GIFT OF ASTRONOMY LIBRARY TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON PART II ON v. ZEIPEL'S THEORY OF THE PERTURBATIONS OF THE MINOR PLANETS OF THE HECUBA GROUP MEMOIRS or THK NATIONAL ACADEMY OF SCIENCES THIRD MEMOIR WASHINGTON GOVEBNMENT PRINTING OFFICE 1922 \ BHIOMJSM SIM 10'YMadAOA JAMOITAM V1X cranrr // 0DIIT<:- 06377 ASTRONOMY LIBRARY NATIONAL ACADEMY OF SCIENCES. Volume XIV. THIRD MEMOIR. TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON. PARTIL ON v. ZEIPEL'S THEORY OP THE PERTURBATIONS OP THE MINOR PLANETS OF THE HECUBA GROUP. BY ARMIN O. LEUSCHNER, ANNA ESTELLE CLANCY, AKD " SOPHIA H. LEVY. 50f>877 .VI /C 'Hi i ii foV UK >M:rt !/. (I il J HT r io .TI Til//! airr io aworrAa.H'rwia'i airr r io YHOSHT pAiasis-s .-/ airr M) .YOW/uI, r J HJJHTgft /.W/A. ..JIM/ID^Tr-fJ -O 7-It .Y/C'KI .H /.ll!'|i() CONTENTS. Page. Preface 7 Introduction g I. Formulae and tables for the Hecuba group, according to the theory of Bohlin-v. Zeipel. and an example of their se 10 Determination of constant elements and of perturbations of the mean anomaly 10 Perturbations of the radius vector 20 Perturbations of the third coordinate 21 Check computation 22 Computation of the perturbations for the time t 22 Comparison of the revised with v. Zeipel's original tables 27 Table A 28 Table B 30 Table C 31 Table D 34 Table E, 35 Table E 2 35 Table F 36 Table G 38 II. Tables for the determination of the perturbations of the Hecuba group of minor planets 41 Development of the differential equations for Wand for the third coordinate 41 Integration of the differential equation for W. 78 Comparison of tables 120 Perturbations of the mean anomaly 121 Comparison of tables 134 Perturbations of the radius vector 137 Perturbations of the third coordinate 140 Comparison of tables 146 Constants of integration in nSz and v 146 Comparison of tables 155 Erata in " Angenaherte Jupiter-Storungen fur die flecufco-Gruppe," H. v. Zeipel 156 Erata in ' ' Sur le Developpement des Perturbations Planetaires, " 1-7 and Tables I-XX, Karl Bohlin 157 5 !*T II V -all \0 i'uutiq vflts >.)} PREFACE. Part I of "Tables of Minor Planets Discovered by James C. Watson," containing tables for 12 of the 22 Watson planets, was published in 1910 in the Memoirs of the National Academy of Sciences, Volume X, Seventh Memoir, with a preface by Simon Newcomb, in which he gives an account of the early history of the investigations of the perturbations of the Watson planets under the auspices of the Board of Trustees of the Watson Fund. In the introduction to Part 1 1 reference is made to the Watson planets of the Hecuba group, for which it was found necessary to construct special tables on the plan of Bohlin's tables for the group 1/3. A comparison of these tables with similar tables by v. Zeipel remained to be made before applying either of them to the development of perturbations of planets of the Hecuba group. This comparison was completed in 1913 with the assistance of Miss A. Estelle Glancy and Miss Sophia H. Levy, with the results set forth in the following pages. Publication of these results was delayed, partly because it seemed desirable to verify the tables by application to a number of planets and partly on account of interruptions caused in recent years by war conditions. Miss Glancy, in particular, had undertaken to test the accuracy of our tables, which we had applied to v. Zeipel's example, (10) Hygiea, by further investi- gations on this example after joining the Observatorio Nacional at C6rdoba in 1913. This test has now been completed with highly satisfactory results. The tables have also been successfully applied to the Watson planets of the Hecuba group, including (175) Andromache, which, on account of unusually large perturbations and other unfavorable conditions, forms so far the most striking example of the applicability of the Bohlin-v. Zeipel method and of our revised tables for the Hecuba group. The plan of work included conferences, in which Miss Glancy and Miss Levy took a leading part, for the discussion of the Bohlin-v. Zeipel method, involving verification of all mathe- matical developments and formulation of plans for the construction of tables, and, after the appearance of v. Zeipel's tables, for the comparison of v. Zeipel's original, and OUT revised tables. The numerical work was carried out by Miss Glancy and Miss Levy, who have also contributed very largely to the theoretical part of the work, and have prepared the principal details of the manuscript. To avoid confusion v. Zeipel's notation and method of procedure have been followed throughout in completing our tables for the Hecuba group, which were well under way when v. Zeipel's memoir appeared. To aid computers in the use of the formulae and of the revised tables, Miss Glancy has prepared detailed directions illustrated by an application to (10) Hygiea, the example first chosen by v. Zeipel. These are contained in the first section of the present memoir. Miss Glancy's contributions to this investigation and her work on (10) Hygiea were accepted by the University of California in partial fulfillment of the requirements for the degree of doctor of philosophy. Miss Levy's contributions and her work on (175) Andromache were similarly accepted for the same degree. It seems highly desirable to make the tables for the development of the perturbations of minor planets of the Hecuba group at once available to astronomers. They are therefore published herewith, in advance of the perturbations and tables of the remaining Watson planets, as Part II of "Tables of Minor Planets Discovered by James C. Watson." One or two parts, which are to follow, will contain all the numerical results for the perturbations and tables of Watson planets not published in Part I (1910). This memoir is presented in two sections. The first section, entitled "Formulae and Tables for the Hecuba Group, according to the Theory of Bohhn-v. Zeipel, and an Example of their Pp. 200-201. 8 PREFACE. [Voi. xiv. Use," contains a collection of the formulae to be used for any planet of the Hecuba group, the general tables of the perturbations which must be employed, and a more complete application of the formulae and the revised tables to the plane* (10) Hygiea, than v. Zeipel gives. The second and more extensive section, entitled "Tables for the Determination of the Perturbations of the Hecuba Group of Minor Planets," concerns the construction of the tables and their dis- cussion with reference to the corresponding tables by v. Zeipel. It forms the preliminary part of the in restigation but is presented last as supplementary to the final results given in the first section. In the second section the tabular values which differ from the corresponding numbers in v. Zeipel's tables are placed in brackets. The general Tables XXXV, XXXVIII, XLIII, LIV, LVi, LVn, LVI, LVII, of the second section, which, in order, are required to compute the perturbations of any planet of the Hecuba group, are repeated without brackets at the end of the first section as Tables A, B, C, D, E 1; E 2 , F, G, so that the first section is complete in itself for use in developing the perturbations of any planet of this group without the necessity of reference to the second section. A general account of the investigations of the perturbations of the Watson planets was presented to the Academy on April 16, 1916, and is published in the "Proceedings of the National Academy of Sciences," Volume 4, No. 12, March, 1919. ' ARMIN O LEUSCHNER. -;.' WASHINGTON, D. C., 1918, December. fun -v?*lmH II-.r# ' > 10(1 ill q i i!.'-- 1 u f 9nj <>! j.-iiiijur. '.'1 ^luAiovjiluu T.iio brut -(Ha i i:'iifjT)q o^i isi '{iliirifeinii' !i wqi>\ .v-nilfloil -.tiij ")o vjilitia^Jqqu 9iij To ^> v/7'i.l ?*\V. brui /ni /fmi Avw 1o nul 'i.'!T e'jBiio* ini him iioitaJ wiwn'tt -uiJ -ml ^; hoc, ; .v nuc. ^n ': -ulj m t i>io% r y iii Jiii.> lo anoiJadiiilT/q .fcJlKq OV/j in 9Il( oj ' >, \\ .(016(1 .IK-CM .^ TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON. By AHUM O. LKUSOTNZR, ANNA ESTELLB GLANCT, AND SOPHIA H. LETT. * . INTRODUCTION. Those planets whose mean daily motions are approximately 600" are classed with the planet Hecuba, or, in the group for which u= = K1-0 n 2 where n' and n are the mean daily motions of Jupiter and the planet, respectively, and w is a small quantity. Among the minor planets discovered by James C. Watson there are several of this type. In the course of the general program of determining the perturbations of the Watson asteroids, there arose the necessity of computing special tables for the Hecuba group in preparation for the application of Bohlin's method to individual planets. General tables for the group $ were in the process of construction, under the direction of Professor Leuschner, 1 according to the method of Bohlin,* when tables for this group were published by H. v. Zeipel.* The computers, Dr. Sidney D. Townley and Miss Adelaide M. Hobe, made a comparison of their tables with those of v. Zeipel and found certain discrepancies Because of this fact the completion of the tables for the Hecuba group was deferred. These discrepancies have been explained, as a result of a careful investigation, and the tables have been completed by Miss A. Estelle Glancy and Miss Sophia H. Levy, under the direction of Professor Leuschner. In the completion of the tables, v. Zeipel's method and order of procedure have gener- ally been followed. There are numerous discrepancies between our tables and v. Zeipel's. As far as possible, with the aid of the original manuscript, kindly forwarded by the author, we have traced the source of these disagreements. In some of the more complicated functions it was not possible to do so, and these discrepancies remain unexplained. Our own results, however, are substantiated by the employment of independent developments. Further, where we found terms omitted which were of the same order as those which were included, we frequently extended the tables. In this connection, it is pertinent to remark that it is very difficult to set up a consistent criterion for the omission of terms. With the exception of a few scattered negligible terms, our tables are published in full. They contain terms which may ordinarily be omitted, yet their numerical magnitudes depend upon the elements of the particular planet under consideration, and their use is left to the computer's judgment. Many of them are incomplete, i. e., the tabulated coefficients do not necessarily include all the terms of a given degree in the eccentricities or mutual inclination or of the small quantity w, which depends upon the difference between the planet's and twice Jupiter's mean motion. In other words, the coefficients may not contain all the terms of a given degree having the factors W, Jf, ,', ft which are defined on page 12. But, assuming certain numerical limits for the fundamental auxiliary functions, the coefficients are of this magnitude. The value of the additional terms will be shown best in an application of our tables to the same planet for which v. Zeipel computed the perturbations. Unless stated otherwise, the references to Bohlin refer to the French edition and are designated by B. References to v. Zeipel are designated by Z. 1 Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 200. Fonneln und Tafeln rur gruppenweisen Berechnung der allgemeinen StSrungen benachbarter Planeten (Tpsala, 1896). Sur le DeYetoppement des Perturbations Plangtaires (Stockholm, 1902). 1 Angenaherte Jupiterstorungen fflr die Hecuba-Gruppe (St. Pfitersbourg, 1902). 9 tw I. FORMULAE AND TABLES FOR THE HECUBA GROUP, ACCORDING TO THE THEORY OF BOHLIN-v. ZEIPEL, AND AN EXAMPLE OF THEIR USE. DETERMINATION OF CONSTANT ELEMENTS AND OF PERTURBATIONS OF THE MEAN ANOMALY. The planet (10) Hygiea was selected by v. Zeipel as an example of the use of his tables for the group . We have used it as a preliminary example for the application of our own tables, so as to provide further comparison of our tables with those of v. Zeipel. This example is presented with the direct purpose of meeting the needs of the computer. For this reason, no attempt is made to explain the significance of the functions involved, yet their use will be less mechanical, if, in a general way, some of the essential principles under- lying their development are understood. The theory of v. Zeipel is taken up in the second section of this memoir. The method proposed by v. Zeipel is a practical adaptation of Bohlin's method of com- puting the perturbations by Jupiter upon planets whose mean motions bear nearly commen- surable ratios to that of Jupiter. In particular, the formulae are derived for the planets of the Hecuba group. Tracing the history of this method one step further back, Bohlin's method is a modification of the theory of Hansen for the indeterminate case of nearly commensurable mean motions. Or, concisely, in v. Zeipel's own words, "Die benutzte Methode kann einfach dadurch charakterisirt werden, dass die Differentialgleichungen von Hansen mittels des Integrations- verfahrens des Herrn K. Bohlin gelost worden sind." 1 Certain principles of Hansen are fundamental to an understanding of some of the important equations. Briefly, the perturbations are reckoned in the plane of the orbit and perpendicular to it. In the plane of the orbit n5z signifies the displacement in the planet's mean anomaly (8z is the perturbation in the time) ; v gives the disturbed radius vector through the relation u and the displacement in the third coordinate is denoted by =. With Hanson's choice of ideal COS v coordinates, the fundamental analytical relations are: t nl s e sin s = nt + c + ndz rcosf=a (cos e -) ft) fcH!?i /r 3_:_ > in/_ * in - s<( vlhji' j'jn oiii ni'iftl 1-J vuul . I.HP ^ = coin s * n *" Jz=o"/cosa (2) Jv=/8co b "<*' / Jo Az = dp cos c x = r sin a sin (A' +/) +Ax y = r sin b sin (B' +/) + Ay (3) z = r sin c sin (C' +/) + Az where s,f, f are fictitiously disturbed coordinates, which, in connection with constant elements and the perturbations n5z, v, and = give the true position of the body. A', B', C', sin a, sin b, COS 1 sin c are the constants for the equator. The notation for the eccentric anomaly and the true anomaly is v. Zeipel's; in Hansen's notation they would be written e,f. ' Angenaherte Jupiterst8rungen fur die Hecuba-Gruppe, p. I. 10 NO. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 11 When Jupiter's mean motion and that of the planet are nearly commensurable, the inte- gration of Hansen's differential equations becomes impracticable through the presence of large integrating factors. The integrals are of the form: 1 sinf 1 oo = 546/28= 5?7713 ;r = 227 46.61=227.7768 ft = 287 37.19 = 287.6198 = 300 9.42=300.1570 i n = 3 47.14= 3.7857 Jupiter. Epoch, 1851, Sept. 17.0, Ber. M. T. 'illl ',' ', r. -\\ L --in: MEAN ELEMENTS. n'= 299?1284= 0?0830912 + + J lt (8) (10) Hygiea. * = 186?4792 n, = 302?3984 J. = 215?8679 * = 357. 7586 n' = 86.5305 J.= 28.9289 J= 5.0856 log ,= 8.70139 log /* = 7.29275 0, = 223.2334 (a) log i)' = 8.38238 log i = 8.94739 ^ e ~ ( c ' + f 72 '^^ = 223 -2445 (6) = 8.76072 \ c,-c' = 223.5448 (c) See footnote. 1 e = 131?3236; r=145?0746 With these initial quantities all the arguments and factors in Table L^*I or F are computed. The required function, w w t , is computed by successive approximations, the first approximation being Wg In the first trial the smallest terms and the last digit may be omitted; the second trial should be accurate; a third trial, if necessary, will require only corrections to the largest terms. The mean motion n is then given by In' n== l^i> honinmlob -i ., Td bsloiwb 0=-- \ -..u) - * -.ui.,,>. badiuJ.ii. 7fcooiJii-.il 9ii -noc Jam id* jbuotuj (10) flj/yiec, _ ,, . . , , The three successive trials for u> give W -w. + 0.00388 w = + 0.06 1 208 + 0.003541 logw= 8.78681 + 0.003568 n = 637?2633 . Designating by C and S series to be computed next from Table LVII or G, it is evident by inspection of Table LYII that C'cos i^ + S sin <}> = Ic cos (i{> + X)=Ic cos X cos Three numerical values for the argument i, are given. According to the theory (see footnote, Part 2, p. 147), (a) is rigid; (4) is rigid within the accuracy of the developments by v. Zeipel; (e) is an approximation which v. Zcipel used and which is used here. The value (i) is preferable. Inequation (6), [n'Sz 1 ] +0*.31U and is tho complete perturbation of Jupiter by Saturn taken from Hill; in all other parts of the computation n'li'} is only the long period term used by v. Zeipel. 14 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. To make the order of computation evident, the successive steps for a group of terms for Hygiea are given. X c X -s + C -5r+60 +6J + 0.4 * ' 111. 10 + 0.4 ft - 0.1 -4r+60 +64, + 1.9 256. 18 - 1.8 - 0.5 -3r+60 +6J + 4.6 41.25 + 3.0 + 3.5 -2r+69 + 64, + 6.8 186. 33 - 0.7 -6.8 - r+60 +64, +21.5 331. 40 -10.3 +18.8 60 +6J -63.0 116. 48 -56.4 +28.1 r+60 +6J - 4.0 261. 55 + 4.0 + 0.6 2r+60 +64 - 3.1 46.63 -2.2 - 2.1 3r+60 +6J - 1.9 191. 70 + 0.4 + 1.9 The second column contains the sum of the numerical coefficients multiplied by their respec- tive factors i&ipy'vf 1 \ The columns S and + C con tain the required terms from this group in the table. They can be computed at the same time if a traverse table is used. 1 From S and C the elements n and

r!t rtl (I ft I'.KtBIU'i'MI 9 C. Ift'.V I'.. There are check formulae for these quantities in Z 134, equation (153), (161')- In equa- tion (153) there is a misprint; in equation (161') there are two misprints. The errors and their corrections are noted in the list of errata which accompanies the second section of this paper. A part of the long period terms in ndz, denoted by [ruJz],, is expressed by sn cos sn cos sn cos ^^ (10) Hygiea. 1+0(0) = (1-0.008064) {1-0.056384 sin 20 + 0.017308 cos 20 + 0.016186 sin 40 + 0.012342 cos 40 + 0.000912 sin 60-0.005122 cos 60+ . . . + (0-0,) ( + 0.000007 -0.000494 sin 20-0.001276 cos 20-0.000364 sin 40 + 0.000412 cos 40+ A, = + 0.01 7308 Bj = - 0.056384 AI= +0.012342 B,= +0.016186 A t =- 0.005 122 =+ 0.000912 ' . . )+....} 6, = +0.000007 a, = - 0.000494 6, = - 0.001276 a 4 = -0.000364 6 4 = +0.000412 \ Ho'Ji nc:ij'u:j' 16 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [VOLXIV. Unit of A 2 , etc., is one radian [ - Jata] C 1 ) in which the multiples of 2^ must be retained, for is used here as if it were the time. Since ndz is unknown, the computation is by successive approximations. (10) Hygiea. [7^3],= (4.1 1837) sin (2+ 72?5246) +(3.3130) sin (4C + 305. 627) + (2.442) sin (6C + 186.48) -.o'jpV-'JUO.O ..... i'lH )( iJ)jl).-.TO [ +|(C-Co){(0-963)cos(2C+ 68.83) + (0.199) cos (4C+309.75)+ ....}+ .... in which the coefficients are logarithmic in seconds of arc. lQ g i The argument & in (ndz [ndz]), the short period part of 71^2, is given by C (22) and the function itself is computed from Table XXXV or A. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 17 The numerical coefficients in Table XXXV or A are multiplied by their respective factors and the terms are then collected in the form r^z-[ndz] = lC S ^(i^e+j^ + U-H) (23) By expanding the trigonometric functions, the known part of the argument, namely, IcA-lZ is incorporated in the coefficients, and the terms are collected in the form : ndz - [ndz] = la sin x + 2b cos where x=2 Let a = cos K a' =- sin K' a"= Jc" cos K" b" = Jc"smK" Then ndz - [ndz] = Ik sin Gt+Z) + (*-*,) SV cos (x+ K' ) >-tfo mo ' sinx + -^' cos x) " sin x + 2b" cos x) (24) 6 b' =t =&' sin K cos 1C' (25) (26) The tabulation of ndz [ndz] for (10) Hygiea is given on page 27. Finally, the complete perturbation in the mean anomaly is: 8 ndz = [ndz]+(ndz-[ndz]) (28) It is now possible to determine c by successive approximations from equations (20), (19), (18), (21), (22), (27), (28). From equation (1), which holds for any time t, c=ie sin ^ ndz t = o (29) = i As a first approximation ndz = c = e, e sin s l Introducing this value of c in equation (19), a first approximation for ndz is made. For <=0, C-Co)=0 (30) (*-0 8 ) =0 Substituting the value of ndz in equation (29), and computing a new value of c, the process of solution by trials is repeated until a satisfactory agreement is reached. 110379 22 2 -K?;J 18 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. (10) Hygiea. Below is the last approximation for the constant c. (See tabulation of mz \n3z\ on pg. 27.) L'l. 24** x+K log sin (*+ A') , Si n (x+ .) Approx. ndz +0?6124 [ sin , 122. 5578 i*+ & 285?683 323?619 9. 7732 n - 282" Approx. c, equ. (1), p. 10 1 w 10 -g- c > P- 13 121. 9454 57. 240 frS! 9.443 93. 203 291. 021 258. 21 9. 9701 B 9. 991 n - 680 - 260 *H2! r r 7 n 1 217. 278 lff+30 158. 077 241. 837 183.00 335. 37 8. 719 n 9. 620 n - 6 - 17 o C (, , p. -L* 127. 606 135. 14 9.848 + 25" I.UP-W +3. 9053 +20 211. 366 295. 126 288. 414 256.179 9. 9772 n 9. 9872 n -3403 - 723 [n'oV], equ. (20), p. 16 +0. 3003 + 60 18. 886 223. 38 9. 837 n - 168 (9.99572)(|f 1 -K lw 0, equ. (22), p. 16 221?880 217. 278 2 q c f 20 83.760 305. 640 (9. 6715)1^2], + 1.032 .- - ; -.' , equ. (22) 221. 880 40 167. 520 50 29.400 60 251. 280 70 113. 160 80 335. 040 Jf , p. 14 63.803 f 127. 606 t, 191. 409 i i I If tl) I 2f 255. 212 319. 015 i Collecting the elements, and adopting a change of notation, introduced at this point by v. Zeipel, namely, the addition of the subscript unity to the elements just now determined, n, = 637?2633 = 0? 17701 758 )(?*~^ n/te ^) = ( 6 - 80497 ) + (8.3192) [n'dz'] (31) By equation (1) (6.80497,)E + (8.3192) [n'dz'] = (6.80497 ,) c, - Of 4067 t - 14f6 sin E + (6.80497,)n sinx+JZ>' COSX+- } (35) -K#-tM J Ua" sin x + 2-fc" cos x+ !*.!;!.} + Let a = It sin K I =Jc cos K a' = Jc' cos K' b' =' sin K' (36) a"= -V sin K" &"=-*" cos K" Then v = 2Jccoa (x+ft + W-flJZk'smb+IO + W-WWcos ( X +K") + - (37) and to correct the perturbation for the use of the improved value of the mass, i> should be multiplied by 1.00050. If the mean motion n t is adopted, the constant in v must be corrected by t 1 3 n t sin 1" This correction of the constant in v permits the use of the relation 7i 3 2 a 2 3 = P in the computation of a geocentric place; without this correction it would be necessary to use the relation nfaf = P in the determination of the parameter p. In the computation of the eccentric anomaly it is permissible to use either n l or n 2 , for the difference is taken up in the modification of 77^2, but the theory of Hansen demands the use of constant elements. Hence, strictly speaking, 7i, must be used in computing a geocentric place. The modification of the constant in v renders the employment of n 2 equivalent to the use of n t . (10) Hygiea. 2 n,-ro, 1 _2 Of 4067 1 _, 3 n, sin l"~ 3 637f3 sin 1"" The constant in Table XLIII or C'is +47?6. Therefore, the new constant is: +47?6-87f8=-40?2 = (1.604) cos 180?00 where the coefficient is logarithmic in seconds of arc. The perturbation is tabulated on page 27. NO. a.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 21 PERTURBATIONS OF THE THIRD COORDINATE. The perturbations of the third coordinate are derived from Tables LTV, LVi, LVn or D, E,, E,. The first of these is of the same form as the tables for (nSz [nSz]) and v. After mak- ing analogous transformations and multiplying by the factor i cos i, (i is defined by equation (6)), i cos il U p . q 7jPi ) '''siiiA = 2Jcsw(x+K) (39) Both Table LVi or E, and Table LVn or E a lead to a single numerical quantity, since all the factors and arguments are known constants. The perturbation u is given by = i cos i [2U p . q r)i>T)'i sin A + njt.{K l (cos e eJ + K, sin e} +c t (cos e e,) + c, sin e] (40) in which c,, Cj, the constants of integration, have not been determined. The constants c t and c, are determined by Hansen's conditions: (41) __ . _ III dt Substituting these relations and equation (39) in equation (40), the determination of c, and c, is given by the solution of C l (cosf-e 1 ) + C t sias=-IJcsin(x+K); C t sin e - <7, cos e = 2lc ^ cos (x + K) (42) where <7, =- 1 cos i.c, , _. C. = i cos i.e. and dx d e where dfi l+ 1 COS V1 *- -365^5 T (45 > where T\s the interval in Julian years, measured from the date of osculation. It is evident that C l (cos e ,) + C t sin e can be incorporated in Jit sin in the same manner as similar terms were treated in (ndz [ndz\). For symmetry of form, let c cos i- nj{ KI (cos e-eJ + K, sin e} =2V cos (x + K') (46> finally, then, without change of notation, M = Jisin (x+ K) + TZk' cos (x+Jf) (47) in which the constants of integration are absorbed in the first term. The perturbation u is tabulated on page 27. The perturbations in the heliocentric coordinates are computed from equations (3) The signs of cos a, cos b, cos c are determined as follows: cosa>OifO<8< 180 cos 6<0if -90 <& <+90 cos 5 < in any case, if e > i cos c > if sin i cos ft < cos t cos c>0 in any case if i<45 22 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. (10) Hygiea. t = [(4.41940) cos (2Co+ 72?5246) + (3.9150) cos (4 + (3.220) cos (6C + 186?48)]sin 1 S=- 285 Jfcsin (x+K)=- 70f5 <7 cos (x+K)= + 101f6 Ci- + 35?9 <7,= + 12058 From Table LIV. multiplied by t cos i we have three terms in !-i iioiJoIoa ;flJ.vtf a + g (ndz - [ndz]) - yw sin ?.i.e ' *u iog^:-: > 1.3898 Jf-l~3$ 119. 524 is -^5^ 283. 698 4- ; fli^t *; j < 1873 log ^(C-Co) cos 1.131, -+ * 208.824 u lr_l_3|} 12.998 2 Ber. M. T. Sept. 1 20. 4491 log-(C-C.)coe 0.809 106. 526 ( + 8039? 4491 270. 700 n^l + 142272156 11405" E+40 74. 874 Cj+Hjf nz 1544. 0817 104. 0817+1440 '3.666 "A + i A 2017 140 124 +6* + 8t> 239.048 43. 222 57 648 Jf=c,+n,<+na* 100. 416 +10 - f+4tf 221.822 * i ' 106. 526+1440 \ 1546. 526 [*], 13676" |+3a 61. 876 226.050 30 224 log* 3. 18935 log [n9z\ (sees) log [nte], (degrees) 4.13596, 0. 57966, |+7<> 194. 398 log^ 1. 67513 [jufc], -3. 7989 -Jt+ t 102.298 w r + 477329 2c 213. 052 17.226 -['*'] + 477053 log (9.6715) [jute], 0. 2512, 2+4. 181. 400 345.574 log fe-KAq) 1. 67259 (9.6715) [ndi], -17783 |+W 136. 750 * . ' X 4*+7* 300.924 log (9.99572) (J^e- [n'dz'U 1.66831 a 2627087 (9.99572)(|e-[n'S^) + 467592 d-0 407207 r 2637870 f 2627087 2' 1677740 2$ 164. 174 \" 335. 480 3i> 66.261 6; 143. 220 4t> 328. 348 5t> 230. 435 C~Co 43.022 M 132. 522 7j> 34.609 2+ 72?5246 2407265 M 2%. 696 4^+305. 627 281. 107 () 6^+186. 48 329. 70 i* 53. 263 ! 106. 526 2;+ 68783 236. 57 1* 159. 789 4^+309. 75 285.23 2e 213. 052 i 266. 315 1 Con. lot aberr. 1 From previous approi. * From Astrand's table. See eq. (1), page 16. 24 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. (10) Hygiea. PERTURBATIONS nSz, v, u, FOR 1873, SEPT. 20.4491, BER. M. T. Continued. x-i-f+j )rad. 9.8462 / . log (> ->)* 9.692 log T 1. 3426 f.tj log a sia 1" 5.183 cos t 1 n!z r u 2kaa(x.+K) + 569" Ik coe (x+^) - 2134" It sin (X+.BT) i + 207" Jf cos (x+^O + 355 IV sin (x+A"0 - 461" ! JF cos (x+-K"0 6 IV sin (x+^'O 4 IV coe (x-f ") 1" log IV coe (x+^O log (^-^ ) If coe(x+ / K v ) 2.5502 2.396 + 249" log IV sin (x+^0 log (d - >.) IV sin (x+^0 2. 664, log J'f coe (x+^"0 2. 510, log T. IV coe (x+-K"0 - 324" T. JF cos (x+^0 0.778 2.121 + 132" logJt"sin(x+^' / ) 0.602, r - 2458" u + 339" 0. 294, log * (aecs) 3.3906, logu 2.530 (t !>,,)*. 2" log ^ (r^) 8.0762, 7.713 log (l+) 9.99480 log cos a 8.798, log cos b 9. 619, I + 816" log cos c 9.958 1 Z J 1 +0. 2267 (8.3192) [n'Jz'] +0.0058 log Ax 6. 511, [ri^z]. -3. 7989 log ^ J/ 7.332, tuJz - 3.5664 logJz 7.671 -0.00014 TKte + 5 n*z - 3. 566 Ax -0.00032 if . ** ^' Ay -0. 00215 At +0.00469 The computation of the geocentric place on page 26 is analogous to the usual method for two body motion, the fundamental equations being (1), (2), (3). A complete set of formulae and an example of the computation is also given in Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 215. CONSTANTS FOR THE EQUATOR. A' yearly vr. B' yearly var. C' yearly vw. log sin a log cos a log sin b log cos b log sin clog cos c issao 1900.0 1950.0 3209833+0901399 321. 532+0. 01399 322.232+0.01399 22991g2+0901404 229.885-0.01405 230. 587+0. 01406 238657+0?01310 239. 312+0. 01308 239. 965+0. 0130S 9199914 8.799, 9.99914 8.797. 9.98915 8.795, 9.95884^9.619, 9.95868 9.619. 9.95853 9.620. 9.62355 9.958 9.62423 9.958 9.62490 9.958 26 uA hod.i'i ifj VltlHiN MEMOIRS NATIONAL ACADEMY OF SCIENCES. (10) Hygiea. COMPARISON, OBSERVATION COMPUTATION. 1873, SEPT. 20.4491, BER. M. T. [Vol. XIV. 1873 X +3. 0709 Ber. M. T. Sept. 20.4491 X -1.00281 *a~f~ n j' 104?0817 dx -0. 00032 n8z - 3. 5660 * +2. 0678 M=c^+n, i t+n8z 100. 5157 y -0. 89314 dM - 04843 Y +0. 03260 dM' - 29/06 jj, -0. 00215 d')i. ;t'>v log tg 8 8. 89989 r 7 73. 8007 8 -4 32' 26" '+/ 342. 1517 Red to True 3 +6" C"+/ 351. 6043 True 8 -4 32' 20" Obs. 8 (A. N. 2029) -4 33' 27" log sin a 9. 99914 log sin (A'+J) 9. 98240 -) .!:/ 'l;i'J<-t f. logz 0. 48726 logp 0. 35172 log sin 6 9. 95877 log sin (*'+/> 9. 48643 n logy 9. 95092 n (0-C) Act cos 8 -19-3 log sin c 9. 62387 J8 _!' T' logsm(C"+/) 9. 16438 n log 2 9. 29397 n Stlit Given a series of observations well distributed around the orbit and extending over as long an interval as is available, the elements can be corrected by the method of least squares. For this purpose the formulae by Bauschinger 2 are convenient. The equations of condi- tion are set up for the residuals in the plane of the orbit and perpendicular to the plane, as seen from the earth. This resolution of the residuals is convenient because it keeps the same reso- lution into components as is used in the theory of Hansen. It is to be noticed that the elements to be used in computing the differential coefficients are the finally adopted constant elements referred to the equator by the proper transformation. The value of r to be used is except in the equation sm sin/ (Hansen's notation) ' Tafel zur Berechnung der wahren Anomalie, Veroftentlichungen des Rechen-Instituts der Koniglichen Stemwarte zu Berlin No. 1. 1 tiber das Problem der Bahnverbesserung, Veroflentlichungen des Koniglichen Astronomischen Rechen-Instituts zu Berlin, No. 23, Berlin, 1903. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 27 The use of ,/, r and constant elements is equivalent to the use of osculating elements for the given date of observation. (10) Hygiea ^ ^ V u ( i log It K logi 1C log* K 9 1.604 180.00 0.89 270.00 2 2.8570 254. 434 1.118 132. 16 4 2. 3364 130. 493 8.25 270 6 1.800 13.76 ndz [n8z]=2k sin (x+K) 1 1 2. 6771 37. 936 2. 1397 218. 075 1.057 125. 05 -|-( ) j_i} yjj - / k / cos (x-^-K'} 1 3 2. 8627 281. 578 2. 4135 102. 300 1.161 351. 26 +(# d<,Yk" sin (\+K") 1 5 2. 4238 165.01 1.965 345. 16 0.930 232.34 -1 1 2.022 24.92 0.55 343.56 1.119 273. 46 -1 3 1.628 93.53 1.543 98.41 0.981 159. 10 2 f [1.545]' \ 1.320 [7. 53]' 12.74 0.711 193. 49 2.097 17.99 v=Ik cos (x+JiO +(tf-i> )Zf sin (x+-K"') 2 2 3.5546 77.048 3. 2776 257. 026 1.777 169. 24 -(-(> i> ) J ^t" coe (x+^'O 2 4 2. 8719 321. 053 2.6054 140.320 1.412 30.12 2 6 2.389 204.49 2. 1033 24.100 1.034 271. 45 2 8 1.64 84.2 1.62 266. 70 -2 2 1.970 57.96 1.27 31.0 1.824 302.86 u= Ik sin (x+JQ -2 4 0.602 90.00 0.80 127. 21 + T2V cos (x+-ST') 3 1 0.90 214. 77 0.826 163.95 3 3 2.100 297.46 1.95 115. 89 0.446 31.44 Where T is expressed in Julian years from date of osculation. 3 5 1.841 178. 72 1.583 358.20 0.171 248.34 3 7 1.12 58.68 0.34 219. 62 -3 1 4 4 2 2. 0170 257. 208 0.42 34.68 0.673 0.00 0.270 262. 68 135.7 23.15 x=tW+y* where in s the multiples of 2r must be retained. 4 4 1.589 146. 42 0.97 335. 39 9.91 263.7 <> =221.811 4 6 1.14 36.5 0.66 213. 39 9.73 107. 40 5 5 1.038 14.0 1. 062 194.04 5 7 0.88 255.7 0.94 75.93 (-i,) or r log V K' log it' K' log*' K' 0. 799 270.00 9.690 180.00 ' 2 1.021 68.77 4 0.86 313. 16 2 2. 9862 186.00 2.6850 186. 047 0.957 301.14 2 2 0.18 94 0.12 81.23 2 4 0.88 326. 4 0. 60 326. 42 -2 2 0.60 66. 20 0. 11 247. 37 4 1.414 6.85 4 2 0.68 86. 9 0. 580 87.00 4 4 0.11 333. 42 0. 09 326 " v . (>-*,) log *" K" logi" K" . 2 0.58 189. 70 0.26 6.26 4 9.91 14.10 9.6 194 COMPARISON OF THE REVISED WITH V. ZEIPEL'S ORIGINAL TABLES. It was originally planned to conclude the example with a least squares solution of the orbit on the basis of the observations used by v. Zeipel for the same purpose, and to test conclusively the relative value of the revised and v. Zeipel's original tables by representing recent observa- tions with both sets of elements and tables. In the course of the computation doubt arose regarding the accuracy of some of the observations selected by v. Zeipel, which led us to reject them and substitute other observa- 1 In the determination of the constant e use quantities in brackets. 28 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. tions. This substitution produced an unfavorable distribution of the observed places in the orbit and the resulting least squares solution was not satisfactory. In the meantime, pending a resumption of the least squares solution on the basis of a more favorable distribution of observed places, 1 the following conclusions may be drawn regarding the revised and v. Zeipel's original tables: 1. v. Zeipel's tables have been slightly improved by the correction of some numerical errors. 2. A moderate further improvement has been accomplished by an extension of the tables in so far as seemed practicable without a more exhaustive and unwarranted study of the prac- tical convergence of the auxiliary series, by including certain terms of higher order and degree. With reference to the correction of the orbit and the representation of observations by a least squares solution, it should be observed that (1) A symmetrical distribution of the observed positions in the orbit is essential to coun- teract the effect of neglected perturbations of higher order and degree and of major planets other than Jupiter. For the Hecuba Group, in general, the mean motions of the minor planets may be nearly commensurable with those of Saturn, Mars, or the Earth in the ratios 3/2, 3/1, or 3/5. (2) However accurate the initial osculating elements may be, comparatively large residuals may remain on account of neglected perturbations. Logarithmic. TABLE A (XXXV). n&z [niz] Unlt-1" Sin te-i W-* -- jf w to' tf ,. + 4. 1570 4. 8741 B Jf+ 0+ 4 2. 7684 B 3. 3827 3. 7172 B B* Je+ (j-j. j 4. 0056 n 4.7686 *" J + t>+ 4 4. 0766 B 4. 8295 J-+ 0+ 4 4. 1365 4. 8738 B ' '< + 0+24 3. 3345 4. 5162 B j: + 30+24 4. 2240 n 4. 9611 5. 6685 B ]J Jtf+30+34 4. 0671 4. 8483 B 5. 5636 1J /3 i +50+34 5. 0926 n 6.0018 Jf I '+50+44 5. 2325 6. 1714 n i+50+54 4. 7675 n 5.7344 /" j+50+44 2 3. 8050 n 4. 7998 5' -$+ 3. 3112 3. 8350 H 4. 1355 ^r-f- t5-f- A 3. 2065 n 3. 7910 4. 0833 B lj" -}+30+ 4 3. 5338 4. 6236 B ll' j+30+24 4. 0879 5. 0382 1J if+30+34 tv ' . 3. 6012 n 4. 5318 n J 1 -if+30+24-J 1 3. 2074 4. 1925 B , , 9. 868 n 0. 5689 2.922 3. 4600 B 3. 3670 Jj' + 4 9.482 0. 2533,, 2.673^ 3. 2959 3. 1772 B 5 1 ?' +20+ 4 0. 746 n 1.384 3. 2927 B 4. 14906 4. 6990 B +20+24 9. 788 B 2. 47560 3. 10847 n 3. 4540 3. 3960 B n> +20+24 0.645 1.342 B 2. 305 n 3. 6179 n 4. 4018 *" t+20+24 0.326 1. 119 B 2. 935 n 3. 3017 n 4. 39206 +20+24 3. 4276 B 4. 23764 4. 76933n '!')' +20+34 0. 28 B 1.102 3. 1738 3. 5449 n 3. 8446 n rjij' 3 +40+24 3.6004 4. 27485 1 (.(-40+34 9.057 0. 692 B 3. 10161 3. 9302 B 4. 52415 4. 78162 B ,V +40+34 4. 0519 n 3. 7975 yf +40+34 4. 1385 n 4. 6961 +40+34 4. 2431 B 5.1290 17 +40+44 9.500 B 0.522 2. 9351 B 3. 8035 4. 41616 n 4. 63017 if +40+44 3. 7714 4. 2108 B Iff'* +40+44 4. 4165 5. 0931 B Pi) j-j-4,j-|-44 4. 1524 5. 0661 B ,y +40+54 4. 0588 B 4. 8136 ' Since 1913, when the revision of the tables was concluded, Miss Glancy has continued the problem of ( 10) Hygica independently at the Observa irio National, Cdrdoba, with the following highly satisfactory results, which substantiate further the increased accuracy of the revised table: va- torio Nacional, Cdrdoba, with the following highly satisfactory results, which substantiate further the increased accuracy of the revised tables (1) The original osculating elements and the revised tables resulted in a greatly improved representation of the selected observations (1849-188i) over the representation obtained with the original tables. (2) After the correction of the original osculating elements by least squares solution (a) on the oasis of v. Zeipel's tables and residuals, (6) on the basis of the residuals resulting from the revised tables, the representation ol the selected observations was equally satisfactory; but 3 later observations, taken in 1910, 1914, and 1917, are represented far better by the revised tables and corresponding elements than by the original tables and corresponding elements, (of. Astronomical Journal, Vol. 32, p. 27, No. 748, January 1919) A. O. Leuschner. Ko.3.1 MINOR PLANETS LEUSCHNER, CLANCY, LEVY. Logarithmic. TABLE A (XXXV) Continued. 29 Unit-l" Sin - K"- 1 M V 1C* J 1J f-J-4^-f-3J 2 3.2322, 4.2342 c-f~4iJ-|-4J E 2.744, 3. 0962 ,/S t+6t>+4J 0.28 0.64, 3.8027 4. 77998, 5. 52852 - -/ -j-6iJ-(-5J 0.596, 1.070 3. 9374, 4. 94342 5. 70347, ij l c -\-M+<}J 0.255 0.8, 3.4684 4.50125, 5.27451 +6t?+5J-J 8.8 9-3, 2.415 3.4823, 4.2931 V* e+8^+5J 4.5564 5. 4999, "7 -j_g^_j_6J 4.8668, 5.8416 _)-g^_(-7J 4.6990 5. 7030, i* e-(-8i>+8J 4.0631, 5.0844 j ^' j-Lg^-LgJ^ 1 3.5829 4. 6352, ft +8e>+7J-J 3.3768, 4.4540 l" - +2 ' -* ,' 3.5208 4.07255 7 r/' 3 3.4965, 4.59582 r*r' _ -j-4ty+3J 3.2416 4. 5467, 1)' - +4tf+4J 2.430, 3.9848 ,' - e+4d+2J-2 3.5496 4.19852, - f+4<5+3J-J 3. 3247, 4.05994 55' ^ +3l j + 2J 3. 6731 4.0029, |+3tJ-(-3J 2.3528 3. 2475, 3.9005 ij' ^+3i>+3J 3. 6181, 4.2122 f -j-3,y-j-3J 3. 4072, 4.4000 i + 3l?+4J 3.5244 4.4012, 7/ ' ^+5t>+4J 3.3533 4. 4231, 5.2725 ^ i+5t>+5J 3. 1780, 4.2730 5. 1359, q'l ,-)-7i)4-5J 4.2775 5.4708, jj -' i + 7l? + 6J 4. 4051, 5. 6177 >z 2 i*-J-7iJ+7J 3.92% 5.1605, ij 2^+2^+2^ 9.486 2. 1744, 2. 708 2. 889, 2. 599, ' / 2-i-2i'+3J 1.946, 2. 501 2. 516, ? ?' 2 -f 4^-j-3J 8. 8, 0. 561 2. 789, 3.5813 4. 1074, 2j-j-4<>-[-4j 8.90, 9.599 1.711 2.5795, 3. 1726 * 2 +4^+4J 9.2 0.34, 2.618 3.4962, 4.0890 ^' 2-j-6J+5J 9. 819, 0.5840 2. 7821 3. 7794, 4.51865 1 2 e +6 + 7J 2.1758, 3.1926 3.9204, (t) #) coe i; 0. 1021, 0.728 2.8978, 3.4504 3.7168, 1.377, 2.346 3. 8211, 4.6762 'i" f 1.941, 2.815 4. 4076, 5. 1971 1.364 2.220, 4.4076 5.1971, 5. 7086 ^' e-f J 9.658 0. 774, 2. 7836 3. 3840, 3.6946 '/' T / + -1 1.863 2.755, 4. 2546 5. 0814, * *4" J L844 2.642, 4.1953 4. 9770, f *,' + J 1. 170 n 2.049 4. 3715, 5. 1770 5.6975, v + 2J 1. 742 B 2.574 4.0203, 4.8466 j 3 V t+ J 0. 716 1.65, 4. 0809 4. 8829, 5.4008 j*, + J+^ 1.00, 1.89 4. 3427, 5. 0837 5.5553, v - J- J 1.562 2.455, 3. 9535 4. 7803, ,1 2: 9.801 0.43, 2. 5842 3. 1493, 3.4158 1 1 2+ J 9. 357 n 0.473 2.4548, 3.0830 3. 3936, \v W 0' *-** 7 * 9.56, 0.42 + J 9.43 0.32, where C,, sin Arg.4-( I )-iJ )J'r / P^ / 9; 2 Cj coe 2 , C 3 represent the respective coefficients. sin Arg. 30 MEMOIRS NATIONAL ACADEMY OF SCIENCES. IVol. XIV. Logarithmic. TABLK B (XXXVIII). *() Unit 1 radian. Cos ,, JM -. M '** *-. * w te* 1.5 3. 909 B 4.960 6. 6748 B 7. 2764 7. 540 B 7.31 ** 2.0 4. 644 B 5.160 6. 150 8. 048 B 8.838 8. 655 n 8. 100 n V* 1.9 3.41 n 4.75 n 6.509 8. 2077 B 8.994 8. 919 B P 2.83 n 5.146 6. 299 B 7. 994 8. 740 n 8.656 * 2.34 B 4.446 4.57 6. 728 B 8. 4022 9. 1999 B 9.0854 8.079 Tj Tj 2i> 1.6 2.6 B 5.744 6. 535,, 8.3811 9. 1031 B 9. 0128 if 2<>+ A 0.8 n 3.068 5. 2988 7. 2212 B 7. 3772 8. 0372 8. 764 B 8.668 Tj 1) 2+3J 2.04 B 3.00 4.98 B 5.89 8. 0326 ! 8. 1973 n 7.69 fi) 2i>+ J-J 4.51 5.42 B 8. 1011 8. 873 B 8.792 .'2 _/ y v 20+2J-.T 4.04 B 5.00 6.89 B 8.182 8. 158 B ,' 40+24 2.66 n 2.7 6. 1031 8. 4188 B 8. 5297 6.0 7.90 n Tj Tj 44~4J 5.92 6.74 B 9. 4432 0. 14644 B 0. 05077 7)V 6i5+5J 2.0 B 3.0 5.93 n 6.79 9. 2774 B 0. 03298 9. 9494 n n* 6<>+6J 2.0 3.0 B 5.420 6. 292 n 8.634 9. 4351 n 9. 3608 ;? i 7 6<>-|-4J 2" 4.04 B 5.00 8. 272 B 9. 1028 9. 0334 n J >! e^+SJ-J 4.51 5.42 B 8. 0554 8. 926 B 8.864 (i>-<5 ) sin ^' J 2.60 n 4.71 5.94 B 6.507 B 6.606 ,/ 2.+ 4 1.36 2.48 4.49 5. 255 n 5.51 5. 25 B * 2t>+2J 1.82 B 2.42 4.64 B 5.350 5.51 B 5.16 ,'2 40+24 2.34 3.00 5.392 6. 179 B 6. 528 n 6.665 Tj if 4i?-|-3^i 2.89 B 3.46 5. 702 B 6.467 6.851 6. 979 B I* 4i?-j-4^ 2.66 3. 459 B 5.357 6. 127 B 6. 530 B 6.653 1* 2.08 B 2.08 5. 546 B 5.546 if* 2.54 2.54 n 5. 396 B 5.396 !l' 4 2.5 n 2.5 5.776 5. 776 n m' 3 m' 3 m' 3 , m' 2 m' 3 , m' 3 m' 2 , m' m "' m/ m' 2 , m' m /1 , m' m' 1 , m 1 cos Arg.+( t ?-tf )Jit'*jP., / 9./.C 2 sin Arg.-f (^-t where C,, C 2 , C 3 represent the respective coefficients. cos Arg. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE C (XLIII). 31 Ixxrarithmfc. Unit-l" Cos - 2 - w* tr 8.72 9.88, 1.6349 2. 1070, 2.2333 f 9.80 0.212, 2.759 3.4922, V* 8.9 9.23 2.937 3.6295, ' J 9.66n 9.78 2.937, 3.1136, 3.6295 3.8440 If" M 0.556, 1.204 3. 2111, 3.7970 If 2tf+ 4 0.504, 2.3472 2.456 n 2.686, 3.4735 rY 2i+ ^ 0.997 1.711, 3.6559 4. 3103, 7" 2iJ+ 4 0.438 1.220, 3.3654 4. 0763, i* * 2<>+ A 3.6975, 4. 3810 i) 20 +2 J 0.438 2.952, 3. 2529 3.0689, 3.3979, f 2.5 +2 J 0.732, 1.497 3. 2410, 4.0643 7-j" 2tf+2J 0.772, L589 3. 4136 4.0723 A 2J+2J 3.9048 4.5649, 4.9303 V 2i>+34 0.505 1.344, 3. 4757, 2.783 /*5 2+ J-2 1 9.33, 0.15 2.938, 3.5830 ? V 2^+24 -J 9.20 0.10, 2.0251 3.2961, ?" 4J+24 8.9 1. 2819, 3.5514 3. 6173, 3. 8147 it* w+w 9.75, 1.5024 3.7885, 4.1394 4. 3110, r,> 4i>+4J 9.98 1.1342, 3.4007 3.9091, 4.1480 'V 4j+3^-J 6^+SJ 0.438 9.64, 1.220, 2.305 4.2675 2.542, 4.7993, 2. 749, u? W+4J L125, 1.862 4. 6479, 5.2324 *v 6i)+5J 1.198 1.947, 4.5397 5.1768, 7* 6J-I-6J 0.732, 1.508 3.9457, 4.6328 F *' 6rf+44-^ 9.20 0.10, 3.4099 4. 1710, w 6tf+5J-J 9.70, 0.56 3.2601, 4.0542 9 v' i+ i> 3.4878, 4.1106 i+ + J 8.3. 2.2106 2. 7179, 2.919 f i*+ J+ 4 3. 5709, 4.2261 , 1 + tf+ J 3.4507 4.1296, V +4J 4. 7261, 5.4067 i 3 1 f+StJ+54 4.2862 5.0418, J 3 1 t+5i+4J-J 3.2570 4.0005, 1 -i+ * L086, 2.7090 3. 3467, 3.7098 1 -i+ l>+ J 0.88 2. 1967, 3.0952 3.5836, I* -i-t+3*+ J 2.514 4,1049, ijr - t+3J+2J 4.0853 3.9122 f -i+3J+3J 3.8341, 3. 8118 f -|+3J-f-2^-J 2.416 3.6926, >! i 9.62 0.58, 2.143, 2.682 2.9151, r e+ J 9.04, 9.9 2.061 2.666, 2.9477 if' +2l>+ J 0.444 1.1661* 3.0588 3.8035, 4.2554 t+2^+2^ 9.487 2.1744, 2.7280 2.972, 2.976 i 3 +2^^-24 0.344, L1143 2.692, 3.5334 4.0772, *" +2J+2J 0.025, 0.828 2.634 3.0726 4.0416, j 3 +2^+24 3.1265 3.8806, 4.3473 IT* +2<>+3J 9.98 0.811, 2.873, 3. 1697 3.5856 t7 E+4J+24 1.105 L89, 2.864 4. 3477, < +4t>+34 8.8, 0.398 2.8000, 3.5327 4.0065, 4.3207 iV +4t>+3J 1.260, 2.083 3.0931 4.4160 i" +4t>+34 3.8375 4.0446, >* i 7 +4tf+3J 0.267 1.15, 3.9421 4. 6972, i +4t?+4J 9.19 0.248, 2.6356 3. 4317, 3.9469 4.2558, f +4tf+4J 0.774 L66, 3.0934, 3.7866, i" +4J+4J 4.1154, 4.5547 j 3 '? +4^+4^ 0.455, 1.32 3.8518, 4.6436 v +4^+54 3. 7579 4.3244, /N +4tf+3J-J 3.0030 3.8869, 32 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE C (XLIII) Continued. Logarithmic. [Vol. XIV. Unlt-1" Cos w-> w-> w-i to' w w' f if s+40+44-1 2. 4425 1. 85 n ^ +C^+4J 9.98 n 0.480 3. 5016,, 4. 3723 4. 9952 n w' e+6<)+5J 0.296 0. 823 B 3. 6369 4. 5582 n 5. 2093 f +G^+6J 9.95 n 0.538 3. 1685 n 4. 1334 4. 8131 n f f+Gtf+SJ-I 1 8.5 n 9.15 2. 114 n 3. 0881 3. 7886 n ^ +8tf+5J 4. 2554 n 4. 9349 ,," +8!?+6J 1.320 2. 152 n 4. 5657 5. 3010 n ,V e+8,?+7J 1. 228 B 2.093 4. 3995 n 5. 1827 1* e+8,9+84 0.648 1.54 n 3.7543 4. 5812 n P l' +80+64-.? 3. 2818 n 4. 1442 A e+Stf+74-2 1 3. 0763 3. 9759 n *" - +2t5 0.305 1. 1007 2.912 3. 4958 n 3. 8151 11' - +2y |+70+64 4. 1991 5. 3823 n ^ fs+70+74 3. 7114 n 4. 9188 ; 3 |+7d+64-J 2. 615 n 3. 8317 riV -!e+ tf 3. 2411 3. 7872 n tf -i+ 0+4 2. 819 n 3. 4476 ? -^+ 0- 1 2. 9181 3. 4813 >? 2 B 98H.( 2. 364 n 3. 0737 v 2s+ 4 XX .0 2.624 3. 3489 B ," 2s+ 24 2. 207 n 2.978 f 2+ 4+1 2. 620 n 3. 2765 1? 2s+20+24 9.8 n 1.63 2. 362 n 2. 873 *' 2 +20+34 9.5 1.796 2. 303 n 2. 1007 -M' 2 +40+34 1.93. 2.700 2 +40+44 8.7 8.8 1. 5802 n 2. 4158 2. 9867 B * 2+40+44 2.330 3. 1764 n ," 2t+40+44 3. 1079 3. 9008 n ;' 2e+40+44 2.736 3. 6809 n V 2 4 +40+54 2. 9881 n 3.8425 V 2+60+54 9.64 0.53 2. 652 n 3.6204 4. 3279 B >j 2+60+64 9.48 n 0.36 n 2. 4419 3. 4512 B 4. 1892 >)" 2+80+64 3. 6135 n 4. 6784 -M' 2 +80+74 3. 7124 4. 8075 n 5 1 2t+80+84 3. 2109 n 4. 3338 j* 2 +80+74-2 > 2. 068 n 3. 2092 i+50+54 9.3 fl 1. 140 2.0056 2. 5727* * ^+70+64 0.5 n 2. 2749 n 3. 2377 3. 9184 n >) |+70+74 0.3 2. 0542 3. 0565 n 3. 7710 ^+70+74 8.1 0. 4:) n 1.346 1. 959 B (0-0 ) sin . nf 4 9.66 0. 810 B 2. 7559 3. 3840 n 3. 6946 r/ 20+ 4 9.79 0.54 r; 20+2J 9.92 0.63 n No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE C (XLIII) Continued. Logarithmic. 33 UnJt-1" (>-t?i) sin ^ to-* _ w* W r 9.801, 0.425 2. 5970, 3. 1493 3.4158, 1* t 1. 075, 2.045 3.5201, 4. 3751 11" t 1.640, 2.514 4.1066, 4.8961 r>i t 1.063 L916, 4.1066 4.8961, 5.4076 * + 4 9.36 0.471, 2. 4824 3.0830, 3.3936 Tj*1) *+ J 1.565 2.456, 3.9671 4.7890, Ij" e-f- J 1.543 2.341, 3.8942 4.6760, f ^ + 4 f+ 2J 0.87, 1.441, 1.75 2.273 4.0705, 3.7192, 4. 8759 4.5456 5.3965, f *l' + 0.42 L36, 3.7799 4. 5819, 5.0998 I* 7 ! *+ J+Z 0.695, 1.585 4. 0417, 4.7827 5.2543, | t+4i>+4J 9.59, 0.45 f t+4.+34 9.46 0.34, 1 2 f +2i+2J 9.45 0.11, *' 2t+2,>+34 9.32, 0.04 Y - t+ 4 L255, 2.149 3.6240, 4.4615 (-)< i , 9.25 0. 117, '' + -i 9.12, 0.02 m" m" m", m' m' m' m' j COB Arg.+(*- l )JwijlV; 5 C', sin where C,, C 2 , C, represent the respective coefficients. 110379 22 - 3 C, coe Aig. Ml 34 MEMOIRS NATIONAL ACADEMY OF SCIENCES. :- TABLJB D (LIV). 2 U p . q r)Pii'V sin Arg [Vol. XIV. Logarithmic. Unlt-1". Sin to-1 w* U) 7) - 4-n' 3.06^ 3. 7258 v -n' 2! 8235 3. 5528 B / 20+ 4-n' 2. 2831 2. 8483 n n 40+34 -H' 1.705 3. 1591 B 3. 9166 n V 40+24-n' 3. 2462 3. 8608 n j+ -n' 3. 2112 B 3.8544 v j:+ 0_|_ 4 n' 2. 5875 3. 4153 B / j+30+24-n' 2. 2787 2. 6304 B 7;' if+50+34-H' 3.3J55 3. 5865 B if +50+44 -n' 3. 0779 n 3. 3972 li, -i- 0-24-n' -if- 0- 4-n' 3. 1158 B 3. 1493 3. 7378 3. 7644 B , -j + -n' -j +30+ 4-n^ 2. 3242 3.3863 3. 0060 B 4. 1833 B T; 3. 3532 n 4. 1452 7) +20+ 4-n' 2.6364 3. 3704B 3.8423 v t+20+24-H' 1.423 B 2.706 3. 4014 B +40+34 n' 1.4042 n 2. 1720 2. 6339 n ^/ +60+44 -H' 2. 3306 B 3. 1922 3. 7582 n 7) +60+54 -H'' 2. 1137 3. 0138 B 3. 6101 - -20-34 -H' 2. 7175 3. 4858 B 3.9484 T/ - -20-24-n' 2. 7756 n 3.5070 3. 9456 B / c 4 n' 1. 6810 2. 2463 B _/ - +20 -n' 2. 8125 3. 4427 B 3. 7846 1) - +20+ 4-n' 2. 9121 B 3. 4958 3. 8338 7) $+30+24 -H' 2.6058 3. 5312 B v 4+30+34 n' 1.760 1.82 B *+50+44 n' 1. 7510 B 2. 8113 v $+70+54 -n' 2. 9120 B 4.0813 _s _30_44_n' 2. 8673 3. 8458 n v IE 30 34 n' 2. 9620 B 3. 9124 -$- 0-24-n' 2. 0569 B 2. 7932 7)' if+ 4 n' 2. 9275 B 3. 4708 -je+ -n' 2. 9702 3. 5487 B 1} 2 +40+34-n' 1.640 2.7S1 B 2j+40+44 n' 1.617 2. 340 n 2+60+54-H' 1.206 B 2. 2110 7] -2 -40-54 -n' 2.4012 3. 3634 B V -2j-40-44-n' 2. 5241 B 3.4544 -2-20-34-n' 1. 5290 n 2. 3210 7)' -2e -24 -H' 2. 3174,, 3. 0558 -2 - 4-n' 2. 3514 3. 0737 B tTl' u I COS t =2 U P . q i)Pij' * y' 4+n' 2.9180 3.7799 1.9821* 3.7744* 3. 5175* 3.4580 3.1764 3.7732, 4. 5819* 2.5473 4.5420 4.3017 4.2668* 3.9772, 2.8138* m' sin Arg. '9 ain Aig.+niT,(cos t e)+K t ein |+e,(coe e)+Cj ain 35 i sw i- ! n O!f*.b n'" 36 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. Logarithmic. TABLE F (LVI) w w a Unit 1 radian. Cos Ml -> UJ-l u-o W at 4.360 5. 1966 n 5. 7767 r 4.766 6. 6599 7. 3732 B 7. 7492 2r 4.446 7. 1194 7. 7572 B 8. 0553 sr 4.412 6.8442 7. 5458 B 7.9060 4F 4.484 6. 588,3 7. 3450 n 7.7602 5r 6. 3437 7. 1490 n 7.6136 7T 5.875 6. 7632 n 7.3134 9o -5r+20 +2J 6.5090 6. 6325 n 7. 4746 B -4r+20 +2J -3r+20 +2J 4. Win 3.19 6.169 6. 882] 7. 0658 7. 6078 7. 86980, 7. 9975 B -2r+20 +2J 3.52 7. 098fi n 7. 6970 7. 9394 n - r+20 +2J 5. 1420 6.359 7. 0722 n 7.4480 20 +2J 4.379 7. 6355 B 8. 2144 8. 4125 B r +20 +2J 4. 856 n 8. 0894 B 8.9548 9. 5668 B 2r+20 +2J C A 4.92 7. 8150 n 8. 6561 9. 2006 B 3r+20 +2J 5. 5174, 7. 6056 n 8.4650 9. 0111 B 4r+20 +2J 5. 4248 n 7.4128 B 8. 2958 8. 8561 B 5r+20 +2J 7.2254, 8. 1426 8. 7346 B 7r+20 +2J 6. 8746 B 7. 8484 8. 4936 B J -5r+20 + J I^rf i 6. 8776,, 7.5604 7. 8425 B 4f +20 + J ! _tvjfl? .1 4.582 6. 8815 n 7.4536 7. 5238^ -3r+20 + J M'*T . 4.674 6. 6271 B 6. 7816 7. 3174 -2r+20 + J n<3ri<5 .il 4.99 6. 7985 7. 4732 n 7.7966 - r+20 + J 5. 4623 B 20 + Jo 4.605 B 7. 1987 7. 8314 B 8. 1061 r+20 + J 2r+20 + J 5.0056 4.38 8. 2964 8. 0434 9. 1086 B 8. 831 6 B 9.6833 9. 3296 sr+20 + J 5. 6251 7. 8458 8. 6564 n 9.1558 4r+20 + J 5.5812 7.6603 8. 5030 n 9. 0248 5r+20 + J 1 IH t-it>' v .' 1* 7. 4778 8. 3544 n 8.9050 7r+20 + J " "* t S v ( 7. 1130 8. 0545 B 8. 6668 I* n t -.f( -1>T>, 4.664 4.71 5.83 r 7. 8102 8. 6250 B 2r 7. 7520 n 8. 1242 sr 7. 6172 B 6. 6043 B 4r 7. 7135 n 8.2308 9o* _4r+40 +4J 7. 1862 7. 9072 B 3r"-(-40o+4J 7.1804 7. 8679 B -2r+40 +4J 6.817 7. 456 n r"+40 +4Jo 8. 4680 n 8. 8822 40 -f-4J 4.666 5. 807 B 8. 0913 8. 8270 n 9.2073 pjf^g +4J 8.7850 9. 8236 n 2T +40 +4Jo 8. 5144 9. 4910 n 3/ 1 +40o+4Jo 8. 3274 9. 3006 B 4r+40 +4J 8. 1627 9. 1494 n 57"*-f-4vQ~}~4^o 8. 0050 9. 0105 n in' 4/~'-t-40 -4-3^ 7.354 n 8. ]083 -3^+40 +3J 7. 5708 n 8. 2084 ~~ ^ f ~f~40Q-f~3Jo 8.8838 9.0548- 40 -f-3Jo 4. 516 n 6. 2084 8. 5565 B 9. 218p 9. 5174 n / 1 +40 +3J 9. 2783 B 0. 2833 2/^+400 +3J 9. 0241n 9. 9635 3r+40 +3J 8. 8480 n 9.7850 4/^+400 +3J 8. 6916 B 9.6434 5r+40 +3J 8.5401,, a 5128 m/a m/J 77l /2 , 77J- 7 m'\ m' m' m' No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE F (L VI) Continued. 37 Logarithmic. w I Unit- 1 radian. Cos ^ w-J ..; 10 . TUB' -4T ~ + ^o 7.7640 7.8364, /w / -sr f 4 7.4203 8. 3915 7. 8104, 8.6268 - r f- J, 8. 0479, 8.8018 4.518, 5.886, 5.70, r + 7. 1339 7.8500 7.8421 a 4293, sr + A 7.9669 a 6796, 4T + Jo 7.9760 a 7576, *" _4r+40 +2J 6.9002 7.6938, -3r+4^o+2J 7.1638 7.8502, I 2 f+4J7+2J 8.1860, a 4016 49 +2^ 3.76 e-oeoSn 8. 4157 8. 9760, 9. 1661 /'+4^o+2J 9.1714 0.1382, 2f-(-4fl -)-2J- , 8.9358 9.8333, 3y-j_4# -j-2J 8. 7718 9. 6681 B 4/^-j-4^ -|-2^ 8.6236 9.5372, ***' j.n 176 5. 7516 4.7 r 7.8677 8. 6727, 2f 7. 8610, 8.2228 sr 8. 1026, 8.7296 4r 8.1538, 8.8728 f r 7.9418, a 7337 2f 7.9312, a 7154 sr 7.7920, 8.6154 4r 7.639, a 5001 f ;.' ' :: f _4f-(-4fl -)-3 < / _j 7.446 8.1156, -Sr+^o+SJo-J',, 7.1858 7. 8677 B - r+4+3Jo-^o 7. 6176, 7.9693 4^ -|-3J 2 a 4.804, 7.168 7.9368, a 3724 /-(-4^ -j.3J ^" 7.7887 8.8492 B 2r +4^ -j-3J .J 7.448 a 4531, 3r-j-4tf -i-3J ^ 7. 19J6 8.2026, 4r +4^o+3J -^o 6.978 7.9963, ** 2^ +2J 5.418, 6.292 7. 4754, a 6636 6/? +6J 5. 418, 6.292 8.6328, 9.4351 1J0 2 !/ 26 + ^ 5.885 6. 719, 8.5059 9- 2804, wV 2C +3J 4.974 5.896, 8. 0326, 8^ 1975 r ">X 6 +5J 5.935 6.780, 9. 2774 0.0330, 2^o 5.744, 6.535 8. 3811, 9.1030 r /0 j;' 2 20 +2J 5.441, 6.327 a 0917 8.6300 'So 'j' 2 66 +4J 5. 919., 6.744 9.4432, 0.1464 1 ! /3 2^o+ ^o 5.301 6.14.9, 8.2302 9. 0152, '" 6C +3J 5.301 6. 149, 9.1294 9. 7729, 2$ +2J 8.5904 9.3492, 9.8022 /'Jo 2^ + J 2+C coa if/ Unlt-1". Cos to- te-* M . 1C . <1> 5r+20 +2 J 8.81 1.082 B 1. 5710 1. 612 B 4f +20 +2J 9.009 1.5493 0. 9,89 3/ > +20o+2J 9.318 0^931 1. 604 B 1.916 4/'+40 +4J 0. O64. n 1. 723 n 2. 3515 2. 6814 n ^ 3r+40 +4J 0. 3185 n 2. 1626 n 2. 6961 2. 921 4 B tj 2/ 1 +40 +4Jo 0. 497 B 2. 7787 B 3.0649 3. 0993,, #- r+40 +4J 1. 0286 3. 2379 n 3. 1223 3. 9385 B # +40 +4J 9.199 9.04 B 2. 6172 3. 2511 n 3. 4930 0+ r+40 +4J 8 0.7226 3. 1702 4. 1580 B 4. 9365 <&+2r+40 +4J 8 0.669 2. 7877 3. 7083 B 4. 3605 i+3f +40 +4J 0.9435 2. 5117 3. 426L, 4.0450 ^+4r+40 +4J ~ j 0. 5122 2. 2732 3. 2042 B to -r 0. 0434 B 2. 0527 2. 6896 B 2. 9432 2/ 1 9.140 0. 362 B 2. 1351 2. 3850 B 2.4864n F 0. 4164 n 2.3504 B 3. 0929 3. 5397 B | 9. 274 n 0. 1436 B 0. 3102 n 2.497 3. 1875 B 3. 5978 ^+2.T 9. 137 B 9.918 1.9006,, 1.0453 2.8834 J+ttf" 9.465 0. 8 / 12 n 2. 5218 B 3. 3564 ^+4jT 9.20 n 1.406 n 1.729 if 5r"+45o+3Jo 9.476 1.327 L889 B 2. 2299 4/ I +40 +3J 9.781 1.447 2. 1506 B 2.5419 ^ 3.T+40 +3J 9.811 2. 1070 2. 6309 n 2. 8J508 ^ 2.T+40 +3 J 0.3489 2. 5095 2. 9557 B 3. 0952 <]>- r+40 +3J 8 0. 9511 3. 3599 2. 7758 3. 9726 +40 +3J 8.76 B 0.158 2. 7932 B 3. 3085 3. 4526 B + r+40 +3J 9. 961,, 3. 3609 n 4.3114 5. 0691 n ^+2/'+40 +3J 8 491 2. 9943,, 3. 8728 4. 4922 B ^-j-3/ 1 +40o+3J 1.' 0464 B 2. 7293,, 3.6067 4. 1945 B ^+4f+40 +3J 0. 678 n 2. 4992 n 3. 3946 Tf V ~~ 5j ~T~ Jn 9.848 2. 0766 n 2.712 2. 9697 n V^4l "4~ Jn 0. 0792 2. 1609 n 2. 6968 2. 7976 B zr + J 0.3941 2. 157 n 2.491 1.51 zr + J 9. 013 n 0.248 2. 0455 2. 7898^ 3. 2380 4/ 1 +60 +6J 2. 9538 3. 3785 n ^ 3r t +60 +6J 3. 3102 3. 5843 n y~2/ 1 +60 +6J 3. 4970 3. 8423 B ^ ^+60o+6J 3.9455 3. 7269 n ^ +60 +6J 9.95 n 1. 1109 n 3. 1673 B 3. 9296 4. 3377,, Y~\~ ^ 1 +60o+6J 3. 9144 n 5. 0372 ^+2f+60o+6J 3. 5594 B 4. 5942 ^+3r+60 +6J 3. 3121 B 4. 3236 to 3 ^-5r+20 +2J 2. 1657 2. 7221 B d> 4/ 1 +20 +2J 2. 1255 2. 8004 B ^ 3r+20o+2J 2.234 3. 1304 n 2r+20 +2Jo 2.576 3. 3804 n <1> ^"+200+2^0 3. 1995 3. 8325 n ip +20 +2J 0. 344 n 1.017 2. 689 n 3. 4822 3. 9938 n -\- / 1 +20o+2J 2. 2480 3. 2839 n ^+2r+20 +2J 9.45 3. 1612 3. 8424 n No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 39 Logarithmic. G (LVII) Continued. S sin +C coe Unlt-l". Cos ^ ^ ,H ; 1C - , f_5r-20 -2J 2.700, 15481 TO \_ip 20 2J 2. 817, 3. 6251 V_or- 20 2J 2. 9247, 3.6905 i 2.T 20 2J 9.59, 3. 0241 B 17470 i r^ I Oa i ^ 2.8541 3.5823, ^+2r+2flJ+4 3. 2191, 17635 , A-5r-20 -J a 3.1551 19530, 4r26 J 3.2454 3.9948, A 3f 20. 4. 3.3100 4.0023, ibir 20 j 9.93 3.3277 3.9401, ij /" 20 J 3. 1976 3. 4598, A 20 J 0.490, 1.324 10145, 3.7326 4.2787 i+ f 20 J 3.3632 3.9402, ^+2r-20 -j 2.7792 15224, fcf / ,j_5/-+20 +34, 2.2738, 2.847 V 1 ~~"4j ~|~Urt~T~"^O 2.116, 3.0290 tj 3/^+2^0 -j- 3^ 2.5858, 3. 3787 V ~~2/ ~y~toVft~7~O^Q 2.809, 3.5429 A / ? -|-2^ -i-3J 2.650, 17297 W ~T~"0~1 "^0 9.98 0. 60 n 2.873, aess 17980 cj+ /'+20 +3J 3.5126, 4.2856 #+2r+20 +3J 9.46, 13438, 4.1208 ,/J w~~df ~f~Ov/*T~4d() L9950 2.7422, ~"~4y ~4~6w(|~j~4dn 2.6112 3. 1949, d 3.T +60 +4J 3.0556 15583, tf 2f+60 +4J 17934 17947, ^ / I +60 +4Jo 4.2260 4.4064 ^ ^-60 +4J 9.98, 0.76, 3.5017, 4.1098 4.3552, ^+ /'+60 +4J 4.2852, 5.3521 #+2r+60 +4J 3.9567, 4.9249 * tJ-5r+20 e +2J 2.5018 10963, # 4/'+20 +2J 2.453 10935, d> 3/"+20 +2J 2.4799 3. 2779, ^ 2/'+20 +2J|) a 9375 16294, ^ r"+20 +2J 12833 3.8982, d> +20 +2J 0.025 B 0.60 2.634 3. 2781 4.0439, $~T~ * t~2vn~\~2an 3.5607 4.2381, ^+2r+20 +2J 14629 4.1704, 1* ^_5r-2 3.0090,, 1 7477 ^ 4f 20 3.0676, 17445 zr2o a 3. 0764, 3.6664 A 2r28 2. 958-, 1 3121 r26 3. 1140 4.0201, r -20 0. 305 L 127, 2.912 3.5491, 3.9085 A-\- P 26 a I 3. 0396, 3.6320 A+2F-26, 2.4706, 12330 40 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE G (LVII) Continued. Logarithmic. [Vol. XIV. Unit-l". Cos tu- w-J w-> u,o to w> f ^-5r+66' l0 +5^ -J' 2.006 2. 7505 n ^-4r+60 +5^ -j 2.335 2. 981, V 3r+60 +5- r+60 +5J -.T 2.970 2. 911 6 B V* +60 +5J -.T 8.6 n 9.7 2- 1H B 2.9.23 3. 4067, n V>+ r+60 +5^ -J 2. 7948 n 3. 9420 0+2r+60 +5J -.r o 2. 3824 n 3. 4488 f ,H5r+20 +24, 9,6 2.387 ^-4r+20 +24 1. 916, 2.911 v !'-3,r+20 +24 ) 2. 5178 n 3.3047 0-2T+200+24, 2. 938 n 3. 6294 ^- r+20 +2J 3. 3406 n 3. 9330 ^ +2S +2^ 0. 5910 3. 1266 3. 8021 4. 1894 ^+ r+20 +2J 3. 4070 4. 3178 B ^+2r+20 +2^ 3. 0472 3. 9308 B JT ^-5r-20 -4+.r o 0. 732 n 1.085 0-4r-20 -4,+.J 0.35 1. 895 n ^-3r-2e -4,+j 1.463 2. 5146 B ^-2r-25 -J +2 > 2.064 3. 0255 n V r-29 -j +j 2. 6816 3. 6280 n ^ -26 -J +2 9.04 o.n n 2.636 3. 3284 n 3. 7399 0+ r-2e -j +^o 3. 0572 n 3. 6430 ^+2r-2ff -J +^ 2. 9121 n 3.5491 V. ^+ 40 +44 0. 775 1.65 n 3. 1052 n 3. 0342 n - 40 -4J 0.2ft, 1.10 3. 1888 3. 6104 n ^+ 80 +8J 0.65 1.54 n 3.7520 4. 5812 *V + 40,+34 -^ 3.0024 3. 8634 n - 400-340+2 1 ,, 9.98 0.8 2. 956 n 3. 8331 ^+ 80 +7J -J 3. 0757 3. 975? n + 40 +4J 0.46 n 1.32 3. 8514 n 4. 6436 ? 1' 0+ 40 +4J -J 2.442 1. 846 B #- 40 -2J +2- 3. 2486 4. 0585 n ^+ 80 +6J -J 3. 2818 n 4. 1441 ^+ 40 +3J 0.27 1.15* 3.9421 4. 6972 B S sin t+C cos ^='SCw*riPri'Qj 2 t cos Arg. where C represents the coefficient. H. TABLES FOR THE DETERMINATION OF THE PERTURBATIONS OF THE HECUBA GROUP OF MINOR PLANETS. DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS FOR W AND FOR THE THIRD COORDINATE. It would be futile to attempt to give a brief but comprehensive outline of the fundamental developments in the theory of Bohlin-v. Zeipel which would assist the reader to an understanding of the construction of the tables. In broad outlines, the problem is the integration of Hansen's differential equations for nSz, v, and -> by means of the method developed by Bohlin and according to the modifications introduced by v. Zeipel for purposes of numerical computation. The first division of the problem is the development of functions of the partial derivatives of the perturbative function; the second division of the problem is the integration of the Hansen equations in the form of infinite series. For the theory the reader is referred to the original works of Hansen 1 , Bohlin 2 , and v. Zeipel*. As indicated in the introduction to the first section, unless otherwise stated, the references to Bohlin refer to the French edition and are designated by B; references to v. Zeipel are desig- nated by Z. Although duplication of material which can be found in either reference is to be avoided, our experience in attempting to reproduce v. Zeipel's tables led us to fill in certain gaps which are troublesome to the reader and the computer. The first section of v. Zeipel's theory is concerned with an independent development of Hansen's differential equations for ntiz and v and a repetition of the differential equation for *t and the introduction of Bohlin's argument 6. In passing, it is well to emphasize two cos t- facts: First, the variables e and /"used throughout the theory are analogous to Hansen's e and/; the dash is unnecessary, for the physically real values do not appear. Second, the constant elements a, e,n,c, Q,,i are neither osculating nor mean elements; they are defined in the section on constants of integration. The perturbative function and its partial derivatives are developed in Fourier's series, in which the arguments depend upon the relative positions of the disturbed and disturbing bodies and in which the coefficients are infinite series in ascending powers of the eccentricities and the inclination of the orbits. The coefficients in the latter are elliptic integrals depending upon the ratio of the semi-major axes. Since these elliptic integrals are functions of the ratio of the semi-major axes, or of the mean daily motions, they can be .developed in Taylor's series, in which the given function and its successive partial derivatives are expressed for exact commensurability and the series pro- ceeds according to a small quantity w, defined by w=l 2 ft, where ft is the ratio of Jupiter's mean motion to that of the planet and where ft differs but little from These elliptic integrals enter the coefficients in all of the subsequent trigonometric series. Hence all the coefficients are series in w. With some exceptions the terms in w, w, and v? have been used. The develop- ment of all functions in powers of w is the essential principle underlying the group method of determining perturbations. The following pages contain the tables which are, in general, parallel to those of v. Zeipel. At the end of sections 2, 3, 4, 5 there are brief written comparisons. To facilitate comparisons ' Auseinandersetrung einer tweckmassigen Methode HIT Berechnung der absoluten StSrungen der kleinen Planeten. ' Fonneln un i>. rM iui viii 1o p.fiu'M'i v.- Unit ,j ,z6;i iui i'.>.\ni ::. / 1., Mis.: ,..'>/.;> !.M:>ii>Tliiii JIM i\i\tr iMPttmlSUft urt UM[|/U;i>- !n ; Jicn-r'u> m* to .miJUoqsi ^ ba;; (>") )x:^isnt> >? ilrw fei Ji ,j;t:i :^ i nl .^ Jiri.i oil) ^-tt V> ILa rri aJ.r euoiia/vr/,3 ) lo snowcx n' .linaauy ai .^! ri->i . it- No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 43 OS.-H ^M ioco coi> o I-H r~ I-H CO CM 00 O *-CM coco OS 0% CO CO CO O> t-00 o'o e e e CM CM P CO 1 -flt-C CM -H CO OCM O> OO05 CM CO CO CO t-co t-co coco OS 00 25 r-!o' 1 ci Ok rHCM I- CO CO r- ( ^ t- *Q ^ O r- 4 os^^co CO ^H I-H CD cc o O2O ^o e o c CO CO 1C Q t~co^c5 SO CD i5 ^r-ICS s c coS NTT C5O ^CO l/J t~CC i/i CM O CO CO OS 03 - - CO Oi-i ooo os f-ICM 1-ir-lO CM _0 00 CO ^ CO CO CO O CD ^f OS CO CO CM CO CO CO CO CO CM CO CO r-t CO COO t- 53 SCO CO i-H i < oo m^ e e CO OC CD -^ CO O5 -^r co ? t^ CC c: ^.O V 5 c; ic co r ' ds @cf CO CO CO O O CM CO CO CO CD ii5 ~ 'Jl cocc m *rHO a> t~ i i e i. O - - OS CO 1 ( O OOO CR CM CM rH rH r^ CM 3 \ r- CM coco-*** rHCM CO OS OS i t CO CO i 1 ^ rH CO ^* *O CC ^tf CO Q CM OS CMO CO O CO OS CO CO i CO COCO g eo 1 e e e e e ??= es :M o ac co CO CO T CO -^* I-H t> lO CO 1^ !=V? CS i!5 CM sss SI-HO O 1^ t~ CO CD C55 -H t^ SS5SS CS IQ OS rM CM 1 1 O os oi o co i ( i-H i 1 CM r-l O O CM CM CM CO r^r-ii-lr^ CM CO 'o D O CO lO i-H OS lO - CO*O CO 10 1 t cs r^ 10 e s e ^ c5 t^- o cc < t^ ^* O ! O CM i CO CM C3i ^T M CM CO CO CO "^ CJ5 t^ Ci CC i-O us t~oo afef Is C0 ^ CO CO tA O CO i i Ol CO t^- CM O CO CS rH cot* co co ^fl* lO X r-HOO OS OS OS pH i-H i-H i-H d rH r-i i-i O O' CM CM CM eo^r i 1 rH rH rH CM CO ^r* CO CSO CM cso os corn ^T CO i * TT CM rH C5 t * i CM CO CM CO -^ iff ^ CO O i i t*- CO OS CO CO lO O S S CO iC O O OS M t-- N CSlffl CD C-J u5 co 00 CM g^co 5 e e s O IS =O -H c-i co cc r~ CM OS < CC CS CD CM ^^ -H CM COO CO 1 O> Frf-? SS2 c; o co oo V CM 00 KS CO f* CO CO rH CO C CO O CO < t-. -O X3>O Of 4S" a> 44 1 rH O O' O OS OS CM CM CM rH M CO I-H ^^ ^^ ^H Q CM CM CO CO -^ i-H rH r-H rH COCO S M -x -" b-!-M OS, i CM -H t- CO O CM CO" CC C*J CC CO CO OC t^ 00 CM coo co coo co oo -^ b- lO CC O t^. CC CM CO co r- CM 2882 CO OJ IM <-> O5 ^- CO S^r CO ^o e cc s c R*g?g O CC X U? h- CM O CM O t- iC CO * ufsfof O! CO O i ( ^ CO CO -5* ''T r-O i A? -^ t^- iO CO OS r* CM T-H lO OO OO CO lO - i i So o S coccos lO * CM CM f t~ < t~ lO t^ o g 2- rH rH O O O OS NC1CN N c4m N i-H i-H i i i-H CM COCO CO 1 ^ rHCMCMrH CO CO CO H O <-i ^ * I s * CO t*- CO CO OS O i i b- 1C t-H OS CO co ^J* ^ r- *o co OS CO CO_O ""^ ^3* i-H CO OS CO CO O i-i a> < wo t-. < o o r- CO C^ 1^ lO CO OOOO (M M CO CO o - ^ i 8* V ? e t>f e e 15 7-1 o :D cs CT- C-l > C t^ -^ co co c? o o i CM 3: r~>oco see C-l CO Q CO CC O CC 1 ~~ CO TT m t~ CO i-l CM ^ e CO ^^ CO CO SOC L.O CD O CO t^> CM CS CS^ OS CM ^? O t^ i-H r- i i OO CO f CM Tj< I-H O) CO |~H CO OO 1 3 -Hn f-H -IO O O O N CM NN CO CO ^J-H-H^Jt-H CM CO CO co^ rH CM CM CM CO CO CO S> o CD CO i O O CO COOfM 1C ^r cc co os CM cc CO CO CO OS CM OS i 1 O ti rH ^ CO t^- CO t* O* O CO rH CO O* rH CO rH CM CO CO CO CO CO rH r-l r-l rH CO O "** i 1 O 'f OSOO QCOCDOS rH OS CM - CO OS ^* O CO OS CM lO CM CM O OS CO OS CO o o co --. CO O i-l CO i-HCOCOCO COCOCO rHi-li-Mj-l CO *. o e ^ e Jt i-l C5 CO O co r*- oo co OO i-4 ^ O5 O ~ M 00 ^ O ' CO f-H CO h^CO COCOCO UD^HlOrT t~ OS f f^Ht^ r t ij* t- l> OOCOtf r- * O ^^ O O5 Tl< r-ICOO TPOCOCO COCO5O i-HOr-(O O i-H O CO i-l co r-it-ieo r-icococo cococo eo'cococo co I 3 ** CM O CO OS o co to f\n co 1/3^-1 e e e 2-^r^Cir-tx^COrHt^OCOi l^-r-^f-( O i ( O Ci O O5 lO CO O O CO CO f 1 CO 1-1 CO rH lO !OCOl^r-4'OCOCOOCOO COCOCO OOO TTt- 5ocDCMCMcocM cocooo ocr*- rH rHCM CO CO r-ICOCN> f-H CO CO CO r *COCOCMCMCOCM (MCOCO CO^* COCO n COCOO'OOCOcD OsOSrHt^r-HCMf 'rHO- 'O C C CC SO CO *^* ^tf* CD CD ^ t^ t^- ^ CO M 1 CO O CO t^ CO t ^J* O I"~ rH f^, CO CDO OCM COt*- CMCQ^CO OOCOrH O^OOCO CO CO OOOSt-. rH rHCM r-l N COCO COrHCOCO COCOCO CO CO CM CO CO CO COCOCO - JP C ^ * coco oost^cooscor*- t- rH CO COO Tf OS i i rH i-H C OSCO COCMCMCOOSCSrH I _ rHCM CO CM CO CO CM C OCDOrHrH C ftC O rH t s ^ f~- r 1 OO OS **t* CO CD CO CD 5 O CO ^H r ( *^ O CO O CO ^ CC ^ iTft^-xOO OiCOCM OSOCOO-OS 3COCOCMCO COCOCO COCOCOCOC^ COCO CO CO rH i-i e e e CD CD I-H r ( l-H T 4 OO OO I-H ^H I-H I-H CO CO CO CO CO CO CO CO OO OQ OO OO O O CO CO CO CO CO CO CO CO COCO && ,?*- oo e CON OCOT CO IO CO US i t CO lO CO l-i r-< N N CO I-INCO 5 CD ^i N rH 00 b-00 t i-T CO Q i 1 rH i 1 CO i-H T N CO OS OS COCO COIN rHOiCO rH 1*- T OS rH CO 00 C5 CO OOO i 1 N CO US t>- t- f- OS CON OSCOOO i-H r-ilN N CO l-i N CO COU3CNOJ CO CO CO CO t* CO i IT CNCOCMT CQ CO CO T CO O US OS T US OOT CO T T O OS O C5 rH i-H i-( rH COCOCOCO N N N O} OS CO OS OO OS O OS i-i r-i CO O> CO ec=os CNOJOJOJ CONCON coco COOO 00*0? coos ook -gico CO TT (M COOO O5CO W O5 Ol f W ra ira CO * if-- CON COO e>j c4N o eo cico t~r- -t-CO 00*O of t^lraVlra <^-ic t~f~co O05O05 ra>ra ro i-l * "^ b Ira 00 IO oo IO5 O)tt~ cooicoco e>ie4co cooicON ~ ira ra CO CO co CO oo ra "* co coW C7i CO - 69694 - Si I ft C M* OO t^- rH OO ^f W CO 00 CO CO OJ cO ft t~ ^>< r- co to to oo us N N W CO CO ^< e e 3 O5 co o us T o to <* CO a H O O US M CO 3 1 US -H rT O co t- usi-i e < us g o j-j t>- to t* us c^ to c>i C5 O5 -< t~ t- O X3 US US US O CO t-i-H 1C -V O CO CO OS O ci pies i-ieo "*<< * coco o oo to o us r- t- t- us to coo Ci ^H 0t CO tD O5O5 COUS t- o rf vrim e e * t^f-HCJ'^'OO^- i IC5 Q f^ T" tO US Cl * ^cotooousc^ c ~ to ^> e^)< t-f-i IM v c^ t~ N l~ t- COO US TO ei o'c4 oi co m eo^< rf us cc to P7 ^ O5 USO O r^ to to CO CO CO C5T i (CO C5 TT COCOCO CO US *-H f * t^ 5* OO OO Oi ' OCO CS USU5 COCCOO C! CO COi-1 CO i-I -! COCO-S--^" t~ l^ -V t^> t* f T i t *-< O O r-i o c4o oj eri co *i<^<'* cf o O to ti?c? CCOO 00 t~ t~ 00 r-(i-i I-1Q O 1-1 us >o usJ&oi 10 ON IN TT TT (N CO CO CO CO CO CO rjf^ ^ t ^ i '-' >-H (-7 rH co co oo 35 So oo COCO 00 0000 00 oo to to to co oo eoojcs eo * b ^3 1 1 + 1 2.7 " 1. F"!. ? ^'? iJ-+ iJ- 1 i, i +JL, r-<^ e e s e'e's s"? 1 + 1 1 1 1 1 1 1 1 b bt*0 o *5 _ + +^ 1 1 'r-i"rt"r-l" f-("r-l"i-l>-l" ^ *? *? PT ^ ^*?'o"V + i + i + iJL+ + ' ++JL TT rtr-i e SRS N Rgge TT'TS esess ! + ,-, 1 ^1 1 1 +1 + 1 Mill c .. fis; C- ... sic .... sJSff- '. '. 1 + 1 1 ++ 1 I ..JL .s.s.s.e^s.e^g. >'. t-lf-l * K ,O I-H t-1 r-l rti-lrlr-l 70 I-i P-H P-H i-f i-H . + . . '. + . '. + + '. '. '. 1 + 1 + 1 1 s es es se sss ss ssss ssss ssssc vdvavrt OOOOOOO a,o,ft, t, ft, a, a, 0,0,0, tT CMO CM I^ilf CO CM O O ^* rH *O t^- in-?t- in co co CO CO CO e s s OOCOOO 00 rH CO CO CO CO t> rH rHCM rHCM rH CM CO r-t CO CM CO CM CO CO CM CM CM CM CO - 1. 291778 d CM CO CM T rHCM n o CM CM CO CO r-4 ? 00 1 r-i CM CO e eo t-. co - * O b- CM CO CO O -^ CM - * CM CO O CO t- CM CO 00 CM CMC4 C<1 CO 3 rH rH CM CMCM rH CM CO rH CO CM CO CM rfcO CM CMCMCM CO ^ S rH S 5 in f-CO ss os r-- ^ CO 00 CM sss CO CM CO o co m O CO CO gb- CO CM lO Tf* CO O i-H rH CO O CO 05 0S O CO m CO COrH CO t" t^> 0500 Tf t^ in co CMCM CO in in in >n e OOOO rHOO rH rH rHCM CM IN CMCM CO rH CM COCO CM CO CO (N CMCM IN COCU ^ CO i e e s|E I-H CM olos m 31 CO t~ C ^ C5 CO O5 o e CM' CM co e e C 7 1 OC O CO 00 rH la ScMO CO-* rHCO CMCM CO CO 00 00 CM in CM rr O) --I CM CMO 00 oirfco O5 05 O5 O5 00000000 -Wf- oooo coco co in CM CMCM'CM' t- ** m t^ co CO CO CO M CM rH in co CM OS CM CO i i b- SCO m l^CO CM os CO Oi CO CO OO rH e e e e CO rH O 01 CO ^f CO CM CD t- rH b- t~ CO CM e e CO CO CO CO 01 OO GO OO OO t*~ CO CO CO OO *O t-fco* SSE: CO CM CMCM rHCM CMCM CO CMCM COCO CM CM CO CM CM CM CM CO > - 1. 770420 *- CM t- CM 4 CM CM 10 10 in ifl iO iO W3 CO CO COCO CO CO CO CO O5 in O5 rH CO rH CM t~CM rH CO rH CMCM CM CM S fi 05 05 05 O O S iO u3 0S 01 rH t rH rH CO CO ^ CO CO CO CO rH rH t 1 IS t* rH CMCM CM IN CMCMCM CMCMCM CM CMCMCM CM CM CM CM CO CO* SCO e r-i 1 1 +7 "? T 1 r-,1 i t'r- ('r-l"rH' + + 1 1 S S S S 1 1 1 1 CM" cT j^Pj^-* g* r- . p^gj^g* gj 1 I 1 1 III + 1 1 1 1 b cTcT +"?*F ^Tff +7? +7f e 1 -4- 1 i i CM ?CM 4- ' 1 4-14-1 1 1 1 ,-JrHrHr^ l-!l 'cO ?CM?Ci 1-5 1- + |4-| +11 'I'l 1 H , r- rH r. ? ? f 1 T *" - 1 + 1 '.'.'. '. '. 1 s s s s s S fi S S s s s ** gjjjjj* j-a-jjjjj* ?Ji o 3 9 ? o o ^o^ O O O ^^ o c o ooocp OOO T'TT'T' ? K*tt cWc? Vc,- No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 49 00 eo S 00 CO * ss O _ _ . tO tC iO tO O rH CO CM CM CM CM i I rH ^ OO OO CO CO CO CO CM CM CM CM OO CO OO OO CO T -f CO CO CO CO ets e * CN CM CO CM CO CM CO OS bO 00 1*5 rH Oi Oi ^ S8S SSS; > t~ CO CN CNCN ! > rH 5> CN CN CN CN CO CO CO CO 4. 49 Oi CO OS iO SS 55SSS r-i cocoir CO CO CO CO oi CN co 1 CO CO CO CO CO OS 00 CN t~ t- - lOrH CN OS OS OS C t-1>< Tl< " CN CO ^t* CO CO CO CO M ij O COCN rH CO rH CO t^ CO in o -J* co CN * t^ co oo m ClOr t- rH C Oi rH CO O O'O - 1C to tO lO to to to to oi CN co r-i co coeoco eococ^'i COCN-^ co co eo co c e CO b- CO s II l O OOt^- COO tOC^ICN ^ff^p-^ 1 O CMOO tOCD OCMO5 OCOCOO to CCCM iO*tf* CMt r*- tOCOOSCO CM CM co CM co coeoco coeoco^ o coc O5 rH C COCO CM CO CO ^ CO CO CO CO CO CO CO CO CO ^ ^ CN CM CO CO 00 O CM _e e e O CO O C) CO !> CM CO COCOCO CO CO CO ' CO CO C CO CO CO CO CO 2 g s s e e VJ" CN CN e r~ b- CN CN oo f eo co co co rH ( < I-H 00 OO rH ( OJ CN CN CN' . . os ^'* 5"* m us SO-^O CTSOSOSOS bt^ O OS oz -^ ^f ^ ^)* i~H rH -_)CN * (N * CNIMCNCN COCO I-H TT I-H co co co co m cc m co co co co co CO CO CO CO CO CO CO CO CO CO CO CO CO CO m 10 CMCN m us c No. 3.] MINOR PLANETS-LEUSCHNER, CLANCY, LEVY. 51 vj O7 CO S Sg fli'V S3 -I.- e essescc I + I I I I I I I I '. '. I +11 ++ I I J^R^ ,,e.s s s.e.c. C c C O 5 52 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. 3 a s s 8 IN e B e 00 t-. i*ri Ol^CO CO i t t* o Oi CM I> Oi IN c4 co coco e e O CM Ol OS 00 O OS 00 a> CO 00 cq t* CO efi co I-HOO IN e4 IM'CO c g ...?H !! 3 C?C? O ^-^^ ooo oooo - -. -. ooooo i NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. Logarithmic. TABLE IV. 53 Unlt-l". n 1 2 3 4 5 a -Ro-o ni-n-1]-^ 1. 898161 n 1. 898161 2. 283141 B 2. 283141 2. 153770 B 2. 153770 2.006171 B 2. 006171 1. 847875 B L 847875 1.68250 B 1.68250 1. 51210 B L 51210 U n+1. -n+1 +K 7 2. 522558 2. 683079 2.528880 2. 366191 2. 197675 2.02490 1. 84887 ^j 2. 522558 2. 937464 2. 958044 2. 924776 2.858077 2.76886 2. 66352 *!'o n+l!-n-l W 7 2. 522558 n 2. 683079 B 2. 528880 B 2. 366191 B 2. 197675 B 2. 02490 B 1. 84887 B n 1. n 1' -^ 2. 522558 B 2. 937464 n 2. 958044 n 2. 924776 B 2. 858077 B 2. 76886 B 2. 66352, ^0-1 n. n+2]+j! / 2. 812563 B 3. 024413 B 2. 794447 B 2. 523495 B 2.197675, 1. 76164 B 0. 74650 n Rtt-t #0-1 n.-nl+K 7 n. nj if 2. 522558 B 2. 522558 3. 024413 B 2. 462558 3. 07659,8 n 1. 724281 3. 058902 n 1. 856833 B 3. 001314 n 2. 093957 n i 12968 B 2.81684 n 2. 09513 n RO-I n.-n-2]- y 2. 812563 3. 261391 3. 246209 3. 190606 3. 108845 3.00884 2. 89541 RI-O n . _+!]-(-,, y 3. 49405 B RI-O n 2. n+1 +^ 3. 36728,, 1- V c :' < r t-t ^ RI-I n 1. n+2' +T / 3. 70912 RI-I n+1. nl+7 j 3. 30370 ^r * R\-i n-L-n+jr' 3. 30370 RI-I n+1. n a f 3. 3037,0,, RI-I n 1. nj a j 3. 30370 B R-i n.-n+ll+jr 7 3. 81842 B RO-I n.-n+lj-ii j 3. 21895 RO-O "n 1. n] o +T / 2. 72638 B RO-O n+1. n]+c +7^ 2. 72638 a 1. n+2 5+^ 2. 94112 RO-O +!. nl+o *f 2. 72638 RO-O 71 1. n] < ~* 2. 72638 B RO-O n. 71+1]+?! / 2. 51524 2. 84832 2. 78195 2. 69286 2. 58759 2. 47019 RO-O n. n 1] r j 2. 51524 B 2. 84832 B 2. 78195, 2. 69286 B 2. 58759 B 2. 47019 B 1 '0 n+l.-n+I +^ 3. 25180 B 3. 45486 B 3. 34235 n 3. 21906 B 3. 08741, 2. 94903 B 75 Xv^ *0 n 1. n+1 -hS i 25180 B 3. 62946 B 3. 66471 n 3. 66409 B 3. 63529 B 3. 58453, R n+l.-n-l -^ 3. 25180 3. 45468 3. 34235 3. 21906 3. 08741 2.94903 RI-O n-l.-n-i; -tf 3. 25180 3. 62946 3. 66471 3. 66409 3. 63529 3. 58453 RO-I n. n+2]+a j 3. 49076 3. 69598 3. 53278 3. 33224 3. 08741 2.77380 RO-I n. n]+^' 3.25180 3. 69598 3. 76576 3. 78484 3. 76831 3. 72575 RO-I n.n]n / 3. 25180 B 3. 33141 B 2. 99523 B 2. 24789 B 2. 51136 2. 76863 RO-I n.-n-2]n j 3. 49076 B 3. 891 34 B 3. 91658 n 3. 90661 B 3. 87001 B 3. 81284 n g R [n.-n+l]+* j 4. 36208 a R [n 2. n+1 +V 4.18801 o f [2 RI^ n 1. n+2 +^ 4. 52584 B i: ! ' * fit.] n+1. nl+r y 4. 13780 n B n 1. nj+ji j 4. 13780 B n+l.-nl-jr' 4. 13780 ?y . % j! n 1. n' x' 4. 13780 5 ?t O c^ I ft* i x S? ^5 - . , ^ '**"'' C - ; br r-^ B . 2 [n.-n+ll+* / 4. 60272 ^1 * I J? . 2 [n.-n+l]-^ j 4. 07416 B ^0-0 n 1. n] o +X* 3. 51583 n+1. n]+i5 +^ 3. 51583 B Ro-o n 1. n+2 5+^ 3. 76747 B ^0-0 n+1. n]+o s 7 3. 51583 n Ro-0 n-l.-n]-c -7T 7 3. 51583 ^0-0 n.-n+l]+7i J 3. 1148 B 3. 0520 n fto-0 n!-n-lj-^ 3. 1148 3.0520 2.9231 Kl-0 n-l-l.-ri+l ~T~n n * n 1. n+1 1 /I 4.0961 " RI-O n+l.-n-T -^ 3. 9234 B I U RI-O n-l.-n-l. -^ 4. 0409 B 4.0774 B | RO-I n. n+2]+?i J 3. 8736 B RO-\ RO-\ n. n] Tt? 4. 1593, 3.6562 RO-I n.-n-2]-. a 8736 B 4.3090 54 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. fU 1 i in s O iO * COrH COCO CO CO b- CD CM CO *< i- ^ -O rH COOS CO *Q *Q ^ O O CO if H OS t-- CO OO CO 00 kri co co* o CMW *tf rH IftOCO CO Ol CO lO Ift't* 1 ^ O5COCJ5CO t^ IftOlft 00-5*rHTj< IftCSlft COlftCOlft rH CO ^* rHOOOrH rH ^** Cft - CM CM t- tfSCO rH rH CM OS ^ ** ss s 1 t O COt00 OOrHO'V COCOlft OS "f OS * 00 IftCOCO COlftrHTt* -^OOCM t^COt^CO co co'odod cc =d co o t CO COrHCO rHOJOSlO ^ CN t~t~ CMCOOSO r- i ,' rH rH 35 OO CO 1ft CO 1ft CO OS CO OS I OS t" * f~CO rH CO 00 OS OSCO OO COOQQ b-OSb-OS CM O O CO b- CO b- rH Tl* OS O CM TfCOCO b-COCMCM rH Tf rH CO CO CO CO CM CD *O CO CM b* OS OS CO lO CO ^H CO O OO CD >~^ O rH p4 rH r- O if) ^ 7*1 rH r* - lO vO CMOS CO rH rH CM 3! ^ ^ ^ 2! ^2 ^ ^ ^"** ^"** ^ JCO CO CM t-rj< t- t~> 1ft OSOrH-^* O rH OS COlftCOlft CM CD 1Q r-l CO rH CN rH rH t- CM 1ft ^ OO fl' CO Bjj cq <3 r-i CM CO CO OS CO OS ^CO t- b^ CO'lO OS CO CD rH CM M t^CNO Ot-OOCO O 525 SSSS QOlft'cNiftcOrH^cdl^OiScbiNCOC^ OrH CJ o C^OSOOOSIftOCOCOlftCOOSOOOSOOOS ^*"CO ift ^t CO OOO 1NCOCOCM rHCOO CM rH (M rH OO O5 r-i CO +++I++I++++I 1+ + 1 * rH CD rH CO CO b-* CD CM OS 3?*^ b- b- CO OO O CM OS CO b- 5 CO rH CM COIN CO CO 00 OO O5 to co 21 CM + + 1 ?^ OSrHb* CMlOb^CM rHlOCO lOrHlftrH iCOO CO CO b* b"> CO CM OS rH If5 rH OS OS CO CM CO CM OO i-O ^ >~^ rH rHCOrHiC CMCO iCb- +++I++I++++I +1 +l CO O5 t^ rH co t~oo -3; CO OS fH 1C CD IM CO S8S8 1C +11+ l+l I ++ OS i-H t^- CO CD(M CO 1C 1C N h- M* ++ 1 CD iC CO Ci iO IN rH CM I + + OS r-JOCO OOIC^CO CO 1C t~ CO OCOO" +1 III ++++ I + I CD -^ Tf i I O r- C_ 1O i-H ^ CC CD OO CD O^ O rH i-l IN I ++ + OS IN CO ^ -* rH O' CM rH CO St^ CO CO * CO OS CD 1C CO O CO CD CO CO CM O rH rH CD I-H OS O rH C I ++ I I I I + + ++ + I rH rH rH rH O CM CD * ^5O + 1 PS gt f I CO CM IN IN CM ^J OOgO + +1 + 1 CO CO CO CO I++ I n* Tt* 00 T I I I T I I-H + I -J' CO CO Tf 1C CM CM 1C COTt< * CO I + 1 + S S "-< II +1 rH^ ff + I '. '. s s s s CM i CM + L I s s s ++ I I s e s s I I I I +7+7 s s s s IN d +~ I ess I I I s s s b b'tt'o +JHHJL _ + 11 + s s s s I I I I + 1 + 1 s s s s s s I I I rH i-,' CO + I I s s s S rH -^ I -< s I I CM + ^v s s I I IN I fi + i T s s I -] I s s s No. 3.1 MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 57 ^ 9 2 + C5 CC ^t* t^ O9 r- cc -v cc o rt ^S SS + + 1 1 + 1 I-4--4- 4-T-i- O 5Dt- i-l ^H CC O CC O N ^^ S-S + + 1 1 + 1 , ^.-^ -t- 1 * IT i j N ec co oo b- *O P5 t O iO N lOi-H N CO ^ i-i S + +1 1 + !(--- -rr 1 -r"t i + ! T 4- 1 i d t--H W* CO co r~ c N o w -^ cs O i^ "^ CQ ^5 S ^* *,. + +1 1+ -H i~ i-H 1 t* lO N O CO CO ^ i 1 N NTT t^-J 00 CJ n us co g + +1 + + 1 + H i N ^"< + 1 + g > lD a E^ SrH ^ -^ b ^ rH O5 CO O C^ t*- O ^-l O4 CD ^ CJ <-l CO *O * " S 5? g + 1 1 1+ + l + Si^ i i C ~- C " CDlO -*^*^ 1 CM N CO " C O5 CO U5 N C^ *~ I-H N N M e>< e^ ^< C< CM 1-1 + 11+ 1 + + 1- C5CM f-O 1 CC O U3 ~- CO C> CM 1^ ^ OO cc s o 1 1 +++ 10 to-* e t~co f co c* t~ TJI mip -J-a< ico cc - ""- N S S & S + II ++ ++ ++ 1 II! 1 1 + c^-^HCt~ M^ ta eocsccoc COOCCCC^H t^^H O OC5OCOO 3 CM>O CJIO |5O IfSi ICKC5 N CC COCO i-l i-H -HiH + . 1 1 ++ 11 | 1 1 ++ 1 te to tsO lO lO t^ t- t^ r* t-: t CC CO CO CC << * 1 + +11+ i b *o t 1 1 + 1 +7? + ?7+f+l .--< g 1? e sITs e1T 1 + 1 l 1 1 1 1 1 1 g g - b ^>* "o i N i-i i-l i-l f-4i-l < 7 7CM r-li 1 i-H i-(^ . + 1 . . '. 1 +1 . . . 1 + '. '. '. 1 + 1 + 1 1 _g_ g g ^g^ ^g^ ^SS- ~~5-5- ^-E^- -S- vE-S-^- ~S-E S -5-^- O ^O*~G ^~*~Zi *~O*~O *~*~^~Z, C9 N O O O *~O COO ^ ~*~Z, ccc .CfCerc.Vi.v >.->. t CC R. C C, cTaT CC!C cTCa, (CCc, C CCC cTc," C a,% e 58 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. g iO ^ (N OS 558 00 00 CO CO CO CM CO COO 0.0 TK JggSS t s >c 4- 1 1 + S oo b- CO CO OO rH + 1 + rH r- CO 2J rH rHCOOO rH -^ 14-4-1 O t~ CO 4-7 + CM CM CM CM OO CO OO CO ++ 1 1 K 53 ess SSco tO t~ OO i-H OS CO OS 00 CM CO (M rH COO rH *1O t^-rH CM CO rH co co co co 01 + 4- 1 50 co 1 4- CO CO 4- 1 + 1 ++ 1 +7+ ,_f , | pH rH ++ 1 1 rH rH S3 rH rH OS b- SSto OS i-H COO O CO COCO CO CO 00 i-H r-f CO 35 CO OS CO CO t^- ^ iO * to 10 co iO o O CO g rH rH rH r-7 CO to to coco co + 4- 1 1 + 4-14- rHrH t- 1 4-4-1 CO TC + 1 + ++i i 7 J5S 33 S O OO ^* CO 4- 14- lOr-lO r-i CO t~CO-* rH rH CO 1 4-4-1 CO 00 CO CO iO + 1 + rH rH rH rH CO CO CO CO CO IO coco coco o ++ M + CM s rf t^ \fi CO 00 CO I-H OO rH rH t"- + 1 + OS OS OS OS CO *O 55 o o os b^ ^ CO rH b rH r-K ++ 1 1 + 1 + CO s rH + IO t- ost-; coco 4- 1 O rH rH CO OS CO 4-14- 80S OS CO CO Tj< t* to OS IO iO 00 14-4-1 rH 3 ^" OS ^ irf OS CMW "38 + 1 + oooo i-H rH r-H rH CO CO CO OO r^ b- sss ss ^ + + M 1 + 00 CM CO b iO iO to coco 1 1 1 CO l>- IO t-i-l 35 OS OS *^* CO O CO 00 CO tOCO t-CO OS b- CO iO CO CO CO CO " rH rH 00 CO 1 1 f ~ > OS ^t* CO OS CO rH OS rHCMO 4-4-4- MM CO rH CO + + + iO id O ift CO CM CO CO CO CO CO OS O 5 00 r-H CO +4- 1 ! 1 1 T - 8 rH CO 1 1 rH b- || SCO CO coos tdrHOS 4- 4-4- MM + + + OS OS OS OS CO 00 CO 00 id vri lO 1C CO rH CO CO CO CO r 1 ^ OS 55 ++ 1 1 ++ + + 1 o rH "* 3 0000 33 1 1 1-HrH OS OS I-H rH 4-+ COCO CO rH COrH CO U3CO +4-4- to co co co 00 OS OS OO rH OS OS r-4 MM rH OS r-H CO CO OO CO IO CO rH CO rH CO CO OO +++ 00 0000 00 rH i-H rH i-H eo'co'co'cot-t~ >oio rC t" tt< -0" ""9 lo S ++ 1 1 77 II 5* 1 1 rH rH 4- 1 "? "s" rH rH r-i rH 4-4- 1 1 s s s s MM co" co" +^ 1 P-l r-i r-^ r-H rH rH CM CM CM + 11+ ^.^^, ^+^ 1 +~-^ 1 1 SSSS SSS rngrHg SSSSS MM Ml + M 1 Mill b b^- rH rH CO I-H rH fij + 11 +l| 1 rH rH 4- 1 1 1 CO | CO + '. 1 rH rH rH rH 4-14-1 1 1 1 + 1 + 1 +11 '. l'l l + l + l f f f *T*f S s s s s SSS s s s s ess SSSS SSS SSSS SSSSS SSS SSS o o o ~ ~ > ta a No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. I + I * g S3 1-4 1-4 + I I i us m to CO CO CO t^ t-^ t-^ ooo o 00 CO 00 CO 1 I++ S ei 50 1 lO CO 00 irioi rH 00 CM * r-H 1 + IO 00 iriod CO(M *00 + 1 0505 O) TT 00 CD lO O lO t~ rH 1 + 1 Ld O5 O5 O5 IN OS CO CM O5 rH OO lO t- O51N rH O5CO * + 11 + m gt2 CM rH rH rt 2 1 + 1 OO CO CO CO CO CO CO CO oo oo rH rH i 1 rH 1 1 ++ OO S >o 00 1 i 1 O * i> iri * I-H Oco Onco t~ O ^t 1 CO ^* *o coco "*l IN rH Tt* rHOO COIN 33 + 11 + CO o< cot- CO rH t-- OO t~ rHIN in rH CO 1 + 1 en o Cb c^ rH rH |-5 fH CO CO CO 00 r _( r n fH rH C4CNO5N l l++ 1 CO CM 00 * O5 CM 1 + 3S 1C DO CO + 1 CO lO t* CO "^ O5 iR &t i-H coco rH 1 + 1 Tt^ CO CM CM lO O CO 00 rH lfi> Tj* Oi * + 11 + OS CM * O O5 t^ ^g^ CO 1 + 1 CM INCMd 00 1 1 ++ + * % CO o t* IN 1 CM 00 CO-* * Tf 10 rH (N OS O51O 00 O5CM rH lO * Tf ^< + rH < CM 1 COCO 1-HOO rH t- CM 1 + in co lO rH CO U5 CO + 1 tN N CO lO N CO ^rnS 1 1 1 + 1 T-HIOrH CD oo in * IN lOCO rH in CM 1 + 1 o o oo odododod iro IN IN CU CM rH CO CO CO CD CO OO O CO COCO CO rH IN 00 1 1 ++ M " -_ CO ' co feel r^. + + + S S3 00 t~ CO iO CO 00 CO COIN t- COCO * T!<"J< * W CO 1 1 CO 1 t~ in in in 00 S ++ >. t^ moo CO 00 o> 1 1 Oi OS C5 O COIN rH CO 00 1 1 1 CO IN CM CO COCO f~ 00 O 00 IN *< CO-* T< Tfl IN + + + + o co-f 00 OS IN CMO * IN T CO rH 1 1 1 in in in in rH rH rH rH OOOO *** -^ 1 1 ++ ^ CO O t~ rH O 1C CO O CO ^<'CM (N COCO + + + t*- lO I> iC CO-* CM O5 Tl< 1 1 1 CO C r- ^ rH ++++ rH OS CO (NO rH rH CD -^ TP t~O 1 1 1 SO O O rH OJ CD CO CO OO CO CM INCMCM COO **** 00 i-H i i ++ 7J CM m co 2 g? S 00 * CO co in ^ 1 1 + CO CD e-i No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 61 m i rH CO :W. r '*.&&> i-' v O 1 4 4T 1 o l N S 4 41 74 CO CO OO CO ?0 ^* CO O ^* O ?: iA r- < r* CO 1 4 4 1 14 ci coo GO y. " CO CO ->-CO r-( Q ^H lO OO ^^ OO O CO C5 W CD CO rH O CO 1 4 4 1 1441 4 i S s H >0 d *? o O oo 35 < -'(-.-- .T- .,A rH 00 O CO CM CO CO i-H I-H CO * O CO 00 Q ! '-" 1 4 | 4 1 1 14 14 0- -HCO 00 OO 00 1 S| 2 s i i i 1 4 1 1 44 1 1 00 f- t-O b- f- iO CM (NO CO CO CO 1 44 CM OO rHCO 4 1 1 S CM (M CO CO O I-H O O ^H CO CM CO KB CO S r-4 rH O 44 44 4- 7 lO lO CO CO 1 1 rH - co r* co CO t^ t- i-HCM + 1 1 CO -~ ^* CO OO CO 00 00 <5 Tl * J co 222S -o 22 44 II 441^ 7 44 114 4 r-i CM CM t- CO.CO r1 rH -H rH rH 4 1 1 coco o Q c a> " OO OO O>Ou9iO COCO i If-l rHrHrHrH rH rH CO CO CO CO CO CO 4-4 44 44 1 ^^7 ^ b ^47^ 47^ 4 T 47 ^7 rH-H g ggggg g^ 1 4 I 1 1 1 1 1 1 1 "e"? 1 1 ^-^. iZiZ I. ^ 1^, ,_^_, ^^ 141 ^ ^ +7 7 4 "^ 1+41 4+1 rHr-H g ggg Ol CM gggg ^ r7 g gg g g 'JT 41^.1 MI4_I till 441 || 1 || '. '. 1 4-11 44 1 1 i r ( ^-t '. 4 1 xS- -S-S O o , CM i-H -* r-i ,,, r-l rH rH rH ? ? CM rH rH i-i i-i rH '. '. '. 1 411 '.'.'. 4141 '. '. 1 41 4- II ** &;&*$* o* 0*0* o o cy o-o-o. 0-00.0- o- o-o- o-o> o- oc 62 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE VII. [Vol. XIV. Unit-l". n l 2 3 4 5 e fi (n _n+l)+r / - 79. 10 - 191. 93 - 142. 48 - 101. 43 - 70. 45 - 48. 14 - 32.52 fl.(n.-n-l)-7 S + 79. 10 + 191. 93 + 142. 48 + 101. 43 + 70. 45 + 48. 14 + 32.52 JZ,. 'n+l.-n+l ~\~n + 372. 6 + 482.0 + 266.7 + 130.9 + 52.0 + 9.6 - 10.7 ~f~7t + 293. 5 + 865. 9 + 979. 2 + 942.4 + 826. 9 + 683. 6 +542.1 .R.. (n+l. n 1 TT 7 - 293. 5 - 290.1 - 124.2 - 29.5 + 18.5 + 38.5 + 43.2 7Z,. (n-l.-n-l -' - 372. 6 - 1057.8 - 1121.6 - 1043.8 - 897. 4 - 73L7 -574. 6 Bo.,(n.-n+2)4V - 649.5 - 1057.8 - 622. 9 - 333.8 - 157. 6 - 57.8 -5.6 /Z . I (n.-rt4V - 333. 1 - 1057.8 - 1192.9 - 1145.3 - 1003.0 - 828. -655. 9 + 333. 1 + 290.1 + 53.0 - 71.9 - 124. 1 - 134.8 -124.5 .Ro.j(n.-n-2)-7r / + 649.5 + 1825.5 + 1762.8 + 1551.0 + 1284.8 + 1020.6 +786. Bj. (n.-n+l)+i r" - 3119 iJ 2 . (n-2.-n+l 14V - 2330 JZ,., n-l.-n+2)4V + 5118 JZ,., n+l. n)+a ^ + 2012 lZ|.j n 1. n)+7i J + 2012 1Z,., n-l.-n)-^ - 2012 J?J.J(TI~~I. ft) 3 S - 2012 /I0.j(7l. ""Tl"^! )~7~7I { - 6583 JZ .i(n.-n+l)-K' + 1656 ~r 1 IT" + -7?o-o tt~l.~tt)""* C '+** - 533 -Ko-o *M~1- ^)~H >4V + 533 /J ., ) n-l.-n+2)-<5+7r / + 873 Ro-o n+l. n)+c- V .RO.O n 1. n) d n' + 533 - 533 /Z . (n.-n+l)+r, f + 327.5 + 705. 2 + 605.3 + 493.0 + 386. 9 + 295. 2 Ro-o(-- n -l)-^ / - 327. 5 - 705. 2 - 605.3 - 493.0 - 386. 9 - 295. 2 U ( n +l n+1 4V - 1950 - 2850 - 1897 - 1163 - 643 - 299 tfl;(n-L-n+l +* / - 1622 - 4260 - 4923 - 5107 - 4898 - 4432 /Z,. (n+l. n 1 TT 7 + 1622 + 2145 + 1292 + 670 + 256 + 4 JR,. (n-l.-n-l -Tt 7 + 1950 + 4966 + 5529 + 5600 + 5285 + 4727 #., n.-n+2)+^ + 3096 + 4966 + 3410 + 2149 + 1223 + 594 RQ.I 71. tl)-|-jr / + 1786 + 4966 + 5831 + 6093 + 5866 + 5318 /J 0>1 n. n) itf - 1786 - 2145 - 989 - 177 + 325 + 587 RQ.I ft. ft 2) 7 / - 3096 - 7786 - 8252 - 8065 - 7413 - 6499 8 fl 3 . (n.-n+l)+j [ +23018 | JZ 3 . (n-2.-n+l 14V +15418 (2 RL n-l.-n+2)4V -33562 JZ,. n+l.-n +7 !* -13734 JZ-i. n 1. n +7 t* -13734 JZi. n+l. n 7 r 7 +13734 JZ,. n 1. n 7 / +13734 .Ro.2(n. n+l)+7 I +40061 feS Rf,.^(n. n+l) 7 I -11862 "0*0(1 1. n) e r+TC 7 + 3280 + f /Zo.o(n+l. n)+i I+;t/ - 3280 R t . a (n 1. n+2 - 5854 JZ . (n+l. TI)+ r It' - 3280 ^ i-2 ""* Ro-o( n ~l- n) < t-V + 3280 ta *"* ^ R . (n. n+l)+7 r 7 - 1303 - 1127 /Z . (n.-n-l)-j r* + 1303 + 1127 + 838 B,. n+l. n+l 4V < fi,! n-l!-n+l +13600 P /f,. n+l.-n-l -TT 7 - 7080 -14465 2 ^,.0 n-1. n 1 -T/ -12290 1 ,Ro.].(n.-n+2)+; ? - 7475 *^0 ' 1 x ~~ ^/ "l ^* -14430 I\Q.^\Tl. ~~ft) ^~7t + 4532 R^n.-n^)-, C 7 + 7475 +20370 NO. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 63 With these tables we compute terms of the first order in the mass in Hansen's differential equations for the function W and the perturbation in the third coordinate. See Z 7, eq. (33) and Z 8, eq. (39). The first order parts of the equations are expressed in Z 41, eqs. (82), (83), in the form of trigonometric series, hi which the coefficients are computed from the formulae given hi B 67. These coefficients comprise Tables Vlll-XIVto 2 (cf. Z, 42-48). Table XV (cf. Z 50, eq. (88)) is an auxiliary table of the same type of construction, which is employed in the computation of terms of the second order hi the mass hi the differential equation for W (cf. Z 53). * " - 64 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. ci m * co ss *" rH O OOCO 8 CM t- OS _ CM in co os CO rH in CO t-* r-b- rHCMCO e ii OS TT CO lO OOOt-- rHOOlOb- COb-iO CMCOOCM COrHb- - t* CM b- CM Tt*COTfCO IH rHOJ CMCM CM'roco b-m COrH CM coco** CO CO OS CM COCO CMC O ^* CO ^ CO CM CM' CM CM CM CM* CO* OCMCOO COffCM. CO***^ s e iOCJb- o^t>- C-1CMCO COtr-OS iC^CO CO COb? * CM CM -^ 2 CM ** ^ in in o oo co os rH CM (N CM CM SOS CM CO CO CO CM CD t- CO t CM CM COCO CM CO CO b- t- co ^F OS t OS CM CM CM CO m - -g*io^ OS CO CO CM f*- CO CO OS CM I- t-- r 1 i co t- co 8S OS COCM COOS iftCO CM CO* CO *** CM CO T CM CM CM C i 1 -- cp 1-1 ci toco CO 00 5O t-H t^- ci ^ CD CMCO roco O r-t CO COCOOS ^-HC COCOCO iCOiC TCMO lOO co -^ * 10 . in r- 1 -^OrH O CM OS - S S O:r- I O OS CM CO CO CO CO OS CO CO CO *n CM CO -j< t*- m co co co 10 co 88 CO OS CO OS CM CM CM CM OOCOOOCO r- ici^noi STO rHCM rH t^-CO OS ^fCM iCCO COOS iC COCOlO b-r-iO^ 4 OTfCO ^ td CQ CO CO 8 OS CO CO ^t* OS CM OS CO CO CO m co CM t r-t CO CO rH *O rH r- f-* i>- os m CM CMCM CO CO CO CO b- b- in b co CM CO CO OO b- rH CO OS CM rH CO CO CM in co CO O OO Oi CO rH CC OS O rf CD in in b- CM tf (t CO t~- CO t-- COrHCO rH OS rH OS -H CO CM COCM CMO CM O O CO O CO t- CO -^ CM u3 OS CO O fH !>. ir- CD 888 CM rH CO CM CM ^ COO OS ^H CO "^ b- co os CD n co OS rH CO OS CM CO O OS 88 CO CM O t- CO CO cxico cO COtO tOO OOS COiC cOTt< CO >O H CO^JCO COCOCM O-^*O O-VCM COCM lOCOt lO CO-^ CC^Of- CMCO- cocMcooi CM* rH CC CM CO CO CM CO QO.CO *" CO CO S I c COT S T r~ T CM 43 T 00 .-. -I CO CO CO CO N CO T CO T 8 e 1-1 00 CO CO 4i5 CO lO 8 e 71 _ - O ^ CO t eo r* 3 rr w d rH O <3* CO t* CO CO CO CO c4 ^ ^r TT e e co t~co r- T C*7 ^7" C* e e c tf3 O C O t*- CO CO 1 CM T CM T co co r: H 55 ;o o oo 1 co O c4 (N ^* co ^i 10 ^* 3 8 8 CO COCO CO CO OO CO CO e c e OO T ^- ^O ?1 CC ^* CO ^* LO CO O *O *rt " &3 95 O ~H " 3 CO CO CO CO ci c4 30 co" V <" o 5 e e 5? T c c ss * < e *TO*Ol^-^ < 00 ^Hr-> rc^r^-iO'T cocja coo li 9 r 9 9 ooo oooo 2 COCO CO CO N C---, ^i 110379 22 5 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. A s S 8 rH 1COO 00 * i-H O CO rH t~ COrH OSCO SI 1C CO CO t~O rH 00 1C * CO OS O l> t~ CO ICO COCO CO rH CO r~ CO CO CO t~ CO COQ rH CO O OS CO os b- o OS OS O CO O b- b-ic co C C b- ^f b- Tt* O ^D ^5 CO Tt< 00 rji OO OS r-HQ O> rH OS CO CO OS iO CM OS CO TP as t^ r^ 00 1C O & 1-H.CO i-H CM rH CO CO CO COCO CO NCOCO r-l. _J _1 _^ rH N N coco OS CD COCO O OO OS i li a ll ii CO OOOO CO CO CO 00 CO 1C rH t^ OO 00 00 CM COCO 1C CD CO rH OS CO CO rH OO O COrH OS t^ r| g rH e 1C lO CO r-i CO I-H CO CO O CO O b- b- b- b- 00 1C 00 1C O OS TT" rH b- O N rH CO b- COO 8 CO OS OS 1C Os t~ 1C rH rH COO co cc r- CO t^ rH b- N OS 00 CO b- OS -^ 00 iC 00 CO N b-- CO N CO CD b- CD 00 CO O i-HCO rHCO r^COCO CO COCO CO CO COCO rH rH rH rH rH N CO coco coco-* CO CO CO *^ 3*3 00 rH OO ^ CM 1CCO 1C O *C O CD CO || 00 Tt< 00 CO 00 1C OS CO CO CO rH CO OS CO 3< osco co CO I-HO ^ E;Sol O rH CO t-OQ CO COCO C C b-oOb-oo OS rH OS rH m Sal CO t~ CO OO COrH ^rH coco a CD OO t^ os CD r~ CO t- I-H CO O C OS rH OS OO 1C oo J co rn rHCO i-HCO r-i CO CO COCOCOCO CO COCO rHrHrHr-l i-H CO CO coco COCOTti CO CO CO M< CO^^ t- CO SO OS 10 1C I-H rH CO COX? rH CO CD f- CO 1C t~ CO OS 1C e s COO CO i-HO CO OS OS CO 1C I-H CO 00 I-H as t~ co COTt< t^O CO 00 CO CD rH O I-H CO ^CO rHOO SCO rH CO rH CO CO t^ CO t~ * CO CO COCO N CO N CO ssss ssss oo eo? CO OSCO r4V So? i-HO t^ CO COlOOS CM CM CO CO -^* rH CO t~ I-H OS b- CD 1C CO CO rH rH b- COO O rH OS OO 1C CO iC rt* N C5 CD b- b- b- Sooo o^ i-H rH(M rHCO i-H CO CO CO COCO CO CO CO CO N rHN rH rH CO CO corf CO CO-* CO CO CO -^ CO-^TT* . rH SCO CM OS 1> r-i r-i CM CO t- COrH t- CO ss O CD COCO CO CO 1C 1C OO Tt< CO CDO 1C rH rH rH CO CO co^cf-* rH OS CD -T rH CO S U? CO COCOCO (SCO 1C CD -^ O CO O 1C osSo CO I>- O CO CO t~ CO COCO C rH "tf rH Tt* NrHCSi r-i 8 t> CO OS OS OS 00 1C CO CO CO COCO 2. 73464n 3. 34462 OSO OS t~ CO 1C OS CO OS 80S OS CDO CO * CO OS rH 1C O CO b- O N CO O OS 00 1C CO CO CO ^ b- O OS CO CO OS o ^c oo r-f 80S t~ ic r~~ * CO CO 1C OS CO CM COCM 1C 00 CD CO CO rH rH OO OS OS CO CO CO rH t~- coNfiC* I-H t^ CO ICOOO rH CO rH rH CO CO CO 00 rH t-- ^ i-H CD CO t- CD OS CD -^ CO rH rH OO tias o t^ CO 1C III rH CO 1> t5 b- c N CON CO N CON CO CO 00 CO 00 N OSN O5 OS 1C i-H 00 COCO CO t^. CO 1C rH iO CO b- CO COO OS CD CO i 1 1C CO 1C CO O rH N CO CO CO N b- iC OS CO b- Tf 1C b- OO b- rH OO OS CO rH CD OSCO rH rHCM coco rH CO CO COCOCOCO CO CO CO NO NO* CO COCO N CO eocOTf N CO CO "^ N CO^t* -. * rH t~ t CO CO CO M< *! rH 1C CO C5CO C OO OS rH 1C CO t-* I-H t- CO OSO t- r~co CO * rH CO 1C 1C tr-COCO OO OS CO rH rH CO OS O O rH OS CD as co o CO ^t* OO i> CO CO CO 00 CO rH rH t^ OS I> OS 00 CO CO OS O OS O co -^ co -^ N OSN os OS 00 t-? CO 00 OO CO CO CO 00 3JCD co 2 co N b- CS N ic co o 1C O rH OS CO CO CO CM rH CO 1C CO CO CO rH b- CO iC O OO b- 00 COCO OS OS OO CO iCCO CO N 1C CO CO ^ os co rH CO rH CO CD 00 O 00 rH rH 1-HCM COCO rH CO CO CO COCOCO rH COCO C^rHNf-i CO CO CO N CO CO CO CO N CO CO -^ N CO-J* 9 S ScO t~ OSCO rHlC* * CO coo O CO rH C~ f e f f-CO CO COCO rH 8 8 Tf rH CO C 1C rH CO CD CO rH CO 00 COO t- CO t^ O O CD r~ ic co as as OS rH OS rH rH OS rH OS OS r-( OS rH OOCO CO CO CO CO CO CO N CO N CO CO i-HOO CO OS b- OO t* * 1^ O 00 -i Tf rH co'co 1C CD rH * I-H CO ^ I-H CO OS & CO i 1 1C CO CO rH CO CO rH Tt< O rH b- 00 N C C b- 1C 1C- b- CO b- os co O CD N O 1C b- OS -' -;-i CO CM rHCO CO rH CO COCO rH COCO NNN N co' co' co N CO 00 CO CO NCOCOCO N CO* CO - 1C CO CO S OOCM CO t- CO S3 S3 CD of OO OS OSO 1C * CO CO O CO r* 1C CO O CO r-i t~CO CO CM OO t^ << CO O3 e e t! t^ CD CO CD COO COCM as co t~ ic as CD co r^ 1C OO t-~ OS O CO OS r-i CO CO CO os r~ t^ I-H CO b- 00 1C CO CC 1C 1C I-HO CM b- CD b- CO rH rH i ( rH 1C CO 1C OO C5 CO OS CO SCO OO O l-~ CO r^ 1C coco s?s SOS CO 888 CM O CD OS OO CM as as r- "t CON CO CD b- N rH CD co os r- OO b- N 1C COrH CO rH 00 b- b- N 1C ^ tjp CO I-H i-ico' coco o coco CO CO CO CO CO CO CO rHNrnN CO COCO CO CO CO CO CO CO CO CO CO CO CO N - ||f li OS CO O CO t- CO CO o t-~oo gggg CO b- rH ^ rH i 1 CO IO b- O *-* rH CO O b- CO r- 1C -* CO COO aso o OS 1C rH CD OS rH C C O CO O cO N b- N b- OS CO OS CO 1C O O CO OS -v? CD CO CO o So ic e co e t~ as 888 t~ CO CO rH CO CO CO r-1 CO gs O iO N b- r- 1 3 us* CD >r so ^ OO CO CC Cp O o r3 Sci *^ * ^* i 1 S:!o s . CMCM CM'CM CM CJ CO coco , ***"'* V f* ns *c r- ^ it /T ic fc? * r 1 1C I-H iC o c o O CO O 7-1 O Cl cc ^r oc * S KB o o CM CM" CM CM CM ci co CO CO i'. ; V>KK\: T-TOt; V r: rr T rr r-r i" it it i* e e e cc e -- c '-s S - er ^< V 2 ac -x :' 5- & (C CM CC tM 00 OCM C~. CM (-H CO KS OO CM c-i CM" CM CM CM CO CO CO e e O COQ CO o r- o t CO* CC O C5CC 5 CC i i O CO Ci CC 10 cc mco o; co o co S5 CMC-! 00 c; --1 i- *i oo i* rx ^-s ~ "^ - * V R * S at --3 f. t? ev c CM i-i CM i-l Bt CM CO CO CO iT i; - \-. tt 'f c^tf - ~r ~ r ~ r: T ic ~ i r _ e a ~\i CJ5 ^ C- i < o cfS oo s ^ oc 5^??. CO SCM ^- IO CM: -C. ? - 9 - Tr_ -^r;^^: ST~*' ?T x": a_ i-H Ci ^-* Ct CC C^ C5 OO TT CC S? CM s iO O t* i-H O CC 1 t^ CCO Ci a ^i ^i* g S -: CM" cc CM co ii CM CO oieo cc "r .^^~:-. i^i-> c c i ft " * - t- CM t^- CM CM f * --1 ^* f O -^ r ~ * - . = =^39 3 S ii 3 N B Cl * tt rH r-t ^P i t *JH CM C-. i-H rH rH C5 S CO CO CO CO CM CM' co CC CC CC i- oioicis c iTi7i^~ 1-itiO felt b ZiZ JL ^H ^^ ^-* -H -H rt" - -^- ^^ 1 ^^ 1 C S 8 "?9~ "-7 8 8 CM" g S-S5 t.S "si 1 1 1 1 ^^.^ 1 1 + 1 1 1 1 I 1 + II I 1 ~H t ' --H + 1 + 1 8 J i ( -H + 1 ff ' -: f J; '. '. 1 1 '. 1 : Ys - _' ?.' + ^^"o^"^* C ~~o^o ^~Z ~~o ^ "TS ^o <&fcfr * ^^ tftf tf 6- d- tf *% : '"f.-Z'sf'Z. '^-^^ V r 7l JOJDtJJ 68 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. H ij IB < EH 1 a T: o? i-fos rH COOS CO 00 rH CO t- CO ICCO 1>CO rH CO T CO rH t COCO CO o co r~ OS b- OO ^* CO rH LO O CO CD CM O b- CM COCO COLtfcOi a? co off 1 1 t^- rH CO t~ 00 t-~ 1C 1C CO CO OS co O co o SCO CO 00 CO 1C CO coco coco CO rH a *- LO b- CO ^ Tj CM CO r-t CM rH coo o co rH i-H CO COCO CO COCO CM* COCO *' CO CO CO CO COCO CO CO (N CO COCO . 1C 1C T rH OS T OS CD f 1 OS OS 1C CO 00 t~- Sff ss cooo e a ST 1C CO rH, iH CDOV T OO 00 i-H CO t~ rH O OS O co o o CM CO CO CO O OO CO CO CO 1C SCO O CO O CC O CO COCO CO CO CD rH CO ^ CO CO'CM Tf* OS CM Tj rH O O rH b-CO rH b- OO ^ CO i ' Os O t^ O LO ^t" rH CO O CO ^ CO 00 LO * CMO rH CO CO OS OS CO i> OS CM CO b- rH l& LO OS l-i 1-iCO CO CO CO CO CO CM CO CO -^ CO COT COCO CO CO Cl CM CO CO CO (NTT co-^-o CO * f 00 CO* CO*T O Q CO T S ic r~ OS t^ 1C OS 00 0500* 1C CO T CO ? t*- rH CO CO OO O OO CO CO i-H COOO st K b* CM OS b- b- CO TF CM e a rH CO OB COO CO t- 00 r-t CO CO CO CO rH O r-l O CO CO CO CC CO 1C CC 1C I CO CO t^cf co 1 co COC-J CO LO ^ O b- b CD OS CD OS b- CO rH t*- gg c o CO CC rH t~O 00 OS f-J CO LO CO Tf O O O CO r-. OS r-l O b- SLO "^ r 4 ^T CM r-l co c; 10 LO iO OS rH rH CO coco' CO COCO CM CO CO ^J* CO CO T COCO CO CM CO CM 00 COCO CO T T COTT1C COTT - CO OS rH 1C T OO 1C 1C 00 S OOS OS CO O rH 1^ COOO i cc co CO 1C T O tO rH CO CO OB CDb?LoTo CO rH OS CO b* CD S CO coVos 8 00 1C T III OO CO OO CO T CO T CO 1C 00 1C 00 t- cp r- CO CO g s O CO ^00 b- O rH O OS 00 rH OS b- t^- CM OO St-03 rH OO T rH i-H 1C t"- OB OSO CO b- CO CO OO lOrH CM "^ CM CO r-i CO 00 CO t~ O r- CO CO CO OS CO OB t^ 1C 1C OS rH CO CO COCO CO COCO CM CO CO^ CO CO T CO (M CO CO CO CM CO CO CO COTT co TJ* ^r 10 COTT to a a OS rH 00 r~ ic co rH CO CO S SIS OS I-HO coco CO CO S| a e OS CO 00 OS OS rH T CO T CO 1C 1C OB 1C T rH COOS O CD OS O !> CO rH CD O OS GO -^ CM rH OSO t~- OS O O b- CD iO rr t^CO T T iC CO 1C CO lO t~00 CO 1C CO 1C CO O t~ O t~- t~~ OS t"-> OB CO t^ OO t^. rH CO CO CO CO O CD ^ CO CM CDO CO !> -^ CO TfO Cl CM b- CO C-l OS CO 1C OB CO CO CO rH CO 1C e c CD Tj* iO iO CM 00 COO OS b- CO b- CO CO CO CM ^ CO rH rH r T T 00 00 r-H 1C T 00 TIC 03 r-H CO CO CO CO CO COCO CMCOCO^ CO CO T CO CO CO CO CO CM CO COCO CO COT CO-^^iO COTT H3 t- COCO O CO rH CO ICCO CO COO b- CO t^ O rH rH TO* CO CO OS OB 1C CO e e T t-ao c-l O T CO OO T rH CO CJS e e OS CO CO lO rH -^ Tf -^ CM -^ CD rH CO COO CO t- CO OB t^ CO COCO 1C OS T OO CO 00 CO t^ CO t^ CO OO OS OC OS OB CO OS CO CO g co ^ ^r co b- O OS CO ^f CM rH Tf SCO OS LO CO rH OS e T CO OB O 01 iC OS !> CO OB 1C (M 00 f~ CO CM OS b- rH O CO CD CO ^ CM OSO CO OB r-l 3?$ CO T OS CO CO CO CO CO CO CO CO CM CO COtf olrfT CO COCO CO Co CM CO CO CO CO COT CO "^* CO lO COTT * OO t~ CO O OO 1C OO co O co r- ic CO Q CO CO O CO iC OO coo SCO CO CO OS O rH CO rH OO CO OS O CD O CO CO O rH O OS iO CO OS OS CM O O O O CD to CO b- CM 000 LO CM a: CO LO CO CO 00 CO 1C O CO i-~ CO f~ CO 1C CO 1C CC CO CO CO CO 00 CO I Q LO CM -^ OS CM CO CO iO CM b- LO O co o os SCO CO OB 1C 1C O T CO -H CM OB O 1C CM b-o'co b- rH r^ LO b- CD CMO CO OS lO O t^ CO 1C C CO OB CO 1C t^ OS 1C 00 CO CO 00 CO CO CO CO CO CO COCO CM CO CO <** CO CO T coco coco CO CM CO COCO CO CO T CO CO CO^LO CO T T CO CO 1C CO rH OS CO CO T CO SOS t- CO CO CO CO CO r~co e coco coco CO OS T CO CO OS CO CO O CO C^ T CO i-H CO f- b- LO CO CD b- CO CO -^ b* CO O CO CD b- COO CD rH OS CO CO 00 CO CO CO CO co r-- co r~ coco coco CO COCO CO rH 00 rH CO CO rH CO rH rHO r- O CO s 1C 00 CO *^* OS !> b- O OS O r-l CO CM rH LO t~* b- OS CO CO CO CO CC CO OB < CC CO 00 1C O 1C CO e ss S^< CD rH CO CO LO GO O OS CO b- CO OS CO ^ co -^ oo oo to to rH 1C CO CO 1C GO -t- o to CO 00 t~ CO i-ico CO CO CO CO CO CM CO CM -^ CO COT CO CO CO CO CO CM CO CM CO CO COT CO CM CO-Tt^ CO COT T COOO CO CO t~ T rH rH CO OB CO 1C OO CO CO T 00 co T r COO CO CO rHOCOCM OS iO O CM 00 OS -"^ rH CO ^ LO CO CO CD CO rH a a OO T CO O T OB CO I-H CO rH 1C T t^ CO OS t~ OB O e = CO T CO T CO CO CO CO O COO CO coo coo CO 00 ^* OS CO LO CO OS CO b- H^CM * OS OS CO IO b- T 1C T CO P OS CO OO O 1-, CM OS iO CO CO CO CO O b- OS CO CO i-H CO O rH CJS CO t"~ C~ 1C 1C 1C CO CO CO rH CO CO CO CO CMCMCM^ COCO T CO CO CO CO CO CM CO CM CO COCO T CO CO CO ^ CO CO T - CO* OB CO t- coo OS 1C t 1C OS M ofos 8 OSQ b- LO S3 TOO CoV S CD e 1C 1C CO OB T CO t~ OS CO O OS ! 1 t~rHO CM CO b CD OS CM b- CM t-. OS iO b- rH rH CO LO a a a CO 00 CO OS CO CO CO 00 CO O CO 1C OO T OO T T CO T CC rH COi-i CO CO OS CO OS I-H s OB CO T OO OS CM O OS O OS b- CM OS rH CO CO CO rHCM O CO CC T 1C SiC CO T CO To; . co o b- *-" OS "^ rH CO LO CO CO CO OS-H lOCM OO OS O CM OSO rH 00 CO rH O CO T CO OS 1C t-~ OS I 1 rH CO CO CO CO CO CO CO CO CO CO CO CO CO CO coco coco CO CO CO CO CO CO CO CO CO CO^ T CO CO T rH 8 rHf, OS T 1C T T a a a COCO OS T OS' CO co-SrnS OS 1C OS i-H CO rH T CO T OC CO rH tO rH 1C CM VO CM CM COrn 1C ^S-of OS C- OS 00 CO COO CO CO 00 CO coco Q T rH OS 1C 1C 1C t-CO CO ^O OO GO O b- OS OO co r^ co rH CO rH OS OS OS CO T CO T iCO iCO i o CO CM CO oO 00 CO GO CO rHCM CO O OS T CO T O LO LO ^ rH CMO CD os r- LO CD 10 OS OS OS T CO T 1C CO 1C rH COCO coco CO COCO CO CM CM CM CO CO CO CO CO CO CO CO CMCM CMCM CO CO CO CO CO CO CO CO CO CO II -* '. '. , II II '. +1 A .-. s "o o o rH i-H + 1 S 8 1 1 t~t co' s co' + '. 1 -H r-H rH r i ++ 1 1 8888 1 1 1 1 I-i rH rH i-i + 1 + 1 co* CN" s's's 1 1 1 -~S-*i b b cs *cs +JL+JL +77+ 8888 rH I 1 rH rH + 1 + 1 o o o o 1 o f f +7 __; S 8 +7 ' '. co" ? co tie f I rH i i rH ++ 1 1 8888 III 1 +7+7 ^ , s CO CO 8l?S 1 1 1 -. t" tftf &?hf *W hteW bfttf&f bfta-hj-tf u? fc-*k~* |*kC -^ -^ ^ -^ hte'nr tqWfo- bftefttf ., nwtf No. 3.] MINOR PLANETS LEUSCHNER, CLANCY. LEVY. 69 e fi "$* CC ^f OO 1! cc o cc co CO mp cS t** N t^ S cooaco^ CO 1 CO CO CO CO o4 CD 03 CC C4 f _. _ _ g So S3 CO CC CO CC t~r1 t^ I 1 r- 1 1OIN CO CO CO CO 4 CO^ COTT C71 CC Cl -I < Oi I-H C5 1 i-flO coco cov to ?> CO CO CO CO " CO-* CO-* . CO^- CO 1 J e e 1 co co co ce CC U5 *C lO 8 32 CO CO CO CO 4 "* *>* ui V | ! I CO OC CO OC r-cc r-cc cc oc cc oc ^ CO -^ CO oc t^ cot- C? CO CScM IT 00 t ^ OCO CO CTi CC O i 1-1 S 1 w S -TM CO CO CO CO 4 CNTti ^' 10 2 ++ C (E C e e > C: CC CS CC cc r* oo r>- 1 II Is too -H CC z B CO CO CO CO ci coco ci^r * -4 g 5 K'S. ^s CTCCC?*? = = c f CO 00 CO 00 1 II C^ 00 CO CM 00 CO i ^ Ui \ CO CO CO CO ci coco COCO *' *? V | g | ? ^ A ^ 0*> hj i 6 CO CO 00 CO to CO CM 1 1 + 1 + 1 II r5 II ft, i CM * 90 S cn co CM CO >O V CM CM $ S 00 ~~ CO OS rH US COM Tt< O5 O5 rH CO t- rH t-. Oi iC CO j S S|S 1 + + + + ++ ++I -|- 1 +1 + II II II II II II II II II II || II II II II ft, fa ft,hiC5 ftxto tqajfe, Pi, Kj &( CJ CS S t^co OS O5 ^ CD M ^* r-^ r-H CO t** CO C5 CO CO O5 OS CO "^f ^O rH t^- lO CO CO lO C iO ** J-++ I--COCO rHrH ^OCO^O 1 ++ + 1 + 1 + + 1 1 II II II 1 II II JJ II Jl II II 1! II te C5f*4 i* [ in in jv> n (M (M CD CD lO *f$ CO OS OS CO i-H rH rHCO CO rH (M (M (N CO QOC^ H r t rH tf -^ rH O O O Oi O^> O CO CO COr-f rH CO CD SO ccco rH il rH rH Ol iO iO M SCO COCO OS C5 O I s - CO CO I s * + 1 ++ 1 1 1 + +1+1 1 + 1 1 ++ II II II II II II II II II II II II II II II II II II rejC) tqfeifetCj fc,faC3l*, b *o to ^ 'o i i i + 1 ___ ji 7 ?^7T __ +!?+!+ +1?+??1 rH rH CN CN(M 888 rn grH g 88888 III + 1 1 1 1 1 1 1 1 1-HrHCO rHrHgi-lrHg SSSSS88 + 11 +l|l + | Illllll sss ss-jss- 888 rH 8i~< 8 III + 1 1 1 88888 1 1 1 1 1 rHrHCO , N \" N pHrHrHrHrH fll'l'l 1 + 1 + 1 111 '. '. 1 '. ! . 1 +11 Hh+ 1 1 +11 '. 1 '. 1 1 + 1 + 1 s e g s s e s e g s g ese essss?; sssssss 888 8888 8 8 8 S 8 ^"^"0^0 *^*~~*~*~ ^ci^ N C4COM OOOOOO r* ,* *4 r+ r*, r* ,+ o o o *-< - ~ * S" 7 1 ? ? ! No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 71 >'yoi'-* 'ze'n'x 'i x'x : :. -W ^D OD & -3 5 '2 f-H i ' l-l + >n.--x -.-- -i V^ + + + t=5 4 i '-"-- ~^T. i- 1 + * } Z-f. "H- | , O QO o o -C -* n cs T OO Ci t~-* O C^l TT i++ 7 ji i MJI e 4 ;f i-H ^" OS t^. i-H OS 5? l ^ rH CO i-H II 11 + i^ eccc^" Oil < u5?sco C-JOCO WN C^iCO voces ceo rtco t^-t^-CO OOO COCiCt ^ ^H CO N COCO +4- 1 1+ 1 + 1 J H H Jl H M H o cs oc oo ++7 + ji n ii n r < -H [, f^ _ - - * C"- ~ ~- i-H F t i-H i-H +1 1+1+ Jl II II II II II oo"o o rH p i rH rH T++ T i i * 7 ? +7 w to '"" v *o *s ^"^ b b *"<& *"- ^ *Q ^^ iJL7JL+ +'7+7+7 6eo^ OO 10 CM t~ - . CO CM OOrHO + 1 00 00 I I ++ +++1 + 1 ^t COO t^ OJ CO C^ CO t-^ CO M^ ^ rH O rH rH O rH C rH rH rH f I I ++ +++ *i i i- US U5 + 1 I I ++ +++ S OD 00 ^" rf CM CO t~ rH CSC5OOO + 1 I I ++ ++ I I ire lOi o o CM oo + I I ++ ++ I I i* *n \G it i! i; n f^ 8 It JOS rHO" o o o o K'l"i. No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 73 iO *& rrcc t~ e OCCNg ""S^S i + ++I 1 111 + + i ee -- -- cc cc cc cc ^ C-J OC CC^ ^H 1(5 ! 1 + + +I 1 111 + CO cc cc O C5 i-H SO rH r^- C^ CC I s " lO 1 + ++ 1 1 cc cc K3US S3 O CC C5 'V 0-HON C^l S f-H |-i to ^ oo * ! 1 + + + 1 1 1 I++ 1 " " CC5C C^ t^ ^ S ^* oc o Cl Ci ^ t- I 1 + + + 1 1 1 I++ 1 + O) 1C U3 cc cc r- o 3; cc C^4 ?O * O s . ^ +. v b b K b< b k \ i i i \\ ^X^-C^^J^ \ \ V + +v ^V ^ V V ++ 1 I 1 1 v -*~- fc els"? iJL ++ 1 1 e e e e i i i i \\jL +^ s;++^j^ +j^ J^+NJ^ 7 j^ 1 1 1 g e ^c"e g +1 1 1 1 1 1 ++ Mill J; g l-f ! see -S-S- + 1 + 1 -~5~5-S .m* 8 - e g-g-gte ii gtetff ii o o - _ _ - c c c i co ~* r* * r* v+ nn c c c c c - o c o CMCNJ C5C5C3C3 SSgg tte> oootocs to e o cteotfe. M CM 01 JO JJK J t -o^ 74 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. rH rH O t- OS 00 CO O CO CO coco 33 * r-ilrfOS 10 co o t~- SCM CO .. coosSco ESOCOGO coco 00 CO SCO rH t^ ColoCMrH * CO GO rH OS 1-IOrHCO coco COCO CO^JI rHO t^. 1 + + + 1 1 111 + + 1 1 I++ + + + 1 CO CO CO 00 00 CO COCOOSO oo rH rH OO rH rH 10 co coin *f O CO rH OO "3 rH rH CO -f t- lO CO rH 1C So? 38 OV CO t~^ lO CO O CO CM CO CO 1 + ++ 1 1 111 + + 1 1 1 ++ ++ 1 1 33 CM* CM rH rH CM CO t^i-H ^ rH rH -^ O5 CM "t> CD CO rH lO CM o oso oo coco coco CO OS 1O CO CO rH t^o rH t- t~ CO 00 ^ CO CO CO Ci OO *** I- 1C rH rH O rH OS CO rH CO OO lO Tf 00 OS CO m 4 T^v V l| -C*Jj -K V v v + + 7 M !Ji++ 1 f + 1 T +^+7 i> rH rH r-H rH ++ 1 1 Y >-| c^^'VcT i+ + 1 g g 1 1 1 1 -)-+ \ "\ rH g g'g^'g'g + 1 ggggg rHr-H ggggS 1 1 1 1 1 ++ 1 1 1 1 1 + 1 g g 1 1. 1. 1. + + 1 | rH g g glTg + 1 c s 1 I 1 1 + 1 + 1 g g g s i i i i n* II rH* II rH rH , , rH rH rH rH rH 1 + 1 + 1 '. '. 1 + 1 + 1 1 1 g g + 1 + 1 g-g-i-g- t"' rH i t 1 + o o O O O O rH r- -* v~5' ^^S'>S"5^S- ^S^5- "S^S-v i~ *~- o o o o v ~o o ^~*~*~*~ ^S'^S ^H'^S' ^-i-t^^-^ OOOOO -< CO CO CM CM CM CM faq tc; fc) ID K5V? co coco co WH^H tq'ijjtq'^tq' kf* 3 ? bf'D'i^flD'lD 5 tejtej tej tej fej tej CM CN CN C^ tqlDtDU) K?b? CO CO CO CO ^ "N hi* m, jo wa. w H) ta No. 3.] MINOR PLANETS LEUSCHNER, GLANCY. LEVY. 75 . 7 *S ?: : si I "V -. * S 3k *^ *^1 J. -1 -'I 1 -1 ^> -"? * -^ C-J C^ H CO CO J5 u ^i 1 "T" ^* >5 39 P9 ^ , -, ss M 00 CO C5 + 1 K : lr 7 + 77 < g i N V ~T~V s vvv - - ++ 1 1 1 febb tits o ;q- to co Ci CO CM SNI CM N CO 35 ii co 55 1-1 + 1 + "tf o" ct r-. CN co -( CO CO tft> C I s - t OS i ( lO * 1 ^* r- ^s ^a g s ..i- 3 n rHlS + + CO QO OS + + 1 cc eocN ?i t^ oo rH ^ CM CO CO O CM COCO W CO ft + + 1 iO W CO + + t* CO CO O f""" CO OS + 1 + 1 C. OOC rH r- 1 r-( rH ^^^ ^.^ ^ ^ ++ II ^ ^ ^ + i-i TIM +^ fi SSS -C- .... ccc rHrH (MTC-l f-HrHrHl-1 . + '. . + '. 1 + \ + I . '. 05 OQ'CQ' oo ci c-t ~t M *HMM oeo occo O i~ OO CMCMN __. OO XI JOpB J 1 M s No. 3.] SO -^ -^ n t- O t~ * 1-1 o 00 r ~ S) rH V O CO O cc r- ^ 99 O OS 10 O * l~- OC O I s * O ^' jg O O ^^ O 'O 8 w l~^ o o^ W CM + + + + to cot- asm r~ co i-i T ^1 !-! 1 ( I-H ; f? S 4 + "+7 + i + s s s s I 1 1 9^ J^*" x*s. 1 s rt'rt' R a + + 1 s s s s s s e 8 a a o o o o o o o r o o a tfcf coV : P JOWBJ MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 13 If. 1 . ,;-..-LViM HIT TO fO 1 -".^O-TVii 77 fll ori) ffi 'Ki'*^ ^d4 lo 78 MEMOIRS NATIONAL ACADEMY OF SCIENCES. INTEGRATION OF THE DIFFERENTIAL EQUATION FOR W. With the exception of Tables LVI and LVII all the following tables are concerned with the integration of functions whose coefficients can be derived, more or less directly, from the- preceding tables. The terms of first order in the mass, before and after integration, are of the type , A where . C v . q = C . p .g + C V p. q -w + C^p.g-w 2 H ---- (see Z 25) and A = [n + r-%(n-s)]s + (n-s)6+i IL+i' II' In the argument A the factor n is always a positive integer; the factors r, s, i, and i' are Tc positive and negative integers. Evidently, the factor of is -~ where k is any positive integer, and the arguments in a series are I n I r I s A. Within the extent of Bohlin's tables all of the coefficients can be written in symbolic form from B 188, XVII, XVIII. In the notation for the coefficients the particular values of r and s are given, and there remains to be found only the positive value of n, if there is one, for each multiple of -~- || The following tables present, in skeleton form, any series of the given type. There are properly two tables, one for perturbations in the plane of the orbit, and the other for perturba- tions perpendicular to the same. The headings A and I are defined by J = n-n' Considering first the tables referring to the plane of the orbit, omitting for the moment the arguments bearing the subscripts 5 or -8976'V. Adding e to the argument and taking the coefficients from Table IX, we have also in the function T, -- n-l.-n)^ sn 2e- where G V9 (n- !.-)_= +452"- 1475"w+ 1451"^. In this manner the series is built up. The coefficients having subscripts d and a belong to terms depending upon the mutual inclination of the orbit planes. They differ from the preceding type of terms in three ways. In the first place the subscript signifies the addition of J and 2" to the argument, respec- tively. Evidently, if J is added to the argument, the factor of A is not n but nl, from which we determine n. Lastly, these terms contain the factor f, i. e., within the extent of our tables the exponent t is not greater than unity. For the tables referring to functions which concern the perturbations in the third coordi- nate the same explanations hold, with the exception that the additional subscript rc f signifies the addition of 11' to the argument. These tables, in connection with the proper tables of numerical coefficients, enable the computer to write a complete series by inspection or segregate any term of given degree and given argument. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 79 H r-T - -- " ~ 7, _ _ O M OT M M v M N "7 "77 "77 c? a n co o-roe on,- * _r-,, CHCO nt .a ^cs = ^=o n^. . N^^W^MW C4= ^C O^X 0,,* 0X> OX,, NOO N 00 NNOCO r.00 v-ieo r.- eOi^iC OC4V *-":7i7. O^OCOO,,CCO,3OO,X,O, O,XO,O^< ''< 7 77 77 | 0^ ^ W K<* *** o N cs o^ o^ o-* * o w c*ei. +7+7 +7 i Lj '.7 7+7+7 '. '. '. '. '.7 '. 1 7 +77++77 5 55. -55. 5-5-5. 5555 555 55S5 55 5555 55555 555 5\5\5555 e e e e a e e 80 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. it + 1 c a E m 2 + s o* h 7 r O O 04 r* O _U 7 CO M N 7 ~7 T -, 0 --""" *..5 N 7 7 + CSO^ -HCC OV NO - CO CO-,10 ONO(N- M U5NCN 1 1 1 II 1 - ,__, . *< 7 _ 7 "* o o * w (N , A, I. The last two are constants. According to the principles of Hansen, occurs outside the opera- tion. Numerically, however, it is equal to s. The argument 6 contains e implicitly. See Z 9, eq. (43). Hence we must, in general, write F(e, d) and = _ ds ds 50 ds In order to set up the partial differential equations from the total derivative, the following notation is introduced: F(t, 0)=[F(s, ff)] + F(t, 0)-[F(s, 6)] where [F(e, 0)] signifies that part of the function which is independent of e. Again, since s has the period of the planet, there can be no secular terms in e (with the exception of the function 0), i. e., On the other hand, the argument varies much more slowly, and there may be secular terms in 0. Hence and may occur outside the sign of integration. Owing to the presence of the required function in the differential equation, the integrations must be performed rank by rank where rank is defined as follows: In the course of the developments there arise negative powers of w. Since w is a small quantity, these factors increase the numerical value of the terms, or, in other words, they lower the order. Therefore, it is better to define order in terms of both the disturbing mass m' and w. For this purpose v. Zeipel makes the assumption that both w and -^m' are quantities of the first order. Order so defined is called " rank," and the word "order" is reserved as usual for 7/1 ' a the powers of m'. The factors 5- are arranged according to rank in Z 53. Any function is then written in the form where the subscript denotes the term of lowest rank, for F { (s, 0) contains terms of more than one rank since each coefficient is itself a Taylor's series in w. In assigning rank it is to be noted that the coefficients in all the preceding tables contain the factor m' implicitly. The implicit mass factor is indicated at the foot of each table which follows. On the basis of the foregoing principles, the differential equation for W, d_W == dW + bW d0 = T ds ds d0 ds expressed in Z 52, eq. (91), is broken up into four equations, Z 53, eqs. (95, 95 4 ), according to rank, and before integration they are again subdivided according to parts which contain e and parts which are independent of s. The total derivative is then in the form of eight equivalent equations, and the integration can be performed in the following order: W t ; F 2 -[FJ; [FJ; F 8 -[FJ; etc. It is possible to avoid the computation of T 3 , as v. Zeipel did, by the introduction of some auxiliary functions, but we found it preferable to tabulate them. Employing Table XVo, and by inspection of Tables VIII, IX, X, XI, T t is written directly. (Thas no terms of first rank.) 110379 22 - 6 82 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVc. r. TJnlt-l" Sin w w 1C* -J - f+# + 43.1 - 43.1 - 128.0 + 128.0 + 171 - 171 + 20+2J 2t-+28+24 +28+24 + 271. 5 - 67.1 - 294.9 - 636.6 + 108. 2 + 740. 6 + 526 + 32 - 734 2t+ 48+44 3t-+48+44 t++40+4J + 159.9 - 45.7 - 167.4 - 593.3 + 122. 1 + 637.4 + 869 - 174 - 984 2i+<{>+68+64 - 81.7 + 418. 9 - 907 9 28+24 i-+28+24 - t++28+24 -1180 + 273 +1496 +2962 - 179 -4265 - 2935 - 1170 + 5572 9 2t- 9 - 173 - 211 + 384 + 512 + 899 -1410 - 684 - 1921 + 2605 n e+ 48+44 2 t -+48+44 f+48+44 -1514 + 452 +1679 +5780 -1475 -6656 - 8976 + 1451 +11172 n 2t+ 28+24 St-+28+24 c++20+24 - 6 - 83 + 136 + 408 + 262 - 878 - 1307 - 564 + 2285 ? 2i+ 60+64 3c-+68+64 ,++48+44 - 102 + 112 i 2t++&8+84 + 750 -4900 5' 28+ 4 t-+28+ 4 + 318 + 222 - 646 -1081 -1012 +2452 + 1552 + 2227 - 4296 1 t+ ^ 2t-<{>+ A + * + 130 + 112 - 285 - 484 - 565 +1211 + 808 + 1393 - 2475 n' t+ 48+3J 2e-+48+3J $+48+34 +2279 - 580 -2460 -7160 +1410 +8138 + 8896 - 520 -11342 n' 2t+ 28+34 3t-+28+34 t++28+34 - 314 + 127 + 291 + 702 - 399 - 537 - 90 + 598 - 478 Y 2t+ 68+54 3t- +68+54 t++68+54 +1887 - 542 -1974 -8417 +2221 +9002 +15550 - 3377 -17350 I i 2e+<{'+48+54 - .".'," >..,;..". stirp') Zt+j+W+U + 390 -1263 -1556 +7397 9 .-# - t+ + 568 - 568 - 3106 + 3106 * 48+44 ,-+46+44 - i++48+44 +6716 -2114 -7960 - 26627 + 6488 + 33462 + 44700 P t+ 28+24 2t-+28+24 <{>+28+24 /, 4- 128 + 535 - 978 - 3166 - 2505 + 7431 - 23105 m' No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE XVe Continued. Unlt-l" Sin V V w> 1* + 69+64 2-#+69+64 #+69+64 + 7969 - 2624 - 8819 - 41736 + 12577 + 47347 -111337 '/' - + 25+24 -#+20+24 -2t+#+20+24 + 2246 - 396 - 3596 - 6168 - 1494 + 12561 + 9351 1* 2t 3t-# +# + 423 + 357 - 780 - 1797 - 2207 + 4005 f 2e+ 49+44 3t-#+40+44 +#+49+4J - 1783 + 924 + 1220 + 3946 - 3327 ^ 1026 1* 2t+ 80+84 3 t -#+89+84 +#+80+8J + 6749 - 2247 - 7252 - 44127 + 14052 + 48051 If' 4 *-#+ 4 - ++ A - 285 - 1004 + 1574 + 1210 + 5771 - 8192 - 2475 If* 49+34 t-#+49+34' - *+#+40+3J -17218 + 4253 +20345 + 56961 - 8340 - 73031 - 79400 fir + 29+ J 2e-#+2fl+ A #+20+ 4 - 1429 - 523 + 2280 + 6138 + 3792 - 11302 + 28347 if t+ 2fl+34 2t-j+2d+3J #+20+34 + 1725 - 1003 - 1492 - 3054 + 3753 + 677 + 13097 v + 65+5J 2t-#+6+5J #+60+5J -23773 + 7038 +25974 +108605 - 28427 -122380 +251019 >? ^ - t+ 29+ 4 -#+29+ 4 -2+#+20+ J - 965 - 2068 + 3785 + 3533 + 10582 - 16928 + 39011 v 2t+ A 3-#+ 4 +#+ 4 - 820 - 470 + 1488 + 3797 + 3185 - 7870 ||T 2t+ 49+34 3t- #+49+34 +#+49+34 + 1815 - 1181 - 853 - 1190 + 3807 - 3161 --?' 2t+ 49+54 3t-#+49+54 +#+49+54 + 4294 - 1571 - 4414 - 17092 + 6629 + 17198 ^ 2+ 89+74 3t-#+89+74 +#+89+74 -21544 + 6700 +22868 +126397 - 37167 -136294 I" -# - .+# + 866 - 866 - 4261 + 4261 * 49+24 -#+49+24 - +#+49+24 +10682 - 1815 -12428 - 28347 + 474 + 37322 + 32120 >!" + 29+24 2 -#+29+24 #+29+24 - 1498 + 1136 + 861 + 450 - 4394 + 3794 - 22127 m' MEMOIRS NATIONAL ACADEMY OF SCIENCES. XVc Continued. [Vol. XIV. Unit-l" Sin w w 1* + 60+44 +17790 - 69344 ttttll- 2-0+60+44 0+60+44 - 4675 -19046 + 15200 + 77260 -135954 9" -0+20 + 1634 - 7081 + 16199 f Ti-il I -2+0+20 - 1634 + 7081 ," 2+ 24 + 328 ^ 1710 3-0+ 24 + 154 - 1141 +0+ 24 - 591 + 3420 1 ,/ 2+ 40+44 - 5879 + 19019 3-0+40+44 + 2032 - 7361 t+0+40+44 + 5807 - 17998 ,/J 2+ 80+64 +17340 - 90064 3-0+80+64 - 5018 + 24266 +0+80+64 -18102 + 95820 jJ -0 i- 866 + 4260 <',"!.' - - * + + 866 - 4260 J 3 40+34-2 + 609 - 2958 + 6763 -0+40+34-2" + 232 - 1656 tWfV - - +0+40+34-2 - 1044 + 5600 s ; > a + 20+24 - 1760 + 71S9 2 S -0+20+24 - 331 + 3096 0+20+24 + 2677 - 12681 + 30930 ; 2 + 60+54-2" + 578 - 3543 2 -0+60+54-2" + 10 - 299 0+60+54-2 - 780 + 5023 - 15302 ;' -0+20+4-2 -2f +0+20+4 -2" + 866 - 866 - 4260 + 4260 + 10988 f 2 + 4+2 + 1152 - 4231 3 7ft iti +0+ 4+2 + 98 - 1634 1440 + 7081 a 2+ 40+44 - 1795 + 9459 3-0+40+44 + 164 - 17 +0+40+44 + 2229 - 12595 j 2 + 80+74-2 + 392 - 2914 V ,' 3-0+80+74-2 - 40 + 194 +0+80+74-2 - 482 + 3691 *+ 0+ 4 + 47.1 - 149. 3 + 186 f-0+ 0+ 4 + 27.5 - 111.4 + 207 -*+0 + 0+ 4 - 90.4 + 310. 5 - 455 ?+ 30+34 + 216. 1 - 655. 2 + 749 |s-0+30+34 - 58.9 + 150.7 - 93 $+0+30+34 - 229. 3 + 722. 8 - 905 | + 50+54 + 113. 8 - 499. 2 + 892 ^-0+50+54 - 33.5 + 137. 7 - 213 fs+0+50+54 - 118. 2 + 527. 9 - 977 ^+ 70+74 + 54.1 - 310. 2 + 757 $-0+70+74 - 16.5 + 91.3 - 209 +0+70+74 - 55.7 + 322. 3 - 801 $+ 90+94 + 24.5 - 173. 5 + 537 -^-0+90+94 7.6 + 52.7 - 157 $+0+90+94 - 25.1 + 178. 5 - 559 m' No. 3.] MINOR PLANETS LEUSCHNER, CLANCY. LEVY. XVc Continued . 85 Unit-l* Sin .. . + -| + ^+ + 768 - 2308 + 1540 - 2821 + 10637 - 7816 ili | +90+84 ^-^+90+8J $+0+90+84 -18847 + 5935 +19837 +122928 - 37138 -130949 i" i +0+4 |-0+ 0+ 4 -l+^+ 0+ 4 + 761 + 906 - 1920 - 3333 - 5387 + 9831 ," is +50+34 $-^+50+34 -i+0+50+34 +15303 - 3577 -16828 - 49954 + 7957 + 58649 ^ 3 -Jf +30+ 4 i-0+30+ 4 -f+0+30+ 4 + 1582 + 1300 - 3410 - 5765 - 6572 + 14260 v a \i -0+4 |-0- 0+ 4 is+0- 0+ 4 + 451 + 494 - 1096 - 1890 - 2861 + 5381 mf No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 87 TABLE XVc Continued. T, Unit-l" Sin - w *. 1* f +30+34 - 3918 + 8760 is ^+30+34 + 1588 - 5289 $+VH-30+34 + 3637 - 6391 l" ft +70+54 + 18292 - 83098 |j-^+70+54 - 5104 + 20825 it+^+70+54 - 19286 + 89973 f * +0+4 - 902 + 3781 $!-+ 0+ 4 - 988 + 5721 -i+#+ 0+ 4 + 2191 - 10762 jl J +50+44 - 1 + 634 - 3482 fa ^-j-50+44 jf + 87 - 836 -j+^+50+44-.2f - 933 + 5479 f -it +30+24-J + 428 + 480 - 1816 - 2805 -5H-VH-30+24-1 - 1050 + 5226 p ft +30+34 - 1916 + 8929 it ^+30+34 + 2 + 1220 it+^+30+34 + 2553 - 13126 f Jf +70+64 -S + 488 - 3307 I _^-|- 70+64 2" 27 + 23 $+^+70+64 -2 - 623 + 4387 p -* +0 -J - 475 + 1965 55 ^+ JT + 1141 - 5536 -i+0+ -2" - 508 + 2916 p it + 0+24+J + 1282 - 5447 $-<+ 0+24+J - 90 384 | +^+ 0+24+J - 1620 + 7647 p is +50+54 - 1544 + 9111 ^ ^+50+54 + 222 - 735 f+^+50+54 + 1838 - 11413 p | t + 9g +8 j_j + 304 - 2460 Jt ^+90+84 J - 42 + 266 fj+^+90+84 J - 364 + 3013 ,1 20+24 - 1955 + 14862 60+64 - 35276 + 189348 9 + 3312 - 23724 df~\~A.Q ~j~4d - 5097 - 4328 ^+40+44 + 6177 - 16310 C& ~f o V ~|~ 8 a + 45199 - 304998 iV 26+ 4 + 6733 - 33547 20+34 - .3730 + 1693 60+54 +142854 - 673242 <1> +4 - 9270 + 61512 -# +4 + 4207 - 28940 V^+40+34 + 5323 + 55061 -i+40+34 - 13730 + 9080 V^+40+54 + 22898 - 84425 V^+80+74 -200024 +1218446 7 ?" 20 - 3268 + 14164 20+24 + 3445 + 15177 60+44 -190467 + 772593 + 12782 - 78712 ^ +24 + 5239 - 35125 ^+40+24 + 2712 - 60586 -Ji+40+24 + 4409 + 41693 ^+40+44 - 52183 + 143461 V-+80+64 +294332 -1600036 m' 88 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVc Continued. Unit-l" Sin >o w r/ 3 26+ A + 3479 - 17883 T 65+34 + 83314 - 283500 + 4 - 7839 4- 47423 -+46+ A + 6634 - 36904 V>+40+34 + 27512 - 44330 0+80+54 -144023 + 688658 fr, 25+24 + 10709 - 50725 2(9+ A -2 - 1732 + 8521 65+54 -.J 1 - 7799 + 50227 ^ - 12782 + 78712 # + 4+JT + 11006 - 60629 4>+45+34-.T + 4022 - 29208 tV -0+45+34 -2 1 - 3616 + 27235 0+45+44 - 28408 + 176052 0+85+74-2 1 + 9526 - 75678 f if 28+ A - 7475 + 36068 26+24-2 + 159 - 2967 65+44 -J + 11564 - 66719 +4 + 11762 - 75153 ^ +^ - 6024 + 38182 -0+45+24 -.T + 7090 - 45771 0+45+34 + 35006 - 199168 0+45+44 -I + 1108 - 281 i. 0+80+64-.? - 15308 + 111481 m' An inspection of the preceding table, which is typical of all the trigonometric series under consideration, shows readily that any function of this type is of the form lie' sin K' + lJcsin (K) = 2k' sin K' + Ilcsin K cos d> +_ lie cos K sin )=21c' cos K' + Ilc cos Jf cos ^Ilc sin if sin or, more briefly, a + 6 cos ^ + c sin ^ wherea, 6, care trigonometric series and can be written by inspection from the tabulated function. Hence, in v. Zeipel's notation (Z 54, eq. 96), T { = X { + Y { cos + Z t sin and the integral may be written W^ = x^+y^ cos ^+2< sin <[> The functions T and W are to be used in this form in solving equations (95). Considering only first order in the mass in T T 2 = X 2 + Y 2 cos ([> + Z 2 sin ^ where X 2 = Ilc' sin K'; Y 2 = Ik sin K; Z 2 = Ik cos K or, X 2 is the part of T 2 which is independent of , Y 2 is a trigonometric sine series having the same numerical coefficients as the part of T 2 which contains <[> in the argument, but in which is omitted from the argument, and Z 2 is the corresponding cosine series. Considering the first two of the eqs. (95), the first one states that W 1 is not a function of alone, or, W FW1 = n- W=rTF1 "l L iJ ", "1 L "iJ- t2+W Making use of this fact in the second, Wj can be obtained from (95 2 ). (See Z 54.) Introducing the auxiliary functions^ and u v defined by (99) and (101), the differential equation for TFj is replaced by the equivalent differential equations, (100) and (102), for ip^ and u v . The series and can be written by inspection from T 2 , or, better, the integration itself can be performed in part at the same time. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 89 The function fa is given by Z 59, eq. (103), or, From the table of T 2 , page 82, it is not difficult to write immediately The terms of higher order must be obtained by the usual method for the mechanical multi- plication of series. A logarithmic multiplication is the most direct. In each term in the expression for fa the terms of lowest rank must be of the first rank. TfL *??? f ffL Recalling the tabulation of factors in Z 53, w, , -^> -^> etc., are all of first rank. But the coefficient for a given argument consists of three terms in ascending powers of w. Hence fa w, within the limits of the given tabulation for T 2 , is of rank 1, 2, 3 for each order in the mass. Table XVI, giving fa w, is tabulated with double headings. The three subheadings indicate the expansion of the coefficients in a Taylor's series and the main headings give the factors in the development of the radical in Z 59, eq. (103). Having found fa, its reciprocal, fa- 1 , inclusive of first order in the mass, is given by The second term is the negative of the first three columns of Table XVI multiplied by tff-*. QAL The product of 2 fa- 1 and that part of T t which contains

and this condition should be tested for a given planet before applying this method of determining the perturbations. To the computer the extent of auxiliary tables, the arrangement of series in logarithms or natural numbers, in seconds of arc or radians, inclusive or exclusive of numerical factors, and foresight in combining operations all these are of the greatest importance. But considerations of this kind would carry the reader into complicated details which are best left to the com- puter's own judgment. On the other hand, general considerations about the extent of the published tables are of importance in the discussion of the accuracy of the final tables. Yet, for a given limit of accuracy, it is so difficult to determine, for each table, the highest powers of m', w, TJ, T)', and j 2 that little or nothing is said about it in connection with individual tables, but the discussion is reserved until later. 90 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVI. l -w=x l -i 1 y l =[(l-e COB Unit 4th decimal of a radian. Prw 10-1 )- to-* vm w w w* w" w w' w' w V* -0. 0460 +0. 231 -0.52 ^ -0. 0060 +0. 040 -0. 127 *r 4 +0. 0331 -0. 195 +0.53 ij 25+24 + 42. 889 - 107. 72 + 106.7 ' 25+ 4 - 15. 427 + 52. 39 - 75.2 i f 45+44 - 122.10 + 484.1 - 813 -0. 0460 +0. 231 -0.52 9< 45+34 + 357. 75 - 1183.5 +1650 +0. 0331 -0. 195 +0.53 *" 45+24 - 258.93 + 687. 2 - 779 -0. 0060 +0. 040 -0. 127 ; 45+34 -.T - 14. 75 + 71.7 - 164 l 1 25+24 + 28.2 - 433 +0. 262 -1.70 +0.0003 -0. 0022 V 65+64 + 428 - 2295 +0. 262 -1.70 +0. 0001 -0.0008 5V 25+ 4 - 316.1 + 1592 -0. 767 +4.46 -0. 00021 +0. 0018 ,y 25+34 + 108.5 - 49 -0. 094 +0.69 -0. 00011 +0.0009 ,y 65+54 -1889 + 8902 1 t , -0.86 +5.2 -0. 0001 +0.001 -n" 25 + 237.6 - 1030 +0. 555 -2.87 +0. 00004 -0.0002 ,," 25+24 - 125.3 - 552 +0. 276 -1.85 +0. 00008 -0.0009 ,," 65+44 +2770 -11237 +0.83 -4.7 ," 25+ 4 - 168.7 + 867 -0.200 +1.21 ,"> 65+34 -1346 + 4581 -0.200 +1.21 ft 25+24 - 389.4 + 1846 -4498 ft 25+ 4-2 1 + 126.0 - 620 +0. 032 -0.23 ft 65+54 -J + 113 - 731 +0. 032 -0.23 ? rf 25+ 4 + 362. 4 - 1749 p if 25+24 -JT - 7.7 + 144 -0. Oil +0.09 }> (' 65+44 -.T -i 187 + 1078 -0. Oil +0.1 m' mf m" TABLE XVII. Unit-l' UJ I II}- 1 PrtO I/OS w* w UI w' w U) 1) 25+24 + 1179.6 - 2963 + 2935 V 25+ 4 - 318. 2 + 1081 - 1552 * - 0.95 + 4.8 I 3 45+44 - 3358 + 13313 - 22356 - 1.27 + 6.4 n' 4 + 0.68 - 4.0 W 45+34 + 8609 - 28481 + 39702 + 0.79 -4.7 ^ - 0.12 + 0.8 v 45+24 - 5341 + 14175 - 16063 - 0.12 + 0.8 ? 45+34 -2 - 304 + 1479 - 3383 t 25+24 + 1955 - 14861 + 7.2 - 46.6 ?' 65+64 +11758 - 63112 + 7.2 - 46.6 ,y 25+ 4 - 6732 + 33547 -15.2 + 88.0 ,y 25+34 + 3730 - 1691 -3.8 + 27.9 ,y 65+54 -47616 +224423 -21.7 +130. ,," 25 + 3267 - 14165 + 7.4 - 37.8 ,," 25+24 - 3446 - 15176 + 7.8 - 52.5 ??* 65+44 +63489 -257533 +19.0 -108. 1 ft 25+ 4-2 1 + 1733 - 8522 + 0.4 - 3.1 ft 65+5 J-2 + 2599 - 16744 + 0.7 - 5.2 ft 25+24 -10709 + 50748 -123705 ," 25+ 4 - 3479 + 17880 - 4.1 + 24.9 I? 65+34 -27772 + 94500 - 4.1 + 24.9 ? i 25+24 -JT - 159 + 2966 - 0.2 + 1.9 f ri' 65+44-2' - 3855 + 22240 - 0.2 + 1.9 ? 1 25+ J + 7475 - 36070 (0-5 )sin W' A - 570 + 2421 4950 - 0.45 + 2.7 -7.2 m' m" No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. . ..,,. TABLE XVIII. 91 j=y, coe An Unit-l". COB M m-> tr V ^ * " V V +2d+2J + 294.89 - 839.5 + 1229.8 - 740.6 + 3328 - 4069 + 734 - 5586 + 5671 - 0. 316 + 0. 114 + L59 - 0.67 - 3.6 + L8 r -J+20+2J + 396 + 978 + 2940 + 1494 - 7431 - 15782 - 9351 + 23105 [+ 37112] - 2.62 + 4.42 + 1.80 + 16.8 - 28.4 - 1L7 li* -++29+ J V>+20+ A + 2068 + 1492 - 2280 - 8658 - 10582 - 677 + 11302 + 40793 - 39010 - 13058 - 28348 - 83730 + 6.18 - L91 - 5.57 -3.95 - 36.9 + 13.6 + 32.8 + 23.6 e +26+2J +60+4.1 - 1634 - 861 + 6349 + 7081 - 3794 - 25753 - 16199 + 22127 + 45318 - 4.04 + 2.12 + L90 + 2L4 - 14.4 - 10.8 i -4+20+ J-J J+26+2J - 866 + 260 - 2677 + 4260 - 1674 + 12681 - 10988 + 5101 - 30930 - 0.22 + 0.07 + L6 - 0.5 I 0+4J+4J + J - 569.95 + 2421.1 - 4950 - 0.455 + 2.69 -7.2 t + 6624 - 47448 +23.8 [-22L 9] ?Y t + J [-18540] + 8414 [+123024] - 57880 -73.4 +36.0 +572.4 -282.2 ' J +2J +10478 +25564 - 70250 -157424 +55.2 +87.3 -374.8 -652.8 ** !> + J -15678 + 94846 -69.9 +438.6 /*! t +22012 -25564 -121258 +157424 +359162 [-511232] + 9.9 -23.1 - 77.0 +165.0 ? v +2 -12048 +23524 + 76364 -150306 -251640 +498328 - 5.2 +14.8 + 45.8 -112.0 m' m' 2 92 MEMOIRS NATIONAL ACADEMY OF SCIENCES. After the determination of W,, the function F 2 [FJ is obtained from the solution of Z 53, eq. (95 2 ). The integral may be written as in Z 63, eqs. (105), (106), or, quite as simply,, as follows: F 2 ' = - a- cos e )(w+ F t ) -[(l -e cos The function F 2 ' is given in Table XIX. Anticipating some later developments, for which we shall need [(l-e cos c)F] the function [(l-ecosOF,'] is tabulated in Table XX. The determination of [ F 2 ] may be accomplished according to Z 65, eq. (108) Z 67, eq. (116), or in the manner outlined below, which we regard as preferable. Repeating Z 65, eq. (107), in which all the known parts are contained on the right-hand side, the development of equivalent equations proceeds in a manner analogous to that for TT,. Writing T 3 = X 3 + Y 3 cos + Z 3 sin t}> and introducing and equating parts independent of 0, coefficients cf cos and coefficients of sin , the three equivalent equations are: [(1 - J cos )(;+ FO^J^-t^J)^]- [(1 - e cos ~ e cos 1 Vir- 1 - M^i i ~3 - A ] 1+ 9 fll )Jw [(1 -e cos e ) (w+ F^^J^-tZJ)^]- [(1 -e cos ) J ^[2 Multiplying the second of these by ij and subtracting from the first: e cos [(l- [(1-6 cos )J(T 2 -[T 2 ])deJj+2[X 3 -r 1 Y 3 \- MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 93 Multiplying the second by cos $, the third by sin tf> and adding: A( tt _ WU)= _+(l-e C03 s)F l -r i F 1 + l + 2([yj cos ^ + [ZJ sin f) F,)^ f { F, cos ^ + Z, sin v'--[F, cos (1 -e cos )(+ ,) , cos ^ + , sn v'--, cos +, sn in which = [yj cos Hz sn and [.XVI, [FJ, [Z 3 ] are read by inspection from T 3 , which is to be determined as follows: If Z 50, eqs. (89), (90), are written in the form _t i -= [1 cos(/ w)] = 4U 2r cos e cos (s )+.i) cos (2s ^)-f-ij cos t& + cos 1 9> I 9/v*_ 1 1 n* 8 n cos s + 2 7/ 1 cos 2 2 cos ( A) -8 if cos (e-^)+2ij cos (2- then Tw and T' r , given by Z 49, eqs. (84), (85), in connection with Z 50, eq. (87), are given by 2V=-r,-4{l-2jj cose-cos (s-^)+ij cos (2e-v'')+7 cos + ____ } IS P . ,(n + r.-n+s)iji^'/ 2 ' sin A r = {3 + 14^-8^ cos s + 2jj cos 2s-? cos (j-^-Sij 1 cos (s-^)+2i9 cos (2s-^)+2ij cos ^ o and r, (Table X\Tna) is computed by Z 53, eq. (94), in which S The function is tabulated in Table XXI; the function u = [/] cos is tabulated in Table XXII. From the latter [?/,] can be read by inspection, and ijfyj added to the former gives [xj. Finally, (Table XXIIa), F W t ] = [rj + [y J cos ^ + [zj shi ^ > * . : M M ^ L;. 94 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XVIIIa. [Vol. XIV. Unit=l" Qin ur* r-> oin w* w w' to w Vfl -+# +0. 339 - 2.01 < +20+24 2t-v&+20+24 j+26+24 -0. 375 -0. 137 +0. 498 + 2.403 + 0. 847 - 3.223 + 7.72 2i +40+44 t+^+40+44 -0. 438 +0. 429 + 2. 234 - 2.338 2t+4>+60+64 +0. 361 - 2.372 20+24 f-H-20+24 - r+^+20+24 -0. 00047 +0. 0036 -0. 0123 +2. 199 +0. 286 -3. 294 -14.58 - 3.85 +23.82 + 33. 34 t # -0. 00038 +0. 0035 -0. 0136 -2. 811 -0. 688 +12. 20 + 1.67 - 16.51 ! e +40+44 0+40+44 -0. 00015 +0. 0013 -0.0048 +0. 432 -4. 536 - 2.58 +35. 80 - 95.79 3 e+0+20+24 +1.017 - 6. 333 9 t+^+60+64 -3. 219 +22. 43 \ 25+ 4 I-0+20+ 4 - +0+20+ 4 +0. 00017 -0. 0014 +0. 0055 -2.520 -1. 253 +4. 372 +14. 78 +10. 20 -28. 56 - 31.95 * t + 4 +4 +0. 00014 -0. 0014 +0.0060 -0. 404 +1. 188 + 4.06 -11. 30 + 34.07 << ( +40+34 0+40+34 +0.00005 -0.0005 +0. 0021 -0. 224 +6. 480 + 1.53 -47. 37 +120. 37 * t+0+20+34 +0. 214 - 1.66 1 f+0+60+54 +5. 977 -36. 82 (0-0 ) cos n v v 20+24 t-^+20+2J - t+^+20+24 -0. 00188 +0. 0143 -0. 0489 -1. 141 +0. 235 +1.12 + 7.14 - 1.12 - 7.39 - 20.54 v -0. 00059 +0. 0051 -0. 0189 -0. 357 + 2.62 -8.20 i * i +40+44 V&+40+44 +0. 00155 -0. 0141 +0. 0540 -0. 975 +0. 939 + 7.39 - 7.27 + 23. 43 > *+^+20+24 -1.12 + 7.39 I. 20+ 4 e-^+20+ 4 - +^+20+ 4 +0. 00068 -0. 0058 +0. 0222 +0. 847 -0.17 -0. 828 - 5.79 + 0.93 + 5.96 + 18. 12 1 +4 +0. 00021 -0. 0020 +0. 0085 +0. 265 - 2.10 + 7.15 t +40+34 ^+40+34 -0. 00056 +0. 0056 -0. 0239 +0. 724 -0. 697 -5.90 + 5.80 - 20.35 1 *+0+20+34 +0. 828 - 5.90 m' 3 m' 3 No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 95 TAM.B XIX. W.' Unit-l". e* ^ r IP* w * K* * " -#+ +0. 2108 - 1.059 +2.379 ^++40+44 -0. 2108 + 1.059 -2. 379 y l +0.843 - 4.236 V +40+44 -0.843 + 4.236 iJ+ 20 24 - 294.9 + 740.6 -733.9 -1.200 + 7. 772 _^_j_ t -j- 20+24 -0. 875 + 5.583 <^++ 20+24 + 294.9 - 740.6 +733.9 +0.274 - L697 ^++60+64 +1.800 -1L658 ^+2* -0.105 + 0.529 +2+40+44 +0.105 - 0.529 Jjf * + ^ -0.227 + L344 if e -j-40-f-3J +0.227 - L344 if ^+ e 20 4 +1.758 -10.233 if t!i+ +20+ 4 +1.083 -6.493 tf ^+ t+20+34 -0.204 + 1. 377 rf ^+ +60+54 -2.637 +15.350 ,2 -#+ + 384 -1410 s _^+ t 4^44 +1679 -6656 +20+24 +1180 -2963 if +20+24 -1180 +2963 if y''+ - 384 +1410 f ^+ +40+44 -1679 +6656 J -#+ t - 4 - 285 +1210 -^+ -40-34 -2460 +8138 B jn' +20+ 4 - 318 +1081 If* -20- 4 + 318 -1081 #+ + A + 285 -1210 *>!' (f>+ +40+34 +2460 -8138 (0 ) sin 1 -tf+ -20-2J +0.549 - 3.40 +0.00090 -0.0068 5 J+ +20+24 -0.549 + i40 -0.00090 +0.0068 Tf _^+ t_20- 4 -0.407 + 2.75 -0.00032 +0.0027 Jf #+ +20+34 +0.407 - 2.75 +0.00032 -0.0027 m' m" m /j 96 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XX. [Voi.xiv. [(1-ecose) W 2 ] Unit- 4th decimal of a radian. 0. *. - - - w w wo w w' , w +0. 01022 -0. 0513 +0. 115 9* + 18.6 - 68 +0. 187 -1.76 +0. 00043 -0. 0039 9 " +0. 296 -2.46 +0. 00020 -0. 0020 -0. 186 + 1.34 -4.8 ^ Tj' j - 13.8 + 59 -0. 529 +4.34 -0. 00075 +0. 0065 '20+24 - 14. 29 + 35.9 - 36 -0. 1006 +0. 647 -1.91 -0. 000055 +0. 00041 ^' 20+ 4 +0. 1377 -0. 811 +2.19 +0. 000020 -0. 00017 ]j2 40+44 + 81.4 - 323 +0. 477 -3.64 7 l' 40+34 - 119.2 + 395 -1.295 +9.36 5 /J 40+24 +0. 921 -6.09 ; 2 40+34 -I +0. 036 -0.32 (0-0 )sin , 20+24 -0. 0266 +0. 165 -0.49 -0. 000044 +0. 00033 n' 20+ 4 M.' 1 .il ! +0.0198 -0. 134 +0.43 +0. 000016 -0. 00013 ) ) 5 40+44 ,..!, +0. 151 -1.16 +0. 00031 -0. 0027 i) r;' 40+34 -0. 334 +2.47 -0. 00052 +0. 0045 9" 40+24 +0. 165 -1.24 +0. 00015 -0. 0014 m' m' 2 m' 3 + (V'.XW 'I i of ;. Ho.*.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 97 * 2 I 8 o kO i < OO d MOO 7? X \ S sr . 0i5 8 S OT + i + E -1 9 1 i C4 O o o I-H CO IO lOO CH SO rl l-l + 1 - 1 9 i-H r*- i-H " ^< S 1O CO 00 COC0O4 t 1 o o" o 1-1 i - TT O OOMt^OCC OOO ' * - ^ "Sog O O O O O O i-l i-i ~O ^-'oc'o' t^OO or^ccc^ COT^SSQ?'? . r^oo-^ III o'o'o o' o o' o' o" o o o o o o o o' ++ ' . + -'.-l-l ' ++ ' + + 1 + ? * s c ^^^^^,^4 i ^^^ i N TCOC^CO CT? N 1M ^ ^ ^ ^> ^ ^ ciCM^rr-^ 1 ^- c^iC^^^ -^r -^ a r^fr x ^ v M C4 C *=" B* *=* =- V S> V (B w V C>%> V f> V B- V B- B* R B C- p- p. ^ fy. ff. ^ p. '<^N N u 110379 22 7 MEMOIRS, NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. s ! && ?? /- CO -, 1 ~ CD ' ^-* " ' S S g 3 CD rH ^ ; 8 . :v'S ivi? c," x r-t -! *v C f-* C* C 1 "' ' ""*" ^ dr 1 1 + W 1 " u ^' '-*, O '" "^ X -i- ( -J..4- i *. f , -f r 3 O COCO ^ CO CO CO CO W CO CM O M 1 OS rH t>- CO i i ooirio^ NN ? i7-,'T' j,ij;- >_ X r- 'v tc v i, .T; (-' -^t ;c i"* !'* r.i - c- o o +. 1 .+. + 1 1+ + I I -r. r i COO Ci rH CQ 1O COITUS IO rH C35 O ^ *O rH OO TT CO U5 CO O t^lN IO CON S -J C* ' *5f*' c^ >-- .- 1 T^t - } ta .- , CO O' O' O +++ 1 1 + tr ^ " *H- ^ C C 1 C 1 ': - 14 9 1 S IO CO CM O * CO OOO CO +4- 1 O CD O CO O CD ift CO CO rH CO ^^ 1||1 J'j i? fj r 5 if o' o o' OOOO OO v w O O H h 1 1 -f-f 1 1 + ~ z> o o C 1 o =-oc i i ! f- f 4~r 1 s 7 o ^,^^, rj o E H '"I* T" ^V *^ CO U !c' | . - #+20+24 - 0. 614 + 4.059 -10.3 ! 20+24 - 4.255 + 2. 791 +27.89 -23.39 - 271.5 + 167.4 + 636.6 - 637.4 $ 20+ 4 #+40+34 + 5.444 -4.558 -31. 91 +33.80 'V i K ' -3d) doiriw n 1 40+44 #+20+24 #+60+64 -#+20+24 + 0. 11 +14.90 n bn L>a$i sv/ IF/ +1514 +1360 -1227 - 273 -5780 -3387 +6415 + 179 'J irf 4 40+34 #+20+ 4 #+20+34 #+60+54 -#+20+ 4 + 0.13 -44.62 F fj |, ^00 .,_ fl I ni( l,; 291 +1974 - 222 +7160 +2452 + 536 -9002 +1012 ^* 7" nr/7.x >I ,!* n.d. * '( 40+34-2" (0-0 ) sin + 0.34 ^i^I + - 1)4- *{.>. lllftli- # d$n - 0.356 + 0. 266 + 2. 62 -2.10 ^ moil li^loq qolavsb orfi >J ijaliniifc nfi: *nul firfT niii n nl Jaup') r.irfj 1< m" .1 i tuS m' In the construction of Tables XXI and XXII it is necessary to compute :io1- L] uvti' --tj ."(.ijfttu'}/!l(.-> nf) T>J] . f n-> noiJaup" '.JT f(r 2 - as one factor of a product, but the more complete tabulation is best arranged as follows. This function gives all of the terms of the first order in the mass in W t -[ FJ. Let 100 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [voi.xiv. and denote first order terms in F 3 -[F 3 ] and TP 4 -[FJ by W 3 " and W 4 ", respectively. Then because of the similarity in the equations for these functions of successive ranks, the sum W,"+ W S "+W 4 " can be computed by Z 70, eqs. (117), (118), (119). The coefficients F, G, B are tabulated in Tables XXIII, XXIV, XXV. The mass factor ra' is, of course, implicitly contained in the tables. it Eliminating the distinction between and , the function is W t "+W 3 "+W<" in which the coefficients A p _ g , determined by Z 71, eq. (121), are tabulated in Table XXVI. The coefficients A M in the function (l-cos) (F 2 " + W 3 " + W 4 ") are computed by Z 71, eq. (123) and are tabulated in Table XXVII By means of Table XXVII we readily compute [(1-ecosO (F/'+F s "+W 4 ")] tabulated in Table XXVIII. Proceeding now to the determination of [(1 - e cos e) W3 (from which we shall subtract [(1 e cos) W 3 "], already included in Table XXVIll), we have by Z 53, eq. (95) in which all quantities are known. The integration gives W 3 [ TFJ. Having computed W 3 [ W 3 ], [ W 3 ] can be obtained from Z 53, eq. (95). The function [T t ], computed from Z 53, eq. (94), is tabulated in Table XXVUIa. In a manner similar to the development of equations for W, and f W t ], the right-hand side of this equation, when computed, can be segregated into portions independent of tf>, terms multiplied by cos , and terms multiplied by sin 0. It is of the form A + B cos ^ + C sin ^ where A, B, C are too complicated to be written analytically, but can be written by inspection after the computation has been performed. The equation can then be written in the three following equivalent equations: - _ W ,A. in which we define NO. s.i MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 101 From the first two equations we compute *i- *-*,-,(" (A-r)B)d0 Let J 3 = fc/J COS 4> + fcJ 8m #' * cr T- Qt ' a Then from the second and the third equations cos $ + (7 sin - (^, - -si" !' By inspection of , the function [yj can be written, and itfj/J added to [zj-ij[yj gives [zj. Finally, [W*] = [zJ + [yJ cos + [sJ sin ^ and [(l-ecos)FJ is readily computed from IT,, which is tabulated in Table XXVTII&. But this function contains [(1 - e cos e) W 3 "], abeady included in Table XXVHI. By Z 69 Subtracting Table XXVUIc from [(l-ecos e) Wj we have [(1-COS) (W.-W,")] which is tabulated in Table 102 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. S B o CM OS CO OS rH 1 1 + + CO ^rl* O t US OS US t- 73* CO t CO CM OS CO 00 rH 33 !" O t-CMrHO t-OSrH CO ^ CO CO rH CO US t-T| TJ< t^CO CM *d d H< CD rH 1C CO rH 1 1+ + 1* t CM *O rH O CO *C Cn OS OS T}* -^ t~- 10 iO rH ^ CO rH OS US CM rHrH CM US rHCO 1 + 1 + 1 1 + + 1 ++ ^ CO b* OS b CM CO CO ^ O CM CO OS ^* ^] ^ rHO b-CO COcOb- rHOOOSOS rHOCC rHCO CM 1 ^ rHCOO b* CO O O b-lO 1 ^ + + 1 + + 1 + 1 ++1 + \ 4 00 S OS CMOO CM CM CO US 1 1+ + CO t- CMOUS rH US fj< OS CD CO 00 rH CM t- t- CO COOSt- CM 1C rH CO rHCDCM t- CM OO CO CM USCO rHCMt-US rH 1C * i-l CO rH t rH ^ 1 + 1 + 1 1 + +1 1 ++ t- t^ rH rH COrH rHOSO 00 00 r-1 CO CO CO ^ CO -^t- COt- OCOOS t^OrHCM OOCOO rHOO COO CMCCCM t- rH f- (M t- CO r- rH CM COOS OS d o co co rH CO CO t - 1 1 + + CO fC COCOCO OrHCOCM CMrHCO lO CO rH rH O COCOCO -^COOSt- COOSO OOSCOCO ^ t* O rH U5 00 b- rH OS N rH rH rH rH iO rH O rH CO 1 + 1 +11+ +1 1 ++ ^tf OO b CO CO ^ O CM CO C5 OS C5 C*-^ CM 01 rH rHCO -^OS CMCCCM OOCOtliO OOOST + +i + +1+ \++\ +7n to CO O> Tfi OS CM COt- OS co OS COkOOS T^^*^OS OOOO CMlClClC rH -<^ CO CO tCOCOO ^t" CM t-^ 1C CM OS OS CO OOOS rHOSOCO rH-^CO rHCOrHrH t- rH rH 10 (MOD 1 + 1 + 1 1 + + 1 ++ CO US OOUS ^*^ rHrHCO t^"t COt^- USOSt' rH rHOO US O CM rH CO l^ O rH CM t^ O C* CO rH rHC + + 1 + + 1 + 1 ++7 + 1 4 8 rHCO , >o os O OS ^ -^ rH CM >< CO t--^"? OOl-^CM lOCDiO t-OOOSOS JM ^ T CO iS -*f 00 t CO OS OS iH t- OO OO CXI US CMOS CS-*}< COUSO CMCOrHQ rHCOT * t-CO O CM rHCMrH rH CM rH US CO CM If M 1 1+ + US CM rHCO CM CM rH O rH 1 + 1 + 1 1 + + 1 ++ N US US COCO O^O iO^t*C^ CO rHCJS ITJOS CMTt< COQiftCO kO^*b CO b* rH OS CM b- CM C^ OS rH O ++I + +1 1 ++ 1 + 1 H CO O O * O ^* CO CO b* rH OS rH 1 1+ + * ^) OS rH C"-l CO 1 ++ + 1 1 + 1 ++ CO O COb OSOS COOSO OSCOb- fHCMC CO lOb- CMrH OS^IM UDCOb- b-OT lO OO ^ b- CM iO CO b OS b *O ^* C CO rH CM CM ^ CO CN rH rH rH + 11 + ++j - 1 + 1 +14 04 OS * rH ^ r-J CO t^ t- OO CM 1 + + k* rH fM OO O CD CO CO vO ^t*CO COiOiO^S C^ C*4 ^ C3 rH lO CO CO OS rH lO iO i& rH CM ^ OO t* OS OS COCM CM rH CM rH 1 +1 OCOCM O OSlO rHrHIC CO CM COfHCM H CMCO OCMCO t^ iC rH US TJ< -*F OS CO US rH US rH rH rH rH CO rH 1 1 1 + + 1 1 + 1 + a> -^^^ CM oo t- co t~ oTco oo os co o oo cc 0> OSCO 00 TfCOrH OS %"X COCOC' CO USCO HH t,OSCM 00 =MOO rH rH C + 1 + + + + + 1 J^+ + + o COCO coco coco CO CO COOOOOCO CO 00 lO lO rH rH CMb-b-(M tHrHT^-rrt 1 1 ++++ l ++ c^ic^ ^ *^ 00*0*000 CO CO II + + 1 1 1 1 rHrHrHrH rHiHrHrH ^ ^ , ++ II ^ + 1 + rH rH rH rH + + 1 1 S 8 r< ,-.11 + f rn'rH- '. + I" . -S-S- -S- o o o - rH g g gggg CM CM gggg 1 ^. 1 1 1 1 1 +^ 1 1 1 g -g- .... ggg .... CMVCM rHr- ++ 1 1 1 14 + 1 CO fCOCO rH CO rH l-H CN * SS rH CO rH CN i 1 rH - ss CM CO CO rH >CN CM CO CN t* CO + 1 1 1 + + + 00 CO 00 00 CO rH CO g J2 5 5 f rH CM rH TJO + 1 1 1 + CO CO 00 rH CO CO O *O CM S *~ CM CO + 1 1 + 1 CM CM O O gSS3 CNCN CN CN + + 1 1 + + 4 "+7 rH rH rH rH 4 1 4 s s s s S S rH i-H 1 1 1 ^^ 1 1 + e S S 4 4 1 1 + 1 s s s s s s s s s o o o o o s -^ v "^ e ci o o < >&K -4-C <*xv*a . 8 COO. 00 CM 1 o' + + 1 1 + +7+ CM OS CM O) i ++T s is + 1 + t-t-cnco 441 1 CO COCO t-CN I ~ l "*eo a> co l-H U3 rH CO CO rH CO iC CO CO rH CD CO t~- rHCJSCOb- ^ r* ~-\ o ct " K + + 1 1 + + 1 + 1 4-+ 1 + 1 + ++I 1 CM 1-rH t.us a CN * ~~ + + 1 1 + + 1 + 1 ++I + 1 + + +I I E CO US OOO ~~-^- - - - . _r . - CO ci co CO CM CO OS CM COTtCO CO ^ iC ^* rH COlOO rH rH O Hf CO CO CMrHCN rH CMO *< CN CM ^ CO rH 01 rH w "~* -* + + 1 1 + + 1 + 1 ++ 1 + 1 + ++I 1 oS s CO Oi CM t~ H US -1 - l-H I-H go US rH CM rHCO rH t^- ^J* !* OO ^T t- rH lO lOCO CO CO CO t- OI-H us oo S CM rH CO CQ rH rH CN CO ^ coco CM rH .' + + 1 1 + + 1 + I++I + 1 + + + 1 1 ^ s? USrH CO 00 I-H CO CM CO CN'Q CO* COTCN rH C: OO ^^ CM CO rH O USCN co 10 ? n S l-H rH CN CO rH IO CO lO CO ^S + + 1 1 + + 1 + I++ 1 + 1 + + 1 l + l CN use* t-CO I X us rH gl.~ CN 00 00 rH O rH t* CO CO O coco a co io co o OOt- t~ I-H t- CO CO CO COCO CO -O "o ^r io i co 2 U^ M CN V CM p 8 + + 1 1 + + 1 + 1 ++ 1 + 1 + + 1 i + | 8 < CNHJ" ^t~ o 1 eo CM TT05 CN I- CN CMC 2S2IS CN t~ r^SSS S CO CN CO CO CO CO COMCOCO q CM rH 3 M CM + + 1 1 + + 1 + 1 ++ 1 1 1 + + 1 I + I eo eo COO t^ CO USrH CM t-i rH I~" CO TfCOcN CO I-H t^ US rH CO US US CO rH CO rH CO O fi CMCOCO W | CM CM CM US CO i-H CO usoo + + 1 1 + +++ i 1 1 + + 1 1 + \ co CO rH O M CM CO OrH ' CN CN CM COt~ n -v co *OQ CD ?S8 ?? ? ? ^ CO US rH O C 1 ! r-i CD ^ 00 I-H rH CM * *? ts: 1 ++ 1 1 1 1 + +++ 1 1 ! 1 ++ 1 1 rH CO O o: CO CM US l-H CO Sooo co a-. * U5 00 CM CO O COOS CO CO coco O CO 00 CM rH O> i-l O TT CO TP rH CN ""* i-l "^ rH. r 4 1 1 \ 1 + +++ 1 i"iVF 1 + + + +JHH. rH rH i-H rH ++ 1 1 rH rH. rH rH 411 + s* s rH rH c s e e s s CN" CM" S 8 S S r ^ 1 1 + 1 1 x *. 1 1 1 1 1 +^^ 1 1 1 1 1 e rH rH S S CM ?CM' rH rH i 1 l-H S S S i + 1 1 1 + '. i 41 + 1 1 1 1 4777 _s^ S-vS- -S.S C si S -E-5-E o o o i- OOO ,- _, ri r. ri O O O O tS C^C5 Gfo *&&r .QfcfcfcT Kfcfe **** 104 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV 1 a 5 s o - o 1 CN i t^* m CN t- rH rHCO CO rH rH S rH in CN t^ rHCO cNin rH 1 1 + + 1 l + l + 1 1 + 1 + 1 1 I++ + + 1 1 + ^ rH *s rH O rH CD r~ c? co se r- 1 CO CO 05 CM rHU? "coco rH CO CS CD m oo oo m s rHCO rH t^ in in O5 rHCN ^ CO CN CN + I 1 + (M Tt< m rH CN t- CO CO + 1 I + O t- coco ^* OS CO rH + I 1 + + 1 I + CO CO OS *- ">% CN (CO ii + i i + ^ OS CO S CO CO irio lO C5 1 + tO CO I -- CO OO CO 00 rH 1C rH C Ci -* 1 S N I coco coo coco 1 + 8 I 1 + i-l 00 ^ ... rH CN COCO CO CO rH + I I -s ' ' tc I i-i II K S S S S No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 105 8: + i + i ++ i + i + ++ i i - .- + 1 1C CS CC OS t- rH OS O * csioo o cs ^r cs esc 1C rH rH CC CO CS rH I + I + I ++ I + I + ++ I I 10 r- * co co r- o < -H t-co cs cc oo t CS OC CO tO tO t < f-rH COCS CO CM 'J" COrH t- r-i O CO rH rH CM CM i + + i i +7 +7 1 4 i+7 i i ++ ' rH CM CM 5 r- oo 00 rH 00 + 1 I + -Ht-CM CMlOOlO t- rH CO *" CC rH CO CCCMlO COi^CM TCMtC CST)>CM-9< t CM r I OO CC CM r-l rH OO CM " I rH t- rH CO CM CO + I + I ++ I + I + ++ M r- ccio oc co CS 1OCM CCO rH CM -^ CM CO CO SCOCM tor-cccs ow r-r-ocs COCO to CO to CM CM r- * -VCClCO (i-io oo cs 10 i o e CM cc t- -H ir ^ CO CO iO CO -HCOCM CMrHrH t rH CM -H CO I I++I 1 + 1 +11+ 1 + + + CO -H CM rH rH + I I + CO CC CO ^CMt-00 CM CC CM CM lOlOCCCO t- CS TT rH -^ O OO rH CO CM r^CM rH CM S8 + I + I ++ I + I + ++ I I CO OC OC I I + + I CO O IO CS CO rH CS CMrH 00 OOCC CM I + I Ci o> c; Ci o> r- CO CO C rH IO rH I + I I I + + CS t- CS ^N CO CO CC 5O CC C + 1 esco coco -f 1 CS O ^* H O^CS *Oh-rHCO CC GC Cl CS CS CC O rH-^O-H rHCS cc CS rH rH rH + 11 I 44+ II 41 44 + CMCecC COCMlOCO -HCO CCCCCCCS OOCO r^cst t COCO CSCCCSC-1 O-HCO t cOrH^e?* CMtO eciricces I CO CCCM t--H &:>; _ _ _ _ coo o fe; 106 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. OS 2 ~ *J t- CO i-H CO rH CO ^ ^ CO CO CO rH OO OS CO * CO IO CO O ^* i-H CO CM Ol CO CO* ** O rH CO ^ CM CO r-l CO rHCO -2.^$ "' - * t; ^' + + 1 1 + + 1 + 1 ++ 1 + 1 + + + 1 1 I 1 + + 1 i i CO t- -f 05 CO o CO OS o rH os' t^ rHO l-H COrHCM CO-* CM CO CO CM CM OS COCO CO l-H CM CNCOCO-< CO COO] CM ** i-l O OS rH CS s sl CO CO CO O CM CO CO OO OS t^- CO lO rH + + 1 1 + + 1 + I++ 1 + 1 + + + 1 1 1 1 + + 1 1 + 1 + 11 + l + l s iO Oi Tji CM 1O 10 CO OS CO OS rH + l CM 00 rH 1 + rHCO CO rt SS + 1 + Tt< CO CO CO CO CO CO t^ CM co t- CO 1C Ol CO + 1 + rH ++I 1 1C rH O rH 1 1 + CM 1C + 1 OS-* rH IO CO CO ss 1 + 1 rH CM CO l"* CO i t CM t^- + II + ^^Sl 1 + 1 5 rH CO CO t~ rH O rH co-* I-H CO CO 3S rH-*CM rH rH CS rH CO1O 1-OS 10 r- COCM rH CO CO rH lO COOS -*O iO OS COCM CM rH OS O 1C t- b-iO CM CO OS CO CM CO CM CO C CO 1C * CO CM r- Ol CM CO CM CO * CO CM OlOCM CO IO * Ol OSO1 Q 9 OOO * COO rH * t^ CO 05 E5 + + 1 1 + + 1 + I++ 1 + ! + + +I 1 1 1 + + 1 I4 \L + M + l + l CM CMO coco o t-CM coco 1 + rHOSt- I-H CMlO "> + 1 1 OO S iO rH b- CO I++ 1 SCM 1O Tt< O COrH rH rH rH + 1 + SS?5S CS 1-H Ol + +I 1 *' r~cs * coco rH O 1 1 + + 1 115 CO CO COO5 rHOO io OO OS * CO COCO Ol Ol Ol Ol CO l-H 01 U5 + 11 + OS CO CO rr CO rH CM CO PH rH rH l + l 8 . OS ^ CO lO CM CO OS it IO . 1 | -. lO CO rH + + + i + + 1 1 I+++ + 1 1 + 111 1 + 1 + 1 'i + l + l 1 ++ 00 00 coco OS Ol f*. CO n c* 3 irfoi B 1 t rH 00 iO -^ CS rH OS CM CO OS CM CO O rH CO rH OS t~ t^ CO Ci t~ rH Ol CO CO CO OS iO CO l^CS CM COO1CO t~- lt ^ OSrH rH CO CO CO lO lO CM O CM IQ t pH rH CM CO O CO 10 co co co rH !> ^ CO OO CO CO CO CM CM OS + l + 1 1 + 1 + 1 I++ + 1 1 + 11 + 1 +1 ++ 1 + j^ "^"iJ^L I++ S rHCO coco CM CM CS t CO M N 10 co O Ol I 1 CM rH oi us OS t- CO CO SIS CM CO OS CO lO CO O OS CM OS CO CO O CO t- CO l-H COOS CO CO CO CM CD os o CM r- ocojro. CO C5 t^ CO Ol g 3| O OS OS I-*- O -^ COrH CO O CM ^ O it CO CO CO CO r-l U3 CO CM CO 1 1 + 1 1 + 1 + ~> 1 + 1 1 ++ 1 + 11 + + +1 i + JxtL + 111 I++ CO Or-H t^S CM 00 115 o CO OS CM 1 CO rH CO rH 1 + 1OOO 00 CO I-H 00 1 1 00 CM CO + 1 + rHCOO CO CM r~ cs oi OS *O CO CS CM I-H CO O OS CO OS t- rH lO rH + 1 1 1C CO l-H r-H Ol CO O CO Orf Ol t~ I-H i 1 i 1 CO * * rH CO CO OS COCO CM CM + + 1 coo t~ o CO rt* OS CO O CO 1 s * CO O O CO CO rH rH CO CO CO COCO OO1 CO CO Ol CO IO IO O i-HOOrH 1 + + 1 1 + 1 + 1 ++ 1 I 1 1 ++++ + l 1 + + 1 + 1 + 11 + + + + 1 5* rH I 1 rH rH + + 1 1 iJLil rH rH rH rH + 11 + rH rH rH rH ++ 1 1 f s 8 l_ I rH rH + 1 s s rH rH + 1 s 8 1 1 s s S S 1 ^ 1 + '.7 s s s S S S S 1 1 1 1 rH rH rH rH + 1 + 1 s s s s CM Ol s^s 1 1 1 8 S S s s s s MM. i I rH rH rH + 1 + 1 s s >-. 1 1 ? i-irH '. + 1 rH rH + 1 8 S l_ l_ 8 S oi v 01 + '. 1 -S-S-S 8888 1 l_ 1 1 rH rH rH rH + 1 + 1 S S 8 8 CM Ol S"?8 1 1 1 S 8 S o **<" o o CS Cl CN *w O O O O O O O *w gjjj en, JOJOBJ I p 1 E^ No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 107 g 00 CM t- CO CM 7 rH oco Tf"5 OSO CO CM CO rH CO CM rH rH ^ CO Ou CO CO CM pi os r~ ""cMS CM CO *^* "* OS CO CO 10 r^- co C3 CM CO CO * CM 00 CO * rH rH OO lO ^ 1-1 1-1 '"CM CO rH CO CO rH CM 1 I+ + + + 1 1 + + + 1 1 + + 1 + 1 ++ 1 + 1 + +4- 1 1 s 0-* -r ri CC lO CO iQ -9* CM Q CO co co 25 co rH CO rH CO t- pl Pi 00 38 t- OS CO ui 1-1 as pi CM 00 rH p-l OSO CM CM plOO O) GO iO CO ~ - i" 01 co COCO CM CO CO CO *O CO rH 1 I++ + + 1 1 + + + 1 1 + + 1 + 1 ++ 1 + 1 + ++ 1 1 CM * CO pi u5 OO I*- rH CM CM CO COlO OS CO r- O* rH CO CO 55 CM COCO CMOSpHlO Pi rHCM * COrH CO t^ CO CO CO CO >OOS CM CO rH pi pi Pi CM rH rH lO I 1 + + + + 1 1 + S + + 1 1 + 1 1 + 1 ++ 1 + 1 + + + 1 1 N CM CM ^ coco CM CO CO rH t^ OCM rH 0? CM t- OS O t- 2: S " S2 a CO CO lO CM CO OS rH :-. -1 .- ~-S^ ~~ O CCrH CM CM PI 00 OS CO -fl-CM OS pi CM Tj rH CM rH 00 rH rH rH CO CM ^ CO rH 1 1 ++ + + 1 1 + jJ + 1 1 1 + 1 + 1 + + 1 1 + 1 + + + 1 1 i 00 *o 100 CO CO CO O CO CO CM CM co co r- ^j* CO iOQ CO T}* GO ^ CM CO CO TT CC TT CO rH t-- 10 *r CM r- CM 1 +++ + ' . * . 1 + 3, + 1 1 > + 1+ 1 ++I + + 1 + + 111 5 PH- CO OS 00 CO-V -r t-O CM ^ CO OT CO iVO pH CM CM ii OS CO 00 rH O t- Pi-* 1 >: > x CM pi oo co- co cc CO 00 iS St^ ^ CM A 8S3 rH iC ^* t- rH CM CO CO n rH rH CM pi CO rH CM i +++ + 1 + 1 + = s + 1 + 1 + 1 1 1 ++ 1 + + 1 1 + 111 s " 2 CO CO cc cc CM ^ CO O CO CO CO lO rH CO O **< CM lO t*- ^ g Si CO O coco 00 tffl CO t- coo o- f* n CO ' ^* CO CO CO CO OS rH CM CO CO CM CO CS CM OS CO pi CM t*- C5CM OO "V CM CC O CO O rH CM CC OS t~ t- co as t~ rH CM GO 1O rH COCO OS lO CO f- OS CM CO CM 00 t~ rH CO i rH CO 1 ++ 1 + 1 + 1 1 + 1 + 1 1 + 1 + + 1 ++ + 1 1 + 11 + i s TJ* OS CM coco CM r-- O C5 rH O O) CO CO CO O O "f rH rH SCO 00 CM OS | is ?? CM -1 CO CO r- CM lO OS t- PlTf CO Pi Ifi t** pi SO ^ CM CC CO CM piOO PI pi f-CC CO O CO CO OSO CO CO CM CO oso CM r~ 1OCO TTCM CM CO 1 ++ 1 1 -Li + 1 i i ^ + 1 1 + 1 1 1 ++ 1 ++ 1 + 11 + iO ^ *-* CM CO -H CM CM ^ os ^H lO 1 CM r-- Tf CM o ^ lO <3* i CO 0? CM t- T p 3C lOod 00 CC rH 30 cc in CM CM lO -^ OS t^ co co 10 as is 5 t~ 00 lO CO PI pi 5S?2 1 + 1 1 1 i + 1 1 1 1 + 1 1 + 1 + + 1 1 + 1 ++ CM 00 CM ^ ^* 00 00 00 CO CO CO CD CM CM CO 00 CO CO t- t~ CM CM CM CO CO CM CM pi rH g 10 id CM CM CM CM pi pi- pi Pi COlO O 00 1 OO CM O: OS CM CO 00 00 CO CM lO lO CM rH CO CO rH rHCO coo rH rH -H t& IQ CO CC CO CO CO CO t-> t 1 1 1 1 1 + + 1 1 1 + + 1 1 + 1 + I++ 1 1 1 1 444-4- + ?+T 4r?7 rH rH r 1 rH + 11 + rH pi pi pi + + 1 1 rH rH rH rH + 11 + 8888 1 1 1 1 8 8 1 1 rH *-H + 1 8 8 1 1 rH rH + 1 8 8 8888 1 1 1 1 CM CM 8888 1 1 1 1 rH rH rH r-H 8 8 8 S S S 8 888 + 1 + 1 1 + 1 1 1 1 + 1 1 1 + '. 1 + 1 + 1 1 1 1 r7+7 ^S-SxSJS ^8, S 8 8 8 8 8 8 S 8 888 8888 888 8888 9999 o 9 9 T 7" a coo ^'^ -f *** ^ sw e o -M*-r rW* o o o o o o o t" 1 l( n- )BJ 108 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. c p 6 s s CO ._ .., o CD rH CD CO CO -1 J^S C" \ f (N rH co ic tz ** 1 1 + + 1 -f Cn CO IM rH O5 CO CD t^. 1C 1C en JJ2 rH CD CO CO CO Oi O5 O5 OO !M OT t^- OO C7S O CO C^ CO rH CO(M rH rH coS 00 CO OS I-H a r-H-^CO 1^ CO t~ IN IM CO CO * rH i 1 1C 1 IN (N 1 1 + + 1 1 + 1 + 11 + 1 + 1 1 1 + + + + 1 1 + 1C IO m ic CM IN CM O rH CO t^ ^ O 1O CO iC OO iC CO 00 CO coco rH rH OO rH OS CO r- I-H CO 11 rH 1C rH rH COCO rH 00 "'S CM ICO CO CM rH O5 CD CO r- -H " rH CO CD CO rH C- 1C CO rH Tf rH CO rH CO OJ ICrH en 10 1C CO f~ OS f--* rt S 1 ++ + 1 + 1 + 1 1 ++ i +7 1 1 ++ + I I 1 + CM , i * ss 10 CO coo t- CO rt C OO -- CO OQ i i CO CO ^ rH CO CO 1 rH 8$ OC rH * O - C-l SIC CS rH 1C rH rH IN IN + + 1 ++ 1 + 1 1 4- 1 I 1 1 + 1 1 8 O i CO CO r t CM CM (M CM isi SCO COO t- b- CO 5JSS5 CD CN CO rH 00 rH rH rH 1C lO CO CO CD CD IN IM 00 00 CO CO t- f~ CO CO JO CD rH rH CD CD CO CO m in + 1 1 + + 1 + 1 +77+ + + + MM 1 + + 1 1 6 eso | -(- iJLil, rH rH rH rH ++ 1 1 rH rH rH rH + 1 1 + rH rH S g g e s e CN" CN~ S S S It"? rH rH 1 1 + 1 MM -|- | 1 1 1 1 ^^ 1 1 + 1 C *" . . g S "? g g g . . . . g g g I 4 rH rH + 1 1 1 + '.7 +7+7 1 1 1 + 1 + 1 1 +7 1 1 g 8 S S $ S g e^e.^ S S S s s s g S S g g o o **~^T~ **~^~G*~Q z*~~~~~~ N N M c c o o o o o - " ^ O -i^ ^W -K-r O O O ^ C O en IOJCBJ z .n aoci, >M ir V N- I- t .-* . J ! M i. m' , TABLE XXVIIIa. Unit- 4th decimal of a radian. V -t i I it T Sin w* w tc w A ^+20+24 -0 00005 +0. 00073 -0.0682 +0.4056 - 1 TT .01 4 | ^#3 .fi ' ! S1I-) .0 9 20+2J 0+ -0. 3324 +2.1665 T! ^ +0. 3381 -2.5547 ' +L0220 -7. 370 ?' ; SS+ 20+ J .0- +0.2654 -1.846 i)' ^ +4 0+ -0. 3622 +2. 472 '' ^+40+34 0-i- -1. 2106 +8. 472 m m /7 109 0/00 .0- ;.f)0 I 110 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXVIII6. [Vol. XIV. Unit- 4th decimal of a radian. Cos ur w-i w U) UI > w tc u> w - e+ -0.00004 +0. 00038 -0. 0032 -0.0005 -0. 4803 t +20+24 2t-^+20+24 +2d+2J 0.00000 +0.00001 +0.00004 -0. 00023 +0. 0237 +0.0050 +0. 0726 -0. 15101 -0. 0318 -0. 4507 + 13. 16 - 0.81 - 30.86 + 1.31 2s +49+44 t+4>+40+44 +0.00004 -0. 00038 +0. 0153 +0. 0181 -0. 0770 -0. 0814 + 3.88 - 16.23 - 14. 38 + 61. 80 2t++20+24 - t++20+ 4 r -0. 6099 -0. 1412 +0. 1220 +3. 634 +0. 6843 -0. 8554 + 10. 77 - 31. 34 - 49.04 + 118. 9 I/ * + I +0. 0524 -0. 4182 ? , +40+34 Vi+40+34 -0. 0411 +0. 7660 +0. 2314 -5.430 +221.0 - 694.3 9' +(/>+20+34 +0.0460 -0. 3060 + 14.12 - 26. 01 i' f+^+60+5J +0. 3718 -2. 0745 -287. 1 +1309. 3 (0-0 ) sin _, _. 5 v q 20+24 t-^+2(?+24 - t+^+20+2J +0. 0490 +0. 0144 -0. 0542 -0. 2949 -0. 0705 +0.3582 5 t +0. 5810 -4. 7017 5 5 t +40+44 ^+40+44 -0. 0618 -0.0453 +0. 4650 +0. 3389 >? +^+20+24 -0. 0010 +0. 0290 1 20+ 4 t-^+20+ 4 - t+^+20+ 4 -0. 0364 -0. 0107 +0. 0402 +0. 2398 +0. 0585 -0. 2889 * ^ +4 -0. 7670 +5. 4890 3: t +40+34 ^+40+34 . +0. 0459 +0. 0336 -0. 3715 -0. 2709 ^ t+^+20+34 +0.0007 -0. 0220 m' 3 m' 2 m' No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. TABLE XXVIIIc. [(l-coet)Tr"] 111 Unit- 4th decimal of a radian. Cos 10 Ml va V 20+2J 26+ J +60.76 -20.57 -152. 6 + 69.8 m' TABLE XXIX. T7nit-4th decimal of a radian. Cos te- -! w * w < 1C vfi to V 20+2J 20+ A -0.00004 +0.00038 -0.0032 +0.5106 -0.6292 -0.0005 -3.0290 +3.463 +13.16 -30.9 (8-O t ) sin r ~~ e ' V 20+2J 20+ J +0. 0092 -0. 0069 -0. 0072 +0.0094 S MS 3 - 1 ~ -e J " l/ * "* "'": m' These developments cover the function 17 within the extent of our tables. This does not mean that W is always inclusive of all these terms, but that these terms occur in one or more of the tables. With the exception of [(1 e cos e) W], which contains W 3 W t ", W is to be under- stood to mean F== Fj + W ^ + [ jpj + ( ^// + Wy + Wf ") W= W,+ W t ' + [W3 + (W,"+ W t "+ F 4 "). The ascending powers of w, TJ, 17', f are selected independently in each function. To avoid along series which is analogous in construction to T 2 , the function W t " + W t " + TP 4 " is not tabulated. The sum of this function and Tables XVII, XVHI, XIX, XXIIa gives W. Since W is so long and we only need W, it is not tabulated. The function W= TPj_, is given in Table XXIXa. It is convenient to collect here [(1 e cos e) W], which is required later. The function is given by the sum of Tables XVI, XX, XXI, XXVIII, and XXIX, and is tabulated in Table XXIX6. We shall also need the function Evidently S can be written by inspection if Wis tabulated. If the double headings are retained in the construction of H the mass factors and ranks are explicit as in the construction of W. If W is not given, we can write by inspection E, (previously required in the computation), E 2 ' and [EJ from F u F 2 ', and [FJ, respectively. The remainder, namely, ,"+"+/', can be written from W 2 " + W s " + W 4 ", i. e., by inspection of Tables XXIII, XXIV, XXV. The function 5- E is given in Table XXIXc. 112 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. ^ HI aojl CO CO CO CO CO t".' ,..*,-. > -i..j 3 -f- 1 1 ' Ia ! ** Ml l!i: " i : I OS OS OS iO iC iO f i i O CO OOO CMt^cor-co CO CO CO CO CO M 3 r-t ^ rH i I CO CM rH rH CO" f-i 3* rH lO pasn M3M, mnnjoo aiqj up sraiai aaxSap paooas XX 1 ++ + 1 1 1 1 I++++ sis s?? ss U9t- S t~ CM CO CM CO I 1 -- iO CM CO CM OJO WCO f CO * 1C CO CM K5 00 O OOO O rH VC rH COCOOO OO CO CO CM S o o o" o* o* co o" t-t oo" o' us' O CM' O: o O' ^ CM O* rH rH 1C 1C' CO -^ t-^ l.O O* ^' rH ^' CO Q 1C CM COCOrH rHrHt^COrHCM CO OrH +11 1 ++++ + 1 1 1 1 ++I l+l 1 1 1 I+++I++I+ ++I 1 CO 00 i i rH i^ t~ CM O C*l OO OS t"- rH \fi CO CM CO CM GJ> 1 o* O O' rH* ^* rH CM* O* O' id rH CO CO O* O" CO rH 1 1 ++ 1 ++ 1 1 1 + 1 1 ++ 3 CM 00 CM lO OS* bU3rHCOO ^ i t O CM ^* r-4 lO CO CO ^f CM rH CD OS O yoj<^. .0-r 1C O t^ CC IO 1 t * CM CO CO 1 1 + +++ 1 1 1 1 1 1 + t--f-^;; , OS 10 S id rH CO* lO rH CO OS CM CM lO CO t 1 " OS CM ^ i-H H pH ^ * rH ?|S|S| rH rH CM rH O rH iO rH CO CO lO ^* rH rH CD CM *& ______) T ++ 1 +111+ + + + + 1 + 1 ++ 1 1 + 1 1 + 1 1 1 + 1 1 + + 1 ++ rfT S i,J ilU'Hll ... , 00 i<) i /i >ulv; ,pM (i y> 4-- I '] 1<> noiiqo'M.'i iii) J.ti// . 'da) oiii CMCM^CO lOCOOOCOOCCOrHCM CTSCMCMCTiCMGOSOCnCJlcN COCOCOO r-COCMCO-'t 4 COCO CMi-HOrHOOCOt^t^CO t iOCOCM OCO CM 1 ^ CMt^CMCMCOeft CMCM 1 ^ rHCOCMrH rH CM rHrH CO rH T(< lj iiu}:-. hnjj 11+ 1 +++ 1 + 111 + 1 + 1 1 ++ 1 + + 1 + 1 + 1 1 ++ 1 1 + 1 1 ' ''/ OS M 00 CO O CM 00 S Tp OS OS CM rH 00 rH + + t 'r :i 2 S CO v.iu >- I'v'-iv; : " n 11 my\ ,- I)] ;mii )'J')Ho3 O-t ^lIOli!'* . ii- i ;'(')'/i^J r*t (i h- >J*;li ^X/ .\/7. ~A7. .Vf'A aoWuT 1<> >m;^ v'/l/.X ! ^ ^ ^ ^, ^ '^ ^^^^^ ^^,^^, ^,^ ^,^,^,^,^^^^, T ,^ I ^n-n CM * O4 Tji CM CO CO CO tO TCMCOCM Tf 00 CO CO lO CO >O t~ CM CM -d ^ ^ ^i ^i ^ ^ ce> co co co ^ ^ ^ ^5 ^ ^S ^ ^ ^ ^ *^ ^) ^S ^S ^ ^S ^ + ^. 4. + + CM ^C^CO TTCMCOCM -^00 -^C-JfMCOCM ^^J*OO -VCMCO C, " "(NCM I'fXO ') CM /> No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY noiptujsuoo aq; nj o >o eo i-i e> ! n o + +1 I + 1+ + I 3 v i oo + 1 M - 01 -f k H -f ^ ~- o *~^ o ^^ *o C"4 25 10 o ^ ^ c rt s-i o ^o oo c^ i < o 35 -^ < C^ <-^ ^ f^ fH ii+7 i + i + i i + Oil- CSJ 4- ~J ~ COWIM 00 I l+l ++ 110379 22 8 ' ^-i J * f > 1 1- 113 114 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XXIXa Continued. W. fnit-l". Cos !0-l ur- w w w* w<> w vfl 3 +40+44 - +40+44 +80+84 + 2549 - 3089 -11300 + 2164 + 8155 + 76250 -11.9 + 3.9 -8.9 1 + 70 (lOUOjJ/l ] W +40+54 +40+34 - +40+34 f+80+74 -11449 - 2661 + 6865 +50005 + 42212 - 27530 - 4540 -304611 + 1.9 +36.4 -20.3 +83.8 - 23 -241 +118 -248 -M" +40+44 +40+24 - +40+24 +80+64 +26091 - 1356 - 2204 -73583 - 71730 + 30293 - 20846 +400009 -10.1 -25.5 +28.0 -41.9 + 83 +153 -153 +284 1* f+40+34 - +4(9+ A +80+54 -13756 - 3317 +36006 + 22165 + 18452 -172164 +10.1 -12.4 +16.6 - 65 + 64 -104 fr, t+40+34-. - +40+34 -JT f +80+74-2" +40+44 - 2011 + 1808 - 2381 +14204 + 14604 - 13617 + 18919 - 88026 - 1.9 + 1.9 - 1.1 + 5.7 + 14 - 14 + 10 - 42 ? -' f +40+44 -.T - c+48+24-S +80+64 -.F +40+34 - 554 - 3545 + 3827 -17503 + 140 + 22886 - 27870 + 99584 + 0.5 - 1.8 + 1.3 -3.7 - 4 + 14 - 11 + 28 (0-0 ) sin - r-. -; o. g n 20+24 +45+44 2f+20+24 + 767. 7 - 2820. 9 + 5210 + 1.265 r * ? 2. 19 - 5.34 + 0.78 - 0.55 +13.6 +22.7 - 6.0 + 3.4 1 26+ A + ^ +40+34 2 +20+34 - 570. + 2421. 1 - 4950 - 0.455 + 1.63 + 5.94 - 0.58 + 0.41 -11.0 -37.3 + 4.8 -2.8 f 40+44 +20+24 - +20+24 2 +40+44 + 10.93 - 2.19 - 1.92 + 3.12 iV ? 4 40+34 E - 570. + 6624 + 2421. 1 - 47448 - 4950 - 0.455 +23.8 + 5.94 - 23.00 -221. 9 - 7.2 ,y + 4 - + 4 -18540 + 8414 + 123024 - 57880 -73.4 +36.0 +572. 4 282. 2 11" + 24 +25564 +10478 -157424 - 70250 +87.3 +55.2 -652. 8 -374. 8 ," <+ 4 -15678 + 94846 -69.9 +438.6 rt '+ 4+^ -25564 +22012 +157424 -121258 -511232 +359162 -23.1 + 9.9 +165. - 77.0 f 1 + 4 + -T +23524 -12048 -150306 + 76364 +498328 -261640 +14.8 -5.2 -112.0 + 45.8 (0-0 ) J coe \> t + 4 - 0. 356 + 0. 26G + 2. 623 - 2.100 m' m' 2 No. 8.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 115 TABLB XX IXo Continued. W. as s I 1 Unlt-1" Cos w* W w> - I [+ 6+ J - 293. 4 + 913. 5 - 1400.1 . t+30+3J + 338.1 - 2315 + 9277 , i+56+bJ + 42.9 - 284.3 + 948.2 1+78+7J + 10.5 79.2 + 288.5 5 $+30+34 + 6172. 8 - 20580 + 86549 -*+ 0+ A + 511. 2 - 2834 + 7746 *+ 0+ ^ - 467. 9 + 2335 - 6259 it+50+54 - 2217. 1 + 23971 -157308 fc+30+34 5.8 + 539 - 3713 S ^~ "r |t+70+74 e!j- 364.3 + 3259 - 15083 J $+30+24 - 8375.5 + 20591 - 95913 -fctJ - 1023.4 + 4443 - 10251 |+ 0+24 - 92.3 - 444 + 3212 |+50+44 + 3383.4 - 34097 +214736 |+30+44 - 138.6 + 608 - 1089 $+70+64 + 583.3 - 4805 + 20748 f i <+ 0+ A - 5022 + 24269 l +50+54 -31492 +154465 +30+34 + 8169 - 18309 t+30+34 - 59 + 7449 . +70+74 +12392 -182737 + 0+ 4 + 1133 - 5174 |+90+94 + 2342 - 25879 *?' t+ + 6153 - 26311 + 0+24 + 988 - 15732 +50+44 +88784 -357566 L5 _. +30+24 -14498 - 3083 1 2 X +30+24 - 1309 5 I& JK 'JC +30+44 + 4878 - 31947 t+70+64 -37540 +626187 : + - 3487 + 12764 -1 f+90+84 - 7382 + 77025 r ; \t+ 0+ 4 - 5966 + 27801 1 tf+50+34 -61877 +192684 \ t +30+ 4 - 1709 + 26144 1 I I t- 0+ 4 + 1693 - 6306 f+30+34 - 5297 + 28649 $+70+54 +28418 -377278 f + 0+ 4 + 6846 - 30542 +50+4J-J - 3191 + 15590 1 tf+30+24-JE 1 - 806 + 10210 i ,+30+34 - 3829 + 33852 ; ,+70+64-2" + 932 - 14562 ~' ,+ -2 1 + 1762 - 6460 mf X 116 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. 1 IO 00 IO O) O 1 r. CO ^f* CO CO rH rH C6 00 INrH 8S * ' rH CM rH rH rH rH -3 1 4- 1 + + 1 1 1 " O rH -"if M- rH kO rH L" ' \tf i- C! r-J 01 OS CM jrfo COCO COO* *3 S gq iS CO OS * CO *? rH & 4-4-4-4-1 1 4- 4-1 1 4- 1 IN O IN CO O CO CMOS 05 10 tO rH CO M OS CO O g *4* CM Os O CO CM co COOS g>0 coo CO OS rH rH 00 CM rH IO rH TC CM CM rH CO rH rH ^ rH rH rH 1 14-14- 4-1 1 4- 4-4- 1 1 4- 1 4- 1 1 1 4-4- 1 4- 1 14-4- 14- + O> T|- 08^ COCM COIN 00 OS BS fl< OS CO CM CM rH 10 COCO t~ O * 1* t~ CO S a O IO CO CM rH ^ rH CO rH *H CM ^ t-ilO rH 00 00 COCO OS rH O OO CO rH 00 t-lOO 00p CO OS CO IM t^ t- O O COiMt- CO 1 '? (MOOr-t CO OO (Mrtr rHCO rHCOrH CO rH co rH CM rH 14-111 ++ 1 1 4-1 4-4- 1 4- 1 4-14- II 4-14-4-M 4- I 1 CO iO rH CO rf rH t- O CM OS O CX ^ * CM r-H CO COrH SS rHO gg CO OS Tf CO CM t^-tO rHrHCOCO OSOS OOO 0000t~ CMCM IM CM OO rH O 1 a O O O OrH O CO OCM 00 rH rH ^ O iO CM rH ^< rHrH O O OO O O o 4-14-4-4- 1 1 4-4- 1 + 1 1 4-4-4- 1 1 1 4-4- 1 1 4-4- 1 4- + -=>' 1C 1 x i* R ? j J* rH t~ O O O O O to co ^ CO 00 osco co (N IN t- << CO ~ CO t-ooo IN CO CO iO IO CO O O C^ CM rH ^4 rH O IO CM CO CM CM O O O O O O S CO s M a ooo oo 14-1 II oo oo 1 1 o OO ooo 1 1 1 OOO OO O O OO O O 4-4-4- 114-4- II 4-1 o 1 ' < c> IO IN rH rH IO CO (M t^ CO CO CO 1 *~ CO s * IM IN 00 co os Tj OS rH O S S 88 88 S 8S 888 . . t ft*' s o o oo oo o o o oo ooo 00 00 o 1 1 4- 1 ."Ti 1 1 II 14- + tK-f-aJi- f o CO i-H rH rH CM rH rH *?X> * rH tO . 80 888 888 88 s !*.'()! nj. ;ww o o ooo o' o' o' o" o ++ 1 1 1 * X o N x, t*) ^^ a 1 II 1 1 '3 CM * CO d c^ o O t* t* X ic r^ oi .-i r-4 o 11+ + 1 4- t t-- to c^ o co C5 cc ^ 00 t i ^ CC O O CO CD C** X O 00 * O O O . l-f 1 1 + 1 i e o to S t-~ oc 1 C " < O O O O 11+ + 1 + t" e o 8 8 8 o Ir o o o o o 1 + 1 1 + 1 ' 6 CO CO OC CC t~ CC Tf c'o" o o' o' o' 11+ + 1 + C S s + + 7 ^- i- *^s v v v ? B- P* F *=- O (T- C- .-.I 118 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXIXc. [Vol. XIV. Unlt-1" w-i ;-* Cos U)0 W w<> w w +20+24 - 90.5 + 302. 7 - 478. 2 2t+40+44 - 26.6 + 125. 5 - 270. 3 5 20+24 + 589.8 - 1571.9 + 1680 - 1.82 +12.00 1 + 0.42 - 2.10 +40+44 + 616 - 3638 +11175 - 0.42 + 2.10 2+20+24 + 23 - 161 + 439 2 +69+64 + 219 - 1451 + 4616 *' 219+ 4 - 106.1 + 360 - 517 + 1.81 -10.64 t+ * - 43 + 161 - 269 - 0.08 + 0.45 s+49+34 - 760 + 3906 -10778 + 0.08 0.45 2f+29+34 + 52 - 143 + 87 2 t +69+54 - 314 + 1874 - 5403 f -0. 317 + 1.63 49+44 -1679 + 7272 -13527 -0. 633 +10. 02 s+20+24 + 274 - 63 - 1.20 +66+64 - 3474 +29267 + 3.60 - +29+24 + 1156 - 2171 - 2.40 2t - 0.21 2f +49+44 + 180 + 113 + 0.21 2e+89+84 - 1375 +11897 if 4 +0. 227 - 1.30 40+34 +3690 -12966 +19401 +0. 340 -19. 92 "" 5 ~ +20+ J + 222 - 1234 + 1.96 +29+34 - 769 + 2197 + 0.01 % bS e+69+54 + 9240 -70866 - 7.25 - +29+ 4 - 646 + 1806 + 5.27 2s+ J + 99 - 444 + 0.04 2t+40+34 - 109 - 922 - 0.04 2f+40+54 - 846 + 4256 2J+80+74 + 4012 -31827 l" -0. 039 + 0.24 40+24 -1780 + 4725 - 5354 -0. 039 +10.42 s '3 ~ f+20+24 + 499 - 649 - 0.32 t+60+44 - 5930 +40905 + 2.86 -+20 -2.54 2+ 24 - 65 + 285 2 t +40+44 + 980 - 4150 2 t +89+64 - 2890 +20791 j 1 49+34 -2 - 101 + 493 - 1128 + 0.11 +29+24 + 587 - 2983 t+69+54-J - 193 + 1759 + 0.14 - +20+ J-2 - 0.14 2+ 4+2" - 192 + 705 2 t +40+44 + 298 - 1876 2+80+74-J - 65 + 616 mf m" No. 3.] MINOR PLANETS LEUSCHNER, GLANCY. LEVY. 119 TABLE XXIXc Continued. fnit-l" Cos tc w - $ + 0+ 4 - 31.4 + 131. - 255 E+30+3J - 48.0 + 193. 6 - 360 "" J +50+54 - 15.2 + 81.7 - 201 [E+79+74 5.2 + 34.7 - 107 1J $+30+34 + 1304 - 8173 +30282 -$+ 8+ 4 - 196 + 506 - 598 $+ 0+ 4 + 34 - 146 + 292 $+50+54 + 356 - 2212 + 6781 $+30+34 + 1 67 + 294 $e+70+7J + 138 - 999 + 3437 ,/ ( ^+30+24 - 1361 + 7468 -25691 : + + 29 12 - 155 _|-50.|-4J - 482 + 2635 - 7209 -i-39+44 + 52 - 197 + 280 $+70+64 - 207 + 1348 - 4176 j> $t+ 0+ 4 - 625 + 3058 $+50+54 - 7151 + 70387 -$+30+34 $+30+34 + 5478 + 18 - 5874 + 1924 $+70+74 - 2111 + 17665 -$+ 0+ 4 + 187 - 590 f,e . $+90+94 - 771 + 6931 / + 0+24 - 231 - 1142 +17640 -159928 +30+24 - 9842 + 1346 i +30+44 - 892 + 3699 e+30+24 + 106 - 2494 j j-j-70+64 + 5918 - 45149 + $+90+84 + 2513 - 20914 ^ ^ k+ 0+ 4 - 507 + 2729 1 +50+34 -10202 + 84314 1 +30+ 4 + 1055 - 678 j - 0+ 4 - 100 + 387 j +30+34 + 871 - 2817 +70+54 - 4065 + 27951 f $+ 0+ 4 + 601 - 3122 i +50+44 - 423 + 4435 L QA J^O J V f |~*X/-^fc d ~~~ + 285 - 356 j +30+34 + 426 - 2410 . +70+64-2" - 108 + 988 ~ n *+ -2 - 106 + 402 m' tnlqii fn; 120 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XXIXc Continued. i- Unlt-l' Cos .. w - * w ^ , f 20+24 + 1568 - 8912 +3.6 -23.3 60+64 + 5879 - 31559 +3.6 -23.3 gY 20+ 4 - 2385 + 11662 -4.7 +26.6 20+34 + 2238 - 1015 -2.6 +18.4 60+54 -21644 +102003 -9.9 +59.1 1) I)' 3 20 -0.2 + 1.7 20+24 - 1723 - 7588 +4.0 -27.1 60+44 +25396 -103013 +7.6 -43.2 V s 20+ 4 - 1160 + 5960 -1.4 + 8.3 60+34 - 9257 + 31500 -1.4 + 8.3 } ijj 60+54 -S + 1040 - 6697 +0.3 - 2.1 20+24 - 5354 + 25370 -61855 sew j 1 tf 20+ 4 + 2492 - 12023 20+24 -2 - 53 + 989 -0.1 + 0.6 60+44 -J - 1285 + 7413 -0.1 + 0.6 1 j j t> L" *-h (0-0 ) sin tui 4 t -ft ! Writ i) 20+24 - 0.55 +3.40 swi 1 20+ 4 - i ) "?' J di'f" U' '. * - 0.26 HK*' 801 '** - L3 --ft '" ':( + 0.20 TO' m' 2 COMPARISON OF TABLES. As a computer would discover in constructing tables, and as will be evident from an appli- cation of the method to a planet, the coefficients in Table II and others of the same form are given with unnecessary accuracy. Although so many digits would never be required, except in a much more exhaustive development, they are given, for completeness, as they resulted from computation. In all the tables whose constructions involve the multiplication of trigonometric series, the errors are difficult or impossible to determine. Although v. Zeipel's manuscript, which the author generously furnished for comparison, is of assistance, the computations are not entirely parallel, and comparison is not always possible. Many of the computations are so long and NO. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 121 complicated that the origin of certain discrepancies is obscure. Aside from possible errors of calculation, differences are due to the independent adoption of the highest powers of m', w, ij, 17', f, and the number of arguments in a given series or product of series. In most cases our series are more complete than v. Zeipel's. Whether or not the extension of the tables increases the accuracy of the result remains to be seen from future applications of the theory. Tables II-XV. -The discrepancies seem to be due to v. Zeipel's errors of calculation and to their subsequent effects. The larger number of these errors have been traced in the manuscript. Tables XVI, XVII check satisfactorily. Table XVIII. The bracketed quantities in the first three columns are in error through previous discrepancies. We did not discover the source of the general disagreement in terms of the third degree, second order in the mass. These terms do not affect v. Zeipel's subsequent tables, since they are of order higher than have been included. Tables XIX, XX agree satisfactorily. Table XXI. The discrepancies are numerous and their origin is obscure because of the very long computation involved. In addition to performing a complete duplicate computation, the terms of first degree and a part of the computation of second degree terms were checked by the solution of the differential equation in the form given in Z 64. With the exception of three or four single instances, the discrepancies occur in two groups, having the following probable explanations. The neglect of the term in Z 65, eq. (109), by v. Zeipel accounts for one group of differences. The other group can be fairly well explained by an error in the addition of second order terms in +- fa to #, -^#.. A & Assuming that for these terms he added w, and, correcting his table, three discrepancies are removed and two others are improved. Table XXII. Considering the disagreements in Table XXI, Table XXII checks satis- factorily. Table XXIII-XXVn. These tables, like II-XV, are simple in construction, and the discrepancies are due to errors of calculation, or they are the result of previous ones, with the exception that some quantities have different numerical values because they are more inclusive. The latter have been indicated by ( ). Table XXVLLi. The discrepancies arise from the quantities in parentheses in Table XXVEI. The omission of the term depending upon the inclination is justifiable in view of its magnitude. Table XXIX. The discrepancies are numerous and striking, but, since v. Zeipel does not give the formulae of computation, they remain unexplained. The remark is made (Z 77), "Die Berechnung der Funktion [(1 e cos ) ( W 3 W 3 ")], welche eine sehr komplicirte war, wird hier nicht im Einzelnen mitgetheilt." For this reason the development of the formulae which we used has been included and the auxiliary functions 2[TJ, W 3 , [(le cos e) W s "] have been tabulated. The differences are not serious because of the high rank of the function. Our table is deficient in certain terms whose computation would be long and the omission of which is justifiable in view of their magnitude. ',i-ffttl -jilj i: i :;// i <: r\ v;?"t nvtA'fi PERTURBATIONS OF THE MEAN ANOMALY. For clearness some of v. Zeipel's developments will be amplified and repeated in an order which we found more convenient. The determination of the disturbed mean anomaly is accomplished with the integration of Z 9, eq. (47), (which implicitly contains Z 8, eq. (38)). By Z 9, eq. (43), d = %(e-esms)-g' = 1 s g-g' The differential equation is repeated in Z 78, eq. (124), in which is emphasized the fact that d W the arguments are functions of both e and 0, as is the case for r- 122 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [voi.xiv. If we observe the character of as it is expressed in the definition and recall that we have admitted trigonometric terms in 0, multiplied by t, it is evident that this argument, which is a function of the disturbed positions of the planet and Jupiter, is not periodic, but varies con- tinuously with the time. In the foregoing equation g and g' can not be regarded as angles which are always less than 360. contains, therefore, a nontrigonometric secular part in e and a periodic part in 6 and s. If we write 6=(0-[0]) + [S] [6] contains the secular term in s as well as periodic terms. The segregation of terms of different type can be made explicit by the introduction of fe Z 78 ' ! where i? is a function of s and d lt 2 , 6 3 are the periodic parts of ff [0], i. e., they are entirely trigonometric functions of e. This covers the condition that 9 t can not include trigo- nometric secular terms in e. By definition of tf and Q i i *? = [fi = [/??,)] - ^^ ds [_dJ ds where [n'tis*] is the long period term between Jupiter and Saturn. The derivative of (125) is KJ n,. <-u<>;-4 ; .fe'nnoionib ro quuig aiio aininmA laquhx .7 vu ,(60Ij ,pil) -JTB T->I!> in .noifjiliJ >?> lo snon-j at emh aBtjOTO8tL j Q From the Taylor's series T- is written m (127). This is the differential equation for tf, the a right-hand side of which can be computed. Substituting 3- in (126) and equating functions of equal rank, we have the differential ' TOD gJttlHil equations (128j 128 3 ) for 0<, which can be integrated in succession. Before integration we convert eqs. (128) into differential equations for ndz as follows: ii'' r*Siou ifiiii ori.) lo i , .. , . ,. . . , Joo WIR n8z = (7^3 - [n<52]) + [72^2] ' r . , 00 /, , .N = 7n?2j+ r^2 2 + n^2 3 H ------ \-[n8z] Z 88, eq. (144), where n8z t is not only a function of first and higher orders in m', in which the lowest rank is i, but is entirely trigonometric or periodic. Then r iri* : 'f" o 2 r Z 9, eq.(46) gives flfe-[nte]-r |^ x (*>) + 0, (&,e) +6 3 (&,e) + ...... +wi? sin e+ (n'8z' -[n'dz']) and [n52] = r f^{t>-| + [7i'fe']4-c'-//c] Z 88, eq. (145), where it is to be noticed that [ndz], unlike [ W], is not free from terms in e. Subdividing the first of these two equations according to rank, we have Z 79, eqs. (130), in which n'dz' + [n'dz'] can be neglected. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 123 Differentiating eqs. (130) partially with respect to e, substituting in eqs. (128), evaluating the right-hand sides of eqs. (128), we have eqs. (131, 131,), in which the superscript indicates that only terms of first order in the mass are included, and where the argument tf replaces the argument 8. For purposes of calculation, the integrations are arranged as follows: In + W 3 "+ F 4 ") consider first only W t "+ W 3 " + W t " in the integration of eqs. (131). The integrations will concern only part of the terms of first order in ndz l + nJiz 2 +ndz t . It is shown by v. Zeipel that the integration for all three ranks can be performed conveniently at the same tune. Let this part of the function be indicated by enclosing it in ( ). The integral + which is a trigonometric series, is given by Z 80, eq. (135), in which the coefficients L p . q are defined by (136) and are easily derived from Table XXVII. The coefficients L p ^ are tabulated in Table XXX. The remaining terms of rank one which are of first order only, namely, ndz^ (ndz^), are given by the first of Z 81, eqs. (137), in which TT,, IF,, [FJ, can be written by inspection from Tables XVH, XVm, XIX, XXIIa, The function is tabulated hi Table XXXI. The remaining terms of first order in ndz 2 and ndz 3 are given by the sum of Z 82, eqs. (139) and (140). The function ___ is given in Table XXXH. These developments complete ndz (1) within the limits of the tables, and we next consider ndz (2) . We shall limit ourselves to functions in which the lowest rank is the first or second. Consequently, ndz^ contributes nothing. m 't Anv function of second order in the mass and first rank must contain the factor r and in itr the given F (t>, e) this factor occurs only in Wf. We have, therefore, by Z 80, eq. (131,), for one part of ndz^\ indicated by parentheses, >) = f{(l -e cose) F^-tU -ecoas) W]}dt This function is tabulated in Table XXXIII. 124 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV.. co- co i* -T * .0 CO 2 o o co" rH CN 2 O 1 CO CO CS CM lO CO CO O CM O **< lO CO lOt* JOO COCNJlO lOO O3 rH iTiCOCO QOrHCOlOrHt--. O> OS rH^ i-HCO CO M C^ICS lOCOCO rH N rH b + + 1 1 + 1+ I++I +1+ ++I.I 1 1+ +i 1+7 +11 + i CO lO 1O CO CO Ij O CO CO i-i OOJO -^C^^iO 1 C^^d O CO CO i 1 GO CO COf-H COCOC^ rHCOTt< lOfHrH rH O IOO3 C^rH ^COlCCO ^ CNO MrH t^ lO COCO *OCOlO Ci CO rH CO N t* CO CO + + 1 1 + 1+ I++I +I+++II 1 1++I l + l +11 + CO OS rH CM CD CM O OS rH lO OOO"^ OIOOO3 COOSCO CNOrHO *C t^-00 COt^- O CO^ CO W C^J t- r-l rHO *^COC^ iiO-CO rHlJSc^^T 1 C^ lO COM CM rH COOOrH r-l rH iO -^CO COCO rH lO O rH t^- t^Ot CO I s - C^ itrH^COMCO ^* cs + + 1 1 + i + i ++ i + i + ++ i i i i + + i +7+ii + rH 00 CO C<> OS CO CO to CO O CO OS CO CO ^s II1TJU5 rHt^-OiO fH-^CO O rH O rH -^ ^i CM COCO iQOOO CO'JJ-^cO tN.^'cOlO^CO MrHCM OSrH frHCO M CD ^ rH ^ i 1 + 1 + 1 + 1 ++II +1+++II 1 +++I +1++1+ + rH U5 t- 10 10 00 "5 rH rH CO O OJCOO CO^rHCN I>- CO 1C COCNrH-^ O* COM COCO COCO^ rHCOrHO CD US -^rHO OCS lO CMrH t-rHO CO 1 ^ COOO4 OOrHOarHOO COCOCOCNIOCMCD 1O rH rH rH C lO C^J + 1 + 1 + 1 + 1 ++ 1 + + 1 + + 1 1 i 1 ++ +1 + ! + t 1 + 1 CO CO GO TJ* CO CO rH CO iO CM CO s s CNCM rHiacp 1 -* 1 COOJCO lOCMt^-OS Oi 2^ U^rH CSCO I>-COOCN f rH rH 15 t^- rH C^ s " CM rH CO rH ^< + 1 + 1 + i i ++I++M+III i+i+i i+ i ^+7 S3 iO CO *< CO in 8 CO CO r-i CO CO CS 00 00 OS COrHCM t^t-' COrH* rH OlO CO r-ICO t^CO COOSCC IO(MCO~ 1OOS (N*t*CO 1OCO1O CN lOC^l CO WCM rHO COOSCM COrHCM rH rH rH T)CO i-irH COCO rHrHO * CO-9- COt~ IM t- rH rH CO *-' rH + 1 + 1 1 + 11 +1+ +11 + 1+ 1 +1 ++ 1 + 1 ++ 1 i w m cxi rH __ _ S r-i r-i SrHl-*- CO CO t 1 -^ COCO COrHrHiO t^ CO t CO COCOi 1 CMCMCDO CO rH rH OS CO rH O i + 1 1 + 1 + 1 + + + ++ ++ 1 + + 1 l+l +J^ +11 + 1 tO 00 CO 00 ss lO 00 rH OOOlCJ CO OSt^- OSOCO CMCOrH CO ^O CO CMOSCO CM OrH lOCOrH CO lOOS CMCOrH rHCOO rH COCO CO t-COlO b* rHCM CM i ( ^ CO lOt^- rHCTS-^ lO^TCM ^ O rH t* TfCOrH O rH^ f ( O CMrHrHrHCO rH CMrHCO rHCOrHfiM^CO rH rH kA rH i + 1 1 +11 1 +1 + 1 + +++ + ++ + 1 ++ + ^+ id id C~J CXI CO CO cIS CO CO rHCOOOrH CC CO r^t^OO JA^ OO CXI (M OSCNfMCS o o o rH rH l>t~ COCO COCO *^ ^~o ^^o ^^e **"o ^~o ^~c ^*o *~~^- ^~^- ^~o ^o ^~o s ~i x ~-C ^^ **~ l-f MM iJW -~~ ^~ ^-~ - ~- -- ^~, jt-3 -^ j^ !*-C i-C ;-*; Ik^ <; -C -^ -C ^ ^ -; -c ^ *-:;--- (fl JO^DB^ H Vo. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 125 17.3TX ajaT 00 rH {'''/***;- i-. eo 3? I-*- CO CO CM t * O rH m OJ CO iS Ol rH rH, -. 1 + 1 1 1 + + + 41 1 + "" iV* 4 tV--*!; 1^5 i** i& O 01 00 S3S2 _- c^> oo - .\ll t i ( N CO . 1 47 1 1 44- + + 1 1 + sss rH rH rH Bo^0 I &* ro O5 iO " CO d rH CO t- CM 00 O _ H -. r i + i 1 1 44 + II 1 + -..- " OS t- *? fl "*" rH t2 2 ^H i ^ s r^ C 1 ! CO 'i' ^ ^ S S 1 + 1 i i ++ 4 II 1 + t -4- ? WU*I -i- V-i-j 00 iC CC Cl OO * CO T r t^- ifi- 10 sr 3 o CO O) ' >a "& *& OS eo co - *_ , - Hi* 1 + 1 1 44 + + 1 J- ' + 1 Sig seS 1 CM t- 2 s5 ^H) D r^ *|So5 H " S* 00 JS rH rH a 08 1 44 1 + + + 4 1 + $ ^> .3 r.000fi-- t-t CS -n* O CM CO CC 5S r^ tO t^ t~~ t- OS rH CO lO 1 XX OO rH C CM CO r- CO -V cp C5 55 O s " 1 1 + + 1 + 1 4 1 4 II | .3 SI O CC CO OO CO O t^. t*- ^^ Ou M O 5^ -H rH kO CC rH i-^ CO 1 P CM * C7S CO t~ **** CM O 5S 1 9 1 1 1 1 + 1 1 + + 1 fjsti; Z tv-t-f-' ?,2g o ~. ~ ^ "3 a 1 4 1 1 1 1 1 1 1 1 B a ;.,; S rH rH liii ^* ^* rH rH 4 1 ~ x, i + 1 + + 1 1 + i C3 iZZ S. 4-774 .2 CM* sr + -, 1 g s s e 1 1 1 1 "i"? r7r7 II +1 3 a s s e 1? 8 8 S I I 1 s e e" rH T-^ ^^ ^H 4141 s e s s 1 8 rH rH . . +1 '. '. s e s e r 1 i o o I I S I | CO CI ^ ^ -^ ** ** ^ ^ '^ i*-i ."*^ N 1 ? [^ ^= c_, r" JaptU 126 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXI. [Vol. XIV Unit-l" Sin *-. . w w* +2,5+24 + 294.89 740.6 + 734 B +4,5+44 - 839. 5 + 3495 - 6224 2+2<5+24 - 147. 4 + 517 - 737 ft e +4 +4,5+34 + 1229.8 - 4069 + 5671 j) 3 - +20+24 + 784 (- 3570) (+ 10522) +2,5+24 +6,5+64 2t+40+44 - 202 + 2940 + 415 (- 1657) (- 17009) (- 2587) (+ 13183) [(+ 43527)] (+ 6440) 2f - 192 + 705 i) i)' - +2*+ 4 - 2386 (+ 11567) (+ 37527) +2,5+34 + 1492 (- 968) (- 12562) +20+ 4 +6,5+54 - 1962 - 8658 (+ 9257) (+ 42767) (- 23263) (- 92732) 2+40+34 - 615 (+ 3264) (- 6905) 2 +4 + 142 r- 605 B - +2,5 + 1634 - 7081 + 16199 +20+24 - 861 - 3794 + 22127 +60+44 + 6349 - 25753 + 45318 f - +20+ 4-2 + 866 - 4260 + 10988 +6,5+54-2 + 260 - 1674 + 5101 +20+24 - 2677 + 12681 - 30930 B +40+44 + 5907 - 11149 - +4,5+44 - 269 + 5158 +8<5+8j -11300 + 76249 i 5 S B B +40+54 -11449 + 42212 +40+34 -11270 + 951 _ +4,5+34 + 1744 - 23941 +80+74 +50005 -304611 ij ij' 2 +40+44 +26091 - 71730 +4,j+24 + 3985 + 16118 _ +4,5+24 - 3137 + 35021 +80+64 -73583 +400009 ij" 4-4^^-3J -13756 + 22165 - +4^+ 4 + 3317 - 18452 +8,5+54 +36006 -172164 ?i) +4^+34-2 - 1707 + 13125 +4^+342 - 2112 + 15096 +8,5 +74 2 - 2381 + 18919 +4^+44 +14204 - 88026 j 1 T)' +4,5+44-2 - 554 + 140 +4^+242 + 3545 - 22885 +80+64-2 + 3827 - 27870 +40+34 -17503 + 99584 +(<5-i5 ) C06 1? - 767. 7 + 2821 5210 1}' + 4 + 570. 2421 + 4950 1* 2< - 384 + 1410 - 2605 n i 2+ 4 + 285 - 1211 + 2475 rf - 6624 + 47448 Y + 4 [+17970] [-120603] + 4 + 8984 - 60301 i?" +24 -10478 + 70250 f -25564 +157424 >/* + 4 +15678 - 94846 ,7*5 + 4 +1 -22012 +121258 -359162 e +25565 -157424 [+511232] /" ^' +.T +12048 - 76364 +251640 + 4 -23524 +150306 -498328 m' NO. s.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 127 TABLE XXXII. >o->'.-rt-{<' e; r*^ Unlt-l". r oox f'r% !f Sin it* . _j-2i>+2J ' - ' 294. 9 + 1036 " *" * , + 384 - 1410 *.j-wiT nAfusi }.ij ( 2+2tf+2J ' ''' + 1679 74 - 10348 + 149 '! ma isftil'i fiiijJu T .vti'io i^iTt i-i /"" t + ^ - 285 + 1211 - 2460 + 13067 ((!> "' t\'j HfX -' ' ' ,^ ? +2i>+2J - 101 - 883 +2<>+2J - 978 + 6459 fife ' p'J KK) +60+64 - 8820 + 424 (+ 77487) - 1332 2f [+ 96] I- 352] ff' / (1* t ' - 2068 + 8418 -i-2i>-|-3J - 1492 + 2460 fe.Q_l_R 1 c ~r "" i J + 2280 + 25974 12618 (-206223) i to ic r* baa ooil 9 jf - 615 t- 7 1] + 1420 [+ 303] 1* - +2* + 1634 - 5447 +2tf+2J + 861 + 2933 j-6fl-|-4j - 19047 [+134400] / +2J+ 4 Z + 866 - 3394 (j . * . * ^_6tf+5J S - 780 + 7362 j-j-2<>+24 + 2677 - 15358 ^ +4tf+4j - 5098 +4i>+44 + 4499 ^il y ' ~ +8+8J + 45200 r , ?Y + 40 + 5j + 22898 v/ -j-4t)^-3J + 5322 '' ; '1 I ' ,=. e+4t>+3J - 11270 f -j-8iJ+7J -200020 lr."W. 1 f 7 * +4t5+4J - 52182 +4i?+2^ + 2712 ^jiixiu +4^+2^ + 4408 +8i9+64 +294332 V +4i>+3J + 27512 I Y. 7 7. .7.7 7. wI+3^-2 + 4022 r . BaM +4J+34 2 - 3616 .+2J 2 + 7090 +8i>+6J 2 - 15308 +40+34 + 35006 m' ori.i run- -HT The coefficients in parentheses differ from v. Zeipel's values because they contain additional terms. See p. 134. 128 MEMOIRS NATIONAL ACADEMY OF SCIENCES. The remaining terms in the differential equation for ndz^ are, by eq. (143), (1 - e cos ) -(!- cos .) tF,'< 2 > +TW - F/') - =T /" Tf t < + i ( all the terms of which are of the second order whose lowest rank is the second. They therefore contain the factor ? w* To obtain ndz^ it is necessary to return to eqs. (124)-(130) and make developments for terms of the second order similar to those for first order. The resulting differential equation is: ~n&, = (1 ~ C 2 COS) {7^<') - (nte/O) } Wf > - (1 - e cos ) w { roi *vr ' - 1 - e cos -[(l -e cos e) ^ The sum of the last two equations, when integrated, gives the terms of second order having m' 2 the factor ^ It has been shown by v. Zeipel through computation and we have shown ana- lytically that and [(1 -e cos s) F/ 1 ^!^^ 1 )- (nfe t ('))} +w^(n5 2 / 2 )) =0- Therefore, = l-e cos -[(!- cos The integral is tabulated in Table XXXIV. Summarizing, we have included first order terms in given by tables XXX, XXXI, XXXII and second order terms in given by Tables XXXIII and XXXIV. The addition of Tables XXX-XXXTV gives the short period terms in nfe, or, the function ndz-[ndz] which is tabulated in Table XXXV. Returning now to the differential equation for tf, the evaluation of F (#, e) and its derivatives in Z 78, eq. (127) gives Z 91, eq. (146). The variable does not appear; -j is a function of t? alone Therefore the function is of long period. The integration is one step in the determination of [ndz], the long period terms in the perturbations of the mean anomaly. The function [(1 -e cos e) W] is tabulated in Table XXIX6. The function f(l - e cos i)( W- ^sV W+ ^S\], computed from Tables XXIXa and XXIXc, is given in Table XXXVI. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 129 The function (1 - e cos e) (0, + 0, + 0,) First, 0- is computed as follows: 5W is given by Z 93, eq. (150) by means of Table XXXV, and -=r= is readily written by inspection of Table XXIXa. Performing the indicated multiplications and retaining only the terms which are independent of e, we have the required function as tabulated in Table XXXVII. By eq. (146), the sum of Tables XXIX6, XXXVI, and XXXVII, multiplied by the factor gives > I? f+4<+4J - 0. 316 + 1.59 -3.6 * e+4tf+3J + 0. 114 - 0.67 + 1.8 f - t+2iJ+2J t+2t)+2J +6t>+6J 25+40 +4J + 2.62 + 4.42 + 1.80 + 0.16 - 16.8 - 28.4 - 11.7 - 0.8 + 1.8 *v - +2t>+ J +2tJ+3J t+2^+ J +6>+5J 2s+4^+3J - 6.18 - 1.90 - 5.57 - 3.95 - 0.06 + 36.9 + 13.6 + 32.8 + 23.6 + 0.3 - 0.9 1" - e+20 J+20+2J +6<>+44 + 4.04 + 2.12 + 1.90 - 21.4 - 14.4 - 10.8 f - +20+ J-S +60+5J-S + 0.22 + 0.07 - 1.6 - 0.5 + (0-l> ) COS 5 - L265 + 6.35 -14.3 l' + ^ + 0.455 - 2.69 + 7.2 V 2 + 0.63 - 3.2 + 7.2 v 2+ A - 0.23 + 1.3 - 3.6 1' f -23.8 +222 v + 4 - + J +72.9 +36.5 -569 -285 v + 2J -55.2 -87.3 +375 +653 *" + J +69.9 -439 ft + ^+^ -9.9 +23.1 + 77 -166 ;* -!' f +^ + ^ + 5.2 -14.8 - 45 +112 m" 110379 22 9 130 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXIV. [Vol. XIV. I noii-i Unit-1" Sin .- UJO M . 1" j-.i FiOJ ci;,i!(: t >-, !< 2;+4t?+4J - 0.614 - 0.079 + 4.06 + 0.40 -10.3 ' E+40+4J - 0.74 + 1.74 + 0.31 + 0.45 + 3.7 -18.1 - 2.0 - 2.9 * j-i-4,+3J 2 +6i?+5J + 0.30 - 4.26 - 0.66 - 1.8 +32.0 + 3.8 ' - +20+24 2+80+8J -6.4 + 6.4 + 5.1 - 1.4 - 2.2 rV P t -;- - +20 + 4 +2<>+ 4 +6.5 +5J 2+8tf+7J +12.0 - 0.9 - 8.5 -11.8 + 3.4 - 0.8 + 6.5 f + 2J ^-2t)+2J +6iJ+44 - 5.1 + 1.3 + 6.4 * - +20+ J-S s-{~6t?~l~5^ S 2f -(-4^ -|-4d - 0.3 + 0. 3 ' + 1.4 +(tf-l> ) COB j ' 2+2i?+2J - 1.02 - 0.78 + 0.41 - 8.4 + 6.0 - 2.5 '' + 4 2t+2tf+3J -3.25 + 0.58 - 0.31 +30.1 - 4.8 + 2.1 '* _ +2i?+2J 2 2 +4<>+4J + 3.6 + 1.1 + 0.5 - 0.8 :'_' "' - +20+ A 2+ A - 3.4 + 1.6 L f . , t - 0.36 + 2.6 '' + 4 + 0.27 - 2.1 1 * was.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE XXXV. Logarithmic. niz-[ntz] 131 Unlt-1". Sin KT r vr* V w> f -+ * 4.1570 4.8741, + tf + 4 2.7684, 3.3827 3.7172, 1? + >+ J 4.0056, 4.7686 V + + 4 4.0766, 4.8295 f i + + ^ 4.1365 4.8738, n* + tf + 2J 3.3345 4.5162, rf E +30+24 4.2240, 4.9611 5.6685, 1 +3i>+3J 4.0671 4.8483, 5.5636 5" 1 J+W+3J 5.0926, 6.0018 ^ < +W+4J 5. 2325 6. 1714, V 1 +5i>+54 4.7675, 5.7344 J 1 .E + W+4J-J 3.8050, 4.7998 ^ -Jf+ 1> 3.3112 3.8350, 4.1355 ? -i-e+ J+ J 3.2065, 3. 7910 4.0833, * -,+30+ J 3.5338 4.6236, *v -< +30+24 4.0879 5.0382 ^ +30+34 a 6012, 4.5318, j 7 -J +30+2J-J 3.2074 4.1925, ^ 1 9.868, 0.5689 2.922 3.4600, 3.3670 ^ + ^ 9.482 0.2533, 2.673, 3.2959 3.1772, it* +20+ J 0.746, [1.384] 3. 2927, [4. 14906] [4. 6990,] +20+24 9.788, 2.47560 3. 10847, 3.4540 [3. 3960,] >?' +20+24 0.645 U-342,] 2.305, [3. 6179,] [4. 4018] v 1 +20+24 0.326 1. 119, 2.935, 3. 3017, [4. 39206] j* +20+24 3.4276, 4.23764 4.76933, :r* +20+34 +40+24 0.28, 1.102 3.1738 3.6004 [3. 5449,] 4. 27485 [3.8446,] A +40+34 +40+34 9.057 0.692, 3. 10161 4. 0519, 3.9302, 3.7975 4.52415 [4. 78162,] < +40+34 4.1385 n 4.6961 >* v +40+34 4. 2431, 5.1290 ij +40+44 9.500, 0.522 2.9351, 3.8035 4. 41616, 4.63017 q 3 +40+44 3. 7714 4.2108, ^** +40+44 4.4165 5.0931, A +40+44 4.1524 5.0661, iV +40+54 4.0588, 4.8136 j*l +40+34 -J 3.2322, 4.2342 ; ^' +40+44 -.T 2.744, [3. 0%2] 5" +60+44 0.28 0.64 n ] 3.8027 4.77998, 5. 52852] i) ij' +60+54 ?* +60+64 j E + 60 + 54-.T 0.596, 0.255 8.8 1.070] 0-8 n ] 9-3,] 3.9374, 3.4684 2.415 [4.94342] [4. 50125,] 3.48a,T 5. 70347,] 5. 27451] 4. 2931] 5" +80+54 4.5564 5.4999, i) i? 77 +80+64 4.8668, 5.8416 T,V +80 + 74 4.6990 5.7030, if +80+84 4.0531, 5.0844 j 2 ij' +8i>+6J-^ 3.5829 4.6352, fr, t+80+74-2 1 3.3768, 4.4540 > ' 1 ", '-, V- $ V - +20 - +20+ 4 - +20+24 0.606 0.791. 0.418 fl.422,] 1. 690] [1.365,] 3.2132 3. 3777, 2.894 3.6657, 3.8866 [3. 4616,] 19260 4.72168 3.8078 p - + 20+ J-J 9.34 0.28 J 2.938 3. 4714, 3.7862 1* - +40+ 4 3.5208 4.07255 < - +40+24 3.4965, 4.59582 -/v - +40+34 3. 2416 4.5467, s 3 - +40+44 2.430, 3.9848 j 1 ?' - f +40+24 -I 3.5496 4.19852, /*! - +40+34 -I 3. 3247, 4.05994 132 Logarithmic. MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXV Continued, niz [noz] [Vol. XIV. Unlt-l" Sin w - ^ ^ u- w , *e+3t?+2J 3. 6731 4. 0029 n f-)-3''-i-3^ 2. 3528 3. 2475 B 3.9005 7;' $+30+3J 3. 6181 n 4. 2122 J 3 fs+Stf-j-SJ J 3. 4072 B 4.4000 1) y' ^+3d+4J 3. 5244 4. 4012 B TI' fe+5i>+4J 3. 3533 4. 4231 n 5. 2725 rj |-i-5t-t-5J 3. 1780 n 4. 2730 5. 1359 B Tj' 3 fs-j-7*-(-5J 4. 2775 5. 4708 B IT i-j-7i>+6^ 4. 4051 B 5. 6177 fj+7+34 1. 946 n 2.501 2. 516 B M! 2IK+4J 8.8 B [0. 561] 8.90 B 2. 789 B 9.599 [3. 5813] 1.711 [4. 1074 B ] 2. 5795 B 3. 1726 T 2+4,+4J 9.2 [0. 34 n ] 9. 819 n 2.618 0. 5840 [3. 4962 B ] 2. 7821 [4. 0890] 4. 51865 1 2f+6t+6J 9.653 0. 4645 B 2. 5979 n 3' 6265 4. 38424 B | -(-5^+5J 1.2340 2. 1166 B 2. 7076 i)' 4-|-7#+6J 2. 3679 3. 3518 B 4. 0587 >) |+7t?+7J 2. 1758 B 3. 1926 3.9204, (l>-l> ) COS , E 0. 1021n 0.728 2. 8978 B 3.4504 3. 7168 B I 3 e 1. 377 B [2. 346] 3. 8211 4. 6762 jj 7) /a 5 1.941 B 2.815 4. 4076 B 5. 1971 frj e 1.364 2. 220 B 4.4076 5. 1971 B 5. 7086 rf + J 9.658 0. 774 B 2. 7836 3. 3840 n 3. 6946 7) 3 7)' + J 1.863 2. 755 B 4.2546 5. 0814 B ^ /3 t+ ^ 1.844 2.642 n 4. 1953 4. 9770 B j" 5' + ^ 1. 170 B 2.049 4. 3715 n 5. 1770 5. 6975 B I$i + 2J L742, 2. -574 4. 0203 B 4.8466 / >)' *+ ^ 0.716 1.65 B 4.0809 4. 8829 n 5.4008 fl 1.00 B 1.89 4. 3427 B 5. 0837 5. 5553 B ,V -t+ ^ 1.562 2. 455 B 3.9535 4. 7803 B ?v 2 2.+ J 9.801 9.357 B [0. 43 n ] [0.473] 2.5842 2. 4548 n 3. 1493 B 3. 0830 3. 4158 ^'^ e - 1. :| 9.56, 0.42 V !+ j 9.43 0.32 n 1 sn A.Tg.+(#-d )2w*TiPi)' to- to- 1 w> w - +0. 000032 -0.0080 +0. 0493 - 0. 176 +0.52 7, J -0. 00028 +0. 0037 -0. 133 +L10 - 8.8 V -0.00014 +0. 0026 -0. 095 +1.27 -14.4 ? ' -0.0003 +0. 139 -1.20 + 5.9 iV J +0. 00047 -0. 0070 +0. 252 -2.51 +22.8 / V n 20+24 +0. 000017 -0.00042 +0. 0437 -0. 366 + 2.10 'v 20+ A -0.000006 +0.00045 -0. 0639 +0.508 - 2.79 / 40+44 +0.00004 +0.0006 -0.194 +1.64 -11.4 V 40+34 -0. 00012 -0. 0012 +0. 372 -3.59 +32.2 *> 40+24 +0. 00011 +0.0003 -0. 252 +2.40 -19.8 f 40+34-2 +0.00001 -0.0001 +0. 032 -0.19 +(0-0 ) sin *V 4 -0.00004 +0.010 - 0.08 Ji 20+24 +0. 000066 -0.00060 +0. 0399 -0. 275 + 0.94 v 20+ A -0. 000024 +0. 00047 -0. 0296 +0. 221 - 0.81 / 40+44 -0. 00023 +0. 0028 -0. 114 +1.02 -4.7 iV 40+34 +0. 00039 -0. 0053 +0. 251 -2.20 + 9.9 !> 40+24 -0. 00011 +0. 0024 -0. 124 +1.11 - 5.1 (0-0 ) a coe I- t.. 7)' -0. 00017 +0. 0014 -0. 052 +0.38 - 1.4 |V A +0. 00019 -0. 0021 +0. 077 -0.61 + 2.4 *" -0.00005 +0.0008 -0. 029 +0.24 - 1.0 m m' 3 m", m' 2 m r ' TO" m TABLE XXXVII. [ (00) (I ecoee)-gj- Unit 4th decimal of a radian. Cos ., -, to- ~ J w , +0. 000042 -0. 01071 + 0.0883 - 0. 402 + 1.31 - 3.9 9 1 -0. 00043 +0. 0056 -0. 189 + 2.73 - 51.3 + 299 1 ! /2 -0. 00021 +0. 0048 -0. 296 + 4.47 - 59.8 + 416 ? -0.0004 +0. 186 -2.00 + 11.7 - 40 Tl 71 J +0. 00076 -0. 0110 +0. 530 - 7.59 +104.2 - 682 Tl 20+24 +0. 000055 -0. 00086 +0. 1005 - 1.153 + 21. 86 - 81.5 +217 If' 20+ 4 -0. 000020 +0.00090 -0. 1377 + 1.463 -9.50 + 44.2 -176 Tj 3 40+44 -0.00031 +0. 0041 -0. 477 + 6.49 -133. 8 + 708 J) 1)' . 40+34 +0. 00068 -0. 0084 +1. 295 -17.43 +261. 3 -1266 " 40+24 -0. 00030 +0. 0041 -0. 921 +11. 58 - 95.2 + 452 ' 40+34 -S -0.00001 +0.0001 -0. 036 + 0.58 -5.3 + 25 TJ 7} 4 0.00000 -0.0004 +0. 052 - 0.44 + 2.0 TI 20+24 +0. 000044 -0. 00052 +0. 0266 - 0.212 + 0.83 Jj' 20+ 4 -0. 000016 +0. 00038 -0. 0197 + 0. 170 - 0.70 r 3 40+44 -0. 00031 +0. 0037 -0. 153 + 1.62 -7.9 1j Jj' 40+34 +0. 00052 -0. 0072 +0. 335 - 3.40 + 16.9 - .7.77, !'! 1* 40+24 -0. 00015 +0. 0032 -0. 165 + 1.68 -8.6 m' 2 TO' 3 m", m' 2 TO' 2 m' 2 , m' m'*, TO' m' 2 , TO' 134 Logarithmic. MEMOIES NATIONAL ACADEMY OF SCIENCES. [VOLXIV. TABLE XXXVIII. 0(0) Unit- 1 radian. Cos w- te- tO-4 w- U)-l w-i w w w 1.5 [3. 909] 4.960 6. 6748 B 7. 2764 7. 540 B 7.31 'V 2.0 1.9 [4. 644 n ] 3.41] [5. 160] 4. 75 n 6. 150] 6. 509] 8. 048,,] 8. 2077 B ] 8.838 [8. 994] 8. 655 B 8. 919 B 8. 100 B ? ^ .M - 2.83 n 5.146 6. 299 n ] 7. 994] 8. 740 [8 r 656] 1* J 2.34 [4. 446] [4.57] 6. 728 B ] 8. 4022] 9. 1999 B 9.0854 8.079 1)1'* 20 1.6 [2. 6 n ] 5.744 6. 535 n 8. 3811 9. 1031n 9. 0128 ,' 20+ 4 0.8 n J [3. 068.] [5. 2988] 7. 2212 B [7. 3772] [8. 0372] [8. 764 B ] 8.668 * 20+ 4 2.32 B 3.30 5. 886 n 6.718 8. 5059 ra 9. 2804 9. 201 7 B V" 20+ 4 5. 301 n 6.149 8, 2302 B 9.0154 8. 938 B P (' 20+ 4 8. 5592 9. 3245 B 9. 2428 f" 20+24 2.48 3.40 5.422 6. 292 n 7.476 8. 664 n 8.636 1) 20+24 1.22 [2. 94] [5. 1206 n ] 7. 6416 [7. 9638 B ] [7. 083 B ] [8. 645] 8. 582 B ,," 20+24 1.9 [3. B ] 5.442 6. 328 n 8. 0915 B 8. 630 B 8.742 ft 20+24 8. 5904 n 9. 3489 9. 8024 n 9. 6532 ,Y 20+34 2.04 n 3.00 4.98 n 5.89 8. 0326 8. 1973 B 7.69 X 20+ 4-2 1 4.51 5.42 n 8. 1011 8. 873 B 8.792 ? *' 20+24 -2 1 4.04 5.00 6.89 B 8.182 8. 158 B ? / 40+24 40+34 40+44 40+34 -2 1 [2. 66 n ] [2. 72] [2.20] 1. 5 n 2.7] 4. 369] 4. 624] 2.45 6. 1031 6. 2526 n [5. 824] 4.68 [8. 4188] 8. 5594 [8. 0924 B ] 7. 1747 B [8. 5297] 8. 7988 n ] [8. 4338] 7. 301 6.0] 7. 94 B ] 7.24] 8.111 7.90 n 8.287 7.74 B 8. 127. 8.210 8.044, V 3 60+34 5. 30^ 6.149 9. 1294 B 9. 7728 9. 6609 n ?r" 60+44 5.92 6.74 n 9. 4432 0. 14644,, 0. 05077 ,v 60+54 2. O n 3.0 5.93 n 6.79 9. 2774 n 0. 03298 9. 9494 B ? 60+64 2.0 3.0 n 5.420 6. 292 n 8.634 9. 4351 B 9. 3608 ?V 60+44 - 4.04 B 5.00 8. 272 B 9. 1028 9. 0334 B h 60+54-JT 4.51 5.42 n 8.0554 8. 926 B 8.864 (0-0 ) sin *v 4 [2. 60 B ] 4.71 5.94 n 6.507 B 6.606 I/ 20+ 4 1.36 [2. 48] 4.49 [5. 255 B ] [5. 51] 5.25 n 7 20+24 1.82,, [2.42] 4.64 n 5.350 [5. 51.] [5. 16] ^ /3 40+24 2.34 [3.00] 5.392 6. 179.] 6. 528 B 6.665 v 40+34 2.89 n [3. 46] 5. 702 n 6. 467] 6.851 6. 979 B >5 40+44 2.66 [3. 459] [5. 357] 6. 127,] 6. 530 B 6.653 (0-0 ) 2 cos ft are now separate and the integration can be performed. Trans- ferring the common factor to the left-hand side of the eauation. performing the integration and adding n as the constant of integration, we have the argument expressed as a function of t> in eq. (154), where is defined by eq. (155). The reversion of the series gives # as a function of . We have by eq. (154) where 2Cis & small quantity. Given z = w + <*0(z), where tx is small, we have, by a theorem of Lagrange, By means of this theorem eqs. (156), (157) can be derived, where it is to be noticed that (C~ 2 C + C/ ) k an approximation for ( ). In our developments we have used ( ). 136 MEMOIRS NATIONAL ACADEMY OF SCIENCES. If in Z eq. (155) we add and subtract/ - ii If! e V w> 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 m' m" m" Table XXXVTIL All the bracketed quantities probably contain only the accumulation of the discrepancies in Tables XXIX6, XXXVI, and XXXVII. This is a very important table, and it is from differences in 9 (tf) that the perturbations may be expected to differ most. PERTURBATIONS OF THE RADIUS VECTOR. TIT 1 * If Wand A are tabulated and the computation is performed in duplicate, it is not necessary 3 to make the long developments and the auxiliary tables in Z 6, 99-114. For this reason the formulae in 6 have not been checked and the list of errata does not cover this section. The essential formulae are given in Z 99. By Z 7, eq. (36), In order to parallel the form of ndz, we write where (flt + 0, + 0,) is given by Z 93, eq. (150). Hence the computation proceeds as follows: the perturbation is computed by eq. (36), the argument is replaced by #, and a corrective term which is the product of (0i+0, + s ) and the derivative of the function with respect to # is added. The perturbation v is then expressed as a function of #. It is tabulated in Table XTJTT. Table XLHI. If there are no errors of calculation in the construction of the table, all the discrepancies are due to the accumulation of other discrepancies previously discussed. The perturbation v =/(0) includes M W-* te w> - m* Iff! 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 m' m' 2 where the tabulated numbers signify the degrees of the terms included and where only TF, and Ej are inclusive of third degree. 138 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XLIII. Logarithmic. [Vol. XIV. Unit-1". Cos r ur HT' w" .w to" 8.72 [9. 88 B ] 1. 6349 2. 1070 B 2. 2333 7 2 9.80 [0.212,] 2.759 3. 4922 n V 8.9 9.23 2.937 3. 6295 n ? 2. 937 B 3. 6295 t^ J 9.66 B 9.78 3. 1136 B 3.8440 \\* 2t 0. 556 n 1.204 3. 2111 B 3. 7970 1 20+ J 0.504,, 2. 3472 2. 456 B 2. 686 B 3. 4735 rfi 20 + J 0.997 , 1.711 n 3. 6559 4. 3103 B 1* 20 + 4 0.438 1. 220 B 3. 3654 4. 0763 B j 1 r,' 20 + J 3. 6975 B 4. 3810 1) 20 +2 J 0.438 2. 952 B 3. 2529 [3.0689 B ] 3. 3979 B V 2J+2J 0. 732 n 1.497 3. 2410 B 4. 0643 11" 2rf+2J 0. 772 B 1.589 3. 4136 4. 0723 X 2i>+2J 3.9048 4. 5649 B ] 4.9303 J > J ' Ji f'bt '- ' * V 2i?+3J 0.505 1.344, 3. 4757 n 2. 783] & 2i>+ A-S 9.33 n 0.15 2. 938 B 3. 530] 3V 23+2J-2 9.20 0.10 n 2. 0251 3. 2961 B ,;- +2J 4,?+3J 8.9 9.75 n 1. 2819 B [1. 5024] 3. 5514 3. 7885 B 3. 6173,, 4. 1394] 3. 8147 4. 3110 B it'll M / 4^+44 4V+3J-2 9.98 [1. 1342 B ] 9.64 n 3.4007 2.305 3. 9091 B ] 2. 542 B [4. 1480] [2. 749 n ] ,'3 6^+34 0.436 1. 220 n 4. 2675 4. 7993 B ft* 6^+4J 1. 125 B 1.862 4. 6479 B 5. 2324] ?V 6tf+5J 1.198 1.947 B 4. 5397 5. 1768,] & :IT ? 3 6J+6J 0. 732 B 1.508 3. 9457 B 4. 6328] P *' 60+4 J-2 1 9.20 0.10 B 3. 4099 4. 1710 B V 6^+5J--T 9.70 B 0.56 3. 2601 B [4. 0542] >M' ie+ <> 3,4878 B 4. 1106 i ^+ t>+ J 8.3 B 2. 2106 2. 7179 n 2.919 ; 2 is+ t5+ J 3. 5709 B 4. 2261 % 2 ie+ ?+ 4 3.4507 4. 1296 n V i+ l>+ A 3.5100 4. 1837 B tt* }.+ iJ+24 2. 579 n 3. 9270 ?' is+3^+2J 0.08 3. 6873 4. 1471 B 4. 7839 ^ 4+3t+3J 9.5 3. 5727 n 4. 1511 4. 7545 n ," is+5+5J > a JOTIO ti< 4. 2862 [5. 0418n] / if+5<>+4J-2' UoiUlflUil 3. 2570 4.0005 n y" -*+ <> 1. 086 B 2.7090 3. 3467 B 3. 7098 i| -<:f+ I>+ J 0.88 2. 1967 n 3. 0952 3. 5836 B V 2 -- U+3+ J 0.444 1. 1661 B 3. 0588 3. 8035 B [4. 2554] e+2i?+2J 9.487 2.]744 B 2. 7280 2. 972 n 2.976 >! 2 +2tf+2J 0.344n 1.1143 2. 692 B [3. 5334] [4. 0772 B ] I" +2tJ+2J 0. 025 n 0.828 2.634 3. 0726 4. 0416 B f +2^+2J 3. 1265 3. 8806 B 4. 3473 W' +2tf+3J 9.98 a sii. 2. 873 B 3. 1697 [3. 5856] tr* +4i?+2J 1.105 L89W 2.864 4. 3477 n r +4^+3J 8. 8 n 0. 398 2. 8000 n 3. 5327 4. 0065 B 4. 3207 ,Y +4^+3J 1. 260 n 2. 083 3. 0931 4. 4160 ," e+4<+3J 3. 8375 4. 0446 B J 1 >>' +4^+3J 0. 267 1. 15 B 3.9421 4. 6972 B j) e+4tf+4J 9.19 0. 248 B [2. 6356] 3. 4317 B 3. 9469 4. 2558, ^ 3 +4^+4J 0. 774 1. 66,, 3. 0934 B [3. 7866 n ] ,," s+4i>+44 4. 1154 B 4. 5547 f. +4tJ+4J 0. 455 B 1. 32 3. 8518 n 4. 6436 Jv +4^+5J 3. 7579 4. 3244 n No. 3.] Logarithmic. MINOR PLANETS LEUSCHNER, CLANCY, LEVY. TABLE XLIII Continued. 139 Unlt-1". Cos - r * . v> fi e+4t+3J-J 3.0030 3. 8869, I 3 n' , 4i , , 4j_^ 2.4425 1 85, '/ r g-j-6(?~l~4^ 9.98, 0.480 3. 5016, 4l 3723 4. 9952, -{-6i?-f~5J +6t?+6J e~}*6i?-(-5^ ^ 0.296 9.95, 8.5, 0.823, 0.538 [9. 15] 3. 6369 3. 1685, 2.114, [4- 5582,] [4. 1334] 3.0881 5. 2093 [4. 8131,] [3. 7886,] 3 i" t-f"8^-|~5^ 4. 2554, 4. 9349 !* cr f-j-8i?-|-7^ 1.320 1.228, 2. 152, 2.093 4.5657 4. 3995, 5. 3010, 5. 1827 ,' P^-gjj-Lgj 0.648 1.54, 3.7543 4. 5812, / ^j-gjj -i- j2 3. 2818, 4.1442 A s-\~o^-\-7^ ~~ 2 3. 0763 3. 9759, - t+2d 0.305 PL 1007,] 2.912 3.4958, 3. 8151] j/ - ;JgJ^ 0.490, 0.117 [1. 3330] 2:288, [3. 7273] 3. 2375,] 4. 3119 3. 7892 a ~f"2l?-j- J 9.04 9.96, 2.636 3. 2817, 3. 6568 B ~f"4i?-{- J 3. 2197 3.9650, - e+4t>+2J 1. 146, 1.89 3.0204 4.2441 n 2 j/ f~|-4i?-l-3^ 1.005 1.78, 3. 5247, 4.0012, B f-|-4(?-t-4i 0.290, 1.15 3. 1793 2.982 1 K -{~4tJ-}-2J ^* 3. 2486 4.0585, - f+4tf+3J-J 9.98, 0.8 2.957, 3.8580 n | + ,j+ J 9.0 2.3363 [3.0704,] [3. 5111] ,; | + 0+2J 9.5 1.500 2.3585 3. 1842, |+3*+2J 2.779 3. 7820, If+SiJ+SJ 9.28 2. 1614, 3. 0257 3. 6491, i) 1 j_j_3 ( j_i_3j 1.32 2.966 V *+3iJ+3J 3.3450 4. 1111, j * |+3i>+3J 3. 2309 4.1965, |+3+4J 1.017 3. 1617, 4.1967 5.0160, - 5+5<>-i-5J 0.88, 2.9688 4. 0380, 4. 8781 fl" 4.0855 n 5. 2422 5"!' ^+7<)+6J 4. 1991 5. 3823, f+7iJ+7J 3. 7114, 4.9188 f | ^_7,j-(-6J 2" 2.615, 3.8317 y ,' 3. 2411 3. 7872, .2 ' + tj+ J 2. 819, 3.4476 y 3 -*H- tf -I 1 2. 9181, 3. 4813 B 2 2.364, 3. 0737 TJ Ij 2+ J 2.624 3. 3489, U/z 2 S + 24 2.207, 2.978 ' X *lt y 2 2+ J+^ 2.620, 3.2765 ,j 2+2+3J 9.5 1.796 2.303, 2.1007 2 +4l;i|'ni 2.736 3.6809, . . p V .,} " . 5 T 2j+4^+5J 2. 9881, 3.8425 - il+S+ej 9.64 [0. 53] [0. 36*] 2.652, 2.4419 3.6204 3. 4512, 4. 3279, 4. 1892 l" 2+8;>+6J 3. 6135, 4.6784 n *' 2+8i>+7J 3. 7124 4. 8075, ' M 2f+8^+8J .$ i'i >i au jV* '>/J'l 3. 2109, 4. 3338 i '. in IllSilOf y 2 2s+8d+7J-2 2.068, 3.2092 yxjiii jd r> | c - +5t j + 5j 9.3, 1.140, 2.0056 2. 5727, ,j' +7i)+64 0.5, 2. 2749, 3. 2377 3.9184, i |+7tf+7J 0.3 2.0542 3.0565, 3. 7710 j+7<>+7J 8.1 0.43, 1.346 1.959, 140 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XLIII Continued. Logarithmic. [Vol. XIV. Unit-1" Cos ur ur KT' UJO to . (t>-t )sin 99' ^ 9.66 0. 810 B 2. 7559 3.3840 n 3. 6946 9 / 2t>4- 4 9.79 B 0.54 1 20+2J 9.92 [0. 63] 1 I 9.801 B 0.425 2. 5970 n 3. 1493 3. 4158 B I 3 1. 075 n 2.045 3. 5201 B 4. 3751 II' 1 e 1.640 n 2.514 4. 1066 n 4. 8961 ft 1 1.063 1. 916 n 4. 1066 4. 8961 B 5. 4076 1' + 4 9.36 0. 471 B 2. 4824 3. 0830 B 3. 3936 1\ + J 1.565 2. 456 n 3. 9671 4. 7890 n t+ J 1.543 2. 341 B 3. 8942 4. 6760 B ? ';, + J 0.87 B 1.75 4. 0705 B 4. 8759 5. 3965 B t+ 2J 1. 441 B 2.273 3. 7192 n 4.5456 f i f t+ I 1 0.42 1.36 B 3. 7799 4. 5819 B 5. 0998 e+ ^+2 0. 695 B 1.585 4.0417 B 4. 7827 5. 2543 B ,a j+4,>+4j 9.59 B 0.45 i' +4tf+3J 9.46 0.34, 1 2t+2*+2J 9.45 [ H] * 2 -j-2 1> ) 2 COB , C 9.25 0. 117 B '' f+ J 9.12 B 0.02 TO' 2 TO' 2 m' 2 , TO' TO' m' TO' cos Arg.+(tf-i? )^u.-r / P7j / 9; 2 C 2 sin Ar where CD C 2 , C a represent the respective coefficients. PERTURBATIONS OF THE THIRD COORDINATE. Arg. For the third coordinate the developments are limited to perturbations of the first order and of the first degree with the exception of some secular terms of second degree. We can therefore use osculating elements in this section, and use 6 and # without distinction. By Z 8 eq. (39), 41, eq. (83) and 8, eq. (41) the equations Z 115, (192) are given, in which 2 is defined. Since dS_SS SS ^ = 2 de de + 3d de By Z 9, eq. (45) we have, with sufficient accuracy, Z 115, eqs. (193). Within these limits, dO w Substituting this relation in the above equation and in eq. (192) in turn, the differential equation to be integrated is (194). Since F, 6, H are power series in w, it is evident from eqs. (192) that j O ^= where NO. s.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 141 Therefore, eq. (194) becomes Comparing the coefficients of like powers of w on either side of the equation, it is evident that the integral must be of the form Substituting this relation in the preceding equation and equating like powers of w, the system of equations (195_,) (195 t ) follows. Within the extent of the following developments one more equation should be written by analogy. dW This system of equations is integrated in a manner similar to that for -5- (see p. 81). Each equation is broken up into two equations, one a function of e and one independent of e. The differential equation (194) is then replaced by eight differential equations, the integrals of which can be obtained in the order, S_,, GS.-DSJ), [SJ, (S^-DSfJ), [SJ, As in the case of -j , the condition is imposed that The equivalent equations are (196)-(200). dW" A comparison of the differential equations for (S< [S<]) with the expressions for , * dW " s- 5 leads to an analogous form of integration for certain terms. Within the extent of our developments, and 1 -(l-cos) . -c -!- cos dW " d W " take the place of ^ and ^77 respectively. Without change of notation for the third coordinate, (S-[S]) is given by eqs. (201), (202), where P, G, Q are computed from F, G, H in Tables XII-XTV, by means of eqs. (118) and (119). The coefficients P, G, S are tabulated in Tables L to LIT. The function [S] is obtained from the integration of eq. (203). A constant of integration is added, which is the same in form as Hansen's constant of integration for the perturbation of the third coordinate, namely, c,(cos e) +Cj sin Z eq. (204) where c l and c t are undetermined. By eqs. (192), the pertubation '. is derived from COS c . i cos i The perturbation comprises the computed value of eq. (202), the trigonometric sine series given by Tables L to LII (which can be written by inspection with the aid of Table XV6), the series forming Table LHI, and the constant of integration (204), in all of which 142 MEMOIRS NATIONAL ACADEMY OF SCIENCES. tvoi.xiv. TABLE L. Unit 1". n l 2 3 4 5 J' 1 . (n+l.-n+l)-Hr / + 52.7 + 96.0 + 57.0 + 33.8 + 20.1 + 12.0 *io(** 1. 1+1)+^' +158. 2 - 285.0 -101.4 - 47.0 - 24.0 ?Vo( n +l- n 1) ' -158. 2 -191. 9 - 95.0 -50.7 - 28.2 - 16.0 *Vo(-l.--l)-*' - 52.7 -191. 9 - 285.0 + 140. 9 + 48.1 b J*,. (n+l.-n+l)+^ / -201 -352 - 253 -176 - 119 - 80 M J" 1 . (n-l.-n+l)+^ -812 +1495 +594 + 305 +172 5 /,. (n+l.n I);:' +812 +897 + 498 +297 + 183 +114 ( JWn-l.-n-l)-,:' +201 +513 + 355 -1478 -439 TABLE LI. Unlt-l". <3 . (n.-n+l)+K' 26.37 - 47. 98 - 28.50 16.91 10.06 - 6.02 Go^n.-n-l)-^' + 79. 10 + 95. 96 + 47.50 + 25. 36 + 14. 09 + 8.02 5 1 . (n+l.-n+l)+T / + 90.3 + 112. 3 + 58.5 + 29.0 + 13.6 + 5.8 <5,. (7l 1. 71+1)+^' + 530. 8 + 720. 8 + 468.9 + 311. 7 + 207. 7 + 138.0 G,. (n+l. n 1) IT' - 124.2 - 120. 5 - 53.3 - 21.8 - 7.4 - 1.2 G,. (n 1. n 1) T/ + 609. 9 - 1549.1 - 674.1 - 369. 6 - 219.0 G . 1 (n.-n+2)+r / - 162.4 - 211. 6 - 103. 8 - 47.7 - 19.7 - 6.4 <2o-i( n - n)4V - 166.5 - 352. 6 - 298. 2 - 229.0 - 167.2 - 118.3 +26+M+U' +26+ J-U' f+W+M-U' + 50.7 - 816. 8 - 521.8 + 432.9 + 129.9 - 246. 5 + 3636 + 2851 - 2034 - 861 + 563.6 -8548 -7663 +5237 +2770 if 4-26 +n' +28+24+n' +28+2J-n' 0+60+4 J-n' - 649.4 + 596.4 - 26.5 - 214 + 3096 - 2916 + 494 + 1236 -7475 +7216 -2266 -3395 (0-0 ) cos 4+ J+U' + 191. 93 - 705. 2 +1302. 6 y 4+n' - 383.8 + 1410 -2605 1)' 4+ A+H' 4- 4-n' +6584 -5312 -40060 +29610 ril' J>+ 2J+U' + n' 4- n' -5742 -6024 +6024 +36970 +38180 -38180 1" <<,+ A+W $+ J-U' +6584 -1656 -40060 [+11860] f 4+ j+n' -3002 +18970 m' 2 By inspection it is clear that the periodic part of S is of the form 2 Up. q i)Pr]'* sin A and the secular terms are of the form o'A'^ cos {(A-t w . T) 17,. COS A Expanding cos {(A s) +s}, and collecting coefficients of sin and cos e, the secular terms can be written nt{ K^cos e e) + Kj sin e} where IT, = I U p . q ijPi)'i^ cos (A E) - 4 C/j.o cos A Introducing this notation, the perturbation can be written in the form of eq. (205). The coefficients U p . q are given in Table LIV. K, and K 2 , which are constants, are tabu- lated in Tables LV^ and LV n , respectively. For a given planet the factors and arguments are known. Therefore T^ and K^ reduce each to a single numerical quantity. Since the Bohlin-v.Zeipel method is based on the fundamental principles of Hansen, the constants of integration are determined by the condition which must be satisfied when the 144 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. perturbations are developed on the basis of osculating elements, namely, that the perturbations and their first derivatives shall be zero at the time t = 0. The relations to be satisfied are u = -0 dt~". and the following equations are equivalent relations : Logarithmic. Unit-l" Sin M w' W 1) f 1 x - 4-n' -n' 29+ 4-n' 49+34 -H' 49+24 -n' 1.705 3. 0621 B 2. 8235 2.2831 3. 1591,, 3. 2462 3. 7258 3. 5528 2. 8483 B 3. 8608 3. 9166 B V j + 9 -n' i+ 9+ 4-n' i+39+24-H' J:+59+44 n' 'II 1 1 ! 3. 2112 B 2. 5875 2. 2787 3.3155 3. 0779 B 3.8544 3. 4153 B 2. 6304 n 3. 5865 B 3. 3972 '<; \e 9 24 n' -}e+ 9 -n^ _ j -j-39+24 n' 3. 1158 B 3. 1493 2. 3242 3. 3863 3. 3532 n 3. 7378 3. 7544 B 3. 0060 n 4. 1833 B 4. 1452 i -)-29+ 4 n' +29+24 -n' +69+44 -n' +69+54 -n' 2.6364 1.423n 1. 4042 n 2. 3306,, 2. 1137 3. 3704 B 2.706 2. 1720 3. 1922 3. 0138 n 3.8423 3. 4014 n 2. 6339 B 3. 7582 n 3. 6101 T\ - -29-34 -n' - -29-24 -H' - - 4-n' - +29 -n' - +29+ 4-n' 2. 7175 2. 7756 B 2. 8125 2. 9121n 3. 4858 B 3.5070 1. 6810 3. 4427 B 3. 4958 3.9484 3. 9456 n 2. 2463 B 3.7846 3. 8338 n '* ' $+39+24 -n' $+39+34 -H' $e+59+44 -n' f +79+54 -n' 2.6058 1.760 1. 7510 n 2. 9120 B 3. 5312 n 1.82 B 2. 8113 4. 0813 ''; -f*- 9-24-H' -$+ 9- 4-H' -$+ e -n' i ''A ' 2. 8673 2. 9620 B 2. 0569 B 2. 9275 B 2. 9702 3.8458^, 3. 9124 2. 7932 3. 4708 3. 5487 B v 2+49+34-n' 2+49+44-n' 2+69+54-H' 1.640 1.617 1. 206 B 2. 731 n 2. 340 n 2. 2110 TJ -2e-49-54-n' -2i-49-44-n' -2-29-34-H' -2 -24 -n' -2j - 4-n' 2. 4012 2. 5241 B 1. 5290 n 2. 3174 n 2. 3514 3. 3634 B 3.4544 2. 3210 3. 0558 3. 0737 B m' u .=2Ur,. a i)P-n'9a\n A+nt{K,(coa e )+JsT, sin }+c,(cos t e)+c, ain E I COS I V V 1 7 IT No. 3.] >>! MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE LV a . 145 Logarithmic Unit- 1". OH w V * 1 j-n' ' j+n' ^+n' 4+n' j+n' 2J+n' 2. 9180 B 1.9821 2.8035 3. 5175 3. 1764 B 3.4580 n 3. 7732 2.5473, 3.7182,, 4. 3017, 3. 9772 4.2668 2.8138 m' /*/* cos Arg. . -A. i TABLK LV '- ;o ; Logarithmic Unit-l". i j-.rl* if e.* Sin tr u w . ' i .> 1 'yls III *WJ , .,.,() ;f.tj|,, f.. viioiti -fiKt V* j n' 2.9180 3. 7732, ^ n' 3.7799 4. 5819, 4+n' 1. 9821, 2.5473 2.8138, >i>t .(i 'V j+n' 3.7744, 3. 5175, 4.5420 4. 3017 1 v' 2J+n' 3.4580 4.2668, i r '. *- - . i , r f j" j+n' 3.1764 3. 9772, r,,fT .]ioll;)fl.l n' F! 1 ". ' :'.' ' >' \ ITj = SvPTpy'i]* sin Arg. 1^ i;Pj;'9 sin ^4 +7J.K, (cos s e) + K, sin e +c,(cos e e) -fc, sin e r cos i ~ M By eq. (205), at the date of osculation, / = ft n = fj- - w , , ' i c,(cos e e) +c, sin s (A.) t COS t By Hansen, 1 d( u \ d( U \dS d\t cos t/ = d^V cos i) d U in which v. Zeipel's notation is adopted. dS xi_ . ., tne derivative, -, contains the constants iiT *.i JT From the various parts of S, enumerated above, *jj can be computed. Since S contains the constants of integration c,(cos e) +0, sin ^ .'ii -tMl . L' 'i9} IF! v wMi/ju-. -noil tJOTim..-> od IIAO -T;i-wn-(> -dl c, sin e + c 3 cos e The solution of eqs. (A) and (B) gives c^ and Cj. But there is a better way of deter- mining the derivative of the perturbation. The exposition of this second method is postponed until a particular example is considered, for the perturbations are not yet in a form which leads to the development of the equations. 1 Auseinandersetzung einer iweckmassigen Methode rur Berechnung der Absoluten Stomngen der Idcinen Planeten, Erste Abhandlun, 5 5, p. S 110379 22 10 >,-ib 1.,'; ITO! :! ll/-.'''' 146 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xnr. COMPARISON OF TABLES. Tables L, LI, LII check satisfactorily. Table LIII. With one exception, the agreement is satisfactory. The bracketed coefficient contains a misprint in sign in v. Zeipel's table. That it is a misprint is evident from Table LV t , in which the correct sign is given to the corresponding coefficient. The terms included in the last column are computed from the additional tables, 2 , XlVifl 2 and from first degree terms in Z 116, eq. (200). The latter part, namely, e cos . is added to both eq. (200) and eq. (203). Table LIV. Our table is more extensive. The one bracketed quantity includes an addi- tional term from Table LIII. Tables LV I( LV U check satisfactorily. CONSTANTS OF INTEGRATION IN ndz AND v. The constants in . were treated in the preceding section by the familiar Hansen method. cos i It is the purpose of this section to modify the similar treatment of the constants in the per- turbations ndz and v so as to incorporate them in the elements a w e , ic w ^ - Through the con- stants of integration, the constant elements, which have been used from the beginning without definition, are to be explained. Since the group method of developing perturbations is built upon the fundamental prin- ciples of Hansen, his conditions for the determination of the constants of integration must be fulfilled. These conditions depend upon the choice of initial osculating or mean elements. Osculating elements are used here. The corresponding conditions are that the perturbations and their first derivatives, at the date of osculation, (< = 0), shall be zero. Consider the relation of the constants of integration to the elements. There are two con- stants in each perturbation since the differential equations are of the second order. The con- stant added in the first integration is a velocity; the one added in the second integration is a displacement, or, a perturbation. Now, recalling that the position and velocity of a body for any time t can be transformed into the constants which are ordinarily called the elements of the orbit, it is evident, by analogy, that a displacement of the body and the velocity of the displacement can be transformed similarly into changes in the elements. The four constants in n$z and v are related to the four elements, a, e, TT, c, defining the shape and size of the orbit and the position in the orbit, and the two constants in the perturbation which is measured perpen- dicular to the plane of the orbit are related to the elements fi, i, which determine the position of the plane of the orbit. It is possible therefore to modify all six elements, but it is v. Zeipel's preference to make the transformations only for the first four constants. It is not necessary to compute ndz v k> eJificj euorutv 'fi mo dn8z dv t = Jflfjj- <:<)> )ti) de de for the following developments perform the transformation analytically, and the changes in the elements can be computed from auxiliary functions. Let a , e , x , c be osculating elements ; let a, e, K, c be the osculating elements modified by the constants of integration in the manner indicated above. For undisturbed motion, -e sin = c + 7i < ll+^> l\' and their di'Terence is computed by Z 127, equation (238). In the collection of formulae by Z 133, 0- 4 c. c' This is an approximation for the above equation. Oi-ic-c' -j- (n e sin )-# ef If the secular terms are counted from the date of osculation, the factor (9 ) ought to be replaced by (0 ft). 148 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. By equations Z (43), (235), (236) and the equations preceding (233), the factor ij and the arguments J, e w t are given in equations (238) in terms of osculating values and functions of perturbations, inclusive of first order. To these should be added 1 i 2 = 2 -j-s+ and 4ljo -i, cos s sn e n -z cos where ,1- j The equations (233), (235), (236), and (238) permit the construction of two tables which determine w, n or a, and e and TT. From here on the developments differ in form from v. Zeipel's although they are the same in principle. If v. Zeipel's equations (237) and (239) are used, the term (x," ijy/') should read (* 2 " +x s " +x t ")-i)(y 3 " +y s " +y t ") in agreement with Z 91, line 14. Suppose that w w has been computed by equation (233) and the argument F has been introduced. The arguments and factors are unknown. .1' ')()*:) sjmwnliot 1; ' ''.'* nv/ij} 8* i io -jKM 3;m' f>rlf bn ,-.M-jnt By Taylor's theorem ~ W =/()J ' FV &u *' ^ df 8f df 8f df w-*>*=f(>), r, e , J , S )+-^j, +-^jr + ^j0 +^jj +^jj + r .,,^ wj Inclusive of second order in m', the differentiation is for first order terms. Substituting the values of Jij, AF, J0 , JJ , JJ from equations (238) and the additional equations above, _,, ra A iMa./*/. 5 / 5 /N ! /'*/' V VV .-/^ / , , *., ^+\f^3 5Jo ^ ;4^ 2+ VH, wiT'.WwSS! ai i ^3/ 2 / 1 - ,, "'Jo COS + 1-^9 COS ,l/ Sin -3 COS The order of calculation is: computation of equation (233), in which the arguments and the factors are given the subscript zero, differentiation of first order terms, computation of the second order terms in the above equation, and the additon of these second order terms to the first calculation. With some foresight the computation can be simplified. The arguments should be arranged in groups like the following: TU f u i / ihen, for whole groups of arguments, df _8j_ _d _ ~~- Also for some particular argument in a group, the condition may be satisfied. Ko.8.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 149 Finally, by inspection of the arguments, considerable computation can be avoided if ._ A/L a/ The function w w> is tabulated in Table LVL Since it is unavoidably a function of w itself, the determination of to for a given case must be made by successive trials, the first approximation being n>=w Logarithmic. TABUS LVI. w tc Unit -1 radian. Cos ~ ^ - K* w .. 4.360 [5. 1966,] [5. 7767] r 4.766 6.6599 7. 3732, 7.7492 zr 4.446 7.1194 7. 7572, 8.0553 3r 4.412 6.8442 7.5458, 7.9060 4.484 6.5883 7.3450, 7.7602 5/ 1 6.3437 7. 1490, 7. 6136 7r 5.875 6.7632, 7.3134 I'D -5r+20 +2J -4r+20 +2J 4.161, 6.5090 6.169 6.6325, 7.0658 7. 4746, 7.8698, -3r+20 +2J -2r+20 +2J 3.19 3.52 6. 8821, 7.0986, 7.6078 7. 6970 7.9975, 7.9394, - r+20 +2j 5.1420 6.359 7.0722, 7.4480 20 +2J 4.379 7.6355, 8.2144 8.4125, r+2S +2J 4.856, 8.0894, 8.9548 9.5668, 2r+20 +2J 4.92, 7. 8150, 8.6561 9.2006, 3r+20 +2J 5. 5174, 7.6056, 8.4650 9. 0111, 4F+20 +2J 5.4248, 7.4128, [8. 2958] [8. 8561,] 5r+20 +2J 7.2254, 8.1426 8.7346, 7r+20 +2J [6. 8746,] [7.8484] 8. 4936, jf -5r+20 + J 6.8776, 7.5604 7.8425, -4r+20 + J 4.582 6.8815, 7.4536 7.5238, -3r+20 + J 4.674 6.6271, 6. 7816 7. 3174 -2r+20 + J 4.99 6.7985 7.4732, 7. 7966 - r+20 + J 5.4623, 20 + J 4.605, [7. 1987] 7.8314, 8.1061 r+20 + J 5.0056 8.2964 9.1086, 9.6833 2r+20 + J 4.38 8.0434 8.8316, 9.3296 sr+20 + J 5.6251 7.8458 8.6564, 9.1558 5.5812 7.6603 8.5030, 9.0248 5F+20 + J 7. 4778 8.3544, 8.9050 7r+20 + j. 7.1130 8.0545, a6668 "to* 4.664 4.n 5.83 r 7.8102 a 6250, 2r 7.7520, ai242 sr 7.6172, 6.6043, 4r 7.7135, a2308 fc 1 4r+4ff tt +4J, 7.1862 7.9072, _3/^_j-40 -j-4j 7.1804 7. 8679, 2f+40 +4J 6.817 7.456, F+40 +4Jo 8.4680, 8.8822 40 +4J 4.666 [5. 807,] [8. 0913] a 8270, 9.2073 /"+40 +4J a 7850 9.8236, 2r"+40 +4J [a 5144] 9. 4910, 3f+40 +4J a 3274 9.3006, 4/"'_j-40 -^4 < 8. 1627 9. 1494, 5r+40 +4J 8.0050 9.0105, wf _4f-(-40 4-3j o 7.354, a 1083 -3^+40o+3jo 7.5708, 8.2084 -~r+40+3Jo 8.8838 9.0548, 40 +3 J 4. 516, [6.2084] 8.5565, 9.2180 9. 5174, r t +40 +3J 9.2783, 0.2833 2f +40 +3J 9.0241, 9.9635 3f +40 +3J a 8480, 9.7850 4r+40 +3J a 6916, 9.6434 $r +40 +3 J 8.5401, 9.5128 * m- m",m' m /t , m' m' m' 150 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE LVI Continued. Logarithmic. w w a Unit- 1 radian. Cos *, -* M * fl w' -4r+ 4 7. 7640 7. 8364,, m ~3/ 1 + 4 7. 4203 8. 3915 -2r+ 4 7. 8104 n 8. 6268 - r+ 4 8. 0479 n 8. 8018 4 4. 518 B [5. 886 n ] [5. 70 B ] r+ 4 7. 1339 7.8500 2F+ 4 7. 8421 8. 4293,, q r* _i_ A O-* i~ **o 7. 9669 8. 6796 n 4r+ J 7. 9760 8. 7576 I' 2 -4r+40 +24 ,:'..: 6.9002 7. 6938 B -3r +400+24 7. 1638 7. 8502 n -2r+40 +24 - r+40 +24 8. I860,, 8. 4016 40o+24 3.76 6. 0608 n 8. 4157 8. 9760 n 9. 1661 + r +40 +24 9. 1714 0. 1382 n +2r+40 +24 8. 9358 9. 8333 B +3r+40 +2J 8. 7718 9. 6681 B +4r+40 +2J 8. 6236 9. 5372 n l'* 3.76 5. 7516 4.7 r 7. 8677 8. 6727 B 2P 7. 8610 B 8. 2228 sr 8. 1026 B 8. 7296 ft 1 1 1 .9 4r 8. 1538 B 8. 8728 f r *Httt .0 7. 9418 B 8. 7337 zr 7. 9312 8.7154 sr 7. 7920,, 8. 6154 4r 7. 639 n 8.5001 ^ ? -4r+40 +34-^o Kit > 7.446 8. 1156 B -3r+40 +3J -|o W J 7. 1858 7. 8677 B I r+40o+34-^o 7. 6176 B 7. 9693 40 +3J 0^*0 : i o 7.448 8. 4531,, 3/^+400+3 J ^o <.'IH<', , 7. 1976 8. 2026 n 4r+40 +34-^ (> 6.978 7. 9963 n V 20 +24 5. 4181^ 6.292 7. 4754 n 8. 6636 - v , 60 +64 5. 418 B 6.292 8. 6328 n 9. 4351 i)oV 20 + 4 5.885 6. 719 B 8.5059 9. 2804 B 20 +34 4.974 5. 896 B 8. 0326 B 8. 1975 60o+54 5.935 6. 780 B 9. 2774 0. 0330 n % ,/s 20 5.744, 6.535 [8. 3811 n ] 9. 1030 5.44 B 6.327 8. 0917 8.6300 60o+44 5. 919 n 6.744 9. 4432 n 0.1464 i?" 20 + 4 5.301 6. 149 B 8. 2302 9. 0152 B 60o+34 5.301 6. 149 n 9.1294 9. 7729 n /** 20o+24 8.5904 9. 3492 n 9.8022 20 + 4-^o 4. 502 B 5.41 8. 1011 n 8. 8726 4. 502 B 5.41 8. 0554 n 8. 9263 JV 20 + 4 8. 5592 B 9. 3245 200+24-^0 4.057 5. 021 n 6.887 8. 1804 B 60o+44-^o 4.057 5.021 n 8. 2718 9.1021. m" m n -^ m -x m' m' ww =2Cw*i)P'Tflj 1 t cos Agr., where C represents the respective coefficient. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 151 Turning now to the determination of e and K, let equations (235), (236) be written in the form (244), where 1 2 , 1 1 "~+'V- Multiplying the first of these by sin ^, the second by cos and adding, S sin ^ + C cos = g ( sn coa+z sin cos +z sin )+-r z(y sin $ z cos ^)+ . . . 4C0 Here, again, the arguments and factors are functions of the elements a, e, JT, e, and the expansion in a Taylor's series is necessary. Let S sin <{> + (7 cos =f(i), F u U J, 2") Then the form of Taylor's series is the same as the expression for w w , (p. 148), with the following modification. Within first order quantities, ; .; -fi Hence, , F lt 6 lt A, S) = n(y cos ^ + 2 sm 1. = ^ (y sin s 2 cos e) " sn 'o w - (1 TJ n COS l- cos The order of computation is : calculation of A-SC{.. KU 1, . ,. -s(y cos ^+2sm^) by inspection of the table for W, in which the arguments are to be given the subscript zero, differentiation of the first order terms, calculation of the necessary products of functions of y, z, and the partial derivatives, and the addition of these products to the first calculation. The required function is given in Table LVIL e v-t- \ ---y It 07 f.8f .S ,87 S n t' 0" |).':T> ? >: 152 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. tufj .'ii ft-d l; fW Logarithmic TABLE LVII. Ssin i/r+C cos <]> j 7; on Unit-1". Cos ,- UJ-J UM to" w * ^- 5 r+20 +24, 8.81 1. 082, 1. 5710 1. 612, 4.T+200+24] 9.009 1. 2314, 1.5492 0. 989 n ^ 3/ 1 +20 +24, 9.318 0.931 1.604, 1.916 4> 2.T+200+24, + r+200+24, 9. 230 n 2. 3541, 3. 1493 3. 7107 n 0+2/"+20 +24) 9. 220, 1. 9114 n 2. 6867 3. 1657, tl>-\-3r-\-20 -\-2d 9. 724, 1. 5372, 2. 3831 2. 8623, ^+4r+20 +24, 9. 494, 1. 2544, 2. 1315 2. 6333, ^+5r+20 +24, 9.100 n 1.018, 1.9034 2. 4348, ii ^_5r +40 +44, ro wioiJ->ni ft. 771, 1.042, 1.868 2. 357 B ^-3F+40 +44^ 0.06V 0. 3185, 1. 723, 2. 1626, 2. 3515 2. 6961 2. 6814, 2. 9214, dJ iliur t- r+40+44^ +40 +4J r + r +400+44, 0+2r+40 +44, 9.199 9.04, 0. 497, 1. 0286, [2. 6172] 0. 7226 0.669 [2. 7787,] 3. 2379, [3. 2511 n ] 3. 1702 2. 7877 [3. 0649] 3. 1223 [3. 4930] 4. 1580 n 3. 7083, 3. 0993, 3. 9385, 4. 9365 4.3605 0+3/ 1 +40 +44, 0.9435 2. 5117 3. 4261, 4.0450 ^+4.T+40o+44> 0. 5122 2. 2732 3. 2042, fe V>-5r U'i \0 ', - ^. 9. 814 B 1.925 2. 634, 2.984 4r - 0. 0434, 2. 0527 2. 6896, 2.9432 ip3r 0. 3541, 2.145 2. 675, 2.744 *ijizr 9.140 0. 362, 2. 1351 2. 3850, 2. 4864, if, r 0.4164, 2.3504, 3. 0929 3. 5397, 9. 274 n 0. 1436, y+ f 0. 3102, 2.497 3. 1875, 3. 5978 -\-2r 9. 137, 9.918 1. 9006 n 1. 0453 2. 8834 9.781 1.447 2. 1506, 2.5419 ^ 3/'+40 +34> 9.811 2. 1070 2. 6309, 2. 8608 y~ 2/*+40 +3J 0. 3489 2. 5095 2. 9557, 3. 0952 $ -f +40 +3 J 0. 9511 3. 3599 2. 7758 3. 9726 ^ +40 +34( 8.76, [0. 158] [2. 7932 n ] 3. 3085 3. 4526, ^+ F +40 +34> 9.961, 3. 3609, 4. 3114 5. 0691 n ^+2f+40 +34i 0.491, 2. 9943, 3. 8728 4. 4922, y+3/^+40 +34( 1. 0464, 2. 7293, 3. 6067 4. 1945, ^+4r+40 +3J 0. 678 B 2. 4992, 3. 3946 ...mfc 4r+4i J 'HB ftfl-tj inyift ->iJi 9.848 0.0792 2. 0766, 2. 1609, 2.712 2. 6968 2. 9697, 2. 7976, ,t ,v to *t ^l2r+4 Ifl'-'-'fVJIT 91 9.013, 0.3941 0.248 2. 157, 2. 0455 2.491 2. 7898 n 1.51 3. 2380 'til 1 .f)'> ^ ^"+4i r r 'I'tXi'ltj 9.901 2.584 3. 2539, 3. 6434 ^ +4i 9. 885 B 0. 8518 v^+ ^"+4t 0.1664 1.836 2.448 3. 3029 B ^+2r+4, 9.009 9.76 B 2. 1633 2. 6170, 2. 2433 ^+3r+4, 9.38, 2.1064 2. 7194, 2. 9212 ^+4r+4, 1. 9892 2. 6870, V ^-5r+60 +64, 2.3144 2. 9730, ^ 4r+60 +64i 2. 9538 3. 3785, 3/"+60 +64i 3. 3102 3. 5843, V^ 2r+60 +64i [3. 4970] [3. 8423 n ] Y *^+60o+64, 3. 9455 3. 7269, +60 +6J 9.95, 1. 1109, 3. 1673 B [3. 9296] [4. 3377 n ] if>-\- .T+600+64) 3. 9144, 5. 0372 ^+2/^+600+640 3. 5594, 4. 5942 ^+ 3 r+60 +64, 3. 3121, 4. 3236 No. 3.] Logarithmic MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABUS LVII Continued. S sin <{>+C coo 153 Unit-l" COS K- ^ u-t V* W 1C* V ^-5r+20 +2J. 2.1657 2. 7221 B A 4/ I +20 +2 J 2.1255 2.8004, ^ 3r+20 +2J 2.234 3. 1304 n it 2.F+200+2 J 2.576 3.3804, ^- r+20 +2j 3.1995 3.8325, V> +20 +2J 0.344, 1.017 2. 689, [3. 4822] 3.9938, ,5+ r+20 +2J, 2.2480 3.2839, ^+2r+20 +2J 9.45 3.1612 3.8424, V 2F 20 2 J 9.59, 3.0241, 3.7470 j>- r-20 -2J 3.1364, 3.8346 A -200-2J. 0.117 0.95, 2.297, [2. 7856,] 3.6614 ^+ T -20 -2 J, 2.8942, 3.5604 #+2r-20 -2J 2. 297, 3.1129 fci' -\- ^"+20o+ Jo 2.8541 3.5823, ^+2r+20 + J 3. 2191, 3.7635 % ,/ ^-5r-20 - J 3.1551 3.9530, #-4r-20 - J 3.2454 3.3100 3.9948, 40023, A 2/ 1 20 Jo 9.93 3.3277 3.9401, ^- r-20 - J 3. 1976 3.4598, ^ -20 - J 0.490, 1.324 3.0145, 3. 7326 42787 ^+ /" 20 Jo 3.3632 3.9402, + r-20 - J e 2.7792 3.5224, loV ^-5r+20 +3J 2.2738, 2.847

3/^+200+3 J 2.5858, 3. 3787 A 2/"+20 +3 J 2.809, 3.5429 A- r+20 +3J 2.650, 3. 7297 J + r+20o+3J 9.98 0.60, 2.873, [2.685] 3. 5126, 3.7980 4.2856 ^+2r+20 +3J 9.46, 3.3438, 41208 q'i s 5-5r+60o+4J L9950 2.7422, A 4r+60 +4J 2.6112 3.1949, 3/"+60 +4 J 3.0556 3.5583, y2f +60 +4 J 3.7934 3. 7947, A /'+60 +4J 42260 44064 ^ +60 +4J 9.98, 0. 76, 3. 5017, 41098 43552, ifi-\- r +60 +4J 4.2852, 5. 3521 ^+2r+60 +4J 3.9567, 49249 ,1 ^-5r+20 +2J 2.5018 3.0963, 4/^+200+2 J 2.453 3.0935, ^ 3/^+200+2 J 2.4799 3. 2779, A-W +20 +2 J 2.9375 3. 6294, 6- r+20 +2J 3.2833 3.8982, f +2e o +2J 0.025, 0.60 2.634 3. 2781 4. 0439, -\- /^+2^o+2Jo 3.5607 4 2381, #+ 2 r+20.+2J. 3. 4629 4. 1704 n 154 Logarithmic MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE L VI I Continued. 8 sin + C cos <}> [Vol. XIV. tJnit-l". Cos -. ^ -, - w v>* T)" cj-5r-20 3.0090 B 3. 7477 ^-4r-20o 3. 0676 B 3. 7445 sr 20 3. 0764 n 3. 6664 ^-2r-20 2. 958 n 3. 3121 ^- r-20 3. 1140 4. 0201 B -20 0.305 1. 127 n 2.912 3. 5491 B 3.9085 ^+ r-20 3. 0396 B 3. 6320 ^+2r-20 1 2. 4706 B 3. 2330 f ^-5r+60 +54-.?o 2.006 2. 7505 n 4r +60 +54 ^o 2.335 2. 981 B Zr +60 +54 2o j 2.544 3. 1436 B ^ 2.T+600+54 (> 2.718 3. 2445 B v ^*+60Q+5^o *o 2.970 2. 9116 n dt +600+5.^0 ^*o 8.6 B 9.7 2. 114^ 2.923 3. 4067 n d>-}- F +60 +54 ^o 2. 7948 B 3.9420 ^-j_2r+60 +54 2 2. 3824, 3.4488 P ^-5r +20 +24 9.6 2.387 4r+20 +24 1. 916 B 2.911 V ? irv 3r+20 +24 2. 5178 B 3.3047 J> 2J rl +20 +24 2. 938 B 3.6294 4,- r+20 +24 3. 3406 B 3. 9330 <{, +200+24 0. 5910 3. 1266 3. 8021 B 4.1894 ^+ r+20 +24 frit<> .}; 3. 4070 4. 3178 B 0+2r+20 +24 3.0472 3. 9308 B f 0_5/--20 - 4+^o 0. 732 n 1.085 d>4r26 4+-^o 0.35 1. 895 n <{izr20 4+^0 1.463 2. 5146 n \t ,,jr +40 +54 3. 7577 4. 3244 n +40 +34 1.260 B 2.081 3. 1240 4. 1388 d> -40 -34 1.005 1.77 B 3. 5356 B 3. 3560 +80 +7J 1. 228 B 2.093 4. 3980 n 5. 1827 lo V ^ +400+44 4. 1155 B 4.5547 +400+24 1.106 1.88 B 2.831 4. 1803 B -40 -24 1. 146 B 1.88 3.0422 4. 0180 ^ +800+64 1.321 2. 152 B 4. 5658 5. 3010 n if* +400+34 3. 8375 4. 0446 B -40 - 4 1 f'- ! iiii 'i 3. 2197 3. 9650 B <[> +80 +5J 4. 2553 n 4. 9349 jj, d, +40 +34-.r 3.0024 3. 8634 n df -400-34+^0 9. 98 B 0.8 2. 956 B 3. 8331 J, -j.g^o+74 ^"0 3. 0757 3. 9759 B ,'{.' -. d, +40 +44 0.46 n 1.32 3. 8514 W 4.6436 }' *>' d> +40 +44-JT 2.442 1.846 B -40 -24+J 3. 2486 4. 0585 B : d, +80 +64-l- 3. 2818 n 4. 1441 * V'S'H ' +40 +34 0.27 1. 15 n 3.9421 4. 6972 n S sin ng' noo 15 8bff I _ (j B 16 lOa sin COS 16 6b 1 dQ 7 a *3I 1 dQ 19 Ga dF dF_ da a ' given on page 2. 156 MEMOIRS NATIONAL ACADEMY OF SCIENCES. Errata in H. v. Zeipel, Angenahcrte Jupittrstarungen fur die Hecuba-Gruppe Continued. [Vol. XI V_ Page. Line.' For Read J>Q dfl 49 7b f^ Os dr 50 6b r 2 a 2 r ''iimytxi owj orii a a 2 50 6b 3+ij 2 3+14, 2 51 lb 5 .,(n.-n+l) 53 lib >; >" 54 5a E -i 56 4b 61 lib 20+20 20+24 62 17a ^+60+40 ^-)-60+4J 62 5b +436 +439 63 65 9a 3a f(l-ecos)TF' 2 ] (106) t(i-3oo)F / ] (106a) 65 5a (106) (106a) 68 3a W * W~ 3 tti~ J W~ l V) tu~ 4 w"" 3 tt>~" 2 it*" 1 w t^ 69 6b sin A 77P7j /C! j 2 'sin A 69 69 5b 4b sin (A +t) sin (A-\-(f>c) Tjpr] vj sin ^vi y-pj 7)P73 9?^ sin ^^4 -4-(A ^ 70 lb W t '" w 70 lb cos A TfPl)'9f* COS ^1 71 7a ess A -rjp-rfqft cos ^. 75 15a 4o- 4o-2 75 18a 4o-i 75 2b 4H 75 lb AI-O 79 lOb e ^< 81 8b 1ecoB c) (1 e cos ) 83 12a +3744 +3344 86 4a (128j) und (130) (1282), (128 3 ) uod (130) 86 6a o W^ Ot? T^ 1 91 9a e COB* e cos 91 lla TP 2 ffj' 92 3a 1J, COS C y, COS 92 lOb -i(l-e cos ) (IF-Jff) (W+iB) -J[(l- cos ) (W-IS) (W+iS)] 92 4b ^ ^ 93 lOa sin A yPij'Qj 2 * gin A 93 lOa 2' J 94 19b dW dF 97 15a (156) (154) 99 4b T)W sin t) s ' 100 5a A' ^ 100 6a Ju^ _lj5 115 116 4b 7a 8SJ> -I (192) 116 lOb /o ro i\ ~-j- ^Oj l^lj/ 119 (i) 4-? f7p. 122 3a 123 4b (i f 2 f) (1 f 2 f 8 ) 125 3a 1 o COS 2 1 COS 128 7a A 4ft 129 5a fi P 131 7b (0 jl ) 131 6b $+A+l) (^_)-^4_ ) 132 8a 2.9227 B 1.9227 n 132 26a 5.3376 5.0376 134 9a 9H4Q (4t>+/ 4 ) 135 lOa w 2 T 135 lla to 2 I 140 141 26a 6a [nSz] 0*8998 Mel. 0/8998 i Th number of the line counting from the top of the page Is indicated by a, counting from the bottom of the page by b. 'No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 157 ERRATA IN KARL BOHLIN. SDR LE DfiVELOPPEMENT DBS PERTURBATIONS PLANETAIRES, 1-7, AND TABLES I-XX. Page. Line.- For Read 3 5a /( , =(1+m)a , -. /.'=(! +m)a dW dW 11 Ib 14 lla 14V l-r j 20 3a +i s cos 2* -i^ COB 2 29 8b r* y'-n 29 2b V I/' e -V-i/' 30 lla a ? a' ? 30 lla e' X? +p 30 12a 2n+m-l 2n+m+l 30 13a /?T\* f.-. n wi- +'. ^jg -r g 30 13a 2n+7n 1 --!.- . l-.'v.nW 2n+m+l 30 13a 2n+wi-2 2n+7n+2 30 14a 2n+m-l 2n-i-"i-|-l . ' 30 5b e V-i(*-O e ^in( r ^) 33 9a r*2i+ */_, i _, \ 10 \ * "/ Xjf*U 1. ) 35 4a (73) (74) 36 la 2/V'"e'^~ 1 <- T > "*|+|Y 2f 4 * " V IO 36 lOa ^.,(n-l.+n+l) ^..(n-l.-n+l) 38 13a a a 38 lOb e J^lr- w>) 38 3b 2(ij')y'- 1 2/ . /\|_i 38 2b 2n)y'- 1 2(jj)y'-l 40 3a K (n. 1 n) JP / n 1 ji\ 41 13a a VO a'" 45 2a iT . (0.-n) i" . (n. n) 45 9b a 4A 7n r(r 1)V~' " : |."'- , T(rl)*x f ~ l ^O i 1.1.2 h 1.1.2 46 7b (n-)(n-t+2) ,'V- (n *)(n +2) n _f^ 2 2 ' r ^ 46 5b (n-3) (n ) 46 4b v n' 4 48 14a P'jK/n 2. n) P',. (n-2.-n) 48 7b pi . \n-\-\. n 2] P*,.- ITI-)-!. n 2! 48 7b pi (n+1 n 2 pi (n+1 n 2) 48 6b P^'.iin-l.-n-Zi P',.,|n 1. n 2| 50 5a R 1 .~(n-^-l.n\ _ T /fi -(n+1. n I)!/ 50 9b R l \,o(nl.n+l +1- R l \ < ,(n\.n-\-\)+tf 50 3b Rig-fn. n+2^+1* R l (n n+2)+ / 51 Ib P'(n+r.-n+* i piln-f-r. n+^ 59 5a fi 3 ' 1 , jn+l. n] ^J3-l _Tjj 1. 71] 59 8a ^ 3>l o-i[ n -~ n +l] J-l e r n __ B ^-i] 60 6a if / 60 8a (See footnote z ) ftf\ QK ("^/t ) /N ~T~\7n.ftf DV VO 24 V^ 24 60 fib jX""**) ( +) 61 7b P .,[n.+n+l] P .i[".-n+l] 61 5b Poit n -+ n -lJ P In n 11 62 la n P- n /i 6 6 62 7a P,., (n+2.-n-l) P 2 .,(n+2.-n+l) 62 7a ^2^ 2 62 63 8a 5a pJ.'o(n-l'.-n+l)H - P.Jn+l.-n+l] P . (n-l.-n+l)_* 63 63 63 63 lla 13a 14a 5b Pj'o M-L-n-1]-! PO-O n-l.-n-lj-j RO-O n. n+lj-r' P 1 . (n+2.-n-l)+, P . c fn-l.-n+l]_* P . n-l.-n+l]_* P.o-0 n.-n IJ-r' 63 2b RO-O i. n 1] i* 63 Ib R . n._n !]-' R . n. n 1]-^ 1 The number of the line countin? from the top of the pase is indicated by a. counting from the bottom of the page by b. i The argument a is defined first by eq. (31), p. 20, secondly by eq. (105), p. 60. The first of these definitions is used in J 8. 158 MEMOIRS NATIONAL ACADEMY OF SCIENCES. Errata in Karl Bohlin, Sur le Developpement des Perturbations Planitaires, 1-7, and Tables I-XX Continued Page. Line." For Read 64 64 6a 12a .Ro-o[".--l]-*' R 2 . [n.-n+l]+ x ' 64 64 66 14a 15a 7a (n-n) #,.,[7+l. -]_ F (n+r. -n+s &r T "* Ftn+r.-n+t) 66 8a G (n+r. n+s G (n+r. -n+s) +3 +3 70 la -3 P,. 2 (n+l.-n-2) -2 Pj. 2 (n+l.-n-2) 2 -2 71 4a F t (n. n+l)+ F t a ( n _ w _)-i) + . +3 +3 71 9b -2 P lf0 (n.-n+l)-3 -2 P,. (n.-n+l)_* 2 -2 73 2a F 2 . u (n.n+l)- x ' .F 2 . (n.-w-l)-,r' 73 18a, ff. See foot note. 2 f 73 4b R . (n. n+l)+ x R . (n.-n+l)+ x > 73 74 3b 8a R . n.-n+l)+ x > R . (n.-n+I)+ x ' 75 75 la lib ' jOn.-n+l)-,' G . (n+l.-n)+,+j 78 Ib To 1 '" Ti 1 '* 1 79 Ib fjTn+i.n y, m-f2.n 79 *) n=l n 80 9b T(+i m ' n ^ <+j m.n 81 12a 3 81 13a (120) (120)*) 135 7a -^D-3 1 '* jf i. 139 3a /y** 2ri'- 140 2a /Y -n 2r 1 '- 154 la (86) (93) 161 la -or or 169 8b 3 I a 170 3a 2S 2r<3< * 2T<'- 170 4b ^ i 2 ^ 3>B 171 ff. See foot note.' 185 2a 3. 27886 3. 27887 185 13b 4 3 188 6b 2. 017 3 n 2. 01703,, 189 14a 3. 27886 3. 27887 197 16a 0. 146128 B 1. 146128 n 197 18b 1. 505151 1. 505150 198 15b 1. 662759 n 1. 662758 n 198 2b 0. 477121 0. 477121 n 1 The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b. 1 The space between lines 18 and 19 should read }'. ' Tables XII, XIII. XIV give the same coefficients in numbers as Tables XVI, XVII, XVIII give in logarithms, respectively. The same factor should therefore occur in the former. o !-"