GIFT OF ASTRONOMY LIBRARY TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON PART II ON v. ZEIPEL'S THEORY OF THE PERTURBATIONS OF THE MINOR PLANETS OF THE HECUBA GROUP MEMOIRS or THK NATIONAL ACADEMY OF SCIENCES THIRD MEMOIR WASHINGTON GOVEBNMENT PRINTING OFFICE 1922 \ BHIOMJSM SIM 10'YMadAOA JAMOITAM V1X cranrr // 0DIIT<:- 06377 ASTRONOMY LIBRARY NATIONAL ACADEMY OF SCIENCES. Volume XIV. THIRD MEMOIR. TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON. PARTIL ON v. ZEIPEL'S THEORY OP THE PERTURBATIONS OP THE MINOR PLANETS OF THE HECUBA GROUP. BY ARMIN O. LEUSCHNER, ANNA ESTELLE CLANCY, AKD " SOPHIA H. LEVY. 50f>877 .VI /C 'Hi i ii foV UK >M:rt !/. (I il J HT r io .TI Til//! airr io aworrAa.H'rwia'i airr r io YHOSHT pAiasis-s .-/ airr M) .YOW/uI, r J HJJHTgft /.W/A. ..JIM/ID^Tr-fJ -O 7-It .Y/C'KI .H /.ll!'|i() CONTENTS. Page. Preface 7 Introduction g I. Formulae and tables for the Hecuba group, according to the theory of Bohlin-v. Zeipel. and an example of their se 10 Determination of constant elements and of perturbations of the mean anomaly 10 Perturbations of the radius vector 20 Perturbations of the third coordinate 21 Check computation 22 Computation of the perturbations for the time t 22 Comparison of the revised with v. Zeipel's original tables 27 Table A 28 Table B 30 Table C 31 Table D 34 Table E, 35 Table E 2 35 Table F 36 Table G 38 II. Tables for the determination of the perturbations of the Hecuba group of minor planets 41 Development of the differential equations for Wand for the third coordinate 41 Integration of the differential equation for W. 78 Comparison of tables 120 Perturbations of the mean anomaly 121 Comparison of tables 134 Perturbations of the radius vector 137 Perturbations of the third coordinate 140 Comparison of tables 146 Constants of integration in nSz and v 146 Comparison of tables 155 Erata in " Angenaherte Jupiter-Storungen fur die flecufco-Gruppe," H. v. Zeipel 156 Erata in ' ' Sur le Developpement des Perturbations Planetaires, " 1-7 and Tables I-XX, Karl Bohlin 157 5 !*T II V -all \0 i'uutiq vflts >.)} PREFACE. Part I of "Tables of Minor Planets Discovered by James C. Watson," containing tables for 12 of the 22 Watson planets, was published in 1910 in the Memoirs of the National Academy of Sciences, Volume X, Seventh Memoir, with a preface by Simon Newcomb, in which he gives an account of the early history of the investigations of the perturbations of the Watson planets under the auspices of the Board of Trustees of the Watson Fund. In the introduction to Part 1 1 reference is made to the Watson planets of the Hecuba group, for which it was found necessary to construct special tables on the plan of Bohlin's tables for the group 1/3. A comparison of these tables with similar tables by v. Zeipel remained to be made before applying either of them to the development of perturbations of planets of the Hecuba group. This comparison was completed in 1913 with the assistance of Miss A. Estelle Glancy and Miss Sophia H. Levy, with the results set forth in the following pages. Publication of these results was delayed, partly because it seemed desirable to verify the tables by application to a number of planets and partly on account of interruptions caused in recent years by war conditions. Miss Glancy, in particular, had undertaken to test the accuracy of our tables, which we had applied to v. Zeipel's example, (10) Hygiea, by further investi- gations on this example after joining the Observatorio Nacional at C6rdoba in 1913. This test has now been completed with highly satisfactory results. The tables have also been successfully applied to the Watson planets of the Hecuba group, including (175) Andromache, which, on account of unusually large perturbations and other unfavorable conditions, forms so far the most striking example of the applicability of the Bohlin-v. Zeipel method and of our revised tables for the Hecuba group. The plan of work included conferences, in which Miss Glancy and Miss Levy took a leading part, for the discussion of the Bohlin-v. Zeipel method, involving verification of all mathe- matical developments and formulation of plans for the construction of tables, and, after the appearance of v. Zeipel's tables, for the comparison of v. Zeipel's original, and OUT revised tables. The numerical work was carried out by Miss Glancy and Miss Levy, who have also contributed very largely to the theoretical part of the work, and have prepared the principal details of the manuscript. To avoid confusion v. Zeipel's notation and method of procedure have been followed throughout in completing our tables for the Hecuba group, which were well under way when v. Zeipel's memoir appeared. To aid computers in the use of the formulae and of the revised tables, Miss Glancy has prepared detailed directions illustrated by an application to (10) Hygiea, the example first chosen by v. Zeipel. These are contained in the first section of the present memoir. Miss Glancy's contributions to this investigation and her work on (10) Hygiea were accepted by the University of California in partial fulfillment of the requirements for the degree of doctor of philosophy. Miss Levy's contributions and her work on (175) Andromache were similarly accepted for the same degree. It seems highly desirable to make the tables for the development of the perturbations of minor planets of the Hecuba group at once available to astronomers. They are therefore published herewith, in advance of the perturbations and tables of the remaining Watson planets, as Part II of "Tables of Minor Planets Discovered by James C. Watson." One or two parts, which are to follow, will contain all the numerical results for the perturbations and tables of Watson planets not published in Part I (1910). This memoir is presented in two sections. The first section, entitled "Formulae and Tables for the Hecuba Group, according to the Theory of Bohhn-v. Zeipel, and an Example of their Pp. 200-201. 8 PREFACE. [Voi. xiv. Use," contains a collection of the formulae to be used for any planet of the Hecuba group, the general tables of the perturbations which must be employed, and a more complete application of the formulae and the revised tables to the plane* (10) Hygiea, than v. Zeipel gives. The second and more extensive section, entitled "Tables for the Determination of the Perturbations of the Hecuba Group of Minor Planets," concerns the construction of the tables and their dis- cussion with reference to the corresponding tables by v. Zeipel. It forms the preliminary part of the in restigation but is presented last as supplementary to the final results given in the first section. In the second section the tabular values which differ from the corresponding numbers in v. Zeipel's tables are placed in brackets. The general Tables XXXV, XXXVIII, XLIII, LIV, LVi, LVn, LVI, LVII, of the second section, which, in order, are required to compute the perturbations of any planet of the Hecuba group, are repeated without brackets at the end of the first section as Tables A, B, C, D, E 1; E 2 , F, G, so that the first section is complete in itself for use in developing the perturbations of any planet of this group without the necessity of reference to the second section. A general account of the investigations of the perturbations of the Watson planets was presented to the Academy on April 16, 1916, and is published in the "Proceedings of the National Academy of Sciences," Volume 4, No. 12, March, 1919. ' ARMIN O LEUSCHNER. -;.' WASHINGTON, D. C., 1918, December. fun -v?*lmH II-.r# ' > 10(1 ill q i i!.'-- 1 u f 9nj <>! j.-iiiijur. '.'1 ^luAiovjiluu T.iio brut -(Ha i i:'iifjT)q o^i isi '{iliirifeinii' !i wqi>\ .v-nilfloil -.tiij ")o vjilitia^Jqqu 9iij To ^> v/7'i.l ?*\V. brui /ni /fmi Avw 1o nul 'i.'!T e'jB<j moo oij io li) *-.iM vd )uo Lom/i j !-/. >iio* ini him iioitaJ wiwn'tt -uiJ -ml ^; hoc, ; .v nuc. ^n ': -ulj m t i>io% r y iii Jiii.> lo anoiJadiiilT/q .fcJlKq OV/j in 9Il( oj ' >, \\ .(016(1 .IK-CM .^ TABLES OF MINOR PLANETS DISCOVERED BY JAMES C. WATSON. By AHUM O. LKUSOTNZR, ANNA ESTELLB GLANCT, AND SOPHIA H. LETT. * . INTRODUCTION. Those planets whose mean daily motions are approximately 600" are classed with the planet Hecuba, or, in the group for which u= = K1-0 n 2 where n' and n are the mean daily motions of Jupiter and the planet, respectively, and w is a small quantity. Among the minor planets discovered by James C. Watson there are several of this type. In the course of the general program of determining the perturbations of the Watson asteroids, there arose the necessity of computing special tables for the Hecuba group in preparation for the application of Bohlin's method to individual planets. General tables for the group $ were in the process of construction, under the direction of Professor Leuschner, 1 according to the method of Bohlin,* when tables for this group were published by H. v. Zeipel.* The computers, Dr. Sidney D. Townley and Miss Adelaide M. Hobe, made a comparison of their tables with those of v. Zeipel and found certain discrepancies Because of this fact the completion of the tables for the Hecuba group was deferred. These discrepancies have been explained, as a result of a careful investigation, and the tables have been completed by Miss A. Estelle Glancy and Miss Sophia H. Levy, under the direction of Professor Leuschner. In the completion of the tables, v. Zeipel's method and order of procedure have gener- ally been followed. There are numerous discrepancies between our tables and v. Zeipel's. As far as possible, with the aid of the original manuscript, kindly forwarded by the author, we have traced the source of these disagreements. In some of the more complicated functions it was not possible to do so, and these discrepancies remain unexplained. Our own results, however, are substantiated by the employment of independent developments. Further, where we found terms omitted which were of the same order as those which were included, we frequently extended the tables. In this connection, it is pertinent to remark that it is very difficult to set up a consistent criterion for the omission of terms. With the exception of a few scattered negligible terms, our tables are published in full. They contain terms which may ordinarily be omitted, yet their numerical magnitudes depend upon the elements of the particular planet under consideration, and their use is left to the computer's judgment. Many of them are incomplete, i. e., the tabulated coefficients do not necessarily include all the terms of a given degree in the eccentricities or mutual inclination or of the small quantity w, which depends upon the difference between the planet's and twice Jupiter's mean motion. In other words, the coefficients may not contain all the terms of a given degree having the factors W, Jf, ,', ft which are defined on page 12. But, assuming certain numerical limits for the fundamental auxiliary functions, the coefficients are of this magnitude. The value of the additional terms will be shown best in an application of our tables to the same planet for which v. Zeipel computed the perturbations. Unless stated otherwise, the references to Bohlin refer to the French edition and are designated by B. References to v. Zeipel are designated by Z. 1 Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 200. Fonneln und Tafeln rur gruppenweisen Berechnung der allgemeinen StSrungen benachbarter Planeten (Tpsala, 1896). Sur le DeYetoppement des Perturbations Plangtaires (Stockholm, 1902). 1 Angenaherte Jupiterstorungen fflr die Hecuba-Gruppe (St. Pfitersbourg, 1902). 9 tw I. FORMULAE AND TABLES FOR THE HECUBA GROUP, ACCORDING TO THE THEORY OF BOHLIN-v. ZEIPEL, AND AN EXAMPLE OF THEIR USE. DETERMINATION OF CONSTANT ELEMENTS AND OF PERTURBATIONS OF THE MEAN ANOMALY. The planet (10) Hygiea was selected by v. Zeipel as an example of the use of his tables for the group . We have used it as a preliminary example for the application of our own tables, so as to provide further comparison of our tables with those of v. Zeipel. This example is presented with the direct purpose of meeting the needs of the computer. For this reason, no attempt is made to explain the significance of the functions involved, yet their use will be less mechanical, if, in a general way, some of the essential principles under- lying their development are understood. The theory of v. Zeipel is taken up in the second section of this memoir. The method proposed by v. Zeipel is a practical adaptation of Bohlin's method of com- puting the perturbations by Jupiter upon planets whose mean motions bear nearly commen- surable ratios to that of Jupiter. In particular, the formulae are derived for the planets of the Hecuba group. Tracing the history of this method one step further back, Bohlin's method is a modification of the theory of Hansen for the indeterminate case of nearly commensurable mean motions. Or, concisely, in v. Zeipel's own words, "Die benutzte Methode kann einfach dadurch charakterisirt werden, dass die Differentialgleichungen von Hansen mittels des Integrations- verfahrens des Herrn K. Bohlin gelost worden sind." 1 Certain principles of Hansen are fundamental to an understanding of some of the important equations. Briefly, the perturbations are reckoned in the plane of the orbit and perpendicular to it. In the plane of the orbit n5z signifies the displacement in the planet's mean anomaly (8z is the perturbation in the time) ; v gives the disturbed radius vector through the relation u and the displacement in the third coordinate is denoted by =. With Hanson's choice of ideal COS v coordinates, the fundamental analytical relations are: t nl s e sin s = nt + c + ndz rcosf=a (cos e -) ft) fcH!?i /r 3_:_ > in/_ * in - s<( vlhji' j'jn oiii ni'iftl 1-J vuul . I.HP ^ = coin s * n *" Jz=o"/cosa (2) Jv=/8co b "<*' / Jo Az = dp cos c x = r sin a sin (A' +/) +Ax y = r sin b sin (B' +/) + Ay (3) z = r sin c sin (C' +/) + Az where s,f, f are fictitiously disturbed coordinates, which, in connection with constant elements and the perturbations n5z, v, and = give the true position of the body. A', B', C', sin a, sin b, COS 1 sin c are the constants for the equator. The notation for the eccentric anomaly and the true anomaly is v. Zeipel's; in Hansen's notation they would be written e,f. ' Angenaherte Jupiterst8rungen fur die Hecuba-Gruppe, p. I. 10 NO. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 11 When Jupiter's mean motion and that of the planet are nearly commensurable, the inte- gration of Hansen's differential equations becomes impracticable through the presence of large integrating factors. The integrals are of the form: 1 sinf 1 oo <i< + 00 \(in-i'n')t\ A ^.,^ cos 0<t'<+oo ./. i'n'Y 71*1 1 I V n / For the Hecuba group the mean motion is approximately twice the mean motion of Jupiter. Hence, for exact commensurability, n2' V. iVV nH % -- V n ) By introducing the exponential in place of the sine and cosine, the indeterminateness can be removed, for if in i'n' = Q, then V-Km-i'')<_ j This is one of Bohlin's modifications. For any given planet the ratio is not exactly commensurable, and the developments are originally made for the case of exact commensurability. They are then expressed, for a given case, by Taylor's series in ascending powers of a small quantity w, which depends upon the difference between the real ratio and exact commensurability. In addition to positive powers of w there will occur negative powers. They are due to the following causes. An argument 6 is introduced (see p. 13), from which the mean anomaly of Jupiter is eliminated through the intro- duction of w. It is a necessary consequence of the form of the partial differential equations in j r\ which -r appears, that the integration of first-order terms shall contain vr l and that higher order terms shall contain other negative powers. Hence the integrals are series in both posi- tive and negative powers of w. In distinction to the method of Hansen the elements appear explicitly in the arguments or as factors in the terms of the series. An important feature of v. Zeipel's theory is his treatment of the constants of integration. Since the method is essentially Hansen's, the constants of integration must be determined con- sistently with that method. Given osculating elements, the constants of integration are deter- mined by the condition that, at the date of osculation, (t = 0), the perturbations and their velocities shall be equal to zero. v. Zeipel adopts osculating elements as his initial elements. With these elements and the perturbations and their velocities at the date of osculation, he computes elements, designated by the subscript unity, in which the constants of integration are absorbed. They are analogous to Hansen's constant elements, i. e., the fundamental equations of Hansen are valid. Our transformations of the elements differ from v. Zeipel's in two respects. First, the constants in - ., and in its velocitv have not been introduced into the elements i, Q, but cos ^ are treated in the usual Hansen manner. Second, v. Zeipel introduces certain terms in the perturbations which have the same period as the planet (argument s), into the elements to form mean elements. This has not been done. The general tables, XXXV, XXXVHI, XLIII, LIV, LVi, LVn, LVI, LVTT, which are required in computing the perturbations, are given at the conclusion of the formulae. The formulae for any planet of the group are given completely, and they are supplemented by numerical values for the planet (10) Hygiea. The references to v. Zeipel's paper are indicated briefly by Z, followed by the number of the page. The osculating elements of the planet are taken from Z 139; the elements for Jupiter are taken from Astronomical Papers of the United States Xautical Almanac Office, Vol. VII, p. 23. 12 MEMOIRS NATIONAL ACADEMY OF SCIENCES. tvoi.xiv. (10) Hygiea. Epoch, 1851, Sept. 17.0, Ber. M. T. OSCULATING ELEMENTS. 7i = 634?850 = 0? 176347 *> = 546/28= 5?7713 ;r = 227 46.61=227.7768 ft = 287 37.19 = 287.6198 = 300 9.42=300.1570 i n = 3 47.14= 3.7857 Jupiter. Epoch, 1851, Sept. 17.0, Ber. M. T. 'illl ',' ', r. -\\ L --in: MEAN ELEMENTS. n'= 299?1284= 0?0830912 <p' = 245/95= 2?7658 JT'~ 11 54.45= 11.9075 ft'= 98 55.97= 98.9328 ' = 272 58.48 = 272.9747 i'= 1 18.70= 1.3117 to*-! . o . C = 126 59.81 = 126. 9968 c' = 199 57.70= 199. 9617 Mean equinox and ecliptic, 1850.0. Epoch, 1851, Sept. 16.96279 Gr. M. T. The following notes in regard to these elements are of importance: Jupiter's elements were first taken from Z 139. They were used only in the equations numbered (1). In these equations either set of elements may be used with sufficient accuracy. In fact, it is not necessary to know Jupiter's elements as accurately as those of the planet, for they appear only in the arguments of the perturbations. We have adopted Hill's values of the elements and Newcomb's value of the mass of Jupiter. The tables of the perturbations are based, however, on Bessel's value for m'. To correct the perturbations for the improved value, it is only necessary to multiply them by 1.0005, and this is done in the formulae which follow. The original epoch of Jupiter's elements was 1850.0 Gr. M. T. It was changed by the formula c' = 148 1/97 + '* (4) '<}<; iv (!.; < The elements of Hygiea are very good osculating elements, computed by Zech. They include perturbations by Jupiter, Saturn, and Mars and are based on five oppositions. The reference for these elements is doubtful, for in Astronomische Nachrichten 39, 347, the elements given by Zech are not identically the same, although the differences are very small. The values given by v. Zeipel were probably taken from Zech's manuscript, to which he had access. They may, therefore, contain some later corrections. The auxiliary quantities ^, *, J are first computed by the formulae: sin ^ J sin ^ (*+*)=sin^ (ft - ft') sin i (i +*') sin ^ J cos g (^+*)=cos ^ (ft - ft') sin 2 (*o~*') cos K J sin o (*-*)= sin ^ (ft -ft') cos 7, (i +i') (5) Then follow cos sr J cos K ( 1 i r -*)= sin Sfr sin $ sin , &') cos o (*o~ *') sin i sin i' - cos cos 2 s- J =n -n' ; j- = cos NO. a.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 13 and the arguments for the date of osculation: .nwbl-M o = Lr - g' where g' = f ' + [n'fel ; [n'te'J = (9.5215) sin. 1 15?326, (7) where the coefficient in parentheses is logarithmic in degrees. 1 e e sme, = c :r = ^e <> + + J lt (8) (10) Hygiea. * = 186?4792 n, = 302?3984 J. = 215?8679 * = 357. 7586 n' = 86.5305 J.= 28.9289 J= 5.0856 log ,= 8.70139 log /* = 7.29275 0, = 223.2334 (a) log i)' = 8.38238 log i = 8.94739 ^ e ~ ( c ' + f 72 '^^ = 223 -2445 (6) = 8.76072 \ c,-c' = 223.5448 (c) See footnote. 1 e = 131?3236; r=145?0746 With these initial quantities all the arguments and factors in Table L^*I or F are computed. The required function, w w t , is computed by successive approximations, the first approximation being Wg In the first trial the smallest terms and the last digit may be omitted; the second trial should be accurate; a third trial, if necessary, will require only corrections to the largest terms. The mean motion n is then given by In' n== l^i> honinmlob -i ., Td bsloiwb 0=-- \ -..u) - * -.ui.,,>. badiuJ.ii. 7fcooiJii-.il 9ii -noc Jam id* jbuotuj (10) flj/yiec, _ ,, . . , , The three successive trials for u> give W -w. + 0.00388 w = + 0.06 1 208 + 0.003541 logw= 8.78681 + 0.003568 n = 637?2633 . Designating by C and S series to be computed next from Table LVII or G, it is evident by inspection of Table LYII that C'cos i^ + S sin <}> = Ic cos (i{> + X)=Ic cos X cos <pZc sin X sin $ from which C= Ic cos X; S=-Ic sin X (10) > Three numerical values for the argument i, are given. According to the theory (see footnote, Part 2, p. 147), (a) is rigid; (4) is rigid within the accuracy of the developments by v. Zeipel; (e) is an approximation which v. Zcipel used and which is used here. The value (i) is preferable. Inequation (6), [n'Sz 1 ] +0*.31U and is tho complete perturbation of Jupiter by Saturn taken from Hill; in all other parts of the computation n'li'} is only the long period term used by v. Zeipel. 14 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. To make the order of computation evident, the successive steps for a group of terms for Hygiea are given. X c X -s + C -5r+60 +6J + 0.4 * ' 111. 10 + 0.4 ft - 0.1 -4r+60 +64, + 1.9 256. 18 - 1.8 - 0.5 -3r+60 +6J + 4.6 41.25 + 3.0 + 3.5 -2r+69 + 64, + 6.8 186. 33 - 0.7 -6.8 - r+60 +64, +21.5 331. 40 -10.3 +18.8 60 +6J -63.0 116. 48 -56.4 +28.1 r+60 +6J - 4.0 261. 55 + 4.0 + 0.6 2r+60 +64 - 3.1 46.63 -2.2 - 2.1 3r+60 +6J - 1.9 191. 70 + 0.4 + 1.9 The second column contains the sum of the numerical coefficients multiplied by their respec- tive factors i&ipy'vf 1 \ The columns S and + C con tain the required terms from this group in the table. They can be computed at the same time if a traverse table is used. 1 From S and C the elements n and <p can be computed by the formulae : i e sin (n 7r )=S cos <p u e cos (n TT O ) = e + C cos V e = sin <p In place of ij a , J , - the following are used hereafter: e -TOOT-* (ID (ff TO) .dj (12) (70) S=+1215?0 <7= +2191.1 A = 218?8882 ;:= +3?0203 r = 230. 7971 S= 31?9492 log, = 8.7451 7 IB hi 1-ift >r!t rtl (I ft I'.KtBIU'i'MI 9<i (io(, bdT There remains one more element to determine, namely, c, but the computation must be deferred until we know the perturbation nSz at t = 0. (See equation (1), page 10 or page 16.) The fictitiously disturbed eccentric anomaly at the time t = denoted by is determined through the relations : (13) s n e n sin where is calculated with the aid of Astrand's table 2 ; iA rlivilj *tVMSi9*V (14) v<i 131?3236 li.Oio TIV.I 'iki (10) Hygiea. ! = 127?6064 i-csine, = 122?5578 The perturbation nSz is computed as follows : The function 1 + 0(0) is computed from Table XXXVIII or B. The coefficients are mul- tiplied by their respective factors, the trigonometric functions of the arguments are expanded, and the coefficients of 5111 are collected, (j is the numerical coefficient of t?) . 1 Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 218. Hulfstafeln zur leichten und genauen Auflosung des Kepler'schen Problems (Leipzig, 1890). Ko.3.) MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 15 (10) Hygiea. 1 + 0(0) = (1 -0.008064) {1 -0.055937 sin 20 + 0.017170 cos 20 + 0.016057 sin 40 + 0.012244 cos 40 + 0.000905 sin 60-0.005081 cos 60+ ..... + (*-*.)( + 0.000007 -0.000490 sin 20-0.001266 cos 20 -0.000361 sin 40 + 0.000409 cos 40+ ..... )} where the coefficients are in radians, and is the value of at t = 0. -j ji iwjilq *Jii) Wi .-f.R ' ,-. PI imirfJiiHSpI 'y:ii ,j, xitulv, ;., Let 1 + a be the nontrigonometrical term in 1 + 0(0), take it out as a common factor, and denote the numerical coefficients by A 2 , B v A v B v A t , B s , b a , a 2 , b 2 , a t , b t , respectively. With these coefficients the following are computed : K= T^w sin 1" (15) r> C. Ift'.V I'.. There are check formulae for these quantities in Z 134, equation (153), (161')- In equa- tion (153) there is a misprint; in equation (161') there are two misprints. The errors and their corrections are noted in the list of errata which accompanies the second section of this paper. A part of the long period terms in ndz, denoted by [ruJz],, is expressed by sn cos sn cos sn cos ^^ (10) Hygiea. 1+0(0) = (1-0.008064) {1-0.056384 sin 20 + 0.017308 cos 20 + 0.016186 sin 40 + 0.012342 cos 40 + 0.000912 sin 60-0.005122 cos 60+ . . . + (0-0,) ( + 0.000007 -0.000494 sin 20-0.001276 cos 20-0.000364 sin 40 + 0.000412 cos 40+ A, = + 0.01 7308 Bj = - 0.056384 AI= +0.012342 B,= +0.016186 A t =- 0.005 122 =+ 0.000912 ' . . )+....} 6, = +0.000007 a, = - 0.000494 6, = - 0.001276 a 4 = -0.000364 6 4 = +0.000412 \ Ho'Ji nc:ij'u:j' 16 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [VOLXIV. Unit of A 2 , etc., is one radian [<H= (3.59592) sin 2 +^(C~Co) [(0.933J sin 2 + (4.09785) cos 2 + (0.521) cos 2 + (3.0783) sin4 +(0.085) sin 4^ + (3.2230J cos 4^ + (0.005) cos 4 + (2.4390.) sin 6C + ...... ] + (1.494,,) cos 6C + v ,w**i (! in which the coefficients are logarithmic in seconds of arc. For this planet it is not necessary to include C ". uu mis t In equation (16) let S n = fc cos K C n = sin A . S' n = -fc' sin J5T' C",-*' cos JT Then cos (c+^')+ Jv t u.-, (18) The argument C ia given by the relation: (51) and ^ is the value of at 2 = 0, in which, [w'fe'J, the long period term between Jupiter and Saturn is: (9.5215) sin{ (9.58539) T+ 1 15?326}, R) (20) where the numerical coefficients are logarithmic in degrees, and Tis measured from the date of osculation in Julian years. The complete expression for the long period term in ndz is : ;?.!) - 2 o-KAS + B^/w ,,\ wriT - [ndsll+ l-wl + $(A 2 2 +B 2 2 )\2 s [n ' zl j It is important to remark that, in equations (19), (21), the eccentric anomaly is computed by the usual formula, ' JO 4- } iu* s ~ e sin $ = c + nt + n8z : wo ?> - Jata] C 1 ) in which the multiples of 2^ must be retained, for is used here as if it were the time. Since ndz is unknown, the computation is by successive approximations. (10) Hygiea. [7^3],= (4.1 1837) sin (2+ 72?5246) +(3.3130) sin (4C + 305. 627) + (2.442) sin (6C + 186.48) -.o'jpV-'JUO.O ..... i'lH )( iJ)jl).-.TO [ +|(C-Co){(0-963)cos(2C+ 68.83) + (0.199) cos (4C+309.75)+ ....}+ .... in which the coefficients are logarithmic in seconds of arc. lQ g i The argument & in (ndz [ndz]), the short period part of 71^2, is given by C (22) and the function itself is computed from Table XXXV or A. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 17 The numerical coefficients in Table XXXV or A are multiplied by their respective factors and the terms are then collected in the form r^z-[ndz] = lC S ^(i^e+j^ + U-H) (23) By expanding the trigonometric functions, the known part of the argument, namely, IcA-lZ is incorporated in the coefficients, and the terms are collected in the form : ndz - [ndz] = la sin x + 2b cos where x=2 Let a = cos K a' =- sin K' a"= Jc" cos K" b" = Jc"smK" Then ndz - [ndz] = Ik sin Gt+Z) + (*-*,) SV cos (x+ K' ) >-tfo mo ' sinx + -^' cos x) " sin x + 2b" cos x) (24) 6 b' =t =&' sin K cos 1C' (25) (26) The tabulation of ndz [ndz] for (10) Hygiea is given on page 27. Finally, the complete perturbation in the mean anomaly is: 8 ndz = [ndz]+(ndz-[ndz]) (28) It is now possible to determine c by successive approximations from equations (20), (19), (18), (21), (22), (27), (28). From equation (1), which holds for any time t, c=ie sin ^ ndz t = o (29) = i As a first approximation ndz = c = e, e sin s l Introducing this value of c in equation (19), a first approximation for ndz is made. For <=0, C-Co)=0 (30) (*-0 8 ) =0 Substituting the value of ndz in equation (29), and computing a new value of c, the process of solution by trials is repeated until a satisfactory agreement is reached. 110379 22 2 -K?;J 18 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. (10) Hygiea. Below is the last approximation for the constant c. (See tabulation of mz \n3z\ on pg. 27.) L'l. 24** x+K log sin (*+ A') , Si n (x+ .) Approx. ndz +0?6124 [ sin , 122. 5578 i*+ & 285?683 323?619 9. 7732 n - 282" Approx. c, equ. (1), p. 10 1 w 10 -g- c > P- 13 121. 9454 57. 240 frS! 9.443 93. 203 291. 021 258. 21 9. 9701 B 9. 991 n - 680 - 260 *H2! r r 7 n 1 217. 278 lff+30 158. 077 241. 837 183.00 335. 37 8. 719 n 9. 620 n - 6 - 17 o C (, , p. -L* 127. 606 135. 14 9.848 + 25" I.UP-W +3. 9053 +20 211. 366 295. 126 288. 414 256.179 9. 9772 n 9. 9872 n -3403 - 723 [n'oV], equ. (20), p. 16 +0. 3003 + 60 18. 886 223. 38 9. 837 n - 168 (9.99572)(|f 1 -K<?2']) +3. 5697 +80 102. 646 316. 154 186.8 14.11 9. 073 n 9. 387 - 5 + 23 - +40 39. 914 129. 91 9.885 + 3 ( \ 137. 049 74.51 9.984 + 121 5 i [n'dz'] j -0. 0752 ff+50 220. 809 39.53 9.804 + 44 ' 304. 569 3.25 8.754 + 1 f, equ. (19), p. 16 220. 848 81. 696 2f+40 338. 972 62. 732 236. 180 209. 15 9. 9195 n 9. 688 n - 80 - 19 , 163. 392 2e+60 146. 492 183.0 8. 72 n - 1 fir 245. 088 s +50 348. 415 2.4 8.62 tt+n 72. 175 327.9 9.72 n - 4 2+ 72?525, p. 16 4r+305. 627 154. 221 109. 019 + 217"-5654" 6r+186. 48 71.57 ndz [noz] / - 5437" {- 1?5103 log sin log sin log sin 9. 6384 9. 9756 9. 9771 (8.3192 B )(| 1 -KoV]) [nM 7102, equ. (21) - 0.0752 + 2. 1994 + 0.6139 + 5712" C=C 1 121. 9439 + 1944 + 262 (6. 8050 B V , ^ 1 ! 1 - 0.0778 me* 'i i / +7918" c.,, p. 19 . ODD! (9. 67154)^2], \ +2? 1994 +1. 032 l-w +57. 240 2 C> lw 0, equ. (22), p. 16 221?880 217. 278 2 q c f 20 83.760 305. 640 (9. 6715)1^2], + 1.032 .- - ; -.' , equ. (22) 221. 880 40 167. 520 50 29.400 60 251. 280 70 113. 160 80 335. 040 Jf , p. 14 63.803 f 127. 606 t, 191. 409 i i I If tl) I 2f 255. 212 319. 015 i Collecting the elements, and adopting a change of notation, introduced at this point by v. Zeipel, namely, the addition of the subscript unity to the elements just now determined, n, = 637?2633 = 0? 17701 758 <?,= 6? 3858 ^ = 230.7971 c, = 121. 9439 NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 19 These elements are constants; they differ from constant osculating elements only by the constants of integration in ndz and v. They are to be used in the same manner as Hansen uses constant osculating elements. It is possible, in a similar manner, to absorb the constants of integration in the third coordi- nate in the elements i and &, but this transformation will be omitted. It is a convenience to the computer to have n, and c t transformed to mean elements. The last term in equation (21) increases in magnitude, progressively with the time. The computa- tion of this term of large magnitude may be avoided by modifications of the elements n, and c,. The method of transformation can be clearly shown from the example (10) Hygiea, T^wfl l(l**+^ > )(?*~^ n/te ^) = ( 6 - 80497 ) + (8.3192) [n'dz'] (31) By equation (1) (6.80497,)E + (8.3192) [n'dz'] = (6.80497 ,) c, - Of 4067 t - 14f6 sin E + (6.80497,)n<fcr + (8.3192)[/<Jz / ] It is evident from equations (1), (21), and (23) that the first term on the right-hand side of equation (32) may be combined with the mean anomaly at the epoch to form a mean mean anomaly, given by Cj _ ^ + (6 .80497 Jc, Furthermore, the second term on the right-hand side of equation (32) may be combined with nt in equation (1). A mean mean motion is thereby introduced, which is given by n, - n, - Of 4067 = 636f8566 Again, the third term on the right-hand side of equation (32) may be combined with a term in (ndz [ndz]) which has the argument E. In the construction of (ndz [ndz]) there occurred the terms + 34fg gin +4 , 6 co = (1 545) ^ ( + 7 o 53) The addition of 14f6 sin E from equation (32) gives + 20f2 sin E+4f6 cos E = (1.320) sin (e+12?74) These two values for the argument x = E are tabulated in the body of the table given on p. 27. Further, since it is intended to improve the perturbations by the use of Xewcomb's value for the mass of Jupiter, ndz must be multiplied by the factor 1.00050. The combination of the correction for the mass of Jupiter with the term of the same form in equation (32) gives ( + 0.00050 -0.00064)7nJ2 = -0.00014 ndz This correction is the last step in the determination of ndz, since it depends upon the pertur- bation itself. Without change of notation for ndz, the collected results are: E e sin E = c 2 + ndz + nj (33) where ndz = [ndz\ + (ndz - [ndz]) - 0.00014 ndz + (8.319) [n'dz'] (34) It must be remembered that [ndz] t and (ndz [ndz]) are numerically different from their original values, but there should be no confusion if this transformation is not made before the constant c has been determined. The constant elements are now: Epoch and Osculation, 1851, Sept. 17.0, Ber. M. T. n, = 636f 8566 = 0? 17690461 c, = 121?8661 <P l = 6.3858 *, = 230.7971 ft = 2S7.6198 ' = 3.7857 20 MEMOIRS NATIONAL ACADEMY OF SCIENCES. Equinox and ecliptic, 1850.0 logP = 9.98741 log ^ = 9.04620 log p 2 = 0.49191 X= 9.95150 V-i _ fX7= 9. log a* = 1.491 93 log a t = 0.49731 Certain other transformations of the elements which v. Zeipel makes are omitted. Those terms of the perturbations which have the argument s have the same period as the planet and can, therefore, be absorbed in the elements. It would be necessary to set up formulae for this transformation to mean elements, and it is not profitable to do so. PERTURBATIONS OF THE RADIUS VECTOR. The perturbations in the radius vector are computed in a manner similar to that for (nds [nUz]). In Table XLIII the numerical coefficients are multiplied by their respective factors w*, -if, 9'', J*, the terms are collected, the known parts of the arguments are incorporated in the coefficients, and the terms are grouped in the form: v i vl v = 2 a sin x + 2o cos \+ + (tf-#o) ( 2a> sinx+JZ>' COSX+- } (35) -K#-tM J Ua" sin x + 2-fc" cos x+ !*.!;!.} + Let a = It sin K I =Jc cos K a' = Jc' cos K' b' =' sin K' (36) a"= -V sin K" &"=-*" cos K" Then v = 2Jccoa (x+ft + W-flJZk'smb+IO + W-WWcos ( X +K") + - (37) and to correct the perturbation for the use of the improved value of the mass, i> should be multiplied by 1.00050. If the mean motion n t is adopted, the constant in v must be corrected by t 1 3 n t sin 1" This correction of the constant in v permits the use of the relation 7i 3 2 a 2 3 = P in the computation of a geocentric place; without this correction it would be necessary to use the relation nfaf = P in the determination of the parameter p. In the computation of the eccentric anomaly it is permissible to use either n l or n 2 , for the difference is taken up in the modification of 77^2, but the theory of Hansen demands the use of constant elements. Hence, strictly speaking, 7i, must be used in computing a geocentric place. The modification of the constant in v renders the employment of n 2 equivalent to the use of n t . (10) Hygiea. 2 n,-ro, 1 _2 Of 4067 1 _, 3 n, sin l"~ 3 637f3 sin 1"" The constant in Table XLIII or C'is +47?6. Therefore, the new constant is: +47?6-87f8=-40?2 = (1.604) cos 180?00 where the coefficient is logarithmic in seconds of arc. The perturbation is tabulated on page 27. NO. a.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 21 PERTURBATIONS OF THE THIRD COORDINATE. The perturbations of the third coordinate are derived from Tables LTV, LVi, LVn or D, E,, E,. The first of these is of the same form as the tables for (nSz [nSz]) and v. After mak- ing analogous transformations and multiplying by the factor i cos i, (i is defined by equation (6)), i cos il U p . q 7jPi ) '''siiiA = 2Jcsw(x+K) (39) Both Table LVi or E, and Table LVn or E a lead to a single numerical quantity, since all the factors and arguments are known constants. The perturbation u is given by = i cos i [2U p . q r)i>T)'i sin A + njt.{K l (cos e eJ + K, sin e} +c t (cos e e,) + c, sin e] (40) in which c,, Cj, the constants of integration, have not been determined. The constants c t and c, are determined by Hansen's conditions: (41) __ . _ III dt Substituting these relations and equation (39) in equation (40), the determination of c, and c, is given by the solution of C l (cosf-e 1 ) + C t sias=-IJcsin(x+K); C t sin e - <7, cos e = 2lc ^ cos (x + K) (42) where <7, =- 1 cos i.c, , _. C. = i cos i.e. and dx d e where dfi l+<r w - dt l+HA'+B, 1 )' 2 A double notation is used here, for cos i is the cosine of the inclination of the orbit, and is M the numerical coefficient of e in the argument x, but this should cause no confusion. Dividing and multiplying the factor i cos i-nj, by 365.25 i cos i-n. rr> 1 COS V1 *- -365^5 T (45 > where T\s the interval in Julian years, measured from the date of osculation. It is evident that C l (cos e ,) + C t sin e can be incorporated in Jit sin in the same manner as similar terms were treated in (ndz [ndz\). For symmetry of form, let c cos i- nj{ KI (cos e-eJ + K, sin e} =2V cos (x + K') (46> finally, then, without change of notation, M = Jisin (x+ K) + TZk' cos (x+Jf) (47) in which the constants of integration are absorbed in the first term. The perturbation u is tabulated on page 27. The perturbations in the heliocentric coordinates are computed from equations (3) The signs of cos a, cos b, cos c are determined as follows: cosa>OifO<8< 180 cos 6<0if -90 <& <+90 cos 5 < in any case, if e > i cos c > if sin i cos ft < cos t cos c>0 in any case if i<45 22 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. (10) Hygiea. t = [(4.41940) cos (2Co+ 72?5246) + (3.9150) cos (4 + (3.220) cos (6C + 186?48)]sin 1 S=- 285 Jfcsin (x+K)=- 70f5 <7 cos (x+K)= + 101f6 Ci- + 35?9 <7,= + 12058 From Table LIV. multiplied by t cos i we have three terms in !-i iioiJoIoa ;flJ.vtf a<v/.^ * ^ Jfcsin (x+-K) = -4.'2-lf9sin + 2f7 cos e which, added to C",(cos e-ej + C 2 sin s= + 12058 sin + 3559 (cos e-c,) gives for two terms in 2" sin (x+ K) hfi/i -758 + 11859 sin + 3856 cos =(0.89) sin 270?0+ (2.0970) sin (s + 17?99) CHECK COMPUTATION. After the elements have been determined and the final tabulation of the perturbations is ready, the following checks should be performed, even if the computation has been duplicated. t = 6 =|(e e sin s)q' 1 w g' = c' + [n'dz'} 6 = t> + g (ndz - [ndz]) - yw sin ?.i.<Vi'. "1 where the necessary quantities are to be taken from the last approximation for c. Secondly, the heliocentric coordinates x-Ax, y-Ay, z-Az for t = must check when computed by the usual formulae for two body motion and osculating elements, and when computed with the final set of elements and the corresponding perturba- tions, ndz and v, taken from the final tabulation. The final tabulation of the perturbation in the third coordinate is checked by the test t=Q u =0 (8*) COMPUTATION OF THE PERTURBATIONS FOR THE TIME t. It is well to emphasize here the distinction between the elements n, and c, and the elements n t and c 2 in their relation to the perturbations. Let ndz l denote the perturbation in the mean anomaly computed according to equations (20), (19), (18), (21), (22), (27), (28), and let nz 2 signify the perturbation computed according to equations (20), (19), (18), (22), the final tabu- lation of (ndz [ndz]), and an equation analogous to (34). (It must be remembered that equa- tion (34) is for (10) Hygiea only. The numerical coefficients are determined for each planet individually.) Before the determination of c there can be no confusion, for there is but one way to com- pute the perturbation ndz. Later, when both c, and c 2 are given, the computation may be per- formed in either manner. The latter method is, of course, adopted. The question then arises, what values of and c are to be used in equation (19) ? No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 23 Clearly, there is only one value of e, for s i sn and both rufe and e must be found by trials. Further, since the introduction of n, and c, arises merely from a transfer of certain terms in the perturbation, the argument of the perturbation is independent of this transformation. Therefore c t is the constant in equation (19). For any time t the order of computation is: equation (33), neglecting n9z, (20), (19), (18), (22), final tabulation of ndz [ndz], and the equation analogous to (34). Since the per- turbations are large, the argument is not sufficiently accurate when ndz is neglected. It is, therefore, always necessary to make a second approximation for ndz. In the first trial the small terms may be omitted. (10) Hygiea. PERTURBATIONS n8z, v, u, FOR 1873, SEPT. 20.4491, BER. M. T. log , (degrees) logf 0.80432 8. 48578 log sin log sin log sin 9.9387, 9.9918, 9.703, 1 2 97*;fil Iog 57.30 w . / tWIi '2177278 2 Co 2207848 log cos 9. 741, . * Vjj 2217880 log cos 9.419 2 . 12178661 W (r r ) 1.6337 ;*] 2* 4*+ & 3157360 o p*>e ' *u iog^:-: > 1.3898 Jf-l~3$ 119. 524 is -^5^ 283. 698 4- ; fli^t *; j < 1873 log ^(C-Co) cos 1.131, -+ * 208.824 u lr_l_3|} 12.998 2 Ber. M. T. Sept. 1 20. 4491 log-(C-C.)coe 0.809 106. 526 ( + 8039? 4491 270. 700 n^l + 142272156 11405" E+40 74. 874 Cj+Hjf nz 1544. 0817 104. 0817+1440 '3.666 "A + i A 2017 140 124 +6* + 8t> 239.048 43. 222 57 648 Jf=c,+n,<+na* 100. 416 +10 - f+4tf 221.822 * i ' 106. 526+1440 \ 1546. 526 [*], 13676" |+3a 61. 876 226.050 30 224 log* 3. 18935 log [n9z\ (sees) log [nte], (degrees) 4.13596, 0. 57966, |+7<> 194. 398 log^ 1. 67513 [jufc], -3. 7989 -Jt+ t 102.298 w r + 477329 2c 213. 052 17.226 -['*'] + 477053 log (9.6715) [jute], 0. 2512, 2+4. 181. 400 345.574 log fe-KAq) 1. 67259 (9.6715) [ndi], -17783 |+W 136. 750 * . ' X 4*+7* 300.924 log (9.99572) (J^e- [n'dz'U 1.66831 a 2627087 (9.99572)(|e-[n'S^) + 467592 d-0 407207 r 2637870 f 2627087 2' 1677740 2$ 164. 174 \" 335. 480 3i> 66.261 6; 143. 220 4t> 328. 348 5t> 230. 435 C~Co 43.022 M 132. 522 7j> 34.609 2+ 72?5246 2407265 M 2%. 696 4^+305. 627 281. 107 () 6^+186. 48 329. 70 i* 53. 263 ! 106. 526 2;+ 68783 236. 57 1* 159. 789 4^+309. 75 285.23 2e 213. 052 i 266. 315 1 Con. lot aberr. 1 From previous approi. * From Astrand's table. See eq. (1), page 16. 24 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. (10) Hygiea. PERTURBATIONS nSz, v, u, FOR 1873, SEPT. 20.4491, BER. M. T. Continued. x-i-f+j<? nSz [nit} y u i i x+K log sin (.x+K) It sin (x+K) X+*" log cos (x+K) * cos (x+K) x+K log sin (x+K) * sin (x+K) O o 180.00 0. 000 n - 40" 270.00 0.000 n - 8" 2 58.608 9. 7167 +375" 296. 33 9. 952 n -12 4 98. 841 9. 1867 n - 33 238 9. 928 B 6 o 146. 28 9. 920 n - 52 1 1 353. 286 9. 0679 n - 56" 173. 425 9. 9971 - 137 80.40 9.994 + 11" 1 3 41. 102 9. 8178 + 479" 221. 824 9. 8723 n - 193 110. 78 9.971 + 14 1 5 88.71 0.000 + 265 268. 86 8. 2988 n - 2 156. 04 9.609 + 3 -1 1 233. 74 9. 907 n - 85 192. 38 9. 9898 n - 3 122. 28 9.927 + 11 -1 3 106. 53 9.982 + 41 111. 41 9. 562 n - 13 172. 10 9.138 + 1 2 119. 27 9.941 + 18 300.02 9.699 + 3 124. 52 9.916 +103 2 2 347. 748 9. 3268 n - 761 167. 726 9. 9900 n -1852 79.94 9.993 + 59 2 4 35. 927 9. 7686 + 437 215. 194 9. 9123 B - 329 104. 99 9.985 + 25 2 6 83.53 9.997 + 243 263. 148 9. 0767 n - 15 150. 50 9.692 + 5 2 8 127.4 9.90 + 35 309. 92 9.807 + 27 -2 2 115. 61 9.955 + 84 88.6 8.39 0.51 7.948 + 1 -2 4 311. 82 9. 872 n - 3 349. 03 9.992 + 6 3 1 276. 65 9.064 + 1 225. 83 9. 856 B - 5 3 3 163. 51 9.453 + 36 341. 94 9.978 + 85 257. 49 9. 990 B - 3 3 5 208. 94 9. 685 B - 34 28.42 9.944 + 34 278. 56 9. 995 B - 1 3 7 253. 08 9. 981 n - 13 54.02 9.769 + 1 -3 1 136. 98 9. 864n - 2 4.98 8.939 4 348.8 9. 288 n 4 2 274. 434 9. 9987 B - 104 40.38 9.811 + 1 4 4 327. 82 9. 726 n - 21 156. 79 9. 963 n - 9 85.1 9. 998 + 1 4 6 22.1 9.58 + 5 198.96 9. 976 B - 4 92.97 9.999 + 1 5 5 150.8 9.69 + 5 330. 79 9.941 + 10 5 7 196.6 9.46 B - 2 16.85 9.981 + 8 +1648" -1079" +550" -2684" +236" -29" (i O'orT x+K' log cos (x+ff'J k' cos (x+K') x+K' log sin (x+K') *' sin U+JT) Cx+JP) log cos (x+K') )c'cos(x+A") o 270.00 0.000 n - 6" 180.00 0.000 B 2 232.94 9. 902 n g 4 o 281. 51 9. 991 B - 7 2 292.53 9.583 + 371" 292. 573 9. 965 B - 447 47.67 9.828 + 6" 2 2 4.7 0.00 + 2 351. 93 9. 147 B 2 4 41.3 9.88 + 6 41.29 9.819 + 3" -2 2 123. 85 9. 746 B - 2" 305. 02 9. 913 B - 1 4 219.90 9. 885 B - 20 4 2 104.1 9.39 B - 1 104.23 9.986 + 4 4 4 154.82 9. 957 n - 1 147 9.736 + 1 + 379" - 24" + 8" - 469" + 6" (*-.)' X+K" log sin (X+1T") Jc" sin (x+K") x+K" log cos <x+*") V eta (x+K"-) O O 2 296. 23 9.953, - 3" 112. 79 9. 588 B - 1" 4 227. 15 9. 865 B - 1 47 9.834 4" 1" 1 For perturbation u use factor T. No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. (10) Hygiea. PERTURBATIONS niz, v, u, FOE 1873, SEPT. 20.4491, BER. M. T. Continued. 25 log(0-!> )rad. 9.8462 / . log (> ->)* 9.692 log T 1. 3426 f.tj log a sia 1" 5.183 cos t 1 n!z r u 2kaa(x.+K) + 569" Ik coe (x+^) - 2134" It sin (X+.BT) i + 207" Jf cos (x+^O + 355 IV sin (x+A"0 - 461" ! JF cos (x+-K"0 6 IV sin (x+^'O 4 IV coe (x-f ") 1" log IV coe (x+^O log (^-^ ) If coe(x+ / K v ) 2.5502 2.396 + 249" log IV sin (x+^0 log (d - >.) IV sin (x+^0 2. 664, log J'f coe (x+^"0 2. 510, log T. IV coe (x+-K"0 - 324" T. JF cos (x+^0 0.778 2.121 + 132" logJt"sin(x+^' / ) 0.602, r - 2458" u + 339" 0. 294, log * (aecs) 3.3906, logu 2.530 (t !>,,)*. 2" log ^ (r^) 8.0762, 7.713 log (l+) 9.99480 log cos a 8.798, log cos b 9. 619, I + 816" log cos c 9.958 1 Z J 1 +0. 2267 (8.3192) [n'Jz'] +0.0058 log Ax 6. 511, [ri^z]. -3. 7989 log ^ J/ 7.332, tuJz - 3.5664 logJz 7.671 -0.00014 TKte + 5 n*z - 3. 566 Ax -0.00032 if . ** ^' Ay -0. 00215 At +0.00469 The computation of the geocentric place on page 26 is analogous to the usual method for two body motion, the fundamental equations being (1), (2), (3). A complete set of formulae and an example of the computation is also given in Memoirs of the National Academy of Sciences, Vol. X, Seventh Memoir, p. 215. CONSTANTS FOR THE EQUATOR. A' yearly vr. B' yearly var. C' yearly vw. log sin a log cos a log sin b log cos b log sin clog cos c issao 1900.0 1950.0 3209833+0901399 321. 532+0. 01399 322.232+0.01399 22991g2+0901404 229.885-0.01405 230. 587+0. 01406 238657+0?01310 239. 312+0. 01308 239. 965+0. 0130S 9199914 8.799, 9.99914 8.797. 9.98915 8.795, 9.95884^9.619, 9.95868 9.619. 9.95853 9.620. 9.62355 9.958 9.62423 9.958 9.62490 9.958 26 uA hod.i'i ifj VltlHiN MEMOIRS NATIONAL ACADEMY OF SCIENCES. (10) Hygiea. COMPARISON, OBSERVATION COMPUTATION. 1873, SEPT. 20.4491, BER. M. T. [Vol. XIV. 1873 X +3. 0709 Ber. M. T. Sept. 20.4491 X -1.00281 *a~f~ n j' 104?0817 dx -0. 00032 n8z - 3. 5660 * +2. 0678 M=c^+n, i t+n8z 100. 5157 y -0. 89314 dM - 04843 Y +0. 03260 dM' - 29/06 jj, -0. 00215 d<p' + 3/15 -0. 86269 dv dip + 1. 8124 f X/flf^ j tff + 68 \ fl / 1 rl z -0. 19677 ^V-SS + 8 Z +0. 01415 d(v-M)ldM + 5/73 - 0. 0674 Jz f +0. 00469 -0. 17793 l hD m .dM + 8 )2.dM' + 1/94 log p cos S cos a 0. 31551 v-M + 12 0/14 cos a 9. 96515 M f+ 12 7/81 sin a 9. 58550 n Vi~ MI 1+ 12. 1302 log p cos 8 gin a 9. 93586 n I/-*, 112. 6459 log tg a 9. 62035 n J337 21' 14" log cos/ 9. 5S550 n a \ 22 h 29 m 24'. 9 log ! cos/ 8. 63170 n Red to True a +1.5 log (1+e, cos/) 9. 98099 True a 22 h 29 m 26 s . 4 logr 0. 51092 Obs. a (A. N. 2029) 22" 29 m 07'. 1 log (1+K) 9. 99480 logr 0. 50572 log p cos d 0. 35036 "R' C" 321?1548 229. 5058 238. 9584 cos 8 sin 8 log p sin 8 9. 99864 8. 89852 n 9. 25025 n >')i. ;t'>v log tg 8 8. 89989 r 7 73. 8007 8 -4 32' 26" '+/ 342. 1517 Red to True 3 +6" C"+/ 351. 6043 True 8 -4 32' 20" Obs. 8 (A. N. 2029) -4 33' 27" log sin a 9. 99914 log sin (A'+J) 9. 98240 -) .!:/ 'l;i'J<-t f. logz 0. 48726 logp 0. 35172 log sin 6 9. 95877 log sin (*'+/> 9. 48643 n logy 9. 95092 n (0-C) Act cos 8 -19-3 log sin c 9. 62387 J8 _!' T' logsm(C"+/) 9. 16438 n log 2 9. 29397 n Stlit Given a series of observations well distributed around the orbit and extending over as long an interval as is available, the elements can be corrected by the method of least squares. For this purpose the formulae by Bauschinger 2 are convenient. The equations of condi- tion are set up for the residuals in the plane of the orbit and perpendicular to the plane, as seen from the earth. This resolution of the residuals is convenient because it keeps the same reso- lution into components as is used in the theory of Hansen. It is to be noticed that the elements to be used in computing the differential coefficients are the finally adopted constant elements referred to the equator by the proper transformation. The value of r to be used is except in the equation sm sin/ (Hansen's notation) ' Tafel zur Berechnung der wahren Anomalie, Veroftentlichungen des Rechen-Instituts der Koniglichen Stemwarte zu Berlin No. 1. 1 tiber das Problem der Bahnverbesserung, Veroflentlichungen des Koniglichen Astronomischen Rechen-Instituts zu Berlin, No. 23, Berlin, 1903. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 27 The use of ,/, r and constant elements is equivalent to the use of osculating elements for the given date of observation. (10) Hygiea ^ ^ V u ( i log It K logi 1C log* K 9 1.604 180.00 0.89 270.00 2 2.8570 254. 434 1.118 132. 16 4 2. 3364 130. 493 8.25 270 6 1.800 13.76 ndz [n8z]=2k sin (x+K) 1 1 2. 6771 37. 936 2. 1397 218. 075 1.057 125. 05 -|-( ) j_i} yjj - / k / cos (x-^-K'} 1 3 2. 8627 281. 578 2. 4135 102. 300 1.161 351. 26 +(# d<,Yk" sin (\+K") 1 5 2. 4238 165.01 1.965 345. 16 0.930 232.34 -1 1 2.022 24.92 0.55 343.56 1.119 273. 46 -1 3 1.628 93.53 1.543 98.41 0.981 159. 10 2 f [1.545]' \ 1.320 [7. 53]' 12.74 0.711 193. 49 2.097 17.99 v=Ik cos (x+JiO +(tf-i> )Zf sin (x+-K"') 2 2 3.5546 77.048 3. 2776 257. 026 1.777 169. 24 -(-(> i> ) J ^t" coe (x+^'O 2 4 2. 8719 321. 053 2.6054 140.320 1.412 30.12 2 6 2.389 204.49 2. 1033 24.100 1.034 271. 45 2 8 1.64 84.2 1.62 266. 70 -2 2 1.970 57.96 1.27 31.0 1.824 302.86 u= Ik sin (x+JQ -2 4 0.602 90.00 0.80 127. 21 + T2V cos (x+-ST') 3 1 0.90 214. 77 0.826 163.95 3 3 2.100 297.46 1.95 115. 89 0.446 31.44 Where T is expressed in Julian years from date of osculation. 3 5 1.841 178. 72 1.583 358.20 0.171 248.34 3 7 1.12 58.68 0.34 219. 62 -3 1 4 4 2 2. 0170 257. 208 0.42 34.68 0.673 0.00 0.270 262. 68 135.7 23.15 x=tW+y* where in s the multiples of 2r must be retained. 4 4 1.589 146. 42 0.97 335. 39 9.91 263.7 <> =221.811 4 6 1.14 36.5 0.66 213. 39 9.73 107. 40 5 5 1.038 14.0 1. 062 194.04 5 7 0.88 255.7 0.94 75.93 (-i,) or r log V K' log it' K' log*' K' 0. 799 270.00 9.690 180.00 ' 2 1.021 68.77 4 0.86 313. 16 2 2. 9862 186.00 2.6850 186. 047 0.957 301.14 2 2 0.18 94 0.12 81.23 2 4 0.88 326. 4 0. 60 326. 42 -2 2 0.60 66. 20 0. 11 247. 37 4 1.414 6.85 4 2 0.68 86. 9 0. 580 87.00 4 4 0.11 333. 42 0. 09 326 " v . (>-*,) log *" K" logi" K" . 2 0.58 189. 70 0.26 6.26 4 9.91 14.10 9.6 194 COMPARISON OF THE REVISED WITH V. ZEIPEL'S ORIGINAL TABLES. It was originally planned to conclude the example with a least squares solution of the orbit on the basis of the observations used by v. Zeipel for the same purpose, and to test conclusively the relative value of the revised and v. Zeipel's original tables by representing recent observa- tions with both sets of elements and tables. In the course of the computation doubt arose regarding the accuracy of some of the observations selected by v. Zeipel, which led us to reject them and substitute other observa- 1 In the determination of the constant e use quantities in brackets. 28 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. tions. This substitution produced an unfavorable distribution of the observed places in the orbit and the resulting least squares solution was not satisfactory. In the meantime, pending a resumption of the least squares solution on the basis of a more favorable distribution of observed places, 1 the following conclusions may be drawn regarding the revised and v. Zeipel's original tables: 1. v. Zeipel's tables have been slightly improved by the correction of some numerical errors. 2. A moderate further improvement has been accomplished by an extension of the tables in so far as seemed practicable without a more exhaustive and unwarranted study of the prac- tical convergence of the auxiliary series, by including certain terms of higher order and degree. With reference to the correction of the orbit and the representation of observations by a least squares solution, it should be observed that (1) A symmetrical distribution of the observed positions in the orbit is essential to coun- teract the effect of neglected perturbations of higher order and degree and of major planets other than Jupiter. For the Hecuba Group, in general, the mean motions of the minor planets may be nearly commensurable with those of Saturn, Mars, or the Earth in the ratios 3/2, 3/1, or 3/5. (2) However accurate the initial osculating elements may be, comparatively large residuals may remain on account of neglected perturbations. Logarithmic. TABLE A (XXXV). n&z [niz] Unlt-1" Sin te-i W-* -- jf w to' tf ,. + 4. 1570 4. 8741 B Jf+ 0+ 4 2. 7684 B 3. 3827 3. 7172 B B* Je+ (j-j. j 4. 0056 n 4.7686 *" J + t>+ 4 4. 0766 B 4. 8295 J-+ 0+ 4 4. 1365 4. 8738 B ' '< + 0+24 3. 3345 4. 5162 B j: + 30+24 4. 2240 n 4. 9611 5. 6685 B ]J Jtf+30+34 4. 0671 4. 8483 B 5. 5636 1J /3 i +50+34 5. 0926 n 6.0018 Jf I '+50+44 5. 2325 6. 1714 n i+50+54 4. 7675 n 5.7344 /" j+50+44 2 3. 8050 n 4. 7998 5' -$+ 3. 3112 3. 8350 H 4. 1355 ^r-f- t5-f- A 3. 2065 n 3. 7910 4. 0833 B lj" -}+30+ 4 3. 5338 4. 6236 B ll' j+30+24 4. 0879 5. 0382 1J if+30+34 tv ' . 3. 6012 n 4. 5318 n J 1 -if+30+24-J 1 3. 2074 4. 1925 B , , 9. 868 n 0. 5689 2.922 3. 4600 B 3. 3670 Jj' + 4 9.482 0. 2533,, 2.673^ 3. 2959 3. 1772 B 5 1 ?' +20+ 4 0. 746 n 1.384 3. 2927 B 4. 14906 4. 6990 B +20+24 9. 788 B 2. 47560 3. 10847 n 3. 4540 3. 3960 B n> +20+24 0.645 1.342 B 2. 305 n 3. 6179 n 4. 4018 *" t+20+24 0.326 1. 119 B 2. 935 n 3. 3017 n 4. 39206 +20+24 3. 4276 B 4. 23764 4. 76933n '!')' +20+34 0. 28 B 1.102 3. 1738 3. 5449 n 3. 8446 n rjij' 3 +40+24 3.6004 4. 27485 1 (.(-40+34 9.057 0. 692 B 3. 10161 3. 9302 B 4. 52415 4. 78162 B ,V +40+34 4. 0519 n 3. 7975 yf +40+34 4. 1385 n 4. 6961 +40+34 4. 2431 B 5.1290 17 +40+44 9.500 B 0.522 2. 9351 B 3. 8035 4. 41616 n 4. 63017 if +40+44 3. 7714 4. 2108 B Iff'* +40+44 4. 4165 5. 0931 B Pi) j-j-4,j-|-44 4. 1524 5. 0661 B ,y +40+54 4. 0588 B 4. 8136 ' Since 1913, when the revision of the tables was concluded, Miss Glancy has continued the problem of ( 10) Hygica independently at the Observa irio National, Cdrdoba, with the following highly satisfactory results, which substantiate further the increased accuracy of the revised table: va- torio Nacional, Cdrdoba, with the following highly satisfactory results, which substantiate further the increased accuracy of the revised tables (1) The original osculating elements and the revised tables resulted in a greatly improved representation of the selected observations (1849-188i) over the representation obtained with the original tables. (2) After the correction of the original osculating elements by least squares solution (a) on the oasis of v. Zeipel's tables and residuals, (6) on the basis of the residuals resulting from the revised tables, the representation ol the selected observations was equally satisfactory; but 3 later observations, taken in 1910, 1914, and 1917, are represented far better by the revised tables and corresponding elements than by the original tables and corresponding elements, (of. Astronomical Journal, Vol. 32, p. 27, No. 748, January 1919) A. O. Leuschner. Ko.3.1 MINOR PLANETS LEUSCHNER, CLANCY, LEVY. Logarithmic. TABLE A (XXXV) Continued. 29 Unit-l" Sin - K"- 1 M V 1C* J 1J f-J-4^-f-3J 2 3.2322, 4.2342 c-f~4iJ-|-4J E 2.744, 3. 0962 ,/S t+6t>+4J 0.28 0.64, 3.8027 4. 77998, 5. 52852 - -/ -j-6iJ-(-5J 0.596, 1.070 3. 9374, 4. 94342 5. 70347, ij l c -\-M+<}J 0.255 0.8, 3.4684 4.50125, 5.27451 +6t?+5J-J 8.8 9-3, 2.415 3.4823, 4.2931 V* e+8^+5J 4.5564 5. 4999, "7 -j_g^_j_6J 4.8668, 5.8416 _)-g^_(-7J 4.6990 5. 7030, i* e-(-8i>+8J 4.0631, 5.0844 j ^' j-Lg^-LgJ^ 1 3.5829 4. 6352, ft +8e>+7J-J 3.3768, 4.4540 l" - +2<J 0.606 1.422, 3. 2132 3. 6657, 3.9260 r ' + 2l?+ J 0. 791, 1. 690 3. 3777 B 3.8866 4. 72168 1 - +2tf+2J 0. 418 1. 365, 2.894 3. 4616.., 3.8078 - +20+ A-I 9.34 0.28 B 2.938 3. 4714, 3. 7862 /i - +4^+ A ' t '-> ' -* ,' 3.5208 4.07255 7 r/' 3 3.4965, 4.59582 r*r' _ -j-4ty+3J 3.2416 4. 5467, 1)' - +4tf+4J 2.430, 3.9848 ,' - e+4d+2J-2 3.5496 4.19852, - f+4<5+3J-J 3. 3247, 4.05994 55' ^ +3l j + 2J 3. 6731 4.0029, |+3tJ-(-3J 2.3528 3. 2475, 3.9005 ij' ^+3i>+3J 3. 6181, 4.2122 f -j-3,y-j-3J 3. 4072, 4.4000 i + 3l?+4J 3.5244 4.4012, 7/ ' ^+5t>+4J 3.3533 4. 4231, 5.2725 ^ i+5t>+5J 3. 1780, 4.2730 5. 1359, q'l ,-)-7i)4-5J 4.2775 5.4708, jj -' i + 7l? + 6J 4. 4051, 5. 6177 >z 2 i*-J-7iJ+7J 3.92% 5.1605, ij 2^+2^+2^ 9.486 2. 1744, 2. 708 2. 889, 2. 599, ' / 2-i-2i'+3J 1.946, 2. 501 2. 516, ? ?' 2 -f 4^-j-3J 8. 8, 0. 561 2. 789, 3.5813 4. 1074, 2j-j-4<>-[-4j 8.90, 9.599 1.711 2.5795, 3. 1726 * 2 +4^+4J 9.2 0.34, 2.618 3.4962, 4.0890 ^' 2-j-6J+5J 9. 819, 0.5840 2. 7821 3. 7794, 4.51865 1 2 e +6<J+6J 9.653 0.4645, 2. 5979, 3.6265 4.38424, Sr-j-otf + oJ 1.2340 2. 1166, 2.7076 T' i-|-7i)4-6J 2. 3679 3.3518, 4.0587 1 |+7!> + 7J 2.1758, 3.1926 3.9204, (t) #) coe i; 0. 1021, 0.728 2.8978, 3.4504 3.7168, 1.377, 2.346 3. 8211, 4.6762 'i" f 1.941, 2.815 4. 4076, 5. 1971 1.364 2.220, 4.4076 5.1971, 5. 7086 ^' e-f J 9.658 0. 774, 2. 7836 3. 3840, 3.6946 '/' T / + -1 1.863 2.755, 4. 2546 5. 0814, * *4" J L844 2.642, 4.1953 4. 9770, f *,' + J 1. 170 n 2.049 4. 3715, 5. 1770 5.6975, v + 2J 1. 742 B 2.574 4.0203, 4.8466 j 3 V t+ J 0. 716 1.65, 4. 0809 4. 8829, 5.4008 j*, + J+^ 1.00, 1.89 4. 3427, 5. 0837 5.5553, v - J- J 1.562 2.455, 3. 9535 4. 7803, ,1 2: 9.801 0.43, 2. 5842 3. 1493, 3.4158 1 1 2+ J 9. 357 n 0.473 2.4548, 3.0830 3. 3936, \v W 0' *-** 7 * 9.56, 0.42 + J 9.43 0.32, where C,, sin Arg.4-( I )-iJ )J'r / P^ / 9; 2 Cj coe 2 , C 3 represent the respective coefficients. sin Arg. 30 MEMOIRS NATIONAL ACADEMY OF SCIENCES. IVol. XIV. Logarithmic. TABLK B (XXXVIII). *() Unit 1 radian. Cos ,, JM -. M '** *-. * w te* 1.5 3. 909 B 4.960 6. 6748 B 7. 2764 7. 540 B 7.31 ** 2.0 4. 644 B 5.160 6. 150 8. 048 B 8.838 8. 655 n 8. 100 n V* 1.9 3.41 n 4.75 n 6.509 8. 2077 B 8.994 8. 919 B P 2.83 n 5.146 6. 299 B 7. 994 8. 740 n 8.656 * 2.34 B 4.446 4.57 6. 728 B 8. 4022 9. 1999 B 9.0854 8.079 Tj Tj 2i> 1.6 2.6 B 5.744 6. 535,, 8.3811 9. 1031 B 9. 0128 if 2<>+ A 0.8 n 3.068 5. 2988 7. 2212 B 7. 3772 8. 0372 8. 764 B 8.668 Tj 1) 2<?+ J 2.32 B 3.30 5. 886 B 6.718 8. 5059 B 9.2804 9. 201 7 B 1)'* 2t?+ 4 5. 301 B 6.149 8. 2302 B 9. 0154 8. 938 B P y' 20 + A 8. 5592 9. 3245 B 9. 2428 y 3 20 +2J 2.48 3.40 n 5.422 6. 292 B 7.476 8. 664 n 8.636 Tj 20+2J 1.22 2.94 n 5. 1206 B 7.6416 7. 9638 n 7.083 B 8.645 8. 582 n 1) I)' 2 2#+24 1.9 3.0 n 5.442 6. 328 B 8. 0915 B 8. 630 B 8.742 3 V 20+2J 8. 5904 9. 3489 9. 8024 n 9.6532 TJ ij 2t>+3J 2.04 B 3.00 4.98 B 5.89 8. 0326 ! 8. 1973 n 7.69 fi) 2i>+ J-J 4.51 5.42 B 8. 1011 8. 873 B 8.792 .'2 _/ y v 20+2J-.T 4.04 B 5.00 6.89 B 8.182 8. 158 B ,' 40+24 2.66 n 2.7 6. 1031 8. 4188 B 8. 5297 6.0 7.90 n Tj Tj 4<?+3J 2.72 4.369 6. 2526 B 8. 5594 8. 7988 B 7.94 B 8.287 8.210 !J 2 40+44 2.20 B 4. 624 B 5.824 8. 0924 B 8. 4333 7.24 7.74 B 8. 044 B P 4<H-3J-.y 1.5 B 2.45 4.68 7. 1747 B 7.301 8.111 8. 127 B 6.J+34 5. 301 B 6.149 9. 1294 B 9. 7728 9. 6609 n 6i>4~4J 5.92 6.74 B 9. 4432 0. 14644 B 0. 05077 7)V 6i5+5J 2.0 B 3.0 5.93 n 6.79 9. 2774 B 0. 03298 9. 9494 n n* 6<>+6J 2.0 3.0 B 5.420 6. 292 n 8.634 9. 4351 n 9. 3608 ;? i 7 6<>-|-4J 2" 4.04 B 5.00 8. 272 B 9. 1028 9. 0334 n J >! e^+SJ-J 4.51 5.42 B 8. 0554 8. 926 B 8.864 (i>-<5 ) sin ^' J 2.60 n 4.71 5.94 B 6.507 B 6.606 ,/ 2.+ 4 1.36 2.48 4.49 5. 255 n 5.51 5. 25 B * 2t>+2J 1.82 B 2.42 4.64 B 5.350 5.51 B 5.16 ,'2 40+24 2.34 3.00 5.392 6. 179 B 6. 528 n 6.665 Tj if 4i?-|-3^i 2.89 B 3.46 5. 702 B 6.467 6.851 6. 979 B I* 4i?-j-4^ 2.66 3. 459 B 5.357 6. 127 B 6. 530 B 6.653 1* 2.08 B 2.08 5. 546 B 5.546 if* 2.54 2.54 n 5. 396 B 5.396 !l' 4 2.5 n 2.5 5.776 5. 776 n m' 3 m' 3 m' 3 , m' 2 m' 3 , m' 3 m' 2 , m' m "' m/ m' 2 , m' m /1 , m' m' 1 , m 1 cos Arg.+( t ?-tf )Jit'*jP., / 9./.C 2 sin Arg.-f (^-t where C,, C 2 , C 3 represent the respective coefficients. cos Arg. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE C (XLIII). 31 Ixxrarithmfc. Unit-l" Cos - 2 - w* tr 8.72 9.88, 1.6349 2. 1070, 2.2333 f 9.80 0.212, 2.759 3.4922, V* 8.9 9.23 2.937 3.6295, ' J 9.66n 9.78 2.937, 3.1136, 3.6295 3.8440 If" M 0.556, 1.204 3. 2111, 3.7970 If 2tf+ 4 0.504, 2.3472 2.456 n 2.686, 3.4735 rY 2i+ ^ 0.997 1.711, 3.6559 4. 3103, 7" 2iJ+ 4 0.438 1.220, 3.3654 4. 0763, i* * 2<>+ A 3.6975, 4. 3810 i) 20 +2 J 0.438 2.952, 3. 2529 3.0689, 3.3979, f 2.5 +2 J 0.732, 1.497 3. 2410, 4.0643 7-j" 2tf+2J 0.772, L589 3. 4136 4.0723 A 2J+2J 3.9048 4.5649, 4.9303 V 2i>+34 0.505 1.344, 3. 4757, 2.783 /*5 2+ J-2 1 9.33, 0.15 2.938, 3.5830 ? V 2^+24 -J 9.20 0.10, 2.0251 3.2961, ?" 4J+24 8.9 1. 2819, 3.5514 3. 6173, 3. 8147 it* w+w 9.75, 1.5024 3.7885, 4.1394 4. 3110, r,> 4i>+4J 9.98 1.1342, 3.4007 3.9091, 4.1480 'V 4j+3^-J 6^+SJ 0.438 9.64, 1.220, 2.305 4.2675 2.542, 4.7993, 2. 749, u? W+4J L125, 1.862 4. 6479, 5.2324 *v 6i)+5J 1.198 1.947, 4.5397 5.1768, 7* 6J-I-6J 0.732, 1.508 3.9457, 4.6328 F *' 6rf+44-^ 9.20 0.10, 3.4099 4. 1710, w 6tf+5J-J 9.70, 0.56 3.2601, 4.0542 9 v' i+ i> 3.4878, 4.1106 i+ + J 8.3. 2.2106 2. 7179, 2.919 f i*+ J+ 4 3. 5709, 4.2261 , 1 + tf+ J 3.4507 4.1296, V <H- rf+ ^ 3.5100 4. 1837, ?V v+ <J+2J 2. 579, 3.9270 7' < t+3*+24 0.08 3.6873 4. 1471, 4.7839 q . E+3J+3J 9.5 3. 5727, 4.1511 4.7545, 5" < t+5tJ+3J 4.5568 5. 1414, -M' - t+5t>+4J 4. 7261, 5.4067 i 3 1 f+StJ+54 4.2862 5.0418, J 3 1 t+5i+4J-J 3.2570 4.0005, 1 -i+ * L086, 2.7090 3. 3467, 3.7098 1 -i+ l>+ J 0.88 2. 1967, 3.0952 3.5836, I* -i-t+3*+ J 2.514 4,1049, ijr - t+3J+2J 4.0853 3.9122 f -i+3J+3J 3.8341, 3. 8118 f -|+3J-f-2^-J 2.416 3.6926, >! i 9.62 0.58, 2.143, 2.682 2.9151, r e+ J 9.04, 9.9 2.061 2.666, 2.9477 if' +2l>+ J 0.444 1.1661* 3.0588 3.8035, 4.2554 t+2^+2^ 9.487 2.1744, 2.7280 2.972, 2.976 i 3 +2^^-24 0.344, L1143 2.692, 3.5334 4.0772, *" +2J+2J 0.025, 0.828 2.634 3.0726 4.0416, j 3 +2^+24 3.1265 3.8806, 4.3473 IT* +2<>+3J 9.98 0.811, 2.873, 3. 1697 3.5856 t7 E+4J+24 1.105 L89, 2.864 4. 3477, < +4t>+34 8.8, 0.398 2.8000, 3.5327 4.0065, 4.3207 iV +4t>+3J 1.260, 2.083 3.0931 4.4160 i" +4t>+34 3.8375 4.0446, >* i 7 +4tf+3J 0.267 1.15, 3.9421 4. 6972, i +4t?+4J 9.19 0.248, 2.6356 3. 4317, 3.9469 4.2558, f +4tf+4J 0.774 L66, 3.0934, 3.7866, i" +4J+4J 4.1154, 4.5547 j 3 '? +4^+4^ 0.455, 1.32 3.8518, 4.6436 v +4^+54 3. 7579 4.3244, /N +4tf+3J-J 3.0030 3.8869, 32 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE C (XLIII) Continued. Logarithmic. [Vol. XIV. Unlt-1" Cos w-> w-> w-i to' w w' f if s+40+44-1 2. 4425 1. 85 n ^ +C^+4J 9.98 n 0.480 3. 5016,, 4. 3723 4. 9952 n w' e+6<)+5J 0.296 0. 823 B 3. 6369 4. 5582 n 5. 2093 f +G^+6J 9.95 n 0.538 3. 1685 n 4. 1334 4. 8131 n f f+Gtf+SJ-I 1 8.5 n 9.15 2. 114 n 3. 0881 3. 7886 n ^ +8tf+5J 4. 2554 n 4. 9349 ,," +8!?+6J 1.320 2. 152 n 4. 5657 5. 3010 n ,V e+8,?+7J 1. 228 B 2.093 4. 3995 n 5. 1827 1* e+8,9+84 0.648 1.54 n 3.7543 4. 5812 n P l' +80+64-.? 3. 2818 n 4. 1442 A e+Stf+74-2 1 3. 0763 3. 9759 n *" - +2t5 0.305 1. 1007 2.912 3. 4958 n 3. 8151 11' - +2<J+ 4 0. 490 n 1. 3330 3. 0166 n 3. 7273 4. 3119 V* - e+2t?+24 0.117 0. 982 n 2. 288 n 3. 2375 B 3. 7892 f - +20+ J-2 9.04 9.96 n 2.636 3. 2817 n 3. 6568 ," - +40+ J 3. 2197 3. 9650 n ,," - +40+24 1. 146 n 1.89 3. 0204 4. 2441 *V - +40+34 1.005 1.78 n 3. 5247 n 4. 0012 n r f \i 1* - +40+44 0.290 n 1.15 3. 1793 2.982 n- ^ f rf - +40+24 -.T 3. 2486 4. 0585 n :.-W- S, - +40+34-1 9.98 n 0.8 2. 957 n 3. 8580 y |+ 0+ 4 9.0 2. 3363 3. 0704 B 3. 5111 r,' i*+ 0+24 9.5 1.500 2. 3585 3. 1842 B 1)1)' -|+30+24 2.779 3. 7820 n ^+30+34 9.28 2. 1614^ 3. 0257 3. 6491 B ? | +30+34 1.32 2.966 l" |+30+34 3.3450 4. llll n ? |+30+34 3. 2309 4. 1965 n ?Y |+30+44 , 3. 2994 n 4. 1520 T,' |+50+44 1.017 3. 1617 n 4. 1967 5. 01GO n T) |+50+54 0.88 n 2. 9688 4. 0380 n 4. 8781 *" ^+70+54 4. 0855 B 5. 2422 >y |+70+64 4. 1991 5. 3823 n ^ fs+70+74 3. 7114 n 4. 9188 ; 3 |+7d+64-J 2. 615 n 3. 8317 riV -!e+ tf 3. 2411 3. 7872 n tf -i+ 0+4 2. 819 n 3. 4476 ? -^+ 0- 1 2. 9181 3. 4813 >? 2 B 98H.( 2. 364 n 3. 0737 v 2s+ 4 XX .0 2.624 3. 3489 B ," 2s+ 24 2. 207 n 2.978 f 2+ 4+1 2. 620 n 3. 2765 1? 2s+20+24 9.8 n 1.63 2. 362 n 2. 873 *' 2 +20+34 9.5 1.796 2. 303 n 2. 1007 -M' 2 +40+34 1.93. 2.700 2 +40+44 8.7 8.8 1. 5802 n 2. 4158 2. 9867 B * 2+40+44 2.330 3. 1764 n ," 2t+40+44 3. 1079 3. 9008 n ;' 2e+40+44 2.736 3. 6809 n V 2 4 +40+54 2. 9881 n 3.8425 V 2+60+54 9.64 0.53 2. 652 n 3.6204 4. 3279 B >j 2+60+64 9.48 n 0.36 n 2. 4419 3. 4512 B 4. 1892 >)" 2+80+64 3. 6135 n 4. 6784 -M' 2 +80+74 3. 7124 4. 8075 n 5 1 2t+80+84 3. 2109 n 4. 3338 j* 2 +80+74-2 > 2. 068 n 3. 2092 i+50+54 9.3 fl 1. 140 2.0056 2. 5727* * ^+70+64 0.5 n 2. 2749 n 3. 2377 3. 9184 n >) |+70+74 0.3 2. 0542 3. 0565 n 3. 7710 ^+70+74 8.1 0. 4:) n 1.346 1. 959 B (0-0 ) sin . nf 4 9.66 0. 810 B 2. 7559 3. 3840 n 3. 6946 r/ 20+ 4 9.79 0.54 r; 20+2J 9.92 0.63 n No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE C (XLIII) Continued. Logarithmic. 33 UnJt-1" (>-t?i) sin ^ to-* _ w* W r 9.801, 0.425 2. 5970, 3. 1493 3.4158, 1* t 1. 075, 2.045 3.5201, 4. 3751 11" t 1.640, 2.514 4.1066, 4.8961 r>i t 1.063 L916, 4.1066 4.8961, 5.4076 * + 4 9.36 0.471, 2. 4824 3.0830, 3.3936 Tj*1) *+ J 1.565 2.456, 3.9671 4.7890, Ij" e-f- J 1.543 2.341, 3.8942 4.6760, f ^ + 4 f+ 2J 0.87, 1.441, 1.75 2.273 4.0705, 3.7192, 4. 8759 4.5456 5.3965, f *l' + 0.42 L36, 3.7799 4. 5819, 5.0998 I* 7 ! *+ J+Z 0.695, 1.585 4. 0417, 4.7827 5.2543, | t+4i>+4J 9.59, 0.45 f t+4.+34 9.46 0.34, 1 2 f +2i+2J 9.45 0.11, *' 2t+2,>+34 9.32, 0.04 Y - t+ 4 L255, 2.149 3.6240, 4.4615 (-)< i , 9.25 0. 117, '' + -i 9.12, 0.02 m" m" m", m' m' m' m' j COB Arg.+(*- l )JwijlV; 5 C', sin where C,, C 2 , C, represent the respective coefficients. 110379 22 - 3 C, coe Aig. Ml 34 MEMOIRS NATIONAL ACADEMY OF SCIENCES. :- TABLJB D (LIV). 2 U p . q r)Pii'V sin Arg [Vol. XIV. Logarithmic. Unlt-1". Sin to-1 w* U) 7) - 4-n' 3.06^ 3. 7258 v -n' 2! 8235 3. 5528 B / 20+ 4-n' 2. 2831 2. 8483 n n 40+34 -H' 1.705 3. 1591 B 3. 9166 n V 40+24-n' 3. 2462 3. 8608 n j+ -n' 3. 2112 B 3.8544 v j:+ 0_|_ 4 n' 2. 5875 3. 4153 B / j+30+24-n' 2. 2787 2. 6304 B 7;' if+50+34-H' 3.3J55 3. 5865 B if +50+44 -n' 3. 0779 n 3. 3972 li, -i- 0-24-n' -if- 0- 4-n' 3. 1158 B 3. 1493 3. 7378 3. 7644 B , -j + -n' -j +30+ 4-n^ 2. 3242 3.3863 3. 0060 B 4. 1833 B T; 3. 3532 n 4. 1452 7) +20+ 4-n' 2.6364 3. 3704B 3.8423 v t+20+24-H' 1.423 B 2.706 3. 4014 B +40+34 n' 1.4042 n 2. 1720 2. 6339 n ^/ +60+44 -H' 2. 3306 B 3. 1922 3. 7582 n 7) +60+54 -H'' 2. 1137 3. 0138 B 3. 6101 - -20-34 -H' 2. 7175 3. 4858 B 3.9484 T/ - -20-24-n' 2. 7756 n 3.5070 3. 9456 B / c 4 n' 1. 6810 2. 2463 B _/ - +20 -n' 2. 8125 3. 4427 B 3. 7846 1) - +20+ 4-n' 2. 9121 B 3. 4958 3. 8338 7) $+30+24 -H' 2.6058 3. 5312 B v 4+30+34 n' 1.760 1.82 B *+50+44 n' 1. 7510 B 2. 8113 v $+70+54 -n' 2. 9120 B 4.0813 _s _30_44_n' 2. 8673 3. 8458 n v IE 30 34 n' 2. 9620 B 3. 9124 -$- 0-24-n' 2. 0569 B 2. 7932 7)' if+ 4 n' 2. 9275 B 3. 4708 -je+ -n' 2. 9702 3. 5487 B 1} 2 +40+34-n' 1.640 2.7S1 B 2j+40+44 n' 1.617 2. 340 n 2+60+54-H' 1.206 B 2. 2110 7] -2 -40-54 -n' 2.4012 3. 3634 B V -2j-40-44-n' 2. 5241 B 3.4544 -2-20-34-n' 1. 5290 n 2. 3210 7)' -2e -24 -H' 2. 3174,, 3. 0558 -2 - 4-n' 2. 3514 3. 0737 B tTl' u I COS t =2 U P . q i)Pij'<l sin Arg.+jt JiT, (cos t- e i)+K a sin f - i)+Cj rin t. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE E, (LV,). Logarithmic. K l UnJt-1'. COB P V 1* 1 to UUU.UUU +++ ++ 1 ntaaaaa 2. 9180 B 1.9821 2.8036 3. 5175 3.1764* 3.4580 n 3.7732 2.5473,, 3.n82n 4. 3017, 3.9772 4. 2668 2.8138 m' TABLE t COB Arg. (LV n ). Logarithmic. t COS \ Unit-1". Sin ... u> * y' 4+n' 2.9180 3.7799 1.9821* 3.7744* 3. 5175* 3.4580 3.1764 3.7732, 4. 5819* 2.5473 4.5420 4.3017 4.2668* 3.9772, 2.8138* m' sin Arg. '9 ain Aig.+niT,(cos t e)+K t ein |+e,(coe e)+Cj ain 35 i sw i- ! n O!f*.b n'" 36 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. Logarithmic. TABLE F (LVI) w w a Unit 1 radian. Cos Ml -> UJ-l u-o W at 4.360 5. 1966 n 5. 7767 r 4.766 6. 6599 7. 3732 B 7. 7492 2r 4.446 7. 1194 7. 7572 B 8. 0553 sr 4.412 6.8442 7. 5458 B 7.9060 4F 4.484 6. 588,3 7. 3450 n 7.7602 5r 6. 3437 7. 1490 n 7.6136 7T 5.875 6. 7632 n 7.3134 9o -5r+20 +2J 6.5090 6. 6325 n 7. 4746 B -4r+20 +2J -3r+20 +2J 4. Win 3.19 6.169 6. 882] 7. 0658 7. 6078 7. 86980, 7. 9975 B -2r+20 +2J 3.52 7. 098fi n 7. 6970 7. 9394 n - r+20 +2J 5. 1420 6.359 7. 0722 n 7.4480 20 +2J 4.379 7. 6355 B 8. 2144 8. 4125 B r +20 +2J 4. 856 n 8. 0894 B 8.9548 9. 5668 B 2r+20 +2J C A 4.92 7. 8150 n 8. 6561 9. 2006 B 3r+20 +2J 5. 5174, 7. 6056 n 8.4650 9. 0111 B 4r+20 +2J 5. 4248 n 7.4128 B 8. 2958 8. 8561 B 5r+20 +2J 7.2254, 8. 1426 8. 7346 B 7r+20 +2J 6. 8746 B 7. 8484 8. 4936 B J -5r+20 + J I^rf i 6. 8776,, 7.5604 7. 8425 B 4f +20 + J ! _tvjfl? .1 4.582 6. 8815 n 7.4536 7. 5238^ -3r+20 + J M'*T . 4.674 6. 6271 B 6. 7816 7. 3174 -2r+20 + J n<3ri<5 .il 4.99 6. 7985 7. 4732 n 7.7966 - r+20 + J 5. 4623 B 20 + Jo 4.605 B 7. 1987 7. 8314 B 8. 1061 r+20 + J 2r+20 + J 5.0056 4.38 8. 2964 8. 0434 9. 1086 B 8. 831 6 B 9.6833 9. 3296 sr+20 + J 5. 6251 7. 8458 8. 6564 n 9.1558 4r+20 + J 5.5812 7.6603 8. 5030 n 9. 0248 5r+20 + J 1 IH t-it>' v .' 1* 7. 4778 8. 3544 n 8.9050 7r+20 + J " "* t S v ( 7. 1130 8. 0545 B 8. 6668 I* n t -.f( -1>T>, 4.664 4.71 5.83 r 7. 8102 8. 6250 B 2r 7. 7520 n 8. 1242 sr 7. 6172 B 6. 6043 B 4r 7. 7135 n 8.2308 9o* _4r+40 +4J 7. 1862 7. 9072 B 3r"-(-40o+4J 7.1804 7. 8679 B -2r+40 +4J 6.817 7. 456 n r"+40 +4Jo 8. 4680 n 8. 8822 40 -f-4J 4.666 5. 807 B 8. 0913 8. 8270 n 9.2073 pjf^g +4J 8.7850 9. 8236 n 2T +40 +4Jo 8. 5144 9. 4910 n 3/ 1 +40o+4Jo 8. 3274 9. 3006 B 4r+40 +4J 8. 1627 9. 1494 n 57"*-f-4vQ~}~4^o 8. 0050 9. 0105 n in' 4/~'-t-40 -4-3^ 7.354 n 8. ]083 -3^+40 +3J 7. 5708 n 8. 2084 ~~ ^ f ~f~40Q-f~3Jo 8.8838 9.0548- 40 -f-3Jo 4. 516 n 6. 2084 8. 5565 B 9. 218p 9. 5174 n / 1 +40 +3J 9. 2783 B 0. 2833 2/^+400 +3J 9. 0241n 9. 9635 3r+40 +3J 8. 8480 n 9.7850 4/^+400 +3J 8. 6916 B 9.6434 5r+40 +3J 8.5401,, a 5128 m/a m/J 77l /2 , 77J- 7 m'\ m' m' m' No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE F (L VI) Continued. 37 Logarithmic. w I Unit- 1 radian. Cos ^ w-J ..; 10 . TUB' -4T ~ + ^o 7.7640 7.8364, /w / -sr f 4 7.4203 8. 3915 7. 8104, 8.6268 - r f- J, 8. 0479, 8.8018 4.518, 5.886, 5.70, r + 7. 1339 7.8500 7.8421 a 4293, sr + A 7.9669 a 6796, 4T + Jo 7.9760 a 7576, *" _4r+40 +2J 6.9002 7.6938, -3r+4^o+2J 7.1638 7.8502, I 2 f+4J7+2J 8.1860, a 4016 49 +2^ 3.76 e-oeoSn 8. 4157 8. 9760, 9. 1661 /'+4^o+2J 9.1714 0.1382, 2f-(-4fl -)-2J- , 8.9358 9.8333, 3y-j_4# -j-2J 8. 7718 9. 6681 B 4/^-j-4^ -|-2^ 8.6236 9.5372, ***' j.n 176 5. 7516 4.7 r 7.8677 8. 6727, 2f 7. 8610, 8.2228 sr 8. 1026, 8.7296 4r 8.1538, 8.8728 f r 7.9418, a 7337 2f 7.9312, a 7154 sr 7.7920, 8.6154 4r 7.639, a 5001 f ;.' ' :: f _4f-(-4fl -)-3 < / _j 7.446 8.1156, -Sr+^o+SJo-J',, 7.1858 7. 8677 B - r+4+3Jo-^o 7. 6176, 7.9693 4^ -|-3J 2 a 4.804, 7.168 7.9368, a 3724 /-(-4^ -j.3J ^" 7.7887 8.8492 B 2r +4^ -j-3J .J 7.448 a 4531, 3r-j-4tf -i-3J ^ 7. 19J6 8.2026, 4r +4^o+3J -^o 6.978 7.9963, ** 2^ +2J 5.418, 6.292 7. 4754, a 6636 6/? +6J 5. 418, 6.292 8.6328, 9.4351 1J0 2 !/ 26 + ^ 5.885 6. 719, 8.5059 9- 2804, wV 2C +3J 4.974 5.896, 8. 0326, 8^ 1975 r ">X 6 +5J 5.935 6.780, 9. 2774 0.0330, 2^o 5.744, 6.535 8. 3811, 9.1030 r /0 j;' 2 20 +2J 5.441, 6.327 a 0917 8.6300 'So 'j' 2 66 +4J 5. 919., 6.744 9.4432, 0.1464 1 ! /3 2^o+ ^o 5.301 6.14.9, 8.2302 9. 0152, '" 6C +3J 5.301 6. 149, 9.1294 9. 7729, 2$ +2J 8.5904 9.3492, 9.8022 /'Jo 2^ + J 2<t 4.502 n 5.41 a 1011, 8.8726 6^ +5J ^" 4.502, 5.41 8.0554, 8.9263 *3 _/ J i 2^ + J 8.5592, 9. 3245 f i 26 +2J 2 a 4.057 5.021, 6.887 8.1804, f i 6<? +4J -v 4.057 5.021, 8. 2718 9. 1021, ^'9j^ coe Arg. where C represents the coefficient. MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. Logarithmic. TABLB G (LVII). S sin </>+C coa if/ Unlt-1". Cos to- te-* M . 1C . <1> 5r+20 +2 J 8.81 1.082 B 1. 5710 1. 612 B <l> 4f +20 +2J 9.009 1.5493 0. 9,89 <j> 3/ > +20o+2J 9.318 0^931 1. 604 B 1.916 <A 2.r+20o+2J 8 9.207 1. 6478 2. 1070 B 2. 2333 <fr- r+20 +2J 9.711 1.950 2. 3426 B 2. 3713 <& +20 +2J 9.196 2. 171 2 n 2. 5678 2. 565 B 9. 230 n 2. 3541 n 3. 1493 3. 7107 B ^+27" I +20 +2J 9. 220 n 1. 9114 n 2. 6867 3. 1657 n ^+3r+20 +2J ^+4/ I +20 +2J a494n 1. 5372 B 1.2544,, 2. 3831 2. 1315 2. 8623 B 2. 6333 B ^+5/ 1 +20 +2J 9.100 B 1.018 B 1.9034 2. 4248 n to ^-5r+40 +4J 9.771 B 1.042 B .1. 868 2. 357 B d> 4/'+40 +4J 0. O64. n 1. 723 n 2. 3515 2. 6814 n ^ 3r+40 +4J 0. 3185 n 2. 1626 n 2. 6961 2. 921 4 B tj 2/ 1 +40 +4Jo 0. 497 B 2. 7787 B 3.0649 3. 0993,, #- r+40 +4J 1. 0286 3. 2379 n 3. 1223 3. 9385 B # +40 +4J 9.199 9.04 B 2. 6172 3. 2511 n 3. 4930 0+ r+40 +4J 8 0.7226 3. 1702 4. 1580 B 4. 9365 <&+2r+40 +4J 8 0.669 2. 7877 3. 7083 B 4. 3605 i+3f +40 +4J 0.9435 2. 5117 3. 426L, 4.0450 ^+4r+40 +4J ~ j 0. 5122 2. 2732 3. 2042 B to <fi-5r 9.814 1.925 2. 634 2.984 <!>-r 0. 0434 B 2. 0527 2. 6896 B 2. 9432 <bsr 0. 3541 B 2.145 2. 675 B 2.744 d> 2/ 1 9.140 0. 362 B 2. 1351 2. 3850 B 2.4864n <j> F 0. 4164 n 2.3504 B 3. 0929 3. 5397 B | 9. 274 n 0. 1436 B 0. 3102 n 2.497 3. 1875 B 3. 5978 ^+2.T 9. 137 B 9.918 1.9006,, 1.0453 2.8834 J+ttf" 9.465 0. 8 / 12 n 2. 5218 B 3. 3564 ^+4jT 9.20 n 1.406 n 1.729 if 5r"+45o+3Jo 9.476 1.327 L889 B 2. 2299 4/ I +40 +3J 9.781 1.447 2. 1506 B 2.5419 ^ 3.T+40 +3J 9.811 2. 1070 2. 6309 n 2. 8J508 ^ 2.T+40 +3 J 0.3489 2. 5095 2. 9557 B 3. 0952 <]>- r+40 +3J 8 0. 9511 3. 3599 2. 7758 3. 9726 <!> +40 +3J 8.76 B 0.158 2. 7932 B 3. 3085 3. 4526 B </>+ r+40 +3J 9. 961,, 3. 3609 n 4.3114 5. 0691 n ^+2/'+40 +3J 8 491 2. 9943,, 3. 8728 4. 4922 B ^-j-3/ 1 +40o+3J 1.' 0464 B 2. 7293,, 3.6067 4. 1945 B ^+4f+40 +3J 0. 678 n 2. 4992 n 3. 3946 Tf V ~~ 5j ~T~ Jn 9.848 2. 0766 n 2.712 2. 9697 n V^4l "4~ Jn 0. 0792 2. 1609 n 2. 6968 2. 7976 B <j>zr + J 0.3941 2. 157 n 2.491 1.51 <j>zr + J 9. 013 n 0.248 2. 0455 2. 7898^ 3. 2380 <ii r + Jo 9.901 2. 58,4 3. 2539 n 3. 6434 1 9. 885 n 0. 8,518 ^+ /" + Jo 0.1664 1.836 2.448 3. 3029 B ^+2r + J 9.009 9.76 B 2. 1633 2. 6170 n 2. 2433 ^+sr + J 9.38 B 2. 1064 2. 7194 B 2. 9212 ^+4r + J 1. 9892 2. 6870 B V ^-5r+60 +6J 2.3144 2. 9730 B <l> 4/ 1 +60 +6J 2. 9538 3. 3785 n ^ 3r t +60 +6J 3. 3102 3. 5843 n y~2/ 1 +60 +6J 3. 4970 3. 8423 B ^ ^+60o+6J 3.9455 3. 7269 n ^ +60 +6J 9.95 n 1. 1109 n 3. 1673 B 3. 9296 4. 3377,, Y~\~ ^ 1 +60o+6J 3. 9144 n 5. 0372 ^+2f+60o+6J 3. 5594 B 4. 5942 ^+3r+60 +6J 3. 3121 B 4. 3236 to 3 ^-5r+20 +2J 2. 1657 2. 7221 B d> 4/ 1 +20 +2J 2. 1255 2. 8004 B ^ 3r+20o+2J 2.234 3. 1304 n <!> 2r+20 +2Jo 2.576 3. 3804 n <1> ^"+200+2^0 3. 1995 3. 8325 n ip +20 +2J 0. 344 n 1.017 2. 689 n 3. 4822 3. 9938 n <l>-\- / 1 +20o+2J 2. 2480 3. 2839 n ^+2r+20 +2J 9.45 3. 1612 3. 8424 n No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 39 Logarithmic. G (LVII) Continued. S sin <j>+C coe <j> Unlt-l". Cos ^ ^ ,H ; 1C - , f_5r-20 -2J 2.700, 15481 TO \_ip 20 2J 2. 817, 3. 6251 V_or- 20 2J 2. 9247, 3.6905 i 2.T 20 2J 9.59, 3. 0241 B 17470 <i F 20 2J 3. 1364, 3.8346 i 20 24 0. 117 0. 95, 2.297, 2.7856, 3.6614 i+ F 20 2A 2.8942, 3.5604 (4+2.T 20 2J 2.297, 11129 if <i 5F+60 +5J 2.4885, 11691 vo T <A 4/ f +60+5J 2.976, 15560 5 3r+60 +5J 3.6541, 18829 (4 2/"+60 +5J 3.9514, 4.1632 /^+60A+5Jg 4.3903, 4.0037, L'' +60/\+5Jo 0.295 1.366 3.6364 4.3301^ 4.6662 $+ f+60 +5J 4.4005 5.4966, <4+2/ 1 +60 +5J 4.0582 5.0612, ^+3r+60+5Jo 3.8204 4.8027, . v 5 "T 2^o < ^o 2.426, 10684 ^ 4/^_i_2^ 4-J 2. 399, 3. 0310 ^ 3/^-4-2$ +^ 2. 410, 3.1305 5--2.T-i-20 +J 2.701, 14602 y~~ ' i 2vQ~T~ o 3.2842, 3.8558 V *i *^o~i o 0.444 1.188, 3.0569 3,7266, 4.1122 > i r^ I Oa i ^ 2.8541 3.5823, ^+2r+2flJ+4 3. 2191, 17635 , A-5r-20 -J a 3.1551 19530, <l>4r26 J 3.2454 3.9948, A 3f 20. 4. 3.3100 4.0023, ibir 20 j 9.93 3.3277 3.9401, ij /" 20 J 3. 1976 3. 4598, A 20 J 0.490, 1.324 10145, 3.7326 4.2787 i+ f 20 J 3.3632 3.9402, ^+2r-20 -j 2.7792 15224, fcf / ,j_5/-+20 +34, 2.2738, 2.847 V 1 ~~"4j ~|~Urt~T~"^O 2.116, 3.0290 tj 3/^+2^0 -j- 3^ 2.5858, 3. 3787 V ~~2/ ~y~toVft~7~O^Q 2.809, 3.5429 A / ? -|-2^ -i-3J 2.650, 17297 W ~T~"0~1 "^0 9.98 0. 60 n 2.873, aess 17980 cj+ /'+20 +3J 3.5126, 4.2856 #+2r+20 +3J 9.46, 13438, 4.1208 ,/J w~~df ~f~Ov/*T~4d() L9950 2.7422, ~"~4y ~4~6w(|~j~4dn 2.6112 3. 1949, d 3.T +60 +4J 3.0556 15583, tf 2f+60 +4J 17934 17947, ^ / I +60 +4Jo 4.2260 4.4064 ^ ^-60 +4J 9.98, 0.76, 3.5017, 4.1098 4.3552, ^+ /'+60 +4J 4.2852, 5.3521 #+2r+60 +4J 3.9567, 4.9249 * tJ-5r+20 e +2J 2.5018 10963, # 4/'+20 +2J 2.453 10935, d> 3/"+20 +2J 2.4799 3. 2779, ^ 2/'+20 +2J|) a 9375 16294, ^ r"+20 +2J 12833 3.8982, d> +20 +2J 0.025 B 0.60 2.634 3. 2781 4.0439, $~T~ * t~2vn~\~2an 3.5607 4.2381, ^+2r+20 +2J 14629 4.1704, 1* ^_5r-2 3.0090,, 1 7477 ^ 4f 20 3.0676, 17445 <f>zr2o a 3. 0764, 3.6664 A 2r28 2. 958-, 1 3121 <j> r26 3. 1140 4.0201, r -20 0. 305 L 127, 2.912 3.5491, 3.9085 A-\- P 26 a I 3. 0396, 3.6320 A+2F-26, 2.4706, 12330 40 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE G (LVII) Continued. Logarithmic. [Vol. XIV. Unit-l". Cos tu- w-J w-> u,o to w> f ^-5r+66' l0 +5^ -J' 2.006 2. 7505 n ^-4r+60 +5^ -j 2.335 2. 981, V 3r+60 +5<l -.r o 2.544 3. 1436 B <!- 2r+60 +5J -. 2.718 3. 2445 n <l>- r+60 +5J -.T 2.970 2. 911 6 B V* +60 +5J -.T 8.6 n 9.7 2- 1H B 2.9.23 3. 4067, n V>+ r+60 +5^ -J 2. 7948 n 3. 9420 0+2r+60 +5J -.r o 2. 3824 n 3. 4488 f ,H5r+20 +24, 9,6 2.387 ^-4r+20 +24 1. 916, 2.911 v !'-3,r+20 +24 ) 2. 5178 n 3.3047 0-2T+200+24, 2. 938 n 3. 6294 ^- r+20 +2J 3. 3406 n 3. 9330 ^ +2S +2^ 0. 5910 3. 1266 3. 8021 4. 1894 ^+ r+20 +2J 3. 4070 4. 3178 B ^+2r+20 +2^ 3. 0472 3. 9308 B JT ^-5r-20 -4+.r o 0. 732 n 1.085 0-4r-20 -4,+.J 0.35 1. 895 n ^-3r-2e -4,+j 1.463 2. 5146 B ^-2r-25 -J +2 > 2.064 3. 0255 n V r-29 -j +j 2. 6816 3. 6280 n ^ -26 -J +2 9.04 o.n n 2.636 3. 3284 n 3. 7399 0+ r-2e -j +^o 3. 0572 n 3. 6430 ^+2r-2ff -J +^ 2. 9121 n 3.5491 V. ^+ 40 +44 0. 775 1.65 n 3. 1052 n 3. 0342 n <j>- 40 -4J 0.2ft, 1.10 3. 1888 3. 6104 n ^+ 80 +8J 0.65 1.54 n 3.7520 4. 5812 *V <P+ 40 +54 3. 7577 4. 3244 n ^+ 40 +3J 1. 260 n 2.081 3. 1240 4. 1388 ^- 400-34, 1.005 1.77 n 3. 5356 n 3. 3560 0+ 8 +7J 1.228 2.093 4. 3980 n 5. 1827 W ^+ 40 +4J 4. 1155 4.5547 ^+ 40 +2J 1.106 1.88 B 2.831 4. 1803 n ^- 40 -2J 1. 146 n 1.88 3. 0422 4.0180 v '.+ 80 +6J 1.321 2. 152 n 4. 5658 5. 3010 n v 0+ 45 +3A 3. 8375 4. 0446 n #- 40 - 4, 3. 2197 3. 9650 n VH- 80 +5J 4. 2553 n 4. 9349 ? 7o V>+ 40,+34 -^ 3.0024 3. 8634 n <f>- 400-340+2 1 ,, 9.98 0.8 2. 956 n 3. 8331 ^+ 80 +7J -J 3. 0757 3. 975? n </>+ 40 +4J 0.46 n 1.32 3. 8514 n 4. 6436 ? 1' 0+ 40 +4J -J 2.442 1. 846 B #- 40 -2J +2- 3. 2486 4. 0585 n ^+ 80 +6J -J 3. 2818 n 4. 1441 ^+ 40 +3J 0.27 1.15* 3.9421 4. 6972 B S sin t+C cos ^='SCw*riPri'Qj 2 t cos Arg. where C represents the coefficient. H. TABLES FOR THE DETERMINATION OF THE PERTURBATIONS OF THE HECUBA GROUP OF MINOR PLANETS. DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS FOR W AND FOR THE THIRD COORDINATE. It would be futile to attempt to give a brief but comprehensive outline of the fundamental developments in the theory of Bohlin-v. Zeipel which would assist the reader to an understanding of the construction of the tables. In broad outlines, the problem is the integration of Hansen's differential equations for nSz, v, and -> by means of the method developed by Bohlin and according to the modifications introduced by v. Zeipel for purposes of numerical computation. The first division of the problem is the development of functions of the partial derivatives of the perturbative function; the second division of the problem is the integration of the Hansen equations in the form of infinite series. For the theory the reader is referred to the original works of Hansen 1 , Bohlin 2 , and v. Zeipel*. As indicated in the introduction to the first section, unless otherwise stated, the references to Bohlin refer to the French edition and are designated by B; references to v. Zeipel are desig- nated by Z. Although duplication of material which can be found in either reference is to be avoided, our experience in attempting to reproduce v. Zeipel's tables led us to fill in certain gaps which are troublesome to the reader and the computer. The first section of v. Zeipel's theory is concerned with an independent development of Hansen's differential equations for ntiz and v and a repetition of the differential equation for *t and the introduction of Bohlin's argument 6. In passing, it is well to emphasize two cos t- facts: First, the variables e and /"used throughout the theory are analogous to Hansen's e and/; the dash is unnecessary, for the physically real values do not appear. Second, the constant elements a, e,n,c, Q,,i are neither osculating nor mean elements; they are defined in the section on constants of integration. The perturbative function and its partial derivatives are developed in Fourier's series, in which the arguments depend upon the relative positions of the disturbed and disturbing bodies and in which the coefficients are infinite series in ascending powers of the eccentricities and the inclination of the orbits. The coefficients in the latter are elliptic integrals depending upon the ratio of the semi-major axes. Since these elliptic integrals are functions of the ratio of the semi-major axes, or of the mean daily motions, they can be .developed in Taylor's series, in which the given function and its successive partial derivatives are expressed for exact commensurability and the series pro- ceeds according to a small quantity w, defined by w=l 2 ft, where ft is the ratio of Jupiter's mean motion to that of the planet and where ft differs but little from These elliptic integrals enter the coefficients in all of the subsequent trigonometric series. Hence all the coefficients are series in w. With some exceptions the terms in w, w, and v? have been used. The develop- ment of all functions in powers of w is the essential principle underlying the group method of determining perturbations. The following pages contain the tables which are, in general, parallel to those of v. Zeipel. At the end of sections 2, 3, 4, 5 there are brief written comparisons. To facilitate comparisons ' Auseinandersetrung einer tweckmassigen Methode HIT Berechnung der absoluten StSrungen der kleinen Planeten. ' Fonneln un<J Tafeln cai gruppenweisen Berecknung der allgemeinen Storungen benachbarter Planeten. Nova Acta Reg. Soc. Sc. t'psalienslx, Set. Ill, Band XVII, 1S96. Bur le Diveloppemcnt des Pertabations Flane'taires. Application aui Petites I'lanetes. Stockholm, 1902. ' Angenaherte Jupiterrtcrongen fur die Hecuba-Gruppe. St. Pitersbourg, 1902. 41 42 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [VOLXIV. with v. Zeipel's tables, those numerical quantities which are in disagreement are inclosed in brackets. There are also certain mathematical developments useful to the reader. These relations are sometimes taken from v. Zeipel and sometimes supplement his text. Certain simple functions of the elliptic integrals y t m ' n , defined by Z 19, eqs. (73), (74), (75), are tabulated in Table I (cf. Z 23). Tables II-IVw 2 (cf. Z 26-32), giving the partial derivatives of the perturbative function, are computed according to Z 24, eq. (77), by means of Table I and B 184, Tables XVI-XVIII and B (Ger.) 182, Tables XII-XIV. The elimination of Jupiter's mean anomaly from the argument gives Z 25, eq. (78), in which the coefficients are derived from Table II-IV v? by the formulae given in B 61. These coefficients are tabulated in Tables V-VII W? (cf. Z 33-39). fan* i;ilal-i[ '_.-* [:! )':> i>. rM iui viii 1o p.fiu'M'i v.- Unit ,j ,z6;i iui i'.>.\ni ::. / 1., Mis.: ,..'>/.;> !.M:>ii>Tliiii JIM i\i\tr iMPttmlSUft urt UM[|/U;i>- !n ; Jicn-r'u> m* to .miJUoqsi ^ ba;; (>") )x:^isnt> >? ilrw fei Ji ,j;t:i :^ i nl .^ Jiri.i oil) ^-tt V> ILa rri aJ.r euoiia/vr/,3 ) lo snowcx n' .linaauy ai .^! ri->i . it- No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 43 OS.-H ^M ioco coi> o I-H r~ I-H CO CM 00 O *-CM coco OS 0% CO CO CO O> t-00 o'o e e e CM CM P CO 1 -flt-C CM -H CO OCM O> OO05 CM CO CO CO t-co t-co coco OS 00 25 r-!o' 1 ci Ok rHCM I- CO CO r- ( ^ t- *Q ^ O r- 4 os^^co CO ^H I-H CD cc o O2O ^o e o c CO CO 1C Q t~co^c5 SO CD i5 ^r-ICS s c coS NTT C5O ^CO l/J t~CC i/i CM O CO CO OS 03 - - CO Oi-i ooo os f-ICM 1-ir-lO CM _0 00 CO ^ CO CO CO O CD ^f OS CO CO CM CO CO CO CO CO CM CO CO r-t CO COO t- 53 SCO CO i-H i < oo m^ e e CO OC CD -^ CO O5 -^r co ? t^ CC c: ^.O V 5 c; ic co r ' ds @cf CO CO CO O O CM CO CO CO CD ii5 ~ 'Jl cocc m *rHO a> t~ i i e i. O - - OS CO 1 ( O OOO CR CM CM rH rH r^ CM 3 \ r- CM coco-*** rHCM CO OS OS i t CO CO i 1 ^ rH CO ^* *O CC ^tf CO Q CM OS CMO CO O CO OS CO CO i CO COCO g eo 1 e e e e e ??= es :M o ac co CO CO T CO -^* I-H t> lO CO 1^ !=V? CS i!5 CM sss SI-HO O 1^ t~ CO CD C55 -H t^ SS5SS CS IQ OS rM CM 1 1 O os oi o co i ( i-H i 1 CM r-l O O CM CM CM CO r^r-ii-lr^ CM CO 'o D O CO lO i-H OS lO <N -^ rH lO CM CM CO -H CM CO S^H CO t^- O T pH 1-- ^* CM OS O ^ i ' rHCO b-t- CM t-~f-CM i ( -^ OS ^H *O*O^"^< t^ r- 1 1 co 5 c c e e Tt< t C-) i-O CJ eggss Tf to CO COCO CO O t~O CO e e e S2E; CO CO CO ^f O T Q i-O co *5 10 f 1 t- ^ O O OS OS t^ OS r-liOCMCO b* co oo r*- CO < CO CM OS CO rH CM OS CS CO CO 00 r^ O. 1 ^ o ocs osos co IN r-i O' O' O' O' CM CM CM CO rH i ( fH i-H CM CO s~* CO O ei f COO OS CM < CO r- O CO -H CMO O ^ OS C5 CM CO CO CO OS CO Tf r-l r-cM CO CO "^ CM CO t^- U3 CO CM b* OS CO l>- CO*O <M e e s e r~ cncc t~ cs ^-* CD 10 < b- (M to cn ^o CM lO ^ C-> CO 10 1 t cs r^ 10 e s e ^ c5 t^- o cc < t^ ^* O <f CD S 1 CO t 1 CM O CO O -^ CM - t-- _ t- t- cs -v ^* t-cows^r ss sg OS CM ? iiT rH O O * * OS 9) i ( r^ i ( i t N rH rH O' CMCMCM CO f ~"~" rH '~ l CM CO N SO CM CO O iO OS *O CO O CM O5 CO ^ CO CS CO O CM C-J t _ _ -u TJ- X' i 1 1/3 C-4 O5 CO CO U2iO b- ^ t* <^ GO CO CM CO b- co o eo ^r os 10 b COCO CO t* 1C ^^ So 10 ^H t-l-l afrf . oc en .1 o O * >! O CM i CO CM C3i ^T M CM CO CO CO "^ CJ5 t^ Ci CC i-O us t~oo afef Is C0 ^ CO CO tA O CO i i Ol CO t^- CM O CO CS rH cot* co co ^fl* lO X r-HOO OS OS OS pH i-H i-H i-H d rH r-i i-i O O' CM CM CM eo^r i 1 rH rH rH CM CO ^r* CO CSO CM cso os corn ^T CO i * TT CM rH C5 t * i CM CO CM CO -^ iff ^ CO O i i t*- CO OS CO CO lO O S S CO iC O O OS M t-- N CSlffl CD C-J u5 co 00 CM g^co 5 e e s O IS =O -H c-i co cc r~ CM OS < CC CS CD CM ^^ -H CM COO CO 1 O> Frf-? SS2 c; o co oo V CM 00 KS CO f* CO CO rH CO C CO O CO < t-. <M o; iOb OS CO CO t~- g rH >-O X3>O Of 4S" a> 44 1 rH O O' O OS OS CM CM CM rH M CO I-H ^^ ^^ ^H Q CM CM CO CO -^ i-H rH r-H rH COCO S M -x -" b-!-M OS, i CM -H t- CO O CM CO" CC C*J CC CO CO OC t^ 00 CM coo co coo co oo -^ b- lO CC O t^. CC CM CO co r- CM 2882 CO OJ IM <-> O5 ^- CO S^r CO ^o e cc s c R*g?g O CC X U? h- CM O CM O t- iC CO * ufsfof O! CO O i ( ^ CO CO -5* ''T r-O i A? -^ t^- iO CO OS r* CM T-H lO OO OO CO lO - i i So o S coccos lO * CM CM f t~ < t~ lO t^ o g 2- rH rH O O O OS NC1CN N c4m N i-H i-H i i i-H CM COCO CO 1 ^ rHCMCMrH CO CO CO H O <-i ^ * I s * CO t*- CO CO OS O i i b- 1C t-H OS CO co ^J* ^ r- *o co OS CO CO_O ""^ ^3* i-H CO OS CO CO O i-i a> < wo t-. < o o r- CO C^ 1^ lO CO OOOO (M M CO CO o - ^ i 8* V ? e t>f e e 15 7-1 o :D cs CT- C-l > C t^ -^ co co c? o o i CM 3: r~>oco see C-l CO Q CO CC O CC 1 ~~ CO TT m t~ CO i-l CM ^ e CO ^^ CO CO SOC L.O CD O CO t^> CM CS CS^ OS CM ^? O t^ i-H r- i i OO CO f CM Tj< I-H O) CO |~H CO OO 1 3 -Hn f-H -IO O O O N CM NN CO CO ^J-H-H^Jt-H CM CO CO co^ rH CM CM CM CO CO CO S> o CD CO i O O CO COOfM 1C ^r cc co os CM cc CO CO <M b* t*- * ^ co os ^ -^ t^ rHCOOC lOCM OS t^soia 2S ?3Sg CON^^ 00 ^* CO CO coo CM CM b- CM e e e o o ^ ce CM c*. ~ C: c-. o x c^ 10 ^ CO to CD OC O O ' CM O X 1C CM see -<r t~ CM N t^ OS lOQ CO o O tO CB 1 K e CO t^ CC 00 23 lO l-H ^ rH O OO rH CM CM b- 00 CM 2! lO ^ CO C5 CO CO OS OS OS ~00 CO I-CS t^ ?l ~ ?1 y. y: 00 CO CO X 1 00 o CM -HOOO OS i-'cxj M N CM CO CM ^H ^- I CM CM CO CO'-* rH rH rH rH CM COCO 1 e e e e ss e c e s e e e e e e e s e e e e e c c c e e e e o tS e 1 333333 3 3~ 3" 3 3 3- \f\3\f\3\3 |3 = |3~|:f 1^13" laVlift" \fl3li- Pi 44 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. o Ca CO CD CM ^ COCOCO CMCOCOCO CD CO O O O O O O O OS CM *<t* O ~^ ^* CD O CM rH t 1 "* O ^ CO CM CO CM O ^* CO OS O CD t" CD O CO CO CO i ' "^ O rH^rH^* CO CD O O CO O CO ^t* l^-CMOO OS t*- t~- M lO *^ O r* OO CO CM !> CO OS CM OS i 1 O ti rH ^ CO t^- CO t* O* O CO rH CO O* rH CO rH CM CO CO CO CO CO rH r-l r-l rH CO O "** i 1 O 'f OSOO QCOCDOS rH OS CM -<t< CO "tf CO CO CMOS r CO COOCM OCOCMOS rH OS CM CO^COT^ rH Tp CO COCO CO t^ CO CO OS M* OO ** O CO COOOCOCO OS t~~ rH t> CO OS ^* O CO OS CM lO CM CM O OS CO OS CO o o co --. CO O i-l CO i-HCOCOCO COCOCO rHi-li-Mj-l CO *. o e ^ e Jt i-l C5 CO O co r*- oo co OO i-4 ^ O5 O ~ M 00 ^ O ' CO f-H CO h^CO COCOCO UD^HlOrT t~ OS f f^Ht^ r t ij* t- l> OOCOtf r- * O ^^ O O5 Tl< r-ICOO TPOCOCO COCO5O i-HOr-(O O i-H O CO i-l co r-it-ieo r-icococo cococo eo'cococo co I 3 ** CM O CO OS o co to f\n co 1/3^-1 e e e 2-^r^Cir-tx^COrHt^OCOi l^-r-^f-( O i ( O Ci O O5 lO CO O O CO CO f 1 CO 1-1 CO rH lO !OCOl^r-4'<J'Oint^COCOt~COr-tCO^ *<* W CO r-t-HCO rHCOCOCO C ^COCO COCMCOCO ^ CO to CO CCO COCO O CO CO CMrHO C C C C O CD GO O O rH r^ CD r-n CO CO CM CD CM OS CM O CM O CM CD CMO^CDr- tCDOrHCOt^i-HCOCOOGCOUSrHOrH CO 'i*-'. rHr^CMCM(NrHr-COrHCOCMCOCMCOcO<N(NCMCM CC ^ 10 CM C 1 ^ CO So o o rH CD CO t- CMO - lO -^ O rH m co * eat o oo e e e c CSCOCOCOCO^COCOi it^lO*OCOlOCD CCt~ CC ^ LOt^^OOOt^OOt^^COi ICOlOCOlO ^.OO O COi 'f ICOCT5COOOCOOOCDOO M*O *ft ^** t^cOOiOt-Ot^l^i-"C<5^'^ l CO'9<CO 1-OCO CO CO rHrHCMCMCMr^rHCOO'COCMCOCMCOCOCMCOCOCM CO^f ^ CO - CM O O CO O CM CM CD CD CO O CO CD CO -^ CM ri* rHCO CM CO 00 SSOi iO3rH^t^lCCOCCO C C IS CO i llCCOCOCOt^CO'-'OOCD < ^C'i't*C5 t^OO 1C CM -H i i 1C CO OOCOOiCO OO^HO OOOSOOO5 Ol^ CO C75 co i-Jco'co i-ico'co'co co c4"co cococo'co c-jco *<)< CO O ScM OOS OSt^CO OCMCMO C O b-O l^-CD rHCMOO CO-H^^ 1 *?* U t- Ot^- OSO r-HCOCS COCMCOi-H C H O "*** rH r ' rH rH C C CC >OCOCOOCOO COCOCO OOO TTt- 5ocDCMCMcocM cocooo ocr*- rH rHCM CO CO r-ICOCN> f-H CO CO CO r *COCOCMCMCOCM (MCOCO CO^* COCO n COCOO'OOCOcD OsOSrHt^r-HCMf 'rHO- 'O C C CC SO CO *^* ^tf* CD CD ^ t^ t^- ^ CO M 1 CO O CO t^ CO t ^J* O I"~ rH f^, CO CDO OCM COt*- CMCQ^CO OOCOrH O^OOCO CO CO OOOSt-. rH rHCM r-l N COCO COrHCOCO COCOCO CO CO CM CO CO CO COCOCO - JP C ^ * coco oost^cooscor*- t- rH CO COO Tf OS i i rH i-H C OSCO COCMCMCOOSCSrH I _ rHCM CO CM CO CO CM C OCDOrHrH C ftC O rH t s ^ f~- r 1 OO OS **t* CO CD CO CD 5 O CO ^H r ( *^ O CO O CO ^ CC ^ iTft^-xOO OiCOCM OSOCOO-OS 3COCOCMCO COCOCO COCOCOCOC^ COCO CO CO rH i-i e e e CD CD I-H r ( l-H T 4 OO OO I-H ^H I-H I-H CO CO CO CO CO CO CO CO OO OQ OO OO O O CO CO CO CO CO CO CO CO COCO && ,?*- oo e <cco e ^-ii If 'r-HCOCD -MTT'-t*rH CO CC CO CO CO CM OS OS Ol OS rtrHrti-fCICO COCOCOCO c _. r | " ?" ? "~r i i i-H i 1 I-H 17'?'? gggg c '. . '..'.. ~ b b'o'a b +_+_ ______ b 1 rH (i IrH r 1 rH CM COCM t i *~* + 1 + + 1 + II + ' 1 * <M gggg ggg r-Hg^Hg ggggg ^H^CO rH^- g h^ 1 1 1 1 1 + 1 1 1 1 1 1 1 1 + 1 1 + 1 1 + + +11 '. 1 ' 1 1 + 1 + 1 ' '.1 J r* g .. -C ~ j.. ~, ^ j-1 ,^ -i j* ~ --,. ^ jOj^jd NMC coco ccc ** r, r^ c* c< c-i w n n ceo ^ ^ ^^^^ ,%%- ,%%%- -W BTar-Cn: ^-ccaro: ,%%- ^B: a 13 B No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 45 o o g I O *H CC ^* 5S eoo ^ ^* co cc ^ cc M ffi r- t-^ CO CO W CO i^ 35 kO 55 5 *.o O US 1C 00 00 iO S S g S S S S I I I I I I I + ++ g g e s e s s ss r : 46 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. N T 00 I I CV| T^rH US T f"". CO rH CO Ira W CO 10 a> CON OCOT CO IO CO US i t CO lO CO l-i r-< N N CO I-INCO 5 CD ^i N rH 00 b-00 t i-T CO Q i 1 rH i 1 CO i-H T N CO OS OS COCO COIN rHOiCO rH 1*- T OS rH CO 00 C5 CO OOO i 1 N CO US t>- t- f- OS CON OSCOOO i-H r-ilN N CO l-i N CO COU3CNOJ CO CO CO CO t* CO i IT CNCOCMT CQ CO CO T CO O US OS T US OOT CO T T O OS O C5 rH i-H i-( rH COCOCOCO N N N O} OS CO OS OO <N N N N t- O US NO 00 US t-- COOOOS OOUSrH OS US OS US T i-H Oi TN t^ OO CO i i O OS T O t~- CO 00 b- CO ^ CN OC75 Oi iOlra OOO ftt^Ci 00 OOO COCO r-*r~OO C<lOCOTt* OO ^ f < t~- (NOOCO 1 ^* t^i II Oi-H 1 I CON CO I i I N rH > OS O OS i-i r-i CO O> CO <NC4cO Ci CO CO *!< 00 N rH COrH T 00 T t-CO T CO CO CO N i-H 00 ri N t- O OSl-H N* i-i CO OO r-f-iO OOOSO CDC^CDN - lftr-. ^ r-ii 'OOO < ^ OOOOOC<Jt-<N COOOOrHOOrH Oi-H^rH rH IO CO t- r-5O(M CO^ l TfC<lt-C<IOO i tU3-^(NC35COCO r-i i-l t-'Ttl COO500 OS t- * N co e<i co . f-HlraCOOO^COC7iCOOSCO O O5 * Tt" CO ^ CO CO C5S C* cococooj i r-* lO Q N COCO C^C^-t ci ci 06 ci eo O5 i (NC D -^f "5* r-i T OS 00 W CC ( Tf b- ^ Tf* t- -^ b OOOS^rWOC<IO cieo-^* cocococo t- CO CD JJ? OS W "5 CO -l CD O g n W? OO OO c s e r-ICO^* O OO f * CO COiCCJS M< M IM CO lO OO ifl CO*' CD^* CDO"5 r-li-Ht"- OSCOt-- ^COCO 5 CO ccce Ot^-Oi CDi-HC COOOO Sr^ lOWCO CO^C i-H O CD OO CO OO C t-OOCO ft , US t- t* CO CO O c<i c4co e4coco CO CO CO CO coco 2 ^csfco ocfcow N CNOO OOO CO^Ci IraOOOt^ OSC^COOOt^^Ol^OaiNi-HO co coo co t~ cooo i oo o co co TO coco r~ScN oot^irao <N oico oico c4coco cio4coii' eowo 0500000 M*CO^t*CO o>ec=os CNOJOJOJ CONCON coco COOO 00*0? coos ook -gico CO TT (M COOO O5CO W O5 Ol f W ra ira CO * if-- CON COO e>j c4N o eo cico t~r- -t-CO 00*O of t^lraVlra <^-ic t~f~co O05O05 ra>ra ro i-l * "^ b Ira 00 IO oo IO5 O)tt~ cooicoco e>ie4co cooicON ~ ira ra CO CO co CO oo ra "* co coW C7i CO - 69694 - Si I ft C M* OO t^- rH OO ^f W CO 00 CO CO OJ c<J W i t CO O5 O^ OO rH C(NO ^ Oi Tj< CO b O N eico co co CO S2 c^ COT CO CO Oi t~USO3 cococo T US Jgfc CO t~ O5 t^ CO cococo coco SS u? iC S S us iraCOCOCOCO S OOOOOOCO c S5SSS ^T? coccf (M(NCOOO 22 SSSS SS Oi O5 Cl O5 ^wc^^ 1C CD CO iO CO CO CO CO I r^ 1 - . s + No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 47 ** "3 p CO 1 9 N -y e e c co to to oo T}< d tO 1M (N to l/^ CO CO OS rH CM CO-* O t- N N CO COCO US QQ 00 CO r* F- ob N r-t TT TJ>O <M IM CO rH O "S co * us I-H r- ci ci co coco- ( % sfs s * I CO t* rH t* ss s N c4 co coco J # N e?cf -^oo c ~ 0) C"- tO C S-j -- r- (- o CO Ob i t US O OT O t~ OS oi oieo co co ^< 4 us d 1 -^ cfto e df co t- co a us o ii CO CO ^ CO ^* tO QQ t~ O CO CO r-t ^ ^ t^ ^ oo t- o e-i ci eo oi co * oo co co ip t-< ** Ob t" *O oo T aim o ei-v * H S M -H o to e o e -jto rr ^ us to to?3 ubo oo ^H CO O5 tO ^5 I s * c^ ^ tOtOfMON O >ft t~ ^>< r- co to to oo us N N W CO CO ^< e e 3 O5 co o us T o to <* CO a H O O US M CO 3 1 US -H rT O co t- usi-i e < us g o j-j t>- to t* us c^ to c>i C5 O5 -< t~ t- O X3 US US US O CO t-i-H 1C -V O CO CO OS O ci pies i-ieo "*<< * coco o oo to o us r- t- t- us to coo Ci ^H 0t CO tD O5O5 COUS t- o rf vrim e e * t^f-HCJ'^'OO^- i IC5 Q f^ T" tO US Cl * ^cotooousc^ c ~ to ^> e^)< t-f-i IM v c^ t~ N l~ t- COO US TO ei o'c4 oi co m eo^< rf us cc to P7 ^ O5 USO O r^ to to CO CO CO C5T i (CO C5 TT COCOCO CO US *-H f * t^ 5* OO OO Oi ' OCO CS USU5 COCCOO C! CO COi-1 CO i-I -! COCO-S--^" t~ l^ -V t^> t* f T i t *-< O O r-i o c4o oj eri co *i<^<'* cf o O to ti?c? CCOO 00 t~ t~ 00 r-(i-i I-1Q O 1-1 us >o usJ&oi 10 ON IN TT TT (N CO CO CO CO CO CO rjf^ ^ t ^ i '-' >-H (-7 rH co co oo 35 So oo COCO 00 0000 00 oo to to to co oo eoojcs eo * b ^3 1 1 + 1 2.7 " 1. F"!. ? ^'? iJ-+ iJ- 1 i, i +JL, r-<^ e e s e'e's s"? 1 + 1 1 1 1 1 1 1 1 b bt*0 o *5 _ + +^ 1 1 'r-i"rt"r-l" f-("r-l"i-l>-l" ^ *? *? PT ^ ^*?'o"V + i + i + iJL+ + ' ++JL TT rtr-i e SRS N Rgge TT'TS esess ! + ,-, 1 ^1 1 1 +1 + 1 Mill c .. fis; C- ... sic .... sJSff- '. '. 1 + 1 1 ++ 1 I ..JL .s.s.s.e^s.e^g. >'. t-lf-l * K ,O I-H t-1 r-l rti-lrlr-l 70 I-i P-H P-H i-f i-H . + . . '. + . '. + + '. '. '. 1 + 1 + 1 1 s es es se sss ss ssss ssss ssssc vdvavrt OOOOOOO a,o,ft, t, ft, a, a, 0,0,0, tT <CoT iCa, oTC eCnTeC <CC (CoT-vC (CcCaTtC ftraT^flrar 48 MEMOIRS NATIONAL ACADEMY OP SCIENCES. [Vol. XIV. O o CO t-- e Tf CM CM OO in co CO CM O b^ 08 CO CO O r- 10 oo 0i CO rH r~ CO b CO rH CO COCO rH CO CO 05 CM O t~ COIN CMCMCM 1 CM o OCM rHCM Or-icO rHCM CM CO CM COCO i-H rH rH rH Ok 1 o' O CM II 00 CM O CM CM OS CO O CO CO CO OS r-OO CO CO CO O 00 rH rH rH CO ^ CO-^f CO t-CMO b- r-i co co r- TfO COCO r-* CO CM CO O O5p CO (M O CM CO C5 CO t^ Cft CM CM in CM COCO a e O O CO CO oooo CM (?4 CM CM 00 i rH rH e e CO CO CO * O CO (M CO O OO O CM 25 m * r- 00 CO CO m c-5 1> CMO CM I^ilf CO CM O O ^* rH *O t^- in-?t- in co co CO CO CO e s s OOCOOO 00 rH CO CO CO CO t> rH rHCM rHCM rH CM CO r-t CO CM CO CM CO CO CM CM CM CM CO - 1. 291778 d CM CO CM T rHCM n o CM CM CO CO r-4 ? 00 1 r-i CM CO e eo t-. co - * O b- CM CO CO O -^ CM -<arH coco rH CO CM CO OS CO -H ^ji in 10 rH in -H CM 95 CO CO CO CO --O t~ CO CO CO CO CO CM CM CO CM -^ 01 rH CO . 1. 461775 8 cf os in f in rHCN CO O o t~ CMCM 00 b- 05 CO Q CM OS r-icM CO "JFI? CM 1C CO CO CO t-O rH ^ o -^ 10 CO CO I*- b- rH CO CM CO SOS t-- as in CM CO CO CM COrf CN IN CM CM e MS 626670 OO O 3 si CO CM in oo CM 00 rH IO co r*- cb CM 00 * CM 00 l^ oo -^ co C^ S01 -3" 01 CM r-i CO O r* ^? CM i ' 01O N rH CO 0> * CM CO O CO t- CM CO 00 CM CMC4 C<1 CO 3 rH rH CM CMCM rH CM CO rH CO CM CO CM rfcO CM CMCMCM CO ^ S rH S 5 in f-CO ss os r-- ^ CO 00 CM sss CO CM CO o co m O CO CO gb- CO CM lO Tf* CO O i-H rH CO O CO 05 0S O CO m CO COrH CO t" t^> 0500 Tf t^ in co CMCM CO in in in >n e OOOO rHOO rH rH rHCM CM IN CMCM CO rH CM COCO CM CO CO (N CMCM IN COCU ^ CO i e e s|E I-H CM olos m 31 CO t~ C ^ C5 CO O5 o e CM' CM co e e C 7 1 OC O CO 00 rH la ScMO CO-* rHCO CMCM CO CO 00 00 CM in CM rr O) --I CM CMO 00 oirfco O5 05 O5 O5 00000000 -Wf- oooo coco co in CM CMCM'CM' t- ** m t^ co CO CO CO M CM rH in co CM OS CM CO i i b- SCO m l^CO CM os CO Oi CO CO OO rH e e e e CO rH O 01 CO ^f CO CM CD t- rH b- t~ CO CM e e CO CO CO CO 01 OO GO OO OO t*~ CO CO CO OO *O t-fco* SSE: CO CM CMCM rHCM CMCM CO CMCM COCO CM CM CO CM CM CM CM CO > - 1. 770420 *- CM t- CM <Nin CMCM C35 CO CM CO CMCM CO CO rr m o eft CM COIN e e e e t- 00 CO CO CO - CO CM 05 CO 00 CO O ^ b--^ b- CM CO rH CM* CO CO CO CM CO rH r- CO CM ip S (M ^ CM CO CO c e CO CO CO CO CM? CO TJ. ^. -^. -r< co CM b- b- b- b- 03 -^ SCO CO CO CO b- 0S 05 01 OO CO CM CM CM CM CO CO* e Sf 4 in CM b- OS rH p ^ in co t~ O 00 1 CO * rf o rH OS 00 CO CO e s CO OO CO CO iO iO CMCM rH rH rH CO CO CO 00 CMCM C>4 CM CM 10 10 in ifl iO iO W3 CO CO COCO CO CO CO CO O5 in O5 rH CO rH CM t~CM rH CO rH CMCM CM CM S fi 05 05 05 O O S iO u3 0S 01 rH t rH rH CO CO ^ CO CO CO CO rH rH t 1 IS t* rH CMCM CM IN CMCMCM CMCMCM CM CMCMCM CM CM CM CM CO CO* SCO e r-i 1 1 +7 "? T 1 r-,1 i t'r- ('r-l"rH' + + 1 1 S S S S 1 1 1 1 CM" cT j^Pj^-* g* r- . p^gj^g* gj 1 I 1 1 III + 1 1 1 1 b cTcT +"?*F ^Tff +7? +7f e 1 -4- 1 i i CM ?CM 4- ' 1 4-14-1 1 1 1 ,-JrHrHr^ l-!l 'cO ?CM?Ci 1-5 1- + |4-| +11 'I'l 1 H , r- rH r. ? ? f 1 T *" - 1 + 1 '.'.'. '. '. 1 s s s s s S fi S S s s s ** gjjjjj* j-a-jjjjj* ?Ji o 3 9 ? o o ^o^ O O O ^^ o c o ooocp OOO T'TT'T' ? K*tt cWc? Vc,- No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 49 00 eo S 00 CO * ss <N <M U5 O O :o ^i "T CO CO CO (N M d CO CO CO COCO CO 110379 22- 50 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. Unlt- rH ^ rH CO CO t* CM O CO CM tO I s *- OO tO CO CO CO OS lO rH rH r" CM CN CO i-TrH rH r rH rH CO CO tOO CO _ f rH OS r-l O OS e e e CN C55 OO CM CO CMCM^ 1C CO CO CO CM CO rH 00 t~ Utl t^> O _ _ . tO tC iO tO O rH CO CM CM CM CM i I rH ^ OO OO CO CO CO CO CM CM CM CM OO CO OO OO CO T -f CO CO CO CO ets e * CN CM CO CM CO CM CO OS bO 00 1*5 rH Oi Oi ^ S8S SSS; > t~ CO CN CNCN ! > rH 5> CN CN CN CN CO CO CO CO 4. 49 Oi CO OS iO SS 55SSS r-i cocoir CO CO CO CO oi CN co 1 CO CO CO CO CO OS 00 CN t~ t- - lOrH CN OS OS OS C t-1>< Tl< " CN CO ^t* CO CO CO CO M ij O COCN rH CO rH CO t^ CO in o -J* co CN * t^ co oo m ClOr t- rH C Oi rH CO O O'O - 1C to tO lO to to to to oi CN co r-i co coeoco eococ^'i COCN-^ co co eo co c e CO b- CO s II l O OOt^- COO tOC^ICN ^ff^p-^ 1 O CMOO tOCD OCMO5 OCOCOO to CCCM iO*tf* CMt r*- tOCOOSCO CM CM co CM co coeoco coeoco^ o coc O5 rH C COCO CM CO CO ^ CO CO CO CO CO CO CO CO CO ^ ^ CN CM CO CO 00 O CM _e e e O CO O C) CO !> CM CO COCOCO CO CO CO ' CO CO C CO CO CO CO CO 2 g s s e e VJ" CN CN e r~ b- CN CN oo f eo co co co rH ( < I-H 00 OO rH ( OJ CN CN CN' . . os ^'* 5"* m us SO-^O CTSOSOSOS bt^ O OS oz -^ ^f ^ ^)* i~H rH -_)CN * (N * CNIMCNCN COCO I-H TT I-H co co co co m cc m co co co co co CO CO CO CO CO CO CO CO CO CO CO CO CO CO m 10 CMCN m us c No. 3.] MINOR PLANETS-LEUSCHNER, CLANCY, LEVY. 51 vj O7 CO S Sg fli'V S3 -I.- e essescc I + I I I I I I I I '. '. I +11 ++ I I J^R^ ,,e.s s s.e.c. C c C O 5 52 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. 3 a s s 8 IN e B e 00 t-. i*ri Ol^CO CO i t t* o Oi CM I> Oi IN c4 co coco e e O CM Ol OS 00 O OS 00 a> CO 00 cq t* CO efi co I-HOO IN <NCO eoco 55 ?,? df s t~ M CO ^J * t-CO on <N c<i co" coco K e 01 i rH rH ^ CO oS 1 s COCO O9 CO rH lO O 00 rH to <M W CO COCO 4) e m s b- ^ CO f< CO IB s OS CO 3S 0> e4 IM'CO c<ico ^ ^) B B CO CO (M 3 e * s s il i i OO b IN CO CO <N' co ^ CO 00 f'-O !M OO O CO i 1 i rHlO o co o IN COCO e-i co ^ ^ ^ B B c 1 i 00 rH W Q CN tO 00 CO CO lO rH O* rH CM CO lO CO SSI 8 2 (M rH C4 O 94 CO CO coco V-<ti -* 10 6 B B B 8^ 8 - * i-H 8 I! 00 IO Z3 00 rH fx. CO CO CO CO CO OO C"q C"l CO ^4* O O O O i~ t O O IN COCO CO CO ^ ^i^^i^ uj Otd B B B Tf o 1 00 00 CO CO CO CO to 10 ( t rH Tf T 1 irt iC W5 lO CO CO lO "0 lO lO O O CM CM CM CM IN CO CO COCO CO CO -^ ^ V 2L + ?+? 7 7 c rH rH rH rH rH ^H rH . ^ i CM ,,+M ,,,,+M+ +J,+ + ' + + rL, s s 1 1 rH r t + 1 S SSS N IN SSSS rHrHrHS SSSSS r^l III +r-,l 1 1 1 1 +1 + 1 Mill c*. ... cfffi .... c?sJS* l + 1 1 1 '. 1 1 + 1 '.'.'. +1 + 1 '. '. '. 1 + 1 + 1 1 > g ...?H !! 3 C?C? O ^-^^ ooo oooo - -. -. ooooo i NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. Logarithmic. TABLE IV. 53 Unlt-l". n 1 2 3 4 5 a -Ro-o ni-n-1]-^ 1. 898161 n 1. 898161 2. 283141 B 2. 283141 2. 153770 B 2. 153770 2.006171 B 2. 006171 1. 847875 B L 847875 1.68250 B 1.68250 1. 51210 B L 51210 U n+1. -n+1 +K 7 2. 522558 2. 683079 2.528880 2. 366191 2. 197675 2.02490 1. 84887 ^j 2. 522558 2. 937464 2. 958044 2. 924776 2.858077 2.76886 2. 66352 *!'o n+l!-n-l W 7 2. 522558 n 2. 683079 B 2. 528880 B 2. 366191 B 2. 197675 B 2. 02490 B 1. 84887 B n 1. n 1' -^ 2. 522558 B 2. 937464 n 2. 958044 n 2. 924776 B 2. 858077 B 2. 76886 B 2. 66352, ^0-1 n. n+2]+j! / 2. 812563 B 3. 024413 B 2. 794447 B 2. 523495 B 2.197675, 1. 76164 B 0. 74650 n Rtt-t #0-1 n.-nl+K 7 n. nj if 2. 522558 B 2. 522558 3. 024413 B 2. 462558 3. 07659,8 n 1. 724281 3. 058902 n 1. 856833 B 3. 001314 n 2. 093957 n i 12968 B 2.81684 n 2. 09513 n RO-I n.-n-2]- y 2. 812563 3. 261391 3. 246209 3. 190606 3. 108845 3.00884 2. 89541 RI-O n . _+!]-(-,, y 3. 49405 B RI-O n 2. n+1 +^ 3. 36728,, 1- V c :' < r t-t ^ RI-I n 1. n+2' +T / 3. 70912 RI-I n+1. nl+7 j 3. 30370 ^r * R\-i n-L-n+jr' 3. 30370 RI-I n+1. n a f 3. 3037,0,, RI-I n 1. nj a j 3. 30370 B R-i n.-n+ll+jr 7 3. 81842 B RO-I n.-n+lj-ii j 3. 21895 RO-O "n 1. n] o +T / 2. 72638 B RO-O n+1. n]+c +7^ 2. 72638 a 1. n+2 5+^ 2. 94112 RO-O +!. nl+o *f 2. 72638 RO-O 71 1. n] < ~* 2. 72638 B RO-O n. 71+1]+?! / 2. 51524 2. 84832 2. 78195 2. 69286 2. 58759 2. 47019 RO-O n. n 1] r j 2. 51524 B 2. 84832 B 2. 78195, 2. 69286 B 2. 58759 B 2. 47019 B 1 '0 n+l.-n+I +^ 3. 25180 B 3. 45486 B 3. 34235 n 3. 21906 B 3. 08741, 2. 94903 B 75 Xv^ *0 n 1. n+1 -hS i 25180 B 3. 62946 B 3. 66471 n 3. 66409 B 3. 63529 B 3. 58453, R n+l.-n-l -^ 3. 25180 3. 45468 3. 34235 3. 21906 3. 08741 2.94903 RI-O n-l.-n-i; -tf 3. 25180 3. 62946 3. 66471 3. 66409 3. 63529 3. 58453 RO-I n. n+2]+a j 3. 49076 3. 69598 3. 53278 3. 33224 3. 08741 2.77380 RO-I n. n]+^' 3.25180 3. 69598 3. 76576 3. 78484 3. 76831 3. 72575 RO-I n.n]n / 3. 25180 B 3. 33141 B 2. 99523 B 2. 24789 B 2. 51136 2. 76863 RO-I n.-n-2]n j 3. 49076 B 3. 891 34 B 3. 91658 n 3. 90661 B 3. 87001 B 3. 81284 n g R [n.-n+l]+* j 4. 36208 a R [n 2. n+1 +V 4.18801 o f [2 RI^ n 1. n+2 +^ 4. 52584 B i: ! ' * fit.] n+1. nl+r y 4. 13780 n B n 1. nj+ji j 4. 13780 B n+l.-nl-jr' 4. 13780 ?y . % j! n 1. n' x' 4. 13780 5 ?t O c^ I ft* i x S? ^5 - . , ^ '**"'' C - ; br r-^ B . 2 [n.-n+ll+* / 4. 60272 ^1 * I J? . 2 [n.-n+l]-^ j 4. 07416 B ^0-0 n 1. n] o +X* 3. 51583 n+1. n]+i5 +^ 3. 51583 B Ro-o n 1. n+2 5+^ 3. 76747 B ^0-0 n+1. n]+o s 7 3. 51583 n Ro-0 n-l.-n]-c -7T 7 3. 51583 ^0-0 n.-n+l]+7i J 3. 1148 B 3. 0520 n fto-0 n!-n-lj-^ 3. 1148 3.0520 2.9231 Kl-0 n-l-l.-ri+l ~T~n n * n 1. n+1 1 /I 4.0961 " RI-O n+l.-n-T -^ 3. 9234 B I U RI-O n-l.-n-l. -^ 4. 0409 B 4.0774 B | RO-I n. n+2]+?i J 3. 8736 B RO-\ RO-\ n. n] Tt? 4. 1593, 3.6562 RO-I n.-n-2]-. a 8736 B 4.3090 54 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. fU 1 i in s O iO * COrH COCO CO CO b- CD CM CO *< i- ^ -O rH COOS CO *Q *Q ^ O O CO if H OS t-- CO OO CO 00 kri co co* o CMW *tf rH IftOCO CO Ol CO lO Ift't* 1 ^ O5COCJ5CO t^ IftOlft 00-5*rHTj< IftCSlft COlftCOlft rH CO ^* rHOOOrH rH ^** Cft - CM CM t- tfSCO rH rH CM OS ^ ** ss s 1 t O COt00 OOrHO'V COCOlft OS "f OS * 00 IftCOCO COlftrHTt* -^OOCM t^COt^CO co co'odod cc =d co o t CO COrHCO rHOJOSlO ^ CN t~t~ CMCOOSO r- i ,' rH rH 35 OO CO 1ft CO 1ft CO OS CO OS I OS t" * f~CO rH CO 00 OS OSCO OO COOQQ b-OSb-OS CM O O CO b- CO b- rH Tl* OS O CM TfCOCO b-COCMCM rH Tf rH CO CO CO CO CM CD *O CO CM b* OS OS CO lO CO ^H CO O OO CD >~^ O rH p4 rH r- O if) ^ 7*1 rH r* - lO vO CMOS CO rH rH CM 3! ^ ^ ^ 2! ^2 ^ ^ ^"** ^"** ^ JCO CO CM t-<N l~. rH lO CO OS O CO rH CJS CD CO rH CO OS CM b* t** CO b* CO CO OO + + 1 - **3HS "W3 & S + + + 1 ++ 1 + + ++ 1 + 1 CO Isili OS rHOlCP (N t~t-OS t~ t~ >rj< t- t~<NO CMOOCMCO 1ft CN r>> 1ft OSOrH-^* O rH OS COlftCOlft CM CD 1Q r-l CO rH CN rH rH t- CM 1ft ^ OO fl' CO Bjj cq <3 r-i CM CO CO OS CO OS ^CO t- b^ CO'lO OS CO CD rH CM M t^CNO Ot-OOCO O 525 SSSS QOlft'cNiftcOrH^cdl^OiScbiNCOC^ OrH CJ o C^OSOOOSIftOCOCOlftCOOSOOOSOOOS ^*"CO ift ^t CO OOO 1NCOCOCM rHCOO CM rH (M rH OO O5 r-i CO +++I++I++++I 1+ + 1 * rH CD rH CO CO b-* CD CM OS 3?*^ b- b- CO OO O CM OS CO b- 5 CO rH CM COIN CO CO 00 OO O5 to co 21 CM + + 1 ?^ OSrHb* CMlOb^CM rHlOCO lOrHlftrH iCOO CO CO b* b"> CO CM OS rH If5 rH OS OS CO CM CO CM OO i-O ^ >~^ rH rHCOrHiC CMCO iCb- +++I++I++++I +1 +l CO O5 t^ rH co t~oo -3; <N CO CO U5 b* S rH CO O O CM *^ Cl r f~O CM CON CO 3 rH rH t^ CC I~ CO gj iftiM 3J +++I++I++++I 11+ 1+ II 50 CjP CO OS CO ^* ^f ^ O O *f CO OS CM OS ~^f + + 1 V CMCMCMCOrHTt*CO 1 ^rH'*4*i 1 rH ^OOCOOl CM lQ rH iO 4- 4- 4- 1 4-4- 1 4- 4- 4-+ 1 1 1 4-4-7 - fos tO CM O CO CM rH O *O CO b OS O CO *C CO b lO ^O OS CO CO COCO <N O b- rH CM ^ COO CO "5 ^ OO CO CM rH CM rH + 1 I ++ ++ 1 1 II +++ +1 + 1 + +++ 1 1 rH rH rH rH COCO 1 + b* b- S^5* co co co co CO OS OS OS OS tf$ krf rH rH rH rH CD O OS OS OS OS rH i t rH rH rH rH + 1 1 + 1 + SSSS + 1 + 1 + +1+1 ' "5"s J 1 : rH rH ^ . + 1 SSS S rH^rH'rH^jH' rn'rH^rH^rH^ rH~ rH~ fT fTS? ? ? rH~ ^ -^--j. 11^, + i + ^.^.^ ^.+^. i +^~^~. i i ^~.^~. 3^L i rH ^ "? SSSS <? * SSSS SSS r-. S rH S SSSSS rH -H CO rH rH g 1^1 1 11+^ 1 1 1 1 1 + 1 1 1 1 1 1 1 1 + 1 1 + 1 1 a -c- .... tfc*e e.tf eee ee- CM *" (M rH rH rH rH . + . 1 + +1 S SSS SSSS S + + +11 ' 1 ' 1 1 + 1 + 1 '.'.'. '.1 ts's ssss sss ssss sssss sss sss rX, i, C, rX, ei - - - - ^ ri, rX( ft^ rX, rX, Q^ A^ H. < rX, IXj rX( rX| rX, rX| rX( rX| IXf rX| rX| r\ rX) rX, (X[ rX, (X( rX) (X, tX| rX) rX( (X, IX| No. 3.] MINOR PLANETS LEUSCHNER, GLANCr, LEVY. 55 + I 4- 3 CO s s t- <N SO f-l r-l 10 r-i CO CO CO"O SO CO + 1 I I ++ b I + I b b ' s^ s~^s-~*f& +17+7+1 'g's s's's s s I I I I I I I +77++T7 s ss s s s s s 56 MEMOIRS NATIONAL ACADEMY OP SCIENCES. [Vol. XIV. 5 p rH IN CO O 1C N V CO COCO rH OS CO CO I ICO 00 C Tt< CO I + + I I + coo coo c*i -a* CM ^ 10 co ic co to c co ic I I ++ 115 <N CM CNI CC ^H ( * I I + + I f-H 00 b( CD i-H lO IO $8 . _ Tf CO iO *<*< ^ CD CM ^ CM i i CO SO CD i I CO l+l +11+ O 10 CO t- CN t- IN CD CD 1C t-^ O' t^ O rH ic F~ co t~- co r* CO * CM CO CO 00 CD r-l CM CD I I ++ CO r-l O b- -TT CO CM Tf I I + + 1 O5O CO O CO IO OS CO 1C 1C ' O t- 1 ' *' ^* CO rH CO CO CO rH CO + 1 +11 + CM CO CD i I OS i-H Ci i ' o co o" oo o co f-i CO CO i f i I r-l CM l+l I I + + CO i-l CO CO g si? Tf t~ CO T)< CM CM <M CO "tf CO ^f ^* CD ^ 10 CO CD O (NO (M 10 I-H id i i CM O5 CM Ci l + l + I 1+ l + l I I ++ 00 O 00 CO OS t- CO CO CM r-l (N CO Iffl CO gs CN CO 1C rH 00 *o O O5 r CO O( f i co CD r- CO t- < 1-1 CDN C5 CDO CO(M CO CM 1C I < IO T-H g I++I l + l +11+ l+l II + + 5 rH 00 rH ^C CM CD CO i i CD Tf CD N oo i i + + f I OO b- CC OOCCOO S8S8 + I '8 + 11 + CD 5 b i I ++ O (M CO CO CM CO CM CO i I + I = OCM SOS< CD 1 Tf t^ < CM t~ 00 r-i CO rH co ^ co r^ tr co -^ co I + + I I + I +11 + IN + I CO CO CO CD ^ t- O5 -H C5 i I < I OO CD ^ 5 CO r-i i-H i i r- ' I I+ + I + O O O T r^ co O CO CO CO CO co co CO OO CM CO TJi-^O I I++I ^coco I + I 00 CM CO CO co oi co TJ< C-. CO "^ I-- 00 COOOC^ CO I-H OS IK> CO OS fH 1C CD IM CO S8S8 1C +11+ l+l I ++ OS i-H t^- CO CD(M CO 1C 1C N h- M* ++ 1 CD iC CO Ci iO IN rH CM I + + OS r-JOCO OOIC^CO CO 1C t~ CO OCOO" +1 III ++++ I + I CD -^ Tf i I O r- C_ 1O i-H ^ CC CD OO CD O^ O rH i-l IN I ++ + OS IN CO <N CM CM > ^ -* rH O' CM rH CO St^ CO CO * CO OS CD 1C CO O CO CD CO CO CM O rH rH CD I-H OS O rH C I ++ I I I I + + ++ + I rH rH rH rH O CM CD * ^5O + 1 PS gt f I CO CM IN IN CM ^J OOgO + +1 + 1 CO CO CO CO I++ I n* Tt* 00 T I I I T I I-H + I -J' CO CO Tf 1C CM CM 1C COTt< * CO I + 1 + S S "-< II +1 rH^ ff + I '. '. s s s s CM i CM + L I s s s ++ I I s e s s I I I I +7+7 s s s s IN d +~ I ess I I I s s s b b'tt'o +JHHJL _ + 11 + s s s s I I I I + 1 + 1 s s s s s s I I I rH i-,' CO + I I s s s S rH -^ I -< s I I CM + ^v s s I I IN <N -I I s s e I I I '.I '.I s s s s I + s s I + I s s s i i i-l W + I I s s s s s s b b - + 1 ' I I r-i > I fi + i T s s I -] I s s s No. 3.1 MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 57 ^ 9 2 + C5 CC ^t* t^ O9 r- cc -v cc o rt ^S SS + + 1 1 + 1 I-4--4- 4-T-i- O 5Dt- i-l ^H CC O CC O N ^^ S-S + + 1 1 + 1 , ^.-^ -t- 1 * IT i j N ec co oo b- *O P5 t O iO N lOi-H N CO ^ i-i S + +1 1 + !(--- -rr 1 -r"t i + ! T 4- 1 i d t--H W* CO co r~ c N o w -^ cs O i^ "^ CQ ^5 S ^* *,. + +1 1+ -H i~ i-H 1 t* lO N O CO CO ^ i 1 N NTT t^-J 00 CJ n us co g + +1 + + 1 + H i N ^"< + 1 + g > lD a E^ SrH ^ -^ b ^ rH O5 CO O C^ t*- O ^-l O4 CD ^ CJ <-l CO *O * " S 5? g + 1 1 1+ + l + Si^ i i C ~- C " CDlO -*^*^ 1 CM N CO " C O5 CO U5 N C^ *~ I-H N N M e>< e^ ^< C< CM 1-1 + 11+ 1 + + 1- C5CM f-O 1 CC O U3 ~- CO C> CM 1^ ^ OO cc s o 1 1 +++ 10 to-* e t~co f co c* t~ TJI mip -J-a< ico cc - ""- N S S & S + II ++ ++ ++ 1 II! 1 1 + c^-^HCt~ M^ ta eocsccoc COOCCCC^H t^^H O OC5OCOO 3 CM>O CJIO |5O IfSi ICKC5 N CC COCO i-l i-H -HiH + . 1 1 ++ 11 | 1 1 ++ 1 te to ts<c tsts CC CO DC C: C: CC t- t- t^ O O t- i i ~H CO CC ^-< 1 + + + 1 1 lO>O lO lO t^ t- t^ r* t-: t CC CO CO CC << * 1 + +11+ i b *o t 1 1 + 1 +7? + ?7+f+l .--< g 1? e sITs e1T 1 + 1 l 1 1 1 1 1 1 g g - b ^>* "o <c ^__ JL+_ X JL s^r^r s~i7^7 ^ *? *? ^ b b 5. c?"? +11 ^^ ii++ +l + +l i + X "S"? ^^ 9" ese N CM gee S ^^ r g g s s e ,-11+ ^1 II +^ II +1 + 1 II 1 II s cs e- sugg ... e gg '. '. 1 +11 + + 1 1 -~e~ ,_s_s^s^s,, coo - r-i > i N i-i i-l i-l f-4i-l < 7 7CM r-li 1 i-H i-(^ . + 1 . . '. 1 +1 . . . 1 + '. '. '. 1 + 1 + 1 1 _g_ g g ^g^ ^g^ ^SS- ~~5-5- ^-E^- -S- vE-S-^- ~S-E S -5-^- O ^O*~G ^~*~Zi *~O*~O *~*~^~Z, C9 N O O O *~O COO ^ ~*~Z, ccc .CfCerc.Vi.v >.->. t CC R. C C, cTaT CC!C cTCa, (CCc, C CCC cTc," C a,% e 58 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. g iO ^ (N OS 558 00 00 CO CO CO CM CO COO 0.0 TK JggSS t s >c 4- 1 1 + S oo b- CO CO OO rH + 1 + rH r- CO 2J rH rHCOOO rH -^ 14-4-1 O t~ CO 4-7 + CM CM CM CM OO CO OO CO ++ 1 1 K 53 ess SSco tO t~ OO i-H OS CO OS 00 CM CO (M rH COO rH *1O t^-rH CM CO rH co co co co 01 + 4- 1 50 co 1 4- CO CO 4- 1 + 1 ++ 1 +7+ ,_f , | pH rH ++ 1 1 rH rH S3 rH rH OS b- SSto OS i-H COO O CO COCO CO CO 00 i-H r-f CO 35 CO OS CO CO t^- ^ iO * to 10 co iO o O CO g rH rH rH r-7 CO to to coco co + 4- 1 1 + 4-14- rHrH t- 1 4-4-1 CO TC + 1 + ++i i 7 J5S 33 S<N CO r-i<M SSSff CO to CO rH IO rH gsss * S r-iOS 1C iO CO 4- 1 1 + OS l> O OO ^* CO 4- 14- lOr-lO r-i CO t~CO-* rH rH CO 1 4-4-1 CO 00 CO CO iO + 1 + rH rH rH rH CO CO CO CO CO IO coco coco o ++ M + CM s <r 1 5 t~00 T). t- r~H OS CO IO 4- 1 rH 1- rH0 1 4- CO t^CO i-H CO 4- 14- t^COlOCO rH -V CO * rftdo' to 00 -fi CO rH CO t^ **< O i-H rH OS 1 4-4- 1 rH OS OO CO t^O OOr-IcO OS rH ^< rH lO IO CM CO + 1 + CO COCO CO iS ++ 1 i 7 i gg OS lO CO tOOO i-HCOOO rHO COCO co -^< co os *O OS coco " s^^g CO 50 2 4- 1 I-H t- 1 + CO 10-* SSS I-H CO 4- 1 4- 00 rH 00 tO rH rH O 1 +4-7 os to o rH CO O CO t- + 1 + COCO COCO CO ++ 1 1 1 01 + OS 3S? 00 1C CO b- O OS -f CO OS OS OS OS CO OO CO OO * S COCO CO CO 4- 1 CO OS rHS 1 4- CO b-CO 4- 14- CMO OS CM b* OS O- ^ CM O O OS rH rH QS 1 ++ 1 >rf t^ \fi CO 00 CO I-H OO rH rH t"- + 1 + OS OS OS OS CO *O 55 o o os b^ ^ CO rH b rH r-K ++ 1 1 + 1 + CO s rH + IO t- ost-; coco 4- 1 O rH rH CO OS CO 4-14- 80S OS CO CO Tj< t* to OS IO iO 00 14-4-1 rH 3 ^" OS ^ irf OS CMW "38 + 1 + oooo i-H rH r-H rH CO CO CO OO r^ b- sss ss ^ + + M 1 + 00 CM CO b iO iO to coco 1 1 1 CO l>- IO t-i-l 35 OS OS *^* CO O CO 00 CO tOCO t-CO OS b- CO iO CO CO CO CO " rH rH 00 CO 1 1 f ~ > OS ^t* CO OS CO rH OS rHCMO 4-4-4- MM CO rH CO + + + iO id O ift CO CM CO CO CO CO CO OS O 5 00 r-H CO +4- 1 ! 1 1 T - 8 rH CO 1 1 rH b- || SCO CO coos tdrHOS 4- 4-4- MM + + + OS OS OS OS CO 00 CO 00 id vri lO 1C CO rH CO CO CO CO r 1 ^ OS 55 ++ 1 1 ++ + + 1 o rH "* 3 0000 33 1 1 1-HrH OS OS I-H rH 4-+ COCO CO rH COrH CO U3CO +4-4- to co co co 00 OS OS OO rH OS OS r-4 MM rH OS r-H CO CO OO CO IO CO rH CO rH CO CO OO +++ 00 0000 00 rH i-H rH i-H eo'co'co'cot-t~ >oio rC t" tt< -0" ""9 lo S ++ 1 1 77 II 5* 1 1 rH rH 4- 1 "? "s" rH rH r-i rH 4-4- 1 1 s s s s MM co" co" +^ 1 P-l r-i r-^ r-H rH rH CM CM CM + 11+ ^.^^, ^+^ 1 +~-^ 1 1 SSSS SSS rngrHg SSSSS MM Ml + M 1 Mill b b^- rH rH CO I-H rH fij + 11 +l| 1 rH rH 4- 1 1 1 CO | CO + '. 1 rH rH rH rH 4-14-1 1 1 1 + 1 + 1 +11 '. l'l l + l + l f f f *T*f S s s s s SSS s s s s ess SSSS SSS SSSS SSSSS SSS SSS o o o ~ ~ <? <? _-.-, M cooo ooo m* r* v+ ,* nc4C*c^?4 co n n OOO ^ w ww aw oxrow cyo-cy C.C.O'^ WWW WWO OOOCW WWW O^Q> > ta a No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. I + I * g S3 1-4 1-4 + I I i us m to CO CO CO <N N N + + I \a CO CM 1 b b; + I < I 4- I rH-ng seessss I + I I I I I I I I S S,,,- ^ rt - ,_;,_ rt ' ,4 i-i '. '. I + I I ++ I I ss ggseess 60 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. o M 1 1 **< 3 1 <M O CO o'oi 0000 I-H rH rH 1 + t-oo rH* co ife * fH + 1 rjiTf* ^< I> t^ t-^ t-^ ooo o 00 CO 00 CO 1 I++ S ei 50 1 lO CO 00 irioi rH 00 CM * r-H 1 + IO 00 iriod CO(M *00 + 1 0505 O) TT 00 CD lO O lO t~ rH 1 + 1 Ld O5 O5 O5 IN OS CO CM O5 rH OO lO t- O51N rH O5CO * + 11 + m gt2 CM rH rH rt 2 1 + 1 OO CO CO CO CO CO CO CO oo oo rH rH i 1 rH 1 1 ++ OO S >o 00 1 i 1 O * i> iri * I-H <NOO 1 + 00 rH *?\a SIN M + 1 t~O5 O CO * O2 COIM Tf CO CO in oo rH l + l 00 CO CD -^ t^ O CO -<t<O (N IOQ IN O rH O t* 00 rH * + 11 + CO S" rH CO O5 CO IN co in rH COIN rH CO 1 + 1 lO iC U5 1C CO CO CO CO O IT*- r- t^- 1 co CO CO CO CO O rH rH fH tH "^ 1 i ++ + r S 10 rH rH 1 OOO 8 CNI rH IN 1 + CM CO S'od r* >Oco <N + 1 00 CO CN rH 00 S^tn 1OO5 rH 1 + 1 TiHOOCO co' "5 coco SS85 rHOS^rH + 11 + CO O >O<N rnSg rt 2ct 1 + 1 CO CO CO CO ododod od p **** O t*- t*- t^* r^ ^H pH rHrHfH Q i i ++ T 05 + g 1 i 1 <N IN CO *' CO t- ^s 1 + -r iC t^ o4 CO CO if5 O + 1 CON csi iocs o * oo lO CO -^ ^ O5 l + l >nco t~ O ^t 1 CO ^* *o coco "*l IN rH Tt* rHOO COIN 33 + 11 + CO o< cot- CO rH t-- OO t~ rHIN in rH CO 1 + 1 en o Cb c^ rH rH |-5 fH CO CO CO 00 r _( r n fH rH C4CNO5N l l++ 1 CO CM 00 * O5<N n<(M ^CO IN O5CO rHCM 00 0000 00 US lO OS iH 1 00 t- rHO IN 1> CM 1 + 3S 1C DO CO + 1 CO lO t* CO "^ O5 iR &t i-H coco rH 1 + 1 Tt^ CO CM CM lO O CO 00 rH lfi> Tj* Oi * + 11 + OS CM * O O5 t^ ^g^ CO 1 + 1 CM INCMd 00 1 1 ++ + * % CO o t* IN 1 CM 00 CO-* * Tf 10 rH (N OS O51O 00 O5CM rH lO * Tf ^< + rH < CM 1 COCO 1-HOO rH t- CM 1 + in co lO rH CO U5 CO + 1 tN N CO lO N CO ^rnS 1 1 1 + 1 T-HIO<NOO rH O5 OO O5 ** oico rH CM rH CO * + 11 + CO COO <N rH CO OS COO CO 1 + 1 t~ t^ t~ t- TC CO in in in in * * rH rH rH rH CO O CO CO CO CO CM 00 m 1 1 ++ 1 + 1 m CO o CO 00 IN 1 CO CM rH Tt< n<od *-s CM + + mo oo S od co CO CO CO CO + 1 U5CO r-i c4 U5 rH CO" t~ CN rH rHIM rH 1 1 1 oso in ^ T}^ t^ CM in o O5 co OO CO O t^ I-H rH rH *^ CO + + + + com l>rH CD oo in * IN lOCO rH in CM 1 + 1 o o oo odododod iro IN IN CU CM rH CO CO CO CD CO OO O CO COCO CO rH IN 00 1 1 ++ M " -_ CO ' co feel r^. + + + S S3 00 t~ CO iO CO 00 CO COIN t- COCO * T!<"J< * W CO 1 1 CO 1 t~ in in in 00 S ++ >. t^ moo CO 00 o> 1 1 Oi OS C5 O COIN rH CO 00 1 1 1 CO IN CM CO COCO f~ 00 O 00 IN *< CO-* T< Tfl IN + + + + o co-f 00 OS IN CMO * IN T CO rH 1 1 1 in in in in rH rH rH rH OOOO *** -^ 1 1 ++ ^ CO O t~ rH O 1C CO O CO ^<'CM (N COCO + + + t*- lO I> iC CO-* CM O5 <N O5O5 CNJ t-CO OO in in in in FM S <M 1 N lO 3 ++ OOr-i OO CO oo t~ rH 1 1 rH O5 t- <Mt-Q 00 t~O5 rH>Tl< 1 1 1 CO C<J t- 5 CO^ COt-H Si 1 ! 1 rH i> r- ^ rH ++++ rH OS CO (NO rH rH CD -^ TP t~O 1 1 1 SO O O rH OJ CD CO CO OO CO CM INCMCM COO **** 00 i-H i i ++ 7J CM m co 2 g? S 00 * CO co in ^ 1 1 + CO CD e-i <N 88 O rHO COrHrHCO l~CO t~ CMCMNIN O l- <N r-t 1 r*- r- t- r- lOiO ++ ifl O gg 1 1 CO CO CO 1OO 1C lO rH 1C rH CO rH 1 1 1 CO CO OO CO rH O O rH CO 35 O5 CD * CO CO-O* + + + + CO ^ CC 1 1 1 CO CO CO CO 00 OO rH rH rH rH in in rH rH II rH t^ t CMCMCMCM og 1 1 ++ ++ in m OS OS ss coco ++ "5"? i i rH~rH~ n "s~ 1? 1 ^1 rH T-H . t r 1 ++ 1 1 s s e e 1 1 1 1 <N~ C? +^,1 g 5* 5* b b "ts ^o +JLiJL ~. _ rH i 1 r-! rH rH rH +11+ _~^ ^+^ 1 gees ses 1-1 S--H g III! Ill + 1 1 1 b C? STcM* J? ? S" +^^ i i ^^^ i ' i esssg r V r r c ? ff ? Mill +M + 1 1 j ^ pft . 1 1-HrH + | 1 1 IN | N + ' 1 rH rH rH T 1 + 1 + 1 i i i + 1 + 1 +11 ' 1 '. 1 7+7^7 111 1.17 o -"?:. o o vE^S- ^s,, O ^-S-S-S- v~5~5. ^-S-S^ -EvS.^- .SxS-S-S OOOO OOO .-.^.M ~5S s ,.. S-S-^- -vE^. ^"^^W^^N *~m~m*~m o^o^o d eye? o o <yo N W C O'G'Q' c?c?c?c? O O'O'O' ocycyc? cyo-cy O'O'O'O 1 O'O'Q'O'O' o'O'O' c^cyo 1 3 r I > No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 61 m i rH CO :W. r '*.&&> i-' v O <NCO 4 47 lO CO Hi rHIO 1 4 i-H O30O C$ CO CO kO 0.B8T4' 8 .OW>1 4 4T 1 o l N S 4 41 74 CO CO OO CO ?0 ^* CO O ^* O ?: iA r- < r* CO 1 4 4 1 14 ci coo GO y. " CO CO ->-CO r-( Q ^H lO OO ^^ OO O CO C5 W CD CO rH O CO 1 4 4 1 1441 4 i S s H >0 d *? o O oo 35 < <N S K.rtfQ < i' .(".OT S.TVfi >-'(-.-- .T- .,A rH 00 O CO CM CO CO i-H I-H CO * O CO 00 Q ! '-" 1 4 | 4 1 1 14 14 0- -HCO 00 OO 00 1 S| 2 s i i i 1 4 1 1 44 1 1 00 f- t-O b- f- iO CM (NO CO CO CO 1 44 CM OO rHCO 4 1 1 S CM (M CO CO O I-H O O ^H CO CM CO KB CO S r-4 rH O 44 44 4- 7 lO lO CO CO 1 1 rH - co r* co CO t^ t- i-HCM + 1 1 CO -~ ^* CO OO CO 00 00 <5 Tl * J co 222S -o 22 44 II 441^ 7 44 114 4 r-i CM CM t- CO.CO r1 rH -H rH rH 4 1 1 coco o Q c a> <y> " OO OO O>Ou9iO COCO i If-l rHrHrHrH rH rH CO CO CO CO CO CO 4-4 44 44 1 ^^7 ^ b ^47^ 47^ 4 T 47 ^7 rH-H g ggggg g^ 1 4 I 1 1 1 1 1 1 1 "e"? 1 1 ^-^. iZiZ I. ^ 1^, ,_^_, ^^ 141 ^ ^ +7 7 4 "^ 1+41 4+1 rHr-H g ggg Ol CM gggg ^ r7 g gg g g 'JT 41^.1 MI4_I till 441 || 1 || '. '. 1 4-11 44 1 1 i r ( ^-t '. 4 1 xS- -S-S O o , CM i-H -* r-i ,,, r-l rH rH rH ? ? CM rH rH i-i i-i rH '. '. '. 1 411 '.'.'. 4141 '. '. 1 41 4- II ** &;&*$* o* 0*0* o o cy o-o-o. 0-00.0- o- o-o- o-o> o- oc 62 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE VII. [Vol. XIV. Unit-l". n l 2 3 4 5 e fi (n _n+l)+r / - 79. 10 - 191. 93 - 142. 48 - 101. 43 - 70. 45 - 48. 14 - 32.52 fl.(n.-n-l)-7 S + 79. 10 + 191. 93 + 142. 48 + 101. 43 + 70. 45 + 48. 14 + 32.52 JZ,. 'n+l.-n+l ~\~n + 372. 6 + 482.0 + 266.7 + 130.9 + 52.0 + 9.6 - 10.7 ~f~7t + 293. 5 + 865. 9 + 979. 2 + 942.4 + 826. 9 + 683. 6 +542.1 .R.. (n+l. n 1 TT 7 - 293. 5 - 290.1 - 124.2 - 29.5 + 18.5 + 38.5 + 43.2 7Z,. (n-l.-n-l -' - 372. 6 - 1057.8 - 1121.6 - 1043.8 - 897. 4 - 73L7 -574. 6 Bo.,(n.-n+2)4V - 649.5 - 1057.8 - 622. 9 - 333.8 - 157. 6 - 57.8 -5.6 /Z . I (n.-rt4V - 333. 1 - 1057.8 - 1192.9 - 1145.3 - 1003.0 - 828. -655. 9 + 333. 1 + 290.1 + 53.0 - 71.9 - 124. 1 - 134.8 -124.5 .Ro.j(n.-n-2)-7r / + 649.5 + 1825.5 + 1762.8 + 1551.0 + 1284.8 + 1020.6 +786. Bj. (n.-n+l)+i r" - 3119 iJ 2 . (n-2.-n+l 14V - 2330 JZ,., n-l.-n+2)4V + 5118 JZ,., n+l. n)+a ^ + 2012 lZ|.j n 1. n)+7i J + 2012 1Z,., n-l.-n)-^ - 2012 J?J.J(TI~~I. ft) 3 S - 2012 /I0.j(7l. ""Tl"^! )~7~7I { - 6583 JZ .i(n.-n+l)-K' + 1656 ~r 1 IT" + -7?o-o tt~l.~tt)""* C '+** - 533 -Ko-o *M~1- ^)~H >4V + 533 /J ., ) n-l.-n+2)-<5+7r / + 873 Ro-o n+l. n)+c- V .RO.O n 1. n) d n' + 533 - 533 /Z . (n.-n+l)+r, f + 327.5 + 705. 2 + 605.3 + 493.0 + 386. 9 + 295. 2 Ro-o(-- n -l)-^ / - 327. 5 - 705. 2 - 605.3 - 493.0 - 386. 9 - 295. 2 U ( n +l n+1 4V - 1950 - 2850 - 1897 - 1163 - 643 - 299 tfl;(n-L-n+l +* / - 1622 - 4260 - 4923 - 5107 - 4898 - 4432 /Z,. (n+l. n 1 TT 7 + 1622 + 2145 + 1292 + 670 + 256 + 4 JR,. (n-l.-n-l -Tt 7 + 1950 + 4966 + 5529 + 5600 + 5285 + 4727 #., n.-n+2)+^ + 3096 + 4966 + 3410 + 2149 + 1223 + 594 RQ.I 71. tl)-|-jr / + 1786 + 4966 + 5831 + 6093 + 5866 + 5318 /J 0>1 n. n) itf - 1786 - 2145 - 989 - 177 + 325 + 587 RQ.I ft. ft 2) 7 / - 3096 - 7786 - 8252 - 8065 - 7413 - 6499 8 fl 3 . (n.-n+l)+j [ +23018 | JZ 3 . (n-2.-n+l 14V +15418 (2 RL n-l.-n+2)4V -33562 JZ,. n+l.-n +7 !* -13734 JZ-i. n 1. n +7 t* -13734 JZi. n+l. n 7 r 7 +13734 JZ,. n 1. n 7 / +13734 .Ro.2(n. n+l)+7 I +40061 feS Rf,.^(n. n+l) 7 I -11862 "0*0(1 1. n) e r+TC 7 + 3280 + f /Zo.o(n+l. n)+i I+;t/ - 3280 R t . a (n 1. n+2 - 5854 JZ . (n+l. TI)+ r It' - 3280 ^ i-2 ""* Ro-o( n ~l- n) < t-V + 3280 ta *"* ^ R . (n. n+l)+7 r 7 - 1303 - 1127 /Z . (n.-n-l)-j r* + 1303 + 1127 + 838 B,. n+l. n+l 4V < fi,! n-l!-n+l +13600 P /f,. n+l.-n-l -TT 7 - 7080 -14465 2 ^,.0 n-1. n 1 -T/ -12290 1 ,Ro.].(n.-n+2)+; ? - 7475 *^0 ' 1 x ~~ ^/ "l ^* -14430 I\Q.^\Tl. ~~ft) ^~7t + 4532 R^n.-n^)-, C 7 + 7475 +20370 NO. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 63 With these tables we compute terms of the first order in the mass in Hansen's differential equations for the function W and the perturbation in the third coordinate. See Z 7, eq. (33) and Z 8, eq. (39). The first order parts of the equations are expressed in Z 41, eqs. (82), (83), in the form of trigonometric series, hi which the coefficients are computed from the formulae given hi B 67. These coefficients comprise Tables Vlll-XIVto 2 (cf. Z, 42-48). Table XV (cf. Z 50, eq. (88)) is an auxiliary table of the same type of construction, which is employed in the computation of terms of the second order hi the mass hi the differential equation for W (cf. Z 53). * " - 64 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. ci m * co ss *" rH O OOCO 8 CM t- OS _ CM in co os CO rH in CO t-* r-b- rHCMCO e ii OS TT CO lO OOOt-- rHOOlOb- COb-iO CMCOOCM COrHb- - t* CM b- CM Tt*COTfCO IH rHOJ CMCM CM'roco b-m COrH CM coco** CO CO OS CM COCO CMC<ICMCM e t-- CO CO ^T CO t^ CM b rH Tf-^ 1 COCO o coos Ito rH CO 1 ^ OCO OrHiO S e e F-H CM CM OSO OS STf CM CMCO COCO CO - 88 8 b- coin CMCO os CM in - Q rH CMOS OCMOS CJ5 lO CO CO in 1 s ** rH oo coco in-* CM i f co CO CR b- CMCO CM CO b- rH i-icJ WC<i CMCOCO SCOO&OO CO rH Tt OS CO lO CM rH CO CO CD rH O CO CM rH t OO ** O CM CO **P t-- in * CM b- r- o CM co -3< CM co -^ COrHCO rH Ti CO Ut> O ^* CO ^ CO CM CM' CM CM CM CM* CO* OCMCOO COffCM. CO***^ s e iOCJb- o^t>- C-1CMCO COtr-OS iC^CO CO COb? * CM CM -^ 2 CM ** ^ in in o oo co os rH CM (N CM CM SOS CM CO CO CO CM CD t- CO t CM CM COCO CM CO CO b- t- co ^F OS t OS CM CM CM CO m - -g*io^ OS CO CO CM f*- CO CO OS CM I- t-- r 1 i co t- co 8S OS COCM COOS iftCO CM CO* CO *** CM CO T CM CM CM C i 1 -- cp 1-1 ci toco CO 00 5O t-H t^- ci ^ CD CMCO roco O r-t CO COCOOS ^-HC COCOCO iCOiC TCMO lOO co -^ * 10 <N Tf* CO CO co r 8 8 O OO t-- COCM m OS ^ 00 Oi CO CO^t 1 in b- coco cooo i i os Tf o 8 !>. in r- 1 -^OrH O CM OS - S S O:r- I O OS CM CO CO CO CO OS CO CO CO *n CM CO -j< t*- m co co co 10 co 88 CO OS CO OS CM CM CM CM OOCOOOCO r- ici^noi STO rHCM rH t^-CO OS ^fCM iCCO COOS iC COCOlO b-r-iO^ 4 OTfCO ^<t H COt- 0"*^^*" i-HCOOSrH COCM^" COrHCOO OrHCO lOTfCMrH oicoco c^coco-* CMCO COCO 03 S p4 i^o t- 1- cp S co C^ O 1O rH CM" co ss e CO O lO b CO OicocMt- os c cooco <N m n*f S? tf ft W OSCM OS CO rH CO rH CO ^ CO 00 CO CO CO CO 00 CO CO CO CO CO CO rH i'~ ~. CO CO OS CM rHO e e a t* ** r-4 U5 rH ^ OO rH CO 1C i-H (35 CO -*Q MO? co ijb e? 88 ff 8 OO CO t U5 OOSlO COiOCOt CMOO co io 10 co o -^ ^ CM <NCO ) 00 coco OOCO lOCOCMO - i r COCOCOC OS t-^ O5 t CO CO O OS b- 00 CO t*- t-- see Q t- CO CPOO C^ rH CO OO ITJ 3* in -^ oo < 2 ifi OS ci co co oicoco-^ oi co TJ< CM CMCO COCO CO CO Tf > td CQ CO CO 8 OS CO CO ^t* OS CM OS CO CO CO m co CM t r-t CO CO rH *O rH r- f-* i>- os m CM CMCM CO CO CO CO b- b- in b co CM CO CO OO b- rH CO OS CM rH CO CO CM in co CO O OO Oi CO rH CC OS O rf CD in in b- CM tf (t CO t~- CO t-- COrHCO rH OS rH OS -H CO CM COCM CMO CM O O CO O CO t- CO -^ CM u3 OS CO O fH !>. ir- CD 888 CM rH CO CM CM ^ COO OS ^H CO "^ b- co os CD n co OS rH CO OS CM CO O OS 88 CO CM O t- CO CO cxico c<ico MCOCO cocicoc^i CMCO COCO CMCO'* CO'^CO'* e t-- OS COCO lO rH i-HkO COt-- O i 1 CO 1 CO CM CM CO CM CO CD CO rH CM b- -^ b- CO Tf oo in b- b- ^< b- CM OS CO CMC*4 CO s c Oi CO t^- rH OiCOOCO t^.COO5O5 c CM i 1 lO CMCMCO CO i b*- CftCO^ (NOSCO CM CM CM CM iCCMiOCM COCOCO - COC iC- 6 8 rH>O COtO tOO OOS COiC cOTt< CO >O H CO^JCO COCOCM O-^*O O-VCM COCM lOCOt lO CO-^ CC^Of- CMCO- cocMcooi CM* rH CC CM CO CO CM CO QO.CO *" CO CO S I c<i c Ct 1 ^ COCM O5 t~ rHO t~O rH CO o co oi co COf-tb- CO^CO COCM COC-I-H ^O CO CMOSOilO cocposco t--ocot^ H CMCOCM e c CM rH CM i 1 rHOSrHOS ocooco COr CJCNJ CO o CO CMCMCMTf CM CO Tf CO CM CO CM _a :i CC O rH . O O Q _S O r I O OS Ob* I-H lO b- 8 8 in CO CO rH O CM rH co co -*< in os oo in rH t- OS rH CM CM CM M* rH in ^* CM CO ^J* CM CMCO rHCO* COCOCO eOCOCO^ COCM-T SrH O OS OT in OS OO CO in cob-osco r- 1 I-H co COrH CO "^J ^J ^* -*"rHOS b rH t4 in in oo in oo c^ OOin OS-rfrHOS COOOrH CMCMr-i CMCMCOCM CMCOCO - O ^ COCMiO t OOCO CO C1 CMCM OS OO O m co b- _ OO CO CO rH ', coo CM m co CM CO COCOCM -^fOIOrH lOCOCO OSCMCOCO COCMO t-OOCO^ t CM CO ifc O b- *& CM ^ t- COCOCOCO CO CO CO CM CM CM CM CO CO CO CO CMCM CM CM 00 S OS CM* CO *O OS rH rH rH rH CM CO CO CO CO No. 3.1 MINOR PLANETS LEUSCHNER. GLANCY, LEVY. 65 e e r~ co t~ co CM CM CM CM 8 COCO CO CO CN 8 8 CM J! T CO T CO lO lO O 30 O CO r-) Oi ^p CO O CO CO * t* W O *^ ^^ CO CO CO CO CM COT COT e 8 8 8 OS OO O 2 ^ 4^ CO *3 CO OO rH ^H O CM oi co T co T e e 00 T 00 T m T co T SCO -00 CO T lOT e 8 &> COT S T r~ T CM 43 T 00 .-. -I CO CO CO CO N CO T CO T 8 e 1-1 00 CO CO 4i5 CO lO 8 e 71 _ - O ^ CO t eo r* 3 rr w d rH O <3* CO t* CO CO CO CO c4 ^ ^r TT e e co t~co r- T C*7 ^7" C* e e c tf3 O C O t*- CO CO 1 CM T CM T co co r: H 55 ;o o oo 1 co O c4 (N ^* co ^i 10 ^* 3 8 8 CO COCO CO CO OO CO CO e c e OO T ^- ^O ?1 CC ^* CO ^* LO CO O *O *rt " &3 95 O ~H " 3 CO CO CO CO ci c4 30 co" V <" o 5 e e 5? T c c ss * < e *TO*Ol^-^ < 00 ^Hr-> rc^r^-iO'T cocja coo li 9 r 9 9 ooo oooo 2 COCO CO CO N C<i CO rHCO CO -^ CO CO ! ^s?2" CO O CO u-5 e e * ^ r- 1- 31 o -HOC < -ot^icc^c^iC r-*-c O4<-HtOOCtcOt-- ~^Q t^r^^COOOCO OStO I 9 CO CO CO CO ffi co ro c^" co* V co cc ^< fl CO CO CO CO e a e eii e I^-O5O5C^iaO O^'O C^i tf^OT^t cO-Ht* CC CO CO <Ncoc^c<ico co^co, co CO CO CO CO co co roco i i 2 2 (NN ii CMCMCMOi CM" CM b b*- b^.9 +~7+ t.zx* II 4-1 fH 1-1 I- 1 + + s ~ r-t i-^ f- t ^_ __ _+!!__ 1 + sc '-"H g ess CM CM sss ~ 1 1 + 1 ^ I III +^ I f _;_ ee ^-.j^- sse ^^ '. + 1 . . .1 1 + 1 "... + tf^v _ o _ -_. _ o_ o M o_ o_ o o_ 3_ o -^ -i- . , , (*, , --, -^ -^ fe, <, ft, ->---, ^i 110379 22 5 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. A s S 8 rH 1COO 00 * i-H O CO rH t~ COrH OSCO SI 1C CO CO t~O rH 00 1C * CO OS O l> t~ CO ICO COCO CO rH CO r~ CO CO CO t~ CO COQ rH CO O OS CO os b- o OS OS O CO O b- b-ic co C C b- ^f b- Tt* O ^D ^5 CO Tt< 00 rji OO OS r-HQ O> rH OS CO CO OS iO CM OS CO TP as t^ r^ 00 1C O & 1-H.CO i-H CM rH CO CO CO COCO CO NCOCO r-l. _J _1 _^ rH N N coco OS CD COCO O OO OS i li a ll ii CO OOOO CO CO CO 00 CO 1C rH t^ OO 00 00 CM COCO 1C CD CO rH OS CO CO rH OO O COrH OS t^ r| g rH e 1C lO CO r-i CO I-H CO CO O CO O b- b- b- b- 00 1C 00 1C O OS TT" rH b- O N rH CO b- COO 8 CO OS OS 1C Os t~ 1C rH rH COO co cc r- CO t^ rH b- N OS 00 CO b- OS -^ 00 iC 00 CO N b-- CO N CO CD b- CD 00 CO O i-HCO rHCO r^COCO CO COCO CO CO COCO rH rH rH rH rH N CO coco coco-* CO CO CO *^ 3*3 00 rH OO ^ CM 1CCO 1C O *C O CD CO || 00 Tt< 00 CO 00 1C OS CO CO CO rH CO OS CO 3< osco co CO I-HO ^ E;Sol O rH CO t-OQ CO COCO C C b-oOb-oo OS rH OS rH m Sal CO t~ CO OO COrH ^rH coco a CD OO t^ os CD r~ CO t- I-H CO O C OS rH OS OO 1C oo J co rn rHCO i-HCO r-i CO CO COCOCOCO CO COCO rHrHrHr-l i-H CO CO coco COCOTti CO CO CO M< CO^^ t- CO SO OS 10 1C I-H rH CO COX? rH CO CD f- CO 1C t~ CO OS 1C e s COO CO i-HO CO OS OS CO 1C I-H CO 00 I-H as t~ co COTt< t^O CO 00 CO CD rH O I-H CO ^CO rHOO SCO rH CO rH CO CO t^ CO t~ * CO CO COCO N CO N CO ssss ssss oo eo? CO OSCO r4V So? i-HO t^ CO COlOOS CM CM CO CO -^* rH CO t~ I-H OS b- CD 1C CO CO rH rH b- COO O rH OS OO 1C CO iC rt* N C5 CD b- b- b- Sooo o^ i-H rH(M rHCO i-H CO CO CO COCO CO CO CO CO N rHN rH rH CO CO corf CO CO-* CO CO CO -^ CO-^TT* . rH SCO CM OS 1> r-i r-i CM CO t- COrH t- CO ss O CD COCO CO CO 1C 1C OO Tt< CO CDO 1C rH rH rH CO CO co^cf-* rH OS CD -T rH CO S U? CO COCOCO (SCO 1C CD -^ O CO O 1C osSo CO I>- O CO CO t~ CO COCO C rH "tf rH Tt* NrHCSi r-i 8 t> CO OS OS OS 00 1C CO CO CO COCO 2. 73464n 3. 34462 OSO OS t~ CO 1C OS CO OS 80S OS CDO CO * CO OS rH 1C O CO b- O N CO O OS 00 1C CO CO CO ^ b- O OS CO CO OS o ^c oo r-f 80S t~ ic r~~ * CO CO 1C OS CO CM COCM 1C 00 CD CO CO rH rH OO OS OS CO CO CO rH t~- coNfiC* I-H t^ CO ICOOO rH CO rH rH CO CO CO 00 rH t-- ^ i-H CD CO t- CD OS CD -^ CO rH rH OO tias o t^ CO 1C III rH CO 1> t5 b- c N CON CO N CON CO CO 00 CO 00 N OSN O5 OS 1C i-H 00 COCO CO t^. CO 1C rH iO CO b- CO COO OS CD CO i 1 1C CO 1C CO O rH N CO CO CO N b- iC OS CO b- Tf 1C b- OO b- rH OO OS CO rH CD OSCO rH rHCM coco rH CO CO COCOCOCO CO CO CO NO NO* CO COCO N CO eocOTf N CO CO "^ N CO^t* -. * rH t~ t CO CO CO M< *! rH 1C CO C5CO C OO OS rH 1C CO t-* I-H t- CO OSO t- r~co CO * rH CO 1C 1C tr-COCO OO OS CO rH rH CO OS O O rH OS CD as co o CO ^t* OO i> CO CO CO 00 CO rH rH t^ OS I> OS 00 CO CO OS O OS O co -^ co -^ N OSN os OS 00 t-? CO 00 OO CO CO CO 00 3JCD co 2 co N b- CS N ic co o 1C O rH OS CO CO CO CM rH CO 1C CO CO CO rH b- CO iC O OO b- 00 COCO OS OS OO CO iCCO CO N 1C CO CO ^ os co rH CO rH CO CD 00 O 00 rH rH 1-HCM COCO rH CO CO CO COCOCO rH COCO C^rHNf-i CO CO CO N CO CO CO CO N CO CO -^ N CO-J* 9 S ScO t~ OSCO rHlC* * CO coo O CO rH C~ f e f f-CO CO COCO rH 8 8 Tf rH CO C 1C rH CO CD CO rH CO 00 COO t- CO t^ O O CD r~ ic co as as OS rH OS rH rH OS rH OS OS r-( OS rH OOCO CO CO CO CO CO CO N CO N CO CO i-HOO CO OS b- OO t* * 1^ O 00 -i Tf rH co'co 1C CD rH * I-H CO ^ I-H CO OS & CO i 1 1C CO CO rH CO CO rH Tt< O rH b- 00 N C C b- 1C 1C- b- CO b- os co O CD N O 1C b- OS -' -;-i CO CM rHCO CO rH CO COCO rH COCO NNN N co' co' co N CO 00 CO CO NCOCOCO N CO* CO - 1C CO CO S OOCM CO t- CO S3 S3 CD of OO OS OSO 1C * CO CO O CO r* 1C CO O CO r-i t~CO CO CM OO t^ << CO O3 e e t! t^ CD CO CD COO COCM as co t~ ic as CD co r^ 1C OO t-~ OS O CO OS r-i CO CO CO os r~ t^ I-H CO b- 00 1C CO CC 1C 1C I-HO CM b- CD b- CO rH rH i ( rH 1C CO 1C OO C5 CO OS CO SCO OO O l-~ CO r^ 1C coco s?s SOS CO 888 CM O CD OS OO CM as as r- "t CON CO CD b- N rH CD co os r- OO b- N 1C COrH CO rH 00 b- b- N 1C ^ tjp CO I-H i-ico' coco o coco CO CO CO CO CO CO CO rHNrnN CO COCO CO CO CO CO CO CO CO CO CO CO CO N - ||f li OS CO O CO t- CO CO o t-~oo gggg CO b- rH ^ rH i 1 CO IO b- O *-* rH CO O b- CO r- 1C -* CO COO aso o OS 1C rH CD OS rH C C O CO O cO N b- N b- OS CO OS CO 1C O O CO OS -v? CD CO CO o So ic e co e t~ as 888 t~ CO CO rH CO CO CO r-1 CO gs O iO N b- r- 1 <M OS IO CO r- '. OO ^ 1C b- ^C O b- 1C N ^ co b- CO r-* b- iC CO rH Tt* b- CO rH rHCM CO CO COCO CO N CON CO CO CO CO l-HN rH(^ CO CO CO CO CO CO CO CO CO CO CO rP CO CO CO o 00 OO rH ^ CO CO CO CO 00 CO O CM r-i CO CM' i-H rH CO CO OO 00 CO CO CO CO OS CO CO CD LC CO CO f~ 1C CO CM CO C C C C N N CO b- IO rH N N ^ rH OS rH CO CO rH N CO CO CO CO OO OS b- O N C^N CO as ic os I-H CO rH i-H Tf rH CO t- CO I-H CO I ' as os as CO COCO OO ^ CO ^ i 1 CO rH CO CO rH CO rH Tt< b- HH b- NN N N e 1C 1C CO O 1C CO t~ CO CO rH CD OO CO CO CO e e <M CO CO CO OO OO CO 00 co'co ic e o S co 8 OO CM 1C CM CM rH CO CO CO OS CO O N IO CD 1C b- CO CO CO CO c e c CO CO CO i i rH rH rH ++ 1 1 b b *o *o ,t rH rH rH ^,,-., rH r-i rH rH ++ 1 1 C S S '. '. '. +7 +7 1 1 co' ?co til OOO s s s s MM rH rH rH rH + 1 + 1 CM CM +,-, 1 1 f l_ rH i i rH rH + 1 + 1 OOOO g S Y i-ii-i '. + 1 o o o +7 l_ l_ g g '. '. + '.T OOO g g g g '. '. '. '. rH rH rH rH + 1 + 1 N N '. '. '. 1 o - tftf CMiCS tftftftf O e Cb e Cb ^^ C? Cb"tt" o o CbCbto CbCbOO CbC?Cb ! tJK-pJI. en JO^D-ej No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 67 t^oc r- co i i i-H ' , ." S a * 9t^ O t^. o t* Ol i ( C5 T i 04 Ol 01 01 K i K I'- \*. '" CcxHii 17 \-?\- i-' CM GO <M 00 B - - > 3 us* CD >r so ^ OO CO CC Cp O o r3 Sci *^ * ^* i 1 S:!o s . CMCM CM'CM CM CJ CO coco , ***"'* V f* ns *c r- ^ it /T ic fc? * r 1 1C I-H iC o c o O CO O 7-1 O Cl cc ^r oc * S KB o o CM CM" CM CM CM ci co CO CO i'. ; V>KK\: T-TOt; V r: rr T rr r-r i" it it i* e e e cc e -- c '-s S - er ^< V 2 ac -x :' 5- & (C CM CC tM 00 OCM C~. CM (-H CO KS OO CM c-i CM" CM CM CM CO CO CO e e O COQ CO o r- o t CO* CC O C5CC 5 CC i i O CO Ci CC 10 cc mco o; co o co S5 CMC-! 00 c; --1 i- *i oo i* rx ^-s ~ "^ - * V R * S at --3 f. t? ev c CM i-i CM i-l Bt CM CO CO CO iT i; - \-. tt 'f c^tf - ~r ~ r ~ r: T ic ~ i r _ e a ~\i CJ5 ^ C- i < o cfS oo s ^ oc 5^??. CO SCM ^- IO CM<NCNN CM CM CO CM CO j -3 9 lO 5l iC <M CO Ci CC Oi 1 ? gs e CO Si 00 CO I a CMCMC-JCM CM CM CO C-i M lift OO o (M O s cc C I 00 o <f C<J ^M p 1C i-l r~ t-- w ^ CM cc c-j cc H CM CM cxi N i- IT M i-i i-. ~ iC ~ - cfr^Ort e e - >: -C. ? - 9 - Tr_ -^r;^^: ST~*' ?T x": a_ i-H Ci ^-* Ct CC C^ C5 OO TT CC S? CM s iO O t* i-H O CC 1 t^ CCO Ci a ^i ^i* g S -: CM" cc CM co ii CM CO oieo cc "r .^^~:-. i^i-> c c i ft " * - t- CM t^- CM CM f <N ^ oo cn GO c; kC C-J iCCM . i O -H O o CO o e o e i CO O CO OC SO CM O) cc r- i t o * '-' 1^ C> * --1 ^* f O -^ r ~ * - <r. CC CC CC CC CM coco cc cc ^* V rr .' ic *c ic i-c i-r *~ s e CN X IM e-i ^ cc cc o , > . = =^39 3 S ii 3 N B Cl * tt rH r-t ^P i t *JH CM C-. i-H rH rH C5 S CO CO CO CO CM CM' co CC CC CC i- oioicis c iTi7i^~ 1-itiO felt b ZiZ JL ^H ^^ ^-* -H -H rt" - -^- ^^ 1 ^^ 1 C S 8 "?9~ "-7 8 8 CM" g S-S5 t.S "si 1 1 1 1 ^^.^ 1 1 + 1 1 1 1 I 1 + II I 1 ~H t ' --H + 1 + 1 8 J i ( -H + 1 ff ' -: f J; '. '. 1 1 '. 1 : Ys - _' ?.' + ^^"o^"^* C ~~o^o ^~Z ~~o ^ "TS ^o <&fcfr * ^^ tftf tf 6- d- tf *% : '"f.-Z'sf'Z. '^-^^ V r 7l JOJDtJJ 68 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. H ij IB < EH 1 a T: o? i-fos rH COOS CO 00 rH CO t- CO ICCO 1>CO rH CO T CO rH t COCO CO o co r~ OS b- OO ^* CO rH LO O CO CD CM O b- CM COCO COLtfcOi a? co off 1 1 t^- rH CO t~ 00 t-~ 1C 1C CO CO OS co O co o SCO CO 00 CO 1C CO coco coco CO rH a *- LO b- CO ^ Tj CM CO r-t CM rH coo o co rH i-H CO COCO CO COCO CM* COCO *' CO CO CO CO COCO CO CO (N CO COCO . 1C 1C T rH OS T OS CD f 1 OS OS 1C CO 00 t~- Sff ss cooo e a ST 1C CO rH, iH CDOV T OO 00 i-H CO t~ rH O OS O co o o CM CO CO CO O OO CO CO CO 1C SCO O CO O CC O CO COCO CO CO CD rH CO ^ CO CO'CM Tf* OS CM Tj rH O O rH b-CO rH b- OO ^ CO i ' Os O t^ O LO ^t" rH CO O CO ^ CO 00 LO * CMO rH CO CO OS OS CO i> OS CM CO b- rH l& LO OS l-i 1-iCO CO CO CO CO CO CM CO CO -^ CO COT COCO CO CO Cl CM CO CO CO (NTT co-^-o CO * f 00 CO* CO*T O Q CO T S ic r~ OS t^ 1C OS 00 0500* 1C CO T CO ? t*- rH CO CO OO O OO CO CO i-H COOO st K b* CM OS b- b- CO TF CM e a rH CO OB COO CO t- 00 r-t CO CO CO CO rH O r-l O CO CO CO CC CO 1C CC 1C I CO CO t^cf co 1 co COC-J CO LO ^ O b- b CD OS CD OS b- CO rH t*- gg c o CO CC rH t~O 00 OS f-J CO LO CO Tf O O O CO r-. OS r-l O b- SLO "^ r 4 ^T CM r-l co c; 10 LO iO OS rH rH CO coco' CO COCO CM CO CO ^J* CO CO T COCO CO CM CO CM 00 COCO CO T T COTT1C COTT - CO OS rH 1C T OO 1C 1C 00 S OOS OS CO O rH 1^ COOO i cc co CO 1C T O tO rH CO CO OB CDb?LoTo CO rH OS CO b* CD S CO coVos 8 00 1C T III OO CO OO CO T CO T CO 1C 00 1C 00 t- cp r- CO CO g s O CO ^00 b- O rH O OS 00 rH OS b- t^- CM OO St-03 rH OO T rH i-H 1C t"- OB OSO CO b- CO CO OO lOrH CM "^ CM CO r-i CO 00 CO t~ O r- CO CO CO OS CO OB t^ 1C 1C OS rH CO CO COCO CO COCO CM CO CO^ CO CO T CO (M CO CO CO CM CO CO CO COTT co TJ* ^r 10 COTT to a a OS rH 00 r~ ic co rH CO CO S SIS OS I-HO coco CO CO S| a e OS CO 00 OS OS rH T CO T CO 1C 1C OB 1C T rH COOS O CD OS O !> CO rH CD O OS GO -^ CM rH OSO t~- OS O O b- CD iO rr t^CO T T iC CO 1C CO lO t~00 CO 1C CO 1C CO O t~ O t~- t~~ OS t"-> OB CO t^ OO t^. rH CO CO CO CO O CD ^ CO CM CDO CO !> -^ CO TfO Cl CM b- CO C-l OS CO 1C OB CO CO CO rH CO 1C e c CD Tj* iO iO CM 00 COO OS b- CO b- CO CO CO CM ^ CO rH rH r T T 00 00 r-H 1C T 00 TIC 03 r-H CO CO CO CO CO COCO CMCOCO^ CO CO T CO CO CO CO CO CM CO COCO CO COT CO-^^iO COTT H3 t- COCO O CO rH CO ICCO CO COO b- CO t^ O rH rH TO* CO CO OS OB 1C CO e e T t-ao c-l O T CO OO T rH CO CJS e e OS CO CO lO rH -^ Tf -^ CM -^ CD rH CO COO CO t- CO OB t^ CO COCO 1C OS T OO CO 00 CO t^ CO t^ CO OO OS OC OS OB CO OS CO CO g co ^ ^r co b- O OS CO ^f CM rH Tf SCO OS LO CO rH OS e T CO OB O 01 iC OS !> CO OB 1C (M 00 f~ CO CM OS b- rH O CO CD CO ^ CM OSO CO OB r-l 3?$ CO T OS CO CO CO CO CO CO CO CO CM CO COtf olrfT CO COCO CO Co CM CO CO CO CO COT CO "^* CO lO COTT * OO t~ CO O OO 1C OO co O co r- ic CO Q CO CO O CO iC OO coo SCO CO CO OS O rH CO rH OO CO OS O CD O CO CO O rH O OS iO CO OS OS CM O O O O CD to CO b- CM 000 LO CM a: CO LO CO CO 00 CO 1C O CO i-~ CO f~ CO 1C CO 1C CC CO CO CO CO 00 CO I Q LO CM -^ OS CM CO CO iO CM b- LO O co o os SCO CO OB 1C 1C O T CO -H CM OB O 1C CM b-o'co b- rH r^ LO b- CD CMO CO OS lO O t^ CO 1C C CO OB CO 1C t^ OS 1C 00 CO CO 00 CO CO CO CO CO CO COCO CM CO CO <** CO CO T coco coco CO CM CO COCO CO CO T CO CO CO^LO CO T T CO CO 1C CO rH OS CO CO T CO SOS t- CO CO CO CO CO r~co e coco coco CO OS T CO CO OS CO CO O CO C^ T CO i-H CO f- b- LO CO CD b- CO CO -^ b* CO O CO CD b- COO CD rH OS CO CO 00 CO CO CO CO co r-- co r~ coco coco CO COCO CO rH 00 rH CO CO rH CO rH rHO r- O CO s 1C 00 CO *^* OS !> b- O OS O r-l CO CM rH LO t~* b- OS CO CO CO CO CC CO OB < CC CO 00 1C O 1C CO e ss S^< CD rH CO CO LO GO O OS CO b- CO OS CO ^ co -^ oo oo to to rH 1C CO CO 1C GO -t- o to CO 00 t~ CO i-ico CO CO CO CO CO CM CO CM -^ CO COT CO CO CO CO CO CM CO CM CO CO COT CO CM CO-Tt^ CO COT T COOO CO CO t~ T rH rH CO OB CO 1C OO CO CO T 00 co T r COO CO CO rHOCOCM OS iO O CM 00 OS -"^ rH CO ^ LO CO CO CD CO rH a a OO T CO O T OB CO I-H CO rH 1C T t^ CO OS t~ OB O e = CO T CO T CO CO CO CO O COO CO coo coo CO 00 ^* OS CO LO CO OS CO b- H^CM * OS OS CO IO b- T 1C T CO P OS CO OO O 1-, CM OS iO CO CO CO CO O b- OS CO CO i-H CO O rH CJS CO t"~ C~ 1C 1C 1C CO CO CO rH CO CO CO CO CMCMCM^ COCO T CO CO CO CO CO CM CO CM CO COCO T CO CO CO ^ CO CO T - CO* OB CO t- coo OS 1C t 1C OS M ofos 8 OSQ b- LO S3 TOO CoV S CD e 1C 1C CO OB T CO t~ OS CO O OS ! 1 t~rHO CM CO b CD OS CM b- CM t-. OS iO b- rH rH CO LO a a a CO 00 CO OS CO CO CO 00 CO O CO 1C OO T OO T T CO T CC rH COi-i CO CO OS CO OS I-H s OB CO T OO OS CM O OS O OS b- CM OS rH CO CO CO rHCM O CO CC T 1C SiC CO T CO To; . co o b- *-" OS "^ rH CO LO CO CO CO OS-H lOCM OO OS O CM OSO rH 00 CO rH O CO T CO OS 1C t-~ OS I 1 rH CO CO CO CO CO CO CO CO CO CO CO CO CO CO coco coco CO CO CO CO CO CO CO CO CO CO^ T CO CO T rH 8 rHf, OS T 1C T T a a a COCO OS T OS' CO co-SrnS OS 1C OS i-H CO rH T CO T OC CO rH tO rH 1C CM VO CM CM COrn 1C ^S-of OS C- OS 00 CO COO CO CO 00 CO coco Q T rH OS 1C 1C 1C t-CO CO ^O OO GO O b- OS OO co r^ co rH CO rH OS OS OS CO T CO T iCO iCO i o CO CM CO oO 00 CO GO CO rHCM CO O OS T CO T O LO LO ^ rH CMO CD os r- LO CD 10 OS OS OS T CO T 1C CO 1C rH COCO coco CO COCO CO CM CM CM CO CO CO CO CO CO CO CO CMCM CMCM CO CO CO CO CO CO CO CO CO CO II -* '. '. , II II '. +1 A .-. s "o o o rH i-H + 1 S 8 1 1 t~t co' s co' + '. 1 -H r-H rH r i ++ 1 1 8888 1 1 1 1 I-i rH rH i-i + 1 + 1 co* CN" s's's 1 1 1 -~S-*i b b cs *cs +JL+JL +77+ 8888 rH I 1 rH rH + 1 + 1 o o o o 1 o f f +7 __; S 8 +7 ' '. co" ? co tie f I rH i i rH ++ 1 1 8888 III 1 +7+7 ^ , s CO CO 8l?S 1 1 1 -. t" tftf &?hf *W hteW bfttf&f bfta-hj-tf u? fc-*k~* |*kC -^ -^ ^ -^ hte'nr tqWfo- bftefttf ., nwtf No. 3.] MINOR PLANETS LEUSCHNER, CLANCY. LEVY. 69 e fi "$* CC ^f OO 1! cc o cc co CO mp cS t** N t^ S cooaco^ CO 1 CO CO CO CO o4 CD 03 CC C4 f _. _ _ g So S3 CO CC CO CC t~r1 t^ I 1 r- 1 1OIN CO CO CO CO 4 CO^ COTT C71 CC Cl -I < Oi I-H C5 1 i-flO coco cov to ?> CO CO CO CO " CO-* CO-* . CO^- CO 1 J e e 1 co co co ce CC U5 *C lO 8 32 <OCM # CO CO CO CO* M co^ cov r*. f-4 1-- m cc 8 ooco r- I -x sis! i Sii^ r-1 i I 7 1 1 COCO COCO CJ ci-r eo'-r , & e c s -j I! OS ~ CC Ci CC Ci i OC CJ * CO O GO s * X ? r; ^ t- t^ t OS cc COC1 CO IH *- o> CO CO CO CO 4 "* *>* ui V | ! I CO OC CO OC r-cc r-cc cc oc cc oc ^ CO -^ CO oc t^ cot- C? CO CScM IT 00 t ^ OCO CO CTi CC O i 1-1 S 1 w S -TM CO CO CO CO 4 CNTti ^' 10 2 ++ C (E C e e > C: CC CS CC cc r* oo r>- 1 II Is too -H CC z B CO CO CO CO ci coco ci^r * -4 g 5 K'S. ^s CTCCC?*? = = c f CO 00 CO 00 1 II C^ 00 CO CM 00 CO i ^ Ui \ CO CO CO CO ci coco COCO *' <j ^ e e cf CO ii eo to S^ ci "l Isl CO CO CO CO oi CO CO coco * ^ 1 ,5,^,1- ^-<-H e -5 e e C4 OO CM CO cf OC 1C oc ce 1C *r cc -r to v i * t-i CO TPCJ r 1 I ( 00 B CO COCO' CO M co ci CO CO CO I I -r -f b b=^ b^^, +77+ +77 ^ = 77+ C S S e s s ^H 1 p MM ^^ 1 1 + 1 ^~. 1 1 1 1 +^- 1 Ml ' e e s m -^^ e S ^;_;^; 4- 1 4- 1 1 + 1 M 1 7 1 + 1 '.'.'. 1 + 1 cgii S -*. s g e e O C C O o o ~^ s ~o s ^ S -" X ^- S ~-* S ~*^ N ~-^ N ~w v ~o S ~^^o ^ww b| hN" ,O.^O L_ e * t _^* fc;fci fc;s; ---" ^-^ ^ jfll JOJDTJ 5 ! X CfS i + I 70 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. g. 1 %_ I 00 i 7 i 8 i r 7 I CO * 1 .*" "B> *? V | g | ? ^ A ^ 0*> hj i 6 CO CO 00 CO to CO CM 1 1 + 1 + 1 II r5 II ft, i CM * 90 S cn co CM CO >O V CM CM $ S 00 ~~ <n * rH 8 00 CO -f- + 1 1 1 1 1 H ii ii n ii ii n tq ft, hj ft, CO CD o 5 o? t (-. 00 3< CO CO rH 33 & (M CO ' COCO CM CD 1C rH 1+ II -) \- -)- 1 1 -)- _(_ II II II II II II II || || IT n tqi h) ft, tejft, h) fa ^5 fa ft, O COCO i n t CNCO COrH S So; 1 + 1 ++ +11+ + "t f" J II II II II II II II II II II II II ' * * CO ii5 t^- CO CO C^ t^> CO OS rH US COM Tt< O5 O5 rH CO t- rH t-. Oi iC CO j S S|S 1 + + + + ++ ++I -|- 1 +1 + II II II II II II II II II II || II II II II ft, fa ft,hiC5 ftxto tqajfe, Pi, Kj &( CJ CS S t^co OS O5 ^ CD M ^* r-^ r-H CO t** CO C5 CO CO O5 OS CO "^f ^O rH t^- lO CO CO lO C iO ** J-++ I--COCO rHrH ^OCO^O 1 ++ + 1 + 1 + + 1 1 II II II 1 II II JJ II Jl II II 1! II te C5f*4 i* [ in in jv> n (M (M CD CD lO *f$ CO OS OS CO i-H rH rHCO CO rH (M (M (N CO QOC^ H r t rH tf -^ rH O O O Oi O^> O CO CO COr-f rH CO CD SO ccco rH il rH rH Ol iO iO M SCO COCO OS C5 O I s - CO CO I s * + 1 ++ 1 1 1 + +1+1 1 + 1 1 ++ II II II II II II II II II II II II II II II II II II rejC) tqfeifetCj fc,faC3l*, b *o to ^ 'o i i i + 1 ___ ji 7 ?^7T __ +!?+!+ +1?+??1 rH rH CN CN(M 888 rn grH g 88888 III + 1 1 1 1 1 1 1 1 1-HrHCO rHrHgi-lrHg SSSSS88 + 11 +l|l + | Illllll sss ss-jss- 888 rH 8i~< 8 III + 1 1 1 88888 1 1 1 1 1 rHrHCO , N \" N pHrHrHrHrH fll'l'l 1 + 1 + 1 111 '. '. 1 '. ! . 1 +11 Hh+ 1 1 +11 '. 1 '. 1 1 + 1 + 1 s e g s s e s e g s g ese essss?; sssssss 888 8888 8 8 8 S 8 ^"^"0^0 *^*~~*~*~ ^ci^ N C4COM OOOOOO r* ,* *4 r+ r*, r* ,+ o o o *-< - ~ * S" 7 1 ? ? ! No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 71 >'yoi'-* 'ze'n'x 'i x'x : :. -W ^D OD & -3 5 '2 f-H i ' l-l + >n.--x -.-- -i V^ + + + t=5 4 i '-"-- ~^T. i- 1 + * } Z-f. "H- | , O QO o o -C -* n cs T OO Ci t~-* O C^l TT i++ 7 ji i MJI e 4 ;f i-H ^" OS t^. i-H OS 5? l ^ rH CO i-H II 11 + i^ eccc^" Oil < u5?sco C-JOCO WN C^iCO voces ceo rtco t^-t^-CO OOO COCiCt ^ ^H CO N COCO +4- 1 1+ 1 + 1 J H H Jl H M H o cs oc oo ++7 + ji n ii n r < -H [, f^ _ - - * C"- ~ ~- i-H F t i-H i-H +1 1+1+ Jl II II II II II oo"o o rH p i rH rH T++ T i i * 7 ? +7 w to '"" v *o *s ^"^ b b *"<& *"- ^ *Q ^^ iJL7JL+ +'7+7+7 6eo<to 7 ^7^ ++7^ +F+^7 VT" 1 ? 77 s 7"r 8 sssssss + KS tiiiti IMI . " '. 777 ggssg tit 1 - IIIM '.'.'. '. '. 1 ' ' 1 +11 ++ I | 1 1 1 1 -L I _L 1 I _8^g^g^ g g g g e - - 00000 ^ , w , ' -i -: - : : TZ X X 72 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. B s = H rH rH rH rH od od od od CM IN IN CM H| i ++ 1 + 11 + 11" VT TP OOOO OO CO OO CO CO CO CO CO 1 ++ 1 + 11 + rH I-H rH rH OOOO ssss CM rt 1 ++ 1 + 11 + rH 1 C4 CN NN rH rH rH rH So o o CO CO CO 1 ++ 1 + 11 + rH rH rH r-i i 1 rH rH rH OOOO 1 1 ++ 1 + 11 + rH rH rH rH <M O4 CM C<* CO CO CO CO O + 11 + P ++ * F ++f f V N ti t: + 1 ++ 1 1 g g g g 1 1 1 1 ++ 1 1 g g g g 1 1 1 1 + 1 s 1 1 + 1 + 1 OOOO + 1 + 1 1 1 fc,fc,*,fc, ft.*.*,*, K 9 B < H rH rH OOOCDrH OO O OO CO OOOO t-^ CO Oi CD t>^ OO 10 CM t~ - . CO CM OOrHO + 1 00 00 I I ++ +++1 + 1 ^t COO t^ OJ CO C^ CO t-^ CO M^ ^ rH O rH rH O rH C rH rH rH f I I ++ +++ *i i i- US U5 + 1 I I ++ +++ S OD 00 ^" rf CM CO t~ rH CSC5OOO + 1 I I ++ ++ I I ire lOi o o CM oo + I I ++ ++ I I i* *n \G it i! i; n f^ 8 It JOS rHO"<NOS CicOCOOS 5 LOCOES- ss + 1 I I ++ ++ I I IT II :- -- '.- V V V K ts ^^ ++ I I rHr-, g g g g + 1 I I I I i? V S + + K ti w +^ \J^ g 'g"g"g"g~ rH rH g g I I I I I ++ I I . '. + I + L I I + I + I '. '. I + ~*~o*~c **~^~~~~~Z?~~ ^~^~^> o o o o K'l"i. No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 73 iO *& rrcc t~ e OCCNg ""S^S i + ++I 1 111 + + i ee -- -- cc cc cc cc ^ C-J OC CC^ ^H 1(5 ! 1 + + +I 1 111 + CO cc cc O C5 i-H SO rH r^- C^ CC I s " lO 1 + ++ 1 1 cc cc K3US S3 O CC C5 'V 0-HON C^l S f-H |-i to ^ oo * ! 1 + + + 1 1 1 I++ 1 " " CC5C C^ t^ ^ S ^* oc o Cl Ci ^ t- I 1 + + + 1 1 1 I++ 1 + O) 1C U3 cc cc r- o 3; cc C^4 ?O * O <CtOCOCO lOtO O O CICCGOO ^^H *** ^** S 1 + 1 1 ++ +1 1 1 l V \\ \\\\ -> s . ^ +. v b b K b< b k \ i i i \\ ^X^-C^^J^ \ \ V + +v ^V ^ V V ++ 1 I 1 1 v -*~- fc els"? iJL ++ 1 1 e e e e i i i i \\jL +^ s;++^j^ +j^ J^+NJ^ 7 j^ 1 1 1 g e ^c"e g +1 1 1 1 1 1 ++ Mill J; g l-f ! see -S-S- + 1 + 1 -~5~5-S .m* 8 - e g-g-gte ii gtetff ii o o - _ _ - c c c i co ~* r* * r* v+ nn c c c c c - o c o CMCNJ C5C5C3C3 SSgg tte> oootocs to e o cteotfe. M CM 01 JO JJK J t -o^ 74 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. rH rH O t- OS 00 CO O CO CO coco 33 * r-ilrfOS 10 co o t~- SCM CO<M OS OS *C CO O CO COCN 00 W Ci rH CO OS rHf~ rH t~ CO I-" O rH t- OO CD HI rH rH ^ 25 lO CO 1 + + + 1 1 111 + + 1 1 I++ +++I m id * OS 00 t-ocooo OS OS ; ^> .. coosSco ESOCOGO coco 00 CO SCO rH t^ ColoCMrH * CO GO rH OS 1-IOrHCO coco COCO CO^JI rHO t^. 1 + + + 1 1 111 + + 1 1 I++ + + + 1 CO CO CO 00 00 CO COCOOSO oo rH rH OO rH rH 10 co coin *f O CO rH OO "3 rH rH CO -f t- lO CO rH 1C So? 38 OV CO t~^ lO CO O CO CM CO CO 1 + ++ 1 1 111 + + 1 1 1 ++ ++ 1 1 33 CM* CM rH rH CM CO t^i-H ^ rH rH -^ O5 CM "t> CD CO rH lO CM o oso oo coco coco CO OS 1O CO CO rH t^o rH t- t~ CO 00 ^ CO CO CO Ci OO *** I- 1C rH rH O rH OS CO rH CO OO lO Tf 00 OS CO m <N CO CO CO CO O CO CO COIO CO CO 1 + ++ 1 1 1 I+ + + + + 1 1 1 ++ + + 1 1 1 CO CO OS OS 00 CO OS 00 OO 00 CO CO coco rH rH OS OS rH rH f- t- K3 OS 1/3 U3 CO $" oo coco t^ t-o 10 co IO lO OS CO OS O O CO 00 CO CO 00 1C lO CD rH rH CO CO t^- CD CD lO CO O CD CD ^f OO CO 1 + ++ 1 1 1 1 ++ 1 1 + + 1 1 I++ ++I 1 + O OO rH rH oioi 1 + OS CO 00 t- OS CO O rH o i^ com ++I 1 OS CO CO OS SCOCOT(I CO CO CO 1 I++ rH rH CO CO + 1 + + coco CO CO + 1 CO OS * t~ CO *9* O t~* OS OS CO CO CO rH CO CO 1 1 + + CO CD CD CD O5 CO CO 0i CO rH rH CO ++I 1 U5 1 1 1 . %J " 1 i+li i-H rH rH rH ++ 1 1 + > 4 T^v V l| -C*Jj -K V v v + + 7 M !Ji++ 1 f + 1 T +^+7 i> rH rH r-H rH ++ 1 1 Y >-| c^^'VcT i+ + 1 g g 1 1 1 1 -)-+ \ "\ rH g g'g^'g'g + 1 ggggg rHr-H ggggS 1 1 1 1 1 ++ 1 1 1 1 1 + 1 g g 1 1. 1. 1. + + 1 | rH g g glTg + 1 c s 1 I 1 1 + 1 + 1 g g g s i i i i n* II rH* II rH rH , , rH rH rH rH rH 1 + 1 + 1 '. '. 1 + 1 + 1 1 1 g g + 1 + 1 g-g-i-g- t"' rH i t 1 + o o O O O O rH r- -* v~5' ^^S'>S"5^S- ^S^5- "S^S-v i~ *~- o o o o v ~o o ^~*~*~*~ ^S'^S ^H'^S' ^-i-t^^-^ OOOOO -< CO CO CM CM CM CM faq tc; fc) ID K5V? co coco co WH^H tq'ijjtq'^tq' kf* 3 ? bf'D'i^flD'lD 5 tejtej tej tej fej tej CM CN CN C^ tqlDtDU) K?b? CO CO CO CO ^ "N hi* m, jo wa. w H) ta No. 3.] MINOR PLANETS LEUSCHNER, GLANCY. LEVY. 75 . 7 *S ?: : si I "V -. * S 3k *^ *^1 J. -1 -'I 1 -1 ^> -"? * -^ C-J C^ H CO CO J5 u ^i 1 "T" ^* >5 39 P9 ^ , -, ss M 00 CO C5 + 1 K : lr 7 + 77 < g i N V ~T~V s vvv - - ++ 1 1 1 febb tits o ;q- to <a "sT'sTI? Ztt "g^'e's^s" III ++ 1 1 1 1 1 V V ++ 1 1 V +1 ?^77 jkji r-<-H gggS <^+|^ +i i i i i +~ i S g ^- S g g S 7+1 1. 1. 7+ 1 + 1 SSSSS e J. + 1 + 1 '. '. '. '. oc oooo ^ L-'.--,-* i.?h? ^fcPhfcPh^k^PK-? 55 ^" ^S^ t n JOJDBJ " J ^ - ^1 i " II X -I S? 1 ++ i i s 76 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV s r CO CO CO ^^ O Oi -I t~ CO OS t~ O O5 Tf< CM 00 CO CO + + com CO CO CO i 1 1 i r~ r-lin CO CN 1 + + CO CJ O 'O t-* CO CO C^l CO *O *0* O5 1 f-i *^ c; ic co o + + 7 CO OS COO4 t^ O CO co i i u5 1 1 ^ + + t- a> co Ci CO CM SNI CM N CO 35 ii co 55 1-1 + 1 + "tf o" ct r-. CN co -( CO CO tft> C<J O OS C$ b* OO SOS OS IMO * rH iO t~O OS CO C rH |- Ci OO r^ t^- co !> I s - t OS i ( lO * 1 ^* r- ^s ^a g s ..i- 3 n rHlS + + CO QO OS + + 1 cc eocN ?i t^ oo rH ^ CM CO CO O CM COCO W CO ft + + 1 iO W CO + + t* CO CO O f""" CO OS + 1 + 1 C<I C^CO^'CCO ^PTO O + + rt +7 + fH t* t- CO ifS os co + i 0r-l C~. ^i-l 3lO CO + + II 1 CO os r^ ?o r^ o *^ c-i ^tf CO CO CO CO O Cr N rHCO CO o 1 e e"? ! ' i-i r-i . + i 11 IrHrH i-H rt i H rH rn^? "s? "5" sess e? cT ssss t- '.-?'. '. '. '. '. t^-e '. - '. '- 7 CM , CXI i-i I-H r-l r-i , , i-H rH i r- i '..+'. 1 +1 + 1 . '. '. + + 1 MM OOO NC*C>. OOC rH r- 1 r-( rH ^^^ ^.^ ^ ^ ++ II ^ ^ ^ + i-i TIM +^ fi SSS -C- .... ccc rHrH (MTC-l f-HrHrHl-1 . + '. . + '. 1 + \ + I . '. 05 OQ'CQ' oo ci c-t ~t M *HMM oeo occo O i~ OO CMCMN __. OO XI JOpB J 1 M s No. 3.] SO -^ -^ n t- O t~ * 1-1 o 00 r ~ S) rH V O CO O cc r- ^ 99 O OS 10 O * l~- OC O I s * O ^' jg O O ^^ O 'O 8 w l~^ o o^ W CM + + + + to cot- asm r~ co i-i T ^1 !-! 1 ( I-H ; f? S 4 + "+7 + i + s s s s I 1 1 9^ J^*" x*s. 1 s rt'rt' R a + + 1 s s s s s s e 8 a a o o o o o o o r o o a tfcf coV : P JOWBJ MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 13 If. 1 . ,;-..-LViM HIT TO fO 1 -".^O-TVii 77 fll ori) ffi 'Ki'*^ ^d4 lo 78 MEMOIRS NATIONAL ACADEMY OF SCIENCES. INTEGRATION OF THE DIFFERENTIAL EQUATION FOR W. With the exception of Tables LVI and LVII all the following tables are concerned with the integration of functions whose coefficients can be derived, more or less directly, from the- preceding tables. The terms of first order in the mass, before and after integration, are of the type , A where . C v . q = C . p .g + C V p. q -w + C^p.g-w 2 H ---- (see Z 25) and A = [n + r-%(n-s)]s + (n-s)6+i IL+i' II' In the argument A the factor n is always a positive integer; the factors r, s, i, and i' are Tc positive and negative integers. Evidently, the factor of is -~ where k is any positive integer, and the arguments in a series are I n I r I s A. Within the extent of Bohlin's tables all of the coefficients can be written in symbolic form from B 188, XVII, XVIII. In the notation for the coefficients the particular values of r and s are given, and there remains to be found only the positive value of n, if there is one, for each multiple of -~- || The following tables present, in skeleton form, any series of the given type. There are properly two tables, one for perturbations in the plane of the orbit, and the other for perturba- tions perpendicular to the same. The headings A and I are defined by J = n-n' Considering first the tables referring to the plane of the orbit, omitting for the moment the arguments bearing the subscripts 5 or <r, the argument A for any term is read from a Ice main heading -5- and the first two columns under this heading. The tabulated numbers are the respective factors of 0, A, and I. The degree of the factors in the eccentricities is indicated in the subscriptsy-g'in the symbol for the coefficient. Further, when j tt = 1 Hence the coefficient of A is also the number n in the proper table of the numerical values of the coefficients. For instance, in the function T 2 (Z 41, eq. 82) we have for one term where F, taken from Table VIII, is numerically F,. (n-l. -)n_4=- 1514" + 5780"u>-8976'V. Adding e </> to the argument and taking the coefficients from Table IX, we have also in the function T, -- n-l.-n)^ sn 2e- where G V9 (n- !.-)_= +452"- 1475"w+ 1451"^. In this manner the series is built up. The coefficients having subscripts d and a belong to terms depending upon the mutual inclination of the orbit planes. They differ from the preceding type of terms in three ways. In the first place the subscript signifies the addition of J and 2" to the argument, respec- tively. Evidently, if J is added to the argument, the factor of A is not n but nl, from which we determine n. Lastly, these terms contain the factor f, i. e., within the extent of our tables the exponent t is not greater than unity. For the tables referring to functions which concern the perturbations in the third coordi- nate the same explanations hold, with the exception that the additional subscript rc f signifies the addition of 11' to the argument. These tables, in connection with the proper tables of numerical coefficients, enable the computer to write a complete series by inspection or segregate any term of given degree and given argument. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 79 H r-T - -- " ~ <O oo :- 1OO ICO N | ! * h "7 fc * n^ -r= _ oo^ o=^ * B ^t- ^ ^^00 , _00 5 7 1 " ^ o o ? - - - a "7 t * CO CH-, CO^ OV<0 0<0 * 1 1 1 N 7 "I i MO ecoc* -H IN 1 2 -.-. m m -. . 2 7 "T" - * * 4 " <O f "" r- e "cc * 7 7 1 -> 7, _ _ O M OT M M v M N "7 "77 "77 c? a n co o-roe on,- * _r-,, CHCO nt .a ^cs = ^=o n^. . N^^W^MW C4= ^C O^X 0,,* 0X> OX,, NOO N 00 NNOCO r.00 <NOC0 NOO^eNO H - i 7 77 r .O M o ^ o, ^ eo o r* ^ ec o o ^ 1 o o w N o-* o , o * * * o o-^t o ^ 7 "77 "77 + -i C4 O ^> v-ieo r.- eOi^iC OC4V *-":7i7. O^<OC t-OOCOt^ 74 ^-7J-^ :7 ^ r: : - ^- ^ O * CO * CO ~H C 1 * * 7i O, O, 7) ' 717]' 7 i 71 "C OC4C4O,OOO,^>OCOO,,CCO,3OO,X,O, O,XO,O^< ''< 7 77 77 | 0^ ^ W K<* *** o N cs o^ o^ o-* * o w c*ei<oe*eci<o wo MtDC4M M M ri M 1 j 1 ~~^ IZ ^ ^,^. ^. **** * +^ J9 S-J -5- -s- ++H {? s- +n?e"S-e =?=! -S^il CCS? Islsc? ||p I-J: B !=! *""" fcfi tttt tititlt ttttt ill Iltlit ttttttt '. + i '.'.+'. i +i+7 '. i. >. +7+7 +7 i Lj '.7 7+7+7 '. '. '. '. '.7 '. 1 7 +77++77 5 55. -55. 5-5-5. 5555 555 55S5 55 5555 55555 555 5\5\5555 e e e e a e e 80 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. it + 1 c a E m 2 + s o* h 7 r O O 04 r* O _U 7 CO M N 7 ~7 T -, <M -f o -t- c-t -J r^eoeoua ci --o o -* c i i 1 n rH I-H 1 1 i TJ M M rj- -* *H co o on < co o . eo ec ^o rt " >0 --""" *..5 N 7 7 + CSO^ -HCC OV NO - CO CO-,10 ONO(N- M U5NCN 1 1 1 II 1 - ,__, . *< 7 _ 7 "* o o * w (N <N N ^-. -. 1 cS ^ 040 0^00 0^-^00 WWWO 1 1 "*"j = ' 77 r - ^ o ** eo O (N O <N N O) -* O O *J> ^ O * I 7 "7 + ^ ; . O -V NMtO OO*WtO Of * OO 1 OOT,0-,^.00 0-.<=-00 00 OOO^T, ; 7 7 - P4 ~ ~f o o * ri d<o CM <N O)C>4^0 M d<O C4 C4 ~~ r > 7 1 I 1 Itz : tev +ili \ -t ivilvl +^ ++77 ivvA +i+7JL7 2 aeaa f? , i ST s 'aa'e + 1 1 1 1 1 frSc-l 1 + 1 1 ' 1 e a 'S^B''?'? a a S?QS^S' e'a'Ja 9'aa'? 1 1 1 1 1 1 1 1 + + ^ + e ^ 1 1 1 1 MM \\ +7+7 "Ti +T c i'+f c i 1 +7+7+7+7 iTi.Tii +7+7 +7+7 ^^ O^O^O ^i^^Ti^H '^O^o'^^^'*^ .^-5-5.5.-S. 5-5-S.S5-5. 5-S-S-S. S.5^. -I NO. s.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 81 Our problem is now the integration of the partial differential equations Z 7, eq. (33), Z 8, eqs. (37) and (39), and Z 9, eq. (47 1 ). In the trigonometric series to be integrated the argument is a function of 6, s, <f>, A, I. The last two are constants. According to the principles of Hansen, <f> occurs outside the opera- tion. Numerically, however, it is equal to s. The argument 6 contains e implicitly. See Z 9, eq. (43). Hence we must, in general, write F(e, d) and = _ ds ds 50 ds In order to set up the partial differential equations from the total derivative, the following notation is introduced: F(t, 0)=[F(s, ff)] + F(t, 0)-[F(s, 6)] where [F(e, 0)] signifies that part of the function which is independent of e. Again, since s has the period of the planet, there can be no secular terms in e (with the exception of the function 0), i. e., On the other hand, the argument varies much more slowly, and there may be secular terms in 0. Hence and may occur outside the sign of integration. Owing to the presence of the required function in the differential equation, the integrations must be performed rank by rank where rank is defined as follows: In the course of the developments there arise negative powers of w. Since w is a small quantity, these factors increase the numerical value of the terms, or, in other words, they lower the order. Therefore, it is better to define order in terms of both the disturbing mass m' and w. For this purpose v. Zeipel makes the assumption that both w and -^m' are quantities of the first order. Order so defined is called " rank," and the word "order" is reserved as usual for 7/1 ' a the powers of m'. The factors 5- are arranged according to rank in Z 53. Any function is then written in the form where the subscript denotes the term of lowest rank, for F { (s, 0) contains terms of more than one rank since each coefficient is itself a Taylor's series in w. In assigning rank it is to be noted that the coefficients in all the preceding tables contain the factor m' implicitly. The implicit mass factor is indicated at the foot of each table which follows. On the basis of the foregoing principles, the differential equation for W, d_W == dW + bW d0 = T ds ds d0 ds expressed in Z 52, eq. (91), is broken up into four equations, Z 53, eqs. (95, 95 4 ), according to rank, and before integration they are again subdivided according to parts which contain e and parts which are independent of s. The total derivative is then in the form of eight equivalent equations, and the integration can be performed in the following order: W t ; F 2 -[FJ; [FJ; F 8 -[FJ; etc. It is possible to avoid the computation of T 3 , as v. Zeipel did, by the introduction of some auxiliary functions, but we found it preferable to tabulate them. Employing Table XVo, and by inspection of Tables VIII, IX, X, XI, T t is written directly. (Thas no terms of first rank.) 110379 22 - 6 82 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVc. r. TJnlt-l" Sin w w 1C* -J - f+# + 43.1 - 43.1 - 128.0 + 128.0 + 171 - 171 + 20+2J 2t-<j>+28+24 <l>+28+24 + 271. 5 - 67.1 - 294.9 - 636.6 + 108. 2 + 740. 6 + 526 + 32 - 734 2t+ 48+44 3t-<l>+48+44 t+<l>+40+4J + 159.9 - 45.7 - 167.4 - 593.3 + 122. 1 + 637.4 + 869 - 174 - 984 2i+<{>+68+64 - 81.7 + 418. 9 - 907 9 28+24 i-<l>+28+24 - t+<l>+28+24 -1180 + 273 +1496 +2962 - 179 -4265 - 2935 - 1170 + 5572 9 2t-<!> 9 - 173 - 211 + 384 + 512 + 899 -1410 - 684 - 1921 + 2605 n e+ 48+44 2 t -<l>+48+44 f+48+44 -1514 + 452 +1679 +5780 -1475 -6656 - 8976 + 1451 +11172 n 2t+ 28+24 St-<l>+28+24 c+<j>+20+24 - 6 - 83 + 136 + 408 + 262 - 878 - 1307 - 564 + 2285 ? 2i+ 60+64 3c-<l>+68+64 ,+<i,+68+64 -1149 + 360 +1227 +5902 -1734 -6415 -12820 + 3301 +14400 ^ 2 t +</>+48+44 - 102 + 112 i 2t+<l>+&8+84 + 750 -4900 5' 28+ 4 t-<!<+26+ A - c +<l>+28+ 4 + 318 + 222 - 646 -1081 -1012 +2452 + 1552 + 2227 - 4296 1 t+ ^ 2t-<{>+ A <i>+ * + 130 + 112 - 285 - 484 - 565 +1211 + 808 + 1393 - 2475 n' t+ 48+3J 2e-<l>+48+3J $+48+34 +2279 - 580 -2460 -7160 +1410 +8138 + 8896 - 520 -11342 n' 2t+ 28+34 3t-<!>+28+34 t+<f>+28+34 - 314 + 127 + 291 + 702 - 399 - 537 - 90 + 598 - 478 Y 2t+ 68+54 3t- </>+68+54 t+<!>+68+54 +1887 - 542 -1974 -8417 +2221 +9002 +15550 - 3377 -17350 I i 2e+<{'+48+54 - .".'," >..,;..". stirp') Zt+j+W+U + 390 -1263 -1556 +7397 9 .-# - t+<!> + 568 - 568 - 3106 + 3106 * 48+44 ,-<f>+46+44 - i+<I>+48+44 +6716 -2114 -7960 - 26627 + 6488 + 33462 + 44700 P t+ 28+24 2t-<f>+28+24 <{>+28+24 /, 4- 128 + 535 - 978 - 3166 - 2505 + 7431 - 23105 m' No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE XVe Continued. Unlt-l" Sin V V w> 1* + 69+64 2-#+69+64 #+69+64 + 7969 - 2624 - 8819 - 41736 + 12577 + 47347 -111337 '/' - + 25+24 -#+20+24 -2t+#+20+24 + 2246 - 396 - 3596 - 6168 - 1494 + 12561 + 9351 1* 2t 3t-# +# + 423 + 357 - 780 - 1797 - 2207 + 4005 f 2e+ 49+44 3t-#+40+44 +#+49+4J - 1783 + 924 + 1220 + 3946 - 3327 ^ 1026 1* 2t+ 80+84 3 t -#+89+84 +#+80+8J + 6749 - 2247 - 7252 - 44127 + 14052 + 48051 If' 4 *-#+ 4 - +</>+ A - 285 - 1004 + 1574 + 1210 + 5771 - 8192 - 2475 If* 49+34 t-#+49+34' - *+#+40+3J -17218 + 4253 +20345 + 56961 - 8340 - 73031 - 79400 fir + 29+ J 2e-#+2fl+ A #+20+ 4 - 1429 - 523 + 2280 + 6138 + 3792 - 11302 + 28347 if t+ 2fl+34 2t-j+2d+3J #+20+34 + 1725 - 1003 - 1492 - 3054 + 3753 + 677 + 13097 v + 65+5J 2t-#+6+5J #+60+5J -23773 + 7038 +25974 +108605 - 28427 -122380 +251019 >? ^ - t+ 29+ 4 -#+29+ 4 -2+#+20+ J - 965 - 2068 + 3785 + 3533 + 10582 - 16928 + 39011 v 2t+ A 3-#+ 4 +#+ 4 - 820 - 470 + 1488 + 3797 + 3185 - 7870 ||T 2t+ 49+34 3t- #+49+34 +#+49+34 + 1815 - 1181 - 853 - 1190 + 3807 - 3161 --?' 2t+ 49+54 3t-#+49+54 +#+49+54 + 4294 - 1571 - 4414 - 17092 + 6629 + 17198 ^ 2+ 89+74 3t-#+89+74 +#+89+74 -21544 + 6700 +22868 +126397 - 37167 -136294 I" -# - .+# + 866 - 866 - 4261 + 4261 * 49+24 -#+49+24 - +#+49+24 +10682 - 1815 -12428 - 28347 + 474 + 37322 + 32120 >!" + 29+24 2 -#+29+24 #+29+24 - 1498 + 1136 + 861 + 450 - 4394 + 3794 - 22127 m' MEMOIRS NATIONAL ACADEMY OF SCIENCES. XVc Continued. [Vol. XIV. Unit-l" Sin w w 1* + 60+44 +17790 - 69344 ttttll- 2-0+60+44 0+60+44 - 4675 -19046 + 15200 + 77260 -135954 9" -0+20 + 1634 - 7081 + 16199 f Ti-il I -2+0+20 - 1634 + 7081 ," 2+ 24 + 328 ^ 1710 3-0+ 24 + 154 - 1141 +0+ 24 - 591 + 3420 1 ,/ 2+ 40+44 - 5879 + 19019 3-0+40+44 + 2032 - 7361 t+0+40+44 + 5807 - 17998 ,/J 2+ 80+64 +17340 - 90064 3-0+80+64 - 5018 + 24266 +0+80+64 -18102 + 95820 jJ -0 i- 866 + 4260 <',"!.' - - * + + 866 - 4260 J 3 40+34-2 + 609 - 2958 + 6763 -0+40+34-2" + 232 - 1656 tWfV - - +0+40+34-2 - 1044 + 5600 s ; > a + 20+24 - 1760 + 71S9 2 S -0+20+24 - 331 + 3096 0+20+24 + 2677 - 12681 + 30930 ; 2 + 60+54-2" + 578 - 3543 2 -0+60+54-2" + 10 - 299 0+60+54-2 - 780 + 5023 - 15302 ;' -0+20+4-2 -2f +0+20+4 -2" + 866 - 866 - 4260 + 4260 + 10988 f 2 + 4+2 + 1152 - 4231 3 7ft iti +0+ 4+2 + 98 - 1634 1440 + 7081 a 2+ 40+44 - 1795 + 9459 3-0+40+44 + 164 - 17 +0+40+44 + 2229 - 12595 j 2 + 80+74-2 + 392 - 2914 V ,' 3-0+80+74-2 - 40 + 194 +0+80+74-2 - 482 + 3691 *+ 0+ 4 + 47.1 - 149. 3 + 186 f-0+ 0+ 4 + 27.5 - 111.4 + 207 -*+0 + 0+ 4 - 90.4 + 310. 5 - 455 ?+ 30+34 + 216. 1 - 655. 2 + 749 |s-0+30+34 - 58.9 + 150.7 - 93 $+0+30+34 - 229. 3 + 722. 8 - 905 | + 50+54 + 113. 8 - 499. 2 + 892 ^-0+50+54 - 33.5 + 137. 7 - 213 fs+0+50+54 - 118. 2 + 527. 9 - 977 ^+ 70+74 + 54.1 - 310. 2 + 757 $-0+70+74 - 16.5 + 91.3 - 209 +0+70+74 - 55.7 + 322. 3 - 801 $+ 90+94 + 24.5 - 173. 5 + 537 -^-0+90+94 7.6 + 52.7 - 157 $+0+90+94 - 25.1 + 178. 5 - 559 m' No. 3.] MINOR PLANETS LEUSCHNER, CLANCY. LEVY. XVc Continued . 85 Unit-l* Sin .. . <c* ' _|:^I^+3J -1497 + 419 +1729 + 4732 - 966 - 5826 - 5963 + 131 + 8424 1 -i 4- 0+ 4 JE-<H- 0+ A -|E+^+ 0+ A - 114 - 224 + 436 + 385 + 1006 - 1726 - 548 - 2186 + 3220 \s+ 0+ A JE + VH- 0+ A - 208 - 55 + 314 + 781 + 349 - 1316 - 1315 - 1026 + 2641 TJ ?E+ 50+54 -1366 + 420 +1480 + 6114 - 1711 - 6793 -113C3 + 2548 +13254 1 $E+ 30+34 + 108 - 85 - 19 - 20 + 256 - 329 - 847 - 395 -T 15S6 1 $E+ 70+74 - 922 + 292 + 975 + 5348 - 1618 - 5728 -13320 + 3632 +14602 ' ^ ^-{-59-|-5J %E~^-y -\-50-\-bJ + 172 - 74 - 133 - 594 + 298 + 402 + 491 - 470 - 42 ' JE +90+94 |E ^+90+94 f+v''+90+94 - 541 + 174 + 564 + 3856 - 1205 - 4055 -12092 + 3608 +12887 ' if +30+24 +2041 - 431 -2290 - 5080 + 499 + 6274 + 4928 - 1026 - 7597 rf ii^"^? l~ w ~~ w~T"ty~T~ U + 384 - 384 - 1410 + 1410 + 2605 - 2605 * 5* V*i Q\~iA - 131 + 106 + 69 + 12 - 366 + 350 + 717 + 772 - 1728 * IE ^+50+44 +2169 - 596 -2295 - 8241 + 1980 + 9008 +12680 - 2086 -14823 rf E ^+30+44 ff +^+30+44 - 389 + 135 + 383 + 1251 - 479 - 1189 - 1212 + 687 + 930 * ft +70+64 +1550 - 457 -1609 - 7940 + 2211 + 8376 +17170 - 4245 -18650 * IE ( +50+64 - 349 + 113 + 352 + 1665 - 543 - 1678 - 3127 + 1052 + 3117 rf \t +90+84 \i (^+90+84 6 -)-^+90-(-84 + 937 - 286 - 963 - 6044 + 1784 + 6274 +16950 - 4724 -17880 "' i +0+4 ?-^+ 0+ 4 + 757 + 514 -1583 - 3272 - 3644 + 8214 r i is +50+54 * i.'~|~oi7~i~oj "^ ^~ }~ v i" OW~4~O J +7767 -2522 -8820 -35692 +10085 +42033 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XVc Continued. [Vol. XIV. Unlt-l" Sin Uio w f -i +35+34 is-0+30+34 -}+0+30+34 + 4758 - 1369 - 6128 - 15945 + 2307 + 22836 1* $ +39+34 $-0+30+34 is+0+30+34 - 882 + 732 + 177 - 280 - 2580 + 3816 1J' ft +70+74 jf-0+70+74 is+0+70+74 + 7549 - 2504 - 8212 - 44427 + 13864 + 49192 ? -V + 8+ A -i-0+ 0+ ^ -|+0+ + 4 - 32 + 784 - 1031 + 220 - 4194 + 5051 f $ +99+94 \s- 0+90+94 $+0+90+94 + 5780 - 1929 - 6154 - 41583 + 13412 + 44735 v i +0 $-0+ 9 -i+^+ - 768 - 1156 + 1924 + 2821 + 6406 - 9227 ty 4 + 0+2J |e-0+ 9+2J . -l+^+ 0+2J + 209 - 771 + 446 + 1404 + 3774 - 5879 ,,' J +50+4J i -^+50+4J -i+^+50+4J -21869 + 6125 +24564 + 85960 - 19358 -101260 ,,' -J +30+2J i-^+30+2J -i +^+30+2J -10182 + 1576 +13528 + 27638 + 2276 - 43309 y \t +30+24 4-t^+30+2J j+^+30+2J + 384 - 939 + 715 + 3626 + 3382 - 8550 V f +30 +4 A *-^+30+4J i+0+30+44 + 3250 - 1333 - 3256 - 10017 + 4996 + 9153 iV f +70+6J it- ^+70+64 j+^+70+6J -23414 + 7146 +25145 +122108 - 34410 -133985 * -ft + -J -V>+ -| + ^+ + 768 - 2308 + 1540 - 2821 + 10637 - 7816 ili | +90+84 ^-^+90+8J $+0+90+84 -18847 + 5935 +19837 +122928 - 37138 -130949 i" i +0+4 |-0+ 0+ 4 -l+^+ 0+ 4 + 761 + 906 - 1920 - 3333 - 5387 + 9831 ," is +50+34 $-^+50+34 -i+0+50+34 +15303 - 3577 -16828 - 49954 + 7957 + 58649 ^ 3 -Jf +30+ 4 i-0+30+ 4 -f+0+30+ 4 + 1582 + 1300 - 3410 - 5765 - 6572 + 14260 v a \i -0+4 |-0- 0+ 4 is+0- 0+ 4 + 451 + 494 - 1096 - 1890 - 2861 + 5381 mf No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 87 TABLE XVc Continued. T, Unit-l" Sin - w *. 1* f +30+34 - 3918 + 8760 is ^+30+34 + 1588 - 5289 $+VH-30+34 + 3637 - 6391 l" ft +70+54 + 18292 - 83098 |j-^+70+54 - 5104 + 20825 it+^+70+54 - 19286 + 89973 f * +0+4 - 902 + 3781 $!-</>+ 0+ 4 - 988 + 5721 -i+#+ 0+ 4 + 2191 - 10762 jl J +50+44 - 1 + 634 - 3482 fa ^-j-50+44 jf + 87 - 836 -j+^+50+44-.2f - 933 + 5479 f -it +30+24-J + 428 + 480 - 1816 - 2805 -5H-VH-30+24-1 - 1050 + 5226 p ft +30+34 - 1916 + 8929 it ^+30+34 + 2 + 1220 it+^+30+34 + 2553 - 13126 f Jf +70+64 -S + 488 - 3307 I _^-|- 70+64 2" 27 + 23 $+^+70+64 -2 - 623 + 4387 p -* +0 -J - 475 + 1965 55 ^+ JT + 1141 - 5536 -i+0+ -2" - 508 + 2916 p it + 0+24+J + 1282 - 5447 $-<+ 0+24+J - 90 384 | +^+ 0+24+J - 1620 + 7647 p is +50+54 - 1544 + 9111 ^ ^+50+54 + 222 - 735 f+^+50+54 + 1838 - 11413 p | t + 9g +8 j_j + 304 - 2460 Jt ^+90+84 J - 42 + 266 fj+^+90+84 J - 364 + 3013 ,1 20+24 - 1955 + 14862 60+64 - 35276 + 189348 9 + 3312 - 23724 df~\~A.Q ~j~4d - 5097 - 4328 ^+40+44 + 6177 - 16310 C& ~f o V ~|~ 8 a + 45199 - 304998 iV 26+ 4 + 6733 - 33547 20+34 - .3730 + 1693 60+54 +142854 - 673242 <1> +4 - 9270 + 61512 -# +4 + 4207 - 28940 V^+40+34 + 5323 + 55061 -i+40+34 - 13730 + 9080 V^+40+54 + 22898 - 84425 V^+80+74 -200024 +1218446 7 ?" 20 - 3268 + 14164 20+24 + 3445 + 15177 60+44 -190467 + 772593 + 12782 - 78712 ^ +24 + 5239 - 35125 ^+40+24 + 2712 - 60586 -Ji+40+24 + 4409 + 41693 ^+40+44 - 52183 + 143461 V-+80+64 +294332 -1600036 m' 88 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVc Continued. Unit-l" Sin >o w r/ 3 26+ A + 3479 - 17883 T 65+34 + 83314 - 283500 <!> + 4 - 7839 4- 47423 -<l>+46+ A + 6634 - 36904 V>+40+34 + 27512 - 44330 0+80+54 -144023 + 688658 fr, 25+24 + 10709 - 50725 2(9+ A -2 - 1732 + 8521 65+54 -.J 1 - 7799 + 50227 ^ - 12782 + 78712 # + 4+JT + 11006 - 60629 4>+45+34-.T + 4022 - 29208 tV -0+45+34 -2 1 - 3616 + 27235 0+45+44 - 28408 + 176052 0+85+74-2 1 + 9526 - 75678 f if 28+ A - 7475 + 36068 26+24-2 + 159 - 2967 65+44 -J + 11564 - 66719 +4 + 11762 - 75153 ^ +^ - 6024 + 38182 -0+45+24 -.T + 7090 - 45771 0+45+34 + 35006 - 199168 0+45+44 -I + 1108 - 281 i. 0+80+64-.? - 15308 + 111481 m' An inspection of the preceding table, which is typical of all the trigonometric series under consideration, shows readily that any function of this type is of the form lie' sin K' + lJcsin (K</>) = 2k' sin K' + Ilcsin K cos d> +_ lie cos K sin </ or IV cos K' + Ik cos (K<{>)=21c' cos K' + Ilc cos Jf cos ^Ilc sin if sin <j> or, more briefly, a + 6 cos ^ + c sin ^ wherea, 6, care trigonometric series and can be written by inspection from the tabulated function. Hence, in v. Zeipel's notation (Z 54, eq. 96), T { = X { + Y { cos <l> + Z t sin <J> and the integral may be written W^ = x^+y^ cos ^+2< sin <[> The functions T and W are to be used in this form in solving equations (95). Considering only first order in the mass in T T 2 = X 2 + Y 2 cos ([> + Z 2 sin ^ where X 2 = Ilc' sin K'; Y 2 = Ik sin K; Z 2 = Ik cos K or, X 2 is the part of T 2 which is independent of </>, Y 2 is a trigonometric sine series having the same numerical coefficients as the part of T 2 which contains <[> in the argument, but in which <f> is omitted from the argument, and Z 2 is the corresponding cosine series. Considering the first two of the eqs. (95), the first one states that W 1 is not a function of alone, or, W FW1 = n- W=rTF1 "l L iJ ", "1 L "iJ- t2+W Making use of this fact in the second, Wj can be obtained from (95 2 ). (See Z 54.) Introducing the auxiliary functions^ and u v defined by (99) and (101), the differential equation for TFj is replaced by the equivalent differential equations, (100) and (102), for ip^ and u v . The series and can be written by inspection from T 2 , or, better, the integration itself can be performed in part at the same time. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 89 The function fa is given by Z 59, eq. (103), or, From the table of T 2 , page 82, it is not difficult to write immediately The terms of higher order must be obtained by the usual method for the mechanical multi- plication of series. A logarithmic multiplication is the most direct. In each term in the expression for fa the terms of lowest rank must be of the first rank. TfL *??? f ffL Recalling the tabulation of factors in Z 53, w, , -^> -^> etc., are all of first rank. But the coefficient for a given argument consists of three terms in ascending powers of w. Hence fa w, within the limits of the given tabulation for T 2 , is of rank 1, 2, 3 for each order in the mass. Table XVI, giving fa w, is tabulated with double headings. The three subheadings indicate the expansion of the coefficients in a Taylor's series and the main headings give the factors in the development of the radical in Z 59, eq. (103). Having found fa, its reciprocal, fa- 1 , inclusive of first order in the mass, is given by The second term is the negative of the first three columns of Table XVI multiplied by tff-*. QAL The product of 2 fa- 1 and that part of T t which contains <p gives -^, and integration with respect to 6 gives u v tabulated in XVIII. The function u t is of first and higher rank because the factor fa- 1 is of rank minus one and T 2 is of second rank. From Table XVHI y l can be read by inspection, and ijy 1 added to Table XVI gives x lr tabulated in Table XVII. The function W l is the sum of Tables XVII and XVIII. In the integration those terms whose arguments are independent of are of the nature of constants. In accordance with the condition that there may be secular terms in 0, the integral contains such terms as the following: '* _ _ 0-fcsin As the constant of integration -ifc sin - is added. Hence the integral contains terms such as w where i s the value of 6 for the time t = 0. In passing, it should be noted that, in order that the expansion of Z 59, eq. (103), shall represent the function, we must have - t 4* V? - i - . u . W> and this condition should be tested for a given planet before applying this method of determining the perturbations. To the computer the extent of auxiliary tables, the arrangement of series in logarithms or natural numbers, in seconds of arc or radians, inclusive or exclusive of numerical factors, and foresight in combining operations all these are of the greatest importance. But considerations of this kind would carry the reader into complicated details which are best left to the com- puter's own judgment. On the other hand, general considerations about the extent of the published tables are of importance in the discussion of the accuracy of the final tables. Yet, for a given limit of accuracy, it is so difficult to determine, for each table, the highest powers of m', w, TJ, T)', and j 2 that little or nothing is said about it in connection with individual tables, but the discussion is reserved until later. 90 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XVI. <t >l -w=x l -i 1 y l =[(l-e COB Unit 4th decimal of a radian. Prw 10-1 )- to-* vm w w w* w" w w' w' w V* -0. 0460 +0. 231 -0.52 ^ -0. 0060 +0. 040 -0. 127 *r 4 +0. 0331 -0. 195 +0.53 ij 25+24 + 42. 889 - 107. 72 + 106.7 ' 25+ 4 - 15. 427 + 52. 39 - 75.2 i f 45+44 - 122.10 + 484.1 - 813 -0. 0460 +0. 231 -0.52 9< 45+34 + 357. 75 - 1183.5 +1650 +0. 0331 -0. 195 +0.53 *" 45+24 - 258.93 + 687. 2 - 779 -0. 0060 +0. 040 -0. 127 ; 45+34 -.T - 14. 75 + 71.7 - 164 l 1 25+24 + 28.2 - 433 +0. 262 -1.70 +0.0003 -0. 0022 V 65+64 + 428 - 2295 +0. 262 -1.70 +0. 0001 -0.0008 5V 25+ 4 - 316.1 + 1592 -0. 767 +4.46 -0. 00021 +0. 0018 ,y 25+34 + 108.5 - 49 -0. 094 +0.69 -0. 00011 +0.0009 ,y 65+54 -1889 + 8902 1 t , -0.86 +5.2 -0. 0001 +0.001 -n" 25 + 237.6 - 1030 +0. 555 -2.87 +0. 00004 -0.0002 ,," 25+24 - 125.3 - 552 +0. 276 -1.85 +0. 00008 -0.0009 ,," 65+44 +2770 -11237 +0.83 -4.7 ," 25+ 4 - 168.7 + 867 -0.200 +1.21 ,"> 65+34 -1346 + 4581 -0.200 +1.21 ft 25+24 - 389.4 + 1846 -4498 ft 25+ 4-2 1 + 126.0 - 620 +0. 032 -0.23 ft 65+54 -J + 113 - 731 +0. 032 -0.23 ? rf 25+ 4 + 362. 4 - 1749 p if 25+24 -JT - 7.7 + 144 -0. Oil +0.09 }> (' 65+44 -.T -i 187 + 1078 -0. Oil +0.1 m' mf m" TABLE XVII. Unit-l' UJ I II}- 1 PrtO I/OS w* w UI w' w U) 1) 25+24 + 1179.6 - 2963 + 2935 V 25+ 4 - 318. 2 + 1081 - 1552 * - 0.95 + 4.8 I 3 45+44 - 3358 + 13313 - 22356 - 1.27 + 6.4 n' 4 + 0.68 - 4.0 W 45+34 + 8609 - 28481 + 39702 + 0.79 -4.7 ^ - 0.12 + 0.8 v 45+24 - 5341 + 14175 - 16063 - 0.12 + 0.8 ? 45+34 -2 - 304 + 1479 - 3383 t 25+24 + 1955 - 14861 + 7.2 - 46.6 ?' 65+64 +11758 - 63112 + 7.2 - 46.6 ,y 25+ 4 - 6732 + 33547 -15.2 + 88.0 ,y 25+34 + 3730 - 1691 -3.8 + 27.9 ,y 65+54 -47616 +224423 -21.7 +130. ,," 25 + 3267 - 14165 + 7.4 - 37.8 ,," 25+24 - 3446 - 15176 + 7.8 - 52.5 ??* 65+44 +63489 -257533 +19.0 -108. 1 ft 25+ 4-2 1 + 1733 - 8522 + 0.4 - 3.1 ft 65+5 J-2 + 2599 - 16744 + 0.7 - 5.2 ft 25+24 -10709 + 50748 -123705 ," 25+ 4 - 3479 + 17880 - 4.1 + 24.9 I? 65+34 -27772 + 94500 - 4.1 + 24.9 ? i 25+24 -JT - 159 + 2966 - 0.2 + 1.9 f ri' 65+44-2' - 3855 + 22240 - 0.2 + 1.9 ? 1 25+ J + 7475 - 36070 (0-5 )sin W' A - 570 + 2421 4950 - 0.45 + 2.7 -7.2 m' m" No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. . ..,,. TABLE XVIII. 91 j=y, coe An </> Unit-l". COB M m-> tr V ^ * " V V <J>+2d+2J + 294.89 - 839.5 + 1229.8 - 740.6 + 3328 - 4069 + 734 - 5586 + 5671 - 0. 316 + 0. 114 + L59 - 0.67 - 3.6 + L8 r -J+20+2J + 396 + 978 + 2940 + 1494 - 7431 - 15782 - 9351 + 23105 [+ 37112] - 2.62 + 4.42 + 1.80 + 16.8 - 28.4 - 1L7 li* -++29+ J V>+20+ A + 2068 + 1492 - 2280 - 8658 - 10582 - 677 + 11302 + 40793 - 39010 - 13058 - 28348 - 83730 + 6.18 - L91 - 5.57 -3.95 - 36.9 + 13.6 + 32.8 + 23.6 e <j>+26+2J +60+4.1 - 1634 - 861 + 6349 + 7081 - 3794 - 25753 - 16199 + 22127 + 45318 - 4.04 + 2.12 + L90 + 2L4 - 14.4 - 10.8 i -4+20+ J-J J+26+2J - 866 + 260 - 2677 + 4260 - 1674 + 12681 - 10988 + 5101 - 30930 - 0.22 + 0.07 + L6 - 0.5 I 0+4J+4J <p+46+4J $5+80+8.1 + 2549 - 3089 -LI 300 + 2164 + 8155 + 76250 F-1L9J 'ill 1 + 89 - 25 + 70 i rr _^-f-40-)_3J ^+80+74 -11449 - 2661 + 6865 +50005 + 42212 - 27530 - 4540 -304611 + L9 [+36.4] -20.3 [+33.8] - 23 -241] +118] -248] if ^-|-40-|-4j VH-40+2J +26091 - 1356 - 2204 -73583 - 71730 + 30293 - 20846 +400009 -10.1 f-25.51 1+28.01 1-4L9] + 83 +153 -153 +284 ^ -fjfj^ -13756 - 3317 +36006 + 22165 + 18452 -172164 +10.1 -12.4 +16.6 - 65 + 64 -104 i 111^ - 2011 + 1808 - 2381 +14204 + 14604 - 13617 + 18919 - 88026 - L9 'it! 1 + 5.7 + 14 [- 14] + 10 [-42] H -#+40+2J-J - 554 - 3545 + 3827 -17503 + 140 + 22886 - 27870 + 99584 + 0.5 - L8 + L3 [- 3.7] - 4 + 14 - 11 [+28] , ,5 08U1 + 767. 72 - 2820.9 + 5210 + L265 - 6.35 +14.3 V v> + J - 569.95 + 2421.1 - 4950 - 0.455 + 2.69 -7.2 t + 6624 - 47448 +23.8 [-22L 9] ?Y t + J [-18540] + 8414 [+123024] - 57880 -73.4 +36.0 +572.4 -282.2 ' J +2J +10478 +25564 - 70250 -157424 +55.2 +87.3 -374.8 -652.8 ** !> + J -15678 + 94846 -69.9 +438.6 /*! t +22012 -25564 -121258 +157424 +359162 [-511232] + 9.9 -23.1 - 77.0 +165.0 ? v +2 -12048 +23524 + 76364 -150306 -251640 +498328 - 5.2 +14.8 + 45.8 -112.0 m' m' 2 92 MEMOIRS NATIONAL ACADEMY OF SCIENCES. After the determination of W,, the function F 2 [FJ is obtained from the solution of Z 53, eq. (95 2 ). The integral may be written as in Z 63, eqs. (105), (106), or, quite as simply,, as follows: F 2 ' = - a- cos e )(w+ F t ) -[(l -e cos The function F 2 ' is given in Table XIX. Anticipating some later developments, for which we shall need [(l-e cos c)F] the function [(l-ecosOF,'] is tabulated in Table XX. The determination of [ F 2 ] may be accomplished according to Z 65, eq. (108) Z 67, eq. (116), or in the manner outlined below, which we regard as preferable. Repeating Z 65, eq. (107), in which all the known parts are contained on the right-hand side, the development of equivalent equations proceeds in a manner analogous to that for TT,. Writing T 3 = X 3 + Y 3 cos <J> + Z 3 sin t}> and introducing and equating parts independent of 0, coefficients cf cos <j> and coefficients of sin </>, the three equivalent equations are: [(1 - J cos )(;+ FO^J^-t^J)^]- [(1 - e cos ~ e cos 1 Vir- 1 - M^i i ~3 - A ] 1+ 9 fll )Jw [(1 -e cos e ) (w+ F^^J^-tZJ)^]- [(1 -e cos ) J ^[2 Multiplying the second of these by ij and subtracting from the first: e cos [(l- [(1-6 cos )J(T 2 -[T 2 ])deJj+2[X 3 -r 1 Y 3 \- MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 93 Multiplying the second by cos $, the third by sin tf> and adding: A( tt _ WU)= _+(l-e C03 s)F l -r i F 1 + l + 2([yj cos ^ + [ZJ sin f) F,)^ f { F, cos ^ + Z, sin v'--[F, cos (1 -e cos )(+ ,) , cos ^ + , sn v'--, cos +, sn in which = [yj cos Hz sn and [.XVI, [FJ, [Z 3 ] are read by inspection from T 3 , which is to be determined as follows: If Z 50, eqs. (89), (90), are written in the form _t i -= [1 cos(/ w)] = 4U 2r cos e cos (s <!>)+.i) cos (2s ^)-f-ij cos t& + cos 1 9> I 9/v*_ 1 1 n* 8 n cos s + 2 7/ 1 cos 2 2 cos ( A) -8 if cos (e-^)+2ij cos (2- then Tw and T' r , given by Z 49, eqs. (84), (85), in connection with Z 50, eq. (87), are given by 2V=-r,-4{l-2jj cose-cos (s-^)+ij cos (2e-v'')+7 cos <f>+ ____ } IS P . ,(n + r.-n+s)iji^'/ 2 ' sin A r = {3 + 14^-8^ cos s + 2jj cos 2s-? cos (j-^-Sij 1 cos (s-^)+2i9 cos (2s-^)+2ij cos ^ o and r, (Table X\Tna) is computed by Z 53, eq. (94), in which S The function is tabulated in Table XXI; the function u = [/] cos is tabulated in Table XXII. From the latter [?/,] can be read by inspection, and ijfyj added to the former gives [xj. Finally, (Table XXIIa), F W t ] = [rj + [y J cos ^ + [zj shi ^ > * . : M M ^ L;. 94 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XVIIIa. [Vol. XIV. Unit=l" Qin ur* r-> oin w* w w' to w Vfl -+# +0. 339 - 2.01 < +20+24 2t-v&+20+24 j+26+24 -0. 375 -0. 137 +0. 498 + 2.403 + 0. 847 - 3.223 + 7.72 2i +40+44 t+^+40+44 -0. 438 +0. 429 + 2. 234 - 2.338 2t+4>+60+64 +0. 361 - 2.372 20+24 f-H-20+24 - r+^+20+24 -0. 00047 +0. 0036 -0. 0123 +2. 199 +0. 286 -3. 294 -14.58 - 3.85 +23.82 + 33. 34 t # -0. 00038 +0. 0035 -0. 0136 -2. 811 -0. 688 +12. 20 + 1.67 - 16.51 ! e +40+44 0+40+44 -0. 00015 +0. 0013 -0.0048 +0. 432 -4. 536 - 2.58 +35. 80 - 95.79 3 e+0+20+24 +1.017 - 6. 333 9 t+^+60+64 -3. 219 +22. 43 \ 25+ 4 I-0+20+ 4 - +0+20+ 4 +0. 00017 -0. 0014 +0. 0055 -2.520 -1. 253 +4. 372 +14. 78 +10. 20 -28. 56 - 31.95 * t + 4 +4 +0. 00014 -0. 0014 +0.0060 -0. 404 +1. 188 + 4.06 -11. 30 + 34.07 << ( +40+34 0+40+34 +0.00005 -0.0005 +0. 0021 -0. 224 +6. 480 + 1.53 -47. 37 +120. 37 * t+0+20+34 +0. 214 - 1.66 1 f+0+60+54 +5. 977 -36. 82 (0-0 ) cos n v v 20+24 t-^+20+2J - t+^+20+24 -0. 00188 +0. 0143 -0. 0489 -1. 141 +0. 235 +1.12 + 7.14 - 1.12 - 7.39 - 20.54 v <!> -0. 00059 +0. 0051 -0. 0189 -0. 357 + 2.62 -8.20 i * i +40+44 V&+40+44 +0. 00155 -0. 0141 +0. 0540 -0. 975 +0. 939 + 7.39 - 7.27 + 23. 43 > *+^+20+24 -1.12 + 7.39 I. 20+ 4 e-^+20+ 4 - +^+20+ 4 +0. 00068 -0. 0058 +0. 0222 +0. 847 -0.17 -0. 828 - 5.79 + 0.93 + 5.96 + 18. 12 1 <l> +4 +0. 00021 -0. 0020 +0. 0085 +0. 265 - 2.10 + 7.15 t +40+34 ^+40+34 -0. 00056 +0. 0056 -0. 0239 +0. 724 -0. 697 -5.90 + 5.80 - 20.35 1 *+0+20+34 +0. 828 - 5.90 m' 3 m' 3 No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 95 TAM.B XIX. W.' Unit-l". e* ^ r IP* w * K* * " -#+ +0. 2108 - 1.059 +2.379 ^++40+44 -0. 2108 + 1.059 -2. 379 y l +0.843 - 4.236 V +40+44 -0.843 + 4.236 iJ+ 20 24 - 294.9 + 740.6 -733.9 -1.200 + 7. 772 _^_j_ t -j- 20+24 -0. 875 + 5.583 <^++ 20+24 + 294.9 - 740.6 +733.9 +0.274 - L697 ^++60+64 +1.800 -1L658 ^+2* -0.105 + 0.529 +2+40+44 +0.105 - 0.529 Jjf * + ^ -0.227 + L344 if e -j-40-f-3J +0.227 - L344 if ^+ e 20 4 +1.758 -10.233 if t!i+ +20+ 4 +1.083 -6.493 tf ^+ t+20+34 -0.204 + 1. 377 rf ^+ +60+54 -2.637 +15.350 ,2 -#+ + 384 -1410 s _^+ t 4^44 +1679 -6656 +20+24 +1180 -2963 if +20+24 -1180 +2963 if y''+ - 384 +1410 f ^+ +40+44 -1679 +6656 J -#+ t - 4 - 285 +1210 -^+ -40-34 -2460 +8138 B jn' +20+ 4 - 318 +1081 If* -20- 4 + 318 -1081 #+ + A + 285 -1210 *>!' (f>+ +40+34 +2460 -8138 (0 ) sin 1 -tf+ -20-2J +0.549 - 3.40 +0.00090 -0.0068 5 J+ +20+24 -0.549 + i40 -0.00090 +0.0068 Tf _^+ t_20- 4 -0.407 + 2.75 -0.00032 +0.0027 Jf #+ +20+34 +0.407 - 2.75 +0.00032 -0.0027 m' m" m /j 96 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XX. [Voi.xiv. [(1-ecose) W 2 ] Unit- 4th decimal of a radian. 0. *. - - - w w wo w w' , w +0. 01022 -0. 0513 +0. 115 9* + 18.6 - 68 +0. 187 -1.76 +0. 00043 -0. 0039 9 " +0. 296 -2.46 +0. 00020 -0. 0020 -0. 186 + 1.34 -4.8 ^ Tj' j - 13.8 + 59 -0. 529 +4.34 -0. 00075 +0. 0065 '20+24 - 14. 29 + 35.9 - 36 -0. 1006 +0. 647 -1.91 -0. 000055 +0. 00041 ^' 20+ 4 +0. 1377 -0. 811 +2.19 +0. 000020 -0. 00017 ]j2 40+44 + 81.4 - 323 +0. 477 -3.64 7 l' 40+34 - 119.2 + 395 -1.295 +9.36 5 /J 40+24 +0. 921 -6.09 ; 2 40+34 -I +0. 036 -0.32 (0-0 )sin , 20+24 -0. 0266 +0. 165 -0.49 -0. 000044 +0. 00033 n' 20+ 4 M.' 1 .il ! +0.0198 -0. 134 +0.43 +0. 000016 -0. 00013 ) ) 5 40+44 ,..!, +0. 151 -1.16 +0. 00031 -0. 0027 i) r;' 40+34 -0. 334 +2.47 -0. 00052 +0. 0045 9" 40+24 +0. 165 -1.24 +0. 00015 -0. 0014 m' m' 2 m' 3 + (V'.XW 'I i of ;. Ho.*.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 97 * 2 I 8 o kO i < OO d MOO 7? X \ S sr <M r-i w . >. 0i5 8 S OT + i + E -1 9 1 i C4 O o o I-H CO IO lOO CH SO rl l-l + 1 - 1 9 i-H r*- i-H <N 09 O 00 *O CO CO C*J O ^ C^ <N N *& M 4 CO I s - Ol *T5 OS OO< i O^^t-CCGO*O -^(NOC^C5O Ol^-t* ? ; [ s OOOCOCOOOiOCio i-i-<o6t^OCi rH*-iO + 1+ ++ < 7++ i ++7 i + +1 + g c^ o "oi ifl r^ co^'i N re o ^r -^ i ^* N o co Swc^ic-f^rcseow csoo^C'^'-o OO^H-^* O O r-l O N 00 d ">" ^< S 1O CO 00 COC0O4 t 1 o o" o 1-1 i -<r * d o o N o o IN o o o J^+ 1 + 1 +.1^ 1 +11 + 1 1 + 1 I <MO"'m O -J-'a'co'T So"lM 00 "O V- C - lOr^co^^rt^r- lOsco csoiodoo Nt^oo OQt^O30-^r~i-H t^in^lOOt^ Ot^C< O O -N id O> TT O OOMt^OCC OOO ' * - ^ "Sog O O O O O O i-l i-i<D O O O O O O OOO + i + ++ i ++ 1++.L -^ + i + 1 N 00 -^ O Mlfl O C*5 ^ S o c . 5 5 OO OO + 1 + 35s 1 3 WOOC: ^"t^CJCO CSOOt^ CC O5t^QO 2;oco o^*r~c<i <35 '^'^~'55^ "^* t ^2* t ? o'oo o' o o' o o o o' o' o o o' o o' 1 1 + 1 + + + + 1 1 +J_ 1 1 + 1 S oo * N oo'ir'n^' t^ o a> ~O ^-'oc'o' t^OO or^ccc^ COT^SSQ?'? . r^oo-^ III o'o'o o' o o' o' o" o o o o o o o o' ++ ' . + -'.-l-l ' ++ ' + + 1 + ? * s c ^^^^^,^4 i ^^^ i N TCOC^CO CT? N 1M <I? ++++++ 1 ++++ + 1 ^> ^ <d OS ^ ^ ^ ^> ^ ^ ^> ^ ^ ciCM^rr-^ 1 ^- c^iC^^^ -^r -^ a r^fr x ^ v M C4 C *=" B* *=* =- V S> V (B w V C>%> V f> V B- V B- B* R B C- p- p. ^ fy. ff. ^ p. '<^N N u 110379 22 7 MEMOIRS, NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. s ! && ?? /- CO -, 1 ~ CD ' ^-* " ' S S g 3 CD rH ^ ; 8 . :v'S ivi? c," x r-t -! *v C f-* C* C 1 "' ' ""*" ^ dr 1 1 + W 1 " u ^' '-*, O '" "^ X -i- ( -J..4- i *. f , -f r 3 O COCO ^ CO CO CO CO W CO CM O M 1 OS rH t>- CO i i ooirio^ NN ? i7-,'T' j,ij;- >_ X r- 'v tc v i, .T; (-' -^t ;c i"* !'* r.i - c- o o +. 1 .+. + 1 1+ + I I -r. r i COO Ci rH CQ 1O COITUS IO rH C35 O ^ *O rH OO TT CO U5 CO O t^lN IO CON S -J C* ' *5f*' c^ >-- .- 1 T^t - } ta .- , <jf '\~, C C .^ <** . ru I Bill V ^^ ^i.- V '' + J- rH O> CO O' O' O +++ 1 1 + tr ^ " *H- ^ C C 1 C 1 ': - 14 9 1 S IO CO CM O * CO OOO CO +4- 1 O CD O CO O CD <f "5<M <N T)< (N CNO NO oo o' o o o o' o I++ 1 1 -f S S SSS o'o'o' 1 1 + O rH t^ CD N rH o' o o' o o o' + 1 1+ + 1 1 c ~. 11 II1I C- 0- C C t. 4- -i ; l|i SS8 J < i 5ff s CM N CM CN COCO t-H OO 00 CO OO ** !> ift CO CO rH CO ^^ 1||1 J'j i? fj r 5 if o' o o' OOOO OO v w O O H h 1 1 -f-f 1 1 + ~ z> o o C 1 o =-oc i i ! f- f 4~r 1 s 7 o ^,^^, rj o E H '"I* T" ^V *^ CO U !c' | <BcTci J a ""a 5 r" r' f ^t- < ^PC^' tit - + + 4, -f- - 4-+ ! -f4--t"H S.-S.-3.-S- ^ -S.-S- V XV V ff p* w "' ~* -a^-iT R- f=* P* K- , * f iS ~ s -SS No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. TABLE XXIIa. 99 P ^ > . - #+20+24 - 0. 614 + 4.059 -10.3 ! 20+24 - 4.255 + 2. 791 +27.89 -23.39 - 271.5 + 167.4 + 636.6 - 637.4 $ 20+ 4 #+40+34 + 5.444 -4.558 -31. 91 +33.80 'V i K ' -3d) doiriw n 1 40+44 #+20+24 #+60+64 -#+20+24 + 0. 11 +14.90 n bn <fvil> L>a$i sv/ IF/ +1514 +1360 -1227 - 273 -5780 -3387 +6415 + 179 'J irf 4 40+34 #+20+ 4 #+20+34 #+60+54 -#+20+ 4 + 0.13 -44.62 F fj |, ^00 .,_ fl I ni( l,; 291 +1974 - 222 +7160 +2452 + 536 -9002 +1012 ^* 7" nr/7.x >I<JBT 40+24 - 0.06 +30.53 ro 4 I)j )> ,!* n.d. * '( 40+34-2" (0-0 ) sin + 0.34 ^i^I + <lf)< S 60') t- 1) ([ rj-W-w . 6 | 20+24 #+40+44 - 1.64 + L014 + 0. 782 +10. 18 + 8.43 -5.96 c.Ej-.irx fiO^ J)T < ^ 20+ 4 # +4 #+40+34 40+44 + L22 + 3.249 - 0.579 ' + 7.81 - 8.26 -30.12 + 4.74 [(.'Wnr-.'WX MO *-!)]- [ !In dtldfi n ' L'W ] ,[,TT ) r V l.^ui/t !$ 4 40+34 + 3.25 -16. 10 ]-'^-V*i: <*n*-nj-i f,^ ^6 , - )fiw-H * 40+24 (0-0 )' cos + 7.64 if , 6 rs i\t\ i "^^ ,(,.- 1 , ;*lf 'Ms eoo >- 1)4- *{.>. lllftli- # d$n - 0.356 + 0. 266 + 2. 62 -2.10 ^ moil li^loq qolavsb orfi >J ijaliniifc nfi: *nul firfT niii n nl Jaup') r.irfj 1< m" .1 i tuS m' In the construction of Tables XXI and XXII it is necessary to compute :io1- L] uvti' --tj ."(.ijfttu'}/!l(.-> nf) T>J] . f n-> noiJaup" '.JT f(r 2 - as one factor of a product, but the more complete tabulation is best arranged as follows. This function gives all of the terms of the first order in the mass in W t -[ FJ. Let 100 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [voi.xiv. and denote first order terms in F 3 -[F 3 ] and TP 4 -[FJ by W 3 " and W 4 ", respectively. Then because of the similarity in the equations for these functions of successive ranks, the sum W,"+ W S "+W 4 " can be computed by Z 70, eqs. (117), (118), (119). The coefficients F, G, B are tabulated in Tables XXIII, XXIV, XXV. The mass factor ra' is, of course, implicitly contained in the tables. it Eliminating the distinction between </> and , the function is W t "+W 3 "+W<" in which the coefficients A p _ g , determined by Z 71, eq. (121), are tabulated in Table XXVI. The coefficients A M in the function (l-cos) (F 2 " + W 3 " + W 4 ") are computed by Z 71, eq. (123) and are tabulated in Table XXVII By means of Table XXVII we readily compute [(1-ecosO (F/'+F s "+W 4 ")] tabulated in Table XXVIII. Proceeding now to the determination of [(1 - e cos e) W3 (from which we shall subtract [(1 e cos) W 3 "], already included in Table XXVIll), we have by Z 53, eq. (95) in which all quantities are known. The integration gives W 3 [ TFJ. Having computed W 3 [ W 3 ], [ W 3 ] can be obtained from Z 53, eq. (95). The function [T t ], computed from Z 53, eq. (94), is tabulated in Table XXVUIa. In a manner similar to the development of equations for W, and f W t ], the right-hand side of this equation, when computed, can be segregated into portions independent of tf>, terms multiplied by cos </>, and terms multiplied by sin 0. It is of the form A + B cos ^ + C sin ^ where A, B, C are too complicated to be written analytically, but can be written by inspection after the computation has been performed. The equation can then be written in the three following equivalent equations: - _ W ,A. in which we define NO. s.i MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 101 From the first two equations we compute *i- *-*,-,(" (A-r)B)d0 Let J 3 = fc/J COS 4> + fcJ 8m #' * cr T- Qt ' a Then from the second and the third equations cos $ + (7 sin - (^, - -si" !' By inspection of , the function [yj can be written, and itfj/J added to [zj-ij[yj gives [zj. Finally, [W*] = [zJ + [yJ cos + [sJ sin ^ and [(l-ecos)FJ is readily computed from IT,, which is tabulated in Table XXVTII&. But this function contains [(1 - e cos e) W 3 "], abeady included in Table XXVHI. By Z 69 Subtracting Table XXVUIc from [(l-ecos e) Wj we have [(1-COS) (W.-W,")] which is tabulated in Table 102 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. S B o CM OS CO OS rH 1 1 + + CO ^rl* O t US OS US t- 73* CO t CO CM OS CO 00 rH 33 !" O t-CMrHO t-OSrH CO ^ CO CO rH CO US t-T|<t- COCM rH CO CM 1 + 1 + 1 1 + + 1 ++ ia CO b- rH OSCM CM 00 rH O CO OS CM O rH + + 1 + o> TJ< t^CO CM *d d H< CD rH 1C CO rH 1 1+ + 1* t CM *O rH O CO *C Cn OS OS T}* -^ t~- 10 iO rH ^ CO rH OS US CM rHrH CM US rHCO 1 + 1 + 1 1 + + 1 ++ ^ CO b* OS b CM CO CO ^ O CM CO OS ^* ^] ^ rHO b-CO COcOb- rHOOOSOS rHOCC rHCO CM 1 ^ rHCOO b* CO O O b-lO 1 ^ + + 1 + + 1 + 1 ++1 + \ 4 00 S OS CMOO CM CM CO US 1 1+ + CO t- CMOUS rH US fj< OS CD CO 00 rH CM t- t- CO COOSt- CM 1C rH CO rHCDCM t- CM OO CO CM USCO rHCMt-US rH 1C * i-l CO rH t rH ^ 1 + 1 + 1 1 + +1 1 ++ t- t^ rH rH COrH rHOSO 00 00 r-1 CO CO CO ^ CO -^t- COt- OCOOS t^OrHCM OOCOO rHOO COO CMCCCM t- rH f- (M t- CO r- rH CM COOS OS <? CO rH CC CM CO rH & ++I ++I+ I++I +14 r* CO >d o co co rH CO CO t - 1 1 + + CO fC COCOCO OrHCOCM CMrHCO lO CO rH rH O COCOCO -^COOSt- COOSO OOSCOCO ^ t* O rH U5 00 b- rH OS N rH rH rH rH iO rH O rH CO 1 + 1 +11+ +1 1 ++ ^tf OO b CO CO ^ O CM CO C5 OS C5 C*-^ CM 01 rH rHCO -^OS CMCCCM OOCOtliO OOOST + +i + +1+ \++\ +7n to CO O> Tfi OS CM COt- OS co OS COkOOS T^^*^OS OOOO CMlClClC rH -<^ CO CO tCOCOO ^t" CM t-^ 1C CM OS OS CO OOOS rHOSOCO rH-^CO rHCOrHrH t- rH rH 10 (MOD 1 + 1 + 1 1 + + 1 ++ CO US OOUS ^*^ rHrHCO t^"t COt^- USOSt' rH rHOO US O CM rH CO l^ O rH CM t^ O C* CO rH rHC + + 1 + + 1 + 1 ++7 + 1 4 8 rHCO , >o os O OS ^ -^ rH CM >< CO t--^"? OOl-^CM lOCDiO t-OOOSOS JM ^ T CO iS -*f 00 t CO OS OS iH t- OO OO CXI US CMOS CS-*}< COUSO CMCOrHQ rHCOT * t-CO O CM rHCMrH rH CM rH US CO CM If M 1 1+ + US CM rHCO CM CM rH O rH 1 + 1 + 1 1 + + 1 ++ N US US COCO O^<CM 5< & US rH 00 rH + + 1 + + 1 + 1 ++7 + 1 4 - OS CO CO CO OS CO "^ *O b* lO rH tO rH 1 1 + + OS IO 5 rH CMt-rHOS OOOO CM 00 CO CO ^ US OS 1C CO t- CO rH ^t* OS O CD CM CN ^ 00 rHrHrHt- rHOSt- COCM^t*Tt* rH CM rH CO CM 1- rH T< rH 1 + +11+ + 1 ++ CO CO COOS ^ ** rHCO COO^Q COOSC b- OCO O5C5 COO COOb->O iO^t*C^ CO rHCJS ITJOS CMTt< COQiftCO kO^*b CO b* rH OS CM b- CM C^ OS rH O ++I + +1 1 ++ 1 + 1 H CO O O * O ^* CO CO b* rH OS rH 1 1+ + * ^) OS rH C"-l CO 1 ++ + 1 1 + 1 ++ CO O COb OSOS COOSO OSCOb- fHCMC CO lOb- CMrH OS^IM UDCOb- b-OT lO OO ^ b- CM iO CO b OS b *O ^* C CO rH CM CM ^ CO CN rH rH rH + 11 + ++j - 1 + 1 +14 04 OS * rH ^ r-J CO t^ t- OO CM 1 + + k* rH fM OO O CD CO CO vO ^t*CO COiOiO^S C^ C*4 ^ C3 rH lO CO CO OS rH lO iO i& rH CM <N ^ W CO iH ^ iO OO OO OO 1 1 + + 1 1 1 + 1 +++ rH CO rH b- CO lO CO O CO CO CO OO ^ b- O ^ COO lO^PCO COO^CM ift *& CM rH ^t* rH CM CO CO rH + 1 + ++^ 111+ +1 - rM OS 00 t> ^ OO t* OS OS COCM CM rH CM rH 1 +1 OCOCM O OSlO rHrHIC CO CM COfHCM H CMCO OCMCO t^ iC rH US TJ< -*F OS CO US rH US rH rH rH rH CO rH 1 1 1 + + 1 1 + 1 + a> -^^^ CM oo t- co t~ oTco oo os co o oo cc 0> OSCO 00 TfCOrH OS %"X COCOC' CO USCO HH t,OSCM 00 =MOO rH rH C + 1 + + + + + 1 J^+ + + o COCO coco coco CO CO COOOOOCO CO 00 lO lO rH rH CMb-b-(M tHrHT^-rrt 1 1 ++++ l ++ c^ic^ ^ *^ 00*0*000 CO CO II + + 1 1 1 1 rHrHrHrH rHiHrHrH ^ ^ , ++ II ^ + 1 + rH rH rH rH + + 1 1 S 8 r< ,-.11 + f rn'rH- '. + I" . -S-S- -S- o o o - rH g g gggg CM CM gggg 1 ^. 1 1 1 1 1 +^ 1 1 1 g -g- .... ggg .... CMVCM rHr-<rHrH rHrHrHrH . + '. 1 + 1 + 1 .'.. + +! -H OOO <N M OJ OOOO gg rHrH g g gggg CM Cv ^11+ 1^1 1 1 1 1 + , g gg 'g' .... ggC 7 rHrH *"*^ CM, CM rHrHrHrH ' +1 . . + '. 1 +1+1 . '. O OO OOO ^1^1^ N < .&?&- *? O WNC* _-.^ OOO OOOO < *JftT *& .rV^rC IW-*: 'Wfe KnVHi I)1IJ4 V itdnft -,'ni'ft No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 103 us 1 rH OS O O iCO CD CD 8 OS CO CO l-H 8 10 ++ 1 1 i 14 + 1 CM O OS C5 CO CM t*- t S coo CO CO CO CMQ rH IQ rH CO rH t* ++ 1 1 i 14 + 1 O OS CM CM coco 22 8 CO OrH CO (M 0000 T)< CN CN t rH rH rH a* rH O> ++ 1 1 1 14 + 1 CO fCOCO rH CO rH l-H CN * SS rH CO rH CN i 1 rH -<r w s rH CM iO i-H CM rH + + 1 1 1 1 + + 1 CN $8 rHO fC^JOO rHlOCN CN CO rH I-HCN l-H CO 1 1 + + 1 1 1 1 + + CO'* * * rHCOCNCM rH I 1 l-H 00 O5O CO CO CNCO S rH CO CO CO CM + +I 1 1 ++ + SCO CO CO CO 8 S> ss CM CO CO rH >CN CM CO CN t* CO + 1 1 1 + + + 00 CO 00 00 CO rH CO g J2 5 5 f rH CM rH TJO + 1 1 1 + CO CO 00 rH CO CO O *O CM S *~ CM CO + 1 1 + 1 CM CM O O gSS3 CNCN CN CN + + 1 1 + + 4 "+7 rH rH rH rH 4 1 4 s s s s S S rH i-H 1 1 1 ^^ 1 1 + e S S 4 4 1 1 + 1 s s s s s s s s s o o o o o s -^ v "^ e ci o o < >&K -4-C <*xv*a . 8 COO. 00 CM 1 o' + + 1 1 + +7+ CM OS CM O) i ++T s is + 1 + t-t-cnco 441 1 CO COCO t-CN I ~ l "*eo a> co l-H U3 rH CO CO rH CO iC CO CO rH CD CO t~- rHCJSCOb- ^ r* ~-\ o ct " K + + 1 1 + + 1 + 1 4-+ 1 + 1 + ++I 1 CM 1-rH t.us a CN <g ScO CNCOO9 CO CM rH OS fg US CM 00 OJ rH i 1 rH i-H t~ CO CM CO rH f >* ~~ + + 1 1 + + 1 + 1 ++I + 1 + + +I I E CO US OOO ~~-^- - - - . _r . - CO ci co CO CM CO OS CM COTtCO CO ^ iC ^* rH COlOO rH rH O Hf CO CO CMrHCN rH CMO *< CN CM ^ CO rH 01 rH w "~* -* + + 1 1 + + 1 + 1 ++ 1 + 1 + ++I 1 oS s CO Oi CM t~ H US -1 - l-H I-H go US rH CM rHCO rH t^- ^J* !* OO ^T t- rH lO lOCO CO CO CO t- OI-H us oo S CM rH CO CQ rH rH CN CO ^ coco CM rH .' + + 1 1 + + 1 + I++I + 1 + + + 1 1 ^ s? USrH CO 00 I-H CO CM CO CN'Q CO* COTCN rH C: OO ^^ CM CO rH O USCN co 10 ? n S l-H rH CN CO rH IO CO lO CO ^S + + 1 1 + + 1 + I++ 1 + 1 + + 1 l + l CN use* t-CO I X us rH gl.~ CN 00 00 rH O rH t* CO CO O coco a co io co o OOt- t~ I-H t- CO CO CO COCO CO -O "o ^r io i co 2 U^ M CN V CM p 8 + + 1 1 + + 1 + 1 ++ 1 + 1 + + 1 i + | 8 < CNHJ" ^t~ o 1 eo CM TT05 CN I- CN CMC 2S2IS CN t~ r^SSS S CO CN CO CO CO CO COMCOCO q CM rH 3 M CM + + 1 1 + + 1 + 1 ++ 1 1 1 + + 1 I + I eo eo COO t^ CO USrH CM t-i rH I~" CO TfCOcN CO I-H t^ US rH CO US US CO rH CO rH CO O fi CMCOCO W | CM CM CM US CO i-H CO usoo + + 1 1 + +++ i 1 1 + + 1 1 + \ co CO rH O M CM CO OrH ' CN CN CM COt~ n -v co *OQ CD ?S8 ?? ? ? ^ CO US rH O C 1 ! r-i CD ^ 00 I-H rH CM * *? ts: 1 ++ 1 1 1 1 + +++ 1 1 ! 1 ++ 1 1 rH CO O o: CO CM US l-H CO Sooo co a-. * U5 00 CM CO O COOS CO CO coco O CO 00 CM rH O> i-l O TT CO TP rH CN ""* i-l "^ rH. r 4 1 1 \ 1 + +++ 1 i"iVF 1 + + + +JHH. rH rH i-H rH ++ 1 1 rH rH. rH rH 411 + s* s rH rH c s e e s s CN" CM" S 8 S S r ^ 1 1 + 1 1 x *. 1 1 1 1 1 +^^ 1 1 1 1 1 e rH rH S S CM ?CM' rH rH i 1 l-H S S S i + 1 1 1 + '. i 41 + 1 1 1 1 4777 _s^ S-vS- -S.S C si S -E-5-E o o o i- OOO ,- _, ri r. ri O O O O tS C^C5 Gfo *&&r .QfcfcfcT Kfcfe **** 104 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV 1 a 5 s o - o 1 CN <N CN 1 + m m CM + 1 4- i' H- + O s CO O COCO i-l C5O COO 05 O in 00 1C rHCO rH CO Ci CM O5 <M CO rH rH O i i ^ i t CN CD TP CM CO CM C5 OO rH CO rH CO rH rH rH COCN ss rH 1 1 + + 1 l + l + 11 + 1 + 1 i l++ + + 1 1 + 00 00 in rH '3 ?s 00 t~CS co co in rH t- rHlO CNCN COCO CNrHCN O C5 (N c>i t^* m CN t- rH rHCO CO rH rH S rH in CN t^ rHCO cNin rH 1 1 + + 1 l + l + 1 1 + 1 + 1 1 I++ + + 1 1 + ^ rH *s rH O rH CD r~ c? co se r- 1 CO CO 05 CM rHU? "coco rH CO CS CD m oo oo m s rHCO rH <N rH rH 1 l + + 1 1 + 1 4-11 + 1 + 1 1 1 ++ + + 1 l + rH 3g 1C CM CO CO rH t" OS CO t- CO ^ rH 00 CM Tf TM CM CO CO 03 * O5O5 rH CN R 00 l~ rH 05 rH 1 1 + + 1 1 + 1 rH + 11 + rH l + l 1 I+ + + + 1 1 + CN CO 1 O CN 1 + C35 rH + 1 *o o o CO 00 l + l t~ 00 CN CD rn in co r^ CN rH OS rH S0? 53SS2 S 0000 rH CN rH OS rH + 1 CO t* CM O 1 + COrH 1 1 l + l i ++i ^ CO* COOS 83 -s coco co rH r- 1 rH rH f~!-< t~35 co in co " O ^b CN rH rH COCN CO s? rH * rH CM CO CO CO CM CO rH 1 1 + + l l + l + 11 + 1 + 1 I++I + + 1 1 + w T 03 t- J?S rHO5 rH CO 1C 00 05 1C CO'** CO CM rH CO -^ O C5 t~ OrH^CO CN 00 2 rH rH rH com CN CN rH 1 1 + + 1 ++I IM + + +I I++I + + 1 1 + 05 10 e m in 0000 rHCO S I O rH CO 1C SrH CO CO O CD COCN t- O C5CO I-- s rHCO 1 S i 1 + + 1 ++ 1 JJ + ++ 1 ++ 1 1 + + + 1 J^ *4 i oo co CO ^ CO CO rH gll CNrHOO CO t- CO O ^rH m co CD o ^ ^ rH WO O '"'S CO rH 11 CD rH O5 CO + 1 1 ++ ++I 1 1 1 + + + + 1 1 1 ++ 1 1 * o rH CN 1 3g S S CO U3 CN CO r)< rHCO S rH t- CNOO 111 + CDrH CO CO in CN i i -^ SCO O5 CO O5CN O5 m coo co +777 rH rH I i CO 35 CN 35 1 7 + r+? 8 1 1 1 rH rH + 1 5-5 O +7 S K 1 1 1? "? 1 1 |n O O O + + 1 1 S S S S 1 1 1 1 rH rH i-i r-i + 1 + 1 s1?s 1 1 1 rH rH rH rH + M + s s s s 1 1 1 1 rH rH rH rH + 1 + 1 o o o o F o "S"? i i rH* rH + 1 -5S o o rH rH + 1 s s 1 1 -5-5 &S ^ ItNrjyr^ K-wwr tfrftf Qfc&fo tf &S S*S 01 JOJOBA t ai jop^j CN CNOO 00 if CN CO rH CO + 1 I + CN U3 t~ O5 t~ i> t^ in in O5 rHCN ^ CO CN CN + I 1 + (M Tt< m rH CN t- CO CO + 1 I + O t- coco ^* OS CO rH + I 1 + + 1 I + CO CO OS *- ">% CN (CO ii + i i + ^ OS CO S CO CO irio lO C5 1 + tO CO I -- CO OO CO 00 rH 1C rH C Ci -* 1 S N I coco coo coco 1 + 8 I 1 + i-l 00 ^ ... rH CN COCO CO CO rH + I I -s ' ' tc I i-i II K S S S S No. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 105 8: + i + i ++ i + i + ++ i i - .- + 1 1C CS CC OS t- rH OS O * csioo o cs ^r cs esc 1C rH rH CC CO CS rH I + I + I ++ I + I + ++ I I 10 r- * co co r- o < -H t-co cs cc oo t CS OC CO tO tO t < f-rH COCS CO CM 'J" COrH t- r-i O CO rH rH CM CM i + + i i +7 +7 1 4 i+7 i i ++ ' rH CM CM 5 r- oo 00 rH 00 + 1 I + -Ht-CM CMlOOlO t- rH CO *" CC rH CO CCCMlO COi^CM TCMtC CST)>CM-9< t CM r I OO CC CM r-l rH OO CM " I rH t- rH CO CM CO + I + I ++ I + I + ++ M r- ccio oc co CS 1OCM CCO rH CM -^ CM CO CO SCOCM tor-cccs ow r-r-ocs COCO to CO to CM CM r- * -VCClCO (i-io oo cs 10 i o e CM cc t- -H ir ^ CO CO iO CO -HCOCM CMrHrH t rH CM -H CO I I++I 1 + 1 +11+ 1 + + + CO -H CM rH rH + I I + CO CC CO ^CMt-00 CM CC CM CM lOlOCCCO t- CS TT rH -^ O OO rH CO CM r^CM rH CM S8 + I + I ++ I + I + ++ I I CO OC OC I I + + I CO O IO CS CO rH CS CMrH 00 OOCC CM I + I Ci o> c; Ci o> r- CO CO C rH IO rH I + I I I + + CS t- CS ^N CO CO CC 5O CC C + 1 esco coco -f 1 CS O ^* H O^CS *Oh-rHCO CC GC Cl CS CS CC O rH-^O-H rHCS <N CS rHCO-H CS CS CC ^ CC rH O CC OO rH kO rH I ++ I + I + ++ I I o" cc t- ti 00-H CM rHg CM CO I + + I 1+ _ cc iotoco it- riCOOO rHt-CMCC CM CM CO rH + i+7 M ++ o -^ 10 o rH 00 O CC 1C CM rH + 1 I + CM CMO COHT t TT CC -^ t-rHl CM CO rH -^ OOlOrH C: cc r~ CO O C C c + 11 I ++ + I + + + 1 -H CM I ++ +11 1C CC O V !-H CM S5S S 88 ^ CO C5 C^ CC CO CM-W i +7 i ++ t- <-H( 10 eo< < col _ i i CM CM CM r- t- O O CO o ' i CM-HO CS rH t- 00 1 CM CM O O _._- rH O -V -H CM OC rH t- CO r-lO O ss cs rH +11 I +++ + I CD 1C O i CC CC ^ OO CO 4 II 1 g + OO-H ^r t^ S tC OC O rH rH O CO t- CCrH 01 ^Sir 1 c cc I I +4- + I + Swcoco CC CC lO -H CC O IO CC 1CCCO I +++ rH r-< ^ I I 4 9 a - I S- i 4 1 1 o CM U5 00 CO 1 CM CC C + 11 +11 CM + I + CO t- rH I ++ + co CO CO CM CO I I CO CM CS ICQ r- -H I 1-C 2 CS rH IO - -^ O TT COO 1+1 I ++ W Si C 35 CO 1+ 1 CS CO COCMCSOS -H OO Q O I -H -H CS CS CS CM CS CM OCO^rO rH So? CM -H COCM + i 1 + 1+ + 7 +M + OS CC CS ^ O r* CO C r^CO COO -H CO ^}CSTf* t-* O *O rH O t* CC t-- CO CS gso cc-v cc CO kftOO ^H 33 * ^~ l ll l + + l + l l CM rH + ^O" t~CO IO rH t^ + + *" CM rH < CO rH OOt- CS CS- )-H W VlO OO rH< O cc CC CS s, 05 OO-H OCS + 11 +1 + 4 4 I ++ + I 1 + 1 I I + cc iC re cc o> cc CS rH rH rH + 11 I 44+ II 41 44 + CMCecC COCMlOCO -HCO CCCCCCCS OOCO r^cst t COCO CSCCCSC-1 O-HCO t cOrH^e?* CMtO eciricces I CO CCCM t--H <rH 14+ +111 1 + M S 8S + T i ++ 1 I s s s s I I I I CM T CM rH -HrH -H '. I + 1 I I I + 11 + e R c s l l l l_ rH -H ? ( r-H + 1 + 1 1 + I S 8 S '. +7 '. i. 8 g 8 88 I"* 1 . CM' i CM' 4- I I ^ ^ 411+ CM CM 8 8 R C + ~ I I I I I - S ff S .... +7+7 '. i. '. +7+7 8 8 S R ooo - c c e o II +1 S S +7 i. '. -S^- -^5- CO ceo cceo & - CO >&:>; _ _ _ _ coo o fe; 106 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. OS 2 ~ *J t- CO i-H CO rH CO ^ ^ CO CO CO rH OO OS CO * CO IO CO O ^* i-H CO CM Ol CO CO* ** O rH CO ^ CM CO r-l CO rHCO -2.^$ "' - * t; ^' + + 1 1 + + 1 + 1 ++ 1 + 1 + + + 1 1 I 1 + + 1 i i CO t- -f 05 CO o CO OS o rH os' t^ rHO l-H COrHCM CO-* CM CO CO CM CM OS COCO CO l-H CM CNCOCO-< CO COO] CM ** i-l O OS rH CS s sl CO CO CO O CM CO CO OO OS t^- CO lO rH + + 1 1 + + 1 + I++ 1 + 1 + + + 1 1 1 1 + + 1 1 + 1 + 11 + l + l s iO Oi Tji CM 1O 10 CO OS CO OS rH + l CM 00 rH 1 + rHCO CO rt SS + 1 + Tt< CO CO CO CO CO CO t^ CM co t- CO 1C Ol CO + 1 + rH ++I 1 1C rH O rH 1 1 + CM 1C + 1 OS-* rH IO CO CO ss 1 + 1 rH CM CO l"* CO i t CM t^- + II + ^^Sl 1 + 1 5 rH CO CO t~ rH O rH co-* I-H CO CO 3S rH-*CM rH rH CS rH CO1O 1-OS 10 r- COCM rH CO CO rH lO COOS -*O iO OS COCM CM rH OS O 1C t- b-iO CM CO OS CO CM CO CM CO C CO 1C * CO CM r- Ol CM CO CM CO * CO CM OlOCM CO IO * Ol OSO1 Q 9 OOO * COO rH * t^ CO 05 E5 + + 1 1 + + 1 + I++ 1 + ! + + +I 1 1 1 + + 1 I4 \L + M + l + l CM CMO coco o t-CM coco 1 + rHOSt- I-H CMlO "> + 1 1 OO S iO rH b- CO I++ 1 SCM 1O Tt< O COrH rH rH rH + 1 + SS?5S CS 1-H Ol + +I 1 *' r~cs * coco rH O 1 1 + + 1 115 CO CO COO5 rHOO io OO OS * CO COCO Ol Ol Ol Ol CO l-H 01 U5 + 11 + OS CO CO rr CO rH CM CO PH rH rH l + l 8 <Pl-H 10O CM . ^ R i sis CM rH I-H CO SrH O5 CO OS CO iO CO Tt* CO OS 'V rH O ^ CM 00 * Ol COCO -*00 * 00 * coo CO CO b- CM O5 CO CM O rH OS CO l^ iO i-H CO O * CO t- OS t CO CO CM i 1 O OS 00 I-HO1 rH CO IO CO (M + +i 1 + + 1 1 I+++ + i + + 111 1 1 + + 1 1 1 + + 111 l + l g2 coio CO-* CS ^ r ~ t t^co rHOO CM rH si I-H CO-* ^lli * 8 ls s coS rH t^ rHOI CO CM OS -* O CM rH * ^ CO rH CO O5 t~ 00 O C7S sg !>. OS ^ CO lO CM CO OS it IO . 1 | -. lO CO rH + + + i + + 1 1 I+++ + 1 1 + 111 1 + 1 + 1 'i + l + l 1 ++ 00 00 coco OS Ol f*. CO n c* 3 irfoi B 1 t rH 00 iO -^ CS rH OS CM CO OS CM CO O rH CO rH OS t~ t^ CO Ci t~ rH Ol CO CO CO OS iO CO l^CS CM COO1CO t~- lt ^ OSrH rH CO CO CO lO lO CM O CM IQ t pH rH CM CO O CO 10 co co co rH !> ^ CO OO CO CO CO CM CM OS + l + 1 1 + 1 + 1 I++ + 1 1 + 11 + 1 +1 ++ 1 + j^ "^"iJ^L I++ S rHCO coco CM CM CS t CO M N 10 co O Ol I 1 CM rH oi us OS t- CO CO SIS CM CO OS CO lO CO O OS CM OS CO CO O CO t- CO l-H COOS CO CO CO CM CD os o CM r- ocojro. CO C5 t^ CO Ol g 3| O OS OS I-*- O -^ COrH CO O CM ^ O it CO CO CO CO r-l U3 CO CM CO 1 1 + 1 1 + 1 + ~> 1 + 1 1 ++ 1 + 11 + + +1 i + JxtL + 111 I++ CO Or-H t^S CM 00 115 o CO OS CM 1 CO rH CO rH 1 + 1OOO 00 CO I-H 00 1 1 00 CM CO + 1 + rHCOO CO CM r~ cs oi OS *O CO CS CM I-H CO O OS CO OS t- rH lO rH + 1 1 1C CO l-H r-H Ol CO O CO Orf Ol t~ I-H i 1 i 1 CO * * rH CO CO OS COCO CM CM + + 1 coo t~ o CO rt* OS CO O CO 1 s * CO <M < 1 + 1 O CO t- OS rH CO CO O OS OS CO CO rH + 1^ t-- COCM O Q * CO OC rH ^CMCM 1 + + CM 00 CM rHi-H coco CO CO % CO 00 OS OS CO CO I-H rH l-ir-i rH rH U5CO1O CM CO Ol i-H t~ O O Iv rH CO COi-H CO rH CO O COO Tt t- ^& lt rH i-H 1C lO COCO CO 00 oo oo r^ t^ l-H rH rH rH SCO CO "tf 1 **f CM CM CM CMOI Ol Ol CM Ol 1001*0 00 i-H 06 rH Ol 1 1 rH CO l-H CM CO CO CM 00 >O O CO CO rH rH CO CO CO COCO OO1 CO CO Ol CO IO IO O i-HOOrH 1 + + 1 1 + 1 + 1 ++ 1 I 1 1 ++++ + l 1 + + 1 + 1 + 11 + + + + 1 5* rH I 1 rH rH + + 1 1 iJLil rH rH rH rH + 11 + rH rH rH rH ++ 1 1 f s 8 l_ I rH rH + 1 s s rH rH + 1 s 8 1 1 s s S S 1 ^ 1 + '.7 s s s S S S S 1 1 1 1 rH rH rH rH + 1 + 1 s s s s CM Ol s^s 1 1 1 8 S S s s s s MM. i I rH rH rH + 1 + 1 s s >-. 1 1 ? i-irH '. + 1 rH rH + 1 8 S l_ l_ 8 S oi v 01 + '. 1 -S-S-S 8888 1 l_ 1 1 rH rH rH rH + 1 + 1 S S 8 8 CM Ol S"?8 1 1 1 S 8 S o **<" o o CS Cl CN *w O O O O O O O *w gjjj en, JOJOBJ I p 1 E^ No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 107 g 00 CM t- CO CM 7 rH <MCO PlC (MOOS oo co as os CC CS CO co r- o lO COO * pi CO CM CM m pi CO Tf rHCO ^rco CM 4- -f- + 1 1 + + 1 + 1 ++ 1 + 1 4- + + 1 1 rH >oco Tf"5 OSO CO CM CO rH CO CM rH rH ^ CO Ou CO CO CM pi os r~ ""cMS CM CO *^* "* OS CO CO 10 r^- co C3 CM CO CO * CM 00 CO * rH rH OO lO ^ 1-1 1-1 '"CM CO rH CO CO rH CM 1 I+ + + + 1 1 + + + 1 1 + + 1 + 1 ++ 1 + 1 + +4- 1 1 s 0-* -r ri CC lO CO iQ -9* CM Q CO co co 25 co rH CO rH CO t- pl Pi 00 38 t- OS CO ui 1-1 as pi CM 00 rH p-l OSO CM CM plOO O) GO iO CO ~ - i" 01 co COCO CM CO CO CO *O CO rH 1 I++ + + 1 1 + + + 1 1 + + 1 + 1 ++ 1 + 1 + ++ 1 1 CM * CO pi u5 OO I*- rH CM CM CO COlO OS CO r- O* rH CO CO 55 CM COCO CMOSpHlO Pi rHCM * COrH CO t^ CO CO CO CO >OOS CM CO rH pi pi Pi CM rH rH lO I 1 + + + + 1 1 + S + + 1 1 + 1 1 + 1 ++ 1 + 1 + + + 1 1 N CM CM ^ coco CM CO CO rH t^ OCM rH 0? CM t- OS O t- 2: S " S2 a CO CO lO CM CO OS rH :-. -1 .- ~-S^ ~~ O CCrH CM CM PI 00 OS CO -fl-CM OS pi CM Tj rH CM rH 00 rH rH rH CO CM ^ CO rH 1 1 ++ + + 1 1 + jJ + 1 1 1 + 1 + 1 + + 1 1 + 1 + + + 1 1 i 00 *o 100 CO CO CO O CO CO <M CM OS ss CO CM OS f- 00 CO rH OS I CM 8 1 SsS sgg ^ C?> CM CM co co r- ^j* CO iOQ CO T}* GO ^ CM CO CO TT CC TT CO rH t-- 10 *r CM r- CM 1 +++ + ' . * . 1 + 3, + 1 1 > + 1+ 1 ++I + + 1 + + 111 5 PH- CO OS 00 CO-V -r t-O CM ^ CO OT CO iVO pH CM CM ii OS CO 00 rH O t- Pi-* 1 >: > x CM pi oo co- co cc CO 00 iS St^ ^ CM A 8S3 rH iC ^* t- rH CM CO CO n rH rH CM pi CO rH CM i +++ + 1 + 1 + = s + 1 + 1 + 1 1 1 ++ 1 + + 1 1 + 111 s " 2 CO CO cc cc CM ^ CO O CO CO CO lO rH CO O **< CM lO t*- ^ g Si CO O coco 00 tffl CO t- coo o- f* n CO ' ^* CO CO CO CO OS rH CM CO CO CM CO CS CM OS CO pi CM t*- C5CM OO "V CM CC O CO O rH CM CC OS t~ t- co as t~ rH CM GO 1O rH COCO OS lO CO f- OS CM CO CM 00 t~ rH CO i rH CO 1 ++ 1 + 1 + 1 1 + 1 + 1 1 + 1 + + 1 ++ + 1 1 + 11 + i s TJ* OS CM coco CM r-- O C5 rH O O) CO CO CO O O "f rH rH SCO 00 CM OS | is ?? CM -1 CO CO r- CM lO OS t- PlTf CO Pi Ifi t** pi SO ^ CM CC CO CM piOO PI pi f-CC CO O CO CO OSO CO CO CM CO oso CM r~ 1OCO TTCM CM CO 1 ++ 1 1 -Li + 1 i i ^ + 1 1 + 1 1 1 ++ 1 ++ 1 + 11 + iO ^ *-* CM CO -H CM CM ^ os ^H lO 1 CM r-- Tf CM o ^ lO <3* i CO 0? CM t- T p 3C lOod 00 CC rH 30 cc in CM CM lO -^ OS t^ co co 10 as is 5 t~ 00 lO CO PI pi 5S?2 1 + 1 1 1 i + 1 1 1 1 + 1 1 + 1 + + 1 1 + 1 ++ CM 00 CM ^ ^* 00 00 00 CO CO CO CD CM CM CO 00 CO CO t- t~ CM CM CM CO CO CM CM pi rH g 10 id CM CM CM CM pi pi- pi Pi COlO O 00 1 OO CM O: OS CM CO 00 00 CO CM lO lO CM rH CO CO rH rHCO coo rH rH -H t& IQ CO CC CO CO CO CO t-> t 1 1 1 1 1 + + 1 1 1 + + 1 1 + 1 + I++ 1 1 1 1 444-4- + ?+T 4r?7 rH rH r 1 rH + 11 + rH pi pi pi + + 1 1 rH rH rH rH + 11 + 8888 1 1 1 1 8 8 1 1 rH *-H + 1 8 8 1 1 rH rH + 1 8 8 8888 1 1 1 1 CM CM 8888 1 1 1 1 rH rH rH r-H 8 8 8 S S S 8 888 + 1 + 1 1 + 1 1 1 1 + 1 1 1 + '. 1 + 1 + 1 1 1 1 r7+7 ^S-SxSJS ^8, S 8 8 8 8 8 8 S 8 888 8888 888 8888 9999 o 9 9 T 7" a coo ^'^ -f *** ^ sw e o -M*-r rW* o o o o o o o t" 1 l( n- )BJ 108 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. c p 6 s s CO ._ .., o CD rH CD CO CO -1 J^S C" \ f (N rH co ic tz ** 1 1 + + 1 -f Cn CO IM rH O5 CO CD t^. 1C 1C en JJ2 rH CD CO CO CO Oi O5 O5 OO !M OT t^- OO C7S O CO C^ CO rH CO(M rH rH coS 00 CO OS I-H a r-H-^CO 1^ CO t~ IN IM CO CO * rH i 1 1C 1 IN (N 1 1 + + 1 1 + 1 + 11 + 1 + 1 1 1 + + + + 1 1 + 1C IO m ic CM IN CM O rH CO t^ ^ O 1O CO iC OO iC CO 00 CO coco rH rH OO rH OS <N 1C CO 00 O CO **J t** rH CO CO CO S TH COO 00 CO CD iC CD rH CO 00 CM rH rH t C5 rH oo CO 1C b- CO 1 1 + + 1 ++ 1 + 11 + 1 + 1 1 1 ++ + 1 1 1 + rH O * Co en CD CM CO IN 1C CO* rH -* O5 O OS CO 1C CO CO CO O O CO O 00 * 000 1 CO -^ CO rH O 1C OO CO iC CO b* rH 1 CO rH t-co CO 1C OS CO CO IN 1 C CO CO 05 5 CO rH rH rH rH 1 + + + 1 + ' 1 + 1 ++ 1 + 1 1 1 + + + 1 1 1 + O to rH !> CO r- I-H CO 11 rH 1C rH rH COCO rH 00 "'S CM ICO CO CM rH O5 CD CO r- -H "<J< rH CT> rH CO CD CO rH C- 1C CO rH Tf rH CO rH CO OJ ICrH en 10 1C CO f~ OS f--* rt S 1 ++ + 1 + 1 + 1 1 ++ i +7 1 1 ++ + I I 1 + CM , i * ss 10 CO coo t- CO rt C OO -<t< CM 00 1C CO CM CD rH t~ 00 C(M 1C CO M 1C t^. CO CO COO CO CO CM (M rH 1C IN ^f e CM IN rH OO en t~ 00 CD rH t- IN rH IN CO rH IO rH t~ 1C rH rH CO rH i + + + 1 1 1 + 1 1 + 1 1 + 1 1 ++ + + 1 J^ 1 + o r-. g ss? oo? OOS CO CO CO ^ 1 ~ -f CD rH b-O CO ^ CO CX CO 1C b rH oo r-- O CO rH - r-co CO rH ^ H !M 00 CO CO CO IN rH iC CO CO rH rH CO CO CO CO CO CO CM gj rH CO rH 1 + 1 + 1 'ii 1 ' i 1 1 ++ 1 +++ + 1 + 1 + rH 5 ^ CO 1C CD COCO iC b- o O5 rH CO co Ci b- b--<J< (M CD CO -^ CO rH CO CO 1C CO CD O I-^ -^JH CO OO CO CD 00 IM rH CO O CO sill ia b- 00 1C OO CD CISCO CO t~ 00 1C CO t^ coo rH r-i r-H CO rH CO CM O rH F CO l + 1 ++ l+ +-1-1 1 + + i ++ 1 + 1 + 1 1 CO 00 rH -}H 1C CO Tf< CO "1 CD CO 1C 1C CM * 00 CO (N -* 00 O f~ (M CM 1C CO CM 1OO CO rH CM IM (N 00 rH t-* f- 1C b- O O rH O CO CO CO coo o ^ - r- 1 CO rH rH CD b- Sb- co 1C rH rH CO co en cog + .1-1 1 + x + 111 1 + + 1 ++ 1 1 + 1 1C CO e rHOO O coo CD *^* t-o CO OO d C5 coco co CO t- CO CO ^ CO rp CO CO -^ ^3 Tf* co t- CD t~ CO 1C -^ J>- CO OQ i i CO CO ^ rH CO CO 1 rH 8$ OC rH * O - C-l SIC CS rH 1C rH rH IN IN + + 1 ++ 1 + 1 1 4- 1 I 1 1 + 1 1 8 O i CO CO r t CM CM (M CM isi SCO COO t- b- CO 5JSS5 CD CN CO rH 00 rH rH rH 1C lO CO CO CD CD IN IM 00 00 CO CO t- f~ CO CO JO CD rH rH CD CD CO CO m in + 1 1 + + 1 + 1 +77+ + + + MM 1 + + 1 1 6 eso | -(- iJLil, rH rH rH rH ++ 1 1 rH rH rH rH + 1 1 + rH rH S g g e s e CN" CN~ S S S It"? rH rH 1 1 + 1 MM -|- | 1 1 1 1 ^^ 1 1 + 1 C *" . . g S "? g g g . . . . g g g I 4 rH rH + 1 1 1 + '.7 +7+7 1 1 1 + 1 + 1 1 +7 1 1 g 8 S S $ S g e^e.^ S S S s s s g S S g g o o **~^T~ **~^~G*~Q z*~~~~~~ N N M c c o o o o o - " ^ O -i^ ^W -K-r O O O ^ C O en IOJCBJ z .n aoci, >M ir V N- I- t .-* . J <v- :-.- r-r -ii i v i-r C- -t & c : o V t:g No. 3.] MINOR PLANETS LEUSCHNER, GLANCY. LEVY. TABLB XXVIII. [(1 -e coe )( W t "+ W 3 "+ W t ")] Unit-4th decimal ot a radian. Cos W w' s - 4. 1829 + 12.406 - 16.58 5' - 68.61 + 347.9 V s - 83.96 + 413. 1 f + 83. 96 - 413.1 %9' J +134.0 - 714. 2 V 20+ 2J 20+ 4 + 70. 842 - 42. 107 [- 165.57] + 147. 38 [+255.8] -288.6 !V ! 40+ 44 40+ 3J -345. 88 +876. 64 f+ 843.0] [-1481. 7] i? 40+ 2J -514. 54 + 405.5 40+ 34 -.r - 61.87 + 273. 1 ! f>! M i. m' , TABLE XXVIIIa. Unit- 4th decimal of a radian. V -t i I it T Sin w* w tc w A ^+20+24 -0 00005 +0. 00073 -0.0682 +0.4056 - 1 TT .01 4 | ^#3 .fi ' ! S1I-) .0 9 20+2J 0+ -0. 3324 +2.1665 T! ^ +0. 3381 -2.5547 ' +L0220 -7. 370 ?' ; SS+ 20+ J .0- +0.2654 -1.846 i)' ^ +4 0+ -0. 3622 +2. 472 '' ^+40+34 0-i- -1. 2106 +8. 472 m m /7 109 0/00 .0- ;.f)0 I 110 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXVIII6. [Vol. XIV. Unit- 4th decimal of a radian. Cos ur w-i w U) UI > w tc u> w - e+<f> -0.00004 +0. 00038 -0. 0032 -0.0005 -0. 4803 t +20+24 2t-^+20+24 <j>+2d+2J 0.00000 +0.00001 +0.00004 -0. 00023 +0. 0237 +0.0050 +0. 0726 -0. 15101 -0. 0318 -0. 4507 + 13. 16 - 0.81 - 30.86 + 1.31 2s +49+44 t+4>+40+44 +0.00004 -0. 00038 +0. 0153 +0. 0181 -0. 0770 -0. 0814 + 3.88 - 16.23 - 14. 38 + 61. 80 2t+<fr+60+64 -0. 0088 +0. 0576 - 3.0 + 15.7 7 9 IJ y 20+24 t-4>+20+24 - t+<fr+20+24 1 .!! il ( / / +0. 5242 +0. 1384 -0. 0508 +0. 0749 -3. 3539 -0. 7747 +0. 4660 -0. 2385 + 13. 16 + 14. 86 + 58.25 - 30. 86 - 11. 30 - 170.9 5 5 . +40+44 ^+40+44 +0. 1723 -0. 6378 -0. 8380 +4. 082 -154.6 - 16. 23 + 589.2 + 6L80 I? t+^+20+24 -0. 1801 +1. 1267 - 7.71 - 6.66 3 e +^+60+6J -0. 3275 +2. 032 +178.4 - 933.0 J 29+ 4 ,-^+20+ 4 - +4>+20+ 4 r -0. 6099 -0. 1412 +0. 1220 +3. 634 +0. 6843 -0. 8554 + 10. 77 - 31. 34 - 49.04 + 118. 9 I/ * + I +0. 0524 -0. 4182 ? , +40+34 Vi+40+34 -0. 0411 +0. 7660 +0. 2314 -5.430 +221.0 - 694.3 9' +(/>+20+34 +0.0460 -0. 3060 + 14.12 - 26. 01 i' f+^+60+5J +0. 3718 -2. 0745 -287. 1 +1309. 3 (0-0 ) sin _, _. 5 v q 20+24 t-^+2(?+24 - t+^+20+2J +0. 0490 +0. 0144 -0. 0542 -0. 2949 -0. 0705 +0.3582 5 t +0. 5810 -4. 7017 5 5 t +40+44 ^+40+44 -0. 0618 -0.0453 +0. 4650 +0. 3389 >? +^+20+24 -0. 0010 +0. 0290 1 20+ 4 t-^+20+ 4 - t+^+20+ 4 -0. 0364 -0. 0107 +0. 0402 +0. 2398 +0. 0585 -0. 2889 * ^ +4 -0. 7670 +5. 4890 3: t +40+34 ^+40+34 . +0. 0459 +0. 0336 -0. 3715 -0. 2709 ^ t+^+20+34 +0.0007 -0. 0220 m' 3 m' 2 m' No. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. TABLE XXVIIIc. [(l-coet)Tr"] 111 Unit- 4th decimal of a radian. Cos 10 Ml va V 20+2J 26+ J +60.76 -20.57 -152. 6 + 69.8 m' TABLE XXIX. T7nit-4th decimal of a radian. Cos te- -! w * w < 1C vfi to V 20+2J 20+ A -0.00004 +0.00038 -0.0032 +0.5106 -0.6292 -0.0005 -3.0290 +3.463 +13.16 -30.9 (8-O t ) sin r ~~ e ' V 20+2J 20+ J +0. 0092 -0. 0069 -0. 0072 +0.0094 S MS 3 - 1 ~ -e J " l/ * "* "'": m' These developments cover the function 17 within the extent of our tables. This does not mean that W is always inclusive of all these terms, but that these terms occur in one or more of the tables. With the exception of [(1 e cos e) W], which contains W 3 W t ", W is to be under- stood to mean F== Fj + W ^ + [ jpj + ( ^// + Wy + Wf ") W= W,+ W t ' + [W3 + (W,"+ W t "+ F 4 "). The ascending powers of w, TJ, 17', f are selected independently in each function. To avoid along series which is analogous in construction to T 2 , the function W t " + W t " + TP 4 " is not tabulated. The sum of this function and Tables XVII, XVHI, XIX, XXIIa gives W. Since W is so long and we only need W, it is not tabulated. The function W= TPj_, is given in Table XXIXa. It is convenient to collect here [(1 e cos e) W], which is required later. The function is given by the sum of Tables XVI, XX, XXI, XXVIII, and XXIX, and is tabulated in Table XXIX6. We shall also need the function Evidently S can be written by inspection if Wis tabulated. If the double headings are retained in the construction of H the mass factors and ranks are explicit as in the construction of W. If W is not given, we can write by inspection E, (previously required in the computation), E 2 ' and [EJ from F u F 2 ', and [FJ, respectively. The remainder, namely, ,"+"+/', can be written from W 2 " + W s " + W 4 ", i. e., by inspection of Tables XXIII, XXIV, XXV. The function 5- E is given in Table XXIXc. 112 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. ^ HI aojl CO CO CO CO CO t".' ,..*,-. > -i..j 3 -f- 1 1 ' Ia ! ** Ml l!i: " i : I OS OS OS iO iC iO f i i O CO OOO CMt^cor-co CO CO CO CO CO M 3 r-t ^ rH i I CO CM rH rH CO" f-i 3* rH lO pasn M3M, mnnjoo aiqj up sraiai aaxSap paooas XX 1 ++ + 1 1 1 1 I++++ sis s?? ss U9t- S t~ CM CO CM CO I 1 -- iO CM CO CM OJO WCO f CO * 1C CO CM K5 00 O OOO O rH VC rH COCOOO OO CO CO CM S o o o" o* o* co o" t-t oo" o' us' O CM' O: o O' ^ CM O* rH rH 1C 1C' CO -^ t-^ l.O O* ^' rH ^' CO Q 1C CM COCOrH rHrHt^COrHCM CO OrH +11 1 ++++ + 1 1 1 1 ++I l+l 1 1 1 I+++I++I+ ++I 1 CO 00 i i rH i^ t~ CM O C*l OO OS t"- rH \fi CO CM CO CM GJ> 1 o* O O' rH* ^* rH CM* O* O' id rH CO CO O* O" CO rH 1 1 ++ 1 ++ 1 1 1 + 1 1 ++ 3 CM 00 CM lO OS* bU3rHCOO ^ i t O CM ^* r-4 lO CO CO ^f CM rH CD OS O yoj<^. .0-r 1C O t^ CC IO 1 t * CM CO CO 1 1 + +++ 1 1 1 1 1 1 + t--f-^;; , OS 10 S id rH CO* lO rH CO OS CM CM lO CO t 1 " OS CM ^ i-H H pH ^ * rH ?|S|S| rH rH CM rH O rH iO rH CO CO lO ^* rH rH CD CM *& ______) T ++ 1 +111+ + + + + 1 + 1 ++ 1 1 + 1 1 + 1 1 1 + 1 1 + + 1 ++ rfT S i,J ilU'Hll ... , 00 i<) i /i >ulv; ,pM (i y> 4-- I '] 1<> noiiqo'M.'i iii) J.ti// . 'da) oiii <NCOt- rH 3 CD* CO CM CD* CO ^* O CM OS rH CO CO t** rH, t~ CM CO OS r rH r-* CO lO t^ rH CM r-i O rH CM co o co co en co co co co co oo CM rH oo t- oo rH a> CMCM^CO lOCOOOCOOCCOrHCM CTSCMCMCTiCMGOSOCnCJlcN COCOCOO r-COCMCO-'t 4 COCO CMi-HOrHOOCOt^t^CO t iOCOCM OCO CM 1 ^ CMt^CMCMCOeft CMCM 1 ^ rHCOCMrH rH CM rHrH CO rH T(< lj iiu}:-. hnjj 11+ 1 +++ 1 + 111 + 1 + 1 1 ++ 1 + + 1 + 1 + 1 1 ++ 1 1 + 1 1 ' ''/ OS M 00 CO O CM 00 S Tp OS OS CM rH 00 rH + + t 'r :i 2 S CO <N rH l + CO OS OS CO CD CM ^* CO O CO CO CO "+++ +7+T+ 1 1 + 1 'J'i!l'". , wiT i*f !>v.iu >- I'v'-iv; : " n 11 my\ ,- I)] ;mii )'J')Ho3 O-t ^lIOli!'* . ii- i ;'(')'/i^J r*t (i h- >J*;li ^X/ .\/7. ~A7. .Vf'A aoWuT 1<> >m;^ v'/l/.X ! ^ ^ ^ ^, ^ '^ ^^^^^ ^^,^^, ^,^ ^,^,^,^,^^^^, T ,^ I ^n-n CM * O4 Tji CM CO CO CO tO TCMCOCM Tf 00 CO CO lO CO >O t~ CM CM -d ^ ^ ^i ^i ^ ^ ce> co co co ^ ^ ^ ^5 ^ ^S ^ ^ ^ ^ *^ ^) ^S ^S ^ ^S ^ + ^. 4. + + CM ^C^CO TTCMCOCM -^00 -^C-JfMCOCM ^^J*OO -VCMCO C, " "(NCM I'fXO ') CM <M CM CM CM CM CM 1 1 jotjeui 'Jfl - 1 - ".";! nt. B- V v "s- i ,+>/> No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY noiptujsuoo aq; nj o >o eo i-i e> ! n o + +1 I + 1+ + I 3 v i oo + 1 M - 01 -f k H -f ^ ~- o *~^ o ^^ *o C"4 25 10 o ^ ^ c rt s-i o ^o oo c^ i < o 35 -^ < C^ <-^ ^ f^ fH ii+7 i + i + i i + Oil- CSJ 4- ~J ~ COWIM 00 I l+l ++ 110379 22 8 ' ^-i J * f > 1 1- 113 114 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XXIXa Continued. W. fnit-l". Cos !0-l ur- w w w* w<> w vfl 3 +40+44 - +40+44 +80+84 + 2549 - 3089 -11300 + 2164 + 8155 + 76250 -11.9 + 3.9 -8.9 1 + 70 (lOUOjJ/l ] W +40+54 +40+34 - +40+34 f+80+74 -11449 - 2661 + 6865 +50005 + 42212 - 27530 - 4540 -304611 + 1.9 +36.4 -20.3 +83.8 - 23 -241 +118 -248 -M" +40+44 +40+24 - +40+24 +80+64 +26091 - 1356 - 2204 -73583 - 71730 + 30293 - 20846 +400009 -10.1 -25.5 +28.0 -41.9 + 83 +153 -153 +284 1* f+40+34 - +4(9+ A +80+54 -13756 - 3317 +36006 + 22165 + 18452 -172164 +10.1 -12.4 +16.6 - 65 + 64 -104 fr, t+40+34-. - +40+34 -JT f +80+74-2" +40+44 - 2011 + 1808 - 2381 +14204 + 14604 - 13617 + 18919 - 88026 - 1.9 + 1.9 - 1.1 + 5.7 + 14 - 14 + 10 - 42 ? -' f +40+44 -.T - c+48+24-S +80+64 -.F +40+34 - 554 - 3545 + 3827 -17503 + 140 + 22886 - 27870 + 99584 + 0.5 - 1.8 + 1.3 -3.7 - 4 + 14 - 11 + 28 (0-0 ) sin - r-. -; o. g n 20+24 +45+44 2f+20+24 + 767. 7 - 2820. 9 + 5210 + 1.265 r * ? 2. 19 - 5.34 + 0.78 - 0.55 +13.6 +22.7 - 6.0 + 3.4 1 26+ A + ^ +40+34 2 +20+34 - 570. + 2421. 1 - 4950 - 0.455 + 1.63 + 5.94 - 0.58 + 0.41 -11.0 -37.3 + 4.8 -2.8 f 40+44 +20+24 - +20+24 2 +40+44 + 10.93 - 2.19 - 1.92 + 3.12 iV ? 4 40+34 E - 570. + 6624 + 2421. 1 - 47448 - 4950 - 0.455 +23.8 + 5.94 - 23.00 -221. 9 - 7.2 ,y + 4 - + 4 -18540 + 8414 + 123024 - 57880 -73.4 +36.0 +572. 4 282. 2 11" + 24 +25564 +10478 -157424 - 70250 +87.3 +55.2 -652. 8 -374. 8 ," <+ 4 -15678 + 94846 -69.9 +438.6 rt '+ 4+^ -25564 +22012 +157424 -121258 -511232 +359162 -23.1 + 9.9 +165. - 77.0 f 1 + 4 + -T +23524 -12048 -150306 + 76364 +498328 -261640 +14.8 -5.2 -112.0 + 45.8 (0-0 ) J coe \> t + 4 - 0. 356 + 0. 26G + 2. 623 - 2.100 m' m' 2 No. 8.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 115 TABLB XX IXo Continued. W. as s I 1 Unlt-1" Cos w* W w> - I [+ 6+ J - 293. 4 + 913. 5 - 1400.1 . t+30+3J + 338.1 - 2315 + 9277 , i+56+bJ + 42.9 - 284.3 + 948.2 1+78+7J + 10.5 79.2 + 288.5 5 $+30+34 + 6172. 8 - 20580 + 86549 -*+ 0+ A + 511. 2 - 2834 + 7746 *+ 0+ ^ - 467. 9 + 2335 - 6259 it+50+54 - 2217. 1 + 23971 -157308 fc+30+34 5.8 + 539 - 3713 S ^~ "r |t+70+74 e!j- 364.3 + 3259 - 15083 J $+30+24 - 8375.5 + 20591 - 95913 -fctJ - 1023.4 + 4443 - 10251 |+ 0+24 - 92.3 - 444 + 3212 |+50+44 + 3383.4 - 34097 +214736 |+30+44 - 138.6 + 608 - 1089 $+70+64 + 583.3 - 4805 + 20748 f i <+ 0+ A - 5022 + 24269 l +50+54 -31492 +154465 +30+34 + 8169 - 18309 t+30+34 - 59 + 7449 . +70+74 +12392 -182737 + 0+ 4 + 1133 - 5174 |+90+94 + 2342 - 25879 *?' t+ + 6153 - 26311 + 0+24 + 988 - 15732 +50+44 +88784 -357566 L5 _. +30+24 -14498 - 3083 1 2 X +30+24 - 1309 5 I& JK 'JC +30+44 + 4878 - 31947 t+70+64 -37540 +626187 : + - 3487 + 12764 -1 f+90+84 - 7382 + 77025 r ; \t+ 0+ 4 - 5966 + 27801 1 tf+50+34 -61877 +192684 \ t +30+ 4 - 1709 + 26144 1 I I t- 0+ 4 + 1693 - 6306 f+30+34 - 5297 + 28649 $+70+54 +28418 -377278 f + 0+ 4 + 6846 - 30542 +50+4J-J - 3191 + 15590 1 tf+30+24-JE 1 - 806 + 10210 i ,+30+34 - 3829 + 33852 ; ,+70+64-2" + 932 - 14562 ~' ,+ -2 1 + 1762 - 6460 mf X 116 MEMOIKS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. 1 IO 00 IO O) O 1 r. CO ^f* CO CO rH rH C6 00 INrH 8S * ' rH CM rH rH rH rH -3 1 4- 1 + + 1 1 1 " O rH -"if M- rH kO rH L" ' \tf i- C! r-J 01 OS CM jrfo COCO COO* *3 S gq iS CO OS * CO *? rH & 4-4-4-4-1 1 4- 4-1 1 4- 1 IN O IN CO O CO CMOS 05 10 tO rH CO M OS CO O g *4* CM Os O CO CM co COOS g>0 coo CO OS rH rH 00 CM rH IO rH TC CM CM rH CO rH rH ^ rH rH rH 1 14-14- 4-1 1 4- 4-4- 1 1 4- 1 4- 1 1 1 4-4- 1 4- 1 14-4- 14- + O> T|- 08^ COCM COIN 00 OS BS fl< OS CO CM CM rH 10 COCO t~ O * 1* t~ CO S a O IO CO CM rH ^ rH CO rH *H CM ^ t-ilO rH 00 00 COCO OS rH O OO CO rH 00 t-lOO 00p CO OS CO IM t^ t- O O COiMt- CO 1 '? (MOOr-t CO OO (Mrtr rHCO rHCOrH CO rH co rH CM rH 14-111 ++ 1 1 4-1 4-4- 1 4- 1 4-14- II 4-14-4-M 4- I 1 CO iO rH CO rf rH t- O CM OS O CX ^ * CM r-H CO COrH SS rHO gg CO OS Tf CO CM t^-tO rHrHCOCO OSOS OOO 0000t~ CMCM IM CM OO rH O 1 a O O O OrH O CO OCM 00 rH rH ^ O iO CM rH ^< rHrH O O OO O O o 4-14-4-4- 1 1 4-4- 1 + 1 1 4-4-4- 1 1 1 4-4- 1 1 4-4- 1 4- + -=>' 1C 1 x i* R ? j J* rH t~ O O O O O to co ^ CO 00 osco co (N IN t- << CO ~ CO t-ooo IN CO CO iO IO CO O O C^ CM rH ^4 rH O IO CM CO CM CM O O O O O O S CO s M a ooo oo 14-1 II oo oo 1 1 o OO ooo 1 1 1 OOO OO O O OO O O 4-4-4- 114-4- II 4-1 o 1 ' < c> IO IN rH rH IO CO (M t^ CO CO CO 1 *~ CO s * IM IN 00 co os Tj OS rH O S S 88 88 S 8S 888 . . t ft*' s o o oo oo o o o oo ooo 00 00 o 1 1 4- 1 ."Ti 1 1 II 14- + tK-f-aJi- f o CO i-H rH rH CM rH rH *?X> * rH tO . 80 888 888 88 s !*.'()! nj. ;ww o o ooo o' o' o' o" o ++ 1 1 1 * X o N x, t*) ^^ a 1 II 1 1 '3 CM * CO <N CO IM CO COlO CM Tt* CO CM IO CM -^ cj^CM 5 -) (- -)-+ ++4- H h+ 1 + 4- 4- IN <M Tf TT 3 5 COCO CM CO coco cc. (M IN CO CMC-1CO CMCO CMCMCO (NCMCO -<N CM co <r V (=- H V V B- "B- p- - R ' * S- K- K- (S C s* No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 117 > d c^ o O t* t* X ic r^ oi .-i r-4 o 11+ + 1 4- t t-- to c^ o co C5 cc ^ 00 t i ^ CC O O CO CD C** X O 00 * O O O . l-f 1 1 + 1 i e o to S t-~ oc 1 C " < O O O O 11+ + 1 + t" e o 8 8 8 o Ir o o o o o 1 + 1 1 + 1 ' 6 CO CO OC CC t~ CC Tf c'o" o o' o' o' 11+ + 1 + C S s + + 7 ^- i- *^s v v v ? B- P* F *=- O (T- C- .-.I 118 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXIXc. [Vol. XIV. Unlt-1" w-i ;-* Cos U)0 W w<> w w +20+24 - 90.5 + 302. 7 - 478. 2 2t+40+44 - 26.6 + 125. 5 - 270. 3 5 20+24 + 589.8 - 1571.9 + 1680 - 1.82 +12.00 1 + 0.42 - 2.10 +40+44 + 616 - 3638 +11175 - 0.42 + 2.10 2+20+24 + 23 - 161 + 439 2 +69+64 + 219 - 1451 + 4616 *' 219+ 4 - 106.1 + 360 - 517 + 1.81 -10.64 t+ * - 43 + 161 - 269 - 0.08 + 0.45 s+49+34 - 760 + 3906 -10778 + 0.08 0.45 2f+29+34 + 52 - 143 + 87 2 t +69+54 - 314 + 1874 - 5403 f -0. 317 + 1.63 49+44 -1679 + 7272 -13527 -0. 633 +10. 02 s+20+24 + 274 - 63 - 1.20 +66+64 - 3474 +29267 + 3.60 - +29+24 + 1156 - 2171 - 2.40 2t - 0.21 2f +49+44 + 180 + 113 + 0.21 2e+89+84 - 1375 +11897 if 4 +0. 227 - 1.30 40+34 +3690 -12966 +19401 +0. 340 -19. 92 "" 5 ~ +20+ J + 222 - 1234 + 1.96 +29+34 - 769 + 2197 + 0.01 % bS e+69+54 + 9240 -70866 - 7.25 - +29+ 4 - 646 + 1806 + 5.27 2s+ J + 99 - 444 + 0.04 2t+40+34 - 109 - 922 - 0.04 2f+40+54 - 846 + 4256 2J+80+74 + 4012 -31827 l" -0. 039 + 0.24 40+24 -1780 + 4725 - 5354 -0. 039 +10.42 s '3 ~ f+20+24 + 499 - 649 - 0.32 t+60+44 - 5930 +40905 + 2.86 -+20 -2.54 2+ 24 - 65 + 285 2 t +40+44 + 980 - 4150 2 t +89+64 - 2890 +20791 j 1 49+34 -2 - 101 + 493 - 1128 + 0.11 +29+24 + 587 - 2983 t+69+54-J - 193 + 1759 + 0.14 - +20+ J-2 - 0.14 2+ 4+2" - 192 + 705 2 t +40+44 + 298 - 1876 2+80+74-J - 65 + 616 mf m" No. 3.] MINOR PLANETS LEUSCHNER, GLANCY. LEVY. 119 TABLE XXIXc Continued. fnit-l" Cos tc w - $ + 0+ 4 - 31.4 + 131. - 255 E+30+3J - 48.0 + 193. 6 - 360 "" J +50+54 - 15.2 + 81.7 - 201 [E+79+74 5.2 + 34.7 - 107 1J $+30+34 + 1304 - 8173 +30282 -$+ 8+ 4 - 196 + 506 - 598 $+ 0+ 4 + 34 - 146 + 292 $+50+54 + 356 - 2212 + 6781 $+30+34 + 1 67 + 294 $e+70+7J + 138 - 999 + 3437 ,/ ( ^+30+24 - 1361 + 7468 -25691 : + + 29 12 - 155 _|-50.|-4J - 482 + 2635 - 7209 -i-39+44 + 52 - 197 + 280 $+70+64 - 207 + 1348 - 4176 j> $t+ 0+ 4 - 625 + 3058 $+50+54 - 7151 + 70387 -$+30+34 $+30+34 + 5478 + 18 - 5874 + 1924 $+70+74 - 2111 + 17665 -$+ 0+ 4 + 187 - 590 f,e . $+90+94 - 771 + 6931 / + 0+24 - 231 - 1142 +17640 -159928 +30+24 - 9842 + 1346 i +30+44 - 892 + 3699 e+30+24 + 106 - 2494 j j-j-70+64 + 5918 - 45149 + $+90+84 + 2513 - 20914 ^ ^ k+ 0+ 4 - 507 + 2729 1 +50+34 -10202 + 84314 1 +30+ 4 + 1055 - 678 j - 0+ 4 - 100 + 387 j +30+34 + 871 - 2817 +70+54 - 4065 + 27951 f $+ 0+ 4 + 601 - 3122 i +50+44 - 423 + 4435 L QA J^O J V f |~*X/-^fc d ~~~ + 285 - 356 j +30+34 + 426 - 2410 . +70+64-2" - 108 + 988 ~ n *+ -2 - 106 + 402 m' tnlqii fn; 120 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE XXIXc Continued. i- Unlt-l' Cos .. w - * w ^ , f 20+24 + 1568 - 8912 +3.6 -23.3 60+64 + 5879 - 31559 +3.6 -23.3 gY 20+ 4 - 2385 + 11662 -4.7 +26.6 20+34 + 2238 - 1015 -2.6 +18.4 60+54 -21644 +102003 -9.9 +59.1 1) I)' 3 20 -0.2 + 1.7 20+24 - 1723 - 7588 +4.0 -27.1 60+44 +25396 -103013 +7.6 -43.2 V s 20+ 4 - 1160 + 5960 -1.4 + 8.3 60+34 - 9257 + 31500 -1.4 + 8.3 } ijj 60+54 -S + 1040 - 6697 +0.3 - 2.1 20+24 - 5354 + 25370 -61855 sew j 1 tf 20+ 4 + 2492 - 12023 20+24 -2 - 53 + 989 -0.1 + 0.6 60+44 -J - 1285 + 7413 -0.1 + 0.6 1 j j t> L" *-h (0-0 ) sin tui 4 t -ft ! Writ i) 20+24 - 0.55 +3.40 swi 1 20+ 4 - i <!.'.': + 0.41 -2.74 jf 40+44 4 (-.". - 3.12 +20+24 - 1.10 -+20+24 - 1.10 Tj tf 4 - 569.95 + 2421. 1 - 4950 +0.45 + 5.94 40+34 - 5.75 +20+ 4 i ~ii~ + 0.20 +20+34 '''*(' + 0.82 -+20+ 4 t* ^- $ +*| + 1.01 ,/J 40+24 'i(l! t +e U-: -j ft -i i + 2.55 +20+24 soot I.""' ^ ft ' 1 -f - 0.15 -+20 - 0.15 Si'U; (0-0 ) a coa i'.'it' "i U~t * U* <*f.<; i"^82 i. tt fti 1 4 - >) "?' J di'f" U' '. * - 0.26 HK*' 801 '** - L3 --ft '" ':( + 0.20 TO' m' 2 COMPARISON OF TABLES. As a computer would discover in constructing tables, and as will be evident from an appli- cation of the method to a planet, the coefficients in Table II and others of the same form are given with unnecessary accuracy. Although so many digits would never be required, except in a much more exhaustive development, they are given, for completeness, as they resulted from computation. In all the tables whose constructions involve the multiplication of trigonometric series, the errors are difficult or impossible to determine. Although v. Zeipel's manuscript, which the author generously furnished for comparison, is of assistance, the computations are not entirely parallel, and comparison is not always possible. Many of the computations are so long and NO. 3.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 121 complicated that the origin of certain discrepancies is obscure. Aside from possible errors of calculation, differences are due to the independent adoption of the highest powers of m', w, ij, 17', f, and the number of arguments in a given series or product of series. In most cases our series are more complete than v. Zeipel's. Whether or not the extension of the tables increases the accuracy of the result remains to be seen from future applications of the theory. Tables II-XV. -The discrepancies seem to be due to v. Zeipel's errors of calculation and to their subsequent effects. The larger number of these errors have been traced in the manuscript. Tables XVI, XVII check satisfactorily. Table XVIII. The bracketed quantities in the first three columns are in error through previous discrepancies. We did not discover the source of the general disagreement in terms of the third degree, second order in the mass. These terms do not affect v. Zeipel's subsequent tables, since they are of order higher than have been included. Tables XIX, XX agree satisfactorily. Table XXI. The discrepancies are numerous and their origin is obscure because of the very long computation involved. In addition to performing a complete duplicate computation, the terms of first degree and a part of the computation of second degree terms were checked by the solution of the differential equation in the form given in Z 64. With the exception of three or four single instances, the discrepancies occur in two groups, having the following probable explanations. The neglect of the term in Z 65, eq. (109), by v. Zeipel accounts for one group of differences. The other group can be fairly well explained by an error in the addition of second order terms in +- fa to #, -^#.. A & Assuming that for these terms he added w<t>, and, correcting his table, three discrepancies are removed and two others are improved. Table XXII. Considering the disagreements in Table XXI, Table XXII checks satis- factorily. Table XXIII-XXVn. These tables, like II-XV, are simple in construction, and the discrepancies are due to errors of calculation, or they are the result of previous ones, with the exception that some quantities have different numerical values because they are more inclusive. The latter have been indicated by ( ). Table XXVLLi. The discrepancies arise from the quantities in parentheses in Table XXVEI. The omission of the term depending upon the inclination is justifiable in view of its magnitude. Table XXIX. The discrepancies are numerous and striking, but, since v. Zeipel does not give the formulae of computation, they remain unexplained. The remark is made (Z 77), "Die Berechnung der Funktion [(1 e cos ) ( W 3 W 3 ")], welche eine sehr komplicirte war, wird hier nicht im Einzelnen mitgetheilt." For this reason the development of the formulae which we used has been included and the auxiliary functions 2[TJ, W 3 , [(le cos e) W s "] have been tabulated. The differences are not serious because of the high rank of the function. Our table is deficient in certain terms whose computation would be long and the omission of which is justifiable in view of their magnitude. ',i-ffttl -jilj i: i :;// i <: r\ v;?"t nvtA'fi PERTURBATIONS OF THE MEAN ANOMALY. For clearness some of v. Zeipel's developments will be amplified and repeated in an order which we found more convenient. The determination of the disturbed mean anomaly is accomplished with the integration of Z 9, eq. (47), (which implicitly contains Z 8, eq. (38)). By Z 9, eq. (43), d = %(e-esms)-g' = 1 s g-g' The differential equation is repeated in Z 78, eq. (124), in which is emphasized the fact that d W the arguments are functions of both e and 0, as is the case for r- 122 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [voi.xiv. If we observe the character of as it is expressed in the definition and recall that we have admitted trigonometric terms in 0, multiplied by t, it is evident that this argument, which is a function of the disturbed positions of the planet and Jupiter, is not periodic, but varies con- tinuously with the time. In the foregoing equation g and g' can not be regarded as angles which are always less than 360. contains, therefore, a nontrigonometric secular part in e and a periodic part in 6 and s. If we write 6=(0-[0]) + [S] [6] contains the secular term in s as well as periodic terms. The segregation of terms of different type can be made explicit by the introduction of fe Z 78 ' ! where i? is a function of s and d lt 2 , 6 3 are the periodic parts of ff [0], i. e., they are entirely trigonometric functions of e. This covers the condition that 9 t can not include trigo- nometric secular terms in e. By definition of tf and Q i i *? = [fi = [/??,)] - ^^ ds [_dJ ds where [n'tis*] is the long period term between Jupiter and Saturn. The derivative of (125) is KJ n,. <-u<>;-4 ; .fe'nnoionib ro quuig aiio aininmA laquhx .7 vu ,(60Ij ,p<j ,t .. :v IK , ^ = ^ + ^^ or ds odds <pT' ; ibe, be, bo, \ / be, be be, \d& = I -^ * -J 2 4- Tr-5 4- 14-ll-J ' -4 A 4- \-r \bs be bs / V d$ 5$ d?? /ds Expanding F(6,s), eq. (124) in a Taylor's series in ascending powers of 0<and making the above substitution for-y- (124) becomes (126), in which hi) liiiv/ ,-ino v:j.vv--nq lo J(;j ';'". '>il) -JTB T->I!> in .noifjiliJ >?> lo snon-j at emh <nu 8?j! r >aBtjOTO8tL j Q From the Taylor's series T- is written m (127). This is the differential equation for tf, the a right-hand side of which can be computed. Substituting 3- in (126) and equating functions of equal rank, we have the differential ' TOD gJttlHil equations (128j 128 3 ) for 0<, which can be integrated in succession. Before integration we convert eqs. (128) into differential equations for ndz as follows: ii'' r*Siou ifiiii ori.) lo i , .. , . ,. . . , Joo WIR n8z = (7^3 - [n<52]) + [72^2] ' r . , 00 /, , .N = 7n?2j+ r^2 2 + n^2 3 H ------ \-[n8z] Z 88, eq. (144), where n8z t is not only a function of first and higher orders in m', in which the lowest rank is i, but is entirely trigonometric or periodic. Then r iri* : 'f" o 2 r Z 9, eq.(46) gives flfe-[nte]-r |^ x (*>) + 0, (&,e) +6 3 (&,e) + ...... +wi? sin e+ (n'8z' -[n'dz']) and [n52] = r f^{t>-| + [7i'fe']4-c'-//c] Z 88, eq. (145), where it is to be noticed that [ndz], unlike [ W], is not free from terms in e. Subdividing the first of these two equations according to rank, we have Z 79, eqs. (130), in which n'dz' + [n'dz'] can be neglected. NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 123 Differentiating eqs. (130) partially with respect to e, substituting in eqs. (128), evaluating the right-hand sides of eqs. (128), we have eqs. (131, 131,), in which the superscript indicates that only terms of first order in the mass are included, and where the argument tf replaces the argument 8. For purposes of calculation, the integrations are arranged as follows: In + W 3 "+ F 4 ") consider first only W t "+ W 3 " + W t " in the integration of eqs. (131). The integrations will concern only part of the terms of first order in ndz l + nJiz 2 +ndz t . It is shown by v. Zeipel that the integration for all three ranks can be performed conveniently at the same tune. Let this part of the function be indicated by enclosing it in ( ). The integral + which is a trigonometric series, is given by Z 80, eq. (135), in which the coefficients L p . q are defined by (136) and are easily derived from Table XXVII. The coefficients L p ^ are tabulated in Table XXX. The remaining terms of rank one which are of first order only, namely, ndz^ (ndz^), are given by the first of Z 81, eqs. (137), in which TT,, IF,, [FJ, can be written by inspection from Tables XVH, XVm, XIX, XXIIa, The function is tabulated hi Table XXXI. The remaining terms of first order in ndz 2 and ndz 3 are given by the sum of Z 82, eqs. (139) and (140). The function ___ is given in Table XXXH. These developments complete ndz (1) within the limits of the tables, and we next consider ndz (2) . We shall limit ourselves to functions in which the lowest rank is the first or second. Consequently, ndz^ contributes nothing. m 't Anv function of second order in the mass and first rank must contain the factor r and in itr the given F (t>, e) this factor occurs only in Wf. We have, therefore, by Z 80, eq. (131,), for one part of ndz^\ indicated by parentheses, >) = f{(l -e cose) F^-tU -ecoas) W]}dt This function is tabulated in Table XXXIII. 124 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV.. co- co i* -T * .0 CO 2 o o co" rH CN 2 O 1 CO CO CS CM lO CO CO O CM O **< lO CO lOt* <M OS CM CO CS CM CD wS ^* rH COCNlO + + 1 1 + 1 + 1 ++ 1 + 1 + ++ 11 1 1 + + 1 g CO CO OS OS t^ o ' CO CO CO O CO r- 1 COOOCS CSrHOO ^eNt^-O CD t*rH iCW ^COCO COCOlCt^- (>JOO COCNJlO lOO O3 rH iTiCOCO QOrHCOlOrHt--. O> OS rH^ i-HCO CO M C^ICS lOCOCO rH N rH b + + 1 1 + 1+ I++I +1+ ++I.I 1 1+ +i 1+7 +11 + i CO lO 1O CO CO Ij O CO CO i-i OOJO -^C^^iO <MCOCN C'-COC^ICTS CN OOrH HH > 1 C^^d O CO CO i 1 GO CO COf-H COCOC^ rHCOTt< lOfHrH rH O IOO3 C^rH ^COlCCO ^ CNO MrH t^ lO COCO *OCOlO Ci CO rH CO N t* CO CO + + 1 1 + 1+ I++I +I+++II 1 1++I l + l +11 + CO OS rH CM CD CM O OS rH lO OOO"^ OIOOO3 COOSCO CNOrHO *C t^-00 COt^- O CO^ CO W C^J t- r-l rHO *^COC^ iiO-CO rHlJSc^^T 1 C^ lO COM CM rH COOOrH r-l rH iO -^CO COCO rH lO O rH t^- t^Ot CO I s - C^ itrH^COMCO ^* cs + + 1 1 + i + i ++ i + i + ++ i i i i + + i +7+ii + rH 00 CO C<> OS CO CO to CO O CO OS CO CO ^s II1TJU5 rHt^-OiO fH-^CO O rH O rH -^ ^i CM COCO iQOOO CO'JJ-^cO tN.^'cOlO^CO MrHCM OSrH frHCO M CD ^ rH ^ i 1 + 1 + 1 + 1 ++II +1+++II 1 +++I +1++1+ + rH U5 t- 10 10 00 "5 rH rH CO O OJCOO CO^rHCN I>- CO 1C COCNrH-^ O* COM COCO COCO^ rHCOrHO CD US -^rHO OCS lO CMrH t-rHO CO 1 ^ COOO4 OOrHOarHOO COCOCOCNIOCMCD 1O rH rH rH C lO C^J + 1 + 1 + 1 + 1 ++ 1 + + 1 + + 1 1 i 1 ++ +1 + ! + t 1 + 1 CO CO GO TJ* CO CO rH CO iO CM CO s s CNCM rHiacp 1 -* 1 COOJCO lOCMt^-OS Oi 2^ U^rH CSCO I>-COOCN f rH rH 15 t^- rH C^ s " CM rH CO rH ^< + 1 + 1 + i i ++I++M+III i+i+i i+ i ^+7 S3 iO CO *< CO in 8 CO CO r-i CO CO CS 00 00 OS COrHCM t^t-' COrH* rH OlO CO r-ICO t^CO COOSCC IO(MCO~ 1OOS (N*t*CO 1OCO1O CN lOC^l CO WCM rHO COOSCM COrHCM rH rH rH T)CO i-irH COCO rHrHO * CO-9- COt~ IM t- rH rH CO *-' rH + 1 + 1 1 + 11 +1+ +11 + 1+ 1 +1 ++ 1 + 1 ++ 1 i w m cxi rH __ _ S r-i r-i SrHl-*- CO CO t 1 -^ COCO COrHrHiO t^ CO t CO COCOi 1 CMCMCDO CO rH rH OS CO rH O i + 1 1 + 1 + 1 + + + ++ ++ 1 + + 1 l+l +J^ +11 + 1 tO 00 CO 00 ss lO 00 rH OOOlCJ CO OSt^- OSOCO CMCOrH CO ^O CO CMOSCO CM OrH lOCOrH CO lOOS CMCOrH rHCOO rH COCO CO t-COlO b* rHCM CM i ( ^ CO lOt^- rHCTS-^ lO^TCM ^ O rH t* TfCOrH O rH^ f ( O CMrHrHrHCO rH CMrHCO rHCOrHfiM^CO rH rH kA rH i + 1 1 +11 1 +1 + 1 + +++ + ++ + 1 ++ + ^+ id id C~J CXI CO CO cIS CO CO rHCOOOrH CC CO r^t^OO JA^ OO CXI (M OSCNfMCS o o o rH rH l>t~ COCO COCO <Nr-t-<M CO CO + 1 1 + +111 ++ 1 ++I+I I++I 1 + ++ 1 1 O C rH ft t t rH rHrHrHrH rHrHrHrH ^ ^ ++ II ^^+11+ ^^ ^.^ ++ 1 1 e e r-l rH g g gggg(M (M gggg ggrHrH g g gggg * _^_^ 1 1 + 1 se ^-.'ff-j* .... ggg .... g .. gg -g- .... 1 + 7 I 1 + '. i +1 + 1 L '. '. +1 + 1 '. +7 L '. + L i +1 + 1 s s s ~ gj?S ggg JSSSS ?S SS SS SSS SSSff o *~o *~o *~~^ *~~-i ^"o *^o ^"o ^- s ^- ^^ **~Z- ^"tN s *w > *^ ^~o ^^o ^^e **"o ^~o ^~c ^*o *~~^- ^~^- ^~o ^o ^~o s ~i x ~-C ^^ **~ l-f MM iJW -~~ ^~ ^-~ - ~- -- ^~, jt-3 -^ j^ !*-C i-C ;-*; Ik^ <; -C -^ -C ^ ^ -; -c ^ *-:;--- (fl JO^DB^ H Vo. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 125 17.3TX ajaT 00 rH {'''/***;- i-. eo 3? I-*- CO CO CM t * O rH m OJ CO iS Ol rH rH, -. 1 + 1 1 1 + + + 41 1 + "" iV* 4 tV--*!; 1^5 i** i& O 01 00 S3S2 _- c^> oo - .\ll t i ( N CO . 1 47 1 1 44- + + 1 1 + sss rH rH rH Bo^0 I &* ro O5 iO " CO d rH CO t- CM 00 O _ H -. r i + i 1 1 44 + II 1 + -..- " OS t- *? fl "*" rH t2 2 ^H i ^ s r^ C 1 ! CO 'i' ^ ^ S S 1 + 1 i i ++ 4 II 1 + t -4- ? WU*I -i- V-i-j 00 iC CC Cl OO * CO T r t^- ifi- 10 sr 3 o CO O) ' >a "& *& OS eo co - *_ , - Hi* 1 + 1 1 44 + + 1 J- ' + 1 Sig seS 1 CM t- 2 s5 ^H) D r^ *|So5 H " S* 00 JS rH rH a 08 1 44 1 + + + 4 1 + $ ^> .3 r.000fi-- t-t CS -n* O CM CO CC 5S r^ tO t^ t~~ t- OS rH CO lO 1 XX OO rH C CM CO r- CO -V cp C5 55 O s " 1 1 + + 1 + 1 4 1 4 II | .3 SI O CC CO OO CO O t^. t*- ^^ Ou M O 5^ -H rH kO CC rH i-^ CO 1 P CM * C7S CO t~ **** CM O 5S 1 9 1 1 1 1 + 1 1 + + 1 fjsti; Z tv-t-f-' ?,2g <N -H OO v * <y * "" Z 3 9 CC 1O O co r- CM >o ~. ~ ^ "3 a 1 4 1 1 1 1 1 1 1 1 B a ;.,; S rH rH liii ^* ^* rH rH 4 1 ~ x, i + 1 + + 1 1 + i C3 iZZ S. 4-774 .2 CM* sr + -, 1 g s s e 1 1 1 1 "i"? r7r7 II +1 3 a s s e 1? 8 8 S I I 1 s e e" rH T-^ ^^ ^H 4141 s e s s 1 8 rH rH . . +1 '. '. s e s e r 1 i o o I I S I | CO CI ^ ^ -^ ** ** ^ ^ '^ i*-i ."*^ N 1 ? [^ ^= c_, r" JaptU 126 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXI. [Vol. XIV Unit-l" Sin *-. . w w* +2,5+24 + 294.89 740.6 + 734 B +4,5+44 - 839. 5 + 3495 - 6224 2+2<5+24 - 147. 4 + 517 - 737 ft e +4 +4,5+34 + 1229.8 - 4069 + 5671 j) 3 - +20+24 + 784 (- 3570) (+ 10522) +2,5+24 +6,5+64 2t+40+44 - 202 + 2940 + 415 (- 1657) (- 17009) (- 2587) (+ 13183) [(+ 43527)] (+ 6440) 2f - 192 + 705 i) i)' - +2*+ 4 - 2386 (+ 11567) (+ 37527) +2,5+34 + 1492 (- 968) (- 12562) +20+ 4 +6,5+54 - 1962 - 8658 (+ 9257) (+ 42767) (- 23263) (- 92732) 2+40+34 - 615 (+ 3264) (- 6905) 2 +4 + 142 r- 605 B - +2,5 + 1634 - 7081 + 16199 +20+24 - 861 - 3794 + 22127 +60+44 + 6349 - 25753 + 45318 f - +20+ 4-2 + 866 - 4260 + 10988 +6,5+54-2 + 260 - 1674 + 5101 +20+24 - 2677 + 12681 - 30930 B +40+44 + 5907 - 11149 - +4,5+44 - 269 + 5158 +8<5+8j -11300 + 76249 i 5 S B B +40+54 -11449 + 42212 +40+34 -11270 + 951 _ +4,5+34 + 1744 - 23941 +80+74 +50005 -304611 ij ij' 2 +40+44 +26091 - 71730 +4,j+24 + 3985 + 16118 _ +4,5+24 - 3137 + 35021 +80+64 -73583 +400009 ij" 4-4^^-3J -13756 + 22165 - +4^+ 4 + 3317 - 18452 +8,5+54 +36006 -172164 ?i) +4^+34-2 - 1707 + 13125 +4^+342 - 2112 + 15096 +8,5 +74 2 - 2381 + 18919 +4^+44 +14204 - 88026 j 1 T)' +4,5+44-2 - 554 + 140 +4^+242 + 3545 - 22885 +80+64-2 + 3827 - 27870 +40+34 -17503 + 99584 +(<5-i5 ) C06 1? - 767. 7 + 2821 5210 1}' + 4 + 570. 2421 + 4950 1* 2< - 384 + 1410 - 2605 n i 2+ 4 + 285 - 1211 + 2475 rf - 6624 + 47448 Y + 4 [+17970] [-120603] + 4 + 8984 - 60301 i?" +24 -10478 + 70250 f -25564 +157424 >/* + 4 +15678 - 94846 ,7*5 + 4 +1 -22012 +121258 -359162 e +25565 -157424 [+511232] /" ^' +.T +12048 - 76364 +251640 + 4 -23524 +150306 -498328 m' NO. s.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 127 TABLE XXXII. >o->'.-rt-{<' e; r*^ Unlt-l". r oox f'r% !f Sin it* . _j-2i>+2J ' - ' 294. 9 + 1036 " *" * , + 384 - 1410 *.j-wiT nAfusi }.ij ( 2+2tf+2J ' ''' + 1679 74 - 10348 + 149 '! ma isftil'i fiiijJu T .vti'io i^iTt i-i /"" t + ^ - 285 + 1211 - 2460 + 13067 ((!> "' t\'j HfX -' ' ' ,^ ? +2i>+2J - 101 - 883 +2<>+2J - 978 + 6459 fife ' p'J KK) +60+64 - 8820 + 424 (+ 77487) - 1332 2f [+ 96] I- 352] ff' / (1* t ' - 2068 + 8418 -i-2i>-|-3J - 1492 + 2460 fe.Q_l_R 1 c ~r "" i J + 2280 + 25974 12618 (-206223) i to ic r* baa ooil 9 jf - 615 t- 7 1] + 1420 [+ 303] 1* - +2* + 1634 - 5447 +2tf+2J + 861 + 2933 <? ' jW frt> j-6fl-|-4j - 19047 [+134400] / +2J+ 4 Z + 866 - 3394 (j . * . * ^_6tf+5J S - 780 + 7362 j-j-2<>+24 + 2677 - 15358 ^ +4tf+4j - 5098 +4i>+44 + 4499 ^il y ' ~ +8+8J + 45200 r , ?Y + 40 + 5j + 22898 v/ -j-4t)^-3J + 5322 '' ; '1 I ' ,=. e+4t>+3J - 11270 f -j-8iJ+7J -200020 lr."W. 1 f 7 * +4t5+4J - 52182 +4i?+2^ + 2712 ^jiixiu +4^+2^ + 4408 +8i9+64 +294332 V +4i>+3J + 27512 I Y. 7 7. .7.7 7. wI<! _ _i-4^-i_ J + 6634 +W+54 -144024 w +4t>+3^-2 + 4022 r . BaM +4J+34 2 - 3616 .<! ni f-. +8t?+7*l 2 + 9524 +4d+4^ - 28408 . r y* f 7 e +4$+4j 'Z + 1108 +4i>+2J 2 + 7090 +8i>+6J 2 - 15308 +40+34 + 35006 m' ori.i run- -HT The coefficients in parentheses differ from v. Zeipel's values because they contain additional terms. See p. 134. 128 MEMOIRS NATIONAL ACADEMY OF SCIENCES. The remaining terms in the differential equation for ndz^ are, by eq. (143), (1 - e cos ) -(!- cos .) tF,'< 2 > +TW - F/') - =T /" Tf t < + i ( all the terms of which are of the second order whose lowest rank is the second. They therefore contain the factor ? w* To obtain ndz^ it is necessary to return to eqs. (124)-(130) and make developments for terms of the second order similar to those for first order. The resulting differential equation is: ~n&, = (1 ~ C 2 COS) {7^<') - (nte/O) } Wf > - (1 - e cos ) w { roi *vr ' - 1 - e cos -[(l -e cos e) ^ The sum of the last two equations, when integrated, gives the terms of second order having m' 2 the factor ^ It has been shown by v. Zeipel through computation and we have shown ana- lytically that and [(1 -e cos s) F/ 1 ^!^^ 1 )- (nfe t ('))} +w^(n5 2 / 2 )) =0- Therefore, = l-e cos -[(!- cos The integral is tabulated in Table XXXIV. Summarizing, we have included first order terms in given by tables XXX, XXXI, XXXII and second order terms in given by Tables XXXIII and XXXIV. The addition of Tables XXX-XXXTV gives the short period terms in nfe, or, the function ndz-[ndz] which is tabulated in Table XXXV. Returning now to the differential equation for tf, the evaluation of F (#, e) and its derivatives in Z 78, eq. (127) gives Z 91, eq. (146). The variable does not appear; -j is a function of t? alone Therefore the function is of long period. The integration is one step in the determination of [ndz], the long period terms in the perturbations of the mean anomaly. The function [(1 -e cos e) W] is tabulated in Table XXIX6. The function f(l - e cos i)( W- ^sV W+ ^S\], computed from Tables XXIXa and XXIXc, is given in Table XXXVI. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 129 The function (1 - e cos e) (0, + 0, + 0,) First, 0- is computed as follows: 5W is given by Z 93, eq. (150) by means of Table XXXV, and -=r= is readily written by inspection of Table XXIXa. Performing the indicated multiplications and retaining only the terms which are independent of e, we have the required function as tabulated in Table XXXVII. By eq. (146), the sum of Tables XXIX6, XXXVI, and XXXVII, multiplied by the factor gives <?(?), tabulated in Table XXXVIII. TABLE XXXIII. Unit-l" Sin tc- te U* u>> I? f+4<+4J - 0. 316 + 1.59 -3.6 * e+4tf+3J + 0. 114 - 0.67 + 1.8 f - t+2iJ+2J t+2t)+2J +6t>+6J 25+40 +4J + 2.62 + 4.42 + 1.80 + 0.16 - 16.8 - 28.4 - 11.7 - 0.8 + 1.8 *v - +2t>+ J +2tJ+3J t+2^+ J +6>+5J 2s+4^+3J - 6.18 - 1.90 - 5.57 - 3.95 - 0.06 + 36.9 + 13.6 + 32.8 + 23.6 + 0.3 - 0.9 1" - e+20 J+20+2J +6<>+44 + 4.04 + 2.12 + 1.90 - 21.4 - 14.4 - 10.8 f - +20+ J-S +60+5J-S + 0.22 + 0.07 - 1.6 - 0.5 + (0-l> ) COS 5 - L265 + 6.35 -14.3 l' + ^ + 0.455 - 2.69 + 7.2 V 2 + 0.63 - 3.2 + 7.2 v 2+ A - 0.23 + 1.3 - 3.6 1' f -23.8 +222 v + 4 - + J +72.9 +36.5 -569 -285 v + 2J -55.2 -87.3 +375 +653 *" + J +69.9 -439 ft + ^+^ -9.9 +23.1 + 77 -166 ;* -!' f +^ + ^ + 5.2 -14.8 - 45 +112 m" 110379 22 9 130 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXIV. [Vol. XIV. I noii-i Unit-1" Sin .- UJO M . 1" j-.i FiOJ ci;,i!(: t >-, !< 2;+4t?+4J - 0.614 - 0.079 + 4.06 + 0.40 -10.3 ' E+40+4J - 0.74 + 1.74 + 0.31 + 0.45 + 3.7 -18.1 - 2.0 - 2.9 * j-i-4,+3J 2 +6i?+5J + 0.30 - 4.26 - 0.66 - 1.8 +32.0 + 3.8 ' - +20+24 2+80+8J -6.4 + 6.4 + 5.1 - 1.4 - 2.2 rV P t -;- - +20 + 4 +2<>+ 4 +6.5 +5J 2+8tf+7J +12.0 - 0.9 - 8.5 -11.8 + 3.4 - 0.8 + 6.5 f + 2J ^-2t)+2J +6iJ+44 - 5.1 + 1.3 + 6.4 * - +20+ J-S s-{~6t?~l~5^ S 2f -(-4^ -|-4d - 0.3 + 0. 3 ' + 1.4 +(tf-l> ) COB j ' 2+2i?+2J - 1.02 - 0.78 + 0.41 - 8.4 + 6.0 - 2.5 '' + 4 2t+2tf+3J -3.25 + 0.58 - 0.31 +30.1 - 4.8 + 2.1 '* _ +2i?+2J 2 2 +4<>+4J + 3.6 + 1.1 + 0.5 - 0.8 :'_' "' - +20+ A 2+ A - 3.4 + 1.6 L f . , t - 0.36 + 2.6 '' + 4 + 0.27 - 2.1 1 * was.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE XXXV. Logarithmic. niz-[ntz] 131 Unlt-1". Sin KT r vr* V w> f -+ * 4.1570 4.8741, + tf + 4 2.7684, 3.3827 3.7172, 1? + >+ J 4.0056, 4.7686 V + + 4 4.0766, 4.8295 f i + + ^ 4.1365 4.8738, n* + tf + 2J 3.3345 4.5162, rf E +30+24 4.2240, 4.9611 5.6685, 1 +3i>+3J 4.0671 4.8483, 5.5636 5" 1 J+W+3J 5.0926, 6.0018 ^ < +W+4J 5. 2325 6. 1714, V 1 +5i>+54 4.7675, 5.7344 J 1 .E + W+4J-J 3.8050, 4.7998 ^ -Jf+ 1> 3.3112 3.8350, 4.1355 ? -i-e+ J+ J 3.2065, 3. 7910 4.0833, * -,+30+ J 3.5338 4.6236, *v -< +30+24 4.0879 5.0382 ^ +30+34 a 6012, 4.5318, j 7 -J +30+2J-J 3.2074 4.1925, ^ 1 9.868, 0.5689 2.922 3.4600, 3.3670 ^ + ^ 9.482 0.2533, 2.673, 3.2959 3.1772, it* +20+ J 0.746, [1.384] 3. 2927, [4. 14906] [4. 6990,] +20+24 9.788, 2.47560 3. 10847, 3.4540 [3. 3960,] >?' +20+24 0.645 U-342,] 2.305, [3. 6179,] [4. 4018] v 1 +20+24 0.326 1. 119, 2.935, 3. 3017, [4. 39206] j* +20+24 3.4276, 4.23764 4.76933, :r* +20+34 +40+24 0.28, 1.102 3.1738 3.6004 [3. 5449,] 4. 27485 [3.8446,] A +40+34 +40+34 9.057 0.692, 3. 10161 4. 0519, 3.9302, 3.7975 4.52415 [4. 78162,] < +40+34 4.1385 n 4.6961 >* v +40+34 4. 2431, 5.1290 ij +40+44 9.500, 0.522 2.9351, 3.8035 4. 41616, 4.63017 q 3 +40+44 3. 7714 4.2108, ^** +40+44 4.4165 5.0931, A +40+44 4.1524 5.0661, iV +40+54 4.0588, 4.8136 j*l +40+34 -J 3.2322, 4.2342 ; ^' +40+44 -.T 2.744, [3. 0%2] 5" +60+44 0.28 0.64 n ] 3.8027 4.77998, 5. 52852] i) ij' +60+54 ?* +60+64 j E + 60 + 54-.T 0.596, 0.255 8.8 1.070] 0-8 n ] 9-3,] 3.9374, 3.4684 2.415 [4.94342] [4. 50125,] 3.48a,T 5. 70347,] 5. 27451] 4. 2931] 5" +80+54 4.5564 5.4999, i) i? 77 +80+64 4.8668, 5.8416 T,V +80 + 74 4.6990 5.7030, if +80+84 4.0531, 5.0844 j 2 ij' +8i>+6J-^ 3.5829 4.6352, fr, t+80+74-2 1 3.3768, 4.4540 > ' 1 ", '-, V- $ V - +20 - +20+ 4 - +20+24 0.606 0.791. 0.418 fl.422,] 1. 690] [1.365,] 3.2132 3. 3777, 2.894 3.6657, 3.8866 [3. 4616,] 19260 4.72168 3.8078 p - + 20+ J-J 9.34 0.28 J 2.938 3. 4714, 3.7862 1* - +40+ 4 3.5208 4.07255 < - +40+24 3.4965, 4.59582 -/v - +40+34 3. 2416 4.5467, s 3 - +40+44 2.430, 3.9848 j 1 ?' - f +40+24 -I 3.5496 4.19852, /*! - +40+34 -I 3. 3247, 4.05994 132 Logarithmic. MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XXXV Continued, niz [noz] [Vol. XIV. Unlt-l" Sin w - ^ ^ u- w , *e+3t?+2J 3. 6731 4. 0029 n f-)-3''-i-3^ 2. 3528 3. 2475 B 3.9005 7;' $+30+3J 3. 6181 n 4. 2122 J 3 fs+Stf-j-SJ J 3. 4072 B 4.4000 1) y' ^+3d+4J 3. 5244 4. 4012 B TI' fe+5i>+4J 3. 3533 4. 4231 n 5. 2725 rj |-i-5t-t-5J 3. 1780 n 4. 2730 5. 1359 B Tj' 3 fs-j-7*-(-5J 4. 2775 5. 4708 B IT i-j-7i>+6^ 4. 4051 B 5. 6177 fj+7<?+7J 3. 9296 5. 1605 B , 2e+2tf+2J 9.486 2. 1744 B 2.708 [2. 889 n ] 2. 599 n rf 2j-(-2i>+34 1. 946 n 2.501 2. 516 B M! 2IK+4J 8.8 B [0. 561] 8.90 B 2. 789 B 9.599 [3. 5813] 1.711 [4. 1074 B ] 2. 5795 B 3. 1726 T 2+4,+4J 9.2 [0. 34 n ] 9. 819 n 2.618 0. 5840 [3. 4962 B ] 2. 7821 [4. 0890] 4. 51865 1 2f+6t+6J 9.653 0. 4645 B 2. 5979 n 3' 6265 4. 38424 B | -(-5^+5J 1.2340 2. 1166 B 2. 7076 i)' 4-|-7#+6J 2. 3679 3. 3518 B 4. 0587 >) |+7t?+7J 2. 1758 B 3. 1926 3.9204, (l>-l> ) COS , E 0. 1021n 0.728 2. 8978 B 3.4504 3. 7168 B I 3 e 1. 377 B [2. 346] 3. 8211 4. 6762 jj 7) /a 5 1.941 B 2.815 4. 4076 B 5. 1971 frj e 1.364 2. 220 B 4.4076 5. 1971 B 5. 7086 rf + J 9.658 0. 774 B 2. 7836 3. 3840 n 3. 6946 7) 3 7)' + J 1.863 2. 755 B 4.2546 5. 0814 B ^ /3 t+ ^ 1.844 2.642 n 4. 1953 4. 9770 B j" 5' + ^ 1. 170 B 2.049 4. 3715 n 5. 1770 5. 6975 B I$i + 2J L742, 2. -574 4. 0203 B 4.8466 / >)' *+ ^ 0.716 1.65 B 4.0809 4. 8829 n 5.4008 fl 1.00 B 1.89 4. 3427 B 5. 0837 5. 5553 B ,V -t+ ^ 1.562 2. 455 B 3.9535 4. 7803 B ?v 2 2.+ J 9.801 9.357 B [0. 43 n ] [0.473] 2.5842 2. 4548 n 3. 1493 B 3. 0830 3. 4158 ^'^ e - 1. :| 9.56, 0.42 V !+ j 9.43 0.32 n 1 sn A.Tg.+(#-d )2w*TiPi)'<lj 1 tC. 1 coa where C lt C 3 , C 3 , represent the respective coefficients. 3 sin Arg. Mil No. 3.) MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE XXXVI. -![(! -t coe ) (W- J- 2 ) (W+J- H)] 133 Unit 4th decimal of a radian. Cos K-< tc-> to- to- 1 w> w - +0. 000032 -0.0080 +0. 0493 - 0. 176 +0.52 7, J -0. 00028 +0. 0037 -0. 133 +L10 - 8.8 V -0.00014 +0. 0026 -0. 095 +1.27 -14.4 ? ' -0.0003 +0. 139 -1.20 + 5.9 iV J +0. 00047 -0. 0070 +0. 252 -2.51 +22.8 / V n 20+24 +0. 000017 -0.00042 +0. 0437 -0. 366 + 2.10 'v 20+ A -0.000006 +0.00045 -0. 0639 +0.508 - 2.79 / 40+44 +0.00004 +0.0006 -0.194 +1.64 -11.4 V 40+34 -0. 00012 -0. 0012 +0. 372 -3.59 +32.2 *> 40+24 +0. 00011 +0.0003 -0. 252 +2.40 -19.8 f 40+34-2 +0.00001 -0.0001 +0. 032 -0.19 +(0-0 ) sin *V 4 -0.00004 +0.010 - 0.08 Ji 20+24 +0. 000066 -0.00060 +0. 0399 -0. 275 + 0.94 v 20+ A -0. 000024 +0. 00047 -0. 0296 +0. 221 - 0.81 / 40+44 -0. 00023 +0. 0028 -0. 114 +1.02 -4.7 iV 40+34 +0. 00039 -0. 0053 +0. 251 -2.20 + 9.9 !> 40+24 -0. 00011 +0. 0024 -0. 124 +1.11 - 5.1 (0-0 ) a coe I- t.. 7)' -0. 00017 +0. 0014 -0. 052 +0.38 - 1.4 |V A +0. 00019 -0. 0021 +0. 077 -0.61 + 2.4 *" -0.00005 +0.0008 -0. 029 +0.24 - 1.0 m m' 3 m", m' 2 m r ' TO" m TABLE XXXVII. [ (00) (I ecoee)-gj- Unit 4th decimal of a radian. Cos ., -, to- ~ J w , +0. 000042 -0. 01071 + 0.0883 - 0. 402 + 1.31 - 3.9 9 1 -0. 00043 +0. 0056 -0. 189 + 2.73 - 51.3 + 299 1 ! /2 -0. 00021 +0. 0048 -0. 296 + 4.47 - 59.8 + 416 ? -0.0004 +0. 186 -2.00 + 11.7 - 40 Tl 71 J +0. 00076 -0. 0110 +0. 530 - 7.59 +104.2 - 682 Tl 20+24 +0. 000055 -0. 00086 +0. 1005 - 1.153 + 21. 86 - 81.5 +217 If' 20+ 4 -0. 000020 +0.00090 -0. 1377 + 1.463 -9.50 + 44.2 -176 Tj 3 40+44 -0.00031 +0. 0041 -0. 477 + 6.49 -133. 8 + 708 J) 1)' . 40+34 +0. 00068 -0. 0084 +1. 295 -17.43 +261. 3 -1266 " 40+24 -0. 00030 +0. 0041 -0. 921 +11. 58 - 95.2 + 452 ' 40+34 -S -0.00001 +0.0001 -0. 036 + 0.58 -5.3 + 25 TJ 7} 4 0.00000 -0.0004 +0. 052 - 0.44 + 2.0 TI 20+24 +0. 000044 -0. 00052 +0. 0266 - 0.212 + 0.83 Jj' 20+ 4 -0. 000016 +0. 00038 -0. 0197 + 0. 170 - 0.70 r 3 40+44 -0. 00031 +0. 0037 -0. 153 + 1.62 -7.9 1j Jj' 40+34 +0. 00052 -0. 0072 +0. 335 - 3.40 + 16.9 - .7.77, !'! 1* 40+24 -0. 00015 +0. 0032 -0. 165 + 1.68 -8.6 m' 2 TO' 3 m", m' 2 TO' 2 m' 2 , m' m'*, TO' m' 2 , TO' 134 Logarithmic. MEMOIES NATIONAL ACADEMY OF SCIENCES. [VOLXIV. TABLE XXXVIII. 0(0) Unit- 1 radian. Cos w- te- tO-4 w- U)-l w-i w w w 1.5 [3. 909] 4.960 6. 6748 B 7. 2764 7. 540 B 7.31 'V 2.0 1.9 [4. 644 n ] 3.41] [5. 160] 4. 75 n 6. 150] 6. 509] 8. 048,,] 8. 2077 B ] 8.838 [8. 994] 8. 655 B 8. 919 B 8. 100 B ? ^ .M - 2.83 n 5.146 6. 299 n ] 7. 994] 8. 740 [8 r 656] 1* J 2.34 [4. 446] [4.57] 6. 728 B ] 8. 4022] 9. 1999 B 9.0854 8.079 1)1'* 20 1.6 [2. 6 n ] 5.744 6. 535 n 8. 3811 9. 1031n 9. 0128 ,' 20+ 4 0.8 n J [3. 068.] [5. 2988] 7. 2212 B [7. 3772] [8. 0372] [8. 764 B ] 8.668 * 20+ 4 2.32 B 3.30 5. 886 n 6.718 8. 5059 ra 9. 2804 9. 201 7 B V" 20+ 4 5. 301 n 6.149 8, 2302 B 9.0154 8. 938 B P (' 20+ 4 8. 5592 9. 3245 B 9. 2428 f" 20+24 2.48 3.40 5.422 6. 292 n 7.476 8. 664 n 8.636 1) 20+24 1.22 [2. 94] [5. 1206 n ] 7. 6416 [7. 9638 B ] [7. 083 B ] [8. 645] 8. 582 B ,," 20+24 1.9 [3. B ] 5.442 6. 328 n 8. 0915 B 8. 630 B 8.742 ft 20+24 8. 5904 n 9. 3489 9. 8024 n 9. 6532 ,Y 20+34 2.04 n 3.00 4.98 n 5.89 8. 0326 8. 1973 B 7.69 X 20+ 4-2 1 4.51 5.42 n 8. 1011 8. 873 B 8.792 ? *' 20+24 -2 1 4.04 5.00 6.89 B 8.182 8. 158 B ? / 40+24 40+34 40+44 40+34 -2 1 [2. 66 n ] [2. 72] [2.20] 1. 5 n 2.7] 4. 369] 4. 624] 2.45 6. 1031 6. 2526 n [5. 824] 4.68 [8. 4188] 8. 5594 [8. 0924 B ] 7. 1747 B [8. 5297] 8. 7988 n ] [8. 4338] 7. 301 6.0] 7. 94 B ] 7.24] 8.111 7.90 n 8.287 7.74 B 8. 127. 8.210 8.044, V 3 60+34 5. 30^ 6.149 9. 1294 B 9. 7728 9. 6609 n ?r" 60+44 5.92 6.74 n 9. 4432 0. 14644,, 0. 05077 ,v 60+54 2. O n 3.0 5.93 n 6.79 9. 2774 n 0. 03298 9. 9494 B ? 60+64 2.0 3.0 n 5.420 6. 292 n 8.634 9. 4351 B 9. 3608 ?V 60+44 - 4.04 B 5.00 8. 272 B 9. 1028 9. 0334 B h 60+54-JT 4.51 5.42 n 8.0554 8. 926 B 8.864 (0-0 ) sin *v 4 [2. 60 B ] 4.71 5.94 n 6.507 B 6.606 I/ 20+ 4 1.36 [2. 48] 4.49 [5. 255 B ] [5. 51] 5.25 n 7 20+24 1.82,, [2.42] 4.64 n 5.350 [5. 51.] [5. 16] ^ /3 40+24 2.34 [3.00] 5.392 6. 179.] 6. 528 B 6.665 v 40+34 2.89 n [3. 46] 5. 702 n 6. 467] 6.851 6. 979 B >5 40+44 2.66 [3. 459] [5. 357] 6. 127,] 6. 530 B 6.653 (0-0 ) 2 cos ft<WO ,' I} 2 m- ' 2.08 2.08 , y-l. l 5. 546 n 5.546 V L'*i ;i - 2.54 2.54 , ' /i r' 1 5. 396 B 5.396 7 4 2.5 B 2.5 5.776 5. 776 B m' 3 m' 3 m' 3 , m'* m' 3 , m /2 m' 2 , m' m' 2 , m' m /2 , m' m n , m' m", m' l cos Arg. +(0-0 )2'M)*))P7) / 9; 2 <C' 2 sin Arg. where C lt C 3 , C 3 , represent the respective coefficients. cos Arg. COMPARISON OF TABLES. Table XXX. With the aid of the manuscript the source of all the discrepancies indicated by brackets has been traced. Coefficients in parentheses are functions of coefficients in paren- theses in Table XXVII. Table XXXI. The function was computed by the first of Z 81, eqs. (137), which is more rigid than the one following it, which v. Zeipel used. Aside from the addition of omitted terms, the bracketed coefficients are more accurate by reason of the errors in v. Zeipel's Table XVIII. Table XXXII. The computation was performed according to Z 82, eqs. (139) and (140), in place of eq. (141) which is less rigid. Besides the discrepancies due to the addition of omitted terms, four bracketed coefficients are of opposite sign. These discrepancies may be due either NO. 8.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 135 to a numerical error or to the number of terms included. The remaining discrepancy is due to slight inaccuracies of v. Zeipel's computation. Table XXXIII. The discrepancy in this table follows from one in Table XVIII. Third degree terms in Table XVIII were not integrated because, in the aggregate, they amount to very little. Table XXXIV. Our table is more extensive. Second degree terms are, however, not complete, for they do not include second degree terms in [%] cos + [z 2 ] sin e The discrepancies are of no importance. The integration of eq. (146) is best performed individually for each planet. The analytical developments are as follows: The differential equation can be written By a change of variable , d * . .=1+0(0) \ 2 / Writing we have Z 96, eq. (152), in which the last term can be neglected. For a given planet the factors w, TJ, j* and the argument J are known constants. There- fore 1 +0 (t?) can be expressed as in eq. (153), as a Fourier series of sines and cosines of mul- tiples of 2#, in which the non trigonometrical term is designated by a. Expressing eq. (153) in terms of exponentials and solving for d ( -~s [n'te] j by the expansion of {1+0 (#)}"', and reintroducing the trigonometric functions, we have the equation following eq. (153), in which the nontrigonometrical part is taken outside the brackets as a common factor. The brackets in this equation do not have the special significance which they have had previously. The variables e and t> are now separate and the integration can be performed. Trans- ferring the common factor to the left-hand side of the eauation. performing the integration and adding n as the constant of integration, we have the argument expressed as a function of t> in eq. (154), where is defined by eq. (155). The reversion of the series gives # as a function of . We have by eq. (154) where 2Cis & small quantity. Given z = w + <*0(z), where tx is small, we have, by a theorem of Lagrange, By means of this theorem eqs. (156), (157) can be derived, where it is to be noticed that (C~ 2 C + C/ ) k an approximation for ( ). In our developments we have used ( ). 136 MEMOIRS NATIONAL ACADEMY OF SCIENCES. If in Z eq. (155) we add and subtract/ -<re [n'dz']] \2 V 1 f Am i 7? 2\ , O 7* {*** "T~ J-'n I y r= 2 7 ' C i Substituting this value of f in eq. (156), [Vol. XIV. TIDJ! Ji Oj iifii JTTOV + Series i :nij 7 LtfHfi 'it't'T -!-:xi.t.!<? ;;<:; ! Substituting the last equation in eq. (145), we obtain Z 98, eqs. (159), (160), and (161). In 2 eq. (160) the factor (s c) is an approximation for - ( ) ; in our work we have used the latter. 2 Since [ndz] t is the series in eq. (156) multiplied by the factor -r Table XXXV. With the exception of the two coefficients under the heading w*, all the bracketed quantities are functions of other coefficients in parentheses or brackets, or they are functions of additional terms. The two coefficients excepted seem to be in disagreement through some numerical error by v. Zeipel. Table XXXVI. Since the mass factors have not been kept explicit, it may be well to remark that only the zero degree term of third order has been included under the heading w 2 . The bracketed quantities are numerous. Aside from the accumulation of discrepancies already discussed, the disagreements are to be attributed, in general, to the relative extent of the computations. It is found from computation that as the number of terms included in a product is increased the resulting coefficient for a given argument is numerical!}' larger. For the most part our values are larger than v. Zeipel's. Hence the discrepancies are explained by assuming that our computation is more extensive. On the other hand, the function is com- puted much more accurately than is necessary, and many of our disagreements are less important than they appear to be. Table XXXVII. The comparison of Tables XXXVII is similar to that for Tables XXXVI with the exception that our values are not, in general, numerically larger. Some are larger and some are smaller. Below are brief tables showing to what extent we used the necessary series. The 0, 1, 2 signify the degrees of the terms included. 1-1 to-' IP 1 w* w w' w* w o w to 1 1 1 1 1 1 2 2 2 2 2 m' m" in! No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. - coe c)W-[(l-ecoee)W]} 137 MLI - w- V V V w> ii If! e V w> 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 m' m" m" Table XXXVTIL All the bracketed quantities probably contain only the accumulation of the discrepancies in Tables XXIX6, XXXVI, and XXXVII. This is a very important table, and it is from differences in 9 (tf) that the perturbations may be expected to differ most. PERTURBATIONS OF THE RADIUS VECTOR. TIT 1 * If Wand A are tabulated and the computation is performed in duplicate, it is not necessary 3 to make the long developments and the auxiliary tables in Z 6, 99-114. For this reason the formulae in 6 have not been checked and the list of errata does not cover this section. The essential formulae are given in Z 99. By Z 7, eq. (36), In order to parallel the form of ndz, we write where (flt + 0, + 0,) is given by Z 93, eq. (150). Hence the computation proceeds as follows: the perturbation is computed by eq. (36), the argument is replaced by #, and a corrective term which is the product of (0i+0, + s ) and the derivative of the function with respect to # is added. The perturbation v is then expressed as a function of #. It is tabulated in Table XTJTT. Table XLHI. If there are no errors of calculation in the construction of the table, all the discrepancies are due to the accumulation of other discrepancies previously discussed. The perturbation v =/(0) includes M W-* te w> - m* Iff! 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 m' m' 2 where the tabulated numbers signify the degrees of the terms included and where only TF, and Ej are inclusive of third degree. 138 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XLIII. Logarithmic. [Vol. XIV. Unit-1". Cos r ur HT' w" .w to" 8.72 [9. 88 B ] 1. 6349 2. 1070 B 2. 2333 7 2 9.80 [0.212,] 2.759 3. 4922 n V 8.9 9.23 2.937 3. 6295 n ? 2. 937 B 3. 6295 t^ J 9.66 B 9.78 3. 1136 B 3.8440 \\* 2t 0. 556 n 1.204 3. 2111 B 3. 7970 1 20+ J 0.504,, 2. 3472 2. 456 B 2. 686 B 3. 4735 rfi 20 + J 0.997 , 1.711 n 3. 6559 4. 3103 B 1* 20 + 4 0.438 1. 220 B 3. 3654 4. 0763 B j 1 r,' 20 + J 3. 6975 B 4. 3810 1) 20 +2 J 0.438 2. 952 B 3. 2529 [3.0689 B ] 3. 3979 B V 2J+2J 0. 732 n 1.497 3. 2410 B 4. 0643 11" 2rf+2J 0. 772 B 1.589 3. 4136 4. 0723 X 2i>+2J 3.9048 4. 5649 B ] 4.9303 J > J ' Ji f'bt '- ' * V 2i?+3J 0.505 1.344, 3. 4757 n 2. 783] & 2i>+ A-S 9.33 n 0.15 2. 938 B 3. 530] 3V 23+2J-2 9.20 0.10 n 2. 0251 3. 2961 B ,;- +2J 4,?+3J 8.9 9.75 n 1. 2819 B [1. 5024] 3. 5514 3. 7885 B 3. 6173,, 4. 1394] 3. 8147 4. 3110 B it'll M / 4^+44 4V+3J-2 9.98 [1. 1342 B ] 9.64 n 3.4007 2.305 3. 9091 B ] 2. 542 B [4. 1480] [2. 749 n ] ,'3 6^+34 0.436 1. 220 n 4. 2675 4. 7993 B ft* 6^+4J 1. 125 B 1.862 4. 6479 B 5. 2324] ?V 6tf+5J 1.198 1.947 B 4. 5397 5. 1768,] & :IT ? 3 6J+6J 0. 732 B 1.508 3. 9457 B 4. 6328] P *' 60+4 J-2 1 9.20 0.10 B 3. 4099 4. 1710 B V 6^+5J--T 9.70 B 0.56 3. 2601 B [4. 0542] >M' ie+ <> 3,4878 B 4. 1106 i ^+ t>+ J 8.3 B 2. 2106 2. 7179 n 2.919 ; 2 is+ t5+ J 3. 5709 B 4. 2261 % 2 ie+ ?+ 4 3.4507 4. 1296 n V i+ l>+ A 3.5100 4. 1837 B tt* }.+ iJ+24 2. 579 n 3. 9270 ?' is+3^+2J 0.08 3. 6873 4. 1471 B 4. 7839 ^ 4+3t+3J 9.5 3. 5727 n 4. 1511 4. 7545 n ," is+5<J+3J 4. 5568 5. 1414, tr i+5<5+44 4. 7261n [5. 4067] / i+5<>+5J > a JOTIO ti< 4. 2862 [5. 0418n] / if+5<>+4J-2' UoiUlflUil 3. 2570 4.0005 n y" -*+ <> 1. 086 B 2.7090 3. 3467 B 3. 7098 i| -<:f+ I>+ J 0.88 2. 1967 n 3. 0952 3. 5836 B V 2 -- U+3<?+ 4 2.514 4. 1049 n 7V " -,:J + 3tf + 2J 4. 0853 [3. 9122] -i +3i5+3J 3. 8341 B [3. 8U8] f -it+3iJ+2J-J 2.416 3. 6926 n ij e 9.62 0.58 B 2. 143 B 2. 682 2. 9151 n V + ^ 9.04 B 9.9 2.061 2. 666 n 2. 9477 tV + 2l>+ J 0.444 1. 1661 B 3. 0588 3. 8035 B [4. 2554] e+2i?+2J 9.487 2.]744 B 2. 7280 2. 972 n 2.976 >! 2 +2tf+2J 0.344n 1.1143 2. 692 B [3. 5334] [4. 0772 B ] I" +2tJ+2J 0. 025 n 0.828 2.634 3. 0726 4. 0416 B f +2^+2J 3. 1265 3. 8806 B 4. 3473 W' +2tf+3J 9.98 a sii. 2. 873 B 3. 1697 [3. 5856] tr* +4i?+2J 1.105 L89W 2.864 4. 3477 n r +4^+3J 8. 8 n 0. 398 2. 8000 n 3. 5327 4. 0065 B 4. 3207 ,Y +4^+3J 1. 260 n 2. 083 3. 0931 4. 4160 ," e+4<+3J 3. 8375 4. 0446 B J 1 >>' +4^+3J 0. 267 1. 15 B 3.9421 4. 6972 B j) e+4tf+4J 9.19 0. 248 B [2. 6356] 3. 4317 B 3. 9469 4. 2558, ^ 3 +4^+4J 0. 774 1. 66,, 3. 0934 B [3. 7866 n ] ,," s+4i>+44 4. 1154 B 4. 5547 f. +4tJ+4J 0. 455 B 1. 32 3. 8518 n 4. 6436 Jv +4^+5J 3. 7579 4. 3244 n No. 3.] Logarithmic. MINOR PLANETS LEUSCHNER, CLANCY, LEVY. TABLE XLIII Continued. 139 Unlt-1". Cos - r * . v> fi e+4t+3J-J 3.0030 3. 8869, I 3 n' , 4i , , 4j_^ 2.4425 1 85, '/ r g-j-6(?~l~4^ 9.98, 0.480 3. 5016, 4l 3723 4. 9952, -{-6i?-f~5J +6t?+6J e~}*6i?-(-5^ ^ 0.296 9.95, 8.5, 0.823, 0.538 [9. 15] 3. 6369 3. 1685, 2.114, [4- 5582,] [4. 1334] 3.0881 5. 2093 [4. 8131,] [3. 7886,] 3 i" t-f"8^-|~5^ 4. 2554, 4. 9349 !* cr f-j-8i?-|-7^ 1.320 1.228, 2. 152, 2.093 4.5657 4. 3995, 5. 3010, 5. 1827 ,' P^-gjj-Lgj 0.648 1.54, 3.7543 4. 5812, / ^j-gjj -i- j2 3. 2818, 4.1442 A s-\~o^-\-7^ ~~ 2 3. 0763 3. 9759, - t+2d 0.305 PL 1007,] 2.912 3.4958, 3. 8151] j/ - ;JgJ^ 0.490, 0.117 [1. 3330] 2:288, [3. 7273] 3. 2375,] 4. 3119 3. 7892 a ~f"2l?-j- J 9.04 9.96, 2.636 3. 2817, 3. 6568 B ~f"4i?-{- J 3. 2197 3.9650, - e+4t>+2J 1. 146, 1.89 3.0204 4.2441 n 2 j/ f~|-4i?-l-3^ 1.005 1.78, 3. 5247, 4.0012, B f-|-4(?-t-4i 0.290, 1.15 3. 1793 2.982 1 K -{~4tJ-}-2J ^* 3. 2486 4.0585, - f+4tf+3J-J 9.98, 0.8 2.957, 3.8580 n | + ,j+ J 9.0 2.3363 [3.0704,] [3. 5111] ,; | + 0+2J 9.5 1.500 2.3585 3. 1842, |+3*+2J 2.779 3. 7820, If+SiJ+SJ 9.28 2. 1614, 3. 0257 3. 6491, i) 1 j_j_3 ( j_i_3j 1.32 2.966 V *+3iJ+3J 3.3450 4. 1111, j * |+3i>+3J 3. 2309 4.1965, |+3<?+4J 3. 2994, 4.1520 ' f+5<>+4J 1.017 3. 1617, 4.1967 5.0160, - 5+5<>-i-5J 0.88, 2.9688 4. 0380, 4. 8781 fl" 4.0855 n 5. 2422 5"!' ^+7<)+6J 4. 1991 5. 3823, f+7iJ+7J 3. 7114, 4.9188 f | ^_7,j-(-6J 2" 2.615, 3.8317 y ,' 3. 2411 3. 7872, .2 ' + tj+ J 2. 819, 3.4476 y 3 -*H- tf -I 1 2. 9181, 3. 4813 B 2 2.364, 3. 0737 TJ Ij 2+ J 2.624 3. 3489, U/z 2 S + 24 2.207, 2.978 ' X *lt y 2 2+ J+^ 2.620, 3.2765 ,j 2+2<?+2J 9 8, 1.63 2. 362, 2.873 r/ 2e+2i>+3J 9.5 1.796 2.303, 2.1007 2 +4<J+3J 1.92, 2.700 2j+4!y+4J 8. 7 [8. 8] 1.5802, 2.4158 2. 9867, gl 2+4tj+4J 2.330 3.1764, jj'2 2j+4^+4J 3. 1079 3.9008, /* 2j+4tj+4J Hi t):'f?>l;i|'ni 2.736 3.6809, . . p V .,} " . 5 T 2j+4^+5J 2. 9881, 3.8425 - il+S+ej 9.64 [0. 53] [0. 36*] 2.652, 2.4419 3.6204 3. 4512, 4. 3279, 4. 1892 l" 2+8;>+6J 3. 6135, 4.6784 n *' 2+8i>+7J 3. 7124 4. 8075, ' M 2f+8^+8J .$ i'i >i au jV* '>/J'l 3. 2109, 4. 3338 i '. in IllSilOf y 2 2s+8d+7J-2 2.068, 3.2092 yxjiii jd r> | c - +5t j + 5j 9.3, 1.140, 2.0056 2. 5727, ,j' +7i)+64 0.5, 2. 2749, 3. 2377 3.9184, i |+7tf+7J 0.3 2.0542 3.0565, 3. 7710 j+7<>+7J 8.1 0.43, 1.346 1.959, 140 MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE XLIII Continued. Logarithmic. [Vol. XIV. Unit-1" Cos ur ur KT' UJO to . (t>-t )sin 99' ^ 9.66 0. 810 B 2. 7559 3.3840 n 3. 6946 9 / 2t>4- 4 9.79 B 0.54 1 20+2J 9.92 [0. 63] 1 I 9.801 B 0.425 2. 5970 n 3. 1493 3. 4158 B I 3 1. 075 n 2.045 3. 5201 B 4. 3751 II' 1 e 1.640 n 2.514 4. 1066 n 4. 8961 ft 1 1.063 1. 916 n 4. 1066 4. 8961 B 5. 4076 1' + 4 9.36 0. 471 B 2. 4824 3. 0830 B 3. 3936 1\ + J 1.565 2. 456 n 3. 9671 4. 7890 n t+ J 1.543 2. 341 B 3. 8942 4. 6760 B ? ';, + J 0.87 B 1.75 4. 0705 B 4. 8759 5. 3965 B t+ 2J 1. 441 B 2.273 3. 7192 n 4.5456 f i f t+ I 1 0.42 1.36 B 3. 7799 4. 5819 B 5. 0998 e+ ^+2 0. 695 B 1.585 4.0417 B 4. 7827 5. 2543 B ,a j+4,>+4j 9.59 B 0.45 i' +4tf+3J 9.46 0.34, 1 2t+2*+2J 9.45 [ H] * 2 -j-2<?-)-3J 9.32 B [O^CM] 9V - H- J 1.255 B 2.149 3. 6240 B 4. 4615 (l> 1> ) 2 COB , C 9.25 0. 117 B '' f+ J 9.12 B 0.02 TO' 2 TO' 2 m' 2 , TO' TO' m' TO' cos Arg.+(tf-i? )^u.-r / P7j / 9; 2 C 2 sin Ar where CD C 2 , C a represent the respective coefficients. PERTURBATIONS OF THE THIRD COORDINATE. Arg. For the third coordinate the developments are limited to perturbations of the first order and of the first degree with the exception of some secular terms of second degree. We can therefore use osculating elements in this section, and use 6 and # without distinction. By Z 8 eq. (39), 41, eq. (83) and 8, eq. (41) the equations Z 115, (192) are given, in which 2 is defined. Since dS_SS SS ^ = 2 de de + 3d de By Z 9, eq. (45) we have, with sufficient accuracy, Z 115, eqs. (193). Within these limits, dO w Substituting this relation in the above equation and in eq. (192) in turn, the differential equation to be integrated is (194). Since F, 6, H are power series in w, it is evident from eqs. (192) that j O ^= where NO. s.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 141 Therefore, eq. (194) becomes Comparing the coefficients of like powers of w on either side of the equation, it is evident that the integral must be of the form Substituting this relation in the preceding equation and equating like powers of w, the system of equations (195_,) (195 t ) follows. Within the extent of the following developments one more equation should be written by analogy. dW This system of equations is integrated in a manner similar to that for -5- (see p. 81). Each equation is broken up into two equations, one a function of e and one independent of e. The differential equation (194) is then replaced by eight differential equations, the integrals of which can be obtained in the order, S_,, GS.-DSJ), [SJ, (S^-DSfJ), [SJ, As in the case of -j , the condition is imposed that The equivalent equations are (196)-(200). dW" A comparison of the differential equations for (S< [S<]) with the expressions for , * dW " s- 5 leads to an analogous form of integration for certain terms. Within the extent of our developments, and 1 -(l-cos) . -c -!- cos dW " d W " take the place of ^ and ^77 respectively. Without change of notation for the third coordinate, (S-[S]) is given by eqs. (201), (202), where P, G, Q are computed from F, G, H in Tables XII-XTV, by means of eqs. (118) and (119). The coefficients P, G, S are tabulated in Tables L to LIT. The function [S] is obtained from the integration of eq. (203). A constant of integration is added, which is the same in form as Hansen's constant of integration for the perturbation of the third coordinate, namely, c,(cos <f> e) +Cj sin <f> Z eq. (204) where c l and c t are undetermined. By eqs. (192), the pertubation '. is derived from COS c . i cos i The perturbation comprises the computed value of eq. (202), the trigonometric sine series given by Tables L to LII (which can be written by inspection with the aid of Table XV6), the series forming Table LHI, and the constant of integration (204), in all of which 142 MEMOIRS NATIONAL ACADEMY OF SCIENCES. tvoi.xiv. TABLE L. Unit 1". n l 2 3 4 5 J' 1 . (n+l.-n+l)-Hr / + 52.7 + 96.0 + 57.0 + 33.8 + 20.1 + 12.0 *io(** 1. 1+1)+^' +158. 2 - 285.0 -101.4 - 47.0 - 24.0 ?Vo( n +l- n 1) ' -158. 2 -191. 9 - 95.0 -50.7 - 28.2 - 16.0 *Vo(-l.--l)-*' - 52.7 -191. 9 - 285.0 + 140. 9 + 48.1 b J*,. (n+l.-n+l)+^ / -201 -352 - 253 -176 - 119 - 80 M J" 1 . (n-l.-n+l)+^ -812 +1495 +594 + 305 +172 5 /,. (n+l.n I);:' +812 +897 + 498 +297 + 183 +114 ( JWn-l.-n-l)-,:' +201 +513 + 355 -1478 -439 TABLE LI. Unlt-l". <3 . (n.-n+l)+K' 26.37 - 47. 98 - 28.50 16.91 10.06 - 6.02 Go^n.-n-l)-^' + 79. 10 + 95. 96 + 47.50 + 25. 36 + 14. 09 + 8.02 5 1 . (n+l.-n+l)+T / + 90.3 + 112. 3 + 58.5 + 29.0 + 13.6 + 5.8 <5,. (7l 1. 71+1)+^' + 530. 8 + 720. 8 + 468.9 + 311. 7 + 207. 7 + 138.0 G,. (n+l. n 1) IT' - 124.2 - 120. 5 - 53.3 - 21.8 - 7.4 - 1.2 G,. (n 1. n 1) T/ + 609. 9 - 1549.1 - 674.1 - 369. 6 - 219.0 G . 1 (n.-n+2)+r / - 162.4 - 211. 6 - 103. 8 - 47.7 - 19.7 - 6.4 <2o-i( n - n)4V - 166.5 - 352. 6 - 298. 2 - 229.0 - 167.2 - 118.3 <?.,(. n) it' + 166.5 + 96.7 + 13.2 - 14.4 - 20.7 - 19.3 G .i(n.-n-2)-7: / + 1825.5 + 881. 4 + 516. 6 + 321. 2 + 204. 1 G . (n.-n+l)+ff' + 100.4 + 176.3 + 126. 8 + 87.8 + 59.6 + 39.9 Go-ofa- 1) *' - 406. 6 - 448. 6 - 249. 2 - 148.6 - 91.5 - 57.2 G,. (n+l.-n+l)+w / - 432 - 592 - 370 - 218 - 122 - 64 ^ i -o(. n ~ 1 ~ n H~ 1 ) +f' -2047 - 3183 - 2412 -1811 -1342 - 982 Gi.o(n+l. -n-\)x' + 718 + 821 + 440 + 225 + 107 + 44 o Gi. (nl.nl)7^ -2401 +12134 +4939 +2788 +1744 1 G . l (n.-n+2)+x' + 693 + 951 + 568 + 314 + 158 + 68 Gjo.^n. n)+7r' + 893 + 1773 + 1607 +1356 +1089 + 844 G .j(7i. n) w 7 - 893 - 747 - 254 - 27 + 68 + 98 gj / _ n _9'i_ / -13263 - 5889 -3549 -2336 -1586 1 ' ^ TABLE LII. Uuit-l". F . (n.-n+l)+w / - 79. 10 + 142.49 + 50.72 + 23. 48 + 12. 03 fl . (n.-n-l)-*' + 26. 37 + 95. 96 + 142.49 - 70. 45 - 24. 07 #,.0(71+1. -n+l)+jr' - 609.9 - 528.9 - 231.4 - 108.8 - 52.7 - 25.7 Hi. (n-l.n+l)+x' + 124. 2 + 528. 9 +1121. 6 - 897.4 - 365. 9 ffi. (w+l. wl)t / - 530.8 + 551.7 + 166. 9 + 64.3 + 26.5 tf^n-l.-n-l)-*' , ;i yrj 90.3 - 312.4 - 421.4 - 572. 6 - 967.8 H . l (n.-n+2)+7:' +1057. 8 + 311. 5 + 111.3 + 39.4 + 11.6 S tl .i(n.n)-\-x / - 166.5 -1057. 8 +1145. 2 + 501.5 + 276. H O ,,(.-)-K' + 166.5 + 290.1 + 71.9 + 62.1 + 44.9 H . 1 (n.-n-2)-7r / + 162.4 + 608.5 + 881.4 +1551. - 1020.6 H . (n.-n+l)+x' + 406. 6 - 747.8 - 297.2 - 152.4 - 85.8 H . (n.-n 1)-*' - 100.4 - 256.6 - 177.8 + 739. 1 + 219. 8 ^,. (n+l.-n+l)+^ / +2402 +2483 +1362 + 740 + 406 + 222 I Zr,. (n-l.-n+l)+,r' - 717 -2483 -4550 +8048 + 3120 y F,. (n+l.-n-l)-^ +2046 + At c y _I_1 91 A -4336 1 T API -1408 _i_l CMYI - 697 11 -\ Of* 298 1 fi Q \(n _ n +2)+^ * <6& -f-U14 -3908 -rJ.4ol -1705 -piyui - 753 -plloO - 325 - 126 8 9 . l (n.-n)+* f + 893 +3908 -9529 -3936 - 2233 n^.^n.n)!^ - 893 -1855 39 - 287 - 270 ^ . 1 (n.-n-2)-^ - 693 -1987 -2363 - 310 +13643 No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE LIU. } Unit-l" 143 and by eq. (193), Sin UP 1 w" 10 v"*- ^+40+3J-n' - 25. 36 + 123.2 - 281.8 ^ 40+3J-IF -J+20+ J-U' <j>+26+M+U' <!>+26+ J-U' f+W+M-U' + 50.7 - 816. 8 - 521.8 + 432.9 + 129.9 - 246. 5 + 3636 + 2851 - 2034 - 861 + 563.6 -8548 -7663 +5237 +2770 if 4-26 +n' <!>+28+24+n' <!>+28+2J-n' 0+60+4 J-n' - 649.4 + 596.4 - 26.5 - 214 + 3096 - 2916 + 494 + 1236 -7475 +7216 -2266 -3395 (0-0 ) cos 4+ J+U' + 191. 93 - 705. 2 +1302. 6 y 4+n' - 383.8 + 1410 -2605 1)' 4+ A+H' 4- 4-n' +6584 -5312 -40060 +29610 ril' J>+ 2J+U' <!>+ n' 4- n' -5742 -6024 +6024 +36970 +38180 -38180 1" <<,+ A+W $+ J-U' +6584 -1656 -40060 [+11860] f 4+ j+n' -3002 +18970 m' 2 By inspection it is clear that the periodic part of S is of the form 2 Up. q i)Pr]'* sin A and the secular terms are of the form o'A'^ cos {(A-t w . T) 17,. COS A Expanding cos {(A s) +s}, and collecting coefficients of sin and cos e, the secular terms can be written nt{ K^cos e e) + Kj sin e} where IT, = I U p . q ijPi)'i^ cos (A E) - 4 C/j.o cos A Introducing this notation, the perturbation can be written in the form of eq. (205). The coefficients U p . q are given in Table LIV. K, and K 2 , which are constants, are tabu- lated in Tables LV^ and LV n , respectively. For a given planet the factors and arguments are known. Therefore T^ and K^ reduce each to a single numerical quantity. Since the Bohlin-v.Zeipel method is based on the fundamental principles of Hansen, the constants of integration are determined by the condition which must be satisfied when the 144 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. perturbations are developed on the basis of osculating elements, namely, that the perturbations and their first derivatives shall be zero at the time t = 0. The relations to be satisfied are u = -0 dt~". and the following equations are equivalent relations : Logarithmic. Unit-l" Sin M w' W 1) f 1 x - 4-n' -n' 29+ 4-n' 49+34 -H' 49+24 -n' 1.705 3. 0621 B 2. 8235 2.2831 3. 1591,, 3. 2462 3. 7258 3. 5528 2. 8483 B 3. 8608 3. 9166 B V j + 9 -n' i+ 9+ 4-n' i+39+24-H' J:+59+44 n' 'II 1 1 ! 3. 2112 B 2. 5875 2. 2787 3.3155 3. 0779 B 3.8544 3. 4153 B 2. 6304 n 3. 5865 B 3. 3972 '<; \e 9 24 n' -}e+ 9 -n^ _ j -j-39+24 n' 3. 1158 B 3. 1493 2. 3242 3. 3863 3. 3532 n 3. 7378 3. 7544 B 3. 0060 n 4. 1833 B 4. 1452 i -)-29+ 4 n' +29+24 -n' +69+44 -n' +69+54 -n' 2.6364 1.423n 1. 4042 n 2. 3306,, 2. 1137 3. 3704 B 2.706 2. 1720 3. 1922 3. 0138 n 3.8423 3. 4014 n 2. 6339 B 3. 7582 n 3. 6101 T\ - -29-34 -n' - -29-24 -H' - - 4-n' - +29 -n' - +29+ 4-n' 2. 7175 2. 7756 B 2. 8125 2. 9121n 3. 4858 B 3.5070 1. 6810 3. 4427 B 3. 4958 3.9484 3. 9456 n 2. 2463 B 3.7846 3. 8338 n '* ' $+39+24 -n' $+39+34 -H' $e+59+44 -n' f +79+54 -n' 2.6058 1.760 1. 7510 n 2. 9120 B 3. 5312 n 1.82 B 2. 8113 4. 0813 ''; -f*- 9-24-H' -$+ 9- 4-H' -$+ e -n' i ''A ' 2. 8673 2. 9620 B 2. 0569 B 2. 9275 B 2. 9702 3.8458^, 3. 9124 2. 7932 3. 4708 3. 5487 B v 2+49+34-n' 2+49+44-n' 2+69+54-H' 1.640 1.617 1. 206 B 2. 731 n 2. 340 n 2. 2110 TJ -2e-49-54-n' -2i-49-44-n' -2-29-34-H' -2 -24 -n' -2j - 4-n' 2. 4012 2. 5241 B 1. 5290 n 2. 3174 n 2. 3514 3. 3634 B 3.4544 2. 3210 3. 0558 3. 0737 B m' u .=2Ur,. a i)P-n'9a\n A+nt{K,(coa e )+JsT, sin }+c,(cos t e)+c, ain E I COS I V V 1 7 IT No. 3.] >>! MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABLE LV a . 145 Logarithmic Unit- 1". OH w V * 1 j-n' ' j+n' ^+n' 4+n' j+n' 2J+n' 2. 9180 B 1.9821 2.8035 3. 5175 3. 1764 B 3.4580 n 3. 7732 2.5473, 3.7182,, 4. 3017, 3. 9772 4.2668 2.8138 m' /*/* cos Arg. . -A. i TABLK LV '- ;o ; Logarithmic Unit-l". i j-.rl* if e.* Sin tr u w . ' i .> 1 'yls III *WJ , .,.,() ;f.tj|,, f.. viioiti -fiKt V* j n' 2.9180 3. 7732, ^ n' 3.7799 4. 5819, 4+n' 1. 9821, 2.5473 2.8138, >i>t .(i<j(jfnr!''!> 'V j+n' 3.7744, 3. 5175, 4.5420 4. 3017 1 v' 2J+n' 3.4580 4.2668, i r '. *- - . i , r f j" j+n' 3.1764 3. 9772, r,,fT .]ioll;)fl.l n' F! 1 ". ' :'.' ' >' \ ITj = SvPTpy'i]* sin Arg. 1^ i;Pj;'9 sin ^4 +7J.K, (cos s e) + K, sin e +c,(cos e e) -fc, sin e r cos i ~ M By eq. (205), at the date of osculation, / = ft n = fj- - w , , ' i c,(cos e e) +c, sin s (A.) t COS t By Hansen, 1 d( u \ d( U \dS d\t cos t/ = d^V cos i) d<f> U in which v. Zeipel's notation is adopted. dS xi_ . ., tne derivative, -, contains the constants <t ^ongiateafT >iiT *.i JT From the various parts of S, enumerated above, *jj can be computed. Since S contains the constants of integration c,(cos <f> e) +0, sin ^ .'ii -tMl . L' 'i9<i yjininqolsv^b aniwollol 'idl i<>} IF! v wMi/ju-. -noil tJOTim..-> od IIAO -T;i-wn-(> -dl c, sin e + c 3 cos e The solution of eqs. (A) and (B) gives c^ and Cj. But there is a better way of deter- mining the derivative of the perturbation. The exposition of this second method is postponed until a particular example is considered, for the perturbations are not yet in a form which leads to the development of the equations. 1 Auseinandersetzung einer iweckmassigen Methode rur Berechnung der Absoluten Stomngen der Idcinen Planeten, Erste Abhandlun, 5 5, p. S 110379 22 10 >,-ib 1.,'; ITO! :! ll/-.'''' 146 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xnr. COMPARISON OF TABLES. Tables L, LI, LII check satisfactorily. Table LIII. With one exception, the agreement is satisfactory. The bracketed coefficient contains a misprint in sign in v. Zeipel's table. That it is a misprint is evident from Table LV t , in which the correct sign is given to the corresponding coefficient. The terms included in the last column are computed from the additional tables, 2 , XlVifl 2 and from first degree terms in Z 116, eq. (200). The latter part, namely, e cos . is added to both eq. (200) and eq. (203). Table LIV. Our table is more extensive. The one bracketed quantity includes an addi- tional term from Table LIII. Tables LV I( LV U check satisfactorily. CONSTANTS OF INTEGRATION IN ndz AND v. The constants in . were treated in the preceding section by the familiar Hansen method. cos i It is the purpose of this section to modify the similar treatment of the constants in the per- turbations ndz and v so as to incorporate them in the elements a w e , ic w ^ - Through the con- stants of integration, the constant elements, which have been used from the beginning without definition, are to be explained. Since the group method of developing perturbations is built upon the fundamental prin- ciples of Hansen, his conditions for the determination of the constants of integration must be fulfilled. These conditions depend upon the choice of initial osculating or mean elements. Osculating elements are used here. The corresponding conditions are that the perturbations and their first derivatives, at the date of osculation, (< = 0), shall be zero. Consider the relation of the constants of integration to the elements. There are two con- stants in each perturbation since the differential equations are of the second order. The con- stant added in the first integration is a velocity; the one added in the second integration is a displacement, or, a perturbation. Now, recalling that the position and velocity of a body for any time t can be transformed into the constants which are ordinarily called the elements of the orbit, it is evident, by analogy, that a displacement of the body and the velocity of the displacement can be transformed similarly into changes in the elements. The four constants in n$z and v are related to the four elements, a, e, TT, c, defining the shape and size of the orbit and the position in the orbit, and the two constants in the perturbation which is measured perpen- dicular to the plane of the orbit are related to the elements fi, i, which determine the position of the plane of the orbit. It is possible therefore to modify all six elements, but it is v. Zeipel's preference to make the transformations only for the first four constants. It is not necessary to compute ndz v k> eJificj euorutv 'fi mo dn8z dv t = Jflfjj- <:<)> )ti) de de for the following developments perform the transformation analytically, and the changes in the elements can be computed from auxiliary functions. Let a , e , x , c be osculating elements ; let a, e, K, c be the osculating elements modified by the constants of integration in the manner indicated above. For undisturbed motion, -e sin = c + 7i < ll+^> <sKv-7M,) = -\/nrz *9 i r cos (v 7r ) =a (cos e e ) r sin (v JT O ) =a Vl e 2 sin E Hansen's choice of ideal coordinates demands that the coordinates and their velocities shall have the same form of expression for disturbed and undisturbed motion. The ideal polar NO. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 147 coordinates are designated by E or /and f. The relations which are analogous to the above are !l!JMV4 i!) HO tg(v -JT O ) F cos/=a (cos e-e ) f sm/=a o yi -e e 2 sin I f=vn^ r=f(l+v) These are the equations for motion in the orbit based on constant osculating elements and appropriately determined constants of integration. If, in place of osculating elements and Hansen's ndz and v, v. Zeipel's elements and the corresponding perturbations are used, the equations are the same in form. In v. Zeipel's notation e and / take the place of e and /. The omission of the dash over these variables is permissible, since the physically real values, with which they might be confused, do not occur in the theory except for the date of osculation, where the subscript zero is added. It is to be noted that, through v. Zeipel's choice of elements, the coordinates and the perturbations have values which are numerically different from the Hansen quantities of the same designation. Let the time be the date of osculation and denote the true coordinates by , v , r,. Then the preceding equations for undisturbed motion become Z 121, equations (206), (207), and Z 125, equation (230). Let the disturbed eccentric anomaly and radius vector (e, r) be e, and r v respectively. The relations for disturbed motion become Z 121, equation (209), and Z 122, equations (210). The first derivatives of these expressions are given by equations (208) and (211), respec- tively, and the time rate of is given by the equation following (209). The solution of the four equations (210), (211), with the aid of all the others, determines the four unknown constant elements, a, e, n, c, or, better, a a , e e , r K O , and c. The fact that the adoption of the new elements in connection with the perturbations ndz and v, as developed in the preceding sections, is equivalent to the use of osculating elements, follows from the simultaneous solution of the equations for the disturbed coordinates and their velocities and the corresponding equations for undisturbed motion. The method of calculating c from the equation c = , - e sin , - ndz is given in the example, page 18. After many laborious transformations the other three unknowns are expressed in terms of familiar functions in equations (233)-(236). In the verification of these equations slight differ- ences in the numerical coefficients of certain unimportant terms were found. The magnitudes of these coefficients depend upon the number of the terms included in making the transforma- tions. Since it makes little difference whether or not they are included and since v. Zeipel's values present a more symmetrical form of a later auxiliary function, we adopted his coeffi- cients. In the functions x, y, z the arguments and factors are functions of ij, ic, ff v J, 2, where 0, = 2 ki-* sin e,)-^' but at the beginning of the computation only T; O , r , , , J , J c , the corresponding functions of osculating elements are known. 1 i There is a confusion of notation in v. Zeipel's developments. In Z 127, equation (238), Ha is denned to be the value of at the date of oscu- lation when osculating elements are used for the planet, and 0\ signifies tin- argument if the elements a, t, *, etc are employed or by Z 9 equation (43), l hykt-e, sin )-/ j -l-ii.lV <)\(>l\' and their di'Terence is computed by Z 127, equation (238). In the collection of formulae by Z 133, 0- 4 c. c' This is an approximation for the above equation. Oi-ic-c' -j- (n e sin )-# ef If the secular terms are counted from the date of osculation, the factor (9 ) ought to be replaced by (0 ft). 148 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Voi.xiv. By equations Z (43), (235), (236) and the equations preceding (233), the factor ij and the arguments J, e w t are given in equations (238) in terms of osculating values and functions of perturbations, inclusive of first order. To these should be added 1 i 2 = 2 -j-s+ and 4ljo -i, cos s sn e n -z cos where ,1- j The equations (233), (235), (236), and (238) permit the construction of two tables which determine w, n or a, and e and TT. From here on the developments differ in form from v. Zeipel's although they are the same in principle. If v. Zeipel's equations (237) and (239) are used, the term (x," ijy/') should read (* 2 " +x s " +x t ")-i)(y 3 " +y s " +y t ") in agreement with Z 91, line 14. Suppose that w w has been computed by equation (233) and the argument F has been introduced. The arguments and factors are unknown. .1' ')()*:) sjmwnliot 1; ' ''.'* nv/ij} 8* i io -jKM 3;m' f>rlf bn ,-.M-jnt By Taylor's theorem ~ W =/()J ' FV &u *' ^ df 8f df 8f df w-*>*=f(>), r, e , J , S )+-^j, +-^jr + ^j0 +^jj +^jj + r .,,^ wj Inclusive of second order in m', the differentiation is for first order terms. Substituting the values of Jij, AF, J0 , JJ , JJ from equations (238) and the additional equations above, _,, ra A iMa./*/. 5 / 5 /N ! /'*/' V VV .-/^ / , , *., ^+\f^3 5Jo ^ ;4^ 2+ VH, wiT'.WwSS! ai i ^3/ 2 / 1 - ,, "'Jo COS + 1-^9 COS ,l/ Sin -3 COS The order of calculation is: computation of equation (233), in which the arguments and the factors are given the subscript zero, differentiation of first order terms, computation of the second order terms in the above equation, and the additon of these second order terms to the first calculation. With some foresight the computation can be simplified. The arguments should be arranged in groups like the following: TU f u i / ihen, for whole groups of arguments, df _8j_ _d _ ~~- Also for some particular argument in a group, the condition may be satisfied. Ko.8.] MINOR PLANETS LEUSCHNER, CLANCY, LEVY. 149 Finally, by inspection of the arguments, considerable computation can be avoided if ._ A/L a/ The function w w> is tabulated in Table LVL Since it is unavoidably a function of w itself, the determination of to for a given case must be made by successive trials, the first approximation being n>=w Logarithmic. TABUS LVI. w tc Unit -1 radian. Cos ~ ^ - K* w .. 4.360 [5. 1966,] [5. 7767] r 4.766 6.6599 7. 3732, 7.7492 zr 4.446 7.1194 7. 7572, 8.0553 3r 4.412 6.8442 7.5458, 7.9060 4.484 6.5883 7.3450, 7.7602 5/ 1 6.3437 7. 1490, 7. 6136 7r 5.875 6.7632, 7.3134 I'D -5r+20 +2J -4r+20 +2J 4.161, 6.5090 6.169 6.6325, 7.0658 7. 4746, 7.8698, -3r+20 +2J -2r+20 +2J 3.19 3.52 6. 8821, 7.0986, 7.6078 7. 6970 7.9975, 7.9394, - r+20 +2j 5.1420 6.359 7.0722, 7.4480 20 +2J 4.379 7.6355, 8.2144 8.4125, r+2S +2J 4.856, 8.0894, 8.9548 9.5668, 2r+20 +2J 4.92, 7. 8150, 8.6561 9.2006, 3r+20 +2J 5. 5174, 7.6056, 8.4650 9. 0111, 4F+20 +2J 5.4248, 7.4128, [8. 2958] [8. 8561,] 5r+20 +2J 7.2254, 8.1426 8.7346, 7r+20 +2J [6. 8746,] [7.8484] 8. 4936, jf -5r+20 + J 6.8776, 7.5604 7.8425, -4r+20 + J 4.582 6.8815, 7.4536 7.5238, -3r+20 + J 4.674 6.6271, 6. 7816 7. 3174 -2r+20 + J 4.99 6.7985 7.4732, 7. 7966 - r+20 + J 5.4623, 20 + J 4.605, [7. 1987] 7.8314, 8.1061 r+20 + J 5.0056 8.2964 9.1086, 9.6833 2r+20 + J 4.38 8.0434 8.8316, 9.3296 sr+20 + J 5.6251 7.8458 8.6564, 9.1558 5.5812 7.6603 8.5030, 9.0248 5F+20 + J 7. 4778 8.3544, 8.9050 7r+20 + j. 7.1130 8.0545, a6668 "to* 4.664 4.n 5.83 r 7.8102 a 6250, 2r 7.7520, ai242 sr 7.6172, 6.6043, 4r 7.7135, a2308 fc 1 4r+4ff tt +4J, 7.1862 7.9072, _3/^_j-40 -j-4j 7.1804 7. 8679, 2f+40 +4J 6.817 7.456, F+40 +4Jo 8.4680, 8.8822 40 +4J 4.666 [5. 807,] [8. 0913] a 8270, 9.2073 /"+40 +4J a 7850 9.8236, 2r"+40 +4J [a 5144] 9. 4910, 3f+40 +4J a 3274 9.3006, 4/"'_j-40 -^4 < 8. 1627 9. 1494, 5r+40 +4J 8.0050 9.0105, wf _4f-(-40 4-3j o 7.354, a 1083 -3^+40o+3jo 7.5708, 8.2084 -~r+40+3Jo 8.8838 9.0548, 40 +3 J 4. 516, [6.2084] 8.5565, 9.2180 9. 5174, r t +40 +3J 9.2783, 0.2833 2f +40 +3J 9.0241, 9.9635 3f +40 +3J a 8480, 9.7850 4r+40 +3J a 6916, 9.6434 $r +40 +3 J 8.5401, 9.5128 * m- m",m' m /t , m' m' m' 150 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. TABLE LVI Continued. Logarithmic. w w a Unit- 1 radian. Cos *, -* M * fl w' -4r+ 4 7. 7640 7. 8364,, m ~3/ 1 + 4 7. 4203 8. 3915 -2r+ 4 7. 8104 n 8. 6268 - r+ 4 8. 0479 n 8. 8018 4 4. 518 B [5. 886 n ] [5. 70 B ] r+ 4 7. 1339 7.8500 2F+ 4 7. 8421 8. 4293,, q r* _i_ A O-* i~ **o 7. 9669 8. 6796 n 4r+ J 7. 9760 8. 7576 I' 2 -4r+40 +24 ,:'..: 6.9002 7. 6938 B -3r +400+24 7. 1638 7. 8502 n -2r+40 +24 - r+40 +24 8. I860,, 8. 4016 40o+24 3.76 6. 0608 n 8. 4157 8. 9760 n 9. 1661 + r +40 +24 9. 1714 0. 1382 n +2r+40 +24 8. 9358 9. 8333 B +3r+40 +2J 8. 7718 9. 6681 B +4r+40 +2J 8. 6236 9. 5372 n l'* 3.76 5. 7516 4.7 r 7. 8677 8. 6727 B 2P 7. 8610 B 8. 2228 sr 8. 1026 B 8. 7296 ft 1 1 1 .9 4r 8. 1538 B 8. 8728 f r *Httt .0 7. 9418 B 8. 7337 zr 7. 9312 8.7154 sr 7. 7920,, 8. 6154 4r 7. 639 n 8.5001 ^ ? -4r+40 +34-^o Kit > 7.446 8. 1156 B -3r+40 +3J -|o W J 7. 1858 7. 8677 B I r+40o+34-^o 7. 6176 B 7. 9693 40 +3J 0^*0 : i<HX) 1 4.804 n 7.168 7. 9368,, 8. 3724 r+40o+34--^o UK h 7. 7887 8. 8492,, 2r +400+34 -2 ir.\ii> o 7.448 8. 4531,, 3/^+400+3 J ^o <.'IH<', , 7. 1976 8. 2026 n 4r+40 +34-^ (> 6.978 7. 9963 n V 20 +24 5. 4181^ 6.292 7. 4754 n 8. 6636 - v , 60 +64 5. 418 B 6.292 8. 6328 n 9. 4351 i)oV 20 + 4 5.885 6. 719 B 8.5059 9. 2804 B 20 +34 4.974 5. 896 B 8. 0326 B 8. 1975 60o+54 5.935 6. 780 B 9. 2774 0. 0330 n % ,/s 20 5.744, 6.535 [8. 3811 n ] 9. 1030 5.44 B 6.327 8. 0917 8.6300 60o+44 5. 919 n 6.744 9. 4432 n 0.1464 i?" 20 + 4 5.301 6. 149 B 8. 2302 9. 0152 B 60o+34 5.301 6. 149 n 9.1294 9. 7729 n /** 20o+24 8.5904 9. 3492 n 9.8022 20 + 4-^o 4. 502 B 5.41 8. 1011 n 8. 8726 4. 502 B 5.41 8. 0554 n 8. 9263 JV 20 + 4 8. 5592 B 9. 3245 200+24-^0 4.057 5. 021 n 6.887 8. 1804 B 60o+44-^o 4.057 5.021 n 8. 2718 9.1021. m" m n -^ m -x m' m' ww =2Cw*i)P'Tflj 1 t cos Agr., where C represents the respective coefficient. No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 151 Turning now to the determination of e and K, let equations (235), (236) be written in the form (244), where 1 2 , 1 1 "~+'V- Multiplying the first of these by sin ^, the second by cos </> and adding, S sin ^ + C cos <f> = g ( sn coa<f>+z sin cos <f>+z sin <l>)+-r z(y sin $ z cos ^)+ . . . 4C0 Here, again, the arguments and factors are functions of the elements a, e, JT, e, and the expansion in a Taylor's series is necessary. Let S sin <{> + (7 cos <f>=f(i), F u U J, 2") Then the form of Taylor's series is the same as the expression for w w , (p. 148), with the following modification. Within first order quantities, ; .; -fi Hence, , F lt 6 lt A, S) = n(y cos ^ + 2 sm 1. = ^ (y sin s 2 cos e) " sn 'o w - (1 TJ n COS l- cos The order of computation is : calculation of A-SC{.. KU 1, . ,. -s(y cos ^+2sm^) by inspection of the table for W, in which the arguments are to be given the subscript zero, differentiation of the first order terms, calculation of the necessary products of functions of y, z, and the partial derivatives, and the addition of these products to the first calculation. The required function is given in Table LVIL e v-t- \ ---y It 07 f.8f .S ,87 S n t' 0" |).':T> ? >: 152 MEMOIRS NATIONAL ACADEMY OF SCIENCES. [Vol. XIV. tufj .'ii ft-d l; fW Logarithmic TABLE LVII. Ssin i/r+C cos <]> j 7; on Unit-1". Cos ,- UJ-J UM to" w * ^- 5 r+20 +24, 8.81 1. 082, 1. 5710 1. 612, 4.T+200+24] 9.009 1. 2314, 1.5492 0. 989 n ^ 3/ 1 +20 +24, 9.318 0.931 1.604, 1.916 4> 2.T+200+24, <p- r +200+24, 9.207 9.711 [1. 6478] 1.950 2. 1070 n 2. 3426, 2. 2333 2. 3713 ^ +20 +24, 9.196 2. 1712, 2. 5678 2. 565 n 4>+ r+200+24, 9. 230 n 2. 3541, 3. 1493 3. 7107 n 0+2/"+20 +24) 9. 220, 1. 9114 n 2. 6867 3. 1657, tl>-\-3r-\-20 -\-2d 9. 724, 1. 5372, 2. 3831 2. 8623, ^+4r+20 +24, 9. 494, 1. 2544, 2. 1315 2. 6333, ^+5r+20 +24, 9.100 n 1.018, 1.9034 2. 4348, ii ^_5r +40 +44, ro wioiJ->ni ft. 771, 1.042, 1.868 2. 357 B ^-3F+40 +44^ 0.06V 0. 3185, 1. 723, 2. 1626, 2. 3515 2. 6961 2. 6814, 2. 9214, dJ iliur t- r+40+44^ <!> +40 +4J r + r +400+44, 0+2r+40 +44, 9.199 9.04, 0. 497, 1. 0286, [2. 6172] 0. 7226 0.669 [2. 7787,] 3. 2379, [3. 2511 n ] 3. 1702 2. 7877 [3. 0649] 3. 1223 [3. 4930] 4. 1580 n 3. 7083, 3. 0993, 3. 9385, 4. 9365 4.3605 0+3/ 1 +40 +44, 0.9435 2. 5117 3. 4261, 4.0450 ^+4.T+40o+44> 0. 5122 2. 2732 3. 2042, fe V>-5r U'i \0 ', - ^. 9. 814 B 1.925 2. 634, 2.984 <j> 4r - 0. 0434, 2. 0527 2. 6896, 2.9432 ip3r 0. 3541, 2.145 2. 675, 2.744 *ijizr 9.140 0. 362, 2. 1351 2. 3850, 2. 4864, if, r 0.4164, 2.3504, 3. 0929 3. 5397, <l> 9. 274 n 0. 1436, y+ f 0. 3102, 2.497 3. 1875, 3. 5978 <l>-\-2r 9. 137, 9.918 1. 9006 n 1. 0453 2. 8834 <P+zr 9.465 0. 812, 2. 5218, 3.3564 ^+4r 9.20 1. 406 n 1.729 J)' V--5r+40 +34) 9.476 1.327 1. 889, 2. 2299 y 4/ 1 +40 +34> 9.781 1.447 2. 1506, 2.5419 ^ 3/'+40 +34> 9.811 2. 1070 2. 6309, 2. 8608 y~ 2/*+40 +3J 0. 3489 2. 5095 2. 9557, 3. 0952 $ -f +40 +3 J 0. 9511 3. 3599 2. 7758 3. 9726 ^ +40 +34( 8.76, [0. 158] [2. 7932 n ] 3. 3085 3. 4526, ^+ F +40 +34> 9.961, 3. 3609, 4. 3114 5. 0691 n ^+2f+40 +34i 0.491, 2. 9943, 3. 8728 4. 4922, y+3/^+40 +34( 1. 0464, 2. 7293, 3. 6067 4. 1945, ^+4r+40 +3J 0. 678 B 2. 4992, 3. 3946 ...mfc <!> 4r+4i J 'HB ftfl-tj inyift ->iJi 9.848 0.0792 2. 0766, 2. 1609, 2.712 2. 6968 2. 9697, 2. 7976, ,t ,v to *t ^l2r+4 Ifl'-'-'fVJIT 91 9.013, 0.3941 0.248 2. 157, 2. 0455 2.491 2. 7898 n 1.51 3. 2380 'til 1 .f)'> ^ ^"+4i r r 'I'tXi'ltj 9.901 2.584 3. 2539, 3. 6434 ^ +4i 9. 885 B 0. 8518 v^+ ^"+4t 0.1664 1.836 2.448 3. 3029 B ^+2r+4, 9.009 9.76 B 2. 1633 2. 6170, 2. 2433 ^+3r+4, 9.38, 2.1064 2. 7194, 2. 9212 ^+4r+4, 1. 9892 2. 6870, V ^-5r+60 +64, 2.3144 2. 9730, ^ 4r+60 +64i 2. 9538 3. 3785, <j> 3/"+60 +64i 3. 3102 3. 5843, V^ 2r+60 +64i [3. 4970] [3. 8423 n ] Y *^+60o+64, 3. 9455 3. 7269, <!> +60 +6J 9.95, 1. 1109, 3. 1673 B [3. 9296] [4. 3377 n ] if>-\- .T+600+64) 3. 9144, 5. 0372 ^+2/^+600+640 3. 5594, 4. 5942 ^+ 3 r+60 +64, 3. 3121, 4. 3236 No. 3.] Logarithmic MINOR PLANETS LEUSCHNER, GLANCY, LEVY. TABUS LVII Continued. S sin <{>+C coo<!> 153 Unit-l" COS K- ^ u-t V* W 1C* V ^-5r+20 +2J. 2.1657 2. 7221 B A 4/ I +20 +2 J 2.1255 2.8004, ^ 3r+20 +2J 2.234 3. 1304 n it 2.F+200+2 J 2.576 3.3804, ^- r+20 +2j 3.1995 3.8325, V> +20 +2J 0.344, 1.017 2. 689, [3. 4822] 3.9938, ,5+ r+20 +2J, 2.2480 3.2839, ^+2r+20 +2J 9.45 3.1612 3.8424, V <i-5r-20 -2J. 2.700, 3.5481 ^-4T-20o-2J 2. 817, 3.6251 ^ &r 20 2J 2. 9247, 3.6905 <l> 2F 20 2 J 9.59, 3.0241, 3.7470 j>- r-20 -2J 3.1364, 3.8346 A -200-2J. 0.117 0.95, 2.297, [2. 7856,] 3.6614 ^+ T -20 -2 J, 2.8942, 3.5604 #+2r-20 -2J 2. 297, 3.1129 fci' <f-5r+60 +5Jo 2.4885, 3.1691 ^ 4/ 1 +60 +5 Jo 2. 976, 3.5560 ^ 3/ l +60 ~t~5Jo 3.6541, 3.8829 ^ 2f +60 +5J [3. 9514,] [4 1632] ^ /"+60o~t~5Jo 4.3903, 40037, ^ +60 +5J 0.295 L366 3.6364 [4. 3301,] [46662] i5+ /"+60 +5Jo 4.4005 5.4966, c5+2/ I +60 +5J 4.0582 5.0612, #+3r+60 +5J 3.8204 4.8027, fcf* ^-5T+2o+ Jo 2-426, 3.0684 ^ 4/"+20 + J 2.399, 3.0310 ci 3/ 1 +20o+ Jo 2.410, 3.1305 ^ 2r*+20 + Jo 2.701, 3.4602 ^ /^+20o+ Jo 3.2842, 3.8558 ^ +20 + J0 0.444 1.188, 3.0569 [3. 7266,] 41122 <J>-\- ^"+20o+ Jo 2.8541 3.5823, ^+2r+20 + J 3. 2191, 3.7635 % ,/ ^-5r-20 - J 3.1551 3.9530, #-4r-20 - J 3.2454 3.3100 3.9948, 40023, A 2/ 1 20 Jo 9.93 3.3277 3.9401, ^- r-20 - J 3. 1976 3.4598, ^ -20 - J 0.490, 1.324 3.0145, 3. 7326 42787 ^+ /" 20 Jo 3.3632 3.9402, <!>+ r-20 - J e 2.7792 3.5224, loV ^-5r+20 +3J 2.2738, 2.847 <p 4r"+20 +3Jo 2.116, 3.0290 J> 3/^+200+3 J 2.5858, 3. 3787 A 2/"+20 +3 J 2.809, 3.5429 A- r+20 +3J 2.650, 3. 7297 J + r+20o+3J 9.98 0.60, 2.873, [2.685] 3. 5126, 3.7980 4.2856 ^+2r+20 +3J 9.46, 3.3438, 41208 q'i s 5-5r+60o+4J L9950 2.7422, A 4r+60 +4J 2.6112 3.1949, </> 3/"+60 +4 J 3.0556 3.5583, y2f +60 +4 J 3.7934 3. 7947, A /'+60 +4J 42260 44064 ^ +60 +4J 9.98, 0. 76, 3. 5017, 41098 43552, ifi-\- r +60 +4J 4.2852, 5. 3521 ^+2r+60 +4J 3.9567, 49249 ,1 ^-5r+20 +2J 2.5018 3.0963, </> 4/^+200+2 J 2.453 3.0935, ^ 3/^+200+2 J 2.4799 3. 2779, A-W +20 +2 J 2.9375 3. 6294, 6- r+20 +2J 3.2833 3.8982, f +2e o +2J 0.025, 0.60 2.634 3. 2781 4. 0439, </>-\- /^+2^o+2Jo 3.5607 4 2381, #+ 2 r+20.+2J. 3. 4629 4. 1704 n 154 Logarithmic MEMOIRS NATIONAL ACADEMY OF SCIENCES. TABLE L VI I Continued. 8 sin <j>+ C cos <}> [Vol. XIV. tJnit-l". Cos -. ^ -, - w v>* T)" cj-5r-20 3.0090 B 3. 7477 ^-4r-20o 3. 0676 B 3. 7445 <l>sr 20 3. 0764 n 3. 6664 ^-2r-20 2. 958 n 3. 3121 ^- r-20 3. 1140 4. 0201 B <l> -20 0.305 1. 127 n 2.912 3. 5491 B 3.9085 ^+ r-20 3. 0396 B 3. 6320 ^+2r-20 1 2. 4706 B 3. 2330 f ^-5r+60 +54-.?o 2.006 2. 7505 n <l>4r +60 +54 ^o 2.335 2. 981 B <t> Zr +60 +54 2o j 2.544 3. 1436 B ^ 2.T+600+54 (> 2.718 3. 2445 B v ^*+60Q+5^o *o 2.970 2. 9116 n dt +600+5.^0 ^*o 8.6 B 9.7 2. 114^ 2.923 3. 4067 n d>-}- F +60 +54 ^o 2. 7948 B 3.9420 ^-j_2r+60 +54 2 2. 3824, 3.4488 P ^-5r +20 +24 9.6 2.387 <j> 4r+20 +24 1. 916 B 2.911 V ? irv <!> 3r+20 +24 2. 5178 B 3.3047 J> 2J rl +20 +24 2. 938 B 3.6294 4,- r+20 +24 3. 3406 B 3. 9330 <{, +200+24 0. 5910 3. 1266 3. 8021 B 4.1894 ^+ r+20 +24 frit<> .}; 3. 4070 4. 3178 B 0+2r+20 +24 3.0472 3. 9308 B f 0_5/--20 - 4+^o 0. 732 n 1.085 d>4r26 4+-^o 0.35 1. 895 n <{izr20 4+^0 1.463 2. 5146 n \t ,,jr </r-2r-20 - 4+^o 2.064 3. 0255 n ^- r-20 - 4+^0 2. 6816 3. 6280 n -20 - 4+^0 9.04 0.11 B 2.636 3. 3284 B 3. 7399 ^+ r-20 - 4+J 3. 0572 B 3.6430 V-+2r-20 - 4+^o 2. 9121 n 3.5491 lo 8 4, +40 +44 0.775 1.66, 3. 1052 B 3. 0342 B J +80^+84 0.29 B 0.65 1.10 1.54 n 3. 1888 3. 7520 3. 6104 n 4. 5812 B V* Vl' V> +40 +54 3. 7577 4. 3244 n <!> +40 +34 1.260 B 2.081 3. 1240 4. 1388 d> -40 -34 1.005 1.77 B 3. 5356 B 3. 3560 <!> +80 +7J 1. 228 B 2.093 4. 3980 n 5. 1827 lo V ^ +400+44 4. 1155 B 4.5547 +400+24 1.106 1.88 B 2.831 4. 1803 B <!> -40 -24 1. 146 B 1.88 3.0422 4. 0180 ^ +800+64 1.321 2. 152 B 4. 5658 5. 3010 n if* <j> +400+34 3. 8375 4. 0446 B <l> -40 - 4 1 f'- ! iiii 'i 3. 2197 3. 9650 B <[> +80 +5J 4. 2553 n 4. 9349 jj, d, +40 +34-.r 3.0024 3. 8634 n df -400-34+^0 9. 98 B 0.8 2. 956 B 3. 8331 J, -j.g^o+74 ^"0 3. 0757 3. 9759 B ,'{.' -. d, +40 +44 0.46 n 1.32 3. 8514 W 4.6436 }' *>' d> +40 +44-JT 2.442 1.846 B <l> -40 -24+J 3. 2486 4. 0585 B : d, +80 +64-l- 3. 2818 n 4. 1441 * V'S'H ' <!> +40 +34 0.27 1. 15 n 3.9421 4. 6972 n S sin <p-\-C cos (/'=SC l 1 u'*7jP7/9j 2 ' cos Arg, where C^ represents the coefficient. No. 3.] MINOR PLANETS LEUSCHNEE, GLANCY, LEVY. 155 COMPARISON OF TABLES. Table LVI. Unless there are errors of calculation, all the discrepancies are due to the accumulation of other discrepancies already discussed. Without going into the details of the construction, it is sufficient to remark that our table is built from practically all of the available auxiliary material. Our table includes many more terms than v. Zeipel's table, but it is wanting in the two arguments 6F and SF in the first block of terms. These arguments contain 3s and 4e, respectively, and our series were not inclusive of these higher multiples. It would be more consistent to include them, since the argument 7F is included. Table LVTI. Unless there are errors of calculation, all the discrepancies are due to the accumulation of discrepancies already discussed. Our table is built from practically all the available auxiliary material. Large disagreements are to be explained by v. Zeipel's use of the formula following Z 131, equation (244). In this equation the following functions are omitted: cos sn - cos sn ERRATA 1 IN H. v. ZEIPEL, ANGENAHERTE JUPITERSTORUNGEN FtJR DIE HECDBA-GRUPPE. With the exception of $ 6, Stdrungen des Radius-vector, all the developments have been checked. Page. Line.' For Read dQ 1 8a dx &x dQ dQ 1 3ff 9a dj J dv /Ho ~dT 5 9 5b 2a (15) iW (16) 3U 9 Ib W+v 3 W+r* 12 2a w fY W 12 9a a+ n+i P n+i 12 lOa 0* /3 () ' 12 6b (2n+4t+l)V B (4i+4)-y < ' (2n+4i+l)Y < l -+(4t+4)7^ 13 5a (2n+4f+3) T< '-(4i+4)- x ^ 1 (2n+4t+l) 7< -+(4t+4)7'-* 14 2b n'g> ng' noo 15 8bff I _ (j B 16 lOa sin COS 16 6b 1 dQ 7 a *3I 1 dQ 19 Ga dF dF_ da a <fa 20 5b TJ-? T** 21 4a ^.ro.n 1?j 3 - 21 4b Metoden Methoden 24 9b 2P ' . 2pi-. a 27 21a P . fn 1. n+ljj, /Vofn-?.-n+lJ_i 34 21a P jtfi \ 7l + l)_j 42 44 5b 18b /V 2 (n.-n) .ffi.,(n+l.-n+l) Fl'^n.-n) 45 46 20a 8a g(n l G (n 46 lOa I. O (TI ! n+2) i O ..(n ! Ti+2) t 46 lla ,. (n 1- n)+t O .i(nl-n)-t 1 Inclusive of those tabulated by v. Zeipel. ' The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b. On page 3 and all following pages ' is denned by ' The error consists in the omission of a statement announcing a change of notation. See definition of >' given on page 2. 156 MEMOIRS NATIONAL ACADEMY OF SCIENCES. Errata in H. v. Zeipel, Angenahcrte Jupittrstarungen fur die Hecuba-Gruppe Continued. [Vol. XI V_ Page. Line.' For Read J>Q dfl 49 7b f^ Os dr 50 6b r 2 a 2 r ''iimytxi owj orii a a 2 50 6b 3+ij 2 3+14, 2 51 lb 5 .,(n.-n+l) 53 lib >; >" 54 5a E -i 56 4b 61 lib 20+20 20+24 62 17a ^+60+40 ^-)-60+4J 62 5b +436 +439 63 65 9a 3a f(l-ecos)TF' 2 ] (106) t(i-3oo)F / ] (106a) 65 5a (106) (106a) 68 3a W * W~ 3 tti~ J W~ l V) tu~ 4 w"" 3 tt>~" 2 it*" 1 w t^ 69 6b sin A 77P7j /C! j 2 'sin A 69 69 5b 4b sin (A <l>+t) sin (A-\-(f>c) Tjpr] vj sin ^vi y-pj 7)P73 9?^ sin ^^4 -4-(A ^ 70 lb W t '" w 70 lb cos A TfPl)'9f* COS ^1 71 7a ess A -rjp-rfqft cos ^. 75 15a 4o- 4o-2 75 18a 4o-i 75 2b 4H 75 lb AI-O 79 lOb e ^< 81 8b 1ecoB c) (1 e cos ) 83 12a +3744 +3344 86 4a (128j) und (130) (1282), (128 3 ) uod (130) 86 6a o W^ Ot? T^ 1 91 9a e COB* e cos 91 lla TP 2 ffj' 92 3a 1J, COS C y, COS 92 lOb -i(l-e cos ) (IF-Jff) (W+iB) -J[(l- cos ) (W-IS) (W+iS)] 92 4b ^ ^ 93 lOa sin A yPij'Qj 2 * gin A 93 lOa 2' J 94 19b dW dF 97 15a (156) (154) 99 4b T)W sin t) s ' 100 5a A' ^ 100 6a Ju^ _lj5 115 116 4b 7a 8SJ> -I (192) 116 lOb /o ro i\ ~-j- ^Oj l^lj/ 119 (i) 4-? f7p. 122 3a 123 4b (i f 2 f) (1 f 2 f 8 ) 125 3a 1 o COS 2 1 COS 128 7a A 4ft 129 5a fi P 131 7b (0 jl ) 131 6b $+A+l) (^_)-^4_ ) 132 8a 2.9227 B 1.9227 n 132 26a 5.3376 5.0376 134 9a 9H4Q (4t>+/ 4 ) 135 lOa w 2 T 135 lla to 2 I 140 141 26a 6a [nSz] 0*8998 Mel. 0/8998 i Th number of the line counting from the top of the page Is indicated by a, counting from the bottom of the page by b. 'No. 3.] MINOR PLANETS LEUSCHNER, GLANCY, LEVY. 157 ERRATA IN KARL BOHLIN. SDR LE DfiVELOPPEMENT DBS PERTURBATIONS PLANETAIRES, 1-7, AND TABLES I-XX. Page. Line.- For Read 3 5a /( , =(1+m)a , -. /.'=(! +m)a dW dW 11 Ib 14 lla 14V l-r j 20 3a +i s cos 2* -i^ COB 2 29 8b r* y'-n 29 2b V I/' e -V-i/' 30 lla a ? a' ? 30 lla e' X? +p 30 12a 2n+m-l 2n+m+l 30 13a /?T\* f.-. n wi- +'. ^jg -r g 30 13a 2n+7n 1 --!.- . l-.'v.nW 2n+m+l 30 13a 2n+wi-2 2n+7n+2 30 14a 2n+m-l 2n-i-"i-|-l . ' 30 5b e V-i(*-O e ^in( r ^) 33 9a r*2i+ */_, i _, \ 10 \ * "/ Xjf*U 1. ) 35 4a (73) (74) 36 la 2/V'"e'^~ 1 <- T > "*|+|Y 2f 4 * " V IO 36 lOa ^.,(n-l.+n+l) ^..(n-l.-n+l) 38 13a a a 38 lOb e J^lr- w>) 38 3b 2(ij')y'- 1 2/ . /\|_i 38 2b 2n)y'- 1 2(jj)y'-l 40 3a K (n. 1 n) JP / n 1 ji\ 41 13a a VO a'" 45 2a iT . (0.-n) i" . (n. n) 45 9b a 4A 7n r(r 1)V~' " : |."'- , T(rl)*x f ~ l ^O i 1.1.2 h 1.1.2 46 7b (n-)(n-t+2) ,'V- (n *)(n +2) n _f^ 2 2 ' r ^ 46 5b (n-3) (n ) 46 4b v n' 4 48 14a P'jK/n 2. n) P',. (n-2.-n) 48 7b pi . \n-\-\. n 2] P*,.- ITI-)-!. n 2! 48 7b pi (n+1 n 2 pi (n+1 n 2) 48 6b P^'.iin-l.-n-Zi P',.,|n 1. n 2| 50 5a R 1 .~(n-^-l.n\ _ T /fi -(n+1. n I)!/ 50 9b R l \,o(nl.n+l +1- R l \ < ,(n\.n-\-\)+tf 50 3b Rig-fn. n+2^+1* R l (n n+2)+ / 51 Ib P'(n+r.-n+* i piln-f-r. n+^ 59 5a fi 3 ' 1 , jn+l. n] ^J3-l _Tjj 1. 71] 59 8a ^ 3>l o-i[ n -~ n +l] J-l e r n __ B ^-i] 60 6a if / 60 8a (See footnote z ) ftf\ QK ("^/t ) /N ~T~\7n.ftf DV VO 24 V^ 24 60 fib jX""**) ( +) 61 7b P .,[n.+n+l] P .i[".-n+l] 61 5b Poit n -+ n -lJ P In n 11 62 la n P- n /i 6 6 62 7a P,., (n+2.-n-l) P 2 .,(n+2.-n+l) 62 7a ^2^ 2 62 63 8a 5a pJ.'o(n-l'.-n+l)H - P.Jn+l.-n+l] P . (n-l.-n+l)_* 63 63 63 63 lla 13a 14a 5b Pj'o M-L-n-1]-! PO-O n-l.-n-lj-j RO-O n. n+lj-r' P 1 . (n+2.-n-l)+, P . c fn-l.-n+l]_* P . n-l.-n+l]_* P.o-0 n.-n IJ-r' 63 2b RO-O i. n 1] i* 63 Ib R . n._n !]-' R . n. n 1]-^ 1 The number of the line countin? from the top of the pase is indicated by a. counting from the bottom of the page by b. i The argument a is defined first by eq. (31), p. 20, secondly by eq. (105), p. 60. The first of these definitions is used in J 8. 158 MEMOIRS NATIONAL ACADEMY OF SCIENCES. Errata in Karl Bohlin, Sur le Developpement des Perturbations Planitaires, 1-7, and Tables I-XX Continued Page. Line." For Read 64 64 6a 12a .Ro-o[".--l]-*' R 2 . [n.-n+l]+ x ' 64 64 66 14a 15a 7a (n-n) #,.,[7+l. -]_ F (n+r. -n+s &r T "* Ftn+r.-n+t) 66 8a G (n+r. n+s G (n+r. -n+s) +3 +3 70 la -3 P,. 2 (n+l.-n-2) -2 Pj. 2 (n+l.-n-2) 2 -2 71 4a F t (n. n+l)+ F t a ( n _ w _)-i) + . +3 +3 71 9b -2 P lf0 (n.-n+l)-3 -2 P,. (n.-n+l)_* 2 -2 73 2a F 2 . u (n.n+l)- x ' .F 2 . (n.-w-l)-,r' 73 18a, ff. See foot note. 2 f 73 4b R . (n. n+l)+ x R . (n.-n+l)+ x > 73 74 3b 8a R . n.-n+l)+ x > R . (n.-n+I)+ x ' 75 75 la lib ' jOn.-n+l)-,' G . (n+l.-n)+,+j 78 Ib To 1 '" Ti 1 '* 1 79 Ib fjTn+i.n y, m-f2.n 79 *) n=l n 80 9b T(+i m ' n ^ <+j m.n 81 12a 3 81 13a (120) (120)*) 135 7a -^D-3 1 '* jf i. 139 3a /y** 2ri'- 140 2a /Y -n 2r 1 '- 154 la (86) (93) 161 la -or or 169 8b 3 I a 170 3a 2S 2r<3< * 2T<'- 170 4b ^ i 2 ^ 3>B 171 ff. See foot note.' 185 2a 3. 27886 3. 27887 185 13b 4 3 188 6b 2. 017 3 n 2. 01703,, 189 14a 3. 27886 3. 27887 197 16a 0. 146128 B 1. 146128 n 197 18b 1. 505151 1. 505150 198 15b 1. 662759 n 1. 662758 n 198 2b 0. 477121 0. 477121 n 1 The number of the line counting from the top of the page is indicated by a, counting from the bottom of the page by b. 1 The space between lines 18 and 19 should read }'. ' Tables XII, XIII. XIV give the same coefficients in numbers as Tables XVI, XVII, XVIII give in logarithms, respectively. The same factor should therefore occur in the former. o !-"