - 
 1-20- 140 
 151 
 
 
 2.4 
 
 Shales, red or black 
 Silver ... 
 
 162 
 655 
 
 
 2.6 
 10.5 
 
 Slate 
 
 175 
 
 14.6 
 
 2.8 
 
 Snow, fresh 
 .'/ slush 
 
 5- 12 
 15- 20 
 
 
 
 Spruce, dry 
 
 25 
 
 2 1 - 
 
 4 
 
 Steel 
 
 490 
 
 403 2 
 
 7 9 
 
 Sulphur 
 Sycamore, dry 
 Tar 
 
 125 
 37 
 62 
 
 
 2.0 
 0.6 
 1 
 
 Tin 
 Turf or Peat, di y 
 Walnut, dry 
 
 459 
 
 20- 30 
 38 
 
 31 
 
 7.4 
 
 6 
 
 Water pure at 60 F 
 
 
 
 1 
 
 // sea 
 Zinc or Spelter, cast 
 rolled 
 Green timbers i to | more than dry 
 
 64 
 446 
 
 448 
 
 37.1 
 37.3 
 
 1.0 
 7.1 
 7.1 
 
116 THE PASSAIC ROLLING MILL COMPANY. 
 
 LINEAK EXPANSION OF METALS. 
 
 Between o and 100 C. For i C. For i Fahr. 
 
 Zinc 0.00294 .... 
 
 Lead 0.00284 
 
 Tin 0.00222 
 
 Copper, yellow 0.00188 
 
 red 0.00171 
 
 * Forged iron 0.00122 .0000122 .00000677 
 
 tSteel 0.00114 .0000114 .000(10633 
 
 * Cast iron 0.00111 .0000111 .00000616 
 
 For a change of 100 Fahr. a bar of iron 1475' long will ( 
 extend I foot. Similarly, a bar loo feet long will extend 
 .0678 foot, or .8136 inch. 
 
 According to the experiments of Du Long & Petit, we have 
 the mean expansion of iron, copper, and platinum, between 
 o and 100 C., and o and 300 C., as below : 
 
 From o to 100 C. o to 300 C. 
 
 Iron 0.00180 0.00146 
 
 Copper 0.00171 0.00188 
 
 Platinum 0.00884 0.00918 
 
 The law for the expansion of iron, steel, and cast iron, at 
 very high temperatures, according to Rinman, is as follows : 
 
 For.oC. x o Fahr. 
 
 Iron 00714 .0000143=. 0000080 
 
 Steel 01071 .0000214=. 0000119 
 
 Cast iron 01250 .0000250=. 0000139 
 
 From 25 to 1300 
 nascent white = 1275 C. 
 
 Iron 01250 .00000981 =.00000545 
 
 Steel 01787 .0000 1 400==. 00000777 
 
 Cast iron 02144 . 00001680=. 00000933 
 
 From 500. to 1500 
 
 dull red to white heat = 1000 C. 
 
 difference. 
 
 Iron . , 00535 .00000535=. 0000030 
 
 Steel 00714 .00000714=. 000(040 
 
 Cast iron 0'0893 .00000893=. 0000050 
 
 Ratio of Expansion in Hundred parts, assuming- 
 Forge Iron to expand between and 100 C. = 
 .00122. 
 
 From o to 100 25 to 525 25 to 1300 500 to 1500 
 
 Iron 100 per ct. 117 per ct. 80 per ct. 44 per ct. 
 
 Steel 93 " 175 " 114 " 58 " 
 
 Cast iron . 91 " 205 " 137 " 73 
 
 Laplace and Lavoisier, t Ramsden. 
 
THE PASSAIC ROLLING MILL COMPANY. 117 
 
 The contraction of a wrought-iron rod in cooling is about 
 equivalent to Timorr f i ts length from a decrease of 15 Fahr., 
 and the strain thus induced is about one ton for every square 
 inch of sectional area in the bar. 
 
 For a rod of the lengths given below, the contraction will 
 be as follows : 
 
 Length of rod in feet. . 10 20 30 40 50 75 100 150 
 
 Contrac'nin inches for 15 .012 .024 .036 .048 .060 .090 .120 .180 
 150 .120 .240 .360 .480 .600 .900 1.200 1.800 
 100 .080 .160 .240 .320 .400 .600 .800 1.200 
 
 Contraction and expansion being equal, the pressure per 
 square inch induced by heating or cooling is as follows : 
 For temperatures varying by 15 Fahr. : 
 
 Variation.... 15 30 45 60 75 105 120 150 degrees. 
 Pressure ....12345 7 8 10 tons. 
 
 Stoney givesS 3 C. = 14.4 Fahr. as equivalent to a pressure 
 of one ton per square inch for wrought iron, and 15 C. = 27 
 Fahr. for cast iron. 
 
 DIMINUTION OF TENACITY OF WROUGHT 
 IKON AT HIGH TEMPEKATUBES. 
 
 EXPERIMENTS FRANKLIN INSTITUTE, 1839. WALTER JOHNSON AND BENJ. 
 REEVES, COM. 
 
 C. 
 
 271 
 
 299 
 
 313 
 
 316 
 
 332 
 
 350 
 
 378 
 
 389 
 
 390 
 
 408 
 
 410 
 
 440 
 
 Fahr. 
 
 520 
 
 630 
 732 
 
 Diminution 
 
 p. ct. of max. 
 
 tenacity. 
 
 0.0738 
 0.0869 
 0.0899 
 0.0964 
 0.1047 
 0.1155 
 0.1436 
 0.1491 
 0.1535 
 0.1589 
 0.1627 
 0:2010 
 
 500 
 
 508 
 
 554 
 
 599 
 
 624 
 
 626 
 
 642 
 
 669 
 
 674 
 
 708 
 
 Fahr. 
 
 Diminution 
 
 p. ct. of max 
 
 tenacity. 
 
 932 
 
 1154 
 
 1245 
 1306 
 
 0.3324 
 0.3593 
 0.4478 
 0.5514 
 0.6000 
 0.6011 
 0.6352 
 0.6622 
 0.6715 
 0.7001 
 
118 THE PASSAIC ROLLING MILL COMPANY. 
 
 DIFFERENT COLORS OF IRON 
 CAUSED BY HEAT. 
 
 POUILLET. 
 C. FAHR. COLOR. 
 
 210 410 Pale Yellow. 
 
 221 430 Dull Yellow. 
 
 256 493 Crimson. 
 
 {Violet, Purple, and Dull Blue ; be- 
 tween 261 C. to 370 C. it passes to 
 Bright Blue, to Sea Green, and 
 then disappears. 
 
 500 932 ...... Commences to be covered with a 
 
 light coating of oxide ; loses a good 
 deal of its hardness ; becomes a 
 good deal more impressible to the 
 hammer and can be twisted with 
 ease. 
 
 . . . Becomes Nascent Red. 
 . . . Somber Red. 
 . . . Nascent Cherry. 
 . . .Cherry. 
 . . . Bright Cherry. 
 . . .Dull Orange. 
 . . . Bright Orange. 
 . . .White. 
 . . .Brilliant White welding heat. 
 
 . . . Dazzling White. 
 
 525 
 
 700 
 
 800 
 
 900 
 
 1000 
 
 1100 
 
 1200 
 
 1300 
 
 1400 
 
 1500 
 
 1600 
 
 . 977 . 
 .1292 . 
 .1472 . 
 .1657 . 
 .1832 . 
 .2012 . 
 .2192 . 
 .2372 . 
 .2552 . 
 .2732 > 
 .2912 < 
 
 MELTING POINT OF METALS. 
 
 NAME. 
 
 Platina.. 
 
 Antimony .... 
 
 Bismuth 
 
 Tin (average) . 
 Lead " 
 Zinc . . 
 
 FAHR. 
 . .4593 
 .. 955 
 .. 487 
 ... 475 
 .. 622 
 . 772 
 
 FAHR. 
 
 AUTHORITY. 
 
 Cast iron.. ..2786 
 
 Wrought iron . . 
 Copper (average) 
 
 ..2552 
 . .2174" 
 
 ... 842 J. Lowthian Bell. 
 ....507 
 
 . . . .620 " . 
 
 ....782 
 
 1922. |012 White, ? Pouillet< 
 
 . .. 2733" "tedmg heat. " 
 
THE PASSAIC ROLLING MILL COMPANY. 119 
 
 ULTIMATE RESISTANCE OF 
 
 MATERIALS. 
 
 IN POUNDS PER SQUARE INCH. 
 
 
 Tension 
 
 Compression 
 
 Shearing 
 
 
 Average. 
 
 Average. 
 
 Average. 
 
 Brass, cast . . . ' j 18,000 
 
 10,300 
 
 
 // wire 49,000 
 
 
 
 Bronze, gun metal 39,000 
 
 175,000 
 
 
 Copper, cast 
 
 19,000 
 
 117,000 
 
 
 // sheet 
 
 30,000 
 
 103,000 
 
 
 // bolts 
 
 36,000 
 
 
 
 // wire 
 
 60,000 
 
 
 
 Iron, cast 13,400-29,000 
 
 80,000-145,000 
 
 27,000 
 
 Iron wrought : 
 
 
 45,000 
 
 Rods of 1 to 2" diam. . 50,000-55,000 
 
 
 
 Specimens of rerolled. . 
 
 50,000-55,000 
 
 
 
 Rerolled, large bars. . . 
 
 46,000-47,000 
 
 36000-40000 
 
 
 Plates, L and shapes. . 
 
 47,000-50,000 
 
 
 
 // over 30" wide . . 
 
 45,000-48,000 
 
 
 
 Iron wire 170,000-100,000 
 
 
 // // ropes 90,000 
 
 
 Lead, sheet 3,300 7,700 
 
 
 Steel, . 25gc. for eye bars. 70,000 
 
 
 // 0.42g c. compres- 
 
 
 sion members . . . ! 80,000 
 
 
 // tool steel ! 110,000 
 
 
 // wire 200,000 
 
 
 
 Tin, cast 
 
 4,600 
 
 15,500 
 
 
 Zinc, // 
 
 7,500 
 
 
 
 // sheet rolled 
 
 16,000 
 
 
 
 Ash, seasoned 
 
 16,500 
 
 6,000 
 
 
 Beech, // 
 
 15,000 
 
 7,000 
 
 
 Box, // 
 
 20,000 
 
 10,000 
 
 
 Cedar, // 
 
 10,300 
 
 6,500 
 
 
 Chestnut,// 
 
 13,000 
 
 
 
 Elm, // 
 
 6,000 \ 
 
 10,000^: 
 
 
 Fir or spruce, seasoned. . 
 
 10,000-13,600 
 
 6,800 
 
 5-800 
 
 Hickory, // 
 
 12,800-18,000 
 
 
 
 Locust, // 
 
 18,000 
 
 
 
 Maple , 
 
 10,000 
 
 
 
 Oak, white, // 
 
 18,000 
 
 7,200-9,100 
 
 2,000 
 
 // European u 
 
 10,000-19,800 
 
 10,000 
 
 2,300 
 
 Pine, white, red and pitch. 
 
 10,000 
 
 5,000-5,600 
 
 5-800 
 
 // long leaf yellow. . . 
 
 12,600-19,200 1 8,000 
 
 6-1,000 
 
 Poplar, seasoned 7,000 5,100 
 
 
 Silk fiber 52,000 
 
 
 Walnut, seasoned 16,000 
 
 7,200 
 
 
120 THE PASSAIC ROLLING MILL COMPANY. 
 
 ULTIMATE RESISTANCE OF 
 MATERIALS. 
 
 IN POUNDS, PER SQUARE INCH. 
 
 
 Tension 
 Average. 
 
 Compression 
 Average. 
 
 Brick, weak 
 
 150 
 
 550-800 
 
 a good 
 
 300 
 
 1,100 
 
 // fire 
 
 
 1,700 
 
 Brickwork, good ordinary 
 // in cement 
 // // extra 
 Granite and Syenite 
 Basalt 
 
 
 300 
 450 
 1,000 
 4,500-18,000 
 10,500 
 
 Limestone and marble 
 Oolites 
 
 700-1,600 
 100- 200 
 
 3,750-15,000 
 1,500-3,750 
 
 Sandstone 
 
 
 3,750-8,000 
 
 // of New Jersey 
 Slate 
 
 2,500-4,000 
 
 3,000 
 6,000-12,000 
 
 Chalk 
 Plaster of Paris 
 
 70 
 
 3UO-450 
 600 
 
 Concrete 
 Portland cement, pure 
 Roman // // 
 
 ' 100- 450 ' 
 200 
 
 ~ 450-750 
 1,2UO-2,400 
 750 
 
 Glass . 
 
 3,000-9,000 
 
 20,000-35,000 
 
 Ice 
 
 
 180-270 
 
 Mortar, hydraulic 
 
 150 
 
 
 // common 
 
 20 
 
 
 Rope best manilla 
 
 12,000 
 
 
 // // hemp 
 
 15,000 
 
 
 
 
 
-j0 WV 
 
 THE PASSAIC ROLLING MILL COMPANY. 121 
 
 NATURAL SINES, ETC. 
 
 S Sine. 
 
 Cover. 
 
 Cosecnt. 
 
 Tangt. 
 
 Cotang. 
 
 Secant. 
 
 Versin. 
 
 1 . 
 Cosine. jf 
 
 Q 
 
 
 
 
 
 
 
 
 M 
 
 
 
 .00 
 
 1.00000 
 
 Infinite. 
 
 .0 
 
 Infinite. 
 
 1.00000 
 
 .0 
 
 1.00000 90 
 
 1 
 
 .01745 
 
 .98254 
 
 57.2986 
 
 .01745 57.2899 
 
 1 00015 .0001 i -99984 89 
 
 2 
 
 .03489 
 
 .96510 
 
 28.6537 
 
 .03492 28.6362 
 
 1.00060 .0006 i .99939 88 
 
 3 
 
 .05233 
 
 .94766 
 
 19.1073 
 
 .05240 
 
 19.0811 
 
 1.00137 
 
 .0013 
 
 .99862 87 
 
 4 
 
 .06975 
 
 .93024 
 
 14.3355 
 
 .06992 
 
 14.3006 
 
 1.00244 
 
 .0024 
 
 .99756 86 
 
 5 
 
 .08715 
 
 .91284 
 
 11.4737 
 
 .08748 
 
 11.4300 
 
 1.00381 
 
 .0038 
 
 .99619 85 
 
 6 
 
 .10452 
 
 .89547 
 
 9.5667 
 
 .10510 
 
 9.5143 
 
 1.00550 
 
 .0054 
 
 .99452 84 
 
 7 
 
 .12186 
 
 .87813 
 
 8.2055 
 
 .12278 
 
 8.1443 
 
 1.00750 
 
 .0074 
 
 .99254 83 
 
 8 
 
 .13917 
 
 .86082 
 
 7.1852 
 
 .14054 
 
 7.1153 
 
 1.00982 
 
 .0097 
 
 .99026 82 
 
 9 
 
 .15643 
 
 .84356 
 
 6.3924 
 
 .15838 
 
 6.3137 
 
 1.01246 
 
 ,.0123 
 
 .98768 81 
 
 10 
 
 .17364 
 
 .82635 
 
 5.7587 
 
 .17632 
 
 5.6712 
 
 1.01542 
 
 .0151 
 
 .98480 80 
 
 11 
 
 .19080 
 
 .80919 
 
 5.2408 
 
 .19438 
 
 5.1445 
 
 1.01871 
 
 .0183 
 
 .98162 
 
 79 
 
 12 
 
 .20791 
 
 .79208 
 
 4.8097 
 
 .21255 
 
 4.7046 
 
 1.02234 
 
 .0218 
 
 .97814 
 
 78 
 
 13 
 
 .22495 
 
 .77504 
 
 4.4454 
 
 .23086 
 
 4.3314 
 
 1.02630 
 
 .0256 
 
 .97437 
 
 77 
 
 14 
 
 .24192 
 
 .75807 
 
 4.1335 
 
 .24932 
 
 4.0107 
 
 1.03061 
 
 .0^97 
 
 .97029 
 
 76 
 
 15 
 
 .25881 
 
 .74118 
 
 3.8637 
 
 .26794 
 
 3.7320 
 
 1.03527 
 
 .0340 
 
 .96592 
 
 75 
 
 16 
 
 .27563 
 
 .72436 
 
 3.6279 
 
 .28674 
 
 3.4874 
 
 1.04029 
 
 .0387 
 
 .96126 74 
 
 17 
 
 .29237 
 
 .70762 
 
 3.4203 
 
 .30573 
 
 8.2708 
 
 1.04569 
 
 .0436 
 
 .95630 , 73 
 
 18 
 
 .30901 
 
 .69098 
 
 3.2360 
 
 .32491 
 
 3.0776 
 
 1.05146 
 
 .0489 
 
 .95105 ! 72 
 
 19 
 
 .32556 
 
 .67443 
 
 3.0715 
 
 .34432 
 
 2.9042 
 
 1.05762 
 
 .0544 
 
 .94551 71 
 
 20 
 
 .34202 
 
 .65797 
 
 2.9238 
 
 .36397 
 
 2.7474 
 
 1.06417 
 
 .0603 
 
 .93969 70 
 
 21 
 
 .35836 
 
 .64163 
 
 2.7904 
 
 .38386 
 
 2.6050 
 
 1.07114 
 
 .0664 
 
 .93358 69 
 
 22 
 
 .37460 
 
 .62539 
 
 2.6694 
 
 .40402 
 
 2.4750 
 
 1.07853 
 
 .0728 
 
 .92718 
 
 68 
 
 23 
 
 .39073 
 
 . 60926 
 
 2.5593 
 
 .42447 
 
 2.3558 
 
 1.08636 
 
 .0794 
 
 .92050 
 
 67 
 
 24 
 
 .40673 
 
 .59326 
 
 2.4585 
 
 .44522 
 
 2.2460 
 
 1.09463 
 
 .0864 
 
 .91354 
 
 66 
 
 25 
 
 .42261 
 
 .57738 
 
 2.3662 
 
 .46630 
 
 2.1445 
 
 1.10337 
 
 .0936 
 
 .90630 
 
 65 
 
 26 
 
 .43837 
 
 .56162 
 
 2.2811 
 
 .48773 
 
 2.0503 
 
 1.11260 
 
 .1012 
 
 .89879 
 
 64 
 
 27 
 
 .45399 
 
 .54600 
 
 2.2026 
 
 .50S52 
 
 1.9626 
 
 1.12232 
 
 .1089 
 
 .89100 
 
 63 
 
 28 
 
 .46947 
 
 .53052 
 
 2.1300 
 
 .53170 
 
 -1.8807 
 
 1.13257 
 
 .1170 .88294 
 
 62 
 
 29 
 
 .48480 
 
 .51519 
 
 2.0626 
 
 .55430 
 
 1.8040 
 
 1.14335 
 
 .1253 
 
 .87461 
 
 61 
 
 30 
 
 .50000 
 
 .50000 
 
 2.0000 
 
 .57735 
 
 1.7320 
 
 1.15470 
 
 .1339 
 
 .86602 
 
 CO 
 
 31 
 
 .51503 
 
 .48496 
 
 1.9416 
 
 .60086 
 
 1.6642 
 
 1.16663 
 
 .1428 
 
 .85716 
 
 59 
 
 32 
 
 .52991 
 
 .47008 
 
 1.8870 
 
 .62486 
 
 1.6003 
 
 1.17917 
 
 .1519 
 
 .84804 58 
 
 33 
 
 .54463 
 
 .45536 
 
 1.8360 
 
 .64940 
 
 1.5398 
 
 1.19236 
 
 .1613 
 
 .83867 57 
 
 34 
 
 .55919 
 
 .44080 
 
 1.7882 
 
 .67450 
 
 1.4825 
 
 1.20621 
 
 .1709 
 
 .82903 ! 56 
 
 35 
 
 .57357 
 
 .42642 
 
 1.7434 
 
 .70020 
 
 1.4281 
 
 1.22077 
 
 .1808 
 
 .81915 55 
 
 36 
 
 .58778 
 
 .41221 
 
 1.7013 
 
 .72654 
 
 1.3763 
 
 1.23606 
 
 .1909 
 
 .80901 ' 54 
 
 37 
 
 .60181 
 
 .39818 
 
 1.6616 
 
 .75355 
 
 1.3270 
 
 1.25213 
 
 .2013 
 
 .79863 53 
 
 38 
 
 .61566 
 
 .38433 
 
 1.6242 
 
 .78128 
 
 1.2799 
 
 1.26901 
 
 .2119 
 
 .78801 52 
 
 39 
 
 .62932 
 
 .37067 
 
 1.5890 
 
 .80978 
 
 .2348 
 
 1.28675 
 
 .2228 
 
 .77714 51 
 
 40 
 
 .64278 
 
 .35721 
 
 1.5557 
 
 .83909 
 
 .1917 
 
 1.30540 
 
 .2339 
 
 .76604 50 
 
 41 
 
 .65605 
 
 .34394 
 
 1.5242 
 
 .86928 
 
 .1503 
 
 1.32501 
 
 .2452 
 
 .75470 49 
 
 42 
 
 .66913 
 
 .33086 
 
 1.4944 
 
 .90040 
 
 .1106 
 
 1.34563 
 
 .2568 
 
 .74314 i 48 
 
 43 
 
 .68199 
 
 .31800 
 
 1.4662 
 
 .93251 
 
 .0723 
 
 1.36732 
 
 .2686 
 
 .73135 47 
 
 44 
 
 .69465 
 
 .30534 
 
 1.4395 
 
 .96568 
 
 .0355 
 
 1.39016 
 
 .2806 
 
 .71933 46 
 
 45 
 
 .70710 
 
 .29289 
 
 1.4142 
 
 1.00000 
 
 .0000 
 
 1.41421 
 
 .2928 
 
 .70710 
 
 45 
 
 
 Cosine. 
 
 Versin. 
 
 Secant. 
 
 Cotang. 
 
 Tangt. 
 
 Cosecant 
 
 Cover. 
 
 Sine. 
 
 
122 THE PASSAIC ROLLING MILL COMPANY. 
 
 CIRCUMFERENCES OF CIRCLES, 
 
 Advancing by Eighths. 
 
 
 CIRCUMFERENCES. 
 
 as 
 
 .0 
 
 .* 
 
 y 4 
 
 X 
 
 X 
 
 5/8 
 
 K 
 
 K 
 
 3 
 
 
 
 
 
 
 
 
 
 .0 
 
 .3927 
 
 .7854 
 
 1.178 
 
 1.571 
 
 1.963 
 
 2.356 
 
 2.749 
 
 1 3.142 
 
 3.534 
 
 3.927 
 
 4.320 4.712 
 
 5.105 
 
 5.498 
 
 5.890 
 
 2 ! 6.283 
 
 6.676 
 
 7.069 
 
 7 461 7.854 
 
 8.246 
 
 8.639 
 
 9.032 
 
 3 
 
 9 425 
 
 9.817 
 
 10.21 
 
 10.60 ! 10.99 
 
 11.39 
 
 11.78 
 
 12.17 
 
 4 
 
 12.56 
 
 12.96 
 
 13.35 
 
 13.74 
 
 14.13 
 
 14.53 
 
 14.92 
 
 15.31 
 
 5 
 
 15.71 
 
 16.10 
 
 16.49 
 
 16.88 
 
 17.28 
 
 17.67 
 
 18.06 
 
 18.45 
 
 
 
 
 
 
 
 
 
 
 6 
 
 18.85 
 
 19,24 
 
 19.63 
 
 20.02 
 
 20.42 
 
 20.81 
 
 21.20 
 
 21.60 
 
 7 
 
 21.99 
 
 22.38 
 
 22.77 
 
 23.17 
 
 23.56 
 
 23.95 
 
 24.34 
 
 24.74 
 
 8 
 
 25 13 
 
 25.52 
 
 25.92 
 
 26.31 
 
 26.70 
 
 27.09 
 
 27.49 
 
 27.88 
 
 9 
 
 28.27 
 
 28.66 
 
 29.06 
 
 29.45 
 
 29.84 
 
 30.23 
 
 30.63 
 
 31.02 
 
 10 
 
 31.41 
 
 31.81 
 
 32.20 
 
 32.59 
 
 32.98 
 
 33.38 
 
 33.77 
 
 34.16 
 
 11 
 
 34.55 
 
 34.95 
 
 35.34 
 
 35 73 
 
 36.13 
 
 36.52 
 
 36.91 
 
 37.30 
 
 12 
 
 37.70 38.09 
 
 38.48 
 
 38.87 39.27 
 
 39.66 
 
 40.05 
 
 40 45 
 
 13 
 
 40.84 i 41.23 
 
 41.62 
 
 42.02 42.41 
 
 42.80 
 
 43.19 
 
 43.59 
 
 14 
 
 43.98 44.37 
 
 44.76 
 
 45.16 45.55 
 
 45.94 
 
 46.34 
 
 46.73 
 
 15 
 
 47.12 47.51 
 
 47.91 
 
 48.30 48.69 
 
 49.08 
 
 49.48 
 
 49.87 
 
 16 
 
 50.26 50.66 
 
 51.05 
 
 51.44 51.83 
 
 52.23 
 
 52.62 
 
 53.01 
 
 17 
 
 53.40 53.80 
 
 54.19 
 
 54.58 54.97 
 
 55.37 
 
 55.76 
 
 56.15 
 
 18 
 
 56.55 ! 56.94 
 
 57.33 
 
 57-72 58.12 
 
 58.51 
 
 58.90 59.29 
 
 19 
 
 59.69 
 
 60.08 
 
 60.47 
 
 60.87 61.26 
 
 61.65 
 
 62.04 62.43! 
 
 20 
 
 62.83 
 
 63.22 
 
 63.61 
 
 64.01 
 
 64.40 
 
 64.79 
 
 65.19 65.58 j 
 
 21 
 
 65.97 66.36 
 
 66.76 
 
 67.15 67-54 
 
 67.93 
 
 68.33 
 
 68.72 1 
 
 22 
 
 69.11 69.50 
 
 69.90 
 
 70.29 
 
 70.68 
 
 71.08 
 
 71.47 
 
 71.86 
 
 23 
 
 72.25 72.65 
 
 73.04 
 
 73.43 73 82 
 
 74 22 
 
 74.61 
 
 75.00 
 
 24 
 
 75 40 . 75.79 76-18 
 
 76.57 76.97 
 
 77.36 
 
 77.75 
 
 78.14 
 
 25 
 
 78.54 j 78.93 79.32 
 
 79.71 
 
 80.11 
 
 80 50 
 
 80.89 
 
 81.29 
 
 26 
 
 81.68 
 
 82.07 
 
 82.46 
 
 82.86 
 
 83.25 
 
 83.64 
 
 84.03 
 
 84.43 
 
 27 
 
 84.82 
 
 85.21 
 
 85.60 
 
 86.00 
 
 86.39 
 
 86.78 
 
 87.18 
 
 87.57 
 
 28 
 
 87.96 
 
 88.35 
 
 88.75 
 
 89.14 89.53 
 
 89.93 
 
 90.32 
 
 90.71 
 
 29 
 
 91.10 
 
 91.50 
 
 31.89 
 
 92.28 ! 92.67 
 
 93.07 
 
 93.46 
 
 93.85 
 
 30 
 
 94.24 
 
 94.64 
 
 95.03 
 
 95.42 95.82 
 
 96 21 
 
 96.60 
 
 96.99 
 
 31 
 
 97.39 
 
 97.78 
 
 98.17 
 
 98.57 98.96 
 
 99.35 
 
 99.75 
 
 100.14 
 
 32 
 
 100.53 
 
 100.92 
 
 101.32 
 
 101.71 102.10 
 
 102 49 
 
 102.89 103.28 
 
 33 
 
 103.67 
 
 104.07 
 
 104.46 
 
 104.85 105.24 105.64 
 
 106.03 i 106.42 
 
 34 
 
 106.81 
 
 107.21 
 
 107.60 
 
 107.99 108.39 108.78 
 
 109.17 109.56 
 
 35 
 
 109.96 
 
 110.35 
 
 110.74 
 
 111.13 
 
 111.53 
 
 111.92 
 
 112.31 112.71 
 
 36 
 
 113 10 
 
 113.49 
 
 113.88 
 
 114.28 
 
 114.67 
 
 115.06 
 
 115.45 
 
 115.85 
 
 37 
 
 116.24 
 
 116.63 
 
 117.02 117.42 
 
 117.81 
 
 118.20 
 
 118.60 118.99 
 
 38 
 
 119.38 
 
 119.77 
 
 120.17 120.56 
 
 120.95 
 
 121.34 
 
 121.74 122.13 
 
 39 
 
 122.52 
 
 122.92 
 
 123.31 123.70 
 
 124.09 
 
 124.49 
 
 124.88 125.27 
 
 40 
 
 125.66 
 
 126.06 
 
 126.45 
 
 126.84 
 
 127.24 
 
 127.63 
 
 128.02 128.41 
 
 41 
 
 128 81 129.20 
 
 129.59 129.98 130.38 
 
 130.77 
 
 131.16 
 
 131.55 
 
 42 
 
 131.95 | 132.34 
 
 132.73 ! 133.13 133.52 
 
 133.91 
 
 134.30 
 
 134.70 
 
 43 
 
 135.09 ! 135.48 
 
 135.87 136.27 136.66 137.05 
 
 137.45 137.84 
 
 44 
 
 138.23 I 138.62 
 
 139.02 139.41 139.80 140.19 
 
 140.59 14098 
 
 45 
 
 
 
 141.37 
 
 141.76 
 
 142.16 142.55 142.94 143.34 
 
 143.73 144.12 ! 
 
THE PASSAIC ROLLING MILL COMPANY. 123 
 
 AEEAS OF CIRCLES, 
 
 Advancing by Eighths. 
 
 AREAS. 
 
 i 
 
 .0 
 
 % 
 
 % 
 
 .# 
 
 % 
 
 H 
 
 3 X 
 
 H 
 
 Q 
 
 
 
 
 
 
 
 
 
 
 
 .0 
 
 .0122 
 
 .0491 
 
 .1104 
 
 .1963 .3068 
 
 .4418 
 
 .6013 
 
 1 
 
 .7854 
 
 .9940 
 
 1.227 
 
 1.485 
 
 1.767 
 
 2.074 
 
 2.405 
 
 2.761 
 
 2 
 
 3.1416 
 
 3.546 
 
 3.976 
 
 4.430 
 
 4.908 
 
 5.411 
 
 5.939 
 
 6.492 
 
 3 
 
 7.068 
 
 7.670 
 
 8.296 
 
 8.946 
 
 9.621 
 
 10.32 
 
 11.04 
 
 11.79 
 
 4 
 
 12.56 
 
 13.36 
 
 14.18 
 
 15.03 
 
 15.90 
 
 16.80 
 
 17.72 
 
 18.66 
 
 5 
 
 19.63 
 
 20.63 
 
 21.65 
 
 22.69 
 
 23.76 
 
 24.85 
 
 25.96 
 
 27.10 
 
 6 
 
 28.27 
 
 29.46 
 
 30.68 
 
 31.92 
 
 33.18 
 
 34.47 
 
 35.78 
 
 37.12 
 
 7 
 
 38 48 
 
 39.87 
 
 41.28 
 
 42.72 
 
 44.18 
 
 45.66 
 
 47.17 
 
 48.70 
 
 8 
 
 50.26 
 
 51.85 
 
 53.45 
 
 55.09 
 
 56.74 
 
 58.42 
 
 60.13 
 
 61.86 
 
 9 
 
 63.61 
 
 65.39 
 
 67.20 
 
 69.03 
 
 70.88 
 
 72.76 
 
 74.66 
 
 76.59 
 
 10 
 
 78.54 
 
 80.51 
 
 82.51 
 
 84.54 
 
 86.59 
 
 88.66 
 
 90.76 
 
 92.88 
 
 11 
 
 95.03 97.20 
 
 99.40 
 
 101.6 
 
 103.9 
 
 106.1 
 
 108.4 
 
 110.7 
 
 12 
 
 113.1 
 
 115.5 
 
 117.9 
 
 120.3 122.7 
 
 125.2 127.7 
 
 130.2 
 
 13 
 
 132.7 
 
 135.3 
 
 137.9 
 
 140.5 ! 143.1 
 
 145.8 148.5 
 
 151.2 
 
 14: 
 
 153.9 
 
 156.7 
 
 159.5 
 
 162.3 
 
 165.1 
 
 168.0 
 
 170.9 
 
 173.8 
 
 15 
 
 176.7 
 
 179.7 
 
 182.7 
 
 185.7 
 
 188.7 
 
 191-7 
 
 194.8 
 
 197.9 
 
 16 
 
 201.1 
 
 204.2 
 
 207.4 
 
 210.6 
 
 213.8 
 
 217.1 
 
 220.3 
 
 223.6 
 
 17 
 
 227.0 
 
 230.3 
 
 233.7 
 
 237.1 
 
 240.5 
 
 244.0 
 
 247.4 
 
 250.9 
 
 18 
 
 254.5 
 
 258.0 
 
 261.6 
 
 265.2 
 
 268.8 
 
 272.4 
 
 276.1 
 
 279.8 
 
 19 
 
 283.5 
 
 287.3 
 
 291.0 
 
 294.8 
 
 298.6 
 
 302.5 
 
 306.3 
 
 310.2 
 
 20 
 
 314.2 
 
 318.1 
 
 322.1 
 
 326.0 
 
 330.1 
 
 334.1 
 
 338.2 
 
 342.2 
 
 21 
 
 346.4 
 
 350.5 
 
 354.7 
 
 358.8 
 
 363.0 
 
 367.3 
 
 371.5 
 
 375.8 
 
 22 
 
 380.1 
 
 384.5 
 
 388.8 
 
 393.2 
 
 397-6 
 
 402.0 
 
 406.5 
 
 411.0 
 
 23 
 
 415.5 
 
 420.0 
 
 424.6 
 
 429.1 
 
 433.7 
 
 438.4 
 
 443:0 
 
 447.7 
 
 24 
 
 452.4 
 
 457.1 
 
 461.9 
 
 466.6 
 
 471.4 
 
 476.3 
 
 481.1 
 
 486.0 
 
 25 
 
 490.9 
 
 495.8 
 
 500.7 505.7 
 
 510.7 
 
 515.7 
 
 520.8 
 
 525.8 
 
 26 
 
 530.9 
 
 536.0 
 
 541.2 
 
 546.3 
 
 551.6 
 
 556.8 
 
 562.0 
 
 567.3 
 
 27 
 
 572.6 
 
 577.9 
 
 583.2 
 
 588.6 
 
 594.0 599.4 
 
 604.8 
 
 610.3 
 
 28 
 
 615.7 
 
 621.3 
 
 626.8 
 
 632.4 
 
 637.9 i 643.5 
 
 649.2 
 
 654.8 
 
 29 
 
 660.5 
 
 666.2 
 
 672.0 
 
 677.7 
 
 683.5 689.3 
 
 695.1 
 
 701.0 
 
 30 
 
 706.9 
 
 712.8 
 
 718.7 
 
 724.6 
 
 730.6 736.6 
 
 742.6 
 
 748.7 
 
 
 
 
 
 
 
 
 
 31 
 
 754.8 
 
 760.9 
 
 767.0 
 
 773.1 
 
 779.3 I 785.5 
 
 791.7 
 
 798.0 
 
 32 I 804.3 
 
 810.5 
 
 816.9 
 
 823.2 
 
 829.6 | 836.0 
 
 842.4 
 
 848.8 
 
 33 855.3 
 
 861.8 
 
 868.3 
 
 874.9 
 
 881.4 
 
 888.0 
 
 894.6 
 
 901.3 
 
 34 : 907 9 
 
 914.6 
 
 921.3 
 
 928.1 
 
 934.8 
 
 941.6 
 
 948.4 
 
 955.2 
 
 35 962,1 
 
 969.0 
 
 975.9 
 
 982.8 
 
 989.8 
 
 996.8 
 
 1003.8 
 
 1010.8 
 
 36 1017.9 
 
 1025.0 
 
 1032.1 
 
 1039.2 
 
 1046.3 
 
 1053.5 
 
 1060.7 
 
 1068.0 
 
 37 1075.2 
 
 1082.5 
 
 1089.8 
 
 1097.1 
 
 1104.5 
 
 1111.8 
 
 1119.2 
 
 1126.7 
 
 38 1134.1 
 
 1141.6 
 
 1149.1 
 
 1156.6 
 
 1164.2 
 
 1171-7 1179.3 
 
 1186.9 
 
 39 1194.6 
 
 1202.3 
 
 1210.0 
 
 1217.7 
 
 1225.4 
 
 1233.2 i 1241.0 
 
 1248.8 
 
 40 1256.6 
 
 1264.5 
 
 1272.4 
 
 1280.3 
 
 1288.2 1296.2 1 1304.2 
 
 1312.2 
 
 41 1 1320.3 
 
 1328.3 
 
 1336.4 
 
 1344.5 
 
 1352.7 1360.8 
 
 1369.0 
 
 1377.2 
 
 42 1385.4 
 
 1393.7 
 
 1402.0 
 
 1410.3 
 
 1418.6 : 1427.0 
 
 1435.4 
 
 1443.8 
 
 43 I 1452.2 
 
 1460.7 1469.1 
 
 1477.6 I 1486.2 i 1494.7 
 
 1503.3 
 
 1511.9 
 
 44 , 1520.5 
 
 1529.2 1537.9 
 
 1546.6 1555.3 1564.0 
 
 1572.8 
 
 1581.6 
 
 45 1590.4 
 
 1599.3 1608.2 
 
 1617.0 1626.0 1634.9 1643.9 
 
 1652.9 
 
 i 
 
 1 i i . i 
 
 8 
 
M 
 
 124 THE PASSAIC ROLLING MILL COMPANY. 
 
 SURVEYING MEASURE (LINEAL). 
 
 Inches. Links. Feet. 
 
 Yards. Chains. Mile. 
 
 Fr. Meters. 
 
 1. = .126 = .0833 = 
 
 .0278 = .00126 = .0000158 = 
 
 .0254 
 
 7.92 1. 
 
 .66 
 
 .22 .01 
 
 .000125 
 
 .2012 
 
 12. 1.515 1. 
 
 .333 .01515 .000189 
 
 .3048 
 
 36. 4.545 3. 3 
 
 .04545 .000568 
 
 .9144 
 
 792. 100. 
 
 66. 22. 1. 
 
 .0125 
 
 20.116 
 
 63360. 8000. 
 
 5280. 1760. 80. 
 
 1. 
 
 1609.315 
 
 One knot 
 
 or geographical mile =6086. 07 feet = 
 
 =1855.11 
 
 metres = I . I 
 
 526 statute 
 
 mile. 
 
 
 
 One admiralty knot = 
 
 1.1515 statute miles = 6080 feet. 
 
 
 LONG 
 
 MEASURE. 
 
 Inches. Feet. 
 
 Yards. 
 
 Fath. Poles. 
 
 Furl. Mile. 
 
 Fr. Meters. 
 
 1. = .083 = .02778 =.0139=. 005 =.000126=. 0000158= .0254 
 
 12. 1. 
 
 .333 
 
 .1667 .0606 
 
 00151 .0001894 .3048 
 
 36. 3. 
 
 1. 
 
 .5 .182 
 
 00454 .000568 
 
 .9144 
 
 72. 6. 
 
 2. 1. .364 
 
 0091 .001136 
 
 1.8287 
 
 198. 16K- 
 
 55^. 2^ 
 
 1. 
 
 025 .003125 
 
 5.0291 
 
 7920. 660. 
 
 220. 110. 40. 1 
 
 .125 
 
 201.16 
 
 63360. 5280. 
 
 1760. 880. 320. 8. 1. 
 
 1609.315 
 
 A palm = 
 
 3 inches. 
 
 
 
 
 A span = 
 
 9 inches. 
 
 
 
 
 A hand = 4 inches. 
 
 A cable's length = 120 fathoms. 
 
 FRENCH LONG MEASURE. 
 
 Inches. 
 
 Feet.'' 
 
 Yards. 
 
 Miles 
 
 Millimetre . . 
 
 .039368 
 
 .00328 
 
 
 
 Centimetre . . 
 
 .39368 
 
 .03280 
 
 
 
 Decimetre . . . 
 
 3.9368 
 
 .32807 
 
 .10935? 
 
 
 Metre 
 
 39-368 
 
 3.2807 
 
 1 . 09357 
 
 
 Decametre . . 
 
 393.68 
 
 32.807', 
 
 10.9357 
 
 
 Hectometre . 
 
 
 328.07 
 
 109.357 
 
 .0621346 
 
 Kilometre . . . 
 
 
 3280.7 
 
 1093.57 
 
 .6213466 
 
 Myriametre '. 
 
 
 32807. 
 
 10935.7 
 
 6.213466 
 
 j 
 
 
 
 
 
THE PASSAIC ROLLING MILL COMPANY. 125 
 
 SQUARE MEASURE. 
 
 Inches. 
 1 
 
 144. 1. 
 
 1296. 9. 
 
 39204. 272 #. 
 
 1568160. 10890. 
 
 6272640. 43560. 
 
 Feet. Yards. Perches. Roods. Acre. Sq. Metres. 
 . 00694 = . 000772= . 0000255= . 00000064= . 000000159= . 000645 
 
 .111 
 
 1210. 
 4840. 
 
 .00367 
 .0331 
 1. 
 40. 
 160. 
 
 0000918 .000023 .0929 
 .0002066 .8361 
 .00625 25.292 
 .25 1011.7 
 1. 4046.7 
 
 .025 
 1. 
 4. 
 
 I oo square feet = I square. 
 10 square chains = I acre. 
 i chain wide 8 acres per mile. 
 i hectare = 2.471143 acres. 
 
 r = 27878400 square feet, 
 i square mile ? = 3097600 square yards. 
 
 ( = 646 acres. 
 
 Acres X .0015625 = square miles. 
 Square yard X .000000323 = square miles. 
 Acres X 4840 = square yards. 
 Square yards X .0002066 = acres. 
 
 A section of land is i mile square, and contains 640 acres. 
 A square acre is 208. 71 ft. at each side; or 220 X I9 8 ft. 
 A square ^-acre is 147. 58 ft. at each side; or no X 198 ft. 
 A square %-acre is 104.355 ft: at eacn side 5 or 55 X 198 ft. 
 A circular acre is 235.504 feet in diameter. 
 A circular ^-acre is 166.527 feet in diameter. 
 A circular ^-acre is ^17.752 feet iri diameter.- 
 
 FRENCH SQUARE MEASURE. 
 
 Square. 
 
 Millimetre . . . 
 Centimetre. .. 
 Decimetre . . . 
 Metre or Cen 
 Decametre. . . 
 
 Hectare 
 
 Kilometre 
 
 Square Inches. 
 
 Square Feet. 
 
 .00154 .0000107 
 
 .15498 .0010763 
 
 15.498 .1076305 
 
 1549.8 10.76305 
 
 154988. 1076.305 
 
 107630.58 
 . 38607 D mis. 1 10763058 . 
 
 Square Yards. 
 
 000001 
 .000119 
 .011958 
 1.19589 
 119.589 
 11958.95 
 1195895. 
 
 Acres. 
 
 Myriametre. . |38.607 
 
126 THE PASSAIC ROLLING MILL COMPANY. 
 
 CUBIC MEASUEE. 
 
 Inches. 
 
 1. = 
 1728. 
 46656. 
 
 Feet. 
 
 .0005788 = 
 1. 
 27. 
 
 Yard. Cubic Metres. 
 
 .000002144 = .000016386 
 
 .03704 .028315 
 
 1. .764513 
 
 A cord of wood =128 cubic feet, being four feet high, four 
 feet wide, and eight feet long. 
 
 Forty-two cubic feet = a ton of shipping. 
 A perch of masonry contains 24^ cubic feet. 
 
 A CUBIC FOOT is EQUAL TO 
 
 1728 cubic inches. 
 
 .037037 cubic yard. 
 
 .803564 U. S. struck bushel 
 
 of 2150.42 cubic inches. 
 3.21426 U. S. pecks. 
 7.48052 U. S. liquid galls. 
 
 of 231 cubic inches. 
 6.42851 U. S. dry galls. 
 29.92208 U. S. liquid quarts. 
 
 25 . 71405 U. S. dry quarts. 
 59.84416 U. S. liquid pints. 
 51 .42809 U. S. dry pints. 
 239.37662 U. S. gills. 
 .26667 flour barrel of 3 struck 
 
 bushels. 
 
 .23748 U. S. liquid barrel of 
 galls. 
 
 FRENCH CUBIC OE SOLID 
 MEASUEE. 
 
 
 Gill. 
 
 Pint. 
 
 Quart. 
 
 Gallon. 
 
 Peck. 
 
 Bush. 
 
 Cubic 
 Inches. 
 
 Cubic 
 Feet. 
 
 Centilitre, Dry 
 Liquid 
 
 .0845 
 
 .0181 
 .0211 
 
 
 .... 
 
 
 
 .61016 
 
 
 Decilitre. . . Dry 
 Liquid 
 
 8452 
 
 .1816 
 .2113 
 
 !0908 
 .1056 
 
 0264 
 
 .0113 
 
 .... .1 ' 
 
 6.1016 
 
 .... 
 
 Litre Dry 
 
 
 1.816 
 
 .908 
 
 
 .1135 
 
 
 61 .016 
 
 no co 
 
 Liquid 
 
 8.452 
 
 2.113 
 
 1.056 
 
 ^2641 
 
 
 
 
 .uooo 
 
 Decalitre. .Dry 
 Liquid 
 
 84.52 
 
 21.13 
 
 9.08 
 10.56 
 
 2.64i 
 
 1.135 
 
 .2837 
 
 610.16 
 
 .3531 
 
 Hectolitre . Dry 
 Liquid 
 
 
 211.3 
 
 90.8 
 105.6 
 
 26^4i 
 
 11.35 
 
 2.837 
 
 6101.6 
 
 3.531 
 
 Kilolitre or Cu- 
 
 
 
 
 
 
 
 
 
 bic Metre, Dry 
 Liquid 
 
 
 
 1056.5 
 
 264 .1 
 
 113.5 
 
 28.37 
 
 61016. 
 
 35.31 
 
 Myrialitre . Dry 
 
 
 
 
 
 1135. 
 
 283. 7 
 
 
 QCQ .. 
 
 Liquid 
 
 
 
 10565. 
 
 2641.4 
 
 
 
 
 OOO.l 
 
 F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
THE PASSAIC ROLLING MILL 
 
 COMPANY 
 
 . 127 
 
 AVOIRDUPOIS WEIGHT. 
 
 The standard avoirdupois pound is the weight of 27.7015 
 
 cubic inches of distilled water, weighed 
 
 in the air, at 39.83 
 
 degrees Fahr. 
 
 , barometer at thirty inches. 
 
 27.343 grains = I drachm. 
 
 
 
 
 
 French 
 
 Drachms. Ounces. Lbs. 
 
 Qrs. Cwts. 
 
 Ton. Grammes. 
 
 1. = .0625=. 0039 = . 
 
 000139=. 000035 
 
 = .00000174=1.771846 
 
 16. 1. 
 
 .0625 
 
 00223 000558 
 
 .000028 28.34954 
 
 256. 16. 
 
 1. 
 
 0357 .00893 
 
 .000447 453.59 
 
 7168. 448. 
 
 28. 1. 
 
 .25 
 
 .0125 12700. 
 
 28672. 1792. 
 
 112. 4. 
 
 1. 
 
 .05 50802. 
 
 573440. 35840 
 
 2240. 80 
 
 20. 
 
 1. 1016048. 
 
 A stone = 14 pounds. 
 
 A quintal loo pounds. 
 
 7000 grains = one avoirdupois pound = 1 .21528 troy 
 
 pounds. 
 
 
 
 
 
 5760 grains = one troy pound = 
 
 .82285 avoirdupois 
 
 pounds. 
 
 
 
 
 
 FRENCH WEIGHTS. 
 
 EQUIVALENT 
 
 TO AVOIRDUPOIS. 
 
 
 Grains. 
 
 Ounces. 
 
 Lbs. 
 
 Tons. 
 2240 Ibs. 
 
 Milligramme . 
 
 .015433 
 
 
 
 Centigramme . 
 
 .1543311 .000352 
 
 .000022 
 
 
 Decigramme . 
 
 1.54331 
 
 .003527 
 
 .000220 
 
 
 Gramme . ... 
 
 15.4331 
 
 .035275 
 
 .002204 
 
 
 Decagramme . 
 
 154.331 
 
 .352758 
 
 .022047 
 
 
 Hectogramme 
 
 1543.31 
 
 3.52758 
 
 .220473 
 
 .000098 
 
 Kilogramme . 
 
 15433.1 
 
 35.2758 
 
 2.20473 
 
 . 000984 
 
 Myriagramme 
 
 
 352.758 
 
 22.0473 
 
 .009842 
 
 Quintal 
 
 
 3527.58 
 
 220.473 
 
 .098425 
 
 Millier or Tonne . . 
 
 
 35275 . 8 
 
 2204.73 
 
 .984258 
 
 88 - 
 
 
 
 
 8 
 
128 THE PASSAIC ROLLING MILL COMPANY. 
 
 DIMENSIONS OF PASSAIC E. M. 
 STANDAED TUEN- TABLES. 
 
 Plates 19 and 20. 
 
 Diameter of pit 
 
 ft. in. 
 
 35.0 
 
 ft. in. 1 ft. in. l ft. in. 
 
 40. Oj45. 050.0 
 
 ft. in. 
 
 55.0 
 
 ft. in. 
 
 60.0 
 
 Length of girder, out to out .... 
 
 34.4 
 
 39.4|44.449.6 
 
 54.6 
 
 59.6 
 
 Diameter of circular tracks, cen- 
 ter to center of rail 
 
 31.0 
 
 36.0J41. 0.46.0 
 
 51.0 
 
 56.0 
 
 Depth from top of rail on table 
 to top of center stone 
 
 5.0 
 
 5.0 5.0 5.6 
 
 5.6 
 
 5.G 
 
 Depth from top of rail on table 
 to top of rail of circular track . 
 
 3.4 
 
 3.4 3.4.3.10 
 
 3.10 
 
 3.10 
 
 Ditto for special turn-table, shallow pit. 
 
 2.0 
 
 2.0) 2.01 2.6 
 
 2.6 
 
 2.6 
 
 POINTS OF MEEIT IN PASSAIC E. M. 
 GO'S STANDAED TUEN-TABLES. 
 
 The table is entirely center-bearing, and rests on steel discs, 
 A, six inches in diameter, which offer very little resistance to 
 turning around, and at the same time give ample bearing 
 surface to maintain the parts in good working order. As the 
 friction acts on a lever 2 inches long, and the power on one 
 whose length is equal to the radius of the turn-table, it is 
 apparent that very little power will be required to turn it. 
 The table is hung to the center-pin by two bolts, B B, made 
 of re-rolled iron; this arrangement prevents any uneven dis- 
 tribution of the load, produced by tightening of the bolts, 
 such as is liable to be produced when more than two are 
 used. The shape of the girder is such as to approach, in the 
 nearest practicable manner, the theoretical form, which 
 requires a constant flange section, when due regard is taken 
 to the influence of the varying sign of the strains at any point 
 of either flange, according to the position of the engine. The 
 flanges are made of 4x6 in. angle iron, extending all the way 
 through at the top without a splice, and spliced in the center 
 at the bottom. The flange of this iron, being 6 inches wide, 
 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 _.. 
 
 ww. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ...J 
 
 
 
 
 
 
 
 
 
 it 
 
 
 
 
 
 
 _ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 

 :tfj 
 
 
 
 
 f 
 
 ttl 
 4 
 

 

YA 
 
 TA 
 
 THE UNIVERSITY OF CALIFORNIA LIBRARY