OF R. Tracy Crawford A8TRUHUMI THE SECULAR VARIATIONS OF THE ELEMENTS OF THE CEBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.0, G. M. T BY ERIC DOOLITTLE \ UNIVERSITY OF PENNSYLVANIA Extracted from THE TRANSACTIONS OF THE AMERICAN PHILOSOPHICAL SOCIETY, N.S., Vol. XXII, Part 2 PHILADELPHIA 1912 To MY FATHER, PROFESSOR CHARLES L. DOOLITTLE, THIS WORK is INSCRIBED. ASTROUOVY [Extracted from the TRANSACTIONS OP THE AMERICAN PHILOSOPHICAL SOCIETY, N. S., Vol. XXII., Part 2.] THE SECULAR VARIATIONS OF THE ELEMENTS OF THE ORBITS OF THE FOUR INNER PLANETS COMPUTED FOR THE EPOCH 1850.Q G. M. T. BY ERIC DOOLITTLE. (Read March 1, 1912.) TABLE OF CONTENTS. THE THEORY. 1. Introduction 39 2. The method of GAUSS 40 3. HILL'S first modification of GAUSS'S method 42 4. HILL'S second modification. The work of CALLANDREAU and INNES 47 5. The method of HALPHEN and its modifications by ARNDT and INNES 49 THE COMPUTATION. 6. The elements of the orbits and the adopted masses 52 7. The formulas employed in the computation 53 8. The values of the preliminary constants 56 9. The radii vectores and the true anomalies 59 10. The separate results: Mercury by Venus 61 Earth by Mercury 123 " Earth 65 " " Venus 127 " Mars r." . . 70 " " Mars 132 " Jupiter 77 " " Jupiter 138 " Saturn 82 " " Saturn 142 " Uranus 86 " " Uranus 146 " " Neptune 89 " " Neptune 149 Venus by Mercury 93 Mars by Mercury 152 " Earth .100 " " Venus : 156 " " Mars 104 " " Earth 160 " " Jupiter 108 . " " Jupiter 164 " Saturn 112 " " Saturn 168 " Uranus 116 " " Uranus 173 " Neptune 120 " " Neptune 176 11. The final values of the perturbations 179 12. Comparison with the results of observation 13. Comparison with SEELIGER'S hypothesis on the constitution of the Zodiacal Light 185 . 37 1. INTRODUCTION. The usual method of determining the secular variations of the elements of any planet is the well-known one based upon the development of the perturbing function into an infinite series whose successive terms involve continually higher powers of the eccentricities and the mutual inclination. This method possesses two advantages. The first is that when an extreme degree of accuracy is not required, so that higher terms of the development may be disregarded, it is the simplest method available; and, in the second place, since the coefficients of all terms are general literal expres- sions, the change produced in the value of any variation by a change in the assumed values of one or more of the elements can readily be ascertained by a simple substi- tution of the more accurate values. On the other hand, this method possesses the disadvantage that the complexity of the expansion grows rapidly greater as the order of the included terms is increased, so that a slight increase in the desired accuracy greatly increases the labor of the computation. The integral methods, founded upon the celebrated theorem of GAUSS (I) ,* are wholly free from this latter disadvantage, for if it is desired to include all terms to the twenty fourth order this can be done by a computation which is less than twice as long as that required when the approximation is stopped at terms of the eleventh order. But the integral method, though thus extremely accurate, leads only to the numerical values of the variations dependent upon the values of the elements assumed ; if they are desired for some other epoch at which the various elements possess different values from those adopted, or if an improved value of any of the elements becomes known, they can only be found by an entire repetition of the computation. The only determinations of the secular perturbations of the four inner planets which are in any sense modern ones are the classic investigation of LE VERRIER (T) and the computation of NEWCOMB (15> . The latter furnishes the most accurate values of these variations so far determined ; the series were extended to terms of the eighth order, only those terms of this order being included, however, which seemed likely to be most important, and in some cases terms of the tenth order were included, though usually by induction merely. In both of the above computations the usual expansion into an infinite series was employed. As the GAUSSIAN method is so extremely accurate, and as its formulas throughout are wholly different from those hitherto employed, it seemed that an * These symbols wherever they occur refer to the list of titles at the end of the present paper. 39 40 THE SECULAR VARIATIONS OF THE ELEMENTS application of it to a re-determination of these variations based upon the most ac- curate values of the several elements now obtainable would be of value. The results of this work will be found in the following pages; the final comparison with the earlier results is given in Article 11, and the comparison with the results of observa- tion in Articles 12 and 13. The epoch throughout is 1850.0, G. M. T. In the four following articles an attempt is made to state briefly the essential features of the various methods of computing secular variations which are founded on GAUSS'S theorem, but for a detailed account of the long and often complex trans- formations which are involved, the original papers must be consulted. 2. THE METHOD OF GAUSS. The equations which express the complete variations of the elements of the orbit of any body revolving about the sun when it is disturbed in its motion by the presence of a third body, may, as is well known, be put in a variety of different forms; the form selected as the basis for all developments founded on GAUSS'S method ' is that in which three rectangular components of the disturbing force enter into the expressions for the differential coefficients. Thus, if R denote the component lying in the direction of the radius vector of the disturbed body, positive outward from the sun; S, the component lying in the plane of the orbit of the disturbed body and perpendicular to the radius vector, positive in the direction of motion; and W, the component perpendicular to this plane and positive northward, we will have for the variation of the eccentricity of the orbit of the disturbed body, de tfn cos
nk 2 . The same letters with accents refer to
the disturbing body.
Watson, Theoretical Astronomy, pp. 516-523; Oppolzer, Lehrbuch zur Bahnbestimmung, Vol. II, p. 213; Tisserand,
Mecanique Celeste, Vol. I, pp. 431-433, etc. The final forms of the equations expressing the other variations may be
inferred from those stated at the end of Article 7.
OF THE ORBITS OF THE FOUR INNER PLANETS. 41
and this is the same as,
[de~\ a 2 ncos 2 /
it is evident that each of the above three integrals becomes expressible wholly in
terms of the rapidly convergent series of LANDEN.
For the purposes of the present computation HILL (S) has computed to ten places
the logarithms of the quantities
K = sec 2 KL, L' = L ~ B , and N u = sec 2 (1 + '),
and these correct to eight places are tabulated at intervals of one tenth of a degree
for all values of from = to = 50.
From a direct substitution it is now seen that the final resulting values of Ro,
S and W are as follows, in which the symbols N, P, Q, etc., are written for abbrevi-
ation and have the meanings stated in Article 7 :
7? = - N - QG' + VJS,
S = PF* + VJ,
W = PF, + VJ 3
The integration with respect to E' having been thus entirely completed, that
in regard to E is effected by mechanical quadratures. Since each variation is a
function of E alone, it follows by the principles of quadratures that if any one of them
be expanded into a periodic series involving the sines and cosines of E and its multiples,
the secular term of the series, which is rigorously equal to |ir I f(E)dE, may be
I/O
also obtained by forming the values of f(E) for 2j equidistant values of E, from
E = to E = 360, and dividing the sum by 2j. The expression thus obtained,
will be subject only to the error involved in dropping those terms which contain a
multiple of E not lower than 2j. An inspection of the known forms of the series
which express the variations renders it evident that the error thus committed is of
OF THE ORBITS OF THE FOUR INNER PLANETS. 47
the order 2j in terms of the eccentricities and mutual inclinations of the orbits except
in the one case of the variation of the Mean Longitude, in which, as this variation
depends wholly upon the expansion of 2(r/a)JRo> it is of the order 2j + 1.
The resulting equations giving the values of all the secular variations are those
stated in Article 7.
4. HILL'S SECOND MODIFICATION OF GAUSS'S METHOD. THE WORK
OF CALLANDREAU AND INNES.
In HILL'S second modification of GAUSS'S method (8> , the well-known expressions
for the roots of a cubic equation when this is solved by the trigonometric method are
introduced, and thus, throughout the integrals, the quantities p, q and 0' occur instead
of the roots G, G' and G", the equations connecting these quantities being,
G = 2 9 sin60 - + P, G' = 2gsin
G" = 2g sin (60+ I') -p.
It was shown in GAUSS'S original memoir (1) that
dT
f
(m 2 cos 2 T + n 2 sin 2 T) * J ( m ' 2 COS 2
if m' = \(m + w) and w' = V mn, and that by repeating this transformation by the
employment of the equations,
m " = i( m > + n '), n" = Jrnfri,
m'" = \(m" + n"), n'" = JriW,
etc. etc.,
m ( *> and n (k) very rapidly approach a single limit, p., which GAUSS named the Arith-
metico-geometrical Mean. It thus follows that our first integral is equal to 7r/2^,
and that integrals of the form
p (sin 2 T - cos 2 T)dT
J (m 2 cos 2 T + n 2 sin 2 T)*
become equal to ir/2 w/ju in which w is a very rapidly converging series involving
m, n, m', n', etc., in its successive terms.
The integral expressions which actually enter into the equations for .R , S , and
W o are
(f\f \ -/o
60 - Q ) - r -r^
3 / 4 (m 2
n 2 )
48 THE SECULAR VARIATIONS OF THE ELEMENTS
V3 w sin 6'
in which
tf
A
o
and
the values of # , , and T^ being connected by comparatively simple relations with
these quantities and with known auxiliaries.
HILL accordingly suggested that tables of these functions should be computed,
and this was first done by MONS. 0. CALLANDREAU (I:!> who however adopted as an
argument the quantity a defined by the relation
1
1
cos
1 + a 6'
V COS Q
* <5
and tabulated the logarithms of the functions r 4 n 4 x(0') and p' + a' cos + n)
= ka'e'r sin (t; + K) - a' 2 cos 2 ^' sin (v + n) cos (v + n) sin 2 /,
the second form being employed with ZECH'S tables in the duplication
Jz = cos 2 ' sin I r cos (v + II) .B sin e.
There were next obtained,
B = - N -QG' + 7JY; S = PF* + VJ,; W = PF, + VJ a ;
fl<"> = -R sin E; 5<-> = -S ; W = .Sfl<">; (c) = .
r r z? zj
and the very accurate test equation,
sin ) + cos 9? B (c) = 0,
was applied.
These values were then substituted in the following series of equations, and
the final values of the differential coefficients obtained:
[dc ~\ TH'TI 1
~dt Joo = 1 + m ' COS *" ' 2?- 2 f sin " ' Ro + ^ cos " + cos
m'n cos ? 1
di 1
sJ o =
mn
[dftl m'n
,.
a< Joo 1 +
sec
were exactly satisfied, and the values of r were also obtained from the equation stated
in Article 7 for obtaining the value of r 2 .
E
MEKCUBY.
log r
V
E
VENUS.
logr
V
O
i
//
O
O
1
//
9.4878584
0.00
9.8563557
0.00
15
9.4916716
18
25
28.96
15
9.8564576
15
6
6.54
22.5
9.4963313
27
32
14.93
30
9.8567564
30
11
47.87
30
9.5026623
36
32
7.50
45
9.8572313
45
16
40.52
45
9.5195925
54
4
7.02
60
9.8578493
60
20
24.50
60
9.5407098
70
50
41.41
75
9.8585680
75
22
44.64
67.5
9.5522314
78
55
7.36
90
9.8593378
90
23
31.50
75
9.5640735
86
46
40.73
105
9.8601064
105
22
42.20
90
9.5878217
101
51
53.65
120
9.8608213
120
20
20.31
105
9.6103385
116
9
54.15
135
9.8614342
135
16
35.65
112.5
9.6207149
123
3
1.59
150
9.8619040
150
11
43.65
120
9.6303194
129
46
44.60
165
9.8621990
165
6
4.12
135
9.6467730
142
49
52.77
180
9.8622996
180
0.00
150
9.6589887
155
27
29.02
195
9.8621990
194
53
55.88
157.5
9.6633518
161
39
20.97
210
9.8619040
209
48
16.35
165
9.6664956
167
48
0.75
225
9.8614342
224
43
24.35
180
9.6690267
180
0.00
240
9.8608213
239
39
39.69
195
9.6664956
192
11
59.25
255
9.8601064
254
37
17.80
202.5
9.6633518
198
20
39.03
270
9.8593378
269
36
28.50
210
9.6589887
204
32
30.98
285
9.8585680
284
37
15.36
225
9.6467730
217
10
7.23
300
9.8578493
299
39
35.50
240
9.6303194
230
13
15.40
315
9.8572313
314
43
19.48
247.5
9.6207149
236
56
58.41
330
9.8567564
329
48
12.13
255
9.6103385
243
50
5.85
345
9.8564576
344
53
53.46
270
9.5878217
258
8
6.35
285
9.5640735
273
13
19.27
292.5
9.5522314
281
4
52.64
300
9.5407098
289
9
18.59
315
9.5195925
305
55
52.98
330
9.5026623
323
27
52.50
337.5
9.4963313
332
27
45.08
345
9.4916716
341
34
31.04
60
THE SECULAR VARIATIONS OF THE ELEMENTS
E
THE EARTH.
logr
V
E
MARS.
log r
V
O
O
1
//
O
O
i
II
9.9926546
0.00
.1403760
0.00
22.
5
9.9932181
22
52
14.25
30
.1463201
32
47
24.62
30
9.9936460
30
29
2.39
45
.1532670
48
54
53.41
45
9.9948189
45
41
0.84
60
.1621567
64
44
46.64
60
9.9963428
60
50
8.59
90
.1828971
95
21
5.913
67.
5
9.9972036
68
23
26.41
120
.2026920
124
31
47.15
90
0.0000000
90
57
39.46
135
.2106341
138
39
52.35
112.
5
0.0027784
113
23
5.92
150
.2166313
152
34
23.40
120
0.0036266
120
49
43.50
180
.2216237
180
0.00
135
0.0051200
135
40
31.82
210
.2166313
207
25
36.60
150
0.0062624
150
28
37.29
225
.2106341
221
20
7.65
157.5
0.0066776
157
51
53.72
240
.2026920
235
28
12.85
180
0.0072232
180
0.00
270
.1828971
264
38
54.087
202.
5
0.0066776
202
8
6.29
300
.1621567
295
15
13.36
210
0.0062624
209
31
22.71
315
0.1532670
311
5
6.59
225
0.0051200
224
19
28.18
330
.1463201
327
12
35.38
240
0.0036266
239
10
16.50
247.
5
0.0027784
246
36
54.08
270
0.0000000
269
2
20.54
292.
5
9.9972036
291
36
33.59
300
9.9963428
299
9
51.41
315
9.9948189
314
18
59.16
330
9.9936460
329
30
57.61
337.
5
9.9932181
337
7
45.75
10. THE SEPARATE RESULTS.
The values found for the intermediate auxiliary functions which depend upon ",
as well as the final perturbations of the four inner planets in each case are now stated
in the following tables. The results of the application of the more important test
equations are also shown, but all of the test equations of Article 7 were also applied,
and each computation (except the first), was, after its completion, duplicated from the
beginning, the forms of the equations being changed in the duplication when this
was possible.
OF THE ORBITS OF THE FOUR INNER PLANETS.
61
MERCURY.
ACTION OF VKNUS ON MERCURY.
E
A
B cos t
B sin e
1000000 Xff
h
0.619543952
+ 0.13308441
- 0.18036925
0.7970904
0.52358614
30
0.627434998
+ 0.22218381
- 0.06982371
0.1194506
0.52390836
60
0.647116316
+ 0.24372756
+ 0.07193966
0.1268000
0.52384406
90
0.675632886
+ 0.19194286
+ 0.20693555
0.0491867
0.52344851
120
0.706503003
+ 0.08070542
+ 0.29899200
2.1902889
0.52319742
150
0.730295757
- 0.06017874
+ 0.32344233
1.5631633
0.52358280
180
0.738317327
- 0.19295989
+ 0.27373528
1.8358797
0.52446104
210
0.727259050
- 0.28205939
+ 0.16318979
0.6524819
0.52500778
240
0.701243272
- 0.30360314
+ 0.02142638
0.0112481
0.52470755
270
0.669559472
- 0.25181838
- 0.11356958
0.3160138
0.52391075
300
0.641856586
- 0.14058090
- 0.20562585
1.0359483
0.52329644
330
0.624398293
+ 0.00030325
- 0.23007624
1.2969588
0.52323374
z,
4.054580456*
- 0.17962654f
+ 0.28009822J
5.9972554
3.14309264
2 2
4.054580456
- 0.17962659
+ 0.28009814
5.9972551
3.14309193
E
G
G'
G"
o
0.09593332
0.52358258
0.09595274
0.000015866
O
25
/
20
n
53.90
30
0.10350215
0.52390782
0.10350489
0.000002203
26
23
25.33
60
0.12324776
0.52384346
0.12325032
0.000001964
29
59.15
90
0.15215988
0.52344311
0.15217844
0.000013171
32
37
46.70
120
0.18328109
0.52318510
0.18331625
0.000022837
36
17
45.71
150
0.20668846
0.52356735
0.20672760
0.000023681
38
55
52.70
180
0.21383179
0.52444977
0.21385942
0.000016369
39
41
12.31
210
0.20222678
0.52500393
0.20223677
0.000006145
38
21
51.31
240
0.17651123
0.52470749
0.17651140
0.000000121
35
27
1.91
270
0.14562423
0.52390915
0.14562996
0.000004142
31
49
7.06
300
0.11853565
0.52329155
0.11855723
0.000016698
28
25
30.42
330
0.10114005
0.52322787
0.10117042
0.000024501
26
5
20.70
Si
0.91134083
3.14305994
0.91144736
0.000073855
194
13
23.40
S 2
0.91134154
3.14305922
0.91144808
0.000073843
194
13
23.80
* 6a 2 + 3aV + 6[o' 2 - 2kaa'ee' cos K] = + 4.054580460.
t 6[a'V - kaa'e cos K] = - 0.17962650.
t - Qk'aa' cos
- 0.24640136 0.05971623 - 0.4883004 - 0.009827036 0.00000000 - 1.5879204
- 0.00762098 0.06444673 - 0.0208471 - 0.014490447 + 0.10127648 - 0.0655216
- 0.09149188 0.08146579 + 0.7212240 - 0.017625381 + 0.20314033 + 2.0766362
- 0.49802851 0.11164771 + 0.7947010 - 0.015287000 + 0.28842180 + 2.0529668
- 0.89441990 0.15077545 - 0.4917115 + 0.000363093 + 0.30587345 - 1.1518366
- 0.92808606 0.18433784 - 2.4881611 + 0.032271915 + 0.20211372 - 5.4561938
- 0.56751805 0.19359808 - 3.0725539 + 0.063241297 0.00000000 - 6.5837414
- 0.13320998 0.17488253 - 1.4207354 + 0.068605698 - 0.19174661 - 3.1154764
+ 0.01209827 0.14154301 + 0.6131517 + 0.049504580 - 0.28714394 + 1.4363109
- 0.19301611 0.10799082 + 1.3152406 + 0.025022994 - 0.27897487 + 3.3976883
- 0.46971306 0.08194590 + 0.7289596 + 0.007023584 - 0.20433749 + 2.0989094
- 0.49748432 0.06575439 - 0.1643583 - 0.003535808 - 0.10333144 - 0.5165700
- 2.25744598 0.70904446 - 1.9892305 + 0.092680137 + 0.01753235 - 3.7116419
- 2.25744596 0.70906002 - 1.9841603 + 0.092587352 + 0.01775908 - 3.7031067
Ro COS V
E
RO sin v
+ (cos v + cos E)So
+ ( -sec 2 + cos
+0.20122394
0.42126107
-5.890097
-0.11153496
0.0000000
-0.008199111
30
+0.06017487
0.40675651
-4.150418
-0.13232119
+0.2828447
-0.005772122
60
-0.29485277
0.40441131
-0.984602
-0.11894044
+0.4858527
-0.001365876
90
-0.50823894
0.41101802
+0.151227
-0.07580674
+0.5682286
+0.000209069
120
-0.36563277
0.41646740
-1.349097
-0.01272800
+0.4969244
-0.001858754
150
-0.00856116
0.41403810
-2.948800
+0.05391799
+0.2845157
-0.004052670
180
+0.20680805
0.40710579
-1.730893
+0.10632289
0.0000000
-0.002376680
210
+0.06559223
0.40536093
+2.554045
+0.13208012
-0.2785530
+0.003510140
240
-0.29105383
0.41526071
+7.029019
+0.12494379
-0.4954847
+0.009684416
270
-0.50707628
0.43289840
+7.732079
+0.08349760
-0.5984781
+0.010689527
300
-0.36741788
0.44451245
+3.199250
+0.01546615
-0.5340294
+0.004438118
330
-0.01281582
0.43893384
-3.068000
-0.05784756
-0.3052198
-0.004266768
s,
-0.91092526
2.50901873
+0.273580
+0.00352943
-0.0467370
+0.000322113
S 2
-0.91092510
2.50900580
+0.270133
+0.00352022
-0.0466619
+0.000317176
_ [fl sin v
+ (coav+coaE)S a ]
-0.01178019
30 +0.19740436
60 +0.35044516
90 +0.41100745
120 +0.36078900
150 +0.21090709
180 +0.00346179
210 -0.20590981
240 -0.36545661
270 -0.43294230
300 -0.38308894
330 -0.22607885
S, -0.04562979
2 2 -0.04561206
sin
- 4.0226412 0.02650922 -0.05811066 -2.918780
0.00000000
-0.08089097
30
- 0.1770896 0.02652281 -0.01305234 -3.621493
+0.01844306
-0.01815231
60
1.6152186 0.02667654 +0.04940526 -3.356828
+ 0.03204873
+0.06853681
90
- 6.9332675 0.02691093 +0.05269544 -2.182313
+0.03720412
+0.07285096
120
-10.8407275 0.02710189 -0.01759673 -0.401343
+0.03233767
-0.02424436
150
- 9.4434565 0.02715609 -0.09660941 +1.506695
+0.01866093
-0.13277471
180
- 4.1342719 0.02707758 -0.10424233 +3.017072
0.00000000
-0.14313458
210
- 0.2013093 0.02694790 -0.02527822 +3.713882
-0.01851786
-0.03474102
240
1.5455370 0.02684358 +0.07399797 +3.412656
-0.03202946
+0.10195266
270
- 6.7883563 0.02677475 +0.10841711 +2.207472
-0.03701585
+0.14988562
300
-10.6594103 0.02669990 +0.05468656 +0.432404
-0.03207678
+0.07586323
330
- 9.2743255 0.02659629 -0.02803268 -1.439065
-0.01849416
-0.03898596
2!
-32.8178065 0.16090871 -0.00185993 +0.185181
+0.00028016
-0.00191721
2,
-32.8178047 0.16090877 -0.00186010 +0.185178
+0.00028024
-0.00191742
1000 X f Bo sin D + 1000 X [- So cos v +
r
E
, \ 1 /r \ 1 100000 X ^o C08 " 1000000 X We sin u
(cos v + cos E] So 1 (~ secV + 1 1 sin vSo \
1000 X -2- Ro
-0.00011622 -0.02650922 -1.710234
- 2.365243
-0.05265561
30
+0.01331757 -0.02293687 -0.357980
- 3.603757
-0.05273125
60
+0.02323048 -0.01311517 +1.390488
- 3.055297
-0.05317053
90
+0.02690995 +0.00028955 +1.777154
- 1.266575
-0.05382187
120
+0.02340803 +0.01365914 +0.399475
- 0.038680
-0.05438924
150
+0.01366523 +0.02346772 -1.372927
- 0.620648
-0.05463405
180
+0.00020848 +0.02707758 -1.767867
- 2.444894
-0.05452574
210
-0.01335043 +0.02340859 -0.392395
- 3.693094
-0.05421519
240
-0.02324178 +0.01343114 +1.376698
- 3.122646
-0.05387086
270
-0.02677488 -0.00003361 +1.779939
- 1.305659
-0.05354950
300
-0.02314722 -0.01330732 +0.429867
- 0.046772
-0.05321706
330
-0.01342562 -0.02295918 -1.315326
- 0.583802
-0.05287735
Zi
+0.00034177 +0.00123615 +0.118427
-11.073532
-0.32182904
2 2
+0.00034182 +0.00123620 +0.118465
-11.073535
-0.32182921
sin v Mi (t) + cos v B = - 0.0000000083.
130 THE SECULAR VARIATIONS OF THE ELEMENTS
DIFFERENTIAL COEFFICIENTS.
u log coeff.
[de/dt] w = + 5503.0089 m' p 3.7406002
[dx/dt\ = [dirfdt] = +1409586.4 TO' p 6.1490917
[dp/dt}^ = + 30388.832 TO' p 4.4827140
[dq/dt] m = - 116164.73 TO' n 5.0650743
= +4584354.6 TO' p 6.6612782
FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF
[de/(ft] M = + 0.013483339
[dx/dt] = [dTr/dt] w = + 3.4537341
[dp/dt] w = + 0.074457966
[dq/dt]oo = - 0.28462399
[dL/dt] w = +11.232473
COMPARISON WITH OTHER RESULTS.
Leverrier. Newcomb. Method of Gauss.
TO'
[de/dt] m
+ 0.01344
+o'.01348
+ 0.0134833
e[dw/dt]
+ 0.05796
+0.05792
+ 0.0579231
[dpldt] M
+ 0.07450
+0.07446
+ 0.0744580
[dq/dt]oo
- 0.28454
-0.28462
- 0.2846240
[dL/dt] w
+ 11.2298
+ 11.232473
NOTES.
This computation is of special interest because, notwithstanding the low eccen-
tricities of both the Earth and Venus, the perturbing function is but slowly con-
vergent for this case. In 1893, the computation was effected by MR. R. T. A. INNES
who employed HILL'S second modification of GAUSS'S method, using in the work
manuscript tables prepared by himself. (See M. N., Vol. LIII, No. 6. The tables
were afterward published in M. N., Vol. LIV, No. 5.) The values of [dp/dt] 00 and
[dq/dt]oo were also obtained by HILL in the "New Theory," pages 511 and 512.
As the results of INNES differed considerably in some cases from those hitherto
obtained, particularly in the case of [de/dt] o, which agreed to the first two figures
only with the values of LEVERRIER and NEWCOMB, and in the case of [dq/dt] QO , which
OF THE ORBITS OF THE FOUR INNER PLANETS. 131
differed in the fourth figure from the value given by HILL, and in order to make the
comparison more exact, the roots in the present paper were computed by the formulas
of the second method, their values being afterward verified by those of the first. It
was found that the functions tabulated by MR. INNES are substantially correct,
though the last two significant figures of all functions from R to the end usually
differ, doubtless owing to the inaccuracy of the tables employed by MR. INNES.
Using the values as given by him, all of this part of his computation was duplicated,
with the result that an error was found in his value of [de/dt] 00 , while for [dq/dt] a
and the other coefficients his values were found to be substantially correct. The
various values here referred to are as follows:
Innes. Hill.
[de/dt]oo
e[dw/dt]m
[dp/dflw,
[dq/dtloo
+ 0.013476*
+ 0.057915
+ 0.074459
- 0.284623
+ 11.232490
a
+0.0744329
-0.2845280
It will be noticed that the results of INNES are in almost exact accordance with
those here given. The disagreement of the value of [dqldt] 00 as derived by GAUSS'S
method with that found by HILL is, however, a more serious matter, and is almost
the sole cause of the considerable disagreement of the values of this variation in the
complete perturbations of the Earth's orbit, the values of [dqldt] OQ from the action
of all of the other planets except Venus agreeing with those obtained by HILL very
exactly. Using the values tabulated on page 510 of the "New Theory " and the
formulas of page 511, I have duplicated the computation by HILL'S methods and
find the same results as he obtained. It is to be noticed that the theory of the motion
of the ecliptic here given by HILL was to serve a temporary purpose only, the numerical
values of the coefficients stated by LEVERRIER in the Annales, Vol. II, pages 94 to 96,
being employed without a re-computation of them.
* The uncorrected value was + 0".013156.
132
THE SECULAR VARIATIONS OF THE ELEMENTS
ACTION OF MARS ON THE EARTH.
E
A
B COS e
/; -in
g
h
3.12005845
-0.6857946
+ 1.1901000
0.028604007
2.3106194
22.5
3.04885416
-1.0809801
+0.7480691
0.011301685
2.3059358
45
3.01959381
-1.2762880
+0.1890610
0.000721878
2.3030821
67.5
3.03677529
-1.2419833
-0.4018201
0.003260792
2.3034537
90
3.09782583
-0.9832901
-0.9346186
0.017641228
2.3070230
112.5
3.19346899
-0.5395909
-1.3282200
0.035628705
2.3122967
135
3.30912609
+0.0215645
-1.5227032
0.046826348
2.3167796
157.5
3.42714623'
+0.6147456
-1.4884581
0.044743825
2.3179851
180
3.52951891
+ 1.1496460
-1.2306997
0.030588915
2.3148501
202.5
3.60064084
+ 1.5448315
-0.7886687
0.012561720
2.3089820
225
3.62970226
+ 1.7401394
-0.2296607
0.001065206
2.3043625
247.5
3.61232195
+ 1.7058351
+0.3612206
0.002635147
2.3044350
270
3.55118902
+ 1.4471417
+0.8940191
0.016141855
2.3088270
292.5
3.45562818
+ 1.0034423
+ 1.2876203
0.033483868
2.3139342
315
3.34017005
+0.4422870
+ 1.4821032
0.044362582
2.3163153
337.5
3.22234876
-0.1508942
+ 1.4478582
0.042336214
2.3148421
S,
26.59718442*
+ 1.8554059f
-0.16239891
0.185952019
18.4818589
2 2
26.59718440
+ 1.8554060
-0.1623987
0.185951956
18.4818645
* 8a s + 4a 8 e' + 8[a' ! - 2kaa'ee' cos A'] = 26.59718442.
t 8[a'V - kaa'e cos K] = + 1.8554056.
t - Sk'aa' cos v ' e sin A" = - 0.1623983.
E
OF THE ORBITS OF THE FOUR INNER PLANETS.
ACTION OF MAES ON THK EARTH.
G G' G"
133
22.5
45
67.5
90
112.5
135
157.5
180
202.5
225
247.5
270
292.5
315
337.5
2,
?2
0.7892434
0.7227227
0.6963160
0.7131259
0.7706071
0.8609765
0.9721508
. 1.0889654
1.1944730
1.2714631
1.3051440
1.2876912
1.2221663
1.1214982
1.0036591
0.8873110
7.9537596
7.9537539
2.3024091 0.8127396 0.0152860 36 42 22.96
2.3028298 0.7325284 0.0066997 34 27 16.75
2.3028870 0.6969608 0.0004498 33 23 4.72
2.3025627 0.7159948 0.0019779 33 55 44.11
2.3020189 0.7853689 0.0097577 35 54 24.65
2.3015508 0.8891330 0.0174106 38 41 59.61
2.3014739 1.0076482 0.0201918 41 42 38.47
2.3019609 1.1223087 0.0173190 44 30 20.12
2.3028661 1.2173683 0.0109112 46 46 8.30
2.3036994 1.2810025 0.0042567 48 15 58.20
2.3038996 1.3059610 0.0003540 48 50 43.66
2.3033085 1.2897047 0.0008871 48 27 7.65
2.3023363 1.2343370 0.0056800 47 8 13.64
2.3016065 1.1465149 0.0126889 45 3 3.25
2.3014626 1.0370980 0.0185863 42 25 11.06
2.3018396 0.9202987 0.0199852 39 31 20.00
18.4193535 8.0974817 0.0812168 332 52 47.46
18.4193582 8.0974855 0.0812251 332 52 49.69
ACTION OF MAKS ON THE EARTH.
E
log A'
log L '
log N a
log AT
logP
logQ
0.14793515
0.46562072
0.39121913
9.5856600
9.3211682
9.6118228
22.5
0.12867513
0.44104101
0.36395436
9.5698260
9.2838199
9.5702568
45
0.12011431
0.43007010
0.35176641
9.5662159
9.2715711
9.5556249
67.5
0.12442259
0.43559482
0.35790544
9.5749532
9.2853792
9.5702743
90
0.14089818
0.45665643
0.38128232
9.5949794
9.3237440
9.6123158
112.5
0.16647531
0.48915019
0.41726416
9.6240919
9.3826551
9.6760625
135
0.19735020
0.52805532
0.46020914
9.6588907
9.4553466
9.7533001
157.5
0.22941061
0.56809820
0.50425204
9.6947360
9.5321279
9.8336349
180
0.25803549
0.60355500
0.54311538
9.7259997
9.6009117
9.9047936
202.5
0.27840311
0.62861983
0.57051120
9.7469169
9.6490816
9.9542006
225
0.28660968
0.63868139
0.58149048
9.7530543
9.6666751
9.9720145
247.5
0.28101715
0.63182707
0.57401211
9.7427949
9.6495832
9.9542876
270
0.26293394
0.60959543
0.54972342
9.7180756
9.6011932
9.9045601
292.5
0.23607945
0.57638319
0.51334444
9.683858o
9.5314041
9.8327841
315
0.20515940
0.53784176
0.47098807
9.6465515
9.4533990
9.7520425
337.5
0.17455362
0.49936282
0.42855178
9.6122456
9.3799495
9.6749680
V
1
1.61903635
4.27007615
3.72979435
7.2494269
5.6940086
8.0664741
2 2
1.61903696
4.27007713
3.72979553
7.2494229
5.6940004
8.0664686
134
THE SECULAR VARIATIONS OF THE ELEMENTS
ACTION OF MARS ON THE EARTH.
E
logF
Ji'
J 2
J,
Ft
9.6084099
2.3152378
+0.11029083
+0.061812671
-0.25644059
22.5
9.5687497
2.3059045
+0.06946998
+0.074883922
-0.16119255
45
9.5555233
2.2995328
+0.01805514
+0.077080482
-0.04073852
67.5
9.5698283
2.3016313
-0.03654213
+0.068068172
+0.08658346
90
9.6101298
2.3103260
-0.08632858
+0.049219187
+0.20138993
112.5
9.6721978
2.3186977
-0.12376087
+0.023403207
+0.28620250
135
9.7488617
2.3215901
-0.14288822
-0.005449606
+0.32810925
157.5
9.8298619
2.3181659
-0.14041555
-0.032946848
+0.32073022
180
9.9024333
2.3108630
-0.11642269
-0.054902532
+0.26518896
202.5
9.9532839
2.3034774
-0.07451078
-0.067974156
+0.16994090
225
9.9719383
2.2994233
-0.02127963
-0.070171605
+0.04948689
247.5
9.9540965
2.3004768
+0.03479475
-0.061160169
-0.07783516
270
9.9033316
2.3061702
+0.08485465
-0.042311544
-0.19264158
292.5
9.8300222
2.3139376
+0.12119708
-0.016495194
-0.27745411
315
9.7479652
2.3199983
+0.13850882
+0.012358484
-0.31936096
337.5
9.6705453
2.3208585
+0.13455789
+0.039856619
-0.31198183
s,
8.0485930
18.4831415*
-0.01520968
+0.027635537
+0.03499338
2 2
8.0485855
18.4831497
-0.01520963
+0.027635553
+0.03499343
*S,(y,' -G") = 18.4019247.
Zt(Ji' - G") = 18.4019246.
OF THE ORBITS OF THE FOUR INNER PLANETS.
135
ACTION OF MARS ON THE EARTH.
E
1000 X Ft
flo
-So
w.
RW
gw
- 5.019874
0.22207195
-0.00895625
+0.02403761
0.00000000
-0.00910901
22.5
- 1.341522
0.21055435
-0.00524961
+0.02748415
+0.08184381
-0.00533223
45
+ 0.173061
0.20752103
-0.00112516
+0.02773157
+0.14850060
-0.00113867
67.5
- 1.404619
0.21281662
+0.00313244
+0.02500875
+0.19788699
+0.00315267
90
- 5.191525
0.22627677
+0.00726155
+0.01896286
+0.22627677
+0.00726155
112.5
- 9.004074
0.24749832
+0.01089521
+0.00882887
+0.22720045
+0.01082573
135
-10.631982
0.27522212
+0.01347761
-0.00609013
+ 0.19233060
+0.01331965
157.5
- 9.129495
0.30647387
+0.01430898
-0.02537639
+0.11549298
+0.01409065
180
- 5.368216
0.33606721
+0.01279803
-0.04599728
0.00000000
+0.01258694
202.5
- 1.527816
0.35740451
+0.00883760
-0.06172287
-0.13468590
+0.00870276
225
+ 0.177177
0.36477534
+0.00302208
-0.06569865
-0.25491209
+0.00298666
247.5
1.210722
0.35578971
-0.00342959
-0.05556595
-0.32661056
-0.00340772
270
- 4.837361
0.33265813
-0.00898150
-0.03579916
-0.33265813
-0.00898150
292.5
- 8.543560
0.30146830
-0.01237466
-0.01405700
-0.28031952
-0.01245460
315
-10.135232
0.26942963
-0.01319021
+0.00403826
-0.19280199
-0.01334851
337.5
- 8.672134
0.24201044
-0.01181400
+0.01658570
-0.09407098
-0.01199994
2,
-40.833952
2.23402218
+0.00430615
-0.07881492
-0.21326424
+0.00357711
2s
-40.833942
2.23401612
+0.00430637
-0.07881474
-0.21326273
+0.00357732
sin
= +
0.0000000050.
136
THE SECULAR VARIATIONS OF THE ELEMENTS
ACTION OF MARS ON THE EARTH.
E
Ro sin v +
(cos v + cos E) So
( - sec' if + ij sin vS a
Wo COS (!)+)
Wo sin (v + T )
-2 a /J
-0.01791249
-0.22207195
-0.00432317
+0.02364565
-0.43669510
22.5
+0.07214538
-0.19805102
-0.01506202
+0.02298943
-0.41458381
45
+0.14689806
-0.14657925
-0.02300258
+0.01548939
-0.41012014
67.5
+0.20021147
-0.07256855
-0.02452836
+0.00487823
-0.42290136
90
+0.22612318
+0.01831801
-0.01859384
-0.00372284
-0.45255354
112.5
+0.21867465
+0.11830141
-0.00734127
-0.00490454
-0.49817351
135
+0.17313163
+0.21584084
+0.00340234
+0.00505112
-0.55697199
157.5
+0.08900258
+0.29475425
+0.00517812
+0.02484247
-0.62244500
180
-0.02559607
+0.33606721
-0.00827262
+0.04524724
-0.68340683
202.5
-0.15101812
+0.32435071
-0.03316015
+0.05205879
-0.72588458
225
-0.25917515
+0.25670929
-0.05360955
+0.03797800
-0.73820246
247.5
-0.32389097
+0.14753236
-0.05413656
+0.01252224
-0.71614631
270
-0.33246073
+0.02354205
-0.03531845
-0.00584698
-0.66531623
292.5
-0.28957300
-0.08808428
-0.01192486
-0.00744291
-0.59906678
315
-0.21131668
-0.16946344
+0.00233483
+0.00329486
-0.53246901
337.5
-0.11585773
-0.21387153
+0.00359251
+0.01619196
-0.47652121
s,
-0.30030825
+0.31236276
-0.13738304
+0.12113644
-4.47573530
2 2
-0.30030574
+0.31236335
-0.13738259
+0.12113567
-4.47572256
DIFFERENTIAL COEFFICIENTS.
[dxldt] m =
= - 48641.893m'
= +3016769.1 m'
log coeff.
n 4.6870105
p 6.4795421
= +
[dq/dt] w =
= - 724628.93
19626.398 m' p 4.2928406
22258.695 m' n 4.3474997
m' n 5.8601 157
FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF m'.
= -0.015723904
[d x /dt] m = [d7r/d<]oo = +0.97519611
[dpfdt] M = +0.0063443986
[dq/dt] m = -0.0071953108
[dL/dt] m = -0.23424243
OF THE ORBITS OF THE FOUR INNER PLANETS.
137
Leverrier.
[
-0.3555837 0.57362783 +0.02247623 -1.5471185 0.0000000 +0.0228596
-1.2681621 0.57437868 -0.26276188 +2.3619011 +2.9142195 -0.2666346
-1.2912829 0.57674453 -0.40344654 +5.6791610 +5.0370180 -0.4068583
-0.3956591 0.58127800 -0.31429014 +7.5403759 +5.8127800 -0.3142901
+0.5220384 0.58774791 -0.09358683 +7.4052797 +5.0477180 -0.0928086
+0.5361282 0.59426527 +0.08130415 +5.2579217 +2.9287882 +0.0801402
-0.3802586 0.59796705 +0.11726800 +1.6546186 0.0000000 +0.1153337
-1.3248861 0.59688219 +0.07295990 -2.4035193 -2.9416851 +0.0719154
-1.3648579 0.59139747 +0.07709136 -5.7742147 -5.0790610 +0.0764503
-0.4663692 0.58408733 +0.18082475 -7.5353293 -5.8408733 +0.1808248
+0.4731390 0.57795107 +0.28959440 -7.2511167 -5.0475302 +0.2920434
+0.5221422 0.57454813 +0.25136029 -5.0525337 -2.9150792 +0.2550648
-2.3968057 3.50543586 +0.00939762 +0.1666094 -0.0418552 +0.0070201
-2.3968061 3.50543960 +0.00939707 +0.1688164 -0.0418499 +0.0070205
lOOOXtft sinv 1000 xT-flo cos w
+ (coav+cosE)X } _
if \
h ( ~ sec 2 ^+ 1 I sin t'o'c
J
a
+0.00044952
-0.57362783
+0.002782496
-0.015218912
-0.0011280149
30
+0.28684099
-0.49762977
-0.015447198
+0.017867337
-0.0011320724
60
+0.49964759
-0.28807540
-0.053760700
+0.018305034
-0.0011438222
90
+0.58124893
+0.00316289
-0.073936353
-0.014803463
-0.0011625560
120
+0.50564826
+0.29959114
-0.055727122
-0.048767876
-0.0011853529
150
+0.29142597
+0.51791202
-0.017258560
-0.049666046
-0.0012057929
180
-0.00234536
+0.59796705
+0.002975836
-0.016276382
-0.0012159913
210
-0.29539381
+0.51865750
-0.015412218
+0.018443264
-0.0012111028
240
-0.50861524
+0.30174597
-0.054096837
+ 0.020191247
-0.0011927133
270
-0.58403554
+0.00617932
-0.074341448
-0.012307244
-0.0011681747
300
-0.50182267
-0.28668159
-0.055931013
-0.046147489
-0.0011462092
330
-0.28712395
-0.49766091
-0.017382540
-0.047441087
-0.0011324063
S,
-0.00703790
+0.05091934
-0.213757340
-0.087914378
-0.0070121038
S,
-0.00703741
+0.05092105
-0.213778317
-0.087907239
-0.0070121051
sin = + 0.00000000000028.
OF THE ORBITS OF THE FOUR INNER PLANETS. 145
DIFFERENTIAL COEFFICIENTS.
log coeff.
[de/dtlw = - 1.5163927 TO' n 0.1808117
[dx/dt] m = [dT/dfloo = + 655.70924 TO' p 2.8167113
[dp/dt] m = - 18.991017 TO' n 1.2785482
[dq/dt] m = - 46.179399 TO' n 1.6644483
= -1514.4911 TO' n 3.1802667
FINAL VALUES CORRESPONDING TO THE ABOVE VALUE OF
[de/dt] M = -0.00043305713
[dx/df], = [dir/d4 = +0.18725991
[dp/dfloo = -0.0054235259
[dq/dt] M = -0.013188086
= -0.43251400
m
COMPARISON WITH OTHER RESULTS.
Lcverrier. Newcomb. Method of Gauss.
[de/dt] w -0.00044 -0.00043 -0.00043306
e[dirldt} w +0.00315 +0.00314 +0.00314056
[dp/dt] m -0.00542 -0.00542 -0.00542353
[dq/dt] M -0.01317 -0.01318 -0.01318809
[dL/dt] M -0.4325 -0.43251400
NOTES.
Here, as in the previous case, the approximate tests completely fail with the
angle e, the roots G, G', G" , and with the functions which immediately depend upon
these quantities. The close agreement of the final sums shows, however, that the
expansion of the perturbing function is quite rapidly convergent for this case.
The values obtained by HILL in the "New Theory " are:
[dp/dt] w = -oo054237 [dq/dt]^ = -0.0131883
The agreement of the final results here obtained with all other values is satisfactory.
146
THE SECULAR VARIATIONS OF THE ELEMENTS
ACTION OF URANUS ON THE EARTH.
E
A
B cos t B sin e g
h
369.9391833
+24.383407 -17,162615 247.29194
367.49698
45
370.9299673
+34.837638 - 7.159449 41.56718
367.49556
90
370.9628887
+34.937206 + 7.512108 45.76306
367.49557
135
370.0188613
+24.623780 +17.957661 261.51163
367.49708
180
368.6506847
+ 9.938828 +18.058344 264.45220
367.49706
225
367.6596194
- 0.515405 + 7.755178 48.77249
367.49561
270
367.6264169
- 0.614971 - 6.916382 38.79263
367.49553
315
368.5707253
+ 9.698453 -17.361932 244.44864
367.49688
Si
1477.1791736*
+68.644470f + 1.191455t 596.29983
1469.98514
Z 2
1477.1791733
+68.644466 + 1.191458 596.29994
1469.98513
E
/
G G' G"
e
O
O
i a
+ 1.63126
367.495141 1.9739873 0.3408899 4
33 0.174
45
+2.62346
367.495250 2.6661957 0.0424235 4
55 28.953
90
+2.65637
367.495229 2.7027882 0.0460735 4
57 40.407
135
+ 1.71085
367.495130 2.0584810 0.3456945 4
38 13.695
180
+0.34269
367.495095 1.0379451 0.6933002 3
55 55.015
225
-0.64694
367.495249 0.163776T 0.8103506 2
56 52.565
270
-0.68006
367.495243 0.1303078 0.8100787 2
53 46.998
315
+0.26290
367.495069 0.9586081 0.6938970 3
50 28.866
S,
+3.95026
1469.980708 5.8450284 1.8903423 16
20 22.594
2 2
+3.95027
1469.980698 5.8470609 1.8923656 16
21 4.079
ACTION OF URANUS ON THE EARTH.
E
log A'
log LO' log No log N log P
logQ
0.00205713
0.27574316 0.17917560 6.1388849 1.2833195
3.7524062
45
0.00241015
0.27621390 0.17970508 6.1440956 1.2897058
3.7584989
90
0.00244638
0.27626178 0.17975893 6.1514873 1.3001369
3.7689401
135
0.00213675
0.27584925 0.17929492 6.1638868 1.3084161
3.7775217
180
0.00153562
0.27504825 0.17839395 6.1668770 1.3097851
3.7792009
225
0.00086277
0.27415148 0.17738519 6.1617903 1.3035252
3.7729672
270
0.00083285
0.27411159 0.17734031 6.1515209 1.2932165
3.7626532
315
0.00146560
0.27195493 0.17828898 6.1419973 1.2848106
3.7542155
S,
0.00687198
1.10116478 0.71466879 4.611770(1 5.1864579
3.0632003
2 2
0.00687557
1.10116956 0.71467417 4.6117700 5.1864577
5.0632033
* 4a 2 + 2aV + 4[o' 2
2kaa'ee' cos A:] = 1477.1791732.
t 4[a'V - kaa'e cos K] = + 68.644468.
t + 4fc'aa' cos v' e sin K' = + 1.191454.
OF THE ORBITS OF THE FOUR INNER PLANETS.
147
ACTION OF URANUS ON THE EARTH
.
E
logF
Ji' J*
Ji
Fl
3.7519032
367.8221780 -0.84734235
+2.2088876
+301.43340
45
3.7584363
367.4766488 -0.35515557
+4.6641774
+ 123.58384
90
3.7688721
367.4892672 +0.38057614
+4.3579828
-129.67133
135
3.7770116
367.8350259 +0.86234922
+ 1.4696662
-309.97871
180
3.7781780
368.1745883 +0.82112849
-2.3088335
-311.71664
225
3.7717715
368.2455011 +0.34414218
-4.7641198
-133.86711
270
3.7614579
368.2514548 -0.29842856
-4.4579225
+ 119.38809
315
3.7531918
368.1823028 -0.79535630
-1.5696087
+ 299.69549
Si
5.0604111
1471.7374883* +0.05593372
-0.1998856
- 20.56648
2 2
5.0604112
1471.7394786 +0.05597953
-0.1998849
- 20.56649
E
r,
1000000 X Ra 1000000 X So 1000000 X W,
1000000 X -R<">
1000000 X S<">
+3.5560766
68.949325 +0.10018820 +1.2544323
0.000000
+0.10189713
45
+0.4865778
69.825413 +0.03716997 +2.6752556
+49.966575
+0.03761606
90
+0.8230258
71.523975 -0.03529126 +2.5611571
+71.523975
-0.03529126
135
+4.0393764
73.045932 -0.11453773 +0.8877061
+51.045918
-0.11319535
180
+3.8028425
73.443068 -0.14342145 -1.3776247
0.000000
-0.14105578
225
+0.5809413
72.487200 -0.06580265 -2.8156195
-50.655465
-0.06503154
270
+0.709709S
70.794418 +0.06221357 -2.5724979
-70.794418
+0.06221357
315
+3.7847601
69.352325 +0.12685775 -0.8818747
-49.628040
+0.12838021
Si
+8.8916547
284.710786 -0.01631094 -0.1345332
+ 0.729557
-0.01223634
2*
+8.8916556
284.710870 -0.01631266 -0.1345325
+ 0.728988
-0.01223053
1 0ftOOOn V 1 7?n rct<* u
E
1 000000 X[R sin v
X L 1000000 1000000
1000x-2 r -K
+ (cosv+cosE)S l
l] +^Bec'>+l)
<'
S<">
- 2.705324
-1.4244790 -3.460778 -20.67006
0.0000000
-0.002504942
30
- 0.803003
-1.3866027 -6.000157 -24.54092
-0.4949963
-0.004283931
60
+ 5.500746
-1.3028006 -6.111878 -19.19609
-0.7766973
-0.004207440
90
+ 9.816975
-1.2077652 -4.678320 - 9.84176
-0.7926572
-0.003070385
120
+ 7.633806
-1.1282518 -2.631099 - 0.95528
-0.6126954
-0.001649853
150
+ 0.880725
-1.0779056 -0.461908 + 5.93579
-0.3272800
-0.000280495
180
- 3.932916
-1.0618130 +1.648220 +10.88332
0.0000000
+0.000989445
210
- 2.161955
-1.0812437 +3.609363 +14.08781
+0.3282934
+0.002191792
240
+ 4.374565
-1.1352348 +5.187600 +15.12313
+0.6164876
+0.003252928
270
+ 9.225323
-1.2184712 +5.773047 +12.58406
+0.7996835
+0.003788855
300
+ 7.735212
-1.3155488 +4.427365 + 4.61417
+0.7842976
+0.003047815
330
+ 1.648024
-1.3961376 +0.822269 - 8.41473
+0.4984001
+0.000587075
Si
+ 18.606089
-7.3681280 -0.940570 -10.20081
+0.0113925
-0.001072047
2 2
+ 18.606089
-7.3681260 -0.935706 -10.18975
+0.0114435
-0.001067089
E
. Rt, cos v
Rosmv
+ (cos v + cos )S +T- sec 2 v +lj sin vS,
Wo sin u
-2^0
a
-0.0069216
+ 1.4244790 -0.005314674
+0.019975127
2.5832417
30
-0.7611745
+ 1.1593980 -0.018148167
+0.016519714
2.5492068
60
-1.1839523
+0.5449664 -0.018883467
+0.003450266
2.4840909
90
-1.2020643
-0.1220026 -0.009233404
-0.003406539
2.4155306
120
-0.9266826
-0.6439879 -0.000621304
-0.000725630
2.3617340
150
-0.4956901
-0.9571936 +0.001287534
+0.005794466
2.3299411
180
-0.0032964
-1.0618130 -0.002798312
+0.010517416
2.3216920
210
+0.4917082
-0.9631868 -0.009486007
+0.010415471
2.3371562
240
+0.9297081
-0.6522758 -0.014244152
+0.005080676
2.3763511
270
+ 1.2126214
-0.1251906 -0.012409750
-0.002087273
2.4369424
300
+ 1.1939212
+0.5533939 -0.003526734
-0.002975358
2.5083988
330
+0.7575012
+ 1.1728178 +0.002585060
+0.008007817
2.5667361
2i
+0.0027764
+0.1647626 -0.045388643
+0.035322497
14.6355085
2 2
+0.0029019
+0.1646422 -0.045404734
+0.035243656
14.6355132
sin
fl
-0.13911285
-2
.0302096 -0.026171976 +0.10810004
0.0000000
-0.018943511
30
-0.51397488
-1
.9019956 -0.029451014 +0.06531256
-0.6789837
-0.021027135
60
-0.65316258
-1
.6889696 -0.023181583 +0.01388518
-1.0069217
-0.015958290
90
-0.40694037
-1
.4884239 -0.012395858 -0.01871310
-0.9768538
-0.008135411
120
-0.02612649
-1
.3462165 -0.001540204 -0.03342035
-0.7310608
-0.000965798
150
+0.08995598
-1
.2702099 +0.007499119 -0.03789964
-0.3856685
+0.004553852
180
-0.20223795
-1
.2578222 +0.014435140 -0.03668660
0.0000000
+0.008665574
210
-0.63957154
-1
.3082364 +0.019136251 -0.03045222
+0.3972143
+0.011620521
240
-0.80757787
-1
.4237326 +0.020598-119 -0.01635704
+0.7731558
+0.012916412
270
-0.54879816
-1
.6023546 +0.016496265 +0.01146539
+ 1.0516264
+0.010826511
300
-0.11741630
-1
.8174946 +0.004601712 +0.05641742
+ 1.0835451
+0.003167836
330
+0.07369507
-1
.9931947 -0.012572900 +0.10202141
+0.7115406
-0.008976672
2,
-1.94563404
-9
.5644451 -0.011258492 +0.09193865
+0.1187184
-0.011117777
2 2
-1.94563390
-9.5644151 -0.011288137 +0.09173440
+0.1188753
-0.011138334
Ro COS V
E
Ro sin v
+ (c,osv + cosE)S
. (r \ . Wa cos u
+ ( - seo 2
100000 X S ( ">
1000 X[flo sin v+
(cos v-\- cos E) So]
0.0017097618
+ 9.903284
+0.01219946
0.0000000
+0.7168085
+0.0198066
30
0.0017745243
+ 7.025377
-.0.10023833
+0.6334785
+0.5015908
+0.9730086
60
0.0019262900
+ 5.499323
-0.20387007
+ 1.1484062
+0.3785755
+ 1.7472855
90
0.0021375714
+ 5.593738
-0.27213044
+ 1.4028896
+0.3671175
+2.1277319
120
0.0023569201
+ 3.205770
-0.27013289
+ 1.2799221
+0.2010205
+ 1.9382857
150
0.0025168546
- 4.917236
-0.17936963
+0.7641820
-0.2986000
+ 1.1679255
180
0.0025606191
- 16.044422
-0.02369074
0.0000000
-0.9631644
+0.0320888
210
0.0024720520
-22.805150
+0.13539869
-0.7505788
-1.3848465
-1.0986739
240
0.0022843230
-19.928906
+0.23709997
-1.2404980
-1.2496588
-1.8606368
270
0.0020608533
- 9.038484
+0.25685358
-1.3525394
-0.5931965
-2.0510270
300
0.0018652798
+ 2.997952
+0.20817962
-1.1120336
+0.2063802
-1.6842325
330
0.0017413378
+ 9.774776
+0.11927113
-0.6216313
+0.6978895
-0.9263634
2,
0.0127031938
- 14.366999
-0.04021465
+0.0757967
-0.7100385
+0.1925973
2
0.0127031934
-14.366879
-0.04021500
+0.0758006
-0.7100452
+0.1926017
* 2,(J,' - G") =
543.7590546.
2 Z (J,' - G") =
543.7590328.
OF THE ORBITS OF THE FOUR INNER PLANETS.
171
1000 X |~- flocosv
L
f
E
( \ -i
1000 X W cos u
1000 X W sin u
1000X-2-flo
- sec 2 ip + 1 1 sin vSo
a
-1.7097618
+0.00313672
-0.01178931
- 3.1005914
30
-1.4844381
-0.07412689
+0.06747540
- 3.2623831
60
-0.8120508
-0.20054993
+0.03664321
- 3.6729182
90
+0.2105546
-0.25530900
-0.09419278
- 4.2751426
120
+ 1.3414125
-0.17569179
-0.20519295
- 4.9336670
150
+ 2.2292256
-0.03890712
-0.17509913
- 5.4402943
180
+2.5606191
+0.00609135
-0.02289425
- 5.5988851
210
+ 2.2161495
-0.09117052
+0.10010366
- 5.3434506
240
+ 1.3285850
-0.22331936
+0.07965468
- 4.7817011
270
+0.2102889
-0.25329570
-0.04260337
- 4.1217062
300
-0.8010985
-0.15911711
-0.13424046
- 3.5565885
330
-1.4740745
-0.03664087
-0.11350351
- 3.2013711
38,
+ 1.9077055
-0.74945012
-0.25781908
-25.6443513
2 2
+ 1.9077060
-0.74945010
-0.25781973
-25.6443479
sin
+ cos
+ 1.1362797
0.2059026 -0.0165525 +10.07610
0.0000000
-0.0119808
45
- 5.0397791
0.2189646 +0.3708684 + 2.31469
+0.1087907
+0.2605870
90
- 8.3838519
0.2523915 +0.5397194 - 9.33604
+0.1656447
+0.3542182
135
- 1.8404722
0.2886690 +0.6481209 -19.05928
+0.1256756
+0.3990450
180
+ 1.6518880
0.3050752 +0,4171470 -18.09445
0.0000000
+0.2504179
225
- 5.0490913
0.2898966 -0.2732646 - 6.02536
-0.1262101
-0.1682478
270
- 8.9126276
0.2535451 -0.7948804 + 6.80306
-0.1664018
-0.5216806
315
- 2.5789640
0.2193839 -0.6003932 +12.22078
-0.1089990
-0.4218605
2,
-14.5083118
1.0169144 +0.1454335 -10.55133
-0.0007571
+0.0709747
S,
-14.5083066
1.0169141 +0.1453315 -10.54917
-0.0007428
+0.0695237
E
1000 X [flo sin v +
(cos v + cos E)So]
1000 xl-flocosv +
/ r x -, 1000000 X W cos u 1000000 X T^o sin w
( sec 8
1000000 X S<">
-10.033551 0.05357158 +0.12743633 +2.7656535
0.00000000
+0.09223957
45
- 4.253985 0.05690845 -0.09526013 -2.4561209
+0.02827449
-0.06693360
90
+ 2.323772 0.06500834 -0.12559190 -7.5560767
+0.04266503
-0.08242607
135
- 5.662284 0.07385617 +0.10733754 -9.1730340
+0.03215420
+0.06608723
180
-14.586465 0.07791030 +0.13821863 -4.8544449
0.00000000
+0.08297417
225
- 7.712269 0.07407227 -0.10322243 +2.4086872
-0.03224828
-0.06355357
270
+ 1.985936 0.06494182 -0.14759132 +6.8479047
-0.04262137
-0.09686429
315
- 2.681773 0.05659771 +0.08359968 +6.4235154
-0.02812010
+0.05874051
2,
-20.310308 0.26143204 -0.00752826 -2.7969634
+0.00004366
-0.00407662
2 2
-20.310311 0.26143460 -0.00754534 -2.7969523
+0.00006031
-0.00565943
E
1 000 V 1 /? rrm v
lOOOXtflosinv ^L 1000000
1000000
1000 X 2 T -R
+ (oos i)+cos E)So] fr 2 \ . , cl XWaCosu
X Wo sin u
a
+0.000254873 -0.053571580 + 0.7111033
- 2.6726716
-0.09715013
45
+0.042763861 -0.037538560 - 2.2040406
+ 1.0838516
-0.10631064
90
+0.064736687 +0.005812013 - 7.0890057
- 2.6153925
-0.13001668
135
+0.048623034 +0.055602449 - 4.0838509
- 8.2138132
-0.15745404
180
-0.000276437 +0.077910304 + 1.2481721
- 4.6912376
-0.17035369
225
-0.048771753 +0.055759058 - 2.0023922
+ 1.3387309
-0.15791475
270
-0.064644985 +0.006352181 - 6.7530485
- 1.1358370
-0.12988365
315
-0.042545549 -0.037317274 - 3.5934362
- 5.3243555
-0.10573015
2l
+0.000070138 +0.036502918 -11.8827788
-11.1151387
-0.52740415
s.
+0.000069593 +0.036505673 -11.8837299
-11.1155862
-0.52740958
sin v iAi (s > + cos Q7 1 V7
Earth
+0.021481158
+ 2 2915614
-un 000*31 QQ11
Jupiter
+0.15813453
+ 12 476799
2 s )fi l i4077
Saturn
+0.006289141
+ 6679051
024687281
Uranus
-0.000014965
+ 00120199
000062454
Neptune
+0.000000608
+ 00034075
000104366
+0.18702155
+ 15.952606
-0.29383023
Action of
rdo-l
LdiJoo
Fl
UUoo
f-1
ldt] w
Mercury
+ o'6l479483
+ o'6o61918
+ o"l940178
Venus
+ 0.30877426
+ 0.4948896
+ 4 1 9 04933
Earth
- 2.2862242
+ 2.2903688
+ 6 6520970
Jupiter
- 8.3142000
+ 12.472464
18 450874
Saturn . ...
- 0.26298236
+ 6677678
8382821
Uranus
- 0.00741949
+ 0120160
0154576
Neptune
- 0.00302292
+ 0.0034059
00045985
-10.5502799
+ 15.947104
- 8.342604
COMPARISON WITH OTHER RESULTS.
Leverripr. Neweomb. Method of Gauss.
+0.18703
+ 1.48645
[K/ctt]oo -0.29375
sin i [dtt/dfloo -0.34099
-8.358*
+0.18706
+ 1.48787
-0.29385
-0.34066
+0.187022
+ 1.487355
-0.293830
-0.340709
-8.34260
12. COMPARISON WITH THE RESULTS OF OBSERVATION.
From a discussion of all the available observations of the planets and of the
Sun, NEWCOMB has derived the most probable values of the preceding coefficients
based upon observations alone. These will be found summarized in a convenient
form on pages 107 and 108 of The Elements of the Four Inner Planets and the Funda-
mental Constants of Astronomy (Supplement to the American Ephemeris and Nautical
Almanac, 1897).
* The value of [dLldt]oo arising from the action of Mercury was not stated by Leverrier. The value as found above
has been added to his series of values in order to obtain this sum.
OF THE ORBITS OF THE FOUR INNER PLANETS. 183
In order to compare the values here obtained with those given by NEWCOMB
it is necessary to notice that the values of i and fl stated by him are measured from
the movable equator and equinox and that it is therefore necessary to free the values
of [di/dt] 00 and [dQ/dt] 00 here given from the changes caused by the motion of the
ecliptic itself. For this purpose we first compute p and L from the equations,
[dp-] \dq1
p sin L = and p cos L = Mr ,
L dt Joo L dt Joo
the secular variations being those which belong to the Earth's orbit, and then add
the quantities p cos (L fl) to the several determinations of [di/dt] Q o and p X
cos i sin (L Q) to those above given for sin i [dQ/dt]o . In this manner the values
stated in the following tabulation are obtained.
In a similar way it might appear necessary to add the correction,
e tan \i ( sin i ^7 + P sin (L ft) J
to the values obtained for e [dwjdt] o, the first part arising from the change due to the
plane of the orbit and the second from that produced by the motion of the ecliptic.
And in the case of the Earth's perihelion, there is a secular motion due to the lack of
sphericity of the Earth-moon system which is expressed by the equation,
dir^ mm' (a '\ 2 .
TT = I*** ' 7 7\} 'I ) > '
dt Joo 2 (m + m') 2 \a/'
the accented letters applying to the moon (Annales de I'Observatoire de Paris, Vol. IV,
pages 42-46). Employing the values of a' and m' given in the Astronomical Papers
of the American Ephemeris, Vol. IV, page 11, this correction is found to be
+0".0157884. But these last two corrections need not here be applied because the
values of the variations obtained by NEWCOMB from observation have already been
freed from their effects.
MERCURY.
Newcomb. Method of Gauss. Observ. 5i Si t
[de/dt] M
e [dv/dt]m
[dildt}oo
+0.0423
+ 1.0960
+0.0676
+0.0423
+ 1.0891
+0.0674
+o!t)336
+ 1.1824
+0.0714
-o!()087
+0.0864
+0.0038
-0.0087
+0.0933
+0.0040
0.0050
0040
0.0080
sin i [dn/dfloo -0.9250 -0.9234 -0.9189 +0.0061 +0.0045 0.0045
184
THE SECULAR VARIATIONS OP THE ELEMENTS
VENUS.
Newcomb. Method of Gauss. Observ. Si
[de/dt} w
-0.0958
-0.0958
-0.0946
+0.0012
+0.0012
0.0020
e [dv/dt]oo
+0.0039
+0.0038
+0.0029
-0.0010
-0.0009
0.0020
[dildt]oo
+0.0034
+0.0034
+0.0029
-0.0005
-0.0005
0.0030
sin i [dttldt]m
-1.0600
-1.0603
-1.0540
+0.0060
+0.0063
0.0012
EARTH.
Newcomb. Method of Gauss. Observ.
i
[de/dt]^
-0.0856
-0.0857
-0.0855
+0.0001
+0.0002
0.0009
e. [dir/dt}oo
+0.1925
+0.1925
+0.1948
+0.0023
+ 0.0023
0.0012
[d*!dt} M
-0.4677
-0.4677
-0.4711
-0.0034
-0.0034
0.0023
Newcomb.
MARS.
Method of Gauss. Observ.
[de/dt] M
+0.1871
+0.1870
+0.1900
+0.0029
+0.0030
0.0027
e [dw/dt] M
+ 1.4879
+ 1.4874
+ 1.4955
+0.0076
+0.0081
0.0035
[di/dt] w
-0.0225
-0.0229
-0.0226
-0.0001
+0.0003
0.0020
sin i [dn/dt]oo
-0.7263
-0.7251
-0.7260
+0.0003
-0.0009
0.0020
In the above tabulation the column headed 61 expresses the residuals from the
computation of NEWCOMB and that headed 5 2 states the residuals from the results
here obtained. It will be noticed that the differences are very minute throughout,
the only appreciable improvement arising from the more accurate computation
occurring in the case of the node of Mercury, where the residual is reduced by its
fourth part.
The last column contains the mean errors of the observational results. If we
multiply these by 0.6745 to reduce them to probable errors, we observe that in seven
cases the residuals are less than the probable errors; in five cases they vary from one
to three times as great but that in each of these cases where the divergence is greatest
a slight change in the value of the masses will correct the disagreement, and that
in the remaining three cases the difference is very much greater than can be ascribed
to errors either in the adopted masses, the computation, or to errors in the obser-
vations themselves. These three cases are:
1. The motion of the perihelion of Mercury.
2. The motion in the node of Venus.
3. The motion of the perihelion of Mars.
OF THE ORBITS OF THE FOUR INNER PLANETS. 185
The first of these is the well-known discordance. The second is well established,
the discordance between observation and theory being nearly eight times the probable
error, nor can the uncertainty remaining in the values of the masses account for more
than a small part of the discrepancy. NEWCOMB estimates the mean error of the
computed value arising from this uncertainty as not more than 0".0012, so that with
this included the residual is nearly six times the probable error. The third dis-
cordance is the least of the three, but as the masses of Jupiter and Saturn, the principal
disturbing planets for this case, are accurately known, the uncertainty of the com-
puted results is almost negligible. NEWCOMB estimates the mean error of the result
of computation arising from the uncertainties in the masses of all the planets as here
but 0".0004, so that the residual remains between three and four times as large as
the probable error.
13. COMPARISON WITH SEELIGER'S HYPOTHESIS ON THE CON-
STITUTION OF THE ZODIACAL LIGHT.
Many hypotheses have been made for the purpose of explaining the discrepancies
shown in the preceding article. In general, either the assumption is made that
NEWTON'S Law of Gravitation is not strictly accurate* or else that certain additional
matter in the solar system must be considered whose attraction has not hitherto
been allowed for.| The most recent and the most plausible investigation of the
second kind is that effected by SEELIGER (IO)I (11)i (12> who seeks to account for all of
the appreciable discrepancies by the perturbing effect of the cloud of particles known
as the zodiacal light.
What the true form of this cloud is, and still more, what the law of the dis-
tribution of its density is, is very uncertain. J SEELIGER assumes that it can be
roughly conceived as made up of two homogeneous ellipsoids of revolution whose
semi axes have the values 0.24 and 1.20, respectively. Both the eccentricities of
these ellipsoids and the position of the equator of the outer one can vary within wide
limits without greatly altering the values of the perturbations which they produce;
the distance from the focus to the center in each of them is arbitrarily chosen as
equal in length to ten times the semi minor axis, and the equator of the outer one is
assumed to be coincident with the plane of the equator of the sun. The respective
densities and also the two constants which define the equatorial plane of the first
ellipsoid remain as unknown quantities whose values are to be determined.
* See Tisserand's Mecanique Celeste, Vol. IV, Pages 494-542.
fSee Newcomb's " Astronomical Constants. . . ." (1 ", Pages 110-120.
t See the article, "The Zodiacal Light" by Newcomb, in the Encyclopaedia Britannica, Vol. XXVIII.
186
THE SECULAR VARIATIONS OF THE ELEMENTS
From the known formulas which express the attraction exerted by an ellipsoid
upon a point either wholly within or without its surface, the expression for the per-
turbing force in any case can readily be written, and from this the equations for the
variations of the various elements are derived, each equation containing five unknown
quantities whose values are to be so determined as to best account for the excess of
the variations observed over those heretofore obtained from the .theory. As the
ellipsoids are assumed to be symmetrical with respect to their axes of rotation,
however, they will cause no appreciable perturbation of any eccentricity. The
variation of the obliquity of the Earth's orbit was also not considered by SEELIGER.
There remain therefore but ten discrepancies to be represented; namely, those of
the four perihelia, those of the three nodes and those of the three inclinations. These
ten discrepancies form the absolute terms of ten corresponding equations which con-
tain five unknown quantities. It is to be noticed that in the "Astronomical Constants
..." two tables of the theoretical variations are stated by NEWCOMB; the first,
on page 109, are those computed from the values of the various masses assumed in
Chapter V; the second, on page 185, are those computed from the definitively adopted
masses. The latter values of the masses are in closer accordance with those assumed
in the present paper than the former; the first values are, however, the ones adopted
by SEELIGER in the computation.
The final results are as in the following table:
Newcomb.
Method of
Gauss.
Per. caused by
Zod.L't.
Final Residuals.
Prob. Errors.
Newcomb.
Meth. of Gauss.
MERCURY.
//
//
//
//
//
//
edit
+8.64
+9.33
+8.49
+0.15
+0.84
0.29
sin i
- 0.18791333
0.020434768
- 0.3847186
- 3.085993
0.000000000
- 1.2510793
30
+ 0.04317409
0.021303927
- 0.4280932
6.547345
+ 0.033478638
- 1.3454762
60
- 0.07397385
0.025621038
+ 0.1363110
9.590571
+ 0.063887706
+ 0.3925293
90
- 0.49750230
0.033590134
+ 0.7062450
- 10.865960
+ 0.086774000
+ 1.8244563
120
- 0.86425140
0.043556201
+ 0.5521780
7.575463
+ 0.088361000
+ 1.2934800
150
- 0.83674077
0.051546760
- 0.4218487
+ 1.808294
+ 0.056517506
- 0.9250562
180
- 0.43280690
0.053431000
- 1.3516860
+ 13.566615
0.000000000
- 2.8963373
210
- 0.01035886
0.048659649
- 1.2877184
+ 20.505307
- 0.053351926
- 2.8237889
240
- 0.07819780
0.040457621
- 0.3317444
+ 19.465045
- 0.082075038
- 0.7771130
270
+ 0.18040025
0.032377496
+ 0.5949004
+ 13.349022
- 0.083641596
+ 1.5368184
300
- 0.46718624
0.026190705
+ 0.7690320
+ 6.465459
- 0.065308303
+ 2.2142904
330
- 0.46610559
0.022213151
+ 0.2265587
+ 0.990810
- 0.034907444
+ 0.7120630
2i
- 1.94793392
0.209691333
- 0.6106280
+ 19.245092
+ 0.004865365
- 1.0242299
2 2
- 1.94793368
0.209691117
- 0.6099562
+ 19.240128
+ 0.004869178
- 1.0209836
* 2,(J,' - G") =
5.9540163.
2, (j ' G") =
5.9539882.
68
THE SECULAR VARIATIONS OF THE ELEMENTS
ACTION OF THE EARTH ON MERCURY.
COS V Ro
E
BUI v m>
+ (cos v + cos E)S<>
. (r ,.\j 100 X TFo cos 100 X Wo sin u
+ I - sec* if + 1 1 sin t'So
- 0.000769437
- 0.020434774 - 0.2710273 - 0.1475729
30
+ 0.011967951
- 0.017591057 - 0.2756307 - 0.5938896
60
+ 0.024315363
- 0.008157573 - 0.1568518 - 0.9461439
90
+ 0.032727249
+ 0.008319102 + 0.7047203 - 0.8270793
120
+ 0.032844271
+ 0.028781472 + 0.7040911 - 0.2795215
150
+ 0.022159505
+ 0.046499174 - 0.1803831 - 0.0126962
180
+ 0.002703372
+ 0.053431012 - 1.1914874 - 0.6487582
210
- 0.017924683
+ 0.045456375 - 1.2308941 - 1.6399928
240
- 0.030714227
+ 0.026434445 - 0.3784440 - 1.9093573
270
- 0.031808132
+ 0.005466897 + 0.3836684 - 1.2785779
300
- 0.024103783
- 0.010000896 + 0.4783818 - 0.4349396
330
- 0.012845686
- 0.018098650 + 0.0981246 - 0.0137335
Si
+ 0.004275559
+ 0.070053686 - 0.5016340 - 4.3662934
2 2
+ 0.004276204
+ 0.070051841 - 0.5003946 - 4.3659693
i
in ,.M."> + COB *.'
> = - 0.00000000016.
DIFFERENTIAL COEFFICIENTS.
log coeff.
//
[de/dt}^ = +3752.8345 TO' p 3.5743594
[dx/dt] M = +299037.72 m' p 5.4757260
[dildt] M = -4591.3713 m' n 3.6619424
[dB/
+0.12855762
-1.0113711
+0.11654330
+0.02599380
0.0000000
+0.16223015
15
+0.28853773
-1.0855630
+0.15095431.
+0.02672256
-0.3910151
+0.21008155
30
+0.43551240
-1.1839703
+0.18420453
+0.02487781
-0.8232930
+0.25617923
45
+0.52994293
-1.3088599
+0.21275230
+0.01862044
-1.2857216
+0.29555816
60
+0.54641763
-1.4594255
+0.23029016
+0.00532100
-1.7533282
+0.31946706
75
+0.48046967
-1.6276742
+0.22753508
-0.01781201
-2.1774255
+0.31512321
90
+0.34977540
-1.7935752
+0.19439994
-0.05167293
-2.4796011
+0.26875615
105
+0.18941983
-1.9243133
+0.12616235
-0.09195653
-2.5651527
+0.17410988
120
+0.04248891
-1.9847155
+0.03108865
-0.12787906
-2.3681413
+0.04283321
135
-0.05148113
-1.9570464
-0.06917608
-0.14733858
-1.9039342
-0.09517474
150
-0.06711060
-1.8525243
-0.15091802
-0.14550282
-1.2730044
-0.20741354
165
+0.00001044
-1.7023416
-0.20114407
-0.12716787
-0.6051233
-0.27625376
180
+0.13212520
-1.5390947
-0.22013939
-0.10126618
0.0000000
-0.30227222
195
+ 0.29405223
-1.3852923
-0.21561000
-0.07503510
+0.4924233
-0.29612150
210
+0.44259806
-1.2520945
-0.19638955
-0.05218717
+0.8604054
-0.26990714
225
+0.53811675
-1.1428753
-0.16935246
-0.03375802
+ 1.1118587
-0.23300075
240
+0.55512295
-1.0569737
-0.13887026
-0.01942443
+ 1.2611694
-0.19133211
255
+0.48911303
-0.9922445
-0.10732663
-0.00839923
+ 1.3226839
-0.14811570
270
+0.35776744
-0.9463685
-0.07579537
+0.00013574
+ 1.3083458
-0.10478640
285
+0.19621617
-0.9174587
-0.04456334
+ 0.00686904
+ 1.2273328
-0.06171770
300
+0.04762640
-0.9042927
-0.01348260
+0.01232297
+ 1.0864013
-0.01870356
315
-0.04835263
-0.9063942
+0.01780841
+0.01685710
+0.8903706
+0.02473967
330
-0.06620421
-0.9240677
+0.04973149
+0.02067163
+0.6425655
+0.06916321
345
-0.00136711
-0.9584216
+0.08262385
+0.02378861
+0.3452194
+0.11498675
V
*-l
+ 2.90467772
-5.9084737
+0.01066288
-0.40860954
-3.5384806
+0.02421404
2*
+2.90467759
-5.9084840
+0.01066372
-0.40860959
-3.5384837
+0.02421607
sin
0.011523729 +0.08005004 +0.4190397 0.000000 +0.05794093
0.011964482 +0.01088811 -0.0398940 +4.271140 +0.00777378
0.012921829 -0.07058125 -0.5615348 +7.703673 -0.04858841
0.014185469 -0.13852471 -1.0407895 +9.309934 -0.09091387
0.015433331 -0.17072189 -1.3081943 +8.381048 -0.10705259
0.016299442 -0.15776374 -1.2103390 +4.948932 -0.09580229
0.016504164 -0.10615120 -0.7376107 0.000000 -0.06372374
0.015978601 -0.03427562 -0.0686500 -4.851517 -0.02081393
0.014896574 +0.03689409 +0.5347724 -8.089562 +0.02313475
0.013593080 +0.09184683 +0.8860645 -8.921148 +0.06027915
0.012429971 +0.12131684 +0.9434385 -7.410440 +0.08351498
0.011688531 +0.11863615 +0.7635196 -4.172629 +0.08470265
0.083709598 -0.10919337 -0.7100892 +0.584719 -0.05477408
0.083709605 -0.10919298 -0.7100884 +0.584712 -0.05477451
i
flo COS V +
Ir \ . 1000 X Wo cosu 1000 X JTo sin u -2-R,,
+0.000160100
-0.011523729
+0.10774325
-0.4049515
-0.020897865
30
+0.006498115
-0.010046690
-0.02950189
+0.0268547
-0.021996162
60
+0.011621455
-0.005638033
-0.55239000
+0.1009292
-0.024638457
90
+0.014136555
+0.001045999
-0.97645422
-0.3602495
-0.028370938
120
+0.012896599
+0.008458998
-0.85083667
-0.9937043
-0.032306104
150
+0.007784436
+0.014315488
-0.26253500
-1.1815227
-0.035231972
180
+0.000212302
+0.016504164
+0.18965406
-0.7128120
-0.036086942
210
-0.007299886
+0.014215603
+0.04622538
-0.0507547
-0.034538456
240
-0.012311629
+0.008381401
-0.50369057
+0.1796589
-0.031182525
270
-0.013542396
+0.001084104
-0.87379071
-0.1469683
-0.027186159
300
-0.011129593
-0.005518211
-0.72109467
-0.6083574
-0.023700620
330
-0.006127613
-0.009949901
-0.23455823
- 0.7265980
-0.021488839
Si
+0.001449234
+0.010664590
-2.33061460
-2.4392371
-0.168812513
2,.
+0.001449211
+0.010664603
-2.33061467
-2.4392385
-0.168812526
sin v> Mi w + cos