o O WIRING OF BUILDINGS FOR TELEPHONE SERVICE HANDBOOK OF THE PACIFIC TELEPHONE AND TELEGRAPH COMPANY FOR THE GUIDANCE OF ARCHITECTS AND BUILDERS PREFACE The problem of telephone distribution in large office and apartment buildings has grown to an importance that demands the attention of architects and build- ers. Provision should be made in all such modern buildings for telephone serv- ice and the same consideration should be given it as for gas, water, or electric facilities. In order to conceal unsightly telephone wires and cables, and avoid unnecessary cutting of walls and floors, provision should be made for these wires and cables during the construction of the building. The Pacific Telephone and Telegraph Company issues this handbook to bring about a uniformity in practice and to secure the. .economical and, proper distribution of telephone wires and ca- bles in buildings,' :a-nd wjll gladly assist any architect, builder or owner in lay- ing out the telephony .f-aqilities for a -building of any size in its territory. THE PACIFIC TELEPHONE AND TELEGRAPH CO. San Francisco, Cal., April 1, 1912. LIST OF PLATES Plate I General Wiring Arrangement Plate II Main Terminal Cabinet Plate III A Telephone Riser Cable Shaft Plate IV Floor Location of Potheads Plate V Conduit Used for Riser Cables Plate VI Vent Shaft Used for Riser Cables Plate VII Hall Terminal Cabinet Plate VIII A. Hall & Room Moulding B. Crossing Conduit Plate IX Vertical Distributing System Plate X Floor Conduit Scheme for Permanent Locations Plate XI Floor Outlet Plate XII Typical Office Building Floor Plan Plate XIII Typical Apartment Building Floor Plan 28710 J LIST OF TABLES Table I Dimensions for Basement Wall Opening Table II Space Occupied by a Main Terminal Cabinet Table III Size and Weight of Riser Cables Table IV Number of Riser Shafts Required Table V Riser Shaft Dimensions Table VI Space for Riser Potheads Table VII Conduit Sizes for Riser Cables Table VIII Radii of Riser Conduit Bends Table IX Conduit Sizes for Rubber Covered Wire Table X Conduit Sizes for House Cables Table XI Conduit Sizes for Inter-Communicating Systems Table XII Hall Moulding Dimensions Table XIII . , Dimensions for Conduit Boxes at Potheads SPECIFICATIONS FOR WIRING, OF. BUILDINGS 1. These specifications govern the choice of materials knd the proper methods to be employed in the installation of telephone facilities in all new and remodeled buildings. ' 2. Telephone distribution in a building involves the running of three or more wires from each telephone to a central point near the entrance of the telephone wires or cables. When a number of telephone wires follow a general direction they should be grouped in cables. When the telephone wires diverge over a large area, the number of wires in a group is so reduced that a distributing cable is not justified. In this case the riser cable is terminated in a cabinet and the line is continued to the subscriber station by means of three approved rubber covered, braided and twisted wires. Plate I illustrates a general wiring arrangement from the "central point" in the basement. 3. The basic principle involved in the design of the telephone facilities for a building is simply to provide shafts, conduits, and mouldings wherever required and arrange them in such a manner as to facilitate, without injuring or disfigur- ing the interior, the installation or replacement of any cable or wire which may be required to furnish service to any part of the building. 4. A glossary of wiring terms used is appended. CLASSIFICATION OF BUILDINGS 5. Buildings may be classine'd. in regard to the distribution of telephone facili- ties as follows: (a) Office and Loft Buildings. (b) Apartment and Hotel Buildings. 6. This classification results from the method employed in designing the tele- phone facilities. 7. The first class undergoes a shifting of telephonic density, which precludes any attempt to install wires permanently in any given location. 8. The second class of buildings has a certain telephonic development, which usually may be considered as two lines per apartment and one line per hotel room. Apartment house tenants often desire a direct line to the central office in addition to local house service. GENERAL FACILITIES FOR ALL TYPES OF BUILDINGS. 9. Provision should be made for the entrance of the main or ex- change cable into the basement. This entrance will be made in all cases, a distance of approximately two (2) feet, below ground level. This cable 2 and protecting conduit will be installed by the Telephone Company. Information as to the point of entrance should be obtained from the local manager. 10. Table I gives the sizes of wall openings for main cable entrance. Hooks or racks should be installed for the support of the main cable from its point of entry to the main terminal cabinet. These supports should be placed at inter- vals not exceeding three (3) feet. 11. Where lead covered cables are connected to open pairs of wires terminals are used. Terminals are also used in some cases for con- nection between two lead covered cables. They consist of a number of punch- ings to which the cable wires and house wires are connected, either by soldering or by means of binding posts. 12. These terminals are located in cabinets which are named according to their location or their function. A main terminal cabinet is installed in the base- ment for the purpose of connecting the exchange cables to the riser cables. A hall terminal cabinet is installed on each floor in the vicinity of the riser shaft for the purpose of connecting the floor cable to the distributing wires from the individual telephones. Distributing cabinets perform the same function as hall terminal cabinets, except that they are located at points distant from the riser shaft. The cabinets shown on the plates are of wood, but sheet iron cabinets of the same form may be used in fireproof buildings. 3 MAIN 13. Space should be provided near the foot of the riser cable shaft TERMINAL f or the main terminal cabinet. When more than one riser shaft is to be provided, the main terminal cabinet should be located at the central point of the basement end of the group, and must be in a dry place and accessible at all times. An electric lighting circuit should be available near the cabinet. The cab- inet and connecting strips will be installed by the Telephone Company. Plate II shows the assembly of a main terminal cabinet and Table II gives the minimum wall space required for a given number of lines. RISER 14. All cables extending from the main terminal to the various CABLES floors in the building are known as riser cables. When riser cables are to be carried any distance horizontally through the basement, supports should be provided as specified for the main cable. Table III gives the dimen- sions and weights of lead covered paper insulated cables used for risers. RISER 15. The best form of enclosure for riser cables is a vertical shaft, SHAFTS extending through every floor of the building. These shafts may be made of wood, tile or steel, but should be of uniform cross section throughout their length. 16. The number of riser shafts required in a building depends upon the height, floor area and the number of telephones. Table IV, A to E, gives the approxi- 4 mate number of shafts for rectangular buildings of known ground area and tele- phonic density. For example : A 10 story office building having an area of 30,000 sq. ft. per floor would require 4 riser shafts if the expected density is one tele- phone per 250 sq. ft. of floor space. (See Table IV-A). In general, all shafts should be in the center of equal areas. The number of shafts should never be so great as to reduce the number of wires in the floor cables to less than 10 pairs. 17. It is inadvisable to erect risers in elevator shafts. When riser shafts cannot be erected separately, provision should be made for carrying the cables in vent shafts or conduits. The cable need not be incased except at points where it may be subject to abrasion or present a bad appearance. When riser cables are to be erected in vent shafts, provision must be made for supporting them and for the entry of the floor cables at each floor. No pipes, cables or wires will be permitted in the riser shaft other than those installed by the Tele- phone Company. Plate VI shows an approved method of erecting riser cables in vent shafts. Table V gives the minimum dimensions of riser shafts for a given number of lines. RISER CABLE 18. All riser cables should be supported at each floor by approved SUPPORTS clamps secured to nailing strips in the shaft. 19. All nailing strips should be 2"x4" in cross section in each shaft, as shown on Plate III. Access should be had to the headers by shaft openings, which may be covered by the floor terminal doors, or by separate covers screwed to the shaft walls. LOCATION 20. Plate IV shows the floor location of all splicing points in a build- OF ing, whether fed by one or more risers. At each splicing point pro- POTHEADS vision should be made in the shaft for a pothead. Table VI gives the dimensions of the shaft at such points. Plate III illustrates a method of covering the splicing cabinet with a removable panel. RISER 21. When it is impossible to install riser shafts or to utilize vents, CONDUIT conduit may be used for riser cables. 22. Not larger than 200 pair cables should be installed in conduit. A spare conduit, 1" in diameter, should be installed between all floors to allow for inter- connection. 23. All splices will be located at floors indicated on Plate IV and all conduit should terminate in splicing cabinets at these points. 24. Plate V shows an approved method of installing riser conduit, and the lo- cation of splices and terminals. 25. All floor cables will be carried in individual conduits from the splicing cabi- net to their respective floor terminals. 26. All riser conduits should be fairly free from bends. Table VII gives the sizes of riser conduits. When a bend is necessary the radius of curvature will be governed by Table VIII. 27. All riser conduits should be carefully inspected for rough projections which might injure the cable. They should be tagged, fished and plugged to keep out dirt when not used. 28. Conduits may be placed near other service wires, pipes, etc., with the ex- ception of steam and hot water mains. \ 29. All riser conduits should terminate in the basement without a bend t and provision should be made for the main terminal cabinet on the left side of the conduit opening. 30. Table VI governs the size of the splicing cabinets. 31. A 2"x4" nailing strip should be placed in the rear wall of each splicing cab- inet at a point near the center as specified under "Riser Cable Supports." HALL 32. In all types of buildings using shafts or conduits for riser cables, TERMINAL terminal cabinets should be installed below the corridor mouldings CABINETS an( j j n dose proximity to the riser shaft. 33. Plates III, V, and VI illustrate approved methods of mounting terminal cabinets. 1 34. When mounted in the front wall of the shaft, they should not obstruct the passage of cables. They should have a hinged door provided with a spring catch. Plate VII shows two types of approved terminal cabinets, and gives tables of minimum dimensions. All cabinets should be bored for the entrance of cables and distributing wires. 35. Proper sizes of conduit, as specified in Table IX, should be installed be- tween the hall mouldings, and between the hall moulding and the distributing cab- inet. 36. The terminals will be mounted in the cabinets by the Telephone Com- pany. FLOOR DISTRIBUTION FOR HOTELS. 37. When the number and location of the telephones are known, the building may be wired in a permanent manner. 38. Conduits of the proper size may be installed from the hall terminal cabinet to each room. These conduits may carry a number of wires and feed a portion of the floor. At distributing points outlet boxes should be provided. These boxes should be placed adjacent to the hall or room moulding and be easily ac- cessible. 39. When the exact location of the telephone is known, a conduit may be in- 8 stalled from the upper edge of the moulding, or from the outlet box to the point of attachment of the instrument. Where wall type instruments are to be used, the conduits should open outward at a point 4' 10" above the finished floor. Where portable types are used, the conduits should open outward at the upper edge of the mop board. The openings should be flush with the finished wall. DISTRIBUTING 40- When a single riser shaft is used for feeding more than thirty TERMINAL (30) telephones per floor it may be advisable to make several taps CABINETS anc | locate distributing cabinets at the centers of distribution. The specifications for hall terminal cabinets also apply to distributing cabinets. They should be installed flush with the wall just below the moulding and be connected thereto by two conduits of proper size. 41. These cabinets may be located accurately by marking each station upon the floor plan, and grouping those whose wires will traverse a distance exceeding fifty (50') feet in the same direction. Usually sub-cabinets will be located at points where corridors meet or intersect. Plate VII shows a distributing cabi- net in position. 42. Floor cables may be installed in conduits or laid along corridor mouldings. Table X gives the dimensions of conduits for different sizes of lead covered floor cables. 9 WIRING OF APARTMENT BUILDINGS. 43. When the number of apartments per floor exceeds three, a terminal should be located on each floor and a riser shaft or conduit provided as specified. 44. On account of the shifting of telephones no floor wiring should be of a permanent character. Seldom will the development justify more than one riser, and unless the shape of the building demands, all wires on a floor will distribute from one terminal. Where on account of the absence of hall mouldings, a central shaft cannot be provided, the facilities should consist of vertical conduit as shown* on Plate IX, distributed on each floor as shown on Plate XIII. 45. Each apartment should be connected by moulding or conduit to the floor terminal. No attempt should be made to install conduit between the moulding and the point of attachment of the instrument. All room moulding should be connected by y^" conduit, where walls or other obstructions intervene. This will permit the passage of wires without boring holes through finished walls. MOULDINGS ^- The best method for supporting and concealing wires, which extend from the floor cabinet to the instrument, is to use the corri- dor and room moulding. The area of the moulding trough should be sufficient to- carry all necessary wires and cable. 10 47. Plate VIII shows a section of room and hall moulding with partition con- duits, and Table XII gives the trough dimensions for concealing wires and cables. All room moulding should have minimum trough dimensions of 48. Where a wall intercepts a line of moulding, or where for any reason, cable or wires must pass an obstruction, a conduit path of proper size, as speci- fied in Tables IX and X, should be provided. CONNECTING 49. In buildings provided with hall mouldings every apartment HA ROOM NE should be connected by a ^2" conduit to these mouldings. This con- MOULDING duit should be located at the corner of the room nearest the floor ter- minal cabinet so as to reduce to a minimum the length of wire required. Plate VIII shows the proper use of such a conduit. CROSSING 50. A crossing conduit should be installed at every floor cabinet and CORRIDORS at intersections of halls, to avoid exposed wiring and long runs of AND HALLS w i re around the ends of hallways. 51. Plate VIII shows such a conduit between two hall mouldings and illus- trates the method of opening the conduits into outlet boxes. 52. Where a crossing conduit connects with a terminal cabinet, it should enter at the upper right hand corner, adjacent to the conduit which leads to the mould- ing, as shown on Plate III. 11 APARTMENT 53. When a flush type vestibule set is to be used for connection to VESTIBULE a local apartment house system, provision should be made for lead SETS cove'red cable of the proper size to be run in conduit or shafting to the foot of the riser shaft. 54. The vestibule set will be mounted in a wooden box which is set into and flush with the finished wall. The dimensions of this box vary with the capacity and may be obtained by consultation with the local manager. OFFICE AND LOFT BUILDINGS. TELEPHONE 55. Considerable study is required in determining the maximum DE o I FFioE IN number of telephones that will be required in an office building and BUILDINGS the distribution on the various floors. 56. The total number of telephones in a building will not vary greatly and may be determined in the following manner: 57. Determine by inquiry the number of telephones in adjacent buildings used for similar purposes and housing the same class of tenants. Divide the total floor area of these buildings by the total number of telephones and obtain for the locality the number of square feet per telephone. This constant may be divided into the total floor area of the building in question to determine the average total number of telephones. 12 58. The maximum number of telephones in the building at one time is esti- mated from the following: (a) The character and business prospects of the vicinity. (b) The present condition of business. (c) The average number of telephones determined by comparison. 59. The maximum number of telephones mentioned above should be divided by the number of floors to obtain the average maximum number of telephones per floor. This value is used in all calculations and is the one referred to in con- nection with the floor cabinets. This average may be modified for each floor by a consideration of the following items: (a) The relative size of the offices on different floors. (b) The relative rental value of the different floors. (c) Special long leases of tenants, whose demands for service are known. 60. The locations of the telephones in the rooms are not permanent, and may be changed to meet the requirements of the tenants. WIRING 61- All shafts or conduits should be run as specified from the point of entrance in the basement to the floor cabinets. 62. All wiring should be of temporary character from the floor cabinets to the various parts of the building. No conduits should be installed for floor wires. Plate XII shows a typical office building floor plan. 13 63. Where several risers are used no sub-cabinets need be installed. CABINETS 64' All cabinets and sub-cabinets shall be of double the capacity, that would be demanded by average development. RISER SHAFTS 65. All riser shafts and conduits should have a capacity 30% great- AND er than that determined by the estimated development, to allow for CONDUIT flexibility. DISTRIBUTING 66. Where on account of the design of the building only one riser CABINETS shaft can be provided, but the number of telephones justifies more, distributing cabinets should be installed at the various centers of distribution. These cabinets should be connected by lead covered cables to the riser cable. 67. These connecting cables should have twice the number of wires required for average development. Provision should be made for carrying such cables on mouldings or in conduits as desired. CROSSING 68. Crossing conduits should be installed where needed, as specified CONDUITS f or hotels and apartments. 69. All offices should be connected to the hall moulding by 24" conduit. MOULDINGS ^' ^- a ^ anc ^ room mouldings should be provided for distributing- wires. They should be of such dimensions as to carry double the number required by the expected development. Plate VIII shows an approved type of moulding. Table XII gives dimensions of moulding troughs for various sizes of cables. 14 PERMANENT LOCATIONS IN LARGE OFFICES. 71. When specified by the owners, offices may be wired permanently from the floor outlets. In such cases care must be taken to accurately locate the conduit outlets, so that they will be adjacent to the probable location of desks and tables. 72. All conduits should be of the proper size as specified in Table IX and should have a minimum number of bends between outlets. Plate X shows such a conduit arrangement. All conduit should be fished, tagged and plugged during installation. Conduit smaller than 4" should not be used in long runs. 73. Where it is expected that inter-communicating service will be required the sizes of conduit should be determined from Table X, which shows the size of conduit required for a given total number of telephones in the office. These sizes are based upon the use of cable and should obtain in all parts of the system. The diameter of the outlet shown on Plate XI should be not less than \y 2 " to admit two cables, one from either direction. FLOOR 74. The conduit should terminate in a water tight outlet set flush CONDUIT with the finished floor, at a point in the floor adjacent to the pro- OPENING posed location of the telephone. It should be capped flush to keep out dirt while not in use. OUTLET ^' l^e *yP e * fl or out ^ et box shown on Plate XI is approved by BOXES the Telephone Company, and on account of its low price is preferable to any other type of electric floor outlet now on the market. 15 76. All connections to telephones and to portions of cables will be w v - i 1 1 /T\ 11 / /T\I STRIPS made on a terminal strip by the lelephone Company. 1 his terminal strip will be mounted on the side of a desk in an inconspicuous place at a point not less than one (!') foot above the finished floor. PRIVATE EXCHANGES. 77. When a switchboard is to be located in a certain office, no facilities are needed other than those which are to be provided for the expected telephonic development. 78. When a large majority of the telephones in a building are connected to one switchboard, special provision of space may be necessary. In such cases the dimen- sions of the board and the size of the battery room should be determined by con- sultation with the local telephone manager. 79. The capacity of the switchboard will be determined by the local manager. 80. The facilities for cable to the switchboard should suffice for the ultimate capacity of the board in lines and trunks,as all wires from the switchboard must go to the main terminal cabinet in the basement. 81. The battery room is usually located in the basement. 16 WIRING SPECIFICATIONS. 82. When a contract calls for the complete wiring of all floors, as well as the provision of riser shaft and terminal cabinets, the following specifications will govern the choice of material and methods of installation. FLOOR 83. All cables used for interior construction shall be lead covered CABLES anc i waterproof. The core shall be made up of No. 22 B. & S. gauge conductors arranged in twisted pairs. Each conductor shall have a double silk and single cotton insulation so colored, as to distinguish it and its mate from all of the other wires in the cable. It shall have an insulation resistance of 100 megohms per mile. 84. The floor cables should be installed in an approved manner between the riser pothead and the hall terminal cabinets. The cables should not be formed and connected to the terminals by the builder, as the Telephone Company prefers to complete this work at the time of installation of the telephones. HOUSE 85. All wiring between terminal cabinets and the telephone instru- WIRING ments should be done with wire not smaller than No. 19 B. & S. gauge. This wire should have a good rubber insulation, and be not less than 3/32" in diameter, measured over the rubber insulation of any conductor. The rubber should be protected by a close braid over each conductor. The two conductors of a pair should be twisted together with one complete twist in every three inches. 17 86. All wiring shall be so placed as to be easily removable. No wiring should be sealed in the plaster on account of the rapid deterioration of the wires and the impracticability of replacing them in the same manner. 87. All soldered connections between wires should be taped with rubber tape, and then covered with approved friction tape. All joints in a twisted pair should be separated at least six (6) inches. 88. At points of connection to the terminal and telephones, all wires should have a spare length of forty-eight (48) inches. 89. If wires require stapling, no two wires should be secured under one sta- ple, and only staples having insulated heads should be used. 90. The number of wires required for each telephone will depend on the system to be installed, and this information should be obtained from the Telephone Com- pany. 18 CABINET CONDUIT DENSITY GLOSSARY. A box with finished hinged cover containing terminals to which are connected the cable conductors and house wires. A hollow cylindrical pipe made of wrought iron or clay, used to en- case the wires and cables. The number of square feet of floor space per telephone. Referring to the extent of the demand for telephone service. FACILITIES Refers to the routes which are provided for telephone wires while the building is under construction. FISH To run a wire through a conduit or space between walls. A small leg of cable, which serves the telephones on a floor, and splices to the main cable at a pothead. A large cylinder of lead enclosing a splice between the riser cables and several floor cables. ( A main cable extending from the basement terminal to all floors re- quiring telephone service. FLOOR CABLE POTHEAD RISER Table I Dimensions for Basement Wall Opening. Number of Lines in Building 400 800 Dimensions of Opening 5"x5" 5"xlO" 1200 5"xl5' Table II Wall Space Occupied by a Capacity of Cabinet. No. of Prs. No. of Prs. of Wires of Wires To Exchange To Building 100 100 200 200 300 300 600 600 800 800 Main Terminal Cabinet. See Plate II. Dimensions Dimensions "A" "B" 5'0" 2'6" 4'6" 2'6" 4'6" 2'6" 4'6" 5'6" 4'6" 8'0" No. of Pairs.. 10 Outside Dia.. 17/32" Lbs. Wt. pr. Ft. .647 Table III Size and Weight of Riser Cables. 25 23/32" ,963 50 15/16" 1.35 75 100 1 3/32" 1 5/16" .1.75 2.25 150 1 17/32" 2.81 200 4,1 250 1 15/16" 4,7 300 2 1/16" 5.14 400 6.3 Table IV Total Number of Riser Shafts Required. Density=l telephone per 250 sq. ft. of floor space. Floors 2 4 6 8 10 12 14 16 18 Sq. Ft. per Floor Number of Eiser Shafts Eequired 2000 1 1 1 1 1 1 1 1 1 5000 2 1 1 1 1 1 1 1 1 A. 10000 4 2 1 1 1 1 1 1 1 20000 4 4 2 2 2 2 1 1 1 30000 6 4 4 4 4 2 2 2 2 50000 10 8 8 8 8 6 6 4 4 Density=l telephone per 500 sq. ft. of floor space. Floors 2 4 6 8 10 12 14 16 18 Sq. Ft. per Floor Number of Eiser Shafts Eequired 2000 1 1 1 1 1 1 1 1 1 5000 2 1 1 1 1 1 1 1 1 10000 2 1 1 I 1 1 1 1 1 B. 20000 4 2 1 1 1 1 1 1 1 30000 6 6 4 4 4 4 4 2 2 45000 8 8 6 6 .6 6 4 4 4 60000 10 8 8 8 6 6 6 4 4 21 c. D. E. Density=l Floors telephone 2 per 1000 4 1 1 1 2 4 6 per 2000 4 1 1 1 2 4 6 per 3000 4 1 1 1 2 4 sq. ft. 6 1 1 1 2 4 6 sq. ft. 6 1 1 1 2 4 6 sq. ft. 6 1 1 1 2 4 of floor space. 8 10 Number of Eiser 1 1 1 1 1 1 1 1 4 4 6 4 of floor space. 8 10 Number of Riser 1 1 1 1 1 1 2 2 4 4 4 4 of floor space. 8 10 Number of Eiser 1 1 1 1 1 1 1 1 4 2 22 12 Shafts 1 1 1 1 4 4 12 Shafts 1 1 1 1 4 4 12 Shafts 1 1 1 1 2 14 Required 1 1 1 1 2 4 14 Eequired 1 1 1 1 4 4 14 Bequired 1 1 1 1 2 16 1 1 1 1 2 4 16 1 1 1 1 4 4 16 1 1 1 1 2 15 1 1 1 1 2 4 18 1 1 1 1 2 4 18 1 1 1 1 2 Sq. Ft. per Floor 2000 . 1 5000 . 1 10000 . 1 24000 . 4 48000 . 6 60000 . 8 Density=l Floors telephone 2 Sq. Ft. per Floor 2000 . 1 5000 . 1 10000 . 1 40000 . 4 80000 . 6 120000 . 8 Density=l Floors telephone 2 Sq. Ft. per Floor 2000 . 1 5000 . 1 10000 . 1 60000 . 4 120000 . 6 Table V Riser Shaft Dimensions. Prs. of Wires in Shaft 100 200 400 800 Shaft Dimensions 4"x6" 4"x6" 6"xlO" 6"xl2" Table VI Space for Riser Potheads. Prs. of Wires in Shaft 100 200 400 800 Dim. of Splicing Cabinet 4"x6"x33" 4"x8"x36" 6"xlO"x48" 6"xl2"x60" Table VII Conduit Sizes for Riser Cables. No. of Prs. in Cable 15 25 50 100 200 Size of Conduit 1^4" 1^4" 1%" 2" 2%" Table VIII Radii of Curvature in Riser Conduit Bends. Size of Conduit 1%" 1%" 2" 2%" 3" Eadii 12" 18" 24" 30" 36" 23 Table IX Conduit Sizes for Rubber Covered Wire. Prs. of Wires 2 5 10 20 40 Size of Conduit 1/2" %" 1" 3 !4" 2" Table X Conduit Sizes for House Cables. Pairs in Cable 5 10 20 30 Conduit Sizes %" Vs" 1" 1%' Table XI Conduit Sizes, For Intercommunicating Systems. Number of Min. Dia. of Telephones Conduit 10 1" 20 iy 2 " 30 1%" 24 Table XII Moulding Dimensions. Sizes Trough Depth of Open & Width Cable Wires % 5 Pr. 5 Pr. % 15 Pr. 7 Pr. % 25 Pr. N 10 Pr. 1 50 Pr. 15 Pr. Table XIII Dimensions of Conduit Boxes at Potheads. Pairs in Space Occupied Cable By Potheads 100 3"xl2"x36" 200 4"xl4"x36" 400 4"xl8"x60" 800 4"xl8"x60" tfe n> n> n n n r .1 z n? 27 - - -i " 0. D it ri CO +J c Table of Dimensions for Fig. 1 Maximum Capacity of Box in Pairs of Wires Length of Box Dimensions "A" I HALL X_ \ r ri ^ : JCVATOI T i J 1 ' i y^/^^2v|A^J fT T T T ? akiiJkkk 35 x i I I I I i_i_ i a 55 - 1 ,i- 1 - 93 . . T 3 * "T35F F* SBf "'~"T""" m Tl5r*'" J T 38 ILLUMINATION LIST OF TABLES. TABLE 1. Required Intensity of Illumination. TABLE 2. Intensity of Illumination in Foot Candles on Horizontal Planes. TABLE 3. Illumination from Mazda Lamps (small size) with Extensive Holo- phane Reflectors. TABLE 4. Illumination from Mazda Lamps (large size) with Extensive Holo- phane Reflectors. TABLE 5. Illumination from Mazda Lamps (small sizes) with Intensive Holo- phane Reflectors. TABLE 6. Illumination from Mazda Lamps (large sizes) with Intensive Holo- phane Reflectors. TABLE 7. Illumination from Mazda Lamps (small sizes) with Focusing Holo- phane Reflectors. TABLE 8. Illumination from Mazda Lamps (large sizes) with Focusing Holo- phane Reflectors. TABLE 9. Reflection Co-efficients of Walls and Ceilings. TABLE 10. Average Percentage of Reflection from Walls and Ceilings. TABLE 11. Spacing of Units for Uniform Illumination. TABLE 12. Current Taken by Incandescent Lamps. TABLE 13. Carrying Capacity of Wire (N. E. C.). TABLE 14. Size of Wire for One Volt Drop. TABLE 15. Total Cost of Lighting with Mazda Lamps. TABLE 16. Total Cost of Lighting with Tantalum Lamps. TABLE 17. Total Cost of Lighting with Gem Lamps. TABLE 18. Total Cost of Lighting with Carbon Lamps. TABLE 19. Intrinsic Brilliancy of Light Sources. TABLE 20. Lumens for Various Incandescent Lamps. 2 ILLUMINATION Since the wiring of buildings for electric lighting is so closely related to the wiring of buildings for telephone service, we have secured permission from the National Electric Lamp Association to publish in this appendix the following data which has been slightly rearranged for convenience. Only a small portion of this appendix is devoted to the subject of "Wiring," as this subject has been treated extensively by the National Board of Fire Under- writers and is generally understood by all architects and builders. Illumination is not so generally understood on account of its recent development along scientific lines. The major portion of this appendix is devoted, therefore, to outlining the method of laying out a lighting system in a building and to sup- plying working data, so as to simplify the calculations required in the study. REQUIREMENTS FOR GOOD ILLUMINATION. Illumination must be acceptable to the eye. We should be able to see objects clearly and with a minimum of fatigue. To accomplish this result, certain condi- tions must be fulfilled. (a) There must be sufficient illumination. Since objects are seen by means of the amount of light which they reflect, more light must be thrown on dark ob- jects than on light ones. 3 (b) There must not be too much illumination. Too strong a light tires the eye. (c) Intensely bright lights in the field of vision should be avoided. The in- trinsic brilliancy or candle power per square inch of luminous area should there- fore be kept as low as possible, not ordinarily greater than 4 to 6, if the source of light is in the field of vision. Incandescent lamps should either be shaded or frosted. See Table No. 19. (d) Flickering lights should be avoided. (e) Lamps should be shaded or so placed that the direct rays do not strike the eye. (f) Streaks or striations are very undesirable. (g) A satisfactorv light must be of a proper quality. It should have a contin- uous spectrum, i. e. % one containing every color in order that the relative color values of objects illuminated may be the same as when seen by daylight. Avoid cold, glaring lights which are too rich in green and blue. DESIGNING THE ILLUMINATION FOR A BUILDING. POINT BY 1- Divide each floor or each room into areas in which a different in- POINT tensity of illumination is desired. Consult Table 1 or other author- METHOD ities upon the foot candles required in the various areas. A foot candle of illumination is the amount of light which illuminates a point one foot distant from a source of light having an intensity of one candle power. 4 2. Divide each of the areas into a number of equal squares in the center of which luminants are to be installed. The number of such sub-divisions depends upon the degree of uniformity in illumination desired. 3. Locate a luminant or unit at the center of each of the above sub-divisions at a height to be determined from Table 11. Where a greater intensity is required at any one location an additional unit may be installed or the regular unit may be increased in intensity. Obviously, uniformity procured by a large number of sub- divisions, will be attained only at a greater cost. 4. Select the types of lamps and reflectors to suit local conditions; tungsten, tantalum and carbon lamps are available and are commonly used for interior light- ing. They are mentioned above in the order of their efficiencies. Focusing, in- tensive and extensive reflectors are used with these lamps. 5. Secure from the manufacturer of the reflector the distribution curve for the particular lamp in the reflector. 6. Select a number of points in each room at which it is desired to check the illumination. The number of such points and their location is dependent entirely upon the accuracy required and upon the local conditions. 7. Measure the horizontal and vertical distance from each point selected to each of the adjacent luminants. The illumination obtained from a luminant dis- tant from the point in question, and out of its immediate sphere, may be neg- lected, except where the intensity of illumination required is low and the units are large and widely spaced. 8. From Table 2 determine the intensity from each unit (considered as one candle power), in foot candles at the point in question. The angle between the light ray and a line perpendicular to the plane of the object illuminated is also given in Table 2. This angle applied to the curve of distribution for the lamp and reflector will determine the total candle power applied by the unit. Multi- ply the intensity in foot candles, secured above for one candle power, by the number of candle power projected from the luminant in order to obtain the number of foot candles from one unit upon the point in question. 9. Treat each adjacent unit the same, and sum the foot candles for the point in question. If lower than the assumed value it will be necessary to choose larger units or closer spacing. 10. Tables 3 to 8 inclusive give the intensity direct for Mazda lamps in Holo- phane reflectors. The use of these tables will reduce the calculation materially. 11. Table 9 gives the approximate co-efficients of reflection from wall papers; that is, the amount of reflected light expressed as a proportion of the total light received by the surface. These figures are based on the use of incandescent lamps. 12. Table 10 gives the average increase in illumination over the calculated value due to reflection from the ceiling and walls. 13. Table 11 gives the approximate height of lamps above the plane to be il- luminated in order to secure uniform illumination. 14. From Table 12 determine the number of outlets required and the amount of current to be carried in different parts of the system. 15. Table 16 may then be consulted to determine the size of wire required to carry with safety the current in the different parts of the system. 16. Table 14 may then be consulted to determine the size of wire required to maintain the voltage of the lamps between the limits of the rating of the lamp. The table shows values for one volt drop; for two volts drop use double the values given. 17. The cost of producing the light may be approximated by reference to Tables 15 to 18 inclusive. SHORT 18. A shorter but less accurate method of computing illumination METHOD than the "point by point" method just described is based on the fact that a certain definite quantity of light is required to illuminate one square foot of surface with an intensity of one foot candle. This unit is known as the "lumen." 19. When a lamp is capable of illuminating 400 square feet with an average intensity of one foot candle it may be rated at 400 (effective) lumens. 7 20. To find the number of lamps needed for a given installation multiply the area in square feet by the required intensity in foot candles, thus obtaining the total lumens, and then divide this product by the effective lumens per lamp, i. e., the lumens per lamp reaching the plane to be lighted. See Table 19. 21. The values given in Table 20 under "Mazda" lamps are for ordinary light- in? with "Mazda" lamps and clear high efficiency reflectors in rooms with average or dark walls and ceiling. Where both ceiling and walls are very light the num- ber of lumens may be increased by 25 per cent, 22. Where the light from a single lamp must be spread over a relatively great area, it is advisable to use an extensive form of reflector. 23. Where each unit lights a relatively small area or where more concentration is desired, the intensive reflector should be used. 24. Where an intensive light on a small area directlv below the lamp is de- sired, a focusing reflector is used. This type is largely used in show windows, high narrow vestibules and other rooms having unusually high ceilings. TABLE No. 1 *Foot Candles Required Intensity of Illumination Required Auditoriums, Theatres 1.00 3.0 Bookkeeping 3.00 5.0 Corridors, Halls . 50 . 1.0 Depots, Assembly Halls and Churches 75 1.5 Drafting Rooms 5.00 10.0 Desk Lighting 2.00 5.0 Engraving 5.00 10.0 Factories, General, where individual drops are used 4.00 5.0 Factories, Complete, no individual drops 4.00 5.0 Hotel Halls 1.00 1.5 Hotel Rooms 2.00 3.0 Offices ( Waiting Rooms) 1.25 2.5 Offices (Private) 2.00 3.0 t Offices (General) 3.00 4.0 Offices (where desk lights are used) 1.50 2.5 Post Offices 2.00 5.0 Reading 1.00 3.0 Residences 1.00 3.0 Stores (Light Goods) 2.00 3.5 Stores (Dry Goods) 4.00 6.0 Stores (Clothing) 4.00 7.0 Store Windows 5.00 20.0 Scnool Rooms 2.00 3.0 Saloons, Cafes, depending on effects 2.00 5.0 Stations (Waiting Rooms) 1.50 2.5 Train Sheds 1.50 2.0 Warehouses 1.50 2.0 *A foot-candle is the intensity of illumination received by a surface held normal to the direction of the light at a distance of one foot from a light-source of 1 candle-power. 9 TABLE No. 2 1 Candle-Power. Angle Between Liyht Bay and Line Perpendicular to Flan* Illuminated DJtOO 02210 00764 .00064 7842- 6 00' .04000 1119' .03771 2148' .03202 :,o ti- .02522 U'W 01504 45 0' .01414 .01050 .00785 .00595 .00458 .00358 ,04211 .0*211 .00185 .00152 00126 .00106 7337' .00090 7429- .OQ077 7516' .00066 7566' .00057 *' .02778 02673 .02372 .01987 .01600 01260 .00982 .00766 .00600 00474 .00378 .00305 .00249 .00205 .00170 .00142 .00120 .00102 .00088 00(176 .00066 f 7 .02041 .01980 .01814 .01585 .01336 .01100 .test] .00722 .00583 .00473 00385 .00316 .00261 .00218 00183 .00154 .00131 .00119 68M5' .00097 00034 .00074 a 01563 .01627 .01427 .01283 .01118 00953 .oosoo 00667 .00552 .00458 .00381 .00318 .00267 .00225 .00191 .00163 .00140 00121 .00105 .00091 .00080 'T 9 01235 .01212 .01148 .01054 .00943 0082C .00711 .00607 .00615 .00437 00370 00314 00267 .00228 .00196 00168 .00146 .00126 00110 .00*01 .00085 g>10 .01000 .00985 1119' .0043 .00879 .00801 .00716 .00631 .00550 .00476 .00411 00354 .00305 ,002*1 .00227 .00196 .00171 .00149 .00130 .ooiir, .00101 .00089 iu 00826 .00816 .00787 .00742 .00686 .00623 .00559 .00496 .00437 .00383 .00335 .00292 .00255 .00223 .00195 .00171 .00150 .00132 .00117 .00104 .00092 J" .00694 .00687 .00668 .00634 .00593 .OO.V16 .00497 .00448 .00400 .00356 .00315 .00278 .00246 .00217 .00191 .00169 .00150 .00133 .00119 .00106 .00094 ; .00592 .00587 .00571 .00547 .00517 .00481 .00447 .00404 .00366 .00329 .00295 .00263 .00235 00209 00187 00166 .00148 .00133 .00119 .00106 .00096 }M .00510 .00506 .00495 .00477 00454 .00426 .00396 .00365 .00334 .00304 .00275 .00248 .00223 .00201 .00180 .00162 .00146 .00131 .0011* .00107 .00096 S .00444 .00442 .00433 .00419 .00401 .00380 .00356 .00331 .00305 .00280 .00256 .00233 .00212 .00192 .00174 00157 .00142 .00129 00117 .00106 .00096 ! .00391 .00388 .00382 .00371 .00357 .00339 .00321 .00300 .00280 .00259 .00238 .00219 .00200 00183 .00167 .00152 .00138 00126 .00116 .00105 .00095 317 .00346 00344 .00339 .00331 .00319 .00306 .00290 .00274 .00256 .00239 .00222 .00205 .00189 00174 .00159 00146 00134 00122 .00112 .00103 .00094 I" .00309 .00307 .00303 .00297 .00287 .00276 .00264 .00250 .00236 .00221 .00206 .00192 .00178 .00165 00152 00140 00129 .00119 00109 .00100 .00092 19 00277 .00276 .00273 .00267 00260 00261 .00240 .00229 .00217 .00206 .00192 .00180 .00167 .00156 00145 .00134 00124 00115 .00106 .00098 .00090 20 .00250 00249 .00246 00242 .00236 00228 00219 00210 .00200 00190 .00179 .00168 .00158 .00147 00137 .00128 .00119 .00111 00103 MOM .00088 10 TABLE No. 3 Horizontal distinct of point InTeittgited In feet rram point directly beneath Unit. 2.67 0.61 1.04 1.71 0.72 1.18 2.64 1.70 2.58 2.12 1.35 O.S 0.48 0.30 0.20 0.14 0.10 0.09 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.0 0.0 ?si; 0.24 0.32 0.53 0.24 0.32 0.62 0.32 0.52 0.32 0.52 0.3 0.5 0.2 0.5 0.28 0.46 0.25 0.40 0.2 0.3 o.n 0.28 0.13 0.21 0.11 0.17 0.08 0.13 0.06 0.11 0.05 0.09 0.04 0.07 0.04 0.06 0.03 0.05 0.02 0.04 0.03 0.01 0.02 0.03 0.0 0.0 0.0 0.0 1$ I III Ilil 0.26 0.43 0.26 0.26 0.26 0.2 0.2 0.24 0.22 0.2 0.17 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.02 0.0 0.13 0.13 0.13 0.12 0.1 0.1 0.11 0.10 0.10 0.09 0.0.7 O.OG 0.06 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.0 ? i s 3 0.35 0.35 0.35 0.35 0.35 0.3 0.33 0.31 0.29 0.26 0.23 0.19 0.15 0.12 0.11 0.09 0.07 0.06 0.05 0.04 0.0 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.06 0.05 0.04 O.P3 0. 3 0.02 0.02 0.02 0.0 n** 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.28 0.26 0.24 0.21 0.18 0.16 0.13 0.11 0.09 0. 7 0.07 0.05 0.05 0.0 * o E. 0.09 0.16 0.25 0.09 0.16 0.26 0.09 0.16 0.25 0.09 0.16 0.25 0.09 0.16 0.25 0.09 0.15 0.25 0.08 0.15 0.25 0.08 0.14 0.24 0.08 0.14 0.23 0.07 0.13 0.21 0.07 0.12 0.19 0.06 0.11 0.18 0.05 0.10 0.15 0.05 0.08 0.14 0.04 0.07 0.12 0.03 0.06 0.10 0. 3 0. 6 0. 8 0.02 0.04 0.07 0.02 0.03 0.06 0.02 0.03 0.05 0.0 0.0 0.0 0.13 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.20 0.19 0.18 0.17 0.15 0.14 0.12 0.10 0.08 0.07 0.06 0.05 0.02 0.0 0.0 0.0 P ^3 IS* 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.1? 0.11 0.11 0.10 0.09 0.08 0.08 0.07 0.02 0.04 0.06 o!o 0.0 0.0 II? ss$ 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07 0.11 0.07 0.11 0.06 0.11 0.06 0.10 0.06 0.09 0.06 0.09 0.05 0.08 0.05 0.08 0.04 0.07 0.04 0.06 0.0 0.0 0.04 0.11 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.0 an " :.; 40- wait. 1.25 w. p. c.; 80-wa 11 TABLE No. 4 Horizontal distend* of pofnt Investigated fn fctt from point directly beneath Fnit. 4 6 1 a 8 * f 2 w 5* 8.00 7.64 6.80 5.95 3.94 2.18 1.29 0.79 0.51 0.35 0.25 0.18 0.14 0.11 0.09 0.07 0.08 0.05 0.04 O.Uli 0.03 0.05 0.02 0.03 0.05 !!!! r=i 3.00 5.12 8.49 2.96 4.90 9.21 2.82 4.51 8.56 2.49 4.18 1.95 3.58 1.40 2.52 0.87 1.60 0.57 1.01 0.40 0.67 0.26 0.47 0.19 0.33 0.14 0.24 0.11 0.18 0.10 0.14 0.07 0.11 0.06 0.09 O.OS 0.07 0.04 0.06 11. Oil 0.05 0.03 0.04 0.03 0.04 3.58 3.45 3.22 3.03 2.80 2.37 1.75 1.20 0.81 0.57 0.42 0.30 0.23 0.18 0.14 0.11 0.09 0.07 0.06 0.05 0.04 1.53 1.51 1.47 1.44 1.30 1.12 0.90 0.71 0.53 0.37 0.2 0.20 0.16 0.12 0.09 0.07 0.06 0.06 0.05 0.04 0.03 H?Ja 5?3 liW 2.00 3.71 0.93 1.58 2.93 3.68 0.92 1.65 2.90 0.91 1.49 0.89 1.43 0.86 1.37 1.80 1.30 0.72 1.26 0.63 1.13 0.52 0.96 0.43 0.78 0.33 0.61 0.27 0.48 0.19 0.3< 0.18 0.29 0.12 0.23 0.10 0.18 0.09 0.15 0.07 0.12 0.09 0.06 0.10 0.07 0.05 0.09 0.06 0.04 0.07 lrs| * 3 B CO^ :srg|i an" ",a * i*s g.-3~o s.aSS |frt rM 0.75 1.28 0.62 0.75 1.26 0.62 0.74 1.Z2 0.61 0.73 1.18 0.71 1.13 0.67 0.62 0.57 0.4 0.42 0.3S 0.28 0.22 0.18 0.14 0.11 0.13 0.09 0.11 0,08 0.09 0.06 0.07 0.05 0.05 * s 17 18 at i.M 1.96 0.52 0.89 1.64 1.94 0.52 0.88 0.51 0.86 0.51 0.84 0.50 0.81 0.48 0.78 0.46 0.75 0.44 0.72 0.40 0.70 0.37 0.6S 0.32 0.59 0.28 0.52 0.24 0.44 0.20 o.ss 0.18 0.30 0.14 0.24 0.11 0.20 0.10 0.17 0.08 0.14 0.07 0.12 0.09 0.17 0.05 0.10 0.7S 0.7S 0.74 0.72 0.70 0.67 0.65 0.63 0.61 0.59 0.55 0.49 0.43 0.37 0.32 0.28 0.22 0.19 0.18 0.13 0.12 ft a*ne >> S??3& t?J% ~ n O o " Cglfl 0.38 0.65 1.21 0.3S 0.65 0.38 0.64 0.38 0.62 0.37 0.61 0.36 0.59 0.36 0.57 0.34 0.55 0.32 54 0.31 52 0.28 0.5 0.26 0.46 . L 1 It 0.42 0.20 0.37 0.18 0.32 0.18 0.28 0.13 0.24 0.11 0.20 0.09 0.17 0.08 0.14 0.07 0.12 0.33 0.57 1.05 0,33 0.57 1.05 0.33 0.56 1.04 0.33 0.55 1.02 0.32 0.53 1.00 0.32 0.52 0.98 0.31 0.50 0.95 0.30 0.49 0.92 0.29 0.48 0.89 0.28 0.46 0.87 26 0.45 0.84 0.24 0.43 0.82 0.22 0.40 0.79 0.2 0.36 0.71 .18 i .32 .63 0.16 0.28 0.55 0.14 0.24 0.48 0.12 0.21 0.41 0.10 0.18 0.38 0.09 0.15 0.31 0.08 0.13 0.26 0.50 0.93 0.50 0.92 0.49 0.91 0.48 0.90 0.47 0.89 0.46 0.87 0.45 0.85 0.43 0.82 0.42 0.80 0.41 0.77 0.40 0.75 0.39 0.73 0.37 0.72 .34 0.68 .31 0.28 0.55 0.25 0.49 0.22 0.42 0.19 0.37 0.18 0.32 0.08 0.14 0.28 0.44 0.82 0.44 0.82 0.43 0.81 0.43 0.80 0.42 0.79 0.41 0.77 0.40 0.75 0.39 0.73 0,38 0.71 0.37 0.70 0.36 0.68 0.35 0.66 0.34 0.65 0.32 0.63 0.30 0.59 0.27 0.54 0.25 0.49 0.22 0.43 0.19 ').:; .17 .33 0.15 0.29 ri'^S "S* = R reft 0.23 0.39 0.73 0.23 0.39 0.73 0.23 0.39 0-.73 0.23 .0.38 0.72 0.23 0.37 0.70 0.23 0.37 0.69 0.22 0.36 O 1 . 68 0.22 0.35 0.66 0.22 0.34 0.65 0.21 0.34 0.63 0.20 0.33 0.61 0.19 0.32 0.60 0.18 0.31 0.59 0.17 0.30 0.58 0.16 0.28 .5 j 0.14 0.26 0.52 0.13 0.24 0.4S 0,12 0.22 0.43 0.11 0.19 0.38 .09 .17 .34 0.09 0.15 0.30 0.35 0.66 0.21 0.35 0.66 0.21 0.35 0.65 0.21 0.34 0.64 0.21 0.34 0.63 0.20 0.33 0.62 0.20 0.32 0.61 0.20 0.32 0.60 0.19 0.31 0.59 0.19 0.30 0.67 0.18 0.30 0.56 0.1S 0.29 0.65 Q.17 0.28 0.53 0.16 0.27 0.52 0.15 0.26 0.51 . ! 4 0.25 0.49 0.13 0.23 0.46 0.12 0.22 0.42 0.11 0.20 11.1:9 .10 o!35 0.09 0.16 0.30 0.19 0.3J 0.59 0.19 0.32 0.59 0.19 0.32 0.59 0.19 0.31 0.58 0.19 0.31 0.58 0.19 30 0.57 0.18 0.29 0.56 0.18 0.29 0.55 0.18 0.28 0.53 0.17 0.27 0.52 0.17 0.27 0.61 0.16 0.26 0.50 0.16 0.26 0.49 0.15 0.25 0.48 0.14 0.24 0.47 0.13 0.24 0.46 0.12 0.22 0.44 0.12 0.21 0.41 0.11 0.19 0.38 0.10 0.17 0.34 0.09 0.16 0.31 NOTE Thi* table U based on the following efficiencie* : 100-watt, l.aO w.p.c.; ISO-watt, 1>20 w.p.c.; 250.watt, 1.15 w.p.c. 12 TABLE No. 5 Horizontal distinct of point investigated in feet from, point directly beneath Unit 1.94 1.77 0.01 0.01 0.01 .... ft 5.40 1.24 1.96 3.46 4.78 1.17 1.81 3.20 0.97 1.56 2.69 0.73 1.21 2.05 0.83 1.33 0.50 0.78 30 0.48 0.20 0.31 0.14 20 09 0.12 0.06 0.09 0.05 0.07 0.04 0.05 0.02 0.03 0.04 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.87 t.M 0.73 0.59 0.45 0.33 0.23 0.16 0.11 0.08 0.06 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 2.40 I.S6 1.98 1.62 1.23 0.87 0.54 0.36 0.25 0.17 0.11 0.09 0.06 0."-, 0.04 0.03 0.03 0.02 0.02 0.02 0.01 7 1.00 1.76 0.96 1.69 0.89 1.55 0.76 1.29 0.64 1.07 0.50 0.81 0.36 0.25 0.20 0.12 0.09 0.07 0.06 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 3 8 a. 49 0.77 0.48 0.44 0.39 0.34 0.27 0.21 0.17 0.13 0.10 0.08 0.06 o.or, 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 * a 0.38 o..;o 1.08 0.37 0.59 1.04 0.35 0.56 0.98 0.33 0.51 0.88 0.28 0.46 0.24 0.40 0.19 0.33 0.16 0.27 0.13 0.21 0.10 0.17 0.08 0.12 0.06 0.09 0.05 0.07 0.04 0.06 0.03 0.04 0.03 0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 I In 0.87 0.40 0.71 0.84 0.40 0.69 0.81 0.3S 0.67 0.74 0.37 0.63 till 0.34 0.58 0.59 0.30 0.51 0.27 0.45 0.23 0.39 0.20 0.33 0.17 0.27 0.14 0.22 '0.11 0.17 0.08 0.13 0.07 0.11 0.06 0.09 0.05 0.07 0.04 0.06 0.03 0.04 0.02 0.04 0.02 0.03 0.01 0.02 0.03 H 0.21 0.34 0.60 0.21 0.34 0.20 33 0.57 0.19 0.31 0.54 0.19 0.29 0.50 0.17 0.27 0.46 O'.IS 0.24 0.40 0.13 0.22 0.36 0.11 0.19 0.31 0.10 0.16 0.26 0.08 0.13 0.21 0.07 0.11 0.17 0.06 0.09 0.16 0.05 0. 7 'i. I 0.04 0.06 0.09 0.03 0.05 0.07 0.03 0.04 0.06 0.02 0.03 0.05 0.02 0.03 0.04 0.02 0.03 0.04 0.01 0.02 0.'03 13 5 0.19 0.29 0.51 0.19 29 0.50 0.18 0.28 0.49 0.17 0.27 0.47 0.16 0.25 0.44. 0.15 0.24 0.41 0.13 0.22 0.37 0.12 0.32 0.10 0.17 0.29 0.09 0.15 O.OS 0.13 0.21 0.07 0.11 0.18 IMI-; 0.09 0.15 0. 5 0. 8 0. 2 0.04 0.07 0.10 0.04 0.06 0.08 0.03 0.04 0.07 0.03 0.04 0.06 0.02 0.03 0.05 0.02 0.03 0.04 0.02 0.02 0.04 ?14 0.16 0.25 0.44 0.16 0.25 0.43 0.15 .0.24 0.42 0.15 0.23 0.41 0.14 0.22 0.38 0.13 0.21 0.36 0.12 0.20 0.33 0.11 0.18 0.30 0.10 0.16 0.27 0.09 0.14 0.24 0.08 0.12 0.20 0.07 0.11 0.18 0.06 0.09 0.15 0. 5 0. 8 0.' 3 0.04 0.07 0.11 0.04 0.06 0.09 o! 5 0. 7 0. 3 0. 4 0. 6 0.02 0.03 0.05 0.02 0.03 0.04 0.02 0.03 0.04 |,5 O.H 0.22 0.38 0.14 0.22 n. :.'. 0.13 0.21' 0.37 0.13 0.21 0.36 0. K' 20 0.34 O.H 0.18 0.2 O.liT 0.17 0.30 0.10 O.K. 0.27 0.09 0.15 0.25 0.08 0.13 0.23 0.07 0.12 0.20 0.06 0.11 0.18 0.06 0.09 0.15 0. 5 0. 8 0. 3 0.04 0.07 0.11 0.04 0.06 0.09 0. 3 0. 5 0. 8 0. 3 0. 4 0. 7 0.02 0.03 0.05 0.02 0.03 0.0.1 0.02 0.03 0.04 i 16 0.19 0.34 019 o. ::.: 19 0.32 0.18 0.31 0.17 0.30 0.16 0.28, 0.16 0.27 0.15 0.25 0.14 0.23 0.13 0.21 0.11 0.19 0.10 0.16 0.09 0.15 0. 8 0. 3 0.07 0.11 0.06 0.10 0. 5 0. 8 0. 5 0. 7 0.04 0.06 0.03 0.05 0.03 0.04 * 17 0.17 0.30 0.17 0.29 0.17 0.29 0.16 0.2S 0.16 0.27 0.15 0.26 0.14 0.24 0.13 0.23 0.13 0.22 0.12 0.20 0.11 0.18 0.10 0.16 0.09 0.14 o! 2 0.07 0.06 0.10 0. 5 0. 9 0. 5 0. 7 0.04 0.06 0.03 0.05 0.03 0.05 18 0.10 0.15 0.27 0.10 0.15 0.27 0.09 0.15 0.26 0.09 0.14 0.25 0.09 0.14 0.24 0.09 0.13 0.23 575i 0.13 0.22 0.08 0.12 0.21 0.07 0.12 0.20 0.07 0.11 0.18 0.06 0.10 0.17 0.05 0.09 0.15 0.05 0.08 0.14 0. 6 0. 7 0. 2 o.o.l 0.07 o.n 0.04 0.06 0. 3 0. 5 0.09 0. 3 0. 5 0. 8 0.03 0.04 0.06 0.02 0.04 0.06 0.02 0.03 0.06 19 0.14 0.24 i 1 4 0.24 0.13 0.24 0.13 0.23 0.13 0.22 0.12 0.21 0.12 o.;o O.il 0.(9 0.11 0.18 0.10 0.17 0.09 0.16 t'.tt t.il 0.08 0.13 o! 2 0.0 0.10 0.06 0.10 0.05 0.09 0.05 0.08 o.o* 1.01 0.04 0.06 0.03 o.or. X 0.12 0.22 g ij 0.22 0.12 0.21 0.12 0.21 0.11 0.20 0.11 0.19 0.11 0.1S 0.10 0.17 0.10 0.17 0.09 0.16 0.09 0.15 . < 0.14 0.08 0.13 0.07 0.12 0.0 0.10 0.06 0.09 0.05 0.08 0.05 O.OS 0.04 0.07 0.04 o.os 0.03 tl.fr, -This table is based on the following efficiencies : 25-watt, 1 .33 w.p.c. ; 40-watt, 1 .25 w.p.c.; 00-watl. 1.20 w p c 13 TABLE No. 6 Horizontal distance of point Inreitlgtted in feet from point directly beneath Unit. 7.6S 6.90 5.25 3.47 1.92 1.08 0.65 0.35 0.23 0.15 0.11 0.10 0.07 0.06 0.05 0.04 0.0.1 0.03 0.02 0.02 0.02 : :; . i : 21.11 16.02 10.11 5.96 3.43 1. 8 1.21 0.79 0.54 0.38 0.28 0.21 0.16 0.13 0.10 0.09 0.07 0.06 0.05 0.04 t 8.49 8.00 6.76 5.04 3.39 2.20 1. 9 88 0.58 0.40 0.29 0.21 0.16 0.13 0.10 0.08 0.07 0.05 0.05 0.04 0.03 |SH 3.41 6.88 It. 11 3.24 5.66 2.87 5.03 2.34 4.09 1.76 3.09 1.30 2.20 0. 4 1. 3 0.57 1.03 0.38 0.71 0.25 0.48 0.18 0.35 0.14 0.26 0.10 o.:o 0.08 0.16 0.07 0.12 0.05 0.10 0.04 0.08 0.04 0.07 0.03 0.06 0.03 0.05 0.02 0.04 0.07 Jp r g! s =i* 2.51 2.40 2.24 1.93 1.63 1.19 0. 9 0.65 0.46 0.31 0.21 0.16 0.13 0.10 0.08 0.06 0.05 0.04 0.04 0.03 0.03 -5=^5 7.55 1.92 7.32 1.88 6.70 1.74 6.79 1.55 4.66 1.33 3.55 2. 7 1.95 1.42 1.04 0.75 0.56 0.43 0.33 0.2* 0.21 0.17 0.14 0.12 0.10 0.08 (ttJ "'"> 3 2 l!47 l!46 O.S 1.4 0.77 1.34 0.72 1.26 0.65 1.15 0. 8 1. 2 0.52 0.90 0.45 0.77 0.38 0.66 0.32 0.55 0.28 0.46 0.23 0.38 0.18 0.31 0.14 0.26 0.11 0.21 0. 9 0. 0.08 0.15 0.07 0.12 0.06 0.10 0.19 o!o9 0.16 Ml S is 0.73 1.25 2.18 0.72 1.24 2.17 0. 7 1.2 2.1 0.67 1.16 2.02 1.91 1.77 1. 2 1.43 1.25 1.07 0.92 0.78 0.66 0.56 0. 8 0.40 0. 4 0.29 0.24 0.20 0.17 Ml 5> 0.63 1.08 1.89 l!o7 1.87 0.6 1.0 1.8 0.58 1.01 1.77 0.55 0.96 1.68 0.51 0.90 1.57 0. 7 0. 3 1. + 0.43 0.75 1.31 0.38 0.67 1.17 0.34 0.59 1.02 0.30 0.51 0.89 0.27 0.44 0.77 0.22 0.39 0.66 0.19 33 0.67 0. 7 0. S 0. 9 0.14 24 O."41 0. 2 0. 0. 5 0.09 0.17 0.30 OS 0.15 0.26 o!l2 0.22 o!n 0.19 &l* I 16 0.94 1.64 0.94- 1.64 0.9 1.6 0.51 0.87 1.55 0.49 0.85 1.48 0.47 0.81 1.41 0. 3 0. 5 1. 0.40 0.69 1.20 0.36 0.63 1.08 0.32 0.56 0.96 0.28 0.49 0.85 0.26 0.43 0.75 0.22 0.38 0.65 0.19 0.33 0.56 0. 7 0. 9 0. 9 0.15 0.24 0.42 0. 2 0. 1 0.. 7 0.10 0.18 0.31 0.08 0.15 0.27 OS 0.13 0.24 0.11 0.20 ? ? ti *'j%*i a ie 4$ 0.83 1.45 0.48 0.82 1.44 0.4 0.8 1.4 0.45 0.79 1.37 0.43 0.76 1.32 0.41 0.72 1.26 0. 9 0. 8 1. 8 0.36 0.63 1.12 0.33 0.58 1.00 0.30 0.52 0.91 0.27 0.47 0.81 0.24 0.42 0.72 0.21 0.37 0.63 0.19 32 0.56 11 0. 9 15 0.25 0.43 0.13 0.22 0.37 0.11 19 0.32 0.09 16 0.28 0. 08 0.14 0.26 o!l2 0.21 17 0.42 0.73 1.28 0.73 1.27 O.T 1.2 0.41 0.70 1.22 0.39 0.68 1.18 . H7 0.65 1.13 0. 5 0. 1 1. 7 0.33 0.5*) 1.00 0.31 0.53 0.92 0.28 0.49 0.86 0.25 0.44 0.77 0.23 0.40 0.69 0.21 0.36 0.61 0.18 0.32 0.55 0. 6 0. 8 8 0.15 0.25 0.43 0.13 0.22 0.38 11 0.19 0.33 0.0!' 17 0.29 u.os 0.15 0.26 0.07 0.13 0.22 Si "*'-" 18 0.38 0.66 1.14 0.38 0.65 1.14 3 0.6 1.1 0.36 0.63 1.10 0.35 0.61 1.06 0.33 0.59 1.02 0. 2 0. 6 0. 8 0.30 0.53 0.92 0.28 0.50 0.86 0.26 0.46 0.79 0.24 0.42 0.72 0.22 0.38 0.66 20 34 0.59 0.18 0.31 0.53 0. 6 0. 7 0.47 0.14 0.25 0.42 0.13 0.22 0.38 0.12 0.19 0.33 o!l7 0.29 IK if, 0.26 0.13 0.23 "5, i:^ 10 0.59 1 .02 0.58 1 .02 0.5 1.0 0.57 0.99 0.53 n.:,,; 0.53 0.93 0. 1 0.89 0.48 0.84 0.46 0.79 0.43 0.74 0.39 0.68 0.36 0.63 0.33 0.58 0.30 0.51 '1.27 0.46 0.24 0.41 0.22 0.37 0.19 0.33 0.17 0.30 0.15 0.26 0.13 0.23 .*!?? 10 0.63 0.53 0.5 0.51 0.50 0.48 1:11 0.44 0.42 40 37 0.34 0.32 29 0.26 24 0.21 19 17 0.30 0.16 0.27 0.14 0.24 NOTE Tbi> table is bued on the following efficiencin : 100-iratt. 1.20 w.p.c.: ISO-watt. 1.20 w.p c.; 250-watt. 1. 15 w.u.c 14 Hortnontu! dlstan 456 TABLE No. 7 of point Investigated in fi-ct from point directly teneath Unit. 4 (.12 7.04 HI. 94 3.46 5.63 8.80 1.68 3.15 4.82 O.SO 1.30 2.49 0.39 0.63 1.37 O.JO 0.36 0.64 0.11 0.22 0.37 0.07 0.13 0.20 0.04 0.08 0.14 0.03 0.06 0.09 0.02 0.04 0.07 0.02 0.04 0.06 0.01 0.03 0.04 u.(,l 0.02 0.03 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 o.'oi 0.01 6!6i 0.01 6!6i 0.01 o.'oi 0.01 5 2.64 2. 45 1.45 0.80 0.45 0.25 0.15 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 i) . 1 o.'oi *.~ 0.43 0.67 0.24 0.41 i)..;:: JTJi 0.37 ii.:.; 0.1S 30 II IX 0.16 0.25 0.41 0.12 19 0.35 0. 0. 6 0. 0.09 0.13 0.26 0.07 0.11 0.22 0.06 0.09 0.19 0.05 0.08 0.16 0.04 11.117 0.13 0.04 0.06 0.11 0.03 0.05 0.10 0.02 0.04 0.08 0.02 0.04 O.OS 0.02 0.03 0.05 0.01 0.03 0.05 0.01 0.02 0.04 S'O^TSJ IT 0.23 0.39 0.60 0.20 0.23 0.38 0.60 O.JO 7H 0.38 0.59 0.20 0.22 0.37 0.58 O.JO 0.34 0.53 0.17 29 0.45 0.15 u. j:: 0.3S 0.12 0.19 0.33 0. 0. 6 0.29 0.09 0.13 0.25 0.07 11 0.21 06 0.09 0.18 0.05 O.OS 0.16 0.04 0.07 0.13 0.04 0.06 0.11 0.03 0.05 0.10 0.03 0.04 0.09 0.03 0.02 0.04 0.07 0.02 0.02 0.03 0.06 0.02 0.02 0.03 0.05 0.02 0.01 0.02 0.04 0.01 !-"s; 3= * HS* 1 0.19 0.19 O.IS 0.18 0.17 0.15 0.13 0.11 0. !ll 0.08 0.07 0.06 O.OS 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 Sgfij. III? 90 0.17 0.88 n.n 0. 17 0.28 44 0.16 0.28 0.43 0.16 0.27 0.42 ii ir, 26 .41 0.14 24 0.36 0.12 0.21 0.32 0.11 0.17 0.28 0.09 0.15 0.24 O.OS 12 0.21 0.07 0.10 0.19 0.06 0.09 0.17 0.06 0.07 0.13 0.04 0.06 0.13 0.04 0.06 0.11 0.0.1 O.O'i II.H'I 0.03 a. 04 0.09 0.02 0.04 O.OS 0.02 0.03 0.07 0.02 0.03 0.05 0.02 0.03 0.05 NOTk This table i. baled un the following cfficiencicl : 25-watt. 1 33 W.J.C.; 40- I 25 w.p.c.- 00-witt-, 1 .20 w.t 15 TABLE No. 8 Hortiontil distinct of point Invettlfited In feet from point directly beneath Unit. 4 8. 10 6.92 <-. . 1 i 7.00 3.72 1.74 0.91 0.60 0.27 0.19 0.12 0.03 0.08 0.06 ii. 'i . O.H4 0.04 O.H3 0.02 0.02 . 1) 1 0.01 1 I.M 10.72 6.16 3.65 2.05 !!? 0.65 0.39 t.tl 0.16 0.12 0.09 0.07 0.06 0.04 0.04 0.03 0.06 0.03 0.05 0.02 0.04 t.M 0.03 0.02 0.03 2S5S- 5 oip a < 8.10 1.97 0.48 7.73 11.62 1 . l :i 3.29 S7V5I 1.37 O.M1 0.49 0.32 0.17 0.13 0.11 0.09 t.M 0.05 a. 11 0.04 11. in 0.03 0.03 0.02 O.'l? 0.02 0.06 trg^rw iLgil He- 3 7 I 8 8.80 4.65 6.74 1.61 8.64 4.45 6.66 11.55 7.18 3.78 5.76 10.15 ITii 4.31 7.67 1.75 2.93 5.21 1.28 2.05 3.49 0.93 1.46 2.48 i) . ', 'I 1.04 1.80 0.49 0.75 1.32 ii.:::: 0.56 0.96 0.23 0.41 (1 .72 0.17 0.31 0.55 0.12 0.21 0.43 0.09 0.19 0.35 0.07 0. 5 0. 7 0.06 0.12 0.21 0.05 i>. i.i 0.18 0.04 U.MS 0.14 0.04 0.07 0.12 0.03 0.06 0.10 0.07 0.02 0.06 0.08 ?|oS'i sir g ~ 9 3.60 3.52 3.12 2.76 1.61 1.21 0.89 0.69 0.51 0.38 t.II 0.20 0.14 0.11 0. 8 0.06 0.06 0.04 0.04 0.03 0.03 3'i? 5-E* ^ 3. 10 4.31 7.3V 4.29 7.40 4.04 6.98 3.31 5.90 2.56 4.59 1.88 3.34 1.40 1 tt 1.06 l.SO 0.81 1.40 0.62 1.08 0.48 (1.85 0.38 0.66 0.30 t.a 0.24 0.41 0. 9 0. 3 0.15 0.27 0.13 0.23 0.10 0.19 0.04 0.09 0.16 0.03 0.07 0.13 0.03 0.06 0.11 S s"3 3 ' B2 fll 2.41 3.56 2.37 3.56 2.26 1.90 1.41 1.03 0.81 0.64 0.52 0.42 0.34 0.26 0.19 0.15 0. 2 0.09 0.07 ii. us 0.05 0.04 0.03 0.0.8 ?.|l! f 12 2.03 2.99 2.00 2.99 1.93 2.90 1.68 2.56 1.30 2.13 0.97 1.69 0.77 1.30 0.64 1.03 0.50 0.81 0.41 0.66 0.33 0.52 0.26 0.41 0.22 0.33 0.16 0.27 0. 3 0. 2 0.10 0.18 0.08 0.15 0.07 0.13 0.06 0.11 0.05 0.09 0.04 0.08 "31 a !828 I ls 1.72 2.56 1.71 2.55 1.66 2.48 1.60 2.26 1.22 1.93 0.64 0.52 0.35 !ilss Kit 1.49 1.48 1.44 1.34 1.11 II . S ,' 0.70 0.56 0.47 rii 0.32 STii 0.23 0.19 . 1 0.13 0.10 0.08 0.06 0.06 0.05 "3 Ol 3 3-is^ = in 1.30 1.92 3.27 1.29 1.92 3.31 1.26 1.89 3.28 1.21 1.79 3.10 1.04 1.59 0.80 1.37 0.67 1.13 0.54 0.92 0.46 0.75 0.39 0.62 0.32 0.52 0.28 0.43 0.23 0.36 >.: 0.30 0.17 0.25 0.14 0.21 0.11 0.18 0.09 0.15 0.07 0.13 0.06 0.11 0.06 0.10 isi:s Is 9* l 1.14 1.68 1.13 1.68 1.11 1.66 1.06 1.60 0.95 1.44 0.75 1.26 0.63 1.08 0.61 O.S9 0.43 0.73 0.37 0.61 0.32 0.51 0.27 0.43 0.23 0.36 0.20 0.31 0.17 0.26 0.14 o . i : 0.12 l.ll 0.10 0.16 0.08 0.14 0.07 0.12 0.06 0.10 0.18 P&l 1.01 1.00 0.99 0.96 0.87 0.71 0.59 0.49 0.42 0.36 0.31 0.26 0.23 0.19 0.17 0.16 0.13 0.11 0.09 0.07 0.06 Ii" *- 11 0.~!: ': 0.61 0.19 0.30 0.53 0.17 0.27 0.46 0.15 0.23 0.40 0.13 0.20 0.35 0.11 0.18 0.31 0.10 0.15 0.27 0.09 0.13 0.23 0.07 0.11 0.20 aS&g O. i i 20 m 1.08 1 1 0.73 1.08 1.8$ 0.72 1.07 1.85 0.70 1.06 1.83 0.68 1.01 1.75 0.61 0.92 1.62 0.51 0.83 1.47 0.43 0.74 1.31 0.38 0.64 1.15 0.33 0.55 >!.'.<'.< 0.28 0.47 0.83 0.25 0.40 0.71 0.22 0.35 0.61 Vl9 0.30 O.f>2 0.17 0.20 0.45 0.15 0.23 0.40 0.13 0.20 0.35 0.11 0.18 0.31 0.10 I.M 0.27 0.09 0.14 0.24 0.08 0.12 0.21 Hans This Ublc i. bucd an tic following cfficicaeies : 100-watt, 1.20 w.p.c.; ISO-watt, 1.20 w.p.c.; 2oO-watt, 1.16 w.p.c 16 TABLE No. 9 Eeflection Co-efficients of Walls and. Ceilings. r ff ' t f i Kind Color Eeflection-K i-K Plain ceiling Faint green 53 2.13 Light yellow 49 1.96 Faint pink 43 1.75 Pale bluish white 31 1.45 Light gray green 23 1.30 Crepe Medium green 19 1.23 Medium red 08 1.09 Deep green 06 1.06 Cartridge Medium light buff 44 1.79 Light blue 20 1.25 Pale pink 19 1.23 Light green 18 1.22 Striped Deep cream silvery 57 2.32 ("Two-toned") Light strawberry pink 43 1.75 Light green 26 1.35 Medium red 08 1.09 Miscellaneous Light gray 38 1.61 Light green and gold 28 1.39 (minute figuring, much gold) 17 TABLE No. 10 Average Percentage of Eeflection from Walls and Ceilings. Increase Ceiling Walls over calculated Very dark Very dark 0% Medium Very dark 15% Medium Medium 40% Very light Very dark 30% Very light Medium 55% Very light Very light 80% TABLE No. 11 Spacing of Units for Uniform Illumination Clear Holophane . Height above Reflectors, Type Plane to be lighted Extensive 1/2 D Intensive 4/5 D Focusing 4/3 D D = Distance between units = Side of square, when units are placed in squares = Average side of rectangle, when units are placed in rectangles. 18 TABLE No. 12 Current Taken by Incandescent Lamps Tanta- Mazda lum Gem Carbon 1 Watts per lamp 25 19.1 .23 26 495 40 32.5 .36 17 550 60 50.8 .55 11 560 100 84.7 .91 6 510 150 127.0 1.36 4 510 250 222.0 2.27 2 445 400 354.0 3.64 1 355 500 442.0 4.55 1 440 40 20 .36 16 320 80 40 .73 8 320 50 20.0 .46 13 260 100 40.7 .91 6 245 50 16.8 .46 13 220 100 33.6 .91 6 200 2. Candle-power at rated ef- ficiency 3. Amperes per lamp at 110 volts 4. Permissible number of lamps per cut-out 5. Candle-power per cut-out 19 TABLE No. 13 Carrying Capacity of Wire as Established b/ the National Board of Fire Underwriters B & S Gauge 18 16 14 12 10 8 . 6 5 4 3 2 . 1 00 000 0000 Circular Mils 1,624 2,583 4,107 6,530 10,380 16,510 26,250 ' 33,100 41,740 52,630 66,370 83,690 105,500 133,100 167,800 211,600 Eubber Covered Wire. Amperes 3 6 12 17 24 33 46 54 65 76 90 107 127 150 177 210 Weather Proof Wire. Amperes 5 8 16 23 32 46 65 77 92 110 131 156 185 220 262 312 The question of drop is not considered in the above table. No wire smaller than No. 14 is used except for fixture work and flexible cord. 20 TABLE No. 14 Table Showing Size of Wire for Drop of One Volt Silt Distance in Feel (o Center ol Distribution N wiri' 20' 25' 30' 35' B.iS. 40' 45' 60' 60' 70' 80' 90 100' 120' 140' 160' 180' 200' 14 9.5 7.60 6.34 5.42 12 15.1 12.08 10.06 8.64 10 24.0 19.20 16.00 13.60 8 ~~33 |30.55 25.45 21.80 4.75 4.22 3.80 3.17 2.62 2.37 2.11 1.90 1 58 1 35 1.18 1.06 1.95 7.55 6.61 6.04 5.03 4.31 3.78 3.36 3 02 2.51 2.15 1.88 1.68 1.51 12.00 10.66 9.60 8.00 6.86 6.00 5.33 4.80 4.00 3.43 3.00 2.66 2.40 19.10 16.90 15.28 12.72 10.90 9.55 8.49 7.64 6.36 5.45 4.77 4.24 3.82 30.30 26.95 24.25 20.20 17.30. 15.15 13.48 12.12 10.10 8.66 7.58 624 6.06 38.25 34.00 30.60 25.50 21.85 19.12 17.00 15.30 12.75 10.92 9.56 8.50 7.65 48.25 42.90 38.60 32.17 27.58 24.13 21.44 19.30 16.08 13.79 12.06 10.72 9.65 60.9 54.1 48.7 40.60 34.80 30.45 27.05 24.35 20.30 17.40 15.22 13.52 12.17 76.6 68.1. 61.4 51.1 43.8 38.30 34.05 30.66 25.55 21.90 19.15 17.02 15.33 95.5 84.9 76.4 69.5 54.6 47.75 42.45 3820 31.85 27.30 23.86 21.22 19.10 122.0 108.4 97.6 81.3 69.7 61.00 54.20 48.80 40.65 34 85 30.50 27.10 24.40 6 46 46 40.4 34.60 5 54 54 51.0 43.75 4 65 65 64.5 55.15 3 76 76 76 69.6 2 00 90 90 87.6 1 107 107 107 ' 107 127 127 127 127 00 150 150 150 150 000 177 177 177 177 0000 210 210 210 210 150 136.6 123.0 102.5 87.9 76.80 68.30 61.50 51.25 43.90 38.40 34 15 30.75 177 172.2 155.0 129 2 110.7 96.9 86.1 77.5 64.6 55.35 48.45 43.05 38.75 210 210 ~|l9o.6 1C3 139.6 122.3 109.6 97.8 81.5 69.8 61.15 5430 48.90 r 1- ....j A I D 21.02 Currents found under the broken line are the maximum allowable b; National Board of Underwriters for the sire specified (Rubber Covered Wire) The drop for lighting and power load multiply the values given in the table by .82. If A. C. two phase (4 wire) or three phase (3 wire), lor lighting load multiply values given in 21 TABLE No. 15 Showing Total Cost of Producing Light with "MAZDA" Lamps at High, Medium and Low Efficiency Nominal Watts 25 40 60 100 Efficiency Step High Mod. Low High Mt-d. Low High Med. Low High Med. Low Watts per Candle 1.31 25 19 1 187 7.48 1000 $0.65 .65 1.37 24.2 17 7 173 7.16 1300 to 65 .50 1.43 23.4 16.4 160 6.86 1700 $065 38 1.23 40.0 32.6 319 7.97 1000 $070 70 1.28 38.9 30 4 298 767 1300 $0 70 54 1 33 37.8 28.5 '277 7.37 1TOO $0 70 41 1 18 60.0 50.8 498 8.30 1000 $1 00 1 00 1.23 58.2 47.3 464 7 97 1300 $1.00 77 1.28 56.5 44.2 433 7.67 1700 $1.00 59 1.18 100.0 84.7 830 8.30 1000 $1.35 1.35 1.23 97.0 78 9 773 7.97 1300 $1.35 1.04 1.28 94.2 73.6 722 7.67 1700 $1.35 .79 Actual Watts Candle-Power List Price Clear . Variable Cost of Power *Combined Cost of Power and Lamp Renewals per 100,000 Lumen-Hours in Dollars 1C per Kw-hr $0 48 62 75 .88 1.02 1.15 1 42 1 89 1 96 $0.43 57 71 85 99 1 13 1 41 1 69 1 97 SO 38 53 68 82 .97 1 11 1 41 1 70 1 99 $0.34 47 59 72 84 97 1 22 1 47 1 72 $0.31 44 .57 71 84 97 1.23 1.49 1.75 $0.28 .42 .56 69 83 96 1 24 1 51 1 78 $0.33 .45 57 69 81 93 1 17 1 41 1 66 $0 29 42 .54 67 79 92 1 17 1 42 1.67 $0.27 40 .63 66 79 .92 1 18 1 44 1 70 $0.28 .40 52 64 76 .88 1.12 1 36 1 60 $0 26 .39 51 64 76 .89 1.14 1.40 1.65 $0.24 .J7 .60 .63 .78 90 1.1$ 1.42 1.68 2c " " " 3c 4c ' 6c " " " 6c gc 10c 12c *For each one cent difference ( in cost of lamp add or subtract \ 0.0054 0045 0037 0031 .0026 0021 .0020 .0017 0014 .0012 0010 .0008 100.000 Lumen-Hours from a "Mazda" Lamp is equal to 10,200 Mean Horizontal Candle-Hours. 22 TABLE No. 15 Continued. Nominal Watts 150 250 400 500 Efficiency Stop.. . High Med. Low High Med. Low High Mcd. Low Hi K h Mcd. Low Watts per Candle Actual Watts 1.18 150.0 127.0 1245 8.30 1000 $2.00 2.00 1.23 145.5 118.3 1160 7.97 1300 $2.00 1.54 1.28 141.2 110.4 1083 7.67 1700 $2.00 1.18 1.13 250.0 222.0 2168 8.67 1000 $2.75 2.75 1.18 242.0 204.2 2009 8.30 1300 $2 75 2.12 1.23 235.0 191.0 1873 7.97 1700 $2.75 1.62 1.13 400.0 354.0 3470 8.67 1000 $5.00 5.00 1.18 387.0 328.0 3215 8.30 1300 $5.00 3.85 1.23 376.0 306.0 3000 7.97 1700 $5.00 2.94 1.13 500.0 442.0 4335 8.67 1000 $5.50 5.50 1.18 484.0 410.0 4020 8.30 1300 $5.50 4.23 1.23 470.0 382.0 3745 7.97 1700 $5.50 3.24 Candle-Power Hours Lite- List Price Clear Variable Cost of Power *Combined Cost of Power and Lamp Renewals per 100,000 Lumen-Hours in Dollars Ic per kw-hr. $0 28 .40 .52 .64 .77 .89 1.13 1.37 1.61 50. 2S .38 .51 .63 .76 .88 1.13 1.38 1.63 $0.24 .37 .50 .63 .76 .89 1.15 1.41 1.67 $0.24 .36 .47 .59 .70 .82 1.05 1.28 1.51 $0.23 .35 .47 .59 .71 .83 1.07 1.31 1.55 $0.21 .34 .47 .59 72 .84 1.10 1.35 1.60 $0.26 .37 .49 .60 .72 .83 1.06 1.29 1.52 $0.24 .36 .48 .60 .72 .84 1.08 1.32 1.56 $0.22 .35 .47 .59 .72 .85 1.10 1.35 1.60 $0.24 .36 .47 .59 .70 .82 1.05 1.28 1 51 $0.23 .35 .47 .59 .71 .83 1.07 1.31 1.55 $0.21 .34 .46 .59 .71 .84 1.09 1.34 1.59 2c 3c 4c . Sc 8c ' 10c 12c . in cost of lamp add or subtract $ 0.0008 .0007 .0005 .0005 0004 .0003 .0003 .0002 .0002 0002 .0002 0002 100.000 Lumen-Hours from a "Mazda" Lamp is equal to 10,200 Mran Horizontal Candle-Hour 23 TABLE No. 16 Showing Total Cost of Producing Light with Tantalum Lamps at High, Medium and Low Efficiency Nominal Watts 25 40 50 80 Hi B h Med. Low High Med. Low High Med. Low High Med. Low Watts por Candle 1.9Y 2 05 2 14 1 79 1.87 1.95 1.79 1.87 1.95 1.79 1.87 1.95 Actual Walls.. .. 25.0 12.7 ' 126 5.04 1000 $0.50 .60 24.2 11.8 117 4.83 1300 $0.50 .38 23.5 11.0 109 4.64 1700 $0.50 .29 40.0 22.3 221 5.54 800 $0.50 .63 88.8 20 7 206 6.31 1100 $0.50 .45 37.6 19.3 191 6.09 1600 $0.50 .33 50.0 27.9 277 6.54 800 $0.50 .63 48.5 25.9 257. 5.31 1100 $0.50 .45 47.0 24.1 239 6.09 15CO $0.50 .C3 80.0 44.6 443 5.54 6CO $0.85 1.42 77.6 41.5 412 5.31 800 $0.85 1.06 T5.2 38.6 383 5.09 1050 $0.85 .81 Lumens per Watt . Hours Life (D. C.) Renewals per 1000 hr Variable Cost of Power *Combined Cost of Power and Lamp Renewals per 100,000 Lumen-Hours in Dollars. $0.60 .79 .99 1.19 1 39 1.69 1.88 2.38 2.79 $0.54 .74 .95 1.16 1.36 1.57 1.98 2.39 2.81 $0.49 .71 .92 1 13 1.36 1.66 1.99 2.43 2.86 $0.46 .64 .83 1.01 1.19 1.37 1.73 2.09 2 45 $0.41 .60 .79 .97 1.16 1.35 1.73 2.10 2.49 $0.37 .57 .77 .98 1.16 1.36 1.75 2.14 2.54 $0.41 .59 .77 95 1.13 1.31 1.67 2.03 2.39 $0.37 .55 .74 .93 1.12 1.31 1.69 2.06 2.44 SO. 34 .53 .73 .93 1.12 1.32 1.71 2.11 2.50 $0.50 .68 .86 1.04 1.22 1.40 1.76 2.12 2.49 $0.45 .63 .82 1.01 1.20 1.39 1.77 2.14 2.52 $0.41 .60 .80 1.00 1.19 1.39 1.78 2:i8 2.57 2c " " " 3c " '' " 4c Sc 6c 8c " " '' lOc 12c 'For each one cent difference 1 in cost ol lamp add or subtract i 0.0079 .0066 .0054 .0057 .0044 .0035 .0045 .0035 .0028 .0038 .0030 .0025 100.000 Lumen-Hours from a Tantalum Lamp is equal to 10.100 Mi-an Horizontal Candle-Hours. 24 TABLE No. 17 Showing Total Cost of Producing Light with Gem Lamps at High, Medium and Low Efficiency Nominal Watts 40 50 60 80 100 Efficiency Step High Med. Low Hifth Med. Low High Med. Low HiKh Med. Low HiKh Mod. Low Watts per Candle 2.66 40.0 15.6 162 4.05 600 10.21 35 2.71 38.7 14.2 148 3.82 900 $0.21 23 2.89 37.3 12.9 135 3.59 1300 $0.21 16 2.60 50.0 20.0 207 4.15 700 $0.21 30 2.65 48.4 18.3 189 3.91 1000 $0.21 21 2 81 467 166 172 3.66 1500 $0.21 .14 2.50 60.0 24.0 249 4 15 700 $0.21 .30 2 66 08.0 21 9 227 3 91 1000 $0.21 21 2.81 56.0 19.9 206 3 68 1500 $0.21 14 2 46 80.0 32.5 337 4.21 700 $0.35 50 2.60 77 4 29.8 308 3.98 1000 $0.35 35 2.78 74.6 26.8 278 3.73 1500 $0 35 23 2 46 100.0 40.7 419 4.19 660 $0.35 54 2.60 96.7 37,2 384 3.96 950 $0.35 .37 2.78 93.2 33.5 346 3.71 1400 $0.35 .25 Actual Watts . . Candle-Power Hours Life List Price Clear. Renewals per 1000 hr Variable Cost of Power 'Combined Cost of Power and Renewals per 100,000 Lumen-Hours in Dollars Ic per kw-hr. . $0-46 -71 96 1.20 1.46 1.70 2. It 269 3.18 $0-42 .68 .95 1 21 1.47 1.72 2 24 2 78 3.30 $0 40 87 .95 1.23 1.50 1.78 2 33 2.88 3.43 $0.39 .63 -87 1 12 1.38 1 60 2.08 2 58 308 $0.37 62 -88 1.14 1.39 1.65 2.16 2.87 3 18 SO. 36 .62 -90 1.17 1.44 1.71 .25 2 80 3.34 $0.36 60 -85 1.09 1.33 1.57 2.05 2.63 3.01 $0-35 60 .86 1 12 1.37 1.63 2 14 2.65 3.16 $0-34 .61 88 1 15 1-43 1-70 2.25 2.79 3 34 $0 39 62 86 1-16 1 34 1.67 2.05 2 62 3-00 $0.36 62 87 1.12 1.37 1.62 2.12 2.63 3-13 SO 36 62 89 1.16 1.42 1 69 2.23 2.77 3-30 $0-37 -61 .84 1 08 1 32 1-68 2-03 2-61 2 99 $0-35 .60 85 1.10 1.36 1-61 2-11 2 62 3-12 SO. 34 .61 88 1.15 1.42 1-69 2.23 2 77 3.31 2c 3c 4c 5c ... 6c 8c lOc " ' " 12c " " " For each one cent differ- | ence in price of lamp add or subtract ) 0.0103 .0075 0057 0069 0053 0039 0067 0044 .0032 .0042 .0032 0024 0037 .0027 0021 100.000 Lumen-Hours from a Gem Lamp is equal to 9 650 Mean Horijontal Candle-Hour 25 TPABLE No. 18 Showing Total Cost of Producing Light with Carbon Lamps at High, Medium and Low Efficiency Nominal Watts 25 30 50 60 iOO 120 Efficiency Stop High Mi-d. Low High Med. Low Hitth Mod. Low High Mod. Low Hi B h Med. Low High) Med. Low Watts per Candle . . Actual Watts 3.10 25.0 8.1 S3. 6 3 34 500 $0.20 .40 3.31 24 1 7.3 75.4 3.15 725 JO. 20 .28 3.52 23.2 6.6 68. 1 2 94 1050 $0 20 3.23 !0.0 9.3 96.4 3.21 1050 50 20 .19 3.46 28.9 8.4 87.0 3.00 1500 $0 20 13 3.69 27.8 7 5 77 7 2.81 2100 $020 '10 2 97 50 16 8 174 3 49 700 $0 20 29 3.18 48.2 15 2 158 3.26 100Q $0.20 .20 3.39 46 4 13.7 142 3 C 1500 $0.20 IS 2.97 60 20.2 208 3 49 700 $0 20 29 3 18 67 8 18 3 190 3 26 1000 $0 20 20 3 39 55.7 16.4 170 3 06 1500 $0 20 13 2 97 100.0 33.6 349 3 49 600 SO 30 .50 3.18 96.4 30.5 316 3 26 850 $0.30 35 3 39 92.9 27 4 284 3 06 1350 $0 30 .22 2.97 120.0 40.4 419 3.49 600 $0 30 50 3 18 115.8 36.6 379 3.26 850 $0.30 .35 3.39 111.4 32.8 340 3.06 1350 $0.30 .22 Candle-Power Total Lumens Lumens per Watt-. Hours Life List Price-Oar.... Renewals per 1000 hr. Variable Cost of Power *Combined Cost of Power and Lamp Renewals per 100,000 Lumen-Hours in Dollars lc per kvvlir $0.78 1.08 1.38 1 68 1 97 2.27 2 87 3 47 $0.69 1 01 1 33 1.64 1 96 2.28 2 92 3.56 $0 62 96 1 30 1 63 1 97 2.31 2 99 3.67 SO 51 82 1 13 1 44 1 75 2 07 2 69 3.31 $0.49 .82 1 15 1 48 1 81 2 15 2.81 3.48 $048 B4 1.20 1 55 1 91 2.27 2 99 3 70 50 45 74 1.03 1.31 1.60 1 89 2 46 3.04 $0.43 74 1 04 1.35 1.65 1 96 2.57 3.18 42 .75 1.07 1 40 1.73 2.05 2 71 3.36 $0.43 .71 1 00 1 29 1 58 1.87 2.44 3.02 SO 41 71 1 02 1.32 1 63 1.93 2 54 3.15 $0 41 .73 1.06 1 39 1.72 2.04 2 70 3.38 SO 43 72 1.00 1 29 1.58 1 86 2 44 3.01 $042 72 1.03 1.33 1.64 1 94 2.55 3.16 $0.41 .73 1.06 1.39 1.71 2.04 2.70 3.35 $0.41 69 98 1 27 1 65 1.84 2.41 2 98 $0.40 70 1.01 1.32 1 62 1 93 2.54 3.15 $0.39 72 1.05 1.38 1.70 2.03 2.69 3.34 2c ' 3c 4c 5c 6c " " " gc 10c For each one cent ) lamp add or subtract > 0.0239 .0183 .0140 .0079 .0077 .0061 .0082 0063 .0047 0069 .0053 .0039 .0048 .0037 .0026 0040 .0031 .OC22 100.000 Lumen-Hours (rom a Carbon Lamp is equal to 9,650 Mean Horizontal Candle-Hours. 26 TABLE No. 19 Intrinsic Brilliancy of Light Sources Candle-power per sq. in. Moore tube 0.3 1.75 Frosted incandescent 2.0 5 Candle 3.0 4 Gas flame 3.0 8 Oil lamp 3.0 8 Cooper Hewitt lamp 17 "Welsbach gas mantle 20.0 50 Acetylene 75.0 100 Enclosed A.C. arc 75.0 200 Enclosed D.C. arc 100.0 500 Incandescent Lamps Carbon 3.5 watts per candle 375 Carbon 3.1 watts per candle 480 Metallized carbon 2.5 watts per candle 625 Tantalum 2.0 watts per candle 750 "MAZDA" 1.25 watts per candle 875 ' ' MAZDA ' ' 1.15 watts per candle 1000 Nernst 1 :5 watts per candle 2200 Sun on horizon 2000 Flaming arc 5000 Open arc lamp 10,000-50,000 Open arc crater 200,000 Sun 30 above horizon 500,000 Sun at zenith 60o!oOO 27 TABLE No. 20 "MAZDA" 3 9 2 a $ l> 03 m 03 "-; E-l O Watts per Lamp 25 40 60 100 150 250 Effective Lumens ner Lamn 95 160 250 420 630 1090 Lumens per Watt 3.8 4.0 4.2 4.2 4.2 4.3 2.5 1.8 1.5 28 7* Ci ** ^ rJ t33 r <=* *i "fe A q| -*M ^ n ^ ^ >* tf ~> , o p-g-cn h3 X o o M "2.3^6 I'P MT-I W kj |-*l S Llili og-^i^ W g*?p W M UNIVERSITY r^^ V^^ ^4 ^^ "3B^S ^ im^ a-p^o g ^ ""f-Se: d o B W W !> bd t" 1 co % o p o e o- ^ h- 1 W* ^* f? *^p> caS " >** F ** "* * lo-.o ^ * " Ms O c-B g g 5 y M tf |?;l* H . S 5 w a M at UNIVERSITY OF CALIFORNIA LIBRARY