UC-NI 88 A MANUAL OF USEFUL INFORMATION AND TABLES APPERTAINING TO THE USE OF WROUGHT IRON AS MANUFACTURED BY THE PASSAIC ROLLING' MILL co. PATERSON, N. J. (New- York Office, Room 45, Astor House.) FOR ENGINEERS, ARCHITECTS, AND BUILDERS, F. A. LEERS, C. E V Copyright, 1884, by THE PASSAIC ROLLING MILL COMPANY, Paterson, N. J. Press of THEO. L. DE VINNE & Co. New- York. i8 OFFICEKS. WATTS COOKE, President. W. O. FAYERWEATHER, Secretary and Treasurer. JOHN K. COOKE, Superintendent. F. A. LEERS, Engineer. 84713 PEEFACE. '*~l r *HE present edition of the MANUAL is a new work -*- throughout. It is intended to supply such special information and tables as, it was thought, would prove valuable to workers in wrought iron in general, and the patrons of the publishers, THE PASSAIC ROLLING MILL Co., in particular. The tables, with a few exceptions, were computed expressly for this work, and some of them are original in both matter and form. The author hopes that they will be found to possess the quali- ties of accuracy and reliability. Such of the tables as were not calculated for this work were obtained from two or more works of presumably independent origin, which were compared for the detection of errors. The table of weight of a ciibic foot and of the iiltimate strength of substances was derived mostly from Trautwine. The list of shapes rolled by THE PASSAIC ROLLING MILLS will be found increased in mimber, and some of the 'sections improved in form. All angle irons are now made with flanges of uniform thickness ; the range between the minimum and maximum weight for a number of the shapes has been increased. 5* 6 THE PASSAIC ROLLING MILL COMPANY. i CONTENTS. PLATES 1-5 SECTIONS OF I BEAMS PAGE IOI4 6 7 SECTIONS OF CHANNEL BARS 15, 16 8 SECTIONS OF EQUAL TEES 17 8 SECTIONS OF FLATTED ROUND 8 SECTIONS OF HALF ROUND 17 17 8 SECTIONS OF ROUNDED FLAT 17 9 SECTIONS OF UNEQUAL TEES 18 9 SECTIONS OF BEAD IRON 18 10 SECTIONS OF UNEQUAL ANGLES 19 10 SECTIONS OF SQUARE-ROOT UNEQUAL ANGLES. 10 SECTIONS OF OBTUSE A.NGLFS 19 IQ 10 SECTIONS OF GROOVE IRON 10 SECTION OF SASH IRON 10 SECTION OF HAND-RAIL IRON 19 19 19 10 SECTION OF HEXAGON IRON in T O SECTION OF PICTURE CORNICE 19 ii SECTIONS OF EQUAI ANGLES 2O ii SECTIONS OF SQUARE-ROOT \NGLES 2O 12, 13 ILLUSTRATION OF BEAMS USED IN FIRE-PROOF FLOORS 21, 22 14 FIRE-PROOF CONSTRUCTION WITH IRON AND HOLI ow BRICK 23 15 SECTIONS OF PLATE AND Box GIRDERS 16 SECTIONS OF COLUMNS 2 4 2^ 17, 18 DIAGRAMS OF BRIDGE AND ROOF TRUSSES 19, 20 STANDARD WROUGHT-IRON TURN-TABLES if , 26, 27 28, 29 THE PASSAIC ROLLING MILL COMPANY. 7 PAGE STRENGTH OF BEAMS 34-35 DIFFERENT MODES OF LOADING BEAMS 36-40 TABLE OF PROPERTIES OF I BEAMS 41, 42 TABLE OF PROPERTIES OF CHANNELS 43.44 TABLE OF PROPERTIES OF TEES 45 TABLE OF EQUAL ANGLES 46 TABLE OF UNEQUAL ANGLES 47 TABLE OF SAFE LOADS ON I BEAMS 49~5 2 TABLE OF SAFE LOADS ON I BEAMS, UNSUPPORTED SIDEWAYS 53 FLOORS 54, 55 BEAMS USED AS JOISTS, LOAD 70 LBS. PER SQ. FT. . . 56 BEAMS USED AS JOISTS, LOAD 100 LBS. PER SQ. FT. . . 57 BEAMS USED AS JOISTS, LOAD 150 LBS. PER SQ. FT. . . 58 BEAMS USED AS JOISTS, LOAD 200 LBS. PER SQ. FT. . . 59 STRENGTH OF WOODEN BEAMS 63 RIVETED GIRDERS 60-62 COLUMNS, POSTS, AND STRUTS 64,65 TABLES OF ALLOWED WORKING STRAINS, PER SQUARE INCH ; 66,67 TABLE OF SAFE LOADS FOR ROLLED I BEAMS USED AS COLUMNS OR STRUTS 68 TABLE OF SAFE LOADS FOR HOLLOW CYLINDRICAL CAST AND WROUGHT IRON COLUMNS 69 TABLE OF SAFE LOADS FOR RECTANGULAR TIMBER POSTS 7 ROOFS 71, 72 TABLE OF STRAINS IN KING AND QUEEN ROOF TRUSSES 73 TABLE OF STRAINS IN BELGIAN OR FINK ROOF TRUSSES 74 STRAINS IN RECTANGULAR AND TRIANGU- LAR BRIDGE TRUSSES) 75-85 RIVETS AND PINS 86 TABLE FOR SHEARING, BEARING, AND BENDING OF PINS 87 TABLE FOR SHEARING AND BEARING OF RIVETS 88,89 TABLE OF WEIGHT OF RIVETS 90 SLEEVE NUTS AND UPSET SCREW ENDS OF ROUND AND SQUARE RODS 91 8 THE PASSAIC ROLLING MILL COMPANY. TABLES OF WEIGHTS, ETC. AREAS AND WEIGHT OF SQUARE AND ROUND ROLLED IRON 92, 93 AREAS OF CIRCLES 123 AREAS OF FLAT ROLLED IRON 94, 95 BOLTS, WITH SQUARE HEADS AND NUTS 106 CAPACITY OF CISTERNS 112 CIRCUMFERENCE OF CIRCLES 122 DIFFERENT COLORS OF IRON CAUSED BY HEAT... 118 DIFFERENT STANDARD WIRE GAUGES 102 DIMINUTION OF TENACITY OF WROUGHT IRON AT HIGH TEMPERATURES 117 FLAGGING 112 GALVANIZED AND BLACK IRON 103 LAP-WELDED IRON BOILER TUBES 109 LINEAR EXPANSION OF METALS 116 MELTING POINTS OF METALS 118 NAILS AND SPIKES 108 NATURAL SINES, ETC 121 NOTES ON BRICKWORK 113 ROOFING SLATE in SKYLIGHT AND FLOOR GLASS 112 SPECIFIC GRAVITY OF VARIOUS SUBSTANCES 114,115 SQUARE AND HEXAGON NUTS 107 STANDARD SIZES OF WASHERS 106 TACKS 108 ULTIMATE STRENGTH OF MATERIALS 119, 120 WEIGHT OF SEPARATORS AND BOLTS 55 WEIGHT PER SQ. FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS. THICKNESS BY AMERICAN GAUGE 101 THICKNESS BY BIRMINGHAM GAUGE 100 WEIGHTS AND MEASURES (U. S AND FRENCH) 124-127 WEIGHTS OF FLAT ROLLED IRON 96, 97 WEIGHTS OF PLATE IRON 98, 99 WEIGHTS OF VARIOUS SUBSTANCES 114, 115 WINDOW GLASS no WIRE 104 WROUGHT-IRON WELDED TUBES FOR STEAM, GAS, OR WATER 105 PASSAIC R. M. GO'S STANDARD TURN-TABLES 128 TH E PATERSON, N.J. MANUFACTURERS OF I U JUU.Li.LJ 1 BEAMS, CHANNELS, ANGLES. TEES ALL PARTS OF BRIDGES OR FJRE PROOF FLOORS AND ROOFS Wade and Fitted lo suit Designs of Engineers and Architects. MANUFACTURERS OF !R p N TOSSES To form Bottom Chords for Bridges of any size or Length. MADE VWTHOUT WROUGHT IRON TO11TO1LES AND STANDARD RIGHTED LEFT OR SLEEVE NUTS, Plans and Estimates furnished. 10 THE PASSAIC ROLLING MILL COMPANY. PLATE 1 15 '/8 HEAVY BEAM. 200 Ibs. pr.Yd. I53/J6 LIGHT BEAM ISO Ibs. pr.Yd. THE PASSAIC ROLLING MILL COMPACT. 11 PLATE K4- HEAVY BEAM . I7O Ibs.pr.Yd. 5/8 " 12 '4 LIGHT BEAM 125 Ibs.pr.Yd. *- r 10 y 2 ' 4,3/4 10 ' 2 EXTRA LIGHT BEAM \ 90 Ibs.pr.Yd. 12 THE PASSAT C ROLLING MILL COMPANY. ^1B ! < PLATE 3 10V2 IO'/2 HEAVY BEAM I35 lbs.pr.Yd. 10 V 2 IO'/2 LIGHT BEAM. I05 Ibs. pr.Yd. 9* HEAVY BEAM. 85 Ibs. pr.Yd. 9" LIGHT BEAM. 7O Ibs. pr.Yd. ,:..*. r\ THE PASSAIC ROLLING 8'HEAVY BEAM. 80 Ibs-pr.Yd. 8" LIGHT BEAM. 65 Ibs.pr. Yd. SO.... r 7" BEAM . 60 Ibs.pr.Yd. 6 EX. HEAVY BEAM 90 to 120 Ibs.pr.Yd. 13/32" V 14 THE PASSAIC ROLLING MILL COMPANY. 6 BEAM. PLATE 5 6 'BEAM. 50 IbS pr.Yd. 40 Ibs.pp.Yd. 1 5' BEAM. 30 Ibs.pr. Yd. 5' BEAM. 40 Ibs.pr. Yd. 4-" BEAM. 37 Ibs.pr. Yd. 4 BEAM 30 IbS. pr.Yd 4- BEAM. 18 Ibs. pr.Yd. THE^PASSAIC ROLLING MILL COMPANY. 15 PLATE 6 5"L 17lbs.pp.Yd. 1ft 15^16" CHANNEL 125 to 150 Ibs.pr.Yd 1 f * ^ I/ 4.-Cl3*tbs.pr.Yd. H 12 '/4 CHANNEL 12 '/4 CHANNEL 100 to 140 Ibs.pr.Yd. 80to-95 Ibs.pr.Yd. 16 THE PASSAIC ROLLING MILL COMPANY. PLATE .7 9 CHANNEL 6O to 70 Ibs.pr.Yd. -. 6 CHANNEL 50 to 60 tbs.pr.Yd. 6 CHANNEL 6 CHANNEL 3Oto45 IbS.pr.Yd. 22'/2to28 Ibs.pr.Yd. ' THE PASSAIC ROLLING MILL COMPANY. 17 PLATE 8 EQUAL- TEE. 4'x4x*t'to1lB 33 to 33 Ibs.pr.Yd. 3fex3*fe'xk* 7 ,fe' 28to33 Ibs.pr.Yd. 'x2yax 5 fatft! ISto 18 Ibs.pr.Yd. .Yd. T 9 '/ 2 to 12 Ibs.pr.Yd. "^1 (TS FLATTED ROUND 1 3/4 & Smaller l s /8 "1 jJ^lbsp U 6'/2to8'/2 Ibs.pr.Yd, HALF ROUND a'/z&Smaller ROUNDED FLATS 4 and 3" " /2 Ibs.pr.Yd. 18 THE PASSAIC ROLLING MILL COMPANY. PLATE 9 UN EQUAL TEIE: -46 to 60 Ibs pr.Yd. 5'x3'x*g 30to36 Ibs.pr.Yd. ^ C 5'x2^'xVS"27to33 Ibs pr.Yd. 4-'x2"x3/ 8 '2l Ibs. pr.Yd. r 3 "x 2x^8 17 Ibs.pr.Yd. 3'x4 H 1 (o a: u a ; ooooooj : ;j b] O 00 oo o IL jg ^ o o o o o 1 X : i C c AA^ ^ C c vX ^n : 3 a a V/ '/ u L"//'/J ^- Q ^2ZL-J s tt 1 -Q . 10 a o o o o o o On a ~7 II M O Lu AT c h H c ; C 5 [SiN < c a j q L. L _i C; d HI C s i o o o o 3 a , "^ h ; U C o U ; ooooc vy : -] [ 8 O O O O A ., J THE PASSAIC ROLLING MILL COMPANY: 25 SECTIONS OF COLUMNS PL ATE 16 FIG I. FIG. 2. 1 FIG. 8. I 1 FFG.3. FIG.4. FIG.5. n F1G.6. I I FIG. 7. HH FIG. 1 1. no.12. I FIG - 13 - FIG.I4. r i T L__jl JL FIG.I5- FIG. 16. 4= FIG. 17. JL nr FIG. 18. V 26 THE PASSAIC ROLLING MILL COMPANY. PL ATE 17 FIG. I. TRIANGULAR OR WARREN TRUSS. 7 , 15' 13' L' 9' 1 5' 3' 18 16 14 12 10 8 420 WARREN TRUSS WITH INTERMEDIATE POSTS. FIG. 2. 17' 15' 13' 11' 1' 5' 3 1' 18 16 14 12 1O 8 6 4? WARREN TRUSS, WITH INTERMEDIATE SUSPENDERS. FIG.3. Z' 15' 13' 18 16 14 12 10 8 6 4-2 RECTANGULAR TRUSS, SINGLE INTERSECTION. FIG- 4 KING AND QUEEN ROOF TRUSS. FIG.5. 36265432 3 PL ATE 18 CO, Z TH U a: Sg to S's h U , X MILL COMPANY. 27 U 10 15 14 13 12 11 1O 9 765 3 2 1 g p, G 4 DOUBLE INTERSECTION RECTANGULAR TRUSS. 13' 12' 11.' 10' 9' 8' 1' 6' 5' 4-' 3' 2' l' o 04 CO * m CD hi CD Oi s SI 8 3 o 52 \\ \X xx X><\ XX XX xx\ XX, XX XX XX XX. n //^ ^^ 28 THE PASSAIC ROLLING MILL COMPANY. 2 O Q O u II O O C_ I* >- O' THE PASSAIC ROLLING MILL COMPANY. 29 ., PLATE 2( 30 THE EASSAIC RO LINING MILL CO~MPA*TY. THE PASSAIC ROLLING MILL COMPANY. 31 32 THE PASSAIC ROLLING MILL COMPANY. THE PASSAIC ROLLING MILL COMPANY. 33 34 THE PASSAIC ROLLING MILL COMPANY. STBENGTH OF BEAMS. IF a beam, supported at its ends, is loaded with a weight, this weight will produce reactions on the two supports, the sum of which is equal to the weight. These are the external forces acting on the beam. Under the influence of these ex- ternal forces a bending of the beam occurs, the fibers of the upper half of the cross-section are shortened, and those of the lower half are elongated. These changes are the result of a compressive strain in the upper half and of a tensile strain in the lower half of the cross-section of the beam. In the middle of the heights is a place where no shortening or lengthening of the fibers occurs, and this is called the neutral axis. In wrought iron, as in other homogeneous substances, this neu- tral axis is coincident with the center of gravity of the section, and in symmetrical sections, as in I beams, this is in the middle of the depth of the beam. The moment of inertia of a cross-section is an expression which is used in the calculation of the strength of beams. The sum of the products of the infinitely small areas of each fiber, by the square of its distance (taken at right angles) from the neutral axis, is its value with respect to this axis. The moment of resistance is the moment of inertia divided by the distance from the neutral axis (or center of gravity of the section) to the most extreme fiber. This is used to deter- mine the maximum strain in the most extreme fiber. The radius of gyration is found by extracting the square root of the moment of inertia divided by the area of the cross- section. If all material were concentrated at this distance from the neutral axis (or center of gravity), it would resist against bending the same as the material distributed over the cross-section. Twice the radius of gyration may be called the effective depth of the beam. THE PASSAIC ROLLING MILL COMPANY. 35 TERMS USED IN FORMULAS: W, Load. /, Length of beam in inches. A, Area of total cross-section of beam. h, Depth of beam. I, Moment of inertia of cross-section. R, Moment of resistance of cross-section. e, Distance of the most extreme fiber from the neutral axis (usually e = J. d, Deflection in inches. S, Strain per square inch. M, Bending-moment produced by the load W in any cross- section. x, The distance of this cross-section from the support or from the load. The following tables give general formulas of bending- moments M, maximum loads W, maximum fiber strains S, and deflections d, for beams loaded and supported in different ways. The bending-moments may be calculated with these formulas for any cross-section by substituting the particular value of JT, and from the value thus obtained the strain in this cross-section is found by the general formula The necessary section of the beam at any place is obtained by reversing this formula, thus : I M -e OT R =S' This gives the moment of resistance required, arid the cor- responding beam may be selected from the table giving the different properties of beams and channels. 36 THE PASSAIC ROLLING MILL COMPANY. THE EASSAIC ROLLING THE PASSAIC ROLLING MILL COMPANY. 39 PKOPEETIES OF PASSAIC EOLLING MILL'S I BEAMS, CHANNEL BAKS, ANGLES, AND TEE IKON. THE following tables give co-efficients, by the use of which the safe, uniformly distributed load for any Beam, Channel, Tee, or Angle Iron can be easily determined. It is only necessary to divide the co-efficient by the span between centers of supports (in feet). This will give the safe, uni- formly distributed load in Ibs. for a beam simply supported on both ends, as in case 8 (see table of formulas for different modes of loading). For any other way of loading, the result has to be multiplied with a factor which is for MODE OF LOADING. FACTOR. 1. One end fixed, other end loaded l /$ 2. Both ends supported, concentrated load in center of span y 2 3. Both ends supported, concentrated load on rny point of beam 4. One end fixed, other end supported, concentrated load in center of span %' 5. Both ends fixed, concentrated load in center of span I 6. Concentrated load at each end, two supports between ends of beam y% 7. One end fixed, uniformly distributed load ^ 8. Both ends supported, uniformly distributed load. . I 9. One end fixed, other end supported, uniformly dis- tributed load . I 10. Both ends fixed, uniformly distributed load -3 n. One end fixed, load distributed, but increasing toward the fixed end y% 12. Both ends supported, load distributed, but decreas- ing toward the middle of the span f 13. Both ends supported, load distributed, but increas- ing toward the middle of the span ^ < 40 THE PASSAIC ROLLING MILL COMPANY. The co-efficients given in the tables for Beams and Chan- nels have been calculated for maximum fiber strains of 12,000 Ibs. per square inch and 10,000 Ibs. per square inch, but those for Tees and Angle Iron only for 12,000 Ibs. per square inch. If it be desired to find the carrying capacity for any other strain per square inch, this is simply done by increasing or decreasing the co-efficient given in the tables in proportion to the strains allowed. These tables have been calculated under the supposition that the beams are sufficiently secured against yielding sideways. Usually, it is assumed that this is the case if the free length of the beam does not exceed twenty times its width. If longer beams are required, it is necessary that they should be stayed at intermediate points, or the safe load has to be reduced as given in the table for beams not secured against yielding sideways. Beams or Channels in short lengths have to be proportioned so that the section of the web is sufficient to resist the shearing strain. The shearing strain on the web should not be more than the half of the fiber strain allowed on the flanges ; that is, 6000 and 5000 Ibs. resp. per square inch. This gives for short beams a maximum safe load which such beam may support without buckling or crushing of the web. The tables show the dimensions and different properties of I Beams, Channels, Tees, and Angle Iron. I Beams are usually rolled heavy, and light weight, as given in the table. Channels and Angle Iron frequently are made of varying weights, but Tee Iron can be rolled only to the weights shown in the lithographed plates. THE PASSAIC ROLLING MILL COMPANY. 41 53 OJ 8 8 OOi 00 Q -^ rHO COO 00(7J rH 3 J> O 0) g !N O 00 iO 1> 05 05 COW GO rH rH i 1 @s coo o> 8 . co" iC CO iO CO ^ CO CO C^ i 1 CO O 0^ rH rH rH o rH I- O OJ rH rH dtf 1 i O5C> CO g o CO Tf rH 1 0^ COrH'* C 00 CO rH g I 05 rH C*x C*x D o i |5 OJ i 1 00 i^co Tf co 1 1 CO r-i rH 1 -* * CO 00 t^ 8 4 rH rH 6^ t^ 00 <* CO 8 1 rH CQ O SH* .*!* 5" cT C5rH * rH CO 1 rH i * O s CO 00 1> | 1 ^'g H rH o O GO lO rt< G r>. to ' "T r~^p ?~7T r J-- JT QJ D a *"O ^ t- 1 ^ zi o w ' i S^c^ si, fl "c a : | % |.g | -| j ^ll '8^ c .go: g -*- 1 ^H *e S S * S 1 ?! g ^5 17??" rSJ 1 2 (U "t^^~* a ? ^ a 2 rt ^ &) ! ^ J '^ ~ 8C o P4 cr. a? >2 i c<5 g 42 THE PASSAIC ROLLING MILL COMPANY. 00 rH to rH^SS g g ^ M 1 11 O ^ (M rH 0* o J^ 1 00 Oi T 1 3 o co^ o oSSS 1 o' 1 rHO CO ^ro Oi O 1C tO 8 g 8 CO Oi -* rH (7* 8 rHO , j, 8 s rH 1 1 Hd C ^JH Oi ifi 00 rH O CS l^ i 8 "^ o O 'O rH CO oo" o rH i ** Tl< . ^ CO O o Sfi *2 a CD 2^ CO 1> C* O 1 uO CO rHO GC e o U3 o" O O rj< 00 gjoioiio 1 1 ^ ~T (7*0 s . 1* (M rH CO l> rH J>0* lO rH 1 rH P ffl ;- .8 I- O01 ^10 % rH 8 1 : i CO O H 00 8 o O J> CO OJ rH 1> CO t^ rH rH o 1 1 CO 00 O 00 io d i rH 2 T? ' "T^ ' "T" . * 1 in 1 g en ,Q 'c 'rt rt If cj ;- D 'll S o D 111 '5 >> " cj 1 1? ^rT.S lf|. f -ss ^ ^5 ef p 1 i ? bfl te^S . S g o 8 S t.l M -I- C fe cd G .J2 S^'H II ' ifl | g" ll *j. O O S % 2 1 s o ^~* "^ ^4 .2? *Q ^ PH ^ r^ cd t flj u^ rr4 ST tO lO CO CO S^S Oi otoo CDCD04THCOTH 8 S CO 0" 00 TH TH O O * o ^ CO iH ^ g o jo o 1 1 |! 0400 010 OCDtOTHOOO --T ggo 1 O) -^ 1> O CD TH 8 Tf CO O4 <* J> 00 . O4 * i 1 CDTH04 0. TH" CD" S 2 TH tOOO OO CO CO ^ CO TT 00 Srf coco^t. d 5 CO O O 3 co" co 06 do , OJ " ^ rH CD * O Ot -^OJO CO 05 8 8 8 8 oS?? j " CO O O Tf O> CO Oi ^< 00 r 3 of co^ ot o o OD 3 - 00 TH PH c^SS uO J> CO tO S CO 8 8 O5 tO J> O TH j j2 CO O O l^ GO OJ OJ iO TH O5 TH TH i rH TH CO TH CD CO 8 04 TH w to "* TH-C^S O t^ tO < 04 8 8 8 8 coiS u to TH S ^ oo Tf COO 04 tO 05 O4 TH 1> O4 CD O4 CD" co- co TH TH TH TH : : ^ ^ ' p. "o ""^ '. ^~ ^3 - (i, w t/3 O : i : : : : -~ S 5*1 X -*-* J : : : : O *O ^??Sc5S^ 8 8 00 ^* 5^5! rt rHO CO rH rH O^rH CO CO 10 TT 000 320 O d OO ** i 1 lO !MOrf QOOiCO 8 8 8 | c^^^ 10 H rHOO CO i 1 I tO CO rH CO Ci 8 8 CO CO s's CO* OO" ^ rH CO 00 10 i-HOO 8S rt< CO 00 CO C5 J> g CO rH Tf COCO W 00 3 (MOO CO lO i-H (M 00 ^ rH co" o^ 00 rH N (MOO u ,-W^-N ^ /-^N.X-> 05 "^ i as ^'5 3 ^'53 X *- 8.9 tcXi ^ "05 rQ ^ > ( in I ^2 l || ^~*^ G ^ ^ ^ of S ^ c" S tl _ l 05 r^ ^H rH \J 1-1 ^-1 ft JH o bit oil tuo /^~S^^\ Q /^/^x^ O r^ *" g g 'S o ^ 1 ~* ^ g i* * w .fljjjsl (U O *oj O ci 3 fi rH D rH ^ 5Jrt*,S? g.S| be aiy ? .S <3 >^ o ^ "-" O 4J (U 4-> H ' lift O 00 IJ5' i-l O CO ^H Tf< l> i^ O O J> J> OS O lO CM T-H 00 O J> CX) ^O 11 000 O 1* -* CIR^^ CM CO O QO O CO O (M CO ^t O rH lO CO <>i t> iCt O ^f i O iO OS O CM J>lOOrH J>(7v>O5lOCM CO rH rH 1> rH t>. CO rH rHO 00 rH * lO ?O rH CD LO "t CO CO O GO J> ^"*1> rH ^ CO O O C5 CO Ot 00 o do d OrHrHO. OOOO O l^rHrHOJ XXX X xxxx CO lO O -^f CO CM CD 00 CO lO rH -^ 1C rH 00 CM CM ^t CMrH O Oi Tf O CO "M rH rH rH O d odd d O GO ^ OJ lO CO CO CO CM CO CM rH O O CO CM CM rHO XXXX XXXX 7i CO "* CO XXXX ^f CO CO CO M (M CM rH XXXX CO CO CM * XXX XX MHC (TJ * CM rH rH rH rH xxxxx 46 THE PASSAIC ROLLING MILL COMPANY. WEIGHTS AND PROPERTIES OF ANGLE IRON. ANGLES WITH EQUAL LEGS. Co-efficient of Strength, max. strain 10,000 Ibs. per sq. inch. " rH 1 1 1 1 CD -^ I -H J.^ cq^ I i COr^S^ -rf CC C^ rH HI $o ^^og S^^^ rH rH rH rH 0000 0000 Distance of ent. of Grav. I| 88 S ^2 S^^I3 S3?3 rH rH rH rH 1 1 1 1 rH 000 1 1 1 1 CO 1 O Ci 1 1 1 1 O TT CO CO dodo 0000 Moment of Inertia, axis through Center of Gravity. O ** iT5 CO O O iC 00 CO O rH l^ GO O o5 CO Tl (7i rH O ss COrH 1 1 1 1 O Tf CO 00 COrH rn 1 1 1 1 'O 00 1T3 CO 0000 1 1 1 1 00 rH r3< <7* rH rH O O o o ^ O} o o OCiTf (M i O O O O Weights per yard for different thicknesses. 5* r^oo ^ .sss *. ^oood c4 > rH CO * S3S& . S* 10 lOCM ^ \a o QO 00 rH ^coS 5frH Ci CO C^ C^ rH rH ^00 o <* CO 00 oo^ rH XCO ^ rM rH i 1 T 1 rHrH i O LO c; uO GO ifl CO. OJ C^O i> -V CO ** W 00 GOOOi COl-COTf % CO -^ O CO CO i-O^CO CO OJ ^ 1 C o - CO rH rH 1 1 1 1 00 GO rH rH OS O 00 Tt 1 1 1 1 2ggg COO l^ CO rH IXMlO rH -H^OOTH rHO Weights per yard for different thicknesses. !* ?i s I-N s s ^ ^ jfc s s g 28 QO ^ *, 8 g 5? ^ 4 o | a ^ iO tO Tf ^ I sT ss CO CC ^ 58 5 I? ^ ^ gi S * ^' ^ -.l-x 22 S Cw CO fc<5 g 5* S ^ S 2* GO rH < S 3d- ~j7 J> t^ CO CO QO QO lO TH CO CD -* 3 N ^C 5 jj ^ CO* X X CO CO X X CO* CO X X (M rH rH rH X XXX CO frtcOrH* 48 THE PASSAIC ROLLING MILL COMPANY. I BEAMS. THE following tables are designed for practical use, to guide the selection of the most economical beam, by simple inspection, when me load and the span between centers of supports are given. The maximum fiber strain assumed is 12,000 Ibs. per square inch, which is sufficient for all build- ing purposes. Where beams have to carry moving loads, as in bridges, etc., this maximum fiber strain should be reduced; but for entirely permanent and dead loads, it may be increased with safety up to 16,000 Ibs. per square inch, as the limit of elasticity is at least fifty per cent, larger than this. The corresponding bearing capacity of beams can be easily found by simply multiplying the safe loads given in the table by the proportion of maximum strain allowed. The deflections for each greater load are always in proportion to the loads. Another table has been calculated for the safe loads which may be carried by beams not supported sideways. This table is calculated from Rankine's formula, 1 5000 w* in which a = the strain allowed in beams braced sideways, / = length in inches, and w width in inches. THE PASSAIC ROLLING MILL COMPANY. 49 00 05 ECTIONS in inche yielding sideways tn *Z \^ '* I i o " ^ I ed, and correspond eams being secure *f CO OS rH ^< l> i-H ^OOOrHrHrHCOOiOiCO ""oooooiooooo CJ ^ . >% p. II k ^ CO GO O CO I tO OS CO CO O I O OS iO O CO o o o o o I o o o o o I o o o o o ~|2 CO lO CO CO -^ |COiOl>C01> ICOODtOCOOS .POOuOCOrHOOSG6l>t>lcOCOlOlOO^t ' CO UO t- GO rH B O O O O rH 1-1 o odd d < O i> l>. O 00 ooooo looooo ^CO^COOS|COOOCOOSiO COrHOOSo6o6t>lj>COCO o i> rH OO CO O o o O (M * 30 * rH Ci H CO CQ (N ^4 rH OSCOCOJ>OS I 50 _i> rH l>. CO COCOrHdosOSG6o6j>l> co t- ^ co * i> o -^ co t>i t 1 rH rH rH rH rH ^ CO C5 CM r- rHrHrH (?i o lO 00 rH CO rH r4\O O O5 OS GO CO O CO O rH OS l^ CO O CO I OS r- Tf GO CO CO CO rH O O 00000 rH Tf CO OS CO rH rH rH rH CO doddd s IGOCOOSO CO CO O T} rf CO I OS i CO lO 00 I rH i O rHrH rHrH CO' (N ifl C5 <* O H O ^ CO CO CO _; | co co LO cc j^ *S I c' o p o o o P i M d d do d CO VO rH O "* Tf OCD1>OOG5 lO rH O (M J> looooo co co co co o~ GO 1>CO LO W 1 rH CO CO 00 rH rH rH rH oddd d CO O rH GO 1>- CO CO CO CO CO 10 CD J> 00 05 50 THE PASSAIC ROLLING MILL COMPANY. for maximum . s uniformly distributed, and corresponding DEFLECTIONS in inches Ibs. per sq. inch (beams being secured against yielding sidewa ons of 20 rains of , in fiber I OOCMl^CMOO ijOCMOOOO j-'OrHrHCMcMCO'^flOiOCO '"'do odd ddddd 00 8 |2 03 CO rf -^ t>. rH J> CO O J> ^d 06 j>co 10 !CM 00 CM Ci O5 d 06 i> OCOl>0005 rH O Ci iO rH t^ CO xC O O ^ CM O C5 i^ COCO CO CM CM J> rf CM O5 l>. tH rH r-tiH rH THE PASSAIC ROLLING MILL COMPANY 51 IO CTIONS in in yielding sidew 00 co c rH Oi 1> HrT CO CO CO CO LE t y 00 lO O) O5 O 1^00 CO H- CO CO CO CO COrHOOiCO 1> CO lO CO CO CO OJ OI I O* O* Oi OJ O* ItO OI CO tO tO ^f CO oioioioJoi rHOOICO 1> rf rf CO I CO CO CO CO CO CO CO OJ OI Oi BE..A.MS Co CO CO CO CO 00 52 THE-PASSAIC ROLLING MILL COMPANY. 4 H PQ inche deway 1 Si ' J nding DEFLECTIONS ured against yielding respo ng secu SDvil nd s b uniformly distribu Ibs. per sq. inch ( s o ain , in be C^ CO L.O 00 O rH CO 1> CD CD |OC:OOO|OOOOO " T ^>~s9~"gggs( gooooooo H TH d d o d 3 CO 00 1 Q ~o 1 I go ? TJ< coco ^ HrHTHrHTHTH o o !-, O i> Ci C7> >O T}< O C 00 Ci TH 00 ^ o ot -COCClOuO C^OJTHrHTH ITHTHTH-HTH p, COt* 00 05 00 00 00 00 CO *T THE PASSAIC ROLLING MILL COMPANY. 53 BEAMS UNSUPPORTED SIDEWAYS Are liable to fail under a much lighter load than given in the previous tables, by yielding laterally. Safe Load, in tons, for Beams unsupported sideways. SIX ? ^ rH ** "^m rH 11 r II II -8 ; .11 H ~ * OC X ,,f C* lO OJTH 1 rO 1, LZ X ,,f coo. 0*rH ^sss rH rH II ^ c ii 08 X ,,9 Tt O rH 00 CO i co oi -H rH Ofr X ,,9 oo co CO ift CO "^ ^ CO W GO(Nr-rH 09 X ,,L -. to (M (M O O CO COrHCSOO l^ T^ CO (^ C4 rH rH rH Q9X ,,8 QD J> l>. 00 iT5 CO -^ CO CO CJ rH CO tO (MO - J> O5 CO O5 lO i 00 CO-* O 00 i> ift Tf CO CO t> Tf CO (M OS J> CO O ^ J> CO *cococioi 000 CO ci rH rH 98lX,,fiH ^ -^ CO Tf O lO C^ 00 i^ 0. rH CO CO CO CO lO -* CO CO O5 lO C* cioi oi SSIX,,^ 30 CO rH rH 1> Tit 10 J> 10 J>CO J> CO rH Oi J> rH rH rH CO lO -^ TP CO COOJC* OAIX^SI 70 CO 05 LO O5COCO l^O5 CO 00 TJ< coco -^ oi o | CO lO -^ ^ coco 021 X ,,91 00 O5 (M <* OJ n< rHC50 (74 lO O lO ^SS2^ O5 CO CO CO iO Tf -tfCO 005 X ,,91 lO CO rH rH 0000 010500 O5 rH Tft ^rH^ COrHOCO l>. rH rH rH COCOlO 1.2 $ Cfl CD 00 OCQ-^COQO Od^CDOO (M 12| 2 ' ! 6"X90 8| " 11 " 10i" X 90 121 ' 2| ' 6"X 50 7i " 2 j 6"X 40 6i i 1* " ** . 56 THE PASSAIC ROLLING MILL COMPANY. I BEAMS, USED AS FLOOKING JOISTS. Load, 7O Ibs. per D ft. Clear Span. 3 apart. 3|' apart. 35D' 4' apart. 4V apart. 5' 5i' apart. apart. 6 apart. GOD' 10ft. 30 D' 40D' 45D' 50D y : 55D' Load, tb 2,100 5X30 2,450 5 30 2,800 5 X 30 3,150 5X30 3,500 3,850 5 X 30 5 X 30 4,200 6X40 12ft. 36D' 42D' 48D' 54D' 60CT 6GD' 72D' Load,tb I 2,520 5X30 2,940 5 X 30 3,360 5X30 3,780 6X40 4,200 4,620 6 40 6 40 5,040 6X40 14ft. 42 D' 49LT 56D' G3D' 70D': 77D' 84D' Load, tb 2,940 5 30 3,430 6X40 3,920 4,410 6 40 6 X 40 4,900 5,390 6 X 50 6 X 50 5,880 7 GO 16ft. 48 D' 56D' 64D' 72D' 80D' 88D' 96D' Load, tb 3,360 6X40 3,920 6X40 4,480 5,040 6 X 50 7 X 60 5,600 6,160 7 X 60 7 X 60 6,720 8 X 65 18ft. 54LT 63D' 72D' 810' 90D' 99D' 108 D' Load, tb 3,780 6X50 4,410 7 X60 5,040 7 X 60 5,670 7X60 6,300 6,930 8 65 8X65 7,560 8 X 65 20ft. 60LT 70LT 80D' 90D' 100 D' HOD' 120 D' Load, tb I 4,200 7X60 4,900 7X60 5,600 8 65 6,300 8X65 7,000 7,700 8 X 65 9 X 70 8,400 9 85 22ft. 66D' 77D' 88D' 99D' HOD' 121 D' 132 D' Load, tb I 4,620 7 X60 5,390 8X65 6,160 8 X 65 6,930 9X70 7,700 8,470 9 X 85 \ 9 X 85 9,240 10 X90 24ft. 72D' 84D' 9GD' 108 LT 120D'; 132 D' 144 a' Load, tb I 5,040 8 X 65 5,880 8X65 6,720 9X70 7,560 9X85 8.400 9,240 10^x90 104 90 10,080 10 X90 26 ft 780' 91D' 104 D' 117 D' 130 D' 1-13 D' 156 D' Load, tb I 5,460 8 X 65 6,370 9 ,\ 85 7,280 8,190 9X85 10^x90 9,100 10,010 10J 90 10% X 105 10,920 28ft. 84D' 98D' 112 D' 126 D' 140 D' 154 D' 168 a' Load, tb I 5,880 9X85 6,860 7,840 8.820 9,800 10,780 10^X90 10^X90 10JX105 12 X 125 11,760 30ft. 90LT 105 D 120 D' 135 D' 150D' 165D' 180 a' Load, tb I 6,300 10^X90 7,350 8,400 9,450 10,500 11,550 10JX90 10^X105 12JM25 12J\125 12J X 125 12.600 12JM25 THE PASSAIC ROLLING MILL COMPANY. 57 I BEAMS, USED AS FLOCKING JOISTS. Load, 100 Ibs. per D ft. Clear Span. 3' apart. 30Q' 3,000 5X30 f apart 35D' 3,500 5X30 4' apart. 4V apart. 5' apart. 5^' apart. 6' apart. 10ft. Load, IB I 40D' 45D' 4,000 4,500 5 X 30 6 X 40 50D' 5,000 6 ,40 55D' 5,500 6X40 GOD' 6,000 6 X 40 12ft. Load, lb I 36D' 42 D' 3,600 : 4.200 6X40 6 XX 40 48D' ! 54D' 4,800 5,400 6 X 40 6 X 50 GOD' 6,000 6X50 66D' 6,600 7X60 72D' 7,200 7 60 14ft. Load, 16 I 42 n' 4,200 6X40 49D' 4,900 6X50 56D' 5,600 6 X 50 64D' 6,400 7 X 60 63D' 6,300 7x60 70 D' 7,000 7X60 77D' 7,700 8X65 84D' 8,400 8X65 16ft. Load, ft I 48D' 4,800 6 X 50 56D' 5.600 7X60 72D' 7,200- 8X65 son' 8,000 8X65 88D' 8,800 8 X 65 9GD' 9,600 9X70 18ft. Load, ft I 54D' 5,400 7 60 63D' 6,300 8X65 72 D' 7,200 8X65 81D' 8,100 9X70 90D' 9,000 9 X 85 99D' 9,900 9X85 108 a' 10,800 104 X 90 20ft. Load, lt> I 60D' 6,000 8X65 70D' 7,000 8X65 80D' 8,000 9X70 90D' 9,000 9X85 100 D' 10,000 10i 90 110 D ' 11,000 104X90 120 a' 12,000 104 X 90 22ft. Load, ft I GOD 7 6,600 9 X 70 77D' 7,700 9 X 85 88D' 8,800 104 X 90 99D' 9,900 10J X 90 HOD' 11,000 10 X 90 121 D' 12,100 104X105 432D' 13,200 12i X 125 24ft. Load, lb I 72 a' 7,200 9X85 84D' 8,400 104 X 90 96D' 9,600 104 X 90 108 D' 10,800 10JX105 120 D' 12,000 12JX125 132 n' 13,200 12i X 125 J44D' 14,400 12i X 125 26ft. Load, tb I 78D' 7,800 104 X90 91 D' 9,100 104 <90 104D' 10,400 10J/105 117 D' 11,700 12JX125 130 D' 13,000 12JX125 143 D' 14,300 12i X 125 15CD' 15,600 15 X 150 28ft. Load, lb I 84D' 8,400 10 4 X90 98D' 9,800 104X105 112 D' 11,200 12JX125 126D' 140 D' 12,600 ! 14,000 124X12515X150 J54D' 15,400 15 X 150 168 a ' 16,800 15 X 150 30ft. Load, ft I 90 a' 9,000 104 105 105 D' 10,500 12JX125 120 D' 12,000 12JX125 135 D' 13,500 15 X 150 icon' 15,000 15 X 150 165 D' 16,500 15 X 150 180 a' 18,000 15 X 150 58 THE PASSAIC ROLLING MILL COMPANY. I BEAMS, USED AS FLOCKING JOISTS. Load, 150 Ibs. per D ft. Clear Span. 3 apart. apart. 35D' 5,250 6X40 4 apart. 4V apart. 5' apart. apart. 55D' 8,250 7 60 6 apart. 10ft. Load, tb I 30n' 4,500 6X40 40n' 6,000 6 40 45D' 6,750 6 X 50 50 D' 7,500 6X50 9,000 7X60 12ft. Load,lb I 36D' 5,400 6 X 50 42H' 6,300 6X50 48D' 7,200 7X60 54n' 8,100 V X 60 60D 7 9,000 8 65 660' 9,900 8X65 72Q' 10,800 8 65 14ft. Load, tb I 16ft. Load, ft 1 420' 6,300 7X60 49n' 7,350 7 X 60 5GD' 8,400 8 65 63D X 9,450 8X65 70LT 10,500 9 X 70 77D X 11,550 9 ,85 84n' 12,600 9X85 48H' 7,200 8X66 56n' 8,400 8 65 64H' 9,600 9X70 72D' 10,800 9 ,85 80D' 12,000 104X90 88D' 13,200 104 X 90 96n' 14,400 104 X 90 18ft. Load.tb 54LT 8,100 9 70 63n' 9,450 9X85 72n' 10,800 104X90 81D' 12,150 10A -10 90LT 13,500 104x90 99D X 14,850 10A 105 108 n' 16,200 12J > 12E 20ft. Load, M> 1 ,60n' 9,000 9X85 70n' 10,500 104x90 son' 12,000 104 90 90 a' 13,500 104x105 100 n' 15,000 12i>;125 lion' 16,500 12J X 125 121 n ' 18,150 15 X 150 120 a.- 1 18,000 12^ X 12S 22ft. Load, tb I G6n' 9,900 104X90 77H' 11,550 104x105 88n' 13,200 12^ 125 99H' 14,850 12^x125 HOD' 16,500 12^X125 132 a' 19,800 15 X 150 24ft. Load, tb I 72n' 10,800 104x105 84n' 12,600 12iXl25 96n' 14,400 12^x125 108 n' 16,200 12iXl25 120 n' 18.000 15X150 132 n' 19,800 15 X 150 144D-' 21,600 15 150 26 ft Load, ft I 78 D'' 11,700 12^X125 91D' 13,650 12JX125 104 D' 15,600 15X150 117 n' 17,550 15X150 13D n 7 19,500 15X150 143 n 21,450 15 X 150 156 n' 23,400 15 > 200 28ft. Load, ft 1 84n' 12,600 12^X125 98n' 14,700 15X150 112 a' 16,800 15X150 126 n' 18.900 15X150 140 a ' 21,000 15X200 154 n ; 23,100 15X200 168 n' 25,200 15 200 30ft. Load, tb I i 90n' 13,500 15X150 105 n' 16,250 15X150 120 a' 18,000 15X150 135 D' 20,250 15X200 150 a' 22,500 15X200 165 n' 24,750 15 X 200 180 a' 27,000 2-lf> 150 I Clear Span. 1'HE PASSAIC ROLLING MILL COMPANY. 59 BEAMS, USED AS FLOCKING JOISTS. Load, 200 Ibs. per D ft. 3' apart. 8i' apart. 35D' 7,000 6 X 50 4' apart. 40D 7 8,000 7 X60 4V apart. 5' apart. 5V apart. 6' apart. 10ft. Load, tb I son' 6,oao 6X40 45D' 9,000 7 X 60 50D X 10,000 7 X60 55LT 11,000 8X65 60D' 12,000 8 X 65 12ft. Load, lt> I 36D' 7,200 7 X 60 42D' 8,400 7X60 48D' 9,600 8X65 54LT 10,800 8 X 65 60D' 12,000 9X70 66LT 13,200 9 X70 72LT 14,400 9X85 14ft. Load, tb I 4.2 D' 8,400 8 X 65 49D' 9,800 8X65 5GLT 11,20C 9 ( 70 83D' 12,60C 9 .85 70D y 14,000' 10^X90 77D X 15,400 10$ X 90 84D 7 16,800 10J X 90 16ft. Load, ft 48D' 9,600 9 ; i j 56D' 11,200 9X85 64 D' 12,800 10x9C 72D' 14,400 10^X90 son' 16,000 10J <105 88D' 17,600 lOi X 105 96D' 19,200 10J X 135 18ft. 54D' 63D' Load, ft 10,800 12,600 I 10 90 10^X90 72D' 14,400 ioj,-ao5 81D' 16.20C 12i; N 125 90D 7 18,000 12JX125 99D' 19,800 124 ,.125 108 D' 21,600 12i X 125 20ft. Load, tb I COD' 70 D' 12,000 14,000 10i X 90,124X125 80n' 16,000 12JX125 90D' 18,000 12^X125 100 D 7 20,000 15X150 HOD 7 22,000 15 X 150 120 n' 24,000 15 X 150 22ft. Load, lb I 66D' 77D' j 88D' 13,200 ! 15,400 | 17,600 12iXl25jl2iXl2512}Xl25 99 D' 19,800 15X150 HOD' 22,000 15X150 121 a' 24,200 15 A 150 132 D' 26,400 15 X 200 24ft. Load, 05 I 72D' 84D' 14,400 16,800 12^X125 15 150 96D' 19,200 15X150 108 D' 21,600 15X150 120 D' 24,000 15x200 132 a' 26,400 15 X 200 144D' 28,800 15 X 200 26ft. Load, 11 I 78D' j 91D' 15,600 18,200 15X150 15X150 104 D' 20,800 15X150 117 D' 23,400 15X200 130 D' 26.000 15 x 200 143 a' 28,600 15 X 200 156 D' 31,200 2-15 X 150 28ft. Load,lb I 84D' 16,800 15X.150 ; 98D' ! 112D 7 19,600 22,400 15X150 i 15X200 126 a' 25,200 15X200 140 D 7 i 28,000 2-15x150 150 D' 30,000 2-15X150 154 D' 30,800 2-15 X 150 168 D' 33,600 2-15 X 150 30ft. Load, lb I fc- 90 D' 105 D' 18,000 21,000 15X150 j 15X200 120 D' 24,000 15X200 135 n x 27,000 2-15 X15C 1650' 33,000 2-15 X 150 180 D' 36,000 2-15 X 150 *2 60 THE PASSAIC ROLLING MILL COMPANY. EIYETED RIVETED girders are used where rolled beams are not sufficiently strong for carrying the load. Sometimes it may be more economical to use a deeper built beam instead of a solid rolled beam, but generally the Kolledbeam is the cheaper one, if it can be had strong enough to carry the weight. Plate girders have either single or double webs. The latter ones, box girders, have more stiffness sideways ; and plain plate girders, with single webs, are somewhat cheaper. The width of the top flange of the girders should be at least one- twentieth of the span, or the section of the top flange should be increased accordingly. For girders not protected against yielding sideways, box girders are preferable, as they have greater stiffness laterally. Shearing strains in the web should never be more than half of the strains allowed in the flanges ; and if the depth is considerable, stiffeners should be used to prevent buckling of the web-plates. A good rule is to have stiffeners if the depth of the web-plate exceeds eighty times its thickness. Angle irons are better as stiffeners than Tee iron on account of having larger flanges, which allow more space for rivets. The stiffeners should always reach over the vertical sides of the angles forming the chords of the girder, and there should be filling pieces between the stiffening angles and the web-plate. In every case, whether there are web- stiffeners used or not, there should be a reinforcing by angles or plates at the ends of the girders where they rest on columns or on the wall, so that the reaction of the support may be resisted by an increased section of the web. In larger girders, one, two, or more cover-plates are required to make up the necessary section of the, chords or flanges. Frequently all these cover-plates are made the whole length of the girder, but this is only a waste of material, as the outer cover-plates are only required for a part of the length. Plate girders should never be made too shallow, on account of the deflection; they should have at least a depth of one twenty-fourth of the clear span ; if built shallower, more material should be put in the flanges and webs, so as to reduce the strain per square inch, and the deflection in proportion. THE PASSAIC ROLLING MILL COMPANY. 61 CALCULATION OF A RIVETED GIRDER. Box girder, to carry a wall 20 inches wide. Span, 30 feet between centers of supports = 360 inches. Total weight to be carried, 100 tons = 200,000 Ibs. Depth available, 36". Load on each support, X 200,000= 100,000 Ibs. 100,000 Ibs. Web section required, ^ = 20 D . 5,000 Ibs. Two web-plates, 34/'.X " = 25.^ D". Bending moment in middle of span, | X 200,000 X 360 = 9,000,000 inch Ibs. Depth of girders bet. centers of chords or flanges, about 34". 9,000,000 Maximum chord strain, - = 264,700 Ibs. 34 Chord section required, ~ 263- D " . This section ) ^ of the web-plates. .............. 4j H" is made up > 2 L iron, 6 ;/ X 4"X i ............. 9f D" as follows : ) I cover plate, 20" X f ............. 12^ D " 26| D" STIFFENERS. Angle iron, 3"X 3 /7 X f", placed about 4 to 5 feet apart. By the use of the following table, it is easy to find the sec- tion required in the chords of riveted girders, if the load and span are given. This table is calculated for a maximum strain of 10,000 Ibs. per square inch of gross section. If a higher strain per square inch is admissible, as in case of strictly permanent loads for structures which are not exposed to vibrations and sudden applications of heavy weights,-*- it is only necessary to reduce the result obtained in proportion to the higher strain per square inch allowed. Plate No. 15, fig. i, shows an elevation of a plain plate girder, built of a web-plate, and four angle irons, stiffened with angle-iron stiffeners. Fig. 2. Section of plain plate girder, without cover-plate. Fig. 3. Section of plate girder, with top and bottom cover- plates. Fig. 4. Section of ordinary box girder, with two web-plates, two cover-plates, and four angle irons in chords. Fig. 5. Same with extra angle irons riveted to the side of the web-plate. The floor joists, either iron or wood, are car- ried on these angles. Fig. 6. Compound girder, consisting of two ordinary plain plate girders, connected together at intervals with wrought or cast iron separators. Fig. 7. Box girder, composed of two vertical plates and two horizontal channel irons. 62 THE PASSAIC ROLLING MILL COMPANY. EIVETED GIRDERS. Multiply by the load in tons of 2000 Ibs., uniformly dis- tributed, and divide by 1000. The result is the gross area in square inches required for each flange, allowing a maxi- mum fiber strain of 10,000 Ibs. per D inch. Span in feet. DEPTH OUT TO OUT OF WEB IN INCHES. 18 20 22 24 26 28 30 32 34 36 38 40 42 10 11 12 13 14 167 183 200 217 233 150 165 180 195 210 136 150 164 177 191 125 138 150 163 175 115 127 138 150 162 107 118 129 139 150 100 110 120 130 140 94 103 113 122 131 88 97 106 115 124 83 92 100 108 117 79 87 95 102 110 75 83 90 98 105 71 79 86 93 100 15 16 17 18 19 250 267 283 300 317 225 240 255 270 285 205 218 232 245 259 188 200 213 225 238 173 185 196 208 219 161 171 182 193 204 150 160 l?i) 180 190 141 150 159 169 178 132 ' 125 141 133 150il42 159150 168 158 118 126 134 142 150 113 120 128 135 143 107 114 121 129 136 20 21 22 23 24 333 350 367 383 400 300 315 330 345 360 273 286 300 314 327 250 263 275 288 300 231 242 254 265 277 214 225 236 246 257 200 210 220 230 240 188 197 206 216 225 176 185 194 203 212 167 175 183 192 200 158 165 173 181 189 150 158 165 17:5 180 143 150 157 164 171 25 26 27 28 29 417 433 450 467 483 375 390 405 420 435 341 355 368 382 395 313 325 338 350 363 288 300 312 323 335 268 279 289 300 311 250 260 270 280 290 234 244 253 263 272 221 229 238 247 256 208 217 225 233 242 197 205 213 221 229 188 195 203 210 218 179 186 193 200 207 30 500 31 1517 32 |533 33 550 34 567 450 465 480 495 510 409 423 436 450 464 375 388 400 413 425 346 358 369 381 392 321 332 343 354 364 300 281 265 310 j 291 | 274 32013001282 330 |309 1291 340 319 3U() 250 258 267 275 283 236 244 252 260 268 225 233 240 248 255 2U 221 228 236 243 35 583 36 600 37 617 38 633 39 650 40 667 * 525 540 555 570 585 600 477 491 505 518 532 546 438 450 463 475 488 500 404 415 427 438 450 461 375 386 396 407 418 429 350 360 370 380 390 400 328 309 338 318 3471326 356! 335 366 344 375 353 292; 276 263 250 300 284 270 257 308J292'278 264 317 2991285 271 325 31 )7 [ 293 1278 :;:;:} :u:> :jou 286 j -* THE PASSAIC ROLLING MILL COMPANY. 63 STBENGTH OF WOODEN BEAMS. The following table is calculated for rectangular beams one inch thick, and for different spans and depth of beams. Maximum fiber strain allowed, 1000 Ibs. per square inch. Beams to be braced sideways. For a factor of safety of 5 multiply by I .o for ash. i.o 1.3 for spruce. i . 44 1.8 for white oak. i.o i . 12 for white pine. 1.6 for long leaf yellow pine. Span DEPTH IN INCHES. 8- feet. 5 6 7 8 9 6 7 8 1420 1190 1020 890 790 9 1800 1500 1290 1130 1000 10 11 12 13 14 15 16 800 670 570 500 440 1090 910 780 680 610 2220 1850 1590 1390 1230 2690 2240 1920 1680 1490 1340 1220 1120 1030 960 3200 2670 2290 2000 1780 1600 1450 1330 1230 1150 1070 1000 940 890 840 3980 3220 2840 2490 2210 1990 1810 1660 1530 1430 1330 1250 1170 1110 1050 4380 3650 3130 2740 2430 5000 4170 3570 3130 2780 5690 4740 4060 3560 3160 2840 2590 2370 2200 2040 10 11 12 13 14 400 360 330 310 290 270 250 240 220 210 540 495 450 420 390 360 340 320 300 290 710 650 590 550 510 480 450 420 400 380 900 820 750 690 640 600 560 530 500 480 1110 1010 930 860 800 2190 1990 1820 1690 1570 1460 1370 1290 1220 1150 1090 1040 1000 950 910 2500 2270 2080 1930 1700 1670 1570 1470 1390 1320 1250 1190 1140 1090 1040 15 16 17 18 19 740 700 650 620 590 900 840 790 750 710 1900 1780 1680 1590 1500 20 21 22 23 24 200 190 190 175 167 272 260 248 237 228 360 340 325 310 297 450 430 410 390 380 560 530 510 480 460 450 430 410 400 380 370 670 640 610 590 560 800 760 730 700 670 990 950 910 870 830 1420 1360 1300 1240 1190 1140 1100 1060 1020 980 950 ? 25 26 27 28 29 30 160 154 149 143 138 134 218 210 202 195 188 182 285 275 265 255 246 237 360 350 330 315 3' 7 297 540 520 . 500 480 465 450 640 620 590 570 550 530 800 770 740 710 690 660 880 840 810 780 750 730 1000 960 930 890 860 830 64 THE PASSAIC ROLLING MILL COMPANY. COLUMNS, POSTS AND STRUTS. THE following tables of strength of columns are calculated for safe working strains, and not for the ultimate strength, as it is of greater consequence to know what load a column will support with safety, than to know under what load it will fail. The first table is copied from a paper read by Mr. Theo- dore Cooper, before the A. S. of C. E., and it is based on experiments made on full size columns at the Watertown Arsenal. The allowed working strains are calculated so that they are in proportion to the limit of elasticity (0.44 of it). For posts which are liable to be struck by passing bodies as f : i, the web-posts in through-bridges, smaller working strains are given. The second table shows strains per square inch as allowed by the specifications of the New York, Lake Erie and Western Railroad, which have been adopted by a great many roads all through the United States, and on which base a great number of structures have been designed and executed. The values of ratio of length to diameter for different shapes of struts, are only approximate, but they are sufficient for ordinary use. Both of these tables are calculated for moving loads ; for steady loads, as in buildings, the safe working strains may be increased 25 per cent. The table of safe loads on rolled I beams used as columns or struts is intended for steady loads only. Such columns are frequently used in buildings, and give very satisfactory results if the length is not too great. If two I beams, well braced together, are used, they will carry a larger load. The co-efficients, as given for box columns, may be used for such columns without great error. THE PASSAIC ROLLING MILL COMPANY. 65 Plate 16 shows sections of different types of columns. Fig. i. Box column, composed of two channels and two plates. Fig. 2. Box column, composed of four angle irons and four plates. Fig. 3. Open column, composed of two channels connected with lattice bars or lacing. Fig. 4. Open column, built of two plates and four angle irons, connected with lattice bars. Fig. 5. Open column, built of two I beams, connected with lattice bars. Figs. 6 and 7. Columns built of two C and one I beam, or of three I beams. Fig. 8. Columns of similar section ; in place of solid rolled beams and channels, angles and plates are used. Fig. ii. Column consisting of two plain bars riveted to- gether with an I beam. Fig. 12. Plain I beam used as column. Fig. 9. Two I beams connected with cast-iron separators and bolts or rivets. Fig. 10. Two channel bars connected in the same way. Fig. 1 8. Two flat bars connected in the same way. Fig. 13. Open column, built of four angle irons, latticed. Fig. 14. Four angles connected with solid web-plate, or latticed. Figs. 15 and 17. Two T irons or four angle irons riveted together in star shape. Fig. 1 6. Similar column. The angles are separated by cast-iron thimbles. 66 THE PASSAIC ROLLING MILL COMPANY. !.* So S I B *!*& "2 t/j o !l -tt -O O r I W S S | j 4J o 1 ^= M P^ n I o ^ w j t4 s P4 Q u i ;] u a a I fl i i '1 ; I ' O" 1>CO" .N SS = oo'co* > co" " s i -.^-* o< OOOGO rH CO O co co ^ uo'rf co" GO O J> lO CO O^rH CO^ ^ CO CO (M CO Tf iO CO CO qotCtCUd'to^f t> rH CO CO C5 10 -^ CO Ct CCO ITS Tf O CO CO 10 rf CO" COi-lrH TH CO 1> 005 1> CO O) rH O* CO THE PASSAIC ROLLING MILL COMPANY. 67 TABLE OF ALLOWED WORKING STRAINS ON WROUdHT-IRON COLUMNS. Calculated from formulas of the N. Y., Lake Erie, and W. R. R. For Square Ends. Pin and Square Ends. 8,000 8,000 Pin Ends. 8,000 I + L* i + lies. R s, as in L 8 L 2 40,000 R* = length in inc For dead loac 30,000 R 2 = radius of g buildings, allo ' 20,000 R 2 yration in inches, w 25% more. Ratio of Length to Rad. of Gyr. L R Working Strains per sq. inch. Ratio of L to Diameter. Square. Lbs. per sq. in. Pin and Square. Lbs. per sq. in. Pin - ! Phoenix Lbs. per! Col. sq. in. i Ameri- can Col. Box Col. Open Col. JL ir Col. 30 35 40 45 50 7,820 7,760 7,700 7,620 7,530 7,770 7^590 7,500 7,380 7,660 7,540 7,410 7,260 7,110 10.9 12.8 14.6 16.4 18.2 10. 11.7 13.3 15. 16.7. 12.3 14.3 16.4 18.5 20.5 11.1 13. 14.8 16.7 18.6 6.1 7.2 8.2 9.2 10.2 55 60 65 70 75 7,440 7,340 7,230 7,130 7,020 7,260 7,140 7,010 6,880 6,740 6,950 6,780 6,610 6,420 6,250 20.0 21.9 23.7 25.5 27.3 18.3 20. 21.7 23.3 25. 22.6 24.6 26.7 28.7 30.8 20.5 22.3 24.2 26. 27.8 11.2 12.2 13.3 14.3 15.3 80 85 90 95 100 6,9UO 6,780 6,660 6,530 6,400 6,590 6,450 6,300 6,150 6,000 6,060 5,880 5,700 5,510 5,330 29.2 31.0 32.8 34.6 36.4 26.7 28.3 30.0 31.7 33.3 32.8 34.9 36.9 39.0 41.0 29.7 31.5 33.4 35.2 37.1 16.4 17.4 18.4 19.4 20.5 105 no 115 . 120 125 6,270 6,140 6,010 5,880 5,750 5,860 5,700 5,550 5,410 5,260 5,160 4,980 4,820 4,650 4,490 38.2 40.0 41.9 43.7 45.5 35.0 36.7 38.3 40.0 41.7 43.1 45.1 47.2 49.2 51.3 39. 40.8 42.6 44.5 46.4 21.5 22.5 23.5 24.5 25.5 130 i 5,620 135 1 5,500 140 ! 5,370 145 5,240 150 5,120 5,120 ! 4,340 4,980 : 4,180 4,840 ! 4,040 4,700 i 3,900 4,570 3,770 47.3 . 49.2 51.0 52.8 54.6 43.3 45.0 46.7 48.3 50.0 53.3 55.4 57.4 59 5 61.5 48.2 50.1 52. 53.9 55.7 26.6 27.6 28.6 29.6 30.6 155 5,000 4,440 ! 3,630 160 4,880 4,320 3,510 56.4 ! 51.7 58.2 53.3 63.6 65.6 57.5 59.4 31.7 32.7 * 68 THE PASSAIC ROLLING MILL COMPANY. S~ TABLE OF SAFE LOADS FOB ROLLED X BEAMS USED AS COLUMNS OB STBUTS. Both ends flat and fixed. Calculated from formula 10,000 per sq. inch. This Table is to be used for dead loads only. L 2 For moving loads deduct 20%. l " 40,000 r* s X CO CO GO O* * C5 O O rH OJW rH rH rH rH rH C5 00 J> CO CO OCO CO iO CO lO Tf CO OJ rH d C5 g OOJ OJ CO COO) rHO TH T- < rH rH O5QO 1>1>^ s 0)0 J> "T OJ r-lOO5 co 9 XO CO rH O5 Oi O5 lO ! a 0) 02 SSS3 tycoon. O* rH O C5 rH rH rH O . 8 5S &SS8 SSSS * S ssss rHOSOO CO Tf Ot rH 00 Jg siss asss O5QO l>. rH TH rH rH i CO CO CO CO ?5SSS ssss o s ssss SSSS i^co-^o* rH TH TH rH 05 ^ GO ^s^s 83S& glil ^^ o TH > ^ss ss?s rH rH ^^5 fe^ ssss 2 CO CO CC uO sss? ^5^ 2 S O5 1> tO CO O O uO O TH C5 CO CO 5i^SS 3 rH O5 J> ^ 00 l^ t^l> S8SS SJ> -^ ' m to o '2 s rH rH gc3 !!i! WO CO CO i^cococc S i CO ^ rH O5 O5 Oi O5 00 Depth of Beam. Wgt. per yd. Length of Post. Feet. 00 OiOrH rHrH rH rH rH rH 1 V THE PASSAIC ROLLING MILL COMPANY. 69 TABLE OF SAFE LOADS FOR HOLLOW CYLINDRICAL CAST AND WROUGHT IRON COLUMNS. CAST-IRON COLUMNS, with factor of safety 6. Square Bearing. *3333 1.2 1 + 800 1 - j H !S f, 1 o r 1 ; 2' 2' 3' 3 X 4' 4' 5' 5' 6' 6' 7' 6.5 6. 5.5 5. 4.5 4. 3.5 5.5 5. 4.5 4. 3.5 3. 4.5 4. 3.5 3. 2.5 3.5 St.- 2.5 2. 1.5 1.5 1. K "u 1 c A, j. ^o , bi) -S 1' 2 2' 3 3' 4 4' 5 5' 6 6' 7 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 0.5 1.0 1.5 0.5 1.0 0.5 -o 1. ! X 1 M 2 2' 3 3' 4 4 / 5 5' 6 6' 7 7' 0.5 1.0 1.5 2.0 2.5 6. 0.5 1.0 1.5 2.0 5. 0.5 1.0 1.5 4. 0.5 1.0 3. 0.5 2. 1. . PASSAIC ROLLING MILL COMPANY. MAXIMUM STRAINS IN BELGIAN OE FINK ROOF TRUSSES. Plate 1 8, Figs. I and 2. To find the maximum strain in any member of these trusses, multiply the co-efficients given in the table below with the panel load. Ratio of depth 0.333 to length of span. - 0.289 TTiV* 0.250 i 0.200 j 0.167 * 0.125 1 Inclinat'n of rafters. 41 49' 30 26 34' 21 48' 18 26' 14 2' c/i at a 'o 1 X II II 01 12 22 5.25 4.50 3.00 6.06 5.19 3.46 7.00 6.00 4.00 8.75 7.50 5.00 10.50 9.00 6.00 14.00 12.00 8.00 tl or 1'2' 2'3' 3'4' 6.30 5.75 5.20 4.65 7.00 6.50 6.00 5.50 7.83 7.38 6.93 6.48 9.42 9.05 8.68 8.31 11.08 10.76 10.45 10.13 14.44 14.20 13.95 13.71 Tension braces. 23 34' 12'&32' 1.50 2.25 0.75 1.73 2.60 0.87 2.00 3.00 1.00 2.50 3.75 1.25 3.00 4.50 1.50 4.00 6.00 2.00 t/; p uri ll'&33' 22'' 0.83 1.66 0.87 1.73 0.89 1.78 0.93 1.86 0.95 1.90 0.97 1.94 c/i (fi 3 Tj 1 ^ Bottom chord. 01 12 2.25 1.50 2.60 1.73 3.00 2.00 3.75 2.50 4.50 3.00 6.00 4.00 Top chord. or 1'2' 2.70 2.15 3.00 2.50 3.35 2.90 4.04 3.67 4.75 4.44 6.19 5.95 Rod strut. 12' 11' 0.75 0.83 0.87 0.87 1.00 0.89 1.25 0.93 1.50 0.95 2.00 0.97 k THE PASSAIC ROLLING MILL COMPANY. 75 MAXIMUM STRAINS IN RECTANGU- LAR AND TRIANGULAR TRUSSES. BY using the following tables, it will be found easy to de- termine the maximum strains in different trusses or girders with parallel chords, if the dead and moving loads are given. In many cases it will be sufficient to consider only a uniform dead load and a uniform moving load. The third columns give the influence of a heavier load in front of a uniform load ; f. i., a locomotive ahead of a train of cars. The panel points are numbered, beginning with o at the abutment, those of the bottom chord with plain numbers, and those of the top chord with a prime ( ' ), so as to indicate the position of the different members without its being necessary to refer to the diagram. In the calculation of a double intersection rectangular truss, it is necessary to treat the truss as a combination of two sin- gle intersection trusses ; and if the number of panels is an odd one, there exists some uncertainty in which way the full load is transmitted to the abutments. Sometimes it is assumed that the counter-rods are without strain under full load, and this gives somewhat smaller strains in the top chord and larger strains in the bottom chord than those given in the table. But generally the counter-rods are made adjustable, and have always some initial strain, so that it is more consistent to assume that the trusses under full load, as well as under partial loads, act like two separate single intersection trusses. The difference in the results in either case is of no practical importance. In calculating these tables, the loads were supposed to be concentrated at the bottom chord joints for through-bridges, and at the top-chord joints for deck-bridges. In through- bridges, the strains in the web-members under compression (web-posts) obtained this way should be increased by the weight of a panel of top-chord and top-lateral bracing. 76 THE PASSAIC ROLLING MILL COMPANY. EXAMPLE OF APPLICATION OF TABLE. WARREN TRUSS, DECK BRIDGE WITH INTERMEDIATE POSTS. Span, 150' ; depth, 20'. Number of panels 10, of 15' each. Dead load, 1,200 Ibs. per lin. ft. Live load, 2,400 " " " D= Dead load = 9,000 Ibs. per panel and I truss. L = Live " = 18,000 " " " " i " E = Excess of locomotive weight = 10,000 Ibs. for I truss. /= 18,000 =1>8oo 10 10,000 ^=_J = 1,000 10 Length of diagonal members, 25' Sec. = = ..25 Tang. =^1=0.75 Strain in middle piece of bottom chord 4-6 12. 5 (D + L) = 337,500 5 e = 5,000 342,500 X tang. 256,875 Compressive strain in brace, 45'. 0.5 D = 4,500 15. / = 27,000 5. e = 5,000 36,500 X sec. = 45,625 Tensile strain in brace, 5' 6, 0.5 D =4,500 10. / = 18,000 4. e = 4,000 1 7,500 X sec. =21,875 It will be observed that, by beginning with o at the left- hand abutment, the compression member 45' becomes the tension member 5' 6, and the maximum strains change from 45,625 compression to 21,875 tension. The strains in the other members are found in similar way. THE PASSAIC ROLLING MILL COMPANY. 77 3 81 H S ^c 53 H ri ^So EH Q v CO (7) TH ift ift ift !l 1! ^^oi QTHC'O Q T-;^ ^ <* CO coi>ao SGOCO-^IOCO ;oc*co^iftcoj>aoci oo*co^io tn C* CO "* ift CO Ot CO Ttlft CO g< 61 co TJ< H ^H o* co (M CO -^f ift CO o co -^ ift cc 78 THE PASSAIC ROLLING MILL COMPANY. LIVE LOADS MAXIMUM STRAINS PRODUCED BY DEAD GULAR TRUSSES. TERSECTION RECT DOUB ate 1.) LS, FOR THROUGH AND GO J> CO lO Tf CO COCC CM iHiH 1 TH inclined members vertical " - ~ r-t CO i.t TO T-H 'sf >2 C5 * CO C* (N rH gs ssS O -t CC (M rH O C5 'X i^ '^ 1.7 "T Inclined Memb'rs. HP ^|&83 sll^ Ol CO ^f O t- 00 OS OJ CO ^t< -O t^ OD CS -oc THE PASSAIC ROLLING MILL COMPANY. 79 cs co i> co 10 CO ii o Ci oo i> o LOOO (M ioi>oo rH TH CM CM Oi CM CO CN CO CM rH O O5 00 l> CO o o -* CO W rH Oi CO b- CO iO co r^ co i^ _1_O lOCOOuO I^T-H TH CM CO CO ~ri> TH t>. CM co as rH o* Q rH rH CM CM CM CO CO - !! II a i ^ CO* J> CO O -"^ CO OJ r-l O Oi CO , t-^ioio 9 ' ' co cjoiioo-^t^ajo I Q rH TH CM CO CO CO CO ^ - 00 CO O5 W CO ^ O CO l^ 00 rHCMCO^i &- 80 THE PASSAIC ROLLING MILL COMPANY. ft PQ Pn iT3 iO O rHdd "xa 00 O -^ CQ Q WiHO iH o iS 7 - > O GO CO TJ CO 1C ' H-l -l-^t -^ tO CO CD BE o 10 co c c ^7 CO CO CO O 3^ COW I I I H-CO t>. 05 (74 CO iC O CO Q ^HrH^rHrt CO OJOQOCOTf W <* CO (M rH O r-i ( i + " 7-r HTH CO O i> O5 T-H CO "-^ Oi O CO GO Q rH i-H rH Aq THE PASSAIC ROLLING MILL COMPANY. 81 . ^ I Q Q^o'o Cl l> iO CO i-H lO CO TH ^ CO lO CO~OS -t iH^ CO 7* TH N QCO WiHOrj TH C* * -OiOifl iT5 <>i TJ< o co co TH O OS CO 1> CO -(-CO O J> CO Oi Oi Q CO i-l OS J> lO CO r-l 1 ^ CO W i-H O OS 00 i> rHrO -4 co o c i -t co uo in co Ib i> oi in co ib SUBJL Xq X{dppj\[ THE PASSAIC ROLLING MILL COMPANY. W ~ O ^ > Q PQ Q <& < t3 g o* w *" P-( ^ C/5 T O hH EH ft i i H H G a | ffi o ^ CO Oi rH do ^> lO - rf 111 ^0 P3 00 +ai -o t>: 06 "1 J O 11 1 (fl ^ OS CO 1> f P3 a II E- i &H + rji CO ? | v T-H o Oi co t> o a *-< i Ci 00 1^ ^ rt< CO CQ TH c: w co -^ o o t^ co Oi o ^i Xjdrjjmu 'spaotQ general live E n of panels d load per panel . ve load per panel. cess of engine loa for 1 panel. L n o a; > a ^ S503a ii ii n ii Q,-1W -* 84 THE PASSAIC ROLLING MILL COMPANY. Q O n M iH io 10 o PrHrHOOO . Qrt "O o u - (M rH rH O O O rH C > _ LJ i-J sg- ^OiODi>tO>O'^'COOirH E'S Jj"0 0* 0* TH rH C iH rH CoSwr1rHdodrH!;W ^COC^rHOOiOOt^COlO^COOJrH rt jo C/3 O" V THE PASSAIC ROLLING MILL COMPANY. 85 ^f l-O ** lO Tl< CO DERS RREN G NTERSECTION DOUBLE d o o ^* F I ^ 3J -3. SP s t: i-IO tH OOSQOOiQO J> Ob- o)co corHOTH ^ I Q TH TH TH TH (M Ot Ol (54 O4 O4 CO CO CO 00 I S TH- . T r -tf -^ i-< iO fi O lO T-T (54 CO lO 1.O xO 001^ GO 05. 86 THE PASSAIC ROLLING MILL COMPANY. EIVETS AND PINS. IN proportioning riveted work it is customary not to take into account the friction between the shapes or plates con- nected. The rivets have to resist the whole strain which has to be transmitted from one part to the other by their resist- ance against shearing. The bearing surfaces of the rivets and of the connected parts must be large enough to avoid damage by crushing. Therefore, it will be always necessary to calculate the rivet connections for shear as well as for bearing. The following tables give shearing and bearing values of rivets of different diameters for shearing strains of 6,000 Ibs. and 7,500 Ibs. per square inch section, and for bearing values of 12,000 Ibs. and 15,000 Ibs. per square inch. The smaller values shou^ be used for moving loads, and the larger values may be used for steady loads. Pins are subject to strains by shearing, bearing, and bend- ing. The corresponding values for these three different strains are SHEARING. BEARING. BENDING, For R. R. bridges and iron pins 7,500 12.000 15,000 " " " " steel pins 11,250 18,000 22,500 For steady loads and) iins g highway bridges $ HE PASSAIC ROLLING MILL COMPANY. 87 GC~tO CO TH !>* CO n*! (H ! <; ozj* O* CO CO M ^ 'tits O O O O 00 lO TH CO 8i 8 ; CO ^d-CO^ C, Q U I Oi o o : ! OJ C* 8SS o o t^ i> GO CO 00 GO GO COCO1> O50*CO*H tH 88 THE PASSAIC ROLLING MILL COMPANY. ^ g 8 1 o PH OQ o o u 1 * gg t> 2 M u ^ c o 00 X H ^ ^^ $ 00 00 h ^ z Ej i g So^ n 1 | a 8S s^ h3 D P lO O 00 o i> ^^ H , t> B E ^ .. 0^ 00 Jj HM O GO sa M I * 1 11 o o 11 11 PQ u _i 5 || 00 Gd O) o o r^ o coco 38 SB > c^ot (MCO CO^f ^^ p BEARING * I OO rH THOi 00 Is o o TH O "00 O CM CO 11 000 1> gj CO CO 1 a. 1 tH TH TH TH TH O I! IS II CO CO PH 3 GO o i ht? a* HJO 0*0 ,*0 ~E 4). E^ >.> 9 CCJ30 ^Kj CJ30 ccj^* hJH p^ 5 8 THE PASSAIC ROLLING MILL COMPANY. 89 SHEARING AND BEARING VALUE OF RIVETS Continued. (d 1 h o 8 3 u H h z K E E Q I D M 1 E II C^ Ci * to * 11 CD i 1 CO O5 l>. 1> ^t CO ^f Ci CC UO Ho* 8 3 CO C5 tO O cb j> O HP I 00 3! 8 OS CO *f lO T}< O 63 II Ml 38 11 00 11 ^ iO tO lO * I 00 ii 11 G^ T 1 1C 00 CO CO o c^ ^ ^ I! HTC O O 1 1 ** SS rH T 1 TH CM 3g T~* iro CD <^ c^co 11 tra QO fe 2? CO CO U 5 "WS" ^Ili CO CO J>- CO 11 ^H C"i 3^ 00 T-IOO lO r-> *P 10 kO O 1 5 ^H iO CO O5 O5 ^* T-H CM * iH CO CO ^S ^ II lO I s * 00 00 1> 00 \ I" 8 ! ^ -IS M|X> HS HM -fo H- 1 00 04 1C 05 00 Oi rH (M CO l> 1> l^ - ,0 1^ l sl J z l 1^1 S'o ^ "Si Q D^ 04 CM CM CQ 01 Oi C^ CO r-l rH r-l rH r-l T-l rH rH r-l (M CM 92 THE PASSAIC ROLLING MILL COMPANY. AREAS AND' WEIGHTS or SQUARE AND ROUND WROU&HT-IRON BARS. Thick- ness, Inches. D C Area. ) Thick- ness, Inches. D o Area. W'ght per ft. W'ght per ft. Area. W'ght per ft. Area. W'ght per ft. i* tV 0.004 .016 .035 0.013 .052 .117 0.003 .012 .028 .049 .077 .110 .150 0.010 .041 .092 2 -h >_* 4.00 4.25 4.52 4.78 13.33 14.18 15.05 15.95 3.14 3.34 3.55 3.76 10.47 11.14 11.82 12.53 1* A .062 .098 .141 .191 ' .208 .326 .469 .638 .164 .256 .368 .501 !> & 5.06 5.35 5.64 5.94 16.88 17.83 18.80 19.80 3.98 4.20 4.43 4.67 13.25 14.00 14.77 15.55 *.* 1 tt .250 .316 .391 .473 .833 1.06 1.30 1.58 .196 .248 .307 .371 .654 .828 1.02 1.24 [ tt 6.25 6.57 6.89 7.22 20.83 21.89 22 97 24.08 25.21 26.37 27.55 28.76 4.91 5.16 5.41 5.67 16.36 17.19 18.04 18.91 V z lb 8 it .562 .660 .766 .879 1.87 2.20 2.55 2.93 .442 .518 .601 .690 1.47 1.73 2.00 2.30 ! _fl 7.56 7.91 8.27 8.63 5.94 6.21 6.49 6.78 19.80 20.71 21.64 22.59 1 i* A 1.00 1.13 1.27 1.41 3.33 3.76 4.22 4.70 .785 .887 .994 1.110 2.62 2.95 3.31 3.69 3 ** * 9.00 9.38 9.77 10.16 30.00 31.26 :?2.55 33.87 7.07 7.37 7.67 7.98 23.56 24.55 25.57 26.60 i* ** 1.56 1.72 1.89 2.07 5.21 5.74 6.30 6.89 1.23 1.35 1.48 1.62 4.09 4.51 4.95 5.41 '* 1 A 10.56 10.97 11.39 11.82 35.21 36.58 37.97 Oi? . O\) 8.30 8.62 8.95 9.28 27.65 28.73 29.82 30.94 i" 2.25 2.44 2.64 2.85 7.50 8.14 8.80 9.49 1.77 1.92 2.07 2.24 5.89 6.39 6.91 7.45 i rV 8 H- 12.25 12.69 13.14 13.60 40.83 9.6232.07 42. 3d 9.97*33.23 43.8010.32 ! 34.40 45.3310.6835.60 3 ,*l " m 3.06 3.28 3.52 3.75 10.21 10.95 11.72 12.51 2.40 2.58 2.76 2.95 8.02 8.60 9.20 9.83 .3 ; ;: 14.06 14.53 15.01 15.50 46.8811.04 48.4511.42 50. 05,11.79 51.6812.18 36.82 38.05 39.31 40.59 * THE PASSAIC ROLLING MILL COMPANY. 93 AREAS AND WEIGHTS OF SQUARE AND ROUND WROUGHT-IRON BARS. (Continued.) rhick- ness, inches D O Thick- ness, nches D O Area. W'ght per ft. Area. W'ght per ft. Area. W'ght per ft. Area. W'ght per ft. 4 f -h 16.00 16.f>0 17.01 17.53 18.06 18.60 19.14 19.69 53.3312.57 55.0l!l2.96 56.7213.36 58.45ll3.77 41.89 43.21 44.55 45.91 6 ** f 36.00 37.52 39.06 40.64 120.0 125.1 130.2 135.5 28.27 29.46 30.68 31.9* 94.25 98.2^ 102.3 106.4 I* A 60.21 61.99 63.80 65.64 14.19 14.61 15.03 15.47 47.29 48.69 50.11 51.55 i * \ ', 42.25 43.89 45.56 47.27 140.8 146.3 151.9 157.6 33.18 34.47 35.78 37.12 38.48 41.28 44.18 47.17 110.6 114.9 119.3 123.7 t* 'tt 20.25 20.82 21.39 21.97 22.56 23.16 23.77 24.38 67.50 69.39 71.30 73.24 15.90 16.35 16.80 17.26 53.01 54.50 56.00 57.52 7 i. \ * 49.00 52.56 56.25 60. 06 163.3 175.2 187.5 200.2 128.3 137.6 147.3 157.2 v 1 ti v-> 75.21 77.20 79.22 81.26 17.72 18.19 18.66 19.15 19.63 20.13 20.63 21.13 59.07 60.63 62.22 53.82 8 1 64.00 68.06 72.25 76.56 213.3 226.9 240.8 255.2 50.26 53.46 56.74 60-13 63.62 67.20 70.88 74.66 167.6 178.2 189.2 200.4 5 .; 1 6 25.00 25.63 26.27 26.91 83.33 85.43 87.55 89.70 65.45 67.10 68.76 70.45 72.16 73.89 75.64 77.40 9 t| 10 4 s 81.00 85.56 90.25 95.06 270.0 285.2 300.8 316.9 212.1 224.0 236.3 248.9 .4 / ff 8 .7 1 'i 27.56 28.22 28.89 29.57 91.88 94.08 96.30 98,55 21.65 22.17 22.69 23.22 100.00 105.06 110.25 115.56 333.3 350.2 367.5 385.2 78.54 82.52 86.59 90.76 261.8 275.1 288.6 302.5 i * u 30.25 30.94 31.64 32.35 100.8 103.1 105.5 107.8 23.76 24.30 24.85 25.41 79.19 81.00 82.83 84.69 11 3. 4 121.00 126.56 132.25 138.06 403.3 421.9 440.8 460.2 95.03 99.40 103.87 108.43 316.8 331.3 346.2 361.4 .1 * ls H is 33.06110.2 33.78112.6 34.521 115.1 35.25117.5 25.97 26.53 27.11 27.69 86.56 88.45 90.36 92.29 12 144.0 480.0 113.1 377.0 i 94 THE PASSAIC ROLLING MILL COMPANY. AREAS OF FLAT EOLLED IRON. Thickness in Inches. i" ii" U" If" 2" 2{" 2i" 2*" 3" ** ** .063 .125 .188 .250 .313 .375 .438 .506 .078 .156 .234 .313 .391 .469 .547 .625 .094 .188 .281 .375 .109 .219 .328 .438 .125 .250 .375 .500 .141 .281 .422 .563 .156 .313 .469 .625 .172 .344 .516 .688 .188 .375 .563 .750 I * i' A .469 .563 .656 .750 .547 ,656 .766 .875 .625 .750 .875 1.00 .703 .844 .984 1.13 .781 .938 .09 .25 .859 1.03 1.20 1.38 .938 1.13 1.31 1.50 t * ; u .563 .625 .688 .750 .703 .781 .859 .938 1.02 1.09 1.17 1.25 .844 .938 1.03 1.13 .984 1.09 1.20 1.31 .13 .25 .38 .50 1.27 1.41 1.55 1.69 .41 .56 .72 1.88 1.55 1.72 1.89 2.06 1.69 1.88 2.06 2.25 li- it .813 .875 .938 1.00 1.22 1.31 1.41 1.50 1.42 1.53 1.64 1.75 .63 .75 .88 2.00 1.83 1.97 2.11 2.25 2.03 2.19 2.34 2.50 2.23 2.41 2.58 2.75 2.44 2.03 2.81 3.00 U 1 * u 1A 1.06 1.13 1.19 1.25 1.33 1.41 1.48 1.56 1.59 1.69 1.78 1.88 1.86 1.97 2.08 2.19 2.13 2.25 2.38 2.50 2.39 2.53 2.67 2.81 2.66 2.81 2.97 3.13 2.92 3.09 3.27 3.44 3.19 3.38 3.56 3.75 u 1 * U 1 * 1.31 1.33 1.44 1.50 1.64 1.72 1.80 1.88 1.97 2.06 2.16 2.25 2.30 2.41 2.52 2.63 2.63 2.75 2.88 3.00 2.95 3.09 3.25 3.38 3.28 3.44 3.59 3.75 3.61 3.78 3.95 4.13 3.94 4.13 4.31 4.50 H 1 * 1^ 1.56 1.63 1.69 1.75 1.81 1.88 1.94 2.00 1.95 2.03 2.11 2.19 2.34 2.44 2.53 2.63 2.73 2.84 2.95 3.06 3.13 3.25 3.38 3.50 3.52 3.66 3.80 3.94 3.91 4.06 4.22 4.38 4.30 4.47 4.G4 4.81 4.69 4.88 5.06 5.25 i w S IH 2.27 2.34 2.42 2.50 2.72 2.81 2.91 3.00 3.17 3.28 3.39 3.50 3.63 3.75 3.88 4.00 4.08 4.22 4.36 4.50 4.53 4.69 4.84 5.00 4.98 5.16 5.33 5.50 5.44 5.63 5.81 6.00 THE PASSAIC ROLLING MILL COMPANY. 95 AREAS OF FLAT ROLLED IRON. (Continued. ) Thickness in Inches. 3" 4" 4f" 5" 6" 7" 8" 9" 10" ft .219 .250 .281 .313 .375 .438 .500 .563 .625 1 .438 .500 .563 .625 .750 .875 1.00 1.13 1.25 ft .656 .750 .844 .938 1.13 1.31 1.50 1.69 1.88 i .875 1.00 1.13 1.25 1.50 1.75 2.00 2.25 2.50 A 1.09 1.25 1.41 1.56 1.88 2.19 2.50 2.81 3.13 1.31 1.50 1.69 1.88 2.25 2.63 3.00 3.38 3.75 TV 1.53 1.75 1.97 2.19 2.63 3.06 3.50 3.94 4.38 -> 1.75 2.00 2.25 2.50 3.00 3.50 4.00 4.50 5.00 ft |l-97 2.25 2.53 2.81 3.38 3.94 4.50 5.06 5.63 2.19 2.50 2.81- 3.13 3.75 4.38 5.00 5.63 6.25 H 2.41 2.75 3.09 3.44 4.13 4.81 5.50 6.19 6.88 2 |2.63 3.00 3.38 3.75 4.50 5.25 6.00 6.75 7.50 .1 .; 2.84 3.25 3.66 4.06 4.88 5.69 6.50 7.31 8.13 3.06 3.50 3.94 4.38 5.25 6.13 7.00 7.83 8.75 tt 3.28 3.75 4.22 4.69 5.63 6.56 7.50 8.44 9.38 3.50 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00 5 3.72 4.25 4.78 5.31 6.38 7.44 8.50 9.56 10.63 H 3.94 4.50 5.06 5.63 6J5 7.88 9.00 10.13 11.25 . ift 4.16 4.75 5.34 5.94 7.13 8.31 9.50 10.69 11.88 li- 4.38 5.00 5.63 6.25 7.50 8.75 10.00 11.25 12.50 ift 4.59 5.25 5.91 6.56 7.88 9.19 10.50 11.81 13.13 li 4.81 5.50 6.19 6.88 8.25 9.63 11.00 12.38 13.75 1ft 5.03 5.75 6.47 7.19 8.6310.06 11.50 12.94 14.38 li 5.25 6.00 6.75 7.50 9.0010.50 12.00 13.50 15.00 ift 5.47 6.25 7.03 7.81 9.38]l0.94 12.50 14.06 15 '.63 If 5.69 6.50 7.31 8.13 9.7511.38 13.00 14.63 16.25 1H 5.91 6.75 7.59 8.44 10.13jll.81 13.50 15.19 16.88 ii 6.13 7.00 7.88 8.75 10. 50112. 25 14.00 15.75 17.50 lit 6.34 7.25 8.16 9.06 10.8812.6914.50 16.31 18.13 H 6.56 7.50 8.44 9.38 11. 25! 13. 13 15. 00 16.88 18.75 lit 6.78 7.75 8.72 9.69 11. 63! 13. 56 15. 50 17.44 19.38 2 7.00 8.00 9.00 10.00 12. 00 14. 00! 16. 00 18.00 20.00 96 THE PASSAIC ROLLING MILL COMPANY. WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT. Iron Weighing 480 Lbs. per Cubic Foot. Thickness in Inches. *i t 1" u" U" If" 2" sr 2*" 2f 3" .208 .417 .625 .833 .260 .521 .781 1.04 .31 .62 .94 1.25 .36 .73 1.09 1.46 .42 .83 1.25 1.67 .47 .94 1.41 1.88 .52 1.04 1.56 2.08 .57 1.15 1.72 2.29 0.62 1.25 1.88 2.50 i* i ^ 7^ I H 1.04 1.25 1.46 1.67 1.30 1.56 1.82 2.08 1.56 1.88 2.19 2.50 1.82 2.19 2.55 2.92 2.08 2.50 2.92 3.33 2.34 2.81 3.28 3.75 2.60 3.13 3.65 4.17 2.86 3.44 4.01 4.58 3.13J 3.75| 4.38! 5.00! 1.88 2.08 2.29 2.50 2.34 2.60 2.86 3.13 2.81 3.13 3.44 3.75 3.28 3.65 4.01 4.38 3.75 4.17 4.58 5.00 5.42 5.83 6.25 6.67 4.22 4.69 5.16 5.63 4.69 5.21 5.73 6.25 5.16 5.73 6.30 6.88 5.63 6.25 6.88! 7.50 8.13 8.75 9.38 10.00 H I " c H ^C f ^ 2.71 2.92 3.13 3.33 3.39 3.65 3.91 4.17 4.06 4.38 4.69 5.00 4.74 5.10 5.47 5.83 6.09 6.56 7.03 7.50 6.77 7.29 7.81 8.33 7.45 8.02 8.59 9.17 3.54 3.75 3.96 4.17 4.43 4.69 4.95 5.21 5.31 5.63 5.94 6.25 6.56 6.88 7,19 7.50 6.20 6.56 6.93 7.29 7.08 7.50 7.92 8.33 7.97 8.44 8.91 9.38 8.85 9.38 9.90 10.42 9.74 10.31 10.89 11.46 10.63 11.25 11.88 12.50 4.37 4.58 4.79 5.00 5.47 5.73 5.99 6.25 7.66 8.02 8.39 8.75 8.75 9.84 9.1710.31 9.58)10.78 10.0011.25 10.94 11.46 11.98 12.50 12.03 12.60 13.18 13.75 13.13 13.75 14.38 15.00 5.21 5.42 5.63 5.83 6.51 6.77 7.03 7.29 7.81 9.11 8.13 9.48 8.44! 9.84 8.7510.2J 10.4211.72 10.8312.19 11.2512.66 11.6713.13 13.0214.32 15.63 13.5414.9016.25 14.0615.47 16.88 14. 58^6. 04(17.50 lit 11 2 iH - Of 6.04 6.25 6.46 6.67 7.55 7.81 8.07 8.33 9.0610.57 9.38)10.94 9.6911.30 10.0011.67 12. 08| 13. 59 12.5014.06 12.9214.53 13.3315.00 15.1016.61 15.6317.19 16.1517.76 16.6718.33 18.13 18.75: 19.38 20 . 00 i is THE PASSAIC ROLLING MILL COMPANY. 97 WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT. Iron Weighing 480 Lbs. per Cubic Foot. Thickness in Inches. 8*" 4" w 5" 6" 7" 8" 9" 10" -h ft ~4 0.73 1.46 2.19 2.92 0.83 1.67 2.50 3.33 0.94 1.88 2.81 3.75 1.04 2.08 3.13 4.17 1.25 2.50 3.75 5.00 1.46 2.92 4.38 5.83 1.67 3.33 5.00 6.67 1.88 3.75 5.63 7.50 2.08 4.17 6.25 8.33 , * 1 ^ 3.65 4.38 5.10 5.83 4.17 5.00 5.83 6.67 4.69 5.21 5.63 6.25 6.561 7.29 7.50 8.33 6.25 7.50 8.75 10.00 7.29 8.75 10.21 11.67 8.33 10.00 11.67 13.33 9.38 11.25 13.13 15.00 10.42 12.50 14.58 16.67 ft f H 6.56 7.29 8.02 8.75 7.50 8.33 9.17 10.00 8.44 9.38 9.3810.42 10.3111.46 11.2512.50 11.25 12.50 13.75 15.00 13.13 14.58 16.04 17.50 15.00 16.67 18.33 20.00 16.88 18.75 20.63 22.50 18.75 20.83 22.92 25.00 s !_? 9.48 10.21 10.94 11.67 10.83 11.67 12.50 13.33 12.1913.54 13.1314.58 14.0615.63 15.0016.67 16.25 17.50 18.75 20.00 18.96 20.42 21.88 23.33 21.67 23.33 25.00 26.67 24.38 26.25 28.13 30.00 27.08 29.17 31.25 33.33 u 1 * i* u 12.40 13.13 13.85 14.58 14.17 15.00 15.83 16.67 15. 94l 17. 71 16.8818.75 17.8119.79 18.7520.83 21.25 22.50 23.75 25.00 24.79 26.25 27.71 29.17 28.33 30.00 31.67 33.33 31.88 33.75 35.63 37.50 35.42 37.50 39.58 41.67 I* l! l* 1 * 15.31 16.04 16.77 17.50 17.50 18.33 19.17 20.00 19.69 20.63 21.56 22.50 21.88 22.92 23.96 25.00 26.25 27.50 28.75 30.00 30.62 32.08 33.54 35.00 35.00 36.67 38.33 40.00 39.38 41.25 43.13 45.0d 43.75 45.83 47.92 50.00 I* 1^ 18.23 18.96 19.69 20.42 20.83 21.67 22.50 23.33 23.44 24.38 25.31 26.25 26.04 27.08 28.13 29.17 31.2536.46 32.5037.92 33.7539.38 35.0040.83 41.67 43.33 45.00 46.67 46.88 48.75 50.63 52.50 52.08 54.17 56.25 58.33 U* a ^ 21.15 21.88 22.60 23.33 24.17 25.00 25.83 26.67 27. 19! 30. 21 28.1331.25 29.0632.29 30.0033.33 36.25 37.50 38.75 40.00 42.29 43.75 45.21 46.67 48.33 50.00 51.67 53.33 54.38 56.25 58.13 60.00 60.42 62.50 64.58 66.67 - a 98 THE PASSAIC ROLLING MILL COMPANY. WEIGHTS OF PLATE IKON, PEE LINEAL FOOT 00 CO o> 00 CO o ? tO O tO O rH rH CO i> tO CO rH *< o <* oi CO uO TO O rH 1> CO O 8888 888 tO O tO O CO i> i> 00 O CS 00 t>.~ CO O GO CO O5 C5 00 00 CO CO O CO COCO O CO -8 00 CO CO I CO rH tO iO I O CO CO CO ^f ^t 1 uO Ci CO l>. rH rH (M! OJ CO 00 CJ CO O rH OJ (D CO rH O CS -^T J> CQ l^ CO CO CO CO O 00 ^f C5 tO COCO O t^ C5 00 t* CO OJ O GO O 050 OS CO CO CO CO O rt O CO CO CO CO I CO S8S8 IS8S8 rH CO CO CO CO 05 CO CO ssss 8 THE PASSAIC ROLLING MILL COMPANY. 99 IGHTS OF PLATE IEON, PEE LINEAL FOOT 00 a* i Thickness in Inches. ' W Tf b-OO lOO lO O en o w ^ CO ot-coo O CO 00 O r-l OJ <* rH CM CM CO >1 oi *-* co Lc CO 00 Ci 1> CO J> lO CO O rH rH -^ COTf j> o co co i-HO COCO 00 00 S8 >O CM o co CQ ci> ^P !MCOO 1> . rf Tf o COOi-H W rj* GO CM 1> CO ^P lO CD O O O O I d8Si CO 1> uO CO O T-H t>- CO rf Oi i^ rf 00 O T-H CO "O^ss CO CO O o o o o CMOOJO rHl>.COO rH rH C^l CO CO ^T O 00 CO 1> I rH O O5 * O rH T-H CM CM CM CO CO CM 1> CO (fc O5 T^l i-H 81? 81" i> 1> 00 O5 0500 GO i> Oi O GO CO OrH rH CM _rH rH rH rH' SUpr SS O CO rH O I 1>00 O50 flil'i oOrH Oi Ci T-H T 1 sail O iO O O 1> O GO 00 O5 rH ^ o co < lO CO CO 100 THE PASSAIC ROLLING MILL COMPANY. WEIGHT PEE SQUARE FOOT or SHEETS OF WROUGHT IKON, STEEL, COPPER, AND BRASS. THICKNESS BY BIRMINGHAM GAUGE. No. of Gauge. Thickness in Inches. Iron. Steel. Copper. Brass. 0000 .454 18.22 18.46 20.57 19.43 uoo .425 17.05 17.28 19.25 18.19 00 .38 15.25 15.45 17.21 16.26 .34 13.64 13.82 15.40 14.55 1 .3 12.04 12.20 13.59 12.84 2 .284 11.40 11.55 12.87 12.16 3 .259 10.39 10.53 11.73 11.09 4 .238 9.55 9.68 10.78 10.19 5 .22 8.83 8.95 9.97 9.42 6 .203 8.15 8.25 9.20 8.69 7 .18 7.22 7.32 8.15 7.70 8 .165 6.62 6.71 7.47 7.06 9 .148 5.94 6.02 6.70 6.33 10 .134 5-38 5.45 6.07 5.74 11 .12 4.82 4.88 5.44 5.14 12 .109 4.37 4.43 4.94 4.67 13 .095 3.81 3.86 4.30 4.07 14 .083 3.33 3.37 3.76 3.55 15 .072 2.89 2.93 3.26 3.08 16 .065 2.61 2.64 2.94 2-78 17 .058 2-33 2.36 2.63 2.48 18 .049 1.97 1.99 2.22 2.10 19 .042 1.69 1.71 1.90 1.80 20 .035 1.40 1.42 1.59 1.50 21 .032 1.28 1.30 1.45 1.37 22 .028 1.12 1.14 1.27 1.20 23 .025 l.CO 1.02 1.13 1.07 24 .022 .883 .895 1.00 .942 25 .02 .803 .813 .906 .856 26 .018 .722 .732 .815 .770 27 .016 .642 .651 .725 .685 28 .014 .562 i .569 .634 .599 29 .013 .522 .529 .589 .556 30 .012 .482 l .488 ; .544 .514 31 .01 .401 .407 .453 .428 32 .009 .361 ! .366 .408 .385 33 .008 .321 .325 .362 .342 34 .007 .281 .285 .317 .300 35 .005 .201 .203 .227 .214 Specific Gravity . . 7.704 7.806 8.698 8.218 Weight Cubic ft. . 481.25 487.75 543.6 513.6 Weight Cubic in. .2787 .2823 .3146 .2972 I THE PASSAIC ROLLING MILL COMPANY. 101 WEIGHT PER SQUARE FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS. THICKNESS BY AMERICAN GAUGE. No. of Gauge. Thickness in Inches. Iron. Steel. Copper. Brass. 0000 .46 18.46 18.70 20.84 '19.69 000 .4096 16.44 16.66 18.56 17.53 00 .3648 14.64 14.83 16.53 15.61 .3249 13.04 13.21 14.72 13.90 1 .2893 11.61 11.76 13.11 12.38 2 .2576 10.34 10.48 11.67 11.03 3 .2294 9.21 9.33 10.39 9.82 4 .2043 8.20 8.31 9.26 8.74 5 .1819 7.30 7.40 8.24 7.79 6 .1620 6.50 6.59 7.34 6.93 7 .1443 5.79 5.87 6.54 6.18 8 .1285 5.16 5.22 5.82 5.50 9 .1144 4.59 4.65 5.18 4.90 10 .1019 4.09 4.14 4.62 4.36 11 .0907 3.64 3-69 4.11 3.88 12 .0808 3.24 3.29 3.66 3.46 13 .0720 2.89 2.93 3.26 3.08 14 .0641 2.57 2.61 2.90 2.74 15 .0571 2.29 2.32 2.59 2.44 16 .0508 2.04 2.07 2.30 2.18 17 .0453 1.82 .84 2.05 1.94 18 .0403 1.62 .64 1.83 1.73 19 .0359 1.44 .46 1.63 1.54 20 .0320 1.28 .30 1.45 1.37 21 .0285 1.14 .16 1 29 1.22 22 .0253 1.02 .03 1.15 1.08 23 .0226 .906 .918 1.02 .966 24 .0201 .807 .817 .911 .860 25 .0179 .718 .728 .811 .766 26 .0159 .640 .648 .722 .682 27. .0142 .570 .577 .643 .608 28 .0126 .507 .514 .573 .541 29 .0113 .452 .458 .510 .482 30 .0100 .402 .408 .454 .429 31 .0089 .358 .363 .404 .382 32 .0080 .319 .323 .360 .340 33 .0071 .284 .288 .321 .303 34 .0063 .253 .256 .286 .270 35 .0056 .225 .228 .254 .240 As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assum- ed the same by all manufacturers, orders for sheets and wire should always state the weight per n foot or the thickness in thousandths of an inch. 102 THE PASSAIC ROLLING MILL COMPANY. DIFFEEENT STANDARDS FOR WIRE GlAUdE IN USE IN THE TJ. S. DIMENSIONS IN DECIMAL PARTS OF AN INCH. Number of Wire Gauge. American, or Birm- Brown ingham, & or Sharpe. Stubs'. Washburn & Moen Mnfg. Co., Worcester, Mass. Trenton Iron Co., Trenton, N.J. G. W. Prentiss, Holyoke, Mass. Old English, from Brass Mfrs. List. 000000 .46 OGOOO .43 .45 0000 .46 .454 .393 .4 000 .40964 .425 .362 .36 .3586 00 .3648 .38 .331 .33 .3282 .32495 .34 .307 .305 .2994 1 .2893 .3 .283 .285 .2777 2 .25763 .284 .263 .265 .2591 3 .22942 .259 .244 .245 .2401 4 .20431 .238 .225 .225 .223 5 .18194 .22 .207 .205 .2047 6 .16-202 .203 .192 .19 .1885 7 .14428 .18 .177 .175 .1758 8 .12849 .165 .162 .16 .1605 9 .11443 .148 .148 . .145 .1471 10 .10189 .134 .135 .13 .1351 11 .090742 .12 .12 .1175 .1205 12 .080808 .109 .105 .105 .1065 13 .071961 .095 .092 .0925 .0928 i 14 .064084 .083 .08 .08 .0816 ! .083 15 .057068 .072 .072 .07 .0726 .072 16 .05082 .065 .063 .061 .0627 .065 17 .045257 .058 .054 .0525 .0546 .058 18 .040303 .049 .047 .045 .0478 : .049 19 .03539 .042 .041 .039 .0411 j .04 20 .031961 .035 .035 .034 .0351 .035 21 .028462 .032 .032 .03 .0321 .0315 22 .025347 .028 .028 .027 .029 .0295 23 .022571 .025 .025 .024 .0261 ! .027 24 .0201 .022 .023 .0215 .0231 i .025 25 .0179 .02 .02 .019 .0212 .023 26 .01594 .018 .018 .018 .0194 1 .0205 27 .014195 .016 .017 .017 .018-2 ! .01875 28 .012641 .014 .016 .016 .017 .0165 29 .011257 .013 .015 .015 .0163 .0155 30 .010025 .012 .014 .014 .0156 .01375 31 .008928 .01 .0135 .013 .0146 .01225 32 .00795 .009 .013 .012 .0136 i .01125 33 .00708 .008 .011 .011 .013 .01025 34 .006304 .007 .01 .01 .0118 .0095 35 .005614 .005 .0095 .009 .0109 i .009 1 1 THE PASSAIC ROLLING MILL COMPANY. 103 GALVANIZED AND BLACK IRON. Weight in Pounds per Square Foot of Galvanized Sheet Iron, both Flat and Corrugated. The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to 2^ feet in width, by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from center to center, and about an inch deep (the com- mon sizes), its width is thereby reduced about yjyth part, or from 30 to 27 inches ; and consequently the weight per square, foot of area 'covered is increased about ^th part. When the corrugated sheets are laid upon a roof, the overlapping of about 2.y 2 inches along their sides, and of four inches along their ends, diminishes the covered area about yth part more ; making their weight per square foot of roof about ^th part greater than before. Or the weight of corrugated iron per square foot, in place on a roof, is about l / z greater than that of the flat sheets of above sizes of which it is made. Number \. v BLACK. GALVANIZED. oy Birmingham Wire Gauge. Thickness in inches. Flat. Lbs. Flat. Lbs. Corrugated. Lbs. 3or. on Roof. Lbs. 30 .012 .485 .806 .896 1.08 29 .013 .526 .857 .952 1.14 28 .014 .565 .897 .997 1.20 27 .016 .646 .978 1.09 r.so 26 .018 .722 1.06 1.18 1.41 25 .020 .808 1.14 1.27 1.52 24 .022 .889 1.22 1.36 1.62 23 .025 1.01 1.34 1.49 1.79 22 .028 1.13 1.46 1.62 1.95 21 .032 1.29 1.63 1.81 2.17 20 .035 1.41 1.75 1.94 2.33 19 .042 1.69 2 03 2.26 2,71 18 .049 1.98 2.32 2.58 3.09 17 .058 2.34 2.68 2.98 3.57 16 .065 2.63 2.9B 3.29 3.95 15 .072 2.91 3.25 3.61 4.33 14 .033 3.36 3.69 4.10 4.92 13 .095 3.84 4.18 4.64 5.57 NOTE. The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot. 104 THE PASSAIC ROLLING MILL COMPANY. WIRE IKON, STEEL, COPPEK, BRASS. Weight of 100 Feet in Pounds. BIRMINGHAM WIRE GAUGE. No. of Gauge. PER LINEAL FOOT. Iron. Steel. Copper. Brass. 0000 54.62 55.13 62.39 58.93 000 47.86 48.32 54.67 51.64 00 38.27 38.63 43.71 41.28 30.63 30.92 34.99 33.05 j 23.85 24.07 27.24 25.73 2 21.37 21.57 24.41 23.06 3 17.78 17.94 20.3 19.18 4 15.01 15.15 17.15 16.19 5 12.82 12.95 14.65 13.84 6 10.92 11.02 12.47 11.78 7 8.586 8.667 9.807 9.263 8 7.214 7.283 8.241 7.783 9 5.805 5.859 6.63 6.262 10 4.758 4.803 5.435 5-133 11 3.816 3.852 4.359 4.117 12 3.148 3.178 3.596 3.397 13 2.392 2.414 2.732 2.58 14 1.826 1.843 2.085 1.969 15 1.374 1.387 1.569 1.482 16 1.119 1.13 1.279 1.208 17 .8915 .9 1.018 .9618 18 .6363 .6423 .7268 .6864 19 .4675 .472 .534 .5043 20 .3246 .3277 .3709 .3502 21 .2714 .274 .31 .2929 22 .2079 .2098 .2373 .2241 23 .1656 .1672 .1892 .1788 24 .1283 .1295 .1465 .1384 25 .106 .107 .1211 .1144 26 .0859 .0867 .0981 .0926 27 .0678 .0685 .0775 .0732 28 .0519 .0524 .0593 .056 29 .0448 .0452 .0511 .0483 30 .0382 .0385 .0436 .0412 31 .0265 .0267 .0303 .0286 32 .0215 ! .0217 .0245 .0231 33 .017 .0171 .0194 .0183 34 .013 .0131 .0148 .014 35 .0066 .0067 .0076 .0071 36 .0042 .0043 .0048 .0046 I THE PASSAIC ROLLING MILL COMPANY. 105 JH rj P3 O eg > 22 P rH r- 3 o B-1U a-" 3 "rt . p T c i-C o hD o ^ II i I 3.8-31 S * 3.26 1 0.119 10.9 96 10.248 1 171 .09 L 8.357 9 621 4.272 8# 3.512 0.119 11.781 11.033 1 088 .018 9.687 11 046 4.590 4 3.741 0.130 12.566 11.753 1.023 0.955 10.992 12 666 5.320 41^ 4.24 1 0.130 14.1 :J7 13.323 901 0.84 3 14.126 15 004 6.010 5 4.72 0.140 15.7 ON 14.818 809 0.76 i 17.497 19 .635 7.226 G 5.699 0.151 18.849 17.904 0.670 0.637 25.509 28 .274 9.346 7 6.657 0.172121.991 20.914 574 0.545 34.805 88 484| 12.435 8 7.636 0.182|25.13223 989 500 0.478 45.795 50 265 15.109 9 8.61 ~> 0.193 28.2 74j27.055 o 444 0.42 i 58.291 63 617 18.002 10 9.573 0.214 31.41630.074 399 0.38 2 71.975 78 540 22.19 1 WROUGHT-IRON WELDED TUBES. EXTRA STRONG. 31 rt -a * i I * ! M M .3 isi O ol I'll Ml WJ fill i^l^ H ^ w <; ' 35 w H .405 .100 .205 k .54 .123 .294 .675 .127 .421 % .84 .149 .298 .542 .244 3 4- 1.05 .157 .314 .736 .422 l 1.315 .182 .364 .951 .587 i^ 1.66 .194 .388 1.272 .884 IK 1.9 .203 .406 1.494 1.088 2 2.375 .221 .442 1.933 1.491 2^ 2.875 .280 .560 2.315 1.755 3 3.5 .304 .608 2.892 2.284 3J^ 4. .321 .642 3.358 2.716 4 4.5 .341 .682 3.818 3.136 110 THE PASSAIC ROLLING MILL COMPANY. WINDOW GLASS. Number of Lights per Box of 50 Feet. Inches. No. Inches. No. Inches. No. Inches. No. 6X 8 150 12X18 33 16X44 10 26X32 9 7 9 115 12 20 30 18 20 20 26 34 8 8 10 90 12 22 27 18 22 18 26 36 8 8 11 82 12 24 25 18 24 17 26 40 7 8 12 75 12 26 23 18 26 15 20 42 7 8 13 70 12 28 21 18 28 14 26 44 6 8 14 64 12 30 20 18 30 13 26 48 6 8 15 60 12 32 18 18 32 13 26 HO 6 8 16 55 12 34 17 18 34 12 26 54 5 9 11 72 13 14 40 18 36 11 26 58 5 9 12 67 13 16 35 18 38 11 28 30 9 9 13 62 13 18 31 18 40 10 28 32 8 9 14 57 13 20 28 18 44 9 28 34 8 9 15 53 13 22 25 20 22 16 28 36 7 9 16 50 13 24 23 20 24 15 28 38 7 9 17 47 13 26 21 20 26 14 28 40 6 9 18 44 13 28 19 20 28 13 28 44 6 9 20 40 13 30 18 . 20 30 12 28 46 6 10 12 60 14 16 32 20 32 11 28 50 5 10 13 55 14 18 29 20 34 11 28 52 5 10 14 52 14 20 26 20 36 10 28 56 4 10 15 48 14 22 23 20 38 9 30 36 7 10 16 45 14 24 22 20 40 9 30 40 6 10 17 42 14 26 20 20 44 8 30 42 6 10 18 40 14 28 18 20 46 8 30 44 5 10 20 36 14 30 17 20 48 8 30 46 5 10 22 33 14 32 16 20 50 7 30 48 5 10 24 30 14 34 15 20 60 8 30 50 5 10 26 28 14 36 14 22 24 14 30 54 4 10 -28 26 14 40 13 22 26 13 30 56 4 10 30 24 14 44 11 22 28 12 30 CO 4 10 32 22 15 18 27 22 30 11 32 42 5 10 34 21 15 20 24 22 32 10 32 44 5 11 13 50 15 22 22 22 34 10 32 46 5 11 14 47 15 24 20 22 36 9 32 48 5 11 15 44 15 26 18 22 38 9 32 50 4 11 16 41 15 28 17 22 40 8 32 54 4 11 17 39 15 30 16 22 44 8 32 56 4 11 18 36 15 32 15 22 46 7 32 60 4 11 20 33 1G 18 25 22 50 7 34 40 5 11 22 30 16 20 23 24 28 11 34 44 5 11 24 27 16 22 20 24 SO 10 34 46 5 11 26 25 16 24 19 24 32 9 34 4 11 28 23 16 26 17 24 36 8 34 52 4 11 30 21 16 28 16 24 40 8 34 56 4 11 32 20 16 30 15 24 44 7 36 44 5 11 34 19 16 32 14 24 46 7 36 50 4 12 14 43 16 34 13 21 48 6 36 56 4 12 15 40 16 36 12 21 50 6 36 60 3 12 16 38 16 38 12 24 54 5 36 64 3 12 17 35 16 40 11 24 56 5 40 60 3 THE PASSAIC ROLLING MILL COMPANY. Ill BOOFINO SLATE. General Rule for the Computation of Slate. From the length of the Slate take three inches, or as many as the third covers the first; divide the remainder by 2, and multiply the quotient by the width of the slate, and the prod- uct will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 feet square, when laid upon the roof. Weight per Cubic Foot, - 174 Pounds. Weight per Square Foot. Thickness | ft I >& -ft f i ' f 1 Weight |l. 812 713.625.437.259.0610.87 1 inch. 14.51bs. TABLE OF SIZES AND NUMBER OF SLATE IN ONE SQUARE. Size in Inches. 6X12 7 12 8 12 9 12 10 1-2 12 12 7 14 8 14 9 14 10 14 12 14 No. of Slate in Square. 530 457 400 355 320 266 374 327 291 261 218 Inches. 8X16 9 16 10 16 12 16 9 18 10 18 11 18 12 18 14 18 10 20 11 20 No. of Slate in Square. 277 246 221 184 213 192 174 160 137 169 154 Size in Inches. 12X20 14 20 11 22 12 22 14 22 12 24 14 24 16 24 14 26 16 26 No. of Slate in Square. 141 121 137 126 108 114 98 86 89 78 1 112 THE PASSAIC ROLLING MILL COMPANY. CAPACITY OF CISTERNS, In Gallons, for Each Foot in Depth. Diameter in Feet. Gallons. Diameter in Feet. Gallons. 2. 23.5 9. , 475.87 2.5 36.7 9.5 553.67 3. 52.9 10. 587.5 3.5 71.96 11. 710.9 4. 94.02 12. 846.4 4.5 119. 13. 992.9 5. 146.8 14. 1,151.5 5.5 177.7 15. 1,321.9 6. 211.6 20. 2,350.0 6.5 248.22 25. 3,570.7 7. 287.84 30. 5,287.7 7.5 330.48 35. 7,189. 8. 376. 40. 9,367.2 8,5 424.44 45. 11,893.2 The American standard gallon contains 231 cubic inches, or 8^ pounds of pure water. *A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433. Each 27.72 inches of depth gives a pressure of one pound to the square inch. SKYLIGHT AND FLOOR GLASS. Weight per Cubic Foot, - 156 Pounds. Weight per Square Foot. Thickness Weight i 1.62 A 2.43 .i 3.25 I 4.88 6.508.13 9.75 1 inch. 13 Ibs. FLAGGING. Weight per Cubic Foot, - 168 Pounds. Weight per Square Foot. Thickness 1 Q 3 4 o 6 7 8 inch. Weight 14 28 42 56 70 84 98 112 Ibs. i THE PASSAIC ROLLING MILL COMPANY. 113 NOTES ON BRICKWORK. IN ordinary brickwork, one cubic foot of wall will require 21 bricks of 8 in. X 2^ in. X Z 1 A in - For .1000 ordinary bricks is required I barrel of good lime, 2 cartloads of ordinary sharp sand. One brick as above weighs 4 Ibs., dry; if perfectly soaked in water, 5 Ibs. It will absorb I Ib. or I pint of water. Edgewise arches will require about 7 bricks per square foot of floor, and endwise arches will require about 14 bricks of the size given above. For i cubic yard of concrete is required i barrel, of cement, 2 barrels of good sharp sand, i cubic yard of broken stone. "If r I 114 THE PASSAIC ROLLING MILL COMPANY. SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES. NAMES OF SUBSTANCES. ^Average Weights. Specific Gravity, i ' Per Cubic Foot. Per a Foot, i in. thick. Anthracite, solid, of Pa 93 54 58 (80 per 38 87 504 524 150 125 100 140 112 56 50 90 42 41 84 49 (74 per 27 542 548 76 95 108 76 35 157 168 1204 1217 170 25 53 58.7 450 485 480 711 bushel, 3& 7.25 42. 43.7 3.50 3.41 bushel, 45.2 45.7 6.33 2.9 13 ^ 4.62 37.5 40.6 40.0 59.25 1.50 heaped). 5 0.61 1.40 8.09 8.4 2.4 2.0 1.6 2.25 1.8 0.67 0.66 1.35 heaped).! j 8.7 8.8 1.22 0.56 2.53 2.7 19.3 19.6 2.73 0.40 0.85 0.95 7.24 7.8 7.7 11.4 || // broken, loose // n shaken // heaped bushel, loose. . . Ash, white, dry Asphaltum Brass, cast // rolled Brick, best pressed // common hard // soft Brickwork, pressed brick // ordinary Cement, Rosendale (loose) // Louisville // ...... // Portland // . . Cherry, dry Chestnut, dry .... Coal, bituminous, solid // // broken, loose. . . // // // // . . . Coke, loose // heaped bushel, 38 Ibs Copper, cast // rolled Earth, common dry, loose // // rammed // soft mud Ebony, dry Elm, dry Glass Gneiss r . . . , Gold, cast, 24 carat // hammered, 24 carat Granite Hemlock, dry Hickory, dry Ice . . .... Iron, cast ... // wrought (hammered) // // (rolled) Lead ff THE PASSAIC ROLLING Mi^lf^id >M,.AM' ' H SPECIFIC GRAVITY OF VARIOUS SUBS^ i^^J DAMTE W1& o. -C-6 Average \ /'eights. NAMES OF SUBSTANCES. Per Cubic Foot. Per a Foot, i in. thick. Gravi Lime, loose quicklime // per bushel, 66 Ibs 53 Limestone and marble Maple Masonry, granite or limestone .... // rubble // dry // sandstone Mercury, at 32 F Mortar, hardened Mud, dry 168 49 165 154 138 144 849 103 80-110 8.6 2.7 0.7 13.6 1.6 Oak, live, dry 59 4 LL 0.9 // white Petroleum Pine, white, dry // yellow, Northern // // Southern Quartz 52 55 25 34 45 165 i- 0.8 0.8 0.4 0.5 0.7 2.6 Salt, Syracuse, coarse // fine Liverpool . 45 49 Sand, pure dry, loose 90-106 - // shaken // perfectly wet -t Sandstone 99^117 - 1-20- 140 151 2.4 Shales, red or black Silver ... 162 655 2.6 10.5 Slate 175 14.6 2.8 Snow, fresh .'/ slush 5- 12 15- 20 Spruce, dry 25 2 1 - 4 Steel 490 403 2 7 9 Sulphur Sycamore, dry Tar 125 37 62 2.0 0.6 1 Tin Turf or Peat, di y Walnut, dry 459 20- 30 38 31 7.4 6 Water pure at 60 F 1 // sea Zinc or Spelter, cast rolled Green timbers i to | more than dry 64 446 448 37.1 37.3 1.0 7.1 7.1 116 THE PASSAIC ROLLING MILL COMPANY. LINEAK EXPANSION OF METALS. Between o and 100 C. For i C. For i Fahr. Zinc 0.00294 .... Lead 0.00284 Tin 0.00222 Copper, yellow 0.00188 red 0.00171 * Forged iron 0.00122 .0000122 .00000677 tSteel 0.00114 .0000114 .000(10633 * Cast iron 0.00111 .0000111 .00000616 For a change of 100 Fahr. a bar of iron 1475' long will ( extend I foot. Similarly, a bar loo feet long will extend .0678 foot, or .8136 inch. According to the experiments of Du Long & Petit, we have the mean expansion of iron, copper, and platinum, between o and 100 C., and o and 300 C., as below : From o to 100 C. o to 300 C. Iron 0.00180 0.00146 Copper 0.00171 0.00188 Platinum 0.00884 0.00918 The law for the expansion of iron, steel, and cast iron, at very high temperatures, according to Rinman, is as follows : For.oC. x o Fahr. Iron 00714 .0000143=. 0000080 Steel 01071 .0000214=. 0000119 Cast iron 01250 .0000250=. 0000139 From 25 to 1300 nascent white = 1275 C. Iron 01250 .00000981 =.00000545 Steel 01787 .0000 1 400==. 00000777 Cast iron 02144 . 00001680=. 00000933 From 500. to 1500 dull red to white heat = 1000 C. difference. Iron . , 00535 .00000535=. 0000030 Steel 00714 .00000714=. 000(040 Cast iron 0'0893 .00000893=. 0000050 Ratio of Expansion in Hundred parts, assuming- Forge Iron to expand between and 100 C. = .00122. From o to 100 25 to 525 25 to 1300 500 to 1500 Iron 100 per ct. 117 per ct. 80 per ct. 44 per ct. Steel 93 " 175 " 114 " 58 " Cast iron . 91 " 205 " 137 " 73 Laplace and Lavoisier, t Ramsden. THE PASSAIC ROLLING MILL COMPANY. 117 The contraction of a wrought-iron rod in cooling is about equivalent to Timorr f i ts length from a decrease of 15 Fahr., and the strain thus induced is about one ton for every square inch of sectional area in the bar. For a rod of the lengths given below, the contraction will be as follows : Length of rod in feet. . 10 20 30 40 50 75 100 150 Contrac'nin inches for 15 .012 .024 .036 .048 .060 .090 .120 .180 150 .120 .240 .360 .480 .600 .900 1.200 1.800 100 .080 .160 .240 .320 .400 .600 .800 1.200 Contraction and expansion being equal, the pressure per square inch induced by heating or cooling is as follows : For temperatures varying by 15 Fahr. : Variation.... 15 30 45 60 75 105 120 150 degrees. Pressure ....12345 7 8 10 tons. Stoney givesS 3 C. = 14.4 Fahr. as equivalent to a pressure of one ton per square inch for wrought iron, and 15 C. = 27 Fahr. for cast iron. DIMINUTION OF TENACITY OF WROUGHT IKON AT HIGH TEMPEKATUBES. EXPERIMENTS FRANKLIN INSTITUTE, 1839. WALTER JOHNSON AND BENJ. REEVES, COM. C. 271 299 313 316 332 350 378 389 390 408 410 440 Fahr. 520 630 732 Diminution p. ct. of max. tenacity. 0.0738 0.0869 0.0899 0.0964 0.1047 0.1155 0.1436 0.1491 0.1535 0.1589 0.1627 0:2010 500 508 554 599 624 626 642 669 674 708 Fahr. Diminution p. ct. of max tenacity. 932 1154 1245 1306 0.3324 0.3593 0.4478 0.5514 0.6000 0.6011 0.6352 0.6622 0.6715 0.7001 118 THE PASSAIC ROLLING MILL COMPANY. DIFFERENT COLORS OF IRON CAUSED BY HEAT. POUILLET. C. FAHR. COLOR. 210 410 Pale Yellow. 221 430 Dull Yellow. 256 493 Crimson. {Violet, Purple, and Dull Blue ; be- tween 261 C. to 370 C. it passes to Bright Blue, to Sea Green, and then disappears. 500 932 ...... Commences to be covered with a light coating of oxide ; loses a good deal of its hardness ; becomes a good deal more impressible to the hammer and can be twisted with ease. . . . Becomes Nascent Red. . . . Somber Red. . . . Nascent Cherry. . . .Cherry. . . . Bright Cherry. . . .Dull Orange. . . . Bright Orange. . . .White. . . .Brilliant White welding heat. . . . Dazzling White. 525 700 800 900 1000 1100 1200 1300 1400 1500 1600 . 977 . .1292 . .1472 . .1657 . .1832 . .2012 . .2192 . .2372 . .2552 . .2732 > .2912 < MELTING POINT OF METALS. NAME. Platina.. Antimony .... Bismuth Tin (average) . Lead " Zinc . . FAHR. . .4593 .. 955 .. 487 ... 475 .. 622 . 772 FAHR. AUTHORITY. Cast iron.. ..2786 Wrought iron . . Copper (average) ..2552 . .2174" ... 842 J. Lowthian Bell. ....507 . . . .620 " . ....782 1922. |012 White, ? Pouillet< . .. 2733" "tedmg heat. " THE PASSAIC ROLLING MILL COMPANY. 119 ULTIMATE RESISTANCE OF MATERIALS. IN POUNDS PER SQUARE INCH. Tension Compression Shearing Average. Average. Average. Brass, cast . . . ' j 18,000 10,300 // wire 49,000 Bronze, gun metal 39,000 175,000 Copper, cast 19,000 117,000 // sheet 30,000 103,000 // bolts 36,000 // wire 60,000 Iron, cast 13,400-29,000 80,000-145,000 27,000 Iron wrought : 45,000 Rods of 1 to 2" diam. . 50,000-55,000 Specimens of rerolled. . 50,000-55,000 Rerolled, large bars. . . 46,000-47,000 36000-40000 Plates, L and shapes. . 47,000-50,000 // over 30" wide . . 45,000-48,000 Iron wire 170,000-100,000 // // ropes 90,000 Lead, sheet 3,300 7,700 Steel, . 25gc. for eye bars. 70,000 // 0.42g c. compres- sion members . . . ! 80,000 // tool steel ! 110,000 // wire 200,000 Tin, cast 4,600 15,500 Zinc, // 7,500 // sheet rolled 16,000 Ash, seasoned 16,500 6,000 Beech, // 15,000 7,000 Box, // 20,000 10,000 Cedar, // 10,300 6,500 Chestnut,// 13,000 Elm, // 6,000 \ 10,000^: Fir or spruce, seasoned. . 10,000-13,600 6,800 5-800 Hickory, // 12,800-18,000 Locust, // 18,000 Maple , 10,000 Oak, white, // 18,000 7,200-9,100 2,000 // European u 10,000-19,800 10,000 2,300 Pine, white, red and pitch. 10,000 5,000-5,600 5-800 // long leaf yellow. . . 12,600-19,200 1 8,000 6-1,000 Poplar, seasoned 7,000 5,100 Silk fiber 52,000 Walnut, seasoned 16,000 7,200 120 THE PASSAIC ROLLING MILL COMPANY. ULTIMATE RESISTANCE OF MATERIALS. IN POUNDS, PER SQUARE INCH. Tension Average. Compression Average. Brick, weak 150 550-800 a good 300 1,100 // fire 1,700 Brickwork, good ordinary // in cement // // extra Granite and Syenite Basalt 300 450 1,000 4,500-18,000 10,500 Limestone and marble Oolites 700-1,600 100- 200 3,750-15,000 1,500-3,750 Sandstone 3,750-8,000 // of New Jersey Slate 2,500-4,000 3,000 6,000-12,000 Chalk Plaster of Paris 70 3UO-450 600 Concrete Portland cement, pure Roman // // ' 100- 450 ' 200 ~ 450-750 1,2UO-2,400 750 Glass . 3,000-9,000 20,000-35,000 Ice 180-270 Mortar, hydraulic 150 // common 20 Rope best manilla 12,000 // // hemp 15,000 -j0 WV THE PASSAIC ROLLING MILL COMPANY. 121 NATURAL SINES, ETC. S Sine. Cover. Cosecnt. Tangt. Cotang. Secant. Versin. 1 . Cosine. jf Q M .00 1.00000 Infinite. .0 Infinite. 1.00000 .0 1.00000 90 1 .01745 .98254 57.2986 .01745 57.2899 1 00015 .0001 i -99984 89 2 .03489 .96510 28.6537 .03492 28.6362 1.00060 .0006 i .99939 88 3 .05233 .94766 19.1073 .05240 19.0811 1.00137 .0013 .99862 87 4 .06975 .93024 14.3355 .06992 14.3006 1.00244 .0024 .99756 86 5 .08715 .91284 11.4737 .08748 11.4300 1.00381 .0038 .99619 85 6 .10452 .89547 9.5667 .10510 9.5143 1.00550 .0054 .99452 84 7 .12186 .87813 8.2055 .12278 8.1443 1.00750 .0074 .99254 83 8 .13917 .86082 7.1852 .14054 7.1153 1.00982 .0097 .99026 82 9 .15643 .84356 6.3924 .15838 6.3137 1.01246 ,.0123 .98768 81 10 .17364 .82635 5.7587 .17632 5.6712 1.01542 .0151 .98480 80 11 .19080 .80919 5.2408 .19438 5.1445 1.01871 .0183 .98162 79 12 .20791 .79208 4.8097 .21255 4.7046 1.02234 .0218 .97814 78 13 .22495 .77504 4.4454 .23086 4.3314 1.02630 .0256 .97437 77 14 .24192 .75807 4.1335 .24932 4.0107 1.03061 .0^97 .97029 76 15 .25881 .74118 3.8637 .26794 3.7320 1.03527 .0340 .96592 75 16 .27563 .72436 3.6279 .28674 3.4874 1.04029 .0387 .96126 74 17 .29237 .70762 3.4203 .30573 8.2708 1.04569 .0436 .95630 , 73 18 .30901 .69098 3.2360 .32491 3.0776 1.05146 .0489 .95105 ! 72 19 .32556 .67443 3.0715 .34432 2.9042 1.05762 .0544 .94551 71 20 .34202 .65797 2.9238 .36397 2.7474 1.06417 .0603 .93969 70 21 .35836 .64163 2.7904 .38386 2.6050 1.07114 .0664 .93358 69 22 .37460 .62539 2.6694 .40402 2.4750 1.07853 .0728 .92718 68 23 .39073 . 60926 2.5593 .42447 2.3558 1.08636 .0794 .92050 67 24 .40673 .59326 2.4585 .44522 2.2460 1.09463 .0864 .91354 66 25 .42261 .57738 2.3662 .46630 2.1445 1.10337 .0936 .90630 65 26 .43837 .56162 2.2811 .48773 2.0503 1.11260 .1012 .89879 64 27 .45399 .54600 2.2026 .50S52 1.9626 1.12232 .1089 .89100 63 28 .46947 .53052 2.1300 .53170 -1.8807 1.13257 .1170 .88294 62 29 .48480 .51519 2.0626 .55430 1.8040 1.14335 .1253 .87461 61 30 .50000 .50000 2.0000 .57735 1.7320 1.15470 .1339 .86602 CO 31 .51503 .48496 1.9416 .60086 1.6642 1.16663 .1428 .85716 59 32 .52991 .47008 1.8870 .62486 1.6003 1.17917 .1519 .84804 58 33 .54463 .45536 1.8360 .64940 1.5398 1.19236 .1613 .83867 57 34 .55919 .44080 1.7882 .67450 1.4825 1.20621 .1709 .82903 ! 56 35 .57357 .42642 1.7434 .70020 1.4281 1.22077 .1808 .81915 55 36 .58778 .41221 1.7013 .72654 1.3763 1.23606 .1909 .80901 ' 54 37 .60181 .39818 1.6616 .75355 1.3270 1.25213 .2013 .79863 53 38 .61566 .38433 1.6242 .78128 1.2799 1.26901 .2119 .78801 52 39 .62932 .37067 1.5890 .80978 .2348 1.28675 .2228 .77714 51 40 .64278 .35721 1.5557 .83909 .1917 1.30540 .2339 .76604 50 41 .65605 .34394 1.5242 .86928 .1503 1.32501 .2452 .75470 49 42 .66913 .33086 1.4944 .90040 .1106 1.34563 .2568 .74314 i 48 43 .68199 .31800 1.4662 .93251 .0723 1.36732 .2686 .73135 47 44 .69465 .30534 1.4395 .96568 .0355 1.39016 .2806 .71933 46 45 .70710 .29289 1.4142 1.00000 .0000 1.41421 .2928 .70710 45 Cosine. Versin. Secant. Cotang. Tangt. Cosecant Cover. Sine. 122 THE PASSAIC ROLLING MILL COMPANY. CIRCUMFERENCES OF CIRCLES, Advancing by Eighths. CIRCUMFERENCES. as .0 .* y 4 X X 5/8 K K 3 .0 .3927 .7854 1.178 1.571 1.963 2.356 2.749 1 3.142 3.534 3.927 4.320 4.712 5.105 5.498 5.890 2 ! 6.283 6.676 7.069 7 461 7.854 8.246 8.639 9.032 3 9 425 9.817 10.21 10.60 ! 10.99 11.39 11.78 12.17 4 12.56 12.96 13.35 13.74 14.13 14.53 14.92 15.31 5 15.71 16.10 16.49 16.88 17.28 17.67 18.06 18.45 6 18.85 19,24 19.63 20.02 20.42 20.81 21.20 21.60 7 21.99 22.38 22.77 23.17 23.56 23.95 24.34 24.74 8 25 13 25.52 25.92 26.31 26.70 27.09 27.49 27.88 9 28.27 28.66 29.06 29.45 29.84 30.23 30.63 31.02 10 31.41 31.81 32.20 32.59 32.98 33.38 33.77 34.16 11 34.55 34.95 35.34 35 73 36.13 36.52 36.91 37.30 12 37.70 38.09 38.48 38.87 39.27 39.66 40.05 40 45 13 40.84 i 41.23 41.62 42.02 42.41 42.80 43.19 43.59 14 43.98 44.37 44.76 45.16 45.55 45.94 46.34 46.73 15 47.12 47.51 47.91 48.30 48.69 49.08 49.48 49.87 16 50.26 50.66 51.05 51.44 51.83 52.23 52.62 53.01 17 53.40 53.80 54.19 54.58 54.97 55.37 55.76 56.15 18 56.55 ! 56.94 57.33 57-72 58.12 58.51 58.90 59.29 19 59.69 60.08 60.47 60.87 61.26 61.65 62.04 62.43! 20 62.83 63.22 63.61 64.01 64.40 64.79 65.19 65.58 j 21 65.97 66.36 66.76 67.15 67-54 67.93 68.33 68.72 1 22 69.11 69.50 69.90 70.29 70.68 71.08 71.47 71.86 23 72.25 72.65 73.04 73.43 73 82 74 22 74.61 75.00 24 75 40 . 75.79 76-18 76.57 76.97 77.36 77.75 78.14 25 78.54 j 78.93 79.32 79.71 80.11 80 50 80.89 81.29 26 81.68 82.07 82.46 82.86 83.25 83.64 84.03 84.43 27 84.82 85.21 85.60 86.00 86.39 86.78 87.18 87.57 28 87.96 88.35 88.75 89.14 89.53 89.93 90.32 90.71 29 91.10 91.50 31.89 92.28 ! 92.67 93.07 93.46 93.85 30 94.24 94.64 95.03 95.42 95.82 96 21 96.60 96.99 31 97.39 97.78 98.17 98.57 98.96 99.35 99.75 100.14 32 100.53 100.92 101.32 101.71 102.10 102 49 102.89 103.28 33 103.67 104.07 104.46 104.85 105.24 105.64 106.03 i 106.42 34 106.81 107.21 107.60 107.99 108.39 108.78 109.17 109.56 35 109.96 110.35 110.74 111.13 111.53 111.92 112.31 112.71 36 113 10 113.49 113.88 114.28 114.67 115.06 115.45 115.85 37 116.24 116.63 117.02 117.42 117.81 118.20 118.60 118.99 38 119.38 119.77 120.17 120.56 120.95 121.34 121.74 122.13 39 122.52 122.92 123.31 123.70 124.09 124.49 124.88 125.27 40 125.66 126.06 126.45 126.84 127.24 127.63 128.02 128.41 41 128 81 129.20 129.59 129.98 130.38 130.77 131.16 131.55 42 131.95 | 132.34 132.73 ! 133.13 133.52 133.91 134.30 134.70 43 135.09 ! 135.48 135.87 136.27 136.66 137.05 137.45 137.84 44 138.23 I 138.62 139.02 139.41 139.80 140.19 140.59 14098 45 141.37 141.76 142.16 142.55 142.94 143.34 143.73 144.12 ! THE PASSAIC ROLLING MILL COMPANY. 123 AEEAS OF CIRCLES, Advancing by Eighths. AREAS. i .0 % % .# % H 3 X H Q .0 .0122 .0491 .1104 .1963 .3068 .4418 .6013 1 .7854 .9940 1.227 1.485 1.767 2.074 2.405 2.761 2 3.1416 3.546 3.976 4.430 4.908 5.411 5.939 6.492 3 7.068 7.670 8.296 8.946 9.621 10.32 11.04 11.79 4 12.56 13.36 14.18 15.03 15.90 16.80 17.72 18.66 5 19.63 20.63 21.65 22.69 23.76 24.85 25.96 27.10 6 28.27 29.46 30.68 31.92 33.18 34.47 35.78 37.12 7 38 48 39.87 41.28 42.72 44.18 45.66 47.17 48.70 8 50.26 51.85 53.45 55.09 56.74 58.42 60.13 61.86 9 63.61 65.39 67.20 69.03 70.88 72.76 74.66 76.59 10 78.54 80.51 82.51 84.54 86.59 88.66 90.76 92.88 11 95.03 97.20 99.40 101.6 103.9 106.1 108.4 110.7 12 113.1 115.5 117.9 120.3 122.7 125.2 127.7 130.2 13 132.7 135.3 137.9 140.5 ! 143.1 145.8 148.5 151.2 14: 153.9 156.7 159.5 162.3 165.1 168.0 170.9 173.8 15 176.7 179.7 182.7 185.7 188.7 191-7 194.8 197.9 16 201.1 204.2 207.4 210.6 213.8 217.1 220.3 223.6 17 227.0 230.3 233.7 237.1 240.5 244.0 247.4 250.9 18 254.5 258.0 261.6 265.2 268.8 272.4 276.1 279.8 19 283.5 287.3 291.0 294.8 298.6 302.5 306.3 310.2 20 314.2 318.1 322.1 326.0 330.1 334.1 338.2 342.2 21 346.4 350.5 354.7 358.8 363.0 367.3 371.5 375.8 22 380.1 384.5 388.8 393.2 397-6 402.0 406.5 411.0 23 415.5 420.0 424.6 429.1 433.7 438.4 443:0 447.7 24 452.4 457.1 461.9 466.6 471.4 476.3 481.1 486.0 25 490.9 495.8 500.7 505.7 510.7 515.7 520.8 525.8 26 530.9 536.0 541.2 546.3 551.6 556.8 562.0 567.3 27 572.6 577.9 583.2 588.6 594.0 599.4 604.8 610.3 28 615.7 621.3 626.8 632.4 637.9 i 643.5 649.2 654.8 29 660.5 666.2 672.0 677.7 683.5 689.3 695.1 701.0 30 706.9 712.8 718.7 724.6 730.6 736.6 742.6 748.7 31 754.8 760.9 767.0 773.1 779.3 I 785.5 791.7 798.0 32 I 804.3 810.5 816.9 823.2 829.6 | 836.0 842.4 848.8 33 855.3 861.8 868.3 874.9 881.4 888.0 894.6 901.3 34 : 907 9 914.6 921.3 928.1 934.8 941.6 948.4 955.2 35 962,1 969.0 975.9 982.8 989.8 996.8 1003.8 1010.8 36 1017.9 1025.0 1032.1 1039.2 1046.3 1053.5 1060.7 1068.0 37 1075.2 1082.5 1089.8 1097.1 1104.5 1111.8 1119.2 1126.7 38 1134.1 1141.6 1149.1 1156.6 1164.2 1171-7 1179.3 1186.9 39 1194.6 1202.3 1210.0 1217.7 1225.4 1233.2 i 1241.0 1248.8 40 1256.6 1264.5 1272.4 1280.3 1288.2 1296.2 1 1304.2 1312.2 41 1 1320.3 1328.3 1336.4 1344.5 1352.7 1360.8 1369.0 1377.2 42 1385.4 1393.7 1402.0 1410.3 1418.6 : 1427.0 1435.4 1443.8 43 I 1452.2 1460.7 1469.1 1477.6 I 1486.2 i 1494.7 1503.3 1511.9 44 , 1520.5 1529.2 1537.9 1546.6 1555.3 1564.0 1572.8 1581.6 45 1590.4 1599.3 1608.2 1617.0 1626.0 1634.9 1643.9 1652.9 i 1 i i . i 8 M 124 THE PASSAIC ROLLING MILL COMPANY. SURVEYING MEASURE (LINEAL). Inches. Links. Feet. Yards. Chains. Mile. Fr. Meters. 1. = .126 = .0833 = .0278 = .00126 = .0000158 = .0254 7.92 1. .66 .22 .01 .000125 .2012 12. 1.515 1. .333 .01515 .000189 .3048 36. 4.545 3. 3 .04545 .000568 .9144 792. 100. 66. 22. 1. .0125 20.116 63360. 8000. 5280. 1760. 80. 1. 1609.315 One knot or geographical mile =6086. 07 feet = =1855.11 metres = I . I 526 statute mile. One admiralty knot = 1.1515 statute miles = 6080 feet. LONG MEASURE. Inches. Feet. Yards. Fath. Poles. Furl. Mile. Fr. Meters. 1. = .083 = .02778 =.0139=. 005 =.000126=. 0000158= .0254 12. 1. .333 .1667 .0606 00151 .0001894 .3048 36. 3. 1. .5 .182 00454 .000568 .9144 72. 6. 2. 1. .364 0091 .001136 1.8287 198. 16K- 55^. 2^ 1. 025 .003125 5.0291 7920. 660. 220. 110. 40. 1 .125 201.16 63360. 5280. 1760. 880. 320. 8. 1. 1609.315 A palm = 3 inches. A span = 9 inches. A hand = 4 inches. A cable's length = 120 fathoms. FRENCH LONG MEASURE. Inches. Feet.'' Yards. Miles Millimetre . . .039368 .00328 Centimetre . . .39368 .03280 Decimetre . . . 3.9368 .32807 .10935? Metre 39-368 3.2807 1 . 09357 Decametre . . 393.68 32.807', 10.9357 Hectometre . 328.07 109.357 .0621346 Kilometre . . . 3280.7 1093.57 .6213466 Myriametre '. 32807. 10935.7 6.213466 j THE PASSAIC ROLLING MILL COMPANY. 125 SQUARE MEASURE. Inches. 1 144. 1. 1296. 9. 39204. 272 #. 1568160. 10890. 6272640. 43560. Feet. Yards. Perches. Roods. Acre. Sq. Metres. . 00694 = . 000772= . 0000255= . 00000064= . 000000159= . 000645 .111 1210. 4840. .00367 .0331 1. 40. 160. 0000918 .000023 .0929 .0002066 .8361 .00625 25.292 .25 1011.7 1. 4046.7 .025 1. 4. I oo square feet = I square. 10 square chains = I acre. i chain wide 8 acres per mile. i hectare = 2.471143 acres. r = 27878400 square feet, i square mile ? = 3097600 square yards. ( = 646 acres. Acres X .0015625 = square miles. Square yard X .000000323 = square miles. Acres X 4840 = square yards. Square yards X .0002066 = acres. A section of land is i mile square, and contains 640 acres. A square acre is 208. 71 ft. at each side; or 220 X I9 8 ft. A square ^-acre is 147. 58 ft. at each side; or no X 198 ft. A square %-acre is 104.355 ft: at eacn side 5 or 55 X 198 ft. A circular acre is 235.504 feet in diameter. A circular ^-acre is 166.527 feet in diameter. A circular ^-acre is ^17.752 feet iri diameter.- FRENCH SQUARE MEASURE. Square. Millimetre . . . Centimetre. .. Decimetre . . . Metre or Cen Decametre. . . Hectare Kilometre Square Inches. Square Feet. .00154 .0000107 .15498 .0010763 15.498 .1076305 1549.8 10.76305 154988. 1076.305 107630.58 . 38607 D mis. 1 10763058 . Square Yards. 000001 .000119 .011958 1.19589 119.589 11958.95 1195895. Acres. Myriametre. . |38.607 126 THE PASSAIC ROLLING MILL COMPANY. CUBIC MEASUEE. Inches. 1. = 1728. 46656. Feet. .0005788 = 1. 27. Yard. Cubic Metres. .000002144 = .000016386 .03704 .028315 1. .764513 A cord of wood =128 cubic feet, being four feet high, four feet wide, and eight feet long. Forty-two cubic feet = a ton of shipping. A perch of masonry contains 24^ cubic feet. A CUBIC FOOT is EQUAL TO 1728 cubic inches. .037037 cubic yard. .803564 U. S. struck bushel of 2150.42 cubic inches. 3.21426 U. S. pecks. 7.48052 U. S. liquid galls. of 231 cubic inches. 6.42851 U. S. dry galls. 29.92208 U. S. liquid quarts. 25 . 71405 U. S. dry quarts. 59.84416 U. S. liquid pints. 51 .42809 U. S. dry pints. 239.37662 U. S. gills. .26667 flour barrel of 3 struck bushels. .23748 U. S. liquid barrel of galls. FRENCH CUBIC OE SOLID MEASUEE. Gill. Pint. Quart. Gallon. Peck. Bush. Cubic Inches. Cubic Feet. Centilitre, Dry Liquid .0845 .0181 .0211 .... .61016 Decilitre. . . Dry Liquid 8452 .1816 .2113 !0908 .1056 0264 .0113 .... .1 ' 6.1016 .... Litre Dry 1.816 .908 .1135 61 .016 no co Liquid 8.452 2.113 1.056 ^2641 .uooo Decalitre. .Dry Liquid 84.52 21.13 9.08 10.56 2.64i 1.135 .2837 610.16 .3531 Hectolitre . Dry Liquid 211.3 90.8 105.6 26^4i 11.35 2.837 6101.6 3.531 Kilolitre or Cu- bic Metre, Dry Liquid 1056.5 264 .1 113.5 28.37 61016. 35.31 Myrialitre . Dry 1135. 283. 7 QCQ .. Liquid 10565. 2641.4 OOO.l F THE PASSAIC ROLLING MILL COMPANY . 127 AVOIRDUPOIS WEIGHT. The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr. , barometer at thirty inches. 27.343 grains = I drachm. French Drachms. Ounces. Lbs. Qrs. Cwts. Ton. Grammes. 1. = .0625=. 0039 = . 000139=. 000035 = .00000174=1.771846 16. 1. .0625 00223 000558 .000028 28.34954 256. 16. 1. 0357 .00893 .000447 453.59 7168. 448. 28. 1. .25 .0125 12700. 28672. 1792. 112. 4. 1. .05 50802. 573440. 35840 2240. 80 20. 1. 1016048. A stone = 14 pounds. A quintal loo pounds. 7000 grains = one avoirdupois pound = 1 .21528 troy pounds. 5760 grains = one troy pound = .82285 avoirdupois pounds. FRENCH WEIGHTS. EQUIVALENT TO AVOIRDUPOIS. Grains. Ounces. Lbs. Tons. 2240 Ibs. Milligramme . .015433 Centigramme . .1543311 .000352 .000022 Decigramme . 1.54331 .003527 .000220 Gramme . ... 15.4331 .035275 .002204 Decagramme . 154.331 .352758 .022047 Hectogramme 1543.31 3.52758 .220473 .000098 Kilogramme . 15433.1 35.2758 2.20473 . 000984 Myriagramme 352.758 22.0473 .009842 Quintal 3527.58 220.473 .098425 Millier or Tonne . . 35275 . 8 2204.73 .984258 88 - 8 128 THE PASSAIC ROLLING MILL COMPANY. DIMENSIONS OF PASSAIC E. M. STANDAED TUEN- TABLES. Plates 19 and 20. Diameter of pit ft. in. 35.0 ft. in. 1 ft. in. l ft. in. 40. Oj45. 050.0 ft. in. 55.0 ft. in. 60.0 Length of girder, out to out .... 34.4 39.4|44.449.6 54.6 59.6 Diameter of circular tracks, cen- ter to center of rail 31.0 36.0J41. 0.46.0 51.0 56.0 Depth from top of rail on table to top of center stone 5.0 5.0 5.0 5.6 5.6 5.G Depth from top of rail on table to top of rail of circular track . 3.4 3.4 3.4.3.10 3.10 3.10 Ditto for special turn-table, shallow pit. 2.0 2.0) 2.01 2.6 2.6 2.6 POINTS OF MEEIT IN PASSAIC E. M. GO'S STANDAED TUEN-TABLES. The table is entirely center-bearing, and rests on steel discs, A, six inches in diameter, which offer very little resistance to turning around, and at the same time give ample bearing surface to maintain the parts in good working order. As the friction acts on a lever 2 inches long, and the power on one whose length is equal to the radius of the turn-table, it is apparent that very little power will be required to turn it. The table is hung to the center-pin by two bolts, B B, made of re-rolled iron; this arrangement prevents any uneven dis- tribution of the load, produced by tightening of the bolts, such as is liable to be produced when more than two are used. The shape of the girder is such as to approach, in the nearest practicable manner, the theoretical form, which requires a constant flange section, when due regard is taken to the influence of the varying sign of the strains at any point of either flange, according to the position of the engine. The flanges are made of 4x6 in. angle iron, extending all the way through at the top without a splice, and spliced in the center at the bottom. The flange of this iron, being 6 inches wide, _.. ww. ...J it _ :tfj f ttl 4 YA TA THE UNIVERSITY OF CALIFORNIA LIBRARY