OF R. Tracy Crawford A8TRUHUMI THE SECULAR VARIATIONS OF THE ELEMENTS OF THE CEBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.0, G. M. T BY ERIC DOOLITTLE \ UNIVERSITY OF PENNSYLVANIA Extracted from THE TRANSACTIONS OF THE AMERICAN PHILOSOPHICAL SOCIETY, N.S., Vol. XXII, Part 2 PHILADELPHIA 1912 To MY FATHER, PROFESSOR CHARLES L. DOOLITTLE, THIS WORK is INSCRIBED. ASTROUOVY [Extracted from the TRANSACTIONS OP THE AMERICAN PHILOSOPHICAL SOCIETY, N. S., Vol. XXII., Part 2.] THE SECULAR VARIATIONS OF THE ELEMENTS OF THE ORBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.Q G. M. T. BY ERIC DOOLITTLE. (Read March 1, 1912.) TABLE OF CONTENTS. THE THEORY. 1. Introduction 39 2. The method of GAUSS 40 3. HILL'S first modification of GAUSS'S method 42 4. HILL'S second modification. The work of CALLANDREAU and INNES 47 5. The method of HALPHEN and its modifications by ARNDT and INNES 49 THE COMPUTATION. 6. The elements of the orbits and the adopted masses 52 7. The formulas employed in the computation 53 8. The values of the preliminary constants 56 9. The radii vectores and the true anomalies 59 10. The separate results: Mercury by Venus 61 Earth by Mercury 123 " Earth 65 " " Venus 127 " Mars r." . . 70 " " Mars 132 " Jupiter 77 " " Jupiter 138 " Saturn 82 " " Saturn 142 " Uranus 86 " " Uranus 146 " " Neptune 89 " " Neptune 149 Venus by Mercury 93 Mars by Mercury 152 " Earth .100 " " Venus : 156 " " Mars 104 " " Earth 160 " " Jupiter 108 . " " Jupiter 164 " Saturn 112 " " Saturn 168 " Uranus 116 " " Uranus 173 " Neptune 120 " " Neptune 176 11. The final values of the perturbations 179 12. Comparison with the results of observation 13. Comparison with SEELIGER'S hypothesis on the constitution of the Zodiacal Light 185 . 37 1. INTRODUCTION. The usual method of determining the secular variations of the elements of any planet is the well-known one based upon the development of the perturbing function into an infinite series whose successive terms involve continually higher powers of the eccentricities and the mutual inclination. This method possesses two advantages. The first is that when an extreme degree of accuracy is not required, so that higher terms of the development may be disregarded, it is the simplest method available; and, in the second place, since the coefficients of all terms are general literal expres- sions, the change produced in the value of any variation by a change in the assumed values of one or more of the elements can readily be ascertained by a simple substi- tution of the more accurate values. On the other hand, this method possesses the disadvantage that the complexity of the expansion grows rapidly greater as the order of the included terms is increased, so that a slight increase in the desired accuracy greatly increases the labor of the computation. The integral methods, founded upon the celebrated theorem of GAUSS (I) ,* are wholly free from this latter disadvantage, for if it is desired to include all terms to the twenty fourth order this can be done by a computation which is less than twice as long as that required when the approximation is stopped at terms of the eleventh order. But the integral method, though thus extremely accurate, leads only to the numerical values of the variations dependent upon the values of the elements assumed ; if they are desired for some other epoch at which the various elements possess different values from those adopted, or if an improved value of any of the elements becomes known, they can only be found by an entire repetition of the computation. The only determinations of the secular perturbations of the four inner planets which are in any sense modern ones are the classic investigation of LE VERRIER (T) and the computation of NEWCOMB (15> . The latter furnishes the most accurate values of these variations so far determined ; the series were extended to terms of the eighth order, only those terms of this order being included, however, which seemed likely to be most important, and in some cases terms of the tenth order were included, though usually by induction merely. In both of the above computations the usual expansion into an infinite series was employed. As the GAUSSIAN method is so extremely accurate, and as its formulas throughout are wholly different from those hitherto employed, it seemed that an * These symbols wherever they occur refer to the list of titles at the end of the present paper. 39 40 THE SECULAR VARIATIONS OF THE ELEMENTS application of it to a re-determination of these variations based upon the most ac- curate values of the several elements now obtainable would be of value. The results of this work will be found in the following pages; the final comparison with the earlier results is given in Article 11, and the comparison with the results of observa- tion in Articles 12 and 13. The epoch throughout is 1850.0, G. M. T. In the four following articles an attempt is made to state briefly the essential features of the various methods of computing secular variations which are founded on GAUSS'S theorem, but for a detailed account of the long and often complex trans- formations which are involved, the original papers must be consulted. 2. THE METHOD OF GAUSS. The equations which express the complete variations of the elements of the orbit of any body revolving about the sun when it is disturbed in its motion by the presence of a third body, may, as is well known, be put in a variety of different forms; the form selected as the basis for all developments founded on GAUSS'S method ' is that in which three rectangular components of the disturbing force enter into the expressions for the differential coefficients. Thus, if R denote the component lying in the direction of the radius vector of the disturbed body, positive outward from the sun; S, the component lying in the plane of the orbit of the disturbed body and perpendicular to the radius vector, positive in the direction of motion; and W, the component perpendicular to this plane and positive northward, we will have for the variation of the eccentricity of the orbit of the disturbed body, de tfn cos

nk 2 . The same letters with accents refer to the disturbing body. Watson, Theoretical Astronomy, pp. 516-523; Oppolzer, Lehrbuch zur Bahnbestimmung, Vol. II, p. 213; Tisserand, Mecanique Celeste, Vol. I, pp. 431-433, etc. The final forms of the equations expressing the other variations may be inferred from those stated at the end of Article 7. OF THE ORBITS OF THE FOUR INNER PLANETS. 41 and this is the same as, [de~\ a 2 ncos- 5- /MM' + (cos v + cosE)- ^- SdM' dM, \_dt !joo 27r 2 (l + m) J L 2irJ 2irJ J since the variable of the first integration enters the expression only through R and S. In the equation as thus written R and S are supposed to contain the mass, ra ', as a factor so that if Ri and Si are the corresponding values produced by a unit mass, R = m 'Ri and S = m 'Si. If we now imagine an infinitely thin elliptic ring which coincides with the orbit of m', whose total mass is equal to the mass ra'- Jo Jo But by the conditions, dt dM' OTo' " T 2;r ' and hence the components are, J rtn 1 r>2 1 /*2ir m^'RidM', 5- m Q 'S t dM' and ~- mo'T^id/lf, cos # r 1 I / _ TOO' r' sin & cos y TT7 ' : -^r sm y> and also that A-' = r 2 - 2rr' cos + r' 2 , in which & is the angle included between the radii vectores, A is the distance between the two bodies, and y is the inclination of the plane which includes r and r' to the plane of the orbit of the disturbed body. If n and n' denote the angular distances respectively of the perihelia of the two orbits from the ascending node of the orbit of m' upon the orbit of m, and if / be their mutual inclination, we will have, cos = cos (v + n) cos (v r + II') + sin (v + U) sin (v' + n') cos /, sin cos 7 = sin (v + n) cos (v' + II') + cos (v + II) sin (v' + II') cos I, sin sin 7 = sin / sin (v' + n') The values of n, n', and / are obtained from the original elements by a direct solution of the spherical triangle whose sides are n and n', and in which the angle included between these sides is I. (See Article 7.) tSee Hill's "On Gauss's Method <8 >, , . ," page 321. 44 THE SECULAR VARIATIONS OF THE ELEMENTS If we now eliminate v' from the above expressions by the equations, r' cos v' = a' (cos E' - e'), r' sin v' = a' cos 2 / it is evident that each of the above three integrals becomes expressible wholly in terms of the rapidly convergent series of LANDEN. For the purposes of the present computation HILL (S) has computed to ten places the logarithms of the quantities K = sec 2 KL, L' = L ~ B , and N u = sec 2 (1 + '), and these correct to eight places are tabulated at intervals of one tenth of a degree for all values of from = to = 50. From a direct substitution it is now seen that the final resulting values of Ro, S and W are as follows, in which the symbols N, P, Q, etc., are written for abbrevi- ation and have the meanings stated in Article 7 : 7? = - N - QG' + VJS, S = PF* + VJ, W = PF, + VJ 3 The integration with respect to E' having been thus entirely completed, that in regard to E is effected by mechanical quadratures. Since each variation is a function of E alone, it follows by the principles of quadratures that if any one of them be expanded into a periodic series involving the sines and cosines of E and its multiples, the secular term of the series, which is rigorously equal to |ir I f(E)dE, may be I/O also obtained by forming the values of f(E) for 2j equidistant values of E, from E = to E = 360, and dividing the sum by 2j. The expression thus obtained, will be subject only to the error involved in dropping those terms which contain a multiple of E not lower than 2j. An inspection of the known forms of the series which express the variations renders it evident that the error thus committed is of OF THE ORBITS OF THE FOUR INNER PLANETS. 47 the order 2j in terms of the eccentricities and mutual inclinations of the orbits except in the one case of the variation of the Mean Longitude, in which, as this variation depends wholly upon the expansion of 2(r/a)JRo> it is of the order 2j + 1. The resulting equations giving the values of all the secular variations are those stated in Article 7. 4. HILL'S SECOND MODIFICATION OF GAUSS'S METHOD. THE WORK OF CALLANDREAU AND INNES. In HILL'S second modification of GAUSS'S method (8> , the well-known expressions for the roots of a cubic equation when this is solved by the trigonometric method are introduced, and thus, throughout the integrals, the quantities p, q and 0' occur instead of the roots G, G' and G", the equations connecting these quantities being, G = 2 9 sin60 - + P, G' = 2gsin G" = 2g sin (60+ I') -p. It was shown in GAUSS'S original memoir (1) that dT f (m 2 cos 2 T + n 2 sin 2 T) * J ( m ' 2 COS 2 if m' = \(m + w) and w' = V mn, and that by repeating this transformation by the employment of the equations, m " = i( m > + n '), n" = Jrnfri, m'" = \(m" + n"), n'" = JriW, etc. etc., m ( *> and n (k) very rapidly approach a single limit, p., which GAUSS named the Arith- metico-geometrical Mean. It thus follows that our first integral is equal to 7r/2^, and that integrals of the form p (sin 2 T - cos 2 T)dT J (m 2 cos 2 T + n 2 sin 2 T)* become equal to ir/2 w/ju in which w is a very rapidly converging series involving m, n, m', n', etc., in its successive terms. The integral expressions which actually enter into the equations for .R , S , and W o are (f\f \ -/o 60 - Q ) - r -r^ 3 / 4 (m 2 n 2 ) 48 THE SECULAR VARIATIONS OF THE ELEMENTS V3 w sin 6' in which tf A o and the values of # , , and T^ being connected by comparatively simple relations with these quantities and with known auxiliaries. HILL accordingly suggested that tables of these functions should be computed, and this was first done by MONS. 0. CALLANDREAU (I:!> who however adopted as an argument the quantity a defined by the relation 1 1 cos 1 + a 6' V COS Q * <5 and tabulated the logarithms of the functions r 4 n 4 x(0') and and 17 are the two periods in question, then R , So, and W may be obtained in the form aw + br\, in which a and b are rational functions of the coefficients of the cubic equation and w and TJ are expressible in terms of certain hyper-geometric series in which the common variable is an absolute invariant of the elliptic functions. The three integrals entering into the problem have the form, /" Jo IdT 7 1 ) 3 ' in which / has the values 1, sin 2 T and cos 2 T, respectively, in the three cases; by introducing the new variable, s, defined by the relation, G + G" s-G' G' + G" ' s - G ' these become, G> + G " r-o" te G + G " r-o ds ~Jl ~^s (s ' G}> ~ 2 ~^~i v! (s ' and n respectively, in which f/~< i r\ n = ((j -\- (j ; ((JT Cr ) (u -f- Cr ; and S = - 4( - G)(s - G')(s + (?") 50 THE SECULAR VARIATIONS OF THE ELEMENTS Introducing the WEIERSTRASSIAN r function through the relation C ds U = % u being the elliptic integral of the first kind and 61, e 2 , and e 3 the roots of the cubic equation increased by one third of the coefficient of x 2 , and considering that from the theory of these functions, s - G = r(u) - ei, T(w) = d, r(w + w') = e 2 , and T(w') = e 3 , the first integral will become, 2 ^~ f" " f r () - e 'l d = 2 \ e ^ + ~ ( + ') - - ' w 'l J u L " f J ff and o-' being the second WEIERSTRASSIAN functions, which are connected with the periods, w and rj, by the equations, (<> + ') = 77 + ?;'; -co' = )?'. The three integrals consequently take the final forms, _G' + G" n G + G", n G'-G, 2 ~ - (eico + 77) ; 2 - (^co + ?;), and 2 - ~- (630) + 77). fv ra 71 A direct substitution of these expressions for the integrals in the equations which define .R > So and Wo leads, after some reduction, to forms which are seen to contain only these integrals themselves, the coefficients of the cubic equation with other known auxiliaries, and the quantity n. But if, for brevity, we write the original cubic equation in the form, x 3 - P,x 2 + P*x - P, = 0, and let X = P, 1 - 3P 2 and p = PjP 2 - 9P 3 , then the invariants, g 2 and g 3 , and the absolute invariant, g, will have the values, to = |X; 0i = A(2PiX - 3p), and g = 2 3 * 270 3 2 , and w will be given by, n ~ = leC^ 3 - 27^ 3 2 ), in which the last factor is the discriminant. Thus, except for g DR. Louis ARNDT i30) has fully developed this method, deriving all the formu- las necessary for its application and stating tables for F(w) and F(T)) for values of (g - l)/0 from (g - l)/g = 0.000 to (g - !),/ , Article 10.) Moreover, when the method is applied which is explained in the computation of Jupiter on Mercury (Article 10), the roots of the cubic equation are so readily obtained that the avoidance of its solution becomes a matter of no practical importance. Accordingly HILL'S first modification of GAUSS'S method has been employed throughout all of the following computation. THE COMPUTATION. 6. THE ELEMENTS OF THE ORBITS AND THE ADOPTED MASSES. The values adopted for the elements of the several orbits, to serve as the basis for this computation, were taken in each case from HILL'S "New Theory of Jupiter and Saturn." (16) Those of the four inner planets will be found on page 192; those of Jupiter and Saturn on page 558; of Uranus on page 109, and of Neptune on page 161. The epoch throughout is 1850.0 G. M. T. The values of the masses finally selected by HILL, and here adopted, will be found on page 554 for Mercury, Venus and the Earth; on page 192 for Mars; on page 19 for Jupiter and Saturn, and on page 161 for Neptune. The mass of Uranus as stated in the "New Theory " is 1 -r- 22640, but at DR. HILL'S suggestion this is here diminished to 1 -4- 22800, (A. J., No. 316). The value assumed for the mass of Mercury when the first of these computations were made was 1 -r- 5000000, but all of 'the results are here changed to agree with the value 1 -r- 7500000 stated below. It seems not improbable that even this latter fraction is too large, but the true value of this element is still very uncertain. X i S2 I e n Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune o / // 75 7 13.62 129 27 42.83 100 21 39.73 333 17 51.74 11 54 31.67 90 6 41.37 168 15 6.70 43 17 30.30 o / // 7 7.71 3 23 35.01 0.00 1 51 2.24 1 18 42.10 2 29 40.19 46 20.54 1 47 1.68 46 33' 8^63 75 19 53.08 48 23 54.59 98 56 19.79 112 20 49.05 73 14 8.00 130 7 31.83 0.20560476 0.00684311 0.01677114 0.09326803 0.04825511 0.05606025 0.0469236 0.0084962 5381016^260 2106641.357 1295977.416 689050.784 109256.626 43996.21506 .15425.752 7864.935 logo 1-j-m Mercury 9.5878217 7 500 000 Venus 9.8593378 408 134 Earth 0.0000000 327 000 Mars 0.1828971 3 093 500 Jupiter 0.7162374 1 047.879 Saturn 0.9794956 3 501.6 Uranus 1.2831044 22 800 Neptune 1.4781414 19 700 52 OF THE ORBITS OF THE FOUR INNER PLANETS. 53 7. THE FORMULAS EMPLOYED IN THE COMPUTATION. The following formulas are written in the order in which they were applied. When the right hand member appears in two different forms, one of these was used in the first computation and the other in the duplication, though sometimes other obvious modifications were made use of in the several cases differing from those which are here written. The values of /, n, and n' were obtained from the general equations: sin / sin (H w) = sin i' sin (ft' ft) , sin I cos (II w) = sin i cos i' + cos i sin i' cos (ft' ft) = cos i cos i' [ tan i + tan i' cos (ft' ft)], sin / sin (n' w') = sin i sin (ft' ft), sin/ cos (II' a/) = cos i sin i' sin i cos i' cos (ft' ft), = cos i cos i' [tan it tan i cos (ft' ft)]. When the Earth is the disturbing body, these become, / = i; n = 180 + co; n' = 180 + *' - ft; and when the Earth is the disturbed body, / = i'- n = TT - ft'; II' = *-' - ft'. As i, i' and / are always small, eight place logarithms were generally here used to insure the accuracy of n and n'. The auxiliaries k, k', K, K' and C were then found from the relations: k sin (A' - n) = - cos I sin n'; k cos (K - n) = cos n'; k' sin (K' - n) = - sin n'; A;' cos (K'-U) = cos / cos n'; C = o'V 2 , and their values were tested by the equations, tan .7 = p ; tan \(K - K' + 90) cot |(A' + K' - 90 - 211) = "!" ( ^, ~ "\ , v sin (^11 -p G) sin ( K- K') = sin I tan / sin (K' - n) sin (K - n) cot n'. The orbit of the disturbed planet being then divided into 2j parts in regard to the eccentric anomaly, the following equations were applied to each point of division, of which those marked with an asterisk are test equations upon the sums of the functions corresponding respectively to the odd and even points of division of the orbit. The sums corresponding to the odd points are designated by Si, those to the even points by S 2 , and 2 = S, + S 2 . 54 THE SECULAR VARIATIONS OP THE ELEMENTS r sin v = a cos ip sin E, r cos v = a (cos E e), r 2 = a 2 (1 - 2 e cos # + e 2 cos 2 .E), (the last equation giving the value of r 2 for use in A, N, and J 3 . Since i log r 2 = log T-, this affords also an independent test of r). *S,t; + 180 = S 2 *>; *Z^ = Z 2 r = ja. A = r 2 + 2&aYr cos (w + X) + a' 2 = [r + ka'e' cos (t> + X)] 2 + a' 2 [l - fcV 2 cos 2 (v + (the second form used with ZECH'S tables in the duplication). *SiA = ^A = ja 2 + |jaV + j[a' 2 - 2kaa'ee' cos X] J3 sin e = A;'o' cos ^>'r sin (v + K'} B cos e = ka'r cos (t> + K) + a' 2 e' *2iB sin e = S 2 B sin e = jk'aa' cos ^>' e sin ^' *2iB cos = 2 2 B cos e = j[a'~e' kaa'e cos A'] g = B 2 C sin 2 e To effect the solution of the cubic equation, h and I were found from the equations, the very convenient test equation, hi = B* -AC, being applied to each pair of values. The first approximation to G was then obtained from G = h ~ h(h -I)' and further approximations by successive applications of G(G - iy (The number of trials required never exceeded three.) G' and G" then follow from the equations, G' = (A - C - G) + (A -C- GY + ; G" = and we have for verification, ft i rt/ _ rtii _ A ri . fir _ L _i_ _ a _ . fin _ ^'-'' = " . G")' OF THE ORBITS OF THE FOUR INNER PLANETS. 55 (In some cases the first approximations to G were found by, sin e' = - 3 ; G = 2q sin (60 - &') + p, the solution being then finished as before). The modulus, (c = sin 6), of the elliptic integrals employed in the computation was separately found by the two equations, C* T I /""' /"" I firr sin 2 6 = Q , Q,, ; tan 2 6 = Q _ Q> , and with 6 as an argument the values of log K , log L ', and log N were taken from the tables of HILL'S memoir (8) , the interpolation being effected in both directions to second differences by the well-known formulas, in which n + n' = 1. The logarithms of Af, P, Q, and F were then obtained from, o . "(G + G") 3 ' ~(G + (?") 2 ' y "(? + "' W the first three being verified by similar operations performed upon the values of 2 t and 2 2 formed from the respective logarithms, and the last by the use of ZECH'S tables and also by the equation, V = ar-(G + G'T l [GN + G"(N - L ')]K . The following auxiliaries were next obtained : Ji' = a' 2 cos 2 p' + a' cos + n) = ka'e'r sin (t; + K) - a' 2 cos 2 ^' sin (v + n) cos (v + n) sin 2 /, the second form being employed with ZECH'S tables in the duplication Jz = cos 2 ' sin I r cos (v + II) .B sin e. There were next obtained, B = - N -QG' + 7JY; S = PF* + VJ,; W = PF, + VJ a ; fl<"> = -R sin E; 5<-> = -S ; W = .Sfl<">; (c) = . r r z? zj and the very accurate test equation, sin

) + cos 9? B (c) = 0, was applied. These values were then substituted in the following series of equations, and the final values of the differential coefficients obtained: [dc ~\ TH'TI 1 ~dt Joo = 1 + m ' COS *" ' 2?- 2 f sin " ' Ro + ^ cos " + cos m'n cos ? 1 di 1 sJ o = mn [dftl m'n ,. a< Joo 1 + sec

were exactly satisfied, and the values of r were also obtained from the equation stated in Article 7 for obtaining the value of r 2 . E MEKCUBY. log r V E VENUS. logr V O i // O O 1 // 9.4878584 0.00 9.8563557 0.00 15 9.4916716 18 25 28.96 15 9.8564576 15 6 6.54 22.5 9.4963313 27 32 14.93 30 9.8567564 30 11 47.87 30 9.5026623 36 32 7.50 45 9.8572313 45 16 40.52 45 9.5195925 54 4 7.02 60 9.8578493 60 20 24.50 60 9.5407098 70 50 41.41 75 9.8585680 75 22 44.64 67.5 9.5522314 78 55 7.36 90 9.8593378 90 23 31.50 75 9.5640735 86 46 40.73 105 9.8601064 105 22 42.20 90 9.5878217 101 51 53.65 120 9.8608213 120 20 20.31 105 9.6103385 116 9 54.15 135 9.8614342 135 16 35.65 112.5 9.6207149 123 3 1.59 150 9.8619040 150 11 43.65 120 9.6303194 129 46 44.60 165 9.8621990 165 6 4.12 135 9.6467730 142 49 52.77 180 9.8622996 180 0.00 150 9.6589887 155 27 29.02 195 9.8621990 194 53 55.88 157.5 9.6633518 161 39 20.97 210 9.8619040 209 48 16.35 165 9.6664956 167 48 0.75 225 9.8614342 224 43 24.35 180 9.6690267 180 0.00 240 9.8608213 239 39 39.69 195 9.6664956 192 11 59.25 255 9.8601064 254 37 17.80 202.5 9.6633518 198 20 39.03 270 9.8593378 269 36 28.50 210 9.6589887 204 32 30.98 285 9.8585680 284 37 15.36 225 9.6467730 217 10 7.23 300 9.8578493 299 39 35.50 240 9.6303194 230 13 15.40 315 9.8572313 314 43 19.48 247.5 9.6207149 236 56 58.41 330 9.8567564 329 48 12.13 255 9.6103385 243 50 5.85 345 9.8564576 344 53 53.46 270 9.5878217 258 8 6.35 285 9.5640735 273 13 19.27 292.5 9.5522314 281 4 52.64 300 9.5407098 289 9 18.59 315 9.5195925 305 55 52.98 330 9.5026623 323 27 52.50 337.5 9.4963313 332 27 45.08 345 9.4916716 341 34 31.04 60 THE SECULAR VARIATIONS OF THE ELEMENTS E THE EARTH. logr V E MARS. log r V O O 1 // O O i II 9.9926546 0.00 .1403760 0.00 22. 5 9.9932181 22 52 14.25 30 .1463201 32 47 24.62 30 9.9936460 30 29 2.39 45 .1532670 48 54 53.41 45 9.9948189 45 41 0.84 60 .1621567 64 44 46.64 60 9.9963428 60 50 8.59 90 .1828971 95 21 5.913 67. 5 9.9972036 68 23 26.41 120 .2026920 124 31 47.15 90 0.0000000 90 57 39.46 135 .2106341 138 39 52.35 112. 5 0.0027784 113 23 5.92 150 .2166313 152 34 23.40 120 0.0036266 120 49 43.50 180 .2216237 180 0.00 135 0.0051200 135 40 31.82 210 .2166313 207 25 36.60 150 0.0062624 150 28 37.29 225 .2106341 221 20 7.65 157.5 0.0066776 157 51 53.72 240 .2026920 235 28 12.85 180 0.0072232 180 0.00 270 .1828971 264 38 54.087 202. 5 0.0066776 202 8 6.29 300 .1621567 295 15 13.36 210 0.0062624 209 31 22.71 315 0.1532670 311 5 6.59 225 0.0051200 224 19 28.18 330 .1463201 327 12 35.38 240 0.0036266 239 10 16.50 247. 5 0.0027784 246 36 54.08 270 0.0000000 269 2 20.54 292. 5 9.9972036 291 36 33.59 300 9.9963428 299 9 51.41 315 9.9948189 314 18 59.16 330 9.9936460 329 30 57.61 337. 5 9.9932181 337 7 45.75 10. THE SEPARATE RESULTS. The values found for the intermediate auxiliary functions which depend upon ", as well as the final perturbations of the four inner planets in each case are now stated in the following tables. The results of the application of the more important test equations are also shown, but all of the test equations of Article 7 were also applied, and each computation (except the first), was, after its completion, duplicated from the beginning, the forms of the equations being changed in the duplication when this was possible. OF THE ORBITS OF THE FOUR INNER PLANETS. 61 MERCURY. ACTION OF VKNUS ON MERCURY. E A B cos t B sin e 1000000 Xff h 0.619543952 + 0.13308441 - 0.18036925 0.7970904 0.52358614 30 0.627434998 + 0.22218381 - 0.06982371 0.1194506 0.52390836 60 0.647116316 + 0.24372756 + 0.07193966 0.1268000 0.52384406 90 0.675632886 + 0.19194286 + 0.20693555 0.0491867 0.52344851 120 0.706503003 + 0.08070542 + 0.29899200 2.1902889 0.52319742 150 0.730295757 - 0.06017874 + 0.32344233 1.5631633 0.52358280 180 0.738317327 - 0.19295989 + 0.27373528 1.8358797 0.52446104 210 0.727259050 - 0.28205939 + 0.16318979 0.6524819 0.52500778 240 0.701243272 - 0.30360314 + 0.02142638 0.0112481 0.52470755 270 0.669559472 - 0.25181838 - 0.11356958 0.3160138 0.52391075 300 0.641856586 - 0.14058090 - 0.20562585 1.0359483 0.52329644 330 0.624398293 + 0.00030325 - 0.23007624 1.2969588 0.52323374 z, 4.054580456* - 0.17962654f + 0.28009822J 5.9972554 3.14309264 2 2 4.054580456 - 0.17962659 + 0.28009814 5.9972551 3.14309193 E G G' G" o 0.09593332 0.52358258 0.09595274 0.000015866 O 25 / 20 n 53.90 30 0.10350215 0.52390782 0.10350489 0.000002203 26 23 25.33 60 0.12324776 0.52384346 0.12325032 0.000001964 29 59.15 90 0.15215988 0.52344311 0.15217844 0.000013171 32 37 46.70 120 0.18328109 0.52318510 0.18331625 0.000022837 36 17 45.71 150 0.20668846 0.52356735 0.20672760 0.000023681 38 55 52.70 180 0.21383179 0.52444977 0.21385942 0.000016369 39 41 12.31 210 0.20222678 0.52500393 0.20223677 0.000006145 38 21 51.31 240 0.17651123 0.52470749 0.17651140 0.000000121 35 27 1.91 270 0.14562423 0.52390915 0.14562996 0.000004142 31 49 7.06 300 0.11853565 0.52329155 0.11855723 0.000016698 28 25 30.42 330 0.10114005 0.52322787 0.10117042 0.000024501 26 5 20.70 Si 0.91134083 3.14305994 0.91144736 0.000073855 194 13 23.40 S 2 0.91134154 3.14305922 0.91144808 0.000073843 194 13 23.80 * 6a 2 + 3aV + 6[o' 2 - 2kaa'ee' cos K] = + 4.054580460. t 6[a'V - kaa'e cos K] = - 0.17962650. t - Qk'aa' cos - 0.24640136 0.05971623 - 0.4883004 - 0.009827036 0.00000000 - 1.5879204 - 0.00762098 0.06444673 - 0.0208471 - 0.014490447 + 0.10127648 - 0.0655216 - 0.09149188 0.08146579 + 0.7212240 - 0.017625381 + 0.20314033 + 2.0766362 - 0.49802851 0.11164771 + 0.7947010 - 0.015287000 + 0.28842180 + 2.0529668 - 0.89441990 0.15077545 - 0.4917115 + 0.000363093 + 0.30587345 - 1.1518366 - 0.92808606 0.18433784 - 2.4881611 + 0.032271915 + 0.20211372 - 5.4561938 - 0.56751805 0.19359808 - 3.0725539 + 0.063241297 0.00000000 - 6.5837414 - 0.13320998 0.17488253 - 1.4207354 + 0.068605698 - 0.19174661 - 3.1154764 + 0.01209827 0.14154301 + 0.6131517 + 0.049504580 - 0.28714394 + 1.4363109 - 0.19301611 0.10799082 + 1.3152406 + 0.025022994 - 0.27897487 + 3.3976883 - 0.46971306 0.08194590 + 0.7289596 + 0.007023584 - 0.20433749 + 2.0989094 - 0.49748432 0.06575439 - 0.1643583 - 0.003535808 - 0.10333144 - 0.5165700 - 2.25744598 0.70904446 - 1.9892305 + 0.092680137 + 0.01753235 - 3.7116419 - 2.25744596 0.70906002 - 1.9841603 + 0.092587352 + 0.01775908 - 3.7031067 Ro COS V E RO sin v + (cos v + cos E)So + ( -sec 2 |4i (<) + cos 1000 XPj + 2.1929308 - 1.0158793 - 4.1045657 - 6.2455186 - 6.8650672 - 5.7972107 - 3.3280756 - 0.1192649 + 2.9694212 + 5.1103718 + 5.7299237 + 4.6620645 - 3.4054328 - 3.4054372 1000 X - 0.18791333 0.020434768 - 0.3847186 - 3.085993 0.000000000 - 1.2510793 30 + 0.04317409 0.021303927 - 0.4280932 6.547345 + 0.033478638 - 1.3454762 60 - 0.07397385 0.025621038 + 0.1363110 9.590571 + 0.063887706 + 0.3925293 90 - 0.49750230 0.033590134 + 0.7062450 - 10.865960 + 0.086774000 + 1.8244563 120 - 0.86425140 0.043556201 + 0.5521780 7.575463 + 0.088361000 + 1.2934800 150 - 0.83674077 0.051546760 - 0.4218487 + 1.808294 + 0.056517506 - 0.9250562 180 - 0.43280690 0.053431000 - 1.3516860 + 13.566615 0.000000000 - 2.8963373 210 - 0.01035886 0.048659649 - 1.2877184 + 20.505307 - 0.053351926 - 2.8237889 240 - 0.07819780 0.040457621 - 0.3317444 + 19.465045 - 0.082075038 - 0.7771130 270 + 0.18040025 0.032377496 + 0.5949004 + 13.349022 - 0.083641596 + 1.5368184 300 - 0.46718624 0.026190705 + 0.7690320 + 6.465459 - 0.065308303 + 2.2142904 330 - 0.46610559 0.022213151 + 0.2265587 + 0.990810 - 0.034907444 + 0.7120630 2i - 1.94793392 0.209691333 - 0.6106280 + 19.245092 + 0.004865365 - 1.0242299 2 2 - 1.94793368 0.209691117 - 0.6099562 + 19.240128 + 0.004869178 - 1.0209836 * 2,(J,' - G") = 5.9540163. 2, (j ' G") = 5.9539882. 68 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF THE EARTH ON MERCURY. COS V Ro E BUI v m> + (cos v + cos E)S<> . (r ,.\j 100 X TFo cos 100 X Wo sin u + I - sec* if + 1 1 sin t'So - 0.000769437 - 0.020434774 - 0.2710273 - 0.1475729 30 + 0.011967951 - 0.017591057 - 0.2756307 - 0.5938896 60 + 0.024315363 - 0.008157573 - 0.1568518 - 0.9461439 90 + 0.032727249 + 0.008319102 + 0.7047203 - 0.8270793 120 + 0.032844271 + 0.028781472 + 0.7040911 - 0.2795215 150 + 0.022159505 + 0.046499174 - 0.1803831 - 0.0126962 180 + 0.002703372 + 0.053431012 - 1.1914874 - 0.6487582 210 - 0.017924683 + 0.045456375 - 1.2308941 - 1.6399928 240 - 0.030714227 + 0.026434445 - 0.3784440 - 1.9093573 270 - 0.031808132 + 0.005466897 + 0.3836684 - 1.2785779 300 - 0.024103783 - 0.010000896 + 0.4783818 - 0.4349396 330 - 0.012845686 - 0.018098650 + 0.0981246 - 0.0137335 Si + 0.004275559 + 0.070053686 - 0.5016340 - 4.3662934 2 2 + 0.004276204 + 0.070051841 - 0.5003946 - 4.3659693 i in ,.M."> + COB *.' > = - 0.00000000016. DIFFERENTIAL COEFFICIENTS. log coeff. // [de/dt}^ = +3752.8345 TO' p 3.5743594 [dx/dt] M = +299037.72 m' p 5.4757260 [dildt] M = -4591.3713 m' n 3.6619424 [dB/ + 0.006125234 0.005413043 - 0.1331172 - 0.05793911 0.000000000 15 + 0.004244733 0.005395946 - 0.1341971 - 0.08902862 + 0.004501863 30 + 0.002091460 0.005581735 - 0.1069853 - 0.11749705 4- 0.008771561 45 + 0.000394535 0.005978460 - 0.0544826 - 0.14331159 + 0.012778556 60 - 0.000202379 0.006587462 + 0.0157366 - 0.16470025 4- 0.016426268 75 + 0.000673582 0.007397547 + 0.0931210 - 0.17804909 4- 0.019496561 90 + 0.003010065 0.008379102 + 0.1659322 - 0.17823953 4- 0.021645905 105 4- 0.006397644 0.009479745 + 0.2230373 - 0.15960687 + 0.022459598 120 + 0.010124788 0.010622853 + 0.2557091 - 0.11755697 4- 0.021550254 135 + 0.013355105 0.011710967 + 0.2593958 - 0.05060872 4- 0.018676901 150 + 0.015340435 0.012635664 + 0.2351775 + 0.03775311 4- 0.013854131 165 + 0.015613320 0.013293529 + 0.1902485 + 0.13831063 4- 0.007415508 180 + 0.014107795 0.013605711 4- 0.1366988 + 0.23722085 0.000000000 195 + 0.011176655 0.013535474 + 0.0883172 + 0.31912559 - 0.007550472 210 + 0.007500348 0.013096767 + 0.0561741 + 0.37133333 - 0.014359702 225 + 0.003911780 0.012350565 + 0.0447317 4- 0.38738325 - 0.019696946 240 + 0.001183526 0.011390146 + 0.0503246 + 0.36844987 - 0.023106835 255 - 0.000166297 0.010320547 + 0.0628133 + 0.32211263 - 0.024451640 270 + 0.000001635 0.009239635 + 0.0697179 + 0.25931088 - 0.023868989 285 + 0.001425688 0.008225494 + 0.0610457 + 0.19093564 - 0.021678655 300 + 0.003528129 0.007331827 + 0.0329172 4- 0.12533212 - 0.018282391 315 + 0.005583303 0.006590510 - 0.0111915 + 0.06726176 - 0.014086776 330 + 0.006923128 0.006018069 - 0.0617561 4- 0.01815027 - 0.009457250 345 + 0.007124120 0.005623237 - 0.1063107 - 0.02290733 - 0.004691492 Si + 0.069734164 0.109902014 + 0.7165294 4- 0.78161752 - 0.006827048 s 2 4- 0.069734168 0.109902021 + 0.7165286 + 0.78161728 - 0.006826894 i"> + cos //r/1 I U-C' / Ltt-lQQ 1879.077 TO' n 3.2739445 [dxMJoo = +76914.75 TO' p 4.8860096 [dildt] m 934.0667 TO' n 2.9703779 [dn/dt] m = -59594.26 TO' n 4.7752044 [dTr/dt} m = +76470.27 TO' p 4.8834926 [dL/dt] w = -101879.0 TO' n 5.0080846 76 THE SECULAR VARIATIONS OF THE ELEMENTS FINAL VALUES CORRESPONDING TO THE ABOVE VALUES OF m'. = -0.00060742746 [dx/d4 = +0.024863343 [dt'/dfloo = -0.00030194497 [dQ/dfloo = -0.019264347 [drfdt] m = +0.024719659 = -0.032933242 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dtlw -0.00060 -0.00061 -0.000607 < >,[dir/dt]oo +0.00508 +0.00511 +0.005082 [dt'/dflw -0.00030 -0.00030 -0.000302 sin i [dQ/d*]oo -0.00234 -0.00235 -0.002348 [dL/d/]oo -0.0331 -0.032933 NOTES. On account of the very large values of the eccentricities of both orbits and their high mutual inclination, the approximate test is here wholly inapplicable if but twelve points of division are employed. Thus the two sums differ by 1 38' 46". 90 for 6 and by 40' 42". 47 for , while the sums of the functions immediately dependent upon these quantities differ by proportionate amounts. When the number of points of division is increased to twenty-four, the final sums are in almost exact agreement, showing that the combined effect of all terms from the llth to the 23rd orders is wholly inappreciable. The greatest difference which arises in the variations from the employment of twenty-four points of division, instead of twelve, occurs in the case of [di/dt] 00 and here produces a decrease of but three units in the seventh decimal of the logarithm of the coefficient, OF THE ORBITS OF THE FOUK INNER PLANETS. 77 E 30 60 90 120 150 180 210 240 270 300 330 30 60 90 120 150 180 210 240 270 300 330 ACTION OF JUPITER ON MERCURY. A B cos e Bam f p 27.23340536 +2.0282403 + 1.4219711 9.05679111 27.14356714 + 1.0282450 + 1.6206004 9.02684503 27.06879996 +0.0526625 + 1.2863778 9.00192264 27.03145602 -0.6371012 +0.5088565 8.98947466 27.04270097 -0.8562240 -0.5036265 8.99322298 27.09836241 -0.5459922 -1.4797775 9.01177679 27.18120744 +0.2104677 -2.1580381 9.03939180 27.26787830 + 1.2104630 -2.3566674 9.06828209 27.33631108 +2.1860457 -2.0224444 9.09109301 27.37048776 +2.8758091 -1.2449232 9.10248524 27.36240999 +3.0949315 -0.2324396 9.09979265 27.31308297 +2.7846997 +0.7437107 9.08335031 163.22483480* +6.7161237f -2.2081997J 54.28221419 163.22483460 +6.7161234 -2.2082005 54.28221412 - 8' 9 h I 0111 88 49 5 0.12745094 27.006742 +0.163630 89 2 45 0.16554389 27.007491 +0.073044 89 19 0.10430339 27.007569 -0.001801 89 39 30 0.01632120 27.006899 -0.038475 89 41 40 0.01598743 27.006246 -0.026577 89 11 43 0.13801114 27.006455 +0.028875 88 41 46 0.29354831 27.007536 +0.110638 88 20 11 0.35007250 27.008599 +0.196247 87 48 4 0.25781881 27.008698 +0.264581 88 19 32 0.09768920 27.007728 +0.299728 88 22 22 0.00340551 27.006562 +0.292816 88 35 32 0.03486337 27.006176 +0.243874 532 41' 57" 0.80250439 162.043353 +0.803287 533 9 13 0.80250130 162.043348 +0.803293 f 80.552426 80.826371 81.050843 81.156986 81.117340 80.952183 80.714558 80.466952 80.265977 80.156946 80.170254 80.311910 483.871398 483.871348 G 27.006566 27.007263 27.007426 27.006877 27.006224 27.006265 27.007132 27.008116 27.008341 27.007593 27.006557 27.006128 162.042246 162.042242 * 6o 2 + 3o% 2 + 6[a' 2 - 2Jtaa'ee' cos K] = + 163.22483477. t 6[o' 2 e' - koa'e cos A'] = + 6.7161238. J - Sk'aa' cos >' e sin K' = - 2.2082004. 78 THE SECULAR VARIATIONS OF THE ELEMENTS G' ACTION OF JUPITER ON MERCURY. G" log ZV 0.188801 0.024995 5 6 8.07 0.0025877 0.2764500 30 0.123075 0.049804 4 35 5.15 0.0020887 0.2757852 60 0.061321 0.062980 3 53 7.75 0.0014995 0.2750001 90 0.011983 0.050435 2 45 10.71 0.0007524 0.2740043 120 0.014441 0.040995 2 35 41.32 0.0006684 0.2738923 150 0.087484 0.058419 4 12 38.17 0.0017613 0.2753489 180 0.173639 0.062597 5 21 37.00 0.0028566 0.2768082 210 0.248823 0.052092 6 3 11.63 0.0036449 0.2778582 240 0.297071 0.032133 6 20 5.30 0.0039929 0.2783216 270 0.311476 0.011613 6 16 40.56 0.0039213 0.2782263 300 0.293250 0.000430 5 59 8.38 0.0035638 0.2777502 330 0.249105 0.005182 5 34 4.63 0.0030827 0.2771094 o / // Si 1.028523 0.224130 29 15 47.82 0.0151689 1.6582224 2 2 1.031946 0.227545 29 26 50.85 0.0152513 1.6583323 E logtfo log AT logP logQ logV 0.1799707 6.4183196 3.8310274 5.1664192 5.1659174 30 0.1792229 6.4468140 3.8580378 5.1937562 5.1927566 60 0.1783398 6.5219986 3.9320091 5.2678436 5.2665795 90 0.1772196 6.6157906 4.0252257 5.3607256 5.3597128 120 0.1770937 6.7009450 4.1105921 5.4459161 5.4450927 150 0.1787322 6.7589559 4.1694988 5.5052851 5.5041125 180 0.1803735 6.7800058 4.1918462 5.5278954 5.5266396 210 0.1815544 6.7609474 4.1741434 5.5101707 5.5091259 240 0.1820755 6.7044320 4.1187250 5.4544932 5.4538485 270 0.1819683 6.6198775 4.0347585 5.3701732 5.3699402 300 0.1814329 6.5255910 3.9403890 5.2755478 5.2755392 330 0.1807123 6.4489104 3.8629284 5.1980770 5.1979730 Si 1.0792861 9.6512920 4.1245888 2.1381153 2.1336169 S 2 1.0794097 9.6512958 4.1245926 2.1381878 2.1336210 OF THE ORBITS OF THE FOUR INNER PLANETS. 79 ACTION OF JUPITER ON MERCUKY. E JV J. J 3 F t Vi 26.907806 -0.08848287 -1.4438584 -1.8440911 +0.12702123 30 26.754757 -0.00410757 -2.3330959 -2.1016844 +0.05043578 60 26.779325 +0.16212886 -2.4984534 -1.6682462 -0.05353664 90 26.922525 +0.18465069 -1.8956909 -0.6599133 -0.05566955 120 27.032841 +0.04256694 -0.6863554 +0.6531309 +0.07759141 150 27.046752 -0.14516517 +0.8055488 + 1.9190575 +0.24215469 180 26.945408 -0.26169947 +2.1803373 +2.7986639 +0.29255865 210 26.802715 -0.24648650 +3.0696706 +3.0562500 +0.18231424 240 26.714620 -0.10777763 +3.2352193 + 2.6228182 +0.00934620 270 26.757114 +0.06770763 +2.6325527 + 1.6144859 -0.07863175 300 26.911783 +0.13569580 + 1.4231210 +0.3014406 -0.02506303 330 27.011072 +0.02690450 -0.0689744 -0.9644853 +0.08731406 Si 161.291783* -0.11756837 +2.2100104 +2.8637163 +0.42791782 2 2 161.294935 -0.11649642 +2.2100109 +2.8637104 +0.42791747 E 1000 X Ro 1000,000 X So 100,000 X W, 1000 X R (n > 100,000 X S<"> 0.12949124 -0.25462237 - 2.1070330 0.00000000 -0.82801500 30 0.13531974 -0.15796961 - 3.6329106 +0.21265173 -0.49649079 60 0.16094783 +0.15688051 - 4.6204172 +0.40133398 +0.45170948 90 0.20322837 +0.35279259 - 4.3458069 +0.52500398 +0.91137646 120 0.25064630 +0.20287634 - 1.9026678 +0.50847837 +0.47523891 150 0.28657259 -0.17989808 + 2.6073819 +0.31420703 -0.39449173 180 0.29756923 -0.44461029 + 7.3765067 0.00000000 -0.95269261 210 0.28082350 -0.33962404 + 9.9405132 -0.30790355 -0.74474862 240 0.24483424 +0.03827880 + 9.2004732 -0.49668759 +0.08966829 270 0.20310516 +0.33360150 + 6.1619379 -0.52468566 +0.86179960 300 0.16660105 +0.28219872 + 2.6818065 -0.41543058 +0.81254093 330 0.14104055 -0.02790130 - 0.1024400 -0.22164184 -0.08769243 Si 1.25008989 -0.01899829 + 10.6286684 -0.00230582 +0.04845000 S 2 1.25008991 -0.01899894 + 10.6286755 -0.00236831 +0.04975249 sin ' e sin K' = + 1.5667610. OF THE ORBITS OF THE FOUR INNER PLANETS. 83 E ACTION OF SATURN ON MERCURY. G G' G" +0.410351 90.704227 0.4147226 0.0043526 3 53' 5078 22.5 +0.422480 90.704715 0.4256040 0.0031100 3 56 31.53 45 +0.380202 90.704836 0.4105578 0.0302188 3 59 47.96 67.5 +0.291021 90.704520 0.3703889 0.0790439 4 2 4.89 90 +0.169403 90.703974 0.3081768 0.1383038 4 1 12.34 112.5 +0.034023 90.703579 0.2300012 0.1954823 3 55 22.98 135 -0.095154 90.703652 0.1455476 0.2403156 3 44 5.05 157.5 -0.199537 90.704241 0.0683029 0.2676388 3 29 2.13 180 -0.264126 90.705099 0.0149026 0.2789825 3 15 29.12 202 .5 -0.279250 90.705800 0.0007394 0.2799874 3 11 3.15 225 -0.241953 90.705971 0.0294521 0.2713169 3 17 46.29 247.5 -0.156844 90.705536 0.0901199 0.2467190 3 29 20.24 270 -0.035987 90.704713 0.1675089 0.2031209 3 39 39.24 292.5 +0.102383 90.703922 0.2482641 0.1454820 3 46 28.97 315 +0.236543 90.703554 0.3215440 0.0847000 3 50 7.92 337.5 +0.345001 90.703713 0.3789646 0.0338216 3 52 2.72 O / // v + 0.559279 725.636026 1.8124124 1.2513111 29 41 58.70 Zo +0.559277 725.636026 1.8123850 1.2512850 29 41 56.61 * ACTION OF SATURN ON MERCURY. E log A'o log LO' log # log N log P logQ 0.00150875 0.27501245 0. 17835367 5.6285747 1.9882904 3.8492800 22.5 .00154356 0. 27505883 0. 17840585 5. 6455608 2.0053300 3.8663219 45 .00158664 0.27511623 0.17847042 5.6919307 2.0514967 3.912626(1 67.5 0.00161702 0. 27515671 0. 17851595 5. 7568907 2.1160330 3.9773995 90 0.00160533 0.27514113 0. 17849842 5. 8276384 2.1862035 4.0478488 112 .5 0.00152867 0.27503898 0. 17838353 5. 8929411 2.2508613 4.1127652 135 .00138529 0.27484791 0. 17816860 5. 9445922 2.3018923 4.1639869 157.5 .00120533 0.27460806 0. 17789879 5. 9773700 2.3341639 4.1963617 180 0.00105402 0.27440638 0.17767193 5. 9884810 2.3449566 4.2071875 202.5 0.00100673 0.27434335 0. 17760102 5.9770716 2.3334678 4.1956990 225 .00107884 0. 27443945 0. 17770914 5. 9440470 2.3006205 4.1628231 247.5 .00120882 0. 27461270 0.17790402 5. 8922401 2.2492258 4.1113306 270 .00133101 0. 27477556 0. 17808722 5. 8268942 2.1844672 4.0463801 292.5 .00141515 0. 27488768 0. 17821333 5. 7562165 2.1144600 3.9761077 315 0.00146116 0. 27494901 0. 17828232 5.6914235 2.0503133 3.9116762 337.5 0.00148559 0.27498156 0. 17831893 5. 6452895 2.0046971 3.8658214 2! .01101104 1. 19868812 1. 42524172 6.5435816 7.4082403 2.3018085 2 2 0.01101087 1. 19868787 1. 42524142 6. 5435802 7.4082388 2.3018068 84 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF SATURN ON MERCURY. E logy Ji' J 2 J, p t 3.8492539 90.058195 -0.59752575 - 6.047237 + 3.829727 22.5 3.8663033 89.638288 -0.20995430 - 7.910876 - 3.279413 45 3.9124452 89.669758 +0.36734212 - 8.328272 -10.040194 67.5 3.9769269 90.090673 +0.71855783 - 7.235732 -15.423345 90 4.0470220 90.582478 +0.67967125 - 4.799462 -18.609342 112.5 4.1115969 90.879839 +0.35660262 - 1.390299 -19.113128 135 4.1625507 90.892982 -0.04825504 + 2.472681 -16.858027 157.5 4.1947623 90.670885 -0.36411899 + 6.201244 -12.187337 180 4.2055204 90.332824 -0.49291773 + 9.227617 - 5.812141 202.5 4.1940258 90.018885 -0.40939877 + 11.090997 + 1.296998 225 4.1612018 89.853321 -0.15646464 + 11.507770 + 8.057780 247.5 4.1098562 89.914463 +0.15541932 +10.414614 + 13.440932 270 4.0451660 90.199819 +0.35977661 + 7.978084 + 16.626927 292.5 3.9752380 90.576579 +0.29271946 + 4.569179 + 17.130715 315 3.9111697 90.780941 -0.07365934 + 0.706820 + 14.875613 337.5 3.8656191 90.580690 -0.50178023 - 3.021123 + 10.204923 2, 2.2943297 722.370318* +0.03796748 + 12.718001 - 7.929657 22 2.2943284 722.370302 +0.03804694 + 12.718004 - 7.929655 ACTION OF SATURN ON MERCURY. E F t 10000 X fto 1000000 X So 1000000 X W, 1000 X ft'"' 1000000 XS'> -0.2217173 0.20835581 -0.38501122 - 4.2759258 0.0000000 -1.2520309 22.5 +0.0670688 0.21359630 -0.18752118 - 5.8140290 +2.6067657 -0.5980245 45 -0.2247552 0.23766012 +0.18723103 - 6.8102258 +5.0798256 +0.5659595 67.5 -0.9885705 0.27944181 +0.47990507 - 6.8742610 +7.2389467 + 1.3456245 90 -1.8298399 0.33354940 +0.47167629 - 5.3763783 + 8.6166490 + 1.2184913 112.5 -2.2911663 0.39056810 +0.12052582 1.8384740 +8.6416600 -0.2886458 135 -2.1148434 0.43919690 -0.40799123 + 3.5527836 +7.0044048 -0.9201906 157.5 -1.3919042 0.46950930 -0.83324243 + 9.6804438 +3.9006063 -1.8089208 180 -0.5106652 0.47592790 -0.91983080 +14.8005740 0.0000000 -1.9709759 202.5 +0.0653940 0.45862525 -0.61203702 +17.3393050 -3.8101033 -1.3286969 225 +0.0610980 0.42282850 -0.06578321 +16.6811060 -6.7433594 -0.1483686 247.5 -0.4587079 0.37651300 +0.43874423 +13.4040390 -8.3306788 + 1.0507430 270 -1.1366346 0.32772690 +0.65346841 + 8.8350920 -8.4662365 + 1.6881183 292.5 -1.5401525 0.28276850 +0.49946088 + 4.2959022 -7.3251220 + 1.4004581 315 -1.4203565 0.24587472 +0.10699355 + 0.5601261 -5.2554073 +0.3234187 337.5 -0.8596732 0.22009701 -0.26508243 - 2.2258014 -2.6861019 -0.8453756 2, -7.3977141 2.69112025 -0.35924718 +27.9671518 +0.2358762 -0.4955782 2 2 -7.3977118 2.69111927 -0.3592470? +27.9671246 +0.2365727 -0.4955464 sin - 7.546840 2.572319 - 40.838728 -0.3564792 0.00000000 -0.13280483 45 - 0.473969 2.902866 6.943520 -0.8432739 +0.62046843 -0.02098878 90 - 1.504590 4.048391 + 74.582644 -0.9823294 +1.04582909 +0.19267091 135 -14.059822 5.410853 + 15.278801 -0.1938530 +0.86293520 +0.03446006 180 -17.382080 5.928252 -102.476485 +1.2462639 0.00000000 -0.21958237 225 - 5.500356 5.225873 - 69.412255 +1.8932075 -0.83343288 -0.15655363 270 + 1.222261 3.978026 + 47.038051 +1.2690546 -1.02765154 +0.12151438 315 - 5.177088 2.987389 + 39.388463 +0.3202880 -0.63853471 +0.11906293 , -25.211249 16.526988 - 21.694518 +1.1765099 +0.01817755 -0.03820191 Ii -25.211235 16.526981 - 21.688511 +1.1763686 +0.01143604 -0.02401942 JS lOOOOOOXlffi sin4- 1000000 > < -#ocosv+ OM. + WJW /' \. -, lOOOOOOXTF.coau 1000000 XTF sin ( -sec 2 v> + ll sin vS \ 1000000 X- 2- ft a -0.0816775 -2.5723195 -0.31307783 -0.17046914 4.0868774 45 +2.3415248 -1.7140875 -0.10807474 -0.83631981 - 4.9616693 90 +3.9465628 +0.9815683 +0.63709735 -0.74771500 - 8.0967815 135 +3.2460626 +4.3319665 +0.19167313 -0.02898997 -12.3950199 180 +0.2049530 +5.9282527 -1.09453081 -0.59596603 - 14.2942. r )M> 225 -3.0528880 +4.2563802 -0.77797582 -1.72597460 -11.9712672 270 -3.9027069 +0.7238029 +0.36474303 -1.21550896 - 7.9560519 315 -2.3679844 -1.8134015 +0.28908589 -0.13789041 - 5.1061400 2! +0.1671314 +5.0613044 -0.40576826 -2.72965913 -34.4339707 2 2 +0.1667150 +5.0608577 -0.40529154 -2.72917479 -34.4340964 sin p 1^,0 + cos v Bo (c > = - 0.00000000000024. DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] m = + 0.21975650 TO' p 9.3419417 [dxldt]m = +32.406731 TO' p 1.5106352 [dildt] M =-- 0.55745051 TO' 9.7462063 [rfn/ c s <' 1000000000 1000000000 1000000000 7* + (cosw+cos) +0.12855762 -1.0113711 +0.11654330 +0.02599380 0.0000000 +0.16223015 15 +0.28853773 -1.0855630 +0.15095431. +0.02672256 -0.3910151 +0.21008155 30 +0.43551240 -1.1839703 +0.18420453 +0.02487781 -0.8232930 +0.25617923 45 +0.52994293 -1.3088599 +0.21275230 +0.01862044 -1.2857216 +0.29555816 60 +0.54641763 -1.4594255 +0.23029016 +0.00532100 -1.7533282 +0.31946706 75 +0.48046967 -1.6276742 +0.22753508 -0.01781201 -2.1774255 +0.31512321 90 +0.34977540 -1.7935752 +0.19439994 -0.05167293 -2.4796011 +0.26875615 105 +0.18941983 -1.9243133 +0.12616235 -0.09195653 -2.5651527 +0.17410988 120 +0.04248891 -1.9847155 +0.03108865 -0.12787906 -2.3681413 +0.04283321 135 -0.05148113 -1.9570464 -0.06917608 -0.14733858 -1.9039342 -0.09517474 150 -0.06711060 -1.8525243 -0.15091802 -0.14550282 -1.2730044 -0.20741354 165 +0.00001044 -1.7023416 -0.20114407 -0.12716787 -0.6051233 -0.27625376 180 +0.13212520 -1.5390947 -0.22013939 -0.10126618 0.0000000 -0.30227222 195 + 0.29405223 -1.3852923 -0.21561000 -0.07503510 +0.4924233 -0.29612150 210 +0.44259806 -1.2520945 -0.19638955 -0.05218717 +0.8604054 -0.26990714 225 +0.53811675 -1.1428753 -0.16935246 -0.03375802 + 1.1118587 -0.23300075 240 +0.55512295 -1.0569737 -0.13887026 -0.01942443 + 1.2611694 -0.19133211 255 +0.48911303 -0.9922445 -0.10732663 -0.00839923 + 1.3226839 -0.14811570 270 +0.35776744 -0.9463685 -0.07579537 +0.00013574 + 1.3083458 -0.10478640 285 +0.19621617 -0.9174587 -0.04456334 + 0.00686904 + 1.2273328 -0.06171770 300 +0.04762640 -0.9042927 -0.01348260 +0.01232297 + 1.0864013 -0.01870356 315 -0.04835263 -0.9063942 +0.01780841 +0.01685710 +0.8903706 +0.02473967 330 -0.06620421 -0.9240677 +0.04973149 +0.02067163 +0.6425655 +0.06916321 345 -0.00136711 -0.9584216 +0.08262385 +0.02378861 +0.3452194 +0.11498675 V *-l + 2.90467772 -5.9084737 +0.01066288 -0.40860954 -3.5384806 +0.02421404 2* +2.90467759 -5.9084840 +0.01066372 -0.40860959 -3.5384837 +0.02421607 sin

+ cos

+0.20122394 0.42126107 -5.890097 -0.11153496 0.0000000 -0.008199111 30 +0.06017487 0.40675651 -4.150418 -0.13232119 +0.2828447 -0.005772122 60 -0.29485277 0.40441131 -0.984602 -0.11894044 +0.4858527 -0.001365876 90 -0.50823894 0.41101802 +0.151227 -0.07580674 +0.5682286 +0.000209069 120 -0.36563277 0.41646740 -1.349097 -0.01272800 +0.4969244 -0.001858754 150 -0.00856116 0.41403810 -2.948800 +0.05391799 +0.2845157 -0.004052670 180 +0.20680805 0.40710579 -1.730893 +0.10632289 0.0000000 -0.002376680 210 +0.06559223 0.40536093 +2.554045 +0.13208012 -0.2785530 +0.003510140 240 -0.29105383 0.41526071 +7.029019 +0.12494379 -0.4954847 +0.009684416 270 -0.50707628 0.43289840 +7.732079 +0.08349760 -0.5984781 +0.010689527 300 -0.36741788 0.44451245 +3.199250 +0.01546615 -0.5340294 +0.004438118 330 -0.01281582 0.43893384 -3.068000 -0.05784756 -0.3052198 -0.004266768 s, -0.91092526 2.50901873 +0.273580 +0.00352943 -0.0467370 +0.000322113 S 2 -0.91092510 2.50900580 +0.270133 +0.00352022 -0.0466619 +0.000317176 _ [fl sin v + (coav+coaE)S a ] -0.01178019 30 +0.19740436 60 +0.35044516 90 +0.41100745 120 +0.36078900 150 +0.21090709 180 +0.00346179 210 -0.20590981 240 -0.36545661 270 -0.43294230 300 -0.38308894 330 -0.22607885 S, -0.04562979 2 2 -0.04561206 sin + 2.8021516 0.06350844 -0.9770071 - 3.5365233 0.00000000 -1.3600097 30 - 0.4518739 0.06287361 +0.1223535 - 6.3268753 +0.04372018 +0.1701610 60 - 0.0998524 0.06461988 +1.2993923 - 7.7066718 +0.07763320 + 1.8025651 90 + 3.5312016 0.06860530 +2.2776450 - 7.2896438 +0.09484620 +3.1488232 120 + 6.8298095 0.07412522 +2.6943730 4.7318401 +0.08844541 +3.7122436 150 + 6.5062493 0.07970667 +2.2590820 - 0.1661617 +0.05477227 +3.1047600 180 + 2.8799133 0.08340064 +1.0358414 + 5.2294311 0.00000000 + 1.4223079 210 - 0.4389788 0.08380114 -0.4699266 + 9.3597858 -0.05758587 -0.6458416 240 - 0.1552801 0.08095204 -1.6671420 + 10.5057004 -0.09659109 -2.2969487 270 + 3.4223024 0.07610223 -2.2705920 + 8.5365166 -0.10521063 -3.1390719 300 + 6.6966141 0.07080065 -2.2876620 + 4.6568417 -0.08505867 -3.1735299 330 + 6.3844559 0.06631737 -1.8208410 + 0.3034394 -0.04611486 -2.5323023 Zi + 18.9533560 0.43740687 -0.0977956 + 4.4169380 -0.01557115 +0.1066283 S 2 + 18.9533565 0.43740632 -0.0977209 + 4.4170612 -0.01557271 +0.1065284 \Ro sin v 1 Ro cos v E 1 (T \ n 1000 X W cos u 1000 X W sin u -2-flo + ( COS v+ COS E)S ( + 1 sec 2 100000 X <"' +0.06417143 1.3439836 -0.81929943 -0.14785238 0.0000000 -1.1404782 30 -0.01379964 1.3378723 -0.27202988 -0.15783804 +0.9303113 -0.3783208 60 -0.00425156 1.3439282 +0.28211779 -0.12622122 +1.6145721 +0.3913643 90 +0.08385809 1.3588647 +0.54292475 -0.06059607 +1.8786178 +0.7505883 120 +0.16287446 1.3765538 +0.50194299 +0.02305118 +1.6424891 +0.6915652 150 +0.15397825 1.3917093 +0.38822446 +0.10305711 +0.9563448 +0.5335546 180 +0.06595223 1.4018961 +0.39768404 +0.15712801 0.0000000 +0.5460578 210 -0.01357095 1.4066592 +0.47042587 +0.16914113 -0.9666180 +0.6465278 240 -0.00563629 1.4053074 +0.35504098 +0.13510528 -1.6767973 +0.4891671 270 +0.08123098 1.3964225 -0.08725072 +0.06503287 -1.9305409 -0.1206233 300 +0.15970886 1.3800824 -0.66641223 -0.02064190 -1.6580071 -0.9244718 330 +0.15112247 1.3602249 -0.99122256 -0.09822805 -0.9458544 -1.3785254 2i +0.44281913 8.2517515 +0.05107414 +0.02056897 -0.0777432 +0.0532044 2 2 +0.44281920 8.2517529 +0.05107192 +0.02056895 -0.0777394 +0.0532012 E 1000 X[Ro sin v + (cosv+cosE)S<>] 1000 x| -Ro cost) , 1000 X Wo cos u 1000 X W sin u - 2 - /; \ . 1 (j ~\- 1 - SGC^ (f -\~\ isin v *oo I -0.0163860 -1.3439836 -0.086632804 -0.11981268 -0.0026695736 30 +0.6682014 -1.1590573 -0.015602101 -0.15706504 -0.0026598877 60 + 1.1706512 -0.6601482 +0.052284193 -0.11488325 -0.0026786592 90 + 1.3587959 +0.0201574 +0.049346057 -0.03516889 -0.0027177294 120 + 1.1829926 +0.7039968 -0.022943878 +0.00222159 -0.0027625280 150 +0.6850081 + 1.2114930 -0.093907380 -0.04245200 -0.0027999142 180 -0.0079537 + 1.4018961 -0.092067787 -0.12732924 -0.0028229786 210 -0.7073256 + 1.2159042 -0.017870798 -0.16819438 -0.0028299915 240 -1.2164221 +0.7037025 +0.054502775 -0.12362395 -0.0028202318 270 -1.3963839 +0.0113009 +0.052437627 -0.03846518 -0.0027928449 300 -1.2058917 -0.6713715 -0.020520787 +0.00223277 -0.0027507212 330 -0.7013026 -1.1657067 -0.089781837 -0.03984932 -0.0027043278 2i -0.0930097 +0.1340921 -0.115378288 -0.48119476 -0.0165046924 2 2 -0.0930067 +0.1340915 -0.115378432 -0.48119481 -0.0165046855 sin (p \A i (<) + cos (f Bo (c) = + 0.0000000000028. OF THE ORBITS OF THE FOUR INNER PLANETS. Ill DIFFERENTIAL COEFFICIENTS. u log coeff. [de/dt] M = - 32.654970 m' n 1.5139493 [d x /dt] m = +6879.8159 TO' p 3.8375768 [di/dt] M = - 40.510972 TO' n 1.6075727 [<&/#], = -2854.6599 TO' n 3.4555544 [dir/eft]oo = +6874.8117 TO' p 3.8372608 [dL/dt] m = -5799.7390 TO' n 3.7634084 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. = -0.031162921 [dxldt] -0.15178108 0.21824849 -0.02789044 -0.023072725 0.00000000 -0.03882394 30 -0.76855930 0.21811010 -0.02299898 -0.017634117 +0.15166640 -0.03198543 60 -1.16657105 0.21852784 -0.04315220 -0.007491896 +0.26253554 -0.05986233 90 -0.94659087 0.21909707 -0.07037836 +0.004695343 +0.30289965 -0.09729742 120 -0.32871848 0.21963056 -0.06653491 +0.015732681 +0.26206084 -0.09167023 150 +0.06775179 0.22023472 -0.01412236 +0.022675427 +0.15133936 -0.01940900 180 -0.15599309 0.22103492 +0.06128516 +0.023605169 0.00000000 +0.08415031 210 -0.77884429 0.22186276 +0.10918347 +0.018202966 -0.15245807 +0.15005585 240 -1.18017310 0.22225231 +0.09717617 +0.007900358 -0.26518905 +0.13388702 270 -0.95986467 0.22180036 +0.03944793 -0.004483114 -0.30663694 +0.05453639 300 -0.33810816 0.22057741 -0.01719598 -0.015556236 -0.26499777 -0.02385490 330 +0.06476239 0.21916657 -0.03744378 -0.022338577 -0.15240100 -0.05207429 2, -3.32134496 1.32027153 +0.00368780 +0.001117351 -0.00559044 +0.00382593 -"2 -3.32134495 1.32027158 +0.00368792 +0.001117928 -0.00559070 +0.00382610 E m v [ff ,' 100 Xf-Socost; J p T 1000 X TFo cos u 1000 X TFo sin u 1000X-2-Ro 1 + ^sec z Y,+ lJsin!%Sol a -0.00055781 -0.21824849 -0.013519262 -0.018697064 -0.43351010 30 +0.10930468 -0.18874417 -0.001743111 -0.017547753 -0.43363510 60 +0.18946670 -0.10888722 +0.003103342 -0.006818927 -0.43556030 90 +0.21909678 +0.00009174 -0.003823625 +0.002725091 -0.43819414 120 +0.19022138 +0.10978821 -0.015659442 +0.001516257 -0.44076418 150 +0.10971092 +0.19096268 -0.020662231 -0.009340619 -0.44307990 180 -0.00122570 +0.22103492 -0.013831594 -0.019129016 -0.44509495 210 -0.11216824 +0.19142744 -0.001923256 -0.018101079 -0.44635520 240 -0.19279204 +0.11058265 +0.003187081 -0.007228982 -0.44602556 270 -0.22179790 +0.00072885 -0.003614847 +0.002651640 -0.44360072 300 -0.19184805 -0.10885437 -0.015464964 +0.001682669 -0.43964535 330 -0.11088191 -0.18905102 -0.020417779 -0.009062352 -0.43573540 Si -0.00673552 +0.00541570 -0.052184839 -0.048675063 -2.64060044 2 2 -0.00673567 +0.00541552 -0.052184849 -0.048675069 -2.64060046 sin ' sin i 9 i 369.8294733 28.016529 - 8.627090 60.35594 367.496220 30 370.1021929 30.912376 - 2.059265 3.43885 367.496155 60 370.0319613 30.136215 + 5.076263 20.89679 367.496140 90 369.6376057 25.896024 + 10.867539 95.77536 367.496165 120 369.0247981 19.327964 + 13.762797 153.60480 367.496245 150 368.3577351 12.191933 + 12.986248 136.75991 367.496230 180 367.8151465 6.400029 + 8.745974 62.03086 367.496275 210 367.5424142 3.504185 + 2.178150 3.84740 367.496245 240 367.6126214 4.280346 - 4.957378 19.92946 367.496135 270 368.0069649 8.520535 - 10.748653 93.69136 367.496165 300 368.6197847 15.088597 -13.643909 150.96247 367.496240 330 369.2868724 22.224622 -12.867361 134.26735 367.496240 ^ 2212.9337853* 103.2496801 + 0.356657} 467.78032 2204.977255 ^ 2212.9337852 103.249675 + 0.356658 467.78025 2204.977200 E G G' G" + 1.522310 367.495771 1.6238940 0.1011370 O 3 55 40^93 30 + 1.795095 367.496129 1.8003166 0.0051977 4 1 9.46 60 + 1.724880 367.495985 1.7573874 0.0323564 4 5.50 90 + 1.330495 367.495453 1.5044398 0.1732316 3 52 23.80 120 +0.717605 367.495105 1.0990547 0.3803068 3 38 8.91 150 +0.050560 367.495217 0.6363646 0.5847917 3 18 7.21 180 -0.492075 367.495816 0.2329563 0.7245710 2 55 22.89 210 -0.764775 367.496217 0.0134531 0.7782012 2 39 26.72 240 -0.694455 367.495988 0.0708724 0.7651843 2 43 51.72 270 -0.300145 367.495472 0.3769271 0.6763791 3 3 57.85 300 +0.312600 367.495121 0.8167025 0.5029833 3 25 59.41 330 +0.979685 367.495243 1.2686692 0.2879853 3 43 48.64 2, +3.090865 2204.973786 5.6008673 2.5065388 20 39 9.36 2 2 +3.090915 2204.973731 5.6001704 2.5057866 20 38 53.68 * 6a 2 + 3aV + 6[a' 2 - 2kaa'ee' cos K] = 2212.9337852. t 6[a'V - kaa'e cos K] = + 103.249685. t 6fc'aa' cos - 4.0226412 0.02650922 -0.05811066 -2.918780 0.00000000 -0.08089097 30 - 0.1770896 0.02652281 -0.01305234 -3.621493 +0.01844306 -0.01815231 60 1.6152186 0.02667654 +0.04940526 -3.356828 + 0.03204873 +0.06853681 90 - 6.9332675 0.02691093 +0.05269544 -2.182313 +0.03720412 +0.07285096 120 -10.8407275 0.02710189 -0.01759673 -0.401343 +0.03233767 -0.02424436 150 - 9.4434565 0.02715609 -0.09660941 +1.506695 +0.01866093 -0.13277471 180 - 4.1342719 0.02707758 -0.10424233 +3.017072 0.00000000 -0.14313458 210 - 0.2013093 0.02694790 -0.02527822 +3.713882 -0.01851786 -0.03474102 240 1.5455370 0.02684358 +0.07399797 +3.412656 -0.03202946 +0.10195266 270 - 6.7883563 0.02677475 +0.10841711 +2.207472 -0.03701585 +0.14988562 300 -10.6594103 0.02669990 +0.05468656 +0.432404 -0.03207678 +0.07586323 330 - 9.2743255 0.02659629 -0.02803268 -1.439065 -0.01849416 -0.03898596 2! -32.8178065 0.16090871 -0.00185993 +0.185181 +0.00028016 -0.00191721 2, -32.8178047 0.16090877 -0.00186010 +0.185178 +0.00028024 -0.00191742 1000 X f Bo sin D + 1000 X [- So cos v + r E , \ 1 /r \ 1 100000 X ^o C08 " 1000000 X We sin u (cos v + cos E] So 1 (~ secV + 1 1 sin vSo \ 1000 X -2- Ro -0.00011622 -0.02650922 -1.710234 - 2.365243 -0.05265561 30 +0.01331757 -0.02293687 -0.357980 - 3.603757 -0.05273125 60 +0.02323048 -0.01311517 +1.390488 - 3.055297 -0.05317053 90 +0.02690995 +0.00028955 +1.777154 - 1.266575 -0.05382187 120 +0.02340803 +0.01365914 +0.399475 - 0.038680 -0.05438924 150 +0.01366523 +0.02346772 -1.372927 - 0.620648 -0.05463405 180 +0.00020848 +0.02707758 -1.767867 - 2.444894 -0.05452574 210 -0.01335043 +0.02340859 -0.392395 - 3.693094 -0.05421519 240 -0.02324178 +0.01343114 +1.376698 - 3.122646 -0.05387086 270 -0.02677488 -0.00003361 +1.779939 - 1.305659 -0.05354950 300 -0.02314722 -0.01330732 +0.429867 - 0.046772 -0.05321706 330 -0.01342562 -0.02295918 -1.315326 - 0.583802 -0.05287735 Zi +0.00034177 +0.00123615 +0.118427 -11.073532 -0.32182904 2 2 +0.00034182 +0.00123620 +0.118465 -11.073535 -0.32182921 sin v Mi (t) + cos v B Ft 2.3579959 902.1174996 +0.0278169 -43.343250 -165.19752 45 2.3595087 903.0233587 +1.1892143 -32.830864 -124.26237 90 2.3636147 904.1640829 +0.1518779 - 2.911684 9.86927 135 2.3678929 903.3068137 -1.1744691 +28.888013 + 110.97189 180 2.3698530 902.1221024 -0.3409776 +43.940408 + 167.47400 225 2.3683624 902.9705135 +0.9081699 +33.428015 + 126.53886 270 2.3642798 904.1592634 +0.1562063 + 3.508843 + 12.14577 315 2.3599794 903.2945923 -0.9279474 -28.290864 -108.69539 Si 9.4557434 3612.5629483* -0.0050765 + 1.194317 + 4.55298 2s 9.4557434 3612.5952782 -0.0050323 + 1.194300 + 4.55299 E Pi 100000 X Bo 100000000 X So 1000000 X Wo 100000 X B<> 1000000 X S<> +0.5839042 0.6821434 -0.4573134 -0.9883466 0.0000000 -0.006365877 45 -3.9412736 0.6867470 +2.3281642 -0.7513860 +0.6746065 +0.032343148 90 -0.4777116 0.6961065 +0.3193229 -0.0672756 +0.9623607 +0.004414608 135 +4.0782664 0.7008255 -2.3820088 +0.6740551 +0.6818058 -0.032772474 180 +0.6001079 0.7010447 -0.2565237 +1.0297346 0.0000000 -0.003522313 225 -4.0073139 0.7005531 +2.5294517 +0.7805505 -0.6815408 +0.034801040 270 -0.5873116 0.6967370 +0.4002346 +0.0811602 -0.9632323 +0.005533205 315 +3.9893101 0.6879052 -2.4698966 -0.6479491 -0.6757442 -0.034312118 Si +0.1189889 2.7760316 +0.0057204 +0.0552726 -0.0008716 +0.000059623 y +0.1189890 2.7760308 +0.0057105 +0.0552705 -0.0008727 +0.000059596 E inonm v r ; , 100000 X -Bo cos w ItAAJlH) X l/VO Sin V innnnn ^, lir , , . _, 100000 X Wo cos u + (cos v+cos)S ] , IT 2 N . 1 \a sec *" r l " J 100000 X W sin u 1000 X - 2 - Bo a -0.00091463 -0.68214344 -0.057911307 -0.080091019 -0.013549511 45 + 0.49123773 -0.47994176 +0.012282960 -0.074127847 -0.013668483 90 +0.69608806 +0.00540218 +0.005478547 -0.003904555 -0.013922131 135 +0.49653747 +0.49458425 -0.066499046 -0.011017258 -0.014084333 180 + 0.00051305 +0.70104468 -0.060336403 -0.083444904 -0.014116841 225 -0.49655471 +0.49418261 +0.012013897 -0.077124930 -0.014078857 270 -0.69672347 +0.00396738 +0.006544151 -0.004800407 -0.013934740 315 -0.49226067 -0.48055578 -0.064023059 -0.009971443 -0.013691533 Si -0.00103699 +0.02827080 -0.106225012 -0.172240885 -0.055523223 S 2 -0.00104018 +0.02826932 -0.106225248 -0.172241478 -0.055523206 sin gto) -0.3347370 -0.9146346 +0.03939096 +0.012865148 0.0000000 +0.04006286 30 -0.1102483 -0.9755942 +0.08729250 +0.020012484 -0.4949864 +0.08857904 60 +0.5661785 -1.0850638 +0.12713088 +0.022775691 -0.9476313 +0.12820596 90 + 1.0162060 -1.2358930 +0.14090497 +0.016043819 -1.2358930 +0.14090497 120 +0.7859945 -1.3865198 +0.10290744 -0.005719611 -1.1907761 +0.10205179 150 +0.1010653 -1.4553467 +0.01142556 -0.036530916 -0.7172557 +0.01126198 180 -0.3579653 -1.3946588 -0.08289463 -0.055794474 0.0000000 -0.08152732 210 -0.1348464 -1.2530893 -0.12959913 -0.053749951 +0.6175749 -0.12774376 240 +0.5468018 -1.1065943 -0.12737525 -0.039380718 +0.9503695 -0.12631602 270 + 1.0072426 -0.9942912 -0.09740907 -0.022874526 +0.9942912 -0.09740907 300 +0.7898462 -0.9252302 -0.05560180 -0.008440800 +0.8080489 -0.05607200 330 +0.1166998 -0.8987688 -0.00911126 +0.003338197 +0.4560076 -0.00924555 Zi + 1.9961187 -6.8127015 +0.00355760 -0.073694764 -0.3799890 +0.00640527 * + 1.9961190 -6.8129832 +0.00350357 -0.073760893 -0.3802614 +0.00634761 E . Rocosv Ho sm v ,,, , . , . . . m o , l r i \ i\ o " o cos (v + JT) TV o sm (v + IT) + (cosv+cosE)S +(-sec 2 ip + llsmv + cos ? Bo M = + 0.00000006. 126 THE SECULAR VARIATIONS OP THE ELEMENTS DIFFERENTIAL COEFFICIENTS. log coeff. [de!dt]w = - 8710J780TO' n 3.9400270 [d x /dt] M = [dTT/dt] m =--824986.23 TO' n 5.9164467 [dp/dt]*, = + 18814.333 TO' p 4.2744888 [dqfdt] m = - 15740.112 TO' n 4.1970078 [dL/dt] w = +2948201.7 w' p 6.4695572 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. = -o(X)l 1613570 [d x /dt] m = [drfdt] m = -0.10999815 [dpfdt] M = +0.0025085775 [dq/dt] w = -0.0020986812 [dL/dt] M = +0.39309355 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] m -0.00116 -0.00116 -0.001 16136 e[dir/dt]w -0.00184 -0.00184 -0.00184479 [dp/dt] M +0.00250 +0.00251 +0.00250858 [dq/dt]w -0.00209 -0.00210 -0.00209868 [dL/dt] w +0.3931 +0.39309355 NOTES. Although / and e' are here very large, the error in the approximate test with e, G, G', G" and 6 is small in consequence of the smallness of the factor a'. As we approach the end of the computation, however, the difference of the sums steadily increases, indicating the rather slow convergence of the perturbing function. The greatest difference is in the coefficient [dTr/dt] OQ where terms from the fifth to the eleventh orders inclusive amount to one sixtieth part of the remaining terms and produce an effect of 0".0018 in the value of [dir/dt] 00 . A division into twelve parts is thus necessary in this case, but a comparison with the computation of the action of Mars on Mercury, and especially with the similar case of Mercury on Venus, where twenty-four points of division are employed, renders it evident that more than twelve points are in the present case unnecessary. OF THE ORBITS OF THE FOUR INNER PLANETS. 127 The agreement with previous values is exact. The results obtained by HILL in the "New Theory, 11 pages 511 and 512, are, These are, however, Venus on the Earth. = +0.0025049 [dq/dt] m = -0.0020956 but provisional -values. (See the note to the computation of E A ACTION logB OF VENUS ON i THE EARTH. e' o / ,, O 1 H 1.49844749 9.8537612 331 3.89 0.07950559 7 55.62 30 1.50411382 9.8546442 1 19 46.170 0.08070333 5 48 28.79 60 1.51484369 9.8567645 31 34 37.20 0.08262793 4 19 13.62 90 1.52786583 9.8597314 61 38 57.20 0.08465948 3 12 16.55 120 1.53974201 9.8626537 91 29 35.875 0.08634022 2 33 43.11 150 1.54723847 9.8644870 121 8 43.24 0.08741009 2 9 29.44 180 1.54824407 9.8645724 150 43 29.14 0.08768573 1 52 5.43 210 1.54243719 9.8629683 180 22 35.176 0.08700647 1 54 16.46 240 1.53142595 9.8603568 210 12 5.09 0.08536569 2 37 52.10 270 ' 1.51826327 9.8576205 240 13 17.66 0.08309965 4 8 28.42 300 1.50652764 9.8554195 270 23 50.222 0.08090038 5 56 51.93 330 1.49931255 9.8540767 300 40 21.95 0.07954648 7 7 42.75 Z, 9.13923084* 9.1535280 1085 23 41.42 0.50242554 24 20 41.81 2 2 9.13923113 9.1535281 905 23 41.40 0.50242550 24 20 42.41 E 1000 X r' lOOOXs G G' 1000000 X G" e O O , ,, 2.7380635 0.002936418 0.97594422 0.522484505 5.79 47 1 40.84 30 2.3200483 0.000006753 0.98353171 0.520557558 0.04 46 40 41.61 60 1.7893068 0.003473631 0.99543723 0.519388564 6.67 46 14 52.33 90 1.3770128 0.009946420 1.00773136 0.520128988 18.98 45 55 31.27 120 1.1340363 0.013007536 1.01774388 0.521998108 24.54 45 44 23.02 150 0.9732049 0.009615238 1.02406979 0.523162060 17.95 45 37 23.13 180 0.8464697 0.003140184 1.02571566 0.522509836 5.92 45 32 21.65 210 0.8529468 0.000000563 1.02173849 0.520674148 0.00 45 32 59.47 240 1.1449685 0.003259143 1.01199593 0.519411649 6.09 45 45 34.89 270 1.7299249 0.009581104 0.99828868 0.519968638 18.53 46 11 45.77 300 2.3843853 0.012589278 0.98467983 0.521847851 24.49 46 43 7.27 330 2.7841227 0.009256115 0.97615654 0.523149586 18.07 47 3 38.83 Zi 10.0372301 0.038406190 6.01151675 3.127640513 73.50 277 2 0.00 2 2 10.0372604 0.038406192 6.01151657 3.127640978 73.57 277 2 0.08 * 6o 2 + 3a 2 e 2 + 6[o' 2 - 2kaa'ce' cos K] = 9 13923110. 128 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON THE EARTH. E logtfo log Lo' log AT log N log P logO 0.26147483 0.60779696 0.54775634 0.2626427 0.8915846 0.8209715 30 0.25683878 0.60207812 0.54149917 0.2549482 0.8714495 0.8036590 60 0.25122074 0.59513848 0.53390180 0.2468811 0.8459860 0.7827661 90 0.24707162 0.59000660 0.52828039 0.2420422 0.8253429 0.7669697 120 0.24470700 0.58707937 0.52507272 0.2404872 0.8122693 0.7579113 150 0.24322990 0.58524987 0.52306751 0.2402489 0.8048244 0.7529792 180 0.24217345 0.58394092 0.52163264 0.2400756 0.8019574 0.7506787 210 0.24230579 0.58410492 0.52181242 0.2408209 0.8062462 0.7532935 240 0.24496050 0.58739327 0.52541673 0.2444416 0.8214721 0.7646769 270 0.25055055 0.59430993 0.53299440 0.2516543 0.8474359 0.7853846 300 0.25737182 0.60273603 0.54221917 0.2600985 0.8762226 0.8090118 330 0.26191246 0.60833646 0.54834645 0.2649133 0.8941948 0.8237322 2i 1.50190834 3.56408503 3.19599940 1.4946267 5.0494920 4.6860161 S 2 1.50190910 3.56408590 3.19600034 1.4946278 5.0494937 4.6860181 E log V Ji' 1000 X Ji 1000 X J 3 1000 X Ft 0.8209685 0.522862677 - 3.0632731 + 1 2.629050 + 1.2372987 30 0.8036589 0.521939851 -0.7336504 +24.877829 -0.0593369 60 0.7827628 0.521368465 +2.4504401 +30.338229 -1.3457284 90 0.7669603 0.521723193 +5.0835797 +27.547130 -2.2771885 120 0.7578992 0.522632205 +5.8345100 +17.252379 -2.6041325 150 0.7529704 0.523191642 +4.4234178 + 2.212471 -2.2389562 180 0.7506758 0.522862807 + 1.7386808 -13.542647 -1.2795084 210 0.7532935 0.521968683 -0.9069972 -25.791387 +0.017127o 240 0.7646739 0.521377068 -2.6859269 -31.251723 + 1.3035189 270 0.7853753 0.521675619 -3.5987100 -28.460585 +2.2349789 300 0.8089994 0.522582150 -4.0331250 -18.165873 + 2.5619225 330 0.8237230 0.523186452 -4.0263352 - 3.126030 + 2.1967465 2, 4.6859794 3.133685372* +0.2413060 - 2.740585 -0.1266292 2 2 4.6859813 3.133685439 +0.2413047 - 2.740573 -0.1266288 * S,(J,' - G") = 3. 133611872. 2,(J,' - G") = 3. 133611869. OF THE ORBITS OF THE FOUR INNER PLANETS. 129 ACTION OF VENUS ON THE EARTH. E 1000 XF 3 RO 100 x So w,, --RO <> a +0.06535471 - 1.8283274 -1.0644424 +0.08413477 1.7976643 0.0000000 30 -0.00196302 - 1.7898617 -0.5109526 +0.15828193 1.7638656 -0.9081206 60 -0.00570449 - 1.7535729 +0.5420211 +0.18393250 1.7388680 -1.5314810 90 +0.05916590 - 1.7367356 +1.4494077 +0.16147390 1.7367356 -1.7367356 120 +0.12885901 - 1.7362036 +1.6510300 +0.09963433 1.7507629 -1.4910928 150 +0.13426042 - 1.7386892 +1.0760758 +0.01338361 1.7639423 -0.8568990 180 +0.06988985 - 1.7361351 +0.1682926 -0.07583153 1.7652520 0.0000000 210 -0.00059748 - 1.7337538 -0.5029615 -0.14614352 1.7589352 +0.8544665 240 -0.00787443 - 1.7442502 -0.6981624 -0.18183297 1.7588768 + 1.4980034 270 +0.05404190 - 1.7747204 -0.6225129 -0.17324740 1.7747204 + 1.7747204 300 +0.12215392 - 1.8154792 -0.6714245 -0.11610019 1.8002552 + 1.5855471 330 +0.12777090 - 1.8402326 -0.9613070 -0.01982985 1.8135046 +0.9336770 ?i +0.37267857 -10.6139684 -0.0726856 -0.00606309 10.6116792 +0.0609767 2 2 +0.37267862 -10.6139933 -0.0722505 -0.00608133 10.6117037 +0.0611087 ,-, . Ra'cOS V M S + (cost)+cosE)So + ( -sec ! ^+lJsint>/So WL, sin ( + IT) -0.010825990 -0.0212889 +1.8283274 -0.01513166 +0.08276286 30 -0.005184831 -0.9168211 +1.5373039 -0.10351881 +0.11973727 60 +0.005466048 -1.5259137 +0.8639706 -0.17411620 +0.05928500 90 +0.014494077 -1.7367344 -0.0001389 -0.15833153 -0.03170097 120 +0.016373004 -1.5075995 -0.8612810 -0.07497804 -0.06561473 150 +0.010606704 -0.8754611 -1.5022509 -0.00439303 -0.01264209 180 +0.001655167 -0.0033659 -1.7361351 -0.01363832 +0.07459502 210 -0.004957609 +0.8630786 -1.5036464 -0.09371241 +0.11214236 240 -0.006923567 + 1.5048615 -0.8818403 -0.17035373 +0.06358327 270 -0.006225129 + 1.7745751 -0.0173138 -0.17092102 -0.02829602 300 -0.006771025 + 1.5786949 +0.8963895 -0.08955312 -0.07388837 330 -0.009754749 +0.9169364 +1.5955426 -0.00682218 -0.01861936 2i -0.001026363 +0.0253885 +0.1094311 -0.53777107 +0.14072305 2i -0.001021537 +0.0255735 +0.1094965 -0.53769898 +0.14062119 sin

= - 0.0000000083. 130 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. u log coeff. [de/dt] w = + 5503.0089 m' p 3.7406002 [dx/dt\ = [dirfdt] = +1409586.4 TO' p 6.1490917 [dp/dt}^ = + 30388.832 TO' p 4.4827140 [dq/dt] m = - 116164.73 TO' n 5.0650743 = +4584354.6 TO' p 6.6612782 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/(ft] M = + 0.013483339 [dx/dt] = [dTr/dt] w = + 3.4537341 [dp/dt] w = + 0.074457966 [dq/dt]oo = - 0.28462399 [dL/dt] w = +11.232473 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. TO' [de/dt] m + 0.01344 +o'.01348 + 0.0134833 e[dw/dt] + 0.05796 +0.05792 + 0.0579231 [dpldt] M + 0.07450 +0.07446 + 0.0744580 [dq/dt]oo - 0.28454 -0.28462 - 0.2846240 [dL/dt] w + 11.2298 + 11.232473 NOTES. This computation is of special interest because, notwithstanding the low eccen- tricities of both the Earth and Venus, the perturbing function is but slowly con- vergent for this case. In 1893, the computation was effected by MR. R. T. A. INNES who employed HILL'S second modification of GAUSS'S method, using in the work manuscript tables prepared by himself. (See M. N., Vol. LIII, No. 6. The tables were afterward published in M. N., Vol. LIV, No. 5.) The values of [dp/dt] 00 and [dq/dt]oo were also obtained by HILL in the "New Theory," pages 511 and 512. As the results of INNES differed considerably in some cases from those hitherto obtained, particularly in the case of [de/dt] o, which agreed to the first two figures only with the values of LEVERRIER and NEWCOMB, and in the case of [dq/dt] QO , which OF THE ORBITS OF THE FOUR INNER PLANETS. 131 differed in the fourth figure from the value given by HILL, and in order to make the comparison more exact, the roots in the present paper were computed by the formulas of the second method, their values being afterward verified by those of the first. It was found that the functions tabulated by MR. INNES are substantially correct, though the last two significant figures of all functions from R to the end usually differ, doubtless owing to the inaccuracy of the tables employed by MR. INNES. Using the values as given by him, all of this part of his computation was duplicated, with the result that an error was found in his value of [de/dt] 00 , while for [dq/dt] a and the other coefficients his values were found to be substantially correct. The various values here referred to are as follows: Innes. Hill. [de/dt]oo e[dw/dt]m [dp/dflw, [dq/dtloo + 0.013476* + 0.057915 + 0.074459 - 0.284623 + 11.232490 a +0.0744329 -0.2845280 It will be noticed that the results of INNES are in almost exact accordance with those here given. The disagreement of the value of [dqldt] 00 as derived by GAUSS'S method with that found by HILL is, however, a more serious matter, and is almost the sole cause of the considerable disagreement of the values of this variation in the complete perturbations of the Earth's orbit, the values of [dqldt] OQ from the action of all of the other planets except Venus agreeing with those obtained by HILL very exactly. Using the values tabulated on page 510 of the "New Theory " and the formulas of page 511, I have duplicated the computation by HILL'S methods and find the same results as he obtained. It is to be noticed that the theory of the motion of the ecliptic here given by HILL was to serve a temporary purpose only, the numerical values of the coefficients stated by LEVERRIER in the Annales, Vol. II, pages 94 to 96, being employed without a re-computation of them. * The uncorrected value was + 0".013156. 132 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E A B COS e /; -in g h 3.12005845 -0.6857946 + 1.1901000 0.028604007 2.3106194 22.5 3.04885416 -1.0809801 +0.7480691 0.011301685 2.3059358 45 3.01959381 -1.2762880 +0.1890610 0.000721878 2.3030821 67.5 3.03677529 -1.2419833 -0.4018201 0.003260792 2.3034537 90 3.09782583 -0.9832901 -0.9346186 0.017641228 2.3070230 112.5 3.19346899 -0.5395909 -1.3282200 0.035628705 2.3122967 135 3.30912609 +0.0215645 -1.5227032 0.046826348 2.3167796 157.5 3.42714623' +0.6147456 -1.4884581 0.044743825 2.3179851 180 3.52951891 + 1.1496460 -1.2306997 0.030588915 2.3148501 202.5 3.60064084 + 1.5448315 -0.7886687 0.012561720 2.3089820 225 3.62970226 + 1.7401394 -0.2296607 0.001065206 2.3043625 247.5 3.61232195 + 1.7058351 +0.3612206 0.002635147 2.3044350 270 3.55118902 + 1.4471417 +0.8940191 0.016141855 2.3088270 292.5 3.45562818 + 1.0034423 + 1.2876203 0.033483868 2.3139342 315 3.34017005 +0.4422870 + 1.4821032 0.044362582 2.3163153 337.5 3.22234876 -0.1508942 + 1.4478582 0.042336214 2.3148421 S, 26.59718442* + 1.8554059f -0.16239891 0.185952019 18.4818589 2 2 26.59718440 + 1.8554060 -0.1623987 0.185951956 18.4818645 * 8a s + 4a 8 e' + 8[a' ! - 2kaa'ee' cos A'] = 26.59718442. t 8[a'V - kaa'e cos K] = + 1.8554056. t - Sk'aa' cos v ' e sin A" = - 0.1623983. E OF THE ORBITS OF THE FOUR INNER PLANETS. ACTION OF MAES ON THK EARTH. G G' G" 133 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5 2, ?2 0.7892434 0.7227227 0.6963160 0.7131259 0.7706071 0.8609765 0.9721508 . 1.0889654 1.1944730 1.2714631 1.3051440 1.2876912 1.2221663 1.1214982 1.0036591 0.8873110 7.9537596 7.9537539 2.3024091 0.8127396 0.0152860 36 42 22.96 2.3028298 0.7325284 0.0066997 34 27 16.75 2.3028870 0.6969608 0.0004498 33 23 4.72 2.3025627 0.7159948 0.0019779 33 55 44.11 2.3020189 0.7853689 0.0097577 35 54 24.65 2.3015508 0.8891330 0.0174106 38 41 59.61 2.3014739 1.0076482 0.0201918 41 42 38.47 2.3019609 1.1223087 0.0173190 44 30 20.12 2.3028661 1.2173683 0.0109112 46 46 8.30 2.3036994 1.2810025 0.0042567 48 15 58.20 2.3038996 1.3059610 0.0003540 48 50 43.66 2.3033085 1.2897047 0.0008871 48 27 7.65 2.3023363 1.2343370 0.0056800 47 8 13.64 2.3016065 1.1465149 0.0126889 45 3 3.25 2.3014626 1.0370980 0.0185863 42 25 11.06 2.3018396 0.9202987 0.0199852 39 31 20.00 18.4193535 8.0974817 0.0812168 332 52 47.46 18.4193582 8.0974855 0.0812251 332 52 49.69 ACTION OF MAKS ON THE EARTH. E log A' log L ' log N a log AT logP logQ 0.14793515 0.46562072 0.39121913 9.5856600 9.3211682 9.6118228 22.5 0.12867513 0.44104101 0.36395436 9.5698260 9.2838199 9.5702568 45 0.12011431 0.43007010 0.35176641 9.5662159 9.2715711 9.5556249 67.5 0.12442259 0.43559482 0.35790544 9.5749532 9.2853792 9.5702743 90 0.14089818 0.45665643 0.38128232 9.5949794 9.3237440 9.6123158 112.5 0.16647531 0.48915019 0.41726416 9.6240919 9.3826551 9.6760625 135 0.19735020 0.52805532 0.46020914 9.6588907 9.4553466 9.7533001 157.5 0.22941061 0.56809820 0.50425204 9.6947360 9.5321279 9.8336349 180 0.25803549 0.60355500 0.54311538 9.7259997 9.6009117 9.9047936 202.5 0.27840311 0.62861983 0.57051120 9.7469169 9.6490816 9.9542006 225 0.28660968 0.63868139 0.58149048 9.7530543 9.6666751 9.9720145 247.5 0.28101715 0.63182707 0.57401211 9.7427949 9.6495832 9.9542876 270 0.26293394 0.60959543 0.54972342 9.7180756 9.6011932 9.9045601 292.5 0.23607945 0.57638319 0.51334444 9.683858o 9.5314041 9.8327841 315 0.20515940 0.53784176 0.47098807 9.6465515 9.4533990 9.7520425 337.5 0.17455362 0.49936282 0.42855178 9.6122456 9.3799495 9.6749680 V 1 1.61903635 4.27007615 3.72979435 7.2494269 5.6940086 8.0664741 2 2 1.61903696 4.27007713 3.72979553 7.2494229 5.6940004 8.0664686 134 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E logF Ji' J 2 J, Ft 9.6084099 2.3152378 +0.11029083 +0.061812671 -0.25644059 22.5 9.5687497 2.3059045 +0.06946998 +0.074883922 -0.16119255 45 9.5555233 2.2995328 +0.01805514 +0.077080482 -0.04073852 67.5 9.5698283 2.3016313 -0.03654213 +0.068068172 +0.08658346 90 9.6101298 2.3103260 -0.08632858 +0.049219187 +0.20138993 112.5 9.6721978 2.3186977 -0.12376087 +0.023403207 +0.28620250 135 9.7488617 2.3215901 -0.14288822 -0.005449606 +0.32810925 157.5 9.8298619 2.3181659 -0.14041555 -0.032946848 +0.32073022 180 9.9024333 2.3108630 -0.11642269 -0.054902532 +0.26518896 202.5 9.9532839 2.3034774 -0.07451078 -0.067974156 +0.16994090 225 9.9719383 2.2994233 -0.02127963 -0.070171605 +0.04948689 247.5 9.9540965 2.3004768 +0.03479475 -0.061160169 -0.07783516 270 9.9033316 2.3061702 +0.08485465 -0.042311544 -0.19264158 292.5 9.8300222 2.3139376 +0.12119708 -0.016495194 -0.27745411 315 9.7479652 2.3199983 +0.13850882 +0.012358484 -0.31936096 337.5 9.6705453 2.3208585 +0.13455789 +0.039856619 -0.31198183 s, 8.0485930 18.4831415* -0.01520968 +0.027635537 +0.03499338 2 2 8.0485855 18.4831497 -0.01520963 +0.027635553 +0.03499343 *S,(y,' -G") = 18.4019247. Zt(Ji' - G") = 18.4019246. OF THE ORBITS OF THE FOUR INNER PLANETS. 135 ACTION OF MARS ON THE EARTH. E 1000 X Ft flo -So w. RW gw - 5.019874 0.22207195 -0.00895625 +0.02403761 0.00000000 -0.00910901 22.5 - 1.341522 0.21055435 -0.00524961 +0.02748415 +0.08184381 -0.00533223 45 + 0.173061 0.20752103 -0.00112516 +0.02773157 +0.14850060 -0.00113867 67.5 - 1.404619 0.21281662 +0.00313244 +0.02500875 +0.19788699 +0.00315267 90 - 5.191525 0.22627677 +0.00726155 +0.01896286 +0.22627677 +0.00726155 112.5 - 9.004074 0.24749832 +0.01089521 +0.00882887 +0.22720045 +0.01082573 135 -10.631982 0.27522212 +0.01347761 -0.00609013 + 0.19233060 +0.01331965 157.5 - 9.129495 0.30647387 +0.01430898 -0.02537639 +0.11549298 +0.01409065 180 - 5.368216 0.33606721 +0.01279803 -0.04599728 0.00000000 +0.01258694 202.5 - 1.527816 0.35740451 +0.00883760 -0.06172287 -0.13468590 +0.00870276 225 + 0.177177 0.36477534 +0.00302208 -0.06569865 -0.25491209 +0.00298666 247.5 1.210722 0.35578971 -0.00342959 -0.05556595 -0.32661056 -0.00340772 270 - 4.837361 0.33265813 -0.00898150 -0.03579916 -0.33265813 -0.00898150 292.5 - 8.543560 0.30146830 -0.01237466 -0.01405700 -0.28031952 -0.01245460 315 -10.135232 0.26942963 -0.01319021 +0.00403826 -0.19280199 -0.01334851 337.5 - 8.672134 0.24201044 -0.01181400 +0.01658570 -0.09407098 -0.01199994 2, -40.833952 2.23402218 +0.00430615 -0.07881492 -0.21326424 +0.00357711 2s -40.833942 2.23401612 +0.00430637 -0.07881474 -0.21326273 +0.00357732 sin

= + 0.0000000050. 136 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E Ro sin v + (cos v + cos E) So ( - sec' if + ij sin vS a Wo COS (!)+) Wo sin (v + T ) -2 a /J -0.01791249 -0.22207195 -0.00432317 +0.02364565 -0.43669510 22.5 +0.07214538 -0.19805102 -0.01506202 +0.02298943 -0.41458381 45 +0.14689806 -0.14657925 -0.02300258 +0.01548939 -0.41012014 67.5 +0.20021147 -0.07256855 -0.02452836 +0.00487823 -0.42290136 90 +0.22612318 +0.01831801 -0.01859384 -0.00372284 -0.45255354 112.5 +0.21867465 +0.11830141 -0.00734127 -0.00490454 -0.49817351 135 +0.17313163 +0.21584084 +0.00340234 +0.00505112 -0.55697199 157.5 +0.08900258 +0.29475425 +0.00517812 +0.02484247 -0.62244500 180 -0.02559607 +0.33606721 -0.00827262 +0.04524724 -0.68340683 202.5 -0.15101812 +0.32435071 -0.03316015 +0.05205879 -0.72588458 225 -0.25917515 +0.25670929 -0.05360955 +0.03797800 -0.73820246 247.5 -0.32389097 +0.14753236 -0.05413656 +0.01252224 -0.71614631 270 -0.33246073 +0.02354205 -0.03531845 -0.00584698 -0.66531623 292.5 -0.28957300 -0.08808428 -0.01192486 -0.00744291 -0.59906678 315 -0.21131668 -0.16946344 +0.00233483 +0.00329486 -0.53246901 337.5 -0.11585773 -0.21387153 +0.00359251 +0.01619196 -0.47652121 s, -0.30030825 +0.31236276 -0.13738304 +0.12113644 -4.47573530 2 2 -0.30030574 +0.31236335 -0.13738259 +0.12113567 -4.47572256 DIFFERENTIAL COEFFICIENTS. [dxldt] m = = - 48641.893m' = +3016769.1 m' log coeff. n 4.6870105 p 6.4795421 = + [dq/dt] w = = - 724628.93 19626.398 m' p 4.2928406 22258.695 m' n 4.3474997 m' n 5.8601 157 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. = -0.015723904 [d x /dt] m = [d7r/d<]oo = +0.97519611 [dpfdt] M = +0.0063443986 [dq/dt] m = -0.0071953108 [dL/dt] m = -0.23424243 OF THE ORBITS OF THE FOUR INNER PLANETS. 137 Leverrier. [' e sin K' - - 0.5227409. h 27.008467 27.008061 27.007154 27.006666 27.007100 27.008066 27.008637 27.008243 27.007275 27.006689 27.007056 27.007962 162.045689 162.045687 O e / // 11 36 58.64 10 12 32.08 8 38 31.93 7 48 2.72 8 45 10.87 10 23 57.24 11 50 45.30 12 53 16.35 13 29 4.47 13 38 11.24 13 21 37.74 12 40 46.32 67 42 8.95 67 36 45.94 OF THE ORBITS OF THE FOUR INNER PLANETS. 139 ACTION OF JUPITER ON THE EARTH. E logtfo log Lo' log N, log N log P logQ 0.01351621 0.29098220 0.19630730 7.8502195 5.2763937 6.6141228 30 0.01041684 0.28686620 0.19168189 7.8490834 5.2711158 6.6083484 60 0.00744942 0.28292144 0.18724767 7.8522627 5.2713543 6.6075955 90 0.00606351 0.28107775 0.18517479 7.8588567 5.276992T 6.6125603 120 0.00764272 0.28317853 0.18753669 7.8670773 5.2864976 6.6227349 150 0.01081185 0.28739101 0.19227173 7.8747484 5.2973550 6.6346279 180 0.01406123 0.29170555 0.19712004 7.8798617 5.3067059 6.6445510 210 0.01667410 0.29517157 0.20101379 7.8810685 5.3120661 6.6499953 240 0.01827428 0.29729273 0.20339625 7.8780194 5.3119679 6.6497435 270 0.01869373 0.29784858 0.20402051 7.8714850 5.3063886 6.6440330 300 0.01793523 0.29684340 0.20289160 7.8631935 5.2968004 6.6344668 330 0.01613325 0.29445437 0.20020816 7.8553923 5.2858029 6.6235786 Si 0.07887909 1.74292385 1.17449955 7.1906339 1.7497196 9.7732144 2 2 0.07879328 1.74280948 1.17437087 7.1906342 1.7497203 9.7731434 E logF Ji' Ji J, F 2 6.6129514 27.064741582 +0.24634548 +0.02063093 -6.6623169 30 6.6071626 27.061450021 +0.21012324 +0.32748544 -5.8459973 60 6.6070396 27.022786983 +0.12128740 +0.54805936 -3.4327952 90 6.6125600 26.992014082 +0.00316191 +0.62325071 -0.0693287 120 6.6222233 27.021540830 -0.11740027 +0.53291210 +3.3431631 150 6.6334726 27.060747670 -0.21222668 +0.30124976 + 5.8903093 180 6.6433468 27.066395282 -0.25546365 -0.00966336 +6.8895984 210 6.6492222 27.041108427 -0.23112984 -0.31651859 +6.0732768 240 6.6494917 27.008005002 -0.14158677 -0.53709407 +3.6600761 270 6.6440314 26.992057684 -0.01087596 -0.61228634 +0.2966099 300 6.6342813 27.004932957 +0.12157000 -0.52194700 -3.1158827 330 6.6228858 27.037481542 +0.21569955 -0.29028297 -5.6630276 Zi 9.7693340 162.188402634* -0.02524781 +0.03289796 +0.6818428 S 2 9.7693345 162.184859426 -0.02524778 +0.03289801 +0.6818424 * s,(J,' - G") = 161 .994316084. zl/i' - G") = 161 ,994316076. 140 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF JUPITKK ON THE EARTH. E F, 1000 X fio 1000 X So 1000 X W 1000 X B (n) 1000 X S (n) -0.14994500 3.5906058 -0.02485742 +0.00562843 0.0000000 -0.02528143 30 -0.11198359 3.5669877 -0.02409495 +0.13045170 +1.8097792 -0.02445007 60 -0.03628181 3.5812719 -0.01504685 +0.22107406 +3.1277000 -0.01517409 90 + 0.00006601 3.6318358 -0.00001620 +0.25540271 +3.6318358 -0.00001620 120 -0.04119166 3.7069905 +0.01547114 +0.22249821 +3.1836522 +0.01534248 150 -0.12070192 3.7863426 +0.02555514 +0.12714491 +1.8660682 +0.02518930 180 -0.16035007 3.8464128 +0.02722801 -0.00750003 0.0000000 +0.02677889 210 -0.12100025 3.8690539 +0.02153453 -0.14361296 -1.9068325 +0.02122624 240 -0.04149417 3.8484336 +0.01189802 -0.24048156 -3.3051260 +0.01179908 270 +0.00005467 3.7925083 +0.00121404 -0.26976404 -3.7925083 +0.00121404 300 -0.03599894 3.7183323 -0.00934064 -0.22557067 -3.2473996 -0.00941964 330 -0.11169659 3.6453213 -0.01884026 -0.12397381 -1.8495240 -0.01911793 s, -0.46526165 22.2920469 +0.00535226 -0.02435156 -0.2411734 +0.00404529 S 2 -0.46526167 22.2920496 +0.00535230 -0.02435149 -0.2411816 +0.00404538 E SSSL. 1000 X|-#i> cos v .. 1000 XW a cos (+) 1000XW sin(y+ir) OJ / f \ ' r 1 + ( sec- if + 1 1 sin r + cos if Bo w = - 0.0000000000093. OF THE ORBITS OF THE FOUR INNER PLANETS. 141 DIFFERENTIAL COEFFICIENTS. n log coeff. [de/dilw = - 85.760340 m' n 1.9332865 [dx/dt]ao = [dv/dilw = +7298.7450 TO' p 3.8632482 [dp/dt] m = - 26.316855 TO' n 1.4202340 [dq/dt] m = - 168.14734 TO' n 2.2256900 [dL/dt] w = -9631.7202 TO' n 3.9837038 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] m = -0^081841849 [d x /dt] w = [dTr!dt] w = +6.9652565 [dp/dt]w = -0.025114405 [dq/dt] m = -0.16046446 [dLfdt] w = -9.1916336 COMPARISON WITH OTHER RESULTS. Leverrier. Newcoml). Method of Gauss. [de/dt]oo -0.08182 -0.08182 -0.0818418 e[dir/dl] 00 +0.11679 +0.11677 +0.1168153 [dp/dtlw -0.02501 -0.02511 -0.0251144 [dq/dt] m -0.16041 -0.16047 -0.1604644 [dL/dt] m -9.1916 -9.1916336 NOTES. The very close agreement of the sums toward the end of this computation is owing to the circularity of the two orbits and to their small mutual inclination. It is evident that a division into eight parts would have been sufficient, while the errors arising from a division into only six parts would have been almost inappreciable. In this, as in several other cases, the divergence from the last figure of NEW- COMB'S results is rather larger than was to have been expected. The values stated by NEWCOMB were computed to one more significant figure than was published to insure the accuracy of the final figure given. The uncertainty of this figure is evi- dently due to neglected terms in the series employed by LEVERRIER and NEWCOMB. In the present case we obtain for [deldt] 00 , Computed from the six even points of division 0".0818428 Computed from the six odd points of division .0818409, 142 THE SECULAR VARIATIONS OF THE ELEMENTS and the difference between any two corresponding values for any other coefficient is even less than this. The values of the coefficients which define the motion of the plane of the ecliptic are stated by HILL as follows: [dp/dt]^ = -0.0251149 [dq/dt] w = -0.1604628 E A 92.9909218 30 92.7594069 60 92.3168471 90 91.7819295 120 91.2980364 150 90.9947748 180 90.9533006 210 91.1846750 240 91.6269534 270 92.1617302 300 92.6457640 330 92.9493070 Zj 551.8318232* 2 2 551.8318234 E I +2.001263 30 +1.768419 60 +1.323475 90 +0.787549 120 +0.304998 150 +0.004086 180 -0.036365 210 +0.193697 240 +0.633602 270 +1.167320 300 +1.652663 330 +1.958598 21 +5.879636 2 2 +5.879669 t 6[a'V - fcao'e cos K] = + 29.6608842. t - 6k'aa' cos -0.3555837 0.57362783 +0.02247623 -1.5471185 0.0000000 +0.0228596 -1.2681621 0.57437868 -0.26276188 +2.3619011 +2.9142195 -0.2666346 -1.2912829 0.57674453 -0.40344654 +5.6791610 +5.0370180 -0.4068583 -0.3956591 0.58127800 -0.31429014 +7.5403759 +5.8127800 -0.3142901 +0.5220384 0.58774791 -0.09358683 +7.4052797 +5.0477180 -0.0928086 +0.5361282 0.59426527 +0.08130415 +5.2579217 +2.9287882 +0.0801402 -0.3802586 0.59796705 +0.11726800 +1.6546186 0.0000000 +0.1153337 -1.3248861 0.59688219 +0.07295990 -2.4035193 -2.9416851 +0.0719154 -1.3648579 0.59139747 +0.07709136 -5.7742147 -5.0790610 +0.0764503 -0.4663692 0.58408733 +0.18082475 -7.5353293 -5.8408733 +0.1808248 +0.4731390 0.57795107 +0.28959440 -7.2511167 -5.0475302 +0.2920434 +0.5221422 0.57454813 +0.25136029 -5.0525337 -2.9150792 +0.2550648 -2.3968057 3.50543586 +0.00939762 +0.1666094 -0.0418552 +0.0070201 -2.3968061 3.50543960 +0.00939707 +0.1688164 -0.0418499 +0.0070205 lOOOXtft sinv 1000 xT-flo cos w + (coav+cosE)X } _ if \ h ( ~ sec 2 ^+ 1 I sin t'o'c J a +0.00044952 -0.57362783 +0.002782496 -0.015218912 -0.0011280149 30 +0.28684099 -0.49762977 -0.015447198 +0.017867337 -0.0011320724 60 +0.49964759 -0.28807540 -0.053760700 +0.018305034 -0.0011438222 90 +0.58124893 +0.00316289 -0.073936353 -0.014803463 -0.0011625560 120 +0.50564826 +0.29959114 -0.055727122 -0.048767876 -0.0011853529 150 +0.29142597 +0.51791202 -0.017258560 -0.049666046 -0.0012057929 180 -0.00234536 +0.59796705 +0.002975836 -0.016276382 -0.0012159913 210 -0.29539381 +0.51865750 -0.015412218 +0.018443264 -0.0012111028 240 -0.50861524 +0.30174597 -0.054096837 + 0.020191247 -0.0011927133 270 -0.58403554 +0.00617932 -0.074341448 -0.012307244 -0.0011681747 300 -0.50182267 -0.28668159 -0.055931013 -0.046147489 -0.0011462092 330 -0.28712395 -0.49766091 -0.017382540 -0.047441087 -0.0011324063 S, -0.00703790 +0.05091934 -0.213757340 -0.087914378 -0.0070121038 S, -0.00703741 +0.05092105 -0.213778317 -0.087907239 -0.0070121051 sin

= + 0.00000000000028. OF THE ORBITS OF THE FOUR INNER PLANETS. 145 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dtlw = - 1.5163927 TO' n 0.1808117 [dx/dt] m = [dT/dfloo = + 655.70924 TO' p 2.8167113 [dp/dt] m = - 18.991017 TO' n 1.2785482 [dq/dt] m = - 46.179399 TO' n 1.6644483 = -1514.4911 TO' n 3.1802667 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/dt] M = -0.00043305713 [dx/df], = [dir/d4 = +0.18725991 [dp/dfloo = -0.0054235259 [dq/dt] M = -0.013188086 = -0.43251400 m COMPARISON WITH OTHER RESULTS. Lcverrier. Newcomb. Method of Gauss. [de/dt] w -0.00044 -0.00043 -0.00043306 e[dirldt} w +0.00315 +0.00314 +0.00314056 [dp/dt] m -0.00542 -0.00542 -0.00542353 [dq/dt] M -0.01317 -0.01318 -0.01318809 [dL/dt] M -0.4325 -0.43251400 NOTES. Here, as in the previous case, the approximate tests completely fail with the angle e, the roots G, G', G" , and with the functions which immediately depend upon these quantities. The close agreement of the final sums shows, however, that the expansion of the perturbing function is quite rapidly convergent for this case. The values obtained by HILL in the "New Theory " are: [dp/dt] w = -oo054237 [dq/dt]^ = -0.0131883 The agreement of the final results here obtained with all other values is satisfactory. 146 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF URANUS ON THE EARTH. E A B cos t B sin e g h 369.9391833 +24.383407 -17,162615 247.29194 367.49698 45 370.9299673 +34.837638 - 7.159449 41.56718 367.49556 90 370.9628887 +34.937206 + 7.512108 45.76306 367.49557 135 370.0188613 +24.623780 +17.957661 261.51163 367.49708 180 368.6506847 + 9.938828 +18.058344 264.45220 367.49706 225 367.6596194 - 0.515405 + 7.755178 48.77249 367.49561 270 367.6264169 - 0.614971 - 6.916382 38.79263 367.49553 315 368.5707253 + 9.698453 -17.361932 244.44864 367.49688 Si 1477.1791736* +68.644470f + 1.191455t 596.29983 1469.98514 Z 2 1477.1791733 +68.644466 + 1.191458 596.29994 1469.98513 E / G G' G" e O O i a + 1.63126 367.495141 1.9739873 0.3408899 4 33 0.174 45 +2.62346 367.495250 2.6661957 0.0424235 4 55 28.953 90 +2.65637 367.495229 2.7027882 0.0460735 4 57 40.407 135 + 1.71085 367.495130 2.0584810 0.3456945 4 38 13.695 180 +0.34269 367.495095 1.0379451 0.6933002 3 55 55.015 225 -0.64694 367.495249 0.163776T 0.8103506 2 56 52.565 270 -0.68006 367.495243 0.1303078 0.8100787 2 53 46.998 315 +0.26290 367.495069 0.9586081 0.6938970 3 50 28.866 S, +3.95026 1469.980708 5.8450284 1.8903423 16 20 22.594 2 2 +3.95027 1469.980698 5.8470609 1.8923656 16 21 4.079 ACTION OF URANUS ON THE EARTH. E log A' log LO' log No log N log P logQ 0.00205713 0.27574316 0.17917560 6.1388849 1.2833195 3.7524062 45 0.00241015 0.27621390 0.17970508 6.1440956 1.2897058 3.7584989 90 0.00244638 0.27626178 0.17975893 6.1514873 1.3001369 3.7689401 135 0.00213675 0.27584925 0.17929492 6.1638868 1.3084161 3.7775217 180 0.00153562 0.27504825 0.17839395 6.1668770 1.3097851 3.7792009 225 0.00086277 0.27415148 0.17738519 6.1617903 1.3035252 3.7729672 270 0.00083285 0.27411159 0.17734031 6.1515209 1.2932165 3.7626532 315 0.00146560 0.27195493 0.17828898 6.1419973 1.2848106 3.7542155 S, 0.00687198 1.10116478 0.71466879 4.611770(1 5.1864579 3.0632003 2 2 0.00687557 1.10116956 0.71467417 4.6117700 5.1864577 5.0632033 * 4a 2 + 2aV + 4[o' 2 2kaa'ee' cos A:] = 1477.1791732. t 4[a'V - kaa'e cos K] = + 68.644468. t + 4fc'aa' cos v' e sin K' = + 1.191454. OF THE ORBITS OF THE FOUR INNER PLANETS. 147 ACTION OF URANUS ON THE EARTH . E logF Ji' J* Ji Fl 3.7519032 367.8221780 -0.84734235 +2.2088876 +301.43340 45 3.7584363 367.4766488 -0.35515557 +4.6641774 + 123.58384 90 3.7688721 367.4892672 +0.38057614 +4.3579828 -129.67133 135 3.7770116 367.8350259 +0.86234922 + 1.4696662 -309.97871 180 3.7781780 368.1745883 +0.82112849 -2.3088335 -311.71664 225 3.7717715 368.2455011 +0.34414218 -4.7641198 -133.86711 270 3.7614579 368.2514548 -0.29842856 -4.4579225 + 119.38809 315 3.7531918 368.1823028 -0.79535630 -1.5696087 + 299.69549 Si 5.0604111 1471.7374883* +0.05593372 -0.1998856 - 20.56648 2 2 5.0604112 1471.7394786 +0.05597953 -0.1998849 - 20.56649 E r, 1000000 X Ra 1000000 X So 1000000 X W, 1000000 X -R<"> 1000000 X S<"> +3.5560766 68.949325 +0.10018820 +1.2544323 0.000000 +0.10189713 45 +0.4865778 69.825413 +0.03716997 +2.6752556 +49.966575 +0.03761606 90 +0.8230258 71.523975 -0.03529126 +2.5611571 +71.523975 -0.03529126 135 +4.0393764 73.045932 -0.11453773 +0.8877061 +51.045918 -0.11319535 180 +3.8028425 73.443068 -0.14342145 -1.3776247 0.000000 -0.14105578 225 +0.5809413 72.487200 -0.06580265 -2.8156195 -50.655465 -0.06503154 270 +0.709709S 70.794418 +0.06221357 -2.5724979 -70.794418 +0.06221357 315 +3.7847601 69.352325 +0.12685775 -0.8818747 -49.628040 +0.12838021 Si +8.8916547 284.710786 -0.01631094 -0.1345332 + 0.729557 -0.01223634 2* +8.8916556 284.710870 -0.01631266 -0.1345325 + 0.728988 -0.01223053 1 0ftOOOn V 1 7?n rct<* u E 1 000000 X[R sin v X L 1000000 1000000 1000x-2 r -K + (cosv+cosE)S l l] +^Bec'>+l) + cos . , p . J3 = - 0.00000000000025. * 2,(J,' - G") = 1469.8471460. 2(Ji' - G") = 1469.8471130. 148 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. n log coeff. [ 10000000 X -S ( "> - 5.0649535 1.7793453 +0.19215285 -0.08120439 0.0000000 + 0.19543047 45 - 6.5852856 1.7972262 -0.17462602 +0.04549983 +1.2860826 -0.17672179 90 - 1.8342882 1.8362237 -0.24659977 +0.15062685 +1.8362237 -0.24659977 135 - 0.4453113 1.8790643 +0.15337661 +0.17125249 +1.3131267 +0.15157902 180 - 5.4164244 1.9016607 +0.27295016 +0.08971979 0.0000000 +0.26844799 225 - 6.9853355 1.8852158 -0.09387083 -0.04482073 -1.3174254 -0.09277065 270 - 2.0485736 1.8383392 -0.21373143 -0.14796412 -1.8383392 -0.21373143 315 - 0.3483062 1.7940628 +0.11988971 -0.16075330 -1.2838186 +0.12132856 Si - 14.3642397 7.3555689 +0.00477181 +0.01117813 -0.0021155 + 0.00354726 2 2 - 14.3642386 7.3555691 +0.00476947 +0.01117829 -0.0020347 + 0.00341514 E 100000X[osin, I00000x[-Rocos, imm l(mQQ + (eosv+cosE)St,\ . (r , ,\ r, 1 XWoCos (W+JT) XlFosin (W+JT) I- I ^i > + cos ' e sin K' = + 0.31507212. I 6[a'V - A-oaV cos A'] = + 0.25187831. OF THE ORBITS OF THE FOUK INNER PLANETS. 153 ACTION OF MERCURY ON MARS. E log /Co log V logtfo log N log /' logQ 0.02698253 0.30881667 0.21633345 0.0802043 9.8417843 0.0229194 30 0.02453876 0.30558607 0.21270775 0.0315423 9.7124165 9.9318941 60 0.02139874 0.30143126 0.20804354 9.9863199 9.5646986 9.8328372 90 0.01882471 0.29802213 0.20421541 9.9544525 9.4350567 9.7499589 120 0.01734193 0.29605696 0.20200830 9.9396879 9.3478315 9.6977395 150 0.01696133 0.29555239 0.20144156 9.9427992 9.3179221 9.6840260 180 0.01752419 0.29629857 0.20227967 9.9632970 9.3524331 9.7119954 210 0.01887658 0.29809086 0.20429260 9.9992756 9.4496853 9.7797276 240 0.02088535 0.30075154 0.20728036 0.0456467 9.5950386 9.8772472 270 0.02335208 0.30401640 0.21094579 0.0914150 9.7545935 9.9819419 300 0.02583676 0.30730232 0.21463400 0.1193985 9.8751689 0.0582665 330 0.02741722 0.30939106 0.21697800 fl.1150661 9.9072726 0.0734518 Si 0.12996950 1.81065732 1.25057932 0.1345541 7.5769549 9.2010052 2 2 0.12997068 1.81065891 1.25058111 0.1345506 7.5769465 9.2010002 E log V /i' J 2 J, Ft 0.0211422 0.148654076 -0.10722959 -0.015479687 +0.015330048 30 9.9305073 0.148321182 -0.10335718 -0.012048361 +0.014842503 60 9.8323421 0.145601872 -0.06932482 -0.006505466 +0.009955397 90 9.7499432 0.143412552 -0.01386724 -0.000353153 +0.001978227 120 9.6975735 0.143648964 +0.04858051 +0.004751607 -0.006951532 150 9.6833581 0.145958760 +0.10133761 +0.007449454 -0.014441148 180 9.7108663 0.148399366 +0.13001805 +0.007034457 -0.018483798 210 9.7785043 0.148942861 +0.12663289 +0.003626261 -0.017996253 240 9.8764415 0.146960494 +0.09193479 -0.001870362 -rO.013109151 270 9.9817831 0.144077345 -0.03534552 -0.007999542 -0.005131979 300 0.0581594 0.143355345 -0.02759166 -0.013127432 +0.003797779 330 0.0724209 0.145910972 0.07970449 -0.015871553 +0.011287401 2, 9.1965248 0.876620117* +0.06638728 -0.025196883 -0.009461257 2 2 9.1965168 0.876623672 +0.06638711 -0.025196894 -0.009461249 * 2,(J,' - G") = 0.857586462. S,(J,' - G") = 0.857586592. 154 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MERCURY ON MARS. E 1000 X F, Ro So W,, fl<> 8* +0.3749543 -1.1968194 -0.10192940 -0.015991438 0.00000000 -0.07377742 30 +0.9451901 -1.0712026 -0.08041942 -0.009779348 -0.38240323 -0.05741705 60 +0.8478648 -0.9676664 -0.04346887 -0.004110828 -0.57689880 -0.02992414 90 +0.1645035 -0.9003960 -0.00725842 -0.000153771 -0.59093068 -0.00476371 120 -0.4045215 -0.8699380 +0.02266377 +0.002278066 -0.47241848 +0.01421151 150 -0.2449197 -0.8749740 +0.04587694 +0.003542283 -0.26566469 +0.02785885 180 +0.5450969 -0.9160775 +0.06265312 +0.003737622 0.00000000 +0.03761136 210 + 1.2365773 -0.9949389 +0.07097316 +0.002525788 +0.30208776 +0.04309857 210 + 1.1824210 -1.1083446 +0.06401101 -0.000941853 +0.60188486 +0.04013864 270 +0.4525829 -1.2337308 +0.03097697 -0.007413721 +0.80969859 +0.02033021 300 -0.2401087 -1.3158841 -0.02869644 -0.015188691 +0.78449755 -0.01975474 330 -0.2482279 -1.2994033 -0.08505077 -0.018952193 +0.46386745 -0.06072369 Si +2.3057068 -6.3747320 -0.02476681 -0.030217122 +0.33706513 -0.03149479 Z 2 +2.3057062 6.3746456 -0.02490154 -0.030230962 +0.33665520 -0.03161682 D . Ro cos v E RO sin v + (cos ,+cos E)S a + g BCC' ,+l) sin S. -2 -Bo a -0.2038588 +1.1968194 -0.004111709 +0.015453801 2.1703888 30 -0.7173754 +0.8165787 -0.007231890 +0.006582964 1.9693580 60 -0.9154636 +0.3357086 -0.004043881 +0.000738872 1.8450804 90 -0.8957943 -0.0984951 -0.000144266 -0.000053225 1.8007921 120 -0.7408612 -0.4547261 +0.001481632 +0.001730419 1.8210138 150 -0.4834776 -0.7324563 +0.000768358 +0.003457946 1.8912954 180 -0.1253062 -0.9160795 -0.000961015 +0.003611962 2.0030408 210 +0.3338218 -0.9514367 -0.001700736 +0.001867379 2.1505951 240 +0.8448003 -0.7366597 +0.000887111 -0.000316419 2.3200626 270 + 1.2254640 -0.1770222 +0.007311027 +0.001229687 2.4674617 300 + 1.1635310 +0.6123066 +0.011609114 +0.009794123 2.5090379 330 +0.5585553 +1.1811278 +0.005822238 +0.018035720 2.3888945 Si +0.0228415 +0.0373693 +0.004861252 +0.031012758 12.6686243 2 2 +0.0211938 +0.0382962 +0.004824731 +0.031120471 12.6683967 sin p JA,<'> + cos v Bo (e) = + 0".000000008. OF THE ORBITS OF THE FOUR INNER PLANETS. 155 DEFERENTIAL COEFFICIENTS. u log coeff. [de/dtlw = + 2517.5250 m' p 3.4009738 [d x /dt] w = + 46380.761 TO' p 4.6663379 [di/dt] w =+ 558.61256 m' p 2.7471107 [dn/di]oo =+110961.28 TO' p 5.0451714 [dir/dt] M = + 46438.628 TO' p 4.6668794 =+1455134.1 TO' p 6.1629030 TO FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/dt]^ = +0.00033567000 [dx/dt] 00 = +0.0061841007 [di/dt] w = +0.000074481672 [cKl/dt] w = +0.014794833 [dw/dt] m = +0.0061918174 [dL/dt] w = +0.19401785 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt} 00 +0.00036 +0.00033 +0.0003357 e[dTr/dt] 00 +0.00058 +0.00057 +0.0005775 [di/dt]w +0.00008 +0.00007 +0.0000745 sin i [dtt/dt] w +0.00047 +0.00048 +0.0004778 NOTES. On account of the large eccentricities of both orbits and the high mutual incli- nation, the coefficients of the expansion diminish but slowly. Thus the combined effect of all terms from the 6th to the llth orders is l/30th of the whole with [de/dt]o , l/90th with [dw/dt] o, and 1 /200th with [di/dt] <>. Yet all of the variations are very small on account of the smallness of the mass of Mercury. A comparison with the computation of Mars on Mercury renders it evident that a division into twelve parts is sufficient and that terms of orders above the eleventh are wholly inappreciable. 156 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON MARS. E A B COS e B sin e 1000 xg h 2.41946745 -0.9101348 -0.4038413 0.003995803 1.8967820 30 2.47732532 -0.5530947 -0.8457642 0.017525935 1.9549495 60 2.63301427 -0.0217107 -1.0499345 0.027008907 2.1104659 90 2.85220984 +0.5416339 -0.9616453 0.022657521 2.3292431 120 3.07987480 +0.9859909 -0.6045536 0.008954722 2.5566759 150 3.25131035 + 1.1922952 -0.0743414 0.000135408 2.7282304 180 3.31318850 + 1.1052676 +0.4869209 0.005808973 2.7904410 210 3.24523275 +0.7482272 +0.9288436 0.021138190 2.7227529 240 3.06934808 +0.2168441 + 1.1330145 0.031452377 2.5468467 270 2.84005464 -0.3465004 + 1.0447250 0.026741552 2.3172324 300 2.62248756 -0.7908574 +0.6876330 0.011585000 2.0993294 330 2.47124772 -0.9971620 +0.1574211 0.000607167 1.9481304 2, 17.13738066* +0.5853997f +0.2492390t 0.088805782 14.0005408 2 2 17.13738062 +0.5854002 +0.2492388 0.088805773 14.0005387 G G' 10000 X G" 0.5226610 1.8967805 0.5226665 0.0403053 31 39 49.77 30 0.5223513 1.9549433 0.5223748 0.1716188 31 7 34.86 60 0.5225239 2.1104579 0.5225564 0.2449047 29 50 30.35 90 0.5229423 2.3292377 0.5229663 0.1860051 28 17 2.93 120 0.523174o 2.5566741 0.5231829 0.0669458 26 53 44.43 150 0.5230555 2.7282304 0.5230555 0.0009489 25 58 2.26 180 0.5227230 2.7904401 0.5227279 0.0398246 25 38 46.94 210 0.5224554 2.7227494 0.5224737 0.1485921 25 58 48.56 240 0.5224769 2.5468406 0.5225067 0.2363523 26 55 59.83 270 0.5227977 2.3172260 0.5228262 0.2207297 28 21 35.72 300 0.5231337 2.0993259 0.5231478 0.1054853 29 56 49.75 330 0.5230928 1.9481302 0.5230936 0.0059582 31 12 36.97 2i 3.1366929 14.0005190 3.1367881 0.7338180 170 55 41.07 Si 3.1366950 14.0005170 3.1367900 0.7338528 170 55 41.30 * 6o 2 + 3aV + 6[o' 2 - Zkaa'ee' cos K\ = 17.13738065. t 6[a'V - kaa'c cos A'] = + 0.5854002. \ - 6fc'aa' cos <' S<"> - 2.705324 -1.4244790 -3.460778 -20.67006 0.0000000 -0.002504942 30 - 0.803003 -1.3866027 -6.000157 -24.54092 -0.4949963 -0.004283931 60 + 5.500746 -1.3028006 -6.111878 -19.19609 -0.7766973 -0.004207440 90 + 9.816975 -1.2077652 -4.678320 - 9.84176 -0.7926572 -0.003070385 120 + 7.633806 -1.1282518 -2.631099 - 0.95528 -0.6126954 -0.001649853 150 + 0.880725 -1.0779056 -0.461908 + 5.93579 -0.3272800 -0.000280495 180 - 3.932916 -1.0618130 +1.648220 +10.88332 0.0000000 +0.000989445 210 - 2.161955 -1.0812437 +3.609363 +14.08781 +0.3282934 +0.002191792 240 + 4.374565 -1.1352348 +5.187600 +15.12313 +0.6164876 +0.003252928 270 + 9.225323 -1.2184712 +5.773047 +12.58406 +0.7996835 +0.003788855 300 + 7.735212 -1.3155488 +4.427365 + 4.61417 +0.7842976 +0.003047815 330 + 1.648024 -1.3961376 +0.822269 - 8.41473 +0.4984001 +0.000587075 Si + 18.606089 -7.3681280 -0.940570 -10.20081 +0.0113925 -0.001072047 2 2 + 18.606089 -7.3681260 -0.935706 -10.18975 +0.0114435 -0.001067089 E . Rt, cos v Rosmv + (cos v + cos )S +T- sec 2 v +lj sin vS, Wo sin u -2^0 a -0.0069216 + 1.4244790 -0.005314674 +0.019975127 2.5832417 30 -0.7611745 + 1.1593980 -0.018148167 +0.016519714 2.5492068 60 -1.1839523 +0.5449664 -0.018883467 +0.003450266 2.4840909 90 -1.2020643 -0.1220026 -0.009233404 -0.003406539 2.4155306 120 -0.9266826 -0.6439879 -0.000621304 -0.000725630 2.3617340 150 -0.4956901 -0.9571936 +0.001287534 +0.005794466 2.3299411 180 -0.0032964 -1.0618130 -0.002798312 +0.010517416 2.3216920 210 +0.4917082 -0.9631868 -0.009486007 +0.010415471 2.3371562 240 +0.9297081 -0.6522758 -0.014244152 +0.005080676 2.3763511 270 + 1.2126214 -0.1251906 -0.012409750 -0.002087273 2.4369424 300 + 1.1939212 +0.5533939 -0.003526734 -0.002975358 2.5083988 330 +0.7575012 + 1.1728178 +0.002585060 +0.008007817 2.5667361 2i +0.0027764 +0.1647626 -0.045388643 +0.035322497 14.6355085 2 2 +0.0029019 +0.1646422 -0.045404734 +0.035243656 14.6355132 sin j4i (<) + coaip Bo (c) = O."0000000073. OF THE ORBITS OF THE FOUR INNER PLANETS. 159 DIFFERENTIAL COEFFICIENTS. [de/dt] w = + 324.6318 m' p 2.5113911 [dx/dfloo = + 201915.56 TO' p 5.3051698 [di/dt]oo 5236.2608 m' n 3.7190213 [dtt/dt] m + 126021.28 TO' p 5.1004439 [dTT/dtlw = + 201981.28 m' p 5.3053112 [dL/dt] m = +1681713.6 m' p 6.2257520 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [dg/dfloo = +0.0007954049 [dx/dfloo = +0.49472856 [di/di]oo = -0.012829757 [dO/d<]oo = +0.30877426 [dr/dfloo = +0.49488961 [dL/dt] m = +4.1204933 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. loo +0.00080 +0.00079 +0.000795 e[drldt]ao +0.04618 +0.04614 +0.0461574 [difdt] m -0.01280 -0.01284 -0.012830 sin i [dfl/d<]oo +0.00993 +0.00998 +0.009972 [dL/dt] M +4.117 +4.120493 NOTES. The very close agreement of the sums of the functions near the beginning of the computation is caused by the great circularity of the orbit of Venus. The discrepan- cies increase however as the work proceeds because of the high eccentricity of Mars and the rather large mutual inclination. All terms from the 6th to the llth orders, in- clusive, produce an effect equal to l/30th of the whole in the very small coefficient [de/dt]oo, and 1 /1000th of the whole in [dttfdt} 00 . Yet it is evident that terms of the twelfth and higher orders are wholly inappreciable. 160 THE SECULAR VARIATIONS OF THE ELEMENTS E A 2.88085183 30 2.95824702 60 3.13279096 90 3.36510700 120 3.59664230 150 3.76166099 180 3.80855449 210 3.72106141 240 3.52632175 270 3.28390784 300 3.06247042 330 2.91764743 Si 20.00763175* S 2 20.00763169 ACTION OF THE EARTH ON MARS. B cos f B sin 1000 X g -0.8153552 -1.1018750 0.34149937 -0.0872040 -1.3962265 0.54832354 +0.6917421 -1.2860904 0.46523043 + 1.3127653 -0.8009781 0.18045398 + 1.6094626 -0.0708746 0.00141289 + 1.5023341 +0.7085891 0.14122581 + 1.0200854 + 1.3285566 0.49646115 +0.2919341 + 1.6229077 0.74082034 -0.4870119 + 1.5127725 0.64368353 -1.1080347 + 1.0276597 0.29704612 -1.4047322 +0.2975561 0.02490366 -1.2976042 -0.4819076 0.06532098 +0.6141908J +0.6800452f 1.97319103 +0.6141906 +0.6800443 1.97319077 1.8833414 1.9597848 2.1332651 2.3654511 2.5975998 2.7632686 2.8103218 2.7223893 2.5269386 2.2841910 2.0633533 1.9197321 14.0148199 14.0148169 E I' G G' G' o 0.9972292 1.8831367 0.9976157 0.00018178 46 42 32.02 30 0.9981810 1.9594937 0.9987522 0.00028018 45 33 35.15 60 0.9992447 2.1330727 0.9996552 0.00021818 43 12 19.69 90 0.9993747 2.3653953 0.9995068 0.00007633 40 32 44.90 120 0.9987612 2.5975995 0.9987622 0.00000054 38 19 18.09 150 0.9981111 2.7632397 0.9981913 0.00005120 36 56 40.43 180 0.9979514 2.8102243 0.9982259 0.00017698 36 35 10.16 210 0.9983909 2.7222314 0.9988211 0.00027246 37 17 7.37 240 0.9991020 2.5267718 0.9995236 0.00025487 38 58 33.58 270 0.9994356 2.2840897 0.9996671 0.00013009 41 25 15.69 300 0.9988359 2.0633420 0.9988593 0.00001208 44 5 20.00 330 0.9976341 1.9196952 0.9977050 0.00003411 46 7 50.45 2, 5.9911243 14.0141470 5.9926419 0.00081443 247 53 13.54 2 2 5.9911274 14.0141449 5.9926435 0.00084437 247 53 13.98 * Go 2 + 3o 2 e 2 + 6[a' 2 - Zkaa'ee' cos K] = 20.00763172. t 6[a'V - fcaa'e cos A'] = + 0.6141907. t - 6fcW cos fl -0.13911285 -2 .0302096 -0.026171976 +0.10810004 0.0000000 -0.018943511 30 -0.51397488 -1 .9019956 -0.029451014 +0.06531256 -0.6789837 -0.021027135 60 -0.65316258 -1 .6889696 -0.023181583 +0.01388518 -1.0069217 -0.015958290 90 -0.40694037 -1 .4884239 -0.012395858 -0.01871310 -0.9768538 -0.008135411 120 -0.02612649 -1 .3462165 -0.001540204 -0.03342035 -0.7310608 -0.000965798 150 +0.08995598 -1 .2702099 +0.007499119 -0.03789964 -0.3856685 +0.004553852 180 -0.20223795 -1 .2578222 +0.014435140 -0.03668660 0.0000000 +0.008665574 210 -0.63957154 -1 .3082364 +0.019136251 -0.03045222 +0.3972143 +0.011620521 240 -0.80757787 -1 .4237326 +0.020598-119 -0.01635704 +0.7731558 +0.012916412 270 -0.54879816 -1 .6023546 +0.016496265 +0.01146539 + 1.0516264 +0.010826511 300 -0.11741630 -1 .8174946 +0.004601712 +0.05641742 + 1.0835451 +0.003167836 330 +0.07369507 -1 .9931947 -0.012572900 +0.10202141 +0.7115406 -0.008976672 2, -1.94563404 -9 .5644451 -0.011258492 +0.09193865 +0.1187184 -0.011117777 2 2 -1.94563390 -9.5644151 -0.011288137 +0.09173440 +0.1188753 -0.011138334 Ro COS V E Ro sin v + (c,osv + cosE)S . (r \ . Wa cos u + ( - seo 2 ) + cos f B <> = + 0.000000102. OF THE ORBITS OF THE FOUR INNER PLANETS. 163 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = + 7024.3393 TO' p 3.8466055 [d x /dt] w = + 749340.69 TO' p 5.8746793 [di/dt]' e sin K' = + 2.763466. 2.448742 2.661358 2.763328 2.735467 2.591662 2.368639 2.117926 1.900349 1.77611T 1.786671 1.935440 2.180725 13.633208 13.633209 2.4695960 0.0189481 17 39' 53.68 2.6618860 0.0004753 18 17 56.75 2.7737001 0.0093077 18 43 15.01 2.7765210 0.0368400 18 48 58.35 2.6581522 0.0599626 18 28 29.57 2.4330416 0.0586151 17 39 45.34 2.1522663 0.0316074 16 30 39.82 1.9039718 0.0033673 15 24 39.18 1.7842098 0.0075644 14 55 27.23 1.8310752 0.0413982 15 15 16.64 2.0032755 0.0628165 16 2 14.95 2.2348561 0.0496603 16 53 32.61 13.841199!) 0.1902067 102 20 0.26 13.8413516 0.1903562 102 20 8.87 OF THE ORBITS OF THE FOUR INNER PLANETS. 165 ACTION OF JUPITEU ON MARS. E logtfo log L ' log No log N log P logQ 0.03165483 0.31498612 0.22325507 8.3476456 5.7990872 7.1391284 30 0.03402451 0.31811150 0.22676030 8.3623570 5.8175286 7.1576473 60 0.03565117 0.32025551 0.22916442 8.3954324 5.8524487 7.1929772 90 0.03602468 0.32074766 0.22971622 8.4366023 5.8931984 7.2342427 120 0.0346975G 0.31899875 0.22775524 8.4742980 5.9283892 7.2695995 150 0.03164635 0.31497492 0.22324250 8.4991683 5.9492925 7.2899854 180 0.02757619 0.30960108 0.21721367 8.5057537 5.9513987 7.2909894 210 0.02396325 0.30482489 0.21185335 8.4928484 5.9346402 7.2731852 240 0.02244999 0.30282273 0.20960576 8.4633475 5.9029922 7.2413643 270 0.02347170 0.30417466 0.21112344 8.4239469 5.8638333 7.2029262 300 0.02598821 0.30750252 0.21485868 8.3844577 5.8269721 7.1668224 330 0.02889111 0.31133796 0.21916251 8.3560126 5.8027960 7.1428978 ?! 0.17801795 1.87416671 1.32185284 0.5709348 5.2612881 3.3008810 2-2 0.17802160 1.87417159 1.32185832 0.5709353 5.2612888 3.3008846 E logF li' Ji J, F 2 7.1387522 27.0207890 -0.20899481 +0.30968500 + 5.840160 30 7.1576379 27.0065721 -0.03630747 -0.02674093 + 0.960260 60 7.1927926 27.0099958 +0.15284461 -0.36413185 - 4.337906 90 7.2335125 27.0290264 +0.31348417 -0.61207993 - 8.634698 120 7.2684108 27.0492502 + 0.40064241 -0.70414548 -10.778797 150 7.2888221 27.0526590 +0.38540712 -0.61566134 -10.195688 180 7.2903609 27.0334483 +0.26823852 -0.37034175 - 7.041617 210 7.2731181 27.0094582 +0.08088102 -0.03392190 - 2.161717 240 7.2112135 27.0106120 -0.12278062 +0.30345694 + 3.136448 270 7.2021019 27.0363209 -0.28345023 +0.55139880 + 7.433241 300 7.1655732 27.0521350 -0.35632057 +0.64347029 + 9.577337 330 7.1419111 27.0423420 -0.32638726 +0.55499853 + 8.991231 2i 3.2971031 162.1762303* +0.13362954 -0.18200685 - 3.604375 V 3.2971036 162.1763786 +0.13362735 -0.18200677 - 3.604371 * S,(J,' - G") = 161 .9860236. 2(Ji' - G") = 161 .9860224. 166 THE SECULAR VARIATIONS OF THE ELEMENTS E 30 60 90 120 150 ISO 210 240 270 300 330 Si E F, -0.11464084 -0.02209150 +0.08535418 +0.09095508 -0.02126155 -0.14774803 -0.16666131 -0.05846157 +0.07437981 +0.10831696 +0.01978452 -0.09401607 -0.12304519 -0.12304513 fto sin v + (cos v + oos E)f><, ACTION OF JUPITER ON MARS. # 1000 X -So 1000 X W 1000 X R M 1000 X 0.011523729 +0.08005004 +0.4190397 0.000000 +0.05794093 0.011964482 +0.01088811 -0.0398940 +4.271140 +0.00777378 0.012921829 -0.07058125 -0.5615348 +7.703673 -0.04858841 0.014185469 -0.13852471 -1.0407895 +9.309934 -0.09091387 0.015433331 -0.17072189 -1.3081943 +8.381048 -0.10705259 0.016299442 -0.15776374 -1.2103390 +4.948932 -0.09580229 0.016504164 -0.10615120 -0.7376107 0.000000 -0.06372374 0.015978601 -0.03427562 -0.0686500 -4.851517 -0.02081393 0.014896574 +0.03689409 +0.5347724 -8.089562 +0.02313475 0.013593080 +0.09184683 +0.8860645 -8.921148 +0.06027915 0.012429971 +0.12131684 +0.9434385 -7.410440 +0.08351498 0.011688531 +0.11863615 +0.7635196 -4.172629 +0.08470265 0.083709598 -0.10919337 -0.7100892 +0.584719 -0.05477408 0.083709605 -0.10919298 -0.7100884 +0.584712 -0.05477451 i flo COS V + Ir \ . 1000 X Wo cosu 1000 X JTo sin u -2-R,, +0.000160100 -0.011523729 +0.10774325 -0.4049515 -0.020897865 30 +0.006498115 -0.010046690 -0.02950189 +0.0268547 -0.021996162 60 +0.011621455 -0.005638033 -0.55239000 +0.1009292 -0.024638457 90 +0.014136555 +0.001045999 -0.97645422 -0.3602495 -0.028370938 120 +0.012896599 +0.008458998 -0.85083667 -0.9937043 -0.032306104 150 +0.007784436 +0.014315488 -0.26253500 -1.1815227 -0.035231972 180 +0.000212302 +0.016504164 +0.18965406 -0.7128120 -0.036086942 210 -0.007299886 +0.014215603 +0.04622538 -0.0507547 -0.034538456 240 -0.012311629 +0.008381401 -0.50369057 +0.1796589 -0.031182525 270 -0.013542396 +0.001084104 -0.87379071 -0.1469683 -0.027186159 300 -0.011129593 -0.005518211 -0.72109467 -0.6083574 -0.023700620 330 -0.006127613 -0.009949901 -0.23455823 - 0.7265980 -0.021488839 Si +0.001449234 +0.010664590 -2.33061460 -2.4392371 -0.168812513 2,. +0.001449211 +0.010664603 -2.33061467 -2.4392385 -0.168812526 sin v> Mi w + cos

100000 X S ( "> 1000 X[flo sin v+ (cos v-\- cos E) So] 0.0017097618 + 9.903284 +0.01219946 0.0000000 +0.7168085 +0.0198066 30 0.0017745243 + 7.025377 -.0.10023833 +0.6334785 +0.5015908 +0.9730086 60 0.0019262900 + 5.499323 -0.20387007 + 1.1484062 +0.3785755 + 1.7472855 90 0.0021375714 + 5.593738 -0.27213044 + 1.4028896 +0.3671175 +2.1277319 120 0.0023569201 + 3.205770 -0.27013289 + 1.2799221 +0.2010205 + 1.9382857 150 0.0025168546 - 4.917236 -0.17936963 +0.7641820 -0.2986000 + 1.1679255 180 0.0025606191 - 16.044422 -0.02369074 0.0000000 -0.9631644 +0.0320888 210 0.0024720520 -22.805150 +0.13539869 -0.7505788 -1.3848465 -1.0986739 240 0.0022843230 -19.928906 +0.23709997 -1.2404980 -1.2496588 -1.8606368 270 0.0020608533 - 9.038484 +0.25685358 -1.3525394 -0.5931965 -2.0510270 300 0.0018652798 + 2.997952 +0.20817962 -1.1120336 +0.2063802 -1.6842325 330 0.0017413378 + 9.774776 +0.11927113 -0.6216313 +0.6978895 -0.9263634 2, 0.0127031938 - 14.366999 -0.04021465 +0.0757967 -0.7100385 +0.1925973 2 0.0127031934 -14.366879 -0.04021500 +0.0758006 -0.7100452 +0.1926017 * 2,(J,' - G") = 543.7590546. 2 Z (J,' - G") = 543.7590328. OF THE ORBITS OF THE FOUR INNER PLANETS. 171 1000 X |~- flocosv L f E ( \ -i 1000 X W cos u 1000 X W sin u 1000X-2-flo - sec 2 ip + 1 1 sin vSo a -1.7097618 +0.00313672 -0.01178931 - 3.1005914 30 -1.4844381 -0.07412689 +0.06747540 - 3.2623831 60 -0.8120508 -0.20054993 +0.03664321 - 3.6729182 90 +0.2105546 -0.25530900 -0.09419278 - 4.2751426 120 + 1.3414125 -0.17569179 -0.20519295 - 4.9336670 150 + 2.2292256 -0.03890712 -0.17509913 - 5.4402943 180 +2.5606191 +0.00609135 -0.02289425 - 5.5988851 210 + 2.2161495 -0.09117052 +0.10010366 - 5.3434506 240 + 1.3285850 -0.22331936 +0.07965468 - 4.7817011 270 +0.2102889 -0.25329570 -0.04260337 - 4.1217062 300 -0.8010985 -0.15911711 -0.13424046 - 3.5565885 330 -1.4740745 -0.03664087 -0.11350351 - 3.2013711 38, + 1.9077055 -0.74945012 -0.25781908 -25.6443513 2 2 + 1.9077060 -0.74945010 -0.25781973 -25.6443479 sin + cos

+ 1.1362797 0.2059026 -0.0165525 +10.07610 0.0000000 -0.0119808 45 - 5.0397791 0.2189646 +0.3708684 + 2.31469 +0.1087907 +0.2605870 90 - 8.3838519 0.2523915 +0.5397194 - 9.33604 +0.1656447 +0.3542182 135 - 1.8404722 0.2886690 +0.6481209 -19.05928 +0.1256756 +0.3990450 180 + 1.6518880 0.3050752 +0,4171470 -18.09445 0.0000000 +0.2504179 225 - 5.0490913 0.2898966 -0.2732646 - 6.02536 -0.1262101 -0.1682478 270 - 8.9126276 0.2535451 -0.7948804 + 6.80306 -0.1664018 -0.5216806 315 - 2.5789640 0.2193839 -0.6003932 +12.22078 -0.1089990 -0.4218605 2, -14.5083118 1.0169144 +0.1454335 -10.55133 -0.0007571 +0.0709747 S, -14.5083066 1.0169141 +0.1453315 -10.54917 -0.0007428 +0.0695237 E 1000 X [flo sin v + (cos v + cos E)So] 1000 xl-flocosv + / r x -, 1000000 X W cos u 1000000 X T^o sin w ( sec 8

1000000 X S<"> -10.033551 0.05357158 +0.12743633 +2.7656535 0.00000000 +0.09223957 45 - 4.253985 0.05690845 -0.09526013 -2.4561209 +0.02827449 -0.06693360 90 + 2.323772 0.06500834 -0.12559190 -7.5560767 +0.04266503 -0.08242607 135 - 5.662284 0.07385617 +0.10733754 -9.1730340 +0.03215420 +0.06608723 180 -14.586465 0.07791030 +0.13821863 -4.8544449 0.00000000 +0.08297417 225 - 7.712269 0.07407227 -0.10322243 +2.4086872 -0.03224828 -0.06355357 270 + 1.985936 0.06494182 -0.14759132 +6.8479047 -0.04262137 -0.09686429 315 - 2.681773 0.05659771 +0.08359968 +6.4235154 -0.02812010 +0.05874051 2, -20.310308 0.26143204 -0.00752826 -2.7969634 +0.00004366 -0.00407662 2 2 -20.310311 0.26143460 -0.00754534 -2.7969523 +0.00006031 -0.00565943 E 1 000 V 1 /? rrm v lOOOXtflosinv ^L 1000000 1000000 1000 X 2 T -R + (oos i)+cos E)So] fr 2 \ . , cl XWaCosu X Wo sin u a +0.000254873 -0.053571580 + 0.7111033 - 2.6726716 -0.09715013 45 +0.042763861 -0.037538560 - 2.2040406 + 1.0838516 -0.10631064 90 +0.064736687 +0.005812013 - 7.0890057 - 2.6153925 -0.13001668 135 +0.048623034 +0.055602449 - 4.0838509 - 8.2138132 -0.15745404 180 -0.000276437 +0.077910304 + 1.2481721 - 4.6912376 -0.17035369 225 -0.048771753 +0.055759058 - 2.0023922 + 1.3387309 -0.15791475 270 -0.064644985 +0.006352181 - 6.7530485 - 1.1358370 -0.12988365 315 -0.042545549 -0.037317274 - 3.5934362 - 5.3243555 -0.10573015 2l +0.000070138 +0.036502918 -11.8827788 -11.1151387 -0.52740415 s. +0.000069593 +0.036505673 -11.8837299 -11.1155862 -0.52740958 sin v iAi (s > + cos

Q7 1 V7 Earth +0.021481158 + 2 2915614 -un 000*31 QQ11 Jupiter +0.15813453 + 12 476799 2 s )fi l i4077 Saturn +0.006289141 + 6679051 024687281 Uranus -0.000014965 + 00120199 000062454 Neptune +0.000000608 + 00034075 000104366 +0.18702155 + 15.952606 -0.29383023 Action of rdo-l LdiJoo Fl UUoo f-1 ldt] w Mercury + o'6l479483 + o'6o61918 + o"l940178 Venus + 0.30877426 + 0.4948896 + 4 1 9 04933 Earth - 2.2862242 + 2.2903688 + 6 6520970 Jupiter - 8.3142000 + 12.472464 18 450874 Saturn . ... - 0.26298236 + 6677678 8382821 Uranus - 0.00741949 + 0120160 0154576 Neptune - 0.00302292 + 0.0034059 00045985 -10.5502799 + 15.947104 - 8.342604 COMPARISON WITH OTHER RESULTS. Leverripr. Neweomb. Method of Gauss. +0.18703 + 1.48645 [K/ctt]oo -0.29375 sin i [dtt/dfloo -0.34099 -8.358* +0.18706 + 1.48787 -0.29385 -0.34066 +0.187022 + 1.487355 -0.293830 -0.340709 -8.34260 12. COMPARISON WITH THE RESULTS OF OBSERVATION. From a discussion of all the available observations of the planets and of the Sun, NEWCOMB has derived the most probable values of the preceding coefficients based upon observations alone. These will be found summarized in a convenient form on pages 107 and 108 of The Elements of the Four Inner Planets and the Funda- mental Constants of Astronomy (Supplement to the American Ephemeris and Nautical Almanac, 1897). * The value of [dLldt]oo arising from the action of Mercury was not stated by Leverrier. The value as found above has been added to his series of values in order to obtain this sum. OF THE ORBITS OF THE FOUR INNER PLANETS. 183 In order to compare the values here obtained with those given by NEWCOMB it is necessary to notice that the values of i and fl stated by him are measured from the movable equator and equinox and that it is therefore necessary to free the values of [di/dt] 00 and [dQ/dt] 00 here given from the changes caused by the motion of the ecliptic itself. For this purpose we first compute p and L from the equations, [dp-] \dq1 p sin L = and p cos L = Mr , L dt Joo L dt Joo the secular variations being those which belong to the Earth's orbit, and then add the quantities p cos (L fl) to the several determinations of [di/dt] Q o and p X cos i sin (L Q) to those above given for sin i [dQ/dt]o . In this manner the values stated in the following tabulation are obtained. In a similar way it might appear necessary to add the correction, e tan \i ( sin i ^7 + P sin (L ft) J to the values obtained for e [dwjdt] o, the first part arising from the change due to the plane of the orbit and the second from that produced by the motion of the ecliptic. And in the case of the Earth's perihelion, there is a secular motion due to the lack of sphericity of the Earth-moon system which is expressed by the equation, dir^ mm' (a '\ 2 . TT = I*** ' 7 7\} 'I ) > ' dt Joo 2 (m + m') 2 \a/' the accented letters applying to the moon (Annales de I'Observatoire de Paris, Vol. IV, pages 42-46). Employing the values of a' and m' given in the Astronomical Papers of the American Ephemeris, Vol. IV, page 11, this correction is found to be +0".0157884. But these last two corrections need not here be applied because the values of the variations obtained by NEWCOMB from observation have already been freed from their effects. MERCURY. Newcomb. Method of Gauss. Observ. 5i Si t [de/dt] M e [dv/dt]m [dildt}oo +0.0423 + 1.0960 +0.0676 +0.0423 + 1.0891 +0.0674 +o!t)336 + 1.1824 +0.0714 -o!()087 +0.0864 +0.0038 -0.0087 +0.0933 +0.0040 0.0050 0040 0.0080 sin i [dn/dfloo -0.9250 -0.9234 -0.9189 +0.0061 +0.0045 0.0045 184 THE SECULAR VARIATIONS OP THE ELEMENTS VENUS. Newcomb. Method of Gauss. Observ. Si [de/dt} w -0.0958 -0.0958 -0.0946 +0.0012 +0.0012 0.0020 e [dv/dt]oo +0.0039 +0.0038 +0.0029 -0.0010 -0.0009 0.0020 [dildt]oo +0.0034 +0.0034 +0.0029 -0.0005 -0.0005 0.0030 sin i [dttldt]m -1.0600 -1.0603 -1.0540 +0.0060 +0.0063 0.0012 EARTH. Newcomb. Method of Gauss. Observ. i [de/dt]^ -0.0856 -0.0857 -0.0855 +0.0001 +0.0002 0.0009 e. [dir/dt}oo +0.1925 +0.1925 +0.1948 +0.0023 + 0.0023 0.0012 [d*!dt} M -0.4677 -0.4677 -0.4711 -0.0034 -0.0034 0.0023 Newcomb. MARS. Method of Gauss. Observ. [de/dt] M +0.1871 +0.1870 +0.1900 +0.0029 +0.0030 0.0027 e [dw/dt] M + 1.4879 + 1.4874 + 1.4955 +0.0076 +0.0081 0.0035 [di/dt] w -0.0225 -0.0229 -0.0226 -0.0001 +0.0003 0.0020 sin i [dn/dt]oo -0.7263 -0.7251 -0.7260 +0.0003 -0.0009 0.0020 In the above tabulation the column headed 61 expresses the residuals from the computation of NEWCOMB and that headed 5 2 states the residuals from the results here obtained. It will be noticed that the differences are very minute throughout, the only appreciable improvement arising from the more accurate computation occurring in the case of the node of Mercury, where the residual is reduced by its fourth part. The last column contains the mean errors of the observational results. If we multiply these by 0.6745 to reduce them to probable errors, we observe that in seven cases the residuals are less than the probable errors; in five cases they vary from one to three times as great but that in each of these cases where the divergence is greatest a slight change in the value of the masses will correct the disagreement, and that in the remaining three cases the difference is very much greater than can be ascribed to errors either in the adopted masses, the computation, or to errors in the obser- vations themselves. These three cases are: 1. The motion of the perihelion of Mercury. 2. The motion in the node of Venus. 3. The motion of the perihelion of Mars. OF THE ORBITS OF THE FOUR INNER PLANETS. 185 The first of these is the well-known discordance. The second is well established, the discordance between observation and theory being nearly eight times the probable error, nor can the uncertainty remaining in the values of the masses account for more than a small part of the discrepancy. NEWCOMB estimates the mean error of the computed value arising from this uncertainty as not more than 0".0012, so that with this included the residual is nearly six times the probable error. The third dis- cordance is the least of the three, but as the masses of Jupiter and Saturn, the principal disturbing planets for this case, are accurately known, the uncertainty of the com- puted results is almost negligible. NEWCOMB estimates the mean error of the result of computation arising from the uncertainties in the masses of all the planets as here but 0".0004, so that the residual remains between three and four times as large as the probable error. 13. COMPARISON WITH SEELIGER'S HYPOTHESIS ON THE CON- STITUTION OF THE ZODIACAL LIGHT. Many hypotheses have been made for the purpose of explaining the discrepancies shown in the preceding article. In general, either the assumption is made that NEWTON'S Law of Gravitation is not strictly accurate* or else that certain additional matter in the solar system must be considered whose attraction has not hitherto been allowed for.| The most recent and the most plausible investigation of the second kind is that effected by SEELIGER (IO)I (11)i (12> who seeks to account for all of the appreciable discrepancies by the perturbing effect of the cloud of particles known as the zodiacal light. What the true form of this cloud is, and still more, what the law of the dis- tribution of its density is, is very uncertain. J SEELIGER assumes that it can be roughly conceived as made up of two homogeneous ellipsoids of revolution whose semi axes have the values 0.24 and 1.20, respectively. Both the eccentricities of these ellipsoids and the position of the equator of the outer one can vary within wide limits without greatly altering the values of the perturbations which they produce; the distance from the focus to the center in each of them is arbitrarily chosen as equal in length to ten times the semi minor axis, and the equator of the outer one is assumed to be coincident with the plane of the equator of the sun. The respective densities and also the two constants which define the equatorial plane of the first ellipsoid remain as unknown quantities whose values are to be determined. * See Tisserand's Mecanique Celeste, Vol. IV, Pages 494-542. fSee Newcomb's " Astronomical Constants. . . ." (1 ", Pages 110-120. t See the article, "The Zodiacal Light" by Newcomb, in the Encyclopaedia Britannica, Vol. XXVIII. 186 THE SECULAR VARIATIONS OF THE ELEMENTS From the known formulas which express the attraction exerted by an ellipsoid upon a point either wholly within or without its surface, the expression for the per- turbing force in any case can readily be written, and from this the equations for the variations of the various elements are derived, each equation containing five unknown quantities whose values are to be so determined as to best account for the excess of the variations observed over those heretofore obtained from the .theory. As the ellipsoids are assumed to be symmetrical with respect to their axes of rotation, however, they will cause no appreciable perturbation of any eccentricity. The variation of the obliquity of the Earth's orbit was also not considered by SEELIGER. There remain therefore but ten discrepancies to be represented; namely, those of the four perihelia, those of the three nodes and those of the three inclinations. These ten discrepancies form the absolute terms of ten corresponding equations which con- tain five unknown quantities. It is to be noticed that in the "Astronomical Constants ..." two tables of the theoretical variations are stated by NEWCOMB; the first, on page 109, are those computed from the values of the various masses assumed in Chapter V; the second, on page 185, are those computed from the definitively adopted masses. The latter values of the masses are in closer accordance with those assumed in the present paper than the former; the first values are, however, the ones adopted by SEELIGER in the computation. The final results are as in the following table: Newcomb. Method of Gauss. Per. caused by Zod.L't. Final Residuals. Prob. Errors. Newcomb. Meth. of Gauss. MERCURY. // // // // // // edit +8.64 +9.33 +8.49 +0.15 +0.84 0.29 sin i