r ev5 LIBRARY UNIVERSITY OF CALIFORNIA. GIKT OK Received K^^^a^^S^^iSS^ Accessions No. ^<^^ §"/ .S"-^^// iV^. fib ROBINSON'S MATHEMATICAL SERIES, KEY TO ROBINSON'S NEW UNIVERSITY ALGEBRA. FOR TEACHERS AND PRIVATE LEARNERS. NEW Y O K K : IVISON, PHINNEY, BLAKEMAN & CO., CHICAGO: S. C. GRIGGS & CO. 180 7. ROB INSON'S 27i€ most COMPLBTB, most Practical, and most Scientific Series of Mathematical Text-Books ever issued in this country {IN TWKNTY-X^VO VOLTJMiEJS.) 1 Robinson's Proan^essive Table Book, • II. Bobinson's Progressive Primary Arithmetic,- III. Robinson's Progressive Intellectual Arithmetic, IV. Robinson's Rudiments of Written Arithmetic, V. Robinson's Progressive Practical Arithmetic, VI. Robinson's Key to Practical Arithmetic, - VII. Robinson's Progressive Higher Arithmetic, • VIIL Robinson's Key to Higher Arithmetic, - IX. Robinson's New Elementary Algebra, X. Robinson's Key to Elementary Algebra, - XI. Robinson's University Algebra, . - . . XIL Robinson's Key to University Algebra, - XIII. Robinson's New University Algebra, XIV. Robinson's Key to New University Algebra, • XV. Robinson's New Geometry and Trigonometry, XVI. Robinson's Surveying and Navigation, - XVII. Robinson's Analyt. Geometry and Conic Sections XVIII. Robinson's Differon. and Int. Calculus, (in preparation,) XIX. Robinson's Elementary Astronomy, - XX. Robinson's University Astronomy, • XXI. Robinson's Mathematical Operations, XXII. Robinson's Key to Geometry and Trigonometry, Sections and Analytical Geometry, Conia Entered, according to Act ot Congress, in the year 1862, by DAKIEL W. FISH, A. M., In the Clerk's Office of the District Court of the United States for the Korthern District of New York. PREFACE. This volume contains solutions of nearly all the examples found in Robinson's New University Algebra. The greater part of these solutions might have been omitted, if the sole object of a Key were to aid teachers, of limited acquirements and experience, in overcoming difficulties otherwise insur- mountable by them. Though this may be one of the primary objects of a Key, there is, nevertheless, a higher and far more important use. This higher object is purely educational, and is simply an extension of the author's design in the solutions given in the text-book. It is to illustrate more completely the principles of the science, in their practical bearings ; and to show the application of the rules and methods taught, under the greatest possible variety of circumstances. Viewed in this light, and used with discretion, a Key to an Algebra may be serviceable to all students of the science, and especially to teachers who, by reason of limited educational advantages, find it necessary to apply themselves diligently to self-culture in their profession. These remarks apply more particularly to those examples which are designed to tax the ingenuity, and to call forth algebraic skill. In the case of examples requiring long and iv PREFACE. tedious numerical calculations, a Key is often a great con- venience in detecting mistakes, the correction of which would require from the teacher, under the pressure of school-room duties, a needless expenditure of time and labor. We have given full solutions of the numerical equations of higher degrees, found on the last page of the Algebra, — a feature of the work which will be acceptable to all who use the book. The attention of teachers is invited particularly to the system of decimal contraction applied in these solu- tions, and to the convenient method of marking the cor- responding terms in the several columns. September, 1862. ■:■■ ■;^ kSyto ROBINSON'S NEW UNIVEKSITY ALGEBRA. USE OF THE PARENTHESIS. (61, page 29.) 1. 3a + {2b^—a—d + m) = da + 2b^—a—d-\-m = 2a4-2i' — d-\-m^ Ans. 2. 4a;'— y— (3a:— 7y + 5)4-2ar=:4j;'— y— 3a: + 7y— 5+2a: = 4a;'4-6y— a;— 5, ^W5. 3. a + 2c — (4c — 3a + 2m') =a + 2c— 4c + 3a — 2m' = 4a — 2c — 2m', ^n5. 4. 4i:'— 2a:' — [x»— (2a:' + 5a;— 7)— 6a: + l] = 4a:«— 2a:'— a:' + (2a:' + 5a;— 7) +Qx—\ = 4a:'— 2a;'— a;'+ 2a:' + 5a; — 7 + 6a; — 1 = 3x* + \lx — Q^ Ans, 5. a + 2m— Jc+a;- [a— m— (c — 2a:)]j = a4-2m — c— a; + [a— m— (c — 2a;)] = a4-2m— c— aj + a— m— c4-2a; = 2a + m — 2c+a', Ans. 6. 3a;' — 4.1;— am— j.r'— a; — [3am — (2a; 4 2am) + 2a;'] — 5am j = 3a:' — 4a;— «m— a:' + a: + [3am — (2a: + 2am) + 2i:'] + 5am = 3a;'— 4a;— am— x' + a; + 3am — 2a;— 2om + 2a:' + 5am = 4a;' — 5a: + 5am, Ans. 7. 3a— J2m» + [5c— 9a— (3a+m')] + 6a — (m' + 5c)J = 3a — 2m' — [5c — 9a — (3a + m')] — 6a + m' + 5c. = 3a— 2m' — 5c + 9a + 3a-4-m' — 6a + m' + 5c = 9a, Ans. (29) FACTORING. 8. a;'— S5mc'— [j:'— (3c— 3r.ic') + 3c — (j-' — 2mc'— c)]j = x^ — 5mc^-h[.c' — (3c-3mc')-^Sc — (.v' — 2mc^—c)] = a;' — 07wc' + j;' — 3c + 3;?ic'' + 3c— x' + 2mc' + c = x' + c, ^n*. 9. m' — m — l—\ m'' — 2m — 2 — [«i' — 3;?i — 3 — (m' — 4;/i — 4)] \ = m^—m — l—m^ + 2m + 2 + [7?i'' — 3m — 3 — (m'' — 4m — 4)] = m' — m — 1 — 7n' + 2 m + 2 + m' — 3 ;n — 3 - m' + 4 ??i + 4 = 2rn4-2, Ans, 10. 52»_3z' + 42-l-[22'-(32' — 22: + l)-0' + 2] — 5z' — 3z^ + 42—1 — 22' + 32' — 22 + 1+2' — z =: 42* +2, ^n*. 11. 4c'-2c' + c + l-(3c'-c'-c-T)-(c'-4c' + 2c + 8) = 4c'-2c' + c + l — 3c' + c' + c + Y-c' + 4c'-2c-8 12. 3a'6 — 4ccf— (3c-6V _ x\x^- b^) _ X* 2x'— 16j;-6_2(x' — Sir— 3)_2 ^* 3x*-24j:-9~3(j:'-8j:-3)~3' 8. The greatest common divisor of the numerator and denomina- tor, found by (105), is 2x— 3 ; hence, (2x' — 1x^+l4x—l2)-i-(2x—3)=zx^ — 2x + 4: l4tx'—4f — l3x-{-l5)-^(2x—3) = 2x^-\-x—5 x* 2a; + 4 And we have for the reduced fraction, —^ , Ans, 2x'-\-x—5 a*c-\-2abc-}-b*c _ c{a -^ b){a -h b) _ c - ^V a'+3a'6 + 3a6' + 6»~ (^+^(^6)(a + b)~^b ' * a' — 3a'jr + 3ax'— a;' _ («— ar)'_ (a— a:)(a— ar)'_a' — 2ax + ic' a'— a:' ~ a^ — x* (a—x)(a-j-x) ~ a + x * Ans. 11. The greatest common divisor of the numerator and denomi- nator is 2a^ + 3x ; hence, (6a' + 1ax—3x^)-^(2a-^3x) = 3a—x (Qa^ + Uax-\-3x^)^(2a + 3x) = 3a+x Qa — X And we have for the reduced fraction, , Ans. 3a +x (67) KEDUCTION. 21^ 12. The greatest common divisor of the numerator and denomi- nator is x'—x'—x-^-l ; hence, ^x^^x*—x ^l)-ir{x^—x^—x+l)=x^ + l (^3;*—X^ — X^+x)^{x^ — X^'-X-^l)=zX x^ + 1 And we have for the reduced fraction, , Ans, x 13 (•^ + yr-2:--/ _ (ar + y)>-(a:' + /) • (x + yy-x'-f {x + yy-{x' + f) J^x + y){{x-^yY-{x*-x'y + x\/--x/-iry')\ (x^y)[{x + yy-(x'-xy + f)] __5x'y-h5x^y'-^5xy* ~ diy 14. Removing the parentheses by multiplication and involution, "we have ( Sx^ — l)(2x^ — l)—x\5x^ — 1) __ Qx* — 5x^-hl — 5x* + 1x* __ (3a:'-l)' + (a:'— 3a:)» ~ 9a:* — 6ar' + \+x'—Qx' + 9a;* ~" _^Nh2^+l (a:'-f 1)' _ 1 . a:«4-32:* + 32:» + l ~ (a^' + l)' "" a:» + l* ( 125, page 68.) , 2jr* — 2y* 2(ar— y)(x' + a:yH-y') , , ,^ , 4. -^37^= ^ ^;^_y ^^^^ = 2(a:' + ary + y')>^^> ^ 24a;»— 18a?— 6 „ ^ 2ar 6 6. =3jr— 2 ; 8a; 8 8 « 2a; + 6 = 3a;— 2 — 8 = 3a;— 2 , Ans, 4 ^ 66a;' + 126a;-140 „ ^ —14 8. ^ . ^, =8a;— 6 + 7a;+21 7a; + 21 2 = 8a;— 6 , Ant, a; + 3' (67-68) 22 FRACTIONS. 10. '4i:i^=..+v+^4^ X —y a: — y =;.*+^/+__ y'(— y) ( 126, page 69.) 1. l+a+- = , Alls. 2. 26 j—=z 1_, ^n*. a6 + ar bah + ah-\-x Qah+x ^ 3. 5a H — = = — ^n«. 6 6 ' ^ ,^ 3a 4- 6 126 + 3a + 6 136 + 3a , 4. 12+—^— = = ^Ans. ^ ^ 2j— 5 \bx—{2x—b) 13a- + 5 . 6. 3a-9^^^1^^^ ^^^'-^^- (^"'~^")=-A- An, a + 3 a + 3 a + S* ^ . y' ar' — y' + y' a:' ar— y a^— y ^— y 8 ,__ ^'-4a:*4-8 _ a:'-3x' + 4-(a;«-4a;' + 8) a;'~4 • ^+ (a;-2)' - (ar~2)' ~ (^^" " ar + 2 a:— 2* o . . I. . M «' + ^' a'-6»-(a' + 6') 26' , 9. a'+a6 + 6' -= ^ ^ — ~,Ans. a—b a — b a — b T y-r y 1- y -r j__^, ^__^, (l + y)(i-y) -, Ans, 1-y (69-70) ADDITION. 23 11 (, ly (^-l)'^ 4^-i)'-('^-i)- ^ (^-i)(^-i)' ' ^ ^. X X X (x-iy 12. a:» + 5xy+y* + - , Ans, X 21a;y ar* + 2xy-25^y4-/ + 21a:y i , ^n*. a;' — 5ary + y' x* — bxrj-\-y ADDITION. (IJIJO, page 75.) , Zx 2x x 63a;4-30j-4-35.r 128a; , ^- T+y+3= Wo =ToF'^"'- a a-\-b ac + ah + h* , 6 c he ^ a* a* + x* a' + a'ar + 3a'+ 3a;' , 3. —H = — r , Ans, 3 a + ar 3(a + ar) ' g + 6 a — h a^ + 2ah + }}''-{- a" — 2nh ■]-})* la* + 2h* 6. The sum of the entire quantities is 6a. q + 3 2a— 5 _ 4a + 12 + 10a— 25 _ 14a — 13 5 "^ 4 ~ 20 ~" 20 ' „ ^ 14a-13 . Hence, 6a h -^ , Ans, x—2 2ar— 3_5ar' — 10a; + 6ar--9_5a;' — 4a;— 9 3 5x ""~ 15^ "" 15^ ' „ ^ 6a;'-4a;-9 , Hence, 9j; + — , Ans, 15.C ^ a 2c c _a*— ac + 2ac + 2c'4-«c— c' a+c a— c a+c ( 70-75 ) 24 FRACTIONS. ^- — ^3 + K. >..»- + - 52:' 52V 10/ 2xy — 6y*4-6j;* + 6y* + a;y~-6jr* 2x^y^ ■\- x'^y* ly + x 9. "NVe find, by inspection, that tlie least common multiple of the given denominators is {b—c){c—a){a — h). We must, therefore, multiply the numerator and denominator of the first fraction by (a — ft), of the second by (h—c)^ and of the third by {c—a)^ to re- duce the fractions to their least common denominator. Thus, a + 6 a'-6' {b-c){c-a)~ (h-c){c—a){a — b) ' 6 + c h'-c" {c-a){a — b)~{b—c){c—a){a—b) ' c-\-a c^—a* (a-b){b-c)~ {h-c)(c-a){a-by Taking the sum of the numerators, we have a^-b' + b'-c' + c'-a* (b-c)(c-a)(a-b) -(6_f)(c-a)(a-6) 0, Ans, 10. By (109), we find that the least common multiple of the given denominators is (a — i)(a — 1)(6 + 1). Hence the terms of the first fraction must be multiplied by 6 + 1, of the second by — (a— 1), and of the third by —(a— 6). Thus, g»_6 _ a^b-b'-\-a'-^b , (a_6)(a-l)~(a-6)(a-l)(6 + l) * ft' + a — 06' — a'4-6' + a (64-i)(6^=(a-6)(a-l)(6 + l)' (l-a)(l + 6)^(a-6)(a-l)(6 + l)' Taking the sum of the numerators, we have a'b — b^-ha'—b-ab'-a' + b^+a—a-a^b = 0, (a-6)(a-l)(6+l) -(a_6)(a-l)(6 + l) (75) ADDITION. 25 11. The least common denominator is {a—b){a—c)[b—c). be b'c-bc' ^ {a-b)(a-^~(a — b){a-c){b^cy ac ac^ — aV (6_c)(6-a)'^(a-/>)(a-^)^6^)' ab a^b — ab* {c—a){c—b) ~ (a — l)j{a-c)(b—cy ^ . . a*b-ab* + b'c-bc' + ac^-a'c Their sum is -^ iT-,-n r^, — i r = 1» ^^^^' ao—ab' + b^c — bc'-\-ac—a^c 12. By (llO), we find the least common multiple of the given denominators to be x* — Qx^ + 11-^—0. Dividing this by the denomi- nators of the given fractions, the respective quotients are (a; — 3), (ir— 2), and (r— 1). Multiplying the terms of the first fraction by (ir — 3), of the second by (-^—2), and of the third by (x—l)^ we have x—3 a-'— 6.C + 9 x^ — 3x-i-2~x' — Qx* + Ux — ^ ' T—2 a:' — 4^ + 4 a:^—4x-{-3~x*—6x*-i-llx-G ' x—l a:' — 2a; + l x^^5x+6~x' — Qx^-{-llx^Q' Taking the sum of the numerators, we have 4-T6') _ 2a* -\- 2ab - 4h* (a-f 6)(a + 26)(a + 36) ~(a + 6)(a + 26)(a + 36) _ 2(a + 26)(a-6) ~" (a + 6)(a + 26)(a + 36) 2(a-fe) . 10. The denominators may be transformed as follows : 1ab{a-b)-2(a*-b') = {a-b)[1ab-2{a'-\-ab-\-b')] = (a-6)(5a6-2a'-26'); 3ab{a + h)-2(a' + b') = (a + b)[3ab-2{a*-ab + b')]=: {a + b)(5ab-2a*-2b'). Hence the least common denominator is (a' — 6')(5«6 — 2a' — 26') ; and the terms of the first fraction must be multiplied by (« + 6), and the terms of the second fraction by (a — b). We shall have 4q — 36 4a* + a6-36' ^ 'ra6(a-6)-2(tf*T6^ ~ (a'-6')(5a6-2a'-26') ' 8a — b 8a'-9a64-6' 3a6(a4-6)-2(a'+6') ~ (a'-6')(5a6-2a»-26') ' And the difference is 4a' + o6-36' — (8a'-9a6 + 6») iOa6-4a'-46' 2 (a'-6')(5a6-2a'-26') -(a«-6')(5a6-2a'-26')~"a'-6'* Ans, MULTIPLICATION. (132, page 77.) 1. Multiply J- by -. Canceling the common factor 6, we have - , Aits, a-\-x 5a a-{-x 5« ^ a ' "SF^ ^^^"^0^"^ 3(7+^) "^18' (76-77) MULTIPLICATION. 29^ 2a 5z bx ' 4/ 15y-30 2yx2?/ 3(5y— 10) ^ . 5y--10 2y 5y-10 2y ^* * a + b^ab-h* (M^6) ^6(a-6)~ 6 * Ans, 1. elfz:^^ 6a ^^(« + ^)(^-^)^ 6^ -3(a + ;r),^n.. a 2aa:— 2aj' a 2x(a— a;) ^ ^' . ar aft + ar , y ob—y aft + a; aft — y a^h'*-\-ahr. — nhxi — xu . __ X -^=. j^-—- , .!»,. 3a;*— 5a; 7a _a-(3r— 5) 7a _ ffl(3a;— 5) 14 ^2a;»-3a;~ 7x2 ^ ar(2.r»-3)~2(2a;'-3) Sax— 5a . -r—,Ans. 4a:' -6 ,« X —y X a (x + y)(x—7/) x a 10. ^x X ^)^-LlJS — Jlx X =a,An8. x x + y x—y X x + y x—y ,, 4a«-166' b'l 4(a4-2i)(a — 26) 11. ri— X— - — — — — — =-^ — . — ^^— ^X a — 26 8'*' + 32a6 4- 326' (a — 26) 56 56 _ o6 2 x4(a4-26)(a + 26)"~2(a + 26)~2a + 46 , Ans, 2a a + 6 1 2(a + 6) ' ax a' ^^ a' — x* a*—b^ a' 13. a H — ■. Hence, r-x -x =: a—x a — x a-\-b ax + x a-^x (a+ar)(a-a:) ^ (a + 6)(a-6) ^ «' ^ «'(«-^) ^^^ + 6 a"(a + a') a—x x ' (78) SOfc FRACTIONS. a*-z* ^ a-\-b a-b ^ {a'-^x'){a-{-x){a-x) a + b ^*- a'^b' a'-hx' a-z (a + b)(a-b) a'+a;''' ^ a—b . =:a-^x. Ans, a—x 15. ^'-^V/'+^^ ^' ^ (•^+^)(»^-^) ^ ^'+^V ^ ^^ - 6c ft+c ir— 6 be b-\-c x—b 16. _J^fczfL_x--^ti±^x^^' a' + 2ac + c' a' — 2ac + c' ac'x ^ ^(«-^) ^ ^(« + ^) x ^'"^'^^''~''^ =^ Arts. (a + c)(a4-f) (a — r)(a — c) acw «a;' ^ (a + 6— c)(rt — & + c) C4-&— rt 17. -5^ ^r ^X;^ ; .-r. — a — b—c {c — b—a)(b—c—a) {a-{-b—c)(a—b+c) c-\-b—a ■ (_i)(c + 6-a) ^(-l)(a + 6-c) x (-l)(a-6+c) (1)(1)(1) _1_ 1,^,, (-1)(-1)(-1) -1 DIVISION. (133, page 80.) I5ab lOac _l5ab {a-\-x){a^x) _Sh{ a-^x) a—x a^—x a—x \Oac 2c 2j:' — 7 . a' _ 2a;' — Y (x + a){x + a) _ x-\-a ' x^ + 2ax + a^~ x + a a' ~ . ^'-^* . ar + 6_ (:r' + ft')(.r + 6)(a:-6) ^-6_ • ;e*-26a;+6'' • a:-6~ {^x-b)(x-b) x + b '^' Ans, (78-80) DIVISION. :31 Q :; zzz ^ — — ^ X =^ '■ a^—x^ ' a—x (a—x){a^ + ax+x'') x a!^ + ax-\-x^* Ans, 14.r— 3 IO2:— 4_14i;— 3 5x5 __70jr— 15 ^- 5~""^'^5~~~~5~"^ 10^-4"" lOx-4 » *• 9a;' — 3j; a:' ar(9jr— 3) 5 _9a:— 3 5 5 5 x^ X Qx—1 x—l Qx — 1 3 18.C-21 , I x-\-x* 2ax+2ax^_x + x* 1 _ "^ j ^^- "3^"^ 7 -~J^'^2a{x+x^)-Q^^' ^''*- a'— a:* a' + ar + a:' a' +a;')(a — a:)(a' + aa; + a;') a^ — 2ax-^x^ ' a—x {a—x){a — x) a °~ , a =a' + a;', ^w?. 5 5 5 yxy y na—nx ma — mx n(a — x) a + b n 13. — r — i — =:-^^^ — r-^X— 7 -=~,Ans, f a-\-b a-i-o a-\-o m{a — x) m X a a x-\-y x—y a:'—?/ 14. a-^ X =- X — - X ^-= ^ , Ans, x+y x—y I x a x 3(a;'-l) , /a; + l\/g-l\_ 3(a; + l)(-r-l) 2a(a + 6 _ 2(a + 6) • V 2a /U + 6/ 2(a + 6) ^ (ar + l)(a;-l)~" 3«, u4w*. ■^ • 10a6 — 3a' — 36'"^V6^3a/W"~10a6— 3a' — 36'^6(3tt + 6)~' (3tf + 6)(a + 3^») a(6-3a)_3a?>4-a' (6-3a)(a^^ ^"6(3a + 6)~a6-36" '^** ' ^ a' 1 a' 4- a:* a 1 1 a^—ax + x"^ . 17. — , + -= T-; -r— +-= , ; hence, x'^ a ax^ ^ x^ X a ax^ a^-\-x* a^—ax + x^ {a-{-x){a* — ax+ x* ax* a + x ax* "^ ^' = {ax')(x) ^a'-aa;Hh^'~ x ' (80) a FRACTIONS. a — 1 6 — 1 c— 1 1 1 1 18. +-r-+ 1 = 1 + l-r + l 1=2- a h c a b c REDUCTION OF COMPLEX FORMS. ( 135, page 81.) 2. Multiplying both numerator and denominator by 6c, we have 6 a + - c _ahc-\-b^ c ahc + c" 3. Multiplying both numerator and denominator by a'6V, wo have ^+^ 6c' a'c_a*6-f6*c 6'c ac' 4. Multiplying both numerator and denominator by mn, we have x—\__x-\-\ m n __nx— n— mar— m_ar(n— m) — (n + wi) arH-1 a:— 1 nz+n-^mx—m ar(n + m) + (n— w) ' Til n 6. Multiplying both numerator and denominator by a6, we have ^±1-2 + ^^ _b a _ a« + a — 2a6+6'—6 _(a— 6)* + (a — 6) _a— 6 + 1 g-l 6 + l ~a'— a-2a64-6' + 6~(a — 6)'-(a— 6y~a— 6-1 * . 6 a Ans, 6. Multiplying both numerator and denominator by a6c, we have ^+A+4 .3 . A« I ^a ah ac be a^6'' + aV+6V c 6 a r:, » >4"«- (80-82) REDUCTION OF COMPLEX FORMS. 33 7. Multiplying both numerator and denominator by (c4-rf)(c— c?), or its equal c^—cT, we have a+b a—b c-\-d c—d ac-\-bc—ad—bd-\-ac—bc-\-ad — bd 2ac — 2bd a-\-b a—b ac + bc-{-ad + bd-\-ac—bc—ad-{-bd 2ac-\-2bd c—d c-^d ac—bd — — - , Ans, ac-\-bd 8. Multiplying both numerator and denominator by (a* — 6') (a' + 6'), or its equal a* — b\ we have a* + b' «*-y a'-&' (^^IT' a* -f 2a'6' + b* - {a* - 2a'b' + b*) a + b a-b ~a* + 2a'b + 2a'b' + 2ab'-^b*-{a'-2a'b+2a'b'—2ab'-\-b*) a—b^ a+b 4a'6' _ ^^ a 9. The least common multiple of the denominators of the frac- tional parts is {x* — 1 )(y' — 1 ) . Therefore, + - x—l^x-{-l _ xf — x + i/* — l-\-xi/*—x-'y*-^l 1 _l_""ar'y-y+ic' — l+xV— y-ar' + l y — l"^yf 1 22ry'-2^ xy^—x_x(y^ — \ 2x*y-2y xhj-y y\x'-lf ,0. i±i+i+i_£±l_l+I=i+l+i+l_i_l_i4 aoca a6ca Hence the numerator =--f- -, abed Substituting this expression for the numerator in the complex fraction, and multiplying by abcd{c-\-d){a-^b)^ we have 1 1__1 1 a b c~~d {c-\-d)(a-\-b){bcd + acd—ahd—abc) cd ab ~ abcd{a + b)cd~abcd(c+d)ab c^d a+b (c + d){a-\-b)(bcd + acd—abd—abc) abcd{bcd + acd—abd—abc) _(c + d)(a + b) aUd '^'''' (82) 34 SIMPLE EQUATIONS. 1. Given, fcultiplying by 12, 2. Given, multiplying by 42, 3. Given, SIMPLE EQUATIONS. ( 151, page 88.) X 9x 3x ,^ _4._--=10; 6j: + 8jr— 9x=:120, Ans, 3jr_2j: + 3_a:— 5 ^ 18j— 6jr— 9 = 2a;— 10, Ans, -^ + -i d multiplying by (j;*— a'), axi-a* + cx—ca=dy Ans, x—a 2x—Sa x + ac 4. Given, multiplying by aV", 5. Given, , * 8c 10a 4ac ' multiplying by 40ac, ba^x—bahx—Ac^x + 4:acx=10hx— lOcar, ^n*. c ac' a' * aVj;— a*c— 2aa; + 3a'=:c'a; + ac*, .4n». aa; — hx ex— ax hx — ex 6. Given, 5x Zx Z—x bx—2 12 10 24 20 multiplying by 240, 100a;— 45ar + 30 — 10^;— 60a; + 24=480, Ans, 1. Given, multiplying by abcx, 1 a b c abc box acx abx^ a;=a' + 6' + c', Ans. (88) REDUCTION. 35 REDUCTION OF SIMPLE EQUATIONS. (156, page 92.) 1. Given, 1x-l6 = Sx-4t', transposing and uniting, whence, by division, 4:rri:12; x=3, Ans, 2. Given, 3a;+9 = 5a; + l ; transposing and uniting, dividing by —2, -2a:=:-8; x=4^ Ans. 8. Given, 4x + 1=x-h2l — 3-{-x; transposing and uniting, 2x=n ; x=5^j Ans, 4. Given, 5x + l6=x-[-52\ transposing and uniting, 4a:=36; x=:9, Ans, 6. Given, 5ax—c = b — 3ax*^ transposing and uniting. 8ax=b + c; dividing by 8a, b-\-c . ^- 8a »^"*- 6. Given, ax-\-b=:9x-{-c \ transposing and factoring. x{a-9)=c-b', dividing by (a— 9), ^-^_^,Ans, 7. Given, H--^ clearing of fractions, 3ar + 2:r= 10x12; uniting, dividing by 5, 5ar=10xl2; x= 2x12; ir=:24, Ans, (92) da SIMPLE EQUATIONS. 8. Given, clearing of fractions, transposing and uniting, 9. Given, clearing of fractions, transposing and uniting, "whence, 10. Given, clearing of fractions, transposing and uniting, 11. Given, clearing of fractions, transposing and uniting, 12. Given, clearing of fractions, transposing and uniting, dividing by (—18), 13. Given, clearing of fractions, transposing and uniting, whence, by division, 14. Given, clearing of fractions, transposing and uniting. 3x X ^^ Y=l + '*' 6x=x-}-96 ; 5x=96', x=19i, Ans, 3a; + 5_15a:— 1 ^ ~~2 ~ 8 ' 12x4-20=15x— 1; _3j:=-21; ar='7, Ans, x+l Sx—5 9x ^ 3 "^ 5 "^10*' 10jr+10 + 18x — 30=:2'7a;; x=20, Ans. 2x-\-l 'iX — l5_l1x-\-Z 3^ '~2 "^ 6 ~ 8 '~2* 40jr + 20 4-562r— 120 = 85a:H-15 — 60 ; lla:=55; x = 5y Ans. X X 5x 5x dx -4--4- — =r 1 18 : 2^3^12 7^4 ' 42arH-282: + 352: = 60a: + 63^ — 18 x 84 ; — 18x= — 18x84; a?=84, Ans. I7ar—12_6j:--16__10a;— 3_6a;— 7 ^ 3 4 6 2~* 68jr— 48 — 15j: + 48 — 20a: + 6 = 36ar— 42 ; -3x=— 48; a; =16, Ans, 21 3X-11 5x—5 9l — 1x 16 8 2 336+3a?— 11 = lOjr— 10 + 776 — 56a;; 49ar=441 ; x=9, AnM. (92) 15. Given, multiplying by 21, transposing and uniting, clearing of fractions, whence, and 16. Given, multiplying by 36, dropping 9j?, clearing of fractions, transposing and uniting, whence. 17. Given, , . 20jr , 36 dropping _+- clearing of fractions, transposing and uniting. Whence, 1 8. Given, clearing of fractions, transposing, ^^ , ^ 1111 ^ 7 J ar=ll. As time, .-40=^ /S '^^ 2x=22, B'stirae, ^j.'^t-^ g^^33 c'stime. / 46. Let x= the distance between A and B. Since C and B A travel at the respective rates of 5 and 4 miles an hour, when they 5 5x have met, C has traveled -- of the whole distance, or — miles. In y y 3 3 bx the meantime, A, traveling - as fast as C, has traveled - of — , or 5 5 9 X 5x X 2jj - miles. Hence,— — — , the distance between A and C when 3 9 3 9 C turns back. 5 5 Now C in traveling back to meet A, goes - of this distance, or - 8 8 of — = — miles. But the whole distance traveled by C is 60 9 36 "^ miles; hence, 5x 5x ^^ ¥+3-6 = '*°' x=l2y Ans. 47. Let x= the valueof one sheep; then l2x-\-92x — 164x= the value of the flock. By the conditions, 92*— |35 = 72:r+$35, a-=$3i; whence, 164a;=$574,^n*. 48. Let x= the rate of the current per hour. As the current will retard the boat by its whole velocity in going up the river, and accelerate it the same in going down, 12— x= actual rate of row- ing up stream, and 12 +a;= actual rate of rowing down stream. By the conditions, 7(12-ar) = 5(12+ar); 84 — 7.r=:G0 4-5x; 12i: = 24; whence, ar= 2, Ans. (102) TWO UNKNOWN QUANTITIES. 5& SIMPLE EQUATIONS CONTAINING TWO UNKNOWN QUANTITIES. (irO, page 109.) 1. Given i ^^ + ^^= ^^' (^) ^' •il2;r + 7^=100; (2) multiplying equation (1) by 3, and equation (2) by 2, we have 24.r + 15?/ = 204; (3) 24ar+14y = 200; (4) subtracting (4) from (3), y=4; substituting this value of y in (1), 8x + 20=68 ; whence, 8j-r=48, and ar=6, Ans. 2. Given, (5.r + 2y=y9, (1) \lx-6y= 9; (2) multiplying (1) by 3, adding (2) and (3), whence, 15a; + 6y = 57; (3) 22.r=66; ar=3, and y=2, Ans. 3. Given, 3x+1y=l9, (!) ir + 4y=38; (2) multiplying (2) by 3, subtracting (1) from (3), whence, 3;r + 12y = 114; (3) 6y=35; y=1y and a;=10, Ans. 4. Given, ( 5x-3y=SQ, (1) ^2a: + 9y = 96; (2) multiplying (1) by 3, adding (2) and (3), whence. 15a;-9y=108; (3) I72:zr:204; a;=12, and y=8, Ans. 5. Given, f x-\-My=5i, (1) J3a:-25y = 10; (2) multiplying (1) by 3, subtracting (2) from (3), whence. 3ar + 51y = 162; (3) 76y=152; y=:2, and a;=20, Ans. (109) 54 BIMFLE EQUATIONS. 6. Given, 6:r-4y= 40, (1) a:-6y=~97; (2) multiplying (2) by 5, subtracting (3) from (1), whence. 6a;-25y=-485; (3) 21y= 525; y= 25,anda;=28,^w«. v. Given, multiplying (1) by 3, multiplying (2) by 4, subtracting (4) from (3), f8ar4-15y= 9, (1) J6a:-12y=-l; (2) 24a; + 45y=: 27; (3) 24ar— 48y=— 4; (4) 93y= 31;y=^i=i substituting the value of y in (1), 8a;4-5= 9 ; x :t1 8. Given, j Yx + 7y=30, ]3x + 4y=l7; multiplying (1) by 3, 21;r + 21y=90; multiplying (2) by Y, 21a;4-28y = 119; subtracting (3) from (4), 1i/ = 29 substituting the value of 1y in (1), 7^+29 = 30 9. Given, multiplying (1) by 2, adding (2) and (3), whence, 10. Given, multiplying (2) by 2, adding (1) and (3), whence, 11. Given, multiplying (1) by 3, multiplying (2) by 5, subtracting (4) from (3), whence, j 8a; + 3y=:25, |5j;-6y = 55; 162: + 6y = 50; 21a;=105, ar=5, and y: Ans, (1) (2) (3) W Ans. (1) (2) (3) —5, Ans, ( I5x-8y= 9, (1) ( 10ir + 4y=-43. (2) 20jr + 8y= — 86; (3) 35x= — 11; ar= — 2 j, and y = — 5|, ^7W. j 9a;-5y= 950, (1) ( 2a;-3y=— 450; (2) 27a:— 15y= 2850; (3) 10a:-15y=-2250; (4) I7.r= 5100; ar=300, and y = 350, Ans, (109-UO) TWO UNKNOWN QUANTITIES. 55 :20, (1) 12. Given, -—1- 2 4" ^+1=10; (2) multiplying (2) by 2, f+f^^*' ' (^) adding (1) and (3), -^=40 ; 3 whence, 2.r=120; x=QO. substituting in (1), 30— 1=20 ; y=40. 13. Given, multiplying (1) by 2, multiplying (2) by 3, subtracting (4) from (3), clearing (5) of fractions, whence, substituting this value of y in (3), a:+ 10 = 16 ; ar=6. 2 + 3- ®' (1) |-F-> (2) "1= "; (3) .-!=-., (4) 14= »: (5) 10y + 9y=19xl5; y=15; 14. Given, 3^-|=3|, (1) 4y-|=.7; (2) multiplying (1) by 2, Qx—yz=i Y; (3) multiplying (2) by 5, 20a;--y=35; (4) subtracting (3) from 4, 14x=28; whence, ar=2, and y=5, ^ns. (UO) 56 SIMPLE EQUATIONS. 15. Given, adding (1) and (2), clearing (3) of fractions, or, clearing (1) of fractions, subtracting (6) from (7), whence, + 8y=194, ^-1-8j;=131; 8 + 8(j;-fy) = 325; 8 x-\-y + e4(x + 7j) — d25 X 8 65(.c + y)=:325 x8 x + 7j^= 5x8 a;+64y = 194x8 63j/=189 X 8 y=24, and x (1) (2) (3) (4) (5) (6) (n 16, A-v. 16. Given, X 3 + =21, + 3j- = 29; (1) (2) adding (l) and (2), i(-r + y) + 3(.r + y) = 50 ; (3) whence, 10(a; + y) = 50 x 3 ; (4) or, a:4-y= 5 x3; (5) from (1), a: + 9y=:21 x 3 ; (6) subtracting (5) from (6), 8y = 1 6 x 3 ; whence, y=6, and a: = 9, Ans, 17. Given, adding (1) and (2), whence, or, from (1), subtracting (5) from (6), whence. + 7y=99, 4-7a;=51; 4(^+y) + 7(a;4-y) = 150; 50(a; + y) = 150x7; x-\-y= 3x7; a;+49y= 99x7; 48y= 96 X 7 ; y=14, and x-. (110-111) (1) (2) (3) (4) (5) (6) :7, Ans, 18. Given, TWO UNKNOWN QUANTITIES. 67 4 4 ---=1. (1) ---=H; (2) 2 1 subtracting (2) from (1), "=o> ^°^ y=^ y -^ 4 . substituting value of y in (1), -=2, and a;=2 u4n5. 19. Given, dividing (1) by 147, i-^=2T' (^> ,.,.,>,» 17 17 68 multiplying (3) by 17, V""7=2T' ^^^ . , . . , ^ 73 41 68 219 , , subtracting (4) from (2), y=-g — ^=-^' w) 13 1 dividing (5) by 73, -=— =^, and y=7 17 1^ substituting value of y in (3), -=—=:-, and ar=3 20. Given, Reducing the first members of equations (1) and (2) to mixed quantities, we have ar +— =a;+— -; 3) 4 a? + y 27 54 ,^. (111) d8 SIMPLE EQUATIONS. dropping x in (3), and ) 14^ dividing by 1 7, 3 4~«Ty' ^^ dropping y in (4), and ) 12 dividing by 27, f h^x—y * ^^^ clearing (5) of fractions, a?+y=16 ; (7) clearing (6) of fractions, «— y=10; (8) adding (7) and (8), 2ar=26, and ar=13 subtracting (8) from (7), 2y= 6, and y=: 3 >■ Ans, 21. Given, 2y— ^ ^^ 59 — 2a; -^^ =20 23— a: 2 ar-^>— =20 —, (1) ^+Ss=--^^-. (^) multiplying (1) by 2, 2a;— ^—^= 40-59 + 2aj, (3) or. 4v— 2a; clearing (4) of fractions, 437 — 19a;=4y— 2a;, (5) or, I7a; + 4y = 437; (6) multiplying (2) by 3, 3y + ?^^=90-73 + 3y, (7) or. a:-18 3y-9 = 1V; (8) a;— 18 clearing (8) of fractions, 3y— 9=l7a;— 306 ; (9) transposing, 17a;— 3y=297 ; (10) subtracting (10) from (6), 7y=140, and y=20 j . whence, from (10), 17a; =3 5 7, and a;=21 j |6a;'-24y' + 130 2.-4y + 3 -^^ + ^y+^> (1) 9a;y-110 , 151 -16a; -^]^3^+-43^^r-=3-r; (2) clearing (1) of ) ^ , ^ , frac^ons, \ ^^ "24^' + 130 = 6.'-24y' + lla:+14y+3 ; (3) whence, lla;+14y=127 ; (4) (111) TWO UNKNOWN QUANTITIES. 59 (15l — l6x)(Su — i) whence, 110 — 12^;=^=^ ^^-^^ ^; (6) 4y— 1 or, 440y — 48a;y— 110 + 12a' = 453y— 48.ry— 604 + 64.r; (7) or, 52.r + 13^ = 498; (8) or, 4a: + y = 38; (9) adclmg.(4) and (9), 15.r + 15y = 165 ; (10) ^4-y-ll; (11) subtracting (11) from (9), 3a;=27, and x=9 \ substituting value of x in (^,i// ) y = 2 ) a; + 3y_7.c— 21_3a; — 15_8jr — 9y , 3 6 " 4 12 23. Given, / ^ 2a; + y 9.r— 7 3y + 9 4.r + 5y (1) 2 8 4 16 ' ^^^ dealing (1) of fractions, 4j--f 12y— 14i:4-42 = 9;r— 45 — 8a; + 9y , (3) transposing and uniting, 1U- — 3^ = 87 ; (4) clearing (2) of fractions, 16a:+8y— 182:+14=:12y + 36 — 4;r— 5// ; (5) whence, 22: + y = 22; (6) multiplying (6) by 3, 6x + 3i/=GQ\ (7) adding (4) and (7), l7a;ii::153, and x=:9 ) substituting value of a: in (6), 18+y= 22, and x=z9 I y = 4 J 24. Given, ax +hy =d^ ' a'x + b'y=d'', (1) (2) multiplying (1) by b\ b'ax + b'bi/=b'd; (3) (2) by 6, ba'x + b'by = bd'\ (4) subtracting (4) from (3), {b'a-ba')x=b'd-bd' (5) whence, b'd-bd' '"'-'b'a-ba' ' multiplying (1) by a', a' ax -\- a' by— a' d ; (6) (2) by a, a'ax-\-ab'y=ad' ; P) subtracting (7) from (6), {a'b--ab')y = a'd-ad' ', (8) whence, a'd-ad' y-a'b-ab'' (111-112) 60 SIMPLE EQUATIONS. 25. Given, multiplying (2) by 6, subtracting (3) from (1), clearing (4) of fractions, whence, from (1), a ah ab ' a a (1) (2) (3) |_|=a6-i'=J(a-6); (4) y(a—h) =ab^(a—b)^ and y=ab^ X * \ Ans, --\-ab=2ab^ and x=a''b 26. Given, ax-\-cy: ex 4- ay -. multiplying (1) by a, a*x-{-acyz a*+c* ac multiplying (2) by c, c*x-}-aci/= ac' a' + c' (1) (2) (3) subtracting (4) from (3), (a'-c')a:r^^^*-^-ti'=:'^'('^'7^') ; whence, or, o'(a*-c') _ g' substituting value of a; in (2), - + ay= ; c ac whence, a'+c* a c* c ay— =_=:_, ac c ac a on c (112) TWO OR MORE UNKNOWN QUANTITIES. 61' SIMPLE EQUATIONS CONTAINING MORE THAN TWO UNKNOWN QUANTITIES. (172, page 116.) r 2ar + 4y— 3^ = 22, (1) 1. Given, < 4x—2i/ + 5z=l8, (2) ( 6x + 1i/- z=6S. (3) As the coeflScients of x in (2) and (3) are multiples of the coeiRcient of X in (1), combine (1) with (2), and then with (3), to eliminate x. Multiplying (1) by 2, 4x + S7/—6z=4i, (4) bringing down (2), 4x-^2y-\-5z=l8; by subtraction, 10y-llz=26; (5) multiplying (1) by 3, 6x + 12y— 92 = 66; (6) bringing down (3), 6x + 1y-z=e3; by subtraction, 5y-8z= 3; (7) multiplying (7) by 2, 107/-162= 6; (8) subtracting (8) from (5), 5z=20, and z = =4; substituting value of z in (7), 5y=35, and y= ='7; " values of z and y 'in(l), xz =3. ( 3ar + 9y + 82=41, (1) 2. Given, < 5x + 4r/—2z=20, (2) ( lla: + 7y-62=37; (3) multiplying (2) by 4, 20x + 16y—8z= 80; W bringing down (1), 3ar + 9^4-82= 41; by addition. 23ar + 25y=121 ; (5) multiplying (2) by 3, 16a;4-12y— 62= 60; (6) bringing down (3), Ux + 1y-6z= 37; by subtraction, 4ar + 5y= 23; 0) multiplying (7) by 5, 20a; + 25y=115; (8) subtracting (8) from (5), dx=z 6, and xz = 2; whence, by (8), 2by=1b^ and y- =3; and by (1), 82= 8, and z- (116) = 1. 62 SIMPLE EQUATIONS. ja: + y + z=32, (1) 3. Given, i x + y—z=25, (2) ix^y-z= 9; (3) adding (1) and (3), 2ar=40, and a:=20 ; subtracting (3) from (2), 2y=16, and y= 8; ** (2) " (1), 22= 6, and z= 3. rar4-y + 2=26, (1) 4. Given, "j ^— y =4, (2) ( x-z = 6 ; (3) adding the three equations, 8ar=36, and ar= 12; substituting value of x in (2), y= 8; U U U (3), z= 6. ^■ -y-z= 6, (1) 5, Given, i3y- -x-«=12, (2) (y^- -y— jr=24. (3) Assume ar-fy + 2=«; equation (1) becomes 2j:=6 + *, w - (2) « 4y=12+», (5) " (3) « 8z=24 + «. (6) multiplying (4) by 4, 8x=24 + 4«; (^) (5) by 2, 8y=24 + 2«; (8) bringing down (6), 8y=24+«; by addition, 8«=72 + '7«; whence. «=72; substituting value of s in W, a:=39; (( u u (5), y=21 ; tt U (( (6), 2=12. (1) 6. Given, \3y=M+a: + 2, j 42=tt+u; + y, ( u=a:-14; (2) (3) (4) Assuming x + y-\-z-{-u=s^ and adding ar to both sides of (1), y to both sides of (2), and z to both sides of (3), (116) TWO OR MORE UNKNOWN QUANTITIES. 63 equation (1) becomes 3x=s « (2) " 4y=s « (3) " 62=5 7. Given, (5) (6) (7) 60a;=20«; (9) 60y=15s; (10) 60z = 12«; (11) 60w = 20s— 840; (12) " (4) « « = 3-U; (8) multiplying (5) by 20, " (6) by 15, (1) by 12, " (8) by 60, by addition, 60s = 67s— 840; whence, *=120; substituting value of s in (5), a:=40; '' (6), y = 30; " " " (7), z=24; " " " (8), tt = 20. ANOTHER METHOD. Subtracting (2) from (1), 2x—St/=y—Xy or 3x=4y; (5) (2) " (3), 42-3y=y-0, or5«=4y; (6) adding (3) and (4), 4z = 2x+y—U\ (1) multiplying (7) by 5, 20z=10x + 5y — 10\ (8) (6) by 4, 20x=16y; (9) by subtraction 10x-lly=70; (10) multiplying (10) by 3, 30a:— 33^ = 210; (11) (5) by 10, 30ar-40y=:0; (12) subtracting (12) from (11), Yy=210, and y=SO ; from (5), (6), and (4), ar=40, 2=24, u=26. u + 3x-y- z=7, (1) 2tt — 2a;-f-y + 32=8, (2) 3u— ar + y — 4z = 8, (3) 4u+ x^y-2z=1\ (4) adding (1) and (2), 3m + a; + 2^=15 ; (5) " (1) " (3), 4M + 2a: — 52 = 15; (6) " (2) " (4), 6m- x-{- z = 15; (7) " (5) " (7), 9m + 32=30; (8) u (3) « (4), 7m-62 = 15; (9) (116) u SIMPLE EQUATIONS. adding (8) and (9), " (8) " (10), substituting value of m in (8), " values of tt and z in (5), ♦* " of w, z and x in (2), 16m-3z=46; (10) 26tt='75, andw=3 ; z=l; a:=4; y=7. ( 5x- y + 7z=61, < 4x + dy + 3z = 8, ( Sx— y—5z = S; 9x—3y— 152=9 ; lSx—l2z = l1 ', 2ar + 12z = 58; 15a; = 75, and a;= substituting value of x in (6), 122=48, and z= " values of x and 2 in (1), y= 8. Given, multiplying (3) by 3, adding (4) and (2), subtracting (3) from (1), adding (5) and (6), 5; •8. 9. Given, Adding the equations, ■whence, subtracting (Y) from (1), (7) « (2) (7) " (3), (7) " (4), (7) " (5), u + v+x+z + 2y=50, u + v+y+z+2x=49, u+x+y+z+2v=46, 6» + 6»+6x + 6y + 62=240; u+v + x+y+z=:iO; 2=12; y=10; x= 8; e= 6; u— 4. (1) (2) (3) (*) (5) (6) (1) (2) (3) (4) (5) (6) ANOTHER METHOD. Assuming u + v-\-x-\-i/ + z=s, and subtracting this from each given equation, equation (1) becomes 2=52— s; (6) , " (2) " y=50-«; (7) « (3) " ar=48— »; (8) « (4) " v=46~5; (9) ** (6) " w=44-s; (10) (116-117) TWO OR MORE UNKN^If' QUANTITIES. ^^'^^ 65 by addition, s—240 — 5s', (11) whence, 5~ 40; ' (12) substituting value of s in (6), (7), (8), (9) and (10), 2=12, y=10, x=8, v = 6, u = 4, Ans. 2x + i/—2z =40, (1) 4i/—x-{-3z =35, (2) 10. Given, ^ 3u + t =13, (3) ij + u + t =15, (4) 3^— y + 3<— M = 49, (5) Eliminate t and u first according to practical suggestion (170, 2. Adding (4) and (o), 3x + 4t= 64; (6) multiplying (3) by 4, 12m + 4<=52; (7) subtracting (7) from (6), 3^;— 12w= 12, or, x—4u= 4 ; (8) subtracting (3) from (4), y — 2u= 2, or, 2y—4u= 4; (9) subtracting (9) from (8), a:— 2y=0, orir=2y; (10) from (1) 6jr + 3y— 6^=120; (11) from (2), 8y-2.r + 63= 70; (12) by addition, 4.r + lly=190; (13) from (10) and (13), 8y + lly=190, or y=10; by substitution in (10), a;=20 ; " (1), z= 6; " " " (9), u- 4; " ** " (3), tz= 1. ( ^+ y- 2=1, (1) 11. Given, < 8ar + 3y — 6^=1, (2) ( 32-4a:- y=l. (3) Adding (1) and (3), 2z—Zx—2 ; (4) multiplying (1) by 3, 3a: + 3y— 3«=3 ; (5) subtracting (2) from (5), 3z— 6a;=2 ; (6) (4) " (6), «-2a;=0,orz=2^; (7) substituting value of 2 in (4,) 4a;— 3a;=2, ir=2 ; whence, 5?=4 ; substituting values ofx and 2 in (1), y=3. (117) 66 SIMPLE EQUATIONS. 12. Given, 2w + 2x + 2w+ 2 = -3, (1) Su + 3x+Sz-h2j/=: 3, (2) 4u + 4i/ + 4z + Sx= — 2, (3) 5j;+5y + 52 + 4M= 2. (4) Assuming u + x + i/ + z=s^ and adding z to both sides of (1), y to (2), x to (3), and u to (4), equation (1) becomes 2*=— 3+^, (5) (2) « 35= 3+y, (6) (3) " 4«=-2+.r, (7) « (4) " 55= 2 + w; (8) by addition, 145=5. (9) But (9) can be true only when s=0; hence by substituting this value of 5 in (5), (6), (7), and (8), we have ^=3, y = -3, x=2y u = — 2. 13. Given, Clearing (1) of fractions, « (2) « (3) " multiplying (4) by 4, subtracting (5) from (7), multiplying (4) by TO, " (6) " 3, by subtraction, multiplying (8) by 4, whence, 2 3^4 X y z X y , z + - + -: 4 5 6 :62, :47, :38. 6jr + 4y + 3z: 20x-\-\by+\2z 15^+12y + 10z 24ar + 16y+120 A:X + y 60x + 40y4-302 45j; + 36y + 302 15a; + 4y 16a; + 4y ar=24, y (117) (1) (2) (3) = 744; (4) = 2820; (5) = 2280; (6) = 2976; (7) = 156; (8) = 7440; (9) = 6840; (10) = 600; (11) = 624; = 60, and 2= 120, ^715. TWO OR MORE UNKNOWN QUANTITIES. / 1 1 U*r'- (1) 14. Given, Ill (2) \ - + -=3; \y z (3) adding the three equations, H^"^ ■ (4) dividing by 2, y,f- (5) subtracting (1) from (5), 1=2, or 2=4 ; " (2) " (5), l=l,ory=l; " (3) " (5), -=1, or x=l. lx-\-a=y + z, (1) 15. Given, K+a=-ix+2z, (2) {z + a=2x + 3y\ (3) by transposition, X — y — z^= — a ; (4) ~1x+y — iz=—a; (5) —3x—3y + z=—a; (6) adding (4) and (6), —2x—4y=—2a; 0) or, -x-2y=-a; (8) multiplying (4) by 2, 2x—2y—2z=—2a; (9) Bubtnicting (5) from (9), ix—Sy=—a; (10) multiplying (8) by 4, — ix—8y=—4a ; (11) adding (10) and (11), lly= 5a; whence. y=A«. «=t't«. 2=Vt« , Ans. 16. Assume x-{-y-\-z=s] then the equations become, si-z = 2(b + c), (1) s + y=2{a + c\ (2) s-\-x=2(a-\-b). (3) (117) 68 SIMPLE EQUATIONS. Add i ng and uniting, 4* = 4 (a 4- 6 + c) ; sz=a-\-b-\-c ; by substitution in (3), x=za-\-b—c ) " (2), y=a + c-& [jns. (1), z=b-\-c-a ( U-3i/=a, (1) lY. Given, < 5t/—llx=a, (2) ( 9y—5z=a; (3) multiplying (1) by 5, 35.r— 15y=:5a; (4) (2) by 3, — 33jr+15y = 3a; (5) adding (4) and (5), ' 2x=Sa] whence, ar=4a, y=9a, and 2 = 16a. 18. Given, ^ + y_^_y (I) a^b-b a' ^^^ Clearing (1) of fractions, bx-\-ay=:ax—bf/] or, (a-6)j;-(a + % = 0; (3) multiplying (2) by (a+b), (a + b)x + {a + b)7/=-—^ ; (4) 11. /«x , /.N « ^a'ft ' . 2a6 adding (3) and (4), 2ax= -^ and x= r ; substituting value of ar in (3), 2a6 — (a + Z>)y = 0, and y=: 7. a -}- 19. Given, Clearing (3) of fractions, and transposing, ax + by + cz=ab-\-ac-{-bc, (l) a'x + bhj + c^z=3abc, (2) l-^+.v=f.+ y=2+!r«=o. (3) be uc ac ab ^ I ax + 2b)/ + cz=2ac-}-ab + bc ; (4) ac subtracting (1) from (4), by^=ac^ and y=^-r substituting value of y in (1), ax-\-cz=iab-\-bc\ (5) « " " "(2), a'x4-cV-2a6c; (6) (117-118) TWO OR MORE UNKNOWN QUANTITIES. 69 multiplying (5) by r, acx+c^z=ahc-i-bc'' ; (7) be subtracting (7) from (6), a{a—c)x=bc(a—c)y and x= — ] substituting value of x in (5), bc + cz=abi- bc^ and z = — . c { cx + y + az~2a, (1) 20 Given, J c*x + y + a^z = 2ac, (2) ( acx—y -f ac2=a' + c'. (3) Adding (1) and (3), car + «c.r + (/2 + ac2 = 2a + rt' + c* ; (4) or, c(l +a)jr + o.(l+c)2=2a + a' + c'; (5) adding (2) and (3), c{c-\-a)x-\-a{c-\-a)z=c'^ + 2ac-{-a^^ or, dividing by (c + a), cx + az:=c + a\ (6) multiplying (6) by (1+c), c{\-\-c)x-{-a(\-\-c)z=c + a + c' + ac\ (7) subtracting (7) from (5), c{a—c)x=.a'^ —ac ■\-a—c=::{a'-c){a + 1) ; (8) whence, x=a-{-\ ; substituting in (6), i " (1), y=^a-c a ' r a'x + ay +a2 =«, (1) 21. Given, I ax-^a''y + az =a\ (2) ( ax -{-ay +a'«=a'. (3) Dividing each equation by a, aar + y + r = 1 ; (4) x-\-ay-{-z=a] (5) ir + y + a2 = a'; (6) subtracting (5) from (4), (a — l)x + {l—a)y = l—a^ ora-— y= — 1; (7) (6) - (2), (a-l).r4-(a'-l)y==0; orx+{a-hl)y=0] (8) ^ " (7) « (8), (a + 2)y=l; or y: ^ substituting in (7), a + 2 + 2 a + 2 whence, .= (^, ' a + 2 (U8) 70 SIMPLE EQUATIONS. PROBLEMS PRODUCING EQUATIONS CONTAINING TWO OR MORE UNKNOWN QUANTITIES. (174, page 119.) 1. Let a:= the first number, and 3/= the second; then by the conditions of the problem, we have 2jr + 3y=105, (1) 3i: + 2y= 95; (2) whence, by elimination, ar=15, and y=25, Ans. By adding the equations, and taking | of their sum from the first equation, we have the value of y ; taking the same from (2), we have X, 2. Let x=z the first, y= the second, 2= the third. By the conditions, clearing (1) of fractions, subtracting (3) from (4), clearing (2) of fractions, subtracting (3) from (5), whence, :, + r:__ = 120, (1) y+'-i^= 90, (2) « + ar + y = 190; (3) 22; + y + «=240; (4) xz=z 50; 5i/+x-hz = 450; (5) 4yr=260; y=^65, and 2=75. 3. Let x=z A's share, y= B's, and z= C*s. By the conditions, x-^(y + z) = l20=a, (1) y-^(^ + ^) = 120=a, (2) z-^{i/ + x) = l20=a; (3) (119) TWO OR MORE UNKNOWN QUANTITIES. 71 clearing of fractions, 1x—4:y—4z=^a, (4) Sx-{-8i/ — 3z = 8a, (5) ^2x—2y-[-9z=9a', (6) multiplying (4) by (2), l4x — 8]/-8z—Ua; (1) adding (7) and (5), Ux—llz = 22a,orx—z=2a'^ (8) multiplying (6) by 2, — 4j~4y + 182 = 18a ; (9) subtracting (4) from (9), ^llx-^22z=zlla^OT —x + 2z=a] (10) adding (10) and (8), 2=:3a=360, whence, a;=:600, and y=480. 4. Let x= A's daily wages, y= B's, and z=: C's. I 6(x + y)=40, x + y=6l; (1) By the conditions, < 9 (a; + «) = 54, x+z=6; (2) ( 15(y + 2) = 80, y+2=5i-. (3) One half the sum of the equations is x+y+z=9; (*) subtracting (3) from (4), ^=3|; (2) " (4), y=3; (1) " (4), z=2i. 5. Let X, y, z and u represent their ages respectively. ix + y + z=18, (1) a; + y-fu=16, (2) x + z -\-u = 14^ (3) y + «4-w = 12. (4) One third the sum of the equations is, a; + y + « + M = 20; (5) subtracting (4) from (5), ar= 8 ; " . (3) " " y= 6; « (2) " " z= 4; it (1) « « u= 2. 6. Let x=: A's shillings, y= B's, and 0= C's ; then by the con- ditions of the problem, after the first game each will have as follows : x—y—z— A's shilHngs, 2y= B's " 2z=C's " (119) 72 SIMPLE EQUATIONS. After the secofnd game, 2x— 2y — 22= A's shillings, 2i/ — {x—y—z) — 2z = 3t/—x—z=B's " 4z= C's After the third game, 4ar~4y— 42=16, (1) 6y-2i:-2z = 16, (2) 72_ar-y = l6; (3) Adding the equations, x + i/ + z = 4S] (4) " (3) and (4), 8z=64, and z= 8 ; " iof(l)to(4), 2a:=52, and x=26 ; substituting in (4), y=u. T. The same equations as in Ex. 6th, page 116. 8. Let ar= the value of the better horse, and y= the value of the poorer. ^ -fMo =:/r;rv?-7-<-)/7^,_/^-^,^^-U+15 = -(y + 10), (1) By the conditions, } ^^:t:;:^u («+io=i5(y+i5); (2) Jy^^ i,i-^~\i = ^-^ 15 adding 5 to both sides of (2), a: + 15 = --(y + 15) + 5 ; (3) lo co.npan„g^(l) and (3), J 4^^^,„)^15(^^^,)^, . ^^^ clearing of fractions, 52y + 520=45y + 675 + 195 ; (5) whence, 7y=350, and y=50, poorer horse ; and by substitution in (1), a; =65, better horse, 9. Let ar= the price of a dozen of sherry, y= " " " " brandy. Put a=r78. By the conditions, j f ^o^^f^ o ^1 ^ ' ( 7a: + 2y = 9a + 9; (2) multiplying (1) by 2, 4:c+2y = 6a ; (3) subtracting (3) from (2), 3jr=3a4-9, or, . ar=a + 3 = 81, sherry ; whence, from (1), y=a— 6 = 72, brandy, jz^ - > -/, (119-120) J V ^- ^ 4 J TWO OR MORE UNKNOWN QUANTITIES. 7Sl 10. Let x= the time in which A can do the work, -.__ « ti *' B " " " then -= the part of the work A can do in one day, u u u J5 « « u y In four days, both working together would do \ of the work. Therefore. JL ^ ~l ^~L 1 36 3 12 1 whence, / r" , y = 48, and ;r=24, ^«*. 11. Let a;= numerator, and y= denominator. 2i: 2 "^-f^ /4 4 1 By conditions. y + 7-3' x^2 3 2y ~5 (1) ; (2) clearing of fractions, and transposing, %x—2y=z bx—Qyz=i- multiplying (3) by 3, 18^— 6y = subtracting (4) from (5), 13j;= whence, {c= Hence the fraction is 14, (3) -10; (4) 42; (5) 62, 4, y=b. 1, Ans, 12. Let x=A'8 money, and y=B'8, 1 By the conditions, \ ^ + |^=240=a, ^x (1) { y +— =240=:a; (2) clearing of fractions, subtracting (3) from (4), substituting in (3), 3x + 2y = 3a, 3a; + 4y=:4a ; 2y=a, y= 3i: + a = 3a, x= (120) (3) (4) = 120} = 160, 74 SIMPLE EQUATIONS. 13. Let rr= the number of persons, and y=. what each paid ; then xy= the amount of the bill. By conditions, C(^ + 4)(y-l) = a-y; (1) (2) expanding (1), XyJ^\y—X — \=iXy, (3) " (2), xy — Zy^x—Z—xy\ (*) dropping xy 4y— a;— 4 = 0, (5) -3y + ar-3r=:0; (6) adding (5) and (6), y-7 = 0; whence, y=i7, a: = 24. Arts, 14. Let x~ the digit in the place of tens, and y= the digit in the place of units ; then 10i: + y will represent the number. ■KT 1 . ,. . ( 10x + y = 4x4-4y, (1) Now by t.ie conditions, ^ _ ^ , ^ /^( ^ ' ( 10a: + y + 27=a:+10y;(2) transposing and reducing (1), 2x—y\ (3) (2), y-^=3; (4) adding (3) and (4), ar==3, whence, y—^. Hence, 36, Ans, 15. Let X represent the number of hundreds, y the number of tens, and z the number of units ; then lOO^ + lOy + z will represent the number. r x + y+2-11, (1) By the conditions, \ z=2x, (2) ( 100xi-l0y + z-\-29l=x + l0y + 100z; (3) transposing and re- ) _ q . {a\ ducing (3), 3 substituting value ) 9 _ _o . of z in (4), J whence, x=Sj z = Gj and y=2. Hence, 326, Ans. 16. Let Xj y, and z represent the parts. (x-\-y-\-z=90, (1) By the conditions, < 2a; + 40 = 3y + 20, (2) ( 40-|-lO=:2a; + 4O; (3) (120-121) TWO OR MORE UNKNOWN QUANTITIES. 75 from(2> y= — ^ — ; 2ar + 30 " (3) ^=—4—' , . . . ,,v 2ar+20 2i? + 30 ^ by substitution m (1), x-\ f- — =90, ar=35, first part, y=30, second " 2=25, third ** ANOTHER METHOD. By the conditions, twice the first part plus 40, three times the second part plus 20, and four times the third part plus 10, are all equal to the same number, which we may represent by x ; then a:— 40 — - — z=z the first part, ^—20 ,, , „ = " secofi'l *' 3 and ^j^^ „ ^j^.^^ ,, 4 ^ ^ a:— 40 x—20 x—\0 ^^ .. Therefore, -y- + — ^ + -^ = 90, (1) whenccy a;=110. — - — = 35, = 30, and — - — = 25, Ans. 17. Let x= the part at 5 per cent, and y the part at 4 per cent. Put $100,000=0, 4640=6. I ar + y=a, (1) By the conditions, -j 5a; ^V _j^, /n\ ( ioo'*"ioo~ ' ^ ' from (1), y=za-~x\ 5x 4ff 4aj " (2), by substitution, i5o"^"Tocr=*' whence, a;=1006 — 4a=$64000 ) ^^^ and y= a— x=$36000 J (121) i6 SIMPLE EQUATIONS. 18. To avoid the labor of using large numbers in the operation, put a = 5000; then 2a = 10000, 3a =16000, 10 lOr/ 1500, aud ^-- = 800. Let x=: the principal of the first person, and y= the rate. ar+2a= and x-\-3a= By conditions, clearing of fractions ) and dropping ary, j multiplying (3) by 2, subtracting (4) from (5), substituting in (3), Hence, " second " y+l= " " third " y + 2= " ^y ry4-2ay4-a: + 2a 16a iob~ 100 Too* ary a-y + 3a t/ + 2.r + 6a 3« iob~ Too ~~"" 10 = 2^ (1) By the conditions. K y+4a; + 4z=58a, y^<^ ( 2 + 5a; + 5y = 63a; ^S^^ (2) (3) adding 2x to (1), ds= 47a + 22; : (4) " 3y to (2), 48= 58aH-3y; (S) " 42 to (3), 5s= 63a + 45?; (121-122) (6) 4y ^/2 y ^/Z c^ - / /' r e^-t? (jj ZOyL -^2J>^ ^ 4 SL ^ -2- y -2 ^ ?^ 1^0 TWO OR MORE UNKNOWN QUANTITIES. 77 multiplying (4) by 6, 18s=282a + 12.r; (1) (5) by 4, 16s = 232a + r2y; (8^ (6) by 3, i5s=zl89a-\-12z', (9) by addition, 49s = 703rt + 12s; whence. s= 19a; substituting value of s in (4), 2xz= 10a, x=5a = 500 ; U U t( (5), 3y= 18a, y=:6a = 600; tt tt u (6), 4z= 32a, 2 = 8a = 800. 21. Let x=z the cost of a pound of tea, t/— the cost of a pound of coffee; then oOx= the whole cost of the tea, and 30?/= the whole cost of the coftee. Ilis gain in selling the tea is y'^ of its cost, or 5x ; his gain in selling the coffee is \ of its cost, or 6y. ^> -^ ^Oy-J.4^jy^ ( 5i:+ 6y= 2.90, (1) Bf the conditions, 1 .- T „« «k . J /«( ^^j -i^y- U5a;+36.y = 27.40; (2) subtracting 6 times (1) from (2), 25x= 10.00 ; whence, ar=$.40, and y = $.15, Ans. 22. Let a*, y, ar, w and v respectively represent their money. Then by the conditions, substituting value of v in (4), ** " ti in (3), ** " z in (2), z+|=30, (1) M = 30. (2) |-i = -. (3) Su V {*) 5v „^ ^ -—=30, whence v= 6 = 36; (5) ?^=24, " « = =32; 1=2. .. .= = 33; 1=19, " ,-. =38; . 19=30, " a:= = 11. 122) 78 SIMPLE EQUATIONS. 23. Let x^ y and z represent respectively their money. Put a=1000. / ar + |=2000= =2«, (1) J5y the conditions. / y + ^ = 2000 = ) = 2a, (2) ( 2r 4-^ = 2000 = = 2a; (3) i 2x+y=. 4a, (4) clearing of fractions, ^ 3y + 2= 6ff, (5) . (42+ar= 8a; (6) multiplying (5) by 4, 12y + 42=24a; (7) subtracting (6) from (7), \2y — x=\Qa\ (8) " (8) from 12 times (4), 25a:=32a; 32a whence, ar=— — ; Zo or, a:=1280; by substitution, y=1440; and z=1680. 24. Let ar= the hourly rate of the first courier, and y= the hourly rate of the second courier. Now the distance divided by the rate will be the time ; hence, Z _ -/ - hi - J^ 147 147 ^ .L/. £p ^ y These equations are the same as those in Ex. 19, page 111, and may be solved in a similar manner. y ^ 3 -7 25. Let x=. the greater, and y= the less. By conditions. X y 2+1=13, (1) (122) ^ ^2^^-/3 J 7 TWO OR MORE UNKNOWN QUANTITIES. 79 3^ multiplying (1) by 3, y+y=39; (3) (2) by 2, 2-e (*) by addition, 13' o« 6 =««' ■whence, ir=:18, and y = 12. , Ans. 26. Let X— the first, y=1 the second, and 2= third. ( ^ + My+«) = 51=flr, (1) By conditions, y + i(a?+2) = 51=a. (2) ( z^\{x^y) = h\=a', (3) ( a^ + (^+y + e) =2a. (4) clearing of fractions, 2y+ (a; + y + 2r)=3a. (5) ( 3z + (a: + y + 2) =4a. (6) Let (ar + y4-«)=s, anc I multiply (4) by 6, (5) by 3, and (6) by : equation (4) becomes 6ar + 6s = 12a; (7) " (5) " 6y + 35= 9a; (8) (6) " 6z+2s= 8a; (9) by addition, 65+ll«=29a, or«=:87. substituting value of s in 'W. ir=2a — «, or ar=15; (( U (( (5). 2y=3a— 5, or ^=33 ; ti H M (6), 3r=4a — 5, or 2 = 39. 2*7. Let a;= A's, y= B's, and z= C's sheep. rar + 8-4=y + 2-8, (1) 3y the conditions, •< i(y + 8)=a; + 2 — 8, (2) ( M^ + 8)=^+y-8; (3) clearing of fractions and uniting, a; — y - « = — 1 2, (4) — 2a: + y — 20=— 24, (5) — 3a;— 3y + 2-— — 32; (6) adding (4) and (6), _2a;-4y=-44; (7) or a; + 2y = 22; (8) subtracting twice (4) from (6), — 4a; + 3y=0; (9) adding four times (8) to (9), lly=:88 ; vhence, y— 8, a:= 6, and 2=10. (122-123) 80 SIMPLE EQUATIONS. 28. Let - represent the fractions. By the conditions, clearing of fractions, .1 :,• . S Vjr + 3y=22, (1) By the conditions, i ^ , „ ^ ' subtracting (l) from three times (2), 8j:= 32 ; or, «= 4; whence, y= — 2. The negative value of y shows that the boy was charged for board each day two shillings more than his wages. 6. Let ar, y and z represent the wages of the man, his wife, and son, respectively. I 102:+ 8y+ 62=10.30, (1) By the conditions, ^ 12jr + 10y+ 42=J3.20, (2) ( 15j; + 10y + 12^=13. 85; (3) subtracting (3) from twice (1), 5x-\-Qy= 6.75 ; (4) " (3) from three times (2), 21ar + 20y = 25.75 ; (5) multiplying (4) by 10, 50a: + 60y = 67.50 ; (6) (5) by 3, 632; + 60y = 77.25 ; (7) subtracting (6) from (7), 13a;=: 9.75 ; whence, a;=.75, y= .50, and z=— .20. The negative value of z shows that the boy was charged for board $.20 each day above his daily wages. (133-134) NEGATIVE RESULTS. 91 V. Let ar, y and z represent the wages of each respectively. i 10.r + 4y + 3z=rll.50, (1) By the conditions, < 9a: + 8y + 6z=:12.00, (2) ( 7a: + 6y + 42=: 9.00; (3) subtracting (2) from twice (1), ll.r = 11.00 ; whence, a:=:1.00, y=0, and 2= .50. The value of y shows that the wife's board and wages were equal. 8. Let x= the numerator, and y= the denominator. ar+l 3 By the conditions, From (1) " (2) \ y '5' y 5 (y+i~ ''1' bx -^y= :-5; 1x- -5y = : 5; 25x- .I5y= :-25, 2\x- ■I5y = : 15, 4x= :-40, (1) (2) ar= — 10, y=— 15; hence, — —~yAns, — 15 The modified example will be as follows : What fraction it that which becomes | when 1 is subtracted from its numerator^ and ^ when 1 is subtracted from its denominator^ The equations will now be, ar— 1_3 X _5 whence, ar=10, y=15 ; hence {^y Ans, 9. Let Xy y, z and u represent respectively the net capital or insolvency of each. Ix + y + z + u = 5l80, (1) x + y + z =7950, (2) y + 2 4-^ = 2220, (3) X +z + u = l320, (4) (134) 92; SIMPLE EQUATIONS. Subtractiog (3) from (1), x= 3560, A's net capital. " (4) " (1), y= — 1540, B's net insolvency, « (2) " (1), M = — 2170, D's net insolvency, by substitution, z= 5930, C's net capital. Tlie positive values of z and z show net capital for A and C ; the negative values of y and u show net insolvencj/ for B and D. 10. Let xz= the number of hours Jiftcr six o'clock, when A passed B. Now, at six o'clock, B's distance from Boston was n -}- 46 miles. Hence, at the moment of passing we have m — ajr=A's distance from Boston; n + ib-bxz=Ws " " " . Therefore, in — ax=n + 4b — bx\ m — n — 46 a-b hours, yins. 11. Substituting the given vahus for 7n, n, a, and 6, we hav 36 — 28—12 —4 x= = = — 2. 5 — 3 2 That is, A passed B — 2 hours after six, or 2 hours be/ore six, which is 4 o'clock. 12. Let ar=r the greater, and x—a=: the less; then by the con- ditions, J x-{-5{x—'a) = b', 64-5a . whence, x= — - — , the greater ; o 6 — 3a , , and X — a = , the less. 8 If a=:24 and 6=48, then 48 + 120 48— -K©- ^ 21, greater; x^a= =— Syless. 8 '° ' 8 Arithmetically speaking, there is no number —9. But considering the quantities, 21 and — H^ algebraically^ they fulfil the conditions of the problem. 3 (134-136) DISCUSSIONS. 93 (193, page 142.) 1. Let x^ y, z, and u represent the parts of the contents of the cistern which will flow through the pipes respectively in one hour. I5x + l5y + 15z + 15u = l, (1) 5x+ 8y+ 1z+ 3« = J, (2) Bv the conditions, 1 ^ * J ' 3x+ 4y+ 30+ u^\, ^^) 4.r+ 2y+ 32-f 2^ = 1. (^) Subtracting J of (1) from (2) 2a: + 5y + 45f=:-i-'^, (5) " •i'Tof(l) " (3), 2j: + 3y + 23 = y\, (6) " ftof(l) " (4), 2-1^ + z=i^\ (^) multiplying (5) by 3, C.r + 45y + 122— y^; (8) (6) by 5, 10ar + 15y+10;2r:=ff ; (0) subtracting (8) from (9), \x -2z=H; (10) multiplying (7) by 2, 4x +20-n; (11) adding (10) and (11), 8^= ^f, and:r= /^=r -,\ subtracting (10) and (11) 4z=-if, and z=—^^^-^- substituting in (5) 5y= f^andy::^ ^V= tj (1) ) ^5w=-?f, and t^ = -/^=--V. Therefore, the contents of the cistern will flow through the first pipe in 12 hours, through the second in 15 hours, through the third in 20 hours, and through the fourth in 30 liours. The positive values of x and y indicate receiving pipes ; the negative values of z and u indicate discharging pipes. 2. Let m represent what A will have in 2 days ; then m4-2 will be what B will have in 4 days. Let ar= the number of days hence, when A and B have the same money; then A will have m + 5(.r— 2) dollars, and B will have m + 2 + 3 (z~ 4) dollars. Hence, w + 5(jr— 2) = m + 2 + 3(:r — 4) ; (5— 3)ar=0; 5 — 3" That is, they now have the same sum. (142-143) 0. 94 INEQUALITIES. 3. Let X represent the period ; then by the conditions, 3a;-10=:3(4j-4-8); -whence, 12a;— 40 = 12x4-24 ; (12-12)a:=64; 64 64 =— - = oo. 12-12 The value of x is an expression for infinity, according to (188, 1.). The period of the comet, therefore, is a number of years greater than any assignable number. 4. Let X represent the monthly wages ; then by the conditions, 2(9j: — 450) = 3(6.c — 300) ; whence, 1 8a; — 900 = 1 8 j- — 900 ; (18-18)j:=900-900, _900-900_0 ^~ 18—18 ~0' The value of ar is a symbol of indetermination, according to (I885 4.) The monthly wages of each may therefore be any number of dollars. If they receive more than $50 a month, they •will each lay up the same sum. If they receive less than $50, they •will become equally indebted. INEQUALITIES. (301, Page 149.) 1. 6jr> 5^ + 14; clearing of fractions, lOx > 3a--(-28 ; dropping 3a-, 7a; > 28 ; whence, a; > 4, Ans, 2a; 2a; 2a; 2x 2a; dropping y, ""T ^ ""^ ' 2x X changing signs by ( 199, III.), y < 2, or - < 1 ; clearing of fractions, ^ < 3, Ans, (143-149) INEQUALITIES. 95 3. ^ + 7<-^+.n> 5x 5 ^11 ,1x 8 4^6 12 clearing of fractions, 75ar+150 < 220 + ^Oar; whence, 6;c < 70 ; X < 14, Ans, Sx x — l 20a; + 13 whence, 3x—2x-^2 < 24a — 20j;— 13 ; or, —3x < — 15 ; changing all the signs by (109, HI.)) 3a; > 15 ; ar > 5, Ans. 6. transposing. dividing by (a—c). 6. multiplying by aft, transposing, dividing by (a + 6), 7. (a—x)(m—x) — a(m—c)<^x* ; 1 < , aV removing parentheses, am—ax—mx-{-x^—am-{-ac<^x^ ; ax—b > cx + c?; ax— ex > 64-c?; ^> 6+fl? . 's Ans, a—c ^< ^-b aar— a' < ab—bx ; aa;-|-6a; < a'i-ab] ^< 0, ^ns. ; . , aV transposing, a'c -ax—mx < —ac ; m changing all the signs. a'c aa;+ma; > acH ; m multiplying both sides by w, m(a 4- m)a; > ac(a + w) ; dividing by m(a + m). (149) a;> — , Ans. m ^6 INEQUALITIES. (dOd, page 150.) 1. Given, i2. + 4y>30, (1) (3x + 2y = 31; (2) dividing (1) by 2, a- + 2y > 15 ; (3) subtracting (3) from (2), ( 1 »9, IT.), 2.r < 16 ; whence, a: < 8. If we substitute 8 for ar in (2), the first member will be greater than the second member ; thus, 24 + 2y > 31; transposing, whence, 2. Given, multiplying (1) by 2, subtracting (3) ffom (2),(199, II.), whence. Substituting 2 for y in (2) will make the first member less than the second ; hence, 8x + 4 < 46 ; transposing, 8j: <[ 42 ; whence, x < b\. 3. Given, multiplying (2) by 2, adding (1) and (3), whence, substituting in (2), whence, 2y> V; y>H' 4x-3y < 15, (1) 8jr + 2y = 46; (2) Sx-Qy < 30; (3) 8y > 16 ; y> 2, 4. Given, \ From equation (2), (150) 7ar~10y < 59, (1) 4x+ 5y = 68; (2) 8x-fl0y =136; (3) Ibx < 195; x< 13; 52 + 5y> 68; 5y> 16; y> 31. + 3y> 121, (1) + 4y= 168; (2) 1x y=42--; (3) POWERS OF POLYNOMIALS. 97 substituting this value of y in (1), we have 6^+126 — >121; multiplying by 4, 20x + 504— 21a: > 484 ; transposing and uniting, — -^ > —20^ whence by ( 1 99, III.), ^ < 20. Substituting 20 for x in (2), we have 1404-4y > 168; transposing, 4y > 28 ; y> '?. W a;— 4 y — 10 5. Given, 8 6 >1. 3ar— 24 x—y (1) (2) multiplying (1) by 24, Sj;_12-4y + 40 > 24; (3) or. 3^-4y> -4; (4) multiplying (2) by 4, 3j;_24+2ar-2y = 52; (5) or, 5a;-2y = '76; (6) multiplying (6) by 2, 10jr-4y = 152; V) subtracting (4) from (7), Va;< 156; whence. X < 22^, substituting in (6), lll|-2y> 76, transposing, -2y > -35f or, 2y < 35^ y < iH- INVOLUTION. (316, page 157.) 1. By simple multiplication according to the rule, we shall have (2a;'4-3y)'=4a;*+ 6jr'y + 6a:'y + 9y* = 4i;' + 1 2x'y + 9y*, Ans. (150-157) 98 INVOLTUION. 2. Multiplying the factor bx—y* by itself, we get (5a;' -y')' = 25j:' - lO^-y' +y*. Multiplying this result by 5x—i/*, (5a;— y')'= 125ar»— 50a:y + 5x/ — 25a;y + 10a;/— y* = 125a;'— 75a;V + 15a-y*— y', ^n«. 8. {l-\-2x — 3xy = l-^4x-6x'+ 4j;'— 12a;' + 9a;* = 1 + 4a;— 2ar' — 1 2x' + 9a;*, Ans, 4. (3a + 26 + c)' = 9a' + 1 2a6 + 6ac + 46' + 46c + c\ Multiplying this result by 3a + 26 + c, we have (3a + 26-fc)' = 27a' + 36a'6 + 18tt'c-l- 12ff6' + 12a6c+ 3ac' + 18a'6 + (86') + 24a6' + 12a6c+(86'c) + 26c' + 9a'c + (46V) + 1 2«6c + 6ac' + 46c' + c' = 2'7a' + 64a'6 + 2Ya'c-|-36a6' + 36a6c+ 86* +9ac' + 126'c + 66c* + c', Ans. In Examples 6th and 6th we ^lave the simple binomial ; see (70). 7. (a'c-' + a-'cy z=a*c-* + 2a'c° + a-*c* =a*c-* + 2-ha-*c\ Ans. 8. (a' 4- 1 +a-')' =a* + 2a' + 2a» + 1 + 2a-' + a-* = a* 4- 2a' + 3 4- 2a-' + a-*. Multiplying again by a' + 1+ a~', (a' + 1+ a-')' = a' + 2a* 4- 3a' 4- 2a'' 4- a-* 4- a*4-2a'4-3 4-2a-»4- cr* 4- a' 4- 2a" 4- 3a-' 4- 2a-* 4- a-' (a' 4- 1 4- a--y=a'' 4- 3a* 4- 6a' 4- V 4- Qar* + 3a-* 4-a~*, Ans. For Example 9th, see (71). (217, page 159.) All examples in this article are readily solved by a strict applica- tion of the rule, which is an important one. In the first three examples the symmetry of the answers should be noticed. (158-159) SQUARE ROOT OF POLYNOMIALS. 99^ 6. (l—a + a'— a')«=l--2a-f 2a'— 2a' 4- a' — 2a' 4- 2a* + a* — 2a* + a' = 1 — 2a + 3a' — 4a' -f 3a* — 2a' + a\ Arts, 1. (3aa; + 2a' — 4a;' — 5)' :9aV + 12a'a:— 24aa;' — 30a2; + 4a*— 16a'j;'— 20a' + 16j:* + 40a;' + 25 ;12a'x— 24ax'— 30aar + 4a* — Ya'jr' — 20a' + 16a:* 4-40a:' + 25, Ans. 8. (1— 2a:— y' + ary— a;')' : 1 — 4a: — 2y' + 2a:y — 2a;' + 4a;' 4- 4a-y' — 4a:'y + 4a:' + y* — 2a'y ' + 2a:'y' + a:'y' — 2a:'y + a;* : 1 — 4a: — 2y' + 2a:y -f 2a;' + 4a;y' — 4a:'y + 4a;' + y* — 2a;y' + 3a:'y' — -2a;'y + a;*, Ans, EVOLUTION. (aaO, page 166.) 1. a' + 2a6 + 2ac + 6' + 26c + c\a + 6 + c, Ans, a' 2d+b 2a64-2ac + 6' 2a6 +6' 2a+264-c 2ac +26c+c' 2ac +26c4-c' 2. a* — 6a'64-4a' + 96' — 126 + 4(a' — 36 + 2, -4w*. 2a' — 36 — 6a'6+ 96' -6a'6+ 96' 2a«— 664-2 4a' -1264-4 4a' -1264-4. (159-166) IPP EVOLUTION. 3. «' + 4j:* + 2x« — 2a:' + 6x*-.2a:+l(df' + 2a^— ar+l, Ans. 4x'-\-4x* 2x*-h4x*—x —2x* — 2x*-\-5z* — 2x*-4x'-\- X* 2ar' + 4jr' — 2jr+l 2x'-\-4x*-~2x-\-l 2x' + 4a;' — 2ar + l. 4. The two first terms of the root will be l—rt, by inspection; hence, . I — 2a + 3a* — 4a* + 3a* — 2a* + a\\—a + a*'-a\ Ans, 1 — 2a+ a* 2 — 2a + a' 2a' — 4a' + 3a* 2a' — 2a'+ a* 2— 2a + 2a'— a' —2a" 4- 2a* — 2a' -fa' — 2a' + 2a* — 2a' -fa* 5. The square root of the first term is 2a'6, and — 12a'6'-?- 4a'6=— 3a6; hence we proceed as follows : |2a'6— 3a64-2a6', Ans, 4a*b* — 1 2a'6' -f 8a'6' + 9a'6' - 1 2a'6' -f 4a'6* 4a*6'-12a'6'4- 9a'6' 4a'6' — 6ab + 2a6' 8a'6' -^1 2a'6' + 4a'6* 8a'6' ■ — 12a'6' + 4a'6* 6. |3x' — 5a?*y— 4a:y' + 6y', Ans, 9ar'— 30yy4- a:*y' + 76x'y' — 44a;'y* — 48ary' + 36/ . 9x'--30x'y + 25x*y' 6j?"— 10ar"y-4ry' -242:*y' + 76x'y'-44ar'y* -24x*y' + 40.r'y»4-16a:Y " 6a;' — lOar'y— 8jry" + 6y' 362r'y' — 60Jry — 48a:y»4- S6y* S6xy-Q0xy-48xy*-{-d6y* (166) SQUARE ROOT OF POLYNOMIALS. 101 |a' — 36c4-2cV 2a*-^6bc+2cd 4aW-2aV —Ubc'd Ad'cd —Ubc'd +4cV 2a*-6bc+4cd-d* -2aV +66crf' ^4cd'+.d' -2aV +66ccf' _4crf'+c?* . „ 3a«6« aJ^ 6' , , ab b' . a*—a*b-{- — - 4 2 4 16 2ar* — 6a; + x-' 2x' — 62?-* + a;"* 2x' — 6^-*+a;~* 10. a"*-' — 10a6-' + 27 — 10a-'6+a-'6'(a6-' — 5+a-'6, ^n«. a«6-»_10a6-» + 25 2a6-* — 10 4-a''6 + 2 — 10a-'6+a-'6' 2-10a-'6 + a-«6« In this example we have the last multiplication, 2ab-' xa-'6=2a°6»=2. 11. a*** 4- 6a*"»c'' + 11 a""c'" + 6a V + c^^^a^^ + 3a'"c'* + c*", ^n*. a*** 20'-" + Sa^'cT 6a'"*c'* + 1 la""c^ 6o""c"+ 9a»V 2a2V + 6aV+c*'' (168) 102 EVOLUTION. SQUARE ROOT OF NUMBERS. (934, page 169.) 1. "72,25(85, Ans. 2. 10,82,41(329, Ans, a>- 64 9 2a+6-165 825 2- 825 124 2a+26 + c-649 5841 5841 3. 65,12,49(807, ^ns. 4. 9*7,41,69(987, ^n*. _64 81 1607 11249 188 1641 11249 1504 1967 13769 13769 5. 5,09,85,64(2258, ^»*. 6. 66,34.10,25(81.45, ^»W. 4 64 161 234 161 42 109 84 445 2585 2225 4508 36064 36064 7. 18,12,88,60,8 16 82 212 164 845 4888 4225 8507 66360 59549 8514^ J 681184 681184 1624 7310 6496 16285 81425 81425 8. .33,98,89(.583, ^7W. 25 108 898 864 1163 3489 3489 (169-170) SQUARE ROOT OF NUMBERS. 103 9. .00,52,41,76(.0724, Ans. 49 142 341 10. 41 4,77(21.8403+, Ans. 4 77 284 41 1444 5776 428 3600 5776 3424 4364 17600 17464 436803 1360000 1310409 i 11. 63 11.09(3.33016+, Ans, 9 209 189 663 2000 1989 ■> 66601 110000 66601 666026 4339900 3996156 12. The square root of a fraction is the square root of the numer' ator divided by the square root of the denominator. Hence, 13,69(37 1,18,81(109 ^ ^^^ 9 1 109' "*' 67 469 469 13. 1,02,03,02,01(10101 1 . ioioi'^'*"- 209 1881 1881 1,02,03,02,01(10101 1 201 0203 201 20201 20201 20201 (170) 104 EVOLUTION. 14. 245 49 TT ^ . 720 = 144- Hence, -,^n,. 16. 43 = 5.57,14,28,57 + (2.3604 + , Arts. 4 157 129 466 2814 2796 27204 182857 168816 CONTRACTED METHOD. («355 page 171.) 1. 56.00,00,00,0(7.4833147 + 49 144 700 576 1488 12400 11904 14963 49600 44889 14966 4711 4490 1497 221 150 150 71 60 15 11 11 2. 67 14.00,00,00 9 500 469 (3, 7416574 744 3100 2976 7481 12400 7481 • 7482 4919 4489 748 430 75 374 ~56 53 t 3 3 ( 170-171 ) SQUARE ROOT OF NUMBERS. 105 844 848 85 6. 142 1444 14483 14486 1449 145 14 18.00,00(4.2426 + 4. 19.00,00,00(4.3588984- 16 16 200 83 300 164 865 249 [ 3600 5100 33Y6 870( 4325 J 224 i 77500 169 69664 55 87l€ ; 7836 61 6973 872 863 785 87 78 12 52.46,30,00 r 1(7.2431346 4- 6. 7.00,00,00,00(2.64575131 4- 49 4 346 46 300 284 524 276 6230 2400 5776 5285 2096 45400 30400 43449 52907 26425 1951 397500 1449 62914 370349 602 27151 435 26457 67 5291 694 58 529 "9 529 165 8 159 53 6 5 (172) 106 EVOLUTION. 1. 6*=(5y=(125)^ 1,25.00,00,0(11.18034 + I 21 25 21 221 400 211 2228 18900 18824 2236 76 67 22 9 9 (239, page 175.) 27a' + 108'i' + 144a + 64(3a+4, Arts. |27a' 108a' + 144a + 64 9a + 4 36a + 16|27a'+36a + 16 108a' + 144a + 64 In this example we have, Trial divisor, 27a' First factor of correction, 9a + 4 Correction of trial divisor, 36a +16 Complete divisor, 27a' + 36a + 16 according to formula (a), (JSJ37.) (172-175) CUBE ROOT OF POLYNOMIALS. 107 CO 1 1 1 CO OS 1 CO OS + + "^ s -^ + 1 + 2 1-H + 1 1 5 CO CO w CO I-H e« + H H (N M* r-( o « e e 04 cs « rO + •• 5S a ! CT e« OS "a 1 OS 1 >o »o c 00 as + + ■• « 8 « 00 eo '^ 00 I I + + I I CO CO 00 1 00 1 1 1 ^ CD + + e« ^ t- t^ 1 1 « „ J 1 e e e t- >o cs cs 10 cs CO CO cs T—i 1-^ r-i + + + + ^ :s ^ CO lO 00 00 1 1 1 1 ^1 1 1 •a 1 "e e *« 05 >o -rt^ ■^ lO CO cs cs T— < 4- + + + c CO <§ S cE 1 1 1 1 1 1 1 1 "e "e 10 i-H T-H _u (4 .8 CS + 1 ^ 1 '« cs »- t—t CS + + *> •a e e rO > 5a i "> ^ s^ s ^ + ^"^ 4- + + 1 CO > :b. e 1 1 1 1 1-i 1 1 ^ 1 1 1 1 1 1 — 55 Sa rO + + 1 •< 4- 1 's 5 s > "« > 1 '8 8 1 1 + V + + + + + 2a M 3a '^ M '8 CO M & 1 1 1 1 1— ( 1 1 1 1 1 1 1 Sa* ^ a I ^ 1 's 1-H CO CO CO CO + + + + + 1 1 1 1 § 1 •a '8 •^ 'M ^ 1 1 ^ I— 1 1 1 ;§ c§ eg 1 1 1 1 1 3l 1 1 + + ^ ;g + + + r-4 s s ;§ c§ 1 1 2l 1 + CO + CO + ^ CO CO •i» "k M 1 ^ i H *« ■^ HH c^ CI (N T CO 1 + rH 1 1— t 1 S s S + + + S « « f-H + + + i 1 « 'n :i '^ '^ irH C/3, Ans. 2. f^8^«=f'49a« X 2 = 7af/2, Ans, 3. V\2x''y=VAx' x 3y=2a4^, Ans, 4. V547*=V27j;' x 1x=z^x\^2x, Ans, 5. 4^108 = 4^27 X 4 = 12V4, Ans. 6. f^x'-aV=*^a:»(a;-a')-a:V^^3^, Ans, 7. 6^32^= 6 Vsa' x 4:^12aV4, Ans. 8. 3f^2 8a V = 3f/4a V x 7a = QaaVia, Ans, 9. Va»+a'6«=>/a'(l +6')=aVr+6', ^»«. (181-183) REDUCTION. 119. 10. {x-y)V2x*-^x'y + 2xy''=i{x-y)V2x{x'-2xy^-y^) = {x-y)V2xx{X'-yy=(x-yyV2x, Ans, 11. (a - hy^d'h + ^ab^ + 26' = (a - 6)f'26(a' + 2ab + 6') 12. 66(6'-6')2=56[(6-l)6']^=56'(^-l)^ ^'i*- 13. (2a'6»-3a'6')5=[(2a«-36')a'5']^ = a6(2a'-36y, J»*. 14. ^(a*6' + a*6*)^=^[a»6»(a6' + a«6)]^=a'(a6' + a'6)^, Am, 15. ♦^8a'"'a^=V'4a'V» X 2 = 2a V'V2, Ans. 16. V^^= Va^V' X ar^=a'^c"'y/a'^c'^'^^ Ans, 1 11 1 7. (2a*»y- - 3a*"y»'»)*'= [a;»«y"(2 — 3a:"y«-)]- =ar'y(2 — 3a-"y"»)"», 1 1 1 18. a-*"c(a'^c'''— a'-^V) " =a-^c\ar''/Y=Vi|z=iV75, Ans, 5, ^^=^H=^j*'t X 6=5*T^6, Ans. 6. 2|/|^2|/|=|i/6^, ^n,. (183-184) 120 RADICAL QUANTITIEa 8. -\ -T-;=-V -T-i x«*=-^^a^ ^W5. (049, page 185.) 3.. {a'^cz)= [(a-c^)*]^ = (a*-4aV2: + 6aV«-4acV + cV)^, Ans, 6. (a— 26)V^=*^2a(a-26)'=*^2a(a'-4a6 + 46'') (950, page 187.) 4. The least common multiple of 1, 2, 3, and 4 is 12 ; whence by Rule II, »Va", *'V^, ">/^ 'V^«, ^n5. 8. The least common multiple of 2, m and n is 27nn ; whence, •"Va-^^V^, '*V?y^, ""V^^^V^, Ans. ADDITION OF RADICALS. (051, page 188.) 1. ^l6a*x=4aVx 2. ^32= 4*^2 Vi^=2aVx Vn= QV2 QaVx, Am. f^l28 = _8l/2 18*^2, -4««. 8. V40= 2V5 4. Vl08= 3V4 Vl35= 3V/5 9V4 ^625= 5V5 Vl372= 7V4 ioV/6, ^n«. 19 V4, Aim. (184-1S8) V. ADDITION. i; V^ = ^V2 6. Vv= |V3 V^=l^2 ^fi= ^V3 Vj\=iV2 ^fH= |V3 y2, Ans. iiV3, ^n^. Kl =K6 8. 3Va6»i'=3mf^ if^=if/6 mV4ab = 2myab i^U = T\^^ V25abm'=5mVab lif/6, Ans. 10wVa6, ^>w. 121 0. 2aVc*x--c'y=2acV'a:— y 3c Va'ar — a'y = 3ac l^a: — y 5 ^a^c^x — d*c^i/ =:5acVx—y lOaci^a;— y, Ans, 10. K20a'm— 20acm + 5mc' =f^5m(4a' — 4ac+c') =(2a--c)>^6; V207»c' — 60acw + 45a'7» = V'5m(4c' — 12ac4-9a') = (2c— 3a)i^6»i (c— a)l^5m, ^rw. 11. 3V^« = 3a:Vc y/ax*=z Xy/a 2>^ax*z=2xVa 12. 3xv/c + 3a;Va=3ar(Va4-Vc), Ans. 2 j:(a'c? — aV) 3 = 2ax(rf — c) 3 = — 2aar(c — c?)^ i Zax(c—d)^^ Ans. Note. — In transforming the second quantity, observe that the cube root of a negative quantity ia negative. (188-189) 122 RADICAL QUANTITIES. ' ai-b ' {a + by^ ' a + b Hence the sum is, (4_+-L.+°±:^y.-rr6-=("'-°^+°^:+'''--'^*Va.JI' \a+b a—b a'—b' J \ a'—b' f =2^^*^^', Am. "• ♦'(^ +«)" -'^^S'(' +°)=TT^''i +« nee the sum is Vl+a l+a 1— a/ 1— a' 1— a 1-a 1, SUBTBACTION OF RADICALS. (asa, page 189.) 41^135 = 121^15 2. ♦^75=51^3 ^Veo = 4V'l5 ♦/50 = 5*/2 8*^15, Ans. 6(V^3-f'2),-4n*. (188) SUBTRACTION. 123 3 ^^= 3 aVb i^^W=i^Hfll=,\*/lT (1 2a' - 3ayb, Ans. |f/lT, Ans, 5. ?i/l?_^-l'^V4^'.5^MV5 S'^ 338 3^^ 169 39 ^V36l_W36r:_19a IS'^ 5 ~13^ 25 65 Hence the difference is (14a 19a\ , a , , 39 65/ 16 ' 6. (aV-3c'a;)3=c(a'-3x)^ 2(aV-3rf*x)3 = 2rf(a'-3a;)i (c-2rf)(a'— 3ar)3, ^^j. 1. (a'-a6' + a*6-6y={o'-6'+a6(a-i)}^ = {(a« + a6 + 6' + a6)(a-6)i^=(a + 6)(a-fi)^ (a'-3a'6+3a6»-.6«)^= (a-6)^ = (a-6)(a--6)^ 1 26{a— 6)2, ^w«. 8. a/^=„*|/^=V^=A^-"^ a; — 1 '^ ar — 1 '^ (•^"'1) ^""^ ' « + l ' « + l '^ (-e + l) *+l ~Vl^l, An,. «'— 1 (l89-i90) 124 RADICAL QUANTITIES. MULTIPLICATION OF RADICALS. (3535 page 191.) 1. 6»/6 X 3*/8 = 15V^ = 15V^4 x 10=:30Vlo, Ans, 2. 4V'l2x 3^/2 = 12^24 = 12^4 x 6=24t/6, ^n*. 3. 3f^2 X 2f^8 = 6^^6 = 24, ^n5. 4. 2*^5 X 2*^10 x3f/6 = l 2*^300 = 12M0ax3 = 120f^3, Ans, 6. 2^^14x 31/4 = 6^56 = 6^8 x 7 = 12V7, Ans, 6. oc^/^X cVa' X V^' = 5cV^V X cVa* X V^=5c' V^V 7. (xy)^ X (^)* + (y^)^=(xy)^'^ X (xV)tV X (yV)!"? 8. (:r-y)5 x (x + y)^=[(ar-yr(x+y)']^^='V(^-y)>+y)' = "^l(^-y)(^+y)}>+y) = V(:r'-y')»(a: + y), ^n*. 9. Vl5 X ♦^10=^225 X Vi000=V225000, ^n«. a « /a; yi/b' j /6? ay s /x' e /5* V^* DIVISION. 125 11. If we square the two first factors under the radical sign, V' , we may extend the sign, ^/ , over the whole product ; thus. DIVISION OF RADICALS. (254, page 192.) 3 V20a^__ V400aV^ _ V 400aV' V 16a 4. (^qi = (a«6')^ = (a5)^ ^n.. ^ (16a'-12aV)* .^ ^ .\ . 5. ^ — '— = (4a— 3ar)'^, Ant, (4a')^ ^ 45 3-5 3(5')^ .^ ■ ^ 12c'(a-;r)* 3c[(a-xyy^ ^ . . • . 8. ^^ '—= — 5-^^ '-^^ — =:3c(a— ^)Ta, Ant, 4c(a-x)3 [(a_ar)']TV i- JL 9. ^ ^ = i — i-L_= (^8»-"c— 3'«)«-, Ans. {ac'y (a'^c"")"^* (191-192) 126 RADICAL QUANTITIES. 10. Vx Va Va' Va' Va'b-ab' Va'b-ab' Va'bWb-ab') 1 w-— ~ (a585 page 194.) 1. {V2^y=zV8^'=V8^,^^^=aV8^,Ans, 3. (3V4a^)*==:8lV266a»V==8ir ^256a"c*==8lVi6a'V = 81 Vsa' X 2oc' = 1 62a' ^^20?, ^n*. 5. (Vl2^)'=t/l2^' = f^46' X 3a=26V3^, ^n*. 6. ("v/c(a_x)')'=(Vc(a-a;)')'=Vc»(a-ar)* = (a~a:)Vc'(a-ar), 8. (Vxy(x-y)y = Vxy{x-yy=xyVxi/{x-y)%Ans. 10. f-V96^') =^ ^96^"=^ Vs2x' xdcx=—V^^ Ans, \x / x' x" X ^ (^595 page 196.) 3. y2v^98=y v^8x98=:r v/784=V28, ^n*. (192-196) POWERS AND ROOTS. 127 4. Putting the fifth power of the coeflScient under the radical sign, we have r v^^^486:=y v/64=V8, Ans. 6. Y 5V 5 =yVU5=y>^ 12~5=V 5^ Ans. 11 J- i ~^j\ = \-r-if ; dividing out the factor 2 in the expo- (ax \^ -^-\ , Ans. (aeO, page 197.) 8. Vl296=V Vl296=f/36 = 6, Ans, 4. Vl7797851516625=y ^17797851515625 =V421875=76, Am, 6. Vl9110297'6=y ♦/I91102976==v^l3824=24, -4iM. 6. V65536=y |/(65536)2=|/(256)^ = (l6)i=4, Ans. 7. We first take the square root, which is a»_4a6 + 46'; then the square root of this is, a— 25, Ans, 8. The square root of the expression is and the cube root of this is a* + 5, Ans, (196-197) 128 RADICAL QUANTITIES. GENERAL THEORY OF EXPONENTS. (aei, page 199.) 6. a*b* xJb^=Jb^=a^y^, Ans. 7. Adding the exponents we have aM 1-1 1-1 -» 1 /c'\i ^ (jr*V *^ ^ {x^y x^ 10. (a^-a^)(a^ + l)=a^4-a^--a^-a*=a*-a^, u4n*. 11. {2Vx'+yxy){SVx-yxy)=eVx'-2Vx'-yzy + 3Vx'yi^-xy = 62;— 2Va;y + 3Va;y— a:y, ^n«. 12. a^-2a~* + a"* , , , ,. 13. a--b Va+Vb J- a-i 1 a-hyablVa-^Vb, Am, a*— 2a' + a * —Vab^b — a" +2a~*— o~^ — Va6-6 a*— 3 4.3a * —a ^ , ^W5. (199-200) THEORY OF EXPONENTS. 129 14. 15. 16. Ill J- J a'-l a —a", Ans. - J+J A i. 1 A. 18 .!_• J-b^ 4 2 i. 3 4 1 !_• a* + a^b^ -\-a'b^ +a*b' + ab^ -{-a^^ 5 2. i- i 11 1J» -.a^b''~-a'b''-a*b'-ab^-a^b => -6* a'—b*y Ans. i. Ill js+ar^a^+a^ 2. 11 a. 1 a. a. 1 If i F 111 !• / Irirf^S y ld=31/5 4-15±6f/5 ^. . . \~2~/ "^ 8 =2±|/5, ^w.9. 19. Raising each factor of the numerator to the power of nr^ and each factor of the denominator to the power of ws, the expression becomes cT'y.cT'x oT' ~~ c'^+'-"«- ~\c) (200) Ans. 130 BADICAL QUANTITIES. ( 2f3-2Vl08 ) ^ j 2t/3-6V4 | ' ft' /i\^ /2 ' /72?\* • llV^sWf ^leWaFsl =(31/9; =l3V ^3)^ * (iV5 + |V2) ( i(2l/5 + 5V2) f (21/5 + 5V2) =? ( (2l/5-5V2)(2V5 4-5V2 ) ) * ~5( 2V/5 + 6V2 f = |(2V5-5V2)^, ^»». 22. Performing the multiplications indicated in the numerator and denominator, the expression becomes a-h Va-n —Va-\-Vhy Ans. 23. Omitting the exponent, the numerator is (f/5 + 2)(V5+i'2)(V5-»/2) = (*/5 + 2)(i/5'-2) = 5-4 = l; and the denominator, (♦'i3 + 3)(VT3+f^3)(VT^-3)=:(n3 + 3)(*1i-3)=13-9=4; and taking the square root, i, Arts, IMAGINARY QUANTITIES. ( 268, page 203.) 10. (a + V^c)*=a* + 4ay=:^ + 6a'(»/~c)V4a(V'irc)'+(f/— )\ =a* + c' — 6a'c + (4a*— 4ac)f^^, Am. (200-203) QUADRATIC SURDS. 131 11. a^V-^ci) a'-f ^^^a {a-\-V —a—\^ Ans, a — ay — a aV^^a + a ^ -a + ^/Hi 12. The equation can be written, From (!807) we must have a + y=c + ar, (1) and xVc=yVa, (2) Whence, by substituting in (1), Vc X — —x=ia—c x=^ — —, — =:a-\-yac I In the same way, y=c-\- ^ac ) (275, page 208.) 4. Here wehave a=ll, Vb-QV2, 6 = 72; hence, ll4-f^l21-72 ^ x=. =9, ll-*^21-72 „ v= =2 ; f/a;+|/y=3+i/2, Ans, 5. o=7, f6=4V'3, 6=48; hence, 7 + *'49- -48 ~ 2 7-n9- -48 y= = 3; y 2 ^x—yi/ = 2—yd, Ans, (204-208) 132 RADICAL QUANTITIES. 6. a=7, Vh=2VlO, 6=40; hence, 7 + */49- -40 2 7-^9- -40 2 Vx--Vy=V5-V2, Ans. Y. a=94, Vb=42V5, 6=8820; hence, 94 4- ♦^8836 -8820 _ ar= _ —40 94 — ♦^8836 -8820 , y= =45 ; Vx+Vy=1 +^45 = 7 + SV5, Ant. 8. a=28, f^6=10V^3, 6=300; hence, 28+*^784 — 300 x= = 55, 28— ♦^784 — 300 y= n =3; Vx+Vt/=5+ys, Ans, 9. az^np-h 2m', Vb = 2m*'njo + m', 6 = im'np + 4m* ; hence, ^_ n/? -f 2m' +»'ny + 4m'n/? + 4m* — 4m^np— 4m* 2 =np + m''; _np + 2 m' — ^w'y + 4m'n;7 + 4m*— 4m'np— 4m* y _ =m' : f'a;— V'y=Vwp-fm' — m. Ant, 10. a=6c, f'6=26<^6c-6', 6=46'c-46*; hence, 6c+*^6V-46'c + 46* ^ „ ar= =6c-6', 6c-i^6V-46'c + 46* „ y= 2 =^^ i^a?+f/y=*^6r— 6' + 6, ^n*. (208) QUADRATIC SURDS. 133 11. a=Y, Vb=30V-2, 6 = - 1 800 ; hence, 7+*^49 + 1800 2 7—^49 + 1800 = 25, = -18; 2 12. a=16, f/6=30V^-l, 6=-900; 16+^256 + 900 :r=: = 25, 16— K256 + 900 y= 2 =~9; ♦^ar+V'y=5 + 3VCri also, i^ar-»^y= 5-3»^iri 10, Ans, 13. We add the answers of examples 4 and 6, and have 3 +1^5, Ans. 14. a=:31, VA=12»^^, 6=-720; hence, 31+V961 + 720 x= = 36, 31-1^961 + 720 y= , =-5. Again, a=K—l, V6=4f^^T, &=— 80; hence, — l+»^l + 80 x= = 4, — i-vr+80 y= 2 -=-'' Therefore, 6 +^^ + 2 +f^=8 + 2VC:6, Ans. (208) 134 BADICAL QUANTITIES. RATIONALIZATION. (280, page 211.) 2. Multiply both terms of the fraction by |/6. 3. Here the factor is V«'. . XTT 1 ^2x^81 ^2x\^2i~xS V8xV9 ^72 , 4. We have = = =— — - , Ant, 9 9 3 3^ 5. The factor is f/7—f'3. 6. The factor is j^a-\-\^c. , Ans, 7. The factor is VTT+f^5, and we have 11 4-2*^55 + 5 _8 + »/55 6 3 8. The factor is VTT-V'3. 9. The factor is VTo+*/6 ; whence, 4 10. Multiply both terms of the fraction by t^6— V^^, and we have, 6-2f^^irTg-3 1-t^^^^ , s =—4—^ ^'^*- 11. The factor for rationalizing the denominator is (5 -\-\^5)(V3 — 1); whence (3+»^3)(3+»^5)(f5-2)(5+t^5)y3-l) 40 The product of the first and last factors of the numerator is 2 f^3 ; of the others, 4V5. Therefore, SVTE ,/— , =1V15, Ans. 40 (211-212) RADICAL EQUATIONS. 135 12. Multiply both numerator and denominator by 1+a+^l— «'; whence, (l-i-«)' + 2(l+a)»^T^^' + l -a' 2(l+a)4-2(l+a)»^r^' (1 +«)' — !+«' "■ 2(l+a)a , Ans. 13. Comparing this with example 2, (^TO), we have a=5, x=2 ; and the complete multiplier is (^/5 + V2)(5 +V2) = 5f/5 +VlO + 5V2 + V8, An», 14. By (3) the factor is x*—y' a*—b* L „i 14 ,, 18 u> --=-1 ^=a«+a'63+a263-fafe'4-a='63+6 3 Hence, j— ^^ ? , Ans, RADICAL EQUATIONS. (a82, page 214.) 1, Transposing Vxy and squaring each member of the equation, x-\-1=z4d—Uyx-\-x, UVx=iA2, Vx=Z ; ir=9, Ans. 2. Squaring each member, a:' + 6a; + 9=ar'— 4a; + 69, 10^ = 50 ; x=5y Ans, 3. By squaring, Vx + 48 = 2^x; squaring again, 3ar=48 ; x=lQy Ans, (212-214) 136 RADICAL QUANTITIES. 4. By cubing, |/j; + 2V^a + a;=a— ♦^a + a;. Squaring this result, x + 2Va + a; = a' — 2aVa-\-x-{- a+x, 2(l+a)*^a+^=(l+a)a, a' a'— 4a ^ a-f-a;=— ; «= — - — , AnS, 4 4 5. Multiply by c f'ar, then ac + az=c V7i; or x=c(Vn'-a\ Ans. 6. Multiply by f^l —a:', the least common multiple of the denomi- nators, and we have y^- -^ L + l^x=3x, 1 — X (l—x)-\-(l+x)=3x; hence «= |» -4n«. V. Multiply by Vc-l-x, c+ar=Va4-p, squaring, c'+2car+^'=a + ar; hence ^=""5 — , -4»«. 2(7 6. Transposing x and squaring, 9 + a^a;'— 3 = 9-6a; + a;', a;' — 3 = 36 — 12ar + a;', 12a:=39 ; or «=3{, Ans. 9. By transposition, 2V« — 32 = 2 (\^x—ys), ar— 32=a; — 2V^+8, V^=20, 8a:=400; hence a;=60, ^n*. (214) Ans, RADICAL EQUATIONS. 137 10. The least common multiple of the denominators is «— 4, or (yx^1i){i/x-{-2) ; multiplying by this, ayx-}-2a—a — c=c\^x—2Cy {a~cyx=—ai-c ; therefore, ar = — I — — J , 11. Factoring the first member, we have Vm(yx—l)_ Vx + m ?c(f^x-l) — Vx + c' VmX'\-eVrn=Vcx-\-mVc, therefore, xz=mcy Ans. 12. By cubing, a*'-da'x + x*Vda—x=a*'-3a*x-{-dax*—x'; V3a—x=:3a—Xf or 1 z=Vda—x ; or «=3a— 1, Ans, 13. Clearing of fractions, xVc* — aa: + c' — ax = c*, c'—ax=:a' ; or «== , Ans, a f^ 14. Squaring, i+^-^l^+lf^, transposing, /(5 T^) = (3 Vioo) {VJ+x), dividing by (3VlO)(V/5 + a?), v/6+a:=Vio, 5+x=10; hence, a: =5, ^n«. Note. — If we had transposed the term Vs — x and solved, we should have found a; = — 5 ; and it is evident that either value, x = ± 5, satisfies the origi- nal equation. 18. Multiply hy^a+x, Vax + x*+a-{-x=2x, yax-\-x*=a—Xj tzx-\-x*=a* — 2ax-\-x*^ therefore, x=-jAn8, 3 19. Squaring, x^ + 2ax-\-a*=a^ -h^b*x'-\-x\ ir' + 2aar=V6V + a:*, X* + 4ax* + 4a V = 6 V + x\ 4^^db3-Y^ x'=4: or ^ij ; whence, x—dt.2 or iy'j* -^^*« Here, if we add | to each side, we have ^^ , 20 , 4 961 2 .31 whence two quadratics for x, (233) 152 QUADRATIC EQUATIONS. 20. x*-\-2x'-1z^ — 8x-{-l2 {x*+x 2a;* 4- x — 8a;'— 8a?, Hence, by taking the square root thus far we see that the ex- pression may be written, (a;' + a;)'-8(a:'4-a-) = -12; or if y=a:* + a', y' — 8y=: — 12, y'-8y + 16= 4, y-4=±2. Hence, a:'— ar— 4= 2, or a;' + a;— 4 =— 2, x'-\-x+{= V-, a;' + a: + i= |, ar + |=±f, a;+i = ±f, and a;=2 or —3, ar=l or —2,Ans, 21. Multiplying by a*, the equation is a;* — 8ar* + 19a;'— 12a;=:0, (a;'— 4a? .a;* 2a;'— 4a; —8a;' — 8x'4-16a;' Hence, Sa;*— 12x, (a;'-4x)' + 3(a;'-4x) =0, (a:«_4a;)' + 3(x'^4a;) + | = |, a;' — 4a;=0 or —3; ar»-.4a; + 4 = 4, a;'-4a;-f 4 = 1, and a;=0 or 4, a;=l or 3, -4»#. 22. a;«-10a;' + 35a;'-50a;+24=0, (a;'— 5a; a;* 2a;'— 5a; — 10a;' + 35a;' — 10a;= + 25a;' 10a;'— 50a; (233) AFFECTED QUADRATICS. 153 Hence, (a;'-5a:)« + 10(x«-5ar) =-24, {x^—5xy -\-10(x* ^5x) + 25= 1, x^ — 5x= — 4: or —6 ; and x=l or 4, a;=2 or 3, An». 23. ar* — 8aa:'4- 8aV + 32a'ar— 9a* = 0, (a;'— 4aa; a;* 2x' — 4aj; — 8aa:»+ 8a V — 8aa;' + 16aV — 8aV + 32a'a:. Hence, {x* — 4cp;)' — 8a' (a;' — 4ax) = 9a* (a;' — 4ax)' — 8a'(ar' — 4a;r) + 1 6a* = 25a* «' — 4aar =9a" or —a* a;'— 4aar + 4a" = 13a' or a?' — 4aar + 4a'=6a' ; and ar=a(2±^13) or a;=ia(2dbV3), ^»». 24. Performing the multiplication indicated, y*-2cy' + cy-2y« + 2cy=c«, or, (y«-cy)' - 2(y'-cy) =c«. whence y =i ± /|- 4- 1 ±*^r-f?\ , An«, PROMISCUOUS EXAMPLES IN QUADRATICS. 1. Completing the square, we have 4a;' + 44a; + 121 =441, 2a; + ll = i:21; whence, a;=5 or —16, Ans, (233-234) 154 QUADBATIC EQUATIONS. 2. Clearing of fractions and uniting terms, whence, x=4 or — 1, Arts, 3. Clearing of fractions and uniting terms, whence, x=2 or —3, Ans. 4. Multiplying by 8(ar' — 1), the least common multiple of the de- nominators, we have 12 — 2a; + 2=a:»— 1, or, ar' + 2ir + l = 16; whence, xz=S or —5, Ans, 5. Clearing of fractions, {2x*+x—5)(x + l9) = (x^-\-4x + 3){2x + l5), or, 16x*—52x=:li0; ICar*— 52ar + iA»^=ip, whence, ar=6 or — f, Ans. 6. Clearing of fractions, or, ai' + 27a;= 28, x*+2lx-\-i\a.= ifJL^ whence, a;=l or —28, Ans, Ex. Y and 8 need no solution here. 9. Add mn to both sides, ( 393 ), mx* — 2 mxVn + mn = nx', Vm • x—^mn = dc^n ' x ; , Vnm . whence, x= . , . , ^n*. AFFECTED QUADRATICS. 155 10. Add A to each side, ( 293 ) ; 4^ 8^ 4_ 64 49 21 9~ ~9' whence, :=1 or -111, Ans, 11. Add 36 to each side, ( 293 ), x' \2x ^ ^-6 = ±2, whence, x=' 162 or 76, Ans, 12. Transposing, , we have 16 - « ,1- 0, ^ (2a;-4)* (2a;-4)''^ ^ 1_ 0, (2^-4)' - (2.:-4)' = 2x-4c =: 4, ±:2; whence, x=zd or 1, -4n5. 13. Put y^Vx^ + 11; y'+y=42, y'+y+i=-^P» y=6 or —7, ar' + ll = 36 or 49; whence. x= :±5, , or±f^, ^»5. 14. Add 5 to each side of the equation, and put y=:Vd;'— 2a; + 5 ; then, y' + 6y=16, y* + 6y4-9 = 25, y= 2or-8; ar" — 2a: + 5 = 4, or ar' — 2ar + 5 = 64, ar«-2a:+l=0, a:' — 2a: + 1 = 60, whence, ar=l, a?=:l±24^15, Ans. (234) 156 QUADRATIC EQUATIONS. 15. Add JyV-c' to each side, (^93). x' + -'^'-x*+-\Y-^' = \Y^' 4- 34ar + 1 6, xxcuuc, a:'= 4, or a:' + V^=-4, and ^=±2, ar= — 8, or — 1, ^n*. 16. This equation may be "written, ._ 2(^^x + l). dividing by Vx-J-l, we have whence, x=zl or 4, .4n». 17. Clearing of fractions, 2x + 2Vx= 16— a-, ^x-{-2Vx= 16, 36ar + 24V'a: + 4= 196, 6f';r + 2 = dtl4; whence, ir = 4 or 7|, Jn«. 18. By squaring, \ 2f/2/ f/g ' or, ar'(12-a;') _ (2 4-ar')* 2f^2 2V2 ' Hence, x*—4tx*= — 2y z*= 2^=1^2 ; and «=±(2dbf/2)^, ^n«. (234-235) AFFECTED QUADRATICS. 157 19. This equation may be written, ^ ^ ' X ^ X X which is divisible by y ; whence, / — r y^^- 4 ^^ Bysquaring, a; + 1-2^:^+^1 + 1==^=; ^^1: V;^^/-/^^t/X^ -^ squaring again, and clearing of fractions, / "yi ^- X — '' 4a;' + 4x' =a;* + 2j;' 4- 3j;' + 2a; + 1, or, a:* — 2x«— a:" + 2a; + l=0; /^y'^" -^ f^J^ taking square root, a;'— a;— 1 =0, ^/ - / / (/j^ ar-i^rfciV'S; ^ -- t l/TtW^ whence, x=\{\±Vb\ Ant, 20. Multiply both terms of the first fraction by 1 +4^1— a;', of the second by 1— f^l— ar' ; then l+t'l-ar' l-f'l-a:' VZ ar' a:' a:" or, 2f'l-ar«=V3, squaring, x*=\\ whence. a;=d=|, Ans, 21. This may be written, (U/)'-T' / 1 \^ ♦^2a: U+a:/ "" 12 1 2a? l+ar^Hi* «» + a?=72, 4a:' + 4ar + 1=289, whence, 2a; + l = d:l7; a;=8 or —9, Am. (285) 158 QUADRATIC EQUATIONS. 22. Multiply both terms of the fraction by x+Vx^—Qy and take the indicated square root ; then x-h^x'-9 f^a:'— 9 = 2a;— 6, a:*-9 = 4ar'-24a: + 36; whence, a:' — 8a: = — 15, ar»_8a; + 16 = l; and ^=5 or 3, Ans, 23. Completing the square, we have x^ =27 or -28, x^ =3 or v/- 28; whence, a; =243 or V(_28)', ^rw. Since the exponents are odd, we may write the last value of a? A L 1 thus, —(28)* = -(2 X 2 X 7)=' = -(32 x 32 x iy = -(512 X 2 X Vy = -8(2 X 7') ^^^- 1 t5\3 1 = -8(33614)^ 24. Completing the square 144a;"»— 312a:" + 169 = 25, 12a:"— 13= ±5; whence, a:=V| or V|, ^iw. 25. Transposing 2a: aT)d squaring, we have 2 + 2a; = c' — 2c'a: — 4ca: + c^x* + 4ca;' + 4a:', or, (c4-2)V-2(c + l)'a:=2-c«; by (a»3), (^ + 2)V-2(c + ira: + |^;=(g^', ^ ^ c + 2 c + 2 * c'— 2 whence, a:=l or . .^ , Ans, [C + Z) (235) AFFECTED QUADRATICS. 159 26. By expanding, {a + xy= x*-\-5x*a+l0x'a'' + l0xW -\-5xa* + a\ - (a— a:)»= —x' + 5x*a — 10x^a^ + 10xW — 5xa*-\-a\ Therefore we have 10aa;* + 20aV + 2a*=352a', x*+ 2a V= 35a*, x*-^ 2a V+ a*= S6a\ x^i- a'r=±6a'; whence, x= ±:a V5y or ±aV—1^Ans. 27. Clearing of fractions and uniting terms, we have a*cx^ — a(6 + 2c)x = — (6 + 2c) ; (A + 2c)«_6'-4c« by (a03), a'cx^-^aib + 2c)x+- 4c 4:C whence, x==—(b+ 2c±»/6'— 4cO, ^n«. 28. Clearing of fractions, abx =(a + b-\-x)bx-^(a + b-{- x)ax + (a + 6 + x)ab ; multiplying and arranging terms, {a + b)x*-{-(a-^byx=-^ab{a + b), x* + (a + b)x= — ab, a+b a—b «=-- 2-±-2-; whence, xz=z— a or —b^ Ans. 29. Clearing of fractions and transposing, we have X* + 8ar» + 1 6x' — a V — Sa'x — 1 6a' := 0. Extracting the square root according to (!896), this equation roay be written, {x'-{-4xy-a'(x + 4y=0, or, (ar' + 4ar)'=a'(;r + 4)', x^-\-4:X=±:a{x-\-4). Dividing by a; + 4 a;=dba, Ans, (235) 160 QUADRATIC EQUATIONS. 30. Multiply both terms of the left hand member by the cUnoiRU 2a ~ 2a Omitting the factor 2a, and squaring the left hand member, 2x— 2Vx' — a''=a?, 3 ' whence, x=zdo2a^^\^ Ans, 31. Dividing out the factor a—x in the second term, and clear- ing of fractions, we have a' -f x' + a' + 2aa; + a;' = 4a' + 4az, OP, x'— aar=a', ar«-ax+-=-a'; whence, a;=-(l±|/5), Ans, it 32. Clearing of fractions and transposing, we have )/2ax + x^ =ah -|- bx— a—x\ squaring and uniting terms, (26-6>' + 2a(26 -6>=a' + a'6« - 2a'6, a;'-f-2ax: a»-{-a»6'^2a'6 a' ^. + 2ax+a'=2^-^,, V26-6' ' whence, x-=. ±a ■? — : > Ans, (235) TWO UNKNOWN QUANTITIES. 161 83. Squaring the left hand member as indicated, 4 + 4x + x\ 2b-\-t t ^ 4 — 4x + x^~ 2b " ' clearing of fractions and uniting terms, ex* — 4cx* + 4cx=l 6bXf , . ,166 or, a:'— 4ar + 4 = — , c whence, ar=2l l±2y -I, -4n«, Note, — The value x=0, satisfies the original equation, and also our reduced equation after uniting terms. EXAMPLES OF SIMULTANEOUS EQUATIONS. (301, page 243.) 1. From the second equation, we have x—2y*, and by substitu- tion in the first, 16y'-8y + l = 121, 4y=12 or —10, y= 3 or - 2n 2y«=ar=18or 12^ j ^'**' 2. The second equation gives by transposing y and multiplying ary=lly-|-; and substituting in the first equation, 3y'-f 22y=240, 9y' + 66y4-121=:841, 3y= — lldb29; "= 6or-13i, ^^_ 2a?=22— y; x= 8 or l7f (235-243) i\ 162 QUADRATIC EQUATIONS. 3. By substitution from the second equation, 4y' + 9y = 100, 2y + f=±V, and reducing, y=4 or - - 61 ) 9y , >Ans. x=-f; x=9or- -14, M 4. By adding the equations, and dividing by 5, ar" + a;=12, x= 3 or — 4 ) y=25— 5ar; y= 10 or —45 f * 5. Multiplying the second equation by 3, and adding, 13x' = 52, a:'=4, x=±2) . y=±3[^'"- 6. From the second equation, y=40 — 4ar, a:y = 40a; — 4x'; hence, the first gives / , a:'— |0a;= — 336, ar*— ^0;c + 400= 64, ar=+20±8, x= 28 or 12 ) . y=40-4ar; ^=-72 or - 8 j ^'**- *l. The second equation gives ^=-^ ; whence, V=252, y'=36, y a?=fy; x (243) ±15 H'**- TWO UNKNOWN QUANTITIES. 163 8. From the second equation, x=^i/^ |ly» + 4y' = 181, 181y' = 181x25, 9. Adding the equations, ar' + 2a;y4-y'=36, ^ + y=±6, (1) •ubtracting equations, a:'— y'= — 12, (2) dividing (2) by (1), a:-y= qF2, (3) from (1) and (3), ""= ^^ I Ans 10. Adding the square of the second equation to the first, we have 2a;' = 5, ft n AA/^ I ^nS, 11. Put af=vy; vy + vy'=56, or 3/'= -5-— ; ' v^ + v v/ + 2y'=60, ory'=--— ; whence by equating the values of y', v=s <>*• -I- With v=|, the second equation gives, 10y'=:180, ±4*^2 [^'**- Withv=— J, 3y'=300; y=±io I . :r=^14H'*'- (243) 164 QUADRATIC EQUATIONS. 12. Let y=vxy CO 3x*-\-vx*=z 68, or a:'=- ; 3 + v 160 4i;V + 3i;a;' = 160, or a?"=T-i — S" » whence, 68v"4-llv=120, or, 4i;' + Uv=Vt% , . 11 . /11\' 32761 '' +17^+168/ =wr and, i;=f or — f^. With the value v=|, the first equation gives I7ar« = 68x4, ar' = 16; x=±4 \ y==h5 The value of t> = — «^|, gives x=±: — - j An*. 16 13. Let y=var; » 1+v rar" — 2i;V= 1, or aj' = — -, ; ' V — 2v' whence, 24v*— llv= — 1, i;=i or \. Hence, if v=|, 4x'=:36, a;=±3 y=±i If v=|, 9x'=96 (243) TWO UNKNOWN QUANTITIES. 165 14. Put y—vx\ X*— va:«-fvV= 21, vV — 2var'= — 15, whence, 21 , -15 or x =-= — — ; v'— 2v' 36y'-67t;= — 15, v= f or 1. From the second equation, jf^=i, /-6y'=-15; y=±Vd ^ ^"*- ar=±34/3 15. Add 1 to the first equation, and take the square root, then ar + y=i: + 10 or —12, xy—y*= 8. Taking ir + y= +10, the second equation gives, by substitution, y'_5y=_4; whence, y=4 or 1 ) . x=6 or 9 J Taking ar + y= — 12, we have y« + 6y=-4j whence, y= — 3±V^5 ) . ar=-9::pf^5 i" 16. Put y=var; then 6x* + 2v*x* - 5vx* =12, or «' = ^ ^ 3vV— 3a;"— 2vx'= 3, orx' = — r 6 + 21;"— 6v' 3 Hence, lOv'— 3v=18, t;=i or -I, If we take v=f, the first equation gives 3x' = 12, (244) whence. 166 QUADRATIC EQUATIONS. If t;=- -|, we have 372x«=r300, ,_300_3*4-25 ^ *"~372 3- 4 -31' wbence, . 5 ) V31 1 1 y ^n*. 1 IV. Multiply the second equation by 2, and add the product to the first; then a:« + 2xy + /= 121, subtract it ; a:' — 2xy + y' = 9, whence, ar + y ==fcll, a?— y =db 3; whence, a: ==t 7 or db4 ) y=db4 or ±7 ) 18. Squaring the second equation, and subtracting the square from the first, we have 2ary = 80 ; adding this to the first, and taking the square root, ar + y=±13, K^y=- 3 ; whence, a:=4-8 or —5 ) . y= + 6 or — 8 ) 19. Dividing the first equation by the second, a;'- xy + y^= 273, square of second, a;' + 2ry + y'= 324, (1) 3.ry = 61, xy = 17. Subtract 4a:y from (1), a:'— 2ary + y'= 256, hence, ar-y = =fcl6, a:4-y= 18; whence, ar= 17 or 1 \a y= 1 or 17 3 (244) TWO UNKNOWN QUANTlTiESr^^ss^s:^^^^''^ 167 20. Adding three times the second equation to the first, a:' + 3a;V + 3x/ + y'= 729, taking the cube root, x + y= 9. (1) The second equation gives, xy(x-\-y) = 180'y (2) dividing (2) by (1), a-y= 20. (S) -i Subtracting four times (3) from the square of (1), ar«_2xy + y'= 1, or, x—y=±l, (4) From (1) and (4) we have x=5 or 4 ) . ^ and y=4 or 5 ) 21. Performing the multiplications indicated, we have x'--x'y+ xf-f= 13, (1) ar'y- xy^ =6; (2) (1)— twice (2), a:'— 3a;'y + 3ary'— y'= 1, taking cube root, ar— y = 1, (3) from (2) divided by (3), xy — 6, (4) (3) plus four times (4), a;' + 2a:y + y'= 25, a: + y=±5; j(o) hence, from (3) and (5), a;=3 or —2 ) . y=2 or —3 J 22. Dividing the first equation by a; + y and transposing, we have ar' — 2a;y + y' = 0, ar-y =0, second equation is ar + y =4 ; a;=2 ) y=2) Arts, 23. The first equation is a quadratic in xy ; and completing th< square, we have 56i:y-24a?y4-4= 16, 6a:y— 2 = =fc4, xy= l,or-i, and since ar=2y, 2y'= 1 or — | ; y— rhi|/2 or =t^ ar=db ♦/2orzbif^. Ans, (244) 168 QUADRATIC EQUATIONS. 24. Dividing the first equation by the second, we have squaring the second, ir' + 2 ry + y' = 1 44 ; (l) hence, 3ary ==144 — |ry, or, a-y = 32, (2) (1) — four times (2), a:' — 2i:y + y'= 16, whence, a;— y=:d=4, .+y= 12; .=8 or 4) y=:4 or 8 ) 25. We make use of formula (C), page 242, in which *=8, 5' = 64, «* = 4096. 2p'— 256;? + 4096 = 2402, p'-\2Sp=— 847, y— 128;> + 4096= 3249, jr>-64 = rfc 67, xy=:pz=. 121 or 7. Taking a-y=7, and combining it with x4-y=8, we get .-y=±6; x=7 orl) ^^_ y=l or 7 ) If iry=121, ar— y = rbi^— 420 = ±2*^— 105 ; whence, ir=4rfcV-105 "I ^^^ y=4::^i^-105 J 26. Dividing the first equation by the second, we have z'*-{-x_x(x-\-\)_2 jr' + l a:' + l "~3* X 2 or, x'—x+l 3' whence, 2x* — 52r = — 2, .= J±j; x=2 or |)^^^_ y=2 or 16 ) (244) TWO UNKNOWN QUANTITIES. 169 27. Dividing the first equation by .r+y. x*— xj/ + y^ = 2xi/y x'-2;ry + y'=:a:y-16; a--y = ± 4, x' + 2xi/ + y'= 80, x-\-yz=dz4y5; whence, x=db2V5±2 y=dz2V5zp2 28. Put J= p, y* = Q ; then the equations become, •whence, P+^ = f^a + 6, (] and P'-Q'=a-b, and --^'-^^ (^ by (1) and (2). 2P=^+Va + b, ' Ant. Va + b 2« = '^*+.S' and wo obtain finally, P=^ . or -=(j~)\ 29. Dividing the second equation by the first, we have x-y-l- ^' or, (ar-y)«— 4(ar-y) = -4, (^-y)*-4(ar-y) + 4= 0, hence, x—y= 2. Hence the second gives a; + y= 8; x=z5 ) y=3 3 Ans, y=3) (244-^245) 170 QUADRATIC EQUATIONS. 8^. Adding and subtracting twice the second equation, ar«— 2jry + y'=a — 26; x-y=±Va--2b; ^ , ' , > Ans, y = rfcif^a + 26^lVa--26 J il. We have x=— ; whence, y y* + 2ay'=46', y*4-2ay* + a'=a' + 4J'; whence, y=:i={ -a±f^o' + 46« }^ ) in the same way, x= dz | a±^a' + 46' [ ^ ) 32. Squaring the first equation, we have ^'> Vr^y% V^)- (-f fsj y'.4-_y = 333, (1) a)ividmg (1) by (2), we have a quadratic in a:y, ' - -^ ^v^eTc^ xy= 36 or 3^/^^ ^ ' ^^ ^' ' /Substituting a?y=36 in (1), 37y=333 ; y= 9 ;l4>J^_/." ^y=3Vi«(l)» 37y=333-36; y=324 33. Adding the equations. ^»*. x-\-2Vxy + y=a-^h^ Vx+Vy^V^^'^ (1) (245) TWO UNKNOWN QUANTITIES. 171 subtracting them x—y=a—h, Hence, from (1) and (2), x— ''-''=^.- (^) a-{-b 34. Put a:^=P, y' = §, then P + ^ = 6. The solution is the same as that of 19. 35. Clearing of fractions, the second equation gives the first is, x-\-y=lO\ whence, a:y = 16. Combining the two last equations, x=8 or 2 ) ^ y=2 or 8 j 36. Dividing the second equation by the first, v ^-^y ^ - >9> "" - 4y ^ whence, a;*4-y^ = ±8, (1) a;— V= 16, by di vision, x^ -fy* = ± 2 . (2) Taking the positive signs in (0 and (2), we have x^=/b, y*= 3; negative signs, a:*=— 5, y* = — 3; x=:25 \ . yzx: 9 (246) \ 172 QUADRATIC EQUATIONS. 37. By transposition, and squaring the second equation, we have a. 3 a. and substituting this value of y^ in the first equation, 3. x-Vx=2, ♦/j- = 2or— I; a;=4orl From the second equation, y=S > Ans. 38. Adding twice the second equation to the first, we have (i:Vy*)' + 2(a;^ + y^) = 35, ± 1 From this quadratic in ar' +y^, a;*+y'i= — l±6, =5 or ~7; combining this with the value of a;^y', x'-y= = ±l, or ±5; whence, r x=2l, 8,-1,-216) ^ .^~-fi^^.^r~^r^-/ y= 8,27,-216, -l[^^'- 1 1 39. Put Pzzzx^^ ^=y*, and the equations become, P'+Q' + P+Q = 2e, (!) PQ= 8. (2) Adding twice the second to the first, (^+cr+(^+«=42, P+^==6or-7, (3) P'-2P^+ ^' = 4 or 17, _ P-Q=^±2 or rtV^17; (4) hence from (3) and (4), P=^=» = 4, 2 or { {-1±^), ■ Q=y^= 2,4ori(-7±m); whence, x=±%, ±2V2 or ±\^(-1±y\^) }H ^^ y= 32,1024or S^( -7:pVl7) ! * ) (245-246) TWO UNKNOWN QUANTITIES. 173 40. The first equation is a quadratic in -; and adding 4 to each side, and taking the square root, V^_3 _11 fV-2 ""^ 2 ' 4a:=:9y or 121y. From the second equation. ar=9 or f ff ) y=:4or^VTi Ans, 41. Here P=x^, g=y* ' ^^^ ^ ^ ~ ^ P'Q'=2Q\ -yi^\^ (1) SP-Q=U; V^-^ (2) from(l), P'=2(2, rl~^ xK//^ (3) " (3) and (2), P'--16P=-28, ^ J^^ _/^^~^'^^ ^ hence, a:^=P=8±6 = 14 or 2, y^-Q— 98 or 2; whence, ic=2744 or 8 ) y=9604or4[ ^^*- 42. LetP=ar*, §=y*; then P' + PC+C'= 1009 =fl, (1) P* + P'^'+^* = 582193 = 57Ya, Add 7^' C',and take the root, P' + ^' = VsTT^+P'V (2) subtract (1) from (2), a-- P q-VWu^^'q\ a*-2aPQ-\-P'Q^=5l1a + P^Q\ 2PQ=a-5l7, PQ = 216, (3) Adding (3) to (1) and ) r> '0-4... taking the root, ) ^+V-±35, subtracting three times ) __ (3) from (1). ) /'-«=±19; (246) 174 QUADRATIC EQUATIONS. ^ .jhence, / / «* =:P— 8 or —27, ^^ Y'* - :i). -^ , eT of hours. Whence from the conditions given, we have 36 36 or, a:' + ar=12, x*+x + \ = *^; xz=z3^An8. 13. Let X and y be the numbers ; we have from the statement, ar + y=100, (1) Vx-yy=2; squaring, a;— 2V^+y=4, (2) from (1) and (2), _Va:y=48, (3) four times (3) + (2), ar + 2 Viy + y = 1 9 6, Vx+Vy=l4, Vx=8\ ar=64,y=36, ^w». (259-260) PROBLEMS PRODUCING QUADRATICS. 179 675 14. Let a?= the number of pieces; then = cost of one piece, X and from the conditions given, 48x=675+— , X 48a;'— 6'75a:=675, or, 16j;' — 225a;=:225; x—\b^Ans, See solution of Exanaple 3, Art (J1805), 15. Let x=z the price of cloth ; then rT:r= gain per cent., and a:' — -= the whole gain. Whence, a;»4-100ar=3900, a:=— 50±80 ; a;=$30, Ans, 4x 104a; 16. Let x= the purchase money ; then a; + ---^= =the whole 104a; cost, and 390 — 77^= the gain. By the statement we have also the gaiu = ^^. -• — . Hence, i^ - ^^^ , . 1 . ^'/^ ^/-' ^:j^ ' • ti^* ' 104.r 104a:' ^^ -^A^Z- or, / /~/f-t^ ^ ^ ^ =z^^^^ 2j;» -. -^^^ 3000-8a;= . )L^^/ T-CHJ \l ~^/^^^;>^<5^ 300 r- »^ Put a =300, and divide by 2 ; a;' 6a — 4a;=— , a a:' + 4aa: + 4a' = 9a', a-— a ; a: = |300, .^tj*. (260) 180 QUADRATIC EQUATIONS. 17. Observe that 396 — 216 = 180 miles, B's distance. Let x-=. the number of days they traveled ; then = A*s rate, and = B's rate. Hence, X _216_180 ~ X X * a:«=36, ar = 6 ; A, 36 ; B, 30, Ans, 11*. 'Vrith two unknown quantities, a:+y=60, «y=704 ; Seo (15J99), Example 3. With one unknown quantity, 60.r— x' = '704, ar'—60jr + 900 = 196 ; x=^4A or 16, Ans, 19. Let xz= price of sherry per dozen, y= " claret Then 1x + l2i/=50; 10 6 —=- + 3, X y lOy or, x^ ^ 3y + 6 By substitution^ VOy + 36y'4-'72y= loOy + 300, 9y' — 2y=V5; y =Sy x=2y Ans, 20. Let 19ar= the distance from C to D ; then, x= B*s rate per day, and also his number of days, ar'= B's distance, '7x4-32= A's distance. Hence we have, ar' + 7a; + 32 = 19ar, ar' — 12a;=— 32, a;=6±2, a;=8or4; ldx=zl52 or I6y Ans, (260-261) PROBLEMS PRODUCING QUADRATICS. 181" 21. Let x^= the bushels of wheat, a;+16= " " barley. Hence, 24_ X = 24 1 a;+16 4* (25 cents =iofa doUa 24a? + 16-24 = =24.+^'-^;«^ 1 . -'*'" = 384, ^' + 4^^+16 = = 400, X 2~ = -4±20; 32, and 48, Ans, 22. Let 2ar= the distance from C to D, ., ,. 4(x— 18) .- ar + 18= As distance, — •'=A8 rate per day ; DO ar-18= B's " -'^ = B's " 28 Tlie distance A traveled divided by his rate per day gives the number of days he traveled ; and since B traveled the same number of days, we have the equation, 63(2;+18) _ 28(a;-18) 4(j;-18)~ ar-flS ' or, 9(ar + 18)'=16(ar-18)', 3(ar + 18) = 4(a;-18), ar =126 ; 2jr=252, Ant, 23. Let «= one number; y= the other; then, (;c-y)(x'-/)= 32. {x + y){x'+y')=2l2\ or multiplying, «•— ary'— ar'y + y'= 32, «' + ary'+a;V4-y'=272. (261) 182 QUADRATIC EQUATIONS. Adding and subtracting these equations and dividing by 2, a:' + y' = 152, (1) X2/'+x'y = l20, (2) (l) + 3-(2), x*-hSx'y + Sxy' + y' = 512, taking cube root, x-\-y= 8. Dividing the first equation by this, and taking the square root, a:— y=±2; ir=5, y=Z, Ans, 24. Let x=z the number of horses B put in, — = price of one horse a week, X - h» i , y- .J)e 4-18 * Y-it;/f .•■•^:y 1-18== rent of pasture ; Y~^ ^0 : 2-0 : 4 ,' y -^ 2- when ar becomes a: + 2, yyy.^^. T^Oy^/Zfi -= price of one horse a week. *L^-2. y^ - // p- 4-20 Y^y^2.// ^-j-^+20= rent of pasture. y^^2_^y ^/fy =z /iZ- Therefore, y-^^ &y =:. ^?_ 36 40 X x-\-2 x* + 6x=l2y x= 5. Rent =30 shillings, Ant, 26. Let «= the figure of the ten's place, v= " " unit's " . I0x + y_ ^ — Z7. — » (1) xy I0x+y + 2l= lOy+ar; (2) 9z-9y=-2l, x-y-- 3, x= jf-3. (261) PROBLEMS PRODUCING QUADRATICS. 183 Substituting in the first equation, we have 2y'-.l7y=-30, X— 3 ; 36, Ans, 26. Let xr=: the first number, which is the least ; y= the second, and 2= the third. Then y^/^oV, '^ a:-27+z=- 6; (1) ' ,/ y a: + y + 0= 33; (2) : ^ / ;r' + / + z'= 441. (3) ^ ' ^ ^From (1) and (2), 3y= 39, y= 13; substituting in (1), x-\-z— 20, " (3), a:' + 2r»= 272; a;» + 22:2 + 2'= 400, 2x2= 128, a;— 2=±12, x= 4, 2= 16 ; 4, 13 and 16, An9, 27. Let x and y be the numbers ; then «y= 24, (1) «+y+a;'+y'= 62. (2) Adding twice the first to the second, (•^+y)'+(^+y)=iio, ar + y= 10, x—y— 2 ; *=6, y=4, ^w*. 28. Let «+y= one number, and x—y=: the other; then «»-y'+2ar= 47, (1) 2x" + 2y' — 2a:= 62, (2) 4a;' + 2ar= 156, «= 6, y= 1 ; 7 and 4, Ans, (261-262) 184 QUADRATIC EQUATIONS. 29. Let x-=. one number, and y= the other; then ar+yz= 27, a:' + y' = 5103. Solution the same as that of Example 19, page 244. 30. If ar= one number, and y= the other ; then x^y = 9, (1) ar* + y*=24l7. (2) See Example 1, (301). 31. Let x + y= one number, and a;— y= the other; then 2(x«-y')(jr' + y') = 1248, (1) 4xy= 20. (2) From (1), x*—y*=: 624, eliminating y, ar"— -624x*= 625, x*= 625, rr= 6, y = 1 ; 6 and 4, Ans. 32. Let ar= the number of days it takes one man, a; + 10= " " " the other ; then 12 . 12 z //... ^ /7 ^»-14ar=120. y ^-^ /<. y. ^/T-O ar=7±13 ; 20 and 30, Ans. 33. Let ir=:A's stock, 1000-a;=B'8 " 1140— ar=A's gain, 640— (1000-*)= X — 360 =B'8 " Now A's stock must be to B's stock, as A's monthly gain to B*8 monthly gain. That is. >Ch -7 ^fO-O-O ,^^^ 1140— a; ar— 360 -f i ;>V;/'U^y~>7--^ ^'^^^^^^^^^^ PROBLEMS PRODUCING QUADRATICS. 185 Or, by taking the products of extremes and means, (3?— 360).r _ (1140-.r)(1000-ar) ^ _ _ _ ; whence, d{x^—360x)z=2{U40000-2U0x+x*), a;' + 3200a:= 2280000, ar + 1600 = 2200, ar=600; A's, $600 ; B's, ^400, Ans. 34, Let 2x*= the number in the first drove, 4 + 4t= '' second " 6ar' + 12ar+12= " third 3x' 4- 6^ + 16= " fourth " Hence, we have lla:» + 22:c + 32=:1121, or, a:' + 2a:=:99, x=9y 2.r' = 162; therefore, 1st, 162 ; 2d, 40 ; 3d, 606 ; 4th, 313, Ans, 35. Let x=z one number, and y= the other ; then Sxy-x'-y' = U, (1) 2ary-a:' + y'=14. (2) Assume vx=y ; then 11 Svx* — a;' — v*x* — 1 1 X*- • \j Vim^ •*/ t/ »*• -— ■ A A * 3t;-l-v" 2vx*-x^ + v*x^=U^ By equating values of a:', we obtain x«- ^^ 2v-l+v«* 25v'— 20v=- -3, If V=:i, whence. f 25; ori. 5 and 36. If x= one number, and,y= the other ; then x-hy= 20, (1) a:y = 9216, (2) xy = 96, «— y = 4 ; whence, 12 and 8, Ans, (262) 186 QUADRATIC EQUATIONS. 37. Let X aud y be the parts ; then xY = h, xy=Vh, (1) (2) whence, «-y=:(a'-4V6)^; ) Am, This is a general solution of Example 36. 38. Let X and y be the numbers ; then :r=aV, (1) xy=h\ (2) By division, y"=-i ; or y=-, «=a5, Ans, a a 39. Let X be the first of the consecutive numbers ; the number sought will be ar(a:-fl)(2r + 2). Hence, (x + l){x + 2) + x{z+2)-hx{x-hl) = lA or, (y- f) %(j^^f] ar' + 2:r= 24, . )fVy f y'^/-^ ^V>^ =7^ a:=4or -6; ^u'^- Vrwhence, 4- 5-6= 120 | ^ . y- or, (_6)-(-5)-(-4) = -120 [^~*- 40. Let a:= width of the engraving ; and 2x= the length; lien 2x^= square contents of the engraving, X^ C 18x4-4x3'=; " " margin. Hence, ->^- f^ _ ^ 2a;'— 36 = 18a; + 36, U^^77^-hI(;^ ^/. ^*-3'^^^^^-9a;=36, Ly-^ _ jwheDce, a; =12, -4w*. If^^^i^ :^ ^^'^C (263) PROBLEMS PRODUCING QUADRATICS. 187 41. In order that the two lots may be embraced in a single inclos- ure of six sides, they must be placed as in the following diagram. Let ir = a side of the greater square, and y a side of the smaller. Then x*-\-y* will be the area of the two lots, and 3(a?-f-y) + (ar— y) or 4a;-f-2y, will be the length of the fence required to inclose them. Hence a;* + y'=:4100, 4ar + 2y=280; from (2), y=140— 2:r, substituting in (1), .a;' + (140--2ar)'=4100, a;'— 112a;=— 3100, a;-56=±6, ar=:62 or 60 y=16 or 20 3 0) (2) An9, 42. Let rr= the first portion, a— a;= the second portion, putting a=1300, y= the first rate of interest, r= the second " Then xy={a-x)z, arz = 36, (a— a?)y=49. We have (1) (2) (3) 49 V— 36 and eliminating y and z from the first equation, 49a:"=36(a-ar)', a?=:600; whenoe, y=7 per cent., ^=6 per cent., Am* (263) /- r I ^ y I V I ^xL ts r't.e/ 188 QUADRATIC EQUATI0N8/^^^^^W'<^/- v •L 2 r '*-?• ■'^^^ ^~ ^'* number of hours, y^ / J" ^ ,'/ 2, / y »i= the distance from London to York; then * 2i>^f,^f^ ^ y: -h^^y I — = A's miles per hour : — = B's miles per hour; ^ >/ * ,/ y ^^^Qc^^-^c^ ^'^ ^^^.u:^:; ^L>^Z::) "^^^^^^^n ^^ z!n - ^- /^^ a; y ar— 25=y— 36, or, ^ _+_=l, (1) and ar-25=y-36, (2) since they traveled the same number of hours before they met. Hence, from (2), a:=y — 11, and from (1), y' — 72y= — 396 ; therefore, y=66, ar=55, Am, Street. 44. Let ar= the side of B's lot. From the conditions we 6 have 36 + 6jr=(ar— 6)ar, a;' + 12jr=3a, x=6 + 6V'2; whence, 6(1 +♦^2), Ans, 6 X A'a lot B'3 lot. 45. Let ar, y and ^ be the three numerical quantities. Then Hence, y'+«'+y+2=50. «'-y« + 2r-y=10, 22' + 22 = 60, 2' + z = 30, 2=5 or —6 \ y=4 or —5 V -4nj. a;=3 or —4 ) (263-264) (1) (2) (3) PROBLEMS PRODUCING QUADRATICS. 189 46. Let x-=. the side of the cube ; then a:'= the number of solid units, /x^7'' ^ ^'^ d^A^- ~i V^=. the diagonal. t^'ly^Y'^ - ^<~^- ~ i/^y^ Therefore, x^^Vzx'', 1 x« = 3x'; whence. x=X/Z, Am. 47. Let X and y be the numbers ; x-\-y=xy\ from (2) and (3), iry=3, whence, x—y=±.^—Z (1) (2) (3) and, x=i(3±i^-3), y=i (SrpVCrs), ^n5, 48. Let X and y be the numbers ; x-^y=zxy, (1) a:«-y»=ary; (2) whence, x—y—\. (3) Subtracting the square of (3) from the square of (1), — T - / s^y*—Axy — 1 ; ^ >-/^ X ""- / x-{-y=xy = 2±V5, -^J^^^l x-y =1; '/'z/r whence, ar=|(3=h»/5), and y=^(ld=f/5), ^n*. 49. Let X and y represent the numbers ; then x'-f=zy, x'-y'=x'^y\ (1) (2) Put x=:vy] then the equations become vy-y*=vy\ vy^y'==vY-\-y\ (3) (4) Dividing each equation by y', (v«~l)y=vHl. (264) (5) (6) 190 QUADRATIC EQUATIONS. From (5) we have, by the rule for quadratics, 2v=ldbV^5. Multiplying (5) by v, v*—v=zv*\ transposing in (5), v*=v-\-l ; whence, by (8) and (9), v*— v=v + l, or. l=r2y. (7) (8) (9) (10) Putting this value of (v*— 1) in (6), we have 2vy=v' + l=i; + 2, or, 4i'y = 2v+4; from (7), 2(litf^5)y==5±V^5; whence, y=zt^V5 and x=v}/=^{l±:V5) - ^V5 ; or x=}(5±y5) VAns, ANOTHER METHOD. «'—y'=^y» (1) ^_y«=ar' + y'. (2) From (1), ^•-:ry=y'; (3) completing square. .•-..?=¥• or, «-iy=±i»'s-y. or, x=i(l±Vo)y; by involution. ^'=i(3±»'5)y', Substituting the values of x* and x^ in (2), we have (2±f/6y-y'=i(3±*/5y + y', (lztV5)y=^(5±y5) ; x=^(5±y5) y-^^'' \Ans. (264) PROBLEMS. 191 PROBLEMS IN PROPORTION. (334, page 276.) 6. Let X and y be the numbers. ar + 4 : y + 4= 3 : 4, ar — 4 : y— 4= 1 : 4. Therefore, Zy—4:Xz=z 4, y-4a;=-12, whence, 2y= 16 ; y=8, x=^b, Ans, *1. Let X and y be the numbers. a:4-y = 27, xy : «' + y'=20 : 41. Multiply the antecedents by 2, and we have, by composition and division, {x + yY : 2ary =81 : 40, (x-yY : 2xy = 1 : 40; whence, (^+y)' • (^— y)'=81 : 1, or, x+y : x—y = 9:1, or, 27 : x—y =9:1, or, x—y = 3; x + y =27; whence, ir=15, y=12, Ant, 8. Let a;= the number of gallons of rum, y= " " " brandy. x—y : y =100 : a;, a;— y : ar = 4 : y. By Proposition XI, {x-yY : iry=400 : ary, (co^^j ox, X^-yY • 1 =^0^ = 1 ; therefore, x—y= 20. (276) 192 PROPORTION. ff, ^ ,^ ; p / ; /,^ / jT y Again, 1:^ = 25:-, 4^.,^,^C.^ or, 1 : 25= y* : x\ y ~i-S- 1:5= y XX, therefore, 6y= X', ■whence, y = 5, ar=25. Am, 9. Let a?+y= the greater, X — y= the less. {x + yY = x*^ 3ar'y + 3:ry« + y\ lx—yY=x^ — dx'yi-3xy*—y\ Hence, 6a:V + 2y': 8y'= 61 : 1, 3x' + y' : 4y'= 61 : 1 ; therefore, 3^' + y'=244y', a:'= 81y'. But, «'-y»=320, 80y' = 320, y= 2, a:= 18; whence. 20 and 16, Ans, Note.— See Example 4 for a diflferent solution. __^ .^^ -x.^^ . v~y 10. Let X and y be the numbers. ^V - 6 ^ , y- - JJ a-y : a:' + y» = 2 ; 5, >^"7\'^r" ^y-^.'i ^-; :! or, 22-y : a:' +y' = 4 ; 5 ; ^V^- ^Y '• -^v V ZyV : ^ / / by Prop. VI, (i^ + y)': (^-yr= 9 : 1. ^f\^l\\);\r' We have given, ar + y =60 ; ^^ ' ^ V •' •' -^ 'V whence, by (1), ar-y =20 ; \^f^^f^ ^' ' ( therefore, a?=40, y=20, Ans? 7 11. Let 3ar and 2a; be the numbers. 3x4-6 : 2ar--6 = 3 : 1, whence, a;=8 ; 24 and 16, Ans, 12. Take 16a; and 9a; for the numbers. 16a; : 24 = 24 : 9a;, x= 2; therefore, 32 and 18, Ans, (276-277) PROBLEMS. 193 18. Let X and y be the numbei's. x + y : x—y= 4:1; by Prop. VI, x : y =5:3; 5i/=3x. Again, a;' + y' : x =102 : 5, «' + 5V^' : X =102 : 5, or, 34^ : 25 =102 : 5; whence, ar=15, y=y, -4w«. 14. Let X and y be the parts. / / ^^ _ y ///,'/ a: : y= 9 : 1, v -/-^ - :^y 9y= a:; /^^ //" . 2^' V ^ '^ a; + y = 20; i/ifyi^ = ^ whence, y= 2, a? =18. Hence, V'2ry=6, Ans, 15. Let 3j? and 2ar be the numbers. 32? + 6 : 2ar— 6= 9 : 4, :r=13; whence, 39 and 26, Ans, 16. Take ar, ary and xy* for the numbers. a;'y : 2ry=ar : 2a'y^ or, 1 : y« =1 : 2y; whence, y=2. By the conditions, ar + ary' = 300, whence, 5a;=300; therefore, 60, 120 and 240, ^n5. 17. Let x and y be the two numbers, ar' + y' : a;»-y' = 559 : 127; Prop. VI, 2ar' : 2y»=:686 : 432, or, X* : y» = 343 : 216, or, X : y= 1 : 6; whence, 6.r= 7.y. By the conditions. a:V = 294; a;' = 7-49 ; whence, 7 and 6, Ann, («77) 194 PERMUTATIONS AND COMBINATIONS. 18. Let X and y be the numbers. x' : f= S : 1, (1) , , y' : ar'=96 : 1; (2) from (3), 7 ^ ^^ y-^, y : ^ : : 3 : / i a _ ^ whence from (4), x'=S^'9Qx% -^Vor, ir^= 3^-96, or, ar»=3'-(32)' ; therefore, a:=12, and y=24, ^n#. 19. By Prop. X, this proportion becomes (^ + 1)' : (•^-1)'=2 : l; whence, xi^2—^2=x-\-l, and, ^=f^2^? ^'*'' 20. Putting the given equation in the form of a proportion, we have a-\-b + c-{-d : a—b + c—d—a-^b—c—d : a — b—c-\-d\ by Prop. VI, and dividing by 2, a-\-c : b-\-d=a—c : b—d, or, a-\-c : a — c=2b + d'. b—d^ Again by Prop. VI, a : c=b : rf, or, a : b=zc : c?, Ans, PERMUTATIONS AND COMBINATIONS. (341, page 283.) I.Here n — r + l = 10 — 4 + 1 = 7 ; hence, ^t>r7 10- 9- 8- 7=5040, ^n*. ' ^ 2. 6-5-4-3-2-l=V20, u4n«. (277-283) PERMUTATIONS AND COMBINATIONS. 195 3. By formula (B), 10'9*8-7-6-5-4*3-2* 1 = 3628800, Ans, 4. Omitting the 0, the other four figures can be arranged in 4 • 3 • 2 • 1=24 ways. Now we must reject every combination formed by placing the cipher he/ore all the other figures. Hence, in each of the 24 combinations of the figures 4, 3, 2, 1, the cipher may have 4 places. Therefore, 24x4=96, ^n*. 5. By formula ((7), 6. Formula (C) applies ; n = 16, r = 5j n— r+l = 12. „ 16-15-14-13-12 _^„ . ^= 5-4 3-ii-l -=-*^'^'-^"'- ^ „ .» 20 -19 -18 -17 -16 -15 „_^„ . V.Here 2^_______=38760, ^«, 8. Omitting the boy denied the privilege of the head, the others can be arranged in 5 • 4* 3 -2 • 1 = 120 ways. The omitted boy may occupy each of the five lower positions ; hence all the ways will be 120x5 = 600, Ans, 9. The prime numbers below 40 are 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 ; or there are 13. Hence by ( 341), n=13, r=!i^=6, n-r+l=8. „ 13 •12-11 •10-9'8 __- . Z= ; — =1710, Ans, 6- 5-4-3-2-1 (284) 196 PERMUTATIONS AND COMBINATIONS. 10. By formulas {A) and (C^, we have «(n-l)(»-2)(»-3)(n-4)=.120(fc^'^) ; ' or, 11* — 7 n— 8, whence, n= 8, Ans. 11. Heren = 8; and by ( 341 ), r=:- =4, n—r + 1 = 5. Hence, « = -———— —7^ ; and -—=$0.60, Am, 4 * o * ^ * 1 70 12. By formula (C), if we let n— the number of horses, n(n-l)(n-2) ^/«(»-l)\ 3-2-1 H 2-1 r ''^' ''"'^' *• 13. First omit 4 of the points which are in the same straight line ; and considering the remaining 8, we find the number of com- binations of 8 things taken 2 at a time to be 8-7 2-n = 28; or 28 different straight lines. Now the four other points may be joined each with the 7 points not in the same straight line, making 28 more different straight lines ; and adding the line containing the five points, we have 28 + 28 + 1 = 57, Am. Again, if no three of the points are in the same straight line, there will be as many straight lines as there are couibinations of 12 things, taken 2 at a time, or =66. But since five of the 5 • 4 points are in the same straight line, —— = 10 of the combinations are lost ; and adding the straight line containing the five points, we have 66—10 + 1=57, Am. Generally, if there are n points in a plane, of which J9 are in the same straight line, there will be n{n-\) pi^p-X) 2-1 2-1 different straight lines formed by joining the points. (284) ARITHMETICAL PROGRESSION. 197 ARITHMETICAL PROGRESSION. (353, page 288.) Note. — In some of the following examples, we shall employ the formulas of 354, instead of substituting the given data in the primary equations. 1. /=7 + 35 -3 = 112, ^ns. 2. «=Y '280 = 6440, ^n«. 3. Here we have «, n and d given to find a and I. From formulas (A) and (5), l—a=.{n — \)d, 2* l-\-a= — . Hence, n _2s—n{n—l)d 2s-\-n(n—l)d and by substitution, a=:2, /=37, Am, 4. Substitute the value of / from formula (A\ in formula {B\ and we have .=l\2a + (n-l)dl =151(2 + ~)=2626, An>. 37 — 7 6. By formula ((7), (352), d~ — - — =6, and the terras are 5 7, 13, 19, 25, 31, 37, Arts, 6, We have a, n and 8 given, to find d and Z. By No. 5, (354), 7 ^440 ^ ,^, , (3720- 180) -2 ^ . 7. Here »= 11; hence, 5=V(9 + 109)=649, ^»«. (288-289) 198 SERIES. 8. By (352), rf=i^=5V, ^»«. 9. By No. 1, (354), a=i|i{2+(365-l)2i=365'=$1332.25, ^n*. 10. By 9, (354), since we have given a, d and s to find n, 3_40±V'(37V + 8-3-438 -37^:^11881 — 37±109 ,„ „= LJ _= = 6— =''• Ans, 11. The last term will be n ; and by formula (B\ «=^(l+n), ^n«. 12. Herea=l, rf=2, and *=^{2 + (n — 1)2J =n', Ans, 2 13. We have n, rf, and « given ; hence, 1900 — 24-25-3 1900 — 1800 60 60 2yAn8, 14. We have given a, rf, and « to find n. By No. 9, (354), «- i - ^ ; 3 3 — 1 4- A4J. or, w= — 5 3_ = i50, Ans, T a. ' ,^ 666-66 ^ , ,6666-666 ,^^^ 15. =5=rf; and =1200. 1 ^U o Hence, w=1200 + 120 + 14 = 1334, Ans, (289) ARITHMETICAL PROGRESSION. 199 PROBLEMS IN ARITHMETICAL PROGRESSION. (355, page 291.) 1. Let (^— y), ^ and {x-{-y) be the numbers. From first condition, 3x = 18, X = 6 ; from second condition, 3x' + 2y' = 1 5 8 ; whence, 2y'=: 50, y = 5. 1, 6 and 11, Ans, 2. Let(a:— 2y), (x—y)y «, (« + y), (ar -f 2y) be the numbers. From Ist condition, 5x = 65, a; = 13 ; " 2d " 5a;' + 10y'=:1005, a:' + 2y'= 201; whence, 2y'= 32, y = 4. 6, 9, 13, 17, 21, Ans. 3. Let (a;— 6), (a;— 2), (a; + 2) and (a? + 6) be the numbers. (a:'-4)(a;«-36)=a;*-40a:' + 144 = l'76985, or, a;*-40a;'= 176841, a;«_40a;' + 400 = l77241, a;» = 20i:421, a;'=441, a; =21 15, 19, 23, 27, Ans, 4. Let (a;— 3y), (ar— y), (X'{-y) and (a; + 3y) be the numbers. 2aj= 8, or, ar= 4; aj'-y» = 15; whence, y'= 1, y = 1. 1, 3, 5, 7, Ans, (291-292) 200 SERIES. 6. Let n= the number of days the first person travels, d=lj and l=:l ■^{n — l)d=n. . «=q(1 + n) = the whole distance. and 15(w-6)= « " hence, in{l+n) = 15(n-6\ or, n' + w=30n— 180, n'-29n=-180. First person travels. n = Y=t-V-= 9 or 20, -6 -6, Second « ** 3 or 14, Ans, Explanation. — Call the first person A, and the second B. Now B overtakes and passes A after A has traveled 9 days and B 3 days. But as A is increasing his rate one mile per day, he finally gains on B, and overtakes and passes him after A has traveled 20 days, and B 14. They are together after having trav- eled 45 and 201 miles. 6. Let x=: one of the equal payments. At the given rate per cent $60 will amount to $61 at the end of 60 days. As the rate of interest is ^-^^^ of the principal for a day, the firet partial payment will amount to the second to ^+3loo-^» the third to ^+3lJo^, and the last to x. Hence the sum of the partial payments is, Q0x-\-^j\^{59x-\-58x + 5lz. . . . +x), or by summing the series, 60^ + tVo^' Since the debt is to be canceled, we must have 60a- + T¥o^= 61, T259ar=7320, whence ^=^1t2J7» ^^' (292) ARITHMETICAL PROGRESSION. 201 7. Let {x—Sj/y (j^— y), (^ + y)» and (x + Sy) be the numbers; then 2j:' + 18y'=66, (1) 2«' + 2y'=61, (2) y'=h y=i, *=V; 4, 5, 6, 1, Am. : notation as before, 4a;=24, (1) ■10j:y + 9y* = 945. (2) Whence, ar=6; and from (2), y*— 40/= -39, y'= 20±19, y=ly 3, 5, 7, 9, -iw*; 9. Let (ar—y), a^, and (^ + y) be the digits. We have I00(x-y) + 10x + x + y^^^^ ox 100{x—i/) + l0x-hx + i/-{-l98 = l00{x + y) + lt)x + x—y\ (2) from the second equation, y=l» from the first, 3jr=9y, x=3 ; 234, Ans. 10. Let n= the number of days. Then from No. 2, (3«54:), -[6 + (n — 1)2}= the distance A travels, 2 ^{8 + (n-l)2}= « B " The sum of these expressions is equal to the whole distance ; hence, 2»'+5»=102, 2n= — fit.3/; n=6, Ans. 11. Let a;~ the number of weeks if no one dies; 21a?= the pecks of corn distributed. , ' In the second case the number of pecks distributed each week will form an arithmetical series, in which . (292) 202 SERIES. 0=21, cf=--l, n=2aj; and S=zx(i2—'2x-\-l)=z the pecks of corn. Equating the two expressions for the number of pecks, we obtain 43jr-2ar' = 2l3-, 2a:=22, z=ll ; 21a;=231, Ans, GEOMETRICAL PROGRESSION. (364, page 296.) 1. Here a=l, r=2. ^ 2»-l 512-1 ^^^ . ^=-— ^ = — =511, Ans. 2. a =2, r=3 ; hence, /=:2-3' = 2-2187 = 43Y4, ^n«. 3. a=l, r=§ ; hence, ^="131-= ^-1-69049 ^ -59049 ' ^'^• 4. r=(VJ)^=2. Hence, 48, 96, ^w«. 6. r=(ifi)^ = (256)^ = 2. Hence, 6, 12, 24, 48, 96, 192, Ans. o ^^ 6. a=l, ^=f; hence, *I, a=f, »*=f ; hence, ^ s (292-297) GEOMETRICAL PROGRESSION. 203 8. a=5, r=i ; hence, 1 3 JL?. 5- •"" 10. «=f'o'o> rrrr-j-i^ ; hence, 11. «=i» '*=— i; hence, 12. o=}, r=-i; hence, X 13. o=l, r=- ; hence, a ^ I la, , Ans, X a—x a — X a a 1 X* 14, o=-, r= — i; hence, a a 1 a 1 a' __ a ^4 15. By formula {B\ 1785= ^^^ ~ ^ = 255a. Hence, a='7, ^w.(l ■\-ry-x{l -hr)'^'- -x{l-\-r)-x, due after the nth payment. And since the debt is to be canceled by the nthy or last payment, we have p{l-^ry—z(l+ry-'—x(l +r)'-'— — a-(l +r)—x=0 ; or, ;>(l+r)"-{(l+r)'->+ (1 +r)'-'+ . . . . +(1 +r) + l(ar=0. Summing the series in the parenthesis, ^ / /-/ r~/ y- whence, X=^rf7^f » ^"*- DECOMPOSITION OF RATIONAL FRACTIONS. (369, page 308.) 1. x'-^x-V\^ = {x-n){x-^\ Hence we assume. 7^_24 _ A ^ B --'. -s?t--i^.r»'''~' (ar-7)(2:-2) x-1 x-2' whence, 1x—24 = {A-h B)x—(2A + IB) Equating coeflScients, A+£= 1, -irC= 0, -^+C= 1, -^= 2. Whence, ^=—2, j5=:^, (7=1. 2^ 1 ^ 3 "x'^2(^Tr)"^2(^=T)» "*''*• (308) BINOMIAL THEOREM. 211 6. We have Hence we assume 10 A B C D + ^ + — ^ + a:*--13x' + 36 x^2 .r — 2 a: + 3 a:— 3 ' from which we find 10= ^(a;' — 2.c' — 9^+18) + ^(x»+2ar' — 9a;— 18) 4-C(x'-3a:'-4a;+12)+i>(a;'H-3x«-4ar-12). And equatinpj coefficients, A + B+C-{-D= 0, — 2^ + 2^-3(7+3i)= 0, 9^ + 9^ + 4(7+4i>=: 0, 18^-18^ + 12 C—12i>=:10. Hence, combining the first and third equations, A=—B, and C=—D, From the second and fourth equations, u£i^'iztvci^ 2J-32>=0, . 18^ — 122>=5. Hence, A=\, B=-\, (7=-i, D=\, 1111 + —f —. , An9» 2(« + 2) 2(.r--2) 3(i;+-3) 3(ic— 3) BINOMIAL THEOREM. (377, page 316.) In examples 1 to 10 the exponents are whole numbers, so that these examples need no solution here. In example 10 the numerical coefficients are the same as those of example 2, of the illustrations ; and we shall have the answer by simply changing +« to —x and observing that the odd powers oi —x are negative. (308-316) 212 SEBIES. 11. Here we have A = +1 ■ B = Axn = +1 2 3 3 2 3 '6 _ „ n— 2 2 5 1 2-5 i>=Cx— -— =H •-•- = + i: = j) 3 3-633 3-6-9 »-3 2-5 8 1 2-5-8 4 3-6 -9 3 4 3-6-9-12 The law of the numerical coefficients is now evident, and we may write out the series, observing that the odd powers of — x are nega- tive. Hence, ,, A , X 2x« 2-6j:« 2-5-8x« 2-5-8-lla:' (l~arf = l-- - 3 3-6 3-6-9 3-6-9-12 3-6-9-12-15 * Ans, 12. A = +1 B = Axn = +1 n-1 13 1 3 C = Bx 2 4 4 2 4-8 J, ^ n-2 ,3 7 1 3-7 E=Dx 3 4-8 4 3 4-8-12 n-3 3-7 11 1 3-7-11 4-8-12 4 4 4-8-12-16 Hence, ^ ^ 4 4-8 4-8-12 4-8-12-16 _ T/i , i 2 3-7 3-7-11 . ""** ^ "^40 4^8^ 4-8-12a' 4-8-12- 16a*"^ * ' * *''' Ans, 13. Since ?i is the same as in Example 11, the numerical coeffi- cients will be the same. Hence, / rA 4 a~^^ 2-a~36' 2 • 5a~'6' 2-5-8«~'3'6* ^ ^ ^ ^3 3-6 3-6-9 3-6-9-12 \ ^^a 3-6a'^3-6-9a' 3 • 6 • 9 • 12a*^ /' ^ (316) BINOMIAL THEOREM. 213 A = +1 B = A X n = ^1 C = Bx'^=(-l)x(-l) = +l D=Cx''^ = ( + l)x(-l) = ^l U=J)x !^ = (_i)x(-l)= +1 Hence, (a—b)-'=a-' + a-'b + a~'b'-\-a-'b' + I b b' b' = -+-7+-, + —+.... , Ans, a a' a' a* 15. — — =cr(l— a;)"'. Omitting the factor a, A =+l B =A xn = ( + l)x{ — 2) =-2 C = B X _-=(-.2)x(-|)=.+3 j^ = /> X ^^^ = (-4)x(-f) =+5. Hence, a(l — a;)-*^a(l + 2a; + 3x' + 4.c' + 5x* + 6u;' + ), ^n«. 16. The coefficients are the same as in Example 10. 17. A = + 1 B = Axn =(4.i).(4-f) =4-| (316) 214 SERIES. ^ _, n-S I 2-4 \ / 1\ /1\ 2.4.7. Hence, ,xl I 2a~V 2a"3c* 2 • 4a~V 2 * 4 • 7a~^3^c' (a — c')'=a' 3-6 3-6-9 3-6-9-12 """ \ 3a"~3-6a'""3-6-9a' 3* 6* 9 '120* /' ***' 18. ^ = =+1 B=Axn =( + l).(-i) :=z-^ 3 = +2^4 ■ 5_ --¥=(-y(-=)(y -=-"-^-(-i^y (-D o-^i^. Hence, we have ./ , ,^-i y , c-'x' 3c-V 3 • 5c-' j:' 3 • 5 • 7c-».r' \ rf/ a:' 3j:* 3 • 5x' 3 • 5 • 7.c' \ =cV"2? + ^^*-2"^T^c"^ + 2-4-6-8c«~- ' "h "^''** _i Note. — The exponent" of c in the first term is (c') ^ =:c ' ; and the ex- ponents of c in the terms following diminish by 2 throughout. 19. ^ = +1 B = Axn = -3 i)=Cx^={ + 6)x(-5) --10 ^ = i>x^=(-10)x(-y=: +15 Hence the law of tlic coefficients is evident, and we have (1 — a)-*= 1 + 3a + 6a' -f 10a' + 15a* + 21a' + 28a"' +....', Ans. (316-317) ' DESITYl BINOMIAL Td^EOREM. ^ ^^ V*^''215? 20. A = +1 B==Axn =( + l).3 =4-1 _ 3 5 12 9 T6 Hence, — ' —1 _i _ i_i ,x?^ 4 3a ^a;' 3a ^x* S'5a *x' 3*5-9a ^ x' (a'— ar )*=a* . . . . ^ ^ 4 4-8 4.8-12 4-8-12-16 _ / 3a:' 3a:* 3* 5a;* 3*5 •Oa:" \ ~ \ ~3a'~*4 • 8a'~"4 • 8 • 12a'~4 • 3 • 12 • 16a' ~ /' Ans, 3 3 Note. — ^The exponent of a in the first term is (a') * =. a - ; the exponents in the terms following diminish by 2 throughout. 21. A = +1 B=zAxn =(-{-i)x(-4) =-4 C = Bx'^=(-4).{-l) =+10 i)=(7x!^=( + 10)x(-?) = -20 JS = Dx^^= (-20)x(-^)= +35 F=zl!x~ = ( + 35)x(— ^) = -56 Hence, (a + y)-*=a-*-4a^V + 10a-y-20a-y + 35a-y-56a-V + .. 1 4y lOy- 20y' 36/ 66/ . =a*-"T* + -^— ^^-^^ ^+....,^«*. (817) 216 SERIES. r -_i 22. We have = r(l— r)^; V 1— r A =+1 " = -•^ = (4) •(-!)■© -.^. 4 \ 2-3-5V V 5/ \4/ ^2-3-4-5* Hence, /, ^-i /, »• 6r' 6-llr* C'll'lCr* r(l-r) ^=.(l+^ + 2-T^ + 2-^.+ 2^3T4-7^+.... =»• + - + 6r» 6-llr* C-1116r' 5 2 ^• + 2^^T'-^^^3^.^+---^'^*' 23. Vi_a:* = (i_a-y\ ^ = +1 n — 2 i>= Cx ~ \ 2-15V * Vis) * W ~ 2 -IS" 14-29 2-315* 14-29-44 3 rr r. ^-^ f. 14-29 \ / 44\ /1\ 14-29-44 Hence, »/ a;* 14j:" 14-29x" 14-29-44x'* . VI «♦ — 1 >4«j? ~ 15 2-15' 2-3-15' 2-3-4-15^ ....,^'**. In all expansions of this kind, the chief thing to be aimed at, is a simple and systematic method of calculating the numerical coeffi- cients, and one which will clearly show the law of their formation. (8X7) BINOMIAL THEOREM. 217 (378, page 318.) 1. (a~26)*=a»-3a'(26) + Sa(2by + (2&)* =a' — 6a'6-fl2a6' + 86', Am, 2. (2a 4- ^xy = (2a)* + 4(2a)'(3a?) + 6(2a)'(3x)' + 4(2a)(3x)' + (3a:)* = 16a* + 96a'x + 216aV + 216ai;' + Six*, ^na. ,. (-iy=.-.©«6)'-,©V(jy = 1— 2a + |a'— la' + j^^«*, ^ns. 4. (a'— tfj: + a:')* = («'— aa-)* 4-4(a' -ax) V + 6(a'— aj;)'a;* + 4{a*—ax)x*-\-x\ Performing the operations indicated, a'— 4a'a;+ 6a V— 4a V 4- a*x* 4- 4aV— 12aV + 12a*a:*— 4a V 4- ea*x* — 12aV4- 6a V 4- 4aV — 4ax'4-a;'' a*— 4a'a:4- lOaV — 16ttV 4- 19a*x* — 16aV4- lOaV — 4aa;' +x% Ans. 6. The numerical coefficients will be the same as those in Exan> pie 12, (377). Hence, (4a'-3x)^ -(ia^\^ (^^')V ) 3(^^') M3 ^r 3-7(4a/') '^(3x)» ^ ' 4 4-8 4-8-12 ') ^(3a;) 3(4a') ^(3 x)' 3 • 7<-^-^^ ~~4 r^8 f 3x 3(3x)' 3''7(3i:)» ^^a^ 3 1 j\ A{2ay 4 -8(20)^ 4-8-12(2a) = (318) 218 SEBIES. FRENCH'S THEOREM. (379, page 320.) b 5 1. Here we have n= 4, a=2, 6 = 5, -=-; hence, c, = (2)* = 16 C, = 16" \ •i == 160 0,= 160- f •f = 600 C,= 600 •?- •t = 1000 ^, = 1000' i •f = 625 Hence, (2ar+ 5yy-- = 16j:* + 160j:V + 600x' y' + 1000jr/ + 625y*, Am, a. n=5, a=:2, 6 = 3, -=-. ' a 2 C, = (2)* = 32 C, = 32 • i • f = 240 (7, = 240 • A . 1 = 720 C^ = V20 • f • f = 1080 C, = 1080 • i • I = 810 C, = 810 • i • a = 243 Hence, (2a — 3x)' = 32a*~240a*j: + 720aV-1080aV + 810aa:* — 243ar*, Ani^ s. n=6, a=3, 6=4, ^-=\. C, = (3)' = 729 C, = 729 • f A = 5832 ^3 = 5832 • f -i = 19440 C^ = 19440 • f • i --= 34560 C, = 34560 • ^ • i = 34560 C. = 34560 • f • i = 18432 C, = 18432 •^- ^ = 4096 Hence, (3+4:r')*: =729 + 5832a;' + 19440x* + 345602:' + 34560a:' + 18432a:'-'' 4- 4096a:'«,^n*. (320) BINOMIAL THEOREM. 219 3 ;. ^ * 1^ 4, n=i, a=-, 6==^, -=-. Ci = a)* = AV c. = AV •fif= fJ o. = fj; •fif= M c. = ir • 1 • II = Hi /7 1*2 • 1 • il ill ^5 125 4 15 625 Hence, /3a 4/-V 81 , 27 , 54 , , 192 , 256 . , \4 5/ 256 20 25 125 626 ' 2,369 n=6, a=-, o=~. - = -. ' 3' 2' a 4 0, = (!)• = ^%^ c, = AV ■f •f = H C, = M •f • f = V C. = V 'i ■ J = 20 C, = 20 . 1 . 4 ■ J = XJ» C. = xji . •1 • f = n' C, = iLll ■ i • f = w Hence, /2< 3rY 64 . 32^, 20^, , ^^^, , 135 , , 243 . 729 1 A 1 * * «=5, «=j, 6=g, -=-■. <7, = (J)' — Tjir =-i-|-C= + 1206 JE=^l .|-2)=- 101 ^+ -HT^= + 9 1. 0400420 = Vl+| 2 V9 = 2.080084, Ans. (320-323) DEVELOPMENT OF SURD ROOTS. 221 -/si =V27 + 4=3^1 + _4^. A = +1.0000000 JB = + J- '^\' A=z + 493827 C = - ^ '^\'B = - 24387 i> = - I • aV ^ = + 2008 ^=~f j\'J)=- 198 ^=~n-iV^=+ 21 1.047l27l = Vi +iV 3 V31 := 3.141381, Ans, Vl00=:v/i25 — 25 = 5^1 _j. ^ = +1.0000000 5=-i-l-^ = - 666667 C7=-i4-i?=- 44444 i>=:-A.j.C7=- 4938 ^=-|-}-i>=- 658 ^=-|i*i-^=- 97 G = - I 'i'F=:^ — 15 ^=-if4-^=- 2 0.9283l79 = Vr -i 5 Vioo = 4.641589, Ans. VllO=Vi25-15 = 5<^l-^3^. A = +1.0000000 £ = -^ '^\'A= - 400000 C= — |-^j-^=- 16000 Drr— 1 .^j.e=-- 1067 ^ = -- f • /j • /> = ~ 85 ^=-H*i\-^=- ^ 6^=-^-jV-^=- 1 0.9582840 = Vr 5 ^^'V VllO = 4.791420, ^n=-f-a-C=+ 5268 F— -\\'\' Ez= + 138 Q= -L 'X' F= - 25 /?= -If' I* 6^= + * 1.0409504 =Vn. I 3 V297 = 3.122851, Arts, V60=V64 — 4i = 2Vl- -tV A = +1.0000000 B= - -i . tV .^ = — 104167 C = - -^-.' tV ■J? = — 2713 I)= - -u- tV (7 = — 103 E=- -u- I'a •i> = — 5 0.9893012 =Vi_yy 2 Vei = 1.978602, Ans, 7. V4=V32-28 = 2Vl_i, In this case the last term, |, is nearly equal to unity, and the series will converge very slowly. We may give the calculation another form by taking 4 = VaS and 1/4 = 1^128. Whence, |Vl28=|V243-115=^v/l_|i|. (323) DEVELOPMENT OF SURD ROOTS. 223 A = + 1.0000000 B = - i- iH- A = — 946502 C = -tV iif ■ B = — 179173 D = —,%■ Hi- C = — 50876 E = -a- iH' D = — 16854 F = -H' m ' E = — 6062 G = -H- m ' F = ~ 2295 H = -If iii • G = — 900 I = -a- iH ' H = — 362 J = -n •Hi 'I = — 150 K = -u ■Hi J = — 62 L = -a Hi ' K = — 26 jr = -If ■Hi • L = — 11 N = -If ■Hi • M = — 5 = -li •Hi •ir = ( 2 }.8796720=v^l-iif f W = 1.319508, Ans. >^3275=V3125 + 150=6Vl+_|_. A = +1.0000000 ^ = + J * yf 5 • ^ = + 9^00^ C= -f -tIj-^ = - 1843 ^ = + f • tIj • C' = 4- 63 1.0094208 = ^^l+yf 3 5 v^3275 = 5.047104, Ans, 9. v^T25=Vi28 — 3 = 2Vi_-.|^. A B = = i> = (323) + 1.0000000 — 33482 — 336 — 5 0.9966177 = ^1- 2 -Tie 1.993235, Ans, 224 SERIES. Note. — A table of logarithms affords an easy and practical method of finding the roots of numbers, since we have only to divide the logarithm of the number by the index of the root, and look out the number corresponding. See 40'ft. To find ^4, we have log. 4 = 0.6020600 -^^ = 0.1204120 o Hence, V* = 1-319608 «8 in Example 7. METHOD OF INDETERMINATE COEFFICIENTS. (38a, page 327.) ^_^^ l-2a; l + dx :A-hBx+Cx* + I)x*+Ez*-^ 0= A — 1 x'+ B x-¥ C x*+ B x^+ E -ZA ^3B -3C7 -32) + 2 «*+. Therefore, whence, ^-1=0, ^=1; j5-3^ + 2 = 0, ^=1; (7-3^=0, C=3; 2)-3C=0, i> = 9; JF-3i> = 0, -£'=27, etc. 14-aJ + 3x' + 9j;' + 27x*4-81a;*+ , Am, l4-2a; \—x—x ^=A-\-Bx-^Ca^-\-Dx* + Ex* + 0= A x'-hB x-hC x* + D x*-hE — 1 -A -A -5 -C - 2 -B -C -D -Aj rr^f i 323-327) :% INDETERMINATE COEFFICIENTS. 225 Therefore, ■whence, A-l =0, B—A-2 =0, C-'A-£=0, ^=1; (7=4; /)=7; JE'=11; etc. 1 +3a;+4:r'4-Va;* + ll^* + 18^»+ , Ans. Therefore, whence, 1— a; l_3x— 2a;' ■.A-{-Bx-\-Cx'-{-Dx*-i(-Ex*-^,, 0= ^ — 1 x'-\- B -^A + 1 x+ C -2^ x'+ D -3(7 -2J5 a;'+ E -SB -2(7 «*+. -4— 1=0, B-3A-{- 1=0, (7—35-2^=0, i)-3 (7-25=0, Jgr-3i>— 2(7=0, ^ = 1; 5=2; (7=8; i>=28; JS:=100;etc. l+2a;4-8a;' + 28a:' + 100a;*4-356a;»+ , Ans. J±^f^=A + Bx-\'Cx'+I)x*-{-Ex*-^ 1— 4z + 4a:' Therefore, "Whence, 0= A — 1 x'-\- 5 -4^ — 5 x-h C -45 + 4^ x'4- B x'+ E -4(7 + 45 -42> + 4(7 «• + ^- 1=0, 5—4^— 6=0, (7-45 + 4^=0, 2>-4(7+45=0, ^-42) + 4 (7=0, .4 = 1; 5=9; (7=32; i>=92; ^=240; etc, l+9a; +32a;' + 92a?' + 240x*+ X « + 9a;' + 32a:' + 92a:* + 240a:*+ , Ans, (327) 226 SEB1E6. 2 ■r — .Ax-' ^Bx' -^ Cx^-Dx" ^ Ex' Jr , . . . *• Zx-lx*- 0= 3^ — 2 Therefore, ar» + 3^ -2^ 3^- a; + 3(7 ar' + Si) -2J? -2C7 2=0, ^ = a;« + 3jr «* + -22> 35-2^=0, ^=i; 3(7-2J5=0, c=^S\ 3i)-2C:=0, ^=h; 3^— 2i>=0, jg^= iVV, etc. Whence, 2 4 8a; 16a;' 32a;' 8i + 9 + 27 + ^ + 2i3+---^'^- l+2a;' + 3ap -^=Ax'-\'Bx-\-Cx*-\-Dx* + Ex'-\- ... 0= A - 1 Therefore, a;'+^ a;+ C a;'+ i> a;'+ E a;*+ i^ a;'^+ e' + 2 A + 2 J? + 2(7 + 22) + 2^ + 3^ + 3^ + 3(7 «•+ Whence, ^- 1 =0, A= Ij B =0, B= 0; (7+2^=0, (7=- - 2; 2) +2^=0, /)= 0; 3-4+^+2(7=0, E= 1; 3^+i^+2i)=0, F= 0; 8(7+(y + 2^=0, G= 4; 3^+/+2(?=0, /=- -11; 3Gr4.ir+2/=0, /{= 10; 3/+jlf+2^=0 M= 13, etc. (7) l-2ar' + a;* + 4a;«-lla;' + 10a;" + 13a;"— , Arts. Note. — It is obvious that that the alternate equations may be omitted ; this is done from the sevenUi onward. (327) INDETERMINATE COEFFICIENTS. 1 + 2ax + a V 227 0= A — 1 x'+ B -{-2a A — 1 x+ C\x'+ D + 2aB\ +2aC x'+ E x*-\- F -\-2aI> + 2a£ + a'C + a'J9 x'+. Therefore, ^-1=0, B-{-2aA — l=0, C+2aB + a'A=0, D'}-2aC-\-a^B=0, E-\-2aD->t 0^0=0, A=l; ^=:-f(l-2a); (7 = -(2a-3o'); i) = 4-(3a'-4a^); ^=-(4a' — 5a*); etc. Whence, 1 +(l-2a)a:-(2a-3a>' + (3a'-4a')a;'-(4tt'-5a>*+ . . . ., Ans, 8. \r[:^=A-\-Bx-\-Cx''-\-Dx'-\-Ex' + Squaring both sides, we have l-x^zA' + AB +AB X +AC -hAC Therefore, A'-l = 0, 2AB-\-l = 0, 2AC-{-B* = 0, 2AI)-\-2BC = 0, 2^^+C" + 2^i> = 0, Hence, x' + AD + BC + BC + AJ) x' + AE + BD + C' -hBD + AE ^-2-4' E = x'-^,. 2-4-6' 3-5 2-4-6-8 ; etc. X x* ri-«=l-;T-;r^- Zx"" ^■bx* 2 2-4 2-4-6 2-4-6'8 (327) . . . , Ans* 228 SERIES. 9. Assuming the same form of development as in Example 8, we shall have, ^'-1 = 0, ^ = 1; 2AB-S = 0, -5 = 1; 2AC+B'-5 = 0, C7 = V; 2AD + 2BC-1 = 0, ^ = H; 2AE+C-{-2BI)-9 = 0, H = HI ; etc. "Whence, , Sx liar' . 23x' . Il9x* . 2 8 16 128 ' 10. — ; ? — i i— ^ rs = Ax'-\-Bx'-^ Cx' + Dx*-\- l+a;'-fa:* + x« + a:'4-a:'°+ 0= A -1 x' + B ■\-A + 2 + A —3 a:« + i> + A + 4 a:« + ^ + i> + C -¥B + A — 5 x*-\-F Whence, ^-1 = 0, B+A-^2 = 0, C+B + A-3 = 0, i) + CH-^ + ^ + 4 = 0, l—dx*+5x*—7x'+9x'—lW + + E + i> + (7 4-6 ^= 1; ^ = -3; C = +5 ; 2> = —7 ; etc. r" + ..., ., Arts. REVERSION OF SERIES. (383, page 330.) 1. Here we have 0=1, i=l, c=:l, etc.; whence by formula (J^), Hence, ^=1, ^=-1 C=l, D=-\, E=\, etc. *=y— y'+y'— y*+y'— — » ^'i** (328-330) . . etc. 5 REVERSION OF SERIES. 229: 2. a=l, 6=3, c=5, etc. By formula (T), A=zl, B=-3, (7=13, i)=— 67, -^=381, etc. Whence, «=y-3i^' + 13y'-67/ + 381/-...., Ans. 3. a=l, 6=-^, c=i, rf=-i, c=i, etc. By formula {F)y A=l, B=-, C=—, i>=— i_, B=z , ' 2' 2-3' 2-3-4* 2-3-4-5' Whence, 4. a=l, 6= — 1, c=l, c/=— 1, e=l, etc. By formula (G), A = l, B=l, C=2, i>=5, J^=14, etc. whence, ar=y + y' + 2y* + 5/ + 14y'+....,^n«. 5. a=2, 6=3, c=4, rf=5, « = 6, etc. By formula (6^), A=i, B=-j\, C=V/3, i>=-TV/4,etc. Whence, y 3/19/ 152/ ''-2""l6"^T28 ""1024 + • • • " ^''^• 6. a=2, 6=4, <'=6, c?=8, c=10, etc. By formula (F), A=^, B=z-i, C=f, D=-h ^=Hf etc. "whence, _x x* 5x' 7a;* 21a;" ^""2""^ T" "s" le" (830) 230 SEKIES. (384, page 331.) In the following examples, let s be the sum of the series. 1. By formula (F), 1 4,2-8, 4-16 , 8-32 , 6 25 ^125 ^625 ^3125 Substituting the value of «=}, ^=1(1)*+ (!r+2(i)'+4-.(i)'+8 •«)■"+.... This is a geometrical series in which r=2(f)'; and by 361, x= ^ ^^^; ,, =0.11764706 + , Ans, 1-2(1)' 2. By formula (F)y we have f ~3«*' ""^To-* "■alVo'" Substituting the value of *=|, we find « = -f 0.500000 ~|s»= -0.041667 — ^V«'=-0'003472 . -^|^«*= -0.000231 __ji^_5»=, -0.000010 Therefore, ~ ar= 4- 0.454620, ^>w. 3. By formula (G), we have Hence, « =+0.200000 + i5»= +0.001333 Therefore, ' * «r= 0.201369, Ans. (331) RECURRING SERIES. 4. By formula (F), x=s 4- !«' + ^V*' + 4^8** + 3 if f o«* + Hence, s =+0.250000 |«»= +0.023438 ^^«'= +0.001139 j|i^5*= +0.000074 9lffo«'= +0.000004 Therefore, ar= .274665, Am. Mi RECURRING SERIES. (391, page 335.) 1. We have by formula (P), whence, By formula (g), m + Sn=4, 8m + 4n=1 ; m=l, n=l. 1+3^;— ar l + 2a; o=- =- , Am, l—x—x* 1— ar— ar'* 2. By formula (P), we have 6m + 12»=48; m— 6, n= 1. whence, By formula (§), l + 6.r— a; _ l+5a; l_a:-6a;'~"l-a;-.6a; ^ , -^w*. (331—385^ 23*2 SERIES. 3. By formula (P), we have m + 2n=— 5, 2;/i — 5n=4-26; whence, w= + 3, »=— 4. Hence by (^), l4-2ar-f-4ar_ l4-6a; 4. By formula {T)t wo have m + 4n + 3r=— 2, 4wi + 3» — 2r=+ 4, 3m— 2» + 4r= + l7; whence, wi= + 3, n=— 2, r=+ 1. Hence by ( F), l-jr + 2ar'-3x' l-ar4-2ar'-3«' * 6. By formula (P), we have wi4-3w= 5, 3m + 5/1= 7; whence, m= — 1, n=+2. By (C), „ l4-3i;--2a; 1+ir 6. By formula (P), we have wi4-w= 5, . m + 5n=13 ; whence, wi= 3, n= 2. By (C), ^_ l+g— 2g _ 1—3? . ^"-l^2x-dx'''l--2x^Zx** "^""^ (335) RECURRING SERIES. 233 7. By formula (T), we have m + 4n + 6r= 11, 4m + 6n + llr= 28, 6m+llw + 28r= 63; whence, m=-f-3, n=-l, r=+2. By(r). l-f4a; + 6a;' — (l-f 4a:)-2a;+a;* 1 — 2a: + a;'— 3a;' _l4-2a;-2j:' + ig '_(l+a?)'-2.g* l_2x + a;'-3a;»~(r^a:)'-3«' ' 8. lei By ice, formula (n we have 2 7n_ ■ 2 ~ m= n= 1 2' 10; 3, 2. By (§) we may now sum the series, but we must notice that equations (2), (389), will now have the form, I>=mBx* + nCx^^ etc.; or that we must change a; in (Q) to x'. Hence, -+X*'-X' „_ 2 _ X ^-l-2x'^dx-2-4x^-6x*' "***'• (335) 234 SEBIES. DIFFERENTIAL METHOD. (395, page 339.) 1. a = l, rf,=3, c?3=l, d^ = 0. By formula (A), 8*7 r, = l+3*8H — — = 53, ^n«. 2. a = l, rf,=3, rfa=3, rf^^l, rf^=0. By formula (A)^ 3. a=l, c?,=5, rfj=10, ^3 = 10, c?^=5, dj.=0. Hence, ^s^'^^l, and ^^ = 1231, Atis. 4. a=l, rf,=7, ^3=12, ^3 = 6, rf,=0. r,,=l + 7'19 + ^^-12 + ^^'\^'^^ -6=:8000,^y... 2 2 3 5. a=l, rf,=2, ^3=1, c?3=0. 2 + 4n— 4+n' — 3rH-2 n(n4-l) . = = -^ — - , Ans, 2 2 * , (339) DIFFERENTIAL METHOD. 235 a=l, rf,=.3, d^=S, c?3 = l, d^=zO. m , «/ ,^ (n — l)(n-2) (n-l)(n — 2)(n^3) T,= l+3(/i~l) + '^ ^^ -^-3 + ^ 2^"^ 6 n* + 3n' + 2n_n(n + l)(n + 2) 6 6 , Ans. 7. a = l, e?,=4, «?a=6, d^=4, d^=l. ^ w ,v (n—l)(n—2) ^ (w— l)(w-2)(n~3) , 7;=l+4(n-l) + ^ ^ ^'6 + ^ 2-3 "^^'*" { n-l){n-2){n-S)(n-4) 2-3-4 __ _ n*4-6n' + ll»'4-6n n(n4-3)(n'4-3»4-2) Or, T^= 24 = 24 n{n + S)(n + 2){n + l) = 24 ' ^ • 8. a=l, c?,=2, rf2=l, (Sn* + Sn + l) + E(4n' + 6n^ + 4n + l) + or, by arranging terms with reference to the powers of n, »' + 2» + l=4^»' + (3i> + 6^)n' + (2C7+3i) + 4^)n + (5+C7+i> + ^) + .... (3) Now by (368, III.), we have iF=0, or JS:=0; and the same value for all coefficients beyond JS, Equating coefficients of like powers of n in (3), omitting the terms containing JE', we have the following equations of condi- tion: ^ " (339-340) DIFFERENTIAL METHOD. 237 3i>=l, whence i>=|; 2(7+3i> = 2, " (7=1; i?+C7+i>=l, " jB=i. And by substitution in (l), l. + 2' + 3'+....+„'=^ + ^ + |' + J, To determine A, put n=l ; then -4=0, and we have ^=6 + 2 +F= 6 = 6 ■ ' ^"'- In Example 14, we shall have ^=0, and the same for every coeflScient beyond F. The equations of condition arc 4ii'=:l, whence -fi^=i ; 3Z> + 6^=3, " D= a 1 2C'4-3i> + 4jE'=3, " = 1'^ Hence, ^ n* n' n' (^'-fn)' . ^=T+2+4=^-T^»^"" In Example 15, we have G=0, and the same for every coeflScient beyond G. The equations of condition are 5F = 1, whence /"=}, 4^+10/^=4, '' ^=1, 8i) + 6J^+10i^ = 6, " i>=|, 2^(7+ 32) + 4^+ 5i^=4, " (7 = 0, ^+(7+i> + ^+/' = l, " J?=-^V. Hence, . 8=.- + - + - --, Ans. In this solution the symmetry of the equations that determine Fj F, Dy «fec., should be noticed. Taking the numbers in vertical columns, they are the binomial coeflScients. We can easily extend this method to the fifth and sixth powers ; and so on. (840) 238 SERIES. 16. Performing the multiplications indicated, we shall have the two series, m(l+2 + 3+ +n) and, l' + 2' + 3'+....+7i'. Hence, or, -, «(» + !) n(n + l)(2n+l)^ INTERPOLATION. (397, page 341.) For the first, second, and third examples, we have a=2.V58924, rf, = +.043115, rf^ = -.001287, ^3= +.000091. For the fourth, fifth, and sixth, a=2.802039, rf, = +.041828, e?^ =.001196, (/,= +.000083. By substitution in the formula, we obtain the following results ; 1. 1st term, +2.758924 2. 1st term, +2.758924 2d " + 14012 2d " + 37726 3d " + 141 3d " + 70 4th " + 6 4th "+ 2 2.773083, Ant. 2.796722, An\ Isttcrm, +2.758924 2d " + 19695 3d " + 160 4th " + 6 2.778785, Ans, 1st term, +2.802039 2d " + 10457 3d " + 112 4th « + 6 2.812613, Arts, 5. Isttei-m, +2.802039 2d " + 28611 3d " + 129 4th « + 4 2.820783, Ans. 6. 1st term, +2.802039 2d " + 31371 3d " + 112 4th " + 3 (340-341) 2.833525, Ans. INTERPOLATION. 23Sr (398, page 342.) FUNCTION. d. d. d. 66° 6' 38" 72 24 5 + 6° 17' 27" Y8 34 48 + 6 10 43 -6' 44" ■ 84 39 4 + 6 4 16 -6 27 + 17" 90 37 18 + 5 68 14 -6 2 + 25 96 29 57 + 5 62 39 — 5 35 + 27 Note. — In' forming the differences we may use as a check to guard against numerical errors, the rule, " The sum of the differences in any column, plus the first term of the preceding column, is equal to the last term of the preceding column." Observe that for the 1st, 2d, and 3d examples, . a=66°6'38'; rf, = + 6** 17' 27'; d^ = '-6'W\ d^=+ir\ For the 4th, 5th, and 6th, a = 72°24'5", rf, = +6® 10'43", c?3-6'27", fl?3 = + 25". For the 7th, 8th, and 9th, a = 78°34'48", rf, = +6° 4' 16", d^ = -^Q' 2'\ (£3 = + 27". Again, we have for examples 1st, 4th, and 7th, **=? j " " 2d, 5th, and 8th, n=^ ; •* " 3d, 6th, and 9th, n=^. 1. 1st terra, +66° 6' 38' 2. 1st term, +66° 6' 38" 2d " + 1 34 22 2d " + 38 43.5 3d " + 38 . 3d " + 50.5 4th " + 1 4th " + 1 67° 41' 39", ^n5. - 69° 16' 13", (342) 240 SERIES. 3. 1st term, +66* 6' 38" 4. 1st term, +720 24' 6" 2d "+ 4 43 5 2d " + 1 32 41 3d " + 38 3d " + 36 4th " + 1 4th " + 1 10^*50' 22", Ans, 73^67' 23", Ans, 6. 1st term, +72° 24' 5" 6. 1st term, +72° 24' 5' 2d " +35 21.5 2d " + 4 38 2 3d " + 48.4 3d " + 36 4th " + 1 4th « + 1 75** 30' 16", Ans. 77° 2' 44", Ans. 7. 1st term, +78° 34' 48" 8. 1st term, +78° 34' 48" 2d "+ 1 31 4 2d " + 3 2 8 3d " + 34 3d « + 45 4th " + 1 4th " + 2 80° 6'27",^rw. 81°37' 43",^iW. 9. 1st term, +78° 34' 48" 2d " +4 33 12 3d " + 34 4th " + 1 83° 8' 85", Ans. LOGARITHMS. (416, page 355.) 2. log. 104=2.017033 3. log. 73 = 1.863323 " 5=0.698970 " 2 = 0.301030 2.716003, Ans. 2.164353, Ans, (842-356) LOGARITHMS. 241 4. log. 50 = 1.698970 « 29 = 1.462398 5. log. .53 = 3 = 3.161368, Ans. -1.724276 0.477121 0.201397, Ans. 6. log. 1017 = 3.007321 " 2=0.301030 7. log. 10.91 = 1.037825 " 7=0.845098 3.308351, Ans, 1.882923 8. log. u .01005: 2: = -2.002166 = 0.301030 9. log. ns. .91 = .42 = -1.959041 — 1.623249 2.303196, A^ — 1.582290, Ans, 10 1, log. 103 = « 15 = " 11 = = 2.012837 rl. 176091 .1.041393 4.230321 (41T, page 356.) log. 10720 = 405 X 0.4 = 4.030195 162 4.030357, Ans. log. 10.85 = 1.035430 400 X 0.39 = 156 1.035586, Ans. log. 1021 = 3.009026 425 X 0.56 = 238 3.009264, Ans, log. 5.6 = 0.748188 . :. 101.5232 = 2.006565 3.754753, Ans, (365-356) 242 SERIES. 1. log. 3 = 0.477121 log. 1081.333 = 3.033960 3.511081, Ans. 8. log. 3.6 = 0.556303 log. 101.4601 = 2.006295 2.562598, Ans, 9. log. 1.3 = 0.113943 log. 101.977 = 2.008502 2.122445, Ans, 10. log. 5.6 = 0.748188 log. 101343.04 = 5.005794 5.754982, Ans. 11. log. 2.5 = 0.397940 log. 103.48 = 2.014856 2.412796, Ans, 12. log. 1.2 == 0.079181 log. 1.08 = 0.033424 0.112605, Ans. 13. log. 57 = 1.755875 log. 101.4737 = 2.006353 3.762228, Ans, (356) LOGARITHMS. 243 . EXPONENTIAL EQUATIONS. (418, page 357.) 1. Taking the logarithms, X log. 7 = log. 8 locr. 8 0.C03090 , -— ^— — —1.06862, Ans, log. 7 0.845098 2. Taking the logarithms, -(log. 5) = log. 30. X 2 log. 5 1.397940 ^^,,„,, , a^=i — ^ = 7-77^777777=0-946395, Ans. log. 30 1.477121 ' 3. X log. a — 2 log. 6 + 3 log. c 2 loff. 6 + 3 logr. c ^ •whence, ir= 2_j 2 — , ^w*. loor. a 4. Clearing of fractions and transposing, we have ah' :=.din -\- c log. a + ar log. 6 = log. (c?w + c) loff. (c?m + c) — log. a . whence, x^-^-^ — -, '- ^— , Ant, log. 6 5. log. m + -{log. a) = log. 6, whence, x—-, j^^ , Ans, log. 6— log. m 6. Adding and subtracting the equations, a'=:c + (/, and6''=c— 6?; log. (<: + c?) log. (c— c?) whence, a; = -V^ -, y= ^, ^ , — ^ , -/^ w5. log. « log. 6 (357-368) 244 PROPERTIES OF EQUATIONS. V. Taking the logarithms, 8. whence, 9. whence, _log. 729_log. 3'_6 log. 3_ log. 3 log. 3 log. 3 ' (log. 216) = log. 12, _3 log. 216_3 log. 6'_9 log. 6 . '^~ log. 12 1^12"~log.l2 ' ' (log. 616)=log. 12; __3 log. 516 _ 3 log. 43 + 3 log. 12 log. 12 log. 12 3 log. 43 „ , - »— +3,^n,. log. 10. Taking the logarithms, X log. 6 = 6 log. 24 + ^ log. 17 — log. 71 18log.24 + loor. 17 — 3loff.7l , whence, x= — r^ — , Am. ^ 3 log. 6 ' PROPERTIES OF EQUATIONS. (428, page 366.) 1. Factors, < ^ ^ Product, a;'— X— = 0, Ans. 2. By (4^3), the 1st term is ar* ; " (434, 1) " 2d " 6a?»; " (434, 2) " 3d " 2x; " (434, 5) " 4th " -8. Hence, a:' + 5i;' + 2.c— 8 = 0, -4n*. (358-366) PROPERTIES IN EQUATIONS. 240 Factors, ar— 3=0 ic + 2=0 a;+l=0 x + 5 = Product, ar* — 5x' — Tar' + 29^ + 30=0, ^n«. Factors, ar-(l+f/--5)=:0 (1) ;r_(l_|/_5)=0 (2) X-V5 =0 (3) x + V^S =0 (4) Product of (1) and (2), x*—2x =6 (5) (3) - (4), x'-5 =0 (6) " (5) " (6), x*-22r» + a;' + 10a;-30=0, ^ns. _ 5. By (423,) The 1st term is «'; « (4a4, 1), " 2d " -4x*; ** (4^4, 2), " 8 — 4a:* + 22a:' — 25jr— 42 = 0, Ans, Or thus : ar+l=0 ' (\/ ar + 2=0 (2) Factors, } ^3=0 (3) ;r_(2+^-3)=0 (4) x-{2'-i^s)=0 (5) Product of (4) and (5), a:' -4a; + 7=0. Hence, (x'-4ar + 7)(ar + l)(.r + 2)(a;-3)=a;»-4.r*±0a;' + 22a;'-25ar-42=0, Ans, (366-367) 246 PROPERTIES IN EQUATIONS. 6. {x'^5x^ + ldx—2l)-r-(x-3)=x^-2x-{-1=0j Ans, 1, (x*-\-2x'—34x* + 12x-{-35)-^(x-\-1)=x'-5x*-\-x + 5=z0j Ans, 8. (x — 2){x-\-3)=zx* + x—6',hencey (x*-3x'—4x^-\-30x-3Q)-T-{x^+x-Q)=x*'-4x+6=0, the depressed equation, which may be solved thus : x'—4x=-6, ic=2+*^^, or 2—^^, COMMENSURABLE ROOTS. (432, page 373.) 2. Divisors, 6, 3, 2, 1, —1, —2, —3, —6. -6 Quotients, —1, —2, —3, —6, 6, 3, 2, 1. Add 11 10, 9, 8, 5, 17, 14, 13, 12. 2d quotients, 3, 4, 5, —17, —7, —2. Add -6 — 3, -2, -1, —23, —13, -8. 3d quotients, —1, —1, —1, 23, There are three final quotients equal to — 1 ; and the correspond- ing divisors are 3, 2, and 1. Hence the given equation has three commensurable roots, 1, 2, and 3, Ans, (367-373) COMMENSURABLE ROOTS. 247 O P j^ H H4» »^ i ^ i I § - S" 89 J* p ^ in- e^ 1 1 O J-» o ■ o 1 JO (ft I 1 p 1 CO aq -• Bi e <' p f e- § g ^ «r»- S9 CD o rt) to ►o " P P 1 — '. O* >• P »-!• 1 CO 1 O JO P^ so *< p o a- -^ 1^ 1 CO p o EJ". O* P |> CO Cl, ^ p o P o o > c> I I ^^ to + I I (—1 rfi. J35 JO I I CO «o 03 CO to jf^ H-l CO I I h-t CO CX) p g 55' o 1 1 1 OS J-" 00 1 JO 1 1 1 ►o 1 1 lO JO 1 J3S 1 to CD 1 JO 1 I—" to 1 t— • JD J35> 1 JO 4^ 1 J^ 1 to en t—i (373) 248 PROPERTIES OF EQUATIONS, 4. Divisors, 21, 7, 3, 1, —1, —3, —7, —21. 21 Quotients, 1, 3, 7, 21, —21, -7, -3, — 1. Add -16 — 15, —13, -9, 5, -37, -23, —19, —17. 2d quotients, —3, 5, 37. Add -6 — 9, -1, 31, 3d quotients, —3, —1, —31. Add ±0 —3, —1, -31. 4th quotients, —1, —1, 31. The final quotients show that the given equation has two com* mensurable roots, 3, and 1, Ant. 6. Divisors, 10, 5, 2, 1, -1, -2, -5, -10. — 10 Quotients, —1, —2, -5,-10, 10, 5, 2, 1. Add 2 1, 0, -3, -8, 12, 7, 4, 3. 2d quotients, 0, —8,-12. Add 5 5, -3, -7. 3d quotients, 1, — 3, 7. Add -6 -5, -9, 1. 4th quotients, —1, —9, — 1. (373) EQUAL ROOTS. 249 The final quotients show that 5 and —1 are the commensurable roots of the given equation. Hence, x-b=Q, (1) ir + l=0. (2) Dividing the given equation by the product of (1) and (2), we have a;'— 22'+l = -l, Therefore the four roots are 5, —1, 1 ■\-V~^\^ and 1— i^^, Arts, EQUAL ROOTS. (435, page 379.) 2. We have given The first derived polynomial of the first member is X,=5a:* + 8x' — 33a:'-16a; + 20. The greatest common divisor of this, and the first member of the given equation found by (1045), is D=x'—x-1 = {x-2){x + \), Therefore x—2 is twice a root of the equation, also x=—\ is twice a root ; and the equation has two roots, each equal to 2 ; and two roots, each equal to —1. Dividing a;' + 2.c*-lU'-8j:'' + 20.r + 16=0, by (:r-2)'(« + l)'=:0, we have ar + 4 = 0, and x— — i. Hence the roots of the given equa- tion are, 2, 2, —1, —1, —4. (377-379) 250 PROPERTIES OF EQUATIONS. 3. We have given whence, X, =5x*-8j;» + 9j;'— 14a;+8=:0. By (105) we obtain D=x^—2x-{-l = {x-iy=0. Therefore, since x=l is twice a root of i>, by (4:3«5, II) it is three times a root of the given equation X. 4. X = x* — 2x'—Ux* + l2x + S6=0; X^=4x'-6x^-22x + l2 = 0. Whence, by (105), D=x^-x—6 = {x—S){x + 2)=0, Hence x=3 is twice a root of X, and also x= — 2 ; and as the equation is of the fourth degree, it has only four roots. Therefore, 3, 3, —2, —2, Ans. TRANSFORMATIONS. (437, page 384.) 5. Put x=y-\-2] then x'=2. Whence, X' =(2)*-4(2)»-8(2) + 32, X,= 4(2)'-12(2)'-8, X\_ 3-4(2)' 2-12(2) 2 ~ 2 2 ' X3_ 2-3-4(2) 2-12 2-3~ 2-3 2-3 ' X, _ 2-3-4 2-3-4~' 2-3-4' " 2-3-4 Therefore the transformed equation must be y + 4/ — 23y=0, Am, (379-384) or X = 0; or X, = - -24; or 2 0; or 2-3 4; or ^4_ 1. DETACHED COEFFICIENTS. 251 6. Putar=y— 3; thcna;' = — 3. Whence X' =:(-3)* + 16(-3)=' + 99(-3)' + 228(-3) + 144, or X' = 0; -X",=4(-3)' + 48(-3)' + 198(-3) + 228, or X',=:-42; -X-,_ 3-4(-3r 2.48(-3) 198 ^^ X',_ X^3_ 2-3-4(- 3) 2-48 X'3 _ 2-3 2-3 ■^2-3* ^^ 2.3~ ^' X\ 2-3-4 X'. 2-3-4"2-3-4' ^^2.3.4- ■^' Therefore, the transformed equation must be y* + 4y' + 9y' — 42y = 0, Ans, v. By (437), put a:=y + |, then x'-. =2. Whence, X' =(2)*-8(2)'4-(2)' + 82(2)- 60 = 60; X\=4(2)'-24(2)»+2(2) + 82 = 22; X\ 3-4(2)' 2-24(2) 2 2 2 2 "'"2 = -23; X'3 2-3-4(2) 2-24 2-3- 2-3 2-3 = 0; X', 2-3-4 = 1. 2.^.4 2-3-4 Therefore, the transformed equation must be y* — 23y' + 22y + 60 = 0, Arts. MULTIPLICATION AND DIVISION BY DETACHED COEFFICIENTS. ( 44O5 page 390. ) 3-2-1 5. 3-5-10 4 + 2 2-4 12 — 8-4 6—10-20 _,-6-4-2 -12 + 20 + 40 12-2-8-2 6 — 22d= + 40 (38£ 1-391 ) 252 PROPERTIES OF EQUATIONS. 6. 1+1+1 1. l_44-5-2 1-1 + 1 1+4-3 1 + 1 + 1 1_4_|. 5- 2 -1-1-1 + 4-16 + 20-8 +1+1+1 - 3 + 12-15+ 6 ld=0 + l±0 + l l±0-14 + 30-23 + 16 SYNTHETIC DIVISION. (44^5 page 394.) -1+2—2+2 1 — 2 + 2 — 2 + 2, etc. Hence the quotient is 1 — 2^ + 2a;'— 2z' -|-2ar*— , _25y + 66 = 0. Hence, in applying Cardan's rule, 3;)= -25, or p=-%^', 25-=— 66, or 5^=— 33; f^«+P=V^1089— i-VV^==±22.689737 + . (394-404) 254 NUMERICAL EQUATIONS OF HIGHER DEGREES. Whence by formula (^), y=( — 33 + 22. 689737)^ + (-33-22. 589737)^ = — 2.18-3.82=-6. Therefore, x= — 6 — 2=z — 8. Dividing the given equation by (a? + 8), we have for the depressed equation, ar' — 2a;H-3=0; whence, a;=ldbV^— 2. Hence, the three roots are — 8, l+»^-2, and l-f^-2, Ans, LIMITS OF REAL HOOTS. (453, page 408.) 2. Here, n=2, and /*=25 ; hence, VP + l=^^ + l=6yAn8. 3. Supplying the deficient term, we have x* + 0x* — 5x^—9x-\-10 = 0. Therefore, 71 = 2, and P — 9; hence, VP + l=i^9-hl=iy Ans. 4. Here n=3, and P = 8; hence, VP + l=V8 + l = d, Ans, (454, page 408). 1. Changing the signs of the alternate terms, we have a-' + 3z' + 5^—7 = 0. Therefore, n=3, and Pr=7; and VP + 1 = \/7 + 1 == 3, in whole numbers, Ans. (404-408) HORNER'S METHOD. 255 2. Completing the terms, we have a:*=bOx' — 15x'— 10i; + 24 = 0. Changing the signs of the alternate terms, the equation becomes The term having zero for a coefficient may always be regarded as positive. Hence w=2, and F = t5. VP + l='^^ + l=5, Ans. 3. With the alternate signs changed, the equation is x' + Sx' + 2x'—2lx'—4x^ + lz=0. Hence, w=3, and P=2l. VP + 1 = ^^27 + 1 = 4, ^w«. HORNER'S METHOD OF APPROXIMATION. (464, page 420.) 3. We have given A''=a:' + 2x' — 23ar— 70. The first derived polynomial is X,~3x'-^4x—2S. We multiply X by 3, and divide the result by X, . Thus, 3a;' + 6x'— 69j;— 210 3a;'4-4j;' — 23r 3rc' + 4a:— 23 X, +1 2a;»-46^-210 a;«_23.r— 105 3x'— 49-^ — 315, new prepared dividend, 3a;' + 4.r— 23 — 73^-292. Hence, B=x + i, (408-420) 256 NUMERICAL EQUATIONS OF HIGHER DEGREES. We now divide X, by B, Thus, 3x' + 12r 3a:-8 — 8j:-23 — 8r— 32 ■f 9. Hence, i2, = — 9. Therefore, the functions are as follows : X =z* + 2f— 23x^10, X,=3x* + Ax—2S, R =ar + 4, i2, = -9. Substituting in these functions, x= — qo and x=z + oo successively, we have the following results, in respect to signs : For ( j:= + oo, -f- ~ + — — » 2 variations. + — , 1 variation. Hence the given equation has 1 real root. If we substitute x=0 in the functions, the signs will be - - + -, giving 2 variations. Hence the real root must lie between and + oo ; or, it is positive. To ascertain its position, make a;=l, aj=2, ar=3, etc., successively. For' Hence, the initial figure is 5. The decimal part is found by the following operation : x=\, signs. — — + — , 2 variations. ar=2, " — — + — , 2 (( X=:3, « — + + — , 2 (( ar=4, « — + + — , 2 i( x=b, " — + + — , 2 u ir=6, « + + + — , 1 variation. (420, Ex.3) HORNER'S METHOD. 257 + 2 _5 7 5 12 5 (^) 17.0 .1 17.1 .1 17.2 .1 (2) 17.30 3 17.33 3 17.36 3 (3> 17.390 4 17.394 4 17.398 4 <*> 17.402 <»> 17.4 {«) 1 — 23 35 12 60 0> 72.00 1.71 73.71 (2) 75.4300 .5199 75.9499 .5208 (8) 76.470700 69576 72.540276 69592 (4) 76.609868 8701 76.618569 8701 (5) 76.62727 122 76.62849 122 (d) 76.6297 1 76.6298 1 (7> 76.630 <^> 76.63 (9> 76.6 (10) 77 (420, Ex. 3 ) -70 | 5.1345787253 60 <^>— 10.000 7.371 C2) — 2.629000 2.278497 (8) — .350503000 .306161104 (*>— 44341896 38309285 (5) _ 603 26 11 5363994 («> — 668617 613038 (7)-55579 53641 (8) — 1938 1533 (9)_405 383 (10)_22 23 'Z58 NUMERICAL EQUATIONS OF HIGHER DEGREES. 4. AVe have given X=ar'— x' + 70x-300. The first derived polynomial is Multiplying X by 3 to avoid fractions in dividing, we proceed as follows : 3j:' — 3x' + 210ar— 900\3z^ — 2x-\-l0 32r' — 2:r'+ 70a; k -1 — a;' + 140i:— 900 --3z' + 420-c — 2700, prepared dividend. — 3a:'+- 2x~ 70 + 418X— 2630. Hence, i2=:—209j: + 1315. To avoid fractions in the next division, multiply X, by 209. 627a:'- 418^+ 14630 627ar' — 3945.C 209a: + 1315 -3r, 3527 -f3527.r+ 14630 Multiplying by 209, +737 143a:— 3057670 + 737143j:-4038005 + 1580335. i2, = -1580 ence, the functions are X = a;' -a:' + 70a:- 300 1 X,= 3a;' -2a: + 70, H =-209a: + 1315. i2, = -1580335. Let x=— cc\ we have — + + — , 2 variations ; « a:= + 00, " + V ^ _ , 1 variation ; " ^= 0, " _ + + _ , 2 variations ; Hence, the given equation has but one real root, and this lies be- tween and + oo ; it is therefore positive. Leta:=l; we have — + + — , « x=2 " _ + 4- — , « x=3 " — + + _ , " a:=4 " 4- + + _ , (420, Ex. 4 ) variations, HORNER'S METHOD. 259 Hence, the initial figure is 3. The decimal part is found by the following operation : 1 —1 f 70 -300 |3.7387936878 3 (2) (8) (4) (5) (6) 6 76 15 228 2 3 0)- 72.000 67.963 5 3 ) 91.00 6.09 (2) — 4.037000 3.119217 0) 8.0 .7 97.09 6.58 (8) — .917783000 .834882272 8.7 .7 103.6700 .3039 (4) _ 82900728 73114357 9.4 7 103.9739 3048 (5) — 9786371 9401144 (2) 10.10 3 104.278700 81584 (6)-385227 313374 10.13 3 104.360284 81648 (7)-71853 62675 10.16 3 104.441932 7150 (^)-9l78 8357 (S) 10.190 8 104.449082 7150 (9) -831 732 10.198 8 104.45623 92 ao)-89 84 10.206 8 104.45715 92 —5 W 10.214 104.4581 (5) 10.2 (7) 104.458 C«) 1 (8) 104.46 (9) 104.5 (10) 105 (420, Ex.4) 260 NUMERICAL EQUATIONS OF HIGHER DEGREE3. 5. We have given X=a:'+a;'-500. The first derived polynomial is Multiply X by 3 to avoid fractions in dividing. 3a;' + 3a;"-- 1500 Sx"4-2a; Sx'-{-2x X, +1 a;' — 1500 3jr'-4500 3a;' + 2a; 3ar'+ 2a; 3ar' + 6750a; — 2a; -4500 a; + 2250 Hence, i2=a; + 2250 3a;— 6748 -6748a; -6748jr- 15183000 + 15183000. Hence, i2, = — 15183000. Thus the functions arc X = R = Let x=. — oo ; we have ** ar=: + O) ; " 0: a:'+a;'— 500, 3x' + 2^-, a; + 2250, -15183000. - + - + + + - ± + 2 variations. 1 variation. 2 variations. Hence, there is but one real root ; and this is positive, because it lies between and + QO. .et a;=l; signs. — + + — , 2 variations. 11 arz:r2; <( — + + — , 2 a u a;=3; It — + + — , 2 (( u a;=:4 u — + + — , 2 u u a;=5 ; u — + + — , 2 (( u a;=6; (( — + + — , 2 u t( a;=7; i( — + + — , 2 u u a;=8; u + + + — , 1 variation. (420, Ex. 5) HORNER'S METHOD. 261 Hence, the initial figure is 7 ; the decimal part is found as fol- lows : + 1 -500 17.6172797559 1 56 392 8 66 W— 108.000 7 105 104.736 15 (1) 161.00 (2) — 3.264000 7 13.56 1.887181 0) 22.0 174.56 (8)-1.376819000 .6 13.92 1.323862113 22.6 (2) 188.4800 W — .052956887 .6 .2381 37858967 23.2 188.7181 (5)- 15097920 .6 .2382 13251090 (2) 23.80 (8) 188.956300 (6)_i846830 .01 .166859 1703728 23.81 189.123159 W- 143102 .01 .166908 132512 23.82 (4) 189.290067 (S)-10590 .01 4770 9465 (8) 23.830 189.294837 (9)-1125 .007 4770 947 23.837 (5) 189.29961 (io)_n8 .007 167 170 23.844 189.30128 -8 .007 167 W 23.851 («) 189.3029 2 (5) 23.9 189.3031 2 189.303 («) 2 C) (8) 189.30 (9) 189.3 (10) 189 (420, Ex. 6) 262 NUMERICAL EQUATIONS OF HIGHER DEGREES. 6. We have given, X=ar'— a:' — 40ar— 108. The first derived polynomial is X,=dx'-2x-40, Multiply Xby 3, to avoid fractions in dividing. 3a;' — 32:'— 120j:4-324j3j:' — 2ar— 40 3jr' — 2ar'— 40.c Lr, —1 Multiply by 3, — 242.1:4-932. Hence, i2=121ar— 46«, Multiplying X, by 121, to avoid fractions in the next division, - a:'- 80a: 4-324 -3a:'- 240a: 4- 9V2 -3a:' + 2a: 4- 40 363a:'— 242a:r- 4840 366.r'- 1398 a: + 1156a:- 4840 Dividing by 4, 4- 289.i:— 1210 Multiplying by 121, 4- 34969a;— 146410 4- 34969a:— 134674 121a:— 466 3a:, 4-289 11736 =— J?. Thus we find X =a:'-a:*— 40a:4-108, X,=3a:'— 2a:-40, jR =121a:— 466, i2, = + 11736. Let a:= — oo ; we have -^ 4- — +,3 variations " a:=4- oo; " + + + +, o " ar= 0; « + _ _ +^ 2 « Hence, there are three real roots, two between and 4- co, and and one between and — oo ; that is, there arc two positive roots, and one negative root. To find the situation of the positive roots, let a:=r:l ; signs, 4- — — +» 2 variations. x=2; " + _ _ 4-, 2 x=d; « + _ _ 4-, 2 a:=4; " — ± + +, 1 variation. x=5; " 4- + + 4-, Hence the initial figures of the positive roots are 3 and 4. To find the situation of the negative root, let (420, Ex. 6) HORNER'S METHOD. 263 ar=-2; signs, + — — -f, 2 variations. ar=-4; " 4- 4- — + , 2 " x=-e; " + + — + 1 2 " ar=-8; « — + — +, 3 " Hence the negative root is situated between 6 and 8. Let a: =—6; signs, + + — +> 2 variations. " ar=-7; " _ 4- _ +, 3 Hence, the initial figure of the negative root is — 6, The decimal part of the first root is obtained thus : -1 -40 + 108 |3.3792053825 3 6 — 34 -102 2 0) 6.000 3 15 -4.953 6 (1)- 19.00 (2) 1.047000 3 2.49 -16.51 -.931147 0) 8.0 (8) .115853000 .3 2.58 -.113285061 8.3 (2) — 13.9300 (4) 2567939 .3 .6279 — 2500650 8.6 -13.3021 (5) 67289 8 <2) 8.90 .6328 (8)-12.669300 -62507 (6) 4782 7 8.9V 82071 -12.587229 -3750 (T) 1032 7 82152 -1000 9.04 C4)_12.505077 (8) 32 1 1827 -25 (8) 9.110 -12.503250 (9) 7 9 1827 -7 • 9.119 9 (5)- 12.50142 5 9.128 9 -12.50137 5 W 9.137 (6)- 12.501 (5) 9.1 (7)- 12.50 .263811000 .1 + .28 -.260077041 — .3 .1 (2) -28.9300 + 111 W 3733969 — 2888700 + A ,1 — 28.9189 -f 112 (5) 845259 -577737 (2) 1.10 (3)-28.907700 (6) 267522 1 4- 10251 -259981 1.11 — 28.897449 (7) 7541 1 + 10332 -5777 ' 1.12 W-28.887117 (8) 1764 1 + 116 -1733 (8) 1.130 -28.887001 (9) 31 9 + 116 -29 1.139 (S)-28.88688 (10) 2 9 1.148 9 + 2 — 28.88686 4- 2 (S) • -3 -28.89 <4) 1.157 (6)-28.8868 (9) -28.9 (5) 1.2 (7) -28.887 (420, Ex.7) (10) -29. 268 NUMERICAL EQUATIONS OF HIGHER DEGREES. The decimal part of the second root is found thus : + 48 | 6.546145'7261 -72 1 -4 6 ■1 « 2 6 8 6 (1) 14.0 .5 14.6 .5 15.0 .5 (2) 15.50 4 15.54 4 15.58 4 (8) 15.620 6 15.626 6 15.632 6 (4) 15.638 (5) 15.6 (6) 2 -24 12 48 Oy 36.00 7.25 43.25 7.50 <«> 60.7500 .6216 51.3716 .6232 <3> 51.994800 93756 52.088556 93792 <*> 52.182348 1564 52.183912 1564 (5) 52.18548 62 52.18610 62 (6> 52.1867 1 52.1868 1 (^ 52.187 (5> 52.19 <9> 52.2 (10) 52 (420, Ex. (i>-24.000 21.625 C2) — 2.375000 2.054864 (8> -.3201 36000 .312531336 (4) _ 7604664 5218391 (5) — 2386273 2087444 c«>- 298829 260934 (7) -37895 36531 (8) -1364 1044 t9) — 320 313 (10) _ 7 5 — 2 n HORNERS METHOD. 269 . And the decimal part of the third root is found, without chang- ing the signs of the alternate terms of the equation, as follows : 1 -4 -24 + 48 -4.2652749871 -4 + 32 -32 -8 8 0) 16.000 -4 48 0) 56.00 — 11.848 — 12 (2) 4.152000 — 4 3.24 — 3.811176 (l)-16.0 59.24 <3) .340824000 — .2 3.28 — .323033625 -16.2 (2) 62.5200 W 17790375 — .2 9996 -12938807 -16.4 63.5196 (5) 4851568 — .2 1.0032 -4528900 (2)- 16.60 (3) 64.522800 (6) 322668 - 6 83925 64.606725 -258799 -16.66 0) 63869 - 6 83950 —58230 — 16.72 W 64.690675 (8) 5639 - 6 3359 64.694034 -5176 W- 16.780 (9) 463 - 5 3359 -453 -16.785 (5) 64.69739 (10) 10 — 5 118 -1 — 16.790 64.69857 3 — 5 118 (*)- 16.795 (6) 64.6997 1 (»J-16.8 64.6998 1 (7) 64.700 («)— 2 (8) 64.70 (9) 64.7 00) 65. (420, Ex.7) *270 NUMERICAL EQUATIONS OF HIGHER DEGREES. 4a:* + 4j:'4-4j;'— 4^—2000 4a:' + 3;c' + 2ar— 1 8, Given, Whence, X, +1 or, a:' + 2a:'- 82:— 2000 4a;' + 8j:' — 12a; -8000 4x' + 3a;"+ 2a;— 1 5a;''-14a;-7999. i?=-5a;« + 14a; + 7999. or. 20a;' + 15a:' + 10a:— 20a:'— 56a;'— 31996a; 71a;' + 32006a-— 855a;' + 160030a; — — 5a;' + 14a;-f-7999 -4a;, -71 5 25 355a;'— 994a;— 567929 161024a; + 567904 Whence, Multiplying R by 5032, — 25160a;' + 70448a- + — 25160a;'— 88735a; i2.=—5032j:— 17747, 40250968 -5032a;-l7747 5a;, —159183 or. 159183a;+ 40250968 5032 •159183a; + 202542870976 6032 -1591833;+ 2825020701 + 199717850275 =— i2j In these functions, let a;= — 00 ; we have a;= + 00 ; " x= 0; « + — — + — , 3 variations. + + — — — , 1 variation. — — + — — , 2 variations. Hence, the given equation has one real root between and 00, which must be positive ; and one real root between and — 00, which must be negative. By proper substitutions, we shall find the initial figures to be 4 and —4. (420, Ex. 8) HORNER'S METHOD. 271 The decimal part of the positive root is found as follows : +1 4 + 1 20 21 36 57 52 0) 109.00 6.96 — 1 84 83 228 — 500 14.4604168201 332 5 4 (1) — 168.0000 142.9536 9 4 (1)311.000 46.384 (2)— 25.04640000 24.87028656 13 4 357.384 49.232 (8)-. 17611344 .16900578 (1)17.0 .4 115.96 7.12 (2)406.616000 7.888776 (*)- 710766 422569 17.4 .4 123.08 7.28 414.504776 7.956168 (5) — 288197 253543 17.8 .4 (2)130.3600 1.1196 (•^) 422.460944 53495 (6)— 34654 33806 18.2 .4 131.4796 1.1232 132.6028 1.1268 422.514439 53495 (■)-848 845 (2)18.60 .06 ('t) 422.5679 13 (8) -3 4 18.66 .06 (8)133.7296 75 422.5692 13 18.72 .06 133.7271 75 (•"') 422.571 (6)422.57 18.78 .06 133.7446 75 (7) 422.6 (8) 423 (8)18.84 (4)134. Note. — The first contracted terms in the operation, marked (4), occur in con- nection with the cipher in the root ; and the pupil will observe that they are therefore contracted twice the usual number of places. (420, Ex. 8) 272 NUMERICAL EQUATIONS OF HIGHER DEGREES. To obtain the decimal part of the negative root, change the signs of the alternate terms, and proceed as in the following operation.: -1 + 1 + 1 -500 14.9296646474 4 12 13 52 63 212 3 (l)-288.0000 4 28 164 275.7411 7 41 0) 217.000 (2)-12.25890000 4 44 89.379 8.23961296 11 0) 85.00 306.379 (3) -4.0 1928704 4 14.31 102.987 3.74208814 0) 15.0 99.31 (2) 409.366000 (4)-.27919890 .9 15.12 2.614648 .25023185 15.9 114.43 411.980648 (5)-2696705 .9 15.93 2.622104 2502841 16.8 («) 130.3600 (3) 414.602752 (6) -193864 .9 .3724 1.184819 166859 17.Y 130.7324 415.787571 (^)- 27005 .9 .3728 1.186331 25029 (2)18.60 131.1052 W 416.97390 (8) -1976 2 .3732 7919 1669 18.62 (^) 131.4784 417.05309 (^-307 2 .1681 7920 292 18.64 131.6465 (5) 417.1323 (io)_iv 2 1681 79 17 18.66 131.8146 417.1402 2 .1681 79 CS)18.68 (4) 131.98 (<5) 417.148 W2 1 (') 417.15 131.99 (3) 417.2 1 (9) 417. Hence, , -4.9296646474, root. 132.00 1 (5) 132. (10) 42 (6)1 (420, Ex. 8) <^^'^^ HORNER S MET] 9. We have given TY, k..-9x.-n..-2o>^££fOR^ The first derived polynomial is Multiplying X by 4, to avoid fractions in dividing, 4a;*-362:'- 44ar'- 4x*-2lx'— 22^'- 8Qx-\- 16 202r 4^' — 27a?'— 22jr— 20 9 — f)x'— 22r'— 60x+ 16 or -36x'— 88a;' — 240jr+ 64 — 36a:' + 243a:' + 198a: + 180 -331a;'-438a:- -116. tiplying X, by 331, 1324a:'— 893Ya:'- 7282a;- 1324a:' -f- 1752a:' + 464a-- i2=331a:' + 438a; + 116. — 10689a:'- 6620 7746a;— 6620 331a:' + 438a: + 116 4a:,— 10689 or — 331* 10689t'— 2563926a;— 2191220, prepared dividend, — 331-10689.r'— 468l782a:-1239924 + 21l7866a:- 951296 Dividing by 32, and changing signs, i?, = — 66183ar + 29728. Multiplying i2by 66183, 66183- 331a:' + 28988154a;4- 66183-331a:'— 9839968a; + 7677228 -66183.r 4-29728 -331a-,-19414061 + 38828122a:+ 7677228 or, +19414061a;+ 3838614 or, +66183 -19414061a: + 254050990362, prepared dividend, + 66183 -1941406^—577141205408 + 831192195770=-/?,. (420, Ex. 9) 274 NUMERICAL EQUATIONS OF HIGHER DEGREES. Thus we have, for the several functions, X = x*—9x*—Ux^ — 20x-\-4, X, = 4x' — 2lx'-22x-20, R = 331a:' + 438a;+116, i2,=— 66183ar + 29728, 7?3 = -831192195770. To find the number of real roots, let x=— OO; signs, + N + + — , 3 variations. ar=4- Oo; " + + 4- — — , 1 variation. x= ; " + — + + — , 3 variations. Hence, there are two real roets between and oo. To find their situation, let x= signs. + — + + — , 3 variations. Xz= 1 u — — + — — , 2 u x= 2 t( — — + — — , 2 u x= 3 (( — — + — — ► 2 u «= 4 ti — — + — — 2 a ar= 5; u — — + — — , 2 (i x= 6 u — — + — — . 2 a x= 7 t( — — + — — 2 (( x= 8; u — + + — — 2 (( «= 9 u — + + — — 2 (( ar=10; u — 4- + — — , 2 (( ar=ll u + + + — — , 1 variation. Hence the lesser root is situated between and 1, and the greater between 10 and 11. The initial figures of the greater are 10. To find the initial figure of the lesser, let x=,l ; signs, x=.2: « + - 3 variations. 2 " Hence, the initial figure is .1. The decimal part of this root is as follows : (420, Ex. 9) HORNER'S METHOD. 275 1 —9.0 -11. -20. + 4 1. 17968402504 .1 — .89 — 11.89 - 1.189 — 21.189 ( -2.1189 — 8.9 ■^) 1.88110000 .1 - .88 -12.77 - 1.277 — 1.64238179 — 8.8 (1) -22.466000 (2) .238718210000 .1 - .87 — .996597 -23.462597 -.221760635319 -8.7 0)_ 13.6400 (8) 16957574681 .1 - .5971 -14.2371 — 1.038051 — 14873731847 a)-8.60 (2)-24.500648000 W 2083842834 7 — .5922 — 14.8293 — .139422591 -1984015679 — 8.53 -24.640070591 (5) 99827155 7 — .5873 - .140095053 -99206044 — 8.46 (2)-15.416600 (3)-24.780165644 (6) 621111 7 — . 74799 - 9387434 -496031 — 8.39 — 16.491399 — 24.789553078 (^) 125080 7 - . 74718 - 9390416 -124008 (2)_8.320 — 15.566117 W— 24.79894349 (8) 1072 9 - . 74637 - 125250 -992 -8.311 (8)-15.640754 -24.80019599 80 9 - . 4970 - 125255 — 8.302 -15.645724 (5)-24.8014485 9 - . 4970 — 15.650694 - 626 —8.293 -24.8016111 9 - . 4970 - 626 (8) — 8.284 W- 15.6557 (6)-24.801574 <*>— 8. — 6 (7)-24.8016 — 15.6563 — 6 (8) -24.802 -15.6569 - 6 (5)-15.66 Note — The term marked (6), in the second column from the right, is contracted two places, to obtain the next term (7), This is on account of the cipher which occurs in the corresponding part of the root. (420, Ex. 9) 276 NUMERICAL EQUATIONS OF HIGHER DEGREES. The decimal part of the greater root is found as follows -9 -11 — 20 + 4 |10.2586086356 10 10 -1 110 109 210 -10 — 30 ' 1090 — 300 1 10 0)-296.0000 225.0096 11 10 0) 1060.000 65.048 (2)- 70.99040000 60.41618125 21 10 0)319.00 6.24 1125.048 66.304 («)- 10.57421875 9.82494438 0)31.0 ,2 325.24 6.28 (2)1191.352000 16.971625 (4)-.74927437 .73864151 81.2 .2 331.52 6.32 1208.323625 17.051375 (5) -1063286 985022 31.4 .2 (2)337.8400 1.5925 (5)1225.375000 2.743048 (6)-78264 73877 31.6 .2 339.4325 1.5950 1228.118048 2.745096 (^-4387 3694 W 31.80 5 341.0275 1.5975 (*) 1230.86314 .20605 (8) -693 616 31.85 5 (8)342.6250 .2560 1231.06919 .20606 (»)-77 74 31.90 6 342.8810 .2560 (5)1231.2753 27 -3 31.95 5 343.1370 .2560 1231.2780 27 (3) 32.00 (4)343.39 2 343.41 2 343.43 2 (5) 343 (6)1231.28 W3 (7)1231.3 (8)1231 (»)123 (420, Kx. 9) HORNERS METHOD. 277 10. We readily find the functions to be X =:c*-12x' + 12j-3, R =2i;'-3jr+l, 3 variations. " Let ar=— oo; we have 4- — + — +, " «=+ oo; " + + + 4- +, Hence the roots are all real. And since the signs of the given equation give three variations and one permanance, three of the roots are positive, and one is negative, ( 447 ). To find the situation of the roots, Let xz=z ; we have — + + — + , 3 variations. ** «= 1; (4 — — ± + + , 1 variation. « «= 2; (( — — + + + , 1 " x= 3; t( + + + + + , " " ar=~l; (i — + + — + , 3 variations. « ar=-2; i( — + + — + , 3 " ar=— 3; (( — — + — + , 3 " " ar=-4; (( + — + — + , 4 " Hence, there are two roots situated between and 1, one between 2 and 3, and one between —3 and —4. To find more definitely the situation of the roots between and 1, Let x=.l ; we have — + + — + , 3 variations. " x=.2; a — + + — + , 3 (( " x=.Z\ u — 4- + — + , 3 t( " x=.4; a — + + — + , 3 u « «=.5; u + + ± — + , 2 u " ^=.6; u + — — + + , 2 i( « x=.T; u — — — + + , 1 variation. Hence, there is one root between .4 and .5, and one between .6 and .7. The initial figures of the four roots, taken in the order of their values, are as follows : 2, .6, .4, -3. (420. Ex. 10) 278 NUMERICAL EQUATIONS OF HIGHER DEGREES. The decimal part of the first root is found as follows : 1+0 2 — 12 4 — 8 8 12 + 12 -16 - 4 — 8 12.858083082 —8 2 2 0)-11.0000 8.9856 4 2 15.232 (2) _ 2.0 1440000 1.71940625 6 2 0) + 12.00 7.04 19.04 7.68 + 11.232 21.376 (3)-.29499375 .29192888 0) 8.0 .8 (2) 32.608000 1.780125 (4)_306487 294315 8.8 .8 26.72 8.32 34.388125 1.808375 W 36.196500 .294610 (5)- 121 72 11038 0.6 .8 («) 35.0400 .5625 («)-1134 1104 10.4 .8 35.6025 .5650 36.491110 .295340 (7)-30 29 (2)11.20 5 36.1675 .5675 W 36.7350 912 (*) 36.78645 296 (S)_l 1 11.25 5 36.78941 296 11.30 5 36.8262 912 (5) 36.792 (6) 36.79 • 11.35 5 36.9174 912 (7) 36.8 (8) 4 (3)11.40 (*)1 W 37.01 (420, Ex. 10) Horner's method. The second root is found as follows : 1 279 + 0. .6 -12. + .36 -11.68 + .72 -10.92 + 1.08 + 12 - 6.984 + 5.016 -6.552 -3 1.6060183069 3.0096 .6 .6 42.00 72.249 -5027891 3 11.61 59.427 3984354 ('> 12.0 53.61 (2) 131.676000 (4). -1043537 .9 12.42 .555584 (-•5^ 929889 12.9 66.03 132.231584 •-113648 .9 13.23 .556349 106278 13.8 <2) 79.2600 <•''> 132.78793 <6>-7370 .9 .1092 2388 6643 14.7 79.3692 132.81181 (7) -727 .9 .1092 2388 665 <2> 15.60 79.4784 (*> 132.8357 (S)-62 .1092 56 53 (8) 2 (»> 79.59 132.8413 C9)— 9 56 9 <*> 80. <-'^> 132.847 <6> 132.85 (7> 132.9 (5) 133. <5> 13. —3. 9073785547, root (420, Ex. 10) 282 NUMERICAL EQUATIONS OF HIGHER DEGREES. 11. We have given, The first derived polynomial is X,=5x* — 30x^-\-Q. Multiplying X by 5, to avoid fractions, 5x*— 50j:'4-30a; + 5 5a;* — 30i:*+ Qx 5x* — 30x'-{-6 . — 20j;' + 24a; + 5. Hence, Multiplying X, by 4, to avoid fractions, 7?=20a:* — 24ar— 5. 20jr* — 120j' + 24 20x*— 24.r' — 5.C 20j:» — 24.r— 5 — 96i:' + 5j: + 24 llencc, Multiplying i? by 24, 480x'— 5lex — 120 480x'— 2 ox'— 120.r :96x' — oar— 24, 96^:'- 5j:— 24 5x, +25 25j:'— 456j: — 120 ; multiply by 96 2400j:' — 43776^ -11520 2400^'— 1252: — 600 i2,==43651a; + 10920. — 43651jr— 10920 Hence, Multiplying i?, by 43651, 4190496x'— 218255.r— 1047624|43651.r + 10920 4190496ar* + 1048320jr '96.r, —1266575 — 1266575^:- 1047624; multiply by 43651 — 55287265325a;-45729835224 — 55287265325a; — 13830999000 _ -31898836224=— i?,. Therefore, the functions are X =x^~l0x'-\-6x—l, X,=52;*-302;' + 6, R =20x»-24i;-5, i2,=96x'-52;-24. iJj =4365 1.C + 10920, i23=31898836224. Let a;=: - oo ; we have — + — + — + , 5 variations. " x=+ oo; " 4- + + + + +, (420, Ex. 11) HORNER S METHOD. 283 Hence, there are 5 real roots. And since the signs of the given equation present two variations, two of the roots are positive, {4L4LT ) ; consequently, three are negative. To ascertai n the situation of the roots, let x= signs, + + — — + + , 2 variations. x= 1 i( — — — + + + , 1 variation. x= 2 u — — + 4- + + , 1 u x= 3 u — + 4- + + + , 1 u x=z 4; u + + + + + + , n «=-! u + — — + — + , 4 variations. x=-2 u + — — + — +, 4 a ar=-3 u + + — + ■— + , 4 u x= — 4' (( — + — + — + , 5 u Hence we have 1 positive root between . and 1, 1 (( u u 3 and 4, 2 negative roots a and - -1, 1 " root " —3 and -4. In order to limit still further the roots situated between and 1, and and —1, we may employ JT alone, according to ( 453, 3 ). As x=zl reduces X nearly to 0, the positive root between and 1 must be nearly 1. AVc therefore commence with x=ly and substi- tute the descending scale of tenths, till we come to the initial figure. Thus, Substitute x=z 1, .9, .8, The signs of X are — — + Hence, this root is situated between .8 and .9. For the roots situated between and —1, we proceed thus: Substitute x= 0, —.1, —.2, —.3, —.4, —.5, —.6, —.7, The signs of X are ++ — — — — — + Hence, one root is between —.1 and —.2; and the other between — .6 and —.7. Thus, we find the initial ficfures of the several roots, taken in the order of their algebraic values, to be -3, -.6, -.1, +.8, 4-3. Note. — In extracting the negative roots in this example, wo may change the signs of the alternate terms, remembering always to supply the de&cieat terms, with for coefficients. (420, Ex. 11) 284 NUMERICAL EQUATIONS OF HIGHER DEGREES. The operation for the first root is as follows : 1-0 -10 — + 6 - i;3.0653157913 3 9 -1 — 3 -3 -9 -3 (^> - 9 3 -10.0000000000 3 18 51 144 9.1254751776 6 17 48 141.00000000 (2)-.8745248224 3 27 132 11.09125296 .8222637421 9 44 0) 180.000000 152.09125296 (3)- 522610803 3 36 4.854216 11.38577184 496468108 12 0) 80.0000 184.854216 (2)163.47702480 (*)-26142695 3 .9036 4.908648 .97572362 16555014 (1) 15.00 80.9036 189.762864 164.45274842 (5)-9587681 6 .9072 4.963296 .97781834 8277654 15.06 81.8108 (2)194.726160 (3)165.4305668 (6)- 1310027 6 .9108 .418563 588025 1158879 16.12 82.7216 195.144723 165.4893093 (7)-151148 6 .9144 .418945 588100 148999 15.18 (2)83.6360 195.563668 (4)165.548179 (S)-2149 6 765 .419328 1961 1656 15.24 83.7125 (8>195.9830 165.550140 (»)-493 6 765 252 1961 497 (2) 15.30 83.7890 196.0082 (5)165.55210 + 4 765 252 98 83.8655 196.0334 165.55308 765 252 98 C8>83.9 (« 196.06 (5)196. (6)2 (6)165.5541 1 165.5542 (7)165.554 (8)165.55 (»)165.6 —3.0653157913, root (420, Ex. 11) HORNER'S METHOD. 285 The c 1-0 .6 >peration for -10 .36 -9.64 .72 -8.92 1.08 -7.84 1.44 the second root - - 5.784 is as follows : + 6 -3.4704 — 1|.6915752805 1.51776 .6 .6 - 5.784 — 5.352 + 2.5296 -6.6816 ci) + . 51 77600000 — .5064468651 1.2 .6 -11.136 - 4.704 (1)- 4.15200000 -1.47518739 (2) 113131349 -71670641 1.8 .6 (^) — 15.840000 — .550971 — 5.62718739 — 1.52245656 (3) 41460708 — 35906031 2.4 .6 (i)_ 6.4000 .2.781 — 16.390971 — .525213 <2)-7.14964395 - 1742015 (4) 5494677 — 5042202 0) 3.00 9 -6.1219 .2862 — 16.916184 - .498726 -7.16706410 — 1742538 (5) 452475 — 432268 3.09 9 -5.8357 2943 (2) — 17.414910 — 5236 (") — 7.1844895 - 87166 (6) 20207 -14409 3.18 9 -5.5414 .3024 -17.420146 - 5232 -7.1932061 - 87179 C7) 5798 -5764 3.27 9 (2)-5.2390 35 -5.2355 35 -17.425378 - 5229 (4)-7.201924 - 1221 (S) 34 -36 3.36 9 (2)- 17.4306 - 26 — 7.203145 - 1221 -2 (2) 3.45 -6.2320 35 -17.4332 - 26 - 17.4358 - 26 (5)- 7.20437 - 10 -5.2285 35 -7.20447 - 10 —6.2 (*>- 17.44 (»)-l7. («)-7.2046 (7)-7.205 (8)-7.21 -. ,6915762805, root. (420, Ex.11) 286 NUMERICAL EQUATIONS OF HIGHER DEGREES. The operation for the third root is as follows : 1- .1 .1 .1 .2 .1 .3 .1 .4 .1 0) .50 1 .67 1 .64 1 .71 7 .78 7 (2) .85 10 .01 -9.99 2 — 9.97 3 — 9.94 4 (i)_9.9000 399 — 9.8601 448 -0 — .999 — .999 — .997 — 1.996 — .994 0) — 2.990000 — .600207 + 6. - .0999 6.9001 — .1996 — 1. |.1756747993 .59001 0> -.4099900000 .3810019857 c^) 5.70050000 (2) — 289880143 — .25761449 255583952 5.44288551 — .30570946 — 3.680207 (2) 5.13717605 — .687071 — 2549702 (8) -34296191 30496909 (*)- 3799282 3555530 — 4.367278 — .683592 5.11167903 2573958 <« — 243752 203158 — 9.8153 (2)-5.050870 W 6.0859394 497 — 48534 — 31213 <6)_40594 36562 -9.7656 -5.099404 5.0828181 546 — 48512 — 31248 (7) -5042 4571 (2)-9.7ll0 5.147916 (*> 5.079693 43 — 48491 363 (8)-47l 467 9.7067 (8)_5.i964 43 58 — 9.7024 43 —9.6981 43 5.2022 58 5.2080 58 5.079328 — 365 (•'^) 5.07896 — 2 (»)-14 15 + 1 5.07894 2 (8) -9.7 W-5.21 (6) 5.0789 (5)— 5. (7) 5.079 (8) 6.08 (9) 5.1 (420, Ex. 11) -.1766747093, root HORNER'S METHOD. 2«7 The operation for the fourth root is as follows : 1 +0 .8 — 10. .64 + -7.488 + 6 +1 1-8795087084 -5.9904 -f .00768 .8 .8 -9.36 1.28 -7.488 -6.464 + .0096 0)1.0076800000 -11.1616 -.8742890793 1.6 .8 — 8.08 1.92 -13.952 — 4.928 0) — 11.15200000 — 1.38784399 (2). 1333909207 -.1261650637 2.4 8 -6.16 2.56 0)- 18.880000 - .232057 — 12.48984399 - 1.35266796 (S) 72258570 -71020747 3.2 .8 0)- 3.6000 .2849 -19.112057 - .211771 (2) — 13.84251195 — .17582846 W 1237823 -1137128 0)4.00 7 — 3.3151 .2898 -19.323828 - .191142 -14.01834041 — .17601901 (5) 100695 -99500 4.07 7 -3.0253 .2947 (2)-19.514970 — 21525 (8)— 14.1943594 — 97899 -14.2041493 - 97905 (6) 1195 -1137 4.14 7 -2.7306 .2996 -19.536495 - 21173 (7) 58 -5^ 4.21 7 (2)-2.4310 392 -19.557668 - 20821 W-14.213940 - 157 1 4.28 7 -2.3918 392 (^)- 19.5 785 - 12 -14.214097 - 157 <2) 4.35 -2.3526 392 -19.5797 - 12 (5)— 14.2143 (6)-14.214 (7)-14.2 -2.3134 392 -19.5809 — 12 W-2.3 (*)- 19.58 (420, Ex.11) 288 NUMERICAL EQUATIONS OF HIGHER DEGREES. The operation for the fifth root is as follows ; 1+0 3 3 -10 9 — 1 + — 3 — 3 + 6 +1 |3.0535816265 -9 -9 — 3 0)- 8.0000000000 3 18 17 51 48 144 7.5100940625 6 0) 141,00000000 (2) -^.4899059375 3 27 44 132 9.20188125 .4805548729 9 0)180.000000 150.20188125 (3)- 93510646 3 36 4.037625 9.40565000 80386391 12 0) 80.0000 184.037025 (2)159.60753125 (4) — 13124255 3 .7525 4.075375 .57742639 12862718 (1)15.00 80.7525 188.113000 160.18495764 (5)-261537 5 .7550 4.113250 .57817444 160786 15.05 81.5075 (2) 192.226250 C^) 160.7631321 (G)_ 100751 5 .7575 .249212 96489 96472 16.10 82.2650 192.475462 160.7727810 (^-4279 5 .7600 .249350 96491 3216 15.15 (3) 83.0250 192.724812 W 160.78243 (8) -1063 5 458 .249487 154 965 15.20 83.0708 (8)192.9743 160.78397 («)-98 5 458 42 154 97 (2) 15.25 83.1166 192.9785 (^) 160.7855 ^1 .458 42 (6) 160.786 (7)160.79 83.1624 192.9827 458 42 (8)160.8 (3) 83.2 (4) 193. (9) 161. (420, Ex. 11) AN \N1T1AU FINE °l^^^^o return ^^^ U ASSESSED !,°« ''^Ce THE PENALTY TH^S BOOK ON THE OATE °U ^^^ ^„„„„ ^«,LU.NCREASET0 50CEN^^^ ^^^^^^„ „^V DAY AND TO S'"" OVERDUE. SFP 9 1933 DEC 12 1938 MAY 10 1940 LD 21-^ ;> -ji