,M5:r.NRLF 
 
 ^B 53S 
 
 M 
 

 c'C'-^ 
 
A 
 
 COMPLETE KEY 
 
 TO 
 
 NEW FEDERAL CALCULATOR, 
 
 OE 
 
 IN WHICH THE 
 
 METHOD OF SOLVING ALL THE QUESTIONS CONTAINED 
 IN THAT WORK IS EXHIBITED AT LARGE. 
 
 designed 
 
 to facilitate the labour of teachers, and assist 
 
 those who have not the advantage of a 
 
 tutor's aid. 
 
 BY THOMAS T. SMILEY, 
 
 TEACHER. 
 
 Author of an Easy Introdaction to the Study of Geography. Also, 
 of Sacred Geography, for the use of Schools. 
 
 PiaatrrtjjJxta: 
 
 PUBLISHED AND FOR SALE BY J. GRIGG, No. 9, NORTH 4th St. 
 
 AND FOit SALE BY BOOKSELLERS AND COUNTRY 
 
 MERCHANTS GENERALLY IN THE SOUTHERN 
 
 AND WESTERN STATES. 
 
 jo Mpi ^'Vnci-i - 
 
 Qcil & Mechanical Engineer. 
 
 aAtf FRANCISCO, GAL. 
 
GiFT 
 
 Eastern District of Pennsylvania, to wU: 
 ********* BE IT REMEMBERED, That on the ninth 
 I T g * day of May, in the forty-ninth year of the Tnde- 
 I * * t pendence of the United States of America, A. D. 
 ********* 1825, John Grigg, of the said district, hath de- 
 
 Eosited in this office, the title of a book, the right whereof 
 e claims as proprietor, in the words following, to wit : 
 
 " A Complete Key to Smiley's New Federal Calculator, 
 or Scholar's Assistant; in which the Method of ►Solving all 
 the Questions contained in that Work is exhibited at large. 
 Designed to facilitate the labour of Teachers, and a?^sist 
 those who have not the advantage of a Tutor's aid. By 
 Thomas T. Smiley, Teacher. Author of An Easy Intro- 
 duction to the Study of Geography. Also, of Sacred Geog- 
 raphy, for the use of Schools." 
 
 In conformity to the act of the Congress of the Unitrd 
 States, entitled, " An Act for the encournj^tMncnt of learn- 
 ing, by securing the copies of maps, charts, and books, to 
 the authors and proprietors of sucii copies, during the times 
 therein mentioned." And also to the Act, entitled, "An 
 Act supplementary to an Act, entitled, ' An Act for tiie 
 encouragement of learning, by securing the copies of maps, 
 cuarts, and books, to the authors and proprietors of such 
 copies, during tlie times tlierein mentioned,' and extending 
 the benefits thereof to the arts of designing, engraving, and 
 etchings historical and other prints." 
 
 D. CALDWELL, C/erA:V ^/le 
 
 Eastern District of Pennsyhania. 
 
 Stereotyped by J. ilowc. 
 
3L> 
 
 
 
 
 
 
 nSo 
 
 CONTENTS. 
 
 
 
 
 
 
 
 
 
 Paffc 
 
 Simple Addition, 
 
 - 
 
 
 
 
 Multiplication, 
 
 . 
 
 
 
 
 7 
 
 Subtraction, 
 
 . 
 
 
 
 
 10 
 
 Division, 
 
 . 
 
 
 
 
 11 
 
 Long Division, - 
 
 - 
 
 
 
 
 13 
 
 Compound Addition, 
 
 - 
 
 
 
 
 20 
 
 Compound Multiplication, 
 
 . 
 
 
 
 
 26 
 
 Compound Subtraction, 
 
 - 
 
 
 
 
 33 
 
 Compound Division, 
 
 - 
 
 
 
 
 43 
 
 Reduction, 
 
 . 
 
 
 
 
 43 
 
 Single Rule of Three, - 
 
 . 
 
 
 
 
 61 
 
 Double Rule of Three, - 
 
 , 
 
 
 
 
 69 
 
 Practice, 
 
 - 
 
 
 
 
 73 
 
 Tare and Tret, - 
 
 . 
 
 
 
 
 87 
 
 Interest, - . 
 
 . 
 
 
 
 
 94 
 
 Compound Interest, 
 
 - 
 
 
 
 
 100 
 
 Insurance, Commission and 
 
 Brokage, 
 
 
 
 
 104 
 
 Discount, 
 
 - 
 
 
 
 
 lOG 
 
 Equation, 
 
 - 
 
 
 
 
 109 
 
 Barter, - 
 
 - 
 
 
 
 
 110 
 
 Loss and Gain, - 
 
 . 
 
 
 
 
 112 
 
 Fellowship, 
 
 . 
 
 
 
 
 IIG 
 
 Kxchange, 
 
 - 
 
 
 
 
 119 
 
 Vulgar Fractions, 
 
 . 
 
 
 
 
 121 
 
 Decimal Fractions, 
 
 . 
 
 
 
 
 127 
 
 Position, 
 
 ■- 
 
 
 
 
 132 
 
 Involution, or the Raising of Powers, 
 
 
 
 
 141 
 
 E/olution, or the Extracting 
 
 of Roots 
 
 1 " 
 
 
 
 t7>. 
 
 Alligation, 
 
 . 
 
 
 
 
 147 
 
 Arithmetical Progression, 
 
 . 
 
 
 
 
 149 
 
 Geometrical Progression, 
 
 - 
 
 
 
 
 151 
 
 Compound Interest by Decimals, 
 
 
 
 
 1.52 
 
 Annuities at Compound Interest, 
 
 
 
 
 ir;.3 
 
 Annuities in Reversion, 
 
 . 
 
 
 
 
 154 
 
 Perpetuities at Compound Interest, 
 
 
 
 
 ih. 
 
 Combination, 
 
 . 
 
 
 
 
 ih. 
 
 Permutation, 
 
 . 
 
 
 
 
 155 
 
 Duodecimals, 
 
 - 
 
 
 
 
 ib. 
 
 Promiscuous Examples, 
 
 " 
 
 
 * 
 
 
 158 
 
 iviS03795 
 
EXPLANATION OF CHARACTERS. 
 
 Signs. Significations. 
 
 = • Equal; as 20s. =£1. 
 
 -f Addition, (or more) as 6-f 2=8. 
 
 — Subtraction, (or less) as 8 — 2=6. 
 
 X Multiplication, (or multiplied by) as 6 X 2=12. 
 
 -^ Division, (or divided by) as 6-f-2=3. 
 
 : : : : Proportionally ; as 2 : 4 : : 6 : 12. 
 ^J or "^-J Square Root: as ^^64=8. 
 y Cube Root; as ^64=4. 
 
 A vinculum ; denoting the several quantities 
 
 over which it is drawn, to be considered 
 jointly as a simple quantity. 
 
JOHN S. PI^ELL. 
 
 QoS & Mechtudcal Engineer, 
 
 HAJA JfkiLf^CiaCO, 
 
 A KEY 
 
 CATi, 
 
 Etit S-ettt iFeTretal ealculatot^ 
 
 
 ~mt9®9*^ 
 
 
 
 SIMPLE ADDITION. 
 
 
 
 EXAMPLES. 
 
 
 
 (8) 4829 
 1234 
 6101 
 3014 
 5618 
 
 (9) 91769 
 14678 
 80032 
 71897 
 76989 
 
 (10) 
 (13) 
 
 (16) 
 
 876994 
 213678 
 482906 
 809769 
 376980 
 
 20796 
 
 335365 
 
 2760327 
 
 (11) 389261 
 789794 
 849798 
 487697 
 999996 
 948219 
 
 (12) 2136784 
 8297698 
 8297694 
 4897695 
 1234697 
 7092032 
 
 3769694 
 4976082 
 4569761 
 8213243 
 4876962 
 4876920 
 
 4464765 
 
 31956600 
 
 31282662 
 
 (14) 37856 
 
 975 
 
 1234 
 
 14 
 
 5612 
 
 2075 
 
 16287 
 
 (15) 378269 
 
 402607 
 
 702 
 
 1246 
 
 2132 
 
 45178 
 
 10276 
 
 141 
 
 5672 
 
 82971 
 
 34676 
 
 1459 
 
 427 
 
 12 
 
 64053 
 
 840410 
 
 125358 
 
 
 
 
 
 A 2 
 
 
 
6 
 
 SIMPLE ADDITION. 
 
 
 
 (17) 14 
 16 
 
 23 
 29 
 80 
 31 
 100 
 
 293 
 
 (21) 365 
 
 807 
 
 660 
 
 25 
 
 37 
 
 101 
 
 1895 
 
 (24) 35 ( 
 21 
 
 66 
 
 (18) 36 
 
 97 
 
 125 
 
 384 
 
 1176 
 
 1818 
 
 (19) 
 
 3797 
 
 9^ 
 
 2 
 
 75 
 
 876 
 
 9750 
 
 (20) 205 
 
 20 
 
 340 
 
 970 
 
 367 
 
 1001 
 
 3403 
 
 
 14595 
 
 
 (22) 300 
 
 75 
 
 2 
 
 47 
 
 33 
 
 9784 
 
 20150 
 
 765091 
 
 1075047 
 
 (23) 
 
 tSES. 
 
 (27) 60 
 
 25 
 
 125 
 
 216 
 
 416 
 
 75960800 
 
 225000 
 
 140 
 
 
 76185940 
 
 
 Miles, 
 
 (28) 37 
 
 33 
 
 40 
 
 35 
 
 145 
 
 
 1870529 
 
 
 PRACTICAL EXEBC 
 
 25) 275 (26) 30 
 196 12 
 
 5 
 
 471 — 
 
 g47 
 
 
 Sheep, 
 
 (29) A's 34 
 
 B's 47 
 
 C's 64 
 
 135 
 
 (30) 25 
 
 15 
 
 40 
 
 9 
 
 89 
 
 (31) 8 
 15 
 19 
 12 
 
 64 
 
 bar. $ 
 (32) 400 for 2000 
 550 2750 
 
 
 950 
 
 $4750 
 
 
 
 
 
 L 
 
 "*"" 
 
 "~" 
 
 
 
 
MULTIPLICATION. 7 
 
 MULTIPLICATION. 
 
 CASE L 
 
 EXAMPLES* 
 
 (8) 3948769768 (9) 87051298 (10) 976201698769 
 3 4 5 
 
 11846309304 
 
 348205192 
 
 488100849384{^ 
 
 (11) 456978426976 (12) 8079698769 (13) 97698429769 
 6 7 8 
 
 2741870561856 
 
 (14) 28769842369 
 9 
 
 258928581321 
 
 (16) 5697698976845 
 11 
 
 '62674688745295 
 
 (18) 84976876989 
 12 
 
 56560891388 
 
 781587438152 
 
 (15) 769829769478 
 10 
 
 7698297694780 
 
 (17) 7029876956 
 12 
 
 1019722523868 
 
 (20) 4218 (21) 7S21 
 
 84358523472 
 
 (19) 9021681409671 
 12 
 
 108260176916052 
 
 (22) 87692 (23) 95698 
 4 5 
 
 8436 
 
 21963 
 
 350768 
 
 478490 
 
 (24) 10691 (25) 31078 (26) 109019 (27) 900078 
 6 7 8 9 
 
 64146 
 
 217546 
 
 872152 
 
 8100702 
 
8 
 
 (28) 826870 
 10 
 
 MULTIPLICATION. 
 
 (29) 278976 
 11 
 
 (30) 12569769 
 12 
 
 8268700 
 
 (34) 39786948 
 197 
 
 3068736 
 
 150837228 
 
 CASE 2. 
 
 EXAMPLES. 
 
 (35) 4978829 
 408 
 
 (36) 8735698 
 570C 
 
 278508636 
 358082532 
 39786948 
 
 39830632 
 19915316 
 
 52414188 
 61149886 
 43678490 
 
 2031362232 
 
 7838028756 
 
 49845892788 
 
 (38) 49569876 
 4817 
 
 (37) 84016978 
 3761 
 
 (39) 9637842 
 9078 
 
 84016978 
 504101868 
 588118846 
 252050934 
 
 346989132 
 49569876 
 396559008 
 198279504 
 
 77102736 
 67464894 
 86740578 
 
 87492329676 
 
 315987854258 
 
 238778092692 
 
 (42) 11271 
 35 
 
 (40) 9786 
 13 
 
 29358 
 9786 
 
 (41) 8475 
 29 
 
 • 76275 
 16950 
 
 56355 
 33813 
 
 127218 
 
 245775 
 
 394485 
 
 '1 
 

 (43) 19004 
 305 
 
 MULTIPLICATION. 
 
 (44) 76976 
 489 
 
 9 
 
 (45) 84769 
 976 
 
 
 95020 
 57012 
 
 692784 
 615808 
 307904 
 
 608614 
 693383 
 762921 
 
 
 5796220 
 
 
 37641264 
 
 82734544 
 
 
 (46) 1978987 
 4809 
 
 
 (47) 
 49 
 
 9807094 
 6047 
 
 
 17810883 
 15831896 
 7915948 
 
 68649658 
 39228376 
 035470 
 
 
 9516948483 
 
 49496403418 1 
 
 
 (48) 37|00 
 2|00 
 
 CASE 3. 
 
 EXAMPLES. 
 
 (49) 4870 
 
 25|00 
 
 (50) 4087 00 
 906 000 
 
 
 740000 
 
 24350 
 9740 
 
 24522 
 36783 
 
 
 
 
 12175000 
 
 370282200000 
 
 
 (51) 876956 
 
 99 10000 
 
 
 
 7892604 
 7892604 
 
 
 868186440000 
 
 
 
10 
 
 SUBTRACTlOJs. 
 
 CASE 4. 
 
 exampj.es. 
 
 
 (53) 8976 
 6 
 
 (54) 769G (55) 87698 
 9 V 9 
 
 (56) 20784 
 12 
 
 5,3856 
 
 69264 789282 
 
 249408 1 
 
 8 
 
 9 8 
 
 9] 
 
 430848 
 
 62337G ■■■ '^' 6314256 
 
 2244072 
 
 (57) 81207 
 11 
 
 (58) ^7696 (59) 75687 
 
 12 - 7 
 
 1 „ , ; . . 
 
 (60) 34075 
 6 
 
 893277 
 
 572352 529809 
 
 204450; 
 
 12 
 
 12 8 
 
 e' 
 
 10719324 
 
 6868224 4238472 
 
 1226700' 
 
 
 PRACTICAL EXERCISES. 
 
 
 (61) ^25 
 5 
 
 (62)15 (63) g250 
 4 7 
 
 (64) gl50i 
 
 4\ 
 
 §125 
 
 (65) glOO 
 25 
 
 60 ^1750 
 
 {66) 18175 
 14 
 
 Or thus, 100 
 5 
 
 500 
 
 500 
 
 72700 
 
 200 
 
 5 
 g2500 
 
 18175 
 
 ^2500 
 
 254450' 
 
 
 .i*»9®d«^ 
 
 
 
 SUBTRACTION. 
 
 
 
 EXAMPLES. 
 
 
 (1) 859708 
 124978 
 
 (5) 0076048 (6) 
 
 5321478781 
 
 7940689 
 
 139876956 
 
 734790 
 
 1135359 
 
 392270922 
 
 -, ; ^ T-^l 
 

 DIVISION. 1 1 
 
 (7) 100000 
 84321 
 
 (8) 75381478 (9) 102070845 
 39040217 19768799 
 
 15671? 
 
 36341261 82302046 
 
 (10) 196 ( 
 37 
 
 159 
 
 11) 487 (12) 875 (13) 967 (14) 1001 
 96 302 351 487 
 
 391 573 616 514 
 
 (15) 9765 
 1307 
 
 8458 
 
 (16) 87696 (17) 455692 "* (18) 1000000 
 10091 300120 1 
 
 77605 155572 999999 
 
 PRACTICAL EXERCISES. 
 
 (19) 25 (20) 
 8 
 
 75 (21)7896 (22)4875 (23)1240 375 
 42 4389 2976 1082 567 
 ... .— .... .,_ 1 ,^10 
 
 17 
 
 33 3507 1899 ^158 
 
 _ Sum 1082 
 
 (24) 5487 
 2075 
 
 3412 
 
 325 (25) 25 containing 250 
 750 9 75 
 
 1000 
 
 16 175 
 
 2075 Sum. 
 
 
 .MH«Q9««»- 
 
 
 DIVISION. 
 
 
 EXAMPLES OF SHORT DIVISION. 
 
 ,(7) 2)56789^ 
 28394^ 
 
 mn (8) 3)3729768769 (9) 4)469769876 
 
 ^4 1243256256+1 117442469 
 
 , , - , , ^1 
 
12 
 
 DIVISION. 
 
 (10) 
 
 6)849768769 (11) 6)756976874 
 
 
 169953753+4 126162812+2 
 
 (12) 
 
 7)87694213628 (13) 8)80269687 
 
 (14) 
 
 12527744804 10033710+7 
 
 9)376948769 (15) 11)876956788 
 
 (16) 
 
 41883196+5 79723344+4 
 
 12)4976876946782 (17) 12)89769762048769 
 
 (18) 
 (21) 
 
 414739745565+2 7480813504064+1 
 
 2)3976 (19) 3)8769 (20) 4)47876 
 1088 2923 11969 
 
 5)8767 (22) 6)9698 (23) 7)97899 
 
 (24) 
 
 1753+2 1616 + 2 13985+4 
 
 8)80409 (25) 9)981021 (26) 10)897697 
 
 
 10051+1 109002+3 89769+7 
 
 
 (27) 11)9876978 28) 12)4967844 
 
 
 897907+1 413987 
 
 PRACTICAL EXERCISES. 
 
 (29) 2)12 (30) 7)350 (31) 8)8736 (32) 3)3966 
 6 50 4)1092 1322 
 
 
 273 
 
 ■ . ■ 
 
LONG DIVISION. 
 
 LONG DIVISION. 
 
 EXAMPLES. 
 
 13 
 
 (35) 13)875(67 
 78 
 
 95 
 91 
 
 (38) 28)1475(52 
 140 
 
 75 
 56 
 
 19 
 
 (41) 41)256976(6267 
 246 
 
 109 
 82 
 
 277 
 246 
 
 316 
 287 
 
 29 
 
 (36) 15)476(31 
 45 
 
 26 
 15 
 
 IT 
 
 (37) 18)958(53 
 90 
 
 58 
 54 
 
 (39) 31)4277(137 (40) 37)25757(695 
 31 222 
 
 117 
 93 
 
 247 
 217 
 
 30 
 
 335 
 333 
 
 227 
 
 222 
 
 (42) 48)337979(7041 
 336 
 
 197 
 192 
 
 59 
 48 
 
 11 
 
14 
 
 LONG 
 
 DIVISION. 
 
 (43) 59)997816(16912 
 59 
 
 (44) 98)999987695(10203956 
 98 
 
 
 407 
 
 199 
 
 
 354 
 
 196 
 
 
 538 
 
 387 
 
 
 531 
 
 294 
 
 
 71 
 
 936 
 
 
 59 
 
 882 
 
 
 126 
 
 549 
 
 
 118 
 
 490 
 
 
 8 
 
 595 
 
 
 
 588 
 
 7 
 
 (45)1 
 
 ^25)4697680424(3758144: 
 375 
 
 947 
 
 J (46) 396)387690204886(979015668 
 3564 
 
 3129 
 
 
 875 
 
 2772 
 
 
 726 
 
 3570 
 
 
 625 
 1018 
 
 3564 
 
 620 
 
 
 1000 
 
 396 
 
 
 180 
 
 2244 
 
 
 125 
 
 1980 
 
 
 554 
 
 2648 
 
 
 600 
 
 2376 
 
 
 542 
 
 2728 
 
 
 500 
 424 
 
 2376 
 
 3526 
 
 
 375 
 49 
 
 3168 
 
 358 
 
 
 
 
LONG DIVISION. 1 5 
 
 C47) 876)4876020048769(5560232932 (48) 1478)8769820000402(5933576454 
 4380 7390 
 
 4960 13798 
 
 4380 13302 
 
 ^37 
 
 5802 4962 
 
 5256 * 4434 
 
 5460 5286 
 
 5256 4434 
 
 2040 8520 
 
 1752 7390 
 
 2884 11300 
 
 2628 • 10346 
 
 2568 9540 
 
 1752 8868 
 
 8167 6724 
 
 7884 5912 
 
 2836 8120 
 
 2628 7390 
 
 2089 7302 
 
 1752 5912 
 
 1390 
 
16 LO^ 
 
 (49) S7G96)987G97G8720497(112G2 
 87696 
 
 \G DIVISION. 
 
 74501 (50)97680 
 
 89768214100( 
 30940 
 
 00O0)8976478976|000OC91896 
 87912 
 
 110737 
 87696 
 
 18527 
 9768 
 
 230416 
 175392 
 
 87598 
 78144 
 
 550248 
 526176 
 
 94549 
 87912 
 
 240727 
 175392 
 
 66377 
 58608 
 
 77696 
 
 653352 
 613872 
 
 )00(3242 Ans. 
 
 394800 
 350784 
 
 440164 
 438480 
 
 168497 
 87696 
 
 80801 
 
 (51) 1476980|00000)47 
 44 
 
 3588282 
 2953960 
 
 Rem 
 
 6343221 
 5907920 
 
 4353014 
 2953960 
 
 . 1399054 
 

 
 LONG DIVISION 
 
 .' 
 
 
 PRACTICAL EXERCISES. 1 
 
 (52) 
 
 45)9847(218 
 90 
 
 84 
 
 45 
 
 
 (53) 
 
 391)1259678(3221 
 1173 
 
 866 
 782 
 
 
 397 
 360 
 
 
 
 847 
 782 
 
 
 Rem. 37 
 
 
 
 658 
 391 
 
 Rem. 267 
 
 (54) 
 
 148)225476(1523 
 148 
 
 (55) 
 
 25)375(15 bushels. 
 25 
 
 
 774 
 740 
 
 
 
 125 
 125 
 
 
 347 
 296 
 
 
 
 
 
 516 
 
 444 
 
 
 
 
 
 Rem. 72 
 
 
 
 
 L= 
 
 
 
 
 
 B 2 
 
18 LONG DIVISION. || 
 
 (56) 75)87735840(1169811 
 75 
 
 127 
 75 
 
 (57) 49850)99700(2 
 99700 
 
 
 523 
 450 
 
 735 
 675 
 
 608 
 
 600 * 
 
 • 
 
 84 
 75 
 
 90 
 75 
 
 15 Rem. 
 
 
 When the divisor is the exact product of any two 
 ; figures multiplied together. 
 
 EXAMPLES 
 
 
 (61) 5)9756 (62) i 
 7)l951-fl 1st Rem. 
 
 ))8491 
 9)943+4 
 
 278+5 2d Rem. 
 X5 
 
 25+1=26 
 
 104+7x9+4=67 
 
 
 (63) 9)44767 (64) 
 
 7)92017 
 
 2)4974+1 Rem. 
 
 2487 
 
 1643+1x7+2=9 
 
 1 
 
LO:SG DIVISION. 19 
 
 (65) 11)55210 {6G) 6)38751 
 
 9)5019+1 8)6458+3 
 
 Rem. — Rem. 
 
 557+6X11+1=67 807+2x6+3=15 
 
 (67) 12)99876 (68) 12)379^7 
 
 9)8323 12)3163+11 
 
 — — Rem. : Rem. 
 
 924+7x12=84 263+7x12+11=95 
 
 PRACTICAL EXERCISES. 
 
 (69) 5)3775 (70) 12)480 (71) 12)14400 
 
 5)755 
 Ans. 151 
 
 8)40 
 Ans. 5 fe 
 
 12)1200 
 Ans. 100 
 
 (72) 12)1800 
 6)150 
 
 (73) 12)396 
 11)33 
 
 
 Ans. 25 
 
 Ans. ^3 
 
 
 EXAMPLES IN ADDITION, MULTIPLICATION, SUBTRACTION 
 
 AND DIVISION. 
 (I) 50 (2) 40 10 (3) 25000 
 
 50 20 10 13000 
 
 100 2)20 20 2)12000 
 
 —25 
 
 Ans. 10 g6000 
 75 Ans. — 
 
20 
 
 COMPOUND ADDITION. 1 
 
 (4) Bought 8200 Sold 3756 (5) 50)2450(49 mUes. Ans. 
 5000 4879 200 
 
 
 13200 8635 450 
 
 
 8635 450 
 
 Ans. 4565 1 
 
 («) 
 
 Bought 24 bags, containmg 3000 fe 
 Sold 15 1736 
 
 
 Remains 9 bags, containing 1264 ^ 
 
 (7) Days '365)2920(8 dols. per day. Yearly income 2920 
 2920 Spends yearly 1769 
 
 
 Savesper year $1151 
 
 
 i.. 
 
 
 -^©a*.^ 
 
 
 COMPOUND ADDITION. 
 
 
 l^'EDERAL MONEY. 
 
 
 EXAMPLES. 
 
 $ 
 
 ct8, m, $ cts. g cis. 
 
 (2) 46 
 79 
 
 75 5 (3) 37 68J (4) 72 62- 
 37 8 95 371 85 87l 
 
 43 
 
 50 43 25" 20 12| 
 
 97 
 
 37 5 79 . 56} 45 ISJ 
 
 
 91 37' 
 
 g267 
 
 00 8 g255 87i 42 68| 
 
 
 g440 06» 
 
 

 
 COMPOUND ADDITION 
 
 
 
 21 
 
 
 $ cts. 
 
 
 g 
 
 cts. 
 
 
 i 
 
 ' cU. 
 
 
 (5) 54 75 
 
 (6) 29 
 
 25 
 
 
 (7) 1 
 
 182 
 
 
 3^ 371 
 
 
 34 
 
 371 
 
 
 2 
 
 50 
 
 
 93 18|. 
 
 
 188 
 
 68| 
 
 
 
 871 
 
 
 149 871 
 
 603 68| 
 
 979 121 
 
 2194 181 
 
 
 265 
 1783 
 
 121 
 
 18| 
 
 
 1 
 
 93J 
 87o 
 68| 
 
 
 
 8579 
 
 56| 
 
 
 2 
 
 
 
 6 
 
 87i 
 
 
 
 372 
 87- 
 93i 
 
 
 
 
 
 
 
 
 
 
 g4012 18J 
 
 P 
 
 0887 
 
 06J 
 
 ^ 
 
 1 
 
 
 $ 
 
 els. 
 
 
 
 $13 
 
 25 
 
 
 Ct8, 
 
 
 
 (8) 5 
 
 00 
 
 
 
 (9) 
 
 1 
 
 871 
 681 
 
 
 
 18 
 
 60 
 
 
 
 
 1 
 
 
 
 8 
 
 87^ 
 
 
 
 
 
 
 433 
 
 
 
 1 
 
 18| 
 
 
 
 
 1 
 
 371 
 
 
 
 14 
 
 50 
 
 
 
 
 
 
 933 
 
 
 
 
 
 871 
 
 
 
 
 
 
 56J 
 
 
 
 5 
 
 371 
 
 87| 
 
 
 
 
 
 
 37f 
 3l| 
 
 
 
 7 
 
 
 
 
 
 
 
 
 20 
 
 00 
 
 STERLING MONEY. 
 
 
 
 121 
 
 
 
 ^82 
 
 18| 
 
 $l_ 
 
 683 
 
 
 
 
 
 
 
 EXAMPLES. 
 
 
 
 
 
 £ s. 
 
 d. 
 
 
 £ 
 
 *. d. 
 
 
 £ 
 
 *. rf. 
 
 
 (2) 7 9 
 
 6| 
 
 (3) 
 
 4 
 
 6 4 
 
 (4) 565 
 
 3 7 
 
 
 13. 7 
 
 
 47 
 
 19 7 
 
 
 382 
 
 13 5 
 
 
 4 5 
 
 2 
 
 
 159, 
 
 5 3 
 
 
 592 
 
 9 2 
 
 
 10 18 
 
 lOj 
 
 
 78 
 
 6 llj 
 
 
 856 
 259 
 
 17 3 
 9 8 
 
 
 Ans. 36 1 
 
 
 
 Ans. 
 
 289 18 IJ 
 
 
 
 An 
 
 3. 2656 1 
 
 3 1 
 
 
 
 
 
 
 
 
 
 
22 <^03irOl ND ADBITIOX. 
 
 
 
 _— 
 
 £ S. d. 
 
 £ s. 
 
 d. 
 
 
 £ s. 
 
 d. 
 
 (5) 142 16 7 (6) 
 
 763 7 
 
 4 
 
 (7) 69 18 
 
 7 
 
 489 3 4 
 
 39 4 
 
 9 
 
 
 175 2 
 
 6 
 
 726 15 9 
 
 162 17 
 
 2 
 
 
 1582 19 
 
 4 
 
 573 4 '8 
 
 459 15 
 
 
 
 
 175 13 
 
 9 
 
 628 12 6 
 
 473 12 
 
 8 
 
 
 143 13 
 212 
 
 8 
 7 
 
 Ans.2560 12 10 Ans. 18^8 16 
 
 11 
 
 
 Ans. 
 £ 
 
 2359 8 
 
 5 
 
 £ s. d. 
 
 
 
 s. d. 
 
 
 (8) 1776 12 8 
 
 
 (9) 
 
 985 
 
 4 9 
 
 
 412 16 5 
 
 
 
 186 
 
 13 4 
 
 
 369 7 2 
 
 
 
 1569 
 
 18 4 
 
 
 469 15 10 
 
 
 
 183 
 
 8 
 
 
 573 19 2 
 
 ^ 
 
 
 
 
 17 4 
 
 
 1987 14 8 
 
 
 
 
 
 7 
 
 
 4823 15 11 
 
 
 
 
 
 
 
 Ans. 
 EIGHT 
 
 2925 
 
 15 
 
 
 Ans. 10414 1 10 
 
 POIS WJ 
 
 
 
 
 
 AVOIRDU 
 
 T. cwt. qr. lb. oz, dr. 
 
 
 T. cwt. qr. lbs. oz. 
 
 dr. 
 
 (2) 7 11 2 16 4 13 
 
 (3) 12 
 
 16 
 
 1 19 15 
 
 
 
 15 7 3 8 16 7 
 
 
 114 
 
 io 
 
 2 12 4 
 
 13 
 
 138 19 1 12 8 13 
 
 
 72 
 
 4 
 
 2 24 14 
 
 3 
 
 42 8 3 19 12 4 
 
 
 176 
 
 15 . 
 
 3 4 15 
 
 11 
 
 357 6 2 8 3 3 
 
 
 
 
 
 
 Anp '^'^ft 
 
 7 
 
 2 6 1 
 
 11 
 
 Ans. 561 14 1 7 13 8 
 
 qr. lb. 
 
 
 
 
 
 z.dr. 
 
 
 
 
 T. cwt. 
 
 (4) 139 19 
 
 3 18 1 
 
 13 10 
 
 
 
 
 1754 10 
 
 2 11 
 
 2 14 
 
 
 
 
 27 , 3 
 
 14 11 
 
 
 
 
 13 
 
 13 
 
 
 
 
 Ans. 1922 6 
 
 .2 17 
 
 8 8 
 
 
 
 ^^i;^^,;^;^^ 
 
COMPOUND ADDITION. 23 
 
 
 TROY WEIGHT. 
 
 lbs. oz.dwts.gr. lbs. oz.dwts.gr. lbs.oz.dwts.gr. 
 
 (2) 185 2 19 20 (3) 16 4 18 6 (4) 172 11 19 22 
 
 56 9 15 6 7 9 11 22 12 4 13 12 
 
 1472 11 2 17 163 7 12 18 ' 18 5 11 20 
 
 385 ^5 / .17 13 ' 119 11 13 18 
 
 1 10 Pl ■ 7 I*'* -. -— .. n ^ T^ 
 
 
 ., , . ,, , Am 901 ini'i'^^ 010 90 
 
 
 Ann c>i in ft T? 1« 
 
 
 
 
 
 
 APOTHECARIES' WEIGHT. 
 
 fe 5 3B^r. ife 3 3 9g-r. ft 3 3 B^r. 
 
 (2) 84 .7 6 12 (3) 18 1 12 (4) 182 3 10 
 
 ■ 132 5 2 175 10 5 10 12 10 2 17 
 
 16 2 2 2 8 472 3 1 2 3 17 2 4 2 15 
 
 1427 6 7 19 11 7 2 10 2 1 19 
 
 Id 6 1 9 ■ 
 
 
 Ans.667 1 7 2 5Ans.212 5 1 1 11 
 
 
 
 
 LONG MEASURE. 
 
 yd. ft. 171. L. m.f, p. yd. ft. in. L. m. f. p. yd. ft. in. 
 (2) 3 2 11 (3)172 2 3 19 2 2 4 (4)462 17 29 1110 
 119 000 14 1 3 000110110 
 20 8 12290010 4 1 2 28 1 2 9 
 31 10 0040000 000 13 
 
 
 627 00 032 3Ans.46703 140 5 
 
 
 Ans.20 1 1 Ans. 173 1 4 23 210 6 
 
 
 CLOTH MEASURE. 
 
 E. E, qr, n, E,F. qr, n, 
 
 (2) 72 3 2 (3) 19 2 3 
 
 536 2 1 728 1 2 
 
 847 1 3 142 1 
 
 1453 2 816 
 
 41 2 32 1 2 
 
 
 Ans. 2951 Ans. 1739 
 
 
24 canrouAD addition 
 
 , 
 
 
 yd. qr. 
 
 (4) 19 2 
 
 14 2 
 
 32 
 
 3 
 
 142 3 
 
 na. E. 
 3 (5) 
 
 
 o 
 
 1 
 
 2 
 
 Fr. 
 
 143 
 
 17 
 
 172 
 
 182 
 132 
 
 72 
 
 qr. na, 
 
 3 
 
 2 2 
 
 1 1 
 1 3 
 
 3 2 
 1 1 
 
 Ans. 210 
 
 
 
 720 
 
 10 
 
 A. R. P. 
 
 (2) 487 2 17 
 
 25 3 28 
 e-V 32 
 45 1 16 . 
 
 26 29 
 
 LAND MEASURE. 
 
 A. r: p. 
 
 (3) 22 2 
 
 700 3^27 
 
 47 5 
 
 39 
 
 47 2 39 
 3 28 
 
 A 
 (4) 
 
 Ans 
 ( 
 
 Ai 
 
 A. R. P. 
 
 (4) 132 3 25 
 
 654 C 17 
 
 462 3 25 
 
 16 4 
 
 1665 3 38 
 
 Ans. 652 1 2 
 
 Lns. 2931 3 '29 
 
 Ans. 858 19 
 
 hhd. gal. qt. pt. 
 (2) 385 42 3 1 
 27 36 2 
 132 17 
 729 25 
 163 47 2 1 
 
 Ans. 1438 43 
 
 T. h. gnl.qt.pt. 
 
 862 10 10 
 32 1 
 37 2 
 32 1 
 2 1 
 
 LIQUID MEASURE. 
 
 T. h. gal. qt.pt. 
 
 (3) 19 2 19 
 
 45 Oil 
 
 3 17 2 
 
 21 1 
 
 Ans. 65 1 58 
 
 863 39 1 
 
 DRY MEASURE. 
 B. p. qt.pt 
 (3) 754 2 5 
 469 2 
 385 2 7 1 
 375 1 
 3 2 
 
 B. p. qt.pt. 
 (2) 47 '2 4 1 
 635 3 
 247 3 1 
 285 2 
 734 2 5 
 
 B.p. qt.pt, 
 
 4) 144 3 2 1 
 
 .0120 
 
 3 1 
 
 462 3 1 
 
 72 5 1 
 
 Ans. 1950 7 
 
 Ans. 1985 1 1 
 
 18. 680 fi 
 
 
 
 

 
 COMPOUND ADDITION. 
 
 25 
 
 
 
 TIME. 
 
 
 
 
 F. m. w?. 6?. 
 
 h. m. sec. 
 
 F. 
 
 m, w, d. h. m. sec. 
 
 (3) 
 
 172 1 
 
 4 62 (4) 
 
 462 
 
 4 5 37 24 
 
 
 
 
 34 18 
 
 62 
 
 11 24 
 
 
 15 4 5 
 
 3 27 
 
 
 
 15 13 
 
 Ans 
 
 13 
 
 21 35 18 
 
 
 
 6 1 4 13 12 37 
 
 187 4 3 2 
 
 5 37 28 Ans 
 
 524 
 
 10 3 3 6 3 25 
 
 MOTION, OR CIRCLE MEASURE. | 
 
 
 ^g,'> ' '' 
 
 sig.'> r 
 
 It 
 
 sig, « ' '' 
 
 (2) 
 
 2 7 32 16 
 
 (3) 5 10 46 
 
 38 
 
 (4) 45 
 
 
 5 27 24 
 
 11 37 
 
 18 
 
 1 9 18 
 
 
 1 6 17 13 
 
 1 47 
 
 12 
 
 14 21 34 
 
 
 7 38 24 
 
 
 
 18 
 
 2 8 13 54 
 
 
 4 5 42 19 
 
 2 
 
 52 
 
 4 7 12 19 
 
 
 
 1 15 12 23 
 11 57 '^Q 
 
 47 32 
 
 Ans 
 
 . 8 2 37 36 
 
 
 
 Ans. 8 10 20 37 
 
 
 
 Ans. 10 20 22 
 
 10 
 
 
 APPLICATION. 
 
 
 $ ds. 
 
 F. qr. 
 
 na. 
 
 B,p,qt, 
 
 fl) 
 
 375 45 
 
 (2) 57 2 
 
 
 
 (3) 2 2 
 
 
 142 371 
 1375 56| 
 
 29 3 
 
 2 
 
 3 3 5 
 
 
 45 1 
 
 
 
 3 1 1 
 
 
 
 32 3 
 
 38 2 
 
 1 
 
 
 2 4 
 
 Ans 
 
 18f}4 38^ 
 
 
 38 2 
 
 
 
 Ans. 113 2 
 
 A, n 
 
 Ans. 242 1 
 
 3 
 
 F. qr, na. 
 
 P. 
 
 
 
 (4) 142 2 
 
 
 
 (5) 
 
 15 3 
 
 
 32 3 
 
 12 
 
 
 18 1 2 
 
 
 108 3 
 
 18 
 
 Ans. 
 
 25 3 2 
 
 Ans. 284 30 
 
 60 
 
 
 
 
26 COMPOUND MULTIPLICATION. 
 
 M.fur, p. B. p, qt, 
 (6) 43 3 (7) 756 2 
 29 34 756 2 
 57 2 32 756 2 
 12 3 18 854 6 
 854 5 
 
 Ans. 142 2 4 
 
 Ans. 3977 3 2 
 
 COMPOUND MULTIPLICATION. 
 
 EXAMPLES. 
 
 FEDERAL MONEY. 
 
 $ ets. g cts. m. $ cLt. 
 
 (4) 26 18| (5) 100 40 4 (6) 66 18J 
 
 6 10 9 
 
 Ans. 157 12i Ans. 1004 04 Ans. 505 68J 
 
 $ da, m. $ ds. 
 
 (7) 26 37 5 (8) 665 62^ 
 
 8 12" 
 
 Ans. 203 00 Ans. 6787 50 • 
 
 ENGLISH MONFV. 
 
 £, s. d, £ s, d. 
 
 (2) 14 6 OJ (3) 111 11 101 
 
 9 lO"' 
 
 Ans. 128 14 2} Ans. 1115 18 9 
 
COMPOUND MULTIPLICATION. 271 
 
 £ 8. d. £ a, d, 
 (4) 37 6 91 (5) 66 ^8 7-J . 
 
 6" 9 
 
 Ans. 186 13 n\ 
 
 Ans. 507 17 9| j 
 
 AVOIRDUPOIS WEIGHT. 
 T.cwt. qr, Ih, oz, dr. qr, lb, oz, dr, 
 (2) 6 14 2 7 5 2 (3) 3 16 7 8 
 4 10 
 
 Ans. 26 18 1 1 4 8 
 
 Ans. 35 24 11 
 
 CwL qr, lb. 
 
 (4) 12 6 
 
 10 
 
 Cwt. qr. lb. 
 (5) 4 3 17 
 
 Ana. 15 2 4 
 
 ^. TROY \VI 
 U), oz.dwt.gr. lb. 
 (2) 43 8 10 (3) 113 
 4 
 
 Ans. 53 3 19 
 
 :IGHT. 
 
 oz.dwt.gr. lb. oz. dwt. 
 6 6 (4) 17 9 14 
 6 10 
 
 Ans. 172 1 13 16 Ans. 681 
 
 1 12 Ans. 178 1 
 
 lbs. oz.dvjt.gr. 
 (5) 41 6 18 2 
 
 lbs. oz. dwt. gr. 
 (6) 91 4 14 16 
 8 
 
 Ans. 291 6 14 Ans. 731 1 17 8 
 
 APOTHECARIES' WEIGHT. 
 Ik ^ 3 B gr. m ^ Z B gr. 
 (2) 63 10 2 12 (3) 17 5 6 1 4 
 9 12 
 
 Ans. 484 6 7 2 8 
 
 Ans. 209 9 4 2 8 1 
 
 -n .7--^ . . ^ r—T^, '! 
 
28 
 
 (4) 
 Ans. 
 
 (2) 
 
 Ans. 
 
 (4) 
 An. 
 
 1 
 (2) 
 
 Ans. 
 (5) 
 
 Ai 
 
 J 
 (?) 1 
 
 COMPOtlSD MULTIPLICATION. 
 
 Ife339 m ^ Z B gr. 
 
 76 4 1 2 .. (5) 95 1 2 1 11 
 9 11 
 
 687 1 7 
 
 Ans. 1046 2 3 2 1 11 
 
 LONG MEASURE. 
 L, J\l.fur,p. M,fur,p,yd,ft. in, 
 4 2 2 29 (3) 18 3 20 1 2 10 
 7 5 
 
 33 1 3 3 
 
 Ans. 92 1 21 31 2 2 
 
 6 40 7 
 10 
 
 M.fur. p. 
 
 (5) 44 6 20 
 
 7 
 
 3. 66 48 6 
 
 Ans. 31^ 5 20 
 
 CLOTH IVIEASURE. 
 iJ.^. qr. na, E,Fl. qr, na, E,Fr, qr. na. 
 
 37 4 2 (3) 18 3 (4) 14 1 3 
 8 12 9 
 
 63 1 Ans. 
 
 217 4 Ans. 129 3 
 
 Yds. qr. na. 
 19 1 2 
 5 
 
 E. E. qr. 
 
 (6) 56 3 
 9 
 
 18. "96 3 2 
 
 Ans. 609 2 
 
 LAND ISIEASURE. 
 l.R.P. A.R.P. A.R.P. A.R.P. 
 
 9 3 20 (3) 10 33 ■ (4) 1 3 11 (5) 63 3 18 
 6 9 10 11 
 
 Ans. 119 1 00 Ans. 91. 3 
 
 17 Ans. 18 30 Ans. 702 1 38 1 
 
 -7^-r— r^ '} 
 
COMPOUND MULTIPLICATION. 29 
 
 LIQUID MEASURE. 
 T, hhd, £^al. qt, pt. P. hhd. gal, qt, pt. 
 
 (2) 1 2 16 3 1 (3) 4 1 19 3 1 
 
 10 5 
 
 ins. 15 
 
 2 
 
 42 3 
 
 
 
 (4) 
 
 T. 
 
 3 
 
 h. gal. qt. 
 
 2 50 2 
 
 8 
 
 Ans. 
 
 29 
 
 2 26 
 
 
 
 Ans. 23 36 1 1 
 
 H. gal. qt. pt. 
 (5) 4 41 1 
 10 
 
 Ans. 46 33 1 
 
 DRY MEASURE. 
 Bu.pe. qt. pt. Bu. pe. qt. pt. 
 
 (2) 13 3 2 (3) 110 3 2 
 
 4 4 
 
 Ans 
 
 7 
 
 2 
 
 
 
 (4) 
 
 B. 
 
 A4. 
 
 ^0 
 
 qt. pt. 
 
 1 
 
 7 
 
 Ans. 
 
 308 
 
 
 
 3 1 
 
 Ans. 443 
 
 4 
 
 
 
 (5) 
 
 P. 
 
 3 
 
 qt. 
 1 
 9 
 
 ns. Bush. 
 
 7 
 
 1 
 
 TIME.- 
 
 Y. m* w. d. k.min.sec. W. d. h. 
 
 (2) 17 8 2 6 4 40 18 (3) S 5 22 
 
 6 12 
 
 Ans. 106 
 
 
 
 1 
 
 2 
 
 4 
 
 1 
 
 48 
 
 (4) 
 
 F. 
 
 7 
 
 m. 
 
 
 w. 
 4 
 
 4 
 
 
 
 
 Ans. 
 
 63 
 
 10 
 
 1 
 
 1 
 
 
 Ans. 46 
 
 1 
 
 
 
 Y. m. 
 
 (5) 16 2 
 
 w. 
 
 
 d. 
 6 
 8 
 
 A.ns. 121 4 
 
 2 
 
 6 
 
 TT*" 
 
30 
 
 (2) Multiply 
 
 Ans. 1 
 
 t 
 (4) 44 
 
 COMP(5UN] 
 
 £ S. d, 
 ^ 37 10 6| 
 6X 
 
 a MULT] 
 
 RULE 
 
 EXAMPL 
 
 by 48 
 :8=48 
 
 56 
 =56 
 
 120 
 =120 
 
 Ai 
 
 4 
 .54 
 
 PLICATION. 
 
 2. 
 
 ES. 
 
 % Cts. 7/1. 
 
 (3) 66 37 5 by 36 
 6X6=36 
 
 
 225 
 
 'f 
 
 398 25^0 
 6 
 
 
 801 
 
 r 
 
 Ans.^2389 50 
 
 
 cts, 
 
 25 
 
 m. 
 3 by 
 7X8= 
 
 (5) 12 18J by 96 
 12K8=96 
 
 
 309 
 
 77 
 
 I 
 8 
 
 146 25 
 8 
 
 
 Ans. 2478 
 
 16 
 
 8 
 
 Ans. 1170 00 
 
 
 (6) 45 
 
 6 
 
 d. 
 
 9* by 
 12X10= 
 
 £ s. d. 
 (7) 96 12 3| by 144 
 12X12=144 
 
 
 544 
 
 1 
 
 6 
 10 
 
 1159 7 9 
 12 
 
 
 Ans. 5440 
 
 15 
 
 
 
 IS. 13912 13 
 
 
 A. 
 
 (8) 47 
 
 R, 
 
 3 
 
 P. 
 
 20 by 5 
 6X9= 
 
 (9) 48 7 25 by 88 
 11X8=88 
 
 538 3 35 
 8 
 
 
 287 
 
 1 
 
 
 
 9 
 
 
 Ans. 2585 
 
 1 
 
 
 
 Ans. 4307 7 
 
 
 
 
 
 
 

 COMPOUND MULTIPLICATION 
 
 31 
 
 
 
 I 
 
 lb. 
 
 0) 56 
 
 oz 
 9 
 
 .dr. 
 6 by fi 
 12X7= 
 
 4 
 84 
 
 
 681 
 
 9 
 
 
 
 7 
 
 \n^. 4772 
 
 3 
 
 
 
 
 RULE 3, 
 
 
 
 
 EXAMPLES. 
 
 
 
 (2) Multiply 7 
 
 Cts. 
 
 871 
 11x4+3- 
 
 (3] 
 
 47 
 
 28 
 
 cts. 
 
 68f 
 11x6+2=68 
 
 86 
 
 62^ 
 4 
 
 ■&5k 
 
 Ans. 
 (5) 
 
 Ans 
 
 315 
 
 56» 
 6 
 
 346 
 23 
 
 50 
 62| 
 
 1893 
 57 
 
 371 
 37| 
 
 Ans. 370 
 (4) 49 
 
 l^ 
 
 cts. 
 
 75X3 
 
 12 
 
 1950 
 
 75 
 
 $ 
 94 
 
 18JX1 
 10 
 
 597 
 
 00 
 
 941 
 
 '? 
 
 4179 
 149 
 
 00 
 25 
 
 2825 
 94 
 
 62i 
 18| 
 
 Ans. 4328 
 
 25 
 
 ;. 2919 
 
 81J 
 
 
 
32 
 (6) 
 
 Ans. 
 (8) 
 
 Ans. 
 (10) 
 
 Ai 
 
 COMPOUND MU 
 
 $ cts, 
 42 31J-X3 
 11 
 
 LTIPLICA 
 
 (7) 
 
 Ans. 
 (9) 
 
 Ans 
 
 (") 
 
 Ans. 
 
 noN. 
 
 £ 
 
 28 
 
 *. d. 
 7 6iXl 
 4 
 
 465 
 
 43J 
 5 
 
 113 10 2 
 
 7 
 
 2327 
 126 
 
 18| 
 93J- 
 
 794 11 2 
 28 7 6J 
 
 2454 
 
 12^ 
 
 822 18 81 
 
 34 
 
 s. d. 
 8 4|X1 
 11 
 
 Cwt. 
 7 
 
 (^r. lb. 
 3 22X1 
 10 
 
 378 
 
 12 A\ 
 6 
 
 79 
 
 1 24 
 6 
 
 2271 
 34 
 
 14 li 
 8 4| 
 
 397 
 
 7 
 
 1 8 
 
 3 22 
 
 2306 
 
 2 6| 
 
 5. 405 
 
 1 2 
 
 lbs 
 12 
 
 . OS, dwts, 
 5 8X3 
 12 
 
 Jtf. 
 
 4 
 
 6 21X3 
 12 
 
 149 
 
 4 16 
 3 
 
 67 
 
 6 12 
 7 
 
 448 
 37 
 
 2 8 
 4 4 
 
 404 
 14 
 
 4 4 
 3 23 
 
 IS. 483 
 
 G 12 
 
 418 
 
 7 27 
 
 
 
 
 
(2) Multiply 
 1 
 
 COMlhJUND MULTIPLICATION 
 
 RULE 4. 
 
 EXAMPLES, 
 
 1 56^X6 (3) 2 
 10 
 
 33 
 
 Ct8. 
 
 871X6 
 10 
 
 
 5 65X5 
 10 
 
 28 
 
 75X7 
 10 
 
 
 15 
 
 6 30 
 
 4 
 
 287 
 
 50 
 5 
 
 
 626 00 
 
 78 25 
 
 9 39 
 
 1437 
 
 201 
 17 
 
 50 
 
 25 
 25 
 
 
 AUB. 713 64 
 
 Ans. 1656 
 
 00 
 
 
 (4) 4 
 
 cts, 
 
 31^X9 
 
 10 
 
 (5) 18 
 
 Ci8. 
 
 93JX7 
 10 
 
 
 43 
 
 121X7 
 10 
 
 189 
 
 371X5 
 10^ 
 
 
 431 
 
 25 
 6 
 
 1893 
 
 75 
 4 
 
 
 2587 
 
 301 
 
 38 
 
 50 
 
 86^ 
 
 81| 
 
 . 7575 
 946 
 132 
 
 00 
 
 871 
 
 56| 
 
 
 Ans. 2928 
 
 18| 
 
 Ans. 8654 
 
 433 
 
 
 
 
34 
 (6) 
 
 Ans. 
 (8) 
 
 Ans 
 
 25 
 
 CO^irOUND 
 
 cts. 
 
 43JX9 
 
 10 
 
 MULTIPLICATION. 1 
 
 $ Cts. 1 
 (7) 1JX6 II 
 
 II 
 
 254 
 
 371X7 
 10 
 
 
 
 171X6 
 10 
 
 2543 
 
 75 
 8 
 
 1 
 
 75X2 
 10 
 
 20350 
 1780 
 
 228 
 
 00 
 
 621 
 
 03| 
 
 17 
 
 35 
 3 
 1 
 
 Ans. 39 
 
 £ 
 
 (9) 37 
 
 50 
 
 2 
 
 00 
 50 
 00 
 10^ 
 
 65| 
 
 s. d. 
 18 6{X5 
 10 
 
 223'59 
 
 56J: 
 
 10 
 
 cU, 
 
 161X9 
 
 10 
 
 101 
 
 65X3 
 10 
 
 379 
 
 6 21X7 
 10 
 
 1016 
 
 50 
 
 9 
 
 87S2 
 
 12 !• 
 3 
 
 9140 
 
 304 
 
 91 
 
 50 
 
 95 
 481 
 
 ^ 11377 
 
 2654 
 189 
 
 16 3 
 16 64 
 12 7| 
 
 . 9544 
 
 93J 
 
 'Ans. 14222 
 
 5 3J 
 
 
 
 
 
£ s. d, 
 (10) 48 14 21x9 
 10" 
 
 COMPOUND MUIiTirLICATION. 
 
 36 
 
 487 
 
 2 IX 
 10 
 
 4871 
 
 10 
 
 4 
 
 19484 
 
 3896 
 
 438 
 
 3 4 
 
 16 8 
 7 101 
 
 Ans. 23819 
 
 7 101 
 
 (12) 
 
 £ 8. d, 
 
 58 9 6fX6 
 10 
 
 584 15 71x9 
 
 lo' 
 
 5847 16 3 
 3 
 
 17543 8 9 
 5263 71 
 350 17 41 
 
 Ans. 23157 6 9 
 
 £, s. d, 
 64 2 8X5 
 10 
 
 641 6 
 
 6X 
 10 
 
 6413 6 
 
 6 
 5 
 
 32066 13 
 
 3206 13 
 
 320 13 
 
 4 
 4 
 4 
 
 Ans. 35594 
 
 
 
 M, /. p. 
 (13) 25 3 18X5 
 10 
 
 254 2 20X6 
 
 lb 
 
 2543 
 
 1 0X2 
 10 
 
 25430 10 
 
 5086 2 
 
 1525 7 
 
 127 1 10 
 
 Ans. 32170 4 10 
 

 
 
 
 36 
 
 F. 
 
 (14) 48 
 
 COMPOUND MTJLTIPLICA 
 
 in.b.c. Yd. gr.n. 
 42x7 (15)2221X4 
 10 10 
 
 rioN. 
 
 Hhd.gal.qt. 
 (16) 4 37 2by 4250 
 10 
 
 45 60 0X5 
 10 
 
 483 10 2X8 
 10 
 
 225 2 2 
 10 
 
 4838 10 2X5 
 10 
 
 2256 10X2 
 10 
 
 459 33 0X2 
 10 
 
 48388 10 2 
 2 
 
 22562 2 
 3 
 
 4595 15 
 4 
 
 96777 
 
 24194 
 
 3871 
 
 338 
 
 91 
 51 
 1 1 
 
 82 
 , An 
 
 67687 2 
 
 4512 2 
 
 90 10 
 
 18380 GOO 
 919 3 
 229 48 
 
 s. 72290 1 Ans 
 
 . 19529 48 
 
 Ans.125182 
 
 02 
 
 APPLICATION. 
 
 gl.07 (3) $5 
 9 
 
 .62J (4) gl.l2l 
 12 
 
 (1) $12.50 
 
 (2) 
 Ans. 
 
 s. d, 
 
 2 2 by 
 7 
 
 Ans. 62.50 
 
 9.63 Ans. 67.47 6.75 [1 
 
 £ 
 
 (5) 
 
 63 (6) 3 
 
 -X 
 
 Ans. 27.00 
 
 871 by G 1 
 8 
 
 15 2 
 9 
 
 31 
 
 00 
 8 
 
 Ans. 6 16 6 
 
 Ans. 248 
 
 00 
 
$ 
 
 (7) 
 1 
 
 COMrOUND MULTIPLICATIOrf, 
 
 C«*. £ S, d, $ 
 15^X6 (8) 1 3 (9) 9 
 10 12 
 
 37 
 
 ds. 
 
 10X5 
 
 10 
 
 521 
 10" 
 
 
 
 15 
 
 
 11 
 
 91 
 
 0X6 
 10 
 
 15 
 
 
 25 
 
 911 
 
 Ans. 8 
 
 5 
 
 
 
 910 
 
 
 3 
 
 acre X 5 
 
 ^ 
 
 A 
 
 $ 
 (11) 1 
 
 Ans. 10 
 
 161 
 
 2730 
 
 546 
 
 45 
 
 
 
 
 50 
 
 £ 
 
 (10) 
 
 s. d. 
 9 6 per 
 10 
 
 n3.332i 
 
 50 
 
 ds. 
 
 18|X7 
 
 10 
 
 le cost. 
 
 4 
 
 15 0X2 
 10 
 
 11 
 
 871X1 
 10" 
 
 47 
 
 10 
 3 
 
 118 
 
 75 
 
 2 
 
 142 
 9 
 
 2 
 
 10 
 10 . 
 
 7 6 
 
 237 
 
 11 
 
 8 
 
 50 
 
 871 
 
 31J 
 
 Ans. 154 
 
 7 6 
 
 ins. 257 
 
 68| prin 
 
 
 
 IT 
 
38 COMPOUND SUBTKACTIOI^. 
 
 Again: $\ 37^X7 
 10 
 
 13 
 
 75X1 
 10 
 
 137 
 
 50 
 
 2 
 
 275 
 
 13 
 
 9 
 
 00 
 75 
 621 
 
 g298 
 
 g257 
 
 g40 
 
 37» sold for. 
 681 prime cost. 
 
 68J gain. 
 
 COMPOUND SUBTRACTION. 
 
 EXAMPLES. 
 
 FEDERAL MONEY. 
 
 g ds.m, ^ cts, $ cts^, 
 
 (2) From 24 60 7 (3) 60b 62^ (4) 110 ISf 
 
 Take 19 30 : U^s' 99 10| 
 
 
 Ans. 5 30 
 
 7 
 
 (5) 
 
 $ ds, m. 
 
 960 10 2 
 
 9 
 
 
 Ins 
 
 . 960 09 3 
 
 
 
 Ans. 5 
 
 $ 
 449 
 
 1 
 
 98 87^ 
 
 (6) 
 
 ds. 
 621 
 06| 
 
 Ans. 
 
 448 
 
 55J 
 
 Ans. 11 81 
 
 $ ds. 
 (7) 1866 00 
 
 Ans. 1587 88| 
 
COMPOUND SUBTRACTION. 
 
 $ ds. $ els, m. 
 (8) 104 06* (9) 4010 14 4 (1 
 9J 1011 12 5 
 
 0) 
 ns. 
 
 7 
 8 
 
 $ 
 400 
 
 211 
 
 3d 
 
 cts, 
 00 
 121 
 
 Ans. 103 961 Ans. 2999 
 
 1 9 A 
 
 188 
 
 d, 
 6 
 
 H 
 
 871 
 
 ENGLISH MONEY. 
 £ s. d, £ 
 
 (2) 47 6 7| (3) 419 
 28 5 101 227 
 
 Ans. 19 9J 
 
 Ans. 191 
 
 18 
 
 8f 
 
 £ s. d, 
 (4) 1000 11 113 
 200 9 
 
 £ 
 
 (5) 1000 
 60 
 
 s, 
 2 
 
 7 
 
 d. 
 
 51 
 
 Ans. 800 2 11| 
 
 Ans. 939 
 
 14 
 
 n 
 
 AVOIRDUPOIS VVEIOHT. 
 T, cwt. qr, lb, oz, dr, cwt, 
 (2) 18 16 1 16 9 2 (3) 9 
 19 3 20 6 
 
 qr, lb. oz 
 3 20 2 
 
 2 23 5 
 
 Ans. 17 16 1 24 8 12 
 
 Ans. 9 
 
 24 13 
 
 T, cwt, qr, lb, 
 (4) 14 10 2 16 
 
 n ^g^^ 
 
 Cwt 
 (5) 400 
 
 . qr 
 
 3 
 
 .lb. 
 
 
 
 14 
 
 Ans. 14 10 2 5^^^^ 
 
 Ans. 397 
 
 
 
 14 
 
 TROY WEIGHT. 
 
 lb. oz, dwt.gr, lb. oz. 
 
 (2) 8 3 2 (3) 106 
 
 2 1 18 6 10 6 
 
 dwi 
 
 
 2 
 
 15 
 
 20 
 
 Ans. 6 1 1 20 
 
 Ans. 95 5 
 
 17 
 
 19 
 
 
 
 
 
 
40 COMPOUND SUBTRACTION. 
 
 lb. oz.dwt,<^r. 11). oz.dwt.gr, 
 
 (4) 22 12 ^6 (3) 16 
 
 14 6 110 12 11 10 11 
 
 Ans. 7 6 16 Ans. 3 9 13 
 
 APOTHECARIES' WEIGHT. 
 
 Ife339^. fe53 ife33 
 
 (2) 48 9 6 1 4 (3) 59 1 2 (4) 69 
 
 1 10 2 8 63 7 5 14 9 1 
 
 Ans. 46 11 5 1 16 Ans. 5 5 5 Ans. 54 2 7 
 
 CLOTH IVIEASURE. 
 
 yd. qr.nci. yd.qr.na. E.E.qr.na. E.F.qr. 
 
 (2) 950 12 (3) 49 2 (4) 66 4 (5) 44 1 
 
 19 2 3 16 2 1 17 2 19 2 
 
 Ans. 930 2 3 Ans. 32 2 1 Ans. 49 3 2 Ans. 24 2 
 
 E.Fl. qr. Yd. qr. na. Yd. qr. na, 
 
 (6) 963 1 (7) Bought 17 2 (0) 75 3 1 
 
 174 2 Damarred 2 3 1 1 
 
 Ans. 788 2 Remains good 14 2 3 Ans. 75 3 
 
 LpNG MEASURE. 
 Dcs:;. m . fur. p. M.fur. p. 
 
 (2) 20 50 4 20 (3) Travels first day 43 5 20 
 11 56 30 second do"^. 32 4 00 
 
 Ans. 8 54 3 30 Ans. 11 1 20 more. 
 
 LAND MEASURE. 
 
 A. R. P. A. R. P. 
 
 (2) 502 2 10 (3) 69 1 ^3 
 
 111 3 9 17 3 2 
 
 Ans. 390 3 1 Ans. 51 2 1 
 
m 
 
 COMPOUND SUBTRACTION. 
 
 ^ LIQUID MEASURE. 
 
 T, khd. gaL qt. pL Hhd, gal, 
 
 100 -1 19 ^ 1 (3) 2 
 
 99 1 28 3 1 29 
 
 41 
 
 Ans. 
 
 3 
 
 Ans. 1 34 
 
 (4) From I pipe of wine, which is 126 ffals., subtract 93, 
 
 leaves 33 gals, of wine. Then from 4 nhds. of brandy, 
 
 subtract 29 gals., leaves 223 of brandy. Then from2 bbls. 
 
 of beer, subtract 1, leaves 1 barrel, which is 31i gals. 
 
 Answer, 33 gals, wine, 223 gals, brandy, 31^ gals. beer. 
 
 DRY MEASURE 
 
 J5. p. qLpt. B. p. qUpL B. p. qt.pt. 
 
 (2) 10 I (3) 695 3 1 (5) 600 2 7 1 
 
 9 2 6 1 589 3 5 146 3 2 1 
 
 Ans. 
 
 12 Ans. 105 3 3 1 Ans. 453 3 5 
 
 TIME. 
 
 H. min, sec. 
 
 (2) 16 29 33 
 
 7 36 44 
 
 Y. m. Wr 
 
 (3) 18 11 2 
 
 9 10 3 
 
 Ans. 8 52 49 
 
 F. m. IV. d, 
 
 (4) 900 
 
 111 6 2 6 
 
 (5) 
 
 Ans. 788 6 1 1 
 
 Ans. 9 
 
 
 
 3 
 
 y. m. 
 6 
 1 1 
 
 
 
 1 
 
 d. h. 
 
 
 
 1 1 
 
 s. 4 10 
 
 2 
 
 5 23 
 
 MOTION, OR CIRCLE MEASURE. 
 sig. ^ ' " sig. "^ ' " sig, ** ' " 
 
 (2) 9 7 40 8 (3) 10 10 16 12 (4) 11' 2 5 14 
 7 9 57 19 7 24 37 59 ; .907 20 
 
 Ans. 1 27 42 49 Ans. 2 15 38 13 Ans. 2 1 52 $A 
 
 T>% 
 
APPLICATI(»r. 
 
 (1) 6 feet of chain at $2,75 
 
 per foot = $16 59 
 A gold ring for 4 50 
 Ear-rings 12 00 
 
 42 
 
 COMPOUND SITBTR ACTION. 
 
 g33 00 whole amount. 
 Ring 4 50 has been returned. 
 
 To receive $28 50 
 
 (2) 
 
 2 doz. pairs at 75 cts. 
 
 16 yds. at 87| — 
 
 28 do. at 22 — 
 
 5 pair at 31 J — 
 
 Amount 
 Note delivered 
 
 Must be returned 
 
 A, R, P. 
 
 (.3) 1 St tract contains 690 2 16 
 
 2d do. do. 400 
 
 3d do. do. 63 3 21 
 
 4th do. do. 63 3 24 
 
 $ cts. 
 
 :7= 18, 00 
 
 =r= 14 00 
 
 rrr 6 16 
 
 1 
 
 56J 
 
 39 
 50 
 
 72| 
 00 
 
 10 
 
 27J 
 
 £ s. d. 
 
 (4) 55 6 7 
 
 41 4 6 
 
 75 
 
 Collected 171 11 1 
 
 In the whole 1218 1 24 Lost 40 6 
 
 Sold 200 00 
 
 I have 131 5 1 
 
 Remains 
 
 1018 1 24 
 
 Bu,p. 
 (5) Bought 400 3 of wheat, 
 Sold 225 1 do. 
 
 Remaining 175 2 
 
 Bu. p. Bit. p. 
 
 160 Oof rye, 150 2 of oats, 
 
 37 2 do. 78 3 do. 
 
 122 2 71 3 
 
COMPOUND DIVISION. 43 
 
 COMPOUND DIVISION. 
 
 EXAMPLES. 
 
 $ cls, $ ' cts, $ ch. 
 
 (3) 3)366 18 J (4) 6)384 S^ (5) 8)496 75 
 
 Ans. 64 141-f 2 Ans. 62 09|-f 4 
 
 tf cts* ^ cts* ^ cts, 
 
 (6) 9)587 68J (7) 11)976 43J (8) 12)1979 331 
 
 Ang. 65 293-f 4 Ans. 88 76^-f 9 Ans. 164 94-J-f 4 
 
 £ s. d. £ s, d. 
 
 (9) 3)560 9 7 (10) 5)475 19 •9J 
 
 Ans. 186 16 6J-f 1 Ans. 05 3 ll^J-fl 
 
 £ ,9. d, £ s. d, 
 
 (11) 8)596 15 61 (12) 12)756 4 llj 
 
 Ans. 74 11 ll|-f2 
 
 Cwt, qr, lb, , ' Cwf, qr, lb. Yds. qr. nn, 
 
 (13)5)45 3' 27 (14) 9)10 \b (13) 7)44 J 2 ■ 
 
 Ans. 9 22+1 Ans. 1 14-f-l Ans. 6 1 l-f3 
 
 Yds, qr, na. M. fur, p, JSl. fur, p, 
 
 (16)11)56 3 3 (17) 12)105 5 22 (18) 6)45' 7 18 
 
 Ans. 5 2-f9 Ans. 8 6 18+6 Ans. 7 5 9+4 
 
 When the divisor exceeds 12, but is the exact product 
 of any two figures in the multiplication table. 
 
 $cts.m. $cts,m. 
 
 (19)6 )45 66 5 ;(20) 4)98 77 8 
 
 6l7]r0+5 ^^^ 11)5^+2 ^^^^ 
 
 Ans. 126 8+2x0+5=17 Ans. 2 24 4+10x4+2=42 
 
44 COMPOUND DIVISION. 
 
 ^cis.m, $ cts, 
 
 (21)12)77 87 5 (22) 12)288 68| 
 
 8)6 48 9+7 9)24 05l-fl 
 
 Rem. Rem. 
 
 Ans. 81 l+lXl2+7=19An».2 67|-f lXl2-f 1=13 
 
 ds. m. 
 (23) 12)^6 37 5 
 
 11)41 36 4+7 
 
 Ans. 3 76 0+4x12+7=55 Rem. 
 
 £ s. d. 
 (24) 4)87 19 44 
 
 8)21 19 10+2 
 
 Ans. 2 14 11 + 6x4+2=2/ qrs.r=:J+2 Rem. 
 
 £ s. d. £ 8, d. 
 
 (25)3)55 4'7| (26)8)97 15 6} 
 
 7)18 8 21+1 7)12 4 5}+l 
 
 . 1 Rem. ; Rem. 
 
 Ans. 2 12 7+6x3+1=19 Ans. 1 14 11+1x8+1=9 
 
 H}id.gal. qt. JThi.gaX. qU 
 
 (27)7)44 28 2 (28) 12)150 47 3 
 
 9)622042 10)12351+11 
 
 Rem. Rem. 
 
 Ans. 0441 + 7X7+2=51 Ans. 1 160 + 5x12+11=71 
 
COMPOUND DIVISION. 45 
 
 When the divisor exceeds 12, and is not the product 
 of any two figures in the multiplication table. 
 
 ^ cts. ^ cts, m, 
 (31)78)196 75(2 52 2 An 3. 
 156 
 
 $ cts, $cts,m, 
 (32) 97)496 871(5 12 2 
 485 
 
 78)4075(52 cts. 
 3900 
 
 97)1187(12 cts. 
 97 
 
 175 
 
 217 
 
 156 ' 
 
 194 
 
 78)190(2 mills. 
 156 
 
 23 
 10 
 
 Rem. 34 
 
 97)235(2 mills. ] 
 194 
 
 
 41 Rem. 
 
 g cts, $Ct9, 
 (38)123)376 811(3 06| An? 
 369 
 
 £ s, d,£ s. d. 
 .(34)87)44 7 6(0 10 2\ Ans. 
 20 
 
 123)781(6 cts. 
 738 
 
 87)887(10 shillings. 
 87 
 
 43 
 
 17 
 
 4 
 
 12 
 
 123)172(1 
 123 
 
 87)210(2 pence. 
 174 
 
 49 Rem. 
 
 36 
 
 4 
 
 
 S7)144(1 farthing. 
 87 
 
 
 57 Rem. 
 
46 
 
 
 COMPOUND DIVISION. 
 
 £ », d,£ f. d. 
 
 (35) 
 
 
 148)156 15 8|(1 1 2J nearly, Ans. 
 148 
 
 8 
 
 20 
 
 148)175(1 shilling. 
 148 
 
 27 
 12 
 
 148)382(2 pence. 
 
 296 
 
 
 
 36 
 4 
 
 147 
 148 
 
 PRACTICAL EXAMPLEg, 
 
 $ 
 
 ds. 
 
 «»• i! dt, t di. 
 
 (1) 6)47 
 
 87 5 • (2) 112)64 81}(o 57j Ans. || 
 
 
 
 
 
 - 100 
 
 *P_ 
 
 97 
 
 9+1 
 
 - 112)6481(57 ct«» 
 
 Ans. 1 
 
 99 
 
 4-f3x6-f.l=:l^Eem. 560 
 
 
 
 881 
 
 
 
 784 
 
 
 
 97 
 
 
 
 4 
 
 
 
 U2)389(S 
 
 
 
 336 
 
 
 
 43 Rem. 
 
C03tP0Uril> DIVIBION. 
 
 47 
 
 (3) 72)56 25(0 78 1 An&. 
 100 
 
 $ cts.$ct8.m. 
 (4) 63)125 00(1 98 4 Ans. 
 63 
 
 72)5625(78 
 
 Ct8» 
 
 63)6200(98 cts. 
 
 504 
 
 
 567 
 
 685 
 
 
 530 
 
 576 
 
 
 504 
 
 9 
 
 
 26 
 
 10 
 
 
 10 
 
 72)90(1 
 
 mill. 
 
 63)260(4 miUs 
 
 72 
 
 
 252 
 
 18 Rem. 8 Rem. 
 
 £ s. d. 
 (5) 4)18 17 6 
 
 Ans. 4 14 4| 
 
 £ s. d, £ s. <?. 
 (7) 1000)576 18 9^(0 11 4| Ans 
 20 
 
 1000)11358(11 shillings. 
 1000 
 
 $ cts, g cts. 
 
 (6) 125)1875 81 1-(15 00^ Ans. 1358 
 125 1000 
 
 625 
 625 
 
 125)00081(00 cts. 
 4 
 
 125)325(2 qra. 305 
 
 250 4 
 
 358 
 12 
 
 1000)4305(4 pence. 
 4000 
 
 75 R6m. 1000)1222(1 farthing. 
 
 1000 
 
 222 Rem. 
 
48 
 
 
 REDUCTION. 
 
 
 Gal.qt.pLG 
 (8) 89)150 2 1(1 
 89 
 
 ,qtpL a I 
 2 1 Ans. (9) 19)9 
 4 
 
 jrJb.C.qr.lb. 
 
 I 25(0 1 27 Ans. 
 
 61 
 
 4 
 
 
 
 19)37(1 
 19 
 
 qr. 
 
 89)246(2 quarts. 
 178 
 
 18 
 
 28 
 
 
 68 
 
 
 
 149 
 
 
 o 
 
 
 
 38 
 
 
 89)137( 
 89 
 
 I pint. 
 
 
 19)529(27 lbs. 
 38 
 
 48: 
 
 aip. 
 
 
 149 
 133 
 
 
 
 
 
 16 Rem. 
 
 
 
 
 *»©®©M^ 
 
 
 
 
 REDUCTION. 
 
 
 
 
 FEDERAL MONEY. 
 
 
 
 
 EXAMPLES. 
 
 
 0) fo 
 
 100 
 
 (2) 
 
 $ 
 25 
 100 
 
 (3) 387 
 
 100 
 
 (4) 25 
 
 4 
 
 Ans. 1000 
 
 Ans. 
 
 2500 
 
 Ans. 38700 
 
 Ans. 100 fourths. 
 
 
 
 
 
 
REDUCTION. 49 
 
 cts. CiSt ^ 
 
 (5) 60 (6) 150 (7) 50 
 
 2 ,3 100 
 
 Ans.IOO halves, Ans. 45QthiTds» 5000 
 
 (8) 25 (9) 275 
 
 100 100 
 
 Ans/ 10000 halves. 
 
 2500 27500 (10) 10 
 
 .3 4 10 
 
 Ans> 7500thir(ls. Ans. 110000 qrs. Ans. 100 dimes. 
 
 (tl) 220 
 
 10 
 
 ' 2200 dimes. 
 10 
 
 22000 cts. 
 10 
 
 Ans. 220000 mills. 
 
 JSTote. — When more than one denomination is given 
 to be reduced. 
 
 $ cts, $ cts, $ cts, 
 
 (1) 15 15 (2) 2 25 (3) 17 18f 
 
 100 100 100 
 
 Ans. 1515 cts. 225 cts. 1718 cts. 
 4 4 
 
 Ans. 900 4ths. Ans. 6875 4tlis. 
 
 
50 
 
 REDUCTION. 
 
 $ cts. 
 (4) 13 27,J 
 100 
 
 % Ct8, 
 
 (5) 426 881 
 100 
 
 1327 
 3 
 
 42688 
 2 
 
 Ans. 3982 thifds. 
 
 Ans. 85377 halves. 
 
 ENGLISH MONEY. 
 
 £ 
 
 364 
 20 
 
 70 
 12 
 
 (5) 12 
 4 
 
 (2) 364 (3) 20 (4) 
 20 12 
 
 Ans. 7280 s. Ans. 240 df. Ans. 840 d. Ans. 48 qrs. 
 
 d. £ s,d. £ s, d, £ 8. d. 
 
 (6) 26 (8) 18 12 7 (9) 105 13 91 (10) 36 19 7J 
 
 Ans. 104 qrs. 
 
 20 
 
 372 
 12 
 
 Ans. 4471 (/. 
 
 20 
 
 2113 
 12 
 
 25365 
 4 
 
 20 
 
 739 
 12 
 
 8875 
 4 
 
 Ans. 101462 Ans. 35503 qrs. 
 
 Cents to Pence. 
 
 (2) 
 
 cts, 
 36975 
 9 
 
 (3) 57697 
 9 
 
 10)332775 
 Ans. 332771 (f. 
 
 10)519273 
 Ans. 51927|-f£?. 
 

 EEDUCTION. 51 
 
 (2) 4590 
 10 
 
 Fence to Cent^, 
 
 d, 
 
 (3) 76975 
 ^0 
 
 9)45900 
 
 9)769750 
 
 Ans. blOQds, 
 
 AVOl 
 Cwt, 
 (2) 260 (3) 
 4 
 
 Ans. 85527^5. 1 m,+l 
 
 RDUPOIS WEIGHT. 
 
 qr, lb, oz, 
 36 (4) 17 (5) 20 
 28 16 16 
 
 Aas. 1040 qrs. 
 
 Ans. 
 
 288 102 . 120 
 72 17 20 
 
 1008/6*. Ans. 272o5r. Ans.320rfr. 
 
 T, cwt, qr, 
 (6) 5 12 2 
 20 
 
 Qr. lb, oz, 
 
 (7) 2 25 10 
 28 
 
 112 
 4 
 
 21 
 6 
 
 Ans. 450 qrs. 
 
 81 lbs. 
 16 
 
 
 486 
 82 
 
 
 1306 ounces. 
 16 
 
 
 7836 
 1306 
 
 Ana. 20896 drams. 
 
 
52 
 
 KEDXTCTION. 
 
 
 
 APOTHECARIES* WEIGHT. 
 
 3 
 
 (2) 72 
 8 
 
 ft f^ i 3 Bgr. 
 (3) 10 (4) 15 9 4 2 17 
 12 12 
 
 Ans. 576 drams. 120 ozs. 
 8 
 
 189 oz. 
 8 
 
 
 960 drs. 
 3 
 
 1516 drs. 
 3 
 
 
 2880 scru. 
 20 
 
 4550 scni. 
 20 
 
 
 Ans. 57600 grs. Ans. 
 
 91017 grs. 
 
 
 CLOTH MEASURE. | 
 
 Yds. 
 (2) 36 
 4 
 
 E.E. 
 
 (3) 20 
 5 
 
 E.Fl. 
 
 (4) 16 
 3 
 
 Ans. 144 qrs. 
 
 Ans. 100 qrs. 
 
 48 qrs. 
 4 
 
 Ans. 192 na. 
 
 E.FL qrs. 
 (5) 5 2 
 3 
 
 E.Fr. qr. 
 
 (6) 37 2 
 5 
 
 Yds. qrs. na. 
 (7) 19 2 1 
 4 
 
 Ans. 17 qrs. 
 
 Ans. 187 qrs. 
 
 78 
 4 
 
 Ans. 313 na. 
 
 
 
 

 
 KEDUCTION. 
 
 53 
 
 
 
 
 DRY MEASURE. 
 
 
 
 
 Pe. 
 
 
 Bu, 
 
 Bu. 
 
 
 m 
 
 32 
 8 
 
 (3) 
 
 7 
 4 
 
 (4) 12 
 4 
 
 
 Ans. 
 
 256 qts. 
 
 Ans. 
 
 28 pe. 
 
 48 
 
 
 
 
 
 
 8 
 
 384 
 
 2 
 
 Ans. 768 pts. 
 
 
 (5) 
 
 Bu, pe, 
 14 
 4 
 
 56 
 8 
 
 qt, 
 3 
 
 (6) 
 
 Bu* pe, qt, pt, 
 24 1 2 1 
 4 
 
 97 
 8 
 
 
 Ans. 451 qts. 
 
 
 
 778 
 
 
 
 
 
 
 2 
 
 
 
 
 
 Ans. 1551 pts. 
 
 
 
 
 LAND MEASURE. 
 
 
 
 
 A. 
 
 
 
 ^. 12. P. 
 
 
 (2) 
 
 132 
 4 
 
 528 
 
 
 .(3) 
 
 54 3 23 
 4 
 
 219 
 
 
 Ans. 
 
 40 
 
 
 Ans. 
 
 40 
 8783 
 
 
 21120 p. 
 
 
 
 
 
 
 
 
 
 
 
 fe^-~ 
 
 
 
54 
 
 REDUCTION. 
 SQUARE MEASURE. 
 
 
 
 Sq, yds. Sq.yds. s,ft. s.in. I 
 
 (2) 
 
 120 (3) 29 2 102 1 
 
 
 9 9 
 
 
 
 1080 263 
 
 
 
 144 144 
 
 
 
 4320 1054 
 
 
 
 4320 1052 
 
 
 Ans 
 
 1080 264 
 
 
 . 155520 sq,in. Ans. 37^74 sq, in. 
 
 
 LIQUID ]VIEASURE. 
 
 
 
 Gals. Hhds Gals. 
 
 Tims. 
 
 (2) 
 
 28 (3) 5 (4) 110 
 
 (5) 6 
 
 
 4 63 4 
 
 4 
 
 Ans. 
 
 \\2qfs. Ans. 315^a7s. 440 
 
 24 
 
 
 ^ 
 
 63 
 
 
 Ans. 880 p/5. 
 
 72 
 
 
 
 144 
 
 
 Wids. gals. qts. Gals. qts. 
 
 
 (6) 
 
 7 41 2 (7) 47 2 
 
 1512 
 
 
 63 4 
 
 4 
 
 
 
 
 
 22 190 
 
 6048 
 
 
 46 2 
 
 2 
 
 
 482 Ans. 380^^5. Ans. 
 
 12096 |)f« 
 
 
 4 
 
 
 Ans. 1930 qts. 
 
 
 ' 
 
 
 
REDUCTION. 55 
 
 Hhs. gals. qts. Tvnskhds.gals. Tun.hhd.gal.qt.pt. 
 
 (8) 4 3 (9) 19 27 (10) 5 1 15 1 1 
 
 63 4 4 
 
 252 
 4 
 
 
 76 hhds. 21 
 63 63 
 
 1011 
 2 
 
 
 235 68 
 458 127 
 
 Us. 2022 pts. 
 
 
 4815 1338 
 4 4 
 
 
 Ans. 
 
 19260 (?f.9. 5353 
 
 2 
 
 
 Ans. 10707 ;?f*. 
 
 
 
 LONG MEASURE. 
 
 Yds, 
 (2) 48 
 3 
 
 (3) 
 
 Po. Fur. Miles* 
 27 (4) 18 (5) 34 
 b\ 40 8 
 
 Ans. 144/^ 
 
 
 135 Ans. 720|>o. Ans.272/wr. 
 131 _ 
 
 
 Ans. 
 
 1481 yds. 
 
 L. M. M. 
 
 (6) 108 ^ (7) 17 (8) 20 
 
 3 320 p.~l on. 1760 yds,=l m. 
 
 Ans. 324 vi. 340 Ans. 35200 yds. 
 — « 51 
 
 Ans. 5440^0. 
 
56 
 
 
 BEDUCTION. 
 
 
 
 X. 
 
 
 FL in. 
 
 Yds. ft. 
 
 (9) 
 
 6 
 3 
 
 (10) 
 
 14 9 
 12 
 
 (11) 37 1 
 3 
 
 
 18 
 
 Ans. 
 
 177 m. 
 
 Ans. 112/jf. 
 
 
 8 
 
 
 
 
 
 
 
 Fur, po. 
 
 
 144 
 40 
 
 
 (12) 112 29 
 40 
 
 
 5760 
 
 
 ^)4509 
 
 ^ 
 
 28800 
 
 22545 
 
 
 2880 
 
 
 2254^ 
 Ans. 247991 
 
 yds. 
 
 31680 
 
 
 3 
 
 
 L, m.fur 
 (14) 2 1 3 
 
 .po. yds. ft. in. 
 16 3 2 10 
 
 95040 
 
 Ans. 
 
 12 
 
 n. 
 
 3 
 7 
 
 
 1140480 i 
 
 
 
 
 8 
 
 59 
 40 
 
 
 (13) 
 Ans. 
 
 M. fur, 
 450 6 
 8 
 
 po. 
 32 
 
 
 3606 
 40 
 
 1)2376 
 
 144212 po. 
 
 11883 
 
 
 
 
 1188 
 
 
 
 
 
 13071 
 
 ^ 
 
 
 
 
 3 
 
 
 39215 
 
 
 
 Ai 
 
 12 
 
 
 IS. 470590 in. 
 

 REDUCTION. 
 
 57 
 
 
 TROY WEIGHT 
 
 
 (2) 116 
 20 
 
 lb. oz. dwt. 
 (3) 25 (4) 29 16 
 12 20 
 
 lb.oz.dwt.gr. 
 (5) 19 11 14 21 
 12 
 
 Ans. 2320 dwt. 300 Ans. 596 dwt. 
 20 
 
 239 
 20 
 
 Ans. 
 
 6000 
 24 
 
 4794 
 '24 
 
 24000 
 12000 
 
 19177 
 9590 
 
 144000 g-^-. Ans. 
 
 115077 ^r. 
 
 
 TIME. 
 
 
 (1) 30 
 
 60 
 
 hrs. 
 60 
 
 yrs. 
 (3) 12 
 12 
 
 Ans. 1600 
 
 s. Ans. 720 w. 
 
 Ans. 144 m. 
 
 (4) 
 
 d. kr> min. 
 3 5 29 
 24 
 
 17 
 
 6 
 
 77 
 60 
 
 Ans. 4649 -min. 
 
 
68 EEDUCTION. 
 
 MOTION, OR CIRCLE MEASURE. 
 
 (1) 24 (2) 4* (3) 11*12 (4)4 3 18 27 
 
 60 30 30 30 
 
 Ans. 1440 ' 120 Ans. 342 123 
 60 60 
 
 7200 7398 
 
 60 60 
 
 Ans. 432000 Ans. 443907" 
 
 PROMISCUOUS EXAMPLES. 
 
 ^ Fur, Days. H.cls. 
 
 (1) 35 (2) 8)98 (3) 7)365 (4) 2)84 
 
 100 — — 
 
 Ans. 12 m. 2/i/r. Ans. 52 1/?. 1 d, Ans. 42 cts. 
 
 Ans. 3600 cts, — — — 
 
 TunscwU R, S, P. 
 
 (5) 8 15 (6) 63 (7) 2I0)15|7 (8) 4)175 
 
 20 40 
 
 , Ans. £7 17*. Ans. 43 6«. Sjjc. 
 
 Ans.l75ctt?f. Ans.2520 59. 2>cr. — 
 
 cts, Pts, Sec, Hhd.gcd, 
 
 (9) 100)76|42 (10)2)103 (11) 6|0)72|0 (12)733 
 
 Ans. J576 42 c^. Ans. 51 qts, Ipt, Ans. 12 mm. — 
 
 45 
 
 Ans. 474 gal. 
 
REDUCTION. 69 
 
 Qrs. Dwis, S. 
 
 (13) 5)100 (14) 210)10|8 (15) 2|0)25|0 
 
 Ans. 20 E. E. Ans. 5 oz. 8 dwt Ans. £12 10*. 
 
 3 s,d. Days, Qrs, 
 
 (16) 7 (17) 8 8 (18) 7)203 (19) 16 
 
 3 12 4 
 
 — Ans. 29 w. — 
 
 Ans. 21 9 Ans. 104 d?. — ' Ans. 64 im, 
 
 drs, S, Thins, 
 
 (20) 16)74(4oz.l0<ir*. Ans. (21)13 (22)20 
 64 4 20 
 
 10 Ans. threepences 52 Ans. 400 cwt. 
 
 Qrs, Gal. qt, pL M,fur. 
 
 (23) 5)81 (24) 21 3 1 (25) 3 1 
 
 — 4 8 
 Ans. IftjE.Fr. l^r. — — 
 
 — 87 Ans. 25/wr. 
 
 2 — 
 
 Ans. XlSpts. 
 
 Cts, Days, Cts, 
 
 (26) 1|00)12135 (27) 3 (28) 121 
 
 24 4 
 
 Ans. $12 35 cts. — 
 
 72 Ans. 484 qrs. 
 
 60 
 
 Ans. 4320 m. 
 
60 
 
 REDUCTION, 
 
 lbs, Qrs, Dwts, 
 
 (29) 13 (30) 3)154 (31) 210)246|1 
 
 16 
 
 — Ans. 51 E. FL 1 qr, 12)123+ 1 dwU 
 
 78 — 
 
 13 
 
 208 
 16 
 
 208 
 
 Ans. 3328 drs. 
 
 Yd, qr. na, 
 (32) 12 2 1 
 4 
 
 50 
 
 4 
 
 Ans. 201 na. 
 
 lbs, oz, 
 (34) 725 6 
 16 
 
 4356 
 
 725 
 
 Ans. 10 lb,3oz. Idiot 
 
 11606 
 16 
 
 G9636 
 11 606 
 
 Ans. 185696 drs. 
 
 Gals. 
 (33) 63)584621(4)9279 
 
 567 
 
 Ans. 2319 L Zhhds. Ug, 
 
 176 
 
 126 
 
 502 
 
 441 
 
 611 
 567 
 
 44 gals. 
 
 lbs. qrs» 
 (35) 28)27552(4)984 
 
 252 
 
 246 cwt. Ans. 
 
 235 
 
 224 
 
 112 
 112 
 
SIN6L£ RULE OF THREE. 61 
 
 £ s. d. Days. £ s, d. 
 
 (36) 5 4 6} (37) 7)763 (38) 83 10 7 
 
 i^O 20 
 
 — Ans. 109 ly. 
 
 104 1710 
 
 12 12 
 
 1251 Ans. 20521 d. 
 4 
 
 Ans. 5017/i/r. 
 
 Ors, Q?.?. 
 
 (3y) ^10)122|0 (40) 5)27 
 
 3)61 Ans. 5E.E,2qrs, 
 
 Ans. 20 3 19 
 
 Pts, per. 
 
 (41) 2)1357 (42) 4|0)865|4 
 
 8)678+ 1 pL 4)216-1-1 4per. 
 
 4)84+6 qis. Ans. 54 a. r. lAp. 
 
 Ans. 21 6w. Op. 6 qts, 1 pL 
 
 SINGLE RULE OF THREE. 
 
 EXAIVIPLES. 
 
 lbs. lbs. cts. ds. 
 (3) State the question thus : As 2 : 8 : : 60 : 200 Ans. 
 For 50x8=400-^2=200 cts. 
 
62 SINGLE RULE OP TUEE13. 
 
 /6. lbs. cts, cts» 
 
 (4) As 1 : 5 : : 12 : 60 
 
 For 12X 5=60-rl= 60 cU, Ans, 
 yds. yd, cts, cts. 
 
 (5) As 10 : 1 : : 650 : 55 
 
 For 650x1=550 which -M0=:56d^. Ans. 
 lbs, lbs. cts, ^ ct^, 
 
 (6) As 7 ; 122 : : 87-| : 15 25 
 
 For 87^X 122=10675 which -r-7=gl5 25 cts. Ans. 
 bu, bu, cts, § cts. 
 
 (7) As 1 : 209 : : 72 : 150 48 
 
 For 72X209=15048 which -M=gl50 48 cts. Ans, 
 lbs. lb. cts. cts, 
 
 (8) As 5 : 1 : : 55 : 11 
 
 For 55X1=55 which --5=11 cts. Ans. 
 yd. yds. $cts, $ cts, 
 
 (9) As 1 : 18 : : 4 25 : 76 50 
 
 For 425X 18=7650 which -hl=$76 50 cts, Ans. 
 lbs. lb, ^ cts. cts, ' 
 
 (10) As 76 : 1 : : 24 32 : 32 
 
 For 2432 X 1=2432 which —76=32 ds. Ans. 
 bu, bu. ^ cts, cts. m. 
 
 (11) As 8,: 1 :: 3 94 : 49 2+4 
 
 For 394X 1=394 which —8=49 cts, 2 m.-f 4 Ans. 
 
 lb. lbs, cts, $ cts. 
 
 (12) As 1 : 57 : : 7| : 4 27| 
 
 For 7^X57=42n which*'~l=^4 27} ets, Ans. 
 bu, Ini, ds, ^ cts, 
 
 (13) As 1 : 243 : : 45 : 109 35 
 
 For 45X243=10935 which -f- 1=^109 35 ds. Ans. 
 
 lb, lbs. $ cti. $ cts. 
 
 (14) As 1 : 147 : : 1 12;i : 165 37^ Ans. 
 
 For 112^X147=165374^ wliich l-l=gl 65,37^ c/5. 
 
 lb. lbs. ds. jJ5 cfs. 
 
 (15) As 1 : 869 : : 4^ : 39 10^ 
 
 For 4^X869=3910^ which" — 1=^39 10^ cts, Ans. 
 
SINGLE EULB OF TKKEE, ()3 
 
 yds, yd, $ cis. f cU. 
 
 (16) As 24 : 1 : : 125 24 : /I 21-f 20 An&. 
 
 For 12524 X 1 — 12524 which -i-24=:g5 21 ct?.-f 20 
 C. /6. ^ 0^5. cts.m, 
 
 (17) As 1 : 1 :; 11 50 : 10 S-f-TO. 
 
 Zi5. lb. ^ c^*. C^'. J». 
 Or, as 112 : 1 :: 11 50 : 10 2-f 76 Ans. 
 
 For 1150x1—1150 which -M12:=cl0 cU, 2 m.-f 76 
 /?;. ^*. cU, ^ cf^. 
 
 (18) Aa 1 : 218 : : 7 : 15 26 
 
 For 7X218=cl526 which ~-f=gl5 26 <?^. Ans. 
 bu, btt, £, 8, 8. d» 
 
 (19) As 57 : 1 : : SO 10 : 10 8|-f S9 
 
 Or, as 57 : 1 : : 610 : 10 8|-f 
 For 610X 1=610 which -7-57=105. Sl-d.^Sd Ans. 
 oz. Ibs.oz. cts, § ci^, 
 
 (20) As 1 ; 3 5 : : 72 : 29 52 
 
 o^. oar, c^, ^ cdj?. 
 Or, as 1 : 41 : : 72 : 29 52 
 For 72X41=2952 which -r 1=^29 52 c^. Ans. 
 lb, lbs, cU, g ctt, 
 
 (21) As 1 : 135 : : 10 : 13 50 
 
 For lOx 135=1350 which --1=^13 60 cU. Ans, 
 C. T, C, £ s. d. £ 8. d, 
 
 (22) As 2 : 15 3 : : 7 12 C ; 1155 3 9 
 
 C, C, d. £ 8, d. 
 
 Or, as 2 : 303 : : 1830 : 1155 3 9 
 For 1830X303=554490 which ~2=277245f?.= 
 £1155 3^. 9d. Ans. 
 8, d, £ 8. d, gaL gals, 
 
 (23) As 4 10 : 54 7 6 : : 1 : 225 
 
 ^. d, gal, gah. 
 
 Or, as 58 : 13050 : : 1 t 225 
 For 1 X 13050=13050 which -^58=225 gal^, Ans. 
 M. to. els, § cts, 
 {9-<) As 1 : 52 : : 250 : 130 00 
 
 For 250X52=13000 which -^1= ^130 00 rfg. Ans. 
 
i]^ SINGLE IIULE OF THKEE. 
 
 J. A, R. P. $ ds. $ cts. 
 
 (25) As 1 ; 34 1 17 : : 4:2 ^25 : 1451 55-^25 
 
 P. P. ^ cis. $ cts. 
 
 Or, as 160 : 5497 : : 42 25 : 1451 55+25 
 For 4225 X54a7F=232 24825 which -T-160=gl451 
 55 cts. +25 Ms. 
 
 gals. gal. jj s. s. 
 
 (26) As 131 : 1 : : Qb 10 : 10 
 
 gals. s^al. s. s. 
 Or, as 131 :^1 :: 1310 : 10 
 For 1310X 1—1310 which -M31==105. Ans. 
 $ $ T. T.hhd.gaLqt.pt. 
 
 (27) As 754 : 1754 : : 1 : 2 I 19 1 
 
 For 1X1754=1754 wliich -r 754=2 21 M AW. 1 9 
 gal, qt. 1 pt. Ans. 
 
 s. d. £ 8. yds. yds. 
 
 (28) As 18 8 : 36 16 : : 7 : 276 
 
 d. d. yds. yds. 
 
 Or, as 224 : 8835> : : 7 : 276 
 For 8832 X 7=61824 which -^ 224=276 yds. Ans. 
 Ih. cwt. qrs. lbs. cts. ^ cts. m, 
 
 (29) As 1 : 5 2 17 ; : 91 : 60 13 5 
 
 lb. lbs. cts. § cts. in. 
 Or, as 1 : 633 : : 91 : 60 13 5 
 For9lX 633=6013^ which -Hl=^60 13c^5.57n. Ans. 
 its. jJ lb. Ibs.fiz. dr. 
 
 (30) As 114 : 354 : : 1 : 310 8 6+84 
 
 For 1X35400=35400 which -M 14=310/6*. 8 or. 
 6 Jr. + 84 Ans. 
 
 £, s. £, s. skeins, skcms. 
 
 (31) As 2 10 : 105 3 : : 100 : 4206 
 
 s. s. skeins, skeins. 
 Or, as 50 : 2103 : : 100 : 4206 
 For 100X2103=210300 which -r 50=4206 sk. Aus. 
 yds. yd. ' ^ cts. j^ cts. m. 
 
 (32) As 39 : 1 : : 350 38 : 8 08 4+ Ans. 
 
 For 35038 X 1=35038 which -r39=,^8 ^cts.Am. 
 
SINGLE RULE OP THREE. 65 
 
 get Is, qts, gals. qt. pt. gals. qi8. pt. 
 (33) ei^gah.^Ql 2+62 1 1 = 123 3 1 
 pL gals, qts.pt. ds. ^ cts. 
 Then as 1 : 123 3 1 : : 37| : 371 62i 
 
 pt. pis. cts. ^ cfe. 
 Or, as 1 : 991 :: 37i : 371 62^ 
 For37iX 991=^371621 which -rl^^3716?id*.Ans. 
 
 bu. bu. hu, 
 ^34) 75+87=162 
 
 hu. hu. cts. fi cts. 
 Then as 1 : 162 : : 52 : B4 24 
 For 52X162=8424 which -r 1=^84 24 ds. Ans. 
 
 (35) 1 year equals 365 days. 
 
 day. days. cts. ^ cts. 
 Then as 1 : 365 : : 1871 : 684 37X 
 For 187^X365=384371 'which +1=^684 37| d*. 
 the sum he spends in a year ; his income yearly 
 is ^1022—^684 37| c^.=|337 621 ds. Ans. 
 
 cwt. cwt.qrs. lb. ^ cts. ^ cts. 
 
 (36) As 1 : 4 3 24 : : 2 10 : 10 42| 
 
 lbs. lbs. cts. ^ cts. 
 Or, as 112 ; 556 : : 210 : 10 421 price of stove. 
 For 210X556=110760 which ~n2=JlO 42^ cts. 
 
 price of stove. 
 Then 27 Ws. X 18j c/^.=g5 06 j- cts. amount of pipe, 
 
 and 50 c^A'.x2=gl.OO nrice of 2 elbowi5. 
 
 + ^10 421 ctv, price of stove. 
 
 4-^ ^ 06}- cts. do. pipe- 
 
 -fg 1 00 c^. do. elbows, 
 
 $16 48 J Ans. 
 
 (37) 14 pair X 2=28 single shutters, which X 8^=243 
 
 whole number of sheets used. 
 sheet sheets, cts. $ cts. 
 Then as 1 : 243 : . Ill : 27 37 
 For 243X 11^=2737 which +1=^27 37 cts. Ans. 
 
 -—-/ [ ■ ■ ■ J I -J ■ I • ! 
 
6G SINGLE RULE OF THREE. 
 
 (38) If 45 men eat 1 lb. per day each, they will alto- 
 gether eat 45 lbs. in a day. 
 
 lbs, lbs» (1. w, d. 
 Then as 45 : 45G0 : : 1 : 14 2 
 For 1X4500=4500 which -^45=^100 d,^\ 4 ^veeJi's 
 2 days, Ans. 
 
 A.R, A.R,P, hu.pe, hu, pe,qts,pt. 
 
 (39) As 12 2 ; 37 3 5 : : 443 3 : 1341 7 1 
 
 P. P. pe, hu, jte. qlft, pL 
 
 Or, as 2000 : 6045 : : 1775 : 1341 7 1 
 For 1775x6045=10729875 which -^2000=1341 hu. 
 pc, 7 qts, 1 pt, Ans. 
 
 $ ds, 
 
 (40) Amount paid for the sugar 204 00 
 
 carriage 15 75 
 storage IB 31} 
 and would fjain 57 00 
 
 g295 00} the sum the 
 
 whole must sell for. 
 
 Cqrs, C, $ cts, $ cf.s,m. 
 Then as 27 2 : 1 : : 205 0G| : 10 72 9-fCO 
 
 qrs» qrs, cts. $ cts.vi. 
 
 Or, as 110 : 4 : : 29506} : 10 72 9-f 60 
 For 29506}X 4=118025 which —110=^10 '72 cis. 
 9 7«.-f60 Ans. 
 
 (41) To find how much per cent, he can ijay. 
 $ cts, $ cts, $ % 
 
 As 18284 40 : 9142 20 : : 100 : 50 per cent. 
 For 100x914220=91422000 which -M828440= 
 
 50 Ans. the first. 
 To find what the creditor is to receive. 
 
 $ cts. $ cts. $ $ 
 As 18284 40 : 9142 20 : : 472 ': 236 
 For 472X914220=431511840 which —182^440= 
 p2e Ans. 
 
SINGLE RULE OF THREE. iSJ 
 
 INXmSE PROPORTION. 
 m. VI. . d. d. 
 
 (42) As 12 : 6 :: 18 : 9 
 
 For I8x 6r=l08 wlxich -f- 12=9 days. Ans. 
 
 m. Tiu d, dk h, 
 
 (43) As 18 ; 12 :: 20 : 13 4 
 
 For 20 X 1 2=240 which -^18=13 days 4 hours. Ans. 
 d, d, m, m. 
 
 (44) As 4 : 24 : : 8 : 48 
 
 For 8 X 24= 1 92 which -r 8=48 men, Ans. 
 nu m. d. d. 
 
 (45) As 48 : 12 : : 24 : 6 
 
 For 24X 12=288 which —43=6 days. Ans. 
 h. h. d. (/. k. 
 
 (46) As 15 : 11 : : 5 : 3 8 
 
 For 5X 11=55 which -rl5=3 days 10 hmirs. Ans. 
 ft. in. ft. in. ft. yds. ft. in. 
 
 (47) As 2 3 : 30 6 : : 48 : 216 2 8 
 
 in. in. ft. yds. ft. in. 
 Or, as 27 : 366 : : 48 : 216 2 8 
 For 48X366=17568 which —27=650^4/^=216 
 yds. 2ft. 8 in. Ans. 
 d. d. > m. m. 
 
 (48) As 50 : 100 : : 14 : 28 
 
 For 14X100=1400 which -f-50=28 men. Ans. 
 
 PROMISCUOUS EXAMPLES. 
 
 Cwt. Cict. qrs. lbs. ^ ds. 
 
 (49) As 1 : 18 3 19 :: 11 371 
 
 Cict. qrs. lbs. lbs. 
 For 18 3 19=2119 which X 1137i=24l0362Jlthe 
 divisor; which —1 ctc^., that i3"'ll2 ;6^.=|215 
 21-5^ ds. Ans. 
 
 ^ $■ $ 
 
 (50) 730—22=708 
 
 yds. yd. $ $ds.m. 
 Then as 156 : 1 : : 708 : 4 53 8-f- Ans. 
 
 For 708X 1=708 which ~-156=g4 53 ds. 8 m.-f 72 
 
GO Sl.^GtK RULE or THREE. 
 
 (51) To find the prime cost. 
 
 C, C. qrs. lbs. ^ ttx. ^ cts.m.. 
 1 : 19 2 17 : : 9 31} : 183 00 7-f- ' 
 lbs. lbs. ^ els. ^ cts. m. 
 Or, as 112 : 2201 : : 9 31| : 1B3 00 7+ 
 For 93lAx2201=:20496Gl| which -M12=gl83 
 
 00 cts. 7 m. 4- Alls. 
 To find the sum it sold for. 
 
 lbs. lbs. g cts. % cls.m. 
 
 As 112 ; 2201 : : 10 65 : 209 29 1+ 
 For 1065X2201=2344065 which ~112~: 
 
 C^*. 1 m. Ans. 
 To find the gain. It sold for ^209 29 cts. 1 »i.— 
 Jl83 00 cts. 7 m.rz:g26 28 cts. 4 m. 
 
 yds. yd. ^ cts. cts.m. 
 
 (52) As 47 : 1 : : 14 75 : 31 3-f 
 For 1475 X 1=1475 which -^47=31 cts. 3 m.+ Ans. 
 
 (53) 3 qrs. wide : 1| wide : : 3 J long : 61 long. 
 
 For 3|=15 ^r*. and ^\^=:b qrs. therefore 15X5= 
 75 which —3=25 ^rA'.=the quantity of hoUand 
 requisite for each suit, and this ib qrs.x'^^^ 
 suits or men=8850 qrs. which —4=22121 yds, 
 Ans. 
 
 (54) First ^Sft. : 250 ft. : : 33^1;. 10 m. : 338/?. 4 in. 
 For 33 10X12=406 in. X250=101500 which -f-2c 
 
 =4060m.=338/if. 4in. the length of the shadow 
 of the tower. Then as the shadow is 1 Sft. 6 in. 
 longer than the width of the river, consequently 
 338/1?. 4 m.— 18/if. 6 m.=319^. 10 in. the width 
 of the river. Ans. 
 
 (55) First, 24 hrs, : 1 m. : : 360 deg. :17 m. 2 fur. 1st 
 
 Ans. 
 For 360X691X1=25020 and 24 Ar5.x60=1440; 
 
 therefore 25020-f-1440=17 m. 3 fur. 
 Again, 24 hrs. : 1 m. ; : 360 deg. :11m. 4/ttr.= 
 
 the velocity of the earth in lat. 40 deg. 
 For 360X46=16560-M 440=11 m. 4 fur. 
 Then, 1 7 m. 3/i^r.— 1 1 m. 4/wr.=5 m. Ifur. 2d Ans. 
 
DOUBLE JlVhE OF THRKE. (j9 
 
 DOUBLE UUI.R OF THREE. 
 
 EXAMI'J.ES. 
 
 (2) Thus 3^. • ^8 ^.. ) ^^^^^ ^ l70A,2R.2GP,20yd8.+ 
 
 For 8X24X32=61 14 the dividend. 
 
 And 3 X 1 2=36 the divisor. 
 
 Then 6144-7-36=170.3. 2 R, 26 P. 207jds,-\- Ans. 
 
 (3) Thus lOox. : 20ox, > ^ /, ^ ^ 
 ^ ^ 18./. .27.7. r' ' ' 
 
 For 20X27X2=1080 the dividend. 
 And 18X10=180 the divisor. 
 Then 1080-7-180=6 .'I. Ans. 
 
 W^^^^%^;^-]:: 36/6.. : 48 /&.. 
 
 . For 24X5X36=4320 the dividend. 
 ' And 9 X 10=90 the divirior. 
 Then 4320-r90=48 lbs. Ans. 
 
 (5) Thus $100 : SJS335 ? . . ^g . ^30 15,^, 
 
 For 33r> X 18 X 6=361 80 the dividend. 
 And 100 X 12=1200 the divisor. 
 Then 36 180-M 200=^30 15 ds. Anc. 
 
 (6) Thus 20m. • 46m.K. ^.^ 3^,^^^^ ^ g^^g g, ^^^^ 
 
 For 46X32X5631]=8289200 the dividend. 
 • And 20X5:;= 100 the diviBur. 
 
 Then 8289200^ 100=g828 92 cf*. Ans. 
 
 (7) Thus n-m. : 12?7i. > ...^ . r.A ' • 
 
 30./. : 90ri. l'-'' ^^20prm'..: 540;>air.. 
 
 For 12X90X120=129600 the dividend. 
 
 And 8 X 30=240 the divisor. 
 
 Then 1 29600—240=540 paiW. Ang. 
 
 (8) Thus 12p. : 38/>. ) ^^„ ..^ „ ,-0 
 
 4//. : 16r/. \ ' * ^^^^^^- ' '^^^ ^^'' ^^^''''' 
 For 38X16X37=22406 the dividend. 
 And 1 2 X 4=48 t lie divisor.* 
 Then 22496-MJ;r^-. 168 lbs, lOJor. Ans. 
 
70 DOUBLE RULE OP THREE. 
 
 (9) Thus8/fc. : 12/i. > .' . to Wo _l 
 
 For 12x7x5—420 the dividend. 
 And 8 X 4—32 the divisor. 
 Then 420-^32=134- Ans.# 
 
 (10) Thus liyds, : 247jds,2qrs. > : : gl7 37-J c^. : ,^132 
 
 3qrs. : Iqrs, \ 43 d*.-f 
 
 For 24i/ds. 2qrs.=9Sqrs. And '7^yds,=30qrs, 
 Then 98X7X17371== 11 91 925 the dividend. 
 And 30X 3=9p the'^divJBor. 
 Then 1191925-^-90=gl32 4Scts,+s Ans. 
 
 (11) Thus 20^. : 62h. ) : : Ubu, : 605w. 3pe. S^^^. 1;?^ 
 
 22 J. : 3Gc/. 5 +86 
 
 For 62 X 38 X 12=26784 the dividend. 
 And 20 X 22=440 the divisor. 
 Then 26784-t-440=606w. 3pe. 2qts, IpL+^iie Alls. 
 
 For 563X 18X6=182412 the dividend. 
 And lOOx 12=1200 the divisor. 
 . Then 182412-^ 1200=1^152 Olct Ans. 
 
 (13) Thus 8/.. : -20/.. ) , ^ ^^^ , ^^^^ ^^^^^^ 3^^^^ 
 
 7m. : 17771. ^ ^ 
 
 For 20 X 17X6=2040 the dividend. 
 And 8 X 7=56 the divisor. 
 Then 2040~5G=3GT'. QcwL 2qrs. Sibs, Ans. 
 
 (14) Thus2y./.. : 50t/r/.. ) .^^j^ . ^^,^^ 
 
 [yqrs. : 3qrs. ^ 
 For 50X3X 1=150 the dividend. 
 And 2 X 5=10 the divisor. 
 Then 150-:- 10= 15/6*. Ans. 
 
 For 9QX 3X7=20 16^ the dividend. 
 And 21 X 32=672 th(* divisor. 
 Then 2016-^672=3. Ans. 
 
DOUBLE liULE OF THREE. 7 1 
 
 (16)Thu^4m.: Um.K,^ giOO : §360 
 
 For 1 2 X 9 X 100=10800 the dividend. 
 And 4x7-^=30 the divisor. 
 Then 10800~30=$|60. Aiis. 
 
 (17) Inversely thus 40ft. ) : J 20ft, ) 
 
 54ft. 5 : I i^4ft, > : : lOd. : Id, lO^krs. 
 
 127)1. : 21m. ) 
 For 20X54X27X i 0=29 1600 the dividend. 
 And 40 X 54 X 72=155520 the divisor. ^ 
 Then 29 1600^1 55520= Ic?. 10 J/tr5. Ans. 
 
 (18) Thus 305^.^ : lOj^^^l' j:: sp^ .. ll6J.-f254Q 
 
 For 1 056 x" 14X30=443520 the dividend. 
 And 305 X 121=38121 the divisor. 
 Then443520^3812l=116cZ. Ans. 
 
 (19) Thus $210 : g837 ) ^. 07 or ^r r 
 
 15w. : 4m. 5 
 For 24w. ^d.=llld. And 837X4X171=572500 
 
 the dividend. 
 And 210X 15=3150 the divisor. 
 Then 572508-h.31 50=1 81(i.=25wj. 6c?. +2358 Ans. 
 
 For 5X30X50=7500 the dividend. 
 And 2ix 15— 371 the divisor. 
 Then 7500—37^=^200. Ans. 
 
 (21) Thus 5m. : 34m. J . , g^^ ^^ ^^^^ , ^3^3^ ^^ ^^^^ 
 
 For 34X90X2050=6273000 the dividend. 
 
 And 5 X 4=20 the divisor. 
 
 Then 6273000-^20=^3136 50 ds. Ans. 
 
 (22) Thus 24a..: ^760.. J ^, ^,3 . gj^g , ,,,,.+ , ,o 
 
 For 76X121X18=165528 the dividend. 
 
 And 24X45=1080 the divisor. 
 
 Then 165528^1080=^153 26 cf^. Ans.+ 
 
72 DOUBLE hULE br THREK. 
 
 (23) Thu.42.a, : 392^^^^^ 
 
 For 392X7X6=10464 the dividend. 
 And 42X 14=:=588 the divisor. 
 Therefore 16464— 588=28^72. Ans. 
 
 (24) Thu« S^cut. : ^t.K,p,,as.:$m-!lilcU.i 
 
 For r>Ox 150 X 050=7126000 the dividend. 
 
 And 35X20=700 the divisor. 
 
 Then 7125000-^700=^101 78 J ds.-f Ans. 
 
 (25) Thusgll 15ch. : ^31 UVids. } :: gl25:g60356; 
 
 97n. : lyr. 6mo. ^ d^'.-f 
 
 For 3118j=12475(/r*.X 18m. X 125=28068750 the 
 
 dividend. 
 And $11 75d^.=4700^r*.X 9=42300 the divisor. 
 Then 28008750-f-42300=g663 56jds.-f Ans. 
 
 (26) Thus glOO : g275 } . . hj.. . ^7, 
 
 12m. : 56m. ^ ' ' »^ ' fc^^ 
 For 275X56X6=92400 the dividend. 
 And lOOx 12=1200 the divisor. 
 Then 92400-r 1200=^77. An^. 
 
 (27)Thu8g56 :P ),,p,0:POO 
 
 For 6 X 20 X 560=67200 the dividend. 
 And 56X12=672 the divisor. 
 Then 67200-^-672=^100. Anjb'. 
 
 (28) Thus 12yds. : 75y^.. ), .^^^ . ^3^^,^ ^.^^^^ 
 59)'*. : 3qrs. \ 
 For 75X3X5=1125 the dividend. 
 And 12 X 5=60 the divisor. 
 Then 1125-r60=18/6. 12or. Ans. 
 
PRACTICE. 
 
 PRACTICE. 
 
 EXAMPLES. 
 
 (3) 
 
 !at?- 
 
 148 
 
 74 
 
 CASE 1. 
 
 (4) |I|l|3268atl 
 
 Ans. ^16 34 cts. 
 
 Ans. $2 22 cts. 
 
 (^) 
 
 4260 at J 
 
 2130 
 1065 
 
 Ans. g31 95 d^. 
 
 (7) |2l||634 at 2 miZ/5. 
 
 Ans. $1 26 8 
 
 (6) 
 
 111115324 at 1 
 
 Ans. $13 31 cts. 
 
 73 
 
 (5) 
 
 352 at 4 mills, 
 
 70 4 
 70 4 
 
 Ans. gl 40 8 
 
 (9) |5m3456 at 5 miZZ5. (10) 
 
 Ans. $17 28 
 
 498 at 6 mills, 
 
 249 
 49 8 
 
 Ans. $2 98 8 
 
74 
 
 (11) 
 
 I'KACTICE. 
 
 8462 at 8 mills. 
 
 4231 
 1692 4 
 846 2 
 
 (12) 
 
 1264 at 7 milk, 
 
 632 
 252 8 
 
 Ans. ^67 69 6 
 
 (13) 
 
 Ans. $n 84 8 
 
 4628 at 9 mills. 
 
 2314 
 923 6 
 925 6 
 
 Ans. $41 65 2 
 
 CASE 2. 
 
 cf5. d$. 
 
 (2) |6|| iVi3648 at 6J d*. (3) llO|yVp42 at 10 ds. 
 
 Ans. $228 
 
 Ans. $74 20 
 
 cf*. 
 
 d5. 
 
 (4) |20m8264 at 20 ds. 
 Ans. $1652 80 
 
 ds. 
 
 (6) |50|1|5876 at 50 ds. (7) 
 
 Ans. $2938 
 
 386 at 25 ds. 
 
 (5) |25p 
 
 Ans. $96 50 
 
 ds. 
 25 
 
 20 
 
 3542 at i:. c.'.. 
 
 885 50 
 708 40 
 
 Ans. $1593 90 
 
(8) 
 
 i'KACTICE. 
 
 ds. 
 50 
 
 25 
 5 
 
 r31925 at 80 c/5. 
 
 15962 50 
 7981 25 
 1596 25 
 
 Ans. ^25540 00 
 
 ci8. 
 
 (9) |12im4264at 121 d*. 
 Ans. g533 
 
 (10) 
 
 cts, 
 50 
 
 dL 
 
 ^\ 18626 at55d*. (11) 
 
 9313 
 931 30 
 
 Ans. ^10244 30 
 
 (12) 
 
 cts, 
 10 
 
 528 at 16 els, 
 
 52 80 
 
 26 40 
 
 5 28 
 
 Ans. ^84 48 
 
 (13) 
 
 25 
 
 J 1724 at 371 cts, 
 
 1 431 
 215 50 
 
 Ans. 
 
 g646 50 
 
 cts, 
 50 j 
 
 ^¥8 
 
 13854 at 56 J ds. 
 
 6927 
 865 87 5 
 
 Lns. 
 
 ^7792 87 5 
 
 4858 at 29 cts. 
 
 Ans. gl408 82 
 
 (15) 
 
 cts, 
 50 
 
 2267 at 85 els. 
 
 1133 50 
 
 666 75 
 226 70 
 
 Ans. gl926 95 
 
76 
 
 PRACTICE. 
 
 (16) |20J»|190at20cf5. 
 Ans. g38 
 
 (17) 
 
 cts, 
 6 
 
 3654 at 18f c<#. 
 
 456 75 
 228 37 5 
 
 Ans. $685 12 5 
 
 cts. 
 
 (18) 50 117638 at 70 c«5. 
 
 8819 
 1763 80 
 1763 80 
 
 Ans. gl2346 60 
 
 (2) 
 
 $ cts, 
 
 10 25 
 
 10 
 
 102 50 
 5 12 5 
 64 
 
 Ane. gl03 26 5 
 
 CASE 3. 
 
 (3) 
 
 cts. 
 
 4 
 
 15 
 7 
 
 
 29 
 
 05 
 
 
 2 
 
 07 5 
 
 1 
 
 03 
 
 7 
 
 
 
 51 
 
 8 
 
 
 
 14 8 
 
 
 
 3 
 
 7 
 
 Ans. $32 86 5 
 
PRACTICE. 
 
 77 
 
 Cwt. qr. lb, ^ cts, 
 (4) 129 1 10 at 1 05 
 129 
 
 (6) 
 
 Ans. gl35 80 4 
 
 Cwt. qr, $ 
 
 130 1 at 15 
 
 130 
 
 450 
 
 15 
 
 1950 
 3 75 
 
 Ans. gl953 75 
 
 qrs, lb, cts, 
 (8) 2 14 at 2710 
 
 (5) 
 
 Cwt.qr, g cts, 
 
 16 2 at 5 18 
 
 16 
 
 3108 
 518 
 
 82 88 
 2 59 
 
 Ans. g85 47 
 
 Cwt, qr, lb, cts. 
 
 (7) 25 1 
 
 9 at 175 
 
 25 
 
 ll 
 
 I- 875 
 
 4. 
 
 [350 
 
 4, 
 
 -43 75 
 
 43 7 
 
 I: 
 
 
 6 2-f 
 
 
 6 2+ 
 
 
 1 5+ 
 
 Ans. $44, 32 8 
 
 (9) 
 
 lb, oz. dwt, gr, 
 6 5 10 5 at 
 
 1355 
 338 7 
 
 Ans. gl6 93 7 
 
 g cts, 
 4 16 
 6 
 
 2496 
 
 138 6 
 
 34 6 
 
 17 3 
 
 3 
 
 Ans. g26 86 8 
 
 G2 
 
78 
 
 PRACTICE 
 
 Ih. oz. dwi.gr, cis. 
 
 . lh,oz. 
 
 dwt.scr, cts. 
 
 (10) 27 10 4 18 at 2635 (11) 
 
 9 11 17 22 at 613 
 
 
 27 
 
 9 
 
 
 
 6 
 
 ^ 18445 
 ^ 5270 
 
 
 4^5517 
 1 ^ 306 5 
 
 
 
 
 
 
 10 
 5 
 
 2\ 
 
 - 204 3 
 51 
 
 
 
 3 
 
 i711 45 
 
 
 
 
 1 
 
 1 13 17 5 
 
 
 : 25 6 
 
 
 
 4 
 
 ]r 6 58 7 
 
 
 12 J 12 7 
 
 
 
 12 
 
 \ 2 19 5 
 
 
 6^ 5 1 
 
 
 
 6 
 
 V 43 9 
 - 5 4 
 
 
 2| 12 
 2^ 6 
 
 
 . 
 
 
 2 7 
 
 
 
 2 
 
 2 
 
 
 Ans. g733 92 7 
 
 
 
 
 
 
 
 Ans. }ei 24 -3 
 
 oz. 
 
 dwL gr, cts. 
 
 yd, qr. $cts. 
 
 (12) 816 
 
 13 12 at 12^ (13) 
 
 27 3 at 9 65 
 
 
 1 1 
 
 816 
 
 1 
 
 27 
 
 
 
 10 
 
 i 1632 
 816 
 408 
 
 
 2J 
 
 6756 
 1930 
 
 
 
 
 
 
 260 65 
 4 82 6 
 
 
 
 
 102 00 
 
 
 U 
 
 
 
 2 
 
 \ 6 2 
 
 
 
 2 41 2 
 
 
 
 j 
 
 \\ 12 
 
 J 6 
 
 3 
 
 II 
 
 
 
 12 
 
 Ans. 
 
 J267 78 7 
 
 
 
 A 
 
 ns. 
 
 gl02 08 3 
 
 
 = 
 
 
 
PRACTICE. 
 
 79 
 
 yd, qr, cts, 
 
 (14) 860 1 at 84 
 
 860 
 
 (16) 
 
 5040 
 672 
 
 722 40 
 21 
 
 Ans. $122 61 
 
 gal, qt, cts 
 
 428 3 at 140 
 
 428 
 
 1120 
 
 280 
 560 
 
 599 20 
 70 
 35 
 
 Ans. $600 25 
 
 (15) 
 
 yd. qr, na, cts, 
 
 126 2 2 at 475 
 
 126 
 
 2850 
 950 
 475 
 
 598 50 
 2 37 5 
 59 3 
 
 Ans. 5^601 46 8 
 
 gcU, qt. pt, cts. 
 (17) 765 3 1 at 21 8 J 
 
 4 
 
 875 
 
 765 
 
 4375 
 5250 
 6125 
 
 6693 75 
 4 37 
 2 18 
 1 09 
 
 4)6701 39 
 Ans. $1675 34J 
 
80 
 
 hhd, g'al. 
 (18) 5 
 
 PKACTICE. 
 
 $ Qts, 
 
 31| at 47 12 
 
 3H 
 
 ^ 
 
 5 
 
 233 60 
 23 56 
 
 AnB. g259 16 
 
 hhd, gaL qt. ^ ds, 
 
 (19) 17 15 3 at 64 75 
 
 17 
 
 (20) 
 
 bu, pe, cts. 
 120 2 at 35 
 120 
 
 700 
 35 
 
 Ans. 
 
 4200 
 17 5 
 
 42 17 5 
 
 hu. pe.qt.pt. cts, 
 (22) 1354 1 5 1 at 25 
 1354 
 
 100 
 125 
 
 75 
 25 
 
 338 60 
 
 6 2.1 
 3U 
 
 3i^ 
 
 Ans. ^338 60 5} 
 
 453 25 
 647 5 
 
 1100 75 
 9 25 
 3 08 3 
 3 08 3 
 
 77 1 
 
 (21) 
 
 Ans. g llie 93 7 
 hu, pe. qt. ^ cts. 
 780 3 2 at 1 17 
 
 780 
 
 9360 
 819 
 
 912 60 
 58 5 
 29 2 
 
 7 3 
 
 ^. 
 
 Ans. ^913 55 
 R, P, 
 
 (23) 35 2 18 at 54 35 
 35 
 
 16 
 
 27175 
 16305 
 
 1902 25 
 27 17 5 
 5 43 5 
 67 9 
 
 Ans. gl936 53 9 
 
PRACTICK. 
 
 81 
 
 A.R,P. $ cLs, 
 (24) 146 3 10 at 35 10 
 146 
 
 A. R.P. $ ds. 
 
 (25) 750 1 4 at 12 25 
 
 750 
 
 21060 
 14040 
 3510 
 
 5124 60 
 17 65 
 8 77 5 
 2 19 3-f. 
 
 61250 
 8575 
 
 9187 50 
 3 06 24 
 30 6| 
 
 AnB. $9190 86 8| 
 
 Ans. $5153 11 8-f 
 
 APPLICATION. 
 
 Cwt.qr.lb, i cts, 
 (1) 84 2 14 at 10 60 
 84 
 
 CwLqr.lb, cts, 
 (2) 17 1 7 at 1212| 
 2 
 
 14 
 
 4200 
 8400 
 
 882 00 
 5 25 
 1 31 2-f 
 
 Ans. $888 66 2-f 
 
 2425 halves. 
 17 
 
 16975 
 
 2425 
 
 412 25 
 6 06 1^ 
 1 51 5| 
 
 2)419 83 8 mills. 
 
 Ans. $209 91 9 mills. 
 
82 
 
 T.cwLqr. $ ds. 
 
 (3) 15 10 3 at 80 15 
 
 15 
 
 PRACTICE. 
 
 yd. qr, pie, yd, 
 (4) 35 2X170=6035 at} 
 6035 
 
 10 
 
 40075 
 8015 
 
 1202 25 
 40 07 5 
 2 00 3J 
 1 00 U 
 
 4)6035 qrs, 
 Ans. p5 08 
 
 Ans. gl245 33 0| 
 
 A, R, P. $ ds, 
 
 (5) 175 3 12 at 52 15 
 175 
 
 26075 
 36505 
 5215 
 
 9126 25 
 
 26 07 5 
 
 13 03 7 
 
 3 25 9 
 
 65 1 
 
 Ans. $9169 27 2 
 
 (6) 1365 at ld,=$6 82|c^. Ans. 
 
 (7) 784 at 84 di. 
 
 784 
 
 336 
 672 
 
 588 
 
 Ans. g658 56 
 
PRACTICE. 
 
 83 
 
 (4) [l[j|475at| 
 12)118f 
 
 STERLING MONEY. 
 CASE 1. 
 
 (5) mi[299atj 
 
 12)149| 
 
 Ans. 9*. lOfdf. 
 
 (6) 
 
 Ans. $l2s, 5|cf. 
 
 978 at I 
 
 489 
 244^ 
 
 12)7331 
 210)6|1 1 
 
 Ans. £S Is. Ud. 
 
 (2) 1241978 at 2d, 
 
 2|0)16|3 
 
 Ans. £8 3^. 
 
 (4) [6j||792 at 6d. 
 
 2|0)39|6 
 
 Ans. £19 16^. 
 
 CASE 2. 
 (3) 
 
 499 at 5J. 
 
 166 4 
 41 7 
 
 (5) 
 
 2|0)20|7 11 
 
 Ans. £10 7*. Ud. 
 1 
 
 888 at 9d. 
 
 444 
 
 222 
 
 210)66|6 
 Ans. £33 Ss. 
 
84 
 
 (6) 
 
 PRACTICE. 
 
 921 at lid. 
 
 460 6 
 230 3 
 153 6 
 
 2|0)8414 3 
 
 Ana. £42 4*. 3d, 
 
 CASE 3. 
 
 (2) |3|||487 at 15d. 
 I I |l21 9 
 
 2|0)60I8— 9 
 
 Ans. £30 8*. 9c?. 
 
 (3) 
 
 979 at 22J 
 489 6 
 244 9 
 
 81 7 
 
 20 4£- 
 
 2|0)181|5 2J 
 Ans. £90 15*. 2|cf. 
 
 (4) 
 
 532 at 23j<f. 
 266 
 177 4 
 44 4 
 
 22 2 4 
 
 n 1 J 
 
 2|0)105|2 11 J 
 
 Ans. £52 12*. ll|<f. 
 
 CASE 4. 
 (2) ,5|||489 at 5«. 
 
 Ans. £122 5*. 
 
PKACTICE. 
 
 85! 
 
 (3) 
 
 937 at 11*. 
 
 468 10 
 46 17 
 
 Ans. £515 7*. 
 
 (4) 
 
 1286 at 15*. 
 
 643 
 321 10 
 
 Ans. £964 10*. 
 
 (5) 
 
 2798 at 19*. 
 
 1399 
 ft99 10 
 559 12 
 
 Ans. £2658 2*. 
 
 CASE 5. 
 
 (2) 
 
 10 
 
 £ *. d. 
 569 at 4 13 71 
 4 
 
 2276 
 284 10 
 56 18 
 28 9 
 14 4 6 
 2 7 5 
 1 3 81 
 
 (3) 
 
 Ans. £2663 12 7| 
 
 101 
 
 h-J 
 
 \\ 
 
 6- 
 
 3- 
 
 3 
 
 T¥ 
 
 £ *. df. 
 1967 at 5 16 9f 
 5 
 
 9835 
 983 10 
 491 15 
 98 7 
 49 3 6 
 24 11 9 
 6 2 \\\ 
 
 Ans. £11488 10 2|. 
 
 H 
 
86 
 
 ritACTICE, II 
 
 
 (4) 
 
 10^ 
 
 1 : 
 
 ? ^ 
 
 ^ 2975 at £7 
 
 195. llj(f. 1 
 
 20825 
 - 1487 10 
 743 15 
 . 595 
 
 99 3 4 
 
 24 15 10 
 
 12 7 11 
 
 6 3 11 
 
 3 1 11 
 
 
 
 Ans. 
 
 £23796 18^ OJ. 
 
 
 
 CASE 6. II 
 
 (2) 
 
 C. qr. lb. 
 
 9 2 17 a 
 
 . ! i 
 
 £ 5. ^. C. 
 
 14 7 6 (3) 11 
 9 
 
 1 
 
 /6. 
 16 a 
 
 £ ^ rf. 
 t5 6 71 
 11 
 
 
 21 
 
 2] 
 
 u 
 
 39 7 6 
 2 3 9 
 
 10 in 
 
 1 6J 
 
 1 
 
 14 
 2 
 
 T 
 
 58 12 101 
 
 1 6 7| 
 
 13 33 
 
 1 io| 
 
 An«. £42 4 fil ^"^- ^ 
 
 60 14 8-H 
 
 (4) 
 
 7 3 22 
 1 
 
 It 1 18 4 
 7 
 
 "4 
 
 1 (5)27 1 19 
 
 1 
 
 at' 
 
 r 
 
 7 
 
 1 
 
 ! 
 
 2 17 8> 
 
 3X9=27 
 
 
 2' 
 1^ 
 14 J 
 7) 
 1 ^ 
 
 -13 8 9 
 
 19 2 
 
 9 7 
 
 49 
 
 24 
 
 4 
 
 t 
 
 1 
 
 14 
 
 4 
 1 
 
 8 13 0| 
 9 
 
 7 17 6J 
 
 14 5-f 
 
 7 21 
 
 £» 1 
 
 Ans. . 
 
 ei5 5 
 
 i Ans. 
 
 £79 1 8? 1 
 
 
 
 
 
 
 
 
 1 
 
TARE AjN'D tret. 87 
 
 TARE AND TRET. 
 
 CASE 1. 
 
 CwL qr, lb, Cwt. qr. lb. Cwt. qr. lb. 
 
 (2) 7 3 20 (3) 6 2 5 (4) 369 2 21 
 
 8 «— 1 11 —10 1 12 
 
 gross 63 1 20 Ans. 6 22 Ans. 359 1 
 —5 1 19 
 
 Ans. 58 
 
 CwLqr.lb. C.qr.lb. lb. 
 
 (5) 6 1 19^ (6) No. 1.3 2 19 tare 34 
 
 8 No. 2. 6 13 tare 57 
 
 No. 3. 4 3 5 tare 46 
 
 43 1 12 whole gross. — C.qr.lb. 
 
 —2 23 tare. 14 2 9w.t.l37==l 25 
 
 —1 25 
 
 Ans. 41 17 neat. 
 
 Ans. 13 1 12 
 
 CASE 2.' 
 
 C. qr. lb. qr. lbs. 
 
 (2) 4 2 24 2 18 
 
 7 7 
 
 33 gross. 4cwt. 2qrs. 14^6*. whole tare. 
 4 2 14 tare. ^ 
 
 Ans. 28 1 14 neat. 
 
TARE AND TRET. 
 
 (3) 
 
 C. 
 
 21 
 3 
 
 qr. 11 
 2 2 
 1 
 
 \ 
 
 J at 5 50 
 
 Neat 18 2 t 
 
 -^ 
 
 % 
 
 *. 
 
 i 
 
 4400 
 550 
 
 
 lb 
 
 1 
 
 1 
 
 2 
 
 9900 
 275 
 9 8+ 
 4 9 
 
 
 Ans 
 
 . glOl 89 7 
 
 (4) 2 
 
 qr. Ib.^ 
 1 25 
 9 
 
 lb. 
 
 30 
 
 9 
 
 C. 9r. lb 
 
 ross. 270=2 1 18 
 re. 
 
 $cts. 
 
 t 5 10 
 
 19 
 
 22 
 2 
 
 1 Ig] 
 1 18 ta 
 
 Neat 19 
 
 3 11 a 
 
 
 
 qrs. 
 
 ^ i 
 
 4 ? 
 
 
 
 45 i 
 51 ( 
 
 )0 
 
 ) 
 
 )0 
 )5 
 11 5 
 
 M 8+ 
 
 8 2-f- 
 
 
 96 i 
 2 £ 
 1 S 
 
 1 
 
 
 Ans. $ 
 
 101 22 5 value. 
 
TARE A3SD TRET 
 
 89 
 
 CASE 3. 
 
 C. qr. lb. 
 (2) 7 3 14 
 
 4 
 lbs 
 
 31 2 gross. 
 
 4 2 
 1 14 
 
 5 2 14 tare. 
 
 Ans. 25 3 14 neat. 
 
 C. qr, lb, 
 
 (3) 5 1 13 
 
 10 
 
 lbs. 
 
 16 
 
 53 2 18 gross. 
 
 7 2 18+ tare. 
 
 Neat 46 at 8 75 
 46 
 
 5250 
 3500 
 
 Ans. ^402 50 value. 
 
 H,^ 
 
'90 
 
 TARE AND TRET. 
 (4) 4C. Iqr, 24/6. 
 
 26 3 4 gross. 
 
 Tare 4 l 
 
 Neat 22 1 
 
 8+ 
 25+ 
 
 Ibi. 
 
 27=2519 at 74 
 
 — 7j - 
 
 17633^ 
 1259 5 
 
 Ans. $188 92 5 value. 
 
 CASE 4. 
 (2) 2C. Xqt, lOlb, 
 
 12 
 
 lbs. 
 
 28 8 gross. 
 
 4 2 1 tare. 
 
 7 suttle. 
 17 tret. 
 
 Neat 22 2 18 at 19 60 
 
 — — 22 
 
 lbs. 
 14 
 
 2 
 2 
 
 39 20 
 
 392 
 
 431 20 
 
 9 80 
 
 2 45 
 
 35 
 
 35 
 
 Ans. g444 15 value. 
 
(3) 
 
 I"' ' = 
 
 TARE AND TRET. 
 C. qr, lb, 
 4 1 11 
 6 
 
 91 
 
 gr, lb, 
 1 5 
 6 
 
 iie 10 ^ 
 13 2 tare. 
 
 cwt, 13 2 tare. 
 
 ^)24 1 8 suttle. 
 "^ — 3 20 tret. 
 
 $ ds. 
 
 Neat 23 1- 16 at 6 75 
 
 ^ 23 
 
 qrs. 
 1 
 
 20 25 
 
 135 
 
 
 
 155 
 
 25 
 
 1 
 
 68J 
 84;- 
 12 
 
 Ans. gl57 90 value. 
 
 APPLICATION. 
 
 C, qr, lb, 
 (1) 17 3 22 gross. 
 
 3 14 tare. 
 ' — lbs, ds. 
 
 Neat 17 8=1912 at 23". 
 
 5736 
 
 3824 
 478 
 
 Ans. g444 54 
 
92 
 (3) 
 
 
 (2) 
 
 5C 
 
 r 
 
 8" 
 K 
 
 Neat 7 
 
 C.qr. 
 
 6 3 
 
 7 
 5 3 
 
 8 
 
 TARE AND TRET. 
 
 \ 2qr. 19Z6. 
 
 3X5=15 
 
 i 
 
 2qr. 25/6. 
 3 
 
 
 No. 1. 
 
 No, 2. 
 No. 3. 
 No. 4. 
 
 7 
 
 1 2 
 5 
 
 19 
 5 
 
 
 3 5gl 
 3 3 11 ta 
 
 •OSS. C.IO 
 
 3 11 tare. 
 
 
 t g6 75d^. 
 
 74 
 
 le. 
 
 
 4 22 a 
 
 
 
 16^ 
 
 2- 
 
 
 
 - 27 00 
 
 472 5 
 
 
 499 "50 
 
 r 96 
 
 z 24 
 
 12 
 
 
 /6. 
 18 
 10 
 26 
 3 
 
 A 
 
 grog 
 
 tare 
 atj 
 
 ns. 
 
 g500 82 vail 
 
 
 
 8 
 4 
 
 tV 
 
 i 
 
 28 
 
 
 
 1 
 
 s» 
 
 ^3 75c<^. 
 
 
 2 
 1 
 
 
 
 
 
 
 
 
 Neat 
 
 3 
 
 
 
 
 
 
 25 
 
 
 
 1 
 
 
 
 
 lb. 
 1 
 
 rh 
 
 
 3 3 
 
 
 18 ' 
 75 ( 
 
 93 ' 
 
 
 
 
 
 Ai 
 
 IS. ^ 
 
 93 78 3 value. 
 
 
(4) 
 
 TARE AND TRET. 
 
 IC. tqr, 23lb. 
 
 4X6=24 
 
 93 
 
 5 3 
 
 34 3 20 gross. 
 3 3 12 tare. 
 
 18^6. 
 
 24 
 
 72 
 
 ^ C.qrAb, 
 432=3 3 12 tare. 
 
 Neat 31 8 at $5 l'7^cls. 
 2 
 
 1035 halves. 
 31 
 
 1035 
 3105 
 
 32085 
 73 9 
 
 2)32168 9 
 
 Ans. 
 
 79 4 value. 
 
 (5) 
 
 IC. l^r. 13Z&. 
 
 3X5=15 
 
 4 
 
 11 
 
 5 
 
 20 1 27 gross. 
 2 3 22 tare. 
 
 22/6. 
 15 
 
 110 
 
 J!«. C.qrJb. 
 320=2 3 22 tare. 
 
 Neat 17 2 
 
 5 at $9 64ctg. 
 — 17 
 
 2 
 
 1 
 
 2 
 
 67 48 
 
 lb. 
 
 
 96 4 
 
 163 88 
 
 4 
 
 A 
 
 4 82 
 
 1 
 
 5^ 
 
 34 4 
 8 6 
 
 Ans. g 
 
 ,169 13 
 
94 inte:^est. 
 
 a qr, lb. 
 
 (6) 6 2 14 
 
 10 
 
 lbs. 
 
 66 1 gross. 
 
 9 1 24 
 1 20 
 
 10 2 16 tare. 
 
 55 2 12 suttle. 
 2 16 tret. 
 lbs. 
 
 cts. 
 
 Neat 53 1 25=5989 at lU 
 
 "i 
 
 65879 
 2994 5 
 
 Ans. ^688 73 5 value. 
 
 -MtoQeiM 
 
 INTEREST. 
 
 EXAMPLES IN CASE 1. 
 
 (2) 225 
 7 
 
 $ cts, 
 
 (3) 384 50 
 
 5 
 
 Ans. 5515 75 
 
 Ans. gl9 22 5 m. 
 
INTEREST. 9& 
 
 £ 8, % cts. 
 
 (4) 580 10 (5) 1654 81 
 
 6 5 
 
 r- J6 *. eif. %cts. 
 
 £34 83 Ans.34 16 7 g82 74 05 Ans. 82 74 
 
 20 
 
 5.16 60 
 12 
 rf.7 20 
 
 ^ j6 £ s. d» 
 
 (6) IllillSOO (7) 350 ^Ans. 18 7 6 
 
 Ans. $1 50 
 
 1750 
 87 10 
 
 £18 37 10 
 20 
 
 ^.7 50 
 12 
 
 d,e 00 
 
 (8) |J|524 (9) 111842 
 
 2620 4210 
 
 131 421 
 
 Ans. g27 51 Ans. g46 31 
 
96 XNTEKEST. 
 
 CASE 2. 
 
 $ £ s.d, £ 8, d. 
 (2) 540 (3) 124 5 6 4 19 5 Int for 1 year. 
 5 4 3 
 
 27|00 £4197 2 £14 18 3 Ans. 
 
 Ans. g54|00 «.19|42 
 12 
 
 rf.5|04 ; 
 
 (4) 482 
 6 
 
 
 g28f92 interest for 1 year. 
 7 
 
 Ans. 
 
 g202|44 
 
 CASE 3- 
 
 (2) 325 
 4 
 
 
 mo. 
 2 , 
 
 ^ 13|00 Int. for 1 yr. 
 
 4 ; 
 
 i 
 
 52 Int. for 4 yrs. 
 2|16|6 Int. for 2 mo. 
 
 Ans. $54 16 6 1 
 
INTEEE8T. 
 
 97 
 
 (3) 
 
 840 
 4 
 
 33160 Inti for 1 yr. 
 6 
 
 168 
 8 
 
 00 Int. for 5 yr. 
 40 Int. for 3 mo. 
 
 Ans. gl76 40 
 
 (4) 
 
 mo. 
 
 4 
 
 840 
 7 
 
 58|80 Int. for 1 yr. 
 5 
 
 294|00 Int. for 5 yrs. 
 19|60 Int. for 4 mo. 
 
 Ans. $313 60 
 
 (6) 
 
 1200 
 5 
 
 Ans. g60 00 Int. for 1 yr. Then say, nslyr.: 15w. 
 
 ^ $^^ '• $^'^ 30c<5. Ans. 
 
 (7) 
 
 240 
 
 960 
 
 120 
 
 60 
 
 Ans. gn 40 Int. for 1 yr. Then say, as lyr. : 61d. 
 gll 40: gl 90cfe. Ans. 
 
98 INTEREST. 
 
 £ 
 
 (8) 1000 
 7 
 
 £70 00 Int. for 1 yr. Then as lyr. : Umo. : : je70 : 
 £81 13*. Ad Ans. 
 
 (9) 450 
 51 
 
 2250 
 
 225 
 
 $U 75 Int. for 1 yr. Then as \yr. : 6mo. 20d. : ; 
 g24 ISds. : $13 15cts.+ Ans. 
 
 $ cts. 
 (10) 375 25 
 6 
 
 ^22 51 50 Int. for 1 yr. Then as lyr. : Syrs. 2mo, 2w, 
 5rf. : : g22 Bids. 5m, : $72 85. Ans. 
 
 CASE 4. 
 
 (2) 854 
 
 30 
 
 6)25620 
 Ans. ^4 27 
 
 (3) 
 
 $ 
 1100 
 48 
 
 8800 
 4400 
 
 
 6)52800 
 
 Ans. 
 
 $S 80 
 

 INTEREST. 
 
 
 
 09; 
 
 $ 
 
 (4) 3459 
 75 
 
 $ 
 (5) 1500 
 
 60 
 
 
 
 17295 
 24213 
 
 6)90000 
 
 jl 111 15000171. at 
 —2500 
 
 1 
 6 per cent. 
 
 6)259425 
 Ans. g43 23 7 
 
 Ans. gl2 50 
 
 
 CASE 5. 
 
 (2) 6 yrs. 
 4 dolls. 
 
 
 
 24 Int. of jSlOO for 6 yrs. 
 -flOO 
 
 £124 amount of £100 for 6 yrs. 
 
 
 
 Then as £124 ; £1240 : : £100 : 1000. 
 (3) 6 yrs. 
 6 dolls. 
 
 Ans. 
 
 
 30 Int. of glOO for 5 yrs. 
 100 
 
 
 
 gl30 amount of glOO for 5 yrs. 
 
 
 
 Thenasgl30 
 
 : $2470:: $100: $1900. 
 
 Alls. 
 
 
 (2) 
 
 CASE 6. 
 
 $ 
 1476 amt. 
 1200 prin. 
 
 $276 Int. 
 
 
 
 And gl200 : $100 : ; 
 
 time. 
 Then as byrs. 9mo, : 
 
 $276 : $23 int. of $100 for the i 
 $23 : : lyr. : $4 per cent. Ans. 
 
 same 
 
100 INTEREST. 
 
 $ cts. 
 (3) 927 82^ amt. 
 
 834 00" prin. 
 
 ^93 8;21 int. 
 
 As g834 : §93 ^^cts777pQ^Q : gll 2octs. 
 And then, as 2yr*. 6mo. : §11 2bcts, : : iyr, : §4| per cent. 
 Ans. 
 
 CASE 7. 
 £ £ 
 
 (2) 1600 2048 
 
 4 1600 
 
 £64 00 : Iyr. : : 448 : tyrs. Ans. 
 
 (3) 1000 
 41 
 
 40 00 
 5 00 
 
 §45 00 : Iyr. : : §281 25ctjf. : 6yri, 3f»o. Ans. 
 
 COMPOUND INTEREST. 
 
 § 
 
 (2) 760 prin. * 
 
 6 rate per cent. 
 
 45 60 int. 1st year. 
 
 805 60 amt. of let yr. and prin. for the 2d yr. 
 48 33 6 int. of 2d yr. 
 
 853 93 6 amt. of 2d yr. and prin. for the 3d yr. 
 51 23 6 int. of 3d yr. 
 
 905 17 2 amt. of 3d yi;. 
 760 00 1st prin. 
 
 Ans. §145 17 2 compound int. 
 
INTEREST. 
 
 £, s. d, £ 8. d. 
 
 (3) 242 10 6 242 10 6 
 
 6 14 11 Oint. Istyr. 
 
 lOll 
 
 £14|55 3 257 1 6 amt. 
 
 20 15 8 5| int. 2d yr. 
 
 11|03 272 9 ll|amt. 
 16 7 int. 3d yr. 
 
 288 16 1 If amt. 
 17 6 7i int. 4th yr- 
 
 306 3 7 amt. 
 ^242 10 6 1st. prin. 
 
 Ans. 63 13 1-f com. int. 
 
 (4) 1300 
 5 
 
 •65|00 int. 1st yr. 
 1300 
 
 1365 amt. 
 5 
 
 68|25 int. for 2d yr. 
 1365 
 
 1433|25 amt. 
 5 
 
 71 66|2 int. for 3d yr. 
 1433 25 
 
 Ans. gl504 91 2m. amt. 
 
 - u— ■— 
 
 
102 
 
 $ 
 (5) 3127 
 
 INTEREST. 
 
 t 
 
 3127 
 140 71 5 int. of , the 1st yr 
 
 12308 
 1563 5 
 
 3267 71 5 amt. 
 147 4 7 int. 2(1 yr. 
 
 gl40 71 5 
 
 3414 76 2 amt. 
 153 66 4 int. 3d yr. 
 
 1»R( 
 
 $ Cts. 
 (1) 620 25 
 
 3568 42 6 amt. 
 160 57 9 int. 4th yr. 
 
 Ans. g3729 00 5 amt. 
 
 JMISCU0U8 EXAMPLES. 
 
 (2) 420 
 7 
 
 3101 25 
 310 12 
 
 £29 40 
 20 
 
 nt. for 1 Jrr. *.8 00 Ans. je29 8* 
 
 $ 
 1450 
 
 60 
 
 34 11 37 i 
 5 
 
 Ans. gl70 5B ^m 
 
 (3) 
 
 6)87000 
 14500 mills=gl4 hOds. Ans. 
 
 

 INTEREST. 
 
 103 
 
 £ s. 
 (4) 626 5 
 
 3131 5 
 156 11 3 
 
 
 £ s. 
 
 626 5 
 
 32 17 
 
 d, 
 
 6Jint. of the Istyr. 
 
 659 2 
 34 12 
 
 6| amt. 
 
 1 int. of 2d yr. 
 
 £32187 16 3 
 20 
 
 693 14 
 36 -8 
 
 7f amt. 
 
 5 int. of 3d yr. 
 
 «.17|56 
 12 
 
 rf.6|75 
 4 
 
 Ans 
 
 730 3 
 —626 5 
 
 OJ amt. 
 prin. 
 
 . £103 18 
 
 0|+ compound mt. 
 
 fr*.3|00 
 
 £ 
 (5) 1659 
 4 
 
 
 
 
 r£66|36 
 20 
 
 
 Int for 1 
 
 yr.. 
 
 «.7|2e 
 12 
 
 £^.2|40 
 4 
 
 5r.l|60 
 
 
 Then as 365 days : 
 Ans. 
 
 21 days : : £66 7^. S^rf. : £3 16*. 4j(f.+ 
 
104 
 
 INSURANCE, COMMISSION AND BROKAGE. 
 
 (6) 
 
 500 
 8 
 
 840 00 int. for 1 yr. 
 
 Then as g40 : gSOO : : lyr. : 12yrs, 6mo. Ans. 
 
 (7) Thus, Qyrs. and 6mo. at 2 per cent. =^13 interest 
 on glOO. 
 Then ^13+gl00=:gll3=amount of glOO. ^ 
 And as gll3 : p50 : : glOO : g221 22ct8. 9m. Anfl. 
 £ 
 (8) 450 amount. 
 300 principal. 
 
 £150 interest. 
 
 Then as £300 : £100 : : £150 : £50 which divided hy 
 the 5 years=10 per cent. Ans. 
 
 INSURANCE, COMMISSION AND 
 BROKAGE. 
 
 EXAMPLES. 
 
 £ 
 
 (2) 1320 
 5 
 
 Ans. £66|00 
 
 (3) 3450 
 41. 
 
 m 
 
 13800 
 1725 
 
 $ 
 1680 
 
 n 
 
 3360 
 840 
 420 
 
 Ans. $l55\25cts. 
 
 g46|20 commifl . 
 
 gl680— g46 20cfe.3=gl633[80cf5. Ans. 
 
£ 
 (5) 7G0 
 
 INSURANCE, COMMISSION AND BROKAGK. 
 
 $ 
 (6) i ^ 5630 
 
 n 
 
 4560 
 380 
 
 £49140 Axis. £49 8*. 
 20 
 
 «.8|00 
 
 39410 
 2815 
 1407 5 
 
 Ans. g436|32|5m. 
 
 105' 
 
 17654 
 181 
 
 141232 
 17654 
 8827 
 4413 
 
 Ans. g3310|12. 
 
 (8) 2150 
 Ana. £43100 
 
 $ cU, 
 (9) J |||984 50 
 
 984 50 
 246 121 
 
 Ans. gl2|30|62l 
 
 (10) i iJllSsO 75 
 
 " U li 
 
 1650 75 
 825 37! 
 
 Ans. g24|76|12i 
 
106 
 
 DISCOUNT. 
 
 
 
 DISCOUNT. 
 
 EXAMPLES. 
 
 (2) 
 
 Thus, 2mo. 
 
 at 6 per cent. 
 
 per an.=±gU int. of glOO 
 + 100"' 
 
 1011 amt of do. 
 
 •■ 
 
 Then as glOlJ : g850 : 
 
 Ans. 
 
 : glOO : g837 43cts. 8w.+ 
 
 (3) 
 
 Thus, 9r/io. 
 
 at 6 per cent. 
 
 per an.=g4i int. of g 100 
 100 
 
 1041 amt. of 100 
 
 
 Then as ^ 
 present 
 
 ,1041 : g645 
 worth. 
 
 :: glOO : ^61 7 22cts. 4m. 
 645 00 
 
 Ans. $21 11 6 
 
 
 (4) 
 
 Yrs, 
 4 
 5 
 
 
 
 
 20 int. of 
 100 
 
 glOO for 4 yrs. 
 
 
 
 gl20 amt. of do. 
 
 en as ^120 
 
 $115 SOds. 
 
 : glOO : ^646 25ct8, Ans. 
 
 J/ 
 
 Sino. at 6 per cent, per an.=^4 int. of ^100 
 100 
 
 
 
 
 gl04 amt. of do. 
 
 
 Then gl04 : ^580 : : g 
 
 100 : $551 69f^*.-f- Ans. 
 
DISCOUNT. 
 
 107 
 
 Yrs. 
 12 
 
 ii 
 
 131 int. of 100 
 100"' 
 
 
 gllSiamt. of do. 
 Then as gll31 : g954 : : glOO : $U0 52cts. 
 
 8m. Ans. 
 
 (7) Thus, 15 mo. = l^yr, at 7 per cent. 
 num=g8| the discount of 100. 
 100 
 
 per an- 
 
 glOS^amt. 
 
 Then gl08| : g205 
 sent worth. 
 
 : : glOO : gl88 BOcts, 
 205 00 
 
 5m. pre- 
 
 
 Ans. ^16 49 5 
 
 (8) 
 
 mo, 
 6 
 
 I 
 
 2 
 
 5 
 
 
 3 
 
 i 
 
 s 
 
 
 3f discount of 100 
 100 
 
 
 gl033 amt. 
 
 
 Then as gl03f : g775 : : glOO : $146 9Scts. 
 
 7m. Ans. 
 
108 
 
 (9) 
 
 mo» £ 
 
 1 
 
 DISCOUNT. 
 
 mo. £ 
 Again | 3 |JI6 
 
 H 
 
 15 7710. 
 
 5 dig. of lOafor lOmo. 71 dis. of 100 for 
 100 100 
 
 Jl05 amt. 
 
 1074 
 
 1005 
 —475 
 
 Rem. 530 
 
 Then as 105 : 475 : : 100 : 452 38. Ans. to first part. 
 Again 1071 : 530 : : 100 : 493 02 4 
 
 Ans. g945 40 4m, 
 
 (10) 
 
 2260 
 6 
 
 Again 6 
 5 
 
 135 60 int. fori yr. 
 5 
 
 678 00 int. for 5 yrs. 
 
 30 dis. of 100 
 100 
 
 |Jl30 amt. 
 
 Then gl30 : te60 : : glOO : gl738 46cts, Sim. pres. wr. 
 
 2260 00 
 
 521 63 8 discount. 
 678 00 interest. 
 
 Ans. ^156 46 2 
 
EQUATION. 109 
 
 (12) 782 (13) 476 (14) 1335 
 
 4 3 6 
 
 £31|28 Ans. $U\2iicts, 33 10 dis. 
 
 20 1335 00 
 
 *»5|60 Ans. £31 5s. 7J. Ans. jJlSOl 90cts, 
 
 12 
 
 d.l\20 
 
 650 
 4-* 
 
 2600 
 325 
 
 29 1 25 discount. 
 650|00 
 
 Ans. g620|75 
 
 EQUATION. 
 
 EXAMPLES. 
 
 t 
 
 (2) 250X6=1500 
 250X8=2000 
 
 500 3500-^500=:7mo. Ans. 
 
no 
 
 BARTEK. 
 
 (-3) 
 
 £ 
 100x2=200 
 100X4=400 
 100X6=600 
 
 
 300 1200-f.300=4mo, Ans. 
 
 (4) 
 
 100X3= 300 
 
 200X5=1000 
 
 • 250X8=2000 
 
 
 550 3300-^550=6/na. Ans. 
 
 
 -^*^«^- 
 
 
 BARTER. 
 
 
 EXA:\irLES. 
 
 (1) Thus 2c 
 Then as 
 
 wl. 2qrs. 13/6*.=±.?93/6a. X 0c/*.=:2637c/*. 
 25cts, : 2637c/*. : : 1/6. . 105/6*. moz, Ans. 
 
 (2) Thus 2500/6«.X4^c/5.=^112 50d*. 
 
 Tiien as ^1 SOci^.l ^112 50d*. : : 1//^ : 86/6*. 802:.+ 
 Ads. 
 
 (3) Thus 10a/5*.X5?1 25r/.9.=r^t35 OOc^*. 
 
 Then as U'icts, :'gl35 mcU, : : lib, ; 1542/6. 13o^.+ 
 Ans. 
 
 (4) First, as \cwL : $3 75<?f^. : : 14nc«. Sqrs, 2Gibg. : ^56 
 186/*. 3m. the value of the rice. 
 Then as p Sl^ds. : $56 Ucfs. 3m. : : 1/6. : 29/6*. 
 150^.+' Ans." 
 
 (5) Jims 2cwL ^qrs, 17/6*. =32 5/6*. X 12-k/*.=g40 621c/*. 
 Then as 37c/*. : ^40 G'Zlds. : : lyd. : 109yds. 2qrs. 
 Ans. 
 
 (6) Thus 3576t«. X 0Ms.—p2^ 1 cL 
 
 Then 4Fycls. : g332 Olc/. : : l6tf. : 7376?/. 3/)«.H- Ans. 
 
BARTEK. 1 1 I 
 
 (7) Thus UcwL Oqr. 21lhs.=:n01lhs,X20cls, =$341 
 
 AOcls. 
 Then ^9 50cts. : ^341 AOds, : : Icwt : 35cw/. 2qrs. 
 20lbs,-\- Ans. 
 
 (8) Th\\s95yds.X5pie.=z4'75yds.x22cts.=$\09 25cts, 
 And 32 sheep X 250= —80 00 
 
 SR29 25 rem. 
 
 Then as gl 50d^. : $29 25cts, : : Icwt. : 19cwt, 2qrg. 
 Ans. 
 1^9) Thus USeyds, at 43c/^. per ijd. = $552 9Hcts. 
 And 2c«j^. Iqr. 13lbs.=265lbs.Xl4cts.=z37 10— 
 
 Ans. $515 88 
 
 (10) Thus570/&*.X7cA9.=$39 90ds. 
 
 Then as ll|c^5. : $39 90c/^. :: lib. : SUIhs, l5oz.+ 
 Ans. 
 
 (11) Thus U2cwt,X$5 0\ct8,=:$564 COds. 
 
 Then as UOSyds. : $564 GOds. : ; !?/(/. : 40ds. 7m.+ 
 Ans. 
 
 (12) Tims 750^fe#.xgt 08^^*.— .$810 OOcf^. 
 
 Then Sr^.v. ; $810 OOd*. : : Mb, : I0\25lhs.=^90cwt. 
 Iqr, lUbs, Ans. 
 
 (^S) Thus2Mr/*.=126^a/5.X75rY,?,~$94 50cU, ^ 
 
 Then 56yds. : $94 5()ds. :: 1?,'^/. : $1 68jc«#. Ans. 
 
 fi4) Thus 2108/6*. XlOd5.=$210 80cf^-. 
 And 3ldoz.XU\ds, ■= +3 56^ 
 
 $214 361 amt. of the whole. 
 — 135 25*^ 
 
 $79 111 rem. 
 
 Then as $1 58cf9. : $79 \\\ds. : : \hu. : 50har.+ 
 Ans. 
 
112 LOSS AND GAIN. 
 
 (13) Thus newt. X 4X 28=1904/6*. X 13lcts,=$25'7 04cU. 
 value of A.'s g^oods. 
 And 1200/?;*. ot the rate of gl4 per cwt.=150 00 
 
 balance of B.'s goods. 
 
 Ans. A. is to receive ^107 04 
 
 (16) Thus 25cts, 
 —20 
 
 5 gain on 20cf*. 
 
 Then a^ 5cts. : 20cts, : : 5cts. : 20ch. Ans. 
 
 (17) Thus CiOcis, : 50cis. :: 31 Jd*. . Sorts. Ans. 
 
 (18) Thus 105 tons at pO 03 per ton=^1053 IScts. 
 value, of the iron. 
 
 pays cash 650 00 
 250/7>s. at 20cfs. per lh.= 50 00 
 
 10 loads X 156?/. X 45cc^*.= 67 50 
 
 And fi5gah. at the rate of g75 per hhd.=lO\ 19 
 
 —868 69 
 1053 15 
 
 Rem. unpaid gl84 46 
 
 Then30d^. : ^184 4Cd*. :: lib. : 615Z6*. nearly. 
 Ans. 
 
 LOSS AND GAIN. 
 
 EXAMPLES. 
 
 (2) Thus lOds. 
 
 —a 
 
 2 
 Then 1/6. : 17G3/6.f. : : 2ds. : p5 2Gch. Ans. 
 

 LOSS AND GAIN. 113 
 
 
 (3) Thus g5 2^cts. 
 ~5 00 
 
 
 25 gained per barrel. 
 
 
 Then Xhar, : 3636ar. : : 25cts. : $dO Ibcts. Ans. 
 
 
 (4) Thus g3 90c^^. 
 
 —3 75 
 
 
 15 gained per yard. 
 
 
 Then lye?. : \BQyds, :: 15c^5. : g22 50c/*. Ans. 
 
 (5) 
 
 First, IcwL : g7 SOr/^. : ; ISaof. 2^r*. : gl38 75d*. 
 
 the cost. 
 Then U^t, : %1 ISds. : : 18cw/. ^rs. : ^143 37icf*. 
 
 sold for. 
 
 Ans. gained ^4 62| 
 
 (6) 
 
 First, 210 rcam5X$2 621=^551 25d5. the cost. 
 And 210ream*x|2 87|=|603 75ds. sold for. 
 
 Ans. g52 50 gained. 
 
 
 (7) Thus, sold for $20 Ibds, 
 cost la 12j 
 
 gained g2 62| Ans. 
 
 
 (8) First, 50cf*. 
 
 —45 
 
 
 5 
 
 
 Then 16m. : 1506w. : : Bcis. : p 50cts. 1st Ans. 
 Again, BOcts, : 5cts. : : glOO : glO. 2d Ans. 
 
 K 2 
 
114 LOSS AND GAi:^. 
 
 (9) First, 760/6*. X 90d.9.=g684 00 sold for. 
 810 00 cost. 
 
 Lost 126 00 1st Ans. 
 
 -J 
 
 ThcngOlO : $126 :: ^100 : gl5|. Ans. 
 (10) First, Slllds. 
 
 Then 31^cts. : B^cts. : : $100 : gl4| per Cent. Ans. 
 
 (11) Thus 15. : 2(1 : : £100 : £162 per cent. Ans. 
 
 (12) Thusgl3 75d.?. First cost of each piece. 
 
 3 12^ for dyeing. 
 
 gl6 J]7| whole cost. 
 ThenglOO : $112 :: $16 871d*. : $18 90ci*. Ans. 
 
 (13) Thus Iciof. : 1/6. :: $7+$3 : ^cts. 9m. Ans. 
 
 (14) Thus, paid 22cts, per lb. 
 Sold it for 19 
 
 Lost 4cts. per lb. 
 
 Then as 1/6. : 702/6*. : : 4cts. : $28 OMs. Ans. 
 
 (15) Thus S2 23c/*. : $2 75c/*. :: $110 : $135 65c/*. 
 And $135 65c/*.— $100=:$35 65c/*.=:35|- nearly. 
 
 Ans. ' 
 
 (16) Thus $100 : $125 : : $2 lOcU. : $2 i62lc/*. what 
 
 1 hox sold for. 
 Then as $3 50c/*. price of Icwt. : $2 62^/*. price 
 of 1 box :: 112/6*. : 84/6*. Ans. 
 
LOSS AND GAIN. 115 
 
 (17) First, lOpie. X gl4=g224 the prime cost. 
 
 And 5pie.X$ll=:$H5 
 6pie.X$i5=^pO 
 
 ^175 received back again. 
 
 Then as ^100 : gll2 : : g^24 : ^250 SSds. price of 
 the whole with rate per cent, added. — 175 00 
 
 5)75 08 price of the 
 
 5 pieces. 
 
 Ans. gl5 17 G perpze. 
 
 (18) Thus ^500—^410=^90 gain on the whole. 
 
 Then as 31211)8, : lib. : : ^a0:24d*. Iw.-f Ans. 
 
 19) Thus $1 : glOO : : 5cts. : $5 00 the Ans. 
 
 (20) First, ^1 05r!.«f.X5l0— ^535 50d*. prime cost. 
 And ^1 30ci6\XiA0—^QC)3 OOcts. sold for. 
 
 mo, 
 
 3 
 
 6 
 
 1 50 
 100 00 
 
 glOl 50 
 
 Then glOT BOds. : glOO : : ^,663 : $^353 20cf*.+ 
 Hence $653 20c^«. — ^535 50r^. = ^117 70^5. 
 Ans. 
 
116 
 
 FELLOWSHIP. 
 
 FELLOWSHIP. 
 
 EXAMPLES. 
 CASE I. 
 
 (2) Thus D.'s stock ^500 
 
 E.'s 400- 
 
 F.'s , 300 
 
 Sum 1200 
 
 Then as t^OO : 500 : : 300 
 And 1200 : 400 : : 300 
 
 And 1200 : 300 : : 300 
 (3) ^ Thus A. ^1200 
 
 B. 600 
 
 C. 700 
 
 Then as 2400 
 as 2400 
 as 2400 
 
 Whole debt ^2400 
 
 1200 
 600 
 700 
 
 125=D.'s ] 
 
 100=:E.'S 
 
 75=F.'s ^ 
 
 Ans. 
 
 1800 
 1800 
 1800 
 
 900 
 375 
 525 
 
 Ans 
 
 j^lSOO proof. 
 
 (4) Thus A. had 50 ca«/c. 
 
 B. 80 
 
 C. 70 
 
 Sum 200 
 
 cattle, cattle. 
 Then as 200 ; 60 
 as 200 : 80 
 as 200 : 70 
 
 $60 proof. 
 
(5) 
 
 FELLOWSHIP. 
 
 $ 
 
 Thus, to A. 120 
 
 B. 250 75 
 
 C. 300 
 
 D. 208 25 
 
 Sum 879 00 
 
 117 
 
 Then j 
 
 As j5879 : g650. 
 
 $ 
 
 120 : 88 754-=A.'ssh. 
 250 75 : 185 42+ =:B.'s sh. 
 300 : 221 84+ =C.'8 sh. 
 208 25 : 153 99+ =D.'6 sh. 
 
 ■ Ans. 
 
 (6) Thus A. is to have 1 portion. 
 
 B. 2 
 
 C. 6 
 
 9 sum of the portions. 
 
 Then as 
 
 900 : lOOrrrA.'s share. 
 900 : 200=B.'8 share. 
 900 : 600=C.'s share 
 
 ii 
 
 Ans. 
 
 (7) Thug, he owes to A. 250 50 
 
 B. 500 00 
 
 C. 349 50 
 
 Sum 1100 00 
 
 Then 
 
 As 1100 : 960 
 
 $ cis. f cts.m. 
 
 [250 50 : 213 61 8+ A.'s ; 
 
 500 00 : 436 36 3+ B.'s 
 
 [ 349 50 : 305 01 8+ C.'s ' 
 
 Ans. 
 
1 1^ FELLOWSiriP. 
 
 EXAMPLES 
 
 CASE 2. 
 
 % 
 (1) Thus 8«X3= 264 
 
 120X4— 480 
 300X6=1800 
 
 Sum of stocks and time 2544 
 
 % i i cts.m, 
 
 C 264 : ; 184 : 19 09 4=L.'s ) 
 Then as ^2544 : \ 480 : •,. 184 ; 34 71 6=M.'s > Ans. 
 ( 1800 : : 184 : 130 18 8=N.'s ) 
 
 $ m. $ . $ m. ^ 
 
 (2) 580X3=1^740 480x3=1458 
 
 + 100 —300 
 
 680X9=6120 180X2=372 
 
 +500 
 
 A.'s product 78fJ0 
 
 686X3=2058 
 
 % m. $ —400 
 
 1000X9=9000 
 
 + 200 286Xl=:286 
 
 + 1000 
 
 1286X3:=3858 
 
 C.'s product 8032 
 
 % 
 A.'s 78<50 
 B.'s 12600 
 C.'s 8032 g ^ cU.m, 
 
 % (tx. C 7860 : 581 64 8+A ) . 
 
 28492 : 2108 44 ::} 12600 ; 932 41 4+B >'^^^* 
 .( 8032 : 594 37 7+C ) 
 
 1200X3=3600 
 
 B.'s product 12600 
 
EXCHANGE. 119 
 
 EXCHANGE. 
 
 DOMESTIC EXCHANGE. 
 
 (1) Thus, £63 Us, 6d.~152Ud~T2d. a dollar in Vir- 
 
 ginia=:^212 4lJc<*. Ane. 
 
 (2) Thus, £230 10^. 'rd.=5532'7d.~9Gd, a dollar' in 
 
 New York and N. Carolina=g576 S2cts, 2m. Ans. 
 
 (3) Thus, ^150 
 
 90^.=a doll. Penn. cur. 
 
 12)13500^. 
 
 2|0)112|r> 
 
 £56 5.9. Ans. 
 
 (4) Thus, ^377 40ds. 
 
 72c?. =a doll. Mass. cur. 
 
 754 80 
 26418 
 
 12)27172 80 
 
 2j0)225|i 4d, 
 
 £113 4;?. 4d. Ans. 
 
 (5) ^ Thus, g389 45cts'. 
 
 56<i.=a doll, in Georgia. 
 
 233670 
 194725 
 
 12)21 809J20 
 
 2|0)181j7 5 
 
 £90 17*. 5d, Ans. 
 
120 EXOHAKGE, 
 
 FOREIGN EXCHANGE. 
 
 EXAMPLES. 
 
 (2) Thus £1 : je76 ;: $i 10cts,=^£l li'ish : ^311 60 
 cts. Ans. 
 
 (3) Thus gl 24cig. ~ 1 milrea : g532 Stids. : : Im. : 
 429m. 298recw.-f Aus. 
 
 (4) Thus eCcts. : gl869 : : Iru. : 283i^rw. Ans. 
 
 (5) Thus 1^, : ie5g, : : 39dJ. : g64 35c^*. Ans. 
 
 (6) Thus 33c<*. 5m.=lm. b, : §280 58cfe. 5wi. : : Im. 6. 
 : 837m. 6.-f- Ans. 
 
 (7) Thus 1/i : 562/i. : : 18d^. 5m.=l/j. : gl03 97ds. 
 
 Ans. 
 
 (8) Thus \0ct8.=zlriai plate : ^463 : : Irial : 4630ria/5. 
 
 Ans. 
 
 (9) Thus Ijfo. : 40cts, : : 591/o. 17*^ : §236 74ds. 
 Or 1«^ : 2d*. : : 591^0. 17*^ : §236 74f<5. 
 
 Then §100 : §160 :: §236 74d5. : §378 78^*.+ 
 Ans. 
 
 (10) Thus as 100cr.+25 : 1005. : ; 2464m. 6. : 1971m. 6. 
 
 3sch. 2^pcn. Ans. 
 
 (1 1) Thus Icr. : 32-if/. : : 2000cr. : £270 16*. Sd. Ans. 
 
 (12) Thus as lpi.~Sri, ; 366?. ;; §1676 6ri.=:16766r/. 
 
 ; £314 7*. a^. Ans. 
 
 (13) Thus lpez.=20sol. : 54d. : : ^MOpez, l5soL : £886 
 
 13*. 41(1, Ans. 
 
 (14) Thus \ru. : 4*. 3d : : 2586rw. : £549 10*. 6d. Ans. 
 
 (15) First £1 : £450 15*. : : 34*. 6rf. 1866104/?fnrp. 
 Or 20*. : 9015*. : : 414rf. : 1 866 lO^pencc Flemish, 
 
 or groots. 
 Then 50*^=100^. : ISeeiO^d. : : Iru. : 1866n/. 10-^ 
 cop. Ans. 
 
 (16) Thus as £io8 6*. Hd, Irish : £100*<^. : : £813 3* 
 
 6d. : £750 12*. 6d. Sterhng:. Ans. 
 
VULGAR FRACTIONS. 121 
 
 (17) First 20*. : 33*. Qd. ::5s,: Ss, 4U. 
 
 Then 5*. : 8*. 4|(/. : : 32i^. : 54^d. Flemish. Ans. 
 
 18) Thus 32ld. : 54^d. i : 5s, : Ss. 4ld. 
 
 Then as '5*. : 8*. 4^d, : : 20*. : 33**. 6c?. Ans. 
 *. *. d, 
 
 (ig) Thus |5|||33 6 
 
 8 4|=value of a crown at that rate. 
 Then 8*. 4lrf. : 6*. : ; 54fjC?. : 32|(/. Ans. 
 
 (20) Thus 32»ff. : 32c?. : : 36*. Gd, : 36*. 2|f f?. Ans. 
 
 (21) Thus 51c?. : 53c?. : : 42c/. : 4S}]d. Ans. 
 
 VULGAR FRACTIONS. 
 
 REDUCTION OF VULGAR FRACTIONS. 
 
 EXAMPLES. 
 C*ASE 1. 
 
 (2) Numer. 108)144(1 
 
 108 
 
 Common measure 36)108(3 
 108 
 
 Then 36)i^|=f . Ans. 
 
 (4) Numer. 126)234(1 
 
 126 
 
 108)126(1 
 108 
 
 Common measure 18)108(6 
 108 
 
 Then 18)lSf=f3. Ans. 
 
122 VULGAR FRACTIONS. 
 
 CASE 2. 
 
 (2) 45X34-2=i|'7. Ans. 
 
 (3) Thus 1564X5-f3='7s^23, ^ns. 
 
 CASE 3. 
 
 (2) Thus 67-r-7=94. Ans. 
 
 (3) Thus 1 6)364(22 j|. Ans. 
 32 
 
 44 
 32 
 
 '' 12 
 
 CASE 4. 
 
 (2) Thus 6X8X11X13==6864 numer._^72_. . ^ 
 And 7X9X12X17=12852 denom. '"*' 
 
 (3) ' Thus 7X15X8X6=5040 numer._^4oo ^^g 
 And 12 X 19 X 1 1 X 13=32604 denom. ^^^* 
 
 CASE 5. 
 (2) Thus 5)5 20 10 15 the denominators. 
 
 2)1 4 2 3 
 
 12 13 
 
 Then 5 x 2 x 1 X 2 x 1 X 3=60 common dcnom. 
 
 Then the com. denom. 60—5=12X4=48^ 
 
 60-r 20=3 X 9=27 I „„^^^ 
 60-4-10=6x7=42 f""""^^' 
 60—15=4X4=16] 
 
 That is fl iJ 41 U' Ans. 
 
VULGAR FRACTIONS. 123 
 
 (3) Thus 2)10 2 9 the denom. 
 
 5 19 
 
 Then 2x 5 x 1 X 9=90 common denom. 
 90-r-10= 9X9=81) 
 90~- 2=45 X 1=45 > numer. 
 90-f- 9=10X5=50) 
 
 ThatisJJ^fJ. Ans. 
 
 CASE S. 
 
 ^2) First lib. troy=240t?io«. therefore | of aiir=x2T?F= 
 ;f^a. Ans. 
 
 (3) Thus 3xlXl_ 3 Anc? 
 And 8x4x4-~^^- ^'^• 
 
 (4) Thus lkhd,=:SO^ts, therefore | of shF^iwsJ''^^' 
 
 Ans. 
 
 (5) Thus 8/«r.=lm. therefore 9x1=9 the numer. and 
 
 16 X 8=128 the denom.=y|^. Ans. 
 
 CASE 7. 
 
 (2) Thus 2X112=224 the numer. and 252x1=252 the 
 
 denom.=f||=|/6. Ana. 
 
 (3) tIht of £l=Tifff^ of ^r ==l^ll=^^- Ans. 
 
 CASE 8 
 
 (2) Thus J of a Bhilling=5 of y=y =10|(/. Ans. 
 
 (3) Thus If of a day=|| of \^—%\^—^hrs. Ans. 
 
 (4) Thus fg. of an acre=TV of | of |-''=Vi" perches= 
 
 Ir. lOp. Ans. 
 
 CASE 9. 
 (2) Thus bs. 4^.=64J. and £l=240<^. therefore 4\= 
 y\£. Ans. 
 
124 VULGAR Fractions. 
 
 (3) Thus Cmo. 2w.=26iv, and lyr.=52w. therefore || 
 
 oriyr.=:|yr. Ans, 
 
 (4) Thus 2qrs. 3/i«.=llna. and lijd,=^16na, therefore 
 
 j}yd. is the Ans. 
 
 ADDITION OF VULGAR FRACTIONS. 
 
 EXAMPLES. 
 
 (2) Thus t\+A+A+tV=H=1- Ans. 
 
 (3) Thus 44-.iJ-f «=V=16. Ans. 
 
 (4) Thus 6)5 10 
 
 1 2=10 common denom. 
 And 10— 5X2=4) 
 
 10-10X5=5 P^"'^^- 
 Whence A+tV^A- Ans. 
 
 (5) Thus 3|=V, 8f=V% and 4x7x9==252 common 
 
 denom. 
 
 And 252—4X13= 819) 
 
 252—7x58=2088 >numer. 
 
 252-^-9 X 4= 112) 
 Whence fH+WI+Ht='¥7?l=ll|H- Ans. 
 
 (6) Thus i of |=H=A. andf of t^=^=/,. 
 Then 8)16 24 
 
 2 3=48 common denom. 
 And 48^16X5=15) „^^^ 
 
 48-^24x7=14 r 
 Whence 4f+i|=o. Ans. 
 
 (7) Thus iof -fof Y=»|«=53'per.=Ir. 13Jp. 
 And ^ of V«=2f-«=28j[>. 
 
 Whence \R. 13j/>. 
 28 
 
 Ans. 2 U 
 
VULGAR FRACTIONS. 125[ 
 
 MULTIPLICATION OF VULGAR FRACTIONS. 
 
 EXAMPLES. 
 
 (2) ^ by 1 thus 2X 1=2__ ^ 
 
 (3) Thus 6|=:26 by i=26xl^26_ 
 
 4X7=28" 
 
 (4) 4f=V^ by f=19X2=38_ 
 
 -=--y^. Ans. 
 
 4X3=12^^^=-^- ^"^- 
 
 SUBTRACTION OF VULGAR FRACTIONS. 
 
 EXAMPLES. 
 
 (2) Thus ^ of 1=0^ whence ^J— Jg. 
 4) 20 28 
 
 5 7=140 common denom. 
 
 140—20x10=133. 
 
 V numer. 
 
 19=133 > 
 1= 5[- 
 
 140-f-28X 
 
 wnence y^-jy — jaq — to — a?* -^"S* 
 
 (3) Thus 1X14=: 14 common denom. 
 And 14-^ 1X5=70) 
 
 14-14x8= 8 r"^"""'- 
 Whence 1^—^^=:Y^=4{^, Ans. 
 
 (4) Thus I of a league=| of 3 miles=2 miles. 
 
 And -^ of a mile= 7jf of 8 furlongs=:|^'==5-^ fur- 
 
 longs=:5 furlong's 24 poles. 
 Therefore 2m. — 5fur, 24/>o.=lm. S/wr. IGpo, i\ns. 
 
 (5) Thus 5|='^3 and 2|=| therefore 4x3=12 com. d. 
 And 12-f-4x 23=89) 
 
 12-f-3X 8=32 r'"'''^'' 
 Whence f|— f|=ft=3^. Ans. 
 
 (6) Thus 2 of "^^=1-1 and | of |=|^. 
 And 4) 48 20 
 
 12 5=240 common denom. 
 And 240~.48X 14=70 ) 
 
 240-20 X 3=36 P™^^*- 
 
 70 3 3 4 17 A «« 
 
 2Tff 2¥0 24^ T2 0* -^"S* 
 
126 VULGAR FRACTIONS. 
 
 DIVISION OF VULGAR FRACTIONS. 
 
 EXAMPLES. 
 
 (2)|by?tIiusJ)f(5V Ans. 
 
 (3) 6|=^/-^lthusa)3J3(9/r=l9|. Ans. 
 
 (4) Thus f of 1=-^ and 1 of |=f. 
 Then T^-H| thus |)^tM='l- Ans. 
 
 (5)^byfthus4)i(TV=f. Ans. 
 
 (6)|ofi=iJand|of|=5V 
 
 Then 4J by J, thus |')J-KW=16f Ans. 
 
 (7) 1 of 17i=i of \'=^\'. - 
 Then =y5-^1thus-J)-V(V2=llj. Ans. 
 
 (8) Thus f of 91.p=.| of ^ry'^^f?!^- 
 
 And l^i'^'if thus i^i^'nV{\\m^=3i^Uif 
 Ans. 
 
 RULE OF THREE IN VULGAR FRACTIONS. 
 
 EXAMPLE.?. 
 
 (2) Thus 3l.yds.=\^ and 9j.9.=|-9 and ^7jds.=Y' 
 Then we have V = l"" = = '/ = l^*- 3</. 
 
 For 3,0 X V^=:lV5:~^\=|'iV=l 4.. 3^. Ans. 
 
 (3) Thus I : 20 . . 3 . 121/J.s'. 
 
 (4) Thus 273 x4/)e.=llly(Zs. ^nd 15§«.~16«. 8</. 
 Then say as in whole numbers, lyd, : lllyrf*. : : 15*. 
 
 ad, : £86 19 J. 
 For 13*. 8J.=:188c?.xllli/(Z5.=20868(f. which -7-12 
 -r20=£86 19*. Ans. 
 
 (5) Thus 55ci/?<.=V fi^nd £3m=»5»«. 
 
 Then we have =-V» : § : : »5-f« : £2 6*. 3||<i. 
 
 1 or 50 A y — jffjy ~5g — - BO^ff X. — **^ 0*. Jyfa. 
 
 Ans. 
 
DECIMAL FRxVCTIOXS. 
 
 (6) First lf/6.=|. 
 
 Then J^/6. : |/6. : : ^oL : $2 '74^cts, 
 
 127 
 
 For^ 
 
 
 $2 74^ds, Ans, 
 
 (7) Thus 20f(Z.=r:«2. 
 
 Then inversely thus 6m. : 10m. : : V^day, : S4Mays 
 For «^2 X Y = ^^-r-l=:^\%'—'^4±days. Ans. 
 
 (8) First ^ of 2lcv'f.=i of |=f of a cwt 
 
 Then this reduced to lbs", would be | of *l2_.56o^ 
 Then we have 6llbs.= \p : s.^o . . 3 . ^q 76||^-;^. 
 For ^f^Xf^^ll^H-f^^l^f £^o/.=glO 7611^;?. 
 
 DECIMAL FRACTIONS 
 
 ADDITION OF DECIMAI.S. 
 
 EXAMPLES. 
 
 (5) 
 
 56.12 
 .7 
 
 1.314 
 6837.01 
 .15 
 
 Ans. 5895.294 
 
 (6) 
 
 361.04 
 .120 
 78.0006 
 101.54 
 8.943 
 .3 
 
 Ans. 549.9436 
 
 (2) 
 
 MULTIPLICATION OF DECIMALS. 
 
 EXAMPLES. 
 
 (3) 4560. 
 
 54.20 
 38.63 
 
 16260 
 32520 
 43360 
 16260 
 
 Ans. 2093.7460 
 
 .3720 
 
 91200 
 31920 
 13680 
 
 Ans. 1696.3200 
 
 li^ 
 
1^8 DECIMAL FRACTIOKS. 
 
 (4) .28043 
 
 ;0005 
 
 Ans. .000140215 
 
 SUBTRACTION OF DECIMALS. 
 
 EXAMPLES. 
 
 (5) 13.16421 (6) 5960. 
 
 4.286 .3742 
 
 Ana. 6.87821 Ans. 5959.6258 
 
 DIVISION OF DECIMALS. 
 
 EXAMPLES. 
 
 (2) 4.20)148-63(35.304+ Ans. 
 1263 
 
 2233 
 2105 
 (4) 931.)2.00385(.0021523-f- Ans, 
 
 1280 1862 
 
 1263 
 
 1418 
 
 1700 931 
 
 1684 
 
 4875 
 
 16 rem. 4655 
 
 (3) 3.2).2142(.066-f Ans. 2200 
 
 192 1862 
 
 222 3380 
 
 192 2793 
 
 30 rem. 587 rem. 
 
 " ■ II I < l ■> I ■ m il 
 
DECIHAL FRACTIONS. 129 
 
 REDUCTION OF DECIMALS. 
 
 CASE 1. 
 
 
 (2) 8)7.000 
 
 (3) 
 
 24)170(.70833+ 
 168 
 
 .875 Ana. 
 
 
 
 
 200 
 
 
 
 192 
 
 
 
 80 
 
 
 
 •72 
 
 
 
 80 
 
 
 
 72 
 
 
 
 •— 
 
 
 
 8 rem. 
 
 (4) 2162.)3810(.1762+ Ans. 
 2162 
 
 (5)254)1160(.4566+ Ans. 
 1016 
 
 1440 
 
 16480 
 
 15134 
 
 
 1270 
 1700 
 
 13460 
 
 12972 
 
 
 1524 
 
 4880 
 
 1760 
 
 4324 
 
 
 1524 
 
 556 rem. 
 
 
 236 rem. 
 
 ■■si. , .1 ■ ■■ ■■■Ja 
 
130 
 
 DECIMAL FRACTIOIiS. 
 
 
 CASE 2. 
 
 
 (2) 
 
 Thus 2i2. 4P.=84P. lwi.=160P. 
 Then 160)840(.525 Ads. 
 800 
 
 
 400 
 
 
 
 320 
 
 
 
 800 
 
 
 
 800 
 
 
 (3) 
 
 2qr. 2na,=zlQm, 
 
 Then 16)100(.625 
 >96 
 
 40 
 32 
 
 80 
 80 
 
 And lyd.=zl6na, 
 Ans. 
 
 (4) 
 
 Ur.=:60wim. And 
 
 60)5.00(.08333-f Ans 
 480 
 
 (3) lo2r.=480^r*. 
 
 Then 480)1 000(.02083-l- Ans. 
 960 
 
 200 
 180 
 
 
 4000 
 
 200 
 
 
 3840 
 
 180 
 
 
 1600 
 
 200 
 
 
 1440 
 
 180 
 
 
 160 rem. 
 
 20 rem. 
 
 
 
 
DECIMAL FRACTIONS. 131 
 
 (6) 2qts, \pl.—5pts, 
 
 lhhd,=::S04pts, Then 504)5000(.1to992-f Ans. 
 4o36 
 
 4640 
 4536 
 
 1040 
 1008 
 
 32 rem. 
 
 CASE 3. 
 
 £ Day. GaL 
 
 (2) .1361 (3) .235 (4) .42 
 
 20 24 4 
 
 «.2.7220 940 ^f.l.GS 
 
 12 470 2 
 
 qt,pt. 
 
 <Z.8.6640 7ir5.5.640 jp^.1.36 Ans. 1 1.36 
 
 4 s,d, 60 
 
 Ans. 2 84- 
 
 5r.2.6560 — ^mm.38.400 
 
 60 
 
 ■ A»v. min* sec, 
 
 5ec.24.000 Ans. 5 38 24 
 
 s. Yd, Acre, 
 
 (5) .253 (6) .436 (7) .9 
 
 12 4 4 
 
 J.3.036Ans.3.036 ^r.1.744 r.3.6 
 
 4 40 
 
 qr. na, ' Jt, P. 
 
 wcf.2.976 Ans. 1 2 ;?.24.0 Ans. 3 24 
 
132 
 
 POSITION. 
 
 RULE OF THREE IN DECIMALS. 
 
 EXAMPLES. 
 
 (2) Thus lAyd. : IS.yd, : : 13*. : £6 19s, 3d. l.Tljr. 
 For 13X15=195. the dividend. 
 
 Then 195.-t"1.4=£6 19*. 3^.719^ Ans. 
 
 (3) Thus \qr, : 1yd, : : p M.5cts. : p 2Qcte. 
 For 2. 34.5x4—^9 ^Sds, Ans. 
 
 (4) First sold it for pOS.SOds, 
 
 but paid for it 84.39.12— 
 
 gained on it g23.90.88 
 
 Then W.5cwL : Icwt, : : g23 90d*. 88m. : $2 21 ds, 
 
 7m. + 
 For 23 .90 88-r10.5=|j2 27d*. 7m. Ans. 
 
 (5) Thus ^20.8 : ^2.6 : : 2i0pie, : 145.38/we.+ 
 
 For 240X12.6=3024.0 which —20.8=1 45.38pie.+ 
 Ans. 
 
 (6) Thus S,Soz. •: 5.2o^. : : '74.6d*. : gl lOcfe. 8m. 
 For 5.2x74.6-^3.5=^1 lOds. 8m. Ans. 
 
 POSITION. 
 
 SINGLE POSITION. : 
 
 EXAMPLES. 
 
 i 
 
 (2) Suppose 162 in the box. 
 
 32.40=J 
 27.00=*; 
 20.25=J 
 13.50=jV 
 
 Result 93.15 
 
 Theng93 15ds. : gl62 :: |J690 : jjl200. Ans. 
 
POSITIO?f. 
 
 133 
 
 (3) Suppose C.'s 40 
 + 8 
 
 + 16 
 
 64r=A.'s 
 48=B.'s 
 40=C.'s 
 
 152 result. 
 
 Then n2yrs. 
 
 yrs. yrs, yrs. 
 
 (64 :: 133 : 56r=A.'s ) 
 
 . : J48 :: 133 : 42=:B.'s >Ang. 
 
 ( 40 : : 133 : 35=C.'s ) 
 
 133 proof. 
 
 (4) Suppose No. 3 cost 20 
 3 
 
 60=No. 2. 
 
 120= No. 1. 
 60 
 20 
 
 Result 200 
 
 Then 200 : 
 
 350 : 2lO=No. 1. 
 350 : 105=No 
 350 : 35= No, 
 
 
 Ans. 
 
 M 
 
134 POSITION 
 
 Yrs, 
 (5) Suppose 60 
 2 
 
 120 
 3 
 
 5)360 
 
 3)72 
 
 24 result. 
 
 Then 242/r5. : GOyrs, : : 14yr$. : 35yrs, Ans. 
 
 £ 
 
 (6) Thus suppose 40 
 
 200 
 20 
 10 
 
 T * r 1 20 
 
 Int. for 1 yr. < 
 
 [«.6|00 
 
 Then as £10 14*. 8rf. : £201 5*. : : £40 : £750. Ans. 
 £ s. 
 And \l\2 6 
 
 4 years. 
 
 Int. in 4 yrs. 9 4 
 3 
 
 7 8 
 
 Int. for 8 mo. \ pj^ ^ 
 
 Whole int. 10 14 8 
 
 •^ < 
 
(7) Thus, suppose the cistern to hold 100 gallons. i 
 
 Then 100-^ 45min.=2^^aL=ihe quantity which the' 
 first cock discharges in a minute. 
 
 And W0-^55min.=^l^jgal, the quantity which the 
 second cock discharges in Imin. 
 
 Then 100-^30mm.=3^^a/.=the quantity which the 
 discharging cock discharges in Imin. Consequent- 
 ly, 2^gaL^l-fjgaL=4^^gaL the quantity which 
 the cistern receives by both the first and second 
 cocks in a minute. Then as 2igals, run out in the 
 same time, ^r^gctl. — S^a/.^jfg-aZ. that the cistern 
 gains in Iwim. 
 
 Then l^gaL : lOOgaL : : 1mm. : 2^^^, 21nii7i. 25 f see. 
 Ans. 
 
 DOUBLE POSITIO.V. 
 
 (2) First suppose they received 276 
 
 3)552 
 
 184=:what A. spoiU. 
 -i-250 
 
 434=:what B. spent. 
 —276 
 
 1 58 B. w^as in debt every 
 7 year. 
 
 1106=7 years' debt. 
 —350 
 
 756 error too much. 
 
136 POSITION. 
 
 Again suppose the salary was 300 
 
 2 
 
 3)600 
 
 200=A. spent. 
 J- 250 
 
 450 B. spent. 
 •—300 
 
 B. was every year 1 50 in debt. 
 7 
 
 And in 7 years he was 1 050 in debt. 
 --350 
 
 700 error too much. 
 
 Then 756 X 300=226800 
 700X276=193200 
 
 Difference of errors 56)33600(^600 the salary, f 
 336 of which=400 
 
 A.'s share, then 
 
 00 400+250=650 
 B.'s share. Ans. 
 
 (3) First suppose 30 working days. 
 
 §30 
 — 10 that he forfeits. 
 
 Tlcceivcs 20 
 
 27 50 
 
 7 50 error too little. 
 
137 
 
 Again suppose 20 worldng days. 
 
 Forfeits 15 
 
 Receives 5 
 
 27 50 
 
 22 50 error too little. 
 
 Then 2250x30=67500 
 750X20=15000 
 
 Difference of errors 1500)52500(35 workino- days. 
 4500 
 
 7500 
 7500 
 
 Therefore 50 — 35=15 idle days. Aiis. 
 
 $ 
 
 (4) First suppose 10 cow6=160 
 
 And 10 oxen=240 
 
 40 calves=240 
 
 The whole 640 
 —320 
 
 320 error too much. 
 
 Again suppose 8 cows==12S 
 
 And 8 oxen=:192 
 
 And32calves=192 
 
 The whole 512 
 320 
 
 192 error too much. 
 
138 rosiTio:N'. 
 
 Then 320x8=2560 
 192X10=1920 
 
 DiiFerence of errors 12S)640{5cows boxen & ^Ocaltes. 
 640 Ans. 
 
 (5) First suppose Again suppose 
 
 Ft, Ft, 
 
 No. 2=20 No. 2=30 
 
 10=1 i5=i 
 
 15 15 
 
 25=No. 3. 30=No. 3. 
 
 4-15 +15 
 
 40 45=No. 2. 
 
 —20 —30 
 
 20 error too much. 15 error too mucli. 
 
 Tiicn 20x30=000 
 15X20=300 
 
 Difference of errors 5)300 
 
 60=No. 2, then 60—15=45= 
 — No. 3. 
 
 And then we have No. 1=15, No. 2=60, and No. 
 3=35, which added together= 120/1. the length of 
 tht; pole. Ans. 
 
rosiTiox. 139 
 
 (6) Thus first suppose the whole property to have been 
 worth jS £ 
 
 396 Again suppose 432 
 
 198=1 
 
 216=; 
 
 —40 
 
 —40 
 
 158= A. 's share. 
 
 176=A.'8 
 
 132=^ 
 
 144=1 
 
 + 12 
 
 + 12 
 
 144=B.'s share. 
 
 156=B.'3 
 
 —80 
 
 —80 
 
 60=C.'s share. 
 
 76=C.'s 
 
 144 
 
 156 
 
 ^58 
 
 176 
 
 366 sum. 
 
 408 sura. 
 
 396 
 
 432 
 
 30 error of defect. 24 error of defect. 
 
 Then 432X30=12960 
 396X24= 9504 
 
 Difference of errors 6)3456 
 
 £576 Ans. 
 
 £ 
 
 Then 576-^2—40=248 A.'s share. 
 204-r-3-f 12=204 B.'s do. 
 204—80=124 C.'s do. 
 
 £576 proof. 
 
140 POSITION. 
 
 (7) First supDOse each boy received 3 
 
 2 
 
 
 6 = share of each 
 
 
 3 woman. 
 
 
 18= share of each 
 
 
 — man. 
 
 And 19X3= 67 
 
 
 11X6= 66 
 
 
 7X18=126 
 
 
 249 
 
 
 172 19 4J^ 1 
 
 76 
 
 7 J- error of excess. j 
 
 £ 
 
 Again suppose each boy received 1 
 
 2 
 
 
 2 share of each woman. 
 
 
 3 
 
 
 6 share of each man. 
 
 £ 
 
 And 19X1=19 
 
 
 11X2=22 
 
 
 7X6=42 
 
 
 83 
 
 
 172 19 4J 1 
 
 09 19 
 
 4J. error of defect. 1 
 
 , , ^ J| 
 
INVOLUTION AKJ) EVOLUTION . 141 
 
 £, S. d. 
 
 Now 89 19 4|X3=2G9 18 0] 
 76 7JXl= 76 7J 
 
 345 18 8i 
 
 Which -—166 sum of errors=:=jG2 1*. 8c?. -|- =each 
 boy's ehare, which X2=:JC4 35. 4|(/.4- =each 
 woman's share, which X3=jei2 10^. OJd!.-f = 
 each man's share. Ans. 
 
 INVOLUTION, OR THE RAISING OF 
 POWERS. 
 
 EXAMPLES. 
 
 (2) 14X14X14=:2744. Ans. 
 
 (3) 2.8X2.8X2.8X2.8X2.8X2.8=:4S1. 890304. Ans. 
 
 (4) .263X.263X.263=.013191447. Ans. 
 
 (5) }XiXiX|XiXjXiXi=^7i^^. Ans. 
 
 (6) 401x401x401x401—25850961601. Ans 
 
 EVOLUTION, OR THE EXTRACT- 
 ING OF ROOTS. 
 
 SQUARE ROOT. 
 
 EXAMPLES. 
 
 (2) 39375655(6275 Ans. (3) 14C6.179010(38.5o. Ans. 
 36 9 
 
 122)337 68)586 
 
 244 644 
 
 1247)9356 765)4217 
 
 8729 3825 
 
 12545)62755 7705)39290 
 
 62725 38525 
 
 Rem. 30 Rem. 76510 
 
142 SQUARE ROOT. 1 
 
 (4) ^6385163(9817 Ans 
 81 
 
 (^) 
 
 .0001 324960(.01 151 Ans. 
 1 
 
 188)1538 
 1504 
 
 
 21)32 
 21 
 
 1961)3451 
 1961 
 
 
 225)1149 
 1125 
 
 19627)149063 
 137389 
 
 2301)2460 
 2301 
 
 Rem. 11674 
 
 
 Rem. 159 
 
 1 
 
 (6) 18.362147(4. 
 16 
 
 285 Ans. 
 
 82)236 
 164 
 
 
 
 848)7221 
 6784 
 
 8565)43747 
 42825 
 
 Rem. i : 
 
 (^) 15^5=,!' •"- ^' a^iarc root is J. Ans. 
 
 (8) 36)1?-=- whose 
 
 square 
 
 root is ^. Ans. 
 
SQUARE ROOT. 143 
 
 (9) 500)3200(v^64(.8 Ans. (10) 50x64-f 49=:3|4 9, 
 3000 64 
 
 -; Then 3249(V=7J. Ans. 
 
 2000 25 
 
 2000 
 
 107).749 
 
 749 
 
 And \/. 6 4f. 8 denominator. 
 64 
 
 (11) 30x100+25=30.23 (12) 1296(36 Ans. 
 
 3X3=9 
 
 Then 30.25(5.5=5-,%. Ans. 
 
 25 66)396 
 
 396 
 
 105)525 
 
 525 
 
 (.13) 169(13 Ans. (14) 3097600(1760ydf^.=lmi/€. 
 
 1 1 Ans. 
 
 23)69 27)209 
 
 69 189 
 
 346)2076 
 2076 
 
 00 
 
 b 
 
144 SQUARE ROOT. 
 
 (15) Thus 15X15=225 
 
 24X24=576 
 
 V^801(28.3ft.An«. 
 4 
 
 48)401 
 284 
 
 563)1700 
 1689 
 
 Rem. 11 
 
 (16) 212X212=44944/^. 
 
 And 202/<?*.=6OX60= 2600/1, 
 
 41344(203.332/?. Ana. 
 2X2=4 
 
 403)1344 
 1209 
 
 4003)13500 
 12189 
 
 40663)131100 
 121989 
 
 406662)911100 
 813324 
 
 Rem. 97776 
 
CUBE ROOT. 145 
 
 CUBE ROOT. 
 
 EXAMPLES. 
 
 (2) 7532641(196.1)2 Ans. 
 
 1 
 
 { Defec. div. and squ. of 9=381 6532 
 ^+270=:com. divisor =651 6859 
 
 5 Def. div. and squ. of 6=108336 673641 
 ^ +3420=com. div. =111756 670536 
 
 Defective divisor 115248 3105000 
 
 ;Def. di. «fe sq. of .02=1152480004)3105000000 
 I 4- 11760 = com. div. =1152491764)2304983528 
 
 Rem. 800016472 
 
 (3) 12.113847500(2.296 Ans. 
 
 2X2X2=3 
 
 ; Def. div. and sq. of 2=1204)4113 
 » +120 = com. divisor = 1324)2648 
 
 5 Def. div. & sq. of 9=145281)1465847 
 (+5940 = com. di. = 151221)1360989 
 
 5 Def. di. & sq. of 6=15732336)104858500 
 ( + 61830 = c. di. = 15773556) 94641336 
 
 Rem. 10217164 
 
146 CUBE ROOT. 
 
 (4) 5382674(175.2 Ans. 
 
 1 
 
 5 Defec. div. & square of 7=349)4382 
 ( -f 210=complete divisor =559)3913 
 
 J Defec. div. «& square of 5=86725)469674 
 I -f 2550=:completc divisor=89275)446375 
 
 J Defec. div. & squ. of 2=9187504^23299000 
 I -f 10500 = com. divisor =9198004)18396008 
 
 >Rein. 4902992 
 
 (5) .378621 350(.723. Ans. 
 
 7X7X7=343 
 
 J Defec. div. & sq. of 2=14704)35621 
 ^4-420 = com. divisor =15124)30248 
 
 J Defec. div. & sq. of 3=1555209)5373350 
 ( -f 6480=com. divisor =1561689)4685067 
 
 Rem. 688283 
 
 (6) 46.295363543(3.590 Ans. 
 
 3X3X3=27 
 
 J Def. div. & sq. of 5=2725)19295 
 I 4-450=com. divisor=3 175) 15875 
 
 J Def. div. & sq. of 9=367581)3420363 
 J +9450 = com. di. t=377031)3396279 
 
 Defective divisor 1 2888 1 )24084543 
 

 
 ALLIGATION. 
 
 147 
 
 (7) Thus4)X«|5= 
 .2007722 
 
 J Defec. divis. & S( 
 ( -f 200=complete 
 
 5 Defec. div. and sq 
 14-8700 = com. di 
 
 (8) Thus 
 
 =23%> which reduced to a decii 
 
 Then .200772200(.585 
 125 
 
 [nal= 
 Ans. 
 
 Ans. 
 
 ju. of 8=7564)75772 
 divisor = 8764)701 12 
 
 .of 5=1009225)5660200 
 visor= 1017925)5089625 
 
 570575 Rem 
 
 ;j/36.|«=V36.8666664-(3.32 
 3X3X3=27 
 
 5 Defec. 
 I 4-270= 
 
 div. & sqi 
 =complete 
 
 1. of 3=2709)9866 
 divi. =2979)8937 
 
 
 5 Defec. 
 14-198: 
 
 div. & sq. 
 = com. div 
 
 of 2=32i?704)929666 
 isor =328684)657368 
 
 
 Rem. 272298 
 
 ^9®9^ 
 
 
 ALLIGATION. 
 
 
 
 
 CASE 1. 
 
 
 (2) 
 
 Cwt, 
 2 a 
 4 
 7 
 
 13 
 
 $ cts. $ ds. 
 t 25 =50 00 
 20 50 = 82 00 
 18 621=130 37^ 
 
 
 g262 371 
 
 Then as 
 Ans. 
 
 newt. : 
 
 UwL :•, $262 ^71^^. : $20 
 
 I8jd*. 
 
148 
 
 ALLIGATION'. 
 
 (2) 
 Mean rate 50 
 
 CASE 2. 
 
 =36 at 34 cts. ^ 
 =60 at 42 cts. I . 
 = 16 at 86 cts. f^^^' 
 = 8 at 110 cts. J 
 
 CASE 3. 
 
 (2) 
 
 Mean rate 92 
 
 Then 
 
 86 cts. 
 94 cts 
 
 18 at 105 cts 
 
 '^ 
 
 Ans. 
 
 CASE 4. 
 
 (2) 
 Mean rate 145 
 
 Then as 80 : 50 
 80 : 15 
 80 : 15 
 
 32 
 
 32 
 32 
 
 80 sum. of difter. 
 
 20 at 130 cts, 
 6 at 160 cts 
 6 at 180 cts 
 
 i:| 
 
 Ans. 
 
ARITHMETICAL PROGRESSION. 149 
 
 AFJTHMETICAL PROGRESSION. 
 
 CASE 1. 
 
 EXAMPLES. 
 
 (2) Thus 40—1=39 (3) 10—1=9 
 
 2 com. dif. 4 com. dif. 
 
 78 36 
 
 2= 1st term. +10=^lst term. 
 
 80 1st Ans. 46 last term. 
 
 2= let term. -flO 
 
 82 sum. 56 
 
 40 10 
 
 2)3280 2)560 
 
 gl6.40 Ans. 280 2d Ans. 
 
 (4) 75—1=74 
 
 2 common difference. 
 
 148 
 
 -f 6= 1st term. ^ 
 
 ^1.54 for the last* Ist Ans. 
 6= 1st term. 
 
 160 sum. 
 75 
 
 800 
 1120 
 
 2)12000 
 
 00 in the whole. Ane. 
 
 ^ 2 
 
150 ARITHMETICAL PKOGRESSION. 
 
 CASE 2. 
 
 (2) Thus 175 
 
 —21 
 
 8—1=7)154 . 
 
 jj22 common difference. 
 
 And 175+21=196 sum of extremes. 
 8 number of terms* 
 
 2)1568 
 
 784 whole sum. 
 
 Lastly 21-1-22= 43=2d payment. 
 
 43+22= 65=3d 
 
 65+22= 87=4th 
 
 87+22=109=5th 
 
 09+22=131=6th 
 131 + 22=153=7th 
 153+22=175=8th 
 
 763 
 21= 1st payment. 
 
 $784 proof. 
 
 (3) Thus 49 Then 49+4=53 sum of extremes. 
 
 -—4 10 number of terms. 
 
 10— .1=9)45 2)530 
 
 5com. dif. Received $2.65 Ans. 
 
GEOMETRICAL TROGRESSION. 151 
 
 GEOMETRICAL PROGRESSION. 
 
 EXAMPLES. 
 
 (2) Thus power 12 3 4 
 Ratio 3 9 27 81 
 
 27 3d power 
 
 "567 
 162 
 
 2187=7th power. 
 5= 1st term. 
 
 l6t Ans. 10935=:last term. 
 3 ratio. 
 
 32805 
 — 5= 1st term. 
 
 Ratio less 1=2)32800 
 
 jei6400 Ans. 2nd 
 
 (3) Thus power 1234567 8 9 
 Ratio 2 4 8 16 32 64 128 256 512 
 
 512 
 
 1024 
 512 
 
 * 2560 
 
 262 144= 18th p. 
 4=2d do. 
 
 1048576=20th p. 
 1 1st term. 
 
 1048576=lastt. 
 2 ratio. 
 
 2097152 
 
 l = lstt. 
 
 Ratio less 1= 1)2097151 
 
 Ans. g20971.51c <r 
 
152 COMPOUND INTEREST BY DECI]>LA.LS. 
 
 COMPOUND INTEREST BY 
 DECIMALS. 
 
 EXAMPLES. 
 
 (2) Thus, tabular number 1.2155062 
 
 750 
 
 607753100 
 85085434 
 
 911.6296500 
 Amourtt of £1 for 6mo. 1.024695 from table first. 
 
 45581482500 
 82046668500 
 5469777^000 
 36465186000 
 18232593000 
 91162965000 
 
 je934. 1423442067500 
 20 
 
 «.2.8468841350000 
 12 
 
 rf. 10. 1626096200000 
 
 £ 8, d. 
 
 Amount 934 2 10-}- 
 
 Principal 750 
 
 Interest 184 2 10+ Ans. 
 
ANNUITIES AT COMPOUND INTEREST. 1 53 
 
 CASE 2. 
 
 (1) Thus £695 13*. 9d.=:695.6875£. 
 
 Then from tab. II. 1.2762815)695.68750(545je. 1*. 
 9rf.-f Ans. 
 
 (2) ThusjeseO 5«. 3<i.=260.2625je which-rby 1.191016 
 
 from table II.=£218 10*. 5d,+ Ans. 
 
 ANNUITIES AT COMPOUND 
 INTEREST. 
 
 CASE 1. 
 
 (2) The number from table III.=5.637093 
 
 200=annuity. 
 
 Amount for yearly payments=l 127.4186 which X 
 1.014781 proper number for ^ yearly payment from 
 table V.=^l 144 08 2m.-{- Ans. 
 
 CASE 2. 
 
 (2) Thus, the num. from tab. IV,=4.21236 
 
 £70 annuity. 
 
 ^294 86 52 Ans. for y. 
 payments. 
 
 Then jj!294.8652 X 1.014781 from table V. = 
 $299, 22.2-{- mills. Ans. for i yearly payments. 
 
 And 294.8652X1.022257 for quarterly payments 
 from the same table=^301.42.8-f mi//#. Ans. for 
 quarterly payments. 
 
1 54 , COMBINATION. 
 
 ANNUITIES IN REVERSION, 
 
 (2) Th^ 9+4=13yo.=9^.98565 table IV. 
 4 do.=3.62989— . 
 
 6.35576 
 120 
 
 1271152 
 635576 
 
 62.69.1.2m. Ans. 
 
 e@»44.~ 
 
 PERPETUITIES AT COMPOUND 
 INTEREST. 
 
 (2) Thus, ratio— 1=1.06— 1=.06)260.00 
 
 g4333.33.3m.-f Ane. 
 
 COMBINATION. 
 
 EXAMPLES. 
 
 (2) Thus 20X19X18X17X16X15X14X13X12X1== 
 1X2X3X4X5X6X7X8X9X10= 
 670442572800 
 
 . = 184756 Ans. 
 
 3G28800 
 

 DUODECIMALS. 
 
 165 
 
 
 PERMUTATION. 
 
 
 
 EXAMPLES. 
 
 
 (2) Thus 
 
 1X2X3X4X5X6X7X8X9X1C 
 479001600 number of c 
 15 seconds. 
 
 X 11X12= 
 
 tianges. 
 
 2395008000 
 479001600 
 
 6|0)718502400|0 sec 
 
 
 6|0)11975040|0 min. 
 
 
 365AcZ.=8766 hrs.)l 995840(227 yrs. 248 days. 6 hrs. 
 Ans. 
 
 
 »mCQ9«»>». 
 
 
 
 DUODECIMALS. 
 
 
 
 ADDITION OF DUODECIMALS. 
 
 
 
 EXAMPLES. 
 
 
 Ft, 
 
 (1) 10 
 15 
 18 
 12 
 
 in. " '" "" Ft, in, " 
 5 6 11 6 (2) 37 8 10 
 9 5 2 10 43 11 2 
 4 17 9 19 7 5 
 8 6 5 7 18 4 1 
 
 /// ffff 
 
 6 9 
 4 7 
 3 8 
 
 7 2 
 
 Ans. 57 
 
 3 8 3 8 Ans. 119 7 7 
 
 10 2 
 
 1 
 
156 DUODECIMALS. 
 
 Ft. in. " 
 
 (3) 16 8 
 
 14 6 
 
 17 9 2 
 
 Ans. 48 11 2 
 
 SUBTRACTION OF DUODECIMALS. 
 
 EXAMPLES. 
 
 Ft, in. " '" "" Ft. in. " '" "" 
 
 (1) From 38 8 4 7 5 (2) From 720 3 8 1 6 
 
 Take 15 11 6 9 3 Take 13 9 4 7 10 
 
 Ans. 22 8 10 2 2 Ans. 706 6 3 5 8 
 
 Ft. in. " '" "" 
 
 (3) From 475 7 2 
 
 Take 81 2 5 10 6 
 
 (2) 
 
 Ans. 
 
 394 
 
 4 8 16 
 
 MULTIPLICATION OF DUODECIMALS. 
 
 
 CASE 1. 
 
 
 EXAMPLES. 
 
 Ft. in. 
 64 10 
 5 7 
 
 
 Ft. in. " 
 (3) 6 9 3 
 
 3 5 
 
 31 11 10 
 274 2 
 
 2 9 10 3 
 20 3 9 
 
 306 1 JO 
 
 Ans. 23 1 7 3 
 
(2) 
 (3) 
 sq. 
 
 
 6 
 
 1 - 
 
 4"- 
 1 
 
 DUODECIMALS. 167 
 
 CASE 2. 
 
 Ft, in, " 
 \ 81 10 4 
 
 7X2=14 
 
 573 4 
 
 2- 
 
 1146 8 
 J 40 11 2 
 L 6 9 10 4 
 » 2 3 3 5 4 
 6 9 10 4 
 
 
 1)1196 7 9 7 8 
 
 is,l22 8 7 9 7 8 Ans. 
 
 in, 
 
 4 
 
 1 
 
 3" 
 6//' 
 
 1 
 
 1 
 
 I 
 
 7 
 
 ^t. in. " '" . 
 2 5 7 2 
 
 } 9 10 4 8 
 2 5 7 2 
 7 4 9 6 
 12 9 7 
 
 9 10 4 8 
 2 5 7 2 
 
 ft. 1 
 
 
 110 8 5 4 11 10 contents of Ish. 
 10X10X10=1000 
 
 10 10 7 6 1 10 4 
 10 
 
 108 9 10 5 1 6 7 4 
 10 
 
 1088 2 8 3 3 6 14 Ans. 
 
 
158 PROMISCUOUS EXAMPLES. 
 
 PROMISCUOUS EXAMPLES. 
 
 (1) Thus A.'s 25 years. 
 
 + 15 
 
 B.'s 40 years. 
 + 12 
 
 C.*s 52 years. Ans. 
 
 % Cl8, % Cts, 
 
 (2) Thus 220 50-f-5=44 10 A.'s own share. 
 220 50+6=36 75 B.'s do. 
 
 80 85 sura. 
 220 60 
 
 139 65=C.'s own share. 
 
 ^ ds. j5 ds.m. 
 
 Then 36 75+2=18 37 5=^ B.'s share. 
 44 10 
 
 62 47 5=A.'s last share. 
 
 ^ els, m. 
 And 18 37 5 
 139 65 
 
 Ans. 158 02 5=C.'s last share. 
 
PROMISCUOUS EXAMPLES. 159 
 
 (3) glcrO— g7l : poo : : p6 25cts, : g60 Slds. 5m. 
 -1-25. 
 For 5625X100=562500 the dividend. 
 And 100—71=921 the divisor. 
 Then 562500— 92i=g60 Slots. 5?n.-f 25. Ans. 
 
 (4) Thus B. gains 2 miles per hour. 
 
 Then as 2m. : 50m. : : Ihr, : 25hrs. 1st Ans. 
 Now as B. went at the rate of 10 miles per hour for 
 25 hours, 10x25=250 miles, the 2d Ans. 
 
 (5) Thus^=J)750 
 
 187 50 whole price of the damaged. 
 100 loss. 
 
 87 50 what it sold for. 
 
 Then $1 25cts, : g87 50c^^. : : 1yd, : lOyds.zzzqmn- 
 
 tity damaged. 
 And 70 X 4=2S0yds, the whole quantity. 
 70 
 
 210 undamaged. 
 
 And ^750 OOd*. cost. 
 
 87 50 received for the damaged. 
 
 2l0yds, : $662 50 : : 1 : g3 I5lcts.+ Ans. 
 
160 PKOMISCUOUSf EXAMPLES.. 
 
 (6) Thus lOGO— 1=:=999 number of terras— 1. ♦ 
 1 ft. common dilTerence. 
 
 999 
 2 ft., first term. 
 
 1001 last term. 
 2 
 
 1003 sum of the terms. 
 1000 
 
 2)1003000 
 
 3)501500 ft. 
 
 220)167166+2 ft. 
 
 0)759+186 yds. 
 
 94+7/wy. UQyds. 2ft. Ans. 
 
 (7) Thus admit the wall to contain 3600 feet. 
 
 Then 20)3600(180 feet raised in a day by A. B. & C. 
 24)3600(150 * B. C. &D. 
 
 30)3600(120 C. D.& A. 
 
 36)3600(100 A. B. & D. 
 
 3)550 
 1 83i feet per day by altogether. 
 
 Then 183 J- And 183.} 
 
 B. C..& D. 150 C. D. & A. 120 
 
 A. 33} 
 
PROMISCUOUS EXAMPLES. 
 
 161 
 
 And 183 
 
 A. B. &D. 100 
 C. "83^ 
 
 ^ And 183 J 
 
 A. B. & C. 180' 
 
 D. 
 
 days. 
 
 Then, feet per day by A. 33J)3600(108 for A. to do it in. 
 do. by B. 63fj3600(56|J B. do. 
 
 do. by C. 831)3600(43]. C. do. 
 
 do. byD. 31)3600(1080 D. do. 
 
 And 1831)3600(19^ days all working together. 
 Ans. 
 
 d, d, 
 
 (8) Thus 4 crowns at 146 each=584 
 
 3 dolls. 
 2 ducats 
 
 108 
 136 
 
 1180c;. sum. 
 
 And £1055 155.=253380cif. 
 
 Then 
 1180 : 253380 
 
 d. 
 
 584 
 324 
 
 272 
 
 d, d. 
 
 125402-rl46=:858f|cr. 
 
 69572 " 
 
 58406 
 
 2-rl46=:858f|cr. ) 
 2-T-108=644^5^g. \ 
 6-M36=429||<£wc. ^ 
 
 Ans. 
 
 (9) Thus 9wi. : 21m. : : g332 50c<5. : $775 83jc«5. Ans. 
 For 33250X21=698250 the dividend. 
 And 9=the divisor. 
 Then 698250^9=^775 ^^Ids. 
 
 O % 
 
162 PROMISCUOUS EXAMPLES. 
 
 (10) Thus 12 
 
 4 
 
 16yrs.=10.n3'711 Table IV. 
 Time of reversion 12 = 8.86325 do. 
 
 1.97462 difference. 
 720.25 annuity. 
 
 987260 
 394904 
 3949040 
 1382164 
 
 gl422. 1480300 
 
 Or ^1422 14cls,' 8m.+ Ans. 
 
 (11) 3150 gigs — 
 2250 
 X Sets, 
 
 igs~7X 5=^ g cts, 
 ) wagons wh. > 135 00 for the wagons. 
 cts.= 3 
 
 3150 gigs -f- 3 X 5=^ 
 5250 footmen wh. > 52 50 for footmen. 
 X let.— ) 
 
 6250 footmen -r- 6 X 4 ^ 
 = 3500 horsemen > 70 00 for horsemen, 
 which X 2ds*= y 
 3150 gjs at 4cts. per ) j^g ^^ ^^^ ^j^^ 
 
 Amount of, toll 383 60 Ans. 
 
 (12) Thus 15^a/5. in 3min.~5gals. per min. that nm in. 
 And 20-7-5= l/.:flf7*. that run out in a min. Con- 
 sequently, the gain is 5 — 4=^gaL per min. which 
 is OOgnh. per hour. 
 Then nO-'60=50^<»vTA?. yet to nm in. 
 Then Sgals, : SOgals, : : Imwi. : 107nm. Ans. 
 
PROMISCUOUS EXAMPLES. 
 
 163 
 
 (13) 
 
 Thus 264 
 6 
 
 6 
 3 
 
 1 
 
 15 84 Int. for 1 year. 
 
 7 92 
 3 96 
 
 1 1 88 Int. for 9 months. 
 264 00 
 30 00 profit. 
 
 g305 88 for the whole. 
 
 lbs ^ cts Wl 
 
 Then 28cw?*.=3136)30588(0 9 7+ Ans. 
 28224 
 
 23640 
 21952 
 
 Rem. 1688 
 
 (14) Thus, the proportions are A. 4 B. 5 C. 3=12. 
 Then 12 : 780 
 
 ' 4 : 260 A.'s share of profit 
 
 5 : 325 B.'s do. 
 
 ' 3 : 195 C.'s , do. 
 
 1st 
 Ans. 
 
 pSO proof. 
 
 $ mo. 
 Then 260x5=1300 
 325X7=2275 
 195X9=1755 
 
 5330 
 
164 PROMISCUOUS EXAMPLES. 
 
 
 r 1300 : 1405 36 A. 's stock. 
 Again 5330 ; 5762 : : \ 2275 : 2459 39 B.'s 
 ( 1755 : 1897 25 C's 
 
 
 g5762 00 proof. 
 
 
 Now 2459 39 
 
 2087 00 B. received. 
 
 
 372 39 B.'s loss of stock. 
 And 325 00 do. of gain. 
 
 
 Ans. '^697 39 A. & C. would gain. 
 
 
 (15) 1004-51=105 75. $ cts.m. 
 
 Then 105 75 : 100 : : 1000 : 945 62 6 cost C. 
 
 20 75 less. 
 
 
 $924 87 6 cost B. 
 
 
 Again 100 
 
 —5 50 
 
 
 94 50 : 100 : : g924 Slds, 6m, : g978 llOcts. 
 4m. that the whole cost A. which ~20AM^.=g48 
 93c^*. 5m. -f Tperhhd. Ans. 
 
 
 (16) 10X11=110 sold for. 
 10 X 7= 70 worth. 
 
 
 $40 gain of A. 
 
 
 $ ds, m. $ ctt. 
 
 And 110-r3= 36 66 6+ paid cash. 5 25 
 
 110 00 4 50 
 
 
 $73 33 3 to pay in paper. $0 75 B. gains. 
 
 
 1 Then 450 : 75 : : 73 33 3 : $12 22ds. 2m. gain of 
 1 B. $40— $12.22.2=r$^27.77.8. Ans. 
 
 
PROMISCUOUS EXAMPLES. 165 
 
 (17) Thus 21—14=7 years to be of age. 
 Then gl 300 
 6 
 
 ' 7800 int. first year. 
 
 1300 
 
 1273 amount— 100. 
 
 6 
 
 7668 int. second year. 
 1278 
 
 125468 amount— 100. 
 •6 
 
 752808 intnhird year. 
 125468 
 
 12299608 amount— 100. 
 6 
 
 73797648 int. fourth year. 
 12299608 
 
 12037584 amount— 100. 
 6 
 
 72225504 int. fifth year. 
 12037584 
 
 11759839 amount— 100. 
 6 
 
 70559034 int. sixth year. 
 11759839 
 
 11465429 amount— 100. 
 6 
 
 68792574 int. seventh year. 
 11465429 
 
 ^ i 1 15.33.54m. amount— 100. Ans. 
 
IGG PROMISCUOUS EXAMPLES. 
 
 Another solution : 
 
 First, 1.067=1.5036302. See table II. Arithmetic. 
 
 And 1.5036302X1300=1954.719. Amount at . Com- 
 pound Interest. 
 
 Also, 8.393837X100=839.383. Amount of glOO An- 
 nuity for 7 years, table III. 
 
 Hence S5l954.719—g839.383==glll5 23cts. 5m. Ans. 
 
 (18) 
 
 E B F 
 
 64 
 
 ^K 
 
 ^'^""— — ^ 
 
 14 
 D 
 
 50 
 
 C 76~^ 
 
 L Statue, L 
 
 Thus, referring to the above figure. 
 
 A B is a perpendicular line erected on the centre of the 
 statue's base, which forms the side A C of the right 
 angle A C D ; and the other two sides, A D 86 and C D 
 76 are given to find the length of the side A C. 
 
 Now 76^=5776 & 862=7396 
 —5776 
 
 x/1620diff. (40.2-L = AC 
 
PROMISCUOUS EXAMPLES. 167 
 
 Then 40.2-|-14 the difference between the columns 
 =54.2 the whole length of A B. Then 54.22= 
 2937.64 & 972= 
 
 that is A E=9409 
 
 —2937.64 
 
 V6471.36=(80.44-f for E B. 
 
 + 76 that is BF 
 
 14=DF 156.44=EBF 
 
 14 156.44 
 
 56 62676 
 
 14 62576 
 
 93864 
 
 196 78220 
 15644 
 
 24473.4736 
 196 
 
 2^/^24669.4736=157 ft. Ans. 
 
 Note. — ^This solution snpposes the statue to be lower than the 
 columns : admitting it to be higher, the operation will, of course, 
 be different; but may readily be performed from the one here 
 given. 
 
 (19) Isec. : 47*ec. : : 1150/?. : 54050/?. Ans. 
 
 (20) 15m. 7/5/^=83820/?. 
 
 Then 1150/?. : 8382t)/?. :: Iscc, : Im. I2{^pec, 
 Ans. 
 
168 PROMISCUOUS EXAMPLES. 
 
 (21) First suppose J of 8.2245 in. to be gold. 
 
 4.1 1225=^ 4. 1 1225 in. of sil. 
 
 10.36 5.85 
 
 2467350 
 1233675 
 4112250 
 
 2056125 
 3289800 
 2056125 
 
 42.6029100oz.g. 24.0566 625o5r. sil. 
 24.0566625 
 
 66.6595725 
 63 
 
 3.6595725 error of excess. 
 
 Again suppose | of 8.2245 in. to be gold, the rest silver. 
 
 2.7415=^- 
 10.36 
 
 5.4830=silver. 
 6.85 
 
 164490 
 82245 
 274150 
 
 28.401 940o2r. 
 32.075550 
 
 60.477490 
 63. 
 
 274150 
 438640 
 274150 
 
 32.075550oar. sil. 
 
 2. 5225 1 error of defect. 
 
 [Seefolloiping page< 
 
PROMISCUOUS 1&XAMPX.ES. 
 
 169 
 
 in o 
 
 o Tt 
 o «> 
 
 00 1— 
 
 GO 1.^ 
 
 O GO 
 
 d d 
 
 
 to LO 
 
 vn 
 
 
 ^ 
 
 l> 1— ' 
 
 
 
 o 
 
 ^ 5 
 
 (^ 
 
 lo X 
 
 UO 
 
 c^* 
 
 1?^ o 
 
 CD 
 
 r- ^ 
 
 <-> 
 
 to UO 
 
 (M 
 
 05 G^ 
 
 CO 
 
 O G^ 
 
 
 CO in 
 
 CO 
 
 GO ©< 
 
 II 
 
 fl 
 
 lO 
 
 .Q^T3 
 
 (^ 
 
 ^ !=! 
 
 t- 
 
 
 
 
 
 o o 
 
 O 
 
 
 
 
 O O 
 
 o o 
 
 o 
 
 
 
 O 10 
 
 LO O 
 
 LO CO 
 
 Oi 
 
 
 LO O 
 
 LO G^ 
 
 G>^ GO 
 
 C5 CO 
 
 <?^ 
 
 
 Gv) O 
 
 G^ 00 
 
 '^ GO 
 
 O CO 
 
 rf 
 
 
 CO CO 
 
 O O 
 
 Oi CO 
 
 r-4 lO 
 
 LO 
 
 lO >o 
 
 O CO 
 
 ^ G-f 
 
 ^ G^ 
 
 05 ""^ 
 
 -rf 
 
 s^^ t- 
 
 LO CO 
 
 CO CO 
 
 O t- 
 
 G^ Oi 
 
 GO 
 
 <3^ 'f 
 
 O UO 
 
 
 O ^ 
 
 >0 Tf 
 
 
 CO ©^ 
 
 GO ■^ 
 
 a> CO 
 
 GO 5< 
 
 
 
 CO CO 
 
 O 05 
 
 
 
 
 
 Oi "^ 
 
 LO "<* 
 
 
 
 
 
 Lf5 LO 
 
 
 
 
 
 
 CO CO 
 
 
 
 
 
 
 r-i r-* 
 
 
 
 
 
 
 0) 
 
 
 ^ 
 
 
 •M 
 
 
 ns 
 
 
 C 
 
 
 KJ 
 
 
 
 m 
 < 
 
 Cf^ 
 
 
 o 
 
 M 
 
 r/: 
 
 a> 
 
 O) 
 
 > 
 
 o 
 
 -73 
 
 s-j 
 
 (C 
 
 C3 
 
 o 
 
 M 
 
 a^ 
 
 en 
 
 o 
 
 GO 
 
 
 
 o 
 
 Tj* 
 
 
 Eh< 
 
 GO 
 
 o 
 
 -3 
 
 o 
 o 
 
 CO 
 CO 
 
170 PROMISCUOUS EXAMPLES. 
 
 Another solution : 
 oz. oz. oz. 
 First 63-^8.2245=7.66 weight of a cubic incli of the 
 
 mixture. 
 Til "7 ftA 5 10.36s^r=1.81 proportional hulk of gold, 
 inen 7.t)t) ^ 5,85^=2.7 proportional huJk of silver. 
 
 Also 1.81X10.36±=18.7516 proportional trei^^,« of gold. 
 And 2.7 X 6.85=15.795 proportional lOCTg*^ of silver. 
 
 34.5466 sum. 
 
 oz. 
 
 Hence 34.5466 : 18.7516 : : 63 : 34.19587 gold ) > 
 And 34.5466 : 15.795 : : 63 : 28.80356 silver. ^ " 
 
 Proof 62.99943 
 
 (22) Thus llhs, beef at 5jcf5.=40}cfe. 
 
 5 bread at 6 =30 
 Then AO\cts, : g34 50cts. : : 30cf^. : $25 lids. 4wi.+ 
 Ans. 
 
 (23) Thus^oflof JJf=^V 
 Then l^/^«^=fif||. Ans, 
 
 (24) 1000 
 
 6 
 
 60|00 int. for 1 year. 
 8 
 
 int. for 8 years. 
 
PROMISCUOUS EXAMPLES. 171 
 
 Then 8 years. 
 6 per cent. 
 
 48 
 100 
 
 148 amt. of JJlOO for 8 yrs. at 5 per cent 
 
 $ $ $ $ c«*-"»- 
 
 Then 148 : 100 : ; 1000 ; 675 67 5 the present worth. 
 1000 00 
 
 g324 32 5 discount. 
 480 00 interest. 
 
 Ans. gi55 67 5 difference. 
 
 (25) V32=p5.656-|- 
 
 v^24=4.9 
 
 10.556 sum. 
 V67 =4.06+ 
 
 Ans. 6.496 difference. 
 
 (26) Thus glOO : ^105| : : $24.30 : ^2587 20cf*. 
 Ans. 
 
 (27) Thus the amount of gsOO lods, for 9 months at 6 
 per cent.=::g533 2nds. 4m. 
 
172 PROMISCUOUS EXAMPLES. 
 
 cts, ^ CU. 
 And 5064x21=126 60 price of the boards. 
 140X13= 10 20 do. tallow. 
 
 144 80 amt. 
 623 28 4 
 
 §378 48 4 to receive in flayseed. 
 
 Then as ^Z\cts.: §378 48c«#. 4m. : : Ihu, : 409j|J6w. 
 Ans. 
 
 (28) 9 yrs.=36 qrs. the sum of terms. 
 
 —1 
 
 35 
 3 common difference. 
 
 105 
 
 -f 6=lst term. 
 
 Ill last term. 
 6= let term. 
 
 117 sum. 
 X 36 number of termi. 
 
 702 
 351 
 
 2)4212 
 
 g21.06cf*. duehim. Ans. 
 
PKOMISCUOUS EXAMPLES. 173 
 
 (29) Thus Syrs, — 2\yrs.:=^2lyrs, 
 
 Then 1.06x1.06x1.045=1.174162 divisor. 
 And 2363.3875 — 1.174162 = ^2012 ^2cts, ^m, 
 Ans. 
 
 (30) Thus, from January 14th, 1802, till July 5th, 
 1807, inclusive=5 years 173 days. And the 
 amount of jjl 854.69 for that time at 5 per cent 
 per annum = 
 
 ^2362.3161 
 
 285. paid off. 
 
 2077.3161 second bond. 
 4| 
 
 83092644 
 
 10386580 
 
 5193290 
 
 98.67.2514 int. of the 2d bond for 1 yr. 
 
 Then 98672514 : 365 : : 52.65 : 194 days the 
 time of the second bond. 
 
 Now 2077.3161 
 
 52.65 interest. 
 
 2129.9661 amount. 
 102.43 paid off. 
 
 2027.5361 3d bond. 
 
 !>£> 
 
174 PROMISCUOUS EXAMrLES. 
 
 Which was out from J«nnary 12, 1808, till Octo- 
 ber 26th, 1813, whiuh L^ 5.789 years. 
 
 $9Aj7.0M3 last amount. 
 20'27.5361 last bond. 
 
 469.4962 gained on the last bond, 
 
 '' — which was out 5.789. 
 
 years, and this bond 
 inclusive to the time 
 = 11737.4064829. 
 
 Then 11737.4064829 : 469.4962 ; : 100 : 4 per 
 cent. Ans. 
 
 (31) First suppose 10 horses at 50=500 
 20 cows 20=400 
 60 sheep 4=240 
 
 51110 sum. 
 45 
 
 684 error of excess. 
 
 3 $ 
 
 Agam suppose 8 horses at 50=400 
 16 cows 20=320 ' 
 48- sheep 4= 1 92 
 
 g912 sura. 
 456 
 
 456 error of excess. 
 
PROmSCUOUS EXAMPLES. 175 
 
 Then 684 x 8=:5472 
 456X10=^4560 
 
 Difference of errors=228)9 12(4 horses. 
 912 
 
 $ $ 
 For 4 horses at 50—200 ) 
 
 Scows 20=160 >Ans. 
 24 sheep 4= 96 ) 
 
 55456 proof. 
 
 Another solution: 
 
 $ 
 
 First 50 price of each horse. 
 20x2=40 price of cows for each horse. 
 4x 6=24 price of sheep for each hbrse 
 
 114)456(4 numher of horses. . 
 456 
 
 $ $ 
 Then 4 horses at 50=200 
 
 4X2= Scows 20=160 
 
 And 8x3=24 sheep 4= 96 
 
 456 proof. 
 
176 PEOMISCUOUS EXAMPLES. 
 
 (32) Thus r 16--V = 6 
 
 Mean rate 19 ? 17>, ) = 5 
 
 
 3+2=5 
 
 oz, oz, 
 
 mi r in ^5 : 10 of 17 carats fine. ) .^^ 
 
 Then as 5 : 10 : : J 5 ^ ^0 ^^ 24 carats fine. \ ^''^' 
 
 (33) £100 : jei20 : : £230 5*. : £276 6*. the amount 
 in sterling. 
 Then as £l : £276 65. : : J4 44c««. 4m. : gl227 
 filets. 7wi.4- Ans. 
 
 (34) Thus f^'ff+J=l4|, and ||| subtracted from 1= 
 
 ^|^=the 27 feet. 
 Then if| : nft. : : 1 : 113/55. 4m. Ans. 
 
 (35) $1 : 56jc?5. : : $400 : $32 14fd5. AnS. 
 (36) 
 
 Thus 30 
 +96 
 
 126 sum. 
 25 number of terms. 
 
 630 
 252 
 
 
 2)3150 
 
 
 $15.75 
 
 Ans. 
 
BOMISCUOUS EXAMPLES. 177| 
 
 (37) Thus 4 : 9 t : 47 : 105.75 the greater number. 
 47 
 
 152.75 sum. 
 58.75 differ ence. 
 
 76375 
 106925 
 122200 
 76375 
 
 Product 8974.0625 Ans. 
 
 TBS CND. 
 
v> 
 
 ^f^ 
 
 '->/ ^^