CONCRETE 
 DESIGNERS' MANUAL 
 
5K? Qraw-Ml Rook & 7m 
 
 PUBLISHERS OF BOOKS 
 
 Coal Age ^ Electric Railway Journal 
 
 Electrical World * Engineering News-Record 
 
 American Machinist v Ingenieria Internacional 
 
 Engineering 8 Mining Journal ^ Power 
 
 Chemical 6 Metallurgical Engineering 
 
 Electrical Merchandising 
 
CONCRETE 
 DESIGNERS' MANUAL 
 
 TABLES AND DIAGRAMS FOR THE DESIGN 
 
 OF 
 REINFORCED CONCRETE STRUCTURES 
 
 BY 
 
 GEORGE A. HOOL, S.B. 
 
 CONSULTING ENGINEER, PROFESSOR OF STRUCTURAL, ENGINEERING, 
 THE UNIVERSITY OF WISCONSIN 
 
 AND 
 
 CHARLES S. WHITNEY, M.C.E. 
 
 STRUCTURAL ENGINEER MT- r A UXEE r WI8. 
 
 FIRST EDITION 
 
 McGRAW-HILL BOOK COMPANY, INC. 
 
 NEW YORK: 370 SEVENTH AVENUE 
 
 LONDON: 6 & 8 BOUVERIE ST., E. C. 4 
 
 1921 
 
H k7 
 
 COPYRIGHT, 1921, BY THE 
 McGRAW-HiLL BOOK COMPANY, INC. 
 
 THE MAPL>: I'KKHS YORK PA 
 
PREFACE 
 
 The tables and diagrams presented in this manual make possible the rapid design- 
 ing of reinforced concrete structures in accordance with the Joint Committee Recom- 
 mendations, the American Concrete Institute Recommendations, the New York 
 Building Code Requirements and the Chicago Building Code Requirements. Some 
 of these tables and diagrams will also be found of such a general nature that they 
 can be used when the designing requirements are different from any of those men- 
 tioned. No tables are presented based on the flat slab recommendations of the 
 Joint Committee as these recommendations are so conservative that they are not 
 used to any extent. 
 
 The authors have for some time been preparing and using in their practice various 
 tables and diagrams in order to finally obtain complete data in the most convenient 
 form and of the greatest value to the majority of designing engineers. The collection 
 given in this book is the result. 
 
 No attempt has been made to develop theory or to duplicate information not 
 directly relating to concrete design which can conveniently be found hi other hand- 
 books possessed by all designers. 
 
 G. A. H. 
 April, 1921. C. S. W. 
 
 47789 
 
CONTENTS 
 
 PAGE 
 
 STANDARD NOTATION 1 
 
 FORMULAS ........ i. . 2 
 
 SECTION 1 SLABS . . . i ........ 5 
 
 SECTION 2 FLAT SLABS i ...... 31 
 
 SECTION 3 RECTANGULAR BEAMS 47 
 
 SECTION 4 DOUBLY REINFORCED BEAMS 63 
 
 SECTION 5 T-BEAMS 77 
 
 SECTION 6 SHEAR REINFORCEMENT . 83 
 
 SECTION 7 COLUMNS. 91 
 
 SECTION 8 BENDING AND DIRECT STRESS \. . . 199 
 
 SECTION 9 FOOTINGS 225 
 
 SECTION 10 MISCELLANEOUS . 237 
 
 APPENDIX RULINGS PERTAINING TO DESIGN AND WORKING STRESSES 243 
 
 Joint Committee Recommendations 243 
 
 American Concrete Institute Recommendations 255 
 
 New York Building Code Requirements 265 
 
 Chicago Building Code Requirements 270 
 
 VU 
 
CONCRETE 
 DESIGNERS 1 MANUAL 
 
 FLEXURE FORMULAS USED IN PREPARING TABLES AND DIAGRAMS 
 
 The flexure formulas made standard by the Joint Committee relate to working 
 stresses and safe loads, and are based on the straight-line theory of stress distribution. 
 These formulas were used in preparing the tables and diagrams in this book. 
 
 STANDARD NOTATION 
 
 Rectangular Beams. 
 
 f s = tensile unit stress in steel. 
 f e = compressive unit stress in concrete. 
 E = modulus of elasticity of steel. 
 E e = modulus of elasticity of concrete. 
 H. 
 
 n = F c 
 
 M moment of resistance, or bending moment in general. 
 A s = steel area. 
 
 b = breadth of beam. 
 
 d = depth of beam to center of steel. 
 
 k = ratio of depth of neutral axis to depth d. 
 
 z = depth below top to resultant of the compressive stresses. 
 
 j = ratio of lever arm of resisting couple to depth d. 
 
 jd = d z = arm of resisting couple. 
 
 ^ 
 p = steel ratio = 7-3- 
 
 T-Beams. 
 
 b = width of flange. 
 b' = width of stem. 
 ? = thickness of flange. 
 Beams Reinforced for Compression. 
 A' = area of compressive steel. 
 p' = steel ratio for compressive steel. 
 // = compressive unit stress in steel. 
 C = total compressive stress in concrete. 
 C" = total compressive stress in steel. 
 d' = depth to center of compressive steel. 
 z = depth to resultant of C and C'. 
 Shear, Bond and Web Reinforcement, 
 r = total shear. 
 
 V = total shear producing stress in reinforcement. 
 v = shearing unit stress. 
 
 fo 1 
 
* TORMULAS 
 
 u = bGiid^tres^pef >unii area of : bar. 
 o = circumference or perimeter of bar. 
 So = sum of the perimeters of all bars. 
 T = total stress in single reinforcing member. 
 s = Horizontal spacing of reinforcing members. 
 
 A v = area of shear steel in section of beam considered (A. C. I. notation). 
 f v tensile stress in web reinforcement (A. C. I. notation). 
 a = spacing of shear steel measured perpendicular to its direction (A. C. I. 
 
 notation). 
 Columns. 
 
 A = total net area. 
 A s = area of longitudinal steel. 
 Ac = area of concrete. 
 P = total safe load. 
 
 FORMULAS 
 Rectangular Beams. 
 
 k = V2pn + (pnT* -pn = - I = - 
 
 or -, or 
 
 jr.-ar.yCW, or w-^.- or f 
 
 _ 2f s p f.k 
 
 '~ 
 
 
 n(l - k) 
 
 T-Beams. With a T-beam it is necessary to distinguish two cases; namely, (1) 
 the neutral axis in the flange, and (2) the neutral axis in the web. 
 
 Case /. The Neutral Axis in the Flange. All formulas for "moment calculations" 
 of rectangular beams apply to this case. It should be remembered, however, that 
 b of the formulas denotes flange width, not web width, and p (the steel ratio) is 
 A, x A, 
 W not Vd 
 
 Case II. The Neutral Axis in the Web. The amount of compression in the web 
 is commonly small compared with that in the flange, and is generally neglected. The 
 formulas to use, assuming a straight-line variation of stress and neglecting the com- 
 pression in the web, are: 
 
 1 
 
 k = 
 
 i+4 
 
 nf e 
 
 2ndA s + bt z 
 2nA a + 2bt 
 
 = 3kd - 2t t_ 
 2kd - t'3 
 jd = d - 2 
 
 2 
 
FORMULAS 
 
 M M 
 
 J A,jd pjbd* 
 
 fe = n(l - fc) 
 -V 
 
 " ft 
 
 , = f,Ajd 
 
 Approximate formulas can also be obtained. The arm of the resisting couple is 
 never as small as d %t, and the average unit compressive stress is never as small 
 as K/c, except when the neutral axis is at the top of the web. Using these limiting 
 values as approximations for the true ones, 
 
 M c = V 2 f c bt(d - i#) 
 
 M, = AJ.(d - HO, or A t = - 
 
 The errors involved in these approximations are on the side of safety. 
 
 Formulas which take into account the compression in the stem are recommended 
 .where the flange is small compared to the stem. Such formulas may be found in the 
 report of the Joint Committee, and are as follows : 
 
 pnd 
 
 \- 
 
 A, + (6 - b')t* . fnA. + (b - b')i\ * nA, + (b - b')t 
 
 [(kd - 
 
 t(2kd - l)b + (kd - t)*b' 
 jd = d - z 
 
 f a =-**- 
 
 . 2Mkd 
 
 [(2kd - t)bt + (kd - t)*b']jd 
 
 Rectangular Beams Reinforced for Compression. 
 
 p' + n*(p + p'; 2 - n(p 
 
 , M M 
 
 Js 
 
 Ajd pjbd* 
 
 f f' k 
 
 n(l - fc) 
 
 >--*THi 
 
FORMULAS 
 
 f e n(l - k) 
 
 k 
 M s = bd%pj 
 
 Shear, Bond and Web Reinforcement. 
 
 V 
 
 Joint Committee (Recommended V = 
 Vertical web reinforcement 
 
 Tjd 
 
 -- 
 
 ' s / \ 
 
 = -vj- (a) 
 
 Bars bent up at angles between 20 and 45 deg. with the horizontal, 
 and web members inclined at 45 deg. 
 
 _ A s f g jd _ Tjd V^s 
 
 ~ 0.75F' ~ 0.75F' 4 jd 
 
 American Concrete Institute: 
 
 A v f v jd _ V'a 
 
 o, TTT or A v 
 V 
 
 Columns. 
 
 Square Cored 
 
 P = Afdl + (n - l)p] 
 Round Cored Hooped 
 
 P = Af e [l + (n - l)p] Joint Committee 
 
 P = Af e [(l + 4np') + (n - l)p] Am. Cone. Inst. 
 
 P = Af e [l + (n - l)p] + 2/ s p'A New York Code 
 
 P = Af e (l + 2.5wp')[l + (n - Dp! Chicago Code 
 
 (In the above formulas p f = percentage of spiral. /, in the New York 
 formula is taken at 20,000 Ib. per sq. in.) 
 
SECTION 1 
 SLABS 
 
 Diagrams 1 to 9 inclusive give the total safe loads on solid slabs of different depths 
 for the various combinations of working stresses, bending moment coefficients and 
 span lengths. 
 
 Diagrams 10 and 11 give the bending moments for different values of the total load 
 per square foot, the span length, and the bending moment coefficients. 
 
 Diagrams 12 to 17 inclusive may be used to find the moments of resistance and 
 area of steel required in solid slabs for various combinations of working stresses. 
 
 Table 1 may be employed to find the size and spacing of round or square rods for a 
 given sectional area of steel per foot of solid slab. 
 
 Tables 2 to 7 inclusive give the total safe load for ribbed slabs for various combinations 
 of working stresses. 
 
 Example of Design of Solid Slab 
 
 Given: Live load = 300 Ib. per sq. ft.; span length = 8 ft. 6 in.; M = ~; j c = 650; 
 
 /. = 16,000; n = 15. 
 
 Using Diagram 3, a slab of 8%-H. span, with a depth to steel of 4% in., is found 
 to have sufficient strength to carry a total load of 405 Ib. per sq. ft. Assuming a 
 5>9-in. rough slab with 1 in. of finish on top (not placed monolithically) and plastered 
 below, the loading will be as follows : 
 
 6^ in. of concrete =81 
 
 Plaster = 5 
 
 Live load =300 
 
 Total load =386 Ib. per sq. ft. 
 Diagram 11 shows the bending moment for this load on an 8 3^ -ft. span, when 
 
 rty/2 
 
 M = 12-, to be 27,900 in.-lb 
 
 Entering Diagram 12 at the left with this bending moment, it is found that the 
 area of steel required per foot width for a slab having a depth to steel of 4% in. is 
 0.42 sq. in., or K-in. round rods spaced 5^ in. on centers (see also Table 1). 
 
 The use of the bending moment coefficient ^2 means that the slab is continuous 
 over supports and that the area of steel over the supports must be the same as at the 
 center of the span. From Diagram 25, page 57, it will be found that one-half of the 
 rods can be bent up from the bottom at 22 in. from the support and these rods should be 
 run to the quarter point of the adjacent span. 
 
 Example of Design of Ribbed Slab 
 
 Given: Live load = 100 Ib. per sq.ft.; hottow-tile floor; span of joists 19 ft; M = 
 ~;f c = 650; /. = 16,000; n = 15. 
 
 5 
 
SLABS 
 
 Assuming a 2-in. topping and an 8-in. tile, Table 2 shows the total safe load to be 
 190 lb. per sq. ft., with a steel area per joist of 0.90 sq. in. The table also shows the 
 dead weight of floor to be 73 lb. per sq. ft. which makes a total load to be carried of 
 173 lb. per sq. ft., or less than the maximum safe load. The floor is usually plastered 
 below, which would make the total load 178 lb. per sq. ft. A 3)4- in. topping with 6-in. 
 tile would also answer. 
 
 When the size of tile and thickness of topping have been determined, it is necessary 
 to design the joists with reference to shear, bond, and compression in the concrete at 
 the haunch by treating them as individual beams. 
 
DIAGRAM 1 
 
 SOLID 
 SLABS 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 IT/ 2 
 
 M 
 
 8 
 
 f c =650 
 f s = 16,000 
 f s = 18,000 
 n=15 
 
 
 1900 
 1800 
 
 ^M 
 
 
 
 \v^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Jl70O 1 
 
 
 
 n 00 
 IGOO 
 1500 
 
 \ \ 
 
 \ \ v 
 
 -\ \ 
 
 \V 
 33 
 
 \\1 
 
 -v-v 
 
 \ \\ 
 
 V\ 
 
 \ . 
 \ . 
 
 ~v 
 
 ^ \ 
 
 ~~- 
 
 S 
 
 
 
 \ 
 
 -A- 
 
 
 "V" 
 
 t 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 - 1600 
 - 1500 
 - ]400 
 
 
 
 1400 
 1300 
 
 Vv^ 
 -Vv 
 
 \ \ 
 \ \ 
 
 \ \ 
 
 \ \ 
 
 V 
 
 v-V 
 
 a 
 
 \ 
 
 V, 
 
 -\ 
 
 ^ 
 
 . ~ 
 V"' 
 
 v 
 
 
 
 - 
 
 
 I I 
 
 -\ 
 
 \ 
 
 v 1 
 
 
 v 
 
 H 
 
 
 
 
 
 
 
 
 
 - 1300 
 
 - |?OO 
 
 
 
 1ZOO 
 
 -vAi 
 
 \ \ ' 
 
 \ \ 
 
 Vv. 
 
 , \ i 
 
 \ 
 
 .. 
 
 \ 
 
 
 
 ^ 
 
 
 ^r 
 
 
 
 x 
 
 _v 
 
 i 
 
 i 
 
 
 \ 
 
 
 
 
 
 
 
 
 - iioo 
 
 
 
 1100 
 
 W^ 
 
 S 
 
 vV 
 
 \ \ 
 
 Y^ 
 
 \ 
 
 \ 
 
 ^s 
 
 1 t 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 
 , N 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 ' 1000 
 
 
 
 
 1000 
 900 
 800 
 
 \ \ 
 \ \ 
 
 \ \ 
 
 \ \ 
 
 -V-N 
 
 -V 
 
 w 
 
 rvS 
 Sr^ 
 
 y \- 
 
 V 
 
 \ \ 
 
 V v 
 
 \ 
 
 \ 
 
 V 
 
 1 
 
 \ 
 
 V 
 
 
 v 
 
 1 
 
 ^v 
 
 
 
 \ 
 
 
 
 ~-\ 
 
 \ 
 
 r 
 
 \ 
 ?- 
 
 \ 
 
 % 
 
 ^ 
 
 _x 
 
 
 \ 
 
 r 
 
 
 
 : 800 
 - 700 
 
 
 
 
 u> 
 
 It 
 
 & 
 
 -h 
 
 q- 
 
 cr 
 
 700 
 600 
 500 
 
 \ 
 
 v v 
 \ ^ 
 
 v-v 
 
 \ 
 
 \ ^ 
 
 v-v 
 
 \ \ 
 
 \ ^ 
 
 v-v 
 
 \ ' 
 
 \ s 
 v-V 
 
 \ 
 
 1 \ 
 
 -V 
 
 V 
 
 \ \ 
 
 -v^ 
 
 . \ 
 
 \ 
 CS 
 
 v 
 
 \ 
 \ 
 
 5 
 
 s 
 
 V 
 
 r^ 
 i 
 
 
 
 v^ 
 
 ^ 
 
 ^ 
 
 \ 
 -v 
 - 
 
 >y~" 
 
 \ 
 
 -\ 
 
 -\ 
 
 \ S 
 
 r 
 ^ 
 
 ! 
 
 v^ 
 
 H V 
 
 V " 
 \ 
 
 v 
 
 \ 
 > \ 
 
 B 
 
 v 
 
 ~v 
 
 \ 
 
 ^ 
 
 9 7* 
 
 j 
 
 ,v 
 
 \ 
 
 , 
 i 
 
 j 
 
 [ 
 
 \ 
 
 ~N 
 s 
 
 s. 
 
 ^ 
 
 
 5 
 
 S 
 
 
 
 r 
 
 -V- 
 
 ( 
 
 - 600 
 - 5OO 
 
 O 
 
 O^ 
 ocT 
 (J 
 
 <f 
 
 -4-1 
 4- 
 
 (^ 
 
 j- 
 o 
 
 e_ 
 
 _Q 
 
 400 
 
 ^ 
 
 \ 
 
 \ ^ 
 
 V 
 
 if: 
 
 ^ 
 
 
 
 rV 
 
 -VI 
 
 7-J 
 
 L \ 
 ^ 
 | 
 
 \ 
 
 
 
 = 
 
 N 
 
 v 
 
 \ 
 
 r 
 
 \-^ 
 
 ^ 
 
 S 
 
 \\ 
 
 \ 
 
 r\ 
 
 ',...' 
 
 ^ 
 
 \ 
 
 
 
 
 
 v 
 
 
 y 
 A 
 
 V- 
 
 
 CT 
 to 
 1_ 
 o 
 c_ 
 
 _D 
 
 c 
 75 
 
 300 
 
 ^ 
 
 -V 
 
 J. Jl^ 
 
 =* 
 
 \ 
 
 
 3 
 
 v 
 
 P; 
 
 
 y 
 
 -V^ 
 
 0' 
 
 
 *s 
 
 
 v 
 
 Uv-V 
 
 , \ 
 
 
 
 V 
 
 . 
 
 
 
 1 
 
 
 t 
 
 
 1 
 
 - 300 
 
 C 
 
 o" 
 
 
 ^ \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 T^ 
 
 \ 
 
 -i 
 
 r- 
 
 \ 
 
 \ , 
 
 Sr 
 
 r~S 
 
 
 \ 
 
 f- 
 
 \ 
 
 
 
 
 
 2 
 
 
 
 "O 
 
 o 
 V 
 
 
 v 
 
 V 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 . i 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 '. 
 
 \ 
 
 ? 
 
 h 
 
 -r- 
 
 V- 
 
 X 
 
 \ 
 
 5 
 
 ' 
 
 \ 
 
 V 
 
 -V 
 
 \ 
 \ 
 ,\ 
 
 * 
 
 ^-4 
 V 
 \ 
 
 ^ 
 
 y 
 
 \ 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 n 
 
 
 \ 
 \ 
 
 \ 
 
 \ 
 \ 
 \ 
 
 \ 
 
 \ 
 
 rt\ 
 
 \ 
 
 \ 
 \ 
 
 1 
 I 
 
 - 
 
 \ 
 \ 
 \ 
 
 \ 
 \ 
 
 \ 
 \ 
 
 V 
 
 \ 
 \ 
 
 \ 
 
 
 s 
 
 
 
 v 
 
 \ 
 
 
 
 \ \ 
 
 ^ 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 
 S 
 
 \ 
 
 4 
 
 ^ 
 
 
 \ 
 
 !. 
 
 
 
 * 
 
 
 
 
 
 s 
 
 
 
 
 - 
 
 
 
 
 
 
 
 
 \ ' 
 
 \ * 
 
 r\ 
 
 > 
 
 . 
 
 
 ^ 
 
 
 
 
 
 
 
 
 cUU- 
 
 
 0' 
 
 ZOO 
 
 
 
 x^ 
 
 \ 
 
 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 
 
 
 \\ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 - 
 
 \ 
 
 
 \ 
 
 
 
 
 -*- 
 
 
 \ 
 
 \ 
 
 V? 
 
 t\ 
 
 \ 
 
 \ 
 
 \ 
 
 J>, 
 
 \ 
 
 \ 
 
 ^ 
 
 
 
 
 V 
 
 s \ 
 
 V 
 
 ' " 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 V 
 
 
 
 
 re 
 
 o 
 
 
 \ 
 
 \ 
 
 V 
 
 xA 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 - 
 
 
 
 \ 
 
 \ 5 
 
 \> 
 
 L\ 
 
 S 
 
 J 
 
 \' 
 
 \ 
 
 
 \ 
 
 - 
 
 ^ 
 
 
 T \ 
 
 
 $. 
 
 H 
 
 
 \ 
 
 \ 
 
 \ 
 
 o ' 
 
 
 
 
 \ 
 
 \ 
 
 - 
 
 \ 
 
 \ 
 
 - 
 
 
 \ 
 
 \\ 
 
 
 V 
 
 
 \ 
 
 s 
 
 \ 
 
 
 
 
 
 \ 
 
 \ 
 
 
 2 
 
 
 
 \ 
 
 
 
 V^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 
 
 1 \ 
 
 V 
 
 S 
 
 \ 
 
 
 N 
 
 ^ 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 y 
 
 
 
 f 
 
 
 
 
 ^ 
 
 \ 
 
 V 
 
 $ 
 
 5 
 
 - 
 
 
 I 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \\ 
 
 
 
 \ 
 
 
 v 
 
 t 
 
 \ 
 
 
 
 \ 
 
 i 
 
 V 
 
 
 
 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 *< 
 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \' 
 
 S^ 
 
 
 J 
 
 s, 
 
 
 \ 
 
 
 
 
 S 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \? 
 
 X 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 s \ 
 
 V 
 
 \ 
 
 2 
 
 5 
 
 \ 
 
 
 \ 
 
 ! 
 
 \ 
 
 \ 
 
 
 y 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 ^ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \\ 
 
 v 
 
 \ 
 
 
 
 
 \ 
 
 ,\ 
 
 
 
 
 v 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 ^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 | 
 
 N 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 
 V 
 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 x 
 
 \ 
 
 
 \ 
 
 i 
 
 k\ 
 
 
 ^ 
 
 ^ 
 
 
 S 
 
 V~ 
 
 IUU 
 
 
 
 100 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 
 
 
 . 
 
 . \ 
 
 
 . 
 
 : 
 
 \ 
 
 
 1 
 
 y 
 
 - 
 
 
 
 
 
 
 
 
 \ 
 
 1 
 
 
 ^. 
 
 
 
 \ 
 
 5 
 
 
 \ 
 
 
 
 
 5 
 
 \ 
 
 s 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 
 \ 
 
 
 
 
 ^ 
 
 90 
 
 
 
 90 
 
 y 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 i 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ > 
 
 
 
 \ 
 
 
 
 ^ 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 , 
 
 \ 
 
 
 , ^ 
 
 , \ 
 
 \ 
 
 \ ' 
 
 
 \ 
 
 v 
 
 
 \ 
 
 
 
 \ 
 
 
 - 
 
 " 80 
 
 
 
 80 
 
 \ 
 
 
 
 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 \ 
 
 
 
 ^ 
 
 
 \ 
 
 
 ^ 
 
 
 
 \ 
 
 
 , 1 
 
 V 
 
 
 
 
 
 
 V 
 
 ;' 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 ~ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 I 
 
 \ 
 
 \ 
 
 \ 
 
 ; 
 
 ^ 
 
 
 s 
 
 > 
 
 y 
 
 70 
 
 
 
 10 
 
 \ 
 
 
 
 
 i 
 
 
 
 \ 
 
 
 \ 
 
 
 
 x 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \^ 
 
 1 
 
 \ 
 
 \ 
 
 
 ; 
 
 \ 
 
 
 
 
 
 
 \ 
 
 
 
 
 x 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 . 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 v -. 
 
 
 \ 
 
 s 
 
 \ 
 
 
 \ 
 
 ! 
 
 
 60 
 
 
 
 60 
 
 
 Y 
 
 
 \ 
 
 
 
 1 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 1 \ 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 V 
 
 
 
 
 
 cO 
 
 
 Tf 
 
 
 10 
 
 
 VP 
 
 
 t^ 
 
 
 OO 
 
 
 <y> 
 
 
 o 
 
 
 
 
 
 un 
 
 
 
 
 < 
 < 
 
 D 
 \J 
 
 
 
 
 m 
 
 OJ 
 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 3 P 
 
 a 
 
 n 
 
 h 
 
 n 
 
 f 
 
 se 
 
 h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLID 
 SLABS 
 
 DIAGRAM 2 
 
 f s =16,000 
 f s = 18,000 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 "5 
 
 
 1900 
 
 :W 
 
 rVv 
 
 
 i V- 
 
 1 V 1 
 
 V-\| 
 
 
 V 
 
 N 
 
 
 
 
 
 
 v^ 
 
 L A 
 
 \ 
 
 
 ,\ 
 
 
 
 
 
 
 
 
 
 - 
 
 
 
 1800 
 
 noo 
 
 1600 
 
 -Vv 
 
 v- \ \ 
 
 
 33; 
 
 t~\-A 
 
 S N 
 -\- 
 
 3 
 
 A 
 
 \ ^ 
 
 "^~ 
 
 -\ 
 V 
 
 S"" 1 
 
 A 
 
 \ 
 
 \ 
 
 \-\ 
 -\ 
 V 4 
 
 \ 
 
 
 
 
 
 
 \ \ 
 
 \ 
 
 
 
 -A 
 
 -v 
 
 J\ 
 
 
 
 
 
 
 
 
 - 1700 
 - 1600 
 - I5QQ 
 
 
 
 1500 
 
 "V\ 
 
 VAA 
 
 Vv 
 
 
 t J 
 
 -A 
 
 A' 
 
 \ 
 
 3 
 
 k \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 5 
 
 ^ 
 
 V 
 
 
 
 
 
 
 
 - !400 
 
 
 
 1400 
 12)00 
 
 ddi 
 
 s 
 
 s 
 
 rV^ 1 
 
 V 
 
 s \ 
 
 v 
 
 
 p 
 
 -\ 
 
 ^ 
 
 
 V 
 
 
 
 
 
 \r> 
 
 
 
 -^ 
 
 
 v 
 
 
 
 
 
 
 - 1300 
 
 
 
 ieoo 
 
 \ \ > 
 
 \ 
 
 \ \ 
 
 \ \ 
 
 
 v~ : 
 
 __S 
 
 S 
 
 N 
 
 
 ^ 
 
 S 
 
 \ 
 
 s. 
 \ 
 
 
 V' 
 
 \ 
 
 ^ 
 
 v 
 
 
 
 
 X 
 
 \ 
 
 
 
 
 
 IcOO 
 
 - 1100 
 
 
 
 1100 
 
 \ \ 
 
 \ V 
 v \. 
 
 \ \ 
 
 \ \ 
 
 
 \ \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 v 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 V- 
 
 \ 
 
 \ 
 
 r> 
 
 
 
 
 
 
 
 
 \ ' 
 
 \ > 
 
 \ 
 
 , \ x 
 
 \ " 
 
 , v 
 
 
 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 \ 
 
 
 
 
 ( 
 
 ; 
 
 
 1000 
 
 
 
 1000 
 900 
 
 \ \ 
 
 \ \ 
 
 v \ 
 
 \ \ 
 
 \\ 
 
 \ \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 11 900 
 
 
 o 
 
 8 
 
 800 
 TOO 
 
 ^ 
 
 v~~^~i 
 
 \ 
 
 V- 
 
 
 r\ 
 
 
 
 y 
 
 vS 
 
 v 
 
 
 
 y 
 
 
 \ 
 
 \A 
 
 | < 
 \ V 
 
 \_ 
 
 N 
 
 
 
 
 ^ 
 
 \ 
 
 
 s 
 
 - 
 
 h =: 
 
 - 800 
 - TOO 
 
 
 
 O 
 
 en" 
 
 isT 
 n 
 & 
 
 600 
 
 -\ ' 
 
 \ \ 
 
 \ \ 
 
 \ s 
 
 \ 
 \ 
 
 \ ' 
 
 V 
 
 , \ 
 \ \ 
 
 \ 
 \ \ 
 
 -\- 
 
 \ 
 
 y \ 
 
 o 
 
 \ A 
 
 1 
 
 3 
 
 \ 
 
 i 
 
 \ 
 
 V 
 
 \ 
 
 
 v 
 
 N 
 
 V 
 \ 
 
 g 
 
 V ^ 
 
 "\ 
 
 r\: 
 
 \ \ 
 
 v~\ 
 
 L v 
 
 Vr 
 \ 
 
 o - 
 
 >x 
 
 \ 
 
 \ 
 \ 
 
 ^ - 
 
 ', 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ \ 
 
 - 600 
 - 500 
 
 it 
 
 ^ 
 
 4- 
 <*- 
 
 500 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ 
 
 i \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 
 
 \ \ 
 
 \ 
 
 
 SA 
 
 A 
 
 
 
 ^ 
 
 
 
 v 
 
 v 
 
 
 - 
 
 4- 
 >^- 
 
 \n 
 
 i_ 
 w 
 
 _ 
 JQ 
 
 400 
 
 
 
 
 vJ 
 
 
 \ 
 
 
 
 5 
 \- 
 
 \ 
 
 
 
 y- 
 
 Pi 
 
 \ 
 
 v 
 
 
 k&'v, 
 
 ~\ 
 
 -V 
 
 -A, 
 
 ^ 
 1 
 
 H 
 
 ^ 
 
 x^ 
 
 __-. 
 ^ - 
 
 :A 
 
 
 \ 
 
 .v.: 
 
 ~ 
 
 1 
 
 
 = 400 
 
 i/) 
 i- 
 <L> 
 P_ 
 
 ^C 
 T5 
 
 300 
 
 \ 
 \ 
 
 B 
 
 \ 
 
 ^ 
 
 _A 
 
 \ 
 
 \ 
 \ 
 
 V- 
 
 
 \ 
 
 ^ 
 
 5 
 
 i 
 
 \ 
 A 
 
 M 
 
 kc 
 Jv 
 
 f^ 
 
 V-V 
 g 
 
 \ ~ 
 
 'A 
 
 -A 
 
 V 
 
 
 \ 
 
 \ 
 
 K 
 
 
 
 - 
 
 V- 
 
 - 300 
 
 5= 
 15 
 
 O 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 -J^_ 
 
 ^ 
 
 \ 
 
 -v- 
 
 \ 
 
 ^ 
 
 
 
 
 x 
 
 \ \ 
 
 \ 
 
 \ 
 
 \ 
 
 J 
 
 ^s 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 
 \- 
 
 ~ " 
 
 
 
 
 O 
 
 
 \ 
 
 j 
 
 o\ 
 
 
 
 
 
 
 
 
 "X 
 
 
 
 
 313 
 
 h' ^ 
 
 
 > 
 
 r 
 
 
 
 \ 
 
 
 ! 
 
 
 \ 
 
 
 
 o 
 
 o 
 
 
 \ 
 
 \ 
 
 \^s 
 
 \ 
 
 \ 
 
 j 
 
 \ 
 
 \ 
 
 \~ 
 
 \- 
 
 \ 
 
 ^ 
 
 
 J , 
 
 \ 
 
 v \ 
 
 \ 
 
 5 
 
 s 
 
 \ 
 
 \ 
 
 x~ 
 
 \ 
 
 j 
 
 \ 
 
 
 V- s 
 
 
 w 
 
 4- 
 
 
 \ 
 
 \ 
 
 \;> 
 
 C \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 . 
 
 \ 
 
 , 
 
 
 
 \ 
 
 \ 
 
 s 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 
 ^ 
 
 
 
 
 
 
 4- 
 
 ft 
 
 
 \ 
 
 \ 
 
 V 
 
 ^ \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 \ 
 
 \ 
 
 \ ; - 
 
 \ 
 
 
 
 
 
 I 
 
 ^ 
 
 . 
 
 
 \ 
 
 \ 
 
 _ 
 
 K 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 Y\ 
 
 i 
 
 
 
 
 
 
 5 
 
 
 s 
 
 
 \ ^ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 In 
 
 
 00 
 
 \ 
 
 \ 
 
 
 
 
 
 \ 
 
 > 
 
 \- 
 
 ^ 
 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 ft 
 
 V 
 
 i 
 
 \ 
 
 
 
 r 
 
 r 
 
 
 
 \ 
 
 "^~ 
 
 dOO 
 
 
 P 
 
 
 
 
 \ 
 
 Y 
 
 r\- 
 
 5 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 s 
 
 
 \ 
 
 \ \ 
 
 \ s 
 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 v 
 
 \ ^ 
 
 
 
 
 o 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 ,V\ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ \ 
 
 \ 
 
 \.\ 
 
 
 \ 
 
 \ 
 
 \L 
 
 
 
 V 
 
 \, 
 
 \ 
 
 > 
 
 
 ft 
 
 H 
 
 
 \ 
 
 \ 
 
 \ 
 
 > 
 
 S 
 
 \ 
 
 \ 
 
 \ 
 
 y 
 
 
 
 \ 
 
 \ 
 
 ' 
 
 \ 
 
 N \ 
 
 \ 
 
 \\ 
 
 \ 
 
 
 
 \ 
 
 \, 
 
 ' 
 
 
 
 \ \ 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 L* 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 \ \ 
 
 \ 
 
 \ \ 
 
 \' 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 ) , 
 
 
 
 
 
 \ 
 
 x 
 
 
 \ 
 
 \^ 
 
 ^ 
 
 
 \ 
 
 ^ 
 
 \ 
 
 
 j 
 
 \ 
 
 x 
 
 \ 
 
 \^ 
 
 \ 
 
 \\ 
 
 \ 
 
 x \ 
 
 
 
 \ 
 
 \ 
 
 
 ^ 
 
 \\ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 
 
 
 \ N 
 
 \ 
 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 5 
 
 
 
 \ 
 
 \ 
 
 V \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \' 
 
 
 
 \ 
 
 \ 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 C 
 
 A 
 
 
 , \ 
 
 > 
 
 \ 
 
 \\ 
 \ 
 
 
 \ 
 
 j 
 
 
 \ 
 
 \\ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 x 
 
 \ 
 
 
 v 
 
 \ x 
 
 \ 
 
 \ 
 
 \ 
 
 l\ 
 
 \ 
 
 A 
 
 \ 
 
 v 
 
 
 \ 
 
 ^ 
 
 \ 
 
 " 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 v 
 
 J 
 
 V 
 
 V 
 
 A 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ s 
 
 ion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -^ 
 
 
 x 
 
 
 
 \* 
 
 
 \ 
 
 
 
 ^ 
 
 
 
 
 
 v 
 
 
 
 
 
 
 100 
 
 
 
 
 
 
 \ 
 
 , 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 \ X 
 
 \ 
 
 
 \ 
 
 \ 
 
 \^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ \ 
 
 i 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 S 
 
 
 s 
 
 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \, 
 
 \ 
 
 \ 
 
 
 
 1 
 
 
 - 90 
 
 
 
 90 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 x \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \, 
 
 \ 
 
 
 
 - 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 x - 
 
 
 5 
 
 s 
 
 x ^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 '\ 
 
 
 
 
 \ ^ 
 
 - 80 
 
 
 
 80 
 
 
 \ 
 
 
 
 \ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 \ 
 
 \ 
 
 5 
 
 \ 
 
 \ 
 
 
 
 
 
 ', 
 
 \ 
 
 1 \ 
 
 - 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 V 
 
 
 \ 
 
 
 5 
 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 11 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 ,\ 
 
 \ 
 
 \ 
 
 \ i 
 
 - TO 
 
 
 
 70 
 
 
 \ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 " 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 
 * 
 
 
 
 
 
 
 
 
 
 y 
 
 
 
 
 
 ^ 
 
 > 
 
 L 
 
 s 
 
 
 1 
 
 s 
 
 
 \ 
 
 
 
 
 
 - 60 
 
 
 
 60 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \, 
 
 \ 
 
 
 
 
 
 
 CO 
 
 
 4 
 
 
 LO 
 
 
 ^ 
 
 
 r- 
 
 
 CO 
 
 
 o 
 
 
 
 
 
 
 
 
 LO 
 
 
 
 
 4 
 
 O 
 
 ~j 
 
 
 
 ir 
 rJ 
 
 
 
 
 
 
 
 
 
 
 
 
 ^F 
 
 5C 
 
 (n 
 
 ') 
 
 n 
 
 f 
 
 <2 
 
 ei- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DIAGRAM 3 
 
 SOLID 
 SLABS 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 Jf-^ 
 M ~ 12 
 
 f c =650 
 / = 16, 000 
 f g =18,000 
 = 15 
 
SOLID 
 SLABS 
 
 " 
 
 *.. 
 
 w*- *' 
 
 fc 
 
 ON 
 
 SOLID 
 
 M = W 8 
 
 CONCRETE 
 
 P 
 
 ^E^^55 
 
 1J 
 
 SLABS 
 
 lAVjK./ 
 
 LiVI 4 
 
 f c=700 
 f s =16,000 
 
 r e = 18,000 
 
 n=15 
 
 190Q rWt^s 
 
 SAFE LOAD 
 
 
 loOO 
 1700 
 1600 
 
 ^~V\ 
 
 AA- 
 
 
 I 
 
 vV 
 
 hd 
 
 
 r^ 
 
 i 
 
 V" 
 
 y- 
 
 A 
 
 A 
 
 v 
 
 _\ 
 
 \A 
 
 ^n 
 
 E 
 
 ^1 
 
 -V 
 
 r 
 V 
 
 
 
 
 
 
 
 
 
 . 
 
 1500 
 
 O 
 
 
 
 
 
 1500 
 
 \ \ 
 
 
 XV 1 
 
 1 
 
 -\ 
 
 
 
 \ 
 
 
 pA 
 
 \ 
 
 
 T 
 
 
 
 \ N 
 
 \ 
 
 -v 
 
 \\ v 
 
 
 
 
 
 
 
 
 
 
 1400 
 
 
 1400 
 I3>OO 
 
 \ \ 
 
 
 
 
 y 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1300 
 
 \ \ 
 
 \ \ 
 
 
 V 
 
 A 
 
 s 
 
 
 
 -V 
 
 \ ' 
 
 ^ 
 
 
 
 
 
 
 
 -V 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ieoo 
 
 \ \ 
 
 
 
 A 
 
 A 
 
 \\ 
 
 
 
 
 
 
 A 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 Vn 
 
 
 
 
 
 r * 
 
 JIOO 
 
 
 1100 
 
 \ 
 
 \ 
 
 \ V 
 
 ^ 
 
 $ 
 
 \ V 
 
 
 
 
 \ 
 
 
 y 
 
 \ 
 
 y 
 
 
 \ 
 
 
 
 y 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 - 
 
 JOOO 
 
 
 1000 
 
 y \ 
 
 crrfc3 
 
 v\ 
 
 \ \ 
 
 5 
 
 \ 
 
 \ \ 
 
 X\ 
 
 A N 
 
 
 ^ 
 
 \ 
 
 L 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 i 
 
 L_^ 
 
 
 
 
 
 - 
 
 900 
 
 
 
 
 900 
 HOO 
 700 
 
 
 \ x 
 
 1 
 
 
 
 \A 
 \ 
 
 
 
 v 
 
 \ 
 
 
 V 
 
 
 J 
 
 
 
 \ 
 
 ^. 
 
 N 
 
 -A 
 
 ^ 
 
 
 ^ 
 
 A 
 
 I 
 
 
 -V 
 
 \- 
 
 V 
 
 \ 
 X 
 
 A 
 
 : - 
 
 800 
 TOO 
 
 4-' 
 
 *r 
 
 c/3 
 | 
 
 00 
 
 A - 
 
 v\ 
 
 -V' 
 
 VA 
 \ ' 
 \ 
 
 \ 
 
 \ \ 
 
 \ \ 
 
 \ \ 
 V 
 
 -y 
 
 \ 
 
 \ N 
 \ 
 
 V \ 
 
 \ 
 
 \ 
 
 \ 
 
 1 
 
 
 J 
 
 i 
 
 y 
 
 \ 
 
 3 
 
 \ 
 
 \< c 
 
 A 
 
 -\ 
 
 A 
 
 \ 
 
 \ 
 
 r 
 
 \ 
 
 ^ 
 
 \ 
 
 v 
 
 ^\ 
 
 ^S 
 
 V 
 
 GOO 
 500 
 
 00 
 
 II 
 
 cr 
 
 (n 
 
 
 
 \ 2 
 
 ^A; 
 
 \ \ 
 
 \ 
 
 \ ' 
 
 \ 
 
 \ 
 
 \ 
 
 \ ^ 
 
 \ 
 
 
 \ ( 
 
 
 \ 
 
 ^ \ 
 
 x 
 
 y 
 
 \ 
 
 
 
 ^ 
 
 \ 
 
 K 
 
 A 
 
 v 
 
 
 \ \ 
 
 
 500 
 400 
 
 V \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 V \ 
 
 -f 
 
 y \ 
 
 ^ 
 
 \ 
 
 
 
 A 
 
 y 
 
 ^X" 
 
 v 
 
 -\ 
 ^ 
 
 .^ 
 
 r 
 ^ 
 
 
 400 
 
 A. \ 
 IP 
 
 \ 
 
 A 
 v- 
 
 -v 
 
 i 
 
 i ! 
 
 3 
 | 
 
 v-V 
 
 -\- 
 
 A, 
 ~A- 
 
 V 
 
 \ \ 
 
 3 
 
 \ ' 
 y 
 
 \- 
 -^r 
 
 Jy 
 
 5 
 t 
 
 y 
 
 f-\ 
 
 A 
 
 L 
 
 r 
 
 \ 
 c 
 
 H 
 
 1 
 
 vv 
 
 p-\ 
 
 V 
 
 A 
 
 N - 
 
 
 y 
 
 S 
 
 1 
 
 n 
 
 S 
 in 
 
 300 
 
 V- 
 
 VH 
 
 f ._\ 
 
 \ 
 
 -V- 
 . . \ 
 
 \ 
 \ 
 \ 
 
 \ 
 
 x 
 \ 
 
 \ 
 \ 
 
 \- 
 
 \ 
 
 v 
 
 \ 
 
 \ 
 
 v 3 
 
 \ 
 
 \ 
 
 V 
 
 s " 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 i 
 
 s 
 
 V 
 
 \ 
 
 Xi 
 \ 
 
 ^ 
 
 \ 
 \ 
 
 \ 
 
 s 
 
 v\ 
 
 \ \ 
 
 \ \ ' 
 
 \ \ 
 
 \ \ 
 \ \ 
 
 \ 
 
 \ y 
 
 \ \ 
 
 s 
 
 A 
 
 A 
 v 
 
 s 
 
 \ 
 
 V 
 
 __y 
 
 y 
 
 v 
 
 , \ 
 
 V 
 
 \ 
 
 X 
 
 \ 
 
 
 \ 
 
 
 300 
 
 . 
 
 o 
 
 
 M- 
 
 D 
 
 vP 
 
 | 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 L 
 
 r\\ 
 
 \ \ 
 
 \ s 
 
 y 
 
 s. 
 
 
 
 
 
 
 \ 
 
 
 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ A 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 ZOO 
 
 
 ^ 
 
 V^> 
 
 l^ 
 
 V * 
 
 
 \ 
 
 \ 
 
 
 
 r 
 
 
 \ 
 
 r 
 
 v \ 
 
 \ \ 
 
 y \ 
 
 A' 
 
 
 -^ 
 
 
 
 
 
 r 
 
 
 
 
 zoo 
 
 100 
 
 V 
 
 \, 
 
 \ ^ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ji\ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ > 
 
 \ \ 
 
 \^ 
 
 \ \ 
 
 y 
 
 \ 
 
 
 \ 
 
 V 
 
 \ 
 
 s 
 
 y 
 
 A 
 
 
 \ 
 
 Ay' 
 
 \ 
 
 \ 
 
 \ 
 
 "X 
 
 \ 
 
 \ 
 
 ^ 
 
 
 
 
 \ 
 
 \ \ 
 
 
 \ \ 
 
 
 \ 
 
 y 
 
 
 
 \ 
 
 X 
 
 \ \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 y 
 
 \ 
 
 ^ 
 
 \\ 
 
 \ y 
 
 \ N 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 ^ 
 
 1 
 
 
 
 -N 
 
 ^ 
 
 A 
 
 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 \, 
 
 _ 
 
 S" 
 
 
 , \ 
 
 \ \ 
 
 \\ 
 
 y \ 
 
 \ 
 
 y 
 
 \ 
 
 y 
 
 \ 
 
 
 
 
 \ 
 
 ^ _ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 y \ 
 
 \ 
 
 \ 
 
 s y 
 
 \\ 
 
 S7 
 
 
 
 y 
 
 y 
 
 v 
 
 \ 
 
 \ 
 
 
 JOO 
 
 n 
 
 
 \ 1 ^ 
 
 > y 
 
 ^ V- 
 
 r \ 
 
 ^ N 
 
 3 
 
 V 
 
 
 y 
 
 \ 
 
 \ 
 
 \ 
 
 y 
 
 
 \ 
 
 \\ 
 
 y \ 
 
 \ 
 
 A 
 
 A 
 
 y 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 ^ y 
 
 
 v 
 
 V 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 ^ 
 
 \ \ 
 
 \ > 
 
 55 
 
 A 
 
 \ 
 
 A 
 
 \ ^ 
 
 
 
 k 
 
 \ 
 
 \ 
 
 
 ^ 
 
 \ 
 
 1 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ \ 
 
 \ ^ 
 
 \ 
 
 S 
 
 \ 
 
 \ 
 
 V 
 
 
 
 y y 
 
 
 s 
 
 \ 
 
 \ 
 
 ^ ^ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \A 
 
 \ 
 
 \\ 
 
 \ 
 
 N\ 
 
 \ s 
 
 A 
 
 x 
 
 
 ^ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 ' 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 A 
 
 V 
 
 A 
 
 
 A 
 
 v 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 y 
 
 ,\ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 y\ 
 
 
 A 
 
 \ 
 
 \\ 
 
 \ 
 
 
 \ 
 
 V 
 
 \ 
 
 
 
 ^~ 
 
 
 \ 
 
 \ 
 
 
 y 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 A 
 
 V 
 
 \ N 
 
 A 
 
 N 
 
 \ 
 
 \ 
 
 K 
 
 A 
 
 N 
 
 y 
 
 \ 
 
 \ 
 
 \ ~ 
 
 \ 
 
 \ 
 
 
 y 
 
 \ 
 
 
 v 
 
 \ 
 
 ' 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 A 
 
 \ 
 
 X 
 
 A 
 
 \ N 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 y 
 
 \ 
 
 
 
 
 90 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 y 
 
 
 
 \ 
 
 
 
 \ 
 
 
 X N 
 
 \ 
 
 y 
 
 \ 
 
 
 y 
 
 \ 
 
 
 y 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 y 
 
 
 \ 
 
 
 
 \ 
 
 
 y 
 
 \ 
 
 \ i 
 
 \ 
 
 \ 
 
 \ 
 
 c 
 
 . \ 
 
 ^ 
 
 \ 
 
 y 
 
 V 
 
 \ 
 
 \ 
 
 
 80 
 
 
 89 
 
 \ 
 
 
 V 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 ^ 
 
 
 
 
 v 
 
 \ 
 
 \ 
 
 v 
 
 
 \ 
 
 y 
 
 y" 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 > 
 
 
 \ 
 
 
 \ 
 
 
 
 , 
 
 
 \ 
 
 ^ \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ N 
 
 
 
 70 
 
 
 70 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \j 
 
 
 \ 
 
 
 X 
 
 ^ 
 
 \ 
 
 \ 
 
 s ' 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 11 
 
 
 \ \ 
 
 y 
 
 
 \ 
 
 
 ^ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 S 
 
 , \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 y^ s 
 
 
 y 
 
 y 
 
 \\ 
 
 \ 
 
 J9__ 
 
 
 60 
 
 
 A 
 
 
 \ 
 
 
 \ 
 
 
 X 
 
 
 \ 
 
 - 
 
 \ 
 
 _^ 
 
 \ 
 
 s 
 
 \ 
 
 V 
 
 x 
 
 X 
 
 y 
 
 X 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 ^ 
 
 \ 
 
 \ 
 x 
 
 y \ 
 
 \\ 
 
 I: 
 
 rO 
 
 * 
 
 
 
 * 
 
 t- 
 
 00 
 
 
 
 o 
 
 ID 
 
 
 
 i 
 < 
 
 n 
 o 
 
 
 Span ir? feel" 
 
 10 
 
DIAGRAM 5 
 
 SOLID 
 SLABS 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 M= Jo 
 
 f e =700 
 f s =16,0 
 f s =18,0 
 
 71=15 
 
 
 fP 
 
 
 A A- 
 
 * 
 
 1 
 
 
 fc 
 
 
 
 \ 
 
 g 
 
 
 3 
 
 
 V 
 
 \ 
 
 
 -V 
 
 -Vi 
 
 
 
 V 
 
 
 
 
 
 
 
 
 - I70Q 
 - 1600 
 
 
 
 1500 
 1400 
 liOO 
 
 \-V- 
 
 X \ 
 
 \-\ 
 
 ft* 
 \ X 
 
 vv 
 
 -\-\ 
 
 X \~ 
 
 Vv 
 rV 
 
 \ X 
 
 V 
 
 V 
 
 s 
 
 s s 
 
 \\ 
 
 
 \ 
 
 \ 
 
 
 ~^ 
 
 
 A 
 
 X . 
 
 \ 
 
 
 -V 
 
 
 
 ip 
 
 
 
 V 
 
 L 
 V 
 
 
 
 > 
 
 
 
 
 - 140O 
 12>00 
 
 
 
 
 \ \ 
 
 b\ 
 
 \ \ 
 
 \ \ 
 
 
 \X 
 
 x \ 
 
 
 v , 
 
 
 
 
 V 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 ^~"*"^ 
 
 
 
 UOO 
 1100 
 
 \ X 
 
 , ' 
 
 \ ^ 
 
 s 
 
 \ 
 
 \ ' 
 
 \ \ 
 i \ 
 
 \ ^ 
 \ ^ 
 
 \ 
 
 r \ 
 
 \s 
 
 \ ' 
 \ \ 
 
 s y 
 
 
 V 4 
 
 
 
 V 
 
 V 
 
 . \ 
 
 ^ 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 \ 
 
 , 
 
 V 
 
 \ 
 
 ^ 
 
 \, 
 
 \ 
 
 \ 
 
 
 'y 
 
 
 
 
 n noo 
 
 ' 1000 
 
 
 
 1000 
 900 
 
 ^\ 
 
 <** 
 
 
 VA 
 
 
 
 1 
 
 
 
 
 
 
 
 | 
 
 \ ^ 
 
 
 
 
 1 
 
 -\ 
 
 _-3 
 
 N 
 ^ 
 
 \~l 
 
 \ 
 
 3 
 
 \ 
 ^ 
 
 \ 
 
 ^ 
 
 ^s 
 
 
 
 
 O 
 
 
 
 of 
 II 
 
 800 
 700 
 
 
 \\ 
 
 F? 
 
 -^ 
 
 V 
 
 
 . X 
 
 \ 
 
 g 
 
 
 
 \ 
 
 \ 
 
 s 
 
 
 v- 
 
 \ 
 
 -\-4 
 \~ 
 
 V 
 
 V 
 
 Vi o- 
 
 v 
 f 
 
 
 i 
 
 1 
 
 rS 
 
 V 
 
 \ 
 
 V 
 
 ^ 
 
 5 
 
 i; 
 
 E 5 
 
 k \ 
 
 - GOO 
 
 
 
 
 o 
 
 CO 
 
 ii 
 
 6- 
 
 in 
 
 600 
 500 
 
 
 X 
 X 
 
 \ 
 
 \ 
 
 \ 1 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 S 
 
 > \ 
 
 -V 
 
 -v 
 
 \ 
 
 \ 
 
 v 
 
 s 
 
 v 
 
 1 
 
 II 
 
 v . 
 
 v 
 
 \ 
 
 ! 
 
 \ 
 
 s 
 
 v 
 
 ^-v 
 j 
 
 v 
 
 v 
 
 
 
 \v 
 
 i\ 
 
 A 
 
 \ 
 
 \ 
 
 i \ 
 
 A- 
 
 \ 
 
 v 
 
 i 
 
 N 
 
 \ 
 
 
 
 1 
 
 \ 
 
 \ 
 
 || 
 
 - 500 
 
 4-' 
 
 tr 
 
 C- 
 J3 
 
 400 
 
 V 
 
 V 
 
 1 V 
 
 c 
 
 
 
 \ 
 
 
 v 
 
 -V 
 
 J^ 
 
 \- 
 
 
 Y 
 
 ^v 
 
 ^ 
 
 -^ 
 
 vv 
 vV 
 
 TV 
 
 -v 
 V 
 
 3 
 
 
 V 
 
 k N 
 
 -\ 
 
 g 
 
 
 V- 
 
 >_ 
 
 ^ 
 
 ^V- 
 
 
 0) 
 _D 
 
 
 
 \ 
 
 V 
 
 ^ 
 
 5 
 
 "V 
 
 1 . \ 
 \ 
 
 I 
 
 \ 
 
 i 
 
 -v 
 
 v 
 
 
 
 _i 
 
 ^ 
 
 jr 
 
 \ i 
 
 \ \ 
 
 -Vi 
 \ \ 
 
 V V 
 
 N \ 
 
 - v 
 
 \ 
 
 v 
 
 \ 
 \ 
 
 \ 
 
 ! 
 
 t 
 
 V 
 ? 
 
 !L. 
 
 - 
 
 
 r 
 
 \ 
 
 n 30 
 
 j: 
 
 5 
 o 
 
 ^KL 
 
 \ 
 
 . -> 
 
 V- 
 
 ro 
 
 <; 
 
 \ 
 
 x 
 
 Vi 
 
 
 
 
 \ 
 
 k 
 
 s 
 
 \ 
 
 \ 
 
 5 
 
 \ ' 
 
 
 -\ , 
 
 v 
 
 
 V 
 
 
 r 
 
 
 r 
 
 
 i 
 
 \ 
 
 
 o 
 
 
 
 \ 
 
 v 
 
 ~\^^ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 5 
 
 \ 
 
 
 
 
 
 x 
 
 5 
 
 \ 
 
 \ 5 
 
 x 
 
 \ 
 
 X 
 
 i 
 
 
 
 
 
 
 
 
 .-0 
 
 o 
 
 
 \ 
 
 V 
 
 ~\ - 
 
 <v 
 
 \ 
 
 \ 
 
 >, 
 
 
 
 
 
 V 
 
 
 
 A 
 
 \ N 
 
 \ 
 
 \ \ 
 
 -v 1 
 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 " 
 
 <+- 
 
 
 
 \ 
 
 V 
 
 \ 
 
 V 
 
 
 
 
 
 A- 
 
 \ 
 
 
 
 
 
 \ 
 
 \ \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \. 
 
 ' 
 
 ! 
 
 
 
 
 
 
 
 o 
 
 " 
 
 o 
 
 
 \ 
 
 
 
 ^O 
 
 \ 
 
 \ 
 
 X 
 
 \ 
 
 i 
 
 
 
 
 1 
 
 [ 
 
 \ \ 
 
 \ \ 
 
 \ 
 
 
 ^ \ 
 
 
 
 
 1 
 
 [ 
 
 \ 
 
 [ 
 
 
 
 - 
 
 
 \n 
 
 
 
 
 L 
 
 
 \ ' 
 
 A 
 
 \ 
 
 
 
 
 
 s 
 
 ^ 
 
 \ 
 
 V 
 
 A 
 
 \ \ 
 
 \ S 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 - eoo 
 
 
 * 
 
 200 
 
 
 X 
 
 \ 
 
 \" 
 
 ^ 
 
 
 
 v- - 
 
 \ 
 
 -X 
 
 
 
 
 \ 
 
 \ s 
 
 
 vN 
 
 \\ 
 
 \ 
 
 \ 
 
 \N 
 
 
 
 ^ 
 
 ^ 
 
 
 
 s \ 
 
 
 
 P 
 
 
 \ 
 
 x 
 
 x 
 
 
 ^> 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 ^ 
 
 k, \ 
 
 \ i 
 
 \ 
 
 ^ 
 
 ^ 
 
 \ 
 
 s 
 
 
 i 
 
 ^ 
 
 \ 
 
 
 o 
 
 
 
 \ 
 
 \ 
 
 ( 
 
 
 \ ^ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 ^ \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ 
 
 \ v 
 
 \ 
 
 \^ 
 
 
 
 \ 
 
 \ 
 
 ^ 
 
 ^ \ 
 
 
 
 H 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 ^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 1 
 
 \ 
 
 \ 
 
 \ 
 
 \ ^ 
 
 \ 
 
 V 
 
 V 
 
 \ 
 
 i\ s 
 
 \ 
 
 V 
 
 \ 
 
 ' 
 
 
 \ 
 
 X s 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \\ 
 
 r 
 
 k ^ 
 
 \ 
 
 
 s 
 
 
 \ 
 
 v 
 
 
 \ 
 
 \ 
 
 
 ,5 
 
 
 
 
 
 
 , 
 
 \ 
 
 \ 
 
 
 V 
 
 \ 
 
 
 
 \ 
 
 ^ 
 
 
 V 
 
 \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 N 
 
 
 ^ 
 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 s \ 
 
 \ 
 
 \ x 
 
 \ 
 
 \ 
 
 " \ 
 
 \ 
 
 2 
 
 A 
 
 \ 
 
 1 
 
 \ 
 
 
 ^ \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 i 
 
 
 \ 
 
 1 
 
 
 V 
 
 \ 
 
 \ s 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 l\ 
 
 y 
 
 A 
 
 \ 
 
 \ 
 
 , 
 
 
 \ 
 
 
 
 
 
 
 V 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 ^ \ 
 
 \ 
 
 \ 
 
 k \ 
 
 \ x 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 x 
 
 
 
 
 
 \ 
 
 
 x 
 
 
 
 V 
 
 V 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 C 
 
 
 
 A 
 
 \ 
 
 \ 
 
 ^ 
 
 ^\ 
 
 X 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ion 
 
 
 
 too 
 
 x 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 A 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 \ 
 
 
 i \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 S 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 1 
 
 90 
 
 
 
 90 
 
 
 s 
 
 
 1 
 
 
 
 \ 
 
 
 ^ 
 
 
 
 
 
 
 \ 
 
 v < 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 s 
 
 i 
 
 \ 
 
 \ 
 
 \ \ 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 ^ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 '> 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 L L 
 
 80 
 
 
 
 60 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 ^ 
 
 
 
 *i ' 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 ( 
 
 
 \ 
 
 
 V 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ,, 
 
 I 
 
 70 
 
 
 
 70 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \\ 
 
 
 
 
 
 
 
 V 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 , \ 
 
 
 j 
 
 \ 
 
 \ 
 
 \4 
 
 60 
 
 
 
 60 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 1 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 ^ 
 
 \\ 
 
 
 
 
 
 
 
 
 
 
 in 
 
 
 - 
 
 
 - 
 
 
 00 
 
 
 dl 
 
 
 
 
 
 
 
 
 = 
 
 
 
 
 
 - 
 
 
 
 
 s 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 >p 
 
 a 
 
 n 
 
 in 
 
 ' 
 
 re 
 
 C 
 
 h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 11 
 
SOLID 
 SLABS 
 
 DIAGRAM 6 
 
 f c =700 
 f s =16,000 
 f s = 18,000 
 
 71=15 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 M =" 
 
 
 ~?ocr 
 
 
 
 vV 
 
 
 ^ 
 
 
 
 ^5 
 
 
 
 ^ 
 
 t: 
 
 
 
 ^: 
 
 
 
 
 
 
 
 t: 
 
 
 
 
 
 
 
 
 leoo 
 
 1500 
 
 -V-N 
 
 ST-V- 
 
 _^._.\^_ 
 
 ^ 
 
 A; \ 
 
 v-y- 
 -\-\ 
 V~\~ 
 
 ^ 
 
 V V 
 
 ^ 
 
 W 
 
 2? 
 
 \\ 
 
 ^ 
 
 \\ 
 
 A- 
 
 \ *\ 
 ! ^ 
 
 ^ 
 
 
 V 
 
 
 L. 
 
 
 
 \ 
 
 V~ 
 
 I 
 
 
 
 v 
 
 s 
 
 
 L 
 
 
 
 
 = - fsoo 
 
 - 1500 
 - - |Arf> 
 
 
 
 I40Q 
 
 ^ 
 
 tiC 
 
 
 3 
 
 S 
 
 
 
 s 
 
 s 
 
 ^ 
 
 \ 
 
 
 
 S 
 
 
 
 
 
 
 
 
 
 *r 
 
 1 
 
 ^ 
 
 ) 
 
 : - i^oo 
 
 
 
 1300 
 
 170D 
 
 
 
 -tt 
 
 Ys 
 
 _V-i 
 
 V-V 
 
 V 
 
 v v 
 
 g 
 
 V 
 
 5 
 
 S 
 
 \\ 
 
 ^ 
 
 ~\ 
 
 A 
 
 A 
 
 V 
 
 V\ 
 
 i \ 
 . \ 
 
 \ 
 
 \ 
 A 
 
 
 V 
 
 \ 
 
 -^ 
 
 r 
 
 \ 
 
 
 
 '. ' 1200 
 
 
 
 1100 
 
 v-\ 
 
 3 
 
 v 
 
 
 
 S 
 
 \\ 
 
 
 
 \ 
 
 I 
 
 .\ 
 5 > 
 
 1 
 
 \- 
 
 ' 
 
 
 S 
 
 V 
 
 V 
 
 \" 
 
 \ 
 
 \ 
 
 v 
 
 '(< 
 
 * 
 
 \ 
 
 \ 
 
 N"\ 
 
 -- noo 
 -" 1000 
 
 
 
 1000 
 900 
 
 \ 
 
 v \~ 
 
 \ -V 
 
 \ \ 
 =*F 
 
 s 
 
 A 
 
 v 
 
 s--\ 
 
 ^ \ 
 s 
 
 \ \ 
 
 V 
 
 \ 
 \ \ 
 
 \ 
 
 
 \ \ 
 s. 
 
 Y 
 
 v 
 
 \ 
 
 \ 
 
 
 \s 
 S 
 
 2 
 
 ,\ 
 
 -V 
 
 \-\ 
 
 V-^ 
 
 1 
 
 
 \ 
 
 \ 
 
 \ 
 
 r\ 
 
 
 S 
 
 \. 
 
 v\N 
 ^^^ 
 
 C : 900 
 
 
 
 
 
 
 uT 
 ii 
 , tf> 
 
 800 
 700 
 
 00 
 
 ^v- 
 
 t^s 
 
 v 
 \ \ 
 
 -\ . 
 
 ^ 
 
 \ 
 \ 
 
 V 
 \ \ 
 
 g 
 
 V ^ 
 v 
 
 \ 
 
 \ 
 
 v^ 
 
 \ 
 
 V 
 \ 
 \ 
 
 A 
 
 \ 
 
 -V 
 
 \v'\ 
 
 V'A 
 
 \ 
 \ 
 
 1 
 
 \ 
 
 -A- 
 
 V 
 
 V 
 
 I 
 
 \ 
 
 --Y 
 \ 
 
 1 
 
 s 
 
 \ 
 
 \ 
 
 A 
 
 A 
 y 
 
 1 
 V 
 
 ~\ 
 
 s 
 
 \ 
 
 V 
 
 \ 
 
 V 
 
 1 
 
 \ 
 3 
 
 \ 
 
 ^ 
 
 \^N 
 
 \v 
 
 v^ 
 \v 
 
 \\ 
 
 1 
 
 -v 
 \ ^ 
 
 A\ 
 
 V v 
 
 s ( 
 
 1 
 
 i 
 
 -y 
 
 -X- 
 
 ^ 
 
 \ ^ 
 
 
 
 LP 
 c 
 \ 
 
 n 
 
 \ 
 \ 
 
 | 
 
 y 
 \ 
 
 c 
 
 ^v 
 
 \ 
 
 ^ 
 \ 
 
 s 
 
 a -V 
 
 t 
 
 ^ \ 
 
 S : 800 
 - : 700 
 
 - - GOO 
 
 O 
 
 
 
 ocT 
 
 ii 
 * 
 
 ( +- 
 
 4-* 
 <f- 
 
 d~ 
 
 10 
 
 i- 
 o; 
 
 L 
 
 500 
 4.00 
 
 \ 
 
 -V 
 
 *r \ 
 
 v 
 
 V 
 
 \ 
 
 A 
 
 V 
 
 v 
 
 \ 
 
 ' V 
 \ 
 
 \ 
 ^ 
 
 \ 
 
 \ 
 
 \^ 
 
 \ 
 
 A 
 ^ 
 
 \ 
 i 
 
 v 
 
 A 
 
 \ 
 \ 
 
 \ 
 \ 
 
 \ 
 \ 
 
 ^ 
 
 \ 
 
 s 
 
 \ 
 \ 
 
 A 
 
 s 
 
 \ 
 
 s \ 
 
 v 
 
 vV 
 \A 
 
 v 
 
 \ \ 
 
 
 
 X^ 
 
 l ^\ 
 
 \ \ 
 
 1 
 1 
 
 N 
 , \ 
 
 b 
 I 
 
 \ 
 
 \ 
 
 X\ 
 
 (,V 
 
 A 
 | 
 
 's 
 ^ 
 
 \ 
 
 \ 
 
 5 
 
 A 
 
 \ 
 
 ^ 
 5 
 
 \ 
 
 ^ 
 
 \ : 
 
 ^i n 
 
 -N r 
 
 $ - 50O 
 
 : - 400 
 
 V? 
 
 +z 
 t}- 
 
 g" 
 
 1 
 
 ;U 
 
 c 
 
 300 
 
 \ 
 
 -X- 
 
 -V 
 
 ^ 
 
 3 
 
 \ 
 
 \ 
 v 
 ^ 
 
 A. 
 
 N~ 
 
 ^\- 
 
 v 
 
 s? 
 
 \ 
 
 \ 
 
 A- 
 \- 
 
 N 
 
 
 Vv 
 
 ^ 
 
 i 
 
 ^ 
 
 v\ 
 
 y\ 
 
 \\ 
 
 \A 
 
 \ 
 
 V 
 
 ! 
 
 \ 
 
 t 
 
 v 
 
 -\- 
 
 y-\- 
 
 : - iOO 
 
 )' 
 
 
 
 
 \ 
 
 - \ 
 
 V 
 
 ^ 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 \ 
 
 ^\ 
 
 V \ 
 
 v ^ 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 t5 
 
 
 \ 
 
 
 
 \*r 
 
 \ 
 
 \ 
 
 
 y 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 \ \ 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 r 
 
 
 \ 
 
 \ 
 
 VNj 
 
 
 6 
 
 .6' 
 
 
 i 
 
 
 \ 
 
 v 
 
 v_ 
 
 \ 
 
 \ 
 
 j 
 
 
 
 s 
 
 v 
 
 
 J 
 
 
 \ \ 
 
 s v 
 
 9 
 
 \ 
 s 
 
 
 \ 
 
 \ 
 
 A 
 
 
 \ 
 
 rsA 
 
 - . 
 
 
 
 o 
 
 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 s 
 
 v A 
 
 \ s 
 
 \ 
 
 \ ^ 
 
 \ 1 
 
 \ 
 
 x^ 
 
 \ 
 
 v 
 
 
 V 
 
 \ v 
 
 
 
 _o 
 
 a> 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 ^Y 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 \ 
 
 \ 
 
 \ V 
 
 V 
 
 
 \ 
 
 \ 
 
 \s 
 
 
 i\_ 
 
 
 v 
 
 4- 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 v^. 
 
 v 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 V 
 
 \ 
 
 ; s 
 
 \ ^ 
 
 \ 
 
 \- N 
 
 \ 
 
 \\ 
 
 \ 
 
 v 
 
 v 
 
 rt 
 
 N" ^oo 
 
 4- 
 
 5 
 
 <P 
 
 aoo 
 
 v 
 
 
 
 \ 
 
 ~v 
 
 \*\ 
 
 
 ^ 
 
 \ 
 
 -A 
 
 
 ^ 
 
 \ 
 
 
 5 
 
 \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 v 
 
 \ 
 
 ^ 
 
 \ 
 
 [ 
 
 \ 
 
 r^ 
 
 
 j> 
 
 
 
 ^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 ,x\ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 
 \ s 
 
 \ 
 
 \ 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 . V 
 
 \ 
 
 
 ^ 
 
 A \ 
 
 \ 
 
 
 5 
 
 
 
 
 V 
 
 \ 
 
 
 V - 
 
 5\ 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ v 
 
 \ 
 
 \ > 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 \ ^ 
 
 \ 
 
 
 5S 
 
 
 P 
 
 -+- 
 
 r\ 
 
 
 
 
 
 S 
 
 
 \ 
 
 V 
 
 f 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 s \ 
 
 V 
 
 \ v 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 N 
 
 \ 
 
 \ 
 
 \ 
 
 53i 
 
 s 
 
 .0 
 
 F 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 V 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 s: 
 
 , ^ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 ,\ 
 
 \ 
 
 \ 
 
 \v\ 
 
 
 H 
 
 
 
 v 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 } \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 S 0^ 
 
 ^ 
 
 
 
 
 \ 
 
 
 
 \ 
 
 
 v 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 y 
 
 
 \ 
 
 V \ 
 
 \ 
 
 \ 
 
 \ 
 
 s^ 
 
 \ 
 
 \ 
 
 ^ v 
 j 
 
 \ 
 
 \ 
 
 V0i\ 
 
 \ 
 
 
 
 
 V 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 > 
 
 ^ 
 
 V 
 
 \ 
 
 \u\ 
 
 v ~ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 i 
 
 
 
 \ 
 
 
 \ k y 
 
 \ 
 
 ,\ 
 
 A 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \\v 
 
 ^ 
 
 
 
 
 
 V 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 y 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 v y y N 
 \\\ 
 
 ^> 
 
 L |OO 
 
 
 
 100 
 
 
 \ 
 
 
 I 
 
 
 \ 
 
 
 
 V 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 N\\ 
 
 ^ : 90 
 
 
 
 
 
 \ 
 
 *r. 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 V 
 
 
 \ 
 
 
 
 \ 
 
 S k 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 V V ^_ 
 
 
 
 
 b)U 
 
 
 \ 
 
 
 
 
 \ 
 
 
 
 
 s 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 s^ 
 
 \ 
 
 \ n 
 
 A " 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 s. 
 
 \ \ \ 
 
 SJ 80 
 
 
 
 go 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 s 
 
 \ 
 
 \ 
 
 >^"^ 
 
 k - 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 5 
 
 \ 
 
 \ 
 
 \^\ 
 
 ? : TO 
 
 
 
 70 
 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 
 
 
 \ 
 
 \! 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 V V \ 
 
 ^: 
 
 
 
 
 
 
 
 V 
 
 
 \ 
 
 
 \ 
 
 
 
 x 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 > i 
 _^_\ 
 
 \ : 60 
 
 
 
 GO 
 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 ^ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 V 
 
 \ 
 
 \ N 
 
 
 
 
 fO 
 
 irmrr- 
 
 
 
 <t 
 
 
 in 
 
 
 CD 
 
 "s 
 
 r- 
 
 p< 
 
 xr 
 
 00 
 
 1 
 
 ( 
 
 n 
 
 ^> 
 f 
 
 < 
 e< 
 
 D 
 
 a1 
 
 
 
 i 
 
 
 m 
 
 
 
 
 
 
 
 %j 
 
 
 i 
 
 c 
 
 n 
 \i 
 
 .~&~m 
 
 
 12 
 
DIAGRAM 7 
 
 SOLID 
 SLABS 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 wl 2 
 
 M 
 
 8 
 
 f s =18, 
 n=15 
 
 
 I90O 
 
 jgoo 
 
 \ \ 
 
 ^V 
 
 
 ^ 
 
 ^ 
 
 
 E 
 
 -S 
 
 
 \ 
 
 
 
 
 
 _\^_, 
 
 ^ 
 
 
 
 
 y 
 
 - 
 
 
 
 
 
 
 
 
 - 700 
 
 
 
 TOO 
 GOO 
 1500 
 
 \ \ 
 
 \-vs 
 
 s. \ \ 
 
 \ \ 
 
 
 
 ^\ 
 
 ^ 
 
 V- 
 
 
 2 
 
 y 
 
 5 
 
 
 
 
 
 \ , 
 
 
 1 
 
 A 
 
 y 
 
 
 
 
 
 
 
 
 - GOO 
 - 1500 
 
 - J4QQ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 V-M 
 
 y \\ 
 
 VV 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 , 
 
 
 \, 
 
 
 '-, 
 
 
 -X. 
 
 V 
 
 
 
 
 
 
 
 1300 
 
 
 
 1300 
 
 \ \ 
 
 \ \ 
 
 \ \, ' 
 
 \ 
 
 aA 
 
 
 \ 
 
 i 
 
 \ 
 
 
 
 
 
 
 
 v 
 
 ; 
 
 \ 
 
 j 
 
 j 
 
 
 -J 
 
 S5 
 
 
 
 
 
 
 " IZOO 
 
 
 
 IZOO 
 
 \ 
 
 S 
 
 \ \ 
 
 V 
 
 
 ST 
 
 S 
 
 ^ 
 
 A 
 
 k 
 
 ^ 
 
 
 A^ 
 
 
 \'" 
 
 
 r^ 
 
 s 
 
 , 
 
 ', 
 
 , 
 
 
 ', 
 
 \ 
 
 
 
 
 
 
 noo 
 
 
 
 At 00 
 
 \ \ 
 
 \ \ 
 
 \ \ 
 
 \ \ 
 
 \ \ 
 
 \ 
 
 , 
 
 \ 
 
 
 \ 
 
 -T- 
 
 \ 
 
 
 
 \ 
 
 'N, 
 
 
 s 
 
 \ 
 
 A 
 
 \ 
 
 j 
 
 ; 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 
 
 \ 
 
 v \ 
 
 \ \ 
 
 \ 
 
 k \ 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 
 
 
 
 lUvJO 
 
 
 
 1000 
 QOo 
 
 \ \ 
 
 -VA 
 
 \ \ 
 
 \ \ 
 
 d^ 
 
 \ 
 
 \ 
 
 rV 
 
 
 \ 
 
 ^v 
 
 ^ 
 
 \ 
 3 
 
 -, 
 
 \ 
 
 ~\ 
 
 \ 
 
 \ 
 
 
 \ 
 
 I 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 : 900 
 
 
 
 800 
 
 ^v 
 3=5 
 
 
 V ~S 
 
 
 
 v 
 
 
 
 
 ^ 
 
 3 
 
 s 
 
 V 
 
 
 
 
 
 
 | 
 
 [ ;X 1 
 
 \, 
 
 
 
 
 
 
 
 
 : 800 
 
 
 
 
 
 700 
 
 
 \ \ 
 \ ' 
 
 
 \ 
 
 , \ 
 
 VN 
 
 
 5 
 
 
 \_ 
 
 \ 
 
 !_, 
 
 J,-4 
 
 
 
 y^ 
 
 
 ^ 3 
 
 
 
 \ 
 
 ^ 
 
 
 
 y^ 
 
 
 s 
 
 jy 
 
 
 V 
 
 - 700 
 
 Q 
 
 o 
 
 
 -X ^ 
 
 =^ 
 
 \ \ 
 
 
 V V 
 
 c 
 
 \ 
 
 i 
 
 i 
 
 \ 
 
 1 
 
 ^ 
 
 
 
 ^ \ 
 
 Vi 
 
 V 
 
 
 
 
 j 
 
 \ 
 
 [ 
 
 S 
 
 
 
 \ 
 
 
 -V 
 
 - GOO 
 
 O 
 
 <s> 
 
 
 \H 
 
 \-A 
 
 \ 
 
 
 -v- 
 
 
 \ ^ 
 
 
 
 -\ 
 
 
 
 t 
 
 
 ^V 
 
 rY 
 
 
 
 \- 
 
 
 
 
 
 \ 
 
 
 
 \~ 
 
 
 . _2_:i. 
 
 o 
 
 
 b JU 
 
 \ 
 
 \ 
 
 , \ 
 
 \ J 
 
 _x 
 
 \ 
 
 j 
 
 ly 
 
 j 
 
 j 
 
 
 . 
 
 \ 
 
 
 \ 
 
 
 & 
 
 v 
 
 i 
 
 
 
 
 - 
 
 
 
 
 
 4- 
 
 
 to 
 
 it 
 
 
 \ \ 
 \ 
 
 \ 
 
 \ 
 
 Y^ 
 
 \ 
 \ \ 
 
 \ ' 
 
 \ 
 
 . N . 
 \ x 
 
 \ 
 
 v 
 
 \ 
 
 -, 
 
 c 
 
 \ 
 
 
 
 v 
 
 1 
 
 i 
 
 \ J 
 
 y 
 
 
 
 j 
 
 
 
 [ 
 
 \ 
 
 
 \- 
 
 
 - 500 
 
 n 
 
 t 
 
 i 
 
 t 
 
 500 
 400 
 
 -V- 
 
 ~s 
 
 \ 
 
 \ \ 
 \ > 
 
 \ 
 
 \ 
 \ 
 
 v 
 
 A 
 
 \ 
 
 v\ 
 
 \ 
 \ 
 
 \ 
 
 v^ 
 -v 
 
 A 
 
 \ 
 \ 
 
 V 
 
 \ 
 \ 
 
 s 
 
 \ 
 
 \ 
 
 i 
 
 s 
 
 \5 
 
 ', 
 
 L \ 
 \ 
 
 \"\~^ 
 ^r-V 
 
 HP 
 
 \ \ 
 
 \A 
 
 "V 
 
 \ 
 
 v 
 
 -A 
 \ 
 
 V 
 \ 
 
 s 
 
 -\ 
 
 \" 
 
 i 
 
 ^ 
 , 
 
 1 
 
 3 
 
 ^ 
 
 p 
 
 r 
 
 
 
 i 2 
 ^r 
 
 - 40O 
 
 & 
 
 
 .s- 
 
 S" 
 
 S- 
 
 -ti 
 ^c 
 
 c 
 
 6 
 
 
 
 300 
 
 Ar-J 
 \ 
 
 \ 
 
 A 
 
 ipj 
 
 
 
 a-V 
 vV 
 
 \ ' 
 
 \ 
 v 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 j 
 
 i 
 
 \ 
 
 j 
 
 V 
 
 V 
 
 \ 
 
 \0 
 
 V 
 
 i 
 
 \ 
 
 u 
 
 \ 
 
 
 
 ! 
 
 5 
 
 \ 
 
 V 
 
 s 
 
 -s 
 
 \ \ 
 \ 1 
 
 v- 
 
 \ 
 
 
 H 
 
 \ \ 
 Vr 
 
 1 
 
 \ 
 
 ^ 
 
 rV 
 
 S 
 
 -\ 
 Sp 
 
 -V 
 
 \ 
 
 V 
 
 J 
 
 -v 
 
 p 
 
 V 
 
 H 
 
 V 
 
 HN 
 
 ^ 
 
 \ 
 
 r 
 
 V 
 
 ^ 
 
 \ 
 
 \ 
 
 ' 
 \ 
 
 
 V 
 \ 
 
 
 
 
 t 
 s 
 
 v 
 1 
 
 T 
 
 ^v 
 
 cE 
 
 \ 
 
 ^300 
 
 C- 
 
 _c 
 
 c 
 
 7J 
 
 Q 
 
 
 \ 
 
 V 
 
 rt 
 
 \ 
 
 V 
 
 i 
 
 \ 
 
 V 
 
 
 
 i 
 
 \ 
 
 s 
 
 \ 
 
 s 
 
 \ 
 
 
 -V^ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 o 
 
 3- 
 
 
 \ 
 
 \ 
 
 \ , 
 
 v \ 
 
 \ 
 
 ! 
 
 \ 
 
 \ 
 
 
 
 
 
 
 
 \ 
 
 - 
 
 T\ 
 
 v ', 
 
 ; ' 
 
 
 
 v 
 
 ^ 
 
 ^ 
 
 
 \ 
 
 
 \ 
 
 _ 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 ^ \ 
 
 \ 
 
 
 
 \^ 
 
 . 
 
 i 
 
 
 \ 
 
 \ 
 
 '. 
 
 V 
 
 
 
 \ ., 
 
 j \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 s 
 
 
 s 
 
 - 3 f\ft 
 
 o 
 
 to 
 
 
 V 
 
 V 
 
 \ 
 
 
 
 i 
 
 
 \ 
 
 
 
 >. 
 
 
 
 
 
 N 
 
 
 \ 
 
 > 
 
 
 s 
 
 y 
 
 \ 
 
 
 
 
 \ 
 
 , 
 
 i\J(J 
 
 
 
 ^oo 
 
 
 
 
 A 
 
 \ 
 
 : 
 
 
 \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 - : 
 
 \ 
 
 
 \ 
 
 ' 
 
 V 
 
 k 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ', 
 
 v 
 
 
 
 
 s 
 
 o 
 
 
 
 \ 
 
 \ 
 
 \ l f 
 
 , \ L 
 
 5 
 
 \ 
 
 
 
 \ 
 
 
 M 
 
 \ 
 
 
 \ 
 
 X \ 
 
 , 
 
 1 
 
 ^ ' 
 
 
 v 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 L 
 
 i 
 
 \ 
 
 
 
 -t- 
 
 
 
 \ 
 
 \ 
 
 \v 
 
 ^ \ 
 
 
 
 , 
 
 \ 
 
 
 
 
 
 
 \ 
 
 "\ S 
 
 \ ^ 
 
 
 
 
 \ 
 
 \ 
 
 S 
 
 L 
 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 
 75 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 * 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 - 
 
 \ 
 
 , \ ' 
 
 
 \ 
 
 , 
 
 i S 
 
 5 
 
 3 
 
 \ 
 
 i 
 
 s^ 
 
 
 
 
 \ 
 
 sp 
 
 
 1 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 V 
 
 . 
 
 \ 
 
 
 
 \ 
 
 . 
 
 
 
 
 \ \ 
 
 \ ^ 
 
 \ 
 
 
 \ 
 
 y 
 
 ,\ 
 
 s 
 
 
 1 
 
 \ 
 
 \ 
 
 s 
 
 L\ 
 
 
 p. 
 
 
 
 
 -, 
 
 
 
 
 
 ' , 
 
 
 I 
 
 \ 
 
 v 
 
 
 
 
 ' 
 
 \ 
 
 
 \ * 
 
 s 
 
 \ 
 
 
 v 
 
 s 
 
 \ 
 
 j 
 
 s 
 
 y 
 
 \ 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 . 
 
 
 
 ! \ 
 
 T 
 
 \ \ 
 
 \ 
 
 
 
 \ 
 
 
 
 
 
 
 , 
 
 \ 
 
 
 A 
 
 
 
 
 
 
 
 V 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 ' 
 
 
 5 
 
 \N 
 
 A 
 
 \ s 
 
 2 
 
 
 \ 
 
 
 s 
 
 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 ' 
 
 \ 
 
 
 
 \ 
 
 
 
 
 
 \ 
 
 V 
 
 A 
 
 \ 
 
 
 
 . 
 
 \ 
 
 -,\ 
 
 
 \ 
 
 
 
 
 v 
 
 ~ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 
 V 
 
 
 \ 
 
 
 
 \ 
 
 \\ 
 
 A 
 
 \ 
 
 L 
 \ 
 
 , 
 
 \ 
 
 V 
 
 s 
 
 \ 
 
 \ t 
 
 \ 
 
 J 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 ^ 
 
 
 
 
 
 
 
 
 s 
 
 
 \ 
 
 , \ 
 
 \ 
 
 V 
 
 \ 
 
 \ k 
 
 
 
 \ 
 
 
 
 > 
 
 
 \ 
 
 IUU 
 
 
 
 100 
 90 
 HO 
 
 
 
 
 \ 
 
 
 
 
 
 j 
 
 
 
 
 
 \ 
 
 \ 
 
 \ \ 
 
 > 
 
 \ 
 
 \ 
 
 
 s 
 i ^ 
 
 i 
 
 
 Sj 
 
 \ 
 
 V 
 
 \ 
 
 i 
 
 - 70 
 
 
 
 70 
 
 60 
 rt 
 
 
 1 \" 
 
 *- 
 
 \- 
 
 \ 
 -\ 
 
 tO 
 
 \ 
 
 ~^ 
 & 
 
 . 
 
 \ 
 
 r- 
 
 
 
 E 
 
 o 
 
 
 <T> 
 
 , 
 
 
 
 L JL 
 
 \ 
 
 v^_ 
 
 \ 
 
 v 
 
 \ 
 
 ul 
 
 S"^ 
 
 . * 
 
 P 
 V 
 
 
 
 y 
 
 D 
 
 'V/ 
 
 
 
 -S 
 
 \ N 
 
 , \ 
 
 If) 
 
 f\J 
 
 - 60 
 
 
 
 
 
 
 
 
 
 
 
 c 
 
 f 
 
 on 
 
 T 
 
 ir 
 
 1 
 
 fc 
 
 EG A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLID 
 SLABS 
 
 DIAGRAM 8 
 
 
 to = 7 50 
 f s =16,000 
 f s =18,000 
 n=15 
 
 SAFE LOAD ON SOLID CONCRETE SLABS 
 
 **% 
 
 
 OOO 
 
 1800 
 
 \ \ 
 \ \ 
 
 r~VA 
 
 Vv 
 
 ^\ \ 
 
 
 \\ 
 
 vv 
 
 Ar 
 
 5 
 
 Aj- 
 
 v 
 
 -\) 
 
 
 ^T 
 
 * 
 
 
 
 M 
 
 
 -\ 
 
 -\ 
 
 -\[ 
 
 
 
 
 
 
 noo 
 
 
 
 noo 
 
 1600 
 1500 
 1400 
 
 
 vv 
 
 \ \ 
 
 , \ 
 
 -v\ 
 
 \ \ 
 \ 
 
 
 rVN 
 \ \ 
 
 v^ 
 
 t x_ 
 
 \ N 
 
 Vv 
 
 y 
 
 V 
 
 Sj 
 
 \ 
 
 ^ 
 
 \ 
 
 V 
 
 A 
 
 y~ 
 
 
 
 
 V 
 
 Y 
 
 V^ 
 
 
 
 ^ 
 _v 
 
 r 
 
 7. 
 
 
 1GOO 
 - 1500 
 - 1400 
 1300 
 
 
 
 1300 
 
 \ 
 
 - \ \ 
 *. \ 
 
 \ \ 
 
 L \ 
 
 v-V 
 
 \\ 
 
 \ \ 
 
 
 \\ 
 
 \ 
 
 \ 
 
 5 
 
 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 -A 
 
 \ 
 
 \ 
 
 
 
 g 
 
 
 'J 
 
 
 : izoo 
 
 
 
 ieoo 
 
 -\-A 
 
 \\ 
 
 A_l 
 
 _4- 
 
 A- 
 
 
 s 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 S 
 
 
 s 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 
 
 - 1100 
 
 
 
 noo 
 
 \- 
 
 \ \ 
 
 rV 
 
 \ \ 
 
 V 
 
 \ 
 
 \ 
 
 ^ \ 
 
 \\ 
 
 S 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 -V 
 
 1 
 
 
 
 
 
 \ , 
 
 
 \ 
 
 \ 
 
 \ 
 
 i 
 
 - 1000 
 
 
 
 1000 
 
 \ \ 
 
 \ J 
 
 \ 
 
 \ \ 
 |g 
 
 \ \ 
 
 *v~S 
 
 \ 
 
 \ 
 
 \ v 
 
 2 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \^ ~ 
 
 -~ 900 
 
 
 
 yuu 
 $00 
 
 -V- 4 
 
 r V~ 
 
 V 
 
 -y-^ 
 
 \A 
 
 ^r 
 
 VA 
 
 -V 
 
 -V 
 
 c 
 
 
 | 
 
 jr 
 
 rV 
 
 v\ 
 
 \^ 
 -^ 
 
 r^J 
 
 V 
 
 rV 
 
 V~ 
 
 V-N 
 
 A-j 
 
 A- 
 
 ^-S 
 
 v- 
 ^\ 
 5 
 
 ^ 
 
 F 
 
 v~ 
 
 -\ 
 
 A 
 
 -\ 
 
 \ 
 
 f\ 
 
 
 3n 700 
 
 o 
 
 
 
 
 
 o 
 o 
 o 
 
 TOO 
 
 V V 
 V 
 
 \ \ 
 
 AJJ s 
 
 -V 
 
 \ 
 
 \ 
 
 V 
 
 3 
 
 \ 
 S 
 
 s 
 
 H 
 
 y 
 
 \ 
 
 I 
 
 \ 
 
 1 
 
 \ 
 
 1 
 
 V 
 \ 
 
 -\ 
 
 -V 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 [ 
 
 
 \-v- 
 
 fs - 600 
 
 2 
 
 If 
 
 ,rT 
 
 600 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 -^y 
 
 \ 
 
 ^ 
 
 \ 
 
 ^ 
 
 
 \ 
 
 I 
 
 \ 
 
 \ \ 
 
 r^ 
 
 \ 
 
 
 
 y 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 
 
 [ 
 
 \\- 
 
 
 
 \ 
 
 
 
 ^, 
 
 
 
 
 
 
 
 
 *"~ 
 
 
 \\ 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 V 
 
 
 \ 
 
 s 
 
 
 \ 
 
 \ 
 
 
 u 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 X k- 
 
 \ ~ 
 
 
 it 
 
 
 
 v \ 
 
 \ 
 
 \ 
 
 \ ] 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 ffi 
 
 ^N 
 
 A 
 
 V 
 
 
 \ 
 
 
 V 
 
 
 
 \ 
 
 \A 
 
 : - 500 
 
 q- 
 
 ^ 
 
 --* 
 <t- 
 
 5f 
 
 500 
 400 
 
 -\- 
 
 A 
 
 \ 
 
 ~N 
 
 5 
 
 \ 
 
 ^ \ 
 
 V 
 
 AT 
 
 V 
 
 
 
 S 
 
 \ 
 
 V\ N 
 
 v 
 1 
 
 vV 
 
 \x 
 
 5 
 
 \- 
 
 \ 
 
 \ 
 
 X 
 
 \ 
 
 5 
 
 ^ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 | 
 
 \ 
 
 ^ 
 
 is - 400 
 
 cr 
 
 V0 
 
 l- 
 
 
 
 a 
 
 r\ 
 
 O 
 
 C- 
 
 .0 
 C 
 
 300 
 
 V 
 
 V 
 
 l^ . 
 
 V 
 \ 
 
 \ 
 
 * 
 
 ~\" 
 
 -A 
 
 V 
 j-\ 
 
 \ 
 
 S 
 
 -V 
 
 V- 
 
 A 
 \ 
 
 \ 
 
 i 
 t 
 
 \ 
 
 V 
 
 \ x 
 
 V" 
 "T 
 
 V 
 
 -\ 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 1 
 I 
 
 \-\ 
 
 s ' 
 
 s 
 
 ~v\ 
 
 s 
 
 s 
 
 5 
 
 V\ 
 
 v 
 
 
 \ 
 
 \ 
 
 | 
 
 N\ 
 
 ^ 
 
 X : 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 
 Np 
 \ s 
 
 \ 
 
 \ 
 
 nr 
 ,^.._ 
 
 ?L A 
 > 
 
 k - 300 
 
 .E 
 
 "6 
 5 
 
 o 
 
 ^ 
 
 
 \ 
 \ 
 
 V 
 
 V 
 
 * 
 
 LA. 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 \-\ 
 
 
 V \ 
 
 1 
 3 
 
 v 
 
 
 \ 
 
 
 
 
 v\- 
 
 \ . 
 
 
 O 
 
 
 
 \ 
 
 
 \ 
 
 $ 
 
 \ 
 
 ., s. 
 
 \ 
 
 \ 
 
 5 
 
 
 vP 
 
 s 
 
 \ 
 
 \ 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ \ 
 
 , \ 
 \ 
 
 \ 
 
 \ 
 
 \ 
 n s 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 k_ r \ 
 
 
 
 
 ^^ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 n S 
 
 
 
 
 \ 
 
 \ 
 
 ^ 
 
 
 
 
 V \ 
 
 \ N 
 
 , \ 
 
 \ \ 
 
 v 
 
 \ 
 
 \\ 
 
 
 ; 
 
 
 k 
 
 \ N 
 
 _ 
 
 
 
 w 
 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 s 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 , \ 
 
 \ \ 
 
 \ 
 
 \ 
 
 
 V 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 5 - ^ r\f\ 
 
 in 
 
 ^f- 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 V 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 \ 
 
 , \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 
 S. J\ \ 
 
 
 
 
 
 ^oo 
 
 \ 
 
 \ 
 
 *s 
 
 
 \ 
 
 "V 
 
 - \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 \ \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 , \ 
 
 ^ 
 
 \ 
 
 \\ 
 
 
 
 \ 
 
 > r 
 
 \ 
 
 $ 
 
 (0 
 
 
 \ 
 
 
 
 \ 
 
 \x 
 
 k \ 
 
 
 j 
 
 \ 
 
 ^ 
 
 
 [ 
 
 \ 
 
 \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 *\ \ 
 
 \ 
 
 ^ 
 
 \ 
 
 3 
 
 \ 
 
 \ 
 
 
 i \ \ 
 
 
 4- 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 *\ 
 
 
 s \ 
 
 \ 
 
 \ \ 
 
 \ 
 
 IN I 
 
 \ 
 
 
 \ 
 
 
 
 
 \ !i 
 
 \ 
 
 > 
 
 P 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 ^ 
 
 A 
 
 
 
 N 
 
 \ 
 
 
 i 
 
 \ 
 
 \ 
 
 V \ 
 
 \ 
 
 \s 
 
 \ 
 
 \ s 
 
 \ 
 
 \ 
 
 r 
 
 V 
 
 \ 
 
 \\ 
 
 
 
 .0 
 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 v 
 
 \ 
 
 
 \ 
 
 \ k 
 
 \ \ 
 
 \ 
 
 \ t 
 
 \ 
 
 \ 
 
 . \ 
 
 \ 
 
 N, ' 
 
 
 ^ V 
 
 \ 
 
 
 1 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 r 
 
 
 
 V 
 
 
 \ 
 
 \ 
 
 N \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ N 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \\ 
 
 
 
 
 
 V 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 V 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 \ ^ 
 
 \ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 ^ 
 
 V 
 
 \ 
 
 ^L L_ 
 
 ^ 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 V 
 
 
 \ 
 
 s 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ N 
 
 ^ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 
 " 
 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 . 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 s 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 \N\. 
 
 'T - 
 
 
 
 
 \ 
 
 
 I 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 i \ 
 
 A 
 
 \ 
 
 ,\ 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 C 
 
 \ 
 
 \ 
 
 S5 
 
 t i n r> 
 
 
 
 100 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \. 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 s s 
 
 \ 
 
 \ 
 
 \ 
 
 \\\ 
 
 \ . 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 ^ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 5 
 
 V i V 
 
 90 
 
 
 
 90 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 $ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 , 
 
 1 
 
 
 
 
 \ 
 
 A ^ 
 
 SI 
 
 
 
 
 
 \J 
 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \\\ 
 
 5 80 
 
 
 
 80 
 
 
 
 
 
 i 
 
 
 
 
 s 
 
 
 
 
 
 
 
 
 
 
 
 
 , 
 
 
 
 
 
 L L L 
 
 
 
 
 
 
 
 V 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 A 
 
 \ 
 
 \ 
 
 ^ 
 
 r-V-*r 
 
 5 70 
 
 
 
 70 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 . 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 , 
 
 ^ 
 
 \ 
 
 \ 
 
 \ 
 
 S\\ 
 
 
 
 
 
 
 
 \ 
 
 . 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 ^ 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 
 s\\ 
 
 y 
 - GO 
 
 
 
 GO 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ,l\ 
 
 V 
 
 
 
 <o 
 
 
 ^ 
 
 
 to 
 
 
 tp 
 
 
 t- 
 
 
 oo 
 
 
 05 
 
 
 
 
 
 
 
 
 in 
 
 
 
 
 
 s 
 
 
 1 
 
 I 
 
 A 
 u 
 
 
 
 
 
 
 
 
 
 
 
 S F 
 
 ex 
 
 n 
 
 n 
 
 1 
 
 f<i 
 
 J<= 
 
 t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14 
 
DIAGRAM 9 
 
 SOLID 
 SLABS 
 
 SAFE LOAD ON 
 
 f s =16,000 
 f s =18,000 
 n=15 
 
 
 1900 
 1800 
 700 
 
 pH 
 
 \ \ 
 
 ~\ \j 
 
 \Aj 
 
 K-A- 
 
 \ \ 
 
 V 
 
 v\ 
 v 
 
 -A 
 
 ^ 
 
 y 
 
 \ - 
 
 
 S 
 
 
 
 | 
 
 r^ 
 
 -^ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 
 
 
 - 1700 
 ~ 1600 
 
 
 
 600 
 1500 
 
 
 
 
 a 
 
 
 S 
 
 
 
 
 
 
 ^ 
 
 ,y 
 
 -^ 
 
 N 
 
 _. ^ 
 
 
 
 -\ 
 
 
 -A 
 
 
 3; 
 
 ^ 
 
 
 - - 1500 
 
 
 
 
 \ \ 
 
 
 
 
 \ ' 
 
 
 y 
 
 
 
 
 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1300 
 
 \ 
 
 rV 
 
 V \ 
 
 
 
 
 
 -A- 
 
 
 V 
 
 ^ 
 
 \ 
 
 t 
 
 A 
 
 
 
 
 A 
 
 
 
 ~ 
 
 
 
 
 
 : - 1300 
 
 ~ - 1700 
 
 
 
 IZOU 
 
 
 \ 
 
 \ * 
 
 \ 
 
 , \ 
 
 \ \, 
 
 v 
 
 
 
 
 
 
 
 'yy 
 
 
 \ \ 
 
 \ 
 
 ~v 
 
 
 
 
 
 
 i 
 
 
 5S 
 
 - ; HOO 
 
 
 
 1100 
 
 \ i 
 \ 
 
 S""\ 
 
 Y^ 
 
 -v 
 
 \ \ 
 
 Vs 
 
 \ s 
 
 N 
 
 
 \ 
 
 \\ 
 
 \ 
 
 ( 
 
 
 5 
 
 \ ' 
 
 
 
 \ 
 
 \ 
 
 5 
 
 
 
 
 s !s j 
 
 p~ 1000 
 
 
 
 1000 
 900 
 
 \ \ 
 
 
 \ \ 
 
 \ * 
 
 , \ 
 
 
 \ 
 
 -V- 
 
 
 \ 
 
 
 \ 
 
 -V 
 
 \ 
 
 y-i 
 
 
 \ 
 ^ \^ 
 
 
 v 
 
 \ 
 
 V- 
 
 
 
 
 \ 
 
 \ 
 
 
 |1 
 
 i : 800 
 
 
 
 800 
 700 
 
 V- 
 
 v 
 
 ^ 
 
 
 \ ' 
 
 ^ 
 
 \ 
 
 
 -V 
 
 t 
 
 \ N 
 
 
 -^ J 
 
 
 -\ 
 
 
 v 
 
 
 
 
 
 A- 
 
 
 
 
 
 
 
 600 
 
 V N 
 \ 
 \ 
 
 V 
 
 \ 
 
 \ 
 \ 
 \ 
 
 S 
 
 . Y 
 
 y 
 
 V 
 
 \ 
 
 y 
 
 V 
 
 
 ^j 
 
 5 
 
 \ \ 
 
 y 
 
 A 
 
 \c 
 v 
 
 
 v 
 
 -^ 
 
 
 V 
 
 A: 
 
 tr 
 
 \\t\ 
 
 - - 600 
 
 O 
 
 o 
 
 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \- 
 
 ^ 
 
 5 
 
 \ 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ y 
 
 \ y 
 
 A- 
 
 1 
 
 \ 
 
 y 
 
 Ay 
 
 
 \ 
 
 
 
 " ' 500 
 
 oo" 
 
 s- 16,000 
 
 500 
 400 
 
 \ 
 
 , \ 
 
 V 
 V 
 
 X 
 
 \ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 \ 
 
 
 \ 
 
 \l 
 
 \ 
 
 \ 
 
 ^ 
 
 ^ 
 
 
 \ \ 
 
 S 
 
 \ \ 
 
 
 V 
 
 A 
 
 A 
 
 \ 
 
 \- 
 \ 
 
 J^ 
 
 -\ 
 
 \ 
 
 t 
 
 A 
 
 ^ 
 
 3j 
 -^ 
 
 \ 
 \ 
 
 ^~\r~ 
 
 A - 400 
 
 II 
 
 t 
 
 q- 
 
 300 
 
 1 V 
 
 \ 
 
 \ 
 \ 
 
 -\IP 
 
 -v 
 \ 
 
 -v 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 h 
 
 & 
 
 X 
 
 \ \ 
 
 i \ 
 
 \ 
 \ \ 
 
 \ ^ 
 V 
 
 v 
 
 \ s 
 
 \ 
 y 
 
 S 
 
 y 
 
 5A 
 
 
 1 
 
 \ :\ 
 
 k~ 30 
 
 cO 
 
 8. 
 
 .D 
 
 V- 
 
 
 
 \ 
 
 \ 
 
 V 
 
 
 
 
 \ 
 
 
 i \ 
 
 
 
 
 
 \ \ 
 
 \ 
 
 pv 
 
 \\ 
 
 e 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 : - 
 
 C 
 
 C^ 
 
 
 y 
 
 \ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 v 
 
 
 
 
 \ 
 
 y 
 
 \ 
 
 \ 
 
 
 s 
 
 s 
 
 \ 
 
 \ 
 
 y 
 
 s 
 
 
 
 
 
 
 ^. 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 k s 
 
 \ 
 
 
 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ \ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 
 ftr 
 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ ^ 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 
 
 \ \ 
 
 \ 
 
 r ^ 
 
 \ 
 
 \ 
 
 V 
 
 \ 
 
 \ 
 
 
 
 C \ L 
 
 
 Jj 
 
 
 
 
 \ 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 . 
 
 
 \ 
 
 \ 
 
 -^ 
 
 
 e 
 
 \ 
 
 A 
 
 -V- 
 
 \ \ 
 \ 
 
 \ 
 
 \ 
 
 s 
 
 \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 \ 
 
 \ 
 
 \ 
 
 \ \ 
 
 
 O 
 
 
 E 
 
 ZOO 
 
 \ 
 *\ 
 
 
 
 
 \ 
 
 
 \ 
 
 
 
 
 y 
 
 
 
 ^ 
 
 s \ 
 
 \ 
 
 
 \ N 
 
 \ 
 
 \ s 
 
 \ 
 \ 
 
 \ 
 
 y 
 
 ~A 
 
 \ 
 \ 
 
 s 
 
 ^ 
 
 v \ \ 
 
 5--22- 
 
 f 
 
 -Q 
 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 ^ 
 
 \ 
 
 
 \ 
 
 ^ 
 
 ^ \ 
 
 \ 
 
 ^ 
 
 \ 
 
 \ 
 
 ^ \ 
 
 " 
 
 \ 
 
 y" L 
 
 
 
 5 
 
 
 
 V 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 ^ 
 
 
 
 \ ^ 
 
 \ 
 
 \ 
 
 \ ^ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 A v 
 
 
 S ! ^ 
 
 
 S 
 
 o 
 
 
 k 
 
 \ 
 
 
 1 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 
 \ 
 
 
 v 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 A 
 
 
 \ 
 
 ^. L J 
 
 s~ 
 
 
 
 OJ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 
 V 
 
 
 j \ 
 
 \ 
 
 \ 
 
 \ s 
 
 \ 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 |> \ 
 
 
 (5 
 
 M- 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 , \ 
 
 \ 
 
 \ ^ 
 
 
 \ 
 
 \ 
 
 ^ 
 
 \\\ 
 
 
 
 
 
 cD 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 v \ 
 
 \ 
 
 Sy 
 
 \ 
 
 J 
 
 
 \\\s 
 
 
 F 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 v 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \\\\ 
 
 i " 
 
 
 | 
 
 
 
 V 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 ^ ' 
 
 
 S 
 
 \ 
 
 
 \\\\ 
 
 
 
 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \\\K 
 
 - 
 
 
 
 100 
 SO 
 80 
 
 
 \ 
 
 1 
 
 V 
 
 \ 
 
 i 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 -- S 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 
 \\NN 
 
 100 
 ^ - 80 
 
 
 
 70 
 60 
 
 rO 
 
 
 
 
 ~v 
 
 m 
 
 ^ 
 
 1 
 
 v 
 
 h- 
 
 -\- 
 
 N^ 
 
 
 ^ 
 
 y 
 
 v 
 
 
 
 t: 
 
 
 k 
 
 j\- 
 
 in 
 
 k~ 
 
 i 
 
 AT 
 
 
 y 
 
 
 
 L J _I 
 1 
 
 i 
 
 - - 70 
 ^- 60 
 
 o 
 u 
 
 
 
 
 
 
 
 
 
 
 S 
 
 P< 
 
 >r 
 
 1 
 
 in 
 
 i 
 
 r e 
 
 e 
 
 h 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLID 
 SLABS 
 
 DIAGRAM 10 
 
 SLABS 
 
 CO 
 
 j 
 j 
 
 II 
 
 r 
 
 40 
 
 30 
 
 10 
 
 
 XZSffSXSZZ'SSSSl'SSXSSSi'SK^SSSZS'SSSSi'StXZ 
 
 LULL 
 
 
 ~fh 
 
 I 
 
 
 U- 
 
 
 &. 
 
 
 t 
 
 8? 
 
 
 00 
 
 \r\ 
 
 Span in feel* 
 
 10 
 
DIAGRAM 11 
 
 SOLID 
 SLABS 
 
 BENDING MCMENt- 'FOR SLABS :; ' : 
 
SOLID 
 SLABS 
 
 DIAGRAM 12 
 
 f c =650 MOMEOT * OP kfcSlSTAWCE AttD STEEL REQUIRED 
 
 f s =16,000 FOR 
 
 n=15 SOLID CONCRETE SLABS 
 
 Area of steel in sq. in. per ft width 
 
DIAGRAM 13 
 
 SOLID 
 SLABS 
 
 MOMENT OF RESIST AN CE> AiNLX ST-EET^ -RfcQtf HED f c =650 
 
 'FOR' f 8 = 18,000 
 
 SOLID CONCRETE SLABS n = 15 
 
 Area of steel in sq. m. per ft width or s ab 
 
SOLID 
 SLABS 
 
 DIAGRAM 14 
 
 f c =700 
 
 f a =16,000 
 
 n=15 
 
 AND STEEL REQUIRED 
 ' 1 
 SOLID CONCRETE SLABS 
 
 Area of steel in sain, per ft width of felab 
 
DIAGRAM 15 
 
 SOLID 
 SLABS 
 
 MOMENT OF RESISTANCE AND 3TELT,. REQUEUED 
 "" 
 
 SOLID CONCRETE SLABS 
 
 f s =18,000 
 n = 15 
 
 Area of steel in sq. in. per ft width of slab 
 
SOLID 
 SLABS 
 
 DIAGRAM 16 
 
 f c = 750 
 f s =16,0 
 n=15 
 
 Or RESISTANCE AND STEEL REQUIRED 
 
 "-FOR 
 SOLID CONCRETE SLABS 
 
 Area of steel in sq.in.perft.widthof slab 
 
 22 
 
DIAGRAM 17 
 
 SOLID 
 SLABS 
 
 MOMENT OF RESISTANCE* AWD : 8TEE ''REQUIRED f e =750 
 
 FOR f. = 18,C 
 
 SOLID CONCRETE SLABS n = 15 
 
 Area of steel in sa in, oer ft. width o 
 
SOLID 
 SLABS 
 
 TABLE 1 
 
 SPACING OF RODS IN SLABS 
 
 ROUND RODS 
 
 Diam- 
 eter 
 (inches) 
 
 Sectional area of steel per foot of slab when spaced as follows: 
 
 2 in. 
 
 2Y 2 in. 
 
 3 in. 
 
 3^ in. 
 
 4 in. 
 
 4^ in. 
 
 5 in. 
 
 5H in. 
 
 6 in. 
 
 7 in. 
 
 Sin. 
 
 9 in. 
 
 10 in. 
 
 12 in. 
 
 K 
 
 Ke 
 
 H 
 
 Ke 
 H 
 
 Me 
 
 *A 
 1 X< 
 % 
 l *A* 
 H 
 We 
 1 
 
 1 H 
 i H 
 i 
 i M 
 
 0.29 
 0.46 
 0.66 
 0.90 
 
 0.23 
 0.36 
 0.53 
 0.72 
 0.94 
 
 0.20 
 0.31 
 0.44 
 0.60 
 0.78 
 0.99 
 
 0.17 
 0.26 
 0.38 
 0.51 
 0.67 
 0.85 
 
 0.15 
 0.23 
 0.33 
 0.45 
 0.59 
 0.75 
 0.92 
 
 0.13 
 0.20 
 0.29 
 0.40 
 0.52 
 0.66 
 0.82 
 0.99 
 
 0.12 
 0.18 
 0.26 
 0.36 
 0.47 
 0.60 
 0.74 
 0.89 
 
 0.17 
 0.24 
 0.33 
 0.43 
 0.54 
 0.67 
 0.81 
 0.96 
 
 0.15 
 0.22 
 0.30 
 0.39 
 0.50 
 0.61 
 0.74 
 0.88 
 
 0.13 
 0.19 
 0.26 
 0.34 
 0.43 
 0.53 
 0.64 
 0.76 
 0.89 
 
 0.17 
 0.23 
 0.29 
 0.37 
 0.46 
 0.56 
 0.66 
 0.78 
 0.90 
 
 0.15 
 0.20 
 0.26 
 0.33 
 0.41 
 0.49 
 0.59 
 0.69 
 0.80 
 0.92 
 
 0.13 
 0.18 
 0.24 
 0.30 
 0.37 
 0.45 
 0.53 
 0.62 
 0.72 
 0.83 
 0.94 
 
 0.15 
 0.20 
 0.25 
 0.31 
 0.37 
 0.44 
 0.52 
 0.60 
 0.69 
 0.78 
 0.99 
 1.23 
 1.48 
 ,.77 
 
 1.18 
 
 1.49 
 1.84 
 
 1.19 
 1.47 
 1.78 
 
 1.23 
 1.48 
 1.77 
 
 1.05 
 1.27 
 1.51 
 
 1.78 
 
 2.23! 
 2.65 
 3.11 
 3.61 
 
 1.11 
 1.32 
 1.56 
 
 1.80 
 
 2.12 
 2.48 
 2.88 
 3.31 
 3.77 
 
 1.18 
 1.38 
 1.60 
 
 1.84 
 
 1.06 
 1.24 
 1.44 
 1.66 
 
 1.88 
 
 2.07 
 2.40 
 2.76 
 3.14 
 3.98 
 
 1.13 
 1.31 
 1.51 
 1.71 
 
 .04 
 .20 
 .38 
 
 .57 
 .99 
 
 2.06 
 2.37 
 2.69 
 3.41 
 
 1.03 
 1.18 
 1.35 
 1.70 
 
 4.14 
 4.71 
 
 2.07 
 2.36 
 2.98 
 3.68 
 
 1.03" 
 1.18 
 1.49 
 1.84 
 2.23 
 2.65 
 
 2.09 
 2.65 
 3.27 
 3.96 
 
 1.05 
 1.33 
 1.64 
 1.98 
 
 4.77 
 
 2.39 
 2.95 
 3.56 
 
 2.17 
 2.68 
 3.24 
 3.86 
 
 1.19 
 1.47 
 
 1.78 
 
 4.91 
 
 4.21 
 
 2.45 
 2.97 
 3.53 
 
 2.10 
 
 2:55 
 
 3.03 
 
 5.09 
 
 4.45 
 5.30 
 
 
 
 4.71 
 
 4.24 
 
 2.36 
 
 2.12 
 
 SQUARE RODS 
 
 Di- 
 men- 
 sion 
 (inches) 
 
 Sectional area of steel per foot of slab when spaced as follows: 
 
 2 in. 
 
 2M in. 
 
 3 in. 
 
 3H in. 
 
 4 in. 
 
 4M in. 
 
 5 in. 
 
 5H in. 
 
 6 in. 
 
 7 in. 
 
 8 in. 
 
 9 in. 
 
 10 in. 
 
 12 in. 
 
 K 
 
 -6 
 
 ^ 
 Me 
 K 
 Ke 
 ^ 
 *Ha 
 
 % 
 l 6 
 
 % 
 % 
 
 1 
 
 i H 
 i K 
 
 1 ^8 
 1 H 
 
 0.37 
 0.59 
 
 0.84 
 
 Iti6 
 
 1.50 
 1.90 
 
 0.30 
 0.47 
 0.67 
 0.92 
 
 0.25 
 0.39 
 0.56 
 
 0.77 
 
 0.21 
 0.33 
 0.48 
 0.66 
 
 0.86 
 
 0.19 
 0.29 
 0.42 
 0.57 
 0.75 
 0.95 
 
 0.17 
 0.26 
 0.37 
 0.51 
 0.67 
 0.84 
 
 0.15 
 0.23 
 0.34 
 0.46 
 0.60 
 0.76 
 
 0.13 
 0.21 
 0.31 
 0.42 
 0.55 
 0.69 
 
 0.12 
 0.19 
 0.28 
 0.38 
 0.50 
 0.63 
 
 0.17 
 0.24 
 0.33 
 0.43 
 0.54 
 
 0.15 
 0.21 
 0.29 
 0.37 
 0.47 
 
 0.13 
 0.19 
 0.25 
 0.33 
 
 0.42 
 
 0.17 
 0.23 
 0.30 
 0.38 
 
 0.14 
 0.19 
 0.25 
 0.32 
 
 1.20 
 1.52 
 
 1.00 
 1.27 
 
 1.08 
 
 2.34 
 2.84 
 3.37 
 3.96 
 
 1.87 
 
 1.56 
 1.99 
 
 1.34 
 1.62 
 1.93 
 
 1.17 
 '1.42 
 1.69 
 1.98 
 
 1.04 
 1.33 
 1.50 
 1.76 
 
 0.94 
 
 0.85 
 
 0.78 
 0.94 
 
 0.67 
 0.81 
 0.96 
 
 0.59 
 0.71 
 0.84 
 0.99 
 
 0.52 
 0.66 
 0.75 
 
 0.88 
 
 0.47 
 0.57 
 0.67 
 0.79 
 0.92 
 
 0.39 
 0.47 
 0.56 
 0.66 
 0.77 
 0.88 
 
 2.27 
 2.70 
 3.17 
 3.67 
 
 1.13 
 1.35 
 1.58 
 
 1.84 
 
 1.03 
 1.23 
 
 1.44 
 .1.67 
 1.92 
 
 2.25 
 2.64 
 3.06 
 3.52 
 
 1.12 
 1.32 
 1.53 
 1.76 
 
 2.26 
 2.62 
 3.01 
 3.43 
 4.34 
 5.36 
 6.48 
 
 1.13 
 1.31 
 1.51 
 1.71 
 
 4.59 
 5.27 
 6.00 
 
 2.30 
 2.64 
 3.00 
 3.80 
 
 2.04 
 2.34 
 2.67 
 3.37 
 
 1.15 
 1.32 
 1.50 
 
 1.89 
 
 l.t)2 
 1.17 
 1.33 
 1.69 
 
 4.22 
 4.80 
 6.08 
 
 2.11 
 2.40 
 3.04 
 3.75 
 
 1.05 
 1.20 
 1.52 
 
 1.87 
 
 4.00 
 5.06 
 6.25 
 
 2.18 
 2.76 
 3.41 
 
 2.00 
 2.53 
 3.12 
 
 3.78 
 
 1.00 
 1.27 
 1.56 
 1.89 
 
 2.17 
 2.68 
 3.24 
 
 3.86 
 
 4.69 
 5.67 
 6.75 
 
 4.17 
 5.04 
 6.00 
 
 2.34 
 2.84 
 3.37 
 
 2.08 
 2.52 
 3.00 
 
 .... .... 
 
 4.54 
 5.40 
 
 4.12 
 4.91 
 
 2.27 
 2.70 
 
 4.50 
 
 2.25 
 
TABLE 2 
 
 RIBBED 
 SLABS 
 
 SAFE LOAD OH RIBBED SLASS : : 
 
 c = 650 
 f s =16,000 
 n=15 
 
 urn 
 
 'Si; 
 
 ~ 
 
 N-i 
 
 
 CCXXCCM-CNO 
 cc 05 <N i-o x ~ * 
 
 CXCOOO-<O 
 i--: c: re I- X * O O ?H CO S 
 
 01 01 CO CO CO * -* 
 
 X * O < 
 01CO-*- 
 
 OCO Ot^COC5C COC5COIXM < O COOSiCOlX^O COCSCC01XTt<rH 
 iQCO COCCl^t^X l^ l^ X O> OS C <-( XXOSCO iCN OS O O rH i-> 01 CO 
 
 O01X XCOCOCSC O CO * OJ OS 1C 01 X^CSO-HOO COOlXCOCt*l^ 
 i-I^O t-XOSOO OSOtHOlOlCOrf OSi-iOl-*CCOCO OCNCOCCOI^X 
 
 
 iCCOO) ^-^<t>- 
 
 ^-^<t>-C>C COlOl^HCSXt^ OS <-i <-i X C O CO 
 t^XCS^Ol -(CO>Ct^XOOI f X ~ n '* Gl ~ < 
 
 OS <-i <-i X C O CO C Ol OS t^ O ^ t^ 
 
 OSi-H O5 CO CO O Tf N. O 
 01CO 1-1 01 01 CO CO CO * 
 
 OIOICO OIOICOCO'* 
 
 OlOlCOCO'Tt<Tj*U5 OlOlCOCO^^iO 
 
 thes 
 those 
 
 n 
 
 11 
 
 ^: 
 
 s-s 
 22 
 
 S'S 
 
 II 
 I 
 
 
 
 So" 
 
 25 
 
RIBBED 
 SLABS 
 
 TABLE 3 
 
 : : SAFE- LOAD- ON MBBED SLABS 
 
 f c 700 
 f. =16,000 
 
 
 
 
 8 
 
 CO CO I-H 1><N t~ <N X "*< X O CO CO rf CO M< *O >O CO O OS CO 
 OS XOrHCO-^Ol>. rHCOOXOlMCO ^t^OCOOXrH 
 
 
 "2 
 
 
 
 8 
 
 iCXrH O C >C i-H O5 O T}H rHXCOOCOt^OS OOC^O5rHOS 
 XOSrH O5i-HCO>COXO COiCXi-HCOCl> OOCOOO5CO>C 
 
 
 1 
 
 
 
 
 
 SXO-N S^gSg.^ SS^^gc?^ SSSS^SS 
 
 ^ 
 
 
 tj 
 
 
 3 
 
 ONOCOrH Ot^COOOCOX XiCOCl>O5O OrHOCOOrnX 
 
 xorHco>c eocxocoici> t^i-ncxrHTfx <N^<MOOICX 
 
 i-Hi-HrHrH rH i-H rH (N (M (N <N i-H (N (N (N CO CO CO (N (N CO CO * T)H TjH 
 
 2 
 
 4J-H 
 Jj-0 <N 
 
 r2 
 
 
 S3 
 
 (Ni-HXOJOS ICI>XO-^rHO <N O t^ O N. O Cv) OS & rH CO 1C *C rH 
 
 ONCO>CI> 1C X I-H * t^ O CO I-H 1C OS Tf t^ rH 1C ONXCOXCOX 
 
 3 
 
 ttj'C 
 
 I-S 1 
 
 2 
 
 
 o 
 
 OS C^TfOOSrH XCVJOO5COOO iCi-nOi-HiCO 1 ^ C^IOS^C^X^O 
 rH I-H I-H I-H (N i-H (N (N IM CO CO ^* <N CO CO Tt< Tt< 1C 1C CO CO -* >C >C O t^ 
 
 -V 
 '13 
 
 fella 
 
 o 
 
 
 OS 
 
 COO t>CO>CCOi-H X rH (M O5 X T}< rj* rji CO OS 1C O X 1> O >C rH O O t O 
 XO COOXi-H-^l O'OOSiMOO'^ X-^O3COiCO O CO r-H X >C I-H X 
 
 rH rHrHi-<(MOl (N <N IN CO CO ^ Tf (N CO CO * 1C 1C O CO Tf >C >C O t l> 
 
 ^ a 
 I 03 
 
 | ^ 
 
 ^ 
 
 - 
 
 X 
 
 CO<N (NrHOt^X NOOOOSOTt* 0(NTft^T}HrHlC I-H-^OOtfOO 
 
 OSi-H iCXOCOO COXiMOC>OOS i-HXrt<OO(Nt^ OXl>rf(MOO 
 
 li 
 
 c~ o 
 
 1 
 
 03 
 
 5 
 
 rJH Tfl >C rHCONOi-H O -^l O I-H OS 1C rt< U7iO5XO(NOX O * OS C (N 
 XOM lOCOOO OrHOrHlCOiC >C(NC5t^COO5iC kCrfCO^i-H 
 rt^H rH<N<N<NCO <N CO CO -^ rf 1C C CO T? ^ 1C CO O b- rt< 1C O l^ X 
 
 *- 
 ^: 
 
 ^1 h 
 
 | oo 
 
 O2 
 
 o 
 
 ^Ct'-CM COOC<JOO CO^fCO^O5OO rH^CvJCO^t^O X^i-HO 
 
 OSi-H-* OSCOOOTfl CS >C rH O 1-H t^ (N OXOTfrHXlC O rH Ol IM 
 
 I-H rH !-H<N<NCOCO <N CO Tj* Tf 1C C O Tf Tt< 1C O t^ l^- X >COt^X 
 
 O t, 
 
 fe^ 
 
 -2l||S 
 
 
 
 1C 
 
 X CO I-H OS rH N. (M O COCOOXOSXi-H OOOirHrH Xt^OS 
 OCOO rHOOS-^X COOt-iMX-^i-H iCiCCOCOi-H t>.O:rH . . . 
 
 I s 
 
 O 
 
 Si 
 
 ^ 
 
 
 rH 
 
 <*COIC (NO*-H(NCO (NOJOSOOCOO CONTt<OS COO ; 
 i-Hi-HrH NCOCOCO^ CO-^iCOOt^-X iCOt^-X OX 
 
 o"^ 
 
 -^ Ui 
 
 n-S 
 
 "^ *"o r 
 
 
 
 
 CO 
 
 TfHXlC (NXOlCTt* ^OlCCOTfCO t-COrH .... OS 
 
 II 
 
 1 
 
 
 
 rH 
 
 OS X (N CO OS 1C Tt< Tf( rH O Tf* 1C COO 
 
 OOC -^OOCOO (M CO CO (N I-H O 
 i-H (M (N CO Tj< -^ >C O 1C O N. X tX 
 
 
 a 
 
 
 
 ^ 
 
 (MXO XC(NiCX O X N O 
 
 11 
 
 
 
 
 ^ 
 
 <NNCO ^^iccot^ ON!X---- x 
 
 -^.2 
 2^3 
 
 
 
 
 O 
 
 rH 
 
 *O<N rt*t^OSXO5 OO 
 <f O O OS X O O O U5 O 
 CNCOCO Tj(iCOl>.X 1 s - OS 
 
 -0 a, 
 0)^3 
 
 2 
 
 oJ 
 
 3 
 
 
 
 
 "^ >< 
 
 >,> 
 
 JO 03 
 
 .2 
 
 ft! 
 
 ^ ; 
 
 : ~ 
 
 S 
 
 . ^>C>COO iCiCOOt^OOX "COOt>.XXOS OOt^XXOSO 
 
 03 fl 
 
 1 
 
 e 
 
 ll 
 
 j.c 
 
 ^H- 
 
 OS-^Xt-OS XOrHOOSOlM i-HOOCOi-HOOS XXt>-(MCO'!J<rH 
 
 <NTt<iCOl> ^t^OSOrHCO-* OXr-iCOiCOt^- OOSC^JiCt^OSrH 
 
 O V 
 W 0) 
 
 N 
 
 c 
 
 OQ = 
 
 3 -.- 
 
 .3 
 
 
 If 
 
 
 
 1 
 
 1 
 
 11 
 
 !"|I' 
 
 ? 
 
 . . . rHTfOXO XrHiCXrHiCX * C5 -^ O3 CO X (M i- 1 1- -<f O O (M b- 
 . . . ^I^I^^KM rH M (N (M CO CO CO <M (N CO CO TJ< Tt 1C CO CO * 1C 1C O O 
 
 C"H 
 
 p 
 ?1 
 
 centers 
 
 X * 
 O^ 
 
 3 
 
 : """ 
 
 I 
 
 OOCO Ot>COO5*C COOSiCNXr^O CO OS "O (M X rJH O CO C3 O <N X TH rH 
 
 1CICO OOI>l^X l^t^XOSOiOrH XXOSOOr-lN OSOSOrHrHlMCO 
 
 ll 
 
 >~ 
 
 US' 
 
 d 
 
 3 
 
 n 
 
 jfc|c 
 
 ~ 
 
 COOt" OOiCrHO OS CO t- 1>- O CO i-H b Tf O 1C t- l>- O <N<NrHX<NO^ 
 ON.!-- XOJOrHi-H OSrHC^CO^-iCO ON^^OOt^X i-HCOCOXO5O 
 
 li 
 
 05 OB 
 
 d 
 
 00 e 
 
 
 . 
 
 
 ^2 
 
 Joists o 
 
 .8 M 
 
 l- s 
 
 c 2 A 
 
 ft 
 
 c o. 
 
 
 
 8.S- 
 
 COTfiiC J>OiOC-5cO <Nrt<OO5rHCO>C OOSCOOO3IMIC OiCOSCOt^-rHiC 
 
 rHrHl-H l-H i-H rH rH (N (M (N rH rH (N (N (N CO CO IM (N (N CO CO -* Tf* 
 
 ;s.o 
 
 *o 
 
 II 
 
 ^ 
 
 
 ^ 02 
 
 
 
 
 X. 
 
 CW M 
 
 tH % 
 
 
 & 
 
 
 - 
 
 
 NNCO NNCOCO^ NNCOCO^^^ NNCOCO^^U, NNCOCO^iC 
 
 ^5 
 "o o 
 
 
 Q - " 
 
 s 
 
 
 * CO X O Ol 
 
 rH 
 
 
 
 pt.fe 
 
 * H- 
 
 26 
 
TABLE 4 
 
 
 SAFE LOAD ON 
 f e 
 
 3 
 
 gl 
 
 
 5MCX~Tji 
 
 b- CO 
 
 <N rH 1- 00 "5 <N 
 
 CS X O <N O O CO 
 
 
 csc-ii.co TH co o eo b- oo 
 
 10 cs 
 
 co co eo rH co TJ< cs 
 
 CS CO b- rH ^ OC i-i 
 rH <N (N CO CO CO << 
 
 XCOb- C5 X XO 
 O *O O CC b* r- 1 1C 
 
 "^ b- X X Tf rH 1C 
 
 Tf C5-* C5-*OCO 
 <N <N CO CO "* * C 
 
 r-ieOOb-O OS * X O 
 
 r-icoob-o ooeo 
 
 l <N ( 
 
 _H^, rt ^-i<N i-l <N (N (N CO CO CO 
 
 CC OXO 
 
 eoo co b- IN 
 
 OCOb-CS 
 
 i-i o o 
 
 CO CO *** 
 
 t^ co r^ co w co co 
 
 <N GO .-i * o 
 
 d-i OSOOOOt^OO 
 
 05-H ^t^OCOCD 
 
 -H ^H ,-H C<l <N N 
 
 NOOC^t^CCO 
 t^CCOrt-Ci 
 <N CO CO * Tf <* 
 
 COt^^COCS O 
 
 CO O O i- O C! t 
 
 COC^J < ^f 
 rC C 00 >O 
 CO t^ t^ 00 
 
 2lil 
 
 eoicx coco osb->c 
 
 -^^ ^NCJdCO 
 
 S SSSfggT 
 
 rH rH rH CM(N(MCCCO 
 
 (N "3 O 
 
 ifl O O 
 N CO CO 
 
 CO O O Tf b- t 1C 
 
 T}* rH X >C rH 00 rjt 
 
 CO^lTti C OOb- 
 O >C 1C rH CO CO 1C 
 X O T}< C<> C5 O CO 
 COTjfiCOOb-X 
 
 * O5 O 00 C) CO 
 CO<NNOOOt^ -. 
 Tf( C CO t t* 00 
 
 OSt^OO OS CO * r* 1-1 T* OS -H r-( Tj< t* 
 i-HTj<l^ COWCCOOCO OCO^HOOIC^ 
 
 iCOOO 
 O5O5O 
 
 * >c t~ 
 
 J<tCOb.X 
 
 SiS : 
 
 COi-HN 
 (MOOS 
 
 cot^oo 
 
 t^OS^ COOOC<Jt 
 COOO t-WOCCO 
 i-l 1-1 N O< CO CO * 
 
 OOrPt^t^O 
 
 1-iOGCCCiC 
 r}< 1C C CC l> 
 
 OOCO 
 
 CO OC 
 >C CO 
 
 OS CO i 'OO^Ot** 
 i-l I-H CM COCOTj<lC>C 
 
 CS 
 t^ 
 
 CO 
 00 
 
 b-OOO rJ<W^HiCTt( 
 OCCOt^ t>.Tj<(NO5t^ 
 
 CM <*< O TjfCMCSt^ 
 Nt^CO Tj<COi-iO 
 NNCO Tjii 
 
 O O 
 t* i-t 
 
 OOO 
 
 16. 
 24. 
 
 the distance center to center of joists and divid 
 the distance center to center of joists and divid 
 
 cs ic i-t i> O<NOOC^N.CO w w * o b- co cs 
 
 Ot^OOOO ICOCC^OOOOO COOt^OOOOCSCS 
 
 TjiTjir-iiCiCTtiTH COCOt>.Ct*i-iO 
 t>- O CO C 1-- CS i-( 00 I-H Tj< b OS CM ^< 
 
 O C (N t- rfi 
 
 C^iCOOOCO OCCr^-^HiCOOCN 
 ^rt rt cN<N ^HWINCOCOCO'* 
 
 t^MOOOO^O t^HHOCOOSO 
 O!Nt>-COQOCOt^ CCi-HXCi-it^T)' 
 (Meow*-* 1C "3 CO -* ^ it} CO CO b- 
 
 CS COe 
 -b. ^H 
 
 
 C rHX^CiOXCO XiCMb-O^CO C-^rHb-CSCNCO 
 ! TtCCO XO(NCOC CO O X O CO C 00 b-r-irjoO<NCX O}b-CMOOOC: 
 rHi-HrHrH rH rH rH M (M <N <N rH CS <N <N CO CO CO <N IN CO CO * TJH * 
 
 S X 
 
 r^ ^ ^ 
 
 CS CS CO CO * * I 
 
 X 
 
 ing of joists multiply the values in these columns 
 ing of joists multiply the values in these columns 
 
 For other 
 For other 
 
 27 
 
RIBBED 
 SLABS 
 
 TABLE 5 
 
 v.. jt < SAfcE JLQ&P, k)N RIBBED SLABS 
 
 f s = 18, 
 
 
 
 
 
 r>. O OJ T* *O OO rH i < O 00 ^ Ci "*t* O5 *O ^ *O *> Ci> 00 
 OOOrHCOCO^ OCO^iCb-000 CO 1C 00 CO T}I 
 
 
 g 
 
 
 5 
 
 CO * O 1C 00 CO 1C O CO OS rH CO OS b" CO GO OS b- 1C rH CO GO 
 OS 00 O rH CO Tt< 1C b- rH CO CO 00 OS rH CO T}< b- O CO CO 00 O 
 
 
 ,0 
 
 
 S 
 
 Tf< 1C 00 OO CD ^ OS 1C O b- 1C >H t> rH rH CO rH CO CO O CO CO rH b- 
 
 OOO3O OS <-< CO ^ CO 00 OS CO CO OO rH CO 1C b- b-O-^b-OCOiC 
 
 
 1 5 
 
 * -S 
 
 
 * 
 
 CO 
 
 
 r^CO 
 
 ^^ 
 
 s5 8 j 
 
 s _, ., 
 
 
 CO 
 
 OOCOb-COrH b- CO b- 00 O CO 1C 00 * rH * CO rH 00 O OS CO rH CO CO 03 
 XOrHCOiC CO CO 00 O CO 1C b- OO CO CO OS CO 1C b- Tf< OO CO 00 CO CO OS 
 
 rQ,O 
 
 33 
 
 !i 1 
 
 
 S 
 
 COCOCOrHCO CO b- CO CO 00 1C CO OO CO CO CO O 1C 00 rHOCDrHrHOCO 
 OCO-^COCO CO OS CO 1C b- O CO CO b- rH 1C OS CO 1C OSiCOcOrHCOO 
 
 >> 
 
 TJ^a 
 
 Sslla ss 
 
 0) 
 
 OS 
 
 rH 
 
 00 b* b- 00 CO CO 00 rH OS 00 00 OS CO rH O 1C CO rH b CO 00 O rH CO O O5 
 
 rHCOlCb-O 00 rH 1C b- O CO CO lCOlCO5COb-O CO OO 1C rH CO CO CO 
 
 - 
 03 c3 
 
 fg ii 8 
 
 * 
 
 M 
 
 a 
 
 00 
 
 1C rHCOCOOSCO Tf* CO O rH CO CO rH CO CO O O CO 1C CO O5 CO CO O rH rH 1C 
 ^ -HrHrnScO CO CO CO CO CO CO ^ CO CO CO ^ * 1C 1C CO * 1C 1C CD CO b- 
 
 2 
 
 2.2 
 
 Si i 
 
 1 
 
 b- 
 
 COCO t^rHb-COCO O CO ^ O5 CO CO rH CO J> 00 CO rH O5 1C CO 1C CO O5 00 1C CO 
 GOO ^ b- OS CO 1C CO b rH ^ 00 CO CO rH b- CO OS ^ 00 CO O 00 "^ CO O t^ CO 
 
 rH rH rH rH CO CO CO CO CO CO CO * Tf CO CO Tt* CO 1C 1C CO *# Tj< 1C CD b- b- 00 
 
 "0*0 
 
 5 " 
 
 "s-a 1 . ih 
 
 
 
 CO 
 
 OOOO COCOCOCOCO OS 00 Tj< CO ^ CO O CO 1C -^ CO O * 1C TftCDiCOCS^i 
 OOOCO COOSCOiCOO 1C O 1C OS CO b- CO 1C CO OS 1C rH CO rH IC-^COCOOSb- 
 rH rHrHCOCOCO CO CO CO CO * M* 1C CO Tt< Tj< 1C CO CO b- * 1C CO b- b- 00 
 
 _fe S3 
 
 *t 2 
 
 S M ii 
 
 
 1C 
 
 CO rH CD OSOCOCOiC ^ O CO b- 1C rH CO CO CO rH Tt< 1C 1C rt< COCOCOO 
 OJrHCO OOCOiCOOCO OS 1C O * OS T}H OS O 00 CO CO OS 1C rH rH CO CO CO 
 
 rHrH rH CO CO CO CO CO CO Tj< * TJH 1C 1C * Tt< 1C CD CO b- 00 1C CO b- 00 
 
 S 
 
 
 
 cS g 1 si 
 
 SI * - 
 
 
 rH 
 
 iCb-CO b-COOOOCO 00 CO CO <* 00 CO O CDiCiCOOOOb- rt*iCO 
 O CO 1C rHiCOSCOb- CO O CO rH CO CO 00 CO 1C Tt< CO OS CO OSrHCO .... 
 rHrHrH COCOCOCOCO CO ^ Tt* 1C 1C CO CO ** 1C CO b- b- 00 iCb-00 
 
 -22 
 
 ft fp 
 
 11 a 1 
 
 
 CO 
 
 COOOrH rHCOb-rHCO CO CO CO CD OS CO OS O <* 00 Tj* OSO3 
 
 
 PH S 
 
 
 r^ 
 
 rHrHrH CO CO CO CO Tj( CO * 1C 1C CO b- b- lCCOb-00 OOO 
 
 CP CJ 
 
 8 
 
 
 CO 
 
 rHrHCO CO CO CO Tj< 1C Tj< 1C CO b- b- 00 CDb-00 .... 00 
 
 O a> 
 
 
 a 
 
 
 
 ,_, 
 
 OCDCO rHOOOCO-* OOrHOSCO--- J* OJ ' 
 
 M $ 
 
 
 
 
 
 rH^CO CO^^icS ^CDb^OO t2oO 
 
 rS' S 
 
 
 
 o 
 
 
 'TJ-C 
 ^S 
 
 tn K" 1 
 
 2 J 
 a' 
 S ^ 
 
 a 
 
 1 
 
 COOCOCOOO OCDCOOSiCrHb. COCOOOiCrHb-CO COOO^Ob-COOS 
 . TjHiCiCcOCO 1C 1C CO CO t^ 00 00 1C CO CD b- GO 00 OJ CO CO b 00 00 OS OS 
 
 >> >> 
 
 ^^ 
 
 s 
 
 S S 
 
 3 3 
 
 C3 i 
 _L a; 
 co as 
 
 Sfejj 
 
 , 
 
 . . . OOb-iCCOO CO CO Tj< CO O b. 1C CO CO * 00 O5 00 1C * b- b- CO rH Tj) CO 
 OSOrHCOCO rH CO * 1C CO CO b- CO r}H CD t>. GO OS O CO 1C t^ OS rH CO CO 
 
 'o'o 
 
 G U 
 
 
 "* 
 
 ^ 
 
 
 JSJS 
 
 CO J, 
 
 II 
 
 11| 
 
 
 
 rHOOCOiCiC OS O b- CO b- CO OS 00 rH CO CO CO OS O OS CO rH CO O b. Oi 
 
 OrHCOlCb- 1- 5 OS rH Tj< CD OS rH rH CD O * b- O *< b- CO OS * OS CO b- 
 
 .S S 
 S S 
 
 
 IS* 
 
 
 
 33 
 || 
 
 Or 
 
 fls* 
 
 I 
 
 SCOCO ObCOOSiC CO OS 1C CO 00 * O CO OS 1C CO 00 "* O CO OS CO CO 00 * rH 
 u; CO COCOb-b-00 b- b- 00 OS OS O rH GO 00 OS O O rH CO OS OS O rH rH CO CO 
 
 II 
 >. >> 
 
 3^ 
 
 FH *Q) 
 
 s ^!s 
 
 r- 
 
 CDrHCO ICrHCOrHb. b- 00 CO rH b- CO b- "* b- OS OS CO CO b- OS 1C 00 O rH OS CO 
 
 tiCiC CDbb-OOOO t^OOOSOOrHrH OO O3 O rH CO CO CO OO O rH CO Tj< rf< 1C 
 
 3 3 
 
 e s 
 
 1-1 02 
 
 c 
 
 a ft .- 
 
 ".9 
 
 OOO OOOOO OOOl-lrHrHrH O O rH rH rH rH rH O rH rH rH rH rH rH 
 
 II 
 
 
 
 I Is 
 
 ({I 
 
 1 
 
 COOOi OOOSrHCOb. CO CO 1C rH 00 1C CO CO -* CO 00 O CO CO CO * 1C b- 00 CO 
 CO-*"* COb-OSOrH O CO Tt< CO b- OS rH rf< b- CO 10 b- OS 00 CO CD OS CO 1C 00 
 rHrH rHrHrHrHrHrHCO rHrHCOCOCOCOCO rHC>lCOCOCOCOCO 
 
 ;s;s 
 "0*0 
 
 M M 
 
 S " 
 
 |M 
 
 -3 
 
 
 COCOCO COCOCOCOM* COCOCOCO^TftiC COCOCOCO^rtiC COCOCOCO^'*1C 
 
 ft ft 
 tn CQ 
 
 II 
 O O 
 
 H 
 
 3 
 
 
 * ? 00 O CO 
 
 II 
 
 H 
 
 28 
 
TABLE 6 
 
 RIBBED 
 SLABS 
 
 SAFE LOAD ON *IBBEJ> SLABS 
 
 f c =700 
 f, = 18,000 
 
 oad. 
 
 Total safe load in pounds per square foot 
 including weight of floor (dead and live) 
 
 on M - ~~ For M - ~. add 20% to 
 
 ! g 
 
 rH TO <! 1C TO TO X 
 rH CO O t O rH CM 
 
 O "i OS >C O 10 
 -*t> CS CM * t^ 
 
 rHW* CO rH 00 Tf O "5 rH t- CO t* rH CM * CM 
 
 QOOSO OS i-l CM <* O t OS CM O t> O N ^ 5O 
 
 ^H rH i-l ^H ^H ^i i-> i-l ^ i-l CM CM CM CM 
 
 O>t^"5CM-i OObOTO^T}t tt^O 
 TJICOOOOCM * r^ O TO 00 O 00 CM 
 
 t^ ^ >O CO t* 00 OS 
 CM "3 *> OS ^H TO O 
 
 Tj<00-HCM<N^ 
 t^ O * l> O TO ifl 
 
 OS t^ I-H ^ OS OS D 
 ^H O -H iO 00 <N CO 
 
 OO t O OS CO U5 
 
 ^OOCMTOOiCM 
 
 HO 00 T-( Tj< 
 
 1-H X rH OS T}< rH 1C 
 
 - - - - - .-: 
 
 CM TO TO 1C 1C 
 
 IQ * OS CO rH X CM 
 
 rH X T}< C CC i b- 
 
 TO TO rf< 1C C CC CO 
 
 OCMCOr-.t^ 
 TOOt^OCM 
 i-*^Hi-iCMCM 
 
 OOSMCOOS-* 
 ^t< t* I-H * t* I-H 
 CMCMTOTOTOTt* 
 
 CO^-C 
 
 TOXTO 
 
 OX rH i 
 
 O O - >O * 
 IO CM OS CC CM X Tt* 
 TO * * 1C CO CO t- 
 
 CO USOl^'tTO OXi-iOSCOTOi^ 
 O -*t>.OSCMO CMW^TfXCMCO 
 rH ,-H i-H T-I CM CM CM CM M TO TO T}< * 
 
 SOXOCOi-n 
 t^CMXTOCi 
 TO Tf Tf it} it} 
 
 O'O^'CTO'tf' 
 
 OS t* C CM OS CO 
 TO rfi iO CO CO t^ 
 
 CMOO-HTO TO-HXCMTO-^t* 
 COOSCMOX O O Tj< OS TO t^ 1-1 
 >^>-lCMCMCM CM TO TO TO Tf ^ O 
 
 CO IO O "3 i <N CM 
 ^ i-< X Tf O CO ^- 
 TO ^ T* >O CO CC t* 
 
 t* CM <-> O CO 
 TOTOCMCt^O 
 & IO CO 1-- t^ X 
 
 TOIOOS 
 
 r-ICMCM 
 
 1-1 os CM c os t 
 
 XTOU3 OSOOOX CO CO rf< t* OC Oi CM OCMX 
 i-H^t* TOXCMt^^H t & 1-1 1^ TO OS CO ^<-<O 
 
 TOCCO N.CMt^-CMX TOrHCsr^rfirH . OSrHCM 
 
 rH 1C CS CO CM TO 
 
 COOSTO CMX^< 
 
 rHrHCM MM Tf I 
 
 CO( 
 Xi 
 
 1-HCM-* 
 
 ^ 
 
 t^ OX 
 
 
 CMTOTO-*CO ICCSrHrHOOSX CSbTOOSXXrJ< <*< OS rH t^ OS Tf C 
 
 rHrHrHrHrH rHCMCMCMMTOTO CMCMTOTO^^Tf TOTOrji'tiiCiCCO 
 
 COTO Ol>COOSiO OSCCMX-*O TO OS C CM X * O TO OS CO CM X * .-i 
 CCO cOOt-t^X t^ t* X OS OS 1-1 XXOSOO iCM OS OS O "H rH CM TO 
 
 000 00000 00-1,-lrHrHrH Q rH rH rH rH rH rH O rH rH rH rH rH rH 
 
 tXOrHTO rHTOCOX 
 
 >CMCMCMX Ol 
 < i-i CM CM CM TO : 
 
 I O N. T} CJ CO O 
 )Tt<XCMC 3STO 
 ICMCMTOTOTO-tf 
 
 CMCMTO CMCMTOTO-* CM CM CO TO * TJ< 1C CMCMTO-*^iC CM CM M TO * TJ< >C 
 
 16. 
 24. 
 
 ter of joists and divid 
 ter of joists and divid 
 
 ce center to 
 ce center to 
 
 the d 
 the d 
 
 mns 
 mns 
 
 col 
 
 er spacing of joists multiply the values in these 
 er spacing of joists multiply the values in these 
 
 oth 
 
 For 
 For 
 
 29 
 
RIBBED 
 SLABS 
 
 TABLE 7 
 
 LPADPJJF RIBBED SLABS 
 ' fc = 750 ' 
 
 24." 
 
 
 ' 
 
 co 
 
 OrH 00 CO CO OS Tt* OS IO O iO OS CN CO iO O COCOCOcOHHCOO 
 OSO OOOCNCOIOCOOO CNHHCOOSrHCOiO lOOOrHrfb-OCO 
 
 . 
 
 oo 
 
 OOOCOlO rH CN rH OS b- * CN OOb-^OiOOCO lO rf 00 CO "0 GO OS 
 
 b-OSOrH O CN HH IO b- OS rH CO CO OS CN Tfl b- OS b rH Tjl 00 rH HH b- 
 
 1 
 
 CD 
 CN 
 
 
 sj S -g 
 
 ! s 
 
 OS CO CO O b GO CD CN t> rH Tf OS 00 b- H^ OS CO b* 00 OS rH b IO OS HH IO 
 COOCN^tiiO COCOO5rHTt<COOO OOcNCOOSCOCOOS COO5COGOCNb-rH 
 
 rHrHrHrH rH rH rH CN CN CN CN rH CN CN CN CO CO CO CN IN CO CO <* * IO 
 
 |5 a J 
 
 S3 
 
 
 II 1 2 
 
 o 
 
 OS CNlOb-OCN OS CO b- rH Tt< 00 rH b CN b- CO b- CN b- H< rH 00 IO rH 00 TJH 
 
 rH rH rH CN CN rH CN CN CO CO CO HK CN CO CO Tjf <* O IO CO Tf H^ IO CO CO b- 
 
 SdVa 
 
 2 
 
 CDO CNOSCOCOrH O >O CD CO TfH rH O O CN rH 00 CN O CO rH HH OS >O * CO CO 
 
 OOO HHCDOSCNIO cNCDOH^COcNCO OCDcNb-COOOCO OOCOCOrHCOiOCN 
 
 rH THrHrHCNCN CM CN CO CO CO Ttl Ttl CO CO HH H/ O IO CO CO Tt< >O CD CO b- 00 
 
 f S II 8 
 
 fe "S 
 
 J 
 
 a ^ 
 
 OS CO CO OOOSOOOSO iO O rH CO CO OS CO Tf CO OS CN CN CN 00 rJH b- O O IN rH 
 
 b-OSrH lOOOrHTtlOO Tf OS HH CO CN CO rH CO O CD CO O5 IO O CN rH O 00 CO Tf< 
 rH rHrHCNCNCN CNCNCOCOHHHHIO COTf*Tj<lOlOCDb- TjflOCOCOb-00 
 
 
 
 OS 00 CN b-CNTt<osrt< ^rHCOCOOCO>O HHH^cOb-H^rHr)< COOCOOOlO 
 
 H " 
 
 
 
 rHrH rHCNCNCNCO <NCOCOHHT^1O>O COHHlO'OCCb-b- HHlOCOb-OO 
 
 1'S t ^i 
 
 02 ; co 
 
 
 
 8CN OS OOSCOiOHi O CO <N CO CN CO O CN O CO rt< O CD b- HI O5 b- 
 CNHH OCOb-rHiO rHb-COX-^OSiO CNrHO3b-iOCN CO"O>OCO 
 ,-lrHTH CN CN CN CO CO COCOHlTtiiO'OCD H^iOiOCDb-CO lOCDb-OO 
 
 rHrHrH CN CN CO CO TjH CO ^ ** IO CO CO b- Tf >O CD b- GO CO b- CO 
 
 "3 fl II SH 
 
 a'l * t 
 
 s 
 
 rHQSiO CNCNOrHCN lOOO^oOOOiOOO CNCOOO CN>O---- 
 
 COIOOS COrHCOrHCD OOOCOCOOb-^ -*COb-OO O'O 
 rHrHrH <NCOCOT}<Tt< TflrflOCDb-b-OO iQCOb-GO b-00 
 
 *"o - 
 
 .2 o fe 
 
 CO 
 
 IN 
 
 iH 
 
 O OO CN OCDrHb-CO b- CD iO <* CN rjn b- O rH 
 
 rHrHCN COCOHH^IO -flOCOb-00 COb-OS - 00 
 
 brHCD lOCNOSCOCO lOCOCOCO*'- IOO-- 
 
 
 
 g 
 
 rH IO rH CN O 00 CO Tt< >O OS rH 
 
 
 2 
 
 COCNrH CNCNCDiOCO * 
 CNCOCO lOCDb-COCS b- 
 
 2 8,1 
 
 1 a-; 
 V 
 
 : 
 
 . COOCOCNGO O CO CN OS iO rH b- CDCNOOiOrHb-CO CNOO^Ob-COOS 
 . . . HHiOiOCOCO iOOCOCOb-OOCO >OCOCOb-OOOOO3 CO CD b- 00 00 OS Oi 
 
 rj 
 
 S 'o c 
 
 ^ ! J 
 
 'all? 
 
 OiOHHrffCO OS OS b- rH CN rH rH O >O 00 00 CO GO O OS GO CO CO CO rfi rH 
 CNCO-tiiOCD CO>Ol--OSOrHCN lOb-Oli-iCO^CD "OCOrHCOiOb-OS 
 
 c 
 
 ^- .rt 
 
 CNCNCN CNCNCNCN CN CN CN CN CN 
 
 O i 
 co -L 
 
 .2M 
 
 3 8.S 
 
 "> OH 
 
 
 . . H/IGOOCOb- .HOsCOOCOiOOS OSH^TiOOb-O OCNb-CNCNCOCN 
 
 CN'tt^.CSrH OCNCDOfOCOOS IO rH O rH CD O IO COOCOCOOJlOrH 
 
 oU 
 
 1 1! 
 
 j "~ 
 
 OCDCO Ob-COOSiO COCSiOCNOO-^O COOsiOCNGOTj<O COO5COcNOOrt<rH 
 
 IOIOCO COCDb-b-00 b-b-OOO3CSOrH OOCOOSOOrHOJ OSOSOrHrHCNCO 
 
 1 1 
 
 S 55.3 d-~ 
 
 00-*rH OOCOCNOS COCOOOb-iOrHb- O b- CN iO CO 5 CO CO iO CN 00 rH CO * 
 lOCOb- OOOSOSOO OS O rH CN CO * H^ O rH CO Tfi >O CO b- O CN * >O b- GO OS 
 
 ^ W 
 
 C 
 
 
 
 
 * M 
 
 1-5 rt"* 
 
 III 
 
 rHOrH CNCOCOOSiO b-COb-OOJCOO COOSCOCOb-COb- OOOrH0'OO>O 
 TjHiOCO OOOSrHcN't' CN'Ob-OcN'fCO b- O rt< b- O CO CO CNCDrHiOOSCOb- 
 
 .-HrHrH rH rH rH CN CN CN CN rH CN CN CN CO CO CO CN CN CO CO CO Tt< "* 
 
 H fl " 
 
 ~I 
 
 CN CN CO CN CTsTcO CO T>< CN CN CO CO*-* -<tiO CNCNCOCO^'^iO CNCNCOCO^r^iO 
 
 a^o'S^ 
 Q - 
 
 =1 
 
 * O CO O CN 
 
SECTION 2 
 FLAT SLABS 
 
 The designs of square interior flat slab panels according to the American Concrete 
 Institute recommendations, and the New York and Chicago Codes are given in Tables 
 8 to 13 inclusive. These are for panels from 16 to 26 ft. square, both with and without 
 drops, and for live loads from 100 to 350 Ib. per sq. ft. of floor. An allowance of 6 Ib. 
 per sq. ft. was made for weight of finish. 
 
 The quantities given are believed to be conservative and by careful detailing it will 
 usually be found possible to keep the weight of the steel slightly below that given in 
 the tables. 
 
 Rectangular panels and wall panels must be designed according to the special 
 requirements of the different codes. 
 
 Columns supporting flat slab floors must be designed to take the bending moments 
 produced by the cantilever action of the slab. After the bending moments in the 
 columns have been estimated, the stresses may be determined by the diagrams of 
 Section 8. The majority of columns used have round hooped cores and Diagrams 60 
 to 64 inclusive have been constructed for the design of such columns when subjected 
 to bending. 
 
 31 
 
FLAT 
 SLABS 
 
 FLAT SLAB FLOORS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 INTERIOR SQUARE PANELS 
 
 f c =650 for positive moment 
 f c =750 for negative moment 
 f 3 = 16,000 
 
 JL 
 
 !?> 
 
 :jo ' 
 
 *>! ^ 
 !a \ 
 
 I J- 
 
 T\ w; 
 
 LM- 
 
 a 
 
 *:0> 
 
 ^f 
 
 i *|^0 ;0^ I 
 
 t ab. ^jv] j-. 
 
 iQ 
 
 .^J 
 
 > 
 
 + 
 
 i 
 
 i^n 
 
 -J. 
 
 \ 
 
 l^;|i 
 
 ;gfi 
 i^^ 
 
 tii 
 
 -j (Vj 
 
 Aj 
 
 -s\j 
 
 a: 
 
 JSP 
 
 ? 
 
 IS 
 
 S)i 
 
 * 231 
 
 SI 
 
 /" 
 
 ' lltll ! Drop Construction j ' Cap Construction 
 
 h 
 
 Section A-A 
 
 Bending Moment Coefficients 
 
 Moment coefficients shown on diagram are to be multiplied by WL. 
 W = wL\ 
 
 w = total dead and live load in pounds per square foot. 
 L = span center to center of columns for square panels. 
 Values shown above moment coefficients are percentages of numerical sum of moments in one 
 
 direction across panel. 
 
 Numerical sum of moments in one direction across panel = 0.0648 WL. 
 Minimum size of drop =0.3L. 
 Minimum diameter of capital = 0.225L. 
 
 ,,. . [ 0.02L\/w + 1 (t in inches, L in feet) 
 
 Minimum t = 
 
 t = total thickness of slab. 
 
 32 
 
TABLE 8 
 
 FLAT SLAB FLOORS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f c = 650 for positive moment 
 f c = 750 for negative moment 
 f, 
 n=15 
 
 FLAT 
 SLABS 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 ttiam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq.ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 4' 10" X 4' 10" 
 
 6 
 
 2K 
 
 0.52 
 
 14-%" 
 
 8-% 
 
 H-% 
 
 1.95 
 
 17X17 
 
 3' 9" 
 
 5' 2*X5' 2" 
 
 6j- 
 
 2J4 
 
 0.56 
 
 16-%" 
 
 9-% 
 
 13-% 
 
 2.14 
 
 18X18 
 
 4' 0" 
 
 5' 6"X5' 6" 
 
 6^i 
 
 ovz 
 
 0.58 
 
 18 %" 
 
 10-% 
 
 15 % 
 
 2.25 
 
 19X19 
 20X20 
 
 4' 3" 
 4' 6" 
 
 5' 8"X5' 8" 
 6' 0"X6' 0" 
 
 ?i 
 
 iM 
 
 0.62 
 0.65 
 
 21-%" 
 17-Ke" 
 
 11-% 
 
 16-% 
 
 15 K * 
 
 2.38 
 2.53 
 
 21 X21 
 
 4' 9" 
 
 6' 4"X6' 4" 
 
 8 
 
 25^ 
 
 0.69 
 
 20-Ke* 
 
 10 -K 
 
 16-K * 
 
 2.70 
 
 22X22 
 
 5' 0" 
 
 6' 8"X6' 8" 
 
 
 O I/ 
 
 0.71 
 
 21 -He* 
 
 12-H 
 
 16-K * 
 
 2.81 
 
 23X23 
 24X24 
 
 5' 3" 
 5' 6" 
 
 7' 0"X7' 0" 
 7' 4"X7' 4" 
 
 9^ 
 
 3M 
 
 0.76 
 0.78 
 
 23-Ke" 
 26-K6* 
 
 13-K 
 
 14- K 
 
 18-K * 
 21-K * 
 
 3.06 
 3 . 30 
 
 25X25 
 
 5' 9" 
 
 7' 6"X7' 6" 
 
 9K 
 
 3J 
 
 0.82 
 
 29-K6* 
 
 16-K 
 
 23 K * 
 
 3.44 
 
 26X26 
 
 6'0" 
 
 7' 10" X 7' 10" 9% 
 
 3^ 
 
 0.84 31-Ke* 17-K 
 
 25-K * 
 
 3.55 
 
 Superimposed load = 150 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 4' 10" X 4' 10" 
 
 6 
 
 2% 0.52 
 
 18-%" 
 
 10-%" 
 
 15-% 
 
 2.54 
 
 17X17 
 
 3' 9" 
 
 5' 2"X5' 2" 
 
 6J^ 
 
 2 3 4 0.56 
 
 20-%" 
 
 
 16-% 
 
 2.56 
 
 18X 18 
 
 4' 0" 
 
 5' 6"X5' 6" 
 
 gax 
 
 3K 0.59 
 
 23-%" 
 
 14-%" 
 
 19 % 
 
 2.90 
 
 19X19 
 
 4' 3" 
 
 5' 8"X5' 8" 
 
 7H 
 
 
 0.63 
 
 26-%" 
 
 14-%" 
 
 20-% 
 
 3.00 
 
 20X20 
 21X21 
 
 4' 6" 
 4' 9" 
 
 6' 0"X6' 0" 
 6' 4*X6' 4" 
 
 J* 
 
 3H 
 3M 
 
 0.65 
 0.69 
 
 22-Ke" 12-He* 
 24-Ke" 13-He* 
 
 17-K 
 20 K 
 
 3.27 
 3.52 
 
 22X22 
 
 5' 0" 
 
 6' 8*X6' 8" 
 
 8J<4 
 
 4 
 
 0.72 
 
 26-K6* 
 
 14-Ke" 
 
 22 K 
 
 3.62 
 
 23X23 
 
 5' 3" 
 
 7' 0"X7' 0" 
 
 8^i 
 
 4 
 
 0.76 
 
 29 -He* 
 
 16-He* 
 
 23-K 
 
 3.78 
 
 24X24 
 
 5' 6" 
 
 7' 4"X7' 4" 
 
 & 
 
 
 0.78 
 
 31-Ke' 
 
 18-He* 
 
 26-K 
 
 3.98 
 
 25X25 
 
 5' 9" 
 
 7' 6"X7' 6" 
 
 9M 
 
 4j| 
 
 0.83 
 
 35 Ke" 
 
 
 29- K 
 
 4.27 
 
 26X26 
 
 6'0" 
 
 7' 10" X 7' 10" 
 
 9*i 
 
 4% 0.85 
 
 39-Ke* 
 
 21-He* 
 
 31-K 
 
 4.45 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter. 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 17X17 
 
 3' 6" 
 
 3' 9* 
 
 4' 10" X 4' 10" 
 5' 2"X5' 2" 
 
 i 
 
 3 
 
 0.58 
 0.59 
 
 20-% 
 
 24-% 
 
 11-%" 
 13-%" 
 
 17-%" 
 19-%" 
 
 2.83 
 3.07 
 
 18X18 
 
 4' 0* 
 
 5' 6"X5' 6" 
 
 7J4 
 
 3?i 
 
 0.63 
 
 26-% 
 
 15-%" 
 
 22-%" 
 
 3.45 
 
 19 X 19 
 
 4' 3" 
 
 5' 8"X5' 8" 
 
 7H 
 
 4 
 
 0.66 
 
 30-% 
 
 16-%" 
 
 25-%" 
 
 3.50 
 
 20X20 
 
 4' 6" 
 
 6' 0"X6' 0" 
 
 8 
 
 4 
 
 0.70 
 
 25- K * 
 
 13-Ke* 
 
 20-Ke* 
 
 3.70 
 
 21X21 
 22X22 
 
 4' 9" 
 5'0" 
 
 6' 4"X6' 4" 
 6' 8"X6' 8" 
 
 m 
 
 A 1 ^ 
 
 0.72 
 0.76 
 
 27- K * 
 30 -H * 
 
 16-Ke* 
 
 22-Ke" 
 25-K 6* 
 
 3.87 
 4.15 
 
 23X23 
 
 5' 3" 
 
 V 0"X7' 0" 
 
 9 J4 
 
 4- ^> 
 
 0.81 
 
 33- K * 
 
 18-He* 
 
 26-K.6" 
 
 4.26 
 
 24X24 
 
 5' 6" 
 
 V 4"X7' 4" 
 
 9M 
 
 5 
 
 0.83 
 
 36-K * 
 
 20-K6* 
 
 30-Ke" 
 
 4.45 
 
 25X25 
 26X26 
 
 5' 9" . 
 6' 0" 
 
 7' 6"X7' 6* 
 7' 10" X 7' 10" 
 
 10 
 
 5 
 
 0.87 
 0.92 
 
 39 -He" 
 43-K6* 
 
 22-Ke* 
 23-Ke* 
 
 31-He* 
 
 4.59 
 4.92 
 
 33 
 
FLAT 
 SLABS 
 
 TABLE 8 
 
 FLAT SLAB FLOORS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f c = 50 for positive moment 
 f c = 750 for negative moment 
 f s = 16,000 
 n=15 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel 
 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 
 
 
 
 
 
 16X16 
 
 3' 6" 
 
 4' 10" X 4' 10" 
 
 7 
 
 3K 
 
 0.61 
 
 22-%" 
 
 12-%" 
 
 18-% 
 
 3.05 
 
 17X17 
 
 3' 9" 
 
 5' 2"X5' 2" 
 
 7M 
 
 3^ 
 
 0.65 
 
 25-%" 
 
 14-%" 
 
 20 % 
 
 3.32 
 
 18X18 
 
 4'0" 
 
 5' 6"X5' 6" 
 
 
 4 
 
 0.68 
 
 28-%" 
 
 17-%" 
 
 23 % 
 
 3.55 
 
 19X19 
 
 4' 3" 
 
 5' 8"X5' 8" 
 
 SjJ-i" 
 
 
 0.72 
 
 23- KG" 
 
 
 20- K 
 
 3.77 
 
 20X20 
 
 4' 6" 
 
 6' 0"X6' 0" 
 
 8H 
 
 4H 
 
 0.74 
 
 27- fi 6 " 
 
 14-Kc" 
 
 22-K 
 
 4.00 
 
 21X21 
 22X22 
 
 4' 9" 
 5'0* 
 
 6' 4"X6' 4" 
 6' 8"X6' 8" 
 
 9 
 
 4% 
 
 0.79 
 0.83 
 
 30-K 6 " 
 33-Me" 
 
 16-Ko" 
 18-Kc" 
 
 23- K 
 26-K 
 
 4.15 
 
 4.42 
 
 23X23 
 
 5' S" 
 
 7' 0"X7' 0" 
 
 10 
 
 5 
 
 0.87 
 
 35-Kc" 
 
 20-Kc" 
 
 29 K 
 
 4.60 
 
 24X24 
 
 5' 6" 
 
 7' 4"X7' 4" 
 
 
 5 
 
 0.91 
 
 39-Kc" 
 
 22-Kc" 
 
 31-K 
 
 4.81 
 
 25X25 
 
 5' 9" 
 
 7' 6"X7' 6" 
 
 11 
 
 5/4 
 
 0.96 
 
 43-Kc" 
 
 23-Kc" 
 
 36-K 
 
 5.21 
 
 26X26 
 
 6'0" 
 
 7' 10" X 7' 10" 
 
 UK 
 
 5% 
 
 0.98 
 
 47-Kc" 
 
 26-K 6 " 
 
 38-K 
 
 5.39 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 4' 10" X 4' 10" 
 
 7K 
 
 3% 
 
 0.66 
 
 25-%" 
 
 14-%" 
 
 19-%" 
 
 3.35 
 
 17X17 
 
 3' 9" 
 
 5' 2"X5' 2" 
 
 7% 
 
 4 1/ 
 
 0.68 
 
 29-%" 
 
 16-%" 
 
 23-%" 
 
 3.70 
 
 18X18 
 
 4' 0" 
 
 5' 6" X 5' 6" 
 
 
 4% 
 
 0.72 
 
 31-%" 
 
 18-%" 
 
 25-%" 
 
 3.83 
 
 19X19 
 
 4' 3" 
 
 5' 8"X5' 8" 
 
 8% 
 
 434 
 
 0.77 
 
 
 14-Kc" 
 
 21-Kc 
 
 4.07 
 
 20X20 
 
 4' 6" 
 
 6' 0"X6' 0" 
 
 9M 
 
 4% 
 
 0.81 
 
 29 ^KG" 
 
 16 KG" 
 
 23- KG 
 
 4.30 
 
 21X21 
 
 4' 9" 
 
 6' 4"X6' 4" 
 
 9% 
 
 5 
 
 0.85 
 
 3 1 - K G " 
 
 
 26- KG 
 
 4.47 
 
 22X22 
 
 5' 0" 
 
 6' 8"X6' 8" 
 
 10 
 
 
 0.88 
 
 35-Kc" 
 
 20-Kc" 
 
 29- K e 
 
 4.82 
 
 23X23 
 
 5' 3" 
 
 7' 0"X7 / 0" 
 
 10H 
 
 5% 
 
 0.92 
 
 3 6- KG 
 
 21-Kc" 
 
 30- KG 
 
 4.77 
 
 24X24 
 
 5' 6" 
 
 7' 4"X7' 4" 
 
 11 
 
 6M 
 
 0.96 
 
 
 18- M" 
 
 26- Yz" 
 
 5.25 
 
 25X25 
 
 5' 9" 
 
 7' 6"X7' 6" 
 
 i iM 
 
 6M 
 
 1.01 
 
 35-^ " 
 
 20 Yv " 
 
 29 -K" 
 
 5.52 
 
 26X26 
 
 6'0" 
 
 7' 10" X 7' 10" 
 
 12 
 
 7 
 
 1.05 
 
 39- W* 
 
 22-M" 
 
 
 5.77 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 4' 10" X 4' 10" 
 
 7% 
 
 4% 
 
 0.68 
 
 27-%" 
 
 14-%" 23 %" 
 
 3.79 
 
 17X17 
 
 3' 9" 
 
 5' 2"X5' 2" 
 
 8 z4 
 
 5 
 
 0.73 
 
 30 %" 
 
 16-%" 
 
 25-%" 
 
 3.91 
 
 18X18 
 
 4' 0" 
 
 5' 6"X5' 6" 
 
 8% 
 
 5M 
 
 0.77 
 
 26-Kc 
 
 
 20-Kc" 
 
 4.10 
 
 19X19 
 
 4' 3" 
 
 5' 8"X5' 8" 
 
 
 5% 
 
 0.82 
 
 27- KG 
 
 14-Kc" 
 
 22-Ke* 
 
 4.27 
 
 20X20 
 
 4' 6" 
 
 6' 0"X6' 0" 
 
 9% 
 
 6 
 
 0.86 
 
 
 17-K 6 " 
 
 25 KG" 
 
 4.55 
 
 21X21 
 
 4' 9" 
 
 6' 4"X6' 4" 
 
 10J4 
 
 6J4 
 
 0.90 
 
 34- KG 
 
 18-Kc" 
 
 
 4.81 
 
 22X22 
 
 5' 0" 
 
 6' 8"X6' 8" 
 
 10% 
 
 6% 
 
 0.95 
 
 36-K 6 
 
 
 30-K 6 " 
 
 4.96 
 
 23X23 
 
 5' 3" 
 
 7' 0"X7' 0" 
 
 \\YL 
 
 
 0.99 
 
 40- KG 
 
 23 KG" 
 
 33-K K " 
 
 5.26 
 
 24X24 
 
 5' 6" 
 
 7' 4"X7' 4" 
 
 11% 
 
 7% 
 
 1.04 
 
 34- M" 
 
 19-M" 28-^" 
 
 5.54 
 
 25X25 
 
 5' 9" 
 
 7' 6"X7' 6" 
 
 
 
 1.09 
 
 37 M" 
 
 2\-Yz" 30- K" 
 
 5.76 
 
 26X26 
 
 6'0" 
 
 7' 10" X r 10" 
 
 12% 
 
 8H 
 
 1.13 
 
 41-K" 
 
 
 33-M" 
 
 6.07 
 
 34 
 
TABLE 9 
 
 FLAT SLAB FLOORS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 INTERIOR SQUARE PANELS 
 
 CAP CONSTRUCTION 
 
 f c = 650 for positive moment 
 f e = 750 for negative moment 
 f s = 16,000 
 n=15 
 
 FLAT 
 SLABS 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 
 Across 
 
 Diagonal 
 
 
 
 
 
 
 each way 
 
 
 
 16X16 
 
 3' 6* 
 
 6M 
 
 0.542 
 
 17-%* 
 
 4-%* 
 
 Q a/ it 
 
 13-%* 
 
 2.54 
 
 17X17 
 
 3' 9* 
 
 Q^A, 
 
 . 563 
 
 20-%* 
 
 4-%* 
 
 n-%" 
 
 15-%* 
 
 2.66 
 
 18X18 
 
 4' 0* 
 
 7 
 
 0.584 
 
 23 %* 
 
 e 3 / tt 
 
 12-%* 
 
 
 2.84 
 
 19X19 
 
 4' 3* 
 
 7^4 
 
 0.625 
 
 25-%* 
 
 5-%* 
 
 13- %* 
 
 19-%* 
 
 3.04 
 
 20X20 
 21X21 
 
 4' 6* 
 4' 9* 
 
 8 
 
 0.667 
 0.688 
 
 24-Ke" 
 
 4 Ke*. 
 
 11-Ke" 
 
 16-Ke" 
 18-Ke" 
 
 3.24 
 3.45 
 
 22X22 
 
 5'0* 
 
 8% 
 
 0.730 
 
 26-Ke" 
 
 5 Ke* 
 
 14-Ke" 
 
 19-Ke" 
 
 3.62 
 
 23X23 
 24X24 
 
 5' 3* 
 5' 6* 
 
 9 
 
 0.750 
 0.792 
 
 29 7^e* 
 32-Ke" 
 
 4-Ke* 
 
 15-7^6* 
 17-Ke* 
 
 23-Ke* 
 
 3.78 
 3.96 
 
 25X25 
 
 5' 9* 
 
 9?i 
 
 0.813 
 
 35-Ke" 
 
 5 Ke* 
 
 18-Ke" 
 
 26-Ke" 
 
 4.17 
 
 26X26 
 
 6'0* 
 
 10 
 
 0.833 
 
 39-Ke* 
 
 5 Ke 
 
 21-Ke* 
 
 29-Ke" 4.36 
 
 Superimposed load = 150 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 
 Across 
 
 Diagonal 
 
 
 
 
 
 each way 
 
 
 
 16X16 
 
 3' 6 
 
 7 
 
 0.583 
 
 20-%* 
 
 4-%* 
 
 n-%* 
 
 14-%* 
 
 2.83 
 
 17X17 
 
 3' 9 
 
 
 0.605 
 
 23-%* 
 
 4-%* 
 
 12 %* 
 
 17_i^ 
 
 2.98 
 
 18X18 
 
 4' 
 
 7% 
 
 0.646 
 
 26-%* 
 
 4%* 
 
 14-%* 
 
 19 %* 
 
 3.14 
 
 19X19 
 
 4' 3 
 
 8M 
 
 0.688 
 
 21 Ke 
 
 4-Ke" 
 
 12-Ke" 
 
 15-Ke* 
 
 3.27 
 
 20X20 
 21X21 
 22X22 
 
 4' 6 
 4' 9 
 5' 
 
 I/ 
 
 9 
 
 Ql/ 
 
 0.709 
 0.750 
 0.792 
 
 mi 
 
 29- K e 
 
 4-Ke" 
 6-Ke" 
 5-Ke" 
 
 13-Ke" 
 15-Ke" 
 16-Ke" 
 
 18-Ke" 
 20-Ke" 
 21-Ke* 
 
 3.48 
 3.78 
 3.91 
 
 23X23 
 24X24 
 25X25 
 26X26 
 
 5' 3 
 5' 6 
 5' 9 
 6'0* 
 
 Q3X 
 
 IOH 
 11 
 
 0.813 
 . 854 
 0.875 
 0.917 
 
 32- K e 
 35-Ke 
 39-Ke 
 42-Ke 
 
 5-Ke" 
 6-Ke" 
 5 Ke" 
 6 Ke" 
 
 18 Ke* 
 19-Ke* 
 21-Ke" 
 24-Ke" 
 
 24 -Ke" 
 26-Ke* 
 28-Ke" 
 31-Ke* 
 
 4.16 
 4.34 
 4.51 
 4.76 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 17X17 
 
 3' 6* 
 3' 9* 
 
 JM 
 
 0.625 
 0.667 
 
 22-%* 1 5-%* 
 25 %* 5-%* 
 
 12 %* 
 
 14-%* 
 
 19-%* 
 
 3.12 
 3.29 
 
 18X18 
 
 4' 0* 
 
 8^ 
 
 0.708 29-%* 5-%* 
 
 16-%* 
 
 21-%* 
 
 3.49 
 
 19X19 
 
 4' 3* 
 
 9 
 
 0.750 23 Ke 
 
 5-Ke" 13-Kfi* 
 
 17-Ke" 
 
 3.66 
 
 20X20 
 21X21 
 
 4' 6* 
 4' 9* 
 
 10 2 
 
 0.791 26 Ke 
 0.833 29-Ke 
 
 4-Ke" 
 5-Ke* 
 
 14-Ke" 
 16-Ke" 
 
 19-Ke" 
 21-Ke" 
 
 3.88 
 4.04 
 
 22X22 
 
 5'0* 
 
 10^ 
 
 0.875 ! 32-Ke 
 
 4-Ke" 
 
 17-Ke" 
 
 23-Ke* 
 
 4.20 
 
 23X23 
 
 5' 3* 
 
 \\y\ 
 
 0.938 34-Ke 
 
 5-Ke* 
 
 19 Ke" 
 
 25-Ke" 
 
 4.37 
 
 24X24 
 
 5' 6* 
 
 12 1.000 j SS-Tie 
 
 4-Ke" 
 
 21-Ke" 
 
 28-7^6* 
 
 4.64 
 
 25X25 
 
 5' 9* 
 
 12% 1.063 41-Ke 
 
 4~Ke* 
 
 23-Ke* 
 
 
 4.78 
 
 26X26 6'0* 13J4 1.142 47~Ke i 5-Ke" 26 Ke" 34 -Ke" 5.23 
 
 35 
 
FLAT 
 SLABS 
 
 TABLE 9 
 
 FLAT SLAB FLOORS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 INTERIOR SQUARE PANELS 
 
 CAP CONSTRUCTION 
 
 f c =650 for positive moment 
 f c =750 for negative moment 
 f s = 16,000 
 n = 15 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 8% 
 
 0.730 
 
 21-% 
 
 6-%" 
 
 n-%" 
 
 16-%" 
 
 3.00 
 
 17X17 
 
 3' 9" 
 
 
 0.771 
 
 26-% 
 
 4-%" 
 
 14 %" 
 
 19%" 
 
 3 30 
 
 18X18 
 
 4/0" 
 
 10 
 
 0.833 
 
 29-% 
 
 4-%" 
 
 16-%" 
 
 23-%" 
 
 3.61 
 
 19X19 
 20X20 
 
 4' 3" 
 4' 6" 
 
 }?| 
 
 0.896 
 0.959 
 
 23- H " 
 
 26 -H " 
 
 4-He" 
 4-He" 
 
 13-Ke" 
 15-He" 
 
 17- He" 
 19 He" 
 
 3.64 
 3.91 
 
 21X21 
 22X22 
 23X23 
 24X24 
 25X25 
 26X26 
 
 4 / 9 // 
 5' 0" 
 5' 3" 
 5' 6" 
 5' 9" 
 6' 0" 
 
 12 
 13 
 
 15 g 4 
 
 .000 
 .083 
 .146 
 .188 
 .250 
 .313 
 
 28-He" 
 31-He" 
 34-He" 
 38-He" 
 41 -He" 
 45-Ke* 
 
 2-Ke" 
 4-He" 
 5-He" 
 4-He^ 
 
 4-He" 
 
 15- He" 
 17-He" 
 19-He" 
 21 He" 
 23-He" 
 25-He" 
 
 20-He" 
 23 He" 
 25-He" 
 28-He" 
 30-He" 
 33-He" 
 
 3.84 
 4.16 
 4.37 
 4.65 
 4.81 
 5.03 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct over 
 Direct column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 
 
 
 
 ! 
 
 
 
 16X16 
 
 3' 6" 
 
 10 
 
 0.833 
 
 23-%" 
 
 3-%" 13-%" 
 
 17-%" 
 
 3.17 
 
 17X17 
 
 3' 9" 
 
 10% 
 
 0.896 
 
 26-%" 
 
 2-%" 14-%" 
 
 19-%" 
 
 3.27 
 
 18X18 
 
 4' 0" 
 
 11 J^ 
 
 0.958 
 
 29-%" 
 
 3-%" 
 
 16-%" 
 
 21 %" 
 
 3 45 
 
 19X19 
 
 4' 3" 
 
 12M 
 
 .042 
 
 32-%" 
 
 2-%" 
 
 
 23-%" 
 
 3.58 
 
 20X20 
 21X21 
 
 4 / 6 " 
 4' 9'^ 
 
 13 
 
 14 
 
 .083 
 .174 
 
 27 He" 
 29 He" 
 
 3-He" 
 3 He" 
 
 15-He" 
 16-He" 
 
 19- He" 
 
 21-He" 
 
 3.88 
 4.02 . 
 
 22X22 
 23X23 
 
 5'0" 
 5' 3" 
 
 15 
 16 
 
 .250 
 .333 
 
 32- He" 
 34 He" 
 
 2-He" 
 4-He" 
 
 IB-He" 
 19 He" 
 
 23- He" 
 25-He" 
 
 4.20 
 4.33 
 
 24X24 
 25X25 
 26X26 
 
 5' 6" 
 5' 9" 
 6'Q" 
 
 17 2 
 18 
 
 .375 
 .417 
 .500 
 
 38-He" 
 42-He" 
 46-He" 
 
 3 He" 
 
 21-He" 
 24 -He" 
 25-He" 
 
 28-He" 
 31-He" 
 30-He" 
 
 4.64 
 4.76 
 4.84 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 3' 6" 
 
 HM 
 
 0.958 
 
 23-%" 
 
 2-%" 
 
 13-%" 
 
 17 %" 
 
 3.16 
 
 17X17 ! 3' 9" 
 
 12K 
 
 1.021 
 
 26-%" 
 
 2-%" 
 
 14-%" 
 
 19-%" 
 
 3.23 
 
 18X18 4' 0" 
 
 13 
 
 1.083 
 
 29 %" 
 
 3 %" 
 
 16-%" 
 
 21-%" 
 
 3.45 
 
 19X19 4' 3" 
 
 13% 
 
 1.146 
 
 33 %" 
 
 3-%" 
 
 18-%" 
 
 24-%" 
 
 3.74 
 
 20X20 
 21X21 
 22X22 
 23X23 
 24X24 
 
 4' 6" 
 4' 9" 
 5' 0" 
 5' 3" 
 5' 6" - 
 
 14% 
 15% 
 16% 
 17% 
 18% 
 
 1.230 
 1.313 
 1.396 
 1.480 
 1.563 
 
 27-He" 
 29-He" 
 32-He" 
 35-He" 
 37-He" 
 
 2-He" 
 3-He" 
 - 3-He 
 
 HK 
 
 3- He 
 
 14^He" 
 
 18~8 f6 " 
 20-He" 
 21-He" 
 
 19-He" 
 21- He" 
 23-He" 
 26-He" 
 27-He" 
 
 3.85 
 4.02 
 4.22 
 4.48 
 4.50 
 
 25X25 
 
 5' 9" 
 
 19% 
 
 1.646 
 
 41-He" 
 
 
 
 30-He" 
 
 4.79 
 
 26X26 
 
 6'0" 
 
 20% 
 
 1.730 
 
 45-He" 
 
 3-Ke" 
 
 25-He" 
 
 33-Ke" 
 
 5.00 
 
 36 
 
FLAT SLAB FLOORS 
 
 NEW YORK CITY BUILDING CODE 
 
 INTERIOR SQUARE PANELS 
 
 f c =650 for positive moment 
 f c =750 for negative moment 
 f t = 16,000 
 
 FLAT 
 SLABS 
 
 Bending Moment Coefficients 
 
 Moment coefficients shown on diagram are to be multiplied by WL. 
 W = wL* 
 
 w = total dead and live load in pounds per square foot. 
 L = span center to center of columns for square panels, or average span for rectangular 
 
 panels where long dimension is not more than 1.1 times short dimension. 
 Values shown above coefficients are percentages of numerical sum of moments in one direction 
 
 across panel. 
 
 Numerical sum of moments in one direction across panel = 0.0587TFL. 
 Minimum size of drop = 0.33L. 
 Minimum diameter of capital = 0.225L. 
 '6 
 
 0.02L\/wJ_+ 1 with drop 
 0.024L\/w + IK without drop 
 L/32 
 t = total thickness of slab. 
 
 Minimum t = 
 
 (t in inches, L in feet) 
 
 37 
 
FLAT 
 SLABS 
 
 TABLE 10 
 
 FLAT SLAB FLOORS 
 
 NEW YORK CITY BUILDING CODE 
 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f c = 650 for positive moment 
 f c =750 for negative moment 
 ft =16, 000 
 n=15 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 Panel 
 
 size 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 1 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across' 
 direct 
 
 Diagonal 
 
 
 
 
 
 
 
 
 
 i 
 
 16X16 
 
 3' 6" 
 
 5' 4" 
 
 6 
 
 3 
 
 0.528 
 
 13-% 
 
 9-% 
 
 9-%" 
 
 1.76 
 
 17X17 
 
 3' 9" 
 
 5' 8" 
 
 
 3 
 
 0.570 
 
 15-% 
 
 
 10-%" 
 
 1.89 
 
 18X18 
 
 4' 0" 
 
 6' 0" 
 
 6% 
 
 334 
 
 0.593 
 
 17-% 
 
 12-% 
 
 12-%" 
 
 2.04 
 
 19X19 
 
 4' 3'" 
 
 6' 4" 
 
 734 
 
 33^2 
 
 0.636 
 
 19-% 
 
 14-% 
 
 13-%" 
 
 2.14 
 
 20X20 
 
 4' 6" 
 
 6' 8" 
 
 7^| 
 
 3% 
 
 0.660 
 
 21-% 
 
 16-% 
 
 15-%" 
 
 2.30 
 
 21X21 
 
 4' 9" 
 
 7'0" 
 
 8 
 
 4 
 
 0.704 
 
 23 -% 
 
 17-%" 
 
 17-%" 
 
 2.40 
 
 22X22 
 
 5' 0'' 
 
 7' 4" 
 
 
 4 
 
 0.725 
 
 26-% 
 
 19 %" 
 
 19-%" 
 
 2.57 
 
 23X23 
 24X24 
 
 5' 3" 
 5' 6" 
 
 7' 8" 
 8'0" 
 
 8% 
 
 *H 
 
 ' 0.770 
 0.794 
 
 22-Ke" 
 24-Ke" 
 
 16-Ke" 
 
 16-Ke" 
 17-Ke" 
 
 2.85 
 2.95 
 
 25X25 
 
 5' 9" 
 
 8' 4" 
 
 9^<2 
 
 *H 
 
 0.835 
 
 26-Ke" 19-Ke* 
 
 
 3.10 
 
 26X26 
 
 6'0" 
 
 8' 8" 
 
 9% 
 
 5 
 
 . 858 
 
 29-Ke" 21-Ke" 
 
 21-Ke" 
 
 3.30 
 
 Superimposed load = 150 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 5' 4" 
 
 6 
 
 3 
 
 0.528 
 
 16-% 
 
 12-% 
 
 12-%" 
 
 2.24 
 
 17X17 
 
 3' 9" 
 
 5' 8" 
 
 63-4 
 
 334 
 
 0.571 
 
 18-% 
 
 13-% 
 
 13-%" 
 
 2.32 
 
 18X18 
 
 4' 0" 
 
 6' 0" 
 
 6% 
 
 
 . 595 
 
 20-% 
 
 15-% 
 
 15-%" 
 
 2.48 
 
 19X19 
 
 4' 3" 
 
 6' 4" 
 
 734 
 
 4 
 
 0.641 
 
 22-% 
 
 17-% 
 
 16-%" 
 
 2.54 
 
 20X20 
 
 4' 6" 
 
 6' 8" 
 
 7^| 
 
 4 
 
 0.662 
 
 25-% 
 
 19-% 
 
 19-%" 
 
 2.62 
 
 21X21 
 
 4' 9" 
 
 7' 0" 
 
 8 
 
 434 
 
 0.706 
 
 27-% 
 
 20 % 
 
 20 %" 
 
 2.82 
 
 22X22 
 
 5'0" 
 
 7' 4" 
 
 SM 
 
 
 0.727 
 
 23 Ke" 
 
 
 17-Ke" 
 
 3.15 
 
 23X23 
 
 5' 3" 
 
 7' 8" 
 
 
 4% 
 
 0.774 
 
 25 Ke" 
 
 19 Ke" 
 
 18-Ke" 
 
 3.24 
 
 24X24 
 
 5' 6" 
 
 8' 0" 
 
 934 
 
 5 
 
 0.817 
 
 27 Ke" 
 
 20-Ke" 
 
 20-Ke" 
 
 3.36 
 
 25 X 25 
 26X26 
 
 5' 9" 
 6' 0" 
 
 8' 4" 
 8' 8" 
 
 10 
 
 
 0.841 
 
 0.887 
 
 30-Ke'' 
 32-Ke" 
 
 22-K 6 " 
 24-Ke" 
 
 22-Ke" 
 24-Ke" 
 
 3.58 
 3.72 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 
 j 
 
 
 
 ~ Round steel rods in each band 
 
 Panel 
 size 
 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 5' 4" 
 
 6H 
 
 334 
 
 0.571 
 
 18-%" 
 
 13-%" 
 
 13-%" 
 
 2.46 
 
 17X17 
 
 3' 9" 
 
 5' 8" 
 
 7 
 
 
 0.618 
 
 20 %" 
 
 15 %" 
 
 14-%" 
 
 2.54 
 
 18X18 
 
 4' 0" 
 
 6' 0" 
 
 734 
 
 434 
 
 0.643 
 
 22-%" 
 
 17-%" 
 
 16-%" 
 
 2.67 
 
 19X19 
 
 4' 3" 
 
 6' 4" 
 
 
 434 
 
 0.685 
 
 24-%" 
 
 18-%" 
 
 18-%" 
 
 2.80 
 
 20X20 
 21X21 
 
 4' 6" 
 4' 9" 
 
 6' 8" 
 7' 0" 
 
 gg 
 
 JM 
 
 0.729 
 0.775 
 
 20-Ke" 
 
 15-Ke" 
 
 15 Ke" 
 16-Ke" 
 
 3.04 
 3.14 
 
 22X22 
 
 5' 0" 
 
 7' 4" 
 
 9 
 
 O '4. 
 
 0.799 
 
 25-Ke" 
 
 ig_7^ 6 " 
 
 18-Ke" 
 
 3.38 
 
 23X23 
 
 5' 3' 
 
 7' 8" 
 
 93^ 
 
 5H 
 
 0.841 
 
 27-Ke" 
 
 21-Ke" 
 
 20-Ke" 
 
 3.54 
 
 24X24 
 25X25 
 
 5' 6" 
 5' 9" 
 
 8' 0" 
 8' 4" 
 
 10 
 
 $ 
 
 0.887 
 0.954 
 
 31- Ke" 
 
 22-Ke" 
 24-Ke" 
 
 23-Ke" 
 
 3 . 66 
 3.77 
 
 26X26 
 
 6'0" 
 
 8' 8" 
 
 1 1 34 
 
 GH 
 
 1.002 
 
 34-Ke" 
 
 26-Ke" 
 
 25-Ke" 
 
 3 . 94 
 
 
 
 
 : 
 
 
 
 38 
 
TABLE 10 
 
 FLAT SLAB FLOORS 
 
 NEW YORK CITY BUILDING CODE 
 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f e =650 for positive moment 
 f e =750 for negative moment 
 fs=16,000 
 
 FLAT 
 SLABS 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 3' 6 
 
 5' 4* 
 
 7M 
 
 4 
 
 0.662 
 
 17-%; 
 
 13-%* 
 
 13-%* 
 
 2.39 
 
 17X17 3' 9 
 
 5' 8* 
 
 8 
 
 4% 
 
 0.706 
 
 
 15-%* 
 
 15-%' 
 
 2.62 
 
 18X18 i 4' 
 19X19 4' 3 
 
 6' 0' 
 6' 4* 
 
 8* 
 
 4% 
 
 0.752 
 0.797 
 
 22-%* 
 25-%* 
 
 17-%* 
 19 %\ 
 
 17%* 
 18-%* 
 
 2.76 
 2.87 
 
 20 X 20 4' 6 
 
 6' 8* 
 
 9% 
 
 5 
 
 0.859 
 
 21-^6" 
 
 
 15-Ke*. 
 
 3.11 
 
 21X21 
 
 4' 9 
 
 7' 0* 
 
 10% 
 
 
 0.906 
 
 23-He" 
 
 17 Ke". 
 
 
 3.29 
 
 22X22 
 
 5'0* 
 
 7' 4* 
 
 10% 
 
 6 
 
 0.953 
 
 25-Ke" 
 
 
 18 M 
 
 3.38 
 
 23X23 
 
 5' 3* 
 
 7' 8* 
 
 HM 
 
 6 
 
 1.014 
 
 27-He" 
 
 20-^g* 
 
 20-He 
 
 3.51 
 
 24X24 
 
 5' 6* 
 
 8' 0* 
 
 12 
 
 6H 
 
 1.060 
 
 30-He* 
 
 22 He". 
 
 22-^6 
 
 3.71 
 
 25X25 
 26X26 
 
 5' 9* 
 6'0* 
 
 8' 4* 
 8' 8* 
 
 12% 7% 
 
 13% m 
 
 1.129 
 1.215 
 
 32-^6* 
 27-M" 
 
 
 19-^* 
 
 3.80 
 3.98 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 17X17 
 
 3' 6* 
 3' 9* 
 
 5' 4* 
 5' 8* 
 
 8j* 
 
 J* 
 
 0.749 
 0.796 
 
 20-%* 
 
 i3-% : 
 
 13-%* 
 15-%* 
 
 2.46 
 2.62 
 
 18X18 
 
 4' 0* 
 
 6' 0* 
 
 9% 
 
 5 
 
 0.858 
 
 22-%* 
 
 17-%* 
 
 16-%* 
 
 2.67 
 
 19X19 
 
 4' 3" 
 
 6' 4* 
 
 
 5% 
 
 0.928 
 
 25-%* 
 
 19-%\ 
 
 1 ?-^" / , 
 
 2.87 
 
 20X20 
 
 4' 6* 
 
 6' 8* 
 
 lit! 
 
 6% 
 
 0.996 
 
 20-Ke" 
 
 
 
 3.04 
 
 21X21 
 
 4' 9* 
 
 7' 0* 
 
 n% 
 
 6% 
 
 1.043 
 
 22-Ke* 
 
 17-K6" 
 
 16 -He* 
 
 3.14 
 
 22X22 
 
 5' 0* 
 
 7' 4* 
 
 12 J^ 
 
 6% 
 
 1.104 
 
 25-He" 
 
 18 T^R* 
 
 18-Ke" 
 
 3.36 
 
 23X23 
 24X24 
 
 5' 3* 
 5' 6* 
 
 7' 8* 
 8' 0* 
 
 13% 
 13% 
 
 7% 
 7 V*> 
 
 1.169 
 1.215 
 
 27-Ke* 
 30-He* 
 
 20-^6* 
 22-He* 
 
 20-K6*. 
 
 3.51 
 3.71 
 
 25X25 
 
 5' 9* 
 
 8' 4* 
 
 14^ 
 
 8 
 
 1.283 
 
 32-Ke* 
 
 24-K6* 
 
 23 J^ * 
 
 3.80 
 
 26X26 
 
 6'0* 
 
 8' 8* 
 
 iS 
 
 9 
 
 1.375 
 
 
 19-8* 
 
 19-M* 
 
 3.90 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 Panel 
 size 
 
 (feet) 
 
 Capital 
 diameter 
 
 Size of 
 drop 
 panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic' 
 feet per 
 sq.ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 i 
 
 
 
 | 
 
 
 16X16 
 
 3' 6* 
 
 5' 4* 
 
 9^ 5 
 
 0.827 
 
 18-%* 
 
 13-%* 
 
 13-%* ! 2.46 
 
 17X17 
 
 3' 9* 
 
 5' 8* 
 
 10 5% 
 
 0.882 
 
 21-%* 
 
 15-%* 
 
 15-%* 2.68 
 
 18X18 
 
 4' 0* 6' 0* 
 
 10% 6 
 
 0.951 
 
 23-%' 
 
 17 %; 
 
 16-%* 2.74 
 
 19X19 
 
 4' 3* 6' 4* 
 
 11 4 6% 
 
 .017 
 
 26-%* 
 
 
 18-%*^ i 2.90 
 
 20X20 
 
 4' 6* 6' 8* 
 
 
 .101 
 
 21-He*. 
 
 1 5- K 6 * 
 
 
 21X21 
 
 4' 9* 7' 0* i 13% 7% 
 
 .169 
 
 
 17 "^i e* 
 
 16-Ke* 3^21 
 
 22X22 
 
 5' 0* 7' 4* 14 7% 
 
 .239 
 
 25-lil" 
 
 19-Ke* 
 
 IS-Mo" 3.38 
 
 23X23 
 
 5' 3* 7' 8* 15 8 
 
 .324 
 
 28-K 6 * 
 
 20 Ke* 
 
 
 24X24 
 
 5' 6* 8' 0* 15% 8% 
 
 .393 
 
 
 22- He* 
 
 21 7A*," 
 
 3.64 
 
 25X25 
 
 5' 9* 8' 4* 
 
 16% 9% .483 32-T<" 
 
 24-Ke* 
 
 23 TY* 
 
 3.80 
 
 26X26 
 
 6' 0* 8' 8* 
 
 17% 9% 
 
 .569 27-H* 
 
 20-M* 
 
 19-M" 
 
 3.98 
 
 39 
 
FLAT 
 SLABS 
 
 FLAT SLAB FLOORS 
 
 NEW YORK CITY BUILDING CODE 
 
 INTERIOR SQUARE PANELS 
 
 CAP CONSTRUCTION 
 
 f c =650 for positive moment 
 f c =750 for negative moment 
 f, =16,000 
 n = 15 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 W 
 
 0.562 
 
 14-% 
 
 8-% 
 
 8-%" 
 
 8-%" 
 
 1.91 
 
 17X17 
 18X18 
 
 4'0" 
 
 ^ 
 
 0.605 
 0.645 
 
 18-% 
 
 10-% 
 
 n-% 
 
 10-%" 
 
 9 %" 
 10-%" 
 
 2.04 
 2.14 
 
 19X19 
 
 4' 3" 
 
 8 
 
 0.667 
 
 21-% 
 
 n-% 
 
 12-%" 
 
 12-%" 
 
 2.34 
 
 20X20 
 
 4' 6" 
 
 8K 
 
 0.708 
 
 23-% 
 
 13-% 
 
 13-%" 
 
 13-%" 
 
 2.44 
 
 21X21 
 22X22 
 23X23 
 
 4' 9" 
 5' 0" 
 5' 3" 
 
 9 
 
 9K 
 
 10 
 
 0.750 
 0.791 
 0.833 
 
 19-K 
 21-K 
 
 24-K 
 
 IO-K 
 
 12-K 
 
 11-Ke" 
 12-K e " 
 13-Ke" 
 
 11-Ke" 
 12-Ke" 
 13-Ke" 
 
 2.66 
 2.78 
 2.95 
 
 24X24 
 
 5' 6" 
 
 IOK 
 
 0.875 
 
 26-K 
 
 
 15-Ke" 
 
 14-K e" 
 
 3.08 
 
 25X25 
 
 5' 9" 
 
 11 
 
 0.917 
 
 29-K 
 
 15-K 
 
 16-Ke" 
 
 15-K e" 
 
 3.22 
 
 26X26 
 
 
 
 0.937 
 
 32-K 
 
 16-K 
 
 18-Ke" 
 
 18-Ke" 
 
 3.56 
 
 Superimposed load =150 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab, 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6* 
 
 7% 
 
 0.645 
 
 16-%" 
 
 8-%" 
 
 9-% 
 
 9-%" 
 
 2.12 
 
 17X17 
 
 3' 9" 
 
 S^A 
 
 0.687 
 
 18-%" 
 
 10 %" 
 
 10-% 
 
 10-%" 
 
 2.25 
 
 18X18 
 
 4'0" 
 
 O 1 * 
 
 0.708 
 
 21-%" 
 
 n-%" 
 
 12-% 
 
 12-%" 
 
 2.48 
 
 19X19 
 
 4' 3" 
 
 9 
 
 0.750 
 
 24-%" 
 
 13-%" 
 
 13 % 
 
 13-%" 
 
 2.62 
 
 20X20 
 
 4' 6" 
 
 9K 
 
 0.792 
 
 20-Ke" 
 
 10-Ke" 
 
 11-K " 
 
 11-Ke" 
 
 2.85 
 
 21X21 
 
 4' 9" 
 
 10 
 
 0.833 
 
 22-Ke" 
 
 12 K e" 
 
 12-K " 
 
 12-K e" 
 
 2.99 
 
 22X22 
 23X23 
 
 5' 0" 
 5' 3" 
 
 11 
 
 0.875 
 0.917 
 
 25-Ke" 
 27-Ke" 
 
 15-Ke" 
 
 14-K " 
 
 15-K " 
 
 13 K 6 " 
 14-K e " 
 
 3.20 
 3.30 
 
 24X24 
 
 5' 6" 
 
 UK 
 
 0.958 
 
 23-K" 
 
 
 13 K 
 
 
 3.60 
 
 25X25 
 
 5' 9" 
 
 12 
 
 1.000 
 
 26-K" 
 
 12-K" 
 
 
 14-K" 3.78 
 
 26X26 
 
 6'0" 
 
 12K 
 
 1.042 
 
 
 14-K" 
 
 15-K 
 
 15-K" 
 
 3.93 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 
 Across 
 
 Diagonal 
 
 
 
 
 
 
 each way 
 
 
 
 
 16X16 
 
 3' 6" 
 
 8^ 
 
 0.687 
 
 18-%" 
 
 10-% 
 
 10-%" 
 
 10-%" 
 
 2.39 
 
 17X17 
 
 3' 9" 
 
 8% 
 
 0.729 
 
 21-%" 
 
 11-% 
 
 12 %" 
 
 11-%" 
 
 2.55 
 
 18X18 
 19X19 
 
 4'0" 
 4' 3" 
 
 IH 
 
 0.771 
 0.812 
 
 18-Ke" 
 19-K e" 
 
 10-K " 
 ii-K " 
 
 IO-K e" 
 ll-K e" 
 
 9-Ke" 
 11-K e" 
 
 2.72 
 2.96 
 
 20X20 
 
 4' 6" 
 
 IOK 
 
 0.855 
 
 22-Ke" 
 
 12-K " 
 
 12-Ke" 
 
 12-K e " 
 
 3.27 
 
 21X21 
 22X22 
 
 4' 9" 
 5'0" 
 
 10 
 
 UK 
 
 0.896 
 0.958 
 
 25-Ke" 
 21-K" 
 
 13-K " 
 
 \&' 
 
 13-Ke" 
 11 K" 
 
 3.34 
 3.52 
 
 23X23 
 
 5' 3" 
 
 12 
 
 1.000 
 
 23-K" 
 
 12-K 
 
 13_^ 
 
 12-K" 
 
 3.61 
 
 24X24 
 
 5' 6" 
 
 12K 
 
 1.042 
 
 25 K" 
 
 13-K 
 
 14-K" 
 
 
 3.90 
 
 25X25 
 26X26 
 
 5' 9" 
 6' 0" 
 
 13 
 
 1.083 
 1.145 
 
 QO I/ ' * 
 
 30-K" 
 
 16-K 
 
 15-K" 
 17-K" 
 
 15-K" 
 
 16-K" 
 
 4.09 
 4.25 
 
 40 
 
TABLE 11 
 
 FLAT SLAB FLOORS 
 
 NEW YORK CITY BUILDING CODE 
 
 INTERIOR SQUARE PANELS 
 
 CAP CONSTRUCTION 
 
 f c =650 for positive moment 
 f e =750 for negative moment 
 f,=16, 
 n=15 
 
 FLAT 
 SLABS 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 
 Across 
 direct 
 
 Diagonal 
 
 * 1 
 
 
 
 each way 
 
 
 
 
 16X16 i 3' 6" 
 
 9 
 
 0.750 
 
 19-%" 
 
 10-%" 
 
 11-H" 
 
 n-%" 
 
 2.53 
 
 17X17 i 3' 9* 
 
 9^ 
 
 0.791 
 
 17^6* 
 
 9 ^" 9~J^e" 
 
 9 'T i R " 
 
 2.75 
 
 18X18 4' 0* 
 
 10 
 
 0.833 
 
 19 M 6* 
 
 10-Ke* 11-K" 
 
 10-J^e" 
 
 3.01 
 
 19X19 1 4' 3* 
 
 
 0.875 
 
 21-Jl 6* 
 
 
 12-Ke* 
 
 i2-Kfr 
 
 3.21 
 
 20X20 
 
 4' 6" 
 
 11% 
 
 0.937 
 
 23 Ms* 
 
 12 1A e" 
 
 13-K" 
 
 
 3.32 
 
 21X21 
 
 4' 9* 
 
 11% 
 
 0.979 
 
 20-}^" 
 
 11-^" 11-^|" 
 
 ii-%" 
 
 3.57 
 
 22X22 
 
 5'0" 
 
 12M 
 
 .042 
 
 oo \& 
 
 12 J^" 12^6" 
 
 12 J^" 
 
 3.74 
 
 23X23 
 
 5' 3* 
 
 13% 
 
 .104 
 
 24-y 2 
 
 13 V^" ! 13 J^" 
 
 13-^" 
 
 3.87 
 
 24X24 
 
 5' 6* 
 
 14 
 
 .167 
 
 
 13-^" I 15-J^" 
 
 1 5-J4 " 
 
 4.08 
 
 25X25 
 
 5' 9* 
 
 14% 
 
 .229 
 
 29-^ 
 
 14 M" 16 J-* 
 
 16-H* 
 
 4.27 
 
 26X26 
 
 
 15% 
 
 .292 
 
 
 14-K" 
 
 17-K' 
 
 
 4.36 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 
 
 
 
 
 
 
 each way 
 
 direct j 
 
 
 16X16 
 
 3' 6" 
 
 10% 
 
 0.854 
 
 19-%* 
 
 10-%" 
 
 11-%* 
 
 11-%* 
 
 2.53 
 
 17X17 
 
 3' 9* 
 
 11 
 
 0.917 
 
 17-He* 
 
 8 J^ " 
 
 9 J*f e* 
 
 9 M e* 
 
 2.81 
 
 18X18 
 
 4'0* 
 
 
 0.958 
 
 
 Q-T^g" 
 
 10-J^ 6 * 
 
 10-Ke* 
 
 2.95 
 
 19X19 
 
 4' 3* 
 
 12% 
 
 .021 
 
 21 J^ e* 
 
 H~J^6* 
 
 12-Ke* 
 
 
 3.12 
 
 20X20 
 
 4' 6* 
 
 13 
 
 .083 
 
 23 %K" 
 
 H-Ke* 
 
 
 13 J^e" 
 
 3.29 
 
 21X21 
 
 4' 9" 
 
 13% . 146 
 
 20-^ 
 
 
 11 Jl 
 
 11-M" 
 
 3.55 
 
 22X22 
 
 5' 0* 
 
 14^ .208 
 
 22 % 
 
 11 " 
 
 12 J^ 
 
 12 i^ 
 
 3.69 
 
 23X23 
 
 5' 3* 
 
 15% .271 
 
 24 i^ 
 
 12 W" 
 
 14 J^ 
 
 13 J-^ 
 
 3.87 
 
 24X24 
 
 5' 6* 
 
 16 .333 
 
 27~M 
 
 13-^" 
 
 15-M 
 
 14~M 
 
 4;07 
 
 25X25 
 
 5' 9* 
 
 17 .417 
 
 29-H 
 
 
 lg_i,^ 
 
 Igi^, 
 
 4.22 
 
 26X26 
 
 6'0" 
 
 18 .500 
 
 
 its- 
 
 17-M" 
 
 17-H 
 
 4.36 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 
 sq. ft. 
 
 Direct 
 
 Direct over 
 column, add'l 
 each way 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 17X17 
 
 3' 6* 
 3' 9" 
 
 12% 
 
 0.958 
 1.021 
 
 83f- 
 
 9~/8 
 
 n : ?|;. 
 
 11-%" 2.58 
 9-Jie* 2.81 
 
 18X18 
 
 4'0" 
 
 13 
 
 1.083 
 
 19- JH* 
 
 9-He" 
 
 10-Jie" 
 
 10-H" 2.95 
 
 19X19 
 
 4' 3* 
 
 13% 
 
 1.146 
 
 
 10 Ji e* 
 
 12 J^e* 
 
 12 Ke" 3.18 
 
 20X20 
 
 4' 6* 
 
 14% 
 
 1.229 
 
 23 IA R" 
 
 11 Me* 
 
 13 J^is" 
 
 13-Ke" 3.29 
 
 21X21 
 
 4' 9* 
 
 15^ 
 
 1T292 
 
 20-M* 
 
 9 .H 
 
 n-H 
 
 11-M* 3.52 
 
 22X22 
 
 5' 0* 
 
 16^ 
 
 1.375 
 
 22-K* 
 
 10 V 
 
 12 J^ 
 
 12->i" 3.69 
 
 23X23 
 
 5' 3* 
 
 17% 
 
 1.437 
 
 
 11 i^ 
 
 14_i^ 
 
 13-M" 
 
 3.84 
 
 24X24 
 
 5' 6* 
 
 18% 
 
 1.521 
 
 27-M" 
 
 12-M 
 
 15 J-^ 
 
 
 4.11 
 
 25 X 25 
 
 5' 9* 
 
 
 1.604 
 
 29-M" 
 
 
 16 H 
 
 16-1^" 
 
 4.22 
 
 26X26 
 
 6'0" 
 
 20 
 
 1.667 32-M* 
 
 14->r 
 
 17-K 
 
 17-M" 
 
 4.41 
 
 41 
 
FLAT 
 SLABS 
 
 FLAT SLAB FLOORS 
 CHICAGO BUILDING CODE 
 INTERIOR SQUARE PANELS 
 
 f c = 700 for positive moment 
 f c =805 for negative moment 
 f s =18,000 
 
 .--4- 
 
 &m 
 l^p 
 
 -+ 
 i 
 
 ^dT\ i 
 
 #;vo 
 
 5 i ^ 
 
 ^4. 
 
 wj 
 
 Drop Conatuction 
 
 X 
 -J D! 
 
 <Q 
 
 a. 
 
 ft 
 
 ^i l 
 
 q 
 
 ;i N 
 
 ^4-' x/ 
 
 T Cap Construction 
 
 ?r^ri/^ R 
 U> 
 
 Section on C-C 
 
 ^-^ 
 
 Bending Moment Coefficients 
 
 Moment coefficients shown on diagram are to be multiplied by WL. 
 W = wL* 
 
 w = total dead and live load in pounds per square foot. 
 L = span center to center of columns for square panels, or average span for rectangular 
 
 panels where long dimension is not more than 1.05 times short dimension. 
 Values shown above moment coefficients are percentages of numerical sum of moments in one 
 
 direction across panel. 
 
 Numerical sum of moments in one direction across panel: 
 for drop construction O.OS25TFL 
 for cap construction 0.0679 WL 
 Minimum size of drop = \%L 
 Minimum diameter of capital = 0.225L 
 
 (6 
 
 Minimum t = j VW/44 
 
 lL/32 
 
 t = total thickness of slab. 
 t is in inches, L is in feet. 
 
 42 
 
TABLE 12 
 
 FLAT SLAB FLOORS 
 CHICAGO BUILDING CODE 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f e = 700 for positive moment 
 f e =805 for negative moment 
 f s =18,000 
 n = 15 
 
 FLAT 
 SLABS 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Sise of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq.ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6* 
 
 5' 4*X5'4* 
 
 6 
 
 3M 
 
 0.54 
 
 13-%* 
 
 Q a/ 
 
 10-% 
 
 1.83 
 
 17X17 
 
 3' 9* 
 
 5'8*X5'8* 
 
 
 3$i 
 
 0.58 
 
 15 %* 
 
 10% 
 
 11 % 
 
 1.94 
 
 18X18 
 
 4'0* 
 
 6' 0* X 6' 0* 
 
 6?4 411 
 
 0.60 
 
 
 H-% 
 
 12 % 
 
 2.04 
 
 19X19 
 
 4' 3* 
 
 6' 4*X6' 4* 
 
 7J4 4 \s 
 
 0.65 
 
 19-%* 
 
 13-% 
 
 14% 
 
 2.19 
 
 20X20 
 21X21 
 
 4' 6* 
 4' 9* 
 
 6' 8* X 6' 8* 
 7'0*X7'0* 
 
 8 * 4X. 
 
 0.67 
 0.72 
 
 22-%* 
 24-%* 
 
 14-% 
 16-% 
 
 16-% ! 2.35 
 17 % ! 2.45 
 
 22X22 
 
 5' 0* 
 
 7' 4*X7' 4* 
 
 
 5 
 
 0.74 
 
 27-%* 
 
 18-% 
 
 19-% 
 
 2.63 
 
 23X23 
 
 5' 3* 
 
 7' 8*X7'8* 
 
 8^i 
 
 51-4 
 
 0.78 
 
 22-Ke* 
 
 14 Ke" 
 
 16-K * 
 
 2.81 
 
 24X24 
 
 5' 6* 
 
 8' 0*X8' 0* 
 
 9 / 5H 
 
 0.81 
 
 25- K 6* 
 
 16-K e* 
 
 17-K " 
 
 2.99 
 
 25X25 
 26X26 
 
 5' 9* 
 6'0* 
 
 8'4*X8'4* 
 8' 8*X8'8* 
 
 
 6 
 6 
 
 0.85 
 0.87 
 
 27-Ke* 
 30-Ke* 
 
 %-%l"' 
 
 18-K * 
 21-Ke" 
 
 3.04 
 3.33 
 
 Superimposed load 150 Ib. per sq. ft. 
 
 Panel 
 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6* 
 
 5'4*X5'4* 
 
 6 
 
 *y* 
 
 0.54 
 
 17-% 
 
 n-% 
 
 12-% 
 
 2.31 
 
 17X17 
 
 3' 9* 
 
 5'8*X5'8* 
 
 6K 
 
 3% 
 
 0.58 
 
 19-% 
 
 13 % 
 
 14-% 
 
 2.46 
 
 18X18 
 
 4'0* 
 
 6' 0* X 6' 0* 
 
 
 4 
 
 0.61 
 
 21-% 
 
 15-% 
 
 16-% 
 
 2.63 
 
 19X19 
 
 4' 3* 
 
 6' 4*X6' 4* 
 
 7j^ 
 
 
 0.65 
 
 25-% 
 
 17-% 
 
 18 % 
 
 2.84 
 
 20X20 
 
 4' 6* 
 
 6' 8* X 6' 8* 
 
 71,4 
 
 4% 
 
 0.67 
 
 27-% 
 
 18-% 
 
 20-% 
 
 2.95 
 
 21X21 
 
 4' 9* 
 
 7'0*X7'0* 
 
 8 
 
 5 
 
 0.72 
 
 30-% 
 
 20-% 
 
 22-% 
 
 3.09 
 
 22X22 
 
 5' 0* 
 
 7'4*X7'4* 
 
 
 
 0.74 
 
 25-Ke* 
 
 16 y\ 
 
 17-K 6 
 
 3.23 
 
 23X23 
 
 5' 3* 
 
 7' 8*X7'8* 
 
 8^| 5$i 
 
 0.79 
 
 
 17-K 
 
 18-Ke 
 
 3.33 
 
 24X24 
 
 5' 6* 
 
 8' 0*X8' 0* 
 
 9 5% 0.81 
 
 30-Ke* 
 
 20-K 
 
 21-Ke 
 
 3.56 
 
 25X25 
 
 5' 9* 
 
 8'4*X8'4* 
 
 9K 6 0.85 
 
 34-Ke* 
 
 22 -K 
 
 23-Ke 
 
 3.83 
 
 26X26 
 
 6'0* 
 
 8'8*X8'8* 
 
 10 6 0.89 
 
 36-Ke* 
 
 24-K 
 
 25-K. 
 
 3.94 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 Panel 
 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 1 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6 
 
 5'4*X5' 4* 
 
 6J4 
 
 3H 
 
 0.56 j 21-% 
 
 13-%* 
 
 14-%* 
 
 2.74 
 
 17X17 
 
 3' 9 
 
 5' 8*X5'8* 
 
 6^ 
 
 o *x 
 
 . 58 24-% 
 
 16-%* 
 
 17-%* 
 
 3.01 
 
 18X18 
 
 4' 
 
 6' 0* X 6' 0* 
 
 7 
 
 4^i 
 
 0.62 27-% 
 
 18-%* 
 
 20-%* 
 
 3.25 
 
 19X19 
 
 4' 3 
 
 6'4*X6'4* 
 
 7J4 
 
 4L 
 
 0.67 
 
 31-% 
 
 21-%* 
 
 22-%* 
 
 3.47 
 
 20X20 
 
 4' 6 
 
 6' 8* X 6' 8* 
 
 8 
 
 4i 
 
 0.72 
 
 24-K 
 
 17-Ke 
 
 18-Ke* 
 
 3.52 
 
 21X21 
 
 4' 9 
 
 7' 0* X 7' 0* 
 
 8J^ 
 
 5J4 
 
 0.76 
 
 26-K 
 
 
 18-Ke" 
 
 3.54 
 
 22X22 
 
 5'0 
 
 7'4*X7'4* 
 
 9 
 
 5^| 
 
 0.80 
 
 28-K 
 
 18-Ke 
 
 20-K e" 
 
 3.66 
 
 23X23 
 
 5' 3 
 
 7' 8*X7'8* 
 
 9J^ 
 
 6 
 
 0.85 
 
 30-K 
 
 20-K 6 
 
 21-Ke* 
 
 3.71 
 
 24X24 
 
 5' 6 
 
 8'0'XS'O* 
 
 10 
 
 
 0.89 
 
 34-K 
 
 22-Ke 
 
 24-K e* 
 
 4.03 
 
 25X25 
 26X26 
 
 5' 9* 
 6' 0* 
 
 8'4*X8'4* 
 8' 8*X8' 8* 
 
 11 
 
 i 
 
 0.94 
 0.98 
 
 37-K 
 39- K 
 
 24-K 6 
 28-K 
 
 25-Ke* 
 29-Ke* 
 
 4.13 
 4.39 
 
 43 
 
FLAT 
 SLABS 
 
 TABLE 12 
 
 FLAT SLAB FLOORS 
 CHICAGO BUILDING CODE 
 INTERIOR SQUARE PANELS 
 
 DROP CONSTRUCTION 
 
 f e =700 for positive moment 
 f e =805 for negative moment 
 f s =18,000 
 n=15 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 5' 4"X5' 4" 
 
 6% 
 
 4K 
 
 0.60 
 
 23-%" 
 
 14-%" 
 
 16-%" 
 
 3.03 
 
 17X17 
 
 3' 9" 
 
 5' 8" X 5' 8" 
 
 7 1/: 
 
 4/4 
 
 0.65 
 
 24-%" 
 
 17-%" 
 
 18-%" 
 
 3.12- 
 
 18X 18 
 
 4' 0" 
 
 6' 0" X 6' 0" 
 
 7 3 i 
 
 4 3 1 
 
 0.69 
 
 27-%" 
 
 18-%" 
 
 19-%" 
 
 3.21 
 
 19X19 
 
 4' 3" 
 
 6' 4" X 6' 4" 
 
 8J4 
 
 5M 
 
 0.74 
 
 30-%" 
 
 20-%" 
 
 21-%" 
 
 3.33 
 
 20X20 
 21X21 
 22X22 
 23X23 
 24X24 
 
 4' 6" 
 4' 9" 
 5' 0" 
 5' 3" 
 5' 6" 
 
 6 8" X 6' 8" 
 7' 0" X 7' 0" 
 7' 4" X 7' 4" 
 7' 8" X 7' 8" 
 8' 0" X 8' 0" 
 
 8M 
 
 10>| 
 
 5/"4 
 
 5* 
 
 88' 
 
 0.78 
 0.82 
 0.87 
 0.92 
 0.96 
 
 Al 
 8$j 
 
 37-Ke* 
 
 18 -He" 
 20-Ke" 
 22-Ke" 
 24-Ke" 
 
 18-Ke* 
 20-Ke" 
 
 24l# 
 
 3.63 
 3.77 
 3.91 
 4.16 
 4.31 
 
 25X25 
 26X26 
 
 5' 9" 
 6'0" 
 
 8' 4"X8' 4" 
 8' 8"X8' 8" 
 
 12 
 
 7*4 
 
 7M 
 
 1.03 
 1.08 
 
 39-He" 
 42-Ke* 
 
 25-Ke" 
 28-Ke" 
 
 30-Ke" 
 
 4.41 
 4.63 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 5' 4"X5' 4" 
 
 7X 
 
 4M 
 
 0.65 
 
 24-%" 
 
 16-%" 
 
 17-%" 
 
 3.20 
 
 17X17 
 
 3' 9" 
 
 5' 8" X 5' 8" 
 
 8 
 
 4% 
 
 0.72 
 
 27-%" 
 
 17-%" 
 
 18-%" 
 
 3.28 
 
 18X18 
 
 4' 0" 
 
 6' 0" X 6' 0" 
 
 
 si* 
 
 0.77 
 
 21-Ke" 
 
 14-Ke" 
 
 
 3.49 
 
 19X19 
 
 4' 3" 
 
 6' 4"X6'4" 
 
 9 
 
 5/-^ 
 
 0.81 
 
 24-Ke" 
 
 16-Ke" 
 
 17 H e" 
 
 3.66 
 
 20X20 
 
 4' 6" 
 
 6' 8" X 6' 8" 
 
 9M 
 
 6 
 
 0.85 
 
 27-He" 
 
 
 19_7^ 6 * 
 
 3.85 
 
 21X21 
 
 4' 9" 
 
 7' 0" X 7' 0" 
 
 10 
 
 6/4 
 
 0.89 
 
 
 20 -He" 
 
 21-Ke" 
 
 4.09 
 
 22X22 
 
 5' 0" 
 
 7' 4" X 7' 4" 
 
 
 6*4 
 
 0.94 
 
 33-Ke" 
 
 
 
 4.20 
 
 23X23 
 
 5' 3" 
 
 7' 8" X 7' 8" 
 
 1 1 
 
 7 
 
 0.99 
 
 35 He" 
 
 23-He" 
 
 25 He" 
 
 4.40 
 
 24X24 
 
 5' 6" 
 
 8' 0"X8' 0" 
 
 11% 
 
 7K 
 
 1.05 
 
 39-Ke" 
 
 25-Ke" 
 
 26-He" 
 
 4.55 
 
 25X25 
 
 5' 9" 
 
 8' 4"X8' 4" 
 
 I2H 
 
 7 3 ' 
 
 1.10 
 
 33-M" 
 
 
 23-^" 
 
 4.78 
 
 26X26 
 
 6' 0" 
 
 8'8"X8' 8" 
 
 
 8 
 
 1.15 
 
 35-^" 
 
 25-K" 
 
 26-K" 
 
 5.15 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 
 
 
 
 
 
 Round steel rods in each band 
 
 
 Panel 
 size 
 (feet) 
 
 Capital 
 diam- 
 eter 
 
 Size of 
 drop panel 
 
 Depth 
 of slab 
 (inches) 
 
 Depth 
 of drop 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 5'4"X5' 4" 
 
 8 
 
 4H 
 
 0.71 
 
 24-%" 
 
 16-%" 
 
 17-%" 
 
 3.20 
 
 17X17 
 
 3' 9" 
 
 5' 8"X5' 8" 
 
 8/^ 
 
 5% 
 
 0.76 
 
 27-%" 
 
 18-%" 
 
 19-%" 
 
 3.36 
 
 18X18 
 
 4' 0" 
 
 6' 0" X 6' 0" 
 
 9 
 
 5/-^ 
 
 0.80 
 
 23-He" 
 
 
 16-Ke" 
 
 3.64 
 
 19X19 
 20X20 
 
 4' 3" 
 4' 6" 
 
 6' 4" X 6' 4" 
 6' 8" X 6' 8" 
 
 10 2 
 
 6 
 
 0.84 
 0.89 
 
 25 He" 
 27-H'e" 
 
 17-Ke" 
 19-Ke" 
 
 18-Ke" 
 20- 1{ 6 " 
 
 3.82 
 4.00 
 
 21X21 
 22X22 
 23 X 23 
 24X24 
 
 4' 9" 
 5' 0" 
 5' 3" 
 5' 6" 
 
 7'0"X7'0" 
 7' 4"X7' 4" 
 7' 8"X7'8" 
 8' 0"X8' 0" 
 
 12 * 
 
 p 
 
 0.95 
 .00 
 .07 
 .12 
 
 31-Ke" 
 
 Ijirk 
 
 20-Ke" 
 22-Ke" 
 25-Ke" 
 
 22-He" 
 24-He" 
 
 ttfy" 
 
 4.24 
 4.42 
 4.63 
 4.76 
 
 25X25 
 
 5' 9" 
 
 8' 4"X8' 4" 
 
 13 
 
 8 
 
 .16 
 
 34- \/ " 
 
 23i^" 
 
 
 5.00 
 
 26X26 
 
 6' 0* 
 
 8' 8"X8' 8" 
 
 13?i 
 
 
 .22 
 
 38-M" 
 
 25-H" 
 
 26-M" 
 
 5.29 
 
 44 
 
TABLE 13 
 
 FLAT SLAB FLOORS 
 CHICAGO BUILDING CODE 
 INTERIOR SQUARE PANELS 
 
 FLAT 
 SLABS 
 
 CAP CONSTRUCTION 
 
 f c = 700 for positive moment 
 f c =805 for negative moment 
 f s =18,000 
 n=15 
 
 Superimposed load = 100 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Add'l in each 
 band over 
 each column 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6* 
 
 6% 
 
 0.562 
 
 13-% 
 
 o S/ 
 
 9-% 
 
 9-% 
 
 2.17 
 
 17X17 
 
 3' 9* 
 
 
 0.604 
 
 14% 
 
 10^ 
 
 10-% 
 
 10-% 
 
 2.34 
 
 18X18 
 
 4'0* 
 
 7% 
 
 0.646 
 
 16-% 
 
 H-% 
 
 H-% 
 
 H-% 
 
 2.46 
 
 19X19 
 
 4' 3* 
 
 8 
 
 0.667 
 
 
 12-% 
 
 13-% 
 
 13-% 
 
 2.69 
 
 20X20 
 
 4' 6" 
 
 8K 
 
 0.708 
 
 21% 
 
 14-% 
 
 14-% 
 
 14-% 
 
 2.85 
 
 21X21 
 
 4' 9" 
 
 9 
 
 0.750 
 
 17-Ke* 
 
 
 
 12-K 
 
 3.04 
 
 22X22 
 
 5'0* 
 
 
 0.792 
 
 19-Ke" 
 
 13-K 
 
 13_j^ 6 * 
 
 
 3.23 
 
 23X23 
 
 5' 3* 9% 
 
 0.812 
 
 21-Ke" 
 
 15-K 
 
 14 K 6* 
 
 14-K 
 
 3.40 
 
 24X24 
 
 5' 6* 10% 
 
 0.854 
 
 24-K6* 
 
 16-K 
 
 16-K 6* 
 
 16-K 
 
 3.65 
 
 25X25 
 
 5' 9* 10% 
 
 0.896 
 
 26-K6" 
 
 17-K 
 
 18 ~K K" 
 
 18-K 
 
 3.85 
 
 26X26 
 
 6'0* UX 
 
 0.937 
 
 
 19-K 
 
 19-He' 
 
 19-K * 
 
 3.97 
 
 Superimposed load = 150 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 . Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Add'l in each 
 band over 
 
 Across Diagonal 
 
 
 
 
 
 each column 
 
 
 16X16 
 
 3' 6" 
 
 7K 
 
 0.625 
 
 15-% 
 
 10-%* 
 
 10-% 
 
 10-% 
 
 2.50 
 
 17X17 
 
 3' 9" 
 
 8 
 
 0.667 
 
 17-% 
 
 11-%* 
 
 H-% 
 
 11-% 
 
 2.65 
 
 18X18 
 
 4'0* 
 
 
 0.708 
 
 19-% 
 
 12-%* 
 
 13-% 
 
 13-% 
 
 2.83 
 
 19X19 
 
 4' 3* 
 
 9 
 
 0.750 
 
 21-% 
 
 14-%* 
 
 14-% 
 
 14-% 
 
 2.96 
 
 20X20 
 
 4' 6" 
 
 
 0.771 
 
 24-% 
 
 16-%* 
 
 17-% 
 
 17-% 
 
 3.32 
 
 21X21 
 
 4' 9" 
 
 10 
 
 0.833 
 
 20-K" 
 
 13-Ke" 
 
 13 K 
 
 13 K 
 
 3.46 
 
 22X22 
 
 
 
 0.875 
 
 22-Ke* 
 
 
 15 K 
 
 15 K 
 
 3.67 
 
 23X23 
 
 5' 3" 
 
 11 
 
 0.917 
 
 24-Ke" 
 
 lg_7^ K " 
 
 
 16-K 
 
 3.83 
 
 24X24 
 
 5' 6* 
 
 
 0.958 
 
 26-K* 
 
 17-K" 
 
 18-K 
 
 18-K 
 
 3.96 
 
 25X25 
 
 5' 9* 
 
 12 
 
 1.000 
 
 29-Ke" 
 
 19 KB* 
 
 20-K 
 
 20-K 6 
 
 4.26 
 
 26X26 i 6' 0* 
 
 
 1.042 
 
 
 16-H" 
 
 
 
 4.54 
 
 Superimposed load = 200 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Add'l in each 
 band over 
 each column 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6* 
 
 8^ 
 
 0.687 
 
 16-%* 
 
 n-%" 
 
 H-% 
 
 n-% 
 
 2.76 
 
 17X17 
 
 3' 9" 
 
 8% 
 
 0.729 
 
 18-%* 
 
 
 13-% 
 
 13-% 
 
 2.95 
 
 18X18 
 
 4'0* 
 
 
 0.771 
 
 15-K 6 
 
 10 Ks* 
 
 
 ll-K 
 
 3.21 
 
 19X19 
 
 4' 3* 
 
 o &/ 
 
 0.813 
 
 17-K 
 
 12-K 6* 
 
 12 K 
 
 12-K 
 
 3.42 
 
 20X20 
 
 4' 6" 
 
 10^4 
 
 0.854 
 
 20-K 6 
 
 
 13-K 
 
 13-K 
 
 3.60 
 
 21X21 
 
 4' 9" 
 
 10% 
 
 0.896 
 
 22-Kc 
 
 14-K e" 
 
 15-K 
 
 15-K 
 
 3.82 
 
 22X22 
 
 5' 0" 
 
 11 \^L 
 
 0.937 
 
 24-Ke 
 
 
 16 K 
 
 16-K 
 
 4.00 
 
 23X23 
 
 5' 3* 
 
 12 
 
 1.000 
 
 
 13 1 ^" 
 
 14 14 
 
 
 4.21 
 
 24X24 
 
 5' 6" 
 
 12M 
 
 1.042 
 
 23->i* 
 
 14 * 
 
 15~M 
 
 15~M 
 
 4.46 
 
 25X25 
 
 5' 9* 
 
 13 1.083 
 
 25-M* 
 
 1 Q1,4 " 
 
 17 M 
 
 17_i^ 
 
 4.76 
 
 26X26 
 
 6'0* 13H 1-125 
 
 27->i* 
 
 i8-y z " 
 
 i*4j 
 
 18-H 
 
 4.94 
 
 
 45 
 
FLAT 
 SLABS 
 
 TABLE IS 
 
 FLAT SLAB FLOORS 
 CHICAGO BUILDING CODE 
 INTERIOR SQUARE PANELS 
 
 CAP CONSTRUCTION 
 
 / c =700 for positive moment 
 f c =805 for negative moment 
 f s =18,000 
 n=15 
 
 Superimposed load = 250 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 1 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ibs. per 
 sq. ft. 
 
 Direct 
 
 Add'l in each 
 band over 
 each column 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 
 
 3' 6" 
 
 9 
 
 0.750 
 
 17-%" 
 
 n-%" 
 
 12-%" 
 
 12-%" 
 
 2.92 
 
 17X17 
 
 3' 9" 
 
 
 0.792 
 
 
 13_s^/> 
 
 13-%" 
 
 13-%" 
 
 3.12 
 
 18X18 
 19X19 
 20X20 
 
 4' 0" 
 4' 3" 
 4' 6" 
 
 10 
 
 1 1 \A 
 
 0.833 
 0.896 
 0.937 
 
 19-Me" 
 21-He" 
 
 jjjjjj: 
 
 13-Ke" 
 
 13-Ke" 
 14-J-le" 
 
 3.42 
 3.67 
 3.86 
 
 21X21 
 
 4' 9" 
 
 11% 
 
 0.979 
 
 
 15 7.Y" 
 
 1 6- 7-<" c " 
 
 16-Ke" 
 
 4.05 
 
 22X22 
 
 5' 0" 
 
 
 1.042 
 
 20-3-i" 
 
 13-3-2" 
 
 13-3-2" 
 
 13->2 
 
 4.29 
 
 23X23 
 
 5' 3" 
 
 133-1 
 
 1.104 
 
 21 \4t" 
 
 14-jJ* 
 
 153-2" 
 
 15_L 
 
 4.51 
 
 24X24 
 
 5' 6" 
 
 14 
 
 1.167 
 
 24-3-2 " 
 
 
 Jg-l^l' 
 
 16-3-2 
 
 4.71 
 
 25X25 
 
 5' 9" 
 
 143-2 
 
 1.208 
 
 26-3-2" 
 
 16 !," 
 
 173-2 " 
 
 173-2 
 
 4.91 
 
 26X26 
 
 6' 0" 
 
 15^ 
 
 1.271 
 
 28-3-2" 
 
 18-X 2 " 
 
 19-H" 
 
 19->2 
 
 5.13 
 
 Superimposed load = 300 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 A4d'l in each 
 band over 
 each column 
 
 Across 
 direct 
 
 Diagonal 
 
 
 
 I 
 
 
 
 
 
 
 16X16 
 
 3' 6" 
 
 103-4 
 
 0.854 
 
 18-%" 
 
 H-%" 
 
 12-%" 
 
 12-^" 
 
 3.01 
 
 17X17 
 
 3' 9" 
 
 11 
 
 0.917 
 
 
 
 
 10-Kc 
 
 3.20 
 
 18X18 
 
 4' 0" 
 
 113-2 
 
 0.958 
 
 17-Me" 
 
 11 M 
 
 1 1-J.fg 
 
 ii-Ko 
 
 3.42 
 
 19X19 
 
 4' 3" 
 
 1224 
 
 1.021 
 
 19-Ke" 
 
 12-K 
 
 13 J-Y 
 
 
 3.67 
 
 20X20 
 
 4' 6" 
 
 13 
 
 1.083 
 
 
 13-H 
 
 14-Ke 
 
 14-Ke 
 
 3.80 
 
 21X21 
 
 4' 9" 
 
 133-2 
 
 1.125 
 
 23 J-f e" 
 
 15-H 
 
 
 
 4.05 
 
 22X22 
 
 5' 0" 
 
 1434 
 
 1.187 
 
 20^2" 
 
 
 13 3-2 
 
 13 3-2" 
 
 4.27 
 
 23X23 
 
 5' 3" 
 
 15 
 
 1.250 
 
 22-3V' 
 
 14-3*2 
 
 14-3-2 
 
 14-3-2" 
 
 4.47 
 
 24X24 
 
 5' 6" 
 
 16 
 
 1.333 
 
 24-3-2" 
 
 15 l-o' 
 
 Igi^ 
 
 jgi,^" 
 
 4.71 
 
 25X25 
 
 5' 9" 
 
 17 
 
 1.417 
 
 
 16-3-2 
 
 17-3-2 
 
 17-3-2" 
 
 4.84 
 
 26X26 
 
 6'0" 
 
 17% 
 
 1.479 
 
 28-3-2" 
 
 18-J-2 
 
 19-H 
 
 19->2" 
 
 5.13 
 
 Superimposed load = 350 Ib. per sq. ft. 
 
 Panel size 
 (feet) 
 
 Capital 
 diameter 
 
 Depth 
 of slab 
 (inches) 
 
 Concrete 
 in cubic 
 feet per 
 sq. ft. 
 
 Round steel rods in each band 
 
 Steel in 
 Ib. per 
 sq. ft. 
 
 Direct 
 
 Add'l in each 
 band over 
 each column 
 
 Across 
 direct 
 
 Diagonal 
 
 16X16 3' 6" 
 17X17 3' 9" 
 18X18 4' 0" 
 19X19 4' 3" 
 
 !$ 
 
 13 
 
 0.958 
 1.021 
 1.083 
 1.146 
 
 18-%" 
 15-Ke" 
 17-Ke" 
 19-Ke" 
 
 io-K* 
 
 12-He" 
 
 11 ~? i C 
 
 H-Ke" 
 13-He" 
 
 3.01 
 3.28 
 3.42 
 3.67 
 
 20X20 4' 6" 
 
 14> 2 
 
 1.208 
 
 
 
 14 J-f e" 
 
 14-Me" 
 
 3.86 
 
 21X21 4' 9" 
 
 15J4 
 
 1.271 
 
 23 J--f " 
 
 15 M e" 
 
 16 M e" 
 
 
 4.05 
 
 22X22 
 
 5' 0" 
 
 163^ 
 
 1.354 
 
 20 V2 " 
 
 133^" 
 
 133-2" 
 
 133-2" 
 
 4.29 
 
 23X23 
 
 5' 3" 
 
 17K 
 
 1.437 
 
 22-^" 
 
 14-3-2" 
 
 14-3-2" 
 
 14-3-2" 
 
 4.47 
 
 24X24 
 
 5' 6" 
 
 
 1.521 
 
 23-3-2" 
 
 15-3-2" 
 
 lg_ i^" 
 
 jg_i^^ 
 
 4.64 
 
 25X25 
 
 5' 9" 
 
 19 
 
 1.583 
 
 
 17-3-2" 
 
 17_i<" 
 
 173-2 " 
 
 4.91 
 
 26X26 
 
 6' 0* 
 
 20 
 
 1.667 
 
 28-M" 
 
 
 19-3-2" 
 
 19-M" 
 
 5.13 
 
 46 
 
SECTION 3 
 RECTANGULAR BEAMS 
 
 Table 14 and Diagram 18 may be used in the design of rectangular beams. Dia- 
 gram 18 may also be employed to determine the safe resisting moment of a given beam 
 and the greatest unit stresses due to a given bending moment. 
 
 Example of Design of Rectangular Beam 
 
 Design a simply supported rectangular beam to carry a total load, of 3000 Ib. per ft. on 
 a span of 20ft.;f e = 650; /. = 16,000; n = 15. 
 
 Reading from the intersection of lines representing f c = 650 and /, = 16,000 in 
 
 Diagram 18, it is found that ^ = 107.5 and j = 0.875 (Table 14 gives values of 
 107.7 and 0.874 respectively). 
 
 a - f = (300 s )(20); (12) - 1,800,000 in.*. 
 
 o o 
 
 - 16 ' 75 
 
 Assuming b = 14 in. d = 34.5 in. 
 
 M ' _ 1,800,000 o 7 
 
 "A/a " (16,000) (0.875) (34.5) " 
 
 or A s = (0.0077) (14) (34.5) = 3.72 sq. in. 
 
 From Table 15 which gives areas and perimeters of combinations of four rods, we 
 find that the area of three 1^-in. and one 1-in. round rods is 3.77 sq. in. 
 
 To make a complete design, the bond stress and shearing stress should also be 
 investigated. 
 
 Reviewing Design of Rectangular Beam 
 
 Given a beam 12 in. wide, 30 in. deep to steel, reinforced with four l-in. round rods 
 and subjected to a bending moment of 1,500,000 in.-lb. Find the unit stresses in the 
 steel and concrete, n = 15. 
 
 M_ 1,500,000 _ 
 
 bd* (12) (30) 2 
 
 '- KF - - - 87 
 
 From Diagram 18 
 
 f e = 805 and /. = 18,200 
 
 Using Diagrams for Rectangular Beams One Inch Wide 
 
 Design a rectangular beam to resist a moment of 1,000,000 in.-lb., assuming f c = 750 
 andf, = 18,000. 
 
 Taking b = 12 in., the bending moment per inch of width is 
 
 ^00 = 83,333 in,lb. 
 
 Then from Diagram 24 
 
 d = 26 in. and A, = (12) (0.204) = 2.448 sq. UL, 
 47 
 
RECTANGULAR BEAMS 
 
 Finding Points to Bend Horizontal Steel 
 
 Diagram 25 is for use in determining the points at which horizontal steel in beams 
 or slabs can be bent so that the steel remaining will not be less than that required to 
 take the bending moment. The curves in the lower left hand corner are maximum 
 bending moment curves for the center and supports of beams for different conditions of 
 loading and restraint. They give the proportion of the steel required at different 
 points along the beam from support to center. 
 
 How far from the support of a simple beam of 2Q-ft. span, uniformly loaded, can four 
 tenths (0.4) of the steel be bent up? 
 
 Using the scale which reads up from the bottom, enter at 0.4 and follow hori- 
 zontally to the curve marked "uniform load, simple span, bottom steel." The bend 
 point is shown to be 0.183 of the span length from the support. Following up to the 
 line for a 20-ft. span and then horizontally to the right hand scale, this distance is 
 found to be 44 in. from the support. 
 
 48 
 
TABLE 14 
 
 RECTANGULAR 
 BEAMS 
 
 VALUES OF Ar, /, p AND K 
 
 nf c 
 
 K = 
 
 n = 12 
 
 / 
 
 fc 
 
 k 
 
 3 
 
 P 
 
 K 
 
 /. 
 
 fc 
 
 k 
 
 3 
 
 P 
 
 K 
 
 
 500 
 
 0.300 
 
 0.900 
 
 0.0054 
 
 67.5 
 
 . 
 
 500 
 
 0.261 
 
 0.913 
 
 0.0038 
 
 59.6 
 
 
 550 
 
 0.320 
 
 0.893 
 
 0.0063 
 
 78.7 
 
 
 550 
 
 0.280 
 
 0.907 
 
 0.0045 
 
 69.4 
 
 
 600 0.340 
 
 0.887 
 
 0.0073 
 
 90.5 
 
 
 600 
 
 0.298 
 
 0.901 
 
 0.0053 
 
 80.5 
 
 650 0.358 
 
 0.881 
 
 0.0083 
 
 102.5 
 
 
 650 
 
 0.315 
 
 0.895 
 
 0.0060 
 
 91.6 
 
 14,000 
 
 
 
 
 17,000 
 
 
 
 
 
 
 
 700 0.375 
 
 0.875 
 
 0.0094 
 
 114.8 
 
 
 700 
 
 0.331 
 
 0.890 
 
 0.0068 
 
 103.1 
 
 
 750 0.391 
 
 0.870 
 
 0.0105 
 
 127.6 
 
 
 750 
 
 0.346 
 
 0.885 
 
 0.0076 
 
 114.7 
 
 
 800 
 
 0.407 
 
 0.864 
 
 0.0116 
 
 140.6 
 
 
 800 
 
 0.361 
 
 0.880 
 
 0.0085 
 
 127.1 
 
 
 850 
 
 0.421 
 
 0.860 
 
 0.0128 
 
 154.0 
 
 
 850 
 
 0.375 
 
 0.875 
 
 0.0094 
 
 139.5 
 
 
 900 
 
 0.435 
 
 0.855 
 
 0.0140 
 
 167.4 
 
 
 900 
 
 0.389 
 
 0.870 
 
 0.0103 
 
 152.2 
 
 
 500 
 
 0.286 
 
 0.905 
 
 0.0048 
 
 64.7 
 
 
 500 
 
 0.250 
 
 0.917 
 
 0.0035 
 
 57.2 
 
 
 550 
 
 0.306 
 
 0.898 
 
 0.0056 
 
 75.5 
 
 
 550 
 
 0.268 
 
 0.911 
 
 0.0041 
 
 67.2 
 
 
 600 
 
 0.324 
 
 0.892 
 
 0.0065 
 
 86.7 
 
 
 600 
 
 0.286 
 
 0.905 
 
 0.0048 
 
 77.6 
 
 650 
 
 0.342 
 
 0.887 
 
 0.0074 
 
 98.6 
 
 
 650 
 
 ' 0.302 
 
 0.899 
 
 0.0055 
 
 88.4 
 
 15,000 
 
 
 
 
 
 18,000 
 
 
 
 
 
 
 700 
 
 0.359 
 
 0.880 
 
 0.0084 
 
 110.4 
 
 
 700 
 
 0.318 
 
 0.894 
 
 0.0062 
 
 99.6 
 
 750 
 
 0.375 
 
 0.875 
 
 0.0094 
 
 123.4 
 
 
 750 
 
 0.333 
 
 0.889 
 
 0.0069 
 
 111.1 
 
 800 
 
 0.390 
 
 0.870 
 
 0.0104 
 
 135.7 
 
 
 800 
 
 0.348 
 
 0.884 
 
 0.0077 
 
 123.0 
 
 850 0.405 
 
 0.865 
 
 0.0115 
 
 149.2 
 
 
 850 
 
 0.362 
 
 0.879 
 
 0.0085 
 
 135.2 
 
 I 900 0.418 
 
 0.861 
 
 0.0125 
 
 162.0 
 
 
 900 
 
 0.375 
 
 0.875 
 
 0.0094 
 
 147.7 
 
 500 
 
 0.273 
 
 0.909 
 
 0.0043 
 
 62.0 
 
 
 500 
 
 0.231 
 
 0.923 
 
 0.0029 
 
 53.3 
 
 550 
 
 0.292 
 
 0.903 
 
 . 0050 
 
 72.5 
 
 
 550 
 
 0.248 
 
 0.917 
 
 0.0034 
 
 62.6 
 
 600 
 
 0.310 
 
 0.897 
 
 0.0058 
 
 83.5 
 
 
 600 
 
 0.265 
 
 0.912 
 
 0.0040 
 
 72.6 
 
 650 
 
 0.328 
 
 0.891 
 
 0.0067 
 
 94.9 
 
 
 650 
 
 0.281 
 
 0.906 
 
 0.0046 
 
 82.7 
 
 16,000 
 
 
 
 
 
 20,000 
 
 
 
 
 
 
 700 
 
 0.344 
 
 0.885 
 
 0.0075 
 
 106.7 
 
 
 700 
 
 0.296 
 
 0.901 
 
 0.0052 
 
 93.3 
 
 750 
 
 0.360 
 
 0.880 
 
 0.0084 
 
 118.8 
 
 
 750 
 
 0.310 
 
 0.897 
 
 0.0058 
 
 104.3 
 
 
 800 
 
 0.375 
 
 0.875. 
 
 0.0094 
 
 131.3 
 
 
 800 
 
 0.324 
 
 0.892 
 
 0.0065 
 
 115.6 
 
 
 850 
 
 0.389 
 
 0.870 
 
 0.0103 
 
 144.0 
 
 
 850 
 
 0.338 
 
 0.887 
 
 0.0072 
 
 127.4 
 
 900 
 
 0.403 
 
 0.866 
 
 0.0113 
 
 157.0 
 
 
 900 
 
 0.351 
 
 0.883 
 
 0.0079 
 
 139.4 
 
 n = 15 
 
 /. fc 
 
 k 
 
 i 
 
 P 
 
 K f. 
 
 fc 
 
 k 
 
 3 
 
 P 
 
 K 
 
 
 500 
 
 0.349 
 
 0.884 
 
 0.0062 
 
 77.1 
 
 
 500 
 
 0.306 
 
 0.898 
 
 0.0045 
 
 68.7 
 
 
 550 
 
 0.371 
 
 0.876 
 
 0.0073 
 
 89.4 
 
 
 550 
 
 0.327 
 
 0.891 
 
 0.0053 
 
 80.1 
 
 
 600 
 
 0.391 
 
 0.870 
 
 0.0084 
 
 102.1 
 
 
 600 
 
 0.346 
 
 0.885 
 
 0.0061 
 
 91.8 
 
 
 650 
 
 0.411 
 
 0.863 
 
 0.0095 
 
 115.2 
 
 
 650 
 
 0.365 
 
 0.878 
 
 0.0070 
 
 104.2 
 
 14,000 
 
 
 
 
 
 
 17,000 
 
 
 
 
 
 
 
 700 
 
 0.429 
 
 0.857 
 
 0.0107 
 
 128.6 
 
 
 700 
 
 0.382 
 
 0.873 
 
 0.0079 
 
 116.7 
 
 
 750 
 
 0.446 
 
 0.851 
 
 0.0120 
 
 142.2 
 
 
 750 
 
 0.398 
 
 0.866 
 
 0.0088 
 
 129.2 
 
 
 800 
 
 0.462 
 
 0.846 
 
 0.0132 
 
 156.3 
 
 
 800 
 
 0.414 
 
 0.862 
 
 0.0097 
 
 142.7 
 
 
 850 
 
 0.477 
 
 " 0.841 
 
 0.0145 
 
 170.4 
 
 
 850 
 
 0.429 
 
 0.857 
 
 0.0107 
 
 155.9 
 
 
 900 
 
 0.491 
 
 0.836 
 
 0.0158 
 
 184.8 
 
 900 
 
 0.443 
 
 0.853 
 
 0.0117 
 
 169.7 
 
 
 500 
 
 0.333 
 
 0.889 
 
 0.0056 
 
 74.1 
 
 
 500 
 
 0.294 
 
 0.902 
 
 0.0041 
 
 66.3 
 
 
 550 
 
 0.355 
 
 0.882 
 
 0.0065 
 
 86.4 
 
 
 550 
 
 0.314 
 
 0.895 
 
 0.0048 
 
 77.4 
 
 
 600 
 
 0.375- 
 
 0.875 
 
 0.0075 
 
 98.4 
 
 
 600 
 
 0.333 
 
 0.889 
 
 0.0056 
 
 88.9 
 
 
 650 
 
 0.394 
 
 0.869 
 
 0.0085 
 
 111.3 
 
 
 650 
 
 0.351 
 
 0.883 
 
 0.0063 
 
 100.8 
 
 15,000 
 
 
 
 
 
 
 18,000 
 
 
 
 
 
 
 
 700 
 
 0.412 
 
 0.863 
 
 0.0096 
 
 124.4 
 
 
 700 
 
 0.368 
 
 0.877 
 
 0.0072 
 
 113.1 
 
 
 750 
 
 0.428 
 
 0.857 
 
 0.0107 
 
 137.6 
 
 
 750 
 
 0.385 
 
 0.872 
 
 0.0080 
 
 125.7 
 
 
 800 
 
 0.444 
 
 0.852 
 
 - 0.0118 
 
 151.2 
 
 
 800 
 
 0.400 
 
 0.867 
 
 0.0089 
 
 138.7 
 
 
 850 
 
 0.460 
 
 0.847 
 
 0.0130 
 
 165.1 
 
 
 850 
 
 0.415 
 
 0.862 
 
 0.0098 
 
 151.9 
 
 
 900 
 
 0.474 
 
 0.842 
 
 0.0142 
 
 179.5 
 
 
 900 
 
 0.429 
 
 0.857 
 
 0.0107 
 
 165.3 
 
 
 500 
 
 0.319 
 
 0.894 
 
 0.0050 
 
 71.3 
 
 
 500 
 
 0.273 
 
 0.909 
 
 0.0034 
 
 62.0 
 
 
 550 
 
 0.339 
 
 0.887 
 
 0.0058 
 
 82.9 
 
 
 550 
 
 0.292 
 
 0.903 
 
 0.0040 
 
 72.5 
 
 
 600' 
 
 0.360 
 
 0.880 
 
 0.0068 
 
 95.0 
 
 600 
 
 0.310 
 
 . 897 
 
 0.0047 
 
 83.5 
 
 
 650 
 
 0.379 
 
 0.874 
 
 0.0077 
 
 107.7 
 
 650 
 
 0.328 
 
 0.891 
 
 0.0053 
 
 94.9 
 
 16,000 
 
 
 
 
 
 20,000 
 
 
 
 
 
 
 
 700 
 
 0.396 
 
 0.868 
 
 0.0087 
 
 120.4 
 
 700 
 
 0.344 
 
 0.885 
 
 0.0060 
 
 106.6 
 
 
 750 
 
 0.413 
 
 0.862 
 
 0.0097 
 
 133.5 
 
 750 
 
 0.360 
 
 0.880 
 
 0.0068 
 
 118.8 
 
 
 800 
 
 0.429 
 
 ,0.857 
 
 0.0107 
 
 146.9 
 
 800 
 
 0.375 
 
 0.875 
 
 0.0075 
 
 131.2 
 
 
 850 
 
 0.443 
 
 0.852 
 
 0.0118 
 
 160.6 i' 
 
 850 
 
 0.389 
 
 0.870 
 
 0.0083 
 
 144.0 
 
 
 
 900 
 
 0.458 
 
 0.847 
 
 0.0129 
 
 174.5 
 
 900 
 
 0.403 
 
 0.866 
 
 0.0091 
 
 157.0 
 
 49 
 
RECTANGULAR 
 BEAMS 
 
 DIAGRAM 18 
 
 VALUES OF k, j, p AND K 
 71=75 
 
 rercentaqe of steel 
 
DIAGRAM 19 
 
 \ 
 
 RECTANGULAR 
 BEAMS 
 
 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 FOR 
 BEAMS ONE INCH WIDE 
 
 f e =650 
 f s =16,0 
 = 15 
 
 Area or steel in so. in. 
 
RECTANGULAR 
 BEAMS 
 
 DIAGRAM 20 
 
 f c =650 
 f s =18,0 
 n=15 
 
 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 FOR 
 BEAMS ONE INCH WIDE 
 
DIAGRAM 21 
 
 RECTANGULAR 
 BEAMS 
 
 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 FOR 
 BEAMS ONE INCH WIDE 
 
 f e =700 
 f,=16, 
 
 Area of stee in sg. in. 
 
RECTANGULAR 
 BEAMS 
 
 DIAGRAM 22 
 
 f c =700 
 f s =18,0 
 n=15 
 
 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 FOR 
 BEAMS ONE INCH WIDE 
 
 Area or steel m sa. in 
 
RECTANGULAR 
 BEAMS 
 
 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 FOR 
 BEAMS ONE INCH WIDE 
 
 f e = 750 
 f, = 16,000 
 
 Area or steel in sq. in. 
 
RECTANGULAR 
 BEAMS 
 
 DIAGRAM 24 
 
 / =750 MOMENT OF RESISTANCE AND AREA OF STEEL 
 
 f t =18,000 FOR 
 
 n=15 BEAMS ONE INCH WIDE 
 
 Area of stee m sa. in. 
 
DIAGRAM 25 
 
 RECTANGULAR 
 BEAMS 
 
 DIAGRAM FOR LOCATING POINTS 
 TO BEND HORIZONTAL STEEL 
 
RECTANGULAR 
 BEAMS 
 
 AREAS AND PERIMETERS 
 
 OF 
 COMBINATIONS OF FOUR RODS 
 
 Square rods 
 
 Number and size Round rods 
 
 II 
 
 Area 
 
 (sq. in.) 
 
 Perimeter 
 (in.) 
 
 M 
 
 H 
 
 H 
 
 y* 
 
 1 
 
 1H IK 
 
 Area 
 
 (sq. in.) 
 
 Perimeter 
 
 (in.) 
 
 1 00 
 
 80 4 
 
 
 
 1 
 
 79 
 
 6 28 
 
 l!l4 
 
 8 . 5 3 
 
 l 
 
 
 
 0.89 
 
 6^68 
 
 1.28 
 
 9.0 2 
 
 2 
 
 
 
 
 
 1.01 
 
 7.07 
 
 1 31 
 
 90 i 3 
 
 1 
 
 
 
 
 
 1 03 
 
 7 07 
 
 l'42 
 
 9.5 1 
 
 3 
 
 
 
 
 
 1.12 
 
 7^46 
 
 1.52 
 
 9.5 
 
 3 
 
 
 
 i 
 
 
 
 
 1.19 
 
 7.46 
 
 1.56 
 
 10.0 
 
 
 4 
 
 
 
 
 
 
 1.23 
 
 7.85 
 
 1.63 
 
 10.0 
 
 2' 
 
 
 2 
 
 
 
 
 
 1.28 
 
 7 85 
 
 1.73 
 
 10.5 
 
 
 3 
 
 1 
 
 
 
 
 
 1.36 
 
 8.25 
 
 1.91 
 
 11.0 
 
 
 2 
 
 2 
 
 
 
 
 
 1.50 
 
 8.64 
 
 1.94 
 
 11.0 
 
 
 3 
 
 
 i 
 
 
 
 
 1.52 
 
 8.64 
 
 1.94 
 
 11.0 
 
 l" 
 
 
 3 
 
 
 
 
 1.52 
 
 8 64 
 
 2.03 
 
 11.0 
 
 2 
 
 
 
 2 
 
 ;; \ '.'. 
 
 
 1.60 
 
 8.64 
 
 2.08 
 
 11.5 
 
 
 i 
 
 3 
 
 
 
 
 1.63 
 
 9.03 
 
 2.17 
 
 11.5 
 
 
 3 
 
 
 
 i 
 
 
 
 1.71 
 
 9.03 
 
 2.25 
 
 12.0 
 
 
 
 4 
 
 
 
 
 
 1.77 
 
 9.43 
 
 2.31 
 
 ' 12.0 
 
 
 2 
 
 
 2 
 
 
 
 
 1.82 
 
 9.43 
 
 2.45 
 
 12.5 
 
 
 
 3 
 
 1 
 
 
 
 1.93 
 
 9.82 
 
 2.55 
 
 12.5 
 
 'l 
 
 
 
 3 
 
 
 2.00 
 
 9 82 
 
 2.66 
 
 13.0 
 
 
 
 2 
 
 2 
 
 
 2.09 
 
 10.21 
 
 2.69 
 
 13.0 
 
 
 1 
 
 
 3 
 
 
 2.11 
 
 10.21 
 
 2.69 
 
 13.0 
 
 
 
 3 
 
 
 i .... 
 
 2.11 
 
 10.21 
 
 2.78 
 
 13.0 
 
 
 2 
 
 
 2 ! .- ; - 
 
 2.18 
 
 10 21 
 
 2.86 
 
 13.5 
 
 
 1 
 
 3 
 
 
 2.24 
 
 10.60 
 
 2.95 
 
 13.5 
 
 
 3 
 
 " " 
 
 1 
 
 
 2.32 
 
 10 . 60 
 
 3.06 
 
 14.0 
 
 
 - 
 
 4 
 
 2.41 
 
 11.00 
 
 3.13 
 
 14.0 
 
 
 
 2 
 
 2 . . 
 
 2.45 
 
 11 .00 
 
 3.30 
 
 14.5 
 
 
 
 
 3 1 . . 
 
 2.59 
 
 11 39 
 
 3.39 
 
 14.5 
 
 
 "l 
 
 
 3 
 
 2.66 
 
 11.39 
 
 3.53 
 
 15.0 
 
 
 
 
 2 2 
 
 2.77 
 
 11.78 
 
 3.56 
 
 15.0 
 
 
 
 1 
 
 3 
 
 
 2.80 
 
 11.78 
 
 3.56 
 
 15.0 
 
 
 
 
 3 .. 1 
 
 
 2.80 
 
 11.78 
 
 3.66 
 
 15.0 
 
 
 
 2 
 
 . . i . . i 2 
 
 
 2.87 
 
 11.78 
 
 3.77 
 
 15.5 
 
 
 
 
 1 3 I .. 
 
 
 2.96 
 
 12. 17 
 
 3.86 
 
 15.5 
 
 
 . . . . 
 
 3 .... 
 
 'l 
 
 3.03 
 
 12.17 
 
 4.00 
 
 16.0 
 
 _ 
 
 .. 1 .. 
 
 4 
 
 
 3.14 
 
 12.56 
 
 4.06 
 
 16.0 
 
 
 I 
 
 2 . ; 2 
 
 
 3.19 
 
 12,56 
 
 4.27 
 
 16.5 
 
 
 _ 
 
 
 31 
 
 
 3.35 
 
 12.96 
 
 4.36 
 
 16.5 
 
 
 
 1 
 
 . . | . . 3 
 
 
 3.42 
 
 12.96 
 
 4.53 
 
 17.0 
 
 
 
 
 
 2 2 
 
 
 3.56 
 
 13.35 
 
 4.56 
 
 17.0 
 
 
 
 
 
 3 ; 
 
 1 
 
 3.58 
 
 13.35 
 
 4.56 
 
 17.0 
 
 
 
 
 i 
 
 3 
 
 
 3.58 
 
 13.35 
 
 4.66 
 
 17.0 
 
 
 
 
 2 
 
 
 
 2 
 
 3.66 
 
 13.35 
 
 4.80 
 
 17.5 
 
 
 
 
 
 V 
 
 3 
 
 
 3.77 
 
 13.74 
 
 5.06 
 
 18.0 
 
 
 
 
 
 
 4 
 
 
 3.98 
 
 14.14 
 
 5.13 
 
 18.0 
 
 
 
 
 
 2 
 
 
 2 
 
 4.02 
 
 14.14 
 
 5.36 
 
 18.5 
 
 
 
 
 
 
 3 
 
 1 
 
 4.21 
 
 14.53 
 
 5.45 
 
 18.5 
 
 
 
 
 1 
 
 
 
 3 
 
 4.28 14.53 
 
 5.66 
 
 19.0 
 
 
 
 
 
 2 
 
 2 
 
 4.44 
 
 14.92 
 
 5.69 
 
 19.0 
 
 
 
 
 1 
 
 
 3 
 
 4.47 
 
 14.92 
 
 5.95 
 
 19.5 
 
 
 1 
 
 3 
 
 4.67 
 
 15.32 
 
 6.25 
 
 20.0 
 
 
 
 
 4 
 
 4.91 
 
 15.71 
 
 
 
 
 
 58 
 
TABLE 16 
 
 RECTANGULAR 
 BEAMS 
 
 AREAS AND PERIMETERS 
 
 OF 
 COMBINATIONS OF SIX RODS 
 
 1 
 
 
 
 | 
 
 
 Square rods 
 
 Number and size 
 
 Round rods 
 
 Square rods 
 
 Number and size 
 
 Round rods 
 
 Area 
 
 Perim- 
 
 
 
 
 
 
 
 Area 
 
 Perim- 
 
 Area 
 
 Perim- 
 
 
 
 
 
 
 
 Area 
 
 Perim- 
 
 (sq. 1 eter 
 
 N 
 
 ^ 
 
 % 
 
 1 
 
 IK 
 
 IK 
 
 (sq. 
 
 eter 
 
 (sq. 
 
 eter 
 
 N 
 
 ;! i 
 
 H 
 
 1 
 
 IK 
 
 IK 
 
 (sq. 
 
 eter 
 
 in.) 
 
 (in.) 
 
 
 
 
 
 
 
 in.) 
 
 (in.) 
 
 in.) 
 
 (in.) 
 
 
 
 
 
 
 
 in.) 
 
 (in.) 
 
 2.34 
 
 15.0 
 
 ft 
 
 
 
 
 
 
 1.84 
 
 11.78 
 
 5.39 
 
 22.5 
 
 * " 
 
 
 5 
 
 
 
 1 
 
 4.23 
 
 17.67 
 
 2.52 
 
 15.5 
 
 5 
 
 I 
 
 \' m 
 
 
 \\ 
 
 
 1.98 
 
 12.17 
 
 5.48 
 
 22.5 
 
 
 3 
 
 
 
 3 
 
 
 4.31 
 
 17.67 
 
 2.69 
 
 16.0 
 
 4 
 
 9 
 
 
 
 
 
 2.11 
 
 12.57 
 
 5.53 
 
 23.0 
 
 
 
 2 
 
 4 
 
 
 
 4.34 
 
 18.07 
 
 2.72 
 
 16.0 
 
 5.. 
 
 1 
 
 
 
 
 2.14 
 
 12.57 
 
 5.56 
 
 23.0 
 
 
 1 
 
 
 5 
 
 
 
 4.37 
 
 18.07 
 
 2.86 
 
 16.5 
 
 3 
 
 3 
 
 
 
 
 
 2.25 
 
 12.96 
 
 5.59 
 
 23.0 
 
 
 
 4 
 
 
 2 
 
 
 4.39 
 
 18.07 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2.95 
 
 16.5 
 
 5 
 
 
 
 1 
 
 
 
 2.32 
 
 12.96 
 
 5.77 
 
 23.5 
 
 
 
 1 
 
 5 
 
 
 
 4.53 
 
 18.46 
 
 3.03 
 
 17.0 
 
 2 
 
 4 
 
 
 
 
 
 2.38 
 
 13.35 
 
 6.00 
 
 24.0 
 
 
 
 
 6 
 
 
 
 4.71 
 
 18.85 
 
 3.09 
 
 17.0 
 
 4 
 
 . t 
 
 2 
 
 
 
 
 2.43 
 
 13.35 
 
 6.09 
 
 24.0 
 
 
 
 3 
 
 
 3 
 
 
 4.79 
 
 18.85 
 
 3.20 
 
 17.5 
 
 1 
 
 5 
 
 
 
 
 
 2.52 
 
 13.74 
 
 6.19 
 
 24.0 
 
 
 2 
 
 
 
 4 
 
 
 4.86 
 
 18.85 
 
 3.38 
 
 18.0 
 
 
 6 
 
 
 
 
 
 
 2.65 
 
 14.14 
 
 6.19 
 
 24.0 
 
 
 
 4 
 
 
 
 2 
 
 4.86 
 
 18.85 
 
 3.47 
 
 18.0 
 
 3 
 
 
 3 
 
 
 
 
 2.72 
 
 14.14 
 
 6.27 
 
 24.5 
 
 .. 
 
 .. 
 
 .. 
 
 5 
 
 1 
 
 
 4.92 
 
 19.24 
 
 3.56 
 
 18.0 
 
 4 
 
 
 
 2 
 
 
 
 2.80 
 
 14.14 
 
 6.53 
 
 25.0 
 
 
 
 
 4 
 
 2 
 
 
 5.13 
 
 19.64 
 
 3.58 
 
 18.5 
 
 
 5 
 
 1 
 
 
 
 '] 
 
 2.81 
 
 14.53 
 
 6.56 
 
 25.0 
 
 
 
 
 5 
 
 
 1 
 
 5.15 
 
 19.64 
 
 3.78 
 
 19.0 
 
 
 4 
 
 2 
 
 
 
 
 2.97 
 
 14.92 
 
 6.59 
 
 25.0 
 
 
 
 2 
 
 
 4 
 
 
 5.18 
 
 19 64 
 
 3.81 
 
 19.0 
 
 
 6 
 
 
 1 
 
 
 
 2.99 
 
 14.92 
 
 6.80 
 
 25.5 
 
 
 
 
 
 3 
 
 3 
 
 
 5.34 
 
 20.03 
 
 3.84 
 
 19.0 
 
 2 
 
 
 4 
 
 
 .. 
 
 
 3.02 
 
 14.92 
 
 6.89 
 
 25.5 
 
 
 1 
 
 
 
 5 
 
 . 
 
 .5.41 
 
 20.03 
 
 3.98 
 
 19.5 
 
 . 
 
 3 
 
 3 
 
 
 
 . 
 
 3.13 
 
 15.32 
 
 6.98 
 
 25.5 
 
 
 
 3 
 
 . 
 
 
 3 
 
 5.48 
 
 20.03 
 
 4.08 
 
 19.5 
 
 
 5 
 
 
 
 1 
 
 . . 
 
 3.20 
 
 15.32 
 
 7.06 
 
 26.0 
 
 
 
 
 2 
 
 4 
 
 
 5.55 
 
 20.42 
 
 4.17 
 
 19.5 
 
 3 
 
 
 
 3 
 
 
 
 3.28 
 
 15.32 
 
 7.09 
 
 26.0 
 
 
 
 1 
 
 
 5 
 
 
 5.57 
 
 20.42 
 
 4.19 
 
 20.0 
 
 
 2 
 
 4 
 
 
 
 
 3.29 
 
 15.71 
 
 7.13 
 
 26.0 
 
 
 
 - 
 
 4 
 
 
 2 
 
 5.60 
 
 20.42 
 
 4.22 
 
 20.0 
 
 1 
 
 
 5 
 
 
 
 
 3.31 
 
 15.71 
 
 7.33 
 
 26.5 
 
 
 
 
 1 
 
 5 
 
 
 5.76 
 
 20.81 
 
 4.25 
 
 20.0 
 
 
 4 
 
 
 2 
 
 
 
 3.34 
 
 15.71 
 
 7.59 
 
 27.0 
 
 
 
 
 
 6 
 
 
 5.96 
 
 21.20 
 
 4.39 
 
 20.5 
 
 . 
 
 1 
 
 5 
 
 
 
 
 3.45 
 
 16.10 
 
 7.69 
 
 27.0 
 
 
 
 
 3 
 
 
 3 
 
 6.04 
 
 21.20 
 
 4.59 
 
 21.0 
 
 
 
 6 
 
 
 
 
 3.61 
 
 16.49 
 
 7.78 
 
 27.0 
 
 
 
 2 
 
 
 
 4 
 
 6.11 
 
 21.20 
 
 4.69 
 
 21.0 
 
 
 3 
 
 
 3 
 
 
 
 
 3.68 
 
 16.49 
 
 7.89 
 
 27.5 
 
 
 
 
 
 
 
 5 
 
 1 
 
 6.19 
 
 21.60 
 
 4.78 
 
 21.0 
 
 2 
 
 
 
 4 
 
 
 
 3.76 
 
 16.49 
 
 8.19 
 
 28.0 
 
 
 
 
 
 4 
 
 2 
 
 6.43 
 
 21.99 
 
 4.78 
 
 21.0 
 
 
 4 
 
 
 
 2 
 
 
 3.76 
 
 16.49 
 
 8.25 
 
 28.0 
 
 
 
 
 2 
 
 
 4 
 
 6.48 
 
 21.99 
 
 4.83 
 
 21.5 
 
 
 
 5 
 
 1 
 
 ; . 
 
 
 3.79 
 
 16.89 
 
 8.48 
 
 28.5 
 
 
 
 
 
 3 
 
 3 
 
 6.66 
 
 22.38 
 
 5.06 
 
 22.0 
 
 . . 
 
 
 4 
 
 2 
 
 
 
 3.98 
 
 17.28 
 
 8.58 
 
 28.5 
 
 
 
 1 
 
 
 
 5 
 
 6.74 
 
 22.38 
 
 5.09 
 
 22.0 
 
 
 
 5 
 
 
 1 
 
 
 4.00 
 
 17.28 
 
 8.78 
 
 29.0 
 
 
 
 
 
 2 
 
 4 
 
 6.90 
 
 22.78 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5.13 
 
 22.0 
 
 
 3 
 
 
 4 
 
 
 
 4.03 
 
 17.28 
 
 8.81 
 
 29.0 
 
 
 
 
 1 
 
 
 5 
 
 6.92 
 
 22.78 
 
 5.30 
 
 22.5 
 
 
 
 3 
 
 3 
 
 
 
 ! 4.16 
 
 17.67 
 
 9.08 
 
 29.5 
 
 
 
 
 
 1 
 
 5 
 
 7.13 
 
 23.17 
 
 5.39 
 
 22.5 
 
 1 
 
 
 
 5 
 
 
 
 4.23 
 
 17.fi7 
 
 9.38 
 
 30.0 
 
 
 
 
 
 
 6 
 
 7.36 
 
 23.56 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59 
 
RECTANGULAR 
 BEAMS 
 
 TABLE 17 
 
 AREAS AND PERIMETERS 
 
 OF 
 COMBINATIONS OF EIGHT RODS 
 
 Square rods 
 
 Number and size 
 
 Round rods Square rods 
 
 Number and size 
 
 I 
 ; Round rods 
 
 Area 
 
 Perim- 
 
 
 
 
 
 
 Area 
 
 Perim- Area 
 
 Perim- 
 
 
 
 
 
 Area 
 
 Perim- 
 
 (sq. 
 
 eter 
 
 H 
 
 7 A 
 
 1 
 
 IK 
 
 iH 
 
 (sq- 
 
 eter (sq. 
 
 eter 
 
 3 A 
 
 y* 
 
 1 
 
 1M 
 
 1J-4 
 
 (sq. 
 
 eter 
 
 in.) 
 
 (in.) 
 
 
 
 
 
 
 in.) 
 
 (in.) in.) 
 
 (in.) 
 
 
 
 
 
 
 in.) 
 
 (in.) 
 
 4.50 
 
 24.0 
 
 8 
 
 
 
 
 
 3.53 
 
 18.85 8.12 
 
 32.0 
 
 
 4 
 
 
 4 
 
 
 6.38 
 
 25.14 
 
 4.70 
 
 24.5 
 
 7 
 
 l 
 
 
 
 
 3.69 
 
 19.24 8.27 
 
 32.5 
 
 
 
 7 
 
 1 
 
 
 6.49 
 
 25.53 
 
 4.91 
 
 25.0 
 
 6 
 
 2 
 
 
 
 
 3.85 
 
 19.64 8.52 
 
 32.5 
 
 
 5 
 
 
 
 3 
 
 6.69 
 
 25.53 
 
 4.94 
 
 25.0 
 
 7 
 
 
 1 
 
 
 
 3.88 
 
 19.64 8.53 
 
 33.0 
 
 
 
 6 
 
 2 
 
 
 6.70 
 
 25.92 
 
 5.11 
 
 25.5 
 
 5 
 
 3 
 
 
 
 
 4.01 
 
 20.03 8.56 
 
 33.0 
 
 
 
 7 
 
 
 1 
 
 6.72 
 
 25.92 
 
 5.20 
 
 25.5 
 
 7 
 
 
 
 1 
 
 
 4.09 
 
 20.03 8.62 
 
 33.0 
 
 
 3 
 
 
 5 
 
 .. 
 
 6.77 
 
 25.92 
 
 5.31 
 
 26.0 
 
 4 
 
 4 
 
 
 
 
 4.17 
 
 20.40 8.72 
 
 33.0 
 
 2 
 
 
 
 6 
 
 
 6.85 
 
 25.92 
 
 5.38 
 
 26.0 
 
 6 
 
 
 2 
 
 
 
 4.22 
 
 20.40 8.80 
 
 33.5 
 
 
 
 5 
 
 3 
 
 
 6.91 
 
 26.31 
 
 5.52 
 
 26.5 
 
 3 
 
 5 
 
 
 
 
 4.33 
 
 20.81 9.06 
 
 34.0 
 
 
 
 4 
 
 4 
 
 
 7.12 
 
 26.70 
 
 5.72 
 
 27.0 
 
 2 
 
 6 
 
 
 
 
 4.49 
 
 21.20 9-12 
 
 34.0 
 
 
 2 
 
 
 6 
 
 
 7.17 
 
 26.70 
 
 5.81 
 
 27.0 
 
 5 
 
 
 3 
 
 
 
 4.57 
 
 21.20 9.13 
 
 34.0 
 
 
 
 6 
 
 
 2 
 
 7.17 
 
 26.70 
 
 5.91 
 
 27.0 
 
 6 
 
 
 
 2 
 
 
 4.64 
 
 21.20 9.31 
 
 34.0 
 
 
 4 
 
 
 
 4 
 
 7.31 
 
 26.70 
 
 5.92 
 
 27.5 
 
 1 
 
 7 
 
 
 
 . 
 
 4.65 
 
 21.60 9.33 
 
 34.5 
 
 
 
 3 
 
 5 
 
 
 7.33 
 
 27.10 
 
 6. 12 
 
 28.0 
 
 
 8 
 
 
 
 . 
 
 4.81 
 
 21.99 9.42 
 
 34.5 
 
 1 
 
 
 
 7 
 
 
 7.40 
 
 27.10 
 
 6.25 
 
 28.0 
 
 4 
 
 
 4 
 
 
 
 4.91 
 
 21.99 9.59 
 
 35.0 
 
 
 
 2 
 
 6 
 
 
 7.53 
 
 27.49 
 
 6.36 
 
 28.5 
 
 
 7 
 
 1 
 
 
 
 4.99 
 
 22.38 9.62 
 
 35.0 
 
 
 1 
 
 
 7 
 
 
 7.56 
 
 27.49 
 
 6.59 
 
 29.0 
 
 
 6 
 
 2 
 
 
 
 5. 18 
 
 22.78 9.69 
 
 35.0 
 
 
 
 5 
 
 
 3 
 
 7.61 
 
 27.49 
 
 6.61 
 
 28.5 
 
 5 
 
 
 
 3 
 
 
 5. 19 
 
 22.38 9.86 
 
 35.5 
 
 
 
 1 
 
 7 
 
 
 7.74 
 
 27.88 
 
 6.62 
 
 29.0 
 
 
 7 
 
 
 1 
 
 
 5.20 
 
 22.78 10.11 
 
 35.5 
 
 
 3 
 
 
 
 5 
 
 7.94 
 
 27.88 
 
 6.69 
 
 29.0 
 
 3 
 
 
 5 
 
 
 
 5.25 
 
 22.78 10.12 
 
 36.0 
 
 
 
 
 
 8 
 
 
 7.95 
 
 28.28 
 
 6.83 
 
 29.5 
 
 
 5 
 
 3 
 
 
 
 5.36 
 
 23.17 10.25 
 
 36.0 
 
 
 
 4 
 
 
 4 
 
 8.05 
 
 28.28 
 
 6 92 
 
 29.5 
 
 
 7 
 
 
 
 1 
 
 5.44 
 
 23.17 10.42 
 
 36.5 
 
 
 
 
 7 
 
 1 
 
 8.19 
 
 28.67 
 
 7.06 
 
 30.0 
 
 
 4 
 
 4 
 
 
 
 5.55 
 
 23.56 10.72 
 
 37.0 
 
 , , 
 
 
 
 6 
 
 2 
 
 8.42 
 
 29.06 
 
 7.12 
 
 30.0 
 
 
 6 
 
 
 2 
 
 
 5.60 
 
 23.56 10.81 
 
 37.0 
 
 
 
 3 
 
 
 5 
 
 8.49 
 
 29.06 
 
 7.13 
 
 30.0 
 
 2 
 
 
 6 
 
 
 
 5.60 
 
 23.56 10.91 
 
 37.0 
 
 
 2 
 
 
 
 6 
 
 8.56 
 
 29.06 
 
 7.30 
 
 30.5 
 
 
 3 
 
 5 
 
 
 .. 
 
 5.73 
 
 23.96 11.02 
 
 37.5 
 
 
 .. 
 
 
 5 
 
 3 
 
 8.65 
 
 29.45 
 
 7.31 
 
 30.0 
 
 4 
 
 
 
 4 
 
 
 5.74 
 
 23.56 11.31 
 
 38.0 
 
 
 . . 
 
 
 4 
 
 4 
 
 8.88 
 
 29.85 
 
 7.53 
 
 31.0 
 
 
 2 
 
 6 
 
 
 
 5.91 
 
 24.35 11.38 
 
 38.0 
 
 . 
 
 
 2 
 
 
 6 
 
 8.93 
 
 29.85 
 
 7.56 
 
 31.0 
 
 1 
 
 
 7 
 
 
 
 5.94 
 
 24.35 11.61 
 
 38.5 
 
 
 
 
 3 
 
 5 
 
 9.12 
 
 30.24 
 
 7.63 
 
 31.0 
 
 
 5 
 
 
 3 
 
 
 5.9 
 
 24.35 11.70 
 
 38.5 
 
 
 1 
 
 
 
 7 
 
 9.19 
 
 30.24 
 
 7.72 
 
 31.0 
 
 
 6 
 
 
 
 2 
 
 6.06 
 
 24.35 11.91 
 
 39.0 
 
 
 
 
 2 
 
 6 
 
 9.35 
 
 30.63 
 
 7.77 
 
 31.5 
 
 
 1 
 
 7 
 
 
 
 6.10 
 
 24. 74 111 1.94 
 
 39.0 
 
 
 
 1 
 
 
 7 
 
 9.37 
 
 30.63 
 
 8.00 
 
 32.0 
 
 
 
 8 
 
 
 
 6.28 
 
 25. 14 12.20 
 
 39.5 
 
 
 
 
 1 
 
 7 I 
 
 9.58 
 
 31.02 
 
 8.02 
 
 31.5 
 
 3 
 
 
 
 5 
 
 
 6.30 
 
 24.74 12.50 
 1 
 
 40.0 
 
 
 
 
 
 8 ' 9.82' 
 
 31.42 
 
 60 
 
TABLE 18 
 
 RECTANGULAR 
 BEAMS 
 
 AREAS AND PERIMETERS 
 
 OF 
 GROUPS OF RODS OF UNIFORM SIZE 
 
 
 Number 
 
 Size of rods 
 
 H 
 
 H 
 
 M 
 
 M 
 
 H 
 
 H 
 
 1 
 
 1M 
 
 IK 
 
 1H 
 
 1H 
 
 1 
 1 
 
 1 
 1 
 
 1 
 
 . 0625 
 1.0 
 
 0.1406 
 
 0.2500 
 
 0.3906 
 
 0.5625 
 
 0.7656 
 3.5 
 
 1.000 
 4.0 
 
 1.266 
 
 1.563 
 
 1.891 
 
 2.250 
 
 
 
 
 
 
 
 
 
 2 
 
 . 1250 
 2.0 
 
 0.2812 
 3.0 
 
 0.5000 
 4.0 
 
 0.7812 
 5.0 
 
 1.125 
 6.0 
 
 1.531 
 7.0 
 
 2.000 
 8.0 
 
 2.531 
 9.0 
 
 3.125 
 10 
 
 3.781 
 11.0 
 
 4.500 
 12.0 
 
 3 
 
 0.1875 
 3.0 
 
 0.4218 
 4.5 
 
 0.7500 
 6.0 
 
 1.172 
 7.5 
 
 1.688 
 9.0 
 
 2.297 
 10.5 
 
 3.000 
 12.0 
 
 3.797 
 13.5 
 
 4.688 
 15.0 
 
 5.672 
 16.5 
 
 6.750 
 18 
 
 4 
 
 0.2500 
 4.0 
 
 . 5624 
 6.0 
 
 1.000 
 8.0 
 
 1.563 
 10.0 
 
 2.250 
 12.0 
 
 3.062 
 14.0 
 
 4.000 
 16.0 
 
 5.062 
 18.0 
 
 6.250 
 20.0 
 
 7.562 
 22.0 
 
 9.000 
 24.0 
 
 5 
 
 0.3125 
 5.0 
 
 0.7030 
 7.5 
 
 1.250 
 10.0 
 
 1.953 
 12.5 
 
 2.813 
 15.0 
 
 3.828 
 17.5 
 
 5.000 
 20.0 
 
 6.328 
 22.5 
 
 7.813 
 25.0 
 
 9.453 
 27.5 
 
 11.25 
 30 
 
 6 
 
 . 3750 
 60 
 
 0.8436 
 9.0 
 
 1.500 
 12.0 
 
 2.344 
 16.0 
 
 3.375 
 18.0 
 
 4.594 
 21.0 
 
 6.000 
 24.0 
 
 7.594 
 27.0 
 
 9.375 
 30.0 
 
 11.34 
 33.0 
 
 13.50 
 36.0 
 
 7 
 
 0.4375 
 7.0 
 
 0.9842 
 10.5 
 
 1.750 
 14.0 
 
 2.734 
 17.5 
 
 3.938 
 21.0 
 
 5.359 
 24.5 
 
 7.000 
 28 
 
 8.859 
 31.5 
 
 10.94 
 35.0 
 
 13.23 
 38.5 
 
 15.75 
 42.0 
 
 8 
 
 0.5000 
 80 
 
 1.125 
 12.0 
 
 2.000 
 16.0 
 
 3.125 
 20.0 
 
 4.500 
 24.0 
 
 6.125 
 28.0 
 
 8.000 
 32.0 
 
 10.12 
 36.0 
 
 12.50 
 40.0 
 
 15.12 
 44.0 
 
 18.00 
 48 
 
 9 
 
 . 5625 
 90 
 
 
 
 1.265 
 13 5 
 
 2.250 
 18.0 
 
 3.516 
 22.5 
 
 5.063 
 27.0 
 
 6.890 
 31.5 
 
 9.000 
 36.0 
 
 11.39 
 40.5 
 
 14.06 
 45.0 
 
 17.02 
 49.5 
 
 20.25 
 54.0 
 
 10 
 
 0.6250 
 10.0 
 
 1.406 
 15.0 
 
 2.500 
 20 
 
 3.906 
 25.0 
 
 5.625 
 30 
 
 7.656 
 35.0 
 
 10.00 
 40.0 
 
 12.66 
 45 
 
 15.63 118.91 
 50.0 55.0 
 
 22.50 
 60.0 
 
 
 
 
 
 
 
 
 
 1 
 
 0.0491 
 0.785 
 
 0.1105 
 1 18 
 
 0.1964 
 1.571 
 
 0.3068 
 1 96 
 
 0.4418 
 2 35 
 
 0.6013 
 2 75 
 
 0.7854 
 3.14 
 
 9940 
 3 53 
 
 1.227 1.485 
 3 93 4 32 
 
 1.767 
 4.71 
 
 2 
 
 0.0982 
 1.57 
 
 . 2209 
 2 36 
 
 0.392*7 
 3.14 
 
 0.6136 
 3 93 
 
 0.8836 
 4 71 
 
 1.203 
 5.50 
 
 1.571 
 6.28 
 
 1.988 
 7.07 
 
 2.454 
 7 85 
 
 2.970 
 8 64 
 
 3.534 
 9.42 
 
 3 
 
 0.1473 
 2.36 
 
 0.3313 
 3 53 
 
 0.5890 
 4.71 
 
 . 9204 
 5 89 
 
 1.325 
 7.07 
 
 1.804 
 8 25 
 
 2.356 
 9 43 
 
 2.982 
 10.6 
 
 3.681 
 11.8 
 
 4.455 
 13.0 
 
 5.301 
 14.1 
 
 4 
 
 1964 
 3.14 
 
 0.4418 
 4.71 
 
 . 7854 
 6.28 
 
 1.227 
 7.85 
 
 1.767 
 9 42 
 
 2.405 
 11.0 
 
 3.142 
 12.6 
 
 3.976 
 14.1 
 
 4.908 
 15.7 
 
 5.940 
 17.3 
 
 7.068 
 18.8 
 
 5 
 
 . 2455 
 3.93 
 
 . 5522 
 5.89 
 
 0.9817 
 7.85 
 
 1.534 
 9 82 
 
 2.209 
 11.8 
 
 3.006 
 13.7 
 
 3.927 
 15.7 
 
 4.970 
 17.7 
 
 6.135 
 19.6 
 
 7.425 
 21.6 
 
 8.835 
 23 6 
 
 6 
 
 0.2946 
 4.71 
 
 0.6627 
 7.07 
 
 1.178 
 9 43 
 
 1.841 
 11 8 
 
 2.651 
 14.1 
 
 3.608 
 16.5 
 
 4.712 
 18 9 
 
 5.964 
 21.2 
 
 7.362 
 23 6 
 
 8.910 
 25.9 
 
 10.60 
 28.3 
 
 7 
 
 0.3437 
 5.50 
 
 0.7731 
 8.25 
 
 1.374 
 11.0 
 
 2.148 
 13.7 
 
 3.093 
 16.5 
 
 4.209 
 19.2 
 
 5.498 
 22.0 
 
 6.958 8.589 
 24.7 27.5 
 
 10.39 
 30.2 
 
 12.37 
 33.0 
 
 8 
 
 0.3928 
 6.28 
 
 0.8836 
 9 42 
 
 1.571 
 12 6 
 
 2.454 
 15 7 
 
 3.534 
 18.8 
 
 4.810 
 22 
 
 6.283 
 25.1 
 
 7.952 | 9.816 
 28.3 ! 31.4 
 
 11.88 
 34 6 
 
 14.14 
 37.7 
 
 9 
 
 0.4419 
 7 07 
 
 0.9940 
 10.6 
 
 1.767 
 14 1 
 
 2.761 
 17.7 
 
 3.976 
 21.2 
 
 5.412 
 24.7 
 
 7.069 
 28 3 
 
 8.946 
 31.8 
 
 11.04 
 35 3 
 
 13.37 
 38 9 
 
 15.90 
 42 4 
 
 10 
 
 0.4910 
 7.85 
 
 1.105 
 11.8 
 
 1.964 
 15.7 
 
 3.068 
 19.6 
 
 4.418 ! 6.013 
 23 . 6 27 . 5 
 
 7.854 1 9.940 
 31.4 ! 35.3 
 
 I 
 
 12.27 
 39 3 
 
 14.85 
 43.2 
 
 17.67 
 47.1 
 
 61 
 
RECTANGULAR 
 
 BEAMS 
 
 TABLE 19 
 
 AREAS, PERIMETERS AND WEIGHTS OF RODS 
 
 
 Round rods 
 
 Square rods 
 
 Size (inches) 
 
 Area 
 (square 
 inches) 
 
 Perimeter 
 (inches) 
 
 Weight 
 per foot 
 (pounds) 
 
 Area 
 (square 
 inches) 
 
 Perimeter 
 
 (inches) 
 
 Weight 
 per foot 
 (pounds) 
 
 H 
 
 0.0491 
 
 0.785 
 
 0.167 
 
 0.0625 
 
 1.00 
 
 0.212 
 
 KG 
 
 0.0767 
 
 0.982 
 
 0.261 
 
 0.0977 
 
 1.25 
 
 0.333 
 
 H 
 
 0.1104 
 
 1.178 
 
 0.375 
 
 0.1406 
 
 1.50 
 
 0.478 
 
 KG 
 
 0.1503 
 
 1.374 
 
 0.511 
 
 0.1914 
 
 1.75 
 
 0.651 
 
 y 2 
 
 0.1963 
 
 1.571 
 
 0.667 
 
 0.2500 
 
 2.00 
 
 0.850 
 
 MG 
 
 0.2485 
 
 1.767 
 
 0.845 
 
 0.3164 
 
 2.25 
 
 1.076 
 
 % 
 
 0.3068 
 
 1.964 
 
 1.043 
 
 0.3906 
 
 2.50 
 
 1.328 
 
 % 
 
 0.3712 
 
 2.160 
 
 1.262 
 
 0.4727 
 
 2.75 
 
 1 . 608 
 
 H 
 
 0.4418 
 
 2.356 
 
 1.502 
 
 0.5625 
 
 3.00 
 
 1.913 
 
 13 Ae 
 
 0.5185 
 
 2.553 
 
 1.763 
 
 0.6602 
 
 3.25 
 
 2.245 
 
 7 /8 
 
 0.6013 
 
 2.749 
 
 2.044 
 
 . 7656 
 
 3.50 
 
 2.603 
 
 ^6 
 
 0.6903 
 
 2.945 
 
 2.347 
 
 . 8789 
 
 3.75 
 
 2 . 989 
 
 1 
 
 O.V854 
 
 3.142 
 
 2.670 
 
 1.0000 
 
 4.00 
 
 3.400 
 
 1M 
 
 0.9940 
 
 3.534 
 
 3.379 
 
 1 . 2656 
 
 4.50 
 
 4.303 
 
 \y 
 
 1.2272 
 
 3.927 
 
 4.173 
 
 1.5625 
 
 5.00 
 
 5.312 
 
 l 3 /8 
 
 1.4849 
 
 4.320 
 
 5.049 
 
 1 . 8906 
 
 5.50 
 
 6 . 428 
 
 IX 
 
 1.7671 
 
 4.712 
 
 6.008 
 
 2.2500 
 
 6.00 
 
 7.650 
 
 1% 
 
 2.0739 
 
 5.105 
 
 7.051 
 
 2.6406 
 
 6.50 
 
 8.978 
 
 1% 
 
 2.4053 
 
 5.498 
 
 8.178 
 
 3.0625 
 
 7.00 
 
 10.41 
 
 1% 
 
 2.7612 
 
 5.891 
 
 9.388 
 
 3.5156 
 
 7.50 
 
 11.95 
 
 2 
 
 3.1416 
 
 6.283 
 
 10.68 
 
 4.0000 
 
 8.00 
 
 13.60 
 
 2M 
 
 3.9761 
 
 7.069 
 
 13.52 
 
 5.0625 
 
 ' 9.00 
 
 17.22 
 
 2H 
 
 4.9087 
 
 7.854 
 
 16.69 
 
 6.2500 
 
 10.00 
 
 21.25 
 
 2% 
 
 5 . 9396 
 
 8.639 
 
 20.20 
 
 7.5625 
 
 11.00 
 
 25.71 
 
 3 
 
 7.0686 
 
 9.425 
 
 24.03 
 
 9.0000 
 
 12. CO 
 
 30.60 
 
 62 
 
SECTION 4 
 DOUBLY REINFORCED BEAMS 
 
 Diagrams 26 to 30 inclusive are particularly useful in checking the supports of con- 
 tinuous T-beams when the value of -j- is approximately 3^i o- The results are on the 
 
 safe side when -r is less than %Q. For different values of j-^ they give directly the 
 amounts of compressive and tensile steel required. 
 
 When the value of -j- does not approximate Ho? the formulas given below may 
 
 be used. These are based on the fundamental fact that for any given values of 
 f e and /,, k has exactly the same value regardless of the shape or type of beam. It 
 follows from this that if steel is added to the section without changing the extreme 
 fiber stresses, this added tensile and compressive steel must form a balanced couple 
 whose stresses conform to the stresses already in the section. 
 
 Let pi = steel ratio for the beam, without compressive steel. 
 p-2 = steel ratio for the added tensile steel. 
 
 Pf = Pi + P* 
 
 p' = steel ratio for compressive steel. 
 Mi = moment of the beam without compressive steel. 
 M z = moment of the added steel couple. 
 
 M = Mi + M 2 
 
 Then 
 
 I J- 
 
 Pl ^ 2f* 
 
 ^=/*i(i-gw 
 
 3/o = M - Mi 
 
 P2 = 
 
 1 - A 
 
 P 
 
 Diagram 31 is of general use. By means of this diagram and Table 20 it is possible 
 to readily determine the stresses in the concrete and steel of a doubly reinforced 
 rectangular beam for a given bending moment. 
 
 Diagram 32 is used to determine the length of embedment necessary to develop the 
 actual compressive stress in the rods in the bottom of a continuous T-beam at the 
 
 63 
 
 
DOUBLY REINFORCED BEAMS 
 
 supports. The upper part of the diagram is general, and may be used to find length 
 of embedment to provide for bond when the stress is the steel is either tension or 
 compression. 
 
 Finding Percentages of Tensile and Compressive Steel 
 
 M 
 
 ~_ What percentages of tensile and compressive steel will be required when f ,., = 200, 
 t oa~ 
 
 d' 
 iff c is not to exceed 750 and / is not to exceed 18,000? j- = 0.10. n = 15. 
 
 From Diagram 28 we find that for f c = 750, / = 18,000, and ^ = 200 
 
 p = 0.0127 and p' - 0.010 
 
 If p should be increased to 0.0143, /, will be lowered to 16,000 and p' to 0.0086. 
 Given: b = 12 in., d = 18 in., j = 0.15, M = 750,000 in.-lb., f c = 750 and / = 
 16,000, n = 15. Determine the required percentages of tensile aud compressive steel. 
 
 From Table 14, 
 
 k = 0.413 pi = 0.0097, and K = 133.5 
 M[ = (133.5) (12) (18) 2 = 519,000 in.-lb. 
 M 2 = 750,000 - 519,000 = 231,000 in.-lb. 
 231,000 
 
 * (16,000) (0.85) (12) (18) 2 
 P = Pi + p 2 = 0.0141 
 
 
 ' = (0.0044) _ = 0.0097 
 
 Finding Length of Embedment of Compressive Steel 
 
 Given a continuous beam reinforced with 1-in. rods (either square or round) in com- 
 pression so that f c = 750; / = 16,000; -7- = 0.10; n = 15; u = 80. Find required 
 
 length of embedment of compressive steel. 
 
 From the lower part of Diagram 32, the compressive stress// is found to be 8540 Ib. 
 per sq. in. The upper diagram shows the length of embedment for 1-in. plain rods, 
 with u = 80, to be 26>2 in. 
 
 Finding Stresses in Concrete and Steel 
 
 A continuous T-beam, uniformly loaded, has a bending moment at the center of each 
 span of 356,300 in.-lb. Negative bending moment at the supports and the positive bending 
 
 wl 2 
 moment at the center of span are figured by the formula, M = ^r. The tensile steel at the 
 
 center of span consists of four %-in. round bars, b' = 10 in. d 15 in. Design 
 the supports. 
 
 At the supports the flange of the T-beam, being in tension, is negligible and the 
 T-beam changes into a rectangular beam with steel in top and bottom. Two of the 
 tension bars on each side of the supports will be bent up and made to lap over the top 
 of the supports, while the other two bars on each side will be continued straight and 
 lapped over supports at the bottom of beam. 
 
 64 
 
DOUBLY REINFORCED BEAMS 
 The ratios of steel in tension and compression are the same, and are respectively : 
 
 a 118 
 
 (1.77 in above equation taken from Table 18.) 
 
 d ' - 2 - o m 
 T U 
 
 From Diagram 31, knowing p' = p, we obtain 
 
 d' k = 0.361 
 
 For - 0.10.... 
 
 d' k = 0.377 
 
 For = 0.15... 
 
 Thus, 
 
 k =0 ' 372 
 = 0.873 
 
 (It is usually well within the precision of the actual work, and on the safe side, to use the 
 curves for the value of -r next larger than the actual value. Thus in this problem the 
 
 values of k and j for -j =0.15 could be used with sufficient accuracy.) 
 
 Then 
 
 M 356,300 
 
 (1.77X0.873X15) 
 and, using Table 20, 
 
 f c = n(l k _ fc) /, = (0.0394) (15,400) = 607 Ib. per sq. in. 
 
 The stresses in the concrete and steel are within the allowable and no haunch or 
 additional steel is necessary. 
 
 The moment of resistance at the supports may be found as follows: 
 
 f e n(l - k} 650 
 
 fc- = 0^394 = 16,500 Ib. per sq.m. 
 
 Thus the moment of resistance depends on the steel and 
 
 Ms = bd%pj = (10) (15) 2 (16,000) (0.0118) (0.873) = 371,000 in.-lb. 
 
 65 
 
DIAGRAM 26 
 
 
 DOUBLY 
 REINFORCED 
 
 BEAMS 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF ^p, p, ANDp' 
 
 *' JL 
 
 d, 10 
 
 f c =650 
 f ,=16,000 
 f s = 18,000 
 n=15 
 
 Percentage of -tensile steel, p 
 
DOUBLY 
 REINFORCED 
 
 BEAMS 
 
 DIAGRAM 27 
 
 f t =7 00 
 f,=16, 
 f.= 18,000 
 n=15 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF ~t, p, ANDp' 
 
 Percentage of tensile steel, p 
 
DIAGRAM 28 
 
 DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF ~, p, AN Dp' 
 
 f e =750 
 f s =16,000 
 f s =18,000 
 = 15 
 
 Percentage of tensile steel , p 
 
DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 DIAGRAM 29 
 
 f c =800 
 
 f s =16,000 
 f s = 18,000 
 15 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF , p, ANDp' 
 
 Percentage of tensi le steel , p 
 
DIAGRAM 30 
 
 DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF ^ p, ANDp' 
 
 <*L=L 
 d~ 10 
 
 , f e =850 
 f,=16,000 
 f, = 18,000 
 71 = 15 
 
DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 DIAGRAM 31 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF k AND j 
 
DIAGRAM 31 
 
 DOUBLY 
 REINFORCED 
 
 BEAMS 
 
 DOUBLY REINFORCED RECTANGULAR BEAMS 
 VALUES OF k AND j 
 
DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 VALUES OF 
 
 IN FORMULA f c 
 
 TABLE 20 
 
 J* 
 
 48 
 
 <c 
 
 1 
 
 
 - 
 
 rig 
 
 5' 
 1 
 
 
 
 rH 
 
 - 
 
 2T 
 1 
 
 lH 
 
 "s 
 
 ^ 
 
 - 
 
 3e 
 1 
 
 si 
 
 -4J 
 
 iJS 
 
 5? 
 
 1 
 
 ^ 
 
 r4J 
 
 48 
 
 5 
 1 
 
 rH 
 
 "c 
 
 -ie 
 
 * 
 
 -^ 
 
 1 
 
 V 
 
 ri 
 
 -Si 
 
 ST 
 
 1 
 
 ^ 
 
 
 
 
 | 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 I 
 
 
 
 0.200 
 
 0.0 
 
 106 
 
 0.2500.0 
 
 222 
 
 0.300 
 
 0.0 
 
 286 
 
 0.350 
 
 0.0 
 
 35!) 
 
 0.400 
 
 0.0 
 
 444 
 
 0.450 
 
 0.0 
 
 545 
 
 0.500 
 
 0.0 
 
 6660.550 
 
 ().( 
 
 815 
 
 0.202 
 
 0.0169 
 
 0.2520.0224 
 
 0.302 
 
 . 0288 
 
 0.352 
 
 0.0362 
 
 0.402 
 
 0.0447 
 
 0.452 
 
 0.0549 
 
 0.502 
 
 0.0671 
 
 0.5520.0821 
 
 0.204 
 
 0.0171 
 
 0.2540.0226 
 
 0.304 
 
 0.0291 
 
 0.354 
 
 0.0365 
 
 0.404 
 
 0.0451 
 
 0.454 
 
 0.0554 
 
 0.5040.0677 
 
 . 554 
 
 0.0827 
 
 0.206 
 
 0.0173 
 
 0.256 
 
 . 0229 
 
 0.306 
 
 0.0293 
 
 0.356 
 
 . 0368 
 
 0.406 
 
 0.0455 
 
 0.456 
 
 0.0558 
 
 0.506 
 
 . 0682 
 
 . 556 
 
 0.0834 
 
 0.208 
 
 0.0175 
 
 0.258 
 
 0.0231 
 
 0.308 
 
 . 0296 
 
 0.358 
 
 0.0371 
 
 0.408 
 
 . 0459 
 
 0.458 
 
 0.0562 
 
 0.508 
 
 . 0688 
 
 0.558 
 
 0.0841 
 
 0.210 
 
 0.0177 
 
 0.260 
 
 0.0234 
 
 0.310 
 
 0.0299 
 
 0.360 
 
 0.0375 
 
 0.410 
 
 0.0463 
 
 0.460 
 
 0.0567 
 
 0.510 
 
 . 0694 
 
 0.560 
 
 . 0848 
 
 0.212 
 
 0.0179 
 
 0.262 
 
 0.0236 
 
 0.312 
 
 0.0301 0.362 
 
 . 0378 
 
 0.412 
 
 . 0466 
 
 0.462 
 
 0.0571 
 
 0.512 
 
 0.0699 
 
 0.562 
 
 0.0855 
 
 0.214 
 
 0.0181 
 
 0.264 
 
 0.0238 
 
 0.314 
 
 0.0305 
 
 0.364 
 
 0.0381 
 
 0.414 
 
 . 0470 
 
 0.464 
 
 0.0576 
 
 0.514 
 
 0.0705 
 
 0.564 
 
 . 0862 
 
 0.216 
 
 0.0183 
 
 0.266 
 
 0.0241 
 
 0.316 
 
 . 0308 
 
 0.366 
 
 . 0384 
 
 0.416 
 
 0.0474 
 
 0.466 
 
 0.0581 
 
 0.516 
 
 0.0711 
 
 . 566 
 
 0.0869 
 
 0.218 
 
 0.0186 
 
 0.268 
 
 0.0243 
 
 0.318 
 
 0.0311 
 
 0.368 
 
 . 0387 
 
 0.418 
 
 0.0478 
 
 0.468 
 
 . 0586 
 
 0.518 
 
 0.0717 
 
 0.568 
 
 0.0876 
 
 0.220 
 
 0.0188 
 
 0.270 
 
 0.0246 
 
 0.320 
 
 0.0314 
 
 0.370 
 
 0.0391 
 
 0.420 
 
 . 0482 
 
 0.470 
 
 0.0591 
 
 0.5200.07230.570 
 
 . 0884 
 
 0.222 
 
 0.0190 
 
 0.272 
 
 0.0248 
 
 0.322 
 
 0.0317 
 
 0.372 
 
 0.0394 
 
 0.422 
 
 0.0486 
 
 0.472 
 
 0.0595 
 
 0.5220.07280.572 
 
 0.0891 
 
 0.224 
 
 0.0192 
 
 0.274 
 
 0.0251 
 
 0.324 
 
 0.0319 
 
 0.374 
 
 0.0398 
 
 0.424 
 
 . 0490 
 
 0.474 
 
 0.0600 
 
 0.5240.0733ji0.574 
 
 . 0898 
 
 0.226 
 
 0.0194 
 
 0.276 
 
 0.0254 
 
 . 326 
 
 . 0322 
 
 0.376 
 
 0.0401 
 
 0.426 
 
 . 0494 
 
 0.476 
 
 0.0605 
 
 . 526 
 
 0.0739 0.576 
 
 . 0905 
 
 0.228 
 
 0.0196 
 
 0.278 
 
 . 0257 
 
 0.328 
 
 0.0325 
 
 0.378 
 
 0.0404 
 
 0.428 
 
 . 0498 
 
 0.478 
 
 0.0610 
 
 0.5280.07450.578 
 
 0.0912 
 
 0.230 
 
 0.0199 
 
 0.280 
 
 0.0259 
 
 0.330 
 
 0.03280.380 
 
 . 0408 
 
 0.430 
 
 . 0502 
 
 0.480 
 
 0.0615 
 
 0.5300.0751j|0.580 
 
 0.0920 
 
 0.232 
 
 0.0201 
 
 0.282 
 
 0.0261 
 
 0.332 
 
 0.0331 0.3820.0411 
 
 . 432 . 0506 
 
 0.482 
 
 0.0620 
 
 0.532 j 0.0757 0.582 
 
 . 0927 
 
 0.234 
 
 . 0203 
 
 0.284 
 
 . 0264 
 
 0.334 
 
 0.0334 0. 384^0.0415 
 
 0.4340.0511 
 
 0.484 
 
 . 0625 
 
 . 534 
 
 0.0763 0.584 
 
 0.0935 
 
 0.236 
 
 . 0205 
 
 0.286 
 
 0.0267 
 
 0.336 
 
 0.03370.3860.0419 
 
 . 436 
 
 0.0515 
 
 0.486 
 
 . 0630 
 
 0.536 
 
 0.07700.586 
 
 . 0943 
 
 0.238 
 
 . 0207 
 
 0.288 
 
 0.0269 
 
 0.338 
 
 0.0340 
 
 0.388 
 
 . 0422 
 
 0.438 
 
 . 0520 
 
 0.488 
 
 . 0635 
 
 0.538 
 
 0.07760.588 
 
 0.0951 
 
 0.240 
 
 0.0210 
 
 0.290 
 
 0.0272 
 
 0.340 
 
 0.03440.390 
 
 0.0426 
 
 0.440 
 
 0.0524 
 
 0.490 
 
 . 0640 
 
 0.540 
 
 0.0783 0.590 
 
 0.0959 
 
 0.242 
 
 0.0212 
 
 0.292 
 
 . 0275 
 
 0.342 
 
 0.03470.392 
 
 0.0429 
 
 0.442 
 
 . 0528 
 
 0.4920.0645 
 
 0.542(0.07890.592 
 
 0.0967 
 
 0.244 
 
 0.0214 
 
 0.294 
 
 0.0278 
 
 0. 344 0.0350J 0.394 
 
 0.0433 
 
 0.444 
 
 . 0532 
 
 0.4940.0650 
 
 0.544 
 
 0.0795 0.594 
 
 . 0975 
 
 0.246 
 
 0.0217 
 
 0.296 
 
 1.0280 
 
 0.346 
 
 0.0353||0.396 
 
 0.0437 
 
 0.446 
 
 0.0536 
 
 0.4960.0656 
 
 0.546 
 
 . 0802 . 596 . 0984 
 
 0.248 
 
 0.0219 
 
 . 298 
 
 . 0283 
 
 0.348 
 
 0.03560.398 
 
 0.0440 
 
 0.488 
 
 0.0540 
 
 0.4980.0660 
 
 0.548 
 
 0.0808JO. 5980. 0993 
 
 74 
 
DIAGRAM 32 
 
 DOUBLY 
 
 REINFORCED 
 
 BEAMS 
 
 LENGTH OF EMBEDMENT OF RODS IN COMPRESSION 
 
 UNIT STRESS IN COMPRESSIVE STEEL 
 
 10 
 D 
 
 <5.?o n ""s" s s~" "*s" 
 
 
 
 , = \Q 000 
 
 V X, "IX. >s > o 
 
 
 " ^S. ^"^X. ^ * -1 X- ^ S ^x_* 
 
 n * 5 
 
 o.is .35! >JjIS ZS ' nS^ 
 
 
 "X. X^ ^ . 1 y X^?/") 
 
 
 "* s "^x ^ix^i- ^h*? 
 
 1 Xv 
 
 xj X ^'Tp^p ^t 
 
 s. VN 
 
 x /e~ n^O ^X 
 
 B^^ s k 
 
 0.10 ^?P N > " 
 
 v v 
 
 x ^^xT 
 
 ^ s^ ^xl <s s 
 
 s s X. 
 
 I^V ' "* v ^ ^v 
 
 X ^ 
 
 X^ x. Xs^ ^^ 
 
 s v 
 
 S X_ ^^X "N. ^^^ 
 
 o.o5 ::::::;:: 
 
 S^ ^S X^ "* s " *^ 
 
 020 V ^ V X \ 
 
 
 S "XL ^V ^\ ^^ 
 
 f s = 16,000 
 
 >^ ^ T* ^ x "*< & 
 
 _ _ . . f~ 
 
 Lii"" s" '^~ "^ ; r"&: 
 
 n = ID 
 
 
 o.is ISIIIS !.!uj ^ ; ^ 
 
 
 X, ' v ^ rTrPf 
 
 
 ** I ' ^v S X^ 
 
 S ** V 
 
 ^ > ' S "^l ' TrS 
 
 s. X. 
 
 ^^S^^ l^i ^ 
 
 ^X_ ^s 
 
 9.10 sPM x 
 
 X s^ ^ i 
 
 ^s ""^ ^ 
 
 ^^V 'V^ V 
 
 V ^^ 
 
 s X X. s v^ 
 
 s s^ 
 
 **,. *S S <i > > 
 
 
 ^v s ^ X, ^s s 
 
 005 I 
 
 s ** i J__L ^. s > s i ik 
 
 O O O S? 
 
 \T) *O r ~ <O 
 
 i I II 
 
 Values of i' S) Unit compress 
 
 ve stress in steel, Ib.persq.tn. 
 
 75 
 
SECTION 5 
 T-BEAMS 
 
 Diagrams 33 and 34 should be used for designing T-beams when the neutral axis is 
 in the stem and when the compression in the stem is to be neglected. The left hand 
 
 side of the diagram gives the values of r^, / c , and ^- The right hand side gives values 
 
 of j and p, to be used in finding the area of steel required. 
 
 Diagram 35* is for general use and may be employed either for design or for 
 determining stresses in existing designs. 
 
 Design of T-B earns 
 
 Assuming f a = 16,000, f c = 650, n = 15, t = 5% in., and M = 3,000,000 in.-U>., 
 find the section of stem required. 
 
 Consider the stem width to be 12 in., and the width of flange as found from the 
 Joint Committee recommendations to be 56 in. 
 
 M t 
 
 To obtain the value of r^> it is necessary to know the value of -v Since this is 
 
 unknown it must be assumed. For -, = 0.2, Diagram 33 shows rnr; = 87.6. and 
 
 d oa 2 
 
 3^000,000 , t 5.5 
 
 = 24 - 8 m - and = = - 
 
 Taking = 0.23, = 94, and 
 
 d = J'M^OW 23.9 or 24 in. and'. 
 
 - 222 
 
 0.229 
 
 a 
 
 The required depth therefore is 24 in. 
 
 Entering the right hand side of Diagram 33 with -i = 0.229 and K = 93, it is found 
 
 that j = 0.902, and 
 
 M - 3,000,000 
 
 " JITd ~ (16,000) (0.902) (24) ~ 
 
 Diagram 35 may also be used in making this design. The value of -5 is assumed as 
 before. Entering at the lower right hand scale with / = 16,000, follow vertically to 
 f e = 650 and then to the left to ^ = 0.23. The percentage of steel is 0.0065. Now 
 
 follow vertically along -\ = 0.23 to p = 0.0065 in the upper left hand part of the dia- 
 gram. From there follow to the right to/ = 16,000 and then vertically to obtain the 
 
 value of f-T^ = 94. 
 oa 2 
 
 A. 
 
 * From Vol. I of "Bridge Engineering," by Waddell. 
 
 77 
 
T-BEAMS 
 
 Usually the section of the stem of a T-beam is controlled by the shearing stresses. 
 The procedure in ordinary building design is to design the stem to take the shear at the 
 support and then determine the concrete stress in the flange at the center of span, 
 
 using the value of -j already determined. 
 
 Reviewing T-Beams 
 
 M t 
 In reviewing a beam already designed, the values of r-> 3> and p are known. From 
 
 these the value of f s is found from the upper half of Diagram 35. Then using the 
 values of -v p and/ s , the value of f c is found from the lower half of this diagram. 
 
 78 
 
DIAGRAM 33 
 
 T-BEAMS 
 
 DESIGN OF T-BEAMS 
 VALUES OF L, f c , p, ANDj 
 
 f a =16,000 
 
 71=15 
 
 79 
 
T-BEAMS 
 
 DIAGRAM 34 
 
 f s =18,000 
 n=15 
 
 DESIGN OF T-BEAMS 
 VALUES OF **, , f c , p, ANDj 
 
 80 
 
DIAGRAM 35 
 
 T-BEAMS 
 
 DESIGN OR REVIEW OF T-BEAMS* 
 15 
 
 * From Vol. 1 of "Bridge Engineering,' 
 
 by Waddell. 
 81 
 
SECTION 6 
 SHEAR REINFORCEMENT 
 
 Diagram 36 may be used to find unit shear or bond stress for any beam. 
 
 Uniformly Loaded Beams 
 
 Diagram 37 gives the total number of stirrups in each end of a uniformly loaded 
 beam, assuming the concrete to take one-third of the total shear, as recommended by 
 the Joint Committee. The total number -of stirrups at each end of beam is found by 
 entering the diagram with the unit shear at the support and the clear span in feet, 
 and following the directions of the arrows to the upper left hand part of the diagram. 
 Note that Diagram 37 is made for U-stirrups only with the exception of the K-in. 
 W-stirrup which has a total cross-sectional area equal to the %6-in. square U-stirrup. 
 The number of W-stirrups required in any given case will be one-half the number of 
 U-stirrups of the same size. 
 
 Diagram 38 gives the distance (I') from the face of support to the point where v = 
 40 Ib. per sq. in., beyond which no stirrups are required. 
 
 Diagram 39 is used for locating the stirrups in the beam. It is so constructed that 
 if any one of the horizontal light lines is assumed to pass through the face of the sup- 
 port and the top line marked "center of span" is assumed to pass through the center 
 of span, the intermediate light lines will divide the triangular shear diagram into equal 
 areas and the heavy lines will pass through the centers of gravity of these areas. The 
 heavy lines therefore represent the location of the stirrups. 
 
 A convenient scale is placed with the zero on the fine line marked with a number 
 
 corresponding to N s . The scale is then rotated until it reads (in inches) at the top 
 
 z 
 
 line (center of span line). The distances from the face of support to the heavy lines 
 are then read directly from the scale, stopping when I' is reached. One side of a 
 triangular engineers' scale may be used for all ordinary cases. 
 
 Required to space %-4n. round U-stirrups in a beam 10 in. wide and of IS-ft. clear 
 span, having a shear at the support of 118 Ib. per sq. in. 
 
 From Diagram 37 
 
 Ns = 12 
 From Diagram 38 
 
 I' = 71 in. 
 
 Placing scale on Diagram 39 to read zero at N g = 12 and 108 on line marked 
 "center of span," the distances in inches from the face of support to the points where 
 stirrups should be placed are: 2^, 7, 12, 17, 2% 28^, 35, 42, 50, 59, and 70. This 
 theoretical spacing will usually be modified by practical considerations, such as the 
 maximum spacing allowable for the depth of beam. The spacing of stirrups should 
 not be greater than about one-half the beam depth. 
 
 Beams with Concentrated Loads 
 
 Diagrams 40 and 41 may be used to find the theoretical spacing of stirrups for 
 beams with concentrated loads, the concrete assumed to take one-third of the total 
 shear. Diagram 40 is based on unit shear and Diagram 41 on total shear. The 
 spacing of stirrups will ordinarily be made uniform between load concentrations. 
 
 83 
 
SHEAR 
 REINFORCEMENT 
 
 DIAGRAM 36 
 
 UNIT SHEAR AND BOND STRESS 
 j = 0.875 
 
 -. \L n, V 
 bid u ZQJZ 
 
 ?& 
 
 ^? 
 
 #^^ 
 
DIAGRAM 37 
 
 SHEAR 
 REINFORCEMENT 
 
 STIRRUPS FOR UNIFORMLY LOADED BEAM 
 f a =16,000 
 
 Unit shear at support 
 
 AT, = Total Number of 
 Stirrups in Each End 
 of Uniformly Loaded 
 Beam From Support 
 to Center Concrete 
 Taking One-third of 
 Total Shear. 
 vbl 
 
 6AJ, 
 f a = 16,000 Ih. per sq. in. 
 
 85 
 
SHEAR 
 REINFORCEMENT 
 
 DIAGRAM 38 
 
 UNIFORMLY LOADED BEAMS 
 LENGTH OF BEAM REQUIRING SHEAR REINFORCEMENT 
 
 Clear span in feet. . 
 
 86 
 
DIAGRAM 39 
 
 SHEAR 
 REINFORCEMENT 
 
 DIAGRAM FOR LOCATING STIRRUPS 
 
 IN 
 UNIFORMLY LOADED BEAMS 
 
 
 
 
 
 ^-Center of span 
 
 
 
 
 ^ 
 
 I 
 
 
 
 <5 
 
 I 
 
 v v 
 
 
 
 
 
 
 2 
 
 
 
 
 
 
 
 
 
 
 3 
 
 
 
 
 
 
 
 
 
 
 4- 
 
 
 
 
 
 
 
 T 
 
 
 
 5 
 
 
 
 ^ 
 
 
 
 
 
 r 
 
 
 6 
 
 
 1 
 
 
 
 
 
 
 
 
 7 
 
 
 
 
 
 
 
 T 
 
 
 
 Q 
 
 
 
 
 
 
 
 1 
 
 
 
 9 
 
 
 i 
 
 
 
 
 
 
 
 
 10 
 
 
 
 
 
 
 
 
 
 
 II 
 
 
 1 
 
 
 
 
 
 
 j 
 
 f \ 
 
 \z 
 
 
 
 \ 
 
 I 
 
 
 
 
 
 / 
 
 13 
 
 
 N 
 
 = 1 
 
 
 
 
 
 
 
 14 
 
 
 
 
 
 
 87 
 
SHEAR 
 REINFORCEMENT 
 
 DIAGRAM 40 
 
 SPACING OF U-STIRRUPS 
 
 CONCRETE TAKING ONE-THIRD OF TOTAL SHEAR 
 f s = 16,000 
 
DIAGRAM 41 
 
 SHEAR 
 
 REINFORCEMENT 
 
 SPACING OF STIRRUPS 
 
 CONCRETE TAKING ONE-THIRD OF TOTAL SHEAR 
 f s = 16,000 
 
 89 
 
SECTION 7 
 COLUMNS 
 
 The following tables of safe loads on columns are based on the requirements of the 
 respective codes in regard to maximum and minimum percentages of vertical steel and 
 spiral, and also on such practical considerations as the minimum spacing of vertical 
 steel. The number of rods in the square cored columns is limited to eight because 
 every rod should be tied back into the column by the binders and it is ordinarily better 
 practice to iise a spiraled column if more than eight rods are found necessary. 
 
 The tables for round cored hooped columns are so complete that it should be 
 possible to select a satisfactory design for any condition of concentric loading without 
 additional computation. The values of safe loads given in Tables 35 to 42 inclusive 
 are based on the percentages of spiral listed and, if desired, another spiral of equal 
 volume may be substituted from Table 46. 
 
 Diagrams 42 and 43 will be found valuable for determining building column loads 
 for preliminary work. 
 
 For the design of columns which are eccentrically loaded, see Section 8. Diagrams 
 for the design of round columns subjected to bending and direct stress have been 
 constructed and are published here for the first time. 
 
 What size of square cored column and what amount of longitudinal steel will be re- 
 quired to support a centratty applied load of 200,000 lb., assuming the recommendations of 
 the Joint Committee to govern? Ratio of unsupported length of .column to column side is 
 less than 15. 
 
 Tables 21, 22 and 23 show the following possible designs: 
 
 2000-to. concrete. 
 
 ( 6-134 in- square 
 22-m. column So,,/. 
 
 I 8-1 Y% in. square 
 
 ( 6-1 in. square 
 23-in. column \ - . , 
 
 I 8-1 in. round 
 
 2500-&. concrete. 
 
 - n. square 
 20-in. column < ,* . 
 
 181>B in. square 
 
 f 6-1 in. square 
 21-m. columns _ ., . 
 
 I 8-1 in. round 
 
 3000-&. concrete. 
 
 19-in. column { 8-1 ^ in. round 
 
 - n. square 
 20-m. column < ' . 
 
 ( 6-1 in. round 
 
 Lateral ties must be used of not less than 34 in. in diameter and spaced not over 
 12 in. apart. For %-in. rods the spacing should never be more than 10 in. 
 
 What size of round column and what amount of longitudinal steel will be required by 
 the Joint Committee Recommendations to support a load of 1,100,000 lb.? A 3000-lb. 
 concrete is to be used with 1 % of spiral reinforcement. Unsupported length of column is 
 less ttian 10 diameters. 
 
 91 
 
COLUMNS 
 
 From Table 34, page 114, it is found that a 37-in. round column with 33-in. 
 core, and with fourteen l^-in. square longitudinal rods will safely support a load of 
 1,105,000 Ib. 
 
 Table 47 shows that a spiral of 7/0 gage and 2%-m. pitch will give 1 % of reinforce- 
 ment; or that a %-in. spiral may be used with 2%-in. pitch. Table 46, page 188, gives 
 other satisfactory sizes and pitch of spirals to obtain the required 1% of spiral re- 
 inforcement. This table also gives the weight in pounds per foot of column for each 
 spiral. Table 45 gives the volume and weight of columns per foot and Table 44 gives 
 the weights of column rods per foot. 
 
 What would be the design of the column of the preceding problem assuming the American 
 Concrete Institute recommendations to govern? 
 
 A number of satisfactory designs may be taken from Table 37. One possible 
 design is to- use a 37-in. column with 33-in. core and a spiral of 7/0 gage, 2^-in. pitch, 
 sixteen IJ^-in. round longitudinal rods. 
 
 Reduction Formula for Long Columns. Where long columns must be used, the 
 reduction which follows, taken from the Los Angeles Building Code, may be employed 
 in the design of columns whose unsupported length (1} is between 15 and 30 times the 
 least dimension of effective section (d). Let r represent the quantity by which the 
 
 working stress for columns with -i less than 15 should be multiplied to give a working 
 stress which may be used for long columns. Then 
 
 r-l.6-H.fi 
 
 92 
 
TABLE 21 
 
 COLUMNS 
 
 ^ .Gi'umn size J 
 
 SQUARE CORED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Max. 
 
 /unsupported length\ 
 
 side 
 
 15 
 
 2000- Ib. concrete 
 1:6 mixture 
 n = 15 
 f t =450 
 
 "of* 
 
 column 
 (.inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods Round rods 
 
 X 
 
 H H 
 
 1 
 
 1H IK K H 
 
 H i 
 
 IK 
 
 IK 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 . 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 4 
 4 
 
 4 
 
 6 
 
 8 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 6 
 8 
 
 4 
 6 
 8 
 
 6 
 
 8 
 
 38.6 
 46.3 
 
 i 54.8 
 i 59.7 
 
 ; 64.7 
 
 64.3 
 69.2 
 1 74.1 
 
 74.6 
 79.5 
 84.5 
 
 '90^8 
 i 95.7 
 
 102.9 
 107.9 
 
 iie.6 
 
 120.9 
 134.9 
 i49.7 
 
 43.0 
 50.6 
 
 59.2 
 66.3 
 
 
 
 
 
 36.5 
 44^2 
 
 52.7 
 56.6 
 60.4 
 
 62.2 
 66.0 
 69.9 
 
 "76 A 
 80.2 
 
 87.6 
 91.5 
 
 103.6 
 
 40.0 
 47.6 
 
 56.2 
 61.7 
 67.2 
 
 65.6 
 71.1 
 76.7 
 
 76.0 
 81.5 
 87.0 
 
 87.2 
 92.7 
 98.3 
 
 i04.9 
 110.4 
 
 44.0 
 51.6 
 
 60.2 
 67.7 
 
 69.6 
 77.2 
 84.8 
 
 80.0 
 87.5 
 95.1 
 
 91.2 
 98.8 
 106.4 
 
 103.4 
 110.9 
 118.5 
 
 116.4 
 124.0 
 131.6 
 
 56.2 
 64.8 
 
 74.2 
 84.1 
 
 84.6 
 94.5 
 
 95.8 
 105.7 
 115.6 
 
 108.0 
 117.9 
 127.8 
 
 121.0 
 130.9 
 140.8 
 
 135.0 
 144.9 
 154.8 
 
 149.8 
 159.7 
 169.6 
 
 70.1 
 79.5 
 89.9 
 
 101.1 
 113.6 
 
 113.3 
 125.7 
 
 126.3 
 138.8 
 151.3 
 
 140.3 
 152.8 
 165.3 
 
 155.1 
 167.6 
 180.1 
 
 170.9 
 183.3 
 195.9 
 
 187.5 
 200.0 
 212.5 
 
 205.1 
 217.5 
 230.1 
 
 95.7 
 107.0 
 
 119.1 
 134.6 
 
 132.2 
 147.6 
 
 146.1 
 161.6 
 177.1 
 
 161.0 
 176.4 
 191.9 
 
 176.7 
 192.2 
 207.7 
 193.4 
 208.8 
 224.3 
 
 210.9 
 226.4 
 241.9 
 
 229.4 
 244.8 
 260.3 
 
 248.7 
 264.2 
 279.7 
 
 284.4 
 299,9 
 
 305.6 
 321.1 
 
 327.6 
 343.1 
 
 350.6 
 366.0 
 
 55.7 
 64.3 
 
 
 
 
 70.2 
 
 
 
 
 
 
 
 68.6 
 75.7 
 
 82.8 
 
 79.0 
 86.1 
 93.2 
 
 90.2 
 97.3 
 104.4 
 
 102.4 
 109.5 
 116.6 
 
 115.4 
 122.5 
 129.6 
 
 i36.5 
 143.6 
 
 ioi.3 
 158.4 
 
 73.7 
 83.4 
 
 79.7 
 
 
 
 
 
 
 
 
 84.1 
 93.7 
 
 95.3 
 105.0 
 114.6 
 
 107.5 
 117.1 
 126.8 
 
 120.5 
 130.2 
 139.8 
 
 134.5 
 144.1 
 153.8 
 
 149.3 
 159.0 
 168.6 
 
 90.0 
 
 96.1 
 
 
 
 
 
 101.3 
 113.9 
 
 113.4 
 126.0 
 
 107.9 
 
 115.4 
 
 
 i 
 
 120.1 127.6 
 136.0 
 
 126.5 
 139.1 
 151.7 
 
 140.4 
 153.0 
 165.6 
 
 155.3 
 167.9 
 180.5 
 
 171.0 
 183.6 
 196.2 
 
 187.7 
 200.3 
 212.9 
 
 205.2 
 217.8 
 230.4 
 
 133.1 
 149.1 
 
 147.1 
 163.0 
 179.0 
 
 161.9 
 177.9 
 193.8 
 
 177.7 
 193.6 
 209.6 
 
 194.3 
 210.3 
 226.2 
 
 211.9 
 227.8 
 243.8 
 
 230 3 
 
 140.6 
 
 
 117.9 
 123.5 
 
 154.6 
 174.3 
 
 116.7 
 
 
 131.9 
 137.4 
 
 137.9 
 145.5 
 
 i52'.8 
 160.4 
 
 
 169.4 
 189.1 
 
 185.2 
 204.9 
 224.6 
 
 201.8 
 221.5 
 241.2 
 
 219.4 
 239.1 
 
 258.8 
 
 237 8 
 
 
 
 
 i52.3 
 
 ::::: 
 
 167.1 
 174.2 
 
 174.7 
 184.4 
 
 
 
 168.5175.5 
 176.1 185.4 
 
 168.0 
 
 
 191.4 
 201.0 
 
 
 185.2 192.1 
 192.8202.0 
 
 
 190.8 
 
 
 
 
 
 . . 208.9 
 208.4218.6 
 
 
 
 209.7 
 219.6 
 
 
 210.3 
 
 
 
 227.4 
 237.0 
 
 236.3 
 248.9 
 
 246.3 
 262.2 
 
 249.7 
 265.6 
 281.6 
 
 285 '.9 
 301.8 
 
 257.5 
 277.2 
 
 257.2 
 276.9 
 296.6 
 
 277.4 
 297.1 
 316.8 
 
 298.6 
 318.3 
 338.0 
 
 320.6 
 340.6 
 360.0 
 
 363.3 
 383.0 
 
 
 
 228.1 
 238.0 
 
 236.0 
 248.5 
 
 
 226.8 
 
 
 228.8 
 
 
 
 
 255.6 
 268.2 
 
 275 '.9 
 
 288.5 
 
 
 
 
 255.3 
 267.9 
 
 275.6 
 288.1 
 
 296.7 
 309.3 
 
 33i'.3 
 354.3 
 
 
 
 
 256.4 
 
 
 
 
 
 
 257.4 
 277 ".6 
 
 i" 
 
 
 276 '.6 
 
 
 
 i . . . . 
 
 
 
 297.0 
 309.6 
 
 307.0 
 323.0 
 
 
 
 297.8 
 
 
 
 ::; 
 
 ;;;;; 
 
 298.8 
 320 '.8 
 
 
 
 
 
 
 33i'.7 
 
 329.1 
 345.0 
 
 352.0 
 368.0 
 
 
 
 354.6 
 
 
 
 
 
 93 
 
COLUMNS 
 
 TABLE 22 
 
 SQUARE CORED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 2500-lb. concrete 
 1:4% mixture 
 n = 12 
 f c =565 
 
 Max. 
 
 /unsupported length^ 
 
 side 
 
 15 
 
 Size 
 of 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 y* 
 
 1 
 
 IK 
 
 IK 
 
 H 
 
 H 
 
 V* 
 
 1 
 
 IK 
 
 IK 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 20 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 4 
 4 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 : 
 
 i 
 
 4 
 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 6 
 8 
 
 45.9 
 55.5 
 
 ! 66.2 
 71.1 
 75.9 
 
 1 78.1 
 ! 82.9 
 87.8 
 
 91.1 
 95.9 
 
 ;100.8 
 
 50.1 
 59.8 
 
 70.5 
 77.5 
 
 82.4 
 89.3 
 96.3 
 
 95.3 
 102.3 
 129.3 
 
 109.5 
 116.5 
 123.5 
 
 124.7 
 131.7 
 138.7 
 
 141.1 
 148.1 
 155.1 
 
 ies'.e 
 
 172.6 
 184 3 
 
 64.8 
 75.5 
 
 ! 
 
 
 43.8 
 53.4 
 
 64.1 
 67.9 
 71.8 
 
 76.0 
 79.8 
 83.6 
 
 '92 '.8 
 96.6 
 
 ioe>'.9 
 
 110.7 
 
 47.1 
 56.8 
 
 67.5 
 73.0 
 
 78.5 
 
 79.4 
 84.8 
 90.3 
 
 92.3 
 
 97.8 
 103.3 
 
 106.5 
 112.0 
 117.5 
 
 i27! 2 
 132.7 
 
 51.1 
 60.7 
 
 71.5 
 
 78.9 
 
 83.3 
 90.8 
 98.3 
 
 96.3 
 103.8 
 111.3 
 
 110.4 
 117.9 
 125.4 
 
 125.7 
 133.2 
 140.6 
 
 142.1 
 149.6 
 157.0 
 
 i<37\i 
 174.5 
 
 185' 7 
 
 65.3 
 76.0 
 
 87.9 
 97.7 
 
 100.9 
 110.7 
 
 115.0 
 124.8 
 134.5 
 
 130.3 
 140.0 
 149.8 
 
 146.7 
 156.4 
 166.2 
 
 164.2 
 173.9 
 183.7 
 
 182.8 
 192 6 
 
 81.2 
 93.1 
 106.1 
 
 120.2 
 132.6 
 
 135.5 
 
 147.8 
 
 151.8 
 164.2 
 176.6 
 169.4 
 181.7 
 194.1 
 
 188.0 
 200 4 
 
 111.9 
 126.0 
 
 141.3 
 156.5 
 
 157.6 
 172.9 
 
 175.2 
 190.4 
 205 . 7 
 
 193.8 
 209 1 
 
 
 
 
 81.4 
 
 
 
 
 
 
 
 87.4 
 96.9 
 
 93.2 
 
 
 
 
 100.4 
 109.9 
 
 106.2 
 
 112.8 
 
 
 
 114.5 
 124.0 
 133.6 
 
 129.8 
 139.3 
 148.8 
 146.2 
 155.7 
 165.2 
 
 163 . 7 
 173.2 
 
 182.7 
 
 182.3 
 191 8 
 
 120.4 
 132.8 
 
 135.6 
 148.0 
 
 127.0 
 
 142.2 
 157 9 
 
 134.3 
 149.6 
 
 J110.1 
 1114.9 
 
 i25.3 
 130.2 
 
 i4i'.7 
 
 146.6 
 
 iei'.i 
 
 
 
 126.0 
 
 152.0 
 164.4 
 176.9 
 
 169.5 
 181.9 
 194.4 
 
 188.2 
 200 6 
 
 158.6 
 174.3 
 
 176.1 
 191.8 
 207.6 
 
 194.8 
 210.5 
 
 166.0 
 
 183.5 
 202.9 
 
 202.1 
 221 6 
 
 l42'.4 
 
 143.6 
 149.1 
 
 iei '. i 
 
 166.6 
 
 182.7 
 
 191.3 
 
 204 '.6 
 211.0 
 
 201.4 
 
 2ii'.6 
 22}. 1 
 
 213.0 
 
 207.9 
 220.4 
 232.8 
 
 228.8 
 241.3 
 253.7 
 
 250 9 
 
 226.2 
 
 214.5 
 230.3 
 246.0 
 
 235.4 
 251.2 
 266.9 
 257 5 
 
 
 
 185.3 
 
 193.2 
 
 202.3 
 
 212.7 
 
 207.8 
 220.1 
 232.5 
 
 228.7 
 241.0 
 253.4 
 
 250.7 
 263.1 
 275.4 
 
 224.3 
 
 213.6 
 
 228.8 
 244.1 
 
 234.5 
 249.7 
 265.0 
 
 256.5 
 271.8 
 287.0 
 
 279.7 
 294.9 
 310.2 
 
 304.0 
 319.2 
 334.5 
 
 344.7 
 359.9 
 
 371.2 
 386.5 
 
 398.9 
 414.1 
 
 427.7 
 443.0 
 
 221.9 
 241.3 
 260.8 
 
 242.8 
 262.2 
 281.7 
 
 264 8 
 
 
 '.'.'.'.'. 
 
 205 '.6 
 
 205.5 
 213.0 
 
 226 '.4 
 233.9 
 
 212.4 
 222.1 
 
 233.3 
 243.0 
 
 1 
 
 231 '.9 
 
 232.5 
 242.0 
 
 
 
 254.6 
 264.1 
 
 277 '.7 
 287.2 
 
 263.3 
 275.7 
 
 286 '.5 
 298.9 
 
 273.2 
 288.9 
 
 280.6 
 296.4 
 312.1 
 
 304.9 
 320.7 
 336.4 
 
 284.3 
 303.7 
 
 288.0 
 307.4 
 326.9 
 
 312.3 
 331.7 
 351.2 
 
 337.7 
 357.2 
 376.6 
 
 364.3 
 383.7 
 403.1 
 
 392.0 
 411.4 
 430.8 
 
 440.2 
 459.6 
 
 
 
 255.9 
 
 255.3 
 265.1 
 
 1 
 
 254.0 
 277'.! 
 
 \ 
 
 
 
 279 . i 
 
 278.5 
 288.2 
 
 286.2 
 298.6 
 
 310.5 
 322.9 
 
 336.0 
 348.3 
 
 362.5 
 374.9 
 
 402 '.6 
 43i.4 
 
 
 
 3ii.5 
 
 310.8 
 323.2 
 
 
 
 
 312.5 
 
 
 
 
 
 
 336.2 
 348.6 
 
 362 '.7 
 375.2 
 
 346.1 
 361.8 
 
 372 '.6 
 388.4 
 
 400 '.3 
 416.1 
 
 429 .1 
 444.9 
 
 
 
 337.6 
 363 . 5 
 
 
 
 
 337.9 
 364 '.5 
 392 '.2 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 402 '.9 
 43i'.7 
 
 
 
 
 
 
 
 
 
 
 94 
 
TABLE 23 
 
 COLUMNS 
 
 , Cotumnsizf 
 
 SQUARE CORED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 /unsupported length\ 
 
 Max. [ - T3 I = 15 
 
 V side / 
 
 3000- Ib. concrete 
 1:3 mixture 
 n = 10 
 f c =675 
 
 Size 
 of 
 column 
 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 K 
 
 H 
 
 H 
 
 1 
 
 IX 
 
 IK 
 
 % 
 
 y* 
 
 H 
 
 1 
 
 IK 
 
 IK 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 4 
 
 4 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 6 
 
 8 
 
 52.7 
 64.2 
 
 78.0 
 81.7 
 86.5 
 
 91.2 
 95.9 
 100.7 
 '106.7 
 
 111.4 
 116.2 
 
 'i28'.3 
 133.1 
 
 i46.5 
 1151.3 
 
 iee'.i 
 
 170.9 
 
 igi'.s 
 2i4'.i 
 
 56.9 
 68.3 
 
 81.2 
 86.0 
 
 
 
 
 
 50.7 
 62.1 
 
 75.0 
 
 78.7 
 82.4 
 
 89.1 
 92.9 
 96.6 
 
 i08.4 
 112.1 
 
 i25'. 3 
 129.0 
 
 53.9 
 65.4 
 
 78.2 
 83.6 
 89.0 
 92.4 
 97.8 
 103.2 
 
 107.9 
 113.3 
 118.7 
 
 124.8 
 130.2 
 135.6 
 
 57.8 
 69.3 
 
 82.1 
 89.4 
 
 96.3 
 103.6 
 110.9 
 
 111.8 
 119.1 
 126.4 
 
 128.7 
 136.0 
 143.3 
 
 146.9 
 154.2 
 161.5 
 
 166.5 
 173.8 
 181.1 
 
 73.8 
 86.6 
 
 100.8 
 110.3 
 
 116.3 
 125.8 
 
 133.2 
 142.7 
 152.3 
 
 151.4 
 160.9 
 170.5 
 
 171.0 
 180.5 
 190.1 
 191.9 
 201.4 
 211.0 
 
 214.6 
 223.7 
 233.3 
 
 91.7 
 105.7 
 121.4 
 
 138.2 
 150.3 
 
 156.5 
 168.5 
 180.6 
 
 176.0 
 188.1 
 200.2 
 
 197.0 
 209.0 
 221.1 
 219.2 
 231.3 
 243.4 
 
 242.9 
 254.9 
 267.0 
 
 267.8 
 279.9 
 292.0 
 
 294.2 
 306.2 
 318.3 
 
 127.0 
 143.9 
 
 162.1 
 177.0 
 
 181.7 
 196.6 
 
 202.6 
 217.5 
 232.4 
 
 224.9 
 239.8 
 254.7 
 
 248.5 
 263.4 
 
 278.3 
 
 273.5 
 
 288.4 
 303.3 
 
 299.8 
 314.7 
 329.6 
 
 327.5 
 
 73.3 
 86.1 
 
 
 
 
 91.8 
 
 
 
 
 
 
 
 95.3 
 102.2 
 109.0 
 110.9 
 117.7 
 124.5 
 
 127.7 
 134.6 
 141.4 
 
 146.0 
 152.8 
 159.6 
 
 165.5 
 172.4 
 179.2 
 
 i93.3 
 200.1 
 
 2is'.6 
 222.4 
 
 100.3 
 109.6 
 
 106.0 
 
 
 
 
 
 
 
 
 115.8 
 125.1 
 
 121.5 
 
 128.0 
 
 
 
 132.7 
 142.0 
 151.3 
 
 150.9 
 160.2 
 169.5 
 
 170.5 
 179.8 
 189.1 
 
 191.4 
 200.7 
 210.0 
 
 213.7 
 223.0 
 232.3 
 
 138.4 
 150.5 
 
 144.8 
 
 152.0 
 
 156.6 
 168.8 
 
 163.1 
 178.4 
 
 170.3 
 
 
 148.4 
 153.8 
 
 ies'.o 
 
 173.4 
 
 
 147.2 
 
 iee'.s 
 
 176.2 
 188.3 
 200.5 
 
 197.1 
 209.3 
 221.4 
 
 219.4 
 231.5 
 243.7 
 
 243.0 
 255.2 
 267.3 
 
 268.0 
 280 1 
 
 182.6 
 198.0 
 
 203.6 
 218.9 
 234 3 
 
 189.8 
 
 210.8 
 229.8 
 
 
 188.9 
 194.3 
 
 194.7 
 202.0 
 
 225.8 
 241.2 
 256.6 
 
 249.5 
 264.8 
 280.2 
 
 274.4 
 289 8 
 
 233.0 
 252.0 
 
 256.7 
 275.7 
 294.6 
 
 281.6 
 300 6 
 
 
 
 
 217.0 
 224.3 
 
 
 216.6 
 
 ::::: 
 
 239.2 
 246.0 
 
 246.6 
 255.9 
 
 27i 6 
 
 
 240.2 
 
 240.6 
 247.9 
 
 247.3 
 256.9 
 
 i 
 
 
 
 265.6 
 272.9 
 
 299 '.2 
 
 272.3 
 281.9 
 
 298 '.6 
 308.2 
 
 :;!"!! 
 
 271.0 
 297 '.3 
 
 280.9 
 
 297.9 
 307.2 
 
 325 '.6 
 334.9 
 
 363 '.9 
 
 292.3 
 
 294,3 
 306.5 
 318.6 
 
 334. i 
 346.3 
 
 363 '.2 
 375.3 
 
 305.2 
 
 300.8 
 316.1 
 331.5 
 
 328.4 
 343.8 
 359.2 
 
 357.5 
 372.8 
 388.2 
 
 319.6 
 
 308.0 
 327.0 
 345.9 
 
 335.5 
 354.6 
 373.6 
 
 364.7 
 383.7 
 402.6 
 
 395.0 
 414.0 
 433.0 
 
 426.8 
 445.8 
 464.7 
 
 459.8 
 478.8 
 497.8 
 
 513.3 
 532.2 
 
 
 
 
 326.3 
 335.9 
 
 364 '.9 
 395.3 
 
 333.9 
 346.0 
 
 362 '.9 
 375.0 
 
 393.3 
 405.4 
 
 425.0 
 437.1 
 
 470 '.2 
 504 '.6 
 
 342.3 
 357.3 
 
 356.5 
 371.4 
 386.3 
 
 401.8 
 416.7 
 
 433.5 
 448.4 
 
 466.3 
 481.5 
 
 501.0 
 515.9 
 
 
 
 325.0 
 
 
 326.9 
 
 ::::: 
 
 | 
 
 
 
 
 
 394 '.3 
 
 393.5 
 405.7 
 
 403.2 
 418.6 
 
 434 '.9 
 450.3 
 
 ::::.: 
 
 
 
 426.6 
 
 425.3 
 437.4 
 
 i 
 
 
 427.0 
 460. i 
 
 '.'.'.'.'. 
 
 
 
 
 
 470 '.5 
 504.9 
 
 468.0 
 483.4 
 
 502.4 
 517.8 
 
 95 
 
COLUMNS 
 
 TABLE 24 
 
 SQUARE CORED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS 
 
 AND 
 
 NEW YORK CITY BUILDING CODE REQUIRE- 
 MENTS 
 
 2000 -Ib. concrete P =Af c [l + (n-l)p] 
 1:6 mixture ,_ (unsupported length\ 
 n = 15 Max.(- -J =15 
 
 f c =500 
 
 ( Column cize 
 
 
 
 
 
 j? 
 
 sksSs^ 
 
 ip.^ 
 
 iCV.-.-.--o-.-.-:i J 
 
 ^liftl 
 
 x ConrSize > 
 
 
 
 
 Size 
 of 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 'H 
 
 y* 
 
 1 
 
 1H 
 
 IK 
 
 % 
 
 H 
 
 14 
 
 i 
 
 1H 
 
 iy* 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 4 
 4 
 4 
 
 e 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 .8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 42.9 
 51.4 
 
 60.9 
 66.4 
 71.9 
 
 71.4 
 76.9 
 82.4 
 
 82.9 
 88.4 
 93.9 
 
 95.4 
 '100.9 
 106.4 
 
 108 9 
 
 1 14 . 4 
 119.9 
 
 123.4 
 128.9 
 134.4 
 
 138.9 
 144.4 
 149.9 
 
 155.4 
 160.9 
 166.4 
 
 178.4 
 183.9 
 
 igeig 
 
 202.4 
 
 2ie'.4 
 
 221.9 
 
 236 '.9 
 242.4 
 
 47.8 
 56.3 
 
 65.8 
 73.6 
 
 
 
 
 40.6 
 49.1 
 
 58.6 
 62.9 
 67.2 
 
 69.1 
 73.4 
 
 77.7 
 
 80.6 
 84.9 
 89.2 
 
 93.1 
 97.4 
 101.7 
 
 106.6 
 110.9 
 115.2 
 
 121.1 
 125.4 
 129.7 
 
 146 '.9 
 
 145.2 
 
 i57.4 
 161.7 
 
 174 '.9 
 179.2 
 
 i93.'4 
 197.7 
 
 44.4 
 52.9 
 
 62.4 
 68.6 
 74.7 
 
 72.9 
 79.1 
 85.2 
 
 84.4 
 90.6 
 96.7 
 
 96.9 
 103.1 
 109.2 
 
 110.4 
 116.6 
 122.7 
 
 124.9 
 131.1 
 137.2 
 
 140.4 
 146.6 
 154.7 
 
 156.9 
 163.1 
 169.2 
 
 174.4 
 180.6 
 186.7 
 
 199. 'i 
 205.2 
 
 48.8 
 57.3 
 
 66.8 
 75.3 
 
 77.3 
 
 85.8 
 94.2 
 
 88.8 
 97.3 
 105.7 
 
 101.3 
 109.8 
 118.2 
 
 114.8 
 123.3 
 131 . 7 
 
 129.3 
 137.8 
 146.2 
 
 144.8 
 153.3 
 161.7 
 
 161.3 
 169.8 
 178.2 
 
 178.8 
 187.3 
 195.7 
 
 197.3 
 205.8 
 214.2 
 
 216.8 
 225.3 
 233.7 
 237.3 
 245.8! 
 254.2 
 
 267.3 
 275.7 
 
 289 '.8 
 298.2 
 
 sis. 3 
 
 321.7 
 
 62.5 
 72.0 
 
 82.5 
 93.5 
 
 94.0 
 105.0 
 
 106.5 
 117.5 
 128.5 
 
 120.0 
 131.0 
 142.0 
 
 134.5 
 145.5 
 156.5 
 
 150.0 
 161.0 
 172.0 
 
 166.5 
 177.5 
 188.5 
 
 184.0 
 195.0 
 206.0 
 
 202.5 
 213.5 
 224.5 
 
 222.0 
 233.0 
 244.0 
 
 242.5 
 253 . 5 
 264.5 
 
 264.0 
 275.0 
 286. ; 
 
 286.5* 
 297.5 
 308.5 
 
 310.0 
 321.0 
 332.0 
 
 334.5 
 345.5 
 356.5 
 
 77.8 
 88.3 
 99.8 
 
 112.3 
 126.3 
 
 125.8 
 139.8 
 
 140.3 
 154.3 
 168.2 
 
 155.8 
 169.8 
 183.7 
 
 172.3 
 186.3 
 200.2 
 
 189.8 
 203.8 
 217.7 
 
 208.3 
 222.3 
 236.2 
 
 227.8 
 241.8 
 255.7 
 
 248.3 
 262.3 
 276.2 
 
 269.8 
 283.8 
 297.7 
 
 292. 3 1 
 306.3 
 320.2 
 
 315.8 
 329.8; 
 343.7 
 
 340.3 
 354.3 
 368.2 
 
 365.8 
 379.8 
 393.7' 
 
 106.4 
 118 .9 
 
 132.4 
 149.5 
 
 146.9 
 164.0 
 
 162.4 
 179.5 
 196.7 
 
 178.9 
 196.0 
 213.2 
 
 196.4 
 213.5 
 230.7 
 
 214.9 
 232.0 
 249.2 
 
 234.4 
 251.5 
 268.7 
 
 254.9 
 272.0 
 289.2 
 
 276.4 
 293.5 
 310.7 
 
 298.9 
 316.0 
 333.2 
 
 322.4 
 339.5 
 356.7 
 
 346.9 
 364.0 
 381.2 
 
 372.4 
 3S9.5 
 106.7 
 
 61.9 
 71.4 
 
 
 
 
 78.0 
 
 
 
 
 
 
 
 
 
 ! 76.3 
 84.1 
 92.0 
 
 87.8 
 95.6 
 103.5 
 
 100.3 
 108.1 
 116.0 
 
 113.8 
 121.6 
 129.5 
 
 128.3 
 136.1 
 144.0 
 
 143.8 
 151.6 
 159.5 
 
 160.3 
 168.1 
 176.0 
 
 177.8 
 185.6 
 193.5 
 
 196.3 
 204.1 
 212.0 
 
 215.8 
 223.6 
 231.5 
 
 236.3 
 244.1 
 252.0 
 
 81.9 
 92.7 
 
 88.5 
 
 
 
 
 
 
 
 
 93.4 
 104.2 
 
 100.0 
 
 105.4 
 
 
 
 
 
 105.9 
 116.7 
 127.4 
 
 119.4 
 130.2 
 140.9 
 
 133.9 
 144.7 
 155.4 
 
 149.4 
 160.2 
 170.9 
 
 165.9 
 176.7 
 187.4 
 
 183.4 
 194.2 
 204.9 
 
 201.9 
 212.7 
 223.4 
 
 221.4 
 232.2 
 242.9 
 
 241.9 
 252.7 
 263.4 
 
 263.4 
 274.2 
 284.9 
 
 285.9 
 296.7 
 307.4 
 
 309.4 
 320.2 
 330.9 
 
 344 . 7 
 355.4 
 
 112.5 
 126.5 
 
 126.0 
 ITO.O 
 
 119.9 
 
 128.3 
 
 133.4 
 151.2 
 
 141.8 
 
 140.5 
 154.5 
 168.5 
 
 156.0 
 170.0 
 184.0 
 
 172.5 
 186.5 
 200.5 
 
 190.0 
 204.0 
 218.0 
 
 208.5 
 222.5 
 236.5 
 
 228.0 
 242.0 
 256.0 
 
 248.5 
 262.5 
 276.5 
 
 270.0 
 284.0 
 298.0 
 
 292.5 
 306.5 
 320.5 
 
 316.0 
 330.0 
 344.0 
 
 340.5 
 354.5 
 368.5 
 366 
 
 147.9 
 165.7 
 
 156.3 
 
 163.4 
 181.2 
 198.9 
 
 179.9 
 197.7 
 215.4 
 
 197.4 
 215.2 
 232.9 
 
 215.9 
 233.7 
 251.4 
 
 235.4 
 253.2 
 270.9 
 
 255.9 
 273.7 
 291.4 
 
 277.4 
 295.2 
 312.9 
 
 299.9 
 317.7 
 335.4 
 
 323.4 
 341.2 
 358.9 
 
 347.9 
 365.7 
 383.4 
 373 4 
 
 171.8 
 193.6 
 
 188.3 
 210.1 
 
 205.8 
 227.6 
 249.5 
 
 224.3 
 246.1 
 268.0 
 
 243.8 
 265.6 
 287.5 
 
 264.3 
 286.1 
 308.0 
 
 285.8 
 307.6 
 329.5 
 
 308.3 
 330.1 
 352.0 
 
 331.8 
 353.6 
 375.5 
 
 356.3 
 378.1 
 400.0 
 381 8 
 
 2i7'.2 
 237 '.7 
 259.2 
 28i .-7 
 
 218.6 
 224.7 
 
 239. i 
 245.2 
 
 260 . 6 
 266.7 
 
 283 '.i 
 289.2 
 
 263 '.9 
 286 '.4 
 309.9 
 334 '.4 
 
 265.6 
 273.5 
 
 288 '.1 
 296.0 
 
 3ii.6 
 319.5 
 
 336! 1 
 344.0 
 
 :::: 
 
 3i2'.7 
 
 .... 
 
 337 '.2 
 
 337.8 
 346.2 
 
 
 36i.6 
 369.5 
 
 376.2386.6|391.2403.6 
 380.9394.0,408.9 425.5 
 
 
 
 363.3 
 371.7 
 
 371.0 
 382.0 
 
 
 362.7 
 
 96 
 
TABLE 25 
 
 L Colur^n sira J 
 
 COLUMNS 
 
 SQUARE CORED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 AMERICAN CONCRETE INSTITUTE 
 RECOMMENDATIONS 
 
 Max. 
 
 /unsupported length^ 
 
 side 
 
 15 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n=12 
 f c = 625 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Size 
 
 of 
 
 core 
 
 (inches) 
 
 Number 
 
 of 
 rods 
 
 Square rods 
 
 1 I IK I IK 
 
 Round rods 
 
 K 
 
 12 
 
 13 
 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 
 8 
 
 9 
 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 50. 7j 
 
 61.4 
 
 73.2 
 
 78.6 
 84.0: 
 
 86. 4J 91.1 
 91.7 98.8 
 
 55.5 
 66.1 
 
 78.0 
 85.7 
 
 71.7 
 83.6 
 
 107.2 
 
 97.5 
 
 103.1 
 
 97.1 loee .... 
 
 100.7105.51111.1 
 106.1 113.2121.6 
 111.5 120 9 
 
 117.5124.8 . 
 
 116 
 121 
 
 127 
 
 | 133 
 
 ; 138 
 
 I 144 
 
 151 
 
 156 
 
 162 
 
 170, 
 
 176, 
 
 181. 
 
 191. 
 196. 
 202. 
 
 218 
 224 
 
 241 
 247 
 
 4 121 
 7 128 
 1 136 
 
 2!l38 
 6; 145 
 0153 
 
 4' 156 
 7 163 
 
 1171 
 
 7|175. 
 11183. 
 5190. 
 
 4J196. 
 7203. 
 211. 
 
 218. 
 6225. 
 0233. 
 
 241. 
 
 .7248. 
 
 256. 
 
 48.4 
 59.1 
 
 70.9 
 75.2 
 79.4 
 
 84.1 
 88.3 
 92.5, 
 
 52.2 
 62. 8 ! 
 74.7J 
 
 56.5 
 67.2 
 79.0 
 
 80.71 87.3 
 86.8J 
 
 87. 8i 92.2 
 93.9 100.4 
 99.9 108.7 
 
 1 IK IK 
 
 72.2 
 84. l' 
 
 89.8 
 
 97.2103.0 
 108.0 
 
 98.4 102.2 106.5 111.6117.3 
 102.7108.2 114.8122.4 
 106.9 114.3 123.1 
 
 .l'l26.7 132 
 .8137.2146 
 .6J147.7 . .. 
 .0!l43.6il50.o'l57.3 i 165.5 130.9 
 
 .7154.1163.8174.7 135.2 
 
 41164.6 | 139.4 
 
 1 161.7 
 
 8172.2 
 
 6182.7 
 
 181.1 
 
 2 191 
 202 
 
 201 
 8:212 
 6 J 222 
 
 1 140.4 148.6 114.1 117 
 
 9 i 118.3 123 
 
 .| i ! 122.5129 
 
 134 
 140 
 146 
 
 8 122.2J127.2 
 
 9 130.4 138.0 
 9 ! 138.7148.8 
 
 123.8 
 
 133.0 139.4 
 146.6 
 
 168. 
 181. 
 195. 
 
 187. 
 
 l'l75.4183 
 9 192.8 ... 
 6'.. 
 
 . 6 
 
 5 194.8203 
 6201.3212.2224 
 0^29.6, 
 
 266.1 
 271.5 
 
 291.7 
 297.1 
 
 352.1 
 38i' 
 
 7234 
 4244 
 
 l!246, 
 
 8257. 
 6267 
 
 215. 
 
 7 
 2|221 
 
 7J235.6250.2 
 
 61230 
 1 243 
 6257 
 
 1215. 4^223. 
 9232.8J245. 
 
 265.5271 
 273.2281 
 280.9:292 
 
 291.1296 
 
 298.8307 
 
 306.6317 
 
 .J323 
 
 325.7,334 
 324.0333.4344 
 
 7,243 
 2 ! 266 
 .71280, 
 
 .1277, 
 .6291, 
 . 1 305 , 
 
 .7303. 
 .2316. 
 .7,330. 
 
 .6330. 
 .1 343. 
 .6357. 
 
 0237.3245.5 
 8:254.7267.0 
 5272.1 288.4 
 
 l'260.4268.6 
 9277.8290.1 
 6295.2311.6 
 
 .351.7358 
 353.8362.2371 
 361.6372.7385 
 
 .'381 
 
 383 2391.6401 
 5390.9402 
 
 .1 
 
 413.8422 
 421.6432 
 
 445 7 454 
 453.4464 
 
 415 
 
 418 
 2431 
 .7445 
 
 450 
 
 463 
 
 6|477 
 
 5284 
 3302 
 OJ319 
 11310 
 9327. 
 6345. 
 
 0337. 
 
 8354. 
 5372. 
 
 1365. 
 9382. 
 6,400. 
 
 5! 394 . 
 3*412. 
 OJ429. 
 
 T425. 
 9442. 
 6460. 
 
 0457. 
 8474. 
 5:492. 
 
 .8293.0 
 .2314.5 
 .6335.9 
 
 .4318.6 
 .8340.1 
 .2.361.6 
 
 s'345.5 
 7'367.0 
 1 388.4 
 
 4373.6 
 8 395 . 1 
 2j 416.6 
 
 8403.0 
 21424 5 
 6J445.9! 
 
 4433.6' 
 8455.1 
 2476.6 
 
 3465.5 
 7487.0 
 1 508.4 
 
 7 139 
 7147 
 
 8155 
 
 149.1 152.8157 
 9 165 
 9 173 
 
 . 
 
 153.3 158 
 157.5164 
 
 172 
 
 172.7 178 
 176.9 184 
 
 192 
 
 193.3 198 
 197.5204 
 
 2 176. 
 2184. 
 3193. 
 
 8197. 
 9 205. 
 9213. 
 
 0144 
 3 ! 154 
 
 6 165 
 2162 
 4 173 
 
 7 183 
 
 5181 
 8192 
 1 203 
 2202 
 4J213 
 7223 
 
 1149 
 9 163 
 
 7 | 
 
 2 168 
 0181 
 8 195 
 6187 
 4 201 
 2.214 
 
 2' 208 
 0221 
 8235 
 
 .8156.3 
 .5173.1 
 
 .0 174.4 
 .6191.3 
 
 .31193.8 
 .OJ210.6 
 .7227.5 
 
 ,0!214.4 
 .6231.3 
 .3 248.1 
 
 214.7219.0224.1 229.8 ! 236.3 
 215.2220.7|227.3234.9:243.5253.1 
 219. 41226.8235.6245.71257.2 270.0 
 242. 2247. 2^53. 0*259. 4 
 238.3243.9250.4258.0266.6276 3 
 242.5249.9 258. 7 268. 8280. 3J293.1 
 
 266.5271.6277.3283.8 
 
 268.2,274.8282.4 291.0300.6 
 266.9 274 .3|283 . l!293 .2 304 .7*317 .5 
 
 !292.2297.2 ! 303.0309.4 
 
 293.9300.4308.0316.6:326.3 
 292 .5 299 .9j308 .7 318 .8|330 .3 343 . 1 
 
 324.r329.s'336.3 
 334.91343.5353.1 
 319.4326.8335.6345.71357.2370.0 
 
 320.7327.3 
 
 347 
 
 . 348 
 5354 
 
 3S4 
 
 414 
 
 446 
 
 9355 
 
 I) 303 
 
 . 384 
 .3393 
 
 . 415 
 .9423 
 
 . 447 
 8455 
 
 . 352 . 
 .4 363. 
 .7J373. 
 
 .381. 
 .8392. 
 .1408. 
 . ! 412. 
 4423. 
 7433. 
 
 3454. 
 6 465 . 
 
 2358 
 0371 
 
 8J385 
 
 6387. 
 4401. 
 2414. 
 
 2,418. 
 0|431. 
 8445. 
 
 . 449'. 
 9463. 
 
 7477. 
 
 .0364.4 
 .6381.3 
 .3398.1 
 
 .3(393.8 
 
 .0410.6 
 .7427.5 
 .0424.4 
 .6441.3 
 .3458.1 
 
 8456.3 
 5473.1 
 2490.0 
 
 97 
 
COLUMNS 
 
 TABLE 26 
 
 SQUARE CORED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMJttKK 
 I 
 
 3000-lb. concrete 
 1:3 mixture - 
 7i 12 Max. 
 
 f 750 
 
 JAJN UUJNUK..&J..& 1HS11J 
 
 RECOMMENDATIONS 
 
 P = Af c [l + (n l)p] 
 /unsupported length\ 
 
 U1H, 
 
 15 
 
 Cofumn size 
 
 
 
 
 &*$$]* 
 
 siny 
 
 ! j 
 
 N, 
 
 \ side ) 
 
 
 
 
 Size 
 of 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 K 
 
 % 
 
 1 
 
 IK 
 
 IK 
 
 H 
 
 K 
 
 Vs 
 
 i 
 
 IK 
 
 IK 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 
 
 11 
 
 12 
 13 
 14 
 15 
 10 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 
 4 
 4 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8. 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 60.9 
 73.6 
 
 87.9 
 94.3 
 100.8 
 
 103.6 
 110.1 
 116.5 
 
 120.9 
 127.3 
 133.8 
 139.6 
 146.1 
 152.5 
 
 159.9 
 166.3 
 172.8 
 
 181.6 
 188.1 
 194.5 
 
 204.9 
 211.3 
 
 217.8 
 
 229.6 
 236.1 
 242.5 
 
 262.3 
 268.8 
 
 290.1 
 296.5 
 
 3i9'.3 
 325.8 
 
 350 '.i 
 356.5 
 
 66.6 
 79.3 
 
 93.6 
 102.8 
 
 86.0 
 100.3 
 
 
 
 
 58.1 
 70.9 
 
 85.1 
 90.2 
 95.3 
 
 100.9 
 105.9 
 111.0 
 
 118.1 
 123.2 
 128.3 
 
 136.9 
 141.9 
 147.0 
 
 157.1 
 162.2 
 167.3 
 
 178.9 
 183.9 
 189.0 
 
 207.2 
 212.3 
 
 23i'.9 
 237.0 
 
 258 '.2 
 263.3 
 
 285.9 
 291.0 
 
 320.3 
 
 62.6 
 75.3 
 
 89.6 
 96.9 
 104.2 
 
 105.3 
 112.6 
 119.9 
 
 122.6 
 129.9 
 137.2 
 
 141.3 
 148.6 
 155.9 
 
 161.6 
 168.9 
 176.2 
 
 183.3 
 190.6 
 197.9 
 
 206.6 
 213.9 
 221.2 
 
 231.3 
 238.6 
 245.9 
 
 257.6 
 264.9 
 272.2 
 
 292 '.6 
 299.9 
 
 32i'.9 
 329.2 
 
 67.8 
 80.6 
 
 94.8 
 104.8 
 
 110.6 
 120.4 
 130.4 
 
 127.8 
 137.8 
 147.7 
 
 146.6 
 156.5 
 166.4 
 
 166.8 
 176.8 
 186.7 
 
 188.6 
 198.4 
 208.4 
 
 211.8 
 221.8 
 231.7 
 
 236.6 
 246.5 
 256.4 
 
 262.8 
 272.8 
 282.7 
 
 290.6 
 300.5 
 310.4 
 
 319.8 
 329.8 
 339.7 
 
 350.6 
 360.5 
 370.4 
 
 392 '.8 
 402.7 
 
 86.7 
 100.9 
 
 116.7 
 129.6 
 
 133.9 
 146.9 
 
 152.7 
 165.6 
 177.6 
 
 172.9 
 185.9 
 198.8 
 
 194.7 
 207.6 
 220.6 
 
 217.9 
 230.9 
 243.8 
 
 242.7 
 255.6 
 268.6 
 
 268.9 
 281.9 
 294.8 
 
 296.7 
 309.6 
 322.6 
 
 325.9 
 338.9 
 351.8 
 
 356.7 
 369.6 
 382.6 
 
 388.9 
 401.9 
 414.8 
 
 422.7 
 435.6 
 
 448.6 
 
 457.9 
 470.9 
 
 483.8 
 
 494.7 
 507.6 
 520.6 
 
 107.8 
 123.6 
 140.8 
 
 159.6 
 176.0 
 
 179.8 
 196.1 
 
 201.6 
 218.0 
 234.4 
 
 224.8 
 241.2 
 257.7 
 249.6 
 266.0 
 282.4 
 
 275.8 
 292.2 
 308.7 
 303.6 
 320.0 
 336.4 
 
 332.8 
 349.2 
 365.7 
 
 363.6 
 380.0 
 396.4 
 
 395.8 
 412.2 
 428.7 
 429.6 
 446.0 
 462.4 
 
 464.8 
 481.2 
 497.7 
 
 501.6 
 518.0 
 534.4 
 
 539.8 
 556.2 
 
 572.7, 
 
 148.5 
 167.3 
 
 187.5 
 207.7 
 
 209.3 
 129.5 
 
 232.5 
 252 . 8 
 273.0 
 
 257.3 
 277.5 
 297.8 
 
 283.5 
 303.8 
 324.0 
 
 311.3 
 331.5 
 351.8 
 
 340.5 
 360.8 
 381.0 
 
 371.3 
 391.5 
 411.8 
 
 403 . 5 
 423.8 
 444.0 
 
 437.3 
 457.5 
 477.8 
 
 472.5 
 492.8 
 513.0 
 
 509.3 
 529.5 
 549.8 
 
 547.5 
 567.8 
 588.0 
 
 
 
 
 108.0 
 
 
 
 
 
 
 
 
 
 
 109.3 
 118.6 
 127.9 
 
 126.6 
 135.8 
 145.1 
 
 145.3 
 154.6 
 163.9 
 
 165.6 
 
 174.8 
 184.1 
 
 187.3 
 196.6 
 205.9 
 
 210.6 
 219.8 
 229.1 
 
 235.3 
 
 244.6 
 253.9 
 
 261.6 
 270.8 
 280.1 
 
 289.3 
 298.6 
 307.9 
 
 318.6 
 327.8 
 337.1 
 349.3 
 358.6 
 367.9 
 
 116.0 
 128.7 
 
 123.8 
 
 
 
 
 
 
 
 
 133.3 
 
 145.9 
 
 141.0 
 
 149.8 
 
 
 
 
 
 152.0 
 164.7 
 177.3 
 
 172.3 
 184.9 
 197.5 
 
 194.0 
 206.7 
 219.3 
 
 217.3 
 229.9 
 242.5 
 
 242.0 
 254.7 
 267.3 
 
 268.3 
 280.9 
 293.5 
 
 296.0 
 308.7 
 321.3 
 
 325.3 
 337.9 
 350.5 
 
 356.0 
 368.7 
 381 -.3 
 
 388.3 
 400.9 
 413.5 
 
 422.0 
 434.7 
 447.3 
 
 457.3 
 469.9 
 482.5 
 
 506 '.7 
 518.3 
 
 544.9 
 557.5 
 
 159.8 
 176.3 
 
 168.5 
 
 178.3 
 
 
 
 180.0 
 196.5 
 
 188.8 
 209.7 
 
 198.6 
 
 201.8 
 218.3 
 234.8 
 
 225.0 
 241.5 
 258.0 
 
 249.8 
 266.3 
 
 282.8 
 
 276.0 
 292.5 
 309.0 
 
 303.8 
 320.3 
 336.8 
 
 333.0 
 349.5 
 366.0 
 
 363.8 
 380.3 
 396.8 
 
 396.0 
 412.5 
 429.0 
 
 429.8 
 446.3 
 462.8 
 
 465.0 
 481.5 
 498.0 
 
 501.8 
 518.3 
 534.8 
 
 540.0 
 556.5 
 573.0 
 
 210.5 
 231.4 
 
 220.3 
 
 233.8 
 244.7 
 275.5 
 
 258.5 
 279.4 
 300.3 
 
 284.8 
 305.7 
 326.5 
 
 312.5 
 333.4 
 354.3 
 
 341.8 
 362.7 
 383.5 
 
 372.5 
 393.4 
 414.3 
 
 404.8 
 425.7 
 446.5 
 
 438.5 
 459.4 
 480.3 
 
 473.8 
 494.7 
 515.5 
 
 510.5 
 531.4 
 552.3 
 
 548.8 
 569.7 
 590.5 
 
 243.6 
 269.3 
 
 268.3 
 294.1 
 
 294.6 
 320.3 
 346.1 
 
 322.3 
 348.1 
 373.9 
 
 351.6 
 377.3 
 403.1 
 
 382.3 
 408.1 
 433.9 
 
 414.6 
 440.3 
 466.1 
 
 448.3 
 474.1 
 499.9 
 
 483.6 
 509.3 
 535.1 
 
 520.3 
 546.1 
 571.9 
 
 558.6 
 584.3 
 610.1 
 
 351.0 
 383 '.3 
 4i7.6 
 
 352.6 
 359.9 
 
 384 '.9 
 392.2 
 
 388 '.8 
 422.5 
 
 390.8 
 400.1 
 
 424 '.6 
 433.9 
 
 418.6 
 425.9 
 
 426.5 
 436.4 
 
 457 '.8 
 494 . 5 
 
 459.8 
 469.1 
 
 496 '.6 
 505.9 
 
 534.8 
 544.1 
 
 : : ; ; ; 
 
 46i.2 
 
 46i.8 
 471.7 
 
 
 
 497.9 
 
 498.5 
 508.4 
 
 
 536 '.2 
 
 536.8545.9 
 546.7^58.8 
 
 98 
 
TABLE 27 
 
 COLUMNS 
 
 Column size 
 
 SQUARE CORED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 mixture 
 
 = 12 
 
 Size 
 
 of 
 
 column 
 (inches) 
 
 Size 
 of 
 
 core 
 (inches) 
 
 Number 
 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H \ X \ H 
 
 1H 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 20 
 27 
 28 
 29 
 30 
 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25. 
 20 
 
 I 48. 7| 53.3 
 
 j! 58.91 63.5 68.8 
 
 i 70. 3 ! 54. 9 ! 80.2 
 ! 75.5! 82.3 .. 
 
 82.9 
 
 87.5! 92.8 
 94.9 102 9 
 93.2 102. 3| 
 
 96.7 101.3106.6 
 '101.9 108.7,116.7 
 |107. 0116.1 
 
 111. 7 116.3121.6 
 
 86.4 
 
 99 
 
 112.8 
 
 127 
 
 116.9 123.7|131.7 141 
 122.0 131.1141.8 .. - 
 
 8134 
 0. .. 
 
 127.9 
 133.1 
 138.2 
 
 142.7 
 
 132.5 137. 8' 144 
 139.9'l47.9 157 
 147.3,158.0 .... 
 
 ! 151 
 
 2 167 
 
 145.3149.9 155.2161 
 150.5 157.3 165.3 174 
 155.6164.71175.4^87 
 
 163. 9! 168.5; 173. 8 180 
 169.1 175.9 183.9 193 
 ,184.21183. 3 194. 0206 
 
 .0158. 
 .7 .... 
 
 183.7 188 
 188.91195 
 194. 0| 203 
 
 '209 
 
 209.9'216 
 215.0J224 
 
 .....231 
 232.1 238 
 237.2246 
 
 3193 
 7203 
 1,213 
 
 3214 
 7224 
 1 234 
 
 5*236 
 9246 
 3257 
 
 .6199 
 .7213 
 .8226 
 
 .6 ! 220 
 .7234 
 
 .8,247 
 
 . 8*243 
 .9 256 
 .0269 
 
 254.9260.21266 
 
 255.5262.3270.3:279 
 260.6269.7280.41292 
 
 279.5284 
 
 !280.1J286.9294 
 285.2294.3305 
 
 . . . 310 
 312.7320 
 
 311.0320.1 
 
 330 
 
 ,337 
 
 339.71347 
 338.0347.1357 
 
 365 
 
 367.9375 
 366.2375.3386 
 
 .8291 
 .930-4 
 .0317 
 
 .6316 
 .7330 
 .8343 
 
 .6343 
 .7357 
 .8370 
 .8372 
 
 . . 401 
 
 168 
 6 185 
 
 o'l87 
 2203 
 4220 
 
 8 ( 206 
 0223 
 2240 
 
 8227 
 0244 
 2261 
 
 01250 
 2266 
 4J283 
 
 4273 
 6290 
 8306 
 
 0298 
 2314 
 4 331 
 
 s'323 
 0340 
 
 8350 
 0367 
 2384 
 
 0379 
 2395 
 4412 
 
 4408 
 
 .4176. 
 .1 ____ 
 
 .o'l94. 
 .7215. 
 
 .8214. 
 .5235. 
 .2255. 
 
 .8235 
 .5256 
 .2276 
 
 .o'257 
 
 .7278 
 .4299 
 
 .4381 
 
 .1 301 
 .8322 
 
 o'sos 
 
 .7326 
 ,4|347 
 .s'331 
 5352 
 .2372 
 
 .8358 
 .4379 
 .2399 
 
 .0386 
 .7407 
 .4428 
 
 46.5 
 56.7 
 
 68.1 
 72.2 
 76.2 
 
 80.7 
 84.7 
 88.8 
 
 94.5 
 98.6 
 102.6 
 
 109.5 
 113.6 
 117.6 
 
 50.1 
 60.3 
 
 71.7 
 77.5 
 83.3 
 
 84.3 
 90.1 
 95.9 104 
 
 98.1 
 103.9 
 109. 
 
 125.7129 
 129.8 135 
 133.8,140 
 
 143.1 146 
 147.2152 
 
 151.2 158 
 
 54.3 
 64.5 
 
 75.9 
 83.8 
 
 69.3 
 80.7 
 
 .5 93.3 
 .4 103.7 
 
 . 4| 
 
 102.3 107.1 
 
 110.2 117.5 
 7118.2 
 
 117.3 122.1 
 
 113 
 
 118.9 125.2 132.5140.8! 
 
 124.7133.2,142.9 
 
 86.2 
 
 98.8 
 
 112.6 118.8 
 
 127.6133.8 
 
 ..,,133. 5 138. 3 143. 8 150.0 
 .1 141.4 148. 7J157.0 166.2 
 .9 149.4 159.1 
 
 .7 
 
 !3|166.8 176.5ll87.5i 
 
 150.9,155.7161.2167.4 
 158.8 I 166.1!174.4 183.6 
 
 .3 
 
 185 
 189 
 
 206 
 210 
 
 !165.3'l69.5 174.3 179.8 186.0 
 .8 171. l|l77. 4 184.7 193.0202.2 
 .8 176.9 185.4,195.1:206.1 218.4 
 
 6190 
 6196 
 
 .206 
 6212 
 6227 
 
 189. 
 197. 
 
 1 210. 
 0|218. 
 7226. 
 
 3193 
 2204 
 7205.2214 
 
 3215 
 2225 
 2235 
 
 228 
 232 
 
 8234. 
 8239. 
 
 256 
 
 2SO 
 
 232 . 
 240. 
 248. 
 
 5 237 
 4247 
 4258 
 
 1 199 
 5212 
 9 225 
 
 l' 220 
 5233 
 9,246 
 
 3 '242 
 7256 
 i;269 
 
 .6205.8 
 .81222.0 
 .9238.2 
 
 .6226.8 
 .8243.0 
 .9,259.2 
 
 .9^249.0 
 .0265.2 
 .1281.4 
 
 ? ::: 
 
 397.3405.3414 
 
 395.6404.7415.4 
 
 427 
 
 432 
 
 427.9435.9J445 
 435.3446.0458 
 
 6425 
 ,8 ( 441 
 
 0439 
 ,2455 
 4472 
 
 1436 
 
 ,8457, 
 
 01447 
 7J467, 
 4488. 
 
 .. 255.9260.7266.2272.4 
 
 . . 257.5 263 .8 271 . 1 279 .4 288.6 
 .2263.3271.8^81.5292.5304.8 
 
 ..':.... 280. 5285. 3i290. 8297.0 
 . . 282. H288. 4 295. 7^304.0313. 2 
 .8 287. 9 296. 4 306.1 347. 1 ( 329. 4 
 
 . .'311.l'316.6322.8 
 . . 307.9314.2321.5329.8339.0 
 .6 313.7 322.2 331 .9 342.9 355.2 
 
 333 
 
 . 334 
 6340 
 
 361 
 
 9341 
 7349 
 
 .9,377 
 
 I 
 
 8368 
 
 '. 398.3406 
 
 ! 428 
 
 . 429 
 ,9437 
 
 . 338 
 .2348 
 .2358 
 
 .1366 
 ,4376 
 .4387. 
 
 .395 
 
 8406 
 8416. 
 
 4436 
 4447 
 
 1343 
 5356. 
 9369. 
 3371. 
 7385. 
 1 ( 398. 
 
 7401. 
 1414. 
 5427. 
 
 .6349.8 
 .8366.0 
 .5372.2 
 
 .8378.0 
 .0394.2 
 .1410.4 
 
 2407.4 
 4 423 . 6 
 5439.8 
 
 . 431.8438.0 
 7445.0454.2 
 1 458.1 470.4 
 
 99 
 
COLUMNS 
 
 TABLE 28 
 
 SQUARE CORED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 2000-lb. concrete 
 1: 6 mixture 
 
 71=15 
 
 f c =400 
 
 Ma X .( lenff * h }=12 
 \ side I 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods Round rods 
 
 M 
 
 H 
 
 14 
 
 1 IK 
 
 IK 
 
 H 
 
 H 
 
 K 
 
 1 
 
 IK 
 
 IK 
 
 12 
 
 g 
 
 4 
 
 41 .2 
 
 45 
 
 
 39.3 42 3 
 
 45.9 
 
 
 
 13 
 
 10 
 
 4 
 
 48.8 
 
 52.6 
 
 
 
 
 
 46.9 
 
 49.9 
 
 53.5 
 
 
 
 
 14 
 
 
 4 
 
 57.2 
 
 61 
 
 65.6 
 
 
 
 
 55 3 
 
 57.3 
 
 61.9 
 
 66.0 
 
 
 
 
 
 6 
 
 6l'5 
 
 67^3 
 
 
 
 
 
 58^7 
 
 63.2 
 
 68.6 
 
 
 
 
 
 
 g 
 
 65.9 
 
 
 
 
 
 
 62.2 
 
 68.2 
 
 
 
 
 
 15 
 
 12 
 
 4 
 
 66.4 
 
 70.2 
 
 74.8 
 
 80.0 
 
 
 
 64.5 
 
 67.5 
 
 71.1 
 
 75.2 
 
 79.9 
 
 
 
 
 
 70 7 
 
 76.5 
 
 
 
 
 
 67 9 
 
 72 4 
 
 77.8 
 
 
 
 
 
 
 8 
 
 75 .'l 
 
 
 
 
 
 
 71 !4 
 
 77 'A 
 
 
 
 
 
 16 
 
 13 
 
 4 
 
 76.4 
 
 80.2 
 
 84.8 
 
 90.0 
 
 96.0 
 
 
 74.5 
 
 77.5 
 
 81.1 
 
 85.2 
 
 89.9 
 
 95.1 
 
 
 
 6 80 7 
 
 86.5 
 
 93.3 
 
 
 
 
 77.9 
 
 82.4 
 
 87.8 
 
 94.0 
 
 
 
 
 
 8 1 HS ' 1 
 
 92^8 
 
 
 
 
 
 81 .4 
 
 87.4 
 
 94 .5 
 
 
 
 
 17 
 
 14 
 
 4 
 
 87.2 
 
 91.0 
 
 95.6 
 
 100.8106.8 
 
 
 85.3 
 
 88.3 
 
 91.9 
 
 96.0 
 
 100.7 
 
 105.9 
 
 
 
 6 ! 91.5 
 
 97.3 
 
 104.1 
 
 
 88.7 
 
 93.2 
 
 98.6 
 
 104.8 
 
 
 
 
 
 8 ! 95.9 
 
 103.6 
 
 
 
 92.2 
 
 98.2 
 
 105.3 
 
 
 
 
 18 
 
 15 4 99.8 
 
 102.6 
 
 107.2 
 
 112.4118.4 125.0 
 
 96.9 
 
 99.9 
 
 103.5 
 
 107.6 
 
 112.3 
 
 117.5 
 
 
 6 103.1'108.9 
 
 115.7 
 
 123.6| 100.3104.8110.2116.4 
 
 123.4 
 
 
 
 
 8 
 
 107.5 115.2 
 
 124.3 
 
 
 
 i 
 
 103.8109.8116.9 125.2 
 
 
 
 
 
 19 
 
 16 
 
 4 
 
 111.2 115.0 
 
 119.6 
 
 124.8 130.8 137.4 
 
 .. 112.3 115.9 120.0 
 
 124.7 129.9 
 
 
 
 6 115^5 121.3 128.1 
 
 136.0 144.9 112.7117.2 122. 6! 128. 8 
 
 135.8 143.6 
 
 
 
 8 1119.9127.6 
 
 136.7 
 
 
 
 
 116.2 122.2 329.3 137.6 
 
 
 
 20 
 
 17 
 
 4 124.4128.2 
 
 132.8 
 
 138.0144.0150.6 
 
 . . 125.5 129.1 133.2 
 
 137. 9 : 143.1 
 
 
 
 6 , 128.7 134.5 
 
 141.3 
 
 149.2158.1 
 
 ; 125. 9130. 4135. 8142.0 
 
 149.0156.8 
 
 i 
 
 8 133.1 
 
 140.8 
 
 149.9 
 
 160.4 
 
 
 
 
 129.4135.4 
 
 142.5 150.8 
 
 160.1 
 
 
 
 
 1 
 
 21 
 
 18 
 
 4 ' 
 
 142.2 
 
 146.8 
 
 152.0 158.0 
 
 164,61 139.5 
 
 143.1 149.2 
 
 151.9 157.1 
 
 
 6 142.7148.5 
 8 147. 1 154.8 
 
 155.3 163.2 
 163 9 174 4 
 
 172.1 
 
 182.1 1139. 9|144. 4 
 J143 4 14Q 4. 
 
 149.8 
 156.5 
 
 156.0163.0170.8 
 1fU S 174 1 
 
 22 19 
 
 4 157.0 
 
 161.6 
 
 166.8172.8 
 
 . . J.40.4 
 
 179. 4 1 . 
 
 
 157.9 162.0 
 
 166.7 
 
 171.9 
 
 
 6 157.5163.3 
 8 161.9169.6 
 
 170.1 
 
 178.7 
 
 178.0 186.9 196.9 154.7 159.2 164.6:170.8 177.8 185.6 
 189.2201.1 (158.2164.2171.3179.6188.9199.4 
 
 23 20 
 
 4 172.6177.2182.4188.4 195.0 
 
 173.5 177.6 
 
 182.3 
 
 187.5 
 
 
 6 173.1178.9185.7193.6202.5212.5 
 
 ..174.8180.2186.4 
 
 193.4201.2 
 
 
 8 177 5 185 2 194 3 9n4 s 21 fi 7 17 ^ fi 17Q 8 1Rfi Q 10.1 9 
 
 9fU A 91.1 H 
 
 24 21 
 
 4 |l 189.0 193.6 
 
 198.8204.8 
 
 211.4' . 
 
 . . 189.9 194.0198.7203.9 
 
 
 6 
 
 189.5 195.3 202.1 210.0218.9 228.9 191 .2196 .6 202 .8 
 
 209.8217.6 
 
 1 
 
 8 
 
 193.9 201.6210.7 
 
 221.2233.1246.4 
 
 190.2196.2203.3211.6 
 
 220.9 231.4 
 
 25 22 
 
 4 
 
 
 
 210.8 
 
 216.0222.0228.6 
 
 . . 211.2215.91221.1 
 
 
 6- 
 
 '. '. 212.5 219.3 I 227.2 236.1 246.1 
 
 208.4,213.8220.0 
 
 227.0234.8 
 
 1 
 
 8 
 
 211.1218.8227.9238.4 
 
 250.3263.6 
 
 207.4 213.4,220.5228.8238.1 248.6 
 
 26 23 
 
 4 
 
 
 . . 228 . 8 
 
 234.0 
 
 240.0246.6 
 
 
 229.2 
 
 233.9 
 
 239.1 
 
 
 6 
 
 '.'.'.'.'. 230.5237.3245.2 
 
 254.1 
 
 264.1 
 
 
 226.4231.8238.0 
 
 245.0i 252. 8 
 
 
 8 
 
 229.1 236.8245.9 256.4 
 
 268.3 
 
 281.6 
 
 
 231.4238.5246.8 
 
 256.1 
 
 266.6 
 
 27 24 
 
 4 1 247.6 
 
 252.8 
 
 258. 8 265. 4 ! 
 
 
 
 l248.0 ! 252.7 
 
 257.9 
 
 
 6 !| 249.3 256.1 264.0 
 
 272.9282.9 
 
 
 250.6256.8263.8 
 
 271.6 
 
 
 8 247.9255.6,264.7 
 
 275.2 
 
 287.1 300.4 
 
 '.'. '.'. '. 250.2257.3265.6274.9 
 
 285.4 
 
 28 25 
 
 4 
 
 
 
 
 272.4 
 
 278.4 
 
 285.0 
 
 
 
 
 267.6272.3 
 
 277.5 
 
 
 6 
 
 268 '.9 275. 7 
 
 283.6 
 
 292.5302.5 
 
 . . 270.2276.4 
 
 283.4 
 
 291.2 
 
 
 8 267.5 
 
 275.2284.3 
 
 294.8 
 
 306.7320.0 
 
 269.8276.9285.2,294.5 
 
 305.0 
 
 29 
 
 26 
 
 4 
 
 
 
 292.8 
 
 298.8305.4 
 
 
 
 
 292.7 
 
 297.9 
 
 
 
 6 
 
 8 
 
 289.3296.1 304.0 
 295.6304.7315.2 
 
 312.9 
 327.1 
 
 322.9 
 340.4 
 
 '.'. '.'. ^290.2 
 
 290^6296.8303.8 
 297.3305.6,314.9 
 
 311.6 
 325.4 
 
 30 
 
 27 
 
 4 
 
 
 
 
 292.8 
 
 298.8 
 
 305.4 
 
 
 
 
 292.7 
 
 297.9 
 
 
 6 
 
 
 
 296 '.i 
 
 304.0 
 
 312.9 
 
 322.9 
 
 
 
 
 296.8 
 
 303.8'311.6 
 
 
 ! 8 
 
 '..... 295.6304.7 
 
 315.2 
 
 327.1 340.4 
 
 '.'.'.'.'. 297.3 305.6 | 314.9|325.4 
 
 100 
 
TABLE 29 
 
 K 
 
 J COLUMNS 
 
 SQUARE 
 SAFE LOAD IN 
 CHICAGO BUILD 
 
 Ma. 
 
 
 
 V 
 
 "* 
 
 CORED COLUMNS 
 THOUSANDS OF POUNDS 
 ING CODE REQUIREMENTS 
 
 Af[l + (n l)p] 2400-lb. concrete 
 /length\ 19 1:4 % mixture 
 
 
 ic; ' * *> J ? * 
 
 -lilt 
 
 *'\ side ) 
 
 /* JL6 
 
 f c =480 
 
 
 
 Size Size 
 of of 
 column core 
 (inches) (inches) 
 
 Number 
 of 
 rods 
 
 Square rods Round rods 
 
 H 
 
 % 
 
 K 
 
 1 i 1,4 
 
 IK i! *A 
 
 1 
 
 1 
 
 IK 
 
 IK 
 
 12 9 
 13 10 
 14 11 
 
 15 12 
 16 13 
 17 14 
 18 15 
 19 16 
 20 17 
 21 18 
 22 19 
 23 20 
 24 21 
 25 22 
 26 23 
 27 24 
 28 25 
 29 26 
 30 27 
 
 4 
 
 4 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 I 
 
 I 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 
 6 
 8 
 
 4 
 6 
 
 8 
 
 A 
 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 8 
 
 47.1 
 56.3 
 
 66.3 
 70.5 
 74.6 
 
 77.4 
 81.5 
 85.6 
 
 89.4 
 93.5 
 97.6 
 
 102.3 
 108.5 
 110.6 
 
 116.3 
 120.4 
 124.5 
 
 131.1 
 135.3 
 139.4 
 
 147.0 
 151.1 
 155.2 
 
 50.8 
 59.9 
 
 69.0 
 75.9 
 
 74.3 
 
 
 
 45.4 
 54.5 
 
 64.6 
 67.8 
 71.0 
 
 75.6 
 78.8 
 82.1 
 
 87.6 
 90.8 
 94.1 
 
 100.6 
 103.8 
 107.0 
 
 114.5 
 117.7 
 121.0 
 
 132.6 
 135.8 
 
 l48'.4 
 151.7 
 
 48.2 
 57.3 
 
 67.4 
 72.1 
 76.7 
 
 78.5 
 83.1 
 87.8 
 
 90.5 
 95.1 
 99.8 
 103.4 
 108.1 
 112.7 
 117.3 
 122.0 
 126.7 
 132.2 
 136.9 
 141.5 
 
 148.1 
 152.7 
 157.4 
 
 164.9 
 
 51.1 
 60.7 
 
 70.8 
 77.1 
 
 81.8 
 88.2 
 
 93.8 
 100.2 
 106 5 
 
 106.8 
 113.-1 
 119.5 
 
 120.7 
 127.1 
 133.4 
 
 135.6 
 141.9 
 148.3 
 151.4 
 157.8 
 164.1 
 
 168.2 
 
 74.7 
 85.7 
 
 97.7 
 106.0 
 
 110.7 
 119.0 
 
 124.6 
 132.9 
 141.2 
 
 139.5 
 147.8 
 156.1 
 
 155.3 
 163.6 
 171.9 
 172.1 
 
 90.1 
 102.1 
 115.1 
 
 129.0 
 139.5 
 
 143.9 
 154.4 
 
 159.7 
 170.2 
 180.7 
 176.5 
 
 107.0 
 120.0 
 133.9 
 
 148.8 
 161.8 
 
 164.6 
 177.6 
 
 181.4 
 
 
 
 
 
 
 
 81.0 
 86.9 
 
 85.3 
 
 90.2 
 
 
 
 
 
 
 
 93.0 
 98.9 
 104.9 
 
 106.0 
 111.9 
 117.8 
 
 119.9 
 125.8 
 131.8 
 
 134.8 
 140.7 
 146.6 
 
 150.6 
 156.5 
 162.5 
 
 167.4 
 
 97.3 
 105.4 
 
 102.2 
 
 107.9 
 
 
 
 
 110.3 
 118.3 
 
 115.2 
 
 120.8 
 
 
 
 124.2 129.1 
 132.3139.7 
 140.3! 
 
 139.1 144.0 
 147.1 154.6 
 155.2 
 
 154.9159.8 
 163.0170.4 
 171.1 181.0 
 171.7176.6 
 
 134.7 141.0 
 
 149.6 
 163.0 
 
 165.5 
 
 178.8 
 
 182.3 
 
 155.9 
 171.7 
 188.5 
 
 167.9 
 172.0 
 
 173.3 179.8 187.2 
 179.3 187.9197.8 
 
 185 2 189 5 194 4 
 
 195.6 
 200.0 
 
 205.0 
 206.3 
 
 165.2 
 168.5 
 
 169.5 
 174.2 
 
 174.6 
 180.9 
 
 186.0 
 192.3 
 198.7 
 
 204.7 
 211.1 
 217.4 
 
 224.4 
 
 180.4 
 188.7 
 
 189.9 
 198.2 
 206.5 
 
 208.6 
 216.9 
 225.2 
 
 228.3 
 236.6 
 244.9 
 
 248.9 
 257.2 
 265.5 
 270.5 
 
 278.8 
 287.1 
 
 283.1 
 301.4 
 309.7 
 
 316.6 
 324.9 
 333.2 
 
 349.4 
 357.7 
 
 187.0|194.4 
 197.5 
 
 194.3 199.2 
 204.8212.2 
 215.3225.1 
 
 213.0217.9 
 223.5230.9 
 234.0243.8 
 
 232.7237.6 
 243.21250.6 
 253.7263.5 
 
 253.3258.2 
 263.81271.2 
 274.3284.2 
 
 274.9278.8 
 285.4292.8 
 295.9305.8 
 
 297.5302.4 
 308.0315.4 
 318.5328.3 
 
 321.0325.9 
 331.5338.9 
 342.0351.8 
 
 345.5350.4 
 356.0363.4 
 366.5^76.3 
 
 370.9375.8 
 381.4388.8 
 391.9401.8 
 
 185.7 
 189.8 
 
 204 '.4 
 208.5 
 
 191.1 197.5205.0 
 197.0205.6215.5 
 
 203.9208.2'213.1 
 209.8:216.3223.7 
 215.8224.3234.2 
 
 223.6227.9'232.8 
 
 213.4 
 226.7 
 
 218.7 
 232.1 
 245.5 
 
 238.4 
 
 222.8 
 
 225.0 
 241.5 
 
 244.7 
 
 183.0 
 186.2 
 
 205 '.6 
 
 187.3 
 191.9 
 
 206 '.6 
 210.7 
 
 224.1 
 228.2 
 
 248 '.8 
 
 229.5 
 235.4 
 
 250 '.i 
 256.1 
 
 235.9 
 244.0 
 
 248.5 
 256.6 
 264.7 
 
 270.1 
 278.2 
 286.3 
 
 292.7 
 300.7 
 308.8 
 
 324 '.3 
 332.3 
 
 348 '.7 
 356.8 
 
 243.4 
 253.9 
 
 253.4 
 264.0 
 274.6 
 
 275.0 
 285.6 
 296.2 
 
 297.6 
 308.2 
 318.7 
 
 321.1 
 331.7 
 342.2 
 
 345.6 
 356.2 
 366.7 
 
 371.0 
 381.6 
 392.2 
 
 251.8 
 265.1 
 
 259.1 
 272.4 
 285.8 
 
 280.7 
 294.0 
 307.4 
 
 303.2 
 316.6 
 329.9 
 
 326.7 
 340.1 
 353.5 
 
 351.2 
 364.6 
 377.9 
 
 376.7 
 390.0 
 403.4 
 
 261.2 
 
 277.7 
 
 265.3 
 281.8 
 298.3 
 
 286.9 
 303.4 
 319.9 
 309.5 
 326.0 
 342.5 
 
 333.0 
 349.5 
 366.0 
 
 357.5 
 374.0 
 390.5 
 
 382.9 
 399.4 
 415.9 
 
 224 . 6 
 245 '.3 
 
 225.7 
 230.3 
 
 246 '.3 
 251.0 
 
 230.7 
 237.1 
 
 25i'.4 
 257.7 
 
 
 271.7 
 277.7 
 
 
 267.9 
 272.6 
 
 273.0 
 279.3 
 
 270.4 
 
 293.6 
 
 3ie>'.5 
 
 294.3 
 300.2 
 
 3i7'.8 
 323.8 
 
 342 '.3 
 348.2 
 
 
 
 295.5 
 301.9 
 
 sig'.i 
 
 325.4 
 
 343.5 
 349.9 
 
 
 295.1 
 
 sis '.7 
 
 ..... 
 
 343.1 
 
 374.2 
 '373.7382.3 
 
 
 
 374.8 
 375.3 ( 383.1 
 
 101 
 
COLUMNS 
 
 TABLE 30 
 
 U V H 
 
 1 J 
 
 SQUARE 
 LOAD IN 
 JO BUILD 
 
 Ma 
 
 CORED COL1 
 THOUSANDS 
 ING CODE RI 
 
 Af c [l + (n-l)p 
 /length} 
 
 JMNS 
 
 OF POUNDS 
 SQUIREMENTS 
 
 ] 
 2 
 
 - Column $fr e > 
 
 SAFE 
 CHICAC 
 
 2900- Ib. concrete 
 1:3 mixture 
 
 n 1 ft 
 
 
 1 
 1 
 
 
 71 J.U 
 
 f c = 580 
 
 
 *' V side ) ~ 
 
 JJ3SSS 
 
 
 
 
 
 
 
 Size 
 of 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 X| 
 
 % 
 
 1 
 
 m 
 
 IK 
 
 H 
 
 X 
 
 H 
 
 i 
 
 . | . 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 9 
 10 
 11 
 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 
 4 
 4 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 
 6 
 
 8 
 
 4 
 6 
 8 
 
 55.1 
 66.2 
 
 78.3 
 82.4 
 86.5 
 
 91.7 
 95.7 
 99.8 
 
 106.2 
 110.2 
 114.3 
 
 121.8 
 125.9 
 130.0 
 138.7 
 142.7 
 146.8 
 
 156.6 
 !l60.7 
 164.8 
 
 175.8 
 179.8 
 183.9 
 
 266 '.i 
 
 204.2 
 
 22i.6 
 225 7 
 
 58.7 
 69.8 
 
 81.9 
 87.8 
 
 
 
 
 
 
 
 53.4 
 64.4 
 
 76.6 
 79.8 
 83.0 
 
 89.9 
 93.1 
 96.3 
 
 104.4 
 107.6 
 110.8 
 
 120.1 
 123.3 
 126.5 
 
 136.9 
 140.1 
 143.3 
 
 iss'.i 
 
 161.3 
 
 177 '.2 
 
 180.4 
 
 i97.5 
 200.7 
 
 219 .0 
 222 2 
 
 56.2 
 67.2 
 
 79.4 
 84.0 
 88.6 
 
 92.8 
 97.4 
 102.0 
 
 107.3 
 111.9 
 116.5 
 
 122.9 
 127.5 
 132.1 
 
 139.7 
 144.3 
 149.0 
 
 157.7 
 162.3 
 166.9 
 
 176.9 
 181.5 
 186.1 
 
 197.2 
 201.8 
 206.4 
 
 223 '.2 
 227 8 
 
 59.5 
 70.6 
 
 82.7 
 89.0 
 
 96.1 
 102.4 
 
 110.6 
 116.9 
 123.1 
 
 126.2 
 132.5 
 138.8 
 
 143.1 
 149.3 
 155.6 
 
 161.0 
 167.3 
 173.6 
 
 180.2 
 186.5 
 192.7 
 
 200.5 
 206.8 
 213.0 
 
 221.9 
 228.2 
 234 5 
 
 86.6 
 99.9 
 
 114.4 
 122.6 
 
 130.1 
 138.3 
 
 146.9 
 155.1 
 163.3 
 
 164.9 
 173.1 
 181.3 
 
 184.0 
 192.2 
 200.4 
 
 204.3 
 212.5 
 220.7 
 
 225.8 
 234.0 
 242.2 
 
 104.3 
 118.8 
 134.4 
 
 151.3 
 161.6 
 
 169.2 
 179.6 
 
 188.4 
 198.8 
 209.2 
 
 208.7 
 219.1 
 229.5 
 
 230.1 
 240.5 
 251.0 
 
 123.6 
 139.3 
 156 . 1 
 
 174.1 
 186.9 
 
 193.2 
 206.1 
 
 213.5 
 226.4 
 
 235.0 
 
 247.8 
 260 . fi 
 
 86.2 
 
 
 
 
 
 
 
 95.3 
 101.1 
 
 109.8 
 115.6 
 121.5 
 
 125.4 
 131.3 
 137 2 
 
 99.5 
 
 104.4 
 
 
 
 114.0 
 122.0 
 
 118.9 
 
 124.5 
 
 
 
 129.7 
 137.7 
 
 134.6 
 
 140.1 
 
 
 
 
 
 
 142.3 
 148.1 
 154.0 
 160.2 
 166.1 
 172.0 
 
 179.4 
 185.2 
 191.1 
 
 199.7 
 205.5 
 211.4 
 
 221.1 
 227.0 
 232.9 
 
 146'5 
 154.5 
 162 5 
 
 151.4 
 
 161.8 
 
 156.9 
 
 163.1 
 
 164.5 
 172.5 
 180.5 
 
 183.6 
 191.6 
 199.6 
 
 203.9 
 211.9 
 219.9 
 
 225.4 
 233.4 
 241.4 
 
 169.4 
 179.8 
 
 188.5 
 198.9 
 209.4 
 
 208.8 
 219.2 
 229.7 
 
 230.3 
 240.7 
 251.1 
 
 174.9 
 188.1 
 
 181.1 
 
 194.1 
 207.3 
 
 214.4 
 227.6 
 
 235.8 
 249.0 
 262.2 
 
 200.3 
 
 220.6 
 236.9 
 
 242.0 
 258.3 
 
 
 243.8 
 249.6 
 255.5 
 
 267.5 
 273.4 
 279.3 
 
 248.0 
 256.0 
 264.0 
 
 271.8 
 279.8 
 287.8 
 
 296.7 
 304.7 
 312.7 
 
 322.8 
 330.8 
 337.9 
 
 350.1 
 358.1 
 366.1 
 
 252.9 
 263.3 
 273.8 
 
 276.7 
 287.1 
 297.5 
 
 301.6 
 312.0 
 322.5 
 
 327.7 
 338.1 
 348.6 
 
 355.0 
 365.4 
 375.8 
 383.4 
 393.8 
 404.3 
 
 413.0 
 423.4 
 433.8 
 
 443.7 
 454.1 
 464.6 
 
 258.4 
 271.6 
 284.9 
 
 282.2 
 295.4 
 308.6 
 
 307.2 
 320.4 
 333.6 
 
 333.3 
 346.5 
 359.7 
 360.5 
 373.7 
 386.9 
 
 388.9 
 402.1 
 415.4 
 
 418.5 
 431.7 
 444.9 
 
 449.3 
 462.5 
 475.7 
 
 264.6 
 280.9 
 
 288.4 
 304.7; 
 321.0| 
 
 313.4 
 329.7 
 346.0! 
 
 339.5 
 355.9 
 372.1 
 
 366.7 
 383.0! 
 399.3 
 
 395.1 
 411.4 
 
 427.8, 
 
 424.71 
 441.0 
 457.3; 
 
 455.5 
 
 471.8 
 488.1 
 
 
 245 '.8 
 250.5 
 
 244.6 
 250.8 
 257.1 
 
 268.3 
 274.6 
 280.9 
 
 248.4 
 256.6 
 264.8 
 
 272.2 
 280.4 
 288.6 
 
 297.1 
 305 . 3 
 313.5 
 
 323.2 
 331.4 
 339.6 
 
 350.5 
 358.7 
 366.9 
 
 378.9 
 387.1 
 395.3 
 
 4i6'.7 
 424.9 
 
 252.8 ! 257.6 
 263.1 270.4 
 273.6,283.3 
 
 276.5281.4 
 286.9294.2 
 297.4307.0 
 
 301.5 306.3 
 311.9319.2 
 322.3 332.0 
 
 327.6332.4 
 338.0345.3 
 348.4358.1 
 
 354.8359.7 
 365.2372.5 
 375.7385.3 
 
 383.3388.1 
 393.6400.9 
 404.1 413.8 
 
 412.8417.7 
 423 . 2 430 . 5 
 433.7|443.3 
 
 443.8448.4 
 454.0461.3 
 464.4474.1 
 
 244.2 
 248.3 
 
 268 ! 6 
 272.1 
 
 244.8 
 
 268 '.6 
 293 . 5 
 
 269.6 
 274.2 
 
 
 298.3 
 304.2 
 
 294.6 
 299.2 
 
 299.6 
 305.8 
 
 325 '.7 
 831.9 
 
 352 '.9 
 359.2 
 
 38i'.3 
 387.6 
 
 4i6.9 
 417.2 
 
 297.0 
 
 323 '.i 
 
 324.4 
 330.3 
 
 
 320.7 
 325.3 
 
 
 
 351.7 
 357.6 
 
 350.4 
 
 
 352.5 
 
 378 '.8 
 
 380.1 
 386.0 
 
 409 '.7 
 415.6 
 
 386.5 
 393.5 
 
 iie'.i 
 
 424.1 
 
 
 38i.6 
 
 iiois 
 
 
 446 '.3 
 
 446.8 
 454.8 
 
 
 
 447.4 
 455.6 
 
 
 
 447.9 
 
 102 
 
TABLE 31 
 ( Column sire J 
 
 SQUARE CORED COLUMNS 
 
 COLUMNS 
 
 
 
 
 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 .OS ANGELES BUILDING CODE REQUIREMENTS 
 
 1:6 mixture 
 
 P = Af c (l + (n-l)p} n =15 
 f c =550 
 
 j: e' '.'. -a- " 
 
 BVJ 
 
 <:$* 
 
 mm 
 
 - i^-SliXs. 
 
 3M 
 Jj'l 
 
 l J 
 
 
 
 
 
 
 Size 
 of 
 column 
 (inches) 
 
 Size 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 X 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 H 
 
 H 
 
 K 
 
 1 
 
 1M 
 
 IK 
 
 12 
 13 
 
 14 
 15 
 16 * 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 
 29 
 30 
 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 
 26 
 27 
 
 
 4 
 4 
 6 
 8 
 4 
 6 
 8 
 4 
 6 
 8 
 4 
 6 
 8 
 4 
 6 
 8 
 4 
 6 
 8 
 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 4 
 6 
 8 
 
 6 
 
 8 
 
 6 
 
 8 
 
 56.6 
 67.0 
 73.0 
 79.0 
 78.6 
 84.5 
 90.6 
 91.2 
 97.2 
 103.2 
 
 111.0 
 117.0 
 
 125.8 
 131.8 
 
 141.8 
 147.8 
 
 61.9 
 72.3 
 81.0 
 89.7 
 83.9 
 92.6 
 101.2 
 96.5 
 105.2 
 113.9 
 110.3 
 119.0 
 127.6 
 125.1 
 133.8 
 142.5 
 141.1 
 149.8 
 158.4 
 
 iee'.s 
 
 175.5 
 
 iss'.o 
 
 193.6 
 
 204 '.2 
 212.9 
 
 233.2 
 254 '.7 
 
 68.1 
 78.6 
 
 75.4 
 85.8 
 
 
 54.0 
 64'. 5 
 69.2 
 73.9 
 76.0 
 80.7 
 85.4 
 
 93.4 
 98.1 
 
 107.1 
 111.8 
 
 58.2 
 68.6 
 75.4 
 82.2 
 80.2 
 87.0 
 93.7 
 92.8 
 99.6 
 106.4 
 106.6 
 113.4 
 120.1 
 
 63.1 
 73.5 
 82.8 
 I 92.0 
 85.1 
 94.3 
 103.6 
 97.8 
 107.0 
 116.2 
 111.5 
 120.7 
 130.0 
 126.4 
 135.6 
 144.8 
 142.3 
 151.5 
 160.8 
 
 68.7 
 79.2 
 
 | 75.2 
 85.6 
 
 92.8 
 
 
 
 J 90.3 
 
 
 
 J 91.3 
 
 90.7 
 102.8 
 
 103.4 
 116.5 
 
 97.2 
 
 104.4 
 
 
 
 
 90.1 
 101.9 
 
 97.4 
 
 105.5 
 
 
 112.8 
 
 112.4 
 109.8 
 
 117.0 
 
 
 
 102.8 
 114.5 
 Il26.3 
 116.5 
 128.3 
 140.1 
 131.4 
 143.1 
 154.9 
 147.3 
 159.1 
 170.9 
 
 164.4 
 176.1 
 187.9 
 
 182.5 
 194.3 
 206.1 
 
 2i3'.5 
 225.3 
 
 233.9 
 245.7 
 
 255.3 
 267.1 
 
 110.0 
 
 118.2 
 
 127.3 
 
 J125.4 
 
 
 
 125.1 
 
 130.8 
 J149.6 
 
 145.6 
 164.5 
 
 
 
 1127.6 
 117.1 
 129.2 
 141.3 
 132.0 
 144.1 
 156.2 
 147.9 
 160.0 
 172.1 
 
 165.0 
 177.1 
 189.2 
 
 183.1 
 195.2 
 207.3 
 
 2i4'.5 
 226.6 
 
 234 '.8 
 246.9 
 
 256 '.3 
 
 268.4 
 
 123.6 
 
 138.8 
 J154.2 
 138.4 
 153.7 
 
 123.8 
 139.2 
 |154.6 
 138.6 
 154.0 
 
 131.9 
 
 141.1 
 
 151.4 
 
 
 146.8 
 166.2 
 
 155.9 
 180.0 
 
 126.7 
 
 128.2 
 135.0 
 
 169.4 
 154.6 
 170.0 
 185.4 
 
 171.6 
 187.0 
 202.4 
 
 189.8 
 205.2 
 220.6 
 
 209.0 
 224.4 
 239.8 
 229.4 
 244.8 
 260.2 
 
 250.8 
 266.2 
 281.6 
 
 
 |169.0 183.4 
 154.4161.6 
 169.6180.4 
 185.0|199.4 
 
 171.4 178.6 
 186.7197.5 
 202.0216.4 
 
 189.6196.8 
 204.8215.6 
 220.2234.6 
 
 208.8 ! 216.0 
 224.1 234.8 
 239.4253.8 
 
 229.2'236.4 
 244.4255.2 
 259.8274.2 
 
 250.6257.8 
 265.9276.7 
 281.2295.6 
 . .280.4 
 
 162.7 
 182.2 
 201.7 
 
 179.8 
 199.2 
 218.7 
 
 197.9 
 217.4 
 236.9 
 
 217.2 
 236.6 
 256.1 
 
 237.5 
 257.0 
 276.5 
 
 259.0 
 278.5 
 297.9 
 
 281.5 
 301.0 
 320.5 
 
 305 2 
 
 171.9 
 196.0 
 
 142.6 
 
 144.2 
 150.9 
 
 188.9 
 213.0 
 237.1 
 
 207.1 
 231.2 
 255.2 
 
 226.3 
 250.4 
 274.5 
 
 246.7 
 270.8 
 294.8 
 
 268.1 
 292.2 
 316.3 
 
 290.7 
 314.8 
 338.8 
 
 314 3 
 
 
 
 161.2 
 168.0 
 
 168.6 
 177.8 
 
 i86'.7 
 196.0 
 
 206.6 
 215.2 
 
 226 '.3 
 235.6 
 
 257 '.6 
 
 164.8 
 
 iss'.o 
 
 
 186.1 
 205 '.4 
 
 ::::: 
 
 
 
 
 
 ' 
 
 
 
 277 '.2 
 
 277.9 
 289.7 
 
 288.8 
 304.2 
 
 
 
 
 279 '.6 
 
 278.8 
 290.9 
 
 288.4 
 303.8 
 
 299.2 
 318.2 
 
 304.0 
 322.9 
 341.8 
 
 347.6 
 366.5 
 
 373.4 
 392.4 
 
 400.4 
 419.4 
 
 428.5 
 447.4 
 
 457.6 
 476.6 
 
 
 
 
 
 
 
 312.4 
 327.8 
 
 324 . 6 
 344.1 
 
 338.4 
 362.5 
 
 339.1 
 363.2 
 387.2 
 
 364.9 
 389.0 
 413.1 
 
 391.9 
 416.0 
 440.0 
 
 444.0 
 4fi8 1 
 
 
 
 
 
 312.1 
 327.4 
 
 336.8 
 352.2 
 
 362.7 
 378.0 
 
 405.0 
 
 
 
 313.3 
 
 
 
 
 3i4.6 
 
 
 
 
 
 
 
 
 
 337.2 
 352.6 
 
 349.4 
 368.9 
 
 
 
 
 338.1 
 
 
 
 :.... 
 
 
 
 339.3 
 365 '.2 
 392.1 
 
 .'.'.'.'. 
 
 
 
 363 '.9 
 
 363.0 
 378.4 
 
 375.2 
 394.7 
 
 
 
 
 
 402.2 
 421.7 
 
 430.2 
 449 7 
 
 
 
 ..... 
 
 ..... 
 
 405.4 
 
 
 
 
 433 4 
 
 
 
 
 
 433.0 
 
 
 
 
 
 459.4473.2 
 478.9,497.2 
 
 
 
 
 
 
 
 
 462.6 
 
 
 
 
 
 462. 2j 
 
 
 
 
 
 
 
 Below and to right of zig-zag lines, reinforcement is more than 4 per cent. 
 
 103 
 
COLUMNS 
 
 TABLE 32 
 
 ROUND CORED HOOPED COLUMNS 
 
 Column size 
 
 2000 -Ib. 
 1:6 mixti 
 
 nje 
 
 JOINT C01V 
 
 concrete Volume of 
 Max. 
 
 1MITTEE RECOMMENI 
 
 P = Af c (l + (n-l}p] 
 Hooping = 1% of Volume 
 /unsupported length\ 
 
 )ATIONS 
 
 of Core 
 10 
 
 
 1 
 
 f 7nn 
 
 \ core diameter / 
 
 
 t^&r 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 14 
 
 1 
 
 1H 1>4 
 
 H 
 
 H 
 
 7 A 
 
 l 
 
 1H 
 
 1M 
 
 12 
 13 
 
 14 
 15 
 
 16 
 17 
 
 18 
 
 19 
 20 
 21 . 
 22 
 23 
 
 24 
 25 
 
 8 
 9 
 
 10 
 11 
 
 12 
 13 
 14 
 
 15 
 
 16 
 17 
 18 
 19 
 
 20 
 21 
 
 6 
 
 6 
 
 8 
 
 6 
 
 8 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 12 
 
 ' 6 
 8 
 10 
 12 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 
 
 
 
 
 53.2 
 
 62.5 
 68.6 
 
 73.0 
 79.1 
 
 84.5 
 90.6 
 96.6 
 
 97.2 
 103.3 
 109.3 
 
 110.9 
 116.9 
 123.0 
 
 125.7 
 131.8 
 137.8 
 143.8 
 
 141.7 
 
 147.8 
 153.8 
 159 .8 
 
 164.9 
 170.9 
 176.9 
 182.9 
 
 183.0 
 189.0 
 195.0 
 201.0 
 
 208 '.3 
 214.3 
 220.3 
 
 81.0 
 
 92.5 
 101.1 
 
 105.2 
 113.8 
 122.5 
 
 118.9 
 127.5 
 136.2 
 
 133.7 
 142.3 
 151.0 
 159.7 
 
 149.7 
 158.3 
 167.0 
 175.7 
 
 175.4 
 184.1 
 192.8 
 201.4 
 
 193.5 
 202.2 
 210.9 
 219.5 
 
 212.8 
 221.5 
 230.2 
 238.8 
 
 233.1 
 
 241.8 
 250.5 
 259 . 1 
 267.8 
 
 254.5 
 263.2 
 271.9 
 280.5 
 289.2 
 
 285.8 
 294.5 
 303.1 
 311.8 
 
 101.9 
 114.6 
 
 128.3 
 140.0 
 
 143.1 
 154.8 
 166.6 
 
 159.1 
 170.8 
 182.6 
 
 187.9 
 199.7 
 211.5 
 
 206.0 
 217.8 
 229.6 
 241.4 
 
 225.3 
 237.1 
 248.9 
 260:7 
 
 245.6 
 257.4 
 269.2 
 281.0 
 292.8 
 
 267.0 
 278.8 
 290.6 
 302.4 
 314.2 
 
 301.4 
 313.2 
 325.0 
 336.8 
 
 139.1 
 153.9 
 
 169.9 
 185.3 
 
 202.4 
 217.8 
 
 220.5 
 235.9 
 
 239.8 
 255.2 
 270.6 
 
 260.1 
 275.5 
 290.9 
 306.3 
 
 281.5 
 296.9 
 312.3 
 327.7 
 343.1 
 
 319.5 
 334.9 
 350 . 3 
 365.7 
 
 166.1 
 
 182.1 
 218.7 
 236.8 
 
 256.1 
 275.6 
 
 276.4 
 295.9 
 
 297.8 
 317.3 
 336.8 
 
 339.9 
 359.4 
 
 . 
 
 274.4 
 294.7 
 
 316.1 
 340 . 1 
 
 362.7 
 
 67.5 
 
 
 
 
 
 
 
 
 78.0 
 85.6 
 
 89.5 
 97.1 
 
 102.2 
 109.8 
 117.5 
 
 115.9 
 123.5 
 131.2 
 
 130,7 
 138.3 
 146.0 
 153.6 
 
 146.7 
 154.3 
 162.0 
 169.6 
 
 171.4 
 179.1 
 186.7 
 19r?4 
 
 189.5 
 197.2 
 204.8 
 212.5 
 
 208.8 
 216.5 
 224.1 
 231.8 
 
 229.1 
 236.8 
 244.4 
 252 . 1 
 259.8 
 
 250.5 
 258.2 
 265.8 
 273.5 
 281.2 
 
 280.8 
 288.4 
 296.1 
 303.8 
 
 
 
 
 
 99.6 
 
 
 
 
 112.3 
 123.3 
 
 126.0 
 137.0 
 
 
 
 137.9 
 
 
 140.8 
 151.8 
 162.8 
 
 156.8 
 167,8 
 178.8 
 189.9 
 
 184.9 
 195.9 
 206.9 
 
 2ig":o 
 
 203.0 
 214.0 
 225.0 
 236 1 
 
 152.7 
 167.7 
 
 166.5 
 
 168.7 
 183.7 
 
 182.5 
 
 . . f> 
 
 
 
 : 
 
 200.8 
 215.8 
 
 219.2 
 
 
 
 
 
 
 
 218.9 
 
 2 3L- 9 
 
 237.3 
 
 
 
 
 
 
 222.3 
 233.3 
 244.4 
 255.4 
 
 - 
 
 242.6 
 253.6 
 264.7 
 275.7 
 286.7 
 
 264.0 
 275.0 
 286.1 
 297.1 
 308.1 
 
 297.6 
 308.7 
 319.7 
 330.7 
 
 238.2 
 253.2 
 268.2 
 
 256.6 
 276.2 
 
 277.4 
 
 
 258.5 
 273.5 
 288.5 
 303.5 
 
 m 
 
 309.9 
 32T.9 
 339.9 
 
 317.5 
 332.5 
 347.5 
 362.5 
 
 276.9 
 296.5 
 
 298.3 
 317.9 
 337.5 
 
 340.5 
 360 . 1 
 
 297 7 
 
 319.1 342.4 
 343.9 ... 
 
 366 . 5 
 
 
 
 j 
 
 228.6 
 234.6 
 240.6 
 246.6 
 
 256 '.6 
 262.0 
 268.0 
 
 278 '.6 
 284.6 
 290.6 
 
 104 
 
TA^LE 32 
 
 Column Size ^ 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Volume of Hooping = 1% of Volume of Core 
 
 ,_ /unsupported length\ 
 Max. I j-. I = 10 
 
 \ core diameter / 
 
 COLUMNS 
 
 2000- Ib. concrete 
 1:6 mixture 
 
 71=15 
 
 f c =700 
 
 Size I Diameter 
 of of 
 
 column i core 
 
 (inches) I (inches) 
 
 Number 
 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 ?s 
 
 L>7 
 
 28 
 
 29 
 
 SO 
 
 lio 
 
 27 
 
 20 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 304.4 .321.21341.1 364.1 390.1 
 312.0332 3!356 1 383.7414.9 
 319.7 343. 31 371.1 403? 
 327.4354.3 
 335.0365.3 
 
 346.0 
 357.1 
 368.1 
 379.1 
 390.1 
 
 365.9388.9414 
 
 380.91408.5439 
 
 395.9J428.1 
 
 410.9447.7 
 
 425.9 
 
 1309.4325.0343 
 
 J318.1 336.8 
 
 308.2 326.7 348.6 
 314.2335.4360.4 
 320.2 344.0 372.2 
 
 444.0 
 
 469.8 
 
 371.8391.7414.7440.7 
 382. 9 406. 7 434. 31465. 5 
 393.9 421.7 453.9:490.3 
 
 404. 91436.71473. 5; 
 
 315. 9!451. 7J493.1 .. 
 
 398.7:418.6441.6476.6496.7! 
 
 409.8 433.6 461 .2 ! 492.4 ! 527. 4 
 
 420.8 1 448.6480.8517.2 
 
 431.8463.6500.4 
 
 442.8478.6520.0 
 
 453.9493.7 
 
 437.8461.6489.2520.4 
 448.8 476.6508.81545.2 
 459.8491.6528.4 570.0 
 470.8 506.6548.0 
 481.9521.7:567.6 
 
 467.0490 
 478.01505. 
 489.0520 
 
 500.0 535 
 
 511.1 550 
 522 . 1 565 
 
 .6 
 
 615.2 
 
 8518.4549.6584 
 
 8538.0574.4 
 
 8557.6599.2 
 
 8]577.2 624.1 
 
 9596.8 
 
 9616.4 
 
 | 
 
 . 497.3521 
 . 508.3536 
 , 519.3551 
 . 530.3566 
 . 541.4581 
 . 552.4596.2646.7 .. 
 
 555.4 
 
 1548.7579.9614.9 
 1 568.3 604.7645.5 
 1 587.9:629.5 ...... 
 
 1 607.5654.4 
 2627.1 
 
 , 528.6552.4580.0611.2646.2 
 .539.6567.4599.6636.0676.8 
 . 550.6582.4619.2660.8707.4 
 . 561 .6 597.4 638.8 685. 7J |, 
 
 572. 7 612.5|658. 4'710. 5i j, 
 
 583.7627.5678.0'.. 
 
 ... 584.8:612.4:643.6678.6 
 
 572.0 599.81632.0 668.4 709.2 
 583.0614.8651.6|693.2 739.8 
 594. 0629. 8^671. 2718.1 770 .4 
 
 605.1 644.9690.8742.9 
 616.1 659.9710.4 767.7 
 627.1 674.9730.0,... 
 
 349.8367.9388.3411.1 
 8435.2 
 
 334.2 
 342.9 361 
 351.5373. 
 360.2 385.2 414 
 368.8397.0429.4 
 
 375.6 
 .7387.4 
 
 393.7414 
 409.1 
 
 3399.2424.5 
 0439.9 
 .2 
 
 368 
 377. 
 
 386.0411 
 394.6422 
 
 402.5420.6 
 6414.3436.0 
 
 .11363.5386.3 
 358.5 383.01410.4 
 373.9402.5 
 389.3 
 404.6 
 
 383.3 
 398.7 
 
 407. 
 
 427.3 
 
 446.8 
 
 8455. 
 
 395. 
 
 404.2426.1 
 412.9 437.9466 
 421.5449 
 430.2461.5497 
 
 423.6442.3464 
 
 432.2454 
 
 440.9465.9494 
 
 449.5477 
 
 458.2489.5525 
 
 .0 
 479.4 
 
 .8 
 510.1 
 
 .5 
 
 471.5493.2517.754 
 
 483.3 
 
 495.1 
 
 461.4 
 
 470.1 
 
 478.7506.9539 
 
 487.4518 
 
 496.1 
 
 .7 
 530.4 
 
 508.6 
 524.0 556 
 
 .3 
 
 554.7595 
 570.1 
 
 501 
 491.7513 
 500.4 525 
 509.0537 
 517.7549 
 526.4560 
 
 544 
 
 531.7556 
 540.3568 
 549.0580 
 557.7592 
 
 '564.1 
 
 .8523, 
 .6538, 
 .4'554 
 .2569 
 .0585 
 .7600 
 
 .1;554, 
 .9570. 
 .7585. 
 .5J600, 
 .3'616. 
 .0631. 
 
 433. 
 453.1 
 472.6 
 492.0 
 
 436.9 
 6461.0 
 485.0 
 
 441.0463 
 460 . 5 487 
 451.4 480.0 
 
 499.5 536 
 518.9 
 
 488. 
 
 508.0539 
 
 527.5 
 
 546.9 
 
 566.4 
 
 537.2 
 .7 
 
 576.1 
 .6 
 
 615.1 
 
 5548. 
 9|567. 
 3587. 
 6606. 
 0625. 
 4645. 
 
 8579. 
 2,598. 
 61618. 
 9,637. 
 3 657. 
 7676. 
 
 .s 
 .9 
 
 511.9 
 .0 
 
 5 51; 
 
 .9 
 564.0 
 
 5.1 
 569.1 
 593.2 
 617.2 
 
 0575.4 
 5599.4 
 623 . 5 
 4647.5 
 9671.6 
 4 1 
 
 3 606.7 
 8 630'. 7 
 3 654.8 
 7678.8 
 2 702.9 
 7 
 
 565.51587.2 611.7 639.1 
 577.3602.6631.2663.1 
 589.1 618.0650.7687.2 
 
 1572.7600.9633.3670.1 711.2 
 581 .4 612.7 648.7 689.6 735.3 
 590.1 624.4 664.1 709.1 759.3 
 598.7636.2 ! 679.5;728.6 
 
 105 
 
COLUMNS 
 
 TABLE 32 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Column size ._.> 
 
 2000 -lb. concrete 
 1:6 mixture 
 n = 15 
 f c =700 
 
 l}p] 
 Volume of Hooping =1% of Volume of Core 
 
 Max 
 
 unsu PP rted 
 
 core diameter / 
 
 Size 
 of 
 
 column 
 (inches) 
 
 3f> 
 
 36 
 
 37 
 
 38 
 
 Diameter 
 
 of 
 core 
 
 (inches) 
 
 10 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 3(1 
 
 37 
 
 38 
 
 Number 
 
 of 
 rods 
 
 Hi 
 18 
 20 
 22 
 24 
 26 
 28 
 
 Hi 
 18 
 20 
 22 
 21 
 26 
 28 
 
 Hi 
 18 
 20 
 22 
 21 
 26 
 
 28 
 
 30 
 
 Square rods 
 
 1605.6 633. 4,665. 6i702.0 742.8 
 616.6 648.4)685.2 726.8 773.4 
 
 .627.6663.4 
 
 704. 8 751. 71804.0 
 
 638 7678.5 724.4 776.5 
 .649.7693.5744.0801.3 
 .660.7708.5763.6' 
 
 667.9700, 
 682.9719, 
 697.9 739, 
 713.0758 
 
 728.01778, 
 743.01798, 
 
 703.7i735. 
 
 718.7755. 
 
 733.7 775. 
 748.8794. 
 
 763.8 ! 814. 
 
 778.8 : 833. 
 >793.8'853. 
 
 740.5772. 
 i 755.5| 792. 
 
 770.5811. 
 1785.61831. 
 '800.6:851. 
 
 815.6870. 
 
 830.6890. 
 
 778.5810. 
 
 793.5J830. 
 
 808.5849. 
 
 823.6 ; 869. 
 . '838.6'889. 
 
 853.6908. 
 . I868.6J928. 
 
 ,832.5869, 
 '847. 5(888, 
 
 862.6;908 
 i877.6i928 
 I892.6J947 
 ;907. 61967 
 
 922.61986 
 
 1 736 
 
 7 761 
 3786 
 9811 
 5835 
 1 860 
 
 9772 
 5,797 
 11822 
 7!846 
 3 871 
 9 896 
 5 921 
 
 5777.3 
 3807.9 
 2838.5 
 0869.2 
 
 3813.1 
 1 843 . 7 
 0874.3 
 8905.0 
 
 7 809.11849.9 
 3833.9880.5 
 9i858. 8)911.1 
 51883.6)941.8 
 1:908.4)972.4 
 71933.2 ..... 
 3 958.0). 
 
 7847.1887.9 
 3 871.9918.5 
 9 896.8,949.1 
 5 921.6979.8 
 1 946.4 
 7971.2 
 3 996.0 
 
 3 910.91957.5 
 ,9 935.8)988.1 
 
 1010 
 1041 
 
 5 960.6 
 1 985.4 
 71 1010 
 3) 1035 
 9 1060 
 
 872.6909.4 951.0997.6 
 
 887.6929.0975.9 
 
 902.7 948.6 
 '917.7'968.2 
 ^932.7987.8 
 1947.7 1007 
 ! 962.7 1027 
 
 1001 
 1025 
 1050 
 1075 
 1100 
 
 1019 
 1049 
 1080 
 1111 
 
 913.9950.7992.3 
 928. 9970. 3' 10171 
 1944.0 989.9) 1042) 
 959.0) 1009 1067 
 974.0 1029 1092 
 
 989.0 
 1004 
 1019 
 
 1049 1116 
 
 1068 
 1088 
 
 1141 
 1166 
 
 1028 
 1059 
 1089 
 1120 
 1151 
 
 1039 
 1069 
 1100 
 1131 
 1161 
 1192 
 1223 
 
 Round rods 
 
 606. 
 615. 
 623. 
 632. 
 
 610.9636.2 664.8696.7 
 622.7651.6684.3 720.8 
 3 634.5 666.9 703.7|744.8 
 0646.3682.3723.21768.9 
 7658.0697.7742.7792.9 
 3669.8713.1 762.2 817.0 
 
 645. 
 657.2 686 
 
 680.8 
 
 692. 
 
 704 
 
 4670.7699.3 731.2 
 718.8755.3 
 0701.4 738.2 779.3 
 716.8757.7J803.4 
 5732.2 777.2827.4 
 .3747.6796.7851.5 
 
 753.4 
 765.1 
 
 693.0 
 
 704.8737.2 
 
 716.6752 
 
 728.3 
 
 740.1 
 
 751.9 
 
 706.5735.1 767.0 
 721.9 754.6791.1 
 
 774.0815.1 
 
 .6 793.5)839.2 
 768.0:813.0863.2 
 783.4 832.5:887.3 
 798.8,852.0911.3 
 
 743.3j771.9803.8 
 729.8758.7 791. 4 ; 827. 9 
 741.6774.0)810.8:851.9 
 
 789.4l830.3 1 876.0 
 804.81849.8)900.0 
 
 776. 9 820. 2'869. 31924.1 
 788.7835.6 ! 888.8948.1 
 
 781.3 809.9 841.8 
 767.8)796.7i829.4865.9 
 779.6812.0848.8i889.9 
 791.4)827.4,868.3 914.0 
 803.1 842.8:887.8938.0 
 814.9)858.2 907.3 962.1 
 826.7873.6926.8,986.1 
 
 835.7868.4 ; 904.9 
 818.6851.0.887.8928.9 
 830.4866.4 907.3953.0 
 842.1(881.8926.8977.0 
 
 853.9 897.2 946.3 
 865.7912.6965.8 
 
 877.51928.0985.3 
 
 1001 
 1025 
 1049 
 
 875.8908.5945.0 
 858.71891.1 927.9969.0 
 870.5906.5947.4993.1 
 882.2921.9966.9 " 
 894.0937.3986.4 
 
 905.8952.2 
 917.6968.1 
 
 1006 
 1025 
 
 1017 
 1041 
 1065 
 1089 
 
 ...1917.1949.8986.3 
 ...1932.4969.2 1010 
 
 911.8 I 947.8988.7 
 
 923.5963.2 
 935.3978.6 
 947.11994.0 
 958.9 1009 
 970.7 1025 
 
 1008 
 1028 
 1047 
 1067 
 1086 
 
 1034 
 1058 
 1083 
 1107 
 1131 
 1155 
 
 100 
 
TABLE 32 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Volume of Hooping 
 Max. 
 
 1% of Volume of Core 
 
 **ngth\ ==w 
 \ core diameter I 
 
 2000 -Ib. concrete 
 1:6 mixture 
 n=15 
 f c =700 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 T4 : l 
 
 i 
 
 IX 
 
 U4 
 
 X 
 
 H 
 
 H 
 
 1 
 
 IX 
 
 IK 
 
 43 
 44 
 
 45 
 46 
 47 
 48 
 49 
 50 
 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 956.2 
 971.2 
 986.3 
 1001 
 1016 
 1031 
 1046 
 1061 
 
 993.0 
 1012 
 1032 
 1052 
 1071 
 1091 
 1111 
 1130 
 
 1036 
 1056 
 1076 
 1095 
 1115 
 1134 
 1154 
 1174 
 
 1101 
 1120 
 1140 
 1159 
 1179 
 1199 
 1218 
 
 1146 
 1166 
 1186 
 1205 
 1225 
 1244 
 1264 
 
 1193 
 1213 
 1232 
 1252 
 1271 
 1291 
 1311 
 
 1241 
 1260 
 1280 
 1300 
 1319 
 1339 
 1358 
 
 1290 
 1309 
 1329 
 1349 
 1368 
 1388 
 1407 
 
 1359 
 1379 
 1399 
 1418 
 1438 
 1457 
 
 1035 
 , 1060 
 1084 
 1109 
 1134 
 1159 
 1184 
 1208 
 
 1078 
 1103 
 1128 
 1153 
 1178 
 1202 
 1227 
 1252 
 
 1148 
 1172 
 1197 
 1222 
 1247 
 1272 
 1296 
 
 1193 
 1218 
 1243 
 1268 
 1292 
 1317 
 1342 
 
 1240 
 1265 
 1289 
 1314 
 1339 
 1364 
 1389 
 
 1288 
 1313 
 1337 
 1362 
 1387 
 1412 
 1437 
 
 1337 
 1361 
 1386 
 1411 
 1436 
 1461 
 1485 
 
 1411 
 1436 
 1461 
 1486 
 1511 
 1535 
 
 1081 
 1112 
 1143 
 1173 
 1204 
 1234 
 1265 
 1296 
 
 1125 
 1155 
 1186 
 1217 
 1247 
 1278 
 1308 
 1339 
 
 1200 
 1231 
 1261 
 1292 
 1322 
 1353 
 1384 
 
 1245 
 1276 
 1307 
 1337 
 1368 
 1399 
 1429 
 
 1292 
 1323 
 1353 
 1384 
 1415 
 
 ii 
 
 1340 
 1371 
 1401 
 1432 
 1463 
 1493 
 1524 
 
 1389 
 1420 
 1450 
 1481 
 1511 
 1542 
 1573 
 
 1470 
 1500 
 1531 
 1561 
 1592 
 1623 
 
 
 
 
 
 959.4 
 974.7 
 990.1 
 1005 
 1021 
 1036 
 1052 
 1067 
 
 1003 
 1018 
 1034 
 1049 
 1064 
 1080 
 1095 
 1110 
 
 1063 
 1078 
 1094 
 1109 
 1124 
 1140 
 1155 
 
 1108 
 1124 
 1139 
 1155 
 1170 
 1185 
 1200 
 
 992.1 
 1012 
 1031 
 1051 
 i 1070 
 1090 
 1109 
 ; 1128 
 
 1036 
 1055 
 1074 
 1094 
 1 1113 
 1133 
 1152 
 1172 
 
 1100 
 1119 
 1139 
 1158 
 1178 
 1197 
 1216 
 
 1145 
 1165 
 1184 
 1204 
 1223 
 1243 
 1262 
 
 1192 
 1211 
 1231 
 1250 
 1270 
 1289 
 1309 
 
 1240 
 1259 
 1279 
 1298 
 1318 
 1337 
 1357 
 
 1289 
 1308 
 1328 
 1347 
 1367 
 1386 
 1406 
 
 1358 
 1378 
 1397 
 1417 
 1436 
 1456 
 
 1029 
 1053 
 1077 
 1101 
 i 1125 
 1149 
 1173 
 1197 
 
 1072 
 1096 
 1120 
 1144 
 1168 
 1192 
 1216 
 1240 
 
 1141 
 1165 
 1189 
 1213 
 1237 
 1261 
 1285 
 
 1186 
 1210 
 1234 
 1258 
 1282 
 1307 
 1331 
 
 1233 
 1257 
 1281 
 1305 
 1329 
 1353 
 1377 
 
 1281 
 1305 
 1329 
 1353 
 1377 
 1401 
 1425 
 
 1330 
 1354 
 1378 
 1402 
 1426 
 1450 
 1474 
 
 1404 
 1428 
 1452 
 1476 
 1500 
 1524 
 
 i 
 
 
 
 
 
 
 954.1 
 965.8 
 977.6 
 989.4 
 1001 
 1013 
 
 ioog 
 
 1021 
 1033 
 1045 
 1056 
 
 1654 
 1066 
 1077 
 1089 
 1101 
 
 iiii 
 
 1123 
 1135 
 1147 
 
 
 
 
 
 1 
 
 
 
 P 
 
 
 
 1015 
 1030 
 1045 
 1060 
 1075 
 1090 
 1105 
 
 1059 
 1074 
 1089 
 1104 
 1119 
 1134 
 1149 
 
 
 
 
 1 
 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 : : : : . 
 
 - - 
 
 1120 
 1135 
 1150 
 1165 
 1180 
 1195 
 
 iiee 
 
 1181 
 1196 
 1211 
 1226 
 1441 
 
 i2i4 
 1229 
 1244 
 1259 
 1274 
 1289 
 
 i 
 
 
 
 
 1170 
 1186 
 1201 
 1217 
 1232 
 1247 
 
 
 
 
 
 
 
 1170 
 1182 
 1193 
 
 ::::: 
 
 
 
 
 
 
 '1218 
 1229 
 1241 
 
 1218 
 1234 
 1249 
 1265 
 1280 
 1295 
 
 
 
 
 
 
 
 
 
 
 1278 
 1293 
 1308 
 1323 
 1338 
 
 i328 
 1343 
 1358 
 1373 
 1388 
 
 
 
 
 1283 
 1298 
 1313 
 1329 
 1344 
 
 
 
 '1278 
 1290 
 
 
 
 
 
 
 
 
 1333 
 1348 
 1363 
 1379 
 1394 
 
 
 
 
 
 
 
 
 1328 
 1340 
 
 
 
 
 
 107 
 
COLUMNS 
 
 TABLE 33 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n=12 
 f c =870 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 P=Af e [l+(n-l)p] 
 
 Volume of Hooping 1% of Volume of Core 
 
 Max ( unsu PP rted length\ = w 
 
 ' \ core diameter I 
 
 fc Column size >i 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 
 
 H 
 
 K 
 
 1 
 
 1H 
 
 IK 
 
 1 
 % 
 
 K 
 
 K 
 
 1 
 
 IK 
 
 l l A 
 
 12 
 13 
 
 14 
 15 
 
 16 
 
 17 
 18 
 
 19 
 20 
 21 
 22 
 23 
 
 24 
 ^ 
 
 25 
 
 8 
 9 
 
 10 
 11 
 
 12 
 13 
 14 
 
 15 
 16 
 17 
 18 
 19 
 
 20 
 21 
 
 6 
 
 6 
 
 8 
 
 6 
 
 8 
 
 6 
 8 
 10 
 
 6 
 
 8 
 10 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 8 
 10 
 12 
 14 
 
 iS 
 
 12 
 14 
 
 X 8 
 
 10 
 12 
 14 
 
 ii 
 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 
 1 
 
 
 
 61 
 
 73 
 
 79 
 
 86 
 92 
 
 100 
 106 
 112 
 
 116 
 122 
 128 
 
 133 
 139 
 145 
 
 152 
 157 
 163 
 169 
 
 171 
 177 
 183 
 189 
 
 198 
 204 
 210 
 216 
 
 221 
 227 
 233 
 239 
 
 ; - 2&i 
 
 257 
 263 
 
 "276 
 
 282 
 288 
 294 
 
 "309 
 314 
 320 
 
 337 
 342 
 348 
 
 94 
 
 108 
 116 
 
 124 
 132 
 141 
 
 141 
 149 
 158 
 
 159 
 168 
 176 
 185 
 
 179 
 188 
 196 
 204 
 
 209 
 217 
 226 
 234 
 
 231 
 240 
 248 
 257 
 
 255 
 264 
 272 
 281 
 
 280 
 289 
 297 
 306 
 314 
 
 307 
 316 
 324 
 333 
 341 
 
 344 
 352 
 361 
 369 
 
 117 
 133 
 
 150 
 161 
 
 168 
 180 
 191 
 
 188 
 200 
 211 
 
 221 
 233 
 244 
 
 244 
 255 
 267 
 278 
 
 267 
 279 
 290 
 302 
 
 293 
 304 
 316 
 327 
 339 
 
 319 
 331 
 342 
 354 
 365 
 
 359 
 
 370 
 382 
 393 
 
 161 
 179 
 
 199 
 214 
 
 235 
 250 
 
 258 
 273 
 
 282 
 297 
 312 
 
 307 
 322 
 337 
 352 
 
 333 
 349 
 364 
 379 
 394 
 
 377 
 392 
 407 
 422 
 
 191 
 211 
 251 
 274 
 
 298 
 317 
 
 323 
 342 
 
 349 
 368 
 
 388 
 
 396 
 416 
 
 3ir, 
 
 341 
 
 367 
 391 
 
 419 
 
 78 
 
 91 
 
 98 
 
 105 
 113 
 
 
 
 
 
 
 
 
 115 
 
 
 
 
 
 
 
 
 
 
 121 
 128 
 136 
 
 138 
 145 
 153 
 
 156 
 
 164 
 171 
 179 
 
 176 
 184 
 191 
 199 
 
 205 
 212 
 220 
 227 
 
 ! 227 
 1 235 
 1 242 
 i 250 
 
 251 
 259 
 266 
 274 
 
 ; 277 
 i 284 
 292 
 299 
 306 
 
 303 
 311 
 318 
 326 
 333 
 
 339 
 346 
 354 
 361 
 
 131 
 141 
 
 148 
 158 
 
 166 
 177 
 189 
 
 186 
 197 
 208 
 218 
 
 218 
 229 
 240 
 250 
 
 241 
 251 
 262 
 273 
 
 264 
 275 
 286 
 297 
 
 290 
 300 
 311 
 322 
 333 
 
 316 
 327 
 238 
 349 
 359 
 
 355 
 366 
 
 377 
 388 
 
 
 :::: .... 
 
 
 
 159 
 
 178 
 193 
 
 198 
 212 
 
 234 
 
 248 
 
 
 
 191 
 
 
 211 
 
 
 
 252 
 
 
 
 256 
 271 
 
 280 
 295 
 309 
 
 305 
 320 
 335 
 349 
 
 332 
 347 
 361 
 376 
 391 
 
 375 
 
 389 
 404 
 419 
 
 274 
 
 298 
 317 
 
 323 
 342 
 
 350 
 
 369 
 388 
 
 ;::: 
 
 397 
 416 
 
 318 
 344 
 
 .... 
 
 370 
 394 
 
 422 
 
 
 108 
 
TABLE 33 
 
 ^ Columr> sift? tt 
 
 ROUND 
 SAFE LOAI 
 JOINT CO1V 
 
 Volume of 
 Max. 
 
 CORED HOOPED COLl 
 ) IN THOUSANDS OF ] 
 IMITTEE RECOMMENI 
 
 P=Af e (l + (n-l)p] 
 Hooping =1% of Volume 
 /unsupported length\ 
 
 IMNS 
 >OUN 
 )ATIC 
 
 of a 
 
 10 
 
 COLUMNS 
 
 DS 
 )NS 
 
 9re 
 
 2500 -lb. concrete 
 1:4]^ mixture 
 n = 12 
 f c =870 
 
 
 H 
 
 \ core diameter / 
 
 Tt*J&r 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 
 H 
 
 % 
 
 H 
 
 1 
 
 IK \Vi 
 
 H 
 
 H 
 
 7 A 
 
 1 
 
 IH 
 
 IH 
 
 26 
 27 
 28 
 29 
 
 30 
 31 
 
 32 
 33 
 34 
 
 22 
 23^ 
 24 
 25 
 
 26 
 27 
 
 
 
 28 
 29 
 30 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 368 
 376 
 383 
 391 
 398 
 
 385 
 395 
 406 
 417 
 428 
 
 415 
 
 426 
 437 
 448 
 458 
 
 447 
 458 
 469 
 480 
 490 
 
 481 
 492 
 502 
 513 
 524 
 535 
 
 526 
 537 
 548 
 559 
 570 
 
 563 
 574 
 584 
 595 
 606 
 617 
 
 600 
 611 
 622 
 633 
 643 
 654 
 
 639 
 650 
 661 
 672 
 682 
 693 
 
 404 
 419 
 433 
 448 
 463 
 
 435 
 
 449 
 464 
 479 
 493 
 
 467 
 482 
 496 
 511 
 525 
 
 500 
 515 
 530 
 544 
 559 
 574 
 
 550 
 564 
 579 
 594 
 608 
 
 586 
 601 
 615 
 630 
 645 
 659 
 
 624 
 638 
 653 
 668 
 682 
 697 
 
 663 
 677 
 692 
 707 
 721 
 736 
 
 703 
 
 718 
 732 
 747 
 762 
 776 
 791 
 
 426 
 
 452 
 
 
 
 373 
 
 381 
 390 
 398 
 407 
 
 404 
 412 
 421 
 429 
 438 
 
 '444 
 453 
 461 
 470 
 
 '478 
 486 
 495 
 503 
 512 
 
 513 
 521 
 530 
 538 
 546 
 
 '557 
 566 
 574 
 583 
 594 
 
 '595 
 603 
 612 
 620 
 629 
 
 'e>4i 
 
 651 
 659 
 668 
 
 683 
 691 
 700 
 708 
 716 
 
 388 
 400 
 411 
 423 
 434 
 
 419 
 431 
 442 
 454 
 465 
 
 451 
 
 463 
 474 
 486 
 497 
 
 485 
 496 
 508 
 519 
 531 
 542 
 
 531 
 
 542 
 554 
 565 
 577 
 
 567 
 579 
 590 
 602 
 613 
 625 
 
 605 
 616 
 628 
 639 
 651 
 662 
 
 644 
 655 
 667 
 678 
 690 
 701 
 
 684 
 696 
 707 
 719 
 730 
 743 
 753 
 
 406 
 421 
 436 
 451 
 466 
 
 437 
 
 452 
 467 
 482 
 497 
 
 469 
 
 484 
 499 
 514 
 529 
 
 502 
 517 
 532 
 547 
 562 
 577 
 
 552 
 567 
 582 
 597 
 612 
 
 588 
 603 
 618 
 633 
 648 
 664 
 
 626 
 641 
 656 
 671 
 686 
 701 
 
 665 
 680 
 695 
 710 
 725 
 740 
 
 705 
 720 
 735 
 750 
 765 
 780 
 795 
 
 426 
 445 
 464 
 
 
 
 457 
 476 
 495 
 514 
 
 489 
 508 
 527 
 546 
 565 
 
 522 
 541 
 560 
 579 
 598 
 517 
 
 576 
 595 
 614 
 633 
 650 
 
 612 
 
 631 
 650 
 669 
 688 
 707 
 
 650 
 
 669 
 688 
 707 
 726 
 745 
 
 689 
 708 
 727 
 746 
 765 
 784 
 
 729 
 748 
 767 
 786 
 805 
 824 
 843 
 
 448 
 472 
 
 479 
 502 
 
 511 
 535 
 558 
 
 545 
 
 568 
 592 
 615 
 
 603 
 626 
 647 
 
 639 
 663 
 686 
 710 
 
 677 
 700 
 724 
 747 
 771 
 
 716 
 
 739 
 763 
 786 
 810 
 
 756 
 779 
 803 
 826 
 850 
 873 
 
 446 
 
 476 
 
 
 372 
 
 378 
 384 
 
 
 
 
 457 
 476 
 495 
 515 
 
 483 
 507 
 
 511 
 
 
 
 
 489 
 508 
 528 
 547 
 566 
 
 523 
 542 
 561 
 580 
 599 
 
 515 
 539 
 563 
 
 543 
 
 
 
 
 .... 
 
 548 
 572 
 597 
 
 577 
 607 
 
 
 
 
 
 
 
 
 577 
 596 
 615 
 634 
 653 
 
 613 
 632 
 651 
 670 
 689 
 709 
 
 651 
 
 670 
 689 
 708 
 727 
 746 
 
 689 
 709 
 728 
 748 
 766 
 785 
 
 730 
 749 
 768 
 787 
 806 
 826 
 845 
 
 607 
 631 
 656 
 
 641 
 
 
 644 
 668 
 692 
 716 
 
 678 
 708 
 
 
 
 681 
 705 
 730 
 754 
 
 715 
 
 745 
 
 .... 
 
 720 
 744 
 768 
 793 
 817 
 
 760 
 785 
 809 
 833 
 857 
 881 
 
 754 
 784 
 814 
 
 794 
 824 
 854 
 884 
 
 .'' 
 
 
 690 
 701 
 712 
 723 
 733 
 744 
 
 109 
 
COLUMNS 
 
 TABLE 33 
 
 2500- Ib. concrete 
 I'AV^ mixture 
 n = 12 
 
 f c =870 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 P=Af e [l+(n-iyp] 
 Volume of Hooping =1% of Volume of Core 
 
 (unsupported length\ _ 
 
 Max. [ j-. ] =10 
 
 \ core diameter I 
 
 Column sire , 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IX 
 
 1H 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IH 
 
 IK 
 
 " 35 
 36 
 37 
 
 38 
 39 
 40 
 41 
 42 
 
 31 
 32 
 33 
 
 34 
 35 
 36 
 37 
 38 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 732 
 743 
 754 
 765 
 775 
 786 
 
 760 
 774 
 789 
 804 
 819 
 833 
 
 802 
 817 
 832 
 846 
 861 
 876 
 
 847 
 861 
 876 
 891 
 905 
 920 
 935 
 
 892 
 907 
 922 
 936 
 951 
 966 
 980 
 
 940 
 
 954 
 969 
 984 
 998 
 1013 
 1028 
 
 1003 
 1017 
 1032 
 1047 
 1061 
 1076 
 1091 
 
 1053 
 1067 
 1082 
 1097 
 1111 
 1126 
 1141 
 
 1104 
 1119 
 1133 
 1148 
 1163 
 1177 
 1192 
 1206 
 
 791 
 810 
 829 
 
 848 
 868 
 887 
 
 834 
 853 
 872 
 891 
 910 
 929 
 
 878 
 897 
 916 
 936 
 955 
 974 
 993 
 
 924 
 943 
 962 
 981 
 1000 
 1020 
 1039 
 
 971 
 990 
 1009 
 1028 
 1048 
 1067 
 1086 
 
 1039 
 1058 
 1077 
 1096 
 1115 
 1134 
 1154 
 
 1089 
 1108 
 1127 
 1146 
 1165 
 1184 
 1203 
 
 1140 
 1159 
 1178 
 1197 
 1216 
 1235 
 1255 
 1274 
 
 827 
 851 
 875 
 899 
 924 
 
 866 
 896 
 926 
 
 
 '733 
 
 742 
 750 
 759 
 
 738 
 749 
 761 
 772 
 784 
 795 
 
 780 
 792 
 803 
 815 
 826 
 838 
 
 '836 
 848 
 860 
 871 
 882 
 894 
 
 '881 
 893 
 905 
 916 
 928 
 939 
 
 '929 
 941 
 952 
 964 
 975 
 987 
 
 '989 
 1001 
 1012 
 1024 
 1035 
 1047 
 
 i039 
 1051 
 1062 
 1074 
 1085 
 1097 
 
 iio2 
 
 1113 
 1125 
 1136 
 1148 
 1159 
 
 762 
 
 777 
 792* 
 807 
 822 
 837 
 
 805 
 
 820 
 835 
 850 
 865 
 880 
 
 849 
 864 
 879 
 894 
 909 
 925 
 940 
 
 895 
 910 
 925 
 940 
 955 
 970 
 985 
 
 942 
 
 957 
 972 
 987 
 1002 
 1017 
 1032 
 
 1006 
 1021 
 1036 
 1051 
 1066 
 1081 
 1096 
 
 1056 
 1071 
 1086 
 1101 
 1116 
 1131 
 1146 
 
 1107 
 1122 
 1137 
 1152 
 1167 
 1182 
 1197 
 1212 
 
 790 
 
 809 
 828 
 847 
 866 
 885 
 
 833 
 
 852 
 871 
 890 
 909 
 928 
 
 877 
 896 
 915 
 934 
 953 
 972 
 991 
 
 923 
 
 942 
 961 
 980 
 999 
 1018 
 1037 
 
 970 
 989 
 1008 
 1027 
 1046 
 1065 
 1084 
 
 1038 
 1057 
 1076 
 1095 
 1114 
 1133 
 1152 
 
 1088 
 1107 
 1126 
 1145 
 1164 
 1183 
 1202 
 
 1139 
 1158 
 1177 
 1196 
 1215 
 1234 
 1253 
 1272 
 
 821 
 845 
 868 
 892 
 915 
 939 
 
 864 
 888 
 911 
 935 
 958 
 982 
 
 909 
 932 
 956 
 979 
 1002 
 1026 
 1049 
 
 954 
 978 
 1001 
 1025 
 1048 
 1072 
 1095 
 
 1001 
 1025 
 1048 
 1072 
 1095 
 1119 
 1142 
 
 1073 
 1097 
 1120 
 1144 
 1167 
 1191 
 1214 
 
 1123 
 1147 
 1170 
 1194 
 1217 
 1241 
 1264 
 
 1175 
 1198 
 1222 
 1245 
 1269 
 1292 
 1316 
 1339 
 
 869 
 893 
 918 
 942 
 966 
 990 
 
 914 
 938 
 962 
 986 
 1011 
 1035 
 1060 
 
 959 
 984 
 1008 
 1032 
 1056 
 1081 
 1105 
 
 1007 
 1031 
 1055 
 1079 
 1103 
 1128 
 1152 
 
 1079 
 1104 
 1128 
 1152 
 1176 
 1200 
 1225 
 
 1129 
 1154 
 1178 
 1202 
 1226 
 1250 
 1275 
 
 1180 
 1205 
 1229 
 1253 
 1277 
 1302 
 1326 
 1350 
 
 909 
 939 
 969 
 999 
 
 
 953 
 
 983 
 1013 
 1043 
 
 999 
 1029 
 1059 
 1089 
 1119 
 
 1046 
 1076 
 1106 
 1136 
 1166 
 1196 
 
 1125 
 1155 
 1185 
 1215 
 1244 
 1274 
 
 ' 
 
 
 
 
 
 
 .... 
 
 
 1175 
 1205 
 1234 
 1264 
 1294 
 1324 
 
 1226 
 1256 
 1286 
 1316 
 1346 
 1375 
 1405 
 
 
 
 
 
 
 
 
 110 
 
TABLE 33 
 
 Column size 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Volume of Hooping 
 
 /unsupported length\ 
 Max. [ 
 
 \ 
 
 1% of Volume of Core 
 10 
 
 j-. 
 core diameter I 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n=12 
 f c =870 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 y* 
 
 1 
 
 1H 
 
 IK 
 
 H 
 
 H 
 
 y* 
 
 1 
 
 1H 
 
 IK 
 
 43 
 44 
 
 45 
 
 46 
 47 
 48 
 49 
 50 
 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 1157 
 1171 
 1186 
 1200 
 1215 
 1230 
 1244 
 1259 
 
 1192 
 1212 
 1231 
 1250 
 1269 
 1288 
 1307 
 1326 
 
 1246 
 1266 
 1285 
 1304 
 1323 
 1342 
 1361 
 1380 
 
 1321 
 1340 
 1359 
 1378 
 1397 
 1417 
 1436 
 
 1378 
 1397 
 1416 
 1435 
 1454 
 1473 
 1492 
 
 1436 
 1455 
 1474 
 1493 
 1512 
 1531 
 1551 
 
 1495 
 1514 
 1533 
 1553 
 1572 
 1591 
 1610 
 
 1556 
 1575 
 1594 
 1613 
 1632 
 1652 
 1671 
 
 1637 
 1656 
 1676 
 1695 
 1714 
 1733 
 
 1233 
 1257 
 1282 
 1306 
 1330 
 1354 
 1378 
 1403 
 
 1287 
 1311 
 1335 
 1360 
 1384 
 1408 
 1432 
 1457 
 
 1367 
 1391 
 1415 
 1439 
 1464 
 1488 
 1512 
 
 1423 
 1448 
 1472 
 1496 
 1520 
 1544 
 1569 
 
 1481 
 1506 
 1530 
 1554 
 1578 
 1603 
 1627 
 
 1541 
 1565 
 1589 
 1614 
 1638 
 1662 
 1686 
 
 1602 
 1626 
 1650 
 1674 
 1699 
 1723 
 1747 
 
 1688 
 1712 
 1736 
 1761 
 1785 
 1809 
 
 1279 
 1308 
 1338 
 1368 
 1398 
 1428 
 1458 
 1488 
 
 1332 
 1362 
 1392 
 1422 
 1452 
 1482 
 1512 
 1542 
 
 1418 
 1448 
 1478 
 1508 
 1537 
 1567 
 1597 
 
 1474 
 1504 
 1534 
 1564 
 1594 
 1624 
 1654 
 
 1533 
 1562 
 1592 
 1622 
 1652 
 1682 
 1712 
 
 1592 
 1622 
 1652 
 1682 
 1712 
 1742 
 1771 
 
 1653 
 1683 
 1713 
 1743 
 1772 
 1802 
 1832 
 
 1745 
 1775 
 1805 
 1835 
 1865 
 1894 
 
 
 
 
 1160 
 1175 
 1190 
 1205 
 1220 
 1235 
 1250 
 1265 
 
 1214 
 1229 
 1244 
 1259 
 1274 
 1289 
 1304 
 1319 
 
 1284 
 1299 
 1314 
 1329 
 1344 
 1359 
 1374 
 
 1341 
 1356 
 1371 
 1386 
 1401 
 1416 
 1431 
 
 1192 
 1211 
 1230 
 1249 
 1268 
 1287 
 1306 
 1325 
 
 1245 
 1264 
 1283 
 1303 
 1322 
 1341 
 1360 
 1379 
 
 1320 
 1339 
 1358 
 1377 
 1396 
 1415 
 1434 
 
 1377 
 1396 
 1415 
 1434 
 1453 
 1472 
 1491 
 
 1435 
 1454 
 1473 
 1492 
 1511 
 1530 
 1549 
 
 1494 
 1513 
 1532 
 1551 
 1570 
 1589 
 1608 
 
 1555 
 1574 
 1593 
 1612 
 1631 
 1650 
 1669 
 
 1636 
 1655 
 1674 
 1693 
 1712 
 1731 
 
 1227 
 1251 
 1274 
 1298 
 1321 
 1345 
 1368 
 1392 
 
 1281 
 1305 
 1328 
 1352 
 1375 
 1399 
 1422 
 1446 
 
 1360 
 1384 
 1407 
 1431 
 1454 
 1478 
 1501 
 
 1417 
 1440 
 1464 
 1487 
 1511 
 1534 
 1558 
 
 1475 
 1498 
 1522 
 1545 
 1569 
 1592 
 1616 
 
 1534 
 1558 
 1581 
 1605 
 1628 
 1652 
 1675 
 
 1595 
 1619 
 1642 
 1666 
 1689 
 1712 
 1736 
 
 1681 
 1704 
 1728 
 1751 
 1775 
 1798 
 
 
 
 1154 
 1166 
 1177 
 1189 
 1200 
 1212 
 
 
 
 :::: 
 
 
 
 
 
 1225 
 1240 
 1254 
 1269 
 1284 
 1298 
 1313 
 
 1281 
 1295 
 1310 
 1325 
 1339 
 1354 
 1368 
 
 i352 
 1366 
 1381 
 1396 
 1410 
 1425 
 
 iiio 
 
 1425 
 1438 
 1454 
 1469 
 1483 
 
 1469 
 1484 
 1499 
 1513 
 1528 
 1543 
 
 
 
 
 
 
 i220 
 1231 
 1243 
 1254 
 1266 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1275 
 1287 
 1298 
 1310 
 1321 
 
 .... 
 
 
 
 
 
 '.'.:: 
 
 1343 
 1355 
 1366 
 1378 
 
 
 
 
 .... 
 
 
 
 
 
 1413 
 1425 
 1436 
 
 1414 
 1429 
 1444 
 1459 
 1474 
 1489 
 
 
 
 
 
 '.'.'.'. 
 
 
 i472 
 1484 
 1495 
 
 1473 
 1488 
 1503 
 1518 
 1533 
 1548 
 
 
 
 
 
 1545 
 1560 
 1574 
 1589 
 1603 
 
 
 
 
 1549 
 1564 
 1579 
 1594 
 1609 
 
 
 
 
 
 
 
 
 
 
 
 
 1545 
 1556 
 
 
 
 .... 
 
 
 1607 
 1622 
 1636 
 1651 
 1666 
 
 
 
 .... 
 
 1611 
 1626 
 1641 
 1656 
 1671 
 
 
 
 ieo7 
 
 1618 
 
 
 
 111 
 
COLUMNS 
 
 TABLE 34 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 3000- Ib. concrete 
 1:3 mixture 
 n = 10 
 
 -p 
 
 Volume of Hooping =1% of Volume of Core 
 Max /unsupported length\ 
 \ core diameter ) 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 % 
 
 1 
 
 IK 
 
 U4 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 1>4 
 
 12 
 13 
 
 14 
 15 
 
 16 
 17 
 18 
 
 19 
 20 
 21 
 22 
 23 
 
 24 
 25 
 
 8 
 9 
 
 10 
 11 
 
 12 
 13 
 14 
 
 15 
 16 
 
 17 
 18 
 19 
 
 20 
 21 
 
 6 
 
 6 
 
 8 
 
 6 
 
 8 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 - 
 14 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 
 
 
 
 
 70 
 
 84 
 90 
 
 100 
 105 
 
 117 
 123 
 129 
 
 136 
 142 
 148 
 
 157 
 163 
 168 
 
 179 
 185 
 191 
 196 
 
 203 
 
 209 
 215 
 220 
 
 234 
 240 
 246 
 252 
 
 262 
 267 
 273 
 279 
 
 107 
 
 125 
 133 
 
 144 
 152 
 161 
 
 164 
 173 
 
 181 
 
 187 
 195 
 203 
 212 
 
 211 
 219 
 227 
 236 
 
 245 
 
 253 
 . 261 
 271 
 
 272 
 280 
 289 
 298 
 
 301 
 309 
 317 
 327 
 
 331 
 339 
 348 
 357 
 364 
 
 363 
 372 
 380 
 389 
 397 
 
 405 
 414 
 423 
 431 
 
 134 
 153 
 
 173 
 
 185 
 
 196 
 207 
 
 218 
 
 219 
 231 
 242 
 
 257 
 268 
 279 
 
 284 
 295 
 307 
 318 
 
 313 
 324 
 335 
 347 
 
 343 
 355 
 366 
 377 
 389 
 
 375 
 387 
 398 
 409 
 421 
 
 421 
 432 
 443 
 455 
 
 184 
 206 
 
 230 
 245 
 
 271 
 285 
 
 298 
 313 
 
 327 
 341 
 356 
 
 357 
 372 
 387 
 402 
 
 389 
 404 
 419 
 434 
 449 
 
 438 
 453' 
 468 
 482 
 
 218 
 242 
 286 
 314 
 
 342 
 361 
 
 373 
 392 
 
 405 
 424 
 443 
 
 458 
 476 
 
 360 
 390 
 
 423 
 446 
 
 480 
 
 89 
 
 
 
 
 
 105 
 112 
 
 122 
 129 
 
 
 
 
 
 
 
 
 
 132 
 
 
 
 
 
 
 
 
 
 141 
 
 148 
 156 
 
 161 
 169 
 176 
 
 184 
 191 
 199 
 206 
 
 208 
 215 
 222 
 230 
 
 241 
 248 
 255 
 263 
 
 268 
 275 
 283 
 290 
 
 297 
 304 
 312 
 319 
 
 327 
 335 
 342 
 349 
 357 
 
 359 
 367 
 374 
 382 
 389 
 
 401 
 408 
 415 
 423 
 
 151 
 161 
 
 171 
 182 
 
 193 
 204 
 215 
 
 217 
 228 
 239 
 249 
 
 243 
 
 254 
 264 
 275 
 
 281 
 292 
 302 
 313 
 
 310 
 320 
 331 
 342 
 
 340 
 351 
 361 
 372 
 383 
 
 372 
 383 
 394 
 404 
 415 
 
 417 
 428 
 438 
 449 
 
 
 
 
 
 
 
 
 
 183 
 
 
 
 
 
 
 
 205 
 219 
 
 218 
 
 
 
 
 
 229 
 243 
 
 242 
 
 
 
 269 
 
 284 
 
 287 
 
 
 
 
 
 
 
 
 296 
 311 
 
 314 
 
 
 
 
 .... 
 
 325 
 
 340 
 354 
 
 356 
 370 
 384 
 399 
 
 343 
 362 
 
 373 
 392 
 
 363 
 393 
 
 
 
 296 
 302 
 308 
 
 '327 
 332 
 338 
 344 
 
 '365 
 371 
 376 
 
 '399 
 404 
 410 
 
 388 
 402 
 417 
 431 
 446 
 
 436 
 451 
 465 
 479 
 
 406 
 424 
 443 
 
 426 
 450 
 
 448 
 
 458 
 477 
 
 483 
 
 112 
 
TABLE 34 
 
 COLUMNS 
 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Volume of Hooping =1% of Volume of Core 
 
 )p] 
 Vol 
 
 Max. 
 
 /unsupported length\ 
 \ core diameter ) 
 
 10 
 
 3000 -Ib. concrete 
 1:3 mixture 
 n = 10 
 f c =1050 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 K 
 
 H 
 
 
 
 1 
 
 IK 
 
 IK 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 2(3 
 27 
 28 
 29 
 
 30 
 31 
 
 32 
 3.3 
 34 
 
 22 
 23 
 24 
 25 
 
 26 
 
 27 
 
 28 
 29 
 30 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 436 
 443 
 451 
 458 
 466 
 
 452 
 463 
 474 
 484 
 495 
 
 489 
 500 
 511 
 521 
 532 
 
 528 
 539 
 549 
 560 
 571 
 
 569 
 579 
 590 
 601 
 611 
 622 
 
 621 
 632 
 643 
 653 
 664 
 
 665 
 676 
 686 
 697 
 708 
 718 
 
 710 
 
 721 
 732 
 742 
 753 
 764 
 
 757 
 
 768 
 779 
 789 
 800 
 810 
 
 '817 
 827 
 838 
 849 
 859 
 870 
 
 471 
 486 
 500 
 515 
 529 
 
 509 
 523 
 538 
 552 
 567 
 
 547 
 562 
 576 
 591 
 605 
 
 588 
 602 
 617 
 631 
 646 
 660 
 
 644 
 659 
 673 
 688 
 702 
 
 688 
 703 
 717 
 731 
 746 
 760 
 
 733 
 
 748 
 762 
 777 
 791 
 806 
 
 780 
 795 
 809 
 824 
 838 
 853 
 
 829 
 844 
 858 
 872 
 887 
 901 
 916 
 
 494 
 513 
 531 
 
 519 
 543 
 
 
 
 
 441 
 
 449 
 458 
 466 
 474 
 
 478 
 487 
 496 
 503 
 511 
 
 "525 
 534 
 542 
 550 
 
 456 
 467 
 479 
 490 
 501 
 
 493 
 504 
 516 
 527 
 539 
 
 532 
 543 
 555 
 566 
 577 
 
 572 
 
 584 
 595 
 606 
 618 
 629 
 
 626 
 637 
 648 
 660 
 671 
 
 669 
 681 
 692 
 704 
 715 
 726 
 
 715 
 
 726 
 738 
 749 
 760 
 772 
 
 762 
 773 
 784 
 796 
 807 
 819 
 
 810 
 
 822 
 833 
 845 
 856 
 867 
 879 
 
 473 
 
 488 
 503 
 518 
 533 
 
 511 
 525 
 540 
 555 
 570 
 
 549 
 564 
 579 
 594 
 609 
 
 590 
 605 
 619 
 634 
 649 
 664 
 
 647 
 661 
 67Q 
 691 
 706 
 
 690 
 705 
 720 
 735 
 750 
 765 
 
 736 
 751 
 765 
 780 
 795 
 810 
 
 783 
 797 
 812 
 827 
 842 
 857 
 
 831 
 
 846 
 861 
 876 
 891 
 906 
 920 
 
 493 
 512 
 531 
 
 530 
 549 
 568 
 587 
 
 569 
 588 
 607 
 625 
 644 
 
 609 
 628 
 647 
 666 
 685 
 
 670 
 689 
 708 
 727 
 745 
 
 714 
 733 
 752 
 770 
 
 789 
 808 
 
 759 
 
 778 
 797 
 816 
 834 
 853 
 
 806 
 825 
 844 
 863 
 881 
 900 
 
 855 
 874 
 893 
 911 
 930 
 949 
 968 
 
 515 
 538 
 
 552 
 575 
 
 591 
 614 
 637 
 
 631 
 
 655 
 678 
 701 
 
 697 
 720 
 743 
 
 740 
 
 764 
 787 
 810 
 
 786 
 809 
 832 
 855 
 879 
 
 833 
 856 
 879 
 902 
 925 
 
 881 
 905 
 928 
 951 
 974 
 997 
 
 
 
 440 
 445 
 451 
 
 531 
 
 550 
 569 
 
 587 
 
 556 
 
 580 
 
 584 
 
 
 
 
 570 
 
 588 
 607 
 626 
 645 
 
 610 
 629 
 648 
 667 
 686 
 
 595 
 619 
 642 
 
 635 
 659 
 683 
 
 623 
 
 663 
 693 
 
 ! 
 
 
 
 566 
 575 
 582 
 591 
 599 
 
 608 
 617 
 624 
 633 
 641 
 
 
 
 
 671 
 690 
 709 
 728 
 746 
 
 715 
 734 
 752 
 
 771 
 790 
 809 
 
 760 
 779 
 798 
 817 
 836 
 854 
 
 807 
 826 
 845 
 864 
 883 
 901 
 
 856 
 875 
 893 
 912 
 931 
 950 
 969 
 
 701 
 
 725 
 749 
 
 745 
 769 
 793 
 817 
 
 790 
 814 
 838 
 862 
 
 837 
 861 
 885 
 909 
 933 
 
 886 
 910 
 934 
 958 
 981 
 1005 
 
 735 
 
 .... 
 
 778 
 808 
 
 
 
 .... 
 
 661 
 668 
 676 
 685 
 693 
 
 '706 
 713 
 722 
 730 
 738 
 
 760 
 769 
 
 777 
 785 
 
 824 
 853 
 
 871 
 900 
 930 
 
 919 
 949 
 979 
 1008 
 
 '.'.'.'. 
 
 
 
 
 809 
 817 
 826 
 834 
 842 
 
 .... 
 
 
 113 
 
COLUMNS 
 
 TABLE 34 
 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 .^Column sire ^ 
 
 3000 -lb. concrete 
 1:3 mixture 
 n = 10 
 f c =1050 
 
 Volume of Hooping =1% of Volume of Core 
 
 M I unsupported length\ =lg 
 
 \ core diameter I 
 
 Size 
 of 
 
 Diameter 
 of 
 
 Number 
 
 
 
 Squar 
 
 e rods 
 
 
 
 
 
 Roun< 
 
 irods 
 
 
 
 column 
 (.inches) 
 
 core 
 (inches) 
 
 of 
 rods 
 
 H 
 
 H 
 
 K 
 
 1 
 
 IK 
 
 IK 
 
 ^ 
 
 H 
 
 K 
 
 1 
 
 1H 
 
 IK 
 
 35 
 
 31 
 
 14 
 
 
 867 
 
 894 
 
 925 
 
 960 
 
 999 
 
 
 
 872 
 
 896 
 
 924 
 
 955 
 
 
 
 16 
 
 
 878 
 
 908 
 
 944 
 
 984 
 
 1029 
 
 
 
 883 
 
 911 
 
 943 
 
 978 
 
 
 
 18 
 
 
 888 
 
 923 
 
 963 
 
 1008 
 
 1058 
 
 
 '868 
 
 895 
 
 926 
 
 962 
 
 1001 
 
 
 
 20 
 
 
 899 
 
 937 
 
 982 
 
 1032 
 
 
 
 877 
 
 906 
 
 941 
 
 980 
 
 1024 
 
 
 
 22 
 
 
 909 
 
 952 
 
 1000 
 
 1056 
 
 
 
 884 
 
 918 
 
 956 
 
 999 
 
 1048 
 
 
 
 24 
 
 
 920 
 
 966 
 
 1019 
 
 
 
 
 
 893 
 
 929 
 
 971 
 
 1018 
 
 1071 
 
 36 
 
 32 
 
 14 
 
 
 
 946 
 
 977 
 
 1012 
 
 1051 
 
 
 
 924 
 
 948 
 
 976 
 
 1007 
 
 
 
 16 
 
 
 
 960 
 
 996 
 
 1036 
 
 1081 
 
 
 
 935 
 
 963 
 
 995 
 
 1030 
 
 
 
 18 
 
 
 
 975 
 
 1015 
 
 1060 
 
 1110 
 
 
 
 947 
 
 978 
 
 1014 
 
 1053 
 
 
 
 20 
 
 
 
 989 
 
 1033 
 
 1084 
 
 1140 
 
 
 
 958 
 
 993 
 
 1032 
 
 1076 
 
 
 
 22 
 
 
 
 1004 
 
 1052 
 
 1108 
 
 
 
 
 969 
 
 1008 
 
 1051 
 
 1100 
 
 
 
 24 
 
 
 
 1018 
 
 1071 
 
 1131 
 
 
 
 
 981 
 
 1023 
 
 1070 
 
 1123 
 
 37 
 
 33 
 
 14 
 
 
 
 999 
 
 1030 
 
 1066 
 
 1105 
 
 
 
 
 1002 
 
 1030 
 
 1060 
 
 
 
 16 
 
 
 
 1014 
 
 1049 
 
 1089 
 
 1135 
 
 
 
 '989 
 
 1017 
 
 1048 
 
 1084 
 
 
 
 18 
 
 
 
 1028 
 
 1068 
 
 1113 
 
 1164 
 
 
 
 1000 
 
 1032 
 
 1067 
 
 1107 
 
 
 
 20 
 
 
 
 1043 
 
 1087 
 
 1137 
 
 1193 
 
 
 
 1012 
 
 1047 
 
 1086 
 
 1130 
 
 
 
 22 
 
 
 
 1057 
 
 1106 
 
 1161 
 
 
 
 
 1023 
 
 1061 
 
 1105 
 
 1153 
 
 
 
 24 
 
 
 
 1072 
 
 1125 
 
 1185 
 
 
 
 
 1034 
 
 1076 
 
 1124 
 
 1176 
 
 
 
 26 
 
 
 
 1086 
 
 1144 
 
 1209 
 
 
 
 
 1046 
 
 1091 
 
 1142 
 
 1200 
 
 38 
 
 34 
 
 14 
 
 
 
 1055 
 
 1086 
 
 1121 
 
 1160 
 
 
 
 
 1057 
 
 1085 
 
 1116 
 
 
 
 16 
 
 
 
 1069 
 
 1105 
 
 1145 
 
 1190 
 
 
 
 1044 
 
 1072 
 
 1104 
 
 1139 
 
 
 
 18 
 
 
 
 1084 
 
 1123 
 
 1169 
 
 1219 
 
 
 
 1056 
 
 1087 
 
 1122 
 
 1162 
 
 
 
 20 
 
 
 
 1098 
 
 1142 
 
 1192 
 
 1249 
 
 
 
 1067 
 
 1102 
 
 1141 
 
 1185 
 
 
 
 22 
 
 
 
 1112 
 
 1161 
 
 1216 
 
 1278 
 
 
 
 1078 
 
 1117 
 
 1160 
 
 1208 
 
 
 
 24 
 
 
 
 1127 
 
 1180 
 
 1240 
 
 
 
 
 1090 
 
 1131 
 
 1179 
 
 1232 
 
 
 
 26 
 
 
 
 1141 
 
 1199 
 
 1264 
 
 
 
 
 1101 
 
 1146 
 
 1198 
 
 1255 
 
 39 
 
 35 
 
 14 
 
 
 
 1111 
 
 1143 
 
 1178 
 
 1217 
 
 
 
 
 1114 
 
 1142 
 
 1173 
 
 
 
 16 
 
 
 
 1126 
 
 1161 
 
 1202 
 
 1246 
 
 
 
 iioi 
 
 1129 
 
 1161 
 
 1196 
 
 
 
 18 
 
 
 
 1140 
 
 1180 
 
 1225 
 
 1276 
 
 
 
 1112 
 
 1144 
 
 1179 
 
 1219 
 
 
 
 20 
 
 
 
 1155 
 
 1199 
 
 1249 
 
 1306 
 
 
 
 1124 
 
 1159 
 
 1198 
 
 1242 
 
 
 
 22 
 
 
 
 1169 
 
 1218 
 
 1273 
 
 1335 
 
 
 
 1135 
 
 1173 
 
 1217 
 
 1265 
 
 
 
 24 
 
 
 
 1184 
 
 1237 
 
 1297 
 
 1365 
 
 
 
 1147 
 
 1188 
 
 1236 
 
 1289 
 
 
 
 26 
 
 
 
 1198 
 
 1256 
 
 1321 
 
 
 
 
 1158 
 
 1203 
 
 1254 
 
 1312 
 
 40 
 
 36 
 
 16 
 
 
 
 1185 
 
 1220 
 
 1260 
 
 1305 
 
 
 
 
 1188 
 
 1219 
 
 1254 
 
 
 
 18 
 
 
 
 1199 
 
 1239 
 
 1284 
 
 1335 
 
 
 
 ii7i 
 
 1202 
 
 1238 
 
 1278 
 
 
 
 20 
 
 
 
 1213 
 
 1258 
 
 1308 
 
 1364 
 
 
 
 1182 
 
 1217 
 
 1257 
 
 1301 
 
 
 
 22 
 
 
 
 1228 
 
 1277 
 
 1332 
 
 1394 
 
 
 
 1194 
 
 1232 
 
 1275 
 
 1324 
 
 
 
 24 
 
 
 
 1242 
 
 1296 
 
 1356 
 
 1423 
 
 
 
 1205 
 
 1247 
 
 1294 
 
 1347 
 
 
 
 26 
 
 
 
 1257 
 
 1315 
 
 1380 
 
 1453 
 
 
 
 1217 
 
 1262 
 
 1313 
 
 1370 
 
 
 
 28 
 
 
 
 1271 
 
 1333 
 
 1404 
 
 
 
 
 1228 
 
 1277 
 
 1332 
 
 1394 
 
 41 
 
 37 
 
 16 
 
 
 
 1245 
 
 1280 
 
 1320 
 
 1365 
 
 
 
 
 1248 
 
 1279 
 
 1315 
 
 
 
 18 
 
 
 
 1259 
 
 1299 
 
 1344 
 
 1395 
 
 
 
 i23i 
 
 1263 
 
 1298 
 
 1338 
 
 
 
 20 
 
 
 
 1274 
 
 1318 
 
 1368 
 
 1424 
 
 
 
 1243 
 
 1277 
 
 1317 
 
 1361 
 
 
 
 22 
 
 
 
 1288 
 
 1337 
 
 1392 
 
 1454 
 
 
 
 1254 
 
 1292 
 
 1336 
 
 1384 
 
 
 
 24 
 
 
 
 1303 
 
 1356 
 
 1416 
 
 1483 
 
 
 
 1265 
 
 1307 
 
 1354 
 
 1407 
 
 
 
 26 
 
 
 
 1317 
 
 1375 
 
 1464 
 
 1513 
 
 
 
 1277 
 
 1322 
 
 1373 
 
 1430 
 
 
 
 28 
 
 
 
 1332 
 
 1394 
 
 1488 
 
 
 
 
 1288 
 
 1337 
 
 1392 
 
 1454 
 
 42 
 
 38 
 
 16 
 
 
 
 1307 
 
 1342 
 
 1382 
 
 1427 
 
 
 
 
 1310 
 
 1341 
 
 1376 
 
 
 
 18 
 
 
 
 1321 
 
 1361 
 
 1406 
 
 1457 
 
 
 
 
 1324 
 
 1360 
 
 1400 
 
 
 
 20 
 
 
 
 1336 
 
 1380 
 
 1430 
 
 1486 
 
 
 
 1304 
 
 1339 
 
 1379 
 
 1423 
 
 
 
 22 
 
 
 
 1350 
 
 1399 
 
 1454 
 
 1516 
 
 
 
 1316 
 
 1354 
 
 1397 
 
 1446 
 
 
 
 24 
 
 
 
 1364 
 
 1418 
 
 1478 
 
 1545 
 
 
 
 1327 
 
 1369 
 
 1416 
 
 1469 
 
 
 
 26 
 
 
 
 1379 
 
 1437 
 
 1502 
 
 1575 
 
 
 
 1339 
 
 1 384 
 
 1435 
 
 1492 
 
 
 
 28 
 
 
 
 1393 
 
 1455 
 
 1526 
 
 1605 
 
 
 
 1350 
 
 1398 
 
 1454 
 
 1516 
 
 
 
 30 
 
 
 
 1408 
 
 1474 
 
 1550 
 
 
 
 
 1361 
 
 1413 
 
 1473 
 
 1539 
 
 114 
 
TABLE 34 
 
 ^Column si 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 p 
 
 Volume of Hooping =1% of Volume of Core 
 ._ / 
 
 ' \ 
 
 unsupported length\ _ 
 core diameter ) 
 
 3000-lb. concrete 
 1:3 mixture 
 /i = 10 
 f c =1050 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods- 
 
 Round rods 
 
 *A 
 
 H 
 
 H 
 
 1 i 1W 
 
 IK 
 
 M 
 
 H 
 
 H 
 
 1 
 
 IK i IK 
 
 43 
 44 
 
 45 
 46 
 47 
 
 48 
 49 
 50 
 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 1370 
 1385 
 1399 
 1414 
 1428 
 1442 
 1457 
 1471 
 
 1450 
 
 1464 
 1479 
 1493 
 1508 
 1522 
 1536 
 
 1517 
 1531 
 1545 
 1560 
 1574 
 1589 
 1603 
 
 1599 
 1614 
 1628 
 1643 
 1657 
 1672 
 
 ie7o 
 
 1684 
 1698 
 1713 
 1727 
 1742 
 
 l74i 
 1756 
 1770 
 1785 
 1799 
 1814 
 
 i829 
 1844 
 1858 
 1873 
 1887 
 
 1904 
 1919 
 1933 
 1948 
 1962 
 
 1406 
 1424 
 1443 
 1462 
 1481 
 1500 
 1519 
 1538 
 
 1471 
 1490 
 1508 
 1527 
 1546 
 1565 
 1584 
 1603 
 
 1556 
 1575 
 1594 
 1613 
 1632 
 1651 
 1670 
 
 1625 
 1644 
 1663 
 1681 
 1700 
 1719 
 1738 
 
 1695 
 1714 
 1733 
 1752 
 1771 
 1789 
 1808 
 
 1767 
 1786 
 1804 
 1823 
 1842 
 1861 
 1880 
 
 1840 
 1859 
 1878 
 1897 
 1916 
 1935 
 1953 
 
 1934 
 1953 
 1972 
 1991 
 2010 
 2029 
 
 1446 
 1470 
 1494 
 1517 
 1541 
 1565 
 1589 
 1613 
 
 1511 
 1535 
 1559 
 1583 
 1606 
 1630 
 16.54 
 1678 
 
 1602 
 1626 
 1649 
 1673 
 1697 
 1721 
 1745 
 
 1670 
 1694 
 1718 
 1742 
 1766 
 1790 
 1813 
 
 1740 
 1764 
 1788 
 1812 
 1836 
 1860 
 1884 
 
 1812 
 1836 
 1860 
 1884 
 1907 
 1931 
 1955 
 
 1885 
 1909 
 1933 
 1957 
 1981 
 2005 
 2029 
 
 1984 
 2008 
 2032 
 2056 
 2080 
 2104 
 
 1491 
 1520i 
 1550 
 1579 
 1609 
 1638 
 1668 
 1697 
 
 1556 
 1585 
 1615 
 1644 
 1674 
 1703 
 1733 
 1762 
 
 1652 
 1682 
 1711 
 1741 
 1770 
 1800 
 1829 
 
 1720 
 1750 
 1780 
 1809 
 1839 
 1868 
 1898 
 
 1791 
 1820 
 1850 
 1879 
 1909 
 1938 
 1968 
 
 1862 
 1892 
 1921 
 1951 
 1980 
 2010 
 2039 
 
 1936 
 1965 
 1995 
 2024 
 2054 
 2083 
 2113 
 
 2040 
 2070 
 2099 
 2129 
 2159 
 2188 
 
 
 
 i368 
 1379 
 1391 
 1402 
 1413 
 1425 
 
 1373 
 1388 
 1403 
 1418 
 1432 
 1447 
 1462 
 1477 
 
 1438 
 1453 
 1468 
 1483 
 1498 
 1512 
 1527 
 1542 
 
 1520 
 1535 
 1550 
 1564 
 1579 
 1594 
 1609 
 
 1588 
 1603 
 1618 
 1633 
 1648 
 1662 
 1677 
 
 1(373 
 1688 
 1703 
 1718 
 1733 
 1747 
 
 i745 
 1760 
 1775 
 1790 
 1804 
 1819 
 
 1405 
 1423 
 1442 
 1461 
 1480 
 1499 
 1517 
 1536 
 
 1470 
 1489 
 1507 
 1526 
 1545 
 1564 
 1582 
 1601 
 
 1555 
 1574 
 1593 
 1612 
 1631 
 1649 
 1668 
 
 1624 
 1643 
 1661 
 1680 
 1699 
 1718 
 1736 
 
 1694 
 1713 
 1731 
 1750 
 1769 
 1788 
 1807 
 
 1766 
 1784 
 1803 
 1822 
 1841 
 1860 
 1879 
 
 1839 
 1858 
 1877 
 1895 
 1914 
 1933 
 1952 
 
 1933 
 1952 
 1970 
 1989 
 2008 
 2027 
 
 1440 
 1463 
 1486 
 1509 
 1533 
 1556 
 1579 
 1602 
 
 1505 
 1528 
 1551 
 1575 
 1598 
 1621 
 1644 
 1667 
 
 1595 
 1618 
 1641 
 1665 
 1688 
 1711 
 1734 
 
 1663 
 1687 
 1710 
 1733 
 1756 
 1779 
 1803 
 
 1734 
 1757 
 1780 
 1803 
 1826 
 1850 
 1873 
 
 1805 
 1828 
 1852 
 1875 
 1898 
 1921 
 1944 
 
 1879 
 1902 
 1925 
 1948 
 1971 
 1995 
 2118 
 
 1977 
 2000 
 2023 
 2047 
 2070 
 2093 
 
 
 '.'.'.'. 
 
 
 
 
 
 
 
 - 
 
 
 i444 
 1456 
 1467 
 1479 
 1490 
 
 
 . .*. . 
 
 
 isii 
 
 1523 
 1534 
 1545 
 1557 
 
 
 
 
 
 ::: 
 
 
 
 
 
 
 is9i 
 
 1602 
 1614 
 1625 
 
 
 
 
 
 
 
 
 
 .... 
 
 1673 
 1684 
 1695 
 
 i744 
 1756 
 1767 
 
 '.'.'.'. 
 
 :::: 
 
 
 
 
 
 
 
 
 
 1833 
 
 1848 
 1863 
 1878 
 1893 
 
 i908 
 1923 
 1938 
 1953 
 1968 
 
 
 
 1829 
 1840 
 
 
 
 | 
 
 :::: 
 
 
 
 i904 
 1915 
 
 
 
 115 
 
COLUMNS 
 
 TABLE 35 
 
 2000- Ib. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 = Af c [(l+4np'}+(n-l}p] 
 /unsupported length\ 
 \ diameter / 
 
 . Column Size 
 
 Size 
 of 
 column 
 inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 K 
 
 M 
 
 1 
 
 1H 
 
 IK 
 
 12 
 
 8 
 
 6 
 
 1M 
 
 1 
 
 6 
 
 53 
 
 
 
 
 
 13 
 
 9 
 
 5 
 
 1M 
 
 1 
 
 6 
 
 8 
 
 64 
 
 68 
 
 
 
 
 
 14 
 
 10 
 
 4 
 
 IH 
 
 1 
 
 6 76 
 8 80 
 
 81 
 
 
 
 
 
 15 
 
 11 
 
 3 
 
 1*8 
 
 1 
 
 6 
 
 8 - 
 10 
 
 89 
 93 
 97 
 
 95 
 101 
 
 101 
 
 
 
 
 16 
 
 12 
 
 2 
 
 3/0 
 
 ^K 
 l$i 
 
 1 
 2 
 
 6 
 
 8 
 10 
 
 6 
 8 
 10 
 
 103 
 108 
 112 
 
 'i42 
 146 
 
 109 
 115 
 121 
 
 143 
 149 
 155 
 
 116 
 
 150 
 
 
 
 
 17 
 
 13 
 
 1 
 
 4/0 
 
 IK 
 1% 
 
 1 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 119 
 123 
 
 128 
 
 'l67 
 
 125 
 131 
 137 
 
 165 
 171 
 177 
 
 131 
 140 
 
 171 
 180 
 
 139 
 179 
 
 
 
 18 
 
 14 
 
 1 
 
 4/0 
 
 IK 
 
 IK 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 ' 
 10 
 12 
 
 136 
 140 
 145 
 149 
 
 142 
 148 
 154 
 160 
 
 148 
 157 
 165 
 
 195 
 203 
 211 
 
 156 
 
 202 
 
 
 
 'i6i 
 
 195 
 
 194 
 
 200 
 206 
 
 19 
 
 15 
 
 
 
 5/0 
 
 1% 
 
 1% 
 
 1 
 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 154 
 159 
 163 
 167 
 
 '220 
 
 160 
 166 
 172 
 
 178 
 
 '2ig 
 
 225 
 231 
 
 166 
 175 
 183 
 
 220 
 228 
 236 
 
 174 
 185 
 
 227 
 238 
 
 183 
 236 
 
 
 20 
 
 16 
 
 2/0 
 
 6/0 
 
 2H 
 
 2 
 
 1 
 2 
 
 Q 
 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 178 
 182 
 187 
 191 
 
 '251 
 
 186 
 192 
 198 
 204 
 
 '252 
 
 258 
 265 
 
 195 
 203 
 211 
 
 255 
 263 
 272 
 
 205 
 216 
 
 265 
 276 
 
 217 
 
 277 
 
 
 116 
 
TABLE 35 
 
 COLUMNS 
 
 Column size > 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P = Af e [(l+4np') + (n- 
 
 ._ /unsupported length\ ,_ 
 
 Max. [ -- I =15 
 
 \ diameter / 
 
 2000 -Ib. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 1H 
 
 2 1 
 
 17 
 
 2/0 
 6/0 
 
 2 
 I 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 
 14 
 
 199 
 203 
 207 
 212 
 
 206 
 213 
 219 
 225 
 
 215 
 
 224 
 232 
 241 
 
 283 
 292 
 300 
 309 
 
 226 
 237 
 
 294 
 305 
 
 237 
 305 
 
 
 .... 
 
 '287 
 293 
 
 22 
 
 18 
 
 3/0 
 
 7/0 
 
 2H 
 2 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 '225 
 229 
 234 
 
 228 
 235 
 241 
 247 
 
 '317 
 323 
 
 237 
 246 
 254 
 263 
 
 '322 
 330 
 339 
 
 248 
 259 
 270 
 
 324 
 335 
 346 
 
 259 
 273 
 
 336 
 350 
 
 272 
 349 
 
 23 
 
 19 
 
 3/0 
 7/0 
 
 2K 
 1 
 
 1 
 2 
 
 '248 
 253 
 257 
 261 
 
 252 
 258 
 264 
 270 
 276 
 
 '355 
 361 
 
 260 
 269 
 277 
 286 
 294 
 
 '354 
 362 
 370 
 379 
 
 271 
 282 
 293 
 304 
 
 356 
 367 
 378 
 389 
 
 282 
 296 
 
 368 
 381 
 
 296 
 381 
 
 24 
 
 20 
 
 3/0 
 
 7/0 
 
 2 
 
 m 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 277 
 281 
 286 
 
 276 
 282 
 288 
 295 
 301 
 
 '395 
 
 285 
 293 
 302 
 310 
 319 
 
 396 
 405 
 413 
 
 295 
 306 
 317 
 328 
 339 
 
 390 
 401 
 412 
 423 
 434 
 
 307 
 321 
 335 
 
 401 
 415 
 429 
 
 320 
 337 
 
 414 
 432 
 
 25 
 
 21 
 
 4/0 
 
 7/0 
 
 2X 
 
 IH 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 '303 
 307 
 311 
 
 308 
 314 
 320 
 327 
 
 319 
 328 
 336 
 344 
 
 '432 
 440 
 
 448 
 
 332 
 343 
 354 
 365 
 
 436 
 447 
 458 
 469 
 
 347 
 361 
 
 451 
 465 
 
 363 
 
 467 
 
 
 
 
 430 
 
 117 
 
COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 L. Column size > 
 
 2000 -Ib. concrete 
 1:6 mixture 
 n=15 
 f c =500 
 
 /unsupported length\ 
 
 v I - ^ ~ - ~ I 
 
 V diameter / 
 
 
 
 Spirals Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 ~r 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 UI 
 
 Per cent rods 
 of core 
 
 [I 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 26 
 
 22 
 
 4/0 
 
 2H 
 
 1 
 
 10 
 
 
 335 
 
 346 
 
 359 
 
 374 
 
 390 
 
 
 
 
 
 
 12 
 
 .... 
 
 341 
 
 355 
 
 370 
 
 387 
 
 407 
 
 
 
 
 
 14 
 
 334 
 
 347 
 
 363 
 
 381 
 
 401 
 
 
 
 
 
 
 
 16 
 
 338 
 
 354 
 
 371 
 
 392 
 
 
 
 
 
 
 
 
 18 
 
 343 
 
 360 
 
 380 
 
 403 
 
 
 
 
 
 7/0 \Y % 
 
 2 
 
 10 
 
 
 
 
 473 
 
 488 
 
 504 
 
 
 
 
 
 
 12 
 
 
 
 
 484 
 
 502 
 
 521 
 
 
 
 
 
 
 14 
 
 
 
 '477 
 
 495 
 
 516 
 
 
 
 
 
 
 
 16 
 
 
 485 
 
 506 
 
 
 
 
 
 
 
 
 18 i 
 
 474 
 
 494 
 
 517 
 
 
 
 27 
 
 23 
 
 4/0 
 
 2K 
 
 1 10 
 
 363 
 
 374 
 
 387 
 
 402 
 
 418 
 
 
 
 
 12 .... 
 
 370 
 
 383 
 
 398 
 
 416 
 
 435 
 
 
 
 
 
 14 
 
 362 
 
 376 
 
 391 
 
 409 
 
 430 
 
 
 
 
 
 
 
 16 
 
 367 
 
 382 
 
 400 
 
 420 
 
 444 
 
 
 
 
 
 
 
 18 371 388 
 
 408 
 
 431 
 
 
 
 
 
 7/0 
 
 1H 
 
 2 10 
 
 
 
 i 527 
 
 543 
 
 * 
 
 
 
 
 12 
 
 
 
 523 
 
 540 
 
 560 
 
 
 
 
 
 
 14 
 
 
 '516 
 
 534 
 
 554 
 
 
 
 
 
 
 
 16 
 
 
 
 524 
 
 545 
 
 568 
 
 
 
 
 
 
 
 18 
 
 .... 
 
 
 533 
 
 556 
 
 
 
 28 
 
 24 4/0 
 
 2 1 10 404 
 
 417 
 
 431 
 
 448 
 
 
 
 12 
 
 j : 399 412 
 
 428 
 
 445 
 
 465 
 
 
 
 
 
 14 
 
 
 405 
 
 421 
 
 439 
 
 459 
 
 482 
 
 
 
 
 
 16 
 
 '396 
 
 411 
 
 429 
 
 450 
 
 473 
 
 
 
 
 
 
 18 
 
 401 
 
 418 
 
 438 
 
 461 
 
 487 
 
 
 
 
 7/0 
 
 \y, 2 10 
 
 
 
 
 567 
 
 584 
 
 
 
 
 
 12 
 
 .... 
 
 
 
 '564 
 
 581 
 
 601 
 
 
 
 
 
 
 14 
 
 
 
 575 
 
 595 
 
 618 
 
 
 
 
 
 
 16 
 
 
 
 565 586 
 
 609 
 
 
 
 
 
 
 
 18 
 
 
 
 573 
 
 597 
 
 623 j 
 
 29 
 
 25 5/0 
 
 2M 
 
 1 10 
 
 
 
 435 
 
 448 
 
 462 
 
 479 
 
 
 
 
 
 12 I 
 
 '436 
 
 443 
 
 459 
 
 476 
 
 496 
 
 
 
 
 
 14 
 
 
 436 
 
 452 
 
 470 
 
 490 
 
 513 
 
 
 
 
 
 
 16 
 
 427 
 
 442 
 
 460 
 
 481 
 
 504 
 
 530 
 
 
 
 
 
 
 18 
 
 431 
 
 448 
 
 468 
 
 492 
 
 
 
 
 
 
 
 
 20 
 
 436 
 
 455 
 
 477 
 
 504 
 
 
 
 
 
 7/0 
 
 1H 
 
 2 
 
 10 
 
 
 
 
 609 
 
 626 
 
 
 
 
 
 
 12 
 
 
 
 
 
 623 
 
 643 
 
 
 
 
 
 
 14 
 
 
 
 
 'eii? 
 
 637 
 
 660 
 
 
 
 
 
 
 16 
 
 
 .... 
 
 628 
 
 651 
 
 677 
 
 
 
 
 
 
 18 
 
 616 
 
 639 
 
 665 
 
 
 
 
 
 
 
 20 
 
 624 
 
 650 
 
 
 
 30 
 
 26 
 
 5/0 
 
 2H 
 
 1 12 
 
 
 462 
 
 475 
 
 491 
 
 508 
 
 528 
 
 
 
 
 
 14 
 
 
 468 
 
 484 
 
 502 
 
 522 
 
 545 
 
 
 
 
 
 16 
 
 
 474 
 
 492 
 
 513 
 
 536 
 
 562 
 
 
 
 
 
 18 
 
 '463 
 
 480 
 
 500 
 
 524 
 
 550 
 
 
 
 
 
 
 20 
 
 468 
 
 487 
 
 509 
 
 535 
 
 564 
 
 
 
 
 7/0 
 
 1H 
 
 1.93 12 
 
 
 
 
 
 656 
 
 676 
 
 
 
 
 
 
 14 
 
 
 
 
 '650 
 
 670 
 
 693 
 
 
 
 
 
 
 16 
 
 
 
 
 661 
 
 684 
 
 710 
 
 
 
 
 
 
 18 
 
 '649 
 
 672 
 
 698 
 
 
 
 
 
 
 20 
 
 
 657 
 
 683 
 
 712 
 
 
 118 
 
TABLE 35 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c ((l+4np' 
 
 (unsupported length\ 
 MaX '( -- diameter - ) =15 
 
 2000-lb. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (.inches) 
 
 Per cent 
 of core 
 
 y* 
 
 
 
 H 
 
 1 
 
 IK | IK 
 
 31 
 
 27 
 
 5/0 
 7/0 
 
 2H 
 IK 
 
 1 
 1.86 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 501 
 505 
 
 5oi 
 
 508 
 514 
 520 
 526 
 
 509 
 517 
 525 
 534 
 542 
 550 
 
 524 
 535 
 546 
 557 
 568 
 579 
 
 "683 
 694 
 705 
 716 
 727 
 
 542 
 555 
 569 
 583 
 597 
 611 
 
 689 
 703 
 717 
 731 
 745 
 759 
 
 561 
 578 
 595 
 613 
 
 709 
 726 
 743 
 
 760 
 
 
 
 "682 
 690 
 698 
 
 
 
 32 
 
 28 
 
 5/0 
 
 7/0 
 
 2 
 
 IX 
 
 1 
 
 1.80 
 
 
 
 543 
 552 
 560 
 568 
 577 
 585 
 
 559 
 570 
 581 
 592 
 603 
 614 
 
 576 
 590 
 604 
 618 
 632 
 646 
 
 723 
 
 737 
 751 
 765 
 779 
 793 
 
 596 
 613 
 630 
 647 
 664 
 
 743 
 
 760 
 777 
 795 
 812 
 829 
 
 . . . . 
 'MO 
 
 536 
 542 
 548 
 554 
 561 
 
 .... 
 
 
 
 717 
 
 728 
 739 
 750 
 761 
 
 
 
 724 
 733 
 
 33 
 
 29 
 
 6/0 
 7/0 
 
 2K 
 
 1H 
 
 1 
 1.73 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 '576 
 
 '578 
 584 
 590 
 596 
 
 579 
 587 
 596 
 604 
 613 
 621 
 
 594 
 605 
 616 
 627 
 638 
 649 
 
 612 
 626 
 640 
 654 
 668 
 681 
 
 756 
 770 
 784 
 798 
 812 
 826 
 
 631 
 649 
 666 
 683 
 700 
 
 776 
 793 
 810 
 828 
 845 
 
 .... 
 
 .... 
 
 '757 
 765 
 
 761 
 772 
 783 
 794 
 
 34 
 
 30 
 
 6/0 
 7/0 
 
 9X 
 
 iy* 
 
 1 
 1.67 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 'ei7 
 
 '615 
 621 
 627 
 634 
 640 
 
 616 
 624 
 633 
 641 
 650 
 658 
 667 
 
 631 
 642 
 653 
 664 
 675 
 686 
 697 
 
 649 
 663 
 677 
 691 
 705 
 719 
 733 
 
 791 
 805 
 819 
 833 
 847 
 861 
 875 
 
 669 
 686 
 703 
 720 
 737 
 755 
 
 811 
 828 
 845 
 862 
 879 
 897 
 
 
 
 792 
 800 
 809 
 
 796 
 807 
 818 
 829 
 840 
 
 119 
 
COLUMNS 
 
 TABLE 35 
 
 2000 -lb. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c ((l+4np')+(n-l)p] 
 
 __ /unsupported lengtn\ ,_ 
 
 Max. I -=-. 1 =.Zo 
 
 \ diameter / 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 _r 
 
 
 
 
 
 
 
 1 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 or 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 1H 
 
 35 
 
 31 
 
 6/0 
 
 2M 
 
 1 
 
 14 
 
 
 
 662 
 
 680 
 
 701 
 
 724 
 
 
 
 
 
 
 16 
 
 
 
 671 
 
 691 
 
 715 
 
 741 
 
 
 
 
 
 
 18 
 
 
 '659 
 
 679 
 
 702 
 
 729 
 
 758 
 
 
 
 
 
 
 20 
 
 
 665 
 
 687 
 
 713 
 
 742 
 
 774 
 
 
 
 
 
 
 22 
 
 
 671 
 
 696 
 
 724 
 
 756 
 
 792 
 
 
 
 
 
 
 24 
 
 
 678 
 
 704 
 
 735 
 
 770 
 
 710 
 
 
 
 7/0 
 
 IK 
 
 1.62 
 
 14 
 
 
 
 
 
 842 
 
 864 
 
 
 
 
 
 
 16 
 
 
 
 
 '832 
 
 856 
 
 882 
 
 
 
 
 
 
 18 
 
 
 
 
 843 
 
 869 
 
 899 
 
 
 
 
 
 
 20 
 
 
 
 
 854 
 
 883 
 
 916 
 
 
 
 
 
 
 22 
 
 
 
 '837 
 
 865 
 
 897 
 
 933 
 
 
 
 
 
 
 24 
 
 
 
 845 
 
 876 
 
 971 
 
 950 
 
 36 
 
 32 
 
 6/0 
 
 '2 
 
 1 
 
 14 
 
 
 
 702 
 
 720 
 
 741 
 
 764 
 
 
 
 
 
 
 16 
 
 
 
 711 
 
 731 
 
 755 
 
 781 
 
 
 
 
 
 
 18 
 
 
 
 719 
 
 742 
 
 769 
 
 798 
 
 
 
 
 
 
 20 
 
 
 '705 
 
 728 
 
 753 
 
 783 
 
 815 
 
 
 
 
 
 
 22 
 
 
 711 
 
 736 
 
 764 
 
 796 
 
 832 
 
 
 
 
 
 
 24 
 
 
 718 
 
 744 
 
 775 
 
 810 
 
 850 
 
 
 
 7/0 
 
 IK 
 
 1.57 
 
 14 
 
 
 
 
 
 878 
 
 901 
 
 
 
 
 
 
 16 
 
 
 
 
 '869 
 
 892 
 
 918 
 
 
 
 
 
 
 18 
 
 
 
 
 880 
 
 906 
 
 935 
 
 
 
 
 
 
 20 
 
 
 
 
 891 
 
 920 
 
 953 
 
 
 
 
 
 
 22 
 
 
 
 '873 
 
 902 
 
 934 
 
 970 
 
 
 
 
 
 
 24 
 
 
 
 881 
 
 913 
 
 948 
 
 987 
 
 37 
 
 33 
 
 7/0 
 
 2H 
 
 1 
 
 14 
 
 
 
 
 761 
 
 782 
 
 805 
 
 
 
 
 
 
 16 
 
 
 
 '752 
 
 772 
 
 796 
 
 822 
 
 
 
 
 
 
 18 
 
 
 
 760 
 
 783 
 
 809 
 
 839 
 
 
 
 
 
 
 20 
 
 
 '746 
 
 768 
 
 794 
 
 823 
 
 856 
 
 
 
 
 
 
 22 
 
 
 752 
 
 777 
 
 805 
 
 837 
 
 873 
 
 
 
 
 
 
 24 
 
 
 758 
 
 785 
 
 816 
 
 851 
 
 890 
 
 
 
 
 
 
 26 
 
 
 765 
 
 794 
 
 827 
 
 865 
 
 908 
 
 
 
 7/0 
 
 IK 
 
 1.52 
 
 14 
 
 
 
 
 
 915 
 
 938 
 
 
 
 
 
 
 16 
 
 
 
 
 
 929 
 
 955 
 
 
 
 
 
 
 18 
 
 
 
 
 '9i7 
 
 943 
 
 972 
 
 
 
 
 
 
 20 
 
 
 
 
 928 
 
 957 
 
 989 
 
 
 
 
 
 
 22 
 
 
 
 'gib 
 
 939 
 
 971 
 
 1007 
 
 
 
 
 
 
 24 
 
 
 
 919 
 
 950 
 
 985 
 
 1024 
 
 
 
 
 
 
 26 
 
 
 
 927 
 
 961 
 
 999 
 
 1041 
 
 38 
 
 34 
 
 7/0 
 
 2H 
 
 1 
 
 14 
 
 
 
 
 803 
 
 824 
 
 847 
 
 
 
 
 
 
 16 
 
 
 
 '794 
 
 814 
 
 838 
 
 864 
 
 
 
 
 
 
 18 
 
 
 
 802 
 
 825 
 
 852 
 
 881 
 
 
 
 
 
 
 20 
 
 
 
 810 
 
 836 
 
 865 
 
 898 
 
 
 
 
 
 
 22 
 
 
 '794 
 
 819 
 
 847 
 
 879 
 
 915 
 
 
 
 
 
 
 24 
 
 
 801 
 
 827 
 
 858 
 
 893 
 
 932 
 
 
 
 
 
 
 26 
 
 
 807 
 
 836 
 
 869 
 
 907 
 
 950 
 
 
 
 7/0 
 
 IK 
 
 1.48 
 
 14 
 
 
 
 
 
 954 
 
 977 
 
 
 
 
 
 
 16 
 
 
 
 
 
 968 
 
 994 
 
 
 
 
 
 
 18 
 
 
 
 
 '956 
 
 982 
 
 1012 
 
 
 
 
 
 
 20 
 
 
 
 
 967 
 
 996 
 
 1029 
 
 
 
 
 
 
 22 
 
 
 
 
 978 
 
 1010 
 
 1046 
 
 
 
 
 
 
 24 
 
 
 
 '958 
 
 989 
 
 1024 
 
 1063 
 
 
 
 
 
 
 26 
 
 
 
 966 
 
 1000 
 
 1038 
 
 1080 
 
 120 
 
TABLE 35 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 = Af c [(l+4np' 
 (unsupported length\ 
 ( diarnettr ) 
 
 2000-lb. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 ^ 
 
 K 
 
 % 
 
 1 
 
 IX 
 
 IK 
 
 39 
 
 35 
 
 7/0 
 7/0 
 
 IK 
 
 i 
 
 1 
 1.43 
 
 14 
 16 
 18 
 20 
 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 .... 
 
 '.'.'.'. 
 
 '845 
 854 
 862 
 871 
 879 
 
 847 
 858 
 869 
 880 
 891 
 902 
 913 
 
 867 
 881. 
 895 
 909 
 923 
 937 
 951 
 
 991 
 1005 
 1019 
 1033 
 1047 
 1061 
 1075 
 
 890 
 907 
 924 
 941 
 959 
 976 
 993 
 
 1014 
 1031 
 1048 
 1066 
 1083 
 1100 
 1117 
 
 
 844 
 850 
 
 
 
 
 
 
 :::: 
 
 995 
 1003 
 
 993 
 1004 
 1015 
 1026 
 1037 
 
 40 
 
 36 
 
 7/0 
 7/0 
 
 2 
 
 ftM 
 
 1 
 
 1.40 
 
 : 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 .... 
 
 '895 
 901 
 
 '899 
 907 
 915 
 924 
 932 
 
 902 
 913 
 924 
 935 
 946 
 957 
 968 
 
 926 
 940 
 953 
 967 
 981 
 995 
 1009 
 
 1048 
 1062 
 1076 
 1089. 
 1103 
 1117 
 1131 
 
 952 
 969 
 986 
 1003 
 1020 
 1038 
 1055 
 
 1074 
 1091 
 1108 
 1125 
 1143 
 1160 
 1177 
 
 
 
 1637 
 1046 
 1054 
 
 i646 
 1057 
 1068 
 1079 
 1090 
 
 11 
 
 37 
 
 7/0 
 7/0 
 
 2 
 
 IK 
 
 1.36 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 
 
 936 
 944 
 953 
 961 
 970 
 978 
 
 948 
 959 
 970 
 981 
 992 
 1003 
 1014 
 
 i086 
 1097 
 1108 
 1119 
 1130 
 
 971 
 985 
 999 
 1013 
 1027 
 1041 
 1055 
 
 1088 
 1101 
 1115 
 1129 
 1143 
 1157 
 1171 
 
 998 
 1015 
 1032 
 1049 
 1066 
 1083 
 1101 
 
 1114 
 1131 
 1148 
 1165 
 1182 
 1200 
 1217 
 
 
 *934 
 941 
 947 
 
 
 
 1086 
 1094 
 
 121 
 
COLUMNS 
 
 TABLE 35 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 Column size 
 
 2000-lb. concrete 
 1:6 mixture 
 n = 15 
 f c =500 
 
 ,_ /unsupported length\ 
 Max.\ - jr; - - - I =15 
 \ diameter / 
 
 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 
 Number 
 
 -r 
 
 
 
 
 
 
 
 | 
 
 column 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 
 i (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods K 
 
 H 
 
 K 1 
 
 1H 
 
 1>4 
 
 42 
 
 38 
 
 7/0 
 
 2 
 
 1 
 
 16 
 
 
 
 995 
 
 1019 
 
 1045 
 
 
 
 
 
 
 18 
 
 
 
 1006 
 
 1032 
 
 1062 
 
 
 
 
 
 
 20 
 
 
 99i 
 
 1017 
 
 1046 
 
 1079 
 
 
 
 
 
 
 22 
 
 
 1000 
 
 1028 
 
 1060 
 
 1096 
 
 
 
 
 
 
 24 
 
 
 
 1008 
 
 1039 
 
 1074 
 
 1113 
 
 
 
 
 
 
 26 
 
 
 988 
 
 1017 
 
 1050 
 
 1088 
 
 1131 
 
 
 
 
 
 
 28 
 
 '.'.'.'. 994 
 
 1025 
 
 1061 
 
 1102 
 
 1148 
 
 
 
 
 
 
 30 
 
 1000 
 
 1033 
 
 1072 
 
 1116 
 
 1165 
 
 
 
 7/0 
 
 IK 
 
 1.32 
 
 16 
 
 
 
 
 1127 
 
 1154 
 
 
 
 
 
 
 18 
 
 I 
 
 
 
 1141 
 
 1170 
 
 
 
 
 
 
 20 
 
 
 
 ii26 
 
 1155 
 
 1188 
 
 
 
 
 
 
 22 
 
 .... ! . . . . 
 
 
 1137 
 
 1169 
 
 1205 
 
 
 
 
 
 
 24 
 
 .... 
 
 
 1148 
 
 1183 
 
 1222 , 
 
 
 
 
 
 
 26 
 
 
 ii26 
 
 1159 
 
 1197 
 
 1239 
 
 
 
 
 
 
 28 
 
 
 1134 
 
 1170 
 
 1211 
 
 1257 
 
 
 
 
 
 
 30 
 
 i - - 
 
 1142 
 
 1181 
 
 1225 
 
 1274 
 
 43 
 
 39 
 
 7/0 
 
 l% 
 
 1 
 
 16 
 
 
 
 
 1044 
 
 1067 
 
 1093 
 
 
 
 
 
 
 18 
 
 
 
 1055 
 
 1081 
 
 1110 
 
 
 
 
 
 
 20 
 
 
 1640 
 
 1066 
 
 1095 
 
 1127 
 
 
 
 
 
 
 22 
 
 
 1048 
 
 1077 
 
 1109 
 
 1145 
 
 
 
 
 
 
 24 
 
 
 1057 
 
 1088 
 
 1123 
 
 1162 
 
 
 
 
 
 
 26 
 
 
 1065 
 
 1099 
 
 1137 
 
 1179 
 
 
 
 
 
 
 28 
 
 
 1042 
 
 1073 
 
 1110 
 
 1151 
 
 1196 
 
 
 
 
 
 
 30 
 
 '.'.'.'. 1048 
 
 1082 
 
 1121 
 
 1164 
 
 1213 
 
 
 
 7/0 
 
 IK 
 
 1.29 
 
 16 
 
 
 
 
 1171 
 
 1197 
 
 
 
 I 
 
 
 
 18 
 
 
 
 
 1185 
 
 1214 
 
 
 
 j 
 
 
 
 20 
 
 
 
 ii7o 
 
 1199 
 
 1231 
 
 
 
 
 
 
 22 
 
 
 
 1181 
 
 1213 
 
 1249 
 
 
 
 
 
 
 24 
 
 
 
 1192 
 
 1227 
 
 1266 
 
 
 
 
 
 
 26 
 
 
 ii69 
 
 1203 
 
 1241 
 
 1283 
 
 
 
 
 
 
 28 
 
 
 1177 
 
 1214 
 
 1254 
 
 1300 
 
 
 
 
 
 
 30 
 
 
 1186 
 
 1225 
 
 1268 
 
 1317 
 
 44 
 
 40 
 
 7/0 
 
 IH 
 
 1 
 
 16 
 
 
 
 1093 
 
 1117 
 
 1143 
 
 
 
 
 
 
 18 
 
 
 
 1104 
 
 1130 
 
 1160 
 
 
 
 
 
 
 20 
 
 
 
 1115 
 
 1144 
 
 1177 
 
 
 
 
 
 
 22 
 
 
 
 io98 
 
 1126 
 
 1158 
 
 1194 
 
 
 
 
 
 
 24 
 
 
 
 1106 
 
 1137 
 
 1172 
 
 1211 
 
 
 
 
 
 
 26 
 
 
 
 1115 
 
 1148 
 
 1186 
 
 1229 
 
 
 
 
 
 
 28 
 
 
 i692 
 
 1123 
 
 1159 
 
 1200 
 
 1246 
 
 
 
 
 
 
 30 
 
 
 1098 
 
 1132 
 
 1170 
 
 1214 
 
 1263 
 
 
 
 7/0 
 
 IX 
 
 1.25 
 
 16 
 
 
 
 
 
 1211 
 
 1237 
 
 
 
 
 
 
 18 
 
 
 
 
 
 1225 
 
 1254 
 
 
 
 
 
 
 20 
 
 
 
 
 1209 
 
 1239 
 
 1271 
 
 
 
 
 
 
 22 
 
 
 
 
 1220 
 
 1253 
 
 1288 
 
 
 
 
 
 
 24 
 
 
 
 
 1231 
 
 1266 
 
 1306 
 
 
 
 
 
 
 26 
 
 
 
 
 1242 
 
 1280 
 
 1323 
 
 
 
 
 
 
 28 
 
 
 
 i217 
 
 1253 
 
 1294 
 
 1340 
 
 
 
 
 
 
 30 
 
 
 
 1226 
 
 1264 
 
 1308 
 
 1357 
 
 122 
 
TABLE 36 
 
 COLUMNS 
 
 Ca/umn size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c ((l+4np')+(n-l)p] 
 
 .. (unsupported length\ 
 
 Max. I -=-: 1 =15 
 
 \ diameter J 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n = 12 
 f c =625 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 M 
 
 H 
 
 K 
 
 1 
 
 IH 
 
 IH 
 
 12 
 
 8 
 
 6 
 
 1M 1 
 
 6 
 
 59 
 
 
 
 
 
 
 13 9 
 
 g 
 
 1^ 
 
 1 
 
 6 
 
 8 
 
 71 
 76 
 
 
 
 
 
 
 14 10 
 
 4 
 
 1M 
 
 1 
 
 6 
 
 8 
 
 85 
 89 
 
 91 
 
 
 
 
 
 15 11 
 
 3 
 
 IH 
 
 1 
 
 6 
 
 8 
 10 
 
 100 
 105 
 109 
 
 106 
 112 
 
 113 
 
 
 
 
 16 
 
 12 
 
 2 
 3/0 
 
 IH 
 IH 
 
 1 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 117 
 121 
 126 
 
 'i55 
 160 
 
 123 
 129 
 135 
 
 157 
 163 
 169 
 
 129 
 163 
 
 
 
 
 17 
 
 13 
 
 1 
 4/0 
 
 IX 
 
 IK 
 
 1 
 2 
 
 6 
 
 8 
 10 
 
 6 
 8 
 10 
 
 135 
 140 
 144 
 
 'i84 
 
 141 
 147 
 153 
 
 181 
 187 
 193 
 
 148 
 156 
 
 187 
 196 
 
 195 
 
 
 
 18 
 
 14 
 
 4/0 
 
 l 
 IH 
 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 155 
 159 
 163 
 168 
 
 '210 
 214 
 
 161 
 167 
 173 
 179 
 
 '2i3 
 219 
 225 
 
 167 
 175 
 184 
 
 213 
 222 
 230 
 
 175 
 221 
 
 
 
 19 
 
 15 
 
 
 5/0 
 
 IK 
 
 1J4 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 176 
 180 
 184 
 189 
 
 "242 
 
 182 
 188 
 194 
 200 
 
 '24i 
 247 
 253 
 
 188 
 196 
 205 
 
 241 
 250 
 
 258 
 
 196 
 207 
 
 249 
 260 
 
 204 
 258 
 
 
 20 
 
 16 
 
 2/0 
 
 6/0 
 
 2H 
 
 2 
 
 2 
 
 8 
 10 
 12 
 
 14 
 
 8 
 10 
 12 
 14 
 
 203 
 207 
 211 
 216 
 
 '276 
 
 210 
 216 
 222 
 229 
 
 '277 
 283 
 289 
 
 219 
 227 
 236 
 
 279 
 288 
 296 
 
 229 
 240 
 
 289 
 300 
 
 241 
 301 
 
 
 123 
 
COLUMNS 
 
 TABLE 36 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 ^Column size 
 
 2500-lb. concrete 
 1:4% mixture 
 n = 12 
 f c =625 
 
 ,_ (unsupported length\ _ 
 
 IrlttX* I -j7 7 ~- I 15 
 
 \ diameter / 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 . column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IK 
 
 IK 
 
 21 
 
 17 
 
 2/0 
 
 2 
 
 1 
 
 8 
 
 227 
 
 234 
 
 243 
 
 253 
 
 265 
 
 
 
 
 
 
 
 10 
 
 231 
 
 240 
 
 251 
 
 264 
 
 
 
 
 
 
 
 
 12 
 
 235 
 
 246 
 
 260 
 
 
 
 
 
 
 
 
 
 14 
 
 240 
 
 253 
 
 268 
 
 
 
 
 
 
 6/0 
 
 1% 
 
 2 
 
 8 
 
 
 
 311 
 
 321 
 
 333 
 
 
 
 
 
 
 
 10 
 
 
 .... 
 
 319 
 
 332 
 
 
 
 
 
 
 
 
 12 
 
 
 314 
 
 328 
 
 
 
 
 
 
 
 
 
 
 14 
 
 
 321 
 
 336 
 
 
 
 
 22 
 
 18 
 
 3/0 
 
 2^ 
 
 1 
 
 8 
 
 
 260 
 
 268 
 
 279 
 
 290 
 
 303 
 
 
 
 
 
 
 10 
 
 '257 
 
 266 
 
 277 
 
 289 
 
 304 
 
 
 
 
 
 
 
 12 
 
 261 
 
 272 
 
 285 
 
 300 
 
 
 
 
 
 
 
 
 14 
 
 265 
 
 278 
 
 293 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7/0 
 
 2 
 
 2 
 
 8 
 
 
 
 
 355 
 
 366 
 
 379 
 
 
 
 
 
 
 10 
 
 
 
 '353 
 
 366 
 
 380 
 
 
 
 
 
 
 
 12 
 
 
 '348 
 
 361 
 
 377 
 
 
 
 
 
 
 
 
 14 
 
 
 354 
 
 370 
 
 
 
 
 23 
 
 19 
 
 3/0 
 
 2K 
 
 1 
 
 8 
 
 
 286 
 
 295 
 
 305 
 
 317 
 
 330 
 
 
 
 
 
 
 10 
 
 '283 
 
 293 
 
 304 
 
 316 
 
 331 
 
 
 
 
 
 
 
 12 
 
 288 
 
 299 
 
 312 
 
 327 
 
 
 
 
 
 
 
 
 14 
 
 292 
 
 305 
 
 320 
 
 338 
 
 
 
 
 
 
 
 
 16 
 
 296 
 
 311 
 
 328 
 
 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 8 
 
 
 
 
 391 
 
 402 
 
 415 
 
 
 
 
 
 
 10 
 
 
 
 '389 
 
 401 
 
 416 
 
 
 
 
 
 
 
 12 
 
 
 
 397 
 
 412 
 
 
 
 
 
 
 
 
 14 
 
 
 '390 
 
 405 
 
 423 
 
 
 
 
 
 
 
 
 16 
 
 
 396 
 
 414 
 
 
 
 
 24 
 
 20 
 
 3/0 
 
 2 
 
 1 
 
 8 
 
 
 315 
 
 324 
 
 334 
 
 345 
 
 358 
 
 
 
 
 
 
 10 
 
 
 321 
 
 332 
 
 345 
 
 359 
 
 375 
 
 
 
 
 
 
 12 
 
 '316 
 
 327 
 
 340 
 
 355 
 
 373 
 
 
 
 
 
 
 
 14 
 
 320 
 
 333 
 
 348 
 
 366 
 
 
 
 
 
 
 
 
 16 
 
 324 
 
 339 
 
 357 
 
 377 
 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 8 
 
 
 
 
 428 
 
 440 
 
 452 
 
 
 
 
 
 
 10 
 
 
 
 
 439 
 
 453 
 
 469 
 
 
 
 
 
 
 12 
 
 
 
 '435 
 
 450 
 
 467 
 
 
 
 j 
 
 
 
 14 
 
 
 
 443 
 
 461 
 
 
 
 
 
 
 
 16 
 
 
 434 
 
 451 
 
 471 
 
 
 
 25 
 
 21 
 
 4/0 
 
 ty* 
 
 1 
 
 10 
 
 
 350 
 
 361 
 
 374 
 
 388 
 
 404 
 
 
 
 
 
 
 12 
 
 '345 
 
 356 
 
 369 
 
 385 
 
 402 
 
 
 
 
 
 
 
 14 
 
 349 
 
 362 
 
 378 
 
 395 
 
 
 
 
 
 
 
 
 16 
 
 354 
 
 368 
 
 386 
 
 406 
 
 
 
 
 
 7/0 
 
 ix 
 
 2 
 
 10 
 
 
 
 
 478 
 
 492 
 
 508 
 
 
 
 
 
 
 12 
 
 
 
 '474 
 
 489 
 
 506 
 
 
 
 
 
 
 
 14 
 
 
 
 482 
 
 500 
 
 
 
 
 
 
 
 
 16 
 
 
 473 
 
 490 
 
 510 
 
 
 
 124 
 
TABLE 36 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c [(l+4np')+(n-l)p] 
 
 Max. 
 
 'unsupported length\ 
 diameter 
 
 = 15 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n = 12 
 f c =625 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 % 
 
 H 
 
 H 
 
 1 
 
 IH 
 
 IX 
 
 26 
 
 22 
 
 4/0 
 7/0 
 
 zy* 
 
 i% 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 
 14 
 16 
 
 18 
 
 '38i 
 385 
 389 
 
 382 
 388 
 394 
 400 
 406 
 
 393 
 401 
 409 
 418 
 426 
 
 405 
 416 
 427 
 438 
 449 
 
 520 
 531 
 542 
 552 
 563 
 
 420 
 433 
 447 
 
 534 
 548 
 562 
 
 435 
 453 
 
 550 
 567 
 
 
 
 524 
 532 
 540 
 
 
 *52i 
 
 27 
 
 23 
 
 4/0 
 7/0 
 
 2H 
 
 1% 
 
 2 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 '4i4 
 
 418 
 422 
 
 414 
 420 
 427 
 433 
 439 
 
 425 
 434 
 442 
 450 
 
 458 
 
 438 
 449 
 460 
 470 
 481 
 
 452 
 466 
 480 
 493 
 
 576 
 590 
 604 
 617 
 
 468 
 485 
 
 592 
 609 
 
 I 
 
 .'.' : 
 
 '566 
 574 
 582 
 
 573 
 584 
 594 
 605 
 
 28 
 
 24 
 
 4/0 
 7/0 
 
 2 
 
 IX 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 
 
 460 
 468 
 476 
 484 
 493 
 
 472 
 483 
 494 
 505 
 515 
 
 487 
 500 
 514 
 527 
 541 
 
 623 
 637 
 650 
 664 
 678- 
 
 503 
 519 
 536 
 
 639 
 656 
 673 
 
 "452 
 456 
 
 455 
 
 461 
 467 
 473 
 
 
 
 .... 
 
 619 
 630 
 641 
 652 
 
 
 .... 
 
 621 
 629 
 
 
 
 29 
 
 25 
 
 5/0 
 7/0 
 
 Wt 
 
 iy* 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 '487 
 492 
 496 
 
 '490 
 496 
 502 
 508 
 514 
 
 495 
 503 
 512 
 520 
 528 
 537 
 
 508 
 519 
 529 
 540 
 551 
 562 
 
 522 
 536 
 549 
 563 
 577 
 
 670 
 683 
 697 
 711 
 724 
 
 686 
 703 
 719 
 736 
 
 
 
 
 
 .. ; 
 
 :::: 
 
 '676 
 684 
 
 677 
 688 
 699 
 709 
 
 30 
 
 26 
 
 5/0 
 
 7/0 
 
 w 
 
 IX 
 
 1 
 1.93 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 
 20 
 
 '529 
 
 533 
 
 528 
 534 
 540 
 546 
 552 
 
 541 
 549 
 557 
 566 
 574 
 
 556 
 567 
 578 
 589 
 599 
 
 '715 
 
 725 
 736 
 747 
 
 573 
 587 
 601 
 614 
 628 
 
 721 
 735 
 
 748 
 762 
 776 
 
 593 
 609 
 626 
 
 740 
 
 757 
 774 
 
 .... 
 
 .... 
 
 '7i3 
 722 
 
 125 
 
COLUMNS 
 
 TABLE 36 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 Column Size 
 
 2500 -lb. concrete 
 1:4% mixture 
 n = 12 
 f c =625 
 
 /unsupported length\ 
 
 Max. I - -j-; - - - } = 15 
 
 \ diameter / 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 _ e 
 
 
 
 
 
 
 
 
 
 
 
 column 
 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 H 
 
 H 
 
 Ys 
 
 1 
 
 1H 
 
 IK 
 
 31 
 
 27 
 
 5/0 
 
 2^ 
 
 1 
 
 12 
 
 
 
 579 
 
 594 
 
 612 
 
 631 
 
 
 
 
 
 
 14 
 
 
 '572 
 
 587 
 
 605 
 
 625 
 
 648 
 
 
 
 
 
 
 16 
 
 
 578 
 
 596 
 
 616 
 
 639 
 
 664 
 
 
 
 
 
 
 18 
 
 
 584 
 
 604 
 
 627 
 
 653 
 
 681 
 
 
 
 
 
 
 20 
 
 '572 
 
 590 
 
 612 
 
 638 
 
 666 
 
 
 
 
 
 
 
 22 
 
 576 
 
 596 
 
 621 
 
 648 
 
 680 
 
 
 
 
 7/0 
 
 1H 
 
 1.86 
 
 12 
 
 
 
 
 
 759 
 
 778 
 
 
 
 
 
 
 14 
 
 
 
 .... 
 
 '753 
 
 773 
 
 795 
 
 
 
 
 
 
 16 
 
 
 
 
 764 
 
 787 
 
 812 
 
 
 
 
 
 
 18 
 
 
 
 '752 
 
 774 
 
 800 
 
 829 
 
 
 
 
 
 
 20 
 
 
 
 760 
 
 785 
 
 814 
 
 
 
 
 
 
 
 22 
 
 
 
 768 
 
 796 
 
 828 
 
 
 32 
 
 28 
 
 5/0 
 
 2 
 
 1 
 
 12 
 
 
 
 619 
 
 634 
 
 651 
 
 670 
 
 
 
 
 
 
 14 
 
 
 ei2 
 
 627 
 
 645 
 
 665 
 
 687 
 
 
 
 
 
 
 16 
 
 
 618 
 
 635 
 
 656 
 
 679 
 
 704 
 
 
 
 
 
 
 18 
 
 .... 
 
 624 
 
 644 
 
 666 
 
 692 
 
 721 
 
 
 
 
 
 
 20 
 
 
 630 
 
 652 
 
 677 
 
 706 
 
 738 
 
 
 
 
 
 
 22 
 
 616 
 
 636 
 
 660 
 
 688 
 
 720 
 
 
 
 
 7/0 
 
 IK 
 
 1.80 
 
 12 
 
 
 
 
 
 799 
 
 819 
 
 
 
 
 
 
 14 
 
 
 
 
 793 
 
 813 
 
 835 
 
 
 
 
 
 
 16 
 
 
 
 
 804 
 
 827 
 
 852 
 
 
 
 
 
 
 18 
 
 
 
 
 815 
 
 840 
 
 869 
 
 
 
 
 
 
 20 
 
 
 
 800 
 
 825 
 
 854 
 
 886 
 
 
 
 
 
 
 22 
 
 
 
 808 
 
 836 
 
 868 
 
 
 33 
 
 29 
 
 6/0 
 
 2>i 
 
 1 
 
 12 
 
 
 
 660 
 
 675 
 
 693 
 
 712 
 
 
 
 
 
 
 14 
 
 
 
 669 
 
 686 
 
 706 
 
 729 
 
 
 
 
 
 
 16 
 
 
 659 
 
 677 
 
 697 
 
 720 
 
 746 
 
 
 
 
 
 
 18 
 
 
 665 
 
 685 
 
 708 
 
 734 
 
 763 
 
 
 
 
 
 
 20 
 
 
 671 
 
 693 
 
 719 
 
 747 
 
 779 
 
 
 
 
 
 
 22 
 
 '667 
 
 677 
 
 702 
 
 729 
 
 761 
 
 
 
 
 7/0 
 
 IK 
 
 1.73 
 
 12 
 
 
 
 
 
 837 
 
 856 
 
 
 
 
 
 14 
 
 
 
 
 
 851 
 
 873 
 
 
 
 
 
 
 16 
 
 
 
 '84i 
 
 864 
 
 890 
 
 
 
 
 
 
 18 
 
 
 
 
 852 
 
 878 
 
 907 
 
 
 
 
 
 
 20 
 
 
 
 '838 
 
 863 
 
 892 
 
 924 
 
 
 
 
 
 
 22 
 
 
 
 846 
 
 874 
 
 905 
 
 
 34 
 
 30 
 
 6/0 
 
 2>i 
 
 1 
 
 12 
 
 
 
 704 
 
 719 
 
 736 
 
 755 
 
 
 
 
 
 
 14 
 
 
 
 712 
 
 730 
 
 750 
 
 772 
 
 
 
 
 
 
 16 
 
 
 703 
 
 720 
 
 740 
 
 763 
 
 789 
 
 
 
 
 
 
 18 
 
 
 709 
 
 728 
 
 751 
 
 777 
 
 806 
 
 
 
 
 
 
 20 
 
 
 715 
 
 737 
 
 762 
 
 791 
 
 823 
 
 
 
 
 
 
 22 
 
 
 721 
 
 745 
 
 773 
 
 804 
 
 840 
 
 
 
 
 
 
 24 
 
 '705 
 
 727 
 
 753 
 
 784 
 
 718 
 
 
 
 
 7/0 
 
 IK 
 
 1.67 
 
 12 
 
 
 
 
 
 878 
 
 897 
 
 
 
 
 
 
 14 
 
 
 
 
 
 891 
 
 914 
 
 
 
 
 
 
 16 
 
 
 
 
 '882 
 
 905 
 
 931 
 
 
 
 
 
 
 18 
 
 
 
 
 893 
 
 919 
 
 948 
 
 
 
 
 
 
 20 
 
 
 
 '878 
 
 904 
 
 932 
 
 964 
 
 
 
 
 
 
 22 
 
 
 
 887 
 
 914 
 
 946 
 
 981 
 
 
 ! 
 
 
 
 24 
 
 
 895 
 
 925 
 
 960 
 
 
 126 
 
TABLE 36 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 ,_ /unsupported length\ 1C 
 Max. \ 7^ I = lo 
 
 \ diameter 
 
 2500-lb. concrete 
 1:4% mixture 
 n = 12 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- j 
 eter 
 
 
 Number 
 
 f. 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & W. 
 Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 H 
 
 K 
 
 ft 
 
 1 
 
 IH 
 
 1H 
 
 35 
 
 31 
 
 6/0 
 
 2M 
 
 1 
 
 14 
 
 
 
 756 
 
 774 
 
 794 
 
 816 
 
 
 
 
 
 
 16 
 
 
 
 764 
 
 784 
 
 807 
 
 833 
 
 
 
 
 
 
 18 
 
 
 753 
 
 772 
 
 795 
 
 821 
 
 850 
 
 
 
 
 
 
 20 
 
 
 759 
 
 781 
 
 806 
 
 835 
 
 867 
 
 
 
 
 
 
 22 
 
 
 765 
 
 789 
 
 817 
 
 848 
 
 884 
 
 
 
 
 
 
 24 
 
 
 771 
 
 797 
 
 828 
 
 862 
 
 901 
 
 
 
 7/0 
 
 1H 
 
 1.62 
 
 14 
 
 
 
 
 
 933 
 
 956 
 
 
 
 
 
 
 16 
 
 
 
 '. '. '. '. 
 
 924 
 
 947 
 
 972 
 
 
 
 
 , 
 
 
 18 
 
 
 
 
 935 
 
 961 
 
 989 
 
 
 
 
 
 
 20 
 
 
 
 
 946 
 
 974 
 
 1006 
 
 
 
 
 
 
 22 
 
 
 
 '929 
 
 956 
 
 988 
 
 1023 
 
 
 
 
 
 
 24 
 
 
 
 937 
 
 967 
 
 1002 
 
 1040 
 
 36 
 
 32 
 
 6/0 2 
 
 1 
 
 14 
 
 
 
 802 
 
 820 
 
 840 
 
 862 
 
 
 
 
 
 16 
 
 
 
 810 
 
 830 
 
 853 
 
 879 
 
 
 
 
 
 18 
 
 
 
 818 
 
 841 
 
 867 
 
 896 
 
 
 
 
 
 
 20 
 
 
 '805 
 
 827 
 
 852 
 
 881 
 
 913 
 
 
 
 
 
 
 22 
 
 
 811 
 
 835 
 
 863 
 
 894 
 
 930 
 
 
 
 
 
 
 24 
 
 
 817 
 
 843 
 
 874 
 
 908 
 
 947 
 
 
 
 7/0 
 
 IH 
 
 1.57 
 
 14 
 
 
 
 
 
 977 
 
 999 
 
 
 
 
 
 
 16 
 
 
 
 
 '968 
 
 991 
 
 1016 
 
 
 
 
 
 
 18 
 
 
 
 
 979 
 
 1004 
 
 1033 
 
 
 
 
 
 
 20 
 
 
 
 
 989 
 
 1018 
 
 1050 
 
 
 
 
 
 
 22 
 
 
 
 "972 
 
 1000 
 
 1032 
 
 1067 
 
 
 
 
 
 
 24 
 
 
 
 981 
 
 1011 
 
 1045 
 
 1084 
 
 37 
 
 33 
 
 7 
 
 2> 
 
 1 
 
 14 
 
 
 
 
 867 
 
 887 
 
 909 
 
 
 
 
 
 
 16 
 
 
 
 857 
 
 878 
 
 901 
 
 926 
 
 
 
 
 
 
 18 
 
 
 
 866 
 
 888 
 
 914 
 
 943 
 
 
 
 
 
 
 20 
 
 
 '852 
 
 874 
 
 899 
 
 928 
 
 960 
 
 
 
 
 
 
 22 
 
 
 858 
 
 882 
 
 910 
 
 942 
 
 977 
 
 
 
 
 
 
 24 
 
 
 864 
 
 890 
 
 921 
 
 955 
 
 994 
 
 
 
 
 
 
 26 
 
 
 870 
 
 899 
 
 932 
 
 969 
 
 1011 
 
 
 
 f/0 
 
 1M 
 
 1.52 
 
 14 
 
 
 
 
 
 1020 
 
 1042 
 
 
 
 
 
 
 16 
 
 
 
 
 
 1033 
 
 1059 
 
 
 
 
 
 
 18 
 
 
 
 
 io2i 
 
 1047 
 
 1076 
 
 
 
 
 
 
 20 
 
 
 
 
 1032 
 
 1061 
 
 1093 
 
 
 
 
 
 
 22 
 
 
 
 iois 
 
 1043 
 
 1074 
 
 1110 
 
 
 
 
 
 
 24 
 
 
 
 1023 
 
 1054 
 
 1088 
 
 1127 
 
 
 
 
 
 
 26 
 
 
 
 1031 
 
 1064 
 
 1102 
 
 1144 
 
 38 
 
 34 
 
 7/0 
 
 2H 
 
 1 
 
 14 
 
 .... I .... 
 
 
 916 
 
 936 
 
 958 
 
 
 
 
 
 
 16 
 
 
 
 '906 
 
 926 
 
 949 
 
 975 
 
 
 
 
 
 
 18 
 
 
 
 914 
 
 937 
 
 963 
 
 992 
 
 
 
 
 
 
 20 
 
 
 
 923 
 
 948 
 
 977 
 
 1009 
 
 
 
 
 
 
 22 
 
 
 '967 
 
 931 
 
 959 
 
 990 
 
 1026 
 
 
 
 
 
 
 24 
 
 
 913 
 
 939 
 
 970 
 
 1004 
 
 1043 
 
 
 
 
 
 
 26 
 
 
 919 
 
 947 
 
 980 
 
 1018 
 
 1059 
 
 
 
 7/0 
 
 iy z 
 
 1.48 
 
 14 
 
 
 
 
 
 1065 
 
 1088 
 
 
 
 
 
 
 16 
 
 
 
 
 
 1079 
 
 1104 
 
 
 
 
 
 
 18 
 
 
 
 
 i067 
 
 1093 
 
 1121 
 
 
 
 
 
 
 20 
 
 
 
 
 1078 
 
 1106 
 
 1138 
 
 
 
 
 
 
 22 
 
 
 
 
 1088 
 
 1120 
 
 1155 
 
 
 
 
 
 
 24 
 
 
 
 1669 
 
 1099 
 
 1134 
 
 1172 
 
 
 
 
 
 
 26 
 
 
 
 1077 
 
 1110 
 
 1147 
 
 1189 
 
 
 
 
 
 
 
 
 
 
 
 127 
 
^> 
 
 , 
 
 ! 
 
 COLUMNS 
 
 
 ] 
 & SAI 
 
 <-/ 
 
 ',500 -Ib. concrete \J 
 ':4% mixture V 
 
 TABLE 36 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 Column size ^ 
 
 P=Af c [(l+4np') + (n- 
 
 ., 
 max, 
 
 (unsupported length\ 
 
 f c =625 
 
 diameter 
 
 / 
 
 ** 
 
 
 m * 
 
 V 
 } 
 
 :> 
 
 ^- 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 eter 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IH 
 
 U4 
 
 39 
 
 35 
 
 7/0 
 7/0 
 
 2H 
 IH 
 
 1 
 1.43 
 
 14 
 16 ' 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 '963 
 969 
 
 '956 
 964 
 973 
 981 
 989 
 997 
 
 966 
 976 
 987 
 998 
 1009 
 1020 
 1030 
 
 986 
 999 
 1013 
 1026 
 1040 
 1054 
 1068 
 
 1109 
 1122 
 1136 
 1150 
 1163 
 1177 
 1191 
 
 1008 
 1025 
 1042 
 1059 
 1076 
 1093 
 1109 
 
 1131 
 
 1148 
 1165 
 1182 
 1199 
 1216 
 1233 
 
 
 
 iii2 
 
 1120 
 
 iiio 
 
 1121 
 1132 
 1143 
 1153 
 
 40 
 
 
 
 , 
 
 36 
 
 7/0 
 7/0 
 
 2 
 
 IH 
 
 1 
 1.40 
 
 16 
 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 
 i020 
 1027 
 
 i024 
 1033 
 1041 
 1049 
 1057 
 
 1028 
 1039 
 1050 
 1060 
 1071 
 1082 
 1093 
 
 1051 
 1065 
 1078 
 1092 
 1106 
 1119 
 1133 
 
 1173 
 1187 
 1200 
 1214 
 1228 
 1241 
 1255 
 
 1076 
 1093 
 1110 
 1127 
 1144 
 1161 
 1178 
 
 1198 
 1215 
 1232 
 1249 
 1266 
 1283 
 1300 
 
 '.'.: 
 
 
 lies 
 
 1171 
 1179 
 
 ii72 
 1182 
 1193 
 1204 
 1215 
 
 V 41 
 
 H> 
 
 ^ 
 
 V 
 
 * 
 
 37 
 
 7/0 
 7/0 
 
 ' ! 
 
 2 
 
 \H 
 
 j 
 
 1 
 1.36 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 
 1067 
 1073 
 1080 
 
 1669 
 1077 
 1086 
 1094 
 1102 
 1110 
 
 1081 
 1092 
 1103 
 1113 
 1124 
 1135 
 1146 
 
 1104 
 1118 
 1131 
 1145 
 1159 
 1172 
 1186 
 
 1219 
 1233 
 1246 
 1260 
 1274 
 1287 
 1301 
 
 1129 
 1146 
 1163 
 1180 
 1197 
 1214 
 1231 
 
 1244 
 1261 
 1278 
 1295 
 1312 
 1329 
 1346 
 
 
 
 1217 
 1225 
 
 1218 
 1228 
 1239 
 1250 
 1261 
 
TABLE 36 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af e ((l+4np' 
 ,_ /unsupported length\ 
 Max '( diameter ) 
 
 15 
 
 2500 -Ib. concrete 
 1:4% mixture 
 n = 12 
 f e =625 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & W. 
 Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 M 
 
 H 
 
 M 
 
 1 
 
 IK 
 
 IK 
 
 42 
 
 38 
 
 7/0 
 7/0 
 
 2 
 1^ 
 
 1 
 1.32 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 
 1136 
 1147 
 1158 
 1168 
 1179 
 1190 
 1201 
 1212 
 
 1159 
 1173 
 1186 
 1200 
 1214 
 1227 
 1241 
 1255 
 
 1268 
 1282 
 1296 
 1309 
 1323 
 1337 
 1350 
 1364 
 
 1184 
 1201 
 1218 
 1235 
 1252 
 1269 
 1286 
 1303 
 
 1294 
 1311 
 1328" 
 1345 
 1362 
 1378 
 1395 
 1412 
 
 .... 
 
 ii28 
 
 1135 
 1141 
 
 1132 
 1141 
 1149 
 1157 
 1165 
 1174 
 
 
 .... 
 
 
 1267 
 1278 
 1289 
 1299 
 1310 
 1321 
 
 
 
 i266 
 1274 
 1283 
 
 43 
 
 39 
 
 7/0 
 
 7/0 
 
 IK 
 IX 
 
 1.29 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 '. '.'. 
 
 
 iiss 
 
 1196 
 1204 
 1212 
 1220 
 1229 
 
 1191 
 1202 
 1213 
 1224 
 1235 
 1245 
 1256 
 1267 
 
 1214 
 1228 
 1242 
 1255 
 1269 
 1283 
 1296 
 1310 
 
 1318 
 1332 
 1345 
 1359 
 1373 
 1386 
 1400 
 1414 
 
 1240 
 1257 
 1274 
 1291 
 1308 
 1324 
 1341 
 1358 
 
 1344 
 1361 
 1377 
 1394 
 1411 
 1428 
 1445 
 1461 
 
 '.'.'.'. 
 
 iioo 
 
 1196 
 
 
 
 
 1317 
 1327 
 1338 
 1349 
 1360 
 1371 
 
 
 
 1316 
 1324 
 1333 
 
 44 
 
 40 
 
 7/0 
 
 7/0 
 
 1H 
 IX 
 
 1 
 1.25 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 !!!? 
 
 .... 
 
 i253 
 1261 
 1269 
 1277 
 1286 
 
 1248 
 1259 
 1270 
 1280 
 1291 
 1302 
 1313 
 1324 
 
 1271 
 1285 
 1298 
 1312 
 1326 
 1339 
 1353 
 1367 
 
 1366 
 1380 
 1393 
 1407 
 1421 
 1434 
 1448 
 1462 
 
 1296 
 1313 
 1330 
 1347 
 1364 
 1381 
 1398 
 1415 
 
 1392 
 1409 
 1425 
 1442 
 1459 
 1476 
 1493 
 1510 
 
 .... 
 
 1247 
 1253 
 
 
 
 
 1365 
 1375 
 1386 
 1397 
 1408 
 1419 
 
 
 
 1372 
 1381 
 
 129 
 
COLUMNS 
 
 TABLE 37 
 
 3000-lb. concrete 
 1:3 mixture 
 n=12 
 f c =750 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c [(l+4np')+(n-l)p] 
 
 ,_ /unsupported length\ 
 
 Max. I ^-. I =25 
 
 \ diameter I 
 
 Column size * 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 
 (A.S.&W. 
 Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H 
 
 K 
 
 1 
 
 .IM 
 
 1H 
 
 12 
 
 8 
 
 6 
 
 IK 
 
 1 
 
 6 71 
 
 
 
 
 
 13 
 
 9 
 
 5 
 
 IH 
 
 1 
 
 6 
 
 8 
 
 86 
 91 
 
 
 
 
 
 
 14 
 
 10 
 
 4 
 
 iH 
 
 1 
 
 6 102 
 
 8 107 
 
 109 
 
 
 
 
 
 15 
 
 11 
 
 3 
 
 IH 
 
 1 
 
 6 121 
 8 126 
 10 131 
 
 127 
 135 
 
 135 
 
 
 
 
 16 
 
 12 
 
 2 
 3/0 
 
 1% 
 IH 
 
 1 
 
 2 
 
 6 
 
 8 
 10 
 
 6 
 8 
 10 
 
 141 
 146 
 151 
 
 'ise 
 
 191 
 
 147 
 155 
 162 
 
 188 
 195 
 203 
 
 155 
 
 196 
 
 
 
 
 17 
 
 13 
 
 1 
 
 4/0 
 
 1% 
 
 m 
 
 1 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 162 
 167 
 172 
 
 '226 
 
 169 
 176 
 184 
 
 217 
 224 
 231 
 
 177 
 
 187 
 
 225 
 235 
 
 186 
 234 
 
 
 
 18 
 
 14 
 
 1 
 
 4/0 
 
 1% 
 
 iH 
 
 1 
 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 186 
 191 
 196 
 201 
 
 '251 
 257 
 
 193 
 200 
 207 
 215 
 
 255 
 
 263 
 270 
 
 201 
 210 
 220 
 
 256 
 266 
 276 
 
 210 
 265 
 
 
 
 19 
 
 15 
 
 
 
 5/0 
 
 1% 
 i% 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 211 
 216 
 221 
 226 
 
 '290 
 
 218 
 225 
 233 
 240 
 
 '289 
 296 
 303 
 
 226 
 236 
 246 
 
 289 
 299 
 309 
 
 235 
 
 248 
 
 299 
 312 
 
 245 
 309 
 
 
 20 
 
 16 
 
 2/0 
 6/0 
 
 2y* 
 
 2 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 243 
 248 
 254 
 259 
 
 '331 
 
 252 
 260 
 267 
 274 
 
 332 
 339 
 347 
 
 263 
 273 
 283 
 
 335 
 345 
 355 
 
 275 
 
 288 
 
 347 
 360 
 
 289 
 361 
 
 
 130 
 
TABLE 37 
 
 COLUMNS 
 
 Column 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af e ((l+4np' 
 
 /unsupported length\ 
 * \ diameter / 
 
 3000-lb. concrete 
 1:3 mixture 
 n = 12 
 f e =750 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 nf 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & W. 
 Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 M 
 
 K 
 
 K 
 
 1 
 
 IK 
 
 1H 
 
 
 
 
 
 
 I ! 
 
 21 
 
 17 
 
 2/0 
 
 2 
 
 1 
 
 8 
 
 272 281 
 
 292 
 
 304 
 
 318 
 
 
 
 
 
 
 
 10 
 
 277 
 
 288 
 
 302 
 
 317 
 
 
 
 
 
 
 
 
 12 
 
 282 
 
 296 
 
 312 
 
 
 
 
 
 
 
 
 
 14 
 
 287 
 
 303 
 
 321 
 
 
 
 
 
 
 6/0 
 
 IK 
 
 2 
 
 8 
 
 
 
 373 
 
 385 
 
 399 
 
 
 
 
 
 
 
 10 
 
 
 
 383 
 
 398 
 
 
 
 
 
 
 
 
 12 
 
 
 '377 
 
 393 
 
 
 
 
 
 
 
 
 
 14 
 
 
 385 
 
 403 
 
 
 
 
 22 
 
 18 
 
 3/0 
 
 2K 
 
 1 
 
 8 
 
 
 312 
 
 322 
 
 334 
 
 348 
 
 363 
 
 
 
 
 
 
 10 
 
 308 
 
 319 
 
 332 
 
 347 
 
 364 
 
 
 
 
 
 
 
 12 
 
 313 
 
 326 
 
 342 
 
 360 
 
 
 
 
 
 
 
 
 14 
 
 318 
 
 333 
 
 352 
 
 
 
 
 
 
 7/0 
 
 2 
 
 2 
 
 g 
 
 
 
 
 426 
 
 440 
 
 455 
 
 
 
 
 
 
 10 
 
 
 
 424 
 
 439 
 
 456 
 
 
 
 
 
 
 
 12 
 
 
 iis 
 
 434 
 
 452 
 
 
 
 
 
 
 
 
 14 
 
 
 425 
 
 444 
 
 
 
 
 23 
 
 19 
 
 3/0 
 
 2K 
 
 1 
 
 8 
 
 
 344 
 
 354 
 
 366 
 
 380 
 
 396 
 
 
 
 
 
 
 10 
 
 340 
 
 351 
 
 364 
 
 379 
 
 397 
 
 
 
 
 
 
 
 12 
 
 345 
 
 358 
 
 374 
 
 392 
 
 
 
 
 
 
 
 
 14 
 
 350 
 
 366 
 
 384 
 
 405 
 
 
 
 
 
 
 
 
 16 
 
 355 
 
 373 
 
 394 
 
 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 8 
 
 
 
 
 469 
 
 482 
 
 498 
 
 
 
 
 
 
 10 
 
 
 .... 
 
 '466 
 
 481 
 
 499 
 
 
 
 
 
 
 
 12 
 
 
 
 476 
 
 494 
 
 
 
 
 
 
 
 
 14 
 
 
 "468 
 
 486 
 
 507 
 
 
 
 
 
 
 
 
 16 
 
 
 475 
 
 496 
 
 
 
 
 24 
 
 20 
 
 3/0 
 
 2 
 
 1 
 
 8 
 
 
 378 
 
 388 
 
 401 
 
 414 
 
 430 
 
 
 
 
 
 
 10 
 
 
 385 
 
 398 
 
 413 
 
 431 
 
 450 
 
 
 
 
 
 
 12 
 
 379 
 
 392 
 
 408 
 
 426 
 
 447 
 
 
 
 
 
 
 
 14 
 
 384 
 
 400 
 
 418 
 
 439 
 
 
 
 
 
 
 
 
 16 
 
 389 
 
 407 
 
 428 
 
 452 
 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 8 
 
 
 
 
 514 
 
 528 
 
 543 
 
 
 
 
 
 
 10 
 
 
 
 
 527 
 
 544 
 
 563 
 
 
 
 
 
 
 12 
 
 
 
 '522 
 
 540 
 
 560 
 
 
 
 
 
 
 
 14 
 
 
 
 531 
 
 553 
 
 
 
 
 
 
 
 
 16 
 
 
 520 
 
 541 
 
 566 
 
 
 
 25 
 
 21 
 
 4/0 
 
 2K 
 
 1 
 
 10 
 
 
 421 
 
 434 
 
 449 
 
 467 
 
 486 
 
 
 
 
 
 
 12 
 
 415 
 
 428 
 
 444 
 
 462 
 
 483 
 
 
 
 
 
 
 
 14 
 
 420 
 
 436 
 
 454 
 
 475 
 
 
 
 
 
 
 
 
 16 
 
 425 
 
 443 
 
 464 
 
 488 
 
 
 
 
 
 7/0 
 
 1% 
 
 2 
 
 10 
 
 
 
 
 574 
 
 591 
 
 610 
 
 
 
 
 
 
 12 
 
 
 
 "570 
 
 587 
 
 60S 
 
 
 
 
 
 
 
 14 
 
 
 
 579 
 
 600 
 
 
 
 
 
 
 
 
 16 
 
 
 '568 
 
 589 
 
 613 
 
 
 
 131 
 
COLUMNS 
 
 TABLE 37 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 ^Column 
 
 )-lb. concrete 
 1:3 mixture 
 n = 12 
 f c = 750 
 
 P=Af c [(l+4np') + (n- 
 
 ,_ /unsupported length\ ,_ 
 
 Max. I - ^ - I =J.o 
 
 \ diameter / 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 _r 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 iy* 
 
 1M 
 
 26 
 
 ! 
 22 
 
 4/0 
 
 2H 
 
 1 
 
 10 
 
 
 458 
 
 472 
 
 487 
 
 504 
 
 523 
 
 
 
 
 
 
 12 
 
 
 466 
 
 481 
 
 500 
 
 520 
 
 543 
 
 
 
 
 
 
 14 
 
 '457 
 
 473 
 
 491 
 
 513 
 
 537 
 
 
 
 
 
 
 
 16 
 
 462 
 
 480 
 
 501 
 
 526 
 
 
 
 
 
 
 
 
 18 
 
 467 
 
 488 
 
 511 
 
 539 
 
 
 
 
 
 7/0 
 
 \*A 
 
 2 
 
 10 
 
 
 
 
 623 
 
 641 
 
 660 
 
 
 
 
 A /8 
 
 
 12 
 
 
 
 
 636 
 
 657 
 
 680 
 
 
 
 
 
 
 14 
 
 
 
 '628 
 
 649 
 
 674 
 
 
 
 
 
 
 
 16 
 
 
 .... 
 
 638 
 
 662 
 
 
 
 
 
 
 
 
 18 
 
 
 624 
 
 648 
 
 675 
 
 
 
 27 
 
 23 
 
 4/0 
 
 2H 
 
 1 
 
 10 
 
 
 498 
 
 511 
 
 526 
 
 543 
 
 562 
 
 
 
 
 
 
 12 
 
 
 505 
 
 521 
 
 539 
 
 560 
 
 583 
 
 
 
 
 
 
 14 
 
 '497 
 
 512 
 
 531 
 
 552 
 
 576 
 
 
 
 
 
 
 
 16 
 
 502 
 
 520 
 
 541 
 
 565 
 
 592 
 
 
 
 
 
 
 
 18 
 
 507 
 
 527 
 
 551 
 
 578 
 
 
 
 
 
 7/0 
 
 1% 
 
 2 
 
 10 
 
 
 
 
 
 693 
 
 712 
 
 
 
 
 
 
 12 
 
 
 
 
 688 
 
 709 
 
 732 
 
 
 
 
 
 
 14 
 
 
 
 680 
 
 701 
 
 726 
 
 
 
 
 
 
 
 16 
 
 
 
 690 
 
 714 
 
 742 
 
 
 
 
 
 
 
 18 
 
 
 
 700 
 
 727 
 
 
 
 28 
 
 24 
 
 4/0 
 
 2 
 
 1 
 
 10 
 
 
 
 552 
 
 567 
 
 584 
 
 603 
 
 
 
 
 
 
 12 
 
 
 546 
 
 562 
 
 580 
 
 601 
 
 623 
 
 
 
 
 
 
 14 
 
 
 553 
 
 572 
 
 593 
 
 617 
 
 644 
 
 
 
 
 
 
 16 
 
 543 
 
 560 
 
 581 
 
 606 
 
 633 
 
 
 
 
 
 
 
 18 
 
 548 
 
 568 
 
 591 
 
 619 
 
 650 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 10 
 
 
 
 
 
 747 
 
 766 
 
 
 
 
 A /2 
 
 
 12 
 
 
 
 
 743 
 
 763 
 
 786 
 
 
 
 
 
 
 14 
 
 
 
 
 756 
 
 780 
 
 806 
 
 
 
 
 
 
 16 
 
 
 
 '744 
 
 769 
 
 796 
 
 
 
 
 
 
 
 18 
 
 
 
 754 
 
 782 
 
 813 
 
 
 29 
 
 25 
 
 5/0 
 
 2M 
 
 1 
 
 10 
 
 
 
 594 
 
 610 
 
 627 
 
 646 
 
 
 
 
 
 
 12 
 
 
 '589 
 
 604 
 
 623 
 
 643 
 
 f>60 
 
 
 
 
 
 
 14 
 
 
 596 
 
 614 
 
 636 
 
 660 
 
 687 
 
 
 
 
 
 
 16 
 
 '585 
 
 603 
 
 624 
 
 648 
 
 676 
 
 707 
 
 
 
 
 
 
 18 
 
 590 
 
 610 
 
 634 
 
 661 
 
 692 
 
 
 
 
 
 
 
 20 
 
 595 
 
 618 
 
 644 
 
 674 
 
 
 
 
 
 7/0 
 
 114 
 
 2 
 
 10 
 
 
 
 
 
 804 
 
 823 
 
 
 
 
 * /2 
 
 
 12 
 
 
 
 
 
 820 
 
 843 
 
 
 
 
 
 
 14 
 
 
 
 
 '812 
 
 836 
 
 863 
 
 
 
 
 
 
 16 
 
 
 
 
 825 
 
 853 
 
 884 
 
 
 
 
 
 
 18 
 
 
 
 'sii 
 
 838 
 
 869 
 
 
 
 
 
 
 
 20 
 
 
 
 821 
 
 851 
 
 
 
 30 
 
 26 
 
 5/0 
 
 2?<t 
 
 1 
 
 12 
 
 
 633 
 
 649 
 
 667 
 
 688 
 
 711 
 
 
 
 
 
 
 14 
 
 
 640 
 
 659 
 
 680 
 
 704 
 
 731 
 
 
 
 
 
 
 16 
 
 
 648 
 
 669 
 
 693 
 
 720 
 
 751 
 
 
 
 
 
 
 18 
 
 '635 
 
 655 
 
 678 
 
 706 
 
 737 
 
 
 
 
 
 
 
 20 
 
 640 
 
 662 
 
 688 
 
 719 
 
 753 
 
 
 
 
 7/0 
 
 IK 
 
 1.93 
 
 12 
 
 
 
 
 
 867 
 
 890 
 
 
 
 
 
 
 14 
 
 
 
 
 '859 
 
 883 
 
 910 
 
 
 
 
 
 
 16 
 
 
 
 
 872 
 
 900 
 
 930 
 
 
 
 
 
 
 18 
 
 
 
 '858 
 
 885 
 
 916 
 
 
 
 
 1 
 
 
 
 20 
 
 .... 
 
 
 868 
 
 898 
 
 932 
 
 
 132 
 
TABLE 37 
 
 COLUMNS 
 
 Column 3L2S. 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 Max. 
 
 /unsupported length\ 
 
 diameter 
 
 15 
 
 3000-lb. concrete 
 1:3 mixture 
 n = 12 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H 
 
 M 
 
 1 
 
 IK 
 
 IK 
 
 31 
 
 27 
 
 5/0 
 
 7/0 
 
 2K 
 IK 
 
 1 
 1.86 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 686 
 691 
 
 '687 
 694 
 701 
 708 
 716 
 
 695 
 705 
 715 
 725 
 735 
 745 
 
 713 
 
 726 
 739 
 752 
 765 
 
 778 
 
 '962 
 915 
 928 
 941 
 954 
 
 734 
 750 
 767 
 783 
 800 
 816 
 
 910 
 926 
 943 
 959 
 976 
 992 
 
 757 
 
 777 
 797 
 818 
 
 933 
 953 
 974 
 994 
 
 
 
 
 
 
 901 
 911 
 921 
 
 
 
 32 
 
 28 
 
 5/0 
 7/0 
 
 2 
 IK 
 
 1 
 1.80 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 '739 
 
 '735 
 742 
 749 
 756 
 764 
 
 743 
 753 
 763 
 773 
 783 
 793 
 
 761 
 774 
 787 
 800 
 813 
 826 
 
 '956 
 963 
 976 
 989 
 1002 
 
 782 
 798 
 815 
 831 
 848 
 864 
 
 957 
 974 
 990 
 1007 
 1023 
 1039 
 
 805 
 825 
 845 
 866 
 886 
 
 981 
 1001 
 1021 
 1041 
 1061 
 
 
 
 '958 
 968 
 
 
 
 33 
 
 29 
 
 6/0 
 7/0 
 
 2K 
 l 
 
 1.73 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 '789 
 
 '791 
 799 
 806 
 813 
 
 793 
 803 
 812 
 822 
 832 
 842 
 
 811 
 824 
 837 
 850 
 863 
 876 
 
 832 
 848 
 864 
 881 
 897 
 913 
 
 1004 
 1020 
 1037 
 1053 
 1070 
 1086 
 
 855' 
 875 
 895 
 915 
 936 
 
 1027 
 1047 
 1067 
 1088 
 1108 
 
 
 
 
 1009 
 1022 
 1035 
 1048 
 
 
 
 ioos 
 
 1015 
 
 .... 
 
 .... 
 
 34 
 
 30 
 
 6/0 
 
 7/0 
 
 2K 
 IK 
 
 1 
 1.67 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 
 
 844 
 854 
 864 
 874 
 884 
 894 
 904 
 
 862 
 875 
 888 
 901 
 914 
 927 
 940 
 
 883 
 899 
 916 
 932 
 949 
 965 
 981 
 
 1053 
 1069 
 1086 
 1101 
 1118 
 1135 
 1151 
 
 906 
 926 
 946 
 967 
 987 
 1007 
 
 1076 
 1096 
 1116 
 1137 
 1157 
 1177 
 
 ! .... 
 '845 
 
 843 
 850 
 857 
 865 
 872 
 
 
 
 
 1058 
 1071 
 1084 
 1097 
 1110 
 
 :::: 
 
 :::: 
 
 i654 
 1063 
 1073 
 
 133 
 
COLUMNS 
 
 TABLE 37 
 
 3000- Ib. concrete 
 1:3 mixture 
 n=12 
 f c=7 50 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 P=Af c [(l+4np'}+(n-l}p\ 
 Max /unsupported length\ 
 \ diameter / 
 
 Column Size ^ 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 I W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 $i 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 35 
 
 31 
 
 6/0 
 
 2>6 
 
 i 
 
 14 
 
 
 907 
 
 929 
 
 953 
 
 980 
 
 
 
 
 
 
 16 .... 
 
 
 917 
 
 941 
 
 969 
 
 1000 
 
 
 
 
 
 
 18 
 
 '963 
 
 927 
 
 954 
 
 985 
 
 1020 
 
 
 
 
 
 
 20 
 
 
 911 
 
 937 
 
 967 
 
 1002 
 
 1040 
 
 
 
 
 
 
 22 
 
 
 918 
 
 947 
 
 980 
 
 1018 
 
 1061 
 
 
 
 
 
 
 24 
 
 
 925 
 
 957 
 
 993 
 
 1035 
 
 1081 
 
 
 
 7/0 
 
 1H 
 
 ].62 
 
 14 
 
 
 
 
 
 1123 
 
 1150 
 
 
 
 
 
 
 16 
 
 
 
 
 iiii 
 
 1139 
 
 1170 
 
 
 
 
 
 
 18 
 
 
 
 .... 
 
 1124 
 
 1155 
 
 1190 
 
 
 
 
 
 20 
 
 
 
 
 1137 
 
 1172 
 
 1210 
 
 
 
 
 
 
 22 
 
 
 
 iii7 
 
 1150 
 
 1188 
 
 1231 
 
 
 
 
 
 
 24 
 
 
 
 1127 
 
 1163 
 
 1205 
 
 1251 
 
 36 
 
 32 
 
 6/0 
 
 2 
 
 1 
 
 14 
 
 
 
 962 
 
 983 
 
 1007 
 
 1034 
 
 
 
 
 
 
 16 
 
 
 
 972 
 
 996 
 
 1024 
 
 1055 
 
 
 
 
 
 
 18 
 
 
 
 982 
 
 1009 
 
 1040 
 
 1075 
 
 
 
 
 
 
 20 
 
 
 '965 
 
 992 
 
 1022 
 
 1056 
 
 1095 
 
 
 
 
 
 
 22 
 
 
 973 
 
 1002 
 
 1035 
 
 1073 
 
 1115 
 
 
 
 
 
 
 24 
 
 
 980 
 
 1012 
 
 1048 
 
 10.89 
 
 1136 
 
 
 
 7/0 
 
 IK 
 
 1.57 
 
 14 
 
 
 
 
 
 1173 
 
 1200 
 
 
 
 
 
 
 16 
 
 
 
 
 ii<52 
 
 1189 
 
 1220 
 
 
 
 
 
 
 18 
 
 
 
 
 1175 
 
 1206 
 
 1240 
 
 
 
 
 
 
 20 
 
 
 
 
 1187 
 
 1222 
 
 1260 
 
 
 
 
 
 
 22 
 
 
 
 ii67 
 
 1200 
 
 1239 
 
 1280 
 
 
 
 \ 
 
 
 
 24 I .... 
 
 
 1177 
 
 1213 
 
 1256 
 
 1301 
 
 37 
 
 33 7/0 
 
 2M 
 
 1 14 
 
 
 1040 
 
 1064 
 
 1091 
 
 
 
 
 16 , 
 
 i028 
 
 1053 
 
 1080 
 
 1111 
 
 
 
 
 
 
 18 .... 
 
 
 1038 
 
 1066 
 
 1097 
 
 1131 
 
 
 
 
 
 
 20 .... 
 
 1022 
 
 1048 
 
 1079 
 
 1113 
 
 1151 
 
 
 
 
 
 
 22 
 
 1029 
 
 1058 
 
 1092 
 
 1130 
 
 1172 
 
 
 
 
 
 
 24 
 
 
 1037 
 
 1068 
 
 1105 
 
 1146 
 
 1192 
 
 
 
 
 
 
 26 
 
 
 1044 
 
 1078 
 
 1118 
 
 1164 
 
 1212 
 
 
 
 7/0 
 
 U2 
 
 1.52 
 
 14 
 
 
 
 
 
 1225 
 
 1251 
 
 
 
 
 
 
 16 
 
 
 
 
 
 1241 
 
 1272 
 
 
 
 
 
 
 18 
 
 
 
 
 i226 
 
 1257 
 
 1292 
 
 
 
 
 
 
 20 
 
 .... 
 
 
 
 1239 
 
 1274 
 
 1312 
 
 
 
 
 
 
 22 
 
 
 i2ij> 
 
 1252 
 
 1290 
 
 1332 
 
 
 
 
 
 
 24 
 
 1229 
 
 1265 
 
 1307 
 
 1353 
 
 
 
 
 
 
 26 
 
 1239 
 
 1278 
 
 1323 
 
 1373 
 
 38 
 
 34 
 
 7/0 
 
 2Y& 
 
 1 14 
 
 
 1098 
 
 1123 
 
 1149 
 
 
 
 
 
 16 
 
 io87 
 
 1111 
 
 1139 
 
 1170 
 
 
 
 
 
 
 18 : .... 
 
 
 1097 
 
 1124 
 
 1155 
 
 1190 
 
 
 
 
 
 
 20 .... 
 
 
 1107 
 
 1137 
 
 1172 
 
 1210 
 
 
 
 
 
 
 22 .... 
 
 1088 
 
 1117 
 
 1150 
 
 1188 
 
 1230 
 
 
 
 
 
 
 24 
 
 1095 
 
 1127 
 
 1163 
 
 1205 
 
 1251 
 
 
 
 
 
 
 26 
 
 1102 
 
 1137 
 
 1176 
 
 1221 
 
 1271 
 
 
 
 7/0 
 
 1>2 
 
 1.48 
 
 14 
 
 
 
 
 
 1279 
 
 1306 
 
 
 
 
 
 
 16 
 
 
 
 
 
 1296 
 
 1326 
 
 
 
 
 
 
 18 
 
 
 
 . . . . 
 
 i2si 
 
 1312 
 
 1347 
 
 
 
 
 
 
 20 
 
 
 
 
 1294 
 
 1328 
 
 1367 
 
 
 
 
 
 
 22 
 
 
 
 
 1307 
 
 1345 
 
 1387 
 
 
 
 
 
 
 24 
 
 
 
 1283 
 
 1320 
 
 1361 
 
 1407 
 
 
 
 
 
 
 26 
 
 
 
 1293 
 
 1333 
 
 1378 
 
 1428 
 
 134 
 
TABLE S7 
 
 COLUMNS 
 
 ROUND .CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 -- /unsupported length\ ,_ 
 
 Max. [ - j-. - - - J = 15 
 
 \ diameter / 
 
 3000-lb. concrete 
 1:3 mixture 
 n = 12 
 f f =750 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 i 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 K 
 
 H 
 
 % 
 
 1 
 
 IX 
 
 1M 
 
 39 
 
 35 
 
 7/0 
 7/0 
 
 2K 
 
 l)i 
 
 1 
 1.43 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 
 
 il47 
 1157 
 1167 
 1177 
 1187 
 1197 
 
 1158 
 1172 
 1185 
 1197 
 1210 
 1223 
 123G 
 
 1183 
 1199 
 1216 
 1232 
 1248 
 1265 
 1281 
 
 1334 
 1351 
 1367 
 1383 
 1400 
 1416 
 1433 
 
 1210 
 1230 
 1250 
 1270 
 1291 
 1311 
 1331 
 
 1361 
 1381 
 1402 
 1422 
 1442 
 1462 
 1483 
 
 
 1148 
 1155 
 1163 
 
 
 
 
 1336 
 1349 
 1362 
 1375 
 1388 
 
 
 
 1339 
 1348 
 
 40 
 
 36 
 
 7/0 
 7/0 
 
 cy 
 
 1H 
 
 1.40 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 
 
 
 1233 
 1246 
 1259 
 1272 
 1285 
 1298 
 1311 
 
 1261 
 1277 
 1294 
 1310 
 1327 
 1313 
 1359 
 
 1406 
 1423 
 1439 
 1455 
 1472 
 1488 
 1505 
 
 1292 
 1312 
 1332 
 1353 
 1373 
 1393 
 1413 
 
 1437 
 1457 
 1477 
 1498 
 1518 
 1538 
 1558 
 
 
 i225 
 1231 
 
 1229 
 1239 
 1249 
 1259 
 1269 
 
 
 
 
 1404 
 1417 
 1430 
 1443 
 1456 
 
 
 
 1394 
 1404. 
 1414 
 
 41 
 
 37 
 
 7/0 
 7/0 
 
 2 
 
 1H 
 
 1.36 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 
 i2si 
 
 1288 
 1295 
 
 .... 
 
 i283 
 1293 
 1303 
 1312 
 1322 
 1332 
 
 i4o9 
 1469 
 
 1297 
 1310 
 1323 
 1336 
 1349 
 1361 
 1375 
 
 i-iso 
 
 1473 
 I486 
 1499 
 1512 
 
 1325 
 1341 
 1357 
 1374 
 1390 
 1407 
 1423 
 
 1462 
 1478 
 1495 
 1511 
 1527 
 1544 
 1560 
 
 1355 
 1376 
 1396 
 1416 
 1436 
 1457 
 1477 
 
 1492 
 1513 
 1533 
 1553 
 1573 
 1594 
 1614 
 
 135 
 
COLUMNS 
 
 TABLE 37 
 
 3000 -lb. concrete 
 1:3 mixture 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 AMERICAN CONCRETE INSTITUTE 
 
 RECOMMENDATIONS 
 
 = Af c [(l+4np')+(n-l}p] 
 (unsupported length\ _ 
 ' \ diameter / 
 
 Column Size ^ 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 H 
 
 H 
 
 % 
 
 1 
 
 IH 
 
 IK 
 
 42 
 
 38 
 
 7/0 
 
 2 
 
 1 16 ! ... 
 
 
 
 1362 
 
 1390 
 
 1421 
 
 
 
 
 
 
 18 
 
 
 
 
 1375 
 
 1406 
 
 1441 
 
 
 
 
 
 
 20 
 
 
 
 i358 
 
 1388 
 
 1423 
 
 1461 
 
 
 
 
 
 
 22 
 
 
 
 1368 
 
 1401 
 
 1439 
 
 1482 
 
 
 
 
 
 
 24 
 
 
 
 1378 
 
 1414 
 
 1456 
 
 1502 
 
 
 
 
 
 
 26 
 
 
 1354 
 
 1388 
 
 1427 
 
 14*72 
 
 1522 
 
 
 
 
 
 
 28 
 
 
 1360 
 
 1398 
 
 1440 
 
 1488 
 
 1542 
 
 
 
 
 
 
 30 
 
 
 1368 
 
 1408 
 
 1453 
 
 1504 
 
 1563 
 
 
 
 7/0 
 
 IK 
 
 1.32 
 
 16 
 
 
 
 
 
 1520 
 
 1551 
 
 
 
 
 
 
 18 
 
 
 
 
 
 1537 
 
 1571 
 
 
 
 
 
 
 20 
 
 
 
 
 1519 
 
 1553 
 
 1591 
 
 
 
 
 
 
 22 
 
 
 
 
 1532 
 
 1570 
 
 1612 
 
 
 
 
 
 
 24 
 
 
 
 
 1545 
 
 1586 
 
 1632 
 
 
 
 
 
 
 26 
 
 
 
 isis 
 
 1558 
 
 1603 
 
 '1652 
 
 
 
 
 
 
 28 
 
 
 
 1528 
 
 1571 
 
 1619 
 
 1673 
 
 
 
 
 
 
 30 
 
 
 
 1538 
 
 1583 
 
 1635 
 
 1693 
 
 43 
 
 39 
 
 7/0 
 
 iy* 
 
 1 
 
 16 
 
 
 
 
 1430 
 
 1457 
 
 1488 
 
 
 
 
 
 
 18 
 
 
 
 
 1443 
 
 1474 
 
 1508 
 
 
 
 
 
 
 20 
 
 
 
 1425 
 
 1456 
 
 1490 
 
 1528 
 
 
 
 
 
 
 22 
 
 
 
 1435 
 
 1469 
 
 1506 
 
 1549 
 
 
 
 
 
 
 24 
 
 
 
 1445 
 
 1482 
 
 1523 
 
 1569 
 
 
 
 
 
 
 26 
 
 
 
 1455 
 
 1494 
 
 1539 
 
 1589 
 
 
 
 
 
 
 28 
 
 
 i428 
 
 1465 
 
 1507 
 
 1556 
 
 1609 
 
 
 
 
 
 
 30 
 
 
 1435 
 
 1475 
 
 1520 
 
 1572 
 
 1630 
 
 
 
 7/0 
 
 IK 
 
 1.29 
 
 16 
 
 
 
 
 
 1583 
 
 1613 
 
 
 
 
 
 
 18 
 
 
 
 
 
 1599 
 
 1634 
 
 
 
 
 
 
 20 
 
 
 
 
 1581 
 
 1615 
 
 1654 
 
 
 
 
 
 
 22 
 
 
 
 
 1594 
 
 1632 
 
 1674 
 
 
 
 
 
 
 24 
 
 
 
 
 1607 
 
 1648 
 
 1694 
 
 
 
 
 
 
 26 
 
 
 
 isso 
 
 1620 
 
 1665 
 
 1715 
 
 
 
 
 
 
 28 
 
 
 
 1590 
 
 1633 
 
 1681 
 
 1735 
 
 
 
 
 
 
 30 
 
 
 
 1600 
 
 1645 
 
 1697 
 
 1755 
 
 44 
 
 40 
 
 7/0 
 
 1% 
 
 1 
 
 16 
 
 
 
 
 1498 
 
 1526 
 
 1557 
 
 
 
 
 
 
 18 
 
 
 
 
 1511 
 
 1542 
 
 1577 
 
 
 
 
 
 
 20 
 
 
 
 
 1524 
 
 1559 
 
 1597 
 
 
 
 
 
 
 22 
 
 
 
 is b-4 
 
 1537 
 
 1575 
 
 1618 
 
 
 
 
 
 
 24 
 
 
 
 1514 
 
 1550 
 
 1592 
 
 ] 638 
 
 
 
 
 
 
 26 
 
 
 
 1524 
 
 1563 
 
 1608 
 
 1658 
 
 
 
 
 
 
 28 
 
 
 1496 
 
 1534 
 
 1576 
 
 1624 
 
 1678 
 
 
 
 
 
 
 30 
 
 
 1504 
 
 1544 
 
 1589 
 
 1641 
 
 1699 
 
 
 
 7/0 
 
 IK 
 
 1.25 
 
 16 
 
 
 
 
 
 1639 
 
 1670 
 
 
 
 
 
 
 18 
 
 
 
 
 
 1656 
 
 1690 
 
 
 
 
 
 
 20 
 
 
 
 
 1(337 
 
 1672 
 
 1710 
 
 
 
 
 
 
 22 
 
 
 
 
 1650 
 
 1688 
 
 1731 
 
 
 
 
 
 
 24 
 
 
 
 
 1663 
 
 1705 
 
 1751 
 
 
 
 
 
 
 26 
 
 
 
 
 1670 
 
 1721 
 
 1771 
 
 
 
 
 
 
 28 
 
 
 
 1647 
 
 1689 
 
 1738 
 
 1791 
 
 
 
 
 
 
 30 
 
 
 
 1657 
 
 1702 
 
 1754 
 
 1812 
 
 130 
 
TABLE 38 
 
 COLUMNS 
 
 Column size 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 NEW YORK CITY BUILDING CODE 
 REQUIREMENTS 
 
 P =Af c (l + (n -l)p] +2f s p'A 
 f t =20,000 
 
 1:6 mixture 
 n = 15 
 f e =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 eter 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 X 
 
 K 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 12 
 
 8 
 
 6 
 
 IK 
 
 1 
 
 6 
 
 58 
 
 
 
 
 
 
 13 9 5 
 
 1M 
 
 1 
 
 6 
 
 8 
 
 70 
 
 74 
 
 
 
 
 
 
 14 10 
 
 4 
 
 IK 
 
 1 
 
 6 
 
 8 
 
 83 
 
 88 
 
 89 
 
 
 
 
 
 15 11 
 
 3 
 
 IH 
 
 1 
 
 6 
 8 
 10 
 
 98 
 103 
 107 
 
 104 
 110 
 
 ill 
 
 
 
 
 16 
 
 12 
 
 2 
 
 3/0 
 
 IK 
 1H 
 
 1 
 2 
 
 6 
 
 8 
 10 
 
 6 
 8 
 10 
 
 115 
 119 
 123 
 
 'iei 
 
 168 
 
 120 
 126 
 133 
 
 166 
 172 
 178 
 
 127 
 172 
 
 
 
 
 17 
 
 13 
 
 1 
 4/0 
 
 IK 
 
 IVs 
 
 1 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 132 
 137 
 141 
 
 'i94 
 
 138 
 144 
 150 
 
 191 
 197 
 203 
 
 145 
 153 
 
 198 
 206 
 
 152 
 205 
 
 
 
 18 
 
 14 
 
 1 
 
 4/0 
 
 IK 
 IK 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 151 
 156 
 160 
 164 
 
 "222 
 226 
 
 157 
 163 
 169 
 176 
 
 '225 
 231 
 237 
 
 164 
 172 
 181 
 
 225 
 234 
 242 
 
 171 
 233 
 
 
 
 19 
 
 15 
 
 
 5/0 
 
 Ul 
 1% 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 172 
 176 
 180 
 185 
 
 '255 
 
 178 
 184 
 190 
 196 
 
 '254 
 261 
 
 267 
 
 184 
 193 
 201 
 
 255 
 263 
 272 
 
 192 
 203 
 
 263 
 274 
 
 201 
 271 
 
 
 20 
 
 16 
 
 2/0 
 
 6/0 
 
 2H 
 2 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 198 
 202 
 207 
 211 
 
 '29i 
 
 206 
 212 
 218 
 224 
 
 '292 
 299 
 305 
 
 215 
 223 
 231 
 
 295 
 303 
 312 
 
 225 
 236 
 
 305 
 316 
 
 237 
 317 
 
 
 137 
 
COLUMNS 
 
 TABLE 38 
 
 1:6 mixture 
 n = 15 
 f c =500 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 -l)p]+2f,p'A 
 f s = 20,000 
 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 rods 
 
 M 
 
 M 
 
 14 
 
 1 
 
 IK 
 
 IX 
 
 21 
 
 17 
 
 2/0 
 
 
 
 1 
 
 8 
 
 221 
 
 229 
 
 238 
 
 248 
 
 260 
 
 
 
 
 
 
 
 10 
 
 226 
 
 235 
 
 246 
 
 259 
 
 
 
 
 
 
 
 
 12 
 
 230 
 
 241 
 
 255 
 
 
 
 
 
 
 
 
 
 14 
 
 234 
 
 248 
 
 263 
 
 
 
 
 
 
 6/0 
 
 114 
 
 2 
 
 8 
 
 
 
 329 
 
 339 
 
 351 
 
 
 
 
 
 
 
 10 
 
 
 
 337 
 
 350 
 
 
 
 
 
 
 
 
 12 
 
 
 '332 
 
 346 
 
 
 
 
 
 
 
 
 
 14 
 
 
 338 
 
 354 
 
 
 
 
 22 
 
 18 
 
 3/0 
 
 2>4 
 
 1 
 
 8 
 
 
 254 
 
 263 
 
 273 
 
 285 
 
 298 
 
 
 
 
 
 
 10 
 
 '256 
 
 260 
 
 271 
 
 284 
 
 299 
 
 
 
 
 
 
 
 12 
 
 255 
 
 266 
 
 280 
 
 295 
 
 
 
 
 
 
 
 
 14 
 
 259 
 
 272 
 
 288 
 
 
 
 
 
 
 7/0 
 
 2 
 
 2 
 
 8 
 
 
 
 
 375 
 
 386 
 
 400 
 
 
 
 
 
 
 10 
 
 
 
 '373 
 
 386 
 
 400 
 
 
 
 
 
 
 
 12 
 
 
 '368 
 
 381 
 
 397 
 
 
 
 
 
 
 
 
 14 
 
 
 374 
 
 390 
 
 
 
 
 23 
 
 19 
 
 3/0 
 
 2V & 
 
 1 
 
 8 
 
 
 280 
 
 289 
 
 299 
 
 311 
 
 324 
 
 
 
 
 
 
 10 
 
 '277 
 
 286 
 
 297 
 
 310 
 
 325 
 
 
 
 
 
 
 
 12 
 
 281 
 
 292 
 
 306 
 
 321 
 
 
 
 
 
 
 
 
 14 
 
 285 
 
 298 
 
 314 
 
 332 
 
 
 
 
 
 
 
 
 16 
 
 289 
 
 305 
 
 322 
 
 
 
 
 
 
 7/0 
 
 114 
 
 2 
 
 8 
 
 
 
 
 412 
 
 424 
 
 437 
 
 
 
 
 
 
 10 
 
 
 
 411 
 
 423 
 
 438 
 
 
 
 
 
 
 
 12 
 
 
 
 419 
 
 434 
 
 
 
 
 
 
 
 
 14 
 
 
 '412 
 
 427 
 
 445 
 
 
 
 
 
 
 
 
 16 
 
 
 418 
 
 436 
 
 
 
 
 24 
 
 20 
 
 3/0 
 
 2 
 
 1 
 
 8 
 
 
 307 
 
 316 
 
 327 
 
 338 
 
 351 
 
 
 
 
 
 
 10 
 
 
 314 
 
 325 
 
 338 
 
 352 
 
 369 
 
 
 
 
 
 12 
 
 '308 
 
 320 
 
 333 
 
 349 
 
 366 
 
 
 
 
 
 
 14 
 
 313 
 
 326 
 
 342 
 
 360 
 
 
 
 
 i ! 
 
 
 16 317 
 
 332 
 
 350 
 
 371 
 
 
 
 
 7/0 
 
 114 
 
 2 8 
 
 
 
 
 452 
 
 464 
 
 477 
 
 
 
 
 10 
 
 
 
 
 . 463 
 
 478 
 
 494 
 
 
 
 12 
 
 
 
 '459 
 
 474 
 
 492 
 
 
 
 14 
 
 
 
 467 
 
 485 
 
 
 
 
 16 
 
 
 '458 
 
 476 
 
 496 
 
 
 
 25 
 
 21 
 
 4/0 2K 
 
 1 10 
 
 
 343 
 
 354 
 
 367 
 
 381 
 
 398 
 
 
 
 
 12 
 
 '337 
 
 349 
 
 362 
 
 378 
 
 395 
 
 
 
 
 1 
 
 14 342 
 
 355 
 
 371 
 
 389 
 
 
 
 
 
 
 16 346 
 
 361 
 
 379 
 
 400 
 
 
 
 
 
 7/0 1?4 
 
 l' 10 
 
 
 
 
 505 
 
 520 
 
 536 
 
 
 
 
 
 12 
 
 
 
 'soi 
 
 516 
 
 534 
 
 
 
 
 
 
 14 
 
 
 
 509 
 
 527 
 
 
 
 
 
 
 16 
 
 
 500 
 
 518 
 
 538 
 
 
 138 
 
TABLE 88 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 f , 
 
 1:6 mixture 
 
 71=15 
 
 f e =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Percent 
 of core 
 
 K 
 
 H 
 
 H 
 
 1 
 
 I.H 
 
 1>4 
 
 26 
 
 22 
 
 4/0 
 7/0 
 
 2 ?-8 
 
 1 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 '372 
 376 
 381 
 
 373 
 
 379 
 385 
 391 
 398 
 
 384 
 393 
 401 
 409 
 418 
 
 397 
 408 
 419 
 430 
 441 
 
 549 
 560 
 571 
 582 
 593 
 
 412 
 425 
 439 
 
 564 
 578 
 592 
 
 428 
 445 
 
 580 
 597 
 
 
 550 
 
 '553 
 561 
 570 
 
 27 
 
 23 
 
 1 
 
 4/0 
 7/0 
 
 2H 
 1^ 
 
 2 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 "404 
 408 
 413 
 
 405 
 411 
 417 
 423 
 430 
 
 416 
 424 
 433 
 441 
 450 
 
 429 
 440 
 451 
 462 
 473 
 
 443 
 457 
 171 
 485 
 
 610 
 624 
 638 
 651 
 
 460 
 477 
 
 626 
 643 
 
 
 
 
 '599 
 607 
 616 
 
 606 
 617 
 628 
 639 
 
 
 
 28 
 
 24 
 
 4/0 
 7/0 
 
 2 
 
 IH 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 441 
 446 
 
 444 
 450 
 457 
 463 
 
 449 
 458 
 466 
 474 
 483 
 
 '655 
 664 
 
 462 
 473 
 484 
 495 
 506 
 
 '654 
 665 
 676 
 687 
 
 477 
 491 
 505 
 518 
 532 
 
 658 
 672 
 686 
 699 
 713 
 
 493 
 510 
 527 
 
 674 
 
 691 
 708 
 
 29 
 
 25 
 
 5/0 
 
 7/0 
 
 2X 
 
 iy z 
 
 1 
 2 
 
 '476 
 480 
 485 
 
 479 
 485 
 491 
 497 
 504 
 
 484 
 492 
 501 
 509 
 518 
 526 
 
 497 
 508 
 519 
 530 
 541 
 551 
 
 511 
 525 
 539 
 553 
 567 
 
 708 
 722 
 736 
 749 
 763 
 
 528 
 545 
 562 
 579 
 
 724 
 741 
 
 758 
 776 
 
 
 
 '714 
 722 
 
 715 
 726 
 737 
 748 
 
 
 
 30 
 
 26 
 
 5/0 
 7/0 
 
 2 
 
 1H 
 
 1 
 1.93 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 'sie 
 
 521 
 
 515 
 521 
 527 
 533 
 540 
 
 528 
 537 
 545 
 554 
 562 
 
 544 
 555 
 566 
 577 
 588 
 
 '752 
 763 
 
 774 
 785 
 
 501 
 575 
 589 
 603 
 
 759 
 773 
 787 
 801 
 815 
 
 581 
 598 
 615 
 
 778 
 796 
 813 
 
 
 
 '75i 
 760 
 
 139 
 
COLUMNS 
 
 TABLE 38 
 
 1:6 mixture 
 
 n=15 
 
 f c =500 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 -l)p]+2f s p'A 
 f s =20,000 
 length \ 
 
 * \diameterl 
 
 = 15 
 
 
 ! 
 
 
 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 H 
 
 % 
 
 % 
 
 1 
 
 Ui 
 
 1M 
 
 31 
 
 27 
 
 5/0 
 
 2V 
 
 1 
 
 12 
 
 
 
 566 
 
 581 
 
 599 
 
 618 
 
 
 
 
 ^7a 
 
 
 14 
 
 
 559 
 
 574 
 
 592 
 
 613 
 
 636 
 
 
 
 
 
 
 16 
 
 
 565 
 
 583 
 
 603 
 
 627 
 
 653 
 
 
 
 
 
 
 18 
 
 
 571 
 
 591 
 
 614 
 
 641 
 
 670 
 
 
 
 
 
 
 20 
 
 '558 
 
 577 
 
 599 
 
 625 
 
 654 
 
 
 
 
 
 
 
 22 
 
 563 
 
 583 
 
 608 
 
 636 
 
 668 
 
 
 
 
 7/0 
 
 1M 
 
 1.86 
 
 12 
 
 
 
 
 
 796 
 
 816 
 
 
 
 
 
 
 14 
 
 
 
 
 '796 
 
 810 
 
 833 
 
 
 
 
 
 
 16 
 
 
 
 
 801 
 
 824 
 
 850 
 
 
 
 
 
 
 18 
 
 
 
 '789 
 
 812 
 
 838 
 
 868 
 
 
 
 
 
 
 20 
 
 
 
 797 
 
 823 
 
 852 
 
 
 
 
 
 
 
 22 
 
 
 
 806 
 
 834 
 
 866 
 
 
 32 
 
 28 
 
 5/0 
 
 2 
 
 1 
 
 12 
 
 
 
 605 
 
 620 
 
 638 
 
 657 
 
 
 
 
 
 
 14 
 
 
 '597 
 
 613 
 
 631 
 
 652 
 
 674 
 
 
 
 
 
 
 16 
 
 
 604 
 
 622 
 
 642 
 
 666 
 
 692 
 
 
 
 
 
 
 18 
 
 
 610 
 
 630 
 
 653 
 
 679 
 
 709 
 
 
 
 
 
 
 20 
 
 
 616 
 
 638 
 
 664 
 
 693 
 
 726 
 
 
 
 
 
 
 22 
 
 'eoi 
 
 622 
 
 647 
 
 675 
 
 707 
 
 
 
 
 7/0 
 
 1H 
 
 1.80 
 
 12 
 
 
 
 
 
 834 
 
 854 
 
 
 
 
 
 
 14 
 
 
 
 
 '827 
 
 ' 848 
 
 871 
 
 
 
 
 
 
 16 
 
 
 
 
 838 
 
 862 
 
 888 
 
 
 
 
 
 
 18 
 
 
 
 
 849 
 
 876 
 
 905 
 
 
 
 
 
 
 20 
 
 
 
 '835 
 
 860 
 
 890 
 
 922 
 
 
 
 
 
 
 22 
 
 
 
 843 
 
 871 
 
 904 
 
 
 33 
 
 29 
 
 6/0 
 
 2H 
 
 1 
 
 12 
 
 
 
 645 
 
 660 
 
 678 
 
 697 
 
 
 
 
 
 
 14 
 
 
 
 653 
 
 671 
 
 692 
 
 715 
 
 
 
 
 
 
 16 
 
 
 '644 
 
 662 
 
 682 
 
 706 
 
 732 
 
 
 
 
 
 
 18 
 
 ! ! . . 
 
 650 
 
 670 
 
 693 
 
 720 
 
 749 
 
 
 
 
 
 
 20 
 
 
 656 
 
 679 
 
 704 
 
 734 
 
 766 
 
 
 
 
 
 
 22 
 
 *642 
 
 662 
 
 687 
 
 715 
 
 747 
 
 
 
 
 7/0 
 
 1H 
 
 1.73 
 
 12 
 
 
 
 
 
 869 
 
 889 
 
 
 
 
 
 
 14 
 
 
 
 
 
 883 
 
 906 
 
 
 
 
 
 
 16 
 
 
 
 
 '874 
 
 897 
 
 923 
 
 
 
 
 
 
 18 
 
 
 
 
 885 
 
 911 
 
 940 
 
 
 
 
 
 
 20 
 
 
 
 '870 
 
 896 
 
 925 
 
 958 
 
 
 
 
 
 
 22 
 
 
 
 878 
 
 907 
 
 939 
 
 
 34 
 
 30 
 
 6/0 
 
 2X 
 
 1 
 
 12 
 
 
 
 687 
 
 702 
 
 720 
 
 739 
 
 
 
 
 
 
 14 
 
 
 
 695 
 
 713 
 
 734 
 
 756 
 
 
 
 
 
 
 16 
 
 
 '686 
 
 704 
 
 724 
 
 748 
 
 774 
 
 
 
 
 
 
 18 
 
 
 692 
 
 712 
 
 735 
 
 761 
 
 791 
 
 
 
 
 
 
 20 
 
 
 698 
 
 720 
 
 746 
 
 775 
 
 808 
 
 
 
 
 
 
 22 
 
 
 704 
 
 729 
 
 757 
 
 789 
 
 825 
 
 
 
 
 
 
 24 
 
 '688 
 
 710 
 
 737 
 
 768 
 
 803 
 
 
 
 
 7/0 
 
 \H 
 
 1.67 
 
 12 
 
 
 
 
 
 908 
 
 928 
 
 
 
 
 
 
 14 
 
 
 
 
 
 922 
 
 945 
 
 
 
 
 
 
 16 
 
 
 
 
 '913 
 
 936 
 
 962 
 
 
 
 
 
 
 18 
 
 
 
 
 924 
 
 950 
 
 980 
 
 
 
 
 
 
 20 
 
 
 
 909 
 
 935 
 
 964 
 
 997 
 
 
 
 
 
 
 22 
 
 
 
 917 
 
 946 
 
 978 
 
 1014 
 
 
 
 
 
 
 24 
 
 
 
 926 
 
 957 
 
 992 
 
 
 140 
 
TABLE 38 
 
 COLUMNS 
 
 Column size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 P = Af e [l + (w -l)p] +2f s p'A 
 f,=20,000 
 I length \ 
 
 Max. 
 
 \diameteri 
 
 = 15 
 
 1:6 mixture 
 n = 15 
 f e =500 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 *A 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 t# 
 
 35 
 
 31 
 
 6/0 
 7/0 
 
 2^ 
 1H 
 
 1 
 1.62 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 
 '735 
 
 741 
 747 
 754 
 
 738 
 747 
 755 
 763 
 772 
 780 
 
 756 
 
 767 
 778 
 789 
 800 
 811 
 
 777 
 791 
 805 
 818 
 832 
 846 
 
 964 
 978 
 992 
 1006 
 1020 
 1033 
 
 800 
 817 
 834 
 851 
 868 
 885 
 
 987 
 1004 
 1021 
 1038 
 1055 
 1073 
 
 
 
 
 954 
 965 
 976 
 987 
 998 
 
 
 
 959 
 967 
 
 36 
 
 32 
 
 6/0 
 
 7/0 
 
 2 
 
 IK. 
 
 1 
 1.57 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 
 '786 
 792 
 798 
 
 783 
 791 
 799 
 808 
 816 
 825 
 
 801 
 812 
 823 
 834 
 845 
 856 
 
 '994 
 1005 
 1016 
 1026 
 1038 
 
 821 
 835 
 849 
 863 
 877 
 891 
 
 1003 
 1017 
 1031 
 1045 
 1059 
 1073 
 
 844 
 861 
 878 
 896 
 913 
 930 
 
 1026 
 1043 
 1060 
 1078 
 1095 
 1112 
 
 
 
 '999 
 1007 
 
 37 
 
 33 
 
 7/0 
 7/0 
 
 2tf 
 1H 
 
 1 
 1.52 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 
 
 847 
 858 
 869 
 880 
 891 
 902 
 913 
 
 867 
 881 
 895 
 909 
 923 
 937 
 951 
 
 1043 
 1057 
 1071 
 1085 
 1099 
 1113 
 1127 
 
 890 
 907 
 924 
 942 
 959 
 976 
 993 
 
 1066 
 1083 
 1101 
 1118 
 1135 
 1152 
 1169 
 
 .... 
 
 '832 
 838 
 844 
 850 
 
 837 
 845 
 854 
 862 
 871 
 879 
 
 
 
 
 
 
 
 
 1045 
 1056 
 1067 
 1078 
 1089 
 
 
 
 1039 
 1047 
 1055 
 
 68 
 
 34 
 
 7/0 
 7/0 
 
 2H 
 
 1>2 
 
 1 
 
 1.4S 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 '885 
 891 
 898 
 
 .... 
 
 '884 
 893 
 901 
 909 
 918 
 927 
 
 1692 
 1100 
 
 894 
 905 
 916 
 927 
 938 
 949 
 960 
 
 1690 
 1101 
 1112 
 1123 
 1134 
 
 915 
 928 
 942 
 956 
 970 
 984 
 998 
 
 1088 
 1102 
 1116 
 1130 
 1144 
 1158 
 1171 
 
 937 
 955 
 972 
 989 
 1006 
 1023 
 1-040 
 
 1111 
 1128 
 1146 
 1163 
 1180 
 1197 
 1214 
 
 
 141 
 
COLUMNS 
 
 TABLE 38 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 Cofumn size ^ 
 
 1:6 mixture 
 n = 15 
 f c =500 
 
 -l)p]+2f s p'A 
 f s =20,000 
 / length \ 
 \diameter 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 kT 1 ' 
 
 
 
 
 Number ~ 
 nf 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 rods ^ ^ 
 
 7 A 
 
 1 
 
 1H 
 
 1>4 
 
 39 
 
 35 7/0 2> 
 
 1 14 1 
 
 943 
 
 963 
 
 986 
 
 
 
 16 
 
 933 
 
 954 
 
 977 
 
 1003 
 
 
 j | 
 
 
 18 
 
 942 
 
 964 
 
 991 
 
 1020 
 
 
 
 
 
 
 20 
 
 950 
 
 975 
 
 1005 
 
 1038 
 
 
 
 
 
 
 22 934 
 
 958 
 
 986 
 
 1019 
 
 1055 
 
 
 
 
 
 
 24 940 
 
 967 
 
 997 
 
 1033 
 
 1071 
 
 
 
 
 26 ' i 946 
 
 975 
 
 1008 
 
 1047 
 
 1089 
 
 
 
 7/0 
 
 \Y 2 1.43 14 
 
 
 
 1129 
 
 1152 
 
 
 
 
 16 
 
 
 
 1143 
 
 1169 
 
 
 
 
 
 18 
 
 
 iisb 
 
 1157 
 
 1187 
 
 
 
 
 
 20 
 
 
 1141 
 
 1171 
 
 1204 
 
 
 
 
 
 22 
 
 
 1152 
 
 1185 
 
 1221 
 
 
 
 
 24 
 
 iis3 
 
 1164 
 
 1199 
 
 1238 
 
 
 
 26 
 
 1141 
 
 1175 
 
 1213 
 
 1255 
 
 40 36 7/0 2 1 
 
 16 
 
 
 1005 
 
 1028 
 
 1055 
 
 
 
 
 18 
 
 '992 
 
 1016 
 
 1042 
 
 1072 
 
 
 
 
 
 20 
 
 1001 
 
 1027 
 
 1056 
 
 1089 
 
 
 
 
 
 22 
 
 1010 
 
 1038 
 
 1070 
 
 1106 
 
 
 
 
 
 
 24 990 
 
 1018 
 
 1049 
 
 1084 
 
 1123 
 
 
 
 
 
 
 26 997 
 
 1027 
 
 1060 
 
 1098 
 
 1140 
 
 
 
 
 
 
 28 1004 
 
 1035 
 
 1071 
 
 1112 
 
 1158 
 
 
 
 7/0 
 
 IH 
 
 1.40 
 
 16 
 
 
 
 1190 
 
 1216 
 
 
 
 
 
 
 18 
 
 .... 
 
 
 1204 
 
 1234 
 
 
 
 
 
 
 20 
 
 
 iis9 
 
 1218 
 
 1251 
 
 
 
 
 
 
 22 
 
 
 1200 
 
 1232 
 
 1268 
 
 
 
 
 
 
 24 
 
 iisb 
 
 1211 
 
 1246 
 
 1285 
 
 
 
 
 26 
 
 1188 
 
 1222 
 
 1260 
 
 1302 
 
 
 28 ' 
 
 1197 
 
 1233 
 
 1274 
 
 1320 
 
 41 37 
 
 7/0 
 
 2 1 
 
 16 
 
 
 1056 
 
 1079 
 
 1105 
 
 
 
 
 18 
 
 1643 
 
 1067 
 
 1093 
 
 1122 
 
 
 
 
 20 
 
 1052 
 
 1078 
 
 1107 
 
 1139 
 
 
 
 
 
 22 
 
 1060 
 
 1089 
 
 1121 
 
 1157 
 
 
 
 
 
 
 24 1042 
 
 1069 
 
 1100 
 
 1135 
 
 1174 
 
 
 
 
 
 
 26 1048 
 
 1077 
 
 1111 
 
 1149 
 
 1191 
 
 
 
 
 
 
 28 1054 
 
 1085 
 
 1122 
 
 1162 
 
 1208 
 
 
 
 
 ! , 
 
 
 
 
 
 
 
 7/0 \K 
 
 1.36 
 
 16 
 
 
 
 1233 
 
 1259 
 
 
 
 ! 
 
 18 
 
 
 
 1247 
 
 1277 
 
 
 
 20 
 
 
 1232 
 
 1261 
 
 1294 
 
 
 
 
 
 22 1 1 
 
 
 1243 
 
 1275 
 
 1311 
 
 
 
 
 
 24 
 
 
 1254 
 
 1289 
 
 1328 
 
 
 
 
 
 26 
 
 i23i 
 
 1265 
 
 1303 
 
 1345 
 
 
 
 
 
 28 
 
 1240 
 
 1276 
 
 1317 
 
 1362 
 
 142 
 
TABLE 38 
 
 COLUMNS 
 
 Column Size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 f,=20, 
 
 1:6 mixture 
 
 n=15 
 
 f c =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 {.inches) 
 
 Per cent 
 of core 
 
 
 
 H 
 
 y* 
 
 1 
 
 IX 
 
 M 
 
 42 
 
 38 
 
 7/0 
 7/0 
 
 2 
 1 
 
 1 
 1.32 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 hoi 
 
 1107 
 1113 
 
 iios 
 
 1113 
 1122 
 1130 
 1138 
 1147 
 
 1109 
 1120 
 1131 
 1142 
 1153 
 1164 
 1175 
 1186 
 
 1132 
 1146 
 1160 
 1174 
 1188 
 12D2 
 1215 
 1229 
 
 1277 
 1291 
 1305 
 1319 
 1333 
 1347 
 1361 
 1375 
 
 1158 
 1175 
 1192 
 1210 
 1227 
 1244 
 1261 
 1278 
 
 1303 
 1321 
 1338 
 1355 
 1372 
 1389 
 1407 
 1424 
 
 
 
 
 1276 
 1287 
 1298 
 1309 
 1320 
 1331 
 
 
 1275 
 1284 
 1292 
 
 43 
 
 39 
 
 7/0 
 7/0 
 
 IH 
 IX 
 
 1 
 1.29 
 
 11 
 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 iie2 
 
 1168 
 
 il59 
 1168 
 1176 
 1185 
 1193 
 1201 
 
 1163 
 1174 
 1185 
 1196 
 1207 
 1218 
 1229 
 1240 
 
 1186 
 1200 
 1214 
 1228 
 1242 
 1256 
 1270 
 1284 
 
 1323 
 1337 
 1351 
 1365 
 1379 
 1392 
 1407 
 1421 
 
 1212 
 1230 
 1247 
 1264 
 1282 
 1298 
 1316 
 1333 
 
 1349 
 1367 
 1384 
 1401 
 1418 
 1435 
 1453 
 1470 
 
 
 
 
 
 
 i32i 
 1330 
 1338 
 
 1322 
 1333 
 1344 
 1355 
 1366 
 1377 
 
 44 
 
 40 
 
 7/0 
 
 7/0 
 
 IK 
 1H 
 
 1 
 1.25 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 
 1219 
 1230 
 1241 
 1252 
 1263 
 1274 
 1285 
 1296 
 
 1242 
 1256 
 1270 
 1284 
 1298 
 1312 
 1326 
 1340 
 
 1367 
 1381 
 1395 
 1409 
 1423 
 1437 
 1451 
 1465 
 
 1268 
 1286 
 1303 
 1320 
 1337 
 1354 
 1371 
 1389 
 
 1393 
 1411 
 1428 
 1445 
 1462 
 1479 
 1497 
 1514 
 
 
 
 
 
 
 
 1224 
 1232 
 1240 
 1249 
 1257 
 
 
 1217 
 1224 
 
 
 
 
 
 i,374 
 1382 
 
 1366 
 1377 
 1388 
 1399 
 1410 
 1421 
 
 
 
 143 
 
COLUMNS 
 
 TABLE 39 
 
 1:4Y 2 mixture 
 
 n=12 
 
 f c =600 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 n-l)p]+2f s p'A 
 f s =20,000 
 
 }=15 
 
 ,^ Column size o 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 *A 
 
 H 
 
 14, 
 
 1 
 
 1M 
 
 Ui 
 
 12 8 
 
 6 
 
 IK 
 
 1 
 
 6 
 
 62 
 
 
 
 
 
 
 13 
 
 9 
 
 5 
 
 lYz 
 
 1 
 
 6 
 
 8 
 
 76 
 80 
 
 
 
 
 
 
 14 10 
 
 4 
 
 iy* 
 
 1 
 
 6 
 8 
 
 91 
 95 
 
 96 
 
 
 
 
 15 
 
 11 
 
 3 
 
 IK 
 
 1 
 
 6 
 8 
 10 
 
 107 
 111 
 115 
 
 112 
 
 118 
 
 119 
 
 
 
 
 16 
 
 12 
 
 2 
 3/0 
 
 IK 
 IH 
 
 1 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 125 
 129 
 133 
 
 'i75 
 179 
 
 131 
 136 
 142 
 
 176 
 
 182 
 187 
 
 J37 
 
 182 
 
 
 
 
 17 
 
 13 
 
 1 
 4/0 
 
 1H 
 IK 
 
 1 
 
 2 
 
 6 
 8 
 10 
 
 6 
 8 
 10 
 
 145 
 149 
 153 
 
 '206 
 
 150 
 156 
 162 
 
 203 
 209 
 215 
 
 157 
 164 
 
 210 
 
 217 
 
 164 
 217 
 
 
 
 18 
 
 14 
 
 1 
 4/0 
 
 1H 
 1% 
 
 1 
 2 
 
 6 
 
 8 
 10 
 12 
 
 6 
 
 8 
 10 
 12 
 
 166 
 170 
 174 
 178 
 
 '236 
 240 
 
 171 
 177 
 183 
 189 
 
 '239 
 245 
 250 
 
 178 
 186 
 194 
 
 239 
 
 247 
 255 
 
 185 
 
 247 
 
 
 
 19 
 
 15 
 
 
 5/0 
 
 IK 
 IK 
 
 1 
 2 
 
 6 
 8 
 10 
 12 
 
 6 
 8 
 10 
 12 
 
 189 
 193 
 197 
 201 
 
 '272 
 
 194 
 200 
 206 
 212 
 
 '27i 
 276 
 
 282 
 
 201 
 208 
 216 
 
 271 
 279 
 287 
 
 208 
 218 
 
 278 
 289 
 
 216 
 
 237 
 
 
 20 
 
 16 
 
 2/0 
 
 6/0 
 
 2^ 
 2 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 14 
 
 217 
 221 
 225 
 229 
 
 'SIO 
 
 224 
 230 
 236 
 242 
 
 'sii 
 
 316 
 322 
 
 233 
 241 
 249 
 
 313 
 321 
 329 
 
 243 
 253 
 
 323 
 333 
 
 254 
 334 
 
 
 144 
 
TABLE 39 
 
 COLUMNS 
 
 Column size > 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 -l)p]+2f,p'A 
 
 f,= 
 
 1:4]4 mixture 
 n = 12 
 f c =600 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 *8 
 
 H 
 
 H 
 
 1 
 
 IK 
 
 iy* 
 
 21 
 
 17 
 
 2/0 
 6/0 
 
 2 
 
 IK 
 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 
 14 
 
 243 
 247 
 251 
 255 
 
 250 
 256 
 262 
 268 
 
 353 
 359 
 
 259 
 267 
 275 
 283 
 
 350 
 357 
 365 
 373 
 
 268 
 289 
 
 359 
 370 
 
 279 
 370 
 
 
 22 
 
 18 
 
 3/0 
 
 7/0 
 
 2H 
 
 2 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 8 
 10 
 12 
 
 14 
 
 '275 
 279 
 283 
 
 278 
 284 
 289 
 295 
 
 286 
 294 
 302 
 310 
 
 296 
 306 
 317 
 
 398 
 408 
 419 
 
 307 
 320 
 
 409 
 422 
 
 319 
 421 
 
 
 
 396 
 404 
 412 
 
 
 391 
 397 
 
 23 
 
 19 
 
 3/0 
 7/0 
 
 2H 
 
 IK 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 *304 
 308 
 312 
 316 
 
 307 
 313 
 318 
 324 
 330 
 
 315 
 323 
 331 
 339 
 347 
 
 '437 
 445 
 452 
 460 
 
 325 
 335 
 346 
 366 
 
 438 
 449 
 459 
 469 
 
 336 
 349 
 
 449 
 463 
 
 348 
 462 
 
 ' 
 
 '438 
 444 
 
 24 
 
 20 
 
 3/0 
 
 7/0 
 
 2 
 
 IK 
 
 1 
 2 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 '338 
 343 
 347 
 
 337 
 343 
 349 
 355 
 361 
 
 346 
 354 
 362 
 370 
 378 
 
 356 
 366 
 376 
 387 
 397 
 
 481 
 492 
 502 
 512 
 523 
 
 367 
 380 
 393 
 
 492 
 505 
 519 
 
 379 
 395 
 
 505 
 521 
 
 
 
 
 
 
 487 
 495 
 503 
 
 :::: 
 
 '486 
 
 25 
 
 21 
 
 4/0 
 7/0 
 
 2x 
 
 '*. 
 
 1 
 2 
 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 37i 
 
 375 
 379 
 
 376 
 381 
 387 
 393 
 
 386 
 394 
 402 
 410 
 
 '533 
 540 
 548 
 
 398 
 409 
 419 
 429 
 
 537 
 
 547 
 557 
 568 
 
 412 
 425 
 
 551 
 
 564 
 
 427 
 566 
 
 
 
 
 532 
 
 145 
 
COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 1:4}^ mixture 
 n = 12 
 f c =600 
 
 f g =20,000 
 
 I length \ 
 
 Max. ( -T-. ) = 15 
 
 \diameterj 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 r 
 
 
 
 
 
 
 
 
 
 I 
 
 ^ 
 
 
 column 
 (inches; 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches^ 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 
 
 y* 
 
 H 
 
 1H 
 
 
 
 
 
 
 
 
 
 
 
 26 
 
 22 4/0 2Ys, 
 
 1 
 
 10 
 
 
 409 420 432 
 
 446 
 
 461 
 
 
 
 
 12 
 
 
 415 
 
 428 442 
 
 459 
 
 477 
 
 
 
 
 
 14 
 
 '408 
 
 421 
 
 436 
 
 453 
 
 472 
 
 
 
 
 
 
 
 16 
 
 412 
 
 427 
 
 444 
 
 463 
 
 
 
 
 
 
 
 
 18 
 
 417 
 
 433 
 
 452 
 
 473 
 
 
 
 
 
 7/0 
 
 IH 
 
 2 
 
 10 
 
 
 
 
 584 
 
 598 
 
 613 
 
 
 
 
 
 12 
 
 
 
 
 594 
 
 611 
 
 629 
 
 
 
 
 
 14 
 
 
 
 '588 
 
 605 
 
 624 
 
 
 
 
 
 
 16 
 
 
 
 596 
 
 615 
 
 
 
 
 
 
 
 
 18 
 
 
 585 ! 604 
 
 625 
 
 
 
 27 
 
 23 
 
 4/0 
 
 2K 
 
 1 10 
 
 
 445 455 
 
 467 
 
 481 
 
 496 
 
 
 
 
 12 
 
 
 450 
 
 463 
 
 478 
 
 494 
 
 513 
 
 
 
 
 
 14 
 
 444 
 
 456 
 
 471 
 
 488 
 
 507 
 
 
 
 
 
 
 
 16 
 
 448 
 
 462 
 
 479 
 
 498 
 
 520 
 
 
 
 
 
 
 18 
 
 452 
 
 468 487 509 
 
 
 
 
 
 7/0 
 
 1% 
 
 2 10 
 
 
 
 
 
 647 
 
 663 
 
 
 
 
 
 12 
 
 
 
 
 '644 
 
 660 
 
 679 
 
 
 
 
 
 14 
 
 
 
 037 654 
 
 673 
 
 
 
 
 
 16 
 
 * 
 
 
 645 ! 665 
 
 686 
 
 
 
 
 
 18 
 
 
 
 653 ! 675 
 
 
 28 24 
 
 4/0 
 
 2 
 
 1 10 
 
 
 492 504 
 
 518 
 
 533 
 
 
 
 
 12 
 
 
 487 500 515 
 
 531 
 
 550 
 
 
 
 
 14 
 
 
 493 508 525 
 
 544 
 
 566 
 
 
 
 
 
 
 16 
 
 '485 
 
 499 516 535 
 
 557 
 
 
 
 
 
 
 18 
 
 489 
 
 505 | 524 546 
 
 570 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 10 
 
 
 699 
 
 714 
 
 
 
 
 
 
 12 
 
 
 i 696 
 
 712 
 
 
 
 
 
 
 
 14 
 
 
 706 
 
 725 1 747 
 
 
 
 
 
 
 16 
 
 
 697 716 
 
 738 1 
 
 
 
 
 
 
 18 
 
 
 705 727 
 
 751 ! 
 
 29 25 5/0 
 
 2> 
 
 1 10 
 
 
 
 531 543 
 
 557 572 
 
 1 1 
 
 
 12 
 
 
 526 
 
 539 553 
 
 570 588 
 
 
 
 
 
 14 
 
 
 532 
 
 546 ! 563 
 
 583 
 
 604 
 
 
 
 
 
 
 16 
 
 523 
 
 538 
 
 554 
 
 574 
 
 596 
 
 620 
 
 
 
 
 
 
 18 
 
 527 
 
 543 
 
 562 
 
 584 
 
 609 
 
 
 
 
 
 
 
 20 
 
 531 
 
 549 
 
 570 595 
 
 
 
 
 
 7/0 
 
 IK 
 
 2 
 
 10 
 
 
 
 
 
 
 753 
 
 768 
 
 
 
 
 
 12 
 
 
 
 
 766 
 
 784 
 
 
 
 
 
 14 
 
 
 
 '760 
 
 779 
 
 801 
 
 
 
 
 
 16 
 
 
 
 770 
 
 792 
 
 817 
 
 
 
 
 
 18 
 
 
 
 759 781 
 
 805 
 
 
 
 
 
 
 20 
 
 
 
 767 791 
 
 
 
 30 26 
 
 5/0 
 
 2% 1 
 
 12 
 
 .... I 566 
 
 579 593 
 
 010 
 
 628 
 
 
 
 
 
 14 
 
 572 
 
 586 
 
 603 
 
 023 
 
 644 
 
 
 
 
 
 
 16 
 
 
 578 
 
 594 
 
 614 
 
 636 
 
 660 
 
 
 
 
 
 
 18 
 
 '567 
 
 583 
 
 602 
 
 624 
 
 649 
 
 
 
 
 
 
 
 20 
 
 571 
 
 589 610 
 
 635 
 
 662 
 
 
 
 
 7/0 
 
 IK 
 
 1.93 
 
 12 
 
 
 
 
 
 807 
 
 825 
 
 
 
 
 
 
 14 
 
 1 .... 
 
 
 
 '800 
 
 820 
 
 841 
 
 
 
 
 
 
 16 
 
 ! .... 
 
 
 
 811 
 
 833 
 
 857 
 
 
 
 
 
 
 18 
 
 
 
 799 
 
 821 
 
 846 
 
 
 
 
 
 
 20 
 
 
 
 807 
 
 832 
 
 859 
 
 
 146 
 
TABLE 39 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 (n-l)p]+2f s p'A 
 f g =20,000 
 ,_ / length \ 
 Max - (diameter) =K 
 
 mixture 
 
 n = 12 
 f c =60 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 
 of core 
 
 i 
 
 
 H 
 
 H 1 
 
 IK 
 
 Ifc 
 
 31 
 
 27 
 
 5/0 
 7/0 
 
 2M 
 
 1M 
 
 1 
 1.86 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 eis 
 
 617 
 
 6i3 
 
 619 
 625 
 631 
 637 
 
 620 
 628 
 636 
 644 
 652 
 660 
 
 635 
 
 645 
 656 
 666 
 676 
 687 
 
 651 
 
 664 
 678 
 691 
 704 
 717 
 
 848 
 861 
 875 
 888 
 901 
 914 
 
 670 
 686 
 702 
 718 
 
 867 
 883 
 899 
 915 
 
 
 
 
 842 
 853 
 863 
 873 
 884 
 
 
 
 '841 
 849 
 857 
 
 
 
 32 
 
 28 
 
 5/0 
 7/0 
 
 2 
 
 IX 
 
 1 
 1.80 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 ' 14 
 16 
 18 
 20 
 22 
 
 660 
 
 657 
 662 
 668 
 674 
 680 
 
 663 
 671 
 679 
 687 
 695 
 703 
 
 678 
 688 
 699 
 709 
 719 
 730 
 
 '885 
 896 
 906 
 916 
 927 
 
 695 
 708 
 721 
 734 
 747 
 760 
 
 892 
 905 
 918 
 931 
 944 
 957 
 
 713 
 729 
 745 
 
 762 
 778 
 
 910 
 926 
 942 
 959 
 975 
 
 
 ::: 
 
 "892 
 900 
 
 33 
 
 29 
 
 . 
 
 6/0 
 
 7/0 
 
 2M 
 
 IX 
 
 1.73 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 705 
 
 "707 
 713 
 719 
 725 
 
 708 
 716 
 724 
 732 
 740 
 748 
 
 723 
 733 
 743 
 754 
 764 
 775 
 
 739 
 752 
 765 
 778 
 792 
 805 
 
 932 
 945 
 958 
 971 
 985 
 998 
 
 758 
 774 
 790 
 806 
 822 
 
 951 
 
 967 
 983 
 999 
 1015 
 
 1 . 
 
 
 
 
 
 
 
 936 
 947 
 957 
 967 
 
 i ;;;; ;;;; 
 
 '934 
 941 
 
 34 
 
 30 
 
 6/0 
 
 7/0 
 
 *K 
 IX 
 
 1 
 1.67 
 
 .... 
 
 755 
 
 754 
 
 759 
 765 
 771 
 777 
 
 755 
 762 
 770 
 778 
 786 
 794 
 802 
 
 769 
 779 
 790 
 800 
 811 
 821 
 831 
 
 786 
 799 
 812 
 825 
 838 
 851 
 864 
 
 975 
 
 988 
 1001 
 1014 
 1028 
 1041 
 1054 
 
 804 
 820 
 836 
 853 
 869 
 885 
 
 994 
 1010 
 1026 
 1042 
 1058 
 1075 
 
 
 '.'.'.'. 
 
 '976 
 984 
 992 
 
 979 
 990 
 1000 
 1010 
 1021 
 
 147 
 
COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 .^ Column size ^ 
 
 % mixture 
 12 
 600 
 
 Max. 
 
 -l)p]+2f t p'A 
 f ,=20, 000 
 I length \ 
 
 \diameter 
 
 15 
 
 
 
 Spirals 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 ~f 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 \\ . Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 .rods 
 
 H 
 
 X 
 
 V* 
 
 1 
 
 1H 
 
 IK 
 
 35 
 
 31 6/0 
 
 2H 
 
 1 
 
 14 
 
 
 1 
 
 810 
 
 827 
 
 847 
 
 868 
 
 
 
 
 
 16 
 
 
 
 818 
 
 838 
 
 860 
 
 884 
 
 
 
 
 
 
 18 
 
 
 '807 
 
 826 
 
 848 
 
 873 
 
 901 
 
 
 
 
 
 
 20 
 
 
 813 
 
 834 
 
 858 
 
 886 
 
 917 
 
 
 
 
 
 
 22 
 
 
 819 
 
 842 
 
 869 
 
 899 
 
 933 
 
 
 
 
 
 24 
 
 
 825 
 
 850 
 
 879 
 
 912 
 
 949 
 
 
 
 7/0 
 
 1H 
 
 1.62 14 
 
 
 
 
 
 1034 
 
 1055 
 
 
 
 
 
 16 
 
 
 
 
 1625 
 
 1047 
 
 1072 
 
 
 
 
 
 
 18 
 
 
 
 
 1035 
 
 1060 
 
 1088 
 
 
 
 
 
 20 
 
 
 
 
 1046 
 
 1073 
 
 1104 
 
 
 
 
 
 
 22 
 
 
 
 i029 
 
 1056 
 
 1086 
 
 1120 
 
 
 
 
 
 
 24 
 
 
 
 1037 
 
 1066 
 
 1099 
 
 1136 
 
 36 
 
 32 
 
 6/0 
 
 2 
 
 1 
 
 1 : 
 14 
 
 
 
 860 877 
 
 896 
 
 918 
 
 
 
 
 
 
 16 
 
 
 
 868 887 
 
 909 
 
 934 
 
 
 
 
 
 
 18 
 
 
 
 876 898 
 
 922 
 
 950 
 
 
 
 
 
 
 20 
 
 
 '863 
 
 884 908 
 
 935 
 
 966 
 
 
 
 
 
 
 22 
 
 
 868 
 
 892 j 918 
 
 949 
 
 982 
 
 
 
 
 
 
 24 
 
 
 874 
 
 899 i 929 
 
 962 
 
 999 
 
 
 
 7/0 
 
 1H 
 
 1.57. 
 
 14 
 
 
 
 
 
 1079 
 
 1101 
 
 
 
 
 
 
 16 
 
 
 
 
 io7o 
 
 1092 
 
 1117 
 
 
 
 
 
 
 18 
 
 i . . . . 
 
 
 
 1081 
 
 1106 
 
 1133 
 
 
 
 
 
 
 20 
 
 
 
 
 1091 
 
 1119 
 
 1149 
 
 
 
 
 
 
 22 
 
 
 
 i675 
 
 1102 
 
 1132 
 
 1166 
 
 
 
 
 
 
 24 i 
 
 
 1083 : 1112 
 
 1145 
 
 1182 
 
 37 
 
 33 
 
 7/0 
 
 2H 1 
 
 14 
 
 : 928 
 
 947 
 
 969 
 
 
 
 
 
 
 16 ! 
 
 919 938 
 
 960 
 
 985 
 
 
 
 
 
 
 18 
 
 
 927 949 
 
 973 
 
 1001 
 
 
 
 
 
 
 20 
 
 914 
 
 935 959 
 
 987 
 
 1017 
 
 
 
 
 
 
 22 
 
 919 
 
 943 969 
 
 1000 
 
 1033 
 
 
 
 
 
 24 
 
 925 
 
 951 980 
 
 1013 
 
 1050 
 
 
 
 
 
 26 
 
 931 
 
 958 | 990 
 
 1026 
 
 1066 
 
 
 
 7/0 
 
 1H 
 
 1.52 14 
 
 
 
 
 
 1125 
 
 1146 
 
 
 
 
 
 16 
 
 
 
 
 1138 
 
 1163 
 
 
 
 
 
 
 18 
 
 
 
 1126 
 
 1151 
 
 1179 
 
 
 
 
 
 
 20 
 
 
 
 1137 
 
 1164 
 
 1195 
 
 
 
 
 
 
 22 
 
 
 ii20 
 
 1147 
 
 1177 
 
 1211 
 
 
 
 
 24 ... 
 
 
 1128 
 
 1157 
 
 1190 
 
 1227 
 
 
 
 
 1 
 
 26 1 .... 
 
 
 1136 
 
 1168 
 
 1204 
 
 1243 
 
 38 
 
 34 7/0 
 
 2H 
 
 1 
 
 14 
 
 
 
 980 
 
 1000 
 
 1021 
 
 
 
 
 
 
 16 
 
 
 
 971 991 
 
 1013 
 
 1037 
 
 
 
 
 
 
 18 
 
 ' 
 
 
 979 1001 
 
 1026 
 
 1054 
 
 
 
 
 
 
 20 
 
 
 
 987 j 1012 
 
 1039 
 
 1070 
 
 
 
 
 
 
 22 ... 
 
 972 
 
 995 
 
 1022 
 
 1052 
 
 1086 
 
 
 
 
 
 
 24 
 
 978 
 
 1003 
 
 1032 
 
 1065 
 
 1102 
 
 
 
 
 
 
 26 
 
 
 984 
 
 1011 
 
 1013 
 
 1078 
 
 1118 
 
 
 
 7/0 
 
 IH 
 
 1.48 
 
 14 
 
 
 
 
 
 1174 
 
 1196 
 
 
 
 
 
 
 16 
 
 
 
 
 
 1187 
 
 1212 
 
 
 
 
 
 
 18 
 
 
 
 
 ii"6 
 
 1200 
 
 1228 
 
 
 
 
 
 
 20 
 
 
 
 
 1186 
 
 1214 
 
 1244 
 
 
 
 
 
 
 22 
 
 
 
 
 1196 
 
 1227 
 
 12G1 
 
 
 
 
 
 
 24 
 
 
 
 ii78 
 
 1207 
 
 1240 
 
 1277 
 
 
 
 
 
 
 26 
 
 
 
 1186 
 
 1217 
 
 1253 
 
 1293 
 
 148 
 
TABLE 39 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 n-l)p]+2f e p'A 
 f s =20,000 
 length \ ,_ 
 - 
 
 mixture 
 
 f c =600 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 X 
 
 % 
 
 1 
 
 IH 
 
 IK 
 
 39 
 
 35 
 
 7/0 
 7/0 
 
 2H 
 1>* 
 
 1 
 1.43 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 
 i026 
 1034 
 1041 
 1049 
 1057 
 1065 
 
 1035 
 1045 
 1055 
 1066 
 1076 
 1087 
 1097 
 
 1054 
 1067 
 1080 
 1093 
 1106 
 1120 
 1133 
 
 1219 
 1232 
 1245 
 1258 
 1271 
 1284 
 1298 
 
 1075 
 1092 
 1108 
 1124 
 1140 
 1156 
 1173 
 
 1240 
 1257 
 1273 
 1289 
 1305 
 1321 
 1338 
 
 
 1626 
 1032 
 1038 
 
 
 
 . . . .* 
 
 1220 
 1231 
 1241 
 1251 
 1262 
 
 
 
 i222 
 1230 
 
 40 
 
 36 
 
 7/0 
 7/0 
 
 2 
 
 IH 
 
 1 
 1.40 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 .... 
 
 
 
 1101 
 1111 
 1122 
 1132 
 1142 
 1153 
 1163 
 
 1123 
 1136 
 1149 
 1162 
 1175 
 1188 
 1202 
 
 1286 
 1299 
 1312 
 1325 
 1338 
 1352 
 1365 
 
 1147 
 1164 
 1180 
 1196 
 1212 
 1228 
 1245 
 
 1311 
 1327 
 1343 
 1359 
 1375 
 1392 
 1408 
 
 
 
 i094 
 1100 
 
 1097 
 1105 
 1113 
 1121 
 1129 
 
 
 
 
 
 i284 
 1295 
 1305 
 1316 
 1326 
 
 
 
 1276 
 1284 
 1292 
 
 41 
 
 37 
 
 7/0 
 7/0 
 
 2 
 
 m 
 
 1 
 1.36 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 
 II 
 11 
 
 28 
 
 
 
 ii47 
 1155 
 1163 
 1170 
 1178 
 1186 
 
 1158 
 1169 
 1179 
 1189 
 1200 
 1210 
 1220 
 
 1180 
 1193 
 1206 
 1220 
 1233 
 1246 
 1259 
 
 1334 
 1347 
 1360 
 1373 
 1386 
 1399 
 1413 
 
 1205 
 1221 
 1237 
 1253 
 1270 
 1286 
 1302 
 
 1359 
 1375 
 1391 
 1407 
 1423 
 1440 
 1456 
 
 .... 
 
 ii4o 
 
 1151 
 1157 
 
 
 
 
 1333 
 1343 
 1353 
 1364 
 1374 
 
 
 
 
 
 
 i.332 
 1340 
 
 
 
 
 
 149 
 
COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 NEW YORK CITY BUILDING CODE 
 
 REQUIREMENTS 
 
 Column size 
 
 1:4% mixture 
 n = 12 
 f c =600 
 
 f, = 20,000 
 
 Max (tewth\ 15 
 
 \diameter) 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 f\f 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co-.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 : % 
 
 K 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 42 38 7/0 
 
 2 
 
 1 
 
 16 
 
 
 
 
 1217 
 
 1239 
 
 1264 
 
 
 
 
 
 18 
 
 
 
 
 1227 
 
 1252 
 
 1280 
 
 
 
 
 
 
 20 
 
 
 
 1213 
 
 1238 
 
 1265 
 
 1296 
 
 
 
 
 
 
 22 
 
 
 
 1221 
 
 1248 
 
 1278 
 
 1312 
 
 
 
 
 
 
 24 
 
 
 
 1229 
 
 1259 
 
 1292 
 
 1328 
 
 
 
 
 
 
 26 
 
 
 i2ib 
 
 1237 
 
 1269 
 
 1305 
 
 1345 
 
 
 
 
 
 
 28 
 
 
 1216 
 
 1245 
 
 1279 
 
 1318 
 
 1361 
 
 
 
 
 
 30 
 
 
 1222 
 
 1253 
 
 1290 
 
 1331 
 
 1377 
 
 
 
 ' 7/0 
 
 IK 
 
 1.32 16 
 
 
 
 
 1362 
 
 1384 
 
 1409 
 
 
 
 
 18 
 
 
 
 
 1372 
 
 1397 
 
 1425 
 
 
 
 
 20 
 
 
 
 1358 
 
 1383 
 
 1410 
 
 1441 
 
 
 1 
 
 22 
 
 
 
 1366 
 
 1393 
 
 1423 
 
 1457 
 
 
 i 
 
 
 24 
 
 
 
 1374 
 
 1403 
 
 1436 
 
 1473 
 
 
 
 
 26 
 
 
 
 1382 
 
 1414 
 
 1450 
 
 1490 
 
 
 
 28 
 
 
 isei 
 
 1390 
 
 1424 
 
 1463 
 
 1506 
 
 30 
 
 
 1366 
 
 1398 
 
 1435 
 
 1476 
 
 1522 
 
 43 39 7/0 l 7 ^ 
 
 1 16 
 
 
 
 
 1278 
 
 1300 
 
 1324 
 
 
 18 
 
 
 
 1288 
 
 1313 
 
 1340 
 
 
 
 20 
 
 . 
 
 1274 
 
 1298 
 
 1326 
 
 1357 
 
 
 
 22 
 
 
 1282 
 
 1309 
 
 1339 
 
 1373 
 
 
 
 
 24 
 
 
 1290 
 
 1319 
 
 1352 
 
 1389 
 
 
 
 
 26 
 
 
 1298 
 
 1329 
 
 1365 
 
 1405 
 
 
 
 
 
 28 
 
 
 1276 
 
 1306 
 
 1340 
 
 1378 
 
 1421 
 
 
 
 
 
 30 
 
 
 1282 
 
 1314 
 
 1350 
 
 1391 
 
 1438 
 
 
 7/0 V/4 1.29 1T> 
 
 
 
 
 
 1438 
 
 1463 
 
 
 
 18 
 
 
 
 
 
 1451 
 
 1479 
 
 
 
 
 20 
 
 
 
 
 1437 
 
 1464 
 
 1495 
 
 
 
 
 22 
 
 
 
 
 1447 
 
 1477 
 
 1511 
 
 
 
 
 24 
 
 
 
 
 1457 
 
 1490 
 
 1527 
 
 
 
 
 26 
 
 
 
 i436 
 
 1468 
 
 1504 
 
 1543 
 
 
 
 28 
 
 
 
 1444 
 
 1478 
 
 1517 
 
 1560 
 
 30 
 
 
 
 
 1452 
 
 1489 
 
 1530 
 
 1576 
 
 44 40 7/0 1J 8 ' 1 16 
 
 
 
 
 1340 
 
 1362 
 
 1386 
 
 18 
 
 
 
 
 1350 
 
 1375 
 
 1402 
 
 1 
 
 20 
 
 
 
 
 1360 
 
 1388 
 
 1419 
 
 
 
 
 
 22 
 
 
 
 1344 
 
 1371 
 
 1401 
 
 1435 
 
 
 
 
 
 24 
 
 
 
 1352 
 
 1381 
 
 1414 
 
 1451 
 
 
 
 
 
 26 
 
 
 
 1360 
 
 1391 
 
 1427 
 
 1467 
 
 
 
 
 
 28 
 
 
 1338 
 
 1368 
 
 1402 
 
 1440 
 
 1483 
 
 
 
 
 
 30 
 
 
 1344 
 
 1376 
 
 1412 
 
 1453 
 
 1499 
 
 
 
 7/0 1> 1-25 16 
 
 
 
 
 
 1487 
 
 1511 
 
 
 
 1 
 
 18 
 
 
 
 
 
 1500 
 
 1528 
 
 
 
 
 
 
 20 
 
 i .... 
 
 
 '. '. '. 
 
 i486 
 
 1513 
 
 1544 
 
 
 
 
 
 
 22 
 
 
 
 
 1496 
 
 1526 
 
 1560 
 
 
 
 
 
 
 24 
 
 
 
 
 1506 
 
 1539 
 
 1576 
 
 
 
 
 
 
 26 
 
 
 
 
 1517 
 
 1553 
 
 1593 
 
 
 
 
 
 
 28 
 
 
 
 1493 
 
 1527 
 
 1566 
 
 1609 
 
 
 
 
 
 30 
 
 
 
 1501 1538 1579 1625 
 
 150 
 
TABLE 40 
 
 COLUMNS 
 
 Column size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 / length \ 
 
 MaxA-T^ I =12 
 
 \diameter 
 
 1:2:4 mixture 
 n = 15 
 f c =500 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Spirals 
 
 Size of vertical round rods 
 
 eter 
 of core Size No. 
 (inches) (A. S. & 
 W. Co.) 
 
 ! 
 
 Pitch 
 (inches 
 
 of 
 Per cent rods 
 of core 
 
 H 
 
 % 
 
 K 
 
 1 
 
 ix iy* 
 
 15 12 9 IK 
 
 0.5 8 
 10 
 
 88 
 93 
 
 97 
 104 
 
 
 
 16 13 8 Hi 0.5 8 
 10 
 
 99 
 104 
 
 108 
 115 
 
 119 
 
 
 
 17 
 
 14 7 
 
 
 \X 
 
 IX 
 
 0.5 8 
 10 
 12 
 
 1.5 8 
 10 
 
 I 12 
 
 112 
 117 
 122 
 
 147 
 154 
 161 
 
 121 
 128 
 135 
 
 159 
 
 168 
 178 
 
 131 
 141 
 
 173 
 
 186 
 
 
 1 
 
 - 
 
 18 
 
 15 6 
 2/0 
 
 IX 
 IX 
 
 0.5 8 
 10 
 12 
 
 1.5 8 
 10 
 12 
 
 125 
 130 
 136 
 
 'i72 
 178 
 
 134 
 142 
 149 
 
 177 
 186 
 196 
 
 145 
 155 
 
 191 
 204 
 
 157 
 207 
 
 
 19 
 
 16 G 
 3/0 
 
 \H 
 
 ix 
 
 0.5 8 
 10 
 12 
 14 
 
 1.5 8 
 10 
 12 
 14 
 
 140 
 145 
 150 
 155 
 
 igi 
 
 197 
 204 
 
 149 
 156 
 164 
 171 
 
 196 
 205 
 215 
 225 
 
 159 
 169 
 179 
 
 210 
 223 
 236 
 
 172 
 185 
 
 226 
 243 
 
 185 
 
 244 
 
 ' 
 
 20 
 
 17 5 
 3/0 
 
 IX 
 IX 
 
 0.5 8 
 10 
 
 If 
 
 1.5 8 
 10 
 12 
 14 
 
 155 
 160 
 165 
 170 
 
 "2is 
 
 224 
 
 164 
 171 
 179 
 186 
 
 216 
 226 
 235 
 245 
 
 175 
 185 
 195 
 205 
 
 230 
 243 
 256 
 269 
 
 187 
 200 
 
 246 
 263 
 
 201 
 264 
 
 21 
 
 18 4 
 3/0 
 
 i?i 
 
 ' ' '. 
 
 IX 
 
 0.5 8 
 10 
 12 
 14 
 
 1.5 8 
 10 
 12 
 14 
 
 172 
 177 
 
 182 
 187 
 
 180 
 188 
 195 
 203 
 
 191 
 201 
 211 
 221 
 
 251 
 
 265 
 278 
 291 
 
 203 
 216 
 230 
 
 268 
 285 
 302 
 
 217 233 
 234 
 
 286 306 
 307 
 
 246 
 
 "247 
 257 
 266 
 
 151 
 
COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 TABLE 40 
 
 . Column size yi 
 
 1:2:4 mixture 
 n = 15 
 f c =500 
 
 = Af c (l+2.5np' 
 
 12 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 f 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 ot 
 rods 
 
 y& 
 
 H 
 
 + 
 
 H 
 
 1 
 
 IK 
 
 IK 
 
 22 
 
 19 
 
 4 
 
 IH 
 
 0.5 
 
 8 
 
 189 
 
 198 
 
 208 
 
 221 
 
 234 
 
 250 
 
 
 
 
 
 
 10 
 
 194 
 
 205 
 
 218 
 
 234 
 
 251 
 
 
 
 
 
 
 
 12 
 
 199 
 
 213 
 
 228 
 
 247 
 
 
 
 
 
 
 
 
 14 
 
 204 
 
 220 
 
 238 
 
 260 
 
 
 
 
 
 
 
 16 
 
 ! 209 
 
 227 
 
 248 
 
 
 
 
 
 4/0 
 
 IH 
 
 1.5 
 
 8 
 
 
 i 274 
 
 290 
 
 308 
 
 329 
 
 
 
 
 
 
 10 
 
 
 270 287 
 
 307 
 
 330 
 
 
 
 
 
 
 12 
 
 
 280 
 
 301 325 
 
 
 
 
 
 
 
 14 
 
 268 
 
 289 
 
 314 342 
 
 
 
 
 
 
 
 16 
 
 275 
 
 299 
 
 327 i 
 
 
 
 2.3 20 
 
 3 
 
 1M 0.5 
 
 8 
 
 207 
 
 216 
 
 226 
 
 239 
 
 253 
 
 268 
 
 
 j , : 
 
 10 
 
 212 
 
 223 
 
 236 
 
 252 
 
 269 
 
 289 
 
 
 
 
 
 
 12 
 
 217 
 
 231 
 
 246 
 
 265 
 
 277 
 
 
 
 
 
 
 
 14 
 
 222 
 
 238 
 
 257 
 
 278 
 
 
 
 
 
 
 
 
 16 
 
 227 
 
 245 
 
 267 
 
 291 
 
 
 
 
 
 5/0 
 
 1% 
 
 1.5 
 
 8 
 
 
 
 298 
 
 314 
 
 332 
 
 353 
 
 
 
 
 
 
 10 
 
 
 
 311 
 
 331 
 
 354 
 
 379 
 
 
 
 
 
 
 12 
 
 
 'SOS 
 
 324 
 
 349 
 
 376 
 
 
 
 
 
 
 
 14 
 
 
 313 
 
 337 
 
 366 
 
 
 
 
 
 
 
 i 
 
 16 
 
 '299 
 
 323 
 
 351 
 
 383 
 
 
 
 24 
 
 21 
 
 3 
 
 iH 
 
 0.5 
 
 10 
 
 231 
 
 242 
 
 256 
 
 271 
 
 288 
 
 308 
 
 
 
 
 
 
 12 
 
 236 
 
 250 
 
 266 
 
 284 
 
 305 
 
 
 
 
 
 
 
 14 
 
 241 
 
 257 
 
 276 
 
 297 
 
 
 
 
 
 
 
 
 16 
 
 I 246 
 
 264 
 
 286 310 
 
 
 
 
 
 5/0 
 
 IH 
 
 1.5 
 
 10 
 
 
 
 336 
 
 357 
 
 379 
 
 405 
 
 
 1 
 
 
 
 
 12 
 
 
 '329 
 
 350 
 
 374 
 
 401 
 
 
 
 
 
 
 
 14 
 
 
 338 
 
 363 
 
 391 
 
 
 
 
 
 
 I 16 
 
 
 348 
 
 376 
 
 408 
 
 
 
 25 22 
 
 2 
 
 IK 
 
 0.5 10 
 
 251 
 
 262 
 
 276 
 
 291 
 
 308 
 
 328 
 
 
 
 
 12 
 
 256 
 
 270 
 
 286 
 
 304 
 
 325 
 
 348 
 
 
 II 14 
 
 261 
 
 277 
 
 296 
 
 317 
 
 341 
 
 
 
 
 16 
 
 267 
 
 284 
 
 306 
 
 330 
 
 
 
 
 
 
 18 
 
 272 
 
 292 
 
 316 
 
 343 
 
 
 
 
 
 0/0 
 
 2 
 
 1.5 10 
 
 
 
 363 
 
 383 
 
 406 
 
 431 
 
 
 
 12 
 
 
 
 376 
 
 400 
 
 427 
 
 458 
 
 
 14 
 
 
 '365 
 
 369 
 
 417 
 
 449 
 
 
 
 16 
 
 
 374 
 
 402 
 
 435 
 
 
 
 
 
 ! || 18 
 
 
 384 
 
 416 
 
 452 
 
 
 
 26 
 
 23 
 
 2 
 
 Ui 
 
 0.5 10 
 
 272 
 
 283 
 
 297 
 
 312 
 
 329 
 
 349 
 
 
 
 
 
 12 
 
 277 
 
 291 
 
 307 
 
 325 
 
 346 
 
 369 
 
 
 
 
 14 
 
 283 
 
 298 
 
 317 
 
 338 
 
 362 
 
 
 
 
 
 16 
 
 288 
 
 305 
 
 327 
 
 351 
 
 379 
 
 
 
 
 
 
 
 18 
 
 293 
 
 313 
 
 337 
 
 364 
 
 
 
 
 
 6/0 
 
 1% 
 
 1.5 
 
 10 
 
 
 
 
 
 411 
 
 433 
 
 459 
 
 
 
 
 
 
 12 
 
 
 
 '464 
 
 428 
 
 455 
 
 486 
 
 
 
 
 
 
 14 
 
 
 
 417 
 
 445 
 
 477 
 
 
 
 
 
 
 
 16 
 
 
 '462 
 
 430 
 
 462 
 
 499 
 
 
 
 ! 
 
 
 
 18 
 
 
 411 
 
 443 
 
 479 
 
 
 
 
 
 
 
 
 
 
 
 152 
 
TABLE 40 
 
 COLUMNS 
 
 Column Size <. 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 I length \ 
 A-r. ) =12 
 \diameterj 
 
 1:2:4 mixture 
 n = 15 
 f e =500 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IX 
 
 IH 
 
 27 
 
 24 
 
 7/0 
 
 2 
 2 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 294 
 299 
 304 
 310 
 315 
 
 305 
 313 
 320 
 327 
 335 
 
 318 
 329 
 339 
 349 
 359 
 
 '432 
 446 
 459 
 472 
 
 334 
 347 
 360 
 373 
 386 
 
 439 
 457 
 474 
 491 
 508 
 
 351 
 
 368 
 384 
 401 
 417 
 
 462 
 484 
 506 
 527 
 549 
 
 370 
 391 
 411 
 
 487 
 514 
 541 
 
 
 
 
 
 
 431 
 
 440 
 
 28 
 
 25 
 
 1 
 7/0 
 
 2 
 
 2 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 317 
 322 
 327 
 332 
 337 
 343 
 
 328 
 335 
 343 
 350 
 358 
 365 
 
 341 
 351 
 361 
 371 
 381 
 391 
 
 '476 
 489 
 502 
 515 
 
 357 
 370 
 383 
 396 
 409 
 422 
 
 469 
 487 
 504 
 521 
 538 
 555 
 
 374 
 391 
 407 
 424 
 440 
 
 492 
 514 
 536 
 558 
 579 
 
 393 
 414 
 434 
 455 
 
 518 
 545 
 571 
 598 
 
 
 470 
 480 
 
 29 
 
 26 
 
 
 7/0 
 
 2K 
 
 m 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 
 18 
 20 
 
 346 
 351 
 356 
 361 
 366 
 
 359 
 366 
 374 
 381 
 389 
 
 502 
 512 
 
 375 
 385 
 395 
 405 
 415 
 
 '507 
 520 
 533 
 546 
 
 393 
 407 
 420 
 433 
 446 
 
 518 
 536 
 552 
 570 
 
 588 
 
 414 
 431 
 447 
 464 
 481 
 
 545 
 567 
 589 
 610 
 632 
 
 438 
 458 
 478 
 
 576 
 
 602 
 630 
 
 30 
 
 27 
 
 
 7/0 
 
 2X 
 
 IH 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 371 
 376 
 381 
 386 
 391 
 396 
 
 384 
 391 
 399 
 406 
 413 
 421 
 
 400 
 410 
 420 
 430 
 440 
 450 
 
 418 
 431 
 445 
 457 
 471 
 484 
 
 550 
 
 568 
 585 
 602 
 620 
 636 
 
 439 
 456 
 472 
 489 
 505 
 522 
 
 578 
 600 
 622 
 643 
 664 
 686 
 
 462 
 483 
 503 
 524 
 
 608 
 635 
 662 
 689 
 
 
 
 '552 
 566 
 579 
 592 
 
 
 
 
 544 
 554 
 
 153 
 
COLUMNS 
 
 TABLE 40 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Column siz 
 
 1:2:4 mixture 
 
 n=15 
 
 f c =500 
 
 ,_ / length \ 
 Max. T - ) =12 
 
 \diameter 
 
 Spirals Size of vertical round rods 
 
 Size 
 of 
 
 Diam- ' -vr 
 
 
 
 
 
 eter 1 Number 
 
 
 column 
 
 of core Size No. p- h P t H 
 
 (inches) 
 
 (inches) $-S.& (inches) oTcor" H % ^ l 
 
 1M 
 
 1>4 
 
 I 
 
 i 
 
 31 
 
 28 2/0 2?^ 0.5 12 '396 
 
 410 
 
 425 
 
 444 
 
 465 488 
 
 
 14 
 
 401 
 
 417 
 
 435 
 
 457 481 i 508 
 
 
 16 
 
 407 
 
 424 
 
 445 
 
 470 498 529 
 
 
 18 
 
 312 
 
 432 
 
 455 
 
 483 514 
 
 549 
 
 
 20 
 
 417 
 
 439 
 
 466 
 
 496 531 
 
 569 
 
 
 22 422 
 
 447 
 
 476 
 
 509 
 
 548 
 
 
 
 7/0 ] 1.5 12 
 
 
 
 584 
 
 612 
 
 642 
 
 
 14 
 
 
 
 602 
 
 633 
 
 669 
 
 
 i 16 
 
 
 '586 
 
 619 
 
 655 
 
 696 
 
 
 18 
 
 
 600 
 
 646 
 
 677 
 
 722 
 
 
 20 
 
 
 613 
 
 653 
 
 698 
 
 749 
 
 
 22 .... | 588 
 
 626 
 
 670 
 
 720 
 
 
 32 29 2/0 2*4 0.5 12 423 
 
 436 
 
 452 
 
 471 
 
 491 
 
 514 
 
 14 428 
 
 444 
 
 462 
 
 484 
 
 508 
 
 535 
 
 16 433 
 
 451 
 
 472 
 
 497 
 
 524 
 
 556 
 
 
 18 438 
 
 458 
 
 482 
 
 509 541 
 
 576 
 
 
 20 443 
 
 466 
 
 492 
 
 523 
 
 557 
 
 596 
 
 
 22 448 473 502 
 
 536 
 
 574 
 
 
 
 7/0 \% 1.5 12 
 
 646 
 
 677 
 
 
 || 14 
 
 637 
 
 668 
 
 704 
 
 
 16 ! 
 
 
 
 654 
 
 690 
 
 731 
 
 
 18 
 
 
 
 '635 
 
 670 
 
 712 
 
 758 
 
 
 20 
 
 
 648 
 
 688 
 
 734 
 
 784 
 
 22 .... 
 
 
 661 
 
 705 
 
 755 
 
 
 33 30 2/0 2^ 0.5 12 450 
 
 464 
 
 479 
 
 498 
 
 519 
 
 542 
 
 14 
 
 456 
 
 471 
 
 490 
 
 511 
 
 537 
 
 563 
 
 
 16 
 
 461 
 
 479 
 
 500 
 
 524 
 
 552 
 
 583 
 
 
 18 
 
 466 
 
 486 
 
 510 
 
 537 
 
 568 
 
 603 
 
 
 20 
 
 471 
 
 493 
 
 520 
 
 550 
 
 585 
 
 624 
 
 
 22 
 
 476 
 
 500 
 
 530 
 
 563 
 
 602 
 
 644 
 
 
 24 
 
 481 
 
 508 
 
 540 
 
 576 
 
 618 
 
 
 
 7/0 16 1-5 12 
 
 
 
 
 672 
 
 713 
 
 
 14 
 
 
 
 '672 
 
 704 
 
 740 
 
 
 16 
 
 
 
 690 
 
 726 
 
 767 
 
 
 18 
 
 
 670 
 
 707 
 
 748 
 
 794 
 
 
 20 
 
 
 684 
 
 724 
 
 770 
 
 821 
 
 22 .... 
 
 
 697 
 
 741 
 
 791 
 
 847 
 
 24 i 
 
 '668 
 
 710 
 
 758 
 
 813 
 
 
 34 31 3/0 2^ 0.5 14 || 484 
 
 500 
 
 518 
 
 540 
 
 564 
 
 591 
 
 16 ! 489 
 
 507 
 
 528 
 
 552 
 
 581 
 
 611 
 
 
 18 494 
 
 514 
 
 538 
 
 566 
 
 597 
 
 632 
 
 
 20 
 
 499 
 
 522 
 
 548 
 
 579 
 
 613 
 
 652 
 
 
 ; 22 
 
 504 
 
 529 
 
 558 
 
 592 
 
 630 
 
 672 
 
 
 24 
 
 510 536 
 
 568 
 
 605 
 
 (346 
 
 693 
 
 
 : 7/0 l$i 1.5 14 
 
 
 
 710 
 
 742 
 
 778 
 
 
 | 16 
 
 
 
 727 
 
 764 
 
 805 
 
 
 18 
 
 
 '708 
 
 744 
 
 785 
 
 832 
 
 
 20 
 
 
 
 722 
 
 762 
 
 807 
 
 858 
 
 
 22 
 
 
 
 734 
 
 779 
 
 829 
 
 885 
 
 
 24 
 
 
 
 748 
 
 796 
 
 851 
 
 912 
 
 154 
 
TABLE 40 
 
 COLUMNS 
 
 Column size ^ 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Af e (l+2.5np')(l + (n- 
 / length \ = 
 
 Max. 
 
 \diameter 
 
 12 
 
 1:2:4 mixture 
 n = 15 
 f c = 500 
 
 
 Spirals Size of vertical round rods 
 
 Size 
 
 Diam- : I %__i 
 
 of 
 
 eter 
 
 
 
 rxumuer 
 
 ^r 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 X 
 
 H 
 
 X 
 
 1 
 
 IK 
 
 IK 
 
 35 
 
 32 3/0 2K 0.5 14 
 
 513 
 
 529 
 
 547 
 
 569 
 
 593 
 
 620 
 
 16 
 
 518 
 
 536 
 
 557 
 
 582 
 
 610 
 
 641 
 
 18 
 
 524 
 
 544 
 
 567 
 
 595 
 
 626 
 
 661 
 
 
 
 
 
 
 20 
 
 529 
 
 551 
 
 577 
 
 608 
 
 642 
 
 681 
 
 
 
 
 
 
 22 
 
 534 
 
 558 
 
 587 
 
 621 
 
 659 
 
 702 
 
 
 
 
 
 
 24 
 
 539 
 
 566 
 
 597 
 
 634 
 
 676 
 
 722 
 
 
 
 7/0 
 
 iX 
 
 1.5 
 
 14 
 
 
 
 
 
 780 
 
 816 
 
 
 
 
 
 
 16 
 
 
 
 
 '766 
 
 802 
 
 843 
 
 
 
 
 
 
 18 
 
 
 
 
 782 
 
 824 
 
 870 
 
 
 
 
 
 
 20 
 
 
 
 
 800 
 
 846 
 
 896 
 
 
 
 
 
 
 22 
 
 
 
 '773 
 
 818 
 
 867 
 
 924 
 
 
 
 
 
 
 24 
 
 
 
 786 
 
 834 
 
 889 
 
 950 
 
 36 33 3/0 2^ 0.5 14 544 
 
 559 
 
 578 
 
 599 
 
 623 
 
 650 
 
 
 
 
 16 549 
 
 566 
 
 588 
 
 612 
 
 640 
 
 671 
 
 
 
 
 18 , 554 
 
 574 
 
 598 
 
 625 
 
 656 
 
 691 
 
 
 
 
 
 20 
 
 559 
 
 581 
 
 608 | 638 
 
 673 
 
 712 
 
 
 
 
 
 
 22 
 
 564 
 
 589 
 
 618 ! 651 
 
 690 
 
 732 
 
 
 
 
 
 
 24 
 
 569 
 
 596 
 
 628 1 664 
 
 706 
 
 752 
 
 
 
 
 
 
 26 
 
 574 
 
 603 
 
 638 677 
 
 723 
 
 772 
 
 
 
 7/0 
 
 IK 
 
 1.5 
 
 14 
 
 
 
 
 
 820 
 
 856 
 
 
 
 
 
 
 16 
 
 
 
 
 842 
 
 883 
 
 
 
 
 
 
 18 
 
 
 
 
 823 
 
 864 
 
 910 
 
 
 
 
 
 
 20 
 
 
 
 
 840 
 
 886 
 
 936 
 
 
 
 
 
 
 22 . . 
 
 
 sis 
 
 857 
 
 907 
 
 963 
 
 , 
 
 
 
 
 
 24 
 
 
 826 874 
 
 929 
 
 990 
 
 : 
 
 26 
 
 
 839 892 
 
 951 
 
 1017 
 
 37 34 3/0 2H 
 
 0.5 
 
 14 
 
 
 591 
 
 609 630 
 
 655 
 
 682 
 
 
 16 
 
 580 
 
 598 
 
 619 644 
 
 671 
 
 702 
 
 
 18 
 
 585 
 
 605 
 
 629 
 
 657 
 
 688 
 
 723 
 
 
 
 
 20 
 
 590 
 
 613 ! 639 
 
 669 
 
 704 
 
 743 
 
 
 
 
 
 22 
 
 595 
 
 620 649 683 
 
 721 
 
 763 
 
 
 
 
 
 
 24 600 
 
 627 659 696 
 
 737 
 
 784 
 
 
 
 
 
 
 26 
 
 606 
 
 635 669 709 
 
 754 
 
 804 
 
 
 
 7/0 
 
 IX 
 
 1.48 
 
 14 
 
 
 
 857 
 
 893 
 
 
 
 
 
 
 16 
 
 
 
 879 
 
 920 
 
 
 
 
 
 
 18 
 
 
 
 860 
 
 901 
 
 946 
 
 
 
 
 
 
 20 
 
 
 
 876 
 
 922 
 
 973 
 
 
 
 
 
 
 22 
 
 
 
 894 
 
 944 
 
 1000 
 
 
 
 24 
 
 
 863 911 | 966 
 
 1027 
 
 
 
 26 .... 
 
 
 876 928 I 988 
 
 1053 
 
 38 35 3/0 2H 0.5 
 
 14 
 
 623 
 
 641 663 
 
 687 
 
 714 
 
 
 
 
 16 1 612 
 
 630 
 
 651 676 
 
 703 
 
 734 
 
 
 
 
 
 18 617 
 
 638 
 
 661 689 
 
 720 
 
 755 
 
 
 
 
 
 
 20 622 
 
 645 
 
 671 702 
 
 737 
 
 775 
 
 
 
 
 
 
 22 628 
 
 652 
 
 681 1 715 
 
 753 
 
 795 
 
 
 
 
 
 
 24 633 
 
 660 
 
 691 728 
 
 769 
 
 816 
 
 
 
 
 
 
 26 
 
 638 
 
 667 
 
 701 ! 741 
 
 786 
 
 836 
 
 
 
 7/0 
 
 IK 
 
 1.43 
 
 14 
 
 
 
 1 
 
 890 
 
 925 
 
 
 
 
 
 
 16 
 
 
 
 
 911 
 
 951 
 
 
 
 
 
 
 18 
 
 
 
 892 
 
 932 
 
 977 
 
 
 
 
 
 
 20 
 
 
 
 909 
 
 954 
 
 1003 
 
 
 
 
 
 
 22 
 
 
 
 926 
 
 975 
 
 1031 
 
 
 
 
 
 
 24 
 
 
 
 895 943 
 
 996 
 
 1057 
 
 
 
 
 
 26 , .... 
 
 
 908 959 
 
 1018 
 
 1082 
 
 155 
 
COLUMNS 
 
 TABLE 40 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Column Size 
 
 1:2:4 mixture 
 
 n=75 
 
 f c =500 
 
 / length \ 
 \diameterj 
 
 
 
 Spirals 
 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 *A 
 
 H 
 
 14 
 
 1 
 
 IK 
 
 iy* 
 
 39 
 
 36 
 
 4/0 2% 
 
 0.5 
 
 16 
 
 
 663 
 
 684 
 
 709 
 
 735 768 
 
 
 
 
 
 18 
 
 '65i 
 
 671 
 
 694 
 
 722 
 
 753 
 
 788 
 
 
 
 
 
 20 
 
 656 
 
 678 
 
 704 
 
 735 
 
 769 808 
 
 
 
 
 
 
 22 
 
 661 
 
 685 
 
 714 
 
 748 
 
 786 
 
 829 
 
 
 
 
 
 
 24 
 
 666 
 
 693 
 
 724 
 
 761 
 
 803 
 
 849 
 
 
 
 
 
 
 26 
 
 ! 671 
 
 700 
 
 734 
 
 774 
 
 819 
 
 870 
 
 
 
 
 
 
 28 676 
 
 707 
 
 744 
 
 787 
 
 836 
 
 890 
 
 
 
 7/0 
 
 m 
 
 1.40 
 
 16 
 
 
 
 
 943 
 
 985 
 
 
 
 
 
 
 18 ' . .. . 
 
 
 
 
 966 
 
 1012 
 
 
 
 
 
 
 20 
 
 
 
 943 
 
 987 
 
 1037 
 
 
 
 
 
 
 22 
 
 
 
 959 
 
 1008 
 
 1063 
 
 
 
 
 24 || . 
 
 
 930 
 
 976 
 
 1030 
 
 1089 
 
 
 
 
 
 26 
 
 .... 
 
 
 942 
 
 993 
 
 1051 
 
 1116 
 
 
 
 
 
 
 28 
 
 
 
 955 
 
 1010 
 
 1072 
 
 1142 
 
 40 
 
 37 
 
 4/0 
 
 2*A 
 
 0.5 
 
 16 
 
 
 697 
 
 718 
 
 743 
 
 771 
 
 802 
 
 
 
 
 
 
 18 
 
 '685 
 
 705 
 
 728 
 
 756 
 
 787 
 
 822 
 
 
 
 
 
 
 20 690 
 
 712 
 
 738 
 
 769 
 
 803 
 
 842 
 
 
 
 
 
 
 22 695 
 
 719 
 
 748 
 
 782 
 
 820 
 
 863 
 
 
 
 
 
 
 24 700 
 
 727 
 
 758 
 
 795 
 
 837 884 
 
 
 
 
 
 
 26 . 705 
 
 734 
 
 768 
 
 808 
 
 854 905 
 
 
 
 
 
 28 710 
 
 741 
 
 778 
 
 821 
 
 869 925 
 
 
 
 7/0 
 
 1M 
 
 1.36 ! 16 
 
 
 
 
 980 1019 
 
 
 
 
 
 
 18 
 
 
 
 
 1001 
 
 1045 
 
 
 
 
 
 j 20 
 
 
 
 '978 
 
 1022 
 
 1071 
 
 
 
 
 
 
 22 
 
 
 
 994 
 
 1043 
 
 1097 
 
 
 
 
 
 
 24 
 
 
 
 1011 
 
 1064 
 
 1123 
 
 
 
 
 
 
 26 
 
 
 '976 
 
 1027 
 
 1085 
 
 1148 
 
 
 I 
 
 
 
 
 28 
 
 
 989 
 
 1044 
 
 1105 
 
 1174 
 
 41 
 
 38 4/0 2H 0.5 16 
 
 732 753 
 
 778 
 
 806 
 
 836 
 
 
 
 
 
 18 
 
 740 763 
 
 791 
 
 822 
 
 857 
 
 
 
 
 
 
 20 725 
 
 747 
 
 773 
 
 804 
 
 839 
 
 877 
 
 
 
 
 
 
 22 730 
 
 754 
 
 783 
 
 817 
 
 856 
 
 898 
 
 
 
 
 
 
 24 735 
 
 762 
 
 793 
 
 830 
 
 873 
 
 919 
 
 
 
 
 
 
 26 740 
 
 769 
 
 803 
 
 843 
 
 889 
 
 939 
 
 
 
 
 
 
 28 745 
 
 776 
 
 813 
 
 856 
 
 906 
 
 960 
 
 
 
 
 
 
 30 750 
 
 784 
 
 823 
 
 870 
 
 922 
 
 980 
 
 
 
 7/0 
 
 iy 2 1.32 
 
 16 
 
 
 
 
 1015 
 
 1054 
 
 
 
 
 
 
 18 
 
 
 
 
 1035 
 
 1079 
 
 
 
 
 
 
 20 .... 
 
 
 
 i6l2 
 
 1057 
 
 1105 
 
 
 
 
 
 
 22 
 
 
 
 1029 
 
 1077 
 
 1131 
 
 
 
 
 
 
 24 
 
 
 
 1045 
 
 1098 
 
 1157 
 
 
 
 
 
 26 
 
 
 ioi2 
 
 1062 
 
 1118 
 
 1183 
 
 
 
 
 
 
 28 
 
 
 1024 
 
 1078 
 
 1140 
 
 1209 
 
 
 
 
 
 
 30 
 
 
 
 1037 1095 
 
 1101 
 
 1234 
 
 156 
 

 TABLE 40 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 ,_ / length \ 
 Max. [-T-. -) =12 
 \dianieteri 
 
 1:2:4 mixture 
 
 n=15 
 
 f c = 500 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitc-h 
 (inches) 
 
 Per cent 
 of core 
 
 K 
 
 H 
 
 H 
 
 1 
 
 1^ 
 
 IH 
 
 42 
 
 39 
 
 4/0 
 7/0 
 
 2H 
 1H 
 
 0.5 
 1.29 
 
 | 
 i 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 '76i 
 766 
 771 
 776 
 781 
 786 
 
 768 
 776 
 783 
 790 
 798 
 805 
 812 
 820 
 
 789 
 799 
 809 
 819 
 829 
 839 
 849 
 859 
 
 813 
 827 
 840 
 853 
 866 
 879 
 892 
 905 
 
 841 
 858 
 875 
 892 
 908 
 924 
 941 
 957 
 
 1052 
 1073 
 1093 
 1114 
 1134 
 1155 
 1175 
 1196 
 
 873 
 894 
 914 
 934 
 954 
 975 
 996 
 1016 
 
 1091 
 1117 
 1142 
 1167 
 1193 
 1218 
 1244 
 1269 
 
 
 
 
 
 
 
 
 1649 
 1065 
 1082 
 1098 
 1115 
 1131 
 
 
 :::: 
 
 1648 
 1061 
 1074 
 
 43 
 
 40 
 
 4/0 
 7/0 
 
 2H 
 
 IK 
 
 0.5 
 1.25 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 803 
 808 
 813 
 818 
 823 
 
 805 
 813 
 820 
 827 
 835 
 842 
 849 
 857 
 
 826 
 836 
 846 
 856 
 866 
 876 
 886 
 896 
 
 851 
 864 
 877 
 890 
 903 
 916 
 929 
 942 
 
 879 
 895 
 911 
 928 
 944 
 961 
 978 
 995 
 
 1087 
 1107 
 1127 
 1147 
 1168 
 1188 
 1208 
 1228 
 
 909 
 930 
 950 
 970 
 991 
 1011 
 1032 
 1052 
 
 1124 
 1150 
 1175 
 1200 
 1225 
 1250 
 1275 
 1300 
 
 
 
 i096 
 1108 
 
 i085 
 1100 
 1116 
 1133 
 1148 
 1164 
 
 
 
 157 
 
COLUMNS 
 
 TABLE 41 
 
 mixture 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P = Af c (l+2.5np'}[l + (n- 
 
 Column Size * 
 
 12 
 600 
 
 \diameterl 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 _r 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 1M 
 
 15 12 9 Us' 0.5 
 
 8 97 
 
 105 
 
 
 
 
 
 10 101 
 
 112 
 
 
 
 
 
 10 13 8 IM 0.5 8 110 
 
 118 
 
 
 
 
 10 115 
 
 125 
 
 
 
 
 17 
 
 14 7 
 
 IH 0.5 
 
 8 125 
 
 133 
 
 143 
 
 
 
 
 
 
 
 10 130 
 
 140 
 
 152 
 
 
 
 
 
 
 
 . 
 
 12 134 
 
 146 
 
 
 
 
 
 \H 
 
 1.5 8 157 
 
 168 
 
 180 
 
 
 
 
 
 10 163 
 
 176 
 
 191 
 
 
 
 
 12 
 
 169 
 
 185 
 
 
 
 
 
 IS 15 6 
 
 1> 0-5 8 
 
 141 
 
 149 
 
 158 
 
 170 
 
 
 
 ! 
 
 
 10 
 
 145 
 
 155 
 
 168 
 
 
 
 ! 
 
 12 
 
 150 
 
 162 
 
 
 
 
 2/0 
 
 Ik' 1.5 8 
 
 
 188 
 
 200 
 
 214 
 
 
 
 10 
 
 'l83 
 
 196 
 
 211 
 
 
 
 12 
 
 189 
 
 204 
 
 
 
 
 19 16 6 ]? j 0.5 8 157 
 
 166 
 
 175 
 
 186 
 
 199 
 
 
 
 
 
 10 
 
 162 
 
 172 
 
 184 
 
 198 
 
 
 
 
 1 1 
 
 
 
 12 
 
 167 
 
 179 
 
 194 
 
 
 
 
 
 
 
 
 14 
 
 ; 171 
 
 186 
 
 
 
 
 
 
 3/0 
 
 1% 
 
 l!5 
 
 8 
 
 
 209 
 
 221 
 
 235 
 
 251 
 
 
 
 
 
 
 10 
 
 '264 
 
 217 
 
 233 
 
 250 
 
 
 
 
 12 210 
 
 226 
 
 244 
 
 
 | 
 
 
 
 14 1 216 
 
 234 
 
 
 
 
 
 20 
 
 17 5 
 
 1>2 
 
 0.5 8 175 
 
 183 
 
 193 
 
 204 
 
 217 
 
 
 
 
 
 
 10 
 
 ISO 
 
 190 
 
 202 
 
 216 
 
 
 
 
 
 
 
 12 
 
 185 
 
 197 
 
 211 
 
 
 
 
 
 
 
 
 14 
 
 189 
 
 204 
 
 221 
 
 
 
 
 
 1 3/0 
 
 IH 
 
 1.5 8 
 
 231 
 
 244 
 
 258 
 
 274 
 
 
 
 
 
 10 
 
 240 
 
 255 
 
 273 
 
 
 
 
 
 12 
 
 233 
 
 248 
 
 267 
 
 
 
 
 
 | 
 
 14 
 
 239 
 
 257 
 
 278 
 
 
 
 
 21 
 
 18 4 
 
 iH 
 
 0.5 
 
 8 
 
 194 
 
 202 
 
 212 
 
 224 
 
 236 
 
 250 
 
 
 
 
 
 
 10 
 
 199 
 
 209 
 
 221 
 
 235 
 
 251 
 
 
 
 
 
 
 
 12 
 
 204 
 
 216 
 
 230 
 
 247 
 
 
 
 
 
 
 
 
 14 
 
 208 
 
 223 
 
 239 
 
 
 
 
 
 
 3/0 
 
 1>2 
 
 1.5 
 
 8 
 
 
 
 267 
 
 282 
 
 298 
 
 315 
 
 
 
 
 
 
 10 
 
 
 '264 
 
 279 
 
 297 
 
 317 
 
 
 
 
 
 
 
 12 
 
 
 272 
 
 290 
 
 312 
 
 
 
 
 
 
 
 14 
 
 '263 
 
 281 302 
 
 
 
 
 158 
 
TABLE 41 
 
 COLUMNS 
 
 Column size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 12 
 
 ._ 
 
 A/ax. 
 
 / length \ 
 (-^ ) 
 \diameterl 
 
 1:1%:3 mixture 
 n = 12 
 f c =600 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 
 
 K 
 
 K 
 
 1 
 
 IH 
 
 IK 
 
 22 
 
 19 
 
 4 
 4/0 
 
 1^ 
 I* 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 214 
 219 
 224 
 228 
 233 
 
 '288 
 294 
 
 222 
 229 
 236 
 243 
 249 
 
 '289 
 297 
 306 
 314 
 
 232 
 241 
 250 
 259 
 269 
 
 293 
 
 304 
 316 
 327 
 339 
 
 243 
 
 255 
 267 
 279 
 
 307 
 322 
 337 
 352 
 
 256 
 271 
 
 323 
 342 
 
 270 
 341 
 
 23 
 
 20 
 
 3 
 
 5/0 
 
 IK 
 
 IK 
 
 0.5 
 1.5 
 
 8 
 10 
 12 
 14 
 16 
 
 8 
 10 
 12 
 14 
 16 
 
 227 
 231 
 ' 245 
 249 
 254 
 
 244 
 250 
 257 
 264 
 270 
 
 253 
 263 
 271 
 281 
 290 
 
 319 
 331 
 342 
 354 
 365 
 
 265 
 276 
 288 
 300 
 312 
 
 333 
 
 349 
 364 
 379 
 394 
 
 277 
 292 
 307 
 
 349 
 368 
 388 
 
 291 
 310 
 
 367 
 391 
 
 "326 
 
 324 
 333 
 341 
 
 24 
 
 21 3 
 5/0 
 
 1 
 1 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 262 
 267 
 272 
 276 
 
 272 
 279 
 286 
 293 
 
 '352 
 361 
 369 
 
 285 
 294 
 303 
 313 
 
 359 
 370 
 382 
 393 
 
 299 
 311 
 322 
 334 
 
 377 
 
 392 
 407 
 422 
 
 314 
 330 
 
 396 
 416 
 
 332 
 419 
 
 25 
 
 22 
 
 2 
 6/0 
 
 IK 
 
 2 
 
 0.5 
 
 1.5 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 
 286 
 290 
 295 
 299 
 304 
 
 296 
 302 
 309 
 316 
 322 
 
 308 
 317 
 326 
 335 
 344 
 
 388 
 400 
 411 
 423 
 434 
 
 322 
 334 
 346 
 358 
 370 
 
 406 
 421 
 436 
 451 
 466 
 
 338 
 353 
 368 
 
 426 
 445 
 464 
 
 356 
 374 
 
 -448 
 472 
 
 1 
 
 390 
 398 
 
 407 
 
 26 
 
 23 
 
 2 
 6/0 
 
 IK 
 
 IK 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 
 310 
 315 
 319 
 324 
 329 
 
 320 
 327 
 334 
 340 
 347 
 
 332 
 342 
 350 
 360 
 369 
 
 346 
 358 
 370 
 382 
 394 
 
 437 
 452 
 
 467 
 482 
 497 
 
 362 
 377 
 392 
 408 
 
 457 
 476 
 495 
 514 
 
 380 
 398 
 
 479 
 502 
 
 .' : : : 
 
 '429 
 438 
 
 431 
 
 442 
 454 
 465 
 
 159 
 

 TABLE 41 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Column size 
 
 mixture 
 
 = 600 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 1H 
 
 IK 
 
 27 
 
 24 
 
 1 
 
 2 
 
 0.5 10 
 
 335 
 
 346 
 
 358 
 
 372 
 
 388 
 
 405 
 
 
 
 
 
 12 
 
 340 
 
 352 
 
 367 
 
 384 
 
 403 
 
 424 
 
 
 
 
 
 
 14 
 
 345 
 
 359 
 
 376 
 
 396 
 
 418 
 
 443 
 
 
 
 
 
 
 16 
 
 849 
 
 366 
 
 385 
 
 408 
 
 433 
 
 
 
 
 
 
 
 18 
 
 354 
 
 372 
 
 394 
 
 420 
 
 448 
 
 
 
 
 7/0 
 
 2 
 
 1.5 
 
 10 
 
 
 
 
 469 
 
 489 
 
 511 
 
 
 
 
 
 
 12 
 
 
 
 463 
 
 484 
 
 508 
 
 535 
 
 
 
 
 
 
 14 
 
 
 
 474 
 
 499 
 
 527 
 
 558 
 
 
 
 
 
 
 16 
 
 
 461 
 
 486 
 
 514 
 
 546 
 
 
 
 
 
 
 
 ; 18 
 
 470 
 
 497 
 
 529 
 
 565 
 
 
 28 
 
 25 1 
 
 1 
 
 2 
 
 0.5 
 
 10 362 
 
 372 
 
 384 
 
 399 
 
 414 
 
 432 
 
 
 
 
 12 367 
 
 379 
 
 394 
 
 410 
 
 429 
 
 451 
 
 
 
 
 
 
 14 
 
 371 
 
 386 
 
 403 
 
 423 
 
 444 
 
 469 
 
 
 
 
 
 
 16 
 
 376 
 
 392 
 
 412 
 
 434 
 
 459 
 
 488 
 
 
 
 
 
 
 18 
 
 380 
 
 399 
 
 421 
 
 446 
 
 474 
 
 
 
 
 
 
 
 20 
 
 i 385 
 
 406 
 
 430 
 
 458 
 
 
 
 
 
 7/0 
 
 2 
 
 1.5 10 
 
 
 
 
 502 
 
 522 
 
 545 
 
 
 
 
 
 12 
 
 
 
 
 517 
 
 541 
 
 568 
 
 
 
 
 
 14 
 
 j 
 
 
 '508 
 
 532 
 
 560 
 
 592 
 
 
 
 
 
 
 16 .... 
 
 
 519 
 
 547 
 
 579 
 
 615 
 
 
 
 
 
 
 18 
 
 '503 
 
 531 
 
 562 
 
 598 
 
 
 
 
 
 
 20 | 
 
 512 
 
 542 
 
 577 
 
 
 
 29 26 
 
 
 
 2M 
 
 0.5 
 
 12 394 
 
 407 
 
 421 
 
 438 
 
 457 
 
 478 
 
 
 
 
 
 14 399 
 
 413 
 
 430 
 
 450 
 
 472 
 
 497 
 
 
 
 
 16 404 
 
 420 
 
 439 
 
 462 
 
 487 
 
 516 
 
 i 1 1 
 
 
 
 18 408 
 
 427 
 
 448 
 
 473 
 
 502 
 
 
 
 
 
 
 
 20 413 
 
 433 
 
 458 
 
 485 
 
 516 
 
 
 
 
 7/0 
 
 1H 
 
 1.5 
 
 12 j . .. 
 
 
 
 552 
 
 576 
 
 603 
 
 
 
 
 
 14 
 
 
 '542 
 
 567 
 
 595 
 
 626 
 
 
 I j 
 
 
 16 li . .. 
 
 
 554 
 
 582 
 
 614 
 
 650 
 
 
 ! 1 
 
 
 
 is :j . .. 
 
 '538 
 
 565 
 
 597 
 
 633 
 
 
 
 i 
 
 
 
 20 ! . .. 
 
 546 
 
 577 
 
 612 
 
 652 
 
 
 30 
 
 27 
 
 2H 
 
 0.5 
 
 12 423 
 
 435 
 
 450 
 
 467 
 
 486 
 
 507 
 
 
 
 
 
 
 14 ! 428 
 
 442 
 
 459 
 
 479 
 
 501 
 
 525 
 
 
 
 
 
 
 16 
 
 432 
 
 449 
 
 468 
 
 491 
 
 516 
 
 544 
 
 
 i 
 
 
 
 
 18 
 
 437 
 
 455 
 
 477 
 
 502 
 
 . 531 
 
 563 
 
 
 1 
 
 
 
 
 20 
 
 442 
 
 462 
 
 486 
 
 514 
 
 546 
 
 
 
 
 
 
 
 22 
 
 446 
 
 469 
 
 495 
 
 526 
 
 561 
 
 
 
 
 7/0 
 
 IK 
 
 1.5 
 
 12 
 
 
 
 
 588 
 
 612 
 
 639 
 
 
 
 
 
 
 14 |i 
 
 
 
 603 
 
 631 
 
 663 
 
 
 
 
 
 
 16 
 
 
 '596 
 
 618 
 
 650 
 
 686 
 
 
 
 
 
 
 18 .... 
 
 
 602 
 
 633 
 
 669 710 
 
 
 
 
 
 
 20 
 
 '583 
 
 613 
 
 648 
 
 688 
 
 
 
 
 
 
 22 
 
 591 
 
 624 
 
 664 
 
 707 
 
 
 
 
 
 
 
 
 160 
 
TABLE 41 
 
 Column size ^ 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P = Af c (l +2.5np')U + (n - 
 I length \ 
 
 Max. 
 
 -;-. 
 \diameterj 
 
 12 
 
 1:1)4:3 mixture 
 n = 12 
 f c =600 
 
 Size 
 'of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 I Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 % 
 
 \ 
 
 K 
 
 H 
 
 1 
 
 IX 
 
 IK 
 
 31 
 
 1 
 28 
 
 2/0 
 7/0 
 
 2H 
 IK 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 453 
 
 458 
 462 
 467 
 471 
 476 
 
 465 
 472 
 479 
 485 
 492 
 499 
 
 480 
 489 
 498 
 507 
 516 
 525 
 
 497 
 508 
 520 
 532 
 544 
 556 
 
 626 
 641 
 656 
 671 
 686 
 701 
 
 515 
 
 530 
 546 
 561 
 576 
 591 
 
 650 
 669 
 688 
 707 
 726 
 745 
 
 545 
 555 
 574 
 593 
 611 
 
 687 
 700 
 724 
 747 
 771 
 
 
 
 
 
 
 628 
 639 
 651 
 662 
 
 
 
 
 
 '629 
 
 32 
 
 29 
 
 2/0 
 7/0 
 
 2H 
 
 IM 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 484 
 488 
 493 
 498 
 502 
 507 
 
 496 
 503 
 509 
 516 
 523 
 530 
 
 510 
 520 
 529 
 538 
 546 
 556 
 
 527 
 539 
 551 
 563 
 575 
 587 
 
 547 
 562 
 577 
 592 
 606 
 622 
 
 689 
 708 
 727 
 746 
 765 
 784 
 
 568 
 586 
 605 
 624 
 642 
 
 716 
 739 
 763 
 786 
 810 
 
 
 
 
 680 
 695 
 710 
 725 
 740 
 
 
 
 
 
 
 678 
 690 
 701 
 
 
 
 
 
 33 
 
 30 
 
 2/0 
 
 7/0 
 
 2K 
 
 i* 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 516 
 520 
 525 
 530 
 534 
 539 
 544 
 
 528 
 535 
 541 
 548 
 555 
 562 
 568 
 
 542 
 552 
 561 
 570 
 579 
 588 
 597 
 
 559 
 571 
 583 
 595 
 607 
 619 
 631 
 
 578 
 593 
 608 
 624 
 639 
 654 
 669 
 
 729 
 748 
 767 
 786 
 805 
 824 
 843 
 
 599 
 618 
 637 
 656 
 674 
 693 
 
 756 
 779 
 803 
 826 
 850 
 873 
 
 
 
 
 720 
 735 
 750 
 765 
 780 
 795 
 
 
 
 
 .... 
 
 .... 
 
 719 
 730 
 742 
 753 
 
 
 
 
 716 
 
 34 
 
 31 
 
 3/0 
 
 7/0 
 
 2H 
 
 l)i 
 
 0.5 
 1.5 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 .14 
 16 
 18 
 20 
 22 
 24 
 
 553 
 558 
 563 
 567 
 572 
 577 
 
 568 
 574 
 581 
 588 
 595 
 602 
 
 585 
 594 
 603 
 612 
 622 
 631 
 
 605 
 617 
 629 
 641 
 653 
 665 
 
 762 
 777 
 792 
 807 
 822 
 837 
 
 627 
 642 
 657 
 672 
 687 
 702 
 
 790 
 
 809 
 828 
 847 
 866 
 885 
 
 651 
 670 
 688 
 707 
 726 
 745 
 
 821 
 
 845 
 868 
 892 
 915 
 939 
 
 
 
 
 '7ei 
 
 772 
 784 
 795 
 
 ( ' 
 
 11 
 
 161 
 
COLUMNS 
 
 TABLE 41 
 
 1:1^4:3 mixture 
 n = 12 
 f c = 600 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P=Af c (l+2.5np' 
 Max. 
 
 , Column si. 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 % 
 
 H 
 
 % 
 
 1 
 
 IH 
 
 IK 
 
 35 
 
 32 
 
 3/0 
 7/0 
 
 2H 
 IK 
 
 0.5 
 1.5 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 587 
 592 
 597 
 601 
 606 
 611 
 
 602 
 608 
 615 
 622 
 629 
 635 
 
 619 
 
 628 
 637 
 646 
 655 
 664 
 
 638 
 650 
 662 
 674 
 686 
 698 
 
 661 
 676 
 691 
 706 
 721 
 736 
 
 833 
 
 852 
 871 
 890 
 909 
 928 
 
 685 
 704 
 722 
 741 
 760 
 779 
 
 864 
 888 
 911 
 935 
 958 
 982 
 
 
 
 '826 
 838 
 
 820 
 835 
 850 
 865 
 880 
 
 36 
 
 33 
 
 3/0 
 
 7/0 
 
 2M 
 
 IX 
 
 0.5 
 1.5 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 623 
 627 
 632 
 637 
 641 
 646 
 652 
 
 637 
 644 
 650 
 657 
 664 
 670 
 677 
 
 654 
 663 
 673 
 682 
 691 
 700 
 709 
 
 674 
 685 
 697 
 709 
 721 
 733 
 745 
 
 696 
 711 
 726 
 741 
 756 
 771 
 786 
 
 877 
 896 
 915 
 934 
 953 
 972 
 991 
 
 721 
 739 
 758 
 777 
 795 
 813 
 832 
 
 909 
 932 
 956 
 979 
 1002 
 1026 
 1049 
 
 
 .... 
 
 '87i 
 
 882 
 894 
 
 '879 
 894 
 909 
 925 
 940 
 
 37 
 
 34 
 
 3/0 
 7/0 
 
 2H 
 
 1H 
 
 0.5 
 1.48 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 ' '664 
 ; 668 
 673 
 678 
 682 
 687 
 
 673 
 680 
 687 
 693 
 700 
 707 
 714 
 
 690 
 699 
 708 
 717 
 727 
 736 
 745 
 
 710 
 722 
 734 
 746 
 758 
 770 
 782 
 
 732 
 747 
 76? 
 777 
 792 
 807 
 822 
 
 919 
 937 
 956 
 975 
 994 
 1013 
 1031 
 
 757 
 775 
 794 
 813 
 831 
 850 
 868 
 
 949 
 973 
 996 
 1019 
 1042 
 1065 
 1089 
 
 
 '923 
 935 
 
 921 
 936 
 950 
 965 
 980 
 
 38 
 
 35 
 
 3/0 
 7/0 
 
 2H 
 IH 
 
 0.5 
 1.43 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 '761 
 706 
 710 
 715 
 720 
 725 
 
 711 
 717 
 724 
 731 
 738 
 744 
 751 
 
 727 
 737 
 746 
 755 
 764 
 773 
 782 
 
 747 
 759 
 771 
 783 
 794 
 806 
 819 
 
 769 
 784 
 800 
 815 
 830 
 845 
 860 
 
 956 
 975 
 994 
 1013 
 1031 
 1050 
 1069 
 
 794 
 813 
 832 
 851 
 869 
 887 
 906 
 
 987 
 1010 
 1033 
 1056 
 1080 
 1103 
 1126 
 
 
 
 '96i 
 973 
 
 958 
 973 
 988 
 1003 
 1018 
 
 162 
 
TABLE 41 
 
 COLUMNS 
 
 Column Size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P=Af c (l+2.5np')[l + (n- 
 
 Max. 
 
 I length \ 
 {diameter/ 
 
 12 
 
 %: 3 mixture 
 12 
 600 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical raund rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 H 
 
 H H 1 iM 1M 
 
 39 
 
 36 
 
 4/0 
 7/0 
 
 *M 
 
 iK 
 
 0.5 
 1.40 
 
 16 
 18- 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 '744 
 
 749 
 754 
 758 
 763 
 768 
 
 756 
 763 
 769 
 776 
 783 
 789 
 796 
 
 775 
 
 784 
 794 
 803 
 812 
 821 
 830 
 
 798 
 810 
 821 
 833 
 845 
 857 
 869 
 
 823 
 838 
 853 
 869 
 884 
 899 
 914 
 
 1016 
 1035 
 1054 
 1073 
 1092 
 1110 
 1129 
 
 851 
 
 870 
 889 
 908 
 926 
 945 
 964 
 
 1052 
 1075 
 1098 
 1121 
 1145 
 1168 
 1191 
 
 
 
 
 
 - 
 
 
 
 iois 
 
 1030 
 1044 
 1059 
 1074 
 
 ; ;;; 
 
 ioos 
 
 1014 
 1025 
 
 40 
 
 37 
 
 4/0 
 7/0 
 
 2% 
 
 IH 
 
 0.5 
 1.36 
 
 "784 
 788 
 793 
 798 
 803 
 807 
 
 795 
 802 
 809 
 816 
 822 
 829 
 836 
 
 815 
 824 
 833 
 842 
 851 
 860 
 869 
 
 837 
 850 
 861 
 873 
 885 
 897 
 909 
 
 863 
 878 
 893 
 909 
 924 
 939 
 954 
 
 1056 
 1074 
 1093 
 1111 
 1130 
 1148 
 1167 
 
 891 
 909 
 928 
 947 
 965 
 984 
 1003 
 
 1091 
 1113 
 1136 
 1159 
 1182 
 1205 
 1228 
 
 
 
 
 
 ;; : 
 
 
 1054 
 1065 
 
 1055 
 1070 
 1084 
 1098 
 1113 
 
 41 
 
 38 
 
 1 
 
 4/0 
 7/0 
 
 *H 
 
 IK 
 
 0.5 
 1.32 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 '829 
 834 
 839 
 844 
 , 848 
 852 
 
 836 
 843 
 850 
 856 
 863 
 870 
 876 
 883 
 
 856 
 865 
 874 
 883 
 892 
 901 
 910 
 919 
 
 879 
 890 
 902 
 914 
 926 
 938 
 950 
 962 
 
 903 
 918 
 934 
 949 
 964 
 979 
 994 
 1009 
 
 1096 
 1115 
 1133 
 1152 
 1170 
 1188 
 1207 
 1225 
 
 932 
 951 
 970 
 988 
 1007 
 1025 
 1044 
 1063 
 
 1131 
 1154 
 1176 
 1199 
 1221 
 1244 
 1267 
 1289 
 
 
 ' 
 
 i094 
 1105 
 1116 
 
 16&5 
 1109 
 1124 
 1138 
 1153 
 1167 
 
 163 
 
COLUMNS 
 
 TABLE 41 
 
 1:1%:3 mixture 
 n = 12 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 12 
 
 fnlnmrt size %. 
 
 Max. 
 
 Size 
 of. 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (.inches) 
 
 Per cent 
 of core 
 
 ys 
 
 H 
 
 7 A 
 
 1 
 
 IH 
 
 IK 
 
 42 
 
 39 
 
 4/0 
 7/0 
 
 2M 
 
 1}'2 
 
 0.5 
 1.29 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 'S71 
 876 
 880 
 885 
 889 
 894 
 
 878 
 885 
 891 
 898 
 905 
 911 
 918 
 924 
 
 897 
 906 
 916 
 925 
 934 
 943 
 953 
 962 
 
 920 
 932 
 944 
 956- 
 967 
 979 
 991 
 1003 
 
 945 
 
 960 
 975 
 990 
 1004 
 1019 
 1034 
 1050 
 
 1140 
 1158 
 1176 
 1194 
 1212 
 1230 
 1249 
 1267 
 
 973 
 
 992 
 1010 
 1029 
 1048 
 1066 
 1084 
 1103 
 
 1172 
 1196 
 1219 
 1241 
 1264 
 1286 
 1309 
 1331 
 
 ii37 
 
 1148 
 1159 
 
 li38 
 1152 
 1167 
 1181 
 1195 
 1210 
 
 43 
 
 40 
 
 4/0 
 7/0 
 
 2H 
 IH 
 
 0.5 
 1.25 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 "gis 
 
 923 
 
 928 
 932 
 
 1 937 
 
 921 
 927 
 934 
 941 
 947 
 954 
 961 
 968 
 
 940 
 949 
 958 
 968 
 977 
 986 
 995 
 1004 
 
 962 
 974 
 986 
 998 
 1010 
 1022 
 1034 
 1046 
 
 988 
 1003 
 1018 
 1033 
 1048 
 1062 
 1077 
 1092 
 
 1181 
 1199 
 1217 
 1235 
 1253 
 1271 
 1289 
 1307 
 
 1016 
 1035 
 1053 
 1072 
 1090 
 1109 
 1128 
 1146 
 
 1215 
 1237 
 1259 
 1282 
 1304 
 1326 
 1348 
 1371 
 
 
 
 
 
 
 
 1179 
 1193 
 1207 
 1222 
 1236 
 1250 
 
 
 
 .... 
 
 
 
 ii90 
 
 1200 
 
 
 
 164 
 
TABLE 42 
 
 Column size 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 1:1:2 mixture 
 
 n=10 
 
 f c =725 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 of 
 rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IX 
 
 IH 
 
 15 
 
 12 
 
 9 
 
 1H 
 
 0.5 
 
 8 
 
 110 
 
 118 
 
 
 
 1 
 
 
 
 
 
 
 10 
 
 115 
 
 125 
 
 
 
 
 16 
 
 13 
 
 8 
 
 IH 
 
 0.5 
 
 8 
 
 126 
 
 134 
 
 
 ! 
 
 
 
 
 
 
 10 
 
 ; 131. 
 
 141 
 
 
 
 17 
 
 14 
 
 7 
 
 IK 
 
 0.5 
 
 8 
 
 144 
 
 151- 
 
 161 
 
 
 
 
 
 
 
 
 10 
 
 148 
 
 158 
 
 170 
 
 
 
 
 
 
 
 
 
 12 
 
 153 
 
 164 
 
 
 
 
 
 
 
 
 
 IH 
 
 1.5 
 
 8 
 
 175 
 
 185 
 
 197 
 
 
 
 
 
 
 
 
 
 10 
 
 181 
 
 193 
 
 207 
 
 
 
 
 
 
 
 
 
 12 
 
 186 
 
 201 
 
 
 
 
 
 18 15 .6 
 
 1H 
 
 0.5 
 
 8 162 
 
 170 
 
 179 
 
 190 
 
 
 
 
 
 
 
 10 167 
 
 177 
 
 188 
 
 
 
 
 
 
 
 
 12 
 
 171 
 
 183 
 
 
 
 
 
 
 
 2/0 
 
 1H 
 
 1.5 
 
 8 
 
 
 208 
 
 219 
 
 233 
 
 
 
 
 
 
 
 
 10 
 
 '264 
 
 216 
 
 230 
 
 
 
 
 
 
 
 
 12 
 
 209 224 
 
 
 
 
 
 19 
 
 16 
 
 6 
 
 IH 
 
 0.5 
 
 8 
 
 182 
 
 190 
 
 199 
 
 210 
 
 223 
 
 
 
 
 
 
 
 10 
 
 186 
 
 196 
 
 208 
 
 222 
 
 
 
 
 
 
 
 
 12 
 
 191 
 
 203 
 
 217 
 
 
 
 
 
 
 
 
 
 14 
 
 195 
 
 211 
 
 
 
 
 
 
 3/0 
 
 i^ 
 
 1.5 
 
 8 
 
 
 232 
 
 244 
 
 257 
 
 272 
 
 
 
 
 
 
 
 10 
 
 '228 
 
 240 
 
 254 
 
 271 
 
 
 
 
 
 
 
 
 12 
 
 233 
 
 248 
 
 265 
 
 
 
 
 
 
 
 
 
 14 
 
 239 
 
 257 
 
 
 
 
 
 20 
 
 17 
 
 5 
 
 1H 0.5 
 
 8 
 
 203 
 
 211 
 
 220 
 
 231 
 
 243 
 
 
 
 
 
 
 
 10 
 
 208 
 
 217 
 
 229 
 
 243 
 
 
 
 
 
 
 
 
 12 
 
 212 
 
 224 
 
 238 
 
 
 
 
 
 
 
 
 
 14 
 
 217 
 
 231 
 
 247 
 
 
 
 
 
 
 3/0 
 
 m 
 
 1.5 
 
 8 
 
 
 258 
 
 269 
 
 283 
 
 298 
 
 
 
 
 
 
 
 10 
 
 
 266 
 
 280 
 
 296 
 
 
 
 
 
 
 
 
 12 
 
 '259 
 
 274 
 
 291 
 
 
 
 
 
 
 
 
 
 14 
 
 265 
 
 282 
 
 302 
 
 
 
 
 21 
 
 18 
 
 4 
 
 IK 
 
 0.5 
 
 8 225 
 
 234 
 
 243 
 
 254 
 
 266 
 
 280 
 
 
 
 
 
 
 10 230 
 
 240 
 
 252 
 
 265 
 
 280 
 
 
 
 
 
 
 
 12 
 
 235 
 
 247 
 
 260 
 
 277 
 
 
 
 
 
 
 
 
 14 
 
 239 
 
 254 
 
 269 
 
 
 
 
 
 
 3/0 
 
 IK 
 
 1.5 
 
 8 
 
 
 
 297 
 
 310 
 
 325 
 
 342 
 
 
 
 
 
 
 10 
 
 
 '293 
 
 308 
 
 324 
 
 343 
 
 
 
 
 
 
 
 12 
 
 
 301 
 
 318 
 
 338 
 
 
 
 
 
 1 
 
 
 
 14 
 
 '292 
 
 310 
 
 329 
 
 
 
 
 165 
 
COLUMNS 
 
 TABLE 42 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Column size 
 
 1:1:2 mixture 
 'ri = 10 
 f c = 725 
 
 Max l lw"L\ =12 
 \diameter / 
 
 
 
 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 
 _r 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 *A 
 
 H 
 
 V* 
 
 1 
 
 IH 
 
 IH 
 
 22 
 
 19 
 
 4 
 
 IH 
 
 0.5 
 
 8 
 
 249 
 
 257 
 
 266 
 
 277 
 
 290 
 
 303 
 
 
 
 
 
 
 10 
 
 254 
 
 264 
 
 275 
 
 289 
 
 304 
 
 
 
 
 
 
 
 12 
 
 258 
 
 270 
 
 284 
 
 300 
 
 
 
 
 
 
 
 
 14 
 
 263 
 
 277 
 
 293 
 
 312 
 
 
 
 
 
 
 
 
 16 
 
 267 
 
 283 
 
 302 
 
 
 
 
 
 
 4/0 1% 
 
 1.5 8 
 
 
 
 326 
 
 339 
 
 354 
 
 370 
 
 
 
 
 
 10 
 
 
 '322 
 
 336 
 
 353 
 
 372 
 
 
 
 
 
 12 
 
 
 330 
 
 347 
 
 367 
 
 
 
 
 
 14 
 
 '321 
 
 338 
 
 358 
 
 381 
 
 
 
 16 327 
 
 346 
 
 369 
 
 
 
 23 
 
 20 3 IH 0.5 8 i 274 
 
 282 
 
 291 
 
 302 
 
 315 
 
 328 
 
 
 
 10 i 279 
 
 289 
 
 300 
 
 314 
 
 329 
 
 346 
 
 
 
 
 12 ; 283 
 
 295 
 
 309 
 
 326 
 
 344 
 
 
 
 
 
 14 
 
 i 288 
 
 302 
 
 318 
 
 337 
 
 
 
 
 
 
 16 
 
 292 
 
 808 
 
 327 
 
 349 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5/0 1% 
 
 1.5 8 
 
 
 
 356 
 
 369 
 
 384 
 
 401 
 
 
 
 
 10 
 
 
 367 
 
 384 
 
 402 
 
 423 
 
 
 
 
 
 12 
 
 'sei 
 
 378 
 
 398 
 
 420 
 
 
 
 
 
 
 14 
 
 369 
 
 389 
 
 412 
 
 
 
 1 
 
 i 16 357 
 
 377 
 
 399 
 
 426 
 
 
 
 24 
 
 21 3 
 
 1% 
 
 0.5 10 
 
 305 
 
 315 
 
 326 
 
 340 
 
 356 
 
 372 
 
 
 
 
 
 12 
 
 309 
 
 321 
 
 335 
 
 352 
 
 370 
 
 
 
 
 
 
 14 ' 314 
 
 328 
 
 344 
 
 363 
 
 
 
 
 
 
 
 16 
 
 319 
 
 334 
 
 353 
 
 375 
 
 
 
 
 
 5/0 IM 
 
 1.5 10 
 
 
 399 
 
 416 
 
 435 
 
 455 
 
 
 
 12 
 
 393 
 
 410 
 
 430 
 
 452 
 
 
 
 14 
 
 401 
 
 421 
 
 444 
 
 
 
 
 16 
 
 409 
 
 432 
 
 458 
 
 
 
 25 
 
 22 2 1% 0.5 10 333 
 
 342 
 
 354 1 368 
 
 383 
 
 400 
 
 
 
 12 337 
 
 349 
 
 363 379 
 
 398 
 
 418 
 
 
 : j 
 
 14 341 
 
 356 
 
 372 
 
 391 
 
 412 
 
 
 
 
 
 
 16 346 
 
 362 
 
 381 
 
 402 
 
 
 
 
 
 
 
 18 
 
 350 
 
 368 
 
 389 
 
 414 
 
 
 
 
 
 6/0 
 
 2 
 
 1.5 10 
 
 
 
 433 
 
 449 
 
 468 
 
 490 
 
 
 
 
 
 12 
 
 
 
 444 
 
 463 
 
 486 
 
 511 
 
 
 
 
 14 
 
 '434 
 
 454 
 
 478 
 
 504 
 
 
 
 
 
 16 
 
 442 
 
 465 
 
 492 
 
 
 
 
 18 
 
 450 
 
 476 
 
 506 
 
 1 
 
 26 
 
 23 
 
 2 
 
 IH 0.5 10 i 361 
 
 372 
 
 383 
 
 396 
 
 412 
 
 429 
 
 
 
 
 12 366 
 
 378 
 
 392 
 
 408 
 
 427 
 
 447 
 
 
 
 
 
 14 370 
 
 385 
 
 401 
 
 420 
 
 442 
 
 
 
 
 
 16 375 
 
 391 
 
 410 
 
 431 
 
 456 
 
 
 
 
 
 
 18 1 379 
 
 397 
 
 418 
 
 443 
 
 
 
 
 6/0 1% ' 1.5 
 
 10 
 
 
 
 
 485 
 
 503 
 
 525 
 
 
 
 
 12 
 
 
 
 '479 
 
 499 
 
 521 
 
 546 
 
 
 
 
 
 14 
 
 
 
 490 
 
 513 
 
 539 
 
 
 
 
 
 16 
 
 '478 
 
 501 
 
 527 
 
 557 
 
 
 
 18 |; .... 
 
 485 
 
 512 
 
 541 
 
 
 . 
 
 lf>6 
 
TABLE 42 
 
 COLUMNS 
 
 Column size 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Max. -- =12 
 
 n=10 
 f c = 725 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 1 
 of core 
 
 *A 
 
 H 
 
 H 
 
 1 
 
 IK 
 
 in 
 
 27 
 
 24 
 
 7/0 
 
 Q 
 
 2 
 
 0.5 
 1.5 
 
 10 
 12 
 
 1 4 6 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 392 
 396 
 401 
 305 
 410 
 
 401 
 408 
 415 
 421 
 428 
 
 413 
 
 422 
 431 
 440 
 449 
 
 '515 
 526 
 537 
 548 
 
 427 
 438 
 450 
 461 
 473 
 
 522 
 536 
 550 
 564 
 
 578 
 
 442 
 457 
 471 
 486 
 500 
 
 540 
 558 
 576 
 594 
 612 
 
 459 
 
 477 
 495 
 
 561 
 583 
 605 
 
 :::.' 
 
 'si 5 
 
 522 
 
 28 
 
 25 
 
 1 
 7/0 
 
 2 
 
 0.5 
 1.5 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 423 
 428 
 432 
 437 
 441 
 446 
 
 433 
 440 
 447 
 453 
 459 
 465 
 
 445 
 453 
 462 
 471 
 480 
 489 
 
 458 
 470 
 481 
 493 
 504 
 516 
 
 560 
 574 
 588 
 602 
 616 
 630 
 
 473 
 488 
 503 
 517 
 532 
 
 578 
 596 
 614 
 632 
 650 
 
 490 
 508 
 527 
 545 
 
 599 
 621 
 644 
 666 
 
 
 
 '56i 
 569" 
 
 '565 
 576 
 587 
 597 
 
 29 
 
 26 
 
 
 7/0 
 
 2M 
 
 m 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 460 
 464 
 469 
 473 
 478 
 
 472 
 479 
 485 
 491 
 498 
 
 'eoi 
 
 608 
 
 486 
 495 
 504 
 512 
 521 
 
 '605 
 616 
 626 
 637 
 
 502 
 513 
 525 
 537 
 
 548 
 
 613 
 
 628 
 642 
 656 
 670 
 
 521 
 535 
 550 
 564 
 579 
 
 636 
 654 
 672 
 690 
 707 
 
 541 
 559 
 577 
 
 662 
 683 
 705 
 
 30 
 
 27 
 
 
 7/0 
 
 2H 
 
 IH 
 
 0.5 
 1.5 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 494 
 499 
 503 
 508 
 512 
 517 
 
 506 
 513 
 519 
 525 
 531 
 538 
 
 520 
 529 
 537 
 546 
 555 
 564 
 
 536 
 548 
 559 
 570 
 582 
 593 
 
 655 
 670 
 684 
 698 
 712 
 726 
 
 554 
 569 
 583 
 598 
 613 
 628 
 
 678 
 696 
 714 
 731 
 749 
 767 
 
 575 
 593 
 611 
 629 
 
 703 
 725 
 747 
 769 
 
 
 "650 
 658 
 
 '657 
 668 
 679 
 689 
 
 167 
 
COLUMNS 
 
 1:1:2 mixture 
 
 n=10 
 
 f c=7 25 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P=Af c (l+2.5np'j[l+(n-l)p] 
 Max. t-- =12 
 
 TABLE 42 
 
 i^ Co/if 777/7 size y. 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 of 
 
 Diam- 
 eter 
 
 
 Number 
 _* 
 
 
 
 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. &. 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 OI 
 
 rods 
 
 H 
 
 H 
 
 % 
 
 1 
 
 IK 
 
 IX 
 
 31 
 
 28 
 
 2/0 
 
 2% 
 
 0.5 
 
 12 
 
 530 
 
 541 
 
 555 
 
 571 
 
 590 
 
 610 
 
 
 
 
 
 
 14 
 
 534 
 
 548 
 
 564 
 
 583 
 
 605 
 
 628 
 
 
 
 
 
 
 16 
 
 539 
 
 554 
 
 573 
 
 595 
 
 619 
 
 647 
 
 
 
 
 
 
 18 
 
 543 
 
 560 
 
 582 
 
 606 
 
 633 
 
 665 
 
 
 
 
 
 
 20 
 
 548 
 
 567 
 
 590 
 
 618 
 
 648 
 
 682 
 
 
 
 
 
 
 22 
 
 552 
 
 573 
 
 599 
 
 629 
 
 663 
 
 
 
 
 7/0 
 
 IK 
 
 1.5 
 
 12 
 
 
 
 
 698 
 
 721 
 
 746 
 
 
 
 
 
 
 14 
 
 
 
 
 713 
 
 739 
 
 768 
 
 
 
 
 
 
 16 
 
 
 
 '766 
 
 727 
 
 757 
 
 790 
 
 
 
 
 
 
 18 
 
 
 
 711 
 
 741 
 
 775 
 
 812 
 
 
 
 
 
 
 20 
 
 
 
 722 
 
 755 
 
 792 
 
 834 
 
 
 
 
 
 
 22 
 
 
 '76! 
 
 733 
 
 769 
 
 810 
 
 
 32 
 
 29 
 
 2/0 
 
 2H 
 
 0.5 
 
 12 
 
 565 
 
 577 
 
 592 
 
 608 
 
 626 
 
 647 
 
 
 
 
 
 
 14 
 
 570 
 
 584 
 
 600 
 
 620 
 
 641 
 
 665 
 
 
 
 
 
 
 16 
 
 ' 574 
 
 590 
 
 609 
 
 631 
 
 655 
 
 683 
 
 
 
 
 
 
 18 
 
 579 
 
 597 
 
 618 
 
 642 
 
 670 
 
 701 
 
 
 
 
 
 
 20 
 
 583 
 
 603 
 
 627 
 
 654 
 
 685 
 
 718 
 
 
 
 
 
 
 22 
 
 588 
 
 610 
 
 636 
 
 666 
 
 699 
 
 
 
 
 7/0 . 
 
 IK 
 
 1.5 
 
 12 
 
 
 
 
 
 765 
 
 792 
 
 
 
 
 
 
 14 
 
 
 
 
 '757 
 
 783 
 
 813 
 
 
 
 
 
 
 16 
 
 
 
 
 771 
 
 801 
 
 835 
 
 
 
 
 
 
 18 
 
 
 
 '756 
 
 785 
 
 819 
 
 857 
 
 
 
 
 
 
 20 
 
 
 
 767 
 
 800 
 
 837 
 
 879 
 
 
 
 
 
 
 22 
 
 
 
 777 
 
 814 
 
 855 
 
 
 33 
 
 30 
 
 2/0 
 
 2H 
 
 0.5 
 
 12 
 
 604 
 
 616 
 
 629 
 
 646 
 
 664 
 
 685 
 
 
 
 
 
 
 14 
 
 608 
 
 622 
 
 638 
 
 657 
 
 678 
 
 702 
 
 
 
 
 
 
 16 
 
 613 
 
 628 
 
 647 
 
 669 
 
 693 
 
 720 
 
 
 
 
 
 
 18 
 
 617 
 
 635 
 
 656 
 
 680 
 
 708 
 
 738 
 
 
 
 
 
 
 20 
 
 622 
 
 641 
 
 665 
 
 691 
 
 723 
 
 757 
 
 
 
 
 
 
 22 
 
 526 
 
 648 
 
 674 
 
 703 
 
 737 
 
 775 
 
 
 
 
 
 
 24 
 
 631 
 
 654 
 
 683 
 
 715 
 
 752 
 
 
 
 
 7/0 IK 
 
 1.5 
 
 12 
 
 
 
 
 
 812 
 
 836 
 
 
 
 
 
 14 
 
 
 
 
 '803 
 
 830 
 
 858 
 
 
 
 
 
 
 16 
 
 
 
 
 817 
 
 848 
 
 880 
 
 
 
 
 
 
 18 
 
 
 
 '802 
 
 832 
 
 866 
 
 902 
 
 
 
 
 
 
 ' 20 
 
 
 
 813 
 
 846 
 
 883 
 
 925 
 
 
 
 
 
 
 22 
 
 
 
 824 
 
 860 
 
 901 
 
 947 
 
 
 
 
 
 
 24 
 
 
 '800 
 
 834 
 
 873 
 
 919 
 
 
 34 
 
 31 
 
 3/0 
 
 2% 
 
 0.5 
 
 14 
 
 647 
 
 661 
 
 677 
 
 696 
 
 718 
 
 742 
 
 
 
 
 
 
 16 
 
 652 
 
 668. 
 
 686 
 
 708 
 
 733 
 
 760 
 
 
 
 
 
 
 18 
 
 656 
 
 674 
 
 695 
 
 720 
 
 747 
 
 778 
 
 
 
 
 
 
 20 
 
 661 
 
 680 
 
 704 
 
 731 
 
 762 
 
 796 
 
 
 
 
 
 
 22 
 
 665 
 
 687 
 
 713 
 
 743 
 
 777 
 
 813 
 
 
 
 
 
 
 24 
 
 670 
 
 693 
 
 722 
 
 754 
 
 791 
 
 831 
 
 
 
 7/0 
 
 IK 
 
 1.5 
 
 14 
 
 
 
 
 851 
 
 878 
 
 907 
 
 
 
 
 
 1 16 ! 
 
 
 
 
 865 
 
 895 
 
 929 
 
 
 
 
 
 
 18 
 
 
 
 '850 
 
 880 
 
 913 
 
 951 
 
 
 
 
 
 
 20 
 
 
 
 861 
 
 894 
 
 931 
 
 973 
 
 
 
 
 22 
 
 
 
 872 
 
 908 
 
 949 
 
 995 
 
 
 
 
 24 
 
 
 
 882 
 
 922 
 
 966 
 
 1017 
 
 168 
 
TABLE 42 
 
 Column size <. 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 P=Af c (l+2.5np')(l + (n- 
 I length \ 
 
 ) = 12 
 
 Max ' 
 
 diameter 
 
 1:1:2 mixture 
 
 n=10 
 
 f c = 725 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- 
 eter 
 of core 
 (inches) 
 
 j 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) ! 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 K 
 
 % 
 
 H 
 
 1 
 
 IX 
 
 IH 
 
 35 
 
 32 
 
 3/0 
 7/0 
 
 2K 
 IK 
 
 0.5 
 1.5 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 14 
 16 
 18 
 20 
 22 
 24 
 
 688 
 692 
 697 
 701 
 706 
 710 
 
 702 
 708 
 715 
 721 
 728 
 734 
 
 717 
 
 727 
 736 
 745 
 753 
 762 
 
 737 
 
 748 
 760 
 771 
 782 
 795 
 
 758 
 773 
 787 
 802 
 817 
 831 
 
 927 
 945 
 963 
 981 
 998 
 1016 
 
 782 
 800 
 818 
 836 
 854 
 872 
 
 956 
 978 
 1000 
 1022 
 1045 
 1067 
 
 
 
 
 915 
 929 
 943 
 957 
 972 
 
 .... 
 
 
 
 '921 
 931 
 
 
 
 36 
 
 33 
 
 3/0 
 
 7/0 
 
 2K 
 
 IK 
 
 0.5 
 1.5 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 729 
 734 
 738 
 743 
 747 
 752 
 756 
 
 743 
 749 
 756 
 762 
 769 
 775 
 782 
 
 759 
 768 
 777 
 786 
 795 
 804 
 812 
 
 778 
 790 
 801 
 813 
 825 
 836 
 848 
 
 800 
 814 
 829 
 843 
 858 
 873 
 887 
 
 978 
 996 
 1013 
 1031 
 1049 
 1067 
 1086 
 
 824 
 842 
 860 
 878 
 896 
 914 
 932 
 
 1007 
 1029 
 1051 
 1073 
 1095 
 1117 
 1140 
 
 
 
 
 
 
 
 '972 
 983 
 993 
 
 980 
 994 
 1008 
 1022 
 1036 
 
 
 
 37 
 38 
 
 34 
 
 3/0 
 
 7/0 
 
 99i 
 
 IK 
 
 0.5 
 1.48 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 '778 
 782 
 787 
 791 
 796 
 800 
 
 787 
 793 
 800 
 806 
 813 
 819 
 826 
 
 803 
 812 
 820 
 829 
 838 
 846 
 855 
 
 821 
 833 
 844 
 856 
 867 
 879 
 890 
 
 843 
 858 
 872 
 886 
 900 
 915 
 930 
 
 1027 
 1044 
 1061 
 1079 
 1097 
 1114 
 1132 
 
 867 
 885 
 903 
 920 
 938 
 956 
 975 
 
 1054 
 1077 
 1099 
 1121 
 1143 
 1165 
 1187 
 
 
 
 
 1628 
 1042 
 1056 
 1070 
 1084 
 
 
 
 
 
 
 
 ioso 
 
 1041 
 
 35 
 
 3/0 
 
 7/0 
 
 2H 
 IK 
 
 0.5 
 1.43 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 "82i 
 826 
 830 
 835 
 839 
 844 
 
 830 
 837 
 843 
 850 
 856 
 863 
 869 
 
 846 
 854 
 863 
 872 
 881 
 890 
 899 
 
 866 
 877 
 888 
 900 
 912 
 923 
 935 
 
 887 
 901 
 916 
 930 
 945 
 960 
 975 
 
 1072 
 1089 
 1107 
 1125 
 1142 
 1160 
 1178 
 
 911 
 929 
 947 
 965 
 983 
 1000 
 1018 
 
 1100 
 1122 
 1144 
 1166 
 1188 
 1209 
 1231 
 
 
 
 
 1673 
 1087, 
 1101 
 1115 
 1129 
 
 
 
 
 
 
 
 :::: 
 
 | 
 
 i075 
 1086 
 
 169 
 
COLUMNS 
 
 TABLE 42 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 Column size .^i 
 
 P 
 
 1:1:2 mixture 
 n = 10 
 
 Af e (l+2.5np')[l+(n-l)p] 
 
 
 
 Spirals 
 
 
 Size of vertical round rods 
 
 Size 
 
 Diam- 
 
 
 t 
 
 
 of 
 
 eter 
 
 
 
 
 JN umber 
 
 of 
 
 
 
 
 
 
 
 column 
 (inches) 
 
 of core 
 (inches) 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent 
 of core 
 
 j 
 
 OI 
 
 rods 
 
 H 
 
 ! 
 
 2i 
 
 H 
 
 1 
 
 IH 
 
 IX 
 
 39 
 
 36 
 
 4/0 
 
 2H 
 
 0.5 
 
 16 
 
 866 
 
 882 
 
 901 
 
 922 
 
 947 
 
 974 
 
 
 
 
 
 I 18 
 
 871 
 
 888 
 
 910 
 
 934 
 
 961 
 
 992 
 
 
 
 
 
 
 20 
 
 875 
 
 895 
 
 919 
 
 945 
 
 976 
 
 1010 
 
 
 
 
 
 
 22 
 
 880 
 
 901 
 
 928 
 
 957 
 
 991 
 
 1028 
 
 
 
 
 
 
 24 
 
 884 
 
 908 
 
 936 
 
 969 
 
 1005 
 
 1046 
 
 
 
 
 
 
 26 
 
 889 
 
 914 
 
 945 
 
 980 
 
 1020 
 
 1064 
 
 
 
 
 
 
 28 
 
 893 
 
 920 
 
 954 
 
 992 
 
 1034 
 
 1082 
 
 
 
 7/0 iy 2 
 
 1.40 
 
 16 
 
 
 
 
 
 1133 
 
 1167 
 
 
 
 
 
 18 
 
 
 
 
 
 1151 
 
 1188 
 
 
 
 
 
 
 20 
 
 
 
 
 ii32 
 
 1168 
 
 1210 
 
 
 
 
 
 
 22 
 
 
 
 
 1146 
 
 1186 
 
 1232 
 
 
 
 
 
 
 24 
 
 
 
 ii2i 
 
 1159 
 
 1204 
 
 1254 
 
 
 
 
 
 
 26 
 
 
 
 1131 
 
 1173 
 
 1221 
 
 1275 
 
 
 
 
 28 
 
 
 
 1141 
 
 1187 
 
 1239 
 
 1297 
 
 40 
 
 37 
 
 4/0 
 
 2H 
 
 0.5 16 
 
 
 929 
 
 948 
 
 968 
 
 993 
 
 1021 
 
 
 
 
 
 18 
 
 '6i8 
 
 935 
 
 956 
 
 980 
 
 1008 
 
 1039 
 
 
 
 
 
 20 
 
 922 
 
 942 
 
 965 
 
 991 
 
 1023 
 
 1057 
 
 
 
 
 
 22 
 
 927 
 
 948 
 
 974 
 
 1003 
 
 1037 
 
 1075 
 
 
 
 
 
 
 24 
 
 931 
 
 955 
 
 983 
 
 1015 
 
 1052 
 
 1093 
 
 
 
 
 
 
 26 
 
 936 
 
 961 
 
 991 
 
 1026 
 
 1066 
 
 1111 
 
 
 
 
 
 28 
 
 940 
 
 967 
 
 1000 
 
 1038 
 
 1081 
 
 1129 
 
 
 
 7/0 
 
 1>2 
 
 1.36 16 
 
 
 
 
 
 1183 
 
 1216 
 
 
 
 
 
 18 
 
 
 
 
 
 1201 
 
 1237 
 
 
 
 
 
 20 
 
 
 
 
 1181 
 
 1219 
 
 1259 
 
 
 
 
 
 22 
 
 
 
 
 1195 
 
 1236 
 
 1280 
 
 
 
 
 
 24 
 
 
 
 
 1209 
 
 1253 
 
 1302 
 
 
 
 
 
 26 
 
 
 
 iisi 
 
 1223 
 
 1271 
 
 1323 
 
 
 
 
 28 | 
 
 
 
 1191 
 
 1237 
 
 1289 
 
 1345 
 
 41 
 
 38 
 
 4/0 
 
 2^ 0.5 16 
 
 
 978 
 
 996 
 
 1017 
 
 1041 
 
 1069 
 
 
 
 
 18 
 
 
 984 
 
 1005 
 
 1029 
 
 1056 
 
 1087 
 
 
 
 
 
 
 20 
 
 97i 
 
 991 
 
 1013 
 
 1040 
 
 1071 
 
 1105 
 
 
 
 
 
 
 22 
 
 976 
 
 997 
 
 1022 
 
 1052 
 
 1086 
 
 1123 
 
 
 
 
 
 
 24 
 
 980 
 
 1004 
 
 1031 
 
 1063 
 
 1100 
 
 1141 
 
 
 
 
 
 
 26 
 
 985 
 
 1010 
 
 1040 
 
 1075 
 
 1115 
 
 1159 
 
 
 
 
 
 1 
 
 28 
 
 989 
 
 1016 
 
 1049 
 
 1086 
 
 1130 
 
 1177 
 
 
 
 
 
 
 30 
 
 994 
 
 1022 
 
 1058 
 
 1098 
 
 1144 
 
 1196 
 
 
 
 7/0 
 
 ll 
 
 1.32 
 
 16 
 
 
 
 
 1232 
 
 1264 
 
 
 
 
 * 7z 
 
 
 18 
 
 
 
 
 
 1249 
 
 1285 
 
 
 
 
 
 
 20 
 
 
 
 
 1230 
 
 1266 
 
 1306 
 
 
 
 
 
 
 22 
 
 
 
 
 1244 
 
 1284 
 
 1328 
 
 
 
 
 
 
 24 
 
 
 
 
 1257 
 
 1301 
 
 1350 
 
 
 
 
 
 
 26 
 
 
 
 1230 
 
 1271 
 
 1318 
 
 1371 
 
 
 
 
 
 
 28 
 
 . 
 
 
 1240 
 
 1285 
 
 1336 
 
 1393 
 
 
 
 
 
 
 30 
 
 
 
 1251 
 
 1298 
 
 1353 
 
 1415 
 
 170 
 
TABLE 42 
 
 Column size 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 CHICAGO BUILDING CODE REQUIREMENTS 
 
 19 
 
 12 
 
 .f-. 
 \diameter 
 
 1:1:2 mixture 
 n = 10 
 f e =725 
 
 Size 
 of 
 column 
 (inches) 
 
 Diam- i 
 eter 
 of core 
 (inches) 
 
 Spirals 
 
 Number 
 of 
 rods 
 
 Size of vertical round rods 
 
 Size No. 
 (A. S. & 
 W. Co.) 
 
 Pitch 
 (inches) 
 
 Per cent j 
 of core ! 
 
 X 
 
 H 
 
 H 
 
 1 
 
 IH 
 
 I 
 
 42 
 
 39 
 
 4/0 
 
 7/0 
 
 2H 
 1H 
 
 0.5 
 1.29 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 1620 
 1025 
 1029 
 1034 
 1038 
 1042 
 
 1027 
 1033 
 1040 
 1046 
 1053 
 1059 
 1065 
 1072 
 
 1045 
 1054 
 1063 
 1071 
 1080 
 1089 
 1098 
 1107 
 
 1067 
 1078 
 1090 
 1101 
 1112 
 1124 
 1136 
 1147 
 
 1091 
 1106 
 1120 
 1135 
 1149 
 1163 
 1178 
 1193 
 
 1283 
 1300 
 1317 
 1334 
 1351 
 1368 
 1386 
 1403 
 
 1118 
 1136 
 1154 
 1172 
 1190 
 1208 
 1226 
 1244 
 
 1315 
 1336 
 1357 
 1378 
 1399 
 1420 
 1441 
 1463 
 
 
 
 
 1281 
 1294 
 1308 
 1321 
 1335 
 1349 
 
 '.'.'.'. 
 
 i 
 
 
 1280 
 1290 
 1300 
 
 43 
 
 40 
 
 4/0 
 7/0 
 
 2H 
 1H 
 
 0.5 
 
 ,. 
 
 16 
 18 
 ^0 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 i073 
 1078 
 1083 
 1088 
 1092 
 
 1 
 
 1077 
 1083 
 1090 
 1096 
 1103 
 1109 
 1116 
 1122 
 
 1096 
 1104 
 1113 
 1122 
 1131 
 1140 
 1149 
 1158 
 
 1117 
 1129 
 1140 
 1152 
 1163 
 1175 
 1186 
 1198 
 
 1142 
 1156 
 1171 
 1186 
 1200 
 1215 
 1229 
 1244 
 
 1333 
 1350 
 1367 
 1385 
 1402 
 1419 
 1436 
 1453 
 
 1169 
 1187 
 1205 
 1223 
 1241 
 1259 
 1277 
 1295 
 
 1366 
 1387 
 1408 
 1429 
 1450 
 1471 
 1492 
 1513 
 
 
 
 1332 
 1345 
 1359 
 1372 
 1386 
 1400 
 
 i 
 
 
 
 1340 
 1350 
 
 
 171 
 
COLUMNS 
 
 TABLE 43 
 
 71=15 
 
 f c =800 
 
 ROUND CORED HOOPED COLUMNS 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 
 LOS ANGELES AND MILWAUKEE BUILDING 
 
 CODE REQUIREMENTS 
 
 P=Af c [l+(n-l)p] 
 
 Cotumn size 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 IK 
 
 1M 
 
 H 
 
 H 
 
 | 
 
 H 1 
 
 IK 
 
 134 
 
 H 
 
 H 
 
 H 
 
 1 
 
 10 
 
 7 
 
 6 
 
 *57.0 
 
 
 
 
 
 *51.4 
 
 *60.5 
 
 
 
 
 11 
 
 8 
 
 6 
 
 *66.4 
 
 *78 . . . 
 
 
 
 
 60.8 
 
 *69.9 
 
 
 
 
 
 
 
 c 
 
 *7* 2; 
 
 
 
 *67.7 
 
 *79.8 
 
 
 
 
 
 12 
 
 9 
 
 6 77.1 
 
 
 
 
 
 71.5 
 
 
 
 
 
 
 
 
 8 
 ' 
 
 
 
 
 
 78.4 
 
 
 
 
 
 
 13 10 
 
 6 j 89 
 
 
 
 
 
 
 83 4 
 
 92.5 
 
 
 
 
 
 
 8 j 97.8 
 
 
 
 
 90.3 
 
 
 
 
 
 
 14 
 
 11 
 
 6 102 2 
 
 1138 
 
 
 
 
 
 96.6 
 
 105.7 
 
 116.4 
 
 
 
 
 
 
 8 1111. 
 
 
 
 103.5 
 
 115.6 
 
 
 
 
 
 
 
 10 
 
 
 
 
 110.4 
 
 
 
 
 
 
 15 
 
 12 6 
 
 116.7 
 
 128.3 
 
 
 
 
 111.1 
 
 120.2 
 
 130.9 
 
 
 
 
 
 8 
 
 125.5 
 
 140.9 
 
 
 
 118.0 
 
 130.1 
 
 
 
 
 
 
 10 
 
 134 3 
 
 
 
 
 
 124.9 
 
 140.0 
 
 
 
 
 
 10 
 
 13 6 
 
 132.4 
 
 144.0 
 
 157.6 
 
 
 
 
 126.8 
 
 135.9 
 
 146.6 
 
 159.0 
 
 
 
 
 8 
 
 141.2 
 
 156.6 
 
 133.7 
 
 145.8 
 
 160.1 
 
 
 
 
 
 10 
 
 150.0 
 
 
 
 
 
 140.6 
 
 155.7 
 
 
 
 
 
 17 
 
 14 6 
 8 
 
 149.3 
 158.1 
 
 160.9 174.5 
 173.5 191.7 
 
 190.3 
 
 
 143.7 
 150.6 
 
 152.8 
 162.7 
 
 163.5 
 
 177.0 
 
 175.9 
 
 189.9 
 
 
 
 10 
 
 166.9 
 
 186.1 i , 
 
 157.5 172.6 
 
 190.4 
 
 
 
 
 
 12 
 
 175.6 
 
 
 
 
 
 164.3 
 
 182.5 
 
 
 
 
 
 18 
 
 15 6 
 
 167.6 
 
 179.2 
 
 192.8 
 
 208. G ! 
 
 
 162.0171.0 
 
 181.8 
 
 194.2 
 
 
 
 
 . 8 
 
 176.4 
 
 191.8 
 
 210.0 
 
 
 
 168.9 181.0 
 
 195.3 
 
 211.8 
 
 
 
 
 10 
 
 185.2 
 
 204.4 
 
 
 
 
 175.8 
 
 190.9 
 
 208.7 
 
 
 
 
 
 12 
 
 193.9 
 
 217.0 
 
 
 
 
 182.6 
 
 200.8 
 
 
 
 
 19 10 8 
 
 195.9 
 
 211.3 
 
 229.5 
 
 250.5 
 
 
 188.4 
 
 200.5 
 
 214.8 
 
 231.3'250.0 
 
 10 
 
 204.7 
 
 223.9 
 
 246.6 
 
 
 
 195.3 
 
 210.4 
 
 228.2 
 
 248.9 
 
 
 
 
 12 
 
 213.4 
 
 236.5 
 
 
 
 
 202.1 
 
 220.3 
 
 241.7 
 
 
 
 
 
 
 14 
 
 222.2 
 
 249.1 
 
 
 
 
 209.0 
 
 230.2 
 
 
 
 
 
 20 17 
 
 8 
 
 216.6 
 
 232.0 
 
 250.2 
 
 271.2 .. 
 
 
 209.1 
 
 221.2235.5 
 
 252.0270.7 
 
 
 
 10 
 
 225.4 
 
 244.6 
 
 267.3) 
 
 
 216.0 
 
 231.1 248.9 
 
 269.6, 
 
 
 
 12 
 
 234.1 
 
 257.2 
 
 
 ...... 1 
 
 222.8 
 
 241.0 262.4 
 
 
 
 
 
 14 
 
 242.9 
 
 269.8 
 
 
 
 
 229.7 
 
 250.9 
 
 275.9 
 
 
 
 
 
 
 
 
 
 I 
 
 
 
 
 
 
 
 
 21 18 
 
 8 
 
 238.6 
 
 254.0 
 
 272.2 
 
 293.2'317.0 
 
 
 
 243.2 
 
 257.5 
 
 274.0292.7 
 
 313.5 
 
 
 10 
 
 247.4 
 
 266.6 
 
 289.3 
 
 315. 6j 
 
 238 '. 6 
 
 253.1 
 
 270.9 
 
 291.6314.9 
 
 
 
 12 
 
 256.1 
 
 279.2 
 
 306.5 
 
 
 244.8 
 
 263.0 984 4 
 
 309.2 
 
 
 
 14 
 
 264.9 
 
 291.8 
 
 
 
 
 
 251.7 
 
 272.9 
 
 297.9 
 
 
 
 22 19 
 
 8 
 
 261.8 
 
 277.2 
 
 295.4 
 
 316.4340.2 
 
 
 
 266.4 
 
 280.7 
 
 297.2315.9 
 
 336.7 
 
 
 10 
 
 270.6 
 
 289.8 
 
 312.5 
 
 338.8 ..-.[.I 
 
 26i!2 
 
 276.3 
 
 294.1 
 
 314.8338.1 
 
 
 
 
 12 
 
 279.3 
 
 302.4 
 
 329.7 
 
 1 
 
 
 268.0 
 
 286.2 
 
 307.6 
 
 332.4 
 
 
 
 
 14 
 16 
 
 288.1 
 296.8 
 
 315.0 
 327.6 
 
 346 8 
 
 
 
 
 274.9 
 
 281.8 
 
 296.1 
 306.0 
 
 321.1 
 334.6 
 
 350.0 
 
 
 
 
 
 23 
 
 20 
 
 8 
 10 
 
 286.4 
 295.2 
 
 301.8320.0341.0364.8 
 314.41337.1 363.4393.1 
 
 391.4 
 
 
 291.0 
 300.9 
 
 305.3 
 318.7 
 
 321.8340.5361.3 
 339.4362.7388.8 
 
 
 
 12 303.9 
 
 327. 0354.31 385. 8 
 
 
 
 
 262! 6 
 
 310.8 
 
 332.2 
 
 357.0 385. Oj 
 
 
 
 14 312.7 
 16 321.4 
 
 339.6 
 352.2 
 
 371.4 
 388.6 
 
 
 
 
 
 299.5 
 306.4 
 
 320.7(345.7 
 330.6359.2 
 
 374.6 
 392.1 
 
 
 
 These columns contain more than 4 % of steel. 
 
 172 
 
TABLE 43 
 
 COLUMNS 
 
 i^ Column size ^ 
 
 ROUND CORED HOOPED COLUMNS 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 LOS ANGELES AND MILWAUKEE BUILDING 
 CODE REQUIREMENTS 
 
 = 15 
 
 \ \ 
 
 1/4^^-?^ i k 
 
 
 **&& 
 
 oUU 
 
 Size 
 of 
 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 M 
 
 1 
 
 IK 
 
 IK 
 
 .* 
 
 H 
 
 M 
 
 1 
 
 IK 
 
 IX 
 
 24 
 25 
 
 26 
 27 
 28 
 
 29 
 30 
 
 31 
 32 
 33 
 
 21 
 22 
 
 23 
 24 
 25 
 
 26 
 27 
 
 28 
 29 
 30 
 
 10 
 12 
 14 
 16 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 
 18 
 
 10 
 
 If 
 
 16 
 
 18 
 
 10 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 
 12 
 14 
 16 
 18 
 20 
 22 
 24 
 
 320.9 
 329.6 
 338.4 
 347.1 
 
 347.9 
 356.6 
 365.4 
 374.1 
 382.9 
 
 340.1 
 352.7 
 365.3 
 377.9 
 
 367.1 
 379.7 
 392.3 
 404.9 
 417.5 
 
 395.4 
 408.0 
 420.6 
 433.2 
 445.8 
 
 424.9 
 437.5 
 450.1 
 462.7 
 475.3 
 
 455.7 
 468.3 
 480.9 
 493 . 5 
 506.1 
 518.7 
 
 500.3 
 512.9 
 525.5 
 538.1 
 550.7 
 
 533.7 
 
 362.8 
 380.0 
 397.1 
 414.3 
 
 389.8 
 407.0 
 424.1 
 441.3 
 458.4 
 
 418.1 
 435.3 
 452.4 
 469.6 
 486.7 
 
 447.6 
 464.8 
 481.9 
 499.1 
 516.2 
 
 478.4 
 495.6 
 512.7 
 529.9 
 547.0 
 564.2 
 
 527.6 
 544.7 
 561.9 
 579.0 
 596.2 
 
 561 . 
 
 389.1 
 411.5 
 
 418.8 
 
 
 
 318.3 
 
 325.2 
 332.1 
 
 326.6 
 336.5 
 346.4 
 356.3 
 
 353.6 
 363.5 
 373.4 
 383.3 
 393.2 
 
 381.9 
 391.8 
 401.7 
 411.6 
 421.5 
 
 42i!3 
 431.2 
 441.1 
 451.0 
 
 344.4 
 357.9 
 371.4 
 384.9 
 
 371.4 
 384.9 
 398.4 
 411.9 
 425.3 
 
 399.7 
 413.2 
 426.7 
 440.2 
 453.6 
 
 429.2 
 442.7 
 456.2 
 469.7 
 483.1 
 
 460.0 
 473.5 
 487.0 
 500.5 
 513.9 
 527.4 
 
 505.5 
 519.0 
 532.5 
 545.9 
 559.4 
 
 538.9 
 552.4 
 565.9 
 579.3 
 592.8 
 606.3 
 
 573.4 
 586.9 
 600.4 
 613.8 
 627.3 
 640.8 
 
 609.2 
 622.7 
 636.2 
 649.6 
 663.1 
 676.6 
 
 646.3 
 659.8 
 673.3 
 686.7 
 700.2 
 713.7 
 727.1 
 
 265.1 
 382.7 
 400.3 
 417.8 
 
 392.1 
 409.7 
 427.3 
 444.8 
 462.4 
 
 420.4 
 438.0 
 455.6 
 473.1 
 490.7 
 
 449.9 
 467.5 
 485.1 
 502.6 
 520.2 
 
 480.7 
 498.3 
 515.9 
 533 . 4 
 551.0 
 568.6 
 
 530.3 
 547.9 
 565.4 
 583.0 
 600.6 
 
 563.7 
 581.3 
 598.8 
 616.4 
 634.0 
 651.6 
 
 598.2 
 615.8 
 633.3 
 650.9 
 668.5 
 686.1 
 
 634.0 
 651.6 
 669.1 
 686.7 
 704.3 
 721.9 
 
 671.1 
 688.7 
 706.2 
 723.8 
 741.4 
 759.0 
 776.6 
 
 388.4 
 410.7 
 
 415.4 
 437.7 
 460.0 
 
 443.7 
 466.0 
 488.3 
 510.5 
 
 473 . 2 
 495.5 
 517.8 
 540.0 
 562.3 
 
 504.0 
 526.3 
 548.6 
 570.8 
 593.1 
 
 558.3 
 580.6 
 602.8 
 625.1 
 647.4 
 
 591.7 
 614.0 
 636.2 
 658.5 
 680.8 
 703.0 
 
 626.2 
 648.5 
 670.7 
 693.0 
 715.3 
 737.5 
 
 662.0 
 684.3 
 706.5 
 728.8 
 751.1 
 773.3 
 
 699.1 
 721.4 
 743.6 
 765.9 
 788.2 
 810.4 
 832.7 
 
 414.5 
 
 441.5 
 469.0 
 
 469.8 
 497.3 
 
 499.3 
 526.8 
 554.3 
 
 530.1 
 557.6 
 585.1 
 612.6 
 
 589.6 
 617.1 
 644.6 
 
 623.0 
 650.5 
 678.0 
 705.5 
 
 657.5 
 685.0 
 712.5 
 740.0 
 767.4 
 
 693.3 
 720.8 
 748.3 
 775.8 
 803.2 
 
 730.4 
 757.9 
 785.4 
 812.9 
 840.3 
 867.8 
 
 
 
 
 416.1 
 438.5 
 460.9 
 
 445.8 
 474.2 
 
 
 
 507.4 
 
 352.2 
 359.1 
 366.0 
 
 444.4 
 466.8 
 489.2 
 511.6 
 
 473.9 
 496.3 
 518.7 
 541.1 
 563.5 
 
 504.7 
 527.1 
 549.5 
 571.9 
 594.3 
 
 559.1 
 581.5 
 603.9 
 626.3 
 648.7 
 
 592.5 
 
 474.1 
 502.5 
 
 503.6 
 532.0 
 560.3 
 
 
 536.9 
 
 
 
 
 
 
 
 
 534.4 
 562.8 
 591.1 
 
 567.7 
 602.7 
 
 
 452.1 
 462.0 
 471.9 
 481.8 
 491.7 
 
 484.1 
 494.0 
 503.9 
 513.8 
 523.7 
 
 
 
 
 
 
 594.8 
 623.1 
 651.5 
 
 628.2 
 
 634.7 
 
 
 668. 1 
 
 ::::: 
 
 546.3578.1 
 558.9595.3 
 571.5612.4 
 584.1J629.6 
 596.7i646.7 
 
 568.2595.5 
 580.8612.6 
 593.4629.8 
 606.0;646.9 
 618.6664.1 
 631.2 681.2 
 
 604.0631.3 
 616.6 648.4 
 
 614.9 
 637.3 
 659.7 
 682.1 
 704.5 
 
 627.0 
 649.4 
 671.8 
 694.2 
 716.6 
 739.0 
 
 662.8 
 685.2 
 
 656.5 
 684.9 
 713.2 
 
 703.1 
 
 
 
 527.4 
 537.3 
 547.2 
 557.1 
 567.0 
 
 561 .9 
 571.8 
 581.7 
 591.6 
 601.5 
 
 
 ::::: 
 
 662.7 
 691.0 
 719.4 
 
 747.7 
 
 698.5 
 726.8 
 
 702.6 
 737.6 
 
 738.4 
 773.4 
 
 ! '.'.'. 
 
 : : : : : 
 
 629.2 
 641.8 
 654.4 
 667.0 
 
 665.6 
 682.7 
 699.9 
 717.0 
 
 66S 4 
 
 707.6 
 730.0 
 752.4 
 774.8 
 
 699.9 
 
 755.2 
 783.5 
 811.9 
 
 735.6 
 
 808.4 
 
 
 607.6 
 617.5 
 627.4 
 637.3 
 
 775.5 
 
 
 
 g 
 
 653.7685.5 
 666.3702.7 
 678.91719.8 
 691.51 737.0 
 704.1 754.1 
 716.7771.3 
 
 722.3 
 744.7 
 767.1 
 789.5 
 811.9 
 834.3 
 
 763.9 
 792.3 
 820.6 
 849.0 
 877.3 
 
 810.5 
 845.5 
 880.5 
 
 
 
 
 644.7 
 654.6 
 664.5 
 674.4 
 684.3 
 
 
 
 
 173 
 
COLUMNS 
 
 TABLE 43 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 LOS ANGELES AND MILWAUKEE BUILDING 
 CODE REQUIREMENTS 
 
 f c =800 
 
 jgaa* 
 
 IP I 
 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter Number 
 of of 
 
 (inches) rod8 
 
 ! 
 
 Square rods 
 
 Round rods 
 
 M 
 
 H 
 
 K 
 
 1 
 
 IK 
 
 I* 
 
 M 
 
 K 
 
 H 
 
 1 
 
 1M 
 
 1M 
 
 34 
 35 
 36 
 
 37 
 38 
 3!) 
 40 
 41 
 
 31 14 
 16 
 18 
 20 
 22 
 24 
 
 32 14 
 16 
 18 
 20 
 22 
 24 
 
 33 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 34 14 
 16 
 18 
 20 
 22 
 24 
 26 
 
 35 14 
 16 
 18 
 i 20 
 22 
 24 
 26 
 
 36 16 
 18 
 20 
 
 ; 22 
 
 24 
 
 26 
 
 28 
 
 37 16 
 18 
 20 
 22 
 24 
 26 
 28 
 
 38 16 
 18 
 ! 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 ::::: 
 
 692.0 
 704.6 
 717.2 
 729.8 
 742.4 
 755.0 
 
 723.8 
 741.0 
 758.1 
 775.3 
 792.4 
 809.6 
 
 763.4 
 780.6 
 797.7 
 814.9 
 832.0 
 849.2 
 
 804.2 
 
 760.6 
 783.0 
 805.4 
 827.8 
 850.2 
 872.6 
 
 800.2 
 822.6 
 845.0 
 867.4 
 889.8 
 912.2 
 
 841.0 
 
 802.2 
 830.6 
 858.9 
 887.3 
 915.6 
 
 848.8 
 883.8 
 918.8 
 
 
 
 692! 9 
 702.8 
 712.7 
 722.6 
 
 698.1 
 711.6 
 725.0 
 738.5 
 752.0 
 765.4 
 
 737.7 
 751.2 
 764.6 
 778.1 
 791.6 
 805.0 
 
 727.0 
 744.5 
 762.1 
 779.7 
 797.3 
 814.9 
 
 766.6 
 784.1 
 801.7 
 819.3 
 836.9 
 854.5 
 
 807.4 
 824.9 
 842.5 
 860.1 
 877.7 
 895.3 
 912.9 
 
 849.5 
 867.0 
 884.6 
 902.2 
 919.8 
 937.4 
 955.0 
 
 892.9 
 910.4 
 928.0 
 945.6 
 963.2 
 980.8 
 998.4 
 
 955.0 
 972.6 
 990.2 
 1008 
 1025 
 1043 
 1061 
 
 1001 
 1019 
 1036 
 1054 
 1071 
 1089 
 1107 
 
 1048 
 1066 
 1083 
 1101 
 1118 
 1136 
 1154 
 1171 
 
 759.7 
 781.9 
 804.2 
 826.5 
 848.7 
 871.0 
 
 799.3 
 821.5 
 
 843.8 
 866.1 
 888.3 
 920.6 
 
 840.1 
 862.3 
 884.6 
 906.9 
 929.1 
 951.4 
 973.7 
 
 882.2 
 904.4 
 926.7 
 949.0 
 971.2 
 993.5 
 1016 
 
 925.6 
 947.8 
 970.1 
 992.4 
 1015 
 1037 
 1059 
 
 992.4 
 1015 
 1037 
 1059 
 1082 
 1104 
 1126 
 
 1038 
 1061 
 1083 
 1105 
 1127 
 1150 
 1172 
 
 1085 
 1108 
 1130 
 1152 
 1175 
 1197 
 1219 
 1241 
 
 796.2 
 823.7 
 851.2 
 878.6 
 906.1 
 933.6 
 
 835.8 
 863.3 
 890.8 
 918.2 
 945.7 
 973.2 
 
 876.6 
 904.1 
 931.6 
 959.0 
 986.5 
 1014 
 1041 
 
 918.7 
 946.2 
 973.7 
 1001 
 1029 
 1056 
 1084 
 
 962.1 
 989.6 
 1017 
 1045 
 1072 
 1100 
 1127 
 
 1034 
 1062 
 1089 
 1117 
 1144 
 1172 
 1199 
 
 1080 
 1108 
 1135 
 1163 
 1190 
 1218 
 1245 
 
 1127 
 1155 
 1182 
 1210 
 1237 
 1265 
 1292 
 1320 
 
 841.8 
 870.2 
 898.5 
 926.9 
 955.2 
 983.6 
 
 882.6 
 
 888.4 
 923.4 
 958 4 
 
 993.4 
 
 
 
 
 929.2 
 
 
 
 
 821.4 
 838.5 
 855.7 
 872.8 
 890.0 
 907.1 
 
 846.3 
 863.5 
 880.6 
 897.8 
 914.9 
 932.1 
 949.2 
 
 889.7 
 906.9 
 924.0 
 941.2 
 958.3 
 975.5 
 992.6 
 
 951.5 
 968.6 
 985.8 
 1003 
 1020 
 1037 
 1054 
 
 997.4 
 1015 
 1032 
 1049 
 1066 
 1083 
 1100 
 
 1045 
 1062 
 1079 
 1096 
 1113 
 1130 
 1147 
 1165 
 
 863.4 
 885.8 
 908.2 
 930.6 
 953.0 
 975.4 
 
 883.1 
 905.5 
 927.9 
 950.3 
 972.7 
 995.1 
 1018 
 
 926.5 
 948.9 
 971.3 
 993.7 
 1016 
 1039 
 1061 
 
 993.5 
 1016 
 1038 
 1061 
 1083 
 1106 
 1128 
 
 1039 
 1062 
 1084 
 1107 
 1129 
 1151 
 1174 
 
 1087 
 1109 
 1131 
 1154 
 1176 
 1199 
 1221 
 1243 
 
 911.0 
 939.3 
 967.7 
 996.0 
 1024 
 1053 
 
 924.7 
 953.1 
 981.4 
 1010 
 1038 
 1067 
 1095 
 
 968.1 
 996.5 
 1025 
 1053 
 1082 
 1110 
 1138 
 
 1041 
 1069 
 1098 
 1126 
 1155 
 1183 
 1211 
 
 1087 
 1115 
 1144 
 1172 
 1200 
 1229 
 1257 
 
 1134 
 1162 
 1191 
 1219 
 1248 
 1276 
 1304 
 1333 
 
 964.2 
 999.2 
 1034 
 
 971.3 
 1006 
 1041 
 1076 
 1111 
 
 
 
 
 792.0 
 805.4 
 818.9 
 832.4 
 845.8 
 859.3 
 
 834 !i 
 
 847.5 
 861.0 
 874.5 
 887.9 
 901.4 
 
 877 '.5 
 890.9 
 904.4 
 917.9 
 931.3 
 944.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1015 
 1050 
 1085 
 1120 
 1155 
 1190 
 
 1094 
 1129 
 1164 
 1199 
 1234 
 1269 
 
 1140 
 1175 
 1210 
 1245 
 1280 
 1315 
 
 
 
 
 
 
 
 
 
 
 935.5 
 949.0 
 962.5 
 975.9 
 989.4 
 1003 
 
 
 
 
 
 
 
 
 
 
 
 
 981.4 
 994.9 
 1008 
 1022 
 1035 
 1049 
 
 
 
 
 
 
 
 
 
 1187 
 1222 
 1257 
 1292 
 1327 
 1362 
 1397 
 
 
 
 
 
 
 
 
 
 
 
 
 1042 
 1056 
 1069 
 1082 
 1096 
 1109 
 
 
 
 
 
 
 
 
 
 
 
 174 
 
TABLE 43 
 
 COLUMNS 
 
 ROUND CORED HOOPED COLUMNS 
 
 -srr^ 
 
 SAFE LOAD IN THOUSANDS OF POUNDS 
 LOS ANGELES AND MILWAUKEE BUILDING 
 CODE REQUIREMENTS 
 
 P = Af e [l + (n-l)p] ? 
 
 fc 
 
 = 15 
 
 snn 
 
 IP 
 
 ^^j&r 
 
 
 ouv 
 
 Size 
 of 
 column 
 (inches) 
 
 Diameter 
 of 
 core 
 (inches) 
 
 Number 
 of 
 rods 
 
 Square rods 
 
 Round rods 
 
 H 
 
 H 
 
 H 
 
 1 
 
 IK 
 
 IK 
 
 H 
 
 H 
 
 H ' i 
 
 m 
 
 lA 
 
 42 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 
 16 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 16 
 18 
 20 
 22 
 24 
 26 
 
 
 1093 
 1110 
 1127 
 1144 
 1162 
 1179 
 1196 
 1213 
 
 1135 
 1157 
 1180 
 1202 
 1225 
 1247 
 1269 
 1292 
 
 1185 
 1207 
 1229 
 1252 
 1274 
 1297 
 1319 
 1341 
 
 1258 
 1280 
 1303 
 1325 
 1347 
 1370 
 1392 
 
 1310 
 1332 
 1355 
 1377 
 1400 
 1422 
 1444 
 
 1363 
 1386 
 1408 
 1431 
 1453 
 1475 
 1498 
 
 1418 
 1440 
 1463 
 1485 
 1508 
 1530 
 1552 
 
 1474 
 1496 
 1519 
 1541 
 1563 
 1586 
 1608 
 
 1554 
 1576 
 1598 
 1621 
 1643 
 1666 
 
 1183 
 1211 
 1239 
 1268 
 1296 
 1324 
 1353 
 1381 
 
 1232 
 1260 
 1289 
 1317 
 1346 
 1374 
 1402 
 1431 
 
 1311 
 1340 
 1368 
 1396 
 1425 
 1453 
 1481 
 
 1363 
 1392 
 1420 
 1449 
 1477 
 1505 
 1534 
 
 1417 
 1445 
 1474 
 1502 
 1530 
 1559 
 1587 
 
 1472 
 1500 
 1528 
 1557 
 1585 
 1613 
 1642 
 
 1527 
 1556 
 1584 
 1613 
 1641 
 1669 
 1698 
 
 1613 
 1641 
 1670 
 1698 
 1726 
 1755 
 
 1236 
 1271 
 1306 
 1341 
 1376 
 1411 
 1446 
 1481 
 
 1285 
 1320 
 1355 
 1390 
 1425 
 1460 
 1495 
 1530 
 
 1371 
 1406 
 1441 
 1476 
 1511 
 1546 
 1581 
 
 1423 
 1458 
 1493 
 1528 
 1563 
 1598 
 1633 
 
 1477 
 1512 
 1547 
 1582 
 1617 
 1652 
 1687 
 
 1531 
 1566 
 1601 
 1636 
 1671 
 1706 
 1741 
 
 1587 
 1622 
 1657 
 1692 
 1727 
 1762 
 1797 
 
 1680 
 1715 
 1750 
 1785 
 1820 
 1855 
 
 I 
 
 
 1096 
 1114 
 1132 
 1149 
 1167 
 1184 
 1202 
 1220 
 
 1146 
 1164 
 1181 
 1199 
 1216 
 1234 
 1252 
 1269 
 
 1215 
 1232 
 1250 
 1267 
 1285 
 1303 
 1320 
 
 1267 
 1284 
 1302 
 1319 
 1337 
 1355 
 1372 
 
 1134 
 1156 
 1178 
 1201 
 1223 
 1245 
 1267 
 1290 
 
 1183 
 1206 
 1228 
 1250 
 1273 
 1295 
 1317 
 1339 
 
 1257 
 1279 
 1301 
 1323 
 1346 
 1368 
 1390 
 
 1309 
 1331 
 1353 
 1376 
 1398 
 1420 
 1442 
 
 1362 
 1385 
 1407 
 1429 
 1451 
 1474 
 1496 
 
 1417 
 1439 
 1461 
 1484 
 1506 
 1528 
 1550 
 
 1473 
 1495 
 1517 
 1540 
 1562 
 1584 
 1606 
 
 1552 
 1574 
 1597 
 1619 
 1641 
 1664 
 
 1176 
 1203 
 1231 
 1258 
 1286 
 1313 
 1341 
 1368 
 
 1225 
 1253 
 1280 
 1308 
 1335 
 1363 
 1390 
 1418 
 
 1304 
 1331 
 1359 
 1386 
 1414 
 1441 
 1469 
 
 1356 
 1383 
 1411 
 1438 
 1466 
 1493 
 1521 
 
 1409 
 1437 
 1464 
 1492 
 1519 
 1547 
 1574 
 
 1464 
 1491 
 1519 
 1546 
 1574 
 1601 
 1629 
 
 1520 
 1547 
 1575 
 1602 
 1630 
 1657 
 1685 
 
 1604 
 1632 
 1659 
 1687 
 1714 
 1742 
 
 
 
 
 ' 
 
 1104 
 1117 
 1131 
 1144 
 1158 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1160 
 1177 
 1194 
 1211 
 1228 
 1245 
 1262 
 
 1211 
 1228 
 1245 
 1262 
 1279 
 1296 
 1313 
 
 
 
 
 1154 
 1167 
 1180 
 1194 
 1207 
 
 
 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 18 
 20 
 22 
 24 
 26 
 28 
 30 
 
 20 
 22 
 24 
 26 
 28 
 30 
 
 
 
 
 ..... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1204 
 1218 
 1231 
 1245 
 1258 
 
 
 
 
 
 
 
 
 
 
 - 
 
 
 
 
 
 
 1280 
 1297 
 1314 
 1331 
 1348 
 1366 
 
 
 
 
 
 
 'i270 
 1283 
 1297 
 1310 
 
 
 
 
 
 | 
 
 
 
 
 :::! 
 
 :::. 
 
 1333 
 1350 
 1368 
 1385 
 1402 
 1419 
 
 :::::;:::: 
 
 'i337 
 1351 
 1364 
 
 1338 
 1355 
 1373 
 1391 
 1408 
 1426 
 
 
 
 
 
 
 
 
 
 
 
 1388 
 1405 
 1422 
 1439 
 1457 
 1474 
 
 
 
 1392 
 1410 
 1428 
 1445 
 1463 
 1480 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1392 
 1405 
 1418 
 
 
 
 
 
 
 
 
 
 
 1461 
 1478 
 1495 
 1512 
 1530 
 
 
 
 
 1466 
 1483 
 1501 
 1519 
 1536 
 
 ::::: ::::: 
 
 
 
 
 
 1461 
 1474 
 
 
 
 
 i 
 
 
 
 
 
 1518 
 1535 
 1552 
 1570 
 1587 
 
 
 
 
 
 1523 
 1541 
 1558 
 1576 
 1593 
 
 
 
 
 
 1518 
 1532 
 
 175 
 
COLUMNS 
 
 TABLE 
 
 
 AREAS AND WEIGHTS OF COLUMN RODS 
 
 
 Number of rods 
 
 Area of column rods 
 
 Number of rods 
 
 Weight of column rods per linear foot 
 
 Size of rods 
 
 Size of rods 
 
 H 
 
 H 
 
 M 
 
 1 
 
 IK 
 
 IH 
 
 H 
 
 K 
 
 H 
 
 1 
 
 IH 
 
 i* 
 
 
 4 
 
 1.56 
 
 2.25 
 
 3.06 
 
 4.00 
 
 5.06 
 
 6.25 
 
 4 
 
 5.313 
 
 7.650 
 
 10.41 
 
 13.60 
 
 17.21 
 
 21.25 
 
 
 6 
 
 2.34 
 
 3.38 
 
 4.59 
 
 6.00 
 
 7.59 
 
 9.38 
 
 6 
 
 7.969 
 
 11.48 
 
 15.62 
 
 20.40 
 
 25.82 
 
 31.88 
 
 
 8 
 
 3.13 
 
 4.50 
 
 6.12 
 
 8.00 
 
 10.1 
 
 12.5 
 
 8 
 
 10.63 
 
 15.30 
 
 20.82 
 
 27.20 
 
 34.42 
 
 42.50 
 
 
 10 
 
 3.91 
 
 5.63 
 
 7.66 
 
 10.0 
 
 12.7 
 
 15.6 
 
 10 
 
 13.28 
 
 19.13 
 
 26.03 
 
 34.00 
 
 43.03 
 
 53.13 
 
 1 
 
 12 
 14 
 
 4.69 
 5.47 
 
 6.75 
 
 7.88 
 
 9.19 
 10.7 
 
 12.0 
 14.0 
 
 15.2 
 17.7 
 
 18.8 
 21.9 
 
 12 
 14 
 
 15.94 
 18.59 
 
 22.95 
 26.78 
 
 31.24 
 36.44 
 
 40.80 
 47.60 
 
 51.64 
 60.24 
 
 63.75 
 
 74.28 
 
 
 
 16 
 
 6.25 
 
 9.00 
 
 12.2 
 
 16.0 
 
 20.2 
 
 25.0 
 
 16 
 
 21.25 
 
 30.60 
 
 41.65 
 
 54 . 40 
 
 68.85 
 
 85.00 
 
 1 
 
 18 
 20 
 
 7.03 
 
 7.81 
 
 10.1 
 11.3 
 
 13.8 
 15.3 
 
 18.0 
 20.0 
 
 22.8 
 25.3 
 
 28.1 
 31.3 
 
 18 
 20 
 
 23.91 
 26.56 
 
 34.43 
 38.25 
 
 46.85 
 52.06 
 
 61.20 
 68.00 
 
 77.45 
 86.06 
 
 95.63 
 106.3 
 
 
 22 
 
 8.59 
 
 12.4 
 
 16.8 
 
 22.0 
 
 27.8 
 
 34.4 
 
 22 
 
 29.22 
 
 42.08 
 
 57.27 
 
 74.80 
 
 94.67 
 
 116.9 
 
 
 24 
 
 9.38 
 
 13.5 
 
 18.4 
 
 24.0 
 
 30.4 
 
 37.5 
 
 24 
 
 31.88 
 
 45.90 
 
 62 47 
 
 81.60 
 
 103.3 
 
 127.5 
 
 
 26 
 
 10.2 
 
 14.6 
 
 19.9 
 
 26.0 
 
 32.9 
 
 40.6 
 
 26 
 
 34.53 
 
 49.73 
 
 67.68 
 
 88.40 
 
 111.9 
 
 138.1 
 
 
 28 
 
 10.9 
 
 15.8 
 
 21 .4 
 
 28.0 
 
 35.4 
 
 43.8 
 
 28 
 
 37.19 
 
 53 . 55 
 
 72.89 
 
 95.20 
 
 120.5 
 
 148.8 
 
 
 30 
 
 11.7 
 
 16.9 
 
 23.0 
 
 30.0 
 
 38.0 
 
 46.9 
 
 30 
 
 39.84 
 
 57.38 
 
 78.09 
 
 102.0 
 
 129.1 
 
 159.4 
 
 
 4 
 
 1.23 
 
 1.77 
 
 2.41 
 
 3.14 
 
 3.98 
 
 4.91 
 
 4 
 
 4.172 
 
 6.008 
 
 8.178 
 
 10.68 
 
 13.52 
 
 16.09 
 
 
 6 
 
 1.84 
 
 2.65 
 
 3.61 
 
 4.71 
 
 5.96 
 
 7.36 
 
 6 
 
 6.259 
 
 9.013 
 
 12.27 
 
 16.02 
 
 20.28 
 
 25.03 
 
 
 8 
 
 2.45 
 
 3.53 
 
 4.81 
 
 6.28 
 
 7.95 
 
 9.82 
 
 8 
 
 8.345 
 
 12.02 
 
 16.36 
 
 21.36 
 
 27.04 
 
 33.37 
 
 
 10 
 
 3.07 
 
 4.42 
 
 6.01 
 
 7.85 
 
 9.94 
 
 12.3 
 
 10 
 
 10.43 
 
 15.02 
 
 20.44 
 
 26.70 
 
 33.80 
 
 41.72 
 
 
 12 
 
 3.68 
 
 5.30 
 
 7.22 
 
 9.42 
 
 11.9 
 
 14.7 
 
 12 
 
 12.52 
 
 18.03 
 
 24.53 
 
 32.04 
 
 40.56 
 
 50.06 
 
 
 14 
 
 4.30 
 
 6.19 
 
 8.42 
 
 11.0 
 
 13.9 
 
 17.2 
 
 14 
 
 14.60 
 
 21.03 
 
 28.62 
 
 37.39 
 
 47.31 
 
 58.41 
 
 
 16 
 
 4.91 
 
 7.07 
 
 9.62 
 
 12.6 
 
 15.9 
 
 19.6 
 
 16 
 
 16.69 
 
 24.03 
 
 32.71 
 
 42.73 
 
 54.07 
 
 66 . 75 
 
 c 
 
 18 
 
 5.52 
 
 7.95 
 
 10.8 
 
 14.1 
 
 17.9 
 
 22.1 
 
 18 
 
 18.78 
 
 27.04 
 
 36.80 
 
 48.07 
 
 60.83 
 
 75 09 
 
 o 
 
 tf 
 
 20 
 
 6.14 
 
 8.84 
 
 12.0 
 
 15.7 
 
 19.9 
 
 24.5 
 
 20 
 
 20.86 
 
 30.04 
 
 40.89 
 
 53.41 
 
 67.59 
 
 83.44 
 
 
 22 
 
 6.75 
 
 9.72 
 
 13.2 
 
 17.3 
 
 21.9 
 
 27.0 
 
 22 
 
 22.95 
 
 33.05 
 
 44.98 
 
 58.75 
 
 74.35 
 
 91.78 
 
 
 24 
 
 7.36 
 
 10.6 
 
 14.4 
 
 18.8 
 
 23.9 
 
 29.4 
 
 24 
 
 25.03 
 
 36.05 
 
 49 07 
 
 64.09 
 
 81.11 
 
 100.1 
 
 
 26 
 
 7.98 
 
 11.5 
 
 15.6 
 
 20.4 
 
 25.8 
 
 31.9 
 
 26 
 
 27.12 
 
 39.06 
 
 53.15 
 
 69.43 
 
 87.87 
 
 108.5 
 
 
 28 
 
 8.59 
 
 12.4 
 
 16.8 
 
 22.0 
 
 27.8 
 
 34.4 
 
 28 
 
 29.21 
 
 42.06 
 
 57.24 
 
 74.77 
 
 94.63 
 
 116.8 
 
 
 30 
 
 9.20 
 
 13.3 
 
 18.0 
 
 23.6 
 
 29.8 
 
 36.8 
 
 30 
 
 31.29 
 
 45.06 
 
 61.33 
 
 80.11 
 
 110.4 
 
 125.2 
 
 176 
 
TABLE 45 
 
 COLUMNS 
 
 AREA, VOLUME, WEIGHT AND PERIMETER 
 
 OF 
 SQUARE, ROUND AND OCTAGONAL COLUMNS 
 
 
 Square columns 
 
 Round columns 
 
 Octagonal columns 
 
 Diam- 
 eter of 
 
 Area 
 
 Volume 
 
 Weight 
 
 Perim- 
 
 Area 
 
 Volume 
 
 Weight 
 
 Perim- 
 
 Volume 
 
 Weight 
 
 Perim- 
 
 
 (sq. 
 
 (c. f. 
 
 (Ib. 
 
 eter 
 
 (sq. 
 
 (c.f. 
 
 (Ib. 
 
 eter 
 
 (c.f. 
 
 (Ib. 
 
 eter 
 
 
 in.) 
 
 per ft.) 
 
 per ft.) 
 
 (ft.) 
 
 in.) 
 
 per ft.) 
 
 per ft.) 
 
 (ft.) 
 
 per ft.) 
 
 per ft.) 
 
 (ft.) 
 
 10 
 
 100 
 
 0.69 
 
 104 
 
 3.3 
 
 78.54 
 
 0.55 
 
 82 
 
 2.62 
 
 0.58 
 
 86 
 
 2.76 
 
 11 
 
 121 
 
 0.84 
 
 126 
 
 3.7 
 
 95.03 
 
 0.66 
 
 99 
 
 2.88 
 
 0.70 
 
 104 
 
 3.14 
 
 12 
 
 144 
 
 1.00 
 
 150 
 
 4.0 
 
 113.1 
 
 0.79 
 
 118 
 
 3.14 
 
 0.83 
 
 124 
 
 3.31 
 
 13 
 
 169 
 
 1.17 
 
 175 
 
 4.3 
 
 132.7 
 
 0.92 
 
 138 
 
 3.40 
 
 0.97 
 
 146 
 
 3.57 
 
 14 
 
 196 
 
 1.36 
 
 204 
 
 4.7 
 
 153.9 
 
 1.07 
 
 160 
 
 3.66 
 
 1.13 
 
 169 
 
 3.87 
 
 15 
 
 225 
 
 1.56 
 
 234 
 
 5.0 
 
 176.7 
 
 1.23 
 
 184 
 
 3.93 
 
 1.29 
 
 194 
 
 4.14 
 
 16 
 
 256 
 
 1.78 
 
 267 
 
 5.3 
 
 201.1 
 
 1.40 
 
 209 
 
 4.18 
 
 1.47 
 
 221 
 
 4.42 
 
 17 
 
 289 
 
 2.01 
 
 302 
 
 5.7 
 
 227.0 
 
 1.58 
 
 236 
 
 4.45 
 
 1.66 
 
 249 
 
 4.70 
 
 18 324 
 
 2.25 
 
 338 
 
 6.0 
 
 254.5 
 
 1.77 
 
 265 
 
 4.71 
 
 1.86 
 
 280 
 
 4.97 
 
 19 361 
 
 2.51 
 
 377 
 
 6.3 
 
 283.5 
 
 1.97 
 
 295 
 
 4.97 
 
 2.08 
 
 312 
 
 5.25 
 
 20 
 
 400 
 
 2.78 
 
 417 
 
 6.7 
 
 314.2 
 
 2.18 
 
 327 
 
 5.23 
 
 2.30 
 
 345 
 
 5.52 
 
 21 
 
 441 
 
 3.06 
 
 459 
 
 7.0 
 
 346.4 
 
 2.41 
 
 361 
 
 5.50 
 
 2.54 
 
 381 
 
 5.80 
 
 22 
 
 484 
 
 3.36 
 
 504 
 
 7.3 
 
 380.1 
 
 2.64 
 
 396 
 
 5.76 
 
 2.78 
 
 418 
 
 6.08 
 
 2.3 529 
 
 3.68 
 
 552 
 
 7.7 
 
 415.5 
 
 2.89 
 
 433 
 
 6.02 
 
 3.04 
 
 457 
 
 6.35 
 
 24 ! 576 
 
 4.00 
 
 600 
 
 8.0 
 
 452.4 
 
 3.14 
 
 471 
 
 6.28 
 
 3.31 
 
 497 
 
 6.63 
 
 2.~> 025 
 
 4.34 
 
 651. 
 
 8.3 
 
 490.9 
 
 3.41 
 
 511 
 
 6.55 
 
 3.60 
 
 539 
 
 6.90 
 
 2(i 676 
 
 4.69 
 
 704_ 
 
 8.7 
 
 530.9 
 
 3.69 
 
 553 
 
 6.81 
 
 3.89 
 
 583 
 
 7.18 
 
 27 
 
 729 
 
 5.06 
 
 758 
 
 9.0 
 
 572.6 
 
 3.98 
 
 596 
 
 7.07 
 
 4.19 
 
 629 
 
 7.45 
 
 28 
 
 784 
 
 5.44 
 
 816 
 
 9.3 
 
 615.8 
 
 4.28 
 
 641 
 
 7.33 
 
 4.51 
 
 677 
 
 7.73 
 
 29 
 
 841 
 
 5.84 
 
 877 
 
 9.7 
 
 660.5 
 
 4.59 
 
 688 
 
 7.58 
 
 4.84 
 
 726 
 
 8.01 
 
 30 
 
 900 
 
 6.25 
 
 938 
 
 10.0 
 
 706.9 
 
 4.91 
 
 736 
 
 7.86 
 
 5.18 
 
 777 
 
 8.29 
 
 31 
 
 961 
 
 6.67 
 
 1000 
 
 10.3 ! 754.8 
 
 5.24 
 
 786 
 
 8.12 
 
 5.53 
 
 829 
 
 6.56 
 
 32 
 
 1024 
 
 7.12 
 
 1067 
 
 10.7 804.2 
 
 5.58 
 
 838 
 
 .8.38 
 
 5.89 
 
 884 
 
 8.84 
 
 33 
 
 1089 
 
 7.56 
 
 1134 
 
 11.0 855.3 
 
 5.94 
 
 891 
 
 8.64 
 
 6.27 
 
 940 
 
 9.11 
 
 34 
 
 1156 
 
 8.02 
 
 1203 
 
 11.3 1 907.9 
 
 6.30 
 
 946 
 
 8.89 
 
 6.55 
 
 983 
 
 9.39 
 
 35 
 
 1225 
 
 8.50 
 
 1275 
 
 11.7 I 962.1 
 
 6.68 
 
 1002 
 
 9.16 
 
 7.05 
 
 1057 
 
 9.67 
 
 36 
 
 1296 
 
 9.00 
 
 1350 
 
 12.0 
 
 1018 
 
 7.07 
 
 1060 
 
 9.42 
 
 7.46 
 
 1118 
 
 9.94 
 
 37 
 
 1369 
 
 9.50 
 
 1425 
 
 12.3 
 
 1075 
 
 7.47 
 
 1120 
 
 9.68 
 
 7.88 
 
 1181 
 
 10.22 
 
 38 
 
 1444 
 
 10.03 
 
 1505 
 
 12.7 
 
 1134 
 
 7.88 
 
 1181 
 
 9.95 
 
 8.31 
 
 1246 
 
 10.50 
 
 39 1521 
 
 10.57 
 
 1586 
 
 13.0 
 
 1195 
 
 8.30 
 
 1244 
 
 10.21 
 
 8.75 
 
 1313 
 
 10.78 
 
 40 1600 
 
 11*11 
 
 1666 
 
 13.3 
 
 1257 
 
 8.73 
 
 1309 
 
 10.47 
 
 9.21 
 
 1381 
 
 11.05 
 
 41 1681 
 
 11.68 
 
 1753 
 
 13.7 
 
 1320 
 
 9.17 
 
 1375 
 
 10.72 
 
 9.67 
 
 1451 
 
 11.33 
 
 42 1764 
 
 12.25 
 
 1839 
 
 14.0 
 
 1385 
 
 9.62 
 
 1443 
 
 10.99 
 
 10.15 
 
 1522 
 
 11.60 
 
 43 1849 
 
 12.84 
 
 1926 
 
 14.3 
 
 1452 
 
 10.08 
 
 1513 
 
 11.26 
 
 10.64 
 
 1596 
 
 11 88 
 
 44 1936 
 
 13.45 
 
 2020 
 
 14.7 
 
 1520 
 
 10.56 
 
 1584 
 
 11.52 
 
 11.14 
 
 1671 j 12.17 
 
 45 2025 
 
 14.06 
 
 2110 
 
 15.0 
 
 1590 
 
 11.04 
 
 1657 
 
 11.79 11.65 
 
 1748 12.43 
 
 46 2116 
 
 14.69 
 
 2202 
 
 15.3 
 
 1662 
 
 11.54 
 
 1731 
 
 12.04 ! 12.17 : 1826 
 
 12.70 
 
 47 ; 2209 
 
 15.34 
 
 2300 
 
 15.7 
 
 1735 
 
 12.05 
 
 1807 
 
 12.31 I 12.71 
 
 1906 
 
 12.98 
 
 48 
 
 2304 
 
 16.01 
 
 2400 
 
 16.0 
 
 1810 
 
 12.57 
 
 1885 
 
 12.57 j 13.26 
 
 1988 
 
 13.26 
 
 49 
 
 2401 
 
 16.68 
 
 2502 
 
 16.3 
 
 1886 
 
 13.10 
 
 1964 
 
 12.83 j 13.81 
 
 2072 
 
 13.53 
 
 50 
 
 2500 
 
 17.36 
 
 2604 
 
 16.7 
 
 1964 
 
 13.64 
 
 2045 
 
 13.10 1 14.38 
 
 2158 
 
 13.81 
 
 
 
 
 
 
 
 
 
 j 
 
 
 
 177 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES WEIGHTS DO NOT INCLUDE SPACERS 
 LIGHT TYPE GIVES WEIGHTS WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 o 
 
 
 
 S 
 
 o 
 
 CO 
 
 CD 
 
 O 
 
 
 
 
 5 
 
 i 
 
 S 
 
 d 
 
 CO 
 
 o 
 
 1C 
 0* 
 
 d 
 
 
 ' 
 
 
 
 
 3 
 
 o , 
 
 
 S 
 
 
 C4 to 
 
 1C Tfl 
 
 
 
 o 
 
 00 
 CN 
 
 d 
 
 
 I 
 
 i-O 
 
 re 
 
 
 s 
 
 tc 
 en 
 
 TH 
 
 S3 
 
 en oo 
 
 TH TH 
 
 ^S 
 
 ^ ^ co 
 
 \oo 
 
 o 
 
 1C 
 
 co 
 d 
 
 o 
 o 
 
 
 II 
 
 CO* 
 
 i 
 
 10 t- 
 
 " S 
 
 TH TH 
 
 M< ^ CO* Co' 
 
 
 
 "V, 
 
 I 
 
 co 
 
 O 
 
 IN 
 
 S 
 
 d 
 
 
 im 
 
 iH TH 
 
 CO Tf 
 
 os ic 
 
 co co 
 
 co 
 
 (N 
 
 CQ C4 
 
 00 
 
 TH 
 
 o en i 
 
 O CN t 
 
 to 10 os 
 
 <N I - rH r-l 
 
 * OS CO CO 
 
 gp r 
 
 ^ CO CO CO 
 
 
 
 =*5 
 
 o 
 
 CO 
 
 CO 
 
 o 
 
 % 
 % 
 d 
 
 
 g IS S 2 IS 
 
 r- 1 IO t IO W 
 
 03 L| ,-i r-i |TH 
 
 GO l> 1C 
 CO IN 03 
 
 CO CO CN 
 
 X 
 CC 
 
 CM 
 
 -r 
 
 
 oo 
 
 TH 
 
 o 
 
 TH 
 
 en 
 
 I 
 
 en 
 S 
 
 IE ^b 
 
 00 ^H rH 
 
 co co o t^ 
 
 CO CO CO CM 
 
 N 
 
 1H T-l 
 
 TH 
 
 sf 
 
 eo 
 
 TH TH' ^J^' 
 
 ^(0 
 
 IN 
 
 CO 
 
 o 
 
 o 
 
 
 S 5 S S |S g 
 
 TH en t~ 10 eo t> 
 
 03 CM CO 
 IN OS CO 
 
 OS 
 
 1 
 
 en 
 
 ^ 
 
 eo 
 
 TH 
 
 in 
 
 * eo CM IN cs 
 
 TH C3 OJ CO 
 
 00 >C 00 CO 
 CM OS CO Tf 
 
 
 
 
 
 
 
 
 o 
 
 i 
 
 i 
 
 
 S!53|38 
 
 CO T-l CO 
 
 I-H 00 1C 
 
 O 
 CO 
 
 ^ 
 
 10 
 00 
 
 iH 
 
 " S 
 
 GO (0 
 
 s 
 
 eo 
 
 eo 
 
 co eo 
 
 en en ^ o ic 
 
 TH O 1^ 10 
 
 "safe 
 
 ^ J.H' ^ TH'rn" 
 
 1-4 
 
 o 
 
 <N 
 
 d 
 
 S 
 
 o 
 d 
 
 
 00 00 <N ICO 00 T* 00 
 
 en en t- en 10 ^< ^* cs oc 
 o t- 10 eo TH o ic p 
 
 OS O3 1C 
 
 CO CO i-t 
 
 o 
 
 09 
 
 03 
 
 IN 
 
 10 ITH 
 
 i 
 
 (O 
 
 en 
 eo 
 
 3 
 
 Ofl 
 
 en 
 
 i^lcT" 1 ~~ 
 
 OS (N O iN 
 
 TH 
 
 o en oo o TH o 
 
 
 
 
 11 
 
 
 
 
 
 S 
 
 i 
 
 d 
 
 1C 
 
 o 
 d 
 
 
 S | 3 IS S S o o los ic 
 
 TH co 10 eo o o> o> t^ p co 
 
 IN CO 1C 
 
 co o oo 
 
 $3 
 
 S 
 
 i 
 
 1 
 
 i 
 
 d 
 
 DO 00 rH TJH OS CO 
 
 CO O OC t^ 
 
 
 
 
 THTH_ 
 
 ^ 
 
 c- 
 
 
 
 
 
 O O -^ CO (N CM 
 
 (N CN rH rH 
 
 S 
 
 1 
 
 o 
 
 i 
 
 o 
 
 
 Islallss s 
 
 o r^ oo 
 
 rH 00 CO 
 
 s 
 
 
 
 gi 
 
 
 E- 
 
 en 
 
 w 
 
 30 
 
 ^< t- 
 
 en w oo ic o co 
 
 t- t- f~ rH l> CO 
 
 O OS C<J 00 
 
 rH 00 l>- 1C 
 
 
 
 
 
 
 s 
 
 CO 
 
 o 
 
 
 
 d 
 
 
 2SSet5^ Os co oc 
 ooioeoiHOOoot- THCOCN 
 
 O l> O 
 t^ CO 
 
 3 
 
 oo 
 
 CO 
 
 Kg 
 
 o eo 
 
 00 
 
 TH 
 
 eo 
 
 
 
 3 
 
 IB! 8883 
 
 os os co o 
 
 03 l> CO 1C 
 
 
 
 
 
 
 s 
 
 CN 
 O 
 
 1 
 d 
 
 
 toloocot-ooinift 1 
 OtlMMOtCOOlMtO CO 00 >C 
 loleOTH<J>OOt-t-iD J><N03 
 
 rH (N t * * 
 
 t^ 1C CO <N TH 
 
 3S 
 
 i 
 
 30 
 
 5 5 en 1 r- co o IN 
 
 t- to 10 o ic <N os 
 
 rH Tf CO 1 
 
 t> >C t*< <N 1 
 
 
 
 
 00000|CO^-H,H^rHrH| 
 
 tc 
 
 "te 
 
 I 
 
 (N 
 O 
 
 o 
 
 
 eoTHeneo^toSw coosco 
 
 * 00 1C 1C CO 1 
 
 Tf IN rH OS 
 
 t- oo to 
 
 ssg 
 
 1 
 
 to 
 
 S 
 
 1 
 
 # en o co uc CM 
 . . . ""1 . . 
 
 5! co 2 p 
 
 
 
 
 DjO M <N rH rH 
 
 ^rHrnJrH 
 
 s 
 
 
 CN 
 OS 
 
 O 
 
 O 
 
 C3 
 I 
 
 d 
 
 
 i0SetM^icoen o3co<N 
 
 T-i<J>OOt-OlOlO'* C3 - rt< 
 
 Tj* OS CO 
 C^ rH OS OS lOO 
 
 CO * CQ <0 
 SSS5S 
 
 y> 
 
 . COCOOOTjHINrH 
 
 * <M oo co *}( iri 1-1 o 
 
 TH TH TH rH 
 
 TH rH |o 
 
 TH O O O O O 
 
 
 1 
 
 "8 
 
 1 
 
 Diameter (inches). 
 
 C 
 
 g 
 
 ^2- 
 
 
 
 _K r^ CON r-\ -JS \ ~\ \ K -N rt\ \ 
 
 ^\ i-N w\ 
 
 i-<\ 
 
 H\ WS !H\ 1H\ rt\ 
 
 r-N rn\ C0\ 
 
 ft &- 
 
 
 
 .2*0 o i 
 Q ~ 
 
 . 
 
 
 
 178 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 179 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY 
 LIGHT 
 
 TYPE 
 TYPE 
 
 GIVES PERCENTAGES 
 GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 i 
 
 
 
 1C 
 
 d 
 
 I 
 d 
 
 
 
 8| 
 
 
 
 
 
 
 OS 
 
 
 
 
 S 
 
 CO 
 
 rH 
 
 3! 
 
 1 
 
 TH 
 
 8" 
 
 o 
 
 
 
 03 
 TH 
 
 d 
 
 CD 
 g 
 
 d 
 
 
 00 
 
 
 6 IT* 
 
 
 
 
 
 | 
 
 " 
 
 
 
 o 
 
 1C 
 
 d 
 
 00 
 
 ' 
 d 
 
 
 
 00 rH 
 
 e 
 i 
 t 
 
 c 
 
 n M <e 
 
 3 t- TH 
 
 3 eo t- 
 
 1 TH TH 
 
 
 
 
 ! 
 
 CO 
 
 
 TH 
 
 CN 
 
 rH 
 
 1 
 
 to 
 t-\ 
 
 d 
 
 co 
 o 
 
 1C 
 
 d 
 
 
 CN 
 t^ 
 
 t^ 
 
 O T}* 
 
 CO 
 
 sE 
 
 y 
 
 IsS 
 
 * 
 
 c 
 OS 
 
 CO 
 
 CO 
 00 
 
 O 
 
 CO 
 
 0! 
 CO 
 
 
 e- 
 
 
 
 
 
 o 
 
 
 
 CO 
 
 d 
 
 d 
 
 
 00 tt^ 
 
 o co 
 
 00 CN 
 
 CO CD 
 
 M ji-i * 
 
 !5f- 
 
 
 o 
 
 
 
 
 
 
 00 
 
 CO 
 
 CO 
 
 I 
 
 t- O 
 
 58 
 
 04 04 
 
 en 
 
 TH 
 
 co 
 
 rH 
 
 TH CO 
 (O rH 
 10 
 
 TH TH 
 
 o 
 
 00 
 
 co 
 
 8 
 
 d 
 
 00 
 CN 
 
 d 
 
 
 
 00 OS CN 
 
 33 
 1C 1C 
 
 Sli 
 
 1 tO TH t^- CD CM 
 *! CO CO TH 1C 
 
 H TH TH OS 00 l> 
 
 CO 
 
 10 
 
 CO 
 
 10 
 
 IS 
 
 c- 
 
 CN IO 
 (0 
 
 eo 04 
 
 
 1 
 
 
 \OJ 
 
 
 1C 
 
 t^ 
 
 d 
 
 1C 
 
 o 
 d 
 
 rH L-H CO CO 
 
 CO TH 
 
 5 3 ,H 
 
 9 CO 
 D CO CO 
 
 TH 
 
 00 OS Tf< 
 
 TH OS CN 
 
 S 
 
 S S 
 
 2 
 
 TH 
 
 
 
 
 
 
 
 . . | . . . 
 
 
 
 
 
 
 
 
 
 
 X. 
 00 
 
 c5 
 
 8 
 
 d 
 
 1 
 
 d 
 
 
 1 ~ 
 
 TH 00 CO rH 
 
 oo ic co os co 
 
 IM CM 
 
 CO Tf< 
 
 t- 10 00 IrH O 0) 
 
 TH TH 00 TH t- IO IO 
 
 TH CO 10 Ml 04 TH O 
 
 GO 
 
 O GC 
 CN T 
 
 so 
 
 CO 
 
 S 
 
 Ol 
 
 
 
 t- 
 
 (O 
 
 
 ii" 
 
 S 
 
 
 
 1 
 
 00 U> CO 1C 1C 
 
 <*'* 
 
 C, _ TH |TH ,H TH TH 
 
 O) 
 
 00 l> 
 
 co 
 
 10 
 
 10 
 
 t 
 
 
 
 
 V, 
 
 o 
 
 CO 
 CO 
 
 o 
 
 CO 
 00 
 
 o 
 
 
 TH CO rH CM rH CM 
 
 CO 
 
 S S CO TH < 
 
 n co CN 
 S 
 
 sb 
 
 CO 
 
 00 
 
 1- 
 
 CO 
 
 00 
 
 08 
 
 iiii 
 
 O CO 
 
 to 
 
 o 
 
 rH 
 
 CO 
 
 d 
 
 o 
 
 1 
 
 o 
 d 
 
 
 00 1C CO OS CO G> 
 
 gs 
 
 S3S3: 
 
 us co TH o e 
 
 SSg rH 
 
 1 
 
 rH CO t^ 
 
 j 
 
 
 
 TH 04 10 
 
 10 H a 
 
 
 
 d 
 
 e 
 
 t- 
 
 S 
 d 
 
 
 
 
 
 
 
 
 o 
 =*= 
 
 i 
 
 CO 
 
 d 
 
 00 
 CO 
 
 
 
 d 
 
 
 O CO TH l> CM l> 
 
 * co 
 
 * > O O i 
 
 rH O> CO TH C 
 10 04 iH O C 
 
 e- t- 
 04 IO 
 
 n co t- 
 
 X 
 
 CO CO 
 
 00 rH 
 
 iO 
 
 rH Tj< CN 
 
 O O IO 
 
 at 
 
 TH 
 TH 
 
 CO 
 
 2 
 
 l> CO 1C T}< Tfl CO 
 
 00 00 
 
 TH TH TH TH 
 
 500 
 
 CO 
 
 1C 1C Tfl 
 
 * CO CO 
 
 TH TH TH 
 
 
 
 
 
 o 
 
 =* 
 
 
 
 d 
 
 I 
 
 d 
 
 
 CO OS CM TH OS CO 
 TH CO CO 1C CM 
 
 TH OS 
 
 OS CD 
 
 Isissls 
 
 co 
 oo 
 
 t^ 
 
 CO 
 
 8. 
 
 o 
 
 iO 
 
 00 
 
 b 
 
 01 
 
 TH 
 
 ii 
 
 CO 
 
 
 
 t- 
 
 TH 
 
 in 
 
 CO 1C Tf< T}< CO CO 
 
 CM CN 
 
 iH TH O O C 
 
 300 
 
 >0 
 
 1C T* 
 
 CO 
 
 CO 
 
 CO 
 
 <N 
 
 T-l 
 
 H p e e e 
 
 =*= 
 
 10 
 CN 
 
 8 
 
 1 
 d 
 
 
 CO TH l> t>- OS 00 
 
 1C CD OS TH O l^ 
 
 CO CM 
 1C 00 
 
 TH C4 O> <O O IO 
 IO CO CO O O IO 
 TH 0> 00 f 10 
 
 CN 
 
 o 
 
 o co 
 co t> 
 
 ss 
 
 o 
 
 a 
 
 
 
 10 
 
 1 
 
 IE 
 
 2 
 
 S 
 
 1 ! 
 
 O * CO CO CO CN 
 
 CM CN 
 
 TH O O O C 
 
 O O 
 
 10 
 
 Th CO CO 
 
 CO 
 
 CN 
 
 0-1 
 
 TH 
 
 o o 
 
 o 
 
 o 
 
 o < 
 
 ft; 
 \MI 
 
 i-K 
 
 o 
 
 1 
 
 d 
 
 cs 
 d 
 
 
 1C rH 1C rH CM 
 O CN CO rH 00 C 
 
 1C TH CO* CO* CM' CM 
 
 32 
 
 O 00 B <D 3 N S 
 
 8 
 
 -t 
 
 CN 
 
 OS Tj< 
 
 co co' 
 
 S 
 
 co 
 
 <N 
 
 00 00 
 M CM 
 
 CO 
 
 e 
 
 d o' 
 
 s 
 
 o 
 
 (0 
 
 in 
 
 o' 
 
 Jl 
 
 CN CN 
 
 iH 
 
 CO 
 
 CO 
 
 d 
 
 1 
 
 d 
 
 
 OS OS CM CO 
 t>. OS TH O CO TH 
 
 00 OS 
 
 1-H OS 
 
 o o> t- t- eo TH loo 
 
 10 TH TH CO C- CN t- 
 
 o oo e- e 10 u * 
 
 co 
 
 00 CO 
 
 
 
 oi 
 
 OS CO CO 
 
 1C CO rH 
 
 CO TH 10 04 
 
 ssss 
 
 CM 
 
 S 
 
 TH 
 
 Tt* CO CO 00 CM CM 
 
 (N rH 
 
 d d d o' o" o' |d -* 
 
 CN CN|CM 
 
 00000 
 
 o 
 
 
 
 CO 
 
 o 
 
 CN 
 
 d 
 
 d 
 
 
 CM CO CO 00 1C 
 
 rH TH OS 1C CM O 
 
 CO rH 
 30 t>* 
 
 CO * r 
 
 rH O rH TH 
 
 co e- to ie x 
 
 H 10 
 
 ! TJH 
 
 
 
 > 00 
 
 S 
 
 c^S : 
 
 O TH O 
 10 t- 
 
 e- <o 10 10 
 
 (0 
 IO 
 
 TH 
 
 TH CO CM CM CM CM 
 
 rH rH 
 
 C 
 
 > 
 
 CO 
 
 CO CN 
 
 CJ 
 
 CN <N 
 
 0000 
 
 o 
 
 O) 
 
 
 * 
 
 1 
 
 I Diameter (inches) . 
 
 c 
 7 
 
 |-|s 
 
 ** S?r 
 
 X -v t v^v, S5 * ^-v. 
 
 P^\ COS. r-\ 
 
 -^\ eS\ 
 84 04 e 
 
 
 
 
 
 
 h 15 
 
 Q <"= 
 
 CN 
 
 co 
 
 S 
 
 180 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 
 a 
 o 
 
 r. 
 
 6 
 
 i 
 
 iH TH CM 
 
 s 
 
 TH d 
 
 s 
 
 M 
 
 1 
 
 TH 
 
 10 
 
 TH 
 
 c- 
 
 TH 
 
 
 
 : 
 
 ri CN 
 CO <N 
 
 o 
 
 -N 
 
 
 i 
 
 00 
 
 oo 
 
 TH 
 
 ii.l 
 
 TH TH 
 
 
 
 
 o 
 re 
 
 r! 
 
 o 
 
 ^J 
 
 OS 
 
 
 STH 
 
 CM 
 C4 04 
 
 sg 
 
 00 (O 
 
 TH TH 
 
 
 
 CO CN 
 
 o 
 
 cc 
 o 
 
 d 
 
 5 
 M 
 
 (O IO 
 
 ss 
 
 1-1 TH 
 
 s 
 
 TH 
 
 CO 
 CO 
 
 TH CO 
 
 t^ 
 
 d 
 
 
 en 
 
 TH 
 
 04 
 
 5s|S 
 
 
 
 H TH 
 
 TH IrH 
 
 
 
 I 
 
 OS 
 
 
 
 00* 
 
 04 
 
 M 
 
 ii 
 
 TH TH 
 
 !| 
 
 CN TjH CO 00 
 
 CO rH OS 
 
 to 
 
 OS 
 
 06 
 
 
 co 
 
 
 eo 
 
 TH 
 
 
 
 
 
 
 882 
 
 8 
 
 s 
 
 to 
 
 
 eo 
 
 
 
 CO h- 
 
 
 
 
 
 
 
 
 r^ IrH 1 
 
 TH TH 
 
 
 
 
 
 
 S 
 
 : 
 
 ri 
 
 OS 
 
 ~ 
 
 CO 
 
 2 
 
 M 
 
 TH eo 
 g 
 
 iH TH 
 
 ii 
 
 TH TH 
 
 00 iN IO 
 N OS 
 
 fj 
 -f. 
 
 oo 
 
 t- 
 
 TH 
 
 m 
 
 1 
 
 1 
 
 S3 
 
 m CM 
 
 c 
 t> 
 
 3 
 
 OS CO 
 CM CO 
 
 OS 
 
 2 
 
 00 
 
 
 8 
 
 1 
 
 to 
 
 TH 
 
 10 
 
 TH 
 TH 
 
 8 
 
 TH 
 
 g 
 
 TH 
 TH 
 
 
 
 ,H 
 
 TH TH 
 
 
 CN 
 
 OS 
 
 re 
 
 t" 
 
 00 
 
 CO 
 
 09 
 
 s 
 
 
 s. 
 
 s. 
 
 to 
 
 eo 
 to 
 to 
 
 1 
 
 en o 
 
 CO 
 
 OS 00 * 
 
 co co co 
 
 s. 
 
 T 
 
 X 
 
 
 
 o 
 
 CM 
 CO 
 
 CO 
 
 TH 
 
 to 
 
 
 
 to 
 
 i 
 
 TH 
 
 01 
 
 
 ce 
 
 C) 
 
 CO 00 
 **< o 
 
 os o 
 
 OS CS 
 
 
 
 CO 
 
 00 
 
 11 
 
 co 
 
 s 
 
 liSJ 
 
 
 
 
 r 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 - 
 
 THCNTH 
 
 9 
 
 CO 
 CO 
 
 00 
 
 C5 
 
 10 
 
 5 
 
 1 
 
 s 
 
 ilse 
 
 SB3 
 
 
 
 
 
 1- 
 
 SP S 
 
 i 
 
 ssslsi 
 
 TH CO 
 
 ^f CN 
 
 CO to 
 
 10 
 
 
 
 en to 
 
 35SS 
 
 O 
 
 cn 
 
 -f 
 
 OS 
 
 -s. 
 
 ^ 
 
 CO 
 
 CO 
 
 MJTH 
 
 
 
 disc 
 
 a|oo i- t. 
 
 * 
 
 JjM 
 
 TH 
 
 TH TH TH 
 
 TH CO 
 
 8 S 
 
 s 
 
 o |os' 
 
 00 t 
 
 
 
 
 
 
 
 
 i" 
 
 
 
 CO 
 
 co 
 
 M 
 
 a 
 
 O) 
 
 o 
 
 1- 
 
 Is 
 
 N 
 
 CO 
 
 TH 
 
 1 
 
 M 
 
 S 532 
 
 
 
 o 
 
 "* 
 
 OS 
 
 3S 
 
 TH 
 
 
 
 N 
 
 s 
 
 I 
 
 c 
 '*. 
 
 e 
 
 338 
 
 
 
 99 
 
 S 
 
 
 
 1 
 
 to 
 to 
 
 TH 
 
 
 
 e- 
 
 
 
 OS 00 
 
 * 
 
 CO 
 
 CO 
 
 10 
 
 
 
 
 
 
 
 
 
 
 
 CN 
 
 05 00 
 
 t- co 
 
 D 
 
 
 
 
 CO 
 
 d 
 
 10 CO 
 
 $ 
 
 
 
 2 
 
 3 
 
 5 
 
 s 
 
 E 
 
 i 
 
 
 
 
 
 i 
 
 S S3 
 
 sss 
 
 S 
 
 
 
 fel 
 
 
 
 3 
 
 1 
 
 1 
 
 TH 
 
 Ok 
 
 Tj( CO 
 rH 00 00 
 
 t> CO 
 
 s 
 
 en 
 
 S2| 
 
 Sis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 at 2 
 
 00 |l> CO 
 
 re 
 
 
 
 5 
 
 cs 
 
 en 
 
 CM 
 
 TH 
 TH 
 
 eo 
 
 t- 
 *< 
 
 TH 
 
 g 
 
 s 
 
 i 
 
 S oas 
 
 t* ^1 00 
 
 o ^ CM 
 
 
 
 o 
 
 CO 
 
 co en 
 
 eo N t 
 
 
 
 to 
 en 
 
 1 
 
 
 
 t- 
 
 C- 
 
 y: 
 
 5 
 
 CO O 
 
 00 to O 
 
 S 
 
 m 
 
 c- 
 
 10 
 
 TH 
 
 CM 
 
 
 
 1 
 
 
 
 
 
 5 
 
 O 
 
 
 
 
 
 
 - 
 
 o 
 
 
 
 OS t^ 
 
 CO CO to to ^ 
 
 TH TH 
 
 TH 
 
 s" 
 
 
 
 
 
 
 
 
 
 at 
 
 00 
 
 b. CO 
 
 IO to rt* 
 
 TH TH 
 
 TH 
 
 o 
 
 
 
 
 
 *s| 
 
 Q 
 
 s 
 
 y. 
 
 s 
 
 co 
 
 m 
 
 en 
 
 TH 
 
 CO 
 
 i 
 
 1 33 
 
 IO CO CM 
 
 TH Tf< CS 
 
 X 
 
 
 
 Si 
 
 1 
 
 t- 
 
 t- 
 
 i 
 
 CO 
 
 t> 
 
 o 
 
 > $ 
 
 t 00 
 
 <N t^ 
 
 re 
 
 eo IM 
 
 88 
 
 I 
 
 1 
 
 CM 
 
 2 
 
 to 
 to 
 
 (0 
 
 
 
 d 
 
 
 
 
 
 - 
 
 o 
 
 
 
 
 
 00 b- 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 oc 
 
 * 
 
 
 
 
 
 
 
 
 ro 
 
 (N CC 
 
 cc to 
 
 CO >O 
 
 S 
 
 -M 
 
 s 
 
 GO 
 
 c 
 CO 
 
 m 
 
 co 
 
 s 
 
 TH 
 
 i 
 
 d 
 
 o 
 
 d 
 
 d 
 
 io o co 
 
 OS t^ 
 
 o i> d 
 
 (N CO TjH 
 
 OS <N I- 
 
 
 CO 
 
 s 
 
 ii 
 
 eo 
 
 S 
 
 1 
 
 co 
 
 s 
 
 s 
 
 ^ 
 
 g 
 
 53 
 
 Tj< OS 
 
 o to 
 
 N 
 
 en 
 to 
 
 1 
 
 i 
 
 s 
 
 S 
 
 TH 
 
 51 
 
 <o >o -^ 
 
 * 
 
 eo 
 
 TH TH 
 
 
 
 
 
 
 
 
 
 
 
 to * 
 
 * 
 
 TH 
 
 d o' d d d d 1 
 
 00 
 C>1 
 
 d 
 
 to * 
 
 2 
 
 CO 
 
 CO 
 
 
 
 BO* 
 
 eo 
 
 TH 
 TH 
 
 en 
 
 en 
 eo 
 
 CO 
 
 10 
 
 <> 
 
 
 
 TH 
 
 
 
 10 <N CO 
 10 t^ t>- 
 
 O 00 CO 
 
 Tj* 
 
 
 
 e 
 
 re 
 
 ii 
 
 g 
 
 i 
 
 i 
 
 s 
 
 i 
 
 z 
 
 2 
 
 8 
 
 O TH 
 
 co os 
 
 X 
 
 I 
 
 1 
 
 2 
 
 I 
 
 i 
 
 co 
 
 i 
 
 TH 
 
 1" 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 o 
 
 
 
 
 
 
 
 : 
 
 3 
 
 - 
 
 ro 
 
 -T 
 
 re 
 
 OS 
 M 
 
 o 
 
 M 
 
 i 
 
 
 
 s 
 
 iH 
 
 c- 
 
 t- 
 
 10 
 
 I 
 
 3 
 
 CO 00 * TH 
 
 OS 
 
 00 
 
 IS 
 
 g 
 
 TH 
 
 TH 
 
 10 
 
 TH 
 
 en 
 
 s 
 
 00 
 
 o 
 re 
 
 ss 
 
 CO OS 
 
 d 
 
 oo 
 
 d 
 
 
 
 io 
 O 
 
 1 
 
 d 
 
 o 
 
 TH 
 
 e 
 
 d 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 
 
 
 
 CO 
 CN O 
 
 71 
 
 <f 
 
 s 
 
 3 
 
 t! 
 
 co 
 
 co 
 c- 
 
 to 
 to 
 
 CM 
 
 ^ 
 
 5 
 
 iO O 
 
 Tj< to 
 OS to t^ 
 
 
 
 US 
 
 S 
 
 i 
 
 TH 
 
 
 
 
 
 S 
 
 (N I> 
 
 g : 
 
 o o oo eo 
 t- to t- TH 
 
 3 : 
 
 ' CO 
 
 re 
 
 e. 
 
 M 
 
 N 
 
 o 
 
 o 
 
 o 
 
 
 
 o 
 
 o 
 
 o * 
 
 CO CO CO 
 
 <N 
 
 
 
 o 
 
 
 
 
 
 
 * 
 
 
 
 "* 
 
 ^ CO 
 
 ?0 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 5 
 
 
 
 r. 
 
 S : 
 
 s 
 
 
 
 TH 
 
 CM 
 
 \ 
 
 i 
 
 
 8 
 
 t^ co as 
 
 
 
 1 
 
 eo 
 g 
 
 co 
 to 
 
 10 CN CO 
 
 * CO O 
 
 CS >* 
 OS to 
 
 30 
 
 TH t- CO 
 M CM ^ 
 t- S 10 
 
 3 ; 
 
 "* 
 
 CO CO 
 
 CO (N 
 
 IN 
 
 o 
 
 o 
 
 
 
 
 
 o -* -<*< 
 
 co co |<N 
 
 
 
 
 
 
 
 
 
 
 
 LO 
 
 * 
 
 CO CO 
 
 CO 
 
 
 
 O 
 
 
 
 . 
 
 ^g 
 
 CO 
 
 CO 
 
 % 
 
 
 
 1 
 
 CM 
 
 S 
 
 5 
 
 c -^ ; '. '. 
 
 01 00 ... 
 
 IS 
 
 en 
 en 
 
 i 
 
 
 
 
 IO 
 
 10 
 
 
 
 01 
 
 CN CO 
 
 to 
 
 S 
 
 S 
 
 en 
 
 * 
 
 
 
 
 
 
 
 
 
 o e 
 
 
 
 
 
 
 
 
 * 
 
 re 
 
 eo co 
 
 o o 
 
 o 
 
 
 
 
 S 
 
 TH (N 
 
 
 X 
 
 X 
 
 
 SS its;^ ssx 
 
 XX XXX SX --- 
 
 XX XXX 
 
 
 
 
 
 
 
 
 
 to 
 
 CO 
 
 TH 
 
 181 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 i 
 
 
 
 o 
 
 o 
 
 10 
 
 d 
 
 I 
 d 
 
 CO 
 
 3 
 
 d 
 
 
 
 
 OS 
 
 oo 
 
 F 
 
 1 
 
 E 
 
 
 
 o 
 
 co 
 
 33 
 
 
 
 94 
 
 co 
 
 o 
 
 (D 
 
 i 
 
 i 
 
 
 
 cr. 
 
 X 
 
 X 
 CD 
 
 CO t^ 
 
 IO CO 
 
 CD 
 
 i 
 
 00 
 eo 
 00 
 
 H 
 
 rH 
 
 1 
 
 CO 
 
 n 
 
 TH 
 
 
 
 1-1 TH TH 
 
 H 
 
 
 
 
 
 o 
 
 O5 
 
 
 
 CD 
 
 co 
 
 X 
 C) 
 
 1-1 
 
 i 
 
 i 
 
 (0 
 
 rH 
 
 CN 
 10 
 
 rH 
 
 ft 
 
 eo 
 < 
 
 
 
 CD 
 X 
 
 co 
 
 i-H i-H 
 iO IN 
 
 C 
 
 M 
 
 M 
 
 i 
 
 5 
 
 8 
 
 * 
 
 i 
 
 
 
 co 
 d 
 
 co 
 
 CD 
 
 d 
 
 
 CO 
 CD 
 
 as 
 
 10 
 
 co 
 
 N 
 
 p 
 
 o 
 
 fe- 
 
 tn 
 
 TH 
 
 oT 
 
 S 
 
 1 
 
 rH 
 
 a 
 
 C- 
 
 * eo 
 
 TH TH 
 
 i 
 
 rH 
 
 5! 
 
 a 
 
 CN 
 
 CO 
 
 O (N 
 
 co 
 
 eo 
 
 TH 
 
 o 
 
 iH 
 (O 
 
 C- 
 
 i 
 
 i 
 
 iS 
 
 X 
 
 CD 
 
 
 2 
 
 Sl2 S 2 
 
 
 
 rH 
 
 H 
 
 rH TH TH 
 
 10 
 
 d 
 
 CO 
 
 o 
 
 10 
 
 d 
 
 
 O5 IO 
 
 3 
 
 05 
 
 - 
 
 5 
 
 i 
 
 (N 
 
 2 
 
 CM 
 
 CO 
 
 CO 
 Tl* 
 
 X 
 X 
 
 gg 
 
 CD 
 
 
 
 11 
 
 to 
 
 | 
 
 10 
 
 rH 
 
 8 
 
 CO h* 
 
 CD rH 
 
 co 
 
 CN 
 
 
 C5 
 
 OS 
 
 el 
 
 
 
 
 <N rH O O5 
 
 w 
 
 
 
 
 
 CO 
 
 d 
 
 co 
 
 iO 
 
 d 
 
 
 co 
 CN 
 
 co" 
 
 
 
 o 
 
 o 
 
 CN 
 
 CD 
 
 oi 
 
 (N IO 
 
 00 rH 
 
 00 M 
 
 i 
 
 00 
 
 
 3 
 
 1 
 
 5 
 
 i 
 
 
 
 00* 
 
 o o 
 
 
 
 rH O5 
 IN rH 
 
 TH O 
 
 "* 
 
 CO 
 
 05 
 
 \ 
 
 le 
 
 i 
 
 s 
 
 n 
 
 rH 
 rH 
 
 i 
 
 
 
 00 
 
 co 
 d 
 
 00 
 IN 
 
 d 
 
 
 00 t- 
 
 d 
 
 GO 
 
 s 
 
 8 
 
 S 
 
 rH 
 CO 
 
 5 
 
 iH 
 
 s 
 
 eo 
 
 TH 
 
 iH 
 
 il 
 
 o o 
 
 S 
 
 
 
 co 
 
 ^ 
 
 d 
 
 X CNI 
 
 CO iO 
 
 05 |X 
 
 r-l 
 
 00 
 
 1 
 
 IO 
 
 1 
 
 e> * 
 S . 8 . 
 
 ro 
 en 
 
 d 
 
 IO 
 00 
 
 d 
 
 3 
 
 05 
 
 
 ^* 
 
 
 
 
 
 i" 
 
 fe 
 
 ^QO 
 CON 
 
 
 
 o 
 
 CO 
 
 d 
 
 2 
 
 d 
 
 
 r-l 
 
 d 
 
 co 
 
 co 
 o 
 
 rH 
 
 s 
 
 S 
 
 s 
 
 S 
 
 1 
 
 rH 
 
 c 
 
 00 * T}< 
 
 rH Tf* O 
 
 i 
 
 S 
 
 s 
 
 co 
 co 
 
 e- 
 
 e- 
 
 CO r-l 
 
 o 
 
 00 00 
 
 t^ CO 
 
 
 
 
 
 
 00~ 
 
 
 
 f 
 
 
 
 
 O 
 CO 
 
 "fa 
 
 1 
 
 2 
 
 
 co co 
 <N d 
 
 
 05 
 
 CO 
 
 00* 
 
 F 
 
 r 
 
 i-O 
 
 CO CO 
 OO <N 
 
 1 
 
 o 
 
 ro 
 
 00 
 TH 
 
 
 
 b 
 
 
 
 00 t> 
 
 X 
 
 00 IO Tf* 
 
 CD CO CO 
 05 (N CO 
 
 rH 
 
 00 
 
 en 
 
 CO 
 00 
 
 1 
 
 I 
 
 o 
 
 o 
 
 co 
 co 
 
 d 
 
 O 
 
 d 
 
 o 
 d 
 
 
 CO IO 
 * O5 
 
 CO 
 
 CN 
 
 O3 rH 
 CO CN 
 
 i 
 
 1 
 
 1 
 
 d 
 
 o 
 
 s 
 
 d 
 
 10 
 
 S3 
 
 d d 
 
 co 
 
 OS 
 
 00 CO 
 
 CO CO 
 
 CO O 
 
 a 
 
 c- 
 
 
 rH 
 
 i 
 
 ro 
 
 ! 
 
 I 
 
 O 
 
 Tl< 
 
 o 
 
 s 
 
 o 
 
 i 
 
 d 
 
 d oo' 
 
 "> 
 
 E 
 
 CD 
 
 10 10 
 
 00 
 
 t> 
 
 CO CO 
 
 5 
 
 r-t 
 
 CO 
 
 d 
 
 
 00 
 OS l^ 
 
 X 
 
 
 
 CM 
 
 CO 
 
 X 
 
 10' 
 
 CO 
 
 10 Tfl 
 
 2 
 
 f- 
 
 
 
 
 S 
 
 
 
 8 
 
 o 
 
 C4 O CO 
 
 sss 
 
 OC 
 
 !g 
 
 05 
 CO 
 
 CD 
 
 10 
 
 rH X CO 
 05 00 05 
 
 t- 
 
 C- 
 
 
 1 
 
 s 
 
 o c- 
 
 s 
 
 s 
 
 o 
 
 000 05 
 
 X 
 
 t> 
 
 (D 
 
 10 iO 
 
 * 
 
 rt 
 
 O 
 
 o 
 
 
 
 o 
 
 o 
 
 
 
 i 
 
 CO 
 
 d 
 
 8 
 
 
 
 d 
 
 
 10 t^ i-l 
 05 CO l^ 
 
 00 |t> co' 
 
 8 
 
 r- 
 
 10 
 
 X 
 X 
 
 fj 
 
 1 
 
 TH 
 
 i 
 
 10 t- 1 
 
 s^gssl 
 
 X 
 
 -f 
 
 N 
 
 
 
 CO 
 
 00 t>- 
 
 CD 1-1 
 
 t| 
 
 s 
 
 i 
 
 c- 
 ^ 
 
 d 
 
 rH rH 10 00 
 
 05 (N (0 TH 
 
 (0 (0 10 10 
 
 
 
 o o o 
 
 000 
 
 03 
 
 oo 
 
 CN 
 
 
 
 O CO 
 
 iO 00 
 CO 
 
 iO iO * 1 
 
 rH 
 
 o 
 
 
 
 
 
 d 
 
 1 
 d 
 
 
 CO IO 
 
 ^ 
 
 
 
 10 
 
 2 
 
 1 1 
 
 O 
 
 0) rH 
 
 83 
 
 d d 
 
 life 
 
 O |0 
 
 g 
 
 
 5 
 
 CO to 
 
 SS 
 
 1 
 
 00 O 
 SCO 
 10 
 
 S3 
 
 t>. CO "5 
 
 10 
 
 TH 
 
 oo 
 
 CD 
 
 CO 
 
 
 
 
 o o 
 
 o 
 
 
 
 3 
 
 a 
 
 1 
 d 
 
 1 
 
 d 
 
 
 CO CO CO 
 O CD O5 
 
 X 
 CO 
 
 s 
 
 00 
 
 t> rH 10 
 oo o n 
 
 CO to 10 
 
 rH 
 
 a 
 
 3 
 
 O5 O5 CN 
 
 co' 10' 10' 
 
 2 
 
 -f- 
 
 > 
 * CO 
 
 sssg 
 
 e- o 10 10 
 d o' o' o 
 
 : : 
 
 d 
 
 CD IO 
 
 * 
 
 <tf CO 
 
 co 
 
 0000 
 
 
 
 D 
 
 i 
 
 
 
 i 
 
 d 
 
 r-l 
 
 Oi 
 
 3 
 
 d 
 
 
 05 r^ T^ 05 
 
 o 
 
 * <e 
 
 sss 
 
 i 
 
 
 
 
 TH O CO 
 
 CO Tj* l> 
 
 co" 10 * 
 
 N 
 
 
 
 en TH to 
 
 00 Cn rH 
 (O IO IO 
 
 d d d 
 
 1 
 
 D 
 
 
 
 
 10 IO * 
 
 co 
 
 o 
 
 000 
 
 = 
 
 
 
 
 
 
 IN 
 
 d 
 
 co~ 
 >o 
 
 (N 
 
 d 
 
 CO 
 CO 
 
 S 
 
 d 
 
 
 10 IO Tj* 
 
 CO X <N 
 
 : ^ 
 
 
 1 
 
 s 
 
 o 
 
 S 
 
 o 
 
 i 
 
 O5 CO 05 
 O5 rH * 
 
 33 
 
 n 
 
 ' 
 
 
 is 
 
 D 
 
 
 CO 
 
 000 
 
 5 
 
 ; 
 
 
 
 iO i 
 
 
 
 Tf 
 
 
 
 
 
 
 
 S 
 
 =*c 
 
 o 
 
 d 
 
 
 Tj* >O 
 
 -. 
 
 TfH Tj< 
 
 s 
 
 
 
 
 
 ii 
 
 3 
 
 1 ' CQ OS U* 
 
 . rH CO X 
 
 o 
 
 S 
 
 i 
 
 
 : 
 
 I 
 
 
 1 
 
 
 
 
 
 
 
 => . . . iO ^ |CO ; ; ; 
 
 
 
 5 
 
 
 
 
 
 
 o 
 
 85 
 
 Diameter (inches). 
 
 .S 
 
 I 
 
 < 
 
 '& '! <; ~' 
 
 *** 
 
 r1\ 
 
 
 
 -\ 
 
 -' c 
 
 S? 
 
 \N V^l \T)I \N Vf< 
 
 SX r^r^^ 
 
 
 1 
 
 
 5 2 ~ j 
 
 00 
 
 05 
 
 182 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 
 
 r. 
 
 ,-: 
 
 8 
 
 s .N 
 
 *' CO 
 
 
 
 1 
 
 o 
 
 :- 
 
 10 
 
 pi 
 
 
 
 
 ~ 
 
 s- 
 
 M 
 X 
 
 C 
 
 CO 
 
 
 s 
 
 CO 
 
 3 
 
 pi 
 
 t- 
 
 CN 
 
 a 
 
 c 
 
 
 
 ~ 
 
 Tj< 1C rH 
 
 CO b. 
 
 SS 
 
 S 3 
 
 ss 
 
 
 ~. 
 
 
 
 5 
 
 T) 
 
 ro OS 
 
 
 
 s 
 
 S 
 
 g 
 
 ss 
 
 CO CN 
 
 
 
 
 X 
 
 s 
 
 
 S3 
 
 
 i 
 
 (0 
 3> 
 
 t- 
 
 s 
 
 t- (0 
 
 i 
 
 
 
 r. 
 
 
 CO IN 
 
 SS3 
 
 iS 
 
 is 
 
 
 CN 
 
 t~ 
 
 
 
 
 
 M 
 
 3 
 
 00 CO 
 
 eo co 
 
 CN 
 
 
 e 
 
 i 
 
 1 
 
 t- 
 
 TH TH 
 
 C4 TH 
 
 a 
 
 00 
 
 -r 
 
 r 
 
 M 
 OS 
 
 e 
 
 g 
 
 5 
 
 8 
 
 M 
 
 s 
 
 M TH 
 
 tig 
 
 X 
 
 * 
 
 O 
 
 00 
 
 3 
 
 gs| 
 
 e- co i- 
 
 ss 
 
 eo 
 
 t- n 
 
 23 
 
 
 ~. 
 
 
 
 
 
 
 
 
 
 
 
 re 
 
 N 
 
 
 
 1C 
 
 -r 
 
 CO 1-1 
 
 CN 
 
 h 
 
 
 
 iH 
 
 TH TH 
 
 -Ul 
 
 rl 
 
 00 
 
 
 
 S 
 
 1C CO CN 
 
 C4 TH TH 
 
 TH TH 
 
 TH TH 
 
 o 
 
 X 
 
 8 
 
 3 
 
 S 
 
 CN cs 
 
 I 
 
 
 i 
 
 1 
 
 1 
 
 ii 
 
 ^r 
 
 
 
 c 
 
 co 
 
 8 
 
 2 
 
 1 
 
 1 
 
 3 
 
 s 
 
 33 
 
 1 a 
 
 = 
 
 ~ 
 
 
 
 ^-( OS t-- 
 1C <N CN 
 
 iii 
 
 TH cn 
 
 CM 
 
 o o 
 
 <N 
 
 5 
 
 
 Tt< 
 
 s 
 
 t>. 00 
 O OS 
 
 s 
 
 n 
 
 i 
 
 s 
 
 s 
 
 lp 
 
 ~ 
 
 s 
 
 8 
 
 z 
 
 CO 
 
 T 
 
 1-H i-C 
 
 CO 00 
 CO CO 
 
 en 
 
 s 
 
 30 
 
 co 
 
 TH 
 
 co 
 
 CN 
 
 11 
 
 CN 
 
 
 
 re 
 
 2 
 
 OS 
 
 gsl 
 
 E:g 
 
 TH O 
 
 is 
 
 
 1C 
 
 re 
 
 
 
 .=_ 
 
 C-J 
 
 3 
 
 ~. 
 
 OS 
 
 OS 00 
 
 s 
 
 s 
 
 eo 
 
 2. 
 
 iH 
 
 c- 
 en 
 
 3.3 
 
 S 
 
 - 
 r. 
 
 
 
 g 
 
 
 
 
 1-1 ,-t 
 
 t>. 00 
 
 
 
 - 
 
 
 S 
 
 1-1 
 
 8 
 
 1-1 
 
 M 
 
 d d 
 
 CN 
 
 S CN 
 t CM 
 
 O 00 
 
 C 
 
 8' 
 
 eo 
 
 ci 
 
 OS CS 
 
 SHs 
 
 ii 
 
 IO 00 
 
 O O) 
 
 X 
 
 x 
 
 t ; 
 
 r-. 
 
 ~ 
 
 
 
 00 OS 
 
 CO 
 
 S 
 
 to 
 
 
 
 ;o 
 
 I 
 
 IB 
 
 =_ 
 
 - 
 
 x 
 
 C; 
 
 ^ 
 
 00 
 CO 00 
 
 co 
 
 i 
 
 i 
 
 1 
 
 Si 
 
 1 s 
 
 C: 
 
 
 
 S 
 
 S!8 
 
 3 
 
 CO TH O 
 
 ss 
 
 CO CO 
 
 HI 
 
 2 
 
 71 
 
 ~ 
 
 OS 
 
 00 
 
 00 t* 
 
 
 
 
 
 
 
 1- 
 
 re 
 
 ^; 
 
 5 
 
 CS 
 
 
 
 
 
 
 
 
 
 
 :! 
 
 ~ 
 
 OS CS 00 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 g 
 
 
 
 ss 
 
 
 
 s 
 
 8 
 
 CO 
 
 en 
 
 c- 
 
 CN 
 CO 
 
 Si 
 
 e 
 
 8 
 
 8 
 
 CO 
 X 
 
 * 
 
 ^ t* 
 
 O CO 
 
 iH 
 
 eo 
 
 co 
 
 CN 
 
 
 
 i 
 
 2 
 
 10 
 
 10 
 
 3 ^ 
 
 S 
 
 ^ 
 
 re 
 
 00 * * 
 
 ff M 
 C4 O 
 
 <* TH 
 
 8S 
 
 ii 
 
 ZH 
 
 .I.' 
 
 2 
 
 
 ' 
 
 
 
 
 
 
 
 
 _ 
 
 ^i 
 
 _ 
 
 
 J ~ 
 
 00 t> 
 
 ^ 
 
 1 ' 
 
 
 
 
 
 ^1 
 
 __ 
 
 J_ 
 
 OS 00 l> 
 
 
 
 
 1C 
 
 ~ 
 
 - 
 
 <: 
 
 s 
 
 CO 00 
 
 c- 
 1-1 
 
 s 
 
 o 
 
 CO 
 
 *3* 
 
 P 
 
 S 
 
 5S 
 
 s 
 
 e 
 
 ~i 
 
 X 
 
 g 
 
 S2 
 
 i 
 
 co 
 
 en 
 
 iH 
 
 co 
 
 1 
 
 ii 
 
 i 8 
 
 2 
 
 D 
 
 r. 
 to 
 
 N W ^J 
 
 iii 
 
 S3 
 
 ii 
 
 ^ 
 
 ~ 
 
 X 
 
 ^ 
 
 CO 
 
 CO iC 
 
 1-1 
 
 
 
 
 
 
 
 
 
 
 
 c-j 
 
 f 
 
 
 
 BO 
 
 N 
 
 CO CO 
 
 
 o 
 
 
 
 
 
 
 
 SJ 
 
 
 
 
 00 
 
 t^ ts> CO 
 
 TH jd o 
 
 
 
 o o 
 
 
 
 
 
 
 
 co 
 
 t- 
 
 c- 
 
 M 
 
 t> 
 
 CO TH 
 
 
 
 
 
 
 
 j 
 
 * 
 
 
 
 en 
 
 -r TH 
 
 
 
 
 
 
 s "s 
 
 o t- 
 
 <o lie 
 
 * 
 
 ~ 
 
 X 
 
 r- 
 
 D 
 
 
 
 a 
 
 co 
 
 
 S 
 
 <> 
 
 10 10 
 
 O 
 
 co 
 
 d 
 
 It 
 
 - 
 
 OS T}< 
 
 en 
 
 CO 
 
 c- 
 
 <> 
 
 S 
 
 Cfl CT 
 
 s ^ 
 
 X 
 
 ~ 
 
 2 
 
 00 CN t>. 
 
 s s s 
 
 s s 
 
 86 
 
 
 
 x 
 
 '- 
 
 CO 
 
 CO 
 
 iC iC 
 
 1-1 
 
 
 
 
 
 
 
 
 
 
 
 e 
 
 ~. 
 
 00 
 
 * 
 
 (O 
 
 1C 1C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Oft 
 
 00 
 
 * 
 
 CO CO iO 
 
 000 
 
 o o 
 
 O p 
 
 
 
 o 
 
 1- 
 
 C: 
 i- 
 
 j 
 
 i 
 
 CO 
 
 i 
 
 eo 
 
 CO 
 
 so 
 
 o 
 
 (D 
 
 
 
 sir 
 
 S 
 
 re 
 
 c-. 
 
 ~. 
 
 ej 
 
 00 
 
 1C CO 
 
 t- 
 
 S? 
 
 1 
 
 i 
 
 1 
 
 STH 
 
 10 10 
 
 1 
 
 
 
 r. 
 ~i 
 
 ^ 
 
 CO CO CO 
 
 So e> 
 t- (0 
 
 ss 
 
 3 : 
 
 
 
 00 
 
 '- 
 
 CO 
 
 CO 
 
 1C 1C 
 
 
 
 
 
 
 
 
 
 
 
 o |o 
 
 
 
 Ok 
 
 t- 
 
 ** 
 
 CO 
 
 ic bo 
 
 
 
 
 
 
 
 
 
 e o 
 
 I-" 
 
 Oft 
 
 00 
 
 t- 
 
 CO CO 1C 
 
 000 
 
 00 
 
 
 
 CN 
 1C 
 
 n 
 
 8 
 
 
 
 ~ 
 
 3 
 
 i 
 
 en 
 
 t- 
 
 s 
 
 en 
 
 
 
 i 
 
 5 
 
 Oft 
 
 8 
 
 5 
 
 X 
 
 c. 
 
 X 
 
 CO 
 
 8 : 
 
 g 
 
 s 
 
 s 
 
 co 
 
 ^ 
 
 : TH 
 
 -- 
 
 s 
 
 X 
 
 ^ : 
 
 Sow 
 
 l|i 
 
 I :" 
 
 00 
 
 N 
 
 CO 
 
 M9 
 
 1C 
 
 T*. * 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 00 
 
 t- 
 
 
 
 ae 
 
 to 
 
 TJH 
 
 
 
 
 
 
 
 o 
 
 
 
 OS 
 
 BO 
 
 N 
 
 CO 
 
 iC iC 
 
 000 
 
 o]o 
 
 
 CO 
 
 c: 
 CO 
 
 C: 
 O 
 
 5. 
 
 5 
 
 
 E 
 
 cn 
 
 <> 
 
 s 
 
 S 
 
 3 
 
 
 g 
 
 y 
 
 Oft 
 
 C 
 
 J 
 
 
 t- 
 
 en 
 
 10 
 
 t0 
 
 s 
 
 
 o 
 
 e 
 - 
 
 x 
 
 
 
 ~ 
 
 
 
 ss| 
 
 3 S S 
 
 t- . 
 
 09 
 
 
 ^ 
 
 - 
 
 '" 
 
 
 - 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 k> 
 
 
 
 ' 
 
 o 
 
 
 
 
 o 
 
 
 
 
 
 
 
 
 00 
 
 - 
 
 
 
 
 
 
 o o o 
 
 o 
 
 
 o 
 
 CO 
 
 rH 
 
 
 
 <# 
 
 
 
 
 
 i 
 
 i 
 
 1-1 
 
 * 
 
 * 
 
 
 S 
 
 o 
 
 e 
 
 BfJ 
 
 * 
 
 
 
 s 
 
 s 
 
 5 
 
 
 
 co 
 
 - 
 
 
 
 
 Tti o r 
 
 
 
 o 
 
 l- 
 
 <*< 
 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 
 *- 
 
 
 
 '-t 
 
 . 
 
 
 
 o 
 
 o 
 
 o 
 
 
 
 : * 
 
 - 
 
 e 
 
 
 
 o o o 
 
 
 
 CO 
 
 5 
 
 r- 
 
 
 
 
 i 
 
 i 
 
 1 
 
 ; 
 
 'i 
 
 
 8 
 
 ~ 
 
 s 
 
 
 
 1 
 
 ; 1 
 
 s 
 
 t- 
 
 s 
 
 
 
 : 2? 
 
 * 
 
 90 
 
 
 
 II 
 
 
 
 CO 
 
 i* 
 
 F 
 
 
 
 
 
 
 
 
 
 
 
 * 
 
 
 CO 
 
 id 
 
 
 
 * 
 
 
 
 
 
 
 
 o 
 
 1 
 
 
 CO 
 
 d 
 
 ~ 
 
 
 
 d |d 
 
 
 
 _ 
 
 
 
 
 
 
 
 g 
 
 *> 
 
 
 
 
 
 o 
 
 5 
 
 
 
 
 
 c- 
 
 
 
 
 
 
 
 : oo 1 
 
 D 
 
 
 
 
 S : : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 : 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 
 . 
 
 
 
 
 
 . 
 
 r 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 ct 
 
 
 - 
 
 - 
 
 vf~ 
 
 - 
 
 - 
 
 
 - 
 
 - 
 
 S! 
 
 ^ 
 
 -. 
 
 
 
 -K 
 
 K 
 
 
 I 
 
 
 -\ 
 
 -^ \ 
 
 rA. 
 
 : 
 
 
 -\ 
 
 -N rt\ 
 
 "N Ctf\ 
 
 -\^' 
 
 ~. ' 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =; 
 
 O) 
 
 
 
 
 
 
 
 
 
 
 
 
 a 
 
 
 
 
 
 
 
 
 
 
 CN 
 
 CM- 
 
 
 
 183 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE 
 LIGHT TYPE 
 
 GIVES PERCENTAGES 
 GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 i 
 
 
 O 
 
 o 
 iO 
 d 
 
 05 
 
 d 
 
 
 
 
 co 
 
 " 
 
 IN iO O3 
 
 ^rH 
 
 c- 
 t- 
 
 gTH 
 
 CO 
 
 
 99 
 
 C^ t^ 00 
 
 CO 00 rH 
 
 s 
 
 s 
 
 10 en TH TH 
 10 o o en 
 
 re 
 
 CO 00 
 
 IN (N rH 
 
 CO 10 
 
 
 
 
 
 N ^ 
 
 a 
 
 
 
 
 
 
 
 05 
 
 d 
 
 d 
 
 
 gg 
 
 TH 
 
 rH 00 
 
 c- 
 
 00 
 
 iH 
 
 s 
 
 
 
 o 
 
 8 
 
 CN 
 
 TH 
 
 85U 
 
 TH O 05 
 
 <N rH 
 
 >O (N 
 
 CD CO 
 (N IN 
 
 
 
 is 
 
 X 
 
 00 l> 
 
 co' 10 
 
 CO 
 
 SS 
 
 *H TH 
 
 wGT 
 
 si 
 
 a 04 vi o 1 
 
 TH' TH' -i Id 
 
 CO 
 
 
 
 
 
 
 1 SSL. 
 
 
 
 >o 
 
 CO 
 TH 
 
 co 
 
 co 
 
 
 
 IO 
 
 35 IO 
 
 O5 CO 
 IN rH 
 
 ss 
 
 en o 
 
 to 
 
 eo 
 
 S 
 
 to 
 
 TH 
 
 en TH 
 
 3 
 
 8 
 
 
 
 ce 
 
 " 
 
 00 <N 
 O5 lt> 
 
 00 
 
 ^<0 
 
 
 
 >o 
 
 co 
 
 CO 
 
 o 
 
 10 
 
 
 IN 
 
 O5 
 CO 
 
 Cl 
 C) 
 
 o 
 
 03 IN 10 
 
 TH O 
 00 00 
 
 co 
 
 2 
 
 c- 
 
 
 eo 
 
 S 
 
 i 
 
 1 (N 
 
 S B co 
 
 en co co 
 
 rf 
 
 ei 
 
 3 
 
 
 00 
 
 5S 
 
 1 
 
 co 
 
 CO 
 
 IO 
 
 TH 
 
 1 
 
 _l 
 H CO 
 
 en co 
 d d 
 
 o 
 
 IQ 
 
 >o 
 
 
 CO 
 
 CO 
 10 
 
 
 10 
 00 
 
 <N 
 
 8 
 
 05 
 
 TH CO rH 
 rH <N t^ 
 
 S3 
 
 oo 
 
 i 
 
 s 
 
 CN 
 
 TH 
 
 CM 
 
 TH 
 
 
 
 S3 05 
 
 0> CO 00" 
 
 X 
 
 33 
 
 OS 
 
 eo 
 
 re 
 
 0$ 
 
 00 
 
 TH 
 
 10 
 
 oo 
 eo 
 
 eo 
 
 00 
 
 
 3 
 
 en 
 
 
 O 
 TH 
 
 05 
 
 00 
 IN 
 
 
 L 
 
 <N 
 
 05 
 
 00 <N TH 00 IN t>. 
 
 MOO 
 
 TH TH 
 
 TH CM O 
 
 TH t- 
 
 <N 'N 
 
 P- O OO CO 
 
 C- t- CO rH 
 
 X 
 C. 
 
 (N O5 
 
 CO O5 
 
 OS 
 
 O3 05 
 
 O5 
 
 eo 
 to 
 co 
 
 S 
 
 TH 
 
 eo 
 
 S 
 
 TH 
 
 
 
 en 
 
 
 
 cs 
 
 oo 
 
 ri 
 
 o o 
 
 i 
 
 o 
 
 
 
 d 
 
 
 
 d 
 
 
 CO 
 
 t> 
 
 X 
 00 
 
 sss 
 
 CO rH 
 
 t S . 
 OJ CO 
 
 TH 00 
 CO 
 O 
 
 TH TH 
 
 en 
 
 
 
 s 
 
 00 
 
 e 
 
 (O O TH CO 
 
 odd 06 
 
 ei 
 
 id 
 
 8 
 
 
 
 CN 
 
 X 
 X 
 
 o" 
 
 
 
 05 05 
 
 !-!| 
 
 00 
 CO 
 
 d 
 
 d 
 
 CO (O 
 0* 0* 
 
 
 CO 
 
 10 
 (N 
 
 
 
 co 
 d 
 
 d 
 
 
 
 (N 
 
 CO 
 
 
 
 
 re 
 
 00 rH TH 
 rH 00 t^ 
 
 <N O5 
 
 IO rH 
 00 rH 
 
 00 00 
 
 CO 10 
 
 So 
 
 TH TH 
 
 CO 
 
 d 
 
 d 
 
 CO 
 
 d 
 
 SS CO 
 (O IO O3 
 
 S 
 
 > (N rH (N TH 
 
 TH 
 
 i 
 
 i 
 
 to 
 
 d 
 
 SS 
 
 O 
 
 00 CD 
 
 2! 
 
 <N 
 
 
 
 
 
 C5 00 
 
 TH 
 
 o 
 
 o 
 
 o 
 
 o 
 
 (N 
 * 
 
 
 
 CO 
 CO 
 
 d 
 
 
 
 d 
 
 
 o 
 
 8 
 
 r^2 
 
 J> CO 
 CO 1> 
 
 t>i CO* 
 
 en 
 
 o 
 
 CO 
 
 d 
 
 1 
 
 i 
 
 CO 
 
 o 
 
 10 
 
 sis s 
 
 as 
 
 o 
 
 & 
 
 <=> 
 
 cc 
 
 00 
 
 ;fc 
 
 i 
 
 
 
 TH 
 
 00 
 
 o 
 
 
 
 s 
 
 e 
 
 IO 
 
 d 
 
 !* 
 
 CO 
 
 rH 
 
 rH 05 00 
 
 
 
 
 
 
 
 o |d TH 
 
 
 
 2 
 
 OS 
 
 \ 
 
 10 
 (N 
 
 CO 
 
 d 
 
 co 
 d 
 
 d 
 
 
 CO 
 
 o 
 
 re 
 
 rH rH TH 
 O O <N 
 
 00 CO 
 IO O 
 
 i 
 
 s 
 
 s 
 
 eo 
 
 i 
 
 i : g 
 
 X 
 
 5 
 
 OS 
 
 re 
 
 X 
 
 2 
 
 CD 
 00 
 
 CO 
 
 I 
 
 e 
 
 TH 
 
 d 
 
 en 
 
 
 | 
 
 e 
 
 TH 
 
 : 
 
 r 
 
 s 
 
 
 
 CO 00 t>- 
 
 CO CO 
 
 o 
 
 
 
 o 
 
 o 
 
 o 
 
 O CN 
 
 o 
 
 OS 
 
 O 
 
 i 
 
 d 
 
 
 00 TH O5 CO CO 
 IO OS CO l> C5 
 
 CO 
 
 co 
 
 IO 
 
 t? 
 
 1 
 
 i 
 
 eo 
 
 to 
 
 | 
 
 'o 
 
 
 
 00 t^.' 
 
 O 
 
 co 
 
 CO 
 
 1 
 
 
 
 eo 
 
 d 
 
 to 
 
 3 
 
 o 
 
 I I 
 
 S 
 
 C5 
 
 00 t^ CO 
 
 CO 
 
 o 
 
 o 
 
 o 
 
 
 
 o 
 
 O <N 
 
 - 
 
 8 
 
 <N 
 
 d 
 
 CO 
 (N 
 
 d 
 
 
 So 
 
 os 
 
 CO 
 
 CO 
 
 O5 CO 
 
 
 2 
 e 
 
 s 
 
 o 
 
 IO 
 
 
 
 
 
 e 
 
 CO 
 
 o 
 
 X 
 CO 
 
 
 
 X 
 X 
 
 CO 
 
 03 
 CO 
 
 
 11 
 
 o o 
 
 o 
 o 
 
 to 
 
 (0 . 
 
 o 
 
 9, 
 
 IO 
 
 (N 
 
 CO 
 
 d 
 
 1 
 d 
 
 
 O3 
 IO (N 
 
 00 CO ' 
 CO CO 
 
 S 
 
 t- 
 
 to 
 
 5 
 
 
 
 ' 00 
 GO 
 
 
 
 g 
 
 
 
 
 e 
 
 IO 
 
 
 
 10 ' ' 
 
 TH 
 
 d 
 
 00 t^. 
 
 CO iO 
 
 
 
 
 
 o 
 
 
 
 00 
 
 --;;;; 
 
 X 
 
 
 
 o 
 
 >0 
 IN 
 
 d 
 
 05 
 
 d 
 
 
 rH 
 
 t* CO 
 
 03 ' ' '. ' 
 
 en 
 IP 
 
 us 
 
 
 
 
 ' O 
 
 05 I'.'.!! 
 
 ! 
 
 1" : : : : 
 
 t> 
 
 CD 
 
 J 
 
 to" : : : : 
 
 o 
 
 O 00 
 
 CO 
 
 o 
 co 
 
 10 
 
 
 
 CO 
 
 IN 
 
 d 
 
 co 
 
 1 
 d 
 
 
 rH 
 
 co 
 
 
 1 
 
 s 
 
 
 
 
 : : S 
 
 s 
 
 
 
 
 
 3 
 
 
 
 
 
 
 - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 t 
 
 Diameter(inches).. 0.2253 
 
 O5 
 
 
 
 d 
 
 HI 
 
 SiiMM 
 
 CO 
 
 
 
 CN 
 
 
 ri 
 pi\ 
 
 : : S 
 
 '. '. CD 
 
 
 
 
 
 
 eo 
 
 o 
 
 
 
 
 
 09 
 
 CD 
 
 d 
 t 
 
 \<N 
 
 s -f 
 
 i-N rA 
 
 <N CM <M 
 
 y* 
 
 IN CO 
 
 iH 
 
 TH 
 
 S 
 
 \ r-(\ n\ 
 
 CO rH rH 
 
 (N 
 
 -\ 
 
 ei 
 
 co\ 
 
 IN CO 
 
 F*! 
 
 TH 
 
 TH N CSI 
 
 H\ ess 
 
 Hi 
 
 <N 
 
 IN 
 
 H 
 
 IN 
 
 184 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 IN 
 
 n 
 x 
 
 ei 
 ei 
 
 
 
 s 
 
 . 
 
 s. 
 
 ! 
 
 
 
 IO 
 
 s 
 
 1 
 
 s 
 
 2. 
 
 e_i 
 
 s 
 
 ei 
 
 e 
 re 
 
 C; 
 
 s 
 
 13 
 
 
 
 
 s 
 
 I 
 
 T-l 
 
 si 
 
 s 
 
 B 
 
 ei 
 re 
 
 - 
 
 ~ i 
 
 OO G 
 
 N 
 
 1 
 
 3 
 
 ! 
 
 2 
 
 s 
 
 \ 
 
 o 
 
 
 
 eo 
 
 
 M 
 
 ei 
 
 
 
 
 
 
 
 
 
 
 
 re 
 
 re 
 
 ei 
 
 ei 
 
 ei 
 
 
 
 
 
 " 
 
 
 
 
 "F 
 
 5_ 
 
 re 
 
 e; 
 
 ei 
 
 ei - 
 
 - 
 
 
 
 
 
 
 
 
 * 
 
 S 
 
 ~J 
 
 3 
 
 re 
 
 s 
 
 
 
 TH 
 
 
 
 N 
 
 s 
 
 rH 
 
 1 
 
 t- 
 
 
 
 eo 
 
 - 
 
 $ 
 
 g 
 
 ei 
 
 X 
 
 re 
 
 ei 
 90 
 
 S? 
 
 1 
 
 s 
 
 1 
 
 s 
 
 ii 
 
 s 
 
 X 
 
 O3 
 
 re 
 
 re 
 
 3! 
 
 o 
 
 i 
 
 t- 
 
 CTi 
 iO 
 
 C- 
 '5 
 
 
 
 CO 
 
 TH 
 
 rH 
 
 t- 
 
 rH 
 
 
 1 
 
 g 
 
 -1 
 
 g 
 
 ei 
 
 0) 
 
 f ~ 
 
 ~ 
 
 CI 
 
 ^ 
 
 TH 
 
 TH 
 
 TH 
 
 TH 
 
 TH 
 
 re 
 
 a 
 
 i 
 
 ei 
 
 ei 
 
 -i 
 
 
 
 ei 
 
 -j- 
 
 -c 
 
 
 
 
 
 
 
 eo 
 
 ?i 
 
 ^i 
 
 re 
 
 o < 
 
 ei - 
 
 J t> 
 
 
 
 
 
 
 
 o 
 
 S 
 
 a 
 
 X 
 
 
 
 -x 
 
 CO 
 o 
 
 3 
 
 s 
 
 1 
 
 s 
 
 s 
 
 t- 
 
 
 
 ~- 
 
 i 
 
 
 $ 
 
 
 Z 
 
 c 
 ~. 
 
 el 
 
 J 
 
 
 
 c- 
 
 e 
 
 s 
 
 5 
 
 1 
 
 11 
 
 d d 
 
 CO 
 
 o 
 
 B 
 
 ei 
 re 
 
 8 
 
 d 
 
 ei 
 
 X 
 
 ^ rH 
 iO 
 
 D IO 
 
 s. 
 
 TH 
 
 
 
 s 
 
 rH 
 
 s 
 
 s 
 
 (N 
 
 CO 
 
 s 
 
 3 
 
 CO 
 
 i- 
 
 -r 
 
 - 
 
 r^ 
 
 1 
 
 2 
 
 i 
 
 1 
 
 1 
 
 2 
 
 1 
 
 et 
 
 
 
 a 
 
 e 
 
 
 
 8 
 
 i 
 
 o 
 
 i 
 
 TH 
 
 IN 
 
 CO 
 
 t- 
 
 10 
 
 TH 
 
 1 
 
 1 
 
 TH TH 
 
 eo 
 
 S 
 
 ei 
 I 
 
 ei 
 
 ei 
 
 X 
 
 re = 
 
 t- * 
 
 ?s 
 
 i 
 
 s 
 
 eo 
 
 TH 
 
 
 
 
 
 i 
 
 rH 
 
 s 
 
 N 
 
 Ij 
 
 c-. 
 
 
 
 
 
 
 
 
 
 
 
 
 ei 
 
 
 ei 
 
 
 
 
 
 
 
 
 
 
 
 It 
 
 
 ei 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 o 
 
 - 
 
 90 
 
 ej 
 
 5 
 
 
 
 
 o 
 re 
 
 --^ 
 ei 
 
 i 
 
 :o 
 
 s 
 
 s 
 
 
 
 
 s 
 
 6 
 
 
 
 N. 
 
 
 
 re 
 
 X 
 
 S5 
 
 00 
 Ok 
 
 i 
 
 1 
 
 g 
 
 f> 
 
 03 
 CO 
 
 
 
 ** e- 
 O O 
 
 
 s- 
 
 10 
 
 eo 
 
 iO 
 
 ei 
 
 o 
 
 X 
 
 o r 
 ei r 
 
 ~ " 
 
 O 
 ~ IO 
 
 J< CO 
 
 TH 
 
 s 
 
 TH 
 
 
 
 TH 
 
 oo 
 
 IO 
 CT> 
 
 
 
 s 
 
 CO 
 
 d 
 
 10 
 
 d 
 
 0> 
 
 
 
 g 
 
 00 
 
 90 
 
 S 
 
 = 
 
 
 re 
 
 eo 
 
 i 
 
 TH 
 
 
 
 I 
 
 t- 
 
 I 
 
 1 
 
 SL 
 
 ei 
 
 ?j 
 
 
 -x 
 
 8 
 
 IO 
 
 X 
 
 CO 
 00 
 
 N 
 
 g 
 
 i 
 
 1 
 
 
 
 TH *# 
 
 2 
 
 r 
 
 CO 
 
 -i. 
 
 s 
 
 >H r 
 
 08 
 
 1 
 
 TH 
 
 1 
 
 1 
 
 
 t- 
 
 i 
 
 
 
 t- 
 
 1C 
 
 re 
 
 ei 
 
 '- 
 
 
 
 * 
 
 ^ 
 
 o 
 
 
 
 o 
 
 o 
 
 
 
 ei 
 
 r. 
 
 2 
 
 
 
 re 
 
 - 
 
 C: 
 
 H 
 
 TH 
 
 
 
 
 
 
 
 
 
 S 
 
 c: 
 
 a 
 
 id 
 
 re : 
 
 H S 
 
 r-l 
 
 TH 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 ei 
 
 M 
 
 to 
 
 r: 
 
 
 I 
 ei 
 
 
 
 CO 
 
 d 
 
 ci 
 
 TH 
 
 
 
 TH 
 
 i 
 
 
 
 * 
 
 d 
 
 d 
 
 2 
 
 
 
 
 
 ^ 
 
 CS 
 
 90 
 
 M 
 
 
 
 re 
 
 ei 
 
 90 
 
 d 
 
 x" 
 
 Ok 
 
 eo 
 
 TH 
 
 (N 
 d 
 
 
 
 
 L-3 
 
 eo 
 
 
 
 <> 
 IO 
 C- 
 
 
 
 
 
 d 
 
 oo e- 
 o d 
 
 a 
 
 d 
 
 ei 
 
 c 
 
 t- 
 eo 
 
 
 
 re 
 
 o ; 
 
 eo 
 
 ei - 
 
 O 
 
 H M 
 
 H d 
 
 r-l 
 
 TH 
 
 10 
 
 o 
 
 s 
 
 o 
 
 I 
 
 d 
 
 IO 
 
 d 
 
 S 
 
 o 
 
 0* 
 
 r^ 
 
 ~ 
 
 el 
 
 BO 
 
 
 co 
 
 S 
 
 CO 
 00 
 
 o 
 
 i 
 
 s 
 
 s 
 
 is 
 
 o 
 
 to 
 
 10 
 
 3 
 
 > 
 
 v: 
 
 ^ 
 
 
 
 
 
 
 
 ei 
 
 1 
 
 
 
 S 
 
 I 
 
 S 
 
 11 
 
 ^ 
 
 
 
 
 g 
 
 X ' 
 
 # t 
 
 o 
 
 c- 
 00 
 
 I 
 
 1 
 
 
 
 t- 
 
 o 
 
 
 
 
 
 re 
 
 
 
 o 
 
 9 
 
 00 
 
 ^ 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 a 
 
 d 
 
 re 
 
 2 
 
 3 
 
 
 
 Ok- 
 
 H 
 
 O 
 
 
 
 
 
 
 
 
 
 r. 
 
 - 
 
 - 
 
 ei 
 
 
 ^ OS 
 
 TH 
 
 o 
 
 o 
 
 o 
 
 o 
 
 o 
 
 o 
 
 S 
 
 CO 
 
 
 cr 
 
 Bt 
 
 - 
 
 2 
 
 D 
 CO 
 
 s 
 
 
 
 s 
 
 s 
 
 1 
 
 TH 
 
 s 
 
 a 
 
 
 
 ? 
 
 CO 
 
 ei 
 
 fi 
 
 So 
 
 e 
 
 1 
 
 
 
 i 
 
 i 
 
 1 
 
 TH TH 
 
 00 ^j 
 
 O 
 
 ^ 
 
 ?. 
 
 S 
 
 
 5 00 
 
 - o 
 
 i 
 
 1 
 
 e- 
 
 S 
 
 1 
 
 1 
 
 i 
 
 3 
 
 T* 
 
 (N 
 
 - 
 
 ~ 
 
 00 
 
 
 
 "> 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 IO 
 
 re 
 
 
 c: 
 
 Ok 
 
 X 
 
 '- 
 
 O 
 
 o 
 
 
 
 o 
 
 o 
 
 O O 
 
 S 
 
 re 
 
 - 
 
 
 
 -. -. 
 
 t 
 
 o 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 
 
 CO 
 
 a 
 ei 
 
 IO 
 
 oo 
 
 O 
 
 a 
 
 r 
 
 
 s 
 
 TH 
 
 H 
 
 s 
 
 TH 
 
 3 
 
 
 S 
 
 c 
 
 
 
 ei 
 
 ei 
 
 
 
 
 g 
 
 s 
 
 1 
 
 1 
 
 5 
 
 
 s 
 
 ~ 
 
 5 
 
 -f 
 
 - 
 
 j 
 
 I 
 
 1 
 
 1 
 
 1 
 
 3 
 
 
 
 eo 
 
 
 
 CT. 
 
 X 
 
 ^ 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =; 
 
 Ok 
 
 X 
 
 
 d 
 
 
 
 o 
 
 
 
 
 
 
 
 S 
 
 eo 
 
 M 
 
 
 
 
 
 s 
 
 
 
 t~ 
 
 ?- 
 
 1 
 
 s 
 
 N 
 
 
 \_ 
 
 
 
 s 
 
 5 
 
 - 
 
 
 
 
 
 e- 
 
 1 
 
 i 
 
 1 
 
 S 
 
 
 g 
 
 g 
 
 t* 
 
 ei 
 
 I 1 
 
 s 
 
 
 1 
 
 1 
 
 e- 
 
 10 
 
 (0 
 
 
 i 
 
 
 2 
 
 ~ 
 
 Ok 
 
 X 
 
 t~ 
 
 * 
 
 
 o 
 
 o 
 
 o 
 
 o 
 
 o 
 
 
 
 eo 
 
 z 
 
 Ok 
 
 BC 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 re 
 
 ~ 
 
 ~ 
 
 
 
 90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 fc 
 
 
 vr 
 
 C: 
 
 [^ 
 
 
 ; 
 
 ': 
 
 (C 
 
 
 
 i 
 
 c- 
 
 <- 
 
 TJ< 
 
 
 
 
 s 
 
 9' 
 
 5 
 
 X 
 
 
 
 
 s 
 
 2 
 
 i 
 
 
 
 
 
 fe 
 
 
 
 |2 
 
 X 
 
 
 
 i 
 
 3 
 
 1 
 
 
 
 
 
 o 
 
 Ok 
 
 BE 
 
 f* 
 
 
 ; 
 
 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 
 3 
 
 O> 
 
 
 
 t 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 3 
 
 c: 
 
 X) 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 ei 
 
 s 
 
 ~ 
 
 
 
 * 
 
 
 o 
 
 10 
 
 3 
 
 i 
 
 
 
 
 
 S 
 
 ei 
 
 IO 
 ei 
 
 
 
 
 
 s 
 
 
 
 
 
 
 
 = 
 
 
 
 
 
 
 
 s 
 
 3 
 
 
 
 
 
 
 o 
 
 ^ 
 
 to 
 
 
 
 
 
 * 
 
 
 
 
 
 o 
 
 
 
 
 
 r. 
 
 BO 
 
 r- 
 
 
 
 
 
 
 
 d 
 
 
 
 
 
 
 
 30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 = 
 ei 
 
 
 
 - 
 
 
 
 
 1 
 
 1 
 
 
 
 
 
 
 ;: 
 
 = 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 
 
 
 : 
 
 
 
 
 
 00 
 
 * 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 r. 
 
 t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 il 
 
 
 
 
 
 
 
 
 : 
 
 
 
 
 
 
 
 00 
 
 * 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 c- 
 
 
 
 
 
 
 -, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 
 
 
 
 
 *. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 * 
 
 
 
 
 
 
 i-N 
 
 5 
 
 - 
 
 s 
 
 5 
 
 ~. 
 -i 
 
 eo . 
 
 - ' 
 
 rH 
 
 i? 
 
 - 
 
 - 
 - 
 
 5 
 
 
 -: 
 C4 
 
 - 
 
 
 - 
 - 
 
 
 
 - 
 - 
 B4- 
 
 - ' 
 
 - 
 1 
 
 eo 
 
 
 - 
 
 TH 
 
 ^ 
 
 (N 
 
 - 
 
 5 
 
 S- 
 
 
 - 
 
 
 ei 
 
 - 
 - 
 ei 
 
 - ; ' r- 
 
 ei e 
 
 
 % 
 4 CO 
 
 iH\ 
 
 rH 
 
 - 
 - 
 
 TH 
 
 IN 
 
 - 
 
 d 
 
 - 1 
 N 
 
 s 
 
 eo 
 
 
 
 
 
 
 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 r 
 n 
 
 
 
 
 
 
 
 
 
 
 
 
 Si 
 
 
 
 
 
 
 
 185 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE 
 LIGHT TYPE 
 
 GIVES PERCENTAGES 
 GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 * 
 
 o 
 
 
 
 o 
 
 03 
 
 
 co 
 
 CO 
 
 01 
 
 CO 
 
 S 
 
 CO ^H 
 !>. CO C3 
 
 gg S3 
 
 CO ** C4 
 
 go to 
 eo co 
 rH o en CN 
 
 
 
 Ol 
 
 -t* 
 
 >o 
 
 ^ 
 
 
 
 to 
 
 1 
 
 i 
 
 eo 
 
 1 
 
 I 
 
 2 
 
 en en 
 
 
 o 
 
 o 
 
 
 w 
 
 Ol 
 
 CO 
 
 X 
 
 >o 
 
 CN O 00 
 04 CM -H 
 
 
 
 3 
 
 ol 
 
 CD 
 Ol 
 
 CO 
 Ol 
 
 01 
 
 cr 
 
 
 
 
 
 
 o o 
 
 o 
 
 o 
 o 
 
 1 
 
 
 CO 
 
 -H 
 
 01 
 
 S 
 
 t> 00 rH 
 
 > 10 eo 1-1 
 
 o en co o 
 
 Ol 
 
 10 
 
 04 
 
 ^ 
 
 
 
 
 
 o 
 
 CO 
 X 
 
 eo 
 c- 
 
 i 
 
 rH 
 
 
 
 eo 
 
 tr- 
 io 
 
 rH 
 
 
 
 <e c~ 
 
 =&=: 
 
 d 
 
 d 
 
 
 i 
 
 
 
 04 
 
 01 
 
 S22 
 
 
 CO 
 
 01 
 
 CO 
 
 X 
 Ol 
 
 10 
 
 04 
 
 Ol 
 Ol 
 
 
 01 
 
 X 
 
 
 
 
 
 
 o o 
 
 
 
 CD 
 
 CO 
 
 CO 
 
 
 CM 
 
 CN 
 
 S 
 
 N 
 
 IH 
 
 CO 00 rH 
 
 SSS2 
 
 SSS 51 
 
 g 
 
 CD 
 
 X 
 
 iO 
 
 CO 
 
 
 
 
 
 en 
 
 S 
 
 t- 
 
 m 
 
 11 
 
 CD 
 
 O 
 
 o 
 
 
 <M 
 
 co 
 
 Ol 
 
 c$ 
 
 w 
 
 2 2 
 
 ^ rt rH rH 
 
 000 CO 
 
 * 
 
 1O 
 01 
 
 i 
 
 o 
 
 01 
 
 GO 
 
 CD 
 
 
 H 
 
 1-1 
 
 rH 
 
 o 
 
 o o 
 
 %5 
 
 S 
 
 1 
 
 
 O3 
 
 00 
 
 
 
 o 
 co 
 
 $ 
 
 39iS 
 
 CO * S 
 
 CO 
 
 t> 
 
 Ol 
 
 10 
 
 
 
 
 
 co 
 
 S 
 
 
 
 eo 
 
 S 
 
 t- 
 
 S 
 
 N 
 
 
 
 eo 
 
 CO 
 
 si 
 
 ^ 
 
 d 
 
 d 
 
 
 * 
 
 Ol 
 
 Ol 
 
 
 
 I> IO * 
 
 1-4 ^ t-4 
 
 000 
 
 ol 
 
 Ol 
 0) 
 
 o 
 
 Ol 
 
 GO 
 
 CD 
 
 >0 
 
 rH 
 
 rH 
 
 rH 
 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 O 
 
 o 
 
 co 
 o 
 
 
 
 CO CM 
 CO CO 
 
 ssli 
 
 00 t^ tO O 
 
 CO 
 
 
 GO 
 
 cr 
 
 CO 
 
 10 
 
 CD 
 X 
 
 LO 
 
 i 
 
 t- 
 rH 
 
 1 
 
 i 
 
 1 
 
 eo c0 
 
 fc 
 
 d 
 
 d 
 
 
 00 
 CM 
 
 Ol 
 
 O4 
 
 X 
 
 
 
 000 03 
 
 "t 1 
 
 01 
 
 
 
 cr 
 
 1-H 
 
 10 
 
 "* 
 
 rH 
 
 rH 
 
 rH 
 
 
 
 
 
 
 
 
 
 00 
 CN 
 
 00 
 CM 
 
 
 CO 
 
 
 I 
 
 S 
 
 CO O CO 
 00 1> 
 
 ^ en co t^ 
 
 S8S co 
 
 ID 10 10 CO 
 
 10 
 
 X 
 
 01 
 
 04 
 
 01 
 
 
 
 CD 
 
 ol 
 
 CD 
 
 rH 
 
 g 
 
 en 
 
 S 
 
 CO 
 
 g 
 
 rIS 
 O 10 
 
 =*= 
 
 d 
 
 o 
 
 
 CN 
 
 1 
 
 5 
 
 10 
 
 * CM rH 
 
 r-i 
 
 000 -* 
 
 
 
 X 
 
 CD 
 
 ^ 
 
 CO 
 
 04 
 
 rH 
 
 
 
 o 
 
 o 
 
 o 
 
 
 
 % 
 
 o 
 
 S 
 
 
 00 
 CN 
 
 -t 
 
 O4 
 
 CD 
 
 
 
 
 rH 
 
 CD CD 
 
 i ill 
 
 S5S o 
 
 Ol 
 
 cr 
 
 :H 
 
 
 
 ^ 
 
 S 
 
 S 
 
 rH 
 
 
 
 
 
 co 
 
 S 
 
 1 
 
 3 
 
 SSI 
 
 >0 10 
 
 M\ 
 
 d 
 
 d 
 
 
 3 
 
 X 
 
 10 
 
 s 
 
 CN rH 
 
 rH 
 
 000 c^ 
 
 X 
 
 CD 
 
 Th 
 
 co 
 
 01 
 
 3 
 
 rH 
 
 o 
 
 
 
 
 
 o 
 
 d ol 
 
 
 
 i 
 
 CN 
 
 
 
 
 00 
 
 o 
 
 cr. 
 
 01 
 
 O3 00 03 
 
 iiBI 
 
 O CO ItN 
 
 ssp s 
 
 CD 
 
 CO 
 
 1^ 
 
 
 
 01 
 
 CO 
 
 1 
 
 rH 
 CO 
 
 rH 
 
 
 
 i 
 
 00 ]* 
 rH t- 
 10 kjl 
 
 t. 
 
 d 
 
 d 
 
 
 O3 
 
 '^ 
 
 -* 
 
 co 
 
 rH 03 
 
 o o o o 
 
 oo|o o 
 
 J 
 
 10 
 
 co- 
 
 Ol 
 
 ^ 
 
 
 
 
 
 o 
 
 
 
 o 
 
 o 
 
 d jo 
 
 
 
 o 
 
 o 
 
 CD 
 X 
 
 
 S 
 
 o 
 
 Ol 
 
 S 
 
 ^ co oo 
 
 03 04 
 
 sis! 
 
 i?3 : 2 
 
 Ol 
 
 X 
 X 
 
 '-5 
 
 g 
 
 
 
 
 
 
 ! 
 
 S 
 
 to 
 
 c- 
 o 
 
 5 
 
 M 
 
 eo 
 
 =*= 
 
 d 
 
 d 
 
 
 CO 
 
 rt 
 
 S 
 
 ^ 
 
 O3 03 GO 
 
 o o o o 
 
 I> 
 
 S 
 
 Ol 
 
 ^ 
 
 2 
 
 cr 
 
 
 
 
 o 
 
 o 
 
 
 
 
 
 
 
 %J 
 
 
 
 t~- 
 
 
 j: 
 
 
 
 
 
 
 X 
 
 X 
 
 rH t- 00 t- 
 
 SSS 3 
 
 : : : co 
 
 CO' 
 
 cr 
 
 t 
 
 O4 
 
 
 
 
 i 
 
 10 
 
 en 
 
 S 
 
 5 
 
 
 
 \ 
 
 d 
 
 d 
 
 
 S 
 
 01 
 
 ^ 
 
 cr 
 
 00 
 
 0000 
 
 . . . >O 
 
 co 
 
 ^ 
 
 O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 1 
 
 
 
 CN 
 
 X 
 
 \ 
 
 X 
 
 
 eo eo t~ en 
 
 ssss 
 
 : : : a 
 
 S 
 
 i 
 
 co 
 
 X 
 
 
 
 
 g 
 
 1 
 
 
 to 
 
 OJ 
 IO 
 
 
 
 
 o 
 
 d 
 
 
 rH 
 
 01 
 
 
 cr. 
 
 
 O O O O 
 
 : : : S 
 
 01 
 
 ^ 
 
 03 
 
 
 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 S 
 
 o 
 
 CO 
 00 
 Ol 
 
 d 
 
 03 
 O) 
 
 i 
 
 o 
 
 
 CO 
 CN 
 
 X 
 
 o 
 
 i 
 
 cr 
 
 
 
 S IS p : 
 
 d d jo 
 
 . . . CO 
 
 . . . 10 
 
 ' CN 
 
 : ~ 
 d 
 
 O4 
 
 cr 
 
 
 
 
 
 g 
 
 o 
 
 CO 
 
 
 
 Tj( 
 
 d 
 
 
 
 
 a 
 
 CN 
 
 O 
 
 I 
 
 d 
 
 
 2 
 
 CO 
 
 cr 
 
 00* 
 
 
 
 
 10 |C4 
 
 10 UK i ' 
 
 d |d 
 
 00 
 
 ! ; ; d 
 
 cr 
 
 
 
 
 
 
 t- 
 
 
 
 
 
 
 
 
 8: 
 
 O 
 O 
 10 
 
 d 
 
 o 
 
 
 CO 
 03 
 
 
 
 
 
 5 j j j 
 
 o 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S, 
 
 
 
 CN 
 
 d 
 
 CD 
 CD 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S 
 
 1 
 
 CN 
 
 d 
 
 c? 
 
 CO 
 
 o 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (inches). 
 
 -4 
 
 CM 'H.ir l , 
 M 
 
 S 
 
 Vjl 
 
 01 
 
 V* 
 
 CN CN CO 
 
 rH rH 04 C4 
 
 etc?* 5 
 
 - 
 
 Ol 
 
 f 
 
 01 
 
 N 
 
 V* 
 
 Ol" 
 
 ec 
 
 rH 
 
 H 
 
 N 
 
 - 
 N 
 
 -\ 
 
 w\ 
 N eo 
 
 Size of w 
 
 o 
 
 S 
 
 CO 
 
 .5*0 S 
 
 Q u 
 
 CM 
 
 
 
 
 
 . 
 
 
 
 
 
 
 
 
 OS 
 01 
 
 
 
 
 
 
 186 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 s 
 
 71 
 X 
 
 ^ 
 
 S 
 
 00 
 re 
 
 2 CO 
 
 <O 
 
 19 
 
 I 
 
 s 
 
 1 
 
 gS CON(N(N<NrO^H 
 gt tO OOiOO(N050 
 
 i 
 
 f 
 
 10 
 N 
 
 iH 
 
 co 
 
 iH 
 
 
 g 
 
 IO 
 
 re 
 
 re 
 
 15 S S 
 
 SIS 
 
 N w4 w en 
 
 o 
 
 
 
 O 
 CO 
 
 Vi 
 
 Tt* 
 
 71 
 
 C^ CM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 re 
 
 T 
 
 re 
 
 CM 00 CO CO TH 
 CO <NN(N <N 
 
 
 
 2 
 
 : 
 
 CO 
 
 71 
 gg 
 
 o 
 
 - 
 
 
 
 eg 
 
 8S 
 -^ O 
 
 to 
 
 tO 
 
 3 
 
 b 
 
 en 
 
 to 
 
 ^ CO CCOSt^^iN-HQO 
 
 en eo coio<NOi<NO,-4 
 
 8 
 
 iH 
 
 e- 
 
 TH 
 
 1 
 
 
 
 1 
 
 s 
 
 [j 
 
 a 
 
 SS3SS 
 
 IO CO iH 
 
 i-l iH iH 
 
 en eo co (0 
 
 S S 8 B 
 
 iH O O O 
 
 co 
 o 
 
 -,r 
 
 CO 
 
 . 
 
 
 
 oo o 
 
 00 CO 
 
 i 
 
 N 
 
 r-i 
 
 iH 
 
 1 
 
 i 
 
 TH 3 OOiiOt^OOCOO 
 
 eot oocooooo-*oc3s 
 
 s 
 
 si 
 
 1 
 
 s 
 
 i 
 
 
 
 1 
 
 s 
 
 re 
 
 CO O) Ol <N CM 
 
 tO CO O 00 O 
 t> tO CM TH 10 
 
 Ti< IO t- 
 
 i8 
 
 s 
 
 = 
 
 71 
 
 CO 
 71 
 
 
 7! 
 
 00 I- 
 
 -* 
 
 i-l 
 
 H 
 
 o 
 
 
 
 oo ioococoTHor* 
 
 CO CO CN s ! CN TH i { 
 
 
 
 
 
 
 
 
 re 
 
 eo 
 
 C<I 7^ C^ CM r-H 
 
 
 
 0000 
 
 i 
 
 s 
 
 S 
 
 
 s 
 
 CO O 
 05 
 
 si 
 
 
 
 1 
 
 s 
 
 1 
 
 So -r r- ti = X 
 c- _ , - _ re ' * 
 
 i 
 
 2 
 
 o 
 en 
 
 I 
 
 ? 
 
 = 
 
 t- 
 
 74 
 
 r. 
 
 CO CO -^ CO CM 
 
 CS TH C5 TH CO 
 
 SS 3 
 
 C4 o en 
 
 i.M.I 
 
 CO 
 
 ^ 
 
 re 
 
 71 
 
 O 
 71 
 
 X 
 
 CO 10 
 
 iH 
 
 - 1 
 
 iH 
 
 o 
 
 
 
 00 ^^cs^S^S 
 
 j 
 
 TH 
 
 
 
 o 
 
 
 
 
 
 
 
 s 
 
 X 
 
 71 
 
 * CM C5 CO O 
 CM CM i TH TH 
 
 
 
 IN 
 
 a 
 
 2 
 
 
 
 
 
 CO CO 
 
 i 
 
 S 
 
 g 
 
 <y> 
 
 i 
 
 to 
 
 t- 
 c- 
 
 O$ Or-ttt^t.0000 
 t"O THt|cOt-t>-OiO 
 
 s 
 
 i 
 
 1 
 
 s 
 
 iH 
 IO 
 
 e- 
 
 i 
 
 s 
 
 e 
 
 
 
 $STH 
 
 III 
 
 Ills 
 
 O 
 
 co 
 
 71 
 
 71 
 71 
 
 = 
 
 X 
 
 2 2 
 
 
 - 
 
 
 
 
 
 
 
 
 
 
 o 
 
 
 
 
 
 
 
 71 
 re 
 
 71 
 
 CM CM TH ^H TH 
 
 ^ TH 
 
 0000 
 
 
 
 
 ?- 
 
 X 
 
 71 
 
 
 
 
 
 s 
 
 iH 
 
 co 
 
 K 
 
 s 
 
 S< l^-*lOOOTj<(NCO 
 IO OCOOCOOCNO 
 
 2 
 
 1 
 
 1 
 
 1 
 
 i 
 
 1 
 
 i 
 
 re 
 
 S 
 
 N O TH CO *< 
 
 sis 
 
 SSSSI 
 
 (0 10 10 
 
 o 
 
 - 
 
 X 
 
 - 
 
 10 
 
 CO CM 
 
 - 1 
 
 
 
 
 
 o 
 
 o 
 
 OO CO <N O t O Tj( "CO 
 
 
 
 o 
 
 o 
 
 o 
 
 
 
 o 
 
 o 
 
 I 
 
 CO 
 71 
 
 ^ TH 2 ^ 2 
 
 tHJO 
 
 o' o o oj 
 
 00 
 
 3 
 
 
 
 
 
 71 
 
 
 
 t- CO 
 
 T* Tj< 
 
 1 
 
 1 
 
 c- 
 
 to 
 
 1 
 
 Sen 10 t> TJ< o o> o 01 
 ^1 CO(Nt^t^T-iO500 
 
 1 
 
 s 
 
 o 
 
 H 
 
 
 1 
 
 CO 
 
 iH 
 
 to 
 
 10 
 
 c- 
 
 s 
 
 
 
 r. 
 
 "0 C5 O5 CO IcM 
 CM CO CO CM 
 
 iH O TH 
 
 gss 
 
 sill 
 
 IN 
 
 r-. 
 
 t- 
 
 
 
 re 
 
 <N i-< 
 
 
 
 O 
 
 
 
 
 
 
 
 OO COOl^iO-*(N^H 
 
 o 
 
 o 
 
 9 
 
 
 
 
 
 
 
 
 
 
 71 
 
 X 'co T co ICM 
 
 000 
 
 o o o o 
 
 S 
 
 C: 
 re 
 
 
 
 S 
 
 X 
 
 S3 
 
 
 
 e 
 
 s 
 
 C> 
 
 s 
 
 05 OC5o2<NOO 
 
 3 
 
 s 
 
 s 
 
 s 
 
 
 
 I 
 
 i 
 
 
 X 
 
 o 
 
 :r. 
 
 TH CM CC !* 1 
 
 t> tO CO ICM 
 
 sll 
 
 o o o 
 
 o en 
 
 t- iH tO 
 
 10 10 Ti< 
 
 o o o 
 
 <N 
 
 
 re 
 
 jj 
 
 X 
 
 t 
 
 1 
 
 s 
 
 5 
 
 o 
 
 10 
 
 i 
 
 t- 
 
 T^ O 00 O 00 0$ ^ 
 
 s 
 
 eo 
 to 
 
 s 
 
 s 
 
 
 
 i 
 
 
 
 g 
 
 re 
 
 S^ : : 
 
 S32 
 
 53 : ' 
 
 t- 
 
 .- 
 
 re 
 
 -H 
 
 g 
 
 
 
 
 
 o 
 
 
 
 o 
 
 o 
 
 O 00 IO CO d -H 
 
 
 
 
 
 
 
 o 
 
 o 
 
 
 
 o 
 
 s 
 
 Tt* d TH 
 
 o o o 
 
 
 
 t>. 
 
 00 
 
 
 
 
 en 
 
 X 
 
 
 
 s 
 
 I 
 
 10 
 
 IO 
 
 
 ^ ^1 CO 05 
 
 o 
 
 10 
 
 IO 
 
 
 
 
 
 <D 
 Ok 
 
 
 CM : : : : 
 
 SIS 
 
 
 10' 
 
 i-H 
 
 re 
 
 
 o 
 
 
 
 
 
 
 
 
 
 o 
 
 
 : : 2 2 2 h : : : 
 
 
 
 
 
 o 
 
 
 
 
 
 2 
 
 s 
 
 2 : : : : 
 
 o o o 
 
 
 6 
 
 8 
 
 90 
 
 L-: 
 
 -r 
 
 X 
 
 
 ; 
 
 tO 
 
 o 
 
 i 
 
 o 
 
 1 
 
 
 
 
 
 * t>. O 00 
 
 IO CO TH 
 
 1 
 
 o 
 
 I 
 
 
 
 5 
 
 
 
 
 
 
 
 a 
 
 s 
 
 re 
 
 CM .... 
 
 10 r- rH 
 
 3 g % 
 
 o' o o' 
 
 
 
 
 
 g 
 
 : 
 
 
 
 1 
 
 ; 
 
 
 
 
 . . CO * 
 
 - Tf 10 
 
 iH 
 
 
 
 
 
 
 
 
 o 
 
 ^ 
 
 
 if : 
 
 
 eo 
 
 
 
 ~ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 IO 
 
 
 
 
 
 
 
 
 
 
 1-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 * 
 
 
 
 
 
 
 
 - 
 
 
 
 3 
 
 
 J5 
 
 
 
 
 
 
 
 
 
 
 
 
 : : :::::: 
 
 o 
 
 
 
 
 
 
 
 a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -i. 
 
 i - 
 r; 
 
 
 - 
 
 y 
 
 X* 
 
 oj\ 
 
 y. 
 
 s 
 
 
 
 
 -. 
 
 x 
 
 a *a ss 
 
 >t 
 
 c-' 
 
 
 - 
 \ 
 
 X 
 
 Vf 
 
 
 v 
 
 r . 
 
 S^C,,. 
 
 -M V* 
 
 ^ I-K 0^. 
 
 
 
 
 
 
 
 
 
 
 
 
 - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 re 
 
 
 
 
 
 
 CO 
 
 1 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 187 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE 
 LIGHT TYPE 
 
 GIVES PERCENTAGES 
 GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 % 
 
 
 
 a. 
 
 
 3 
 
 CO 
 
 i! 
 
 55 
 
 o 
 
 ^? 
 
 O) 
 
 g 
 
 o 
 
 CO 
 
 co 
 
 s 
 
 co 
 m 
 
 
 
 I 
 
 to <4< 
 
 t- <M TJ( CM CM 
 
 O 
 
 1 
 
 CO 
 
 in 
 
 
 
 in 
 
 ss 
 
 TH\ 
 
 o 
 
 d 
 
 
 3 
 
 :0 
 
 CO 
 
 CO 
 
 Ci 
 O! 
 
 ir 
 
 Ol 
 
 01 
 Ol 
 
 
 
 
 
 
 %% 
 
 CO CO CM CM CM 
 
 
 
 
 
 o 
 
 o o 
 
 o 
 
 
 
 o 
 
 C5 
 
 co 
 
 X 
 
 X 
 
 
 1C 
 
 o 
 
 
 
 8 
 
 C 
 
 t- 
 
 CO 
 
 s. 
 
 X 
 
 CO 
 U3 
 
 T}i 
 
 (O 
 
 3 
 
 rH 
 
 in 
 
 
 
 in 
 
 rH 
 
 en 
 
 S^ S CO 
 1". TfH O 
 
 T* (N 
 
 CO CO CD CM CM 
 
 5 
 
 I 
 
 S 
 
 1 
 
 c- 
 00 
 CO 
 
 f- en 
 
 =*= 
 
 o 
 
 o 
 
 
 co 
 
 z 
 
 Ol 
 
 CO 
 
 oo 
 
 2L 
 
 iO 
 Ol 
 
 co 
 
 Ol 
 
 H 
 
 rH 
 
 rH 
 
 TH 
 
 o 
 
 O O * CO 
 
 ^co 
 
 CO CM CM ?S CM 
 
 rH 
 
 rH 
 
 rH 
 
 O 
 
 o 
 
 o o 
 
 o 
 
 1C 
 
 CO 
 
 1 
 
 
 2 
 
 CO 
 
 8 
 
 to 
 
 
 
 CO 
 
 X 
 
 
 
 i 
 
 
 
 TJi 
 
 
 
 1 
 
 rH 
 
 00 
 
 OT ,> X 
 
 e- to co t> 
 
 sfesss 
 
 CN 
 rH 
 CO 
 
 in 
 
 tN 
 
 rH 
 
 1 
 
 00 
 
 c- 
 
 38 
 
 t- to 
 
 ** 
 
 d 
 
 d 
 
 
 3 
 
 Ol 
 CO 
 
 2JL 
 
 iO 
 01 
 
 o! 
 
 
 01 
 
 
 
 
 
 
 
 
 co co 
 
 o^ |o co ^-i o 
 
 C^J lo* (N (N i-H 
 
 rH 
 
 rH 
 
 
 
 
 
 
 
 
 
 fe o 
 
 10 
 CO 
 
 co 
 o 
 
 10 
 
 
 CO 
 
 c 
 
 Tf 
 
 CO 
 
 X 
 
 S 
 
 l 
 
 rH 
 
 
 
 rH 
 
 cn 
 
 
 rH 
 00 
 
 a 
 
 CO t- 
 
 to o x co 
 to to co co 
 
 ^g^og 
 
 
 
 
 
 
 i 
 
 i 
 
 t- 
 
 11 
 
 
 
 d 
 
 d 
 
 
 55 
 
 oi 
 
 
 
 01 
 Ol 
 
 o 
 
 01 
 
 X 
 
 
 
 TH 
 
 rH 
 
 O 
 
 o 
 
 o 
 
 O Q 1C O 
 
 co co 
 
 CO CO' rH O5 t>J 
 CM CM IM rH rH 
 
 rH 
 
 rH 
 
 o 
 
 o 
 
 o 
 
 
 
 o 
 
 CO 
 
 i 
 
 
 CM 
 
 OS 
 
 co 
 
 a 
 
 
 CO 
 
 01 
 
 s 
 
 1 
 
 s 
 
 eo 
 
 i 
 
 3S KOO 
 
 tO 10 CM CO 
 
 rH 1C CO O Tf( 
 t> X 1C t- rH 
 
 5 
 
 cn 
 
 CO 
 
 in 
 
 00 
 
 s 
 
 1 
 
 s s 
 
 =*= 
 
 * 
 d 
 
 o 
 
 
 co 
 
 co 
 
 CC 
 01 
 
 -H 
 
 Ol 
 Ol 
 
 2 
 
 X 
 
 to 
 
 rH 
 
 rH 
 
 o 
 
 o 
 
 
 
 00 3% 
 
 1C CM O X |> 
 
 CM CM (M rH rH 
 
 TH 
 
 
 
 
 
 
 
 
 
 o o 
 
 
 
 X 
 CM 
 
 g 
 
 00 
 CM 
 
 
 
 X 
 
 $ 
 
 X 
 
 2 
 
 X 
 CO 
 
 rH 
 
 o 
 cr. 
 
 s 
 
 oo 
 
 t- 
 
 1 
 
 s 
 
 te ^x 
 
 in ki co ic 
 
 rH Tt< LH 
 10 rH <N CO CO 
 
 in 
 
 S 
 
 to 
 
 t- 
 
 1 
 
 g 
 
 g^ 
 
 
 
 d 
 
 
 2L 
 
 CO 
 
 Ol 
 
 o 
 
 01 
 
 X 
 
 CO 
 
 12 
 
 CO 
 
 
 
 
 
 
 
 
 
 
 
 P CM CM 
 
 N 2 ^ 2 E 
 
 
 
 
 
 
 o|o 
 
 S: 
 
 o 
 
 1C 
 
 1C 
 
 o 
 
 
 CXI 
 CM 
 
 a 
 
 5 
 
 X 
 
 co 
 
 g 
 
 to 
 
 co 
 
 s 
 
 o 
 
 to 
 
 CO 
 
 in 
 
 S 
 
 CO 
 
 3 SS 
 
 O CO CO rH ! 
 
 t- 
 
 CO 
 
 oo 
 
 s 
 
 1 
 
 g 
 
 1 
 
 f 
 
 \ 
 
 d 
 
 d 
 
 
 CM 
 
 ol 
 
 X 
 
 s 
 
 
 
 CO 
 
 Ol 
 
 
 
 
 
 
 
 o 
 
 o 
 
 S CM 
 
 O t>. 10 * . 
 
 O 
 
 o 
 
 o 
 
 o 
 
 o 
 
 o 
 
 O 
 
 1C 
 
 i 
 
 
 CO 
 1C 
 
 
 
 t> 
 
 o 
 
 co 
 
 5 
 
 
 i 
 
 in 
 
 8 
 
 i 
 
 
 
 m 
 
 n os CM 
 
 ^< CM X 
 
 C^ C5 X 1C 
 
 CM rH 10 CM 
 
 
 
 rH 
 
 co 
 
 1 
 
 c- 
 
 s 
 
 en 
 
 CO 
 
 in 
 
 
 
 
 
 
 o 
 
 d 
 
 
 CO 
 CM 
 
 
 Ol 
 
 t~ 
 
 1 1 
 
 10 
 
 2 
 
 01 
 
 
 o 
 
 o 
 
 O 
 
 o 
 
 o 
 
 O TtH 
 
 CM CM 
 
 X CO TJ< CO 
 
 
 
 
 
 
 
 
 
 
 
 
 O 
 Ol 
 
 
 
 co 
 
 o 
 
 
 CO 
 
 co 
 
 co 
 
 X 
 
 01 
 
 
 
 X 
 
 
 
 s 
 
 s 
 
 i 
 
 3 
 
 c- 
 
 rH 
 
 Tj* 1C 
 
 CM CO 
 
 X O 1C i 
 
 in 
 
 c- 
 
 in 
 
 CO 
 
 TH 
 
 
 
 
 d 
 
 d 
 
 
 
 
 to 
 
 -f 
 
 CO 
 
 s 
 
 
 
 o 
 
 o 
 
 
 
 
 
 
 
 t^ 
 
 CM rH 
 
 1C CO CM 
 
 o 
 
 o 
 
 o 
 
 
 
 ; 
 
 
 % <o 
 
 3 
 
 
 
 
 1C 
 
 
 
 CO 
 
 
 
 
 
 
 
 s 
 
 n 
 
 s 
 
 
 
 CO X 
 
 Tj< 
 
 o ; ! i ; 
 
 1 
 
 (O 
 
 in 
 
 rH 
 
 n 
 
 
 
 
 \ 
 
 d 
 
 d 
 
 
 5 
 
 
 
 CO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X LO 
 
 co .... 
 
 o 
 
 o 
 
 o 
 
 
 
 
 o 
 
 1C 
 
 co 
 d 
 
 X 
 
 1 
 
 o 
 
 
 X 
 
 CO* 
 
 -* 
 
 co 
 to 
 
 01 
 
 
 
 
 
 CO 
 
 o 
 
 rH 
 
 in 
 
 
 
 
 
 
 
 t^ o 
 
 co x 
 
 S : : : : 
 
 CO '. ' ' 
 
 in 
 
 
 
 1 
 
 
 
 
 
 
 
 51 
 
 
 
 d 
 
 1 
 
 d 
 
 
 I 
 
 2 
 
 
 
 
 
 
 1 
 
 
 
 3 
 
 
 
 
 
 
 ; r- Z) 
 
 X ' 
 
 
 CO 
 
 en 
 
 Tj< 
 
 d 
 
 
 
 
 
 
 CM 
 
 1C 
 
 1 
 
 o 
 
 1C 
 
 
 
 o 
 
 
 o 
 
 CO 
 
 
 
 
 
 
 
 F- 
 
 3 
 
 
 
 
 
 
 
 CM 
 
 
 
 
 
 
 
 
 V* 
 
 .H\ 
 
 o 
 o 
 
 10 
 CM 
 
 o 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 CM 
 
 d 
 
 co 
 
 CO 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a 
 
 CM 
 CM 
 
 d 
 
 co 
 o 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (inches). 
 
 d 
 
 Mi 
 
 VN 
 
 \ 
 
 0) 
 
 Hi 
 
 Ol" 
 
 ' -M 
 i-N. 
 
 V* 
 
 CM 
 
 CO 
 
 - 
 
 V* 
 
 " 
 
 cV 
 
 eV 
 
 N CO rH rH 
 
 \HI \IN \^l 
 iH\ r^\ \ 
 
 CM CM (N CM CO 
 
 -\ 
 
 rH 
 
 rH 
 
 C3 
 
 N 
 
 - 
 
 o\ 
 N CO 
 
 [Size of w 
 
 .2 
 Q 
 
 i 
 
 .5*0 c 
 Q c ^ 
 
 '_ 
 
 
 
 
 
 
 
 \ 
 
 
 
 
 
 
 
 -f 
 
 CO 
 
 
 
 
 
 
 188 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 2 
 
 M 
 
 
 
 e 
 i- 
 
 30 00 
 C OS 
 
 3 
 
 sis 
 
 o en f- en 
 
 ssss s 
 
 2 
 
 5 
 
 32S 
 
 1 
 
 
 1 
 
 D 
 
 e 
 
 M. 
 
 s 
 
 S 
 
 gb 
 
 71 
 
 ^2 
 
 10 Tj( IH 
 
 9 oo t- e- 
 
 $ 
 
 d 
 
 
 
 i- 
 
 ~ 
 
 00 1C 
 CN CN 
 
 g 
 
 i-i -H TH 
 
 o o o o o 
 
 3 
 
 71 
 
 IN CN CN 
 
 iH 
 
 iH 
 
 i-l 
 
 
 
 o 
 
 
 
 o 
 
 '- 
 
 2 
 
 ' ? 
 
 i O 
 
 CN CN 
 
 - 
 
 0000 
 
 
 71 
 
 
 
 
 T}- C2 
 
 [5 
 
 t- iH CO 
 
 sag 
 
 MM g 
 
 CO CN 
 
 S 
 
 1C 00 Tjf 
 (N CO 1C 
 
 s 
 
 S 
 
 3 
 
 1-1 
 
 3 
 
 H 
 
 g 
 
 H 
 
 71 C 
 
 i 
 
 CV52 
 
 S S S 
 
 SS5IS 
 
 1C 
 
 g 
 
 I 
 
 
 
 77 
 
 IN S 
 
 71 
 
 iH i-l iH 
 
 O O O O i- 
 
 $ 
 
 77 
 
 00 >C CO 
 IN CN (N 
 
 i-i 
 
 TH 
 
 H 
 
 
 
 O 
 
 
 
 9 
 
 
 
 sfe 
 
 a 
 
 CO * 
 CN CN 
 
 i-l i-l iH 
 
 b b b b 
 
 00 
 1C 
 
 X 
 
 M 
 
 S 
 
 >*< Tf 
 
 g 
 
 N S 
 
 Isfl R 
 
 S3 
 
 s 
 
 SS 
 
 N 
 
 1 
 
 I 
 
 1 
 
 H 
 
 ii 
 
 - 
 
 g 
 
 ~ C 
 
 1 M 
 
 CO 
 
 in 
 
 ssss 
 
 DO t- tO tO 
 
 
 
 1< 
 
 * 
 
 
 
 77 
 
 71 
 
 * CN 
 CN CN 
 
 O 
 71 
 
 
 
 coJeo 
 
 
 IN CN CN 
 
 
 
 
 
 
 
 71 
 
 g 
 
 71 -J 
 
 i CO 
 
 71 
 
 CO i-l 
 CN CN 
 
 iH i-l 
 
 0000 
 
 5 
 
 71 
 
 g 
 
 S 
 
 00 
 
 00 OO 
 
 CO 
 
 71 
 
 Sll 
 
 glli s 
 
 o * 
 
 
 
 N t^ CO 
 
 CN 
 
 rH 
 i-i 
 
 1 
 
 1 
 
 s 
 
 1 
 
 ii 
 
 Ok 
 
 s 
 
 c y 
 
 - - 
 
 71 
 
 1 iH 
 
 <* 00 
 (N 
 
 I'M 
 
 N O iH M 
 
 N 10 en * 
 c- to to 10 
 
 eo 
 
 g 
 
 7! 
 
 71 
 
 CN <-< 
 
 X 
 
 
 
 s?s 
 
 VI 
 
 N S 2 
 
 i-l 
 
 
 
 
 
 o 
 
 
 
 
 
 i 
 
 71 
 
 -7 
 
 71 7 
 
 re 
 
 71 
 
 2 
 
 iH 
 
 oooo 
 
 CO 
 
 7~1 
 
 5 
 
 S 
 
 2 
 
 CO 
 
 CO 
 
 511 
 
 gin s 
 
 -H CN 
 
 CO 
 CN 
 
 i-l CO 00 
 
 X 00 i-l 
 
 i 
 
 i 
 
 1 
 
 
 
 i 
 
 ii 
 
 77 
 
 S 
 
 o / 
 ~ J 
 
 S 
 
 l^ 1C 
 
 CO CC 
 
 en en t- 
 Sen co 
 CO t> 
 
 ills 
 
 c^ 
 
 O 
 
 CO 
 
 71 
 
 77 
 
 71 
 
 S2 
 
 [N. 
 
 i-l O O 
 
 oooo o 
 
 eo c5 
 
 - 
 
 i-i O> 00 
 
 H 
 
 
 
 
 
 
 
 
 
 
 
 b 
 
 q 
 
 x - 
 
 71 7 
 
 71 
 71 
 
 00 
 (N i 
 
 T-l 
 
 oooo 
 
 s 
 
 77 
 
 2 
 
 
 
 N ^ 
 
 N 
 
 85$ 
 
 a t- o 
 
 SSSfe 
 5 S SB n 
 
 t* 
 
 00 
 
 C^ 
 
 ggjg 
 
 1 
 
 n 
 
 5 
 
 I 
 
 in 
 
 55 
 
 
 
 - 
 
 C C 
 
 - v 
 
 S 
 
 CO 
 
 CO N 00 
 t- 10 10 
 CO t- * 
 
 10 <o en en 
 
 SS53 
 
 
 
 '7! 
 
 :< 
 
 ~ 
 
 t- co 
 
 2 
 
 000 
 
 ooojb o 
 
 CO CN 
 C^I C^l 
 
 
 71 
 
 00. CO RC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 00 
 
 
 
 CO C 
 
 71 7 
 
 : X 
 
 12 
 
 000 
 
 oooo 
 
 o 
 oc 
 
 OS 
 
 o 
 
 ss 
 
 S3 
 
 i 
 
 sss 
 
 ill 
 
 Tj< C5 
 
 
 
 
 
 1C 
 
 
 
 eo 
 
 1 
 
 
 
 s 
 
 5 
 
 
 CO 
 
 c 
 
 77 
 
 '- C 
 
 71 r 
 
 :5 
 
 
 t- eo oo 
 en oo en 
 
 35 ; ; 
 
 
 
 S 
 
 o 
 
 71 
 
 I: 
 
 cc tft 
 
 " 
 
 000 
 
 000 > 
 
 CO 
 CN CN 
 
 X 
 
 CO iC 
 
 
 
 
 
 
 
 
 
 
 
 
 00 
 
 71 
 
 71 
 
 y 
 
 71 - 
 
 t- 
 
 
 000 
 
 o o 
 
 
 
 CO 
 
 
 
 r- 
 
 8 
 
 2 : 
 
 
 (- * O 
 
 S5S 
 
 IS ': fc 
 
 00 IN 
 
 CO 
 
 i 
 
 CO 
 
 s 
 
 
 
 3 
 
 
 
 2 
 
 1 
 
 " 
 
 5; 
 
 = 
 
 Tt* 1^ 
 
 X U 
 
 s 
 
 
 III 
 
 . . . 
 
 s 
 
 CN 
 
 X 
 
 cc 
 
 c 
 
 
 000 
 
 00 : S 
 
 CN O 
 CN -H 
 
 r- 
 
 2 
 
 
 
 
 
 
 
 
 
 O 
 
 
 ~ 
 
 7) 
 71 
 
 r. ^ 
 
 - 
 
 
 
 000 
 
 o 
 
 co 
 
 00 
 
 00 
 X 
 
 3 
 
 
 
 
 ssg 
 
 <0 10 * 
 
 S ; : 5 
 
 
 
 re 
 
 
 t 
 
 IS 
 IS 
 
 co 
 
 1< 
 
 i 
 
 
 
 to 
 c 
 
 S 
 
 4* * 
 
 - t- 
 
 1 . 
 
 
 isi 
 
 
 o 
 
 IN 
 
 t- 
 
 2 
 
 2 
 
 
 
 000 
 
 : : S 
 
 00 CO 
 
 - 
 
 
 
 
 
 
 o 
 
 
 
 
 
 71 
 71 
 
 y. 
 
 - - 
 
 t . 
 
 
 
 
 000 
 
 
 
 
 _ 
 
 
 
 
 CO * 
 
 . . . 
 
 
 
 
 
 t- 
 
 
 
 
 
 
 
 
 
 
 s s 
 
 
 CO 
 
 c. 
 
 - 
 
 
 
 
 223 
 
 . . . .-i 
 
 ^ CO 
 
 . 
 
 
 
 ^ 
 
 
 
 
 
 C 
 
 
 
 
 
 S 5 : 
 
 
 00 
 
 1-1 
 
 It 
 
 77 
 
 
 
 
 o o [o 
 
 : : : 2 
 
 cc ** 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 a 
 
 
 
 
 
 
 
 o 
 
 - 
 
 * 
 
 
 
 
 11 : 
 
 . ' CO 
 
 ' 
 30 
 
 
 
 s 
 
 1 
 
 
 
 
 
 PC 
 
 - 
 
 
 
 
 
 
 ii ; 
 
 
 5: 
 
 o 
 
 
 
 
 
 
 
 - - - 00 
 
 . . . . ,-t 
 
 iC 
 
 
 
 
 
 o 
 
 
 
 
 
 X 
 
 E 
 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 g : : 
 
 o 
 
 
 
 
 s 
 
 
 
 
 
 
 00 
 
 
 
 
 
 s 
 
 
 1C 
 
 
 
 
 
 
 o 
 
 . . . - 1C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ** 
 
 
 
 
 b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 r.l 
 
 
 
 
 
 
 3\ e$s 
 
 : x 
 
 J5* 
 
 s; 
 
 vff \- 
 
 X 
 
 :' 
 
 
 - 
 - 
 
 - 
 
 V* 
 
 o\ 
 
 -' 
 
 !*k < 
 
 - 
 
 3 
 
 - - rj 
 
 - 
 
 * 
 
 x* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1C 
 
 CO 
 
 
 
 
 
 eo 
 
 
 
 
 
 
 
 
 
 
 
 . 
 
 
 s 
 
 22 
 
 189 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE 
 LIGHT TYPE 
 
 GIVES PERCENTAGES 
 GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 % 
 
 o 
 
 
 
 o 
 
 O3 
 
 
 ^ CO 00 
 
 CO t^ CM 
 
 iO TH CN 03 
 
 S 
 
 TH 
 
 CO 
 
 TH 
 
 eo 
 eo 
 
 O 
 
 si 
 
 S 1 ^ 2 
 
 CO 05 TH T* CN 
 O3 <*< O3 O CO 
 
 i 
 
 10 
 
 TH 
 
 i 
 
 1 
 
 IBS 
 
 i-K 
 
 d 
 
 d 
 
 
 S 3 co 
 
 tl i-H 00 lO 
 CO CO CM CN 
 
 TH 
 
 TH 
 
 TH 
 
 o o 
 
 O O CO if 
 
 O3 lO rH O5 CO 
 CO CO CO CM CN 
 
 TH 
 
 ^ 
 
 TH 
 
 
 
 000 
 
 o 
 
 
 
 o 
 
 0: 
 
 1 
 
 
 00 CO CO 
 t^ CO CO 
 
 O3 t^ IO O3 
 
 rH OO TH 00 
 
 eo 
 
 TH 
 
 eo 
 en 
 en 
 
 is 
 
 SS CMC, 
 
 t- tO rH OC 
 
 ^ 00 b- O3 CO 
 CO O CO 00 IO 
 
 S 
 
 I 
 
 i 
 
 CO 
 
 co eo TH 
 
 SS3 
 
 =*, 
 
 d 
 
 d 
 
 
 05 CN b- 
 
 * * co_ 
 
 iO CN CN CN 
 
 TH 
 
 iH 
 
 O 
 
 
 
 00 S3 
 
 00 >*< O N. IO 
 CO CO CO CM CM 
 
 TH 
 
 ^ 
 
 
 
 o 
 
 000 
 
 o 
 
 10 
 
 CO 
 
 CO 
 
 
 
 
 CO lO CN 
 
 rH 00 i-H 
 
 rt< 05 05 00 
 
 ^ Tt^ O O 
 
 S 
 
 O 
 
 
 
 00 
 
 il 
 
 si %$ 
 
 O CM CN b- CO 
 
 TH 
 
 i 
 
 i 
 
 S 
 
 sis 
 
 "*= 
 
 d 
 
 d 
 
 
 Tt* co co 
 
 03 CO M< CN 
 CN CN CN CN 
 
 TH 
 
 ^ 
 
 
 
 
 
 00 3g 
 
 co co CN CM CM 
 
 TH 
 
 
 
 
 
 
 
 o o o 
 
 
 10 
 
 CO 
 
 
 
 
 
 * 
 
 TH 
 
 S S 
 
 { 2 -, M 
 
 
 00 
 
 TH 
 
 TH 
 
 to 
 
 t- TH TH 
 
 
 
 co 
 
 10 
 
 
 co o i> 
 
 TJ< CO CO 00 
 
 
 
 
 
 en 
 
 S 
 
 ? S 
 
 K S r- r 
 
 10 rH T* CM CO 
 
 O 
 
 CO 
 
 t- 
 
 S 
 
 (O IO 10 
 
 f\ 
 
 d 
 
 d 
 
 
 CO CO CN 
 
 co co TH 05 
 
 TH 
 
 O 
 
 
 
 
 
 O O o * 
 
 t^ T}< CN 
 CO CM CM CN CM" 
 
 TH 
 
 O 
 
 
 
 
 
 d d d 
 
 
 
 
 
 co 
 
 CO 
 10 
 
 
 3 S 00 
 
 N CO CO i-H 
 CO 05 CN 
 
 i 
 
 io 
 
 s 
 
 is 
 
 IS ss 
 
 O i-H 00 CO CO 
 
 I 
 
 eo 
 
 S 
 
 S 
 
 i 
 
 life 
 
 -*= 
 
 d 
 
 d 
 
 
 CO CO CN 
 
 CM CN <M ^H 
 
 ^ 
 
 O 
 
 o 
 
 
 
 d d 05 co 
 
 CM CM CM CM 2 
 
 
 
 
 
 
 O 
 
 00 
 
 CO 
 03 
 
 00 
 
 1-1 
 
 CN 
 
 
 IO CO i-H 
 
 CO 05 CO f^ 
 T)H CM >O O 
 
 i 
 
 CM 
 
 eo 
 t- 
 
 
 
 is 
 
 55 C.O 
 
 * Tf O CC 
 
 CO rH 1-H rH 1-H 
 
 1> 00 10 
 
 i 
 
 eo 
 
 TH 
 
 t- 
 
 2 
 
 i 
 
 II ; 
 
 =*5 
 
 d 
 
 d 
 
 
 (N b- TH 
 
 CO CN CN 
 
 rH 05 l> CO 
 
 CM ,-H rH rH 
 
 o 
 
 
 
 
 
 
 
 O O CO OC 
 
 CO O 
 
 " CM 05 00 CO 
 
 o 
 
 o 
 
 o 
 
 
 
 
 
 * 
 
 
 iO 
 
 10 
 
 o 
 
 
 b- 00 
 
 rH 00 
 
 ?b ': : 
 
 (0 
 
 10 
 
 (O 
 
 to 
 
 i 
 
 Sfe 
 
 ' '. CO t^ 
 . . O5 CC 
 
 CO l> t^ ' ' 
 
 S 
 
 oo 
 
 i 
 
 g 
 
 i ; : 
 
 CSS 
 
 d 
 
 d 
 
 
 03 IO TH 
 
 CN CN CN 
 
 OS t^ 
 
 
 
 
 
 o 
 
 d |o 
 
 O5 IO 
 CN CM 
 
 CM O3 t- 
 
 CN rH rH . . 
 
 
 
 
 
 0- 
 
 o 
 
 o 
 
 
 
 
 CN 
 
 CO 
 
 i 
 
 
 CO IO CO 
 CN CO Tj< 
 
 S : : : 
 
 2 
 
 i 
 
 S 
 
 3 : 
 
 : : S? 
 
 gb : ' : 
 
 1 
 
 IA 
 
 cn 
 
 S 
 
 TH 
 
 
 ft, 
 
 d 
 
 d 
 
 
 CM <N CMj 
 
 
 o 
 
 o 
 
 o 
 
 o 
 
 : : CN w 
 
 _b : : : 
 
 
 
 
 
 o 
 
 o 
 
 
 o 
 
 o 
 co 
 
 CO 
 
 d 
 
 1 
 d 
 
 
 CO CN 
 
 b, TJH 
 
 CN O3 t>i 
 
 
 d 
 
 in 
 o 
 
 S 
 
 o 
 
 
 ' ' rH 00 
 CO 03 
 
 '. '. CN n 
 
 
 o 
 
 S 
 
 o 
 
 TH 
 
 d 
 
 
 
 *<> 
 
 10 
 CM 
 
 
 
 
 tf iO 
 CN CO 
 
 
 i 
 
 S 
 
 
 
 i i O5 CN 
 1> 00 
 
 ::"::: 
 
 1 
 
 3 
 
 
 
 
 \ 
 
 d 
 
 d 
 
 
 t- 
 
 
 
 
 
 
 
 
 . . t> 
 
 CN rH 
 
 
 
 
 
 
 
 
 
 o 
 
 1 
 
 00 
 
 CO 
 
 
 00 
 
 
 00 
 
 5 
 
 
 
 ' ' O r^ 
 
 
 I 
 
 i 
 
 I 
 
 
 
 
 d 
 
 d 
 
 
 03 CO 
 
 
 o 
 
 
 
 
 
 t^ 
 
 C3_rH 
 
 
 
 
 
 
 
 
 
 i 
 
 
 
 co 
 d 
 
 1 
 
 d 
 
 
 : : 
 
 
 TH 
 
 
 
 
 
 
 
 
 0* 
 
 
 
 
 
 
 10 
 
 _i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CN 
 
 =*= 
 
 CO 
 
 CM 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 o 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 lH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i-N 
 
 CM 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CO 
 
 co 
 
 co 
 co 
 
 S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 d 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 co 
 
 O3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =*a 
 
 CM 
 CN 
 
 d 
 
 co 
 o 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0) 
 
 (inches). 
 
 4 
 
 Hi 
 
 \N \* 
 
 rt\ eo\ 
 
 H\ lJ\ C0\ 
 
 N (N <N CO 
 
 
 
 
 " 
 
 25 
 
 \T(( \N \^ 
 0\ rH\ C0\ 
 M CO T-H I-H 
 
 rK in\ ^\ 
 CM CN CM CN CO 
 
 X 
 
 TH 
 
 5 
 
 
 S 
 
 rK \ 
 
 M CO 
 
 QJ 
 
 02 
 
 Diameter 
 
 cr 
 
 s 
 
 .S'o o o 
 Q c 
 
 co 
 
 
 00 
 CO 
 
 
 
 
 
 
 S5 
 
 
 
 
 
 190 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 S 
 
 CO OO CO X O (N 
 00 OS ^ I s * 00 CO 
 
 
 CO 
 
 S 
 
 i 
 
 t> oo 04 10 -r re re ^r re t~ ~i 
 
 CO C- C- OOOCOCOiCO 
 
 5 
 
 8 
 
 J> N t- 0> 1 
 JCOt>So ^WOMTt<COI> 
 
 2iBS2i3 
 
 *o 
 
 CC O CO CM OS l> 
 * -tfjeo CO IN <N 
 
 1-1 
 
 ^ 
 
 o 
 
 OOOO COOO<Nt>.COOOO 
 1C TJH <!< eO CO CO (N 
 
 iH 
 
 T-l 
 
 OOOOO t^ ~ re X X 
 
 iH iH O O O O O 
 
 S 
 
 t"* iC 00 00 OJ CO 
 
 OS CO OS * CO CM 
 
 g 
 
 i 
 
 i 
 
 eo 10 co o ce - x ~ '~ 
 
 CO t O (0 00 T-I CO 00 IN CO OS 
 
 g 
 
 
 
 3 oo o en" co 
 nooPtoo ^-i(Ncot><-ioic 
 
 iiii~ii 
 
 M 
 
 Tf< O ^ i i 00 CO 
 Tf CO CO CO IN IN 
 
 
 
 
 1C rp * CO CO (N <N 
 
 * 
 
 ^ 
 
 OOOOO ict^i-icocoot. 
 
 i-l H O O O O O 
 
 S 
 
 O ^H CO CO OS t> 
 
 -n os o os co IN 
 
 
 
 1 
 
 S 
 
 5?SS ^ M -c,^^r. 
 t>ooie tosoooocoooo 
 
 1 
 
 eo 
 
 t- to eo TJ ^< 
 
 rt IN W * COTjtOINCOOSl^ 
 
 oo c- o 10 ie o os i> co co -o * 
 
 N O t- en oo en IH i 
 o 1-1 en o eo t- eo 
 o at t- t- o M 10 1 
 
 5 
 
 CO CO CO <N <N (N 
 
 
 
 
 TpTfieoeoiNC^cN 
 
 2 
 
 O 
 
 OOOOO QOi 4COC4OSCO^ 
 
 - ^J 
 
 <N 
 
 00 CO 00 O 00 OS 
 
 1 
 
 1 
 
 1 
 
 CO 04 t> i-l 
 
 SSSS SS2?3^4: 
 
 i 
 
 1 
 
 50 S 00 CO S COOOt^^-lOOOOOO 
 t- 10 10 -^ OOCOOSCOCOOSOS 
 
 10 CO t- CO rH t- 
 
 10 IH -i eo t- t- 
 
 00 t~ 10 10 ^ 
 
 q| 
 
 1C <-H . 1C M O 
 CO CO <N (N CN <N 
 
 J-t 
 
 
 
 o 
 
 0000 3SS888S. 
 
 
 
 O 
 
 OOOOO COt^C^OSCOCOi-H 
 Tj< CO CO CM M (N <N 
 
 
 S 
 
 <N 00 OS >C 
 ^ CO O CO O C<1 
 
 I 
 
 M 
 CO 
 CO 
 
 90 
 
 5SSS ^^oococo^ 
 
 (0 10 10 Tt< iCcOi-it^CSCC> 
 
 I 
 
 1-1 
 
 1-1 eo S IH " ooo-^osiccocs 
 t- <o ia to ^t ic ic o co c w M 
 
 IlislIS 
 
 5 
 
 * b. rfl (N 
 CO CO <N <N IN <N 
 
 
 
 
 
 
 
 0000 ^J?^^^^s 
 
 
 
 
 
 ooooo ^- S COJH 
 
 0000000 
 
 S 
 
 Tf rH OS CO 00 
 Tf< 1C CO * 
 
 H 
 
 oo 
 
 S 
 
 01 
 
 S i ggfel:gg 
 
 B 
 
 5 
 
 enSSw : iNcoiNict-co i 
 
 10 * * i C01CI>I>CO'* 1 
 
 eo m en w * 04 
 
 w 
 
 OS <N 00 
 (N (N <N <N 1-1 
 
 
 
 
 
 
 
 f_ : ^^SS_S2 
 
 
 
 
 
 f. 00 : ^^8S_b"S : 
 
 000000 
 
 
 
 1C CO OS * ' 
 CO O T}< rj( 
 
 S 
 
 1 
 
 n 
 
 3 : : : 8g : : 
 
 r 
 
 (0 
 iH 
 (0 
 
 IS ; ; ; gg^s i ; ; 
 
 SSSIS : : : 
 
 t> 10 hf . 
 
 CO 
 
 SSSte : : 
 
 
 
 
 
 
 
 O . . . ^H t^ CO <-H 
 
 . CO <N <N (N 
 
 
 
 
 
 :::S3::: 
 
 |o 
 
 
 
 i-H CO o* 
 O O ^H 
 
 1 
 
 1 
 
 S 
 
 5. . . 1C * OS CO . . 
 . . . * (N CO 
 
 1 
 
 5 
 
 8*:::oot-T*<M::: 
 
 lO^I rHOOCOi-H 
 
 lls ; ; ; ; 
 
 
 
 rH i ( O 
 
 o 
 
 o 
 
 o 
 
 O OS C CN OS 
 
 o 
 
 O 
 
 O O 1C (N . 
 
 000 
 
 2 
 
 SJS : : : 
 
 S 
 
 
 
 < 
 
 3 
 
 1 Tj< CO I i 
 
 1 
 
 5 
 
 s> . . . . .... 
 
 SB : : : : : 
 
 8 
 
 _fe : : : 
 
 
 
 
 
 
 
 . . . . -tf ^ 00 
 
 
 
 
 
 : : : : ^_b 22 : : : : 
 
 | : : : : : 
 
 CO 
 
 B : : : : 
 
 1-1 
 
 30 
 
 
 ; ; ; i oo co i i ' i 
 
 . . . . oo > .... 
 
 en 
 
 
 ;;:;; co 
 * 
 
 5 : : : i 
 
 S 
 
 00 
 
 
 
 
 
 
 . . . . ,-H 00 
 
 o 
 
 
 : : : : : 8 :::::: 
 
 o 
 
 
 . 
 
 S 
 
 
 
 
 
 
 
 
 
 S 
 
 ; . .1 
 
 % 
 
 
 
 ::::::::: 
 
 
 
 
 
 
 0} 
 
 ^ ; ; ; ; 
 
 
 
 
 
 '.'.'.'. c^ '.'.'.'.'. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ; ; '. ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ::::::: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S-* V* NN \^i 
 
 S 
 
 s 
 
 
 sxx yx xxx 
 
 x: 
 
 : ' 
 
 axa ^^ ^^^ 
 
 xa ^^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 
 
 
 
 
 s 
 
 
 
 , 
 
 191 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 \(N 
 
 
 
 o 
 
 co 
 
 
 323323 
 
 ss 
 
 rHTHeOtOp Tt<T^OOOT}*COCM 
 
 <nOOt-O(0 CMCOrHrHrHOOrH 
 
 TH CO 
 
 o> N at 
 
 TH 00 
 
 Ss 
 
 ii 
 
 
 o 
 
 o 
 
 
 $ S 3 co n co CM 
 
 TH TH 
 
 OOOOO OrHiOOCOCMO 
 
 iH TH 
 
 o o 
 
 o o 
 
 O 
 
 o 
 
 
 
 1 
 
 
 S^c^cSSSS 
 
 T-l O 
 
 sills ggcSksScS 
 
 TH en OQ 
 
 SI 
 
 eo TH 
 
 SB 
 
 * 
 
 d 
 
 d 
 
 
 iO Tj< rt< CO CO CO <M 
 
 TH TH 
 
 OOOOO t>.O3COOOTt(rHOO 
 iO Tf Tf CO CO CO CM 
 
 TH 
 
 o o 
 
 
 
 o 
 
 10 
 
 co 
 
 CO 
 
 
 
 
 <N CO CM t^ -rJH CO 
 
 rH O3 Tt< O CO O 
 
 00 O 
 
 S5 
 
 SiiiSkg^^gs 
 
 IM 
 
 isl 
 
 eo tr- 
 io O 
 IO 10 
 
 
 d 
 
 d 
 
 
 O CM CO O l> IO 
 
 iO Tf CO CO CM (M 
 
 TH 
 
 OOOOO t-H M 00 Jjj O t Jg 
 
 TH O O 
 
 o o 
 
 
 
 \3 
 
 Is. 
 
 CO 
 
 CO 
 
 
 
 CO O C<1 (N CO rH 
 
 O CO O O IO iO 
 
 i 
 
 a i-i cr oo |<o 
 
 SM IO O OCNOOCOCOiOiO 
 (Oioiomi i-Hioiot^coi-io 
 
 TH IH eo 
 
 sss 
 
 11 
 
 sis 
 
 t-\ 
 
 d 
 
 d 
 
 
 10 00 b- Tf CM 
 * CO CO CM CM CM 
 
 
 
 ooo djo co CD ^ o b. gjco 
 
 ooo 
 
 
 
 o o 
 
 
 
 IO 
 
 o 
 
 co 
 
 CO 
 
 
 CO CO O rH t> GO 
 
 eo 
 
 C-o5<S COOOOb.OcO 
 tO (O IO T]I . COCNiOt-OOCO 
 
 ggs 
 
 Sen 
 04 
 
 10 10 
 
 3 : 
 
 * 
 
 d 
 
 d 
 
 
 CO b- O3 CO CO rH 
 
 
 
 O O i O O * 00 CO 03 CO hf . 
 TJ* co co CM ijj ICM 
 
 ooo 
 
 
 
 o 
 
 
 
 v. 
 
 1 
 
 00 
 
 
 T}< (M CO CO O3 O3 
 
 S3 
 
 IOOIO COCMINOCM 
 IO IO * . . COOOO3rf< 
 
 eo eo co 
 eo eo 10 
 
 t- to 10 
 
 55 
 
 ': ] 
 
 4 
 
 d 
 
 d 
 
 
 CO CO CM CJ_ CM rH i 
 
 
 . CO CO CM (M C<) 
 
 000 
 
 o o 
 
 ; ; 
 
 NpO 
 
 
 iO 
 
 1> 
 
 IO 
 
 
 
 
 rH CO CO t-- 
 
 rH CO CO O 
 
 ii 
 
 SB;- o 10 <N p '. '. '. 
 
 IO N* O3 O Tf CO 
 
 * 
 
 BBS 
 
 S : 
 
 ; | 
 
 
 d 
 
 d 
 
 
 CO CO Tt< CM 
 CO CM CM CM 
 
 
 
 Op- CO O3 IO <M 
 
 000 
 
 o 
 
 
 
 
 ^ 
 
 1 
 
 CM 
 
 co 
 o 
 
 
 <N O3 ' ' ' ' 
 
 O3 IO rH 
 
 II 
 
 : : : : S2p": : : : 
 
 Ml 
 
 
 ; ; 
 
 =*, 
 
 d 
 
 d 
 
 
 o co co 
 
 CO (M !N 
 
 
 
 : : : : eL^ : : : : 
 
 o o |o 
 
 
 ; ; 
 
 
 
 o 
 d 
 
 
 
 1 
 d 
 
 
 t. 90 '' 
 
 iO <M 
 CM IM 
 
 d d 
 
 i : : : : is : : : : ': 
 
 S5 
 
 o d 
 
 
 
 
 
 t^ 
 
 
 
 i 
 
 
 10 
 
 
 
 <o 
 
 CM 
 
 CO 
 
 d 
 
 
 
 d 
 
 
 :::::: 
 
 (M 
 (N 
 
 d : 
 
 : : : : : g :::::: 
 
 o 
 
 
 
 
 iO 
 
 00 
 
 
 
 
 
 
 
 
 
 
 co 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 rH 
 
 
 CM 
 
 1 
 
 
 
 
 
 
 
 
 
 O 
 
 
 
 
 
 
 
 
 
 
 CM 
 
 IO 
 (M 
 
 d 
 
 I 
 
 d 
 
 
 
 
 
 
 
 
 S 
 
 o 
 o 
 
 10 
 IM 
 
 d 
 
 03 
 
 s 
 
 d 
 
 
 
 
 
 
 
 
 CO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 d 
 
 d 
 
 
 
 
 
 
 
 
 * 
 
 =#= 
 
 d 
 
 
 
 d 
 
 
 
 
 
 
 
 
 
 
 (inches). 
 
 .9 
 
 Mi 
 
 NN V* V* \M N^l 
 rH rH CM IM IN (N CO 
 
 \N V* 
 TH TH 
 
 MCq N eO rHrHCMlMlMCMCO 
 
 TH TH 
 
 i-K iH\ 
 <N M 
 
 N CO 
 
 
 
 I 
 
 Diameter 
 
 d* 
 
 a"o SB 
 b 
 
 " 
 
 ^ 
 
 
 5 
 
 
 
 192 
 
TABLE 46 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 
 -1< **" CO O OS CM CM 
 
 CO 00 IN I-H OS O 00 
 
 DenPl>ScOOO -4<Tt<OOCOCOOSCM 
 H 00 t- fl 10 OOlNOOOCOlO 
 
 oo t- 10 o eo IH o 
 co>u3M3ooeq<o * * eo o i> o d 
 
 TH <J> 00 t- 10 t(NCOCSCOrHCM 
 
 w (O <o n a> oo t- 
 
 sssssss 
 
 T-H CM CO I-H O CO O 
 
 co o * * co eo co 
 
 rHOOOOOO CO^t-CMb.^.-; 
 
 O "O "^ "^ CO CO CO 
 
 ^OOOOOO SS^^c^c^S 
 
 ^OOOOOO 
 
 O rft O O CM O O 
 CM > rjt T}< 10 CM CO 
 
 S2S3SSS ^os^cocsc^ 
 
 ^HOOOt-0eiO iCOO^COCOOCM 
 
 OD O CD <O (O fc 
 SSSSSS S^S2SS 
 
 isisiill 
 
 OS O T}< OS iO CM OS 
 lO O ^ CO CO CO CM 
 
 iHOOOOOO O^-iiOOCOCOO 
 CO ^ "^ ^ C* CO CO 
 
 ^oooooo S 5-^_ 
 
 IH d o* d o* o* d 
 
 _ _ X ~ - 
 
 10 o eo o o co <N 
 
 S! t *3 (t> en *3 kn ocoooocMOsko 
 
 Oi 00 t- D 10 W p t^O(NOO(NCMpO 
 
 SSS5S|~ oo^o^^U 
 S 3 I- B 5 B cso^cocsoF* 
 
 g^sssste 
 
 0) 00 f O 10 M9 M 
 
 CM 10 OS >O ^H 00 CO 
 1C ^ CO CO CM CM 
 
 o o o d o o p co co cs 10 CM cs =0 
 
 I 10 ^ ^ co co c^ Ic^i 
 
 OOOOOO |d S^^c^c^iJ^ 
 
 d d d d d d d 
 
 I-H TJ< eo * eo > >o 
 
 Sto to e> n to vr r: t^- i" ri 
 t>oioie^i cMcoi-i^iosco 
 
 S3SSSS : c^osoooso : 
 
 t- vo 10 10 TH . eocMCsooioos 
 
 isllsl : 
 
 t>. O U5 1-1 OO >O CO 
 tf <*< CO CO CM CM CM 
 
 OOOOOO GOi-tCOCMOOcO 
 Tt< * CO CO CM IN 
 
 OOOOOO ; OCMOCSOCO . 
 
 OOOOOO 
 
 O b- b- t- <N :O 
 
 w a* <o 10 t- 1-1 
 
 S2SSSS : 233 : 
 
 * n n vt o o - ' 
 
 SS* e 2Sf2!2 ?SJ2J2fcS ' 
 O- O IO 1C ^ t^>O*)OOOOOw 
 
 gSS3 : : 
 
 Lt C! * O t * 
 
 T}< CO CO CO C^ M 
 
 OOOOOO ; OOjCjHOO^ . 
 
 OOOOOO "J^^^ScM ' 
 
 
 
 CO l> l> O * 
 
 CM t^ O *J< O 
 
 C^i-l^'OOCO Oi-ICMCOO 
 
 J>oio^'* ,Hoeoo^ 
 
 HISS : i SSg : : 
 
 IISS : ': 
 
 cSScSSS : : 
 
 o o ojd o . o eo c^ o co . . 
 
 O oo_oo - : j*_g : ; 
 
 0000 
 
 S2 : 
 
 SS3 : : : : ^5 : : : : 
 
 iH O IrH .... 
 
 SS3 : : : : S2 : : : : 
 
 t- 00 O - . . 
 
 SS5 : : : : 
 
 Tf OS CO 
 CO <N (N kM 
 
 000 : : : : SSS : : : : 
 
 000 : : : : S : : : : 
 
 000 
 
 - 1 .... 
 
 10 on .... 
 
 5 5 : : : : : : : : 
 
 s s s 
 
 ro t5 K 
 
 523:-::2co:::: 
 
 10 ^i - 00 T}( - 
 
 10 W 
 
 IN 1-- I^Jt 
 
 CO W Iri 
 
 : : : : co .CM : : : : 
 
 O O O CO OS iO 
 
 000 
 
 b rrn 
 
 16 : : : i : Si : : : : ': 
 
 Is ; ; : ; ; sss ; i \] 
 
 00 00 
 
 O KO .... 
 
 "ip : : : : : .8 : : : : : 
 
 00- 00 * . 
 
 
 
 S :::::: 
 
 3 :::::: S :::::: 
 
 
 
 a :::::: 
 
 - ' N ' 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 * ^^^ 
 
 XX* S 3JS 
 
 s xx ssr xsx 
 
 ^ y v* >i \* 
 
 
 
 
 
 
 3 
 
 s 
 
 ' 
 
 193 
 
COLUMNS 
 
 TABLE 46 
 
 COLUMN SPIRALS 
 PERCENTAGE OF VOLUME OF CORE 
 
 AND 
 WEIGHT IN POUNDS PER FOOT OF COLUMN 
 
 HEAVY TYPE GIVES PERCENTAGES 
 LIGHT TYPE GIVES WEIGHTS 
 
 WEIGHTS DO NOT INCLUDE SPACERS 
 WIRE SIZES ARE A. S. & W. CO. GAGE 
 
 X 
 
 
 
 o 
 
 o 
 
 d 
 
 o 
 
 
 iO * O5 O ^H (N CN 
 
 00 * CO O5 IO O5 O5 
 
 10 d 05 CO 05 10 <N 
 
 TH (0 00 00 10 (0 <0 
 OCOTHMieO)"* O^-^CO1OOO<N 
 00 t- 10 10 (NCOr^OOCOcOCO 
 
 TH d d d d d d i> t>.' o * d co co 
 
 g 
 
 
 
 o 
 d 
 
 d 
 
 
 CO O <N CO ** O5 1-1 
 <N CN ** rH O5 -sJH CO 
 
 CO Tt< b- IN l> * i-H 
 
 t> 00 to 00 O> TH TK 1 1 
 
 WO>COO>t-NOO>OCOiOrt<INO5 
 OOOt-tOOlOIOiOCO^O!>(N(N 
 
 TH O O O O O O \ ^ iO CO Co' 00 10 (N 
 
 1 co 10 ^ * co co ro 1 
 
 
 
 \ 
 
 10 
 
 CO 
 
 CO 
 
 
 
 
 00 1> O5 CO O Tf< 
 O O CO CO CO O 
 
 O t- b* O CO t> JIO 
 eoo>0>o4iooto 00 o o OJ rH K* 
 
 O>t(O(OIOIOMI (Ni-iO5T-ICO(NCO 
 
 
 o 
 
 d 
 
 
 10 rt< Tt< CO CO CO IN 
 
 , 1 iO Tt* TJH CO CO CO I<N 
 
 <D 
 
 IO 
 
 CO 
 
 o 
 
 10 
 
 
 O5 O O5 O5 Tf O5 
 CO <N t- iO (N ^ 
 
 eOTHMIOOlO 5D iH O r-l 00 > 
 
 00 t- 1C US ^1 ^ TH ^ CO 00 JO 
 
 f\ 
 
 d 
 
 d 
 
 
 O CO t>- CO O f 
 
 10 Tt< co co co N 
 
 OOOOOO i-H^OOTtHOOO 
 
 iO Tt< CO CO CO '(N 
 
 
 
 10 
 
 o 
 
 co 
 
 TH 
 
 d 
 
 I 
 d 
 
 
 00 00 CO 10 <N 
 
 o> eo to o> lio 
 
 O O CO 00 >OCOO5Tt<f-( 
 tOtoSp OOt-CO(N05 
 
 O O O O |d OS <N l> CO OJ 
 
 o 
 
 00 
 
 co 
 d 
 
 00 
 <N 
 
 d 
 
 
 * CO (N 
 00 O CO (N 
 
 O IO O t- 
 
 rJH CO CO C^t 
 
 to o t- ITH ... 
 
 t- 00 O 10 TH 10 00 O 
 to IO IO Ml b- t^ IN IOO 
 
 6; 
 
 o 
 
 10 
 CO 
 
 8 
 
 d 
 
 
 SCO O5 ' ' ' ' 
 t> h. . . . . 
 
 CO CO <N 
 
 41 to lo .... 
 THNO-.-.TtlCOoO.... 
 
 toiok<-...oo^co-... 
 
 O O O t-(NOO 
 1 COCOtN-... 
 
 
 CO 
 
 CO 
 
 d 
 
 co 
 o 
 
 d 
 
 
 CO 05 ' ' ' 
 
 TjJ 05 10 
 
 CO IN <N .... 
 
 eo TH 
 
 t-O> Tf<O5 
 
 ^< COIN 
 
 O O iO d '. '. '. '. '. 
 co co 
 
 
 
 o 
 co 
 
 CO 
 
 d 
 
 
 
 
 d 
 
 
 CO IN 
 
 OO' Tji '. ' ' ' ' 
 (N <N 
 
 :;;;;; ^ 
 
 O 05 
 
 %0 
 
 CO 
 
 d 
 
 CO 
 O 
 
 d 
 
 
 
 
 p 
 
 o 
 co 
 
 00 
 
 co 
 
 & 
 
 
 
 
 
 o 
 
 o 
 
 
 
 
 51 
 
 o 
 
 CO 
 00 
 IN 
 
 d 
 
 O5 
 1 
 
 d 
 
 
 
 
 IN 
 
 (N 
 CO 
 <N 
 
 d 
 
 IO 
 
 o 
 d 
 
 
 
 
 ^ 
 
 o 
 iC 
 (N 
 
 d 
 
 05 
 
 
 
 o 
 
 
 
 
 CO 
 
 CO 
 IN 
 
 O 
 
 o 
 
 
 
 
 =*= 
 
 IN 
 (N 
 
 d 
 
 d 
 
 
 
 
 
 
 
 
 
 
 
 8 
 
 G 
 
 d 
 
 S ^^ 
 
 i-H I-H CN (N IN <N CO 
 
 THTHC^CflC^NW i 1 tlNCNC^IC^CO 
 
 
 
 *0 
 
 Diameter 
 
 1 
 1 
 
 Q O ~ 
 
 5 
 
 00 
 
 194 
 
TABLE 47 
 
 COLUMNS 
 
 COLUMN SPIRALS 
 JOINT COMMITTEE RECOMMENDATIONS 
 
 Volume of spiral equal to 1% of volume of core 
 
 Maximum pitch = - or 
 
 6 
 
 m, 
 
 Diam. of core 
 (inches) 
 
 Am. S. & W. Co.'s gage Rod sizes 
 
 Size (No.) 
 
 Pitch (inches) Size (inches) 
 
 Pitch (inches) 
 
 8 
 
 6 
 
 IK 
 
 
 
 
 9 
 
 5 
 
 IK 
 
 
 
 10 
 
 4 
 
 IK 
 
 
 
 11 
 
 3 
 
 IN 
 
 X 
 
 m 
 
 12 
 
 2 
 
 i 
 
 H 
 
 IH 
 
 13 
 
 1 
 
 i 
 
 y* 
 
 IX 
 
 14 
 
 1 
 
 m 
 
 xt 
 
 2K 
 
 15 
 
 
 
 IK 
 
 Xs 
 
 2 
 
 16 
 
 2/0 
 
 2K 
 
 x* 
 
 IK 
 
 17 
 
 2/0 
 
 2 
 
 H 
 
 2K 
 
 18 
 
 3/0 
 
 2X 
 
 H 
 
 2H 
 
 19 
 
 3/0 
 
 2X 
 
 H 
 
 2K 
 
 20 
 
 3/0 
 
 2 
 
 H 
 
 2K 
 
 21 
 
 4/0 
 
 2X 
 
 H 
 
 2 
 
 22 
 
 4/0 
 
 2K 
 
 7 A* 
 
 2H 
 
 23 
 
 4/0 
 
 2H 
 
 K* 
 
 2% 
 
 24 
 
 4/0 
 
 2 
 
 7 A6 
 
 2H 
 
 25 
 
 5/0 
 
 2K 
 
 14s 
 
 2K 
 
 26 
 
 5/0 
 
 2K 
 
 ^6 
 
 2y* 
 
 27 
 
 5/0 
 
 2K 
 
 H6 
 
 2K 
 
 28 
 
 5/0 
 
 2 
 
 He 
 
 2K 
 
 29 
 
 6/0 
 
 2K 
 
 Ke 
 
 2 
 
 30 
 
 6/0 
 
 2M 
 
 K 6 
 
 2 
 
 31 
 
 6/0 
 
 2^ 
 
 H 
 
 2M 
 
 32 
 
 6/0 
 
 2 
 
 X 
 
 2H 
 
 33 
 
 7/0 
 
 2Yt 
 
 H 
 
 2H 
 
 34 
 
 7/0 
 
 2K 
 
 H 
 
 2K 
 
 35 
 
 7/0 
 
 2K 
 
 y* 
 
 2M 
 
 36 . 
 
 7/0 
 
 2 
 
 M 
 
 2H 
 
 37 
 
 7/0 
 
 2 
 
 x 
 
 2K 
 
 38 
 
 7/0 
 
 2 
 
 H 
 
 2 
 
 39 
 
 7/0 
 
 IK 
 
 y* 
 
 2 
 
 40 
 
 7/0 
 
 IK 
 
 y* 
 
 IK 
 
 41 
 
 7/0 
 
 IK 
 
 y* 
 
 IK 
 
 42 
 
 7/0 
 
 i 
 
 y* 
 
 IK 
 
 43 
 
 7/0 
 
 IX 
 
 H 
 
 iH 
 
 44 
 
 7/0 
 
 i% 
 
 H 
 
 m 
 
 45 
 
 7/0 
 
 1% 
 
 H 
 
 IK 
 
 46 
 
 7/0 
 
 i% 
 
 H 
 
 i 
 
 47 
 
 7/0 
 
 IK 
 
 H 
 
 i^ 
 
 48 
 
 7/0 
 
 IK 
 
 H 
 
 i^ 
 
 49 
 
 7/0 
 
 IK 
 
 H 
 
 IK 
 
 50 
 
 7/0 
 
 IH 
 
 X 
 
 IK 
 
 195 
 
COLUMNS 
 
 TABLE 48 
 
 AMERICAN STEEL & WIRE CO.'S STEEL WIRE GAGE 
 
 Diameter 
 (inches) 
 
 Steel wire 
 gage 
 
 Diameter 
 
 (inches) 
 
 Area, square 
 inches 
 
 Pounds per 
 foot 
 
 Pounds per 
 mile 
 
 Feet per 
 pound 
 
 y> 
 
 
 . 5000 
 
 ! 
 
 0.19635 0.6668 
 
 3,521.0 
 
 1.500 
 
 
 7/0 
 
 0.4900 
 
 0.18857 0.6404 
 
 3,381.0 
 
 1.562 
 
 % 
 
 
 0.46875 
 
 0.17257 0.5861 
 
 3,094.0 
 
 1.706 
 
 
 6/0 
 
 0.4615 
 
 0.16728 0.5681 
 
 2,999.0 
 
 1.760 
 
 He 
 
 
 0.4375 
 
 0.15033 0.5105 
 
 2,696.0 
 
 1.959 
 
 
 5/0 
 
 0.4305 
 
 0.14556 
 
 0.4943 
 
 2,610.0 
 
 2.023 
 
 13| 2 
 
 
 0.40625 
 
 0.12962 
 
 0.4402 
 
 2,324.0 
 
 2.272 
 
 
 4/0 
 
 0.3938 
 
 0.12180 
 
 0.4136 
 
 2,184.0 
 
 2.418 
 
 H 
 
 
 . 3750 
 
 0.11045 
 
 0.3751 
 
 1,980.0 
 
 2.666 
 
 
 3/0 
 
 0.3625 
 
 0.10321 
 
 0.3505 
 
 1,851.0 
 
 2.853 
 
 11,^2 
 
 
 0.34375 
 
 0.092806 
 
 0.3152 
 
 1,664.0 
 
 3.173 
 
 
 2/0 
 
 0.3310 
 
 0.086049 0.2922 
 
 1,543.0 
 
 3.422 
 
 Me 
 
 
 0.3125 
 
 0.076699 
 
 0.2605 
 
 1,375.0 
 
 3.839 
 
 
 
 
 . 3065 
 
 0.073782 
 
 0.2506 
 
 1,323.0 
 
 3.991 
 
 
 1 
 
 0.2830 
 
 0.062902 
 
 0.2136 
 
 1,128.0 
 
 4.681 
 
 %a 
 
 
 0.28125 
 
 0.062126 
 
 0.2110 
 
 1,114.0 
 
 4.74 
 
 
 2 
 
 0.2625 
 
 0.054119 
 
 0.1838 
 
 970.4 
 
 5.441 
 
 ^ 
 
 
 . 2500 
 
 0.049087 
 
 0.1667 
 
 880.2 
 
 5.999 
 
 
 3 
 
 0.2437 
 
 0.046645 
 
 . 1584 
 
 836.4 
 
 6.313 
 
 
 4 
 
 0.2253 
 
 0.039867 
 
 0.1354 
 
 714.8 
 
 7.386 
 
 3-32 
 
 
 0.21875 
 
 0.037583 
 
 0.1276 
 
 673.9 
 
 7.835 
 
 
 
 ] 
 
 
 
 
 
 5 
 
 0.2070 0.033654 
 
 0.1143 
 
 603.4 
 
 8.750 
 
 
 6 
 
 0.1920 0.028953 
 
 0.09832 
 
 519.2' 
 
 10.17 
 
 He 
 
 
 0.1875 0.027612 
 
 0.09377 
 
 495.1 
 
 10.66 
 
 
 7 
 
 0.177( 0.024606 
 
 0.08356 
 
 441.2 
 
 11.97 
 
 
 8 
 
 0.162C 
 
 0.020612 
 
 0.07000 
 
 369.6 
 
 14.29 
 
 %2 
 
 
 0.15625 
 
 0.019175 
 
 0.06512 
 
 343.8 
 
 15.36 
 
 
 9 
 
 G.1483 
 
 0.017273 
 
 0.05866 
 
 309.7 
 
 17.05 
 
 
 10 
 
 0.1350 
 
 0.014314 
 
 0.04861 
 
 356.7 
 
 20.57 
 
 
 
 
 0.125 
 
 0.012272 
 
 0.04168 
 
 220.0 
 
 24.00 
 
 
 If 
 
 0.1205 
 
 0.011404 
 
 0.03873 
 
 204.5 
 
 25.82 
 
 
 12 
 
 0.1055 
 
 0.0087417 
 
 0.02969 
 
 156.7 
 
 33.69 
 
 Ma 
 
 
 0.09375 
 
 . 0069029 
 
 0.02344 
 
 123.8 
 
 42.66 
 
 
 13 
 
 0.0915 
 
 0.0065755 
 
 0.02233 
 
 117.9 
 
 44.78 
 
 
 14 
 
 0.0800 
 
 . 0050266 
 
 0.01707 
 
 90.13 
 
 58.58 
 
 
 15 
 
 0.0720 
 
 0.0040715 
 
 0.01383 
 
 73.01 
 
 72.32 
 
 
 16 
 
 0.0625 
 
 0.0030680 
 
 0.01042 
 
 55.01 
 
 95.98 
 
 
 17 
 
 0.0540 
 
 . 0022902 
 
 0.007778 
 
 41.07 
 
 128.60 
 
 196 
 
JJ1AUKAM 42 
 
 WEIGHT OF TYPICAL SQUARE PANEL OF THREE-BE 
 FLOOR SYSTEM DESIGNED IN ACCORDANCE WITH J 
 RECOMMENDATIONS 
 (FOR ESTIMATING COLUMN LOADS 
 
 COLUMNS 
 
 AM-AND-GIRDER 
 OINT COMMITTEE 
 
 ) 
 
 (0 
 
 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 / 
 
 / 
 
 
 
 t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 / 
 
 j 
 
 
 / 
 
 j 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 J 
 
 j 
 
 
 
 j 
 
 
 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 
 1 
 
 f 
 
 
 j 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 
 f 
 
 1 
 
 
 f 
 
 
 
 ^f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 
 
 
 j 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 
 i 
 
 
 I 
 
 
 
 f 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ~f^ 
 
 J 
 
 J 
 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 / 
 
 j 
 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 f 
 
 i 
 
 j 
 
 
 i 
 
 } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 
 
 I 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 / 
 
 
 
 J 
 
 1 
 
 
 / 
 
 
 i 
 
 
 C 
 
 4- 
 
 CO 
 
 1 
 
 90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 
 
 A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 / 
 
 
 f 
 
 
 1 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 
 j 
 
 
 
 / 
 
 
 / 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 r 
 
 
 
 f 
 
 
 
 j 
 
 
 / 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 J 
 
 j 
 
 
 
 
 
 
 / 
 
 
 
 
 / 
 
 80 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 j 
 
 
 f 
 
 
 
 
 
 f 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i 
 
 j 
 
 j 
 * 
 
 j 
 
 
 1 
 
 f 
 
 
 f 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 
 j 
 
 
 
 j 
 
 
 j 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 
 
 f 
 
 f 
 
 
 / 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 t 
 
 
 
 f 
 
 
 f 
 
 A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 I 
 
 j 
 
 
 
 f 
 
 
 
 / 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 i 
 
 I 
 
 J 
 
 
 / 
 
 1 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 f 
 
 I 
 
 T 
 
 
 ' 
 
 f 
 
 
 
 
 J 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 y 
 
 
 J 
 
 I 
 
 
 
 / 
 
 
 
 
 J 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 j 
 
 
 
 1 
 
 
 
 f 
 
 
 / 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 *} 
 
 f 
 
 j 
 
 y 
 
 
 j 
 
 / 
 
 
 I 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^^ 
 
 / 
 
 i 
 
 / 
 
 
 J 
 
 / 
 
 
 
 
 / 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 f 
 
 / 
 
 
 
 / 
 
 
 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 i 
 
 I 
 
 
 
 J 
 
 
 
 f 
 
 
 
 J 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 
 
 
 
 
 
 / 
 
 
 
 Y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 1 
 
 j 
 
 f 
 
 
 J 
 
 / 
 
 
 j 
 
 
 J 
 
 
 
 
 y 
 
 
 
 
 
 
 
 
 
 
 
 n I 
 
 1 
 
 f 
 
 / 
 
 
 
 / 
 
 
 f 
 
 
 
 
 / 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 / 
 
 
 
 / 
 
 J 
 
 
 / 
 
 
 
 j 
 
 
 /^ 
 
 1 dead panel load in thousands of 
 
 60 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f / 
 
 j 
 
 
 
 / 
 
 f 
 
 
 j 
 
 
 j 
 
 
 J 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 '<i 
 
 / 
 
 f 
 
 y 
 
 
 i 
 
 / 
 
 
 f 
 
 
 
 
 / 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 ^^/ 
 
 / 
 
 f 
 
 / 
 
 j 
 
 
 / 
 
 
 
 
 
 
 yf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 r\f- 
 
 f 
 
 f 
 
 / 
 
 f 
 
 
 f 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -/9/o 
 
 
 
 J 
 
 f 
 
 
 
 J 
 
 
 / 
 
 
 J* 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 O/Q 
 
 f*f 
 
 
 
 f 
 
 / 
 
 
 
 
 f 
 
 
 f 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 ToJ 
 
 T 
 
 ->y 
 
 / 
 
 
 
 / 
 
 
 
 J 
 
 
 
 J 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -/ 
 
 ^ 
 
 J/ 
 
 f 
 
 
 j 
 
 / 
 
 
 j 
 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -fa 
 
 >>v 
 
 
 J7^~ 
 
 
 1 
 
 ^ 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (Si 
 
 f 
 
 y 
 
 f 
 
 ^ 
 
 if\ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 $ 
 
 f 
 
 f 
 
 f 
 
 J 
 
 fkj. 
 
 y 
 
 
 j 
 
 
 f 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 
 
 <&- 
 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -Q* 
 
 1 / 
 
 / 
 
 / 
 
 A 
 
 
 t 
 
 ^ 
 
 ^ 
 
 7 
 
 
 / 
 
 
 / 
 
 
 
 
 
 P^ 
 
 Sfi 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 
 
 
 2 
 
 
 P> 
 
 f~ 
 
 ~X 
 
 
 
 
 
 -p 
 
 
 
 
 
 
 
 
 
 Y , 
 
 y 
 
 
 
 
 / 
 
 V 
 
 
 / 
 
 
 4V 
 
 
 y^ 
 
 
 
 
 
 f 
 
 
 
 
 
 
 
 
 
 
 
 y^ 
 
 /* 
 
 y 
 
 
 
 .v^ 
 
 
 
 s^L. 
 
 KX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 f 
 
 -f 
 
 
 
 
 
 y 
 
 
 _ /: 
 
 
 
 1 ' 
 
 >^ 
 
 
 
 
 
 1* 
 
 
 
 
 
 
 
 
 
 f 
 
 y 
 
 j 
 
 
 
 / 
 
 f 
 
 
 / 
 
 
 y 
 
 
 
 
 
 
 jr 
 
 
 
 
 
 
 
 
 
 
 f f 
 
 
 f 
 
 y 
 
 yj 
 
 
 / 
 
 y 
 
 
 
 
 y 
 
 
 
 
 
 jf 
 
 
 
 
 
 
 
 
 
 A 
 
 / 
 
 f 
 
 / 
 
 f 
 
 J 
 
 
 
 f 
 
 
 j 
 
 
 / 
 
 
 
 
 J 
 
 
 
 
 
 
 
 
 
 
 / 
 
 j 
 
 
 
 
 f 
 
 J 
 
 
 / 
 
 
 f 
 
 
 
 
 
 3D 
 
 ,/^ 
 
 
 
 
 
 
 
 
 
 
 Xy 
 
 / 
 
 / 
 
 / 
 
 
 
 / 
 
 / 
 
 
 
 
 / 
 
 
 
 
 
 
 
 
 
 
 AO 
 
 
 
 
 
 7 
 
 
 
 
 
 
 J 
 
 
 -/ 
 
 
 f 
 
 
 
 
 
 7 
 
 r 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 { / 
 
 / 
 
 / 
 
 / 
 
 / 
 
 
 
 / 
 
 
 y 
 
 
 
 
 
 ^x 1 
 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 f/ / 
 
 + 
 
 
 
 / 
 
 / 
 
 
 / 
 
 
 t 
 
 
 
 y 
 
 
 
 
 
 
 
 
 
 
 
 
 -v 
 
 y_ 
 
 ~~7T ^ 
 
 
 
 f- 
 
 -/ 
 
 
 -/ 
 
 
 X- 
 
 
 
 ^- 
 
 
 
 
 
 
 
 
 
 
 50 
 
 
 
 y^ 
 
 
 
 ~f~ 
 
 -f~ 
 
 --f- 
 
 / 
 
 
 -} 
 
 * 
 
 7* 
 
 
 ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ' t 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 - 
 
 t / 
 
 / 
 
 / 
 
 y . 
 
 ^~ 
 
 / 
 
 '/" 
 
 
 y 
 
 / 
 
 
 I 
 
 ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 s\ 
 
 1*f 
 
 -y^ 
 
 ^ 
 
 y?* 
 
 ~^T~ 
 
 f 
 
 
 ^ 
 
 ^ 
 
 
 ./ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 t*t- 
 
 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20 
 
 j-> 
 
 ^ 
 
 "7^ 
 
 -/ 
 
 -/> 
 
 
 ^^ 
 
 -^^ 
 
 
 
 ^- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 .. 
 
 
 ^^ ^ 
 
 
 ^ ^| 
 
 r 
 
 
 ^^^f 
 
 ^^* 
 
 
 ^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^f) 
 
 ^^ 
 
 ^^r 
 
 ^r 
 
 _^^ 
 
 ^ 
 
 
 ^r 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ ^ 
 
 ^ 
 
 ^^ 
 
 ^ 
 
 pj ~.( 
 
 ^ 
 
 _^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^*^ 
 
 s^ 
 
 
 ^^^ 
 
 ^s^ 
 
 ^s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 s 
 
 ^r 
 
 ^^^ 
 
 .^ 
 
 . 
 
 x^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 rfX 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 -] 
 
 10 
 
 
 * 
 
 
 t 
 
 
 2 
 
 
 $ 
 
 
 s 
 
 
 K 
 
 (VJ 
 (VI 
 
 
 S3 
 
 
 s 
 
 
 10 
 
 OJ 
 
 
 s 
 
 
 l^ 
 
 S 
 
 Column spacing in feet 
 
 197 
 
COLUMNS 
 
 DIAGRAM 43 
 
 WEIGHT OF TYPICAL FLOOR PANEL OF FLAT SLAB CONSTRUCTION 
 
 DESIGNED IN ACCORDANCE WITH CHICAGO BUILDING CODE 
 
 (FOR ESTIMATING COLUMN LOADS) 
 
 Column spacing in feet 
 
SECTION 8 
 BENDING AND DIRECT STRESS 
 
 Rectangular Sections 
 
 The following notation is used : 
 
 R = resultant thrust. 
 
 N = vertical component of R. 
 
 x = eccentricity of thrust. 
 t = thickness or depth of section. 
 
 6 = breadth of section. 
 
 d' = embedment of steel top and bottom. 
 As = area of steel on tension side. 
 A' = area of steel on compression side. 
 Ao = total area of steel = A a + A'. 
 
 p = total percentage of steel = r-r- 
 
 f c = maximum unit compression in concrete. 
 f a = maximum unit tension in steel. 
 // = maximum unit compression in steel. 
 
 Case I. Compression Over Whole Section (A' = A s }. 
 
 ir$ 
 
 Diagrams 44 to 49 inclusive give values of K for various values of p , -~i and-, 
 
 and for both n = 12 and n = 15. For values of ~ beyond the termination of the 
 
 curves, tension occurs over part of the section and the diagrams for Case II should 
 be used. 
 
 Case n. Tension Over Part of Section (A' = A s ). 
 
 
 Diagrams 50, 51, 52, 54, 55 and 56 give values of k for various values of p , , and 
 
 y> and for both n = 12 and n = 15. Diagrams 53 and 57 give values of L. 
 
 The method of procedure in solving problems is as follows: (1) Determine k from 
 the proper diagram; (2) find L from Diagram 53 or 57; (3) solve equation (2) for/ c ; 
 (4) find unit stresses in the steel from the formulas 
 
 (3) 
 
 (4) 
 199 
 
- BENDING AND DIRECT STRESS 
 
 Case III. Tension Over Part of Section (A' = 0). Notation is given on Dia- 
 grams 58 and 59. 
 
 k* -2pn(l - A;) = k*j d e , (5) 
 
 3 = 1- l Ak (6) 
 
 (8) 
 
 / - /c (10) 
 
 Diagrams 58 and 59 may be used as shown in two of the examples which follow. 
 
 Examples for Rectangular Sections 
 
 A beam is 9 in. wide and 20 in. deep. The reinforcement both above and below 
 consists of one steel rod 1 in. in diameter embedded at a depth of 2 in. At a certain 
 section, the normal component of the resultant force is 60,000 lb., acting at a distance of 3 A 
 in. from the gravity axis. Assume n 15. Compute the maximum unit compressive 
 stress in the concrete. 
 
 A _ (2) (0.7854) _ 
 
 __ 
 
 Po ~ ~ 
 
 bt ~ (9)(20 
 
 d r = O.lOi 
 
 For these values of p and , Diagram 48 gives K = 1.70 and shows that the 
 
 problem falls under Case I. Then by formula (1) 
 NK (60, 000) (1.70) 
 
 (9) (20) = 567 Ib. per sq. in. 
 Change the eccentricity of the preceding problem to 6 in. and solve. 
 
 / , /v 
 
 For p, = 0.0087 and -r = 0.30, Diagram 48 shows that y is too great for the 
 
 problem to come under Case I. The method of procedure for Case II must then be 
 followed. 
 
 Diagram 55 gives k = 0.73 for the values of p and -y given above. With k = 
 0.73 and p = 0.0087, Diagram 57 shows L to be 0.123. Solving equation (2) 
 
 M (60,000;(6) 
 
 fc = LbT* = (0.123)(9)(20) = 815 lb ' Per Sq ' in ' 
 Using formula (3) 
 
 /. - nf c (~- t - l) = (15) (815) (0-7320 - l ) = 283 lb - P er sq- in. 
 
 The stress /,' may be found by formula (4) but is always less than n X fc- 
 
 An arch is 20 in. deep and is reinforced with three rods % in. in diameter to each 
 foot of width, both above and below. If the rods are embedded to a depth of 2 in. and the 
 normal component of the resultant thrust on a section is 100,000 lb. for 1-ft. width of arch. 
 
 200 
 
BENDING AND DIRECT STRESS 
 
 ivith an eccentricity of 3.4 in., determine the maximum intensity of compressive stress on 
 the concrete. Assume n 15. 
 
 (6) (0.4418) 
 Po= - 
 
 Diagram 48 gives K = 1.63 and the problem comes under" Case I. Then by 
 formula (1) 
 
 NK (100,000)(1.63) a _ nlu 
 
 '- ! 
 
 The vertical wall of a cantilever retaining wall is subjected to an earth pressure of 
 2400 Ib. applied at a distance of 4.54 ft. above the top of footing. The weight of vertical 
 wall is 2200 Ib. which can be considered as applied 5 in. in front of the steel. Determine 
 the unit stresses f c andf s , assuming n = 15, p = 0.0077 and d = 10.5 in. 
 The moment at the top of footing 
 
 M = (2400) (4.54) (12) + (2200) (5) = 141,700 in. - Ib. 
 = _141,700_ 
 (12)(10.5) 2 
 e^ 141,700 
 
 d (2200) (10.5) 
 
 Entering Diagram 59 with a value of p = 0.0077 on the lower right-hand margin 
 
 pt 
 
 and tracing vertically to a value of -r = 6.1, then horizontally to the left to a point 
 
 vertically above K = 107, we find /. = 14,000 and f c = 610. 
 
 Design the vertical watt of the retaining wall described in the preceding problem 
 so thatf f = 750 and /, = 16,000. Assume the weight. of wall to be 2000 Ib. 
 
 For these unit stresses the left-hand part of Diagram 59 shows K = 133.8. Then 
 
 d = V(133!s)(12) = 9 ' 4 ^ Say 9 ^ in ' 
 
 : = _Hi,70o_ 
 
 d (2000) (9.5) 
 
 Following across the diagram horizontally to the right to a value of -r = 7.45 and then 
 vertically downward to the lower right-hand margin, we find p = 0.0085. 
 
 Round Columns 
 Concrete outside of the hooping is neglected. The following notation is used: 
 
 P = direct load (compression). 
 
 e = eccentricity of load. 
 
 r = radius of column core. 
 
 p = total percentage of steel. 
 f e = maximum unit compression in concrete. 
 fc = minimum unit compression in concrete. 
 f s = maximum unit tension in steel. 
 /.' = maximum unit compression in steel. 
 
 Case I. Compression Over Whole Section. Diagram 60 gives values of 
 
 for various values of p and , and for both n = 12 and n = 15. 
 
 201 
 
BENDING AND DIRECT STRESS 
 Case II. Tension Over Part of Section. 
 
 *- 
 
 r> 
 
 The right-hand side of Diagrams 61 and 62 gives values of 7- in formula (11) for 
 
 Jc 
 
 various values of p and , and the left-hand side of these diagrams gives values of ^ in 
 
 R 
 
 formula (12). 
 
 Case III. Bending Only. 
 
 *- 
 
 ff f? 
 
 Values of j and -7- in the preceding equations are given in Diagram 63. Diagram 
 
 J c J s 
 
 64 gives the concrete and steel stresses in solid circular sections in the same manner as 
 the familiar diagrams for rectangular sections with steel in tension side only. In the 
 
 present case the value of ; is used instead of T-TO' 
 irr 3 bd 2 
 
 Examples for Round Columns 
 
 Assuming a column with 2Q-in. core reinforced with ten l-in. square rods and sus- 
 taining a load of 200,000 Ib. applied 2 in. off center, determine the maximum unit stress 
 in the concrete, n = 15. 
 
 10 e 2 
 
 r = 10 in. - (angexioy = 0.0318 r = Fd - - 2 
 
 From Diagram 60 
 
 or 
 
 1.12P 224,000 
 
 ~i^~ " "31TT6 = 712 lb ' PW * Sq " m - 
 
 Find the maximum unit stresses in the concrete and steel of the column in the preceding 
 problem if the eccentricity of the load is 8 in. 
 
 r = 10 in. p = 0.0318 - = = 1.25 
 
 8 
 
 From Diagram 62 
 
 ? = 0.325 
 
 R - ^ - 1 > 600 > 000 - r ) 
 " irr* ~ 3141.6 
 
 fc = ~ = 0^25 = 1)56 
 
 /, = 25R = (25) (509) = 12,720 lb. per sq. in. 
 f/ = nf c = 23,500 lb. per sq. in. 
 
 202 
 
44 
 
 
 BENDING 
 AND 
 DIRECT STRESS 
 
 OCTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTION 
 btf d'= 0.051 
 VALUES OF ^ n =12 
 
 " A' = A. 
 
 Compression Over Whole Section 
 and A 1 =A S Values of K in formula f t -|r 
 
 M- 
 O 
 
 (Ti 
 
 0) 
 
 1 
 
 1 
 
 <D 
 
 
 o 
 
 i 
 
 5 
 c 
 
 C 
 
 
 
 
 o 
 
 | 
 
 1 1 1 1 
 
 
 o 
 
 D 
 
 
 Itu 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ;/ 
 
 
 / 
 
 C 
 
 -^ 
 
 
 -To 
 
 02^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 d 
 
 f 
 
 
 
 3-- ', 
 
 3H ; 
 - 
 
 +L] 
 -u 
 
 
 
 V 
 
 
 ^ 
 
 
 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 ^ 
 
 
 
 \l 
 
 
 - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 N 
 
 
 W 
 
 
 ^ 
 
 5 
 
 
 \ 
 
 
 ^ s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 blO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 \ 
 
 
 v 
 
 
 
 s 
 
 
 \ 
 
 >^ 
 
 SL 
 
 
 
 ^s 
 
 ^ 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 
 \ 
 
 
 
 s 
 
 v 
 
 \ 
 
 N 
 
 
 1 
 
 1 
 
 N 
 ^ 
 
 
 v 
 
 
 5 
 
 
 S 
 
 > 
 
 *- 
 
 
 
 
 
 m 
 
 \ 
 
 \ 
 
 k 
 
 x 
 
 A 
 
 
 \, 
 
 N 
 
 N 
 
 s, 
 
 N 
 
 s 
 
 1 
 
 \ 
 
 \ 
 
 N 
 
 s 
 
 s 
 
 1 
 
 ! 
 
 \ 
 
 \ 
 
 \ 
 
 s \ 
 
 vv 
 
 1 
 
 s 
 
 \ 
 
 \ 
 
 
 x, 
 
 
 
 
 
 yiu 
 
 s 
 
 
 s 
 
 
 \ 
 
 
 
 
 
 
 , S 
 
 s 
 
 S 
 
 
 \, 
 
 
 
 s 
 
 S 
 
 s \ 
 
 \ 
 
 s \ 
 
 \ 
 
 
 
 V\ 
 
 
 ' V 
 
 
 
 
 
 N 
 
 
 s 
 
 
 s 
 
 
 
 
 \1 
 
 -\ 
 
 x^~ 
 
 Sy 
 
 
 \ 
 
 
 
 \ 
 
 
 s \ 
 
 
 
 
 $T 
 
 \. 
 
 
 
 
 s" 1 
 
 
 
 
 
 
 
 
 
 s, 
 
 
 \ 
 
 
 "v 
 
 \ 
 
 
 S 
 
 
 
 \ 
 
 
 
 \ 
 
 s 
 
 V 
 
 \ 
 
 \ 
 
 *& 
 
 \ 
 
 \ 
 
 ^t 
 
 s S 
 
 *v \ 
 
 s. 
 
 
 
 
 
 s 
 
 
 s 
 
 
 S 
 
 
 \ 
 
 S 
 
 s 
 
 V 
 
 
 s 
 
 s 
 
 
 \ 
 
 N 
 
 
 s S 
 
 V\v 
 
 
 
 
 V N 
 
 sc 
 
 
 o\ 
 
 s 
 
 \ 
 
 yu; 
 
 
 \ 
 
 
 N 
 
 
 ^ 
 
 
 x 
 
 
 s 
 
 s 
 
 s 
 
 
 \ x 
 
 S 
 
 
 s 
 
 s 
 
 
 
 s 
 
 s 
 
 
 $ 
 
 
 \J\ 
 
 s& 
 
 v\ 
 
 1 
 
 \ 
 
 s 
 
 yiu 
 
 J 
 
 
 ^s 
 
 s 
 
 \ 
 
 \ 
 
 \ 
 
 
 N 
 
 . 
 
 1 
 
 s 
 
 XL 
 > 
 
 s 
 
 V 
 
 s 
 
 ? 
 
 N 
 
 S 
 
 \^ 
 
 1 
 
 \ 
 
 V 
 
 \ 
 
 \A 
 
 X- 
 
 v\ 
 s/\ 
 
 -\ 
 
 s 
 
 
 
 m 
 
 <s; 
 
 s 
 
 5 
 
 \ 
 
 E 
 
 \ 
 
 . J 
 
 ^> 
 
 S 
 
 X 
 
 - X 
 
 IS" 
 
 \ ( 
 
 
 
 \ 
 
 V 
 
 i 
 
 s 
 \ 
 
 e. 
 
 1 
 
 \i 
 
 1 
 
 k 
 
 
 X/" 
 
 x\ 
 
 x. 
 
 sb 
 
 S 
 
 _\ 
 
 y 
 
 wu 
 
 tlX) 
 2 I'D 
 
 
 
 
 
 
 
 
 
 
 
 s 
 
 E 
 
 \ 
 
 
 
 \ 
 
 \ 
 
 \ 
 
 v X 
 
 \J 
 
 \ 
 
 s 
 
 S 
 
 V 
 
 3 
 
 xV 
 
 *x 
 
 
 \ 
 
 
 
 
 x 
 
 s 
 
 s 
 
 
 x 
 
 - 
 
 
 
 V 
 
 1 
 
 X 
 
 x 
 
 
 
 v^ 
 
 4- 
 
 -s 
 
 ^v 
 
 \ 
 
 
 s 
 
 s 
 
 ^ 
 
 1 
 
 \ 
 
 \ 
 
 
 
 
 ^ 
 
 x, 
 
 x 
 
 \ 
 
 c 
 
 '> 
 
 s^ 
 
 x 
 
 
 \1 
 
 
 ^ 
 
 N. 
 
 1 
 
 x 
 
 X 
 
 
 
 S 
 
 ^N 
 
 V 
 
 1 
 
 X 
 
 
 
 
 
 
 
 
 
 ' x 
 
 
 
 \- 
 
 
 S^~ 
 
 
 
 X 
 
 J 
 
 \ 
 
 XT 
 
 ^sr 
 
 x. 
 
 ^^ 
 
 
 *^ 
 
 ~x^ 
 
 37 
 
 \y'X 
 
 ^y 
 
 N 
 
 
 
 V^ 
 
 
 s 
 
 
 N 
 
 X 
 
 
 
 
 
 
 N^ 
 
 
 x^ 
 
 
 : 
 
 
 
 'xP 
 
 X 
 
 
 x 
 
 -X 
 
 ^x 
 
 N, 
 
 \! i 
 
 X7 
 
 3s 
 
 % 
 
 s v 
 
 Bending and Direct Stress- 
 ed 0.05 1 Based on n-l 
 
 UIC 
 
 X 
 
 S,. 
 
 X 
 
 b 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 s 
 
 
 N. 
 
 V 
 
 
 
 >^- 
 
 
 r^ 
 
 
 ^ 
 
 (ill 
 
 * 
 
 s, 
 
 
 
 
 X 
 
 x 
 
 ^>^ 
 
 
 t 
 
 C S 
 
 s 
 
 
 
 
 X 
 
 
 5 
 
 X 
 
 \ 
 
 S -X 
 
 ^* 
 
 xi 
 
 Sjj 
 
 s s 
 
 -^ 
 
 ^ 
 
 x^ 
 
 x^ 
 
 i 
 
 
 x 
 
 s, 
 
 
 
 
 
 
 X 
 
 
 
 
 x 
 
 rl 
 
 \7 
 
 \ 
 
 j 
 
 ,-x. 
 
 
 X^ 
 
 N^ 
 
 s^-^ 
 
 s^ 
 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 N 
 
 
 N 
 
 
 
 
 X 
 
 
 N 
 
 N 
 
 
 N 
 
 
 
 \ 
 
 
 x^ 
 
 \ 
 
 x^*^ 
 
 
 \ 
 
 PC 
 
 ;- 
 
 
 
 
 s 
 
 
 
 
 
 5 
 
 
 
 
 5 
 
 
 N 
 
 
 
 
 
 x 
 
 S 
 
 N 
 
 s 
 
 N 
 
 X 
 
 X 
 
 xJ ? 
 
 s 
 
 X 
 
 x-' 
 
 
 s 
 
 
 
 S 
 
 
 
 
 
 s 
 
 x^ 
 
 
 si 
 
 
 
 
 
 
 
 X" 
 
 
 x. 
 
 
 5' 
 
 S 
 
 X 
 
 N- 
 
 
 - 
 
 
 HZ 
 
 X^" 
 
 S 
 
 X 
 
 
 9C 1 ! 
 
 X 
 
 
 \ 
 
 
 
 
 
 
 
 r 
 
 
 
 j 
 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 \ 
 
 
 \[ 
 
 s 1 s 
 
 
 "^ 
 
 
 \ 
 
 
 x^ 
 
 
 x 
 
 
 
 
 
 \^ 
 
 
 \ 
 
 
 
 ^^ 
 
 
 x^ 
 
 
 \ 
 
 
 x 
 
 
 ^^ 
 
 X 
 
 
 \ 
 
 _ ^ 
 
 x 
 
 
 
 X 
 
 
 x, 
 
 
 
 
 N, 
 
 
 
 
 
 
 
 
 
 
 
 
 x 
 
 
 
 M- 
 
 
 
 
 \ 
 
 x 
 
 
 
 
 x 
 
 
 i 
 
 X 
 
 
 s, 
 
 
 
 ^ 
 
 
 
 
 
 x 
 
 
 N 
 
 N 
 
 
 x 
 
 
 
 
 
 
 
 
 S 
 
 x 
 
 N 
 
 X 
 
 X 
 
 
 
 E 
 
 5 
 
 
 
 x 
 
 
 
 x 
 
 
 5 
 
 
 
 
 
 S 
 
 
 x 
 
 
 x 
 
 
 
 
 
 
 X 
 
 
 S 
 
 N. 
 
 X 
 
 1 
 
 x^ 
 
 R 
 
 90 1 
 
 
 
 
 - 
 
 
 
 
 
 
 
 
 
 x, 
 
 
 
 x. 
 
 
 
 ^^ 
 
 S 
 
 ^ 
 
 
 X, 
 
 "^x 
 
 
 ^xj 
 
 
 
 X 
 
 
 ^- s 
 
 
 
 _/x. 
 
 
 
 X 
 
 
 
 x 
 
 
 
 x 
 
 
 X 
 
 
 
 X 
 
 
 v - 
 
 
 ^s 
 
 
 
 
 
 s 
 
 "- 
 
 
 x 
 
 X, 
 
 X 
 
 ^*X, 
 
 
 x 
 
 
 
 
 
 
 -* 
 
 x; 
 
 
 
 
 
 
 
 ~ v v 
 
 
 
 x 
 
 
 X 
 
 
 
 j 2 * 
 
 rj 
 
 
 
 XT 
 
 N^ 
 
 X. 
 
 ^x 
 
 ^-*< 
 
 x^ 
 
 j'OC 
 
 ^^v, 
 
 
 
 ^x. 
 
 
 
 
 
 ^x 
 
 
 
 \^^ 
 
 
 ' 
 
 
 
 
 
 x^ 
 
 
 x^ 
 
 \ 
 
 
 ^^ 
 
 \ 
 
 \^ 
 
 x^_ 
 
 
 
 ijUt. 
 
 ,-.-- 
 
 ^s 
 
 
 N 
 
 
 
 x 
 
 
 x 
 
 
 x 
 
 
 
 X 
 
 
 5s 
 
 
 
 J 
 
 
 X 
 
 X 
 
 _5 
 
 
 ^p 
 
 
 
 
 i 
 
 _X 
 
 Sj 
 
 5 
 
 
 
 
 
 
 
 
 
 
 
 5 
 
 
 
 
 
 
 
 - 
 
 s 
 
 _ s 
 
 5 
 
 
 
 x 
 
 
 
 1 
 
 ^ 
 
 
 
 
 
 S 
 
 
 - 
 
 x 
 
 v 
 
 
 -X 
 
 
 
 x 
 
 
 
 X 
 
 
 
 ^ 
 
 
 
 
 b 
 
 , 
 
 
 __ 
 
 
 ^-x. 
 
 
 
 S 
 
 
 
 E 
 
 
 
 
 
 
 
 
 
 
 
 | 
 
 
 
 i 
 
 
 
 
 
 5 
 
 
 
 
 
 - 
 
 
 
 x~ 
 
 s^ 
 
 r^- 
 
 x; 
 
 c.00 
 
 X 
 
 . 
 
 
 
 ^\ 
 
 
 : 
 
 
 x 
 
 
 
 
 - 
 
 
 X 
 
 
 X, 
 
 ^ 
 
 X 
 
 
 
 
 
 
 
 s 
 
 ^ 
 
 ^ 
 
 \ 
 
 
 
 
 20C 
 
 1 
 
 
 s 
 
 
 
 ^ 
 
 ( 
 
 ^ 
 
 
 
 
 
 s 
 
 
 1 
 
 
 x 
 
 i 
 
 
 x 
 
 
 
 -, 
 
 
 S 
 
 -X 
 
 ? 
 
 ^^ 
 
 == 
 
 k 
 
 ^ 
 
 
 
 ^"X 
 
 
 
 ^ 
 
 <* 
 
 
 
 
 
 
 $ 
 
 ^v 
 
 51 
 
 5 
 
 
 -- 
 
 ^ 
 
 
 s 
 
 
 j * 
 
 
 ^ 
 
 p 
 
 55 
 
 s: 
 
 ^, 
 
 
 ""-x, 
 
 ICC 
 
 
 
 
 ^ 
 
 
 
 
 
 5 
 
 
 p 
 
 -4- 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 5 
 
 
 -^. 
 
 
 5s^, 
 
 
 E 
 
 0,020 
 
 (D 
 
 c 
 
 c 
 d 
 
 c 
 
 c 
 
 
 
 C5| 
 
 Q 
 C 
 
 c 
 
 i 
 
 
 c 
 
 1 
 
 C 
 
 OO'O 
 
 *ti j.o sanity^ 
 
 
 ono 
 
BENDING 
 AND 
 DIRECT STRESS 
 
 
 DIAC 
 
 ] 
 
 d' = 0.1( 
 n = 12 
 
 A'=A, 
 
 * 
 
 RECTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTIOly 
 VALUES OF ^~ 
 
 Bending and Direct Stress- Compression Over Whole Section 
 1 d'=O.IOt Based on n -IE and A' = A s Values of K in formula *$ 
 
 4~ 
 X 
 
 in 
 
 (U 
 
 I 1 1 
 
 ceo 
 
 i s ; 
 
 d c> 
 
 1 1 
 
 1 1 
 
 1 
 
 
 
 020 
 
 
 
 
 
 0210 
 
 
 S "--V _ 
 
 
 
 
 
 
 S S^x N x^r 
 
 ^- ^ " - 
 
 
 
 
 
 "s "" IS "" S S 
 
 ^^^S^^" 
 
 
 
 
 61*0 
 
 
 S S X x 
 
 X^sr^ ^^ ^^, 
 
 
 
 
 
 ^ X ^ S<I S N N 
 
 x ^ ^^-S^x^" 
 
 ^^ ^ 
 
 
 
 
 x x x s; 
 
 ^ ^ X^ X S X ^'S" 
 
 V^?S ^^x" 
 
 s^ 
 
 
 
 
 S~ S~ S| S 
 
 
 r S jjj "5 r* 
 
 5 S v^^ 
 
 
 
 n*o -^-^^^-^ 
 
 
 
 ^^-^ sek^^ 
 
 ^-~- 
 
 rpr 
 
 
 -X-S^^^x ^^X" 
 
 v ^^^S^^x* 
 
 s^^-^N ^vX 
 
 \\ ^ 
 
 
 X 
 
 X 
 
 % 
 
 (!) 
 * 
 
 "^X *S ~X^s 
 
 ~S S S S * <s; ~" S" 
 
 s -s^^^- X-^^ 
 
 r^\ X s ^ X s 
 
 ^v\^ 
 
 
 x x S S 
 
 ^XXSyV^-S 
 
 \ S x 
 
 \J\N^\\^ 
 
 o\ \ 
 
 9 1*< 
 
 x X *\ 
 
 
 s X ^ ^. ^ 
 
 \ \ ^ X N 
 
 K "t^ 
 
 
 X v \ v 
 
 XX X v ^ 
 
 V ^ oSfc. N 
 
 IS k ^ .S ^ 
 
 V J V \ 
 
 
 
 u , N ^ , v , N N 
 
 
 
 
 
 
 ~S -X ~X ~X x^ > 
 
 
 ^ s ^ \ s^ 
 
 x S^ 
 
 SIO 
 
 S ^^X^S~^ 
 
 5 x-S-x 5 S S S ^; 
 
 ;^^x N 3 
 
 s ^^^x 
 
 s^ ^ 
 
 
 Fcx s ^ y x x, x 
 
 _S_S_S S x -!> 
 
 x x x^s x " r x : 
 
 "x^-TS^^ ^^N 
 
 x S 
 
 ^|'( 
 
 X ^ v 
 
 V. *\ N S JSk. ! 
 
 X X X, s 
 
 X ^J "X 
 
 xP* 
 
 
 s. ^ 
 
 s. X N. >W v 
 
 S ^ ^ ^ 
 
 N x. \ v \ 
 
 
 
 X. ^ ^ 
 
 
 
 
 
 
 J|"^ *S v *x ^ 
 
 
 
 
 
 
 "S ^ \ 
 
 \ ^, iy Vv 1 * 
 
 X "X X v, 
 
 \ v *\ v ^ 
 
 x x! 
 
 
 s^ \ v "X 
 
 *\ ^ h -v v 
 
 ^ ^ *x *X x ^ 
 
 ^ X \ v 
 
 s^ ^^ 
 
 
 
 
 
 
 
 
 ^ ^ X 
 
 _S^SZ_I^ N ^" 
 
 - * 5 ^ S ^ ra 
 
 
 
 
 
 
 ^ ~x ~s s ^s 
 
 ^~ S s^N X 
 
 X--^\^ 
 
 
 
 
 
 
 
 
 "^ ^ ^ ^^ 
 
 x x ^ ^ *^ N v 
 
 S XX^ x"^-v S 
 
 -X-x^r^F 
 
 ^x^ 
 
 re 1Z ^ s s, 
 
 -\-v-S rs^s_. 
 
 - ^ ^ s; *x- 
 
 *N X^ S X, 
 
 S^XN 
 
 II'O 
 
 S X. ^ ^^c*^ 
 
 S ^ ^. x. X 'x ' 
 
 
 
 x ^^ ^v 
 
 
 ^~^~ S S~H 
 
 -^- Nr^^; S S~" 
 
 s ^S^N ~x;^ 
 
 ^X^ ^~X^ 
 
 \ SL 
 
 
 2 
 
 <5i6_x__x-^ s 
 
 x S ^ x. "x^ 
 
 ^-X-^-X;-- 
 
 s s s s^s^ 5 
 
 s~^ x 
 
 01 '( 
 
 
 
 
 
 
 
 
 ^ : 2bt-x- s 
 
 x ^ v ^s ^ S 
 
 5> ^ x; s ^ 
 
 x-x^x^ixX 
 
 nN^^ 
 
 
 jO"'C x ^*Cs x s 
 
 -^x-^^-x-s-" 
 
 N ^-^-X-X : 
 
 X-X- x;^^^ 
 
 -X ^js 
 
 60U 
 
 ^^ ^ x ^*s 
 
 S S H x, "^^^^ 
 
 * N ^^ x ^ x 
 
 x-^ K^ x-^^^ 
 
 S s 
 
 
 S ^X ^S 
 
 X S<_^_^,_ X s 
 
 - ""^ - s x s 
 
 Xps ^X X; 
 
 _. ^_ J^_ 
 
 
 
 __S_ -Ss;-!^^- S;- 
 
 - ^s; ^s; "x * 
 
 ^s^ N x^s!^ 
 
 s ^ 
 
 
 -^--X^^ix 
 
 ^s, ^ S ^ ^ x 
 
 V, ** S V 
 
 X X x, S 
 
 S^S 
 
 
 ."(^C s s ^ x, X 
 
 --^- ^^-^ ^ S "s; 
 
 "^xf^'T^R/ 
 
 
 "*x *^T 
 
 LOO 
 
 
 x x ^ s. *** 
 
 ^ . x "*** ^ * 
 
 ^ X X X 
 
 
 
 ^ \ ^ x 
 
 X X v *** 
 
 
 
 
 
 
 x X X x^ *^ 
 
 ^ X ^ s. s 
 
 'S ^ "^ . 
 
 . ^ 
 
 
 
 
 
 
 
 
 
 **% ^x^"^ ^"^ s v~ 
 
 v xc**> ~^x" 
 
 *x ~ ^ ~ ^X ^S 
 
 X^-X^ 
 
 900 
 
 x x ^ 
 
 Sh *X "^ s ^- 
 
 * i* *** !^ ^ 
 
 ^ X ^ 
 
 ^ ^x^ 
 
 
 v ^ ** ^-^ 
 
 -^ x ^S ^^ V<5 
 
 - **" ~^ V ^ s 
 
 ^x x ^ ^^ 
 
 
 
 
 5O*u x "^ ^ 
 
 
 
 
 
 
 
 \ X *N ^^" 
 
 *" "^ X % 
 
 *x ^ ^ X 
 
 ^ v 
 
 
 ^ -x^ 
 
 s "*^ "** s.^ ^ S 
 
 1X1 ^ **> 
 
 *** v^ S ^ . 
 
 x ^ v 
 
 
 ; ^ n; '*'*> 
 
 ^ X ^ ^ -xa^- "* 
 
 * s v x ^ ^ 
 
 v x ^ S ^ 
 
 
 
 
 ^J "^-^ S 
 
 "^ k, ^ * _ E 
 
 
 
 
 
 
 
 
 
 
 
 "^ ^^ x ^ 
 
 "* *N ^ ^ ^ ^ ^ 
 
 * "^ *s 
 
 *V "^ V, **"* s^ 
 
 X "*** w 
 
 
 - **" -X - v 
 
 N S ^X; "** X. 
 
 - ^5x ^ iv "* S 
 
 x ** ^"v, "*> 
 
 ^^ ^ 
 
 
 
 SSB ~ ^> ^Z 
 
 "'"^L^Hv^ ^^I^" 
 
 
 """s. "^^ ^ 
 
 ^^x 
 
 90Y 
 
 _x_ s **-^- 
 
 "*" *i "** ^. "^^ 
 
 = ^-v "^ *i v>> 
 
 ^ *> ""Si "** 
 
 ^^x v 
 
 
 K^ *=>;- "" 
 
 - ^^ ^^ "*" * 
 
 ^-^ "^-^ 
 
 ^"^ "^ ^ *"' S 
 
 x x 
 
 
 
 TO ^ > N *** 
 
 , *"*^ ^ "*> " t: - 
 
 ^**^ ^ v " 
 
 "-x *" -^ ""x 
 
 
 ZCK. 
 
 ' ^ v v. ^oV 
 
 " ""** ^ ^^<=^^ x 
 
 ' ^^- ^^ ^ 
 
 ^"-^ --x.^'*" 
 
 
 
 TSfl-"^--^ 1 - 
 
 ^k _ "-a ^. ^s. 
 
 .^^^- --^, 
 
 "' ;;s >. ^^^" 
 
 -=^""^ 
 
 ot 
 
 
 -^ ^^j 
 
 *** -^ ***''* ^^ 
 
 '^-^^ --^^ 
 
 --^-=^* 51 ^^ 
 
 -^._^ 
 
 
 ^5i^ 
 
 ^**^; "^"""'Xi "*"" 
 
 . "*">*. "*- 
 
 "^^- ^^'v 
 
 "^5. ^ 
 
 
 
 ill 
 
 ! _J i 
 
 1 I _J 
 
 1 
 
 
 OO'O 
 
 
 d jo ssnjDA 
 
 204 
 
DIAGRAM 46 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTION 
 
 VALUES OF ~~ 
 
 d'=0.15t 
 n=12 
 
 A'=A S 
 
 :ssion Over Whole Section 
 
 Values of K in formula f c 7FF 1 
 
 
 yi'u 
 
 
 s, 
 
 
 4) 
 
 
 
 (V 
 
 o 
 
 r 
 
 
 
 
 S 
 
 
 
 
 OJ 
 
 
 
 
 o 
 
 
 
 
 
 J 
 
 
 
 
 I 
 
 
 
 
 1 
 
 
 
 
 1 
 
 
 
 
 o 
 
 - 
 
 
 zn 
 on 
 
 SO) 
 
 5 
 
 
 s 
 
 
 s 
 
 i 
 
 si 
 
 s 
 
 ^ 
 
 - 
 
 
 N 
 
 s 
 
 N 
 
 
 s 
 
 S 
 
 \ 
 
 ^ 
 
 s 
 
 S 
 
 N 
 
 
 
 s 
 
 s 
 
 s 
 
 
 s 
 
 J 
 
 x 
 
 s 
 
 
 x 
 
 * 
 
 - 
 
 % 
 
 1 
 
 v 
 
 sj 
 
 S, 
 
 ^ 
 
 bllj 
 
 t 
 
 <n 
 
 0) 
 
 5 
 
 PITS 
 
 N 
 
 s 
 
 x 
 
 5 
 
 x 
 
 
 ^_ 
 
 N 
 
 - 
 
 s 
 
 S 
 
 ^- 
 
 S 
 
 x 
 
 S 
 
 s 
 
 3 
 
 
 
 s, 
 
 
 ( 
 
 X 
 
 5; 
 
 I 
 
 
 X 
 
 
 s 
 
 ^ 
 
 X 
 
 
 s 
 
 s 
 
 x^ 
 
 X 
 
 x 
 
 N 
 
 s^ 
 
 x' 
 
 i 
 
 X; 
 
 f 
 
 \ 
 
 tli. 
 
 O- 
 
 iro 
 
 <? 
 
 
 
 x 
 
 
 
 
 s 
 
 
 
 N 
 
 
 N 
 
 
 
 
 
 
 
 , 
 
 
 
 I " 
 
 
 
 
 
 
 
 
 
 
 
 HS 
 
 \ 
 
 
 k 
 
 ^ 
 
 ! 
 
 1 
 
 x 
 
 
 
 L 
 
 S 
 
 <. 
 
 J 
 
 
 s 
 
 k- 
 
 
 
 x 
 
 
 
 N, 
 
 j 
 
 
 s 
 
 \ 
 
 S 
 
 x. 
 
 N 
 
 x. 
 
 x 
 
 x 
 
 ^ 
 
 s 
 
 V 
 
 ^ 
 
 x 
 
 
 X 
 
 
 Bending and Direct Stress - Compre 
 
 d'=O.I5t Based on ni and A' = A C 
 
 oro 
 
 
 ^ 
 
 x 
 
 
 
 \ 
 
 ^V 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^^ 
 
 ^^ 
 
 
 x 
 
 
 
 
 s 
 
 
 
 ^ 
 
 
 
 
 x 
 
 
 \ 
 
 
 'M 
 
 | Values o 
 
 o 
 
 
 
 5 
 
 
 
 ^ 
 
 
 
 
 
 s 
 
 
 
 
 
 
 
 5 
 
 
 
 
 
 
 
 v 
 
 
 
 s 
 
 
 S 
 
 
 s 
 
 
 s 
 
 
 fr 
 
 
 
 
 
 
 
 N 
 
 s 
 
 
 
 x 
 
 - 
 
 ^x 
 
 
 
 - 
 
 
 x 
 
 
 
 ^ 
 
 
 
 
 
 x 
 
 
 x 
 
 
 
 s 
 
 i^ 
 
 -- 
 
 x 
 
 
 
 
 
 
 
 y- 
 
 
 
 
 
 
 K 
 
 x 
 
 
 ^ 
 
 - 
 
 -x 
 
 ^ 
 
 
 - 
 
 X 
 
 
 
 x. 
 
 
 5 
 
 
 
 X 
 
 
 s , 
 
 
 x 
 
 
 X, 
 
 
 S 
 
 
 
 
 
 
 
 ^* 
 
 ^ 
 
 
 ^ 
 
 X 
 
 Rff 
 
 , 
 
 : 
 
 
 
 
 x 
 
 XT 
 
 ! 
 
 
 
 
 2 
 
 
 
 <, 
 
 
 
 
 
 x 
 
 
 !x 
 
 
 x: 
 
 
 
 
 
 
 ^ 
 
 k 
 
 t,- 
 
 5 
 
 
 X 
 
 
 K 
 
 m 
 
 
 
 
 
 
 
 
 
 - 
 
 
 
 s - 
 
 
 
 
 
 ^ 
 
 
 
 <^ 
 
 
 
 
 s 
 
 
 
 
 
 w^ 
 
 
 x 
 
 
 
 
 
 ^ 
 
 k^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^N 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 s. 
 
 ~ s 
 
 
 ^ 
 
 
 ^^ 
 
 
 x 
 
 ^ 
 
 
 x 
 
 v^ 
 
 - 
 
 x 
 
 ^. 
 
 
 ^ 
 
 c^ 
 
 > 
 
 
 Jx 
 
 ^ 
 
 
 ^ 
 
 l 
 
 s 
 
 x 
 
 x 
 
 ' 
 
 
 X 
 
 
 
 ~^ 
 
 
 ^ 
 
 
 
 
 
 *sJ^ 
 
 
 
 
 
 x^ 
 
 
 
 \ 
 
 
 
 \ 
 
 
 
 s 
 
 
 
 
 ^x 
 
 
 
 ^ 
 
 
 \ 
 
 
 x 
 
 
 \ 
 
 
 
 
 
 K^ 
 
 
 x 
 
 
 Si 
 
 
 s 
 
 
 
 : 
 
 
 
 s 
 
 
 
 5 
 
 
 
 S 
 
 
 
 
 
 S 
 
 
 s 
 
 
 
 ^ 
 
 
 '"S, 
 
 
 
 
 
 X 
 
 
 s 
 
 
 x; 
 
 
 ^ 
 
 
 
 s^ 
 
 
 
 x 
 
 
 
 *v. 
 
 
 
 x 
 
 
 
 *=^ 
 
 
 ^ 
 
 
 
 X" 
 
 r^ 
 
 
 
 
 ^ 
 
 
 
 
 
 x 
 
 
 x 
 
 
 
 
 
 
 
 
 > 
 
 5; 
 
 N 
 
 
 x 
 
 
 x 
 
 
 
 "^ 
 
 
 
 * 
 
 
 
 X* 
 
 2 
 
 
 
 S 
 
 
 
 x 
 
 
 
 
 
 ^> 
 
 
 ^ 
 
 
 
 x. 
 
 .00 
 
 ^ 
 
 X, 
 
 ^r 
 
 x^ 
 
 ^ 
 
 
 5Z 
 
 S 
 
 
 x 
 
 ^ 
 
 
 ^ 
 
 2 
 
 s. 
 
 " 
 
 
 S 
 
 
 
 s 
 
 
 ^ 
 
 
 
 -V 
 
 
 X 
 
 
 
 
 
 2 
 
 
 
 x 
 
 
 
 
 
 
 ^ 
 
 ^ 
 
 x 
 
 
 ^ 
 
 
 
 "- 
 
 ^ 
 
 
 
 
 x 
 
 
 
 ^ 
 
 
 
 
 
 \ 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 ^ 
 
 5 
 
 
 5 
 
 ~ 
 
 X 
 
 
 
 
 
 x 
 
 
 ^ 
 
 
 
 ^ 
 
 -^ 
 
 
 
 x 
 
 
 N 
 
 v __ 
 
 ^ 
 
 
 - 
 
 -*" 
 
 XT 
 
 
 
 ^7 
 
 
 
 x^ 
 
 - N 
 
 
 
 ^ 
 
 ^; 
 
 
 
 x 
 
 ^ 
 
 I'UL 
 
 
 
 
 
 
 
 
 
 
 
 
 ; 
 
 
 
 
 
 
 
 
 
 "s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 x 
 
 
 
 *x 
 
 
 
 -v. 
 
 
 ^^ 
 
 
 
 ^ 
 
 
 *^^ 
 
 
 
 s^ 
 
 
 
 1^ 
 
 
 
 ^, 
 
 
 
 X 
 
 
 5 
 
 J 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 rOO 
 
 ' 
 
 S 
 
 
 
 
 s 
 
 
 
 S! 
 
 
 ( 
 
 ^ 
 
 
 
 ^> 
 
 
 
 
 -, 
 
 
 x 
 
 
 
 5 
 
 
 
 ^s 
 
 
 
 ^ 
 
 
 
 s 
 
 
 
 
 
 
 9<)'( 
 
 
 "X, 
 
 
 ^ 
 
 
 ^; 
 
 ^ 
 
 X 
 
 ,^- 
 
 
 
 
 
 
 
 L^ 
 
 
 
 
 
 
 
 "S^ 
 
 
 
 ~^ 
 
 - 
 
 
 ^ 
 
 
 
 *s 
 
 ^ 
 
 
 
 
 
 *^~ 
 
 
 
 ^> 
 
 ^ 
 
 
 
 ^v^ 
 
 
 
 *N 
 
 ^ 
 
 
 
 ^*, 
 
 
 
 
 N^ 
 
 
 
 ^^ N 
 
 
 
 ^ 
 
 
 
 *^s. 
 
 
 
 -*, 
 
 
 
 X 
 
 
 x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 
 
 
 
 
 ' 
 
 
 
 
 
 
 ~~ 
 
 *^ 
 
 x; 
 
 
 
 x; 
 
 
 
 
 x 
 
 
 
 
 ^ 
 
 
 
 
 ~ 
 
 * 
 
 *"v 
 
 
 
 
 X 
 
 
 
 ^ 
 
 
 
 
 |j 
 
 
 ==^7 
 
 S - 
 
 K; 
 
 1 
 
 3i 
 
 ^ 
 
 ^^ 
 
 V 
 
 | 
 
 
 
 
 ^ 
 
 
 
 
 --^ 
 
 
 
 
 -^ 
 
 
 
 "^^ ^ 
 
 
 
 ^ 
 
 
 
 * 
 
 X. 
 
 
 
 ^ 
 
 
 
 --*. 
 
 
 
 V 
 
 
 
 x 
 
 
 
 
 -^ 
 
 
 
 
 >, 
 
 
 
 
 S 
 
 
 
 -> 
 
 
 
 < 
 
 
 
 f 
 
 -> 
 
 
 
 -, 
 
 
 
 X. 
 
 
 
 luu 
 
 
 
 
 
 
 
 
 
 
 
 s^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 >, 
 
 
 
 
 
 
 
 
 
 lO'O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ~-^ 
 
 
 
 '**--. 
 
 
 
 
 ---. 
 
 
 
 
 
 ^^ 
 
 
 
 
 ~^ 
 
 
 
 ^, 
 
 
 
 
 ^ 
 
 
 
 ^^ 
 
 
 
 * 
 
 s^ 
 
 
 
 X 
 
 
 
 
 
 
 
 S 
 
 
 
 5 
 
 
 
 
 5 
 
 
 
 
 
 x 
 
 
 
 
 
 
 
 -> 
 
 
 
 
 -^, 
 
 
 
 5 
 
 
 
 
 >* 
 
 
 
 _ 
 
 
 
 
 p 
 
 
 
 
 
 
 
 
 5 
 
 
 
 
 OJ 
 
 8 
 
 
 
 
 
 
 
 o 
 
 
 
 8 
 
 
 
 
 
 
 
 
 
 8 
 
 
 
 
 8 
 
 
 
 1 
 
 wo 
 
 "U j.o sen IDA 
 
 205 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 47 
 
 RECTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTION 
 
 n=15 
 
 A'=A S 
 
 VALUES OF 
 
 N 
 
 ^ 
 
 
 I 
 
 
 
 
 
 
 
 
 f 
 
 
 1 
 
 
 0. 
 
 
 o 
 c 
 
 1 
 
 
 i 
 
 ^ 
 
 
 1 
 
 1 
 
 
 
 
 
 1 
 
 
 
 H-i 1 
 
 
 m 
 
 s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 | 
 
 
 
 
 \ 
 
 \ 
 
 
 A 
 
 
 \ 
 
 w,; 
 
 
 
 
 
 
 
 
 
 
 / 
 
 / - 
 
 
 * 
 
 
 * 
 
 
 
 
 j 
 
 
 120 
 
 V 
 
 N 
 
 
 
 \ 
 
 
 v^~ 
 
 
 
 
 
 
 
 
 
 
 
 / 
 
 ? 
 
 
 
 
 
 
 i do 
 
 
 H- 
 
 
 
 s 
 
 
 
 
 
 
 
 L 
 
 s s 
 
 L ^ 
 
 
 
 
 
 
 
 
 f 
 
 ;4 . 
 
 
 
 
 
 N 
 
 
 
 C 
 
 
 
 s 
 
 
 
 
 \ 
 
 
 
 
 
 V \ 
 
 
 
 
 
 
 
 ^ / 
 
 r 
 
 -*-* 
 
 
 
 . 
 
 
 
 
 
 X 
 
 
 0771 
 
 
 
 r- 
 
 
 
 
 
 
 
 v\ 
 
 
 
 
 
 
 
 7 
 
 I 
 
 ^_ 
 
 
 i- 
 
 V : 
 
 
 
 rnr 
 
 
 t 
 
 
 
 \ 
 
 
 
 
 
 
 \ 
 
 
 \s 
 
 ^^rv 
 
 \\ 
 
 y__s 
 
 K ^ 
 
 -- 
 
 
 
 fc 
 
 
 
 
 
 
 
 
 
 
 0) 
 
 S 
 
 3 
 
 
 blU 
 9TO 
 
 ^ 
 
 s 
 
 s 
 
 s 
 
 
 ^ 
 
 L 
 
 
 rn 
 
 y^ ^ 
 
 s^ 
 
 \ \ 
 
 - ^-\ 
 
 V 
 
 
 S 
 
 v 
 
 s 
 
 r 
 
 s V 
 
 ? 
 
 s 
 
 r~* 
 
 1 
 
 
 
 
 
 m 
 m 
 
 
 I 
 
 f 
 
 ~> 
 
 
 LK 
 
 yit 
 
 S 
 s 
 
 s, 
 
 \ 
 
 \ 
 
 5 
 
 \ 
 
 S 
 
 ly 
 
 \ 
 
 M- 
 
 \ 
 , 
 
 ^ r 
 
 !|s 
 
 s 
 
 s 
 
 \ \ 
 
 \ X 
 
 
 \ 
 
 \ 
 s 
 
 s^ 
 
 s \ 
 
 * 
 
 \ 
 
 \ s 
 \ \ 
 
 s\ 
 
 \ 
 
 S 
 \ 
 
 A 
 
 X 
 
 \\ 
 1 
 
 1 
 
 /.I'C 
 
 
 > 
 
 _ 
 
 
 
 s 
 
 
 ^ 
 
 
 -^ 
 
 
 \ 
 
 
 
 
 
 y 
 
 r^r^ 
 
 A-V 
 
 
 
 
 
 
 \\ 
 
 v\ 
 
 S 
 
 \ 
 
 SS 
 
 ^ 
 
 
 
 Q> 
 
 
 SIO 
 
 
 
 S^ 
 
 
 \ 
 
 
 \ 
 
 \ 
 
 
 * V 
 
 
 \o^ 
 
 ~ s^ 
 
 ^ 
 
 y^ 
 
 
 \ \ 
 
 -^ 
 
 
 -v 
 
 s 
 
 v 
 
 \\ 
 
 \\' 
 
 SulU 
 
 
 > 
 
 
 
 V 
 
 \ 
 
 
 ^ 
 
 
 s 
 
 
 
 . \ 
 
 \ 
 
 ^ X N 
 
 
 s >_ 
 
 \ \ \ 
 
 
 V V 
 
 s 
 
 \ 
 
 \\ 
 
 \ V 
 
 s 
 
 \ 
 
 v^ 
 
 \ s 
 
 
 
 O 
 
 
 
 s 
 
 
 S 
 
 
 \ 
 
 
 
 
 
 ^ 
 
 
 \ N 
 
 
 ^ S; 
 
 s 
 
 5 
 
 
 y 
 
 
 y\ 
 
 
 \ 
 
 A' 
 
 XV 
 
 
 
 8 
 
 
 ho 
 
 \ 
 
 
 s 
 
 
 s 
 
 
 \ 
 
 
 \- 
 
 
 s 
 
 \ _\ 
 
 ' A 
 
 
 \ 
 
 
 s 
 
 \ 
 
 \\ 
 
 \S 
 
 \ 
 
 x \ 
 
 | 
 
 v\ 
 
 Wo 
 
 
 (n 
 
 IT) 
 
 
 
 
 > 
 
 
 
 
 
 
 
 ^. 
 
 
 s~ 
 
 
 s y ^ 
 
 
 
 N 
 
 \ 
 
 y 
 
 N s 
 
 >' 
 
 s 
 
 
 ,v 
 
 
 
 N+- 
 
 < 
 
 
 -1C 
 
 
 N 
 
 
 N 
 
 
 
 
 s 
 
 X. 
 
 V\ 
 
 
 S 
 
 ^^- 
 
 s:^^ 
 
 y 
 
 \ s 
 
 
 ~y 
 
 s\ 
 
 V s 
 
 \ 
 
 \ 
 
 ^v* 
 
 \ ^ 
 
 \\ 
 
 tl'U 
 
 o\ 
 X 
 
 Q. ii 
 CVf 
 
 
 
 s 
 
 \ 
 
 
 \ 
 
 
 N 
 
 
 v / 
 
 S^f 
 
 S ^ 
 
 
 
 
 ^N 
 
 
 y 
 
 \ -^ 
 
 
 
 V 
 
 y 
 
 y 
 
 \s 
 
 \\ 
 
 
 <fc 
 
 E^ 
 
 
 
 
 
 
 
 
 
 
 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 A 
 
 
 \ 
 
 
 ^ \ 
 
 
 u 
 
 8^ 
 
 10 
 
 ID 
 
 210 
 
 s 
 
 S 
 
 v 
 
 
 
 
 < 
 
 
 \ 
 
 \ S 
 
 s 
 
 s 
 
 
 ^ s; 
 
 
 s 
 
 y 
 
 
 
 
 
 \ 
 
 \\ 
 
 \s 
 
 
 d) 
 
 
 3 
 
 
 
 
 , 
 
 S 
 
 
 
 
 
 
 N ^ 
 
 
 
 ^ ^. 
 
 5 v 
 
 
 
 \ 
 
 y 
 
 
 
 
 y 
 
 \ 
 
 \ \ 
 
 
 D 
 
 m uj 
 
 D 
 
 11(1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 S v 
 
 
 1 1 1 ' 
 
 a 
 
 
 ^ 
 
 
 
 
 
 X 
 
 1 
 
 ^ 
 
 
 
 
 
 v 
 
 V 
 
 
 
 
 
 \ N 
 
 
 \ V 
 
 > 
 
 
 \ 
 
 \ \ 
 
 X. \ 
 
 
 r> 
 
 8? c 
 
 
 
 x^ 
 
 
 
 
 \ 
 
 
 y 
 
 S 
 
 
 
 \ 
 
 s 
 
 ^-vj 
 
 X- s 
 
 y 
 
 
 \ 
 
 
 
 s,^ 
 
 
 
 sS 
 
 y\ 
 
 
 
 u5 
 
 
 QIC 
 
 
 
 
 
 \ 
 
 
 
 
 
 
 
 
 s^\- 
 
 X ^ 
 
 
 
 s 
 
 
 \ _ 
 
 \ j 
 
 
 ^ 
 
 s 
 
 \_y 
 
 Ol( 
 
 
 Jp 
 
 
 
 
 
 
 
 
 s s 
 
 
 
 X 
 
 
 
 s^ 
 
 V 
 
 
 \ 
 
 NV 
 
 
 
 
 s^ \ 
 
 ^ 
 
 
 N \ 
 
 \ s 
 
 
 
 4 -J? 
 
 
 
 
 ^ 
 
 
 
 
 
 \ 
 
 s 
 
 5 
 
 
 
 \ 
 
 \ >^ 
 
 
 
 
 s ^ 
 
 
 \ 
 
 
 
 
 X 
 
 
 
 
 m D 
 
 
 
 y 
 
 
 s 
 
 
 s 
 
 
 
 
 ^ 
 
 S S 
 
 \ 
 
 \ 
 
 
 
 s 
 
 
 
 
 
 
 
 v 
 
 ^ 
 
 N ^ 
 
 
 
 00 
 
 
 >U; 
 
 
 v 
 
 
 
 \ 
 
 
 s 
 
 
 
 ^ ^ 
 
 
 
 
 
 
 
 
 
 v?S 
 
 
 
 v 
 
 
 
 600 
 
 
 Q 
 
 
 
 -* 
 
 v ^ 
 
 
 s 
 
 
 
 
 
 5; 
 
 
 S ~ 
 
 
 \ -^ 
 
 ^v 
 
 s - 
 
 \ 
 
 ^ 
 
 
 5? 
 
 s 
 
 
 s 
 
 
 
 
 
 T3 
 
 
 
 s 
 
 
 s 
 
 
 s 
 
 
 
 
 5s_ 
 
 s S 
 
 y 
 
 
 . S 
 
 ^ X 
 
 
 
 s, 
 
 \ 
 
 \ 
 
 
 
 
 k \ 
 
 \ v 
 
 
 
 C 
 
 Q 
 
 
 !0fl 
 
 
 \ 
 
 
 
 
 
 s 
 
 N 
 
 5 
 
 ^ 
 
 
 v 
 
 S 
 
 x X s 
 
 
 
 t 
 
 
 y ' 
 
 S 
 
 N 
 
 
 
 y ' 
 
 WO 
 
 
 
 
 
 s, 
 
 
 "s 
 
 
 
 X, 
 
 
 V 
 
 -^^ 
 
 -S; 
 
 X 
 
 s, 
 
 S S 
 
 
 
 v 
 
 *> 
 
 
 \ LA 
 
 x^ 
 
 
 ' 
 
 k\ 
 
 
 
 
 O> 
 
 
 
 
 \ 
 
 
 
 ^ 
 
 
 ^ 
 
 
 
 ^ V 
 
 
 > 
 
 
 
 
 N 
 
 S. 
 
 * 
 
 . s. 
 
 
 
 \ 
 
 
 s s 
 
 
 
 C 
 
 
 ,oc 
 
 
 
 
 ^ 
 
 
 
 
 s 
 
 
 -^^ 
 
 
 S, 
 
 
 
 
 
 
 
 S, 
 
 
 ^ 
 
 
 
 
 ' (K 
 
 
 ? 
 
 
 
 ^ 
 
 
 S^ 
 
 
 
 
 
 
 * ^ 
 
 -%-] 
 
 
 
 S ~~ 
 
 ;s^> 
 
 
 x^ 
 
 ' S 
 
 
 5 
 
 S,-^ 
 
 \ 
 
 
 ^-s^ 
 
 N s 
 
 
 
 
 
 
 \ 
 
 
 
 \ 
 
 
 
 s^ 
 
 
 
 ^ 
 
 
 s s ^ ^ 
 
 s, \ 
 
 
 ^ 
 
 X 
 
 
 
 N. 
 
 V ^ 
 
 
 \ 
 
 
 v^N^ 
 
 
 
 Q) 
 
 rn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 N 
 
 
 
 x, 
 
 
 
 s 
 
 
 ; 
 
 v~ ^ 
 
 
 *\ 
 
 
 ^ V 
 
 
 s 
 
 N s 
 
 
 S 
 
 -^ 
 
 
 
 S (| N 
 
 \ 
 
 
 
 
 
 
 x~ 
 
 s 
 
 
 
 5 
 
 \ 
 
 
 X^ 
 
 -^ 
 
 - S^ 
 
 
 s 
 
 5> 
 
 -^- 
 
 ^ 
 
 S - S 
 
 
 x 
 
 
 Ns^ 
 
 X 
 
 
 \As 
 
 ^v 
 
 
 
 
 
 lOu 
 
 
 
 
 
 
 
 
 
 -^ 
 
 "^S 
 
 
 
 
 r x 
 
 
 
 L r 
 
 
 
 r^ 
 
 
 
 "V 
 
 v^ 
 
 bUU 
 
 
 
 
 
 
 X 
 
 
 
 ^ 
 
 
 
 s 
 
 S 
 
 
 -N 
 
 
 v ^ 
 
 
 
 \ 
 
 
 
 
 N S 
 
 
 5 
 
 x 
 
 x^ 
 
 
 
 
 
 R5T5 
 
 
 C 
 
 
 
 X" 
 
 
 
 N~ 
 
 ~*^ 
 
 --ft 
 
 
 
 ^-^ 
 
 s~ S 
 
 
 
 
 ~ 
 
 
 
 
 r 
 
 
 s^ 
 
 m 
 
 
 
 
 
 V 
 
 
 
 S 
 
 
 
 5 
 
 
 ^s. 
 
 
 /' x 
 
 
 NX p 
 
 ^, S s 
 
 
 X 
 
 
 s 
 
 X 
 
 X 
 
 
 X 
 
 \ 
 
 \ v 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 
 s7 
 
 
 ^- 
 
 ^s 
 
 v > 
 
 
 ^ ~x 
 
 ^ ^ 
 
 
 x^ 
 
 
 s 
 
 s\ 
 
 x^ 
 
 
 s^ 
 
 x, 
 
 x^ 
 
 
 
 
 
 ^CW 
 
 ^* 
 
 
 
 
 X^ 
 
 
 
 
 X 
 
 ^ 
 
 
 \ 
 
 x, 
 
 ^ s^ 
 
 N 
 
 
 
 
 X. 
 
 x. 
 
 X 
 
 
 x. 
 
 X. 
 
 'r'lX 
 
 
 
 
 
 
 
 x. 
 
 
 
 X, 
 
 
 
 
 s . 
 
 X ^ 
 
 
 s 
 
 . X. 
 
 
 Xa 
 
 
 x 
 
 ^x 
 
 s 
 
 
 
 "S 
 
 x^ 
 
 
 
 
 
 
 x 
 
 
 
 X 
 
 X. 
 
 
 
 S 
 
 -K 
 
 is 
 
 <- 
 
 x 
 
 
 
 5 
 
 
 
 
 X. 
 
 "^^ 
 
 
 
 X 
 
 s X 
 
 
 
 
 
 ZO'O 
 
 
 
 i 
 
 
 
 
 
 I 6 
 
 *ii 
 
 
 
 
 
 
 
 
 
 - 
 
 
 
 
 
 ^x 
 
 ^x 
 
 Wfi 
 
 
 
 
 
 
 ^ 
 
 X 
 
 
 - 
 
 
 ^ 
 
 v> 
 
 
 
 
 
 ^. N 
 
 
 x 
 
 
 x 
 
 S, 
 
 ^x 
 
 ^ s. 
 
 
 X 
 
 X 
 
 s^ 
 
 
 
 -t- 
 
 
 TTT 
 
 
 
 
 
 - 
 
 N 
 
 
 
 ^J. 
 
 
 _L 
 
 N. 
 
 |sj 
 
 [JJ 
 
 
 S 
 
 
 s 
 
 . i^ 
 
 51 
 
 N 
 
 " 1 
 
 X 
 
 X 
 
 (70 
 
 
 1O 
 
 
 
 
 
 
 
 
 
 
 *^\ 
 
 
 SN^ 
 
 x 
 
 
 ^ 
 
 ^s^ 
 
 
 Ss,, 
 
 
 s^ 
 
 
 
 ^ 
 
 
 ^Xv^ 
 
 ^^x^ 
 
 
 
 o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 * 
 
 
 ^x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 "X ^ 
 
 
 
 
 "X 
 
 
 
 
 
 
 N 
 
 s x 
 
 
 
 
 
 1 
 
 
 
 ou 
 
 
 
 
 1 
 
 
 
 
 
 cu 
 
 
 o 
 
 
 
 ] 
 
 t, 
 z 
 4 
 
 
 
 
 
 
 1 
 
 
 
 ru 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 " 
 
 1 1C 
 
 ) sar 
 
 ^OA 
 
 
 
 
 
 
 
 
 
 
 
 
 
DIAGRAM 48 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTION 
 
 VALUES OF 
 
BENDING 
 AND 
 DIRECT STRESS 
 
 DIAC 
 
 ] 
 
 i'=O.L 
 n = 15 
 l'=A a 
 
 RECTANGULAR SECTIONS COMPRESSION OVER WHOLE SECTIOI 
 
 5 * btf 
 VALUES OF ~~ c 
 
 Bending and Direct Stress -Compression Over Whole Section 
 
 d'=O.I5f Based on n = l5 and A =A S Values of K infbrmula f c = FT 
 
 
 i 
 
 5 
 
 
 o 
 
 
 i 
 
 CVJ 
 
 O 
 
 
 
 a 
 
 1 
 
 g 
 
 
 1 
 
 
 1 
 
 I 
 
 S 
 
 
 
 5R5 
 
 LIO 
 
 
 
 \^ 
 
 
 V 
 
 
 
 
 
 
 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9fO 
 L\'0 
 
 
 X 
 
 
 \ 
 
 c 
 
 
 \ 
 
 
 x 
 
 
 
 
 s^ 
 
 
 ^ " 
 
 -^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 s 
 
 
 ^ 
 
 
 *v 
 
 ,. \ 
 
 
 s 
 
 
 X 
 
 S 
 
 s 
 
 
 s 
 
 
 
 s 
 
 
 V 
 
 
 i ^^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 k 
 
 
 
 
 31 
 
 X 
 
 
 w* 
 
 
 
 
 
 
 \ 
 
 
 \ >* 
 
 s 
 
 X 
 
 
 1 ^-- 
 
 ^^ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 xl 
 
 x 1 
 
 TV 
 
 
 
 
 
 
 
 
 
 V 
 
 s 
 
 \ 
 
 
 
 S 
 
 
 a 
 
 
 
 
 
 
 ? 
 fe 
 
 t!) 
 
 s 
 
 
 
 
 x, 
 
 
 \ 
 
 
 s 
 
 
 Sj ' 
 
 
 
 
 \ 
 
 -^ 
 
 \ 
 
 
 \ 
 
 s 
 
 s 
 
 $ 
 
 XT_ 
 
 s 
 
 \ 
 
 \ 
 
 \ 
 
 \ 
 
 K^- 
 
 i ^ 
 
 c 
 
 F* 
 
 _s 
 \ 
 
 x 
 
 
 
 
 ^ 
 
 s 
 
 s 
 
 X 
 
 sfe 
 
 
 
 S 
 
 s^- 
 
 s 
 
 
 \ 
 
 N 
 
 
 \ 
 
 \ 
 
 y 
 
 
 v.\ 
 
 A- 
 
 s \ 
 
 s 
 
 
 r\ 
 
 ylu 
 
 
 
 "~\ 
 
 
 X 
 
 
 
 1 
 
 X 
 
 
 
 X 
 
 
 S 
 
 
 
 
 \ 
 
 
 
 s 
 
 ^S 
 
 X 
 
 ft 
 
 s 
 
 3Z 
 
 \ s 
 
 ^ 
 
 s 
 
 ^ 's 
 \ A 
 
 9I'0 
 
 \ 
 
 
 N 
 
 X 
 
 Xi 
 
 s 
 
 
 \ 
 
 
 N 
 
 
 x, 
 
 
 ~^v 
 
 
 \ 
 
 N 
 
 V 
 
 
 \ 
 
 \ 
 
 s 
 
 N 
 
 5 
 
 
 
 
 \. N 
 
 
 
 ^ s 
 
 
 5> 
 
 S 
 
 
 
 
 S 
 
 Xv. 
 
 -X 
 
 X 
 
 
 X 
 
 5 
 
 V 
 
 > \ 
 -X- 
 
 5 
 
 X ' 
 
 o s 
 
 ^ 
 
 
 
 \ 
 
 ^ 
 
 N 
 
 \x 
 
 \ 
 
 
 s\ 
 
 slU 
 
 FH3 
 
 
 \ 
 
 N 
 
 -X 
 
 S 
 
 s 
 
 N 
 
 
 x 
 
 \ 
 
 
 \ 
 
 s 
 
 x 
 
 \ 
 
 V s 
 \, 
 
 i 
 
 p^ 
 
 S, 
 
 3 
 
 \ 
 
 
 , .\ 
 
 \\ 
 
 
 
 N S 
 
 SIO 
 WQ- 
 
 s 
 
 X 
 
 \ 
 -\- 
 
 V 
 
 s N 
 
 
 ^ 
 
 ^ > 
 
 
 s 
 
 ^\ 
 
 s 
 
 S 
 
 \l 
 
 S 
 
 \ 
 
 
 \ 
 
 S, 
 
 \ 
 
 X 
 
 -Ni 
 
 X- 
 
 
 \ 
 
 x 
 
 
 
 ^t 
 
 
 X _ 
 
 S3 
 
 
 
 
 S 
 
 s 
 X 
 
 \ 
 X^ 
 
 s 
 
 s 
 
 i 
 
 x, 
 
 X 
 X 
 
 
 X 
 
 \ 
 
 X 
 
 s 
 
 S 
 
 
 s 
 
 1 
 
 
 x 
 
 s 
 
 
 
 N s 
 
 
 k-\ 
 
 \ S 
 
 
 tiu 
 
 ^i 
 
 
 x 
 
 X 
 
 V 
 
 
 
 v 
 
 X 
 
 
 
 Ny 
 
 Is 
 
 S 
 
 S> 
 
 
 x 
 
 s 
 
 x^ 
 
 5j_ 
 
 K 
 
 >v 
 
 \ 
 
 V N 
 
 s X 
 
 ero 
 
 
 ^\ 
 
 s 
 
 
 
 
 
 \ 
 
 
 X 
 
 \ 
 
 x 
 
 1 
 
 1 
 
 \ 
 
 
 x 
 
 Xv 
 
 X 
 
 s 
 
 V 
 
 
 \ 
 
 
 X x 
 
 N 
 
 
 X 
 
 \ 
 
 
 
 s. 
 
 X. 
 
 s 
 
 
 s 
 
 X 
 
 s 
 
 X 
 
 
 
 x 
 
 N 
 
 ^ 
 
 
 s. 
 
 x^ 
 
 X 
 
 
 ^ ^N 
 
 s, 
 
 
 X ^ 
 
 210 
 
 
 X 
 
 
 S^ 
 
 5 
 
 NT- 
 
 
 
 x 
 
 
 
 X 
 
 ^ 
 
 ^ 
 
 s 
 
 \ 
 x. 
 
 s. " 
 
 ^v 
 \ 
 
 \ 
 
 \ 
 
 s 
 
 
 N. 
 
 \ 
 
 \ ^ 
 x^ 
 
 X s 
 
 
 1 
 
 ^ 
 
 El'O 
 
 UU 
 
 s 
 
 s 
 
 x 
 x 
 
 ~X 
 X, 
 
 V 
 
 s - 
 X 
 
 1 
 
 x 
 
 X 
 
 
 N 
 
 
 \ 
 
 
 \ 
 
 
 N 
 
 
 s 
 
 
 \ 
 
 s, 
 
 - X 
 
 x 
 
 x 
 
 -x 
 
 S 
 
 \ 
 
 >-- 
 
 s 
 
 V 
 
 
 N 
 
 \ 
 
 X 
 
 s^ 
 
 \ 
 
 I 
 
 ^x 
 
 s\ 
 
 h'oxt: 
 
 K 
 
 1 ^ 
 
 <jl(J 
 
 *s 
 
 5 
 
 X 
 
 \ 
 
 x 
 
 5 
 
 v 
 
 $> 
 
 X' 
 
 ^N 
 
 r> 
 
 Nw 
 
 \ 
 
 X 
 
 X 
 
 \ 
 
 XI 
 
 X 
 
 X 
 
 x 
 
 ^N 
 
 X- 
 
 x. 
 
 \ 
 
 X 
 
 
 
 
 \ 
 
 X, 
 
 1 
 
 \ 
 
 x 
 
 x 
 
 s 
 
 1 
 
 ^01 
 
 0> 
 
 2 
 
 bUU 
 
 s 
 
 x^ 
 
 V 
 
 ^ 
 
 sH 
 
 x 
 
 x 
 
 X 
 
 x X 
 
 X. 
 
 X 
 
 x 
 
 X 
 
 ^^ 
 
 K 
 
 \ 
 
 x 
 
 >v 
 
 N 
 
 x_ 
 
 
 5 
 
 x^ 
 
 6ff 
 
 s 
 
 
 X. 
 
 -s 
 
 X 
 
 
 X 
 
 s N 
 
 X 
 
 t^. 
 
 s. 
 
 >sj 
 
 ^ 
 
 \ 
 
 2 
 
 
 x, 
 
 X^ 
 
 S 
 
 X 
 
 
 
 
 X 
 
 s 
 
 s 
 
 N 
 
 N 
 
 
 & 
 
 
 
 X. 
 
 
 s 
 
 x 
 
 ^ 
 
 X 
 
 V, 
 
 \ 
 
 
 x 
 
 \ 
 
 X 
 
 N 
 
 
 i 
 
 s. 
 
 s. 
 
 x 
 
 s. 
 
 
 
 X, 
 
 N 
 
 
 ^s 
 
 
 X 
 
 
 \ 
 
 
 
 X, 
 
 \ 
 
 s 
 
 \ 
 
 x^ 
 
 x^ 
 
 ^x 
 
 s 
 
 x 
 
 
 ^x. 
 
 9(70 
 
 S 
 
 
 "V 
 
 
 
 s 
 
 
 x^ 
 
 
 X 
 
 
 
 x 
 
 X 
 
 
 | 
 
 
 
 
 X 
 X 
 
 X 
 \ 
 
 
 
 x 
 
 
 
 x 
 
 $ 
 
 90'0 
 
 "x. 
 
 s, 
 
 
 
 
 5 
 
 
 X 
 
 
 x 
 
 X 
 
 X; 
 
 x 
 
 s 
 
 S 
 
 x 
 
 
 5 
 
 > s< 
 
 
 ^> 
 
 
 sJ 
 
 X 
 
 
 x 
 
 
 
 ; 
 
 X. 
 
 
 X 
 
 
 
 x 
 
 
 x 
 
 
 
 x 
 
 
 
 \ 
 
 
 ^X 
 
 > 
 
 
 
 x 
 
 
 x^ 
 
 |X, 
 
 
 
 s^ 
 
 X 
 
 x 
 
 Xy_ 
 
 x 
 
 /uo 
 
 
 
 
 X 
 
 
 
 
 x^ 
 
 
 
 
 
 x 
 
 
 ^> 
 
 
 X 
 
 . s, 
 
 5 
 
 
 
 5 
 
 X 
 
 X 
 
 x 
 
 s 
 
 . x 
 
 x 
 
 X 
 
 LOV 
 
 
 
 ^ 
 
 
 X 
 
 ^S 
 
 1 ^ 
 
 X 
 
 
 
 
 
 x 
 
 
 X^ 
 
 s 
 
 s^ 
 
 N 
 
 x 
 
 
 x 
 
 x 
 
 ^ 
 
 
 
 x_ 
 
 - 
 
 
 s 
 
 
 x 
 
 
 
 y 
 
 
 \ 
 
 x. 
 
 
 
 X 
 
 ^s 
 
 
 
 
 
 
 X 
 
 
 
 X^ 
 
 ^x^ 
 
 s 
 
 
 x, 
 
 
 
 x 
 
 
 ^ u ? 
 
 s, 
 
 X 
 
 x^ 
 
 X 
 
 X 
 
 s 
 
 
 
 
 
 X, 
 
 
 
 
 
 
 V 
 
 
 X 
 
 
 
 N, 
 
 
 
 
 
 x^ 
 
 5 
 
 
 
 ^ - 
 
 
 yc'o 
 
 
 
 s 
 
 
 
 
 "X 
 
 1\ 
 
 
 x, 
 
 
 
 
 
 X 
 
 
 
 X 
 
 
 X. 
 
 , | 
 
 - 
 
 s 
 
 x 
 
 >. 
 
 X 
 
 5 
 
 xN 
 
 900 
 
 s^ 
 
 
 \ 
 
 
 s 
 
 
 
 X 
 
 
 
 s 
 
 
 
 v 
 
 
 ^X 
 
 
 
 
 s 
 
 
 
 v 
 
 \ 
 
 
 
 
 X. 
 
 1 
 
 S 
 
 "X 
 
 
 X 
 
 
 s 
 
 
 
 
 
 x 
 
 
 
 
 X 
 
 
 5^ 
 
 
 s 
 
 
 X 
 
 ^x 
 
 5 
 
 ^x 
 
 s 
 
 x 
 
 
 "V 
 
 x 
 
 
 x 
 
 
 X 
 
 s 
 
 
 S 
 
 
 s 
 
 X 
 
 ^^ 
 
 x 
 
 \ 
 
 s 
 
 v' 
 
 X 
 
 
 X 
 
 N 
 
 x. 
 
 Xv 
 
 N 
 
 x 
 
 
 
 
 
 
 
 x 
 
 V 
 
 X 
 
 Sffij 
 
 V 
 
 ^ 
 
 
 
 1 
 
 *x 
 
 
 
 X 
 
 
 X 
 
 5 
 
 
 
 
 -9 
 
 s 
 
 X 
 
 X 
 
 
 
 
 . k 
 
 
 
 x, 
 
 
 
 
 
 
 
 SffO 
 
 x 
 
 
 4r 
 
 s 
 
 x 
 
 5 
 
 x. 
 
 
 , 
 
 X 
 
 x 
 
 
 
 
 ^ 
 
 x 
 
 X, 
 
 s, 
 
 x 
 
 
 
 
 * 
 
 ^N 
 
 
 
 
 s 
 
 ^x 
 
 
 s s 
 
 N 
 
 
 \ 
 
 
 S 
 
 i 
 
 "S 
 
 
 X 
 
 
 X 
 
 
 
 x. 
 
 
 \ 
 
 
 x 
 
 
 x^ 
 
 
 
 
 X 
 
 
 
 
 * 
 
 ^^ ^ 
 
 s,. 
 
 
 
 
 
 v - 
 
 
 S 
 
 
 
 
 
 
 
 V 
 
 
 
 x 
 
 
 s 
 
 
 
 x 
 
 
 
 x^ 
 
 ^s 
 
 FOC 
 
 =s 
 
 
 
 
 i 
 
 
 4- 
 
 - 
 
 3 
 
 fy 
 
 x. 
 
 
 5 
 
 
 
 x 
 
 X 
 
 
 ^ 
 
 
 s^ 
 
 > 
 
 
 ** 
 
 X 
 
 
 x 
 
 5 
 
 *x 
 
 _^ 
 
 s x 
 
 
 : 
 
 x^ 
 
 
 
 
 
 
 
 
 
 ^ 
 
 
 
 X; 
 
 s 
 
 
 5 
 
 
 x 
 
 
 *s 
 
 ^ 
 
 
 X 
 
 
 ^ 
 
 
 
 
 x ' 
 
 vo'o 
 
 <^0(J 
 
 
 "^s, 
 
 
 
 
 
 
 
 
 X, 
 
 
 
 
 
 
 
 5r 
 
 
 
 jr 
 
 5 
 
 
 s 
 
 X 
 
 s 
 
 
 V, 
 
 V 
 
 "X,* . 
 
 X* 
 
 "X^^ 
 
 
 00 
 iOO 
 
 
 
 *s; 
 
 
 
 N 
 
 
 X 
 
 
 
 x 
 
 
 , s 
 
 S 
 
 X, 
 
 X 
 
 Xx. 
 
 s 
 
 
 x^ 
 
 35 
 
 
 s. 
 
 
 s 
 
 
 
 X 
 
 
 
 5 
 
 
 
 
 
 \ 
 
 
 
 
 
 S 
 
 5 
 
 ^;C 
 
 *)* 
 
 
 ^v 
 
 v^ 
 
 
 x 
 
 X 
 
 ^> 
 
 
 s 
 
 x^ 
 
 
 ^ 
 
 x - 
 
 i 
 
 X 
 
 V 
 
 _x 
 
 % 
 
 
 s 
 
 
 
 X 
 
 
 x. 
 
 
 ^^ 
 "N 
 
 x 
 
 ""^ 
 ^*s, 
 
 I 
 
 IUU 
 
 =1 
 
 
 
 
 
 
 
 
 5 
 
 5 
 
 ^ 
 
 
 - 
 
 
 ~ 
 
 x 
 
 
 ^ 
 
 s> 
 
 X 
 
 H 
 
 5 
 
 x^ 
 
 ^ 
 
 x. 
 
 - 
 
 
 ^V 
 
 
 x 
 
 x ' 
 
 % 
 
 v 
 
 v v. 
 
 IUU 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 x. 
 
 
 X 
 
 > 
 
 
 -x 
 
 
 
 "^w 
 
 J 
 
 
 
 c 
 
 | 
 
 
 
 c 
 Q 
 
 1 
 
 1 
 
 
 1 
 
 
 1 
 
 1 
 
 | 
 
 ooO 
 
 
 "d J.O sanpA 
 
 
 
 208 
 
DIAGRAM 50 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 d'=0.05t 
 VALUES OF k n = 12 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 51 
 
 d'=0.10t 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 VALUES OF k 
 
 Ofr'O 00 vD ^ W 
 
 o o o o 
 
DIAGRAM 52 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 d'=0.15t 
 VALUES OF k n =12 
 
 211 
 
BENDING 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 53 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 d'=0.10t M 
 n=12 VALUES OF -^ 
 
 
 j.0 san t o A 
 
 a 
 v 
 
 i 1 
 g > 
 
 ii 
 ii 
 
 'c c 
 o o 
 
 Oi ^^ 
 
 d i-< 
 
 a> o 
 -d 'd 
 
 *> '> 
 
 
 O O IT) O IO Ol O| O 
 
 in 10 ^j- ^- co ro| w| (\. 
 
 [\[\ \ ' ' ( V 1 ' 1 V "\"'\ ^ i \ 
 
 s x ^ ^ > ' 1 1 ' \ 1 \l \l \ \^" ""x ^2C 
 
 k M L V \ > v -u \ ^ II. 5 
 
 
 o) M ^ \ $:i::~::::_i:s:S::: 
 
 s ^ ^ S v \J x Q\ > f?\^ < ^^ KI ' 
 
 3 \ ii] '"_: si:i KIIS is" :i_s is; 
 
 ^ S ^^'^\ ^ V N i 1 ^\ -\" ' l r ' 5ll*O lott 
 
 nk L\ ' M k \ \ L V i V . N \ N \ 
 
 ^ hi ^ ^ ii ^ ^ < ~A. ^ , r i .1^ ^^- 
 
 -^ \ M\ 1 L \ I S ^ 
 
 ! ""s, ^ 5v^ s ^s^ 1 ~r. \ [ . L |jj R ei^f 
 
 1\ * i i L v \ L y \ s v ^ 
 
 
 r\ \ ' s i ^ III.IZ-5I 
 
 s s . v X .^^^ L 1 \ i ^ \ \ L sJe 
 
 1\ L \ \ i .11: N. . 
 
 ^ s ^ s ^\S^C^ f^ --r-* < \ ^ri 
 
 W-\ 1 \ \ - \ ^ " *. ' ^ ' S v \ , 
 
 S S "^ oxj^^^ S jl ^ L ^ J L L 
 
 m!:! 2 ::: :s:^ :s::si:s :.s :.5 :.i : 
 
 - ^ N - v ^CiT s ^c-JI!--^" \-f i fc M " " '^ 
 
 P s j 
 
 "~ V \ ~ ^raLfj' s ~" v "~^Tv~S~" i - - 3 - J -'-^1 J --- 
 
 IV ! . . L i s i . S s s ^ ^ " 
 
 s v ja-i i *^ *. ^^H-VS S - S \\ 
 
 
 
 mS: !:a :.:.::!:.;:.; :_v is; i:s;:::; i:.! 
 
 :5;3biiii55ii5s$-sjsi[i5:ii E [(si 11 ' 
 
 \ kill !II[I j !S^ ISII. N \ N ^~ 
 
 S& i s .51 I5l5 k S:[ i i* LA^ 
 
 l\I ^l^^v ^ s 
 
 ; _L^ s > : _ ; ; sip ^^ ^ y ~ ; 3 : 5 S . J u 
 
 
 
 p|:i!j!j:i:jj:j;!j:!jj:i|::;|j:||:j:!|i 
 
 -&* - "* * -*"-->TK-S-|-*cs5"S \* " ^ 
 
 
 ag:_:;;; i_:s; i^s; j;s^;s s 55 ^13" ^n! 
 
 C" Li ^L^ \ ^ S s ^ ^ s s 
 
 V ^;-;S-- J-j-J-S-rj jjj-VJ-Jrt 
 
 o ti- r -S k SS v ^ " * % 
 
 5t I:!sl" > ^^1 A . SS 5 S Cv sra 
 
 N \\ \ \ \ v V i v s: "^ s ^ + 
 
 ?;;:: :. *s; ^::i"\ ^ v ;^ :: k :]_ : 
 
 +r pp3i 3i3".iisi a". \ - v s" r!s; 
 
 - !sI5:_i:s:[S5;;3 i in 
 
 o \ ^ \ \ \ s v \ s ^; *> 
 
 ^ " _:; " ** ~4 \ ^J^^S^i^V 
 
 in ffi!-!::::;iS"S":s;"s;::s;i:^s;i:^; 
 
 
 
 :;;: =*:^;-i*4jis;^i|s^^5 jj?jj 
 
 H\r s " J " j " --^--^--s- -^- s S--T<^V Sv 
 
 1..U., . -:^ H^y,_ s ' |\N s V\ v\L ' 
 
 -i i \ \ i \ ^ \ ' j [ 
 
 
 L^ ILA r \ SI.IIXI.; S _ S- s , ,qc-+^. 
 
 
 ff* L\-^- r \-^--\--v--^--^-^s----^l ;; -. 
 
 """"" ^*"" i > ~r ~ ^" " ^~ ^ r v\*s ^AsvS 
 
 L. r^ ' L ^ " " J \ ^ ^ ** ^ 1 I ^ *" "* 
 
 o> g_yi_\_]! .^__^__S^_A--- -s-----=yj--- 
 
 
 
 Q wLx-L.L.^,. v'lLb" S ^^il 
 r- rPr i~i \ r " "" s~n~M ~ ~ ^j ~ 
 
 i*z s s ^ X\K \\i\v\ 
 
 '"p"""" "'"T ^xjx/ iNVvA 1 10 
 
 v--" kj \ \ \--\- S, s S H_s I '^v^--. 
 
 
 
 
 8cffi^ : ^^ :! r| ;: ^ :: -^ ::: " : p- ;:::: 
 
 ^l|p;|^|;^l^SiH^ 
 
 =|-:!::|;l;:::;;;i:|!|::l:[=l^!:|j:|^ H 
 
 sIMllHK^Ifllifli^iff 
 
 rffljtifffijMllffl tfttBMSiH 
 
 xj 3_ j_. |.j._j___s \ ?UJ ^ 
 
 ^"' .,* ' ^ _ *i '!_.,<'- '. e .'"-* 900 
 
 O t t -V L IjIII.S" ^&?> * - ~r^' 
 
 ---?*---?*-- '*~~y(~~'s' "~^ p " II ^I 55 "^ 
 
 g' n \ \ \ 1 
 
 S* ' / S \4~' s ' * * " *" x 
 
 
 
 "c J^-j^p-^j--s:ii-kiiOT-=s: ===::: 
 
 
 n 3' j:s":s';:;:: .ij::^; :;;=;; ;;:;:=:.: 
 B^ : :i : :j : ^r:;jj:::^::::::::f:iii;s 
 
 
 
 1^^^%^^/^ X '^^ 200 
 
 2 
 d d 
 II II 
 
 - ~ 
 
 ol 1 1 III 1 Pkll IH III ITRLI III! liiifMI H; 
 
 LOO loolio omo 
 loin ^M-|f> cr ? (V !'V 
 
 M 
 
 ^o san|D A 
 
 212 
 
DIAGRAM 54 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 VALUES OF k d n=15 5t 
 
 A'=A, 
 
 S3HIDA 
 
 1 
 
 N 
 
 ^ 
 
 
 IT 
 
 O< 
 
 (D 
 
 4- - 
 
 u a 
 
 B 
 
 Q 
 
 -o 
 
 lAI 
 
 
 
 i 
 
 
 
 ft* 
 
 
 \rv\ 
 
 su 
 
 Ju 
 
 \\ 
 
 -o 
 
 (U 
 
 CD 
 
 
 w 
 
 x 
 
 
 22 
 
 91 
 
 Q c? 
 
 . vO ^ ^ 
 <D C5 O p p O 
 
 d j-o can i DA 
 213 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 55 
 
 d'=0.10t 
 n = 15 
 
 A'=A 3 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 VALUES OF k 
 
 $ 
 
 "6 
 
 & 
 
 fe 
 
 IMilUSl 
 
 m\ 
 
 & 
 
 a j.o 
 
 214 
 
DIAGRAM 56 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 d 
 VALUES OF k 
 
 ' = 0.15t 
 n =15 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 57 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 M 
 
DIAGRAM 58 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 STEEL IN TENSION FACE ONLY 
 
 VALUES OF f c , f, AND p 
 
 n = 12 
 A'=0 
 
 217 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 5! 
 
 RECTANGULAR SECTIONS TENSION OVER PART OF SECTION 
 
 STEEL IN TENSION FACE ONLY 
 
 VALUES OF f c , f s AND p 
 
DIAGRAM 60 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 ROUND COLUMNS COMPRESSION OVER WHOLE SECTION 
 VALUES OF 
 
 n=12 
 n=15 
 
 219 
 
BENDING 
 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 61 
 
 ROUND COLUMNS TENSION OVER PART OF SECTION 
 
 n=12 
 
 VALUES OF AND- 
 i c K 
 
DIAGRAM 62 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 ROUND COLUMNS TENSION OVER PART OF SECTION 
 
 VALUES OF ^ AND 4 
 tc K 
 
 n=15 
 
BENDING 
 AND 
 DIRECT STRESS 
 
 DIAGRAM 63 
 
 ROUND COLUMNS BENDING ONLY 
 
 JJ =1 ,l VALUES OF k, ~, ~, AND p 
 n J.O i a f c 
 
 
 5 J/ y ^o sen]OA 
 
 1 
 
 <n 
 
 <& ^ 5 S 2 
 
 C 0" O C> < 
 
 vO 5* OJ O COI \O -d- 
 
 P o o P g g 8 
 
 o- o c> c> c> 
 
 O Q 
 
 - - N -- - -- - 
 
 :: 4H 
 
 >j ^0 S3 
 
 n|D A SOO 
 
 s ^ - - 1 - - 
 
 
 i:^:::: - 5 
 
 l!|j;;j|!ll!l|j||!l|jj|l 8 S 
 
 || 
 
 o 
 
 <=> 
 
 
 
 
 
 
 ^ In 
 
 
 
 
 
 
 - S ^-- IBM 
 
 &OC 
 
 
 
 
 i ^\ 
 
 \ s * 1 
 
 
 if} : : :.; ; ; 
 
 
 AM 
 
 
 
 
 \ 
 
 
 
 
 \ 
 
 
 
 
 1 
 
 
 >> II 
 
 ::::::::::::^-:s^:::::: 
 
 t :::::: :: 
 
 
 Cf 
 
 :::::::::::::V5s::::::F 
 
 s 
 
 
 \_ 
 
 
 \ 
 
 WW V 
 
 O^~ 
 
 
 rii 
 
 
 - - ~: 
 
 ^^ . ^ ^ 1 -JU | 
 
 
 
 -:: :::::: ^,5" ::^LfA:::::: :: 
 
 
 
 """"J^|H^~"" TW 
 
 
 ^r^ 
 
 
 
 
 ; > ITKJ::::: :: 
 
 
 
 Hd+"J" 
 
 t^Y/" 
 
 1 Percentage of vertical 
 
 ^*^ 
 
 Mvl ^ S 
 
 - lyy 
 
 ^3 
 
 Mr >\ s 
 
 
 
 
 
 
 UU ^cS-- -- 
 
 
 rt^ 
 
 hfft~t ^~ - 
 
 _S_ 
 
 i*j 
 
 
 
 i - III 
 
 -i * 5 
 
 ^ ^ r\fv/i 
 
 ' + 5- 
 
 1 L i 1 J_ 
 IT" " " 
 
 " " ~ * " CAn 
 
 (D - - -s - \ 
 
 n 
 
 
 ; ; " aC/v, 
 
 w " s 
 
 4 11 
 
 
 
 C I-5 
 
 
 
 
 S . --X-. 
 
 
 
 
 C TV 
 
 r-. 
 
 
 
 r- . -SI- 
 
 V 
 
 
 
 V> v 
 
 \ I 
 
 _L. . 
 
 
 D s 
 
 
 
 
 : ; :.: :;;_:: :__: 
 
 :._ :: ; 
 
 
 
 
 5' r 
 
 : 
 
 
 O- - ^ 
 
 
 
 
 ::5::: 
 
 < \ **> 1 
 
 
 
 OS 
 
 
 
 
 :_ .: :_i>: 
 
 ::_:: lA^I^^ J^ :_:.:: _I 
 
 :i 
 
 
 
 
 i 
 
 
 
 . iijfci. { j. .'^ 
 
 yt 
 
 
 -rr 
 
 s, r^_ ii i - 1 i 
 
 1 
 
 
 U : 
 
 
 i 
 
 
 r INI 
 
 
 111 L. .. 
 
 
 3 
 
 "s "S 
 
 ffi :: = :::: 
 
 - 
 
 
 _SI ^__ 
 
 m 
 
 
 ^ f :: 
 
 ^lsS^- S s ::x 
 
 B!E!! 
 
 
 II 
 
 _ :iss : ::::S 
 
 ttf ====:== 
 
 
 Clj: 
 
 M^ 
 
 
 ao'o 
 
 
 ::: = -::::::- = ::::: = | 
 
 
 
 
 
 
 - 100 
 
 S J "^ 
 
 ^- 10 (vj 
 
 O 0] 
 
 
 
 oOOO 
 o 
 
 
 **/& j-o sanfDA 
 
 222 
 
DIAGRAM 64 
 
 BENDING 
 
 AND 
 DIRECT STRESS 
 
 ROUND COLUMNS BENDING ONLY 
 VALUES OF R, f s , f e AND p 
 
 = 12 
 = 15 
 
 223 
 
SECTION 9 
 FOOTINGS 
 
 Diagram 65 makes it possible to find readily the bending moments which occur at 
 each face of column for both square and rectangular footings. The illustrations 
 above this diagram show how the diagram is used. For example, suppose the bending 
 moment is required at the face of a 24-in. column supporting a load of 300,000 Ib. 
 and resting on a footing 9 ft. 2 in. square. From the upper part of Diagram 65, C\ = 
 6.2 and 
 
 M = (6.2) (300,000) = 1,860,000 in.-lb. 
 
 Tables 49, 50 and 51, based on the recommendations contained in Bulletin 67 of 
 the University of Illinois Engineering Experiment Station, give the design of square 
 reinforced footings for different loads, column sizes and soil pressure. These footings 
 are without offsets and for large footings it will usually be found more economical to 
 use one or two offsets. 
 
 These tables are computed for square columns. If round columns are used, 
 multiply the diameter by 0.7854 to get the size of square columns of equivalent 
 perimeter and enter the table with that size. 
 
 The recommendations in the bulletin mentioned above are as follows: 
 
 Width of Footing to Use in Flexure Computations for Two-way Reinforcement. 
 With two-way reinforcement evenly spaced over the footing, it seems that the tensile 
 stress is approximately the same in bars lying within a space somewhat greater than 
 the width of the pier and that there is also considerable stress in the bars which lie 
 near the edges of the footing. For intermediate bars stresses intermediate in amount 
 will be developed. For footings having two-way reinforcement spaced uniformly 
 over the footing, the method proposed for determining the maximum tensile stress in 
 the reinforcing bars, is to use in the calculation of resisting moment at a section at the 
 face of the pier the area of all the bars which lie within a width of footing equal to the 
 width of pier plus twice the thickness of footing, plus half the remaining distance on 
 each side to the edge of the footing. This method gives results in keeping with the 
 results of tests. When the spacing through the middle of the width of the footing is 
 closer, or even when the bars are concentrated in the middle portion, the same method 
 may be applied without serious error. Enough reinforcement should be placed in the 
 outer portion to prevent the concentration of tension cracks in the concrete and to 
 provide for other distribution of stress. 
 
 No failures of concrete have been observed in tests and none would be expected 
 with the low percentages of reinforcement used. 
 
 Bond Stresses. The method proposed for calculating maximum bond stress in 
 column footings having two-way reinforcement evenly spaced, or spaced as npted in the 
 preceding paragraph, is to use the ordinary bond stress formula, and to consider the 
 circumference of all the bars which were used in the calculation of tensile stress, and 
 to take for the external shear that amount of upward pressure or load which was used 
 hi the calculation of the bending moment at the given section. 
 
 Bond resistance is one of the most important features of strength of column 
 footings, and probably much more important than is appreciated by the average 
 
 225 
 
FOOTINGS 
 
 designer. The calculations of bond stress in footings of ordinary dimensions- where 
 large reinforcing bars are used show that the bond stress may be the governing element 
 of strength. Tests show that in multiple-way reinforcement a special phenomenon 
 affects the problem and that lower bond resistance may be found in footings than in 
 beams. Longitudinal cracks form under and along the reinforcing bar due to the 
 stretch in the reinforcing bars which extend in another direction, and these cracks act 
 to reduce the bond resistance. The development of these cracks along the reinforcing 
 bars must be expected in service under high tensile stresses, and low working bond 
 stresses should be selected. An advantage will be found in placing under the bars a 
 thickness of concrete of 2 in., or better 3 in., for footings of the size ordinarily used in 
 buildings. 
 
 Difficulty may be found in providing the necessary bond resistance, and this points 
 to an advantage in the use of bars of small size, even if they must be closely spaced. 
 Generally speaking, bars of %-in. size or smaller will be found to serve the purpose of 
 footings of usual dimensions. The use of large bars, because of ease in placing, leads 
 to the construction of footings which are insecure in bond resistance. Column footings 
 reinforced with deformed bars develop high bond resistance. Curving the bar upward 
 and backward at the end increases the bond resistance, but this form is awkward in 
 construction. Reinforcement formed by bending long bars in a series of horizontal 
 loops covering the whole footing gives a footing with high bond resistance. 
 
 The use of short bars placed with their ends staggered increases the tendency to fail 
 by bond and cannot be considered as acceptable practice in footings of ordinary pro- 
 portions. In footings in which the projection is short in comparison with the depth, 
 the objection is very great. 
 
 Diagonal Tension. As a means of measuring resistance to diagonal tension failure, 
 the vertical shearing stress should be calculated by using the vertical sections formed 
 upon the square (assuming square column) which lies at a distance from the face of the 
 pier equal to the depth of the footing. This calculation gives values of the shearing 
 stress, for footings which failed by diagonal tension, which agree fairly closely with 
 the values which have been obtained in tests of simple beams. The formula used in 
 
 V 
 
 this calculation is v = rrj? where V is the total vertical shear at this section taken to 
 ojd' 
 
 be equal to the upward pressure on the area of the footing outside of the section con- 
 sidered, b is the total distance around the four sides of the section, and jd is the dis- 
 tance from the center of reinforcing bars to the center of the compressive stresses. 
 The working stress now frequently specified for this purpose in the design of beams, 
 40 Ib. per sq. in., for 1:2:4 concrete, may be applied to the design of footings. 
 
 226 
 
DIAGRAM 65 
 
 BENDING MOMENTS FOR SINGLE COLUMN FOOTINGS 
 
 .- d 
 
 M=C,P 
 
 *. 
 
 EH 
 
 LJi 
 
 M-QdP 
 
 M=CjdP 
 
 Square footings with 
 
 square or round columns 
 
 M = C,P (in.-lh) 
 
 Length of footing, side (b) in feet 
 
 Rfictungjlar fbalrnqs-for 
 squan- or round cofumns 
 
 M-CjdP 
 far rectanular columns 
 
 Values of a /d (or 
 
 227 
 
FOOTINGS 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16, 000 
 
 2 TONS ON SOIL 
 
 TABLE 49 
 
 Squart column 
 
 Footing 
 
 size 
 b 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ub.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 3 
 
 
 
 10 
 
 34.8 
 
 11 
 
 H 
 
 8 
 
 10 
 
 37.4 
 
 8.3 
 
 
 
 12 
 
 " 34.9 
 
 10 
 
 
 9 
 
 12 
 
 42.0 
 
 7.5 
 
 
 
 14 
 
 35.0 
 
 9 
 
 
 10 
 
 13 
 
 46.7 
 
 6.8 
 
 3 
 
 6 
 
 10 
 
 46.9 
 
 14 
 
 M 
 
 8 
 
 10 
 
 44.2 
 
 14.3 
 
 
 
 12 
 
 47.2 
 
 12 
 
 
 10 
 
 12 
 
 55.2 
 
 12.3 
 
 
 
 14 
 
 47.3 
 
 11 
 
 
 11 
 
 13 
 
 60.7 
 
 ,11.3 
 
 4 
 
 
 
 10 
 
 60.6 
 
 17 
 
 H 
 
 8 
 
 10 
 
 51.0 
 
 22.7 
 
 
 
 12 
 
 61.2 
 
 14 
 
 
 10 
 
 13 
 
 63.7 
 
 18.7 
 
 
 
 14 
 
 61.4 
 
 13 
 
 
 11 
 
 14 
 
 70.1 
 
 17.3 
 
 
 
 16 
 
 61.6 
 
 12 
 
 
 12 
 
 15 
 
 76.5 
 
 16.0 
 
 4 
 
 6 
 
 10 
 
 75.9 
 
 20 
 
 H 
 
 8 
 
 10 
 
 57.7 
 
 33.8 
 
 
 
 12 
 
 76.7 
 
 17 
 
 
 10 
 
 12 
 
 72.2 
 
 28.7 
 
 
 
 14 
 
 77.2 
 
 15 
 
 
 12 
 
 15 
 
 86.6 
 
 25.3 
 
 
 
 16 
 
 77.7 
 
 13 
 
 
 14 
 
 18 
 
 101.0 
 
 22.0 
 
 5 
 
 
 
 10 
 
 92.7 
 
 23 
 
 H 
 
 8 
 
 10 
 
 64.6 
 
 47.9 
 
 
 
 12 
 
 93.7 
 
 20 
 
 
 10 
 
 12 
 
 80.7 
 
 41.7 
 
 
 
 14 
 
 94.4 
 
 18 
 
 
 11 
 
 14 
 
 88.8 
 
 37.5 
 
 
 
 16 
 
 95.0 
 
 16 
 
 
 13 
 
 16 
 
 105 
 
 33.4 
 
 
 
 18 
 
 95.6 
 
 14 
 
 
 16 
 
 20 
 
 129 
 
 29.2 
 
 5 
 
 6 
 
 10 
 
 110.8 
 
 27 
 
 2 
 
 8 
 
 10 
 
 71.4 
 
 68.0 
 
 
 
 12 
 
 112.8 
 
 23 
 
 
 10 
 
 12 
 
 89.2 
 
 58.0 
 
 
 
 14 
 
 113.4 
 
 20 
 
 
 12 
 
 15 
 
 107 
 
 50.4 
 
 
 
 16 
 
 114.2 
 
 18 
 
 
 13 
 
 17 
 
 116 
 
 45.4 
 
 
 
 18 
 
 114.6 
 
 17 
 
 
 14 
 
 18 
 
 125 
 
 42.8 
 
 6 
 
 
 
 10 
 
 130.1 
 
 31 
 
 H 
 
 7 
 
 9 
 
 68.4 
 
 93.0 
 
 
 
 12 
 
 131.8 
 
 27 
 
 
 9 
 
 11 
 
 88.0 
 
 81.0 
 
 
 
 14 
 
 133.2 
 
 24 
 
 
 11 
 
 14 
 
 108 
 
 72.0 
 
 
 
 16 
 
 134.5 
 
 21 
 
 
 13 
 
 16 
 
 127 
 
 63.0 
 
 
 
 18 
 
 135.4 
 
 19 
 
 
 15 
 
 19 
 
 147 
 
 57.0 
 
 
 
 20 
 22 
 
 136.3 
 136.8 
 
 17 
 16 
 
 & 
 
 17 
 18 
 
 22 
 23 
 
 166 
 176 
 
 51.0 
 48.0 
 
 6 
 
 6 
 
 10 
 
 150.5 
 
 35 
 
 M 
 
 8 
 
 10 
 
 85 
 
 123.0 
 
 
 
 12 
 
 153.1 
 
 30 
 
 
 10 
 
 12 
 
 106 
 
 106.0 
 
 
 14 
 
 154.7 
 
 27 
 
 
 11 
 
 14 
 
 117 
 
 95.0 
 
 
 16 
 
 156.3 
 
 24 
 
 
 13 
 
 16 
 
 138 
 
 84.5 
 
 
 18 
 
 157.3 
 
 22 
 
 
 14 
 
 18 
 
 149 
 
 77.5 
 
 
 
 20 
 
 158.4 
 
 20 
 
 
 16 
 
 20 
 
 170 
 
 70.4 
 
 
 
 22 
 
 158.9 
 
 19 
 
 
 17 
 
 21 
 
 181 
 
 67.2 
 
 228 
 
TABLE 49 
 
 FOOTINGS 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 2 TONS ON SOIL 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16,000 
 
 Footing 
 size 
 b 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 D 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 db.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 7 
 
 
 
 12 
 
 175.1 
 
 34 
 
 H 
 
 10 
 
 12 
 
 115 
 
 139 
 
 
 
 14 
 
 177.6 
 
 30 
 
 
 12 
 
 15 
 
 138 
 
 123 
 
 
 
 16 
 
 179.5 
 
 27 
 
 
 13 
 
 17 
 
 149 
 
 110 
 
 
 
 18 
 
 181.3 
 
 24 
 
 
 14 
 
 18 
 
 161 
 
 98 
 
 
 
 20 
 
 182.5 
 
 22 
 
 
 17 
 
 21 
 
 195 
 
 90 
 
 
 
 22 
 
 183.1 
 
 21 
 
 
 17 
 
 22 
 
 195 
 
 86 
 
 
 
 24 
 
 184.4 
 
 19 
 
 . - 
 
 
 20 
 
 25 
 
 230 
 
 78 
 
 7 
 
 6 
 
 12 
 
 198.3 
 
 38 
 
 H 
 
 11 
 
 14 
 
 136 
 
 178 
 
 
 
 14 
 
 201.1 
 
 34 
 
 
 13 
 
 16 
 
 160 
 
 160 
 
 
 
 16 
 
 203.9 
 
 30 
 
 
 15 
 
 18 
 
 185 
 
 141 
 
 
 
 18 
 
 206.0 
 
 27 
 
 
 16 
 
 21 
 
 197 
 
 127 
 
 
 
 20 
 
 207.4 
 
 25 
 
 . 
 
 17 
 
 22 
 
 210 
 
 117 
 
 
 
 22 
 
 208.8 
 
 23 
 
 
 19 
 
 24 
 
 234 
 
 108 
 
 
 
 24 
 
 210.2 
 
 21 
 
 
 20 
 
 26 
 
 246 
 
 99 
 
 8 
 
 
 
 14 
 
 226.4 
 
 37 
 
 M 
 
 14 
 
 17 
 
 185 
 
 198 
 
 
 
 16 
 
 229.6 
 
 33 
 
 
 16 
 
 ' 20 
 
 211 
 
 176 
 
 
 
 18 
 
 232.0 
 
 30 
 
 
 17 
 
 22 
 
 224 
 
 160 
 
 
 
 20 
 
 233.6 28 
 
 
 18 . 
 
 23 
 
 237 
 
 149 
 
 
 
 22 
 
 235.2 
 
 26 
 
 
 20 
 
 25 
 
 264 
 
 139 
 
 
 
 24 
 
 236.8 
 
 24 
 
 
 21 
 
 27 
 
 277 
 
 128 
 
 
 
 26 
 
 238.4 
 
 22 
 
 
 23 
 
 29 
 
 303 
 
 117 
 
 8 
 
 6 
 
 14 
 
 252.0 
 
 41 
 
 H 
 
 14 
 
 18 
 
 196 
 
 247 
 
 
 
 16 
 
 255.6 
 
 37 
 
 
 16 
 
 21 
 
 224 
 
 223 
 
 
 
 18 
 
 259.2 
 
 33 
 
 
 19 
 
 24 
 
 267 
 
 199 
 
 
 
 20 
 
 261.9 
 
 30 
 
 
 21 
 
 26 
 
 294 
 
 181 
 
 
 
 22 
 
 263.7 
 
 28 
 
 
 22 
 
 28 
 
 309 
 
 169 
 
 
 
 24 
 
 265.5 
 
 26 
 
 
 24 
 
 30 
 
 337 
 
 156 
 
 
 
 26 
 
 267.3 
 
 24 
 
 
 25 
 
 32 
 
 351 
 
 145 
 
 9 
 
 
 
 16 
 
 283.5 
 
 40 
 
 H 
 
 11 
 
 14 
 
 256 
 
 270 
 
 
 
 18 
 
 286.5 
 
 37 
 
 
 12 
 
 16 
 
 279 
 
 250 
 
 
 
 20 
 
 289.5 
 
 34 
 
 
 14 
 
 17 
 
 325 
 
 230 
 
 
 
 22 
 
 292.7 
 
 31 
 
 
 15 
 
 19 
 
 349 
 
 209 
 
 
 
 24 
 
 294.4 
 
 29 
 
 
 16 
 
 20 
 
 372 
 
 197 
 
 
 
 26 
 
 296.6 
 
 27 
 
 
 17 
 
 22 
 
 395 
 
 182 
 
 
 
 28 
 
 298.7 
 
 25 
 
 
 19 
 
 24 
 
 442 
 
 169 
 
 9 
 
 6 
 
 16 
 
 311.3 
 
 44 
 
 H 
 
 12 
 
 15 
 
 295 
 
 331 
 
 
 
 18 
 
 315.8 
 
 40 
 
 
 13 
 
 17 
 
 319 
 
 301 
 
 
 
 20 
 
 319.3 
 
 37 
 
 
 14 
 
 18 
 
 344 
 
 278 
 
 
 
 22 
 
 322.6 
 
 34 
 
 
 16 
 
 20 
 
 393 
 
 256 
 
 
 
 24 
 
 326.0 
 
 31 
 
 
 17 
 
 22 
 
 418 
 
 233 
 
 
 
 26 
 
 328.7 
 
 29 
 
 
 18 
 
 23 
 
 442 
 
 218 
 
 
 
 28 
 
 330.6 
 
 27 
 
 
 20 
 
 25 
 
 491 
 
 203 
 
 229 
 
FOOTINGS 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 2 TONS ON SOIL 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16,000 
 
 TABLE 49 
 
 Square column. 
 
 Footing 
 size 
 b 
 
 Column 
 size 
 a 
 vin.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ob.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 10 
 
 
 
 16 340.0 
 
 48 
 
 % 
 
 12 
 
 16 
 
 310 
 
 400 
 
 
 
 18 
 
 346.3 
 
 43 
 
 
 14 
 
 18 
 
 362 
 
 358 
 
 
 
 20 
 
 349.9 40 
 
 
 15 
 
 19 
 
 388 
 
 334 
 
 
 
 22 
 
 353.8 37 
 
 
 17 
 
 21 
 
 440 
 
 308 
 
 
 
 24 
 
 357.4 34 
 
 
 18 
 
 23 
 
 466 
 
 284 
 
 
 
 26 
 
 360 . 32 
 
 
 19 
 
 25 
 
 492 
 
 267 
 
 
 
 28 
 
 362.5 
 
 30 
 
 
 20 
 
 26 
 
 518 
 
 250 
 
 
 
 30 
 
 365.0 
 
 28 
 
 
 22 
 
 28 
 
 565, 
 
 233 
 
 10 
 
 6 
 
 16 
 
 369.3 
 
 52 
 
 H 
 
 14 
 
 17 
 
 381 
 
 478 
 
 
 
 18 
 
 376.1 
 
 47 
 
 
 15 
 
 19 
 
 408 
 
 432 
 
 
 
 20 
 
 381.8 
 
 43 
 
 
 16 
 
 21 
 
 435 
 
 395 
 
 
 
 22 
 
 386.0 
 
 40 
 
 . 
 
 18 
 
 23 
 
 490 
 
 367 
 
 
 
 24 
 
 390.0 
 
 37 
 
 
 19 
 
 25 
 
 517 
 
 340 
 
 
 
 26 
 
 392.9 
 
 35 
 
 
 20 
 
 26 
 
 544 
 
 321 
 
 
 
 28 
 
 395.5 
 
 33 
 
 
 21 
 
 27 
 
 571 
 
 303 
 
 
 
 30 
 
 398.2 
 
 31 
 
 
 22 
 
 28 
 
 599 
 
 285 
 
 11 
 
 
 
 18 
 
 406.9 
 
 51 
 
 H 
 
 15 
 
 19 
 
 419 
 
 514 
 
 
 
 20 
 
 414.5 
 
 46 
 
 
 17 
 
 22 
 
 486 
 
 463 
 
 
 
 22 
 
 419.0 
 
 43 
 
 
 19 
 
 24 
 
 543 
 
 433 
 
 
 
 24 
 
 423.5 
 
 40 
 
 
 20 
 
 26 
 
 572 
 
 403 
 
 
 
 26 
 
 428.0 
 
 37 
 
 
 22 
 
 28 
 
 629 
 
 373 
 
 
 
 28 
 
 431.0 
 
 35 
 
 
 23 
 
 29 
 
 658 
 
 353 
 
 
 
 30 
 
 434.0 
 
 33 
 
 
 24 
 
 31 
 
 686 
 
 333 
 
 
 
 32 
 
 437.2 
 
 31 
 
 
 26 
 
 33 
 
 743 
 
 312 
 
 
 
 34 
 
 438.7 
 
 30 
 
 
 26 
 
 33 
 
 743 
 
 302 
 
 11 
 
 
 
 18 
 
 439.7 
 
 54 
 
 H 
 
 16 
 
 21 
 
 478 
 
 595 
 
 
 
 20 
 
 446.3 
 
 50 
 
 
 18 
 
 23 
 
 538 
 
 551 
 
 
 
 22 
 
 452.8 
 
 46 
 
 
 20 
 
 25 
 
 598 
 
 507 
 
 
 
 24 
 
 457.8 
 
 43 
 
 
 21 
 
 27 
 
 628 
 
 474 
 
 
 
 26 
 
 462.9 
 
 40 
 
 
 23 
 
 29 
 
 687 
 
 441 
 
 
 
 28 
 
 466.3 
 
 38 
 
 
 24 
 
 31 
 
 717 
 
 418 
 
 
 
 30 
 
 469.4 
 
 36 
 
 
 25 
 
 32 
 
 747 
 
 397 
 
 
 
 32 
 
 472.7 
 
 34 
 
 
 26 
 
 34 
 
 111 
 
 375 
 
 
 
 34 
 
 476.0 
 
 32 
 
 
 28 
 
 35 
 
 837 
 
 353 
 
 12 
 
 
 
 18 
 
 471.4 
 
 58 
 
 H 
 
 17 
 
 22 
 
 530 
 
 697 
 
 
 
 20 
 
 480.5 
 
 53 
 
 
 19 
 
 24 
 
 593 
 
 636 
 
 
 
 22 
 
 486.0 
 
 50 
 
 
 20 
 
 26 
 
 624 
 
 600 
 
 
 
 24 
 
 493.2 
 
 46 
 
 
 22 
 
 28 
 
 686 
 
 552 
 
 
 
 26 498.6 
 28 502 . 1 
 
 43 
 41 
 
 
 24 
 25 
 
 31 
 32 
 
 748 
 780 
 
 516 
 492 
 
 
 
 30 
 
 507.6 
 
 38 
 
 
 27 
 
 35 
 
 841 
 
 456 
 
 
 
 32 
 
 511.1 
 
 36 
 
 
 28 
 
 36 
 
 873 
 
 432 
 
 
 
 34 
 
 514.8 
 
 34 
 
 
 30 
 
 38 
 
 936 
 
 408 
 
 
 
 36 
 
 518.4 
 
 32 
 
 
 31 
 
 40 
 
 967 
 
 384 
 
 230 
 
TABLE 50 
 
 FOOTINGS 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 3 TONS ON SOIL 
 
 Punching shear = 120 
 Bond stress = 100 
 Tension in steel = 16,6 
 
 Footing 
 size 
 b 
 
 Column 
 size 
 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ub.) 
 
 (ft.) ! (in.) 
 
 Square 
 
 Round 
 
 3 
 
 
 
 10 
 
 52.4 
 
 14 
 
 H 
 
 8 
 
 10 
 
 37.4 
 
 10.5 
 
 
 
 12 
 
 52.5 
 
 13 
 
 
 8 
 
 11 
 
 37.4 
 
 9.8 
 
 
 
 14 
 
 52.8 
 
 11 
 
 
 11 
 
 14 
 
 51.5 
 
 8.3 
 
 
 
 16 
 
 52.9 
 
 10 
 
 
 12 
 
 15 
 
 56.1 
 
 7.5 
 
 3 
 
 6 
 
 10 
 
 70.7 
 
 18 
 
 M 
 
 7 
 
 9 
 
 38.7 
 
 18.4 
 
 
 
 12 
 
 71.1 
 
 16 
 
 
 9 
 
 11 
 
 49.7 
 
 16.3 
 
 
 
 14 
 
 71.4 
 
 14 
 
 
 10 
 
 13 
 
 55.2 
 
 14.3 
 
 
 
 16 
 
 71.7 
 
 12 
 
 
 13 
 
 16 
 
 71.8 
 
 12.3 
 
 4 
 
 
 
 10 
 
 91.4 
 
 23 
 
 M 
 
 7 
 
 9 
 
 44.6 
 
 30.7 
 
 
 
 12 
 
 92.2 
 
 19 
 
 
 10 
 
 12 
 
 63.7 
 
 25.3 
 
 
 
 14 
 
 92.6 
 
 17 
 
 
 10 
 
 13 
 
 63.7 
 
 22.7 
 
 
 
 16 
 
 93.0 
 
 15 
 
 
 12 
 
 16 
 
 76.5 
 
 20.0 
 
 
 
 18 
 
 93.2 
 
 14 
 
 
 13 
 
 17 
 
 82.9 
 
 18.7 
 
 
 
 20 
 
 93.4 
 
 13 
 
 
 14 
 
 18 
 
 89.2 
 
 17.3 
 
 4 
 
 6 
 
 10 
 
 114.7 
 
 27 
 
 y* 
 
 7 
 
 9 
 
 50.6 
 
 45.6 
 
 
 
 12 
 
 115.7 
 
 23 
 
 
 9 
 
 11 
 
 65.0 
 
 38.8 
 
 
 
 14 
 
 116.2 
 
 21 
 
 
 10 
 
 13 
 
 72.2 
 
 35.5 
 
 
 
 16 
 
 116.9 
 
 18 
 
 
 12 
 
 16 
 
 86.7 
 
 30.4 
 
 
 
 18 
 
 117.2 
 
 17 
 
 
 13 
 
 16 
 
 94.0 
 
 28.7 
 
 
 
 20 
 
 117.7 
 
 15 
 
 
 15 
 
 19 
 
 108.0 25.3 
 
 5 
 
 
 
 12 
 
 141.2 
 
 28 
 
 H 
 
 8 
 
 11 
 
 64 . 6 58 . 3 
 
 
 
 14 
 
 142.2 
 
 25 
 
 
 10 
 
 12 
 
 80.7 i 52 1 
 
 
 
 J6 
 
 143.1 
 
 22 
 
 
 12 
 
 15 
 
 97.0 45.8 
 
 
 
 18 
 
 143.7 
 
 20 
 
 
 13 
 
 16 
 
 105 41.7 
 
 
 
 20 
 
 144.4 
 
 18 
 
 
 15 
 
 19 
 
 121 37.5 
 
 
 
 22 
 
 145.0 
 
 16 
 
 
 16 
 
 22 
 
 129 33.3 
 
 5 
 
 6 
 
 12 
 
 169.0 
 
 33 
 
 H 
 
 8 
 
 11 
 
 71.4 
 
 83.2 
 
 
 
 14 
 
 170.5 
 
 29 
 
 
 10 
 
 12 
 
 89.2 
 
 73.1 
 
 
 
 16 
 
 172.0 
 
 25 
 
 
 13 
 
 16 
 
 116.0 
 
 63 
 
 
 
 18 
 
 172.8 
 
 23 
 
 
 13 
 
 17 
 
 116 
 
 58.0 
 
 
 
 20 
 
 173.6 
 
 21 
 
 
 15 
 
 19 
 
 134 
 
 52 9 
 
 
 
 22 
 
 174.3 
 
 19 
 
 
 17 
 
 21 
 
 152 
 
 47.9 
 
 6 
 
 12 198.9 
 
 38 
 
 H 
 
 8 
 
 11 
 
 78.2 114.0 
 
 
 
 14 201.2 
 
 33 
 
 
 10 
 
 12 
 
 97.8 i 99.0 
 
 
 
 16 202.5 
 
 30 
 
 
 11 
 
 14 
 
 108 90 . 
 
 
 
 18 
 
 203.8 
 
 27 
 
 
 13 
 
 16 
 
 127 
 
 81.0 
 
 
 
 20 
 
 205.2 
 
 24 
 
 
 15 
 
 19 
 
 147 
 
 72.0 
 
 
 
 22 
 
 206.1 
 
 22 
 
 
 17 
 
 21 
 
 166 
 
 66.0 
 
 
 
 24 
 
 207 . . 
 
 20 
 
 
 19 
 
 24 
 
 186 
 
 60.0 
 
 
 26 
 
 207.4 
 
 19 
 
 
 20 
 
 25 
 
 195 
 
 57.0 
 
 6 6 
 
 12 
 
 230.8 
 
 43 
 
 M 
 
 9 
 
 11 
 
 95.7 
 
 152.0 
 
 
 14 
 
 233.5 
 
 38 
 
 
 10 
 
 12 
 
 106 
 
 134.0 
 
 
 16 
 
 235.6 
 
 34 
 
 
 11 
 
 14 
 
 117 
 
 120.0 
 
 
 
 18 
 
 237.7 
 
 30 
 
 
 13 
 
 17 
 
 138 
 
 106.0 
 
 
 
 20 
 
 238.7 
 
 28 
 
 
 14 
 
 18 
 
 149 
 
 98.5 
 
 
 
 22 
 
 240.3 
 
 25 
 
 
 17 
 
 21 
 
 181 
 
 88 
 
 
 
 24 
 
 241.4 
 
 23 
 
 
 18 
 
 23 
 
 192 
 
 81.0 
 
 
 26 
 
 241.9 
 
 22 
 
 
 19 
 
 24 
 
 202 
 
 77.4 
 
 231 
 
FOOTINGS 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16,0 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 3 TONS ON SOIL 
 
 Footing 
 size 
 
 Column 
 
 Allowable 
 i -_ j 
 
 Total 
 
 Steel 
 
 Volume 
 
 
 
 
 b 
 
 size 
 a 
 (in.) 
 
 load 
 P 
 
 (thousands 
 of uounds) 
 
 depth 
 (in.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 
 of 
 concrete 
 (cu. ft.) 
 
 
 
 
 
 (ft.) 
 
 (in.) 
 
 
 
 
 Square 
 
 Round 
 
 db.) 
 
 
 7 
 
 
 
 14 267.7 
 
 43 
 
 H 
 
 11 
 
 14 
 
 121 176 
 
 
 
 16 270.2 
 
 39 
 
 
 12 
 
 15 
 
 138 159 
 
 
 
 18 272.6 
 
 35 
 
 
 13 
 
 16 
 
 149 143 
 
 
 
 20 275.0 
 
 31 
 
 
 15 
 
 19 
 
 172 
 
 126 
 
 
 
 22 
 
 276.3 
 
 29 
 
 
 16 
 
 20 
 
 184 
 
 118 
 
 
 
 24 
 
 277.5 
 
 27 
 
 
 18 
 
 22 
 
 207 
 
 110 
 
 
 
 26 
 
 278.7 
 
 25 
 
 
 19 
 
 24 
 
 218 
 
 102 
 
 
 
 28 
 
 279.9 
 
 23 
 
 
 21 
 
 27 
 
 241 
 
 94 
 
 7 6 
 
 14 
 
 303.7 
 
 48 
 
 y* 
 
 12 
 
 .15 
 
 148 
 
 225 
 
 
 
 16 
 
 307.4 
 
 43 
 
 
 13 
 
 16 
 
 160 
 
 202 
 
 
 
 18 
 
 310.0 
 
 39 
 
 
 14 
 
 18 
 
 173 
 
 183 
 
 
 20 
 
 312.9 
 
 35 
 
 
 16 
 
 20 
 
 197 
 
 164 
 
 
 
 22 
 
 315.0 
 
 32 
 
 
 17 
 
 22 
 
 210 
 
 150 
 
 
 
 24 
 
 316.3 
 
 30 
 
 
 18 
 
 22 
 
 222 
 
 141 
 
 
 
 26 
 
 317.8 
 
 28 
 
 
 19 
 
 24 
 
 234 
 
 131 
 
 
 
 28 
 
 319.2 
 
 26 
 
 
 21 
 
 27 
 
 257 
 
 122 
 
 8 
 
 
 
 16 
 
 345.6 
 
 48 
 
 H 
 
 14 
 
 17 
 
 185 
 
 256 
 
 
 
 18 349.6 
 
 43 
 
 
 15 
 
 19 
 
 198 
 
 229 
 
 
 
 20 
 
 352.8 
 
 39 
 
 
 17 
 
 21 . 224 
 
 208 
 
 
 
 22 
 
 . 355.2 
 
 36 
 
 
 18 
 
 23 237 192 
 
 
 
 24 
 
 357.6 
 
 33 
 
 
 20 
 
 25 264 176 
 
 
 
 26 
 
 359 . 2 
 
 31 
 
 
 21 
 
 26 277 165 
 
 
 
 28 
 
 360.7 
 
 29 
 
 
 21 
 
 27 ! 277 155 
 
 
 
 30 
 
 362.4 
 
 27 
 
 
 23 
 
 29 
 
 303 
 
 144 
 
 8 
 
 6 
 
 16 
 
 386.6 
 
 53 
 
 y* 
 
 15 
 
 19 
 
 211 
 
 319 
 
 
 
 18 
 
 390.1 
 
 48 
 
 
 16 
 
 21 
 
 224 
 
 289 
 
 
 
 20 
 
 393.7 
 
 44 
 
 
 18 
 
 22 ' 
 
 252 
 
 265 
 
 
 
 22 397.3 
 
 40 
 
 
 19 
 
 24 
 
 266 
 
 241 
 
 
 
 24 400 . 1 
 
 37 
 
 
 21 
 
 27 
 
 294 
 
 223 
 
 
 
 26 
 
 401.9 
 
 35 
 
 
 22 
 
 28 
 
 309 
 
 211 
 
 
 
 28 
 
 404.5 
 
 32 
 
 
 24 
 
 30 
 
 337 
 
 193 
 
 
 - 
 
 30 
 
 406.3 
 
 30 
 
 
 25 
 
 32 
 
 351 
 
 181 
 
 9 
 
 
 
 18 
 
 432.2 
 
 53 
 
 y% 
 
 .11 
 
 14 
 
 256 
 
 358 
 
 
 
 20 
 
 437.3 
 
 48 
 
 
 12 
 
 15 
 
 279 
 
 324 
 
 
 
 22 
 
 441.4 
 
 44 
 
 
 13 
 
 17 
 
 302 
 
 297 
 
 
 
 24 
 
 444.4 
 
 41 
 
 
 14 
 
 18 
 
 325 
 
 277 
 
 
 
 26 
 
 447.4 
 
 38 
 
 
 15 
 
 20 
 
 349 
 
 257 
 
 
 
 28 
 
 449.5 
 
 36 
 
 
 16 
 
 21 
 
 372 
 
 243 
 
 
 
 30 
 
 452.5 
 
 33 
 
 
 18 
 
 23 
 
 418 
 
 223 
 
 
 
 32 
 
 454.6 
 
 31 
 
 
 20 
 
 25 
 
 465 
 
 209 
 
 
 
 34 
 
 456.6 
 
 29 
 
 
 21 
 
 27 
 
 488 
 
 196 
 
 9 
 
 6 
 
 18 
 
 476.1 
 
 58 
 
 H 
 
 12 
 
 15 
 
 295 
 
 436 
 
 
 
 20 
 
 481.6 
 
 53 
 
 
 13 
 
 16 
 
 319 
 
 399 
 
 
 
 22 
 
 486.1 
 
 49 
 
 
 14 
 
 18 
 
 344 
 
 369 
 
 
 
 24 
 
 490.6 
 
 45 
 
 
 15 
 
 19 
 
 369 
 
 339 
 
 
 
 26 
 
 494.1 
 
 42 
 
 
 16 
 
 21 
 
 393 
 
 316 
 
 
 
 28 
 
 497.5 
 
 39 
 
 
 17 
 
 22 
 
 418 
 
 293 
 
 
 
 .-30 499.8 37 
 
 
 18 
 
 23 
 
 442 
 
 278 
 
 
 
 32 502 . 35 
 
 
 19 
 
 24 
 
 467 
 
 263 
 
 
 
 34 504.3 33 
 
 
 20 
 
 26 
 
 492 
 
 248 
 
 232 
 
TABLE 50 
 
 FOOTINGS 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 3 TONS ON SOIL 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16, 000 
 
 Footing 
 size 
 6 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ob.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 10 
 
 
 
 18 
 
 521.3 
 
 63 
 
 H 
 
 13 
 
 16 
 
 336 525 
 
 
 
 20 
 
 527.5 
 
 58 
 
 
 14 
 
 17 
 
 362 483 
 
 
 
 22 
 
 533.7 
 
 53 
 
 
 15 
 
 19 
 
 388 442 
 
 
 
 24 
 
 538.9 
 
 49 
 
 
 16 
 
 20 
 
 414 408 
 
 
 
 26 
 
 542.5 
 
 46 
 
 
 17 
 
 22 
 
 440 383 
 
 
 
 28 
 
 546.3 
 
 43 
 
 
 18 
 
 23 
 
 465 358 
 
 
 
 30 
 
 550.0 
 
 40 
 
 
 19 
 
 25 
 
 492 333 
 
 
 
 32 
 
 552.5 
 
 38 
 
 
 20 
 
 25 
 
 518 317 
 
 
 
 34 
 
 555.0 
 
 36 
 
 
 21 
 
 27 
 
 544 300 
 
 
 
 36 
 
 557.5 
 
 34 
 
 
 22 
 
 28 569 283 
 
 10 
 
 6 
 
 18 
 
 566.3 
 
 69 
 
 K 
 
 14 
 
 17 
 
 381 634 
 
 
 
 20 
 
 574.5 
 
 63 
 
 
 15 
 
 18 
 
 408 , 579 
 
 
 
 22 
 
 581.5 
 
 58 
 
 
 16 
 
 20 
 
 435 533 
 
 
 
 24 . 587.1 
 
 54 
 
 
 17 
 
 21 
 
 463 496 
 
 
 
 26 593 . 2 
 
 50 
 
 
 18 
 
 23 
 
 490 456 
 
 
 
 28 596 . 6 
 
 47 
 
 
 19 
 
 24 
 
 517 432 
 
 
 
 30 600.8 
 
 44 
 
 
 20 
 
 26 
 
 544 404 
 
 
 
 32 604 . 9 
 
 41 
 
 
 22 28 
 
 599 377 
 
 
 
 34 608 . 8 
 
 39 
 
 
 23 
 
 29 
 
 626 358 
 
 
 
 36 610.5 
 
 37 
 
 
 23 
 
 30 
 
 626 340 
 
 
 
 38 613.2 
 
 35 
 
 
 24 
 
 31 
 
 653 322 
 
 11 
 
 
 
 20 623.2 
 
 68 
 
 M 
 
 15 
 
 20 
 
 458 686 
 
 
 
 22 630 . 8 
 
 63 
 
 
 17 
 
 21 
 
 486 635 
 
 
 
 24 638 . 3 
 
 58 
 
 
 18 
 
 22 
 
 515 
 
 585 
 
 
 
 26 644.4 
 
 54 
 
 
 19 
 
 24 
 
 543 
 
 544 
 
 
 
 28 
 
 648.9 
 
 51 
 
 
 20 
 
 25 
 
 582 
 
 514 
 
 
 
 30 
 
 653.4 
 
 48 
 
 
 21 
 
 27 
 
 600 
 
 484 
 
 
 
 32 
 
 657.9 
 
 45 
 
 
 23 
 
 29 
 
 658 
 
 454 
 
 
 
 34 
 
 662.5 
 
 42 
 
 
 24 
 
 31 
 
 686 
 
 423 
 
 
 
 36 
 
 665 .5 
 
 40 
 
 
 25 
 
 32 
 
 715 
 
 403 
 
 
 
 38 
 
 668.5 
 
 38 
 
 
 26 
 
 33 
 
 743 
 
 383 
 
 
 
 40 
 
 671.5 
 
 36 
 
 
 27 
 
 34 
 
 772 
 
 363 
 
 11 
 
 6 
 
 20 
 
 672.9 
 
 73 
 
 H 
 
 16 
 
 21 
 
 478 
 
 804 
 
 
 
 22 
 
 682.8 
 
 67 
 
 
 18 
 
 23 
 
 538 
 
 738 
 
 
 
 24 
 
 689.5 
 
 63 
 
 
 19 
 
 24 
 
 568 
 
 694 
 
 
 
 26 696.0 
 
 59 
 
 
 20 
 
 25 
 
 598 
 
 650 
 
 
 
 28 702 . 6 
 
 55 
 
 
 21 
 
 27 
 
 628 
 
 606 
 
 
 
 30 709 . 1 
 
 51 
 
 
 23 
 
 29 
 
 687 
 
 562 
 
 
 
 32 714.1 
 
 48 
 
 
 24 
 
 31 
 
 717 
 
 529 
 
 
 
 34 717.5 
 
 46 
 
 
 25 
 
 32 
 
 747 
 
 507 
 
 
 
 36 722.3 
 
 43 
 
 
 26 
 
 34 
 
 777 
 
 474 
 
 
 
 38 725 . 7 
 
 41 
 
 
 27 
 
 35 
 
 807 
 
 452 
 
 
 
 40 729 . 1 
 
 39 
 
 
 28 
 
 36 
 
 837 
 
 429 
 
 
 
 42 732.3 
 
 37 
 
 
 29 
 
 37 
 
 866 
 
 408 
 
 12 
 
 22 734.4 
 
 72 
 
 M 
 
 19 
 
 24 
 
 593 
 
 864 
 
 
 24 
 
 743.4 
 
 67 
 
 20 
 
 25 
 
 614 
 
 804 
 
 
 
 26 
 
 750 . 6 63 
 
 
 21 
 
 27 
 
 655 
 
 756 
 
 
 
 28 
 
 757 . 8 59 
 
 
 22 
 
 28 
 
 686 
 
 708 
 
 
 
 30 
 
 765.0 55 
 
 
 24 
 
 31 
 
 748 
 
 660 
 
 
 
 32 
 
 770.4 52 
 
 
 25 
 
 32 
 
 780 
 
 624 
 
 
 
 34 
 
 775.8 49 
 
 
 27 
 
 34 
 
 842 
 
 588 
 
 
 
 36 
 
 779.4 47 
 
 
 27 
 
 35 
 
 842 
 
 564 
 
 
 
 38 784.8 44 
 
 
 29 
 
 37 
 
 904 
 
 528 
 
 
 
 40 788 . 4 42 
 
 
 30 
 
 38 
 
 936 
 
 504 
 
 
 
 42 792 . 40 
 
 
 31 
 
 39 
 
 967 
 
 480 
 
 
 
 44 793.8 
 
 39 
 
 
 31 
 
 39 
 
 967 
 
 468 
 
 233 
 
FOOTINGS 
 
 Square column 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 A J 
 
 
 I ^ 
 
 
 4 TONS ON SOIL 
 Punching shear = 120 m Iff 
 
 I 
 
 Bond stress =100 HfH 
 
 Q * 
 
 Tension in steel - 16,000 5 gFi 
 
 1 
 
 
 
 Footing 
 size 
 b 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 D 
 
 (in.) 
 
 Steel 
 
 Volume 
 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ob.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 3 
 
 
 
 10 
 
 70.0 18 
 
 H 7 9 32.8 13.5 
 
 
 
 70.3 15 
 
 
 9 11 42.0 11.3 
 
 
 14 70.5 13 
 
 
 10 13 46.7 9.8 
 
 
 16 70.6 12 
 
 
 11 
 
 14 
 
 51.5 9.0 
 
 
 18 70.8 11 
 
 
 12 
 
 15 
 
 56.1 8.3 
 
 3 
 
 6 10 
 
 94 . 5 23 
 
 M 
 
 7 9 
 
 38.7 23.5 
 
 12 
 
 94.9 20 
 
 
 8 
 
 10 
 
 44.2 20 4 
 
 14 
 
 95.4 17 
 
 
 10 
 
 12 
 
 55.2 17.4 
 
 
 16 
 
 95.7 15 
 
 
 11 
 
 15 
 
 60.7 15.3 
 
 
 18 
 
 95.9 14 
 
 
 12 15 
 
 66.3 14.3 
 
 
 20 96.2 ' 12 
 
 15 
 
 19 
 
 82.9 12.3 
 
 4 
 
 10 
 
 122.2 29 
 
 H 
 
 7 
 
 9 
 
 44 . 6 38 7 
 
 
 12 
 
 123.0 25 
 
 
 8 
 
 10 
 
 51.0 33 . 3 
 
 
 
 14 
 
 123.8 
 
 21 
 
 
 10 
 
 12 
 
 63.7 
 
 28.0 
 
 
 
 16 
 
 124.1 
 
 19 
 
 
 11 
 
 14 
 
 70.1 
 
 25.3 
 
 
 
 18 
 
 124.6 ' 
 
 17 
 
 
 13 
 
 16 
 
 82.9 
 
 22.7 
 
 
 
 20 
 
 125.0 
 
 15 
 
 
 15 
 
 19 
 
 95.6 
 
 20.0 
 
 
 
 22 
 
 125.3 
 
 14 
 
 
 15 
 
 19 
 
 95.6 
 
 18.7 
 
 4 
 
 6 
 
 10 
 
 153.1 
 
 35 
 
 H 
 
 7 
 
 9 
 
 50 . 6 59 . 
 
 
 
 12 
 
 154.4 
 
 30 
 
 
 8 
 
 10 
 
 57 . 7 50 . 6 
 
 
 
 14 
 
 155.4 
 
 26 
 
 
 10 
 
 12 
 
 72 . 2 . 43 . 8 
 
 1 
 
 16 
 
 156.2 
 
 23 
 
 
 11 
 
 14 
 
 79.5 
 
 38.8 
 
 1 
 
 18 
 
 156.7 
 
 21 
 
 
 12 
 
 15 
 
 86.7 
 
 35.4 
 
 
 20 
 
 157.2 
 
 19 
 
 
 14 
 
 17 
 
 101.0 
 
 32.0 
 
 
 22 
 
 157.7 
 
 17 
 
 
 16 
 
 20 
 
 116.0 28.7 
 
 5 
 
 
 
 12 
 
 188.7 
 
 36 
 
 M 
 
 8 
 
 11 
 
 64.6 
 
 75.0 
 
 
 
 14 
 
 190.3 
 
 31 
 
 
 10 
 
 12 
 
 80.7 
 
 64.6 
 
 
 
 16 
 
 191.6 
 
 27 
 
 
 11 
 
 14 
 
 88.8 
 
 56.2 
 
 
 
 18 
 
 192.2 
 
 25 
 
 
 12 
 
 15 
 
 97.0 
 
 52.1 
 
 
 
 20 
 
 193 . 1 
 
 22 
 
 
 14 
 
 18 
 
 113 
 
 45.8 
 
 
 
 22 
 
 193.7 
 
 20 
 
 
 16 
 
 20 
 
 129 
 
 41.7 
 
 
 
 24 
 
 194.1 
 
 19 
 
 
 17 
 
 21 
 
 137 
 
 39.6 
 
 5 
 
 6 
 
 12 
 
 226.1 
 
 42 
 
 H 
 
 9 
 
 11 
 
 80.2 
 
 106.0 
 
 
 
 14 
 
 228.0 
 
 37 
 
 
 10 
 
 12 
 
 89.2 
 
 93.2 
 
 
 
 16 
 
 229.9 
 
 32 
 
 
 11 
 
 14 
 
 98.2 
 
 80.7 
 
 
 
 18 
 
 231 .0 
 
 29 
 
 
 13 
 
 16 
 
 116 
 
 73.1 
 
 
 
 20 
 
 232.2 
 
 26 
 
 
 14 
 
 18 
 
 125 
 
 65.5 
 
 
 
 22 
 
 232.9 
 
 24 
 
 
 15 
 
 19 
 
 134 
 
 60.5 
 
 
 
 24 
 
 233 . 7 
 
 22 
 
 
 17 
 
 22 
 
 152 
 
 55.4 
 
 
 
 26 
 
 234.4 
 
 20 
 
 
 19 
 
 24 
 
 170 
 
 50.4 
 
 6 
 
 
 
 14 
 
 268.6 
 
 43 
 
 H 
 
 9 
 
 12 
 
 88.0 
 
 129.0 
 
 
 
 16 270.6 
 
 38 
 
 
 11 
 
 14 
 
 108 
 
 116.0 
 
 
 
 18 272.7 
 
 34 
 
 
 12 
 
 16 
 
 117 
 
 102.0 
 
 
 
 20 274.0 
 
 31 
 
 
 14 
 
 17 
 
 137 
 
 93.0 
 
 
 
 22 275 . 4 
 
 28 
 
 
 15 
 
 19 
 
 147 
 
 84.0 
 
 
 
 24 276.3 
 
 26 
 
 
 17 
 
 21 
 
 166 
 
 78.0 
 
 
 
 26 
 
 277.2 
 
 24 
 
 
 18 
 
 23 
 
 176 
 
 72.0 
 
 
 
 28 
 
 278.1 
 
 22 
 
 
 20 
 
 26 
 
 195 
 
 66.0 
 
 6 
 
 6 
 
 14 
 
 312.1 
 
 49 
 
 y* 
 
 10 
 
 13 
 
 106 
 
 172.0 
 
 
 
 16 
 
 314.7 
 
 44 
 
 
 11 
 
 14 
 
 117 
 
 155.0 
 
 
 
 18 
 
 317.5 
 
 39 
 
 
 13 
 
 16 
 
 138 
 
 137.0 
 
 
 
 20 
 
 319.5 
 
 35 
 
 
 14 
 
 18 
 
 149 
 
 123.0 
 
 
 
 22 
 
 321.1 
 
 32 
 
 
 15 
 
 19 
 
 160 
 
 112.0 
 
 
 
 24 
 
 322.2 
 
 30 
 
 
 17 
 
 21 
 
 181 
 
 106.0 
 
 
 
 26 
 
 323 . 2 
 
 28 
 
 
 18 
 
 23 
 
 192 
 
 98.5 
 
 
 
 28 
 
 ,", > 1 : . 3 
 
 26 
 
 i/ 
 
 19 
 
 25 
 
 202 
 
 91 .5 
 
 
 
 30 
 
 325 . 3 
 
 24 
 
 
 21 27 
 
 223 
 
 84.5 
 
 234 
 
TABLE 51 
 
 FOOTINGS 
 
 5quar<s column . 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 4 TONS ON SOIL 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16,0 
 
 Footing 
 size 
 
 i 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 db.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 7 
 
 
 
 16 
 
 361.4 
 
 50 
 
 H 
 
 12 
 
 15 
 
 138 
 
 204 
 
 
 
 18 
 
 364.4 
 
 45 
 
 
 13 
 
 16 
 
 149 
 
 184 
 
 
 
 20 
 
 367.5 
 
 40 
 
 
 14 
 
 18 
 
 161 
 
 163 
 
 
 
 22 
 
 369.3 
 
 37 
 
 
 15 
 
 19 
 
 172 
 
 151 
 
 
 
 24 
 
 371.1 
 
 34 
 
 
 17 
 
 21 
 
 195 
 
 139 
 
 
 26 
 
 372.4 
 
 32 
 
 
 18 
 
 22 
 
 207 
 
 131 
 
 
 28 
 
 374.2 
 
 29 
 
 
 20 
 
 25 
 
 230 
 
 118 
 
 
 30 
 
 375.4 
 
 27 
 
 
 22 
 
 27 
 
 252 
 
 110 
 
 
 32 
 
 376.7 
 
 25 
 
 
 25 
 
 30 
 
 287 
 
 102 
 
 7 
 
 6 16 
 
 410.6 
 
 55 
 
 H 
 
 13 
 
 16 
 
 160 
 
 263 
 
 
 18 
 
 414.2 
 
 51 
 
 
 14 
 
 17 
 
 173 
 
 239 
 
 
 20 
 
 417.7 
 
 46 
 
 
 15 
 
 19 
 
 185 
 
 215 
 
 
 22 
 
 420.4 
 
 42 
 
 
 16 
 
 20 197 
 
 197 
 
 
 24 
 
 422.5 
 
 39 
 
 
 16 
 
 21 197 
 
 183 
 
 
 26 
 
 424.7 
 
 36 
 
 
 18 
 
 22 222 
 
 168 
 
 
 28 
 
 426.8 
 
 33 
 
 
 20 
 
 25 
 
 246 
 
 155 
 
 
 30 
 
 428.2 
 
 31 
 
 
 21 
 
 27 
 
 259 
 
 145 
 
 
 32 
 
 429.6 
 
 29 
 
 
 23 
 
 29 
 
 284 
 
 136 
 
 
 34 
 
 431.0 
 
 27 
 
 
 25 
 
 31 
 
 308 
 
 126 
 
 8 
 
 18 
 
 466.4 
 
 57 
 
 H 
 
 15 
 
 19 
 
 198 
 
 304 
 
 
 20 
 
 471.2 
 
 51 
 
 
 16 
 
 21 
 
 211 
 
 272 
 
 
 
 22 
 
 474.3 
 
 47 
 
 
 17 
 
 22 
 
 224 
 
 251 
 
 
 
 24 
 
 477.6 
 
 43 
 
 
 18 
 
 23 
 
 237 
 
 229 
 
 
 
 26 
 
 480.0 
 
 40 
 
 
 19 
 
 24 
 
 250 
 
 213 
 
 
 
 28 
 
 482.4 
 
 37 
 
 
 20 
 
 25 
 
 264 
 
 197 
 
 
 
 30 
 
 484.0 
 
 35 
 
 
 21 
 
 26 
 
 277 
 
 187 ' 
 
 
 
 32 
 
 485.6 
 
 33 
 
 
 22 
 
 28 
 
 290 
 
 176 
 
 
 
 34 
 
 487.2 
 
 31 
 
 
 24 
 
 30 
 
 316 
 
 165 
 
 
 
 36 
 
 488.8 
 
 29 
 
 
 26 
 
 32 
 
 343 
 
 155 
 
 8 
 
 6 
 
 18 
 
 521.0 
 
 63 
 
 H 
 
 16 
 
 20 
 
 224 
 
 380 
 
 
 
 20 
 
 526.5 
 
 57 
 
 
 17 
 
 22 
 
 238 
 
 343 
 
 
 
 22 
 
 531.0 52 
 
 
 19 
 
 24 
 
 266 
 
 313 
 
 
 
 24 
 
 534 . 6 48 
 
 
 20 
 
 25 
 
 281 
 
 289 
 
 
 
 26 
 
 537.3 45 
 
 
 21 
 
 26 
 
 294 
 
 271 
 
 
 
 28 
 
 540.0 42 
 
 
 21 
 
 27 
 
 294 
 
 253 
 
 
 
 30 
 
 542 . 7 39 
 
 
 22 
 
 28 
 
 309 
 
 235 
 
 
 
 32 
 
 545.4 .36 
 
 
 24 
 
 31 
 
 337 
 
 217 
 
 
 
 34 
 
 557.2 
 
 34 
 
 
 25 
 
 31 
 
 351 
 
 205 
 
 
 
 36 
 
 549.0 
 
 32 
 
 
 26 
 
 33 
 
 365 
 
 193 
 
 9 
 
 
 
 20 
 
 584.2 
 
 63 
 
 K 
 
 12 
 
 15 
 
 279 
 
 425 
 
 
 
 22 
 
 589.4 
 
 58 
 
 
 13 
 
 16 
 
 302 
 
 391 
 
 
 
 24 
 
 593.3 
 
 54 
 
 
 13 
 
 17 
 
 302 364 
 
 
 
 26 
 
 598.3 
 
 49 
 
 
 15 
 
 19 
 
 349 
 
 331 
 
 
 
 28 
 
 601.4 
 
 46 
 
 
 16 
 
 20 
 
 372 
 
 310 
 
 
 
 50 
 
 604.4 
 
 43 
 
 
 17 
 
 21 
 
 395 
 
 290 
 
 
 
 32 
 
 607.5 
 
 40 
 
 
 18 
 
 23 
 
 418 270 
 
 
 
 34 
 
 609.6 
 
 38 
 
 
 19 
 
 24 
 
 442 256 
 
 
 
 36 
 
 611.5 
 
 36 
 
 
 20 
 
 26 
 
 465 243 
 
 
 
 38 
 
 613.6 
 
 34 
 
 
 22 
 
 28 
 
 511 229 
 
 9 
 
 6 20 
 
 644.1 
 
 69 
 
 H 
 
 13 
 
 16 
 
 319 519 
 
 
 22 
 
 649.9 
 
 64 
 
 
 14 
 
 18 
 
 344 481 
 
 
 
 24 
 
 655.5 
 
 59 
 
 
 14 
 
 18 
 
 344 443 
 
 
 
 26 
 
 660.0 
 
 55 
 
 
 15 
 
 19 
 
 369 413 
 
 
 
 28 
 
 664.5 
 
 51 
 
 
 16 
 
 20 
 
 393 383 
 
 
 
 30 
 
 667.8 
 
 48 
 
 
 16 
 
 21 
 
 393 361 
 
 
 
 32 
 
 671.3 
 
 45 
 
 
 17 
 
 22 
 
 418 ' 338 
 
 
 
 34 
 
 674.6 
 
 42 
 
 
 19 . 24 
 
 467 316 
 
 
 
 36 
 
 676.8 
 
 40 
 
 
 20 26 
 
 491 301 
 
 
 
 38 
 
 679.1 
 
 38 
 
 
 21 27 
 
 516 
 
 286 
 
 
 
 40 681.3 
 
 36 
 
 
 23 29 565 
 
 271 
 
 235 
 
FOOTINGS 
 
 TABLE 51 
 
 DESIGN OF SINGLE SQUARE FOOTINGS 
 
 Punching shear = 120 
 Bond stress =100 
 Tension in steel = 16, 000 
 
 4 TONS ON SOIL 
 
 Footing 
 size 
 b 
 
 Column 
 size 
 a 
 (in.) 
 
 Allowable 
 load 
 P 
 (thousands 
 of pounds) 
 
 Total 
 depth 
 
 (in.) 
 
 Steel 
 
 Volume 
 of 
 concrete 
 (cu. ft.) 
 
 Size 
 (in.) 
 
 No. rods each way 
 
 Weight of 
 sq. rods 
 Ob.) 
 
 (ft.) 
 
 (in.) 
 
 Square 
 
 Round 
 
 10 
 
 
 
 22 712.5 
 
 70 H 
 
 15 
 
 19 
 
 388 583 
 
 
 
 24 718.8 
 
 65 
 
 
 15 
 
 19 
 
 388 
 
 541 
 
 
 
 26 725.0 
 
 60 
 
 
 17 
 
 21 
 
 440- 
 
 500 
 
 
 
 28 730 . 
 
 56 
 
 
 17 
 
 22 
 
 440 
 
 467 
 
 
 
 30 735.0 
 
 52 
 
 
 18 
 
 23 
 
 466 
 
 4 33 
 
 
 
 32 738.8 
 
 49 
 
 
 19 
 
 24 
 
 492 
 
 408 
 
 
 
 34 742.5 
 
 46 
 
 
 20 
 
 25 
 
 518 
 
 383 
 
 
 
 36 745.0 
 
 44 
 
 
 20 
 
 25 
 
 518 367 
 
 
 
 38 748.7 
 
 41 
 
 
 22 
 
 28 
 
 569 342 
 
 
 
 40 751.2 
 
 39 
 
 
 23 
 
 29 
 
 595 
 
 325 
 
 
 42 753.8 37 
 
 24 
 
 31 
 
 620 308 
 
 10 6 
 
 22 777.3 76 
 
 H 
 
 16 
 
 20 435 698 
 
 j 
 
 24 785 . 5 70 
 
 
 17 21 462 i 643 
 
 
 26 792.5 65 
 
 
 18 22 
 
 490 . 597 
 
 | 
 
 28 797.9 61 
 
 
 18 
 
 23 
 
 490 561 
 
 
 30 
 
 803.3 57 
 
 19 
 
 24 517 524 
 
 1 
 
 32 
 
 807 . 7 54 
 
 
 20 
 
 25 
 
 544 496 
 
 | 
 
 34 
 
 811.6 
 
 51 
 
 
 20 
 
 26 544 469 
 
 
 36 
 
 815.9 
 
 48 
 
 
 21 
 
 27 571 441 
 
 
 
 38 
 
 820.0 
 
 45 
 
 
 '23 
 
 29 
 
 626 413 
 
 
 
 40 
 
 822.7 
 
 43 
 
 
 23 
 
 29 
 
 626 395 
 
 
 42 
 
 825.4 
 
 41 
 
 24 
 
 31 
 
 663 
 
 377 
 
 
 44 
 
 828.3 
 
 39 
 
 25 
 
 32 
 
 680 
 
 358 
 
 
 
 1 r 
 
 
 
 
 
 11 
 
 24 
 
 853.0 76 y* 
 
 18 
 
 22 
 
 515 
 
 766 
 
 
 
 26 
 
 860.6 71 
 
 19 
 
 24 
 
 543 
 
 716 
 
 | . 
 
 28 
 
 868.2 66 
 
 20 
 
 25 
 
 572 
 
 665 
 
 
 
 30 
 
 874 . 2 62 
 
 21 
 
 26 
 
 600 
 
 625 
 
 
 
 32 880.2 58 
 
 
 21 
 
 27 
 
 600 
 
 585 
 
 
 
 34 884 . 8 55 
 
 
 22 
 
 28 
 
 629 
 
 554 
 
 
 
 36 889.4 52 
 
 
 23 
 
 29 
 
 658 
 
 524 
 
 i 
 
 
 38 893 . 8 49 
 
 24 
 
 30 
 
 686 
 
 494 
 
 i 
 
 
 40 896.8 47 
 
 
 24 
 
 31 
 
 686 
 
 474 
 
 
 
 42 
 
 900.0 
 
 45 
 
 
 25 
 
 32 
 
 715 
 
 453 
 
 
 
 44 
 
 903 . 
 
 43 
 
 
 25 
 
 32 
 
 715 
 
 433 
 
 
 
 46 
 
 906.0 
 
 41 
 
 
 26 
 
 33 
 
 743 
 
 413 
 
 11 6 
 
 24 922.4 
 
 82 H 19 
 
 24 
 
 568 
 
 903 
 
 
 26 931.0 
 
 77 
 
 20 
 
 25 
 
 598 
 
 848 
 
 
 28 940.8 
 
 71 
 
 21 
 
 27 
 
 628 
 
 782 
 
 
 
 30 
 
 947.4 67 
 
 
 22 
 
 28 
 
 657 
 
 738 
 
 
 
 32 
 
 954.0 
 
 63 
 
 
 23 
 
 29 
 
 687 
 
 694 
 
 
 
 34 
 
 958.9 
 
 60 
 
 
 23 
 
 30 
 
 687 
 
 661 
 
 
 
 36 
 
 963.8 
 
 57 
 
 
 24 
 
 30 
 
 717 
 
 628 
 
 
 
 38 
 
 968.8 
 
 54 
 
 
 25 
 
 31 
 
 747 
 
 595 
 
 
 
 40 
 
 973.7 
 
 51 
 
 
 26 
 
 33 
 
 777 
 
 562 
 
 
 
 42 
 
 977.0 
 
 49 
 
 
 26 
 
 33 
 
 777 
 
 540 
 
 
 
 44 
 
 982.0 
 
 46 
 
 28 
 
 35 
 
 837 
 
 507 
 
 
 
 46 
 
 985.2 
 
 44 
 
 29 
 
 36 
 
 866 
 
 485 
 
 
 
 48 
 
 988.7 
 
 42 
 
 29 
 
 37 
 
 866 
 
 462 
 
 12 
 
 26 
 
 1002 . 7 
 
 83 H 
 
 21 
 
 26 
 
 655 
 
 996 
 
 
 28 
 
 1013.3 
 
 77 
 
 22 
 
 28 
 
 686 
 
 925 
 
 
 30 
 
 1022.2 
 
 72 
 
 23 
 
 29 
 
 717 
 
 865 
 
 
 
 32 
 
 1029.6 
 
 68 
 
 
 24 
 
 30 
 
 748 
 
 816 
 
 
 
 34 
 
 1036.8 
 
 64 
 
 
 25 
 
 32 
 
 780 
 
 768 
 
 
 
 36 
 
 1042.3 
 
 61 
 
 
 26 
 
 32 
 
 811 
 
 732 
 
 
 
 38 
 
 1047.5 
 
 58 
 
 
 26 
 
 34 811 
 
 697 
 
 
 
 40 
 
 1053.0 
 
 55 
 
 
 27 
 
 35 
 
 842 
 
 660 
 
 
 
 42 
 
 1058.4 
 
 52 
 
 
 29 
 
 36 
 
 905 
 
 624 
 
 
 
 44 
 
 1062.0 
 
 50 
 
 
 29 
 
 37 905 
 
 600 
 
 
 46 
 
 1065.6 48 
 
 30 
 
 38 936 
 
 576 
 
 
 48 
 
 1069.2 *6 
 
 
 30 
 
 39 
 
 936 
 
 552 
 
 
 50 
 
 1073 . 8 44 
 
 
 31 
 
 40 
 
 967 
 
 528 
 
 236 
 
SECTION 10 
 MISCELLANEOUS 
 
 Estimates. Estimates of the cost of the concrete work for buildings and similar 
 structures can be easily made by applying current unit costs to the quantities ob- 
 tained from the tables and diagrams. 
 
 Diagram 66 gives the quantities of concrete, steel and forms for typical square 
 panels of a three beam* and girder floor system. Although the quantities of steel or 
 concrete may be somewhat affected by changing the proportions of beams or girders, 
 the total cost will vary only slightly. Quantities for flat slab floors may be found in 
 Section 2. 
 
 By means of Diagrams 42 and 43 of Section 7, which give weights of floor panels, 
 the column and footing loads can be quickly estimated and the quantities taken from 
 the column and footing tables. 
 
 Loads. Tables 52, 53 and 54, give the building code requirements for live load, 
 weights of contents of storage warehouses, and weights of building materials 
 respectively. 
 
 237 
 
MISCELLANEOUS 
 
 DIAGRAM 66 
 
 APPROXIMATE QUANTITIES OF CONCRETE, STEEL AND FORMS FOR 
 
 TYPICAL SQUARE INTERIOR PANELS OF THREE BEAM AND GIRDER 
 
 FLOOR SYSTEM DESIGNED IN ACCORDANCE WITH JOINT 
 
 f c =650 COMMITTEE RECOMMENDATIONS 
 
 f s =16*000 (COLUMNS NOT INCLUDED) 
 
 4. 4.014 -DC aad cpuno 
 
 o o oo r: <o 10 
 o ol o ol c> 
 
 238 
 
TABLE 52 
 
 MISCELLANEOUS 
 
 BUILDING CODE REQUIREMENTS FOR LIVE LOAD 
 
 
 Structure 
 
 i 
 
 Boston 
 
 Buffalo 
 
 Chicago 
 
 Cincinnati 
 
 Indianapolis 
 
 Milwaukee 
 
 Minneapolis 
 
 ! 
 
 1 
 
 New York 
 
 Philadelphia 
 
 Pittsburgh 
 
 .2 
 1 
 
 
 
 San Francisco 
 
 A 
 
 1 
 
 Washington 
 
 \partments 
 
 60 
 
 50 
 
 70 
 
 40 
 
 40 
 
 50 
 
 30 
 
 50 
 
 40 
 
 
 70 
 
 
 50 
 
 60 
 
 40 
 
 50 
 
 
 
 100 
 
 
 100 
 
 
 
 
 
 70 
 
 
 
 
 
 
 
 75 
 
 
 
 
 100 
 
 100 
 
 100 
 
 125 
 
 
 125 
 
 
 100 
 
 120 
 
 150 
 
 100 
 
 
 
 
 Fxd seat auditoriums 
 
 75 
 
 
 
 100 
 
 
 
 50 
 
 
 
 
 
 
 
 75 
 
 75 
 
 
 Mov. seat auditoriums 
 Churches 
 
 125 
 
 
 100 
 
 100 
 
 
 1?5 
 
 80 
 50 
 
 
 
 
 
 
 75 
 
 125 
 
 100 
 75 
 
 
 Dance halls 
 
 
 ?00 
 
 
 100 
 
 150 
 
 
 100 
 
 
 150 
 
 
 
 
 
 
 100 
 
 
 
 
 200 
 
 
 
 
 
 100 
 
 
 150 
 
 
 
 
 
 
 250 
 
 
 Theaters 
 
 
 
 100 
 
 100 
 
 100 
 
 125 
 
 50 
 
 
 
 
 
 
 100 
 
 75 
 
 75 
 
 
 Theater balconies 
 Theater stairways 
 
 
 
 
 
 
 
 80 
 
 
 
 
 
 
 
 
 100 
 
 
 Dwellings 
 
 60 
 
 50 
 
 40 
 
 40 
 
 40 
 
 50 
 
 30 
 
 50 
 
 40 
 
 40 
 
 70 
 
 70 
 
 50 
 
 60 
 
 40 
 
 50 
 
 Hospitals 
 
 
 
 70 
 
 50 
 
 
 50 
 
 30 
 
 50 
 
 
 
 70 
 
 
 50 
 
 60 
 
 50 
 
 
 Hotels 
 
 60 
 
 
 70 
 
 50 
 
 40 
 
 75 
 
 30 
 
 50 
 
 40 
 
 
 70 
 
 
 50 
 
 60 
 
 40 
 
 50 
 
 First floors 
 
 
 
 
 
 100 
 
 
 
 
 
 
 
 
 
 
 100 
 
 75 
 
 Corridors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125 
 
 100 
 
 75 
 
 Office rooms 
 
 
 
 
 50 
 
 
 
 
 
 
 
 
 
 
 
 
 75 
 
 Manufacturing ........ 
 
 175 
 
 
 
 
 150 
 
 ?00 
 
 
 
 
 
 150 
 
 200 
 
 150 
 
 250 
 
 
 
 Light manufacturing 
 Mercantile 
 
 125 
 
 m 
 
 125 
 
 ?50 
 
 120 
 
 100 
 100 
 
 100 
 
 100 
 
 100 
 
 100 
 
 125 
 ?00 
 
 
 120 
 
 
 100 
 150 
 
 125 
 
 125 
 
 
 Retail stores 
 Heavy storehouses 
 
 125 
 250 
 
 125 
 250 
 
 120 
 
 100 
 
 100 
 150 
 
 100 
 200 
 
 100 
 
 100 
 
 125 
 
 120 
 
 120 
 150 
 
 
 150 
 
 125 
 
 250 
 
 125 
 
 110 
 150 
 
 Warehouses . . 
 
 
 250 
 
 150 
 
 
 150 
 
 ?00 
 
 
 
 200 
 
 
 150 
 
 200 
 
 150 
 
 250 
 
 
 150 
 
 Offices 
 
 75 
 
 100 
 
 70 
 
 50 
 
 50 
 
 75 
 
 40 
 
 75 
 
 70 
 
 60 
 
 100 
 
 
 60 
 
 60 
 
 50 
 
 75 
 
 First floor 
 
 150 
 
 
 
 
 100 
 
 150 
 
 80 
 
 100 
 
 
 
 
 
 100 
 
 
 125 
 
 
 Corridors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100 
 
 
 
 110 
 
 
 
 
 
 
 100 
 
 
 
 
 125 
 
 
 
 
 100 
 
 
 
 110 
 
 Schools class rooms 
 
 75 
 
 60 
 
 
 
 60 
 
 100 
 
 40 
 
 100 
 
 60 
 
 75 
 
 
 
 
 75 
 
 50 
 
 75 
 
 Assembly rooms .... 
 
 
 125 
 
 100 
 
 75 
 
 
 
 60 
 
 
 125 
 
 
 
 
 
 
 75 
 
 
 Corridors 
 
 
 
 
 
 
 
 60 
 
 
 
 
 
 
 
 125 
 
 100 
 
 
 Stairways 
 
 
 
 
 
 
 
 60 
 
 
 
 
 
 
 
 
 
 
 Sidewalks 
 
 ?00 
 
 
 
 
 300 
 
 300 
 
 150 
 
 300 
 
 300 
 
 300 
 
 
 
 
 150 
 
 
 
 Stables, carriage houses, 
 garages 
 
 100 
 
 
 120 
 
 100 
 
 75 
 
 85 
 
 80 
 
 85 
 
 
 
 
 
 100 
 
 75 
 
 75 
 
 
 Stairways, general 
 
 
 70 
 
 
 100 
 
 80 
 
 
 60 
 
 
 70 
 
 
 
 
 
 
 100 
 
 
 Fire escapes . . . 
 
 
 70 
 
 
 
 
 
 
 
 70 
 
 
 
 
 
 
 100 
 
 
 Roofs slope under 20 
 Over 20 (hor. proj.) 
 Wind pressures 
 
 30 
 
 40 
 
 40 
 30 
 
 25 
 20 
 
 25 
 20 
 
 30 
 
 30 
 30 
 
 50 
 50 
 30 
 
 30 
 
 40 
 30 
 
 30 
 30 
 30 
 
 50 
 
 30 
 30 
 
 30 
 20 
 20 
 
 40 
 40 
 
 25 
 25 
 30 
 
 239 
 
TABLE S3 
 
 MISCELLANEOUS 
 
 CONTENTS OF STORAGE WAREHOUSES 
 
 Material 
 
 Pounds 
 
 cubic foot 
 of space 
 
 Height 
 of pile, 
 feet 
 
 Pounds 
 per 
 square foot 
 of floor 
 
 Recommended 
 live loads, 
 pounds per 
 square foot 
 
 Produce, Grain, Fruit, Etc. 
 Grain, in bulk 
 Barley and corn 
 
 37 
 
 8 
 
 296 * 
 
 
 Oats 
 
 26 
 
 8 
 
 208 
 
 
 Rye and wheat 
 
 48 
 
 8 
 
 384 
 
 
 Fruit and vegetables, in bulk 
 
 
 
 
 
 Apples, pears, etc . . . 
 
 38 
 
 8 
 
 304 
 
 
 Potatoes, turnips, etc 
 Miscellaneous produce, packed 
 Beans, in bags .... 
 
 44 
 40 
 
 8 
 8 
 
 352 
 320 
 
 
 Corn, in bags 
 
 31 
 
 8 
 
 248 
 
 250 to 300 
 
 Cornmeal, in barrels 
 
 37 
 26 
 
 6H 
 
 240 
 234 
 
 
 Rice, in bags 
 Wheat, in bags 
 
 58 
 39 
 
 5 
 
 8 
 
 290 
 312 
 
 
 Wheat flour, in barrels 
 Hay, in bales, not compressed 
 Hay, in bales, compressed 
 Straw, in bales, compressed 
 
 Groceries 
 
 Miscellaneous articles, packed 
 
 40 
 14 
 24 
 19 
 
 7 
 9 
 9 
 9 
 
 280 
 126 
 216 
 171 
 
 
 Butter, lard, etc., in carrels 
 Canned goods, preserves, etc., in cases. . 
 Cheese 
 
 32 
 58 
 30 
 
 6 
 6 
 
 8 '-- 
 
 192 
 348 
 240 
 
 
 Coffee, green, in bags 
 
 39 
 
 8 
 
 312 
 
 
 Coffee, roasted, in bags 
 
 33 
 
 8 
 
 264 
 
 
 Dates and figs, in cases, average 
 Meat, beef, pork* etc., in barrels 
 Molasses, in barrels 
 Salt, finely ground in sacks 
 
 65 
 37 
 48 
 60 
 
 5 
 5 
 5 
 5 
 
 325 
 185 
 240 
 300 
 
 250 to 300 
 
 Soap powder, in cases 
 Starch, in barrels 
 
 38 
 25 
 
 8 
 7 
 
 288 
 175 
 
 
 Sugar, in barrels 
 
 43 
 
 5 
 
 215 
 
 
 Tea, in chests 
 Wines, liquors, etc., in barrels 
 
 Dry Goods, Cotton, Wool, Etc. 
 Cotton, in bales, compressed, average. . . . 
 Cotton, unbleached goods, in bales 
 Cotton, tickings and duck, in bales 
 Cotton, printed goods, in bales 
 
 25 
 
 48 
 
 25 
 24 
 35 
 
 19 
 
 8 
 5 
 
 9 
 9 
 8 
 9 
 
 200 
 240 
 
 225 
 216 
 280 
 171 
 
 
 Cotton, printed goods, in cases 
 Cotton, quilts and flannels, in cases 
 
 31 
 16 
 
 8 
 9 
 
 248 
 144 
 
 
 Cotton, yarn, in cases 
 Hemp, in bales, compressed 
 Hemp, manila, in bales, compressed 
 Hemp, sisal, in bales, compressed 
 Hemp, tow, in bales, compressed. 
 Hemp, burlaps, in bales, compressed 
 
 25 
 22 
 26 
 24 
 29 
 43 
 41 
 
 8 
 8 
 9 
 9 
 9 
 6 
 6 
 
 200 
 176 
 234 
 216 
 261 
 258 
 246 
 
 200 to 250 
 
 Linen, bleached goods, in cases 
 
 35 
 
 7 
 
 245 
 
 
 Linen, damask goods, in cases . . 
 
 50 
 
 5 
 
 250 
 
 
 Wool, in bales, not compressed 
 
 13 
 
 9 
 
 117 
 
 
 Wool, in bales, compressed 
 Wool, dress goods, flannels, in cases 
 Wool, worsted goods, in cases 
 
 48 
 18 
 27 
 
 5 
 9 
 9 
 
 240 
 162 
 243 
 
 
 
 19 
 
 9 
 
 171 
 
 
 Excelsior, in bales, compressed 
 
 19 
 
 9 
 
 171 
 
 
 240 
 
TABLE 63 
 
 MISCELLANEOUS 
 
 CONTENTS OF STORAGE WAREHOUSES 
 
 Material 
 
 Pounds 
 per 
 cubic foot 
 of space 
 
 Height 
 of pile, 
 feet 
 
 Pounds 
 per 
 square foot 
 of floor 
 
 Recommended 
 live loads, 
 pounds per 
 square foot 
 
 Drugs, Oils, Paints, Etc. 
 Chemicals: 
 Acids, muriatic and nitric, in carboys. . . 
 Acids, sulphuric, in carbovs. . . 
 
 45 
 60 
 
 m 
 
 75 
 100 
 
 
 Ammonia, in carboys . . 
 
 30 
 
 1?1 
 
 50 
 
 
 Alum, pearl alum, in barrels 
 Bleaching powder, in hogsheads 
 Copper sulphate, blue vitriol, in bbls. . . 
 Soda, caustic soda, in iron drums 
 Soda, soda ash, in hogsheads 
 
 33 
 31 
 45 
 
 88 
 62 
 
 7 
 
 I* 
 $ 
 
 231 
 103 
 225 
 294 
 170 
 
 
 Soda crystals, sal soda, in barrels 
 Soda nitrate, niter, in barrels 
 Soda silicate, in barrels 
 
 30 
 45 
 53 
 
 5 
 5 
 5 
 
 150 
 225 
 265 
 
 
 Zinc sulphate, white vitriol, in barrels . . 
 Oils, fats, resins, etc.: 
 Glycerine, in cases 
 
 40 
 52 
 
 5 
 
 6 
 
 200 
 312 
 
 
 Oils, animal, lard, etc., in barrels. . . 
 
 34 
 
 6 
 
 204 
 
 200 to 250 
 
 Oils, vegetable, linseed, in barrels 
 Oils, mineral, lubricants, in barrels. . . . 
 Oils, petroleum, kerosene, in barrels. . . . 
 Oils, naphtha, gasolene, in barrels 
 Rosin, in barrels 
 
 36 
 35 
 33 
 
 28 
 48 
 
 6 
 6 
 6 
 6 
 
 216 
 210 
 198 
 168 
 288 
 
 
 Shellac gum in boxes . . 
 
 38 
 
 & 
 
 228 
 
 
 Tallow, in barrels 
 
 37 
 
 g 
 
 222 
 
 
 Dye stuffs, paints, etc.: 
 
 43 
 
 6 
 
 258 
 
 
 Logwood extract, in boxes 
 
 70 
 
 4H 
 
 315 
 
 
 Sumac, in boxes 
 
 39 
 
 5 
 
 195 
 
 
 Red lead, litharge, dry, in barrels 
 White lead, dry in barrels 
 
 132 
 86 
 
 3% 
 4% 
 
 495 
 409 
 
 
 White lead, paste, in cans 
 
 Building Materials 
 Cement, natural, in barrels 
 
 174 
 59 
 
 3>I 
 6 
 
 609 
 354 
 
 ) 
 
 Cement, Portland, in barrels 
 Lime, quick lime, ground, in barrels. . . . 
 
 73 
 50 
 
 6 
 5 
 
 438 
 250 
 
 300 to 400 
 
 Plaster of Paris, ground, in barrels. . 
 
 53 
 
 5 
 
 265 
 
 1 
 
 Sheet Metal and Wire 
 Sheet tin, in boxes 
 
 278 
 
 1 LZ 
 
 417 
 
 
 Wire, insulated copper, in coils 
 
 63 
 
 5 
 
 315 
 
 
 Wire, galvanized iron in coils 
 
 74 
 
 414 
 
 333 
 
 300 to 400 
 
 Wire, magnet wire, on spools. . . . 
 
 75 
 
 g 
 
 450 
 
 
 Miscellaneous 
 Chinawarc, glassware, in crates 
 
 40 
 
 g 
 
 320 
 
 
 Chinaware, glassware, in casks ..... 
 
 14 
 
 g 
 
 126 
 
 
 Glass, in boxes 
 
 69 
 
 g 
 
 360 
 
 
 Hardware, door and sash checks, in cases. 
 Hardware, hinges, in cases. .'.. 
 
 46 
 
 64 
 
 6 
 
 g 
 
 276 
 384 
 
 
 Hardware, locks, in cases 
 
 31 
 
 6 
 
 186 
 
 
 Hardware, screws, in boxes 
 Hides, raw, not compressed, in bales 
 Hides, raw, conipressed, in bales 
 Leather in bales 
 
 101 
 13 
 23 
 16 
 
 4 
 10 
 10 
 10 
 
 404 
 130 
 230 
 160 
 
 300 to 400 
 
 Paper, calendered paper \ 
 Paper, newspaper, manila, strawboards. . . 
 Paper writing paper 
 
 50 
 35 
 
 64 
 
 6 
 6 
 g 
 
 300 
 210 
 384 
 
 
 Rope in coils 
 
 42 
 
 g 
 
 252 
 
 
 
 
 
 
 
 241 
 
MISCELLANEOUS 
 
 TABLE 54 
 
 WEIGHTS OF BUILDING MATERIALS 
 
 Kind 
 
 Weight in Ib. 
 per sq. ft. 
 
 FLOORS 
 . maple finish floor and %-in. spruce under floor on 2 X 4-in. sleepers, 16-in. centers, with 
 
 2-in. dry cinder concrete filling 
 
 Cinder concrete filling per inch of thickness 
 
 Cement finish per inch of thickness 
 
 Asphalt mastic flooring IJ-^ in. thick 
 
 3-in. creosoted wood blocks on H-in. mortar base 
 
 Solid flat tile on 1-in. mortar bed 
 
 CEILINGS 
 
 Plaster on tile or concrete 
 
 Suspended metal lath and plaster 
 
 ROOFS 
 
 Five-ply felt and gravel 
 
 Four-ply felt and gravel 
 
 Three-ply ready roofing 
 
 Cement tile 
 
 Slate, \i in. thick 
 
 Sheathing, 1 in. thick, yellow pine 
 
 2-in. book tile 
 
 3-in. book tile 
 
 Skylight with galvanized iron frame, 2s~i n - glass 
 
 18 
 7 
 12 
 18 
 21 
 
 1 
 16 
 
 J* 
 
 12 
 20 
 
 Kind 
 
 Weight in Ib. per sq. ft. 
 
 Unplastered 
 
 One side 
 plastered 
 
 Both sides 
 plastered 
 
 WALLS 
 9-in. brick wall 
 
 84 
 121 
 168 
 205 
 243 
 60 
 75 
 102 
 33 
 45 
 
 17 
 18 
 25 
 31 
 35 
 10 
 12 
 14 
 16 
 
 89 
 126 
 173 
 210 
 248 
 65 
 80 
 107 
 38 
 50 
 
 22 
 23 
 30 
 36 
 40 
 15 
 17 
 19 
 21 
 
 43 
 55 
 
 27 
 28 
 35 
 41 
 45 
 20 
 22 
 24 
 26 
 20 
 32 
 22 
 
 13-in. brick wall 
 
 18-in. brick wall 
 22-in. brick wall 
 
 26-in. brick wall 
 4-in brick 4-in tile backing 
 
 4-in. brick, 8-in. tile backing 
 9-in. brick, 4-in. tile backing 
 8-in. tile 
 
 12-in. tile 
 
 PARTITIONS 
 3-in. clay tile 
 4-in. clay tile 
 6-in. clay tile 
 
 8-in. clay tile 
 10-in. clay tile. 
 
 3-in. gypsum block 
 4-in. gypsum block 
 
 6-in. gypsum block 
 2-in. solid plaster 
 4-in. solid plaster 
 4-in. hollow plaster 
 
 Kind 
 
 Weight in Ib. 
 per cu. ft. 
 
 Kind 
 
 Weight in Ib. 
 per cu. ft. 
 
 Beech 
 Birch 
 Brickwork 
 Concrete, cinder, structural 
 
 42 
 42 
 120 
 108 
 
 Limestone 
 Maple 
 Marble 
 Oak 
 
 150 
 42 
 168 
 48 
 
 Concrete, cinder, floor filling 
 Concrete, stone 
 Concrete, stone, reinforced 
 Douglas fir . 
 
 96 
 144 
 150 
 36 
 
 Pine, southern yellow 
 Sandstone 
 Spruce 
 
 42 
 144 
 30 
 
 Granite 
 Granolithic surface 
 
 168 
 144 
 
 unfilled 
 
 72 
 120 
 
 
 
 
 
 242 
 
APPENDIX 
 RULINGS PERTAINING TO DESIGN AND WORKING STRESSES 
 
 Joint Committee Recommendations* 
 Design 
 
 Massive Concrete. In the design of massive or plain concrete, no account should 
 be taken of the tensile strength of the material, and sections should usually be proportioned 
 so as to avoid tensile stresses except in slight amounts to resist indirect stresses. This will 
 generally be accomplished in the case of rectangular shapes if the line of pressure is kept 
 within the middle third of the section, but in very large structures, such as high masonry 
 dams, a more exact analysis may be required. Structures of massive concrete are able to 
 resist unbalanced lateral forces by reason of their weight; hence the element of weight 
 rather than strength often determines the design. A leaner and relatively cheap concrete, 
 therefore, will often be suitable for massive concrete structures. 
 
 It is desirable generally to provide joints at intervals to localize the effect of contraction. 
 
 Massive concrete is suitable for dams, retaining walls, and piers in which the ratio 
 of length to least width is relatively small. Under ordinary conditions this ratio should 
 not exceed four. It is also suitable for arches of moderate span. 
 
 Reinforced Concrete. The use of metal reinforcement is particularly advantageous 
 in members such as beams in which both tension and compression exist, and in columns 
 where the principal stresses are compressive and where there also may be cross-bending. 
 Therefore, the theory of design here presented relates mainly to the analysis of beams and 
 columns. 
 
 General Assumptions, (a) Loads. The forces to be resisted are those due to: 
 
 1. The dead load, which includes the weight of the structure and fixed loads and forces. 
 
 2. The live load, or the loads and forces which are variable. The dynamic effect of 
 the live load will often require consideration. Allowance for the lattter is preferably 
 made by a proportionate increase in either the live load or the live load stresses. The 
 working stresses hereinafter recommended are intended to apply to the equivalent static 
 stresses thus determined. 
 
 In the case of high buildings the live load on columns may be reduced in accordance with 
 the usual practice. 
 
 (6) Lengths of Beams and Columns. The span length for beams and slabs simply 
 supported should be taken as the distance from center to center of supports, but need 
 not be taken to exceed the clear span plus the depth of beam or slab. For continuous 
 or restrained beams built monolithically into supports the span length may be taken 
 as the clear distance between faces of supports. Brackets should not be considered as 
 reducing the clear span in the sense here intended, except that when brackets which make 
 an angle of 45 degrees or more with the axis of a restrained beam are built monolithically 
 with the beam, the span may be measured from the section where the combined depth 
 of beam and bracket is at least one-third more than the depth of the beam." Maximum 
 negative moments are to be considered as existing at the end of the span as here defined. 
 
 When the depth of a restrained beam is greater at its ends than at midspan and the 
 slope of the bottom of the beam at its ends makes an angle of not more than 15 degress 
 with the direction of the axis of the beam at midspan, the span length may be measured 
 from face to face of supports. 
 
 The length of columns should be taken as the maximum unstayed length. 
 
 (c) Stresses. The following assumptions are recommended as a basis for calculations: 
 
 1. Calculations will be made with reference to working stresses and safe loads rather 
 than with reference to ultimate strength and ultimate loads. 
 
 2. A plane section before bending remains plane after bending. 
 
 * From Final Report of the Special Committee on Concrete and Reinforced Concrete of the Ameri- 
 can Society of Civil Engineers, presented before the Society, Jan. 17, 1917. 
 
 243 
 
3. The modulus of elasticity of concrete in compression is constant within the usual 
 limits of working stresses. The distribution of comprefisive stress inbeams is, therefore, 
 rectilinear. 
 
 4. In calculating the moment of resistance of beams the tensile stresses in the concrete 
 are neglected. 
 
 5. The adhesion between the concrete and the reinforcement is perfect. Under 
 compressive stress the two materials are, therefore, stressed in proportion to their moduli of 
 elasticity. 
 
 6. The ratio of the modulus of elasticity of steel to the modulus of elasticity of concrete 
 is taken at 15, except as modified in section on "Working Stresses." 
 
 7. Initial stress in the reinforcement due to contraction or expansion of the concrete 
 is neglected. 
 
 It is recognized that some of the assumptions given herein are not entirely borne out 
 by experimental data. They are given in the interest of simplicity and uniformity, and 
 variations from exact conditions are taken into account in the selection of formulas and 
 working stresses. 
 
 The deflection of a beam depends upon the strength and stiffness developed throughout 
 its length. For calculating deflection a value of 8 for the ratio of the moduli will give 
 results corresponding approximately with the actual conditions. 
 
 T-Beams. In beam and slab construction an effective bond should be provided at 
 the junction of the beam and slab. When the principal slab reinforcement is parallel 
 to the beam, transverse reinforcement should be used extending over the beam and well 
 into the slab. 
 
 The slab may be considered an integral part of the beam, when adequate bond and 
 shearing resistance between slab and web of beam is provided, but its effective width 
 shall be determined by the following rules: 
 
 (a) It shall not exceed one-fourth of the span length of the beam. 
 
 (6) Its overhanging width on either side of the web shall not exceed six times the 
 thickness of the slab. 
 
 In the design of continuous T-beams, due consideration should be given to the com- 
 pressive stress at the support. 
 
 Beams in which the T-form is used only for the purpose of providing additional com- 
 pression area of concrete should preferably have a width of flange not more than three 
 times the width of the stem and a thickness of flange not less than one-third of the depth 
 of the beam. Both in this form and in the beam and slab form the web stresses and the 
 limitations in placing and spacing the longitudinal reinforcement will probably be control- 
 ling factors in design. 
 
 Floor Slabs Supported Along Four Sides. Floor slabs having the supports extending 
 along the four sides should be designed and reinforced as continuous over the supports. 
 If -the length of the slab exceeds 1.5 times its width the entire load should be carried by 
 transverse reinforcement. 
 
 For uniformly distributed loads on square slabs, one-half the live and dead load may 
 be used in the calculations of moment to be resisted in each direction. For oblong slabs, 
 the length of which is not greater than one and one-half times their width, the moment to 
 be resisted by the transverse reinforcement may be found by using a proportion of the live 
 
 and dead load equal to that given by the formula r = r 0.5, where I = length and b = 
 
 breadth of slab. TJie longitudinal reinforcement should then be proportioned to carry 
 the remainder of the load. 
 
 In placing reinforcement in such slabs account may well be taken of the fact that 
 the bending moment is greater near the center of the slab than near the edges. For this 
 purpose two-thirds of the previously calculated moments may be assumed as carried by the 
 center half of the slab and one-third by the outside quarters. 
 
 Loads carried to beams by slabs which are reinforced in two directions will not be 
 uniformly distributed to the supporting beams and the distribution will depend on the 
 relative stiffness of the slab and the supporting beams. The distribution which may be 
 expected ordinarily is a variation of the load in the beam in accordance with the ordinates 
 of a parabola, having its vertex at the middle of the span. For any gn en design, the prob- 
 able distribution shlould be ascertained and the moments in the beam calculated accordingly. 
 
 Continuous Beams and Slabs. When the beam or slab is continuous over its supports, 
 reinforcement should be fully provided at points of negative moment; and the stresses in 
 concrete recommended in the section on "Working Stresses" should not be exceeded. In 
 computing the positive and negative moments in beams and slabs? continuous over several 
 supports, due to uniformly distributed loads, the following rules are recommended: 
 
 (a) For floor slabs the bending moments at center and at support should be taken 
 
 at jo" f r both dead and live loads, where w represents the load per linear unit and I the 
 span length. 
 
 244 
 
(6) For beams the bending moment at center and at support for interior spans should 
 
 icl~ wl~ 
 
 be taken at y^"' anc ^ f r en d spans it should be taken at -r/r for center and interior support, 
 
 for both dead and live loads. 
 
 (c) In the case of beams and slabs continuous for two spans only, with their ends re- 
 strained, the bending moment both at the central support and near the middle of the span 
 
 /2 
 
 should be taken at r-Tr* 
 
 (d) At the ends of continuous beams the amount of negative moment which will be 
 developed in the beam will depend on the condition of restraint or fixedness, and this 
 
 will depend on the form of construction used. In the ordinary cases a moment of may 
 
 10 
 
 be taken; for small beams running into heavy columns this should be increased, but not to 
 
 .wP 
 
 exceed-- 
 
 For spans of unusual length, or for spans of materially unequal length, more exact 
 calculations should be made. Special consideration is also required in the case of con- 
 centrated loads. 
 
 Even if the center of the span is designed for a greater bending moment than is called 
 for by (a) or (6), the negative moment at the support should not be taken as less than the 
 values there given. 
 
 Where beams are reinforced on the compression side, the steel may be assumed to 
 carry its proportion of stress in accordance with the ratio of moduli of elasticity, as given 
 in the section on "Working Stresses." Reinforcing bars for compression in beams should 
 be straight and should be two diameters in the clear from the surface of the concrete. 
 For the positive bending moment, such reinforcement should not exceed one per cent of 
 the area of the concrete. In the case of cantile"\er and continuous beams, tensile and 
 compressive reinforcement over supports should extend sufficiently beyond the support 
 and beyond the point of inflection to develop the requisite bond strength. 
 
 In construction made continuous over supports it is important that ample foundations 
 should be provided; for unequal settlements are liable to produce unsightly, if not danger- 
 ous cracks. This effect is more likely to occur in low structures. 
 
 Girders, such as wall girders, which have beams framed into one side only, should 
 be designed to resist torsional moment arising from the negative moment at the end of the 
 beam. 
 
 Bond Strength and Spacing of Reinforcement. Adequate bond strength should 
 be provided. The formula hereinafter given for bond stresses in beams is for straight 
 longitudinal bars. In beams in which a portion of the reinforcement is bent up near the 
 end, the bond stress at places, in both the straight bars and the bent bars, will be consider- 
 ably greater than for all the bars straight, and the stress at some point may be several times 
 as much as that found by considering the stress to be uniformly distributed along the bar. 
 In restrained and cantilever beams full tensile stress exists in the reinforcing bars at the 
 point of support and the bars should be anchored in the support sufficiently to develop 
 this stress. 
 
 In case of anchorage of bars, an additional length of bar should be provided beyond 
 that found on the assumption of uniform bond stress, for the reason that before the bond 
 resistance at the end of the bar can be developed the bar may have begun to slip at another 
 point and "running" resistance is less than the resistance before slip begins. 
 
 Where high bond resistance is required, the deformed bar is a suitable means of supply- 
 ing the necessary strength. But it should be recognized that even with a deformed bar 
 initial slip occurs at early loads, and that the ultimate loads obtained in the usual tests 
 for bond resistance may be misleading. Adequate bond strength throughout the length 
 of a bar is preferable to end anchorage, but, as an additional safeguard, such anchorage may 
 properly be used in special cases. Anchorage furnished by short bends at a right angle is 
 less effective than by hooks consisting of turns through 180 degrees. 
 
 The lateral spacing of parallel bars should be not less than three diameters from center 
 to center, nor should the distance from the side of the beam to the center of the nearest 
 bar be less than two diameters. The clear spacing between two layers of bars should be not 
 less than one inch. The use of more than two layers is not recommended, unless the layers 
 are tied together by adequate metal connections, particularly at and near points where 
 bars are bent up or bent down. Where more than one layer is used, at least all bars above 
 the lower layer should be bent up and anchored beyond the edge of the support. 
 
 Diagonal Tension and Shear. When a reinforced concrete beam is subjected to flexural 
 action, diagonal tensile stresses are set up. A beam without web reinforcement will fail 
 if these stresses exceed the tensile strength of the concrete. When web reinforcement, 
 made up of stirrups or of diagonal bars secured to the longitudinal reinforcement, or of 
 longitudinal reinforcing bars bent up at several points, is used, new conditions prevail, but 
 
 245 
 
even in this case at the beginning of loading the diagonal tension developed is taken princi- 
 pally by the concrete, the deformations which are developed in the concrete permitting 
 but little stress to be taken by the web reinforcement. When the resistance of the concrete 
 to the diagonal tension is overcome at any point in the depth of the beam, greater stress is 
 at once set up in the web reinforcement. 
 
 For homogeneous beams the analytical treatment of diagonal tension is not very 
 complex, the diagonal tensile stress is a function of the horizontal and vertical shear- 
 ing stresses and of the horizontal tensile stress at the point considered, an as the intensity 
 of these three stresses varies from the neutral axis to the remotest fibre, the intensity 
 of the diagonal tension will be different at different points in the section, and will change 
 with different proportionate dimensions of length to depth of beam. For the composite 
 structure of reinforced concrete beams, an analysis of the web stresses, and particularly 
 of the diagonal tensile stresses, is very complex; and when the variations due to a change 
 from no horizontal tensile stress in the concrete at remotest fibre to the presence of hori- 
 zontal tensile stress at some point below the neutral axis are considered, the problem 
 becomes more complex and indefinite. Under these circumstances, in designing recourse 
 is had to the use of the calculated vertical shearing stress as a means of comparing or 
 measuring the diagonal tensile stresses developed, it being understood that the vertical 
 shearing stress is not the numerical equivalent of the diagonal tensile stress, and that there 
 is not even a constant ratio between them. It is here recommended that the maximum 
 vertical shearing stress in a section be used as the means of comparison of the resistance to 
 diagonal tensile stress developed in the concrete in beams not having web reinforcement. 
 
 Even after the concrete has reached its limit of resistance to diagonal tension, if the 
 beam has web reinforcement, conditions of beam action will continue to prevail, at least 
 through the compression area, and the web reinforcement will be called on to resist only a 
 part of the web stresses. From experiments with beams it is concluded that it is safe 
 practice to use only two-thirds of the external vertical shear in making calculations of the 
 stresses that come on stirrups, diagonal web pieces, and bent-up bars, and it is here 
 recommended for calculations in designing that two-thirds of the external vertical shear 
 be taken as producing stresses in web reinforcement. 
 
 It is well established that vertical members attached to or looped about horizontal 
 members, inclined members secured to horizontal members in such a way as to insure 
 against slip, and the bending of a part of the longitudinal reinforcement at an angle, 
 will increase the strength of a beam against failure by diagonal tension, and that a well- 
 designed and well-distributed web reinforcement may under the best conditions increase 
 the total vertical shear carried to a value as much as three times that obtained when the 
 bars are all horizontal and no web reinforcement is used. 
 
 When web reinforcement comes into action as the principal tension web resistance, 
 the bond stresses between the longitudinal bars and the concrete are not distributed 
 as uniformly along the bars as they otherwise would be, but tend to be concentrated 
 at and near stirrups, and at and near the points where bars are bent up. When stirrups 
 are not rigidly attached to the longitudinal bars, and the proportioning of bars and stirrups 
 spacing is such that local slip of bars occurs at stirrups, the effectiveness of the stirrups 
 is impaired, though the presence of stirrups still gives an element of toughness against 
 diagonal tension failure. 
 
 Sufficient bond resistance 'between the concrete and the stirrups or diagonals must 
 be provided in the compressing area of the beam/ 
 
 The longitudinal spacing of vertical stirrups should not exceed one-half the depth of 
 beam, and that of inclined members should not exceed three-fourths of the depth ef beam. 
 
 Bending of longitudinal reinforcing bars at an angle across the web of the beam may 
 be considered as adding to diagonal tension resistance for a horizontal distance from the 
 point of bending equal to three-fourths of the depth of beam. Where the bending is made 
 at two or more points, the distance between points of bending should not exceed three- 
 fourths of the depth of the beam. In the case of a restrained beam the effect of bending up 
 a bar at the bottom of the beam in resisting diagonal tension may not be taken as extending 
 beyond a section at the point of inflection, and the effect of bending down a bar in the 
 region of negative moment may be taken as extending from the point of bending down of 
 bar nearest the support to a section not more than three-fourths of the depth of beam beyond 
 the point of bending down of bar farthest from the support but not beyond the point of 
 inflection. In case stirrups are used in the beam away from the region in which the bent 
 bars are considered effective, a stirrup should be placed not farther than a distance equal 
 to one-fourth the depth of beam from the limiting sections defined above. In case the 
 web resistance required through the region of bent bars is greater than that furnished by 
 the bent bars, sufficient additional web reinforcement in the form of stirrups or attached 
 diagonals should be provided. The higher resistance to diagonal tension stresses given by 
 unit frames having the stirrups and bent-up bars securely connected together both longi- 
 tudinally and laterally is worthy of recognition. It is necessary that a limit be placed 
 
 246 
 
on the amount of shear which may be allowed in a beam; for when web reinforcement 
 sufficiently efficient to give very high web resistance is used, at the higher stresses the 
 concrete in the beam becomes checked and cracked in such a way as to endanger its dura- 
 bility as well as its strength. 
 
 The section to be taken as the critical section in the calculation of shearing stresses 
 will generally be the one having the maximum vertical shear, though experiments show 
 that the section at which diagonal tension failures occur is not just at a support even though 
 the shear at the latter point be much greater. 
 
 In the case of restrained beams, the first stirrup or the point of bending down of bar 
 should be placed not farther than one-half of the depth of beam away from the face of the 
 support. 
 
 It is important that adequate bond strength or anchorage be provided to develop 
 fully the assumed strength of all web reinforcement. 
 
 Low bond stresses in the longitudinal bars are helpful in giving resistance against 
 diagonal tension failures and anchorage of longitudinal bars at the ends of the beams 
 or in the supports is advantageous. 
 
 It should be noted that it is on the tension side of a beam that diagonal tension develops 
 in a critical way, and that proper connection should always be made between stirrups or 
 other web reinforcement and the longitudinal tension reinforcement, whether the latter is 
 on the lower side of the beam or on its upper side. Where negative moment exists, as is 
 the case near the supports in a continuous beam, web reinforcement to be effective must be 
 looped over or wrapped around or be connected with the longitudinal tension reinforcing 
 bars at the top of the beam in the same way as is necessary at the bottom of the beam at 
 sections where the bending moment is positive. 
 
 Inasmuch as the smaller the longitudinal deformations in the horizontal reinforce- 
 ment are, the less the tendency for the formation of diagonal cracks, a beam will be strength- 
 ened against diagonal tension failure by so arranging and proportioning the horizontal 
 reinforcement that the unit stresses at points of large shear shall be relatively low. 
 
 It does not seem feasible to make a complete analysis of the action of web reinforce- 
 ment, and more or less empirical methods of calculation are therefore employed. Limiting 
 values of working stresses for different types of web reinforcement are given in the section 
 on "Working Stresses." The conditions apply to cases commonly met in design. It is 
 assumed that adequate bond resistance or anchorage of all web reinforcement will be 
 provided. 
 
 When a flat slab rests on a column, or a column bears on a footing, the vertical shearing 
 stresses in the slab or footing immediately adjacent to the column are termed punching 
 shearing stresses. The element of diagonal tension, being a function of the bending 
 moment as well as of shear, may be small in such cases, or may be otherwise provided for. 
 For this reason the permissible limit of stress for punching shear may be higher than the 
 allowable limit when the shearing stress is used as a means of comparing diagonal tensile 
 stress. The working values recommended are given in the section on "Working Stresses." 
 
 Columns. By columns are meant compression members of which the ratio of unsup- 
 ported length to least width exceeds about four, and which are provided with reinforcement 
 of one of the forms hereafter described. 
 
 It is recommended that the ratio of unsupported length of column to its least width be 
 limited to fifteen. 
 
 The effective area of hooped columns or columns reinforced with structural shapes 
 shall be taken as the area within the circle enclosing the spiral or the polygon enclosing the 
 structural shapes. 
 
 Columns may be reinforced by longitudinal bars; by bands, hoops, or spirals, together 
 with longitudinal bars; or by structural forms which are sufficiently rigid to have value in 
 themselves as columns. The general effect of closely spaced hooping is to greatly increase 
 the toughness of the column and to add to its ultimate strength, but hooping has little 
 effect on its behavior within the limit of elasticity. It thus renders the concrete a safer and 
 more reliable material, and should permit the use of a somewhat higher working stress. 
 The beneficial effects of toughening are adequately provided by a moderate amount of 
 hooping, a larger amount serving mainly to increase the ultimate strength and the deforma- 
 tion possible before ultimate failure. 
 
 Composite, columns of structural steel and concrete in which the steel forms a column 
 by itself should be designed with caution. To classify this type as a concrete column 
 reinforced with structural steel is hardly permissible, as the steel, generally, will take 
 the greater part of the load. When this type of column is used, the concrete should 
 be adequately tied together by tie plates or lattice bars, which, together with other details, 
 such as splices, etc., should be designed in conformity with standard practice for structural 
 steel. The concrete may exert a beneficial effect in restraining the steel from lateral 
 deflection and also in increasing the carrying capacity of the column. The proportion of 
 load to be carried by the concrete will depend on the form of the column and the method of 
 
 247 
 
construction. Generally, for high percentages of steel, the concrete will develop relatively 
 low unit stresses, and caution should be used in placing dependence on the concrete. 
 
 The following recommendations are made for the relative working stresses in the 
 concrete for the several types of columns: 
 
 (a) Columns with longitudinal reinforcement to the extent of not less than 1 per cent 
 and not more than 4 per cent, and with lateral ties of not less than 34 inch in diameter 
 12 inches apart, nor more than 16 diameters of the longitudinal bar: the unit stress rec- 
 ommended for axial compression, on concrete piers having a length not more than four 
 diameters, in section on "Working Stresses." 
 
 (6) Columns reinforced with not less than 1 per cent and not more than 4 per cent 
 of longitudinal bars and with circular hoops or spirals not less than 1 per cent of the volume 
 of the concrete and as hereinafter specified : a unit stress 55 per cent higher than given for 
 (a), provided the ratio of unsupported length of column to diameter of the hooped core is 
 not more than 10. 
 
 The foregoing recommendations are based on the following conditions: 
 
 It is recommended that the minimum size of columns to which the working stresses 
 may be applied be 12 inches out to out. 
 
 In all cases longitudinal reinforcement is assumed to carry its proportion of stress in 
 accordance with (c) Stresses, page 243. The hoops or bands are not to be counted on 
 directly as adding to the strength of the column. 
 
 Longitudinal reinforcement bars should be maintained straight, and should have suffi- 
 cient lateral support to be securely held in place until the concrete has set. 
 
 Where hooping is used, the total amount of such reinforcement shall be not less than 
 1 per cent of the volume of the column, enclosed. The clear spacing of such hooping 
 shall not be greater than one-sixth the diameter of the enclosed column and preferably 
 not greater than one- tenth, and in no case more than 2% in. Hooping is to be circular 
 and the ends of bands must be united in such a way as to develop their full strength. 
 Adequate means must be provided to hold bands or hoops in place so as to form a column, 
 the core of which shall be straight and well centered. The strength of hooped columns 
 depends very much upon the ratio of length to diameter of hooped core, and the strength 
 due to hooping decreases rapidly as this ratio increases beyond five. The working stresses 
 recommended are for hooped columns with a length of not more than ten diameters of the 
 hooped core. 
 
 The Committee has no recommendation to make for a formula for working stresses 
 for columns longer than ten diameters. 
 
 Bending stresses due to eccentric loads, such as unequal spans of beams, and to lateral 
 forces, must be provided for by increasing the section until the maximum stress does 
 not exceed the values above specified. Where tension is possible in the longitudinal 
 bars of the columns, adequate connection between the ends of the bars must be provided 
 to take this tension. 
 
 Reinforcing for Shrinkage and Temperature Stresses. When areas of concrete too 
 large to expand and contract freely as a whole are exposed to atmospheric conditions, 
 the changes of form due to shrinkage and to action of temperature are such that cr cks may 
 occur in the mass unless precautions are taken to distribute the stresses so as to prevent the 
 cracks altogether or to render them very small. The distance apart of the cracks, and 
 consequently their size, will be directly proportional to the diameter of the reinforcement 
 and to the tensile strength of the concrete, and inversely proportional to the percentage of 
 reinforcement and also to its bond resistance per unit of surface area. To be most effective, 
 therefore, reinforcement (in amount generally not less than one-third of 1 per cent of the 
 gross area) of a form which \vill develop a high bond resistance should be placed near the 
 exposed surface and be well distributed. Where openings occur the area of cross-section of 
 the reinforcement should not be reduced. The allowable size and spacing of cracks depends 
 on various considerations, such as the necessity for water-tightness, the importance of 
 appearance of the surface, and the atmospheric changes. 
 
 The tendency of concrete to shrink makes it necessary, except where expansion is 
 - provided for, to thoroughly connect the component parts of the frame of articulated 
 structures, such as floor and wall members in buildings, by the use of suitable reinforcing 
 material. The amount of reinforcement for such connection should bear some relation to 
 the size of the members connected, larger and heavier members requiring stronger connec- 
 tions. The reinforcing bars should be extended beyond the critical section far enough, or 
 should be sufficiently anchored to develop their full tensile strength. 
 
 Flat Slab. The continuous flat slab reinforced in two or more directions and built 
 monolithically with the supporting columns (without beams or girders) is a type of construc- 
 tion which is now extensively used and which has recognized advantages for certain 
 types of structures as, for example, warehouses in which large, open floor space is desired. 
 In its construction, there is excellent opportunity for inspecting the position of the re- 
 inforcement, The conditions attending deposition and placing of concrete are favorable to 
 
 24S 
 
securing uniformity and soundness in the concrete. The recommendations in the following 
 paragraphs relate to flat slabs extending over several rows of panels in 'each direction. 
 Necessarily the treatment is more or less empirical. 
 
 The co-efficients and moments given relate to uniformly distributed loads. 
 
 (a) Column Capital. It is usual in flat slab construction to enlarge the supporting 
 columns at their top, thus forming column capitals. The size and shape of the column 
 capital affect the strength of the structure in several ways. The moment of the external 
 forces which the slab is called upon to resist is dependent upon the size of the capital; 
 the section of the slab immediately above the upper periphery of the capital carries the 
 highest amount of punching shear; and the bending moment developed in the column 
 by an eccentric or unbalanced loading of the slab is greatest at the under surface of the 
 slab. Generally the horizontal section of the column capital should be round or square 
 with rounded corners. In oblong panels the section may be oval or oblong, with dimensions 
 proportional to the panel dimensions. For computation purposes, the diameter of the 
 column capital will be considered to be measured where its vertical thickness is at least 
 lj^ inches, provided the slope of the capital below this point nowhere makes an angle with 
 the vertical of more than 45 degrees. In case a cap is placed above the column capital, 
 the part of this cap within a cone made by extending the lines of the column capital upward 
 at the slope of 45 degrees to the bottom of the slab or dropped panel may be considered as 
 part of the column capital in determining the diameter for design purposes. Without 
 attempting to limit the size of the column capital for special cases, it is recommended that 
 the diameter of the column capital (or its dimensions parallel to the edge of the panel) 
 generally be made not less than one-fifth of the dimension of the panel from center to 
 center of adjacent columns. A diameter equal to 0.225 of the panel length has been used 
 quite widely and acceptably. For heavy loads or large panels especial attention should be 
 given to designing and reinforcing the column capital with respect to compressive stresses 
 and bending moments. In the case of heavy loads or large panels, and where the conditions 
 of the panel loading or variations in panel length or other conditions cause high bending 
 stresses in the column, and also for column capitals smaller than the size herein recom- 
 mended, especial attention should be given to designing and reinforcing the column capital 
 with respect to compression and to rigidity of connection to floor slab. 
 
 (6) Dropped Panel. In one type of construction the slab is thickened throughout 
 an area surrounding the column capital. The square or oblong of thickened slab thus 
 formed is called a dropped panel or a drop. The thickness and the width of the dropped 
 panel may be governed by the amount of resisting moment to be provided (the com- 
 pressive stress in the concrete being dependent upon both thickness and width), or its 
 thickness may be governed by the resistance to shear required at the edge of the column 
 capital and its width by the allowable compressive stresses and shearing stresses in the 
 thinner portion of the slab adjacent to the dropped panel. Generally, however, it is 
 recommended that the width of the dropped panel be at least four-tenths of the correspond- 
 ing side of the panel as measureU from center to center of columns, and that the offset in 
 thickness be not more than five- tenths of the thickness of the slab outside the dropped 
 panel. 
 
 (c) Slab Thickness. In the design of a slab, the resistance to bending and to shear- 
 ing forces will largely govern the thickness, and, in the case of large panels with light 
 loads, resistance to deflection may be a controlling factor. The following formulas for 
 minimum thicknesses are recommended as general rules of design when the diameter 
 of the column capital is not less than one^fifth of the dimension of the panel from center to 
 center of adjacent columns, the large dimension being used in the case of oblong panels. 
 For notation, let 
 
 t = total thickness of slab in inches. 
 L = panel length in feet. 
 w = sum of live load and dead load in pounds per square foot. 
 
 Then, for a slab without dropped panels, minimum t = 0.024L\/w -f 1^; for a slab 
 with dropped panels, minimum I = Q.Q2L'vw + 1; for a dropped panel whose width is 
 four- tenths of the panel length, minimum t = 0.03L\A0 + lM- 
 
 In no case should the slab thickness be made less than six inches, nor should the thick- 
 ness of a floor slab be made less than one-thirty-second of the panel length, nor the thick- 
 ness of a roof slab less than one-fortieth of the panel length. 
 
 (d) Bending and Resisting Moments in Slabs. If a vertical section of a slab be taken 
 across a panel along a line midway between columns, and if another section be taken 
 along an edge of the panel parallel to the first section, but skirting the part of the periphery 
 of the column capitals at the two corners of the panels, the moment of the couple formed by 
 the external load on the half panel, exclusive of that over the column capital (sum of dead 
 and live load) and the resultant of the external shear or reaction at the support at the 
 
 249 
 
two column capitals (see Fig. 1), may be found by ordinary static analysis. It will be noted 
 that the edges of the area here considered are along lines of zero shear except around the 
 column capitals. This moment of the external forces acting on the half panel will be 
 resisted by the numerical sum of (a) the moment of the internal stresses at the section of 
 the panel midway between columns (positive resisting moment) and (b) the moment of the 
 internal stresses at the section referred to at the end of the panel (negative resisting 
 moment). In the curved portion of the end section (that skirting the column), the stresses 
 considered are the components which act parallel to the normal stresses on the straight 
 portion of the section. Analysis shows that, for a uniformly distributed load, and round 
 
 peripheries of -fin 
 column caprta/s 
 
 ...7 
 
 section 
 
 section 
 
 FIG. 1. 
 
 FIG. 2. 
 
 columns, and square panels, the numerical sum of the positive moment and the negative 
 moment at the two sections named is given quite closely by the equation 
 
 In this formula and in those which follow relating to oblong panels: 
 w = sum of the live and dead load per unit of area. 
 I = side of a square panel measured from center to center of columns. 
 h = one side of the oblong panel measured from center to center of columns. 
 fa = other side of oblong panel measured in the same way. 
 c = diameter of the column capital. 
 
 M x = numerical sum of positive moment and negative moment in one direction. 
 My = numerical sum of positive moment and negative moment in the other direction. 
 (See paper and closure, Statical Limitations upon the Steel Requirement in Reinforced 
 Concrete Flat Slab Floors, by John R. Nichols, Jun. Am. Soc. C. E., Transactions Am. Soc. 
 C. E. Vol. LXXVII.) 
 
 For oblong panels, the equations for the numerical sums of the positive moment arid 
 the negative moment at the two sections named become 
 
 -! *(,.-!)' 
 
 Where M x is the numerical sum of the positive moment and the negative moment 
 for the sections parallel to the dimensions fa, and M y is the numerical sum of the positive 
 moment and the negative moment for the sections parallel to the dimensions h. 
 
 What proportion of the total resistance exists as positive moment and what as negative 
 moment is not readily determined. The amount of the positive moment and that of the 
 negative moment may be expected to vary somewhat with the design of the slab. It seems 
 proper, however, to make the division of total resisting moment in the ratio of three-eighths 
 for the positive moment to five-eighths for the negative moment. 
 
 With reference to variations in stress along the sections, it is evident from condi- 
 tions of flexure that the resisting moment is not distributed uniformly along either the 
 section of positive moment or that of negative moment. As the law of the distribution is 
 not known definitely, it will be necessary to make an empirical apportionment along the 
 sections; and it will be considered sufficiently accurate generally to divide the sections into 
 two parts and to use an average value over each part of the panel section. 
 
 The relatively largebreadth of structure in a flat slab makes the effect of local variations 
 in the concrete less than would be the case for narrow members like beams. The tensile 
 resistance of the concrete is less affected by cracks. Measurements of deformations in 
 
 250 
 
buildings under heavy load indicate the presence of considerable tensile resistance in the 
 concrete, and the presence of this tensile resistance acts to decrease the intensity of the 
 compressive stresses. It is believed that the use of moment coefficients somewhat less 
 than those given in a preceding paragraph as derived by analysis is warranted, the calcula- 
 tions of resisting moment and stresses in concrete and reinforcement being made according 
 to the assumptions specified in this report and no change being made in the values of the 
 working stresses ordinarily used. Accordingly, the values of the moments which are 
 recommended for use are somewhat less than those derived by analysis. The values 
 given may be used when the column capitals are round, oval, square or oblong. 
 
 (e) Names for Moment Sections. For convenience, that portion of the section across 
 a panel along a line midway between columns which lies within the middle two quarters 
 of the width of the panel (HI, Fig. 2), will be called the inner section, and that portion in 
 the two outer quarters of the width of the panel (GH and IJ, Fig. 2) will be called the outer 
 sections. Of the section which follows a panel edge from column capital to column capital 
 and which includes the quarter peripheries of the edges of two column capitals, that portion 
 within the middle two quarters of the panel width (CD, Fig. 2) will be called the mid- 
 section, and the two remaining portions (ABC and DEF, Fig. 2), each having a projected 
 width equal to one-fourth of the panel width, will be called the column-head sections. 
 
 (/) Positive Moment. For a square interior panel, it is recommended that the positive 
 moment for a section in the middle of a panel extending across its width be taken 
 
 as wl[ I TT ) . Of this moment, at least 25 per cent should be provided for in the 
 
 25 \ 6 / 
 
 inner section; in the two outer sections of the panel at least 55 per cent of the specified 
 moment should be provided for in slabs not having dropped panels, and at least 60 per cent 
 in slabs having dropped panels, except that in calculations to determine necessary thickness 
 of slab away from the dropped panel at least 70 per cent of the positive moment should be 
 considered as acting in the two outer sections. 
 
 (Q) Negative Moment. For a square interior panel, it is recommended that the negative 
 moment for a section \\ hich follows a panel edge from column capital to column capital and 
 which includes the quarter peripheries of the edges of the two column capitals (the section 
 
 1 / 2c\ 2 
 altogether forming the projected width of the panel) be taken as u-ll I- \ . Of this 
 
 negative moment, at least 20 per cent should be provided for in the mid-section and at least 
 65 per cent in the two column-head sections of the panel, except that in slabs having dropped 
 panels at least 80 per cent of the specified negative moment should be provided for in the 
 two column-head sections of the panel. 
 
 (h) Moments for Oblong Panels. When the length of a panel does not exceed the breadth 
 by more than 5 per cent, computation may be made on the basis of a square panel with sides 
 equal to the mean of the length and the breadth. 
 
 When the long side of an interior oblong panel exceeds the short side by more than 
 one-twentieth and by not more than one-third of the short side, it is recommended that 
 
 the positive moment be taken as wlz l/i 5- J on a section parallel to the dimension 
 
 h, and wl\ (h TT ) on a section parallel to dimension Zi; and that the negative moment 
 25 V / 
 
 be taken as - wh [h ^ ) on a section at the edge of the panel corresponding to the 
 
 2c2 
 
 dimension h, and irli (h ^ 1 at a section in the other direction. The limitations of 
 
 the apportionment of moment between inner section and outer section and between mid- 
 section and column-head sections may be the same as for square panels. 
 
 (t) Watt Panels. The coefficient of negative moment at the first row of columns 
 away from the wall should be increased 20 per cent over that required for interior panels, 
 and likewise the coefficient of positive moment at the section halfway to the wall should 
 be increased by 20 per cent. If girders are not provided along the wall or the slab does not 
 project as a cantilever beyond the column line, the reinforcement parallel to the wall for the 
 negative moment in the column-head section and for the positive moment in the outer 
 section should be increased by 20 per cent. If the wall is carried by the slab this concen- 
 trated load should be provided for in the design of the slab. The coefficient of negative 
 moments at the wall to take bending in the direction perpendicular to the wall line may be 
 determined by the conditions of restraint and fixedness as found from the relative stiffness 
 of columns and slab, but in no case should it be taken as less than one-half of that for 
 interior panels. 
 
 0') Reinforcement. In the calculation of moments all the reinforcing bars which cross 
 the section under consideration and which fulfill the requirements given under paragraph 
 (I) of this chapter may be used. For a column-head section reinforcing bars parallel to the 
 
 251 
 
straight portion of the section do not contribute to the negative resisting moment for the 
 column-head section in question. In the case of four-way reinforcement the sectional area 
 of the diagonal bars multiplied by the sine of the angle between the diagonal of the panel 
 and straight portion of the section under consideration may be taken to act as reinforcement 
 in a rectangular direction. 
 
 (k) Point of Inflection. For the purpose of making calculations of moments at sections 
 away from the sections of negative moment and positive moment already specified, the 
 point of inflection on any line parallel to a panel edge may be taken as one-fifth of the clear 
 distance on that line between the two sections of negative moment at the opposite ends of 
 the panel indicated in paragraph (e), of this chapter. For slabs having dropped panels the 
 coefficient of one-fourth should be used instead of one-fifth. 
 
 (1) * Arrangement of Reinforcement. The design should include adequate provision 
 for securing the reinforcement in place so as to take not only the maximum moments, 
 but the moments at intermediate sections. All bars in rectangular bands or diagonal bands 
 should extend on each side of a section of maximum moment, either positive or negative, 
 to points at least twenty diameters beyond the point of inflection as defined herein or be 
 hooked or anchored at the point of inflection. In addition to this provision bars in diagonal 
 bands used as reinforcement for negative moment should extend on each side of a line 
 drawn through the column center at right angles to the direction of the band at least a 
 distance equal to thirty-five one-hundredths of the panel length, and bars in diagonal bands 
 used as reinforcement for positive moment should extend on each side of a diagonal through 
 the center of the panel at least a distance equal to thirty-five one-hundredths of the panel 
 length; and no splice by lapping should be permitted at or near regions of maximum stress 
 except as just described. Continuity of reinforcing bars is considered to have advantages, 
 and it is recommended that not more than one-third of the reinforcing bars in any direction 
 be made of a length less than the distance center to center of columns in that direction. 
 Continuous bars should not all be bent up at the same point of their length, but the zone in 
 which this bending occurs should extend on each side of the assumed point of inflection, and 
 should cover a width of at least one-fifteenth of the panel length. Mere draping of the 
 bars should not be permitted. In four-way reinforcement the position of the bars in both 
 diagonal and rectangular directions may be considered in determining whether the width 
 of zone of bending is sufficient. 
 
 (ra) Reinforcement at Construction Joints. It is recommended that at construction 
 joints extra reinforcing bars equal in section to 20 per cent of the amount necessary to 
 meet the requirements for moments at the section where the joint is made be added to the 
 reinforcement, these bars to extend not less than 50 diameters beyond the joint on each 
 side. 
 
 (n) Tensile and Compressive Stresses. The usual method of calculating the tensile 
 and .compressive stresses in the concrete and in the reinforcement, based on the assump- 
 tions for internal stresses given in this chapter, should be followed. In the case of the 
 dropped panel the section of the slab and dropped panel may be considered to act integrally 
 for a width equal to the width of the column-head section. 
 
 (o) Provision for Diagonal Tension and Shear. In calculations for the shearing stress 
 which is to be used as the means of measuring the resistance to diagonal tension stress, it is 
 recommended that the total vertical shear on two column-head sections constituting a 
 width equal to one- half the lateral dimensions of the panel, for use in the formula for deter- 
 mining critical shearing stresses, be considered to be one-fourth of the total dead and live 
 load on a panel for a slab of uniform thickness, and to be three-tenths of the sum of the 
 dead and live loads on a panel for a slab with dropped panels. The formula for shearing 
 
 unit stress may then be written v = for slabs of uniform thickness, and v = ' . 
 
 bjd bjd 
 
 for slabs with dropped panels, where W is the sum of the dead and live load on a panel, 
 6 is half the lateral dimension of the panel measured from center to center of columns, and 
 jd is the lever arm of the resisting couple at the section. 
 
 The calculation of what is commonly called punching shear may be made on the assump- 
 tion of a uniform distribution over the section of the slab around the periphery of the 
 column capital and also of a uniform distribution over the section of the slab around the 
 periphery of the dropped panel, using in each case an amount of vertical shear greater by 
 25 per cent than the total vertical shear on the section under consideration. 
 
 The values of working stresses should be those recommended for diagonal tension 
 and shear in the section on "Working Stresses." 
 
 (p) Walls and Openings. Girders or beams should be constructed to carry walls and 
 other concentrated loads which are in excess of the working capacity of the lab. Beams 
 should also be provided in case openings in the floor reduce the working strength of the 
 slab below the required carrying capacity. 
 
 (q) Unusual Panels. The coefficients, apportionments, and thicknesses recom- 
 mended are for slabs which have several rows of panels in each direction, and in which 
 
 252 
 
the size of the panels is approximately the same. For structures having a width of one, 
 two, or three panels, and also for slabs having panels of markedly different sizes, an analysis 
 should be made of the moments developed in both slab and columns, and the values given 
 herein modified accordingly. Slabs with paneled ceiling or with depressed paneling in the 
 floor are to be considered as coming under the recommendations herein given. 
 
 (r) Bending Moments in Columns. Provision should be made in both wall columns 
 and interior columns for the bending moment which will be developed by unequally loaded 
 panels, eccentric loading, or uneven spacing of columns. The amount of moment to be 
 taken by a column will depend upon the relative stiffness of columns and slab, and com- 
 putations may be made by rational methods, such as the principal of least work, or of slope 
 and deflection. Generally, the larger part of the unequalized negative moment will be 
 transmitted to the columns, and the column should be designed to resist this bending 
 moment. Especial attention should be given to wall columns .and corner columns. 
 
 Working Stresses 
 
 General Assumptions. The following working stresses are recommended for static 
 loads. Proper allowances for vibration and impact are to be added to live loads where 
 necessary to produce an equivalent static load before applying the unit stresses in propor- 
 tioning parts. 
 
 In selecting the permissible working stress on concrete, the designer should be guided 
 by the working stresses usually allowed for other materials of construction, so that all 
 structures of the same class composed of different materials may have approximately the 
 same degree of safety. 
 
 The following recommendations as to allowable stresses are given in the form of per- 
 centages of the ultimate strength of the particular concrete which is to be used ; this ultimate 
 strength is that developed at an age of twenty-eight days, in cylinders 8 inches in diameter 
 and 16 inches long, of proper consistency* made and stored under laboratory conditions. 
 In the absence of definite knowledge in advance of construction as to just what strength 
 may be expected, the committee submits the following values as those which should be 
 obtained with materials and workmanship in accordance with the recommendations of this 
 report. 
 
 Although occasional tests may show higher results than those here given, the Committee 
 recommends that these values should be the maximum used in design. 
 
 TABLE OF COMPRESSIVE STRENGTHS OF DIFFERENT MIXTURES OF CONCRETE 
 (In Pounds per Square Inch) 
 
 Aggregate 
 Granite trap rock 
 
 l:3t 
 3300 
 
 1 :4M t 
 2800 
 
 l:6f 
 2200 
 
 l:7Mt 
 1800 
 
 l:9t 
 1400 
 
 Gravel, hard limestone and hard sandstone . . 
 Soft limestone and sandstone 
 Cinders 
 
 3000 
 2200 
 800 
 
 2500 
 1800 
 700 
 
 2000 
 1500 
 600 
 
 1600 
 1200 
 500 
 
 1300 
 1000 
 
 400 . 
 
 NOTE. For variations in the moduli of elasticity see 254. 
 
 Bearing. When compression is applied to a surface of concrete of v at least twice the 
 loaded area, a stress of 35 per cent of the compressive strength may be allowed in the 
 area actually under load. 
 
 Axial Compression. For concentric compression on a plain concrete pier, the length 
 of.wnich does not exceed four diameters, or on a column reinforced with longitudinal bars 
 only, the length of which does not exceed 12 diameters, 22.5 per cent of the compressive 
 strength may be allowed. 
 
 For other forms of columns the stresses obtained from the ratios given in the preceding 
 section on " Design" may govern. . 
 
 Compression in Extreme Fiber. The extreme fiber stress of a beam, calculated on 
 the assumption of a constant modulus of elasticity for concrete under working stresses 
 may be allowed to reach 32.5 per cent of the compressive strength. Adjacent to the 
 support of continuous beams stresses 15 per cent higher may be used. 
 
 Shear and Diagonal Tension. In calculations on beams in which the maximum 
 shearing stress in a section is used as the means of measuring the resistance to diagonal 
 tension stress, the following allowable values for the maximum vertical shearing stress in 
 
 concrete, calculated by the method given in formula on page 4, v = J-TJ, are recommended: 
 
 * The materials should be mixed wet enough to produce a concrete of such a consistency as will flow 
 sluggishly into the forms and about the metal reinforcement, and which, at the same time, can be 
 conveyed from the mixer to the forms without separation of the coarse aggregate from the mortar. 
 The quantity of water is of the greatest importance in securing concrete of maximum strength and 
 density; too much water is as objectionable as too little. 
 
 t Combined volume fine and coarse aggregate measured separately. 
 
 253 
 
(a) For beams with horizontal bars only and without web reinforcement, 2 per cent of 
 the compressive strength. 
 
 (6) For beams with web reinforcement consisting of vertical stirrups looped' about 
 the longitudinal reinforcing bars in the tension side of the beam and spaced horizontally 
 not more than one-half the depth of the beam; or for beams in which longitudinal bars are 
 bent up at an angle of not more than 45 degrees or less than 20 degrees with the axis of the 
 beam, and the points of bending are spaced horizontally not more than three-quarters of the 
 depth of the beam apart, not to exceed 4)^ per cent of the compressive strength. 
 
 (c) For a combination of bent bars and vertical stirrups looped about the reinforcing 
 bars in the tension side of the beam and spaced horizontally not more than one-half of the 
 depth of the beam, 5 per cent of the compressive strength. 
 
 (d) For beams with web reinforcement (either vertical or inclined) securely attached 
 to the longitudinal bars in the tension side of the beam in such a way as to prevent slipping 
 of bar past the stirrup, and spaced horizontally not more than one-half of the depth of the 
 beam in case of vertical stirrups and not more than three-fourths of the depth of the beam 
 in the case of inclined members, either with longitudinal bars bent up or not, 6 per cent of 
 the compressive strength. 
 
 The web reinforcement in case any is used should be proportioned by using two-thirds 
 of the external vertical shear in formulas (a) and (6) on page 4. The effect of longitu- 
 dinal bars bent up at an angle of from 20 to 45 degrees with the axis of the beam may 
 be taken at sections of the beam in which the bent up bars contribute to diagonal 
 tension resistance (see "Diagonal Tension and Shear," page 245) as reducing the 
 shearing stresses to be otherwise provided for. The amount of reduction of the shearing 
 stress by means of bent up bars will depend upon their capacity, but in no case should be 
 taken as greater than 4 % per cent of the compressive strength of the concrete over the 
 effective cross-section of the beam.* The limit of tensile stress in the bent up por- 
 tion of the bar calculated by formula (6) on page 4, using in this formula an amount of total 
 shear corresponding to the reduction in shearing stress assumed for the bent up bars, 
 may be taken as specified for the working stress of steel, but in the calculations the 
 stress in the bar due to its part as longitudinal reinforcement of the beam should be 
 considered. The stresses in stirrups and inclined members when combined with bent 
 up bars are to be determined by finding the amount of the total shear which may be 
 allowed by reason of the bent up bars, and subtracting this shear from the total external 
 vertical shear. Two-thirds of the remainder will be the shear to be carried by the stirrups, 
 using formulas (a) or (6) on page 4. 
 
 Where punching shear occurs, provided the diagonal tension requirements are met, 
 a shearing stress of 6 per cent of the compressive strength may be allowed. 
 
 Bond. The bond stress between concrete and plain reinforcing bars may be assumed 
 at 4 per cent of the compressive strength, or 2 per cent in the case of drawn wire. In the 
 best types of deformed bar the bond stress may be increased, but not to exceed 5 per cent of 
 the compressive strength of the concrete. 
 
 Reinforcement. The tensile or compressive stress in steel should not exceed 16,000 
 pounds per square inch. 
 
 In structural steel members the working stresses adopted by the American Railway 
 Engineering Association are recommended. 
 
 Modulus of Elasticity. The value of the modulus of elasticity of concrete has a wide 
 range, depending on the materials used, the age, the range of stresses between which it is 
 considered, as well as other conditions. It is recommended that in computations for the 
 position of the neutral axis, and for the resisting moment of beams and for compression 
 of concrete in columns, it be assumed as: 
 
 (a) One-fortieth that of steel, when the strength of the concrete is taken as not more 
 than 800 pounds per square inch. 
 
 (6) One-fifteenth that of steel, when the strength of the concrete is taken as greater 
 than 800 pounds per square inch. 
 
 (c) One-twelfth that of steel, when the strength of the concrete is taken as greater 
 than 2,200 pounds per square inch, and less than 2,900 pounds per square inch. 
 
 (d) One-tenth that of steel, when the strength of the concrete is taken as greater 
 than 2,900 pounds per square inch. 
 
 Although not rigorously accurate, these assumptions will give safe results. For the 
 deflection of beams which are free to move longitudinally at the supports, in using formulas 
 for deflection which do not take into account the tensile strength developed in the concrete, 
 a modulus of one-eighth of that of steel is recommended. 
 
 254 
 
AMERICAN CONCRETE INSTITUTE RECOMMENDATIONS* 
 
 1. Conditions. All reinforced-concrete construction shall be designed to meet the 
 conditions of loading (including bending in columns) without stressing the materials used 
 beyond the safe working stresses specified. 
 
 2. Dead-Loads. The dead-loads shall be the weight of the permanent structure. The 
 weight of reinforced stone, gravel or slag concrete shall be taken as 144 Ib. per cu. ft.; 
 the weight of cinder concrete as 100 Ib. per cu. ft. 
 
 3. Live-Loads. The live-load shall be the working or variable load for which the 
 structure is designed. 
 
 4. Reduction of Loads. All parts of a structure shall be designed to carry safely the 
 entire combined dead- and live-loads with the exception that the loads on columns and 
 foundations may be reduced by considering that columns in top story carry the total live- 
 and dead-load above them; columns in next to top story carry the total dead-load and 
 eighty-five (85) per cent of the total live-load above; columns in the next lower story, the 
 total dead-load and eighty (80) per cent of the total live-load above: and thus on downward 
 reducing at each story the percentage of total live-loads carried, by 5, until a reduction of 
 fifty (50) per cent is reached. The columns in this and in every story below this point 
 shall be proportioned to carry the total dead-load and at least fifty (50) per cent of the 
 total live-load of all the floors and roofs above them. 
 
 For warehouses the increment of reduction per story shall be 2^ per cent instead of 5 per 
 cent. 
 
 5. General Assumptions. As a basis for calculations for the strength of reinforced- 
 concrete construction the following assumptions shall be made: 
 
 (a) Calculations shall be made with reference to working stresses and safe loads 
 rather than with reference to ultimate strength and ultimate loads. 
 (6) A plane section before bending remains plane after bending. 
 
 (c) The modulus of elasticity of concrete in compression within the usual limits of 
 working stresses is constant. 
 
 (d) In calculating the moment of resistance of beams, the tensile stresses in the 
 concrete are neglected. 
 
 (e) Perfect adhesion is assumed between concrete and reinforcement. Under 
 compressive stresses the two materials will, therefore, be stressed in proportion to their 
 moduli of elasticity. 
 
 (/) The ratio of the modulus of elasticity of concrete shall be taken as follows : 
 
 1. One-fortieth that of steel when the strength of the concrete is taken as not more 
 
 than eight hundred (800) Ib. per sq. in. 
 2 One-fifteenth that of steel when the strength of the concrete is taken as greater 
 
 than twelve hundred (1200) Ib. per sq. in. or less than twenty-two hundred 
 
 (2200) Ib. per sq. in. 
 
 3. One-twelfth that of steel when strength of the concrete is taken as greater than 
 twenty- two hundred (2200) Ib. per sq. in. or less than thirty- three hundred (3300) 
 Ib. per sq. in. 
 
 4. One-tenth that of steel when the strength of the concrete is taken as greater than 
 thirty-three hundred (3300) Ib. per sq. in. 
 
 6. Strength of Materials. The ultimate strength of concrete shall be that developed at 
 an age of 28 days, in cylinders 8 in. in diameter and 16 in. in length or 6 in. in diameter and 
 12 in. in length, of the consistency and proportions to be used in the work, made and stored 
 under laboratory conditions, but in no case shall the values exceed those allowed in the table 
 below. In the absence of definite knowledge in advance of construction as to just what 
 strength may be developed, the following values may be used: 
 
 * Passed by letter-ballot of the Institute, April 17, 1920. 
 
 ' 255 
 
TABLE OF STRENGTHS OF DIFFERENT MIXTURES 
 
 Proportion of cement to aggregate 
 
 Aggregate 1:3* 1:4> 2 * 1:6* 1:7^* 1:9* 
 For stone, gravel or slag with water-cement 
 
 ratiot of : 0.8 0.9 1.0 1.11 1.22 
 
 Strength of concrete 3000 2500 2000 1600 1300 
 
 Cinders SDO 700 600 500 400 
 
 7. Safe Working Stresses. Reinforced-concrete structures shall be so designed that the 
 stresses, figured in accordance with these regulations, in pounds per square inch, shall not 
 exceed the following: 
 
 (a) Extreme fiber stress in concrete in compression 37^ per cent of the compressive 
 strength specified in Section 6. Adjacent to the support of continuous members, 41 per 
 cent provided the member frames into a mass of concrete projecting at least 50 per cent 
 of the least dimension of the member on all sides of the compression area of the member. 
 
 (6) Concrete in direct compression 25 per cent of the compressive strength specified 
 in Section 6. 
 
 (c) Shearing stress in concrete when main steel is not bent and when steel is not 
 provided to resist diagonal tension, as specified in Section 10. 
 
 (d) Where punching shear occurs, provided the diagonal tension requirements are 
 met, a shearing stress as specified in Section 10 will be allowed. 
 
 (e) Vertical shearing stresses, as specified in Section 10. 
 
 (/) Bond stress between concrete and plain reinforcing bars 4 per cent of the 
 compressive strength. 
 
 (fir) Bond stress between concrete and approved deformed bars 5 per cent of the 
 compressive strength. 
 
 (ft) Compression applied to a surface of concrete of at least twice the loaded area, 
 a stress of 50 per cent of the compressive strength shall be allowd over the area actually 
 under load. 
 
 (?') Tensile stress in steel 16,000 Ib. per sq. in., except that for steel having an 
 elastic limit of at least 50,000 Ib., a working stress of 18,000 Ib. per sq. in. will be 
 allowed. 
 
 8. Girder, Beam, and Slab Construction. In determining the bending moment in 
 slabs, beams and girders, the load carried by the member shall include both the dead- and 
 the live-loads. 
 
 The span of the member shall be the distance center to center of supports, but not to 
 exceed the clear span plus the depth of the member, except that for continuous or fixed 
 members framing into other reinforced-concrete members the clear span may be used. 
 
 For continuous members supported upon brackets making an angle of not more than 
 45 degrees with the vertical, and having a width not less than the width of the member 
 supported, the span shall be the clear distance between brackets plus one-half the total 
 depth of the member. 
 
 If the brackets make a greater angle than 45 degrees with the vertical, only that portion 
 of the bracket within the 45 degrees slope shall be considered. Maximum negative mo- 
 ments are to be considered as existing at the end of the span as here defined. 
 
 ~WJ 
 For members uniformly loaded the bending moment shall be assumed as -=r- > where 
 
 b 
 
 W = total load; L = span; and F = 8 for members simply supported, 10 for both 
 negative and positive bending moment for members restrained at one end and simply 
 supported or partially restrained at the other, and 12 for both negative and positive bend- 
 ing moment for members fixed or continuous at both supports. The above bending mo- 
 ments for continuous members apply only when adjacent spans are approximately equal. 
 A special condition of loading to be reduced to equivalent uniformly distributed loading 
 in accordance with approved engineering practice. For members having one end simply 
 supported or partially restrained, at least fifty (50) per cent of the tension reinforcement 
 required at center of span shall be bent up and adequately anchored to take bending moment 
 at exterior support. 
 
 At the ends of continuous beams, the amount of negative moment which will be devel- 
 oped in the beam will depend on the condition of restraint or fixedness, and this will depend 
 
 on the form of construction used. In the ordinary cases a moment of ,-- may be taken: 
 
 ID 
 
 for small beams running into heavy columns this should be increased but not to exceed ^ 
 
 * Total volume of fine and coarse aggregate, measured separately, 
 t Water-Cement Ratio = Ratio of water to cement by volume. 
 
 256 
 
9. Slabs. The main tensile reinforcement shall not be farther apart than two times 
 the thickness of the slab. For slabs designed to span one way, steel having an area of at 
 least two-tenths of one per cent (0.2 %) of section of slab shall be provided transverse to 
 main reinforcement, and this transverse reinforcement shall be further increased in the top 
 of the slab over girders to prevent cracking, and the main steel in slabs parallel and adjacent 
 to girders may be reduced accordingly. Where openings are left through slabs, extra 
 reinforcement shall be provided to prevent local cracks developing. This reinforcement 
 shall in no case be less than Y sq. in. in section and must be securely anchored at ends. 
 Floor finish when placed monolithic may be considered part of the structural section. 
 
 Where adequate bond and shearing resistance between slab and web of beam is provided, 
 the slab may be considered as an integral part of the beam, but its effective width shall not 
 exceed on either side of the beam one-sixth of the span length of the beam nor be greater 
 than six times the thickness of the slab on either side of the beam, nor greater than one-half 
 of the distance between beams on either side, the measurements being taken from edge of 
 web. 
 
 10. Shear and Diagonal Tension. (a) The notation used in this section is as follows: 
 
 V = total vertical shear at any section. 
 V = vertical shear carried by the web reinforcement. 
 
 v = V/bjd = Unit vertical shearing stress. 
 
 d = depth from compressive face to c. g. of tensile steel in inches. 
 
 b = breadth of beam. 
 
 b f = breadth of stem of T-beam or web of I-beam. 
 As = area of longitudinal steel. 
 A v = area of shear steel in section of beam considered. 
 
 j = ratio of lever arm of resistance couple to depth d. 
 
 p = Ag/bd = Longitudinal steel ratio. 
 
 r = A v /ba = Shear steel ratio. 
 
 a = spacing of shear steel measured perpendicular to its direction. 
 f e ' = ultimate strength of concrete cylinders at 28 days (or at time of test in considering 
 test data). 
 
 / = tensile stress in web reinforcement. 
 
 Except where v is noted as the unit punching shearing stress, it is used as a shearing 
 stress index governing the v alue of the diagonal tension in the web as is the present common 
 practice. 
 
 (6) All allowances for design unit shearing stresses in the following sections are predicated 
 on proper design of the longitudinal reinforcement to effectively resist all positive and 
 negative moments, as prescribed in other sections of these standards. Wherever web 
 reinforcement is used it must be adequately anchored at both ends. 
 
 (c) Members with Web Reinforcement. When adequate mechanical anchorage of both 
 web and longitudinal rods is provided, the concrete may be figured to carry a unit vertical 
 shearing stress equal to 0.025/ c ' and the remainder of the shear shall be carried by web bars 
 designed according to the formula: 
 
 A - V ' a 
 
 ~m 
 
 Properly anchored bent-up longitudinal bars may be considered as web reinforcement. 
 The maximum unit shearing stress shall not exceed 0.12/ c ' in any case. 
 
 (d) When adequate mechanical anchorage of the longitudinal rods as defined in the next 
 paragraph is not provided, the maximum unit shearing stress shall not exceed 0.06/ c ', 
 of which 0.02// may be considered to be taken by the concrete and the remainder of the 
 shear taken by the web bars designed as above. Web rods must be adequately anchored in 
 all cases. 
 
 (e) Adequate mechanical anchorage of the bottom longitudinal steel for positive 
 moments shall consist of carrying the reinforcement a sufficient distance beyond the point 
 of inflection to develop the assumed tension in the reinforcement at the point of inflection 
 by bond between the end of the bar and the point of inflection of the member (never to a 
 less distance than one inch from the center of the support or in case of wide supports to not 
 less than 12 in. of embedment in the support), or of bending the end of the bars over the 
 support to a half circle of diameter not less than 8 times the diameter of the bar, or by any 
 device that will transmit the tension on the bar to the concrete over the support at a 
 compressive stress of not over 0.50/ c '. The tension in the bar, at the point of inflection 
 to be resisted by the anchorage, shall be taken for this computation as not less than one- 
 third of the maximum safe tension in the bar. Reinforcement for negative moment shall 
 be thoroughly anchored at the support and extend into the span a sufficient distance to 
 adequately provide for negative tension by bond. Simply supported beams shall have the 
 longitudinal steel anchored by hooks of diameter specified above or by an equivalent anchor- 
 
 257 
 
age, the tensile stress at the edge of the support being taken as one-third of the maximum 
 safe tension in the bar. (Figs. 1, 2 and 3.) 
 
 (/) Anchorage of the web steel shall consist of continuity of the web member with the 
 longitudinal member, or of carrying the web member about at least two sides of a longitudi- 
 nal bar at both ends, or of carrying the web member about at least two sides of a longitudinal 
 member at one end and making a half circular hook at the other end of a diameter not less 
 than eight times the diameter of the web rod. In all cases, the bent ends of web bars shall 
 extend at least eight diameters below or above the point of extreme height or depth of the 
 
 "^JT ^ 
 
 _^L_ 
 
 Steel from %&$('* Vertical stirrups 
 adjacent only 
 
 span not shown 
 
 FIG. 1, 
 
 Bent up rods i-j 
 and vertical stirrups 
 
 Steel from % 
 adjacent 
 span not shown 
 
 Bent up bars and inclined stirrups 
 FIG. 2. 
 
 Plate must be rigid- 
 ly connected to rod 
 
 FIG. 3. 
 
 :;* ; >'., : >>'; 
 
 * ' ^ \ 
 - $ 
 
 po * 
 
 P5l 
 
 Hook must engage 
 a substantial block 
 of concrete 
 
 ' . 4 
 _' A . 
 
 **Gd "'This dimension limited 
 by bond value unless wffb 
 * ^ ste*l is integral with 
 longitudinal steel 
 
 ;:.?: 
 
 W 
 
 ''' 4 
 
 FIG. 4. 
 
 on this section must not exceed .02 f, 
 unless steel is provided in top of beam at support 
 
 FIG. 5. 
 
 bar. In case the end anchorage is not in bearing on other reinforcing steel, the anchorage 
 shall be such as to engage an adequate amount of concrete to prevent the bar from pulling 
 off a portion of the concrete. In all cases the stirrups shall be carried as close to the upper 
 and lower surfaces as fireproofing requirements will permit. The size of web reinforcing 
 bars which are not either a part of the longitudinal steel or welded thereto shall be such that 
 not less than two-fifths of the maximum design tensile stress in the bar may be developed 
 at design bond stresses in a length of rod equal to 0.4d. This condition is satisfied for plain 
 
 258 
 
round stirrups when the diameter of the bar does not exceed d/50. The balance of the 
 tensile stress in the bar may be considered as taken by adequate end anchorage as specified 
 above. (Fig. 4.) 
 
 (0) Beams in which no longitudinal reinforcement is provided in the upper portion of the 
 beam adjacent to the support and in which the ends of the beam are built monolithic with 
 other parts of the concrete structure, shall not carry a unit shearing stress in excess of 
 0.02//, regardless of amount of web reinforcement provided. (Fig. 5.) 
 
 (A) When the shear reinforcement consists of bars bent up at an angle so as to rein- 
 force all sections of the beam in which the unit shearing stress exceeds 0.02/ c ' the design 
 may be made as follows: 
 
 Atf v = V sec a. 
 
 Where A v = area of bent-up shear bars. 
 / = stress in bent-up shear bars. 
 V' = total shear at end of span as prescribed for moment less the shearing 
 
 resistance of the concrete at a unit stress of 0.02/ c ' over the area b'jd. 
 a = angle between bent-up rod and the vertical. (F^g. 6.) 
 
 FIG. 6. 
 
 The maximum unit shearing stress shall not exceed 0.06 f c f with this arrangement of web 
 steel and the longitudinal steel shall be adequately anchored as defined above in all cases. 
 
 (i) In case the web reinforcement consists solely of inclined shear bars the first bent bar 
 shall bend downward from the plane of the upper reinforcement directly over or within the 
 edge of the support. 
 
 0') Where additional web reinforcement is provided the same may be figured in accord- 
 ance with Section 10 (c). The total shearing resistance of the beam shall be taken as the 
 sum of the resistances under Section 10 (c) and 10 (h). 
 
 (k) Beams without Web Reinforcement. When the longitudinal steel is not fully an- 
 chored, as prescribed above, the unit shearing stress shall not exceed 0.02//. When the 
 longitudinal steel is fully anchored, as prescribed above, the unit shearing stress shall not 
 exceed 0.03//. 
 
 (I) Critical Section for Shear in Beams. The critical section for shear as governing 
 diagonal tension shall be taken at a distance not greater than one-half the effective depth of 
 the beam O^d), from the end of the span as prescribed for moment. 
 
 C.G. 
 
 Shear governing diagonal tension 
 Critical sections (IJ following per- 
 iphery of drop panel, and (2) sur- 
 face of frustum of cone thru e> 
 of column capital; base 
 
 Punching shear: 
 - Critical section follows per- 
 iphery of column capital 
 
 The effective depth of the critical section for shear as governing diagonal tension shall 
 be taken as the depth jd of the beam in the plane of the critical section. 
 
 The breadth of the critical section shall be the full breadth of rectangular beams or the 
 breadth of the stem of T-beams or the thickness of the web in beams of I section. 
 
 (m) TUe and Concrete Joist Construction. The shearing stresses in tile and concrete 
 joist construction shall not exceed those in beams or slabs of similar reinforcement. The 
 breadth of the effective section for shear, as governing diagonal tension, may be taken as 
 the thickness of the concrete joist plus one-half the thickness of the vertical webs of the 
 tile, provided that the joints in one row come opposite the centers of tile in adjoining rows 
 on either side. 
 
 Where the tile joints are not staggered, only the concrete joists may be considered 
 effective in resisting shear. 
 
 259 
 
(n) Flat-slab Construction. In flat-slab construction where a drop panel is used ad- 
 joining the column, the shearing stress, as governing diagonal tension, figured on the jd 
 depth on a vertical section along the periphery of the drop, shall not exceed 0.03/ c '. (See 
 Fig. 7.) 
 
 (o) In flat-slab construction, with or without drop panels, the shearing stress, as govern- 
 ing diagonal tension, figured between the compression face of the slab or drop and the level 
 of the center of gravity of the reinforcing steel, on the surface of the frustum of a cone or 
 pyramid passing through the periphery of the column capital and having a base angle of 
 45 degrees, shall not exceed 0.035/ c '. 
 
 (p) Footings. In footings carrying a single column or load, the shearing stress, as 
 governing diagonal tension, figured between the level of the centroid of the compressive 
 stresses and the level of the center of gravity of the reinforcing steel on the surface of the 
 frustum of a cone or pyramid passing through the base of the supported column or loaded 
 member and having a base angle of 45 degrees the unit stresses shall not exceed those in 
 beams without web reinforcement. Especial attention shall be given to bond in footings. 
 The total vertical shear on this section shall be taken as the upward pressure on the area 
 of the footing outside the base of this section. 
 
 (q) If adequate anchorage is provided for the tensile steel arid adequately anchored 
 web reinforcement is also provided such web reinforcement may be figured in accordance 
 with the formula given in Section 10 (c) above. Such calculations may be made for vertical 
 sections concentric with the supported column. 
 
 (r) For footings supporting two or more columns, the shearing stresses shall be figured 
 as for beams or slabs. 
 
 (s) Arrangement of Web Reinforcement. The spacing of web reinforcement as measured 
 perpendicular to their direction shall not exceed 3d/4 in any case where web reinforcement 
 is necessary. Where vertical stirrups or web members inclined less than 30 degrees to the 
 
 Shear governing diagonal tension :-} \ Punching shear :- 
 Critical section follows periphery-' ^- Critical 'section follows periphery 
 
 of supported portion at top of of supported portion, 
 
 footing; base angle 45 
 
 FIG. 8. 
 
 vertical are used, the spacing shall not exceed d/2. When the unit shearing stress exceeds 
 0.06/c' the spacing of the web reinforcement shall not exceed d/2 in any case, nor d/3 for 
 vertical stirrups or web steel inclined less than 30 degrees with the vertical. 
 
 The first vertical stirrup shall be placed not farther than d/2 from the face of the 
 support in any case. The first inclined stirrup or bent-up rod shall reach the level of the 
 upper longitudinal steel at a distance not greater than d/2 from the edge of the support if 
 the bottom longitudinal steel is adequately anchored and at the edge of the web support if 
 the longitudinal steel is not anchored. Web members may be placed at any angle between 
 and 60 degrees with the vertical, provided that, if inclined, they shall be inclined in the 
 proper direction to take tension, rather than compression, in the web. 
 
 (t) Punching Shear. Punching shear shall be figured on a vertical section through 
 the periphery of the smaller member. The unit shearing stress in punching shear, figured 
 on the full depth d to the center of gravity of the reinforcement, shall not exceed 0.1/ c '. 
 
 (u) When the depth of the supported or supporting member is less than one-fifteenth of 
 the span in the case of beams or slabs, or less than one-third of the overhang in the case of 
 cantilevers (including footings), the unit shearing stress in punching shear shall not exceed 
 0.06/c'. 
 
 11. Tile and Joist Floors. Wherever floors are built with a combination of tile or 
 other fillers between reinforced-concrete joists, the following rules regarding the dimensions 
 and methods of calculations of construction shall be observed: 
 
 (a) Wherever a portion of the slab above the fillers is considered as acting as a T-beam 
 section, the slab portion must be cast monolithic with the joist and have a minimum thick- 
 ness of two (2) inches. 
 
 (6) Wherever porous fillers are used which will absorb water from the concrete, oare 
 must be taken thoroughly to saturate same before concrete is placed. 
 
 260 
 
(c) All regulations given above for beam and girder floors shall apply to tile and joist 
 floors. 
 
 (d) The sections of fillers shall be together and all joints reasonably tight before concrete 
 is placed. 
 
 12. Flat -slab or Girderless Floors, Continuous flat-slab floors, reinforced with steel 
 rods or mesh and supported on spaced columns in orderly arrangement, shall conform to the 
 following requirements: 
 
 FIG. 9. 
 
 (a) Notation and Nomenclature. In the formula let 
 
 w = total dead-and live-load in pounds per square foot of floors. 
 
 l\ ='span in feet center to center of columns parallel to sections on which moments 
 
 are considered. 
 lz = span in feet center to center of columns perpendicular to sections on which 
 
 moments are considered. 
 
 C = average diameter of column capital in feet at plane where its thickness is 1% in. 
 q = distance from center line of the capital to the center of gravity of the periphery 
 
 of the half capital divided by %c. For round capitals q may be considered 
 
 as two-thirds and for square capitals as three-quarters. 
 t = total slab thickness in inches. 
 L = average span in feet center to center of columns, but not less than 0.9 of the 
 
 greater span. 
 
 (a) Drop construction 
 
 (f>s Cop construct kjf > 
 
 7 
 
 
 \_i_/ i- 
 
 TF-- - - 
 
 (c) Poneifed ceiling consfPtocficn 
 FlG. 10. 
 
 The column head section, mid section, outer section, and inner section are located and 
 dimensioned as shown in Fig. 9. Corresponding moments shall be figured on similar 
 sections at right angles to those shown in Fig. 9. 
 
 (b) Structural Variations. Flat-slab floors may be built with or without caps, drops or 
 paneled ceilings. These terms are illustrated in Fig. 10. 
 
 Where caps are employed they shall be considered a part of the columns and the column 
 
 261 
 
capital dimension c shall be found by extending the lines of the capital to an intersection 
 with the plane of the under surface of the slab as indicated in Fig. 10&. The cap shall be 
 large enough to enclose this extension of the capital lines. 
 
 The column capital profile shall not fall at any point inside an inverted cone drawn, as 
 shown in Fig. 10a, from the periphery of the designed capital of diameter c and with a base 
 angle of 45 degrees. The diameter of the designed capital c shall be taken where the verti- 
 cal thickness of the column capital is at least 1% in. 
 
 The drop, where used, shall not be less than 0.3 L in width. 
 
 Where paneled ceilings are used the paneling shall not exceed one-half of the slab 
 thickness in depth and the dimension of the paneling shall not exceed 0.8 of the panel dimen- 
 sion. (See Fig. lOo.) 
 
 (c) Slab Thickness. The slab thickness shall not be less than t = 0.02L ^/w + 1 in. 
 
 In no case shall the slab thickness be less than ^ 2-^ f r floor slabs nor less than Y oL for 
 roof slabs. 
 
 (d) Design Moments. The numerical sum of the positive and negative moments in foot 
 pounds shall not be less than 0.09wli(l gc) 2 . Of this total amount not less than 40 
 per cent shall be resisted in the column head sections. Where a drop is used, not less than 
 50 per cent shall be resisted in the column head sections. 
 
 Of the total amount not less than 10 per cent shall be resisted in the mid section. 
 
 Of the total amount not less than 18 per cent shall be resisted in the outer section. 
 
 Of the total amount not less than 12 per cent shall be resisted on the inner sections. 
 
 The balance of the moment shall be distributed between the various sections as required 
 by the physical details and dimensions of the particular design employed. 
 
 (c) Exterior Panels. The negative moments at the first interior row of columns and the 
 positive moments at the center of the exterior panel on sections parallel to the wall, shall 
 be increased 20 per cent o\er those specified above for interior panels. If girders are not 
 provided long the column line, the reinforcement parallel to the wall for negative moment in 
 the column head section and for positive moment in the outer section adjacent to the wall, 
 shall be altered in accordance with the change in the value of c. The negative moment on 
 sections at the wall and parallel thereto should be determined by the conditions of restraint, 
 but must never be taken less than 80 per cent of those for the interior panels. 
 
 (/) Reinforcement. In the calculation of moments all the reinforcing bars which cross 
 the section under consideration and which fulfill the requirements given under "Arrange- 
 ment of Reinforcement" may be used. For a column head section reinforcing bars parallel 
 to the straight portion of the section do not contribute to the negative resisting moment 
 for the column head section in question. The sectional area of bars, crossing the section 
 at an angle, multiplied by the sine of the angle between these bars and the straight portion 
 of the section under consideration may be taken to act as reinforcement in a rectangular 
 direction. Calculations for shearing stress shall be made in accordance with Section 10. 
 
 (g) Point of Inflection. For the purpose of making calculations of moment at sections 
 away from the sections of negative moment and positive moment already specified, the 
 point of inflection shall be taken at a distance from center line of columns equal to 
 /&(k ?c) + %qc. This becomes K(^2 + c) where capital is circular. For slabs having 
 drop panels the coefficient of Y should be used instead of Jo- 
 
 (h) Arrangement of Reinforcement. The design should include adequate provision for 
 securing the reinforcement in place so as to take not only the maximum moments but the 
 moments of intermediate sections. If bars are extended beyond the column capital and 
 are used to take the bending moment on the opposite side of the column, they must 
 extent to the point of inflection. Bars in diagonal bands used as reinforcement for negative 
 moment should extend on each side of the line drawn through the column center at right 
 angles to the direction of the band a distance equal to 0.35 of the panel length, and bars in 
 the diagonal bands used as reinforcement for positive moment, should extend on each side 
 of the diagonal through the center of the panel a distance equal to 0.35 of the panel length. 
 Bars spliced by lapping and counted as only one bar in tension shall be lapped not less than 
 80 diameters if splice is made at point of maximum stress and not more than 50 per cent 
 of the rods shall be so spliced at any point in any single band or in any single region of 
 tensile stress. Continuous bars shall not all be bent up at the same point of their length, 
 but the zone in which this bending occurs should extend on each side of the assumed point 
 of inflection. 
 
 (i) Tensile and Compressive Stresses. The usual method of calculating the tensile and 
 compressive stresses in the concrete and in the reinforcement, based on the assumptions 
 for internal stresses, should be followed. In the case of the drop panel, the section of the 
 slab and drop panel may be considered to act integrally for a width equal to a width of the 
 column head section. Within the column head section the allowable compression may be 
 increased as prescribed in Section 7 for continuous members. 
 
 0') Provision for Diagonal Tension and Shear. In calculations for the shearing stress 
 which is to be used as the means for measuring the resistance to diagonal tension stress, it 
 
 262 
 
shall be assumed that the total vertical shear on a column head section constituting a 
 width equal to one-half the lateral dimension of the panel, for use in determining critical 
 shearing stresses, shall be considered to be one-fourth of the total dead- and live-load on a 
 panel for a slab of uniform thickness, and to be 0.3 of the sum of the dead- and live-loads on 
 a panel for a slab with drop panels.^ The formula for shearing unit stress shall be v = 
 f\ *) ^ TV 0^0 TV 
 
 ' . for slabs of uniform thickness and v = ' , - for slabs with drop panels, where W is 
 bjd bja 
 
 the sum of the dead- and live-load on a panel, 6 is half the lateral dimension of the panel 
 measured from center to center of columns, and jd is the lever arm of the resisting couple 
 at the section. 
 
 The calculation for punching shear shall be made on the assumption of a uniform distri- 
 bution over the section of the slab around the periphery of the column capital and also of a 
 uniform distribution over the section of the slab around the periphery of the drop panel, 
 using in each case an amount of vertical shear greater by 25 per cent than the total vertical 
 shear on the section under consideration. 
 
 The values of working stresses should be those recommended for diagonal tension and 
 shear in Section 10. 
 
 (k) Walls and Openings. Additional slab thickness, girders, or beams shall be provided 
 to carry walls and other concentrated loads which are in excess of the working capacity of 
 the slab. Beams should also be provided in case openings in the floor reduce the working 
 strength of the slab below the required carrying capacity. Where lintels are used with 
 flat-slab construction the depth of the lintels being greater than the combined depth of 
 the slab and depressed panel, they shall be designed to carry a uniformly distributed 
 load equal to /- of the total panel load in addition to any other loads superimposed upon 
 the lintel and the dead weight of the lintel. 
 
 (1) Unusual Panels. The coefficients, steel distribution, and thicknesses recommended 
 are for slabs which have three or more rows of panels in each direction and in which the 
 sizes of the panels are approximately the same. For structures having a width of one or 
 two panels, and also for slabs having panels of markedly different sizes, an analysis should 
 be made of the moments developed in both slab and columns and the values given herein 
 modified accordingly. 
 
 (m) Oblong Panels. The requirements of design herein given for flat-slab floors do not 
 apply for oblong panels where the long side is more than four-thirds of the short side. 
 
 (n) Bending Moments in Columns. Provision shall be made in both wall columns and 
 interior columns for the bending moment which will be developed by unequally loaded 
 panels, eccentric loading, or uneven spacing of columns. The amount of moment to be 
 taken by a column will depend on the relative stiffness of columns and slab, and computa- 
 tions may be made by rational methods such as the principle of least work or of slope and 
 deflection. Generally the largest part of the unequalized negative moment will be trans- 
 mitted to the columns and the columns shall be designed to resist this bending moment. 
 Especial attention shall be given to wall columns and corner columns. Column capitals 
 shall be designed, and reinforced where necessary, with these conditions in mind. 
 
 The resistance of any wall column to bending in a direction perpendicular to the wall 
 shall be not less than 0.04 ivl\(li gc) 2 in which h is the panel dimension perpendicular to 
 the wall. The moment in such wall column may be reduced by the balancing moment 
 of the weight of the structure which projects beyond the center line of the supporting 
 wall column. 
 
 Where the column extends through the story above, the resisting moment shall be 
 divided between the upper and the lower columns in proportion to their stiffness. Calcu- 
 lated combined stresses due to bending and direct load shall not exceed by more than 50 
 per cent the stresses allowed for direct load. 
 
 13. Columns General. Reinforced-concrete columns, for the working stresses here- 
 inafter specified, shall have a gross width or diameter not less than one-fifteenth of the 
 unsupported height nor less than twelve (12) in. All vertical reinforcement shall be 
 secured against lateral displacement by steel ties not less than j in. in diameter, placed 
 not farther apart than 15 diameters of the vertical rods or more than 12 in. 
 
 For columns supporting flat-slab floors or roofs, the diameter shall be not less than 
 one-thirteenth of the distance between columns. 
 
 The length of columns shall be taken as the maximum unstayed length. 
 
 14. Columns with Longitudinal Reinforcement. For columns having not less than 
 0.5 per cent nor more than 4 per cent of vertical reinforcement, the allowable working unit 
 stress for the net section of the concrete shall be 25 per cent of the compressive strength 
 specified in Section 6, and the working unit stress for the steel shall be based upon the 
 ratio of the moduli of elasticity of the concrete and steel. Concrete to a depth of 1 3^ in. 
 shall be considered as protective covering and not a part of the net section. 
 
 15. Columns with Longitudinal and Lateral Reinforcement. Columns, having not less 
 than 1 per cent nor more than 4 per cent of vertical reinforcement and not less than 0.5 per 
 
 263 
 
cent nor more than 2 per cent of lateral reinforcement in the form of hoops or spirals spaced 
 not farther apart than one-sixth of the outside diameter of the hoops or spirals nor more 
 than 3 in. shall have an allowable working unit stress for the concrete within the outside 
 diameter of the hoops or spirals equal to 25 per cent of the compressive strength of the 
 concrete, as given in Section 6, and a working unit stress on the vertical reinforcement equal 
 to the working value of the concrete multiplied by the ratio of the specified moduli of 
 elasticity of the steel and concrete, and a working load for the hoops or spirals determined 
 by considering the steel in hoops or spirals as four times as effective as longitudinal rein- 
 forcing steel of equal volume. The percentage of lateral reinforcement shall be taken as 
 the volume of the hoops or spirals divided by the volume of the enclosed concrete in a unit 
 length of column. The hoops or spirals shall be rigidly secured at each intersection to at 
 least four (4) verticals to insure uniform spacing. The percentage of longitudinal reinforce- 
 ment used shall be not less than the percentage of the lateral reinforcement. Spirals shall 
 be manufactured of steel having a yield point of not less than 50,000 Ib. per square inch. 
 
 16. For steel columns filled with concrete and encased in a shell of concrete at least 
 3 in. thick, where the steel is calculated to carry the entire load, the allowable stress per 
 
 square inch shall be determined by the following formula: 18,000 70^, but shall not 
 
 exceed 16,000 Ib. where L = unsupported length in inches and R = least radius of 
 gyration of steel section in inches. The concrete shell shall be reinforced with wire mesh or 
 hoop weighing at least 0.2 Ib. per square foot of surface of shell. 
 
 When the details of the structural steel are such as to fully enclose or encase the concrete, 
 or where a spiral of not less than one-half of 1 per cent of the core area, and with a pitch of 
 not more than 3 in., is provided for this purpose, the concrete inside the column core 
 or spiral may be loaded to not more than 25 per cent of the ultimate strength specified in 
 Section 6, in addition to the load on the steel column figured as above. 
 
 Composite columns having a cast iron core or center surrounded by concrete which is 
 enclosed in a spiral of not less than one-half of 1 per cent of the core area, and with a pitch 
 of not more than 3 in. may be figured for a stress of 12,000 60L/R, but not over 10,000 
 Ib. per square inch on the cast iron section and of not more than 25 per cent of the com- 
 pressive strength specified in Section 6 on the concrete within the spiral or core. The 
 diameter of the cast iron core shall not exceed one-half of the diameter of the spiral. 
 
 17. Footings General. Symmetrical, concentric column footings shall be designed for 
 punching shear, diagonal tension, and bending moment. 
 
 18. Punching Shear in Footings. Punching shear shall be figured in accordance with 
 Section 10. 
 
 19. Diagonal Tension in Footings. Shearing stresses shall be figured in accordance 
 with Section 10. 
 
 20. Bending Moment in Footings. The bending moment in isolated column footings 
 at a section taken at edge of pier or column shall be determined by multiplying the load on 
 the quarter footing (after deducting the quarter pier or column area) by six-tenths of the 
 distance from the edge of pier or column to the edge of footing. The effective area of 
 concrete and steel to resist bending moment shall be considered as that within a width 
 extending both sides of pier or column, a distance equal to depth of footing plus one-half 
 the remaining distance to edge of footing, except that reinforcing steel crossing the section 
 other than at right angles, shall be considered to have an effective area determined by 
 multiplying the section area by the line of the angle between the bar and the plane of 
 section. 
 
 21. Bond Stresses in Footings. In designing footings, careful consideration must be 
 given to the bond stresses which will occur between the reinforcing steel and the concrete. 
 
 22. Walls General. Walls shall be reinforced by steel rods running horizontally and 
 vertically. Walls having an unsupported height not exceeding fifteen times the thickness 
 may be figured the same as columns. Walls having an unsupported height not more than 
 twenty-five times the thickness may be figured to carry safely a working stress of 12% per 
 cent of the compressive strength specified in Section 6. 
 
 23. Exterior Walls. Exterior walls shall be designed to withstand wind loads or loads 
 from backfill. The thickness of wall shall in no case be less than 4 in. 
 
 24. Protection. The reinforcement in columns and girders shall be protected by 
 minimum thickness of 2 in. of concrete; in beams and walls by a minimum of lj^ in. 
 in floor slabs by a minimum of Y in. ; in footings by a minimum of 3 in. 
 
 264 
 
NEW YORK BUILDING CODE REQUIREMENTS 
 
 Working Stresses. Reinforced concrete structures shall be so designated that the 
 stresses in pounds per square inch shall not exceed the following: 
 
 Extreme fibre stress on concrete in compression 650 
 
 Concrete in direct compression 500 
 
 Shearing stress in concrete when all diagonal tension is resisted by 
 
 steel 150 
 
 Shearing stress in concrete when diagonal tension is not resisted by 
 
 steel 40 
 
 Bond stress between concrete and plain reinforcement 80 
 
 Bond stress between concrete and approved deformed bars 100 
 
 Tensile stress in steel reinforcement 16,000 
 
 Tensile stress in cold drawn steel wire or fabric, 35 per cent of the 
 
 elastic limit but not more than 20,000 
 
 In continuous beams the extreme fiber stress on concrete in compression may be in- 
 creased 15 per cent, adjacent to supports. 
 
 The ratio of the moduli of elasticity of 1 : 2 : 4 stone or gravel concrete and steel shall be 
 taken as one to fifteen. The ratio of the moduli of elasticity of 1 : 1^ : 3 stone or gravel 
 concrete and steel shall be taken 'as one to twelve. 
 
 Slabs and Beams, (a) Thickness. Slabs shall not be less than 4 in. in thickness for 
 floors and 3% in. for roofs. 
 
 (b) Tee-Beams. Where adequate bond between slab and web of beam is provided, the 
 slab may be considered as an integral part of the beam provided its effective width shall 
 not exceed on either side of the beam one-sixth of the span length of the beam, nor be 
 greater than six times the thickness of the slab on either side of the beam, the measure- 
 ments being taken from edge of web. 
 
 (c) Placing of Reinforcement. All reinforcement shall be accurately located and secured 
 against displacement. The reinforcement for slabs shall not be spaced farther apart than 
 two and one- half times the 'thickness of the slab. 
 
 (d) Web Reinforcement. Members of web reinforcement shall be so designed as ade- 
 quately to take up throughout their length all stresses not taken up by the concrete. They 
 shall not be spaced to exceed three-fourths of the depth of the beam in that portion where 
 the web stresses exceed the allowable value of concrete in shear. Web reinforcement, 
 unless rigidly attached, shall be placed at right angles to the axis of the beam and carried 
 around the tension members. 
 
 Use of Fillers in Floor Construction. When hollow tile, concrete blocks or other 
 acceptable fillers are used in any reinforced concrete floor construction, the reinforced con- 
 crete members of such floor construction shall be designed in accordance with the provisions 
 of this article to take the entire loads, provided, however, that when the fillers do not exceed 
 60 per cent of the construction, not more than 2^ in. of concrete shall be required over 
 the fillers. 
 
 Columns, (a) With Longitudinal Reinforcements Only. In concrete columns, having 
 not less than one-half nor more than 4 per cent of vertical reinforcement secured against 
 displacement by 24-in. steel ties placed not farther apart than 15 diameters of the verti- 
 cal rods nor more than 12 in., the allowable load shall be 500 lb. per square inch on the 
 concrete, plus 7,500 lb. on the vertical reinforcement. 
 
 (6) With Longitudinal and Lateral Reinforcement. In concrete columns, having not less 
 than one-half nor more than 2 per cent of hoops or spirals spaced not farther apart than 
 one-sixth of the diameter of the enclosed column nor more than 3 in., and having not less 
 than 1 nor more than 4 per cent of vertical reinforcement, the allowable load shall be 500 
 lb. per square inch on the effective area of the concrete, plus 7,500 lb. per square inch on 
 the vertical reinforcement, plus a load per square inch on the effective area of the concrete 
 equal to two times the percentage of lateral reinforcement multiplied by the tensile stress in 
 the lateral reinforcement prescribed under " Working Stresses," the percentage of lateral 
 reinforcement being the volume of the hoops or spirals divided by the volume of the en- 
 
 265 
 
closed concrete in a unit length of column. The hoops or spirals shall be rigidly secured 
 to at least four verticals to insure uniform spacing. 
 
 (c) Structural Steel and Concrete. In columns of structural steel, thoroughly encased in 
 concrete not less than 4 in. thick and reinforced with not less than 1 per cent of steel, the 
 allowable load shall be 16,000 lb. per square inch on the structural steel, the percentage of 
 reinforcement being the volume of the reinforcing steel divided by the volume of the con- 
 crete enclosed by the reinforcing steel. Not more than one-half of the reinforcing steel 
 shall be placed vertically. The reinforcing steel shall not be placed nearer than 1 in. to 
 the structural steel or to the outer surface of the concrete. The ratio\>f length to least radius 
 of gyration of structural steel section shall not exceed one hundred and twenty. 
 
 (d) When Richer Concrete is Used. In concrete columns the compression on the concrete 
 may be increased 20 per cent when the fine and coarse aggregates are carefully selected 
 and the proportion of cement to total aggregate is increased to one part of cement to not 
 more than four and one-half parts of aggregate, fine and coarse, either in the proportion 
 of one part of cement, one and one-half parts of fine aggregate and three parts of coarse 
 aggregate*, or in such proportion as will secure the maximum density. In such cases, 
 however, the compressive stress in the vertical steel shall not exceed 7,200 lb. per square 
 inch. 
 
 (e) Eccentric Loads. Bending stresses due to eccentric loads shall be provided for by 
 increasing the section of concrete or steel until the maximum stress shall not exceed the 
 allowable working stress. 
 
 (/) Length. In columns, the ratio of length to least side or diameter shall not exceed 
 fifteen, but in no case shall the least side or diameter be less than 12 in. 
 
 Walls. Enclosure walls of reinforced concrete shall be securely anchored at all floors. 
 The thickness shall not be less than one-twenty-fifth of the unsupported height, but in no 
 case less than 8 in. The steel reinforcement, running both horizontally and vertically, 
 shall be placed near both faces of the wall; the total weight of such reinforcement shall be 
 not less than }4, lb. per square foot of wall. 
 
 Protection of Reinforcement. The reinforcement in columns and girders shall be 
 protected by a minimum of 2 in. of concrete; in beams and walls by a minimum of 1^ in.; 
 in floor slabs by a minimum of 1 in.; and in footings by a minimum of 4 in. of concrete. 
 
 Flat Slabs* 
 
 Application. The rules governing the design of reinforced concrete flat slabs shall apply 
 to such floors and roofs, consisting of three or more rows of slabs, without beams or girders, 
 supported on columns, the construction being continuous over the columns and forming 
 with them a monolithic structure. 
 
 Compliance with Building Code. In the design of reinforced concrete flat slabs, the 
 provisions of the preceding articles of the building code shall govern with respect to such 
 matters as are specified therein. 
 
 Assumptions. In calculations for the strength of reinforced concrete flat slabs, the 
 following assumptions shall be made: 
 
 (a) A plane section before bending remains plane after bending. 
 
 (6) The modulus of elasticity of concrete in compression within the allowable working 
 stresses is constant. 
 
 (c) The adhesion between concrete and reinforcement is perfect. 
 
 (d) The tensile strength of concrete is nil. 
 
 (e) Initial stress in the reinforcement due to contraction or expansion in the concrete is 
 negligible. 
 
 Stresses. (a) The allowable unit shear in reinforced concrete flat slabs on the bd 
 section around the perimeter of the column capital shall not exceed 120 lb. per square inch; 
 and the allowable unit shearing stress on the bjd section around the perimeter of the drop 
 shall not exceed (60) lb. per square inch, provided that the reinforcement is so arranged or 
 anchored that the stress may be fully developed for both positive and negative moments. 
 
 The extreme fibre stresses to be used in concrete in compression at the column head 
 section shall not exceed 750 lb. per square inch. 
 
 Columns. For columns supporting reinforced concrete flat slabs, the least dimension of 
 any column shall be not less than one-fifteenth of the average span of any slabs supported 
 by the columns; but in no case shall such least dimension of any interior column supporting 
 a floor or roof be less than 16 in. when round, nor 14 in. when square; nor shall the least 
 dimension of any exterior column be less than 14 in. 
 
 Column Capital. Every reinforced concrete column supporting a flat slab shall be 
 provided with a capital whose diameter is not less than 0.225 of the average span of any 
 slabs supported by it. Such diameter shall be measured where the vertical thickness of the 
 capital is at least 1^ in., and shall be the diameter of the inscribed circle in that horizontal 
 
 * Adopted July 8, 1920. 
 
 266 
 
plane. The slope of the capital considered effective below the point where its diameter is 
 measured shall nowhere make an angle with vertical of more than 45. In case a cap of less 
 dimensions than hereinafter described as a drop, is placed above the column capital, the 
 part of this cap enclosed within the lines of the column capital extended upwards to the 
 bottom of the slab or drop at the slope of 45 may be considered as part of the column 
 capital in determining the diameter for design purposes. 
 
 Drop. When a reinforced concrete flat slab is thicker in that portion adjacent to or 
 surrounding the column, the thickened portion shall be known as a drop. The width of 
 such drop when used, shall be determined by the shearing stress in the slab around the 
 perimeter of the drop, but in no case shall the width be less than 0.33 of the average span of 
 any slabs of which it forms a part. In computing the thickness of drop required by the 
 negative moment on the column head section, the width of the drop only shall be considered 
 as effective in resisting the compressive stress, but in no case shall the thickness of such 
 drops be less than 0.33 of the thickness of the slab. Where drops are used over interior 
 columns, corresponding drops shall be employed over exterior columns and shall extend to 
 the one-sixth point of panel from the center of the column. 
 
 Slab Thickness. The thickness of a reinforced concrete flat slab shall be not less than 
 that derived by the formulae t = 0.024Z/\/w + I'M f r slabs without drops, and t = 0.02 
 L\A0 + 1 for slabs with drops, in which t is the thickness of the slab in inches, L is the 
 average span of the slab in feet, and w is the total live- and dead-load in pounds per square 
 foot; but in no case shall this thickness be less than one-thirty-second of the average span 
 of the slab for floors, nor less than one-fortieth of the average span of the slab for roofs, nor 
 less than 6 in. for floors nor less than 5 in. for roofs. 
 
 Reinforcement. (a) In the calculation of moments at any section, all the reinforcing 
 bars which cross that section may be used, provided that such bars extend far enough 
 on each side of such section to develop the full amount of the stress at that section. The 
 effective area of the reinforcement at any moment section shall be the sectional area of the 
 bars crossing such section multiplied by the sine of the angle of such bars with the plane of 
 the section. The distribution of the reinforcement of the several bands shall be arranged to 
 fully provide for the intermediate moments at any section. 
 
 (fe) Splices in bars may be made wherever convenient but preferably at points of mini- 
 mum stress. The length of any splice shall be not less than 80 bar diameters and in no case 
 less than 2 ft. The splicing of adjacent bars shall be avoided as far as possible. Slab bars 
 which are lapped over the column, the sectional area of both being included in the calcula- 
 tion for negative moment, shall extend to the lines of inflection beyond the column center. 
 
 (c) When the reinforcement is arranged in bands, at least 50 per cent of the bars in any 
 band shall be of a length not less than the distance center to center of columns measured 
 rectangularly and diagonally; no bars used as positive reinforcement shall be of a length less 
 than half the panel length plus 40 bar diameters for cross bands, or less than seven-tenths 
 of the panel length plus 40 bar diameters for diagonal bands and no bars used as negative 
 reinforcement shall be of a length less than half the panel length. All reinforcement 
 framing perpendicular to the wall in exterior panels shall extend to the outer edge of the 
 panel and shall be hooked or otherwise anchored. 
 
 (d~) Adequate means shall be provided for properly maintaining all slab reinforcement in 
 the position assumed by the computations. 
 
 Line of Inflection. In the design of reinforced concrete flat slab construction, for the 
 purpose of making calculations of the bending moments at sections other than defined in 
 these rules, the line of inflection shall be considered as being located one-quarter the 
 distance, center to center, of columns, rectangularly and diagonally, from center of columns 
 for panels without drops, and three-tenths of such distance for panels with drops. 
 
 Moment Sections. For the purpose of design of reinforced concrete flat slabs, that 
 portion of the section across a panel, along a line midway between columns, which lies 
 within the middle two quarters of the width of the panel shall be known as the inner section, 
 and those portions of the section in the two outer quarters of the width of the panel shall be 
 known as the outer sections. Of the section which follows a panel edge from column to 
 column and which includes the quarter perimeters of the edges of the column capitals, that 
 portion within the middle two quarters of the panel width shall be known as the mid section 
 and the two remaining portions, each having a projected width equal to one-quarter of the 
 panel width shall be known as the column head sections. 
 
 Bending Moments. In the design of reinforced concrete flat slabs the following provi- 
 sions with respect to bending moments shall be observed. In the moment expressions 
 used: 
 
 W is the total dead- and live-load on the panel under consideration, including the weight 
 of drop whether a square, rectangle or parallelogram. 
 
 Wi is the total live-load on the panel under consideration. 
 
 L is the length of side of a square panel center to center of columns; or the average span 
 of a rectangular panel which is the mean length of the two sides. 
 
 267 
 
n is the ratio of the greater to the less dimension of the panel. 
 
 h is the unsupported length of a column in inches, measured from top of slab to base of 
 capital. 
 
 / is the moment of inertia of the reinforced concrete column section. 
 
 A. Interior Square Panels. The numerical sum of the positive and negative moments 
 shall be not less than Y\ 7 WL. A variation of plus or minus 5 per cent shall be permitted 
 in the expression for the moment on any section, but in no case shall the sum of the negative 
 moments be less than 66 per cent of the total moment, nor the sum of the positive moments 
 be less than 34 per cent of the total moment for slabs with drops; nor shall the sum of the 
 negative moments be less than 60 per cent of the total moment, nor the sum of the positive 
 moments be less than 40 per cent of the total moment for slabs without drops. 
 
 In two-way systems, for slabs with drops, the negative moment resisted on two column 
 head sections shall be^2^L; the negative moment on the mid section shall be Ms3 
 WL; the positive moment on the two outer sections shall be + %oWL and the positive 
 moment on the inner section shall be + Mss^FL; and for slabs without drops, the negative 
 moment resisted on two column head sections shall be %sWL, the negative moment on 
 the mid section shall be ^33 WL, the positive moment on the two outer sections shall 
 be + }^^WL and the positive moment on the inner section shall be + M.ssWL, 
 
 In four- way systems, the negative moments shall be as specified for two-way systems; 
 the positive moment on Ijie two outer sections shall be + HooWL, and the positive 
 moment on the inner section shall be + ^looWL for slab with drops; and the positive 
 moment on the two outer sections shall be + ^j.^WL, and the positive moment on the 
 inner section shall be + ^ooWL, for slabs without drops. 
 
 In three-way systems, the negative moment on the column head and mid sections and 
 the positive moment on the two outer sections, shall be as specified for four-way systems. 
 In the expression for the bending moments on the various sections, the length L shall be 
 assumed as the distance center to center of columns, and the load W as the load on the 
 panel parallelogram. 
 
 B. Interior Rectangular Panels. When the ratio n does not exceed 1.1, all computa- 
 tions shall be based on a square panel of a length equal to the average span, and the rein- 
 forcement shall be equally distributed in the short and long directions according to the 
 bending moment coefficients specified for interior square panels. 
 
 When the ratio n lies between 1.1 and 1.33, the bending moment coefficients specified 
 for interior square panels shall be applied in the following manner: 
 
 (a) In two-way systems, the negative moments on the two column head sections and the 
 mid section and the positive moment on the two outer sections and the inner section at right 
 angles to the long direction shall be determined as for a square panel of a length equal to the 
 greater dimension of the rectangular panel; and the corresponding moments on the sections 
 at right angles to the short direction shall be determined as for a square panel of a length 
 equal to the lesser dimension of the rectangular panel. In no case shall the amount of 
 reinforcement in the short direction be less than two-thirds of that in the long direction. 
 The load W shall be taken as the load on the rectangular panel under consideration. 
 
 (6) In four-way systems, for the rectangular bands, the negative moment on the column 
 head sections and the positive moment on the outer sections shall be determined in the same 
 manner as indicated for the two-way systems. 
 
 For the diagonal bands, the negative moments on the column head and mid sections and 
 the positive moment on the inner section shall be determined as for a square panel of a length 
 equal to the average span of the rectangle. The load W shall be taken as the load on the 
 rectangular panel under consideration. 
 
 (c) In three-way systems, the negative and positive moments on the bands running 
 parallel to the long direction shall be determined as for a square whose side is equal to 
 the greater dimension; and the moments on the bands running parallel to the short direc- 
 tion shall be determined as for a square whose side is equal to the lesser dimension. The 
 load W shall be taken as the load on the parallelogram panel under consideration. 
 
 C. Exterior Panels. The negative moments at the first interior row of columns and 
 the positive moments at the center of the exterior panels on moment sections parallel to 
 the wall, shall be increased 20 per cent over those specified above for interior panels. 
 The negative moment on moment sections at the wall and parallel thereto shall be deter- 
 mined by the conditions of restraint, but the negative moment on the mid section shall 
 never be considered less than 50 per cent and the negative moment on the column head 
 section never less than 80 per cent of the corresponding moments at the first interior row of 
 columns. 
 
 D. Interior columns shall be designed for the bending moments developed by un- 
 equally loaded panels, eccentric loading or uneven spacing of columns. The bending 
 moment resulting from unequally loaded panels shall be considered as YW\L, and shall 
 be resisted by the columns immediately above and below the floor line under consideration 
 in direct proportion to the values of their ratios of I /h. 
 
 E. Wall columns shall be designed to resist bending in the same manner as interior 
 
 268 
 
columns, except that W shall be substituted for Wi in the formula for the moment. The 
 moment so computed may be reduced by the counter moment of the weight of the structure 
 which projects beyond the center line of the wall columns. 
 
 F. Roof columns shall be designed to resist the total moment resulting from unequally 
 loaded panels, as expressed by the formulae in paragraphs (D) and (E) of this rule. 
 
 Walls and Openings. In the 'design and construction of reinforced concrete flat slabs, 
 additional slab thickness, girders or beams shall be provided to carry any walls or concen- 
 trated loads in addition to the specified uniform live- and dead-loads. Such girders or 
 beams shall be assumed to carry 20 per cent of the total live and dead panel load in addition 
 to the wall load. Beams shall also be provided in case openings in the floor reduce the 
 working strength of the slab below the presciibed carrying capacity. 
 
 Special Panels. For structures having a width of less than three rows of slabs, or in 
 which exterior drops, capitals or columns are omitted, or in which irregular or special 
 panels are used, and for which the rules relating to the design of reinforced flat slabs do 
 not directly apply, the computations in the analysis of the design of such panels, shall, 
 when so required, be filed with the superintendent of buildings. 
 
 269 
 
CHICAGO BUILDING CODE REQUIREMENTS 
 
 Ratio of Moduli of Elasticity Adhesion Bond, (a) The calculations for the strength 
 of reinforced concrete shall be based on the assumed ultimate compressive strength per 
 square inch designated by the letter " C7" given in the table below for the mixture to be 
 used. 
 
 (b) The ratio designated by the letter "#" of the modulus of elasticity of steel to that 
 of the different grades of concrete shall be taken in accordance with the following table: 
 
 Mixture U R 
 
 cement, 1 sand, 2 broken stone, gravel or slag 2,900 10 
 
 cement, 1% sand, 3 broken stone, gravel or slag 2,400 12 
 
 cement, 2 sand, 4 broken stone, gravel or slag 2,000 15 
 
 cement, 2^ sand, 5 broken stone, gravel or slag 1,750 18 
 
 cement, 3 sand, 7 broken stone, gravel or slag 1,500 20 
 
 Unit Stresses for Steel and Concrete, (a) The stresses in the concrete and the steel 
 shall not exceed the following limits: 
 
 (6) Tensile stress in steel shall not exceed one-third of its elastic limits and shall not 
 exceed 18,000 Ib. per square inch. 
 
 (c) Shearing stress in steel shall not exceed 12,000 Ib. per square inch. 
 
 (d) The compressive stress in steel shall not exceed the product of the compressive 
 stress in the concrete multiplied by the elastic modulus of the steel and divided by the 
 elastic modulus of the concrete. 
 
 (e) Direct compression in concrete shall be one-fifth of its ultimate strength. Bending 
 in extreme fiber of concrete shall be thirty-five one-hundredths of the ultimate strength. 
 
 (/) Tension in concrete on diagonal plane shall be one-fiftieth of the ultimate compres- 
 sive strength. 
 
 ((/) For a concrete composed of one part of cement, two parts of sand and four parts of 
 broken stone, the allowable unit stress for adhesion per square inch of surface of imbedment 
 shall not exceed the following: 
 
 Pounds per 
 sq. in. 
 
 On plain round or square bars of structural steel 70 
 
 On plain round or square bars of high carbon steel 50 
 
 On plain flat bars in which the ratio of the sides is not more than 2 to 1 . . 50 
 On twisted bars when the twisting is not less than one complete twist in 
 8 diameters 100 
 
 (h) For specially formed bars, the allowable unit stress for bond shall not exceed one- 
 fourth of the ultimate bond strength of such bars without appreciable slip which shall 
 be determined by tests made by the person, firm or corporation to the satisfaction of the 
 Commissioner of Buildings, but provided that in no case shall such allowable unit stress 
 exceed 100 Ib. per square inch of the specially formed bars. 
 
 Design for Slabs, Beams and Girders. Reinforced concrete slabs, beams and girders 
 shall be designed in accordance with the following assumptions and requirements. 
 
 (a) The common theory of flexure shall be applied to beams and members resisting 
 bending. 
 
 (b) The adhesion between the concrete and the steel shall be sufficient to make the two 
 materials act together. 
 
 (c) The steel to take all the direct tensile stresses. 
 
 (d) The stress strain curve of concrete in compression is a straight line. 
 
 (e) The ratio of the moduli of elasticity of concrete to steel shall be as specified in the 
 table in preceding article. 
 
 Moments of External Forces, (a) Beams, girders, floor or roof slabs and joists shall be 
 calculated as supported, or with fixed ends, or with partly fixed ends, in accordance with the 
 actual end conditions, the number of spans and the design. 
 
 (b) When calculated for ends partly fixed for intermediate spans with an equally distri- 
 buted load where the adjacent spans are of approximately equal lengths: 
 
 270 
 
Bending moment at center of spans shall not be less than that expressed in the formula 
 -TO~ for intermediate spans and -^ for end spans. 
 
 WL* 
 
 (c) The moment over supports shall not be less than the formula =- and the sum of 
 
 lo 
 
 the moments over one support and at the center of span shall be taken not less than the 
 
 . WL* 
 formula 5 
 o 
 
 In the formula hereinabove given "TF" is the load per lineal foot and "L" the length 
 of span in feet. 
 
 (d) In case of concentrated or special loads the calculations shall be based on the critical 
 condition of loading. 
 
 (e) For fully supported slabs, the free opening plus the depth, for continuous slabs, the 
 distance between centers of supports, is to be taken as the span. 
 
 (/) Where the vertical shear, measured on the section of a beam or girder between the 
 centers of action of the horizontal stresses, exceeds one-fiftieth of the ultimate direct 
 compressive stress per square inch, web reinforcement shall be supplied sufficient to carry 
 the excess. The web reinforcement shall extend from top to bottom of beam, and loop or 
 connect to the horizontal reinforcement. The horizontal reinforcement carrying the direct 
 stresses shall not be considered as web reinforcement. 
 
 (0) In no case, however, shall the vertical shear, measured as stated above, exceed one- 
 fifteenth of the ultimate compression strength of the concrete. 
 
 (h) For T-beams the width of the stem only shall be used in calculating the above shear. 
 
 (t) When steel is used in the compression side of beams and girders, the rods shall be tied 
 in accordance with- requirements of vertical reinforced columns with stirrups connecting 
 with the tension rods of the beams or girders. 
 
 0') All reinforcing steel shall be accurately located in the forms and secured against 
 displacement; and inspected by the representative of the architect or engineer in charge 
 before any surrounding concrete be put in place. It shall be afterwards completely in- 
 closed by the concrete, and such steel shall nowhere be nearer the surface of the concrete 
 than \}^ inches for columns, lj^ inches for beams and girders, and } inch, but not less 
 than the diameter of the bar, for slabs. 
 
 (fc) The longitudinal steel in beams and girders shall be so disposed that there shall be a 
 a thickness of concrete between the separate pieces of steel of not less than one and one-half 
 times the maximum sectional dimension of the steel. 
 
 (1) For square slabs with two-way reinforcements the bending moment at the center of 
 
 WL 2 
 the slab shall be not less than that expressed in the formula - (> -.~ for intermediate spans, and 
 
 . 
 
 tor end spans. 
 
 W7.2 
 
 (ra) The moment over supports shall not be less than the formula -^- and the sum of 
 
 OO 
 
 the moments over one support and at the center of the span shall be taken not less than the 
 
 WL* 
 formula -TO-- 
 
 In which above formula " TF" is the load per lineal foot and "L" the length of the span. 
 
 (n) For square or rectangular slabs, the distribution of the loads in the two directions, 
 shall be inversely as the cubes of the two dimensions. 
 
 (o) Exposed metal of any kind will not be considered a factor in the strength of any part 
 of any concrete structure, and the plaster finish applied over the metal shall not be deemed 
 sufficient protection unless applied of sufficient thickness and so secured as to meet the 
 approval of the Commissioner of Buildings. 
 
 (p) Shrinkage and thermal stresses shall be provided for by introduction of steel. 
 
 Limiting Width of Flange in "T" Beams. (a) In the calculation of ribs, a portion of 
 the floor slab may be assumed as acting in flexure in combination with the rib. The width 
 of the slab so acting in flexure is to be governed by the shearing resistance between rib and 
 slab, but limited to a width equal to one-third of the span length of the ribs between sup- 
 ports and also limited to a width of three-quarters of the distance from center to center 
 between ribs. 
 
 (6) No part of the slab shall be considered as a portion of the rib, unless the slab and 
 rib are cast at the same time. 
 
 (c) Where reinforced concrete girders support reinforced concrete beams, the portion of 
 floor slab acting as flange to the girder must be reinforced with rods near the top, at right 
 angles to the girder, to enable it to transmit local loads directly to the girder and not through 
 the beams. 
 
 Reinforced Concrete Columns Limit of Length Per cent of Reinforcement Bending 
 Moment in Columns Tying Vertical Rods. (a) Reinforced concrete may be used for 
 
 271 
 
columns in which the concrete shall not be leaner than a 1:2:4 mixture and in which the 
 ratio of length to least side or diameter does not exceed twelve, but in no case shall the 
 cross section of the column be less than 64 sq. in. Longitudinal reinforcing rods 
 must be tied together to effectively resist outward flexure at intervals of not more than 
 twelve times least diameter of rod and not more than 18 in. When compression 
 rods are not required, reinforcing rods shall be used, equivalent to not less than one-half of 
 1 per cent (0.005) of the cross sectional area of the column; provided, however, that the 
 total sectional area of the reinforcing steel shall not be less than 1 sq. in., and that 
 no rod or bar be of smaller diameter or least dimensions than /^-in. The area of rein- 
 forcing compression rods shall be limited to 3 per cent of cross sectional area of the 
 column. Vertical reinforcing rods shall extend upward or downward into the column, 
 above or below, lapping the reinforcement above or below enough to develop the stress in 
 rod by the allowable unit for adhesion. When beams or girders are made monolithic with 
 or rigidly attached to reinforced concrete columns, the latter shall be designed to resist a 
 bending moment equal to the greatest possible unbalanced moment in the beams or girders 
 at the columns, in addition to the direct loads for which the columns are designed. 
 
 (6) When the reinforcement consists of vertical bars and spiral hooping, the concrete may 
 be stressed to one-fourth of its ultimate strength as given on page 270, provided, that the 
 amount of vertical reinforcement be not less than the amount of the spiral reinforcement, 
 nor greater than 8 per cent of the area within the hooping; that the percentage of spiral 
 hooping be not less than one-half of 1 per cent nor greater than 1.5 per cent; that the 
 pitch of the spiral hooping be uniform and not greater than one-tenth of the diameter 
 of the column, nor greater than 3 in.; that the spiral be secured to the verticals at every 
 intersection in such a manner as to insure the maintaining of its form and position, that 
 the verticals be spaced so that their distance apart, measured on the circumference be 
 not greater than 9 in., nor one-eighth the circumference of the column within the 
 hooping. In such columns, the action of the hooping may be assumed to increase the 
 resistance of the concrete equivalent to two and one-half times the amount of the spiral 
 hooping figured as vertical reinforcement. No part of the concrete outside of the hooping 
 shall be considered as a part of the effective column section. 
 
 Structural Steel Columns. When the vertical reinforcement consists of a structural 
 steel column of box shape, with lattice or batten plates of such a form as to permit its being 
 filled with concrete, the concrete may be stressed to one-fourth of its ultimate strength as 
 given in table on page 270, provided that no shape of less than 1 sq. in. section be 
 used and that the spacing of the lacing or battens be not greater than the least width of the 
 columns. 
 
 Curtain Walls in Skeleton Construction Buildings. Buildings having a complete 
 skeleton construction of steel or of reinforced concrete construction, or a combination of 
 both, may have exterior walls of reinforced concrete 8 in. thick; provided, however, 
 that such walls shall support only their own weight and that such walls shall have steel 
 reinforcement of not less -than three-tenths of 1 per cent in each direction, vertically and 
 horizontally, the rods spaced not more than 12-in. centers and wired to each other at 
 each intersection. All bars shall be lapped for a length sufficient to develop their full 
 stress for the allowable unit stress for adhesion. Additional bars shall be set around open- 
 ings, the verticals wired to the nearest horizontal bars, and the horizontal bars at top and 
 bottom of openings shall be wired to the nearest vertical bars. The steel rods shall be 
 combined with the concrete and placed where the combination will develop the greatest 
 strength, and the rods shall be staggered or placed and secured so as to resist a pressure of 
 30 Ib. per square foot, either from the exterior or from the interior on each and every 
 square foot of each wall panel. 
 
 Flat Slabs* 
 
 1. Definitions. Flat slabs as understood by this ruling are reinforced concrete slabs, 
 supported directly on reinforced columns with or without plates or capitals at the top, the 
 whole construction being hingeless and monolithic without any visible beams or girders. 
 The construction may be such as to admit the use of hollow panels in the ceiling or smooth 
 ceiling with depressed panels in the floor. 
 
 2. The column capital shall be defined as the gradual flaring out of the top of the column 
 without any marked offset. 
 
 3. The drop panel shall be defined as a square or rectangular depression around the 
 column capital extending below the slab adjacent to it. 
 
 4. The panel length shall be defined as the distance c. to c. of columns of the side of a 
 square panel, or the average distance c. to c. of columns of the long and short sides of a 
 rectangular panel. 
 
 5. Columns. The least dimension of any concrete column shall be not less than one- 
 twelfth the panel length, nor one-twelfth the clear height of the column. 
 
 * Went into effect Mar. 1, 1918. 
 
 272 
 
6. Slab Thickness. The minimum total thickness of the slab in inches shall be deter- 
 mined by the formula: t = W /44( = square root of W divided by 44), where t = total 
 thickness of slab in inches, W = total live-load and dead-load in pounds on the panel, 
 measured c. to c. of columns. 
 
 7. In no case shall the thickness be less than >^ 2 of the panel length (L/32) for floors, 
 nor VIQ of the panel length (Z//40) for roofs (L being the distance c. to c. of columns). 
 
 8. In no case shall the thickness of slab be less than 6 in. for floors or roofs. 
 
 9. Column Capital. When used the diameter of the column capital shall be measured 
 where its vertical thickness is at least 1)^ in. and shall be at least 0.225 of the panel length. 
 
 The slope of the column capital shall nowhere make an angle with the vertical of more 
 than 45 deg. Special attention shall be given to the design of the column capital in con- 
 sidering eccentric loads, and the effect of wind upon the structure. 
 
 10. Drop Panel. When used, the drop panel shall be square or circular for square 
 panels and rectangular or elliptical for oblong panels. 
 
 11. The length of the drop shall not be less than one-third of the panel length (Z//3) 
 if square, and not less than one-third of the long or short side of the panel respectively, if 
 rectangular. 
 
 12. The depth of the drop panel shall be determined by computing it as a beam, using 
 the negative moment over the column capital specified elsewhere in this ruling. 
 
 13. In no case, however, shall the dimensions of the drop panel be less than required for 
 punching shear along its perimeter, using the allowable unit shearing stresses specified below. 
 
 14. Shearing Stresses. The allowable unit punching shear on the perimeter of the 
 column capital shall be ^oo f the ultimate compressive strength of the concrete as given 
 on page 270. The allowable unit shear on the perimeter of the drop panel shall be 0.03 
 of the ultimate compressive strength of the concrete. In computing shearing stress for 
 the purpose of determining the resistance to diagonal tension the method specified by the 
 ordinance shall be used. 
 
 15. Panel Strips. For the purpose of establishing the bending moments and the 
 resisting moments of a square panel, the panel shall be divided into strips known as strip 
 A and strip B. Strip A shall include the reinforcement and slab in a width extending from 
 the center line of the columns for a distance each side of this center line equal to one- 
 quarter of the panel length. Strip B shall include the reinforcement and slab in the half 
 width remaining in the center of the panel. At right angles to these strips, the panel shall 
 lie divided into similar strips A and B, having the same widths and relations to the center 
 line of the columns as the above strips. These strips shall be for designing purposes only, 
 and are not intended as the boundary lines of any bands of steel used. 
 
 16. These strips shall apply to the system of reinforcement in which the reinforcing bars 
 are placed parallel and at right angles to the center line of the columns, hereinafter known 
 as the two-way system, and also to the system of reinforcement in which the reinforcing 
 bars are placed parallel, at right angles to and diagonal to the center line of the columns 
 hereinafter known as the four-way system. 
 
 17. Any other system of reinforcement in which the reinforcing bars are placed in cir- 
 cular, concentric rings and radial bars, or systems with steel rods arranged in any manner 
 whatsoever, shall comply with the requirements of either the two-way or the four-way . 
 system herein specified. 
 
 18. Bending Moment Coefficients, Interior Panel, Two-way System. In panels where 
 standard drops and column capitals are used as above specified, the negative bending 
 moment, taken at a cross-section of each strip A at the edge of the column capital or over 
 it, shall be taken as TTL/30. 
 
 19. The positive bending moment taken at a cross-section of each strip A midway 
 between column centers shall be taken as WL/60. 
 
 20. The positive bending moment taken at a cross-section of each strip B in the middle 
 of the panel shall be taken as WL/12Q. 
 
 21. The negative bending moment taken at a cross-section of each strip B on the center 
 line of the columns shall be taken as WL/12Q. 
 
 22. In the formulas hereinabove given W = total live- and dead-load on the whole panel 
 in pounds, L = panel length, c. to c. of columns. 
 
 23. Bending Moment Coefficients, Interior Panel, Four-way System. In panels where 
 standard drops and column capitals are used as above specified, the negative bending 
 moment, taken at a cross-section of each strip A at the edge of column capital or over it, 
 shall be taken as WL/30. 
 
 24. The positive bending moment, taken at a cross-section of each strip A, midway 
 between column centers, shall be taken as WL/8O. 
 
 25. The positive bending moment, taken at a cross-section of each strip B, taken in the 
 middle of the panel, shall be taken as TFL/120. 
 
 26. The negative bending moment, taken at a cross-section of each strip B on the center 
 line of the columns, shall be taken as JFL/120. 
 
 273 
 
27. Bending Moment Coefficients, Wall Panels. Where wall panels with standard 
 drops and capitals are carried by columns and girders built in walls, as in skeleton con- 
 struction, the same coefficients shall be used as for an interior panel, except as follows: 
 The positive bending moments on strips A and B midway between wall and first line of 
 columns shall be increased 25 per cent. 
 
 28. Where wall panels are carried on new brick walls, these shall be laid in Portland 
 cement mortar and shall be stiffened with pilasters as follows: If a 16-in. wall is used, it 
 shall have a 4-in. pilaster. If a 12-in. wall is used, it shall have an 8-in. pilaster. The length 
 of pilasters shall be not less than the diameter of the column, nor less than one-eighth of 
 the distance between pilasters. The pilasters shall be located opposite the columns as 
 nearly as practicable, and shall be corbeled out 4 in. at the top, starting at the level of the 
 base of the column capital. Not less than 8-in. bearing shall be provided for the slab, the 
 full length of wall. 
 
 The coefficients of bending moments required for these panels shall be the same as those 
 for the interior panels except as provided herewith: The positive bending moments on 
 strips A and B midway between the wall and first line of columns shall be increased 50 
 per cent. 
 
 29. Where wall panels are supported on old brick walls, there shall be columns with 
 standard drops and capitals built against the wall, which shall be tied to the same in an 
 approved manner, and at least an 8-in. bearing provided for the slab, the full length. 
 Where this is impracticable, there shall be built a beam on the underside of slab adjacent to 
 the wall between columns, strong enough to carry 25 per cent of the panel load. 
 
 The coefficients of bending moments for the two cases of slab support herein described 
 shall be the same as those specified in Sect. 27 and Sect. 28 for skeleton and wall bearing 
 condition, respectively. 
 
 30. Nothing specified above shall be construed as applying to a case of slabs merely 
 resting on walls or ledges, without any condition of restraint. These shall be figured as in 
 ordinary beam-and-girder construction specified in the ordinances. 
 
 31. Bending Moment Coefficients, Wall and Interior Columns. Wall columns in 
 skeleton construction shall be designed to resist a bending moment of TFL/60 at floors and 
 TFL/30 at roof. The amount ot steel required for this moment shall be independent 
 of that required to carry the direct load. It shall be placed as near the surfaces 
 of the column as practicable on the tension sides, and the rods shall be con- 
 tinuous in crossing from one side to another. The length of rods below the base of the 
 capital and above the floor line shall be sufficient to develop their strength through bond, 
 but not less than 40 diameters, nor less than one-third the clear height between the floor 
 line and the base of the column capital. 
 
 32. The interior columns must be analyzed for the worst condition of unbalanced 
 loading. It is the intention of this ruling to cover ordinary cases of eccentric loads on the 
 columns by the requirement of Sect. 5. W T here the minimum size of column therein 
 specified is found insufficient, however, the effect of the resulting bending moment shall 
 be properly divided between the adjoining slab and the columns above and below according 
 to best principles of engineering, and the columns enlarged sufficiently to carry the load 
 safely. 
 
 33. Bending Moment Coefficients, Panels Without Drops, or Capitals, or Both. In 
 square panels where no column capital or no depressions are used, the sum total of positive 
 and negative bending moments shall be equal to that computed by the following formula: 
 
 B.M. = (TFL/8)(1.53 - 4k + 4.18A; 3 ) 
 
 where B.M . = numerical sum of positive and negative bending moments, regardless of 
 
 algebraic signs. 
 
 W = total live- and dead-load on the whole panel. 
 L = length of side of a square panel, c. to c. of columns. 
 k = ratio of the radius of the column or column capital to panel length, L. 
 
 This total bending moment shall be divided between the positive and the negative 
 moments in the same proportion as in the typical square panels for two-way or four-way 
 systems specified above for interior and wall panels respectively. 
 
 34. Point of Inflection. For the purpose of making the calculations of the bending 
 moment at the sections away from the column capital, the point of inflection shall be 
 considered as being one-quarter the distance c. to c. of columns, both crosswise and 
 diagonally, from the center of the column. 
 
 35. Tensile Stress in Steel and Compressive Stress in Concrete. The tensile stress in 
 steel and the compressive stress in the concrete to resist the bending moment shall be 
 calculated on the basis of the reinforcement and slab in the width included in a given strip, 
 and according to the assumptions and requirements given in the first three articles on 
 
 274 
 
page 270. The steel shall be considered as being concentrated at the center of gravity of 
 all the bands of steel in a given strip. 
 
 36. For the four-way system of reinforcement the amount of steel to resist the negative 
 bending moment over the support in each strip A shall be taken as the sum of the areas of 
 steel in one cross band and one diagonal band. The amount of steel to resist the positive 
 bending moment of each strip B shall be considered as the area of the steel in a diagonal 
 band. The amount of steel to resist the positive bending moment in each strip A shall 
 be considered as the area of the steel in a cross band, and the amount of steel to resist 
 the negative moment in each strip B shall be the steel included in the width of strip B. 
 
 37. For the two-way system of reinforcement the amount of steel to resist the bending 
 moment in any strip shall be considered as the area of steel included in the width of the 
 strip. 
 
 38. In both systems of reinforcement the compressive stress in the concrete in any 
 strip shall be calculated by taking the area of steel considered for each strip and applying 
 it in a beam formula based on the principles given in the article on "Design for Slabs, 
 Beams and Girders" on page 270. 
 
 39. Where drop panels are used, the width of beam assumed to resist the compressive 
 stresses over the column capital shall be the width of the drop. 
 
 40. The width of beam, where no drop panels are used, shall be the width of steel bands. 
 Where this is found insufficient, the area shall be increased by introducing compression 
 steel in the bottom of slab. 
 
 41. Rectangular Panels. When the length of panel in either two-way or four-way 
 system does not exceed the breadth by more than 5 per cent, all computations shall be 
 based on a square panel whose side equals the mean of the length and breadth, and the 
 steel equally distributed among the strips according to the coefficients above specified. 
 
 42. In no rectangular panel shall the length exceed the breadth by more than one-third 
 of the latter. 
 
 43. Rectangular Panels, Four-way System. In the four-way system of reinforcement, 
 where length exceeds breadth by more than 5 per cent, the amount of steel required in strip 
 A, long direction, both positive and negative, shall be the same as that required for the 
 same strip in a square panel whose length is equal to the long side of the rectangular panel. 
 
 44. The amount of steel, strip A, short direction, positive and negative, shall be the 
 same as that required for the same strip in a square panel, whose length is equal to the 
 short side of the rectangular panel. 
 
 45. The amount of steel in strip B, positive and negative, shall be the same as that 
 required for similar strip in a square panel whose length is equal to the mean of the long 
 and the short side of the rectangular panel. 
 
 46. In no case shall the amount of steel in the short side be less than two-thirds of that 
 required for the long side. 
 
 47. Rectangular Panels, Two-way System. In the two-way system of reinforcement 
 the amount of steel required for the positive and the negative moment of each strip A shall 
 be determined in the same manner as indicated for the four-way system above. 
 
 48. The amount of steel in strip B, positive and negative, running in short direction, 
 shall be equal to that required for the same strip in a square panel whose length equals the 
 long side of the rectangular panel. 
 
 49. The amount of steel in strip B, long direction, positive and negative, shall be equal 
 to that required for the same strip in a square panel, whose length equals the short side of 
 the rectangular panel. 
 
 50. In no case shall the amount of steel in strip B, long direction, be less than two-thirds 
 of that in the short direction. 
 
 51. Walls and Openings. Girders and beams shall be constructed under walls, around 
 openings and to carry concentrated loads. 
 
 52. Spandrel Beams. The spandrel beams or girders shall, in addition to their own 
 weight and the weight of the spandrel wall, be assumed to carry 20 per cent of the wall 
 panel load uniformly distributed upon them. 
 
 53. Placing of Steel. In order that the slab bars shall be maintained in the position 
 shown in the design during the work of pouring the slab, spacers and supports shall be 
 provided satisfactory to the Commissioner of Buildings. All bars shall be secured in place 
 at intersections by wire or other metal fastenings. In no case shall the spacing of the bars 
 exceed 9 in. The steel to resist the negative moment in each strip B shall extend one- 
 quarter of the panel length beyond the center line of the columns in both directions. 
 
 54. Splices in bars may be made wherever convenient, but preferably at points of 
 minimum stress. The length of splice beyond the center point, in each direction, shall not 
 be less than 40 diameters of the bars, nor less than 2 ft. The splicing of adjacent bars shall 
 be avoided as far as possible. 
 
 55. Slab bars which are lapped over the column, the sectional area of both being in- 
 cluded in the calculations for negative moment, shall extend not less than 0.25 of the panel 
 length for cross bands and 0.35 of the panel length for diagonal bands, beyond the column 
 center. 
 
 275 
 
56. Computations. Complete computations of interior and wall panels and such other 
 portions of the building as may be required by the Commissioner of Buildings shall be 
 left in the office of the Commissioner of Buildings when plans are presented for approval. 
 
 57. Test of Workmanship. The Commissioner of Buildings or his representative may 
 choose any two adjacent panels in the building for the purpose of ascertaining the character 
 of workmanship. The test shall not be made sooner than the time required for the cement 
 to set thoroughly, nor less than 6 weeks after the concrete had been poured. 
 
 58. All deflections under test load shall be taken at the center of the slab, and shall be 
 measured from the normal unloaded position of the slab. The two panels selected shall be 
 uniformly loaded over their entire area with a load equal to the dead-load plus twice the 
 live-load, thus obtaining twice the total design load. The load shall remain in place not 
 less than 24 hr. If the total deflection in the center of the panel under the test load does 
 not exceed 3^ o f the panel length, the slab may be placarded to carry the full design live- 
 load. If it exceeds this amount of deflection, and recovers not less than 80 per cent of the 
 total deflection within 7 days after the load is removed, the slab may be placarded to carry 
 the full design live-load. If the deflection exceeds the allowable amount above specified, 
 and the recovery is less than 80 per cent in 7 days after the removal of the test load, other 
 tests shall be made on the same or other panels, the results of which will determine the 
 amount of live-load the slabs will be permitted to carry. 
 
 59. General. The design and the execution of the work shall conform to the general 
 provisions and the spirit of the Chicago Building Ordinances in points not covered by this 
 Ruling and to the best engineering practice in general. 
 
 276 
 

 r.N 
 
 OK IS DUE ON THE LAST DA 1 
 STAMPED BELOW 
 
 AN INITIAL FINE OP 25 CENTS 
 
 WILL BE ASSESSED FOR FAILURE TO RETURN 
 THIS BOOK ON THE DATE DUE. THE PENALTY 
 WILL INCREASE TO SO CENTS ON THE FOURTH 
 DAY AND TO $1.OO ON THE SEVENTH DAY 
 OVERDUE. 
 
 
 
 .... 
 
 
 
 
 APR 24 1941 
 
 
 ADD H 4 4rt4) 
 
 
 Arn 11 1942 
 
 
 
 
 APR 18 1943 
 
 
 
 
 APR -Jr, 
 
 
 * 1&1943 
 
 
 jefAj 
 
 
 *^<ov4g5/ 
 
 
 7 "I < 
 
 
 22Uec 4o *. 
 
 
 
 
 
 
 ' 
 
 
 
 
 
 LD 21-100m-7,'39(402s) 
 
I OOUO 
 
 / 
 
 
 UNIVERSITY OF CALIFORNIA LIBRARY