FHE
am. ARCHITECT'S X SHIfeyiLOEii
■ POCKET-BOOK ^
CLEMENT MACKROW,M.I.S.A. '
.^pio'^^: JuTnen
CROSBY liDCiCWOOD ^ Ci^il
r'Jj /■'!■■■ r^
:/;//>^;.':/.2^
^-v/.:^
7i>
Digitized by tine Internet Arciiive
in 2008 witii funding from
IVIicrosoft Corporation
littp://www.arcli ive.org/details/arcliinavaltectssOOmackricli
<£
THs:
NAVAL ARCHITECT'S AND SHiPBUiLDER'S
POCKET-BOOK
OP
AND
MARINE ENGINEER'S AND SURVEYOR'S
HANDY BOOK OF REFERENCE
BY
CLEMENT MACKROW •
NAVAL DRAtGHTSMAK
MEMBER OF THE INSTITCTIOX OF KAVAl ARCHITECTS
Cnbirli coition, acfaii^ctr
gpiol]^
LONDON
CROSBY LOCKWOOD AXD CO.
7 feTATIOKERS'-HALL COURT, LUDGATE HILL
1884
c
i_i . - -
L0XD05 : PniKTED B7
jPOTTi.suOOUE AND CO.. KKW-StnKliT SQCAUE
AMJ I'ARLIAJIEST STUEKT
PEEFACE
The object of this work is to supply tibe great ^^ant
which has long been experienced by nearly all who are
connected professionally with shipbuilding, of a Pocket-
Book which should contain all the ordinary Formula?,
Kules, and Tables recpiired when working out necessary
calculations, which up to the present time, as far as the
Author is aware, have never been collected and put into
so convenient a form, but have remained scattered
through a number of large works, entailing, even in
referring to the most commonly used Formulae, mucli
waste of time and trouble. An effort has here been
made to gather all this valuable material, and to con-
dense it into as compact a form as possible, so that the
Naval Architect or the Shipbuilder may always have
ready to his hand reliable data from which he can solve
the numerous problems which daily come before him.
How far this object has been attained may best be judged
by those who have felt the need of such a work.
Several elementary subjects have been treated more
fully than may seem consistent with the character of the
book. This, however, has been done foi' the benefit of
those who have received a practical rather than a theo-
retical training, and to whom such a book as this would
be but of small service weie they not first enabled to
gather a few elementary principles, by which means they
may learn to use and understand these Formulae.
^^' PREFACE.
In justice to those authors whose works have beer
consulted, it must be added that most of the Rules and
Formulae here given are not original, although perhaps
appearing in\ new shape with a view to makinf' them
simpler.
There are many into whose hands this work will Ml
who are well able to criticise it, both as to the usefulness
and the accuracy of the matter it contains. From such
critics the Author invites any corrections or fresh mate-
rial which may be useful for future editions.
CLEMENT MACKROW.
London : Jul// 187i).
NOTE TO THE THIRD EDITION.
The rapid sale of the iirst and second editions of this
work has shown that the efforts made to supply a much
felt want have in some measure succeeded, and the
present opportunity has been taken of thoroughly revising
it, so as to make it more worthy of the confidence it has
received. Many strangers to the Author have taken a
generous interest in the book by making suggestions, &c.,
which have, where possible, been carried out ; and it is
hoped that the same kindly interest in it will continue to
be shown.
CLEMENT MACKROW.
London : AjjHI 1884.
CONTENTS.
PAGE
Algebraical Signs and Symbols 1-3
Deci>lal Fractions . 4-6
Practical Geometry 7-19
Trigonometry 20-28
Tables of Circular Measure of Angles. . . . 29-31
Mensuration of Superficies 32-41
Mensuration of Solids 41— iG
Mensuration of the Surfaces of Solids .... 47
Circumferences and Areas of Circles .... 48-66
Areas of Segments of Circles 67-09
Ce>'tres and Moments of Figures 70-81
Ton'nage Rules and Tables 82-102
Board of Trade Regulations for Ships .... 103-114
English Weights and Measures 115-122
Metrical Weights and Measures 122-130
Decimal Equivalents of English Weights and Mea-
sures 1.37-140
Foreign Money, Weights, and Measures . . . 141-142
Mechanical Principles 143-145
Centre of Gravity of Bodies 146
Laws of Motion 147-151
Displacement of Ships 151-158
Centre of Gravity- of Ships 159-161
Stability of Ships 102-177
Waves 178-181
VI
CONTEXTS.
Rolling
Propulsion of Vessels . . ,
Distances down Courses of Rivers, etc.
Steering . . « . . ^
Squares, Cubes, Roots, and Reciprocals of Numbers .
Evolution
Weight and Strength of Materials . . . .
Values of Whitworth's Gauges, etc. . . • . .
Useful Numbers often used in Calculations
Riveting as employed in H.M.S. 'Hercules' . , .
Sines, Tangents, Secants, etc
Masting and Rigging Ships
French and English Vocabulary . . . , .
Hyperbolic Logarithms
Wages and Percentage Tables, etc
Logarithms of Numbers
Strength of Materials, etc
Hydraulic and Miscellaneous Formul.k . . . .
Conic Sections, Catenary, etc
Mechanical Powers, Work, etc •
Board of Trade Regulations for Marine Boilers, etc.
Particulars, Weights, etc., of Marine Engines . .
Seasoning .vnd Preserving Timber
Timber Measures
Bricklaying, Plastering, Painting, f:Tc.
Varnishes, Lacquers, Dipping Acids, Cements, etc. . .
Miscellaneous Recipes, Tables, etc. . . • i
PAGK
182-186
186-209
210-219
220-221
222-2G6
267-268
269-305
305-310
311-319
321-824
325-332
833-360
361-376
377-381
382-389
S 90-426
427-451
452-456
457-461
462-467
467-478
479-483
484-485
486-488
488-490
490-495
495-512
INDEX
513
MACKEOWS
POCKET BOOK
OF
FOEMUL^, EriES, AXD TABLES
FOE
KAVAL ARCHITECTS AND SHIP-BUILDEES.
SIGNS AND SYMBOLS.
The following are some of the signs and symbols commonly
used in algebraical expressions : —
= This is the sign of equality. It denotes that the quantities
so connected are equal to one another ; thus, 3 feet = 1 yard.
+ This is the sign of addition, and signifies plus or more ;
thus, 4 + 3 = 7.
— This is the sign of subtraction, and signifies minus or less ;
thus, 4-3 = 1.
X This is the sign of multiplication, and signifies multiplied
by or into ; thus, 4x3 = 12.
-^ This is the sign of division, and signifies divided by ; thus,
4-f-2 = 2.
{} [] These signs are called brackets, and denote that the
quantities between them are to be treated as one quantity; thus,
5{3(4 + 2)-6(3-2)}=5(18-6) = 60.
This sign is called the bar or vinculum, and is sometimes
used instead of the brackets ; thus, 3(4 + 2) — 6(3 — 2) x 5 = 60.
Letters are often used to shorten or simplify a formula.
Thus, supposing we wish to express length x breadth x depth, we
might put the initial letters only, thus, lxl> x d, oi, as is usual
when algebraical symbols are employed, leave out the sign x
between the factors and write the formula l.b.d.
When it is wished to express division in a simple form ths
divisor is written under the dividend; thus, (a? + y) -h- = -•
Z SIGNS AND SYMBOLS.
!,!*., ', , These aye signs of proportion ; the sign : = is
to, the sign : : = as; thus, 1:3 : : 3 : 9, 1 is to 3 as 3 is to 9.
< This sign denotes less than ; thus 2 < 4 signifies 2 is less
than 4.
> This sign denotes more than : thus 4 > 2 signifies 4 is more
than 2.
*.* This sign signifies because.
.*. This sign signifies therefore. JEj.'.: '.' 9 is the square of
3 ,', 3 is the root of 9.
/^ This sign denotes difference, and is placed between two
quantities when it is not known which is the greater ; thus
(a? 'v^ y) signifies the difference between .r and ij.
1 , These signs are ui?ed to express certain angles in
degrees, minutes, and seconds ; thus 25 degrees 4 minutes 21
seconds would be expressed 2.5° 4' 21".
Note. — The two latter signs are often used to express feet and
inches ; thus 2 feet 6 inches maj' be written 2' 6".
\/ This sign is called the radical sien, and placed before a
quantity indicates that some root of it is to be taken, and a
small figure placed over the sign, called the exponent of the root,
shows what root is to be extracted.
Thus :2/a or Va means the square root of a.
^a „ cube „
^a ,, fourth „
— — This denotes that the square root of a has to be taken
and divided by h.
■ This denotes that }) has to be divided by the square
root of a.
y
This denotes that the square root of a+ J has to be
a-v d
divided by the square root of a-^d. It may also be written
'fl + ft ^a + h
thus, / , or .
V a-\rd ^a + d
cc This is anotlier sign of proportion. Ex.: accb; that is,
a varies as or is proportional to b.
oo This sig-n expresses infinity; that is, it denotes a quantity
greater than any finite quantity.
This sign denotes a quantity infinitely small, nought.
Z This sign denotes an angle. Ex. : l ab would be written?
the anffle ab.
SIGNS AND SYMBOLS. 3
L This sign denotes a right angle.
_L This sign denotes a perpendicular; as, ah L cd, i.e. ab is
perpendicular to cd.
A This sign denotes a triangle; thus, Aalc^ i.e. the triangle
€i,hc.
II This sign denotes parallel to. Ex.: ah \\ cd would be
written, ah is parallel to cd.
f or F These express a function ; as, a =fx ; that is, a is a
function of x or equals x.
f This is the sign of integration ; that is, it indicates that the
expression before which it is placed is to be integrated. When
the expression has to be integrated twice or three times the sign
is repeated {thns, //,///)', but if more than three times an index
is placed above it (thus,y'").
D oxd These are the signs of differentiation ; an index placed
-above the sign (thus, r/-) indicates the result of the repetition
of the process denoted b}^ that sign.
2 This sign (the Greek letter sigma) is used to denote tliat
the algebraical sum of a quantity is to be taken. It is com-
monly used to indicate the sum of finite differences, in nearly the
same manner as the symbol/.
[jl This sign is sometimes used instead of tt, being a modifi-
cation of the letter C, for circumference.
ii] This sign is sometimes used instead of e, being a modifi-
cation of the letter B, for base.
g This sign is used to denote the force of gravity at any
given latitude.
TT The Greek letter pi is invariably used to denote 3-14159 ;
that is, the ratio borne by the diameter of a circle to its circum-
ference.
As the letters of the Greek alpliabet are of constant recur-
rence in mathematical formulse it has been deemed advisable to
-append the following table : —
A a
Alpha.
I {
Iota.
P p
Eho.
B ;8
Beta.
K K
Kappa.
2 o-s
Sigma.
r 7
Gamma.
A K
Lambda.
T T
Tau.
A S
Delta.
M IX
Mu.
T V
Upsilon
E 6
Epsilon.
N V
Nu.
*
a as
dZ> and T>e ; join Ef, cb, and Kb ; through
E, the intersection of Be and cb, draw
JDEF meeting A& in F ; join BF and pro-
duce it till it meets T>a in a: then ab will be equal to ab, the
distance required.
Fig. 15.
15. Another method. (Fig. 15.)
Produce ab to any point d ; draw the line
T>d at any angle to the line ab ; bisect the
line Dd in c, through whicli draw the line B&,,
and make cb equal to BC ; join AC and dby
and produce them till they meet at a : then
ba will equal ba, the distance required.
GEO^rETKT.
11
Fig. 16.
16. To meamre the digtance between two objects, both
i)i accessible-. (Fig". 16.)
Let it be required to find the distance
between the points A and B, both being in-
accessible. From any point c draw any line
cc, and bisect it in d ; produce Ac and bc, and
prolong them to E and F ; take the point E in
the prolongation of A^. and draw the line bbc,
making De equal to de.
In like manner take the point F in the
prolongation of Be, and make D/ equal to df ;
produce ad and ec till they meet in a, and also
produce bd and /c till they meet in b : then
the distance between the points a and b equals
the distance between the inaccessible points
A and B.
17. To inscribe any regular polygon in a
given circle. (Fig-. 17.)
Divide any diameter ab of the circle abd
into an many equal parts as the polygon is
required to have sides ; from A and B as
centres, with a radius equal to the diameter,
describe arcs cutting each other in c ; draw
the line CD through the second point of divi-
sion on the diameter ab, and a line drawn
from D to A .is equal to one side of the poly-
gon required.
18. To cut a beam of the strongest section from
any round piece of timber. (Fig. 18.)
Divide any diameter CB of the circle into
three equal parts ; from d or e, the two points of
division in CB, erect a perjDendicular cutting the
circumference of the circle in D or A ; draw CD
and DB, also AC equal to db and AB equal to CD :
the rectangle abcd will be the section of the
beam required.
19. To descHbe the lyroper form of a
flat plate by which to construct any given
fmstum of a cone. (Fig. 19.)
Let abcd represent the required
frustum of a cone ; continue the lines
AC and bd till they meet in E ; from E
as a centre, with ed as radius, describe
the arc dh, and from the same centre,
with EB as radius, describe the arc Bi ;
make bi equal in length to twice AGB,
equal to the circumference of the base of
the cone ; draw the line ei : then bdhi is
the form of the plate required.
being
Fig. 19.
12
GEOMETRY.
20. To find t-Jic development of the fruxtum of a right cone
jvhen cut hy an amjle inclined to the base. (Fig. 20.)
Let ABCD represent the required
frustum of the cone ; continue the lines
AC and BD till they meet in e ; divide
the base of the cone into any number of
equal parts — say, 12— in the points 1, 2, 3,
vN:c. ; join these points to E ; next find
the development of the base of the cone,
as shown in the preceding example,
and on it set off the same number of
points — viz. 12 — and draw lines from
them to E ; then from E as a centre
measure the distance down to the top
of the sectional plane CD at each point
of intersection with the lines 1, 2, >fcc.,
and set them off on the corresponding
numbers (measuring from E) in the
development : a line drawn through
these points will give the curve of the
top of the section, as required.
21, To find the derelopment of the frustum of a cylinder rvheii
cut by a plane inelified to the base. (Figs. 21 and 22.)
1
Fig. 21. Fig. 22. Let ABCD
represent the
required frus-
tum of a cy-
linder ; divide
the base into
any number of
equal par'^s —
say, 12 — and
draw lines
through those
points on the
cylinder parallel to AC and BD; draw a line efg equal in length
to the circumference of the cylinder, and divide it into the same
number of parts ; on each point of division set up perpendiculars
to it, making eh and gk equal in length to bd. and make Fi equal
in length to AC ; tlien take tlie height at 1 and set it up on the
corresponding number on eacli side of Fl, and so on witli each
number : a line traced through the points thus obtained will be
the curve of the required development.
GEOMETRY.
13
22. To find the development of any ffii-en poi'tion of a seginent
of a sphere.
Let ABC (fig-. 23) be the middle section
of the segment, and cfg in the plan (fig. 2-i)
the portion to be developed ; Fig. 25.
bisect AB (fig. 23) in E, and c
set M^ the jDerpendicular EC ;
divide the arc AC into any
given number of equal parts —
saj', four — and through the
points of division draw the
lines 1 1, 2 2, »fec., parallel to
AB ; on the plan (fig. 24) from
C as a centre, with the radius 1 1 taken from
fig. 23, draw the arcs 1 1 cutting FC and CG
in 1 and 1, and so on with 2 2 and 3 3 ;
draw any line BC (fig. 25), making it equal in length to BC
(fig. 23), and on it set off the same number of equal parts;
at each point of division draw lines perpendicular to BC, and
number them the same as on fig. 23.
Measure the length of the arc 1 1 in fig. 24, and set off half of
it on each side of BC on line 1 1 , and so on with each arc, includ-
ing FG; a line traced through the points thus obtained will
give the curve of the sides of the given portion of the segment
when it is developed. To describe the curve at the bottom of the
figure, take one-fourth of the circumference of the base as a
radius, and from F and G as centres describe arcs cutting bc in
S ; then from s as centre, with the same radius, describe the arc
FBG, which will be the curve of the bottom of the figiu'e, as
required.
Should the top of the figure be cut off at the line 1 1 (fig. 23),
from s as a centre in fig. 25 describe the arc 1h1, which will be
the curve of the top of the figure, as required.
23. To find the development of any (jvren
poHion of ajmraholoid. (Figs. 26, 27, and 28.)
The development is found
in the same manner as that
of a portion of a segment of
a sphere, as described in the
last example (No. 22), with
but one exception — that is,
the length of the radius for
describing the bottom curve
of the figure, which instead 3-/- j ^3
of being equal to one-fourth
of the circumference, as in
example No. 22, is equal to
one-half the length of the arc
ACB (fig. 26) in this example.
Fig. 26.
u
GEOMETRY.
FIC
24. To find tlie dcvelojyment of an entablature plate.
Let fig. 29 be the side elevation, fig. 30 the front elevation^
fig. 31 the plan, and fig. 32 the development of the figure;
divide ADC (tig. 30) into
eight equal parts, and
from the points of inter-
section draw lines pa-
rallel to ABC, cutting CD
(tig. 29) in the points 1,
2, &c. ; on bd (tig. 29)
erect a perpendicular EC,
and from the points on
CD draw lines parallel
to BED. From fig. 30
take the points 1,2, &c.,
on K BC and set them off
on AFC (fig. 31), and
erect perpendi culars
from AFC at these points.
D From C (fig. 29) along
CE measure the points
C, 1, c, 2, &c., and set
them off on their corre-
sponding lines from AFC
in fig. 31 ; draw a line
through those points,
then measure it with its
divisions and set it off in fig. 32 as a straight line aec, and at
the points of division erect perpendiculars, continuing them
either side of the line aec ; measure the distances 1, 1 ; 2, 2, &c.
(fig. 29), on either side of CE, and set them off from AEC (fig.
32) on their corresponding lines, and on their respective sides
of AEC. These will give' the development.
25. To describe a cycloid, the generating circle being qiven.
(Fig. 33.)
Let b6 be the generating circle ; draw a line abc, equal to
the circumference of the generating circle, by dividing the
Fio. 33. circle into any number
of given parts, as 1, 2, 3,
.^ &c., and setting off half
\^ that number of jDarts on
""•^^ each side of b ; draw
xo)L .'((ID lines from the inter-
sections of the circle
B C 1,2,3, &c., 7,8,9, &c.,
))arallel to AC; set off one division of the circle outwards on
the first lines .5 and 7, two divisions on the next lines 4 and 8, ,
tlien three on the next, and so on: then the intersection of i
those points on the lines 1, 2, 3, kc, will be points in the curve.
GEOMETRY.
15
Fig
26. To dtscj'ihe a jjrolate cycloid, the generating circle and the
jjosition of the generating i^oint heing given. (Fig. 34.)
Let oB be the generating circle, and p the generating point ;
draw the base line 010 equal in length to the circumference of
the circle ; divide the
circle into any number of
equal parts— say, 10 — and
draw the radii 1, 2, 3, ice. ;
from each of these points
in the circle draw lines
parallel to 010 ; as in the ^
cycloid, mark off one divi- q
sion on the lines 1 and 9, °
two divisions on the lines 2 and 8, three on the next, and so on ;
at the end of each line draw a line parallel to tlie radi-as from
which it springs, and set on it the distance bp : a line traced
through the points so obtained will be the curve required.
27. To drayr a cuytate cycloid, the generating circle and posi-
tion of the generating jjoint heing given. (Fig. 35.)
Let AB be the generating circle, and P the generating point
wdthout ; draw the base line FF' equal to the circumference of
the circle ab. divide
the circumference
into any number of
equal parts — say,
10 — and draw the
radii 1, 2, 3, ka. ;
from each of these
jDoints in the circle
draw lines parallel ^\^{^ _ ' _.f__.^___'*^__l.
to the base line ff' : g"" "" P' ^ .
also draw the line GG' pai'allel to it, and at the same distance from it
as the generating point is from the circle ; as in the cycloid, mark
off one division on the Fig. 36.
first line, two on the se- D
cond. and so on ; from the
ends of the lines thus
found draw lines paral-
lel to the radius from
which the line springs,
and set off on them the
distance BP: a line traced
through the jx)ints thus
found will be the curve
required.
28.- To desc-nhe an
epicyclmdy the generating
circle and the directing
circle being given.{Fig.d6.)
16
GEOMETRY
Let BD be the generating circle, and ab the directing circle ;.
divide the generating circle into any number of equal parts —
say, 10— as 1, 2, 3, &c., and set off the same distances round the
directing circle ; draw radial lines from A through these last
points, and produce them to an arc drawn with A as centre and
AE as radius, as shown by cccc and c'c'c'c' on the diagram ; draw
concentric arcs also through all the points on the generating
circle, with A as centre ; then taking c, c, c, c and e', c', c\ c' as
centres, and be as radius, describe arcs cutting the concentric
circles at 1', 2', ice. : the points thus fotmd will be points in the
required curve.
A
29. To descTibe a hypo-
cycloid, tJie f/eneratinff circle
andtlie directiny circle heing
given. (Fig. 37.)
Proceed as in the epi-
cycloid, the exception being
that the construction lines
are dra\\-n within the di-
recting circle instead of
outside, as in the epicy-
cloid.
30. To draiv an arc of a parabola which shall pa^s through
tivo given points, touch a Una at one of those points, and ivhose
aarts shall be in a given direction. (Fig. 38.)
Let A and C be the two points, ab the given tangent, and
bc a line parallel to the given direction of the axis of the para-
bola, cutting the given tangent in b ;
diNide ab into any number of equal
parts, and through the points of
division draw lines parallel to BC ;
divide BC into the same nimaber of
parts, and ilirough the points of
division draw lines to A : the points of intersection of 1 and 1'.
2 and 2', thus found, will be points in the required curve.
Fig. 89.
3L To draw a tangent to any jmnf
in a parabola. (Fig. 3t).)
From the vertex A of the parabola
draw AC perpendicular to AB, and
make it equal to half BD ; through
the points c and D draw a line, which
will be the tangent required.
GEOMETRY.
17
\ \
I \ \ \ i3
1 \ \
I V \ \i
FiQ. 41.
32. :7J' describe a Jiijptrhola, the diameter^ abscissa, and double
4)rdiiiate being given. (Fig. 40.)
Let AB be the diameter, bc its
abscissa, and de its double ordinate ;
then through B draw GF parallel
and equal to DE ; draw also DG and
EF parallel to the abscissa BC.
Divide DC and CE into the same
number of equal parts, as 1, 2, &c.,
and from the points of division draw
lines meeting in A.
Divide GD and ep each into the
same number of parts as DC or CE, ^\/'
and from the points of division 1', 2',
..^'C, draw lines meeting in B.
The points of intersection of the
lines 1 and 1', 2 and 2', ice, thus
found, will be points in the required 'Z_i-_L_ J_J._l_V._\-
curve.
.S3. To construct a nemd curve, the length, extreme lialf -breadth^
and approximate fineness being given. (Fig. il.)
Let BC be the extreme half-
breadtl}, and CA the length.
In CA take cx equal to
CA X #, co-efficient of fineness,
and at x set up the ordinate XD
equal to \ of BC.
About B and through D describe
the circular arc fde, cutting CB
produced, in E.
About E through A describe the
circular arc af, cutting the former
arc in F, which will be the focus.
Tlirough F draw FG parallel
to BC.
Join FB and fe, and draw fh,
making the angle bfh equal to
the angle bfg, and cutting bc,
produced if necessary, in h ; divide
the angle hfe (equal to | of bfg)
into a convenient number of equal
parts by lines diverging from f and cutting he m a series ot
points, such as h.
The points h, b, and e will be three of the points required.
About the series of the points thus found describe circular
arcs through the focus f. Divide bc into the same number of
parts as the angle hfe, and through the points of division draw
straight lines parallel to CA.
The points, such as k, where these lines cut the arcs re-
c
18
GEOMETRY.
spectively corresponding to them, will be points in the required
curve.
31. To construct an harmonic curve. (Fig. 42.)
Fig. 42.
A LB C
Let AC be the base, CK the greaTest ordinate, and bd a balance
ordinate midway between AC (the length of this ordinate varies
according to the degree of fineness required in the curve, but it
should not be greater than |, nor less than |, of CK) ; then through
D parallel to AC draw de, cutting CK in E ; bisect CK in"j,
through which point draw .JF parallel to AC : about E with the
radius ek describe a circular arc, cutting .jf in F ; join fe and
produce it, and at right angles to it draw kg.
Bisect KG- in h, and from H erect a perpendicular to kg,-
cutting CK in o, from which as a centre describe the arc kmg ;
divide the base CA into any number of equal parts, and also
divide the arc KMG into the same number of equal parts ;
through each point of di\dsion of the arc, as M, draw lines paral-
lel to AC, and through each point of division of the base, as L»
draw perpendiculars cutting the lines parallel to the base : the
points of intersection of the lines will be points required in
the curve, as x.
35. To describe the invohite of a circle. (Fig. 43.)
Fig. 43.
Let AB be the given circle, which divide into any equal
number of parts — say, I'J —as I, 2, 3, .ice. ; from the centre draw
GEOMETRY.
19
xadii to these points ; then draw lines (tangents) at right angles
to these radii. On the tangent to radius No. 1 set oft" from the
circle a distance equal to one part, and on each of the tangents
set off the number of parts corresponding to the number of its
radius, so that No. 12 has twelve divisions set off on it (that is,
equal to the circumference of the circle) : a line traced through
the ends of these lines will be the ctirve required.
36. To describe a cissoid. (Fig. 44.)
Draw any line ab, and drop a perpendicular CD f rotn it ; on
CD describe a circle ; from the extremity D of the diameter
draw any number of lines, any distance apart, passing through
Fig. 44.
the circle and meeting the line ab in a, b, c, d, and e ; take
the length from D to 5, and set it off on the same line on each
side from e, as eT>' : set off the length d4 from d, as r/E. Proceed
thus with all the lines, and trace the curve through the points
so obtained.
37. To describe a conchoid, the asymptote, pole, and diameter
heinr/ ffiven. (Fig. 45.)
Let AB be the asymptote, P the pole, and c the diameter ;
draw CD at right angles to ab ; on each side of D set off any
number of equal parts, as 1, 2, 3, &c. ; from P draw lines passing
through the points 1, 2, 3, kc. ; then from each of these points
with radius CD describe arcs cutting these lines in a, b, c, &;c. :
the points of intersection will be points in the curve. The
curve above the asymptote is called the superior conchoid, and
the curve obtained by setting off the same lengths under the
asymptote is called the inferior conchoid.
C2
20
TEIGONOMETRICAL RATIOS.
TKIGONOMETRY.
The complement of an angle is its defect from a right angle ;
tluis if A denote the number of degrees contained in any angle,
90^ — A is the number of degrees contained in the complement of
that angle.
The supplement of an ang-le is its defect from two right
angles ; thus 180" — a is the number of degrees contained in the
supplement of that angle.
Fig. 46.
Trigonometrical Ratios.
All the different functions of an
angle, or of the arc subtending that
anofle, are expressed in a ratio to the
radius of the circle which describes
the arc. Thus in lig. 46 —
r
sine A =
GL
=
GL
T
_ GL _ AD
GA AK
=
1
cosec A
co-sine a =
FG
=
AL
f
_ AL _ AB
AG AH
=
1
sec A
tangent A =
HB
=
HB
1
_ HB _ AD
AB DK
=
1
cot an A
co-tangent A =
DK
=
DK
_ DK _ AB
~ DA ~ HB
=
1
tan A
secant a =
AH
='
AH
1
AH _ AG
AB AL
=
1
cos A
co-secant a =
AK
=
AK
1
_ AK AG
AD LG
=
1
sin A
versed sine a =
LB
=
AB-
- AL = 1 —COS A
co-versed sine A =
FD
=
AD-
-GL = 1— sin A.
Fig. 47.
Note. — The lines dropped upon the radii are pei^pendicular
to those radii.
It is more convenient to define the sine, co-
sine, c
II, Base = v/hj^otenuse^ — perpendicular^
in. Perpendicular = s/ hypotenuse- — base-
The three angles of every triangle are equal
to two right-angled triangles ; thus,A + b -f c = 180°.
Of the six elements which compose a triangle
— viz. the three angles and the three sides — three
must be known in order that the others may be
determined, and one of them must be a side —
1st. Wlien two sides (J, c) and an angle (c) are
given. A 6
I. o-—h- = a-, from which a can be found.
II. - = sin A, from which A can be found.
c
III. 90° — A, from which b can be found.
24 SOLUTION OF TRIANGLES.
2nd. When two angles (A, c) and a side (c) are given.
I. -=sin A, from which we can find a.
c
II. - = cos A, from which we can find b.
c
III. 90° — A, from which we can find b,
Ex. 1. Taking the first of tlie above cases, let
J = 5
C = 90°.
I. s/ c- - J- = a/ 169 - 25 = \/ 144 = 12 = a.
II. - == lr_ = -9230769 = sine a.
c 13
From a table of sines we find •9230769 = 67^ 22' 48"-5.
III. 180°-(A + c)=180=-157° 22' 48 "-5 = 22° 37' ll"-5, or
90°-a = 90°- 67° 22' 48''-5 = 22° 37' ll"-5.
-Ex. 2. Taking the second of the above cases let
c = 2o A = 60° c = 90°.
L =sin A, .*. - - = -^— .
c 25 2
=^a = 21-6o.
9
II. -=cos A, .*.— = -, .-. -•^.= 77=12-5.
c 25 2 2
in. 180°-(A + c) = 180°-150 = B =.30^
Oblique-angled Tnangles. (Fig. 52.)
1. AVlien the three sides a, b, c are given.
I. Sin
nn - = /
2 V
/•(.s--70(.9-c)-l
L
he
/
2 V I hi.' S
III. Tan ^= /|(£:-A)_(ir:0].
In the aljove formula s denotes half tlie sum of the sides.
Aiwther Mi^hod.—The angles may be found by dividing the
triangle, when the sides are given, into two right-angled triangles.
In the above figure we have —
cd- = ca2— ad2, and also equals cii--DB-;
therefore CA^ — cb2 = ad- — db-,
therefore (ca + cb) (ca-cb) = (ad-i- db) (ad-db).
MEASUREMENT OF HEIGHTS AND DISTANCES. 2o
From this we can find ad-db, and then, since AJD + db is
known, we can find ad and db ; then
AD
COS A =
CA
DB
COS B = .
CB
Thus A and b are determined.
2. Wnien two angles (A, c) and a side (h) are given (fig. 52).
L B = 180°-(A + C), from which we can find b.
11. '"^^^J:, from which we can find a.
h sin B
in ^ =, ^HL2, from which we can find c.
b sin B
3. When the two sides a. h and the angle c are given (fig. 52).
I ^2 = a- + b--2ab . cos c, from which we can find c.
n. ?HLj^ = ?, from which we can find A.
sin c c
in. 180-(A + c), from which we can find b.
Expressions for the Area of Triangles.
(See fig. 48, 'Properties of Triangles.')
I. Area of triangle = |bc . ad.
jii^d AD = ab . sin B :
therefore area of triangle = ^« . <^ . sm b.
II. Area of triangle = ^^ {s{s - a){s - b){s - c).
&2 . sin A . sin c
III. Area of triangle = 2 si'nB '
Measurement of Heights and Distances.
1. To find the height of an accessible Fig. 53.
object. (Fig. 53.)
Let BC be the object and ab a line
measured horizontally, a = AB, and 9 = the
angle of ele%-ation, then bc = a . tan
= height required.
'26
MEASUEEMENT OF HEIGHTS AND DISTANCES.
Ftg. 54.
2. Toll fid the height of an ina^ces^ihle
object on a horizontal plane. (Fisr. 54.)
Measure a convenient distance ab in
the straisrht line bd, produced, and let
a = AB : tiien
CD
/sin sin <^\
Fig. 55.
Fig. 56.
3. To find the height of an inaccemhle
ohject Tvhen it is not convenient to measure
any distance in a line n-itJi the hase of the
ohject. (Figr. .55.)
Measure the length AB in any direc-
tion from A : at A observe the angles DAC
and DAB, 2aid at b observe the angle
DBA ; then
DC = ABfHi^^^-!iL7.
sm ()3 -i- 7;
4. To find the distance hetn-een t.tvo visible but inaccemble
t)bjects. (Fig. 56.)
Let A and b be the objects ;
measure a line CD, and suppose
A, B, c, D to be in one plane ; then ob-
serve the angles acd and adc, and
AC can be found ; again observe
the angles BCD and bdc, from
which BC can be found : thus
knowing AC and BC, and the included angle ACB, AB can be
determined.
5. To find the distance of a sJiij} from the
shore. ' (Fig. 57.)
Let s be the position of the ship ; measure
AB, a straight line between two points on the
shore ; then
sin SBA
AS = AB
'sin (^.SAB-f- sba)
Areas of Triangles, Polygons, and Circles.
Fig. 58.
1. 77ie area of any qvadrilateral figure,
ABCD (tig. 58),
equals ^AC (be + dp).
MEASUREMENT OF AREAS BY TRIGONOMETRY.
27
Fig. 59.
2. The area of any q^iiadri-
lateral figure (fig. 59), ABCD, two of
whose sides, ad and BG,a7'e jmrallel,
equals ^(bc + ad)ae, or
^ (sum of parallel sides) x (perpen- /_
dicular distance between them). ^
3. The area of any quadi'ilateral figure, abcf (fig. 59),
equals ^(bc x AE) + |(CE x FC).
4. The a/rta of any triangle, abc (figs. 60 and 61),
Fig. 60. Fig. 61.
c c
A c 1) B
equals ^ ab . cd = | ab . ac . sin a = i^^ . Z* . sin A.
5. To find the radii of the inscribed and drcumscinbed circles
H)f a regular polygon. (Fig. 62.)
Let ab be the side of a regular polygon of n
sides ; let O be the centre of the circles, OD tlie
radius of the inscribed and OA the radius of the
circumscribed circle.
Let ab = a, AO = R, OD = r, then
Fig. 62,
R =
ir
2 sm _
n
2tan'^
6. To find the area of a regular polygon in terms of its sides,
(Fig. 63.)
Let EA, AB, bf be three conse-
cutive sides of a regular polygon of e
n sides, and let each side = a.
Bisect the angles EAB and ABF
by the lines OA, ob, meeting in o.
Draw OR at right angles to ab.
Then area of polygon = -—.cot-.
4 'tl/
28
MEASUREMENT OF AREAS BY TRIGONOMETRY.
Fig. 64.
7. To find the area of a regular i)olygon. in"
scribed in a circle. (Fig. 64.)
Let o be the centre of the circle, r the radiusu
and AB a side of the polygon.
Then area of polygon = -^-. sin 'l'L.
2 n
8. To find the area of a regular polygon de-
scribed about a circle. (Fig. 65.)
Let o be the centre of the circle, r tlK
radius, and AB a side of the polygon.
Then area of polygon = nr"- . tan -.
n
9. To Jiiul the dip of the hoHzon. (Fig. 66.)
Fig. tj6. Let o denote the centre of the earth, pb a
tangent from the eye of an observer looking
from a height AP to the earth's surface at b ;
then b is a point on the horizon : draw PC at
right angles to PO ; then the angle bpc is
called the dip of the horizon.
Let op cut the earth's surface at a, and let
a
fhe anofle bpc be denoted bv Q : then pb = AP . cot -.
Table giving the Signs axd Values of the
Trigonometrical Ratios for Certain Angles.
Ratios
0=
Signs 1
30= Signs 1 45'^
Signs
60°
Signs
-1-
+
4-
4-
+
4-
90°
1
»
X
1
Signs
4-
4-
120°
^'1
•J
1
•>
n'3
1
,/3
2
•>
7:i
Sine
Co-sine
Tangent
Co-tangent
Secant
Co-secant
1
+ !
4-
+
+
1
2
2
1
V3
V3
2
1
+ : 1
i
+ i 1
+ iV2
+
-t-
-h
-f
+
73
2
I
2
v/3
1
V3
2
2
/3
Ratios
Signs
-1-
-f-
1.35°
i^ignsjl50°|
Signs
180°
Signs 270°
Sicrns
+
4-
360°
1
i
Sine
Co-sine
Tangent
Co-tangent
Secant
Co-spcant
1
V2
1
V2
1
1
V2
+
-f
1
h
2
1
v/3
2
2
4-
4-
+
-1-
1
X
1
\
-
4- 00
-{- 1
- 1 oo
1
TABLE OF CIECULAE MEASURE.
29
Table of the Clrcular Measure, or Lexgth of Cir-
cular Arc subtexdln'g A^'T Angle, Eadius being unity.
To calculate the circular measure of any angle, see ' Tri-
gonometry ' (pp. 21 and 22).
Use of the Table.— ^o?. : Required to find the lengtli
of the circular arc subtending an angle of 40° 11' 15" on a
circle of 560 feet radius.
Tabular No. for 40° = -698131701
„ ., 11' =-003199770
„ 15'' = -0000 72722
Length of arc = (560 x -701404193) = 392-78634808 ft.
Seconds.
4
5
6
7
8
9
10
11
12
13
14
15
•0000048481
'•0000096963
^•0000145444
[•0000193925
•0000242407
■0000290888
•0000339369
•0000387850
•0000436332
•0000484814
•0000533295
•0000581776
•0000630258
•0000678739
•0000727221
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
-0000775701
•0000824183
•0000872665
i^0000921146
•0000969627
•0001018109
•0001066591
•0001115071
•0001163553
•0001212034
•0001260516
•0001308997
-0001357478
•0001405960
•0001454441
Sec' Circ. Meas. Sec. Circ. Meas. Sec' Circ. Meas
9
31
32
33 I
34!
35!
36 I
37'
38 1
39 I
40
41 I
42
43 '
44!
45 I
0001502922
0001551404
0001599885
0001648367
0001696848
0001745329
0001793811
0001842291
0001890773
0001939255
0001987736
0002036217
0002084699
0002133180
0002181662
Seel Circ. Mca?.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
I-000223UU
i -000227862
'•0002327 lOG
i-0002375587
•0002424068
•0002472550
•0002521031
•0002.569513
•0002617994
•0002666475
-0002714957
-0002763437
•0002811919
-0002860401
•0002908882
Minutes.
M.
T
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Circ. Meas. AI. I Circ. Meas. M. I Circ. Meas,
i-0002908882
•0005817764
>0008726646
•0011635528
'•0014544410
i-0017453293
1-0020362175
•0023271057
^•0026179939
•0029088821
-0031997703
•0034906585
•0037815467
•0040724349
•0043633231
16
17
18
19
20
21
22
23
24 i
25 I
26 i
27 j
28 j
29
30
1-0046542113
•0049450995
•0052359878
•0055268760
•0058177642
•0061086524
•0063995406
•0066904288
•0069813170
•0072722052
•0075630934
•0078539816
■0081448698
0084357581
0087266463
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
[•0090175345I
[•009308422
•0095993109148
•0098901991
•0101810873
-0104719755
•0107628637
•0110537519
•0113446401
•0116355283
•0119264166
•0122173048
•0125081921
•0127990812
•0130899694
il.l Circ. Meas.
49
50
51
52
53
54:
00
56;
57!
58:
59
60'
;-0133808576
;^0136717458
j^01396263401
•0142535222
'•0145444104
1^0148352986
1-0151261869
•0154170751
•0157079633
•0159988515
•0162897397
•0165806279
•0168715161
•0171624043
•0174.5.32925
30
TABLE OF CIRCULAR MEASURE.
|Takle or TiiE riiifjULAR Mesaure of any Axole (c.jntinued).j
DEGREES. j
Deff.
1
Circ. Meas.
•017453293
46
1 Circ. Meas.
Deg.| Circ. Meas. Deg.
91 1^.588249619 136
i Circ. Meas.
'"
•802851456
12-373647783
2
•0349065S5
47;
•820304748
92
1-605702912
137
■2-391101075
3
•052359878
48
837758041
93
1-623156204
138
2-408554368
4
•069813170
49
855211333
94
1-640609497
139
2-426007660
5
•087266463
50
872664626
95
1-6.58062789
140
2-443460953
(5
•104719755
51 :
890117919
96
1-675516082
141
2-460914245
7
•122173048
52 i
907571211
97
1-692969374
142
2-478367538
8
•139626340
53 1
925024504
98
1-710422667
143
2-495820830
'J
•157079633
54!
942477796
99
1-727875959
144
2-513274123
10
•174532925
55 1
959931089
100
1-745329252
145
2-530727415
11
•19198G218
56;
977384381
101
1-762782.545
146
2^548180708
12
•209439510
57 1
994837674
102
1-780235837
147
2^56563400
la
•226892803
58 jl
012290966
103
1-797689130
148
2^583087293
U
•244346095
59,1
029744259
104
1-815142422
149
2-600540585
15
•261799388
60,1
047197551
105
1-832595715
150
2-617993878
16
•279252680
61 ir
064650844
106
1-850049007
151
2-635447170
17
•296705973
6211
082104136
107
1-867502300
152
2-652900463
18
•314159265
63 11
099557429
108
1-88495.5.592
153
2-670353756
19
•331612558
64 |1
117010721
109
1-902408885
154
2-687807048
20
•349065850
65,1
134464014
110
1-919862177
155
2-705260340
21
•366519143
6611
151917306
111
1-937315470
156
2-722713633
22
•383972435
67 1
169370599
112:1^954768762|
157
2-740166926
23
•401425728
68 1
186823891
113
1-972222055
158
2-757620218
24
•418879020
69
1
204277184
114
1-989675347
159
2-775073511
25
•436332313
70
1
221730476
115 2^007128640
160
2-792526803
26
•453785606
71
1
239183769
116 2^024581932
161
2-809980096
27
•471238898
72
1
256637061
117 2-042035225
162
2-827433388
28
•488692191
73 1
274090354
118 2-059488517
163
2-844886681
21)
•506145483
74 1
291543646
119,2^076941810
164
2-862339973
30
•523598776
75 1
308996939
120 2-094.395102
165
2-879793266
31
•541052068
76 il
326450232
121;2-111848395
166
2-8972465.58
32
•558505361
77 il
343903524
122
2^1 2930 1687
167
2-914699851
33
•575958653
78 11
361356817
123
2^146754980
168
2-932153143
2-949606436
34
•593411946
79 |l
378810109
124
2^164208272
169
35
•610865238
8011
396263402
125
2^181661565
170
2-967059728
36
•628318531
81 11
413716694
126
2^199114858
171
2-984513021
37
•645771823
82 !l
431169!)87
127
2^216568150
172
3-001966313
38
•663225116
83 :1
448623279
128
2^234021443
173
3-019419606
3'.»
•680678408
84,1
466076572
129
2^251474735
174
3-036872898
40
•698131701
85 il
483529864
130
2^268928028
175
3-054326191
41
•715584993
86 1
.500983157
131
2^286381320
176
3-071779484
42
•733038286
87 ;i
518436449
132
2^303834613
177
3-089232776
43
•750491578
88 il
535889742
133
2^321287905
178
3-106686069
44
•767944871
S'.'il
5533430:54
134
2-338741 lti8
179
3-124139361
45
•785398163
•.iO(r570796:527
135
2-356194490
180
3-1415926.54
TABLE OF CIRCULAR MEASURE.
31
Table of the Circular Measure of any Angle (concluded>|
DEG-REES.
Ueg.i
r81'3-15i>04:5946
182 3-176499239
183 3-193952531
184 3-21 U05824
185 3-228859116
186 3-246312409
187 3-263765701
188'3-281218994
I89i3-298672286
190 3-316125579
] 9113-333578871
192'3-351032164
193!3-368485456
Jl94i3-385938749
1953-403392041
19613-420845334
197'3-438298626
198'3-455751919
199|3-473205211
200 3-490658504
01,3-508111797
202'3-525565089
203'3-543018382
20413-560471674
205|3-577924967
206 3-595378259
207 3-612831552
208 3-630284844
209;3-64773813
210|3-665191429
211:3-682644722
700098014
717551307
735004599
752457892
769911184
787364477
21813-804817769
21913-822271062
Peg. I Circ. Meas,
226I3-944444I10
227'3-961897402
228'3-979350695
229 3-996803987
230 4-014257280|2
231 4-031710572
232 4-049163865
233 4-06661715
234 4-084070450
235 4-101523742
236^4-118977035
237 4-136430327
238 4-153883620
09960 291
23130 29
239 4-171336912
240 4-188790205
2414-206243497
242'4 -223696790
243 4-241150082
244 4-258603375
2454 -276056667
246 4-2935
247 4-310963252
248 4-328416545
249-4-345869837
250 4-36332
25l|4-38077642^
252'4-398229715
253 4-415683008
2544-4331363
255:4-450589593
256,4-468042885
25714-485496178
258^4-502949470
259;4-520402763
260:4-537856055
261 14-555309348
262 4-572762640
2634-590215933
264|4-607669225
220:3-839724354 265 4-625122518
1212'
213'
2l4i
215 3-
21»;|3-
21713-
221^3-857177647
222:3-874630939
223:3-892084232 268
224:3-9095375241269
5;3-9269908r
266'4-642575810
267 4-660029103
4-677482395
4-694935688
270 4-712388980 31
Dep.'
2714-
272 4-
273 4-
274 4-
75 4-
2764-
2774-
2784-
2794'
280 4'
2814'
282 4'
283 4'
284 4'
285,4'
286 4
287'5
2885
2895
290'5
5
292'5
293 5
2945
295 5
5
2975
2985
5
005
301 5
B02 5
303 5
304 5'
305 5'
306 o'
307 5"
308 5'
309 5-
10 5'
115'
312 5'
313 5'
1314|5'
5i5
00 299
729842273
747295565
764748858
782202150
799655443
817108736
834562028
852015321
869468613
886921906
904375198
921828491
939281783
956735076
974188368
991641661
009094953
026548246
044001538
061454831
078908123
096361416
113814708
131268001
148721293
166174586
■183627878
2010811
•218534463
235987756
253441049
270894341
288347633
305800926
323254219
340707511
358160804
375614096
393067389
410520681
316 5-515240436
317
318
319
320
99
Des.l
r?.
427973974 356
445427266
462880559
480333851
497787144
o
5-
5-
5"
5'
5-
5-
o 5'
324 5'
o25 5'
326 5
rl27 5
^28 5
329 5
330 5
331 5
3325
333 5
334 5
335 5
336 5
'.375
3385
339 5
340 5
3415
342 5
3435
344' 6
3456
3466
347 6
3486
349 6
3506
35116
352;6
353; 6
354|6
355 6
357
358
359
360
532693729
550147021
567600314
585053606
602506899
619960191
637413484
654866776
672320069
689773362
707226654
•724679947
74213323r
759586532
•777039824
•794493117
■811946409
•829399702
•846852994
•864306287
•881759579
•899212872
•916666164
•934119457
•951572749
-969026042
•986479334
•00393262
-021385919
-038839212
•056292504
•073745797
•091199089
•108652382
•126105675
•143558967
•161012260
•178465552
•195918845
•213372137
•230825430
•248278722
•265732015
•28318530
32
MENSURATION OF SUPERFICIES.
MENSURATION.
I. Mensuration of Superficies.
PROBLEMS.
1. To find tlie area of any parallelogram. (Fig. 67.)
Fig. 67.
< -a
fiULE. — Multiply the length hy
the perpendicular height, and the pro-
duct will be the area. Thus if a =
the area, ^i = the length, and & = tlie
perpendicular height, then A = ah.
Fig. 68.
b -
2. To find the area of a trapezoid. (Fig. 68.)
Rule. — Multiply the sum of the parallel sides
by the perpendicular distance between them ; half
the product will be the area. Thus if A = the
area, h and a = the parallel sides, and c = the perpen-
dicular distance between them, then a = ^ ^.
3. To find the area of ant/ triangle. (Fig. 69.)
F:g. 69.
^.
Rule. — Multiply the ba.se by the perpen-
dicular height ; half the product will be the
area. Thus if A = the area, & = the base, and
a = the perpendicular height, then A = — .
Fig. 70.
4. To find the third side of a right-angled tHangle, two being
jjiven. (Fig. 70.)
(I.) ^Vhen the base and perpendicular are given, to tind the
hypotenuse, or longest side.
Rule. — To the square of the base add the
I square of the perpendicular ; the square root of
I the sum will equal the hj-potenuse.
e
?• (II.) When the hypotenuse and one side are
'"■ given, to find a third side.
Rule. — Multiply the sum of the hypotenuse and one side
by their difference ; the square root of the product will be the
other side.
If & = the base, c = the perpendicular, and a = the hypote-
Jiuse, then
a = v/ h- + c^
b^-s/{a + e) (fl - r) = s/a'-c^
■-=s/la +>) (»-*)= \^a' - b^
MENSURATION OF SUPERFICIES.
5. To fiiid the area of any regular jJohjgoti. (Fig
Rule. — Multiply the sum of its sides by a
perpendicular drawn from the centre of the poly-
gon to one of its sides ; half the product will be
the area. Thus if A = the area, c = the number
■of sides, J = the length of one side, and « = the
perpendicular, then a=- . *
33
J- ->
Table of Polygons.
A = the angle contained between any two sides.
E = the radius of the circumscribed circle.
r = the radius of the inscribed circle.
s = the side of the polygon.
• -= Name
A
R = SX
/• = SX j S=RX
i
,'2
s=rx Area = s
1 ^
3 : Trigon
60°
•57735
•28868'l^73205 3^46410 •43.301
4 Tetragon .
90°
•70711
•50000 1-41421 2-00000 1-00000
.5 Pentagon .
108°
•85065
•68819 1-17557,1-45309 1-72048
6 Hexagon .
120° :l-00000
•86603 1-00000 1-15470 2-59808
7 Heptaeon .
128P '1-152381-03826 •867771 ^96315 3-63391
8 Octagon
135° 1-30656 1-20711 •765371 •82843 4-82843
9 Xonao-on . 1 140° 1-46190 1-37374 •68404-72794 6-18182
10 Decagon . 144° l-61803'l-5.3884| -61803, -64984 7-69421
11 Undecason 147^° 1-77473 1-70284, •56347! •.58725 9-36.564
12 Duodecaeon 1.50^ 1-93185 1-86603; -51764! -53.590 11-19615
6. To find the area of a trapezium. (Fig. 72.)
PiULE. — Multiply the diagonal d by the
sum of the two perpendiculars a and t let
fall upon it from the opposite angles ; half
the product will be the area. Thus if A =
the area, a and h = the perpendiculars, and
. -7854.
17. To find the area of a cycloid. (Fig. 33.)
Rule. — Multiply the area of its generating circle by 3.
18. To find the area of a parabola.
Rule.— Multiply the base by § of the height. (Fig. 40.)
19. To find the area of a common parabola,
or a parabola of the second order. (Fig. 79.)
Rule. — To the sum of the two endmost
ordinates add four times the intermediate
!/s ordinate; multiply the linal sum by i of the
common interval between the ordinates. The
J} result will be the area. Thus if y„ y._., and ^3 be
Fig. 79.
jr._—
I
jy-^""^
y,
Vz
LT.
lx
MENSURATION OF CURVILINEAR AREAS.
37
the ordinates, A a? the common interval, and fydx the area,
then
Remark. — The parabolic curve is said to be of the second
order, the third order, iScc, according to the exponent of the
highest power of the abscissa. Thus a parabola of the tirst order
is a straight line ; a common parabola is a parabola of the second
order, and so on.
20. To find the area of a parabola of the third order. (Fig. 80.)
EuLE. — To the sum of the two end-
most ordinates add three times the
intermediate ordinates ; multiply the
final sum by | of the common interval
between the ordinates : the result will
be the area. Thus ii fydx ^ the area, then
3Aa!
fydx = - g- (y, + 3^2 + 3^3 + y^).
Fig. 80.
y^
y-7
y*
Table Showing the Multipliers for the Foregoing
AND SOME other RULES.
Vv Vii Vsy -^c. = the ordinates, and Ax = the common
interval or abscissa between the ordinates.
1. Trapezoidal rule,
. Ax
^^^^ = -2 (y. + y.)
2. Eule for parabola of the second order,
Area =^^1^(^^ + 42/2 + ^3)
t
3. Rule for parabola of the third order,
Area =-^^(2^^ + 3^2 + 3^3 + 3/4)
4. Rule for parabola of the fourth order,
^^'^^ = ^'f{('yi + 32y., + 121/3 + 32y, 4 7y,)
o. Rule for parabola of the fifth order,
^^^* = ^2tl^(l%> + '^^-^ + ^^» + ^^y^ + ^-^^5 + 1%6)
6. Rule for parabola of the sixth order,
Area = A^ (Uy, + 2167j, + 27 y, + 272y, + 27y, + 216y, + Uy,)
38 MENSUEATION OF CURVILINEAR AREAS.
21. To measure any curmlinear area hy means of the tra-
pezoidal rule.
Rule. — To the sum of half xv.q two endmost ordinates add
all the other ordinates, and multiply the sum by the common
interval ; the result will be the area. Thus
(?/, + y„
^-9 "^ y- + ^3 • • • • + Vn-x)-
Hemarli. — In ship-building work it is very often convenient
to perform the additions in the above rule mechanically, by
measuring off the ordinates continuously on a long strip of
paper, and measuring the total length on the proper scale.
This rule is only approximate, but it is especially useful for
getting the areas of the transverse sections in the first rough
calculations of trim, displacement, i:c.
22. To measure any curvilinear area hy means of the paraholie
j'ule of the second order, or Sinijpson's frst rule.
Rule. — To the sum of the first and last ordinates add four
times the intermediate ordinates and twice all the dividing
ordinates; multiply the final sum by |, the common interval : the
result will be the area. Thus
A Of*
/y^ = ^ (y, + 4^2 + 2?/3 + 4^/4 + % • • • . + 4y«-i + yJ.
Memarli. — The number of intervals in this rule must be
even. The ordinates which separate the parabolas into which
the figure is conceived to be divided, are called dividing ordi-
nates, and all the other ordinates except the two endmost ones
are called intermediate ordinates.
23. To measure any curvilinear area hy means of the imraholic
rule of the third order, or Simpson's second rule.
Rule. — To the sum of the two endmost ordinates add three
times the intermediate ordinates and twice all the dividing
ordinates ; multiply the final sum by ^,the common interval, and
the result will be the area. Thus
fydx=^—^(jj, -h 3^2 -f 3^3 -I- 2y, + 3^3 .... + 3y,,-i + yn).
The number of intervals in this case must be a multiple of three.
llemark. — The sequence of the multipliers in the two fore-
going rules is obvious. Thus in the first rule the simple multi-
pliers are 1.4.1, but tlie}^ are combined thus : —
1.4.1
1.4.1
1.4.1
1.4.1
1.4.1
, ______ 1.4.1
lT4~r2~lT2 74 4.2.4.2.4.1
MENSURATION OF CURVILINEAR AREAS. O
In the second rule the multipliers are 1.3.3.1.
1.3.3.1
1.3.3.1
1.3.3.1
1.3.3.1
1.3.3.1
1.3.3.2.3.3.2.3.3
3.3.2.3.3.1
And in the same way the multipliers to measure any curvi-
linear area may be obtained from the table on p. 37.
21. To measure any cwvUineai' area n'he/i subdivided intervals
are used.
1st. MTien Simpson's first rule is med.
Rule. — Diminish the multiplier of each ordinate belonging
to a set of subdivided intervals in the same proportion in which
the intervals are subdivided. Multiply each ordinate by its
respective multiplier as thus found, and treat the sum of their
products as if they were whole intervals ; that is, multiply the
sum thus foimd by | of a whole interval, and the product will
be the area.
2nd. M'hen Simpson's second rule is used.
Rule.— Proceed as in the first rule, but multiply by ^ of a
whole interval for the area.
Example to Simpson's First Rule. — The series of multipliers
for whole intervals being 1.4.2.4.2, &c., those for half-
intervals will be ^,.2.1.2.1, &c., and for quarter-intervals
i 1 L 1 L Szc
I}eina./-J{.—When an ordinate stands between a larger and
a smaller interval, its multiplier will be the sum of the two
multipliers which it would have had as an end ordinate for each
interval. Thus for an ordinate between a whole and a half
interval the multiplier is ^ + 1 = 1^, and between a half and a
quarter interval 2 + i = f •
Table of Multipliers when Subdivided Intervals
ARE USED.
Simjjson's First Rule.
Ordinates Oil
2
91
2^
2
3
3
3|
§
3.1
4
5
4
6
6J
2
7
1
1
2
*3
1
■.i
7i
• 2
T
3
8
1
2
7
1
4
5
1
r.
Multipliers
1
4
1|
n
Ordinates
1
1
H
2
2
1
3
H
4
4
3|
1
U
4
1-,
5^
2
4i
•2
3
6
3
*
1
3
I
Jh
2
■.i
Multipliers
1
J 2
2; ■^
1
2
I2
2
H
2
1
3
3
4
Ordinates
1
Multipliers
1
40
]\1EXSUKATI0X OF CURVILrXEAR AREAS.
Table of Multipliers when Subdivided Intervals
AEE used (concluded).
SiinpsfliVs Second Rule.
Ordinates
1
2
3
2
3
1
1
3
1
7
13
1
3^
3
4
2
ii
4
3
4
^2
4i'5
If 2
1 3
2, 4
51 6
2i2i
1 ^
3f 4
1 h
1
2
f
4i
61
J
3
3
4
4i
*3
1
2
61
1
3
3i
1
63
1
2
3i
f
1
2
1
2
si
3
4
1
-2
7
4
1
4
5
1
(J
Multipliers
1
3
1
3
Ordinates
Multipliers
1
3
1
2
1
i
2
Ordinates
Multipliers
u
§ 1
Fic;
81.
y
AJC
y"?
/.a?
i\7/^6?. — The ordinates in this table are numbered the same
as if they were the number of intervals from the origin.
25. To calculate the area separately of one of the tn-o divisions
of a paraholic figure of the second oi'der. (Fig. 81.)
Rule.— To eight times the middle ordinate add five times
the near end ordinate, and subtract the far end ordinate;
multiply the remainder by i the common interval : the result
will be the area.
Xote.—The near end ordinate is the ordinate at the end of
the division of which the area is to be found.
Ex. : In the figure ABCD let it be required
to find the area of the division acef. Let
y, = the near end ordinate, y^ = ^^^ middle
yj ordinate, and y^ = the far end ordinate ;
then f7jd.v = ~(ioy, + Sy,-y,).
26. To vieasure an area hounded hy an arc nf a plane curve
and tn-o radii. (Fig. 82.)
Rule. — Divide the angle subtended by the arc into any
number of equal angular intervals by means of radii. Measure
these radii and compute their half -squares. Treat those half-
squares as if they were ordinates of a curve by Simpson's first
or second rule, as the number of intervals may require.
Note. — The common interval must be taken
in circular measure. (See j)p. 21 and 22.)
Kr.: In the figure abc let r,, 7'.^, r^, r^^
rj = the radii, A0=»the common angular inter-
val, and / dd = the area; then
_^ie ^ O'l^ + Wj- W + 4r,2 + r,'')Ae
6
Fk;. 82.
/?
MENS.UEATION OF SOLIDS. 41
27. To measure any curved line. (Fig. 83.)
If the curve is rather irregular, divide it by the eye into any
number of circular arcs ; join the extremities of each of these
arcs by chords. The sum of the length of each of these arcs
found by the following rule will be the total length of the
curved line.
Rule. — Draw a tangent to the curve at each of its extre-
mities ; then take the sum of the two distances from the point
of intersection of the two tangents to the extremities of the
curve, together with twice the length of the chord ; divide the
result by 3 for the length of the arc.
Ex. (fig. 83) : Let ACB be one of
the arcs, and AB a chord joining
the two extremities, and at, bt'
tangents to the curve at its extremi-
ties, cutting each other in D; then
the length of the curve
ACB ^ i(AD + DB + 2AB).
II. Mensuration of Solids.
PROBLEMS.
1 . To find the solidity of any parallelopipedy prism, or cylinder.
(Fig. 84.)
Rule. — Multiply the area of the base by the perpendicular
height; the result will be the solidity.
T-f*;. 84.
2. To find the solidity of a cone or jjyramid. (Fig. 85.)
Rule. — Multiply the area of the base by \ the perpendicular
height ; the product will be the solidity.
Fig. 8.5.
3. To find the solidity of the frustnm of a cone or j^yramid,
(Fig. 86.)
Rule.— To the sum of the areas of the two ends add the
square root of their product ; this final sum being multiplied by
i of the perpendicular height will give the solidity.
Fig. 86.
42
ilENSUEATlON OF SOLIDS.
Fig. 87.
4. To Jind the solidity of a itedge. (Fig. 87.)
Rule. — Add the length of the
edge to twice tlie length of the base;
inujTiply the sum by the width of the
base and the product by \ of the per-
e:::^ej
pendicuiar height : the resiilt will be the solidity.
Fig. 8S.
Firi
Fig. 90.
^
5. To find the sollditij of a jyrumoid. (Fig. 88.)
Rule. — To the sum of the areas of the two ends
add four times the area of a section parallel to the
base and equally distant from both ends ; the sum
being multiplied by \ tlie perpendicular height will
give the solidity.
6. To find tJie soliditif of a spheo^e or glohe. (Fig, 89.)
Rule. — Multiply the cube of the diameter by
•5236 ; the product will be the solidity.
7. To find the solid'dy of the segment of a sphere.
(Fig. 90.)
Rule. — Add the square of the height to 3 times
the square of the radius of the base ; that sum multi-
plied by the height and that product by -5236 will give
the solidity.
Fig. 91 .
8. To find the solidity of a zone of a sphere. (Fig. 91.)
Rule. — To the sum of the squares of the radii of
the two ends add ^ the square of the height ; multi-
ply the sum by the height and that result by 1-5708:
the result will be the solidit3\
9. To find the solidity of a cylindrical ring.
Rule. — To the thickness of the ring add the inner diameter ;
multiply that sum by the square of the thickness, and the product
by 2-4674 : the result will be the soliditv.
Table to fixd the Solidity and Surface of any
Regular Solid.
s = solidity. a = area. L = linear edge.
r = radius of inscribed circle.
No. of
Sides
Name
A = L=X
b=L^X
•11785]
1^000000
-471405
7-663119
21 81 695
r=LX
4
6
8
12
20
Tetrahedron .
Hexahedron .
Octahedron
Dodecahedron
Icosahodron
1-732051
6-000000
3^464 102
20-645729
8-660254
•204124
•500000
•408248
1 •11351 6
•755750
MENSURATION OF SOLIDS.
43
10. To find tlie soUdiiy of aw ellipsoid. (Fig. 92.)
Rule. — Multiply the fixed axis by the square
of the revolving one, and the product by -5236 ;
the result will be the solidity.
Fig. 92.
Fig. 93.
11. To find the soliditii of the segment of an ellipsoid when the
base is circular. (Fig. 118.)
Rule. — Take double the height of the segment
from three times the length of the fixed axis ; multiply
the difference by the square of the height, and that
product by -5236 : then that result multiplied by
the square of the revolving axis and the product
divided by the square of the fixed axis vdW give the '\ /
solidity. ""^ — ■'
12. To find the solidity of the segment of an ellipsoid when the
base is elliptical. (Fig. 94.)
Fig. 94.
Rule. — Take double the height of the segment from three
times the length of the revolving axis ; multiply the
difference by the square of the height, and that,
product by -5236 : then that result multiplied by the
fixed axis, and the product divided by the revolving
axis, will give the solidity.
13. To find the solidity of the middle frustum of an ellipsoid
when the ends are circular. (Fig. 95.)
Rule. — Multiply the sum of the square of the
middle diameter and the square of the diameter
of one end by the length of the frustum, and that
product by -5236 for the solidity.
14. To find the solidity of the middle frustum of an ellipsoid
when the ends are elliptical. (Fig. 96.)
Rule. — To twice the product of the transverse and conjugate
diameters of the middle section, add the product
of the transverse and conjugate diameters of one
end ; multiply the sum by the height of the frus-
tum, and that product by -2618 : the result will be
the solidity.
Fig. 96.
15. To find the solidity of a paraboloid. (Fig. 97.)
Rule. — Multiply the square of the diameter
of the base \>j the perpendicular height, and the
result by -3927; the product will be the soli-
dity.
Fig. 97.
44
Fig. us.
MENSURATION OF SOLIDS.
16. To find the solidity of the frustum of cu
^paraboloid when its ends are perpendicular to its
axis. (Fig. 98.)
Rule, — Multiply the sum of the squares of the
diameters of the two ends by the height of the
frustum ; the product multiplied by "3927 will be
the solidity.
17. To find th^ solid'itij of a hyperboloid. (Fig. 99.)
Fig. 99.
Rule. — To the square of the radius of the
base add the square of the diameter at the middle
between the base and the vertex ; this sum mul-
tiplied by the altitude, and the product by '5236,
will be the solidit3^
18. To find the solidity of the frustum of a hypcrholoid.
CFig. 100.)
Rule. -^ To the sum of the squares of the
semi-diameters of the two ends add the square of
the middle diameter; this sum multiplied by the
altitude, and the result by -5236, will be the soli-
dity.
Fig. 100.
19. To measure the volume of a solid hounded on one si-de by a,
cw'ved surface.
(I.) To measure the volume in slices.
Rule. — Take one of the plane surfaces as the base, and
divide the mass into slices parallel to that base and sufficiently
thin as to be able either to neglect or account separately for
the curvature.
Then take the volume of each slice separately, and add them
together for the whole volume, taking account of the curvature
in this addition if necessary.
(II.) To measure the volume by the rules applicable to the areor
of a plane cxirrc. (Fig. 101.)
^'"'- ''^'- Rule. — Take a straight line in
the figure as a base line, or line of
abscissa, and divide the figure along
that line into any number of equal
parts, and measure the areas of the
l^lane sections at those points of division by the rules applicable
to tlie area of a plane curve.
Then treat the areas thus found as if thev were the ordinates
MENSUKATION OF SOLIDS.
45
of a plane curve of the same length as the figuie, and the result
will be the volume of the solid.
Example. (See fig. 101.)
2so. of Sections
Areas of Sections
Multipliers
Products
1
2
3
4
5
5 feet
10 feet
15 feet
20 feet
25 feet
1
4
2
4
1
5
40
30
80
25
Ax
180
= 2
Area = 360 feet
(III.) To
(Fig. 102.)
measure the voluvie hy Dr. Woolley^s method.
EuLE. — Take a straight line in the figure as a base line, and
divide the figure along that line by an odd number of parallel
and equidistant planes perpendicular to the base. Then divide
the figure horizontally in the same way by a number of plane
sections parallel to the base. Then take ordinates at the inter-
sections of the horizontal with the vertical plane sections in
their consecutive order, and treat them as follows : —
(1) Neglect absolutely all ordinates which are odd in toth
planes of section.
(2) Neglecting the outside rows of ordinates, double every
ordinate which is even in either or toth planes of section, and
.add them together.
(3) Add to this the simple sum of all the even ordinates in
the outside rows.
(4) Multiply this final sum by f of the
common vertical interval, by the
common horizontal interval, and the
result will be the volume.
Ex. In the accompanying figure
the multiplier for each ordinate is
shown above it, so that if s = the sum
of the products of the ordinates by
their respective multipliers, v = the
volume, and Aj-' = the common vertical interval, and A.z? = the
common horizontal interval, then
product of
Fig. 102.
the
2(8 X A,r;' x Ar)
46
MENSURATION OF SOLIDS.
20. To measnre the rohime of a ')vedfie-shaj)ed solid howided on
one ftide hy a curved- mi'face. (Fig. 10.3.)
KuLE. — Divide the figure longitudinally by a number of
planes radiating from the edge at equal angular intervals, and
also divide the length of tigure into
a number of equal intervals for or-
dinates, and treat each of the radiat-
ing planes as follows : —
(I.) Measure the ordinates as if for
taking the areas of the several planes,
but instead of the ordinates them-
selves compute their half-squares,
and treat them as if they were the
ordinates of a plane curve of the same length as the ligure.
The result of this calculation is called the moment of the
radiating plane.
(II.) Treat the moments of the radiating planes as if they
were the ordinates of a curve, but taking the common angular
interval in circular measure.
Example. (See fig. 103.)
No. of Planes
Moments of the
Radiating Planes
105
110
115
120
125
Multipliers
Pi'oducts
Q _ angular interval
3 8
Volume = 40-1580
21. To find the mean sectional area of a solid.
KuLE. — Divide the volume of the' solid by its length ; the
result will be th.e mean sectional area.
22. To set off the correct form of a mean cross-section.
Rule. — Divide the figure longitudinally by a number of
horizontal planes; take the mean breadtli of each of the
horizontal planes and set them off perpendicular to a fixed
straight line, and at the same height as their corresponding
planes in the solid : a line passing through the ends of these
mean breadths will bo the correct form of the mean sectional
area of the solid.
Kote. — The mean breadth of a plane curve is found by
dividing the area of the curve by its length.
MENSURATION OF SUKFACES OF SOLIDS. 47
ni. Mensuration of the Surfaces of Solids
PROBLEMS.
1. To find the slant surface of a cone m^ pyramid.
Rule. — Multiply the perimeter of the base by the slant
height ; half the product will be the convex surface.
2. To find the convex surface of the frustum of a cone or
yyramid.
Rule. — Multiply the sum of the perimeters of the two ends
by the slant height; half the product will be the convex surface.
3. To find the convex muface of a sphere.
Rule.— Multiply the circumference by the diameter, or
square the diameter and multiply the product by 3-1416 ; either
result will be the convex surface.
4. To find the convex surface of the segment of a sphere.
Rule. — Multiply the circumference of the whole sphere bj^
the height of the segment ; the product will be the convex
surface.
5. To find the convex surface of the zone of a sphere.
Rule. — Multiply the circumference of the whole sphere by
the height of the zone ; the result will be the convex surface.
6. To find the convex surface of a cylindrical ring.
Rule. — Multiply the sum of the thickness of the ring and
the inner diameter, by the thickness of the ring, and that pro-
duct by 9'861>6 ; the result will be the convex surface.
7. To find, the mean curved giHh of the convex surface of an
irregular solid.
Rule. — Divide the figure into an even number of equal
imrts, and at the points of division measure girths at right
angles to the length of the solid ; multiply these girths by a
proper set of multipliers, applicable to the area of a plane
curve ; divide the sum of these resillts by 3, and that quotient
by the number of intervals : the last result will be the mean
girth.
8. To find the convex s^irface of an irt'cgular figure.
Rule 1. — Multiply the length of the solid by the mean
girth.
Rule 2. — Measure the curved girths as if for finding the
mean girth ; treat those girths as if tlicy were ordinates of a
plane curve of the same length as the figure : the result will be
the curved surface.
PROPOSITION.
If any plane figure revolve about an axis lying in its oivn
plane, the surface of the solid generated is equal in area to the
rectangle whose sides are the length of the peHmeter of the geH4i-
rating figure, and the length of the path of the centre of gravity of
the perimeter.
48
CIECUMFEEEXCES AXD AEEAS OF CIECLES.
•amuTQ
'^
-
M
cc
-r
u- -^
l~
X
—
—
—
Cl cc
1'^'~
1-
— -H
•aiuijTQ 1
-^
^_
■M
—
1^
— CI
^
-^
—
~
X
n Cl
X — . t-
-
X Cl
•3
l^
^
t-
3C
b- b-
or.
X
iC
X
o
cc iC
cc I- cc
t^ o; M
c
•>
<
'>\
^
*~
'—
c^j cc
"^
tc
l~
—
"
Cl
Cl cc
w*
T—
-M
t^
C4
t^ 'O-
-f
X
CI
^^
^—
iC c^
cc t^ ^-
• •^
/^ «^
.
J-
-#
^-
C^
^M
CC
-*i iS
1-
X
■^
^~
cc
-:^ LC
I- X o
^_
•"^ v^
2
CE
1 :-
t^
a;
P
C^l
iC
cc —
--.
(^
—
^
1^
^ .--
.-
o; Cl
y
H
X
' w
.M
u.'
—
'"'
■"
— CI
/I
•M
..
""^ -^
■^ "^ *c
iC
■-'"
OO
1^
-~
,^
»
t^ cc
t—
--
.-
.-
_i.
l^ IC
O". X "^
.^
1,
1
t-
p
■?
•
;i^
ic lb
c^ cc
"3
«>-
t^
X
t- X
CI -r-
t^ c; Cl
-^ r^ Cl
Cl
c^ «
<
2
"•■rt
to
CO
^
CO
Cl
to >— (
IC
^
^
r—
^.
— ->
-+ X Cl
to
O IC
;::
ic
Ci
cc
t^
~
O CI
cc
-r*-
tc
t^
^
c Cl
1^
C2
;-<
p
re
■*
'"T
,—
'^
CO —
— H
i^
-^
-^
-■-
^ ^
to Tt Cl
1*
X Cl
o
?5
::^
■M
iC
ao
"—
—
-— M
~l
CI
—
cc
cc
-*• -r
-^ -rr iC
tC
o
—
cc
_u
tM
■M
—
ic r-
■^
—
--
.-
__
Cl X
^^ 1^ r—
--
_- ,-^
<
^
o
l^
-*
r^
ex
00 -^
»b
X
1-
CI
00
';£
IC IC
Cl -!^
CC — l^
-rf^
Cl Cl
<
vT
'TjfSi
•
(M
ib
'"
■^
7^ cc
-rf
>c
l^
X
1—1
'- —
1— — Cl
Cl
Cl cc
•=*x
-#
iC
t-
~
cc
t— —
IC
o
-*l
X
CI
t^ o
ic o; cc
t^
— LC
^
z
^
CJ:'
-Tf
cc
»c
O CO'
*
—
CI
cc
IC
to X
• O Cl
cc
iC iC
z.
:;^
c
-;•
^"
■,*i
,—1
-^
l^ o
CC
t^
^
—
--
n Cl
IC o: Cl
uc
X —
r;
=
\,
—
tC
dc
-—
—
^ CI
CI
CI
CI
-"-
cc
cc -^
»c
UT"
~-
t^
—
_,
^
\Z CO
X.
IC
X
-
—
t^ —
— t- X
17
X to
,^
.-
^
2
f)
Ci
1^ 1—
—
1^
X
lC
-V
Cl cc
IC X cc
-^
X X
^
.^
•■
"t '
T
IC
cc cc
-#
to
o
to
o
Cl '^
to X 1—
— «
to Oi
<
■"^
■-^
'^^
—
'-'
#
la
t^
X
— '
'— '-"
^ ^ Cl
Cl
Cl Cl
-♦?>
—
ri
-!^
3
-^l
00 CI
t^
■^
tC
—
;-;
t^ —
>c o: -+
X
Cl to
•
—
t^
— ^
1-C
O
1— >
CI '^l
'C
t^
X
*
—
Cl ■r^'
ic to X
*
r- Cl
H
;:;:
^
L";
t^
C^v
_
^
1^ o
cc
^
-:
CI
.^
T. Cl
»C X —
^
X .—
s
-H
v^
■— '
•-**
t^
^^
T-^
— CI
CI
CI
CI
"^
*^
*A ..^
— * "-*^ 1"^
J-k •— .
^
1 >-'
.w/
'
-^
i';
—
—
^
r: CI
CI
—
-^
^
._
c- <-
„_
Cl X
X
l--
■ '
I C
—
* *,
^
— '
• '",■
-^
"7^
;*
^^
Cl >c o
r^
IC -*'
p
|<^
'
*;•
>c
CI r-l
Cl
>c
^
-t"
■^
Cl -^
to X —
cc
to c^
<
*
GO
^-
c-1 cc
-+'
iC
tc
X
1— <
^- 1—1
Cl
Cl Cl
^.|x
«
, ^
X
3
_-
~
— K
T. cc
1-
_
'C
*
•-^
X Cl
to O "^
—
cc 1^
p^
■ 7^
t--
•M
"~i
—
t~
cc O
—
ct
—
1^
t^
X C
— cc -^
IC
1- X
o
^
'^
-.-
"^
^
-^
— o
-^
-^
—
-M
IC
X Cl
IC X —
-i.
t— c
:-
~
—
•^
t—
^
—
.— CI
CI
CI
CI
T'^
cc
cc — •
— f "^ 'C
iC
iC to
-
^
_^
t^
—
.-.
—
uc cc
X
._
—
Cl
--
IC t ^
t^
-* ^_
^
S^l
t-.
CI
•^
• ^ ^
CI
z
CI
CI
■■^
t- r^
n Cl 1-
cc
-# tc
r^
^,
^
CI
cc
-^ to
t- c. o
^H
cc -f
c I
5
'J
cc
-•
o
o
cc
i c:
CI
lb
—
CI
»c
X —
-+ 1^ —
J«
t^ o
p !
irr*
',
^^^
1^
_^
^M l.^
Cl
c-i
ri
«^
*^
*^ *M
-*■ '^ »c
IC
*^ t^
^r;
pa
— '
^— •
a!
,-
^
r^
•^
.-.
-^ .-
t-
i~
—
CI
_
ic cc
t^ t^ Cl
->«
C cc
_^
—
-M
"f
~^
t-
cc
■Si -*-
X
X
-t<
iC
CI
IC IC
to f; -^
^
cb 1^
o
^"
-^
^_^
^
'.*
~^
cc
o c^
*
^M
»c
■^
r^
^— cc
IC (^ o
ce
iC X
<1
T'
*"
cc
t-
1-^
CI CI
cc
»c
to
X
^
r^ ^"
^- ^— Cl
Cl
Cl Cl
o
H«
Hoc
t^
^^
t^
rr.
tc
O -*i oc
cc
r^
,_!
iC
— c<;
X (M to
!:^
-* X
•-
Z^X
?t
t-
_•
c^
— CI
cc
iC
to
X
c.
C Cl
C7 IC to
X
-
r^
^
XA
»^
'-f
CO
7-1
•-b f:
CI
'C
X
^
-u
X —
-* r^ O
cc
to o
•J
%
'l'
cc
—
c^
^
•— —'
-'
-1
CI
cc
cc
c; -*
-*< -* iC
iC
»c to
^ 1
eJ
_M
n
—
t^
-f 1^
X
t^
ri
—
-^
— t—
— r^ —
—
»C iC
1
CO
-^
C;
'fl
—. cb
cc
-:-
^
X
1':
cc Cl
cc to —
1^
Cl
-rt< cc
IC X
a
<
cc
t-
V— <
.— 1 CI
cc
*c
to
t-
^.
^^ ^«
^— ^— ^1
Cl
Cl Cl
O
o
r<
cc
'C
t^
1—1 iC
—
cc
t^
Cl
to
O -♦'
X Cl t~
_H
IC Ci
__;
h
•-*l
CO
'M
»o
t^ 00
c;
1—1
c«
■*
>c
r^ 00
Oi 1— ' Cl
'^l
IQ «0
c
ii
1
f— 1
C>l
^
CI
>c cc
_
>~
X
^
^
1- C
cc 1- C
cc
to f:
?;
*«s*^
»^
*
,-^
f-M ,-M
C 1
CI
CI
7^
^*
cc — *"
— ^ »— i *
iC
>C 1"
-■■
•JIUUIQ
O
1— (
1^1
CC
^
»c -^c
t-
X
c.
.=^
—
Cl re
-*■ IC tc
t~
X ~
-.niiTiiQ
CIRCrMFEKENCES AND AEEAS OF CIECLES.
49
.;:;
H
GO
O ^^ '^1 ^ "^ 'S ^ t^ '^' ~ "^ ■" -'"'
ju:i?T(i (70 c;i c-^
Hx
»*♦
tC Ci O O O --I ^ ^ (M ^)
0-*'ooc^«co-=t<^icr~-— »otc«cooc;i-H (M re o
00 c; O |>J le 'C cp b- c-. 9 >i re ^ ,>; cij ^ I'f; cij ^ J«
^ t:_ ^ 4f b- o re iiC c: cc tc cr. o O O r- ^ ^ c-i :m
tCwt^t^t^coocooooc;c:r^i— I— 1— r^r-i— .
>CJ30
,— (,— icot^-*'i>-ioociipwre«p^oooo:e»pc-i-+'
0'^t^re»^C'^-^t^ceoc;c;Ai-#c:«b-*i-+jb
'^^:cricet^^-^»ac7:ceooret^G>
'Y;cere-<+i'+-t~oocociC50»— I"— 1^>
Hn -
o-*'c;ret^r-j»cci-+'oo?i^'— is^j-^iot^ooOi— I
j-#iccc3p— . -T-.CMreip-^ccaijq^^^jj^^^^,
-*ib-oreooce:r:~c^»ea0OOO'— ii— i'-i<>i3^i
It^tct-t^t^oococooor^CiCiT— irHi— ii— ii— ii— (t— I— J
-*•■
.— I 00 i r-t tp t>-
idorec:'-b»bioce^t — ^rere-^ooo^Cit^ot^
-M »c c: i'*»P^Jt<(X)Ai'i— iT
ciOb-t-t-t^oooooccicic;!— ii— (>— ii— (I— ii— ii— I— ^
t^^^ieqaooi^-ocirececsi^cor^o
O'-^reieiaot^^oo^^'^^'-^^''^
cqoooc<)cco-+iao'Mi-'-HccT— («:!Mt;--reco-#— ;
ccccre'*i-+ioie»ots?ot^t-ooooc;CiOO'— 'C^
^ b- CO ?p C
cp i^j
3 ?ct— ciO^^re-^tst^cco^^'iJluf^Aj-rtK^oce ■?!
i a^icsreodieiiecx; — ^leooO
;.- to?c;ct^t~>>-GCocao-ridc;'-^
! d
3
1— iioieo^ajorireeaocciieqotpop'pore
^lOobcMiecrret-J-ito-— wi-HtOi-j^CToo-^o
cececc-^i'+i-^oioo^ob-t-oooociaiooi-ic^i
-i»haOT^-^t^OOO'-Hi— II— (.-'en
CCtCtCt-t^t^OOOOOO CCiC.^r-^^^^.— Ir-I^— '
oi -:*- r-^ le -+I Ci c: w CO le Ci CO ei ce C5 r- c^ ei r-; '.f
i'*ioieeic-oe^»e6cr''*'-^iet^eit-»o-;+;-+;
i;i;^55^uecr. ret---t=000ieO«orHb-re2
[cecere-^-^-^ieio^^t-t-cococscsOOt-^r-j
|cct^(M^o-fooe5wr-iior;»ot-cco r^n eq -* ie
00 Ci ^^ ei -^ le ti CO r; ■— — » •
-400
50
CIRCmTFKKEXCES AXD AEEAS OF CIKCLFS.
c
T.
(-<
X
•jraiSTQ;
O — -M CO -^ <~ —
ll
X
^
LO LO lO
ib Li:
LO CO 1- X c.
lO lO lO LO lO
j-aiuT:^ir[
7) 7) cc -. --C -. I-
—
'—
l^
X LO X
cc O
C CO t^ r I-
i a!
1"^
r- OO »0 CQ
CO CO •* »0 »0 CC t^
O CO
OG CO
lO
CI CO to
c ^ ^
CI CI CI
Ci LO
l^ CO
Cl CO
C) CI
CI O O CJ lO
»0 'T" CO CI —
f iO CO 1- X
CI CI CI CI CI
1
'^ Cf I- CO O -^ CO
OO r^ -r- b;^ rl- -V t^
'^
lO
CO
(X C -7"
Ci CO CO
CO -*
eh CI
ip t;- OC p .^
»b OO r^ »b X)
t^ l^ X X X
1 =
.IX
^
^
-<
71 9 7" CO X -. iO
-V o CO CI CO tb
O «C CO O I- "* ^
CO CO '^j" o »o ^ r—
X
?.
t^
CO
CO
Ci
CI CO LO
CI C CO
CI CI CI
Ci -^
CO »o
CI CO
CI CI
»^ Ci Ci o cb
'^ CI .— — o
-^ »0 CO t— X
CI C^ CI CI CI
c
<
1
i
O ci CO '^ tp I- c:
i) Ai 4< b- o CO tb
CI CO CO CO -^ -^ -*i
o
c
'0
CI
<0
1-0
'+ :p i^
Ci CI LO
lo CO cc
OO CI
r- CO -f CO b-
LO cb -^ -^ b-
t^ b- X X X
' c
^^
^
'
Q
o
■n
5
5
o^x
o
1290-2
1300-8
1427-0
1494-7
1504
1031-9
1707-4
CO
»o
X
C)
CI CO »b
— Ci t-
o o —
CI CI CI
lO Lt
00 CO
ci CO
CT CI
2430- 1
2518-3
2008-0
2099-3
27922
<
i-CiX
s
V-
tc CO CO CO CO CO -^ -rf
CI
CI
lO
>o
>b
t- X Ci
CO .^ 4-
LO C= CO
T "^
X) r^
CO t^
--f »0 CO GO Ci
^ b- O cb cb
t^ t- X X X
1
'
'
■
^
P ¥ ^
"!x
CO JO CO tc tc O ^
t^
c
t^
— o 'O
LO —
CO ^ -'*' -:f X
g
^
O "^ O »^ "— I- C".
CO ^ — t ^ ,— CO'
CI CO -* -^ »o «o o
r- 1 1— 1 .— 1 .— 1 r— .— 1 1— 1
CI
CO
q6
s
ci t-^ LO
c; o —
^ CI CI
t- CI
CO CI
CT CO
CI CI
X CO LO CO X
O Ci X t- CO
-t- -*' tC CO t^
CI CI CI C^ CI
5
QOO>7^CO''*'«ph-qOO
oocoy5chciioc»ci
CICOCOCOCO-f-f-T-LO
lb
lO
CO -ti lO
CO -^ ^
t>- 00 O -T^ CNl "^i »f>
t— C -^ b- O CO cb
CO 1^ t^ t^ X X 00
£
-W
■5
-^ -^ P r;- r. CI o
CI «b CI c; »^ CO o
r^ CO O o CO o CO
CI CO '+I -* lO CO o
1— 1 r- < 1— 1 1— 1 r-l F— I 1— 1
»o
Iri
lO
x
CJ
CO
t— 1
LO
o
Ci
CI Ci CI
CO CI -^
X CO 'W-
Ci O —1
»-> CI CI
O lO
b- —
CI —
CI CO
CI CI
LO p CI C. CI
l- lb 4* -V b-
Ci X t^ CO O
CO -* lO CO t^
CI CI CI CI CI
1
■<
.*-
1
-* CO t— C O CI CO
o cs cj »h c; ci >h
Cl CJ CO CO CO -rr- -^
x>
lO
lO
Ci O ^
CO -rf
b- O
CO t^
CO b- P P r-l
cb cb Ci cb cb
t^ 1^ t^ CO X
5
' ' ■ ' ■
'
.
-<»
o
5
lO CO 1- 1- CI CO O
CI
—
—r
CO X c
CO X
CO O O LO CC
i
1
-*x
-*! CO CO o c: c; ^
O C^J Ci CO Cl Ci t^
cj CO CO ■* »a »o CO
"o"
X)
CO
ci"
1— 1
»o
lO
Ci
CO
co"
lO
CO CI CO
t^ iO CO
Ci O —
^ CI CJ
"lO CO QO
l'- O CO
LO CO CO
CO o
^ c
CI CO
CI C3
cb 6
CO — ' CO CO LO
X I- CO to xf
CO '-♦' to CO b-
CI CI CI CI CI
CI CO >p CO t;-
cb cb Ci CI »b
t- b- t^ X X
F-H Cl CO »-0 O CO C5
CO Ci C? »-0 GO .— 1 ^^
CI CI CO CO CO -^ -«*<
'
'
'
'
O
iO CO -f CI 10 -r r.
rb o >b CI o O -^
•O C> CO lO CJ Ci CO
CI CO CO ■^ >0 to CO
CO
00
lO
CO
X
lO X 1-
CO CI CO
CO -+- cq
Ci o ^
^ CI CI
CI CI
cb 6
O Ci
CI CI
CI CI
X p X r-, p
lb cb ^ CI -^
t- CO to -ti CO
CO -* LO CO t^
CI CI CI CI CI
2:
o
=
l>. C» C r^H C4 ■* O
»b 00 t^ >b oo 4h -^
CI CI CO CO CO "^ ■•^
r-
X
>o
J.-S
T ?' "?*
r*^ O CO
LO CO
CO Ci
X Ci »;H CI --f
CI lb Ci CI lb
t- 1^ r^ CO CO
.=
•j'lnna
O —' CI CO — 10 CO
l~
x^
^
O — ~i
CO -
1- cc t^ X c
, „ 1
-jiri
"aS
^^^
■'
!^
CIRCUMFERENCES AND AREAS OF CIRCLES.
51
2
•JlU'BIQ
3 S ^ ■'^ ^ ■" '^ ^ "~ "-^ '■"^ t— •>"•■"" t^ '^ I-- t- I— I--
•juciiJia
Ha:
<
\<:i ■Z-. ~. -^ '-^ "^^ ^ '^ ^^ ^^ "^ 'f ^ \^ '^ ^ ^ T "^ ".'
<
cHx
1 ■
3
xn
H
a
>
<
uj
o
33
1— 1
o
3
33
o
33
5
H
O
o|x
p
^ ^ ^ c! ii: -^ 2C cc -=t< o ;^l "P
i ■?! i; ^ 'i r^ 00 1-- i^ di i^ «^ « r^ -^ 0^ »o tr.
OOOOCCt^COOCOOC". 3iOi— iJQ'^iOl^Cii— lICiQt^
00020'— l'MCC-*lO«OQOS^Or-H'MIC-*5Ct-OOCi
d 1
-<
3
o
Och'ioiM'-bc-. (fq>bdor^ooD»^Tt! C5 ■ri O ^^ rc co c;
t- 1-- :c «i :£; cc I- i-- c» o; --H ^1 -*! ^ t^ 05 >-< <^^ ^
cooiO'— •J^JC-^iui^t^CiO'— •(Mi'i-^i'^t— coos
6l
^ 1
i
3
a
U
c-lx I - ;
O
Ci '-"^ t^ X i^ 'M c^i X) CO ^^ ip ^ ^1 ^ 7^ 'it* ^
XCsOrH'MCrt-^iCCOt^aOOi— "lCC-#tOt^COCl
-<
^ ^ ^ ^ :>^ C^j :m -M C<1 C<1 CM C>^ 7^^ > 9 -f -* r^^ 00 -^ 9 T"' -f- ^. 9 t^
rH cb :c ;m ^1 :^ L^ '>! oo i i t^ 0; -^ i^ ^ !
OOCiOi— IC^CC-*»^^l'^000;0(MCC-^»CCCGO-'.
3
3
-1^
Hx
3
C5 j-1 oo rlj »h 00 -^ -^ i^ c^ t-^ cr: cr c: c^i »c c:
^ ^ ^ ^ ^^ jvj C<4 C^l CM C<1 !M 3— CCi^l^C^^
00 en ^ !M r: -+I ir: I- X cr. -^ cc -*i L-: t:; I- cr.
(MCMrttccrcn^cccc^trttrccC'*-*^-*'-^-*'^-^
c:02 i; ci cci i f: '>! 'c: oD
XcriCJCiOOO-H — '-iCMCM.xo — rcici-O^
00 Ci .-1 CM ^t -* I-': -^ I- 00 en -^ cc -*i -w b- 2
|iCMCMw:cciC(Xccrcrcic:cccicM7^ccco-#-#-* it:
•JUIBIQ
— "M cc -*H u-: tr t~ X r: — CM r^ -:f u': -^ t- X Ci | . nnmn
-^ :c ->c --c •-;; •-::; --^ "-^ "-^ >-- l- i- i- l- i- l- i- t- i^ 1 •I'^^'^KJ
£ 2
52
CIRCUMFERENCES AND AREAS OF CIRCLES.
Table of the Circumferences and Areas of Circles, advancing by 8tus (concluded).
•jinPTrr O »-( iM fC -M »r: -^ t^ GO CTi O r— ^1 -^ --t< ic '■^ r^ -/- '-
t-|x
T f ""* "-y- ^ ^- ^ ^- i:~ 7" ! cc uo «2 t- rs O C^ cc -:t^ --r .- ^: 5 T^ cr S O CO -5
o o 1.-: o lo o o to -o o CO --r --r --ji iX 1-, r^ fi f:i p: | ^
1
1
S
o
^<
•p-<
O
1— ('>)-^u.ja;ooai-HC^-.!*HiOwCcr:i— I'lccictocc i '•
»ciO<£>otocot^t^t^ooco«Dr3r:r:oco-=^:^ jj
c<» (M c<] (M !M 3) CM CM (M o -* GO CO -^ «p c>i ip -Tf< (x; CC' cc ic ri
ibcM-HCM^Hcbccocbcbootac^'crj^'Mibajio S
orc--0;J5c^c^o;^5^ocoo^c^^CGO^toorooo«Cl ^
1— icMrc-rticot^GOO'— i:o-*<»i^t^GOO-Hro-+icct^ 0 O O »0 O •'I lO CO CO CO CO CO CO CO t- t— t- t~ t^ t>. 1
":lx
CC -;+^ CO I- — . O rp Cp -* CO I- CO C --^ CC -*! CO t- CO O'
cbcbcj:(Mibc^(fqibciorH-+it^r— -^i^Occcbcicr^
>oioiocococci>-t-t^oOQ030ctriCiOOOO^
CM C<) CM -M CM C>CJ CM 'M CM CM CM iM CM CM •>> CO CO CO rO CO
!i
-^1
cr:co:poaito»0(?— 1^
io»ooio»o««»OiOcoo^D«£>o:r>t^t-t^t^t^t^
<
i
r^cpcMco»ocoi^a:0!Mcoiocot^^O» -M CM .t:^t-t-.
a
-<
a
iOCOC30a5T-(CM-*»CCOCO(3i'-b ci rl-i lb cab A( -^ b- cb CO t^ <6 CO CO cji ifi o c; CM
Oiciocococot— t^t^coooGoricric^nooO'— 1
(M'MCMC^'MCMCM'M^MfMCMCMCMCMCMCMCOCOCOCO
3
-I't
OC5COCOGOC;cOC5t>-r-^i— it>-OOiOI>-COOOlCCO
cJo-^cbcb-^b-^-Tcbcbcbb-cr. cbf:cbibcb(»r^cb S
oco^'+ii^O-^i^.-iiOcricocaocMt^'Mt^cMcoco *-
0'-ico-+i'Ot^coci.-i?Mcoococoj;r-(CM'*»ot- !•<
io lo o >o "O »o »o io CO CO CO CO CO CO CO r^ t^ r^ t^ t^
s
■i-H
r^CO-^'Ol;-C!OOr-|(M'#iCt~-GOO>— l!^l-*lOt^00 ._•!
(MibcJor^-rHb-r^'+ib-ocbcbi-. cbcbciCMibcaOr^ =!
«o»o»f5cococot-t^t--coooGOGcrs;riCiOOO'— i^ •
iM (M •>! 'M !M (M CM "M C^ (M CM (M CM CM ■>! (M CO CO CO CO --'
— -f
Hoo
"M -ro i^ CO :o 1— ( lo ^H ct GO d ^H ic^ — 00 CO I— 00 co o CO m
Oi— tc^i'rtocoaoci'— ii?ci-i^»oi>,
>0 »0 iO »0 >0 O >0 lO CO CO CO to CO CO CO t— r- t^ ^- b-
-<
-+c
s
o
3
l--:^p'7HCO-*COt-CiO'7lCO-+CO^-cpp.-ICO'*l
<— 1 -ti CO -H -^ i^ O CO CO o CO CO c. ■M b cJo »^
IC2 lo lO CO CO CO t^ r- t^ 00 GO CO 00 en Ci n o O O — 1
M 'M C^l C>1 CM ^1 •>! CM -M (M CM ! ^1 C^l iM CO CO CO CO
3
O
»b cp i o lo o "O CO CO CO «- t^ t- t^ CO c» CO rs rj o o o o -- ■-
(M fM !>« Oi Ol '7-i 1>l (M -M C^l -M C<> (M 'M Ol iM CO CO CO CO | ^
o
.itimtQ 1
O —1 C^l CO -H lO CO t^ 00 Ci O — 1 CT CO -H iC CO «:- CO C.
ajcoooc»cOGOoocoooooc5C5r;ctcr. cscsoio: CI
JlUGt(] 1
CIRCUMFERENCES OF CIRCLES.
63
w
H
O
1— 1
o
^
t>
n
crT
M
o
o
CQ
a
O
H
H
2^
O
pa
MTOBia
O r-( (?ci CO -* u:
tOt'OOCiOr-iiMCO'^OCDt^QOCi
•JtaBiQ;
1
3
o
MTn
9
-* o «C C<1 X -*
t- 05 O CM CO UO
C^ CO 1— 1 »C ~ CO
:» g; -7^ CM CO LO
jq lb c; CM lb :Jo
OCOC^IX-^OCCOIX-^OCOIMX
t^XO'-iCO-TfCOXcrip-CO'^iCCl^
I— I— .CCO^XlMCOOl^C^COl^'— 1
CCXOir^C^COlCCOXC-. piMcoo
rH-*b-rH-*i^Ocb-Ocfi:bjbc:cM
:^l(M(MCOCOCO-«r-*-*-*iiOlOiOCO
9
1
S
o
00
2-5133
5-6548
8-7964
11-9380
15-0796
18-2212
X':*'0«0(MX':fO«OcMX'9— 't^cocnio
XO'-^OOiOCDOOC:!— lfM-^wt-C5
-*OiCOl— i—iiOw^COXCOCCO-^X
0>-iCO^CCb-xpfHCp^cpi;-Gp
'H^b-OcbcbcncbcbcncMibdi^
C^(M(MC0C0C0C0^'^^iOlO»O«O
b-
o
OiC— it-COniO.— 't-COCilQi-^t^COCSiar-lt^CO
lOccX'Ci — M-!+— (
OCOCOG;(MCOC5(MlOOOr-l-*X<— 1
CMCMCM
"f
r-
•9425
4-0840
7-2256
10-3672
13-5088
l(*)-()504
OCOCMXOOCOCMX-^OCOO'IX
^■J CO lO CO X -^ " CO -t' CO X 31 — ^ -M
CTiCOt^— iiCO'*XCMCOO'+iC:CO ,..-
I;- cr: p CM CO ip CO t_- c: p C-1 CO ^ CO •
jtCMcboiCT'llbcX^^-XrH-^l^cb
r-<^^(^^:McococOTt(^^lOlOlOco
CM
CO Oi »0 1— 1 b- CO
OiO»OCO
CM
I— 1
-3142
3-4557
6-5973
9-7389
12-8805
160221
t— COOilOi— ib-COCllCi— ib-COOllO
coocoooO"CO-^coxc". .— lc^^':t^
to O -* OO CO t^ rH UO cr. CO I- CM CO o
T-iCOTt1 -^ ip I;-
CO «b Ci CN lb
^^ l-T! '--
Ot-H C^ CO Tf UO
tocMX-+iocco;iX'*ioccoqx-^
cr. rH (M ^ CO t- cr. o c
n
o
M
o
o
m
1— 1
O
w
H
P^
O
W
H
■jinrrrr 1 O ^ (M cc -*- u: -^ t- oo r. O -« -M rc 'rt- u': -^ t- cc c:
jLUbi^i , -,j 1-^^ ^j (M n c^4 :m ?) 7-1 -M cc « cc ro M re re cc cc M
• jmBtQ 1
o
a
1
9
CS^'MQOlOt— CT. O^1CCiOr>-CiO^t~t^t^COOOOOCiCiCiOOOOi-H,-Hi-i;<4'M
CO
b-
■A
E
a
B
d
qo
(M CO -*< O tC -M 00 '^^ O •-£ 'M CO
'*co'M?c^ieriret— '^tco^ooo^r — locioe
rp Tf- :p b- ?5 O -7" :c -* ;p t- — . O r-, re -*- --f b- 30 p
ibcbi^'+it>'^-+'t>.o?^=c^-ceic^'7^ibxirl-ie
i-ii>ro5iia^b-re:ri»Oi-(t-
-^■M^»ob--r:o^ireict^ococ^ic»ct^QOON
ret^--»ocirecc-M:co^oorot^"ioc;ceco-COC00055aiaiOiOOO»-i,-l.-iCo
^cxjO — re-H--r>30C^ — -^^-*'tccor:^re-*ltD^-
-^».eO'^co7'^^^o-^r:ret ^lecr. -^-oc-Mtco
b- CO p -y- ^1 -^ le b- » c: ry- ^1 -+ »p ?r a> c; ^ •>! '^
-4Hb-i^Tfb-ore:bi:>ii>d:'>i»hcb'^^!i)r^^
COcOt^b-t^COGCCOCO". c;~ooo^i— ^I^1?l
1— lr-l?--i— Ir— li— II— 1^^
■■f
»p
CO':HO«0(MaO-fO'0-MCO-^
CM ^ ^ b- c; o M -^ ^ t^ CO o ?-i -* ue b- ao o 'M ce
O'^oocM^ — »c~ret^"--co-*co-Mio-H»ec;
-t<»o:oco?ioo'Mre»etpx)r;--i>ireo;pqpcip
'+' i> O re tb o re tb r; ->! lb i 'M >b CO 1^ -4t< b- o -^
?£>«Ob-t^t^aoaoooxir;r;cr. ooOi-HrHr-fM-M
ip
;«oOao-*rccocMcO'*< V2 C -t< '+I -M 1^ — iQ r; re t-
-^ O ?^i re o ^ b- r: O ^1 re ip tp b- r; o ri re -* tr: b-
4< t^ O CO cb J: '>! 'O c^ -f-1 ic i) rl-i 4i X '>! -^ b- o re
jM
--f
re
-« :o to CM CO 'f o to n c» -*- O
^.-Ht^C50?i-f»ct^coocM'*iot^cooci »b do -^ -^ b- o -^ b- o re
totot^b^t^t^cOQOcocinrvooo — ^1— c^ic<)
V
V
CCC^iOi-Ht^CCOlO-^t-CCOi 1
0'-ireiotoao-H^re-^;£!t^O'-'b-'* O -ti CO ei to e-i le cr. re b- — ( to o 'M CO -M to o >o
-^ tp t- » O r--4 to -+i ip b- CO O 7^ re '+ »e b- CO p -71 ^i
Mtb^3l<^5tbci'^1»bc«f^-*oo1^'+lb-oreltbo^b
!0«o<:ot^b-.t^aoaoaocic;c5000>-i— i^c^i-M
»— 1
-HOro3;o-^c;rec^>e-^b-
to t^ rs (M -f ~ r- CO rj re >e b- rs N cc i.e t^
-+i CO c-i t 1 re t^ M tc -f CO :m t^ .-1 »o Ci re
r-i e-i -t< ip t- CO re — •>! -f ip b- qo ?i 7- 'M '^t^ »p tp 00
M tb Ci (fi lb 00 fi 'b do -^ -^ b- ^^ b- M «b c: e-i
tOtOtOl^b-t-cocoooc^CiCiOOO^r-ir-i,— >;<)
r
o
OtOlMOO'i'O^O'MCO-fOtO
ojco»o«oaoo-^re-+itoooc:r-o cr. ce OD (M
30 -— 1 e-i re ip to 00 cr; r— -M re >p tp CO c: p ?^ re »o
C'l »b c; c-i »b c« f^ -+i b- r^ -^ b- re tb c; re tb ci :m
t0t0«0t^t-b^000000C5aiC:OOOO— i.-t.-i'M
c
juiCTQ r^^ ^, ^, -,, ^, ^, -,,-,,-,,-,, ^ j^ j^ 1^ -^ j^ j^ „ j^ j^ jureiQ
CIRCUMFERENCES OP CIRCLES.
55
a
o
o
H
H
o
1—1
M
12;
-«^
t*
o
t^COCi
•JUIBTa 1
to
a
a
d
-.
Ci cc i^ — i-o — . -*i X) M o o -* Ji CO t^ ^ lo crs -ti CO
'^Ot^CwCpr-iM-rt0'7l
ctot£it>>i--t^GOcoco
C5
o
o
o
S-c
r-(i-l ,-,.r-.«r-l ^ >-(i-li-li-l,-( r-1
^
l^OiO- Ci O Ol <*
OO'*'00t'5t--^iOCir0t^CM-OO'^t-^!M00r-i»0
ooO'7'<^)'?'»p^;~^^'7^^i'*''Pi;-co?*T'^'*»p
(MCOCOCO-*-*l'^^tilO»CiC:r>OOt-t^t^COCOOO
t;-
''P
-*i3irot^'-t»ocicococ>i^O-+"Cirot^.-iiocico
u5-x>oo9.7-ic-<:o»pooocir--i(^irpip;paoc50c;j
t^Ocb'iocbocii^oao;r^ibdo-H-*ib-0'*b-
CMC0I0C0':t<'*i'*i'*OOt^t^t^C000C0
»f5
K)
CO i^ ^^ o O -^ CO T1 ^ o lO ri ro t^ .— 1 »o O -* 00 M
CO
"?*
iM "X> O -^ CO •>! t^ .— 1 lO Ci CO l^ 3^1 ?r> O -+< 00 iM X> 1— 1
C50 0'1?p-+lOl;-C:)pT— iCO'+iOb-aiO'TtCO-^tp
C^COCOCOCO-+i-*-:tt-cr50J
«bc5>iibr;^iibcb'^'*iciorl-t-+it^ocb«bocb«b
t>1
C^'M?0«>.0iO'M-*iab-G0O-*'C0lO«O00O'— ICO
C5co»>..— i»oO'*ioo'M«r>o»ocicot^<— iioo-*oo
<^^'5H^p^-qop'7^3^l-*|»pt.^aop'H(^^'*•»p^-ooo
od5^iibcb(fiibd0'^-*t^Oebb-ocb«bcic.oooo
T— t
t— (MCOO-^OOCMOi— ciOCSCOt^— lOO-^OOfMCO
C5r^0^^ip?pa0^T^(?^cp«pOG035r-lcqc0i0cp
»oci(M»ocoi— i-rHt^T— (•rtai:b«bocoO'*oocot^.-iio
«pOOC5p^COOcpt--Cip<>^CO»0«Ot>.050CqcO
•ooo— HiooOl— i-^t-ocbt^ocb«bc5i?*»b6i(>i»b
s^7-'»cococO'+i'*'*-i>.i--ooco
•joinia:
56
CIRCUMFERENCES OF CIRCLES.
•junJia;
O C5 «0 CO O CO ?0 C5 O (^ t- t- t- t^ l^ t- l- t- t- t- -linTJIQ
CO
CClCt^OOOi— 'C0O?O0005i-<0C-<*C0l>.0ir-l<>J-*<
G<)tOO^OiCC(>-i— lOC5COCO(M«00'*0:>CCt^^
cc-^ot-ooOfTirC'+iot-ooO'— (cc^iot-ooo
c
o
o
W
o
1—1
O
M
o
o
<
t— 1
O
c
o
Cm
O
03
0)
s
y
1— l-^t^OCCt^OCOCOCTiCMOOi'MlOOOr-.'^t^^
OiClCiOOO-— 1.— (1— 1.— ('>l!MC^1COCOCC-*-*'*iiO
r-(f-l.-('MC^lC^I>lS.QOOJ G^l CM !M (M !N Ol <>» r^3>"lCp>ptOCOCir-H(>lC:t
Ocb?bOMcb55(>i»bao'Miba)rl(-*b-o-*i>-o
^ ,_l t-H I^ CM (M C^ (M 3^1 CM 3^1 Cq 31 0>j Ov)
t^
r
.-l«-:fC0t-C:--l'M^»0t-.aiOCMC0>0t~C»O.-^
GOfMCOO'+'COCOt-i— lO:J;COCOCMCOO-*ODCCl^
co»ococociOc>iccocpt--aicpcM:p>p«ot~-aio ._-,
OMOS^cMcbcJi:>i»bcbr^-*c»-lt-+ih-cb:bi>o ! •
,H.-(i-i.-l.-MioO'*coc^itoo-*'55cr:t^.— 'ic
pc^^CC-*Ol;-^iO'M^C'*!pt^-C^p^-lCO'*^«Ot^ j_^
Occcbc;cM»bdoc>iibt3oAi-+iiV.o-^t^Ocb«b:r. i •
OiC^CiCiOOOf-i'-i'— I'M'MCMCCCCrO-*'*'^-*'
^ r_i ^ r-t CM CM 3v| CM Cq 3^ ?^ ^ CM 'M !M CM
-^
CO'^tOb-Oi'— (G>1-+il0t^criO30t>.Q0O'— IM
iOOicct^i— icoo-*'i?Oi— iioc?irci^i— ioo-t<
t^C»P'-ICp'*tpt--COCDr-HCC'Tt<«pi--CX)pr-(rp-r^
dl1'^ipb-aOC?lf--(
Ci(M»boodiiba)i^4tHi^Ocbr^ocbcba5(M»bc5
cx)OlOia^ooo^'-|^-lo.-^^^lc<^cococooc-*^'*|'*
i-( — ( rH i-H 3^J ^1 3^ 3^1 CM 3^ ^ O'l 3^ 3^ 3<1 3-c»O^>OCOG001>— i3qcC»ClDa)C5r-iC^CO»0«OQO
3irc»p
1—1
p
H
^ ,»( r-i f-^ 2^1 -M !M 'M >! S^l -M >l W 3^ 3^ !M 30 t- QO O f?5 CO »0 ?0'
' n CO t^ 'M ^ O -H CO ■>! t^ 1— 1 >-0 r: CO t^ ■n to o -+< CO
n
' -* i-l r-t i-( !M C>1 S^J 3>l C^J 0>1 -M 3^ S^J 'M <>J CN '*»0'y3t--QOa50'-<
CM
Cv<
CM
CM
C-l
C^4
C-A
<>t
CM
CM
CM CM
CO
CO
CO
CO
CO
' t- Oi
ocq^iot-oooco
CO
>0 CD 00 O
I— 1
CO
CD
CD
rn
; cq
«o
T— 1
IC
OS
CO
t-
1— 1
CD
00
TtH
CO
Cv,
CD
1—1
»o
a
CO
t^
l—t
t^ •?
«o
oo
Oi
o c.-*COt~Cii— liM-^iOt-OJOCMCO
^lOOSCOl— CMCOO-*00500^Cpt-a5pl^lCO'+icpi;-aip'^CO-*CDl;-Ci
l^^cb65C^^bc»c<^lcoOr^-^l^O'*r^-ococbaiC^^
ioio»ocDcocDt^t-i--coooGoa:ciaiOOOO— I
IC^*qCMCMCMCMCMCMCMCMCMCMCMCqCMCOCOCOCOCO
3iO(M-<*<»ot-ooocqco»ocoooO'-ico-*coooa:
3it*JiociDr-H
OlOkQCOCDCDl^l— t-COCOCOOOCtOiCSOOO^-
CMCMCMCMC^CMC^lCMCMC^CMCMCMCq-a;cMCM-*»oi— i
lOOi->*(OOCMCDOOOaOCOt^i— llOOiCOt— CMCOO'^
ojptNcoJOCDccc; pc^coiocpb-c;pc^cp»pcp -^^
1— 'OOOr^'J^ib-Ocbl^-OCOcbasOqOCiCM'OOOi— ; •
OlOlQCOCOCDl^t^r-ODCOOOCOOiOiO^OOO— ' !
C^CMCMCqCqCM(MCMCqcqCMCMCMCMCMCMCOCOCOCO ,
-*'*ioi>-a50c-ico»ob-ooOr-ico»Cicoooa5i— ICO
C^OOCqCDOiOC^COl-^1— .ICO'^OOCMCDO-^CSCO
cot>.cipcqco-:t— (■^b-r^->*it>.ocbcba;cocboic^»ooot— iioooi— I
oioiocDcocDt— t^i-~t^oooooocia;a;000'-'
C^CMCMCMCMC^CMCMCMCqCMCMCMCMCMCMCOCOCOCO
QOO.-ICO-*COOOOii— l(>^"*COt^aiOCM'<*bOC0t^00C;
j-iucii^L ^ 30 00 00 00 CO 00 00 00 CO GO r: C. C w: C5 Cr. Ci C5 Oi C-.
•jxn'ETa
58
AREAS OF CIRCLES.
1 I
02
rt
H
O
t— (
tH
c
Q
<
o
M
o
o
CO
H
O
■jxnvid *-* '"'
c^ico'^t'otot'cjocso— i?ico-tii-otot— cori '-jro^jfT 1
75
r;
1-1 ^1
IC CO
:0 CO
'ricr5-:t.coiocotoioo
tbi^iX)b-b-ciT'i-o:b'^0-^-^cb-+iTlHOFl-(
rHi-l'MCO'^tOt^Cl— ICOlOt^Ci-MlQOO— 1
T— 1 --H 1— 1 r-l f—l 7^1 IM O) CO
30
<
00
CO CO
o -*
ip »p
»Or-ltOOOa)t^COOOOOriOO CS O ^^ -*H t> C5 M -rH t>- O
I— 1 I— 1 1— 1 1— 1 I— I CI !M 'M CO
b-
■*ri0^:r^t-o;0wcoocot^^i>-:o0i>>to"o
ro ->! t^ t;- cp o '^l f -*< =p s^ fi '-p ^ t;- o O O to CO
,r-l 1-1 C^ CC Th »0 t^ X) O -M -*i to Ci --1 'tH t^ O
i-ii-ii-ii-i,-i^i?ic^ro
t—
•o
t^ to
00 1—1
C>1 o
COt^O— lOt^— '-*<»a'^— 'lOoOCiOOiOCl-M
noociOM-*'oo-Mt^coot^iO'5M'*iiotoci
Ot^ — cOT-i-ooDoo-:*! to to ^1 -*l i-l -^ -CI t-- t-
ootb-*i"+'ibcc-fic»ib-?Hvbb-Aitbcb'H'^
i-l^'MCO':t-— HCOCOl— 't>.i-to
-Iti c: o :b CO -^ to O -i CO ^1 CO o i) M o oo CO
1— lUCO-^lOt-OOOM'^tOOOi— I'^tOCS
—1 1-1 1-1 1-1 1-1 n -M 'M CM
10
•
-+f
to CO
(M CO
I— (
C5'Mco'MC:koooc:cc»Oi— i-*oti— ^t>.o— 1
CO Ci uo :m Ci X t- t- CO O CO to O o 1— ! t- lO CO
n t- O O -O O — 1 C5 -rH I- to -M to to rt^ 00 O C5
iOp7-ip-7«p'^COppb-pC»'>1'7Ht;'0»0
"jfi Ci ib 'fi ">) CO ;»<
ro
to CO
O r-
O CO
I— 1
t-0000»OC5'M'MOt----*i-^C1COCOtOtO
-+I CO M r-i -M CO to C^ -M t- CO Ci -OJ -T*- C<1 CI CI CO
lO lO CI to t- lO O CI CO 00 CI CI O LO b- to CI lO
-H o o p "T- O) -1 ~. CI CI 00 Ci to CO -o p p o
•^ob-^ci-^r^-*it~cbo:bi)Ocbi)ih)cbci
r-lCOCOC; — -^t— '-*'MC5'^tO»OC1iO»OC)
00 p » CI -- t- CO ^ b' O CO CO CO "^ -^ CO r-H ip
CO ci> CO -^ O o CI to "^ i) to -o i) -^ to CI o c;
^HdCOrtiOtOGOCli— iCOKOCOOCOtOCO
1— 1 r-l 1— t 1— ( CI CJ CI CI
CJ
1
•
•0078
•9503
tOtO>OClt-OOC5tO-^-*''*COOOOOGOt-
C0t-C100-tU0C:C000-:t<-H
to -+I O •M M ~ CO CO -^ to C5 CO -^ t— 00 »0 O CI
-+I lO CI -+I CI iO »p p -71 t- c: t;- -;- p ip to CO ip
cbt-cboc:c;-^i'ootb-^-^'OCicbc^t^to
1— 1 C< CI CO >0 to 00 Ci •— 1 CO »0 t— CI >0 CO
rH i-( 1— 1 ,-( CI CI CI CI
9
O -H to to -f o -t< to to -*< o -^ to to -^ o -t< to to -M
O 'O 1— 1 c» 'O <0 -f -*< »0 t^ O CO r^ ■M :c >o M 30 rs Ci
Ooo-titotocor-aoto— i'+0 CO
,— I r-l 1— 1 .— 1 >^ C<1 C^l M
p
MOI
«!a
o ^
CI CO I** 10 -o I- 00 Ci 1-1 'M CO »:*< »o to t>- 00 c;
■jnnnQ
AREAS OF CIRCLES.
59
H
O
llOiDt0CC30T-HC<53.0000iOO
cc:Ci-Hcc;r>tCGOi— tiCC^lOiCiO'MtOfMSiaoccc
«rc-*i'+i'*iu5U5?c^»>t^i>aociCiOOi-(i— ?^
C^ iC CC OO O — . O X) -*i ?C tC !>! ;C t^ iC C -M r- t- ^-l
b- c^T :^^ qp O b- rH :^ '^ -* O (^j a; c>l ,-, ix: --c C^l cc --I
cc?tOiit?c-*0'M'Mc;rc-:j''Mt-c;co-faox--c
re 20 t^ T— — t^ en to c; t^ 'M ■>! GO r; ?c c^ X iM c1 b- (>• !>1 -* -H '^ (M to y? C^l cc O re C^l —
ce tb -^ t^ ue "* »c oD ! o o —
le'-oo^ct^.— (joci'*xrf5ooccoo-«*ic;'0»-^r^re
X
I— (
t^
I— 1
re
re
,— ,
h-
1—1
re
re
f— 1
1^
r— 1
re
00
-^
^^
X
i^
^
tc
r^
X)
^^
^
X
re
X
«C
:M
Ci
Ci
Ci
r5
;^'
re
re
~*t
»c
-*
wt
,-^
^M
«^
,-^
C^
^,
-+i
cc
».e
'^J
c
c^
■-0
t^
-i-
I—
'.e
CI
-*
^c
re
IC
-*<
X
X
re
-i-
^^
-rf
le
re
t^
re
— ^
^-i
re
r^
ce
Ci
c^
^H
-+I
c.
tc
-^i
-*
le
ce
-0
*
re
t~-
>fi
ci
re
X2
t-
-M
X
re
X
— 4«
■M
M
re
ro
-*!
-*
U5
»o
10
CC
t^
t^ CO 00
CJ
w«
1—1
T— I
ri
I— t
.— i
1— I
i-H
ot^rctct^-sOoocfic^ifOiMasiooooico
7qrHe'ireuex^to(noow;iM»-HOO>-i'*i!X)Ci
>eixxoci055-*i>>«£>reb-oo«£).— iccJ'iQO^
x^pp'et-:pJi-*OX)oo
^uer:ro-oo-*ixret>(Mi>-?'i»>>c<)x-*iCiie
rorere-Ttt^t^oox)CiC:00'-i
-*i.-irHxxtocei^ooxioc5(Mueo
lOXiOLeotcreocnxt^oociS^i— icr. reciiO'M
tpreioret^t-e^reO'MO-^cociOtcdt^OO
« -i O re -fi ?e >h ci 'ii "^ Oi Ci o '^ x ^+1 M e-i ce
c^i o c; M -o o -* X !M t^ -M !£) I— 1 t^ (M t~ ce Ci ^e —
rerere-^^ioiOLe^cct-t-ooxciCiOOi— 1^:1
re
to— iicvc%s-*ic:ire'*'*e<cio-^reioci-+'c;io?^oxt--i>.
t^ r: t- re -o '^o (M i^ X «5 1— I re ro c; re -rhi o^i io X t-.
-+oretc«pr-<'>ixpx
o^it^>iCixc^r^4-rH4— («Ot— lt~3^X-^0
rorere':t^-*|'*^lOo;J^«cl>t^coxciCiOO^— •>!
|'*c^c<)c«oOwi«o 1
iCit^t^t^OOClC^OCi'^OyS'+iS^OO'— iT^iCt-
^_^ jM^»opT7-i00pX)rHOiC^^-*^1^»-Cppt~- '
* 't-f^.rboio-^ocbOibT^CiSiOMb-re-^oo ,
— <-*x.— !ioc;ret^eqt£)i— i>oOiO'— iiO'^JX-^o
cc^5re-*'^'^»o>o«ocot>t^xxC5C; 00 — '?^
^- ^j 1— I ^-^ i_
I o -* «c to '*< o~H^"co «o -^ o -^"^ «o -^ !;> ~ I
Oi— iretooiQOtoroi— ioaiviO?>i«5xrcxri
tocoeet^r^t^reio»ei(Mtoto-*OT>"i.— it^-i— ii— ire I
O |'7^^'7l'^xx)c;>eb-ipx^^!^^re^:'7^x^^';-. >c '
-* tb o »b >i o o 7-1 »b o i -^ -^ 10 b- ^1 b- 'b -jf* -th i
^H'^ixi— lloc^ret^^— ijooioo'oo^'— t^MCi
coceoO'*'*i-+iio»Q;o:£)t>.t^QOcowi3iOO^'— i I
I— I i-H ^^ 1— t I
JLUenJ^ I ^-J ^-| ^ Jy-j J;, ^ jq -q 5q J,-^ jf; j^ j^ j^ j^ j^ j^ j^ jr; j^ .llUL.l(J^
60
AREAS OF CIRCLES.
-rtl-<*4-^'*-*-^-^-*'*i-ctilOlOlO»0»OOlOOir:0
H
o
(X)00->tOc»t>.(N(>^cpC5i--O
OOOC^-*— ir-cOOCiOCOt^t^COC^O^"''MCO-rt*lC?Ot^OO
^_|r-(i-l,-l,-ti-H,-HrH^3vj?I.MCMtM!MlM.o-*-*iaeo
r^ lb <>i Oi Oi o i'l t^- "f 1 O oo j; -^ 4)H ci -^ -^ sb c;
o«ocoaio-^r-Hoocr>'+'— iC^cosO'rt^ccc^ii— 103^
CCCC-^-^iiOOt^l-^OOC^OOi— '^<^(X-^OOl^t-
,— (r-H.— Ii— I,— (,— (1— ii— 1.— li— i3>4CvIC^1(nC<4C^CO->!ti-*«OCOl--t^OOCVOO — 'MCC^lOCOOt^
^ ^ ^ ,-1 ,-1 r-l .— i —j « .— -M '>1 'M -M C^l C^ C^l !M C^ C-1
(MiOOSCCcO-*'— iC;i:^eOCOl^Ci^-*00CCC:iO(M
U5 m o^ t~ 00 i^ cc ir: ic 'M w t^ ic ^ CO (M CI c^i CO <-H
00»C— lOOOlMC-. l^'+i'MOCC^'r^CO.— lOOiOOOO
O-lCO-^^lOOOl-^OOCiOO'— (MCC-^OlOOl^
rH i-( r-H i-< r-i ^ 1—1 ,—1 I— ( ^ 'M '^ J ?M 7-1 3>1 -M J.^ (M Cq C^
o
Em
o
H
pq
H
QO'*''-Ct—
oOrHC;cccccoCiw>cocpOCi»poch OS >b ij^ -^ r^ CO i'-- c^i i) t^ cb ao r^ o '^ c: OD a: Ai
i^coot^"*— iGOioccooonC:-*ai?rCO-— lOlOOCiOC^llOOlCOOO-rH
COCOl^-'^COOOO'Jfl^t^CCt^OOl^I^-^CCOCC'^
(>J.— ICDb-CC«pCOt--CCi— lCl'7H«pi>-CO>p
c;cbao>h-*"^tb6^'*iAa;aooi<]t^:oo6iOOi
'OCOCiCCCCOt t<(MOl^«^'*'MOC;00«CCC»C
'McorC'^»n«oot^ooc;050rHC^^cccc-^iocoi^
r-lr-Hi-lrHl— |i-If-Ii-It-Ii-Hi-I— I CO 1^ -^ CO 00 30 »p 1-- -^ CO t~ C>1 C-l
w li (>> OD t^ i^ c; ?^i i^ ^7 -^ C "^ -*< 00 '^ f^ O r^ CO
<© o to i^ oj oo ci o ^ 'M ^0!M^IOOC>^CO— icooot^
COW-^C^IlO-^iOVO^lOb-tOaOt^iTHC^GOOb-OCi
CO o >b i?-i o o '^ "+< oi >b 00 o-i CO CO o o CO Ai (f^ CO
>oc^coo'MC:cDcooooco-f<'>40ait~cDic-*ioo
'M CO CC -* »Q "O CO t^ OO CO Ci O >— ' 'M "M CO -fi O CO b-
,_,_,,_( ^ rH r-H .—I ,—1 r-H r-i --I -M 'M !M •M C^l •M -M (M C^l
•JIUTJIQ
O ^ (M CO -^ O CO 1^ QO C; O — ' 'M CO -^ »0 CO t- CO Oi {•uuvirr
^ -+i -^ -t< -+i -^ -t< -^ -+i -}. IC «o "O to IC »-0 «c o to O I -'""^•iU.
AKEAS OF CIRCLES.
61
H
O
o
jiuBia 183 3-3
'^'O^^t^aOOSO— <100-+<'MOC5C5O-H
os'+'trio *-Tf— .ot-io— .jcico^^fNooo '
C0rCCC05— iOO — 0^-^0 7-105(M— 110»0— 130
S^05t^oa)0»b'^30b-aoorbo5cb'^'*«bc5-* .
^^OOOO— '— i?^>irc-^tr;t^oo07^'*<«ooo— * ■
05 0— 'MC0^O->0b-00 0;O— 'M^iOtOb-OOO 1
1
05
^ "^ t
00
2908-841
2999-630
8097-492
3196-924
3297-926
8400-499
8504-648
8610-858
^flOb-iO-*'^+1COO;CO-*ioo5q5-*^ro^-*C5oo-*
b-tctbooi>ib-'^^(rqco«b'^
— i:>ico-*iccb-o5— ^coiot^o
b-00050— I'MCOO^b-OOO
COCCCO'*-<*<^-+i'et<^r*4-HO
00
b-
2893-798
2989-981
8087-634
8186-910
3287-755
8890-171
8494-164
8599-716
iC-^'^Ot^OiCOt— C<|00'^— (
-*-+!— iu;^-*iOCOCOoO(Mro •
30»p0O^OO-~0b-'*lCOi '
iibuib-^i^i^iOo-^'+icb ^
O-^^-ICOlOwOOO'M'^5000 1
t-30050— '^ICOiO^Ot^OOOi
COCOCO'*i^^'*Tf-*-rt*'^'*i
•6
2884-262
2980-247
8077-794
8176-912
8277-600
8379-859
8488-689
8589-090
toco:iJ03<10b--*!noO-^
OO— 30
p:pb-^*^-#QOaoroTti— i-5j<
-o-^-*i'-bo5-?«oooaoo5Mi) *?
05 0— lMCOiQl--aOOC<^lf^l-
•000050-^COCO'*l^£>b-0005
Cr5CCC0-*'-*-*'*i-*-*i--H-^-*i
•5
2874-760
2970-579
3067-969
8166-929
3267-460
8869-562
8478-285
8578-479
COOO-tf— i05t^;O«Ot^C5— J^
05t^COtOiO'MOt^»OOCOC^I
>1?pO— 17-105— iq5JOC00005
ib:b:r:iooocN05?b!i>b-C5cv5
00050— ■M-:?Db-050 — c^co^iot^ooo:
C0COC^'*|-+i■*'*--^-^■^■rJ^-t<
i
1
1
<
"?
I0t^05:0t ^t Ji— '05 00t^050!^^OQOrOOO':f
O?0Oi0rC300500-*l-~0-O?^b-05t-CMlO'*-^b-ib-^»bb-.^
;CtDiOOlC»OtCOt^0005 0— 'rC--+itC00O!MJO
00050— i=.-aD05 0— (rc»rvb-05-^co
^t^0OO5— (->T-f^,+,ir>^Q005
cocococo^^::^:?^^;^^ 1
!>!
— l05t^O--0b-CC— i
(N ^ OO l^ CO --o tC -*i
C0:p»00— il^pb-
tb T^ 30 b- b- OO .^ -i
-^-!iHco:ococo-+i-TH
30050— I^ICO-T'O
(MC:t0050cMi>?5o;i)dbo-+'
-+itaob-3005 — o^-*i«Oic:— 1
tOb-oOOsO— 'CO'+iiO^t^O:
COCOCOCO'+i^-^-^i^-^H-TH-^ri
—1
' 9
2827-440
2922-473
3019-078
3117-258
3216-998
8818-815
3421-202
3525-661
0050— i-*t^O>OOb--^— 1
0500iriO-H05lOb-t^COI^OO
o^-^cqipcooocO'*i:pcoo
r^05i)05r^»bob-«bi>ob-—
COCO-*U2t^OOO— iCOlOb-O
tDt-00050— ICO-^lOCTJt^OS
COCOCOCO'+l'+l'*'*'*!'*'^'^
P
•.iniBi(i
O^^S>lCO-#»OiOt-C0050— ICi
p;
M
o
;«!
o
ci
1— (
w
El,
W
-»;
f^
Cm
;
5
H
fS
1-3
-si
•'-'■ GO CO GO CO 00 00 CO GO CO oo Oi Oi oi a: Oi oi (?; Oi cr. 5:
•juraQ 1
CO
1
Ci
o:i»oaia;t~'-Hio?'ioooo— iQO'M?C'Mt-oai?co
-+i to a. — ieoc.t^t—
CO
t-
03isoo^oo-Mioai'**Ci»Q30 O
— ''MCCiCtOt^aiO-^IC'+'tOt^OOO^CCrHtOOO
t;-
o
c0'^>ia:'7^a;cc:pcoaitpcoccc:;0»o:oc^ !
i-i OS i a: -^ 4< o -i la 0 .— 1 -f O -M ->C r^ to . H -t- O -* L':
»pco:opqi-^jp;?^-^H'>i;o>pcp-^c»Oco->j~to
:r;-oibtbt~-'^tbcc-^'^hotbchccccioib
X)^-*il^O-*t- — lOCSJCt^'MtC'-^tO'-tO^Jt-
O^lIC'+i-Xit-OOO— '^-^JOl-COO^CC-^tOt^
iO lO lO «o »c »o to --0 --o to to to --o to t^ l^ t- t^ t- l^
O
"f
lO?iaOt^l^OCO'>100-fQOl^-#?M— ^'— I'-'OCm
lO-Mt-Oioo-^coooioo-^OOcccotoaiOaocc
aicptoootopai'*i»p'>-j-^ritp'*ia:Otp3-. top
to 4tH ■f) '>! -+i rSD •>) 3t t^ l^ C» ^ >b f^ O) CO OO o 4- o
I— O cc to :j; c^) to cr. cc t^ --I to O »c :7i -^ :j: m o to
0>irC'#»ot^ooc:r-('M-t-ioi-ooa:.-i'M^tot-
»oiaioo»n»Qio>ototototctototot^t~t^t— !>•
-*
«
o-^-*'*b-^^toa5t>--*'Mr-ito^^'— cctoO'^Ci
CC m '^ O CC -*i -— 1 to l^ to 'M 55 ^ 0 ^ CC ^1
CO ^J l^ C» -*! to -# l_-- to r-l i>1 CO p GO r^- O "O to <>) -*i
"^-^a; dir^-i0>0»CtOtOtOtOtOtCtOl-l-t-l^b-
'■
9
-*i-Hooto>n>o"0-«*o.-HGOO-#c(tcit'*
CC':t<'-tOCOt^CCtOtO-^OOOCO-+'tOtOCOI^aOtO
--t;-o^tocrji»ccc«air^(»i>ipioip'7-icopcp'>i
a: lb cb cb "# t^ <> I do lb lb >b cb '>i b- -^ cb w: ih 00 n5
CCtOO". CJ'!t
•bcb'^O'^^cC'^'fq-^.l'cb^-i^-TCioocbJiWb-
'MOOOr-i-#t^O'#GO'MtOO-^C5rCQOCCGO-*a5
O ,_( !M ^ lO to CO o; O 'M cc "O to 1- c; o fM cc »rj to
OiO«OiCiOiO»C»OtOtOtCtOtOtOtOl^l-~l^t^b-
p
•JIU'BIQ
o— ''Mcn-+<>ratot>-coc50'-«otot^ooa5
CO QC GO CO o) QO oo CO CO GO a; Ci C5 c. r; Ci cr; cr; -r. 05
•jniBifi
CIRCUMFERENCES OF CIRCLES.
G-:i
jTU'Bia:
Oi— i2^fc-*ocrt-aoc;o>— t(Mcit->#»c«ot>'Q005
• jratJiQ
Si
O
3
'-'1'-' {»o--^rC'*iOt^<»0--i<^^'*»p^-GOOT— c-i'^ip
M|?!
c
c
en
M
cm 1
MM
1
OCOOqoO^O«OC^OO'*'OCC+i'*'»o»cio«c
-12
M
-*Oi:0^COO'*OC
^12
>■
P
O
PS
M
o
P3
R
H
C
pi
|:0(MG0-*O«£>(M00^O^-< ic Oi CO oc iM i, n
■1 I— It— ii— ((McMfMCCCCCCCC-^-^-^OOJOCC
laO^O^iMt-^»coicct^i— i«c
1" o b- QO Ci T-H (M -^ o b- CO qi'r-H (T^ ^.la 'pep ^^ T' T'
=^12
"l^
0^(Mao-*oo(MoO'*'0«ocqoO'*iOO(MOO-+iO?CC^OO-*O^C^CO-^0
(Nil CCCOO'^'O-. CCt-r-iOCiCCQOCNCCO-^COCCt-1-l
'"^ c(»c;0^ccocct-cppc^cc»p5pb-ciOcq
1— irH,— i(M(>l!>1C0CCC0'*<^^»O»Cin<:r>
ri'-'
^1;]
O^OCCC<)C0'#Ot0(M00'*iOO(M00-*O«r:?-l
GOCClOOCOOli— 'C0'TtocpQoair--(C^ccipcpcoo-^c^cc»p«pQpci
rnl-'
o
OO(Ma0'*O«C(MC0^OC0(M00^OO1 I
»;:
■*Occc.
toooc:i^cq-*y5i>-CiO(M-*(M«ooor:cci--— (
C-1 O CO C-1 »0 OO — -Tf
^l;^'
-*oorc--OCiWiooooOOr-^r-'-iMC"i
„;!?.
'*lCO(M«nO'*G5CCt^^H10a5COC5.— '?q-+ii5;ooo
■4t< t^ o CO tb ci !?q tb ci ->! lb oo o o o — ■ -^ -- ri T'T
(MC0-rHOt0^la0-+iOt0'N0000O'MCCOt20CO
^O'M'+iOt>.C0O!MCCi0t0»>.'MtDO-*'00r)t^
Jg t Dt--t>-t^ b->G OO0CO -t-t-cooooociwiCi>— I,— I— ^
— I r-l 0«OCOO-H«'*iO
iot^coooicoictoaoo»-tccocscooo(M«oo-+ioocob-— '0>— ifCfs^rir-cso
I O ■-r^b-t-l>.OOGOOOC5a5Cir--H,— ,— ,— 11— lr-1,-1
'co-t)co-*otoiMoo-*co'Otoocai'-'«-*
iM'Ct— oDO'— i«oicococ5i— incot—.— i»^O-*i00
-[?< Ci CO t^ — I to O -^ 00 O^ to O »0 1^ C5 O !M X "O CO t^
'"^ . O ■M CO »0 to 00 C; O (M CO »o to
cotos;'M'Ooo»-i»oc»
tototct^t^i^oooooo
O CO h- O CO to Ci •>!
'^t^OOO — — — i^-J^l
C531r— 11— 1^^^-^-— li— I.— (
IOt0J CO Aj ^ .V -i; ^ <^ -V ^-j
! •>! i'o Ci 0-1 >b OO F^ -^ h- 1^ -^ b- o c5 O O r-i ^^ ^ i'l
'tOtOtOt^h-t^OOOOQOClCSCSr-lr-l— Jr-"i— Ir-f-Hr-
.ri
OOC5'-'CO-+ltOt~C5'-H'M-+llOaO?qt^ — iCCiCOt-
oo'>it>--H»0 5;cot— '^^;oo-*'co01— ico-^^t^QO
^cp^--pb-cpO-7^cp'*tpt>-^^^_^^, ^^jj,
iCcOr- i"rt -H
„I(N ' g
^K
n''"'
"l-<
jm"irr O— 'O-ICO-HiOtOt— COCiO>-icqcO-HiCtor^aori '•uiirirr
•*'" ■!'! CM Ol C>1 C^l O^ cC'*tn«oi>-GOCiO»— icciiro-<*iio«cit-QOC5
•JUI'BICI
w
H
1-1
P
o
M
Q
o
35
o
P3
H
O0^C0C<-OC0t~-0''J«0i— lt-CCOQOl>-b-
O»Cr-l00Ui'^C0CC-*'X>00CCf0r-llCt-«0i— I'*-*
I ,— lr-iCt-C5i— ' I— ll— It— '1— lCoc5>Ot-ioo«o»o
-rfCCO-*<-*lMt^CVGO-*lt-C5CO(MCOCOlOI>-lOC5
l' CsJcb?— lQO«bOOOi— l»OC^OC'-*fOCO'— leb
1 ■ cqo,— it-U50t>-0-^00->0-^1000COC50?-l'*«C!C5'— (-*t— O
I— (r-l(MCO'*iOt^ODi— 1.— ii— 1,— II— l(M(M(MCO
t-OOi-l-*OOCOC5lOCC^OCO«r>i— iCO(MC^(r^COO
OsD-ifOOCiOOCOOOrOb-COCOCiOt— CiO0(MC1
CqOO^P'^'jt^pr-ICOrT-O^Jf.^t:,^^^^^
r-ir-i(M0O-^tO>r^CO i — 1»— ii— ii— li— itMtMC^O C
CO
1— 1
t-.-tcoccr-i^oooococo
?c
t-
OOi— t-^COCOOOlCC^OOi— ICCCCCIC^O^O-^
•fl*^
Ci
o
OCCO»Pj;,^j;,^(i55^^c;r,5i)
I— t
1— i(Mco-*oi^coi— ii— 1.— ii— ii— ie^si
''•H
l-^CCO'^t~C0b--^iO«OCOi— li— I r-l I— I rH (M CO-^COCC<£)lOCiC:>»C
Ocp»C(NOCiOOt~lO-^-<*llOI>>C;
Cit^-SOlOOl^CJOICOOOCNJOQOCOJOCSOQOCC
T^COOO-^r-lOr^COb-C^Ci'— iCO»OOOOCCtCC2
IMK
OOOOOO-^OOClCit-fCCOCO-JQOlOCOCCCOCOlO
1— lOit^iOiOlCOCOi— liOC5-*OiOC^Ot^lOOOOt^fO«OtOCOCOCit-C^(N'— lOCOCM-^C^JiO
pp)^t:_(5l2>rll(35aD
iHC0t-C0OC5OCq>bi— lb-1— icoicaoOco»cco
.1— i *"OOt>>COtr^OO'X!i— IC023
rtl'^ OCOi— I0»0t~t0'*ll>>«0'— IC^COO
cht^CCOCiC5i-H"*OOi— ICOlCt^OlMJOCO
I 1— I (M (M CO >C :g t^ Ci 1—1 -H T-i .— I eg CCq
Oco-*«r>tocot^oo«Oi— icocoot^Cit— oos'^io
CCt^(MCiOOCOOCOOO»Oi— iCOlOt^OfMOOO
I— li— iO^COiO«r>t^Cir-li— li— li— l(M.oor50^rire-;t^iotot-xrs
71 71 7-1 7i M 71 71 71 M 7-1 re re re re re re re re re re
-Jic
BI(1
^jCT '-p ^1 -* >i ">p »p p O t;- r; t-- o a: -*i to ^ i^ I: X ■ • -i-'
cr: t^ ^1 c; t^ t^ f: 71 i fi 6 6 6 ^^ b- ^ t^ ?i S o " "
re ro -=>< -*i -*< ic u-: -o vs I, i^ X X) ri c; r^ ^ ^ ^ ^
1
1
-d
o
=1^ 1 CO :c ^ ,-1 CO .7^ ip ^ CI p tp oo o o rs ^ i. jj, j:„ .V c'--,
-*i 1-- -*< 00 -M -^ ic r; 'T^i ci -T- c"; ic — 1 — ~^i
5
coiMre'*itooo7ito.— ii>-reortcot-r;re-+i7ix
«0'*-coorer;ie.— t^re
retoore^-— iueo-^~. reacreci'*ic;Oi— i^HT-i
rere-*i^t<-^Leu7tototot^t^cox~r;i— 1^-.— 1 —
H
1 10 t- ^ -Tl -*l -M t^ -O r-l -:t< CO -Tt- Le ^ CC 3^1 ir;
f-i->
o
1— 1
o
12;
>
C"i ^ -r^i •— b- — ^ t~- -^ re re lb Ci -^^ i re
ro-j3 0ret- — ueci-t-corecoreooreno.-H-HT-i
re re '*^ '^ -* 10 »e "O -^ t^ i^ CO 00 ci ri .-( ^ 1-1 -H
2
-<
~i«
•^Ocotoioietot^oret-i— ib-ceooo»ob-to7-i
tooorereo-^ie-^io;.— 1— -t^i— 171-nre-^i— I"*!
pppb-'^«--opr5'*Hpre»e-+'cot--^jj^^^
oreb-re-^O— *reb-reof; ri-^'+'Ci-^otoT-i
retociret— -Hu;cirecoret^7ixrecoo>— ii— 13-1
rerere^'*ii-eoietotot^t^30coc5c:.-i.-(i— 1^
„l:i
o
73
i^o-Hcoiei'^iroreceiot^OreDOreot-t^-O'Mio 1
!co-«^toocet-ooto-^rerec5'Mrer-(iciQiO'-iS'i 1
aj^ , re M tp 71 ro p re e-i ?p -0 T-H re p re »;^ ^ z. ^ ^ ; ^- -j
! (M to C5 re -0 -*i Ci re t^ 71 t- CM (> re 00 ^ ■M
re re re -*' -*i io ie le %r --T! t^ t^ CO CO Ci C5 .-( —i r-i —
^1^
c^recr5tore^oo0 7i-ft-o>eoto--t^oo 1
r-i^reo-*i>-erecoocii-ecor;to-H7icoto^.-( 1
b- -* t>- -^ p p to t-- >e t- to p p 00 .V Ji, ^ j}j 1 -.:t>
■^ b» ,li b- -^ -4m to 71 ^ -^ 71 lb re r; le r-i 1 '"
71 i-e c-i to '^i 00 re t^ 7-1 t>. reocoj^i>.i>.ooocet~-^^otc r^csto
I'o CI 10 -^ "+1 00 Ci »o CO C5 ^r 71 t- c:i
-|^' . p P CO ip 00 t^ -^ 71 t^ — -o C5 CO re re C5 ^-, — jij -ij -'•'
! 71 -^ oD 4< ^ — re i> ^ XI -o i 00 ^ lb re 56 ^ I
71 >.e CO 71 -0 -*' 00 71 t^ ^ -0 — 1 -,C 71 t^ r-i 71
rerere-*i-+-e:£tot^t^xcor;cir-i'-H.— (1— I ■
o
It^O-^Ci-** — C0^-^'!#<'*(lrtb-Ore00C^17>155'M
— x^— iCi':t-^Cicec50co
; ci ^ I'e — 1 CO b- b- rs re do -?t< (71 -71 re '-b -^ 71 CO ■<*<
; ^^ eco7ito7icoiere^r-i.-i7'i-*toociCDC50
IcOi— i»-^rire>ereri 7i7iC5re-^7^it— o»ooo«>>
'^i^i'^T'P'?''Pr=::^P'?v't:-«»-?'Prp»:'(7i6fiC5
! to c~. re X «o -*i -^ --r; ci 'Tf CO CO c: 7-1 --c 71 CO re C5
— i-^j^co— iioriret^ — to-— iiooio— itooo>— (I— 1
irerere-^'*(-.+-i.eietotct-«>-ooooC5c^.-(i-i.-ii-i
Ci.-ire«oO'*e 7-1 >e to -*< c; 7-1 .— i x (71 .— ( »o
T^ -P r ^ =P ^ 9 *P 'r-'P "» *^ "1 1 < P r t^ le -it* 4* o
■<*oo«0'rt<-rt<»or^7>i-Hr^rec5 '
1— I'+iQOi— i«oc5cet^— 'too>oo»ootooo^Hi— 1 i
cerece-^'^-t^iOKetotot^t^cocoosci'^'— !.—'>— 1
JLU 1.1(1 -M -M C^J M M -M M 71 M M re ?:! Pt .-C :rt Ci^ en M « CO ■^^-■^■
IQ
' ' 1
AEEAS OF SEGMENTS OF CIRCLES.
67
Table or the Areas of the Segt^lents of a Circle,
THE Diameter beln^g Unity.
To find the area of the segment of any circle from the following
tables.
Rule. — Divide the height of the segment by the diameter,
take out the corresponding tabular area, which multiply by
the square of the diameter for the result.
Ai-ea
•001
•002
•003
•004
•005
•006
•007
•008
•009
•010
•Oil
•012
•013
•014
•015
•016
•017
•018
•019
•020
•021
•022
•023
•024
•025
•026
•027
•028
•029
•030
•031
032
033
034
035
036
037
•000042
•000119
•000219
•000337
•000470
•000618
•000779
•000951
•001135
•001329
•001533
•001746
•001968
•002199
•002438
•002685
•002940
•003202
•003471
•003748
•004031
•004322
•004618
•004921
•005230
•005546
•005867
•006194
•006527
•006865
•007209
•007558
•007913
•008273
•008638
•009008
•009383
-— Ajea
•038
•039
"•040
•041
•042
•043
•044
•045
•046
•047
•048
•049
•050
•051
•052
•053
•054
•055
■056
•057
•058
•059
•060
•061
•062
•063
•064
•065
066
•067
068
069
070
071
072
073
074
•009763
•010148
•010537
•010931
•0113.30
•011734
•012142
•012554
•012971
•013392
•013818
•014247
•014681
•015119
•015561
•016007
•016457
•016911
•017369
•017831
•018296
•018766
•019239
•019716
•020196
•020680
•021168
•021659
•0221.54
•022652
•023154
•023659
•024168
•024680
•025195
•025714
•026236
•075
•076
•077
•078
•079
•080
•081
•082
•083
•084
•085
•086
•087
•088
•089
•090
•091
•092
•093
•094
•095
•096
•097
•098
•099
•100
•101
•102
•103
■104
•105
106
•107
108
109
110
HI
Area
•026761
•027289
•027821
•028356
•028894
•029435
•029979
•030526
•031076
•031629
•032186
•032745
•033307
•033872
•034441
■035011
•035585
•036162
•036741
•037323
•037909
•038496
•039087
•039680
•040276
•040875
•041476
•042080
•042687
•043296
•043908
•044522
■045139
045759
046381
047005
047632 [
Area
•112
•048262
•113
•048894
•114
•049528
•115
•050165
•116
•050804
•117
•051446
•118
•052090
•119
•052736
•120
•053385
•121
•054036
•122
•054689
•123
•055345
•124
•056003
•125
•056663
•126
•057326
•127
•057991
•128
•058658
•129
•059327
•130
•059999
•131
•060672
•132
•061348
•133
•062026
•134
•062707
•135
•063389
•136
•064074
137
•064760
138
•065449
139
•066140
140
•066833
141
•067528
142
•068225
143
•068924
144
•069625
145
•070328
146
•071033
147
•071741
148
•072450
F 2
68
AEEAS OF SEGMENTS OF CIRCLES.
Table of the Areas of the Si
5GMENTS
DF A
Circle,
THE
Diameter being U^
'ITY (continued)
H
Area
H
Ai'ea
H
I)
1 Area
H
17
U
I)
Area
•149
•073161
•193
•106261
•237
•142387
•281
•180918
•150
•073874
•194
•107051
•238
•143238
•282
•181817
•151
•074589
•195
•107842
•239
•144091
•283
•182718
•152
•075306
•196
•108636
•240
•144944
•284
•183619
•153
•076026
•197
•109430
•241
•145799
•285
: -184521
•154
•076747
•198
•110226
•242
' -146655
■286
: -185425
•155
•077469
•199
•111024
•243
! ^147512
•287
•186329
•156
•078194
•200
•111823
•244
•148371
•288
•187234
•157
•078921
•201
•112624
•245
•149230
•289
•188140
•158
•079649
•202
•113426
•246
•150091
•290
•189047
•159
•080380
•203
•114230
•247
•150953
•291
•189955
•160
•081112
•204
•115035
•248
•151816
•292
•190864
•161
•081846
•205
•115842
•249
•152680
•293
•191775
•162
•082582
•206
•116650
•250
•153546
•294
•192684
•163
•083320
•207
•117460
•251
i ^154412
•295
•193596
•164
•084059
•208
•118271
•252
•155280
•296
•194509
•165
•084801
•209
•119083
•253
•156149
•297
•195422
•166
•085544
•210
•119897
•254
•157019
•298
•196337
•167
•086289
•211
•120712
•255
•157890
•299
•197252
•168
•087036
•212
•121529
•256
•158762
•300
•198168
•169
•087785
•213
•122347
•257
•159636
•301
•199085
•170
•088535
•214
•123167
•258
•160510
•302
•200003
•171
•089287
•215
•123988
•259
•161386
•303
•200922
•172
•090041
•216
•124810
•260
•162263
•304
•201841
•173
•090797
•217
•125634
•261
•163140
•305
•202761
•174
•091554
•218
•126459
•262
•164019
•306
•203683
•175
•092313
•219
•127285
•263
•164899
•307
•204605
•176
•093074
•220
-.128113
•264
•165780
■308
•205527
•177
•093836
•221
•128942
•265
•166663
•309
•206451
•178
•094601
•222
•129773
•266
•167546
•310
•207376
•179
•095366
•223
•130605
•267
•168430
•311
•208301
•180
•096134
•224
•131438
•268
•169315
•312
•209227
•181
•096903
•225
•132272
•269
•170202
•313
•210154
•182
•097674
•226
•133108
•270
•171089
•314
•211082
•183
•098447
•227
•133945
•271
•171978
•315
•212011
•184 ■
•099221
•228
•134784
•272
•172867
•316
•212940
•185
•099997
•229
•135624
•273
•173758
•317
•213871
•186
•100774
•230
•136465
•274
•174649
•318
•214802
•187
•101553
•231
•137307
•275
•175542
•319
•215733
•188
•102334
•232
•138150
•276
•176435
•320
•216666
•189
•103116
•233
•1389!»5
•277
•177330
•321
■217599
•100
•103900
•234
•139841
•278
•178225
•322
•218533
•191
•104685
•235
•140688
•279
•179122
•323
•219468
•192
•105472
•236
•141537
•280 1
•180019
•324
•220404
AREAS
OF SEGMENTS OF CIRCLES.
69
Table op the Areas of the Segments of a Circle, |
THE Diameter being Unity (concluded).
H
D
Area
H
D
Area
H
1)
Area
H
iJ
Aj-ea
•325
•221340
•369
•263213
•413
•306140
•457
•349752
•326
•222277
•370
•264178
•414
•307125
•458
•350748
•327
•223215
■371
•265144
•415
•308110
•459
•351745
•328
•224154
•372
•266111
•416
•309095
•460
•352742
•329
•225093
•373
•267078
•417
•310081
•461
•353739
•330
•226033
•374
•268045
•418
•311068
•462
•354736
•331
•226974
•375
•269013
•419
•312054
•463
•355732
•332
•227915
•376
•269982
•420
•313041
•464
•356730
•333
•228858
•377
•270951
•421
•314029
•465
•357727
•334
•229801
•378
•271920
•422
•315016
•466
•358725
•335
•230745
•379
•272890
•423
•316004
•467
•359723
•336
•231689
•380
•273861
•424
•316992
•468
•360721
•337
•232634
•381
•274832
•425
•317981
•469
•361719
•338
•233580
•382
•275803
•426
•318970
•470
•362717
•339
•234526
•383
•276775
•427
•319959
•471
•363715
•340
•235473
•384
•277748
•428
•320948
•472
•364713
•341
•236421
•385
•278721
•429
•321938
•473
•365712
•342
•237369
•386
•279694
•430
•322928
•474
•366710
•343
•238318
•387
•280668
•431
•323918
•475
•367709
•344
•239268
•388
•281642
•432
•324909
•476
•368708
•345
•240218
•389
•282617
•433
•325900
•477
•369707
•346
•241169
•390
•283592
•434
•326892
•478
•370706
•347
•242121
•391
•284568
•435
•327882
•479
•371705
•348
•243074
•392
•285544
•436
•328874
•480
•372704
•349
•244026
•393
•286521
•437
•329866
•481
•373703
•350
•244980
•394
•287498
•438
•330858
•482
•374702
•351
•245934
•395
•288476
•439
•331850
•483
•375702
•352
•246889
•396
•289453
•440
•332843
•484
•376702
•353
•247845
•397
•290432
•441
•333836
•485
•377701
•354
•248801
•398
•291411
•442
•334829
•486
•378701
•355
•249757
•399
•292390
•443
•335822
■487
•379700
•356
•250715
•400
•293369
•444
•336816
•488
•380700
•357
•251673
•401
•294349
•445
•337810
•489
•381699
•358
•252631
•402
•295330
•446
•338804
•490
•382699
•359
•253590
•403
•296311
•447
•339798
•491
•383699
•360
•254550
•404
•297292
•448
•340793
•492
•384699
•361
•255510
•405
•298273
•449
•341787
•493
•385699
•362
•256471
•406
•299255
•450
•342782
•494
•386699
•363
•257433
•407
•300238
•451
•343777
•495
•387699
•364
•258395
•408
•301220
•452
•344772
•496
•388699
•365
•259357
•409
•302203
•453
•345768
•497
•389699
•366
•260320
•410
•303187
•454
•346764
•498
•390699
•367
•261284
•411
•304171
•455
•347759
•499
•391699
•368
•262248
•412
•305155
•456
•348755
■500
•392699
70
CENTRES OF FIGURES.
CENTRES AND MOMENTS OF FIGURES.
To Find the Centres of a pew Special Figures.
1. Triangle. (Fig. 104.)
Fig. 104.
^ EuLE. — From the middle points of any
two sides draw lines to the opposite angle ;
the point of intersection d of these lines is
the required centre.
2. Trapezoid.
Fig. 105.
AF. 3 __
(Fig. 105.)
Rule. — Bisect ab in e and cd in p,
and join ef. Produce AB beyond B to
--^.-..2 ^' Daaking bh^^CD, and produce CD
beyond C to i, making 01 = A3; then
join HI, and where this line intersects
EF is the centre of gra\'ity G.
3. Trapezium.
Fig. 106.
(Fig. 106.)
Rule. — Draw the diagonals ad
and CB intersecting in e ; along CB
set ofE CF equal to eb, and join fa
and fd : the centre of the triangle
afd will be the centre of the tra-
pezium.
4. Circular arc.
Fig. 107.
(Fi
107.)
Rule. — Let adb be the circular arc
and c the centre of the circle of which it
is a part (to find c see p. 7); bisect the
arc AB in d, and join do and AB; multi-
ply tlie radius CD by the chord AB, and
divide by the length of the arcADB:lay off
^^' the quotient CE upon CD, then E is the
centre required.
5. Yery fiat curved line (^approximate'). (Fig. 108.)
Rule. — Let adb be the
arc ; draw the chord ab,
and bisect it in C ; draw CD
perpendicular to AB ; make
CE cciual to 5 of CD : then E
Avill be the centre required.
no.)
Fig. 110.
CENTKE& OF FIGURES. 71
6. Sector of a circle. (Fig, 109.)
EULE. — Let ABC be the sector, E its
centre ; multiply the chord ab by | of the
radius CA; divide the product by the length
of the arc : the quotient equals the distance
CE set along the line CD, D being at the bisec-
tion of the arc ab.
7. Sector of a playje circular ring. (Fig.
EuLE. — Let CA be the outer and CE
the inner radius of the ring : divide twice
the difference of the cubes of the inner
and outer radii by three times the diffe-
rence of their squares ; the quotient will
l>e an intermediate radius cf, with which
(Inscribe the arc ff, subtending the same
angle with the sector: the centre H of the circular arc ff, found
I'V Eule 4, will be the centre required.
8. Circular segment. (Fig. 111.)
EuLE. — Let c be the centre of the
circle of which it is a part ; bisect the arc
AB in D, and join CD ; divide the cube of
lialf the chord ab by three times the area
of half the segment adb : set off the quo-
tient OE along CD, and E will be the centre
required.
9. Parabolic half-segment. (Fig. 112.)
Eule. — Let abd be a half -segment of a
arabola, bd being part of a diameter parallel
TO the axis and AD an ordinate conjugate to
that diameter — that is, parallel to a tangent
at B. Make be equal to f bd, and draw ef
l/arallel to AD and equal to | AD. Then F will
l)e the centre of the half -segment.
10. Height of centre of semicircle from its base.
Eule. — Multiply the diameter of the semicrrcle by 4, and
divide the product by Stt.
11. Height of centre of jyaralfola from its base.
Eule. — Multiply its vertical height by 2, and divide the
product by 5.
12. Height of centre of ellijytic segment from the lesser diameter
tf the ellijjse of which it is a imrt.
Eule. — Take the square of half the greater diameter of the
ellipse, and divide the product by the square of half the lesser
diameter; multiply that result by the cube of half the length of
the base of the segment, and divide the result by three times its
lialf-area.
'72, MOMENTS AND CENTRES OP FIGUEES.
JLx. : Let d = greater diameter of ellipse, and d = lesser diam.
B = base uf segment, and A = area of segment.
H = height of centre from lesser diameter of ellipse.
.-©■■(!)■
"(4)""
13. PHsm or cylinder with plane 2ycirallel ends.
Rule. — Find the centres of the ends ; a straight line joining
them will be the axis of the prism or cylinder, and the middle
point of that line will be the centre required.
14. Cone or j^yt'omid.
Rule. — Find the centre of tlie base, from which draw a line
to the summit ; this will be the axis of the cone or pyramid,
and the point at \ from the base along that line will be the
centre.
15. Hemispliere or Jiemi-ellipsaid.
Rule. — The distance of the centre from the circular or
elliptic base is | of the radiiis of the sphere, or of that semi-axis
of the ellipsoid which is perpendicular to the base.
16. Paraboloid.
Rule. — The distance of its centre from the base along its
axis is I of the height from the base.
^iG. 113. 17, To fnd the centre of r/rarity of
any continuous curved line. (Fig. 113.)
Ex. : Let abc be the given curve ;
bisect it at B ; join ab and BC, and
bisect those chords at the points
D and e respectively; set off fd per-
pendicular to ab, and eg perpendicu-
lar to BC; make fh = |df and gk
= fGE, and join hk; bisect HK at the
point L, which will be a close approx-
imation to the position of the centre
^^ of gravity of the curved line ABC.
rt7lbs for fixding the moments and centres of
Figures.
Thd geometrical moment of a fgure, whether a line, am, area, or
a solid, relatively to a given jilane or axis is the product of tlie
magnitude of that figure, into the perpendicular distance of its
centre from the given plane or axis, and is equal to the sum of
the moments of all its parts relatively to the same pla)w.
The centre of an area is determined when its distance from
two axes in the plane of the ligure is known.
The centre of a figure of three dimensions is determined
MOME^'TS AXD CENTRES OF FIGURES.
73
■^hen its distance from tliree planes not parallel to one another
is known.
1. To find the moment of an iii'egular figure relatively to a
fjiven plane m' axi».
Rule. — Divide the figure into parts whose centres are known ;
multiply the magnitude of each of its parts into the perpendi-
cular distance of its centre from the given plane or axis ; dis-
tinguish the moments into positive and negative, according as
the centres of the parts lie to one side or the other of the plane :
the difference of the two sums will be the resultant moment of
the figure relatively to the given plane or axis, and is to be
regarded as positive or negative, according as the sum of the
positive or negative moments is the greater.
2. To find tJie perpendicular distance of the centre of an irre-
gular figure from a given plane or axis.
Rule. — Divide the moment of that figvire relatively to the
given plane or axis by its magnitude ; the quotient will be the
jDerpendicular distance of its centre from the given plane or axis.
3. To find the centre of a figure consisting of two parts whose
centres are hnoivn. (Fig. 114.)
Rule. — MultijDly the distance between the two known cen-
tres by the magnitude of either of the parts, and divide the
product by the magnitude of the whole figure ; the quotient
will be the distance of the centre of the whole figure from the
centre of the other part, the centre of the whole figure being
in the straight line joining the centres of the two parts.
Ex. : Let abcd be such a figure, m and m
the magnitude of its two respective parts, M + 7«
the magnitude of the whole figure, D the dis-
tance between the centres ]5i and m of the two
parts, and c the centre of the whole figure.
3IC =
m X D
M+ ni
mc = :
M X D
M + 7)1
Fig. 115.
4. To find the centre of any plane area hy means of ordinates.
(Fig. 115.)
Let ABC, the quadrant of a circle, be such
an area ; cb the base line, di\'ided into a
number of equal parts by ordinates ; AC the
transverse axis traversing its origin.
\st. Betermiyie the perpendicular distance
of the centre of the quadrant from the trans-
verse axis in the following manner: —
Rule. — Multiply each ordinate by its dis-
tance from the transverse axis ; consider the
products as ordinates of a new curve of the same length as the
given figure : the area of that ciu-ve, found by the proper rule,
will be the moment of the figure relatively to the transverse
ziaiii'^
MOMENTS AND CENTRES OF FIGURES.
axis ; this moment, divided by the whole area of the figure, will
give the perpendicular distance of its centre from the transverse
axis.
In algebraical symbols the moment of a plane figure rela-
tively to its transverse axis, and found by the above rule, is
expressed thus : —
fxydx.
Note. — In practice it is better to proceed as follows : — Multiply
the ordinates first by their multipliers, and then those products
by the number of intervals from the origin ; take the sum of
those products and multiply it by ^rd of a whole interval
squared, if Simpson's first rule is used, by |ths of a whole inter-
val squared, if Simpson's second rule is used, and so on for the
other rules.
Exaviple.
No. of
Intervals
Ordinates
Multi-
pliere
Products
Products X ^'o. of Intervals
from Origin
16-0000
1
16-0000
•00000
1
15-4919
4
61-9676
61-9676
2
13-8564
1^
20-7846
41-5692
2i
12-4900
2
24-9800
62-4500
3
10-5830
3
4
7-93725
23-81175
^
9-3274
1
9-3274
30-31405
H
7-7460
i
2
3-87301
13-5555
n
5-5678
1
5-5678^
20-87925
4
0-0000
i
Interval
0-0000
•00000
150-43765
4
Interval 2.54-54735
3
3
3 3
Ap
proxima
te area =
200-58353
Approx. moment = 1357*585
Moment 1357-585 ^ a.-aa /"approximate perpendicular distance
Area 200-5835 ™ ' \ of centre from the transverse axis.
Ind. Find tlie perpendicnlar distance of its centre from the
base line.
Rule. — Square each ordinate, and take the half -.squares as
ordinates for a new curve of the same length as the iigure ; the
area of that curve, found by the proper rule, will be the moment
of the figure relatively to the base line : this moment, divided
by the whole area of the figure, will give the perpendicular
distance of its centre from the base line.
In algebraical .symbols the moment of a plane figure rela-
tively to its base line, found by the above rule, is expressed
thus : —
/
H'-d^.
MOMENTS AND CENTRES OF FIGUEES.
Example.
75
No. of Intervals
Ordiaates
Half-squares
Multipliers
Pro'lucts
1
2
3
4
16-0000
15-4919
13-8564
10-5830
» 0-0000
128-0000 1
119-9995 4
95-9999 2
55-9999 4
00000 1
Interval
3
Approximate moment
128-0000
479-9980
191-9998
223-9996
0-0000
1023-9974
_ *
3
= 1365-3298
Moment 1 365-3298 _ c.^ac f approximate perpendicular dis-
Area 201-0624 ~ \ tance of centre from base.
Actual moment = 1365-3
Actu^ararea ^~2'0]70624
5. To Jind the centre of a plane area hoinided by a cnrre ayid
two radii by means of polar co-ordinates. (See fig. 82.)
1st. J^termine the peipejidicular distance of its centre from a
plane trd^ersiiig the j^ole and at right angles to one of the bound-
ing radii, called the first radivs, in the folloiving manner : —
EuLE. — Divide the angle subtended by the arc into a conve-
nient number of equiangular intervals by means of radii ; mea-
sure the lengths of the radii from the pole to the arc, and
multiply the third part of the cube of each of them by the
cosine of the angle which they respectively make with the first
radiiLS ; treat these products by one of the rules applicable to
finding the area of a plane curve (the only difference being that
the common interval is taken in circular measure) ; the result
will be the moment of the figure relatively to the plane tra-
versing the pole : this moment, divided by the area of the
figure, will give the perpendicular distance of its centre from
the plane traversing the pole.
Exampli'.
■1 ^^
5 No.
^ of
Radii
Radii
a
1
12
2
12
3
12
4
12
r
12
Cubes of Radii
576
576
576
576
576
Angles
First
Radius
0°
5°
10°
15°
20°
Cosines! Products
1-0000 576-0000
-9962 573-8112
•9848567-2448
•9659 556-3584
•9397 541-2672
I
Simpson's
Multi-
pliers
1
4
2
4
Products
Interval in circular measure
576-0000
2295-2448
1134-4896
2225-4336
541-2672
6772^4352"
-0291
Moment relatively to plane traversing pole= 197-077864
76
MOMENTS AND CENTRES OP FIGURES.
Homent 197 '0778 64: _ ^.g^j^ /perpendicular distance of centre
Area 25' 1327 \. from plane traversing pole.
In algebraical symbols the moment, as here found, is ex-
pressed thus : —
/
cos 6dQ.
2iid. Determine tlie moment of the fgure relaiivehj to the first
radius precise li/ i/i the same jvay as in the foregoing rule, with tlie
exceptiou that sines must he used i?i the place of cosines ; this
moment, divided by the area of the figure, mill give the perpen-
dicular distance of its centre from the first radius.
Note. — It is usual, in practice, to defer the division of the
cubes of the radii by 3 until after the addition of the products.
Example.
No.
of
Radii
Radii
1
12
2
12
3
12
4
12
5
12
'Angles
Cubes of Radii with
First
Radius
576
576
576
576
576
0°
5°
10°
1.5°
20°
Sines
of
Angles
Products
•0000
•0872
•1736
•2588
•3420
•0000
50-2272
99-9936
149-0688
196-9920
Simpson's
Multi-
pUera
ProdiTcts
•0000
200-9088
199-9972
596-2752
196-9920
Area 25-1327
Interval in circular measure
_
Moment relatively to first radius :
= 1-38
1194-1732
-0291
34-750440
Moment 34-75044 . i„ f perpendicular distance of centre from
\ first radius.
In algebraical symbols the moment as liere found is ex-
pressed thus : —
/
sin ede.
6. To find the perpendicular distance of the centre of a solid,
hounded on one side by a curved surface (figs. 101 and 102),
from a plane perpendicular to a given axis at a given point.
Rule. — Proceed as in liule 4, p. 73, to find the moment
relatively to the plane, substituting sectional areas for breadths;
then divide the moment by the volume (a<3 found by Rule 2, p. 44):
the quotient will be the required distance. To determine the
centre completely, find its distance from three planes no two of
wluch are parallel.
MOMENTS AND CENTRES OF FIGURES.
n
Fig. 116.
w.
7. Having the moment and centre of a figure relatively to a
given plane, to find the neiv vioment and centre of the figure rela-
tively to the same plane ivhen a part of the figure is shifted.
(Fig. 116.)
In the figure wlk let c be its
centre, and zz' a plane with respect
to which the moment of the figure is
known : suppose the part WSM to
be transferred to the new position
SNL, so as to alter the shape of the
figure from wlk to mnk ; let i
be the original and h the new cen-
tre of the shifted part : then the
moment of the figure mnk relatively
to the plane zz' t^ found as follon-s : —
EuLE. — Measure the distance, perpendicular to the plane of
moments, between the centres of the original and new position
of the shifted part, as hd, and multiply it by the magnitude
of the shifted part ; the product will be the moment required.
The new position of tlie entire figure is then found hy the following
rule : —
EuLE. — Multiply the distance between the centres of the
original and new position of the shifted part by the magnitude
of that part ; that product, divided by the magnitude of the
whole figure, will give the distance the centre has traversed in
the direction in which the part has been shifted, and in a plane
parallel to a line joining the centres of the original and new
position of the shifted part, as from c to c' in fig. 116.
8. To find the centre of a wedge-shaped solid (fig. 117) hy
means of polar co-ordinates.
\st. Determine the perpendicular dista.ice of its centre rela-
tively to a transverse sectional 2^ lane, as pab.
EuLE. — Divide the Fig. 117.
solid by a number of
parallel and equidistant
planes, as pab, PjAjB,,
P2A0B2, &c. ; then mul-
tiph" each sectional area
by its distance from the
plane pab ; treat the
products as though thej*
were the ordinates of a curve of the same length as the figure ;
the area of that curve, found by the proper rule, will be the
moment of the figure relatively to the plane pab : that moment,
divided by the volume of the figure, will be the distance
required.
£d -e*
78 MOMENTS OF INERTIA.
2nd. Determine the perpendicular distance of its centre re-
latively to a lonyitudinaL plane passing through its edge, as MPM,
perpendicular to the first radius, pb.
Rule. — Divide the figure by a nnuiber of longitudinal
planes radiating from the edge MPM at equiangular intervals
(as PP^AA^, PP4CC^, PP4BB4) ; also divide the length of the figure
into a number of equal intervals by ordinates, and treat each
of the longitudinal planes as follows : — Measure its ordinates,
take the third part of their cubes, and treat those quanti-
ties as if they were ordinates of a new curve ; that is, find its
area by one of Simpson's rules : the area of that new curve is
termed the moment of inertia of the longitudinal plane in
question. Then multiply each moment of inertia of the several
planes by the cosine of the angle made by the plane to which it
belongs with the plane pb, and treat these products by a proper
set of Simpson's multipliers ; add together the products, and
multiply the sum by | of the common angular interval in cir-
cular measure if Simpson's first rule is used, and by | if Simp-
son's second rule is \ised. The result will be the moment of
the figure relatively to the plane mpm. This moment, divided by
the volume of the figure, will be the distance required.
The algebraical expression for the moment as found in this
rule is
//
^ cos QdxdQ.
37'd. Determine the perpendicular distance of its centre re-
latively to a longitudinal plane passing through its edge, and a
radius as pp^be*, by the foregoing rule, with the exception of
multiplying by sines instead of cosines.
Note. — In practice it is usual to defer the division of the
cubes of the radii by 3- until after the addition of the products.
Moments of Inertia and Radii of Gyration.
1. To find the moment of inertia of a body about a given
uxis.
Rule. — Conceive the body to be divided into an indefinitely
great number of small parts ; multiply the mass (or weight) of
each of these small parts into the square of its perpendicular
distance from the given axis : the sum of all these products as
obtained will be the moment of the body about the given axis.
2. To find the squaa'e of the radius of gyratiott of a body about
a given axis.
Rule. — Divide the moment of inertia of the body rela-
tively to the given axis by the mass (or weight) of the body.
MOMENTS OF INEETIA. 79
3. (rive/i the moment of inertia of a body about an axis
traversing/ its centre of gravity in a given direction, to find its
moment of ineHia about another axis parallel to the first.
Rule. — Multiply the mass (or weight) of the body by the
square of the perpendicular distance between the two axes, and
to the product add the given moment of inertia.
4. Given the separate moments of inertia of a set of bodies
about jjarallel axes traversing their several centres of gravity, to
find the moment of ineHia of these bodies about a common axis
parallel to their separate axes.
Rule. — Multiply the mass (or weight) of each body by the
square of the perpendicular distance of its centre of gravity
from the common axis ; the sum of all these products, together
with all the separate moments of inertia, will be the combined
moment of inertia.
5. Given the square of the radius of gyration of a body about
an axis traversing its centre in a given direction, to find the
square of the radius of gyration about another axis parallel to the
first.
Rule. — Square the perpendicular distance between the two
axes, and add the product to the given square of the radius of
gyration.
6. To find the moment of inertia of a plane area, bounded on
one side by a curve (see tig. 115), relatively to its base line.
Rule. — Divide the base line into a suitable number of eqiial
intervals, and measure ordinates at the points of division ; take
the third part of the cube of each of these ordinates, and treat
those quantities so computed as the ordinates of a new curve :
the area of that new curve, found by the proper rule, will be the
moment of inertia required. In algebraical symbols the above
rule is expressed thus
''tdx.
3
/
JS'ote. — When the moment of inertia is required as a whole,
and not in separate parts, it is usual to postpone the division of
the cubes till the end of the calculation.
7. To find the moment of inertia of a piano area, bounded on
one side by a cuj've, relatively to one of its ordinates.
Rule. — Multiply each ordinate by its proper mtdtiplier, ac-
cording to one of the rules for finding the area of such figures ; then
multiply each of the products by the square of the number of
whole intervals that the ordinate in question is distant from the
80
MOMENTS OF INERTIA.
ordinate taken as the axis of moments : the sum of these pro-
ducts, multiplied by ^ or | the cube of a whole interval, accord-
ing as Simpson's first or second ride is used, will be the moment
of inertia required.
In algebraical sj-mbols this rule is expressed thus : —
Example I.
Calculation of Moment op Inertia of the Quadrant
OF A Circle Relatively to the Base Line.
Cubes of Ordinates
:.o. of Intervals
Ordinates
3
Multipliers
Products
ICvOO
1365-.33
1
1365-33
1
15-40
1238-89
4
4955-56
2
13-86
887-50
u
1331-25
n
12-49
649-48
2
1298-96
3
10-58
394-76
3
4
296-07
H
9-33
270-72
1
270-72
3|
7-75
155-16
1
2
77-58
3f
5-57
57-29
1
57-29
4
0-00
0-00
1
4
Interval
3
0-00
9652-76
4
— 3
12870-34
Example II.
Calculation of the Moment of Inertia of the Quadra.nt
OF A Circle Eelatively to the Endmost Ordinate.
No. of
Intervals
Ordinates ilultiplier:?
Products
squares of Nos.
of Intervals
Products
160000 1
16-0000
0-00
000
1
15-4919 4
61-9676
1-00
61-9679
2
13-8564 1,V
20-7846
4-00
83-1384
H
12-4900 2
24-9800
6-25
156-1250
3
10-5830
3
4
7-93725
9-00
71-4353
H
9-3274
1
9-3274
10-5625
98-5207
H
7-7460
a
3-8730
12-2500
47-4443
3|
5-5678
1
5-5678
14-0625
78-2972
4
0-0000
I
4
0-0000
16-0000
0-0000
Approximate momen
Interval'
3
t of inertia =
, 596-9288
_ 64
~ 3
12734-4810
SQUARES OF RADII OF GYRATION.
81
Table of Squares of Radii of Gyration of
Special Figures.
A few
Body
1. Kectangle ; sides a and h
2. Triangle ; sides a^b, c,
heights a', V , c'
3. Circle or ellipse ; dia-
meters a, b
4. Common parabola ;
height a, base b
5. Sphere ; radius r
6. Spheroid of revolution ;
polar semi -axis a, equa-
torial radius r
Axis
side a
side a
diameter a
base h
diameter
polar axis
axis 2a
/
diameter
> longitudinal axis 2a
transverse diameter
}
Radius -=
7. Ellipsoid; semi-axes a, 5,e
8. Spherical shell; external
radius r, internal ra-
dius r'
9. Circular cylinder; length
2a., radius r
10. Circular cylinder ; length
2a^ radius r
11. Hollow circidar cylin-
der ; length 2a, exter-
nal radius ■;•, internal
radius r'
12. Hollow circular cylin-
der ; length 2a, exter-
nal radius o; internal
radius r'
13. Elliptic c)' Under ; length
2a, transverse semi-
axes b,c i J
14. Elliptic cylinder; length jj
2a, transverse semi- I transverse axis 2b
axes b,c |J
15. Rectangular prism ; di- |\
mensions 2a, 2b, 2c j /
16. Ehombic prism; length H
2a, diagonals 2b, 2e ! /
17. Rhombic prism ; length 1 1
2a, diagonals 2b, 2e \]
Moment of inertia = square of radius of gyration
(or weight) of the figure.
longitudinal axis 2a
transverse diameter
longitudinal axis 2a
axis 2a
axis 2a
diagonal 2b
•6
6
16
8a'
35
5
5
2rr'— /•")
5(r'— r")
'1
4+T
7-* + H
2~
~4 "*■ 3
4
c- a-
-4+3-
3
c' a-
X the mass
82
TJEGISTER TONNAGE.
TONNAGE.
Kegister oe New Measukement Tonnage.
The gross register tonnage of a ship expresses her entire cubical
capacity in tons of 100 cubic feet each, and may be found
approximately by the following formula : —
L=the inside length on upper deck from plank at stem to
plank at stern.
B = the inside main breadth from ceiling to ceiling.
D = the inside midship depth from ujjper deck to ceiling at
limber strake.
Ree:ister tonnage = c.
^ ° 100
Sailing ships
Steam vessels
and clippers
Yachts
Value of c.
r cotton and sugar ships, old full form
\ ships of the present usual foiTU
r ships of two decks .
\ ships of three decks
{above sixty tons
under sixty tons
•7
•65
•68
•5
•45
To Calculate the Gross Register Tomiage.
The tonnage deck is the upper deck in all vessels under three
decks, in all other vessels the second deck from below.
Measurements to be expressed in feet and the decimals of
a foot.
The length for register tonnage is taken from inside of
plank at stem to inside of midship stern timber, or plank there,
as the case may be, and is taken on the tonnage deck ; the
length so taken (having made deductions for the rake of stem
and stern, if any, in the thickness of the deck, and one-third of
the round of the beam) is to be divided into the prescribed
number of equal parts, according to the length, as follows : —
Length.
No.
of Intervals.
Not exceeding 50 feet and under
, ,
. 4
Exceeding 50 feet and not exceeding
120 feet.
. 6
Exceeding 120 feet and not exceeding
180 feet.
. 8
Exceeding 180 feet and not exceeding
225 feet .
. 10
Exceeding 225 feet . , . .
,
. 12
Transverse sections are tlicn measured at each of the points
of division, as follows : —
REGISTER TONNAGE. 83
The total depths of the transverse sections are measured
from the vmder side of the tonnage deck to the ceiling at the
inner edge of limber strake, deducting one -third of the round
of the beam. The depths so taken are to be divided into four
equal parts, if midship depth should not exceed sixteen feet ;
otherwise into six equal parts.
The breadths are measured horizontally at the points of
division, and also at the upper and lower points of each depth,
each measurement extending to the average thickness of that
part of the ceiling which is between the points of measurement.
The areas of the transverse sections are then computed
by Simpson's first rule (p. 38), and then the capacity of the ship
is computed by the same rule (Rule 2, p. 44) — that is, the areas
are treated as the ordinates of a new curve of the same length as
the vessel ; and the area of that new curve, found by Simpson's
first rrde, will be the capacity of the vessel in cubic feet, which
being divided by 100 gives the gross register tonnage under
tonnage deck.
The capacity of tlie poop, deck houses, and other permanently
enclosed spaces available for cargo or passengers is to be mea-
sured and included in the register tonnage, but the following
deductions are allowed, the remainder then being deemed the
register tonnage of the ship.
Deductions Allowed frmn the Gross Tonnage. — (1) Buildings
for the shelter of passengers only. (2) Space allotted _to crew
(for crew space see p. 114). (3) Propelling space. Screw steamers :
if the cubic content is 13 and under 20 per cent, of the gross
tonnage, deduct 32 per cent. ; if the space is smaller than 1 3 and
larger than 20 per cent., deduct either 32 per cent, or the cubic
content multiplied by I'To. Paddle steamers : if the cubic
content is 20 and under 30 per cent, of the gross tonnage, deduct
37 per cent., and if the space is smaller than 20 or larger than
30 per cent., deduct either 37 per cent, or the cubic content
multiplied by l-o.
! Factors for Measurement and Dead-weight Cargoes.
1. To ascertain approximately foi' an average length of voyage
the measurement cargo, at \0 feet to the ton, which a ship can carry.
Rule. — Multiply the number of register tons by the factor
1*875, and the product will be the approximate measurement cargo.
2. To ascertain approximately the dead-weight cargo in tons
n'Mch a ship can carry on an average length of voyage.
Rule. — Multiply the number of register tons by 1-5, and the
product will be the approximate dead-weight cargo required.
With regard to the cargoes of coasters and colliers as as-
certained above, about 10 per cent, may be added to the said
results, while about 10 per cent, may be deducted in the cases
of larger vessels going longer voyages.
In the case of measurement cargoes of steam vessels the spaces
g2
84 builder's and yacht tonnage.
occupied by tlie machinery, fuel, and passenger cabins under
the deck must be deducted from the space or tonnage under the
deck before the application of the measurement factor thereto.
In the case of dead-weight cargoes, the weight of machinery,
water in the boilers, and fuel must be deducted from the whole
deadweight, as ascertained above by the application of the dead-
weight factor.
The deductions necessary to be made for provisions, stores.
kc, are allowed for in the selection of the two factors.
Buildee's Tonnage, or Old Measurement Tonnage.
To Compiite the Builder's Tojinage.
Ktjle. — Measure the length of the vessel along the rabbet of
the keel from the back of the main stern-post to a perpendicular
line let fall from the fore part of the main stem imder the
bowsprit ; measure also the extreme breadth to the outside
planking, exclusive of doubling planks. Three-fifths of that
breadth is to be subtracted from the length ; the remainder is
called the length of keel for tonnage. Multiply the length of
keel for tonnage by the breadth, that product by the half-
breadth, and divide by 94 ; the quotient will be the tonnage.
If L = length, B = breadth, then
Tonnage (B.O.M.)= ^^~^^^ ^ ^ "^ ^^
° ^ ^ 94
Measurement of Yachts for Tonnage.
Royal TJtames Yacht Club.
Eule. — Measure the length of the yacht in a straight line at
the deck from the fore parr of the stem to the after part of the
stern-post, from which deduct the extreme breadth, which is
measured from the outside of the outside planking ; the remain-
der is the length for tonnage. Multiply the length for tonnage
by the extreme breadth, that product by half the extreme breadth,
and divide the result by 94 ; the quotient will be the tonnage.
If any part of the stem or stern-post i:)rojcct beyond the length
as taken above, such projection or projections shall, for the
purpose of finding tlie tonnage, be added to the length taken as
before mentioned. All fractional parts of a ton shall be con-
sidered as a ton. The measurement to be taken either above or
below the main-wale. If l = length, B = breadth, then
_, (L — B)xBxlB
Tonnage = ^^ '-— ^— .
94
TONNAGE TABLES.
85
Table of the Tonnages of Vessels according to
Builder's Measureitent.
In the following tables tonnages are only given for vessels
whose lengths are multiples of 10, except at the head of each
group, where the tonnage for each extra foot of length tip to
9 feet is given, in order that the tonnages of vessels whose
lengths are not given in these tables may be fomid by a
simple addition, as per example.
Fx. — Required the tonnage of a vessel
and 22-5 feet beam.
Tonnage for 200 feet length = 502
Tonnage for extra 7 feet length = 18
Tonnage for 207 feet length =521
207 feet long
i|-813
i|-875
^-688
JVote. — In the tables the ninety-fourths of a
from the tons by a dash ; thus, 126i|-125 - 126-
ton are divided
-18-125.
If^J TONS ^t^^, TONS \l^'^,i TONS Kj TONS
10 feet beam
1
0-50
5
2-62
3-18
3-68
4-24
9
30
40
50
4-74
12-72
18-8"
23-38
60
70
80
90
28-68
34-4
39-34
44-64
3
4
1-6
1-56
2-12
6
7
8
10-5 feet beam I
1
2
8
0-55-125
1-16-25
1-71-375
5
6
7
8
2-87-625
3-48-75
4-9-875
9
30
40
5-26-125
13-84-463
19-71-713
60
70
80
31-46-213
37-33-463
43-20-713
4
2-32-5
4-65-0
50
2.5-58-963
90
49-7-963 '
11 FEET BEAM |
1
2
3
4
5
0-60-5
1-27-0
1-87-5
2-54-0
3-20-5
6
7
8
9
30
3-81-0
4-47-5 .
5-14-0
5-74-5
15-5-7
40
50
60
70
80
21-46-7
27-87-7
34-34-7
40-75-7
47-22-7
90
100
110
120
130
53-63-7 ^
60-10-7
66-51-7
72-92-7
79-39-7
11-5 FEET BEAM |
1
2
3
4
0-66-125
1-38-25
2-10-375
2-76-5
6
7
8
9
4-20-75
4-86-875
5-59-0
6-31-125
40
50
60
70
80
23-26-738
30-29-988
37-33-238
44-36-488
90
100
110
120
58-42-988
65-46-238
72-49-488
79-52-738
o
3-48-625
30
16-23-488
51-39-738
130 86-5.5-988 |
12 FEET BEAM |
1
2
3
4
5
0-72
1-50
2-28
3-6
.3-78
6
7
8
9
40
4-56
5-34
6-12
6-84
25-11
50
60
70
80
90
32-73
40-41
48-9
55-71
63-39
100
110
120
1.30
140
71-7
78-69
86-37
94-5
101-67
86
TONNAGE TABLES.
|in Ft.
in Fi.l
ILgth.i
linFV
TONS
ILgth.
|in Ft.'
1
2
3
4
t 5
12-5 FEET BEAM
0-78-125
6
1-62-25
7
2-46-375
8
3-30-5
9
4-14-625
40
4-92-75
50
5-76-875
60
6-61-0
70
7-45-125
80
27-1-063
90
35-30-313
43-59-563
51-88-813
60-24-063
68-53-313
100,
110
120
130
1401
76-82-563
85-17-813
93-47-063
101-76-313
110-11-563
13 FEET BEAM
0-84-5
1-75-0
2-65-5
3-56-0
4-46-5
6
7
8
9
40
5-37-0
6-27-5
7-18-0
8-8-5
28-88-9
50
60
70
80
90
37-87-9
46-86-9
55-85-9
64-84-9
73-83-9
100
110
120
130
140
82-82-9
91-81-9
100-80-9
109-79-9
118-78-9
0-91-125
1-88-25
2-85-375
3-82-5
4-79-625
6
7
8
9
40
5-76-75
6-73-875
7-71-0
8-68-125
30-86-888
40-58-138
50-29-388
60-(J-638
89-65-888
79-37-138
1001 89-8-388
110} 98-73-638
120; 108-44-888
130| 118-16-138
140 127-81-388
14 FEET BEAjM
1-4
6
6-24
50
43-34
2-8
7
7-28
60
53-74
3-12
8
8-32
70
64-20
4-J6
9
9-36
80
74-60
5-20
40
32-88
90
85-6
100
110
120
130
140
9;>-46
105-86
116-32
126-72
137-18
14-5 FEET BEAM
1-11-125
2-22-25
3-33-375
4-44-5
5-55-625
6-66-75
7-77-875
8-89-0
10-6-125
46-17-663
60 57-34-913
70i 38-52-163
80' 79-69-413
90J 90-86-663
100 102-9-913
1101 113-27-163
120 124-44-413
1301 135-61-663
140 146-78-913
150i 158-2-163
15 FEET BEAM
1-18-5
6
7-17-0
2-37-0
7
8-35-5
3-55-5
8
9-54-0
4-74-0
9
10-72-5
5-92-5
50
49-6-5
60
70
80
90
100
61-3-5
73-0-5
84-91-5
96-88-5
108-85-5
110
120
1301
140
150'
120-82-5
132-79-5
144-76-5
156-73-5
168-70-5
15-5 FEET BEAM
8-88
10-21
11-47
52-1-088
64-74-338
77-53-588
801 90-32-838
90 103-1 2088
lOOJ 115-85-338
no: 128-64-588
120 141-43-838
130i 154-23-088
140 167-2-338
150 179-75-588
160' 192-54-838
170 205-34-088
180,218-13-338
190 230-86-588
TONNAGE TABLES.
87
Lffth
in Ft
TONS
[Lgrth
JinFt
1 TONS \lf^,:\ TONS f^Tp'Jj TONS 1
16 FEET BEAM |
1
1-34
7
9-50
80
95-81
140
177-53
2
2-68
8
10-84
90
109-45
150
191-17
3
4-8
9
12-24
100
123-9
160
204-75
4
5-42
50
55-1
110
136-67
170
218-39
5
6-76
60
68-59
120
150-31
180
232-3
6
8-16
70
82-23
130
163-89
190
245-61
16-5 FEET BEA:\I |
1
1-42-125
7
10-12-875
80
101-48-363
140
188-37-863
2
2-84-25
8
11-550
90
115-93-613
loO
202-83-113
3
4-32-375
9
13-3-125
100
130-44-863
160
217-34-363
4
5-74-5
50
58-6-613
110
144-90-113
170
231-79-613
5
7-28-625
60
72-51-863
120
159-41-363
180
246-30-863
6
8-64-75
70
87-3-113
130
173-86-613
190i 260-76-113 1
17 FEET BEAM |
1
1-50-5
7
10-71-5
80
107-28-1
140
199-50-1
2
3
3-7-0
8
9
12-28-0
90
122-63-1
150
160
214-85-1
230-26-1
4-57-5
13-78-5
100
138-4-1
4
6-14-0
50
61-17-1
110
153-39-1
170| 245-61-1
5
7-64-5
60
76-52-1
120
168-74-1
180| 261-2-1
6
9-21-0
70
91-87-1
130
184-15-1
190| 276-37-1
17-5 FEET BEAM |
1
1-59-125
7
11-37-875
80
113-20-188
1401 210-89-6881
2
3-24-25
8
13-3-0
90
129-47-438
150
227-22-938
3
4-83-375
9
14-62-125
100
145-74-688
160
243-50-188
4
6-48-5
50
64-32-438
110
162-7-938
170
259-77-438
5
8-13-625
60
80-59-688
120
178-35-188
180 276-10-688 1
6
9-72-75
70
96-86-938
130
194-62-438
190 292-37-938 |
18 FEET BEAM |
1
1-68
7
12-6
80
119-24
140
222-62
2
3-42
8
13-74
90
136-46
150
239-84 •
3
5-16
9
15-48
100
153-68
160
257-12
4
6-84
50
67-52
110
170-90
170
274-34
5
8-58
60
84-74
120
188-18
180
291-56
6
1 n-;^-:>
70
102-2
130
9A.^ in
190
308-78
18-5 FEET BEAM |
1
1-77-125
8
14-53-0
100
161-79-013
1701 289-25-763
2
3-60-25
9
16-36-125
110
180-4-263
180! 307-45-013
3
. 5-43-375
50
70-76-763
120
198-23-513
190| 325-64-263
4
7-26-5
60
89-2-013
130
216-42-763
200; 343-83-513
5
9-9-625
70
107-21-263
140
234-62-013
210 362-8-763
6
10-86-75
80
125-40-513
150
252-81-263
220, 380-28-013
7
12-69-873
90
143-59-763
160
271-6-513
2301 398-47-263
TONNAGE TABLES.
Lgth.i
in Ft.l
ILgth.
lin Ft.l
|Lgih.|
|in Ft.l
TONS
lin Ft.1
19 FEET BEAM
1
2
3
4
5
1-86-5
3-790
5-71-5
7-64-0
9-56-5
11-49-0
13-41-5
9
50
60
70
80
90
15-34-0
17-26-5
74-11-3
93-30-3
112-49-3
131-68-3
150-87-3
lOOj
110
120
130
140:
150;
160i
170-12-3
170
304-51-3
189-31-3
180
323-70-3
208-50-3
190
342-89-3
227-69-3
200
362-14-3
246-88-3
210
381-33-3
266-13-3
220
400-52-3
285-32-3
230
419-71*3
19-5 FEET BEAM
2-2-125
9
4-4-25
50
6-6-375
60
8-8-5
70
10-10-625
80
12-12-75
90
14-14-875
100
16-17-0
110
18-19-125
77-43-788
97-65-038
117-86-288
138-13-538
158-34-788
178-56-038
198-77-288
120
130
140
150
160
170
180
190
219-
239-
259-
279-
299-
320-
340-
360-
4-538
25-788
47-038
68-288
89-538
16-788
38-038
59-288
200
210
380-
401-
220! 421-
230 441-
240
250
260
270
461-
481-
502-
522-
80-538
7-788
29-038
50-288
71-538
■92-788
20-038
41-288
20 FEET BEAM
2-12
4-24
6-36
8-48
10-60
12-72
14-84
9
60
70
80
90
100
110
120
19-14
102-12
123-38
144-64
165-90
187-22
208-48
229-74
130
140
150
160
170
180
190
200
251-6
272-32
293-58
314-84
336-16
357-42
378-68
400-0
210
220
230
240
250
260
270
280
421-26
442-52
463-78
485-10
506-36
527-62
548-88
570-20
20-5 FEET BEAM
2-22-125
4-44-25
6-66-375
8-88-5
11-16-625
13-38-75
15-60-875
17-83-0
91 20
60 106
70 128
80 151
90 173
100 196
110 218
120 240
-11-125
58-963
92-213
31-463
-64-713
3-963
-37-213
70-463
130
140
150
160
170
180
190
263-
285-
307-
330-
352-
374-
397-
200 419-
-9-713
-42-963
-76-213
-15-463
-48-713
-81-963
-21-213
-54-463
210
220
230
240
250
260
270
280
441-87-713
464-26-963
486-60-213
508-93-463
531-32-713
553-65-963
576-5-213
598-38-463
2-32-5
4-650
7-3-5
9-360
11-68-5
1 1-7-0
16-39-5
18-72-0
9
60
70
80
90
100
110
120
21 FEET BEAl^
275-
21-10-5
111-17-7
134-60-7
158-9-7
181-52-7
205-1-7
228-44-7
251-87-7
130
140
150
160
170
180
190
200
298-
322-
345-
369-
392-
416-
43!»-
36-7
79-7
28-7
71-7
20-7
63-7
12-7
55-7
210
220
230
240
250
260
270
280
463-4-7
486-47-7
509-90-7
533-39-7
556-82-7
580-31-7
603-74-7
627-23-7
TONNAGE TABLES.
89
Le-th
in Ft
1 TONS
tr^. TONS ^^l TONS IKJ TONS
r
21-5 FEET BEAM
2-43-125
9
22-12-125
130
287-86-738
210
484-58-738
2
4-86-25
60
115-75-988
140
312-47-988
220
509-19-988
3
7-35-375
70
140-37-238
150
337-9-238
230
533-75-238
4
9-78-5
80
164-92-488
160
361-64-488
240
558-36-488
5
12-27-625
90
189-53-738
170
386-25-738
250
582-91-738
6
14-70-75
100
214-14-988
180
410-80-988
260
607-52-988
7
17-19-875
110
238-70-238
190
1 435-42-238
270
632-14-238
8
19-63-0
120
263-31-488
200
' 460-3-488
280
656-69-488
22 FEET BEAM j
1
2-54
9
23-16
130
300-65
210
506-61
2
5-14
60
120-45
140
326-41
220
532-37
3
7-68
70
146-21
150
352-17
230
558-13
4
10-28
80
171-91
160
377-87
240
583-83
5
12-82
90
197-67
170
403-63
250
609-59
6
15-42
100
223-43
180
429-39
260
635-35
7
18-2
110
249-19
190
455-15
270
661-11
_8_
20-56
120
274-89
200
480-85
280
686-81
22-5 FEET BEAM j
1
2-65-125
91 24-22'i25
130
313-67-063
210
529-13-063
2
5-36-25
60 125-20-313
140
340-60-313
220
556-6-313
3
8-7-375
70| 152-13-563
150
367-53-563
230
582-93-563
4
10-72-5
80| 179-6-813
160
394-46-813
240
609-86-813
5
13-43-625
90l 206-0-063
170
421-40-063
250
636-80-063
6
16-14-75
lOO; 232-87-313
180
448-33-313
260
663-73-313
7
18-79-875
no! 259-80-563
190
475-26-563
270
690-66-563
8
21-51-0
120' 286-73-813
200
502-19-813 280
717-59-813
23 FEET BEAM |
1
2-76-5
9
25-30-5
130
326-90-9
210
552-6-9
2
5-590
60
129-93-9
140
355-9-9
220
580-19-9
3
8-41-5
70
158-12-9
150
383-22-9
230
608-32-9
4
11-24-0
80
186-25-9
160
411-35-9
240
636-45-9
5
14-6-5
90
214-38-9
170
439-48-9
250
664-58-9
6
16-83-0
100
242-51-9
180
467-61-9
260
692-71-9
7
19-65-5
110
270-64-9
190
495-74-9
270
720-84-9
8
22-480
120
298-77-9
200
523-87-9
280 749-3-9 1
23-5 FEET BEAM |
1
2-88125
9
26-41-125
140
369-78-138
220j 604-78-138
2
5-82-25
70
164-19-388
150
399-19-388
230 634-19-388
3
8-76-375
80
193-54-638
160
428-54-638
240 663-54-638
4
11-70-5
90
222-89-888
170
457-89-888
250 692-89-888
5
14-64-625
100
252-31-138
180
487-31-138
260i 722-31-138
6
17-58-75
110
281-66-388
190
516-66-388
270 751-66-388
7
20-52-875
120
311-7-638
200
546-7-638
280, 781-7-638
8
23-47-0
130
340-42-888
210
575-42-888
290 810-42-888
m
TONNAGE TABLES.
l.lfth
in Ft.
TONS 1
,^„^rc: TONS KJ, TONS Kl TONS
24 FEET BEAM
1
3-6
9
27-54
140 384-76 1
220
629-86
2
6-12
70
170-32
150
415-42
230
660-52
3
9-18
80
200-92
160
446-8
240
691-18
4
12-24
90
231-58
170
476-68
250
721-78
5
15-30
100
262-24
180
507-34
260
752-44
6
18-36
110
292-84
190
538-0
270
783-10
7
21-42
120
323-50
200
568-60
280
813-70
8
24-48
130
354-16
210
599-26
290
844-36
24-5 FEET BEAM |
1
3-18125
9
28-69-125
140
400-5-663
220
655-45-663
2
6-36-25
70
176-52-913
150
431-92-913
230
687-38-913
3
9-54-375
80
208-46-163
160
463-86-163
240
719-32-163
4
12-72-5
90
240-39-413
170
495-79-413
250
751-25-413
5
15-90-625
100
272-32-663
180
527-72-663
260
783-18-663
6
19-14-75
110
304-25-913
190
559-65-913
270
815-11-913
7
22-32-875
120
336-19163
200
591-59-163
280
847-5-163
8
25-51-0
130
368-12-413
210
623-52-413
290
878-92-413
25 FEET BEAM j
1
3-30-5
91 29-86-5
140
415-52-5
220
681-48-5
2
6-61-0
70' 182-79-5
150
448-75-5
230
714-71-5
3
9-91-5
801 216-8-5
160
482-4-5
240
748-0-5
4
13-28-0
90i 249-31-5
170
515-27-5
250
781-23-5
5
16-58-5
100
282-54-5
180
548-50-5
260
814-46-5
6
19-89-0
110
315-77-5
190
581-73-5
270
847-69-5
7
23-25-5
120l 349-6-5
200
615-2-5
280
880-92-5
8
26-56-0
I30i 382-29-5
210
648-25-5
290
914-21-5
T^
3-43-125
9
25-5 FEE
T B
EAM 1
31-12-125
140
431-29-088
220i 708-1-088
2
6-86-25
70! 189-18-338
150
465-84-338
230i 742-56-338
3
10-35-375
80
223-73-588
160
500-45-588
2401 777-17-588
4
13-78-5
90
258-34-838
170
535-6-838
250! 811-72-838
5
17-27-625
100
292-90-088
180
569-62-088
260
846-34-088
6
20-70-75
110
327-51-338
190
604-23-338
270
880-89-338
7
24-19-875
120| 362-12-588
200
638-78-588
2801 915-50-588
8
27-63-0
1 30, 396-67-838
210
673-39-838
2901950-11-838
26 FEET BEAM |
1
3-56
91 32-34
140
447-29
220
734-91
2
7-18
70! 195-57
150
483-25
230
770-87
3
10-74
801 231-53
160
519-21
240
806-83
4
14-36
90
267-49
170
555-17
250 842-79 |
5
17-92
100
303-45
180
591-13
260
878-75
6
21-54
1 10^ 339-41
190
627-9
270
914-71
7
25-16
120! 375-37
200
663-5
280
950-67
8
28-72
130' 411-33
210
699-1
290 986-63 1
TONNAGE TABLES.
91
EgttT
iu Ft
TONS
tn'ft: TONS K;| TONS \tr,1:i TONS
1
26-5 FEET BEAil
3-69-125
9 33-58-125
140| 463-52-613
220
762-36-613
2
7-44-25
70 202-7-863
150 500-85-863
230
799-69-863
3
11-19-375
80
239-41-113
160; 538-25-113
240
837-9-113
4
14-88-5
90
276-74-363
170 575-58-363
250
874-42-363
5
18-63-625
100
1314-13-613
180 612-91-613
260
911-75-613
6
22-38-75
110 351-46-863
190 650-30-863
270
949-14-863
7
26-13-875
120 388-80-113
200 687-64-113
280
986-48-113
8
29-830
130, 426-19-363
210] 725-3-363
290
1023-81-363
27 FEET BEAM |
1
3-82-5
9
34-84-5
140! 480-5-1
220
790-25-1
2
7-71-0
70
208-58-1
150i 518-78-1
230
829-4-1
3
11-59-5
80
247-37-1
160
557-57-1
240
867-77-1
4
15-48-0
90
286-16-1
170
596-36-1
250
906-56-1
5
19-36-5
100
324-89-1
180
635-15-1
260
945-35-1
6
23-25-0
110
363-68-1
190
673-88-1
270 984-14-1
7
27-13-5
120
402-47-1
200
712-67-1
280 1022-87-1
8
31-32-0
130
441-26-1
210
751-46-1
290 1061-66-1
27-5 FEET BEAM |
1
4-2-125
9
36-19-125
150: 537-1-688
230
858-77-688
2
8-4-25
80
255-40-938
160 577-22-938
240
899-4-938
3
12-6-375
90
295-62-188
170 617-44-188
250
939-26-188
4
16-8-5
100
335-83-438
180 657-65-438
260
979-47-438
5
20-10-625
110
376-10-688
190' 697-86-688
270
1019-68-688
6
24-12-75
120
416-31-938
200! 738-13-938
280
1059-89-938
28-14-875
130
456-53-188
210 778-35-188
290
1100-17-188
8
32-17-0
140
496-74-438
220; 818-56-438
300,1140-38-438!
28 FEET BEAM |
1
4-16
91 37-50
150
555-44
230
889-8
2
8-32
80 263-52
160
597-16
240
930-74
3
12-48
90
305-24
170
638-82
250
972-46
4
16-64
100
346-90
180
680-54
260
1014-18
5
20-80
110
388-62
190
722-26
270
1055-84
6
25-2
120| 430-34
200
763-92
280
1097-56
7
29-18
130, 472-6
210
805-64
290
1139-28
8
33-34
140; 513-72
220 847-36 1
300. 1181-0 1
28-5 FEET BEAM |
1~
4-30-125
9
38-83-125
150
574-18-013
230 919-78-013
2
8-60-25
SO
271-71-263
160
617-37-263
240 963-3-263
3
12-90-375
90
314-90-513
170
660-56-513
25011006-22-513
4
17-26-5
100
358-15-763
180
703-75-763
260 1049-41-763
5
21-56-625
110
401-35-013
190
747-1-013
270
1092-61-013
6
25-86-75
120
444-54-263
200
790-20-263
280
1135-80-263
7
30-22-87-5
130
487-73-513
210
833-39-513
290
1179-5-513
8
34-53-0
140
530-92-763
220 876-58-763 |
300
1222-24-763
V2
TONNAGE TABLES.
Lsth.
in Ft.
TONS
jLgth.|
|in Ft.|
TONS
jLgth.i
liu Ft.l
[in Ft.l
29 FEET BEAM
4-44
8-89'
18-39'
17-84'
22-34'
26-79-
31-29-
35-74-
9
80
90
100
110
120
130
140
40-24-5
280-3-3
324-72-3
369-47-3
414-22-3
458-91-3
503-66-3
548-41-3
150
160
170
180
190
200
210
220
593-16-3
637-85-3
682-60-3
727-35-3
772-10-3
816-79-3
861-54-3
906-29-3
230
240
250
260
270
280
290
300
951-4-3
995-73-3
1040-48-3
1085-23-3
1129-92-3
1174-67-3
1219-42-3
1264-17-3
29-5 FEET BEAM
4-59-125
9-24-25
13-83-375
18-48-5
23-13-625
27-72-75
32-37-875
37-3-0
91 41-62-125
801 288-36-288
901 334-63-538
100! 380-90-788
llOj 427-24-038
120 473-51-288
130 519-78-538
140 566-11-788
150| 612-
160, 658-
170, 704-
180 751-
190 797-
200 843-
210 890-
220 936-
39-038
66-288
93-538
26-788
54-038
81-288
14-538
41-788
230; 982-69-038
240'l029-2-288
2501075-29-538
2601121-56-7
2701167-84-038
2801214-17-2
290 1260-44-538
300,1306-71-788
30 FEET BEAM
4-74
9-54
14-34
19-14
23-88
28-68
33-48
38-28
9
90
100
110
120
130
140
150
43-8
344-64
392-52
440-40
488-28
536-16
584-4
631-86
160
170
180
190
200
210
220
230
679-74
727-62
775-50
823-38
871-26
919-14
967-2
1014-84
240
250
260
270
280
290
300
310
1062-72
1110-60
1158-48
1206-36
1254-24
1302-12
1350-0
1397-82
30-5 FEET BEAM
4-89-125
9-84-25
14-79-375
19-74-5
24-69-625
29-64-75
34-59-875
39-55-0
9
90
100
110
120
130
140
44-50-125
354-73-463
404-24-713
453-69-963
503-21-213
552-66-463
602-17-713
150; 651-62-963
160
170
180
190
200
210
220
230
701-
750-
800-
849-
899-
948-
998-
1047-
-14-213
-59-463
-10-713
-55-963
7-213
52-463
3-713
48-963
24011097-0-213
2501146-45-463
2601195-90-713
2701245-41-963
2801294-87-213
290;i344-38-463
3001393-83-713
3101443-34-963
5-10-5
10-21-0
15-31-5
20-42-0
25-52-5
30-63-0
35-73-5
40-84-0
9,
90
lOOl
no.
120
130
140
150
31 FEET BEAM
l60
46-0-5
364-91-7
416-8-7
467-19-7
518-30-7
569-41-7
620-52-7
671-63-7
170
180
190
200
210
220
230
722-
773-
825-
876-
927-
978-
1026-
1 080-
74-7
24(
85-7
25(
2-7
26f
13-7
270
24-7
280
35-7
290
49-7
300
57-7
310
1131-
1182-
1233-
1285-
1336-
1387-
1438-
1489-
.68-7
-79-7
-90-7
7-7
■ 18-7
29-7
40-7
TONNAGE TABLES.
'93
LfTth..
in Ft.l
TONS
l^;.
bn Ft.
ILcth.
in Ft.,
TONS
31-5 FEET BEAM
5-26-125
10-52-2O
15-78'375
21-10-5
26-36-625
31-62-75
36-88-875
42-21-0
9 47-47-125
100 428-3-738
110 480-76-988
120 533-56-238
130 586-35-488
140 639-14-738
150 691-87-988
160 744-67-238
170j 797-46-488 25011219-68-488
180' 850-25-738'260! 1272-47-738
190 903-4-988 270ll325-26-988
200 955-78-238:2801378-6-238
210'1008-57-488;290|l430-79-488
220 1061-36-738 3001483-58-738
2301114-15-988 310!l536-37-988
240,1166-89-238 3201589-17-238
3-2 FEET BEA3I
5-42
10-84
16-32
21-74
27-22
32-64
38-12
43-54
49-2
100
110
120
130
140
150
160
170
180
440-9
494-53
549-3
603-47
657-91
712-41
766-85
821-35
875-79
190
200
210
220
230
240
250
260
270
930-29
984-73
1039-23
1093-67
1148-17
1202-61
1257-11
1311-55
1366-5
280]
290
300
310
320
330
340
350
360
1240-49
1474-93
1529-43
1583-87
1638-37
1692-81
1747-31
1801-75
1856-25
32-5 FEET BEAM
5-58-125
11-22-25
16-80-375
22-44-5
28-8-625
33-66-75
39-30-875
44-89-0
50-53-125
100 452-26-063
110' 508-43-313
120 564-60-563
130 620-77-813
140 677-1-063
150 733-18-313
160 789-35-563
170 845-52-813
180' 901-70-063
190
200
957
1014
21011070
220|1126
23011182
2401238
250 1295
2601351
270140
280 1463-54-563
2901519-71-813
3001575-89-063
3101632-12-313
3201688-29-563
3301744-46-813
340!l800-64-063
3501856-81-313
-37-313 3601913-4-563
-87-313
-10-563
-27-813
-45-063
-62-313
-79-563
-2-813
-20-063
-37
33 FEET BEA3I
5-74-5
11-55-0
17-35-5
23-160
28-90-5
34-71-0
4f)-51-5
46-32-0
52-12-5
100,
110:
120
130;
140;
150
160
170;
180
464-52-9
522-45-9
580-38-9
638-31-9
696-24-9
754-1 7-9
812-10-9
870-3-9
927-90-9
190
200
210
[220
230
240
,250
!260':
:270
985-
1043-
1101-
1159-
1217-
1275-
1333-
1391-
1449-
83-9
76-9
69-9
62-9
55-9
■48-9
41-9
-34-9
-27-9
2801
290
300!
310'
320
330'
340
.350
360
1507-20-9
1565-13-9
1623-6-9
1680-93-9
1738-86-9
1796-79-9
1854-72-9
1912-65-9
1970-58-9
33 -S FEET BEAM
5-91-125
11-88-25
17-85-375
23-82-5
29-79-625
61
100:
35-76-75
41-73-875
47-71-0
53-68-125
476-89-888
110: 536-61-138
120; 596-32-388
130 656-3-638
140 715-68-888
150 775-40-138
160 835-11-388
170! 894-76-638
180' 954-47-888
1901014-19-138
200 1073-S4-388
94
TONNAGE TABLES.
iLfrth.
lin Ft.!
Lgtiv
n FtJ
iLgtli.
JinFt.
TONS
iLgth.
lin Ft.
TONS
33-5 FEET BEAIM (concluded)
210ill33-o5-638
220ill93-26-888
230J1252-92-138
240'l312-63-388
i!50 1372-34-638
260J432-5-888
2701491-71-138
2801551-42-388
290,1611-13-638
3001670-78-888
3101730-50-138
3201790-21-388
3301849-86-638
3401909-57-888
3501969-29-138
360 2029-0-388
34 FEET BE.AM
6-14
12-28
18-42
24-56
30-70
36-84
43-4
49-18
55-32
100
110
120
130
140
150
160
170
180
489-42
550-88
612-40
673-86
735-38
796-84
858-36
919-82
981-34
190
200
210
220
230
240
250
260
270
1042-80
1104-32
1165-78
1227-30
1288-76
1350-28
1411-74
1473-26
1534-72
280
290'
300
310
320
330l
3401
350'
360
1596-24
1657-70
1719-22
1780-68
1842-20
1903-66
1965-18
2026-64
2088-16
34-5 FEET BEAM
6-31-125
100
12-62-25
110
18-93-375
120
25-30-5
130
31-61-625
140
37-92-75
150
44-29-875
160
50-61-0
170
56-92125
180
502-5-413
565-34-663
628-63-913
691-93-16.-
755-28-413
818-57-663
881-86-913
945-22-163
1008-51-413
1901071-
200'll35-
2101198-
2201261-
2301325-
2401388-
2501451-
260|1515-
270|1578-
80-663
15-913
45-163
74-413
9-663
38-913
68-163
3-413 I
32-663
2801641-6] -913
2901704-91-163
3001768-26-413
3101831-55-663
3201894-84-913
330il958-20-163
340 2021-49-413
350 2084-78-663
360 2148-13-913
35 FEET BEAM
6-48-5
13-3-0
19-51-5
26-6-0
32-54-5
39-90
45-57-5
52-12-0
58-60-5
100
110
120
130
140
150
160
170
180
514-71-5
190
579-86-5
200
645—7-5
210
7-10-22-5
220
775-37-5
230
840-52-5
240
905-67-5
250
970-82-5
260
1036-3-5
270
1101-
1166-
1231-
1296-
1361-
1426-
1492-
1557-
1622-
18-5
280;
33-5
290
48-5
300
63-5
310
78-5
320
93-5
330!
14-5
3401
29-5
350|
44-5
360
1687-59-5
1752-74-5
1817-89-5
1883-10-5
1948-25-5
2013-40-5
2078-55-5
2143-70-5
2208-85-5
35-5 FEET BEA:M
6-66-125
1 3-38-25
20-10-375
26-76-5
33-48-625
40-20-75
46-86-875
53-59-0
60-31-125
100
110
120,
130'
140
150
160
170
180
527-52-838
594-56-088
661-59-338
728-62-588
795-65-838
862-69-088
929-72-338
996-75-588
1063-78-838
1901130-
2001197-
210,1264-
220,1331-
2301399-
2401466-
2501533-
2601600-
270;1667-
82-088
85-338
■88-588
91-838
1-088
4-338
7-588
10-838
14-088
2801734-17-338
290;i 801-20-5
300.1868-23-838
310,1935-27-088
320 2002-30-338
330i2069-33-588
340|2136-36-838
350|2203-40088
360'2270-43-338
TONNAGE TABLES.
95
TgtT
in Ft.
TONS
IFI
1 TONS {^^^) TONS iH^y;: tons (
36 FEET BEAM |
1
6-84
110
609-37
210
1298-71
310
1988-11
2
13-74
120
678-31
220
1367-65
320
2057-5
3
20-64
130
747-25
230
1436-59
330
2125-93
4
27-54
140
816-19
240
1505-53
340
2194-87
5
34-44
150
885-13
250
1574-47
350
2263-81
6
41-34
160
954-7
260
1643-41
360
2332-75
7
48-24
170
1023-1
270
1712-35
370
2401-69
8
55-14
180
1091-89
•280
1781-29
380
2470-63
9
62-4
190
1160-83
290
1850-23
390! 2539-57
100
540-43
200
1229-77
300
1919-17
too 2608-51
36-5 FEET BEAM |
1
7-8-125
110
624-29-613
210.1332-90-113
310
2041-56-613
2
14-16-25
120
695-16-863
220,1403-77-363
320
2112-43-863
3
21-24-375
130
766-4-113
230.1474-64-613
330
2183-31-113
4
28-32-5
140
836-85-363
240,1545-51-863
340
2254-18-363
5
35-40-625
150
907-72-613
250;i616-39-113
350
2325-5-613
6
42^48-75
160
978-69-863
26011687-26-363
36012395-86-863
7
49-56-875
170
1049-47-113
2701758-13-613
370|2466-74-113
8
56-65-0
180
1120-34-363
28011829-0-863
380 2537-61-363
9
63-73-125
190
1191-21-613
29011899-82-113
390 2608-48-613
100
553-42-363
200
1262-8-863
300,1970-69-363
400 2679-35-863
37 FEET BEA3I |
1
7-26-5
120
712-16-1
220
1440-34-1
3201 2168-52-1
330 2241-35-1
2
14-530
130
784-93-1
230
1513-17-1
3
21-79-5
140
857-76-1
240
1586-0-1
340 2314-18-1
4
29-12-0
150
930-59-1
250
1658-77-1
350 2387-1-1
5
36-38-5
160
1003-42-1
260j 1731-60-1
360 2459-78-1
6
43-65-0
170
1076-25-1
270| 1804-43-1
370 2532-61-1
7
50-91-5
180
1149-8-1
280| 1877-26-1
380 2605-44-1
8
58-24-0
190
1221-85-1
290 1950-9-1
390 2678-27-1
9
65-50-5
200
1294-68-1
300 2022-86-1
400 2751-10-1
110
639-33-1
210
1367-51-1
310 2095-69-1
410' 2823-87-1
37-5 FEET BEAM |
1
7-45-125
120
729-28-688
220
1477-29-188
320,2225-29-688
2
14-90-25
13a
804-9-938
230
1552-10-438
33012300-10 938
3
22-41-375
140
878-85-188
240
1626-85-688
340 2374-86-188
4
29-86-5
150
953-66-438
250
1701-66-938
350|2449-67-438
5
37-37-625
160
1028-47-688
260
1776-48-188
360 2524-48-688
6
44-82-75
170
1103-28-938
270
1851-29-438
37012599-29-938
7
52-33-875
180
1178-10-188
280
1926-10-688
380:2674-11-188
8
59-79-0
190
1252-85-438
290
2000-85-938
390 2748-86-438
9
67-80-125
200
1327-66-688
300
2075-67-188
400 2823-67-688
110
654-4'~-'438
210
1402-47-938
310 215O-48-438'410l2898-48-938|
96
TOXXAGE TABLES.
tr^,\ TONS j^f^W TONS |-«-;| TONS K;, TONS
38 FEET BEAM
1
7-64
120
746-54
220: 1514-62
320
2282-70
2
15-34
130
823-36
230! 1591-44
330
2359-52
3
23-4
140
900-18
240| 1668-26
340
2436-34
4
30-68
150
977-0
250
1745-8
350
2513-16
6
38-38
160
1053-76
260
1821-84
360
2589-92
6
46-8
170
1130-58
270
1898-66
370
2666-74
7
53-72
180
1207-40
280
1975-48
380
2743-56
8
61-42
190
1284-22
290
2052-30
390
2820-38
9
69-12
200
1361-4
3001 2129-12
400
2897-20
110
669-62
210
1437-80
310] 2205-88
410
2974-2
38-5 FEET BEAM 1
1
7-83125
1201 763-93-013
220
1552-39-513
320 2340-80013
2
15-72-25
130: 842-78-263
230
1631-24-763
330 2419-65-263
3
23-61-375
140i 921-63-513
240
1710-10013
340l2498-50-513
4
31-50-5
1501000-48-763
250
1788-89-263
350
2577-35-763
5
39-39-625
1601079-34-013
260
1867-74-513
360
2656-21-013
6
47-28-75
170'll58-19-263
270
1946-59-763
370
2735-6-263
7
55-17-875
180'l237-4-513
280
2025-45-013
380
2813-85-513
8
63-7-0
190'l315-83-763
290
2104-30-263
390
2892-70-763
9
70-90-125
2001394-69-013
300
2183-15-513
400
2971-56-013
110
685-13-763
2101473-54-263
310
2262-0-763
410'30o0-41-263l
39 FEET BEAM t
1
8-8-5
120, 781-50-3
220
1590-54-3
320
2399-58-3
2
16-170
130 862-41-3
230
1671-45-3
330
2480-49-3
3
24-25-5
140 943-32-3
240
1752-36-3
340
2561-40-3
4
32-34-0
150 1024-23-3
250
1833-27-3
350
2642-31-3
5
40-42-5
160 1105-14-3
260
1914-18-3
360
2723-22-3
6
48-51-0
170 1186-5-3
270
1995-9-3
370
2804-13-3
7
56-59-5
180 1266-90-3
280
2076-0-3
380
2885-4-3
8
64-68-0
190 1347-81-3
290
2156-85-3
390
2965-89-3
9
72-76-5
200 1428-72-3
300
^2237-76-3
400
3046-80-3
110
700-59-3
210' 1509-63-3
310
2318-67-3
410
3127-71-3
39-5 FEET BEAM |
1
8-28-125
120
799-20038
22011629-12-538
320
2459-5-038
2
16-56-25
130
882-19-288
2301712-11-788
330
2542-4-288
3
24-84-375
I40i 965-18-538
2401795-11-038
340
2625-3-538
4
33-18-5
150!l048-l 7-788
250
1878-10-288
350
2708-2-788
5
41-46-625
1601131-17-038
260
1961-9-538
360
2791-2-038
G
49-74-75
1701214-16-288
270
2044-8-788
370
2874-1-288
7
58-8-875
1801297-15-538
280 2127-8-038
380
2957-0-538
8
66-370
190il380-14-788
29012210-7-288
390
3039-93-788
9
74-65-125
2001463-14-038
300*2293-6-538
400
3122-93-038
110
716-20-788
2101546-13-288
3102376-5-788
410^
2205-92-288
TONNAGE TABLES.
97
Lfrrh.
in Ft.l
fin Ft.
ILeth.
in Ft.'
ILgth.
hn Ft.,
40 FEET BEAJtf
li
2J
31
4
5
6
7
8
9
120
8-48
130
902-12
230
17-2
140
987-22
240
25-50
150
1072-32
250
34-4
160
1157-42
260
42-52
170
1242-52
270
51-6
180
1327-62
280
59-54
190
1412-72
290
68-8
200
1497-82
300
76-56
210
1582-92,
310
817-2
220
1668-8
320
1753-18
1838-28
1923-38
2008-48
2093-58
2178-68
2263-78
2348-88
2434-4
2519-14
3301
340
350!
360!
370
380;
390
400
410
420
2604-24
2689-34
2774-44
2859-54
2944-64
3029-74
3114-84
3200-0
3285-10
3370-20
40 -J FEET BEAit
1; 8-68-125
21 17-42-25
3| 26-16-375
4l 34-84-5
51 43-58-625
6! 52-32-75
71 61-6-875
8! 69-75-0
9' 78-49-125
120 834-89-963
130 922-19
1401009-42
150'1096-65
160'll83-88
213
463
713
963 260
1701271-18-213|27O
1801358-41
1901445-64
200'l532-87
210:i620-17
2201707-40
463
137
963
213
463
230
240
250
280
290
300
310
320
1794-63
1881-86
1969-16
2056-39
2143-62
2230-85
2318-15
2405-38
2492-61
2579-84
713
963
213
463
713
963
213
463
713
963
330
340
350
360
370
380
390
400
410
420
2667-14213
2754-37-463
2841-60-713
2928-83-963
3016-13-213
3103-36-463
3190-59-713
3277-82-963
3365-12-213
3452-35-463
41 FEET BEAM
1
2
3
4
5
6
7
8
9
120
8-8«-5
17-83-0
26-77-5
35-72-0
44-66-5
53-61-0
62-55-5
71-50-0
80-44-5
853-1-7
130
140
150
160
170
180
190
200
210
220
942-
1031-
1121-
1210-
130O
1389-
1478-
1568
1657
1747
-40-7
-79-7
-24-7
-63-7
-8-7
-47-7
-86-7
-31-7
-7a-7
-15-7
.^30
240;
250'
260|
270
280
290
300
3101
320'
1836-54-7
1925-93-7
2015-38-7
2104-77-7
2194-22-7
2283-61-7
2373-6-7
2462-45-7
2551-84-7
2641-29-7
330
340
350
360
370|
380
390'
400;
410!
420'
2730-68-7
2820-13-7
2909-52-7
2998-91-7
3088-36-7
3177-75-7
3267-20-7
3356-59-7
3446-4-7
3535-43-7
41-. 5 FEET BEA3I
9-
18-
27-
36-
45-
54-
64-
73-
9| 82-
120871-
15-125
30-25
45-375
■60-5
75-625
90-75
•11-875
-27-0
■42-125
■18-988
130i 962-76-238
140*1054-39-488
150 1146-2-738
160
170
180
190
1237-59-988
1329-23-238
1420-80-488
1512-43-738
20011604-6-988
210il695-64-238
2201787-27-488
2301878-84
2401970-47
250 2062-11
260^2153-68
2702245-31
2802336-88
2902428-52
3002520-15
310!2611-72
3202703-35
■738
988
238
488
738
988
238
488
'738
330
340
350
360
370
380
390
400
410
988 420
2794-93-238
2886-56-488
2978-19-738
3069-76-988
3161-40-238
3253-3-488
3344-60-73
3436-23-988
3527-81-238
3619-44-488
98
TONNAGE TABLES.
ILgth.l
lin Ft.|
LfthX
lu Ft.1
K.1
|in Ft.'
42 FEET BEAM
1
9-36
2
18-72
3
28-14
4
37-50
5
46-86
6
56-28
7
65-64
8
75-6
9
84-42
120
889-47
130
983-31
140j
loO!
1601
170|
180
190
200
210
220
230
240
1077-15
1170-93
1264-77
1358-61
1452-45
1546-29
1640-13
1733-91
1827-75
1921-59
2015-43
250
260
270
280
290
300
310
320
330
340
350
2109-27
2203-11
2296-89
2390-73
2484-57
2578-41
2672-25
2766-9
2859-87
2953-71
3047-55
360
370
380
390
400
410i
4201
430
440|
450
460i
3141-39
3235-23
3329-7
3422-85
3516-69
3610-53
3704-37
3798-21
3892-5
3985-83
4079-67
42-6 FEET BEAM
1
2
3
4
5
6
7
8
9
120
130
9-
19-
28-
38-
48-
57-
67-
76-
86-
907-
1004-
57-125
20-25
77-375
40-5
3-625
60-75
23-875
■81-0
44-125
87-313
0-563
140|1100-7-813
150;il96-15-063
1601292-22-313
170'l388-29-563
180,1484-36-813
]90j 1580-44 -063
200jl676-51-313
2101772-58-563
220ll868-65-813
2301964-73-063
240 2060-80-313
250|2156-87-563
260 2253-0-813
270!2349-8-063
280 2445-15-313
29012541-22-563
300 2637-29-813
310 2733-37-063
320 2829-44-313
330 2925-51-563
340 3021-58-813
350 3117-66-063
360
370
380
390
400
410
420
430
440
450
460
3213-73-313
3309-80-563
3405-87-813
3502-1-063
3598-8-313
3694-15-563
3790-22-813
3886-30-063
3982-37-313
4078-44-563
4174-51-813
43 FEET BEAM
9-78-5
19-63-0
29-47-5
39-32-0
49-16-5
59-10
68-79-5
78-64-0
88-48-5
926-43-9
9
120
130'l 024-76-9
140
150
160|
170,
180
190,
200i
210,
220'
230'
240'
1123-15-9
1221-48-9
1319-81-9
1418-20-9
1516-53-9
1614-86-9
1713-25-9
1811-58-9
1909-91-9
2008-30-9
2106-63-9
250
260
270
280
290
300
310
320
330
340
350
2205-2-9
2303-35-9
2401-68-9
2500-7-9
2598-40-9
2696-73-9
2795-12-9
2893-45-9
2991-78-9
3090-17-9
3188-50-9
360
370
380
390
4oo:
410
420
430
440
450
460
3286-
3385-
3483-
3581-
3680-
3778-
3876-
3975-
4073-
4172-
4270-
-83-9
22-9
55-9
88-9
27-9
60-9
93-9
32-9
65-9
4-9
37-9
43-5 FEET BEAM
10-6-125
, home trade passenger
steamers.
Form survey 3 (excursion) is given for steamers plying along
the coast during daylight between any of the places mentioned
in column 1 of the following table of limits and the places set
opposite to them in column 4 of the same table.
Form survey 4 (river) is given for steamers plying between
any of the places mentioned in column 1 of the table and the
places set opposite to them in column 3.
[ Form survey 5 (rivers and lakes) is given for steamers plying
in the smooth-water limits lying between the places mentioned
in column 1 and the places set opposite to them in column 2.
Table of Plying Limits for Excursion, River, and
PARTIALLY SMOOTH WATER CERTIFICATES.
Form Survey 5.
Form Survey 4. ^^^.^ g^^^g^ g^
Col. 1.
Col. 2.
COL, 3. qql 4
Name of Port
Smooth Water
PartiaUy Smooth Excursion Limits
Limits
Water Lmiits
Aberdeen .
All withinAber-
deen
Nil
Nil
Bristol
Portishead
TheHohnes .
Tenby or Ilfra-
combe
BO^VT^ESS
Anywhere on Nil
Nil
the Lake 1 1
Boston .
Above the El- The Lvnn Well Grimsby or WeUs |
bow Buov
Light Ship
Berwick (N.)
Nil . ' .
Within a line from
Berwick to An-
struther
See Leith
Belfast
Hoh-wood
Within Carrick-
Larne and the
fergus and Bangor,
South Rock
and to Grooms-
Lighthouse
point
Barrow
Walney Islands
Places within More- Liverpool |
cambe and Lan-
caster Bays
Brigg (HuLL)jSame as Hull .
Nil
Nil
104
BOAED OF TRADE. EEGULATIONS FOR SHIPS.
Table of Plying Limits for Excursion, River, and
PARTIALLY SMOOTH WaTER CERTIFICATES (continued).
Col. 1.
Form Survey 5.
Col. 2.
Form Survey 4.
COL. .3.
Form Survey 3
CoL. 4.
Excursion Limits
Name of Port
Smooth "SVater
Limits
Partially Smooth
"Water Limits
Carlisle
Above Carlisle
Dumfries and
Whitehaven or
Southerness
Kirkcudbright
Cardiff
Penarth .
The Holmes .
Tenby
Carnarvon .
Inside Carnar-
von Bar and
Priestholm
Island
Conway .
Nil
Conway
On the river
Any place between
Liverpool
Conway
Priestholm Island
and Carnarvon Bar
Cork
A line from
A line from Cork
Youghal or Kin-
Camden to
Head to Poor
sale
Carlisle Forts
Head
Campbeltown
In the Harbour
Nil
See Glasgow
^Dartmouth .
River Dart
Nil ...
Inside a line from
Start Point to
s
Portland Bill
(Dover .
Nil . . .
Nil . , .
Rye or Margate
Dundee
New Railway
Broughty Castle .
Xlontrose or Fife-
Bridge at Dun-
ness
dee
Drogheda .
Nil .
Nil ...
Dundalk and Bal-
briggan
DUNDALK
Nil .
Nil . . .
Drogheda and
Kilkeel
Dublin .
Nil .
Kingstown .
Howth or Wick-
low
Douglas (I.M.)
Nil . ..
Nil
See Liverpool
Fleetwood .
All above the
Places within More-
Liverpool
Upper Light-
cambe and Lan-
house
caster Bays
Falmouth .
A line from Zose
For special St. 4a
Lizard or Start
Point to Pen-
Declarations, Black
Points
dennis Point
Head or Gull Rock
Folkestone .
Nil .
Nil
Rye or Margate
Galway
Kinvarra
Kilkerrin or Lis-
cannon Bays,
inside the Arran
Isles
Gloucester. ; Sharpness Pointl Bristol, Newport, or
Tenby or Ufra-
any place abt)ve
combe
the Holmes
Gaixs-
Bop.oiGH (see
Hull)
BOARP OF TRADE REGULATIONS FOR SHIPS.
105
Table of Plylxg Lnrrrs for Excfrsiox, Rn"ER, a:n"d |
PARTIALLY
Smooth Water Certificates (continued). 1
Col. 1.
Form Survey 5.
Col. 2.
Fonn Survey 4. p^rrn^ Snryey .3.
Name of Port
Smooth Water
Limits
Partially Smooth
Water Limits
Excursion Limits
Glasgow
Dunoon .
Cumbray and Skip- Inverness per
ness Crinan and Cale-
donian Canals,
and to a line
from Ayr to
Campbeltown,
inside the Island
of Arran
Grimsby
Hull and New
Grimsby
Scarborough or
Holland
Lvnn
GOOLE .
Hull
Grimsby . . See Hull
Hartlepool .
Nil .
Nil . . . jNewcastle or Scar-
borough
Hull
Hull and New
Grimsby . . Lynn or Scar-
Holland
borough
IXYERXESS .
Inwards to Fort
Outwards to Lough Nil
William
Cromarty, Naini,
and Three Kings ;
inwards to South
End of Loch
Linnhe and West
End of Sound ot
MuU
Ipswich
Languard Fort
Walton-on-the-Naze Orford Ness and
Walton-on-the-
Naze
Lancaster .
Lancaster Har-
Places within More- Whitehaven or
bour
cambe and Lan- Liverpool
caster Bays
Leith .
Queensferry .
North Berwick and Fife Ness to St.
Anstruther Abb's Head
Limerick
Fojnes .
Kilcradine Light- iLoophead and
house
Tralee
LlTTLEHAMP-
River Amn.
Nil
Nil
TOX
above Little-
hampton Pier
LOXDOXDERRY
MoviUe .
Nil
Port Rush and
Malinhead
Lowestoft .
Nil .
Nil ... 'Cromer or Ald-
1 borough
The Bell Buoy andjAnv place within
Liverpool .
The Rock
Lighthouse
N. W. Light Ship the Menai Straits
or to Fleetwood
LOXDOX .
Gravesend
A line from St. Osyth Harwich or Dover
Point to Fore Ness
106
BOARD OF TRADE REGULATIONS FOR SHIPS.
Table of Plying Limits for Excursion, River, and |
PARTIALLY
Smooth Water Certificates (continued J. 1
Col. 1.
Form Suryey 5.
COL. 2.
Form Survey 4.
CoL. 3.
Form Survey 3.
COL. 4.
Excursion Limits
Name of Port
Smooth Water
Limits
Partially Smooth
Water Limits
MlLFOKD
Dale Bay . St. Anne's Light- Swansea or St.
house I Da^'id's Head
Norwich
Yarmouth . Nil . . . Nil
Neath .
Nil . . .
Swansea . . Tenby
Newry .
Warren Point
Carlingford and Dundalk and Kil-
Whitehouse Point 1 keel
Newcastle,
T3-nemouth Bar Nil , . . 'Berwick or Scar-|
North anu
borough
South
Shields
Padstow
Padstow Har- A line from Stepper
bour, above a' Point to Trebethe-
line from Gun rick Point
Point to Brea
Hill
Penzance
For special St. 4a'Cape Cornwall or
Declarations, a linel Falmouth
drawn from Mouse-
hole to the Eastern
Point of St. Mi-
chael's Mount
Portsmouth .
Inside Ports-
St. Helen's and the Weymouth West
mouth Har-
Needles, within the to Brighton East
bour
Isle of Wight, and
to Langston Har-
bour. For small
launches not carry-
ing boats : In sum-
mer, a line from
Ryde to Langston
Harbour, inside the
Isle of Wight, to
Hurst Castle; in
winter, Spithead
Preston
Lytham . . Nil ...
Barrow or Liver-
pool
Poole .
In the Harbour Nil
1
Weymouth or
Portsmouth
Plymouth .
Inside Drake's The Breakwater .
Lizard or Start
Island
Points
Rochester .
Sheerness andThe Nore and Mar- Dover or Ilar-j
to Whitstable,' gate (s<;e London)
wich
inside Sheppey
Swansea
Nil .
Neath .
Ilfracombeor Mil-
ford
BOARD OF TRADE REGULATIONS FOR SHIPS.
107
Table of Plying Limits for Excursion-, River, and
PARTIALLY SMOOTH WaTER CERTIFICATES (concluded).
Col. 1.
Name of Port
Form Survey 5.
Col. 2.
Smooth. Water
Limits
Form Survey 4.
COL. 3.
Partially Smooth
Water Tiimits
Form Survey 3.
COL. 4.
Excursion Limits
Sunderland .
Stockton
Southampton
Sunderland Bar
Nil .
Calshot .
Nil
Nil ...
St. Helen's and the
Needles, inside the
Isle of Wight, and
to Langston Har-
Scarborough or
Berwick
Bridlington or
Newcastle
Weymouth or
Brighton
♦
bour
See Port.smouth for
limits for small
scarborouoh
Teignmouth .
Waterford .
Wigtown
Nil .
Teignmouth
Harbour
Passage .
Nil *.
launches
Nil
NH ...
Dunmore
Within Wigtown
Bav
Newcastle or Hull
Portland Bill or
Start Point
Dungarvan and
Cringley
Mull of Galloway
or Southerness
WiSBEACH
(see Boston)
Weymouth .
White V
Nil .
Nil .
Portland Harbour .
Nil
Portsmouth or
Start Point
Bridlington or
Newcastle
Examination of Hulls.
Passenger vessels are to be surveyed once a year.
New steamships are to be surveyed before the hull is com-
plete, and before the paint and cement are put on, as well as
when complete.
Collision water-tight bulkheads must be fitted in all sea-
going steamers.
Screw tunnels of all iron passenger steam vessels should be
made of iron and made water-tight.
A water-tight door should be fitted at the fore end of the
tunnel, arrangements being made so that it can be opened
from the upper or main deck ; and if there are man-holes in
the floor they must be made water-tight, and proper arrange-
ments made so as to let the water off the floor of the
tuimel.
The maximum period for which a steamer's certificate of
registry is granted is 12 months.
108
BOARD OF TRADE REGULATIONS FOR SHIPS.
Boats.
Sea-going ships are to be provided, according to their ton-
nage, with boats, duly supplied with all requisites for use, and
not fewer in number nor less in cubical contents than the
boats — the number and cubical contents of which are specified in
the following table — for the class to which the ship belongs.
Sea-going ships carrying more than 10 passengers must be
provided, in addition to the boats hereinbefore mentioned, with
a life boat, unless one of the boats heretofore required is ren-
dered buoyant after the manner of a life boat.
Table of the Dimexsiozs's of Boats REQrrRED to ee
CAERIEB BY PaSSEXGER StEAMEES.
in
s
*^ r
Either
1
c*-l
O
Dimensions
2
Dimeusious
1
•n
! .2 5
, .0 c
, 66
3
i 5
5
a-
1 -a 1
and upwards
1
2
1
ft. in.
18
24
27
ft. in.
5 6
5 6
8 6
ft. in.
2 3
2 6
3 8
cub. ft.
13.3-7
396-0
504-9
1,034-6
1
2
2
ft.in.ift.in.
18 5 6
24 5 6
22 5 6
ft. in.
2 3
2 6
2 6
cub. ft.
' 133-7
396-0
363-0
892-7
999-6
*"
2 Life
28
8 6' 3 6
999-6
2 Life
28
8 6 I j$ e
6 Boats of ... 2,034-2
7 Boats of . . 1,892-3|
00 -^
1 ,18 5 6
2 2Q 0, 6 6
1 Life 26 0| 8
2 3 133-7
2 8 540-8
3 8 457-6
1 118 01 5 6
2 24 5 6
2 |22 OJ 5 6
2 3
2 6
2 6
133-7
540-8
363-0
4 Boats of . . 1,132-1
5 Boats of . . 1,037-0!
o
o
CO
o
-l-l
o
o
i-0
1 !18 Oio 6
2 124 0; 5 6
1 Life(26 0} 8
2 3 1 133-7
2 6 ! 396-0
3 8 ! 457-6
1
2
2
18
24
22
5 6 2 3j 133-7
5 6 i 2 6 1 396-0
5 6 2 61 3630
4 Boats of . . 987-3
5 Boats of . . 892-7 |
o
o
o
CO
1 16 5 6
2 24 5 6
1 Life 25 7
2 3| 118-8
2 6 396-0
3 6 367-5
1 il6
2 124
2 :22
5 6
5 6
5 6
2 3
2 6
2 6
118-8
396-0
363-0
4 Boats of . . 882-3 |
5 Boats of . . 877-8 j
BOAKD OF TEADE REGULATIONS FOR SHIPS.
10C>
Table of the Dimensions of Boats required to be
CARRIED BY PASSENGER StEAMERS (concluded).
II
o
Either
■2 0--
ft. in.
1 16
1 22
1 Life 22
Dimensioas
pq
ft. in.
5 6
5 6
6 6
ft. in.; cub. ft.
2 3: 118-8
2 5 I 175-4
3 3 278-9
3 Boats of
. 573-1
o
•^ o
1 14 5 2 2 . 91-0
1 Life'20 6 013 0! 216-0
Or
tz;m
Dimensions
«
ft. in. ft. in,
16 5 6
22 0}5 6
22 5 6
Q
ft. in.
2 3
2 5
2 6
c: S
65
cub. ft.
118-8
175-4
363-0
4 Boats of
657-2
2 Boats of
307-0
o
^1
o
' 1 il4 0|5 0|2 2
1 Life 16 5 612 9
91-0
145-2
2 Boats of
236-2
14 0. 5
'22 5 6
2 2
2 6
91-0
363-0
3 Boats of
454-0
14 5 0|2 2
18 5 6 2 4
91-0
277-2
3 Boats of
368-2
'S .9 I 1 Life 14 0'; 5 r2 2 \' 91-0
If the nunibei- of boats
in tliis column are carried,
one of them must be a
launch of at least the capa-
city named. No steam life-
boat will be permitted.
If the number of boats in
this column are carried,
their cubical contents (equal
in the aggregate to the
cubical contents required)
may be spread in any way
over the whole number of
boats. The life boat or
life boats must be the
largest boats.
If owners wish to carry a fewer number of boats, or wish to
substitute rafts, &c., application must be made to the Board of
Trade.
To ascertain the cubical contents of a boat, take the length
and breadth outside and the depth inside, multiply them into
each other, and then that product by the factor -6. The result
will be assumed to be the cubical contents.
An efficient life boat is deemed capable of carrying one adult
for every 10 cubic feet of lier capacity.
A life boat must have at least 1^ cubic feet of air-tight
compartments for every 10 feet of her cubical contents.
Zinc must not be used in the construction of a life boat.
110 BOARD OF TRADE REGULATIONS FOR SHIPS.
Life Buoys.
A life jacket or belt to be supplied for each of the oarsmen,
and one for the coxswain, of each life boat.
Every life jacket or belt must be capable of floating in water
for 21 hours with 23 lbs. of iron suspended from it ; and each
life jacket, in which the cork must be exposed and have a can-
vas back and straps only, should weigh 5 lbs. when dry.
All cork life buoys should be built of solid cork, and must be
capable of floating for 24 hours in water with 32 lbs. of iron
suspended from them. If not made of cork they must be
capable of floating in water for 24 hours with 40 lbs. of iron
suspended from them.
Xo contrivance will be passed as a life buoy that requires
inflation before use.
Pumps, Sluice Valves, !Steerixg Geae, etc.
There must be in each compartment a pump of sufficient
size which can be worked from the upper deck.
There must be a valve or cock fitted at the bottom of each
water-tight bulkhead, which can be opened from the upper deck,
and also a sounding tuVje to each compartment.
Pipes connected with pumps, worked by the engines, are
also to be carried through the bulkheads into the compartments
fore and aft of the engine room ; so that each compartment can
be pumped out separately by the engines as well as by the
deck pumps.
A spare tiller, relieving tackle, &c., should be carried in all
sea-going steamers.
Rudder pendants should also be secured to the back of the
rudder.
A deep-sea lead-line of at least 120 fathoms, a lead of at
least 28 lbs. weight and a suitable reel, together with at least
two hand lead-lines of 25 fathoms each, and leads of at least
7 lbs. each, should be supplied to all foreign-going steamers.
In home-trade steamers two hand lead-lines of 25 fathoms
each, and leads of 7 lbs, each, must be supplied.
For a flrst-class certificate of registry (ie. 12 months) double .
the number of leads and lines must be supplied.
Lead lines are usually marked as follows: —
At 2 fathoms a piece of leather split into two strips.
„ 3
„ 7
., „ three strips,
white bunting,
red bunting.
„ 10
leather with a hole.
„ 13
blue bunting.
„ 15
white bunting.
» 17
„ 20
„ red bunting.
a strand with two knots tied in it.
BOARD OF TRADE EEGULATIONS FOR SHIPS. Ill
Distress Signals.
The signals required are 12 blue lights (or 6 blue lights
and 6 of Holmes's patent storm and danger signal lights), 12
rockets, each containing 16 ozs. of composition, and one gun of
at least 3^ ins. the bore, or one mortar of 5^ ins., with ammunition
for 12 charges, or, in the case of foreign sea-going passenger
ships, 24 charges. Each charge must contain 16 ozs. of pebble or
bean powder in a flannel bag. An air-tight copper magazine,
rammers, sponges, wads, priming wires, friction tubes, powder
flasks, with fine powder for priming, and means for firing and
withdrawing charges, should be provided.
Rocket lockers should not be air-tight.
Fire Hose.
A fire hose adapted for extinguishing fire in any part of the
ship, and capable of being connected with the engines of the
ship, or with the donkey engine if it can be worked from the
main boiler, should be supplied.
Passenger Acco:!iiioDATioN.
Passengers in Foo'eign-going Steamers.
The upper weather deck, and the upper surface of the poop,
forecastle, and spar deck, are never to be included in the measure-
ments for passengers ; nor are the poop, round house, or deck
house to be measured for passengers, unless they form part of
the permanent structure of the vessel.
Foreign-going steamships carrying passengers are to be
measured as follows : —
Saloon or 1st Class. — The number of fixed berths or sofas that
are fitted determine the number of passengers to be allowed.
2nd Class, — The number is determined in the same way as
the 1st class.
3rd Class. — The number may be determined in like manner
if berths are fitted ; if not, the net area of the deck, multiplied by
the height between decks and the product divided by 72, gives
the number to be allowed. The breadth of the deck is taken
inside the water-way, or at the greatest tumble-home of the side,
if there is any.
When cargo, stores, &c., are carried in the space measured
for passengers, one passenger is to be deducted for every 12
superficial feet of deck space so occupied.
112 boai:d of trade regulations for ships.
Passengers in Home-Trade Sea-going Steamers.
Fore-cabin passengers include all passengers except those
entered as after-cabin or saloon passengers in the way bill.
The number of passengers allowed to be carried in sea-going
home-trade steamers is ascertained as follows : —
The clear area of the deck in square feet is divided by nine ;
the quotient is the number allowed to be carried on deck in
summer. Passengers in home-trade steamers are allowed to be
carried on the main and lower decks only.
The breadths of the deck are taken from inside the gutter
water-way, or the inside edge of the raised covering-board, or
inside edge of the rail, if the bulwarks tumble home farther
than the inside edge of the water-way or covering-board.
In cases where adequate shelter is not provided for deck
passengers the whole nvimber of passengers must not exceed
one-fourth of the number representing the gross tonnage, with
the addition of the number of after-cabin passengers, calculated
as before.
Wliere cargo, cattle, &c., are carried in the space measured
for passengers in home-trade passenger steamers, the following
deductions are to be made : —
For every square yard of space measured for passengers occu-
pied by cattle or other animals, or by cargo or other articles,
one passenger is to be deducted.
If, however, the whole number so to be deducted on account
of cattle or cargo carried on deck eqimls or exceeds the original
number of passengers due to the deck space, so that no pas-
sengers are carried on deck, it may be covered with cattle or
cargo, without any reduction on that account in the number of
passengers carried in the cabins.
Between the 31st of October and the 1st of April the number of
passengers which, according to the preceding rules, are allowed to
be carried on deck in summer are to be reduced one-third, unless
there is accommodation below, or in properly constructed cabins
on deck, for half the full complement of passengers. This re-
duction not to be made in the case of foreign-going steamships.
One-third, however, of the space on deck measured for pas-
sengers may be occupied by cargo and cattle, without any
reduction of the winter number of passengers.
The number of passengers to be carried in the after-cabins
is determined by the number of berths or sofas ; to which add
the number due to the space on deck appropriated to the saloon
passengers, and tlie sum will be the total number of after-cabin
passengers allowed to be carried.
BOARD OF TRADE REGULATIONS FOR SHIPS. 113
The floor space of saloons, cabins, state-rooms, and passages
must not be measured, unless in saloons and cabins in which
berths are not fitted ; then the clear available space is to be
measured, and one passenger allowed for every 9 square feet.
"When sofas or seats are fitted the measurements are to be taken
from the backs of the said sofas or seats.
The number of fore-cabin passengers is obtained in the same
way as the after- cabin number. The total number of passengers
must not exceed the number denoting the gross register tonnage
of the vessel.
^Mien there are deck-houses, and only narrow spaces between
the sides of the deck-houses and the bulwarks, such narrow spaces
are not to be measured for passengers.
Passengers in Excui'sioyi Steamers.
For steamers used in excursions the rules for calculating
the number of passengers are the same as in sea-going home-
trade steamers, except that if application is made for an ex-
cursion certificate for short distances along the coast during day-
light, the number, originally calculated at 9 superficial feet to
each passenger, should it exceed the gross tonnage of the vessel,
need not be diminished so as to bring it down to that number.
Where cargo, cattle, Arc, are carried in the space measured
for passengers in excursion steamers, one passenger is to be
deducted for every square yard of space, measured for passengers,
occupied by cattle, ca^go, ka.
Passengers in River Steamers.
The measurements are to be made in the same manner as in
home-trade sea-going steamers, except that after-saloons only are
to be included.
There will be no distinction between fore- and after-cabiu
passengers.
River steamers are divided into those which ply on waters
part of which only are smooth, and those which ply exclusively
on smooth water.
Taking this division —
For steamers which ply in partially smooth water, divide the
number of superficial feet on deck, obtained as before, by six,
and the clear space in the after-saloon by nine, and the sum of
these quotients will be the number of passengers allowed.
In the last-mentioned class of steamers one and a half pas-
senger is to be deMiicted for every square yard of space measured
for passengers occupie'd-^by cattle, cargo, kc.
I
114 BOARD OF TRADE EEGULATIOXS FOR SHIPS.
A reduction is to be made during tlie winter months, in
precisely the same manner as in home-trade sea-going steamers.
These vessels are to be provided with a fore-sail and jib bent,
a suitable anchor and cable, a compass, a regulation life-boat, one
dozen life buoys, and two safety valves on ea^h boiler.
For smooth-water steamers divide the number of superficial
feet on deck, obtained as before, by three, and the clear space
in the after-saloon by nine, and the sum of these quotients
is the number of passengers allowed.
Three passengers are to be deducted for every square yard of
space measured for passengers occupied by cattle, cargo, &c.
Kg reduction to be made in winter months.
Crew Space.
Every space occupied by the crew shall contain 72 cubic feet,
and 12 superficial feet of surface for each seaman.
For every 20 men there should be two privies.
In measiu-ing the clear area of deck in crew space, beds,
bunks, or sleeping berths are not to be deducted as encum-
I a-ances, but in cabins there should not be less than 12 square
i'eet per man exclusive of the bunk.
To compute the cubic capacity of the crew space, multiply
the clear area of the floor space by the height from deck to deck
at the middle line ; the product will be the cubic capacity of
the crew space. Divide the cubic capacity thus obtained by
72, and the quotient will be the number of men the place is to
accommodate, provided that there is sufficient area of deck, as
before computed.
Under the Merchant Shipping Act of 1867 the tonnage of all
the places for the berthing of seamen and apprentices, and
approjjriated to their use, may be deducted from the register
tonnage of the ship, provided that the number the crew space
will accommodate is cut in or painted on or over the door or
hatchway leading to such place ; and also cut in on one of the
beams in the inside of such crew space.
Mitiimum Dimensions of Ships'' Lanterns.
The back and sides must not be less than 9 ins., and the height
inside not less than 11 ins. The lens must not be less than 5 ins.
in height, and if it is to be used as a side light the lens must
not be less than I of a circle, the chord of the arc made by the
lens not being less than 8 ins.
ENGLISH WEIGHTS AXD ilEASUEES.
115
ENGLISH WEIGHTS AND MEASURES.
Avoirdupois Weight.
Drams
Ozs.
Lbs. Qrs. i Cwts. ! Ton Gramnies
1-.'^ 1
•0625
•0039063 •0001395 •0000349-00000174 1-771846
■■-: 16
= 1
•0625 ^0022321 -000558 -00002790 28-34954
' 256
16
= 1 -0357143 -0089285 -00044643 453-5927
7168
448
28 =1-25 -0125 12700-59
28672
1792
112 4 =1-05 .50802-38
573440
35840
2240 80' 20: =1 1016048
A stone of iron, coal, Szc. = 14 lbs.
Troy Weight.
Avoir.
Drs.
Grains
Lwts.
32
-^'875
= 1
-0416667
768
-^875
24
= 1
17
+ (97
■=-17
5)
480
20
210
+ (114
^1
75)
5760
240
Ozs. j Lbs. I Grammes
•0020833 -0001736 I -0648
•05 I-0041667 I l^o552
= 1 (•0833333 ! 3M035
12! =i:373^2420
175 lbs. Troy = 144 lbs. Avoir.
Avoir, lbs. x 1-2 1527 = lbs. Tro}-.
175 oz. Trov = 192 oz. Avoir.
Trov lbs. X -823 .= Avoir, lbs.
LiXEAL Measure.
Inches
1
12
36
72
198
7920
63360
Feet
08333
= 1
3
6
16^
660
5280
Yards
02778
33333
= 1
2
^1
02
220
1760
Fauis. i'iiies
-013889-005051
•166667-060606
•5 •181818
•363636
= 1
40
320
= ]
no!
PIfO
Furls.
•000126
•001515
•004545
•009091
•025
= 1
:Mile
000016
•000189
•000568
•001136
Metres
•0254
•304797
•914392
1-82878
-003125 502915
•125 201-166
= 1 1609-33
The palm = 3 in. The hand = 4 in.
The span = 9 in. The cubit = 18 in.
The common military pace = 30 in. An itinerary pace = 5 feet.
A cable'
s length = 120 fathoms. A league =3 miles.
Laxd Measure (Lineal).
IncLes
Links
Feet Yards Chains IMile Metres B
1
•1261261
-08.3.3333 -0277778 -0012626 -0000158 -0254
m
= 1
•6666667 -2222222 -01 -000125 -201166
12
m-
= 1 -3333333 -0151515-0001894 -304797
86
4ii
3 = 1 ^0454545 -0005682 , -914392
792
100
66 22 J =lj-012o 20-1166
63360
8000
5280 1760 80' =li 1609-33 .
116
ENGLISH WEIGHTS AND MEASL'ESS,
Square Measijee.
Inc'i: 3
Feet
Yards Perches ^ Roods Acre Sq. Metres
1
-0069444
•0007716 -0000255 -00000064 -00000016 -0006452
144
= 1
•1111111 -0036731 -0000918 -000023 -0929013
1296
9
= 1 -0330579-0008264 -0002066 -836112 ■■
39204
2721
3ui =1-025 -00625 25292
1568160
10890
1210 40 =1-25 1011-696
6272640
43560
4840 160 4 =14046-782
Acres x -0015625 = sq. miles. ^3q. yards x -000000323 ^sq. miles.
Land Measure (SarARE),
_
Links
1
625
10000
25000
100000
Perch
-0016
Chains
;-oooi
= 1 -0625
16 =1
40 n
1,60 10"
Eoois
-00004
•025
•4
Acre
-00001
-00625
•1
9-
•ZJ
= 1
Sq. iletres
-04046
25-292
404-6782
1011-696
4046-782
A liidt; of land = 100 acres. A yard of land
A chain wide = 8 acres per mile.
Ctjbic Measure.
30 acres.
Imperial Gallons , Cub. Ins.
•003606540822 = 1
6-232102541168 1728
168-266768641554 46656
Cub. Feet
-0005788
= 1
27
Cub. Yis. Cub. Metre
-00000214 -000016387
-0370370 -0283161
= 1 -764534
A cubic yard of earth = 1 load. A barrel Vjulk = 5 cub. ft.
Ton of displacement of a ship = 35 cub. ft. = -99106:^i cub. metre.
A\'ixE Measure.
Cub. Ins.
-
'A
5
a
£
r.
^
■r.
4-
5
.a
'-3 '^
<
1
S
•S
c
8-664}p =1
34^6.59J 4 =1
69-31 Si
8 2
= 1
277-274
2772-740
32
8
4
= 1
320
80
40
10
= 1
4990-932
576
144
72
18
1-?
= 1
8734-131
1008
252
126
3U
S:^
n
= 1
11645-508
1344
336
168
42
4i
9i
H
= 1
1 7468-262
23291-016
2016
i>688
504
67;^
2.52
336
63
i 8*
6^
3I 2
4i %
1^
2
= 1
= 1
34936-.524
4032 1008
504
,126
1211
7
4
3
2
n
= 1
fi9H73-048
8064 20 IC
> 1008
252
1
25i
14
8
6
4
3
2=.j
-v^^^^'C^ ^^t^C
english weights and 3ieasures.
Ale axd Beer Measuee.
\i:
Cub. lus.
V3
34-659i
-1
6'J-318:^
9 t
277-274
8|
241IO-466
72
41tl»0-L>32
144
9981-864
288 1
14072-796
432
19963-728
576
29945-592
864
59891-184
1728
119782-368
3456
m I ^
= 1
4
36
72
144
216
288
432
864
1728
o
= 1
9
18
36
54
72
108
216
432
= 1
2
4
6
8
12
24
48
= 1
2
3
4
6
12
""■^
t;
ce
o
X
(1/
o
o
no
-»^
s
f-n
(5
'
J
= 1
■
u
= 1
2
n
-1
3
'>
H
= 1
6
4
3
2
= 1
12
8
6
4
2
= 1
CORX AM
. De
r Measure.
Cnb. Ins.
'X:
to
t
tc
o
02
Q
"3
If.
o
tc
O
ci
34-659i
= 1
69-318^
2
= J.
138-637
277-274
4
8
.; 1
4 L'
_ 1
554-548
16
8, 4
2 -1
2218-192
64
32 16
8 4=1
4436-384
128
64 32
16
8 2
= 1
8872-768
2.56
128 64
32
16 4
2
= 1
17745-536
512
256 128
64
32 8
4
2
= 1
i
1
88727-680
2560
1280. 640
320
160, 40
20
10
o
= 1,
177455-360
5120
2560 1280
640
320 80
40
20
10
V^
c
OAL Measure.
Cub. In-.
Heaped
ileasnre
'v.
r.
>^2
4
c
y
CQ
■~1
Ml-!
703-872
181
= 1
2815-487
7ir
4 =1
8446-461
224|
12 3 -1
25339-383
6721
36
9 3
= 1
101357-532
2688
144
36 12
4
= 1
196380-2 18i
5208
279
69f 23i
7f
llf
= 1
1571041-746
41664,
2232
558| 186
62
15A
8
= 1
2128508-172
56448
3024
7561 252
84
21
io;;|
lii
= 1
31420834-92
833280 44640 11160'3720|l240
310
160
20
I4if
= 1
118
EXGLTSH WEIGHTS AND MEASURES.
AVOOL AVEirjHT.
Pounds .
Cloves
Stones
Tods
' Weys
Packs
Sacks
Last
I
i
7 '
14
= 1
.2
= 1
'
[
28 '
4
2
-1
^
182 ;
26
13
6h
= 1
240
364
34|
52
1'^
26
8|
13
• 129
: 2
= 1
131
= 1
t
4368
624
312
156
24
18^
12
= 1
1
Measure of Time.
Seconds
Minutes
Hours
Days
AVeeks
Months
Calend.
Year
Julian
Year
Leap
Y'ear
60
= 1
3600
86400
60
1440
= 1
24
= 1
604800
2419200
10080
168
7
28
4
= 1
40320 672
B1536000
525600 8760
365
521
13-^-
= 1
31557600
31622400
525960 8766
5270401 8784
365^
366
m
o2f
13^,
13^
1_JL_
■*-1460
Ilk
= 1
1 1
= 1
AxgelaPv Me a sere.
The Geogi^aplucal Divisiim of any Line round tLs
Circumference of tlie Earth
jjiurnai ^lotion
of the Earth
re_iinals
metres
ot an Inch
metres
of an Inch
metres
of an Inch
39
1-535447
78
3-070894
1
0-0S9370
40
1-574817
7i»
3-110-264
•)
0-078741
41
1-614188
80
3-149635
3
0-118111
42
1-653558
J-1
3-189005
4
0-157482
43
1-692929
82
3-228375
5
0-196852
44
1-73-2-299
y-6
3-267746
6
0-236223
45
1-771669
84
3-.S07116
7
0-275593
46
1-811040
85
3-346487
8
0-314963
47
1-850410
86
3-385857
9
0-354334
48
1-889781
87
3-4-25228
10
0-393704
49
1-929151
88
3-464598
11
0-433075
50
1-9685-22
89
3-503968
12
- 0-47-2445
51
2-007892
90
3-543339
i:l
0-511816
52
2-047262
91
3-58-2709
14
0-551186
63
2-0J-'6633
92
3-622080
15
0-590556
54
2-126003
93
3-661450
IG
0-6-29927
55
2-165374
94
3-700821
17
0-669297
66
2-204744
95
3-740191
18
0-708668
67
2-244115
96
3-779561
19
0-748038
68
2-283485
97
3-818932
20
0-787409
69
2-322855
9'S
3-858302
21
0-8-26779
60
2-362226
99
3*897673
22
0-866149
61
2-401596
100
3-937043
23
0-905520
62
2-440967
101
3-976414
24
0-944890
63
2-480337
102
4-0157X4
25
0-984261
64
2-519708
1U3
4-055155
2G
1-023631
05
2-559078
104
4 094525
27
1-063002
66
2-59.S448
1U5
4-133895
28
1-10-2372
67
2-637819
106
4-173266
29
1-141742
68
2-677189
lti7
4-21-2636
SO
1-181113
69
2-716560
l(i8
4-252007
31
1-2-20483
70
2-755930
11 '9
4-291377
32
1-259854
71
2-795301
110
4 -.33074 8
33
1-299-2-24
72
2-834671
111
4-37011«
34
1-338595
73
2-874041
1 ] 2
4-409488
35
1-377965
74
2-913412
113
4-448859
36
1-417335
75
2-95-2782
114
4-48S2-29
. 37
1-456706
76
2-992153
]]5
4-527(500
38
1-496076
77
3-0315-23
116
4-566970
MILLBIETRES TO INCHES.
125
MiUi-
metres
Inches and
Decimals
of an Inch
Milli-
metres
165
Inches and
Decimals
of an Inch
MiUi-
metres
Inches and
Decimals
of an Inch
117
4-606341
6-496121
213
8-385902
118
4-645711
166
6-535492
2!4
8-425272
119
4-685081
167
6-574862
■215
8-464643
120
4-724452
168
6-614-233
216
8-504013
121
4-763822
169
6-653603
217
8-543384
122
4-803193
170
6-692973
218
8-582754
123
4-84-2563
171
6 732344
219
8-622125
124
4-»81934
172
6-771714
2-20
8-661495
125
4-921304
173
6-811085
221
8-700866
126
" 4-960674
174
6-850455
222
8-740236
127
5-000045
175
6-8898-26
2-23
8-779606
128
5-039415
176
6-929196
224
8-818977
129
5-078786
177
6-968567
225
8-858347
130
6-118156
178
7-007937
2-26
8-89/718
131
5-157527
179
7-047307
2-27
8-937088
132
5-196897
180
7-086678
228
8-976459
133
5-236267
181
7-126048
229
9-0158-29
134
.6-275638
182
7-165419
230
9-055199
135
5-315008
183
7-204789
231
9-094570
136
5-354379
184
7-244160
232
9-133940
137
5-393749
185
7-283530
233
9173311
138
5-4331-20
186
7-32-2900
234
9-21-2681
139
5-472490
187
7-362271
235
9-25-2052
140
6-511861
188
7-401041
236
9-291422
141
5-551231
189
7-441012
237
9-330792
142
5-590601
190
7-480382
238
9-370163
143
5-6-29972
191
7-519753
239
9-409533
144
5-669342
192
7-5591-23
240
9-448904
145
5-708713
193
7-598493
•241
9-48«274
146
5-748083
194
7-637864
•242
9-5-27645
147
5-787454
195
7-677234
243
9-567015
148
6-826824
196
7-716605
244
9-606385
149
5-866194
197
7-755975
245 t
9-645756
150
5-905565
198
7-795346
246 j
9-6851-26
151
5-944935
199
7-834716
247 I
9-724497
152
5-984306
200
7-874086
•248 i
9-763867
153
6-0-23676
201
7-913457
•249 ■■
9-803238
154
6-063047
■202
7-95-2827
250 '
9-842608
155
6-10-2417
203
7-992198
•251 ■
9-881978
156
6-141787
204
8-031568
252 :
9-921349
157
6-181158
205
8-070939
253 !
9-960719
158
6-2-205-28
206
8-110309
254
10-000090 :
159
6-259899
207
8-149679
255
10-039460
160
6-299269
208
8-189050
256 !
10-078831
161
6-338640
209
8-228420
257 1
10-118201
162
6-378010
210
8-267791
258 1
10-157571 i
163
6-417380
211
8-307161
259 !
10-196942
164
6-456751
212
8-346532
260
1
10-136312 1
l-lh
MILLIMETRES TO INCHES.
Milli-
metres
Inches and
Decimals
of an Inch
Milli-
metres
Inches and
Decimals
of an Inch
Milli-
metres
Inches and
Decimals
of an Inch
261
10-275683
309
12-165464
357
14-055244
262
10-315053
310
12-204834
358
14-094615
263
10 -3 54 4-24
311
12-244204
359
14-13o9
:iIILLDIETRES TO IXCHES.
MiUi-
metres
Inches and
JliUi-
metres 1
Inches and
:»Iilli-
meires \
Inches and
Decimals
of an Inch
Decimals
of an Inch
Decimals
of an Inch
549 !
21-614367
597
23-504148
645
25-3939-29
550 '
21-653738
598
23-543518
646
25-433299
551 !
21-693] 08
599
23-582889
647
25-472670
552
21-732478
600
23-622-259
648
25-5^2040
553
21-771849
601
23-661630
649
25-551410
554
21-811219
602
23-701000
650
25-590781
555
21-850590
603
23-740371
651
•25-630151
556
21-889960
604
23-779741
652
25-669522
557
21-9-29331
605
23-819111
653
25-708892
558
21-968701
606
23-858482
654
25-748263
559
22-008072
607
23-.S97852
655
25-787633
560
2-2-047442
608
23-9372-23
656
25-827003
561
2-2-08C812
609
23-976593
657
25-866374
562
22-1-26183
610
24-015964
658
25-905744
563
■2-2-165553
611
24-055334
659
-25-945115
564
22-204924
612
24-094704
660
25-984486
26-023856
565
2-2-244294
613
24-134075
661
566
2-2-283665
614
24-173445
662
26-063-226
567
22-323035
615
24-21-2816
663
26-10-2596
h()S
2-2-36-2405
616
24-252186
664
26-141967
569
2-2-401776
617
24-291557
665
26-181337
570
2-2-441146
618
24-330927
666
26-2-20708
571
2-2-480517
619
24-370-297
667
26-260078
572
22-519.S87
620
24-409668
668
26-299449
573
22-559928
621
24-449038
669
26-338819
574
22-598628
622
24-488409
670
26-378189
575
2-2-637998
6-23
24-527779
671
26-417560
576
2-2-677369
6-24
24-567150
672
26-456930
577
22-716739
6-25
24-606520
673
26-496301
578
2-2-756110
626
-24-645890
074
26-535671
579
22-795480
- 627
24-6)S5261
675
26-575042
580
22-834851
6-28
■24-7-24631
676
26-614412
581
2-2-874221
629
24-764002
677
26-653782
582
2-2-913591
630
24-803372
678
26-693153
583
2-2-952962
631
24-842743
679
26-73-25-23
584
22-992332
632
24-882113
680
26-771894
585
22-031703
633
24-921483
681
26-811-264
586
23-071073
634
24-960854
682
26-850635
587
23-110444
635
25-0002-24
683
26-890005
588
•23-149814
636
25-039595 ,
684
26-929376
589
23-189184
637
25-078965
685
26-9;';8746
590
23-228555
638
25-118336
686
•27-008116
591
23-267925
639
25-157706
687
•27-047487
592
23-307296
640
, 25-197077
688
27-086857
593
23-346666
641
' 25-236447
689
27-1-262-28
594
23-386037
642
i 25-275S17
690
27-165598
595
23-425407
643
25-315188
691
27-204969
596
23-464778
644
1 -25-354558
1
692
27-244339
illLLDIETEES TO INCHES.
129
Milli-
Inches and
Milli-
Inches and
Milli-
me:re3
Inches and
metres
Decimals
of an Inch
metres
741
Decimals
of an Inch
Decimals
of an Inch
693
27-283709
29-173490
789
31-003271
694
27-323080
742
29-212861
790
31-102041
695
27-362450
743
29-252231
791
31-14-2012
696
27-401 821
744
29-291601
792
31-181382
097
27-441191
745
29-330972
793
31-2-20752
698
27-480562
746
29-370342
794
31-200123
699
27-519932
747
29-409713
795
31-299493
700
27-559302
748
29-449083
796
31-338.'S64
701
27-598673
749
29-488454
707
31-378-234
702
27-638043
750
29-527824
798
31-417004
703
27-677414
751
29-567194
799
31-450975
704
27-716784
752
29-606565
800
31-490346
705
27-756155
753
29-045935
801
31-535716
706
27-795525
754
29-685306
802
31-575086
707
27-834895
755
29-7-24676
803
31-614457
708
27-874266
756
29-764047
804
31-653827
709
27-913636
757
29-803417
805
31-693198
710
27-953007
758
29-842787
806
31-73-2568
711
27-99-2377
759
29-882158
807
31-771938
712
28-031748
760
29-9215-28
808
31-811309
713
28-071118
761
29-900899
809
31-850679
714
28-110488
762
30-000269
810
31-^90050
715
28-149859
763
30-039640
811
31-929420
716
28- 1892-29
764
30-079010
812
31-968791
717
28-2-28600
765
30-118380
813
32-008161
718
28-267970
766
80-157751
814
32-047532
719
28-307341
767
30-1971-21
815
32-0«0902
720
28-346711
768
30-236492
816
32-120272
721
28-386081
769
30-275862
817
32-165043
7->2
28-425452
770
30-315-233
818
32-205013
723
28-464822
771
30-354603
819
32-244384
724
28-504193
772
30-393973
8-:o
32-283754
725
28-543563
773
30-433344
821
3 -2-3 -23 1-25
726
28-582934
774
30-472714
822
32-36-24.95
727
28-622304
775
30-5 1-2085
8-23
3-2-401866
728
28-661675
776
30-551455
824
32-441236 "
729
28-701045
777
30-590825
8-25
32-480606
730
28-740415
778
30-630196
826
32-519977
731
28-779786
779
30-669566
8-27
32-559347
732
28-819156
780
30-708937
8-28
32-598718
733
28-8585-27
781
30-748307
829
32-638088
73 i
28-897897
782
30-787078
830
3-2-077459
735
28-937268
783
30-827048
831
3-2-7 16?<29
736
28-976638
784
30-800419
832
32-750199
737
29-016008
785
30-905789
833
32-795570
738
29-055379
786
30-945159
834
3-2-834940
739
29-094749
787
30-984530
835
32-874311
740
29-134120
788
31-0-23900
836
3-2-913681
130
MILLTMETEES TO INCHES.
ililU-
metres
Inches and
Decimals
of au Inch
Milli-
metres
Indies and
IjeciniaLs
of an Inch
MiUi- ;
metres j
1
Inches and
iJecimals
of an Inch
837
32-953052
885
34-842832
933
36-732613
ms
32-992422
886
34-882-203
934
36-771984
839
33-031792
8«7
34-921573
935
36-811354
840
33-071163
888
34-960944
936
36-8507-24
841
33-110533
8?<9
35-000314
937
36-890095
842
33-149904
890
35-039684
938
3G-9-29465
843
33-189274
891
35-079055
939
36-968836
844
33-228645
«92
35-1184-25
940
37-008206
845
33-268015
893
35-157796
941
37-047576
846
33-307385
894
35-197166
942
37-086947
847
33-346756
895
35-236536
943
37-126317
848
33-3861-26
S96
35-275907
944
37-165688
849
33-4-25497
897
35-315277
945
37-205058
850
33-464867
898
35-354648
946
37-2444-29
8.^1
33-r;04238
899
35-394018
947
37-283799
852
83-543608
900
35-433389
948
37-323170
853
33-582979
901
35-472759
949
37-362540
854
33-022349
902
35-512130
950
37-410910
855
33-6G1719
903
35-551500
951
37-4412.'^l
856
33-701090
904
35-590971
952
37-4^0651
857
33-740460
905
35-630241
953
37-520022
858
33-779831
906
35-669611
954
37-559392
859
33-819201
907
35-708982
955
37-598765
860
33-858572
908
35-748352
956
37-63^135
861
33-897942
909
35-787723
957
37-677503
862
33-937312
910
35-827093
958
37-716874
863
33-976683
911
35-866464
959
37-756244
864
34-016053
912
35-905834
960
37-795615
865
34-055424
913
35-945204
961
37-834985
866
34-094794
914
35-984575
962
37-874356
867
34-134165
915
36-023945
963
37-913726
868
34-173535
916
36-063316
964
37-953096
869
34-212905
917
36-1026S6
965
37-99-2467
870
34-252276
918
36-142U57
966
38-031837
871
34-291646
919
36-1S1427
967
38-071208
872
34-331017
!)20
36-220797
968
38-110578
873
34-370387
921
36-260168
969
38-149949
874
34-409758
922
36-299538
970
38-189319
875
34-449128
923
36-338909
971
38-228689
S76
34-448498
924
36-378279
972
38-268060
4
1
12 8
6-945250
16
1
32
...
1
128
15-279550
1
4
1
3'*
7-143686
16
1
32
1
6 4
...
15-477986
1
4
r
...
1
128
7-342122
16
_]_
1
6 4
1
128
15-676422
1
4
I
4
T(T
■'r
32
1
32
1
(•■4
1
64
1
128
7-540557
7-738993
7-937429
1
:::
1
64
1
128
1.5-874858
16-07.3293
16-271729
16
...
1
12H
8-135865
^
I
6 i
1
128
16-470165
IT.
1
6 +
8-334300
j_
16-668600
EQUIVALEXTS OF ENGLISH AND METEICAL MEASURES.
Divisions
of the
Inch
128
Millimetres
Divisions
of the
Inch 1
1 ~
128
ilillimetres
"21-232622'
#
1
32
...
16-867036
13
16
...
1
04
8
1
32
1
64
17-06.5472
1 •.
16
1
32
21-431058
F
1
32
1
G4
1
12S
17-263908
13
16
1
32
...
128
21-629493
11
16
...
...
17-162343
13
16
1
32
1
04
21-827929
11
]6
...
...
1
12S
17-660779
13
16
1
32
1
04
1
1^8
22-026365
11
16
1
64
17-859215
f
...
...
22-224801
11
lil4-2(y2ol
16 S12^8.S.^(i.S2N3
2
101-6047.3410
7
o.55-6166.S9.d6
12
609-6-285-2462
17 86.3^f;40400>;8
3
15-i-407LS116
8
406-41901642
1.3
660-43090168
18 014-44278694
4
•20.S-20!».)08-21
9
457-22]. S9.S47
14 711-2o.S27><7.S
10 ;965^24516.S09
5
•2.54-nl]s,s52fi
10 5()S-O2."!770o2
]5 i762-0.S56557>:
20 101 6^04 754 11
Table giving the Equivalents of Tons in
French Kilograms.
Tom
2
3
4
o
6
7
8
9
10
Kilograms
1016-04754
2032-09508
:;048' 14262
4064-19016
.5080-23771
6096-28525
71 12^33279
8128-38033
9144^42787
10160-4754
Tons
~20
30
40
50
60
70
80
90
100
200
Kilograms
20320-9.508
30481-4262
40641-9016
50802-3771
60962-8525
71123-3279
81283-8033
91444-2787
101604-754
203209-.508
Toni-
300
400
500
600
700
800
900
1000
Kilograms
304814-262
406419-016
.508023-771
609628-525
711233^279
812838-033
914442-787
1016047-54
UOO'l 11 7652-30
1200 1219257-05
Tons
L30()
1400
1500
1600
1700
1800
1900
2000
3000
4000
Kilograms
1320861-80
1422466-56
1 52407 P31
1625676-07
1727280-82
1828885^57
1930490^33
2032095-08
3048142-62
4064190-16
KILOGRAMS TO LBS. AND TONS.
135
X
•^ X o ■M -^ tr cc c c^ i~ i^ T. — r* '~ i^ r; — rt ut i^ n — re i~
r; ^t oo ri ^ O -f r. re I- — «o c; T^ cc "M --r — < lo r: re t^ "M ^ C
~. X tD ift cc ri o X i^ le ~*< "M — r; I— o -^ r: -- r: ac ;r 1^ cc M
t-- i^ i^ t-- t^ i^ I- w c^ vr "-^ ^ ^ ue >.e ue ir: i~ le — ^ — ?• -Tt' -* -^ -^
--■ o -^ i^ cc c; O — M re -^t' o vr i^ cc r: O — t-i ce -fi o ^ i— cc
i^ t- I- i^ i^ i^ X 00 X iO CO cc X Xi x X; ~ ~ ex c: T^ Ci C^ c: c;
cjoooooooooocooooooooooooo
•M -^ '^ X o M "^ '-^ c; — re Le t- c: — re ^ X C "M -f -^ X o re
■M X -*i c i^ re ~ le — x -?• o '-c •>) r; ue — i^ — *^ o "o -m x lo >—
— ' o o 'e c; 'Tti X re X) -M i^ "M tr^ — ^ ue o o ~. -t^ r: re x -m i-- " i
le i.e "o ;^ — i^ i^ X) X r: ~ c; o ' c-i ei ei re re -+i -h le o "-r
le i^ Ci -— re ic t^ c: ^ re >c X o e-1 -f^ u: X o M -*< "o X o c^i -^
*:::
r^
—
^
-^
■h
X) o
f,
o
r^
-
J_
-^
i
X
^.
'>l
le
i^
^
Jj
«
?b
X
—
<
t^
t2
t—
t^
t~~
r—
oo
00 X
ao
QO
■^
w^
^
^
o o
O
o
O
^x
*— 1
*^
^—
:m
•-^
^
r^
"
1— 1
.— (
I— 1
I— 1
^H
1—1
r-i
I— i
I— 1
1— <
?— (
Gv)
■>i
c^^
c^^
e-i
esi
)
(M
r»
A
.-
r--
X
-^
r>
_
ei
«~
_^
le
.-.
»^
X
--
^
__,
-M
^
_4,
le
-^
t^
X
-^
^
rz^
I-
t^
t^
1-
X
X
X
X
X
X
X
X
X
X
c^
c^
^
c^
^
^
*
^
*
Ci
-^
-
__
__
—
O — — e-i re re -H -r* ie le -^ I— i^ X X r; o C e^i re re -r- —
le i^ r: — re »e i^ rt — re Le 1^ r: — re lo x c "M -^ — x C; -m -rt-
-f< X ei t >c n re X ^1 — c; -i- r: re t^ " Ot x n t^ i.e
r: i^ tc -+' re — r; X --r i.e re "M o X I- te -^ ■>! ^ — . t- — '+' re —
— — r- — O O O O C C C ~ ~ ~ r: r: ~ X X' X X X X
c; — :>) re -f >e ^r i^ X c: O — :m -m re -« ue — t^ x r; O ^ m re
le le ue le i.e e h- r:
c -T^ r: -f X re X ?! i-- — tf — ^ to o '"e r; -* x re x r>i t-^ — --f
-^ -^ -^ le le -^ vr t^ t,^ X X r; r; C; O O ' ^ri "M re re -^ -^
o X o :>) -*- '-r X OM -^ — X O re ue i^ • r— re o i^ r: — re
fi
2^
-•-
—
z^
-U
\
■M
■^J
M
re
re
re
re
-^
'^
-t"
— f
-*
le
o
lo
O
t^
X
^
O
1 — i
r^
-^
-+<
lO
o
r-
X
-^
o
^^
n
^
_j.
'O
n:^
K5
lO
O
iC
o
ue
IC
to
»c
w
■-C
::;
w
to
■-^
w
w
^
l^
i^
t~
t^
t^
l^
^mm
^^^
^^
^^
__
^^
ue :r^ t~ i^ X X r: C: C ei ri re -+' -^ le o t- r; — re »e X o "M -H — X c: -M -Tf tr X C e^i -" t;^ X c re
~ re i^ tr o -f X re 1^ ' le ~ -^ x ri t^ o '-e r: re r vr c
X i~ i-e -^ ei — r: r~ "-C -T^ re — t. x v^ le re n c; x i^ to -rr tt —
te o le le 1^ le -*' -Tfi -+1 -H -+i -t" re re re re re re re n ei -m -m n -m
lo tc t- X r: O — ' ei re -t^ le "^ i^ X ~. o — ei re -^ je :r t^ X r;
•MT^i-M-M-Mrererererererererere — -^-^i-T^i-^-r-!:"-*^-*---
ooooooooooooooooooooooooo
ue t^ O e-i '^ CO X o n 't' t^ Ci ^ re »o t^ Ci — -* tc oo o ^T -* tr
— t— -+< o tc "M X to -H t^ re ~ to ei X -+( o t^ re r: lo ■>! X -+• o
O -# c: -ri X re I— -M t-- — -^ O o O -^ r: 't^ X re t^ "M t^ 1— ^ —
"M M -M re re -^ -^ iO lO "^ ;r i^ t^ X X X r: r: o O — — ^ ~i ei re
root-ciiT^roiot-c^-^reiOt^c:— ire»ot^OiM'*'!r)XO'M
^^i^^seicbo'^1■*^^C5•^rb>'oc»o:^^^t^cfl — reioxc;
OiOiDCOOiCt-t^t-t~-t^XOOXXCr5C5C;CiCiOC:00 —
2S
•x>
t^ OO
c^
o
-^
•M
CO
^
lO
!0
t^ CO cs o
— • 5>1 ?
e "^ »o ?c;
t^
X
^
-^
i2
M
e-1
:^^
eM
•■.
re
"•
...
re
re
cc
re
rcco-^-^-^-^-^-^i*
^ ^
Id-
to
— — ' M c-i re -*> -T« to le — t-~ r^ X X r; ct o — ' -^ M e-i re -^ -T^ 'O
e-1 -* -o X o •>! -^ — X o •>! -^ to X o "M to t^ ~ — re »o t^ r: —
T* X ■M '-c ^- lO r: re t^ "M ^ O -^ X re t^ — to c; -f X •>! '— 3 'O
X o to re e-i o X i^ to -e ej — r: t^ ^c -f re — r; X — to re •>! o
r: ct r; r: ct r; X X X X X X i^ t^ t^ i^ t-- I-- 'o to vr to '-C to *o
O — n re -*- to -o t^ X ~ O — ^1 re -^ »o to t^ X r; o — M re -*■
S I ■>! -f to c^ 1— re >o t^ o: — re >o X o ri -+i to X O re lo t^ o: ^ re
• :o^ix-^-Jt^reo:io>Txioot^rec:io-JX-#otoe^icxio
~ -f — rexret^eitr — tro'0 0-t;r:rex)ret^^ii_;- — tro'O
■§ >i ^ -,o X o 5^1 -^ to X o ^"i -;^ to X o >i ■* to X o 55 5 t^ r; ^
> ■fl -it< to X ~ re lb t^ o: fi '^ to do o re lb t^ c^ — 4t< to X o ei ib
<1 — -^i-<— i^j^ie^ri-Mrerere""
■^ -* "# ^' to to to
re -^ to vD t^ X o; o
■M re -r lo to 1:^ X r: o — ' (M re -^ to
1— ' " ^ I-' r- — — — -M :^^ (M (^^ (>i c^
136
KrLOGRAMS TO LBS. AND TONS.
^^"
_u
»'^
i~
.«
._
t^
X
X.
^^
—
^■""
TT
CI
ri
.^ _J.
iC
J-
.-
I- I- X X
"■1
*-^
t^
X
:^
■M
^T-
v^
X
C^
cc 1-C
1^
^
-M
CO cc l^
c
^-
CO
jC l^ — —
^— ^
^
-*■
X
M
1^
—
i-C
z~~
c*
X
7 1 'V^
o
— ^
~
CO l^
cc
—
— *-
X CI cc —
":3
C
"^I
O
X
1^
o
■-r^
CI
^_^
_ ,
l-
^ -^
cc
»— ■
^,
X '— 'O
CO
CI
■^^^
X I- cc -^
,-
-M
"M
^-
^—
-^
^-
^—
—
:^
:^
o o
^
:^
^.
C- c^ r^
Ci
*
~
X X X X
r^
C^
*-w
'O
-o
1^
X
*
:^
—
CI
CO —^
lO
t^
w
I- X r:
o
. — \
CI
CO -f CO c^
c
r— !
l^
T-H
— 1
t-
t-
X
X
X
X X
X
X
X
XXX
r
r
r
r r?T
r
-H
.^
X
^
^
UO
t^
-~
_
^-
IC t^
o
CT
_14
--.r X O
CI
^
r—
Ci — CO CO
*-
CC
*
IC
C^l
X
•-^
•^
t^
CO
*
\
1^
—
tc
^^
iC
o
^
Ct *^
X
CO
x:,
ci r '
cc
^^
lO
O IC Ci "^
r— '
—
■>\
0)
CO
CC
"T*-
"T*^
»c
lO
lO »
w
I—
t-
XX—.
^
c~^
^,
— — — ■ CI
X
■-
O
M
T
vi
X
o
CI
-t"
tc
X
o CI
"^
?C
X
C: cq -Tf
cc
C".
—
X
z.
X,
3
M
-Tt>
t3
—
_,
-^
LC
t^
O CI
'^
w
X
— CO o
r^
-^
CI
-* ci X O
w'
<
X'
^■^
c^
Ci
*
*
o
o
o
,— * ^^
^—
. — '
— -
CI CI CI
CI
CI
CO CO 'O '^**
^
cc
CO
cc
CO
CO
CO
-*
^
'Th
-^l
-*l -f
-*
■^
"*
-:- •rt^ ':}'
'^
-*
'^J*
-^ -^ -* -T^
•i
—
1^
X
—
o
_
CI
-.K
-+I
IC
t3 t-
X
—
-~
— CI CO
_«
»c
.-
i^ X c; —
^
-5
I-
l^
I-
t^
X
X
X
X
X
X
X X
X
X
~
Ci d c;
Ci
Ci
Ci
Ci Ci Ci c
<
X
-
"■"
"^
*"
'^
'"'
"""
*"■
'^
""
""
*"" ^^
^"
"■"
'""
-H — 1 .
""
'
"^
"^ — ' — CI
—
—
,
■M
Ol
.-»
—
_u
KC
,~ .-
-^
t^
X
X — T.
'-
CT CI CO -"
—
-^
rc
o
t^
^
—
cc
lO
l^
c^
1 — ' cc
lO
t—
CI
— ^ CC c^
X
t^
CI
'C
C-
ct
I-
^^
tc
o
-T^
X
C!
t- —
cc
^
cc
X CI tr
—
cc
*
CO t~^ — CC
^
—
«~
c^
X
;^
'*-0
CO
C4
'^
X
t^
IC ^
CI
^
^^
1'^— w *^
CO
,—
'^
X cc lO CO
—
,-
:^
o
>o
LO
L.0
lO
LC
LC
-*
-tH
-^ -^
— *-
-<:«
CO
CO CO CO
CO
cc
CI
CI CI CI CI
A
~
X
*
o
^—
■M
CO
-™
UC
t^
1-
X c~.
^
^-^
CI
CO *^ C!;
cc
r-
X
X
T-l
1— 1
I— 1
1— 1
lO
o
o
1—1
1-H
iO
I— 1 ^-
I— 1
i-H
1—1
s s s
r
^
r
cc t- t- i^
c
_,
CO
lO
I—
—
-M
-f
-^
X)
o
ci -e-
,-
—
_^
CO lO t^
—
_,
~.
■^ m -z. CI
—
X
;;^
x^
d
^
iC
— ^
r^
■^
■^ vl."
CI
X
CO
-- t- cc
*
t^
CI
^
1
t^
'M
r--
—
1C
:^
IC
c*x
•^^
ex
-^ X
CO
1~-
ca
;~^
IC
—
-+ Ci — X
^
^
^
:3
.—
—
:ri
CI
re
CO
ce
-^ -rr
*c
cc
t^
iC t^ t-
X
X
*
«
;h
X
^-
CO
iC
l^
ex
—
re
iO
t^
Ci — 1
CO
to
«>-
Ci '— CO
cc
t-
Ci
' — ^ CO cc X
—
z
-M
1^
l^
C^
1
^y^
t^
T^
^
ei
— u 1^
—
__
-^
CO X o
CT
— u
^
Ci — CO C~
^
<
cc
CO
CO
rc
-*
"^
■^
.^M
lO
ic
o >o
IC
tc
t^
^ tc l^
1^
1—
r^
t^ X X X
^
cc
?c
CO
c^
'^
'V*
*^
/-■^
*»-^
^^^
r«^ ^v^
^^
^o
'^
CO CO CO
r^y
^^
*^^
<-^
,
■r.
^^
!>J
^
_«
»o
cr>
t^
X
cr.
^
^ CT
~.
-M
lO
tc t- X
—
,-^
__
CI CO -:f CO
z
.-^
i^
lO
lO
>o
LO
^
iO
lO
iC
■^
tc ir
—
•-e:
"C:
"-C — —
cc
l^
t-
l^ t^ t- l^
X
-
o
lO
■^
—
t^
r^
X
—
—
o
-^
CI
e»
^
CO -^ cc
»0
._
—
t- X X r.
r^
c^
y~~^
CO
LO
r^
*
— —
re
IC
X
O CI
-4^
w
X
C: C3 -*
tc
:/•;
^
CI -r cc X
<
^
*
'^
X
Ol
tc
*
ic
ex
cc
r^
CI t^
:^
— u
X
CO c^ —
cc
~
— *-
X CI CC o
^
o
;^
t^
^
— *-
CO
^—
ex
X
w
CO CO
CI
o
X
t^ cc -;f
CI
o
ex
t— cc -+ cc
7--
5h
^^
*
*
*
ex
ex
a;
X
Of.
X X
'Jj
a;
1^
t- t^ l~
r^
1^
w
cc cc cc cc
X
— *-
-^
1~
tc
t^
X
ex
^
-—
C^l
CO — ^
cc
te;
t-
X —. o
— ■
CI
ce
•"^ i^ cc t^
•V"
I-l
"M
n
c^^
:m
CN
r
r
r
-H . — 1
r
r
r
r?r
—
-;*-
^^
-^ ^ -:h -Tf
X
O
-M
-+I
to
X
1— -^
re
lO
t^
C^ '— '
CO
CO
X
O CI -*!
^
X
o
CI CO t- Ci
-
">)
lO
,_■
r^
^^
■^
te^
CI
X
-*! — 1
t^
CO
ex
cc CI X
'^
-^
1^
CO c; CO —
-M
^
.^
tc
^
i^O
^.
'™'
CO
X CO
(^
'M
^
-H O O
O
o
Ci CO X CC
CT)
X
*
*
^^,
o
^~
...
—
CI
CI CO
CO
*H
^— J
lo »o cc
tC
t-
t-
t- X X r.
;-
t^
:m
-T^
w
X
:^j
-if
tc
X o
CI
^
tr;
X o ci
-^
cc
X
c
1^
—
o^
~**
^
X
^-^
re
UC
r^
Z-. CI
'^l
CC
X
O CO CO
r^
Ci
_i
— " "~ X ^
<1
r—
r-
X
X
X
X
^
ex
*
^
* o
^
t^
:^
' -H ^^
^^
— ^
CJ
CI CI CI CO
^
:m
M
^<
>4
c^l
r^
>i
CI
■>\
CI CO
CO
ce
re
CO CO CO
ce
CO
CO
VJ
cc
t^
X
—
O
_
ri
^
_-
IC
^ t^
X
—
o
— ' CI ct
-^
lO
cc
t^ X Ci o
^
-M
"M
'>4
■M
''!*'
^^
^^s
*>^
^.^
*^ '^
^
CO
■^
-T?- -*! 'T'
-^
't'
-*
-*' -* -tM CO
■^
'
' '
'
'
'
■
■
(
'
1 > > •
_i
X
O
"M
ri
" 1
X
r^.
ei
-*
iC
X 5
C!
I-
cc
X ~ CO
~
I-
CI
•^ CO CO t^
IC
^^
—w
—
CO
1—
_^
LO
■^
■.^
X
CI
^ — ^
CO
^
re
L- C< --C
■^
— ^
'/:
CO t^ — • cc
P5
.^
X
1^
»o
— -
71
— •
ex
I^
t^
'-*- CO
— •
;^
cc
cc LO CO
CI
—
X
l^ CO -^ CI
H
-+i
CO
CO
rc
CC
re
ei
C)
CI
CI CI
CI
—
^^
^^ — ^^
^-i
■^
—
o o o —
k^
*
.■^
»^
->>
*^
— ^
*e
^
r~-
X
r: o
r— <
CI
ce
-:^ cc cc
t^
r/)
Ci
H
r-.
o
o
o
c;
^
o
O
o —
^
—
— '
'-' — —'
—
CI CI CI CI
55
T'
>o
t^
--
^
^
• o
t^
—
CI
_«
•~z X
o
CI
-f
t^ c; — 1
CO
CO
h-
^. u -^
^-
a
1^
cc
*^
t^
"^1
X
—f"
—
r^
re
r-. io
CI
X
*rH
— cc CO
*";,
CO
f— I
t- -r?- O cc
^
'^
to
,.^
'0
^
^r\
:7;
-*■
ex
cc
X
CI t^
CI
^
^
cc o *o
Ci
■r**
ex
CO X C7 I-
"— <
^
I~
r~
X
-r
X
*
*
^
^
_^ ^^
CI
CI
CC
CO "** —^
-r'
1^
je
"C cc 1 ^ 1 ^
W
;-.
tC
X
c^l
^^
X
o
CO
*o
I— n
--I
lO
t— ~ —
CO
CC
t-
Ci — CO »c
^^
o
-M
■.«
I--
c^
^^
-^
• c
cc
3
CI
-T« O
— ;
~-l
cc
CO l^ o
CI
-M
w
X — cc 1"
t>
'M
'M
-M
-M
*.^
CO
CO
CO
-+|
~M
-*< -^
-*
>o
CO
iC cc cc
cc
CC
sC
cc t^ I- l-
5
^
C^
'>\
Cvi
^
M
C^J
C4
CM
>«
c^ ca
CM
M
C)
Cq CI CI
c^
c^
CM
C1 CI CI CI
•/•■
^_
"M
—
_4,
1^
.-
1^
X
—
-^
— Cl
^
-^
IC
•o r^ X
—
^
„_
CI C- -+• iC
■ >
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
DECniAL EQUIYALENTS OF LBS. IX TONS.
13:
Table of the
Decimal Eqi'Ivalexts of Paets of
A To>-.
Lbs.
1
Dtciiuais
of a T '11
Lbs.
Decimals
cf a Ton
•165179
Lbs.
Decimals
of a Ton
Lbs.
Decimals
of a Ton
•000446
370 1
820 '
•366071
1270
•566964
2
•000893
380 1
■169643
830
•370536
1280
571429
3
•001339
390
•174107
840
•37.5000
1290
575893
4
•001786
400
•178571
8.50
•379464
1300
•580357
Q
•002232
410
•183036
860
•38.3929
1310
584821
6
•002679
420
•187500
870
•388393
1320
589286
7
•003125
430
•191964
880
•392857
1330
593750
8
•003571
440
•196429
890
•397321
1340
598214
9
•004018
450
•200893
900
•401786
13.50
602679
10
•004464
460
•205357
910
•4062.50
1360
607143
20
•008929
470
•209821
920
•410714
1370
611607
30
•013393
480
•214286
930
•415179
1380
616071
40
•017851
490 i
•218750
940
•419643
1390
620536
50
60
70
80
•022321
•026786
•031250
•035714
500
510
520
530
•223214
•227679
•232143
•236607
950
960 1
970
980
•424107
1400
625000
629464
633929
•428571
•433036
•437500
1410
1420 i
1430 <
638393
90
•040179
540
•241071
990
•441964
1440
642857
100
•044643
5.50
•245536
1000
•446429
14.50
647321
110
•049107
560
•250000
1010
•450893
1460
651786
120
•053571
570
•254464
1020
•455357
1470
6562.50
130
•058036
580
•258929
1030
•4.59821
1480
660714
140
•062.500
5:o
•263393
1040
•464286
1490
665179
1.50
•066964
600
•267857
1050
•468750
1500
669643
160
•071429
610
•272321
1060
•473214
1510
674107
170
•075893
620
•276786
1070
•477679
1.520
678571
180
•080357
630
•281250
1080
•482143
1530
683036
190
•084821
640
•285714
1090
•486607
1.540
687500
200
•089286
650
•290179
1100
•491071
1550
691964
210
•093750
660
•294643
1110
•495536
1560
696429
220
•098214
670
•299107
1120
•500000
1570
700893
230
•102679
680
•303571
1130
•504464
1580
705357
240
•107143
690
•308036
1140
•508929
1.590
709821
250
•111607
700
•312500
1150
•513393
1600
714286
2G0
•116071
710
720
•316964
•321429
1160
•517857
1610
718750
270
•120536
1170
•522321
1620
723214
280
•125000
730
•325893
1180
•526786
1630 '
727679
2 WO
•129464
740
•3.30357
1190
•5312.50
1640
732143
300
•133929
750
•334821
1200
•.535714
16.50 1
736607
310
•138393
760
•339286
1210
•540179
1660 1
741071
320
•142857
770
•.3437.50
1220
•.544643
1670 1
745536
330
•147321
780
•348214
1230
•549107
1680 '
750000
340
•151786
790
•3.52679
1240
•553571
1690;
754464
3.50
•1562.50
800
•357143
12.50
•5.58036
1700 •
758929
350
•160714
810
•361607
1260
•562500
1710,
763393
DECIMAL EQUIVALENTS OF EXGLI:^H ^-VEIGHT-
Table of
IHE DECIiTAL EariTALEXTS 01
Paris of |
A Tox (concluded).
Lbs.
Decimals
of a Tou
Lis.
Decimals
of a Ton
•825893
Lbs. ,
Decimals
of a Ton
Lbs.
Decimals
of a Ton
1720
•767857
1850
1980 !
•883929
2110
-941964
1730
•772321
1860
•830357
1990;
•888393
2120
-946429
1740
•776786
1870
•834821
2000 ■
•892857
21.30
•950893
1750
•781250
1880
•839286
2010 '
•897.821
2140
•955357
1760
•785714
1890
•843750
2020:
•901786
2150
•959821
1770
•790179
1900 ;
•848214
2030 ;
•9062.50
2160
•964286
1780
•794643
1910 1
•852679
2040
-910714
2170
•968750
1790
•799107
1920 :
•857143
2050
-915179
2180
•973214
1800
•803571
1930 i
•861607
2060
•919643
2190
•977679
1810
•808036
1940 [
•866071
2070
•924107
2200
•982143
1820
•812500
1950 1
•870536
2080,
•928571
2210
•986607
1830
•816964
I960!
•875000
2090 !
•933036
2220
•991071
1840
-821429
1970
-879464
2100
•937500
2230
•995536
1
2240 lbs. = 1 ton \ \
0Z3.
Decimals
of a Lb.
Ozs.
Decimals
of a Lb.
Ozs.
Decimals
of a Lb.
Ozs.
Decimals
of a Lb.
•765625
1
4
•015625
4i
•265625
8i
•515625
121
i
2
•0312.50
4i
•281250
8,^
•531250
m
•781250
3
4
•046875
4f
•296875
8f
•546875
•796875
1
•062500
5
•312.500
9
•562500
13
•812500
H
•078125
H
•328125
H
•578125
13i
•828125
U
•093750
5i
•343750
n
•593750
13^
•843750
If
•109375
5f
•359375
9f
•609375
13f
•859375
2
•125000
6
■375000
10
•625000
14
•87500O
9i
~4
•140625
6i
•390625
lOi
•640625
^^
•890625
91
"1
•1562.50
6* i
•406250
lOi
•6562.50
14^
•906250
93
-"4
•171875
6f
•421875
lOf
'671875
lif
•921875
3
•187500
7
-437500
11
•687500
15
•937500
3i
•203125
n \
-453125
lU
•703125
m
•953125
3*
•218750
1^
' 2
•468750
lU
•718750
15i
•96875(1
3J
•234375
7f
•484375
llf
-734375
m
•984375
4
•250000
8
•500000
12
-75n(i()0
16
1-000000
f^ , Decimals
'■^^- : Of a Ton
Qrs.
Decimals
of a Ton
^ Decimals
'^^- of a Ton
3 i -037500
^ ■ Decimals
'^^=- of a Ton
1 i -012500
2
-025000
4 1 -050000
Cw-ts.
Deciniiil.-
of a Tor
•050
•100
•1.50
•2(H)
Cwts.
5
6
7
Decimal.-
of a Ton
^Too"
•300
•350
•400
wts.
9
10
11
]2
[decimal-
of a Toi
•4.50
•500
•550
•600
•%rts.
13
14
15
If.
Decinial
of a Tm.
•6.50
•700
•7.50
-800
:'\vts.
17
18
19
20
Deciii.ol.-
of a T. ai
-850
-900
•950
1-000
1
2
3
4
DECDIAL EQUIVALENTS OF PARTS OF THE FOOT. 139
H
O
o
w
H
o
OQ
o
M
CO
l-l
>
Q
H
H
■<
•—I
o
M
Or-(Coec-*u5«ot-cociOt-i
?— 1 T— I
a
H
C
>
O
m
H
S^
>
►—1
<
Q
P3
a
H
o
<1
O rH ?q
'J
rlll-l
— 'inco— imco— 'oco^^mx
OO-M-fiOD-^-^OO-^'-fCO^-rti
t^ :^ -:f^ :m — c: t- vr -!f 7-1 -^ c^
O';^(7^tC'T^-*O^lr~00ClCi
-1-
1
1 o n rj
p^iN ! in oo -M
«H 1 O m C-
Sp O CI
1
-ID
-1-
Hoc
C: rctc:c:^t:oricnoc:rno
5qtOC;7i:cci(MOCi'MccC5
t^iar'5'MOcot-mcncMOco
0"C?qcc-*HTi^io?ot-co Gic;)
Hi
LI la
CO .-H ^
t- — -rjl
t^ -^ -H
CM CO CI
CIS!
1 t-0'fit^O-*t-0'+t-0'*
2b ', o ic cc — ' C CO o o rc — O CO !:b
h— ' T ^^ ^!^ 1*^ "f' "P 'r' "T" "^ 9^ -?
o m t^
.1;, '^ TT: rc.
-H m CO — 1
i^ »o Cl
-12
w|^
incO'Miococ^icaoiMmoocN
(MiOCi(MOCiO^KlC5iM»Ori
>£> -r« oq —1 Ci t^ 5C, -+ >i — ' r; t^
O-— i!MreCC'*»O«pb-C0C0w^
rtlH
m 'Tt^ (M o r: t^ o -t- c-1 o r: i~~.
O"— iST IC CO (M O OO
lOCC— 'OCOOOcncrtOGO?©
Or- iT ic r; -M o ~ "M »r: ~ m
^Irti — ~co!X)'+icc-HC:cOiC-hrc
jpcpr-i^icp-+ioocpb-aoc-.
-IS
pOr-l(>)cp-^iO»OtOt^OOCi
rx> —> ~v
9 ? 9
ID
1-
nco — ICCO-^
H IOCOt>-lCcniMOCOt^mCC!?-1
OOr^jqcp^jpiotot^coci
o
S £3 -^
O
1 omb-orct-o«b-ocot-
^ Ocotcont — ococcmcn— ' ^~'
O cp -^ ->! rp -^ ip »p :c t- CO Ci 1
c
1— 1 — H
M
O -H d
140 DECIMAL EQUIVALENTS OF PARTS OF THE INCH.
Table of the Fractional Parts of the Inch, "with
thlir c0rresp0nl>ixg decimals.
Decimals
Fractions
0078125
01.56250
0234375
0312500;
0390625
0468750
0546875
0625000
0703125]^
0781250!io •..
0859375!!^ •••
0937o00iTis ^
1015625:^ A
1093750,1^ i.
1171875|J« i^
1250000 i •••
1328125 i ...
1406250 ^ ...
1484375 ^ ...
1562500 i s'o
1640625 ^ ^
1718750 i sV
1796875 i Jo
'1875000t| ...
■1953125Ji='6 •••
•2031250,^6 •••
•2109375lil; ...
•2187500'i|, ^
•2265625|l| i
•23437.50 i^ ^
■2421875
•2500000
•2578125
26562,50
•2734375
•2812.500
•2890625
•2968750j i
•3046875; i
31 2.5000' y\
3203125 ^^
;-2s! 1250^1^
1
••• 12S
J_
6i •• •
J 1_
G-i- li2.s
R4 •••
J, 1_
G4 12b
JL l_
6-i 1-24
_1
1-2-
J 1
G-i V2-
... 1^,
_1_
64 •••
1 1
64 1-J-J
••• lliS
J._
64 •••
JL J._
64 12-<
1
64 '••
1 1
(i4 12S
1_
••• 1-2S
JL
64 •••
J^ _1_
64 128
••• 12rt
_1_
64 •••
_1 1__
64 12S
64 •••
J 2_
64 12«
_1_
... ^,_,s
Decimals Fractions
1
32
32
JL_
32
•3359375;i%
•3437o00'i>
•35 15625' j^6
■3593750 1^
3671875 j|
■3750000; f
3828125' f
39062.50 t
3984375; f
4062500, t 35
4140625! ^ 3^
4218750| I sV
4296875! f 3^-
4375000 T^ ...
4453125 1^ ...
4531250^ ...
460;:»375,^'^ ...
4687.500^ ^\
4765625,^ i
4843750|Y^^ -3^
■4921875!^ ^
■5000000; i .,
•.5078125 1 ...
•51562.50' '
.5234375
•.5312.500
•5390625
.54687.50
•5546875
•5625000;^;^
•5703125;^
-.57812.50,^
•5859375^
•.5937.500!^
•6015625; f^
•6093750|f^
•6171875 fs
•6250000
•6328125
•64062.50
•6484375
•6562500
•66406-2.5
JL 1
64 12K
1
••■ 128
J 1
64 12 8
1
. . • . • .
t-A!^
1
••• 64
1
1
••' 64
12 8
_1
... io,s
_1^
P4 -..
J 1_
64 12H
64 ••
_1 I
64 12;
1
128
_l 1_
64 1-J8
2
.. .
64
1
1
1
2
64
^•?^^
1
I
'A
3?,
. . •
1
1
1
■A
3?,
v?~
1
1
1
■^
3-,',
64
1
1
i
32
64
128
J. 1
6 4 12^
64 •••
JL _1_
64 128
64 • • •
J 1_
64 128
Decimals
Fractions
6718750' f
6796875: f
687500011
6953125^
70312.50 iw
710937511
7187500ii
7265625;i|
734375011
7421875iH
7500000! f
7578125 f
7656250! f
7734375
7812500
7890625'
79687.50,
8046875
812.5000!^
8203125
82812.50'il
8359375!i|
8437500'|f
8515625!f
8593750|^
8671875|f
8750000
8828125
8906250
8984375
9062500
9140625j
92187.50
9296875!
9375000 if
94.53125|}|
9.5312.50^1
9609375 if
9687.50011
976562511
984375011
992187511
OOOOOOO 1
128
1
. . •
64
1
1
64
128
1
39
• . ■
i
1
3-:>
-\->P
i
1
32
64
3
1
1
4
64
1 -.' 8
:i
1
4
39
■ • •
3
1
■]
4
32
128
3
1
1
4
39
64
3
I
1
1
4
3 9
64
198
LI*
L3
1
6
...
l-'s
3
1
16
64
3
1
1
6
3 '>
64
...
3
1
J
■>
8
32
64
128
8
■/
1
8
• • •
*• .
T'8
/
1
S
• • •
64
■1
1
1
H
64
198
7
1
H
39
. . .
1
1
1
8
39
^■?H
7
1
1
«
39
64
7
i
1
\
S
32
64
128
_1
64
FOBEIGN MOXKT, WEIGHTS, ASD MEASURES.
141
Table of Foreign Money. Weights, and Measures,
WITH THEIR English Value.
MONEY
Countries
Gold Coins
Value Silver Coins
Talue
Silver Coius
Value
£ s. (!.
s. cl.
S. (1.
Austria
8 florins
15 10 2 florins
3 Hi
I florin
H
Bombay
Mohur
19 2 Rupee
1 lOi
I rupee
4
China
—
— Tael
6 S"
3Iace
7
Denmark
20krondaler
I 1 Hi 4krondaler
4 5J
Krondaler
1 li
France'
20 francs
15 10 n fi-ancs
3 11
Franc
9i
Germany
20 reichs-
, 5 reichs-
20 pfennige
2|
mark
10 mark
5
Greece
20 drachma
15 10 5 drachma
3 10
Drachma
9i
Holland
Ryder
1 5 1 1 Guilfier
1 8
25 cents
5'
Madras
Molinr
1 9 2 i Rupee
1 lOi
\ rupee
5i
Portugal
5 milreas
13 4. 500 reas
2 2'
50 reas
2|
Russia
)0 roubles
1 12 2| Rouble
3 \l
25 copecs
^\
Spain
20 pesetas
15 10 5 pesetas
3 Hi
Peseta
9i
Sweden
2it krondaler,
1
1 1 Hi 4 krundaler
4 5i
Daler
H
^ ' " 1
Countries
•
LENG
TH
_
Measure
Length
Measure
Length
Measure
Length
Inches
Feet
Miles
Au-tria
Fuss
12-445
Klafter
6-2226
Meile
4-7142
Bombay
Hath
18
Guz
2-25
China
Chik
14-1
Yau
117-5
Li
•3458
Denmark
Fod
12-357
Abi
2-0595
Miil
4-6807
France
Metre
39-3704
Decimetre
32-809
-Myriametre
6-2138
Germany
Fuss
12-357
Ruthe
1-2-357
Postmeile
4-68U7
Greece
Attic foot
12-10
Stadium
600
—
Holland
Palm
3-93704
Elle
3-2809
:,Iijle
-6214
Madras
Covid
18-6
—
—
Portugal
Palmo
8-656
Vara
3-6067
ilil
1-2786
Russia
Archine
26
>ac line
7
Verst
-6629
Spaiu
lie
11-128
Vara
2-782
Legua
4-2152
Sweden
Fot
H-Gy04
Famu
5 8452
Mil
6-6413
LIQUID CA
.PACITY
Countries
Measures
GaUous
Measures
Gallons
Measures
GaUons
Austria
Kanne
-1557
Viertel
3-1143
Eimer
12-4572
Bomba}'
Adtnilie
1-515
Para
24-24
Camlv
193-92
China
1 thingtsong
•12
Tau
1-2
Hwuh
12
Denmark
jPott
-2126
Viertel
1-7008
Anker
8-2914
France
Litre
•2201
Iifcahtre
2-2009
Hectolitre
22-0097
Geruiany
Quartier
-252
Anker
7-559
Eimer
15^118
Gi-eece
—
—
Metretes
8-488
Hcilland
Kan
•2201
—
—
Vat
22^0097
Madras
Puddy
•338
Marcal
2^704
Parah
13-52
Portugal
Canada
•3034
Pote
1-8-202
Almude
3-6405
Russia
i Vedro
2-7049
Anker
81147
Sarokowaja
324-588
Spain
Qimrtillo
•1105
Azumbre
•4422
Arroba
3-5380
Sweden
•■ Stop
1 -2878
Kauna
•575G
Tunna
27-6288
' France, Italy, Belgimu, and Switzerland have perfect reciprocity in their
currency.
142
FOREIGN MONEY, WEIGHTS, AND MEASURES.
Table
OF Foreign Monet, Weights, and MEAsrREs, |
WITH THEIR English Yalpe ^concluded).
Countries
DRY CAPACITY 1
Measiire
Contents
Measure
Contents
Measure
Contents
Quarters
BusIjcIs
Bushels
Austria
Viertel
•4i'3o
^letze
1-6918
Muth
6-3442
Bombay
Adoulie
•1893
Parah
3^03
Candy
3-3
China
Shimrtsong
•02
Tau
•2
Hwuh
•25
Denmark
Fjerding
•&5G7
Tonne
3-82G8
Last
10-5235
France
l)ecalitre
•2751
Hectolitre
2-7511
Kilolitre
3-5(4
Germany
Tiertel
•3780
Sclieffel
1-5121
Wispel
3-4022
(Treece
Bachel
•753
Kila
•9152 IStaro
•28l4
Holland
Schcpel
•2751
Mudde
2-7511
Last
10-317
T^la.iras
Puddy
•0423
l\irali
1-69
Garce
16-9
Portugal
Alqueire
•372
FauL^a
1-4878
Moio
2-79
Russia
Pajak
P4426
Osmin
2^8852
Tschfctwert
•7213
Sjiaiu
Almude
■12!)2
Fanega
1-5503
Caliiz
2-:)-2r4
Sweilen
Kaniia
•0720
Spanu
2-015
'I'nnna
-'(.:-;:,T
Countries
WEIGHT
Name
Weiglit
Name
Weight
Name
Wcigl.t
Tons
Lbs.
Lbs.
^Vusti-ia
Pfund
1-2352
Centner
12-352
—
—
Bombay
Seer
•7
Maund
28
Cand^-
•25
<""nina
Tael
•0833
Cattv
1-333
Pecul
•05r5
Denmark
Mark
•5514
Fund
11029
skippund
•1575
France
Kiliigramme
2^2()46
Quintal
220-46
Tonne
•f842
Germany
Pfund
1-0311
Centner
113 426
Schiffi)fiind
•15l!t
G reece
Pf.und
•8811
Uke
2^8
Cantaro
•05
Holland
Pon-1
2^2046
—
— .
—
r^ladras
Sejr
•G25
Maund
25
Candy
-2232
Portugal
Arratel
10119
Arroba
32-3795
*,)uintal
•051.-;
Russia
Fnnt
•90-?64
Pud
36-l()56
Piicken
•48 3 U
•045:^
Spain
Marco
■5072
Libra
1-0144
Quintal
Sweden
Skalpund .
•'J376
Lispnnd
18-752
Skeppund
■K,:. J
ENGLISH COINS.
Pound Steeling.
Pure g-old in sovereign = llo-QOl Tror grains.
Copper alloy in sovereign = 10-273 ,,
Fineness of sovereign =22 carats = '^161.
Total weight of sovereign = 123-278 Troy grains.
Silver.
Weight of pure silver in haJf-crown = 201*8 Troy grains.
„ „ sliilling = 80-7 „
,, „ sixpence = 40-8 ,,
Total weight of shilling = 87-273 „
A pound Avoirdupois of copper is coined in 24 pence or 48
halfpennies.
MECHANICAL PRIXCIPLES.
143
MECHANICAL PRINCIPLES.
Resultant and Eesolutiox of Force.s.
1. To find the re^jiUant of t7vo fin'ces acting tln'oiKjli one point
hut not in the .tame direction. (Fig. 118.)
Let AB, AC represent the two Fig. 118.
forces P and Q acting through the
point a; complete the parallelo-
gram ABCD : then its diagonal ad
will represent in magnitude and
direction the resultant of the two
forces p and Q. '" Q
E = resultant. = angle P makes with q.
a = angle R makes with Q. /3=aniiie R makes with p.
R = ^/p- + Q- + 2.p,Q . cos (
sni 0-
R
sin a = sin v -
Fig. 110.
2. To find the resnJtant of any iiinvher of force,^ actinr/ in the
sam^ plane and titrough one point hut not in the same direction.
(Fig. 119.) .
Let p, p,, Pn, P3 be the forces
acting through the point of
application o ; commence at o
and construct a cbain of lines
OP, PA, AB, BC, representing the
forces in magnitude and paral-
lel to them ; let c be the end
of the chain : then a line R
joining oc will represent in
magnitude and direction the
resultant of the forces P, Pj, Po,
and P3.
Kote. — Tliis geometrical pro-
blem is true whether the forces
act in the same or in different planes.
E = resultant.
9 = angle made by e with a fixed axis ox.
a. «„ a„, Sec. = angles made by the forces p, P,, p.„ Sec, with OX.
2x = sum of the series of p . cos o + p, , cos a^ +'p., . cos «.,, &c.
2r = sum of the series of P . sin « -t- Pj . sin «, + p.f. sin a.,, Sec.
E . cos e^Sx. R=. ^/(5x)M^(5v)^
H . sin e = 2y.
tan e= —
2y
2x
cos e= —i
R
sm e=^-.
R
144
MECHANICAL PRINCIPLES.
Fig. 120.
3. To find the re,mlta7it of three forces acting throwpi one
point and mailing right angles with one another. (Fig. 120.)
Let OA, OB, oc represent in magnitiida
and direction the forces x, y, z acting through
one point o ; complete the rectangular solid
AEFB : then its diagonal OG will represent
in magnitude and direction the resultant
of the forces x, Y, z.
R = resultant.
a, j3, 7 = the angles R makes with x, Y, Z,
respectively.
Y = R . cos j8.
z = R . cos 7.
R= A/'X2 + Y- + Z2
X = R . COS a.
4. To find the resultant of any nuniher of forces acting through
one point in different directions and not in the same plane.
Let P, P], p.,, ^Ncc, he the forces a, /3,7 ; Oj, jS,, 7, ; a,, 3,, 70, the
angles their directions make u'ith three axes passing through
the point of application and making right angles with one
another.
33
R
= resultant
CJD
c
2x
= p
cos
a + Pj . cos
a
+ Po
. COS a., + &C.
2y
= p
COS
/8
f Pj . cos
)3
+ P,
. COS )3o + ice.
2z
= p
cos
7
■1- pj . cos
R =
cos a =
COS /3 =
7
a/
+ P,
. cos 72 + &c.
c 2
m ^
!Z5
:2x)-^
2x
R
2Y
R
+ (2Y/-r(2Z)^
,
cos 7 =
2Z
r'
Fig.
P
121.
Parallel Forces.
^ coxiple consists of two equal forces, as P and Q (see fig. 121),
acting in parallel and opposite directions to one another, and is
tei-med a right- or left-handed couj^le, according to
whether the forces tend to turn the rigid body in a
right- or left-handed direction.
The moment of a couple is the product of either of
the forces into the perpendicular distance ab between
the lines of direction of the forces. The distance ab
t is termed the arm or lever of the couple.
a
5. To find the resultant moment of any numher of couples
acting upon a body in the same or parallel planes.
KuLE.— Add together the moments of the right- and left-
MECHANICAL PRINCIPLES.
145
handed couples separately; the difference between the two sums
will be the resultant moment, which will be right- or left-handed,
according to which sum is the greater.
6. To find the resultant of two parallel forces. (Figs. 123
and 123.)
The magnitude of the resultant of two parallel forces is their
sum or ditference, according to whether they act in the same or
contrary directions.
Let fig. 122 represent a case
in which the two forces act in ^ig. 122. Fig. 123.
the same direction, and fig. 123
a case in which the components
act in opposite directions.
Let AB and CD represent the
two forces ; join ad and cb,
cutting each other in e ; in DA
(produced in fig. 123) take DP
= BA; through F draw a line
parallel to the components;
this will be the line of the
resultant, and if two lines dg
and AH be drawn parallel to
EC, cutting the line of action of
the resultant in G and h, gh
will represent the magnitude of
the resultant.
DC . AD _ AB . AD
AF =
GH
DF =
GH
7. To find the resnltant of any number of parallel forces.
Rule. — Take the sum of all those forces which act in one
direction, and distinguish them as positive ; then take the sum
of all the other forces which act in the contrary direction, and
distinguish them as negative. The direction of the resultant
(positive or negative) will be in that of the greater of these two
sums, and its magnitude will be the difference between them.
8. To find the jJosition of the resultant of any nxiniber of parallel
forces when they act in two contrary direotioiis.
EuLE. — 1st. Multiply each force by its perpendicular distance
from an assumed axis in a plane perpendicular to the lines of
action of the forces ; distinguish those moments into right- and
left-handed, and take their resultant, which divide by the result-
ant force : the quotient will be the perpendictilar distance of
that force from the assumed axis.
2nd. Find by a similar process the perpendiciilar distance
of the resultant force from another axis perpendicular to the
first and in the same plane.
146 CENTRE OF GRAVITY OF BODIES.
CENTRE OF GRAVITY.
1. To find the moment of a hodi/n weight relatively to a given
l)l/ine.
Rule. — Multiply the weight of the body by the perpen-
dicular distance of its centre of gravity from the given plane,
2. To find the common centre of gravity of a set of detached
bodies relatively to a given plane.
Rule. — Find their several moments relatively to a fixed-
plane ; take the algebraical sum or resultant of those moments
and divide it by the total sum of all the vi^eights : the quotient
will be the perpendicular distance of the common centre of
gravity from the given plane.
Note. — When the moments of some of the weights lie on
one side of the plane, and some on the other, they must be dis-
tinguished into positive and negative moments, according to the
side of the plane on which they lie, and the difference between
Ihe two sums of the positive and negative moments will be the
resultant moment. The sign of the resultant will show on which
side the common centre of gravity lies.
Let 7V, w\ w"^, &c. = the several weights.
d, d\ d\ &c. = the several perpendicular distances of the
centres of gravity of w, n-\ iv^, &c., from the plane of m.oments.
D = the perpendicular distance of their common centre of
gravity from the plane of moments.
n-d + w^d^ + rv^-d"^ + &c.
Ji
fV+7V^ + 7V'-^ + &:c.
3. H) find the centre of gravity of a body consisting of parts
of unequal heaviness.
Rule. — Find separately the centre of gravity of these several
parts, and then treat them as detached weights by the foregoing
rule.
4. To fnd the distance through ovhich the common centre of
iiravity of a set of detached weights moves when one of those tveights
is shifted, into a new position.
Rule.— multiply the weight moved by the distance through
which its centre of gravity is shifted ; divide the product by the
sum total of the weights : the quotient will be the distance
through which the common centre of gravity has moved in a
line parallel to that in which the weight was shifted.
Let w — weight shifted.
<^ = distance through which w was moved.
W = sum total of weights.
D = distance through which the common centre of gravity
has moved in a line parallel to that in which the shifted weight
was moved.
^ wd J DW
W W
LAWS OF MOTION. 147
LAWS OF MOTION.
Iinpidse is the product of a force into the time during which
it acts.
Momentum is the product of the mass of a body into lis
velocity.
The mass of a body is equal to its weig-ht divided by the veln-
ciTv which that weight produces during one second of unresisted
fall.
Geavity.
g = force of gravity in feet per second.
I = latitude of the place.
//. = height above the level of the sea.
r =radms of earth in feet = 20,900,000 feet.
^ = 32-1695 {1 --00284(003 2Z);Cl-^^'Y
If 21 be obtuse, then
. ^ = 32-lG9o[l + -002S4(cos 180-20](l- ~^'\
Unifoem Acceleeatixg Force.
w = weight of body.
M = mass of boch'.
F = accelerating force, orunbalanced effort.
I = impulse exerted by F.
E = energy exerted by F.
t =time during which F acts in seconds.
d = distance through which F acts in feet.
V = original velocity.
v' = increased velocity.
g = force of gra\'ity = 32-2 nearly.
m = mean velocity.
^x(r' — !•')
1 = F^ = ii(f' — v) — — ^^ = increase of momentum.
r7
■E = Fd = Ftm = — ^^ '' = ■ ^ ^ »
2 2g
UXIFOEM PiETAEDIXG FOBCE.
The foregoing formula will apply in this case, with the excep-
tion that r — v' must be used instead of v' — v, and V' — v'"^ instead
r'- — v-, F denoting the retarding force and E denoting the work
performed.
l2
148 LAWS OF MOTION.
Velocity of Falling Bodies.
Ji = height or depth of fall in feet.
t =1 ime of fall in seconds.
V = velocity acquired at end of time t.
/J = accelerating force of gravity = 32-2 nearly.
r = ^i = y=y2^A; 7i= ^--^X^^^' ^- \/ g~g~v'
The velocity acquired by a body falling down an incline is
equal to that which it would acquire in falling down its perpen-
dicular altitude (see fig. 124).
t =time falling from b to A in seconds. Fig. 124.
I = length of incline ba in feet.
h = altitude of incline bg in feet.
g = accelerating force of gravity = 32-2
nearly.
Wgh'
Fig. 125.
If a chord bc be drawn from either extremity of
a vertical diameter ab of a circle, the time of descent
of a body falling down the chord bc will equal the
time of descent down the diameter ab (see fig. 125).
KoTATioN Accelerated axd Retarded.
Accelerated.
W = weight of body in lbs.
M = moment of accelerating force in foot lbs,
E = energy exerted.
V —original angular velocity.
v'' = increased angular velocity.
6 =the circular motion during the action of the force in
circular measure.
n = original speed of circular motion in turns per second.
%' = increased speed of circular motion in turns per second.
r = length of arm at the end of which w revolves in feet.
t =time during which M acts in seconds.
g = force of gravit3' = 32-2 nearly.
„^ v>'r-(v' — v) 27rW/'-C?/ — w)
Mc = ^= — = ^^ ~,
9 9
2 2g 2g
LAWS OF MOTION. 149
Retarded.
Use the same notation as for acceleration, but substituting
moment of retarding farce tor moTnem. of accelerating forre, di-
mi/iutiofi for increase of velocity and its squsire, and worli jjtr-
formed for energy exerted.
Moment of Ixertia of Weight and Radius of Gyration.
(See also pp. 78-81.)
m, m', vi", &c. = weight of indefinitely small particles com-
posing the body.
d, d', d", «fcc. = respective distances of 7n, m', m", ko,., from a
fixed axis.
W = weight of whole body = m + m' + m " + .tc.
I = moment of inertia of w about a fixed axis. -
R = radius of gyration.
K = ^/ 1 . I = vid- + wVZ'2 + m"d"- + &c.
Impulse on a Free Solid Body.
A single impulse acting on a body through its centre of
gravity impresses a motion of translation in the direction of
the impulse.
v = velocity of translation in ft. per second.
P = force applied.
^ = time during which F acts in ft. per second.
ff = accelerating force of gravity = 32-2 nearly.
w = weight of bodv.
7V gt
The imimlse of a conple impresses on a body a motion of
rotation about its centre of gravity.
A = angular velocity in circular measure.
L = linear velocity produced by one of two impulses.
F = force applied.
w = weight of body.
I = moment of inertia of w.
E- = square of radius of gyration.
Z = length of arm of couple. -
m = moment of couple.
f = time during which F acts.
g = accelerating force of gravity = 32*2 nearly,
_ mtg _Yltg _'lI
~ I WR2 e^*
uo
LAWS OF MOTION.
Fig. 126.
IXSTAXTAXEOUS AXIS.
If P (fig. 126) be the point of application
of a single impulse (produced by a force f)
acting through a line PA, not traversing the
centre of gravity of the rigid body, and x
be the position of the instantaneous axis,
the body will rotate round x instead of
round its centre of gTavity g.
^7 = perpendicular distance of G from pa.
V = velocity of translation produced by a single impulse
acting through G in a line GE parallel to PA, and equal to the
single impulse acting through P (see foregoing formulas).
A = angular velocity of rotation around G or x, produced by
the impulse of a couple of the force f and arm d (see foregoing
formulae).
D = distance of x from g, measured perpendicular to PA.
R- = GC = square of radius of gyration of body set off perpen-
dicular to BG.
D = I = ^.
A d
Table Giving
the Lengths of Pendulums
IN Inches 1
THAT Vibrate Seconds
IN Yaeious Latitudes. |
Sierra Leone
39-01997
New York
39-10120
Trinidad
39-01888
Bordeaux
39-11296
]\Iadras
39-02630
Paris
39-12877
Jamaica
39-03.503
London
39-13907
Eio Janeiro
39-013.50
Edinburgh
39-1 .5510
Simple Pendulum.
L=length of pendulum in feet.
T=time of one vibration in seconds.
K= number of vibrations per minute.
5r=force of gravity=32-2 nearly.
71=3-14:16 nearly.
j._60yT^i08:36__
L=5r(iy = -326T\
T=7rv/-=-554VL.
&
The length of a pendulum vibrating seconds at 4-5° latitude equals 39-11346
ins. nearly. In latitudes less than 9(P the length equal? 39-11 34H [l--«t^84
(cos -2 lat.)]. In latitudes exceeding 90° the length equals 39-11346 [1 + -U02a4
(C03 •130='-2 lat.)].
DISPLACEMENT.
151
Deviating axd Centeifugal Foece.
F= deviating force of body revolving in a circle at a uni-
form speed.
w = weight of body.
N = number of revolutions per minute.
n = number of revolutions per second.
V = linear velocity in feet per second.
a = anerular velocity in circular measure per second.
r = radius of circle in feet.
^ = accelerating force of gravity = 32-2 nearly.
gr g g "Sioi 2935
Centrifugal force is exactly equal and opposite to the deviating
force.
Revolving Pexdulum (Fig. 127).
F == de\"iating force.
TV = weight of bob.
N = number of revolutions per minute.
n = number of revolutions per second.
Ji = height of pendulum in feet.
r = radius of circle in feet.
g — accelerating force of gravity = 32-2 nearly,
\\r _ q _-815J:_ 2935
Fig.
127.
//
//
TV
1 /
(
^tt
..^"^
^<^ ^
Computation of a Ship's Displacement.
This consists in computing the volume of the body of the
vessel below the water-plane, up to which it is required to know
her displacement, by one of the rules used for finding the volume
of solids bounded on one side by a curved surface (see pp. 44, 45).
Two processes are generally made use of in computing a vessel's
displacement, as the calculations in each process are required to
determine the position of the centre of gravity of displacement,,
or centre of buoyancy, and also because the two results are a
check on the correctness of the calculations.
One process consists in dividing the length of the ship on
the load water-line by a number of equidistant vertical sec-
lions, computing their several areas by one of Simpson's rules,
and then treating them as if they were the ordinates of a new
curve, the base of which is the load water-line.
lo2 DISPLACEMENT.
The other process consists in dividing the depth of the vessel
belov/ the load waier-line bv a number of equidistant longitu-
dinal planes parallel to the load water-line ; the areas of their
several planes are then computed by one of Simpson's rules,
and those areas are treated as if they were the ordinates of a
new curve, the base of which is the vertical distance between
the load water-line and lirst lowest longitudinal plane.
As the vessel generally consists of two symmetrical halves,
the volume of only half the vessel, below the load water-line, is
calculated, the ordinates all being measured from a longitudinal
vertical plane at the middle of the ship.
For example of displacement papers see pp. 155 and 156.
Detehmixatiox of a Ship's Cextee of Buoyancy for
THE Upright Position.
The centre of buoyancy is also termed the centre of gravity
of displacement, as it occupies the same point as the centre of
gravity of the volume of water displaced by the vessel, and its
position is determined by the rules used for fixiding the centre
of gravity of solids, bounded on one side by a curved surface
(see rules, pp. 76 and 77), with the exception that its position need
only be determined for its vertical distance from a horizontal
plane, and its horizontal distance from a vertical plane ; for the
ship consisting of two symmetrical halves, it mttst necessarily
lay in the longitudinal vertical plane in the middle of the ship.
Calculation of the centre of buoyancy is generally performed
on the displacement paper (see pp. 155 and 156).
Vertical Height of Transverse Metacentre above
Centre of Buoyajs^cy for Upright Position.
The transverse metacentre of vessel for all angles of heel
always lies in a longitudinal vertical plane bisecting the ship,
and vertically over its corresponding centre of buoyancy ; its
vertical height above the centre of buoyancy for its upright
position is found by dividing the moment of inertia of the load
water-plane relatively to the middle line of the vessel by the
volume of displacement (see pp. 165 and 175). This calctilation
is also generally performed ujDon the displacement paper (see
p. 155).
Curve of Areas of Midship Section.
This curve (see fig. 12S) is used to determine the area of the
immersed part of the midship section of a vessel at any given
draught of water.
Method of Construction. — Compute the areas of the midship
section from the keel up to the several lougittidinal water-planes
CURVES OF CAPACITY.
Fig. 128.
Ktrale- oj areas
Fig. 129.
153
which are used for calculating
the displacement ; set these
areas off along a base line as
ordinates, in their consecutive
order, the abscissae of which re-
present to scale the respective
distances between the longi-
titdinal water-planes : a curve
bent through the extremities
of these ordinates will form
the required curve.
Curve of Displacement.
This curve is used to determine the displacement a vessel
has at any draught of water parallel to the load water-line
(see fig. 129).
Method of Construe-
tiofi. — This curve is
constructed in a simi-
lar manner to the fore-
going curve, with the
exception that the or-
dinates represent the
several volumes of dis-
z?" placement (in tons of
$caie of Torvs 35 cubic feet for Salt
water, and 36 cubic
feet for fresh water) up to their respective longitudinal water-
planes.
Curve of Toxs per Inch of Immeesiox.
^^<^- 120. This curve (see fig.
130) is used to deter-
mine the number of
tons required to im-
merse a vessel one
inch at any draught
of water parallel to
the load water-plane.
To find the dis-
-^-^ — y-= placement per inch in
ScaJe. cf Jons 1 • J- r i
cubic feet at any
water-plane, divide the area of that plane by 12 ; and if the dis-
placement per inch is required in tons, divide by 35 or 36, as
the case may be.
A=:rarea of longitudinal water-plane in square feet.
T = tons per inch of immersion at that water-plane.
T =
12x35
for salt water : T =
12x36
for fresh water.
154
COEFFICIENTS OF FINENES;
Jlethfld of Co nsto' notion. — This curve is also constructed in a
similar manner to the two foregoing curves, with the exception
that the ordinates represent to scale the tons per inch of im-
mersion at the respective water-planes.
COEFFICIEXTS OF FINENESS.
Tff^ coefficient of fineness of displacement of a vessel is the
ratio that the volume of the displacement bears to the paral-
lelopipedon circumscribing the immersed body.
V = volume of displacement in cubic feet.
L = length of vessel at load water-line in feet.
B = extreme immersed breadth in feet.
D = draught of water in feet.
K = coetficient of fineness.
K:
L X B X D
The coeficient of fneness of a midsldp section, or of a water-
plane, is the ratio which their respective areas bear to that of
their circumscribing rectangle.
To determine the mean coefficient of all the nater-plane^ of
a ship.
Rule. — Multiply the immersed area of the midship section
by the length of the load water-line, and divide the volume of
displacement by the product.
Table of Coefficients of Fineness.
■>:3
S-l
■s.
Class of Sliip
SB
a
o
O
o aj
.a.
07
o
Feet
Feet
c-r
Or-
OS
cl
Feet
Fast steamer, H.^NI. Royal Yacht
m^y)
40-27
14-0
-414
-711
-711
Swift steam ' H.M.S. • Inconstant' .
337 3
50-28
22-75
-483
•787
-614
cniisers 1 H.M.S. 'Yoiage'
27J-0
42-0
19-0
•497
"792
-628
T> ^„i „,„;i ( National Line .
Royal mail \ peninsular and Oriental .
385
42-0
22-0
-659
-880
-800
3.-i8-27
42-5
35-0
18-71
21-0
-516
-687
-812
•850
-635
-840
steamers ( ^^.|,^,. Li^e . . .
35U-0
T,.«-,T^=v„•^= f H.M.«. -Serapis'
Troopships 1 H.M.S. 'Himalaya' .
360-0
49-12
23-5
-470
■674
•700
340-5
46-13
15-75
•400
-680
582
Modern rigged ironol., H.M.S. • Hercules'
32-5
59-0
24-75
•640
•810
-710
Modern nia^tless ( H.M.S. • Devastation'
ironclads t H.M.S. ' Cvclops '
285-0
62-25
26-5
-684
-809
•767
•225
450
15-0
-715
•932
-755
,^ ^ . !,„ 4.^ ' H.M.S. ' Ariel ' .
12.5-0
23
80
-536
•870
-61 1^
Composite gun boats -, jj.m.s. ' Sappho-
160-0
31-33
12-0
-466
•745
•6n3
Small merchant vessels ] ^"^"^
220-0
00-0
27-0
17 5
80
4-0
-702
-637
-912
914
-742
-704
DISPLACEMENT SHEET.
155
Table showixg Method of Computixg a Ship\s Dis-
PLACEMEXT, THE POSITION OF HER CENTRE OF BUOY-
ANCY, ETC., WHEN WHOLE INTERVALS ARE USED.
Waterl AVater
Line 1| Line 2
Water
Line 3
Water
Line 4
Water
Line 5
Siiipsox's Multipliers
11
TFiT
•2
-4hI-J^'—
23
9-:;
"6^ iTs
25;6
99 39-6
39-6
12-3 2rti
W->
13-5 54-0
_o£n
13^ 2r6ll6^ .-m;
25 •«
54-8
128
51-2
10642-4
42-41
25K
1-9 7-6
7-6
2
•8
2
•4
4 2 16-ii
8-4
9-2 IS^
J8j4
13 1 52-4
26
■2i -2
56224
22"4^
43-: _
14-3 57-
57-2
15 3 306 160 320 16-2!32
3n- K'
16^6 m)|i6^ 66^
32-0
16 5 33^0
66-0
32-0l
13-7, 54-8 16 640 16 5 660 165
32
15 731-4
31-4
14-8 59-2
29-6
6 4'12-8 11 5 230 14-5 29-0 15 6
230
5-4 21-6
108
~^
•4
6-8i27-;
6-sj
iOS 2r6|ir9i2?S
11-9I
15-0 "jO-0
15-0
Vertical Sections
47-0
_99-i
l3a-2
66-0
16 4 3F8|l6l[
65-6
16 1641
64-4
5-<-0
9 3 37-
37-2
•2 •
j62 _
16-5|66-
16-
165]33-0
16-5
;36-0
16-5
i60-2
j6^1
163
16-3
15-6
31-
12 6150-4
2.
7-0
1
3U-4
4
413-8
4620
4
488-4
169-9
169-5
164-8
152-9
122-4
68-4
2-4
188-0
198-6
552-8
320-4
x^B
674-8
339-8
678-0
329-6
611-6
24£8
273-6
Metacextre
'■J =^
-3 Z.~
1685-1,
3375 00
4251-52
2-4 112
, 28-8
1492-12
4492- 1;
4410-94
1330-74
ll'57-72
1350000
850304
17968-48
8984-24
17968-46
8«2r88
17322-9t
S796-41| 7o92-Si
200037
~00
8001-48
•00
4416-6=7-0 + 1245-6 + 8276 + 1848-0 +
4 3 _ 2 1
7268-0=28-0 + 3736-8 + 1655-2 + 1848-0 +
4416-6^80
1-64
Vert. Int. 3-812
6-2517
4416-6 )2731 l-fi^
6'^]83
Long. Int. 13-6
102638
4416-6 V73ir6 ) 113291-4
i Vert Int. r2708\--^Long.Int.l6-6
'4 5612-61.')23 I
0[ Long. Int. 166
■6
3)93169-413648-
31056 -47 ^~
2SL' ■
3 ) 188063 "-2'
*62112-9)626.«79^ns
1009
Cub. ft. in a ton 35) 62112-94 *
1774-65 L
C. of Buoy, bihi^ w:l. sLc. of B.iS7nrbkiro5j^«;S^'^^"^« 'l^^-^^. of Buoy.
3 )2018
6-727
Metacentre
,.r- , ' 488-4 /
!s^ ertjnt.l69-9_;|iang. In t. 166 /
29304
Function _lj27oi\
114372 !
114372
76248 I
12708
29304
4«.84
3)8107-44
311-4X1= 311-4
413-8X4=1655-2
4620X1= 462-0
2428-6
7-0X1= 70
311-4X4=1245-6
413-8X1= 4138
1660-4
J Vert. In t. 1-27 1 Vert. Int. 1 -27
3084-322.
Long. Int. 16-6
3 ;51199-745
17066-58
2
7 ^4133^ 6
5)4876-16
at W. L1ne_No. 5j —97543
^sptrio^. L. No. 4 1195-76 ,
7-0X1= 7-0
311-4X3= 934-2
413-8x3=1241-4
462-0X1= 41)2-0
2ti44-6
2116-328 i Vert. In t. 1-43
Long.In t. lH-6 37'*r778
3 )35131-0418 Long.I nt. 16-6
11710-36
2
7)23420^70 .
5 )3.34.V8 1
669-16
Dispt. to \
3)e277ri48
20925-838
7)41851;676
5)5978-81
1195-76
220331 W. Line No. s) Dispt. to
Dispt. to W. Line No. 2
.'W. Line No. 4.
Long. Interval between OrcLuiates=16-fift. Vert. Interval between Water-Lines=3-8125ft.
♦V ^'-'B- The dark figures are the ordinates ; the light fi.nire^ under them and nUo '-.
their right are the products of the ordinate? by their relpecti^e Simpson" niitwD""er. wh-'ch
Srorf, of'h/L'^i^'^^.r*^ "^'^ *£ ^^^ l^f* "f^^'^ table; and if each^rownndoo umn onh^.e
product.be added together, and the results integrated bv the same n.ultipliers as were used
156
DISPLACEMENT SHEET.
^"
^"
>• r
1
1 1 1 1 1 ; 9 1
p i;
1 1 1 1 1 rzz
7) X
o
^
C
c
o c c
c
c
o
cl c 2 c! oo::"i)
=i
S ,9
c
tr
tc
to
pox
«
Oi
>1
to — --^ -'
^ 7"
X
s
t^ X
I-,
'*0 ' ^^ '-C
■^
r- X r ^ >■
3^'
2"*" -"
cc
X
CO
OS 1 t-; IN
Sl^S2
— CO
1<
w
in
N in IN
■"3*
i, ^
3-( <;
"silM ^
>
s|
1
1
1 1
33
II °
,_
^
« T
•,o
t^ X
OS
o
»— ' 1 C»l I C^
2 ■--
3
^^ ^l
^ 1?
X
' 1
1 ;
G -3^
^ /^
■/j ^ o
c c
c
o o ! O C 1 c o
o o o
S '-~ in , 3 sj 5
a c
ii— u T
o re
«
«
O O ■ CO
C>1 t^ 1 c
p PI X
O (T. 1 C>1
CO CO CO
X ^^15 • 1
s ^
cji o
N S 1 CO
Cj O I —
OS IM X
to S; l-ri L-
3 ;^
>— 1 1— «
s
O CO ] to
"1
^12 ^'^
■"Its 1
,H~
•^j e«i
"* 1 e«j ■* *
-V
^
O CO t'*
-T- !■-. ' -^
to 1 X
I>»
<^
-<
^ rc
—
"^
ci o c>i
o ' 7^ ; o
-'!--'-! 1 5! 13 ISl
i3
>
^.5
cc
|o= Oo
O - !o c O - io c: io .- Io o O uo 1 ^ = |0 o 'O c |0 c |0 o O o ' '
■"^
^1—1
-<
^Oc ^2
'Jt i i(M X CD ?5 '^ = ;0 :^i 'LO Ti m 71 1^ - j o iONIO-t. o
H
p
^r
?<
■p O X -J ?1 Uo X h2 j C>1 Uo O 1 — t^ -T M ^o
^
-*<>
>j
i
CO
to o M -J: Jo Ko « o 1 io Ui« CD 1 ■ CD CO CO
o=^
«5
■a" N o N
■n |M
oTlo-
O |N 1^ |_ 1 [
? X Si
O o O - Io e |o = fo o 'O - Io o
Oo'O-lo^lOolo,-, lOr-
nI
:j
^ ■"
X
OO -^^^:r^^^|05x ^LOH (M-i?:-2 m5 coe 'JJ- oo-iic5-2 im-|os|rHSi
»-'
V.
jj
?
1 1 " It-I •" irH -' rH -Vr-I •' rH ■' r-l •' rH ■' rS ■' rH •' ~' \ \
o
"^■"
"*
C ^ 1 =
= 1 5
- 1 o 1 — - ' -
-^
O O O IO 1 o "^ OCOjO
^
X If!
c>) [O
M X 1 5 X 1 fi
C;
O X X l-< o o ■ o
a
_^
'
-r* 1 O
'r~t '-M
-- o -- o 1 —
-r*
o b "^ 1 ' b b I —
X
o
*- o
CO ico — ' ;
x
~ _^
P= Oc OopoPo'O- p-|0- O -!o- 0_i0 = i0c Pc 0-'
(r-*'— '
locic^fciOS Mrtps loox 35- ';3?. :sif. cox oaioei'j^stcq?; H = ;
— |" ■ '03:-: r~t-'6= i:cci >j'6= ib^~ Iih^ ' ' + +
-^
i
1 1 1 |rH""r-lr-H r-l~rHrHrHrH~fl, 1 I
c ;o =
o o
o o
= hn -t*
■p ?)
•o o o
o
■M O
o p
p
7^ CO pco rl
-•'
-^1
1^ CO
5? S'
i r^ ^
■1^
1^ U-
b tc
,Lt
■^ X ! = |
-!■ N
CO
M Ho -
2;
' ■'■■■•je-?(lcr3irti
^ c
iOclOc D^l0=;|0-|0~l0-P = l=i-|0-i0- 0= O = l0c|0o
>
^3
,^ pSIgjx >^kx 05 OpIO = ;;3-;;!:p= 10= Ockfix rHf>
•' ■ ■ c^ o i 2 p 2 '-^ ;; '^ :^ ':<) r 01 -, N r -H ^; ' 6 ■- c~ £ n - " ' * ' "^
^
^^~
o c- o !3 c 1= i~ ,o = j = 1 o 1 c o c: 2 o-^rMS"^!
o >i 7? ' p c ri jo ] ^> X j — ' o 1 ^ -^ M o p 1 = 1 c 1 ■
,^
i- —
^ O c: CO i^ 1 J —' -r j ri -^ ^ — <
1 ~" ' I
r;
■^ i
_ '"■ . — ^.»^^H_ :- _ 1— P' _ 1 _l __ _
to ^ X ' 21 1
^
i?rH
Io = 'O ..o Io u- Io o (O o Io >- Io o Io = Io = !0 = Io >.-: lO o lO ^ lO >.o |0 o
-c,l6 ? jw r |p- r^ 115 r l^'l>"'l>'^ C-"'"5'^' C h h" 1-^ '•' 1-^ h '■=' 1^' '-* H
ij i'f i|
tiUi
!1^-">S 1— In j« 1^ luT |-j5 It^ jx l^-. io \~- l« jrj K 1^
" -^ J^ — - «H
J
►i- c ^— — ^-
DISPLACEMENT SHEET.
157
otsrs ,«— — .
■J>''i |NVB
21^1
S X r5
■ — s
X; 3 W
fci's
?ja 5i
II Mil
s •■
n'-c
i'ld
OX'-
1
XXX
a
"3
' X . I ..- jq , C 5-1
li>.Tir-: — ^ X
TlXt^ 3-. |X tg
CN = xrM«
c ;, - -■- o 1 =
•+»
. — rt £=; -i -T 1 c;
°= iiTiiiTiii
|i^
..- X
o
^
?t«
IS
^
Hf;i
V;
X
t-^
c
ii
;;
«
^
c^
"■
2
s
s
1 '3t-
X
s
11
II || II II II a'""-g S'S|S5§i
2 c.
cili
?1 iC
ci Yi
•^
1
"^
"
--•S
-s
&
;= o
>B
2
t^
t^ o
S >
i;
QC"^
s- 2
2
c o
>- o '-^ ^
158 EXPLANATION OF DISPLACEMENT SHEET.
Explanation of Displacement Sheet. (See pp. 15G and 157.)
The length of the ship at water-line 5 is divided into 14 equal
intervals, and the depth or draught of water* into 4 equal intervals, the
lower two being subdivided into half-intervals (for multipliers for sub-
divided intervals see pp. 39 and 40). The ordinates, or half-breadths,
at the intersections of the vertical cross sections with the horizontal
sections are measured off in feet, and set down in dark figures in rows
opposite their respective cross sections and under their respective hori-
zontal sections, thus forming the numbers into columns.
Each of the ordinates in the several columns are then multiplied by
the ' Simpson's multiplier ' at the head of their column, the products
being set immediately below in lighter ^gure^, and their sums taken in
rows and placed to the right in the column headed 'functions of areas.'
Each of these 'functions of areas' is then multiplied by the ' Simp-
son's multiplier ' proper to its roiv, the products being placed to the
right in the column headed ' multiples of functions,' and their sum taken.f
Then, as a check upon the last result, it is usual to multiply each
of the ordinates in the several 7'ows by the ' Simpson's multiplier ' to
the left of their respective rows, the products being set in the adjoining
column in lighter tigures, and their sums taken in columns and placed
below in the roiv of ■ functions of areas.' f
Each of these ' functions of areas ' is then multiplied by the ' Simp-
son's multiplier' proper to its column, the products being placed below
in the row of ' multiples of functions.' The sum total of these ' mul-
tiples of functions ' should then exactly correspond to the sura total of
the column of ' multiples of functions,' thus proving the correctness of
the calculations thus far. The latter sura is then multiplied by ^ of the
vei'tical interval, and this again by 5 of the horizontal interval between
the ordinates. This last product is then multiplied by 2 for both sides
of the ship, and the result divided by 35 (that being the number of cubic
feet of salt water in a ton), which gives the total displacement of the
ship in tons to water-line 5.
The horizontal distance of the 'centra of buoyancy ' abaft the stem,
or No. 1 section, is then f amd by multiph'ing each of the products in
the column headed 'multiples of fvmcl ions' by its multiplier for
leverage (that lieing the number of intervals the cross section is distant
from Xo. 1 section), the products being placed in the column headed
* products for moments.' The sum total of these divided by the sum of
the column of ' multiples of functions.' and the quotient multiplied by the
horizontal interval, will give the distance of the centre of buo^-ancy
abaft Xo. 1 section in feet. The vertical distance of the ' centre of
buoyancy' below water-line 5 is found by multip lyiug each of the
products in the row of ' multiples of functions ' by its multiplier for
leA'erage (that being the number of intervals the horizontal section is
from Avater-linc 5), the products being placed below in the row of
'products fur moments.' The sum total of these divided by the i-um
of the row of multiy^les of areas, and the quotient multiplied l)y the
vertical interval, will give the vertical distance of the centre of buoy-
ancy below water-line 5 in feet.
* Should tlie vessel have a bar keel, the depth should be taken from top of keeL
t These numbers are only proporffonal to the areas of the vertical or hori-
zontal sectidn* ; but to find the absolute values of the areas of any of these
sections the numbers must be multiplied by J the distance between the ordinates,
aud that product by 2 for both sides.
CENTRE OF GEAYITT OF SHTP's HULL. 159
To Calculate the Position op the Centre of Gravity
OF A Ship's Hull.
To find the centre of gravity of a shij/s hull relatively to any
fixed plane (see p. 161).
Rule. — Find the moments of the component parts of the
ship's hull relatively to the given plane by multiplying the
weight of each part by the perpendicular distance of its centre
of gravity from that plane ; then find the resultant of those
moments by adding together separately the positive and negative
moments (or right- and left-handed moments), and taking the
difference between the two sums ; the resultant will be positive
or negative, according to which moments are the greater. Divide
the resttlt thus found by the total weight of the hull of the
ship; the product will be the perpendiculai- distance of the
centre of gravity from the given fixed plane.
As the centre of gravity of the hull of a ship is generally in
the middle line, it is only necessary, as a rule, to determine its
position relatively to two fixed planes, one being a transverse
vertical plane and the other a horizontal plane, the midship
transverse section and the load water-plane being generally
taken as the two respective planes.
To determine the position of the centre of qramty of the bottom
plating of a shijrs hull when of a nniform thickness throughout.
1. Determine its longitudinal position from a transverse vertical
2)lane as follows (see p. 160) : —
Rule.— Measure the half -girths of the plating at equidistant
stations, as if for measttring its area ; integrate by means of a
set of Simpson's multipliers, and add the results together ; then
multiply each of those fitnctions of the halt-girths "in their con-
secutive order by the figure representing the number of inter-
vals it is from the plane of moments. Find the resultant of
those moments and divide it by the sum of the fttnctions of the
half-girths, and multiply the product by the common interval
between the stations. The restilt will be the perpendicular
distance of the centre of gravity from the given fixed plane.
2. Determine its perpendicular distance from a fixed horizontal
plane by the following rule, providing that all the centres of gra-
vity of the half-giHhs are below the jflane of moments (see p. 160) : —
Rule. — Measm-e the half -girths as before ; integrate them by
means of the same set of Simpson's multipliers,"and add the
results together ; then multiply each of those functions of the
half-girths in their consecutive order by the respective distance
of its centre of gravity from the given plane ; add together the
products and divide the result by the sum of the functions of the
half-girths: the result will be the perpendicular distance of
the centre of gravity from the horizontal plane.
N.B. AVhen the frames of a ship are of a uniform character,
and are placed at equidistant intervals, their common centre
of gravity may be determined in the same way by means of the
two foregoing rules.
160
CENTRE OF GRAVITY OF SHIP 3 HULL.
Table showing Method of Calculating the Longi-
tudinal Position of the Centre of Gravity of
THE Bottom Plating of a Ship"s Hull.
No. of
Half-
Statious- o'irths
j Simpson's Functious of Mults. for Products for
I Mults. Half-girths Moments Moments
1(38-0
7G1-G
oG9-(3
G920
310-4
498-0
170-4
17G-0
•0
17G-0
173 2
5u5-2
322-4
7G-2-0
432-0
980-0
256-0
1830-6 ) 460-8
•246
1.5
Distance of C. of Orav. toward^ Xo. 17 from Xo. 9 Station 8-G90
1
2
3
4
5
6
7
8
9
10
11
12
IS
14
15
16
17
21-0
27-2
30-8
34-6
88-8
41-5
42-6
44-0
44-0
44-0
4^-3
4-21
40-3
3S-1
3G0
35
32-0
21 -0
108-8
61-6
138-4
77-6
16G-0
8.5-2
176-0
88-0
176-0
86 6
168-4
80-6
152-4
72-0
140-0
32-0
No. of
Stations
1
2
3
4
5
6
7
8
9
10
11
12
lo
14
15
16
17
Sum of functions of hali-girtlis 1830-6
Table showing Method of Calculating the Vertical
Position of the Centre of Gravity of the Bottom
Plating of a Ship's Hull.
No. of 1
Stations;
Simpsou"^ Functiems of Mults. for
[ Mults. I Half-girths I Moments |
Products for i
Moments l
No. of
Stations
9
10
U
12
13
14
15
16
17
Distance of Centre >
21-0
•60
12-60
1
108-8
1-25
136 00
2
61-6
1-80
110-88
o
138-4
2-10
290-64
4
77-6
2-25
174-60
166-0
2-30
381-80
6
8.5-2
2-35
200-22
/
176-0
2-40
4-i2-40
8
.S8-0
2-41
21208
9
176
2-41
4-24-16
10
86-6
2-40
207-84
11
1G8-4
2-35
395-74
12
8U-6
2-30
185-38
13
15-2-4
2-2o
342-90
14
72-0
205
147G0
15
140-0
1-.50
210-00
16
320
•75
24-00
17
18.S0-6
18.30-
fi) 3878-H4
eloAv Lon
fritiidinal
Plane 2-118
CE^-TRE OF GRAVITY OF SHIP S HULL.
161
O
m
'3 Y,
o t^ ^ o I « O i'l 3-. «
X S^ -^ 5 r ^« 1^ T^l -X O
•^ 3^ ^ rc t>. -^
s ?; j^ I at I -J
I 1 =sk?-5 I 1 ^:^ 1 Ss?J ! I I 1 k I 1 I I I S2 2, ^
>Q
I I
OOMO r OOI'-■^ —
^ ^1 w r ;i; — -i. »-. — I I ^ *+-
■ -: O
O o 1-
'n« — — — — -> S
o »
ajo
2^
o
Ch
H
S
E^ (1.
& 02
o
o
o
Q
o
W
o
K
02
H
m
I 1 I 1 1 ( 13 ||| I Ip I l| I I
25
CTpppp«0 p pp
X « — -O Cl 00 I oc I I « o
? ? ? ? ? ? ?
Sii I o b o ot
35 o CO — qc
si
c-g =
5|S
I 1
I I
m
■ o-> — — X
12
^ N «,«^x
_ -J -T C -r
rcooppppp^xr'f^
ibnbbb9>t-;B;ac
T ; '-^
.5 eS J" ♦^
= s-=!e^
£•2
.5 '-
■3 a
.^ °.-Sj= C fe b =»
a o
2 2= ^ £ - £'""-52l^.-S^ 2=2=2 ---S-i:
o u o e»
,- o ^ o
S ° 5.®
162
STABILITY.
STABILITY.
Statical Stability.
Statical stability is defined to he the moment offoi'ce hy ivhich a
floating hody endeavours to gain its nprigld xmsition, or position
if equilibrium, after Jiaving Fig. 131.
iecn deflected from it.
Fig. 131 is a trans-
versa section of a ship
heeled over through a
certain angle B. w'l' is
the water-line for the in-
clined position, and WL
is the water-line for the
upright position. These
two planes intersect each
other in a longitudinal
direction, and bound two
wedges l'sl and wsw' equal in volume to each other, provided
tiie displacement remains the same. The wedges are called
respectively the wedges of immersion and emersion, or the in,
and out wedges. G is the centre of gravity of the ship, and b'
her centre of gravity of displacement, or centre of buoyancy.
The weight of the ship then acts vertically dowmwards through
G, and the resultant pressure of the water acts vertically upwards
throiTgh B^, these two forces forming a i-ighting couple, the arm
of which is GZ — that is, the perpendicular distance between the
lines of action of the two forces. The moment of this couple —
that is, the weight of the ship, or its displacement, multiplied by
the length of the arm GZ — is the moment of statical stability of
the ship at the given angle of inclination 6. This moment is
generally expressed in foot tons — that is, the weight of the ship
in tons multiplied by the length of the arm GZ in feet. B is the
centre of buoyancy of the ship when upright ; s is the point of
intersection of the two water-lines, i the point where the verti-
cal b'm cuts the plane of flotation ; g and g' are the centres
of gravity of the emerged and immersed wedges respectively,
gJi and g'h' being perpendiculars dropped to g and g' from the
plane of flotation w'l'. The point m, where the vertical line
BM, drawn through the centre of buoyancy B when the ship is
in an upright position, cuts the vertical line b'm, drawn through
the centre of buoyancy b' for the inclined position, is termed the
transverse vietacentre when the ship is inclined through an in-
definitely small angle, and also when the point of intersection is
the same for all angles of heel.
I When the position varies for the different angles of heel, it
is termed a shifting metacentre.
When the ship is inclined longitudinally, it is called the
; longitudinal metacentre.
I.
STABILITY. 163
During the inclination of the ship the centre of buoyancy
moved from B to b', and b' lies in a plane j^arallel to a line
joining g and r/'. The distance bb' can be found from the fol-
lowing expression: —
bb' = ^^<
D
where d = volume of displacement and v = volume of either of
the wedges ;
BR = L^_, where br is perpendicular to b'm ;
D
^' X lilt'
and GZ =- BR - BG . sin 6 = BG . sm 0,
D
whence Atwood's formula for expressing the moment of statical
staMlity at any angle is
M = (V X hit') - (D X BG . sin e)
Id J
The moment of statical surface staJnlity at any angle 6 is
BR X D, being what the righting moment would be, supposing
the centre of gravity of the ship coincided with b. The angle
of heel in fig. 131 is bmb' = lsl', and its sine is equal to — = -^^ — .
^ B-M GM
The coefficient of a ship's stability a,t any angle of l.eel is
expressed when the displacement is multiplied by tlie vertical
height of the metacentre for the given angle of heel above the
centre of gravity.
That is, the coefficient of a ship's stability at any angle
= D X GM = D(BM — EG)
BM=-i^iM:.
D. sin d
BR is said to be the lever of statical surface stahility.
When M lies above G the vessel is stable ; if too high, the
vessel is uneasy ; when below, the vessel is unstable ; and when
it coincides with G, the equilibrium is said to be neutral.
The point M in vessels of the common type is usually calcu-
lated for the upright position, as it generally remains a tixed
point for the first 10 or 15 degrees of heel, when it is useful
for comparing the initial surface stability of different vessels.
To calculate the height of the metacentre above the centre of
buoyancy see pp. 155 and 1 75.
Dyxamical Stability.
Dynamical stability w defined to be the amo7tnt of mechanical
iKorli necessary to canse a body to deHate from its ii^inght ;position,
■ or jjosition of equilibrium.
m2
164 STABILITY.
Dynamical stability is expressed as a moment by multiply-
ing the sum of the vertical distances through which the centre
of gravity of the ship ascends and the centre of buoj'ancy^
descends, in moving from the upright to the inclined position,
by the weight of the ship, or displacement.
In tig. 131 during the inclination of the ship through the
angle 6, the centre of gravity has been moved through a vertical
height GH — GO, and the centre of buoyancy has been lowered
through a vertical distance b'i — bh, and the whole work to do
this, or her moment of d^Tiamical stability for the given angle d, is
= d{(gh — go) + (b'i — BH)}
= d(b'z — bg) = d(b'e — BG . vers 6)
= d/_^i^_ — -I — ^_BG . vers e) ;
whence Moseley's formula for the moment of dynamical sta-
bility at any angle 6 is
= \{gh-¥g'h') — (p x bg . vers B).
The djmamical stability of a ship at any angle is the in-
tegral of its statical stability at the given angle — that is, if
]M = the statical stability and u the dynamical stability, then
U =fMd9,
where dO is a very small angle of heel.
The moment of dynamical mrface stahility is expressed by
multiplying the weight of the shij^, or displacement, by the de-
pression of the centre of buoyancy diu'ing the inclination — thai
is, for the angle Q
U = D(b'I — BH).
EULES CONNECTED WITH STABILITY.
1. To fnd approximately the onomeyit of statical surface-
stahility per foot of lenyth of a vessel at any small angle of lieel.-
KULE. — Cube the half -breadth of the vessel and multiply it
by the sine of tlie angle of heel ; two-thirds of the product will
be the required result.
This result is expressed as follows when b = half -breadth of
vessel : —
Kb^ X sin 0).
2. To find approximately the surface stahility of a vessel for-
any small angle of heel.
Rule. — Divide the moment of inertia of the plane of flotation
for the upright position relatively to the middle line by the
volume of displacement ; the quotient multiplied by the sine of
the angle of heel will be the required result.
Or it may he expressed, morefvlly as follows: —
Divide the length of the plane of flotation, or water-line,
for the upright position into a number of equal intervals;^
CrEVES OP STABILITY.
165
and measure the half -breadths at tlie points of division ; cube
those half -breadths and treat them as if they were ordinates of
a new ciirve of the same length as the plane of flotation : two-
thirds of the area of the new curve, found by a proper rule, will
be the moment of inertia of the plane of flotation relatively to
the middle line. This moment of inertia multiplied by the
sine of the angle of heel will be the required result. It is
usually expressed in algebraical symbols thus : —
2 sin 0/- o 7
— ^ffdx.
Note. — The two foregoing rules are exact for any angle of heel
if the metacentre remains fixed for the different angles, and there-
fore remains also true for any angle of heel when the moment of in-
ertia of the plane of flotation due to the angle of heel can be found.
3. To find ike height of the metacentre above the centre of
buoyancy for the uprxyht positwn.
Rule. — Divide the moment of inertia of the plane of flotation
relatively to the middle line by the volume of the displacement.
In algebraical symbols it is expressed as follows : —
Note. — For moment of inertia see Rule 2, p. 164, also p. 79.
4. To find approximately the dynamical stahility of a vessel
■at any given angle of heel.
Rule 1. — Multiply the displacement by the height of the
metacentre above the centre of gravity, and that product by
the versed sine of the angle of heel.
Rule 2. — Multiply the statical stability for the given angle
by the tangent of one-half of the angle of heel.
Curves of Stability.
The JletacentHc Curve, or Curve of Metacentres, is a curve used
to determine approximately the initial statical sta-face stability
Fig. 132. a vessel has at any draught
^ of water parallel to her con-
^ ^ structed load draught.
Method of Construction. —
Calculate the height of the
ship's metacentre from the
under side of keel for several
successive draughts of water
parallel to her constructed
load draught ; set those heights
off as ordinates (see flsr. 132)
from a base line the abscissas
of which represent to scale
the respective draughts of water : a curve bent through the
-extremities of these ordinates will form the metacentric curve.
10 12 J4-
Scale, ej .DrawgHtsefyrorCer
166
CURVES OF STABILITY.
The Curve of Statical StaMlity is a ciirve used to determine
the exact statical stability of a vessel at any given angle of heel.
Fig. 133.
curve of statical stabilitt of ax iro>'clad with high freeboard.
SCALE CF DECREZS E3R AIISLE
3Iethod of Const7'Hctio?K — Calculate the length of the arm of
the righting couple, or GZ (see lig. 131), for several successive
angles of heel taken between the upright position and that at
which the length of the arm becomes zero ; set the lengths of
these arms off as ordinates (see fig. 133) from a base line the
abscissEe of which represent to scale the respective angles of
heel : a curve bent through the extremities of these ordinates
will form a curve of statical stability.
The CuT^ve of Dijnamical Stability is constructed in a similar
manner to that of the curve of statical stability-, with the ex-
ception that the various lengths of the arm (b'z — bg) = (b'r — B&
vers Q), (see fig. 131), are taken as ordinates instead of GZ.
Fig. 134.
curve of dtxajucal st.vbility of ax iroxclad with high freeboard.
i' m" 15» za" 25° so'as"" -^o" ^s" so" ss" so" ss" la' 7S ao as so
SCALE or BiCCBEES FOR ANCLE OF HEEL
Curves of Statical and Dj/namical Surface Stability are also
constructed in a similar manner to the foregoing cm'ves, the
lengths of the arms br and b'i-bh (see fig. 131) being taken as
ordinates for the respective curves.
To Calculate the Statical and Dyxamicil Stabilities
OF A Vessel at Successive Angles of Heel.
1. Body Plan (fig. 136).— Prepare a body plan in which all
the sections are taken perpendicular to the load water-line,
and at equal distances apart. In constructing it the sections
should be made fair continuous curves, any irregularities
STABILITY.
167
2. Angular Interval.-
FiG. 136.
which might be caused by embrasures, &c., being left out
Fig. 135. (as shown in full lines in
fig. 135, where the dotted
lines show the actual section
1 of vessel), they being treated
^ separately afterwards as
ai)pe)ida(jes. When there
are appendages it is also
necessary to have correct
sheer and half-breadth
draughts, in order to cal-
culate their volume, &c.
The body plan has now to be crossed
by a number of lines,
. » o 6 radiating from the
middle point of the
load water-plane, and at
equiangular intervals,
taking care that ont'
passes through the edg(
of the upper continuou -
deck amidships.
The equiangular in-
terval is determined as
follows : — Divide the
angle which the radiat -
ing line, passing through the edge of the upper deck, makes witli
the load water-line, into such a number of equiangular intervals
that the line passing through the edge of the uj)per deck
becomes a stop-point in the integration to which these radiat-
ing lines will be afterwards treated. If Simpson's first rule is
used the number of intervals must be even ; if his second rule,
a multiple of three must be used, and so on. The angular
interval should not be more than 10° or less than 3°.
It is usual to introduce an intermediate radiating line at
half an interval after the edge of the deck has been passed, in
order to reduce the error caused by applying Simpson's rule to
so irregular a surface as the upper deck.
3. Measuring the Ordinates. — The ordinates of the immersed
and emerged sides of the various inclined longitudinal water-
planes are measured ofE right fore and aft for each successive
angle of heel from the middle line of the ship, and entered
upon a set of tables, styled preliminary tables, under their
proper heading. One of these tables is necessary for each
separate angle of heel.
4. Preliminao'y Tables (see p. 176). — Three operations are
performed upon the ordinates entered in these tables. Firstly,
they are affected by a set of Simpson's multipliers, in order
168 STABILITY.
to find a function for the area of tlie immersed and emerged
sides of the respective radial planes. .Secondly, the squares
of the ordinates are affected by the same set of multipliers in
order to find a function for the moment of the immersed and
emerged sides of the respective radial planes. Thirdly, the
cubes of the ordinates are affected by the same set of multi-
pliers in order to find a function for the moment of ineHia of the
immersed and emerged sides of the various radial planes about
the middle line of ship.
5. Combination Tables (see p. 177). — The results obtained
in the preliminary tables are made use of in these tables to
determine —
(1st) The area of the various inclined water-planes, together
with their centres of gravity.
(2nd) The volumes of the assumed wedges of immersion and
emersion.
(3rd) The position of the true water-planes at the different
angles of heel.
(4th) The moments of the corrected wedges of immer-
sion and emersion,
6. Areas of the Inclined Watet'-jjJanes. — The area of an inclined
water-i^lane is easily found for an}^ angle of heel by adding
together the sums of the functions of the ordinates for the
immersed and emerged sides of the respective water-planes,
and multiplying the result by ^ the longitudinal interval if
ISimpson"s first rule is used,*
7. Centre of Gravity of the Inclined Water-planes. — To find
the distance of the centre of gravity of any inclined water-plane
relatively to the middle line of the ship, proceed as follows :
— Take the difference between the sums of the functions of the
squares of the ordinates for the immersed and emerged sides of
the water-plane ; divide the result by 2 and multiply the
quotient by ^ the longitudinal distance between the ordinates,
if Simpson's first rule is used. That jDroduct divided by the
area of the water-plane will give the distance of its centre of
gravity from the middle line.
8. Volumes of Assumed Wedf/es. — Take the sums of tlie func-
tions of the squares of the ordinates for both sides of each of
the radial planes contained in the wedges of immersion and
emersion, and enter them in their proper column in the com-
bination table, and affect them by a proper set of multipliers;
add their results together, subtract the lesser sum from the
greater, and divide the result by 2. The quotient multiplied
by ^ the longitudinal distance between the ordinates, if Simp-
son's first rule is used (tliis division by 3 is generally done in the
preliminary tables) : this final product multiplied by | of the equi-
angular interval in circular measure, if Simpson's first rule is again
* Note.— The division by 3 is general!}' done iu ttie preliminary tables.
STABILITY. 169
used, will give the difference between the volumes of the assumed
wedges of immersion and emersion. If there are any appendages
the necessary additions or deductions are made here.
9. Correcting Layer. — If the volume of the assumed wedge of
immersion exceeds that of the wedge of emersion, it shows that
the displacement up to the radial plane is too great, and that to
find the true water-jalane a parallel layer must be taken away
from the assumed wedges ; but if the wedge of emersion
•exceeds that of immersion, a parallel layer must be added to the
^^edges.
The thickness of this layer is found by dividing the dif-
ference between the volumes of the two assumed wedges by the
area of the proper radial water-plane, having made any addi-
tions or deductions in the case of appendages.
10. JItvnents of Wedges for Statical Stalnlity. — The sums of
the functions of the cubes of the ordinates for both the im-
mersed and emerged w'edges are placed in the proper column in
the combination table, and are alfected by the same set of
multijDliers as were determined for the sums of the functions
of the squares ; the products are multiplied by the various
cosines of the angles of inclination made by the radial planes
with the load water-line ; the products are then added together
and the sum divided by 3 ; the quotient is then multiplied by ^
the angular interval, and that product by ^ the longitudinal
interval, between the ordinates, if Simpson's first rule has been
used (this division b}' 3 is generally done in the preliminary
tables) : the final restilt will be the moment of the wedges about
a line perpendicular to the radial j^lane, and passing through
the middle point of the load water-plane. The corrections for
the moments of the appendages must now be added or sub-
tracted, as the case may be, also the correction for the layer, if
any, must be done here, its moment being foimd by multi-
plying its volume by the distance of the centre of gravity of its
water plane from the middle point of the load water-plane. If
the centre of gravity of the layer lies towards that side for
which the assumed wedge is the greater, the correction must be
deducted ; if it lies towards the opposite side, it must be added.
This final restilt, being divided by the total volume of displace-
ment, will give the length of the arm be (see fig. 131). Multiply
the height of the centre of gravity above the centre of buoyancy
by the sine of the angle of heel, and subtract the product from
BR: the remainder will be the length of the arm of the righting
couple GZ ; GZ multiplied by the displacement in tons will give
the righting moment, or statical stability, of the ship for the
given angle of heel.
11. Moments oftlie Wedges for DynamicalStalility. — This result
is determined in a manner somewhat similar to that pursued
for the statical stability, the only difference being that the
170 STABILITY.
sums of the functions of the cubes are multiplied by the sines
of the various angles of inclination instead of the cosines ; the
sum of the products so obtained being divided and multiplied
by the same numbers as were used for the statical stability, in
order to find the moment of the wedges uncorrected relatively
to the respective radial planes. The corrections for the
appendages are then made, that for the correcting layer
being subtracted in all cases. The moment for the correcting
layer is found by multiplying its volume by half its thickness,
that being about the vertical height of its centre of gravity
from its radial plane. This final result divided by the total
volume of displacement will give the length of the arm b' e,
from which if BG . vers 6 be deducted, the remainder will equal
the length of the arm for the dynamical stability, or the vertical
height through which the centre of gravity of the ship has been
lifted and the centre of buoyancy depressed.
12. Geometyncal Mode of Calculatinr/ Dynamical StaUlity. —
The dynamical stability of a vessel at any given angle of heel
is the sum of the moments of the statical stability taken at
indefinitely small equiangular intervals up to the given angle
of heel, and is therefore'equal to the area of the curve of sta-
tical stability included between the origin of the curve and the
angle in question. " It must be noticed that the abscissae of a
curve of statical stability is given in angles, and therefore the
longitudinal interval is taken in circular measure.
But, as the lengths of the arms for statical stability are
generallv used to construct a curve instead of the moments of
stabilitv, the area, as above f oimd by the rule from such a curve,
will necessarily give the length of the arm for djTiamical
stability and not the moment.
Example (see fig. 133).— To find the length of the arm
for dvnamical stability, at an angle of 30^ inclination.
Ansrles of Heel
degrees
5 „
10 „
15 „
20" „
25 „
30 „
Lengths of Statical
Simpson's
Products
Levers GZ
Multipliers
•0
1
•0
•2
4
•8
•42
2
•84
•68
4
2-72
•9T
2
1-94
1^30
4
5-20
1^66
1
1-66
13-16
i of angular interval in circular measure = '0291
1316
11844
2632
Dynamical lever for 30° = '382956
STABILITY AT LIGHT DRAUGHT.
171
13. Curve of Stahility for Light Bravglit. — The lengths of the
arms for this curve can readil}- be approximated from the results
obtained for the curve in the load condition.
Fig. 137. In fig. 137 WL is the
load water-line, and nl
the light water-line, for
the upright position of
the vessel. If the vessel
is inclined through an
angle Q, and w'l' is the
true position of the in-
clined water-plane for the
load condition, then the
true position of the water-
plane for the light condi-
tion will run parallel to
it, as n-'T . To determine its perpendicular distance from w'l',
divide the volume of the layer contained between the light and
load water-planes by the area of the assumed inclined water-
plane hli', w^hich was foimd for the inclined load condition.
Let B be the centre of buoyancy for the upright load con-
dition, b' for the inclined load condition, and b- for the
inclined light condition, be is perpendicular to the vertical
b'm, and be' is perpendicular to the vertical b-m'.
Let D equal volume of light displacement.
„ ^ = volume of displacement contained between the
light and load water-planes.
„ (? = distance of centre of gravity of assumed inclined
water-plane from the vertical through A.
„ GZ and G'z' = the lengths of the arms of the righting
couples for the load and light condition
respectively.
Then EE'= ^f ^_+ (^^ BA^nJ)} 3^,, ^ ^^ ^ ^^^
D
and g'z' = BE' — BG'. sin Q.
Sfiirface of Flotation. — If a ship be inclined through an
unlimited number of indefinitely small angles in every possible
direction, a curved surface touching all the planes of flotation
thus made is called a surface of flotation, and the point of
its contact with any water-plane is the cesitre of gravity of
that plane.
Axis of Level 3Iotioy). — "Wlien the transverse section of a
surface of flotation is a circle, the centre of that circle is termed
the axis of level motion. This axis lies parallel to the load
water-line, and is in the longitudinal middle-line vertical plane
of the ship for the upright position, and is so placed as to
172
LONGITUDINAL METACENTRE.
keep the same position, when the vessel is heeled over to any
.angle, as when she was upright.
To determine approxi'mately the height of the axis of level
motion above the plane of Jiotatioji.
EuLE. — Measure the angles of inclination of the several cross
sections to the vertical between wind and water, and find their
tangents, distinguishing those tangents respectively into posi-
tive and negative, according as the side of the section inclines
outward or inward (that is, having any flare or tumble-home) ;
multiply the tangents by the squares of the half -breadths of the
cross sections to which they belong, and the products by a set
of Simpson's multipliers in their consecutive order ; take the dif-
ference between the sums of the positive and negative products,
and multiply the difference by ~ the longitudinal interval (if
Simpson's first rule is used), and divide the product by half tlae
area of the water-plane : the quotient will be the required result.
Longitudinal Metacentre and Alteration of Trim.
To determine the vertical height of the longitudinal meta-
centre above ths centre of buoyancy.
Rule. — Divide the moment of inertia of the load water-plane,
relatively to a transverse axis passing through the centre of the
plane of flotation, by the volume of displacement. (For example
of calculation see p. 174.)
The following method will generally be found in practice
to be the simplest for finding the moment of inertia of the
plane of flotation relatively to the transverse axis tlirough the
plane of flotation : — First determine the moment of inertia of
the given plane relatively to one of its ordinates as a transverse
. axis (see Eule 7, p. 79) ; then from the result subtract the area
of the plane multiplied by the square of the distance of its
centre from the given axis.
Pig. 138.
Approximate formulae for
centre (J. A. Normand,
L = length on lwl in feet.
I = breadth amidships in ft.
D = displacement in cu. feet.
a = area of lwl in sq. ft.
height of longitudinal meta-
M.I.N.A.).
H = height of longitudinal me-
tacentre above C. of Buoy.
H
•0735 ^.
/D
Moment to Alter the Trim of a Vessel. — In fig. 138 let WL be
the original load water-line, w'l' the load-line to which it is
TO FIND CENTRE OF GRAVITY BY EXPERIMENT. 173
required to trim the vessel, c the centre of flotation and the
point at which the two load-lines intersect each other.
The total alteration of trim = ww'+ll'.
Let G be the position of the centre of gravity, b the centre
of buoyancy, for the upright position, G' and b' the altered
positions of the centres due to the alteration in trim, and m the
longitudinal metacentre ; let p = the weight on board that has
to be moved, d = the horizontal distance through which the
weight has to be moved to produce the required trim, and d =
the displacement of the ship in tons : then
WL
„„^ (ww' + ll') GM -Pxd
GG 5
WL D
also ww' = ^'^ CP X ^) , ^^^^^c(L^\ and ww' + ll'^ ^^^^^ (^ ^ ^>
GM X D
GM X D
GM XD
Moment to alter trim one inch = — x — ^ .
12 WL
Moment to alter trim w. inches = « x — x ^~.
12 WL
JVbte. — All the measurements are taken in feet.
To Determine the Vertical Position of a Ship's Centre
OF Gravity by Experiment.
In fig. 139 let mz be the
upright axis of a ship ; her
centre of gravity then lies
somewhere in that axis. M is
the metacentre, and gm its
vertical height above the
centre of gravity g.
If a weight p be moved
transversely through a dis-
tance FP'=d, it will heel
the vessel over through an
angle 6, and her centre of
gravity will then shift in a
direction gg' parallel to that
m which the centre of gravity of the weight has been shifted.
Let MT be parallel to gg' and tg' parallel to gm ; let P = weight
shifted m tons, and D = displacement of ship in tons : then
MT = gg'
"^ ^ d J , ^ Y X d
■■ ; and gm = gg cotan 6 = tJiJL cotan 0.
D D
Note.—\i several weights are shifted the total sum of each
of the moments must be taken.
LONGITUDINAL METACEXTEE.
Calculation of Height of Longitudinal Metacentre abote
Centre of Buoyancy, and Moment to alter Trim one Inch,
.2 ^
T
9
3
4
5
6
7
8
9
10
11
iH
12
12i
13
Ordinates
•1
3-6
7-1
9-5
11-6
13-7
14-3
14-4
14-4
14-4
14-2
13-8
13-4
11-1
8-4
4-4
•9
Sg
2
1
2
4
2
4
2
4
2
4
2
1
2
Products
for
Area
^ Lens:. Interval
•05
7-20
7-10
19-00
17-40
54-80
28-60
57-60
28-80
57-60
28-40
55-20
20-10
22-20
8-40
8-80
•10
421-35-
5-7
24ul-bUo
:: c
1
li
2
3
4
5
6
7
8
9
10
lOi
11
lU
12"
Products
for
Moments
•0
3-60
7-10
28^50
34-80
164-40
114-40
288-00
172-80
403-20
227-20
496-80
201-00
233-10
92-40
101-20
1-20
2 o ^
Products I
for Momeuts
of Inertia '
^t
2569-70
17-1
43941-87
1
2
1
H
2"
3
4
5
6
7
8
9
10
\0h
11"
lU
]2
Long.
Long
•0
1-80
7-10
42-75
69-60
493-20
457-60
1440-00
1036-80
2822-40
1817-60
4471-20
2010-00
2447-55
1016-40
1163-80
14-40
19312-20
I nt. 17-1
30238-62
Int. 17-1
1
U
2
oi
— -7
3"
4
5
6
7
8
9
10
11
lU
12
12i
13
Cu. ft. in a ton 35) 4su;J-oi>
12) 1 37-239
Dispt. per inch 11-436
Element of Inertia about Xo. 1 Ordinate
Area of Load Water-plane x (104-29)-
5647080-402
Long. Int. 17-1
3) 96565074-8'/ 42
32188358-2914
■ 2
64376716-5828
52243610-6899
Volume of Displacement in cub. feet 18270 )12133105-8929
Height of Long. Metacentre above Centre of Buoy. 664-1
Height of C. of Grav. of ship above Centre of Buoy. 2 73
Height of Long. Metacentre above C. of G. of ship. 661-37
421-35) 43941-8 7
Distance of C. of Flotation from No. 1 Ordinate 104-29
Moment to alter trim one inch = - ^^-^ x ~~= 140-34 foot tons,
20.0* 12
* Length of ship at' L. \\. Line = 205 ft.
t Dis}>t. of ship in tous = 522
CALCULATION OF HEIGHT OF TRANSVERSE METACENTEE. 175
« o
^ !5
o
> Ph
l-H -eq P*
K « «
fCfig
o
2 a
fc o" ;?^
w
>H
^
u
w
^
IrH
<^
P^
>^
o
O
p
55
pq
^
E^
O
O
P3
H
W.
!^
*— 1
y
as
o
H
< N cc ■>s> >n tc «
Z.^
oi-^copc-^c^Tfxipao-^c
l-» O O CO 00 ^ x^ c^ c^ ^ '
o^* — 0:£XO5^3^c;o
c^rooocicic; xco»jOo
^-
« t
C 0
2 «=' >^x
^ -x^x
I--
» t>*
=5
!ox
■N
II II II
'^
NK-*
XXX
-j-r c
■X
I
■-
- j>. x.5.«
a X N ^
O
^ ** ?^ ■* N -^ N -^ W ■^ M -^ fm i3
^ X »>. ic Ci oi cr. ^ CO a; o
g ^
U X ^ r; — f^
O -r — -rr:
i -J— S>
^►^ ^ ^
to >--' i^t 'i *i to ^ ic ^ ^ N
5 ft
: o X
; ^ X
• X r-^
X — X X T) -?• O C C I =
— ^-rX^r^^C ^"^[c
^ X — ^^ t^ w ■ —
(_
(N
— i-
t- ID
S?0
s
'&
jO |<
s
(CO
-^>
^~-
-^S^T. 2 'x-:^
>-<'<*'5^-^5^'*S^'«9'5^'9'S^'*^^
O C^ W 5^ -^ X C
o — — — o; 2s
p c^ <
X -" '
-^ o
C X
-* s^ ^ Oi ^>. •— ' b tt^^
) X c:
C. '^ X -X l>- ^1 CO
o
~
n
.^^
J^
^
o
S55c
>^
''-^
CO
•^
u
-^Tj'3^TfS^'«a'W^»-«
OXXOStt^OCOCTlCr. t^^DO
pppC^OpCOXi^Xyr-O
xx'^cotoipas'— c»^'
: ft (Ti "-*■ CI 1.0
• I-» f X C35 ^. C
. N .o o o o c
- -^ -^ « CO ^
^
^
S3S2?!5- = sSS§S
-^Nxc^-roxft'xs^s^
O X t^ X « ?1 — t^ o
CO CO cr- uo c -v -^
-2
'-'■^S^-^Cl'^^'^N^N'^^^
^
Q 1 00 -T< -x h;
"=" '-' '-'5
-^ 1
?«
-s"
•J5
C ^0 rf» CT. [*■**-
l=K^ i>> e
XXX
^ 7^ o
^ o w
O'X-TasO4^r^'J0i0^-'^»nO
C--.--r3<»XCOCCO^C*-'Xp
i' e« « o b b X ^t^-^ « to '
^ -.o i^ o tr- 'M !>. g: ft *x
N ft X -r ic ^ o ^ c^
« 5 "5 ? 2E S3
^yicO"<#*otcwxo;c<— 'Nco
5 a «^ 52
^ ?i c; a» '^ •
>^s i,
i, O O =. ',
U.S :^ ;j
176
PRELIMIXAKY TABLE FOR STABILITY.
PRELIMDfAEY TaBLE FOR STABILITY AT 30"^ AXGLE OF HeEL.
Ordi- "2,
nates j '-n
IS
i
a-.
Squares!
.
rc
3^
C
C
—
—
^
3i
j^
=
'£
X
:s
—
^
r^
■fT'
1^
;:;
..
A
1— *
^l^^l^r^ac'O' .occ pji^odjccl
:r;2*^nS9li;^ iS^
E Q^ >
^sTiilfi
c.s-
s
•^'>^ c >-i;'
p
s
£^5^ SISS
Chilean
..►
>>
2r^ cw
a = c: X ,x r;
o K t^ =; oc »« o
.- :« g 1 2 = rj s X 5 o
9 C^I^r^xo^c^
■^ ?^ t
^^,,^^,,_
i^'
n r. T ») ■n r^ 1^
';.-3-f
-? - — jj li X =;
— 2U S j3~;ii
■-'^■r :
c ci
111 . o^
•r =^ ^ £ ■= s;
c £n '^ N • II
c c". cr. :r. i n c 1 -^
sjaqd
-nihH
-« -O" »» -e « -T ■-
iiiiiil
c I u S
:^^iT,?>
I P ^ z» ^ ^ ^-
-■ « O V
sii^i^'
r v; a
^ St'
> £ 2
'' '< Cr'^
2 ^Sk
EH
St aj
5 i r o o
^' £s < -J
1 1^ o ?^ c- ] n • 5r: o r? o
i
Cr/ —
s »:;; S ^ Js2
_j
X
i'r C
0)
it i>
C3
>
fa o
— _iC
^^
•^ £
>>
d'|l
H^-J
~ :-
£v
.sx
-5
kIi
V. 1
.O
^
o
i>
S ; '■*?(>-?:
s s
178
SEA WAVES.
WAVES.
Sea Waves.
In the orclinan'- sea wave, or wave of oscillation, the form
alone has a translatory motion, as the particles composing it
revolve at a miiform rate in circular orbits, the radius of these
orbits varying with the undisturljed depth, but remaining
constant for particles in any siibsurface or subsurface of equal
pressure horizontal when imdisturbed ,• the form of wave-surface
thus formed being trochoidal (see fig. 140), as also the form of
any subsurface (see fig. 141), the only difference being that while'
the diameter of the rolling circle of the subsurface remains the
same as for the wave-surface, the length of its tracing arm
diminishes in geometrical progression in going downwards.
Kote. — For easy method of constructing trochoid see fig. 145,
p. 187.
Fig. 140.
v v/ V'' V' V-' V V V V'
V, v' are columns of water winch are vertical in still water,
s, s' are subsurfaces of equal pressure horizontal in still water.
Formula.
T = periodic time of wave in seconds.
L = length of wave in feet.
V = velocity cf advance of wave in feet per second.
RULES FOR SEA WAVES. 179
Vj = velocity of advance of wave in knots per hour.
V2 = velocity of advance of wave in miles per hour.
R = radius of rolling circle in feet.
r = radius of tracing arm for wave-surface in feet.
g = accelerating force of gravity — 32-2 nearly.
V = linear velocity of wave-surface particle in its orbit.
s = sine of steepest slope of wave-surface.
h = height of wave in feet.
R=:^ = .815iT2=J±
47r^ 2t
V,
V
1-68
= 2irR^
-=vxv
5924
5-1233
L:
27rv2
= VxT
s
_?i _
2r
t=2t /^ = ^' = I^
V ^ y V
— OT /L(7 L
v = v^R=-2^=y.^—
V2 = -6817v = l-]51Vi
T V^ R
Rules. {Rankine.)
1. To find the ratio in which the orbits and .velocities of the
particles are dimiimhed at a given depth below the fi'ave-sn?]face.
EuLE. — Divide the given depth by the equivalent pendulum
which is equal to the radius of the rolling circle ; the natural
number answering to the quotient in a table of hyperbolic
logarithms will be the reciprocal of the ratio required.
Xote. — Approximately the orbits and velocities of the
particles of water are diminished by one-half for each additional
depth below the surface, equal to one- ninth of a wave-length.
Ea'innle ^ ^^V^^ in fractions of a wave-length i §§1, ^c.
■'- y Proportionate velocities and diameters 1 ^ ^ | ^^^r, a:c.
2. To find how high the centre of the orbit of a given 2) article
is above the level of that •particle in still water.
Rule («;).— Divide the square of the diametei of the orbit
by eight times the equivalent pendulum of the waves.
Rule {b). — Divide the square of the velocity of the particle
in feet per second by 64-4 for the height in feet.
3. To find tJie mechanical energy of a lager of water agitated
by Jvave-motion.
Rule.— Multiply the weight of the layer by twice the
height at which the centres of the orbits of the particles stand
above the positions of those particles when in still water.
Xote. — One half of this energy consists in motion and the
other half in elevation.
X2
180
PERIODS OF SEA WAVES.
4. To find the mechanical energy of a mass of ivaier of a
given horizontal area and of unlimited depth agitated hg weaves.
Rule. — Multiply the area by one-sixteenth part of the
^quare of the height of the waves and by the heaviness of the
^uid (64 lbs. per cubic foot for sea water).
5. To find the energy of one nvave-lengtli of a layer of water
of a given Irreadth and thichness.
Rule. — Multiply together the breadth and thickness of the
layer, the square of the diameter of the orbits of the particles
IT
in it, the heaviness of the fluid and the constant -= 1-5708.
Table of the Periods axd
Lengths
OF Sea Waves. |
Velocity iu
Elnots per
Velocity iu
Feet fjer j
Velocity in ]
Statute Miles
Period in ■
Seconds ,
Equivalent
Pendulum in
Length in
Feet
Hour
Second
per Hour
Feet
1
1-688 1
1-15
•33 !
•09
•56
2
3-376
2-30
•66
•36
2-25
3
5-064
3-45 1
•98
•80
5-06
4
6-7.52
4-60
1-31
1-43
9-00
5
8-44
5'75
1-64
2-24
14-05
6
10/13
6-91
1-97
3-22
20-2
7
11-82
8-06
2-30
4-38
27-5
8
13-50
9-21
2-63
5-72
36-0
9
15-19
10-36
2-96
7-24
45-5
10
16-88
11-51
3-29
8-94
56-2
11
18-57
12-66
3-32
10-8
68-0
12
20-26
13-81
3-65
12-9
80-9
13
21-94
14-96
4-27
1.5-1
95-0
14
23-63
16-11
4-60
17-5
110-1
15
25-32
17-26
4-93
20-1
126-4
16
27-01
18-42
5-26
22-9
143-8
17
28-70
19-57
5-59
2.5-8
162-3
18
30-38
20-72
5-92
29-0
182-0
19
32-07
21-87
6-25
32-3
202-8
20
33-76
23-02
6-58
35-8
224-7
21
35-45
24-17
6-91
39-4
247-8
22
37-14
25-32
7-24
43-3
272-0
23
.38-82
26-47
7-57
. 47-3
297-3
24
40-51
27-62
7^90
51-5
323-6
25
42-20
28-77
8-23
1 55-9
351-2
26
43-89
29-93
8-56
60-4
379-8
27
45-58
31-08
8-89
65-2
409-6
28
47-26
32-23
9-21
701
4405
29
48-95
33-38
9-54
7.5-2
472-5
30
.50-64
34-53
9-87
80-5
505-7
SHALLOW- WATER WAVES.
181
Shallow-w^ater Waves.
In shallow water of uniform depth the orbit of each particle
is an oval, the orbita becoming more flattened the nearer the
particles are to the bottom. ^
As an approximation water may be taken as shallmv when
the depth is between ^ and ^ of a wave-length.
I = length of shallow- water wave in feet.
L = length of I computed as if for deep water.
«j = velocity of advance of shallow- water wave in feet per sec.
V = velocity of advance of wave computed as if for deep water.
f^--^ depth of water = height of orbits surface-particles from
bottom.
h = breadth of orbits of surface-particles.
ft -— height of orbits of surface-particles.
t = periodic time of wave in seconds.
X = natural number corresponding to hyperbol. log. of
^ = accelerating force of gravity = 32*2.
I
^= '^ffd where d
1\ / 1
where d exceeds ^ of /.
h=7i
?i = M
X
\ X'
thai
1 i
^ 3G
oil.
h
X-
1
1)
x\
1 i
X
1 =
^ /where d exceeds
A I ^ of I.
I __ L + 2 7rrZ f -yyhere d is less
2 \ than ^ of I.
Table op the Ratios of Waves for Shallow Water
to the correspoxdixg quantities for deep water.
Dc{)th of Water
from Centres of
Orbits in Fractions
of Wave's Length
RATIOS
Depth of Water
from Centi-es of.
Orbits in Fractions
of Wave's Length
RATIOS
Velocity
for a
given
Length
Length
and Velo-
city for a
given
Period
Length
for a
given
Velocity
Velocity
for a
given
Length
Length
and Velo-
city for a
given
Period
Length
for a
given
Velocity
1-28
1-13
1-06
1-03
1-01
1
36
2
36
3
36
4
3_6
36
•417
•579
•693
•776
•838
•174
•336
•481
•603
•703
5'76
2-98
2-08
1-66
1-42
6
36
8
36
10
36
12
36
ii
36
•884
•940
•969
•985
•995
•781
•884
•939
•970
•989
182 KOLLING IN STILL -WATER.
ROLLING.
Isochronous Kolling in Still Water.
T = periodic time of unresisted oscillation, or double roll, in
seconds.
T, = periodic time of resisted double roll in seconds.
M = height of metacentre above centre of gravity in feet.
1 = transverse moment of inertia of weight of ship.
n = number of double rolls a vessel actually makes in time
t in seconds.
= greatest angle of heel at commencement of time t in cir-
cular measure. [sure.
Oj = diminished angle of heel at end of time t in circular mea-
c = / hyp log e-h>-p log g\ ^/ log g-log g^ \ ^ gl^
\ t ) \ -43432^ / 27-2'
A = height of equivalent pendulum in feet for unresisted
rolling. For resisted rolling substitute Tj for t.
r = transverse radius of gyration in feet.
w = moment of righting couple at angle d = M x D x 0, where Q
is expressed in circular measure.
D = displacement in tons, i.e. weight of the ship.
Z = length of leverage of keel resistance in feet.
5/ = accelerating force of gravity = 82-2 nearly.
y 47H?-- _ 2Trr _ / r^ _ /4x-/i,^ / h _ / t,-
9^ Vgyi V •8154m V g ~ V -"8154 ~ V ^~~^
39-48
r'=^^l' = -815MT2 =^^ _:815MV
—;+ C^ 1 + ^^^
-^i' 39-48
M 47r2 77i
1 =
Icr- cr^ 2m^
(] 16-1 47r- . ^2
7»7,f^ The equivalent pendulum is one whose time of revo-
lution IS the same with the period of osciUation, or double roll.
EOLLIXG IN STILL WATER. 183
A compomid pendulum has not only the same period of oscil-
lation but the same statical and dynamical stability.
Geometrical Method of Deteeminixg h for Unresisted
EOLLIXG.
In fig. 142 let GM equal height of meta- •^^^- ■^'^^•
centre above centre of gravity; from g set
off GA perpendicular to GM and equal to the
transverse radius of gyration ; join am and
draw BA perpendicular to it, cutting gm pro-
duced in B : then BG equals height of equiva-
lent revolving pendulum.
Compound Pendulum.
In fig. 1 42 about m with radius GA describe an arc cutting
AG produced in d and c ; the triangular frame dmc hung at
the point M will represent the required compound pendulum,
supiDosing it to be loaded at each of ihe two points D and c by
one-half of the weight of the ship.
To Increase the Length of a Ship's Transverse Radius
of Gyration.
EULE. — Shift a pair of equal weights, situated with their
centres of gravity at equal distances from the middle line and
on opposite sides, further out from the middle line and through
equal distances.
•w = weight of ship. ?t- = either of the weights.
d = original distance of centres of gravity of w from middle
line.
d' = new distance of centres of gravity of w from middle line.
r = original radius of gjTation.
r' = new radius of gjTration.
Increase of radius of gyration, r' — r = . / r 2}r(d'--d-) ~l
To find the increase of the radius of gyration.
EuLE. — From the square of the new distance of the centre
of gravity of either weight from the middle line, subtract the
square of the original distance ; multiply the remainder by the
sum of the shifted weights and divide by the weight of the
ship : the square root of the quotient will be the increase of the
ship's transverse radius of gyration.
184 ROLLING IN STILL WATER.
Isochronous Rolling.
1)1 a trne isochronous rollinr/ sJdp h/'r rightinr/ moment at any
angle of heel is exactly jJTojyaHional to the anyle of duturljance^
and her metaeentric erolute is the involute of a cii-cle described
aljout the centre of gravity and through the metacentre ; and con .
sequeritly the metacentric involute is the involute of the involute of
that circle.
M=heigbt of metacentre above centre of STavity.
m = height of metacentre above centre of buoyancy.
??;' = radius of curvature of metacentric invohite when the
angie of heel is 6 (in circular measure).
?/ = half -breadth of upright water-section,
y' = half -breadth of inclined water-section for the angle of
heel e.
9
s''=r5e-power
Cube of speed in knots 2959
Augmented surface 36979
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Half-
girths.
Feet
imps.
Mults.
21-0
27-2
30-8
34-6
38^8
41^5
42-6
44^0
44^0
44-0
43^3
42^1
40^3
38^1
36-0
35^0
32-0
Product-;
1
4
2
4
2
4
2
4
2
4
2
4
2
4
•2
4
1
21^0
108-8
61^6
138-4
77^6
166^0
85^2
176^0
88^0
176-0
86-6
168^4
80-6
152-4
72^0
140-0
32^0
Coefe. of prop. 20000)109420861
Indicated horse-power 5471^0430
Divide by 3 )1830^6
Half Xo. of Int. 8 ) 610-2
Mean girth 76-3
Length of ship 380
Product 28994
Coetf. of aug. 1-275
Augment, surface"! qro-o
m square feet |
Peopulsiox of Vessels. {Scott liu^scU.)
= area of iiumersed part of midship section in square feet.
= coefficient of form of water-lines (see table, p. 189).
= head resistance to midship section in lbs.
= area of wet surface in square feet.
= coefficient of skin resistance (see table, p. 189).
= total of skin resistance in lbs.
= velocity of ship in knots per hour.
= velocity of shp in knots per hour.
: horse-power required to propel vessel at v speed.
H = 2^852346cAv2 s = ;^wv2 p = '.^l^^^^^iXlJ^lKlill).
Note.—Thes^ fonnulee must not be trusted implicitly for high speeds.
A:
C:
H:
W:
k-.
S-
\-
V-
PEOPULSIOX OF VESSELS.
189
Table of Coefficients of Kesistaxce for yaeious
KixDS op Skix.
Kiud of Skin
Coeff.
"FTind of Skiu
Coeff.
Kind of Skin
Coeff.
Clean copper
sheets
Smooth paint
•007
•010
Common iron,
skin
Smooth-sawn
plank
•ou
•016
^Moderately
foul
Barnacled
•019
•055
Table of Coefficients of Form for various Kinds of
Water-lines.
Kind of
Water-line
Wedge z 41°;
Wedse z35°;
Wedge Z18°,
Convex arcs !
Z35= I
Kind of Water-line
o
Convex arcs Z 25°: -31
Convex arcs z 15° -20
Wave form 5 to 1-15
Wave form 6 to 1 -077
Kind of "Water-line
Wave form 7 to 1 -050
Wave form 8 to 1-043
Waveform 9 10 1/034:
Wave form 10 to l'-028
Table of Eesistance in lbs. to
ONE Square Foot of 1
Flat-fronted
Vessel, and Horse- power required to J
Propel it at
VARIOUS Speeds.
Ft.
per
S:^ H-e-
Miles
an
Resistance | ^^^^^'
Knots
an
Resistance
Horse-
Sec.
1
auce P«"^^^^
Horn-
1
power
Horn-
power
1 0-00182
2-15111I 0-00574
1
2-8.5235
0-00876
<■>
4 0-01455
2
8-60444 0-04589
2
11-40938
0-07007
3
9 0-04909
3
19^36000: 0-1.5488
3
25-67111
0-23649
4
IG 0-11G36
4
34-41778: 0^36712
4
45-63754
0-56056
o
25 0-22727
S)
53^77778i 0^71704
5
71-30865
1-09484
G
36 0-39273
6
77-44000; 1^23904
6
102-684i5
]-S9188
/
49 0-62364
7
105-40444' 1-96755
7
139-76495
3-00424
8
64 0-93091
8
137^67111| 2-93698
8
182-55014
4-48446
9
81 ,1-32545
9
174-24000, 4-18176
9
231-04003
6-38511
10
100 1-81818
10
21.5-11111; 5-73629
10 285-23460
8-75872
11
121 2-42000
11
260-28444 7-63163
11 1345-13387
11-65786
12
144 3-14182
12
309-76000 9-91231
12 1410-73780,
15-13506
13
169 3-99450
13
363-53778'] 2-60263
13 1482-046471
19-24290
14
196 4-98909
14 !
421-61778 15-74038
14 1559-05980
24-03392
15 TZ6 jt)-13636|
16 !
484-00000 19-35998
15 '641-7178o'29-5606S
190 COEFFICIENTS QF PERFORMANCE OF STEAM TESSELS.
Speed Formulae as generally used for Steam Vessels.
T^velocity in knots per hour.
H^indicated horse-power for V speed.
D^displacement in tons.
/;=sectional coefficient of performance.
V zranv other velocity- in knots per hour.
H. vindicated horse-power for V, speed.
X=:area of midship section in square feet.
x— displacement coefficient of performance.
r=^
uxt
H=i— ^-i
H=
_V'XI>J
H
H
H
H.
Note.— These formulae may be taken as sufficiently accurate up to 12 knots speed, when
from 12 knots and upwards \* and even T* may be substituted at high speeds for v^.
In the followin? tables let — vzrvelocity in knots per hour.
S— slip in knotd per hour. H=indicated horse-power.
Dindisplacement in tons. S=area of midship section in square feet.
L=:len?th of vessel in feet. B=breadth of vessel in feet.
Table of Coefficients
OF Performance, etc., of some i
OF Her Majesty's S
CREW Vessels.
v->xu-
L
H 1 H ■ T*XX
Name of Vessel
L
400 i
B
6-73
^
D H
907116867
V
15-433
S
Neg.
X
I>§ H
H
Agincourt
1185
5-79
15-79 634-3
2328
11
400 ;
673
1198
91.i.2 .5971
13-879
Neg.
4-99
13-65 5361
195-9
•1 •
400 i
673
1198
9152 3001
10-998
Neg.
2-51
6-86 530-8
194-0
Minotaur
400 '
6-69
1158
8800,6336
14-779
Neg.
5-47
14-87 590-0
217-2
»i •
400
6-69
ll.'>8
8800 3451
12-387
Neg.
2-98
8-10 ' 6377
2ai-7
.1 •
400
6G9
1313
10185 3497,
11-842
Neg.
2-66
7-44
623-6
223-1
Achilles .
380
6-52
1120
7895 503.5
14-358
Neg.
4-.50
12-7
658-5
2331
330
6-52
1293 i
9362 4818,
13-349
Neg.:
3-73
10-85
638-4
219-3
380 1
6-.i2
law 1
9487 3205
12'a49
Neg.
2-45
715
7137
244 6
Warrior .
3^0
380
6 -52
6-55
1284 ;
92.58 20? 1
11-132
14-3.56 1
Neg. 1
1705
2-09
6-08 660-8
226-9
231-5
1219 '
88.52'. 5469'
4-49
12-78 659-4
3*)
6-55
1260 1
:.214:.5092
13-936 ;
1-636 ■
4-01 ir.59 ' 669-7
233-6
11
380
6'ob
1219
8<52 2%7
12-174
1-000 1
2-35 ! 6-70 1 7671
269-3
;; ;
380
380
6o5
6-.^
1219
S?52 lt«SS.
11040
10-415
-210 i
1-63 1 4-65 1 824-9
2-21 6-33 ! 510-6
289-6
178-4
12.i5
9i^0'2777
1-371
Euphrates
360
7a3
814
5~9820^:
11-523
-331 1
2-56
6-39 1 597-5
239-6
1. •
3fi0
733
841
5109 UH2
10-600
-586 ;
214
5-39 555-8
220-8
Serapis .
3)50
7-33
778
.5600 :»45
14-059
2-645 '
5-07
12-51 548-0
2221
„ ...
:5H0
■•33
S'H
58163698
13-378 1
Neg. 1
4-60
11-43 520-5
209-4
.....
360
r:?3
778
.560IJ2613
12-554 1
1-616
3-36
8-29 1 .589-1
238-8
Inconstant .
337 4
671
900
.53287361
16-513 1
1-188
8-18
24-13 .5.50-46
186-6
«. •
337 4
6n
900 ,
5328;}.53I
13-701
-498
3-92 ! 11-57 i 6.55-61
222-2
Sultai .
32a
551
1320
8714 8629
14134
2-864
6-54 i 20-38 1 431-9
138-6
Captiin »
320
6-01
1176
7672'5:'90
14-239
1-665
5-09
15-40 i .566-8
187-5
320
6-01
1174
76.55 290B:
11-697
-693
2-47
7-49 1 646-0
213-7
Belierophon .
300
a-36
1(65
6372 .5966
14-227
Neg.
5-60
17-36 .514-1
165-9
«<
*J0
536
1018
5700: 470?
13-646
Neg.
4-63
14-75 549-2
172-2
11
300
536
1065
6372 3119
12-103
•172
2-93
9-06 605-3
195-3
... . .
300
5-36
1134
685 r 2984
11-780
-13:}
2-63
ft-27 621-3
197-7
Orontes .
.300 1
672
644
3400 1323
10-89C'
1-631
2-05
5-80 628-6
2-20-7
1. ...
30O 1
672
781
4249 10*1
9-755
1-779
1-38
4-12 670-6
2-253
.....
300 1
672
796
4321 i 775
8-719
1-519
-97
2-92 6810
226-*
Raleigh . . .
298
614
851
46176518
15-51M
3-945
7-24
22-11 515-0
168 5
298
614
851
464713414
13-4.57
1-940
401
12-26 607-5
198-8
Devajtatlon *
■iSi)
4-58
1472
9190 6652
13-840
-994
4-52
1516 586-6
174-8
..
,^b
4-.58
1472
91903399
11-909
•200
2-31
7-75 ; 7:n-4
218-0
Adventure .
12S2 10
777
467
2432:1227
11-447
1-796
2-62
6-78 1 571-0
221 1
>i
1282 10
777
474
2470 1053
10-617
1-945
9-'W
5-76 5386
207-6
11
1292 10
777
467
2432 637
9-256
-948
1-36
3-52 ' .581-7
' 225-2
282 10
777
436
2248 517
8-507
1-.5.34
119
301 519-5
, 204-5
Audacious* .
280
518
997
.5.594 4*35
13-401
-295
4-85
15-34 ! 496-3
1 1.56-9
•1
280
518
1087
6I70 1021
12-829
-401
3-70
11-95
5708
j 176-6
.
280
51*
997
5.594 2946
10-811
3017
2-96
9-35
427-6
1 135-1
1-280
5-18
997
.5.594 17<13
10091
.Vee.
1-71 ; 5-40
601-6
! 19(>-2
Active .
;270
6-43
632
3057 4015
14-9.56
1-931
6-35 1906
527-5
1 175--
.,
270
6-43
628
3033 H.^W
14-877
2-650
5.54 16-61
694-5
198-3
^^
l270
6-43
632
3067 2046
12-295
-773
3-24 9-71
.573-9
191-3
270 1 6-43
628
3033 169:}
11 -76.1
1-241
2-68 8-03
608-0
202-8
flepul^e
1232 1 427
1170
6010 :»47
12-284
' 3-917
2-86 1012
648
' IN?,-!
» Twin screw vessels.
COEFFICIENTS OF PERFORMANCE OF STEAM VESSELS. 191
Table
01
^ Coefficients of Performance, etc.,
OF SOME 1
OF Her Majesty's f^
CREW Vessels (concluded).
L
H
H
V^X X
V-- X 1 ) •
Name of Vessel
L 77
X
D
H
V
s
B
♦
X
iyi
H
H
Repulse .
252 4-27
1170
6010
1871
10-687 2-308
1-60
5-66
763-2
215-6
Olatton *
245
4-54
918
4900
2868
12-109 Ncg.
3-12
9-94
568-2
178-6
.1
2450
4-54
918
4900
1434
9-872 Neg.
1-66
4-97
615-9
193-5
Hotspur *
235
4-70
839
3980
3497
12-651 2-293
4-17
13-92
485-8
145-4
,,
2,3o0
4-70
839
3980119^54
10-601 1-666
2-34
7-82
508-9
1.523
^,
2;}5
470
839
3980; 2650
10-070 1 5-601
3-16
10-65
323-2
^^6-8
Victor Emmanuel
230
416
788
3578 '2123
12-009 1 2-446
2-69
9-07
()43-0
190-9
,^
230
4-16
794
361412219
11-713 1 1-365
2-79
9-42
675-0
170-6
230
4-16
1065
6106:2424 10-874 i 3-774
2-28
8-17
564-9
1573
2:30
4-16
1065 _
51061274' 9-072
2-/37
1-20
4-30
&>i-2
K.'J-H
Abyssinia* .
225
5-36
555' 7
2816 1 949
9-595
1-417
1-71
4-76
517-5
LV6-7
^^
226
5-36
5567
2816! 662
7-327
1-356
1-01
2-82
389-2
139-7
Cyclops *
225
5-00
639-0
3100 1660
11 027
Neg.
2-60
7-81
616-0
171-7
225
5-00
639-0
31(tO| 746
8-720
Neg.
1-17
3-51
567-6
lK(i-(H
Magdala *
225
500
589
2997:1436
10-666
Neg.
2-44
6-91
497-6
17.V6
225
5-00
589
29971 816
8-848
Neg.
139
3-93
499-9
176-4
Amethyst
220
5-94
476
1978 2144
13-244
2-211
4-50
13-61
5167
220
5-94
476
1978 1989
12-920
2-167
4-18
12-62
5161
17'i-
_^
220
5-94
476
1978 1034
11-083
1-127
2-17
6-56
626-5
207-4
Briton .
220
6-11
436
1860 2149! 13-126
1-916
4-93
14-21
45&-9
16i!-2
220
6-11
436
186O-J019i 127(;6 ' 1-863
4-62
13-32
450-4
Vib--J
,,
220
6-11
436
1860 933 1 11-026 1 -892
2- 14
6-17
626-3
217-1'
220
6-11
413
1768 11 00 lO-OOO ] l■^93
2-67
7-56
376-4
131-4
^^
220
6-11
413
1768 665 7-920 | 1-685
1-37
3-88
.363-3
ll'fl'
Modeste
220
5-95
479
1993 2177 12-791 i 2051
4-54
13-76
460-4
];)2-2
,^
■220
5-95
479
1993 1108 10-066 1 1-004
2-31
7-00
624-6
173-4
Algiers
2IH7
3-65
819
3562 2518 12-191 2-644
3-08
10-80
689-2
167-8
^^
218 7
3-65
814
3650 1362 10-487 . r799
1-67
5-85
647-6
166-6
^^
21S7
3-65
la53
4730 1117 9-000 1 -545
1-06
3-^-6
687-2
IKI^
Euryalus
212
4-23
704
3126 1262 10-038 1-868
1-70
6-90
664-2
171-3
„
212
4-23
750
3356 1162 9-47 2-036
1-66
5-18
6480
163-s
Sirius
212
5-89
377
1654 2302 13-263 1-800
6-11
17-16
382-1
1360
,,
212
5-89
425
1746 1118 11-283 -723
2-63
7-71
646-3
186-4
„
212
5-89
377
1564 1070 10-897 -857
2-84
7-98
465-8
162-2
Albion
204
3-39
688
2912;1836 10-986 1-270
2-67
9-00
497-3
147-4
„
204
3-39
688
2912 1017 8-S><8 -704
1-48
4-99
475-1
140-8
Lion
192
3-37
635
2540 1771110-911 1-133
2-79
9-61
466-7
136-5
„
1^2
3-37
870
3580J032
9-529 -877
1-19
4-41
729-6
196-2
,,
193
3-37
768
3120 925
8-334 1 1-342
1-20
4-33
480-5
133-7
Dromedary
189
7-11
247
905 j 430
9-084 2-798
1-74
4-60
430-5
1031
189
7-11
247
905 223
7-520 1-876
0-90
2 -.38
471-6
17f-6
Dryad .
187
5-19
434
1546 1464
11-963 -804
3-37
10-95
507-6
1.56-4
187
5-19
434
1546: 839
10-117 -293
1-93
6-28
635-6
165-0
Myrmidon
\^bO
6-53
236
776 782
10-338 4-176
3-32
9-27
3333
119-2
,,
165
6-53
265
886: 671
9-838
2-850
2-63
7-28
376-9
130-7
„
185
6-53
236
776, 404
8-763
2-627
1-71
4-79
392-8
140-4
„
185
6-53
253
836' 219
6-641
1-981
•86
2-46
339-0
lis--*
Lapwing *
170
5 '86
228
7691 882
10-847
2-767
3-87
10-51
329-8
121-4
„
170
5-86
229
774 605
9-H25 1 2-189
2-64
7-18
337-7
124 -2
„
170
5-86
228
769, 839
8-718 1-442
1-49
4-04
446-4
1640
„
170
5-86
229
774! 276
7-634 1 1-439
1-20
3-18
369-1
135-7
Egeria .
160
5-11
320
9491011
11-302 '3-406
3-16
10-47
45G-8
l?7-8
Sappho .
160
5-11
280
800' 936
11-191 1 3-lh4
3-34
10-86
419-6
129-1
Beacon *.
155
620
182
690, 677
9-375 1 2-948
3-17
8-10
260-0
100-6
Flirt* .
155
6-20
164
521' 584
10-091 1 5-571
3-66
9-03
288-3
1I3-S
11
155
6-20
159
501 421
9-037 4-463
2-66
6 -67
279-0
110-7
Ariel
125
5-43
160
352' .540
10-802 1-340
3-38
10-83
373-4
116-4
„
125
5-43
160
362' 278
9-231 -646
1-74
h-^.H
462-4
1410
Coquette
125
5-56
178
408, 406
9-656 1 Neg.
2-28
7-38
394-9
122-0
„
125
5-56
179
411i 193
7-9.W Neg.
rr8
3-48
468-4
144-7
„
125
5-56
178
405, 168
7-2O6 Neg.
-94
3-06
397-4
121' -2
Mosquito
125
6-56
184
4241 501
10-397 1-973
2-72
8-88
412-4
126-6
„
125
5-56
178
4081 364
9-6.'« 1-547
2-04
661
437-0
135-2
125
5-56
184
424 1 226
8-571 •f.'87
1 -23
4-00
612-8
157-3
Elizabeth
115
5-23
163
365 244
8-916 4-982
1-50
4-78
473-7
148-4
Ant -*
a5o
3-25
146
254
213
8-461
1-936
1-46 5-31
416-6
114-1
Pickle* .
a5
3-25
146
264
2&8
8-693
2-720
1-H4
6-69
357-5
flS-2
Snake * .
85
3-25
141
244
225 8-646
2-499
1-60
6-77
390-7
108-2
Scoursre *
85
3-25
141
244
263 8-560
2-842
1-79
648
.349-6
96-8
Plucky *
80
3-18
125
198! 224] 8-667
3-463 1
1-79
660
349-4
94-9
Staunch *
75
300
116-8
164 134 7-664
1-864 ]
1-16
4-48 ,
S87-3
100-1
* T-wiu screw vessels.
192 EFFECTIVE AND INDICATED HOESE-POWEE.
Eatio of Effective to Indicated Horse-power. {Froude.)
Indicated Thrust.
I = indicated thrust.
M = mean piston-pressure.
T = total piston-travel per revolution.
P = pitch of propeller.
N = number of revolutions.
IHP = indicated horse-power.
^_ MxT^ . 33000 XIHP
P P X N *
Indicated thrust is resolved into the following six elements : —
Xo. 1. The ship's nett resistance, or useful thrust.
No. 2. Augment of resistance due to negative pressure
created about the ship's stern by the action of tlie
screw. This is nearly proportional to the useful
thrust.
No. 3. Water friction of screw. This is also nearly propor-
tional to the useful thrust.
No. 4. Constant friction, or friction of engine without external
load. This may also be taken as nearly proportional
to the useful thrust.
No. 5. Friction due to external load. This may be taken as
constant at all speeds.
No. 6. Air-pump and feed-pump resistance. This may be
taken as nearly proportional to the square of the
number of revolutions.
The above six elements are force factors, and when multiplied
the speed of ship in feet per minute , , ^ , . .
by q^OOO — ' ' C'^^stitute the ships
horse-power as fundamentally due to her progress.
Let EHP = effective horse-power — that is, the power due to the
nett resistance of the ship.
SHP = ship's horse-power.
IHP = indicated horse-power.
Tlien the ship's horse-power due to the several elements is
as follows : —
iShi]j"s horse-power due to No. 1 = ehp.
No. 2^-4 EHP.
No. 3 = -l EHP.
No. 4 = '] 43 SHP.
No. 5 = -143 SHP.
No, 6 = -075 SHP.
Or in combination shp == 1 -a ehp + •361 shp.
So that -639 shp = 1-5 ehp;
EFFECTIVE AND INDICATED HORSE-POWER. 193
or, SHP = ^^'^ EHP = 2-347 ehp.
To this must be added — Slip = "l shp,
making ihp = 1-1 shp.
Thus IHP = 2-582 ehp = -^^ ehp :
38-7
or, EHP= -387 IHP.
To convert the formula from one adapted to high speed only
to one adapted to all speeds it is necessary to keep the term
involving constant friction separate from the rest, for it
represents simply the effect of a constant resistance operating
with the existing speed of the engine.
In shaping the formttla the coefficient 2' 7, derived from
rather broad experience, will be adhered to, instead of the co-
efficient 2-582, as the latter is built up from somewhat hypothe-
tical data, assuming, however, that the constant friction is
equal throughout to the one-seventh of the maximum load.
Of the 2-7 EHP which make up the ihp at the maximum
speed y, one-seventh part, or -385, is the part due to constant
friction, leaving 2-315 as due to the other sources of expenditure
of power. And to express the IHP due to constant friction at
any other speed v, the coefficient must be altered in the direct
V
ratio of the speed, so that the term becomes — x -385 x ehp at
designed maximum speed. Thus the formula for IHP at any
speed V is as follows : —
IHP = 2-315 EHP + -385 -' X (EHP due to v) ;
or, if the useful is finally severed from the collateral expenditure
of power, it stands thus : —
IHP = EHP + 1-315 EHP + -385 - X (EHP due to v).
V
To Determine the Initial and Constant Friction of A-
Marine Engine. (Fronde.)
Construct a thrust curve (see fig. 146) by setting up ordinates
j/, y\ if', y^, &c., which represent to scale indicated thrusts taken
at various speeds. The ordinates being set off at distances along
the base line, commencing from the origin, so as to represent to
scale the various speeds at which the thrust was taken, a curve
bent through the ends of the ordinates will form part of a thrust
curve. Let^^ be the lowest point found for the curve ; at the point
p draw the tangent pj)' ; draw the vertical at h so as to cut the
space oy into segments, making oy = l-87o^; draw a line
194
SPEED TRIALS.
parallel to the base through the point c, where
Fig. 146.
A=curTe of indicated horse-power.
B = cvirve of indicated thrust.
c= curve of slip.
D= constant friction.
^aHer ofj^peed'.inKnalrS^
the vertical h
cuts the tangent jjj?' :
the vertical height D be-
tween the parallel line
and the base will repre-
sent the constant friction
of the engine, and it
will also be the height
of the vertex of the thrust
curve at the origin of the
speed scale, which can
thus be completed from
the point j:;.
Mte.—The heights of
the ordinates above the
line of constant friction
are proportional to th(r
ship's true resistance.
SPEED TRIALS.
Measured Mile.
Tfl deterynine the true mean speed of a vessel when the ?'nns
are taken on the measured mile, Jialf the yiumher of runs heing
taken nith the tide and half against the tide.
Rule. — Find the means of consecutive speeds continually
found until only one remains.
ExamjiU.
Runs j Knots I 1st Means |2nd Means .3rd Means i 4th Means : Mean of Means
1st
2nd
3rd
4th
5th
6th
1
}
15-4
10-1
14-3
11-0
13-2
6i7o-8__
12-633
Ordinary mean
speed.
12-75|
12-20l
12-65.-
12'10
12-50*
12-475
12-425
12-375
12-300
12-45 .
12-40 I
12-3375^
12-425
12-36875
4 49-575
12-396875
True mean
speed.
12-39375
Ordinary mean of
second means.
Note. — The ordinary mean of second means is generally taken
as sufficiently accurate.
Speed op the Current.
To find the .speeds of the cnr?'ent in the line of the shijf's covrse
during her speed trials.
Rule. — Find tlie differences between the real speed of the
8bip and her observed speeds on the mile during the several runs.
SPEED TRIALS.
195
ExamjjJe.
„,,^, \ Observed
^^= ! Speed
i
Real Speed
Differences
1st
2nd
3rd
4th
5th
6th
15-4
10-1
14-3
11-0
13-2
11-8
12-397
12-397
12-397
12-397
12-397
12-367
3-003
2-297
1-903
1-397
•803
•597
Knots with the ship
„ against ,,
,, with „
„ against „
„ with „
„ against ,,
Sea Trials.
To determine tlie true mean speed of a vessel 7vhen the distance
run is great.
Rule 1st. — Calculate the apparent speed of each ran as
nsual, by dividing the distance by the time, and group them in
sets of three ; for example, 1, 2, 3 ; 2, 3, 4 ; 3, 4, 5 ; &c.
2xD. — Each set of three is to be treated as follows : — Find
the two intervals of time between the middle instants of the first
and second, and of the second and third runs of the set ; reduce
those intervals to the corresponding angular intervals by the
following proportion : —
As 12*^ 24" (the duration of a tide) : is to a given interval of
time : : so is 360^ .* to the corresponding angular interval.
3rd. — Multiply the first apparent speed by the co-secant of
the Jirst axignlai interval, the second apparent speed by the sum
of the co-tangents of the two angular intervals, the tMrd
apparent speed b}- the co-secant of the second angular interval.
4th. — Add together the products and divide their sum by the
sum of the before-mentioned multipliers : the quotient will be a
speed from which tidal effects have been eliminated.
oTH. — Add together the velocities deduced from the sets of
three runs, and divide by their number for a final mean.
jVote. — When an interval elapses of more than a quarter of
a tide, or 3** 6™, between the middle instants of the two runs of
a set, certain multipliers and products must be stihtractcd.
The following example will determine whether these certain
multipliers are to be taken as positive or negative.
Exainjjle.
Angles.
/ Between 0°
\ and 90°
r Between
\ and
{Between
and
}r Between
\ and
02
Time.
Between C
and S^^
Between 3**
and e''
Between
and
Between
and
S^^ 6
3>' 6™ "\
9h igm
9h |8«
12'' 24™
}
}
Co-secants.
. Positive
Co-tangents
Positive.
90° \
180° /
180° 1
270° /
270° 1
360° /
Positive Negative.
Negative Positive.
•Negative Negative.
193 SAILING.
SAILING.
Centre of Lateeal Resistance.
Tlie centre of lateral resistance is the centre of application of
resistance of the water; and as this varies in position with the
speed of the ship, ice, it is not determinate, but a point is
generally taken at the centre of tl e immersed lonaitndinal
vertical middle plane of the vessel as sulficiently accurate.
Centee of Effort.
The point in the longitudinal vertical middle plane of a vessel
which is traversed by the resultant of the pressure of the wind
on the sails is termed the centre of effort ; its position varies
according to the Cjuantity of sail spread, kc, but its position is
determined approximately for purposes connected with design-
ing the sails, all plain sail only being taken — that is, the sails
that are more commonly used, and which can be carried with
safetj^ in a fresh breeze (see table, p. 200). They are as
follows : —
In square-rigged vessels : the fore and main courses, fore,
main, and mizen topsails, fore, main, and mizen topgallant
sails, driver, jib, and sometimes the fore topmast staysail.
In fore and aft rigged vessels : the main sail, fore sail, and
sometimes the second or third jib.
In calculating the position of the centre of effort by the
following rules the sails are taken braced right fore and aft.
To find tlie perpendicnlar Jieujld of the centre of effort above
the centre of lateral resUtance.
Rule. — Multiply the area of each sail by the height of its
centre of gravity above the ceni re of lateral resistance: take
the sum of those products (or moments) and divide it by the
total area of sail : the quotient will be the required result.
To find the lateral position of the centre of effoH relativelij to
the centre of lateral rcaixtaiirc.
Rule. — Multiply the area of each sail whose centre lies to
one side of a vertical axis passing through the centre of lateral
resistance by the perpendicular distance of its centre from that
axis, and add the products (or moments) together.
Treat the other sails whose centres lie to the other side
of the axis of moments in the same way as before, and add their
products together.
The difference between the two sums divided by the total
area of sail, -^^ll give the perpendicular distance of the centre of
effort from the given axis.
Xotc. — The centre of effort will lie to that side which has
the greatest moment of sail.
The following table shows the method in which the centre
of effort is c-alculated.
SAILIXa.
197
Table showing Method of Calculating the Position
OF the Centre of Effort relatively to the Centre
of Lateral Eesistance.
Distances
-3 c;
Name of Sail
Areas
of Centre
of Sails
Moments
Vertical
MomentE
Before 'Abaft
Before
Abaft
t c
Jib .
2040
138
281520
_
87-8
17S092
Fore course
4050
78
—
olo900
—
56-0
226S(Hi
„ topsail
4330
78
—
337740
—
109-5
474135
„ topgallant
sail
1500
78
117000
158-8
238200
Main course
5488
—
12-5
—
68600
58-3
319950
„ topsail
5440
—
14-0
—
76160
1173
636112
,, topgallant
sail
1881
15-5
29155-5
172-0
3-23532
Driver
2831-5
— jlOO-o
—
284565-7 62-5
1769t'.8-7
Mizen topsail .
2645
—
78-0
—
200310
99-5
263177-5
„ topgallant
sail
902
—
79-5
71709
136-0
122672
2961639-0
31107-5
1052160
736500-2
Hght. of Centre of Effort above) _ -moment 29CAC,n9-C,__
Centre of Lateral Resistance i^ area 31107-5 ^
Dist. of Centre of Effort before { __ mom ants 1052160-730500
Centreof Lateral Resistance ^ area oll07'5
~-=io-i
Ardency.
Ardency is the tendency a ship has to fly np to the wind, thns
showing that the position of her centre of effort is abaft the
centre of lateral resistance.
Slackness.
Slackness is the tendency a ship has to fall off from the wind,
thus showing that the position of her centre of effort is before
the centre of lateral resistance.
198 SAILING.
Kelative Position of Centre of Effort and Centre of
Lateral Resistance.
D = distance of centre of effort before centre of lateral re-
sistance.
D| = distance of centre of efEort above centre of lateral re-
sistance.
L = length of load water-line.
A = area of load water-line.
«^ = distance of centre of buoyancy of ship below load water-
line.
di = distance of centre of lateral resistance abaft the middle
of the load water-line.
<^2 = distance of centre of buoyancy before the middle of the
load water-line.
D = --4t^-— ,' for square-riffged vessels.
10(di + do)
^ = ,"777^ r- for cutter and fore and aft ringed vessels.
10(«i 4- do)
T. 4a
Note. — The centre of effort of the sails, to produce the best
effect, must be higher or lower according as the ship is more or
less full at the load water-line compared with the fulness of the
body at the extremities below the water. Ships that are full
at the load water-line and clean below at the extremities require
the higher masts.
Real and Apparent IMotion of the Wind.
By the real motion of the wind is meant its motion relatively
to the earth, and by its apparent motion its motion relatively
to the ship when she is sailing.
The apparent motion being the resultant of the real motion
of the wind and of a motion equal and directly opposite to that
of the ship.
Fio. 147. In tig. 147 let AB represent
in magnitude and direction the
/__ a ^^^^r\ ^^^^ ^^^"^^ ^on of the wind, and
v^.^__ \\~~I^>r~ ^^ ^'^^ direction and velocity
of the motion of the siiip;
throucrh b draw bd parallel
•^^ ^^B andeciual to AC ; join da: then
DA will represent in magnitude and direction the apparent
motion of the wind.
SAILING. 199
In algebraical symbols let —
flw= angle adb made by the point from which the apparent
wind blows with the course of the ship.
K = supplement of abd, the corresponding angle for the real
wind.
r = — = ratio of velocity of apparent wind to that of the
DB
ship.
r, = — = ratio of velocity of real wind to that of the ship.
DB
r={ V(?',- — 1 + cos^ a) + cos a] .
When a is obtuse, r= { 'Jir^— 1 + cos^ a) - cos a}.
r= -v/(l + r,- + 2r, .cos k).
When K is obtuse, ?•= ^/\\-\-t^-—'1i\ cos K).
r, = V(\ + ?'2 — 2r . cos a.
When a is obtuse, r= a/(1 + r2 + 2r . cos a).
Sin K = ^ — sm a. Sm a — — ■' sm K.
Effective Impulse op Wind.
D = direct impulse of wind on sails = area x pressure in lbs.
E = effective impulse of wind on sails in lbs.
C = component of effective impulse which produces leeway
and tends to heel the ship over.
Cj = component of effective . impulse which moves the ship
ahead.
Q = angle made by direction of apparent motion of wind with
the plane of the sails (see fig. 148).
a = angle made by the plane of the sails with the ship's
course (see fig. 148). '
E = Dsin2 0. c = Ecosa. Ci==Esina.
In fig. 148 let PC represent in magnitude Fig. 148.
and direction the pressure of the apparent
wind on the sail AB ; through P draw PR
parallel to ab ; through c draw CR per-
pendicular to PR and cutting PR in r:
then RC is the effective pressure of the
wind on the sail ab, and RX perpendicular
to KM is the component of RC which pro-
duces heel and leeway, while NC is the component of RC which
propels the ship along.
200
railing;
Table of Direct Impulse of Winds ix Lbs. per Square
Foot, axd Sails commonly set by the Wind,
Velocity
iii Kuots
per Hoitr
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
45
50
60
70
80
90
100
Impulse Name of Wind
in lbs. I
•0067
•027
•060
•107
•167
•240
•327
•427
•540
•667
•807
•960
1-13
1-31
1-50
1-71
1-93
2-16
2^41
2^67
3-23
3-84
4-51
5-23
6-00
6-83
7-71
8-64
9-63
10-7
13-5
16-7
24-0
32-7
42-7
54-0
66-7
Licrht air
Light wind
Light breeze
Moderate
breeze
Fresh breeze
Sails commonly set by the Wind
Strong breeze
Moderate
gale
Fresh c-ale
Strong gale
^ Heavy gale
Storm
Hurricane
Courses,- topsails, topgal-
lant sails, royals, spanker,
jib, flying jib, and all
light sails.
Royals and flying jib taken
in in a sea way to two
reefs in the topsails.
Single-reefed topsails and
tojagallant sails in much
sea, two reefs in the top-
sails to taking in topgal-
lant sails.
Double-reefed topsails to
treble-reeled topsails,
reefed spanker and jib.
Close-reefed topsails, reefed
courses to taking in span-
ker, jib, fore and mizen
topsails.
Reefed courses, close-reefed
main topsail, fore sta}'-
sail, mizen topsail to tak-
ing in the main sail.
Close-reefed main topsail
to storm staysails, or close-
reefed main topsail only.
SAILIXa.
201
Impulse of Wind.
V = velocity of wind in knots per hour.
D = direct impulse in lbs. on one square foot.
D= "^'^ =v2-006667.
150
Speed of Similar Vessels under Sail.
V = velocity of ship.
X=:area of midship section.
c and c, = constants depending upon form below water.
D = displacement of ship.
A = area of sails.
V =
A _ /a
C-D3 "" \/ J|X
A = cDn'- = (;iV*x.
c =
Cy =
D?V-
XV-
Table of the Eatio of a Ships Speed under Sail
TO Speed of Eeal Wind.
Ratio oi Area of
Sails to Aug- ;
meiited Surface
Relation between Course and Wind
Probai'leJiatio of
Speed of Ship to
:Sp. of Real Wind
H
J Course 5 points near wind
(^ Wind 2 points abaft beam
r Course 6 points near wind
s Wind abeam .
t , Wind astern .
J Course 5 points near wind
(^ : Wind 2 points abaft beam
/ Course about Q\ points near wind
\ Wind on quarter . . . .
Table of the
Ratio of the
Probable Speed of Vessels
under Steam and Canva
s to those under Steam.
Speed under can-
vas •¥ speed under
steam
Probable speed
under steam and
canvas h- speed
Speed under can-
vas -f- speed under
Probable speed
under steam and
canvas ~- speed
under steam
under steam
•4
1-02
1-3
1-47
•o
1-Oi
1-4
l"o5
•6
1-07
1-5
1-64
•7
I-IO
1-6
1-72
•8
l-lo
1-7
1-81
•9
1-20
1-8
1-90
1-0
1-26
1-9
1-99
11
1-33
2-0
208
1-2
1-40
—
—
202 SAILING.
Heeling Moment of Sails.
E =etfective impulse of wind on sails in lbs. (see p. 199).
D = displacemient of vessel in lbs.
c = height of centre of effort above centre of lateral
resistance.
G —height metacentre above centre of gravity.
L = length of arm of righting couple at a given angle of
heel.
M = heeling moment of sails.
a = angle made by plane of sails with course of ship (see
fig. 148).
e = angle of heel of vessel.
M = c . E . cos a . cos 0.
The steady angle of heel of a vessel due to M will be that at
which M = D . G . sin 6 (for small angles of heel),
M = L . D (for any angle of heel).
In the two last formulae the reduction in the effective heeling
power of the wind due to the sails being inclined from the
upright position has been neglected, but if necessary the dimi-
nution of the effective pressure of the wind may be taken to
vary as the sine squared of the angle of incidence of the wind
with the plane of the ship's sails, or as the cosine squared of the
angle of heel.
^ Note. — In a general sense the moment of sail is usually
understood to be the product of the area of all plain sail into
the height of the centre of effort above the centre of lateral
resistance, as the pressure of wind is generally taken as one
pound on the square foot ; and the product of the weight of the
ship in lbs. into the height of the metacentre above the centre
of gravity, divided by the moment of sail, is taken as a measure
of her efficiency to resist inclination under canvas.
Area of Sail.
To determine accurately the quantity of sail siiitable for any
vessel to carry, make the moment of sail equal to the moment
of stability at a definite angle of heel ; but the following rule
may generally be taken as sufficiently approximate : —
A = quantity of sail suitable to a given vessel.
r> = displacement of vessel in lbs.
M = height of metacentre above centre of gravity.
H = height of centre of effort above centre of lateral
resistance.
= angle of heel in circular measure suitable to given vessel
taken from the following table.
D X M X
SAILING.
203
Table of Angle of Steady Heel for Different
Classes of Vessels.
Class of Vessel
Angle of Heel
Circular ileasure
Frigates and large merchant ships
Corvettes
Schooners and cutters .
Yachts
4°
5^
6° to 9°
•070
•087
•105
•105 to^l57
Table of the Area and Moment of Sails of some of
Her Majesty's Screw Vessels.
Achilles .
Bellerophon
Favourite
Hercules-.
Inconstant
Iron Duke
Monarch
Minotaur
Penelope
Prince Consort
Sultan
Swift sure
Valiant .
Vixen
"Warrior .
30133
|23792
|l6206
'28882
26034
25054
,27700
132377
117168
22459
128258
'25095
J21426
I 7860
128809
22-6 |3
!l9-343
'20-62'5
21-62 3
J27-57-4
,23-92'4
,22-52 3
'24-233
22-32 3'
18-853
20-42 3-
21-95 3-
17-493-
22-98 6-
23-07 3-
D
-11 95
•15; 85
•01105
■26 118
•61.147
25 128
35,129
10' 74
93i 84
36| 43
07112
82 116
18! 59
391 74
16' 63
99!23^33 26
64 26-1
4 '21-2
42 18-9
15-1
17-3
17-3
-50 30-0
-35|26-6
•2851-7
-8419-8
•0 19-3
•10 37-9
•6729-9
•2235-4
G
24
21
24
23
22
24
26
|16
25
|26
:24
'25
111
26
10 1
4 1'
Of'l'
■
^M ■
8iil-
6iil-
5 j2-
12-
10A|1-
8"'l-
2i! .
H
517i3-088
03 !3^28
j3-40
12-69
|2-80
,3-012
(2-37
999,3-879
35 3-52
,6-01
2-64
3-05
|4-61
14-21
5^2-285 4-678
In the above table —
A = area of plain sail in square feet.
B = proportion of sail to one foot of midship section at load
draught.
c = proportion of sail to one ton of displacement at load
draught.
D = moment of sail about centre of lateral resistance divided
by displacement in tons into the distance between the meta-
centre and the centre of gravity in feet.
E = weight of the ship in lbs. multiplied by the distance
between the metacentre and the centre of gra\dty, and the
product divided by the moment of sail about the centre of
lateral resistance.
204 SAILING.
Xote. — This is a measure of the power of a ship to resist
inclination under her canvas.
F =mean load-draught of water in feet and inches.
G = distance of centre of gravity below load water-line in feet.
H = height of metacentre above centre of gravity in feet.
Effect of Gust of Wind on a Ship's Sails.
The effect of a sudden gust of wind upon a ship's sails is, as
a rule, to heel her over to an extreme angle of heel of about
twice the steady angle at which the same constant pressure of
wind would keep her.
In fig. 149 let abc be the ship's curve of statical stability,
and DE her curve of varying moments of sail — that is, the
ordinates which express the moment of sail at the different
angles vary as the cosine - of the angle of heel.
Fig. 149.
i.oO
If the wind is steadily applied the ship will remain
inclined at a steady angle of heel of 20°, determined by dropping
an ordinate at the point of intersection E of the two curves ;
but in the case of the same pressure of wind being suddenly
applied she will heel over beyond the steady angle of heel, and
she will oscillate for a time about that angle, the reason being
that an amoimt of mechanical work has been done in heeling
her over to 20°, which is represented by tlie area adeh, whereas
the work absorbed is only equal in area to aeh ; hence mechani-
cal work has been accumulated equal to the area AED, The
ship will therefore continue to heel over till this work lias been
absorbed; this will occur at 40°, when the area ekl is equal to
the area AED, or, in other words, when tlie area alm — the
d}Tiamical stability at 40° — is equal to the area adkm she
will commence a retui-n oscillation under the influence of a
righting moment, represented by ml.
~
_•
' •- - u- c L~ cu: .-- u- c c - - -^ -
"T"
X
"Z
^ DC t^ l^ ^ tC i-!^ *-^ ""^ T Ct ^ '^^ ^1 "" ' — CT- C^
*—
-
>) >) :>j ri ?i M >i 7^1 ?-i 3-1 :>! ri Ti ri ?i ri :n :^^ — — 1
■ ;:
^
-
, -ir-4h-^-^'^'^-^'*-*i4<'+''*i"^-t"'^-^-5^^'^'^
'■ -
_•
L- r: — X t-1 -c; -* cc r^ t- — L-; -T- X ^: t ■■s>
~
■
•7^
— ~ — . oc oc I- -^ --r -* -^ rf: -M :m
, *^
^
tO!^wL::ou;ooo>poo»p»o»p»p»p»p»oi-i
2
_•
^T U- - C-l L- X — U- 00 — CO -^ CC —
_•
^
'—
5 r-I 30 T- I- --i S L-; -^ c^ rt ?i — ^ d CJ — 00 ti t-
*z
^
;::
. Ci r; c^ -. r: -. Ci n r; Ci ci ri ws ci 00 op CO 00 00
«
^
c^
, ^^^^^4^,JjH^^JK4H'^'?t<'*<'*'*l4i'*i-^4t
i<«
_•
irt ti 3D c; -M -^ L-: t^ r: — re t^ r; — r; CO ?i
^
c^
•;:
"zr
>
3
""
x
X
X
^
ibo>boo>b»oib>b>b»bib»b»h»bu:ihu-;ihih
„•
_•
•^
r; 3; i^ tr ' -: — r- 7i — c ~ i r- — >c -r- r: oi —
'^
H^
S
5 r: C-. r; -. c~. -. -. r. 9 r: 30 3D X 30 a; 3D X CO ao
-
13
i ih lb «i >i »h L-; ih ih ih ih »b ih to »b
o
o
t^ -* :m C X vr r: — r: r- '--i -r -M X -o u-i r: :m 3
_:
>
3
•^ i~ ^ re — r; X •— -?< re "M -' ~. X I- tc u^ —
,zz
.
rt J^'
H
-sC --o -w --r --c --^ i--: ue u: ue -f* '^ -*< -r '^ — "
••••••
~
s
_ 3
C5
•^ -o -o to ts -,0 -0 -0 -0 -00-0000 -0 -o
~
X
"5 _2
<;
■~ ,
-" ri re X re t^ ei i^ ei t^ 'M t^ ei t^ ^: X ~: c: -r<
^
^
-ii^^
.g
X -0 i-e re :m — . t- -f re — X t^ --rn 3>j —
.~
2
i-e -rt- -TjH -^ -rr -Tj- -T- re re re re re re re ^1 -n :^^ •>! 71 ei
5
•= z-
50
t^ t-. L-- l--- L^ i--- t^ l^ t>- t^ t- t^ 1-- t^ t>- t>- t- t- t~- t^
X
, — . ei-Mrere-^ue-ot-x—
"^
3 -^ ;
•H
t- re — r: t^ '3 re — r; i^ i.e re — cr; t- re —
.~
-^
'3
lO »-e -;?< -^ -*< -^ -]t" re re re re re :^1 ->■« ri ri ?i ei
—
s
ill
t-
xxxxxxxxxxxxxxxxxxxx
r—
-<
M >-e I- c re tc — re -f t -r — . -- r;
•"-■■
'*> iz
»-^
—
t- -r — —. re C; x le re c t- <-e :-i C: c- '- ei — .
—
«=^
Tt
~
r; r; ~ X X X X t^ t^ t^ i- -o le te ue —
■^
^
= -
»
6 r; ri cr. i-. =-. c^ fi r; =-. f; f; r. Ci r; i: r; r. r; c;
■^
r:
c
c c; M re e'e-*-*-r-:fOieoooi?-x~
• ^
•:^
_;
•;:;
X !>. — re 71 — r; X t;- -0 -^ re 71 — 9
*E
1
«
d c^ c'. n f: f^ r^ n f". f: X X X X X cb x> 30 x> 30
r«
' 71 X X ^1 -- - -o 1- t- 71 - re X -o t- -1 t-- t- r^
s
.S
lie o re c; i^ -^ 71 r; X i-^ t- t- X r:
^—
^
'S
c t;- «-e 71 X -e re -7^ cp -f 71 X -^ 71 X
^
"
6 r: r: d r. X X X x i- i^ t- t- t- -o -o -0 -o -0
o
Eh
re 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
•A
a
o — 7ire-*i-e"ot^xciO'— iMre-e'o-ot-xri
Z
.9
o
o
The number in this table corresponding to the time in which a vessel passes over the measured knot is
her rate in knots per liour.
1
,_ ./ 1
-T z; _ — o o 5
" —t '-^ ^ T-i r- O
I-H
'*-^'+t-*'*l-*'*-^-+!'^-*-tlH-*
T^ -^H ^^ -^Jl -^^ ^:f^ tJH
c
a
1— 1
O 'rf CTi CO » (M -O — lO O "+1 C5 M CO Cr; t^ -M O ^ O
S
i-l
o CO '^^ o ri 'M -^ ri c^ o O -* I- ^ '^ co c-i cc c; rt
ccoui'+iccrc-M — — ooc^cccot^-occo — -«
XcocpaoooxxcoaoccaDt^i^t-t^t^t-t-t^t^
d
a
a
a
f-H
c: oo t^ t^ — »c -f -** c^ •M — ^ O
ci cm cm cm cm cm
ue i-~ o CM lo CO o
— CO X I- -^ ir; 13
^
IC010»0»OIQ»CICOOIOOO
ic3 lO lO »C O »0 lO
3
o
o t- CO CO c: o — CM -M ^t 'i- i,-: ic
Ocscot^OwiaTt-rccM-^ocn
CO «:- t- t- t- t^ t- I- i^ L- I- i^ -^
t^ X en cT: — re -^
?2 ^^ 'p '— H: t •''
o
»ooioio»oioioioiaioo»o»a
id m lo >o »o lo o
d
a
Clt^tO-^CC-MOC^COt^tCiO-^H
-M — 1 O cn GO t- --C -+ re; -M — o ~
-*-*-*trc;cccpr;:ccc^:^r^rccM
re 'C>T ^ CD rs X X
X t- to ue re -M r-i
CM CM CM M CM CM (M
a
^ -o -o -o ;c ->c tc -^ o -o ;^ -o o
a
00
ocot^o-*''M-^Ocot^o-+icc:
X -t< o t- re o tr>
— cr> r; r- -o le re
O O -. ~ r; c; ci
t- t?- o i o o o
00
<
H
O
a
a
'MCC»0«CC0O oo
-*> -:f 'J' JC CC rO re C:^ CM CM CM CM —
o t^ -f r- X »c re
v:; re ^ r: ic '-t- (M
-1 r- r-, d; O O O
d
a
c^ cr. c. c: c; c. Ci cn c. c; c: c; ci
Ti ~. C-. a a a en
a
11-250
11-216
11-180
11-146
11-111
11-077
11-04:5
11-009
10-976
10-942
10-909
10-876
10-84:5
— X !^ '^ 'M .-- c;
— ( t^ ^ ~ X ue ^
CO t^ t-- t^ CD CO O
6 6 6 6 6 6 6
_d
«cccOao«Dic-^rc:crerc-^K'^
'*- cp ;p u-; o -^ -^ rp re c^^ c^^
t^ cTi -^ re CO o re
X re 2 -« ci »c o
CO CO CO M 0^ iN Cv|
a
„^^^^^„_^^^^^_______
d
a
C>0'M-*r^-H«o— ico»crO(Mr-i
O— i-MrO-HtOI-CiO'tM-^i^OGO
p r; oo t- -^ lO >* re; cp C4 'T' O ri
cjo i'^ t- ^- t^ b- b- h- t- h- b- b- -i
-— I • O -* CO
o -M -*< CO c^ ^ re
c^ X t- CO ue ic -rti
•b CO CO CO CO CO CO
d
d
a
-:^CM-M^OOCOcOO-*'— 'O— ''+»
— 1 re «o »~ o c<» lo 3i -M --C' o -t< CO
l^iQCp-ylOCpcp'^Cer-iOXtp
lb »"o JO >b lb -** 'Tt* -*i -*" -rH -^ re rb
!M » w (M
(M :M C ^ C^ C<1 -4
oooooooo
ai
cosoo"^-r;-t-b't;-b-b-epcp
«0 c: !>1 ic Ci M 't C ^1 w O -1 t^ — u:t Ci c^ t- 1— i «0
c»Xt~-t--t^t~-t^t-^wcp:po^O»pipOO»p
Or^C^StCtGCC»Xc»qp»>.t-t--l^--pcptpOO»0
c:i 00 00 00 00 00 00 cbccooxdooocbxicbcboocbao
oioo-^'*''*''*|^r<^-fi'^i'^i<^'7^'7^'7-T'Ppo
OOOOOOOOOOOOOOOOOOOO
xxt^t^co^ip»p»p-^^opco?-i'r5^r-i"^pp
5^ ;j; ^_i _i4 t- o ! o
CC-MiM-— lOpC5X^^-^>•«p^O>p-*:pCO'^1'7H'7.»>»a»(MOC0OOO'-HO2OC<>
208
KNOTS 10 MILES AND MILES TO KNOTS,
Table of
Comparison of Admiralty Knots and Statute Miles,
Kiii^t.-; Miles Knots 2>Iiles Knots Miles Knots Miles | Knots Mii.s
•0606
■848o
•6364
•9242
•2121
•5000
•7879
■0758
•3636
•6515
•0394
•22 1 o
•5152
•8030
0909
'3788
6667
9545
2424
5303
8182
1061
3939
6818
969
2576
5455
8333
1212
4091
6970
9848
2727
5606
8485
1364
16-00 18-
16-25 18-
16^50 19-
16-75 19-
17-00 19-
17-25 19-
17-50 20-
17-75 20-
18 00 20-
18-25 21-
18-50 21-
18-75 21-
19-00 21-
19-25 22-
19-50 22-
19-75 22-
20-00 23-
20-25 23-
20-50 23-
20-75 23-
00 24'
25 24
50 24'
122
9->
22-50 25
ZZ'I O zo
23-
•?3'
4242:21
7121121
0000*21
2879121-75 25
5758 22-00 25
8636J22
1515
4394
7273
0152
3030
5909
8788
1667
4545
7424
0303
3182
6061
8939
23
23-75 27
24-00 27
24-25 27
24
Y2i
|25
9
00 26
25 26
50 27
25-
25-
50 28
75 28
00 28
25 29
50 29'
75 29
1818
4697
7576
0455
3333
62 IL^
90; »1
1970
484s
7727
0606
348.^
6364
924:
2121
5000
7879
0758
3636
65 1;
Miles Knots
1-00
1-25
1-50
1-75
2-00
2-25
2-50
2-75
3-00
3-25
3-50
3-75
4-00
4-25
4-50
4-75
5-00
5-25
5-50
5-75
i -8684
1-0855
1-3026
1-5197
1-7368
1-9539
21711
2-3882
2-6053
2-8224
3-0395
3-256(.
3-4737
3-6908
3-90
4-12
4-342]
4-5592
4-7763
4-9934
Miles Knots
Miles Knots
6-00
6-25
6-50
6-75
7-00
7-25
7-50
7-75
8-00
8-25
8-50
8-75
9-00
9-25
9-50
9^75
10-00
10-25
10-50
10-75
5-2105
5-4276
5-6447
5-8618
6-0789
6-2961
6-5132
6-7303
6-9474
7-1645
7-3816
7-5987
7-8158
8-')329
8-2500
.'^-4671
8-6842
8-9013
9-1184
9-3355
11-00
11-25
11-50
11-75
12-00
12^25
12-50
12-75
>00
13-25
13-50:
13-75
14-00
14-25
14-50
14-75
15-00
15-25
-50
15-75
9-5526
9-769
9-9868
10-2039
10-4211
10-6382
10-8553
11-0724
11-2895
11-5066
11-7237
11-9408
12-1579
12-3750
12-5921
12- 801 '2
1 3-0263
13-2434
13-4605
13-677«"^
rallies , Knots
Miles Knots
1600 13
16-25 14
16-5014
16-75 14'
17-00 14'
17-25 14-
17-5015'
17-75 15'
18^00 15-
1 8^25 15'
18^50 16^
1 8^75 1 6-
19^00 16'
19-25 16-
19-50 16-
19-75 17'
20-00 17-
20-25 17'
20-50 1 7-
20^75 1 8-
8947
1118
3289
5461
7632
9803
1974
4145
6316
8487
0658
2829
5000
7171
[»342 24
1513
3684
5855|:
8026
0197
00 18
25 18
5018
•75 18
00 19
25 19
50 19
75 19
0019
25 20
50 20
75 20
00 20-
2521'
50 21'
75 21-
00,21-
25121-
50 22
75 22
2368
4531
■6711
•8882
1053
3224
5395
7566
9737
1908
4071
6250
8421
0592
2763
4:134
7105
927r.
1447
:i61S
N.i3. Tlie Admiralrv knot =6,080 ft. ; 1 statute mile = 5.2.^o fr.
KILOMETRES TO KNOTS AND KNOTS TO KILOMETRES. 209
1 Table of Kilometiies to Admiralty Knots and Admi-
1 ralty Knots to Kilometres.
j Kilos.
Knots
Kilos.
Knots
Kilos.
Knots
Kilos.
Knots Kilos.
Knots
1-0
•540
"^-o'
4-317
15^-0'
"8^094
2"2-0"
11-872 29-0
15-64~9
1-25
•675
8-25
4-4.52
15-25
8-229
22-25
12-006 29-25
15-784
1-5
•809
8-5
4-587
15-5
8-864
22-5
12-141 29-5
15-919
l-7o
•1)44
8-75
4-722
15-75
8-499
22-75
12-276
29-75
16-054
2-0
1-07'J
9
4-857
16
8-634
23-0
12-411
30-0
16-18S
2-25
1-214
9-25
4-991
16-25
8-769
23-25
12-546
30-25
16-328
2-5
1 -849
9-5
5-126
16-5
8-904
28 5
12-681
30-5
16-458
2-7o
1-484
9-75
5-261
16-75
9-039
28-75
12-816 80-75
12-951 81-0
13086 81-25
16-598
8-0
1-619
100
5-396
17-0
9-173
24-0
16-72S
8-25
1-754
10-25
5-531
17-25
9-308
24-25
16-863
8-5
1-889
10-5
5-666
17-5
9-448
24-5
13 221 81-5
16-998
8-75
2-024
10-75
5-801
17-75
9-578
24-75
18 856 31-75
17-138
4-0
2-158
11-0
5-93t;
1 8-0
9-718
25-0
13-490 [32-0
17-2()8
4-25
2-298
11-25
6-071
18-25
9-848
25-25 13-625 5:32-25
17-403
4-5
2-428
11-5
6-206
18-5
9-983
25-5 ' 13-760,32-5
17 -53s
4-75
2-568
11-75 6-840 1
18-75
10-118
25-75: 18-895 [82-75
17-672
FrO
2-698'
12-0 6-4751
19-0
10-258
260
14-080 '380
17-807
5-25
2-888 12-25' 6-610
19-25
10-388
26-25
14-165 33-25
17-942
5-5 '
2-968 12-5 6-745
19-5
10-523
26-5
14-300 38-5
18-077
5-75
8-108
12-75 6-8S0i
19-75
10-657
26-75
14-485 ^83-75
18-212
6-0
8-288
18-0
7-015
20-0
10-792
27-0
14-570^31-0
18-847
r)-25
8-878
13-25
7-150
20-25
10-927
27-25
14-705
34-25 18-482
34-5 18-617
6-.5
3-508
13-5
7-285
20-5
11-062
27-5
14-839
r.-75
3-642
13-75
7-420
20-75
11-197
27-75
14-974
34-75 18-752
7-0
8-777
140
7-555
21-0
11-332
28-0
15-109
85-001 18-887
7-25 8-l)12 14-2o' 7-r.;»0
21-25
11-467
28-25
15-244 [35-25
19-021
7-5 4-047 14-0 { 7-824
21-5
11-602
28-5
15-379 f35-5
19-156
7-75 4-182 14-75 7-;>5:t
21-75
11-787 '2S-75 in-51 4^85-75! 19-291 |
Knots
1-0
Kilos.
1^858
Knots; Kilos.
4-75 8-808
Knots Kilos.
Kn'its Kilos.
12-25 22-701
Knots
16-0"
Kilos.
8-5"
15-752
29-651
1-25
2-316
5-0 9-266
8-75
16-215
12-5 23-165
16-25
30-114
1-5
2-780
5-25 9-729
9-0 16-679
12-75 28-628
16-5
80-577
1-75
3-248
5-5 10-192
9-25 17-142
18-0
24-091
16-75
31-041
2-0
8-706
5-75 10-656
9-5 17-605
18-25 24-554
17-0
31-504
2-25
4-170
6-0 11-119
9-75 18-068
13-5 25-018
17-25
31-967
2-5
4-683
6-25 11-582
10-0 18-5.32
13-75 25-481
17-5 32-480
2-75
5-096
6-5 12-046
10-25 18-995
14-0 25-944
17-75 82-894
8-0
5-560
6-75 12-509
10-5 19-458
14-25 26-408
180 83-357
8-25
6-023
7-0 12-972
10-75 19-922
14-5 26-871
18-25 38-820
8-5
6-486
7-25 13-435
11-0 20-885
14-75 27-884
18-5 34-284
3-75
6-949
7-5 13-899
11-25 20-848
15-0 27-798
18-75, 34-747
4-0
7-418
7-75 14-362
11-5 21-311
15-25: 28-261
19-0 135-210
4-25
7-876
8-0 14-825
11-75 21-775
15-5 '28-724
19-25' 85-678
4-5
8-889
8-25 15-289|l2-0 22-288
15-75 2'.t-187
19-5 86-137
210
DISTANCES DOWN THE THAMES.
^~~"
^1
cm^Iiejox jx;j
>.
aeij p"3^^^^03 JO ^SBejqy
^r 1
'Z
~
1 _ I
« ^
in
r5
iona :J^^l:^unB,l | g
i o>p
^j
<
f S ' ?
o ol
(=5
o
9snoH uoA'BH H^^S ; "• "^"
*? T'i
T?- I t^
^
-^
1 1
— i-i|
n
<
ij
■
L-j 1 -4 rf , o : o B
o
c^ 1 1- o -^ r- 1
J3
^
-2
j?ona s.naAO ! '^
S §1^
X
o
<:
.i^
1 ^~
-* C-. Ij^
*^
ii
^
'
1 —
^-
— <
-^
LI ' O Lt 1 lO 1 L- 1
L7
if^'
.2
a9Tj u.\iox pnasaABJO
^> I rf t- -N ■ Tj.
X
— «
i 1 i r^ '. r_
r-
:^
02
3
.i3iasiBJ9 Ji?|p ^!? ^
55
o
pq
'Eb
•"■ i^ : '•' 1 1- C-. 1 -r o-
T—
"^li
S
O
i 5
_^ ■__' — _ i-L <^?
•■^lo,
1 1
"— ' ^- 1— • ' ^
(M.M
= a
; — — . o , '.'^ ■ c: »c
—
O 1 o o
'^
•>•
o="
j9iaq:)U3 .'.- ^:v; -f •:- T^
X
t^ CO '. K
C3
^>>
-= o
1 >— -r 1 13 1 X ' — ;^
Lt
o ^ ^
o>
^?"
' f t 1 ^- 1 ,—
•— '
(M ' I^ C-1
_55
?
O 1 O 1 O , tC
O Lt C. CO o
o
^
nL '— »
spa-io racqut'Bn: j^'
t^ ^ i o ci 1 X "jr
fi'-;-itU — -^ X
f» ^
"5 5
1
1 t 1
I— , — ' — ri (M ^
col
asnoH -Jba-ji^h
"" ' 1
fi
cro
CcIlM
o cr
o ut
T 1 7*
t^ CO LI
X ;c b
S 55 j
o
■^^
^-
— 1 .—
'- :m
ss
5: CO
o o
o
'^ C 1 O O . C:
If.
Jiaaao Sai^avg ^!^| -lISl;?!!
Xi t^ ! y- o ~ oc
1
_ J 1 t *"■
— ^- ' »— ' >*
"o"=
s-s
P 1 c. iO:"fC;'i o 1 ~"i -.r ,c
^
jamL\i
s.soa TioiAviooAi ^:;i 5!S|^|g;^|s!^|r|^|S!g
^ GO 1
rc is
d
1 1 I 1 1— ,— 1— i_
■1 .t5.'
« to 1
rt t-r
c^-TOicc TC'fc 7T cci?:
^
pua :>su3 '
181J IlUA^HOUia gjV
iO , CO . i-t C-l , OC i; — j C. t^ ' PT 1 3S 1 r-i
X ■«)<
L~ is
-^
i
1 1 r- , — r~ r-'egir^lC^ CS ' C i.l O
O u-t ' O
O i L5 ' L-I
"C 1 L-3 H
IM
0> ,>^ CO^ Tf '>*
CC « TJI
C-. X i t^
-?-jO
JO ^siJAV
'qaiAiuaajg |,1h -^ o
t-
30'O| -^i-^ ; O
i) f— cc
7^ cc rf
Li ' L-j'l
nisiio:
C 1 ■M ' O 1 "."S 1 >o
IC ' «* lO [ 1(5 : i-I
C : m C:
o 'L-r 1 c-
o
t~ ra 1 IT. ( CO ' Ci
^ j 00 L-i ; i-i . c;
>0 K —
— '^ n
'
.. 1
'A
lau.Cjjaoa 1
^joj^dOQ
^ "^
TT CO! t^ f C5 |0
O OlO CIO
C^ 1 •.-3 O
^_f) -M
^, n r
is i j
"V
Ol h-
=rsTo~
i/^ r-- . L*
1 — ^ 1 — -^ — ." I
?"
T '.""l"?'''^!*?* T'^!^!? '^l?'
o: oci>-t
r-'?.?- ? v\
X
■^
irsoOiOj — 'mI-'J'IOiQC'O
■«^ i'^ ; t^
O ! L- 1 l^ — L-3 1
'O
(M C^ ; d
« ct cc r" ^ i
^
' 1 1
1 1 1 1 J 1 L
R
<
■
'
'
"1 '. "
■
'
*
J
t:
K
+3
1
1
c
37
5 5 ^im'K
'sc
'C: 3 >■
5 5 o ^ x'>-,<
i^
11
DISTANCES DOWN THE CLYDE.
21i
2:
^
C
5
c^uIOJ piB.\iox -•
»c s^i —
I9TJ5[00Jtt0£)|^l^ _
J9T(J :jtoonG9J£) ^
«5 I ->£ — ^1
O »f: ! re , c^j
jq -* o oc
aqSlT; A10JoSB^£) %10^
5>i CO 00 1 re
00 00 re ! r-H
9psi33 noii^qninQ;
l^'SS
— O It-
»P ;(N | —
r^ ' t- i'e
I— ! ^H |C<)
I9TJ; ^BAv^iBy; SuTtAiog
Ki^ {2 -^ ir
O ic ^
if.TJ9 J Ai9IJU9y;
Ci'OOl-J'CC rs CI -^ I Ki
00 re, 10 re cc coitc.ie
^;t«;^- -*< tc QC -f c-1
ipUT9;ii[jV\.
— ' o c; 1 3-
^
00
t-
g
c;
—
t^
3<1
re
^l1
5^1
ce
00
2
ii:
t-
^
<>*
CC
'^
t- : •M
00 10
00
s
re
ce
00
ci
00
t-
00
:$
C^
C:
1
I— 1
re
■*
01
T— 1
I— 1
10
cc
s
CN
?^
l^
c
i.2
c .£.•■
-^ i^ ;^, CI ?/-:: ^ Tr:>
^ tci "S ^ r=- , S ? rf p !^ i? -1^, uJ r- :«
C'T'dJ c :::i-o g.S'-.O ? ' ^ '^ -
■ o
err O
2 o
35 >.
rS -
pr >
g 2
H <;
p 2
212 DISTANCES FROM CARLISLE BRIDGE TO WICKLOW HEAD.
1^9ssaA-:|qSiT; qstAi g
P^
■— '
1-1
1 C~1
M
I9TJ 'a 'UA10:|S°nT3
-^
t -^
d
o
^"l
C^J
.- o
S
" ^
o
^— ^
^ rt
;qStT; inoqi^H ^^^iOH
?)
1
1
1
1
- ^
Q
1-H
-- ^
<1
•
■^
O
o
^ ' ,
i?
T •-'
^qSi^i igireg
00
LT:
O 1
i'r
«i "^
o ^
w—
1
'o'i
p_,
•— Q
X '^
, tj
o 1 o
o o
lo
XC
o
■^ -^
c^qSiT: Soa looj
o) i 2
re i
X) I-
'jZ
ct
i ir-
1^
r^
c^i
i_-^ •—
.
t>^
.^
(~
o
o
o
»0
U5
o
X ~
o
;qSn Il'BAV ^P-^OK
'~P
-^
1— 1
i-T:
7^
'T^
1^
r^ -<
K ""
^ 1
-M
""
rr.
rj
S ^
o p"
i
"ilL ~'
^ -r
1
C 1—1
t-
t^
t^ t-
t-
t^
:m
^1
l^
C *^
agpug; 8isi[i'B0
• f^
/~-
I- 6
I'.
V'
^
^
OC
— — C3
2^
^'
^^
"
C^l
^ "^
^ o
a 1 •
^-v, "^
p; s
^
•
■
■
^
r '-^^
w
.^
V" -— ^
H o
^
^ -t--
Hi,'-'
■"
. ^
1— 1
c
w'"
W o
— ^
< H
,
,
,
•
^
^ l>
^^
■/_
cT;.
•-- C^
~r. c
~ a
,
.
.
rr
r as
<^
'" J^
t^ ^v"
>••
r-H
■^
^"" ^w
r.
.
.
•
•
•
•
*
^ ;"
i^
1
^
p— ■ •f-^
;j
^
1
•1—.
z, --^
125
^
r.
■ "1 —
^
*
,
.
br.
1
'*Z
2
:-^
"'^
■^
w 1—
V:
(—1
";::
:-i "-^
CI,
~ c
5
-t^
Tl
o 7
r^
CM
;^
9^
Tft
-(-
■*-
o
t— 1
^
r;
r-^
r. 'i
br-
W
P5
1—1
0/.
bf.
bt
"^ i
3
1— 1
W
•<
CJ
^
o
a
-+-*
'•*
—
^
'/-
^
I— 1
-z
^
M
1— 1
O
bt
]o
^
-
^
•y
r^
^
DISTANCES DOWN THE BEISTOL CHANNEL.
213
ID
19SsaA-|iptT: i^u^S ^^T-^I^H ls?AV ^
-31^912 -X^ ^ong padii^s Q^HAi P^ ^^^19
QC CO
sarapH X^IS. ^^ cliqsiqSii ! J^ | -v, i ^ 6
■^moj p-B9qsT;iO(j
vona^iOBxa'p'BoaSni^g; | j^,
dT|Cj j9;qSndui^T;
^1 j-^
«> I o
»0 7^
ji 1 re
1—1 re
o
o
c3
o
o
be
o
a,
• rH
bi:
be
c
o
br,
• r-t
c
<
>
'3:
214
DISTANCES FROM LIVERPOOL TO HOLYHEAD.
,
o
saui9>[g
<=i
O
o
<
s-BUifT; 'i^uioj
cp
f1
b-
■^
a
Ch
1
o
p
o
4-1
-»1
P^9H s.8inio ';'B9.T£)
80X TJ^IOX
GO
I
1
1
le
^
'^
;il
h-1
o o
o
O
O
^
Pi
g
dTi[s:^qStT; '4S8Ai-t[^iox
lO
OO
-*
OC
CM CO
CO
-*'
lO
"o
(M
C<1 (M
M
(M
CM
uoo'Baa: 1183
1— (
I— 1
I;-
6d
o
CM CM
"^l
la
la
^
^
^^
o
1
O
-<
diqs^qSiT; iCqraio^
CO
cp
crj
9
Is
p:
■M
'^
^
lO
o
f-l
E
s
**t
O
o
o^
(M
(M
C^
CM
^1
'73
^
diqs^qSiT; i!qsojo
0^
4n
CI
JO
Ah
CO
o
9
6o
CO
0)
r-i
CO
"*
'^l
la
CO
P
-M
i
o
o
o
'M
CM
G<1
(M
CM
-T^
CC
►-T
esnoq^qSiT; Jfooa;
CO
■^
t-
CO
CO
1—1
CO
o
7q
©
o
1—1
CO
O
1^
(^
^
o
'^
o
o 1 o
o
C^l
CM
CM
'M
'M
-M
pi;
-*
(M 1 00
^H
t;-
t-
<0
">)
^"
(X)
o:
P»
4hi
Ci ^
-^
OO
6
O
'b
l^
'fl
-^
H^
1—1
t— 1
r—i
'^i
iO
lO
iO
t^
<*—
^
r;
J
^
•
•
•
•
■
• rH
tH
c
a
o
g
>
,^^
'
*
,
■
*
b/.
r-H
,
^
.
,
.
r^
,
.
'^i:
o
^
^
•^
r\J
■^
^
— .
1— i
'^
a
-^
ce
S
o
*
-r.
"
'-Z
o
p^
O
Tl
^
ai
^
-1
r;
Eh
la
C^
K- !
r-
&
6
2^
o
CD
o
U
^
0)
Jz;
PU
'In
^
"S
>
H
■^
oT
Ci
»r- 1
~-i
o
V-
c
1— T
o
o
en
O
+-■
•1—1
CO
be
>>
-t—
o
o
pq
rr.
5
ci
C
>^
5^
c5
c
pa
a;
M
■g
"^^
o
'o
"S
c
'>;,
<
>
o
o
2'
o
%
O
^
Pi
'o
^
C— 1
J
0^
Q
p^
P3
^
1
Ph
A
K--
nSTANCES DOWN THE ElYEK TYXE.
215
sppiqS ^wox 'ooBxcI-Snipire^ ^uti^ a\9x
?p[atqg qinos 'ooTJi^d-SnipnT^T; vav(j HW^
apis q^ox *;nioj Hiqa^tqAV
opts 9}TSoddo 'ootrei^na; :5[Ooa; Aicuux"
9ont?,nu3 ypod pu'B[iaqumq:}iox
p.iB \ Smpxraq-dTqs noij
s .i9rn]^'Bj o;isoddo 'JouipuB^ nop.wojj
S^JOAiUOIJ pn9S|p?A\^
p.it3\ iinTpi;Tng; s gi^sa^j
;t3 pBoy; Ami^ uanqqgjj
^apd: Ilia
9S00£) S_.I«LT^
;nods< SniddiT|<;;
— :3
C DO
■-5 Is
r-1 ^
M
^=^3
GO
C5
>1
o
o
&,
he
a Sic
Ci
i-~
c3 I C
i.= =
..Sa
t^h'-
O I <-
o
C5 ~
i^
w. — ?-' -
t: _: —
216
DISTANCES DOWN THE PJYER HUMBER.
o
O
is
tf
itong pajaubaq^ '[ -q^
|:C i-f
Aoufi pay; 'g -ox 9 ' ?i i =^
ilona paJ9nb9qo 'g 'Ox!??^ J^^ I!
Aong; :5[0'B^c[ '9 '0^; 9 ;?^=P!-?"r
"^ CO I >i;- , t^ I o ! ■>!
£2 oiol^ -+
ifona: TioT^ia 'oi "ox
iCong ps'jj '2 -o^
o
CO
Oi
»p «p lo CO
'— I CO ' O b-
o
O 1^
CO MO
-t' -f »0 (X
CO hr. ir: Ic^i
-* : '^i i »0 ' GC
«p [ (?-1 I 00 jp
O CO ' lb : b-
-1 O
' I— (
CI ll-H
1—1 j jp
>0 CO CO ; -t- t--
«3 p «p CI c;
O Icb Ub cjo ! c^
CO
o
1-1 i CM LO
oo|-* !-—
1^- ! O ! CI
>-l I r-< ' C) I 'Cj
CI ( CI ' CO «r
b- I CO I c: '-C
-— ' .— CI Cl
I
i
^\
I !^
o
I be
c«
! bo
W
13 I— I
•
/ — ■'— ,
3
•
c3 •
t-i
V
>i
•
K •
!■->
-Q
M
•
a •
%^
•
j-t •
>^
.
=3
;:3
,i^
g-^:
^
Hi
bC;
• I 501 '
;^
P5 -'::^ ^it ^ ^;
«
cr %:.
O ?
.^'- 00 , «c i ,
c ! c o
z'- X, y:
c , o o
^1^
a.
23 _
^ o
-^ "-<
r ^ ^
DISTANCES F
Ro:
\I CA]
RR]
[GA
LO
E
FEEE
T 1
"0
EOCE
[E pr
)TX
T.
*/
1/
X __J
■^ a>
s^i3:^s; ?
^
v—
"^ 54-1
p=;"^
H
.r- y
sp^an n9A9g g g
H
i5>l cr.
7^
C i^
1 : 1
tr*
|g
^q^n P^8H 9I^snT3 g ■ g 1 g
—' 'A
fcXO
1 cq I'e
,, ^
to
OiOlO C
5s
^looy; s,;nn^(j no iong
>-< i-H CO
la
M
■ 1 ■
^ <
c3 _isl
pB9qauiji^
Jl^
1
1
'!'
\
S ^
•r^
CM
1 ^-^ - <
11
'"a
pTjgjI niB
1
1
1
'
i
r^; — 1 "
< 2
rrj
1:? GQ
pn^isj pd^o g 2 g
1
1
1
Ml
!
2; ^
nonooAiiTJa g |g|?| 2
1
1
ill
1
1
:^^
•^ .0
1 ^ r-l ^
'
t- t^ DO CC
5 1
1—1
p^9H lOOJ
•-f V 1 1*' V-"
t- rb ci ih c:
1
III!
— ' r"
-i-j
___
^^ ' — ■>i —ta
'
^ 5
^nioj
06 'S
^ ,>1 CM
x» ;:c
n;
1
1
1
1 1
H r;
arpoa
'8S
noq^qJoiT;
TC ' ^H
irj
1
1
1
1 1
^r: '-'
?.i 1 ri 1 -*
13.
( '
-^ z
asouSod JO ;s'e8iqY
'jh
>1 C5
-M b- 1 CC
^
T T '^ "^T
ci) u: ih c
^ X
-^
— 1 3^ St l-~
o'
-+I Ir-^
.-1 1 (M "M 1 -*
iO CD
2^ '~'
^ooH i^a
cb
^ b- f 1 b-
CO
60
re; cc 1 c: cr.
t^'i^ cf^i
~ il
^^j_^^^ >i ?t i~
CM -"i [ :m " -+
~^^~
. : ^ ^
-; s
Aona 3[0Bia:
»h
6
GC' GO : ^ : ^
^ <:
— ' 1 CM iCN rc ' ic
.—1
X
5
bj.
X
218 DISTAXCE> FROM SOUTHAMPTON ROUND THE ISLE OF WIGHT.
ioua paa ao^saAV
M
■r: X
^oqsi^O
X
1— 1 1
.1.
^
—
»h
7-1
^ 5
^«
T— ^
5i
re
S
5
7*
le
;q°iT; c^oqsiBO
~ T.
X
7^
f>1
r
1^
X
fi
-^ ^
1
—
?i
r^)
re
^
\Z
tr
pua ;s-Ba
r. jr;
c";
^
-^
1^
-
tr
t^
■>^
^
'[B^idsoH if8[i8X
■T'
X
^•
:c
l;
z;
?i
7^1
h:
X
ue
-^
>b
iona: pay: no;saA\
9
l^
ic
u;
i~
C
t^
7-
»e
X
e-1
X
»e
i^
r" ^^-
—
—
~
—
—
5i
re
— ^
^r
tc
- S
C^l
X
X
t—
i^
cc
cr^i
X
■>!
r:
t^
-^ T
C
M
Z P
^
■fl
w
J_
^1
i
^
X
t-
i-i
»h
Ci •—
t'--
X
o 5
1
—
—
"^
I— (
?^
-*
^ rz.
1
..
^.
1 ' — ^' 1
• i—i > • . .1
1
^ ^
m ^
■5
■5
^•2 i 1 i
? ^
i^ p
•0
j^
' rv -i— i 1
r~ ^
.2.
•
•
•
■
•
•
. ,_ ^ . ., . .|
s —
< s
=5 <
— .-3
S
.
.
't^ ^
> ;:3
M
IS
! K . . . .
1 ■- ^
r' t:'
Txo
•^
■r9
to
—
—
■
S ^
It I
•
r^
•
X
X
•
X ^
— <
'Z 9 c
• ~ •
"x
^
•
•
.
s,'^. S Ji • • •
< -
IS S
■r.
>
J
il i
Sj El
3 ^ ^t
rH l—i —
— _JV '
ir.
'I 1
1
1— 1
■r'
Tc
=5 M-i
|!
■r. •-? X
s5,l
^5
2:
1 '^ 1 II 1 1'
• tu ^ e t -
X X ^ S e :^ X
DISTANCES FROM DEVONPORT TO PLYMOUTH.
219
-
:^^to^I ;ib;s 9
X
o
S3 r^
CO
C^ 1 CC
c^^IOJ in^ij
Ot 1 CC
1 •
^
CO 1 i— i
■^
1^
' o
la
O
CO
CO
■<5
pB9H ^pa 1 o
CO
CO
10
CO
i>
'^
C^
as ■<
1
10
:p
g S
lo lo
CO ' CO
-^
5 S
9no;sM9i\r ai^^iT 1 »? i f
QO GO
1 "* 1 1-
O 00
C "S
;o pita :;s'B3 'uoo^ag;
o '
9
O O
JO »p
r-^ 1— (
CO i CO
CO 1 CO
C^ ' O
^OTifi p9i9nb8q3
I;-
1
1
1 1
1
1
8;F{AV P^i^ P9vr
O
-*
1 ■
^
o , o
1
(^qSiT; j8;'B.W5['B8Ja
-* ] r-
1
1 1
1
1
-U* ^
^ ^
•If C
si
^
o u:
O
p
o o
, CO CO
_3 C
ifona o^iqAV ^isy
o
-ti 1 t-^
'•p
F— 1 1—1
i -tH J -rH
•1
CO i cr.
— (
cc
CC r^
' -^ <>i
= >>
H ^
-#
— ;n
' 6
«
b- ' lb
i—i
' lO
■ C<1
!M
CM t-
'^
.
.
.
d)
.
.
.
.
.
.
"ii
o
i.^
22
1
~^3
w ~
*
*
^
s
"
*
1—^
*
> ---
^^
'to
o
u
w
J2 C
S S
.
•
J
o
•
^
■7?
•
•
•
^
r-
go
H
be
pq
•
3
1—1
a
O
c3
d
O
1—1
+3
;z5
1^'
a
I— I
9 'So
S g
r-i
c c:;
S
O
P,
o
>
Q
o
r— 1
1
3
o
u
C5
d)
+->
CO
Ki
o
Q
C
O !
>
Name of Ship
ll
Longit
I Socti
Foot
Op
■Sg2
^J 2
= 2 i-sg^
Jfe
cS S
rt '-P 2
c2 -H "^
? S 1 =^ '-iS g
?-£^
OS ij i. 3
fe > ^
t. — ::
»H o* t. O o*
<'Z
-X
<^;^
<-J. \ <>V2
<,P,!r.
Achilles
166
9792
59-0
Glatton
163 4579
28-0
Arethusa
114
5359
47-0
Inconstant
191 7640
40-0
BelleroiDhon
248
7301
29-4
^Minotaur
198 10367
52-4
Blonde
203
7455
36-7
Monarch
231 i 7652 33-1
Canopus
127
4592
36-1
Raleigh
109 ' 38.54 I 35-3
Cyclops
95
3613
38-1
Himalaya
105 6290 60-0
Devastation
165
7615
46-]
Warrior
ISO 1 9271 ' 51-5
TO MEASrEE A SHIP S CIECLE.
2U
A Practical :\Iethod of Measuring the Circle Described
BY A Ship. (F. Martin, M.I.X.A.)
Fis-. 150 shows the small portable fittings to be used on the
Fig. 150.
-.s
occasion, a is a quadrant with
the degrees carefully marked
on a piece of wood which is
temporarily secured on the ship's
rail, with its inner edge ab kept
parallel to the middle line of
the ship ; c is a batten about -i
feet long and 3 inches broad,
with two upright wire sights
S, s, one in each end, about 8
inches long. The batten is
placed on the quadrant, with the
centre of one end coinciding
with the centre of the quadrant,
and tixed with a pin through the
centre, so that it can revolve. A
ba.se ( AB, fi g. 1 5 1 ) is set off in a fore
and aft dh-ection, of any conve-
nient length, and at its foremost
extremity a straight batten d is
fixed vertically to the ship's side,
extending a few feet above the
rail. The same arrangement is
carried out on each side of the
ship, and a line joining the
edges of the battens D, d
must be at right angles to the
middle line of the ship. These
are all the fittings necessary.
"When the helm is Imrd over, and
the ship has fairly commenced her
circular coiuse, throw overboard
a rough wood box about a foot
Square and painted black : as the
ship moves onwards the box remains nearly stationary on the
water, till presently the ship has described a semicircle, which is
known by the two battens D, D and the box coming into the same
straight line. At that instant the batten c is made to revo-ve
till the two wire sights s, s and the box are in the same straight
line ; the angle A (tig. 151) is then known, being denoted by the
batten c on the quadrant. The angle B is a right angle, and the
base AB being known, then DO = tangent A x BA, to which must be
added twice the breadth of the ship for the greatest space
occupied by her in describing the circle. — Ex. : If the angle
A = 80^ 1.5', and the base ba = 0O feet, and the breadth of the
vessel = 40 feet, then the greatest space occupied by her in de-
scribing the circle is = ('JO x 5-81905) + C2 x iO) = 603-i"6S feet.
222 SQUARES, CUBES, EOOTS, AND EECIPEOCALS.
Table
OF SQrAREs, Cubes, Square Eoots, Cube Roots, axd 1
Reciprocals of
ALL Ixte&er Numbers from 1
TO 2200.
No.
Square
Cube
Square Root
Cube Root
Reciprocal
/ 1
1
1
1-0000000
1-0000000
L-000000000
2
•4
8 '
1-4142136
1-2599210
•500000000
3
9
27
1-7320508
1-4422496
-333333333
' 4
16
64
2-0000000
1-5874011
-250000000
' 5
25
125
2-2360680
1-7099759
•200000000
6
36
216
2-4494897
1-8171206
■166666667
i 7
49
343
2-6457513
1-9129312
-142857143
i 8
64
512
2-8284271
2-0000000
-125000000
f 9
81
729
3-0000000
2-0800837
•111111111
■■ 10
100
1000
3-1622777
2-1544347
-100000000
11
121
1331
3-3166248
2-2-239801
-090909091
4.12
lo
144
1728>
3-4641016
2-2894286
-083.333333
169
2197
3-6055513
2-3513347
•076023077
14
196
2744
3-7416574
2-4101422
•071428571
— 15
225
3375
3-8729833
2-4662121
•066666667
— IG
256
4096 -
4-0000000
2-5198421
•06-2500000
17
289
4913
4-1231056
2-571-2816
•058823529
.--18
324
6832 ^
4-2426407
2-6207414
•055555556
19
361
6859
4-3588989
2-6684016
•052631579
20
400
8000
4-4721360
2-7144177
•050000000
— 21
441
9261 -
4-5825757
2-7589243
-047619048
•2'2
484
10648
4-6904158
2-80-20393
-04.54.^4545
23
5-29
12167
4-/ 958315
2-8438670
-043478261
24
576
13824
4-8989795
2-8844991
•041666667
2o
625
15625
5-0000000
2-9240177
•040000000
2('.
676
17576
5-0990195
2-9624960
•038461538
729
19683 -
5-19615-24
3-0000000
•037037037
.28
7N4
21952
5-2915026
3-0365889
•035714-286
29
841
" 24389
5-3851648
3-0723168
-034482759
30
900
27000
5-4772256
3-1072325
-033333333
31
961
29791
5-5677644
3-1413806
-032258065
32
1024
32768
5-6568542
3-1748021
-031-250000
-33
1080
35937 -
5-74456-26
3-2075343
•030303030
34
1 1 56
39304
5-8309519
3-2396118
•029411765
35
] 225
42875
5-9160798
3-2710663
•0-28571429
36
1296
46656
6-0000000
3-3019272
•027777778
37
1369
50653
•6-08-27625
3-3322218
•027U27027
3«
1444
54872
6-1644140
3-3619754
•0263157?<9
— oO
1521
59319-
6-2449980
3-391-2114
•0256410-6
40
1600
64000
6-3245553
3-4199519
-025000000
41
1 681
68921
6-4031242
3-4482172
-024390244
1764
74088 -
6-4807407
3-4760266
-0-23809.V24
43
1819
79507
6-5574385
3-5033981
•0-23-25.5814
44
1936
85184
6-6332496
3-5303483
-022727273
2025
91125 .
6-708-2039
3-5568933
-022222222
SQUARES, CUBES, ROOTS, AXD EECIPROCALS. 223
Xo.
Square
Cube
Square Root
' Cube Root
Reciprocal
46
2116
97336
6-7823300
' 3-5830479
-021739130
47
2209
10S823
6-8556546
' 3-6088-261
'0212766(1(1
^48
2304
i 110592
6-9282032
3-634-2411
-020833333
49
2401
; 117649
7-00001)00
■ 3-6593057
•0-20408163
50
2500
I 125000
7-0710678
3 6840314
-020000000
— 51
26(11
, 132651 '
7-1414284
3-7084298
•019607843
52
2704
i 140608
7-2111026
' 3-73-25111
•019-230769
53
2809
14.S877
7-280 ! 099
3-7562858
•018867925
54
2916
157464
7-34.^4692
3-7797631
•018518519
55
3025
166375
7-4161985
3-80295-25
•018181818
56
3136
175616
7-4833148
3-82586-24
•017857143
«57
3249
185193 "
7-5498344
3-8485011
•01 7543860
68
3364
195112
7-6157731
3-8708766
•01 7-24 13 79
59
3481
205379
7-6811457
3-8929965
•016949153
60
■ 3600
216000
7-7459667
3-9148676
■016666667
61
3721
2-26981
7-8102497
3-9364972
•016393443
62
3844
238328
7-8740079
3-9578915
•0161-^9032
—63
3969
250047 -
7-937-2539
3-9790571
•015873016
64
4096
262144
8-0000000
4-0000000
•015625000
65
4225
274625
8-0622577
4-0207-256
•015384615
66
4356
287496
8-1240384
4-041-2401
•015151515
67
4489
300763
8-1853528
4-0615480
•0149-25373
68
46-24
314432
8-2462113
4-0816551
•014705882
69
4761
328509
8-3066-239
4-1015661
-014492754
70
4900
343000
8-3666003
4-121-2x53
•014-285714
71
5041
357911
8-4261498
4-1408178
•014(184507
72
5184
373248
8-485-2814
4-1601676
•013888889
73
5329
389017
8-5440037
4-1793392
•01369863(1
74
5476
405224
8-6023253
4-1983364
•013513514
75
5625
421875
8-6602540
4-2171633
"013333333
76
5776
438976
8-7177979
4-2358236
•01S157N:f5
77
5929
456533
8-7749644
4-2543210
•012987(113
78
6084
474552
8-8317609
4-2726586
•012820513
79
6241
493039
8-8881944
4-2908404
•01-2658228
80
6400
512000
8-9442719
4-3088695
-012500(100
81
6361
531441
9-0000000*
4-3267487
•01-2345679
82
6724
551368
9-0553851
4-3444815
•012195122
83
6889
671/87
9-1104336
4-3620707
•012048193
84
7056
592704
9-1651514
4-3795191
•0119(j4762
85
7225
614125
9-2195445
4-3968296
•011764706
^6
7396
636056
9-2736185
4-4140U49
•011627907
~87
7569
658503
9-3273791
4-4310476
•011494-253
88
7744
681472
9-3808315
4-4479602
•011363636
89
79-21
704969
9-4339811
4-4647451
•011235955
90
8100
729000
9-4868330
4-4814047
•011111111
91
8281
753571
9-6393920
4-4979414
•010989011
92
8464
778688
9-6916630 '
4-5143574
•010869565
93
8649
804357
9-6436508
4-5306549
•010752688
94
8836
830584
9-6953597
4-5468359
•010638298
224
SQUARES, CUBES, EOOIS, AXD EECIPKOCALS.
No.
Square
Cube
Square Root
Cube Root
Reciprocal
95
9025
857375
9-7467943
4-56-29026
-010526316
96
9216
884736
9-7979590
4-5788570
-010416667
97
9409
912673
9-8488578
4-5947009
-010309278
98
9604
941192
9-8994919
4-6104303
•0102040S-2
99
9801
970299
9-9498744
4-6-260650
-OlOlOlolO
100
lOiJOO
1000000
10-0000000
4-6415888
-OlOOOOi 00
101
10201
1030301
10-0498756
4-6570095
•009900990
102
10404
1061208
10-0995049
4-6723-287
-009.^039 --'2
103
10609
1092727
10-1488916
4-6875482
-009708738
104
10816
1124864
10-1980390
4-7026694
-00961 5385
-105
11025 >
1157625
10-2469508
4-7176940
-0095-23810
106 .
11236
1191016
10-29563U1
4-7326235
-009433962
107
11449
1225043
l0-r3440804
4-7474594
-009345794
108
11664
1259712
l(i-392304.s
4-7t;2-_'032
-009-259259
109
11881
1295029
10-4403065
4-7768562
-009174312
110
12100
1331000
10-4880885
4-7914199
•009090909
111
12321
1367631
10-5356538
4-8058955
-009O09U09
112
12544
1404928
10-5830052
4-8202845
-008928571
113
12769
1442897
10-6301458
4-8345S81
■00NS49.'58
114
12996
1481544
10-6770783
4-8488076
-008771930
115
13225
1520875
10-7238053
4-8629442
-008695652
116
13456
1560896
10-7703296
4-8769990
-008620690
117
13689
1601613
10-8166538
4-^^909732
-0085470i'9
118
13924
1643032
10-8627805
4-9048681
-00S474576
119
14161
1685159
10 9087121
4-9186847
-008403361
120
14400
172^000
10-9544512
4-9324-242
■008333333
121
14641
1771561
11-0000000
4-946(1874
-008264463
122
14884
1815848
11-0453610
4-9596757
•008196721
123
15129
1860867
11-0905365
4-9731898
-008130081
124
15376
1906624
11-1355287
4-9866310
-008064516
125
15625
1953125
11-1803399
5-0000000
-O0800U000
126
15876
.2000376
11-2-249722
5-0132979
-0079365O8
127
16129
2048383
1 1-2694-277
5-0265257
-007874016
128
16384
2097152
11-3137085
5-0396842
-007812500
129
16641
2146689
11-3578167
5-0527743
•007751938
130
16000
2197000
1 1-4017543
5-0657i'70
-007692308
131
17161
2248091
11-4455-231
5-0787531
•0076335><8
132
17424
2299968
11-4891-253
5-0:'164;i4
-007575758
133
] 7689
2352637
11-53256-26
5-10446S7
-007518797
134
17i»56
2406104
11-5758369
5-1172299
-0074()26^<7
135
18-_'25
2460375
11-6189500
5-1299-278
-007407407
136
18496
2515456
11-6619038
5-14-25632
■007352941
137
18769
2571353
11-7046999
5-1551367
-007299270
13S
19014
2628072
11-7473401
5-1676493
-007246377
139
1 9321
2685619
11-7H98-261
5-180lnlo
-007191245
140
19600
2744000
1]-8:]21596
5-1924941
•007142857
141
19881
28(t3221
11-87434-22
5-2048279
-007O921«
'13-6381817
5-7082675
-005376344
187
34969
6539203
13-6747943
6-7184791
•005347594
188
35344
6644672
13-7113092
6-7286543
-005819149
189
35721
6751269
13-7477271
5- 7387936
•005291005
190
36100
6859000
13-7840488
5-7488971
•005263158
191
36481
6967871
13-8202750
5-7.589652
•0052356U2
192
36864
7077888
13-8564065
5-7689982
-005208333
226 SQUAEES, CUBES, EOOTS, AND EECIPEOCALS.
Xo.
Square
Cute
Square Root '
Cube Root
Reciprocal
193 ■:
37249
7189057
13-8924440 '
5-7789966
-005181347
194 \
87636
7301384
lo-92838s3 '
5-7889604
-005154639
-195 !
38025)
7414875
13-9642400 '
5-7988900
-00512S-205
196 1
38416
7529536
14-0000000 '
5-8087857
-005102041
197
38809
7645373
14-0356688 '
5-81b6479
-005076142
198
39204
7762392
14-071 2473 '
5-8-284767
-005050505
199
39601
7880599
14-1067360
5-83827-25
-0050251-26
200
40000
8000000
14-1421356 1
5-8480355
•005000000
201
40401
8120601
14-1774469'
5-8577660
-004975124
202
40804
8242408
14-2126704 !
6-8674643
-004950495
203
41209
8365427
14-2478068 '
5-8771307
-004926108
204
41616
8489664
1 4-2828569 '
5-8867653
-004901961
205
42025
8615125
14-317^^211 i
5-8963685
-004878049
206 j
42436
8741S16
14-3527001
5-9059406
■004854369
207 ;
42849
8b69743
14-3874946
6-9154817
-004830918
208
43264
8998912
14-4222051
5-9249921
-004eO7692
209
43681
9129329
14-456^323
5-9344721
-004784689
210
44100
9261000
14-4913767
5-9439220
-004761905
211
44521
9393931
14-5258390
5-9533418
-004739336
212
44944
9528128
14-56U2198
5-9627320
-00471G981
213
45369
9663597
14-5945195
5-97209-26
•004C94^36
214
45796
9800314
14-6287388
5-9814-240
-004672897
215
4G225
9938375
14-6628783
5-9907-264
-004651163
216
46656
1(077696
14-69G9385
6-0000000
-004629630
217
47089
10218313
14-7309199
6-L'O92450
-00460-^295
218
47524
10S60232
14-7648231
6-01^4617
-0045^7156
219
47961
10503459
14-7986486
6-0276502
-004566210
220
48400
10648000
14-83-23970
6-036.^107
-004545455
221
48841
1U793861
14-8660687
' 6-0459435
-004524887
222
49284
10941048
14-8996644
6-0550489
-OU4504505
223
49729
11089567
14-9331845
■■ 6-0641270
-004484305
224
50176
11239424
14-9666295
6-0731779
-004464-286
225
60625
11390625
15-0000000
6-08-2-2020
•004444444
226
51076
11543176
15-0332964
6-0911994
-0044-24779
227
51529
11697083
15-0665192
6-1001702
-004405-286
228
61984
11852352
15-0996689
' 6-1091147
•004385965
229
62441
12008989
15-1327460
: 6-1180332
-004366812
230
62900
12167000
15-1657509
6-1269-257
•0043478-26
231
53361
12326391
15-1986842
6-13579-24
-004329U04
232
53824
12487168
15-2315462
6-1446337
-004310345
233
64289
12649337
15-2643375
6-1534495
•004291845
234
64756
12812904
15-2970585
6-1622401
-004273504
235
55225
12977875
15-3-297097
6-1710058
•004255319
236
65696
13144256
15-362-2915
6-1797466
•004237288
237
56169
13312053
15-394S043
6-18846-28
•004219409
238
56644
13481272
15-427-24S6
6-1971544
•004201681
239
67121
13651919
15-4596248
6-205S218
•004184100
240
67600
13824000
15-4919334
6-2144650
•004166667
241
68081
13997521
15-5241747
G-2230843
•004149378
SQUARES, CUBES, EOOTS, AND EECIPEOCALS. 227
Xo.
Square
Cube
Square Eoot
Cube Root
Reciprocal
242
58564
14172488
15-5563492
6-2316797
-004132-231
243
59049
14b48907
16-5884573
6-240-2515
•0041152-26
244
59536
14526784
15-6204994
6-2487998
-004098361
245
60025
14706125
15-6524758
6-2573-248
-004081633
246
60516
14886936
15-6843871
6-2658266
•004065041
247
61009
15069223
15-7162336
6-2743054
•004048583
248
61504
15252992
15-7480157
6-2827613
-00403-2-258
249
62001
15438249
15*7797338
6-2911946
-004016064
250
62500
15625000
15-8113883
6-2996053
-004000000
251
63001
15813251
15-8429795
6-3079935
-003984064
252
63504
16003008
15-8745079
6-3163596
-003968254
253
64009
16194277
15-9059737
6-3247035
•00395-2569
254
64516
16387064
15-9373775
6-3330256
-003937008
^ 255
650251
16581375
15-9687194
6-3413-257
-003921569
256
65536
16777216
16-0000000
6-3496042
-003906-250
257
66049
16974593
16-0312195
6-3578611
•003891051
258
66564
17173512
16-06-23784
6-3660968
•003875969
259
67081
17373979
16-0934769
6-3743111
•003861004
260
67600
17576000
16-1245155
6-3825043
•003846164
261
68121
17779581
16-1554944
6-3906765
•003831418
262
68644
17984728
16-1864141
6-3988279
•003816794
263
69169
18191447
16-2172747
6-4069585
•003802281
264
69696
18399744
16-2480768
6-4150687
•003787879
265
70225
18609625
16-2788-206
6-4-231583
-003773585
266
70756
18821096
16-3095064
6-431-2276
•003769398
267
71289
19034163
16-3401346
6-4392767
•003745318
268
71824
19248832
16-3707055
6-4473057
•003731343
269
72361
19465109
16-4012195
6-4553148
•003717472
270
72900
19683U00
16-4316767
6-4633041
-003703704
271
73441
19902511
16-4620776
6-4712736
•003690037
272
73984
20123648
16-4924225
6-4792-236
-003676471
273
74529
20346417
16-5227116
6-4871541
•003663004
274
75076
20570824
16-5529454
6-4950653
-003649635
275
75625
20796875
16-5831-240
6-50-29572
•003636364
276
76176
21024576
16-6132477
6-5108300
•003623188
277
76729
21253933
16-6433170
6-5186839
•003610108
278
77284
21484952
16-6733320
6-5265189
-0035971-22
279
77841
21717639
16-7032931
6-5343351
•003584229
280
78400
21952000
16-7332005
6-5421326
•003571429
281
78961
22188041
16-7630546
6-5499116
-003568719
282
79524
22425768
16-7928556
6-5576722
-003546099
283
80089
22665187
16-8226038
6-5654144
-003533569
284
80656
22906304
16-8522995
6-5731385
•0035211-27
285
81225
23149125
16-8819430
6-5808443
•003508772
286
81796
23393656
16-9115345
6-58853-23
•003496503
287
82369
23639903
16-9410743
6-59620-23
-003484321
288
82944
23887872
16-97056-27
6-6038545
-003472222
289
83521
24137569
17-0000000
6-6114890
-003460-208
290
84100
24389000
17-0293864
6-6191060
-003448276
Q2
228 SQUARES, CUBES, EOOTS, AXD EECIPEOCALS.
^'o.
Square
Cube
Square Root
Cube Root
Reciprocal
291
,,,
84681
24642171
17-0587221
6-6267054
-003436426
292
85264
24897088
17-0880075
6-6342S74
-0034-24658
293
85849
25153757
17-1172428
6-6418522
-003412969
294
86436
25412184
17-1464282
6-6493998
•003401361
295
87025
25672375
17-1755640
6-6569302
-003389831
296
87616
25934336
17-2046505
6-6644437
•0U3378378
297
88209
26198073
17-2336879
6-6719403
-0(13367003
298
88804
26463592
17-2626765
6-6794-200
•003355705
299
89401
26730899
17-2916165
6-6868831
-003344482
300
90000
27000000
17-3205081
6-6943295
•003333£33
301
90601
27270901
17-3493516
6-7017593
-0(J3322259
302
91204
27543608
17-3781472
6-70917-29
-003311258
303
91809
27818127
17-4068952
6-7165-00
-003300330
304
92416
28094464
17-4355958
6-7-239518
•0(,3i89474
305
93025
28372625
17-464-2492
6-/313155
-003--'. 8689
30G
93636
28652616
17-.1928557
6-73«6641
-003-207974
307
94249
28934443
17-5214155
6-7459967
-U03257329
308
94864
29218112
17-54992«8
6-7533134
-003246753
309
95481
29503629
17'5783958
6-7C06143
•003230246
310
96100
29791000
17-6068169
6-7678995
•003225806
311
96721
30080231
17-6351921
6-7751690
-003215434
312
97344
30371328
17-6635217
6-7824229
-003205128
313
97969
30664297
17-6918060
6-7896613
-0u31 94888
314
98596
30959144
17-7200451
6-7968844
-063184713
315
99225
31255875
17-7482393
6-8040921
-003174603
316
99856
31554496
17-77638«c;
6-8112847
-003164557
317
100489
31855013
17-iM:)44938
6-8184620
-003154574
318
101124
32157432
1/ •<"-i3i'5545
6-8-256-242
-003144654
319
101761
32461759
17-.^6U5711
6-8327714
-003134796
320
102400
32768000
17-88«5438
6-8399!;37
-0(.31250OO
321
103041
33076161
17-9164729
6-8470213
•003115265
322
103684
333^6248
17-9443584
6-8541240
•003105590
323
104329
3369<5267
17-9722008
6-8612120
•003095975
324
104976
34012224
18-0000000
6-8682855
•003086420
325
105625
34328125
18-0277564
6-8753443
•0l!3(;7(.923
326
106276
34645976
1S-05547U1
6-8823888
•003067485
327
106929
34965783
18-0831413
0-8894188
•003058104
328
107584
352tt7552
18-1107703
6-8964345
•U03048780
329
10«241
3561 12»9
18-1383571
6-9034359
•003039514
330
10«900
35937000
18-1659021
6-9104-232
-003030303
331
1<;9561
36264691
1 .VI 934054
6-9173964
-0(J3021148
332
110224
36594368
18-2208672
6-9243556
-003012048
333
110889
36926037
18-248-2876
6-9313008
-003003003
334
111556
37259704
18-2756669
6-938-2321
•002994012
335
1 12225
37595375
18-3030052
6-9451496
•002985075
336
112896
37933056
18-3303(128
6-95-20533
•002976190
337
113569
3?<272753
l
41063625
18-5741756!
7-0135791
-002898551
34G
119716
41421736
18-6010752 1
7-02O3490
-00-2890173
347
120409
41781923
18-6279360 ■
7-02/1058
-002881844
348
121104
42144192
18-6547581 :
7-0338497
-002873563
349
121801
42508549
18-6815147 i
7-0405806
-002865330
sr.o
122500
42875000
18-708-2869 :
7-0472987
•002857143
351
123201
43243551
18-7349940 '
7-0540041
-002819003
352
123904
43614208
18-7616630
7-0606967
•002840909
353
124609
43986977
18-7882942
7-0673767
•002832861
354
125316
44361864
18-8148877
7-0740440
-U028-24859
355
126025
44738875
18-8414437 '
7-0806988
-002816901
356
126736
45118016
18-8679623
7-0j<73411
-002808989
357
127449
45499293
18-8944436
7-0939709
-00-2801120
358
128164
45882712
18-9208879
7-1005885
•002793296
359
128881
46268279
18-947-2953
7-1071937
-002785515
3ri0
129600
46656000
18-9736660
7-1137866
-0O277777X
3G1
130321
47045881
19-0000000
7-1-203674
-002770083
3G2
131044
47437928
19-0262976
7-1269360
-00276-2431
363
131769
47832147
19-0525589
7-1334925
-002754821
364
132496
48228544
19-0787840
7-1400370
•0027472";3
365
133225
48627125
19-1049732
7-1465695
-002739726
366
133956
49027896
19-1311265
7-1530901
-002732240
367
134689
49430863
19-1572441
7-1595988
-0027-24796
368
135424
49836032
19-1833-261
7-1660957
-002717391
369
136161
50243409
19-20937-27
7-1725809
•002710027
370
136900
506530(i()
19-2353841
7-1790544
•002702703
37 L
137641
51064811
19-2613603
7-1855162
•002695418
372
138384 .
51478848
19-2873015
7-1919663
•002688172
373
139129
51895117
19-3132079
7-1984050
•002680965
374
139878
52313624
19-3390796
7-2048322
•002673797
375
140625
52734375
19-3649167
7-211-2479
-002666667
376
141376
53157376
19-3907194
7-2176522
•002059574
377
142129
53582633
19-4164878
7-2-240450
-002652520
378
142884
54010152
19-4422221
7-2304268
-002645503
379
143641
54439939
19-4679223
7-2367972
•002638522
380
144400
54872000
19-4935887
7-2431565
-002631579
3^1
145161
55306341
19-5192213
7-2495045
-0026-24672
382
145924
55742968
19-5448203
7-2558415
•002617801
383
146689
561818x7
19-5703858
7-2621675
-002610966
384
147456
56623 l(t4
19-5959179
j 7-26848-24
-002604167
385
148225
1 67066625
19-6214169
7-2747864
-002597403
?,y-]
14X996
i 57512456
19-6468827
7-2810794
•002590674
3.^7
149769
! 57960603
19-67-23156
7-2873617
-002583979
b'-^H
15U.'.44
■ 58411072
19-6977156
7-2936330
•002577320
230
SQUARES, CUBES, EOOTS, AXD RECIPROCALS.
No.
Square
Cube
Square Root
Cube Root
Reciprocal
389
151321
58863869
19-7230829
7-2998936
•002570694
390
152100
59319000
19-7484177 i
7-3061436
-002564103
391
152881
59776471
19-7737199'
7-31238-28
-002557545
392
153664
60236288
19-7989899 1
7-3186114
-O02.">51020
393
154449
60098457
19-8242276 \
7-3-248295
-002544529
394
155236
61162984
19-8494332 i
7-3310369
-002538071
395
156025
61629875
19-8746069
7-337-2339
-002531C.46
396
156816
62099136
19-8997487
7-34.34205
-002525253
397
157609
6257U773
19-9-248588
7-3495966
•002518892
398
158404
63044792
19-9499373
7-35576-24
-00251-2563
399
159201
63521199
19-9749844
7-3619178
•0O2506266
400
160000
64000000
20-0000000
7-3680630
•002500000
401
160801
644812€1
20-0249844
7-3741979
-00-2493766
402
161604
64964808
20-0499377
7-3803227
-00-2487562
403
162409
65450827
20-0748599
7-3864373
-00-2481390
404
163216
659392G4
20-0997512
7-3925418
-002475248
-405
164025^
66430125
20-1-246118
7-3986363
-002469136
406
164836
66923416
20-1494417
7-4047206
-002463054
407
165649
67419143
20-1742410
7-4107950
•002457002
408
166464
67917312
20-1990099
7-4168595
-00-2450980
409
167281
68417929
20-2237484
7-4229142
-002444988
410
168100
68921000
20-2484567
7-4289589
-002439024
411
168921
69426531
20-2731349
7-4349938
-00-2433090
412
169744
69934528
•20-2977831
7-4410189
-00-2427184
413
170569
70444997
203224014
7-4470342
-00-2421308
414
171396
70957944
20-3469899
7-4530399
•00-2415459
415
172225
71473375
20-3715488
7-4590359
-0024U9639
416
173056
71991296
•20-3960781
7-4650223
-002403846
417
173889
72511713
20-4-2O5779
7-4709991
-002398082
418
174724
73034632 *
20-4450483
7-4769664
-002392344
419
175561
73560059
20-4694895
7-4829-242
-002386635
420
176400
74088000
20-4939015
7-48S87-24
-002;i80952
421
177241
74618461
20-51«2845
7-4948113
•002375297
422
178084
75151448
20-5426386
7-5007406
•002309668
423
178929
75686967
20-5669638
7-5066607
-002364066
424
179776
76225024
20-5912603
7-5125715
-002358491
425
180625
76765625
20-6 155-281
1 7-5184730
-002352941
426
181476
77308776
•20-0397674
; 7-5-243652
-002347418
427
1^52329
77«54483
-20-6639 7.S3
7-5302482
-002341920
428
183184
78402752
20-6881 6U9
7-5361221
-002336449
429
184041
78953589
20-71-23152
7-5419867
-002331002
430
184900
795O700U
20-7364414
7-5478423
-002325581
431
185761
80062991
20-7605395
7-5536888
-0023-20186
432
18G624
80621568
20-7846097
7-5595263
•00231481.')
433
187489
811 82737
20-.^086520
7-5653548
-002309469
434
188356
81746.:>04
20-8326667
7-5711743
•00-2304147
435
189225
82312875
20-8566536
1 7-5769849
•{)0229>S:'\
436
190096
82881856
20-88061.30
j 7-58278G5
•(>0229.357?<
437
190969
83458453
20-9045450
1 7-5885793
-0022'^No.0u
SQUARES, CUBES, ROOTS, AND RECIPROCALS. 231
No.
Square
Cube
Square Root
Cube Root
Reciprocal
438
191844
84027672
20-9284495
7-5943633
-002-283105
439
192721
84604519
20-9523268
7-60U1385
-002277004
440
193600
85184000
20-9761770
7-6059049
•002272727
441
194481
85766121
21-0000000
7-6116626
•002267574
442
195364
86350888
21-0237960
7-6174116
-002262443
443
196249
86938307
21-04756i2
7-6-231519
-002-257336
444
197136
87528384
21-0713075
7-6288837
-002-252252
445
198025
88121125
21-0950231
7-6346067
-002-247191
446
198916
88716536
21-1187121
7-6403213
-002242152
447
199809
89314623
21-1423745
7-6460272
•002237136
448
200704
89915392
21-1660105
7-6517247
-002-232143
449
201601
90518849
21-189 V201
7-6574138
-002227171
450
202500
91125000
21-213-2034
7-6630943
•002222222
451
203401
91733851
21-2367606
7-6687665
-00-2217295
452
204304
92345408
21-2602916
7-6744303
-00221-2389
453
205209
92959677
21-2837967
7-6800857
-002207506
454
206116
93576664
21-3072758
7-6857328
-002202643
455
207025
94196375
21-3307290
7-6913717
•002197802
456
207936
94818816
21-3541565
7-6970023
•002192982
457
208849
9">443993
21-3775583
7-70-26-246
-002188184
458
209764
96071912
21-4009346
7-7082388
-002183406
459
210681
96702579
2 1-42428 "^3
7-7138448
•002178649
460
211600
97336000
21-4476106
7-7194426
-002173913
461
212521
97972181
21-4709106
7-72503-25
-002169197
462
213444
98611128
21-4941853
7-7306141
-002 164." 02
463
214369
99252847
21-5174348
7-7361877
-002159827
464
215293
99897344
21-5406592
7-7417532
•002155172
465
216225
100544G25
21-563«587
7-7473109
-002150538
466
217156
101194696
21-5870331
7-75-28606
-002145923
467
218089
101847563
21-61018-28
7-7584023
-002141328
468
219024
102503232
21-6333077
7-7639361
•00213f37:)2
469
219961
103161709
21-6564078
7-7694620
-002132196
470
220900
103823000
21-6794834
7-7749801
-002127660
471
221841
104487111
21-7025344
7-7804904
-002123142
472
222784
105154048
21-7-255610
7-7859928
-002118644
473
223729
105823817
21-7485632
7-7914875
-002114165
474
224676
106496424
21-7715411
7-7969745
-002109705
475
225625
107171875
21-7944947
7-80-24538
•002105263
476
226576
107850176
21-8174242
7-8079254
-002100840
477
227529
108531333
21-8403297
7-8133892
-002096436
478
228484
109215352
21-8632111
7-8188456
-002092050
479
229441
109902239
21-8860686
7-8242942
-002087683
480
230400
110".92000
21-90890-23
7-8297353
-00-2083333
481
231361
1112S4641
21-93171-22
7-8351688
-002079002
482
232324
1119801G8
21-9544984
7-8405949
-002074689
483
233289
112678587
21-977-2610
7-8460134
-002070393
484
234256
113379904
22-0000000
7-8514-244
-002066116
485
235225
114084125
22-0227155
7-8568281
•00206 1.S56
486
236196
114791256
22-0454077
7-8622-242
002057613
232
PQUAP.E-, CUBE?, EOOT.-, AND EKCIPEOCALS.
No.
Square
Cube
Square Root
Cube Root
Reciprocal
487
237169
115501303
22-0680765
7-8076130
-002053388
■iSS
238144
116214272
22-0907220
7-8729944
-002049180
489
239121
116930169
22-1133444
7-87836X4
-002044990
490
240100
117649000
22-1359436
7-8837352
•002040X16
491
241081
11S370771
2-2-1585198
7-8890946
-002036660
492
242064
119095488
22-1810730
7-8944468
-002032520
493
243049
119823157
22-2036033
7-8997917
-002028398
494
244036
120553784
22-2261108
7-9051294
-002024291
-495
245025^^
1212S7375
22-2485955
7-9104599
•002020202
49(1
246016
122023936
2-2-2710575
7-9157832
•00-2016129
497
247009
122763473
22-2934968
7-9210994
•00201-2072
498
248004
123505992
22-3159136
7-92640X5
•002008032
499
249001
124251499
22-3383079
7-9317104
-002004008
oOO
250000
125000000
22-3606798
7-937O0.5S
-002000000
501
251001
125751501
22-3830293
7-94-22931
•001996008
502
252004
126506008
22-4053565
7-9475739
-00199-2032
503
253009
127263527
22-4276615
7-9528477
•0019X8072
504
254016
128024064
22-4499443-
7-9581144
•001984127
505
255025
128787625
2-2-4722051
7-9633743
■001980198
506
256036
129554216
22-4944438
7-9686271
-001976285
507
257049
130323S43
22-5166605
7-973X731
•00197-2387
508
258064
131096512
2-2-5388553
7-9791122
•001968504
509
259081
131872229
2-2-5610283
7-9X43444
•001964637
510
260100
132651000
2-2-5831796
7-9895697
•001960784
511
261121
133432831
22-6053091
7-9947XX3
•001956947
512
262144
134217728
22-0274170
8-0000000
•001953125
513
263169
135005697
22-6495033
8-0052049
-001949318
514
264196
135796744
22-6715681
8-0104032
-001945525
515
265225
136590X75
22-69361 14
8-0155946
•001941748
516
266256
1373X8096
22-7156334
8-0207794
•001937984
517
267289
13X1S8413
22-7376340
8-0259574
-001934236
518
268324
13X991X32
22-7596134
8-0311287
-001930502
519
269361
139798359
22-7815715
8-0362935
•001926782
520
270400
140608000
22-8035085
8-0414515
•001923077
521
271441
141420761
22-8254244
8-0466030
•001919386
522
272484
142236648
•22-8473193
8-0517479
•001915709
523
273529
143055667
22-8691933
8-0568862
•001912046
524
274576
143877824
22-8910463
8-06-20180
-001908397
525
275625
144703125
22-912X785
8-0671432
-001904762
526
276676
145531576
22-9346899
8-0722(;-20
•001901141
527
277729
1463631X3
22-9 ")6J 806
8-0773743
-001X97533
528
27.S784
147197952
22-97X2506
8-0824X00
-001X93939
529
279S41
1480;?:;ss9
-23-ooonooo
8-0875794
•00hs90359
530
2X0900
14XS770(IO
23-0217289
8-0926723
•Oitlxx6792
531
281961
149721291
23-0434372
8-0977589
-0018x3-23y
532
283024
15056X76X
•23-0651252
8-10-2X390
•001X79699
533
1 284089
151419437
•23-0X679^28
8-1079128
•001X76173
534
1 285156
152273304
23-1 0X4400
8-ir.'9X03
•07
310249
172808693
23-6008474
8-2278-2.54
•001795332
558
311364
173741112
23-6220-236
8-2327463
-001792115
559
312481
174676'S79
23-6431808
8-2376614
•001 78X909
560
313600
175616000
■23-6643191
8-24-25706
•001785714
561
314721
176558481
23-6854386
8-2474740
-00178-2531
562
315844
177504328
•23-7065392
8-2V23715
-001779359
563
316969
178453547
23- 7^2762 10
82572633
-001776199
564
318096
179406144
23-7486842
8-26-21492
-001773050
565
319225
180362125
23-7697-286
8-2670294
-001769912
566
320356
181321406
•23-7907r.45
8-2719039
•001766784
567
321489
182284263
•23-8117618
8-2767726
•001763668
568
322624
1832504-;2
23-8327506
8-2816355
•001760563
569
323761
1842200(»9
23-8537-209
8-2864928
•001757469
570
324900
185193000
23-8746728
8-2913444
•001754386
571
326041
186169411
■23-89'6063
8-2961903
•001751313
572
327184
187149248
•23-916.^215
8-3010304
•001748-252
573
328329
188132517
•23-9374184
8-30586:". 1
•001 745201
574
329476
189119224
23-9'>82971
8-3106941
•001742160
575
330625
19010937.
23-9791576
8-3155175
•001739130
576
331776
191102976
24-0000000
8-3203353
•001736111
."77
332929
192100033
24-0208243
8-3251475
•001733102
578
334084
1931005r.2
-24-0416306
8-3299542
•001730104
579
335241
194104539
■24-06-24188
8-3347553
•001727116
580
G36400
195112000
•24-0831891
8-3395509
•0017-24138
581
337561
196122941 .
24-1039416
8-3443410
-001721170
582
338724
197137368
24-1-246762
8-3491256
•001718213
583
339889
198155287
•24-1453929
8-3539047
•001715-266
584
341056
199176704
24-1660919
8-3586784
•00171-2329
234 SQUARES, CUBES, EOOTS, AND EECIPROCALS.
^'0.
Square
Cube
Square Root
Cube Root
Reciprocal
585
342225
200201625
24-1867732
8-3634466
•001709402
5«6
343396
201230056
24-2074369
8-3682095
-001706485
587
3445G9
2U22620O3
24-2280829
8-3729668
•(101703578
5'^8
345744
203297472
24-2487113
8-3777188
•(iO57O(i()80
5.S9
34C921
20433G469
24-2693222
8-38-24653
•001697793
5'JO
348100
205379000
24-2899156
8-3872065
•001694915
591 <
349281
206425071
24-3104916
8-3919423
•001692047
592 '
350464
207474^88
24-3310501
8-3966729
•001689189
593
351649
2085 2 < 8.'; 7
24-3515913
8-4013981
•001(;86341
594
352836
209584584
24-3721152
8-4061180
-001683502
595
354025
210644875
24-3926218
8-4108326
-00:680672
596
355216
2117U8736
24-4131112
8-4155419
-001677852
597
356409
212776173
24-4335i534
8-420-2460
•001675042
598
357604
213847192
24-4540385
8-4249448
•001672-241
599
358801
214921709
24-4744765
8-4296383
•001669449
600
360000
216000000
24-4948974
8-4343267
•00166(^667
601
361201
217081801
24-5153013
8-4390098
•001663894
•001661130
602
362404
218167208
24-5356883
8-4436877
603
363609
219256227
24-5560583
8-4483605
-001658375
604
364816
220348864
24-5764115
8-4530-281
•001655629
605
366025
221445125
24-5967478
8-4576906
•00165-2893
606
367236
222545016
24-6170673
8-46-23479
•001650165
607
368449
223648543
24-6373700
8-4670000
•001647446
608
369664
224755712
24-0576560
8-4716471
•001644737
609
370881
225866529
24-6779254
8-4762892 •
-001642O36
610
372100
226981000
24-6981781
8-480926 1
•001639344
611
373321
228099131
24-7184142
8-4855579
•001636661
612
374544
229220928
24-7386338
8-4901848
•0016339.S7
613
375769
230346397
24-75«8368
8-4948065
•001631321
614
376996
231475544
24-7790234
8-4994233
-0016-28664
615
378225
232608375
•24-7991935
8-5040350
•001626016
616
379456
233744896
24-8193473
8-5086417
•0016-23377
617
380689
234885113
24-8394847
8-513-2435
•001620746
618
381924
236029032
24-8596058
8-5178403
-0016181-23
619
383161
237176659
•24-8797106
8-5224321
•001615509
620
384400
238328000
•24-8997992
8-5270189
•001612903
621
385641
239483061
24-9198716
8-5316009
•001610306
622
386884
240641848
24-9399278
8-5361780
•0O1607717
i 623
388129
241804367
24-9599679
8-5407501
-001605136
i 624
389376
242970624
24-9799920
8-5453173
•001602564
1 625
390625
244140625
25-0000000
8-.U98797
•001600000
626
391876
245314376
25-0 1999-20
8-5544372
-0015ii7444
627
393129
246491883
25-0399681
8-5589899
•001594N90
628
394384
247673152
25-0599282
8-5635377
•001592357
629
395641
248858189
•25-07987-24
8-5680807
•0015898-25
630
396900
2500470(10
25-0998008
8-:.726189
-001587300
631
398101
251239:.91
25-1197134
8-5771523
•00i5S478(;
632
399424
252435968
2:)- 1396 102
8-5816809
•0O15S227.S
633
400689
253636137
•25-1594913
' 8-586-2047
•001579779
SQUARES, CUBES,
EOOTS, AND RECIPEOCALS. 235
Xo.
Square
Cube
Square Root
Cube Root
Reciprocal
634
401956
254840104
25-1793566
8-5907-238
•001577287
635
403225
256047875
25-1992063
8-5952380
•001574803
636
404496
257259456
25-2190404
8-5997476
•001572327
637 i
405769
258474853
25-2388589
8-6042525
-001569859
638 1
407044
259694072
25-2586619
8-6087526
•001567398
639
408321
260917119
25-2784493
8-6132480
•001564945
640 '
409600
262144000
25-2982213
8-6177388
•001562500
641
410881
263374721
25-3179778
8-6222248
-001560062
642
412164
264609288
25-3377189
8-6267063
•001557632
643
413449
265847707
25-3574447
8-6311830
•001555210
644
414736
267089984
25-3771551
8-6356551
•001552795
645
416025
268336125
25-3968502
8-6401226
•001550388
646
417316
269586136
25-4165301
8-6445855
•001547988
647
418609
27084r>023
25-4361947
8-6490437
•001545595
648
419904
272097792
25-4558441
8-6534974
-001543210
649
421201
273359449
25-4754784
8-6579465
-001540832
650
422500
274625000
25-4950976
8-6623911
-001538462
651
423801
275894451
25-5147016
8-6668310
•001536098
652
425104
277167808
25-5342907
8-6712665
•001533742
653
426409
278445077
25-5538647
8-6756974
•001531394
654
427716
279726264
25-5734237
8-6801-237
•001529052
655
429025
281011375
25-5929678
8-6845456
•001526718
656
430336
282300416
25-6124969
8-6889630
•001524390
657
431649
283593393
25-6320112
8-6933759
•001522070
658
432964
284890312
25-6515107
8-6977843
•001519757
659
434281
286191179
25-6709953
8-7021882
•001517451
6:;o
435600
287496000
25-6904652
8-7065877
•001515152
661
436921
288804781
25-7099203
8-7109827
•001512859
662
438244
290117528
25-7-293607
8-7153734
•001510574
663
439569
291434247
25-7487864
8-7197596
•001508296
664
440896
292754944
25-7681975
8-7-241414
•001506024
665
442225
294079625
25-7875939
8-7285187
•001503759
666
443556
295408296
25-8069758
8-7328918
•001501502
667
444889
296740963
25-8263431
8-7372604
•001499250
668
446224
298077632
25-8456960
8-7416246
•001497006
669
447561
299418309
25-8650343
8-7459846
•001494768
670
448900
300763000
25-8843582
8-7503401
•001492537
671
450241
302111711
25-rt< 136677
8-7546913
•001490313
672
451584
303464448
25-9229628
8-7590383
•001488095
673
1 452929
30482 217
25-9422435
8-7633809
•001485884
674
i 454276
306182024
25-9615100
8-7677192
•001483680
675
455625
307546875
25-9807621
8-7720532
•001481481
676
456976
308915776
26-0000000
8-7763830
•001479290
677
i 4.58329
310288733
26-0192237
8-7807084
•001477105
678
■ 459684
311665752
26-0384331
8-7850296
•001474926
679
401041
313046839
26-0576-284
8-7893466
•001472754
680
462400
314432000
26-0768096
8-7936593
•001470588
681
463761
315821241
26-0959767
8-7979679
•001468429
682
465124
317214568
26-1151297
8-8022721
•001466276
236 SQUARES, CUBES, ROOTS, AND RECIPROCALS.
Xo.
Square
Cube
Square Root
Cube Root
Reciprocal
683
466489
318611987
26-1342087
8-8065722
-001404129
084 :
467856
320013504
26- 1533937
8-810^081
-001401988
685
469225
321419125
26-1725047
8-8151598
-001459!554
686
470596
322828856
26-1916017
8-8194474
•001457726
687
471969
324242703
26-2106848
8-8237307
•001455004
ess
473344
325660672
20-2297541
8-8-280099
•001453488
689
474721
327082769
26-2488095
8-8322850
•001451379
690
476100
328509000
20-2078511
8-8365559
•001449275
691
477481
329939371
20-2808789
8-8408227
•001447178
692
478864
331373888
20-305S929
8-8450854
•001445087
693
480249
332812557
20-3248932
8-84f>3440
•001443001
694
481636
334255384
26-3438797
8-8535985
•0014409-22
695
483025
335702375
26-3628527
8-8578489
•001438849
696
484416
337153536
26-3818119
8-86-20952
•001436782
697
485809
338608873
26-4007576
8-8663375
•001434720
698
487204
340068392
20-4190896
8-8705757
•001432605
699
488601
341532099
26-4386081
8-8748099
•001430615
7(J0
490000
343000000
20-4575131
8-8790400
•001428571
701
491401
344472101
20-4704046
8-8832661
•001426534
702
492804
345948408
20-4952826
8-8874882
•0014-24501
703
494209
347428927
•26-5141472
8-8917063
•001422475
704
495616
348913664
26-5329983
8-8959204
•001420455
/05
497025
350402625
20-55l!-<301
8-9001304
•001418440
706
498436
351895816
20-5700005
8-9043366
•001410431
707
499849
353393243
20-5894716
8-9085387
•001414427
708
501264
354894912
20-0082094
8-9127369
•00141 •24-29
709
5(/26Sl
356400829
20-0270539
8-9169311
-001410437
710
604100
357911000
20-0458252
8-9211214
•001408451
711
605521
359425431
26-6645833
8-9253078
•001406470
712
506944
360944128
26-6833281
8-9294902
•001404494
713
608369
362467097
26-7020598
8-9336687
•0014025-25
714
609796
363994344
26-7207784
8-9378433
•001400500
715
511225
365525875
20-7394839
8-9420140
•00139S001
716
512656
367061096
•20-7581703
8-9461809
•001390048
717
514089
368601813
26-7768557
8-9503438
•0013947(10
718
515524
370146232
26-7955220
8-9545029
•001392758
719
516961
371694959
26-8141754
8-95^6581
-001390821
720
518400
373248000
26-83-28157
8-9028095
•001388f<89
721
519841
374805361
26-8514432
8-900957O
•001380963
722
521284
376367048
26-8700577
8-9711007
•001385042
723
522729
377933067
20-.'^880593
8-9752400
•001383126
724
524176
879503424
20-9072181
8-9793706
•001381215
725
525625
38107S125
20-925S240
8-9835089
•001379310
726
527076
382057 1 7(i
20-94-13872
8-9876373
•001377410
727
528529
384240583
20-9029375
8-99176-20
•001375516
728
529984
385S28352
26-9814751
8-9958H29
•001373026
729
531441
387420489
27-01 lOOOOO
9-0000000
•001371742
730
532900
389017000
27-0185122
9-0041134
•001369803
731
531361
390017^91
27-0370117
9-00822-29
•001307989
SQUARES, CUBES, ROOTS, AND RECIPROCALS.
23:
No.
Square
Cube
Square Root
Cube Root
Reciprocal
732
535824
392223168
27-0554985
9-01-23288
•001366120
733
537289
393S32837
27-0739727
9-0164309
-001,364-256
734
538756
395446904
27-0924344
9-0205293
•001362398
735
540225
397065375
27-1108834
9-0-246239
•001360544
736
541G96
398688256
27-1293199
9-0287149
•001358696
737
543169
400315553
27-1477439
9-0328021
•001356852
738
544644
401947272
27-1661554
9-0368857
•001355014
739
546121
403583419
27-1845544
9-0409655
-001353180
740
547600
405224000
27-2029410
9-0450417
•001.351.351
741
5490S1
406869021
27-2213152
9-0491142
•001.349528
742
550564
408518488
27-2396769
9-0531831
•001,347709
743
552049
410172407
27-25.S0263
9-057-24X2
•001345895
744
553536
411830784
27-2763634
9-0613098
■001344086
745
555025
413493625
27-2946881
9-0653677
-001342-282
746
556516
415160936
27-3130006
9-0694220
-001340483
747
558009
416832723
27-3313007
9-0734726
-001338688
748
559504
418508992
27-3495887
9-0775197
•001336898
749
561001
420189749
27-3678644
9-0815631
-001335113
750
562500
421875000
27-3861279
9-0856030
•00133,33.33
751
564001
423564751
27-4043792
9-0896392
•001.331558
752
565504
425259008
27-42-26184
9-0936719
•001329787
753
567009
426957777
27-4408455
9-0977010
•001 328021
754
56X516
428661064
27-4590604
9-1017265
•0O132(;26O
755
570025
430368875
27-4772633
9-1057485
•001324503
756
571536
432081216
27-4954542
9-1097669
•001322751
757
573049
433798093
27-5136330
9-1137818
•001321004
758
574564
435519512
27-5317998
9-1177931
•00131 9-2<51
759
576081
437245479
27-5499546
9-1218010
•001317523
760
577600
438976000
27-5680975
9-1258053
•001315789
761
579121
440711081
27-5862284
9-1-298061
•001314060
762
580644
442450728
27-6043475
9-1338034
•001312336
763
582169
444194947
27-6224546
9-1377971
•001310616
764
583696
445943744
27-6405499
9-1417874
-001308901
765
585225
447697125
27-6586334
9-1457742
-001.307190
766
586756
449455096
27-6767050
9-1497576
-001.3054X3
767
588289
451217663
27-6947648
9-1537375
•001303781
768
589824
452984832
27-712^129
9-1577139
•00 30-2083
769
591361
454756609
27-7308492
9-1616869
•001300390
770
592900
456533000
27-7488739
9-1656565
•00129X701
771
694441
458314011
27-7668868
9-16962-25
•001297017
772
595984
460099648
27-7848880
9-1735852
•001295337
773
597529
461889917
27-8028775
9-! 775445
•001293661
774
599076
463684824
27-8208555
9-1815003
•001291990
775
600625
465484375
27-838X218
9-1854527
•0012'.to3-23
776
602176
467288576
27-8567766
9-1894018
•0012x8660
777
603729
469097433
27-8747197
9-193.3474
•001287001
778
605284
470910952
27-8926514
9-1972897
•001285.347
779
606841
472729139
27-9105715
9-2012-286
■001283697
780
608400
474552000
27-9284801
9-2051641
•001282051
238
SQUAEES, CrBES, EOOTS, AND EECIPEOCALS.
No. j
Square
Cube
Square Hoot
Cube Boot
Reciprocal
781
609961
476379541
27-9463772
9-2090962
•001280410
782 !
611524
478211768
27-9642629
9-2130250
-001278772
7j<3 i
613089
480048687
27-9821372
9-2169505
-001277139
784 '
6146 '6
481890304
28-0000000
9-2208726
001275510
785 '
616225
483736625
28-0178515
9-2247914
-0U1273886
786 i
617796
485587656
28-0356915
9-2287068
•00 1 272265
787 1
619369
487443403
28-0535203
9-2326189
-001270648
788 1
620944
489303872
28-0713377
9-2365277
-001269036
789
622521
491169069
28-0891438
9-2404333
-001267427
790
624100
493039000
28-1069386
9-2443355
•001265823
791
626681
494913671
28-1247222
9-2482344
•001264223
792 '
627264
496793088
28-1424946
9-2521300
•001262626
793
628849
498677257
28-1602557
9-2560224
•001261034
794 ,
630436
500566184
28-1 780056
9-2599114
•001259446
795
632025
502459875
28-1957444
9-2637973
•001257862
796
633616
504358336
28-2134720
9-2676798
-001256281
797
635209
506261573
28-2311884
9-2715592
-001254705
798
636804
508169592
28-24x8938
9-2754352
-001253133
799
638401
610082399
28-2665881
9-2793081
-001251564
800
640000
512000000
28-2842712
9-2831777
-001250000
801
641601
513922401
28-3019434
9-2870440
•001248439
802
643204
515849608
28-3196045
9-2909072
•001246883
803
644809
617781627
28-3372546
9-2947671
•001245330
804
646416
619718464
28-3548938
9-2986239
•001243781
805
648025
521660125
28-3725219
9-3024775
•001242236
806
649636
523606616
28-3901391
9-3063278
•001240695
807
651249
525557943
28-4077454
9-3101750
•001239157
808
652864
527514112
28-4253408
9-3140190
•001237624
809
654481
529475129
28-4429253
9-3178599
•001236094
810
656100
531441000
28-4604989
9-3216975
•001234568
811
657721
533411731
28-4780617
9-3255320
•001233046
812
659344
535387328
28-4956137
9-3293634
•001231527
813
660969
537367797
28-5131549
9-3331916
•001230012
814
662596
639353144
28-5306852
9-3370167
•001 228501
815
664225
541343375
28-5482048
9-6408386
•001226994
816
665856
543338496
28-5657137
9-3446575
•001225490
817
667489
645338513
28-5832119
9-3484731
•001223990
818
669124
647343432
28-6006993
9-3522857
•001222494
819
670761
549353259
28-6181760
9-3560952
•001221001
820
672400
651368000
28-6356421
9-3599016
•001219512
821
674041
653387661
28-6530976
9-3637049
•001218027
822
675684
555412248
28-6705424
9-3675051
•001216545
823
677329
557441767
28-6879766
1 9-3713022
•001215067
824
678976
559476224
2s-7o:)4002
9-3750963
•001213592
825
680625
561515625
28-7228132
1 9-3788873
•001212121
826
682276
563659976
28-7402157
i 9-3826752
•001210654
827
683929
565609283
28-7576077
9-3864600
•001209190
828
685584
567663552
28-7749891
9-3902419
•001207729
829
687241
569722789
28-7923601
9-3940206
•001206272
SQUAEES, CUBES, EOOTS, AND RECIPROCALS. 239
No.
Square
Cube
Square Root
Cube Root
Reciprocal
830
688900
571787000
28-8097206
9-3977964
•001204819
831
690561
573856191
28-8270706
9-4015691
-001203369
832
692224
575930368
28-8444102
9-4053387
•001201923
833
693889
578009537
28-8617394
9-4091054
•001200480
834
695556
580093704
28-8790582
9-4128690
•001199041
835
697225
582182875
28-8963666
9-4166297
-001197605
836
698896
584277056
28-9136646
9-4203873
•001196172
837
700569
586376253
28-9309523
9-4-241420
■001194743
838
702244
588480472
28-9482297
9-4278936
•001193317
839
703921
590589719
28-9654967
9-43 164-23
•001191895
840
705600
692704000
28-9827535
9-43538x0
•001190476
841
707281
694823321
29-0000000
9-4391307
•001189061
842
708964
596947688
29-0172363
9-4428704
•001187648
843
710649
599077107
29-0344(i23
9-4466072
•001186-240
844
712336
601211584
29-0516781
9-4503410
•001184834
845
714025
603351125
29-0688837
9-4540719
•0011834S2
846
715716
605495736
29-0860791
9-4577999
•001182033
847
717409
607645423
29-1032644
9-4615-249
•001180638
848
71 9 i 04
609800192
29-1204396
9-4652470
•001179245
849
720801
611960049
29-1376046
9-4689661
•001177856
850
722500
614125000
29-1547595
9-4726824
•001176471
851
724201
616295051
29-1719043
9-4763957
•001175088
852
725904
618470208
29-1890390
9-4801061
•001173709
853
727609
620650477
29-2061637
9-4838136
•001172333
854
729316
622835864
29-2-232784
9-487ol82
•001170960
855
731025
625026375
29-2403830
9-4912200
•001169591
85G
732736
627222016
29-2574777
9-4949188
•001168224
857
734449
629422793
29-2745623
9-4986147
•001166861
858
736164
631628712
29-2916370
9-5023078
•001165501
859
737881
633839779
29-3087018
9-6069980
•001164144
860
739600
636056000
29-3257566
9-5096854
•001162791
861
741321
638277381
29-3428015
9-5133699
•001161440
862
743044
640503928
29-3598365
9-5170515
•001160093
863
744769
642735647
29-3768616
9-5207303
•001158749
864
746496
644972544
29-3938769
9-5-244063
•001157407
865
748225
647214625
29-4108823
9-5280794
•001156069
866
749956
649461896
29-4278779
9-5317497
•001154734
867
751689
651714363
29-4448637
9-5354172
•001153403
868
753424
653972032
29-4618397
9-5390818
•001152074
869
755161
656234909
29-4788059
9-5427437
•001150748
870
756900
658503000
29-4957624
9-5464027
•001149425
871
758641
660776311
29-5127091
9-5500589
•001148106
872
760384
663064848
29-5296461
9-5537123
•001146789
873
762129
665338617
29-5465734
9-5573630
•001145475
874
763876
667627624
29-5634910
9-5610108
•001144165
875
765625
669921875
29-5803989
9-5646559
•001142857
876
767376
672221376
29-5972972
9-5682982
•001141553
877
769129
674526133
•29-6141858
9-5719377
•001140251
878
770884
676836152
29-6310648
9-5755745
•001138952
240
SQUAKES, CUBES, ROOTS, AXD EECIPEOCALS.
Xo.
Square
Cube
Square Root
Cube Root
Reciprocal
879
772641
679151439
29-6479342
9-579-2085
•001137656
880
774400
681472000
29-6647939
9-5828397
-001186364
881
776161
683797841
29-6816442
9-5864682
•001135074
882
777924
686128968
29-6984848
9-59(»(i939
•001183787
883
779689
688465387
29-7153159
9-5937169
•0011825(13
884
781456
690807104
29-7321375
9-5973373
•001131222
885
783225
693154125
29-74S9496
9-6009548
•001129944
886
784996
695506456
29-7657521
9-(;045696
•001128668
887
786769
697864103
29-7825452
9-6081817
•001127396
888
788544
700227072
29-7993289
9-6117911
•001126126
889
790321
702595369
29-8161030
9-6153977
•0011-24859
890
792100
704969000
29-8328678
9-619(Xil7
•001123596
891
793881
707347971
29-8496231
9-6226030
•001122334
892
795664
709732288
29-8663690
9-6262016
•001121076
893
797449
712121957
29'8831056
9-6297975
-001119821
894
799236
714516984
29-8998328
9-6333907
•001118568
895
801025
716917375
29-9165506
9-(]3(;9812
•001117318
896
802816
719328136
29-9332591
9-6405690
•001116071
897
804609
721734273
29-9499583
9-6441542
•0011148-27
898
806404
724150792
29-9666481
9-(>477867
•001113586
899
808201
726572699
29-9833287
9-6518166
•00111-2347
900
810000
729000000
80-0000000
9-6548938
-001111111
901
811801
731432701
30-0166620
9-6584684
•0(11109878
902
813604
733870808
30-0333148
9-662(J403
•001108647
903
815409
736314327
30-0499584
9-6656096
•0011074-20
904
817216
738763264
30-0665928
9-6691 762
•001106195
906
819025
741217625
30-0832179
9-6727403
•001104972
906
820836
74367741.6
30-0998339
9-6763017
•001103753
907
822649
746142643
30-1164407
9-6798604
•00110-2536
908
824464
748613312
30-1330383
9-6834166
•001101322
909
820281
751089429
30-1496269
9-6869701
•001100110
910
82.SI00
753571000
30-1662063
9-6905211
•001O9s9in
911
82992 L
756058031
30-1827765
9-6940694
•001(197695
912
831744
758550528
30-1993377
9-6976151
•001096491
9:3
833569
761048497
30-2158899
9-7011583
•001(195290
914
835396
763551944
30-23-24329
9-70469.S9
•001(194092
915
837225
766060875
30-2489669
9-7082369
•001092^96
9!6
839056
768575296
30-2654919
9-7117723
•0010917(13
917
840889
771095213
30-2820079
9-7153051
•0(11090513
9!8
842724
773620(532
30-2985148
9-7188354
•001(1^9325
919
844561
776151559
30-31501-28
9-72-23631
-0OlOS«139
92(1
846400
7786S8000
30-3315018
9-72588S3
•00108(1957
921
S48241
781229961
30-3479818
9-7294109
•001085776
922
850084
783777448
30-3644529
9-7329309
-001084599
923
851929
78633()4(i7
30-3S(l9151
9-7364484
•0010834-24
924
853776
788889024
39-3973683
9-7399634
•001082251
925
855625
791453125
30-4 138 127
9-74347:)8
•001 OK 1081
926
857476
79402277(i
3()-43(»-2481
9-7469857
•001079!* 11
927
859329
796597983
30-4466747
9-7504930
•00107^719
SQUAEES, CUBES, ROOTS, AST) RECIPROCALS. 241
No.
Square
Cube
Square Root
Cube Root
Reciprocal
928
861184
799178752
30-4630924
9-7539979
•001077586
929
863041
801765089
30-4795013
9-7575002
•001076426
930 1
864900
804357000
30-4959014
9-7610001
•001075269
931 !
866761
806954491
30-5122926
9-7644974
•001074114
932
868624
809557568
30-5286750
9-7679922
•001072961
9dB i
870489
812166237
30-5450487
9-7714845
•00107 811
934 i
87235(5
814780504
30-5614136
9-7749743
•001070664
935
874225
817400375
30-5777697
9-7784616
•001069519
936
876096
820025856
30-5941171
9-7819466
•001068376
937
877969
822656953
30-6 104557
9-7854288
•001067286
938
879844
825293672
30-6267857
9-7889087
•001066098
939
881721
827936019
30-6431069
9-7923861
•001004963
940
883600
830584000
30-6594194
9-7958611
•001063830
941
885481
833237621
30-6757233 >
9-7993336
-001062699
942
887364
835896888
30-6920185
9-8028036
•001061571
943 1
889249
838561807
80-7083051 '
9-8062711
•001060445
944
891136
841232384
30-7-245830
9-8097362
•001059322
945
893025
843908625
30-7408523
9-8131989
•001058201
94(3
894916
846590536
30-7571130 i
9-8166591
•001057082
947
896809
849278123
80-7733651
9-8201169
•001055966
948
898704
851971892
30-7896086 \
9-8235728
•001054852
949
900601
854670349
30-8058436
9-8270252
•00:053741
950
902500
85737500U
30-8220700
9-8304757
•001052632
951
904401
860085351
30-8382879
9-8339-238
•001051525
952
906304
862801408
80-8544972
9-8373695
•001050420
953
908209
865523177
30-8706981
9-8408127
•001049318
954
910116
868250(;ti4
30-8868904
9-8442536
-001048218
955
912025
870983875
30-9030743
9-8476920
•0010471-20
956
913936
873722816
30
9-9933289
-001002004
999
998001
997002999
31-0069613
9-9966656
-001001001
lOOO
lOuOOOO
10(JU000000
3l-i.227766
10-0000000
-OOIOOOOOGO
lUUL
1002U01
1003003001
31-6385840
10-0033322
-0009990010
1002
1004004
10060121:08
31-6543836
] 0-00(36622
•00099>0040
10"3
Iij0t3009
1009027U27
31-6701752
10-0099899
•C00997o09o
1004
100801(3
1012O48064
31-6859590
10-0133155
-0009960159
1005
1010025
1015075125
31-7017349
10-0166389
•0009950249
1006
10 1 203(3
10l«Ut8216
3 1-7 17.: 030
10-0199t01
-00<'99403.'8
1007
1014049
1021147343
31-7o32633
10-0232791
•0009930487
:008
101(3<>04
I(.24i925l2
31-7490157
10-0265958
•0009920635
1%'y
1018081
1027243729
31-7647603
10-0299104
•0009910803
1010
1020100
103t'30l0<.0
31-7.^04972
10-0332228
•0009900990
1011
1022121
1033364331
31-796-22IJ2
10-0365330
•0009-91197
1012
1024144
1036433728
31-8119474
10-0398410
•000988 14 -JS
10 i 3
102(31(39
10395091'97
3l-?;276609
10-0431469
•00098716C8
1014
1028 1 96
1042590744
31-8433666
10-0-164506
•000986 19r3
i015
• 1030225
1045678375
31-51590646
100497521
•00098522! 7
101(5
: 1((32256
1048772096
31-8747549
10-0.= 30514
•or 09842520
10 7
1034289
1051871913
31-8904374
10-0563485
•000983-2842
1018
1036324
10.54977832
31-90611-23
10-0." 96435
-0< 09--<231f3
1019
1038361
1058089859
31-9217794
10 0(i293«34
-0009813543
1020
■ 104O400
1061208000
31-93743.'«'8
10-0662271
-0009^03922
1021
1042411
1064332261
31-9.3.30906
10-0695 1.6
•O(.t097943;'j
1022
■ 1044484
■ 1067462(348
31-9687347
lo-07-2H( 20
-O0097?<47o(;
1023
: 1046529
107(J5991(;7
31-9843712
10-07L08(i3
-0009775171
1024
1018576
' 1073741)^24
32-0000000
10-0793684
-0-(;343377
10-2121347
-0009389671
11166
1 1(^6356
1211355496
32-6-496554
10-2153300
-0009380863
1067
1138489
1214767763
3-2-6649659
10-2185233
•0009372071
!i0911
32-7261363
10-2312766
•00093370^8
1072
'1149184
1231925248
32-74141I1
32-7566787
10-2344599
•()00932835iy
1073
1151329
1235376017
10-2376413
•0009319664
1074
! 1153476
1
1238833224
32-7719392
10-2408207
•0009310987
r2
244
SQUARES, CUBES, ROOTS, AND RECIPROCALS.
No.
1075
1076
](i77
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
lll(i
1117
1118
1119
1120
1121
1122
1123
Square
Cube
1155625
1167776
1159929
1162084
1164241
1166400
1168561
1170724
1172889
1175056
1177225
1179396
1181669
1183744
1185921
1188100
1190281
1192464
1194649
1196836
1199025
1201216
1203409
1205604
1207801
1210000
12122011
1214404
1216609
1218816
1221025
1223236
1225449
1227664
1229881,
1232100
1234321 j
1236544 '
1238769
1240996
1243225
1 245456
1247689
1249924
1252161
1254400
1256641 j
1258884 :
1261129
1242296875
1245766976
1249243533
1252726552
1256216039
1259712000
1263214441
12667233(i8
1270238787
1273760704
1277289125
1280824056
1284365503
1287913472
1291467969
1295029000
1298596571
1302170688
1305751357
1309338584
1312932375
1316532736
1320139673
1323753192
1327373299
1331000000
1334633301
1338273208
1341919727
1345572864
1349232(;25
1352899016
1356572043
1360251712
13639o.-<029
1367631000
1371330631
1375036928
1378749S97
1382469544
1386195N75
138992^<896
1393668613
1397415032
1401168159
1404928000
140^694561
141246784S
1416247867
Square Root j Cube Root
32-7871926
32-8024389
32-8176782
32-8329103
32-8481354
32-8633535
32-8785644
32-8937684
32-9089653
32-9241553
32-9393382
32-9545141
32-9696830
32-9848450
33-0000000
33-0151480
33-0302891
33-0454233
33-0605505
33-0756708
33-0907842
33-1058907
33-1209903
33-1360830
33-1611689
33-1662479
33-1813200
33-1963853
33-2114438
33-2264965
33-2415403
33-2565783
33-2716095
33-2866339
33-3016516
33-3166ti25
33-3316666
33-3466640
83-3616546
33-3766385
33-3916157
33-4065862
33-4215499
33-4365070
33-4514573
33-4664011
33-4813381
33-4962684
33-5111921
10-2439981
10-2471735
10-2503470
10-2535186
10-2566881
10-2598557
10-2630213
10-2661850
10-2693467
10-2725065
10-2756644
10-2788203
10-2819743
10-2851264
10-2882765
10-29 14-247
10-2945709
10-2977153
10-3008577
10-3039982
10-3071368
10-3102735
10-3134083
10-3165411
10-3196721
10-32-2<'^012
10-3259284
10-3290537
10-3321770
10-3352985
10-3384181
10-3415358
10-3446517
10-347765/
l(i-350s778
10-3539880
10-3570964
I0-3(i02029
10-363307(!
10-3664103
10-3695113
10-372til03
10-3757076
10-3788030
10-3818965
10-3849882
10-3880781
10-3911661
10-3942523
Reciprocal
-0009302326
•0oO9293(i80
•00(192^5051
-0(Ki927()438
•0009267841
-0009259259
•0009250694
•0009242144
-0009233610
•0009225092
•0009216590
•0009208103
•0009199632
•0009191176
-0009182736
•0009174312
•0009165903
•0009167509
•0009149131
•0009140768
•0009132420
•0009124088
•0009115770
•0009107468
•0009099181
•0009090909
•00090^2652
•0009074410
•1(009066183
•0009057971
•0009049774
•0009041591
•0009033424
•0009025271
•0009017133
•0009009009
•0009000900
•0008992806
■0008984726
•0008976661
•0008968610
•0008960573
■0008952561
■0008944544
•0008936650
•U00892f<571
■UO0S920t;o7
'00<>8912i;5b
U008904720
SQUARES, CUBES, ROOTS, AND RECIPROCALS.
245
No.
Square
Cube
Square Root
Cube Root
Reciprocal
1124
1263376
1420034624
33-5261092
10-3973366
•0008896797
1125
1265625
1423828125
33-5410196
10-4004192
•0008888^89
1126
1267876
1427628376
33-5559234
10-4034999
•00(18880995
1127
1270129
1431435383
33-5708206
10-4065787
•0008873114
1128
1272384
1435249152
33-5857112
10-4096557
•O00S865248
1129
1274641
1439069689
33-6005952
10-4127310
•0008857396
1130
1276900
1442897000
33-6154726
10-4158044
-0008849568
1131
1279161
1446731091
33-6303434
10-4188760
-0008841733
1132
1281424
1450571968
33-6452077
10-421945H
-0UU8833922
1133
1283689
1454419637
33-6600653
10-4-250138
-0008826125
1134 1285956
1458274104
33-6749165
10-4280800
-0008818342
1135 1288225
1462135375
33-6897610
10-4311443
•0008810573
1136 1290i96
1466003456
33-7045991
10-4342069
-0U0880-2.S17
1137 1 1292769
1469878353
33-7194306
10-4372677
•0008795U75
1138 j 1295044
1473760072
33-7342556
10-4403267
-0008787.346
1139 i '297321
1477648619
33-7490741
10-4433839
-0008779631
114U 1 1299600
1481544000
33-7638860
10-4464393
-0008771930
1141 1301881
1485446221
33-7786915
10-4494929
-0008764242
1142 1304164
1489355288
33-7934905
10-4525448
•0008756567
1143
1306449
1493271207
33-8082830
10-4555948
-000874890o
1144
1308736
1497193984
33-8230691
10-4586431
-0008741259
1145
1311025
1501123625
33-8378486
10-4616896
-0008733624
1146
1313316
1505060136
33-8526218
10-4647343
-0008726003
1147
1315609
1509003523
33-.S673884
10-4677773
-0UU8718396
1148 ' 1317904
1512953792
33-8821487
10-47081«5
•0008710801
1149
1320201
1516910949
33-89690-25
10-4738579
-00U8703220
1150
1322500
1520875000
33-9116499
10-4768955
-000869.3652
1151
1324801
1524845951
33-9263909
10-4799314
•0008688097
1152
1327104
1528823808
33-9411255
10-4829656
-0008680556
1153
1329409
1532808577
33-9558537
10-4859980
-0008673027
1154
1331716
1536800264
33-9705755
10-4890286
-0008665.)il
1155
1334025
1540798875
33-9852910
10-4920575
-0008658009
1156
1336336
1544804416
34-0000000
10-4950847
-0008650519
1157
1338649
1548816893
340147027
10-4981101
-0008643042
1158 1340964
1552836312
34-0293990
10-5011337
•0008635579
1159
1343281
1556862679
34-0440890
10-5041556
•0008628128
1160
1345600
1560896000
34-0587727
10-5071757
•0008620;90
1161
1347921
1564936281
34-0734501
10-5101942
-0008613264
1162
1350244
1568983528
34-0881211
10-5132109
-0008605852
1163
1352569
1573037747
34-1027858
10-5162-259
-00085984-2
1164
1354896
1577098944
34-1174442
10-519-2391
-0008591065
1165
1357225
1581167125
34-1320963
10-5222506
-0008583691
1166
1359556
1585242296
34-1467422
10-5-252604
-0008576.329
1167 ! 1361889
1589324463
34-1613817
10-528-2685
-00085689811
1168 1364224
1593413632
34-1760150
10-5312749
•0008561644
1169
1366561
1597509809
34-19064-20
10-5342795
-0008554.3^0
1170
1368900
1601613000
34-2052627
10-5372825
•00085471 (09
1171
1371241
1605723211
34-2198773
10-5402837
•0008539710
1172
1373584
1609840448
34-2344855
10-5432832
-0008532423
246
SQUAEE?, CrBES, ROOTS, AXD RECIPROCALS.
Xo. 1 Square
Cube
Square Root
Cube Root
Reciprocal
1173 1 1375929
1613964717
34-2490875
' 10-5462«10
•0008525149
1174 ■ 1378276
1618096024
34-2636834
10-5492771
-0008517888
1175; 1380625
1622234375
34-27^2730
10-5522715
•0008510638
1176 1382976
1626379776
34-29-28564
; 10-5552642
-000^^503401
1177! 1385329
1630532233
34-3074336
10-5582552
•0008496177
117)^I13S7684
1634691752
34-o220046
10-561-2445
-00084^8964
1179 : 1390041
1638s583o9
34-3365694
10-5642322
-0008481764
1180 1392400
1643032000
34-35112.^1
10-5672181
•0008474576
1181 1394761
1647212741
34-o656805
1 10-5702024
-0008467401
11.S2 i 1397124
1651400568
34-3802268
I 10-5731849
•0008460237
1183 1 1399489
1655595487
34-3947670
10-5761658
•0(108453085
1184 1401856
1659797504
34-4093011
i 10-5791449
•un08445946
ll.><5 1 1404225
1664006625
34-42382>^9
1.10-5821225
-0008438819
1186 ' 1406596
1668222856
34-4383507
i 0-5850983
-0008431703
1187 1 1408969
1672446203
34-452^663
10-5><80725
•00084-24600
1188 { 1411344
1676676672
34-4673759
10-5910450
•0008417508
1189 ! 1413721
1680914269
34-4818793
10-5940158
•0008410429
1190; 1416100
1685159000
34-4963766
' 10-5969850
•0008403361
1191 141848 L
1689410871
34-5108678
i 10-5999525
•0008396306
1192 1420864
1693669888
34-5253530
1 10-6029184
•0008389-262
1193 '1423249
1697936057
34-5398321
1 10-6058826
•0008382230
1194 1425636
1702209384
34-5.543051
10-6088451
•0008375209
1195 1428025
1706489875
34-5687720
10-6118060
•0008368-201
1196 ; 1430416
1710777536
34-5s;{2329
10-6147652
•0008361204
1197 1432809
1715072373
34-597t,s79
10-6177228
•0008354219
1198 1435204
1719374392
34-6121366
10-620G7»8
•0008347245
1199 1437601
1723683599
34-6265794
10-6236331
•0008340284
1200 1440000
1728000000
34-6410162
10-6265857
•000833333';
1201 ; 1442401
1732323601
34-6554469
10-6295367
•0008326395
1202 ' 1444804
1736654408
34-6698716
10-6324860
•000831946X
■203 1447209
1740992427
34-6842904
10-6354338
•0008312552
1204 1449616
1745337064
34-6987031
10-6383799
•000830564S
1205
1452025
1749690125
34-7131099
10-6413244
•000829^755
1206
1454436
1754049816
34-7275107
10-6442672
•0008291874
1207
1456849
175841 6713
34-7419055
10-6472085
•0008285004
1208
1459264
1762790912
34-7562944
10-6501480
•0008278146
1209
1461681
176772329
34-7706773
10-65o0>'60
•0008271-299
1210
1464100
1771561000
34-7850543
10-6560223
-0008264463
1211
1466521
1775956931
34-7994253
10-6589570
•0008257638
1212
1468944
178036012X
34-8137904
10-6618902
-0008250825
1213
1471369
1784770597
34-8281495
10-6648217
-0008244023
1214
1473796
1789188344
34-84-25028
10-6()77516
-0008-237232
1215
1476225
1793613375
34-8568501
10-6706799
-0008230453
1216
1478656
1798045696
34-^711915
10-6736066
-00082-236.^4
1217
1481089
1802485313
34-8855271
'. 10-67; 5317
-0008216927
1218
1483524
1806932232
34-8998567
10-6794552
-00082 10 lis 1
1219
1485961
18113^6459
34-9141805
10-6'<23771
-000820.3445
1220
1488400
1815X48000
34-9284984
10-6852973
•0008196721
1221
1490841
1^20;316s6i
34-:)428l04
10-6882160
-0008190008
SQUARES, CUBES, ROOTS, A^'D RECIPROCALS.
247
No.
Square
Cube
Square Root
Cube Root
Reciprocal
1222
1493284
1824793048
34-9571 1(;6
10-6911.331
•0008183306
1223
1495729
1829276567
34-9714169
10-6940486
•0008176615
1221
149s 1 76
1833767424
34-9857114
10-69696-25
•0008169935
1225
1500625
1838265625
35-0000000
10-6998748
•0008163265
1226
1503076
1842771176
35-0142.S28
10-7027855
•0008156607
1227
1505529
1847284083
35•02^^5598
10-7056947
•0008149959
122'S
1507984
1851804352
35-042>!3()9
10-7086023
•0008143322
1229
15104 il
185633 19S9
35-05709; ;3
10-7I150S;}
•0008136696
1280
1512900
1860867000
35-0713558
10-7144127
•0008130081
1231
1515361
1865409391
35-08a(i096
10-7173155
•0008123477
1232
1517824
1869959168
35-0998575
10-7202168
-0008116883
1233
15202^9
1874516337
35-1140997
10-7231165
•0008110300
1234
1522756
1879080904
35-1-283.361
10-7260146
•0008103728
1235
1525225
1883652875
35- 14-25668
10-7-289112
•0008097166
1236
1527696
1888232256
35-1567917
10-7318062
•O0O.S090615
1237
1530169
1892819053
35-1710108
10-7346997
•0008084074
1238
1532644
189741.3272
35-1852-242
10-7375916
•0O0S077544
1239
1535121
1902014919
35-1994318
10-7404S19
•000^071025
1240
1537600
1906624000
35-213(;o37
10-7433707
•0008064516
1241
15400'^1
1911240521
35-2278-299
10-7462579
•0008058018
1242
1542564
1915864488
35-24-20204
10-7491436
•0008051530
1243
1545049
1920495907
35-2562051
10-75-20277
•0008045052
1244
1547536
19251.347>^4
35-2703842
10-S54.9103
•0008038585
1245
1550025
1929781125
35-2845575
10-7577913
-0008032129
1246
1552516
1934434936
35-2987252
10-7606708
-0008025682
1247
1555009
1939096223
35-31-28872
10-7635488
•0008019246
1248
1557504
1943764992
35-3270435
10-7664252
-0008012821
1249
1560001
1948441249
.35-.34 11941
10-7693001
10-7721735
•0008006405
1250
1562500
1953125000
.3.5-3553391
•0008000000
1251
1565001
1957816251
35-3694784
10-7750453
•0007993605
1252
1567504
1962515008
.35-3836120
10-7779156
•0007987220
1253
1570009
1967221277
35-3977400
10-7807843
•0007980846
1254
1572516
1971935064
35-41 1S(;24
10-78.36516
•0007974482
1255
1575025
1976656375
35-4250792
10-7865173
•0007968127
1256
1577536
1981385216
35-4400903
10-7893815
•0007961783
12.57
1580049
1986121593
35-4541958
10-792-2441
-0007955449
1258
1582564
1990865512
35-4682957
10-7951053
•0007949126
1259
1585081
1995616979
35-4823900
10-7979649
•0007942812
1260
1587600
2000376000
35-4964787
10-8008230
•0007936508
1261
1590121
20051425^1
35-5105618
10-8036797
•0007930214
1262
1592644
2009916728
35-5246393
10-8065348
•0007923930
1263
1595169
201469><447
35-5387113
10-8093S84
•0007917656
1264
1597696
2019487744
35-.5527777
10-812-2404
•0007911392
1265
1600225
2024284625
35-5668385
10-8150909
•0007905138
1266
1602756
2029089096
35-5808937
10-8179400
•0007898894
1267
1605289
2033901163
35-5949434
10-8207876
•0007892660
1268
1607824
2038720832
35-6089876
10-8-236.336
•0007886435
1269
1610361
2043548109
35-62,30262
10-8264782
•0007880221
1270
1612900
2048383000
35-6370593
10-8293213
•0007874016
248 SQUAKES, CUBES, EOOTS, AND RECIPROCALS.
Xo. Square Cube Square Root | Cube Root Reciprocal
Xo.
Square
1271
1615441
1-272
1617984
1273
. 620529 i
1274
1623076 ,
1275
1625G25
1276
1628176
1277
1630729
1278
1633284
1279
1635841
1280
1638400
1281
1640961
1282
1643524
1283
1646089
1284
1648656
1285
1651225
1286
1653796
12^7
1656369
1288
1658944
1289
1661521
1290
1664100
1231
1666681
1292
1669264
1293
1671849
1294
1674436
1295
1677025
1296
1679616
1297
1682209
1298
1684804
1299
1687401
1300
1690000
1301
1692601
1302
1695204
1303
1697809
1304
1700416
1305
1703025
1306
1 705636
1307
1708249
1308
1710864
1309
1713481
13.0
1716100
1311
1718721
1312
1721344
1313
1723969
1314
1726596
1315
1 729225
1316
1731856
1317
1734489
1318
1737124
1319
1739761
2053225511
2058075648
2062933417
206779««24
2072671875
2077552576
2082440933
2087336952
2092240639
2097152000
2102071041
2106997768
2111932187
2116874304
2121824125
2126781656
2131746903
2136719872
2141700569
2146689000
2151685171
2156689088
2:61700757
2166720184
2171747375
2176782336
218182.")073
2186875592
2191933899
2197000000
2202073901
2207155608
2212245127
2217342464
2222447625
22275606 1 6
2232681443
2237810112
2242946629
2248091000
2253243231
2258403328
2263571297
226.S747144
2273930875
2279122496
2284322013
2289529432
2294744709
35-6510869
35-6651090
35-6791255
35-6931366
35-7071421
35-7211422
35-7351367
35-7491258
35-7631095
35-77708/6
35-7910603
35-8050276
35-8189894
35-8329457
35-8468966
35-8608421
35-8747822
o5-«887169
35-9026461
35-9165699
35-9304884
35-9444015
35-9583092
35-9722115
35-9861084
36-0000000
36-0138862
36-0277671
36-0416426
36-0555128
36-0693776
36-0832371
36-0970913
36-1109402
30-1247837
36-13862-20
36-1524550
36-1662826
36-1801050
36-1939221
36-2077340
36-2215406
36-2353419
36-2491379
36-2629287
36-2767143
36-2904946
36-3042697
36-3180396
10-8321629
10-8850030
10-8378416
10-8406788
10-8435144
10-8463485
10-8491812
10-85-20125
10-8548422
10-8576704
10-860^972
10-8633225
10-8661464
10-8689687
10-8717897
10-8746091
] 0-8774271
10-880-2436
10-8830587
10-8858723
10-8886845
10-8914952
10-8943044
10-8971123
10-8999186
10-9027235
10-9055269
10-9083290
10-9111296
10-9 139287
10-9167-265
10-9195228
10-9-223177
10-9-251111
10-9279031
10-9306937
10-9334829
10-9362706
10-9390569
10-9418418
10-9446-253
10-9474074
10-9501880
10-9529673
10-9557451
10-9585215
10-9612965
10-9640701
10-96684-23
-0007867821
-0007861635
-OUO78554U0
-0007849294
-0007843137
•00078369^11
-0007830854
-0007824726
•0007818608
-0007812500
-0007806401
-0007800312
-0007794232
-0007788162
•ti007782101
-0007776050
-0007770008
•0007763975
•0007757952
-00(j7751938
•0007745933
•0007739938
•0007733952
•0007727975
•000772-2008
•0007716049
•0007710100
•0007704160
•0007698229
-0007(;92308
-0007686395
•0007680492
•0007674597
•0007668712
•000766-2835
-0007656968
•0007651109
•0007645260
•0007639419
•0007633588
•0007627765
-0007621961
-0007616146
-0007610350
-0007604563
•0007598784
•0007593014
•0007587253
•0007581501
SQUARES, CUBES, ROOTS, AND RECIPEOCALS.
249
No.
Square \
Cube
Square Eoot ' Cube Root
Reciprocal
1320
1742400 j
2299968000
36-3318042 '■ 10-9696131
•0007575758
1321
1745041 ,
2305199161
36-3455637 10-9723825
-0007570023
1322
1747684 ;
2310438248
36-3593179 10-9751505
-0007564297
1323
1750329 '
2315685267
36-3730670 10-9779171
•000755^579
1324
1752976 I
2320940224
36-3868108 10-9806823
-0007552870
1325
1755625 1
2326203125
36-4005494 10-9834462
-0007547170
1326
1758276
2331473976
36-4142829
10-9862086
•0007541478
1327
1760929 j
2336752783
36-42S(ill2
10-9889096
•0007535795
1328
1763584 '
2342039552
36-4417343 10-9917293
•0007530120
1329
1766241 ,
2347334289
S6-45645-23 10-9944876
•0007524454
1330
1768900
2352637UU0
36-4691650 10-9972445
-0007518797
1331
1771561
2357947691
36-4828727 11-0000000
-0007513148
1332
1774224
2363266368
36-4965752 11-0027541
•0007507508
1333
1776889
2368593(137
36-6102725
11-0055069
•0007501875
1334
1779556
2373927704
36-5-239647
11-008-2683
-0007496252
1335
1782225
2379270375
36-5376518
11-0110082
-0007490637
1336
1784896
2384621056
36-5513338
11-0137569
•0007485(130
1337
1787569
2389979753
36-5650106
11-0165041
•0007479432
1338
179C^244
2395346472
36-5786823
11-019-2500
-0007473842
1339
1792921
2400721219
36-5923489
11-0219945
-0007468260
1340
1795600
2406104000
30-6060104
11-0-247377
-0('074(:2687
1341
1798281
2411494821
36-6196668
11-0274795
-0007457122
1342
1800964
2416893688
36-6333181
11-0302199
-0007451565
1343
1803649
2422300607
36-6469644
11-0329590
•0007446016
1344
1806336
2427715584
36-6606056
11-0356967
•000744047t;
1345
1809025
2433138(125
36-6742416
110384330
-0007434944
1346
1811716
2438569736
36-6878726
11-0411680
•0007429421
1347
1814409
2444008923
36-7014986
11-0439017
-00074239(15
1348
1817104
2449456192
36-7151195
11 •0466339
-0007418398
1349
1819801
24549115-^9
36-7287353
110493649
•0007412898
1350
1822500
2460375000
36-7423461
11-0520945
-0007407407
1351
1825201
2465846551
36-7559519
11-0548227
-00074019-24
1352
1827904
2471326208
3 -7695526
11-0575497
•0007396450
1353
1830609
2476.S13977
36-7831483
ll-06n2752
i -0007390983
1354
1833316
2482309864
36-7967390
11-0629994
i •00073,^5524
1355
1836025
2487813875
36-8103-246
11-0657222
•000738( 074
1356
1838736
2493326016
36-8239053
11-0684437
•0007374631
1357
1841449
2498846293
36-8374809
11-0711689
•0007369197
1358
1844164
2504374712
36-8510515
11-07388-28
•0007363770
1359
1846881
2509911279
36-8646172
n -0766003
-0007358352
1360
1849600
2516456000
36-8781778
11-0793165
-0007352941
1361
1852321
2521008881
36-8917335
ll-0^;-20314
•0007347539
1362
1855044
2626569928
36-9052842
11-0^47449
•0007342144
1363
1857769
2532139147
36-91 8S299
11-0874571
•0007336757
1364
1860496
2537716544
36-93-23706
11-0901679
•0007331378
1365
1863225
2543302125
36-9459064
11-0928775
-000732*. 007
1366
1865956
2548895896
36-9594372
11-0955857
-0007320644
1367
1868689
2554497863
36-9729631
11-0982926
-0007315-289
1368
i 1871424
1
2560108032
36-9864840
11-1009982
•0007309942
250
SQUARES, CUBES,
ROOTS, AXD RECIPROCALS.
No.
Square
Cube
Sqiiare Root
Cube Pvoot
Reciprocal
13G9
1874161
2565726409
37-0000000
11-1037025
-0007304602
1370
1876900
2571353000
37-0135110
11-10(54054
•O0O729927O
1871
1879fi41
257(5987811
37-0270172
11-1091070
-0007293946
1372
1882384
25S2(53084X
37-04051x4
11 -1118073
-0007288630
1373
1885129
258«2s2n7
37-0540146
11-1145064
-00072X3321
1374
1887876
2593941624
37-0(;750":0
11-1172041
•0007278020
1375
1890625
2599(509375
37-0809924
11-1199004
•0007272727
1376
1893376
2(50.i2s5376
37-0944740
11-1 -225955
-0007267442
1377
1896129
2610069(533
37-1079506
11-125-2X93
-0007262164
1378
1898884
26i(;(;(;2i52
37-1214224
11-1279X17
-0007256894
1379
1901641
26223<;2939
37-1 34X893
11-13067-29
•0007-251632
1380
1904400
262s( 172000
37-1483512
11-1333628
•0007-246377
1381
1907161
2G337S9341
37-1618084
11- 13600 14
-0007-241130
1382
1909924
26395 149!58
37-1752606
11-1387386
•0007-235890
1383
1912689
2645248887
37-1887079
11-1414-246
•0007-230658
1384
1915456
2650991104
37-2021505
11-1441093
•0007225434
1385
1918225
2G5(5741(;25
37-2155881
11-1467926
•0007220217
138G
1920996
2662500456
37-2290209
37-24244X9
37-255X720
11-1494747
•0007215007
1387
1923769
26(5s2676o3
11-1521555
•0007209805
1388
1926544
2674043072
11-154X350
•0007204611 I
1389
1929321
2679826869
37-2692903
11-1575133
-00071994-24 I
1390
1932100
2:185619000
2(591419471
37-2X27037
11-1601903
-0007194-245
1391
1934881
37-2961124
11-1(528659
-0007189073
1392
1937664
2-597228288
37-3095162
11-1655403
•0007183908
1393
1940449
2703045457
37-3229152
11-16x2134
•0007178751
1394
1943236
270SS70084
37-3363094
n-170XX.52
-0007173601
1395
1946025
27! 4704875
37-34969X8
11-1735558
-0007168459
13913
1918816
2720547136
37-3630834
11-1762250
•0007163324
1397
1951(109
27215397773
37-3764632
11-1788930
•0007158196
1308
1954404
273225(5792
37-389X3X2
11-1815598
•0007153076
1399
1957201
273S121199
37-40320x4
11-1X42-252
•0007147963
1400
1960(100
2744000000
37-41(55738
11-18(58X94
•000714-2857
1401
1962.S01
2749.XS4201
37-4299345
11 ■18955-23
•0(^07137759
1402
19(55604
2755776808
37-4432904
11-1922139
-0007132668
1403
1968409
2761677X27
37-456(5416
11-194X743
•0O07 127584
1404
1971216
27675872' 14
37-4699880
11-1975334
0007122507
1405
1974025
2773505125
37-4X33296
11-2001913
•0007117438
140(1
1976836
2779431416
37-49666(55
11-20-28479
•000711-2376
1407
1979649
278536(5143
37-n099987
11-2055032
•0007107321
i40.S
19824(54
279I3(J9312
37-r)2332(il
11-20X1573
•0007102273
1409
1985281
2797260929
37-536(5487
11-2108101
-0007097232
1410
1988100
280322 lOoO
37-5499(567
11-2134617
•0007092 99
1411
1990921
2.S09189531
37-5(^32799
11-21(51 1-20
•00070x7172
1412
1993744
2.S 1 5 1 66528
37-5765X8.)
11-2187611
-0(»07ox-2i5;;
1413
i 996569
2S21 151997
37-5X98922
11-221 4ns9
-0007077! ! i 1
1414
199939G
2S27 145944
37-(5031913
11-2240554
•0007072 '3r,
1415
2002225
283314H375
37-6164x57
11-22(57007
•0007(16, '3x 1
141(5
2005056
2.S39 159296
37-6297754
11-2293448
•0007OH21 17
1117
2007889
2.S4517.S713
37-6430(504
ll-231i)X76
-00070571(53
SQUARES, CUBES, ROOTS, AND RECIPROCALS. 251
No.
Square
Cube
Square Root
Cube Root
Reciprocal
Ul^7563
•0006261741
1598
2553604
40i5O659192
39-9749922
11-6911955
-0006-2.57822
1599
255680 1
408.S324799
39-9-^74980
11-693(3337
•(3006253909
1600
2560000 4096000000
40-0000000
11-6960709
-0006-250000
1601
2563201 41036X4801
40-01-24980
11-6985071
-0006246096
1602
2566404
4111379208
40-02499-22
11-7009422
-0006242197
16o3
2569609
41190832-7
40-03 74«-24
11-7033764
-0006238303
1604
2572816
4126796864
40-0499688
11-7058095
-00062.34414
1605
2576025
4134520125
4(1-0624512
11-7082417
-0006230530
16o6
2579236
4142253016
400749298
11-71067-28
-00062266.50
1607
2582449
414!)99->543
40-0.«!74O45
11-7131029
-0006222775
1608
2585664
4157747712
40-0998753
11-71553-20
•0006218905
1609
2588881
4165509529
40-11 •234-23
11-7179(301
-000621504O
1610
2592100
4173281000
40-1-248053
11-7203S72
•0006211180
1611
2595321
4181062131
40-137-2645
11-7228133
•0006-207325
1612
2598544 418885292.S
40-1497198
11 -7-25 -.'384
•0006203474
16i3
2601769 4196653397
40-1621713
11-7276625
•000619962«
SQUARES, CUBES, BOOTS, AND EECIPROCALS. 255
No.
1G14
Square | Cube
Square Root
Cube Root
Reciprocal
2604996 4204463544
40-1746188
11-7300855
-0006195787
1G15
26082-25 . 421-2283375
40-1870626 ;
11-73-25076
-0006191950
1616
2611456 42-20112896
40-1995025
11-734 92.St;
•00061^8119
1617
26146«9 4227952113
40-2119385 j
11-7373487
-0-06184292
1618
2617924 4235801032
40-2243707
11-7397677
-0006180470
1619
■2621161 4243659659
40-2367990
11-7421 S58
-1/006176652
16-20'
2624400
4251528000
40-2492-236
11-74460-29
-0006172840
16-21 '
-2627641
4259406061
40-2616443
11-7470190
-0006169031
16-22 ;
26308S4 i
4-267293848
40-2740611
11-7494341
-0006165228
162o
2634129 j
4-275191367
40-2864742
11-7518482
•00061614-29
16-24
26373 < 6
4283098624
40-2988834
11-754-2613
-0006157635
hvi:,
2640(525 i
4291015625
40-3112888
11-7566734
-0006153846
1626
2643.H76
4-29894-2376
40-3236903
11-7590846
-0006150062
1627
2647129
43068788.S3
40-3360881
11-7614947
•0006146282
16-2.S
2650384
4314825152
40-34848-20
11-7639039
-0006142506
1629
26536-1 1
43-2-278 11N9
40-3608721
11-7663121
•0006138735
1630
26569n0'
4330747000
40-3732585
11-7687193
•0006134969
1631
2660161
43387-2-2591
40-3856410
11-7711255
-0006131-208
1632
266,!4-2.4
4346707968
40-3980198
11-7735306
•0006127451
1633
2666689
4354703137
40-4103947
11-7759349
•00061-23609
1634
2669956
436270H104
40-4-227658
11-77833«1
•0006119951
163o
2673225
4370722875
40-4351332
11-7807404
•0006116208
16.>6
2676496
4378747456
40-4474968
11-7831417
•0006112469
1637
2679769
43S6781853
40-4598566
11-7^55420
•0006108735
1638
2683044
43948-26072
40-4722127
11-7879414
•0006105006
1639
2686321
440-2880119
40-4845649
11-7903397
•00061 012M
1640
2689600
4410944000
40-4969135
11-7927371
•0006097561
1641
26928S1
4419017721
40-5092582
11-7951335
■0006093845
1642
2696164
4427101288
40-5215992
11-7975289
•1)006090134
1643
2699449
4435194707
40-5339364
11-7999-234
•0006086427
1644
270273G
4443297984
40-546-2699
11-8023] 69
•0006082725
1645
27060-25
4451411125
40-5585996
11-8047094
•0000079027
1646
2709316
4459534136
40-570,.i-255
11-8071010
•0t)06075;.34
. 1647
2712(;09
44676670-23
40-583-2477
11-8094916
•0006071645
1648
2715904
4475809792
40-5955663
11-8118812
•0006067961
1649
2719-201
4483962449
40-6078810
11-8142698
•0006064281
1650
27-22500
4492125000
40-62019-20
11-8166576
•0006060606
1651
27-25801
4500297451
40-6324993
11-8190443
•0006056935
165-2
2729104
4508479808
40'64480-29
11-8-214301
•0006053-269
1653
273-2409
4516672077
40-65710-27
11-8238149
•0006049607
1654
2735716
4524874-264
40-6693988
11-8261987
-0006045949
1655
2739025
4533086375
40-6816912
11-8285816
•0006042296
1656
274-2336
4541308416
40-6939799
11-8309634
•0006038647
1657
2745649
' 4549540393
40-7062648
11-8333444
•0006035003
1658
2748964
4557782312
40-7185461
11-8357244
•0006031363
1659
275-2281
! 4566034179
40-7308-237
11-8381034
•0006027728
1660
2755600
i 4574296000
40-7430976
11-8404815
•0006024096
1661
2758921
j 45»-2567781
40-7553677
11-84-285.N6
•0006020470
1662
! 2762244
1 4590849528
1
40-7676342
11-845-2348
•0006016847
256 SQUAPwES, CUBES, ROOTS, AND RECIPROCALS.
No.
1663
Square
Cube
Square Root
Cube Root
Reciprocal
2765569
4599141247
40-7798970
11-8476100
-0006013229
16G-4
2768896
4607442994
40-7921561
11-8499843
•0006009615
1665
2772225
4615754G25
40-8044115
11-8523576
•0006006006
1666
27/5556
462407629(^.
40-8166633
11-8547299
•000600-24 01
1667
2778889
4632407963
40-8289113
11-8571014
•0O0599'^8O0
1668
2782224
4(540749632
40-8411557
11-8594719
•00O5995204
1669
2785561
4649101309
40-8533964
11-8618414
•0005991612
1670
2788900
4657463000
40-8656335
11-8642100
•0005988024
1671
2792241
4665834711
40-^77S669
11-8665776
•0005984440
1672
2795584
4674216448
40-8900966
1 1-8689443
•0005980861
1673
2798929
4682608217
40-9023227
11-8713100
•0005977286
1674
2802276
4691010024
40-9145451
11-8736748
•0005973716
1675
2805625
4699421875
40-9267638
11-8760387
•0005970149
1676
2808976
4707843776
40-9389790
11-8784016
•0005966587
1677
2812329
4716275733
40-9511905
11-8807636
•0005963029
1678
2815684
4724717752
40-9633983
11-8831246
•0005959476
1679
2819041
4733169839
40-9756025
11-8854847
•0005!)55926
168u
28224O0
474163200O
40-9878031
11-8878439
•0005 95-2381
1681
282576 1
4750104241
41-0000000
11-890-2022
•0005948840
1(82 2829124
4758586568
41-0121933
11-8925595
•0005945303
1683
2832489
^4767078987
41-0243830
11-8949159
-0005941771
1684
2835856
4775581504
41-0365691
11-8972713
•0005938-242
16.^5
2839225
4784094125
41-0487515
ll-899';258
•0005934718
168t;
2842596
4792616856
41-0609303
11-9019793
■000593)198
1687
28459o9
4801149703
4] -0731 055
11-9043319
•0005927682
1688
2849344
4809692672
41-0852772
11-9066836
■00059-24171
1689
2852721
4818245769
41-0974452
11-9090344
-0005920663
1690
2856100
4826809000
41-1096096
11-9113843
-0005917160
1691
2859481
4835382371
41-1217704
11-9137332
•0005913661
1692
2862864
4843965888
41-1339276
11-9160812
-0005910165
1693
2866249
4852559557
41-1460812
11-9184283
•00059o6(w5
1694
2869636
48611(^338;
41-1582313
11-9207744
■0005903188
1690
2873025
4869777375
41-1703777
11-9231196
-0O0.'8'.»97(i5
1696
2876416
487-^401536
41-1825206
11-9-254639
•0005896226
1697
2879.S09
4887035873
41-1946599
11 -9-278073
-0005892752
1698
2883204
48956.-«i0392
41 -2067956
11-9301497
-00O58S9282
1699
2886601
4901335099
41-2189-277
11-93-24913
-0005885815
1700
2890000
4913000000
41-23 0563
11-9348319
-0005882353
1701
2893401
4921675101
41-24318 2
11-9371; 16
■0005878895
1702
2S96804
493036040S
41-2553027
11-9395104
•0005875441
1703
2900209
4939055927
41-2674205
11-9418482
•0005871991
1704
2903616
4947761664
41 -2795349
11-9441852
•0005868545
1 705
2907025
4956)477625
41-2916456
11-9465213
■0005S(:5103
1706
2910436
4965203816
41-3037529
11-9488564
•000580 665
1707
2913S49,
4973940243
41-3158565
11-9511906
•00058.- 8-231
170S
2! "17264
49826S691 2
41-3-279566
11-9535-239
-0005854 01
1709
29201 ;81
4991443S29
41-3400532
11-9558563
•0005851375
1710
2921100
5000211000
41-3521463
11-9581878
•0005847953
1711
21)27521
500^988431
41-364-2358
11-9605184
0005844535
SQUARES, CUBES, ROOTS, AND RECIPROCALS. 257
No.
Square
Cube
Square Root
Cube Root
Reciprocal
1712
2930944
5017776128
41-3763217
11-9628481
-0005841121
1713
2934369
5026574097
41-3884042
11-9651768
-0005837712
1714
2937796
50353^2344
41-4004S31
11-9675047
•000583-1306
1715
2941225
5044200875
41-4125585
11-9698317
•0(105830904
1716
2944656
5053029696
41-4246304
11-9721577
•0005827506
1717
2948089
5061868813
41-4366987
11-9744829
•0005824112
1718
2951524
6070718232
41-4487636
11-9768071
-0005820722
1719
2954961
5079577959
41-4608-249
11-9791304
-0005S 17336
1720
2958400
6088448000
41-47-28827
11-9814528
-0005813953
1721
2961841
6097328361
41-4849370
11-9S37744
-0005810575
1722
2965284
5106219048
41-4969878
11-9860950
-0005807-201
1723
2968729
5115120067
41-5090o51
11-9884148
•0005803831
1724
2972176
5124031424
41-5210790
11-9907336
•0005800464
1725
2975625
5132953125
41-5331193
11-9930516
•0005797101
1726
2979076
5141885176
41-5451561
11-9953686
•0005793743
1727
2982529
6150827583
41-5571895
11-9976848
•0005790388
1728
2985984
5159780352
41-6692194
12-0000000
-0005787037
1729
2989441
6168743489
41-6812457
12-00-23144
-0005783690
1730
2992900
6177717000
41-5932686
12-0046278
-0005780847
1731
2996361
6186700891
41-6052^sl
12-0069404
•0005777008
1732
2999824
5195695168
41-6173041
12-0092521
•0005773672
1733
3003289
5204699837
41-6-293160
12-0115629
-0005770340
1734
3006756
5213714904
41-6413256
12-01387-28
-0005767013
1735
3010225
5222740375
41-6533312
12-0161818
•0005763689
1736
3013696
5231776256
41 •6653333
12-0184900
•0005760369
1737
301 7169
5240>«22553
41-6773319
12-0207973
-0005757052
1738
3020644
5249879272
41-6.^93271
12-0231037
-0005753740
1739
3024121
5258946419
41-7013189
12-0254092
•0005750431
1740
3027600
5268024000
41-7133072
12-0277138
•0005747126
1741
303lO;si
6277112021
41-7252921
12-0300175
-0005743825
1742
3034564
5286210488
41-7372735
12-03-23204
-0005740528
1743
3038049
6295319407
41-7492515
12-0346223
-0005737235
1744
3041536
530443>!784
41-761-2260
12-0369233
-0005733945
1745
3045025
5313568625
41-7731971
12-0392235
-0005730659
1746
3048516
5322708936
41-7851648
12-04152-29
-0005727377
1747
3052009
5331859723
41-7971291
12-0438213
•00057-24098
1748
3055504
5341020992
41-8090899
12-0461189
•00057208-24
1749
3059001
5350192749
41-8210473
12-0484156
•0005717553
1750
3062509
6359375000
41-^330013
1-2-0507114
•0005714286
1761
3066001
6368567751
41-8449519
12-0530063
•0005711022
1752
3069504
5377771008
41-8568991
12-0553003
•0005707763
1753
3073009
5386984777
41-8688428
12-0575935
■0005704507
1754
3076516
6396209064
41-8807832
12-0598859
•0005701-254
1755
3080025
5405443875
41-8927-201
12-0621773
-0005698006
1756
3083536
5414689216
41-9046537
12-0644679
-0005694761
1757
3087049
5423945093
41-916583.S
12-0667576
-0005691520
1758
3090564
5433211512
41-9285106
12-0690464
•0O056S8282
1759
3094081
5442488479
41-9404339
12-0713344
-0005685048
1760
3097600
6451776000
41-9523539
12-0736215
•0005681818
258
SQUAT^ES, CUBES, EOOTS, AND EECIPEOCAL?.
No.
1761
Square
Cube
Square Root
Cube Root
Reciprocal
3101121
5461074081
41-9642705
12-0759077
-0005678592
1762
3104644
5470382728
41-9761837
12-0781930
-0005675369
17G3
3108169
5479701947
41-988093.)
1-2-0804775
-0005672150
17Gi
3111696
5489031744
42-0000000
12-0827612
-0005668934
1765
3115225
5498372125
42-0119031
12-0850439
•00U5665722
1766
3118756
5507723096
42-0238028
12-0873-258
-0005662514
1767
3122289
5517084663
42-0356991
12-0896069
•0005659310
1768
3125824
5526456832
42-0475921
12-0918870
•0005656109
1769
3129361
5535839609
42-0594S17
12-0941664
•0005652911
1770
3132900
5545233000
42-0713679
12-0964449
•0005649718
1771
3136441
5554637011
42-083-2508
12-0987226
•0005646527
1772
3139984
5564051648
4-2-0951304
12-1009993
•0005643341
1773
3143529
5573476917
42-1070065
12-1032753
•0005640158
1774
3147076
5582912824
42-1188794
1-2-1055503
•0005636979
1775
3150625
5592359375
42-1307488
12-1078-245
-0005633803
1776
3154176
5601816576
42-1426150
12-1100979
•0005630631
1777
3157729
5611284433
42-1544778
12-11-23704
-0005627462
1778
3161284
5620762952
42-1663373
1-2-11464-20
•00056-24-297
1779
3164841
5630252139
42-1781934
12-1169128
•0005(521135
1780
3168400
5639752000
42-1900462
l-2-1191«-27
•0005617978
1781
3171961
5649262541
42-2018957
1-2-1214518
•0005614823
1782
3175524
5658783768
42-2137418
12-1-237-200
•0005611672
1783
3179089
5668315687
42-2255846
12-1-259874
•0005608525
1784
3182656
5677858304
42-2374-242
1-2-1-28-2539
•0005605381
1785
3186225
5687411625
42-2492603
1-2-1305197
-0005602-241
1786
3189796
5696975656
42-2610932
12-1327845
-0005599104
1787
31933 •9
5706550403
42-2729227
12-1350485
•0005595971
1788
3196944
5716135872
42-2847490
12-1373117
•000559-2841
1789
3200521
5725732069
4-2-2905719
1-2-1395740
•0005589715
17 JO
3204100
5735339000
42-3083916
12-1418355
•0005586592
1791
3207681
6744956671
42-3-20-2079
12-1440961
-0005583473
1792
3211264
57545S508S
42-33-20210
12-1463559
•0005580357
1793
3214849
5764224257
42-3438307
12-1486148
•0005577-245
1794
3218436
5773874184
42-3556371
12-1508729
•0005574136
1795
3222025
5783534875
4-2-3674403
12-1531302
•0005571031
1796
3225616
5793206336
42-379-2402
12-1553866
•0005567929
1797
3229209
5802888573
4-2-3910368
12-1576422
•0005564830
1798
3232804
5812581592
42-4028301
12-1598970
•0005561735
1799
3236401
5822285399
42-4146-201
12-1621509
•0005558644
1800
3240000
6832000000
42-4264069
12-1644040
•0005555556
1801
3243601
5841725401
42-4381903
12-1666562
•0005552471
1802
3247204
6851461608
42-4499705
12-1689076
•0005549390
1803
3250809
5861208627
42-4617475
1-2-1711582
•0005.546312
1804
3254416
5870966464
42-4735212
12-1734079
•0005543237
1805
3258025
6880735125
42-485-2916
12-1756569
-0005.540166
1806
3261636
5890514616
42-4970587
12-1779050
•000.5537099
1807
3265249
6900304943
42-5088226
12-1801522
•00055.34034
1808
3268864
5910106112
4-2-5205833
12-1823987
•0005530973
1809
3272481
59199181:^9
42-5323406
12-1846443
-0005527916
SQUARES, CUBES, EOOTS, AND RECIPEOCALS.
259
No.
Square
1810
3276100
1811
3279721
1812
3283344
1813
32869G9
1814
3290596
1815
3294225
1816
3297856
1817
3301489
1818
3305124
1819
3308761
18-20
3312400
1821
3316041
1822
3319684
1823
3323329
1824
3326976
1825
3330625
1826
33342/6
1827
3337929
1828
3341584
1829
3345241
1830
3348900
1831
3352561
1832
3356224
1833
3359889
183-1
3363556
1835
3367225
1836
3370896
1837
3374569
1838
3378244
1839
3381921
1810
3385600
1811
3389281
1812
3392964
1843
3366649
1844
3400336
1845
3404025
1846
3407716
1847
3411409
1848
3415104
1849
341«801
1850
3422500
1851
3426201
1852
3429904
1853
3433609
1851
3437316
1855
3441025
1856
3444736
1857
3448449
1858
3452164
Cube
5929741000
6939574731
5949419328
5959274797
5969141144
5979018375
5988906496
5998805513
6008715432
6018636259
6028568000
6038510661
6048464248
6058428767
6068404224
6078390625
6088387976
6098396283
6108415552
6118445789
6128487000
6138539191
6148602368
6158676537
6168761704
6178857875
6188965056
6199083253
6209212472
6219352719
622950400e
6-39666321
6249839688
6260024107
6270219584
6280426125
6290643736
6300872423
6311112192
6321363049
6331625000
6341898051
6352182208
6362477477
6372783864
6383101375
6393430016
6403769793
6414120712
Square Root
42-5440948
42-5558456
42-5675933
42-5793377
42-5910789
42-6028168
42-6145515
42-626-2829
42-6380112
42-6497362
42-6614580
42-6731766
42-6848919
42-6966040
42-7083130
42-7200187
42-7317212
42-7434206
42-7551167
42-7668095
42-7784992
42-7901858
42-8018691
42-8135492
42-8252262
42-8368999
42-8485706
42-^(602380
42-8719022
42-8835633
42-8952212
42-9068759
42-9185275
42-9301759
42-9418211
42-9534632
42-9651021
42-9767379
42-9883705
43-0000000
43-0116263
43-023-2495
43-0348696
43-0464865
43-0581003
43-0697109
43-0813185
43-0929228
43-1045241
S2.
Cube Root
12-1868891
12-1891331
1-2-1913762
12-1936185
1-2-1958599
12-1981006
12-2003404
12-2025794
12-2048176
12-2070549
12-209-2915
12-2115-272
12-21376-21
12-2159962
12-218-2295
12-2204620
12-2226936
12-2249244
12-2271544
12-2293836
12-2316120
12-2338396
12-2360663
12-2382923
12-2405174
12-2427418
12-2449653
12-2471880
12-2494099
12-2516310
12-2538513
12-2560708
12-258-2895
12-2605074
12-2627245
12-2649408
12-2671563
12-2693710
12-2715849
12-2737980
12-2760103
12-2 78-22 1 8
12-2804325
12-2826424
12-2848515
12-2^70598
12-2892673
12-2914740
12-2936800
Reciprocal
00055-24862
•0005521811
-0005518764
-00055157-20
-0005512679
•0005509642
•0005506608
•0005503577
•0005500550
•0005497526
•0005494505
•0005491488
•0005488474
•0005485464
•000548-2456
-0005479452
-0005476451
•0005473454
•0005470460
•0005467469
•0005464481
•0005461496
•0005458515
-0005455537
•0005452563
•0005449691
•0005446623
•0005443658
•0005440(]S6
•0005437738
•0005434783
•0005431831
•0005428882
•0005425936
•0005422993
•0005420054
•0005417118
■0005414185
•0005411255
•0005408329
•0005405405
■000540-2485
•0005399568
•0005396654
•0005393743
•0005390836
•0005387931
•0005385030
•0005382131
260
SQUARES, CUBES, ROOTS, AND RECIPROCALS,
Xo.
Sqnare
Cube
Square Root
Cube Root
Reciprocal
1859
3455881
6424482779
43-1161223
12-2958851
-0005379-236
18»i0
3459600
6434856000
43-1277173
12-2980S95
-0005376344
1861
34633-21
6445240381
43-1393092
12-3002930
-0005373455
1862
3467044
6455635928
431508980
12-3024958
-00053.0569
1863
3470769
6466042647
43-1624837
12-3046978
•0005367687
1864
3474496
6476460544
43-1710663
12-306N990
-0005364807
1865
3478225
6486889->25
43-1856458
12-3o9u994
-0005361930
1866
3481956
6497329896
43-197-2221
12-3112991
-0005359057
1867
3485689
6507781363
43-2087954
12-3134979
•0005356186
1868
3489424
6518244032
43-2203656
12-3156959
-0005353319
1869
3493161
6528717909
43-2319326
12-3178932
•0005350455
1870
3496900
6539203000
43-2434966
12-3200897
-0005347594
1871
3500641
6549699311
43-2550575
12-3-222854
■0005344735
1872
3504384
6560206848
43-2666153
12-3244803
-0005341880
1873
3508129
6570725617
43-2781700
12-3261744
•0005339028
1874
3511876
6581255624
43-2897216
12-3288678
•0005336179
1875
3515625
6591796.^75
43-3012702
12-3310604
-0005333333
1876
3519376
6602349376
43-3128157
1-2-3332522
-0005330490
1877
3523129
6612913133
43-3243580
12-3354432
•0005327651
1873
3526884
6623488152
43-o358973
1-2-3376334
-0005324814
1879
3530641
6634074439
43-3474336
1-2-3398229
•0005321980
1880
3534400
6644672000
43-3589668
12-3420116
-0005319149
1881
3538161
6655280841
43-3704969
12-3441995
-0005316321
1882
3541924
6665900968
43-3820239
12-3463866
-0005313496
1883
3545689
6676532387
43-3935479
12-3485730
-0005310674
1884
3549456
6687175104
43-4050688
12-3507586
-0005307856
1885
3553225
6697829125
43-4165867
12-3529434
-0005305040
1886
3556996
6708494456
43-4281015
12-3551274
-000531)2-227
1887
3560769
6719171103
43-4396132
12-3573107
-0005299417
1888
3564544
67298.-9072
43-4511220
12-3594932
-0005296610
18><9
3568321
6740558369
43-4626276
12-3616749
-0005293806
1890
3572100
6751269000
43-4741302
12-3638559
-0005291005
1891
3575881
6761990971
43-4856298
12-36(;0361
-0005288207
1892
3579664
6772724288
43-4971263
12-3682155
•0005285412
1893
3583449
6783468957
43-5086198
12-3703941
-0005282620
1894
3587236
6794224984
43-5-201103
12-3725721
•0005279831
1895
3591025
6804992375
43-53159/7
12-3747492
-0005277045
1896
359-1816
6815771136
43-5430821
12-3769-255
•0005274262
1X97
3598609
6826561273
43-5545635
12-3791011
-0005271481
1898
3602404
6837362792
43-5660418
12-3812759
-0005268704
1899
3606201
6848175699
43-5775171
12-3834500
-0005265929
1900
3610000
6859000000
43-5889894
12-3-^56233
•0005263158
1901
3613801
6869835701
43-6004587
12-3877959
-0005260389
1902
3617604
6880682808
43-61 19-249
12-3899676
-0()05-257624
1903
3621409
6891541327
43-6-23o882
1-2-39213x6
-0005254861
1904
3625216
6902411264
43-634^^85
12-3943(1X9
•0005252101
1905
3629025
6913292625
43-6463057
12-39647x4
-0005-249344
1906
3632836
6924lJ<5416
43-6577599
12-3986471
•0005246590
1907
3636649
6935089043
43-6692111
12-4008151
•0005-243838
SQUARES, CUBES, ROOTS, AXD RECTPROCALS. 2G1
No.
1
Square
Cube
Square Root
Cube Root
Reciprocal
1908
3640464
6946005312
43-6806593
12-4029823
-0005241090
1909
3644281
6956932429
43-6921045
1-2-4051488
-0005238345
1910
3648100
6967871000
43-7035467
12-4073145
-0005-235602
1911
3651921
6978821031
43-7149860
12-4094794
-0005-232862
1912
3655744
6989782528
43-7264222
12-4116436
-0005-230126
1913
3659569
7000755497
43-7378554
12-413S070
-0005227392
1914
3663396
7011739944
43-7492857
12-4159697
•0005224660
1915
3667225
7022735875
43-7607129
12-4181316
-0005221932
1916
3671056
7033743296
43-7721373
1-2-4202928
-0005219207
1917
3674889
7044762213
43-7835585
12-42-24533
-0005216484
1918
3678724
7055792632
43-7949768
12-4246129
-00U5213764
1919
3682561
7066834559
43-8068922
12-4267719
-0005211047
1920
3686400
7077888000
43-8178046
12-4289300
-0005208333
1921
3690241
7088952961
43-8292140
12-4310875
-0005205622
1922
3694084
7100029448
43-8406204
12-4332441
-0005-202914
1923
3697929
7111117467
43-8520239
12-4354001
-0005200208
1924
3701776
7122217024
43-8634244
12-4375552
-0005197505
1925
3705625
7133328125
43-8748219
12-4397097
-OoOo 194805
192G
3709476
7144450776
43-8862165
12-4418634
-0005192108
1927
3713329
7155584983
43-8976081
12-4440163
-0005189414
1928
3717184
7166730752
43-9089968
12-4461685
-0005186722
1929
3721041
7177888089
43-92037-25
12-4483-200
-0005184033
1930
3724900
7189057000
43-9317652
12-4504707
-0005181347
1931
3728761
7200237491
43-9431451
12-4526-206
•0005178664
1932
3732624
7211429568
43-9545220
12-4547699
•0005175983
1933
3736489
7222633237
43-9658959
12-4569184
-0005173306
1934 i 3740356
7233848504
43-9772668
12-4590661
•0005170631
1935 1 3744225
7245075375
43-9886349
12-4612131
-0005167959
1936 3748096
7256313856
44-0000000
12-4633594
•0005165289
1937 i, 3751969
7267563953
44-01136-22
12-4655049
-0005162623
1938 : 3755S44
7278825672
44-02-27214
12-4676497
-0005159959
1939 3759721
7290099019
44-0340777
12-4697937
-0005157298
1940 j 3763600
7301384000
44-04543 11
12-4719370
-0005154639
1941 1 3767481
7312680621
44-0567815
12-4740796
•0005151984
1942 j 3771364
7323988888
44-0681291
12-4762214
•0005149331
1943 3775249
7335308807
44-0794737
] 2-4783(;25
•0005146680
1944 3779136
7346640384
44-0908154
12-4805029
•0005144033
1945 3783025
7357983625
44-1021541
12-4826426
-0005141388
1946 ' 3786916
7369338536
44-1134900
12-4847815
-0005138746
1947 \ 3790809
7380705123
44-1248-229
12-4869197
•0005136107
1948 j 3794704
7392083392
44-1361530
12-4890571
•0005133470
1949 ! 3798601
7403473349
44-1474801
12-4911938
•0005130836
1950 3802500
7414875000
44-1588043
12-4933-298
•0005128-205
1951 3806401
7426288351
44-1701256
12-4954651
•0005125577
1952 , 3810304
7437713408
44-1814441
12-4975995
•0005122951
1953 1 3814209
7449150177
44-1027596
12-4997333
•00051203-28
1954 1 3818116
7460598664
44-2040722
12-5018664
•0005117707
1955 3822025
7472058875
44-2153819
12-5039988
•0005115090
1956 3825936 , 7483530816
i i
44-2-266888
12-5061304
•0005112474
262 SQUAEES, CUBES, EOOTS, AND EECIPEOCALS.
No.
Square
Cube
Square Root
Cube Eoot
Reciprocal
1957
3829849
1
7495014493
44-2379927
12-5082612
-0005109862
1958
3833764
' 7506509912
44-2492938
1-2-5103914
-0005107252
1959
3837681
7518017079
44-2605919
12-5125208
•0005104645
1960
3841600
7529536000
44-2718872
12-5146495
•0005102041
1961
3845521
7541066681
44-2831797
1-2-5167775
•0005099439
1962
3849144
7552609128
44-2944692
12-5189047
•0005096840
1963
3853369
7564163347
44-3057558
12-5210313
•0005094244
1964
3857296
7575729344
44-3170396
12-5231571
•0005091650
1965
3861225
7587307125
44-3283205
12-5252822
•0005089059
1966
3865156
7598896696
44-3395985
12-5274065
-0005086470
1967
3869089
7610498063
44-3508737
12-529.-.302
-0005083884
1968
3873024
7622111232
44-3621460
12-5316531
-0005081301
19G9
3876961
7633/36209
44-3734155
12-5337753
'-00050787-20
1970
3880900
7645373000
44-3846820
12-5358968
•0005076142
1971
3884841
7657021611
44-3959457
12-5380176
-0005073567
1972
3888784
7668682048
44-4072066
12-5401377
•0005070994
1973
3892729
7680354317
44-4184646
12-5422570
-000506S424
1974
3x96676
7692038424
44-4297198
12-5443757
-0005065856
1975
3900625
77037343 < 5
44-4409720
12-5464936
■0005063291
1976
3904576
7715442176
44-4522215
12-5486107
-0005060729
1977
3908529
7727161833
44-4634681
12-5507272
-0005058169
1978
3912484
7738893352
44-4747119
1-2-5528430
•0005055612
1979
3916441
77501536/ 39
44-4859528
12-5549580
-0005053057
1980
3920400
7762392000
44-4971909
12-55707-23
•0005050505
1981
3924361
7774159141
44-5084262
12-5591860
•0005047956
1982
3928324
7785938168
44-5196586
12-561-2989
•0005045409
1983
3932289
7797729087
44-5308881
12-5634111
•0005042S64
1984
3936256
7809531904
44-5421149
12-5655226
•00050403-23
1985
3940225
7821346625
44-5533388
12-5676334
•0005037783
1986
3944196
7833173256
44-5645599
12-5697435
•0005035247
1987
3948169
7845011803
44-5757781
1-2-57185-29
•0005032713
1988
3952144
7856862272
44-5869936
12-5739615
•0005030181
1989
3956121
7868724669
44-5982062
12-5760695
•0005027652
1990
3960100
7880599000
44-6094160
12-57S1767
•0005025126
1991
3964081
7892485271
44-6206230
12-580-2832
•0005022602
1992
396^064
7904383488
44-6318272
12-58-23«91
•0005020080
1993
3972049
7916293657
44-6430-286
12-5844942
•0005017561
1994
3976036
7928215784
44-6542271
12-5865987
-0005015045
1995
3980025
7940149875
44-6654228
12-5S87024
-000501-2531
1996
3984016
7952095936
44-6/ 66158
12-590.^054
•0005ol0('20
1997
3988009
7964053973
44-6S78059
12-5929078
-00O50')7511
1998
3992004
79761 123992
44-6989933
12-5950094
•0005005005
1999
5996001
7988005999
44-7101778
12-5971103
-000500-2501
2000
4000000
80O0O00O0O
44-7213596
1-2-5992105
-0005000000
2001
4004001
8012006001
44-7325385
12-6013101
-0004997501
2002
4008004
8024024008
44-7437146
12-6034089
•0004995005
2003
4012009
8036054027
44-7548880
12-6055070
-0004992511
2004
4016016
804809(UHU
44-7660586
12-607(;044
-0004990020
2005
4020025
8060 150 125
44-7772264
12-6097011
•0004987531
SQUAEES, CUBES, EOOTS, AND EECIPROCALS.
26'
No.
2006
Square
Cube
Square Root
Cube Root
Reciprocal
4024036
8072216216
44-7883913
12-6117971
•0004986046
•20U7
4028049
8084294343
44-7995535
12-613f^y24 5
•0(10498-2561
2UU8
4032064
8096384512
44-8107130
12-6159,s70
-0004980(180
2009
4036081
8108486729
44-8218697
12-6180810
•0004977601
2010
4040100
8120601000
44-8330235
12-6201743
•0004975124
2011
4044121
8132727331
44-8441746
12-6222669
-0004972660
2012
4048144
8144865728
44-8653230
12-6243687
-0004970179
2013
4052169
8157016197
44-8664685
12-6264499
•0004967710
2014
4056196
8169178744
44-8776113
12-6-285404
-0004965243
2015
4060225
8181353375
44-8887614
12-6306301
•0004962779
2016
4064256
8193540096
44-8998886
12-6327192
•0004960317
2017
40682^9
8205738913
44-9110231
12-6348076
•0004967858
2018
4072324
8217949832
44-9221549
12-6368953
•0004956401
2019
4070361
8230172859
44-933-2S39
12-63898-23
•0004952947
2020
4080400
8242408000
44-9444101
1-2-6410687
•0004950495
2021
4084441
8254655261
44-9555336
126431643
•0004948046
2022
4088484
8266914648
44-9666543
12-6452393
•0004946598
2023
4092529
8279186167
44-9777723
12-6473235
-0004943154
2024
4096576
8291469824
44-9888875
12-6494071
-0004940711
2025
4100625
8303765625
45-0000000
12-6514900
-0004938272
2026
4104676
8316073576
45-0111097
12-6536722
•0004935834
2027
4108729
8328393683
45-0222167
1 •2-6556638
•0004933399
2028
4112784
8340725952
45-0333210
12*6577346
•0004930966
2029
4116841
8353070389
45-0444225
12-6598148
•0004926636
2030
4120900
8365427000
45-0555213
12-6618943
-0004926108
2031
4124961
8377795791
45-0666173
12-6639731
•0004923683
2032
4129024
8390176768
45-0777107
1 2-666061 2
-0004921260
2033
4133089
8402569937
45-0«88013
1-2-6681 2 4177936
8539701184
45-2106182
12-6909354
-000489-2368
2045
4182025
8552241125
45-2216762
12-6930047
-0004889976
2046
4186116
8564793336
45-2327315
12-6950733
-0004887686
2047
! 4190209
8577357823
45-2437841
12-6971412
•0004885198
2048
i 4194304
8589934592
45-2648340
12-6992084
•0004882813
2049
: 4198401
8602523649.
45-2658812
12-7012760
•0004880429
2050
j 4202500
8615126000
45-2769-257
12-7033409
•0004878049
2051
j 4206601
8627738651
45-2879676
12-7054061
•0004875670
2052
4210704
8640364608
45-2990066
12-7074707
-0004873294
2053
i 4214809
8653002877
45-3100430
1-2-7095346
-0004870921
2054
4218916
8665653404
45-3210768
1
12-7115978
-000486«549
2G4
SQUAEES, CUBES, EOOT?, AND EECIPROCALS.
Xo.
Square
Cube
Square E,oot
Cube Root
Reciprocal
•2055
4223025
8678316375
45-3321078
1-2-7136603
•0004866180
2056
4-227136
8690991616
45-3431362
1-2-7157-222
•00048r,3813
•2057
4231249
8703679193
45-3541619
12-7177835
•0004861449
•2058
4235364
8716379112
45-3651849
12-7198441
-0004859086
•2059
4239481
872909 J 379
45-3762052
12-7219040
-00048567-27
2060
4243600
8741816000
45-387-22-29
12-7-239632
•0004854369
2061
4-247721
8754552981
45-3982378
1-2-7260218
•0004852014
2062
4251844
876730-2328
45-4092501
12-7-280797
-0004849661
•2063
4-255969
8780064047
45-4202598
12-7301370
•0004847310
2064
4260096
879-2838144
45-4312668
12-7321935
-0004844961
2065
4264225
8805624625
45-4422711
12-734-2494
•0004842615
•2066
4268356
8818423496
45-4532727
12-7363046
0004840271
2067
4272489
8831-234763
45-464-2717
12-7383592
•0004837929
2068
4-27(;6-24
8844058432
45-4752680
12-7404131
•0004835590
2069
4-280761
88o6894509
45-486-2616
12-7424664
-0004833253
2070
4284900
8869743000
45-4972526
12-7445189
•0004830918
2071
4-289041
8882603911
45-508-2410
12-7465709
•0004828585
2072
4293184
8895477248
45-5192267
12-7486222
•0004S26255
•2073
4297329
8908363017
45-5302097
12-7506728
•0004823927
2074
4301476
8921261224
45-5411901
12-75272-27
•0004821601
2075
4305625
8934171875
•15-5521679
12-7547721
•0004819277
2076
4309776
8947094976
45-5631430
12-7568207
•0004816956
•2077
4313929
8960030533
45-5741155
12-7588687
•0004814636
2078
4318084
8972978552
45-5850853
12-7609160
•0004812320
2079
4322-Ml
8985939039
45-59605-25
12-7629627
•0004810005
2080
4326400
899S9 12000
45-6070170
12-7650087
•0004807692
2081
433056 i
9011897441
45-6179789
12-7670540
-0004805382
2082
4334724
90-2-1895; '68
45-6289382
12-7690987
-0004803074
2083
4338889
9037905787
45-6398948
12-7711427
•0004800768
2084
4343056
9050928704
45-6508488
12-7731861
-0004798464
2085
4347225
90639641-25
45-6618002
1 2-7752288
•0004796163
2086
4351396
9077012056
45-6727490
12-7772709
•0004793864
2087
4355569
9090072503
45-6836951
1-2-7793123
•0004791567
2088
4359744
9103145472
45-6946386
12-7818531
•0004789272
2089
4363921
9116230969
45-7055795
12-7833932
•0004786979
2090
4368100
91293290(10
45-7165178
12-7854326
•0004784689
2091
4372281
914-2439571
45-7274534
12-7874714
•0004782401
2092
4376461
9155562688
45-7383865
12-7895096
•0004780115
2093
4380649
9168698357
45-7493169
1-2-7915471
•0004777831
2094
4384836
91S184 584
45-760-2447
12-7936840
•0004775549
2095
4389025
9195007375
45-7711699
12-7956-202
-0004773270
2096
4393216
9-2081 «0736
45-78-209-26
12-7976558
•0004770992
2097
4397409
922136(;(i73
45-7930126
12-799(;907
•0004768717
2098
4401604
9234565192
45-8039299
12-8017-250
•0004766444
2099
4405801
9-247776-299
45-8148447
12-8037586
•0004764173
2100
4410000
9261000000
45-8257569
12-8057916
•0004761905
2101
4414-201
9274236301
45-83666(n5
12-8078239
•00O4759('38
2102
4418404
92S7'1 85208
45-8175735
12 8098556
•0004 757374
2103
4422609
9300746727
45-8584779
12-8118866
•0004 755112
SQUAEES, CUBES, EOOTS, AND RECIPROCALS. 265
No.
Square
2104
4426816
2105
4431025
2106
4435236
2107
4439449
2108
4443664
21.09
4447881
2110
4452100
2111
4456321
2112 14460544
2113
4464769
2114
4468996
2115
4473225
2116
4477456
2117
4481689
2118
4485924
2119
4490161
2120
4494400
2121
4498641
2122
4502884
2123
4507129
2124 14511376
2125
4515625
2126
4519876
2127
4524129
2128
4528384
2129
4532641
2130
4536900
2131
4541161
2132
4545424
2133
4549689
2134
4553956
2135
4558225
2136
4562496
2137
4566769
2138
4571044
2139
4575321
2140
4579600
2141
4583881
2142
4588164
2143
4592449
2144
4596736
2145
4601025
2146
4605316
2147
4609609
2148
4613904
2149
4618201
2150
4622500
2151
4626801
2152
4631104
9314020864
9327307625
9340607016
9353919043
9367243712
9380581029
9393931000
9407293631
9420668928
9434056897
9447457544
9460870875
9474296896
94S7735613
95011?>7032
9514651159
9528128000
9541617561
9555119848
9508634867
9582162624
9595703125
9609256376
9622822383
9636401152
9649992689
9663597000
9677214091
9690843968
9704486637
9718142104
9731810375
9745491456
9759185353
9772.S92072
9780611619
9800344000
98140S9221
9827^^47288
9841618207
9855401984
9869198625
9883008136
9896830523
9910665792
9924513949
9938375000
9952248951
9966135808
Square Root
45-8693798
45-8802790
45-8911756
45-9020696
45-9129611
45-9238500
46-9347363
45-9456200
45-9565012
45-9673798
45-9782557
45-9S91291
46-0000000
460108683
46-0217340
46-0325971
46-0434577
46-0543158
46-0051712
46-0760241
46-0868745
46-0977223
46-1 085675
46-1194102
46-1302504
46-1410880
46-1519230
46-1627555
46-1735855
46- 1844130
46-1952378
46-2(160602
46-2168800
46-2276973
46-2385121
46-2493243
46-2601340
46-2709412
46-2817459
46-2925480
46-3033476
46-3141447
46-3249, ;93
46-3357314
46-3465209
46-3573079
46-3680924
4()-3788745
46-3896540
Cube Root
12-8139170
12-8159468
12-8179759
12-8200044
12-8220323
12-8-240595
12-8260861
12-8-281120
12-8301373
12-8321620
12-8341860
12-836-2094
12-838-2321
12-8402542
12-8422756
1 2-8442964
12-8463166
12-8483361
12-8503551
1 2-8523733
12-8543910
12-8564080
] 2-8584-243
2-8604401
12-8624552
12-8044697
12-8664885
12-8684967
12-8705093
12-8725213
12-8745326
12-8765433
12-8785534
2-8805628
12-8825717
12-8845199
12-8865874
12-8885944
12-8906007
12-8926064
12-8946115
12-8966159
12-8986197
12-^006229
12-9026255
12-9046275
12-90662S8
l-2-9(.862;i5
12-9106296
Reciprocal
-0004752852
-0004750594
-0004748338
•0004746084
-0004743833
•0004741584
•0004739336
•0004737091
•0004734848
-0004732608
-0004730369
-0004728132
-0004725898
-00047-23666
-0004721435
-000471 9207
-000471t.;9Sl
-0004714757
-0004 712535
-0004710316
-0004708098
•00047058)^2
•0004703669
•0004701457
•0004699248
•0004697041
-0004i. 94836
•0004692633
•0004690432
•0004688233
•0004686036
-0004683841
-0004681648
-0004679457
•0004677268
-0004675082
•0004672897
•0004670715
•0004G68534
•0004066356
-0004664179
•0004662005
•0004659832
•0004657662
•0O04655493
■0w04653i;27
-(100-1651103
■01:046490(10
-0004646840
266 SQUARES, CUBES, EOOTS, AXD EECIPEOCALS.
No.
Square
Cube
Square Root ,
Cube Eoot
Eeciprocal
21o3 i
4635409 1 9980035577
46-4004310
12-9126291
-0004644682
2154 1
4639716 i 9993948264
46-4112055
12-9146279
-0004642526
2155
4644025 10007873875
46-4219775
1-2-9166262
-0004640371
21513 i
4648336 10021812416
46-4327471
12-9186-238
•0004638219
2157
4652649 10035763893
46-4435141
12-9206-208
-0004636069
2158
4656964 1 1004972^312
46-4542786
1-2-9-226172
-0004633920
2159
4661281 1 10063705679
46-4650406
12-0246129
-0004631774
2160
4665600 10077696000
46-4758(102
12-9-266081
•0004629630
2161
4669921 10091699281
46-4865572 ■
12-9286027
•0004627487
2162
4674244 1 10105715528
46-4973118
12-9305966
-0004625347
2163
4678569 10119744747
46-5080638 '
12-9325899
•0004623209
2164
4682896 ' 10133786944
46-5188134
1-2-9345827
-0004621072
21 65
4687225 10147842125
46-5295605
12-9365747
-0004618938
2166
4691556 10161910296
46-5403051
12-9385662
-0004616805
2167
4695889 10175991463
46-5510472
12-9405570
-0004614675
2168
4700224 10190085632
46-5617869
12-9425472
-0004612546
2169
4704561 102041 92S09
46-5725241
12-9445369
-00046104-20
2170
4708900 10218313000
46-583-2588
12-9465-259
-0004608295
2171
4713241 10232446211
46-5939910
1-2-9485143
-0004606172
2172
4717584 10246592448
46-6047208
12-9505021
-0004604052
2173
4721929 10260751717
46-6154481
1-2-95-24893
-0004601933
2174
4726276 10274924024
46-6261729
12-9544759
-0004599816
2175
4730625 ' 10289109375
46-6368953
12-9564618
-0004597701
2176
4734976 10303307776
46-6476152
12-9584472
-0004595588
2177
4739329 ! 10317519233
46-6583326
12-9604319
-0004593477
2178
4743684 ' 10331743752
46-6690476
12-9624161
-0004591368
2179
4748041
10345981339
46-6797601
1-2-9643996
•0004589261
2 ISO
4752400
10360232000
46-6904701
12-9663.^26
•0004587156
2181
4756761
10374495741
46-7011777
12-9683649
-0004585053
2182
4761124
10388772568
46-7118829
12-9703466
-0004582951
2183
4765489
10403062487
46-72-25855
12-9723277
•0004580-^52
2184
4769856
10417365504
46-7332858
12-97430.S2
-0004578755
21>!o
4774225
10431681625
46-7439836
12-9762881
-0004576659
2186
4778596
10446010^56
46-7546789
12-9782674
-0004574565
2187
1 4782969
10460353203
46-/653718
12-9802461
-0004572474
2188
4787344
10474708672
46-7760623
12-9822-242
•0004570384
2189
4791721
10489077269
46-7867503
12-9842017
-0004568296
2190
4796100
10503459000
46-7974358
12-9861786
-0004566210
2191
4800481 1 10517853871
46-8081189
12-9881549
•0004564126
2192
4804864 ! 105322618.^8
46-8187996
1 2-9901306
•0004562044
2193
4809249 ! 10546683057
46-8294779
12-9921057
•0004559964
2194
i 4813636
10561117384
46-8401537
12-9940802
•0004557885
2195
4818025
10575564875
46-8508-271 12-9960540
-0004555809
2196
4822416
10590025536
46-8614981 12-9980273
•0004553734
2197
4826809
10604499373
46-8721666 130000000
•0004551661
2198
4831204
10618986392
46-88-28327 13-0019721
•0004549591
2199
4835601
10633486599
46-8934963 13-0039136
•0004547522
22U0
4840000
10648U00OU0
46-9041576 13-0059145
•0004545455
2201
4844401
10662526601
46-9148164 13-0078848
-0004543389
EVOLUTION.
267
EVOLUTION.
To Extract the Square Koot.
EULE. — If there be decimals in the given niimber, make
them to consist of two, f oui-, six, Sec, places by annexing ciphers
to the right hand ; then separate the whole into periods of two
figures e'ach, beginning at the right hand, and the left-hand
period will consist of one or tw-o figm'es, according as the num-
ber of figures in the whole number is odd or even. Find a square
number equal to or the next less than the left-hand period,
and put the root of it in the quotient ; subtract this square from
the left-hand period, and to the remainder bring down the next
period for a dividend, and to the left hand of it write double
the quotient for a divisor ; then consider what figure if annexed
to the divisor and the result multiplied by it the product may
be equal to or the next less number than the dividend, and it will
be the second figm-e of the root. From the dividend subtract the
product, and to'the remainder bring down the next period for a
new dividend ; double the figures in the quotient for a divisor,
and continue the operation as above till all the periods are used.
Fxamjjle 1. Example 2.
Extract the sq. root of 10291264. Extract the sq. root of 177746-56.
10291264
9
3208. Ans.
177n6-56
16
421-6. Am.
62
20
129
124
6408
51264
51264
82
2
177
164
841
1
1346
841
8426
50556
50556
To Extract the Square Eoot op a Vulgar Fraction.
KULE 1.-- -Multiply the numerator by the denominator, and
extract the square root of the product; the numerator of the
given fraction, written above this root, or the denominator
written below it, will express the root of any fraction when
reduced to its lowest terms
That is—
\l\~
Val)
'Jab h
EuLE 2.— Eeduce the given fraction to its lowest terms ; then
extract the square root of the numerator for a new numerator,
268
EVOLUTION.
and the square root of the denominator for a new denominator.
If the fraction will not extract even, reduce it to a decimal and
then extract the square root.
To Extract the Cube Root.
Rule. — If there be decimals in the given number, make them
to consist of three, six, nine, ire, places by annexing ciphers to
the right hand, if necessary ; then separate the whole into periods
of three figures each, beginning at the right hand. The left-hand
period may consist of one, two, or three figures. Find the
nearest cube to the first period, subtract it therefrom, and put
the rcot in the quotient; then thrice the square of this root will
be the trial divisor for finding the next figure. Multiply the
root figure, or figures already found, by three, and prefix the
product to the next new root -figure (which will be seen by the
trial divisor) ; then multiply this number by the aforesaid new
root-figure, and place the product two figures to the right below
the trial diWsor, and add it to the trial divisor : this sum will
be the true divisor. Under this divisor \^T:ite the square of
the last root-figure, which add to the two sums above, and the
result is the next trial divisor ; the true divisor being found as
before directed.
Example,
Extract the cube root of 4088324799.
True divisor 1'
Trial divisor 1^
35
x3 = 3
X 5 = 175
True divisor
52
Trial divisor
459
92
Trial divisor
4779
True divisor
475 X 5
= 25
675
x9= 4131
71631 X 9
81
= 75843
x9= 43011
4088324799
1
3088
2375
713324
644679
68645799
= 7627311x9 686457P9
I 1599. Ans.
To Extract any
Root whatever.
If X be any given
number whatever
whose root is
sought, n the
index of the
power, r the near-
est rational root;
or r» the nearest
rational power to
N, whether gTeater
or less, and R =
the root sought ;
then —
B =
[yx (7?H-l )}-l-{(w-l)xy" }
'{N X {71- 1)} + {{11 + 1) X r"} "^ ^'
i
WEIGHT AlsD STEEXGTH OF MATERIALS.
269
Table op ttte Weight axd Strength of Materials.
:metals. 1
' T He in
Tearing
Crushing
Modulus of
Name
Specific^^(?X
G---t^| Eoot
Force
Force
Elasticity-
Lbs. on
Lbs. on
Lbs, on
.■^q. In.
£q. In.
Sq. In.
Aluminum, cast .
2-560, 160-0
—
—
—
„ sheet
2-670 166-9
—
—
—
Antimony, cast .
6-702 418-9
1,053
—
—
Arsenic
6-763 360-2
—
—
—
Bismuth, cast .
9-822 613-9
2,798
—
—
Brass, cast
8-396 524-8
18,000
10,300
9,170,000
„ sheet
8-525 532-8
31,360
—
—
„ wire
8-544 533-0
49,000
—
14,230,000
Bronze
8-222 513-4
—
—
—
Cobalt, cast
7-811
' 488-2
—
—
—
Copper, bolts .
8-850
: 531-3
36.000
—
—
,, cast
8-607
i 537-9
19,000
—
—
„ sheet .
8-785
549-1
30,000
—
—
„ wire
8-878
548-6
60,000
—
—
Gold, pure .
19-258
1203-6
20,400
—
—
„ hammered
19-362
12101
—
—
—
„ standard .
17-647
1102-9
—
—
—
Gim metal .
8153
' 509-6
36,000
—
9,873,000
Iron, cast, from .
6-955
434-7
13,400' 82,000
14,000,000
„ „ to .
7-295
455-9
29,000145,000
22,900,000
„ „ aver
age
7-125
445-3
16,500112,000
17,000,000
„ wrought,
from .
7-560
472-5
50,000 40,300
—
>> j>
to
7-800
487-5
63,000 32.000
—
5J 5>
average
7-680
480-0
60,000 36,000
28,000,000
Lead, cast .
,
11-352
709-5
1,792 6,900
—
„ sheet
.
11-400
712-8
3,328
—
720,000
Mercury, fluid
. ,
13-068
848-0
—
—
—
„ solid .
15-632
977-0
—
— .
—
Nickel, cast
7-807
487-9
—
—
—
Pewter
11-600
702-5
—
—
—
Platinum, pure .
19-500
1218-8
—
—
—
„ sheet
20-337
1271-0
265,000
—
24,240,000
Silver, ptire
10-474
654-6
42,000
—
—
„ standard
10-534
658-4
—
—
—
Steel, hard
7-818
488-6|
103,000
' —
42,000,000
„ soft .
7-834*
489-6
121,700
' —
29,000,000
Tin, cast .
7-29li
455-7
4,600
■ 14,600
4,550,000
Tj^De metal
10-4.50
653-1
—
—
—
Zinc, cast .
7-028'
439-3
8,500
—
13,500,000
„ sheet
7-291
455-7
7,111
—
12,650,000
270
WEIGHT AND STRENGTH OF MATERIALS.
Table of the Weight
AND Strength of ^VKterials (cont.)
TlJIBKR. 1
Lbs.
bo
.So
bo
,3 >
33 1
CS — j
o>.j-^- =P .1
Name
"5 >
E a; C
Name
•■c.-tf i
9 5 :
5 gcc
2-50
o
156
k-3
_ol
"-^
Asphalte
—
Peat, hard .
V33I 83
—
Alabaster
1'87|
117
—
Plumbago
2^27!l39
—
Basalt .
2-7-2!
170
16,800
Porcelain, China . 2^38, 149 ]
—
Brick, common
2-00
125
—
Portland stone
•2^571161-
6,85G
„ red
2-16
134
808
Pumice stone
•914i 57
—
,, Welsh fire .
2-40
150
—
Purbeck stone
2^60il63
9,16(
Cement, Portland .
1-35
84
5,984
Rag stone
•2^47il54
—
Chalk .
2-77
173
505
Rotten stone.
1^98!l24
—
Coal .
1-27
79-4
—
Salt
2-13
133
—
Coke .
•744
46
—
Sand, fine pit
1-52
95
—
Freestone
2-45
153
6,842
„ coarse pit .
1^61
100
—
Gypsum .
2-17
135
—
,, river .
1-88
117
—
Granite .
2-70
169
12,800
Slate .
2-62
164
15,000
Grindstone .
2-14
134
—
Sugar .
1-61
100
—
India rubber
•9S4
58^4
Sulphate of soda .
2^20
137
—
Lime, quick .
•843
53
—
Sulphur, native .
2^03
127
—
Limestone
2-95
184
9,160
„ fused
1^99
124
—
Marble .
2-72
170
9,219
Tallow .
•94
59
—
Mica
2-79
173
—
Tar . . .
1^02
63
—
]\Iortar .
2^48;155
—
Tile, common
1^83ill3
~
Liquids.
o >■.
o >>
•go
«.-tf
~ ^ -t^^-t .
«=i.-;2
^ -1-="
-U H^ _.
Name
1^
Name
II
-S c
•I'll
XO
i> ^ ■^ ^
■JlO
1 '^ ^
.* ^
1-06
^?.
•915
^3
a
Acetic acid .
66-4
•615
Oil of olives .
57-2
' -530
Alcohol, proof
•916
57
•530
„ turpentine .
•87054^9
1 ^508
Ether, acetic
•860
54
•501
,, whale .
•923i57-7
1 ^534
„ muriatic .
•730
45-6
•422
Oils, average
•880'55^0
I ^510
,, sulphuric .
•740
46^3
•428
Petroleum
•878;54^8
1 -508
Muriatic acid
1-20
75
•694
Sulphuric acid
1^84!115
i,l- 06G
Xitric acid .
1-27
79^4
•736
Vinegar
1^0163^1
j ^585
Oil of aniseed
•987
61-6
•570
Water, rain .
1^00:62^5
: -579
„ caraway seed
•905
56^6
•524
,, sea .
1-03 64-4
1 -595
„ hempseed
•920
57-8
•536
Wine, champagne
•998|62^4
' -578
„ lavender
•894
'>5^9
•517
„ burgundy .
•99r82^0
•573
„ linseed .
•940
58-8
•544
„ madeira
1^04:65^0
•601
„ rapeseed
•913
57-0
•528
„ port .
•99762^3
•577
272
CONSTANTS FOR ESTIMATING WEIGHTS.
Estimation of Quantities.
Tons X 2240= lbs. Tons x 20=cwts. Lbs. x •000446428= tons.
Weight of Round or Elliptical Bars.
Diameter x diameter X length in feet x constant = weight in lbs.
Weif/ht of Sqiiare or Rectangular Bars.
Width X thickness x length in feet x constaut= weight in lbs.
Weight of Plating or Planhing.
Thickness x breadth' in feet x length' in feet x constant = weight in lbs.
Values op Constants for Round or Elliptical Bars.
Material
Brass, sheet
Iron, wrought .
Lead, sheet
Steel, soft .
Elm, American .
Mahogany, Honduras
,, Spanish
Oak, Dantzic
,, English
Pine, red .
„ yellow
T<^ak. Indian
Diameters taken in
Ins.
2^905980
2-61800
3-88773
2-67036
•261800
•196350
•287980
•261800
■307615
-196350
•157080
-287980
iln. \ln. ' jln. j A Id- I
In.
•181624
•163625
•242983
•166898
•016363
•012272
•017999
•016363
•019228
•012272
•009818
•017999
•045406
•040906
•060746
•041724
•004U91
•003068
•004500
-004091
•004807
•003068
•002454
-004500
•011351
•010227
•015186
•010431
•001023
•000767
•001125
•001023
•001202
•000767
-000614
•001125
•002838
•002557
•003797
•002608
-000356
-000192
•000281
•000356
•000300
-000192
•000153
•000281
Values of Constants for Square or Rectangular Bars.
Width and Thickness taken in J
•V. . -■.
Material
Ins.
iln.
iln.
Jin.
3^ In.
3\ In.
Brass, sheet
Iron, wrought .
Lead, sheet
Steel, soft .
Elm, American .
Mahogany, Honduras
„ Spanish .
Oak, Dantzic
„ English
Pine, red .
,, yellow
Teak, Indian
3-70000
3-33333
4^95000
3-40000
•333333
•250000
•366667
•333333
■391667
-■250000
•20CM)00
•366(567
•925000
•833333
1^23750
•850000
•083333
•062500
•091667
•083333
•097917
•062500
-050000
•091667
•231250
•208333
•309375
•212500
•020833
•015625
•022917
•020833
•024479
•015625
•012500
-02291 7
•057813
•0520.^3
-077344
•053125
•Ot»52<)8
•0039(»6
•005729
-005208
•006120
•003906
-003125
-005729
•014453
-013021
•019336
•013281
•001302
•000977
•001432
•001202
•001530
•000977
•000781
-001432
•003613
-003255
•004834
•0033-20
•000326
•000244
•000358
•000326
•000382
•000244
-0001 95
•00O358
Values of Constants for Plating or Planking.
Material
Thickness taken in |
Ins.
^In.
iln.
iln.
1^ In. ^ In.
2^7750 1^38750
rh In.
•69375
Brass, sheet
44-4
22-2
11-100
5^550
Iron, wrought .
40^0
20^0
10^000
5-000
2^5000 ^•25000
•62500
Lead, sheet
59-4
29^7
14-85
7-425
3-7125 1^85625
•92813
Steel, soft .
40-8
20^4
10^20
5-100
2^5500 1^27500
•637.50
Elm, American .
4-00
2-00
1^000
•5000
•25000 •12500
•62500
Mahogany, Honduras
3M0
1-50
-750
•3750
•18750 •09,375
•04688
,, Spanish .
4-40
2-20
1-100
•5500
•27500 •13750
•06875
Oak, Dantzic
4-00
2-00
1^000
•5000
•25000 -125000
•06250
,, English
4-7(>
2-35
1^175
•5875
•29375 •14n88
•07344
Pine, red . .
3 00
1-50
•750
•3750
•18750 ^09375
•04688
yellow
2^40
1-20
•600
•3000
•1-5000 •07500
•037.50
Teak, Indian
440
2-20
1100
•5500 •27500 ^13700
•06875
CONSTANTS FOR ESTIMATING WEIGHTS.
273
Weight of Pipes.
w=: weight per lineal foot in lbs.
K= constant from below.
■W=(D2 — rf»)K.
Values of K for Pipes.
Brass =2-9060. Iron, cast =2-4282.
Copper=2-9943. „ wrought =2 -6 180.
Weight of Angle Iron.
D= outside diameter in ins.
d= inside „ „
Lead = 3-8877.
Steel= 2-6704.
"vr=weight in lbs. per lineal foot. s=sum of the widths of flanges in ins.
T= thickness of flanges in ins.
W=T (S-T) 3-33333.
Kelative Weights of Different Substances.
TTrought iron=l.
Brass, sheet=l-1100. Beech
Copper „ =1-1438.
Iron, cast = -9275.
Lead, sheet =1-48.50.
Steel, soft =1-02W.
Tin = -9.500.
Zinc = -9494.
= ■0896.
Elm =-1000.
Fir, spruce = -0833.
Mahogany, Honduras= -0750.
Spanish =-1100.
Maple =-1021.
Oak, Dantzic =-1000.
Oak, English =-1175.
Pine, red = -0750.
„ yellow =-0600.
Sycamore =-0308.
Teak, Airican = -1146.
„ Indian =-1277.
Willow =-0521.
Weight, &c., of Fresh Water.
A cubic foot = -0279 ton =62*39 lbs. =998-18 avd. ozs.= 6-2321 galls. .^ /
A cubic inch=-0361 lb. =-5776 avd. oz. =Wm gall.' • .0 o C:?
A gallon =-0045 ton =10-000 lbs. =160-15 avd. ozs. = -1315 cu. ft.
A ton =35-905 cu. ft. = 2240 lbs. =223-76 galls.
Weight of fresh water= weight of salt water x -9740.
Weight, &c., of Salt Water.
A cubic foot =-0286 ton =64-05 lbs. =1024-80 avd. ozs. = 6-2321 galls.
A cubic inch =-0371 lb. ='5930 avd. oz, ='0036 gall.
A gallon =-0046 ton =10-276 lbs. =164-41 avd. ozs. ='1315 cu. ft,
A ton =34-973 cu. ft. = 2240 lbs. =217-95 galls.
Note. — A cubic foot of salt water is usually taken at 35 cu, ft. to the ton
and 64 lbs. to the cubic foot, fresh water being taken at 36 cu. ft, to the ton and
62-25 lbs. to the cubic foot.
Miscellaneous Factors.
A ton
tonneau.
An avd. lb.
A foot
A sq. foot
A sq. inch
metres.
A cu. ft.
A cubic yard
A mile
Knot per hour
second.
Mile per hour
A gallon
= 1-01605 tonne or
=-45359 kilogram.
= •304797 metre.
= -092901 sq. metre.
= 645-148 sq. milli-
= •028316 cu. metre.
=•764534 cu. metre.
= 1-60933 kilometre,
= 1 -688 foot per second .
= -5144 metre per
= 1*467 foot per second.
= 4^64102 Utres.
A tonne or tonneau =
A kilogram =
A metre =
A sq. metre -
A sq. millimetre :
A cubic metre -
»» ,» ■
A kilometre =
Foot per second =
hour.
Metre per second =
hour.
Foot per second
hour.
A litre
= •984206 ton.
: 2-20462 lbs.
:3^2808693 feet.
:10-7641 sq. feet.
: -00155003 sq. in.
:35-3156 cu. feet.
: 1-30799 cu. yd.
: -621377 mUe.
:-592 knot per
: 1-944 knot per
:-682 mile per
: -220315 gaUon.
274
PERCENTAGES FOR BUTT STRAPS, ETC.
Table of Percentages to ije addkd to the Calculated Weights of Flush-jointed Plating
ON Account of Edge Strips and Butt Straps.
i
tB
c
3
■So
^^
•.= '3
afq
II
11
fee
c3.9
-11
■sg
X
o CO n cc <-i in
CO -^ 00 »n CI SI o
m n i^ i^ 0^ ^ ^
Butt Straps on opposite side to
Edge Strips, 6^ diameters
wide
CO -- o o •* n o
ci qp -^ O »p 7^ »7»
"*! cb CO io (fl c^ T^
1
Edge Strips 6i diameters wide 1
CO »0 t^ CO Ci lo k: ^ CO CO j^
Double-riveted Butt Straps,
when on opposite side to Edge
Strips, lU diameters wide
r; -*^ o -^ r: uo o
-*( t^ p CI '^i t-- o
t>. i o lb -* CO CO
Single-riveted Edge Strips,
6i diameters wide
CO lO t^ CO Ci iM CO
CO b- sp ip -* -J" CO
O CO O '^l CI O 00
CI — " — -- —
5
o
fcC«
o cs
C "^
o
Double-riveted Butt Straps,
when on same side as Edge
Strips, 11* diameters ^vide
lo o o c^ -* «r) t^
CO «p CO Ci IC p o
-* -^ -^ CO CO CO CI
Double-riveted Butt Straps,
when on opposite side to Edge
Strips, 11^ diameters wide.
00 -* O -*i Ci lO O
■*! b- p cq ■* t^ O
b- i» cb ih "^ ~: ~5
Double-riveted Edge Strips,
11 J diameters wide
?C'*i — 00 IC CO o
Cq b- CI -O T-^ w r-l
ih -^ CO -^ .^ t^ 4*1
CO r: CI :?j CI r- — (
Plates 16 ft. long. Butt Straps full
breadth of Plates
Percentages applicable to Vertical
Keel, Longitudinals, Stringers, &c.
Single-riveted Double or Single
Straps. If double, each Strap
half the thickness of the plate.
Width of Straps, ej diams.
CO --^ O O -f CI o
C^l 00 ■*! p UO .— t-
-* CO M CO CI CI 4-
Double-riveted Double Straps,each
half the thickness of ttie plate.
Width of Straps, llj diams.
00 "* O -*< a: lO O
-* !>• O CI -* b- p
t» «b «b ih -^ ^ c<^
Treble-riveted Double Straps,each
half the thickness of the plate.
Width of Straps, 16^ diams.
^ t^ o c? ^ tr c;
b- CC :C in "^i M ^
o cj oo b- ?b lb -^t^
,—1
Treble-riveted Double Straps,
each ^ in. more than half
the thickness of the plate.
Width of Straps. 16i diams.
1 00 »0 CO Cj lO !^ -^
O O O p p T ^
Ca r^ O C> CO b- '^
1— ( r-l .— i
Diameter of Rivets in Inches
.^-ioi Hoc wit -nix -IN
^^ 1— 1 f— <
Tliir
kuf-^- of Plates in Inches
t~|ar:!'>r''*c - ?t r:lx Hi-
percentages for butt straps, etc.
'liO
Table of Percentages to be added to the Calculated Weights of Labped Plating on
Account of Labs, Butt Straps, and Liners.
d
C
•2.
i
a
'S
a
s
a
s
■s
o
o
to
"a
•5*
B
cs
5
Siuglc-riveted Edges and
yingle-rivetcd Butts
Liners to Stifieners, 2 ft. 6 ins.
apart
O M -^f- -O CO — -r<
?) cc '7" ip ep CO ri
4*H xf -^ 4t< -*i -J? -?ri
1
Single-riveted Butt^. 3^ dia- '■
meters wide
•TT — O O t^ «r O
T- r-. L- -* ri c »
Single-riveted Laps, o\ dia-
meters %s"ide
t- 30 'S- — lO — t-
'* rc c^ c^l ^1 >i —
c r: i t- '-b ill 4-
,2
fO
s
cs
to
§
1-1
1
-S-2
Liners (inclu'ling Wide Liners
at Water-tight Frames and
Bulkheads)
— r: <-■: c L-t — t—
^1 r^ L-: I- DO c —
ih >b ih ic l:: '-c "-S
Single-riveted Butt Straps,
ei diameters A\-ide
U-: ^: tc re 1- O ri
i^ 'Tt' c; t^- r^ 9 "O
iri vt tTi i\ i\ ^ ^
Double-rivetetl Butt Strap?,
Hi iliameters wide
-t< i:; o ■>! ri n 'O
•O O '*' CO — > ip CO
i i »h "^ "^ « ^«
Single-riveted Laps, 3^ uia-
metei-s wide
M c M vr -^ t^ r:
t^ re — . le ri r: t--
-fi — c; oc t- ih '^
s
o
CO
s
es
to
a
o
iJ
■u
o
.-<
1
6
to
§>!
>.• u
go
-=»
«^
to
o
J2
Liners (including Wide Liners
at Water-tight Frames and
Bulkheads)
-* r; i-e o Lt — h-
, :m re ip t^- XI 9 -7-
' ih »b »h ib •i '-^
Single-i-iveted Butt Straps,
6i diameters wide
C t;; fc -o 15 «r
i ih -^ ^ ^^ ^? ^1 ^1
Double-riveted Butt Straps,
Hi diameters -^vide
i-t r^ t^ C^ Ci — '
j CO 'T'l "* »p I:- *
1 oc 00 b- «b »b -^ re
J.
-Single-riveted Laps, 3^ dia-
meters wide
i i-i c: e-ir-i3^i3^i'Mcqcerecere'<*<'*'<*<-«**»r;>:2»ooco
Breadtli
of Plate
(ins.)
retooret—cret^Oret^Oret-oret^Oret-o
x^pxpiere — pxtoierer-pxtpipre — p _S
:e'*»hihtbi^doo;oor^-fire-?#^»h»htbb-xo; o'l!
5
1
£
H
o|-^ f-H r; to «^ '>! O op >f: ^^ -71 ~. t;- »p ^1 O CO to "jH -;- CV b- l-.i-j
"'"■ M «? '^i »b «b i^ t- 00 c^ -^ -fi cc 4- '+' ih b- b- do '"'"
-M »o 00 cc --T C-. -M u: 00 ^ -f i^ JC cc — < '^i i-^
t^a- C; CC 1— 1 X l;: M C: t^ '^i ^"1 C: tC -* ^ 00 1:: ic t^
Hx
a
§
■N re -^ i-i tr; -.:; i^ cc cc — . C — ?i re rt ^ ts tc i-
"'^1 ?^ « '*' 4< ib i -i i^ do oC' i: -^ >i ^1 ?e ^ "*! «b
P-H
lOrei-eooOJeiriacoreieGOOceooocreoooc:'
rtjv *? T '^ \^ 9* f '^' ^ V"^ T 'T \^ -^ *-f T^ ?^ 'f T^ 'r V ? »-r
Is-. CO-* — oo?occOQCO?iJ:t^-*-^c:tc:reoooiai
■^'"^i rtx
1 5! re cc '^ ^ »h ue to to t^ I- cc 00 — c; c: — — ^1 i
■
Igo-*!— 'cci.e>^0". toreo". toreot— -^1— •so-^'-^xie
r.|=
P5
1-9
l-H
<^
H
C
o
1
•"
o
«|-^i X re X ?) I- T^j to — to c le c »-e 0; -* 0; re X re t- -M
.-•'?^<>irere-*'*ojletbot-t>.t-dcdoo:c^oo^
-+M
t^xO'Mreot^xo^reotr-xO'Mreist'XC!
toOLec. ret^r--i»r:c-^xcNcop«cpret---i»pp! _^
r^?q^i^j:eM-^'?f»h»hi5tbtbb-b-t?-dcoco:diO;
,„■ CO ri ~ »e c^i X ue .-1 X -* C t^ re to re C'. to -M ci ic ...
t-j;; -* X — le q; >i to c re i_-- r- -* X ?^ C-. •>) to cp re t- j t-,;:;
— — !fi7'iJ•
,„l-*'Oto3>ix-*iooreci»a — t^recio — i^reciio! ,„
>-"-i5. X le X re «5 X p^ ?e to 0: -7- -* to 3; c-^ ^ t- C5 « , »S|i
j,l^,l4rljrl^'jqj^(?qi'irederece-rt<-Tt''?*'-rt* 3-. »r; ' ,„
rtp' to i^ 0; c: c<» -+i I- X -^ re »e to X O: — c^ ^ ie 1^- . ctin
-*x
c^^nrerere-r*<•r^^^c^eotocol^^^xxxc;^:00
■■*i?e'*<»ptob-xq;p'7-c^'?*»p
-♦x
|i-ito^toiMt-'?^t^cexrexre3'. '*i ^
-13
C3
3 •/ ^-f^M^., ,^-_4pB5lTf -.(.,_4cie*» -«'-<-M«H' -»-- ♦Nrtf
ij.= r— — r-. — s^jvic^jc^ceoececc-^-^-^-^i^ieO'Ct^
1 J