OF R. Tracy Crawford A8TRUHUMI THE SECULAR VARIATIONS OF THE ELEMENTS OF THE CEBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.0, G. M. T BY ERIC DOOLITTLE \ UNIVERSITY OF PENNSYLVANIA Extracted from THE TRANSACTIONS OF THE AMERICAN PHILOSOPHICAL SOCIETY, N.S., Vol. XXII, Part 2 PHILADELPHIA 1912 To MY FATHER, PROFESSOR CHARLES L. DOOLITTLE, THIS WORK is INSCRIBED. ASTROUOVY [Extracted from the TRANSACTIONS OP THE AMERICAN PHILOSOPHICAL SOCIETY, N. S., Vol. XXII., Part 2.] THE SECULAR VARIATIONS OF THE ELEMENTS OF THE ORBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.Q G. M. T. BY ERIC DOOLITTLE. (Read March 1, 1912.) TABLE OF CONTENTS. THE THEORY. 1. Introduction 39 2. The method of GAUSS 40 3. HILL'S first modification of GAUSS'S method 42 4. HILL'S second modification. The work of CALLANDREAU and INNES 47 5. The method of HALPHEN and its modifications by ARNDT and INNES 49 THE COMPUTATION. 6. The elements of the orbits and the adopted masses 52 7. The formulas employed in the computation 53 8. The values of the preliminary constants 56 9. The radii vectores and the true anomalies 59 10. The separate results: Mercury by Venus 61 Earth by Mercury 123 " Earth 65 " " Venus 127 " Mars r." . . 70 " " Mars 132 " Jupiter 77 " " Jupiter 138 " Saturn 82 " " Saturn 142 " Uranus 86 " " Uranus 146 " " Neptune 89 " " Neptune 149 Venus by Mercury 93 Mars by Mercury 152 " Earth .100 " " Venus : 156 " " Mars 104 " " Earth 160 " " Jupiter 108 . " " Jupiter 164 " Saturn 112 " " Saturn 168 " Uranus 116 " " Uranus 173 " Neptune 120 " " Neptune 176 11. The final values of the perturbations 179 12. Comparison with the results of observation 13. Comparison with SEELIGER'S hypothesis on the constitution of the Zodiacal Light 185 . 37 1. INTRODUCTION. The usual method of determining the secular variations of the elements of any planet is the well-known one based upon the development of the perturbing function into an infinite series whose successive terms involve continually higher powers of the eccentricities and the mutual inclination. This method possesses two advantages. The first is that when an extreme degree of accuracy is not required, so that higher terms of the development may be disregarded, it is the simplest method available; and, in the second place, since the coefficients of all terms are general literal expres- sions, the change produced in the value of any variation by a change in the assumed values of one or more of the elements can readily be ascertained by a simple substi- tution of the more accurate values. On the other hand, this method possesses the disadvantage that the complexity of the expansion grows rapidly greater as the order of the included terms is increased, so that a slight increase in the desired accuracy greatly increases the labor of the computation. The integral methods, founded upon the celebrated theorem of GAUSS (I) ,* are wholly free from this latter disadvantage, for if it is desired to include all terms to the twenty fourth order this can be done by a computation which is less than twice as long as that required when the approximation is stopped at terms of the eleventh order. But the integral method, though thus extremely accurate, leads only to the numerical values of the variations dependent upon the values of the elements assumed ; if they are desired for some other epoch at which the various elements possess different values from those adopted, or if an improved value of any of the elements becomes known, they can only be found by an entire repetition of the computation. The only determinations of the secular perturbations of the four inner planets which are in any sense modern ones are the classic investigation of LE VERRIER (T) and the computation of NEWCOMB (15> . The latter furnishes the most accurate values of these variations so far determined ; the series were extended to terms of the eighth order, only those terms of this order being included, however, which seemed likely to be most important, and in some cases terms of the tenth order were included, though usually by induction merely. In both of the above computations the usual expansion into an infinite series was employed. As the GAUSSIAN method is so extremely accurate, and as its formulas throughout are wholly different from those hitherto employed, it seemed that an * These symbols wherever they occur refer to the list of titles at the end of the present paper. 39 40 THE SECULAR VARIATIONS OF THE ELEMENTS application of it to a re-determination of these variations based upon the most ac- curate values of the several elements now obtainable would be of value. The results of this work will be found in the following pages; the final comparison with the earlier results is given in Article 11, and the comparison with the results of observa- tion in Articles 12 and 13. The epoch throughout is 1850.0, G. M. T. In the four following articles an attempt is made to state briefly the essential features of the various methods of computing secular variations which are founded on GAUSS'S theorem, but for a detailed account of the long and often complex trans- formations which are involved, the original papers must be consulted. 2. THE METHOD OF GAUSS. The equations which express the complete variations of the elements of the orbit of any body revolving about the sun when it is disturbed in its motion by the presence of a third body, may, as is well known, be put in a variety of different forms; the form selected as the basis for all developments founded on GAUSS'S method ' is that in which three rectangular components of the disturbing force enter into the expressions for the differential coefficients. Thus, if R denote the component lying in the direction of the radius vector of the disturbed body, positive outward from the sun; S, the component lying in the plane of the orbit of the disturbed body and perpendicular to the radius vector, positive in the direction of motion; and W, the component perpendicular to this plane and positive northward, we will have for the variation of the eccentricity of the orbit of the disturbed body, de tfn cos<p dt = fe'(l + m) ^ sm + ( - cos " + cos ^ J' with similar expressions for the variations of the six remaining elements.* In the original memoir of GAUSS the determination of the secular terms of these expressions was given a geometrical aspect. Thus, since each variation may obviously be expressed in terms of the two single variables M and M' , the secular term in question will be that given by the equation, [de-\ 1 r 2 ' ("'de ,..,.., [dt 1=4^1 1 dt dMdM ' * The usual notation is adopted throughout. Thus a, e = sin ip, i, 12, ir, n, and L are respectively the half major axis, the eccentricity, the inclination, the longitude of the ascending node, the longitude of perihelion, the mean motion and the longitude at the epoch of the disturbed body; M, E, v and r are respectively its mean, eccentric and true anomalies and its radius vector, m is its mass, k* is the mass of the sun, and m = >nk 2 . The same letters with accents refer to the disturbing body. Watson, Theoretical Astronomy, pp. 516-523; Oppolzer, Lehrbuch zur Bahnbestimmung, Vol. II, p. 213; Tisserand, Mecanique Celeste, Vol. I, pp. 431-433, etc. The final forms of the equations expressing the other variations may be inferred from those stated at the end of Article 7. OF THE ORBITS OF THE FOUR INNER PLANETS. 41 and this is the same as, [de~\ a 2 ncos<f f 2 " f 1 f 2ir _ 1 f 2 ' , ,, , 1 , ,, = o 70/1 sm t>- 5- /MM' + (cos v + cosE)- ^- SdM' dM, \_dt !joo 27r 2 (l + m) J L 2irJ 2irJ J since the variable of the first integration enters the expression only through R and S. In the equation as thus written R and S are supposed to contain the mass, ra ', as a factor so that if Ri and Si are the corresponding values produced by a unit mass, R = m 'Ri and S = m 'Si. If we now imagine an infinitely thin elliptic ring which coincides with the orbit of m', whose total mass is equal to the mass ra</, and the density of any portion of which is proportional to the time occupied by m' in describing that portion of its orbit, we will have for the three components of the attraction exerted by any portion dm f , R.dmo', Sidm'o, and and integrating about the entire ring, we find for the complete components, flit /*2n- /2jr Rdmo, I Sidmo', and I W4m<>'- Jo Jo But by the conditions, dt dM' OTo' " T 2;r ' and hence the components are, J rtn 1 r>2 1 /*2ir m^'RidM', 5- m Q 'S t dM' and ~- mo'T^id/lf, <i7T J ^TT J /7T J which are identical with ^ f '" fldM', ^ (^ SdM' and g. if" W^dM'. Thus the expressions giving the secular variations are seen to be the same whether these are derived from the moving planet or from the elliptic ring.* The work of GAUSS contains no application to the determination of secular vari- ations nor are all the formulas necessary for this purpose there developed; the first integration alone is effected, and it is shown that by changing first to the variable E' and afterward introducing a new variable, T, each of the complicated integrals may be made to depend upon elliptic integrals whose values GAUSS obtained by the introduction of a new algorithm called by him the Arithmetico-geometrical mean. * Other interesting geometrical aspects of the problem are treated by Bour < 5) , Hill < s "' (38) , and Halphen < 28) , but for brevity a detailed account of these is here omitted. 42 THE SECULAR VARIATIONS OF THE ELEMENTS The first application of GAUSS'S method was made by NicoLAi (2) , who determined by it the secular variations of the Earth's orbit, but the results only were published.* The first development of the method is by CLAUSEN (3) who also applied it to a determi- nation of the perturbations of Tuttle's Comet produced by the action of Jupiter (4) , dividing the disturbed orbit into 120 parts with reference to the true anomaly. It was next, in 1867, applied by ADAMS ((!) to the orbit of the November meteors with a special view to ascertaining the cause of the steady progression of the node of the orbit, but in this investigation certain small terms were neglected by ADAMS and the solution of a fundamental cubic equation which occurs in the original method was in this manner avoided. No further applications of GAUSS'S method seem to have been made until after the publication of HILL'S extensive development (8) and modifications of it in 1882. 3. HILL'S FIRST MODIFICATION OF GAUSS'S METHOD. Although the first of the above integrations may be rigorously effected, the value of the second must be approximated to by a mechanical quadrature about the orbit of m, a greater or less number of terms being employed in the quadrature according as the disturbed orbit is more or less eccentric. Since either the true, eccentric, or mean anomalies may be selected as the variables, it becomes of im- portance to decide which of these must be chosen in order to render the quadrature most accurate. It is readily proved! that the inequalities of distribution of a series of points on an elliptic orbit corresponding to a series of equidistant values of the eccentric anomaly are of the order of the square of the eccentricity while for the other two anomalies they are of the order of the first power of this quantity, and therefore HILL has employed the eccentric anomalies throughout his development, although SEELiGER (9) showed that a still higher accuracy will be obtained if the true anomalies are chosen. If, therefore, we decide to make the integrations with reference to the eccentric anomalies, we will obtain, since dM = ^dE, AM' =-- r -,dE', and r' = a' (I - e' cos E'), [de~\ ncos<p I f 2 " f 2ir . j, = ,,,, r -r \ sin v Kar(I e cos E) L^JOO & 2 (1 + TO) 47T 2 J J + (cos v + cos E) Sar(l - e' cos E')]dEdE'dt, *See Article 11. t See Tisserand's Mecanique Celeste, Vol. I, page 442, OF THE ORBITS OF THE FOUR INNER PLANETS. 43 and writing, 1 r 2 " nr 1 C 2 " nr R = ^ I ,R(l-e' cosE')dE', S = ^ ,S(l-e' cos E')dE', JIT JQ TOO zir JQ mo the expression for the secular variation will become, [del m'n 1 T 2 " '- cos <p JT- [sin v-Ro + (cos v + cos E)S u ]dE. at Joo 1 -f- TO ZTT J In order to find the values of R , S , and W , it is first necessary to express R, S and W in terms of E' '. For this purpose that part of the disturbing force arising from the action of the disturbing planet upon the sun need not be included, for it is known that this has no secular term.| Considering therefore only the action of m' upon m, it is evident from a figure that R, S and W will have the values, _ m o' I r> cos # r 1 I / _ TOO' r' sin & cos y TT7 ' : -^r sm y> and also that A-' = r 2 - 2rr' cos + r' 2 , in which & is the angle included between the radii vectores, A is the distance between the two bodies, and y is the inclination of the plane which includes r and r' to the plane of the orbit of the disturbed body. If n and n' denote the angular distances respectively of the perihelia of the two orbits from the ascending node of the orbit of m' upon the orbit of m, and if / be their mutual inclination, we will have, cos = cos (v + n) cos (v r + II') + sin (v + U) sin (v' + n') cos /, sin cos 7 = sin (v + n) cos (v' + II') + cos (v + II) sin (v' + II') cos I, sin sin 7 = sin / sin (v' + n') The values of n, n', and / are obtained from the original elements by a direct solution of the spherical triangle whose sides are n and n', and in which the angle included between these sides is I. (See Article 7.) tSee Hill's "On Gauss's Method <8 >, , . ," page 321. 44 THE SECULAR VARIATIONS OF THE ELEMENTS If we now eliminate v' from the above expressions by the equations, r' cos v' = a' (cos E' - e'), r' sin v' = a' cos <p' sin E', r' = a' (1 e' cos E'), the resulting equations giving R, S, W, and A will be expressed wholly in terms of the variable E' . In order to simplify these results, we assume certain new auxiliaries defined by the equations, k cos (.K-n) = cos IT, k sin (K-U) =- cos / sin IT, k' cos (K'-Il) = cos 7 cos II', k' sin (K' - II) = - sin II', A = r z + 2ka'e'r cos (v + K) + a'\ B cos e = ka'r cos (v + K) + o'V, B sin e = /r'a' cos <p' r sin (v + K'), A c = ka' cos (v + K), A s = k'a' cos <?' sin (v + K') B c = - ka' sin (v + K), B s = k'a' cos v ' cos (v + A'') C c = a' sin n' sin /, C s = a' cos <p' cos II' sin /. C = a'V 3 , when the desired expressions become, -*, R = 4, (cos E' - e') + A s sin E' - r W?o ^U = 5 c (cos ' - e') + 5 8 sin ' W?0 ~ W = C c (cos ' - e') + C, sin #' 2 A 2 = A-2B cos (' - e) + C cos In order to effect the integrations, GAUSS here introduced a new variable, T, connected with E' by the relations, N sin E' = a + a' sin T + a" cos T N cos E' = /3 + 0' sin 7 1 + 0" cos 7 T N = 7 + 7' sin T + j" cos 7 7 , the quantities , a', a", 0, 0' . . . being subject to the conditions that (N sin #') 2 + (N cos #') 2 - JV 2 and sin 2 T + cos 2 T - 1 shall be identically zero, and also being so chosen that the coefficients of sin T, cos T, and sin T cos T shall vanish in the expression 2V 2 A 2 which therefore must take the form, G - G' sin 2 T + G" cos 2 T. From these conditions it is derived that the coefficients G, G' and G" in the trans- OF THE ORBITS OF THE FOUR INNER PLANETS. 45 formed expression for JV 2 A 2 must severally satisfy the cubic equation, x(x - A)(x + C) + B 2 x + B 2 C sin 2 e = 0, and hence that they must be the roots of this equation. By substituting for x the successive values, -- (7, 0, a' 2 cos 2 <p' and + A, the first member is seen to take in succession the corresponding values, - B 2 C cos 2 e + B 2 C sin 2 e - a' 4 cos 2 <p' r 2 sin 2 1 sin 2 (v + II) + B*-(A + C sin 2 e). Since, even when cos (v + K) has its maximum negative value, the value of A exceeds that of (r a') 2 , it is evident that A is always positive, and therefore that the above equation has one negative root which lies between C and 0, one positive root lying between and a' 2 cos 2 <p', and that the third root lies between this value and + A. The roots are represented by G", G', and G, respectively, and thus G", G' and G are always positive quantities, the last being the largest and the first the smallest except when <p' exceeds 45, a case not met with in any of the planetary orbits. Since a, j3, y, a', 0' . . . must retain the same values whatever the values of E' and T, we may, by writing the equations arising from the three conditions above stated and equating the coefficients of the like terms in the two members, obtain a series of equations which are sufficient for the determination of these quantities in terms of G, G', G" and the other known auxiliaries. Upon substituting the resulting expressions for sin E' and cos E' in the equations defining R , S , and T^o, and noticing that JV 2 A 2 may be written, G - G' sin 2 T + G" cos 2 T = (G' + G"} 1 1 - ^-^'sin 2 T }, I tr + tr J we obtain each of the components in the form, m s sin 2 T + m c cos 2 T or 1 I'"" e = - If we now write, G /I I fin - 7, and consider that from LANDEN'S well-known transformation, 46 THE SECULAR VARIATIONS OF THE ELEMENTS c ~ and also notice that r' 2 dr Jo (l-c 2 sin* * sin 2 TdT cos* TdT ![/ TT\ = ?L v c>2 / it is evident that each of the above three integrals becomes expressible wholly in terms of the rapidly convergent series of LANDEN. For the purposes of the present computation HILL (S) has computed to ten places the logarithms of the quantities K = sec 2 KL, L' = L ~ B , and N u = sec 2 (1 + '), and these correct to eight places are tabulated at intervals of one tenth of a degree for all values of from = to = 50. From a direct substitution it is now seen that the final resulting values of Ro, S and W are as follows, in which the symbols N, P, Q, etc., are written for abbrevi- ation and have the meanings stated in Article 7 : 7? = - N - QG' + VJS, S = PF* + VJ, W = PF, + VJ 3 The integration with respect to E' having been thus entirely completed, that in regard to E is effected by mechanical quadratures. Since each variation is a function of E alone, it follows by the principles of quadratures that if any one of them be expanded into a periodic series involving the sines and cosines of E and its multiples, the secular term of the series, which is rigorously equal to |ir I f(E)dE, may be I/O also obtained by forming the values of f(E) for 2j equidistant values of E, from E = to E = 360, and dividing the sum by 2j. The expression thus obtained, will be subject only to the error involved in dropping those terms which contain a multiple of E not lower than 2j. An inspection of the known forms of the series which express the variations renders it evident that the error thus committed is of OF THE ORBITS OF THE FOUR INNER PLANETS. 47 the order 2j in terms of the eccentricities and mutual inclinations of the orbits except in the one case of the variation of the Mean Longitude, in which, as this variation depends wholly upon the expansion of 2(r/a)JRo> it is of the order 2j + 1. The resulting equations giving the values of all the secular variations are those stated in Article 7. 4. HILL'S SECOND MODIFICATION OF GAUSS'S METHOD. THE WORK OF CALLANDREAU AND INNES. In HILL'S second modification of GAUSS'S method (8> , the well-known expressions for the roots of a cubic equation when this is solved by the trigonometric method are introduced, and thus, throughout the integrals, the quantities p, q and 0' occur instead of the roots G, G' and G", the equations connecting these quantities being, G = 2 9 sin60 - + P, G' = 2gsin G" = 2g sin (60+ I') -p. It was shown in GAUSS'S original memoir (1) that dT f (m 2 cos 2 T + n 2 sin 2 T) * J ( m ' 2 COS 2 if m' = \(m + w) and w' = V mn, and that by repeating this transformation by the employment of the equations, m " = i( m > + n '), n" = Jrnfri, m'" = \(m" + n"), n'" = JriW, etc. etc., m ( *> and n (k) very rapidly approach a single limit, p., which GAUSS named the Arith- metico-geometrical Mean. It thus follows that our first integral is equal to 7r/2^, and that integrals of the form p (sin 2 T - cos 2 T)dT J (m 2 cos 2 T + n 2 sin 2 T)* become equal to ir/2 w/ju in which w is a very rapidly converging series involving m, n, m', n', etc., in its successive terms. The integral expressions which actually enter into the equations for .R , S , and W o are (f\f \ -/o 60 - Q ) - r -r^ 3 / 4 (m 2 n 2 ) 48 THE SECULAR VARIATIONS OF THE ELEMENTS V3 w sin 6' in which tf A o and the values of # , , and T^ being connected by comparatively simple relations with these quantities and with known auxiliaries. HILL accordingly suggested that tables of these functions should be computed, and this was first done by MONS. 0. CALLANDREAU (I:!> who however adopted as an argument the quantity a defined by the relation 1 1 cos 1 + a 6' V COS Q * <5 and tabulated the logarithms of the functions r 4 n 4 x(0') and <K0') *- x(0') at intervals of 0.001 from = 0.000 to a = 0.400; of 0.002 from = 0.400 to a = 0.600 and of 0.005 from this point to the extreme value, = 1.000. This paper repeats the derivation of all formulas necessary when the second method alone is employed, essentially as this was given by HILL, and also contains a direct proof that R , S , and W can be expressed wholly in terms of the complete elliptic integrals, F and E. Similar tables were also computed by MR. R. T. A. lNNES (22) , the functions here tabulated being (1 -- )/(! + 4 ) \l/(6') and \l/(6') + *(0') to the argument 0' at intervals of one degree, from 0' = 90 to 0' = + 90. Whether the first or second methods be employed, the values of the integrals involved may also, as was pointed out by HiLL (38) , be approximated to with great rapidity by the use of JACOBI'S Nome, q (American Journal of Mathematics, Vol. 23, page 321. In the Astronomical Journal, No. 511, a brief application is given to a case in the action of Venus on the Earth). This function is defined by the equation, q = e~'x, in which K' is the complete elliptic integral of the first kind complementary to K, from which there may be derived, KE=(1+ 3V + 5V ) - U + <? 2 + <? 6 ' ) OF THE ORBITS OF THE FOUR INNER PLANETS. 49 The values of log [(//tan 2 0] computed to ten decimal places for each degree of 8 from 6 = to 6 = 45 are given by lNNES (39) . When exceeds 45, the values of K and E are readily obtained from their expressions in terms of the complementary complete integrals whose moduli are sin (ir/2 0), and to which the table is therefore directly applicable. Lastly, in the second method, HILL recommends that the quadratures be per- formed upon the quantities a/r R , a/r S and a/r W directly, all constant and evanescent factors which appear in the expressions for the variations being removed from under the integral signs and reserved until the integration has been completed. 5. THE METHOD OF HALPHEN AND ITS MODIFICATIONS BY ARNDT AND INNES. It was first pointed out by BRUNS (29) that the periods of the elliptic functions of the first and second integrals can be evaluated without a knowledge of the three roots, but it was HALPHEN (28) who first applied this remarkably elegant method of analysis to the present problem. It was shown by him that if o> and 17 are the two periods in question, then R , So, and W may be obtained in the form aw + br\, in which a and b are rational functions of the coefficients of the cubic equation and w and TJ are expressible in terms of certain hyper-geometric series in which the common variable is an absolute invariant of the elliptic functions. The three integrals entering into the problem have the form, /" Jo IdT 7 1 ) 3 ' in which / has the values 1, sin 2 T and cos 2 T, respectively, in the three cases; by introducing the new variable, s, defined by the relation, G + G" s-G' G' + G" ' s - G ' these become, G> + G " r-o" te G + G " r-o ds ~Jl ~^s (s ' G}> ~ 2 ~^~i v! (s ' and n respectively, in which f/~< i r<u\(r< r\ir<t i r>\ n = ((j -\- (j ; ((JT Cr ) (u -f- Cr ; and S = - 4( - G)(s - G')(s + (?") 50 THE SECULAR VARIATIONS OF THE ELEMENTS Introducing the WEIERSTRASSIAN r function through the relation C ds U = % u being the elliptic integral of the first kind and 61, e 2 , and e 3 the roots of the cubic equation increased by one third of the coefficient of x 2 , and considering that from the theory of these functions, s - G = r(u) - ei, T(w) = d, r(w + w') = e 2 , and T(w') = e 3 , the first integral will become, 2 ^~ f" " f r () - e 'l d = 2 \ e ^ + ~ ( + ') - - ' w 'l J u L " f J ff and o-' being the second WEIERSTRASSIAN functions, which are connected with the periods, w and rj, by the equations, (<> + ') = 77 + ?;'; -co' = )?'. The three integrals consequently take the final forms, _G' + G" n G + G", n G'-G, 2 ~ - (eico + 77) ; 2 - (^co + ?;), and 2 - ~- (630) + 77). fv ra 71 A direct substitution of these expressions for the integrals in the equations which define .R > So and Wo leads, after some reduction, to forms which are seen to contain only these integrals themselves, the coefficients of the cubic equation with other known auxiliaries, and the quantity n. But if, for brevity, we write the original cubic equation in the form, x 3 - P,x 2 + P*x - P, = 0, and let X = P, 1 - 3P 2 and p = PjP 2 - 9P 3 , then the invariants, g 2 and g 3 , and the absolute invariant, g, will have the values, to = |X; 0i = A(2PiX - 3p), and g = 2 3 * 270 3 2 , and w will be given by, n ~ = leC^ 3 - 27^ 3 2 ), in which the last factor is the discriminant. Thus, except for <o and TJ, our final expressions are obtained wholly in terms of the coefficients of the cubic equation, and a knowledge of the roots becomes unnecessary. In the paper by BRUNS, before referred to, it is shown that w and i\ are directly OF THE ORBITS OF THE FOUR INNER PLANETS. 51 expressible in terms of a hyper-geometric series whose variable is the absolute invari- ant, g. By a simple transformation the relations may be placed in the following forms, which are more convenient in practical application. A. , o- ' 12' l > g DR. Louis ARNDT i30) has fully developed this method, deriving all the formu- las necessary for its application and stating tables for F(w) and F(T)) for values of (g - l)/0 from (g - l)/g = 0.000 to (g - !),/</ = 0.980, the interval being 0.001. In a recent paper by INNES (SI) the complete formulas for this method are derived when the quadrature is applied directly to the expressions (a/r)R 0) (a/r)S Q and (a}r)Wo, as suggested in the second method of HILL. The development is nearly identical with that of ARNDT except that the forms of the hyper-geometric series are slightly changed, the variable, , * Vg - 1 sin 2 2 = *?=- being preferred. The values of the logarithms of F () = F(!, I 2, sin 2 -} and F (77) = F (- g, | 2, sin 2 * Y were published by MR. FRANK RoBBiNS (32) for all values of i, at intervals of one degree from i = 1 to i = 90, the computation having been made to ten places and published to seven, and these tables, computed with seven place logarithms, have been extended from i = 90 to i = 180 by MR. C. J. MERFiELD (33) . Although the preceding methods are of great mathematical elegance, it is doubt- ful whether their formulas lead to so accurate results as those of HILL'S first method when seven place logarithms are employed. (See the computations of Jupiter on Mars (24) and of Saturn on Mars (25> , Article 10.) Moreover, when the method is applied which is explained in the computation of Jupiter on Mercury (Article 10), the roots of the cubic equation are so readily obtained that the avoidance of its solution becomes a matter of no practical importance. Accordingly HILL'S first modification of GAUSS'S method has been employed throughout all of the following computation. THE COMPUTATION. 6. THE ELEMENTS OF THE ORBITS AND THE ADOPTED MASSES. The values adopted for the elements of the several orbits, to serve as the basis for this computation, were taken in each case from HILL'S "New Theory of Jupiter and Saturn." (16) Those of the four inner planets will be found on page 192; those of Jupiter and Saturn on page 558; of Uranus on page 109, and of Neptune on page 161. The epoch throughout is 1850.0 G. M. T. The values of the masses finally selected by HILL, and here adopted, will be found on page 554 for Mercury, Venus and the Earth; on page 192 for Mars; on page 19 for Jupiter and Saturn, and on page 161 for Neptune. The mass of Uranus as stated in the "New Theory " is 1 -r- 22640, but at DR. HILL'S suggestion this is here diminished to 1 -4- 22800, (A. J., No. 316). The value assumed for the mass of Mercury when the first of these computations were made was 1 -r- 5000000, but all of 'the results are here changed to agree with the value 1 -r- 7500000 stated below. It seems not improbable that even this latter fraction is too large, but the true value of this element is still very uncertain. X i S2 I e n Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune o / // 75 7 13.62 129 27 42.83 100 21 39.73 333 17 51.74 11 54 31.67 90 6 41.37 168 15 6.70 43 17 30.30 o / // 7 7.71 3 23 35.01 0.00 1 51 2.24 1 18 42.10 2 29 40.19 46 20.54 1 47 1.68 46 33' 8^63 75 19 53.08 48 23 54.59 98 56 19.79 112 20 49.05 73 14 8.00 130 7 31.83 0.20560476 0.00684311 0.01677114 0.09326803 0.04825511 0.05606025 0.0469236 0.0084962 5381016^260 2106641.357 1295977.416 689050.784 109256.626 43996.21506 .15425.752 7864.935 logo 1-j-m Mercury 9.5878217 7 500 000 Venus 9.8593378 408 134 Earth 0.0000000 327 000 Mars 0.1828971 3 093 500 Jupiter 0.7162374 1 047.879 Saturn 0.9794956 3 501.6 Uranus 1.2831044 22 800 Neptune 1.4781414 19 700 52 OF THE ORBITS OF THE FOUR INNER PLANETS. 53 7. THE FORMULAS EMPLOYED IN THE COMPUTATION. The following formulas are written in the order in which they were applied. When the right hand member appears in two different forms, one of these was used in the first computation and the other in the duplication, though sometimes other obvious modifications were made use of in the several cases differing from those which are here written. The values of /, n, and n' were obtained from the general equations: sin / sin (H w) = sin i' sin (ft' ft) , sin I cos (II w) = sin i cos i' + cos i sin i' cos (ft' ft) = cos i cos i' [ tan i + tan i' cos (ft' ft)], sin / sin (n' w') = sin i sin (ft' ft), sin/ cos (II' a/) = cos i sin i' sin i cos i' cos (ft' ft), = cos i cos i' [tan it tan i cos (ft' ft)]. When the Earth is the disturbing body, these become, / = i; n = 180 + co; n' = 180 + *' - ft; and when the Earth is the disturbed body, / = i'- n = TT - ft'; II' = *-' - ft'. As i, i' and / are always small, eight place logarithms were generally here used to insure the accuracy of n and n'. The auxiliaries k, k', K, K' and C were then found from the relations: k sin (A' - n) = - cos I sin n'; k cos (K - n) = cos n'; k' sin (K' - n) = - sin n'; A;' cos (K'-U) = cos / cos n'; C = o'V 2 , and their values were tested by the equations, tan .7 = p ; tan \(K - K' + 90) cot |(A' + K' - 90 - 211) = "!" ( ^, ~ "\ , v sin (^11 -p G) sin ( K- K') = sin I tan / sin (K' - n) sin (K - n) cot n'. The orbit of the disturbed planet being then divided into 2j parts in regard to the eccentric anomaly, the following equations were applied to each point of division, of which those marked with an asterisk are test equations upon the sums of the functions corresponding respectively to the odd and even points of division of the orbit. The sums corresponding to the odd points are designated by Si, those to the even points by S 2 , and 2 = S, + S 2 . 54 THE SECULAR VARIATIONS OP THE ELEMENTS r sin v = a cos ip sin E, r cos v = a (cos E e), r 2 = a 2 (1 - 2 e cos # + e 2 cos 2 .E), (the last equation giving the value of r 2 for use in A, N, and J 3 . Since i log r 2 = log T-, this affords also an independent test of r). *S,t; + 180 = S 2 *>; *Z^ = Z 2 r = ja. A = r 2 + 2&aYr cos (w + X) + a' 2 = [r + ka'e' cos (t> + X)] 2 + a' 2 [l - fcV 2 cos 2 (v + (the second form used with ZECH'S tables in the duplication). *SiA = ^A = ja 2 + |jaV + j[a' 2 - 2kaa'ee' cos X] J3 sin e = A;'o' cos ^>'r sin (v + K'} B cos e = ka'r cos (t> + K) + a' 2 e' *2iB sin e = S 2 B sin e = jk'aa' cos ^>' e sin ^' *2iB cos = 2 2 B cos e = j[a'~e' kaa'e cos A'] g = B 2 C sin 2 e To effect the solution of the cubic equation, h and I were found from the equations, the very convenient test equation, hi = B* -AC, being applied to each pair of values. The first approximation to G was then obtained from G = h ~ h(h -I)' and further approximations by successive applications of G(G - iy (The number of trials required never exceeded three.) G' and G" then follow from the equations, G' = (A - C - G) + (A -C- GY + ; G" = and we have for verification, ft i rt/ _ rtii _ A ri . fir _ L _i_ _ a _ . fin _ ^'-'' = " . G")' OF THE ORBITS OF THE FOUR INNER PLANETS. 55 (In some cases the first approximations to G were found by, sin e' = - 3 ; G = 2q sin (60 - &') + p, the solution being then finished as before). The modulus, (c = sin 6), of the elliptic integrals employed in the computation was separately found by the two equations, C* T I /""' /"" I firr sin 2 6 = Q , Q,, ; tan 2 6 = Q _ Q> , and with 6 as an argument the values of log K , log L ', and log N were taken from the tables of HILL'S memoir (8) , the interpolation being effected in both directions to second differences by the well-known formulas, in which n + n' = 1. The logarithms of Af, P, Q, and F were then obtained from, o . "(G + G") 3 ' ~(G + (?") 2 ' y "(? + "' W the first three being verified by similar operations performed upon the values of 2 t and 2 2 formed from the respective logarithms, and the last by the use of ZECH'S tables and also by the equation, V = ar-(G + G'T l [GN + G"(N - L ')]K . The following auxiliaries were next obtained : Ji' = a' 2 cos 2 <p'[l - sin 2 / sin 2 (v + n)] + G" = [a' cos >p' + a' cos <p' sin 7 sin (v + n)][a' cos <p' a' cos <?' sin / sin (v + II)] 4- G", J 2 = ka'e'r sin (v + K) - |a' 2 cos 2 <p' sin 2 1 sin 2(i> + n) = ka'e'r sin (t; + K) - a' 2 cos 2 ^' sin (v + n) cos (v + n) sin 2 /, the second form being employed with ZECH'S tables in the duplication Jz = cos 2 <p' sin I cos 7 r sin (t; + H) -- ' sin / sin II' r 2 , tZ CL a'e' *Si/ 3 = SaJa = - ja- cos 2 ^' sin I cos / e sin n --- sin / sin n' S^ 2 . (Z = a' 2 sin <p' cos <p' cos / fi sin e, 56 THE SECULAR VARIATIONS OF THE ELEMENTS *2iF 2 = S 2 F 2 = jk'aa' 3 ee' cos 2 <p' cos 7 sin K', F 3 = -- sin 49' cos y>' sin I r cos (v + II) .B sin e. There were next obtained, B = - N -QG' + 7JY; S = PF* + VJ,; W = PF, + VJ a ; fl<"> = -R sin E; 5<-> = -S ; W = .Sfl<">; (c) = . r r z? zj and the very accurate test equation, sin <p !-Ai (>) + cos 9? B (c) = 0, was applied. These values were then substituted in the following series of equations, and the final values of the differential coefficients obtained: [dc ~\ TH'TI 1 ~dt Joo = 1 + m ' COS *" ' 2?- 2 f sin " ' Ro + ^ cos " + cos m'n cos ? 1 di 1 sJ o = mn [dftl m'n ,. a< Joo 1 + sec <p 1 ^-s-.S TO sin i 2j TO r n If O r- P 1. , . 9 v[d x ~\ , .,iTd1 = ^r- - s-.ZI 2-J2p | + 2sin 1 7 +2sin 2 ^, -,. . oo 1 + TO 2j a 2 L rf/ Joo 2 L rf/ Joo <lt When the Earth is the disturbed body, the third and fourth equations are re- placed by, " dp ~| m'n 1 - sec ip-- n -.2 sin ( + ) (r L + TO 2j m'n I _ [da ~\ ZJ l ,- In this case rdxl = L dt Joo and the last term of the expression for [dL/dt] 00 disappears, but the first two equations remain unaltered. 8. THE VALUES OF THE PRELIMINARY CONSTANTS. The values obtained for those constants which are direct functions of the ele- ments of the orbits in the several cases are shown in the following tables. The last OF THE ORBITS OF THE FOUR INNER PLANETS. 57 columns of these tables contain the differences between the values of K K' formed directly and the same angles obtained from the test formula of the preceding article. The other test equations were also exactly satisfied. An examination of the formulas of the preceding article renders it evident that with any two planets / will have the same value whether the inner or the outer planet is the disturbing one, while the value of II in the first case will differ 180 from that of n' in the second, and that of n' in the first case will similarly differ 180 from that of II in the second. These conditions will be seen to be here satisfied very exactly, the minute discrepancies which occur being due to the fact that in some places eight place logarithms were employed, in others seven, and in still others the attainment of a higher accuracy throughout the entire computation was sought by the use of the dash, ( ), which was placed above the last figure of each logarithm for which the interpolation led to a value coinciding more nearly with the mean of the two adjacent figures than with either one of them. In combining such logarithms the effect of the dash was taken into consideration by methods which are obvious. Mercury by Venus Earth Mars Jupiter Saturn Uranus Neptune Mercury by Venus Earth Mars Jupiter Saturn Uranus Neptune Venus by Mercury Earth Mars Jupiter Saturn Uranus Neptune II II' K 4 7 5 6 6 6 7 20 9 17 23 19 1 42.982 7.710 10.165 15.310 44.130 17.399 42.654 230 208 209 218 229 211 223 39 34 13 5 26 43 12 31.39 4.99 54.31 54.72 43.69 10.39 39.15 284 233 107 154 244 304 191 54 48 24 49 17 49 16 1.27 31.10 19.31 24.01 50.53 47.06 25.42 305 334 101 63 345 266 324 43 57 45 8 17 43 34 2.40 50.59 36.16 32.52 17.36 32.95 3.91 K' log k logfc' log<7 resid. 305 47 57.49 9.9988328 9.9999176 5.3891826 0.007 334 33 18.85 9.9978879 9.9988719 6.4491252 0.002 101 53 33.05 9.9983990 9.9998432 8.3052599 0.004 63 24 30.76 9.9995281 9.9978563 8.7995614 0.002 345 30.90 9.9978013 9.9994926 9.4563012 0.013 267 3 12.48 9.9982188 9.9991396 9.9089914 0.000 324 24 7.31 9.9968502 9.9998757 8.8147322 0.001 II II' K 4 20 42.980 104 54 1.27 50 39 31.37 54 19 21.08 3 23 35.010 234 7 49.75 205 1 46.65 29 8 21.75 1 56 2.460 208 26 43.81 52 18 22.07 156 9 18.63 2 15 11.352 247 36 52.56 130 2 45.43 117 32 48.56 2 3 12.046 281 7 33.71 241 43 52.16 39 24 36.81 2 37 16.883 233 30 46.37 272 18 13.25 321 12 24.44 2 46 38.369 265 47 34.23 179 34 46.34 86 12 46.11 58 Venus by Mercury Earth Mars Jupiter Saturn Uranus Neptune Earth by THE SECULAR VARIATIONS OF K' log k 54 9 38.85 9.9992531 29 3 44.28 9.9998637 156 7 24.89 9.9998450 117 35 25.70 9.9998033 39 22 46.29 9.9997836 321 12 41.79 9.9995460 86 12 49.67 9.9999999 / II THE ELEMENTS log k' log C 9.9994984 7.8017097 9.9993746 6.4491252 9.9999075 8.3052599 9.9998610 8.7995614 9.9999375 9.4563012 9.9999992 9.9089914 9.9994896 8.8147322 II' resid. 0.000 0.003 0.000 0.001 0.003 0.001 0.001 K Mercury Venus o 7 3 / 23 7.710 35.010 53 25 48 1 31.10 46.65 O 28 54 34 7 n 4.99 49.75 25 330 i 25 56 13.33 48.79 Mars 1 51 2.240 51 57 45.14 284 53 57.15 127 3 21.25 Jupiter Saturn 1 2 18 29 42.100 40.190 1 348 25 19.94 50.68 272 337 58 45 11.88 52.32 88 10 27 13 5.264 49.89 Uranus 46 20.540 27 7 31.73 95 58.70 292 6 31.40 Neptune 1 47 1.680 330 14 7.90 273 9 58.47 57 4 3.92 Earth by K' log A; logfc' logC resid. Mercury Venus 25 330 3 51 36.28 5.12 9.9992608 9.9994999 9.9974965 9.9997387 7.8017097 5.3891826 0.002 0.008 Mars 127 4 14.72 9.9997885 9.9999850 8.3052599 0.009 Jupiter Saturn 88 10 27 16 10.859 6.88 9.9998865 9.9999411 9.9999998 9.9996473 8.7995614 9.4563012 0.010 0.003 Uranus 292 6 34.66 9.9999609 9.9999997 9.9089914 0.005 Neptune 57 4 14.94 9.9997902 9.9999994 8.8147322 0.001 Mars by n n' K Mercury 5 9 10.165 287 24 19.31 29 13 54.31 258 16 20.56 Venus 1 56 2.460 232 18 22.07 28 26 43.81 203 52 27.49 Earth 1 51 2.240 104 53 57.15 231 57 45.14 232 57 4.23 Jupiter 1 26 6.381 149 47 4.35 188 22 45.31 321 24 28.37 Saturn 2 21 52.110 176 17 59.42 293 4 38.76 243 12 17.28 Uranus 1 11 40.460 120 39 30.31 315 36 26.40 165 2 41.49 Neptune 2 22 41.388 152 49 56.12 222 47 52.02 290 3 32.71 Mars by K' log k log k' logt' resid. Mercury Venus 258 203 4 50 28.68 49.03 9.9995819 9.9999439 9.9986621 9.9998087 7.8017097 5.3891826 0.017 0.012 Earth 232 55 19.79 9.9998596 9.9999141 6.4491252 0.009 Jupiter Saturn 321 243 24 14 9.72 23.99 9.9999971 9.9996870 9.9998667 9.9999432 8.7995614 9.4563012 0.007 0.007 Uranus 165 3 26.31 9.9999538 9.9999519 9.9089914 0.003 Neptune 290 35.50 9.9998274 9.9997986 8.8147322 0.006 OF THE ORBITS OF THE FOUR INNER PLANETS. 59 9. THE RADII VECTORES AND THE TRUE ANOMALIES. The values of log r and v for the points of division employed in the four different cases are given in the following tables. In each case the equations, 2 ir = 2 2 r = ja, and 2 : y + 180 = S 2 t> were exactly satisfied, and the values of r were also obtained from the equation stated in Article 7 for obtaining the value of r 2 . E MEKCUBY. log r V E VENUS. logr V O i // O O 1 // 9.4878584 0.00 9.8563557 0.00 15 9.4916716 18 25 28.96 15 9.8564576 15 6 6.54 22.5 9.4963313 27 32 14.93 30 9.8567564 30 11 47.87 30 9.5026623 36 32 7.50 45 9.8572313 45 16 40.52 45 9.5195925 54 4 7.02 60 9.8578493 60 20 24.50 60 9.5407098 70 50 41.41 75 9.8585680 75 22 44.64 67.5 9.5522314 78 55 7.36 90 9.8593378 90 23 31.50 75 9.5640735 86 46 40.73 105 9.8601064 105 22 42.20 90 9.5878217 101 51 53.65 120 9.8608213 120 20 20.31 105 9.6103385 116 9 54.15 135 9.8614342 135 16 35.65 112.5 9.6207149 123 3 1.59 150 9.8619040 150 11 43.65 120 9.6303194 129 46 44.60 165 9.8621990 165 6 4.12 135 9.6467730 142 49 52.77 180 9.8622996 180 0.00 150 9.6589887 155 27 29.02 195 9.8621990 194 53 55.88 157.5 9.6633518 161 39 20.97 210 9.8619040 209 48 16.35 165 9.6664956 167 48 0.75 225 9.8614342 224 43 24.35 180 9.6690267 180 0.00 240 9.8608213 239 39 39.69 195 9.6664956 192 11 59.25 255 9.8601064 254 37 17.80 202.5 9.6633518 198 20 39.03 270 9.8593378 269 36 28.50 210 9.6589887 204 32 30.98 285 9.8585680 284 37 15.36 225 9.6467730 217 10 7.23 300 9.8578493 299 39 35.50 240 9.6303194 230 13 15.40 315 9.8572313 314 43 19.48 247.5 9.6207149 236 56 58.41 330 9.8567564 329 48 12.13 255 9.6103385 243 50 5.85 345 9.8564576 344 53 53.46 270 9.5878217 258 8 6.35 285 9.5640735 273 13 19.27 292.5 9.5522314 281 4 52.64 300 9.5407098 289 9 18.59 315 9.5195925 305 55 52.98 330 9.5026623 323 27 52.50 337.5 9.4963313 332 27 45.08 345 9.4916716 341 34 31.04 60 THE SECULAR VARIATIONS OF THE ELEMENTS E THE EARTH. logr V E MARS. log r V O O 1 // O O i II 9.9926546 0.00 .1403760 0.00 22. 5 9.9932181 22 52 14.25 30 .1463201 32 47 24.62 30 9.9936460 30 29 2.39 45 .1532670 48 54 53.41 45 9.9948189 45 41 0.84 60 .1621567 64 44 46.64 60 9.9963428 60 50 8.59 90 .1828971 95 21 5.913 67. 5 9.9972036 68 23 26.41 120 .2026920 124 31 47.15 90 0.0000000 90 57 39.46 135 .2106341 138 39 52.35 112. 5 0.0027784 113 23 5.92 150 .2166313 152 34 23.40 120 0.0036266 120 49 43.50 180 .2216237 180 0.00 135 0.0051200 135 40 31.82 210 .2166313 207 25 36.60 150 0.0062624 150 28 37.29 225 .2106341 221 20 7.65 157.5 0.0066776 157 51 53.72 240 .2026920 235 28 12.85 180 0.0072232 180 0.00 270 .1828971 264 38 54.087 202. 5 0.0066776 202 8 6.29 300 .1621567 295 15 13.36 210 0.0062624 209 31 22.71 315 0.1532670 311 5 6.59 225 0.0051200 224 19 28.18 330 .1463201 327 12 35.38 240 0.0036266 239 10 16.50 247. 5 0.0027784 246 36 54.08 270 0.0000000 269 2 20.54 292. 5 9.9972036 291 36 33.59 300 9.9963428 299 9 51.41 315 9.9948189 314 18 59.16 330 9.9936460 329 30 57.61 337. 5 9.9932181 337 7 45.75 10. THE SEPARATE RESULTS. The values found for the intermediate auxiliary functions which depend upon ", as well as the final perturbations of the four inner planets in each case are now stated in the following tables. The results of the application of the more important test equations are also shown, but all of the test equations of Article 7 were also applied, and each computation (except the first), was, after its completion, duplicated from the beginning, the forms of the equations being changed in the duplication when this was possible. OF THE ORBITS OF THE FOUR INNER PLANETS. 61 MERCURY. ACTION OF VKNUS ON MERCURY. E A B cos t B sin e 1000000 Xff h 0.619543952 + 0.13308441 - 0.18036925 0.7970904 0.52358614 30 0.627434998 + 0.22218381 - 0.06982371 0.1194506 0.52390836 60 0.647116316 + 0.24372756 + 0.07193966 0.1268000 0.52384406 90 0.675632886 + 0.19194286 + 0.20693555 0.0491867 0.52344851 120 0.706503003 + 0.08070542 + 0.29899200 2.1902889 0.52319742 150 0.730295757 - 0.06017874 + 0.32344233 1.5631633 0.52358280 180 0.738317327 - 0.19295989 + 0.27373528 1.8358797 0.52446104 210 0.727259050 - 0.28205939 + 0.16318979 0.6524819 0.52500778 240 0.701243272 - 0.30360314 + 0.02142638 0.0112481 0.52470755 270 0.669559472 - 0.25181838 - 0.11356958 0.3160138 0.52391075 300 0.641856586 - 0.14058090 - 0.20562585 1.0359483 0.52329644 330 0.624398293 + 0.00030325 - 0.23007624 1.2969588 0.52323374 z, 4.054580456* - 0.17962654f + 0.28009822J 5.9972554 3.14309264 2 2 4.054580456 - 0.17962659 + 0.28009814 5.9972551 3.14309193 E G G' G" o 0.09593332 0.52358258 0.09595274 0.000015866 O 25 / 20 n 53.90 30 0.10350215 0.52390782 0.10350489 0.000002203 26 23 25.33 60 0.12324776 0.52384346 0.12325032 0.000001964 29 59.15 90 0.15215988 0.52344311 0.15217844 0.000013171 32 37 46.70 120 0.18328109 0.52318510 0.18331625 0.000022837 36 17 45.71 150 0.20668846 0.52356735 0.20672760 0.000023681 38 55 52.70 180 0.21383179 0.52444977 0.21385942 0.000016369 39 41 12.31 210 0.20222678 0.52500393 0.20223677 0.000006145 38 21 51.31 240 0.17651123 0.52470749 0.17651140 0.000000121 35 27 1.91 270 0.14562423 0.52390915 0.14562996 0.000004142 31 49 7.06 300 0.11853565 0.52329155 0.11855723 0.000016698 28 25 30.42 330 0.10114005 0.52322787 0.10117042 0.000024501 26 5 20.70 Si 0.91134083 3.14305994 0.91144736 0.000073855 194 13 23.40 S 2 0.91134154 3.14305922 0.91144808 0.000073843 194 13 23.80 * 6a 2 + 3aV + 6[o' 2 - 2kaa'ee' cos K] = + 4.054580460. t 6[a'V - kaa'e cos K] = - 0.17962650. t - Qk'aa' cos <p'-e sin K' = + 0.28009816. 62 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON MERCUBY. E log*. log Lo' log N log N log P logQ 0.06678154 0.36107029 0.27485672 9.0518226 9.9748963 9.6076810 30 0.07267844 0.36875602 0.28344481 9.0869397 0.0171823 9.6511278 60 0.08883727 0.38974368 0.30686976 9.1792738 0.1306112 9.7669404 90 .0.11429390 0.42259487 0.34345542 9.2994384 0.2842725 9.9240134 120 0.14429575 0.46098687 0.38608356 9.4147448 0.4383831 0.0821541 150 0.16872258 0.49199359 0.42040790 9.4960335 0.5500428 0.1974492 180 0.17620114 0.50144271 0.43084933 9.5225000 0.5845077 0.2336318 210 0.16325170 0.48506821 0.41274966 9.4887994 0.5335323 0.1813814 240 0.13698082 0.45165804 0.37573831 9.4055654 0.4173889 0.0613864 270 0.10823963 0.41480523 0.33478930 9.2928156 0.2691020 9.9083455 300 0.08503270 0.38481172 0.30136861 9.1761377 0.1234343 9.7587487 330 0.07094409 0.36649704 0.28092115 9.0860236 0.0150983 9.6482336 Si 0.69812922 2.54971331 2.07576629 5.7500443 1.6692215 9.5105424 2 2 0.69813034 2.54971496 2.07576824 5.7500501 1.6692301 9.5105508 E logV J/ 1000 X Ji J 3 1000 X Fj 9.6076650 0.521404654 - 2.7049984 - 0.024195167 + 0.6439191 30 9.6511256 0.520191194 - 0.6256166 - 0.032354328 + 0.2492710 60 9.7669384 0.521003862 + 1.8268277 - 0.030122813 - 0.2568249 90 9.9240003 0.522559008 + 2.6401451 - 0.018096342 - 0.7387609 120 0.0821316 0.523207843 + 2.0172777 + 0.000503667 - 1.0674025 150 0.1974260 0.522626872 + 1.0213969 + 0.020692271 - 1.1546906 180 0.2336159 0.521405157 + 0.3980040 + 0.037057786 - 0.9772364 210 0.1813754 0.520383901 + 0.3750436 + 0.045213990 - 0.5825883 240 0.0613863 0.520288911 + 0.7059590 + 0.042976535 - 0.0764923 270 9.9083414 0.521364846 + 0.6938449 + 0.030947096 + 0.4054437 300 9.7587319 0.522844254 - 0.4295092 + 0.012350057 + 0.7340853 330 9.6482088 0.523030858 - 2.2812182 - 0.007832614 + 0.8213734 Si 9.5104690 3.130154681* + 1.8135608 + 0.038570065 - 0.9999517 S2 9.5104775 3.130156679 + 1.8235957 + 0.038570073 - 0.9999517 * 2i(J,' - G") = + 3.130080826. 2t(Ji - G") = + 3.130082836. OF THE ORBITS OF THE FOUR INNER PLANETS. 63 E 30 60 90 120 150 180 210 240 270 300 330 2! 2 2 ACTION OF VENUS ON MERCUKY. 10000 X F 3 #o 1000 X -So W, R w 1000 X S<"> - 0.24640136 0.05971623 - 0.4883004 - 0.009827036 0.00000000 - 1.5879204 - 0.00762098 0.06444673 - 0.0208471 - 0.014490447 + 0.10127648 - 0.0655216 - 0.09149188 0.08146579 + 0.7212240 - 0.017625381 + 0.20314033 + 2.0766362 - 0.49802851 0.11164771 + 0.7947010 - 0.015287000 + 0.28842180 + 2.0529668 - 0.89441990 0.15077545 - 0.4917115 + 0.000363093 + 0.30587345 - 1.1518366 - 0.92808606 0.18433784 - 2.4881611 + 0.032271915 + 0.20211372 - 5.4561938 - 0.56751805 0.19359808 - 3.0725539 + 0.063241297 0.00000000 - 6.5837414 - 0.13320998 0.17488253 - 1.4207354 + 0.068605698 - 0.19174661 - 3.1154764 + 0.01209827 0.14154301 + 0.6131517 + 0.049504580 - 0.28714394 + 1.4363109 - 0.19301611 0.10799082 + 1.3152406 + 0.025022994 - 0.27897487 + 3.3976883 - 0.46971306 0.08194590 + 0.7289596 + 0.007023584 - 0.20433749 + 2.0989094 - 0.49748432 0.06575439 - 0.1643583 - 0.003535808 - 0.10333144 - 0.5165700 - 2.25744598 0.70904446 - 1.9892305 + 0.092680137 + 0.01753235 - 3.7116419 - 2.25744596 0.70906002 - 1.9841603 + 0.092587352 + 0.01775908 - 3.7031067 Ro COS V E RO sin v + (cos v + cos E)So + ( -sec 2 <f + l ) sin v \a ) W cos u Wo sin u -2 -Bo a - 0.00097660 - 0.05971623 - 0.008630594 - 0.004699311 - 0.09487655 30 + 0.03833160 - 0.05180530 - 0.006100201 - 0.013143840 - 0.10594280 60 + 0.07755258 - 0.02541165 + 0.002882594 - 0.017388064 - 0.14618182 90 + 0.10909895 + 0.02454507 + 0.009914505 - 0.011635936 - 0.22329541 120 + 0.11643405 + 0.09565744 - 0.000337472 + 0.000133975 - 0.33255092 150 + 0.08098459 + 0.16537954 - 0.032192272 - 0.002265848 - 0.43432170 180 + 0.00614511 + 0.19359808 - 0.055541660 - 0.030242129 - 0.46680548 210 - 0.07011629 + 0.16039915 - 0.041182679 - 0.054870101 - 0.41204381 240 - 0.10947718 + 0.08954949 - 0.009624818 - 0.048559933 - 0.31218788 270 - 0.10595403 + 0.01957233 + 0.007191939 - 0.023967193 - 0.21598164 300 - 0.07680517 - 0.02822239 + 0.005196776 - 0.004724857 - 0.14704334 330 - 0.03941900 - 0.05265111 - 0.003501678 + 0.000490095 - 0.10809245 2! + 0.01287279 + 0.26545474 - 0.066055174 - 0.105480319 - 1.49964599 2 2 + 0.01292582 + 0.26543968 - 0.065870386 - 0.105392823 - 1.49967781 sin (/> |4i (<) + cos <p-BiJ c) = - 0.0000000083. 64 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. [de/dt] w [dx/dt] w [di/dt]oQ = + 11321.398 TO' = +1133127.6 TO' 60449.278 m' - 792605.00 TO' = +1127216.0 TO' = -1326653.0 TO' log eoeff. p 4.0539001 p 6.0542788 n 4.7813911 n 5.8990568 p 6.0520072 n 6. 1227573 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] m = +0.027739414 [dxAft]oo = +2.7763615 [di/dtlw = -0.14811133 [dfi/dfloo = -1.9420214 [dr/dt] m = +2.7618772 = -3.2505323 [dL/di] w COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Hill. Method of Gauss. [de/dt] m e[dw/dt]oo [di/dt] w GITI i r/vo '/"//i bill I [Ctlfcy CttJOO [dx/dt] w +0.02780 +0.56811 -0.14812 -0.23648 -3.2769 +0.02774 +0.57086 -0.14806 -0.23665 +0.0277391 +0.567852 -0.1481112 -0.2367447 +2.776347 -3.250522 +0.0277394 +0.567855 -0.1481113 -0.2367449 +2.776361 -3.250532 NOTES. This is the only one of the twenty eight computations that was not duplicated, but the values of 6 were computed by two different formulas and all known test equations were applied. As an illustration of his first modification of GAUSS'S method HILL published this complete computation from exactly the same elements as here employed, and DR. Louis ARNDT states that he has verified the results and found them correct. (Bulletin de la Societe des Sciences Naturelles de Neuchatel, Vol. XXIV). INNES states however that the test arising from the constancy of the major axis is not satisfied, the residual being 0.00075 (M. N., Vol. LII, page 87), but this statement is an error, for the residual obtained from HILL'S figures is 0.0000000088, a practically exact agreement with that here obtained. OF THE ORBITS OF THE FOUR INNER PLANETS. 65 Upon comparing the present computation with that of HILL, the following slight discrepancies may be noticed : n', K and K' differ by less than 0".l from HILL'S values, a difference doubtless due to the fact that the preliminary computation was here effected with eight place logarithms while HILL employed but seven. The value of I for 330 should be 0.10114009 instead of 0.11014009, and G" for 180 should be 0.00001637 instead of 0.00001617. These are misprints merely. The values of the logarithms of K , LQ, and N Q in HILL seem to be slightly in error throughout, a double interpolation to second differences from HILL'S values of 6 giving with the three functions most in error, Hill's Values. For E = 60, log N 0.30686978 0.3068691 For E = 150, log L ' 0.49199342 0.4919942 For E = 180, log L ' 0.50144261 0.5014421 The effect of these differences upon the final coefficients is, however, almost in- appreciable. It is evident from an inspection of the final sums that a division into twelve parts is necessary in this case, the terms from the sixth to the eleventh orders, inclusive, amounting to l/600th of the whole for [di/dt] 00 and to l/1200th of the whole for ACTION OF THE EARTH ON MERCURY. Bcos + 0.29403604 + 0.32704393 + 0.25768623 + 0.10454706 - 0.09134000 - 0.27748723 - 0.40401673 - 0.43702459 - 0.36766690 - 0.21452774 - 0.01864062 + 0.16750659 - 0.32994198f - 0.32994198 * 6a 2 + 3aV + 6[a' 2 - 2kaa'ee' cos A] = + 6.90363352. t 6[a'V - kaa'e cos A] = - 0.3299419S. t - Qk'aa' cos <p'-e sin A' = + 0.20460788. E A 1.10386215 30 1.11164085 60 1.12870093 90 1.15278960 120 1.17861164 150 1.19808875 180 1.20368356 210 1.19273750 240 1.16934301 270 1.14208711 300 1.11943230 330 1.10628960 s, 6.90363359* 2 2 6.90363341 B sin KXXXTxff h - 0.13175730 0.04882864 1.00008277 + 0.06103685 0.01047875 1.00111148 + 0.24661358 0.17106421 1.00173668 + 0.37524793 0.39606073 1.00128597 + 0.41247210 0.47853578 1.00022588 + 0.34831240 0.34124242 0.99978030 + 0.19995995 0.11246339 1.00066133 + 0.00716576 0.00014443 1.00216106 - 0.17841099 0.08952996 1.00285589 - 0.30704518 0.26517354 1.00212493 - 0.34426952 0.33336685 1.00067710 - 0.28010968 0.22068934 0.99977580 + 0.20460782t 1.23378883 6.00623965 + 0.20460808 1.23378921 6.00623954 66 THE SECULAR VARIATIONS OF THE ELEMENTS E ACTION OF THE EARTH ON MERCURY. G G' G" 0.10349811 1.00007732 0.10355071 0.00004715 O 18 46' 28.61 30 0.11024810 1.00111031 0.11025877 0.00000949 19 22 58.72 60 0.12668299 1.00171716 0.12683714 0.00013464 20 51 17.40 90 0.15122236 1.00123943 0.15152995 0.00026105 22 54 42.04 120 0.17810449 1.00016768 0.17843084 0.00026815 25 4.02 150 0.19802718 0.99973772 0.19824193 0.00017219 26 27 9.31 180 0.20274096 1.00064732 0.20281046 0.00005541 26 45 34.58 210 0.19029517 1.00216104 0.19029526 0.00000008 25 50 0.71 240 0.16620585 1.00284522 0.16627021 0.00005369 24 1 53.32 270 0.13968091 1.00209425 0.13990074 0.00018915 21 57 13.77 300 0.11847394 1.00063933 0.11879216 0.00028045 20 10 34.78 330 0.10623253 0.99975109 0.10646458 0.00020734 19 3 48.08 2, 0.89570634 6.00609403 0.89669152 0.00083949 135 35 52.71 2 2 0.89570625 6.00609384 0.89669123 0.00083930 135 35 52.63 E logtfo 0.03586144 log Lo' 0.32053269 log Wo log N log P 0.22947519 8.5993188 8.9197434 logQ 8.8287400 30 0.03828768 0.32372814 0.23305754 8.6307049 8.9534609 8.8632763 60 0.04451494 0.33191845 0.24223558 8.7125510 9.0428624 8.9539831 90 0.05408514 0.34447345 0.25629369 8.8165734 9.1597444 9.0722159 120 0.06487989 0.35858872 0.27208270 8.9130565 9.2712667 9.1849500 150 0.07303960 0.36922627 0.28397010 8.9788974 9.3482020 9.2629066 180 0.07483693 0.37156571 0.28658308 8.0002544 9.3712099 9.2865324 210 0.06949181 0.36460451 0.27880654 8.9738846 9.3366140 9.2517535 240 0.05973313 0.35186484 0.26456369 8.9063079 9.2556584 9.1696145 270 0.04950056 0.33846383 0.24956627 8.8114799 9.1479627 9.0600557 300 0.04158092 0.32806159 0.23791429 8.7102233 9.0374863 8.9477383 330 0.03700237 0.32203558 0.23116016 8.6301758 8.9522476 8.8613541 2i 0.32140725 2.06253200 1.53285453 2.8417119 4.8982271 4.3715583 2 2 0.32140716 2.06253178 1.53285430 2.8417160 4.8982316 4.3715621 OF THE ORBITS OF THE FOUR INNER PLANETS. 67 ACTION OF THE EARTH ON MERCURY. E 30 60 90 120 150 180 210 240 270 300 330 Si io g y 8.8287147 8.8632712 8.9539113 9.0720772 9.1848079 9.2628156 9.2865032 9.2517534 9.1695861 9.0599551 8.9475885 8.8612431 4.3711117 4.3711156 1000 X F, J,' J 2 J, 0.9963685 - 0.0084115617 - 0.04554861 0.9875038 - 0.0046146363 - 0.08975347 0.9853935 + 0.0065532595 - 0.10655243 0.9913722 + 0.0136249408 - 0.09143424 0.9979641 + 0.0119853300 - 0.04844492 0.9998176 + 0.0047535770 + 0.01089164 0.9963768 - 0.0029434883 + 0.07066640 0.9902153 - 0.0070671940 + 0.11485779 0.9854773 - 0.0058653024 + 0.13162975 0.9862780 - 0.0010764519 + 0.11649805 0.9932756 + 0.0016290397 + 0.07352222 0.9996406 - 0.0026304325 + 0.01421265 5.9548558* + 0.0029472768 + 0.08527241 5.9548275 + 0.0029898031 + 0.08527242 Ko 1000 X So 1000 X TF <"> 1000 XPj + 2.1929308 - 1.0158793 - 4.1045657 - 6.2455186 - 6.8650672 - 5.7972107 - 3.3280756 - 0.1192649 + 2.9694212 + 5.1103718 + 5.7299237 + 4.6620645 - 3.4054328 - 3.4054372 1000 X <S ( "> - 0.18791333 0.020434768 - 0.3847186 - 3.085993 0.000000000 - 1.2510793 30 + 0.04317409 0.021303927 - 0.4280932 6.547345 + 0.033478638 - 1.3454762 60 - 0.07397385 0.025621038 + 0.1363110 9.590571 + 0.063887706 + 0.3925293 90 - 0.49750230 0.033590134 + 0.7062450 - 10.865960 + 0.086774000 + 1.8244563 120 - 0.86425140 0.043556201 + 0.5521780 7.575463 + 0.088361000 + 1.2934800 150 - 0.83674077 0.051546760 - 0.4218487 + 1.808294 + 0.056517506 - 0.9250562 180 - 0.43280690 0.053431000 - 1.3516860 + 13.566615 0.000000000 - 2.8963373 210 - 0.01035886 0.048659649 - 1.2877184 + 20.505307 - 0.053351926 - 2.8237889 240 - 0.07819780 0.040457621 - 0.3317444 + 19.465045 - 0.082075038 - 0.7771130 270 + 0.18040025 0.032377496 + 0.5949004 + 13.349022 - 0.083641596 + 1.5368184 300 - 0.46718624 0.026190705 + 0.7690320 + 6.465459 - 0.065308303 + 2.2142904 330 - 0.46610559 0.022213151 + 0.2265587 + 0.990810 - 0.034907444 + 0.7120630 2i - 1.94793392 0.209691333 - 0.6106280 + 19.245092 + 0.004865365 - 1.0242299 2 2 - 1.94793368 0.209691117 - 0.6099562 + 19.240128 + 0.004869178 - 1.0209836 * 2,(J,' - G") = 5.9540163. 2, (j ' G") = 5.9539882. 68 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF THE EARTH ON MERCURY. COS V Ro E BUI v m> + (cos v + cos E)S<> . (r ,.\j 100 X TFo cos 100 X Wo sin u + I - sec* if + 1 1 sin t'So - 0.000769437 - 0.020434774 - 0.2710273 - 0.1475729 30 + 0.011967951 - 0.017591057 - 0.2756307 - 0.5938896 60 + 0.024315363 - 0.008157573 - 0.1568518 - 0.9461439 90 + 0.032727249 + 0.008319102 + 0.7047203 - 0.8270793 120 + 0.032844271 + 0.028781472 + 0.7040911 - 0.2795215 150 + 0.022159505 + 0.046499174 - 0.1803831 - 0.0126962 180 + 0.002703372 + 0.053431012 - 1.1914874 - 0.6487582 210 - 0.017924683 + 0.045456375 - 1.2308941 - 1.6399928 240 - 0.030714227 + 0.026434445 - 0.3784440 - 1.9093573 270 - 0.031808132 + 0.005466897 + 0.3836684 - 1.2785779 300 - 0.024103783 - 0.010000896 + 0.4783818 - 0.4349396 330 - 0.012845686 - 0.018098650 + 0.0981246 - 0.0137335 Si + 0.004275559 + 0.070053686 - 0.5016340 - 4.3662934 2 2 + 0.004276204 + 0.070051841 - 0.5003946 - 4.3659693 i in ,.M."> + COB *.' > = - 0.00000000016. DIFFERENTIAL COEFFICIENTS. log coeff. // [de/dt}^ = +3752.8345 TO' p 3.5743594 [dx/dt] M = +299037.72 m' p 5.4757260 [dildt] M = -4591.3713 m' n 3.6619424 [dB/<ft] M = -328217.95 TO' n 5.5161623 [d7r/d*]oo = +296589.74 TO' p 5.4721561 [dL/dt] m = -390282.17 TO' n 5.5913787 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO' // [d/dt] w = +0.011476557 [dx/dt] m = +0.91448833 [dildt]<n = -0.014040890 [dQ/dt]oo = -1.0037245 [d7r/di]oo = +0.90700208 [dLldtln = -1.1935233 0.03246657 0.03502118 0.04597425 0.06718020 0.09606764 0.12145034 0.12883338 0.11464781 0.08923343 0.06475510 0.04699652 0.03651581 0.43957179 0.43957044 OF THE ORBITS OF THE FOUR INNER PLANETS. COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dtlw +0.01153 +0.01147 +0.0114766 e[dr/dt] M +0.18668 +0.18799 +0.186484 [di/dtlao -0.01414 -0.01404 -0.0140409 sin i [dfl/di]oo -0.12219 -0.12233 -0.122360 -1.1942 -1.19352 NOTES. As a' and e' are both small in this case, the sums, up to and including .R , are in very exact agreement. But as / and e are unusually large, the final sums differ considerably, the greatest discrepancy being in W cos u, which shows that a neglect of the terms from the 6th to the llth orders would produce an error in [di/dt] QO of slightly more than 1 /1000th of the whole value of this coefficient. 70 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON MERCURY. E A B cos B sin e <7 h 2.3984504 + 0.12138918 + 0.45632916 0.0042055 2.3024514 15 2.3737047 - 0.02025060 + 0.40611421 0.0033309 2.3025214 30 2.3556032 - 0.14407564 + 0.32017434 0.0020703 2.3025321 45 2.3456111 - 0.24164776 + 0.20436670 0.0008435 2.3024889 60 2.3447258 - 0.30631712 + 0.06658267 0.0000896 2.3024184 75 2.3533241 - 0.33367707 - 0.08378742 0.0001418 2.3023625 90 2.3710514 - 0.32186246 - 0.23649650 0.0011296 2.3023658 105 2.3967846 - 0.27167903 - 0.38113729 0.0029337 2.3024640 120 2.4286852 - 0.18654648 - 0.50785318 0.0052088 2.3026710 135 2.4643476 - 0.07226635 - 0.60800831 0.0074658 2.3029751 150 2.5010251 + 0.06337314 - 0.67477750 0.0091956 2.3033343 165 2.5359018 + 0.21112855 - 0.70361065 0.0099983 2.3036852 180 2.5663693 + 0.36093056 - 0.69254258 0.0096862 2.3039570 195 2.5902662 + 0.50257031 - 0.64232765 0.0083325 2.3040870 210 2.6060491 + 0.62639549 - 0.55638795 0.0062519 2.3040409 225 2.6128739 + 0.72396747 - 0.44058010 0.0039202 2.3038234 240 2.6105920 + 0.78863682 - 0.30279611 0.0018517 2.3034773 255 2.5996753 + 0.81599664 - 0.15242602 0.0004692 2.3030742 270 2.5810993 + 0.80418226 + 0.00028298 0.0000000 2.3026229 285 2.5562149 + 0.76399902 + 0.14492387 0.0004242 2.3023962 300 2.5266327 + 0.66886612 + 0.27163969 0.0014902 2.3022243 315 2.4941374 + 0.55458616 + 0.37179487 0.0027917 2.3021798 330 2.4606272 + 0.41894655 + 0.43856414 0.0038844 2.3022350 345 2.4280691 + 0.27119119 + 0.46739720 0.0044120 2.3023425 2, 29.7509107* + 2.89391842f - 1.41728084J 0.0450638 27.6343997 2 2 29.7509107 + 2.89391853 - 1.41728059 0.0450638 27.6344002 * 12a 2 + 6aV + 12[a' 2 - t 12[a'V - kaa'e COB K\ J 12fc'aa' cos <p' e sin - Zkaa'ee' cos A') = 29.7509106. = + 2.89391844. A"' = - 1.41728062. OF THE ORBITS OF THE FOUR INNER PLANETS. 71 E ACTION OF MARS ON MERCURY. G G' 0.0758032 2.3016305 0.0957141 0.0190900 12 51 3.65 15 0.0509875 2.3018785 0.0717874 0.0201570 11 28 40.15 30 0.0328754 2.3021359 0.0509293 0.0176577 9 54 3.88 45 0.0229265 2.3023282 0.0338958 0.0108086 7 59 27.93 60 0.0221116 2.3024014 0.0237650 0.0016363 6 1 37.49 75 0.0307659 2.3023354 0.0326775 0.0018845 7 2 5.28 90 0.0484898 2.3021481 0.0572743 0.0085668 9 43 5.24 105 0.0741248 2.3018919 0.0890147 0.0143178 12 11 37.36 120 0.1058185 2.3016404 0.1249596 0.0181104 14 22 46.33 135 0.1411768 2.3014735 0.1626257 0.0199473 16 17 11.47 150 0.1774951 2.3014531 0.1994129 0.0200367 17 54 21.70 165 0.2120208 2.3016063 0.2327627 0.0186630 19 13 8.83 180 0.2422166 2.3019140 0.2604177 0.0161582 20 12 26.11 195 0.2659835 2.3023097 0.2806562 0.0128954 20 51 34.72 210 0.2818125 2.3026974 0.2924401 0.0092842 21 10 38.08 225 0.2888548 2.3029783 0.2954612 0.0057613 21 10 27.64 240 0.2869190 2.3030785 0.2900893 0.0027715 20 52 41.30 255 0.2764054 2.3029737 0.2772408 0.0007349 20 19 35.05 270 0.2582114 2.3026922 0.2582114 0.0000000 19 33 51.59 285 0.2336230 2.3023071 0.2344977 0.0007857 18 38 24.76 300 0.2042127 2.3019157 0.2076391 0.0031178 17 36 2.08 315 0.1717618 2.3016103 0.1791035 0.0067722 16 29 5.95 330 0.1381965 2.3014548 0.1502129 0.0112362 15 19 13.32 345 0.1055309 2.3014695 0.1221038 0.0156999 14 6 53.42 2, 1.8741623 27.6251620 2.0110657 0.1276658 185 31 50.77 2 2 1.8741617 27.6251624 2.0118270 0.1284276 185 48 12.56 72 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON MERCURY. E logtfo log LJ logtfo log JV logP logQ 0.01657774 0.29504379 0.20087027 8.0316820 7.5954802 7.8669295 15 0.01319292 0.29055307 0.19582511 8.0355546 7.5943701 7.8655109 30- 0.00979383 0.28603832 0.19075139 8.0547661 7.6099058 7.8800682 45 0.00636436 0.28147805 0.18562486 8.0870691 7.6401445 7.9084927 60 0.00361341 0.27781623 0.18150720 8.1291203 7.6819573 7.9481379 75 0.00492729 0.27956556 0.18347444 8.1771100 7.7316276 7.9980604 90 0.00943284 0.28555854 0.19021211 8.2272783 7.7853440 8.0537440 105 0.01490785 0.29282894 0.19838217 8.2762397 7.8395128 8.1098440 120 0.02081742 0.30066160 0.20717937 8.3211159 7.8908949 8.1628540 135 0.02681707 0.30859802 0.21608807 8.3595540 7.9366442 8.2098882 150 0.03254501 0.31616047 0.22457224 8.3896939 7.9743208 8.2484993 165 0.03762579 0.32285663 0.23208058 8.4101312 8.0019112 8.2766735 180 0.04171228 0.32823434 0.23810787 8.4198969 8.0178772 8.2928778 195 0.04453613 0.33194630 0.24226678 8.4184648 8.0212321 8.2961421 210 0.04594748 0.33380024 0.24434354 8.4057702 8.0116018 8.2861294 225 0.04593448 0.33378318 0.24432441 8.3822399 7.9892733 8.2631894 240 0.04461766 0.33205341 0.24238678 8.3488317 7.9552231 8.228375 255 0.04222050 0.32890264 0.23885673 8.3070780 7.9111256 8.1835072 270 0.03902753 0.32470208 0.23414923 8.2591387 7.8593690 8.1310520 285 0.03533705 0.31984157 0.22870029 8.2078386 7.8030574 8.0742275 300 0.03141955 0.31467566 0.22290683 8.15CG450 7.7459663 8.0168746 315 0.02748746 0.30948385 0.21708212 8.1095325 7.6924008 7.9633068 330 0.02367787 0.30444739 0.21142959 8.0706478 7.6468600 7.9179598 345 0.02004728 0.29964170 0.20603415 8.0437755 7.6135016 7.8848519 Si 0.31918262 3.69919207 2.58841642 8.8145868 3.7748004 7.0335140 s s 0.31939818 3.69947951 2.58873971 8.8145879 3.7748012 7.0338946 OF THE ORBITS OF THE FOUR INNER PLANETS. 73 ACTION OF MARS ON MERCURY. E logf /' Ji 7.8624692 2.3161036 + 0.034714816 15 7.8607965 2.3114562 + 0.028725995 30 7.8759318 2.3036617 + 0.023022893 45 7.9059548 2.2939379 + 0.017028648 60 7.9477527 2.2850812 + 0.009527241 75 7.9976170 2.2883310 - 0.000387926 90 8.0517340 2.2994643 - 0.012768514 105 8.1064943 2.3097716 - 0.026802369 120 8.1586286 2.3171693 - 0.041120811 135 8.2052458 2.3210340 - 0.054165965 150 8.2438461 2.3213532 - 0.064480743 165 8.2723467 2.3185110 - 0.070890916 180 8.2891363 2.3131717 - 0.072601961 195 8.2931581 2.3062073 - 0.069243148 210 8.2839812 2.2986444 - 0.060886015 225 8.2618557 2.2916136 - 0.048054879 240 8.2277453 2.2862701 - 0.031734816 255 8.1833367 2.2836646 - 0.013368882 270 8.1310520 2.2845306 + 0.005188260 285 8.0740447 2.2890080 + 0.021821056 300 8.0161484 2.2963713 + 0.034481515 315 7.9617277 2.3049376 + 0.041716329 330 7.9153379 2.3123762 + 0.043244020 345 7.8811861 2.3164879 + 0.040207969 S, 7.0037635 27.6341976* - 0.133414115 2 2 7.0037641 27.6349607 - 0.133414088 *Si(Ji' -G") =27, 5065318. 2 2 (-/i' - G") = 27 ,5065331. - 0.08283714 - 0.12496689 - 0.15748255 - 0.17817560 - 0.18564570 - 0.17939386 - 0.15985316 - 0.12835823 - 0.08705254 - 0.03874380 + 0.01328579 + 0.06550049 + 0.11434922 + 0.15650567 + 0.18909426 + 0.20988694 + 0.21745674 + 0.21127772 + 0.19176389 + 0.16024221 + 0.11886354 + 0.07045517 + 0.01832594 - 0.03396170 + 0.19026829 + 0.19026812 - 0.09798270 - 0.08720058 - 0.06874762 - 0.04388148 - 0.01429659 + 0.01799079 + 0.05078038 + 0.08183755 + 0.10904591 + 0.13055114 + 0.14488783 + 0.15107882 + 0.14870229 + 0.13792019 + 0.11946725 + 0.09460109 + 0.06501619 + 0.03272882 - 0.00006076 - 0.03111796 - 0.05832630 - 0.07983156 - 0.09416821 - 0.10035921 + 0.30431767 + 0.30431761 74 THE SECULAE VARIATIONS OF THE ELEMENTS ACTION OF MARS ON MERCURY. E ft #0 1000 X So 100 X Wv fl<> + 0.006125234 0.005413043 - 0.1331172 - 0.05793911 0.000000000 15 + 0.004244733 0.005395946 - 0.1341971 - 0.08902862 + 0.004501863 30 + 0.002091460 0.005581735 - 0.1069853 - 0.11749705 4- 0.008771561 45 + 0.000394535 0.005978460 - 0.0544826 - 0.14331159 + 0.012778556 60 - 0.000202379 0.006587462 + 0.0157366 - 0.16470025 4- 0.016426268 75 + 0.000673582 0.007397547 + 0.0931210 - 0.17804909 4- 0.019496561 90 + 0.003010065 0.008379102 + 0.1659322 - 0.17823953 4- 0.021645905 105 4- 0.006397644 0.009479745 + 0.2230373 - 0.15960687 + 0.022459598 120 + 0.010124788 0.010622853 + 0.2557091 - 0.11755697 4- 0.021550254 135 + 0.013355105 0.011710967 + 0.2593958 - 0.05060872 4- 0.018676901 150 + 0.015340435 0.012635664 + 0.2351775 + 0.03775311 4- 0.013854131 165 + 0.015613320 0.013293529 + 0.1902485 + 0.13831063 4- 0.007415508 180 + 0.014107795 0.013605711 4- 0.1366988 + 0.23722085 0.000000000 195 + 0.011176655 0.013535474 + 0.0883172 + 0.31912559 - 0.007550472 210 + 0.007500348 0.013096767 + 0.0561741 + 0.37133333 - 0.014359702 225 + 0.003911780 0.012350565 + 0.0447317 4- 0.38738325 - 0.019696946 240 + 0.001183526 0.011390146 + 0.0503246 + 0.36844987 - 0.023106835 255 - 0.000166297 0.010320547 + 0.0628133 + 0.32211263 - 0.024451640 270 + 0.000001635 0.009239635 + 0.0697179 + 0.25931088 - 0.023868989 285 + 0.001425688 0.008225494 + 0.0610457 + 0.19093564 - 0.021678655 300 + 0.003528129 0.007331827 + 0.0329172 4- 0.12533212 - 0.018282391 315 + 0.005583303 0.006590510 - 0.0111915 + 0.06726176 - 0.014086776 330 + 0.006923128 0.006018069 - 0.0617561 4- 0.01815027 - 0.009457250 345 + 0.007124120 0.005623237 - 0.1063107 - 0.02290733 - 0.004691492 Si + 0.069734164 0.109902014 + 0.7165294 4- 0.78161752 - 0.006827048 s 2 4- 0.069734168 0.109902021 + 0.7165286 + 0.78161728 - 0.006826894 i"> + cos <f B <c) = + 0.000000000104. OF THE DEBITS OF THE FOUR INNER PLANETS. 75 ACTION OF MARS ON MERCURY. 1000x-.RoCosB+ E 1000 X S<" + B ' " - 10 X W " c s u 10 X W 8in -2-#o C ' ( - secV + 1 1 sin vSf, a -0.43288822 -0.2662344 - 5.4130432 -0.5088501 - 0.2770661 -0.008600192 15 -0.43258505 + 1.4484906 - 5.1972533 -0.6072560 - 0.6510373 -0.008648634 30 -0.33624961 +3.1443027 - 4.6032128 -0.4946402 - 1.0657799 -0.009175713 45 -0.16468928 +4.7703837 - 3.5917373 -0.1836694 - 1.4212974 -0.010218569 60 +0.04531053 +6.2357682 - 2.1327368 +0.2693639 - 1.6248266 -0.011820509 75 +0.25408211 +7.4151862 - 0.2308954 +0.7622000 - 1.6090993 -0.014007787 90 +0.42865608 +8.1659686 + 2.0547246 + 1.1559864 - 1.3566975 -0.016758205 105 +0.54706506 + 8.3522568 + 4.6004959 + 1.3031443 - 0.9215481 -0.019968410 120 + 0.59900000 +7.8723845 + 7.2196098 + 1.0926174 - 0.4337649 -0.023429816 135 +0.58504581 +6.6852166 + 9.6761487 +0.5003962 - 0.0756834 -0.026827124 150 +0.51571179 +4.8307371 + 11.7119607 -0.3765995 - 0.0265069 -0.029771109 165 +0.41003953 +2.4394871 + 13.0838349 -1.3270492 - 0.3897732 -0.031867221 180 +0.29291257 -0.2733976 + 13.6057094 -2.0833919 - 1.1343956 -0.032806220 195 + 0.19034846 -3.0319641 + 13.1877783 -2.4169344 - 2.0838761 -0.032447216 210 +0.12318210 -5.5396099 + 11.8615372 -2.2290420 - 2.9698842 -0.030857525 225 +0.10088867 -7.5290371 + 9.7823314 -1.5918740 - 3.5316447 -0.028292299 240 + 0.11788553 -8.8108894 + 7.2045350 -0.7163503 - 3.6141908 -0.025122156 255 +0.15406833 -9.3069299 + 4.4325573 +0.1350559 - 3.2182941 -0.021739497 270 +0.18010328 -9.0565656 + 1.7602448 +0.7452938 - 2.4836977 -0.018479268 285 +0.16656410 -8.1932578 - 0.5835177 + 1.0058653 - 1.6229225 -0.015575563 300 +0.09477911 -6.8986293 - 2.4659985 +0.9273370 - 0.8431253 -0.013156194 315 -0.03382955 -5.3509513 - 3.8502686 +0.6070918 - 0.2895753 -0.011264707 330 -0.19409650 -3.6857779 - 4.7671354 +0.1797507 - 0.0251579 -0.009892996 345 -0.34269706 -1.9808199 - 5.2732726 -0.2254930 - 0.0403424 -0.009012936 2! + 1.43430766 -4.2819430 +36.0361948 -2.0385248 -15.8550934 -0.229869903 2 2 + 1.43430113 -4.2819391 +36.0362016 - 2.0385225 - 15.8550938 -0.229869963 DIFFERENTIAL COEFFICIENTS. w log coeff. 1 fif> //r/1 I U-C' / Ltt-lQQ 1879.077 TO' n 3.2739445 [dxMJoo = +76914.75 TO' p 4.8860096 [dildt] m 934.0667 TO' n 2.9703779 [dn/dt] m = -59594.26 TO' n 4.7752044 [dTr/dt} m = +76470.27 TO' p 4.8834926 [dL/dt] w = -101879.0 TO' n 5.0080846 76 THE SECULAR VARIATIONS OF THE ELEMENTS FINAL VALUES CORRESPONDING TO THE ABOVE VALUES OF m'. = -0.00060742746 [dx/d4 = +0.024863343 [dt'/dfloo = -0.00030194497 [dQ/dfloo = -0.019264347 [drfdt] m = +0.024719659 = -0.032933242 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dtlw -0.00060 -0.00061 -0.000607 < >,[dir/dt]oo +0.00508 +0.00511 +0.005082 [dt'/dflw -0.00030 -0.00030 -0.000302 sin i [dQ/d*]oo -0.00234 -0.00235 -0.002348 [dL/d/]oo -0.0331 -0.032933 NOTES. On account of the very large values of the eccentricities of both orbits and their high mutual inclination, the approximate test is here wholly inapplicable if but twelve points of division are employed. Thus the two sums differ by 1 38' 46". 90 for 6 and by 40' 42". 47 for , while the sums of the functions immediately dependent upon these quantities differ by proportionate amounts. When the number of points of division is increased to twenty-four, the final sums are in almost exact agreement, showing that the combined effect of all terms from the llth to the 23rd orders is wholly inappreciable. The greatest difference which arises in the variations from the employment of twenty-four points of division, instead of twelve, occurs in the case of [di/dt] 00 and here produces a decrease of but three units in the seventh decimal of the logarithm of the coefficient, OF THE ORBITS OF THE FOUK INNER PLANETS. 77 E 30 60 90 120 150 180 210 240 270 300 330 30 60 90 120 150 180 210 240 270 300 330 ACTION OF JUPITER ON MERCURY. A B cos e Bam f p 27.23340536 +2.0282403 + 1.4219711 9.05679111 27.14356714 + 1.0282450 + 1.6206004 9.02684503 27.06879996 +0.0526625 + 1.2863778 9.00192264 27.03145602 -0.6371012 +0.5088565 8.98947466 27.04270097 -0.8562240 -0.5036265 8.99322298 27.09836241 -0.5459922 -1.4797775 9.01177679 27.18120744 +0.2104677 -2.1580381 9.03939180 27.26787830 + 1.2104630 -2.3566674 9.06828209 27.33631108 +2.1860457 -2.0224444 9.09109301 27.37048776 +2.8758091 -1.2449232 9.10248524 27.36240999 +3.0949315 -0.2324396 9.09979265 27.31308297 +2.7846997 +0.7437107 9.08335031 163.22483480* +6.7161237f -2.2081997J 54.28221419 163.22483460 +6.7161234 -2.2082005 54.28221412 - 8' 9 h I 0111 88 49 5 0.12745094 27.006742 +0.163630 89 2 45 0.16554389 27.007491 +0.073044 89 19 0.10430339 27.007569 -0.001801 89 39 30 0.01632120 27.006899 -0.038475 89 41 40 0.01598743 27.006246 -0.026577 89 11 43 0.13801114 27.006455 +0.028875 88 41 46 0.29354831 27.007536 +0.110638 88 20 11 0.35007250 27.008599 +0.196247 87 48 4 0.25781881 27.008698 +0.264581 88 19 32 0.09768920 27.007728 +0.299728 88 22 22 0.00340551 27.006562 +0.292816 88 35 32 0.03486337 27.006176 +0.243874 532 41' 57" 0.80250439 162.043353 +0.803287 533 9 13 0.80250130 162.043348 +0.803293 f 80.552426 80.826371 81.050843 81.156986 81.117340 80.952183 80.714558 80.466952 80.265977 80.156946 80.170254 80.311910 483.871398 483.871348 G 27.006566 27.007263 27.007426 27.006877 27.006224 27.006265 27.007132 27.008116 27.008341 27.007593 27.006557 27.006128 162.042246 162.042242 * 6o 2 + 3o% 2 + 6[a' 2 - 2Jtaa'ee' cos K] = + 163.22483477. t 6[o' 2 e' - koa'e cos A'] = + 6.7161238. J - Sk'aa' cos >' e sin K' = - 2.2082004. 78 THE SECULAR VARIATIONS OF THE ELEMENTS G' ACTION OF JUPITER ON MERCURY. G" log ZV 0.188801 0.024995 5 6 8.07 0.0025877 0.2764500 30 0.123075 0.049804 4 35 5.15 0.0020887 0.2757852 60 0.061321 0.062980 3 53 7.75 0.0014995 0.2750001 90 0.011983 0.050435 2 45 10.71 0.0007524 0.2740043 120 0.014441 0.040995 2 35 41.32 0.0006684 0.2738923 150 0.087484 0.058419 4 12 38.17 0.0017613 0.2753489 180 0.173639 0.062597 5 21 37.00 0.0028566 0.2768082 210 0.248823 0.052092 6 3 11.63 0.0036449 0.2778582 240 0.297071 0.032133 6 20 5.30 0.0039929 0.2783216 270 0.311476 0.011613 6 16 40.56 0.0039213 0.2782263 300 0.293250 0.000430 5 59 8.38 0.0035638 0.2777502 330 0.249105 0.005182 5 34 4.63 0.0030827 0.2771094 o / // Si 1.028523 0.224130 29 15 47.82 0.0151689 1.6582224 2 2 1.031946 0.227545 29 26 50.85 0.0152513 1.6583323 E logtfo log AT logP logQ logV 0.1799707 6.4183196 3.8310274 5.1664192 5.1659174 30 0.1792229 6.4468140 3.8580378 5.1937562 5.1927566 60 0.1783398 6.5219986 3.9320091 5.2678436 5.2665795 90 0.1772196 6.6157906 4.0252257 5.3607256 5.3597128 120 0.1770937 6.7009450 4.1105921 5.4459161 5.4450927 150 0.1787322 6.7589559 4.1694988 5.5052851 5.5041125 180 0.1803735 6.7800058 4.1918462 5.5278954 5.5266396 210 0.1815544 6.7609474 4.1741434 5.5101707 5.5091259 240 0.1820755 6.7044320 4.1187250 5.4544932 5.4538485 270 0.1819683 6.6198775 4.0347585 5.3701732 5.3699402 300 0.1814329 6.5255910 3.9403890 5.2755478 5.2755392 330 0.1807123 6.4489104 3.8629284 5.1980770 5.1979730 Si 1.0792861 9.6512920 4.1245888 2.1381153 2.1336169 S 2 1.0794097 9.6512958 4.1245926 2.1381878 2.1336210 OF THE ORBITS OF THE FOUR INNER PLANETS. 79 ACTION OF JUPITER ON MERCUKY. E JV J. J 3 F t Vi 26.907806 -0.08848287 -1.4438584 -1.8440911 +0.12702123 30 26.754757 -0.00410757 -2.3330959 -2.1016844 +0.05043578 60 26.779325 +0.16212886 -2.4984534 -1.6682462 -0.05353664 90 26.922525 +0.18465069 -1.8956909 -0.6599133 -0.05566955 120 27.032841 +0.04256694 -0.6863554 +0.6531309 +0.07759141 150 27.046752 -0.14516517 +0.8055488 + 1.9190575 +0.24215469 180 26.945408 -0.26169947 +2.1803373 +2.7986639 +0.29255865 210 26.802715 -0.24648650 +3.0696706 +3.0562500 +0.18231424 240 26.714620 -0.10777763 +3.2352193 + 2.6228182 +0.00934620 270 26.757114 +0.06770763 +2.6325527 + 1.6144859 -0.07863175 300 26.911783 +0.13569580 + 1.4231210 +0.3014406 -0.02506303 330 27.011072 +0.02690450 -0.0689744 -0.9644853 +0.08731406 Si 161.291783* -0.11756837 +2.2100104 +2.8637163 +0.42791782 2 2 161.294935 -0.11649642 +2.2100109 +2.8637104 +0.42791747 E 1000 X Ro 1000,000 X So 100,000 X W, 1000 X R (n > 100,000 X S<"> 0.12949124 -0.25462237 - 2.1070330 0.00000000 -0.82801500 30 0.13531974 -0.15796961 - 3.6329106 +0.21265173 -0.49649079 60 0.16094783 +0.15688051 - 4.6204172 +0.40133398 +0.45170948 90 0.20322837 +0.35279259 - 4.3458069 +0.52500398 +0.91137646 120 0.25064630 +0.20287634 - 1.9026678 +0.50847837 +0.47523891 150 0.28657259 -0.17989808 + 2.6073819 +0.31420703 -0.39449173 180 0.29756923 -0.44461029 + 7.3765067 0.00000000 -0.95269261 210 0.28082350 -0.33962404 + 9.9405132 -0.30790355 -0.74474862 240 0.24483424 +0.03827880 + 9.2004732 -0.49668759 +0.08966829 270 0.20310516 +0.33360150 + 6.1619379 -0.52468566 +0.86179960 300 0.16660105 +0.28219872 + 2.6818065 -0.41543058 +0.81254093 330 0.14104055 -0.02790130 - 0.1024400 -0.22164184 -0.08769243 Si 1.25008989 -0.01899829 + 10.6286684 -0.00230582 +0.04845000 S 2 1.25008991 -0.01899894 + 10.6286755 -0.00236831 +0.04975249 sin <f \ 4i ( "'+ cos if Bo (c) = + 0.00000000000073. *2,(Ji' -G") = 161.067653. S 2 (Ji' - G") = 161.067390. 80 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION or JUPITER ON MERCURY. E 1000 X [ft. sin v + (cos v + cos E)S(,] 1000 X Wi, cos u 1000 X W a sin u 1000 X DIFFERENTIAL COEFFICIENTS. log cqeff. [dx/dt] w [di/dt]oo + 3.3470577 m' p 0.5246632 + 1613.8089 m' p 3.2078521 51.404941 m' - 1550.4039 TO' + 1602.2454 TO' n 1.7110049 w 3.1904449 p 3.2047290 [dL/dt] w = -2312.2863 m' n 3.3640416 (-';*) -0.00509245 -0.12949124 -0.018505013 -0.010075877 -0.20573445 30 +0.07792118 -0.11047546 -0.015293859 -0.032953015 -0.22244969 60 +0.15333585 -0.04994118 +0.007556597 -0.045582053 -0.28880400 90 +0.19816106 +0.04884221 +0.028185071 -0.033078773 -0.40645673 120 +0.19031365 +0.16372520 +0.017684089 -0.007020516 -0.55282671 150 +0.12222497 +0.25901646 -0.026009473 -0.001830673 -0.67519875 180 +0.00889221 +0.29756923 -0.064784149 -0.035274618 -0.71750180 210 -0.11061196 +0.25859897 -0.059670973 -0.079503145 -0.66165318 240 -0.18859570 +0.15601907 -0.017887815 -0.090249100 -0.54000750 270 -0.19945173 +0.03508579 +0.017710220 -0.059019459 -0.40621028 300 -0.15503995 -0.05982940 +0.019842790 -0.018040859 -0.29894808 330 -0.08443003 -0.11301587 -0.001014512 +0.000141991 -0.23185401 Zi +0.00381361 +0.37805168 -0.056093501 -0,206243023 -2.60382254 22 +0.00381349 +0.37805210 -0.056093526 -0.206243074 -2.60382263 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [de/dfloo = +0.00319413 [d x /dt] w = +1.540072 [di/d/]oo = -0.049056191 [dtt/dtlw = -1.4795642 [djr/dflw = +1.5290366 = -2.2066350 OF THE ORBITS OF THE FOUR INNER PLANETS. 81 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] m +0^00320 +0.00320 +0.003194 e[dw/dt]M +0.31437 +0.31664 +0.314377 [di/dt]oo -0.04907 -0.04905 -0.049056 sin i [dfl/dt]oo -0.18042 -0.18037 -0.180368 [dL/dt] M -2.2078 -2.20663 NOTES. The above results were published in 1896 in A. J., No. 386. In 1911, upon applying to the various computations all of the test equations devised or learned of by that time, a slight error was detected in the value of F z for 240. This rendered the values of W , W cos u, W sin u, [di/dt] 00 and [dQ/dt} 00 incorrect. In this computation the device was for the first time applied of finding the root G by approximations and then depressing the cubic equation and solving the resulting quadratic equation directly. When a' and hence g is large, some such device becomes necessary as the solution by HILL'S formulas involves a great amount of labor. Thus, while but three approximations were necessary with the Earth on Mercury, no less than eleven were required in some cases with Mars on Mercury, and in the latter, as well as in the present case, if the formulas of HILL'S second method are employed the angle 6' will be found so nearly equal to 90 as to render the values of the roots obtained from it but little better than first approximations. Accordingly all the remaining computations have been effected by the method here outlined, a method which, since the approximation to the value of G is always very rapid, leads so quickly to the values of the roots that special devices for avoiding the solution of the cubic seem unnecessary. The final sums are here practically in exact agreement, showing that the effect of all terms from the sixth to the eleventh orders inclusive is inappreciable. 82 THE SECULAH VARIATIONS OF THE ELEMENTS ACTION OF SATURN ON MERCURY. E A B cos t /.' sin . 9 h 91.40055452 7.9236831 -0.7566872 0.1637322 90.704247 22.5 91.41316673 8.0026121 +0.6479546 0.1200578 90.704730 45 91.37113281 7.5285556 + 1.9837667 1.1253368 90.704973 67.5 91.28182268 6.5736833 +3.0473832 2.6555561 90.704844 90 91.15980423 5.2833659 +3.6768805 3.8659866 90.704445 112.5 91.02405557 3.8540430 +3.7764200 4.0781377 90.704075 135 90.89484135 2.5033169 +3.3308508 3.1725737 90.704038 157.5 90.79086206 1.4368221 +2.4080044 1.6581198 90.704442 180 90.72697664 0.8169216 + 1.1483775 0.3771123 90.705145 202.5 90.71250894 0.7379931 -0.2562644 0.0187792 90.705802 225 90.75006384 1.2120495 -1.5920765 0.7248182 90.706059 247.5 90.83489465 2.1669211 -2.6556933 2.0167735 90.705781 270 90.95505790 3.4572383 -3.2851902 3.0861872 90.705088 292.5 91.09266180 4.8865615 -3.3847297 3.2760409 90.704321 315 91.22635509 6.2372881 -2.9391612 2.4702909 90.703855 337.5 91.33481374 7.3037834 -2.0163140 1.1625662 90.703855 2, 728.48478638* 34.9624190} + 1.5667604t 14.9860379 725.637848 2 2 728.48478617 34.9624206 + 1.5667608 14.9860312 725.637850 *8a i + 4a s e* + 8[a' J - 2kaa'ee' cos A'] = + 728.48478640. 1 8(a'V - kaa'e cos K] = + 34.9624198. t - Kk'aa' cos >' e sin K' = + 1.5667610. OF THE ORBITS OF THE FOUR INNER PLANETS. 83 E ACTION OF SATURN ON MERCURY. G G' G" +0.410351 90.704227 0.4147226 0.0043526 3 53' 5078 22.5 +0.422480 90.704715 0.4256040 0.0031100 3 56 31.53 45 +0.380202 90.704836 0.4105578 0.0302188 3 59 47.96 67.5 +0.291021 90.704520 0.3703889 0.0790439 4 2 4.89 90 +0.169403 90.703974 0.3081768 0.1383038 4 1 12.34 112.5 +0.034023 90.703579 0.2300012 0.1954823 3 55 22.98 135 -0.095154 90.703652 0.1455476 0.2403156 3 44 5.05 157.5 -0.199537 90.704241 0.0683029 0.2676388 3 29 2.13 180 -0.264126 90.705099 0.0149026 0.2789825 3 15 29.12 202 .5 -0.279250 90.705800 0.0007394 0.2799874 3 11 3.15 225 -0.241953 90.705971 0.0294521 0.2713169 3 17 46.29 247.5 -0.156844 90.705536 0.0901199 0.2467190 3 29 20.24 270 -0.035987 90.704713 0.1675089 0.2031209 3 39 39.24 292.5 +0.102383 90.703922 0.2482641 0.1454820 3 46 28.97 315 +0.236543 90.703554 0.3215440 0.0847000 3 50 7.92 337.5 +0.345001 90.703713 0.3789646 0.0338216 3 52 2.72 O / // v + 0.559279 725.636026 1.8124124 1.2513111 29 41 58.70 Zo +0.559277 725.636026 1.8123850 1.2512850 29 41 56.61 * ACTION OF SATURN ON MERCURY. E log A'o log LO' log # log N log P logQ 0.00150875 0.27501245 0. 17835367 5.6285747 1.9882904 3.8492800 22.5 .00154356 0. 27505883 0. 17840585 5. 6455608 2.0053300 3.8663219 45 .00158664 0.27511623 0.17847042 5.6919307 2.0514967 3.912626(1 67.5 0.00161702 0. 27515671 0. 17851595 5. 7568907 2.1160330 3.9773995 90 0.00160533 0.27514113 0. 17849842 5. 8276384 2.1862035 4.0478488 112 .5 0.00152867 0.27503898 0. 17838353 5. 8929411 2.2508613 4.1127652 135 .00138529 0.27484791 0. 17816860 5. 9445922 2.3018923 4.1639869 157.5 .00120533 0.27460806 0. 17789879 5. 9773700 2.3341639 4.1963617 180 0.00105402 0.27440638 0.17767193 5. 9884810 2.3449566 4.2071875 202.5 0.00100673 0.27434335 0. 17760102 5.9770716 2.3334678 4.1956990 225 .00107884 0. 27443945 0. 17770914 5. 9440470 2.3006205 4.1628231 247.5 .00120882 0. 27461270 0.17790402 5. 8922401 2.2492258 4.1113306 270 .00133101 0. 27477556 0. 17808722 5. 8268942 2.1844672 4.0463801 292.5 .00141515 0. 27488768 0. 17821333 5. 7562165 2.1144600 3.9761077 315 0.00146116 0. 27494901 0. 17828232 5.6914235 2.0503133 3.9116762 337.5 0.00148559 0.27498156 0. 17831893 5. 6452895 2.0046971 3.8658214 2! .01101104 1. 19868812 1. 42524172 6.5435816 7.4082403 2.3018085 2 2 0.01101087 1. 19868787 1. 42524142 6. 5435802 7.4082388 2.3018068 84 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF SATURN ON MERCURY. E logy Ji' J 2 J, p t 3.8492539 90.058195 -0.59752575 - 6.047237 + 3.829727 22.5 3.8663033 89.638288 -0.20995430 - 7.910876 - 3.279413 45 3.9124452 89.669758 +0.36734212 - 8.328272 -10.040194 67.5 3.9769269 90.090673 +0.71855783 - 7.235732 -15.423345 90 4.0470220 90.582478 +0.67967125 - 4.799462 -18.609342 112.5 4.1115969 90.879839 +0.35660262 - 1.390299 -19.113128 135 4.1625507 90.892982 -0.04825504 + 2.472681 -16.858027 157.5 4.1947623 90.670885 -0.36411899 + 6.201244 -12.187337 180 4.2055204 90.332824 -0.49291773 + 9.227617 - 5.812141 202.5 4.1940258 90.018885 -0.40939877 + 11.090997 + 1.296998 225 4.1612018 89.853321 -0.15646464 + 11.507770 + 8.057780 247.5 4.1098562 89.914463 +0.15541932 +10.414614 + 13.440932 270 4.0451660 90.199819 +0.35977661 + 7.978084 + 16.626927 292.5 3.9752380 90.576579 +0.29271946 + 4.569179 + 17.130715 315 3.9111697 90.780941 -0.07365934 + 0.706820 + 14.875613 337.5 3.8656191 90.580690 -0.50178023 - 3.021123 + 10.204923 2, 2.2943297 722.370318* +0.03796748 + 12.718001 - 7.929657 22 2.2943284 722.370302 +0.03804694 + 12.718004 - 7.929655 ACTION OF SATURN ON MERCURY. E F t 10000 X fto 1000000 X So 1000000 X W, 1000 X ft'"' 1000000 XS'> -0.2217173 0.20835581 -0.38501122 - 4.2759258 0.0000000 -1.2520309 22.5 +0.0670688 0.21359630 -0.18752118 - 5.8140290 +2.6067657 -0.5980245 45 -0.2247552 0.23766012 +0.18723103 - 6.8102258 +5.0798256 +0.5659595 67.5 -0.9885705 0.27944181 +0.47990507 - 6.8742610 +7.2389467 + 1.3456245 90 -1.8298399 0.33354940 +0.47167629 - 5.3763783 + 8.6166490 + 1.2184913 112.5 -2.2911663 0.39056810 +0.12052582 1.8384740 +8.6416600 -0.2886458 135 -2.1148434 0.43919690 -0.40799123 + 3.5527836 +7.0044048 -0.9201906 157.5 -1.3919042 0.46950930 -0.83324243 + 9.6804438 +3.9006063 -1.8089208 180 -0.5106652 0.47592790 -0.91983080 +14.8005740 0.0000000 -1.9709759 202.5 +0.0653940 0.45862525 -0.61203702 +17.3393050 -3.8101033 -1.3286969 225 +0.0610980 0.42282850 -0.06578321 +16.6811060 -6.7433594 -0.1483686 247.5 -0.4587079 0.37651300 +0.43874423 +13.4040390 -8.3306788 + 1.0507430 270 -1.1366346 0.32772690 +0.65346841 + 8.8350920 -8.4662365 + 1.6881183 292.5 -1.5401525 0.28276850 +0.49946088 + 4.2959022 -7.3251220 + 1.4004581 315 -1.4203565 0.24587472 +0.10699355 + 0.5601261 -5.2554073 +0.3234187 337.5 -0.8596732 0.22009701 -0.26508243 - 2.2258014 -2.6861019 -0.8453756 2, -7.3977141 2.69112025 -0.35924718 +27.9671518 +0.2358762 -0.4955782 2 2 -7.3977118 2.69111927 -0.3592470? +27.9671246 +0.2365727 -0.4955464 sin <f- j^li'" + COS <f-l V c) = + 0.000000000034. *2j (Ji' - G") = 721. 119007. 2 2 (J/ - G") = 721.119017. OF THE ORBITS OF THE FOUR INNER PLANETS. 85 E 1000 X [ft) sin v + (COS V + COS E)S ] 1000X ACTION OF SATURN ON MERCURY. [ "COS" o 1000000 XWt cos u 1000000 X Wo sin u 1000 X -2- Bo a -0.000770023 -0.0208355810 - 3.7553310 - 2.0447571 -0.033103367 22.5 +0.009535644 -0.0190997850 - 3.2422806 - 4.8260289 -0.034604548 45 +0.019486084 -0.0136593860 - 0.8728046 - 6.7540641 -0.040621607 67.5 +0.027699067 -0.0044469025 + 2.0656152 - 6.5565758 -0.051490988 90 +0.032545329 +0.0078015052 + 3.4868920 4.0923123 -0.066709877 112.5 +0.032625198 +0.0215155020 + 1.6174933 - 0.8739008 -0.084259712 135 +0.027148276 + 0.0344565700 - 3.5128323 + 0.5313050 -0.100609845 157.5 +0.016337313 +0.0439769600 - 9.5267356 - 1.7182294 -0.111738865 180 +0.001839662 +0.0475927900 -12.9986018 - 7.0776661 -0.114756176 202.5 -0.013287669 +0.0439638930 -11.8447875 -12.6630324 -0.109148595 225 -0.025446823 +0.0337808020 - 6.8547683 -15.2076154 -0.096860250 247.5 -0.031966152 +0.0197522140 1.0475614 -13.3630400 -0.081227519 270 -0.032206863 +0.0054309792 + 2.5393222 - 8.4623118 -0.065545379 292.5 -0.027462505 -0.0063965152 + 2.7411608 - 3.3076901 -0.052103952 315 -0.019770536 -0.0145922640 + 0.5055592 - 0.2411456 -0.042025673 337.5 -0.010655672 -'0.0192899750 - 2.2254410 - 0.0400332 -0.035657730 2i +0.002825107 +0.0799753913 -21.4625646 -43.3484220 -0.560232174 22 +0.002825224 +0.0799754154 -21.4625365 -43.3485702 -0.560231909 DIFFERENTIAL COEFFICIENTS. // log coeff. [de/dJfe = + 1 .8596825 m' p 0.2694389 [d x /dt] M = +256 .04618 m' p 2.4083183 [di/dt] w = 14 .751452 m' n 1.1688348 [da/dfl M = -244 .39983 m' n 2.3881009 [dir/dt] m = +254 .22335 m' p 2.4052154 [dL/dfloo = -373 .17967 m' n 2.5719180 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. u [de/df]) = +0.00053109524 [dx/d*] M = +0.073122627 [di/dt] M = -0.0042127757 [dtt/dt] M = -0.069796619 [dir/dt]o = +0.072602050 [dL/dtlw = -0.10657405 86 THE SECULAR VARIATIONS OF THE ELEMENTS [de/dt], COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss, oo sin i [dtt/dt] m +o'.00053 +0.00053 +0.0005311 +0.01494 +0.01503 +0.0149273 -0.00421 -0.00421 -0.0042128 -0.00853 -0.00850 -0.0085087 -0.1070 -0.106574 NOTES. The considerable disagreement of the first sums is caused by the rather large value of e'. The very exact agreement toward the close of the computation shows, however, that all terms above the 15th order are wholly inappreciable, the total effect of all terms from the 8th to the 15th orders inclusive occurring with [de/dt] o and amounting to but 1 /30000th of the value of this coefficient. ACTION OF URANUS ON MERCURY. E A B cos e B sin . a h 368.36907643 16.94656315 -5.8755608 27.995613 367.49553 45 368.87526360 22.1817430 -3.9726882 12.798540 367.49652 90 369.14240318 24.5977597 + 1.1481399 1.069008 367.49606 135 369.01848670 22.7793354 +6.4872119 34.127748 367.49535 180 368.57162431 17.7916836 +8.9169755 64.480235 367.49625 225 368.05910248 12.5565017 +7.0141016 39.896574 367.49742 270 367.78562896 10.1404905 + 1.8932751 2.906824 367.49671 315 367.91587927 11.9589113 -3.4457976 9.628773 367.49535 2, 1473.86873228* 69.4764969t +6.0828297J 96.451680 1469.98455 2 2 1473.86873205 69.4764914 +6.0828277 96.451635 1469.98464 * 4a 2 + 2aV + 4[a' 2 - Zkoa'ee' cos K] = + 1473.86873246. t 4[a'V - kaa'e cos A'] = + 69.4764933. t - 4k'aa' cos J e sin A" = + 6.0828300. OF THE ORBITS OF THE FOUR INNER PLANETS. 87 ACTION OF URANUS ON MERCURY. E I G G' G" 8 O / U +0.06261 367.49532 0.30919 0.24638 2 13 39.23 45 +0.56779 367.49643 0.62373 0.05584 2 27 51.84 90 +0.83539 367.49605 0.83888 0.00347 2 44 38.85 135 +0.71220 367.49510 0.82501 0.11257 2 53 41.24 180 +0.26443 367.49577 0.57178 0.30687 2 48 5.47 225 -0.24927 367.49712 0.22774 0.47670 2 30 27.70 270 -0.52202 367.49669 0.01474 0.53674 2 13 6.46 315 -0.39041 367.49528 0.05839 0.44873 2 7 39.31 2, +0.64041 1469.98383 1.73458 1.09346 9 59 30.01 2 2 +0.64031 1469.98393 1.73486 1.09383 9 59 40.09 E log jr. log L ' log No log N log P logQ 0.00049251 0.27365789 0.17682994 4.7157168 9.8582891 2.3270039 45 0.00060285 0.27380499 0.17699541 4.7796309 9.9227977 2.3913072 90 0.00074754 0.27399787 0.17721240 4.9163276 0.0598121 2.5282833 135 0.00083193 0.27411036 0.17733893 5.0341227 0.1774639 2.6460770 180 0.00077916 0.27404002 0.17725980 5.0782321 0.2210425 2.6898771 225 0.00062422 0.27383348 0.17702747 5.0332669 0.1754670 2.6444777 270 0.00048849 0.27365254 0.17682391 4.9151227 0.0570006 2.5260593 315 0.00044928 0.27360025 0.17676511 4.7787835 9.9208203 2.3897669 Zj 0.00250770 1.09534833 0.70812605 9.6253991 0.1961442 0.0712235 22 0.00250828 1.09534908 0.70812692 9.6258039 0.1965489 0.0716217 E logF Ji' Ji J 3 Fi 2.3266400 366.509888 -2.2679092 -1.6777615 + 100.81429 45 2.3912247 363.119586 -0.5138777 -3.4254958 + 68.16435 90 2.5282782 365.160838 +2.2768225 -2.9100648 19.70006 135 2.6459108 367.567473 +0.7238013 -0.4333073 -111.30915 180 2.6894241 366.570373 -1.5747120 +2.5538323 -152.99965 225 2.6437740 364.094438 -1.1669936 +4.3014333 -120.34967 270 2.5252669 364.090394 +1.5139175 +3.7858697 - 32.48527 315 2.3891044 367.299619 +1.4067899 +1.3092445 + 59.12384 Si 0.0696092 1462.331493* -0.0518812 +1.7518757 -104.37069 2, 0.0700139 1462.082117 -0.4497199 +1.7518747 -104.37063 *Si(J,' - G") = 1461.238038. Z 2 (./i' - G") = 1460.987287. THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF UKANUS ON MERCURY. E F 3 1000000 X Ro 1000000000 X <S 1000000 X TFo 100000 X ft"" 1000000 X S'"> - 7.546840 2.572319 - 40.838728 -0.3564792 0.00000000 -0.13280483 45 - 0.473969 2.902866 6.943520 -0.8432739 +0.62046843 -0.02098878 90 - 1.504590 4.048391 + 74.582644 -0.9823294 +1.04582909 +0.19267091 135 -14.059822 5.410853 + 15.278801 -0.1938530 +0.86293520 +0.03446006 180 -17.382080 5.928252 -102.476485 +1.2462639 0.00000000 -0.21958237 225 - 5.500356 5.225873 - 69.412255 +1.8932075 -0.83343288 -0.15655363 270 + 1.222261 3.978026 + 47.038051 +1.2690546 -1.02765154 +0.12151438 315 - 5.177088 2.987389 + 39.388463 +0.3202880 -0.63853471 +0.11906293 , -25.211249 16.526988 - 21.694518 +1.1765099 +0.01817755 -0.03820191 Ii -25.211235 16.526981 - 21.688511 +1.1763686 +0.01143604 -0.02401942 JS lOOOOOOXlffi sin4- 1000000 > < -#ocosv+ OM. + WJW /' \. -, lOOOOOOXTF.coau 1000000 XTF sin ( -sec 2 v> + ll sin vS \ 1000000 X- 2- ft a -0.0816775 -2.5723195 -0.31307783 -0.17046914 4.0868774 45 +2.3415248 -1.7140875 -0.10807474 -0.83631981 - 4.9616693 90 +3.9465628 +0.9815683 +0.63709735 -0.74771500 - 8.0967815 135 +3.2460626 +4.3319665 +0.19167313 -0.02898997 -12.3950199 180 +0.2049530 +5.9282527 -1.09453081 -0.59596603 - 14.2942. r )M> 225 -3.0528880 +4.2563802 -0.77797582 -1.72597460 -11.9712672 270 -3.9027069 +0.7238029 +0.36474303 -1.21550896 - 7.9560519 315 -2.3679844 -1.8134015 +0.28908589 -0.13789041 - 5.1061400 2! +0.1671314 +5.0613044 -0.40576826 -2.72965913 -34.4339707 2 2 +0.1667150 +5.0608577 -0.40529154 -2.72917479 -34.4340964 sin p 1^,0 + cos v Bo (c > = - 0.00000000000024. DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] m = + 0.21975650 TO' p 9.3419417 [dxldt]m = +32.406731 TO' p 1.5106352 [dildt] M =-- 0.55745051 TO' 9.7462063 [rfn/<ft] M = -30.777028 TO' n 1.4882267 [dw/dt]^ = +32.177180 TO' p 1.5075480 [dLldt] M = -45.859693 TO' n 1.6614312 OF THE ORBITS OF THE FOUR INNER PLANETS. 89 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. = +0.0000096384435 [d x /dt] m = +0.0014213479 [dtYdflw = -0.000024449584 [dQ/dt] m = -0.0013498699 [dT/dfloo = +0.0014112801 [dL/dt] m = -0.0020113907 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. // // // {de/dt] m +0.00000 +0.00001 +0.0000096 e[dw/dt] w +0.00029 +0.00029 +0.0002902 [dt'/dfloo -0.00001 -0.00002 -0.0000244 sin i [dtt/dt] w -0.00016 -0.00016 -0.0001646 NOTES. In the results of this computation, published in A. J., No. 398, the residual from the test equation which arises from the constancy of the major axis was stated very much too large. Its true value is as here given. A comparison of the above figures with the corresponding tabulation for Saturn on Mercury and Uranus on Venus shows 'that a division into eight parts is fully sufficient. The effect of all terms of the 4th and higher orders may, however, in some cases amount to l/1000th of the whole. ACTION OF NEPTUNE ON MERCURY. E A B COS e Bsin e g h 904.45979027 + 15.1625927 - 5.380877 1.889897 904.17356 45 904.50658592 + 17.0408109 + 3.150684 0.647955 904.17446 90 904.46648308 + 12.3030460 + 10.652425 7.406776 904.17363 135 904.36745259 + 3.7246157 + 12.729927 10.577523 904.17288 180 904.26302599 - 3.6693551 + 8.166225 4.352861 904.17435 225 904.20989585 - 5.5475736 - 0.365336 0.008712 904.17570 270 904.24366422 - 0.8098086 - 7.867076 4.039717 904.17446 315 904.34902898 + 7.7686225 - 9.944584 6.455136 904.17292 Si 3617.43296356* +22.9864685f + 5.5706981 17.689251 3616.69599 2 2 3617.43296334 +22.9864755 + 5.570691 17.689326 3616.69596 * 4o 2 + 2aV + 4[a' 2 - 2kaa'ce' cos K] = + 3617.4329635, t 4[a'V - kaa'e cos A'] = + 22.986469. J 4fc'oo' cos <f e sin A'' = + 5.570695, 90 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF NEPTUNE ON MERCURY. E I G G' G" e 1 II 0.22096 904.17356 0.2300460 0.0090860 55 54.56 45 0.26686 904.17446 0.2695190 0.0026589 59 38.88 90 0.22759 904.17362 0.2591945 0.0316047 1 1 39.23 135 0.12931 904.17286 0.1906740 0.0613537 57 23.73 180 0.02341 904.17434 0.0820755 0.0586556 42 53.31 225 0.03107 904.17570 0.0003070 0.0313770 20 20.99 270 0.00394 904.17445 0.0688415 0.0649018 41 48.59 315 0.11084 904.17291 0.1564755 0.0456255 51 23.82 s, 0.57589 3616.69597 0.6401575 0.1642481 3 22 15.69 22 0.57594 3616.69593 0.6169755 0.1410151 3 8 47.42 E log A'o log /,' logtfo log N log P logQ 0.00008616 0.27311614 0.17622049 4 .1292404 8.4898441 1.3492047 45 0.00009807 0.27313202 0.17623836 4 .1927246 8.5533496 1.4127095 90 0.00010478 0.27314097 0.17624841 4 .3291694 8.6897764 1.5491508 135 0.00009080 0.27312233 0.17622746 4.4470372 8.8075977 1.6669838 180 0.00005070 0.27306887 0.17616731 4 .4915054 8.8520137 1.7113924 225 0.00001141 0.27301649 0.17610837 4 .4469773 8.8074580 1.6668178 270 0.00004818 0.27306552 0.17616353 4 .3290882 8.6895869 1.5489683 315 0.00007281 0.27309835 0.17620048 4, .1926694 8.5532210 1.4125965 2, 0.00028982 1.09239150 0.70479974 7.2790034 4.7212211 6.1587162 2 2 0.00027309 1.09236919 0.70477467 7 .2794084 4.7216261 6.1591075 E logF J,' J. J3 F, 1.3491992 897.83542 -6.8010114 - 59.717292 +41.026915 45 1.4127079 890.85490 + 1.7283795 - 93.077013 -24.022644 90 1.5491318 899.76750 +6.4446186 - 62.851349 -81.220264 135 1.6669469 904.08417 -1.3097917 + 13.254268 -97.060333 180 1.7113571 897.88500 -6.6871696 + 90.657875 -62.264029 225 1.6667989 891.04449 -2.2340656 + 124.017084 + 2.785531 270 1.5489293 894.36354 +5.9480179 + 93.790933 +59.983153 315 1.4125691 903.73833 +2.4206062 + 17.685807 +75.823263 2! 6.1586174 3589.85146* -1.0955445 + 61.880167 -42.474225 2 2 6.1590228 3589.72189 +0.6051284 + 61.880146 -42.474183 -G") = 3589.68721. - G") = 3589.58087. OF THE ORBITS OF THE FOUR INNER PLANETS. 91 ACTION OF NEPTUNE ON MERCURY. E F j 1000000 X Ko 1000000000 X So 1000000000 X W 1000000 X fi" 1000000 X <S (n) - 2.928627 0.6591808 -15.070783 -133.45316 0.000000 -0.04900917 45 - 0.320722 0.7449111 + 4.384511 -240.74232 +1.592198 +0.01325344 90 - 8.201274 1.0513250 +22.423107 -222.59983 +2.715911 +0.05792607 135 -13.630154 1.3989891 - 6.706655 + 61.47306 +2.231138 -0.01512625 180 - 6.745208 1.5178690 -34.846090 +466.35639 0.000000 -0.07466679 225 + 0.065738 1.3382857 -10.354891 +575.81202 -2.134326 -0.02335460 270 - 3.847073 1.0317860 +21.345904 +331.94457 -2.665434 +0.05514330 315 - 7.846125 0.7779772 + 6.529864 + 45.70113 -1.662874 +0.01973839 r, -21.722182 4.2601608 - 6.147862 +442.24897 +0.050477 -0.01060659 22 -21.731263 4.2601631 - 6.147171 +442.24389 +0.026136 -0.00548902 E 1000000000 Xtffo sm v lwooooooo ><L-tf<> c s <' 1000000000 1000000000 1000000000 7* + (cosw+cos)<S o] fr 2 \ . "! XWoCOsw XWosmu x-afa 30.1416 - 659.1808 -117.20523 - 63.81760 - 1047.3000 45 + 608.8428 - 430.4075 - 30.85375 -238.75703 -1273.2255 90 + 1024.2533 + 261.0141 +144.36884 -169.43527 -2102.6500 135 + 855.3050 + 1105.9013 - 60.78178 + 9.19306 -3204.7615 180 + 69.6922 + 1517.8690 -409.57745 -223.01267 -3659.9008 225 - 792.9698 + 1080.1647 -236.61842 -524.94878 -3065.7028 270 -1014.1308 + 169.4383 + 95.40526 -317.93876 -2063.5719 315 - 621.4949 - 466.5348 + 41.24897 - 19.67525 -1329.7429 Si + 49.6731 + 1289.1406 -287.00858 -774.20430 -8873.4227 S 2 + 49.6831 + 1289.1237 -287.00498 -774.18800 -8873.4327 sin <f \A i w + cos if L t (c) = + 0.000000000000013. DIFFERENTIAL COEFFICIENTS. log coeff. [deldt]<n = + o'.065401848 TO' p 8.8155900 [dx/dt] m = + 8.2544736 TO' p 0.9166894 [di/dt] w = - 0.39452600 TO' n 9.5960756 [drfdt] w = - 8.7298700 TO' = + 8.1893623 TO' n 0.9410078 p 0.9132501 [dL/d*]oo = -11.826130 TO' n 1.0728427 92 THE SECULAR VARIATIONS OF THE ELEMENTS FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [de/dt} 00 = +0.00000331989 [dx/dtlw, +0.00041900885 [di/dt]oo = -0.00002002670 [dV/dt] w = -0.00044314061 [dw!dt] m = +0.00041570371 [dL/dt] w = -0.00060031125 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] w +o'.()0000 +0.00000 +o'.0000033 c[d7r/d<]oo +0.00009 +0.00009 +0.0000855 [di/dt] m -0.00001 -0.00002 -0.0000200 sinz [dtt/dt] m -0.00005 -0.00005 -0.0000508 NOTES. In the final results of this computation, published in A. J., No. 398, the value of the residual arising from the equation [da/dt] 00 = is greatly overstated. Its true value is that given above. The very large disagreement in G', G", 6, etc., arises from the large values of e' and I but the gradual lessening of the discrepancies as the end of the computation is approached shows that terms of the 8th and higher orders are wholly inappreciable. The greatest effect produced by all terms of the 4th and higher orders here occurs with [de/dt] 00 and amounts to but 1 /10000th of the value of this coefficient. OF THE ORBITS OF THE FOUR INNER PLANETS. 93 VENUS. ACTION OF MEKCURY ON VENUS. E A B cos B gin e 1000 x g 0.73249627 +0.19271542 +0.22036223 0.30759837 15 0.70628935 +0.12839518 +0.25427819 0.40956972 30 0.67778527 +0.05734848 +0.27076206 0.46439247 45 0.64892716 -0.01558282 +0.26869056 0.45731389 60 0.62168257 -0.08542863 +0.24820463 0.39023784 75 0.59791027 -0.14742905 +0.21070058 0.28121662 90 0.57923027 -0.19735886 +0.15873412 0.15960636 105 0.56691636 -0.23181556 +0.09584678 0.05819218 120 0.56180731 -0.24845074 +0.02632410 0.00438952 135 0.56425026 -0.24613080 -0.04509594 0.01288203 150 0.57407787 -0.22501408 -0.11354628 0.08166866 165 0.59061890 -0.18653936 -0.17436209 0.19258116 180 0.61274521 -0.13332873 -0.22339892 0.31613445 195 0.63894853 -0.06900848 -0.25731488 0.41941058 210 0.66744400 +0.00203821 -0.27379880 0.47486769 225 0.69628968 +0.07496950 -0.27172719 0.46770903 240 0.72352217 +0.14481528 -0.25124139 0.39984532 255 0.74728586 +0.20681571 -0.21373734 0.28938127 270 0.76596211 +0.25674559 -0.16177082 0.16577156 285 0.77827946 +0.29120222 -0.09888350 0.06193800 300 0.78339732 +0.30783739 -0.02936080 0.00546066 315 0.78096661 +0.30551754 +0.04205926 0.01120554 330 0.77115125 +0.28440072 +0.11050957 0.07735875 345 0.75461912 +0.24592608 +0.17132542 0.18593159 2i 8.07130162* 0.356320051 -0.018220301 2.84733165 St 8.07130156 0.35632016 -0.01822015 2.84733161 * 12a 2 + 6aV + 12[a' 2 - - 2kaa'ee' cos K] = 8.07130158. 1 12[a'V - kaa'e cos K] = + 0.35632010. t 12fc'aa' cos <p' e sin K' = - 0.01822024. 0.58840054 0.56402284 0.53673295 0.50812387 0.48000449 0.45436878 0.43333042 0.41895978 0.41292353 0.41598961 0.42773114 0.44670373 0.47092914 0.49830819 0.52683118 0.55465379 0.58013161 0.60184004 0.61860745 0.62954599 0.63407808 0.63196045 0.62329194 0.60851491 6.33299247 6.33299197 94 THE SECULAR VARIATIONS OF THE ELEMENTS E ACTION OF MERCUKY ON VENUS. G G' G" 0.13776127 0.58723527 0.14259981 0.00367327 29 50 12.97 15 0.13593205 0.56231468 0.14274284 0.00510263 30 41 37.56 30 0.13471786 0.53456025 0.14296704 0.00607649 31 40 18.70 45 0.13446883 0.50568767 0.14321940 0.00631437 32 42 44.77 60 0.13534362 0.47761736 0.14342737 0.00569662 33 44 34.65 75 0.13720703 0.45239646 0.14351084 0.00433149 34 40 36.18 90 0.13956539 0.43206750 0.14340426 0.00257595 35 25 4.49 105 0.14162212 0.41845750 0.14309623 0.00097183 35 52 44.73 120 0.14254931 0.41288415 0.14266320 0.00007451 36 33.62 135 0.14192619 0.41587654 0.14225701 0.00021775 35 48 50.91 150 0.14001227 0.42706500 0.14202490 0.00134648 35 20 41.47 165 0.13758072 0.44529837 0.14203102 0.00304495 34 40 10.49 180 0.13548161 0.46890720 0.14224327 0.00473972 33 51 11.13 195 0.13430588 0.49597000 0.14257523 0.00593116 32 57 11.97 210 0.13427836 0.52451120 0.14293246 0.00633413 32 1 25.39 225 0.13530143 0.55262582 0.14323803 0.00590863 31 6 52.56 240 0.13705610 0.57856627 0.14343948 0.00481804 30 16 21.83 255 0.13911137 0.60079677 0.14351100 0.00335627 29 32 27.98 270 0.14102020 0.61804514 0.14345226 0.00186975 28 57 29.65 285 0.14239902 0.62934391 0.14328793 0.00068684 28 33 26.40 300 0.14298478 0.63406059 0.14306246 0.00006020 28 21 52.79 315 0.14267170 0.63192420 0.14283210 0.00012415 28 23 50.37 330 0.14152485 0.62303406 0.14265313 0.00087040 28 39 39.46 345 0.13976975 0.60786141 0.14256873 0.00214548 29 8 52.62 Si 1.66229562 6.31855399 1.71486964 0.03813556 384 9 26.15 S 2 1.66229608 6.31855323 1.71487036 0.03813555 384 9 26.54 OF THE ORBITS OF THE FOUR INNER PLANETS. 95 ACTION OF MEKCURY ON VENUS. E log K, log Lo' logtfo logtf logP logQ 0.09428087 0.39679023 0.31472571 0.0090498 0.8627996 0.5522553 15 0.10017341 0.40440450 0.32320948 0.0415726 0.9381720 0.6108796 30 0.10716555 0.41342180 0.33324961 0.0806578 1.0282684 0.6810018 45 0.11492344 0.42340404 0.34435531 0.1248163 1.1296769 0.7598999 60 0.12293987 0.43369427 0.35579389 0.1716324 1.2368681 0.8431970 75 0.13049856 0.44337414 0.36654485 0.2174860 1.3415449 0.9243732 90 0.13670353 0.45130400 0.37534554 0.2575171 1.4325547 0.9947294 105 0.14065788 0.45634998 0.38094249 0.2862203 1.4972527 1.0445040 120 0.14178785 0.45779080 0.38254019 0.2989083 1.5248859 1.0655419 135 0.14009658 0.45563407 0.38014861 0.2935151 1.5107656 1.0544719 150 0.13608370 0.45051253 0.37446742 0.2714379 1.4582282 1.0140442 165 0.13043971 0.44329885 0.36646127 0.2367595 1.3768369 0.9516100 180 0.12381666 0.43481823 0.35704266 0.1945715 1.2784801 0.8761594 195 0.11676724 0.42577304 0.34698954 0.1495758 1.1741125 0.7959472 210 0.10975153 0.41675185 0.33695547 0.1054452 1.0722608 0.7174326 225 0.10314673 0.40824135 0.32748247 0.0647779 0.9789193 0.6452104 240 0.09725105 0.40063000 0.31900464 0.0292994 0.8980200 0.5823493 255 0.09229597 0.39422222 0.31186325 0.0001263 0.8320547 0.5308426 270 0.08845847 0.38925289 0.30632243 9.9779738 0.7825625 0.4919641 285 0.08587486 0.38590395 0.30258708 9.9633062 0.7504867 0.4665316 300 0.08464926 0.38431433 0.30081370 9.9564277 0.7363980 0.4550694 315 0.08485629 0.38458290 0.30111334 9.9575313 0.7406137 0.4578944 330 0.08653835 0.38676424 0.30354673 9.9667119 0.7632399 0.475140o 345 0.08969689 0.39085723 0.30811150 9.9839477 0.8041353 0.5067244 Zi 1.32942669 5.01604517 4.05980799 1.3196325 13.0745661 8.7488847 Z 2 1.32942756 5.01604627 4.05980919 1.3196348 13.0745711 8.7488890 96 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MERCURY ON VENUS. E log V /' Ji. J 3 1000 X F, 0.5489818 0.14641488 +0.046569366 +0.007078444 -6.6249758 15 0.6061455 0.14799570 +0.053805593 +0.005998321 -7.6446250 30 0.6750909 0.14917691 +0.057280924 +0.004274648 -8.1401963 45 0.7534266 0.14962155 +0.056746961 + 0.002024896 -8.0779189 60 0.8370288 0.14915409 +0.052252409 -0.000597633 -7.4620305 75 0.9194294 0.14784239 +0.044134510 -0.003414224 -6.3345072 90 0.9916527 0.14602955 +0.032988273 -0.006232935 -4.7721868 105 1.0433053 0.14427332 +0.019614339 -0.008861684 -2.8815397 120 1.0654487 0.14317010 +0.004953440 -0.011121317 -0.7914084 135 1.0542014 0.14310862 -0.009985226 -0.012857840 + 1.3557653 150 1.0124149 0.14408811 -0.024195183 -0.013952904 +3.4136578 165 0.9480753 0.14573205 -0.036737898 -0.014331875 + 5.2420265 180 0.8709298 0.14748132 -0.046798849 -0.013968920 +6.7162708 195 0.7897501 0.14882171 -0.053732494 -0.012888777 +7.7359211 210 0.7111602 0.14942892 -0.057095855 -0.011165046 + 8.2314924 225 0.6396416 0.14920890 -0.056671026 -0.008915214 +8.1692132 240 0.5779992 0.14827058 -0.052477157 -0.006292610 +7.5533276 255 0.5279163 0.14686716 -0.044770588 -0.003475962 + 6.4258044 270 0.4903757 0.14532896 -0.034036602 -0.000657227 +4.8634820 285 0.4659576 0.14399775 -0.020965237 +0.001971497 +2.9728356 300 0.4550194 0.14316554 -0.006416142 +0.004231074 +0.8827039 315 0.4577910 0.14302191 +0.008631431 +0.005967519 -1.2644706 330 0.4744060 0.14361483 +0.023141851 +0.007062502 -3.3223626 345 0.5048724 0.14483260 +0.036096092 +0.007441419 -5.1507310 2, 8.7105081 1.75532379* -0.003833505 -0.041341924 +0.5477741 2* 8.7105125 1.75532376 -0.003833543 -0.041341924 +0.5477737 * 2,(J,' - G") = 1 .71718823. S 2 (j 2 ' _ G") = 1 .71718811. OF THE ORBITS OF THE FOUR INNER PLANETS. 97 ACTION OF MERCURY ON VENUS. E 1000 X F 3 R So W BW <"> +0.12855762 -1.0113711 +0.11654330 +0.02599380 0.0000000 +0.16223015 15 +0.28853773 -1.0855630 +0.15095431. +0.02672256 -0.3910151 +0.21008155 30 +0.43551240 -1.1839703 +0.18420453 +0.02487781 -0.8232930 +0.25617923 45 +0.52994293 -1.3088599 +0.21275230 +0.01862044 -1.2857216 +0.29555816 60 +0.54641763 -1.4594255 +0.23029016 +0.00532100 -1.7533282 +0.31946706 75 +0.48046967 -1.6276742 +0.22753508 -0.01781201 -2.1774255 +0.31512321 90 +0.34977540 -1.7935752 +0.19439994 -0.05167293 -2.4796011 +0.26875615 105 +0.18941983 -1.9243133 +0.12616235 -0.09195653 -2.5651527 +0.17410988 120 +0.04248891 -1.9847155 +0.03108865 -0.12787906 -2.3681413 +0.04283321 135 -0.05148113 -1.9570464 -0.06917608 -0.14733858 -1.9039342 -0.09517474 150 -0.06711060 -1.8525243 -0.15091802 -0.14550282 -1.2730044 -0.20741354 165 +0.00001044 -1.7023416 -0.20114407 -0.12716787 -0.6051233 -0.27625376 180 +0.13212520 -1.5390947 -0.22013939 -0.10126618 0.0000000 -0.30227222 195 + 0.29405223 -1.3852923 -0.21561000 -0.07503510 +0.4924233 -0.29612150 210 +0.44259806 -1.2520945 -0.19638955 -0.05218717 +0.8604054 -0.26990714 225 +0.53811675 -1.1428753 -0.16935246 -0.03375802 + 1.1118587 -0.23300075 240 +0.55512295 -1.0569737 -0.13887026 -0.01942443 + 1.2611694 -0.19133211 255 +0.48911303 -0.9922445 -0.10732663 -0.00839923 + 1.3226839 -0.14811570 270 +0.35776744 -0.9463685 -0.07579537 +0.00013574 + 1.3083458 -0.10478640 285 +0.19621617 -0.9174587 -0.04456334 + 0.00686904 + 1.2273328 -0.06171770 300 +0.04762640 -0.9042927 -0.01348260 +0.01232297 + 1.0864013 -0.01870356 315 -0.04835263 -0.9063942 +0.01780841 +0.01685710 +0.8903706 +0.02473967 330 -0.06620421 -0.9240677 +0.04973149 +0.02067163 +0.6425655 +0.06916321 345 -0.00136711 -0.9584216 +0.08262385 +0.02378861 +0.3452194 +0.11498675 V *-l + 2.90467772 -5.9084737 +0.01066288 -0.40860954 -3.5384806 +0.02421404 2* +2.90467759 -5.9084840 +0.01066372 -0.40860959 -3.5384837 +0.02421607 sin <p ! ( "> + cos <p B (c) = + 0.000000033. 98 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MERCURY ON VENCJS. Ro COS V E [o sin v L ( \ , Wo cos u Wo sin u -2-flo + (cos v+cos E)S( a 860 *" / vSo a 0* +0.2330866 + 1.0113711 +0.015230839 +0.021064164 2.0089005 15 +0.0087244 + 1.1264720 +0.009475283 +0.024986282 2.1567748 30 -0.2767659 + 1.2080644 + 0.002459142 +0.024755972 2.3539076 45 -0.6298334 + 1.2226121 -0.003043897 +0.018369962 2.6050539 60 -1.0391050 + 1.1217558 -0.002204101 +0.004843036 2.9088638 75 -1.4586399 +0.8508163 +0.011332120 -0.013742297 3.2495836 90 -1.7948636 +0.3765263 +0.042079553 -0.029990049 3.5871504 105 -1.9215248 -0.2668018 +0.086138100 -0.032190511 3.8554443 120 -1.7441606 -0.9487539 +0.127283754 -0.012324508 3.9830138 135 -1.2790794 -1.4880990 +0.145357191 +0.024082111 3.9330324 150 -0.6591294 -1.7579567 +0.132584634 +0.059936528 3.7270060 165 -0.0490234 -1.7488888 +0.098503636 +0.080428204 3.4271881 180 +0.4402788 -1.5390947 +0.059336027 +0.082061396 3.0992536 195 +0.7728021 -1.2274791 +0.026854296 +0.070065081 2.7888981 210 +0.9628351 -0.8906639 +0.005513895 +0.051895060 2.5190296 225 + 1.0443017 -0.5731024 -0.005195888 +0.033355748 2.2968106 240 + 1.0518039 -0.2937729 -0.007836004 +0.017773731 2.1211810 255 + 1.0129579 -0.0559799 -0.005257515 -0.006550236 1.9880041 270 +0.9468650 +0.1451147 +0.000109448 -0.000080285 1.8927371 285 +0.8649660 +0.3177537 +0.006402057 -0.002489441 1.8316679 300 +0.7723975 +0.4708818 +0.012250672 -0.001332937 1.8023971 315 +0.6691423 +0.6125550 +0.016656295 +0.002594179 1.8040170 330 +0.5508294 +0.7487960 -f 0.018894170 +0.008386104 1.8371831 345 +0.4092814 +0.8824106 +0.018479728 +0.014979907 1.9041728 2, -0.5559282 -0.3477320 +0.405702029 +0.226988212 31.8406236 2 2 -0.5559251 -0.3477313 +0.405701406 +0.226989461 31.8406376 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt]oo = - 97592.111m' n4 .9894147 [dxldtiw = -8920493.9 TO' n 6 .9503889 [di/dt] M = + 71223.820 TO' p4 .8526253 [dQ/(ft]oo = + 673299.06 TO' p5 .8282080 [dirldt} w = -8919313.6 TO' 6 .9503315 [dL/dt]oo = +5590689.3 m' p 6 .7474654 OF THE ORBITS OF THE FOUR INNER PLANETS. FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [de/d/Joo = -0.013012279 = -1.1893992 = +0.0094965089 = +0.089773204 = -1.1892420 [dL/dt] w = +0.74542525 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt]^ -0.01304 -0.01301 -0.013012 e[dir/dt]oo -0.00810 -0.00814 -0.008138 [di/dt}^ +0.00950 +0.00949 +0.009497 sin i [dfl/d<]oo +0-00529 +0.00531 +0.005301 [dL/dfloo +0.747 +0.745425 NOTES. This computation was originally made with but twelve points of division, but it was found that, notwithstanding the small eccentricity of the orbit of Venus, the values of e' and I are here so large that the tests which arise by comparing the sums of the functions were, toward the close of the computation, entirely inapplicable. The sums for [de/dt\ 00 agreed to but a single significant figure, while those for [dx/dt] o, [di/dt] 00 , and [dQ/di\ 00 agreed to but two. It will be noticed that the increase of the number of points of division almost wholly removes the discrepancy. Notwithstanding the entire disagreement of the test equations when but twelve points of division were employed, it is evident that this number would have been sufficient. The greatest error would have occurred with [dLjdt] OQ , its amount being 0".00000016, showing that with this coefficient the sum of all terms of an order higher than the 12th amounts to but 1 /4000000th of the remaining terms. 100 THE SECULAR VARIATIONS OF THE ELEMENTS .E 30 60 90 120 150 180 210 240 270 300 330 A 1.53711333 1.52932317 1.51985488 1.51125435 1.50583081 1.50503256 1.50906482 1.51684286 1.52628659 1.53487476 1.54031063 1.54113325 9.13846106* 9.13846095 ACTION OF THE EARTH ON VENUS. B cos t B am t 1000 Xff +0.64403672 +0.34841048 0.03414346 +0.38337105 +0.61703357 0.10708849 +0.02331740 +0.71967967 0.14568124 -0.33964844 +0.62884478 0.11122751 -0.60827014 +0.36886855 0.03827088 -0.71057033 +0.00941083 0.00002491 -0.61913831 -0.35321171 0.03509098 -0.35847281 -0.62183471 0.10876150 +0.00158081 -0.72448100 0.14763156 +0.36454672 -0.63364618 0.11293247 +0.63316838 -0.37366983 0.03927365 +0.73546881 -0.01421211 0.00005681 +0.07469486f -0.01440384t 0.44009177 +0.07469500 -0.01440382 0.44009169 1.00234463 1.00372554 1.00314070 1.00120600 0.99983131 1.0003553T 1.00226402 1.00370935 1.00326747 1.00133527 0.99985008 1.00036791 6.01069819 6.01069936 E G G' G" 0.53448743 1.00227181 0.53462398 0.00006372 46 55 3.02 30 0.52531637 1.00350237 0.52574251 0.00020298 46 22 33.07 60 0.51643292 1.00284204 0.51701255 0.00028098 45 53 55.40 90 0.50976708 1.00097979 0.51021108 0.00021779 45 33 45.30 120 0.50571824 0.99975382 0.50587139 0.00007567 45 20 44.51 150 0.50439599 1.00035525 0.50439608 0.00000005 45 14 29.83 180 0.50651954 1.00219338 0.50665928 0.00006911 45 19 11.90 210 0.51285225 1.00348844 0.51328431 0.00021116 45 39 53.44 240 0.52273786 1.00296095 0.52332564 0.00028127 46 15 21.69 270 0.53325823 1.00109414 0.53371072 0.00021137 46 54 18.41 300 0.54017928 0.99976461 0.54033745 0.00007270 47 19 22.49 330 0.54048407 1.00036779 0.54048430 0.00000011 47 18 38.53 2, 3.12607525 6.00978661 3.12783029 0.00084345 277 3 39.01 2 2 3.12607397 6.00978778 3.12782900 0.00084346 277 3 38.58 * 6a s + 3aV + 6[o' ! - 2fcaa'ee' cos A'] = 9.13846101. t 6[a'V - koa'e cos A'] = + 0.07469471. I - 6k'aa' cos <p' e sin A' = - 0.04440383. OF THE ORBITS OF THE FOUR INNER PLANETS. 101 ACTION OF THE EARTH ON VENUS. E logtfo log Lo' logJVo \ogN logP logQ q .26000336 0.60598257 0.54577154 9 .8305330 0.4344894 0.3752914 30 o .25288171 .59719127 0.53614961 9.8233230 0.4173018 0.3578664 60 .24673133 0.58958546 0. 52781896 9 .8197364 0.4066135 0.3462012 90 .24246622 0.58430371 0. 52203035 9.8196999 0.4029640 0.3412105 120 .23974361 0.58092896 0.51833025 9.8208350 0.4019120 0.3392393 150 .23844519 0.57931865 0. 51656434 9 .8213596 0.4003696 0.3377696 180 .23942219 0.58053038 0. 51789317 9.8218870 0.4004544 0.3387987 210 .24375790 0.58590391 0. 52378440 9.8244982 0.4071947 0.3466789 240 .25132635 0.59526901 0. 53404476 9.8301980 0.4226554 0.3628370 270 .25983876 0.60577958 0. 54554439 9.8370023 0.4416487 0.3819851 300 .26543283 0.61267386 0. 55308969 9 .8405753 0.4533906 0.3937357 330 .26526804 0.61247091 0. 55286781 !) .8378789 0.4500302 0.3905869 2, . 1 .50265967 3.56497024 3. 19694837 8.9637646 2.5195152 2.1561032 2 2 1 .50265782 3.56496803 3. 19694594 8.9637618 2.5195089 2.1560973 E logF j. J, J i F, 0.3752596 0.9974825 +0.004202020 -0.047236424 -0.005832177 30 0.3577653 0.9964541 +0.010025286 -0.058127293 -0 .010328762 60 0.3460609 0.9970986 +0.013405599 -0.053273840 -0.012046994 90 0.3411015 0.9987570 +0.012206904 -0.033976547 -0.010526476 120 0.3392013 0.9997616 +0.006516023 -0.005406098 -0 .006174632 150 0.3377695 0.9991244 -0.001172845 +0.024782063 -0 .000157532 180 0.3387641 0.9974877 -0.007608410 +0.048499056 +0 .005912547 210 0.3465734 0.9964670 -0.010818504 +0.059389945 +0.010409132 240 0.3626968 0.9970681 -0.010873469 +0.054536468 +0.012127366 270 0.3818798 0.9987050 -0.008962465 +0.035239146 +0.010606846 300 0.3936994 0.9997505 -0.005884342 +0.006668715 +0.006255003 330 0.3905868 0.9991427 -0.001520954 -0.023519435 +0.000237902 2, 2.1556821 5.9886490* -0.000242579 +0.003787877 +0 .000241113 2 2 2.1556763 5.9886502 -0.000242578 +0.003787879 +0 .000241110 * - 1 (t) r/ _ G") = 5.9878055. - ^ (J Y _ G") .= 5.9878067. 102 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF THE EARTH ON VENUS. E 1000 X F, So 1000 X So TF B<" S<"> +0.20122394 0.42126107 -5.890097 -0.11153496 0.0000000 -0.008199111 30 +0.06017487 0.40675651 -4.150418 -0.13232119 +0.2828447 -0.005772122 60 -0.29485277 0.40441131 -0.984602 -0.11894044 +0.4858527 -0.001365876 90 -0.50823894 0.41101802 +0.151227 -0.07580674 +0.5682286 +0.000209069 120 -0.36563277 0.41646740 -1.349097 -0.01272800 +0.4969244 -0.001858754 150 -0.00856116 0.41403810 -2.948800 +0.05391799 +0.2845157 -0.004052670 180 +0.20680805 0.40710579 -1.730893 +0.10632289 0.0000000 -0.002376680 210 +0.06559223 0.40536093 +2.554045 +0.13208012 -0.2785530 +0.003510140 240 -0.29105383 0.41526071 +7.029019 +0.12494379 -0.4954847 +0.009684416 270 -0.50707628 0.43289840 +7.732079 +0.08349760 -0.5984781 +0.010689527 300 -0.36741788 0.44451245 +3.199250 +0.01546615 -0.5340294 +0.004438118 330 -0.01281582 0.43893384 -3.068000 -0.05784756 -0.3052198 -0.004266768 s, -0.91092526 2.50901873 +0.273580 +0.00352943 -0.0467370 +0.000322113 S 2 -0.91092510 2.50900580 +0.270133 +0.00352022 -0.0466619 +0.000317176 _ [fl sin v + (coav+coaE)S a ] -0.01178019 30 +0.19740436 60 +0.35044516 90 +0.41100745 120 +0.36078900 150 +0.21090709 180 +0.00346179 210 -0.20590981 240 -0.36545661 270 -0.43294230 300 -0.38308894 330 -0.22607885 S, -0.04562979 2 2 -0.04561206 sin <f\Ai ( '' + coa <fB - Ro cos v .('-sec? +\\smvsl \o see *" / S " J -0.42126107 -0.35572418 -0.20183130 +0.00311509 +0.20803111 +0.35633148 +0.40710579 +0.34919573 +0.19760050 -0.01250179 -0.22551772 -0.37629530 -0.03587269 -0.03587897 = + 0.00000000814. TF.COSM Wt, sin u -2-flo a -0.065352939 -0.09038273 -0.83675673 -0.013079792 -0.13167315 -0.80869188 +0.049268295 -0.10825646 -0.80605518 +0.061732775 -0.04399687 -0.82203004 +0.012668751 -0.00122668 -0.83578481 -0.049130989 -0.02221027 -0.83298365 -0.062298971 -0.08615914 -0.81978340 -0.013955080 -0.13134085 -0.81552660 +0.050403535 -0.11432600 -0.83336328 +0.067326200 -0.04938656 -0.86579680 +0.015375410 -0.00167292 -0.88598306 -0.052873488 -0.02346769 -0.87266531 +0.000064081 -0.40202393 -5.01772646 +0.000019626 -0.40207539 -5.01770028 OF THE ORBITS OF THE FOUR INNER PLANETS. 103 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = - 16017!410w' n 4.2045923 [dx/dtlw = -1840673.3 m' n 6.2649767 [di/dt] 00 = + 14.695 m' p 1.1671802 [dQ/<ft] M = -2385136.3 TO' n 6.3775132 [ArAftJoo = -1844854.1 TO' n 6.2659621 [dL/dt] m = -1765973.3 m' n 6.2469841 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] w = -0^04898290 [d x /dt}w = -5.6289701 [di/dt] m = +0.000044940 [dn/dt}^ = -7.293993 [dw/dt] m = -5.6417558 [dL/dt] m = -5.4005288 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt]oo -0.04875 -0.04896 -0.048982 e[dTr/dt]oo -0.03873 -0.03852 -0.038607 [dildt]oo +0.00006 +0.00004 +0.0000449 sin i [dtt/dt]w -0.43154 -0.43169 -0.431698 [dL/dt] m -5.397 -5.4005 NOTES. The close agreement of the sums of the functions toward the beginning of the computation is here caused by the smallness of the term a'V; the ratio of the major axes is, however, so large that the expansion of the perturbing function is not very rapidly convergent. The greatest error arising from a division of the orbit into but six parts would here occur with the coefficient [dttjdiloa, its amount being 0".0004, which is l/16000th of the whole. 104 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF E A B cos e 2.6510232 -0.78427108 30 2.6356206 -0.87195528 60 2.6766222 -0.66613155 90 2.7630522 -0.22195070 120 2.8717556 +0.34156979 150 2.9736020 +0.87343460 180 3.0412895 + 1.23113141 210 3.0566810 + 1.31881567 240 3.0156549 + 1.11299237 270 2.9292114 +0.66881112 300 2.8205208 +0.10529076 330 2.7187000 -0.42657423 2, 17.0768662* + 1.34058170f 2 17.0768672 + 1.34058118 E I G O 0.32836475 2.30159781 30 0.31341820 2.30194311 60 0.35238060 2.30214618 90 0.43608420 2.30201186 120 0.54393270 2.30165423 150 0.64776765 2.30144287 180 0.71834405 2.30164190 210 0.73432570 2.30208690 240 0.69089570 2.30230785 270 0.60177725 2.30207736 300 0.49293070 2..30165418 330 0.39347570 2.30144156 2, 3.12684850 13.81100215 2, 3.12684870 13.81100366 * 6a 2 + 3aV + 6[a' 2 - Zkaa'ee' cos K] = 17.076! t 6[a'V - kaa'e cos K] = + 1.34058156. t 6fc'aa' cos <p' e sin K' = - 0.0182328. MARS ON VENUS. /.' sin . +0.4410282 -0.1200582 -0.6497891 -1.0062238 -1.0938564 -0.8892048 -0.4471057 +0.1139805 +0.6437115 + 1.0001462 + 1.0877783 +0.8831271 -0.0182332J -0.0182329 G' 0.33433455 0.31388465 0.36444375 0.46014840 0.56837725 0.66243750 0.72188175 0.73455360 0.69835610 0.62106785 0.51868770 0.41360955 3.20608110 3.20570155 0.003928189 0.000291101 0.008527164 0.020447915 0.024164644 0.015968474 0.004037199 0.000262374 0.008368400 0.020201647 0.023896846 0.015750931 0.072922442 0.072922442 G" 0.00510484 0.00040288 0.01016345 0.01930383 0.01847156 0.01047414 0.00242983 0.00015516 0.00520478 0.01412953 0.02001680 0.01654686 0.06139126 0.06101240 2.30246275 2.30200670 2.30404590 2.30677230 2.30762720 2.30563865 2.30274975 2.30215960 2.30456350 2.30723845 2.30739440 2.30502860 13.82884350 13.82884430 o / 22 33 21 40 23 41 27 1 30 11 32 38 34 6 34 23 33 30 31 34 28 47 25 31 172 54 172 51 26.00 58.40 4.25 51.11 38.49 59.04 10.10 46.69 59.53 45.83 46.93 1.93 5.30 23.00 OF THE ORBITS OF THE FOUR INNER PLANETS. 105 ACTION OF MARS ON VENUS. E log A!. log ZV log JVo log N log /' logQ 0.05236235 0.34221622 0.25376720 9.0799241 8.6961571 8.9706997 30 0.04824440 0.36381569 0.24772073 9.0778391 8.6903136 8.9633892 60 0.05820469 0.34986592 0.26232763 9.0871721 8.7089460 8.9854537 90 0.07644597 0.37365893 0.28892064 9.1058581 8.7480486 9.0290445 120 0.09671054 0.39993150 0.31822634 9.1294237 8.7983322 9.0821385 150 0.11444649 0.42279102 0.34867356 9.1516340 9.8464806 9.1313354 180 0.12581914 0.43738414 0.35989311 9.1660121 8.8784042 9.1634092 210 0.12819869 0.44043118 0.36327720 9.1681182 8.8842476 9.1692445 240 0.12114959 0.43139835 0.35324262 9.1574139 8.8625240 9.1475124 270 0.10649224 0.41255431 0.33228403 9.1373395 8.8203390 9.1048461 300 0.08740987 0.38789402 0.30480686 9.1137453 8.7700379 9.0527515 330 0.06771795 0.36229172 0.27622192 9.0929018 8.7249711 9.0040125 2, 0.54165618 2.34869015 1.85226376 4.7336910 2.7144014 4.4019649 2 a 0.54154574 2.34854285 1.85209808 4.7336907 2.7144005 4.4018722 E logF Ji' J 2 J, F t S.9695199 2.3059508 +0.040158678 -0.039429682 -0.09502735 30 8.9632959 2.2999322 -0.012465787 -0.068607310 +0.02586866 60 8.9831123 2.3089841 -0.060962061 -0.080069400 +0.14000859 90 9.0246325 2.3187331 -0.093160848 -0.070744754 +0.21680880 120 9.0779450 2.3192082 -0.101285499 -0.043131936 +0.23569076 150 9.1289682 2.3119133 -0.083189540 -0.004629729 +0.19159498 180 9.1628614 2.3032758 -0.042922865 +0.034445271 +0.09633687 210 9.1692095 2.2997005 +0.009559512 +0.063622976 -0.02455913 240 9.1463381 2.3040271 +0.060251438 +0.075085208 -0.13869908 270 9.1016472 2.3135287 +0.094787774 +0.065760616 -0.21549926 300 9.0481938 2.3207258 +0.103054621 +0.038147729 -0.23438118 330 9.0002162 2.3179852 +0.082763214 -0.000354612 -0.19028541 Si 4.3879705 13.8621718* -0.001705675 -0.014952810 +0.00392861 2 2 4.3879695 13.8617930 -0.001705688 -0.014952813 +0.00392864 *2,(J,'-G") = 13 .800780G. SzG/i' - G") = 13 .8007806. 106 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MAKS ON VENUS. E 1000 X F s Ro 1000 X -So 1000 X Wo fiw 1000 X <S<"> + 2.8021516 0.06350844 -0.9770071 - 3.5365233 0.00000000 -1.3600097 30 - 0.4518739 0.06287361 +0.1223535 - 6.3268753 +0.04372018 +0.1701610 60 - 0.0998524 0.06461988 +1.2993923 - 7.7066718 +0.07763320 + 1.8025651 90 + 3.5312016 0.06860530 +2.2776450 - 7.2896438 +0.09484620 +3.1488232 120 + 6.8298095 0.07412522 +2.6943730 4.7318401 +0.08844541 +3.7122436 150 + 6.5062493 0.07970667 +2.2590820 - 0.1661617 +0.05477227 +3.1047600 180 + 2.8799133 0.08340064 +1.0358414 + 5.2294311 0.00000000 + 1.4223079 210 - 0.4389788 0.08380114 -0.4699266 + 9.3597858 -0.05758587 -0.6458416 240 - 0.1552801 0.08095204 -1.6671420 + 10.5057004 -0.09659109 -2.2969487 270 + 3.4223024 0.07610223 -2.2705920 + 8.5365166 -0.10521063 -3.1390719 300 + 6.6966141 0.07080065 -2.2876620 + 4.6568417 -0.08505867 -3.1735299 330 + 6.3844559 0.06631737 -1.8208410 + 0.3034394 -0.04611486 -2.5323023 Zi + 18.9533560 0.43740687 -0.0977956 + 4.4169380 -0.01557115 +0.1066283 S 2 + 18.9533565 0.43740632 -0.0977209 + 4.4170612 -0.01557271 +0.1065284 \Ro sin v 1 Ro cos v E 1 (T \ n 1000 X W cos u 1000 X W sin u -2-flo + ( COS v+ COS E)S ( + 1 sec 2 <f + 1 1 sin vSo \ \i / J a -0.001954014 -0.06350844 2.072195 - 2.865834 -0.12614768 30 +0.031835191 -0.05421922 0.625404 - 6.295890 -0.12500201 60 +0.057445987 -0.02972268 + 3.192309 - 7.014411 -0.12879747 90 +0.068588125 +0.00502476 + 5.936279 4.230780 -0.13721060 120 +0.061265775 +0.04210058 + 4.709813 - 0.456037 -0.14875771 150 +0.035700934 +0.07141598 + 0.151409 + 0.068446 -0.16035811 180 -0.002071682 +0.08340064 3.064140 - 4.237688 -0.16794274 210 -0.040838000 + 0.07318497 0.988919 - 9.307396 -0.16859554 240 -0.068190156 +0.04377273 + 4.238101 - 9.612920 -0.16245809 270 -0.076084930 +0.00506196 + 6.883205 - 5.049116 -0.15220446 300 -0.063800118 -0.03106656 + 4.629519 - 0.503716 -0.14111682 330 -0.036506252 -0.05549212 + 0.277348 + 0.123100 -0.13184872 Si -0.017304208 +0.04497627 +11.633407 -24.690606 -0.87522051 2 2 -0.017304932 +0.04497633 +11.633918 -24.691636 -0.87521944 sin if J.AI'" + cos <f B (c) = + 0.0000000018. OF THE ORBITS OF THE FOUR INNER PLANETS. 107 DIFFERENTIAL COEFFICIENTS. log coeff. = - 6075.5972 m' n 3.7835890 = +2307588.8 m' p 6.3631584 [difdt] m = + 4084.7434m' p 3.6111648 [dQ/dfloo = - 146478.61 m' n 5.1657742 [dw/dt] w = +2307332.0 m' p 6.3631101 = - 307497.75 m' n 5.4878419 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [de/dt] w = -0.0019639882 [d x /dt} 00 = +0.74594759 [dt'/dfloo = +0.0013204280 [dfl/dflw = -0.047350446 [d7r/d<]oo = +0.74586465 [dL/dt] w = -0.099401232 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. sn [de/dt]w -0^00195 -0.00196 -0.001964 [dw/dilw, +0.00510 +0.00510 +0.005104 [di/dtlw +0.00131 +0.00132 +0.001320 [dtt/dt] w -0.00280 -0.00281 -0.002802 [dLfdt] w -0.099 -0.099401 NOTES. The close agreement of the final sums shows that, notwithstanding the high eccentricity of the orbit of Mars, the expansion of the perturbing function is quite rapidly convergent for this case. The greatest error arising from a division into but six parts would here occur with the coefficient [dQJdt]^, and would amount to 1 /50000th of the whole value of this coefficient. 108 THE SECULAR VARIATIONS OF THE ELEMENTS E A 27.41848845 30 27.28099847 60 27.22724715 90 27.27164617 120 27.40230326 150 27.58420446 180 27.76860046 210 27.90607834 240 27.95980514 270 27.91539376 300 27.78474891 330 27.60287233 Zi 165.56119337* 2 2 165.56119353 E I 0.347678 30 0.210701 60 0.157583 90 0.202099 120 0.332232 150 0.513472 180 0.697718 210 0.835716 240 0.890108 270 0.845842 300 0.714692 330 0.532182 Zi 3.140010 2 2 3.140011 t 6[a'V - kaa'e cos K] = + 7.9087800. | - Gfc'aa' cos <p' e sin K' = 0.1367433, ACTION OF JUPITER ON VENUS. B COS e B sin t o h -0.4215334 +3.3076466 0.68960365 27.007779 -1.8560261 + 1.9912702 0.24993195 27.007266 -2.4400062 +0.1352278 0.00115264 27.006632 -2.0169963 -1.7631551 0.19594869 27.006516 -0.7003432 -3.1952096 0.64351702 27.007039 + 1.1571588 -3.7772161 0.89930104 27.007701 +3.0577930 -3.3532271 0.70874081 27.007851 +4.4922856 -2.0368516 0.26150512 27.007330 +5.0762663 -0.1808092 0.00206064 27.006665 +4.6532564 + 1.7175743 0.18594838 27.006520 +3.3366031 +3.1496275 0.62528757 27.007025 + 1.4791014 +3.7316353 0.87772776 27.007658 +7.9087796f -0.13674401 2.67036233 162.042990 +7.9087799 -0.1367430 2.67036294 162.042990 G' G" e 1 II 27.0068207 0.4107944 0.06215867 7 35 44.57 27.0069201 0.2483150 0.03726867 5 53 53.53 27.0066304 0.1578551 0.00027037 4 23 18.41 27.0062448 0.2334496 0.03108029 5 40 35.79 27.0061457 0.3936568 0.06053126 7 26 34.62 27.0064436 0.5728576 0.05812876 8 46 58.16 27.0068530 0.7344471 0.03573164 9 42 56.80 27.0069600 0.8475114 0.01142507 10 16 14.68 27.0066621 0.8901968 0.00008571 10 27 38.97 27.0062568 0.8541659 0.00806094 10 17 29.01 27.0061444 0.7465850 0.03101258 9 45 50.06 27.0064305 0.5886244 0.05521465 8 52 22.88 162.0392563 3.3335352 0.18979023 49 22 3.43 162.0392558 3.3449238 0.20117838 49 47 34.05 a'ee'cosK] = 165.5611934, OF THE ORBITS OF THE FOUR INNER PLANETS. 109 ACTION OF JUPITER ON VENUS. E log/fo log Lo' log No log N logP logQ 0.00574768 0.28065745 0.18470221 7.4290891 4.8448027 6.1813194 30 0.00346017 0.27761215 0.18127767 7.4282000 4.8416643 6.1774038 60 0.00191340 0.27555166 0.17896019 7.4297378 4.8423401 6.1772233 90 0.00320448 0.27727161 0.18089469 7.4332724 4.8466166 6.1822034 120 0.00551791 0.28035168 0.18435840 7.4378460 4.8533279 6.1897695 150 0.00769513 0.28324824 0.18761506 7.4422392 4.8606851 6.1974532 180 0.00942826 0.28555246 0.19020526 7.4452930 4.8667491 6.2034501 210 0.01054435 0.28703562 0.19187230 7.4462011 4.8699179 6.2064140 240 0.01094130 0.28756298 0.19246500 7.4447133 4.8693318 6.205706T 270 0.01058711 0.28709242 0.19193614 7.4412095 4.8651139 6.2015516 300 0.00952253 0.28567775 0.19034610 7.4366174 4.8583732 6.1950025 330 0.00785489 0.28346069 0.18785389 7.4321742 4.8509265 6.1876739 2i 0.04307108 1.69535398 1.12103716 4.6232965 9.1349247 7.1524707 Zi 0.04334613 1.69572073 1.12144975 4.6232963 9.1349242 7.1526998 E log V Ji' J* J 3 Ft 6.1800737 27.032601604 +0.14514043 -0.9796507 -4.3121624 30 6.1766560 27.002428557 +0.10192507 -1.0502482 -2.5960090 60 6.1772178 26.980449138 +0.02691302 -0.8390983 -0.1762960 90 6.1815797 27.031356993 -0.07055224 -0.4027785 +2.2986164 120 6.1885563 27.065863046 -0.15999110 +0.1417995 +4.1655781 150 6.1962891 27.048572013 -0.20267009 +0.6487166 +4.9243381 180 6.2027348 27.006174576 -0.17674090 +0.9821448 +4.3715859 210 6.2061853 26.976509919 -0.09316228 + 1.0527424 + 2.6554331 240 6.2057043 26.979786076 +0.01124440 +0.8415929 +0.2357201 270 6.2013902 27.007935305 +0.09774464 +0.4052732 -2.2391928 300 6.1943816 27.036474318 +0.11682513 -0.1393049 -4.1061538 330 6.1865682 27.045934111 +0.16010585 -0.6462222 -4.8649146 Si 7.1486685 162.101348758* -0.00660902 +0.0074833 +0.1782719 2j 7.1486684 162.112736898 -0.00660905 +0.0074833 +0.1782712 * z,(J,' - G") = 161.911558528. 2 2 (Ji' - C") = 161.911558518. 110 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF JUPITEK ON VKNUS. E Ft 1000 X flo 100000 X So 1000 X W 1000 X <"> 100000 X <"' +0.06417143 1.3439836 -0.81929943 -0.14785238 0.0000000 -1.1404782 30 -0.01379964 1.3378723 -0.27202988 -0.15783804 +0.9303113 -0.3783208 60 -0.00425156 1.3439282 +0.28211779 -0.12622122 +1.6145721 +0.3913643 90 +0.08385809 1.3588647 +0.54292475 -0.06059607 +1.8786178 +0.7505883 120 +0.16287446 1.3765538 +0.50194299 +0.02305118 +1.6424891 +0.6915652 150 +0.15397825 1.3917093 +0.38822446 +0.10305711 +0.9563448 +0.5335546 180 +0.06595223 1.4018961 +0.39768404 +0.15712801 0.0000000 +0.5460578 210 -0.01357095 1.4066592 +0.47042587 +0.16914113 -0.9666180 +0.6465278 240 -0.00563629 1.4053074 +0.35504098 +0.13510528 -1.6767973 +0.4891671 270 +0.08123098 1.3964225 -0.08725072 +0.06503287 -1.9305409 -0.1206233 300 +0.15970886 1.3800824 -0.66641223 -0.02064190 -1.6580071 -0.9244718 330 +0.15112247 1.3602249 -0.99122256 -0.09822805 -0.9458544 -1.3785254 2i +0.44281913 8.2517515 +0.05107414 +0.02056897 -0.0777432 +0.0532044 2 2 +0.44281920 8.2517529 +0.05107192 +0.02056895 -0.0777394 +0.0532012 E 1000 X[Ro sin v + (cosv+cosE)S<>] 1000 x| -Ro cost) , 1000 X Wo cos u 1000 X W sin u - 2 - /; \ . 1 (j ~\- 1 - SGC^ (f -\~\ isin v *oo I -0.0163860 -1.3439836 -0.086632804 -0.11981268 -0.0026695736 30 +0.6682014 -1.1590573 -0.015602101 -0.15706504 -0.0026598877 60 + 1.1706512 -0.6601482 +0.052284193 -0.11488325 -0.0026786592 90 + 1.3587959 +0.0201574 +0.049346057 -0.03516889 -0.0027177294 120 + 1.1829926 +0.7039968 -0.022943878 +0.00222159 -0.0027625280 150 +0.6850081 + 1.2114930 -0.093907380 -0.04245200 -0.0027999142 180 -0.0079537 + 1.4018961 -0.092067787 -0.12732924 -0.0028229786 210 -0.7073256 + 1.2159042 -0.017870798 -0.16819438 -0.0028299915 240 -1.2164221 +0.7037025 +0.054502775 -0.12362395 -0.0028202318 270 -1.3963839 +0.0113009 +0.052437627 -0.03846518 -0.0027928449 300 -1.2058917 -0.6713715 -0.020520787 +0.00223277 -0.0027507212 330 -0.7013026 -1.1657067 -0.089781837 -0.03984932 -0.0027043278 2i -0.0930097 +0.1340921 -0.115378288 -0.48119476 -0.0165046924 2 2 -0.0930067 +0.1340915 -0.115378432 -0.48119481 -0.0165046855 sin (p \A i (<) + cos (f Bo (c) = + 0.0000000000028. OF THE ORBITS OF THE FOUR INNER PLANETS. Ill DIFFERENTIAL COEFFICIENTS. u log coeff. [de/dt] M = - 32.654970 m' n 1.5139493 [d x /dt] m = +6879.8159 TO' p 3.8375768 [di/dt] M = - 40.510972 TO' n 1.6075727 [<&/#], = -2854.6599 TO' n 3.4555544 [dir/eft]oo = +6874.8117 TO' p 3.8372608 [dL/dt] m = -5799.7390 TO' n 3.7634084 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. = -0.031162921 [dxldt]<n = +6.5654682 [di/dt] M = -0.038659982 [dQ/dt] w = -2.7242270 = +6.5606924 = -5.5347410 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. -0.03117 -0.0311629 +0.04482 +0.04491 +0.0448955 [di/dt] M -0.03865 -0.03865 -0.0386600 sin i [daAft] M -0.16114 -0.16122 -0.1612345 [dL/dt] w -5.535 -5.5347410 NOTES. The term aV is here so large that the sums of the functions B, e, G', G", and 0, as well as those of the functions immediately dependent upon these quantities are in great disagreement; but, as the expansion of the perturbing function is here rapidly convergent, the final sums agree almost exactly. The greatest effect of all terms from the 6th to the llth orders is here produced with the coefficient [di/dt]^ and amounts to 0".00000002. 112 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF SATURN ON VENUS. E A B cos t B sin e g I 92.09886822 + 10.392665 +4.3401600 5.386574 90.704833 30 91.77434432 + 7.489741 +6.4166597 11.773870 90.705340 60 91.37861335 + 3.936959 +6.7658078 13.090030 90.705178 90 91.01772022 + 0.686282 +5.2940524 8.014522 90.704527 120 90.78837022 1.391274 +2.3957451 1.641279 90.704015 150 90.75201312 - 1.739027 -1.1525126 0.379833 90.704174 180 90.91838168 - 0.263800 -4.3999687 5.536055 90.704848 210 91.24289345 + 2.639122 -6.4764687 11.994380 90.705369 240 91.63859982 + 6.191904 -6.8256188 13.322485 90.705222 270 91.99948069 + 9.442580 -5.3538604 8.196630 90.704548 300 92.22884291 + 11.520135 -2.4555545 1.724250 90.704026 330 92.26522467 + 11.867891 + 1.0927030 0.341433 90.704165 S, 549.05167620* +30.386589f -0.179429U 40.700673 544.228122 *} 549.05167647 +30.386589 -0.1794266 40.700668 544.228123 E I G G' G" e i a + 1.108078 90.7041702 1.1599384 0.0511977 6 38 1.200 30 +0.783048 90.7038960 0.9248448 0.1403539 6 12 59.177 60 +0.387477 90.7035801 0.6213419 0.2322660 5 33 35.601 90 +0.027235 90.7035526 0.3116929 0.2834826 4 38 20.618 120 -0.201603 90.7038159 0.0673334 0.2687363 3 29 4.472 150 -0.238118 90.7041279 0.0164527 0.2545245 3 7 43.816 180 -0.072423 90.7041756 0.2137666 0.2855179 4 14 53.293 210 +0.251567 90.7039071 0.5115373 0.2585083 5 16 44.963 240 +0.647420 90.7035910 0.8267173 0.1776657 6 2 4.051 270 + 1.008976 90.7035405 1.0926850 0.0827021 6 32 0.533 300 + 1.238859 90.7038135 1.2542286 0.0151565 6 47 36.301 330 + 1.275102 90.7041229 1.2780897 0.0029452 6 49 30.415 s, +3.107808 . 544.2231463 4.1433262 1.0305401 32 45 14.918 2 2 +3.107809 544.2231470 4.1353023 1.0225166 32 37 19.522 * 6o 2 + 3aV + 6[a' 2 - Zkaa'ee' cos K\ = 549.05167622. t 6[a'V - kaa'e cos K\ = + 30.386587. J 6fc'aa' cos if' e sin K' = - 0.1794290. OF THE ORBITS OF THE FOUR INNER PLANETS. 113 ACTION OF SATURN ON VENUS. E logtfo log /V log No log N log P logQ 0.00437971 0.27883659 0.18265468 6.6396204 3.0027123 4.8644028 30 0.00384466 0.27812417 0.18185352 6.6392492 3.0007786 4.8628053 60 0.00307377 0.27709752 0.18069890 6.6400076 2.9996349 4.8619714 90 0.00213852 0.27585161 0.17929758 6.6416827 2.9995754 4.8620009 120 0.00120578 0.27460866 0.17789947 6.6438207 3.0006087 4.862S099 150 0.00097200 0.27429705 0.17754895 6.6458518 3.0024609 4.8645568 180 0.00179285 0.27539102 0.17877951 6.6472415 3.0046480 4.8670287 210 0.00277061 0.27669370 0.18024473 6.6476233 3.0065929 4.8690060 240 0.00362228 0.27782805 0.18152050 6.6468912 3.0077706 4.8699374 270 0.00424801 0.27866126 0.18245753 6.6452313 3.0078525 4.8696688 300 0.00459387 0.27912172 0.18297533 6.6430830 3.0068083 4.8683601 330 0.00463699 0.27917912 0.18303987 6.6410259 3.0049227 4.8664247 Si 0.01866826 1.66288356 1.08452839 9.8606643 8.0221827 9.1945101 Y o 0.01861079 1.66280691 1.08444218 9.8606642 8.0221829 9.1944623 E logF J,' J 2 J 3 F 2 4.8640969 90.64262161 +0.26581387 -3.1529304 -22.089684 30 4.8619670 90.77821079 +0.41797337 -2.4126056 -32.658241 60 4.8605842 90.92403274 +0.41481456 -1.0167115 -34.435270 90 4.8603076 90.98237184 +0.27423234 +0.6607234 -26.944615 120 4.8612040 90.92121232 +0.07649557 +2.1702330 -12.193388 150 4.8630356 90.85355551 -0.10022240 +3.1073439 + 5.865829 180 4.8653231 90.87694181 -0.22507782 +3.2209585 +22.394088 210 4.8674621 90.89557561 -0.30595380 +2.4806343 + 32.962649 240 4.8688763 90.86858755 -0.34689500 +1.0847396 +34.739680 270 4.8691748 90.78219477 -0.32168268 -0.5926962 +27.249019 300 4.8682696 90.66900008 -0.19522740 -2.1022048 + 12.497792 330 4.8664071 90.60246403 +0.02557719 -3.0393154 - 5.561423 2j 9.1883540 544.90239611* -0.01007622 +0.2040844 + 0.913218 2 2 9.1883541 544.89437255 -0.01007598 +0.2040844 + 0.913218 * 2,(J,' - G") = 543.87185601. 2 2 (J,' - G") = 543.87185600. 114 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF SATURN ON VENUS. E F 3 1000 X Ro 100000 X S 1000 X W 1000 X B (n) 100000 X <S<> -0.15178108 0.21824849 -0.02789044 -0.023072725 0.00000000 -0.03882394 30 -0.76855930 0.21811010 -0.02299898 -0.017634117 +0.15166640 -0.03198543 60 -1.16657105 0.21852784 -0.04315220 -0.007491896 +0.26253554 -0.05986233 90 -0.94659087 0.21909707 -0.07037836 +0.004695343 +0.30289965 -0.09729742 120 -0.32871848 0.21963056 -0.06653491 +0.015732681 +0.26206084 -0.09167023 150 +0.06775179 0.22023472 -0.01412236 +0.022675427 +0.15133936 -0.01940900 180 -0.15599309 0.22103492 +0.06128516 +0.023605169 0.00000000 +0.08415031 210 -0.77884429 0.22186276 +0.10918347 +0.018202966 -0.15245807 +0.15005585 240 -1.18017310 0.22225231 +0.09717617 +0.007900358 -0.26518905 +0.13388702 270 -0.95986467 0.22180036 +0.03944793 -0.004483114 -0.30663694 +0.05453639 300 -0.33810816 0.22057741 -0.01719598 -0.015556236 -0.26499777 -0.02385490 330 +0.06476239 0.21916657 -0.03744378 -0.022338577 -0.15240100 -0.05207429 2, -3.32134496 1.32027153 +0.00368780 +0.001117351 -0.00559044 +0.00382593 -"2 -3.32134495 1.32027158 +0.00368792 +0.001117928 -0.00559070 +0.00382610 E m v [ff ,' 100 Xf-Socost; J p T 1000 X TFo cos u 1000 X TFo sin u 1000X-2-Ro 1 + ^sec z Y,+ lJsin!%Sol a -0.00055781 -0.21824849 -0.013519262 -0.018697064 -0.43351010 30 +0.10930468 -0.18874417 -0.001743111 -0.017547753 -0.43363510 60 +0.18946670 -0.10888722 +0.003103342 -0.006818927 -0.43556030 90 +0.21909678 +0.00009174 -0.003823625 +0.002725091 -0.43819414 120 +0.19022138 +0.10978821 -0.015659442 +0.001516257 -0.44076418 150 +0.10971092 +0.19096268 -0.020662231 -0.009340619 -0.44307990 180 -0.00122570 +0.22103492 -0.013831594 -0.019129016 -0.44509495 210 -0.11216824 +0.19142744 -0.001923256 -0.018101079 -0.44635520 240 -0.19279204 +0.11058265 +0.003187081 -0.007228982 -0.44602556 270 -0.22179790 +0.00072885 -0.003614847 +0.002651640 -0.44360072 300 -0.19184805 -0.10885437 -0.015464964 +0.001682669 -0.43964535 330 -0.11088191 -0.18905102 -0.020417779 -0.009062352 -0.43573540 Si -0.00673552 +0.00541570 -0.052184839 -0.048675063 -2.64060044 2 2 -0.00673567 +0.00541552 -0.052184849 -0.048675069 -2.64060046 sin <f Mi w + cos <p Bo w = + 0.00000000000029. OF THE ORBITS OF THE FOUR INNER PLANETS. 115 DIFFERENTIAL COEFFICIENTS. n log coeff. [de/dt]w = - 2.3648522 TO' n 0.3738040 [dx/dt] w = +277.85744 TO' p 2.4438220 [di/dt] w 18.322835 TO' n 1.2629927 [dQ/dfloo = -288.76199 TO' n 2.4605400 [dir/dt]oo = +277.35124 TO' p 2.4430301 [dL/dt] w = -927.63054 TO' n 2.9673751 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] w = -0.00067536338 [dxldt] M = +0.079351564 = -0.0052327048 = -0.082465731 = +0.079207000 [dL/dt] w = -0.26491624 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. -0.00067 -0.00067 -0.00067536 +0.00055 +0.00054 +0.00054202 -0.00523 -0.00523 -0.00523270 -0.00489 -0.00488 -0.00488077 -0.265 -0.26491624 [di/dt] m sin i [dQ/dt}oo [dL/dt] NOTES. As in the previous case, the considerable disagreement of the sums of the functions near the beginning of the computation nearly disappears as the work progresses, show- ing that the convergence of the expansion of the perturbing function is here very rapid. The greatest error which would have arisen from the neglect of all terms from the 6th to the llth orders would have here occurred with the coefficient [dx/dt] 00 and would have amounted to 1 /70000th part of the remaining terms. 116 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF URANUS ON VENUS. E A B cos ( / >' sin i 9 i 369.8294733 28.016529 - 8.627090 60.35594 367.496220 30 370.1021929 30.912376 - 2.059265 3.43885 367.496155 60 370.0319613 30.136215 + 5.076263 20.89679 367.496140 90 369.6376057 25.896024 + 10.867539 95.77536 367.496165 120 369.0247981 19.327964 + 13.762797 153.60480 367.496245 150 368.3577351 12.191933 + 12.986248 136.75991 367.496230 180 367.8151465 6.400029 + 8.745974 62.03086 367.496275 210 367.5424142 3.504185 + 2.178150 3.84740 367.496245 240 367.6126214 4.280346 - 4.957378 19.92946 367.496135 270 368.0069649 8.520535 - 10.748653 93.69136 367.496165 300 368.6197847 15.088597 -13.643909 150.96247 367.496240 330 369.2868724 22.224622 -12.867361 134.26735 367.496240 ^ 2212.9337853* 103.2496801 + 0.356657} 467.78032 2204.977255 ^ 2212.9337852 103.249675 + 0.356658 467.78025 2204.977200 E G G' G" + 1.522310 367.495771 1.6238940 0.1011370 O 3 55 40^93 30 + 1.795095 367.496129 1.8003166 0.0051977 4 1 9.46 60 + 1.724880 367.495985 1.7573874 0.0323564 4 5.50 90 + 1.330495 367.495453 1.5044398 0.1732316 3 52 23.80 120 +0.717605 367.495105 1.0990547 0.3803068 3 38 8.91 150 +0.050560 367.495217 0.6363646 0.5847917 3 18 7.21 180 -0.492075 367.495816 0.2329563 0.7245710 2 55 22.89 210 -0.764775 367.496217 0.0134531 0.7782012 2 39 26.72 240 -0.694455 367.495988 0.0708724 0.7651843 2 43 51.72 270 -0.300145 367.495472 0.3769271 0.6763791 3 3 57.85 300 +0.312600 367.495121 0.8167025 0.5029833 3 25 59.41 330 +0.979685 367.495243 1.2686692 0.2879853 3 43 48.64 2, +3.090865 2204.973786 5.6008673 2.5065388 20 39 9.36 2 2 +3.090915 2204.973731 5.6001704 2.5057866 20 38 53.68 * 6a 2 + 3aV + 6[a' 2 - 2kaa'ee' cos K] = 2212.9337852. t 6[a'V - kaa'e cos K] = + 103.249685. t 6fc'aa' cos <p' e sin A" = + 0.356657. OF THE ORBITS OF THE FOUR INNER PLANETS. 117 ACTION OF UKANUS ON VENUS. E logtfo log!/ logJV log AT logP logQ 0.00153256 0.27504417 0.17838936 5.7255240 0.8698244 3.3385415 30 0.00160469 0.27514027 0.17849746 5.7265670 0.8711895 3.3398056 60 0.00159052 0.27512139 0.17847622 5.7286906 0.8732303 3.3418760 90 0.00149009 0.27498757 0.17832569 5.7313185 0.8753928 3.3441876 120 0.00131281 0.27475131 0.17805993 5.7337420 0.8770917 3.3461011 150 0.00108264 0.27444453 0.17771485 5.7353151 0.8778752 3.3470878 180 0.00084825 0.27413211 0.17736340 5.7356234 0.8775397 3.3468789 210 0.00070103 0.27393587 0.17714264 5.7345896 0.8761825 3.3455607 240 0.00074042 0.27398839 0.17720173 5.7324870 0.8741636 3.3435328 270 0.00093336 0.27424555 0.17749102 5.7298710 0.8720155 3.3413115 300 0.00117044 0.27456155 0.17784648 5.7274385 0.8703090 3.3394395 330 0.00138191 0.27484340 0.17816353 5.7258446 0.8695041 3.3384162 Si 0.00719500 1.64759892 1.06733712 4.3835054 5.2421585 0.0563696 2 2 0.00719372 1.64759719 1.06733519 4.3835056 5.2421594 0.0563691 E logF JY J 2 J, ft 3.3383922 367.09942052 -0.77238411 -13.377206 + 148.77538 30 3.3397979 366.74089875 -0.18040606 -16.560521 + 35.51232 60 3.3418282 366.88453611 +0.52246333 -15.273725 - 87.54088 90 3.3439319 367.40160988 +0.87586900 - 9.861620 -187.41225 120 3.3455398 367.86665960 +0.72768333 - 1.774376 -237.34142 150 3.3462248 367.95568703 +0.32642368 . + 6.821041 -223.94969 180 3.3458097 367.72285452 +0.04295564 +13.621489 -150.82559 210 3.3444123 367.51508313 +0.01342241 +16.804806 - 37.56251 240 3.3424036 367.61069788 +0.04551264 +15.518012 + 85.49071 270 3.3403134 367.89469814 -0.13535069 +10.105905 + 185.36209 300 3.3386972 367.98729038 -0.54951786 + 2.018660 +235.29114 330 3.3379911 367.66272932 -0.88324571 - 6.576756 +221.89949 2i 0.0526706 2205.17145901* +0.01671297 + 0.732854 6.15066 S 2 0.0526714 2205.17070625 +0.01671263 + 0.732855 6.15055 *2,(J,'-G") = 2202.66492021. Zi(Ji' - G") = 2202.66491965. 118 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF URANUS ON VENUS. E F 3 1000 X Ro 1000000 X So 1000000 X W 1000 X fi <n) 1000000 X S ( "> - 4.0226412 0.02650922 -0.05811066 -2.918780 0.00000000 -0.08089097 30 - 0.1770896 0.02652281 -0.01305234 -3.621493 +0.01844306 -0.01815231 60 1.6152186 0.02667654 +0.04940526 -3.356828 + 0.03204873 +0.06853681 90 - 6.9332675 0.02691093 +0.05269544 -2.182313 +0.03720412 +0.07285096 120 -10.8407275 0.02710189 -0.01759673 -0.401343 +0.03233767 -0.02424436 150 - 9.4434565 0.02715609 -0.09660941 +1.506695 +0.01866093 -0.13277471 180 - 4.1342719 0.02707758 -0.10424233 +3.017072 0.00000000 -0.14313458 210 - 0.2013093 0.02694790 -0.02527822 +3.713882 -0.01851786 -0.03474102 240 1.5455370 0.02684358 +0.07399797 +3.412656 -0.03202946 +0.10195266 270 - 6.7883563 0.02677475 +0.10841711 +2.207472 -0.03701585 +0.14988562 300 -10.6594103 0.02669990 +0.05468656 +0.432404 -0.03207678 +0.07586323 330 - 9.2743255 0.02659629 -0.02803268 -1.439065 -0.01849416 -0.03898596 2! -32.8178065 0.16090871 -0.00185993 +0.185181 +0.00028016 -0.00191721 2, -32.8178047 0.16090877 -0.00186010 +0.185178 +0.00028024 -0.00191742 1000 X f Bo sin D + 1000 X [- So cos v + r E , \ 1 /r \ 1 100000 X ^o C08 " 1000000 X We sin u (cos v + cos E] So 1 (~ secV + 1 1 sin vSo \ 1000 X -2- Ro -0.00011622 -0.02650922 -1.710234 - 2.365243 -0.05265561 30 +0.01331757 -0.02293687 -0.357980 - 3.603757 -0.05273125 60 +0.02323048 -0.01311517 +1.390488 - 3.055297 -0.05317053 90 +0.02690995 +0.00028955 +1.777154 - 1.266575 -0.05382187 120 +0.02340803 +0.01365914 +0.399475 - 0.038680 -0.05438924 150 +0.01366523 +0.02346772 -1.372927 - 0.620648 -0.05463405 180 +0.00020848 +0.02707758 -1.767867 - 2.444894 -0.05452574 210 -0.01335043 +0.02340859 -0.392395 - 3.693094 -0.05421519 240 -0.02324178 +0.01343114 +1.376698 - 3.122646 -0.05387086 270 -0.02677488 -0.00003361 +1.779939 - 1.305659 -0.05354950 300 -0.02314722 -0.01330732 +0.429867 - 0.046772 -0.05321706 330 -0.01342562 -0.02295918 -1.315326 - 0.583802 -0.05287735 Zi +0.00034177 +0.00123615 +0.118427 -11.073532 -0.32182904 2 2 +0.00034182 +0.00123620 +0.118465 -11.073535 -0.32182921 sin v Mi (t) + cos v B <c) = + 0.000000000000020. OF THE ORBITS OF THE FOUR INNER PLANETS. 119 DIFFERENTIAL COEFFICIENTS. n log coeff. [defdl] M = + 0.12000343m' p 9.0791936 [dx/dt] M = + 63.424159 TO' p 1.8022547 [di/<ft]oo = + 0.04158807 TO' p 8.6189687 = -- 65.693091 TO' n 1.8175197 = + 63.308999 TO' p 1.8014655 [dL/dt] m = -113.109825 TO' n 2.0535003 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO' [dejdt] m = +o'.0000052633084 [dx/dt}^ = +0.0027817616 [di/dtloo = +0.000001824038 = -0.0028812762 = +0.0027767109 = -0.0049609570 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] w +0^00000 +o!o0001 +o!o00005263 e[dirldt] M +0.00002 +0.00002 +0.000019001 [dildt] m +0.00000 +0.00000 +0.000001824 sin i \daldi\m -0.000165 -0.00017 -0.000170530 NOTES. That a division into eight parts is here fully sufficient is shown by the agreement of the final sums. Thus the greatest effect produced by all terms from the 4th to the 7th order is seen to occur with the coefficient [dx/dt] o and to amount to but 0".00000004. 120 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF NEPTUNE ON VENUS. E A B cos f B sin h 904.77843877 + 9.109428 +21.528911 30.253556 904.17419 45 904.51260261 - 6.657698 +16.194152 17.117826 904.17356 90 904.39237664 -14.030230 + 1.286186 0.107979 904.17298 135 904.48820486 - 8.689452 -14.462107 13.651972 904.17345 180 904.74393521 + 6.236084 -21.825589 31.093114 904.17407 225 905.00974680 +22.003203 -16.490829 17.750770 904.17359 270 905.12994825 +29.375736 - 1.582864 0.163538 904.17281 315 905.03414463 +24.034972 +14.165428 13.097596 904.17334 2i 3619.04469887* +30.691018f - 0.593356f 61.618187 3616.69405 2, 3619.04469890 +30.691025 - 0.593356 61.618164 3616.69394 E 1 G G' G" e O / // 0.53898 904.17415 0.5952295 0.0562134 1 32 17.018 45 0.27377 904.17354 0.3309885 0.0571984 1 11 14.024 90 0.15413 904.17298 0.1548950 0.0007710 45 6.502 135 0.24949 904.17343 0.2998555 0.0503537 1 7 39.561 180 0.50459 904.17403 0.5654480 0.0608162 1 30 28.921 225 0.77088 904.17357 0.7955805 0.0246764 1 43 33.466 270 0.89187 904.17281 0.8920680 0.0002028 1 48 0.658 315 0.79553 904.17332 0.8133615 0.0178097 1 44 14.706 2, 2.08957 3616.69397 2.2076405 0.1180034 5 35 53.099 2 2 2.08967 3616.69386 2.2397860 0.1500382 5 46 41.757 ACTION OF NEPTUNE ON VENUS. E log K log La' log No log N log P logQ 0.00023476 0.27331427 0.17644338 5.1378654 9.4986215 2.3580297 45 0.00013986 0.27318776 0.17630105 5.1395214 9.5001506 2.3595431 90 0.00005608 0.27307605 0.17617538 5.1436917 9.5042639 2.3636152 135 0.00012618 0.27316951 0.17628052 5.1479186 9.5085363 2.3679232 180 0.00022568 0.27330217 0.17642976 5.1497409 9.5104807 2.3698895 225 0.00029563 0.27339543 0.17653468 5.1481063 9.5089743 2.3683773 270 0.00032162 0.27343007 0.17657365 5.1439578 9.5048849 2.3642800 315 0.00029957 0.27340068 0.17654059 5.1397097 9.5005900 2.3599901 Si 0.00083814 1.09312256 0.70562217 0.5752556 8.0182509 9.4558143 2 2 0.00086124 1.09315338 0.70565684 0.5752558 8.0182511 9.4558336 * 4o 2 + 2aV + 4[a' J - Zkaa'ee' cos K] = 3619.04469884. f 4[a'V - kaa'e cos A'] = + 30.691024. t - 4k'aa' cos *' e sin A'' = - 0.593359. OF THE ORBITS OF THE FOUR INNER PLANETS. 121 ACTION OF NEPTUNE ON VENUS. E logF Jl' J2 J> Ft 2.3579959 902.1174996 +0.0278169 -43.343250 -165.19752 45 2.3595087 903.0233587 +1.1892143 -32.830864 -124.26237 90 2.3636147 904.1640829 +0.1518779 - 2.911684 9.86927 135 2.3678929 903.3068137 -1.1744691 +28.888013 + 110.97189 180 2.3698530 902.1221024 -0.3409776 +43.940408 + 167.47400 225 2.3683624 902.9705135 +0.9081699 +33.428015 + 126.53886 270 2.3642798 904.1592634 +0.1562063 + 3.508843 + 12.14577 315 2.3599794 903.2945923 -0.9279474 -28.290864 -108.69539 Si 9.4557434 3612.5629483* -0.0050765 + 1.194317 + 4.55298 2s 9.4557434 3612.5952782 -0.0050323 + 1.194300 + 4.55299 E Pi 100000 X Bo 100000000 X So 1000000 X Wo 100000 X B<> 1000000 X S<> +0.5839042 0.6821434 -0.4573134 -0.9883466 0.0000000 -0.006365877 45 -3.9412736 0.6867470 +2.3281642 -0.7513860 +0.6746065 +0.032343148 90 -0.4777116 0.6961065 +0.3193229 -0.0672756 +0.9623607 +0.004414608 135 +4.0782664 0.7008255 -2.3820088 +0.6740551 +0.6818058 -0.032772474 180 +0.6001079 0.7010447 -0.2565237 +1.0297346 0.0000000 -0.003522313 225 -4.0073139 0.7005531 +2.5294517 +0.7805505 -0.6815408 +0.034801040 270 -0.5873116 0.6967370 +0.4002346 +0.0811602 -0.9632323 +0.005533205 315 +3.9893101 0.6879052 -2.4698966 -0.6479491 -0.6757442 -0.034312118 Si +0.1189889 2.7760316 +0.0057204 +0.0552726 -0.0008716 +0.000059623 y +0.1189890 2.7760308 +0.0057105 +0.0552705 -0.0008727 +0.000059596 E inonm v r ; , 100000 X -Bo cos w ItAAJlH) X l/VO Sin V innnnn ^, lir , , . _, 100000 X Wo cos u + (cos v+cos)S ] , IT 2 N . 1 \a sec *" r l " J 100000 X W sin u 1000 X - 2 - Bo a -0.00091463 -0.68214344 -0.057911307 -0.080091019 -0.013549511 45 + 0.49123773 -0.47994176 +0.012282960 -0.074127847 -0.013668483 90 +0.69608806 +0.00540218 +0.005478547 -0.003904555 -0.013922131 135 +0.49653747 +0.49458425 -0.066499046 -0.011017258 -0.014084333 180 + 0.00051305 +0.70104468 -0.060336403 -0.083444904 -0.014116841 225 -0.49655471 +0.49418261 +0.012013897 -0.077124930 -0.014078857 270 -0.69672347 +0.00396738 +0.006544151 -0.004800407 -0.013934740 315 -0.49226067 -0.48055578 -0.064023059 -0.009971443 -0.013691533 Si -0.00103699 +0.02827080 -0.106225012 -0.172240885 -0.055523223 S 2 -0.00104018 +0.02826932 -0.106225248 -0.172241478 -0.055523206 sin <f ^A\ M + cos v . BO M = - 0.0000000000000085. *2,W,'-G"1 =3i 312.4449449. i' - G") = 3612.4452400. 122 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = - - 0.0054696734 m' n 7.7379614 [dx!dt] m = +21.756678 TO' p 1.3375926 [di/dt] m = -- 0.55945727 TO' n 9.7477669 [dB/(ft]oo =-15.327159 w' n 1.1854617 [drldt] m = +21.729810 TO' p 1.3370559 [dL/dt] M = -29.268164 TO' n 1.4663954 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO' [defdt] m = -0 / .00000027764841 [dx/dt]^ = +0.0011044000 [difdt] M -0.000028398849 [dQ/dt] w = -0.00077802855 [dT/ft]oo = +0.0011030360 [dL/dt] w = -0.0014856935 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. // // // oo -0.00000 -0.00000 -0.00000028 e[drldt] m +0.00001 +0.00001 +0.00000755 [di/dt] w -0.00004 -0.00003 -0.00002840 sin ?: [dQ/dt] M -0.00006 -0.00005 -0.00004605 NOTES. The large disagreement of the sums of the functions near the beginning of the computation is caused, as in previous cases, by the presence of the term a'V. The greatest disagreement in the final sums occurs in the second column and shows that the effect of all terms from the 4th to the 7th orders is to produce a change of 0".00000003 in the value of [d x /dt] 00 . OF THE ORBITS OF THE FOUR INNER PLANETS. 123 EARTH. ACTION OF MERCUKY ON THE EARTH. E A B COS e It sin e 1000 xg h 1.25770017 +0.37398164 +0.15686177 0.15586327 1.11042819 30 1.20879374 +0.24429166 +0.30606106 0.59337027 1.06575342 60 1.14343370 +0.05583076 +0.37253457 0.87910918 1.00282212 90 1.07923573 -0.14090326 +0.33847094 0.72569217 0.93669980 120 1.03345314 -0.29319554 +0.21299723 0.28738066 0.88633014 150 1.01830180 -0.36023958 +0.02973421 0.00560044 0.86904450 180 1.03773900 -0.32407097 -0.16221302 0.16667904 0.89145124 210 1.08650443 -0.19438096 -0.31141230 0.61430099 0.94482277 240 1.15158355 -0.00592005 -0.37788591 0.90454667 1.01121409 270 1.21564099 +0.19081399 -0.34382220 0.74882000 1.07228810 300 1.26156411 +0.34310630 -0.21834847 0.30200208 1.11392105 330 1.27699637 +0.41015028 -0.03508545 0.00779765 1.12755062 2, 6.88547367* +0.14973214f -0.01605383J 2.69558090 6.01616683 2 2 6.88547306 +0.14973213 -0.01605374 2.69558152 6.01615921 E G G' G" 0.14093752 1.11028337 0.14207046 0.00098811 21 1 34.45 30 0.13670586 1.06515341 0.14124977 0.00394390 21 37 28.51 60 0.13427712 1.00181061 0.14149060 0.00620197 22 30 21.00 90 0.13620147 0.93572981 0.14260963 0.00543817 23 21 59.90 120 0.14078854 0.88589477 0.14348474 0.00226084 23 53 48.72 150 0.14292284 0.86903562 0.14297679 0.00004507 23 55 58.88 180 0.13995330 0.89120229 0.14152378 0.00132152 23 34 54.52 210 0.13534720 0.94401808 0.14077439 0.00462250 23 2 51.29 240 0.13403500 1.01019211 0.14138996 0.00633298 22 24 31.27 270 0.13701843 1.07154031 0.14266461 0.00489838 21 43 51.55 300 0.14130860 1.11364215 0.14347758 0.00189008 21 9 39.20 330 0.14311129 1.12754360 0.14316663 0.00004830 20 52 41.84 Si 0.83130008 6.01302530 0.85343712 0.01899550 134 34 49.16 2 2 0.83130709 6.01302083 0.85344182 0.01899632 134 34 51.97 * 6a 2 + 3aV + 6[a' 2 - 2kaa'ee' cos K] = 6.8854738. t 6[a'V - kaa'e cos K] = + 0.14973211. | - Gfc'aa' cos <p'-e sin K' = - 0.01605375, 124 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MEKCUKY ON THE EARTH. E logtfo log LQ logtfo log N log P logQ .04527343 0.33291492 .24335185 9. 9618524 0.2031270 0.1593841 30 0.04797642 0.33646399 .24732687 9. 9917424 0.2701720 0.2100521 60 .05211516 0.34189221 .25340453 0. 0396020 0.3745624 0.2895406 90 0.05634203 0.34742859 0.25960067 0.0958412 0.4959354 0.3817747 120 .05903754 0.35095528 .26354624 0. 1435571 0.5975343 0.4586143 150 .05922392 0.35119901 .26381890 0.1631586 0.6362374 0.4879174 180 .05742739 0.34884899 .26118992 0. 1459441 0.5935535 0.4565142 210 0.05475392 0.34534936 .25727397 0. 1016262 0.4927722 0.3817985 240 .05164961 0.34128199 0.25272142 0.0482257 0.3752715 0.2938290 270 .04846610 0.33710662 0.24804652 0. 0004822 0.2736102 0.2165394 300 0.0-1587421 0.33370403 .24423576 9.9673367 0.2060765 0.1640904 330 .04461832 0.33205428 0.24238775 9. 9536821 0.1814324 0.1439179 2l .31137734 2.04959742 1 .51844973 0.3065179 2.3501251 1.8219725 Sj .31138070 2.04960185 1 .51845468 0. 3065326 2.3501595 1.8219999 E logF Ji' J, J, F, 0.1589092 0.14310992 +0.032517759 +0.009293505 -0.004694216 30 0.2080805 0.14534318 +0.064629382 +0.012521451 -0.009159128 60 0.2862522 0.14795099 +0.079427870 +0.011088166 -0.011148401 90 0.3786919 0.14823938 +0.072184328 +0.005377209 -0.010129019 120 0.4572602 0.14575314 +0.044711897 +0.003081410 -0.006374115 150 0.4878898 0.14319523 +0.004967377 -0.012020967 -0.000889820 180 0.4557266 0.14344333 -0.035694279 -0.019045640 +0.004854357 210 0.3791987 0.14602945 -0.066230415 -0.022272938 +0.009319268 240 0.2904985 0.14803624 -0.078997000 -0.020838344 +0.011308544 270 0.2141065 0.14763142 -0.071296738 -0.015126732 +0.010289159 300 0.1631852 0.14536909 -0.045398479 -0.006668768 +0.006534256 330 0.1438950 0.14322488 -0.007686344 +0.002269483 +0.001049961 Si 1.8118319 0.87366271* -0.003432232 -0.029252491 +0.000480425 2i 1.8118624 0.87366354 -0.003432410 -0.029252494 +0.000480421 *s,(J V - G") = 0.85466721. St(Ji - G") = 0.85466722. OF THE ORBITS OF THE FOUR INNER PLANETS. 125 ACTION OF MERCURY ON THE EARTH. E 1000 X F 3 R a So Wo <"> gto) -0.3347370 -0.9146346 +0.03939096 +0.012865148 0.0000000 +0.04006286 30 -0.1102483 -0.9755942 +0.08729250 +0.020012484 -0.4949864 +0.08857904 60 +0.5661785 -1.0850638 +0.12713088 +0.022775691 -0.9476313 +0.12820596 90 + 1.0162060 -1.2358930 +0.14090497 +0.016043819 -1.2358930 +0.14090497 120 +0.7859945 -1.3865198 +0.10290744 -0.005719611 -1.1907761 +0.10205179 150 +0.1010653 -1.4553467 +0.01142556 -0.036530916 -0.7172557 +0.01126198 180 -0.3579653 -1.3946588 -0.08289463 -0.055794474 0.0000000 -0.08152732 210 -0.1348464 -1.2530893 -0.12959913 -0.053749951 +0.6175749 -0.12774376 240 +0.5468018 -1.1065943 -0.12737525 -0.039380718 +0.9503695 -0.12631602 270 + 1.0072426 -0.9942912 -0.09740907 -0.022874526 +0.9942912 -0.09740907 300 +0.7898462 -0.9252302 -0.05560180 -0.008440800 +0.8080489 -0.05607200 330 +0.1166998 -0.8987688 -0.00911126 +0.003338197 +0.4560076 -0.00924555 Zi + 1.9961187 -6.8127015 +0.00355760 -0.073694764 -0.3799890 +0.00640527 * + 1.9961190 -6.8129832 +0.00350357 -0.073760893 -0.3802614 +0.00634761 E . Rocosv Ho sm v ,,, , . , . . . m o , l r i \ i\ o " o cos (v + JT) TV o sm (v + IT) + (cosv+cosE)S +(-sec 2 ip + llsmv<So -2-fl o +0.0787819 +0.9146346 -0.002313800 +0.012655370 1.7985901 30 -0.3440930 +0.9286742 -0.013088473 +0.015139066 1.9228487 60 -0.8219877 +0.7498962 -0.021560174 +0.007341046 2.1519297 90 -1.2380823 +0.2610826 -0.015731601 -0.003149764 2.4717860 120 -1.2947997 -0.5330552 +0.004304192 +0.003766681 2.7962929 150 -0.7369917 -1.2550382 +0.011990880 +0.034506913 2.9529690 180 +0.1657893 -1.3946588 -0.010034649 +0.054884684 2.8360980 210 +0.8424959 -0.9617143 -0.034466377 +0.041244714 2.5425788 240 + 1.0791999 -0.3473975 -0.036894585 +0.013770630 2.2317474 270 +0.9957850 +0.1781428 -0.022567368 -0.003736033 1.9885826 300 + 0.7530386 +0.5475911 -0.006510755 -0.005371886 1.8349430 330 +0.4402010 +0.7837111 +0.001148460 +0.003134422 1.7714297 Z, -0.0399777 -0.0629896 -0.073009771 +0.087046525 13.6496011 2j -0.0406851 -0.0651418 -0.072714479 +0.087139318 13.6501948 sin <p J.Ai ( '> + cos ? Bo M = + 0.00000006. 126 THE SECULAR VARIATIONS OP THE ELEMENTS DIFFERENTIAL COEFFICIENTS. log coeff. [de!dt]w = - 8710J780TO' n 3.9400270 [d x /dt] M = [dTT/dt] m =--824986.23 TO' n 5.9164467 [dp/dt]*, = + 18814.333 TO' p 4.2744888 [dqfdt] m = - 15740.112 TO' n 4.1970078 [dL/dt] w = +2948201.7 w' p 6.4695572 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. = -o(X)l 1613570 [d x /dt] m = [drfdt] m = -0.10999815 [dpfdt] M = +0.0025085775 [dq/dt] w = -0.0020986812 [dL/dt] M = +0.39309355 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] m -0.00116 -0.00116 -0.001 16136 e[dir/dt]w -0.00184 -0.00184 -0.00184479 [dp/dt] M +0.00250 +0.00251 +0.00250858 [dq/dt]w -0.00209 -0.00210 -0.00209868 [dL/dt] w +0.3931 +0.39309355 NOTES. Although / and e' are here very large, the error in the approximate test with e, G, G', G" and 6 is small in consequence of the smallness of the factor a'. As we approach the end of the computation, however, the difference of the sums steadily increases, indicating the rather slow convergence of the perturbing function. The greatest difference is in the coefficient [dTr/dt] OQ where terms from the fifth to the eleventh orders inclusive amount to one sixtieth part of the remaining terms and produce an effect of 0".0018 in the value of [dir/dt] 00 . A division into twelve parts is thus necessary in this case, but a comparison with the computation of the action of Mars on Mercury, and especially with the similar case of Mercury on Venus, where twenty-four points of division are employed, renders it evident that more than twelve points are in the present case unnecessary. OF THE ORBITS OF THE FOUR INNER PLANETS. 127 The agreement with previous values is exact. The results obtained by HILL in the "New Theory, 11 pages 511 and 512, are, These are, however, Venus on the Earth. = +0.0025049 [dq/dt] m = -0.0020956 but provisional -values. (See the note to the computation of E A ACTION logB OF VENUS ON i THE EARTH. e' o / ,, O 1 H 1.49844749 9.8537612 331 3.89 0.07950559 7 55.62 30 1.50411382 9.8546442 1 19 46.170 0.08070333 5 48 28.79 60 1.51484369 9.8567645 31 34 37.20 0.08262793 4 19 13.62 90 1.52786583 9.8597314 61 38 57.20 0.08465948 3 12 16.55 120 1.53974201 9.8626537 91 29 35.875 0.08634022 2 33 43.11 150 1.54723847 9.8644870 121 8 43.24 0.08741009 2 9 29.44 180 1.54824407 9.8645724 150 43 29.14 0.08768573 1 52 5.43 210 1.54243719 9.8629683 180 22 35.176 0.08700647 1 54 16.46 240 1.53142595 9.8603568 210 12 5.09 0.08536569 2 37 52.10 270 ' 1.51826327 9.8576205 240 13 17.66 0.08309965 4 8 28.42 300 1.50652764 9.8554195 270 23 50.222 0.08090038 5 56 51.93 330 1.49931255 9.8540767 300 40 21.95 0.07954648 7 7 42.75 Z, 9.13923084* 9.1535280 1085 23 41.42 0.50242554 24 20 41.81 2 2 9.13923113 9.1535281 905 23 41.40 0.50242550 24 20 42.41 E 1000 X r' lOOOXs G G' 1000000 X G" e O O , ,, 2.7380635 0.002936418 0.97594422 0.522484505 5.79 47 1 40.84 30 2.3200483 0.000006753 0.98353171 0.520557558 0.04 46 40 41.61 60 1.7893068 0.003473631 0.99543723 0.519388564 6.67 46 14 52.33 90 1.3770128 0.009946420 1.00773136 0.520128988 18.98 45 55 31.27 120 1.1340363 0.013007536 1.01774388 0.521998108 24.54 45 44 23.02 150 0.9732049 0.009615238 1.02406979 0.523162060 17.95 45 37 23.13 180 0.8464697 0.003140184 1.02571566 0.522509836 5.92 45 32 21.65 210 0.8529468 0.000000563 1.02173849 0.520674148 0.00 45 32 59.47 240 1.1449685 0.003259143 1.01199593 0.519411649 6.09 45 45 34.89 270 1.7299249 0.009581104 0.99828868 0.519968638 18.53 46 11 45.77 300 2.3843853 0.012589278 0.98467983 0.521847851 24.49 46 43 7.27 330 2.7841227 0.009256115 0.97615654 0.523149586 18.07 47 3 38.83 Zi 10.0372301 0.038406190 6.01151675 3.127640513 73.50 277 2 0.00 2 2 10.0372604 0.038406192 6.01151657 3.127640978 73.57 277 2 0.08 * 6o 2 + 3a 2 e 2 + 6[o' 2 - 2kaa'ce' cos K] = 9 13923110. 128 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON THE EARTH. E logtfo log Lo' log AT log N log P logO 0.26147483 0.60779696 0.54775634 0.2626427 0.8915846 0.8209715 30 0.25683878 0.60207812 0.54149917 0.2549482 0.8714495 0.8036590 60 0.25122074 0.59513848 0.53390180 0.2468811 0.8459860 0.7827661 90 0.24707162 0.59000660 0.52828039 0.2420422 0.8253429 0.7669697 120 0.24470700 0.58707937 0.52507272 0.2404872 0.8122693 0.7579113 150 0.24322990 0.58524987 0.52306751 0.2402489 0.8048244 0.7529792 180 0.24217345 0.58394092 0.52163264 0.2400756 0.8019574 0.7506787 210 0.24230579 0.58410492 0.52181242 0.2408209 0.8062462 0.7532935 240 0.24496050 0.58739327 0.52541673 0.2444416 0.8214721 0.7646769 270 0.25055055 0.59430993 0.53299440 0.2516543 0.8474359 0.7853846 300 0.25737182 0.60273603 0.54221917 0.2600985 0.8762226 0.8090118 330 0.26191246 0.60833646 0.54834645 0.2649133 0.8941948 0.8237322 2i 1.50190834 3.56408503 3.19599940 1.4946267 5.0494920 4.6860161 S 2 1.50190910 3.56408590 3.19600034 1.4946278 5.0494937 4.6860181 E log V Ji' 1000 X Ji 1000 X J 3 1000 X Ft 0.8209685 0.522862677 - 3.0632731 + 1 2.629050 + 1.2372987 30 0.8036589 0.521939851 -0.7336504 +24.877829 -0.0593369 60 0.7827628 0.521368465 +2.4504401 +30.338229 -1.3457284 90 0.7669603 0.521723193 +5.0835797 +27.547130 -2.2771885 120 0.7578992 0.522632205 +5.8345100 +17.252379 -2.6041325 150 0.7529704 0.523191642 +4.4234178 + 2.212471 -2.2389562 180 0.7506758 0.522862807 + 1.7386808 -13.542647 -1.2795084 210 0.7532935 0.521968683 -0.9069972 -25.791387 +0.017127o 240 0.7646739 0.521377068 -2.6859269 -31.251723 + 1.3035189 270 0.7853753 0.521675619 -3.5987100 -28.460585 +2.2349789 300 0.8089994 0.522582150 -4.0331250 -18.165873 + 2.5619225 330 0.8237230 0.523186452 -4.0263352 - 3.126030 + 2.1967465 2, 4.6859794 3.133685372* +0.2413060 - 2.740585 -0.1266292 2 2 4.6859813 3.133685439 +0.2413047 - 2.740573 -0.1266288 * S,(J,' - G") = 3. 133611872. 2,(J,' - G") = 3. 133611869. OF THE ORBITS OF THE FOUR INNER PLANETS. 129 ACTION OF VENUS ON THE EARTH. E 1000 XF 3 RO 100 x So w,, --RO <> a +0.06535471 - 1.8283274 -1.0644424 +0.08413477 1.7976643 0.0000000 30 -0.00196302 - 1.7898617 -0.5109526 +0.15828193 1.7638656 -0.9081206 60 -0.00570449 - 1.7535729 +0.5420211 +0.18393250 1.7388680 -1.5314810 90 +0.05916590 - 1.7367356 +1.4494077 +0.16147390 1.7367356 -1.7367356 120 +0.12885901 - 1.7362036 +1.6510300 +0.09963433 1.7507629 -1.4910928 150 +0.13426042 - 1.7386892 +1.0760758 +0.01338361 1.7639423 -0.8568990 180 +0.06988985 - 1.7361351 +0.1682926 -0.07583153 1.7652520 0.0000000 210 -0.00059748 - 1.7337538 -0.5029615 -0.14614352 1.7589352 +0.8544665 240 -0.00787443 - 1.7442502 -0.6981624 -0.18183297 1.7588768 + 1.4980034 270 +0.05404190 - 1.7747204 -0.6225129 -0.17324740 1.7747204 + 1.7747204 300 +0.12215392 - 1.8154792 -0.6714245 -0.11610019 1.8002552 + 1.5855471 330 +0.12777090 - 1.8402326 -0.9613070 -0.01982985 1.8135046 +0.9336770 ?i +0.37267857 -10.6139684 -0.0726856 -0.00606309 10.6116792 +0.0609767 2 2 +0.37267862 -10.6139933 -0.0722505 -0.00608133 10.6117037 +0.0611087 ,-, . Ra'cOS V M S + (cost)+cosE)So + ( -sec ! ^+lJsint>/So WL, sin ( + IT) -0.010825990 -0.0212889 +1.8283274 -0.01513166 +0.08276286 30 -0.005184831 -0.9168211 +1.5373039 -0.10351881 +0.11973727 60 +0.005466048 -1.5259137 +0.8639706 -0.17411620 +0.05928500 90 +0.014494077 -1.7367344 -0.0001389 -0.15833153 -0.03170097 120 +0.016373004 -1.5075995 -0.8612810 -0.07497804 -0.06561473 150 +0.010606704 -0.8754611 -1.5022509 -0.00439303 -0.01264209 180 +0.001655167 -0.0033659 -1.7361351 -0.01363832 +0.07459502 210 -0.004957609 +0.8630786 -1.5036464 -0.09371241 +0.11214236 240 -0.006923567 + 1.5048615 -0.8818403 -0.17035373 +0.06358327 270 -0.006225129 + 1.7745751 -0.0173138 -0.17092102 -0.02829602 300 -0.006771025 + 1.5786949 +0.8963895 -0.08955312 -0.07388837 330 -0.009754749 +0.9169364 +1.5955426 -0.00682218 -0.01861936 2i -0.001026363 +0.0253885 +0.1094311 -0.53777107 +0.14072305 2i -0.001021537 +0.0255735 +0.1094965 -0.53769898 +0.14062119 sin <p \A\ W + cos (f Bo (c> = - 0.0000000083. 130 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. u log coeff. [de/dt] w = + 5503.0089 m' p 3.7406002 [dx/dt\ = [dirfdt] = +1409586.4 TO' p 6.1490917 [dp/dt}^ = + 30388.832 TO' p 4.4827140 [dq/dt] m = - 116164.73 TO' n 5.0650743 = +4584354.6 TO' p 6.6612782 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/(ft] M = + 0.013483339 [dx/dt] = [dTr/dt] w = + 3.4537341 [dp/dt] w = + 0.074457966 [dq/dt]oo = - 0.28462399 [dL/dt] w = +11.232473 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. TO' [de/dt] m + 0.01344 +o'.01348 + 0.0134833 e[dw/dt] + 0.05796 +0.05792 + 0.0579231 [dpldt] M + 0.07450 +0.07446 + 0.0744580 [dq/dt]oo - 0.28454 -0.28462 - 0.2846240 [dL/dt] w + 11.2298 + 11.232473 NOTES. This computation is of special interest because, notwithstanding the low eccen- tricities of both the Earth and Venus, the perturbing function is but slowly con- vergent for this case. In 1893, the computation was effected by MR. R. T. A. INNES who employed HILL'S second modification of GAUSS'S method, using in the work manuscript tables prepared by himself. (See M. N., Vol. LIII, No. 6. The tables were afterward published in M. N., Vol. LIV, No. 5.) The values of [dp/dt] 00 and [dq/dt]oo were also obtained by HILL in the "New Theory," pages 511 and 512. As the results of INNES differed considerably in some cases from those hitherto obtained, particularly in the case of [de/dt] o, which agreed to the first two figures only with the values of LEVERRIER and NEWCOMB, and in the case of [dq/dt] QO , which OF THE ORBITS OF THE FOUR INNER PLANETS. 131 differed in the fourth figure from the value given by HILL, and in order to make the comparison more exact, the roots in the present paper were computed by the formulas of the second method, their values being afterward verified by those of the first. It was found that the functions tabulated by MR. INNES are substantially correct, though the last two significant figures of all functions from R to the end usually differ, doubtless owing to the inaccuracy of the tables employed by MR. INNES. Using the values as given by him, all of this part of his computation was duplicated, with the result that an error was found in his value of [de/dt] 00 , while for [dq/dt] a and the other coefficients his values were found to be substantially correct. The various values here referred to are as follows: Innes. Hill. [de/dt]oo e[dw/dt]m [dp/dflw, [dq/dtloo + 0.013476* + 0.057915 + 0.074459 - 0.284623 + 11.232490 a +0.0744329 -0.2845280 It will be noticed that the results of INNES are in almost exact accordance with those here given. The disagreement of the value of [dqldt] 00 as derived by GAUSS'S method with that found by HILL is, however, a more serious matter, and is almost the sole cause of the considerable disagreement of the values of this variation in the complete perturbations of the Earth's orbit, the values of [dqldt] OQ from the action of all of the other planets except Venus agreeing with those obtained by HILL very exactly. Using the values tabulated on page 510 of the "New Theory " and the formulas of page 511, I have duplicated the computation by HILL'S methods and find the same results as he obtained. It is to be noticed that the theory of the motion of the ecliptic here given by HILL was to serve a temporary purpose only, the numerical values of the coefficients stated by LEVERRIER in the Annales, Vol. II, pages 94 to 96, being employed without a re-computation of them. * The uncorrected value was + 0".013156. 132 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E A B COS e /; -in g h 3.12005845 -0.6857946 + 1.1901000 0.028604007 2.3106194 22.5 3.04885416 -1.0809801 +0.7480691 0.011301685 2.3059358 45 3.01959381 -1.2762880 +0.1890610 0.000721878 2.3030821 67.5 3.03677529 -1.2419833 -0.4018201 0.003260792 2.3034537 90 3.09782583 -0.9832901 -0.9346186 0.017641228 2.3070230 112.5 3.19346899 -0.5395909 -1.3282200 0.035628705 2.3122967 135 3.30912609 +0.0215645 -1.5227032 0.046826348 2.3167796 157.5 3.42714623' +0.6147456 -1.4884581 0.044743825 2.3179851 180 3.52951891 + 1.1496460 -1.2306997 0.030588915 2.3148501 202.5 3.60064084 + 1.5448315 -0.7886687 0.012561720 2.3089820 225 3.62970226 + 1.7401394 -0.2296607 0.001065206 2.3043625 247.5 3.61232195 + 1.7058351 +0.3612206 0.002635147 2.3044350 270 3.55118902 + 1.4471417 +0.8940191 0.016141855 2.3088270 292.5 3.45562818 + 1.0034423 + 1.2876203 0.033483868 2.3139342 315 3.34017005 +0.4422870 + 1.4821032 0.044362582 2.3163153 337.5 3.22234876 -0.1508942 + 1.4478582 0.042336214 2.3148421 S, 26.59718442* + 1.8554059f -0.16239891 0.185952019 18.4818589 2 2 26.59718440 + 1.8554060 -0.1623987 0.185951956 18.4818645 * 8a s + 4a 8 e' + 8[a' ! - 2kaa'ee' cos A'] = 26.59718442. t 8[a'V - kaa'e cos K] = + 1.8554056. t - Sk'aa' cos v ' e sin A" = - 0.1623983. E OF THE ORBITS OF THE FOUR INNER PLANETS. ACTION OF MAES ON THK EARTH. G G' G" 133 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5 2, ?2 0.7892434 0.7227227 0.6963160 0.7131259 0.7706071 0.8609765 0.9721508 . 1.0889654 1.1944730 1.2714631 1.3051440 1.2876912 1.2221663 1.1214982 1.0036591 0.8873110 7.9537596 7.9537539 2.3024091 0.8127396 0.0152860 36 42 22.96 2.3028298 0.7325284 0.0066997 34 27 16.75 2.3028870 0.6969608 0.0004498 33 23 4.72 2.3025627 0.7159948 0.0019779 33 55 44.11 2.3020189 0.7853689 0.0097577 35 54 24.65 2.3015508 0.8891330 0.0174106 38 41 59.61 2.3014739 1.0076482 0.0201918 41 42 38.47 2.3019609 1.1223087 0.0173190 44 30 20.12 2.3028661 1.2173683 0.0109112 46 46 8.30 2.3036994 1.2810025 0.0042567 48 15 58.20 2.3038996 1.3059610 0.0003540 48 50 43.66 2.3033085 1.2897047 0.0008871 48 27 7.65 2.3023363 1.2343370 0.0056800 47 8 13.64 2.3016065 1.1465149 0.0126889 45 3 3.25 2.3014626 1.0370980 0.0185863 42 25 11.06 2.3018396 0.9202987 0.0199852 39 31 20.00 18.4193535 8.0974817 0.0812168 332 52 47.46 18.4193582 8.0974855 0.0812251 332 52 49.69 ACTION OF MAKS ON THE EARTH. E log A' log L ' log N a log AT logP logQ 0.14793515 0.46562072 0.39121913 9.5856600 9.3211682 9.6118228 22.5 0.12867513 0.44104101 0.36395436 9.5698260 9.2838199 9.5702568 45 0.12011431 0.43007010 0.35176641 9.5662159 9.2715711 9.5556249 67.5 0.12442259 0.43559482 0.35790544 9.5749532 9.2853792 9.5702743 90 0.14089818 0.45665643 0.38128232 9.5949794 9.3237440 9.6123158 112.5 0.16647531 0.48915019 0.41726416 9.6240919 9.3826551 9.6760625 135 0.19735020 0.52805532 0.46020914 9.6588907 9.4553466 9.7533001 157.5 0.22941061 0.56809820 0.50425204 9.6947360 9.5321279 9.8336349 180 0.25803549 0.60355500 0.54311538 9.7259997 9.6009117 9.9047936 202.5 0.27840311 0.62861983 0.57051120 9.7469169 9.6490816 9.9542006 225 0.28660968 0.63868139 0.58149048 9.7530543 9.6666751 9.9720145 247.5 0.28101715 0.63182707 0.57401211 9.7427949 9.6495832 9.9542876 270 0.26293394 0.60959543 0.54972342 9.7180756 9.6011932 9.9045601 292.5 0.23607945 0.57638319 0.51334444 9.683858o 9.5314041 9.8327841 315 0.20515940 0.53784176 0.47098807 9.6465515 9.4533990 9.7520425 337.5 0.17455362 0.49936282 0.42855178 9.6122456 9.3799495 9.6749680 V 1 1.61903635 4.27007615 3.72979435 7.2494269 5.6940086 8.0664741 2 2 1.61903696 4.27007713 3.72979553 7.2494229 5.6940004 8.0664686 134 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E logF Ji' J 2 J, Ft 9.6084099 2.3152378 +0.11029083 +0.061812671 -0.25644059 22.5 9.5687497 2.3059045 +0.06946998 +0.074883922 -0.16119255 45 9.5555233 2.2995328 +0.01805514 +0.077080482 -0.04073852 67.5 9.5698283 2.3016313 -0.03654213 +0.068068172 +0.08658346 90 9.6101298 2.3103260 -0.08632858 +0.049219187 +0.20138993 112.5 9.6721978 2.3186977 -0.12376087 +0.023403207 +0.28620250 135 9.7488617 2.3215901 -0.14288822 -0.005449606 +0.32810925 157.5 9.8298619 2.3181659 -0.14041555 -0.032946848 +0.32073022 180 9.9024333 2.3108630 -0.11642269 -0.054902532 +0.26518896 202.5 9.9532839 2.3034774 -0.07451078 -0.067974156 +0.16994090 225 9.9719383 2.2994233 -0.02127963 -0.070171605 +0.04948689 247.5 9.9540965 2.3004768 +0.03479475 -0.061160169 -0.07783516 270 9.9033316 2.3061702 +0.08485465 -0.042311544 -0.19264158 292.5 9.8300222 2.3139376 +0.12119708 -0.016495194 -0.27745411 315 9.7479652 2.3199983 +0.13850882 +0.012358484 -0.31936096 337.5 9.6705453 2.3208585 +0.13455789 +0.039856619 -0.31198183 s, 8.0485930 18.4831415* -0.01520968 +0.027635537 +0.03499338 2 2 8.0485855 18.4831497 -0.01520963 +0.027635553 +0.03499343 *S,(y,' -G") = 18.4019247. Zt(Ji' - G") = 18.4019246. OF THE ORBITS OF THE FOUR INNER PLANETS. 135 ACTION OF MARS ON THE EARTH. E 1000 X Ft flo -So w. RW gw - 5.019874 0.22207195 -0.00895625 +0.02403761 0.00000000 -0.00910901 22.5 - 1.341522 0.21055435 -0.00524961 +0.02748415 +0.08184381 -0.00533223 45 + 0.173061 0.20752103 -0.00112516 +0.02773157 +0.14850060 -0.00113867 67.5 - 1.404619 0.21281662 +0.00313244 +0.02500875 +0.19788699 +0.00315267 90 - 5.191525 0.22627677 +0.00726155 +0.01896286 +0.22627677 +0.00726155 112.5 - 9.004074 0.24749832 +0.01089521 +0.00882887 +0.22720045 +0.01082573 135 -10.631982 0.27522212 +0.01347761 -0.00609013 + 0.19233060 +0.01331965 157.5 - 9.129495 0.30647387 +0.01430898 -0.02537639 +0.11549298 +0.01409065 180 - 5.368216 0.33606721 +0.01279803 -0.04599728 0.00000000 +0.01258694 202.5 - 1.527816 0.35740451 +0.00883760 -0.06172287 -0.13468590 +0.00870276 225 + 0.177177 0.36477534 +0.00302208 -0.06569865 -0.25491209 +0.00298666 247.5 1.210722 0.35578971 -0.00342959 -0.05556595 -0.32661056 -0.00340772 270 - 4.837361 0.33265813 -0.00898150 -0.03579916 -0.33265813 -0.00898150 292.5 - 8.543560 0.30146830 -0.01237466 -0.01405700 -0.28031952 -0.01245460 315 -10.135232 0.26942963 -0.01319021 +0.00403826 -0.19280199 -0.01334851 337.5 - 8.672134 0.24201044 -0.01181400 +0.01658570 -0.09407098 -0.01199994 2, -40.833952 2.23402218 +0.00430615 -0.07881492 -0.21326424 +0.00357711 2s -40.833942 2.23401612 +0.00430637 -0.07881474 -0.21326273 +0.00357732 sin <p l-Ai (a) + cos V Bo> = + 0.0000000050. 136 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MARS ON THE EARTH. E Ro sin v + (cos v + cos E) So ( - sec' if + ij sin vS a Wo COS (!)+) Wo sin (v + T ) -2 a /J -0.01791249 -0.22207195 -0.00432317 +0.02364565 -0.43669510 22.5 +0.07214538 -0.19805102 -0.01506202 +0.02298943 -0.41458381 45 +0.14689806 -0.14657925 -0.02300258 +0.01548939 -0.41012014 67.5 +0.20021147 -0.07256855 -0.02452836 +0.00487823 -0.42290136 90 +0.22612318 +0.01831801 -0.01859384 -0.00372284 -0.45255354 112.5 +0.21867465 +0.11830141 -0.00734127 -0.00490454 -0.49817351 135 +0.17313163 +0.21584084 +0.00340234 +0.00505112 -0.55697199 157.5 +0.08900258 +0.29475425 +0.00517812 +0.02484247 -0.62244500 180 -0.02559607 +0.33606721 -0.00827262 +0.04524724 -0.68340683 202.5 -0.15101812 +0.32435071 -0.03316015 +0.05205879 -0.72588458 225 -0.25917515 +0.25670929 -0.05360955 +0.03797800 -0.73820246 247.5 -0.32389097 +0.14753236 -0.05413656 +0.01252224 -0.71614631 270 -0.33246073 +0.02354205 -0.03531845 -0.00584698 -0.66531623 292.5 -0.28957300 -0.08808428 -0.01192486 -0.00744291 -0.59906678 315 -0.21131668 -0.16946344 +0.00233483 +0.00329486 -0.53246901 337.5 -0.11585773 -0.21387153 +0.00359251 +0.01619196 -0.47652121 s, -0.30030825 +0.31236276 -0.13738304 +0.12113644 -4.47573530 2 2 -0.30030574 +0.31236335 -0.13738259 +0.12113567 -4.47572256 DIFFERENTIAL COEFFICIENTS. [dxldt] m = = - 48641.893m' = +3016769.1 m' log coeff. n 4.6870105 p 6.4795421 = + [dq/dt] w = = - 724628.93 19626.398 m' p 4.2928406 22258.695 m' n 4.3474997 m' n 5.8601 157 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. = -0.015723904 [d x /dt] m = [d7r/d<]oo = +0.97519611 [dpfdt] M = +0.0063443986 [dq/dt] m = -0.0071953108 [dL/dt] m = -0.23424243 OF THE ORBITS OF THE FOUR INNER PLANETS. 137 Leverrier. [<fe/cft]oo -0.01573 [dw/dt] m +0.9754 [dp/dt] w +0.00635 [dq/dtlw -0.00721 [dL/dt] w -0.2337 COMPARISON WITH OTHER RESULTS. Innes. Hall. Newcomb. Method of Gauss. -0.015722 -0.0157232 -0.01572 -0.0157239 +0.975224 +0.9751387 +0.9755 +0.9751961 +0.0063401 +0.0063444 +0.00634 +0.0063444 -0.0071898 -0.0071952 -0.00719 -0.0071953 -0.23469 -0.2342416 -0.2342424 NOTES. In the "New Theory," Page 511, HILL points out that the convergence of the expansion of the perturbing function is slow in this case, the terms of the fifth order in the inclinations and eccentricities amounting to one per cent, of those of the first order. He stated that a computation by GAUSS'S method would be very desirable and consequently this was effected by DR. ASAPH HALL, JR., in July, 1891 (A. J. No. 244), and by INNES in November, 1891 (M. N., Vol. LII, Nos. 2 and 7). HALL'S computation is the first application of GAUSS'S method made after the publication of HILL'S memoir. Both HALL and INNES employed the values of the elements stated by LEVERRIER; Hall divided the orbit of the Earth into twelve parts and INNES into sixteen. The values of [dpldt] 00 and [dq/dt] Q given by the latter were however in error owing to a misprint that occurred in HILL'S original paper in the value of J 3 ] in M. N., Vol. LII, No. 7, INNES pointed out this error but did not re-compute the variations. The final results of the present paper were printed in A. J., No. 518, but the values there given are all slightly incorrect owing to errors in some of the preliminary constants, which remained undetected even in the duplication. Upon devising new test equations these were always applied to all computations previously made and in this way the errors affecting practically every figure of the present computation were discovered. The work was then both repeated and duplicated so that it is hardly possible that any errors can yet remain in it. The latter part of INNES' computation was also duplicated, the values of J 3 , W Q , [dp/dt] and [dq/dt] being freed from the errors referred to by him. It is these corrected values which are given above. It will be noticed that the agreement of the results here given with those of HALL is very exact notwithstanding the difference of the original elements used in the computation. The divergences from those of INNES are more considerable, probably because the latter computer did not employ the accurate tables of HILL. 138 THE SECULAR VARIATIONS OF THE ELEMENTS The values obtained in the "New Theory " for the motion of the plane of the ecliptic are, [dp/dt] m = +0.0063362 [dq/dt]^ = -0.0072112 ACTION OF JUPITER ON THE EARTH. E A B cos t B sin t g 28.04923872 + 1.4444306 +5.1077212 1.6444314 30 27.80097551 -1.1738070 +4.4818820 1.2661417 60 27.62449781 -3.1281533 +2.6317812 0.4365772 90 27.56719541 -3.8949449 +0.0531514 0.0001781 120 27.64447424 -3.2687173 -2.5630644 0.4140764 150 27.83557589 -1.4172691 -4.5158555 1.2854086 180 28.08919180 + 1.1633052 -5.2819683 1.7585429 210 28.33731437 +3.7815432 -4.6561285 1.3665053 240 28.51351085 +5.7358901 -2.8060283 0.4963014 270 28.57067253 +6.5026807 -0.2273984 0.0032594 300 28.49353432 +5.8764527 +2.3888176 0.3596892 330 28.30271399 +4.0250047 +4.3416085 1.1881266 2: 168.41444773* +7.82320801 -0.52274091 5.1096185 Si 168.41444770 +7.8232076 -0.5227406 5.1096197 E I G G' G" O 0.977739 27.0061276 1.0387013 0.0586223 30 0.729882 27.0062768 0.7909419 0.0592752 60 0.554312 27.0065429 0.5826671 0.0277442 90 0.497498 27.0066658 0.4975109 0.0000133 120 0.574342 27.0065199 0.6004570 0.0255347 150 0.764478 27.0062522 0.8240511 0.0577594 180 1.017523 27.0061314 1.0803044 0.0602760 210 1.266039 27.0062772 1.3067275 0.0387224 240 1.443204 27.0065561 1.4565395 0.0126169 270 1.500952 27.0066843 1.5010367 0.0000804 300 1.423446 27.0065354 1.4332595 0.0092925 330 1.231720 27.0062551 1.2681196 0.0346927 Si 5.990566 162.0384133 6.1919288 0.1940866 2 2 5.990569 162.0384114 6.1883877 0.1905434 * 6o 2 + 3aV + 6[a' 2 - Zkaa'ee' cos K] = 168.41444773, f 6[a' e' kaa'e r.os K] = + 7.8232074. - | Gk'aa' cos <f>' e sin K' - - 0.5227409. h 27.008467 27.008061 27.007154 27.006666 27.007100 27.008066 27.008637 27.008243 27.007275 27.006689 27.007056 27.007962 162.045689 162.045687 O e / // 11 36 58.64 10 12 32.08 8 38 31.93 7 48 2.72 8 45 10.87 10 23 57.24 11 50 45.30 12 53 16.35 13 29 4.47 13 38 11.24 13 21 37.74 12 40 46.32 67 42 8.95 67 36 45.94 OF THE ORBITS OF THE FOUR INNER PLANETS. 139 ACTION OF JUPITER ON THE EARTH. E logtfo log Lo' log N, log N log P logQ 0.01351621 0.29098220 0.19630730 7.8502195 5.2763937 6.6141228 30 0.01041684 0.28686620 0.19168189 7.8490834 5.2711158 6.6083484 60 0.00744942 0.28292144 0.18724767 7.8522627 5.2713543 6.6075955 90 0.00606351 0.28107775 0.18517479 7.8588567 5.276992T 6.6125603 120 0.00764272 0.28317853 0.18753669 7.8670773 5.2864976 6.6227349 150 0.01081185 0.28739101 0.19227173 7.8747484 5.2973550 6.6346279 180 0.01406123 0.29170555 0.19712004 7.8798617 5.3067059 6.6445510 210 0.01667410 0.29517157 0.20101379 7.8810685 5.3120661 6.6499953 240 0.01827428 0.29729273 0.20339625 7.8780194 5.3119679 6.6497435 270 0.01869373 0.29784858 0.20402051 7.8714850 5.3063886 6.6440330 300 0.01793523 0.29684340 0.20289160 7.8631935 5.2968004 6.6344668 330 0.01613325 0.29445437 0.20020816 7.8553923 5.2858029 6.6235786 Si 0.07887909 1.74292385 1.17449955 7.1906339 1.7497196 9.7732144 2 2 0.07879328 1.74280948 1.17437087 7.1906342 1.7497203 9.7731434 E logF Ji' Ji J, F 2 6.6129514 27.064741582 +0.24634548 +0.02063093 -6.6623169 30 6.6071626 27.061450021 +0.21012324 +0.32748544 -5.8459973 60 6.6070396 27.022786983 +0.12128740 +0.54805936 -3.4327952 90 6.6125600 26.992014082 +0.00316191 +0.62325071 -0.0693287 120 6.6222233 27.021540830 -0.11740027 +0.53291210 +3.3431631 150 6.6334726 27.060747670 -0.21222668 +0.30124976 + 5.8903093 180 6.6433468 27.066395282 -0.25546365 -0.00966336 +6.8895984 210 6.6492222 27.041108427 -0.23112984 -0.31651859 +6.0732768 240 6.6494917 27.008005002 -0.14158677 -0.53709407 +3.6600761 270 6.6440314 26.992057684 -0.01087596 -0.61228634 +0.2966099 300 6.6342813 27.004932957 +0.12157000 -0.52194700 -3.1158827 330 6.6228858 27.037481542 +0.21569955 -0.29028297 -5.6630276 Zi 9.7693340 162.188402634* -0.02524781 +0.03289796 +0.6818428 S 2 9.7693345 162.184859426 -0.02524778 +0.03289801 +0.6818424 * s,(J,' - G") = 161 .994316084. zl/i' - G") = 161 ,994316076. 140 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF JUPITKK ON THE EARTH. E F, 1000 X fio 1000 X So 1000 X W 1000 X B (n) 1000 X S (n) -0.14994500 3.5906058 -0.02485742 +0.00562843 0.0000000 -0.02528143 30 -0.11198359 3.5669877 -0.02409495 +0.13045170 +1.8097792 -0.02445007 60 -0.03628181 3.5812719 -0.01504685 +0.22107406 +3.1277000 -0.01517409 90 + 0.00006601 3.6318358 -0.00001620 +0.25540271 +3.6318358 -0.00001620 120 -0.04119166 3.7069905 +0.01547114 +0.22249821 +3.1836522 +0.01534248 150 -0.12070192 3.7863426 +0.02555514 +0.12714491 +1.8660682 +0.02518930 180 -0.16035007 3.8464128 +0.02722801 -0.00750003 0.0000000 +0.02677889 210 -0.12100025 3.8690539 +0.02153453 -0.14361296 -1.9068325 +0.02122624 240 -0.04149417 3.8484336 +0.01189802 -0.24048156 -3.3051260 +0.01179908 270 +0.00005467 3.7925083 +0.00121404 -0.26976404 -3.7925083 +0.00121404 300 -0.03599894 3.7183323 -0.00934064 -0.22557067 -3.2473996 -0.00941964 330 -0.11169659 3.6453213 -0.01884026 -0.12397381 -1.8495240 -0.01911793 s, -0.46526165 22.2920469 +0.00535226 -0.02435156 -0.2411734 +0.00404529 S 2 -0.46526167 22.2920496 +0.00535230 -0.02435149 -0.2411816 +0.00404538 E SSSL. 1000 X|-#i> cos v .. 1000 XW a cos (+) 1000XW sin(y+ir) OJ / f \ ' r 1 + ( sec- if + 1 1 sin r<So \o / J 1000X-2-Ro a -0.0497148 -3.5906058 -0.00101227 +0.00553665 - 7.0607738 30 + 1.7678935 -3.0981989 -0.08531744 +0.09868428 - 7.0303590 60 +3.1124039 -1.7713812 -0.20927556 +0.07125641 - 7.1024820 90 +3.6313250 +0.0608776 -0.25043240 -0.05014132 - 7.2636717 120 +3.1675401 + 1.9264211 -0.16743708 -0.14652740 - 7.4761534 150 + 1.8214372 +3.3200889 -0.04173395 -0.12010043 - 7.6826719 180 -0.0544560 +3.8464128 -0.00134888 +0.00737774 - 7.8218420 210 -1.9439518 +3.3453092 -0.09208972 +0.11020057 - 7.8505000 240 -3.3167069 + 1.9516989 -0.22529979 +0.08409148 - 7.7614089 270 -3.7919952 +0.0611766 -0.26614166 -0.04405982 - 7.5850167 300 -3.2561646 -1.7957525 -0.17399247 -0.14355750 - 7.3742992 330 -1.8818157 -3.1224540 -0.04265147 -0.11640599 - 7.1847533 Zi -0.3970983 +0.5667933 -0.77836605 -0.12182259 -44.5969593 2 2 -0.3971070 +0.5667994 -0.77836664 -0.12182271 -44.5969726 sin <f %A i ( *> + cos if Bo w = - 0.0000000000093. OF THE ORBITS OF THE FOUR INNER PLANETS. 141 DIFFERENTIAL COEFFICIENTS. n log coeff. [de/dilw = - 85.760340 m' n 1.9332865 [dx/dt]ao = [dv/dilw = +7298.7450 TO' p 3.8632482 [dp/dt] m = - 26.316855 TO' n 1.4202340 [dq/dt] m = - 168.14734 TO' n 2.2256900 [dL/dt] w = -9631.7202 TO' n 3.9837038 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] m = -0^081841849 [d x /dt] w = [dTr!dt] w = +6.9652565 [dp/dt]w = -0.025114405 [dq/dt] m = -0.16046446 [dLfdt] w = -9.1916336 COMPARISON WITH OTHER RESULTS. Leverrier. Newcoml). Method of Gauss. [de/dt]oo -0.08182 -0.08182 -0.0818418 e[dir/dl] 00 +0.11679 +0.11677 +0.1168153 [dp/dtlw -0.02501 -0.02511 -0.0251144 [dq/dt] m -0.16041 -0.16047 -0.1604644 [dL/dt] m -9.1916 -9.1916336 NOTES. The very close agreement of the sums toward the end of this computation is owing to the circularity of the two orbits and to their small mutual inclination. It is evident that a division into eight parts would have been sufficient, while the errors arising from a division into only six parts would have been almost inappreciable. In this, as in several other cases, the divergence from the last figure of NEW- COMB'S results is rather larger than was to have been expected. The values stated by NEWCOMB were computed to one more significant figure than was published to insure the accuracy of the final figure given. The uncertainty of this figure is evi- dently due to neglected terms in the series employed by LEVERRIER and NEWCOMB. In the present case we obtain for [deldt] 00 , Computed from the six even points of division 0".0818428 Computed from the six odd points of division .0818409, 142 THE SECULAR VARIATIONS OF THE ELEMENTS and the difference between any two corresponding values for any other coefficient is even less than this. The values of the coefficients which define the motion of the plane of the ecliptic are stated by HILL as follows: [dp/dt]^ = -0.0251149 [dq/dt] w = -0.1604628 E A 92.9909218 30 92.7594069 60 92.3168471 90 91.7819295 120 91.2980364 150 90.9947748 180 90.9533006 210 91.1846750 240 91.6269534 270 92.1617302 300 92.6457640 330 92.9493070 Zj 551.8318232* 2 2 551.8318234 E I +2.001263 30 +1.768419 60 +1.323475 90 +0.787549 120 +0.304998 150 +0.004086 180 -0.036365 210 +0.193697 240 +0.633602 270 +1.167320 300 +1.652663 330 +1.958598 21 +5.879636 2 2 +5.879669 t 6[a'V - fcao'e cos K] = + 29.6608842. t - 6k'aa' cos <p' e sin K' = - 0.1707000. ACTION OF SATURN ON THE EARTH. B cos . B sin t d +14.3293908 + 1.6679163 0.795517 + 12.2250618 +6.1218324 10.716773 + 8.1696352 +8.9277816 22.792314 + 3.2497638 +9.3339213 24.913194 1.2162762 +7.2314183 14.953684 - 4.0318145 +3.1836393 2.898337 - 4.4424293 -1.7248166 0.850721 - 2.3380978 -6.1787321 10.916915 + 1.7173265 -8.9846857 23.083782 + 6.6371970 -9.3908217 25.217872 + 11.1032373 -7.2883175 15.189927 + 13.9187769 -3.2405388 3.002863 +29.6608843f -0.1707036t 77.665945 +29.6608873 -0.1706996 77.665954 G G' G" 90.703603 2.0057342 0.0043727 90.703703 1.8341642 0.0644170 90.704603 1.4944314 0.1681447 90.705370 1.0517493 0.2611465 90.705257 0.5874560 0.2806341 90.704380 0.1809884 0.1765509 90.703605 0.0803976 0.1166593 90.703690 0.4578844 0.2628566 90.704569 0.9146652 0.2782376 90.705348 1.3729264 0.2025015 90.705263 1.7502260 0.0956818 90.704378 1.9757281 0.0167564 544.226899 6.8329103 0.9437302 544.226868 6.8734407 0.9842289 'ee' cos K] = 551.8318229. h 90.703702 90.705031 90.707414 90.708424 90.707081 90.704732 90.703708 90.705020 90.707394 90.708453 90.707143 90.704751 544.236442 544.236411 e O i n 8 33 39.757 8 18 56.347 7 46 25.450 6 53 59.891 5 36 19.643 3 35 46.006 2 40 11.401 5 6 24.385 6 34 30.181 7 33 52.413 8 11 49.887 8 31 21.103 39 22 56.319 40 20.145 OF THE ORBITS OF THE FOUR INNER PLANETS. 143 ACTION OF SATUKN ON THE EARTH. E logKo log La logA^o log AT logP logQ 0.00730944 .28273527 .18703836 7. 0561506 3.4235951 5.2855436 30 0.00689441 .28218320 .18641769 7.0572862 3.4236026 5.2857705 60 0.00602140 .28102171 .18511178 7.0610565 3.4252108 5.2877346 90 0.00473960 .27931572 .18319348 7.0664172 3.4279697 5.2907291 120 0.00312447 .27716505 .18077485 7.0719166 3.4311334 5.2937173 150 0.00128428 .27471328 .17801715 7. 0761000 3.4338677 5.2956443 180 0.00070759 .27394462 .17715249 7.0778799 3.4354590 5.2968496 210 0.00259230 0.27645617 .17997757 7. 0767946 3.4354874 5.2978905 240 0.00430241 .27873368 0.18253896 7.0731165 3.4339314 5.2966961 270 0.00570043 .28059458 .18463152 7. 0677983 3.4311901 5.2938284 300 0. 00669846 0.28192252 0.18612461 7.0622487 3.4279906 5.2902830 330 0.00724349 0.28264754 .18693973 7.0579727 3.4252033 5.2872040 Zi 0.02816377 1 .67552285 1.09874105 2.4023686 6.1773201 1.7508241 2, 0.02845451 1 .67591049 1 .09917714 2.4023690 6.1773208 1.7510668 E log V J,' /, /i Ft 5.2855175 90.7004946 +0.12827478 -0.7968027 - 8.486434 30 5.2853861 90.7506534 +0.29200243 + 1.2416991 -31.148158 60 5.2867312 90.7742572 +0.41637229 +2.9535293 -45.424968 90 5.2891707 90.7991434 +0.49225830 +3 .8800058 -47.491413 120 5.2920417 90.8302700 +0.45906255 +3.7728791 -36.793788 150 5.2945889 90.8046167 +0.26449000 +2 .6608537 -16.198502 180 5.2961519 90.8127812 -0.06165231 +0.8418949 + 8.775944 210 5.2963206 90.9507883 -0.39625124 -1 .1966086 +31.437674 240 5.2950355 90.8893132 -0.59035199 -2 .9084413 +45.714495 270 5.2926201 90.7428396 -0.56521208 -3 .8349184 +47.780934 300 5.2897120 90.6423828 -0.36124653 -3 .7277897 +37.083286 330 5.2871040 90.6419564 -0.09682848 -2 .6157627 + 16.488008 Si 1.7451898 544.6494990* -0.00954121 +0.1352696 + 0.868535 2 2 1.7451904 544.6899978 -0.00954107 +0.1352689 + 0.868543 *2,(J i' - G") = 543.7057688. z s (J i' - G") = 543.7057689. 144 THE SECULAR VARIATIONS OF THE ELEMENTS E 30 60 90 120 150 180 210 240 270 300 330 Si E ACTION OF SATURN ON THE EARTH. F, 1000 X Ro 100000 X So 100000 X Wo 10000 X R M 100000 X S<> -0.3555837 0.57362783 +0.02247623 -1.5471185 0.0000000 +0.0228596 -1.2681621 0.57437868 -0.26276188 +2.3619011 +2.9142195 -0.2666346 -1.2912829 0.57674453 -0.40344654 +5.6791610 +5.0370180 -0.4068583 -0.3956591 0.58127800 -0.31429014 +7.5403759 +5.8127800 -0.3142901 +0.5220384 0.58774791 -0.09358683 +7.4052797 +5.0477180 -0.0928086 +0.5361282 0.59426527 +0.08130415 +5.2579217 +2.9287882 +0.0801402 -0.3802586 0.59796705 +0.11726800 +1.6546186 0.0000000 +0.1153337 -1.3248861 0.59688219 +0.07295990 -2.4035193 -2.9416851 +0.0719154 -1.3648579 0.59139747 +0.07709136 -5.7742147 -5.0790610 +0.0764503 -0.4663692 0.58408733 +0.18082475 -7.5353293 -5.8408733 +0.1808248 +0.4731390 0.57795107 +0.28959440 -7.2511167 -5.0475302 +0.2920434 +0.5221422 0.57454813 +0.25136029 -5.0525337 -2.9150792 +0.2550648 -2.3968057 3.50543586 +0.00939762 +0.1666094 -0.0418552 +0.0070201 -2.3968061 3.50543960 +0.00939707 +0.1688164 -0.0418499 +0.0070205 lOOOXtft sinv 1000 xT-flo cos w + (coav+cosE)X } _ if \ h ( ~ sec 2 ^+ 1 I sin t'o'c J a +0.00044952 -0.57362783 +0.002782496 -0.015218912 -0.0011280149 30 +0.28684099 -0.49762977 -0.015447198 +0.017867337 -0.0011320724 60 +0.49964759 -0.28807540 -0.053760700 +0.018305034 -0.0011438222 90 +0.58124893 +0.00316289 -0.073936353 -0.014803463 -0.0011625560 120 +0.50564826 +0.29959114 -0.055727122 -0.048767876 -0.0011853529 150 +0.29142597 +0.51791202 -0.017258560 -0.049666046 -0.0012057929 180 -0.00234536 +0.59796705 +0.002975836 -0.016276382 -0.0012159913 210 -0.29539381 +0.51865750 -0.015412218 +0.018443264 -0.0012111028 240 -0.50861524 +0.30174597 -0.054096837 + 0.020191247 -0.0011927133 270 -0.58403554 +0.00617932 -0.074341448 -0.012307244 -0.0011681747 300 -0.50182267 -0.28668159 -0.055931013 -0.046147489 -0.0011462092 330 -0.28712395 -0.49766091 -0.017382540 -0.047441087 -0.0011324063 S, -0.00703790 +0.05091934 -0.213757340 -0.087914378 -0.0070121038 S, -0.00703741 +0.05092105 -0.213778317 -0.087907239 -0.0070121051 sin <p yAi M + cos <f Bo (e > = + 0.00000000000028. OF THE ORBITS OF THE FOUR INNER PLANETS. 145 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dtlw = - 1.5163927 TO' n 0.1808117 [dx/dt] m = [dT/dfloo = + 655.70924 TO' p 2.8167113 [dp/dt] m = - 18.991017 TO' n 1.2785482 [dq/dt] m = - 46.179399 TO' n 1.6644483 = -1514.4911 TO' n 3.1802667 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/dt] M = -0.00043305713 [dx/df], = [dir/d4 = +0.18725991 [dp/dfloo = -0.0054235259 [dq/dt] M = -0.013188086 = -0.43251400 m COMPARISON WITH OTHER RESULTS. Lcverrier. Newcomb. Method of Gauss. [de/dt] w -0.00044 -0.00043 -0.00043306 e[dirldt} w +0.00315 +0.00314 +0.00314056 [dp/dt] m -0.00542 -0.00542 -0.00542353 [dq/dt] M -0.01317 -0.01318 -0.01318809 [dL/dt] M -0.4325 -0.43251400 NOTES. Here, as in the previous case, the approximate tests completely fail with the angle e, the roots G, G', G" , and with the functions which immediately depend upon these quantities. The close agreement of the final sums shows, however, that the expansion of the perturbing function is quite rapidly convergent for this case. The values obtained by HILL in the "New Theory " are: [dp/dt] w = -oo054237 [dq/dt]^ = -0.0131883 The agreement of the final results here obtained with all other values is satisfactory. 146 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF URANUS ON THE EARTH. E A B cos t B sin e g h 369.9391833 +24.383407 -17,162615 247.29194 367.49698 45 370.9299673 +34.837638 - 7.159449 41.56718 367.49556 90 370.9628887 +34.937206 + 7.512108 45.76306 367.49557 135 370.0188613 +24.623780 +17.957661 261.51163 367.49708 180 368.6506847 + 9.938828 +18.058344 264.45220 367.49706 225 367.6596194 - 0.515405 + 7.755178 48.77249 367.49561 270 367.6264169 - 0.614971 - 6.916382 38.79263 367.49553 315 368.5707253 + 9.698453 -17.361932 244.44864 367.49688 Si 1477.1791736* +68.644470f + 1.191455t 596.29983 1469.98514 Z 2 1477.1791733 +68.644466 + 1.191458 596.29994 1469.98513 E / G G' G" e O O i a + 1.63126 367.495141 1.9739873 0.3408899 4 33 0.174 45 +2.62346 367.495250 2.6661957 0.0424235 4 55 28.953 90 +2.65637 367.495229 2.7027882 0.0460735 4 57 40.407 135 + 1.71085 367.495130 2.0584810 0.3456945 4 38 13.695 180 +0.34269 367.495095 1.0379451 0.6933002 3 55 55.015 225 -0.64694 367.495249 0.163776T 0.8103506 2 56 52.565 270 -0.68006 367.495243 0.1303078 0.8100787 2 53 46.998 315 +0.26290 367.495069 0.9586081 0.6938970 3 50 28.866 S, +3.95026 1469.980708 5.8450284 1.8903423 16 20 22.594 2 2 +3.95027 1469.980698 5.8470609 1.8923656 16 21 4.079 ACTION OF URANUS ON THE EARTH. E log A' log LO' log No log N log P logQ 0.00205713 0.27574316 0.17917560 6.1388849 1.2833195 3.7524062 45 0.00241015 0.27621390 0.17970508 6.1440956 1.2897058 3.7584989 90 0.00244638 0.27626178 0.17975893 6.1514873 1.3001369 3.7689401 135 0.00213675 0.27584925 0.17929492 6.1638868 1.3084161 3.7775217 180 0.00153562 0.27504825 0.17839395 6.1668770 1.3097851 3.7792009 225 0.00086277 0.27415148 0.17738519 6.1617903 1.3035252 3.7729672 270 0.00083285 0.27411159 0.17734031 6.1515209 1.2932165 3.7626532 315 0.00146560 0.27195493 0.17828898 6.1419973 1.2848106 3.7542155 S, 0.00687198 1.10116478 0.71466879 4.611770(1 5.1864579 3.0632003 2 2 0.00687557 1.10116956 0.71467417 4.6117700 5.1864577 5.0632033 * 4a 2 + 2aV + 4[o' 2 2kaa'ee' cos A:] = 1477.1791732. t 4[a'V - kaa'e cos K] = + 68.644468. t + 4fc'aa' cos v' e sin K' = + 1.191454. OF THE ORBITS OF THE FOUR INNER PLANETS. 147 ACTION OF URANUS ON THE EARTH . E logF Ji' J* Ji Fl 3.7519032 367.8221780 -0.84734235 +2.2088876 +301.43340 45 3.7584363 367.4766488 -0.35515557 +4.6641774 + 123.58384 90 3.7688721 367.4892672 +0.38057614 +4.3579828 -129.67133 135 3.7770116 367.8350259 +0.86234922 + 1.4696662 -309.97871 180 3.7781780 368.1745883 +0.82112849 -2.3088335 -311.71664 225 3.7717715 368.2455011 +0.34414218 -4.7641198 -133.86711 270 3.7614579 368.2514548 -0.29842856 -4.4579225 + 119.38809 315 3.7531918 368.1823028 -0.79535630 -1.5696087 + 299.69549 Si 5.0604111 1471.7374883* +0.05593372 -0.1998856 - 20.56648 2 2 5.0604112 1471.7394786 +0.05597953 -0.1998849 - 20.56649 E r, 1000000 X Ra 1000000 X So 1000000 X W, 1000000 X -R<"> 1000000 X S<"> +3.5560766 68.949325 +0.10018820 +1.2544323 0.000000 +0.10189713 45 +0.4865778 69.825413 +0.03716997 +2.6752556 +49.966575 +0.03761606 90 +0.8230258 71.523975 -0.03529126 +2.5611571 +71.523975 -0.03529126 135 +4.0393764 73.045932 -0.11453773 +0.8877061 +51.045918 -0.11319535 180 +3.8028425 73.443068 -0.14342145 -1.3776247 0.000000 -0.14105578 225 +0.5809413 72.487200 -0.06580265 -2.8156195 -50.655465 -0.06503154 270 +0.709709S 70.794418 +0.06221357 -2.5724979 -70.794418 +0.06221357 315 +3.7847601 69.352325 +0.12685775 -0.8818747 -49.628040 +0.12838021 Si +8.8916547 284.710786 -0.01631094 -0.1345332 + 0.729557 -0.01223634 2* +8.8916556 284.710870 -0.01631266 -0.1345325 + 0.728988 -0.01223053 1 0ftOOOn V 1 7?n rct<* u E 1 000000 X[R sin v X L 1000000 1000000 1000x-2 r -K + (cosv+cosE)S l l] +^Bec'>+l)<rfaS.] X^ cos ("+") KWosm(v-\-ir) a + 0.200376 -68.949325 -0.2256099 + 1.2339773 -0.13558593 45 +50.011805 -48.728590 -2.2190515 + 1.4942570 -0.13799470 90 +71.514500 + 1.128956 -2.5113156 -0.5028130 -0.14304794 135 + 51.201671 +52.095595 -0.4959295 -0.7362581 -0.14782435 180 + 0.286843 +73.443068 -0.2477661 + 1.3551611 -0.14934959 225 -50.554733 +51.949429 -2.2975222 + 1.6276075 -0.14669365 270 -70.785500 + 1.062876 -2.5379547 -0.4201590 -0.14158884 315 -49.442739 -48.631449 -0.5098809 -0.7195307 -0.13705976 ft + 1.216219 + 6.685575 -5.5226463 + 1.6661664 -0.56957230 2 2 + 1.216004 + 6.684985 -5.5223841 + 1.6660757 -0.56957246 sin <p \Ai ( *> + cos . , p . J3 <c> = - 0.00000000000025. * 2,(J,' - G") = 1469.8471460. 2(Ji' - G") = 1469.8471130. 148 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. n log coeff. [<fe/tt]oo = + 0.39395664 TO' p 9.5954484 [dxfdtlw, = [drldt] M = +129.13143 TO' p 2.1110320 [dp/dt] w = + 0.53988815 TO' p 9.7323038 [dq/dt] w = - 1.7895101 TO' n 0.2527342 [dL/(ft]oo =-184.51950 TO' n 2.2660422 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO = +0.000017278801 [d x /dt] M = [Ar/dfloo = +0.0056636605 = +0.000023679306 = -0.000078487295 = -0.0080929604 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [(fe/tft]oo +0^00002 +0^00002 +o!oOOO 172788 e[d7r/d<]oo +0.00009 +0.00010 +0.0000949860 [dpldt] m +0.00002 +0.00002 +0.0000236793 [dq/dt] m -0.00008 -0.00008 -0.0000784873 -0.0081 -0.0080929604 NOTES. It will be noticed that, owing to the very small mutual inclination, the approxi- mate tests are here more exactly satisfied than even in the case of Saturn, where twelve points of division were employed. It is therefore evident that eight points are fully sufficient and that the greatest error arising from a division into only four points (which occurs with the coefficient [dir/dt] 00 ), could not amount to more than 1 /20,000th of the whole. The results obtained by HILL are : [dpldt] M = +0.0000237 [dqldt] m = -0.0000785 exactly agreeing with those here given. OP THE ORBITS OF THE FOUR INNER PLANETS. 149 ACTION OF NEPTUNE ON THE EARTH. E A 905.47785591 45 905.10315254 90 904.80486595 135 904.75792710 180 904.98963355 225 905.36405558 270 905.66206098 315 905.70928102 Zi 3620.93441639* 2 2 3620.93441624 E I 1.23952 45 0.86483 90 0.56594 135 0.51893 180 0.75119 225 1.12575 270 1.42319 315 1.47027 2, 3.97984 2 2 3.97977 E log A' 0.00047205 45 0.00035874 90 0.00022606 135 0.00019146 180 0.00031307 225 0.00044509 270 0.00052334 315 0.00053136 2i 0.00153452 1 y 0.00152666 1 B cos e B sin g h +23.748411 +24.815277 40.194861 904.17306 + 1.127297 +28.979673 54.817494 904.17306 -17.814345 +15.920217 16.543607 904.17365 -21.980762 - 6.713038 2.941510 904.17372 - 8.931313 -25.661837 42.984089 904.17317 + 13.689802 -29.826236 58.066960 904.17304 +32.631450 -1.6.766778 18.349806 904.17361 +36.797860 + 5.866476 2.246398 904.17374 +29.634203f - 1.693121f 118.072363 3616.69349 +29.634196 - 1.693125 118.072362 3616.69355 G G' G" e O 1 it 904.17301 1.274452 0.034882 2 10 50.926 904.17299 0.930076 0.065186 1 54 4.344 904.17363 0.596627 0.030667 1 30 33.476 904.17372 0.525125 0.006195 1 23 20.558 904.17312 0.809936 0.058696 1 46 33.999 904.17297 1.180229 0.054414 2 7 3.526 904.17359 1.437325 0.014120 2 17 46.322 904.17374 1.471958 0.001688 2 18 49.394 3616.69335 4.118340 0.138365 7 45 44.723 3616.69342 4.107388 0.127483 7 43 17.822 ACTION OF NEPTUNE ON THE EARTH. og/V log Wo logtf logP logQ '363061 0.17679925 5.5513789 9.9124729 2.7719098 347955 0.17662931 5.5555725 9.9164864 2.7759190 330267 0.17643033 5.5658262 9.9265957 2.7859899 '325655 0.17637844 5.5760491 9.9367960 2.7961727 '341867 0.17656083 5.5803398 9.9411989 2.8006208 '359467 0.17675882 5.5762686 9.9373080 2.7967497 '369899 0.17687617 5.5661355 9.9273173 2.786753T 370968 0.17688820 5.5557902 9.9169945 2.7764257 405094 0.70666658 2.2636803 9.7075847 1.1452735 404045 0.70665477 2.2636803 9.7075848 1.145267T * 4a" + 2aV + 4[a' 2 - 2kaa'ee' cos K\ = 3620.93441628. t4[a'V-fraa'ecos A] = +29.634198. | - 4k'aa' cos *.'. e sin A"' = - 1.693118. 150 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF NEPTUNE ON THE EARTH. E logF Ji' Ji Ja F 2 2.7718889 903.9916758 +0.58828709 -13.723633 -190.54625 45 2.7758798 904.1719863 +0.01502688 + 7.632175 -222.52292 90 2.7859714 903.5306465 -0.23467770 +24.659009 -122.24477 135 2.7961690 903.3686400 +0.17398234 +27.382788 + 51.54664 180 2.8005856 904.0154903 +0.15962945 +14.207956 + 197.04666 225 2.7967170 904.1717548 -0.46647484 - 7.147853 +229.02334 270 2.7867446 903.5394237 -0.52719220 -24.174694 + 128.74518 315 2.7764247 903.3535982 +0.26287497 -26.898466 - 45.04625 2! 1.145190o 3615.0772363* -0.01395336 + 0.968638 + 13.00082 2 2 1.1451905 3615.0659793 -0.01459065 + 0.968644 + 13.00081 E F, 100000 X Ro 10000000 X So 100000 X We 100000 X #<"> 10000000 X -S ( "> - 5.0649535 1.7793453 +0.19215285 -0.08120439 0.0000000 + 0.19543047 45 - 6.5852856 1.7972262 -0.17462602 +0.04549983 +1.2860826 -0.17672179 90 - 1.8342882 1.8362237 -0.24659977 +0.15062685 +1.8362237 -0.24659977 135 - 0.4453113 1.8790643 +0.15337661 +0.17125249 +1.3131267 +0.15157902 180 - 5.4164244 1.9016607 +0.27295016 +0.08971979 0.0000000 +0.26844799 225 - 6.9853355 1.8852158 -0.09387083 -0.04482073 -1.3174254 -0.09277065 270 - 2.0485736 1.8383392 -0.21373143 -0.14796412 -1.8383392 -0.21373143 315 - 0.3483062 1.7940628 +0.11988971 -0.16075330 -1.2838186 +0.12132856 Si - 14.3642397 7.3555689 +0.00477181 +0.01117813 -0.0021155 + 0.00354726 2 2 - 14.3642386 7.3555691 +0.00476947 +0.01117829 -0.0020347 + 0.00341514 E 100000X[osin, I00000x[-Rocos, imm l(mQQ + (eosv+cosE)St,\ . (r , ,\ r, 1 XWoCos (W+JT) XlFosin (W+JT) I- I ^i<l<- ,n -I- 1 1 Q1T1 JlX., 1 100000x-2-flo a v / .1 +0.0038431 -1.7793453 +0.01460463 -0.07988026 - 3.4990076 45 + 1.2834469 -1.2580636 -0.03774087 +0.02541381 - 3.5518258 90 + 1.8360068 +0.0258636 -0.14769558 -0.02957146 - 3.6724475 135 + 1.3107603 + 1.3464279 -0.09567261 -0.14203579 - 3.8026901 180 -0.0054590 + 1.9016607 +0.01613612 -0.08825681 - 3.8671076 225 -1.3159048 + 1.3499919 -0.03657334 +0.02590924 - 3.8151452 270 -1.8380449 +0.0351057 -0.14597725 -0.02416657 - 3.6766784 315 -1.2819528 -1.2550750 -0.09294409 -0.13116027 - 3.5455738 2i -0.0036540 +0.1832847 -0.26293208 -0.22187510 -14.7152411 2 2 -0.0036504 +0.1832812 -0.26293091 -0.22187301 -14.7152409 sin if \A i (> > + cos <f . B = + 0.0000000000000014. * 2,(J,' - G") = 3614.9388718. 2,(J,' - G") = 3614.9384968. OF THE ORBITS OF THE FOUR INNER PLANETS. 151 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] m = -0.011831221m' n 8.0730296 [dx/dt] m = [dTr/dt]^ = +35.402545 TO' p 1.5490345 [dp/e&]oo = -- 0.71895833 TO' n 9.8567037 [dq/dt] m = -- 0.85200049 TO' n 9.9304399 [dL/dt] w = -47.671428 TO' n 1.6782582 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO' [de/dt] w = -0.00000060056972 [d x !dt] w = [dw/dt] w = +0.0017970838 [dp/dtlao = -0.000036495344 [dg/dt] m = -0.000043248757 [dL/dt] m = -0.0024198698 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt} 00 0.00000 0.00000 -0.00000060057 e[drldt]oo +0.00003 +0.00003 +0.00003013915 [dpldt] m -0.00004 -0.00004 -0.00003649534 [dg/dt] m -0.00004 -0.00004 -0.00004324876 NOTES. The mutual inclination is here nearly twice as great as in the case of Uranus, and yet the convergence of the perturbing function is more rapid because the eccentricity of Neptune is so much smaller than that of Uranus. Hence, although the sums of e, G, G', G", etc., are in great disagreement, the final sums from which the differential coefficients are obtained are almost identical. The greatest error arising from a divi- sion into only four parts occurs with the coefficient [dp/dt] 00 and amounts to but 0". 000000000002 The results of HILL are : = -00000366 [dqldt] n = -0.0000435 152 THE SECULAR VARIATIONS OF THE ELEMENTS E 30 60 90 120 150 180 210 240 270 300 330 MARS. ACTION OF MERCURY ON MARS. A B sin ( B COS e 1000 x g 2.01395126 -0.51051059 -0.07779H4 1.6508943 2.19162773 -0.49427471 +0.22547307 1.5475600 2.44453125 -0.33152771 +0.47957033 0.6962245 2.71228886 +0.06587754 +0.61641571 0.0274906 2.92685114 +0.23149508 +0.59934132 0.3394636 3.02703005 +0.48090911 +0.43292228 1.4649936 2.97859089 +0.61553465 +0.16175058 2.4000193 2.79081655 +0.59929870 -0.14151362 2.2750785 2.51771727 +0.43655177 -0.39561101 1.2072061 2.23986183 +0.17090155 -0.53245622 0.1850128 2.03539750 -0.12647099 -0.51538178 0.1013191 1.95541421 -0.37588517 -0.34896288 0.8949940 14.91703931* +0.31507221f +0.25187830J 6.9351269 14.91703923 +0.31507194 +0.25187834 6.9351295 1.87197670 2.04795479 2.29696077 2.56269605 2.77862654 2.88207295 2.83609064 2.64795925 2.37176681 2.09074126 1.88662892 1.81063180 14.04205038 14.04205609 G' G" 0.13564010 1.87146851 0.14234545 0.00619717 16 20 8.69 30 0.13733849 2.04755912 0.14301881 0.00528466 15 35 30.16 60 0.14123602 2.29682015 0.14348918 0.00211253 14 34 33.48 90 0.14325835 2.56269162 0.14333762 0.00007484 13 41 0.67 120 0.14189014 2.77858020 0.14279207 0.00085559 13 8 25.31 150 0.13862265 2.88188764 0.14237834 0.00357038 12 59 49.56 180 0.13616579 2.83577714 0.14242175 0.00594246 13 12 30.22 210 0.13652285 2.64761705 0.14287917 0.00601413 13 42 7.60 240 0.13961601 2.37153873 0.14339402 0.00354993 14 24 9.49 270 0.14278611 2.09069583 0.14344844 0.00061690 15 12 58.81 300 0.14243412 1.88659813 0.14284089 0.0003759S 15 59 29.51 330 0.13844795 1.81033610 0.14221981 0.00347617 16 27 51.54 2! 0.83698218 14.04078286 0.85728335 0.01903366 87 39 16.70 2 a 0.83697639 14.04078736 0.85728218 0.01903708 87 39 18.34 * 6a 2 + 3a 2 e ! + 6[a' s - Zkaa'ee' cos K] = 14.91703924. t - Cfc'oo' cos >' e sin K' = + 0.31507212. I 6[a'V - A-oaV cos A'] = + 0.25187831. OF THE ORBITS OF THE FOUK INNER PLANETS. 153 ACTION OF MERCURY ON MARS. E log /Co log V logtfo log N log /' logQ 0.02698253 0.30881667 0.21633345 0.0802043 9.8417843 0.0229194 30 0.02453876 0.30558607 0.21270775 0.0315423 9.7124165 9.9318941 60 0.02139874 0.30143126 0.20804354 9.9863199 9.5646986 9.8328372 90 0.01882471 0.29802213 0.20421541 9.9544525 9.4350567 9.7499589 120 0.01734193 0.29605696 0.20200830 9.9396879 9.3478315 9.6977395 150 0.01696133 0.29555239 0.20144156 9.9427992 9.3179221 9.6840260 180 0.01752419 0.29629857 0.20227967 9.9632970 9.3524331 9.7119954 210 0.01887658 0.29809086 0.20429260 9.9992756 9.4496853 9.7797276 240 0.02088535 0.30075154 0.20728036 0.0456467 9.5950386 9.8772472 270 0.02335208 0.30401640 0.21094579 0.0914150 9.7545935 9.9819419 300 0.02583676 0.30730232 0.21463400 0.1193985 9.8751689 0.0582665 330 0.02741722 0.30939106 0.21697800 fl.1150661 9.9072726 0.0734518 Si 0.12996950 1.81065732 1.25057932 0.1345541 7.5769549 9.2010052 2 2 0.12997068 1.81065891 1.25058111 0.1345506 7.5769465 9.2010002 E log V /i' J 2 J, Ft 0.0211422 0.148654076 -0.10722959 -0.015479687 +0.015330048 30 9.9305073 0.148321182 -0.10335718 -0.012048361 +0.014842503 60 9.8323421 0.145601872 -0.06932482 -0.006505466 +0.009955397 90 9.7499432 0.143412552 -0.01386724 -0.000353153 +0.001978227 120 9.6975735 0.143648964 +0.04858051 +0.004751607 -0.006951532 150 9.6833581 0.145958760 +0.10133761 +0.007449454 -0.014441148 180 9.7108663 0.148399366 +0.13001805 +0.007034457 -0.018483798 210 9.7785043 0.148942861 +0.12663289 +0.003626261 -0.017996253 240 9.8764415 0.146960494 +0.09193479 -0.001870362 -rO.013109151 270 9.9817831 0.144077345 -0.03534552 -0.007999542 -0.005131979 300 0.0581594 0.143355345 -0.02759166 -0.013127432 +0.003797779 330 0.0724209 0.145910972 0.07970449 -0.015871553 +0.011287401 2, 9.1965248 0.876620117* +0.06638728 -0.025196883 -0.009461257 2 2 9.1965168 0.876623672 +0.06638711 -0.025196894 -0.009461249 * 2,(J,' - G") = 0.857586462. S,(J,' - G") = 0.857586592. 154 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF MERCURY ON MARS. E 1000 X F, Ro So W,, fl<> 8* +0.3749543 -1.1968194 -0.10192940 -0.015991438 0.00000000 -0.07377742 30 +0.9451901 -1.0712026 -0.08041942 -0.009779348 -0.38240323 -0.05741705 60 +0.8478648 -0.9676664 -0.04346887 -0.004110828 -0.57689880 -0.02992414 90 +0.1645035 -0.9003960 -0.00725842 -0.000153771 -0.59093068 -0.00476371 120 -0.4045215 -0.8699380 +0.02266377 +0.002278066 -0.47241848 +0.01421151 150 -0.2449197 -0.8749740 +0.04587694 +0.003542283 -0.26566469 +0.02785885 180 +0.5450969 -0.9160775 +0.06265312 +0.003737622 0.00000000 +0.03761136 210 + 1.2365773 -0.9949389 +0.07097316 +0.002525788 +0.30208776 +0.04309857 210 + 1.1824210 -1.1083446 +0.06401101 -0.000941853 +0.60188486 +0.04013864 270 +0.4525829 -1.2337308 +0.03097697 -0.007413721 +0.80969859 +0.02033021 300 -0.2401087 -1.3158841 -0.02869644 -0.015188691 +0.78449755 -0.01975474 330 -0.2482279 -1.2994033 -0.08505077 -0.018952193 +0.46386745 -0.06072369 Si +2.3057068 -6.3747320 -0.02476681 -0.030217122 +0.33706513 -0.03149479 Z 2 +2.3057062 6.3746456 -0.02490154 -0.030230962 +0.33665520 -0.03161682 D . Ro cos v E RO sin v + (cos ,+cos E)S a + g BCC' ,+l) sin S. -2 -Bo a -0.2038588 +1.1968194 -0.004111709 +0.015453801 2.1703888 30 -0.7173754 +0.8165787 -0.007231890 +0.006582964 1.9693580 60 -0.9154636 +0.3357086 -0.004043881 +0.000738872 1.8450804 90 -0.8957943 -0.0984951 -0.000144266 -0.000053225 1.8007921 120 -0.7408612 -0.4547261 +0.001481632 +0.001730419 1.8210138 150 -0.4834776 -0.7324563 +0.000768358 +0.003457946 1.8912954 180 -0.1253062 -0.9160795 -0.000961015 +0.003611962 2.0030408 210 +0.3338218 -0.9514367 -0.001700736 +0.001867379 2.1505951 240 +0.8448003 -0.7366597 +0.000887111 -0.000316419 2.3200626 270 + 1.2254640 -0.1770222 +0.007311027 +0.001229687 2.4674617 300 + 1.1635310 +0.6123066 +0.011609114 +0.009794123 2.5090379 330 +0.5585553 +1.1811278 +0.005822238 +0.018035720 2.3888945 Si +0.0228415 +0.0373693 +0.004861252 +0.031012758 12.6686243 2 2 +0.0211938 +0.0382962 +0.004824731 +0.031120471 12.6683967 sin p JA,<'> + cos v Bo (e) = + 0".000000008. OF THE ORBITS OF THE FOUR INNER PLANETS. 155 DEFERENTIAL COEFFICIENTS. u log coeff. [de/dtlw = + 2517.5250 m' p 3.4009738 [d x /dt] w = + 46380.761 TO' p 4.6663379 [di/dt] w =+ 558.61256 m' p 2.7471107 [dn/di]oo =+110961.28 TO' p 5.0451714 [dir/dt] M = + 46438.628 TO' p 4.6668794 =+1455134.1 TO' p 6.1629030 TO FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF [de/dt]^ = +0.00033567000 [dx/dt] 00 = +0.0061841007 [di/dt] w = +0.000074481672 [cKl/dt] w = +0.014794833 [dw/dt] m = +0.0061918174 [dL/dt] w = +0.19401785 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt} 00 +0.00036 +0.00033 +0.0003357 e[dTr/dt] 00 +0.00058 +0.00057 +0.0005775 [di/dt]w +0.00008 +0.00007 +0.0000745 sin i [dtt/dt] w +0.00047 +0.00048 +0.0004778 NOTES. On account of the large eccentricities of both orbits and the high mutual incli- nation, the coefficients of the expansion diminish but slowly. Thus the combined effect of all terms from the 6th to the llth orders is l/30th of the whole with [de/dt]o , l/90th with [dw/dt] o, and 1 /200th with [di/dt] <>. Yet all of the variations are very small on account of the smallness of the mass of Mercury. A comparison with the computation of Mars on Mercury renders it evident that a division into twelve parts is sufficient and that terms of orders above the eleventh are wholly inappreciable. 156 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON MARS. E A B COS e B sin e 1000 xg h 2.41946745 -0.9101348 -0.4038413 0.003995803 1.8967820 30 2.47732532 -0.5530947 -0.8457642 0.017525935 1.9549495 60 2.63301427 -0.0217107 -1.0499345 0.027008907 2.1104659 90 2.85220984 +0.5416339 -0.9616453 0.022657521 2.3292431 120 3.07987480 +0.9859909 -0.6045536 0.008954722 2.5566759 150 3.25131035 + 1.1922952 -0.0743414 0.000135408 2.7282304 180 3.31318850 + 1.1052676 +0.4869209 0.005808973 2.7904410 210 3.24523275 +0.7482272 +0.9288436 0.021138190 2.7227529 240 3.06934808 +0.2168441 + 1.1330145 0.031452377 2.5468467 270 2.84005464 -0.3465004 + 1.0447250 0.026741552 2.3172324 300 2.62248756 -0.7908574 +0.6876330 0.011585000 2.0993294 330 2.47124772 -0.9971620 +0.1574211 0.000607167 1.9481304 2, 17.13738066* +0.5853997f +0.2492390t 0.088805782 14.0005408 2 2 17.13738062 +0.5854002 +0.2492388 0.088805773 14.0005387 G G' 10000 X G" 0.5226610 1.8967805 0.5226665 0.0403053 31 39 49.77 30 0.5223513 1.9549433 0.5223748 0.1716188 31 7 34.86 60 0.5225239 2.1104579 0.5225564 0.2449047 29 50 30.35 90 0.5229423 2.3292377 0.5229663 0.1860051 28 17 2.93 120 0.523174o 2.5566741 0.5231829 0.0669458 26 53 44.43 150 0.5230555 2.7282304 0.5230555 0.0009489 25 58 2.26 180 0.5227230 2.7904401 0.5227279 0.0398246 25 38 46.94 210 0.5224554 2.7227494 0.5224737 0.1485921 25 58 48.56 240 0.5224769 2.5468406 0.5225067 0.2363523 26 55 59.83 270 0.5227977 2.3172260 0.5228262 0.2207297 28 21 35.72 300 0.5231337 2.0993259 0.5231478 0.1054853 29 56 49.75 330 0.5230928 1.9481302 0.5230936 0.0059582 31 12 36.97 2i 3.1366929 14.0005190 3.1367881 0.7338180 170 55 41.07 Si 3.1366950 14.0005170 3.1367900 0.7338528 170 55 41.30 * 6o 2 + 3aV + 6[o' 2 - Zkaa'ee' cos K\ = 17.13738065. t 6[a'V - kaa'c cos A'] = + 0.5854002. \ - 6fc'aa' cos <p' e sin K' = + 0.2492389. OF THE ORBITS OF THE FOUR INNER PLANETS. 157 ACTION OF VENUS ON MAKS. I logtfo log LO log # log N log P log Q 0.10710693 0.41334627 0.33316554 0.1537292 0.0110396 0.2088768 30 0.10323050 0.40834940 0.32760279 0.1420610 9.9681345 0.1785258 60 0.09431348 0.39683240 0.31477271 0.1149515 9.8630204 0.1053425 90 0.08414014 0.38365383 0.30007678 0.0820056 9.7312249 0.0148651 120 0.07564158 0.37216263 0.28775224 0.0524079 9.609667o 9.9324836 150 0.07024983 0.36559243 0.27991042 0.0325881 9.5264184 9.8766175 180 0.06843912 0.36323215 0.27727293 0.0260737 9.4979593 9.8576733 210 0.07032296 0.36568773 0.28001691 0.0339679 9.5296356 9.8789748 240 0.07586487 0.37290310 0.28807661 0.0551373 9.6180289 9.9372082 270 0.08461922 0.38427537 0.30077024 0.0858518 9.7401822 0.0216495 300 0.09502686 0.39775494 0.31580088 0.1191144 9.8727052 0.1128332 330 0.10383003 0.40912260 0.32846370 0.1449403 9.9748268 0.1837860 Zi 0.51639284 2.31668149 1.81684091 0.5214139 8.4704208 0.154417o S 2 0.51639268 2.31668136 1.81684084 0.5214145 8.4704222 0.1544186 E log V Ji' J 2 J 3 f\ 0.2088756 0.52281610 -0.0030557479 -0.012760938 +0.0014450479 30 0.1785212 0.52261080 -0.0058421642 -0.016264386 +0.0030263615 60 0.1053364 0.52273704 -0.0069459413 -0.015093265 +0.0037569353 90 0.0148609 0.52303324 -0.0063117580 -0.009561780 +0.0034410135 120 9.9324822 0.52319006 -0.0041023613 -0.001152260 +0.0021632475 150 9.8766174 0.52307981 -0.0007324438 +0.007882145 +0.0002660128 180 9.8576725 0.52281605 +0.0030484592 +0.015121070 -0.0017423280 210 9.8789719 0.52262308 +0.0062562314 +0.018625039 -0.0033236408 240 9.9372033 0.52266847 +0.0079298727 +0.017454980 -0.0040542164 270 0.0216445 0.52292962 +0.0074476695 +0.011924014 -0.0037382940 300 0.1128306 0.52316808 +0.0048298806 +0.003513972 -0.0024605273 330 0.1837858 0.52311928 +0.0008867096 -0.005521489 -0.0005632929 Si 0.1544005 3.13739580* +0.0017041620 +0.007083559 -0.0008918410 2i 0.1544017 3.13739582 +0.0017042445 +0.007083543 -0.0008918399 * 2,(J/ - G") = 3, 13732242. 2,(J,' - G") = 3. 13732243. 158 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF VENUS ON MARS. E 100000 X F, Ro 1000 X So 1000 X W<> <' S<"> - 2.705324 -1.4244790 -3.460778 -20.67006 0.0000000 -0.002504942 30 - 0.803003 -1.3866027 -6.000157 -24.54092 -0.4949963 -0.004283931 60 + 5.500746 -1.3028006 -6.111878 -19.19609 -0.7766973 -0.004207440 90 + 9.816975 -1.2077652 -4.678320 - 9.84176 -0.7926572 -0.003070385 120 + 7.633806 -1.1282518 -2.631099 - 0.95528 -0.6126954 -0.001649853 150 + 0.880725 -1.0779056 -0.461908 + 5.93579 -0.3272800 -0.000280495 180 - 3.932916 -1.0618130 +1.648220 +10.88332 0.0000000 +0.000989445 210 - 2.161955 -1.0812437 +3.609363 +14.08781 +0.3282934 +0.002191792 240 + 4.374565 -1.1352348 +5.187600 +15.12313 +0.6164876 +0.003252928 270 + 9.225323 -1.2184712 +5.773047 +12.58406 +0.7996835 +0.003788855 300 + 7.735212 -1.3155488 +4.427365 + 4.61417 +0.7842976 +0.003047815 330 + 1.648024 -1.3961376 +0.822269 - 8.41473 +0.4984001 +0.000587075 Si + 18.606089 -7.3681280 -0.940570 -10.20081 +0.0113925 -0.001072047 2 2 + 18.606089 -7.3681260 -0.935706 -10.18975 +0.0114435 -0.001067089 E . Rt, cos v Rosmv + (cos v + cos )S +T- sec 2 v +lj sin vS, Wo sin u -2^0 a -0.0069216 + 1.4244790 -0.005314674 +0.019975127 2.5832417 30 -0.7611745 + 1.1593980 -0.018148167 +0.016519714 2.5492068 60 -1.1839523 +0.5449664 -0.018883467 +0.003450266 2.4840909 90 -1.2020643 -0.1220026 -0.009233404 -0.003406539 2.4155306 120 -0.9266826 -0.6439879 -0.000621304 -0.000725630 2.3617340 150 -0.4956901 -0.9571936 +0.001287534 +0.005794466 2.3299411 180 -0.0032964 -1.0618130 -0.002798312 +0.010517416 2.3216920 210 +0.4917082 -0.9631868 -0.009486007 +0.010415471 2.3371562 240 +0.9297081 -0.6522758 -0.014244152 +0.005080676 2.3763511 270 + 1.2126214 -0.1251906 -0.012409750 -0.002087273 2.4369424 300 + 1.1939212 +0.5533939 -0.003526734 -0.002975358 2.5083988 330 +0.7575012 + 1.1728178 +0.002585060 +0.008007817 2.5667361 2i +0.0027764 +0.1647626 -0.045388643 +0.035322497 14.6355085 2 2 +0.0029019 +0.1646422 -0.045404734 +0.035243656 14.6355132 sin<f> j4i (<) + coaip Bo (c) = O."0000000073. OF THE ORBITS OF THE FOUR INNER PLANETS. 159 DIFFERENTIAL COEFFICIENTS. [de/dt] w = + 324.6318 m' p 2.5113911 [dx/dfloo = + 201915.56 TO' p 5.3051698 [di/dt]oo 5236.2608 m' n 3.7190213 [dtt/dt] m + 126021.28 TO' p 5.1004439 [dTT/dtlw = + 201981.28 m' p 5.3053112 [dL/dt] m = +1681713.6 m' p 6.2257520 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [dg/dfloo = +0.0007954049 [dx/dfloo = +0.49472856 [di/di]oo = -0.012829757 [dO/d<]oo = +0.30877426 [dr/dfloo = +0.49488961 [dL/dt] m = +4.1204933 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. loo +0.00080 +0.00079 +0.000795 e[drldt]ao +0.04618 +0.04614 +0.0461574 [difdt] m -0.01280 -0.01284 -0.012830 sin i [dfl/d<]oo +0.00993 +0.00998 +0.009972 [dL/dt] M +4.117 +4.120493 NOTES. The very close agreement of the sums of the functions near the beginning of the computation is caused by the great circularity of the orbit of Venus. The discrepan- cies increase however as the work proceeds because of the high eccentricity of Mars and the rather large mutual inclination. All terms from the 6th to the llth orders, in- clusive, produce an effect equal to l/30th of the whole in the very small coefficient [de/dt]oo, and 1 /1000th of the whole in [dttfdt} 00 . Yet it is evident that terms of the twelfth and higher orders are wholly inappreciable. 160 THE SECULAR VARIATIONS OF THE ELEMENTS E A 2.88085183 30 2.95824702 60 3.13279096 90 3.36510700 120 3.59664230 150 3.76166099 180 3.80855449 210 3.72106141 240 3.52632175 270 3.28390784 300 3.06247042 330 2.91764743 Si 20.00763175* S 2 20.00763169 ACTION OF THE EARTH ON MARS. B cos f B sin 1000 X g -0.8153552 -1.1018750 0.34149937 -0.0872040 -1.3962265 0.54832354 +0.6917421 -1.2860904 0.46523043 + 1.3127653 -0.8009781 0.18045398 + 1.6094626 -0.0708746 0.00141289 + 1.5023341 +0.7085891 0.14122581 + 1.0200854 + 1.3285566 0.49646115 +0.2919341 + 1.6229077 0.74082034 -0.4870119 + 1.5127725 0.64368353 -1.1080347 + 1.0276597 0.29704612 -1.4047322 +0.2975561 0.02490366 -1.2976042 -0.4819076 0.06532098 +0.6141908J +0.6800452f 1.97319103 +0.6141906 +0.6800443 1.97319077 1.8833414 1.9597848 2.1332651 2.3654511 2.5975998 2.7632686 2.8103218 2.7223893 2.5269386 2.2841910 2.0633533 1.9197321 14.0148199 14.0148169 E I' G G' G' o 0.9972292 1.8831367 0.9976157 0.00018178 46 42 32.02 30 0.9981810 1.9594937 0.9987522 0.00028018 45 33 35.15 60 0.9992447 2.1330727 0.9996552 0.00021818 43 12 19.69 90 0.9993747 2.3653953 0.9995068 0.00007633 40 32 44.90 120 0.9987612 2.5975995 0.9987622 0.00000054 38 19 18.09 150 0.9981111 2.7632397 0.9981913 0.00005120 36 56 40.43 180 0.9979514 2.8102243 0.9982259 0.00017698 36 35 10.16 210 0.9983909 2.7222314 0.9988211 0.00027246 37 17 7.37 240 0.9991020 2.5267718 0.9995236 0.00025487 38 58 33.58 270 0.9994356 2.2840897 0.9996671 0.00013009 41 25 15.69 300 0.9988359 2.0633420 0.9988593 0.00001208 44 5 20.00 330 0.9976341 1.9196952 0.9977050 0.00003411 46 7 50.45 2, 5.9911243 14.0141470 5.9926419 0.00081443 247 53 13.54 2 2 5.9911274 14.0141449 5.9926435 0.00084437 247 53 13.98 * Go 2 + 3o 2 e 2 + 6[a' 2 - Zkaa'ee' cos K] = 20.00763172. t 6[a'V - fcaa'e cos A'] = + 0.6141907. t - 6fcW cos <p' e sin K' = + 0.6800448. OF THE ORBITS OF THE FOUR INNER PLANETS. 161 ACTION OF THE EARTH ON MABS. E log A' log Lo' lOgtfo log N log P logQ 0.25724275 0.60257672 0.54204483 0.3085062 0.3612353 0.5756272 30 0.24243067 0.58425966 0.52198206 0.2796590 0.2795065 0.5094350 60 0.21406633 0.54897788 0.48324184 0.2277018 0.1185796 0.3818936 90 0.18497596 0.51250382 0.44306081 0.1727907 9.9374590 0.2419337 120 0.16284593 0.48455413 0.41218099 0.1292685 9.7846780 0.1268772 150 0.15007482 0.46834273 0.39423491 0.1040949 9.6895845 0.0569033 180 0.14686278 0.16425584 0.38970669 0.0998549 9.6665742 0.0407933 210 0.15317152 0.47227918 0.39859494 0.1168787 9.7192209 0.0805051 240 0.16915889 0.49254542 0.42101792 0.1535252 9.8408510 0.1719333 270 0.19422097 0.52412777 0.45588060 0.2048055 0.0114576 0.3019483 300 0.22440852 0.56187400 0.49741669 0.2597585 0.1924850 0.4426015 330 0.24970710 0.59326698 0.53185208 0.3003845 0.3271715 0.5489966 2, 1.17458520 3.15478399 2.74560896 1.1786151 9.9644030 1.7397260 2 2 1.17458104 3.15478014 2.74560540 1.1786131 9.9643999 1.7397219 E logF JV J 2 J, F, 0.5755790 0.99892684 -0.018227992 +0.028809050 +0.018467466 30 0.5093633 0.99952648 -0.022898545 +0.020515873 +0.023400805 60 0.3818419 0.99990323 -0.021379458 +0.006120062 +0.021554920 90 0.2419173 0.99967015 -0.013761084 -0.010518960 +0.013424123 120 0.1268771 0.99911770 -0.001690224 -0.024941756 +0.001187862 150 0.0568937 0.99877639 +0.011675876 -0.033284760 -0.011875978 180 0.0407608 0.99892204 +0.022549333 -0.033314577 -0.022266656 210 0.0804536 0.99942130 +0.027739796 -0.025024224 -0.027199994 240 0.1718817 0.99985593 +0.025696938 -0.010634071 -0.025354120 270 0.3019193 0.99982014 +0.017055202 +0.006002126 -0.017223615 300 0.4425985 0.99929729 +0.004464507 +0.020427743 -0.004987052 330 0.5489877 0.99880864 -0.008398230 +0.028776417 +0.008076789 2, 1.7395389 5.99602303* + 0.011413104 -0.013533549 -0.011397580 Zo 1.7395349 5.99602310 +0.011413015 -0.013533528 -0.011397570 *Z,(Ji' - G") = 5.99517860. 2 2 (J/ - G") = 5.99517873. 162 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF THE EARTH ON MARS. E 1000 XF, n c* "nr ft/Q Ofl If R<> fl -0.13911285 -2 .0302096 -0.026171976 +0.10810004 0.0000000 -0.018943511 30 -0.51397488 -1 .9019956 -0.029451014 +0.06531256 -0.6789837 -0.021027135 60 -0.65316258 -1 .6889696 -0.023181583 +0.01388518 -1.0069217 -0.015958290 90 -0.40694037 -1 .4884239 -0.012395858 -0.01871310 -0.9768538 -0.008135411 120 -0.02612649 -1 .3462165 -0.001540204 -0.03342035 -0.7310608 -0.000965798 150 +0.08995598 -1 .2702099 +0.007499119 -0.03789964 -0.3856685 +0.004553852 180 -0.20223795 -1 .2578222 +0.014435140 -0.03668660 0.0000000 +0.008665574 210 -0.63957154 -1 .3082364 +0.019136251 -0.03045222 +0.3972143 +0.011620521 240 -0.80757787 -1 .4237326 +0.020598-119 -0.01635704 +0.7731558 +0.012916412 270 -0.54879816 -1 .6023546 +0.016496265 +0.01146539 + 1.0516264 +0.010826511 300 -0.11741630 -1 .8174946 +0.004601712 +0.05641742 + 1.0835451 +0.003167836 330 +0.07369507 -1 .9931947 -0.012572900 +0.10202141 +0.7115406 -0.008976672 2, -1.94563404 -9 .5644451 -0.011258492 +0.09193865 +0.1187184 -0.011117777 2 2 -1.94563390 -9.5644151 -0.011288137 +0.09173440 +0.1188753 -0.011138334 Ro COS V E Ro sin v + (c,osv + cosE)S . (r \ . Wa cos u + ( - seo 2 <f + 1 j sin i'.S W sin u 2 RQ a -0.0523440 +2.0302096 +0.027794619 -0.10446568 3.6817114 30 -1.0803151 + 1.5681913 +0.048299056 -0.04396512 3.4967331 60 -1.5490313 +0.6794308 +0.013659050 -0.00249569 3.2204119 90 -1.4807799 -0.1636143 -0.017556368 -0.00647718 2.9768478 120 -1.1074128 -0.7656902 -0.021736270 -0.02538610 2.8179922 150 -0.5982290 - 1 . 1 202 1 78 - 0.008220822 -0.03699731 2.7456152 180 -0.0288703 - 1 .2578222 +0.009432839 -0.03545319 2.7502731 210 +0.5690362 -1.1796147 +0.020504958 -0.02251409 2.8278111 240 + 1.1509410 -0.8419068 +0.015406346 -0.00549521 2.9802545 270 + 1.5938315 -0.1824413 -0.011306572 -0.00190172 3.2047092 300 + 1.6480563 +0.7072282 -0.043121307 -0.03637964 3.4654744 330 + 1.0579845 + 1.6887208 -0.031341647 -0.09708793 3.6643987 2, +0.0613389 +0.6114494 +0.001435277 -0.20967551 18.9161075 2 2 +0.0615274 +0.6110240 +0.000378605 -0.20894335 18.9161151 sin ip |Ai (>) + cos f B <> = + 0.000000102. OF THE ORBITS OF THE FOUR INNER PLANETS. 163 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = + 7024.3393 TO' p 3.8466055 [d x /dt] w = + 749340.69 TO' p 5.8746793 [di/dt]<n = + 104.61082 TO' p 2.0195766 [dtt/dt] w = - - 747594.66 TO' n 5.8736662 [dvldt] m = + 748950.76 TO' p 5.8744532 [dL/dt] m = +2175235.9 TO' p 6.3375064 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [<fe/cft]oo = +0.021481158 [d x /dt] w = +2.2915614 [dildt] m = +0.00031991074 [dQ/<ft]oo = -2.2862242 [dr/dt] m = +2.2903688 *dLldt] m = +6.6520970 COMPARISON WITH OTHER RESULTS. Leverrier. Neweomb. Method of Gauss. [de/dt]oo +0.02151 +o!o2148 +o!o2148116 e[dirldt] M +0.21276 +0.21374 +0.21361818 [difdt] m +0.00030 +0.00032 +0.00031991 sin i [dtt/dt] m -0.07391 -0.07379 -0.07383093 [dL/diloo +6.638 +6.6520970 NOTES. As in all cases in which Mars is the disturbed body, the gradual increase in the discrepancies in the sums of the functions as the computation proceeds is caused prin- cipally by the large value of e. The greatest effect which is here produced by the inclusion of all terms from the fifth to the eleventh orders occurs with the coefficient [dirldt] QQ and amounts to 0".0007. It is evident that a division into twelve parts is fully sufficient. 164 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF JUPITER ON MARS. E A B cos f B sin f g h 29.52014024 +6.924444 -4.477639 1.2637451 27.008366 30 29.73057269 + 8.555992 -0.736229 0.0341655 27.006182 60 29.83402815 +8.090126 +3.325863 0.6972206 27.007669 90 29.81017790 +5.651672 +6.620206 2.7625134 27.011679 120 29.66910846 + 1.894010 +8.264081 4.3047762 27.014415 150 29.44492347 -2.175995 +7.817013 3.8516159 27.013253 180 29.19030067 -5.467791 +5.398794 1.8371936 27.009343 210 28.96977017 -7.099343 + 1.657384 0.1731141 27.006389 2-10 28.84611897 -6.633477 -2.404708 0.3644905 27.006977 270 28.85987156 -4.195019 -5.699050 2.0472288 27.010168 300 29.01103882 -0.437358 -7.342925 3.3985953 27.012567 330 29.25541959 +3.632647 -6.895857 2.9973538 27.011662 2, 176.07073531* +4.369955t +2.7634661 11.8660213 162.059336 2 2 176.07073538 +4.369955 +2.763467 11.8660215 162.059333 E o 30 60 90 120 150 180 210 240 270 300 330 2, I G G' G" 27.0064605 27.0061300 27.0066036 27.0074648 27.0078870 27.0074649 27.0066097 27.0061336 27.0064416 27.0071624 27.0075479 27.0071916 162.0415503 162.0415473 * 6a 2 + SaV + 6[o' ! - 2fcaa'ee' cos A'] = 176.07073528. t 6[a'V - kaa'e cos K] = + 4.369954. t - Qk'aa' cos *>' e sin K' = + 2.763466. 2.448742 2.661358 2.763328 2.735467 2.591662 2.368639 2.117926 1.900349 1.77611T 1.786671 1.935440 2.180725 13.633208 13.633209 2.4695960 0.0189481 17 39' 53.68 2.6618860 0.0004753 18 17 56.75 2.7737001 0.0093077 18 43 15.01 2.7765210 0.0368400 18 48 58.35 2.6581522 0.0599626 18 28 29.57 2.4330416 0.0586151 17 39 45.34 2.1522663 0.0316074 16 30 39.82 1.9039718 0.0033673 15 24 39.18 1.7842098 0.0075644 14 55 27.23 1.8310752 0.0413982 15 15 16.64 2.0032755 0.0628165 16 2 14.95 2.2348561 0.0496603 16 53 32.61 13.841199!) 0.1902067 102 20 0.26 13.8413516 0.1903562 102 20 8.87 OF THE ORBITS OF THE FOUR INNER PLANETS. 165 ACTION OF JUPITEU ON MARS. E logtfo log L ' log No log N log P logQ 0.03165483 0.31498612 0.22325507 8.3476456 5.7990872 7.1391284 30 0.03402451 0.31811150 0.22676030 8.3623570 5.8175286 7.1576473 60 0.03565117 0.32025551 0.22916442 8.3954324 5.8524487 7.1929772 90 0.03602468 0.32074766 0.22971622 8.4366023 5.8931984 7.2342427 120 0.0346975G 0.31899875 0.22775524 8.4742980 5.9283892 7.2695995 150 0.03164635 0.31497492 0.22324250 8.4991683 5.9492925 7.2899854 180 0.02757619 0.30960108 0.21721367 8.5057537 5.9513987 7.2909894 210 0.02396325 0.30482489 0.21185335 8.4928484 5.9346402 7.2731852 240 0.02244999 0.30282273 0.20960576 8.4633475 5.9029922 7.2413643 270 0.02347170 0.30417466 0.21112344 8.4239469 5.8638333 7.2029262 300 0.02598821 0.30750252 0.21485868 8.3844577 5.8269721 7.1668224 330 0.02889111 0.31133796 0.21916251 8.3560126 5.8027960 7.1428978 ?! 0.17801795 1.87416671 1.32185284 0.5709348 5.2612881 3.3008810 2-2 0.17802160 1.87417159 1.32185832 0.5709353 5.2612888 3.3008846 E logF li' Ji J, F 2 7.1387522 27.0207890 -0.20899481 +0.30968500 + 5.840160 30 7.1576379 27.0065721 -0.03630747 -0.02674093 + 0.960260 60 7.1927926 27.0099958 +0.15284461 -0.36413185 - 4.337906 90 7.2335125 27.0290264 +0.31348417 -0.61207993 - 8.634698 120 7.2684108 27.0492502 + 0.40064241 -0.70414548 -10.778797 150 7.2888221 27.0526590 +0.38540712 -0.61566134 -10.195688 180 7.2903609 27.0334483 +0.26823852 -0.37034175 - 7.041617 210 7.2731181 27.0094582 +0.08088102 -0.03392190 - 2.161717 240 7.2112135 27.0106120 -0.12278062 +0.30345694 + 3.136448 270 7.2021019 27.0363209 -0.28345023 +0.55139880 + 7.433241 300 7.1655732 27.0521350 -0.35632057 +0.64347029 + 9.577337 330 7.1419111 27.0423420 -0.32638726 +0.55499853 + 8.991231 2i 3.2971031 162.1762303* +0.13362954 -0.18200685 - 3.604375 V 3.2971036 162.1763786 +0.13362735 -0.18200677 - 3.604371 * S,(J,' - G") = 161 .9860236. 2(Ji' - G") = 161 .9860224. 166 THE SECULAR VARIATIONS OF THE ELEMENTS E 30 60 90 120 150 ISO 210 240 270 300 330 Si E F, -0.11464084 -0.02209150 +0.08535418 +0.09095508 -0.02126155 -0.14774803 -0.16666131 -0.05846157 +0.07437981 +0.10831696 +0.01978452 -0.09401607 -0.12304519 -0.12304513 fto sin v + (cos v + oos E)f><, ACTION OF JUPITER ON MARS. # 1000 X -So 1000 X W 1000 X R M 1000 X <S ( "> 0.011523729 +0.08005004 +0.4190397 0.000000 +0.05794093 0.011964482 +0.01088811 -0.0398940 +4.271140 +0.00777378 0.012921829 -0.07058125 -0.5615348 +7.703673 -0.04858841 0.014185469 -0.13852471 -1.0407895 +9.309934 -0.09091387 0.015433331 -0.17072189 -1.3081943 +8.381048 -0.10705259 0.016299442 -0.15776374 -1.2103390 +4.948932 -0.09580229 0.016504164 -0.10615120 -0.7376107 0.000000 -0.06372374 0.015978601 -0.03427562 -0.0686500 -4.851517 -0.02081393 0.014896574 +0.03689409 +0.5347724 -8.089562 +0.02313475 0.013593080 +0.09184683 +0.8860645 -8.921148 +0.06027915 0.012429971 +0.12131684 +0.9434385 -7.410440 +0.08351498 0.011688531 +0.11863615 +0.7635196 -4.172629 +0.08470265 0.083709598 -0.10919337 -0.7100892 +0.584719 -0.05477408 0.083709605 -0.10919298 -0.7100884 +0.584712 -0.05477451 i flo COS V + Ir \ . 1000 X Wo cosu 1000 X JTo sin u -2-R,, +0.000160100 -0.011523729 +0.10774325 -0.4049515 -0.020897865 30 +0.006498115 -0.010046690 -0.02950189 +0.0268547 -0.021996162 60 +0.011621455 -0.005638033 -0.55239000 +0.1009292 -0.024638457 90 +0.014136555 +0.001045999 -0.97645422 -0.3602495 -0.028370938 120 +0.012896599 +0.008458998 -0.85083667 -0.9937043 -0.032306104 150 +0.007784436 +0.014315488 -0.26253500 -1.1815227 -0.035231972 180 +0.000212302 +0.016504164 +0.18965406 -0.7128120 -0.036086942 210 -0.007299886 +0.014215603 +0.04622538 -0.0507547 -0.034538456 240 -0.012311629 +0.008381401 -0.50369057 +0.1796589 -0.031182525 270 -0.013542396 +0.001084104 -0.87379071 -0.1469683 -0.027186159 300 -0.011129593 -0.005518211 -0.72109467 -0.6083574 -0.023700620 330 -0.006127613 -0.009949901 -0.23455823 - 0.7265980 -0.021488839 Si +0.001449234 +0.010664590 -2.33061460 -2.4392371 -0.168812513 2,. +0.001449211 +0.010664603 -2.33061467 -2.4392385 -0.168812526 sin v> Mi w + cos <p B (c) = - 0.00000000019. OF THE ORBITS OF THE FOUR INNER PLANETS. 167 DIFFERENTIAL COEFFICIENTS. log coeff. [<fe/cB]oo = + 165.70584 m' p 2.2193378 [dx/dtln =+13074.175 m' p 4.1164143 [di/dt] m = - 268.82366m' n 2.4294675 [dQ/dt] w = -- 8712.2760 m' n 3.9401316 [dT/dfla, = +13069.631 TO' p 4.1162634 [dL/dt] 00 = -19334.282 TO' n 4.2863281 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] m = + 0.15813453 [dxldt] m +12.476799 [di/dt] m = -- 0.25654077 [dQ/dflflo = - 8.3142000 [dirfdt] w = +12.472464 [dL/dt] w = -18.450874 COMPARISON WITH OTHER RESULTS. LeveiTier. Newcomb. Method of Gauss. [de/dt}oo + 0.15810 +0.15818 + 0.1581345 e[dirfdt] m + 1.16323 + 1.16372 + 1.1632822 [di/dfloo - 0.25648 -0.25655 - 0.2565408 sin i [dttjdt] w - 0.26864 -0.26850 - 0.2684974 [dL/dt]oo -18.450 -18.450874 NOTES. The very exact agreement of the final sums shows that for this case the expansion of the perturbing function is highly convergent. The greatest effect of all terms from the sixth to the eleventh orders inclusive occurs with [de/dt] 00 , and amounts to but l/100000th of the whole variation. This computation has been twice effected by DR. ARTHUR B. TURNER from the same elements as are here employed. His first computation was made by HILL'S first method, exactly as here, and was presented as a Thesis to the Faculty of the 168 THE SECULAR VARIATIONS OF THE ELEMENTS Graduate School of the University of Pennsylvania, 1902. The values of the functions in this computation agree practically throughout with those here given, but the last two figures usually differ because eight place logarithms are here employed in certain parts of the work. DR. TURNER'S second computation, (A. N., 3065), was made according to the method developed by DR. Louis ARNDT (SO) . The two papers taken together are of high value since they afford a means of comparing the labor and accuracy appertaining to the two very different methods. It is DR. TURNER'S opinion that while the form- ulas of ARNDT'S method are presented in a more symmetric form yet they are less accurate in application than those of DR. HILL. This is confirmed by the circum- stance that the residual from the equation [da/dt}^ = is 300 times larger with the former method than with the latter. DR. TURNER'S results from ARNDT'S method, which agree almost exactly with his earlier values and with those here obtained, are as follows: [de/diloo = + 0.1581330 [dx/<ttjoo = +12.47677 [dildt] M = - 0.2565480 [dti/dt]* = - 8.314194 ldr/dt]m = +12.47244 [dL/dtloo = -18.45083 ACTION OF SATURN ON MARS. E A B sin ( B cos < 9 h 92.2326164 -11.747198 - 0.835808 39.461155 90.708401 T 30 93.1075498 - 13.263728 + 6.495252 50.307460 90.7105920 60 94.0543836 -10.902482 + 13.616320 33.990063 90.7106532 90 94.8268069 - 5.296150 + 18.619311 8.020876 90.7086748 120 95.2215463 + 2.053054 +20.163679 1.205319 90.7070348 150 95.1291338 + 9.175915 + 17.835613 24.076867 90.7078833 180 94.5669406 + 14.163873 + 12.258914 57.367408 90.7108082 210 93.6819094 + 15.680401 + 4.927852 70.309758 90.7131088 240 92.7148797 + 13.319160 - 2.193216 50.728826 90.7125327 270 91.9323586 + 7.712824 - 7.196207 17.010933 90.7095237 300 91.5477178 + 0.363621 - 8.740573 0.037809 90.7066608 330 91.6603255 - 6.759241 - 6.412507 13.064630 90.7063166 ^ 560.3380844* + 7.250028f + 34.2693 16} 182.790580 544.256090(1 2 2 560.3380840 + 7.250021 +34.269314 182.790524 544.2560991 * 6d 2 + SaV + 6[a' 2 - t Gfc'aa' cos if' e sin \ 6[a'V - kaa'e cos A'] Ikaa'ee' cos A'] = + 500.3380843. A' = + 7.250024. = + 34.269314. OF THE ORBITS OF THE FOUR INNER PLANETS. 169 E ACTION OF SATUKN ON MARS. G G' G" 30 60 90 120 150 180 210 240 270 300 330 Zi z, E 1.2382581 2.1110005 3.0577732 3.8321748 4.2285543 4.1352933 3.5701752 2.6828133 1.7163897 0.9368777 0.5550998 0.6680516 14.3662501 14.3662411 log Ko 90.70353S2 1.5278682 0.2847474 8 90.7043316 2.3529760 0.2357148 9 90.7063778 3.1798913 0.1178425 10 90.7076570 3.8561238 0.0229312 11 90.7068811 4.2318481 0.0031400 12 90.7048170 4.2015371 0.0631774 12 90.7035495 3.7462608 0.1688274 11 90.7043024 2.9540530 0.2624034 10 90.7062481 2.0020241 0.2793497 9 90.7074346 1.1081936 0.1692270 6 90.7066561 0.5558543 0.0007499 4 90.7047169 0.8409314 0.1712800 6 544.2332508 15.2437468 0.8546569 57 544.2332595 15.3138149 0.9247338 57 log LO' log No log N log I' 6 50.425 42 47.930 59 5.400 55 59.135 28 42.340 31 7.643 58 46.967 50 18.088 6 39.626 48 32.560 29 34.176 3 29.499 9 38.934 52 14.855 logQ 0.00656257 0.28174175 0.18592136 7.5317335 3.8955043 5.7586694 30 0.00942345 0.28554606 0.19019807 7.5468281 3.9148639 5.7782711 60 0.01207449 0.28906810 0.19415617 7.5819826 3.9546474 5.8179375 90 0.01427105 0.29198398 0.19743287 7.6263318 4.0028084 5.8660110 120 0.01561994 0.29377356 0.19944338 7.6674180 4.0458810 5.9092061 150 0.01572227 0.29390930 0.19959586 7.6949830 4.0730267 5.9366461 180 0.01438391 0.29213375 0.19760114 7.7028806 4.0781506 5.9420499 210 0.01175197 0.28863978 0.19367515 7.6895882 4.0604630 5.9243808 240 0.00828439 0.28403181 0.18849593 7.6581064 4.0241928 5.8876296 270 0.00461510 0.27914998 0.18300711 7.6156278 3.9778730 5.8401825 300 0.00200564 0.27567456 0.17909843 7.5727522 3.9331412 5.7942078 330 0.00365091 0.27786617 0.18156337 7.5415145 3.9024823 5.7646287 V ^-1 0.05893094 1.71642353 1.14471671 5.7148732 3.9315172 5.1097001 2 2 0.05943475 1.71709527 1.14547243 5.7148733 3.9315172 5.1101201 170 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF SATUKN ON MARS. E logF /' J'Z J 3 F 2 F, 5.7569714 90.9876364 -0.64905242 +0.2442109 + 59.776028 -2.2333582 30 5.7768667 90.9027545 -0.80993896 -1.6448282 + 67.492953 -2.2386206 60 5.8172358 90.7031717 -0.67748734 -3.0908929 +55.477667 -1.0572468 90 5.8658745 90.5722076 -0.29321392 -3.7064154 +26.949646 +0.0320703 120 5.9091874 90.5928360 +0.18262899 -3.3264146 -10.447038 -0.2313819 150 5.9362703 90.7254544 +0.58278840 -2.0527628 -46.691968 -1.7836963 180 5.9410456 90.8717164 +0.80450796 -0.2268316 -72.073367 -3.2467872 210 5.9228190 90.9409399 +0.82304924 + 1.6620728 -79.790278 -3.2597888 240 5.8859649 90.8876171 +0.67261531 +3.1078694 -67.775016 -1.8125358 270 5.8391722 90.7221965 +0.40924575 +3.7232565 -39.246977 -0.2549584 300 5.7942033 90.5707339 +0.07363159 +3.3433908 - 1.850296 +0.0267586 330 5.7636057 90.8202137 -0.30508990 +2.0700081 +34.394639 -1.0495556 Si 5.1046084 544.6137115* +0.40684409 +0.0513320 -36.892022 -8.5545513 2 2 5.1046084 544.6837666 +0.40684061 +0.0513310 -36.891985 -8.5545494 E R* 1000000 X So 1000 X W a 1000 X B ( "> 100000 X S ( "> 1000 X[flo sin v+ (cos v-\- cos E) So] 0.0017097618 + 9.903284 +0.01219946 0.0000000 +0.7168085 +0.0198066 30 0.0017745243 + 7.025377 -.0.10023833 +0.6334785 +0.5015908 +0.9730086 60 0.0019262900 + 5.499323 -0.20387007 + 1.1484062 +0.3785755 + 1.7472855 90 0.0021375714 + 5.593738 -0.27213044 + 1.4028896 +0.3671175 +2.1277319 120 0.0023569201 + 3.205770 -0.27013289 + 1.2799221 +0.2010205 + 1.9382857 150 0.0025168546 - 4.917236 -0.17936963 +0.7641820 -0.2986000 + 1.1679255 180 0.0025606191 - 16.044422 -0.02369074 0.0000000 -0.9631644 +0.0320888 210 0.0024720520 -22.805150 +0.13539869 -0.7505788 -1.3848465 -1.0986739 240 0.0022843230 -19.928906 +0.23709997 -1.2404980 -1.2496588 -1.8606368 270 0.0020608533 - 9.038484 +0.25685358 -1.3525394 -0.5931965 -2.0510270 300 0.0018652798 + 2.997952 +0.20817962 -1.1120336 +0.2063802 -1.6842325 330 0.0017413378 + 9.774776 +0.11927113 -0.6216313 +0.6978895 -0.9263634 2, 0.0127031938 - 14.366999 -0.04021465 +0.0757967 -0.7100385 +0.1925973 2 0.0127031934 -14.366879 -0.04021500 +0.0758006 -0.7100452 +0.1926017 * 2,(J,' - G") = 543.7590546. 2 Z (J,' - G") = 543.7590328. OF THE ORBITS OF THE FOUR INNER PLANETS. 171 1000 X |~- flocosv L f E ( \ -i 1000 X W cos u 1000 X W sin u 1000X-2-flo - sec 2 ip + 1 1 sin vSo a -1.7097618 +0.00313672 -0.01178931 - 3.1005914 30 -1.4844381 -0.07412689 +0.06747540 - 3.2623831 60 -0.8120508 -0.20054993 +0.03664321 - 3.6729182 90 +0.2105546 -0.25530900 -0.09419278 - 4.2751426 120 + 1.3414125 -0.17569179 -0.20519295 - 4.9336670 150 + 2.2292256 -0.03890712 -0.17509913 - 5.4402943 180 +2.5606191 +0.00609135 -0.02289425 - 5.5988851 210 + 2.2161495 -0.09117052 +0.10010366 - 5.3434506 240 + 1.3285850 -0.22331936 +0.07965468 - 4.7817011 270 +0.2102889 -0.25329570 -0.04260337 - 4.1217062 300 -0.8010985 -0.15911711 -0.13424046 - 3.5565885 330 -1.4740745 -0.03664087 -0.11350351 - 3.2013711 38, + 1.9077055 -0.74945012 -0.25781908 -25.6443513 2 2 + 1.9077060 -0.74945010 -0.25781973 -25.6443479 sin + cos <p (c) = + 0.000000000031. DIFFERENTIAL COEFFICIENTS. [deldt] m [d*/dt] w [di/dt] m = + 22.022051 m' = +2338.7360 TO' 86.444970 TO' - 920.85894 TO' [dw/dt] w = +2338.2557 m' -2935.3283 TO' log coeff. p 1.3428578 p 3.3689812 n 1.9367398 n 2.9641931 p 3.3688920 n 3.4676567 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. = +0.0062891406 = +0.66790508 [di/dt] M = -0.024687281 [dtt/dt] M = -0.26298236 [d7r/d<]oo = +0.66776785 = -0.83828212 172 THE SECULAR VARIATIONS OF THE ELEMENTS COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] w +0.00627 +0.00629 +0.0062891 e[dw/dt] w +0.06226 +0.06226 +0.0622814 [di/dt] m -0.02467 -0.02468 -0.0246873 sin i [dtt/dt] m -0.00852 -0.00849 -0.0084927 [dL/dt} w -0.838 -0.8382821 NOTES. As in other similar cases, the great disagreement of the sums of the functions near the beginning of the computation arises principally from the term a' 2 e', but the remarkably close agreement of the final sums shows that the expansion of the per- turbing function for this case is very convergent. The greatest effect produced by all terms from the sixth to the eleventh orders inclusive here occurs with [de/dt] 00 and amounts to but l/100000th of the value of this coefficient. DR. SAMUEL G. BARTON has effected this computation from the same elements as are here employed, making use of the formulas developed by DR. ARNDT (SO) . (A Thesis presented to the Faculty of the Graduate School of the University of Pennsylvania, 1906}. The results* obtained by him are as follows: [de/dt] m = +0.0062897 e[dw/dt] w = +0.0622817 [di/dl] w = -0.0246873 sin i [dtt/dt] M = -0.0084927 [dL/dt] w = -0.8382857 The agreement is thus practically exact. It is the conclusion of DR. BARTON that in spite of the greater symmetry of the equations employed in the method of ARNDT, computations effected by them are somewhat less accurate than when the methods of HILL are employed. His residual arising from the equation derived from the constancy of the major axis is eight times greater than that here obtained. (See the notes to the computation of the action of Jupiter on Mars, where it is shown that DR. TURNER came to the same conclusion.) OF THE ORBITS OF THE FOUR INNER PLANETS. 173 ACTION OF URANUS ON MARS. E A B cos t B sin e g h 367.8110283 - 8.331256 + 6.828502 37.81310 367.49598 45 368.2057075 - 5.369694 -15.243795 188.44191 367.49649 90 370.1698856 + 12.404411 -28.797937 672.53375 367.50044 135 372.5672534 +34.579222 -25.894092 543.74175 367.50030 180 373.9791848 + 48.165033 - 8.233286 54.97149 367.49639 225 373.5643097 +45.203469 +13.839014 155.31082 367.49635 270 371.5799361 +27.429370 +27.393154 608.52085 367.49979 315 369.2027636 + 5.254555 +24.489302 486.34483 367.49949 Zi 1483.5400347* +79.667558f - 2.809567J: 1373.83919 1469.99259 2 2 1483.5400342 +79.667552 - 2.809571 1373.83931 1469.99263 * 4a 2 + 2a 2 c + 4[a' 2 - 2kaa'ee' cos K] = 1483.5400348. t 4[a' e' kaa'e cos A'] = + 79.667564. | - 4fcW cos ?' e sin A" = - 2.809567. E I G G' G" 8 O 1 II - 0.49589 367.49570 0.157536 0.653148 2 41 22.746 45 - 0.10173 367.49510 0.667671 0.768004 3 34 47.145 90 + 1.85851 367.49543 2.57438(1 0.710869 5 25 12.441 135 + 4.25601 367.49622 4.582935 0.322847 6 37 54.392 180 + 5.67185 367.49598 5.698515 0.026250 7 10 10.482 225 + 5.25702 367.49519 5.337362 0.079182 6 58 20.716 270 + 3.26920 367.49525 3.718991 0.445245 6 6 25.010 315 + 0.89233 367.49588 1.682505 0.786567 4 41 47.833 Si + 10.30367 1469.98230 12.149421 1.835512 21 23 10.679 2 2 + 10.30363 1469.98238 12.270473 1.956599 21 * 52 50.086 ACTION OF URANUS ON MARS. E log A, logLo' logATo log AT logP logQ 0.00071814 0.27395868 0.17716832 6.6153321 1.7572439 4.2264770 45 0.00127262 0.27469773 0.17799967 6.6411665 1.7838479 4.2533081 90 0.00292086 0.2768938-1 0.18046982 6.7024753 1.8471866 4.3168538 135 0.00437720 0.27883326 0.18265093 6.7600912 1.9076561 4.3771079 180 0.00511859 0.27982020 0.18376077 6.7833377 1.9325907 4.4018149 225 0.00484000 0.27944936 0.18334377 6.7609874 1.9097463 4.3789860 270 0.00371007 0.27794494 0.18165196 6.7037350 1.8501248 4.3196094 315 0.00219200 0.27592287 0.17937772 6.6423516 1.7859125 4.2555483 2, 0.01246766 1.10861766 0.72305087 6.804880T 7.3871460 7.2647550 2 2 0.01268182 1.10890322 0.72337209 6.8048967 7.3871627 7.2649502 174 THE SECULAR VARIATIONS OP THE ELEMENTS ACTION OF UBANUS ON MARS. E logF Jl' J, J, F, 4.2255130 368.030126 +0.3910957 +5.9910041 -117.85624 45 4.2521750 368.257943 -0.6874254 + 1.3122864 +263.09961 90 4.3158056 368.150829 -1.4287110 -4.4833753 +497.03672 135 4.3766319 367.663776 -1.2456453 -8.0008361 +446.91789 180 4.4017762 367.403228 -0.3170169 -7.1797383 + 142.10202 225 4.3788692 367.559090 +0.6967658 -2.5011942 -238.85387 270 4,3189529 367.911230 +1.2249811 +3.2942931 -472.79092 315 4.2543883 368.137688 +1.1030033 +6.8119278 -422.67209 Zi 7.2620477 1471.495412* -0.1296511 -2.3778169 + 48,19158 2, 7.2620644 1471.618496 -0.1333016 -2.3778161 + 48.49154 E F 3 1000 X fto 1000000 X So 1000000 X W t 1000 X -K (n) 1000000 X S (B > + 1.1362797 0.2059026 -0.0165525 +10.07610 0.0000000 -0.0119808 45 - 5.0397791 0.2189646 +0.3708684 + 2.31469 +0.1087907 +0.2605870 90 - 8.3838519 0.2523915 +0.5397194 - 9.33604 +0.1656447 +0.3542182 135 - 1.8404722 0.2886690 +0.6481209 -19.05928 +0.1256756 +0.3990450 180 + 1.6518880 0.3050752 +0,4171470 -18.09445 0.0000000 +0.2504179 225 - 5.0490913 0.2898966 -0.2732646 - 6.02536 -0.1262101 -0.1682478 270 - 8.9126276 0.2535451 -0.7948804 + 6.80306 -0.1664018 -0.5216806 315 - 2.5789640 0.2193839 -0.6003932 +12.22078 -0.1089990 -0.4218605 2, -14.5083118 1.0169144 +0.1454335 -10.55133 -0.0007571 +0.0709747 S, -14.5083066 1.0169141 +0.1453315 -10.54917 -0.0007428 +0.0695237 E 1000 X [flo sin v + (cos v + cos E)So] 1000 xl-flocosv + / r x -, 1000000 X W cos u 1000000 X T^o sin w ( sec 8 <p + 1 J sin vSo 1 1000 X -2 ^flo -0.00003310 -0.20590256 +2.590763 - 9.737343 -0.37339681 45 +0.16554695 -0.14335624 +2.077126 1.021440 -0.40904755 90 +0.25124093 +0.02461951 -8.758941 - 3.231492 -0.50478291 135 +0.18971131 +0.21763709 -8.485224 -17.006255 -0.61541380 180 -0.00083429 +0.30507521 +4.652436 -17.486113 -0.66705785 225 -0.19106859 + 0.21804505 +5.009009 - 3.348852 -0.61803079 270 -0.25236576 +0.02523742 -6.708828 1.128399 -0.50709023 315 -0.16617611 -0.14329578 -6.836536 -10.129621 -0.40983085 Si -0.00199222 +0.14902958 -8.224570 -31.583347 -2.05232780 2 2 -0.00198644 +0.14903012 -8.235625 -31.566168 -2.05232299 sin if \A i '*' + cos ip BO M = - 0.0000000000013. * 2,(Ji' - G") = 1469.659900. 2i(Ji - G") = 1469.661897. OF THE ORBITS OF THE FOUR INNER PLANETS. 175 DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = - o'.341 19354m' n 9.5330008 [dx/dt]w = +274.05283 TO' p 2.4378343 [di/dt] w = - 1.4239452 m' n 0.1534933 [dn/dfe]oo = -169.16430 TO' n 2.2283087 [dTT/dt] M = +273.96460 TO' p 2.4376945 [dL/dt] m = -352.43262 TO' n 2.5470761 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF TO'. [de/dt] w = -o!o00014964631 [dx/dt]w = +0.012019862 [di/dtlw = -0.000062453743 = -0.0074194879 = +0.012015994 [dL/dt] w = -0.015457573 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt]m -0.00001 -0.00001 -0.000014964631 e[dirfdt] m +0.00112 +0.00112 +0.0011207080 [di/dt]m -0.00007 -0.00006 -0.000062453743 sin f [da/dtfo -0.00023 -0.00024 -0.00023960370 [dL/dt] w -0.015 -0.015457573 NOTES. The greatest error produced in this case by a division into only four parts occurs with the coefficient [dx/dt] 00 and amounts to but 0". 0000001. It is evident that, notwithstanding the disagreement of the sums of the functions in the first part of the computation, a division into eight parts is fully sufficient. 176 THE SECULAR VARIATIONS OF THE ELEMENTS ACTION OF NEPTUNE ON MARS. E A B cos e B sin e g ft 906.38891911 +21.92636 -39.01745 99.36880 904.17365 45 906.94215394 +47.61371 -15.38170 15.44333 904.17339 90 907.26271705 +49.05172 +19.61543 25.11471 904.17633 135 907.17710690 +25.39796 +45.47311 134.97137 904.17696 180 906.72119273 - 9.49146 +47.04426 144.45927 904.17395 225 906.14776209 -35.17881 +23.40851 35.76678 904.17317 270 905.80700342 -36.61681 -11.58863 8.76590 904. 17576 315 905.91280912 -12.96307 -37.44631 91.52721 904.17627 2i 3626.17983231* +24.86981t +16.05361J 277.70868 3616.69969 S 2 3626.17983205 +24.86979 +16.05361 277.70869 3616.69979 E 1 G G' G" e i tt 2.15000 904.17353 2.20007 0.049953 2 51 33.458 45 2.70349 904.17337 2.70981 0.006303 3 8 30.703 90 3.02112 904.17630 3.03031 0.009166 3 19 25.738 135 2.93488 904.17680 2.98505 0.050008 3 19 16.746 180 2.48197 904.17377 2.54493 0.062779 3 4 42.112 225 1.90932 904.17313 1.92986 0.020498 2 39 43.146 270 1.56597 904.17575 1.57215 0.006167 2 23 40.258 315 1.67127 904.17616 1.72990 0.058516 2 32 56.175 2, 9.21906 3616.69935 9.34746 0.128065 11 39 21.566 S 2 9.21896 3616.69945 9.35462 0.135325 11 40 26.770 ACTION OF NEPTUNE ON MARS. E log Kn log LO' log Na log N log P logQ 0.00081164 0.27408332 0.17730851 6.0300471 0.3915788 3.2510798 45 0.00098011 0.27430787 0.17756111 6.0560291 0.4178275 3.2773355 90 0.00109700 0.27446368 0.17773639 6.1154021 0.4773508 3.3368810 135 0.00109536 0.27446148 0.17773391 6.1708446 0.5327514 3.3923012 180 0.00094087 0.27425556 0.17750228 6.1926623 0.5543538 3.4138826 225 0.00070344 0.27393908 0.17714626 6.1704766 0.5318928 3.3913614 270 0.00056913 0.27376004 0.17694484 6.1148768 0.4761252 3.3355658 315 0.00064494 0.27386109 0.17705853 6.0556543 0.4169531 3.2764317 s, 0.00341864 1.09656260 0.70949202 4.4529882 1.8994085 3.3374091 2 2 0.00342385 1.09656952 0.70949981 4.4530046 1.8994248 3.3374297 * 4a 2 + 2aV + 4[a' 2 - Ikaa'ee' cos K] = 3626.17983218. t 4[a'V - kaa'e cos K] = + 24.869793. t - 4fc'aa' cos <p' e sin K' = + 16.05361. OF THE ORBITS OF THE FOUR INNER PLANETS. 177 ACTION OF NEPTUNE ON MAES. E log V JY J, J, Ft 3.2510498 903.898094 +0.3009875 + 15.528734 +299.48600 45 3.2773317 903.965295 -0.6661748 - 12.963466 + 118.06523 90 3.3368755 902.840060 -0.3701497 -34.790528 -150.56206 135 3.3922712 902.874950 +0.9173304 -37.166389 -349.03766 180 3.4138449 903.910920 +1.0320306 -18.699362 -361.09725 225 3.3913491 904.099942 -0.1708692 + 9.792741 -179.67656 270 3.3355621 903.071970 -0.8044972 +31.619710 + 88.95077 315 3.2763966 902.764465 +0.0451253 +33.995664 +287.42636 2, 3.3373322 3613.721044* +0.1583712 - 6.341446 -123.22254 2 2 3.3373486 3613.704652 +0.1254117 - 6.341450 - 123.22263 E F, 1000 X Ro 1000000 X S 1000000 X TFo 1000 X fl ( "> 1000000 X S<"> -10.033551 0.05357158 +0.12743633 +2.7656535 0.00000000 +0.09223957 45 - 4.253985 0.05690845 -0.09526013 -2.4561209 +0.02827449 -0.06693360 90 + 2.323772 0.06500834 -0.12559190 -7.5560767 +0.04266503 -0.08242607 135 - 5.662284 0.07385617 +0.10733754 -9.1730340 +0.03215420 +0.06608723 180 -14.586465 0.07791030 +0.13821863 -4.8544449 0.00000000 +0.08297417 225 - 7.712269 0.07407227 -0.10322243 +2.4086872 -0.03224828 -0.06355357 270 + 1.985936 0.06494182 -0.14759132 +6.8479047 -0.04262137 -0.09686429 315 - 2.681773 0.05659771 +0.08359968 +6.4235154 -0.02812010 +0.05874051 2, -20.310308 0.26143204 -0.00752826 -2.7969634 +0.00004366 -0.00407662 2 2 -20.310311 0.26143460 -0.00754534 -2.7969523 +0.00006031 -0.00565943 E 1 000 V 1 /? rrm v lOOOXtflosinv ^L 1000000 1000000 1000 X 2 T -R + (oos i)+cos E)So] fr 2 \ . , cl XWaCosu X Wo sin u a +0.000254873 -0.053571580 + 0.7111033 - 2.6726716 -0.09715013 45 +0.042763861 -0.037538560 - 2.2040406 + 1.0838516 -0.10631064 90 +0.064736687 +0.005812013 - 7.0890057 - 2.6153925 -0.13001668 135 +0.048623034 +0.055602449 - 4.0838509 - 8.2138132 -0.15745404 180 -0.000276437 +0.077910304 + 1.2481721 - 4.6912376 -0.17035369 225 -0.048771753 +0.055759058 - 2.0023922 + 1.3387309 -0.15791475 270 -0.064644985 +0.006352181 - 6.7530485 - 1.1358370 -0.12988365 315 -0.042545549 -0.037317274 - 3.5934362 - 5.3243555 -0.10573015 2l +0.000070138 +0.036502918 -11.8827788 -11.1151387 -0.52740415 s. +0.000069593 +0.036505673 -11.8837299 -11.1155862 -0.52740958 sin v iAi (s > + cos <p Bo M = + 0.0000000000012. * 2,(J/ - G") = 3613.592979. 2t(Ji - G") = 3613.569327. 178 THE SECULAR VARIATIONS OF THE ELEMENTS DIFFERENTIAL COEFFICIENTS. log coeff. [de/dt] w = + 0.011982 m' p 8.0785350 [dx/dt] M = +67.128215 TO' p 1.8269051 [di/dt] m = -- 2.0560028m' n 0.3130237 [dl2/cfc]oo = -59.551438 m' n 1.7748923 [dT/dt] w = +67.097154 TO' p 1.8267041 = -90.590942 TO' n 1.9570848 FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'. [de/dtlw = +o!()0000060823 [dx/dt] w = +0.0034075236 [dt/<ft]oo = -0.00010436562 [dtt/dt] w = -0.0030229161 [dir/dtlw, = +0.0034059472 = -0.0045985255 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] w +0^00000 +0^00000 +o!o0000060823 +0.00032 +0.00032 +0.00031766599 -0.00011 -0.00011 -0.00010436562 sin i [dtt/dt] m -0.00009 -0.00010 -0.000097621545 [dL/dt] w -0.004 -0.0045985255 NOTES. The agreement of the sums of the functions is much more exact throughout than in the preceding computation because e' is here so much smaller. The greatest effect produced by all terms from the fourth to the seventh orders inclusive is but 0". 000001, and it is evident that the terms of the eighth and higher orders are wholly inappreci- able. OF THE ORBITS OF THE FOUR INNER PLANETS. 179 11. THE FINAL VALUES OF THE PERTURBATIONS. Combining the results of the preceding pages, we now obtain the values of the perturbations stated in the following tables. For comparison with these, the results obtained by LEVERRIER (V) and NEWCOMB (IS) are added, all of the results being reduced to the values of the masses here adopted and stated in Article 6. SECULAR PERTURBATIONS OF MERCURY. (Epoch 1850.0, G. M. T.) Action of r*i LdtJoo r&i ldt], r*-. Udoo Venus +0^027739414 +2.7763615 -0.14811133 Earth +0.011476557 +0.91448833 -0.014040890 Mars -0.000607428 +0.02486334 -0.000301945 Jupiter +0.00319413 + 1.5400720 -0.049056191 Saturn +0.000531095 +0.07312263 -0.004212776 Uranus +0.000009638 +0.00142135 -0.000024450 Neptune +0.000003320 +0.00041901 -0.000020027 -0.04234673 +5.3307482 -0.21576761 Action of rda-i LdUoo f-1 LdUoo 1-dL-l LJ Venus -1.9420214 +2.7618772 -3.2505323 Earth -1.0037245 +0.90700208 -1.1935233 Mars -0.01926435 +0.02471966 -0.03293324 Jupiter -1.4795642 + 1.5290366 -2.2066350 Saturn -0.06979662 +0.07260205 -0.10657405 Uranus . . -0.00134987 +0.00141128 -0.00201139 Neptune -0.00044314 +0.00041570 -0.00060031 -4.5161641 +5.2970646 -6.7928096 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt]oo e[dir/dt]oo [di/dt]oo sin i [dtt/dt] m [dL,'dt] w * Exclusive of the action of Uranus and Neptune. f This unexpectedly large difference is a gradual accumulation from all of the computations Thus, the residuals, Newcomb-Gauss, are, in the several cases: 0".00300, 0".00151, 0".0000.3, 0".00227, and 0".00010, the sum of which is the difference as found above. +0.04246 +0.04234 +010423467 + 1.08946 + 1.09601 + 1.0891018t -0.21586 -0.21570 -0.2157676 -0.55017 -0.55041 -0.5505495 -6.8190* -6.79281 180 THE SECULAR VARIATIONS OF THE ELEMENTS SECULAR PERTURBATIONS OF VENUS. (Epoch 1850.0, G. M. T.) Action of (-del LdUoo r*n L<ftJoo r-A-i UJoo Mercury -01)13012279 l'l893992 +o'6o94965089 Earth 0.04898290 56289701 +0 000044940 Mars 0.001963988 +0 74594759 +0 001304280 Jupiter 0031162921 +6 5654682 038659982 Saturn 0000675363 +0 07935156 0052327048 Uranus +0 000005263 +0 00278176 -1-0 0000018240 Neptune -0.000000278 +0.00110440 -0.0000283988 -0.09579247 +0.5762842 -0.033057385 Action of ran 1 dUoo r d *~i Udoo nun LdUoo Mercury + o'()897732 1 1892420 + / 7454252 t i Earth - 7.293993 56417558 5 4005288 Mars - 0.0473504 +0 74586465 09940123 Jupiter - 2.7242270 +6 5606924 5 5347410 Saturn - 0.0824657 +0 07920700 26491624 Uranus - 0028813 +0 00277671 00496096 Neptune 0.0007780 +000110304 00148569 -10.061922 +0.5586460 -10.5606087 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. [de/dt] M - 0.09558 e[dTr/dt] M + 0.00366 [di/diloo - 0.03318 sin i [dO/di]oo - 0.59530 [dL/dt] M -10.549 -0.09576 +0.00392 -0.03306 -0.59551 - 0.0957925 + 0.0038229 - 0.0330574 - 0.5955192 -10.5606087 SECULAR PERTURBATIONS OF THE EARTH. (Epoch 1850.0, G. M. T.) Action of I"*] L<Joo f-1 =F^1 LdUoo LrfUoo [dp-] I dt Joo Mercury -o'6oi 1613570 - OJ0999815 +o'o025085775 Venus +0.013483339 + 3.4537341 +0 074457966 Mars -0.015723904 + 097519611 +0 0063443986 Jupiter -0.081841849 + 6 9652565 -0 025114405 Saturn -0.0004330571 + 0.18725991 -0.0054235259 Uranus +0.0000172788 + 0.00566366 +0.0000236793 Neptune -0.0000006006 + 0.00179708 -0.0000364953 -0.085660150 + 11.4789092 +0.052760195 OF THE ORBITS OF THE FOUR INNER PLANETS. 181 Action of l-dj-j Ldt Joo rdL-l 1 dt Joo Mercury -(X002098681 + 0^3930935 Venus -0.28462399 + 11.232473 Mars -0.007195311 - 0.2342424 Jupiter -0.16046446 - 9.1916336 Saturn -0.013188086 - 0.4325140 Uranus -0.0000784873 - 0.0080930 Neptune -0.0000432488 - 0.0024199 -0.46769226 + 1.756664 COMPARISON WITH OTHER RESULTS. Leverrier. Newcomb. Method of Gauss. -0.08569 e[dir/dt] w +0.19254 [dpldt] M +0.05290 [dq/dt] m -0.46754 [dL/dt]w +1.7570* -0.08563 +0.19248 +0.05276 -0.46768 -0.085660 +0.192514 +0.052760 -0.467692 + 1.756664 The values of [dp/dt}oo and [dq/dt} QO obtained by HILL in the "New Theory" are given below. These were regarded as provisional results only, and were derived from the numerical values of the coefficients in the expansion of the perturbing function stated by LEVERRIER in the Annales, Vol. II. It may also be of interest to add the results obtained by the first application ever made of the method of GAUSS. This was a computation by NICOLAI of the secular perturbations of the Earth, the final values only being published, in BODE'S Berliner Jahrbuch, 1820, pages 224-226 (Aug. 30, 1817). These results are here reduced to the values of the masses stated in Article 6. [de/dt] w e[dirjdt]w [dp/dt]oo [dq/dt] w Hill. +0.0527225 -0.4676079 Nicolai. -o!()8606 +0.19283 +0.05182 -0.46738 * Exclusive of the action of Neptune. If the value of this found above is included, we have [dL/<i(]oo = 1".7546 ; -a less exact agreement. 182 THE SECULAR VARIATIONS OF THE ELEMENTS SECULAR PERTURBATIONS OF MARS. (Epoch 1850.0, G. M. T.) Action of f-1 Lddoo [41 UtJoo r*-] UUoo Mercury +o!6o0335670 + 0061841 -l-o'bo0074482 Venus +0.000795405 + 4947286 0128 < >Q7 1 V7 Earth +0.021481158 + 2 2915614 -un 000*31 QQ11 Jupiter +0.15813453 + 12 476799 2 s )fi l i4077 Saturn +0.006289141 + 6679051 024687281 Uranus -0.000014965 + 00120199 000062454 Neptune +0.000000608 + 00034075 000104366 +0.18702155 + 15.952606 -0.29383023 Action of rdo-l LdiJoo Fl UUoo f-1 ldt] w Mercury + o'6l479483 + o'6o61918 + o"l940178 Venus + 0.30877426 + 0.4948896 + 4 1 9 04933 Earth - 2.2862242 + 2.2903688 + 6 6520970 Jupiter - 8.3142000 + 12.472464 18 450874 Saturn . ... - 0.26298236 + 6677678 8382821 Uranus - 0.00741949 + 0120160 0154576 Neptune - 0.00302292 + 0.0034059 00045985 -10.5502799 + 15.947104 - 8.342604 COMPARISON WITH OTHER RESULTS. Leverripr. Neweomb. Method of Gauss. +0.18703 + 1.48645 [K/ctt]oo -0.29375 sin i [dtt/dfloo -0.34099 -8.358* +0.18706 + 1.48787 -0.29385 -0.34066 +0.187022 + 1.487355 -0.293830 -0.340709 -8.34260 12. COMPARISON WITH THE RESULTS OF OBSERVATION. From a discussion of all the available observations of the planets and of the Sun, NEWCOMB has derived the most probable values of the preceding coefficients based upon observations alone. These will be found summarized in a convenient form on pages 107 and 108 of The Elements of the Four Inner Planets and the Funda- mental Constants of Astronomy (Supplement to the American Ephemeris and Nautical Almanac, 1897). * The value of [dLldt]oo arising from the action of Mercury was not stated by Leverrier. The value as found above has been added to his series of values in order to obtain this sum. OF THE ORBITS OF THE FOUR INNER PLANETS. 183 In order to compare the values here obtained with those given by NEWCOMB it is necessary to notice that the values of i and fl stated by him are measured from the movable equator and equinox and that it is therefore necessary to free the values of [di/dt] 00 and [dQ/dt] 00 here given from the changes caused by the motion of the ecliptic itself. For this purpose we first compute p and L from the equations, [dp-] \dq1 p sin L = and p cos L = Mr , L dt Joo L dt Joo the secular variations being those which belong to the Earth's orbit, and then add the quantities p cos (L fl) to the several determinations of [di/dt] Q o and p X cos i sin (L Q) to those above given for sin i [dQ/dt]o . In this manner the values stated in the following tabulation are obtained. In a similar way it might appear necessary to add the correction, e tan \i ( sin i ^7 + P sin (L ft) J to the values obtained for e [dwjdt] o, the first part arising from the change due to the plane of the orbit and the second from that produced by the motion of the ecliptic. And in the case of the Earth's perihelion, there is a secular motion due to the lack of sphericity of the Earth-moon system which is expressed by the equation, dir^ mm' (a '\ 2 . TT = I*** ' 7 7\} 'I ) > ' dt Joo 2 (m + m') 2 \a/' the accented letters applying to the moon (Annales de I'Observatoire de Paris, Vol. IV, pages 42-46). Employing the values of a' and m' given in the Astronomical Papers of the American Ephemeris, Vol. IV, page 11, this correction is found to be +0".0157884. But these last two corrections need not here be applied because the values of the variations obtained by NEWCOMB from observation have already been freed from their effects. MERCURY. Newcomb. Method of Gauss. Observ. 5i Si t [de/dt] M e [dv/dt]m [dildt}oo +0.0423 + 1.0960 +0.0676 +0.0423 + 1.0891 +0.0674 +o!t)336 + 1.1824 +0.0714 -o!()087 +0.0864 +0.0038 -0.0087 +0.0933 +0.0040 0.0050 0040 0.0080 sin i [dn/dfloo -0.9250 -0.9234 -0.9189 +0.0061 +0.0045 0.0045 184 THE SECULAR VARIATIONS OP THE ELEMENTS VENUS. Newcomb. Method of Gauss. Observ. Si [de/dt} w -0.0958 -0.0958 -0.0946 +0.0012 +0.0012 0.0020 e [dv/dt]oo +0.0039 +0.0038 +0.0029 -0.0010 -0.0009 0.0020 [dildt]oo +0.0034 +0.0034 +0.0029 -0.0005 -0.0005 0.0030 sin i [dttldt]m -1.0600 -1.0603 -1.0540 +0.0060 +0.0063 0.0012 EARTH. Newcomb. Method of Gauss. Observ. i [de/dt]^ -0.0856 -0.0857 -0.0855 +0.0001 +0.0002 0.0009 e. [dir/dt}oo +0.1925 +0.1925 +0.1948 +0.0023 + 0.0023 0.0012 [d*!dt} M -0.4677 -0.4677 -0.4711 -0.0034 -0.0034 0.0023 Newcomb. MARS. Method of Gauss. Observ. [de/dt] M +0.1871 +0.1870 +0.1900 +0.0029 +0.0030 0.0027 e [dw/dt] M + 1.4879 + 1.4874 + 1.4955 +0.0076 +0.0081 0.0035 [di/dt] w -0.0225 -0.0229 -0.0226 -0.0001 +0.0003 0.0020 sin i [dn/dt]oo -0.7263 -0.7251 -0.7260 +0.0003 -0.0009 0.0020 In the above tabulation the column headed 61 expresses the residuals from the computation of NEWCOMB and that headed 5 2 states the residuals from the results here obtained. It will be noticed that the differences are very minute throughout, the only appreciable improvement arising from the more accurate computation occurring in the case of the node of Mercury, where the residual is reduced by its fourth part. The last column contains the mean errors of the observational results. If we multiply these by 0.6745 to reduce them to probable errors, we observe that in seven cases the residuals are less than the probable errors; in five cases they vary from one to three times as great but that in each of these cases where the divergence is greatest a slight change in the value of the masses will correct the disagreement, and that in the remaining three cases the difference is very much greater than can be ascribed to errors either in the adopted masses, the computation, or to errors in the obser- vations themselves. These three cases are: 1. The motion of the perihelion of Mercury. 2. The motion in the node of Venus. 3. The motion of the perihelion of Mars. OF THE ORBITS OF THE FOUR INNER PLANETS. 185 The first of these is the well-known discordance. The second is well established, the discordance between observation and theory being nearly eight times the probable error, nor can the uncertainty remaining in the values of the masses account for more than a small part of the discrepancy. NEWCOMB estimates the mean error of the computed value arising from this uncertainty as not more than 0".0012, so that with this included the residual is nearly six times the probable error. The third dis- cordance is the least of the three, but as the masses of Jupiter and Saturn, the principal disturbing planets for this case, are accurately known, the uncertainty of the com- puted results is almost negligible. NEWCOMB estimates the mean error of the result of computation arising from the uncertainties in the masses of all the planets as here but 0".0004, so that the residual remains between three and four times as large as the probable error. 13. COMPARISON WITH SEELIGER'S HYPOTHESIS ON THE CON- STITUTION OF THE ZODIACAL LIGHT. Many hypotheses have been made for the purpose of explaining the discrepancies shown in the preceding article. In general, either the assumption is made that NEWTON'S Law of Gravitation is not strictly accurate* or else that certain additional matter in the solar system must be considered whose attraction has not hitherto been allowed for.| The most recent and the most plausible investigation of the second kind is that effected by SEELIGER (IO)I (11)i (12> who seeks to account for all of the appreciable discrepancies by the perturbing effect of the cloud of particles known as the zodiacal light. What the true form of this cloud is, and still more, what the law of the dis- tribution of its density is, is very uncertain. J SEELIGER assumes that it can be roughly conceived as made up of two homogeneous ellipsoids of revolution whose semi axes have the values 0.24 and 1.20, respectively. Both the eccentricities of these ellipsoids and the position of the equator of the outer one can vary within wide limits without greatly altering the values of the perturbations which they produce; the distance from the focus to the center in each of them is arbitrarily chosen as equal in length to ten times the semi minor axis, and the equator of the outer one is assumed to be coincident with the plane of the equator of the sun. The respective densities and also the two constants which define the equatorial plane of the first ellipsoid remain as unknown quantities whose values are to be determined. * See Tisserand's Mecanique Celeste, Vol. IV, Pages 494-542. fSee Newcomb's " Astronomical Constants. . . ." (1 ", Pages 110-120. t See the article, "The Zodiacal Light" by Newcomb, in the Encyclopaedia Britannica, Vol. XXVIII. 186 THE SECULAR VARIATIONS OF THE ELEMENTS From the known formulas which express the attraction exerted by an ellipsoid upon a point either wholly within or without its surface, the expression for the per- turbing force in any case can readily be written, and from this the equations for the variations of the various elements are derived, each equation containing five unknown quantities whose values are to be so determined as to best account for the excess of the variations observed over those heretofore obtained from the .theory. As the ellipsoids are assumed to be symmetrical with respect to their axes of rotation, however, they will cause no appreciable perturbation of any eccentricity. The variation of the obliquity of the Earth's orbit was also not considered by SEELIGER. There remain therefore but ten discrepancies to be represented; namely, those of the four perihelia, those of the three nodes and those of the three inclinations. These ten discrepancies form the absolute terms of ten corresponding equations which con- tain five unknown quantities. It is to be noticed that in the "Astronomical Constants ..." two tables of the theoretical variations are stated by NEWCOMB; the first, on page 109, are those computed from the values of the various masses assumed in Chapter V; the second, on page 185, are those computed from the definitively adopted masses. The latter values of the masses are in closer accordance with those assumed in the present paper than the former; the first values are, however, the ones adopted by SEELIGER in the computation. The final results are as in the following table: Newcomb. Method of Gauss. Per. caused by Zod.L't. Final Residuals. Prob. Errors. Newcomb. Meth. of Gauss. MERCURY. // // // // // // edit +8.64 +9.33 +8.49 +0.15 +0.84 0.29 sin i<Kl +0.61 +0.45 +0.62 +0.01 -0.17 0.54 di +0.38 +0.40 +0.49 -0.11 -0.09 0.35 VENUS. edw -0.10 -0.09 +0.05 -0.15 -0.14 0.17 sin idU +0.60 +0.63 +0.60 0.00 +0.03 0.22 di -0.05 -0.05 +0.20 -0.25 -0.25 0.11 EARTH. edit +0.23 +0.23 +0.09 +0.14 +0.14 0.09 MAKS. edw +0.76 +0.81 + 0.56 +0.20 +0.25 0.24 sin idSl +0.03 -0.09 +0.21 -0.18 -0.30 0.14 di -0.01 +0.03 -0.01 0.00 +0.04 0.15 The first two columns of the table contain the residuals from the masses employed in the present paper; the third column states the perturbations caused by the zodiacal light when its elements are derived from the residuals of NEWCOMB 's first tabulation. As the five elements were so determined as to represent NEWCOMB'S first residuals as OF THE ORBITS OF THE FOUR INNER PLANETS. 187 accurately as possible, their agreement with these is naturally more exact than with the values here stated. Thus the first agreement for the motion of Mercury's peri- helion is exact while here the discrepancy is considerable. On the other hand, the greatest discrepancy when the results are compared with the first tabulation, and which occurs in the motion of the node of Mars, is slightly lessened when the new masses are employed. As the five elements were determined to represent the ten residuals of NEWCOMB'S computation as accurately as possible, the numbers of the fourth column are, as might have been expected, generally smaller than those of the fifth. It may justly be inferred, however, that SEELIGER'S hypothesis is capable of greatly reducing those discrepancies whose values are sufficiently large to establish their reality, without at the same time unduly increasing any of the smaller ones. The last column contains NEWCOMB'S estimate of the total probable errors arising both from the errors of observation and from the uncertainties in the values of the adopted masses. The elements of the zodiacal light derived by SEELIGER are as follows: Density of inner ellipsoid = 2.52 X 10~ n times the Sun's density. Density of outer ellipsoid = 0.0026 X 10~ n times the Sun's density. Total mass = 35000 X 10" 11 times the Sun's mass. Inclination of equator of I = 6. 95 Longitude of node of I = 40.03. The unit of time throughout this article is the Julian Century. BIBLIOGRAPHY. LIST OF WORKS ON GAUSS'S METHOD AND RELATED SUBJECTS WHICH ARE REFERRED TO IN THE PRECEDING PAGES. 1. GAUSS. Determinatio Attractionis quam in punctum quodvis positionis datae exerceret planeta si ejus massa per tot am orbitam ratione temporis quo singulae partes describuntur uniformiter esset dispertita. Werke, Vol. Ill, pages 333-357. 2. NICOLAI. Neue Berechnung der Secular Anderungen der Erdbahn. Bode's Astronomische Jahrbuch, 1820, pages 224-226. 3. CLAUSEN. Alia solutio problematis a celeberrimo Gauss in opera " Determinatio attractionis. . . " tractati. Crelle's Journal, Vol. VI, 1830, page 290. 4. - Bestimmung der Bahn und der Umlaufszeit des Tuttle'schen Cometen. Beobachtungen der Kaiserlichen Univcrsitats Sternwarte Dorpat, Vol. XVI. 5. BOUK, EDMOND. Thesis presentees a la faculte des sciences de Paris, 1855. 188 THE SECULAR VARIATIONS OF THE ELEMENTS 6. ADAMS. On the November meteors. Monthly Notices, Vol. XXVII; Collected Works, Vol. II, pages 194-200. 7. LEVERHIER. The secular perturbations of the elements of the orbits of the planets. Annales de 1'Ob- servatoire de Paris. Mercury, Vol. V, pages 6 and 7; Venus, Vol. VI, page 6; The Earth, Vol. IV, pages 11 and 12; Mars, Vol. VI, page 189. 8. HILL. On Gauss's method of computing secular perturbations. Astronomical Papers of the American Ephemeris, Vol. I, pages 317-361. 9. SEELIGER. Ueber das von Gauss herruhrende Theorem die Sacularstorungen betreffend. Astrono- mische Nachrichten, Vol. XCIV, 1879. 10. - Ueber die sogenannte absolute Bewegung. Sitzungsberichte der konigliche Akademie der Wis- senschaften zu Munchen. Vol. XXXVI, pages 85-137. 11. - Ueber die empirischen Gleider in der Theorie der Bewegung der Planeten Merkur, Venus, Erde und Mars. Vierteljahrschrift der Astronomischen Gesellschaft, Vol. XLI, pages 234-240. 12. - Das Zodiakallicht und die empirischeii Gleider in der Bewegung der inneren Planeten. Sitzungs- berichte der koniglichliche Akademie der Wissenschaften zu Munchen. Vol. XXXVI, pages 595-622. 13. CALLANDREAU. Calcul des variations seculaires des elements des orbites. Annales de 1'Observatoire de Paris, 1885, Vol. XVIII. 14. TISSERAND. Traite de Mecanique Celeste. Vol. I, pages 431-442; Vol. IV, pages 494-542. 15. NEWCOMB. Secular variations of the orbits of the four inner planets. Astronomical Papers of the American Ephemeris, Vol. V, pages 301-378. 16. HILL. A new theory of Jupiter and Saturn. Astronomical papers of the American Ephemeris, Vol. IV 17. NEWCOMB. The elements of the four inner planets and the fundamental constants of astronomy. 1895. Supplement to the American Ephemeris and Nautical Almanac, 1897. 18. HALL, ASAPH, JR. Secular perturbations of the Earth from the action of Mars. Astronomical Journal, No 244. 19. SEE. Secular perturbations of Uranus from the action of Neptune. Astronomical Journal, No. 316. 20. INNES. Secular perturbations of the Earth from the action of Mars. Monthly Notices, Vol. LII, Nos. 2 and 7. 21. - Secular perturbations of the Earth from the action of Venus. Monthly Notices, Vol. LIII, No. 6. 22. - Tables to facilitate the application of Gauss's method. Monthly Notices, Vol. LIV, Nos. 5 and 6. 23. TURNER, ARTHUR B. Secular perturbations of Mars from the action of Jupiter. Thesis presented to the Faculty of Philosophy of the Graduate School of the University of Pennsylvania, 1902. 24. - Secular perturbations of Mars from the action of Jupiter, computed by the method of Arndt. Astronomische Nachrichten, No. 3065. 25. BARTON, SAMUEL B. Secular perturbations of Mars from the action of Saturn. Thesis presented to the Faculty of Philosophy of the Graduate School of the University of Pennsylvania. 1906. 26. MERFIELD, C. J. The secular perturbations of Ceres from the action of Jupiter. Astronomische Nach- richten, No. 4215. 27. DZIEWULSKI, W. Sakulare Marstorungen des Eros. Cracovi, 1906. 28. HALPHEN. Traite des fonctions elliptiques. Part II, pages 310-328. 29. BRUNS. Ueber die Perioden der elliptischen Integrale erster und zweiter Gattung. Dorpat, 1875. 30. ARNDT, Louis. Recherches sur le calcul des forces perturbatrices dans la theorie des perturbations seculaires. Bulletin de la Societe des sciences naturelles de Neuchatel, Vol. XXIV, 1896. 31. INNES. The computation of secular perturbations. Monthly Notices, Vol. LXVII, pages 427-443. 32. ROBBINS, FRANK. Tables for the application of Mr. Innes' method. Monthly Notices, Vol. LXVII, pages 444-447. OF THE ORBITS OF THE FOUR INNER PLANETS. 189 33. MERFIELD, C. J. Extension of Mr. Robbing' tables to the value i = 180. Monthly Notices, Vol. XLVIII, pages 605-608. 34. - The secular perturbations of Eros. Astronomische Nachrichten, Nos. 4178-4179. 35. The secular perturbations of Iris. Astronomische Nachrichten, No. 4337. 36. - The secular perturbations of Ceres. Monthly Notices, Vol. XLVII, pages 551-560. 37. HILL, G. W. The secular perturbations of the planets. American Journal of Mathematics, Vol. XXIII, page 317. 38. - On the use of the sphero-conic in astronomy. Astronomical Journal, No. 511. 39. INNES. Jacobi's nome, q, in astronomical formulas, with numerical tables. Monthly Notices, Vol. LXII, pages 494-503. UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY Return to desk from which borrowed. This book is DUE on the last date stamped below. ASTrtCNLiMY LIBRARY LD 21-100m-ll,'49(B7146slG)476 YF 02597 /- U.C.BERKELEY LIBRARIES