IFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORNIA FORNIA LIBRARY OF THE UNIVERSITY OF CALIFORNIA THE UNIVERSITY OF CALIFORNIA QJ. LIBRARY OF THE UN THE UNIVERSITY OF CAUF8RNU QJ. LIBRARY OF THE UN RNIf POCKET COMPANION, CONTAINING USEFUL INFORMATION AND TABLES, APPERTAINING TO THE USE OF STEEL, AS MANUFACTURED BY ; ' . ' , The Carnegie Steel Company, Limited, PITTSBURG, PA. FOR ENGINEERS, ARCHITECTS AND BUILDERS. EDITED BY F. H. KINDL, C. E. I 8Q3. Entered according to Act of Congress, in the year 1893, by THE CARNEGIE STEEL COMPANY, LIMITED, In the Office of the Librarian of Congress, at Washington. ARCHITECT - STEVENSON & FOSTER, PRINTERS, ENGRAVERS AND ELECTROTYPERS, WOOD ST., PITTSBURG, PA. ZPZSXCE, $2.00. THE CARNEGIE STEEL. COMPANY, LIMITED. EDITION OF 1893. The feature of this edition is the elimination of all data relative to iron sections. Certain changes have also been made in the dimensions of Channels, for details of which see Litho- graphs. Our product hereafter will be exclusively steel. In all respects the present edition will be found to com- pare favorably with its predecessors. 572684 THE CARNEGIE STEEL COMPANY, LIMITED. GENERAL NOTES. The flanges of both I-beams and Channels have now a slope of 15 per cent. The manner in which the weight of various sections is increased is illustrated on page 58, Figures 1, 2, 3, 4 and 5. For Channels and I-beams the enlargement of the section adds an equal amount to the thickness of web and the width of the flanges. The effect on angles of spreading the rolls is to slightly increase the length of the legs. Most of the sizes, however, are rolled in finishing grooves, whereby the exact dimensions are maintained for different thicknesses. These are indicated in the lithograph plates of angles. Z-bars are increased in thickness in the same manner as angles. I-beams, Channels, Deck Beams, Angles and Z-bars can be rolled to any weight intermediate between those given. Lith- ographed sections shown correspond only to the minimum weight. Channels having but one weight specified can be rolled only as shown. T-shapes do not admit of any variation, and can be rolled only to the weights given. All weights given are per lineal foot of the section. A recapitulation of all rolled shapes, with their minimum and maximum weights per foot, is given on pages 32 to 46, inclusive. In ordering designate weight or thickness wanted, but not both. Quicker deliveries can be made by ordering standard weights, i. e., those indicated in the lithographs. THE CARNEGIE STEEL COMPANY, LIMITED. SHE MANUFACTURED BY THE CARNEGIE STEEL COMPANY, LIMITED, PITTSBURG, PA. THE CABNEGIB STEEL COMPANY, LIMITED. B. 1. 24" 80, 85, yo, 95 and 100 Ibs. THE CARNEGIE STEEL COMPANY, LIMITED. BEAMS. 7.00^ f - 6:25" B.3. 20" 80, 85, 90, 95 and 100 Ibs. B 3. >" 64, 66%, 70 and 75 Ibs. t---2,875'' *i THE CARNEGIE STEEL, COMPANY, LIMITED. r BEAMS. \i5" 41 and 45 Ibs. / M.-O ! T 0.40'' 0.78" / * 1 3 r ! 0.40- n B, I 1 15" 50 and 55 Ibs. / V 11*17 .i y 0.45" 0.96" i r u " 1 n " n \ 15" 60, 66%, 70 and 75 Ibs. 1 V - 62 "I7 / T'0.54" f > } ; - 0.73" n B4 - n \ 15" 80, 85, 90, 95 and 100 Ibs. V -17 | i 1 o.fr" r ^' i u -i 0.8*"'' THE CARNEGIE STEEL COMPANY, LIMITED. BEAMS. B 13. g" 21.0 to 30.0 Ibs. B 11. 10" 25.0 and 30.0 Ibs. -10'-'- B 1O. 10" 33.0, 35.0 and 40.0 Ibs. 10'-' B 9. 12" 32.0 and 36.0 Ibs, 12'-'- B 8. 12" 40, 45, 50 and 56% Ibs. -12'-'- THE CARNEGIE STEEL COMPANY, LIMITED. BEAMS. B 77. 3" 6.0 to 7.0 Ibs. 2 "H"~" v B 23. 4" 7.0 to 10.0 Ibs. -'^_J T oDC'T T, olso ^ B 21. n \ 5" 10.0 to 15.0 Ibs.' \ 0.22" / 44 " ^ y 0/23' ^ B 19. / \ 6" 13.0 to 18.0 Ibs. / | \ " I, $ r~ ^^ f- - 6 "- tT o.Vs " ^" n B17. ,^ 7" 15.0 to 20.0 Ibs. j / ' c^FT^ J 7 """'"", 0.25 ^^^^ B15. ' 18.0 to 25.0 Ibs. a 8"' THE CARNEGIE STEEL COMPANY, LIMITED. DECK BEAMS. BIOS. 6" 15.3 to 18.36 Ibs."; THE CARNEGIE STEEL COMPANY, LIMITED BULB ANGLES. * . V ' ^?K B137. ^ B 136. I r-vrxx B 135. :->,,,. 6"-, -6" B 134. -6" B 133. 7" 18.25 lt>s. B 133. 8"-i 9 . 23 lbs. -8"- B 131. 9" 21.8 Ibs. r B 130. 10" 26.5'lbs. ^^ i W- THE CARNEGIE STEEL, COMPANY, LIMITED. CHANNELS. C 4. 9" 14.0 to 25.0 Ibs. 0,28 -9"- C 3. 10" 16.5 to 33.0 Ibs. -40" C 3. 12" 20.0 to 44.0 Ibs. C 30. 3 1 -5 to 53 C 1. 15" 33.o to 55.0 Ibs. --15"- THE CARNEGIE STEEL COMPANY, LIMITED. CHANNELS. fn c ?2 3"-5- 6.0 Ibs. hO ^Mi.T " 5-5 to 8.0 Ibs./ | " " rr\ c 8 . fr . I s"-6.5 to 12.0 Ibs. / I 2 V I v. o.i7^ -^ 5 'b! .-4?!'.[r rr\ , h \ 6" 8.0 to 16.0 Ibs. n I \ *-. V 0.19S" Q.29^/0.47" 1 ? I C 6. 7" 9.5 to 20.0 Ibs. 0.25'' C 5. 8" ir.o to 22.clbs. --8''- THE CARNEGIE STEEL COMPANY, LIMITED. CAR TRUCK CHANNELS. EQUAL AND UNEQUAL FLANGES. .so" i ^^0.50 C 106. xo 1 /^" 26.5 Ibs. 1 o.so|T. ( 0.50" " H.50" O.SO' Is* 0.375'' C 103. Sj zo 1 ^" 20.0 Ibs. S 7* C*> ! 0.375* C 54. 12" 21.33 to 30.0 Ibs. fl c ao. 13" 31.5 to 52.0 Ibs. 10 THE CARNEGIE STEEL COMPANY, LIMITED. 2 BARS. L> 3 /is" i" 1 ['/is"' V' : U sy" J/1 ' 6 ^ j. IS Z 1. 15.6 to 21.0 Ibs. tb w z a. 22.7 to 28.0 Ibs. V' Sp* ,j ;% VIB-TJ gV il. 3 /16"ll ^ 3 'iH" ;?V Z 3. 29.3 to 34.6 Ibs. Z 4, , 1 1. 6 to 16.4 Ibs. 5 /ie" Z 5. 17.81022.6 Ibs. Z 6. 23.71028.3 Ibs. THE CARNEGIE STEEL COMPANY, LIMITED. t- Z BARS, m 7 7. 3.2 to 12.4 Ibs,. Z 9. 18.9 to 22.9 Ibs. Z 8. 13.8 to 17.9 Ibs. -"-"-f r % ,/ , Z 10. 6.7 to 8.4 Ibs. J G 3 /, 6 ' I.. "M" "X Z 11. 9.7 to 11.4 Ibs. 12.5 to 14.2 Ibr-, 12 THE CARNEGIE STEEL COMPANY, LIMITED. SPECIAL Z BARS. Z 13. 6" i4. 5 .Ibs. Z 16. 3" 10.0 Ibs. Z 14. * 3"- Z 15. 4"-' i.i Ibs. '-* 2Y 2 ' J Z 17. 3" 8.4 Ibs. Z 19. 3 4" 4.5 Ibs. Z 18. THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH EQUAL LEGS. A 77. 12.3 to 16.2 Ibs. 14 THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH EQUAL LEGS A 20. 17.1 to 19. THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH EQUAL LEGS. A 48. 5.9 to 7.7 Ibs-Av' $T A 76. A 65. ,'N, \ i ^ to i 7 Ibs. i^x'*^ ,1 to 2.8 ibs. ,\ v ' /\ -r# #&&&* ^ A 77. ,o- A 67. XS..-N -9 tol -3 lbs -,_ . A 50. /*V**v 2 ' 9 1 3 ' 4 lbs ' v |t /K^. '^MV** 4.Tto 5 . 9 lhs...xV' /\ W * yO*>V N ^ ;.^>V^\\-^r N <>4 ^C, A 78. 1.5 ibs. THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH UNEQUAL LEGS. A 154. 24.9 to 32.3 Ibs. A 157. it/.o to 24.9 Ibs. /' A 159. 15.0 to 19.0 Ibs. A 163. 23.6 to 27.2 Ibs A 16G. 16.2 to 23.6 Ibs A 168. x \ 12.3 to 16.2 Ibs. THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH UNEQUAL LEGS. A 171. 22.3 to 25.7 Ibs. *A A 175. 15.3 to 22.3 Ibs. A 177. 11.7 to 15.3 Ibs. A 181. 19.5 to 24.2 Ibs. A 184. 14-5 to 19.5 Ibs. A 186. ' 1. o to 1 4.5 Ibs. , THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH UNEQUAL LEGS. A 806. \ 15.9 to 18.5 Ibs THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH UNEQUAL LEGS. 2O THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES WITH UNEQUAL LEGS. A 268. 3.7 to 4.5 Ibs. ' y 21 THE CARNEGIE STEEL, COMPANY, LIMITED. SQUARE ROOT ANGLES. 22 THE CARNEGIE STEEL COMPANY, LIMITED. SQUARE ROOT ANGLES. A 409. A 404. ,/". ,*> 1.8 Ibs. A 405. ^^X*y 0.9 Ib. A 411. 0.8 Ib. A 406. 1.7 Ibs. e * A 98. A 414. ,t 0.8 Ib. ? ! A 899. A 4O1. 2.0 Ibs. A 430. I ' 1 lbs " A 41 6. 23 THE CARNEGIE STEEL COMPANY, LIMITED. SPECIAL ANGLES, COVER ANGLES. OBTUSE ANGLES. A 453. 12.4 to 14.4 lbs. v v' A 454. N v' 10.4 to 42.4 Ibs.' A 457. 8.5 to 10. i Ibs.iV A 45-9. 6.8 to 8.5 Ibs. A A 4?1. 3-5 Ibs. HALF TEES. A 4*6. A 4.6 Ibs. PJ 24 THE CARNEGIE STEEL, COMPANY, LIMITED. TEES WITH EQUAL LEGS. T 1. 13-7 lb; ,T 3. 10.9 Ibs. 'l "/.?" P* T 3. Ji.7 Ibs. *" T 4. ^ 9.2 Ibs. "'-, ^ H 1 T 6. 10.0 Tbs. .^- A.JI S3- T 9. 6.6 Ibs. y?5 ---214' Vie'l'tZS^ T 13. '*" 4.9 Ibs. H-* ... g// > ^r *e T 7. 9.1 Ibs. T 10. 6.4 Ibs. ,...y 9 !* 2i^ --> -1 Ibs. ,'y T 5. 6.8 Ibs. T 8. 7.8 Ibs. J*"^ V T 11. 5-5 Ibs. r-----2"---' 25 THE CARNEGIE STEEL COMPANY, LIMITED. TEES WITH EQUAL LEGS. t 15. 3-7 Ibs. -2"- T 19. 2.04 Ibs. T 81. 1.23 Ibs. 3 /ld" T 33. 0.87 Ib. SPECIAL TEES. HAND RAILS. RAIL. 26 THE CARNEGIE STEEL COMPANY, LIMITED. TEES WITH UNEQUAL LEGS. T 54. :xo Ibs. s" Vie" -4*- T 57. 15. 6 Ibs. 27 THE CARNEGIE STEEL, COMPANY, LIMITED. TEES WITH UNEQUAL LEGS. ,T 58. 12.0 Ibs. T 60. 11.4 Ibs. H" "" LL ^3S^ T 62, 8.6 Ibs. T G4. 7-9 Ibs. T 5.9. .14.6 Ibs. yfl? T 61. 9-3 Ibs. .4'.'. T 63. 7-3 Ibs. Also rolled 5.8 Ibs. , '/16 I 1 T 65. 6.6 r 65. I j .6ib, r LJ i 28 THE CARNEGIE STEEL, COMPANY, LIMITED. TEES WITH UNEQUAL LEGS. SH' T 66. 1 12.8 Ibs. T 67. 9.9 Ibs. T 68. 11.73 Ibs LJ U-.'-'y N T 69. 10.9 Ibs. T 72, u.8 Ibs. T 75. 10.9 Ibs. T 70. 8.5 Ibs. T 73. 10.6 Ibs. -3"- T 76. 9.8 Ibs. > T 71. 7.8 Ibs. T 74. 9-3 Ibs. L -3" 77. Ibs. THE CARNEGIE STEEL COMPANY, LIMITED. TEES WITH UNEQUAL LEGS, ; ** : . : T *8. ^ T ?9. 7.2 Jbs. cs 6.1 Ibs. V tf" <* 2 3 4 * < 2 in^-4 J ^^-^^l^SvP 1 yw"j ^ T-80. ^ Si 7.4 Ibs. |..J ^*" V.' \y-u- > f- -2V 77 - *> ^.L^vy---- 3 * ;J W T 81. ^! T 8. 6.6 Ibs; 7 . 2 i bs . : <-?^ p--2^r-"* r .p^? : " 1 5 /iai!Li S^J-J Vief 7 " K'^HT T 88. ^ 6 ' llbs - *" ^ y-;-| ,, i*-^"- -i T 8. g| |f s, 2.9 ibs. LJ...T 1 ? ^''" :^ : " '^T^: T 8.9. n H? , i.-j' 1.94 ibs. li-.y V' ^' ( ^-* , r-^H V' T-J 3 /16f'T~ 7 /82L'J O T 9. 1C | * 1|:J 1-73 Ibs. J T ^e" *-'-'-*. .-i-'-, I-TCJ xt-.a^ca .farm ^.,, ... Ite. *"{.IW" _U 5 K:t H j^ny* 1 ; H" * j T 84. ^ T 85. 6.7 Ibs. ^> 5.8 Ibs. i-.-i^ V' 2" ---! ^- L ^rr j H 'tll SB: |f k x" K-I^--* (| r-1 T^^ST? xViP .3.0 Ibs. 2.24 Ibs. i~JV "- IH'---^ V- -, Vcfc3d 3/ 16 ^t;iT T9.^%fC T94.^ 1.33 Ibs. |J T 1 i-33 lbs< H" 3O THE CARNEGIE STEEL, COMPANY, LIMITED. PLATES. TROUGH PLATE. ,., ,n CORRUGATED PLATES. i*JL oU 8.1 to 12.0 Ibs. ___ r- -J*" CHECKERED PLATE. M. 51. Weight per sq. foot 13-8 to 2r-4 Ibs. ' " "Maximum width 34''* 31 THE CARNEGIE STEEL COMPANY, LIMITED. SIZES OP C^-RNEGIE BARS. All dimensions given are in inches. H ROUNDS. fl | SQUARES. | 1A W* *A !^ *A *#, He-, W HI, *#i Hi 2 > 2 M & HALF-ROUNDS. */ 7/ 1 1 i/ 1 1/ 1V 1 ?/ 9 9i/ 9 1 / ^ 4.V 74 > /8 > i > * /8 > * 74 i/2 ' l A > 6 > */* */i ' ' /2 * ^fg^ OVALS. CRD ROUND EDGE FLATS. FLATS. Width. Thickness. Width. Thickness. Width. Thickness. to # to ^ to if to 1 to lj to 1^ to \\L A to 2 2X 2% 2% 3 3% X to A jo to '/ to 4 5 3 6 2 7X to 2 to 2 Xto2 X to 2 32 1 THE CARNEGIE STEEL COMPANY, LIMITED. EXTREME LENGTHS IN INCHES OP RECTANGULAR PLATES ROLLED BY THE CARNEGIE STEEL CO., LIMITED. Thickness, in Inchss. 114 In. Wide. 108 In. Wide. 105 In. Wide. 100 In. Wide. 98 In. Wide. 90 In. Wide. 84 In. Wide. 80 In. Wide. K 120 150 180 200 225 245 5 130 160 200 210 225 250 275 ^| 140 170 200 260 310 330 360 380 JL 160 200 230 245 310 340 380 400 % 170 200 220 240 290 330 360 370 9 170 190 210 230 270 290 340 360 $1 160 180 200 220 240 260 300 310 IJ 160 180 190 200 220 240 260 280 * 160 180 190 200 210 220 250 280 150 170 180 190 200 215 245 260 7 /& 140 160 170 180 190 205 220 230 1 130 150 160 170 180 195 215 230 \y^ 120 140 145 150 160 175 190 210 \yi 110 120 125 140 145 155 175 185 J-i 76 In. 72 In. 68 In. 64 In. 56 In. 48 In. 36 In. 24 In. B.s Wide. Wide. Wide. Wide. Wide. Wide. Wide. Wide. X 260 275 290 310 365 430 500 500 T ^ 300 320 360 400 460 500 550 600 )! 400 420 440 460 500 570 600 600 1 420 390 430 410 450 450 480 480 530 520 570 570 600 600 600 600 370 390 420 450 500 570 600 600 ^ 330 350 370 400 480 530 600 600 ii 310 330 350 380 430 500 600 600 2^ 300 320 340 360 410 480 540 600 ft 280 300 320 340 380 450 540 600 8 260 270 300 320 360 430 540 600 i 240 250 270 290 330 380 500 540 1 1^ 220 230 240 260 300 350 440 500 1/4 195 205 215 230 265 310 400 500 THE CARNEGIE STEEL COMPANY, LIMITED. MIN Section Indei. IMUM AND MAXIMUM 'WEIGHTS AND DIMENSIONS OP CARNEGIE I BEAMS. Depth of Beam, in inches. Weight per foot Flange width. eb thickness. Increase of web and flanges for each Ib. in- crease of weight. J! Min. Max. Min. Max. Min. Max. B 1 24. 80.00 100.00 6.95 7.20 .50 .75 .0123 1 B 2 20. 80.00 100.00 7.00 7.30 .60 .90 .015 2 B 3 20. 64.00 75.00 6.25 6.41 .50 .66 .015 2 B 4 15. 80.00 100.00 6.41 6.81 .77 1.17 .020 3 B 5 15. 60.00 75.00 6.04 6.34 .54 .84 .020 3 B 6 15. 50.00 55.00 5.75 5.85 .45 .55 .020 3 B 7 15. 41.00 45.00 5.50 5.58 .40 .48 .020 3 B 8 12. 40.00 56.67 5.50 5.91 .39 .80 .025 4 B9 12. 32.00 36.00 5.25 5.35 .35 .45 .025 4 BIO 10. 33.00 40.00 5.00 5.20 .37 .57 .029 4 Bli 10. 25.00 30.00 4.74 4.88 .31 .45 .029 4 B13 9. . 21.00 30.00 4.50 4.80 .27 .57 .033 4 B15 8. 18.00 25.00 4.25 4.51 .25 .51 .037 5 B17 7. 15.00 20.00 3.98 4.19 .21 .42 .042 5 B19 6. 13.00 18.00 3.50 3.74 .23 .47 .049 5 B21 5. 10.00 15.00 3.00 3.30 .22 .52 .059 5 B23 4. 7.00 10.00 2.59 2.81 .17 .39 .074 5 B77 3. 6.00 7.00 2.26 2.36 .20 .30 .098 5 MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE DECK BEAMS. Section Index. Depth of Beam, in inches. Weight per foot. Flange width. eb thickness. Increase of web and flanges for each Ib. in- crease of weight. Page No. of section. Min. Max. Min. Max. Min. Max. B100 B101 B102 B103 B105 10. 9. 8. 7. 6. 27.23 26.00 20.15 1811 15.30 35.70 30.00 24.48 23.46 18.36 5.25 4.94 5.00 4.87 4.38 5.50 5.07 5.16 5.10 4.53 .38 .44 .31 .31 .28 .63 .57 .47 .54 .43 ,029 .033 .037 .042 049 P Q o Q Q THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS AND DIMENSIONS OF CARNEGIE BULB ANGLES. Section Index. Depth of Angle. in inches. Weight per foot. width". Web thickness. Page No. of section. B130 it) 26.50 3.5 .48 7 B131 9 21.80 3.5 .44 7 B132 8 19.23 3.5 .41 7 B133 7 18.25 3.0 .44 7 B134 6 17.20 3.0 .50 7 B135 6 13.75 3.0 .38 7 B136 6 12.30 3.0 .31 7 B137 5 10.00 2.5 .31 7 MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE CHANNELS. Section Index. Depth of Chan- nel, in inches. Weight per foot. Flange width. Web thickness. Increases of web and flanges for each Ib. in- crease of weight. M t| 8 Min. Mai. Min. Mai. Min. Mai. C 1 15 33.00 55.00 3.400 3.840 .400 .840 .020 C20 13 31.50 52.00 4.000 4.460 .375 .840 .023 8 C2 12 20.00 44.00 2.868 3.460 .268 .880 .025 8 C 3 10 16.50 33.00 2.665 3.150 .265 .750 .029 8 C4 9 14.00 25.00 2.450 2.810 .250 .610 .033 8 C5 8 11.00 22.00 2.205 2.610 .205 ,610 .037 9 CO 7 9.50 20.00 2.011 2.450 .211 .650 .042 9 C7 6 8.00 16.00 1.895 2.288 .195 .588 .049 9 C8 5 6.50 12.00 1.772 2.095 .172 .495 .059 9 C 9 4 5.50 8.00 1.670 1.854 .170 .354 .074 9 C72 3 5.00 6.00 1.550 1.650 .230 .330 .098 9 THE CARNEGIE STEEL, COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE EQUAL AND UNEQUAL FLANGE CAB TRUCK CHANNELS. Section Index. Depth of Chan- nel, in Weight per foot. Flange width. Web Thickness. Increase of flange and web for each f! inches. Min. Max. Min. Mai. Min. Max. of weight. PH g C 20 13.0 31.50 52.0 4.00 4.46 .375 .84 .023 10 C54 12.0 21.33 30.0 2.64 2.85 .31 .52 .025 10 Smaller. Larger. C103 10.5 20.00 2.50 3.375 .375 10 C106 10.5 26.50 2.50 3.375 .50 10 WEIGHTS AND DIMENSIONS OF CARNEGIE Section Index. Thick- ness of Metal. SIZE, IN INCHES. Weight per foot. Page No. of Section. Flange. Web. Flange. Z13 H 3 6 3 14.5 13 Z14 X 2^ 5 3 12.4 13 Z15 N 2/ 2 4 3 11.1 13 Z16 N %y 2 3 3 10.0 13 Z17 A 2/ 2 3 8.4 13 Z18 ^ T 9 6 1# 1/8 1.3 13 Z19 IX* A 1 3/x~- 2 T VX 45 13 THE CARNEGIE STEEL COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE Z-BAFtS. Thick- SIZE IN INCHES. Section Index. ness of Metal Weight per foot. Page No. of Section. n inches Flange. Web. Flange. Z 1 /8 3K 6 3/ 15.6 11 u JL g 9 6rV 39 TIT 18.3 l| 3^ w 21.0 Z 2 JL 31^ 6 3K 22.7 11 y 3 9 6yV 3- 9 - 25.4 < \\ 3g 6^ ij! 28.0 Z3 I 6 3/ 29.3 11 09 g i 3- 9 T 32.0 u H 8>| 6>l 3^1 34.6 Z 4 JL 3/ 5 3X 11.6 11 u y 3- 5 ^ 5-V 3- 5 - 13.9 p (( 7b IH gl| 3^8 16.4 ] ' Z 5 8 5 3X 17.8 u _9 3- 5 -^ 5- 1 - 20.2 H >6 3^1 5>8 s|| 22.6 Zn 11 5 3X 23.7 11 ft |X 3- 5 - g_i 26.0 H H 3/8 5^ 3/s 28.3 Z7 X 3-V 4 3_i g . 8,2 12 H sl IK 3A 10.3 12.4 Z 8 TV 3^ 4 8 3yV 13.8 12 3^ 41 gi| 15.8 . M T6" 4>l 3r 3 s 17.9 , . Z 9 P 3r~ 3~V 18.9 12 iff IH 4JL t| 20.9 . . " 3r 3 o 4>l 3i 3 o 22.9 Z10 X 31.1 3 2.1.1 6.7 12 Zll 1 m 1" 2H 8.4 9.7 12 (I gs/ 3 1 24/ 11.4 . Z12 i/ W4 g g|i. 12.5 12 T 9 * 2X 3A /4 14.2 THE CARNEGIE STEEL COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE ANGLES. EQXJAL LEGS. Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. ll Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. I A 1 H 6 x6 33.1 A36 y 3 x3 *9.4 15 A2 H 6 x6 30.9 A37 7 3 x3 8.3 15 *A3 X 6 x6 28.7 14 *A38 y% 3 x3 7.2 15 A4 ft 6 x6 26.5 ' A39 ft 3 x3 6.1 A5 H 6 x6 24.2 *A40 1 A 3 x3 4.9 15 A 6 A7 *A8 ft 6 x6 6 x6 6 x6 21.9 19.6 17.2 14 A41 A42 *A43 | 11 8.5 7.6 6.6 15 A9 A10 H 5 x5 5 x5 27.2 25.4 A44 *A45 1 llxal 5.5 4.5 15 All X 5 x5 23.6 A46 y 2;^x2>^ 7.7 *A12 H 5 x5 21.8 14 A47 2 6.8 A13 R 5 x5 *20.0 14 *A48 i/ < %y& i A 5.9 16 A14 T 9 6 5 x5 18.1 A49 2y*2 1 / 5.0 *A15 % 5 x5 16.2 14 *A50 y 2i/ x gi/ 4.1 16 A16 *A17 5 x5 5 x5 14.3 12.3 14 A51 A52 i *$*$ 6.8 6.1 A18 ff 4 x4 19.9 *A53 y% 2)Jx2X 5.3 16 A19 X 4 x4 18.5 A54 T 5 ? 2^x2X 4.5 *A20 a 4 x4 17.1 15 *A55 1 A 2X"x2X 3.7 16 A21 H 4 x4 *15.7 15 A56 ft 2 x2 5.3 A22 * 4 x4 14.3 A57 y% 2 x2 4.7 *A23 4 x4 12.8 15 *A58 T 5_ 2 x2 4.0 16 A24 4 x4 11.3 A59 i/ /T 2 x2 3.2 *A25 H 4 x4 9.8 15 *A60 ft 2 x2 2.5 16 *A90 A26 ft 4 x4 8.2 17.1 A61 A62 l^xl^ 4.6 4.0 A27 % 3/2*3/2 16.0 A63 (b 13/X13/ 3.4 *A28 "H 3/2*3/ 2 14.8 15 *A64 y \Vf\y 2.8 16 A29 y% 3/2*3/2 13.6 *A65 JL \y*\y 2.1 16 A30 *A31 A32 *A33 | 3/2*3/ 2 3/ 2 *3^ 3/2*3/2 3/2*3/2 12.3 11.1 9.8 8.5 15 15 A66 *A67 *A68 *A69 ft II 3.4 2.9 2.4 1.8 16 16 16 A34 *A35 3 x3 3 x3 11.4 10.4 15 A70 *A71 f 1^.1^ 2.4 1.9 16 Angles marked thus * have finishing passes. Sft THE CARNEGIE STEEL COMPANY, LIMITED. ANGLES EQUAL LEGS. Continued. Section Index. Thickness of Metal, n inches. Size, in inches. Weight per foot. I Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. il *A72 A iXxiX 1.5 16 *A79 . 1 xl 1.2 16 *A73 y \ i/xl 3/ 1.0 16 *A80 r/ 1 xl 0.8 16 A74 ft l^xl^ 2.1 *A81 A J4* 7 /9. 1.0 16 *A75 y 1/^xl 1 A 1.7 16 *A82 # Z^X 7/^ 0.7 16 *A76 T6 1/^xl^ 1.3 16 *A83 ^ x % 0.8 16 *A77 Ij^xl^ 0.9 16 *A84 jl &* y. 0.6 16 *A78 /4 1 xl 1.5 16 *A85 % H*H 0.5 16 Angles marked thus * have finishing passes. SFECI-AX. ArsTG-LES. Section Index. Thickness of Metal, in inches Size, in inches. Weight per foot. 8 <&$ JH Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. 13 A450 It 3 x3 14.4 A462 A 2/ 2 *2/ 2 7.1 A451 y 3 x3 13.4 *A463 H 2 l / 2 > i 2 l / 2 6.1 24 *A452 8 3 x3 12.4 24 A464 2 3^x2 8.2 A453 3 x3 11.4 A465 A 3^x2 7.1 *A454 3 x3 10.4 24 *A466 3^x2 6.1 24 A455 45 H 2^x2^ 10.1 A467 A 3 x3 8.4 A456 X 9.3 A468 H 3 x3 7.2 *A45? A 2/ 2 **2/ 2 8.5 24 *A469 3 x3 6.1 24 A458 2/ 2 *2/ 2 7.7 *A47C X 2}4x2X 4.2 24 *A459 A 2/ 2 *2/ 2 6.8 24 *A471 i/ 2/4*2% 3.5 24 *A460 2/ 2 *2X 8.7 24 *A475 X x ^ 4.9 24 A461 & 2/ 2 *2/ 2 8.2 *A476 KX^ W*X 4.6 24 Angles marked thus * have finishing passes. A450 to A459 known as " COVER ANGLES." A461 to A469 known as "OBTUSE ANGLES." A470 and A471 known as "SAFE ANGLES." A475 and A476 known as " HALF TEES." THE CARNEGIE STEEL COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE ANGLES. UNEQUAL LEGS. Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. i Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. S A150 1 7x3^ 32.3 *A184 /*& 5 x4 14.5 18 A151 it 7x3^1 30.5 A185 A 5 x4 12.8 A152 7x3^ 28.7 *A186 H 5 x4 11.0 18 A153 *A154 p 7x3^ 26.8 24.9 17 A187 5 x3% 22.7 A155 ii 7x3 ;| 23.0 A188 it 5 x3% 21.3 , A156 1 6 H 7x3^ 21.0 *A189 X 5 x3k 19.8 19 *A157 A158 *A159 i 7x3^ 7x3^ 7x3^ 19.0 17.0 15.0 17 17 A191 A192 *A193 1 CO CO CO CO \ K Nr \ K \ H 0\ fcKtO\tO\' 18.3 16.8 15.2 13.6 19 19 A160 H 6x4 27.2 . A194 5 x3j^ 12.0 A161 it 6x4 25.4 . *A195 y?> 5 x3>| 10.4 19 *A162 2 6x4 23.6 17 A163 H 6x4 21.8 A196 it 5 x3 19.9 , A164 1 6 6x4 20.0 A197 5 x3 18.5 . A165 A 6x4 18.1 *A198 H 5 x3 17.1 19 *A166 * 6x4 16.2 17 A199 # 5 x3 15.7 . A167 6x4 14.3 A200 & 5 x3 14.2 *A168 II 6x4 12.3 17 *A201 y 5 x3 12.8 19 A202 rV 5 x3 11.3 A169 y% 6x3^ 25.7 *A203 y% 5 x3 9.8 19 A170 *A171 it X 6x3^ 6x3^ 24.0 22.3 18 A204 1 5 x3 8.2 18.5 19 A172 8 6x3^ 20.6 A205 4>t*3 17.2 A173 6x3^ 18.9 *A206 ii 4^x3 15.9 19 A174 6x3'^ 17.1 A207 ^ 4^x3 14.6 g *A175 y z 6x3^ 15.3 18 A208 .) 13.3 A176 A 6x3% 13.5 *A209 y 4/2*3 11.9 19 *A177 3/Q 6x3^ 11.7 18 A210 rV 4^x3 10.5 A178 5x4 24.2 *A211 H 4^x3 9.1 19 A179 5x4 22.6 A212 it 4 x3> 18.5 A180 3/ 5x4 *21.1 18 A213 X 4 x3} 17.2 *A181 ft 5x4 19.5 18 *A214 8 4 x3// 15.9 19 A182 S 4 5x4 17.8 A215 M 4 x3}J 14.6 A183 5x4 162 A216 4 x3% 13.3 Angles marked thus * have finishing passes. THE CARNEGIE STEEL COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OF CARNEGIE ANGLES. UNEQUAL LEGS.-Continued. Section Index. Thickness of Metal, in inches. Size, in inches. Weight per foot. a Section Index. Thickness of Metal, in inches. Size, in inches. ' Weight per foot. a *A217 y* 4 x3V 11.9 19 A249 X 3^x2 6.2 A218 TV 4 xS*/ 10.5 A250 _5g. 3^x2 5.3 *A219 4 x3j 9.1 19 *A251 X 3^x2 4.3 20 A220 T! 4 x3 17.1 A252 T 9 6 3 x2% 9.5 A221 K' 4 x3 16.0 A253 y 2 3 x2>^ 8.5 *A222 ft 4 x3 14.8 19 *A254 A o x/c/^ 7.6 20 A223 4 x3 13.6 A255 y% 3 x2>/ 6.6 A224 _9_ 4 x3 12.3 A256 T 5 ^ 3 x2% 5.5 *A225 >l 4 x3 11.1 20 *A257 X 3 x2% 4.5 21 A226 A227 7 II 4 x3 4 x3 9.8 8.5 A258 y z 3 x2 7.7 *A228 A 4 x3 7.1 20 *A259 A260 Ps 3 x2 3 x2 6.8 5.9 21 A229 3%x3 15.7 A261 A 3 x2 5.0 . A230 *A231 3%x3 3>|x3 14.7 13.6 20 *A262 *A263 A 3 x2 3 x2 4.1 3.6 21 21 A232 5 A Q1/ X Q 12.5 A233 /o _9 3%x3 11.4 A264 y 2 2^x2 6.8 *A234 A235 TA 3%x3 3>/x3 10.2 9.1 20 A265 *A266 A 2^x2 2^x2 6.1 5.3 21 A236 *A237 l i 3^x3 3>|x3 7.8 6.6 20 luSn ? 2>|x2 4.5 3.7 21 21 1 G *A269 A 2^x2 2.8 21 A238 11 3/^x^M 12.4 A239 H 3Xx25^ 11.4 A270 y 2 2^x1^ 5.5 . A240 _9 T 3Vx2>^ *10.4 20 A271 T 7_ gi^xlj^ 5.0 A241 I/ g i x gi/ 9.4 *A272 y% 2/^xl^ 4.3 21 A242 _7 2 3i^x2^/ 8.3 20 *A273 _5^. 2^x1^ 3.7 21 A243 \/ gi/ x gi/ *7.2 20 *A274 X gi^xl^ 3.0 21 A244 JL 3i^x2j^ 6.1 *A275 A 2^x1% 2.3 21 *A245 X 3^x2^ 4.9 20 *A276 2 xl^ 2.7 21 A246 A 3^x2 9.0 *A277 A 2 xl^ 2.1 21 A247 i/ /n 3^x2 8.1 A278 V l^xl 1.6 *A248 7 1% 3^x2 7.2 20 *A279 y& l^gxl 1.0 21 Angles marked thus * have finishing passes. 1 4.1 THE CARNEGIE STEEL, COMPANY, LIMITED. MINIMUM AND MAXIMUM WEIGHTS AND DIMENSIONS OP CARNEGIE ANGLES. SQUARE ROOT. Section Index. Thickness of Metal, in inches. Size, Weight I'M in inches, per foot, gojg Section Indei. Thickness of Metal in inches. Size, in inches. Weight per foot. o A350 K 4 x4 18.5 A385 ft 2Xx2X 5.3 22 A351 4 x4 17.1 A386 i 2^x2^ 4.5 22 *A352 % 4 x4 15.7 22 *A387 % 2i/ x 2i/ 3.6 22 A353 *A354 A355 *A356 i 4 x4 4 x4 4 x4 4 x4 14.3 12.8 11.3 9.7- 22 22 A388 *A389 *A390 *A391 I to to to to to to to to 5.3 4.7 3.9 3.2 23 23 23 *A357 A358 A359 A360 *A361 1 f tjfxlO\ M\. N\, tO\. CO CO CO CO CO :\N?xC\O\tO\ 16.0 14.8 13.6 123 11.0 22 22 A392 A393 ^A394 ||j| 4.5 4.0 3.4 2.8 23 A362 TiT ^y^-ty/^ 9.8 A396 ft ]%A}4 3.4 *A363 H 3//x3% 8.5 22 A397 1^/xji/ 2.9 A364 A365 ft 3 x3 3 x3 11.4 10.4 *A398 *A399 A 1$$ 2.4 1.9 23 23 A366 i/ 3 x3 9.4 A400 A 1X X ^X 2.4 A367 T 7 5 3 x3 8.3 *A401 k 1 i/i\ i/ 2.0 23 A368 y% 3 x3 7.2 *A402 A 1X X ^X 1.5 23 *A369 A 3 x3 6.0 22 *A403 % l/4xlX 1.0 23 *A370 X 3 x3 4.9 22 *A404 X 1 %X ^j 1.8 23 A371 % 2^x2^ 8.6 *A405 1 % x ^ 0.9 23 A372 Tt g3/ x g3 ' 7.6 199 C\c\ A373 *A374 X aj$ 6.6 5.5 22 *A407 *A408 i l^xlU .7 1.3 0.9 23 23 23 A375 X Z'A&X 7.7 *A430 A ITV it 1.1 23 A376 A377 A378 *A379 A }i to to to to N?XW\N\,tO\ to to to to V*V* V K\H tC \10\NSV 0\l 6.8 5.9 5.0 4.1 22 22 *A409 *A410 *A411 1 A A 1 xl 1 xl 1 xl 1.5 1.1 0.8 23 23 23 A380 2 i/o i/ 5.6 A412 T 3 (T ft ft 1.0 A381 5 %f/ x g i/ 4.7 *A413 yi ft ft 0.7 23 *A382 X 2V/x2^ 3.9 22 *A414 T5 ^ $i 0.8 23 A383 2^x2^ 6.8 *A415 ft 34- H 0.6 23 A384 A 2j,& TV to |J 11.0 27 T52 4% 3X iV to A T! to ^ 15.8 27 T53 4X 3 T 5 (3 tO ^ T 5 6 tO ^ 8.5 27 T54 4% 3 y% to ft Yt> t iV 10.0 27 T55 4^ 2% A tO ^ fV to # 8.0 27 T56 4% 2% ^8 tO -ft /8 tO T 7 g- 9.3 27 T57 4 5 /2 to ft- X to A 15.6 27 T58 4 5 ^ to TO ^ to r \ 12.0 28 T59 4 4 X K to ft X to ^ 14.6 28 T60 4 4^ ^ to ft ^ tO yV 11.4 28 T61 4 3 H to T 7 H to T V 9.3 28 T62 4 2^ H to "TO ^ to T V 8.6 28 T63 4 2X T 5 B- tO ^ T\ t ^ 7.3 28 T64 4 2 ^ to T ^ y% to ^ 7.9 28 T65 4 2 T\ tO ^ i 5 ^ to 3 A 6.6 28 T66 3X 4 I/ t o T 9_ X tO T 9 ^ 12.8 29 T67 4 H t0 lV H t0 T\ 9.9 29 T68 3K 3 iV to X ft 11.73 29 T69 3^ 3 K to T 9 s K to & 10.9 29 T70 3> 3 y* to ^ ^ to T V 8.5 29 171 3 X 3 T 5 6 to y& ^ 7.8 29 T72 3 4 X tO T 9 X t T 9 ^ 11.8 29 T73 3 4 xVtoX T 7 .toK 10.6 29 T50 can also be rolled 11.0 163 " " " " 5.8 44 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS AND DIMENSIONS OP CARNEGIE TEES. UNEQUAL LEGS. Continued. Section Index. SIZE, IN INCHES. THICKNESS OF METAL, IN INCHES. Weight per foot. Page No. of Section. Flange. Stem. Flange. Stem. T74 3 4 H to ft X to ft 9.3 29 175 3 3 >2 X to ft Xtoft 10.9 29 T76 3 3^ A to X A to X 9.8 29 T77 3 3 /2 X to ft y& to ft 8.5 29 T78 3 2% X to ft ^ toft 7.2 30 T79 3 2% T 5 6 tO I/I T 5 * tO X 6.1 30 T80 2X 2 A to li X 7.4 30 T81 2X IX A to U X 6.6 30 T82 2X 3 Xtoft y% to T ^ 7.2 30 T83 2X 3 A to X T^L" ^o 3/Q 6.1 30 T84 2X 2X X to ft y& to T v 6.7 30 T85 2X 2X T 5 6 tO X A to X 5.8 30 T86 2X IX A tO 3 9 2 A tO T 5 * 2.9 30 T87 2 1% Xtoft X to ft 3.1 30 T88 IX *X X to ft X to ft 3.6 30 T89 lit IX A to ft T 3 \ ^-\ Fig. 3. Fig. a. Fig. 4. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 13. Fig. 13. m f frfl Fig. 14. ' Fig. 15. Fig. 16. Fig.l H I 57 THE CARNEGIE STEEL COMPANY, LIMITED. METHOD OF INCREASING- SECTIONAL AREAS. . 4. Fig. 5. 58 THE CARNEGIE STEEL COMPANY, LIMITED. GENERAL NOTES ON FLOORS. Examples of floor joists and their connections, of common occurrence, are shown on page 57, Figures 1 and 3. Girders consisting of two I-beams, or more, side by side, as in Figures 16 and 13, should be connected by means of bolts and cast-iron sep- arators, fitting closely between the flanges of the beams. The office of these separators is, in a measure, to hold in position the compression flanges of the beams, preventing side deflection or buckling, and to unite the two beams so as to cause them to act in unison as regards verticle deflection. Separators should be provided near the supports and at points where heavy loads are imposed, otherwise at regular intervals of from 5 to 6 feet; these are shown in Figures 9 and 10. Their weights range from Iy 2 Jfos. for the light 3", to 31% fbs. for the heaviest section of 24" beams. Complete tables for the weights of separators for I-beams are given on page 47. On page 57, Figures 1 and 3 show different methods of con- necting beams with each other. Figure 1 represents the floor beam coped to the girder and joined to it by the means of a pair of connecting angles, which are usually riveted to the floor beam and bolted to the girder. Notes on standard sizes of these con- necting angles, and the number of bolts and rivets required for all sizes of I-beams, are given, with illustrations, on pages 49 and 50. Figure 3 on page 57 indicates the method of connect- ing the floor beams with the girders when they rest on top of the latter. In this case the floor beams are secured by means of a pair of wrought iron clips, shown in Figure 2, shaped so as to closely fit the top flange of the girder and either bolted or riveted to the lower flange of the floor beam, on opposite sides of the same. The old method of construction for fire-proof floors in build- ings is by means of brick arches. These usually consist of a 59 THE CARNEGIE STEEL COMPANY, LIMITED. single 4" course of brick, with a rise at the center of 3 or 4 inches and resting on the lower flanges of the I-Beams, against brick skewbacks. This method of construction is illustrated on page 61. Figure 7. In case the floor is designed for very heavy loads several courses of brick should be used. The floor beams should be placed about 5 or 6 feet, center to center. A convenient de- vice for centering the arches consists of wooden frames, called centers, suspended by iron hooks from the lower flanges of the beams, and detachable on one side so that they may be shifted at pleasure as the work progresses. The space above the arches is filled with concrete, in which are embedded wooden strips for securing the flooring. To finish the ceiling below, plaster is generally applied on the bottom of the arches, directly to the. brick work. The horizontal thrust of the arches is provided for by the use of tie rods, from %" to %" diameter, spaced along the center line of the beams, or a little below, at regular intervals of from 5 to 7 feet. The thrust of these arches 1.5WL 2 . per lineal foot can be found by the formula T= in which K W is equal to the load per square foot, R the rise of the arch in inches, and L the span in feet. The tie rods in the arch abutting against the wall are securely anchored to the wall ; an angle, channel or simply a wall plate can be used to support the arch and to properly distribute the load upon the wall. The weight of a fire-proof floor of this description, that is, 4" brick arches, concrete and flooring, exclusive of the weight of the beams, will average about 70 pounds per square foot. Corrugated sheet may be used instead of the brick arches. It is placed against the lower flanges of the I-beams, and thus se- curely held in position, while the space above is filled with grouting. Tie rods are used the same as in the previous case. The distance between beams should be limited to 5 or 6 feet. The corrugated sheet is usually left exposed below to form the ceiling, and it is thus 6O THE CARNEGIE STEEL COMPANY, LIMITED. open to the objection that the moisture in the atmosphere may con- dense upon the surface of the sheet in sufficient quantities to drop into the room below. Ceilings of this kind should there fore be restricted in their use, or the sheets properly protected from contact of the air Two modern types of fire-proof floor constructions, and which have grown in favor so rapidly as to be used now almost to the exclusion of all others, are illustrated on page 51, Figures 4 and 5. The arches in this case are formed of hollow blocks, consisting of burnt fire-clay or similar refractory material. These are furnished by the manufacturers in a great variety of patterns and of a strength to meet the desired requirements. In regard to their composition, there may be said to exist two distinctive varieties. In the first, known as hollow pottery, the material consists of burnt fire-clay, and differs from the second variety, called "porous earthenware," in being thinner, harder, and more compact. In the second variety the clay, before it is burnt, is mixed in considerable proportions with sawdust and finely- cut straw, which, being consumed during the process of burning, leaves the material in a finely honeycombed state. Figures 4 and 5, on page 51, show two methods of construc- tion of hollow pottery and porous earthenware arches. The method illustrated by Figure 4 is the later and better. From tests recently made it appears that this latter construc- tion gives the best results in regard to strength. This is evi- dently due to the fact that the full section of the material is placed in its most advantageous position to take the direct pressure coining thereon. When used in floor construction both varieties of arches are backed to the depth of several inches with concrete, in which are embedded wooden strips to which the floor planking is THE CARNEGIE STEEL COMPANY, LIMITED. secured. The joints are all made radial, and the blocks should be thoroughly cemented together. They are made to project about 1 inch below the bottom flange of the I-beams, which are further protected by the insertion of a thin strip of tile. The weight and cost of both hollow pottery and porous earthenware are about the same, and, through their superior lightness, possess an important advantage over the brick arch. The saving in weight amounts to from 40 to 50 per cent., thus warranting more economical proportions for the steel framing, while in other re- spects the cost of this construction is about the same. The weight of these arches per square foot of floor, without plaster- ing, concrete or flooring, is about as follows : 12" arches, used for warehouses, 45 K)s. 10" " " " theatres, 36 ft>s. 8" " " " office buildings, 30 Ibs. 6" " " " light purposes, 22 K>s. For long spans or unusually heavy loads special arches should be constructed. A combination arch, to satisfy this purpose is shown on page 51, Figure 6. It consists of hollow fire-proof blocks of the ordinary dimensions, as used for partitions, from 4 X/ to 12 /x wide and about 12 /x in depth, set end to end and sup- ported by steel or iron tension straps fastened by good and sub- stantial means to the webs or upper flanges of the beams. These straps must be of sufficient strength and placed between the successive rows of the fire-proof blocks. The space over the straps and between the fire-proof blocks is filled up with Portland cement, thus uniting the blocks and producing a solid floor. The fire-proofing, therefore, no longer serves the function of an arch, but merely takes the compression caused by the strap, whose tendency is to pull the floor beams together. The straps should be at least l^ x/ wide and not less than tf^'va. thickness. Tests made by The Carnegie Steel Company, Limited, THE CARNEGIE STEEL, COMPANY, LIMITED. with this combination construction have given very satisfactory results. The following are the usual assumptions made in good practice for superimposed loads : Floors of dwellings and offices, 70 ft)s. per sq, ft. " " churches, theatres and ball rooms, 125 fts " " " " warehouses, 200 to 250 Ibs, " " " " for heavy machinery, 250 to 400 fts. " " " It has been shown by a careful investigation that the weight of a crowd of people, densely packed, will not exceed 80 flbs. per square foot. The cost of fire-proof floor construction has been further greatly reduced by the substitution of steel for iron in the manufacture of I-beams and channels. The former material recommends itself, not only for its superior strength, but also by its use the rolling of much lighter sections than in iron has been rendered practi- cable. These advantages are now universally conceded, and in view of this fact, The Carnegie Steel Company, Limited, have discarded the use of iron, and the manufacture of structural shapes consists entirely of steel. Where girders extend below bottom of floor beams, they are made fire proof by surrounding them with hollow earthenware blocks especially made to fit the bottom of the beams, as shown on page 51, Figures 1, 2 and 8. An example of fire-proof tile construction, as applied to ceilings and roofs, is given on page 52, Figure 2. For ceilings the Tees are suspended from the lower flanges of the I-beams at intervals of 12" or 15 ', and support a layer of very thin tile, weighing about 5 pounds per square foot, to which the plastering is applied. For roofs somewhat heavier Tees are used, resting on the top flanges of the I-beams and spaced about 18" apart. The tiling, weighing about 10 ft>s. per square foot, may be covered with THE CARNEGIE STEEL COMPANY, LIMITED. concrete, then with a layer of felt and gravel, or, in the case of slate roofs, the slate may be nailed directly to the tiling. A semi- fire-proof construction is shown on page 52, Figure 1, and consists of angles resting on the top of the floor beams, and supporting wooden strips. The finished floor can be directly nailed on these latter, which are spaced from 12 to 16 inches apart. The ceiling is composed of wire lathing, which is fastened to Tees suspended from the floor beams and spaced about 16 X/ apart. The plastering is directly attached to the wire lathing, and thus a level ceiling is obtained. Wire lathing can also be used to good advantage in fire-proofing columns and girders, and has shown itself to be of great utility in many instances where hollow pottery could not be used. On page 52, Figure 3, is given an elevation and section of three methods used for the construction of fire-proof partitions. One consists of the ordinary fire-proof square blocks, set with broken joints and held at intervals with light I-beams, which take the place of wood studding. In the second me hod, the space between the I-beams is filled with a new material called plaster boards. The third method consists of wire lathing attached to the flanges of the I-beams and stiffened at intervals of 2 feet with 'angles. In all these methods plastering is applied directly to the surfaces in the usual manner. THE CARNEGIE STEEL COMPANY, LIMITED. GIRDERS IN BUILDINGS. In the design of a building, cases may occur where a single I-beam girder will not answer. It may be found desirable to increase the lengths of the spans so as to reduce the number of supporting columns to a minimum, or perhaps heavy concen- trated loads, such as vaults, brick walls, etc., will render single I-beam girders inadequate. On page 57, Figs. 11 to 17, inclusive, are shown various forms of girders that may be used in such cases Where the ends of the girders rest upon the wall, steel bearing plates (Figs. 12 and 13), should be used to distribute the pressure over a greater surface, and thereby prevent the crush- ing of the material in the wall directly under the girder. In some cases a tough, large stone will answer without the plates (Fig. 11), but where the pressure is heavy, both plates and stone should be used (Fig. 13). The allowed pressure per square foot for brick work should not exceed six tons, and for stone, twelve to twenty tons, accord- ing to its character. For spanning openings 'in brick walls, girders composed ot two or more I-beams, connected by bolts and separators (Figs. 13 and 16, page 57), are most commonly used. The probable line of rupture, where the bricks have been laid regularly, if the girder should fail, will be found to be inside of the sides of an isosceles triangle whose base is the span and whose height is y$ f tne span. In order to be entirely on the safe side, the weight of wall between vertical lines directly over the girder for a height equal to that of the triangle is frequently adopted as the load to be earned. It should be noted however that for green walls or walls having openings, this rule does not apply. Placing the weight of brick work at 112 flbs. per cubic foot, the weights per superficial foot for different walls are as follows : For 9" wall 84 Ibs. "13 121 "18 168 "22 " 205 " 26 . 243 65 THE CARNEGIE STEEL COMPANY, LIMITED. EXPLANATION OF TABLES ON CARNEGIE SECTIONS. PAGES 70 TO 90, INCLUSIVE. These tables have been calculated for the lightest weights to which each shape or pattern can be rolled. Heavier weights can be rolled in the same grooves by separating the rolls, but they are not kept in stock, and can only be obtained by special rolling. The tables on pages 71 to 73 for I-beams, give the loads which a beam will carry safely (distributed uniformly over its length) for the distances between supports indicated. These loads include the weight of the beam, which must be deducted in order to arrive at the net load which the beam will carry. On pages 74 to 82, will also be found the safe loads for other sections. For beams of heavier sections than those calculated in the tables, a separate column of corrections is given for each size, stating the proper increase of safe load for every additional pound in the weight per foot of beam. The values given are based on a maximum fiber strain of 16,000 R>s. per square inch for I-beams and channels, while for other shapes, 12,000 ft>s. has been used. It has been assumed in these tables that proper provision is made for preventing the compression flanges of the beams from deflecting sideways. They should be held in position at distances not exceeding twenty times the width of the flange, otherwise the strain allowed should be reduced as per table, page 69. In some instances deflection, rather than absolute strength, may become the governing consideration in determining the size of beam to be used. For beams carrying plastered ceilings, for example, it has been found by practical tests that, if the deflection exceeds ^^th of the distance between supports, or 3^th of an inch per foot of this distance, there is danger of the ceiling cracking. This limit is indicated in the following tables by cross lines, beyond which the beams should not be used, if THE CARNEGIE STEEL COMPANY, LIMITED. intended to carry plastered ceilings, unless the allowable loads given in the tables are reduced. There is an element of safety not taken into account in the tables, viz., the fact that the dead load of the floor is carried by the beams before the plaster is applied ; consequently, only the deflection due to the live load is liable to cause damage to the plaster. The following method can be used to obtain the reduced loads : Multiply the load given immediately above the cross line by the square of the corresponding span, and divide by the square of the reqtiired span ; the result "will be the required load. See exam- ple III, page ?&. A table of deflections of Carnegie sections is given on page 70. It may generally be assumed, both for rolled and built beams that the above limit is not exceeded so long as tbe depth of the beam is not less than J-^th of the distance between sup- ports (fa inch per foot). Inasmuch as the carrying capacity of beams increases largely with their depth, and it is therefore economical to use the greatest depth of beam consistent with the other conditions to which it i> necessary to conform, (as clear height, etc.), the above cases of extreme deflection will rarely be met with in practice. As the deflection of beams is not very uniform in either iron or steel, the question of the relative deflection of iron and steel beams can be decided only from the average results of a large number of tests. Such experiments as have been made, though insufficient in number to be conclusive, indicate that a steel beam will deflect slightly less than an iron beam of the same section, under the same load, in about the inverse ratio of the moduli of elasticity for these materials as generally assumed, or say as 14 to 15. The tables on pages 83 t" 90, inclusive, for I-beams give the proper spacing, center to cenier of beams, for loads varying from 100 to 175 Ibs. per square foot, and for spans ranging in length from 5 to 30 feet. The spacing of beams is inversely propor- tionate to the loads ; therefore, for a load not given in the table, as for instance, 200 Ibs. per square foot, divide the spaces given for 100 R)s. per square foot by 2, etc. THE CARNEGIE STEEL COMPANY, LIMITED. EXAMPLES OP APPLICATION OF TABLES. I. What will be the most economical arrangement of floor beams and girders for carrying a load of 150 R)s., including weight of floor, assuming the floor to be supported by brick arches resting between the beams and carrying a plastered ceil- ing below ? Answer : The spacing of floor beams for brick arches, as stated above, should not exceed 6 feet. Referring to pages 87 and 88, we find the deepest I-beam corresponding to this space (above horizontal cross lines) to be a 9 /x I, 21.0 R)s., with a length of span of 15 feet. The girders to which the floor beams are framed should, therefore, be spaced 15 feet apart, and from the table we find that either a 20" I, 64 Jbs., 23 feet long, or a 15 X/ I, 50 Ibs., 18 feet long, will answer. By using the former, the number of supporting columns will be reduced, but the weight of the girders increased. The relative cost must be determined by the circumstances of the case ?'. e., length of columns, etc. The headroom required may render it necessary to use a double girder of shallower beams, say 2 10 /x I-beams, 25 Ibs, 15 feet long. II. What size and weight of beam 19' 6 X/ long in clear between walls, and therefore, 20' /x long between centers of supports, will be required to carry safely a uniformly distributed load of 16 tons, the weight of the beam included? Answer: From the table for safe loads of I-beams, a 15 /x I, 41.0 R)s., will carry safely, for a span of 20 feet, 15.08 tons, or 0.92 tons less than required in this case. From the next column we find that for every pound increase in weight of beam, we may add 0.20 tons to the load. Hence, for 0.92 tons, we must increase THE CARNEGIE STEEL COMPANY, LIMITED. the weight per foot of beam by 0.92-=-0.20 = 4.6 K>s., i. e., the beam required should weigh 41.0 -f- 4.6 = 45.6 lt>s. per foot. III. What load uniformly distributed, including its own weight, will a 15" I-beam, weighing 50.0 fbs. per foot, carry for a span of 30 feet, without deflecting sufficiently to en- danger a plastered ceiling? Answer : From the table for safe loads of I-beams we find, at the limit indicated for plastered ceilings, that a 15" 50 It), beam will carry safely a uniform load of 15.06 tons over a span of 25 feet. In order not to give rise to undue deflection, the safe load for a 30 foot span, according to the rule given on page 67 will be 15.06 X 25 : '=10.46 tons. BEAMS WITHOUT LATERAL SUPPORT. Lergth of Beam. 20 times flange width. 30 " " " 40 50 " " " 60 " " " 70 " " Proportion of Tabular Load Forming Greatest Safe Load. Whole tabular load. A THE CARNEGIE STEEL COMPANY, LIMITED. DEFLECTION COEFFICIENTS FOB CABNEG-IE SHAPES, G-IVEN IN 64ths OF AN INCH. DISTANCE BETWEEN SUPPORTS, IN FEET. Index. 6 8 10 12 14 16 18 20 22 O.S. . 0'. S. . G.I. . 0'. I. . 38.1 29.8 30.7 25.6 67.8 53.0 54.6 45.5 105.9 82.8 85.3 71.1 152.5 119.2 122.9 102.4 207.6 162.2 167.3 139.4 271.2 211.8 218.4 182.0 343.2 268.1 276.5 230.4 423.7 331.0 341.3 284.4 512.7 400.5 413.0 344.2 Coefficient Index. DISTANCE BETWEEN SUPPORTS, IN FEET. 24 26 28 .30 32 34 36 38 40 C. S. . 0'. S. . C.I. . 0'. I. . 610.2 476.6 491.5 409.6 716.1 559.4 576.8 480.7 830.5 648.8 669.0 557.5 953.4 744.8 768.0 640.0 1085.0 847.4 873.8 728.2 1225.0 956.6 986.4 822.0 1373.0 1073.0 1106.0 921.6 1530. 1195. 1232. 1027. 1695. 1324. 1365. 1138. Figures given opposite C. S. and C/. S. are the deflection coeffi- cients for steel shapes, subject to transverse strain for varying spans, under their maximum uniformly distributed safe loads, derived from a fiber strain of 16000 and 12500 respectively ; the modulus of elasticity being taken at 29,000,000. Figures given opposite C. I. and C'. I. are for iron beams, under their uniformly distributed safe loads, derived from a fiber strain of 12000 and loooo respectively, the modulus of elasticity being taken at 27,000,000. To find the deflection of any symmetrical shape used as a beam under its corresponding safe load, divide the coefficients given in the above tables by the depth of the beam. This applies to such shapes as I-Beams, channels, Z-bars, etc. For those beams having unsvmmetrical axes, such as tees, angles, etc., divide by twice the greatest distance of the neutral axis from the outside fibre. EXAMPLE: Required the deflection of a I2 X/ I-Eeam, 32 Ibs., 20 ft. span under its maximum uniformly distributed safe load of 9.88 tons, as given on page 7 1 - The above tables give 423.7 as the deflection coefficient; dividing this by 12, gives 35.3 as the required deflection in 64ths of an inch. For deflections due to different systems of loading, see page 96. THE CARNEGIE STEEL, COMPANY, LIMITED. SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR CARNEGIE I-BEAMS. IN TONS OF 2,OOO LBS II' 15 24". Add for every Ib. increase in weight. 20" I. Add for every Ib. increase in weight. ! 15" I. Add for every Ib. increase in weight. | 12" I. IAdd for every Ib. increase in weight. 80 Ibs. 80 Ibs. 64 Ibs. 80 Ibs. 60 Ibs. 50 Ibs. 41 Ibs. 40 Ibs. 32 Ibs. 12 76.27 0.53 64.40 50.93 0.44 46.58 38.18 31.39 25.13 0.33 20.84 1647 0.26 13 70.41 0.49 59.45 47.01 0.40 42.99 35.24 2897 23.20 0.30 19.24 15.20 0.24 14 65.38 0.46 55.20 43.66 0.37 39.93 32.72 26.90 21.54 0.28 17.86 14.12 0.22 15 61.02 0.43 51.52 40.75 0.35 37.26 30.54 25,11 20.10 0.26 16.67 13.18 0.21 16 57.20 0.40 48.30 38.20 0.33 34.93 28.63 23.54 1885 0.25 15.63 12.35 0.20 17 53.84 0.38 45.46 35.95 0.31 32.88 1 26.95 22.16 17.74 0.23 14.71 11.63 0.18 18 50.85 0.36 42.93 33.96 0.29 31.05 25.45 20.93 16.75 0.22 13.90 10.98 JO 17 19 48.17 0.34 40.67 32.17 0.28 29.41 24.11 19.82 15.87 0.21 13.17 10.40 0.17 20 45.76 0.32 38.64 30.56 0.26 27.94 22.91 18.83 15.08 0.20 12.51 9.88 0.16 21 43.58 0.30 36.80 29.10 0.25 26.61 21.81 17.93 14.36 0.19 11.91 9.41(0.15 22 41.60 029 3513 27.78 0.24 25.40 J20.82 17.12 13.71 0.18 11.37 8.9810.14 23 39.79 0.28 33.60 26.58 0.23 24.30" 19.92 16.37 13.11 0.17 10.87 8.59 0.14 24 38.14 0.27 32.20 25.47 0.22 23.29 19.09 15.69 12.57 0.16 10.42 8.23 0.13 25 36.61 0.26 30.91 24.45 0.21 22.35 18.33 15.06 12.06 0.16 10.01 7.90 0,13 26 35.20 0.25 29.72 23.51 0.20 21.50 17.62 14.48 11.60 0.15 9.62 7.60 0-12 27 33.90 0.24 28.62 22.64 0.19 20.70 16.97 13.95 11.17 0.15 9.26 7.32 0-12 28 32.69 0.23 27.60 21.83 0.19 19.96 1636 13.45 10.77 0.14 8.93 7.06 0.11 29 31.56 0.22 26.65 21.08 0.18 19.27 15.80 1298 10.40 0.14 8.62 6.82S011 30 30.51 0.21 25.76 20.37 0.17 18.63 15.27 12.55 10.05 0.13 8.34 6.59(0.10 31 29.52 021 24.93 19.72 0.17 18.03 14.78 12.15 9.73 0.13 8.07 6.3710.10 32 28.60 0.20 24.15 19.10 0.16 17.46 14.32 11.77 9.43 0.13 7.81 6.18 0.10 33 2773 0.19 23.42 18.52 0.16 16.94 13.88 11.41 9.14 0.12 7.58 5.99 010 34 26.92 019 22.73 17.97 0.15 16.44 13.48 11.08 8.87 0.11 7.36 581 0.09 35 26.15 0.18 22.08 17.46 0.15 15.97 1309 10.76 8.62 0.11 7.14 5.65 0.09 36 25.42 0.18 21.47 16.98 0.15 15.52 13.73 10.46 8.38 0.11 6.95 5.49 0.09 Safe loads given include weight of beam. Maximum fiber strain, 6,000 Ibs. per square inch. 71 THE CARNEGIE STEEL, COMPANY, LIMITED. SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR CARNEGIE I BEAMS. IN TONS OF 2.000 LBS. Distance between supports in feet. 10" I. IAdd for every Ib. increase in weight. i Add for every Ib. increase in weight. ii n Add for every Ib. increase in weight. 1" I. ff 33 Ibs. 25 Ibs. 21 Ibs. 18 Ibs. 15 Ibs. 12 14.33 10.88 0.22 8.33 0.20 5 15.40 0.42 11.58 0.37 13 13.23 10.05 0.20 7.69 0.18 6 12.83 0.35 9.65 0.31 14 12.29 9.33 0.19 7.14 0.17 7 11.00 0.30 8.27 0.26 15 16 17 11.47 10.75 10.12 8.71 8.16 0.17 0.16 0.15 6.66 0.16 6.25 0.15 5.88 0.14 8 9 10 9.63 8.56 7.70 0.26 0.23 0.21 7.24 6.43 5.79 0.23 0.20 0.18 7.68 18 9.56 7.26 0.15 5.55 0.13 11 7.0.0 0.19 5.27 0.17 19 20 21 9.05 8.60 8.19 6.87 6.54 6.22 0.14 0.13 0.12 5.26 5.00 4.76 0.12 0.12 0.11 12 13 14 6.42 5.92 0.17 0.16 0.15 4.83 0.15 0.14 0.13 4.45 4.14 5.50 22 7.82 5.94 0.12 4.54 0.11 15 5.13 0.14 3.86 0.12 23 7.48 5.69 0.11 4.35 0.10 16 4.81 0.13 3.63 0.11 24 7.17 5.45 0.11 4.17 0.10 17 4.53 0.12 3.41 0.11 25 6.88 5.23 0.10 4.00 0.09 18 4.28 0.12 3.22 0.10 26 6.62 5.02 0.10 3.84 0.09 19 4.05 0.11 3.04 0.10 27 6.37 484 0.10 3.70 0.09 20 3.85 0.10 2.90 0.09 28 6.14 4.67 0.09 3.57 0.08 21 3.67 0.10 2.76 0.09 29 5.93 4.51 0.09 3.45 0.08 . . 30 5.73 4.36 0.09 3.33 0.08 Safe loads given, include weight of beam. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR CARNEGIE I BEAMS. IN TONS OF 2,000 LBS. If Iff 6" I. Add for every Ib. increase in weight. 5" I. Add for every Ib. increase in weight. 4" I. Add for every Ib. increase in weight 3" I. Add for euery Ib. increase in weight. 13 Ibs. 10 Ibs. 7 Ibs. 6 Ibs. 5 8.35 0.31 5.29 0.26 3.04 0.21 1.86 0,16 6 7 8 9 6.96 5.96 5.22 4.64 0.26 0.22 0.20 0.17 4.41 3.78 3.31 0.22 0.19 0.16 0.15 2.54 2.17 0.17 0.15 0.13 0.12 1.55 0.13 0.11 0.10 0.09 1.33 1.16 1.03 1.90 1.68 2.94 10 11 4.18 0.16 0.14 2.65 2.40 0.13 0.12 1.52 1.38 0.10 0.10 0.93 0.84 0.08 0.07 3.80 12 3.48 0.13 2.20 0.11 1.27 0.09 0.77 0.06 13 3.21 0.12 2.03 0.10 1.17 0.08 0.71 0.06 14 2.98 0.11 1.89 0.09 1.09 0.07 0.66 0.05 15 2.78 0.10 1.76 0.09 1.02 0.07 0.62 0.05 16 2.61 0.10 1.65 0.08 0.95 0.07 0.58 0.05 17 2.46 0.09 1.56 0.08 0.89 0.06 0.55 0.04 18 2.32 0.09 1.47 0.07 0.84 0.06 0.52 0.04 19 2.20 0.08 1.39 0.07 0.80 0.06 0.49 0.04 20 2.09 0.08 1.32 0.07 0.77 0.05 0.46 0.04 21 199 0.07 1.26 0.06 0.73 0.05 0.44 0.03 Safe loads given, include weight of beam. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, IN TONS OP 2,000 LBS., UNI- FORMLY DISTRIBUTED, FOR CARNEGIE DECK BEAMS AND BULB ANGLES. o.a a 10 10 9 9 8 8 7 7 6 6 |l 3570 27.23 30.00 26.00 24.48 20.15 23.46 18.11 18.36 15.30 Maximum Fiber Strain, 12,000 Ibs., per square inch. DECK BEAMS DISTANCE BETWEEN SUPPORTS, IN FEET. 5 6 7 8 12.82 10.58 9.77 8.86 7.04 6.09 5.84 4.83 4.11 3.62 9 11.40 9.41 8.69 7.88 6.26 5.41 5.19 4.29 3.66 3.22 1 1O 12 14 16 18 20.52 16.93 15.64 14.18 11.26 9.74 9.34 7.73 6.58 5.80 17.10 14.11 13.03 11.82 9.38 8.12 7.78 6.44 5.48 4.83 14.66 12.09 11.17 10.13 8.04 6.96 6.67 5.52 4.70 4.14 10.26 8.46 7.82 7.09 5.63 4.87 4.67 3.86 3.29 2.90 8.55 7.05 6.52 5.91 4.69 4.06 3.69 3.22 2.74 2.42 7.33 6.05 5.59 5.06 4.02 3.48 3.34 2.76 2.35 2.07 6.41 5.29 4.89 4.43 3.52 3.04 2.92 2.42 2.06 1.81 5.70 4.70 4.34 3.94 3.13 2.71 2.59 2.15 1.83 1.61 Maximum Fiber Strain, 10,000 Ibs., per square inch. 10 10 9 9 8 8 7 7 6 6 35.70 27.23 30.00 26.00 24.48 20.15 23.46 18.11 18.36 15.30 17.10 14.11 13.03 11.82 9.38 8.11 7.79 6.44 5.48 4.84 14.25 11.76 10.86 9.85 7.82 6.76 6.49 5.37 4.57 4.03 12.21 10.08 9.30 8.44 6.70 5.79 5.56 4.80 3.91 3.46 10.69 8.82 8.14 7.39 5.86 5.07 4.87 4.02 3.42 3.02 9.50 7.84 7.24 6.57 5.21 4.51 4.33 3.58 3.04 2.69 8.55 7.06 6.51 5.91 4.69 4.05 3.89 3.22 2.74 2.42 7.12 5.88 5.43 4.92 3.91 3.38 3.25 2.68 2.28 2.02 6.11 5.04 4.65 4.22 3.35 2.90 2.78 2.30 1.96 1.73 5.34 4.41 4.07 3.70 2.93 2.53 2.43 2.01 1.71 1.51 4.75 3.92 3.62 3.28 2.61 2.25 2.16 1.79 1.52 1.34 BULB ANGLES Maximum Fiber Strain, 12,000 Ibs., per square inch. 10 9 8 7 6 6 6 5 26.50 21.80 19.23 18.25 17.20 13.75 12.30 10.00 15.88 11.57 9.36 7.67 6.04 5.28 4.53 3.25 13.23 9,64 7.80 6.39 5.03 4.40 3.77 2,71 11.34 8.26 6.69 5.48 4.31 3.77 3.24 2.32 9.93 7.23 5.85 4.79 3.77 3.30 2.83 2.03 8.82 6.43 5.20 4.26 3.36 2.93 2.52 1.81 7.94 5.78 4.68 3.83 3.02 2.64 2.26 1.62 6.62 4.82 3.90 3.20 2.52 2.20 1.89 1.35 5.67 4.13 3.34 2.74 2.16 1.89 1.62 1.16 4.96 3.62 2.92 2.40 1.89 1.65 1.42 1.02 4.41 3.21 2.60 2.13 1.68 1.47 1.26 0.90 BULB ANGLES Maximum Fiber Strain, 10,000 Ibs., per square inch. 10 9 8 7 6 6 6 5 26.50 21.80 19.23 18.25 17.20 13.75 12.30 10.00 13.23 9.64 7.80 6.39 5.03 4.40 3.77 2.71 11.02 8.03 6.50 5.32 4.19 3.67 3.14 2.26 9.45 6.88 5.57 4.56 3.59 3.14 2.69 1.94 8.27 6.02 4.87 3.99 3.14 2.75 2.36 1.69 7.35 5.36 4.33 3.55 2.79 2.44 2.09 1.51 6.61 4.82 3.90 3.19 2.51 2.20 1.88 1.35 5.51 4.02 3.25 2.66 2.10 1.83 1.57 1.13 4.72 3.44 2.79 2.28 1.80 1.57 1.35 0.97 4.13 3.01 2.44 2.00 1.57 1.37 1.18 0.85 3.68 2.68 2.17 1.77 1.40 1.22 1.05 0.75 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR CARNEGIE CHANNELS. IN TONS OF 2,000 LBS. Ij 15" C. bo 13" [. ,d| 12" L *f 10" L *$> 9"L *t jLs II 1! R 6 i/ 11.22 8.98 7.48 6.41 5.61 4.99 4.49 i 3.74 3.21 2.81 6 11.55 9.24 7.70 6.60 5.77 5.13 4.6213.85 3.30:2.89 fcjL y* 12.82 10.26 8.55 i 7.33 6.41 5.70 5.13 4.27 1 3.66 i 3.21 6^ H 14.10 11.28 9.40 8.06 7.05 6.27 5.64 4.70 1 4.03 3.52 6 ^ 14.04 11.23 9.36 8.02 7.02 6.24 5.61 4.68 4.01 3.51 6yV H 15.22 12.18 10.15 8.70 7.61 6.77 6.09 507 4.35 3.81 6^j # 16.40 13.12 10.93 9.37 8.20 7.29 6.56 5.47 4.69 4.10 j 5 T 5 F 5.34 4.27 3.56 3.05 2.67 2.37 2.13 1.78 1.52 1.33 i A 6.39 7.44 5.11 5.95 4.26 4.96 3.65 4.25 3.19 3.72 2.84 3.31 2.55 2.97 2.13 1.82 1.60 2.48 2.12 1.86 5 X 7.67 6.14 5.12 4.39 3.84 3.41 3.07 2.56 2.19 1.92 ^Jg T 9 ^ 8.62 6.90 5.75 4.93 4.31 3183 3.45 2.87 2.46 2.16 5>6 y% 9.57 7.66 6.38 5.47 4.79 4.25 3.83 3.19 2.74 2.39 5 \\ 9.47 7.58 6.32 5.41 4.74 4.21 3.79 3.16 2.71 2.37 5 T ^ 10.34 8.27 6.89 5.91 5.17 459 4.14 3.45 2.95 2.58 5>^ if 11.20 8.96 7.47 6.40 5.60 4.98 4.48 3.73 3.20 2.80 4 X 3.14 3.91 2.51 3.13 2.09 2.61 1.79 2.24 1.57 1.96 1.39 1.74 1.26 1.56 1.05 1.30 0.90 0.78 1.12 0.98 4>^ H 4.68 3.74 3.12 2.67 2.34 2.08 1.87 1.56 1.34 1.17 4 A 4.83 3.86 3.22 2.76 2.41 2.14 1.93 1.61 1.38 1.21 4JL r 5.50 4.40 3.67 3.14 2.75 2.44 2.20 1.83 1.57 1.38 4>6 T 9 x3V*>Xy^ 9.00 4.50 3.00 2.25 1.80 1.50 1.29 1.13 1.00 0.90 3/^x3j^x^ 4.60 2.30 1.53 1.15 0.92 0.77 0.66 0.58 0.51 0.46 3 x3 x^ 5.20 2.60 1.73 1.30 1.04 0.87 0.74 0.65 0.58 0.52 3 x3 ^i 2.32 1.16 0.77 0.58 0.46 0.39 0.33 0.29 0.26 0.23 2%x2%xV 3.56 1.78 1.19 0.89 0.71 0.59 0.51 0.45 0.40 0.36 2%x2%x ^ 1.92 0.96 0.64 0.48 0.38 0.32 0.27 0.24 0.21 0.19 gi^x2K x X 2.92 1.46 0.97 0.73 0.58 0.49 0.42 0.37 0.32 0.29 gi^xgi^x ^ 1.60 0.80 0.53 0.40 0.32 0.27 0.23 0.20 0.18 0.16 2^x2^x1^ 2.32 1.16 0.77 0.58 0.46 0.89 0.33 0.29 0.26 0.23 2j4x2^x^ 1.28 0.64 0.43 0.32 0.26 0.21 0.18 0.16 0.14 0.13 2\/9 v 7 X<5 Xy'g- 1.60 0.80 0.53 0.40 0.32 0.27 0.23 0.20 0.18 0.16 0.76 0.38 0.25 0.19 0.15 0.13 0.11 0.095 0.084 0.076 l^ x l^ x 7 1.20 0.60 0.40 0.30 0.24 0.20 0.17 0.15 0.13 10.12 j^xl%x T \ 0.56 0.28 0.19 0.14 0.11 0.093 0.080;0.070 0.0620.056 l^xlKx% 0.76 0.38 0.25 0.19 0.15 0.13 0.11 0.095 0.0840.076 l/ixl%x T \ 0.42 0.21 0.14 0.104 0.083 0.0690.0590.052 0.0460.042 %$$ 0.44 0.20 0.22 0.10 0.15 0.065 0.109 0.049 0.087 0.039 0.073J0.062 0.055 0.033I0.028 ! 0.025 0.048J0.044 0.02210.020 Ij^xl^x^ 0.35 0.17 0.12 0.087 0.070|0.058|0.050 0.044 0.039J0.035 l^xl/^xj^ 0.16 0.078 0.052 0.0390.0310.0260.022 0.020 0.0170.016 1 xl x^ 0.22 0.11 0,075 0.0560.0450.03710.032 0.028 0.0250.022 1 xl x^ 0.12 0.062 0.041 0.0310.0250.0210.018 0.016 0.014j0.012 %x 7/x 3 0.13 0.066 0.044 0.033 0.026 0.022'o.019 0.017 0.01510.013 %x %x^ 0.092 0.046 0.031 0.023 0.018I0.015 0.013 0.012 0.010|0.009 Kx^H 0.096 0.068 0.048 0.034 0.032 0.023 0.0240.0190.0160.014 0.0170.0140.0110.010 0.012 0.009 0.0110.010 0.0080.007 %x %x*^j 0.044 0.022 0.015 0.011 0.009|0.007|0.006 0.005 0.005|O.Q04 Safe loads given include weight of Angle. Maximum fiber strain, 12^000 Ibs. per square inch. Neutral axis through centre of gravity parallel to one leg. 1 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, IN TONS, OF 2,000 LBS-, UNI- FORMLY DISTRIBUTED, FOR CARNEGIE ANGLES, \VITH UNEQUAL LEGS. LONG LEG VERTICAL. Size of DISTANCE BETWEEN SUPPORTS, IN FEET. Angle. 1 2 3 4 5 6 7 8 9 10 7 x3>xl 42.32 21.16 14.11 1058 "846" 7.05 6.05 5,29 4.70 4.23 7 x3 '^ x- 7 - ^0.04 10.02 6.68 5.01 4.01 3.34 2.86 2^50 2.23 2.00 6 x4 x x}| 28.60 14.30 9.53 7.15 5.72 4.77 4.09 3.58 3.18 2.86 6 x4 x^ 13.28 6.64 4.43 3.32 2.66 2.21 1.90 1.66 1.48 1.33 6 x3>x^ 27.92 13.96 9.31 6.98 5.58 4.65 3.99 3.49 3.10 2.79 6 xSj^x^g 13.00 6.50 4.33 3.25 2.60 2.17 1.86 1.63 1.44 1.30 5 x4 xj^ 19.96 9.98 6.65 4.99 3.99 3.33 2.85 2.50 2.22 2.00 5 x4 *3/s 9.36 4.68 3.12 2.34 1.87 1.56 1.34 1.17 1.04 0.94 5 x3%x^f 19.52 9.76 6.51 4.88 3.90 3.25 2.79 2.44 2.17 1.95 t v^l/vS/ 9.16 4.58 3.05 2.29 1.83 1.53 1.31 1.15 1.02 0.92 5 x3 2 x|| 17.80 8.90 5.93 4.45 3.56 2.97 2.54 2.23 1.98 1.78 5 x3 x^g 7.50 3.75 2.50 1.88 1.50 1.25 1.07 0.94 0.83 0.75 4^x3 xif 14.48 7.24 4.78 3.62 2.90 2.41 2.07 1.81 1.61 1.45 7.32 3.66 2.44 1.83 1.46 1,22 1.05 0.92 0.81 0.73 4 x3j4xi^- 11.68 5.84 3.89 2.92 2.34 1.92 1.67 1.46 1.30 1.17 4 x3^x|| 6.00 3.00 2.00 1.50 1.20 1.00 0.86 0.75 0.67 0.60 4 x3 xif 11.48 5.74 3.83 2.87 2.30 1.91 1.64 1.44 1.28 1.15 4 x3 X T \ 4.92 2.46 1.64 1.23 0.98 0.82 0.70 0.62 0.55 0.49 8.80 4.40 2.93 2.20 1.76 1.47 1.26 1.10 1 0.98 0.88 8$3 x'-S 3.84 1.92 1.28 0.96 0.77 0.64 0.55 0.48 0.43 0.38 3Kx2%x|-i 7.40 3.70 2.47 1.85 1.45 1.23 1.06 0.93 0.82 0.74 g r/ x gi/ x i/ 3.00 1.50 1.00 0.75 0.60 0.50 0.43 0.38 0.33 0.30 3^x2 2 x T ^ 5.20 2.60 1.73 1.30 1.04 0.87 0.74 0.65 0.58 0.52 3^x2 xX 2.52 1.26 0.84 0.63 0.50 0.42 0.36 0.32 0.28 0.25 3 x2-/^x- 9 r 4.60 2.30 1.53 115 0.92 0.77 0.66 0.58 0.51 0.46 3 x2/^x^}. 2.24 1.12 0.75 0.56 0.48 0.37 0.32 0.28 0.25 0.22 3 x2 x^ 4.00 2.00 1.33 1.00 0.80 0.67 0.57 0.50 0.44 0.40 3 x2 x^ 1.92 0.96 0.64 048 0.38 0.32 0.27 0.24 0.21 0.19 2%x2 *y 2 2.80 1.40 0.93 0.70 0.56 0.47 0.40 0.35 0.31 0.28 2^x2 X-J&T 1.16 0.58 039 0.29 0.23 0.19 0.17 0.15 0.13 0.12 2.36 1.18 0.79 0.59 0.47 0.39 0.34 0.30 0.26 0.24 2X x l%x T 3 g 0.92 0.46 0.31 0.23 0.16 0.15 0.13 0.12 0.10 0.09 2 xl^xX 0.92 0.46 0.31 0.23 0.18 0.15 0.13 0.12 0.10 0.09 2 xl^x T \ 0.72 0.36 0.24 0.18 0.14 0.12 0.10 0.09 0.08 0.07 036 0.18 0.12 0.09 0.07 0.06 0.05 0.04 0.04 003 l^xl x^| 0.24 0.12 0.08 0.06 0.05 0.04 0.03 0.03 0.03 0.02 Safe loads given include weight of Angle. Maximum fiber strain, 12,000 Ibs. per square inch. Neutral axis through center of gravity parallel to short leg. 70 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, IN TONS OF 2,OOO LBS., UNI- FORMLY DISTRIBUTED, FOR CARNEGIE ANGLES, WITH UNEQUAL LEGS. SHORT LEG VERTICAL. Size of DISTANCE BETWEEN SUPPORTS, IN FEET. Angle. 1 2 3 4 5 6 7 8 9 10 7 x3%xl 11.84 5.92 8.95 2.96 2.37 1.97 1.69 148 1.32 "us 7 xSj/x- 7 - 5.88 2.94 1.96 1.47 1.18 0.98 0.84 0.74 0.65 0.59 6 x4 x|J 13.56 6.78 4.52 3.39 2.71 2.26 1.94 1.70 1.51 1.36 6 x4 x^ 6.40 3.20 2.13 1.60 1.28 1.07 0.91 0.80 0.71 0.64 6 x3^x^ 10.36 5.18 3.45 2.59 2.07 1.73 1.48 1.30 1.15 1.04 6 x3j^x24 4.92 2.46 1.64 1.23 0.98 0.82 0.70 0.62 0.55 0.49 5 x4 x^ 13.24 6.62 4.41 3.31 2.65 221 1.89 1.66 1.47 1.32 5 x4 x^g 6.28 3.14 2.09 1.57 1.26 1.05 0.90 0.79 0.70 0.63 5 x3/^xj^ 10.08 5.04 3.36 2.52 2.02 1.68 1.44 1.26 1.12 1.01 5 x3%x^ 4.84 2.42 1.61 1.21 0.96 0.81 0.67 0.61 0.54 0.48 5 x3 xf| 6.96 3.48 2.32 1.74 1.39 1.16 0.99 0.87 0.77 0.70 5 x3 X T \ 3.00 1.50 1.00 0.75 0.60 0.50 0.43 0.38 0.33 0.30 4%x3 x}| 6.84 3.42 2.28 1.71 1.37 1.14 0.98 0.86 0.76 0.68 4%x3 x^ 3.52 1.76 1.17 0.88 0.70 0.59 0.50 0.44 0.39 0.35 4 x3j^x}| 9.20 4.60 3.07 2.30 1.84 1.53 131 1.15 1.02 0.92 4 xS^/x^ 4.72 2.36 1.57 1.18 0.94 0.79 0.67 0.59 0.52 0.47 4 x3 2 xf| 6.72 3.36 2.24 1.68 1.34 1.12 0.96 0.84 075 0.67 4 x3 x T V 2.96 1.48 0.97 0.74 0.59 0.49 0.42 0.37 033 0.30 3>/x3 xff 6.60 3.30 2.20 1.65 1.32 1.10 0.94 083 0.73 0.66 3%x3 xfj 2.88 1.44 0.96 ! 0.72 0.58 0.48 0.41 0.36 0.32 0.29 3i/ x 2i/ x ii 3.96 1.98 1.32 0.99 0.79 0.66 0.57 0.50 044 0.40 3/^x2^ xj^ 1.64 0.82 0.55 0.41 0.33 0.27 0.23 0.21 0.18 0.16 3^x2 x& 2.12 1.06 0.71 0.53 0.42 0.35 0.30 0.27 024 0.21 1.04 0.52 0.35 0.26 021 0.17 0.15 0.13 0.12 0.10 3 x2^x 1 a 5 3.28 1.64 1.09 0.82 0.66 0.55 0.47 0.41 0.36 0.33 3 x2^x^ 1.60 0.80 0.53 0.40 0.32 0.27 0.?3 0.20 0.18 0.16 3 x2 x^ 1.88 0.94 0.63 0.47 0.38 0.31 0.27 0.24 0.21 0.19 3 x2 X j& 0.92 046 0.31 0.23 0.18 0.15 0.13 0.12 0.10 0.09 2/^x2 x^ 1.84 0.92 0.61 0.26 0.37 0.31 0.26 0.23 0.20 0.18 2^x2 x T 3 e 0.80 0.40 0.27 0.20 0.16 0.13 on 0.10 009 0.08 2^xl%x% 1.04 0.52 0.35 0.26 0.21 0.17 0.15 0.13 012 0.10 2>4xl ^x^ 0.44 0.22 0.15 0.11 0.09 0.07 006 0.06 0.05 0.04 2 xl^gxX 0.48 0.24 0.16 0.12 0.10 0.08 0.07 0.08 0.05 0.05 2 xl^x T 3 g 0.36 0.18 0.12 0.09 0.07 0.06 0.05 0.05 0.04 0.04 l^gxl x.^ 0.20 0.10 0.07 0.05 i 0.04 ! 0.03 0.03 0.02 0.02 0.02 l^xl K l / 8 0.12 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.01 1 0.01 Safe loads given include weight of Angle. Maximum fiber strain, 12,000 Ibs. per square inch Neutral axis through center of gravity parallel to long leg. THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OF 2,OOO POUNDS, UNI- FORMLY DISTRIBUTED, FOR CARNEGIE TEES Size Weight DISTANCE BETWEEN SUPPORTS. IN FEET. Flange bj Stem. Per Foot. 1 2 3 4 5 6 7 8 9 1O 5 x3 13.6 4.72 2.36 1.57 1.18 0.94 0.79 0.67 0.59 0.52 0.47 5 x2^ 11.0 3.44 1.72 1.15 0.86 0.69 0.57 0.49 0.43 0.38 0.34 4>' 2 x3^ 15.8 8.52 4.26 2.84 2.13 1.70 1.42 1.22 1.07 0.95 0.85 4^x3 8.5 3.24 1.62 1.08 0.81 0.65 0.54 0.46 0.41 0.36 0.32 4^x3 10.0 3.76 1.88 1.35 0.94 0.75 0.63 0.54 0.47 0.42 0.38 4^x2^ 8.0 2.24 1.12 0.75 0.56 0.45 0.37 0.32 0.28 0.25 0.22 4^x2^ 9.3 2.60 1.30 0.87 065 0.52 0.43 0.37 0.33 0.29 0.26 4 x5 15.6 12.40 6.20 4.13 3.10 2.48 2.07 1.77 1.55 1.38 1.24 4 x5 12.0 9.72 4.86 3.24 2.43 1.94 1.62 1.39 1.22 1.08 0.97 4 x4} 14.6 10.20 5.10 3.40 2.55 2.04 1.70 1.46 1.28 1.13 1.02 4 x4Ji 11.4 7.92 3.96 2.64 1.98 1.58 1.32 1.13 0.99 0.88 0.79 4 x4 13.7 8.08 4.04 2.69 2.02 1.63 1.35 1.15 1.01 0.90 0.81 4 x4 10.9 6.56 3.28 2.19 1.64 1.31 1.09 0.94 0.82 0.73 0.66 4 x3 9.3 3.52 1.76 1.17 0.88 0.70 0.59 0.50 0.44 0.39 0.35 4 x2K 8.6 2.48 1.24 0.83 0.62 0.50 0.41 0.35 0.31 0.28 a25 4 x2> 7.3 2.20 1.10 0.73 0.55 0.44 0.37 0.31 0.28 0.24 0.22 4 x2^ 5.8 1.68 0.84 0.56 0.42 0.34 0.28 0.24 0.21 0.19 0.17 4 x2 7.9 1.60 0.80 0.53 0.40 0.32 0.27 0.23 0.20 0.18 0.16 4 x2 6.6 1.36 0.68 0.45 0.34 0.27 0.23 0.19 0.17 0.15 0.14 3*4x4 12.8 7.92 3.96 2.64 1.98 1.58 1.32 1.13 0.99 0.88 0.79 3^x4 9.9 6.20 3.10 2.07 1.55 1.24 1.03 0.89 0.78 0.69 0.62 3^*3^ 11.7 6.08 3.04 2.03 1.52 1.22 1.01 0.87 0.76 0.68 0.61 8^x8Ji 9.2 4.76 2.38 1.59 1.19 0.95 0.79 0.68 0.60 0.53 0.48 3^x3^ 6.8 3.72 1.86 1.24 0.93 0.74 0.62 0.53 0.47 0.41 0.3? 3^x3 11.73 5.72 2.86 1.91 1.43 1.14 0.95 0.82 0.72 0.64 0.57 3^x3 10.9 4.52 2.26 1.51 1.13 0.90 0.75 0.65 0.57 0.50 0.45 3^x3 8.5 3.52 1.76 1.17 0.88 0.70 0.59 0.50 0.44 0.39 0.35 3^x3 7.8 2.88 1.44 0.96 0.72 0.58 0.48 0.41 0.38 0.32 0.29 3 x4 11.8 7.76 3.88 2.59 1.94 1.55 1.29 1.11 0.97 0.86 0.78 3 x4 106 7.12 3.56 2.37 1.78 1.42 1.19 1.02 0.89 0.79 0.71 3 x4 9.3 6.28 3.14 2.09 1.57 1.26 1.05 0.90 0.79 0.70 0.63 3 x3^ 2 10.9 5.96 2.98 1.99 1.49 1.19 0.99 0.85 0.75 0.66 0.60 3 x3^ 9.8 5.48 2.74 1.83 1.37 1.10 0.91 0.78 0.69 0.61 0.55 3 x3^ 8.5 4.84 2.42 1.61 1.21 0.97 0.81 0.69 0.61 0.54 0.48 3 x3 10.0 4.40 2.20 1.47 1.10 0.88 0.73 0.63 0.55 0.49 0.44 Safe loads given include weight of Tee. Maximum fiber strain, 1 2,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS, IN TONS OF 2,OOO POUNDS , UNI- FORMLY DISTRIBUTED, FOR CARNEGIE TEES. Continued. Size Weight DISTANCE BETWEEN SUPPORTS, IK FEET. by Stem. per fool. 1 2 3 4 5 6 7 8 9 10 3 x3 9.1 i 4.04 2.02 1.35 1.01 0.81 0.67 0.58 0.51 0.45 0.40 3 x3 7.8 3.44 1.72 1.15 0.86 0.69 0.57 0.49 0.43 0.38 0.34 3 x3 6.6 2.96 1.48 0.99 0.74 0.59 0.49 0.42 0.37 0.33 0.30 3 x2^ 7.2 2.40 1.20 0.80 0.60 0.48 0.40 0.34 0.30 0.27 0.24 3 x2J4 6.1 2.08 1.04 0.69 0.52 0.42 0.35 0.30 0.26 0.23 0.21 2%x2 7.4 3.00 1.50 1.00 0.75 0.60 0.50 0.43 0.38 0.33 0.30 2^xl& 6.6 '2.00 1.00 0.67 0.50 0.40 0.33 0.29 0.25 0.22 0.20 2^x3 7.2 3.48 1.74 1.16 0.87 0.70 0.58 0.50 0.44 0.39 0.35 2Mx3 6.1 3.04 1.52 1.01 0.76 0.61 0.51 0.43 0.38 0.34 0.30 2^x2% 6.7 2.92 1.46 0.97 0.73 0.58 0.49 0.42 0.37 0.32 0.29 2^x2^ 5.8 2.40 1.20 0.80 0.60 0.48 0.40 0.34 0.30 0.27 0.24 2^x2>4 6.4 2.36 1.18 0.79 0.59 0.47 0.39 0.34 0.30 0.26 0.24 2Kx2>4 5.5 2.00 1.00 0.67 0.50 0.40 0.33 0.29 0.25 0.22 0.20 2Mxl^ 2.9 0.36 0.18 0.12 0.09 0.07 0.06 0.05 0.04 0.04 0.03 2%x2J4 4.9 1.68 0.84 0.56 0.42 0.34 0.28 0.24 0.21 0.19 0.17 2^x2i 4.1 1.28 0.64 0.43 0.32 0.26 0.21 0.18 0.16 0.14 0.13 2 x2 4.3 1.32 0.66 0.44 0.33 0.26 0.22 0.19 0.17 0.15 0.13 2 x2 3.7 1.00 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 2 xlH 3.1 0.60 0.30 0.20 0.15 0.12 0.10 0.09 0.08 0.07 0.06 l%xl% 3.1 0.76 0.38 0.25 0.19 0.15 0.13 0.11 0.10 0.08 0.07 l&xltf 3.6 0.60 0.30 0.20 0.15 0.12 0.10 0.09 0.08 0.07 0.06 IfcxlK 1.94 0.32 0.16 0.11 0.08 0.06 0.05 0.05 0.04 0.04 0.03 1^x1^1 2.6 0.56 0.28 0.19 0.14 0.11 0.09 0.08 0.07 0.06 0.05 tfcxlH 1.84 0.44 0.22 0.15 0.11 0.09 0.07 0.06 0.05 0.05 0.04 l^xl& 3.0 0.48 0.24 0.16 0.12 0.10 0.08 0.07 0.06 0.05 0.05 iHxlfc 2.24 0.40 0.20 0.13 0.10 0.08 0.07 0.06 0.05 0.04 0.04 l^xl l X 1.73 0.32 0.16 0.11 0.08 0.06 0.05 0.05 0.04 0.04 0.03 i&xiH 1.33 0.20 0.10 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 lHx& 1.33 0.12 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 ItfxlH 2.04 0.40 0.20 0.13 0.10 0.08 0.07 0.06 0.05 0.04 0.04 ItfxlKi 1.53 0.28 0.14 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.03 1 xlJ4 1.12 0.32 0.16 0.11 0.08 0.06 0.05 0.05 0.04 0.04 0.03 1 xl 1.23 0.20 0.10 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 1 xl 0.87 0.12 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 Safe loads given include weight of Tee. Maximum fiber strain, I2,ocolbs. per square inch. THE CARNEGIE STEEL. COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOB UNI- FORM LOAD OF 100 LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. 11 20" I. 15 X/ I. 12" I. 10" I. 9" I. J-a s-g 80 64 80 60 50 41 40 32 33 25 21 if Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. 12 107.3 84.9 77.6 63.6 52.3 41.9 34.7 27.4 23.9 18.1 13.9 13 91.5 72.3 66.1 54.2 44.6 35.7 29.6 23.4 20.4 15.5 11.8 14 78.8 62.4 57.0 46.7 38.4 30.8 25.5 20.2 17.6 13.3 10.2 15 68.7 54.3 50.0 40.7 33.5 26.8 22.2 17.6 15.3 11.6 8.9 16 60.4 47.7 43.7 35.8 29.4 23.6 19.5 15.4 13.4 10.2 ~7T 17 53.5 42.3 38.7 31.7 26.1 20.9 17.3 13.7 11.9 9.0 6.9 18 47.7 37.7 34.5 28.3 23.3 18.6 15.4 12.2 10.6 8.1 6.2 19 42.8 33.9 31.0 25.4 20.9 16.7 13.9 10.9 9.5 7.2 5.5 20 38.6 30.6 28.0 22.9 18.8 15.1 12.5 9.9 8.6 6.5 5.0 21 35.0 27.7 25.3 20.8 17.1 13.7 11.3 8.9 7.8 5.9 4.5 22 31.9 25.3 23.1 18.9 15.6 12.5 10.3 8.2 7.1 5.4 4.1 23 29.2 23.1 21.1 17.3 14.2 11.4 9.5 7.5 6.5 4.9 3.8 24 26.8 21.2 19.4 15.9 13.1 10.5 87 6.9 6.0 4.5 3.5 25 24.7 19.6 17.9 14.7 12.1 9.6 8.0 6.3 5.5 4.2 3.2 26 22.9 18.1 16.5 T3~ TIT 8.9 7.4 5.8 5.1 3.9 3.0 27 21.2 16.8 15.3 12.6 10.3 8.3 6.9 5.4 4.7 3.6 2.7 28 19.7 15.6 14.3 11.7 9.6 7.7 6.4 5.0 4.4 3.3 2.6 29 18.4 14.5 13.3 10.9 9.0 7.2 5.9 4.7 4.1 3.1 2.4 30 17.2 13.6 12.4 10.2 8.4 6.7 5.6 4.4 3.8 2.9 2.2 For load of 200 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOB UNI- FORM LOAD OF 1OO LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. 1* g a |f II S % 8" I. 7" I. B"t 5" I. 4" I. 8" I. 18 Ibs. 15 Ibs. 13 Ibs. 10 Ibs. 7 Ibs. 6 Ibs. 5 61.6 46.3 33.4 21.2 12.1 7.4 6 42.8 32.2 23.2 14.7 8.5 5.2 7 8 9 31.4 24.1 19.0 23.6 18.1 14.3 17.0 13.0 10.3 10.8 8.3 6.2 3.8 2.9 2.3 4.8 3.7 6.5 10 11 15.4 12.7 11.6 9.6 8.4 5.3 4.4 3.0 2.5 1.9 1.5 6.9 12 13 14 10.7 9.1 8.1 5.8 4.9 4.3 3.7 3.1 2.7 2.1 1.8 1.6 1.3 1.1 0.9 6.8 5.9 7.9 15 6.8 5.1 3.7 2.3 1.4 . 16 6.0 4.5 3.3 2.1 1.2 . . 17 5.3 4.0 2.9 1.8 1.0 . 18 4.8 3.6 2.6 1.6 0.9 19 4.3 3.2 2.3 1.5 20 3.9 2.9 2.1 1.3 . 21 3.5 2.6 1.9 1.2 . . 22 3.2 2.4 1.7 1.1 For load of 200 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOR UNI- FORM LOAD OF 125 LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. It 20" I. 15" I. 12" I. 10" I. 9"L 80 64 80 60 50 41 40 32 33 25 21 1* Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. 12 85.9 67.9 62.1 50.9 41.8 33.5 27.8 21.9 19.1 14.5 11.1 13 73.2 57.8 52.9 43.4 35.7 28.6 23.7 18.7 16.3 12.4 9.5 14 63.1 49.9 45.6 37.4 30.7 24.6 20.4 16.2 \ 14.1 10.7 8.2 15 55.0 43.5 39.7 32.6 26.8 21.4 17.8 14.1 12.2 9.3 7.1 16 48.3 38.2 34.9 28.6 23,5 18.9 15.6 12.3 10.7 8.2 HEF 17 42.8 33.8 30.9 25.4 20.9 16.7 13.8 11.0 9.5 7.2 5.5 18 38.2 30.2 27.6 22.6 18.6 14.9 12.3 9.8 8.5 6.5 4.9 19 34.2 27.1 24.8 20.3 16.7 13.4 11.1 8.7 7.6 5.8 4.4 20 30.9 24.5 22.4 18.3 15.0 12.1 10.0 7.9 6.9 5.2 4.0 21 28.0 22.2 20.3 16.6 13.7 11.0 9.0 7.1 6.2 4.7 3.6 22 25.5 20.2 18.5 15.1 12.5 10.0 8.2 6.6 5.7 4.3 3.3 23 23.4 18.5 16.9 13.9 11.4 9.1 7.6 6.0 5.2 3.9 3.0 24 21.5 17.0 15.5 12.7 10.5 8.4 7.0 5.5 4.8 3.6 2.8 25 19.8 15.7 14.3 11.7 9.7 7.7 6.4 5.0 4.4 3.3 2.6 26 18.3 14.5 13.2 8.9 7.1 5.9 4.7 4.1 3.1 2.4 27 17.0 13.4 12.3 10.1 8.2 6.6 5.5 4.3 3.8 2.9 2.2 28 15.8 12.5 11.4 9.3 7.7 6.2 5.1 4.0 3.5 2.7 2.0 29 14.7 11.6 10.6 8.7 7.2 5.8 4.7 3.8 3.3 2.5 1.9 30 13.7 10.9 9.9 8.1 6.7 5.4 4.5 3.5 3.0 2.3 1.8 For load of 250 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL. COMPANY, LIMITED. SPACING OF CARNEGIE Z BEAMS FOR UNI- FORM LOAD OF 125 LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. II 8" I. 7" I. 6" I. 5" I. 4" I. 8" I, Distance bet supports in 18 Ibs. 15 Ibs. 13 Ibs. 10 Ibs. 7 Ibs. 6 Ibs. 5 49.3 37.1 26.7 17.0 9.7 6.0 6 7 8 9 34.2 25.1 19.3 15.2 25.7 18.9 14.5 11.4 18.6 13.6 10.4 8.2 11.8 8.6 6.6 6.8 5.0 4.1 3.0 2.3 1.8 3.8 3.0 5.2 10 11 12.3 10.2 9.3 7.7 6.7 4.2 3.5 2.4 2.0 1.5 1.2 5.5 12 13 14 8.6 7.3 6.4 4.6 3.a 3.4 2.9 25 2.2 1.7 1.4 1.2 1.0 0.9 5.5 4.7 6.3 15 5.4 4.1 3.0 1.8 1.1 . 16 4.8 3.6 2.6 1.7 1.0 . 17 4.2 3.2 2.3 1.4 . 18 3.8 2.9 2.1 1.3 . . 19 3.4 2.6 1.8 1.2 . . . . 20 3.1 2.3 1.7 1.1 . . . . 21 2.8 2.1 1.5 1.0 . . . . 22 2.6 1.9 1.4 For load of 250 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. Qf3 THE CARNEGIE STEEL. COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOR UNI- FORM LOAD OF 150 LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. If 20" I. 15" I. 12" I. 10" I. 9"I. 80 IbB. 64 Ibs. 80 Ibs. 60 Ibs. 50 Ibs. 41 Ibs. 40 Ibs. 32 Ibs. 33 35 ibs. Ibs. 21 Ibs. 12 71.5 56.6 51.8 42.4 34.9 27.9 23.1 18.3 15.9 12,1 9.3 13 61.0 48.2 44.1 36.2 29.7 23.8 19.7 15.6 13.6 10.3 7.9 14 52.5 41.6 38.0 31.2 25.6 20.5 17.0 13.5 11.7 8.9 6.8 15 45.8 36.2 33.1 27.2 223 17.9 14.8 11.7 10.2 7.7 5.9 16 17 40.3 35,7 31.8 28.2 29.1 25.8 23.9 21.1 19.6 17.4 15.7 13.9 13.0 11.5 10.3 9.1 8.9 6.8 5.2 4.6 7.9 6.0 18 31.8 25.1 23.0 18.9 15.5 12.4 10.3 8.1 7.1 5.4 4.1 19 28.5 22.6 20.6 16.9 14.0 11.1 9.3 7.3 6.3 4.8 3.7 20 21 25.7 23.3 20.4 18.5 18.6 16.9 15.3 13.8 12.5 11. 4 10.0 9.1 8.3 6.6 5.7 5.2 4.4 3.9 3.3 3.0 7.5 6,0 22 21.3 16.9 15.4 12.6 10,4 8.3 6.9 5.5 4.7 3.6 2.7 23 19.5 15.4 14.0 11.6 9.5 7.6 6.3 5.0 4.3 3.3 2.5 24 17.9 14.1 12.9 10.6 8.7 7.0 5.8 4.6 4.0 3.0 2.3 25 26 16.5 15.3 13.1 12.1 11.9 9.8 8.1 6.4 5.3 4.9 4.2 3.9 3.7 3.4 2.8 2.6 2.1 2.0 11.0 9.0 7.4 5.9 27 14.1 11.2 10.2 8.4 6.9 5.5 4.6 3.6 3.1 2.4 1.8 28 13.1 10.4 9.5 7.8 6.4 5.1 4.3 3.3 2.9 2.2 1.7 29 12.3 9.7 8.9 7.3 6.0 4.8 3.9 3.1 2.7 2.1 1.6 30 11.5 9.1 8.3 6.8 5.6 4.5 3.7 2.9 2.5 1.9 1.5 For load of 300 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. on THE CARNEGIE STEEL COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOB UNI- FORM LOAD OF ISO LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. Distance between supports in feet. 8" I. 7" I. 6" I. 5" I. 4"L 3"!. 18 Ibs. 15 Ibs. 13 Ibs. 10 Ibs. 7 Ibs. 6 Ibs. 5 41.1 30.9 22.3 14.1 8.1 4.9 6 285 21.4 15.5 9.8 5.6 3.4 7 8 9 20.9 16.1 12.7 15.8 12.1 9.5 11.3 8.7 6.9 7.2 5.5 4.1 2.5 1.9 1.5 3.2 2.5 4.3 10 11 10.3 8.5 7.7 6.4 5.6 3.5 2.9 2.0 1.7 1.2 1.0 4.6 12 13 14 7.1 6.1 5.4 3.9 3.3 2.8 2.4 21 1.8 1.4 1.2 1.0 0.9 4.6 3.9 5.2 15 4.6 3.4 2.5 1.6 0.9 . . 16 4.0 3.0 2.2 1.4 . . . . 17 3.5 2.7 1.9 1.2 . . 18 3.2 2.4 1.7 1.1 . 19 2.9 2.1 1.5 1.0 20 2.6 1.9 1.4 . . 21 2.3 1.7 1.3 22 2.1 1.6 1.1 For load of 300 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. THE CARNEGIE STEEL COMPANY, LIMITED. SPACING OF CARNEGIE I BEAMS FOR UNI- FORM LOAD OF 175 LBS. PER SQUARE FOOT. Proper Distance in Feet, Center to Center of Beams. |l 20" I. 15" I. 12" I. 10" I. 9'1. if 80 64 80 60 50 41 40 32 33 25 21 It Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. Ibs. 12 61.3 48.5 44.4 36.4 29.9 23.9 19.8 15.7 13.7 10.4 7.9 13 52.3 41.3 37.8 31.0 25.5 20.4 16.9 13.4 11.7 8.8 6.8 14 45.0 35.6 32.6 26.7 21.9 17.6 14.6 11.5 10.1 7.6 5.8 15 39.3 31.0 28.4 23.3 19.1 15.3 12.7 10.1 8.7 6.6 5.1 16 34.5 27.3 25.0 20.4 16.8 13.5 11.2 8.8 7.7 5.8 4.5 17 30.6 24.2 22.1 18.1 14.9 11.9 9.9 7.8 6.8 5.2 3.9 18 27.3 21.6 19.7 16.2 13.3 10.6 8.8 7.0 6.1 4.6 3.5 19 24.5 19.4 17.7 14.5 11.9 9.5 7.9 6.2 5.4 4.1 3.1 20 22.1 17.5 16.0 13.1 10.8 8.6 7.1 5.6 4.9 37 2.9 21 20.0 15.8 14.5 11.9 9.8 7.8 6.5 5.1 4.5 3.4 2.6 22 18.2 14.4 13.2 10.8 8.9 7.1 5.9 47 4.1 3.1 2.3 23 16.7 13.2 12.1 9.9 8.1 6.5 5.4 4.3 3.7 2.8 2.2 24 15.3 12.1 11.1 9.1 7.5 6.0 5.0 3.9 3.4 2.6 2.0 25 14.1 11.2 10.2 8.4 6.9 5.5 4.6 3.6 3.1 24 1.8 26 13.1 10.3 "9T 7.7 6.4 ~5T 4.2 3.3 29 2.2 1.7 27 12.1 9.6 8.8 7.2 5.9 4.7 3.9 3.1 2.7 2.1 1.6 28 11.3 8.9 8.2 6.7 5.5 4.4 3.6 2.9 2.5 1.9 1.5 29 10.5 8.3 7.6 6.2 5.1 4.1 3.4 2.7 2.3 1.8 1.4 30 9.8 7.8 7.1 5.8 4.8 3.8 3.2 2.5 2.2 1.7 1.3 For load of 350 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 16,000 Ibs. per square inch. 00 THE CABNEGIB STEEL COMPANY, LIMITED. SPACING OP CABNEGIB I BEAMS FOB UNI- FOBM LOAD OP 175 LBS. PEB SQUABE FOOT. Proper Distance in Feet, Center to Center of Beams. Distance between supports in feet. 8" I. 7" I. 6" I. 5"! 4" I. S"L 18 Ibs. 15 Ibs. 13 Ibs. 10 Ibs. 7 Ibs. 6 Ibs. 5 35.2 26.5 19.1 12.1 6.9 4.3 6 24.4 18.4 13.3 8.4 4.8 3.0 7 8 9 18.0 13.8 10.9 13.5 10.3 8.2 9.7 7.5 5.9 6.2 4.7 3.5 2.2 1.7 1.3 2.7 2.1 3.7 10 11 8.8 7.3 6.6 5.5 4.8 3.0 2.5 1.7 1.4 1.1 0.9 3.9 12 6.1 4.6 3.3 2.1 1.2 0.7 13 5.2 [ &9~~ 2.8 1.8 1.0 . 14 4.5 3.4 2.4 1.5 0.9 . . 15 3.9 2.9 2.1 1.3 0.8 . 16 3.4 2.6 1.9 1.2 . 17 3.0 2.3 1.7 1.0 . 18 2.7 2.0 1.5 . . . . 19 2.4 1.8 1.3 . 20 2.2 1.7 1.2 . . 21 2.0 1.5 1.1 . 22 1.8 1.4 1.0 For load of 350 Ibs. per square foot, divide the spacing given by 2. Maximum fiber strain, 1 6,000 Ibs. per square inch. on 1 THE CARNEGIE STEEL COMPANY, LIMITED. EXPLANATION OF TABLES ON THE PROPERTIES OF CARNEGIE I AND DECK BEAMS, CHANNELS, ^ BARS, ANGLES, TEES, TROUGH AND CORRUGATED PLATES. (Pages 99 to in, inclusive.) The tables on I-beams are calculated for the minimum weight to which each pattern can be rolled. The tables for Channels, Deck Beams and Angles are calculated for the minimum and maximum weights of the various shapes, while the properties of Z-bars are given for thicknesses differing by -J^ inch. The above shapes can all be furnished in any weight intermediate between the minimum and maximum weights given. For Tees, each shape can be rolled to one weight only. Columns II and 13, in the tables for I and Deck Beams and Channels, give coefficients by the help of which the safe, uniformly distributed load may be readily and quickly determined. To do this, it is only necessary to divide the coefficient given, by the span or distance between supports in feet. If the weight of the section is intermediate between the minimum and maximum weights given, add to the coefficient for the minimum weight, the value given in columns 12 or 14, (for one pound increase of weight,) multiplied by the number of pounds the section is heavier than the minimum. If a section is to be selected, (as will usually be the case,) intended to carry a certain load, for a length of span already determined on, it will only be necessary to ascertain the coefficient which this load and span will require, and refer to the table for a section having a coefficient of this value. The coefficient is obtained by multiplying the load, in pounds uniformly distrib- uted, by the span length in feet. In case the load is not uniformly distributed, but is concen- THE CARNEGIE STEEL, COMPANY, LIMITED. trated at the middle of the span, multiply the load by 2 and then consider it as uniformly distributed. The deflection will be T %ths of the deflection for the latter load. For other cases of loading obtain the bending moment in ft. flbs. (the most common cases are given on page 96) ; this multi- plied by 8 will give the coefficient required. If the loads are quiescent, the coefficients for a fiber strain of 16,000 Ibs. per square inch for steel, may be used; but if moving loads are to be provided for, the coefficient for 12,500 R)s. should be taken. Inasmuch as the effects of impact may be very con- siderable, (the strains produced in an unyielding, inelastic material by a load suddenly applied, being double those pro- duced by the same load in a quiescent state), it will sometimes be advisable to use still smaller fiber strains than those given in the tables. In such cases, the coefficients can readily be de- termined by proportion. Thus, for a fiber strain of 8,000 Hbs. per square inch, the coefficient will equal the coefficient for 16,000 flbs. fiber strain, from the table, divided by 2. The moments of resistance given in column 9 are used to de- termine the fiber strain per square inch in a beam, or other shape, subjected to bending or transverse strains, by simply dividing the same into the bending moment expressed in inch-pounds. The table on the properties of Carnegie T-shapes is modeled after the foregoing, and will, therefore, scarcely require explana- tion. The horizontal portion of the T is called the flange, and the vertical portion the stem. In the case of the neutral axis parallel to the flange, there will be two moments of resistance, and the smaller is given. The fiber strain calculated from it will, therefore, give the larger of the two strains in the extreme fibers, since these strains are equal to the bending moment divided by the moment of resistance of the section. For Carnegie Z-bars, complete tables of moments of inertia, moments of resistance, radii of gyration and values of the coefficients (C) are given on pages IOI and 102 for thicknesses varying by yL inch. These coefficients may be applied, as ex- plained above, for cases where the Z-bars are subjected to trans- verse loading, as, for example, in the case of roof-purlins. A table of safe loads of Z bars is given on page 77. 92 THE CARNEGIE STEEL COMPANY, LIMITED. For angles, there will be two moments of resistance for each position of the neutral axis, since the distance between the neutral axis and the extreme fibers has a different value on one side of the axis from what it has on the other. The moment of resistance given in the table is the smaller of these two values. The use of the radii of gyration will be explained in con- nection with the tables on the strength of wrought iron columns. Column 15 in the table of the Properties of Carnegie Chan- nels, giving the distance of the center of gravity of channel from the outside of web, is used to obtain the radius of gyration for columns or struts consisting of two channels latticed, as represented by Figs. 1 1 and 1 2, page 53, for the case of the neutral axis passing through the center of the cross section parallel to the webs of the channels. This radius of gyration is equal to the distance between the center of gravity of the channel and the center of the section, z. e., neglecting the moments of inertia of the channels around their own axes, thereby introducing a slight error on the side of safety. These tables have all been prepared with great care. No approximations have entered into any of the calculations, so that the figures given may be relied upon as accurate. EXAMPLES OF APPLICATION OF TABLES. I. What section of I-beam will be required to carry 40,000 R)s., uniformly distributed, including its own weight, over a span of 1 6 feet between supports, allowing a fiber strain of 16,000 Jbs. per square inch? Answer: The coefficient (C) required = 40,000 x 16 = 640,000. From table for 15" I 41.0 ft>s., C = 603,200 Ibs. ; hence the weight of the section must be increased : 6 4O,ooo-6o3,2oo 7800 =4.7 R>s., i. e. the beam required will be a I5 X/ I-beam, 45.7 Ibs. per foot. II. What load, uniformly distributed, will a 6 // Z-bar carry, weighing 18.3 Ibs. per foot and measuring 12 feet between sup- ports, with a maximum fiber strain of 12,000 Ibs ? THE CARNEGIE STEEL. COMPANY, LIMITED. Answer: From table on page 101, the coefficient (C') for a 6 x/ Z-bar, 18.3 R)s.,=78,6oo. Hence the safe load=7 8,600-4- 12 or 6,550 Ibs., including weight of Z-bar. III. A light 4" X 3 X/ angle weighing 7.1 R>s. per foot, spanning 4 feet, is loaded with 1,000 Ibs. at center. What will be the maximum fiber strain if the 4" flange is in a vertical position? Answer : Bending moment = 12,000 inch-pounds. From table, moment of resistance = 1.23. Therefore, maxi- mum fiber strain = I2 ' oo or 9,756 Ibs., which is the strain 1.23 furthest from the neutral axis, i. c., at the end of the long flange. SPECIAL CASES OF LOADING. I. Beam loaded at a point distant "a" feet from the left hand and "b" from the right hand support by a single load P. 1 = length of beam between supports = a 4- b. Pressure or Reaction at left hand support=P and at right hand support = P Maximum bending moment, neglecting dead weight of P ib beam, occurs at point of application of the load and = - P = (load given in tables, pages 71 to 82 ) X 8 ab When a = b = \ 1 : P PI Reaction = ; maximum bending moment '= and P = 2 4 load given in tables X % II. Beam fixed at one end and unsupported at the other, 1 representing the length of beam from end to support. If loaded by a uniformly distributed load W: Maximum bending moment occurs at support and = W= (load given in tables, pages 71 to 82) X X- If loaded with a single load P at its extremity : Maximum bending moment occurs at support and =P1. P== (load given in tables) X % 94 THE CARNEGIE STEEL COMPANY, LIMITED. GENERAL FORMULA ON THE FLEXURE OF BEAMS OF ANY CROSS-SECTION. Let A = area of section, in square inches, 1 = length of span, in inches, W= load, uniformily distributed, in Ibs., M = bending moment, in inch-pounds, h = height of cross-section, out to out, in inches, n = distance of center of gravity of section, from top or from bottom, in inches, s = strain per square inch in extreme fibers of beam, either top or bottom, in Ibs., according as n relates to dis- tance from top or from bottom of section. D = maximum deflection, in inches, I = moment of inertia of section, neutral axis through center of gravity. I r = moment of inertia cf section, neutral axis parallel to above, but not through center of gravity. d = distance between these neutral axes. R = moment of resistance, r = radius of gyration, in inches, E = modulus of elasticity, (for wrought iron, assume 27,000,000, for steel, 29,000,000.) Then : R = I , r =V J A 5 Wl 3 for beam supported at both ends and uni- 384 El formly loaded. _ PI* f r beam supported at both ends and loaded 48 El with a single load P at middle. _ Wl 3 for beam fixed at one end and unsupported at the other and uniformly loaded, for beam fixed at one end and unsupported at other, and loaded with a single load P at the latter end. 05 THE CARNEGIE STEEL COMPANY, LIMITED. BENDING- MOMENTS AND DEFLECTIONS OF BEAMS, UNDER VARIOUS SYSTEMS OF LOADING. W=total load. l=length of beam. I=moment of Inertia. E modulus of elasticity. 1.) Beam fixed at one end and loaded at the other. (2.) Beam fixed at one end and uniformly loaded. %J ~-i 1 ^\<- ^ Safe load=% that given in tables. Maximum bending moment at point of support=Wl. Maximum shear at points of sup- port=\V. W13 Deflection- gEf Safe Ioad=i{ that given in tables. Maximum bending moment at point of support= Maximum shear at point of sup- portW. W13 Denection=-- 3.) Beam supported at both ends, single load in the middle. (4.) Beam supported at both ends and uniformly loaded. QQQQQQQQC^QQ JH I ff Safe load=% that given in tables. Maximum bending moment at middle \V1 of beam= Maximum shear at points of sup- ' W13 Deflection^ Safe load=that given in tables. Maximum bending moment at middle Wl of beam= o Maximum shear at points of sup- n "TtJ.8L,I (5.) Beam supported at both ends, single unsymmetrical load. O (6.) Beam supported at both ends, two symmetrical loads. IN \ t |p H-o.j f u^l| j^i G ,-N j b Fj Safe load=that given in tablesXjpr M-ixi:rium bending moment under , Wab loaa= : Maximum shears : at support near Wb Wa a= ; at other support . Safe load=that given in tablesX^ Maximum bendirg moment between loads=3'2Wa. Maximum shear between load and nearer support=%W. Wa Max. Deflection==- ^-(312 4a2) 9EI1 THE CARNEGIE STEEL COMPANY, LIMITED. VALUES OF MOMENTS OF INERTIA FOR CARNEGIE SHAPES. I=Moment of Inertia, neutral axis parallel to flange. t*)] Area=A=2bs+ht+ (b t) (- ) Batter=r= h 1 = 2(b=0 2 (b -f-2t)]-A 1 t 4 )] Ax 2 I/= T i 2 [d(b4-c) 3 2hc 3 6hcb 2 ] r-- - 2(h+b) _ x _s_( b _t)(x-t)] P7 THE CARNEGIE STEEL COMPANY, LIMITED. VALUES OF I (Moment of Inertia), AND B (Moment of Resistance), FOB USUAL SECTIONS. SECTIONS. [ R bh 3 ~ 12 bh 2 Jd -= -J3 T bh 3 ~W M v bh 3 ~ 12 C-' fa* T _^ "6T =0.0491 d 4 TTd 3 ~~32" -= 0.0982 d 3 %-b3 I _bh 3 -b / h /3 I "05T i -i>' I = 0.0491 (d 4 -d /4 ) 0.0982 (d s -j /4 J b' b'ns+bn'a-Cb-bOa 3 Min.= -I- n ifc ? 3 fe T _ bh 3 -2b x h /3 I 0.5h x y Denotes position of neutral axis. on 1 THE CARNEGIE STEEL, COMPANY, LIMITED. 9JOjgq snrpirji pepiouroo SIXE faq. ^ nmq jo ^qS m 9- CDlOin COCOCO (M^OO COWODO-l lOCO^CJW rHl> OO OOOO OOOOOOO OO OOOO OOOOOOW w rH t-4 05 IH co co co cocoes! CO CD CO ^ ^ COCOKWOJr-tiH 00 oooo oooo ooooooo oo oooo oooo ooooooo r-uoo wooioco i^oocoo Hcoiocococoin COlOOOrH OQOQOrJ< COpOiOrHCO^ J>rHCOI> 05OCOO coccesca -H-H oo oooo ooooooo OiO OOOO OOOOOOCO OO 1 * 00 00 CO OJ CDWCO'HCO'HIO WO i> !> CD iO iHiH ooo oooo oooo ooooooo 000 OOOO OOOO OOOOOOCO OCOr}< I^WCOW r-iCQOOJ OOCOkOOi^iO OOOZ I-CDCOCO OlO-^i-i O^OCO(MOCD 1-HrHlOO OOJ^CO OilOtHQOlOCOrH TH051-*CO JOCOCOCM tHiHrH (MWO COO)^OCD 05l>r- lOCOCOiO rjJ^rjirH CCWciciWi-iiH COOJ-CD C005COCD OJOCOiO CO CO CO 0^ I-^H OODI-f3 ^COCOW iHr^^ L J 1 '3> lo^croiOit-'H cocqcoo cocooo^tcpi -^ 0503CO 10^05^ rHOJrHC^ THl^QOCOCilOOJi S, COCJCON COOC004r-i 'f^ co O O O 05 COI*OJ05O>^QO OJ CM oo oooo ooooooo 111 iQOift rH^iOO OOO^ OiOCOOO05CO( ^^ 05OOI ^OI*W5 W3CXIOI* IOCXZ051OOOOJ| g -| C35C>w ^rpj>w uacMOi* inc^o3inowc^j g -g COJ>CD cbcbiriio oioort< ^^cococooicNi| :| "^ Safe Load in ment of OO i* cr CD CQ CD m o 'o,io n -r> 10 o -J5 o i 88 rHCOCSiHCOCOOO^OCOOl ooooooooooooooooooooo ooooooooooooooooooooo 00000 ooooo ooQcowcooj 0000 oooco ooooooooooooooooooooo ooooooooooooooooooooo CO (M 00 I^OJ ^ kO CDrH CO CO O CD tTJ4 ^ CO 01 Win rH O O OS O CO CO O tf)H J> kfl CO 3> rH CO 00 1* 05 J* C H U3 H CD kO O O CD ^ 00 rH ^ J>-rH CO I^OCO 1*05 ^ O rH rH rH 013^05 lOC CO o r- rH CM 05 ^ CD -^ CD CO OJ.CO U5 rH 00 O ^ r}< CO 05 O rH rH O oii*rHcbwoJrH0505rHco66co6 04 O W CO rH (M rH I2>^ rf CO CO OJ 02 rH rH tf l! li oooooooooooooooooooooo J ll oooooo WCO^^lOI^ oooooo O CO O CD I* O I> rH IQ rH rH IO -! 05 O O 3> Id O lO ^'*O^OOrHCOOO'!jOOCDCOO TO CO ^ ^ CO W CO N 04 W OJ OJ 04 OJ W rH 04 rH rH rH r-i rH OOOiOOOOiOOOOOOkOOOOiOOiOOO ^00 rH rH 05 Oi 05 02 CO CO ^ ^ 1O CO CO Z> I* 00 00 05 05 1* I- OOOOOOOODOOOOOOOOOOOOO 100 THE CARNEGIE STEEL COMPANY, LIMITED. ngth C' C 'urfcs'.i8d-sqiooo'9T jo urea^s aeqg JGJ[ OOO 000 0^0 OOO IQCOCO 'cHCDQO 1*0003 WWW OOO OOO OOO OOO COCDW J>r-iO C? IH ^ W i^ 00 000 ooo ooo oo ooo ooo ooo O 00 I- 02 !- <# 00 CO 03 O CO CO CO CO CO CO CO I* 02 rH E* CO CO CO r*05 02 CO 10 rH 1*05 02 CD CO 02 05 1* IO O CO I* 05 O 02 |H rH rH 02 rF rH rH TH r]< 10 CO CO 1*05 CO 05 tH iH 02 CO CO rH rH 10 *- 05 CO CO rH CO IO CO CO O CO rH J> GO ^ CO 02 05 CO CD CO <* CO rH I* rH O2 I* H 10 05 02 CO rH 00 CO 02 CO 10 I* CO *O CO rH 05 CD 10 02 i 16 05 rH ^ TH 02 02 CO CO CO 02 0202 CO I* 05 05 rH 02 rH rH CO 10 rH rH 02 05 CO CD rH CO 05 CO CO rH CO CO rj< O CO IO CO I* O CO 02 10 rH 10 10 rH I- 1*00 05 *fl CO CO CO CO 05 00 CO rH iO CO CD 1*00 02 CO CO 10 10 CO CO rH OS 02 CO CO rH 10 CO 02 CO r* o co 02 CO ^ CO 6 CO CO 05 CO IO I* 05 05 05 00 6 02 rH 02 02 6 06 05 rH rH IO 02 02 rH iH rH I* O O2 rH 02 02 CO CO 00 02 02 02 rH *SH $ ** ** ^S ^ SHS * CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO ca 02 'cues ctei 02 10 ib ib o 10 Ib '"'H ""> ^Srf? *$ CO CO CO CO CO CO rH O O iO N N N CO CO CD N N cq ^ I* 2 N N N CO CO 00 N N N Q 05 05 N N N 00 iH tH 02 02 N N N N NN IO2 THE CARNEGIE STEEL COMPANY, LIMITED. a , g 02 3g a ^ 3S W r? CQ o OJ^COCD CD1-0501 cocjcbo) 01^066 CDCOCOr-i rH 040rHrH o- r-icO rtco r-cdr-eo cocio COONCO rHrH OOOOO Wr-l02r-l OJrHOJrH Wr-l^-H MUM OMBOMB xxxx xxxx xxxx OOOO ooooo COl^Z'QO OOC50500 r-l,-|,H_l ^.Hrtjj 1O3 THE CARNEGIE STEEL, COMPANY, LIMITED. CO Oi O 9 00 COO 00 t- CD to Z-CD^CO CDiQiOCO COiQiQ^ rJ*C01-T* ^COOJO OCOCOC* COCDt-1- CDCDCOCO lOiO^h^ IOO^^ ^<<#CO<* C002020J -tt-r}OC4 CO^COCD CMOt-CO COOCOrH OJ05OCO I* 00 CO *H CO 2^ CD 1* O ^ lO C^ GO ^ ^ W ^ 01 OS ^ ^* O O O 6666 6666 6666 6666 COOI-CO ^COCOCO COO^CD CDt-Olt- ^iHC^ 1-^COO iH COC005CO iHCOCDCO rHO)05 rHOCOCO COOJOO 1-^666 6666 coiHiboi cbiHcorH r^ooo i-i666 6666 6666 >THrHCO WrHCOCO COCOCDtO CD^COCI ^oiojq OJ-HOIO oosoco cot-opt- ir-ir-J iHrHiHr-i rHQi-tO 6666 6666 COt*iHCO COZ-COCO t-CDO^ t-CO>O^ CDO^CJCO lO^^iO COr-iiOUJ O-/x3>^ If 17.1 5.03 1.17 5.25 2.25 1.02 0.69 A33 3/^x3/^ $ 8.5 2.48 1.01 2.87 1.15 1.07 070 A34 3 x3 ft 11.4 3.36 0.98 2.62 1.30 0.88 0.59 A40j 3 x3 1 A 4.9 1.44 0.84 1.24 0.58 0.93 0.60 A41 Z^&ti % 8.5 2.50 0.87 1.67 0.89 0.82 054 A45 23jx23/ /i 4.5 1.31 0.78 0.93 0.48 0.85 0.55 A46 2^x2^ 7.7 2.25 0.81 1.23 0.73 0.74 0.49 A50 2^x2>J M 4.1 1.19 0.72 0.70 0.40 0.77 0.50 A51 2^ x2X /*> 6.8 2.00 0.74 0.87 0.58 0.66 0.48 A55 2jJx2X 2 3.7 1.06 0.66 051 0.32 0.69 0.46 A56 2 x2 TV 5.3 1.56 0.66 0.54 0.40 0.59 0.39 A60 2 x2 T 3 6 2.5 0.72 0.57 0.28 019 0.62 0.40 A61 I3^xl3/ TT5 4.6 1.30 0.59 0.35 0.30 0.51 0.35 A65 l^xl fa 2.1 0.62 0.51 0.18 0.14 0.54 0.36 A66 Ij4*l% 3/ 3.4 0.99 0.51 0.19 0.19 0.44 0.31 A69 \yw& i A 1.8 0.53 0.44 0.11 0.104 0.46 0.32 A70 __5 2.4 0.69 0.42 0.09 6.109 0.36 0.25 A7-3 l^xlX 1 A 1.0 0.30 0.35 0.044 0.049 0.38 0.26 A74 l/^xli/6 5 2.1 0.61 0.39 0.063 0.087 0.32 0.24 A77 l^xl^ 1 A 0.9 027 0.32 0.032 0.039 0.34 0.23 A78 1 xl i/ 1.5 0.44 0.34 0.037 0.056 0.29 0.20 A80 1 xl 1 A 0.8 0.24 0.30 0.022 0.031 0.31 0.21 A81 ft* ft T\ 1.0 0.29 0.29 0.019 0.033 0.26 0.18 A82 y&* ft 1 A 0.7 0.21 0.26 0.014 0.023 0.26 0.19 A83 24* & 1\ 0.8 0.25 i 0.26 0.012 0.024 0.22 0.16 A84 3//x 3/ 4 0.6 0.17 1 0.23 0.009 0.017 0.23 0.17 A85 rt*ys 0.5 0.14 0.20 0.005 0.011 0.18 0.13 105 THE CARNEGIE STEEL, COMPANY, LIMITED. AREAS OF ANGLES VARYING BY T y IN THICKNESS. Size, Inches. ft" #"ift" i / y*- \TS j^ / 8 // tt" *H \\"W H//1// 7 X3K 6 X6 4.40 506 5.00 5.75 4.75 4.50 4.75 4.25 4.00 3.75 3.50 3.75 3.50 3.25 3.25 3.00 5.59 6.43 5.31 5.03 5.31 4.75 4.47 4.18 3.90 4.18 3.90 3.62 3.62 3.34 6.17 7.11 5.86 5.55 5.86 5.23 4.92 4.61 4.30 4.61 4.30 3.98 3.99 3.67 6.75 7.78 6.41 6.06 6.42 5.72 5.37 5.03 4.68 5.03 4.68 4.34 4.34 4.00 7.31 8.44 6.94 6.56 6.94 6.19 5.81 5.44 5.06 5.44 5.06 4.69 4.69 4.31 7.87 9.09 7.47 7.06 7.46 6.65 6.25 5.84 5.43 5.84 5.43 5.03 5.03 4.62 8.42 9.74 7.99 7.55 7.99 7.11 6.67 " 8.97 9.50 6 X4 6 x3^ . 5 X5 . 5 X4 . 5 X3>/ . 5 X3 . 4 2 X4 4 X3X 4 X3 " . 3^x3/2 - 3^X3 . 2.40 2.40 2.09 1.93 3.61 3.42 3.61 3.23 3.05 2.86 2.67 2.86 2.67 2.48 2.48 2.30 4.18 3.97 4.18 3.75 3.53 3.31 3.09 3.31 3.09 2.87 2.87 2.65 Size, Inches. 1 i ft" W ft" Y*" ft" X" H" 3 V-, x 2 y<> . 1 44 1.78 1.54 1.78 1.62 1.47 1.62 1.47 1.31 1.31 1.07 1.15 2.11 1.83 2.11 1.92 1.73 1.92 1.73 1.55 1.55 1.27 1.36 2.43 2.11 2.44 2.22 2.00 2.22 2.00 1.45 1.56 2.75 2.38 2.75 2.50 2.25 2.50 2.25 2.00 2.00 1.63 3.06 2.64 3.06 2.78 3.36 3.36 3.6o * " 3^x2 1.25 1 44 3 x3 3 X%*/4 1.31 1.19 1.31 1 19 3 X2 1 05 2>lx2X 2^x2^ . 0.81 1.06 1 06 t 2 /4 xV 2 ; 13/X13/ . 0.67 0.71 0.60 06? 0.88 0.94 0.78 0.81 0.69 1.00 0.84 1.17 0.99 1.30 \% X 1 1 Xl . 7/ 8/ X 7/8 0.28 0.30 0.27 0.24 0.21 0.17 0.14 0.53 6.43 0.39 0.34 029 0.25 0.47 0.56 0.50 0.44 0.69 0.61 For weights, see pages 38 to 42. 1O6 THE CARNEGIE STEEL COMPANY, LIMITED. PROPERTIES OF CARNEGIE DECK BEAMS. CO rH lO r-l sao^q SB STIB jBapgu ^ 'no iBaJC*) jo snip^H ^ t* lO CD 05 0} O OJ 02 CO 6066666666 BULB ANGLES. Coefficients C and C' calculated for Fiber Strains of 16,000 and 12,500 Ibs. per square inch respectively. - q3& JO 9UTntl90 qilA. ^uapiOUKK) S;iB jBai ^ ^ rH rH CO CO r- cb o ^ ^ co\t< co oJ oJ rH uteaq jo iq2i9& tn 9SB9aout -qj ia9A9 adj O O O ? 8 8 CO CO CO 01 OJ TO rH sgSpug JOT posn qoai ouBnbs aga ^ sqi odo'ZUomBa^O aaqg aoj q;Sn9ajs JO 1U9IOUJ900 8OOOOOOOOO 000000000 O O5 CD rH 02 1* CO I* O CO O CO HO ^ ^ CD CO 05 OO5^ CO t2> t- CV O CD O 02 02 O CO 1> OJOJOJrHrHrHrHrH oocooooo oooooooo rH ^^02000 CO rH gaojgq SB SUB iBa;n9U ^ 'UOI^OA* f) JO SIlTp'BH ^COkOiOfCOt-OiOCO CO CO OJ CO 05 O 1-02 CO CO CO CO CO OJ CO OJ OJ OJ 02 CD CO to CO CD rH CO CO COCOO5iOrH020JGO co'cooJoJoioJoJrH 0> STIB iBa^n9U '90TIU pj I-OJCDt-rHOJI-I-OJCO 050t*COCDC01>rH rHrHrH 00 J9^U93 ^8 q9AL 0} JBJTlOTp -U9dL(9d SfiCB ^a^T!9U H 05^02 OJ CO CD O CO COO 05 CO CO 3 OJ kO XO CO CO ^ CO rH 05 CO CO O ^ CO 02 02 rHrH 02 CO CO 05 05 rH CO O2 Tjio5co^co6c66 OCD^COOJOJrH'H rH CO }A JO 9SB9aOHT - qi eg q3B9 aoj q9j^ jo sssu -g -5[9iqi JO 9SB9a9UI .2 O COCO CO O CO COCO T^ O O OO O "93UBIJ JO q^pTj^. OLOt^COOO2>COCO CO CO CO CO CO CO CO 02 in qg& jo ssgtiitOTqi -| CO C9O<#^ COOCO'* OJ 533SSS rt % OOCOCDOJ0505CO^O rH QO^COCOOOCt'05 CO > i ocoooaoocorHCOO fOJOO^rH^rHCOCO 1*6 CD ^ 6 CO CO CO O CO OJ 02 O2 OJ 02 OJ rH rH rH IOCOOJ02O2I*COO 02 rH a ,o^,a b6o505coco > 'r-icD rHrH O 05 CD I* CO CO CO O rH - O O rH r-l OJ OJ CO CO O tO oooooooooo OrHOJCO^lOCOI* cocococococococo PQ pq PQ PQ pq pq PQ pq PQ PQ PQ pq oq pq pq pq PQ PQ 1O7 THE CARNEGIE STEEL COMPANY, LIMITED. AR 10 'qoui 9-nznbs led aaqij aoj q^3U9J^s JO ;U9IO$80() 0} ^fluxed jfyt six? tBjpgii 'qouT - 1 e.mit>sj9d-sqiooo'2T jo nrejjs Jteqg JDJ ejojeq oiojeq SB -H9U 'Btnen j jo 'raopj eaojgq SB SIIB j ,'9JOJ9q SB SIIB {Ba;nou 'eou^sis -OH JO JU9tHOtn |SB31 'BTVt9ni jo inaction eSm^ jo epis^no raojj ^uBag jo eouvjsifl UOI189S JO TOJY igpni noi^oeg ooooooo oooooo oooooo ^OOOOOKM OOOO5OO OCDI^COCOO OJtHrir-lr-lrH occooco oooooo oooooo CJrHOJrHiHr-1 OJCOOCO^r-00 tHrtOi-ir^rHr-i 666666 66666 0>O 10 CO 00 CD CO Oil^COr-iCOrHCO C^rHrHrHiHiHr-l rHCDt-4C0005 ^O^O^O rH r-l r-t rH tH rH lOWCOiHiOCO OOCOI*OCO iHrHOOrHQ CDWl>CDrHCOrH COrHQOrHCOCl ciojcxicicjcxi orHf-cxr CO Z>O CO 00 CO CO 66r-i6666 1OIOCOOOC4C4 rHrHrHrHrHrH SOrH II*l COCDII*lOiO OOOOOO COCDCOrHsJ2>OCp OOrHOOOO CD'-II*rHCOO OOCOOCOOOrH rHrHrHr-irHr-i 666666 05^010OOOJ Oi(MCDlOO^I cocorjiojcooici rH COOCDrHrHIO IO1OC4COOC4 r*iOrH COOQ01OOOCO COi-itfJCOOcboJ coqcp^o COCDCOCOOCD iHrHiHrHrHrH cocjcowcooioj xxxxxxx xxxxxx xxxxxx OrHOJCOTflOCD I*OOOJOrHC rH JOiOiOCO CDCOCDCOCDCD EHHH 1O8 THE CARNEGIE STEEL, COMPANY, LIMITED. CO aaajoq OOO'OT SIIB JBI1T18TI 'qOHT areiibs J9d -sqi OOO'ST aaqij joj S'B Sra^ {BJJT19TI 'OOTTB p^ jflU'BxS jo japed v -nan Sn^wtq jo 'raojj SB SIXB {BJ1T19TI ooooo oooo ooooo oooo NWO050J mOQOQO OiCD^O^TH CDCOI^I* COOOZ>CO ooooo oooo ooooo oooo CJOCOrHO COt*rHOS OJCDCQCD iHrHr-l CJO^COCO (Mt-iOCO 05O05W03 rH z>r-i*j>i* z*r-^i> locoococp cpc 66666 6666 66666 6 r-lr-l OOO-HCO rH(MOCO OCOOQOCD ooooco cqi^cpopoo cpopi^co i-ior-ioo T-lrHoo 66666 6666 r-iQO i-KBCOOiH CCOQOO I^OOrH WO050JCO 0504O05 rHr-JrHrHiH i-HrHrHiH rHrHOrH iHW^iOO O^I-COOi COJOCOCOOO OOOOO wcjooo OJOOCOQO ojwcjoo oaooico OOOO -ay jo ^uaotoin ^SB9i o episjTio jo JG^ueo jo oouwjSTd .3 noppag jo -B3JY jooj .red ;q3pj^ ozig COiOWOiCO COCOOOOJ ^OOI-a>3> TMOrHC orHOj ^rnoqr* O5t*o^co OZT-IO iHr-lO iHiHOO iHrHiHiHiH r- ! rH r-l ocoico osoic cjocoioco iOOJCOr-iQO tHOOCOOO CJCCT> COCOWrHr-t O05CRGO rHiHrHrHO "HOOO rHrHiHiH^H iHOOO rHOSCO COOJWr-iCO OJ^CQ ^^I^WCO coocooo cocoojci cocociwoi wooo CO ooo5i*cNzco r*C5iOGQ cocpcoasop koodoo r-<6oQ2* i-ioaioaj cboaJt* COCOCOM ^^^WW COCOCOCO xxxxx xxxx xxxxx xxxx ^X)O\^ ^^X 1 ^ COCOCOCOCO COCOCOCO COCOCOCOCO COCOCOCO coco COOSOrH coeor*i> 2*1*1*1*1* r- THE CARNEGIE STEEL COMPANY, LIMITED. OOO CO OOOOOOO OOOOO OOO OOOiOOOO OO *>OO 0010 010 ociGicococo ooi-oi- ot*^ lowcoiooior- coo> Or-jco O>O*O 05Z>2>COiaCOrH CQ^ 1OCOC4 OCO kOiO^-tfWCO CttOJOJiH rH opo op poopppp ppoop pop pppxoppp co opo OO OO COrHCQCOOOO CDOl>CD^Ctt 1>1O COCOCS iHi-ICOrKCONGD COtCOO?lO J^r-lQ Tj< iH ^ T^ CO 05 1* I*CO OJrHr lOiOiOiOiOiOi Tl4rJ< CO^ COCOCOCOCOCJCO 05C4 tHCJ 66 6 66666 666 OOO iO<# COiOMiOOJiOCO OWCOOOCO ^(Mi OCD0 ^H COIOWCOW W0202-HrH iHWrH rHOrHiHOOO OO OOO 666 66 6666666 66666 666 6666666 66 66 COiOCOQOQO C4050) OOCOOCOCOMiO OCO COCO lO^CiOOJ COWWrHrH rnrn OOrHOOOO OO OOO 66 66 6666666 6 66666 6 C3W HCO CSJrfl^CO'^rHr-i OOJ^OOW *HCOiO OSiOiOCDCDCOO COt- tfr- J>O 05 05 GO 00 !>I^ CO CpCOCpCD^ WCOCO ^ 'f CO CO CO CO rH COCO 666 66 6666666 66666 666 6666666 66 666 100 rcocooooc5 CJIMCOIOIO ooco rfiHOjocooco or* coioco 1>1O C02>l>CplOOp ^COCOOJiH iHiHO rH iH r-i r-l O |O |O vH O OOO 666 66 6666666 66666 666 6666666 66 666 Tj< CO I*O CDrHiOCDCO COCr- Or-lOC5I>"*rH COCO QOWCM CO^HOi rHiO OpCpTJ0>CpCOJ>I>ai CpCOpiOr}< iOpCO r^^'t COCO COW Tj iH CO 05 1* CO CO CO ^CNJCNZOOS 0)OO 2>OCOCpiOCOCO CO^ COCO 01 CH CJiHr-i^-!i-4r-i6 r-i r-JT-i r-i 6 O^O 6666666 66 666 0$ 2 rcc iccc)c Tjiooco' coco'r^ COCJCM r-l COCOOJWOJOJrH eMOJOJW'H iHrHrH rHiHtHiHiHiH tH,H iHi-lr-l XXX XX XXXXXXX XXXXX XXX XXXXXXX XX XXX COCOCO WOJ COJ(MOIOIC NC4010101 r-liHrH OiOOOJ OIH 02COrig ^a'g-s-Ss 'bO C oJ= Si g sSl^jM 3*5 5 ho 1 IS J . f 3'H ^ S<= filfl Sfp lilt !|2S g)-2-rt<" 6" 6" g H*-f"^ V\i ^1 1 2 I Beams, I Beams, Si Plates, 40.0 Ibs. -Isf I WXJ4 per foot. 14X ^ per foot. t; si y^^fJU ^gjL^JU^ "3 % r a tjT 8 ' 8 -I" 5 * 3 |-2 | l^-s -If s Jj^til en .h-d |j3 2 ! 'rff 1^ " ta% 'rtij'E' 8 ||| i "-~ -2-2' & ^'-h &-S HI il|l ^ls.2 ill f!s J 1 10 125.45 1.11 1.11.01 0.91 90.29 0.72 4.63 O.O3 11 114.05 1.22 100.92 1.00 82.08 0.79 4.21 0.03 12 104.55 1.33 92.51 1.09 75,24 O.86 3.86 O.O3 13 96.50 1.44 85.40 .18 69.45 0.93 3.57 0.04 14 89.61 1.55 79.30 .27 64. 5O 1.00 3.31 0.04 15 83.64 1.67 74.01 ..36 60.19 1.08 3.09 0.04 16 78.41 1.78 69.38 ..45 56.43 1.15 2.90 0.05 17 73.80 1.89 65.30 .54 53.11 1.22 2.72 0.05 18 69. 7O 2.0O 61.67 .63 50.16 1.29 2.57 O.O5 19 66.03 2.11 58.43 1.72 47.52 1.36 2.43 0.05 20 62.73 2.22 55.50 1.81 45.14 1.44 2.32 0.06 21 22 59.74 57.03 2.33 2.44 52.86 5O.46 1.90 2.00 42.99 41. 04 1.51 1.58 2.21 2.11 O.06 0.06 23 54.54 2.55 48:27 2.09 39.25 1.65 2.02 O.07 24 52.27 2.66 46.25 2.18 37.62 1.72 1.93 0.07 25 50.18 2.78 44.40 2.27 36.12 1.79 1.85 0.07 26 48.25 2.89 42. ^O 2.36 34.72 1.87 1.78 0.08 27 46.47 3.00 41.12 2.45 33.44 1.94 1.71 0.08 28 44.81 3.11 39.65 2.54 32.25 2.01 1.66 O.O8 29 43.26 3.22 38.28 2.63 31.13 2.08 1.60 0.08 30 41.82 3.33 37.0O 2.72 30.09 2.15 1.54 0.09 31 40-47 3.44 35.81 2.81 29.12 2.23 1.49 0.09 32 39.21 3.55 2.90 28.21 2.30 ..45 0.09 33 38.02 3.66 '33.64 2.99 27.36 2.37 .41 0.1O 34 36.91 3 77 32.65 3.08 26.65 2.44 .37 0.10 35 36 35.85 34.85 3.89 4.00 31.72 30.84 3.17 3.27 25 80 25.08 2.51 2.58 : .33 : .29 0.1O O.1O 37 33.91 4.11 30.00 3 36 24.40 2.66 1.25 0.11 38 33.02 4.22 29.21 3.45 23.76 2.73 1.22 O.ll 39 32.16 4.33 28.47 3.54 23.15 2.80 1.19 0.11 Above values are based on maximum fiber strains of 13,000 Ibs. per sq. in.; |-| /x rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings 1 1 fi THE CARNEGIE STEEL, COMPANY, LIMITED. BEAM BOX GIRDERS. SAFE LOADS IN TONS, UNIFORMLY DISTRIBUTED. 2-20" I Beams and 2 Plates 16" X^" _ t 7%^_ 7" SJ a SI*" 1 Hr** 20" 2 lF J '""lr 20" tit pktes IBeams ' plates, L B n ea ^ s> If *3 luX% 80 - lts - 1 A v 3/ 64,0 IDS, T -3 per foot. l| CiS 1 "^ d=3S si |' . "Si^o -"! "3 |.S| 1^ S^-s g-9 > il & .s^ij ^'C jg 3 gtS cs^'Mii^g &'^|j ii*^ . a 1 "Sjjas s ^11 lj?.a *|Si ill! 1 i a III s s s IT* Pit f|f Ill II 10 11 199.67 181.51 1.22 1.34 7.22 6.56 176.72 160.66 1.06 1.16 7.34 6.68 8:81 12 166.39 1.46 6.02 147.26 1.27 6.12 0.04 13 153.60 1.58 5.56 135.95 1.37 5.65 0.04 14 142.64 1.70 5.16 126.24 1.48 5.25 0.05 15 133.12 1.83 4.81 117.82 1.58 4.90 O.05 16 124.80 1.95 4.51 110.45 1.69 4.59 0-05 11 117-47 11O.94 2.O7 2.19 4.25 4.01 103.96 98.18 1.79 1.90 4.32 4.08 O.06 0.06 19 105.10 2.31 3.80 93.01 2.01 3.86 0.06 20 99.83 2.43 3.61 88.36 2.11 3.67 0.07 21 95.08 2.56 3.44 84.15 2.22 3.50 0.07 22 23 90-77 86.82 2.68 2.80 3.28 3.14 80.33 76.84 2.32 2.43 3.34 3.19 0.07 0.08 24 83.20 2.92 3.01 73.64 2.53 3.O6 0.08 25 79.87 3.04 2.89 70.69 2.64 2.94 0.08 26 76.80 3.16 2.78 67.97 2.75 2.82 0.09 27 73.96 3.29 2.68 65.46 2.85 2.72 0.09 28 71-32 3.41 2.58 63.12 2.96 2.62 0.09 29 68.86 3.53 2.49 60.94 3.06 2.53 0.10 30 31 32 66.56 64.41 62.41 3.65 3.77 3.89 2.41 2.33 2.26 58.91 57.01 55.22 3.17 3.27 3.38 .45 r>' 37 2.29 0.10 0.10 0.11 33 60.51 4.02 2.19 53.56 3,48 2.22 O.ll 34 58.73 4.14 2.12 51.98 3.59 2.16 0.11 35 36 57.05 55.46 4.26 4.38 2.06 2.01 50.50 49.09 3.70 3.80 2.10 2.04 0.12 0.12 37 53.96 4.50 1.95 47.77 3.91 1.98 O.12 38 52.54 4.62 1.90 46.51 4.01 1.93 0.13 39 51.20 4.75 1.85 45.32 4.12 1.88 0.13 Above values are based on maximum fiber strains of 13,000 Ibs. per sq. in.; -j-f "rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings. 1 1 > THE CARNEGIE STEEL COMPANY, LIMITED. BEAM BOX GIRDER. SAFE LOADS IN TONS, UNIFORMLY DISTRIBUTED. 2-24" I Beams and 2 Plates IS^X^" | 2 plates, [ Beams, of 24" g i| 18X% 80.0 Ibs. per foot. 1 -2 rt g" 3 Safe load uniformly dis- tributed (including weight of girder) in tons of 2,000 Ibs. Weight of girder (including rivet heads) in tons of 2,000 Ibs. Increase in saio load for ^"in- crease in thick- ness of flange plate. Increase in weight of girder f or y 1 ^" increase in thickness of flange plates. 14 182.64 1.78 7.19 0.05 15 170.46 1.91 6.71 0.06 16 17 159.81 150.40 2 03 2.16 6.29 5.92 0.06 0.06 18 142.05 2.29 5.59 0.07 19 134.57 2.41 5.30 0.07 20 127-84 2-54 5.03 0.08 21 121.76 2.67 4 79 0.08 22 116.22 2-79 4.57 0.08 23 111.17 2.92 4.38 0.09 24 106.54 3.05 4.19 0.09 25 102.27 3.18 4.03 0.09 26 27 98.34 94.70 3 30 3.43 3.87 3.73 0-10 0.10 28 91.82 3.56 3.59 8.11 29 88.17 3.68 3.47 .11 30 85.23 3.81 3.35 0.11 31 82.48 3.94 3.25 0-12 32 79.90 4.06 3.15 0-12 33 77-48 4.19 3.05 O-12 34 75.20 4.32 2.96 0.13 35 73.05 4.45 2.88 0.13 36 37 71.03 69.11 4.57 4.70 2.80 2-72 8.14 .14 38 6729 4.83 2.65 0.14 39 65.56 4.95 2.58 0.15 40 63.92 5.08 2.52 0.15 41 62.36 5.20 2.45 0.16 42 60.88 5.33 2-40 0.16 43 n 59.46 58.11 56.82 5.46 5.59 5-73 2.34 2.29 225 8.16 .17 O.17 Above values are based on maximum fiber strains of 13,000 Ibs. per sq. in. ; j-| // rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings. 1 1 IT THE CARNEGIE STEEL, COMPANY, LIMITED. EXPLANATION OF TABLES ON RIVETED PLATE GIRDERS, Riveted girders are used in cases where rolled beams are in- sufficient to carry the load. On page 57 of the lithograph plates will be found illustrations of various forms of riveted girders. The sections with single webs are more economical than those with double webs box girders, but the latter are stiffer laterally, and should always be used where great length of span requires a wide-top flange. If the girder is not held in posi- tion sideways, the proportion of length of span to width of flange should not exceed twenty, without making provision for such increase by an addition of metal in the compression flange beyond that required by the table. The web of the girder must be made of such thickness that there will be no tendency to buckle, and that the vertical shear- ing strain per square inch will not exceed 10,000 pounds. This shearing stress is greatest near the supports and is obtained by dividing half the load upon the girder (provided the load is symmetrically applied) by the web section. The first condition (security against buckling) is attained when this shearing strain 11000 does not exceed ., , d 2 in which d represents the 3000 t* depth of web in clear of flange of girder, and t the thickness of one web plate in inches. Ordinarily this formula gives a lower strain per square inch than 10,000 pounds, so that both condi- tions are usually attained when the first is. Instead of increas- ing the thickness of the web, it may be stiffened by means of vertical angles riveted to it at proper intervals. These latter should always be less than the depth of the girder, at least near the ends, but toward the middle of the girder the stiffeners may be placed further apart or entirely omitted. Stiff- eners should always be used at or near the supports, and at any- other point where there is a concentration of heavy loads. The duty of these stiffeners in such cases is twofold : first, to prevent buckling of the web; second, to transmit the shear to the web by means of the abutting areas and the rivets, both of which must be sufficient for the purpose. The rivets generally should be %f f and the spacing in flanges ought not to exceed six inches, and should be closer for heavy flanges ; but in all cases it should be close at the ends, say three inches for a distance equal to the depth of the girder. Where loads are great, especial calculation for rivet spacing should be made, allowing 9,000 pounds per square inch for shearing and 18,000 pounds per square inch for bearing. The unsupported width of flange plates, subjected to compres- i i ft THE CARNEGIE STEEL COMPANY, LIMITED. sion, should not exceed 32 times their thickness, nor should the flange plates extend beyond the outer line of rivets more than five inches nor more than eight times their thickness. The term " flange," as applied to the riveted girders, embraces all the metal in top or bottom of girder exclusive of web plate ; or, in the case of a rolled beam or channel with top and bottom plates, all the metal exclusive of that part of the web between fillets. Girders intended to carry plastering should be limited in depth from out to out to J^ of the span length (^f f per foot); other- wise the deflection"is liable to cause the plastering to crack. The following pages, Nos. 120 to 123, inclusive, furnish a ready means for determining the sections of plate or box girders necessary to carry specified loads for spans varying from 20 to 40 feet, center to center of bearings. The " Safe Loads " are given for the sections shown, and in columns headed " Increase in Safe Load" is given the increase in safe load for each y 1 g // increase in thickness of flange plates. The flange plates may be altered in width and thickness, pro- vided the section remains the same as that required in the table and the conditions in regard to unsupported width be fulfilled. EXAMPLE OF APPLICATION OF TABLE. A 30 /x box girder is to carry a load of 80 tons over a clear span of 30 feet. What section of girder is required ? The span from center to center of bearings we will assume to be 31 feet. In the table, page 122, the safe load for this span and for the girder shown is found to be 62.96 tons including weight of girder, which latter, according to the table, may be assumed at about 3.5 tons. The total load to be carried is, therefore, 83.5 tons. The increase in safe load for T ^" increase in thickness of flange plate given in the table is 3.70 tons. The thickness of the flange plate is then obtained as follows: 83.5 tons 62.96 tons=20.54 tons. This-=-3.70 tons is very nearly 6. Each flange plate, therefore, must be increased by ^ // , making a total thickness of flange plate of %". The section of 'the girder is then composed of two 30" X^" web plates, two 16" X/-'/' flange plates (which could be made 18" X H" or 20" X%", etc. -see previous note), and four flange angles. The shear in one web is or 2785 pounds per square inch, which is also safe . p 11000 against buckling, since it is less than ^ , ___ d 2 _ which, in 3000 t 2 this case, is 5,000 pounds. 119 THE CARNEGIE STEEL COMPANY, LIMITED. PLATE GIRDERS. SAFE LOADS IN TONS, UNIFORMLY DISTRIBUTED. =5 1 r lit 't TFT III | 11 _gj* J3 bn 1 - i r i j & % * -Z E j* i SP .? ? fcD IS i ^ \x \eq C ^ co II | * S Jim " S ^ -2 a d y> J !? it |-~ !>sj 1 % i II 11 M2|i ^ E^<3 la 1^ g " |^!2^ *** "2 53 3 t., "3 'So P *o o3 ' rt *- 13 -&'3 i5 " ** 11 o " co <3 =2 -^ * -H 20 102.57 1.77 4.80 .05 152.54 2.72 6.71 .06 21 97.67 1.85 4.58 .05 145.28 2.84 6.39 .06 22 I 1.92 4.37 .06 138.68 2.95 6.09 .07 23 89.18 2.04 4.18 ,06 132.65 3.12 5.83 ,07 24 85.46 2.17 4.01 .06 127.12 3.24 5.58 .07 25 82.04 2.19 3.85 ,06 122.04 3.36 5.36 .07 26 78.88 2.26 3.70 .07 117.34 3.48 5.16 .08 27 75.96 2.34 3.56 .07 113.00 3.59 4.97 ,08 28 73.26 2.41 3.43 .07 108.97 3.71 4.78 .08 29 70.73 2.53 3.31 .07 105.20 3.88 4.63 .09 30 68.37 2.60 3.21 .08 101.70 4.00 4.48 ,09 31 66.16 2.68 3.10 .08 98.42 4.12 4.32 .09 32 64.10 2.75 3.00 .08 95.34 4.23 4.20 .10 33 62.16 2.82 2.91 .08 92.45 4.35 4.07 .10 34 60.33 2.89 2.83 .09 89.74 4.47 3.94 .10 35 58.60 2.98 2.75 .09 87.17 4.59 3.83 .10 36 56.98 3.09 2.66 .09 84.74 4.76 3.73 ,11 37 55.44 3.16 2.59 .09 82.46 4.87 3.62 ,11 38 53.98 3.24 2.52 .10 80.29 4.99 3.53 .11 39 52.59 3.31 2.47 .10 78.23 5.11 3.43 ,12 40 51. 2( } 3.39 2.40 .10 76.27 5.23 3.35 .12 The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 13,000 Ibs. per square inch ; if" rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings and include rivet heads, stififeners and fillers. 1 91 THE CARNEGIE STEEL COMPANY, LIMITED. BOX GIRDERS. SAFE LOADS IN TONS, UNIFORMLY DISTRIBUTED. o ^ ~ "S> 3 3D *- ^ r- Till s s> r 1 ) ( 1 1 > IT 1 If* ? I ? ^ ^ s* ]L 1 ? 5? H\ ^KO H\ u 3 a i|b < g -T \cq 00 Jb HN ^J ^ sF * o " w ^ , I -a g, s.s . , Is c "" fcxO 2.2 . Q ^^ jf| Si - ij 11 1| .5P^ a % mi 1* S| r 3 a 11 il Sfi s.S 1 *> ill i S bo^ 3 "" lil" ||j! 20 97.59 2.13 5.73 .07 130.2 2.44 7.95 .09 21 92.94 2.23 5.46 .07 124.0 2.55 7.58 .09 22 88.72 2.32 5.20 .08 118.3 2.66 7.22 .09 23 84.86 2.45 4.98 .08 113.2 2.80 6.90 .10 24 81.32 2.54 4.78 .08 108.5 2.91 6.62 .10 25 78.07 2.64 4.59 .09 104.1 3.03 6.35 .11 26 75.07 2.74 4.41 .09 100.1 3.14 6.12 .11 27 72.29 2.83 4.25 .09 96.4 3.25 5.89 .12 28 69.70 2.93 4.10 .10 93.0 3.36 5.67 .12 29 67.30 3.08 3.96 .10 89.8 3.50 5.48 .12 30 65.06 3.16 3.82 .10 86.8 3.61 5.29 .13 31 62.96 3.25 3.70 .11 84.0 3.72 5.13 .13 32 61.00 3.35 3.58 .11 81.4 3.83 4.97 .14 33 59.14 3.50 3.48 .11 78.9 3.95 4.82 .14 34 57.40 3.54 3.38 .12 76.6 4.06 4.67 .14 35 55.76 3.64 3.28 .12 74.4 4.17 4.53 .15 36 54.22 3.76 3.18 .12 72.3 4.31 4.41 .15 37 52.75 3.86 3.09 .13 70.4 4.41 4.30 .16 38 51.36 3.95 3.02 .13 68.5 4.53 4.18 .16 39 50.04 4.05 2.94 .13 66.7 4.65 4.07 .17 40 48.80 4.15 2.86 .14 65.1 4.76 3.97 .17 The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 13,000 Ibs. per square inch; \" rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings and include rivet heads, stiffeners and fillers. 122 THE CARNEGIE STEEL COMPANY, LIMITED. BOX GIRDERS. SAFE LOADS IN TONS, UNIFORMLY DISTRIBUTED. _^ a 1 M Q TS i a ) tt ]' ~ M I |J r bO ^ t ? ^ *s t ^ ^>< .3 M H\ ^0 ^ ^< r-ii-H -* 1 ii *M J ) J*;* 1 ^ Jj ~ ^ w ^ 1 2 4 53 3 Er i "f a*** |-a, 1-2 S, S .2 | . 1 * S<~ I'-fcij, | ll Hsll J s.i lj ^ a S) 1-^11 ta v,-fl 1 *Jf * 1| |J 1 3 J "^ W 9n -J3 g 'So go S b id c 'ho ^ ^ ,5 2 ->* 3 53 (5 eg *- *""* *S 20 184.9 2.92 10.59 .10 288.5 3.78 15.80 .13 21 176.2 3.06 10.10 .11 274.8 3.95 15.05 .13 22 168.2 3.19 9.64 .11 262.3 4.13 14.37 .14 23 160.8 3.36 9.22 .12 251.0 4.34 13.74 .15 24 154.2 3.49 8.84 .12 240.5 4.52 13.17 .15 25 148.0 3.63 8.48 .13 230.9 4.69 12.64 .16 26 142.4 3.76 8.18 .13 222.0 4.87 12.16 .17 27 137.0 3.8 ( } 7.85 .14 213.8 5.04 11.70 .17 28 132.1 4.03 7.57 .14 206.2 5.21 11.29 .18 29 127.6 4.15 7.31 .15 199.0 5.43 10.91 .19 30 12 3 q J.O 4.33 7.06 .15 192.4 5.61 10.54 .19 31 119.3 4.45 6.83 .16 186.2 5.78 10.21 .20 32 115.6 4.60 6.63 1 .16 180.3 5.95 9.88 .20 33 112.1 4.74 6.43 .17 174.9 6.12 9.58 .21 34 108.8 4.87 6.24 .17 169.8 6.29 9.30 .22 35 105.7 5.00 6.06 .18 164.9 6.47 9.03 .22 36 102.8 5.17 5.90 .18 160.3 6.69 8.78 .23 37 100.0 5.31 5.74 .19 156.0 6.86 8.54 .24 38 97.4 5.44 5.58 .19 151.9 6.94 8.32 .24 39 94.9 5.58 5.44 .20 148.0 7.20 8.11 .25 40 92.5 5.71 5.30 .20 144.3 7.38 7.91 .26 The above values are founded on the moments of inertia of the sections using a maximum fiber strain of 13,000 Ibs. per square inch ; |f " rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings and include rivet heads, stiffeners and fillers. 1 O 1 ^ THE CARNEGIE STEEL, COMPANY, LIMITED. Z-BEAMS AS USED IN FOUNDATIONS. In designing the foundations of walls and piers of buildings, when they rest upon a yielding stratum, proper provision must be made for the uniform distribution of the weight. In case the walls are of different thicknesses and heights, the widths of the foundations must be proportioned according to the different loads resulting therefrom, so that the bearing per unit of ground-area will be equal and a uniform settlement of the completed struct- ure is ensured. The introduction of timber beams as a means of obtaining wider bearing surfaces at the base, is a practice to be strongly condemned, unless the wood is in a position to remain contin- ually moist. Where this is not the case, the timber will soon rot away, thereby giving rise to an unequal settlement of the walls, which is very injurious, if not destructive, to the masonry. Rails, imbedded in concrete, are not open to this objection. They offer, however, comparatively little resistance to deflection, and for this reason, if allowed to project beyond the masonry to any considerable length, the concrete filling is liable to crack, and thus the strength of the foundation becomes impaired. I-beams, more recently used for this purpose, are found to be superior in every respect. A greater depth can be adopted, the deflection thus reduced to a minimum and a sufficient saving effected to more than compensate for their additional cost per pound. The foundation should be prepared (see illustration p. 126) by first laying a bed of concrete to a depth of from 4 to 1 2 inches and then placing upon this a row of I-beams at right angles to the face of the wall. In the case of heavy piers, the beams may be crossed in two directions. Their distances apart, from center to center, may vary from 9 to 24 inches according to circumstances, i. e., length of their projection beyond the masonry, thickness of concrete,, estimated pressure per square foot, etc. They should be placed at least far enough apart to permit the introduction of the concrete filling and its proper tamping between the beams. Unless the concrete is of unusual thickness, it will not be advisa- ble to exceed 2O // spacing, since otherwise the concrete may not be of sufficient strength to properly transmit the npward pressure to the beams. The most useful application of this method of founding, is in localities where a thin and comparatively compact stratum overlies another of a more yielding nature. By using I-beams in such cases, the requisite spread at the base may be obtained without either penetrating the firm upper stratum or carrying the footing-courses to such a height as to encroach un- duly upon the basement-room. 124 THE CARNEGIE STEEL COMPANY, LIMITED. METHOD OF CALCULATION. Let L=Weight of wall per lineal foot, in tons. and b=Assumed bearing capacity of ground, per square foot, (visually from I to 3 tons.) Then ^ =W=Required width of foundation, in feet. w= Width of lowest course of footing-stones. p= Projection of beams beyond masonry, in feet. s=Spacing of beams center to center, in feet. Evidently the size of beams required will depend upon their strength as cantilevers of a length " p," sustaining the upward reaction, which may be regarded as a uniformly distributed load. Thus p b=uniformly distributed load (in tons) on canti- levers, per lineal foot of wall, and p b s=uniform load in tons, on each beam. The table on the following page gives the safe lengths "p " for the various sizes and weights of beams, for s=i foot and " b" ranging from I to 5 tons per square foot. For other values of "s" say I5 X/ , i.e., l)^ / , the table may be used by simply considering "b" increased in the same ratio as "s" (see example below). As regards the weight of beams, it is advan- tageous to assign to " s " as great a value as is warranted by the other considerations which obtain. EXAMPLE SHOWING APPLICATION OF TABLE. The weight of a brick wall, together with the load it must support, is 40 tons per lineal foot. The width of the lowest footing-course of masonry is 6 feet. Allowing a pressure of 2 tons per square foot on the foundation, what size and length of I-beams 18" center to center will be required? Answer : L=4O b=2 w=6 s= I J^ . Therefore W=4O-^2=2O feet, the required length of beams. The projection "p"=^ (2O-6)=7 feet. In order to apply the table (calculated for s=i / ), we must consider " b" increased in the same ratio as "s," i. e., b=2X i%=3 tons. In the column for 3 tons, we find the length 7 feet to agree with 2O X/ I-beams 64.0 ibs. per foot. THE CARNEGIE STEEL COMPANY, LIMITED. SaaementHoor line Concrete, TABLE GIVING SAFE LENGTHS OF PROJECTIONS " p " IN FEET, (SEE ILLUSTRATION,) FOR "s"=l FOOT AND VALUES OF "b" RANGING FROM 1 TO 5 TONS. Depth of Weight foot. b (TONS PER SQUARE FOOT.) 64 80 40 14.0 12.5 12.0 10.5 9.5 8.5 8.0 7.0 6.5 5.5 5.0 4.5 4.0 3.0 2.5 2.0 12.5 11.0 10.5 9.5 8.5 8.0 7.0 6,5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 11.5 10.0 9.5 8.5 8.0 7.0 6.5 5.5 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 10.0 8.5 8.5 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.5 2.0 1.5 9.0 8.0 8.0 7.0 6.5 6.0 5.5 4.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.5 9.0 8.0 7.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 3.0 2.5 2.0 1.5 1.5 8.0 7.0 7.0 6.0 5.5 5.0 4.5 4.0 4.0 3.5 3.0 2.5 2.0 2.0 1.5 7.5 6.5 6.5 5.5 5.0 4.5 4.0 4.0 3.5 3.0 2.5 2.5 2.0 1.5 1.5 7.0 6.0 6.0 5.5 5.0 4.5 4.0 3.5 3.5 3.0 2.5 2.0 2.0 1.5 1.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.5 3.0 2.5 2.5 2.0 2.0 1.5 6.0 5.5 5.0 5.0 4.5 4.0 3.5 3.0 3.0 2.5 2.0 2.0 1.5 1.5 Values given based on extreme fiber strains of 16,000 Ibs. per square inch. 126 THE CARNEGIE STEEL, COMPANY, LIMITED. COLUMNS IN FIRE-PROOF BUILDINGS. The subject of fire-proof construction is steadily growing in importance. The need of fire-proof buildings in the business centers of our great cities has been well demonstrated, and their superiority has become so generally recognized, that at present but few structures of any size or importance are designed which are not more or less of this type. This change has been facili- tated in no small measure by a number of signal improvements made of late in the art of fire-proof construction, ensuring not only a higher degree of efficiency, but a considerable reduction in cost, compared with methods formerly practiced. The old style of solid brick arch, onca so prevalent in floor- construction, has been almost wholly supplanted by the more modern forms of hollow tile and terra cotta arches. The im- portant advantages of the latter have been already pointed out in these pages. Roofs, ceilings and partition walls are now also largely constructed of these light refractory materials. The substitution of steel for iron in beams may be cited as a more recent though hardly less radical improvement in this direction, and, simultaneously, the introduction by this firm of new patterns for its steel beams. These patterns are of more convenient shape and much more economical of material than the old forms. Another change which is gradually taking place is the substi- tution of steel for cast iron in the composition of columns. Cast iron is a material, so uncertain in character, that it? use has long since been abandoned in bridge construction. In buildings the loads are generally quiescent, and the liability to sudden shocks is more remote than in bridges; yet, on the other hand, the columns seldom receive their loads as favorably as in bridges; in most cases there exists considerable eccentricity, that is, the loads on one side of the column are heavier than those on the other side, and the bending strains arising therefrom in- crease the strains from direct compression materially. The following are some of the contingencies which may arise 127 THE CARNEGIE STEEL COMPANY, LIMITED. in the manufacture of castings, and which preclude anything approaching uniformity in the product. In the case of hollow cast iron columns, while the metal is yet in a molten state, the buoyancy of the central core tends to cause it to rise, thereby reducing the thickness of the metal above and increasing the same below. When columns are of such a length as to make it necessary to pour the metal into the mould from both ends, it sometimes occurs that the iron becomes too much chilled on the surface to properly mix and unite, thus creating a weak seam at the very point where the greatest strength will be needed. The presence of confined air, producing " blow holes" and honey-comb," and the collection of impurities at the bottom of the mould may be further mentioned as frequent sources of weakness in cast iron. The most critical condition, however, is that due to the unequal contraction of the metal during the process of cooling, thereby giving rise to initial strains, at times of sufficient force to produce rupture in the column or in its lugs on the slightest provocation. In many cases, the trouble can be ascribed to faulty designing or carelessness in the execution of the work, yet even under favor- able conditions, it is so difficult to secure equal radiation from the moulds in all directions that castings, entirely exempt from in- herent shrinkage strains, are probably seldom produced. As a protection against these contingencies, resort must be had either to the crude and uncertain expedient of a high safety factor, not less than eight or ten, or a material, such as rolled steel, must be adopted, of a more uniform and reliable character than cast iron. STEEL COLUMNS fail either by deflecting bodily out of a straight line, or by the buckling of the metal between rivets or other points of support. Both actions may take place at the same time, but if the latter occurs alone, it may be an indication that the rivet spacing or the thickness of the metal is insufficient. The rule has been deduced from actual experiments upon wrought iron columns, that the distance between centers of rivets should not exceed, in the line of strain sixteen times the thick- ness of metal of the parts joined, and that the distance between 1 Oft THE CARNEGIE STEEL COMPANY, LIMITED. rivets or other points of support, at right angles to the line of strain, should not exceed thirty-two times the thickness of the metal. On page 53 sections are shown of some of the most common forms of built columns. Figs, 6, 13, 15 and 16, belong to the type known as Closed Columns. As it is impracticable to repaint the inner surfaces of such columns, they should prefer- ably be used only for interior work, where the changes in temperature are not considerable, and the air is comparatively dry. In places exposed to the extremes of temperature and unprotected from the rain, the paint on the inner surface of the column will, sooner or later, cease to be a protection, corrosion will set in, and, once begun, will continue as long as there is unoxidized metal left in the column. The remaining figures on the same page represent types of columns with open sections, which readily admit of repainting, and are therefore suitable for out-door work. Of these, Fig. 14, known as Z-bar column, is believed to offer advantages superior to those of any other steel or wrought iron column in the market. Its claims for superiority are based mainly on the following qualities : ist. ECONOMY OF MANUFACTURE. Only two rows of rivets are required, while four or more are used for any other column of an equal sectional area. 2d. HIGH ULTIMATE RESISTANCE TO COMPRESSION. For discussion on this point see pages 131 to 133, inclusive. jdL GREAT ADAPTABILITY FOR EFFECTING CONNECTIONS WITH I-BEAMS, AND REDUCING ECCENTRICITY OF LOADING. When used in buildings, for supporting single floor beams or double beam girders, these qualities are of the greatest impor- tance. Complete details of these connections are shown on pages 55 and 56. 4th. FAVORABLE FORM FOR INSPECTION AND REPAINTING. This is a very desirable feature when used for out-door work. In buildings, as a rule, the columns are permanently encased in a fire-proofing composition. 129 THE CARNEGIE STEEL COMPANY, LIMITED. When unusually heavy loads must be provided for, as in the case of columns for the lower stories of very high buildings, the standard sections of Z-bar columns may be reinforced to the required strength by using either a double central web plate or by the addition of outside cover plates, or, if need be, both, forming thus a closed or box column. Standard cast bases are shown in Figs. 4, 5 and 6, and standard built bases in Figs. 7 and 8, page 54. The standard connections for double I-beam girders and single floor beams to Z-bar columns, detailed on pages 55 and 56, were designed to fairly cover the range of ordinary practice. When the maximum loads, in tons, indicated for each case, are ex- ceeded, the connections may be correspondingly strengthened by simply using longer vertical angles for the brackets and increas- ing the number of rivets. In proportioning these connections, the shearing strain on rivets was assumed of a maximum intensity of 10,000 ifos. per square inch. On page 54, Figs. 1, 2 and 3, are shown different forms of fire- proofing for Z-bar columns, giving the latter a cylindrical or a prismatic finish with rounded corners, as may be preferred. The air space between the tiling and the metal adds to the protection of the latter in the event of fire. The recesses in the columns may be used to good advantage in buildings for conducting water and gas pipes, electric wires, etc. Complete tables of dimensions and safe loads in tons for standard Z-bar columns of different lengths are given on pages 135 to 148, inclusive. ISO THE CARNEGIE STEEL, COMPANY, LIMITED. COLUMNS AND STRUTS. EXPLANATION OF TABLES, PAGES 135 TO 154, INCLUSIVE. The tables on Safe Loads for Z-bar Columns are applicable to lengths up to 5(K for the larger, and up to 40 / for the smaller columns. Complete dimensions are given opposite the tables of safe loads. These tables are compiled on the basis of an allowable strain per square inch of 12,000 pounds ( factor of safety 4), for lengths of 90 radii and under, and an allowable strain, deduced from the formula 17,10057, for lengths greater than this limit. No tests have as yet been made on full sized steel Z-bar columns, and the above deductions are based on a series of ex- periments made on full sized iron Z-bar columns. For a de- tailed report of these tests, see Trans. Am. Soc. C. E., paper by C. L. Strobel on Z-bar Columns, April, 1888. A condensed sum- mary of the results of these compression tests is given below : Section of Columns : 4 Z-bars, 2^ // X^ // X^ // (latticed.) Radius of Gyration (Lattice bars not considered)=2.05 // -r Column. Sectional Area. Square inches. Ultim. Strength by actual tests: Pounds per square inch. Ratio of length to least radius of gyration. Ultim. Strength by formula, (Rankine-Gordon) 36000 1 + 36000r2 Ultimate Strength by formula : 46000 125 -j IfX-llK" 9.435 9.984 36800 346OO 64 32300 W~ 9" 9.480 9.280 3460O 36600 88 29600 35OOO 19' 0%" 9.241 10.104 33800 33700 112 26700 (4 32200 22'- 0" l( 9.286 9.286 9.286 30700 29500 307OO 129 24600 ( 29900 M 25'- 0" it 9.156 9.456 9.516 28100 28000 28400 146 M 22600 27750 < 28'- 0" _ 9.375 9.643 9.375 27700 28000 27600 164 M 20600 M 25500 > From these tests the ultimate stress per square inch for iron Z-bar columns whose lengths were equal to or less than 90 radii, was found to be 35,000 Ibs.; and for columns, whose lengths exceeded this limit, this stress conformed very closely to that deduced from the formula 46,000125. THE CARNEGIE STEEL COMPANY, LIMITED. It has been customary to allow 8,000 pounds per square inch in compression for bridge members of short length, which corres- ponds to a factor of safety of ?|gjl=4 375, when taken with. reference to the ultimate strength. Dividing the constants in the above formula by 4.375, we ob- tain nearly 10,600 28-5 . For convenience and as providing ad- ditional security for long members, it was thought advisable to substitute 30 for 28.5 as the second constant, thus reducing the formula to the shape in which it appears in the tables t It is to be noted that the allowable stresses were assumed at 8,000 and 10,000 pounds per square inch respectively for lengths of 90 radii and under. The above mentioned tests on Iron Z-bar columns, as well as former tests upon columns of other types all warrant the conclusion that to this limit at least the ultimate strength is practically constant irrespective of length, though varying for different types of columns. Further experiments made to determine the relative strength of steel and iron struts indicate, that for lengths up to 90 radii of gyration, the ultimate strength of steel is about 20 per cent, higher than for iron. Beyond this point the excessive strength diminishes, until it becomes zero at about 200 radii. After passing this limit the compressive resistance of steel and iron seems to become practically equal. From these experiments the final results are obtained ; for steel Z-bar columns, of lengths of 90 radii and under, 12,000 tt)s. per square inch is taken as the allowable stress, being 20 per cent, in excess of that for iron (factor of safety 4). The formula 17,100 57, used for columns of greater lengths gives results 20 per cent, higher than the corresponding values for iron for lengths of 90 radii, and from this point the ratio of excess will be found to decrease after the manner of the above mentioned experi- mental resul s. The steel referred to here is what is known as "mild" steel having an ultimate strength of about 60,000 pounds per square inch and containing a comparatively low percentage of carbon. The values given in tables on steel Z-bar columns should be used only for cases in which the loads are for the most part statical, and equal, or very nearly so, on opposite sides of the column. When there is much eccentricity of loading, or the loads are subject to sudden changes, the tabulated values must be reduced according to circumstances. THE CARNEGIE STEEL COMPANY, LIMITED. The weights included in the headings of the tables refer to the weight per foot of the entire section, exclusive of rivet heads. When % ff rivets are used about V ft), for each rivet should be added to obtain the gross weight. The table on the "Ultimate Strength of Wrought Iron Col- umns" gives the strain per square inch of section at which columns will fail, for various proportions of length, in feet, to least radius of gyration, in inches. This table should be used for columns and struts which are not cylindrical. If the column or strut is a single rolled beam, channel or other shape, the radius of gyration will be found in the foregoing tables on the " Properties of Carnegie Shapes." If the column is composed of two channels latticed, the chan- nels are usually placed far enough apart so that the column will be weakest in the direction of the web, i. e., with neutral axis at right angles to the web, for which case the radius of gyration of the column is the same as that of the single channel. But if the radius of gyration is wanted for the neutral axis through the center of section parallel with web, it can readily be found, as the dis- tance between the center of gravity of channel and center of section may be found with the aid of column 15 in table on the " Properties of Carnegie Channel Bars." If two channels are connected by means of two plates, instead of lattice bars, as shown by Fig. 11 on page 53, it is necessary to obtain first the moment of inertia of the section whence the radius of gyration is found as the square root of the quotient of the moment of inertia divided by the area of the section. This moment of inertia, for a neutral axis, through center of section perpendicular to the plates, is equal to the cube of the width of the plate, multiplied by ^ of the thickness of the two plates added, plus the combined area of the two channels multiplied by the square of the distance from their centers of gravity to the neutral axis. For a neutral axis in a direction parallel to the plates, it is equal to the moments of inertia of the channels as found in the tables increased by the area of the two plates multi- plied by the square of the distance between the center of the plate and the center of the section. A common form of column or strut, to be recommended for comparatively light loads is that formed simply of two angles back to back or four angles united either with a single course of lattice bars or a central web plate, as in Fig. 1, page 53. The radii of gyration for such struts are tabulated on pages 150, 151 and 152. They are given for the neutral axis parallel to either flange and for all sizes of Carnegie Angle Bars. In cases where four angles are used, the two pairs should be spaced THE CABNEGIE STEEL COMPANY, LIMITED. far enough apart to make the column weakest about a neutral axis parallel to the central web or latticing. The radius of gyra- tion will then be the same as that given in the tables for a single pair of angles, since the moment of inertia of the web plate about such an axis is so small that it may be disregarded entirely. The table on " Ultimate Strength of Hollow Cast Iron Col- umns " and that on l< Safe Loads on Hollow Cylindrical Cast Iron Columns" was computed by Gordon's formula and covers a range of lengths that will seldom be exceeded in practice. A column is square bearing when it has square ends which butt against or are firmly connected with an immovable surface, such as the floor of a building; it is pin and square bearing when one end only is square bearing and the other presses against a close-fitting pin, and it is/z>z bearing when both ends are thus pin-jointed, with the axis of the pins in parallel direc- tions (for example, the posts in pin-connected bridges). EXAMPLES OF APPLICATION OF TABLES. I. What size of Z-bar column 26 feet long, with square bear- ing ends, will be required to carry a load of 200 tons, using a safety factor of 4 ? From the tables on steel Z-bar columns, it will be seen that for the length given, a 12 X/ column weighing 118.5 Ibs. per foot will carry safely a load of 209.1 tons or 6.6 tons in excess of that required. II. A strut 16 feet long, to be fixed rigidly at both ends, is needed for supporting a load of 80,000 Ibs. It is to be composed of two pairs of angles, united with a single line of % ff lattice bars along the central plane. What weight of angles will be re- quired with a safety factor of 5 ? Answer: We will assume 4 3 // X4 // angles and determine the thickness of metal required. The angles must be spread y z " in order to admit the latticing. From the table on page 152, we find the radius of gyration of a pair of 3" x 4" X f^" angles with the 3 /x legs parallel and %" apart to be 1.97 X/ . Hence 1 1fi the value of -== Q~=8. 1, for which the ultimate strength, as the table on page 149=31,680 ft>s. The allowable strain per square inch with a safety factor of 5 will therefore be 31,680-^5=6,340 Ibs., and the area of the re- quired cross- section 80,000-7-6,340=12.62 square inches, or 3.16 square inches for each angle. Hence the weight per foot of each angle will be 3.16-^-0.3 = 10 5 Ibs. This weight will be found to agree with a thickness of % inch for a 4" X 3" angle. 134 THE CARNEGIE STEEL. COMPANY, LIMITED. SAFE LOADS IN TONS OF 2,000 LBS. Z-BAJFt COLUMNS. SQUARE ENDS. Allowed strains per square inch; f 12. 000 Ibs., for lengths of 90 radii or under safety factor 4: | 17,100-57 y, for lengths over 90 radii. 6" Z-BAR COLUMNS. Section : 4 Z-Bars 3" deep and 1 Web Plata 5%"Xthickness of Z-Bars. Lsngth of Column, in Feet. If-^f 1 Iff -3. CO PS . IP 05 c IS! II! S.4^ fr? Iff 12 ) and under \ 55.9 70.3 81.6 95.8 105.7 119.8 14 16 55.7 52.3 70.3 66.5 81.6 76.6 95.8 91.3 105.7 99.9 119.8 114.8 18 48.8 62.3 71.7 85.6 93.6 107.8 20 45.4 58.1 66.7 79.9 87.2 100.8 22 42.0 53.9 61.8 74.3 80.9 93.8 24 38.6 49.7 56.9 68.6 74.6 86.8 26 | 35.2 45.5 51.9 63.0 68.2 79 8 28 31.7 41.3 47. 57.3 61.9 72.8 30 28.3 37.1 42.0 51.7 55.5 65.8 8" Z-BAR COLUMNS. Section: 4 Z-Bars 4" deep and 1 Web Plate G>/"X thickness of Z-Bars. Langth of Column, in 32-^ sY-3 11 f '" fo git II IS lloa'pr f'S? m i-asj |S_d" i! ii Feat. fco " -H- s ''. S ii. S II S ji Q ii g w i's XoTT *$3Tz 0^5 7T H^s^ H\itr *hS ^ i^M V, Hrti ^ Xs* 18) | and V'67.5 84.8 102.4 114.2 131.2 148.5 167.6174.3 191.2 under) 20 65.0 82.5 100.5 110.5 128.2 146.4 153.3171.3 189.6 22 61.9 78.7 95.9 105.3 122.4 139.9 146.2163.5 181.3 24 58.8 74.8 91.3100.1 116.5 133.4 139.1 155.8 173.0 26 55.7 71.0 86.8 94.8 HO. 6 126.9 isa.o 148.1 164.7 28 52.6 67.1 82.3 89.6 1O4.7I12O.3 124.8 14O.4 156.4 30 49.4 63.3 77.7 84.4 98.8 113.8 117.7 132-7 148.2 32 46.3 59.5 73.2 79.2 93.0 107.3 110.6 125.0 139.9 34 43.2 55.6 68.7 74.0 87.1 100.8 1O3.5 117.3 131.6 36 4O.1 51.8 64.1 68.7 81.2 94.3 96.4 1O9.6 123.3 38 37. 48. 59.6 63.5 75.3 87.8 89.4 101.9115.O 4O 33.9 44.1 55.0 58.3 69.5 81.3 82.2 94.2106.7 135 THE CARNEGIE STEEL COMPANY, LIMITED. Z-BAR COLUMN DIMENSIONS. irtto--- * "'X i p| ; 1 'l^r 7 ^----!---- -^--f=H |\JE=^| 6" COLUMNS. 4 Z-Bars 3-3^" deep. 1 Web Plate 5^ 7/ X thickness of Z-Bars. *-. Thickness of A r> C D E F G H I - . Metal. s J^ ||A 3^ 5 T 5 r 2^ 2^ \H 2H 8^ 3^ rt A So 7 ^ 5-V 2% IjHj 23/ 83/8 3^ "i.S .53 M 12^ 1J |^ 1% 2X 2^ \$ 2H 234- 8^ 33^ 3k Q i^ 12 3/4^ 5rV 2% 2>| \y% 8 T 9 ^ 12 T V 3H 5 Til 2^8 2>| 1# 23/ 7^ 3>l 8" COLUMNS. 4 Z-Bars 4-4^" deep. 1 Web Plate 6^"X thickness of Z-Bars. Thickness of A B C D E F G H I Metal. fe X 14] \ 4^ 67.1 314 3 1% 3 T V 9X 4J/ Sk T^T 14 K 6riT 3'4 3 \^y 3^ 9% 4H If 3/8 14 f | 14 57/^ 3'4 3 3 j.3/ 3rV 9X tv y 2 14y 9 iT 4y 5 ^ 5% 3 '4 3 1% 9 ^iV s _j>^ 14^5 4^-f 5^ 3'^ 3 1% 3A 8^ 4yi fy& 14 1 4 V HT 3 1/ 8 1% 3 8% 4^ i 14/8 jti 5H BH 3^ coco 1* 8& 8% 1 Q 1 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OF 2,000 LBS. Z-BLAJRi COLUMNS. SQUARE ENDS. Allowed strains per square inch; f 12,000 Ibs., for lengths of 90 radii or under, safety factor 4 : { 17,100-57}' for lengths over 90 radii. 10" Z-BAR COLUMNS. S:ction: 4 Z-Bars 5 ' deep and 1 Web Plate 7"Xthickness of Z-Bars. Length ot Column, in Feet. 1 r a co oo pj . a ? ^ifS <*, 7 ^*U w Iff lit |ff Jli f s 1 ? 33A 2^-3 s II a ^\Mr if %Metal=105 lbi=30.9sq. r (inin.) 3.2 ill ilfi f~f iff and L underl 24 26 28 30 32 34 36 38 40 42 44 46 48 50 94.7 92.8 89.3 85.8 82.3 78.8 75.3 71-8 68.3 64.8 61.3 57-7 54.2 50.7 47-2 114.2 112.6 108.6 104.4 100-2 96.1 91.9 87-8 83.6 79.4 75.3 71-1 67-0 62.8 58.6 133.9 133.1 123-3 123.5 118-7 113.8 109.1 104.3 99.5 94.7 89.9 85.1 8O.3 75.5 70.7 147-0 144.6 139.2 133.8 128.4 123.0 117.6 112.2 106.8 101.4 96.0 90.6 85.2 79.8 74.4 166.2 164.8 158.7 152.7 146.7 140.7 134.7 128.7 122.7 116.7 110.6 104.6 98.6 92.6 86.6 185.6 185.3 178.7 172.1 165.5 158.9 152.3 145.7 139.1 132.5 125.9 119.3 112.7 106.1 99.5 196.0 193.6 186.5 179.3 172.2 165.0 157.9 150,7 143.6 136.5 129.4 122.2 115.1 107.9 100.8 214.9 213.9 206. 2 198.5 190.8 183.1 175.4 167.8 160.0 152.3 144.6 136.9 129.2 121.5 113.8 S34.0 234.0 226.6 218.4 210.2 202.O 193.8 185.6 177.4 169-1 ltJ0.9 152.7 144.5 136.3 128.1 12" Z-BAR COLUMNS. Section : 4 Z-Bars 6" deep and 1 Web Plata 8"Xthickness of Z-Bars. length of Column, in Feet. |i If} % Metal=97.8 Ibs. =28.8 sq.in. r (min.)=3.77. f S*? 4^1 "S rt Jff ii 5.r>5 3j-| -If Metal=149.9 lbs.=44.1sq. in. r (min.)=3.66. H? lit 26) and \- undar j 28 30 32 34 36 38 40 42 44 46 48 50 i 128.3 127-0 123.0 119.0 115.1 111.1 107.1 103.1 99.1 95.1 91.2 87.2 83.2 150.3 149.7 145.1 140.5 135.9 131.3 126.7 122.1 1175 112.9 108.3 103.6 99.11 172.6 172.5 167-6 162.4 157-2 152-0 146.8 141.5 136.3 131.1 126-2 120.7 115,5 187.3 186.0 180.2 174.5 168.7 162.9 157 1 151.4 145.5 139 8 134.0 128.2 122.4 209.1 208.9 202.5 196.1 189.8 183.4 177-0 170.7 164.4 158.O 151.6 145-3 138.9 231.0 230.3 223.3 216.3 209.2 202.1 195.1 188-0 180.9 173.9 166.8 159.8 152.7 243.0 240.8 233.2 225.7 218.2 210.6 203.1 195.6 188.0 180.5 172.9 165.4 157.9 264.5 261.4 253.2 245.0 236.7 228.4 220.2 211.9 303.7 195-5 187.2 179.0 170.7 286.1 282.1 273.2 364.2 255 2 346 3 3373 328.3 219.4 210.4 201.4 192.4 183,5 137 THE CARNEGIE STEEL COMPANY, LIMITED. Z-BAR COLUMN DIMENSIONS. , Ir ,. "T\fiOT =f=3 i f^i^i .~.i i '1 ;\L j... l-G-* \~&- Y 1 '*- *-- ^ 10" COLUMNS. 4 Z-Bars 5-5^ " deep. 1 Web Plate 7" X thickness of Z-Bars. TMcknessi of A B C D E F G H I Metal. o A 16% 55 6 T V 3S* 3 4 l# 8M 10 ^ 5A |vl IvA 5W ^T 7 r 31/2 e 4 lj^ 3- 5 ^ 10 5 7 =S^ & 16 rt 6 T 7 r 3/ 1^ 33^ 9z^ 5- 9 7? f| 16>^ 5K 6j4 3^4 3 4 lj^ 934 51^ s 9 Q 1 il fl 16X 1 i & 1 i 3X | 3 T 5 ^ 3% 3% gf 8 5% 5% (.2!' COLUMNS. 4 Z-Bars Q-fr/ s " deep. 1 Web Plate 8"x thickness of Z-Bars. Thickness of A 15 C D E F G H I Hetd. "o v - % 18% ! 6A 7 y B 4 4 2 3M HVi 63/< CQ v yV 1814 6& ( /H j 4 2 6% W* 1^ 19 7Ys 4 4 2 3% 11 6% ** _9 T jgii 8^ (H* 4 ! 1 2 107/ 6A I S % 18% 6-K 4 4 2 3 T 9 - 10% M 3 fi 18J-| 6H 6H 4 4 2 3% 10% M 18 T 9 , T 6% G^i 4 4 2 10X 6% H 18 % 6 ?,- :^ 6% 4 4 2 3 T 9 r % 18H ^ CM 4 4 2 3% 10^ 7 i oo THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OF 2,000 LBS. Z-BAR COLUMNS.. SQUARE ENDS. Allowed strains per square inch; ( 12,000 lbs.,for lengths of 90 radii or under, safety factor 4 : | 17,100-57 J-, for lengths over 90 radii. 14" Z-BAR COLUMNS. Section: 4 Z-Bars 6%"xH"- 1 Web Plate 8"xH" 2 Side Plates 14" wide ll r i.S'g, II e=0 JJj ||| $*4 is"? 3 oo II ss7 fir $*& lit a sid" fl? i|M~ lit ss^ "Si! -5:2 ** -3< f-K So m f:S^ "^ < a ^J V'3 Ifff -2 . JL, fit CO Trtf J^X s T-a ||f 14xj ?-P!ates=208.4 lbs.=61.3sq. in. r(min.)=3.85. af.Sg I 4* ^ ** 28 ) and \- under J 30 32 34 36 38 40 42 44 46 43 5O 294.0 286.6 277.8 269.0 260.1 251.3 242.5 233.7 224.9 216.C 307.2 198.4 304.5 297.2 288.1 278.9 269.8 260.7 251,6 242.5 233.3 224.3 215.1 206.0 315.0 307.7 298.3 288.9 279.5 270.1 260.7 251.3 241.9 232.4 223.0 213.6 325.5 318.3 308.6 298.9 289.2 279.5 269.7 260.1 250.4 240.7 280.9 221.3 336.0 328.9 318.9 308.9 298.9 289.0 278.9 269.C 258.9 249.0 238.9 229.0 346.5 339.5 329.2 318.9 308.6 298.3 288-0 277.8 267.4 257.2 246.9 236.5 357.0 350.0 339.4 328.8 318.2 307.6 297.0 286.4 275.8 265.2 254.6 244.0 367-5 360.4 349.5 338.6 327.7 316.8 306.0 295.1 284.2 273.3 262.4 251.5 378.0 370.9 359.7 348.6 337.4 326.2 315.0 303.8 292.6 281.5 270.3 259.1 14" Z-BAR COLUMNS, Section: 4 Z-Bars 6"X%". 1 Web Plat? 8"X%". 2 Sid 3 Plates 14" wide. cT 1 14x%?lat3S=173.4 lbs.=51.0sq. in. r (nun.) =3. 75. s.^ JJf a Sid" *e|! _X;5 ^ 14x% Plates=185.3 lbs.=54.5q.in. r (;ain.)=4.77. 14xr 9 oPlates=191.3 lbs.=58.3 sq. in. r dnin.)=3.78. 14x%Plates=197.2 lbs.=58.0sq. in. r(min.)=-3.79. 14x}|Plates=203.2 lbs.=59.8sq. in. r (rnin.) 3.80. J^jl^ & S3 d 5-T 1 ^Jitr S-f2 ** ca'^S |lf ^Sd *i ii 'i lit 14x% Plates 221.0 lbs.=65.0 sq. in. r (min.)=3.82. 28) and I under) 30 32 34 36 38 4O 42 44 46 48 50 306.0 296.7 287.4 278.1 268.8 259.5 250.2 240.9 231.6 222.4 213.0 203.7 316.5 307.2 297.6 288.0 278.4 268.8 259.3 249.7 240.1 23O.5 220.9 211.3 327.0 317.8 307.9 298.0 288.2 278.3 268.4 258.5 248.6 238.7 228.8 219.0 337.5 328.3 318.2 308.0 297.9 287.7 277.5 267.3 257.1 246.9 236.8 326.6) 348.0 338.9 328.4 318.0 307.4 297.0 286.5 276.1 265.6 255.1 244.7 234.2 358.5 349.4 338.7 327.9 317.2 306.4 295.6 284.8 274.1 263.4 252.6 241.8 369.0 359.9 348.9 337.8 326.8 315.7 304.7 293.6 282.5 271.5 260.4 249.4 379.5 370.5 359.1 347.8 336.4 325.1 313.7 302.4 291.0 279.7 268.3 257.0 390.0 381.1 369.4 357.8 346.1 334.5 322.8 311.2 299.6 287.9 276.2 264.6 139 THE CARNEGIE STEEL COMPANY, LIMITED. Z-BAR COLUMN DIMENSIONS. / 'TJTI 1 '< \ r^f l ' X /"N /r\ " / X 1 ' ' i i i v j A r ^--^-i 14" COLUMNS. 4Z-Bars6K // xH // - 1 Web Plate 8"Xff". 2 Side Plates 14" wide. Thickness of A B C D Sida Plates. fe 19 if If }-f 10^ s ^ X 19 K eft 1-1 10^ -2 > _9_. 19% IT! 10^ IS % 19Jf 7& 10 f^ Jj 11 20 1, T 7^v IH 10j7^ ^ 20 >s IH 105*6 i! 20 /^ 7- 9 7 105^ 20fV 7i^ 111 10^6 14" COLUMNS. 4 Z -Bars 6" XK /X . 1 Web Plate 8" X-%". 2 Side Plates 14" wide. Thickness of A B C D S : de Plates. meter of Bolt or Rivet, %". I 19% 19 rl 6% JH 6% H 1% l m K 1% 1^ 10% 10)| 10% 10% 11 19% TJL IK 10% % 20 7^3 IK 10% 1.3 20 T V 7^ IK 10% X 20^ 7J4 IK 10>J 140 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OF 2,000 LBS. Z-BAFt COLUMNS. SQUARE ENDS. Allowed strains per square inch; J 12,000 lbs.,for lengths of 90 radii or under, safety factor 4: j 17,100-57^ , for lengths over 90 radii. 14" Z-BAR COLUMNS. Section : 4 Z-Bars BrVXrl". 1 Web Plate 8"xM". 2 Side Plates 14" wide. Length of Column, in Feet. !""- Ill ill 3.75, i-^ II 7 51 |! 14x% Plates=233.5 lbs.=68.7 sq. in. r (min.)=3.77. 10 l-ss III III ir^r ffl S^"? |1! 26) and I under! 28 30 32 34 36 38 40 42 44 46 48 60 349.1 347.4 336.7 326.0 315.3 304.5 293.8 283.1 272.3 261.6 250.9 240.2 229.5 359.6 358.3 347.2 336.3 325.2 314.2 303.2 292.2 281.2 270.2 259.1 248.1 237.1 370.1 369.1 357.9 346.6 335.2 324.0 312.6 301.3 290.0 378.7 267.4k 256.1 244.8 380.6 380.0 368.4 356.8 345.2 333.6 322.0 310.4 398.8 387-2] 375.6 364.01 352.41 391.1 390.9 378.9 367.1 355.1 343.3 331.4 319.5 307-6 295A 283.8 272.0 260.01 401.6 401.6 389.5 377.3 365.2 353.0 340.8 328.6 316.4 304.2 292.1 279.8 267.6 412.1 412.1 400.1 387.6 375.S 362.7 350.2 337.7 325.2 312-7 3O0.3 287.8 275.3 422.6 422.6 410.7 397.9 385.1 372.4 359.6 346.8 334.0 321.2 3O8.5 295.7 283.0 433.1 433.1 421.2 408.2 395.1 382.O 369.0 355.9 342.8 329.8 316.7 3O3.6 290.6 141 THE CARNEGIE STEEL COMPANY, LIMITED. Z-BAR COLUMN DIMENSIONS. j/hr 2 14" COLUMNS. 4Z-Bars6 r y / Xif / . 1 Web Plate 8" X if". 2 Side Plates 14" wide. Thickness of Side Plates. A B < D I % 19 T 9 - li 10% 20 i4 7H li ; 10% 14" COLUMNS. 1 Web Plate 8"x|^ ;/ . 2 Side Plates 14" wide. Thickness of Side Plates. I I 6 20 D lOtf 142 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OP 2,000 LBS. Z-BJELPt COLUMNS. SQUARE ENDS. Allowed strains per square inch; ( 12,000 lbs.,for lengths of 90 radii or under, safety factor 4: j 17,100-57|, for lengths over 90 radii. 16" Z-BAR COLUMNS. Section : 4 Z-Bars 6%"X%". 1 Web Plate 10"X1". 2 Side Plates 16" wide. Length of Column, in Feet. 16x% Plates=226.7 lbs.=66.7 sq. in. r (min.)=4.50. 16x T 9 s Plates=233.5 lbs.=68.7 sq. in. r (min.)=4.50. W hi flf r-. h? fe" f^f J'l S$i P KO || 'g t^r II! 11 1}1 32) and v under) 34 36 38 40 42 44 46 48 50 400.1 397.7 387.6 377.5 367.3 357.1 347-0 336.9 326.7 316.6 412.1 409.8 399.3 388.9 378.5 368.0 357.6 347.1 336.7 326.3 424.1 421.9 411.1 400.4 389.6 378.9 368.2 357.4 346.7 336.0 436.1 433.9 422.9 411.8 400.9 389.8 378.8 367-7 356.7 345.7 448.1 446.0 434.7 423.4 412.1 400.7 389.4 378.1 366.7 355.4 460.1 458.1 446.5 434.8 423.2 411.6 400.0 388.4 376.8 365.1 472.1 470.2 458.2 446.3 434.4 422.5 410.5 398.6 386.7 374.8 484.1496.1 482.2494.2 470.0481.8 457.9469.3 445.6456.7 433.4444.3 421.1431.7 4O9.0419.2 396.7406.7 384.5394.2 18" Z-BAR COLUMNS. Section: 4 Z-Bars 6%"X%". 1 Web Plate 12"X1". 2 Side Plates 18" wide. Length of Column, in Feet. 3d . 16 I*T Ijg 1 18x^Platos=263.() lbs.=77.4 sq. in. r (min.)=4.98. 18x%Plates=271.0 lbs.=79.7 sq. in. r (min.)=5.06. 18x|| Plates=273.6 lbs.=81.9 sq. in. r (min.)-=5.!4. 1 Ifl it Ts 34) and V under) 36 38 40 42 44 46 48 5O 424.1 419.7 409.4 399.2 388.9 378.7 368.4 358.1 347.9 437.6 436.8 426.4 416-0 405.6 395.2 384.9 374.5 364.1 451.1 451.1 443.2 432.7 422.3 411.7 401.2 390.7 380.2 464.6 464.6 456.2 449.5 438.8 428.2 417.5 406.9 396.2 478.1 478.1 476.8 466.0 455.3 444.5 433.8 423.0 412.2 491.6 491.6 491.6 482.6 471.7 460.8 449.9 439.0 428.1 505.1 505.1 505.1 499.1 488.1 477.0 466.0 454.9 443.9 518.6 518.6 518.6 514.2 503.0 491.8 480.5 469.3 458.1 532.1 532.1 532.1 527-5 516.O 504.5 493.O 481.4 469.9 143 1 THE CARNEGIE STEEL, COMPANY, LIMITED. Z-BAR COLUMN DIMENSIONS. 16" COLUMNS. 1 Web Plate 10" xl". 2 Side Plates 16" wide. Thickness of Side Plates. tt it if 1 21 H 22^ 18" COLUMNS. 1 Web Plate 12" Xl". 2 Side Plates 18" wide. / ^. i o -* 42 Thickness of Side Plates. X u 1 23 23^ iy* ?x 7^ 7^ 7^ 1 THE CARNEGIE STEEL COMPANY, LIMITED. SAFE LOADS IN TONS OP 2,000 LBS. Z-BAR COLUMNS. SQUARE ENDS. Allowed strains per square inch; J 12,000 Ibs., for lengths of 90 radii or under, safety factor 4: j 17,100-57^, for lengths over 90 radii. 20" Z-BAR COLUMNS. Section: 4 Z-Bars $%"X%". 1 Web Plate 14"X1". Side Plates 20" wide. 2 SIDE PLATES. 4 SIDE PLATES. ii ji S fa In IS? ?i I s 20xf|Plates=313.4 lbs.=92.2 sq. in. r (min.)=5.32. xl Plates=321.9 s.=94.7 sq. in. (min.)=5.39. f-~- |ii Sfe.S j i a. 1% Plates=338.9 s.=99.7 sq. in. (min.)=5.50. r-: . il3 -HH& 1% Plates=355.9 s.=104.7 sq. in. (min.)=5.60. i C*3 10 ill * ' 7.7 0.74 1.10 1.29 1.40 W X2# 2 3.7 0.69 0.96 1.14 1.24 % 6.8 ! 0.66 0.99 1.19 1.30 IfiO THE CARNEGIE STEEL COMPANY, LIMITED. RADII OP G-YBATION FOB TWO ANG-LES PLACED BACK TO BACK. ANGLES WITH UNEQUAL LEGS. ^1 1*2 ^3 "If r i i "fJT Radii of Gyration given, correspond to directions indicated by arrow-heads. Size. Thickness Weight per RADII OP GYRATION. foot of Inches. Inches. single angle Pounds. r. r 2 r 3 7 X3X 7 To" 15.0 226 1.21 1.39 1.47 u 1 32.3 2.19 1.31 1.50 1.60 6 X4 H 12.3 1.93- 1.50 1.67 1.76 ft 27.2 1.86 1.58 1.76 1.86 6 X3X 11.7 25.7 1.94 1.87 1.26 1.35 1.43 1.54 1.53 1.64 5 X4 tt 11.0 1.59 1.58- 1.75 1.85 H 24.2 1.52 1.66 1.85 1.95 5 X3% 10.4 1.60 1.33 1.51 1.60 " tt 22.7 1.53 1.42 1.61 1.71 5 x3 tt 9.8 1.61 1.10 1.27 1.37 (4 i 19.9 1.55 1.18 1.37 1.47 4VX3 9.1 1.44 1.13 1.31 1.41 ft if 18.5 1.38 1.25 1.46 1.54 4 X3X 8 9.1 1.25 1.43 1.60 1.70 if 18.5 1.19 1.50 1.69 1.79 4 x3 * 7.1 17.1 1.27 1.21 1.17 1.25 1.35 1.45 1.44 1.55 3XX3 n 6.6 15.7 1.10 1.04 1.22 1.30 1.40 1.50 1.49 1.60 gi/XSjK 4.9 1.12 0.96 1.13 1.23 2 8 12.4 1.06 1.03 1.23 1.33 3XX2 T/ 4.3 1.04 0.74 0.92 1.02 << T 9 r 9.0 1.00 0.79 0.99 1.10 3 X2% X 4.5 0.95 1.00 1.18 1.28 A 9.5 0.91 1.05 1.25 1.35 3 X2 JL 3.6 0.96 0.75 0.93 1.03 tt i/ 7.7 0.92 0.80 1.00 1.10 2Vx2 3 2.8 0.79 0.79 0.97 1.07 " K 6.8 0.75 0.84 1.04 1.15 151 THE CARNEGIE STEEL COMPANY, LIMITED. RADII OP GYRATION FOR TWO ANGLES PLACED BACK TO BACK. ANGLES WITH UNEQUAL LEGS. Radii of Gyration given, correspond to directions indicated by arrow-heads. Size. Thickness Weightier foot of RADII OP GYRATION. Inches. Inches. single angl r, r 2 r 3 7 X3% iV 15.0 0.95 3.37 3.56 3.66 1 32.3 0.89 3.48 3.68 3.78 6 X4 H 12.3 1.17 2.74 2.92 3.01 # 27.2 1.11 2.82 3.02 3.12 6 X3% 11.7 0.99 2.81 3.00 3.10 (( 7 A> 25.7 0.93 2.90 3.10 3.20 5 X4 H 11.0 1.20 2.20 2.38 2.48 M 7 /% 24.2 1.14 2.29 2.48 2.58 5 X3% y% 10.4 1.02 2.27 2.45 2.55 ? /& 22.7 0.96 2.36 2.55 2.65 5 X3 H 9.8 0.85 2.35 2.52 2.62 M 19.9 0.80 2.42 2.62 2.72 4%X3 H 9.1 0.86 2.07 2.25 2.35 it 18.5 0.81 2.15 2.35 2.45 4 X3% X 9.1 1.06 1.74 1.92 2.02 M it 18.5 1.01 1.81 2.01 2.11 4 X3 ft 7.1 0.89 1.79, 1.97, 2.07 " it 17.1 0.83 1.88 2.08 2.18 "d ft 6.6 15.7 0.90 0.85 1.52 1.61 1.71 1.81 1.80 1.91 "/2 X2^> E 4.9 0.74 1.58 1.76 1.86 H 12.4 0.67 1.66 1.86 1.96 3#X2 # 4.3 0.57 1.51 1.70 1.80 ri A 9.0 0.53 1.57 1.77 1.88 3 X%X X 4.5 0.75 1.31 1.50 1.59 " T 9 S 9.5 0.72 137 1.56 1.66 3 X2 A 3.6 0.58 1.38 1.56 1.66 ft % 7.7 0.55 1.42 1.62 1.73 2%X2 T 3 7 2.8 0.60 1.10 1.28 1.39 " */2 6.8 0.56 1.16 1.35 1.46 152 THE CARNEGIE STEEL COMPANY, LIMITED. ULTIMATE STRENGTH OF HOLLOW CYLIN- DRICAL AND HOLLOW RECTANGULAR CAST IRON COLUMNS. Ultimate Strength in Pounds per Square Inch : CYLINDRICAL COLUMNS. RECTANGULAR COLUMNS. Square Bearing: Pin & Square: Pia Bearing: Square Bearing: Pin & Square; 80000 80000 80000 80000 80000 Pin Bearing: 80000 3<;i2i, 2 (121)* 8(121)f +800 d 2 J +1600d 2 (12D 2 14 3(12 1) 2 9(121) 2 '3200 d 2 +6400 d 2 400 d 2 MGood* l=Length of Column, in feet. d=External diameter or least side of rectangle, in inches. 1 d CYLINDRICAL COLUMNS. Ultimate Strength m Ibs. per sq. in. RECTANGULAR COLUMNS. Ultimate Strength in Ibs. per sq. in. Square Bearing. Pin and Square. Pin Bearing. Square Bearing. Pin and Square. Pin Bearing. 1.0 1.1 1.2 1.3 1.4 67800 65690 63530 61340 59140 62990 60300 57600 54930 52310 58820 55730 52690 49740 46900 70480 68790' 67000 65140 63260 66520 64260 61940 59600 57270 62990 00300 57600 54960 52320 1.5 1.6 1.7 1.8 1.9 56940 54760 52620 50530 48490 49770 47300 44940 42670 40510 44200 41630 39210 36930 34790 61350 59450 57550 55670 53800 54960 52680 50460 48300 46230 49760 47300 44960 42670 40510 2.0 2.1 2.2 2.3 2.4 46510 44600 42750 40980 39280 38460 38520 34680 32940 31310 32790 30920 29180 27540 26030 51940 50160 48400 46670 44990 44200 42260 40400 38630 36930 38460 36520 34680 32950 31310 2.5 2.6 2.7 2.8 2.9 37650 36090 34600 33180 31820 29770 28320 26950 25670 24460 24620 23300 22070 20930 19860 43390 41820 40320 38870 37470 35310 33770 32310 30920 29600 29760 28320 26950 25670 24460 3.0 3.1 3.2 3.3 3.4 30530 29310 28140 27030 25970 23320 22250 21250 20300 19410 18870 17940 17070 16260 15500 36120 34830 33580 32390 31240 28340 27150 26030 24969 23940 23320 22250 21250 20300 19410 153 ^ 'ii^fc^K'-} f? "C+-6> COOlOOOOOOOOOi -5OcOi->-aiH->-ai XX->.N.XN.X-XX>.X-N-XX Made from Min.=2" to Max.=l' 6". If longer than 1' 6" use angle stiffeners riveted across plate. Min.=2". Mai.=6". Try not to exceed 4". Preferably mado alike. Try not to exceed 4". Min.=2". Max.=6", 6 3" 7 8 8 9 8 2" 8 10 8 10 8 9 3" 10 Plates given above can be made with one buckle or any number up to the limit indicated. ^DIMENSIONS OF SINGLE BUCKLES. (FIG. 2.) No. of Plate. Width. Length. Fillet Buckle. . , a. e d 16 17 18 2 X 5^" 3' 0" 2 / 5%" 3' 0" 3}^" %' 9" 2 X 9" 2^" *No variation from these dimensions can be made. M 1 ] OOOOOOO 2 5E f/\ \ / x T X co a .., -.^ p""g"-er-y^ 5 j :\ "/ \ \/ \ _o__o i*! is. ! *yl /l,4 158 THE CARNEGIE STEEL COMPANY, LIMITED. CORRUGATED AND GALVANIZED SHEETS. Corrugated sheet is used for roofs and sides of buildings. It is usually laid directly upon the purlins in roofs, and held in place by means of clips of hoop iron, which encircle the purlin and are placed in distances of about twelve inches apart. Special care must be taken that the projecting edges of the corrugated sheets, at the eaves and gable ends of the roof, are well secured, other- wise the wind will loosen the sheets and fold them up. The corrugations are made of various sizes; the smaller present a more pleasing appearance to the eye, while the larger are stiffer and will span a greater distance, thereby permitting the purlins to be placed further apart. The sizes of sheets generally used for both roofing and siding, are Nos. 20 and 22. The corrugated sheet which will be described in the following, is manufactured by The Carnegie Steel Company, Limited. It is of medium size, presenting both a good appearance and being of sufficient strength for usual requirements. By one corrugation is meant the double curve between corre- sponding points, and by depth of corrugation the greatest deviation from the straight line measured between the concave surfaces of the corrugated sheet. Our corrugations are 2.425 X/ long, measured on the straight line ; they require a length of sheet of 2.72S" to make one corrugation, and the depth of corrugation is f| // . One corrugation is allowed for lap in the width of the sheet and 6 X/ in the length for the usual pitch of roof of two to one. Sheets can be corrugated of any length not exceeding ten feet. The most advantageous width is 3Q/4") which (allowing ^4 // for irregularities) will make eleven corrugations=30 // , or, making allowance for laps, will cover 24X X/ of the surface of thereof. By actual trial it was found that corrugated sheet No. 20, span- ning 6 feet, will begin to give a permanent deflection for a load of 30 fbs. per square foot, and that it will collapse with a load of 60 ft)s. per square foot. The distance between centers of purlins should therefore not exceed 6 feet, and, preferably, be less than this. 159 THE CARNEGIE STEEL COMPANY, LIMITED. CORRUGATED SHEETS, The following table is calculated for sheets 30j^ /; wide before corrugating. Mk 2 -j 5* 3 ** a a Weight per Square of 100 square feet, when laid, allowing 6" lap in length and 2>" or one corrugation in width of *{{ |l |J J* sheet, for sheet lengths of: +K m 1 Lbs. r Lbs, 5' 6' 7' 8' 9' 10' Lbs. 16 .065 2.61 3.28 365 358 353 350 348 346 2.95 18 .049 1.97 2.48 275 270 267 264 262 261 2.31 20 .035 1.40 1.76 196 192 190 188 186 185 1.74 22 .028 1.12 1.41 156 154 152 150 149 148 1.46 24 .022 .88 1.11 123 121 119 118 117 117 1.22 26 .018 .72 .91 101 99 97 97 96 95 1.06 NOTE. For weights per square laid with one and one-half lap, add to above 5 per cent. For weights per square laid with two laps, add to above 10 per cent. TRANSVERSE STRENGTH. l=Unsupported length of sheet, in inches. t=Thickness of sheet, in inches. b= Width of sheet, in inches. d=Depth of corrugations in inches: W=Breaking weight distributed in tons. w= " " " " pounds. W. J9.95 t.b.d. 1 99900 t.b.d. 1 THE CABNBGIE STEEL COMPANY, LIMITED. EXPLANATION OP TABLES ON MAXIMUM STRESSES IN PRATT AND WHIPPLE TRUSSES. Pages 163 to 165. These tables give the stress in each member of a Fratt (single quadrangular) or Whipple (double quadrangular) truss, for any number of panels not exceeding twelve in the former, and twenty in the latter case, on the assumption that the load is uniform per foot, and the panels are all of the same length. The stresses are given in terms of the truss-panel dead and moving loads, repre- sented respectively by W. and L. These are obtained by multi- plying the dead load per foot of bridge, in the case of W and the moving or live load per foot of bridge, in the case of L, by half the panel length. The letters W and L are placed at the top of column in tables, and not next to the figures to which they belong, for want of space. The stress in aB, for example, in a twelve panel Pratt truss, = 5.5 W + 5.5 L, and in Be == 4.5 W -f f f L, both multi- plied by the quotient specified in the last column. The system of lettering employed is shown by Figs. 1 and 2, on page 162, opposite, and, it is believed, is the best in use. By making a sketch of the truss under consideration and lettering the vertices in the manner shown, the truss members to which reference is had in the tables, can be readily identified. The dead load is assumed as concentrated at the lower vertices of the trusses, for through bridges, and at the upper vertices, for deck bridges. For through bridges of very large span, the stresses thus obtained for the posts must be increased by the truss- panel weight of the upper portion of the truss, including the lateral bracing ; but in small spans, the increase of stress on this account is so inconsiderable that it is usually neglected. Note : In order to calculate the stresses in a Whipple or double quadrangular truss by statical methods, it is necessary to consider the truss as the combination of two Pratt trusses or single systems of bracing, and assume that each of these two systems is strained in the same manner as if one were independent of the other. If the number of panels is odd, each of the two systems is unsym- metrical. which has the effect of making the stress in the middle panel of the lower chord slightly smaller than the stress in the THE CARNEGIE STEEL COMPANY, LIMITED. corresponding panel of the top chord. The difference is, how- ever, frequently neglected, End the stress in middle panel of bottom chord assumed the same as in middle panel of top chord. Each of the two systems is assumed to carry one-half of the panel load at the top of the inclined end posts. Fig.x Pratt or Single Quadrangular Truss. S C D E F G H Fig. 2 Whipple or Double Quadrangular Truss. f D E F G H I K L M N O Illustration of Application of Tables, also of the Use of Table of Natural Sines, Tangents and Secants. A Pratt truss of 135' span and 18' depth, is divided into nine panels of 15' each. Required the stress in first main tie Be, and in middle panel DE of top chord, for a dead load of 1200 Ibs., and a moving load of 3000 Ibs. per lineal foot of bridge. 15 =-9000 Ibs. L- X 15 - 22500 Ibs. 28 Length Be Bc-(8W+L)x -- - DE - (10 W -f- 10 L) The factor -r^ or panel length divided by depth of truss, is the tangent of the angle, for which the length Be, divided by depth of truss, is the secant. By table of natural sines, tangents and secants, for tangent -= jg ' 0.833, the secant 1.302 ; therefore : Be -= 97000 X 1.30 - 126100 Ibs. DE - 315000 X - 262500 Ibs. THE CARNEGIE STEEL COMPANY, LIMITED. MAXIMUM STRESSES UNDER DEAD AN3> MOVING LOADS IN PRATT OR SINGLE QUADRANGULAR TRUSSES With inclined end posts and equal panels, for Through and Deck Bridges. W = dead load and L = = moving load per trus $ and per panel. Member. 12 Panel Truss. 11 Panel Truss. 10 Panel Truss. 9 Panel Truss. 8 Panel Truss. Multi- ply by: W+L W+L W+L W+L W-fL aB 5.5H r 5.5 5+ 5 4.5+4.5 4+4 3.5+3.5 1* Be 4.5- rfl 4-- it 3.5+3.6 3- -V 2.5+ V Cd 3.5- _j .3. 3-- 2.5+2.8 2J -V 1.5+ V !!! De 2.5- -n 2-- 8 1.5+2.1 1- hV 0.5+ V * Ef 1.5+f| 1-- 1 0.5+1.5 o+V -0.5+ f II Fg 0.5+fl 0-- ^. -0.5+1.0 -i+f -1.5+ f Gh -0.5+lf -1-- ^. -1.5+0.6 hi -g^ Hi -1.5+if -2-- 6 T J abc 5.5+ 5.5 5+ 5 4.5+ 4.5 4H - 4 3.5-j -3.5 ^s BC, cd 10.0+10.0 9+ 9 8.0+ 8.0 7- - 7 6.0- -6.0 ^ 1* _ CD, de DE, ef 13.5+13.5 16.0+16.0 12+12 14+14 10.5+10.5 12.0+12.0 9- 10- - 9 -10 7.5- 8.0- -7.5 -8.0 i|i EF, fg 17.5+17.5 15+15 12.5+12.5 ^f FG 18.0+18.0 ^ Thro'. Deck. Oc 4.5H If 4+ . 5. 3.5H -3.6 3H h 2.5+ V Cc, Dd 3.5- 3+ &. 2.5- -2.8 2- hV 1.5+ V 5 Dd, Ee 2.5- -. --^ 2+ T 1.5- -2.1 14-V 0.5+ V *3 Be, Ff 1.5- ~fl 1+ L.1 0.5- -1.5 o+v -0.5+ 1 3 ; Gg 0.5- ' '--Q 0+ -0.5- -1.0 -0.5- Hi Member. 7 Panel Truss. 6 Panel Truss. 5 Panel Truss. 4 Panel Truss. 3 Panel Truss. Multi- ply by: W+L W+L W+L W+L W+L aB 3H h3 2.54 -2.5 2+2.0 1.5+1.5 1+1 |^| Be Cd 2- 1- -V -V 1.5- 0.5- V -1.0 1+1.2 0+0.6 0.5+| -0.5+ i o+l li^ De Ef 0- -1- -\ hf -0.5- -0.5 -1+0.2 fS abc 3+3 2.5+2.5 2+2 1.5+1.5 1+1 f-^1 BC, cd 5+5 4.0+4.0 3+3 2.0+2.0 1+1 's4 CDE,de 4.5+4.5 J-gi Thro'. Deck. ^ c Cc E+V 1.5+ V 1+1.2 0.5+ f Cc, Dd i+V 0.5+1.0 0+0.6 -0-5+1 .^ Dd 0+f -0.5+0.5 to THE CARNEGIE STEEL COMPANY, LIMITED. MAXIMUM STRESSES UNDER DEAD AND MOVING LOADS IN WHIPPLE OR DOUBLE QUADRANGULAR TRUSSES With inclined end posts and equal panels, for Through and Deck Bridges. W = dead load and L = moving load per truss and per panel. 20 Panel Truss. 19 Panel Truss. 18 Panel Truss. 17 Panel Truss. 16 Panel Truss. aB Be Bd Ce Df Eg Fh Gi Hk II Km Ln Mo abc cd de ef CD, DE, EF, gi FG, hi GH, ik HI, kl Thro'. Deck. Oc Dd Cc, Ee Dd, Ff % G H! ? Kk LI li Kk LI W+L 9.5+9.5 4.5+^ 4.0+W f|+J T I+w I +45 w- w+ vv- 4.54.9.0.1 4.0+s^ 3-5+W 3.0+ S 2.5+^' 2.0+%? w- w+w il+w tt+W fl+ r W+L 8.5+8.5 4.0+ *fc 8.5+fift 8.0+ W 2.5+%5 2.0+W 1.54.3^5 i.o+w 0.5+ W 0.0+ 2 T -0.5+ ift 5 -1.0+ i T 2 t 5 8.5+ 8.5 12.5+12.5 19.5+19.5 25.5+25.5 30.5+30.5 34.5+34.5 37.5+37.5 39.5+39.5 40.5+40.5 IK=HI 4.0+ W 3.5+4 3.0+5J t 5 2.5+W 2.0+42 f 5 1.5+ af t e i.o+w 0.5+ W 0.0+ W -0.5+ W W+L If + 5 fr ff+W ff+ 4 x ff+ 3 t ff+ 3 r ^ ^f+ 2 ] W+L 7.5+7.5 8.64-W 8.0+m 1 2.5+'% ; 2.0+ 3 T 5 ^ 1.5+ 3 Tt ! 1.0+W 0.5+ " 0.0+ -0.5+ -1.0+ -1.5+ 7.5+7.5 11+11 17+17 22+22 26+26 29+29 31+31 32+32 HI=GH 3.5+ 8.0+ 2.5-- 2.0- - 1-5+W l.O+W 0.5+ W 0.0+ W -0.5+ W 164 THE CARNEGIE STEEL COMPANY, LIMITED. MAXIMUM STRESSES UNDER DEAD AND MOVING LOADS IN WHIPPLE OR DOUBLE QUADRANGULAR TRUSSES With inclined end posts and equal panels, for Through and Deck Bridges. W=dead load and L = moving load per truss and per panel. M 15 Panel 14 Panel 13 Panel 12 Panel 11 Panel S^ Truss. Truss. Truss. Truss. Truss. *-s W+L W+L W+L W+L W+L aB 7+7 6.5+6.5 6+6 5.5+5.5 5+5 Be t+jfjj 3 O+^yx 5 || +WJ B.5+W 24 _|_ 24.5 1 Bd 2.5+3-fy; 2-0+ W i .[._ 2 0_._J J- Ce 1+w 2 0+ ^t- ff + ~Tf 5 TT + " ~TT Df 1.5+ 4v H+ 2 r 1.0-h* 9 1 12 . 5 "i* 8 Eg yr- + 2 y ^ 1.0+-j^ T 9 + ~^i" 0.5+-yA 5 T 2 T + "Vr" S"3 Fh +W 0.5+ ifV yJr+W 0.0+- T -f _^ T _j_-^ S-i' Gi A+W 0.0+i T 2 t 5 -0.5+|-f ~T 9 T + "TT" Hk _0.5+-^ -9 _|_ .6..|. 4!+-Tt 5 11 -II + -l--.l- -1.0+ TT' -il+- 3 rf Km -11 + -rf abc ^7+7^ 6.5+ 6.5 6+6 5.5+ 5.5 5+5 cd 9.5+ 9.5 W 3 +W 3 8.0+ 8.0 19 _|_ |9 -= BC, de CD, ef BE, fg W+W W+W 14.5+14.5 W + W 3 18.54-18.51 W+ 2 W 2i.5+2i.5;w4-T 12.0+12.0 Vi 9 + W 15.0+15.0 W+W 17.0+17.0 V+ W* jj SF, gh 23.5+23.5 Vv 9 +r^ 18.0+18.0 W+W l^-a FG, hi GHI W+W 4 W+W 24.5+24.5 GE-=FG W+W GH=FG *gh= FG=EF FG=EF ^f g = T 9 -I-T 9 -3 g< w+w 2 T+^ Thro'. Deck. Ce ^ _|_ 4^5 8-04- W 1 5. _|_ 3^5 2_5-|_ 3^5 |^._|_2^5 Dd ft +35 |0 -[_3f^5 2.0+24^5 ff+W Cc, Ee 2^0+ 4t 5 ft+W 1.5_[-2f^ 5 if "r-^t 5 ^ Dd, Ff |_ V. _ _ 3J^5 1.54- 3 J t & +w l.O-pfj 5 T 9 T + ^t 5 a Ee, Gg 18. -J-2J-5 1.0-fW y 9 T + 1 J^.5 05-1- --*- T'T. + "T'T*" Ff; Hh ji _)_ 2J^5 0.5+ 4 T 4 1T + J f t 0.0+4* -^-[-T'-f- 1g fV 4- ^t 5 0.0+ iyt 5 rfV + W -0.5+- 6 r -f I Hh "T 3 ? "^ "^^r 5 ~0.5- - Vx- lii! 165 THE CARNEGIE STEEL COMPANY, LIMITED. STANDARD CLEVIS NUTS. Distance H can be made to suit connections. Diam- eter of Round Bar. 1 m ?T 5 , Upset Screw End for Round Bar. tx 2 2X |f 8 2% Side of Square Bar. i Upset Screw End for Square Bar. 3 IP 3/8 3/8 Diameter of Eye. 7^ 7/8 Fork. V Thread. E Thick- ness of Bar in Fork. IX IX IX JX IX 1/8 Width of Bar in Fork. 8A I 8; 5X a Diameter of Pin. 1/8 2X * This Clevis used for all smaller Bars. 166 THE CARNEGIE STEEL COMPANY, LIMITED. STANDARD EYE BAB HEADS. SIZES IN INCHES. -IS I B 1 .1 4j 2 1? 1: s ft~ 1= 2^= 1? 1, ft s_ || l~ If ^ l a< la l| I? l f a 3 3 2K 7 3% 6/8 6 8 17 8% 15^ 3 3 7% 7 4/^ 15 7 1/ 12^ 3 %l4 8 4 4 P 7 5 15% 7^ 13^ 3 4' 8% 4?/ 7 5 1 A 16 8 14 3 4U 9 4% % l /2 7 6 16% 8/4^ 14% 3 5 9% 4^ 9 7 ft/4 17 8/ 15^ 3 5/4 10 5 95^ 7 7 17% 8|/ 15V 3 6 10% 5* iox 7 7 1 A 18 9 16/8 3 /4 11 5% 10|^ 7 8 18% 9/^ 17 3 7 11% H/8 7 %/4 19 9% 17^6 4 3 9 4% 744 7 9 19% 18H 4 3/^ 9% 8/8 8 5 17 8/^ 14H 4 4 10 5 /4 9 8 5)4 17% 8^/ 15 4 4/^ 10% 5X 99 8 ft 18 9 15f^ 4 5 11 5% 10^ 8 ft/4 18% 9M 16^" 4 b}4 11% 5% 103/ 8 7 19 9% 16^ 4 6 12 6 11M 8 7/2 19% 17^ 4 4 Y 2 13 2 6% lljf 12% 8 8 8 20 20% 10 4 18 18% 5 5 4 11 5% 53/ 10 2 8 8 9 2 21 21% 10^ 1$ 5 12 6 8 lo' 2 22 11 20>| 5 5 2 12% 6k HX 9 6 19% 9|/ 16|/ 5 5/4 13 6% \\y & 9 6% 20 10 5 6 13% 6^ 12^ 9 7 20% iox 5 ft/4 14 7 13 9 7/4 21 10% 5 5 7 7% 13% 1 4. ^X 9 9 8 8 II 4 19 T V 1 Q 1 1 6 6 6 4 t 13 14 2 6% 7 4 |i| 9 9 9 9 2 io /2 F 23% 11% 201i 21/8 6 6 ft 2 B* $ 13 8 13% 10 10 8 2 ff? UK 20^ 6 6 I 2 B* 5* 14 10 10 9 2 L 3K n^ 12 20H 21 rV 6 7/2 16% sy 15^ i . 1 i 167 ! THE CARNEGIE STEEL COMPANY, LIMITED. CONVENTIONAL SIGNS FOB RIVETING. SHOP. FIELD. TWO PULL HEADS. Countersunk Inside and Chipped. Countersunk Outside and Chipped. Countersunk Both Sides and Chipped. INSIDE. OUTSIDE. Q BOTH SIDES. Flattened to %" High or Countersunk and not Chipped. Flattened to 34" High. Flattened to %" High. This system, as designed by F. C. Osborne, C. E., has for foundation the diagonal cross to represent a countersink, the blackened circle for a field rivet, and the vertical stroke to indi- cate a flattened head. The position of the cross, with respect to the circle (inside, outside, or both sides), indicates the location of the countersink, and the number and position of the vertical strokes indicate the height and position of the flattened heads. Any combination of field, countersunk and flattened head rivets liable to occur may be readily indicated by the proper combina- tion of above signs. 168 THE. CARNEGIE STEEL COMPANY, LIMITED. NOTES ON ROOFS AND LOADS FOB SAME. Angles of roofs as commonly used. Proportion; of rise to span. ANGLE. Length of rafter to rise. Proportion of risa to span. ANGLE. Length of rafter to rise. Deg. Min. Deg. Min. X 1 2/1? 45 00 33 41 30 00 1.4142 1.8028 2.0000 X k 54 26 34 21 48 18 26 2.2361 2.6926 3.1623 APPROXIMATE LOADS PER SQUARE FOOT FOR ROOFS, OF SPANS UNDER 75 FEET, INCLUDING WEIGHT OF TRUSS. Roof covered with corrugated sheets, unbearded, - 8 pounds. Roof covered with corrugated sheets, on boards, - - 1 1 " Roof covered with slate, on laths, - - - - 13 " Same, on boards, l>/ x/ thick, - - 16 (l Roof covered with shingles, on laths, - - - 10 " Add to above, if plastered below rafters, - - - 10 " Snow, light, weighs per cubic foot, 5 to 12 " For spans over 75 feet, add 4 Ibs. to the above loads, per square foot. It is customary to add 30 Ibs. per square foot to the above for snow and wind, when separate calculations are not made. PRESSURE OF WIND ON ROOFS. (Unwin) a = Angle of surface of roof with direction of wind. F=Force of wind in Ibs. per square foot. A=Pressure normal to surface of roof=F Sin. a 1>84 Cos - "- 1 - B=Pressure perpendicular to direction of wind=F Cot. aSin a i84Cog.a. = Pressure parallel to direction of wind=F Sin. a 1>84 Cos - a - Angle of roof=a A=FX B=FX C=FX .125 .122 .01 10 .24 .24 .04 .45 .42 .15 i .57 40 .83 .64 .53 50 60 70 80 90 .95 1.00 1.02 1.01 1.00 .61 .50 .35 .17 .00 .73 .85 .96 .99 1.00 169 THE CARNEGIE STEEL COMPANY, LIMITED. ROOF TRUSSES. Tables for finding strains in members for roof trusses of the different types and pitches as given below and of any span. RULE. To find the strain in t ny member, multiply the coeffi- cient given for that member by total dead load carried by truss (-=span in feet X distance between trusses in feet X weight per square foot). If the truss is acted upon by wind forces or other unsymmetrical loading the strains in the members must be calcu- lated accordingly and combined with the dead load strains as found below. Member PITCH. (Depth to Span.) of Truss. t 30 i 7 "NTnTF, H^flvy linpc; Fig. 1. Aa Bb .675 .537 .750 .625 .838 .726 denote compression and 'qi 7 light li nes tension mem- Ca .563 .650 .750 .938 bers. Loads are con- Cc .375 .433 .500 .625 sidered as concentrated ab .208 .217 .224 909 ' at the joints. be .188 .217 .250 .313 Fig. 2. Aa .750 .833 .930 1.120 sr Bb .589 .666 .757 .928 PI K t *Ls/ Oc .568 .666 .783 .*995 ^^ / Da .625 .721 .833 1.042 A S\ / Dd aV> .375 A tt .433 A gry .500 A OA .625 ^ a W ab be .155 .155 .167 .167 .loO .180 ]202 C cd .250 .288 .333 .417 Fig. 3. Aa Bb .788 .718 .874 .812 .978 .922 1.178 Ff 2 Jrf 1.131 g ' 2 ' B/\C/ Cc .649 .750 .866 1.085 . ^i / Dd .580 .687 .810 1.038 JX'VXJ/ Ea .655 .758 .875 1 fiCM -^^ ^ SN ** Ef .562 .650 .750 .938 Ee .375 .433 .500 .625 ab .104 .108 .112 A A /> bf .093 .108 .125 J56 pjg 3 Cs^d/ fg .208 .216 .224 .232 " s^cy gc .093 .108 .125 .156 A^ 00 00 O O 00 CO CO OS s 00 rH CO C35 CD 00 8 82 Cj Cj CO 05 CO O tO CD ~0~0~ CM CO 05 CO T* U5 O O CO CO 10 O CO l> SO O O C- *& rH -^ 10 t> rH O CO IO OJ CO CO 28 00 rH eq co 8 to oo CO CO !~g 05 (M ^ to (M 05 eq (M CO CO O O 00 rH 00 rH CO I> i IO IO gT C Oi CO CO O O CSI O 00 O (M CO 00 rH 8 ss 2g 00 CO 3 O O O O O O rH 00 O5 tO CO rH 10 rH 10 00 CO 10 CO S CO 00 05 -tf rH CS 00 CO rH 00 tO CO rH 00 rH O 1> T}i rH CO CO ^1 iO CO CO rH O O C5 CO CO ^ CO IO CO 00 00 1> 00 "5~io ss 05 rH to IO )O >O tO to lOt"" WICC"" N IO t^ t^OO CDCQOOtOrHt^CO COC300 CO -f IOIO COCO t> 00 0005 OO MrH 175 THE CARNEGIE STEEL COMPANY, LIMITED. r^r ~8 3 M -r-l !i II nt Thicknes Rivet X T Value (=Di fe X E o o t^ 00 05 >O O iH Q CO O IO rH O5 05 O o o 10 I> ^^ ^^ 05 C5 tO O 10 05 CD t** t** t^ O O ^ 0^ CO 00 to to o o rH CO 05 CO to co O O lO O5 CO 1> to CO d CO to to o o to co E; M CD CD t* 3 So o 00 rH 05 Cl CO 03 CO CO o o 05 CO O5 rH f Ri ches. to 10 C- 3 .oS CO CM 00 CO T* tOtO CO 1>00 OOC5 tO rH to CO 85 176 THE CARNEGIE STEEL COMPANY, LIMITED. SPECIFICATIONS FOR CONSTRUCTIONAL IRON. CHARACTER ANO 1. All wrought iron must be tough, ductile, fibrous and of NISH ' uniform quality. Finished bars must be thoroughly welded during the rolling, and be straight, smooth and free from in- jurious seams, blisters, buckles, cracks or imperfect edges. MANUFACTURE. 2. No specific process or provision of manufacture will be demanded, provided the material fulfills the requirements oi these specifications. STANDARD TEST 3. The tensile strength, limit of elasticity and ductility, IECE> shall be determined from a standard test piece of as near % square inch sectional area as possible. The elongation shall be measured on an original length of 8 inches. ELASTIC LIMIT. 4. Iron of all grades shall have an elastic limit of not less than 26,COO pounds per square inch. HIGH TEST OR 5. When tested in specimens of uniform sectional area of at TENSION IRON. j east i^ square inch, taken from members which have been rolled to a section of not more than 4% square inches, the iron shall show a minimum ultimate strength of 50,000 pounds per square inch, and a minimum elongation of 18 per cent, in 8 inches. 6. Specimens taken from bars of a larger cross section than 4% square inches, will be allowed a reduction of 500 pounds for each additional square inch of section, down to a minimum of 48,000 pounds, and have an elongation of 15 per cent, in 8 inches. BENDING TEST. 7. All iron for tension members must bend cold through 90 degrees to a curve whose diameter is not over twice the thickness of the piece, without cracking. At least one sample in three must bend through 180 degrees to this curve, without cracking. When nicked on one side and bent by a blow from a sledge, the fracture must be mostly fibrous. ANGLE AND 8. The same sized specimens taken from angle and other >ED shaped iron shall have a minimum ultimate strength of 48,000 pounds per square inch, and a minimum elongation of 15 per cent, in 8 inches. 177 THE CARNEGIE STEEL COMPANY, LIMITED. 9. Specimens from angle and other shaped iron must bend cold through 90 degrees to a curve whose diameter is not over twice the thickness of the piece, without cracking. PLATES. 10. The same sized specimens, taken from plates 8 inches to 24 inches in width, shall show a minimum ultimate strength of 48,000 pounds per square inch, and a minimum elongation of 15 per cent, in 8 inches; plates from 24 inches to 86 inches wide shall show a minimum ultimate strength of 46,000 pounds per square inch, and elongate 10 per cent, in 8 inches ; plates over 36 inches wide shall have a minimum elongation of 8 per cent, in 8 inches. 11. Samples of plate iron shall stand bending cold through 90 degrees to a curve whose diameter is not over three times its thickness, without cracking. When nicked and bent cold, the fracture must be mostly fibrous. RIVET IRON. 12. Rivet iron shall have the same physical requirements as high test iron, and, in addition, shall bend cold 180 degrees to a curve whose diameter is equal to the thickness of the rod tested, without sign of fracture on the convex side. PIN IRON. 13. Specimens taken from pin iron under 4 inches diameter shall have a minimum ultimate strength of 50,000 pounds per square inch, and elongate 15 per cent, in 8 inches. Rounds over 4 inches diameter, having a minimum elongation of 10 per cent, in 8 inches will be satisfactory. FULL SIZE 14. Full size pieces of flat, round or square iron not over 4% inches in sectional area, shall have an ultimate strength of 50,000 pounds per square inch, and stretch 12% per cent, in the body of the bar. Bars of a larger sectional area than 4% square inches, will be allowed a reduction of 1,000 pounds per square inch, down to a minimum of 46,000 pounds per square inch, and stretch 10 per cent, in the body of the bar. VARIATION IN 15. The variation in cross section or weight of rolled IGHT> material of more than 2% per cent, from that specified, may be cause for rejection. THE CARNEGIE STEEL COMPANY, LIMITED. SPECIFICATIONS FOR CONSTRUCTIONAL STEEL. PROCESS OF 1. Steel may be made by either the Open Hearth or Bes- MANUFACTURE " semer process. TEST PIECES. 2. The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece cut from the finished material and planed or turned parallel ; the piece to have as near % square inch sectional area as possible, and elongation to be measured on an original length of 8 inches; two test pieces to be taken from each heat or blow of finished material, one for tension and one for bending. 3. Every finished piece of steel shall be stamped on one side near the middle with the blow number identifying the melt ; and steel for pins shall have the melt number stamped on the ends. Rivet and lacing steel, and small pieces for pin plates and stiffeners, may be shipped in bundles securely wired together, with the melt number on a metal tag attached. FINISH. 4. Finished bars must be free from injurious seams, flaws or cracks and have a workmanlike finish. GRADE OF STEEL. 5. Steel shall be of three grades : SOFT, MEDIUM, HIGH. SOFT STEEL. 6. Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of from 54,000 to 62,000 pounds per square inch ; elastic limit one-half the ulti- mate strength ; minimum elongation of 26 per cent, in 8 inches ; minimum reduction of area at fracture 50 per cent. This grade of steel to bend cold 180 degrees flat on itself, without sign of fracture on the outside of the bent portion. MEDIUM STEEL. 7. Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of 60,000 to 68,000 pounds per square inch ; elastic limit one-half the ulti- mate strength; minimum elongation 20 per cent, in 8 inches; minimum reduction of area at fracture, 40 per cent. This grade of steel to bend cold 180 degrees to a diameter equal to the thickness of the piece tested, without crack or flaw on the outside of the bent portion. THE CARNEGIE STEEL, COMPANY, LIMITED. HIGH STEEL. 8. Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of 66,000 pounds to 74,000 pounds per square inch ; elastic limit one-half the ultimate strength; minimum elongation 18 per cent, in 8 inches ; minimum reduction of area at fracture, 35 per cent. This grade of steel to bend cold 180 degrees, to a diameter equal to three times the thickness of the test piece, without crack or flaw on the outside of the bent portion. PIN STEEL. 9. Pins made of either of the above mentioned grades of steel, shall, on specimen test pieces cut from finished mater- ial, fill the physical requirements of the grade of steel from which it is rolled, for ultimate strength, elastic limit and bend- ing, but the elongation shall be decreased 5 per cent., and re- duction of area at fracture 10 per cent, from that specified. VARIATION IN 10. The variation in cross-section or weight of more than WEIGHT. gi^ p er ce nt. from that specified, will be sufficient cause for rejection. FULL SIZE TESTS 11. Full size tests of steel used for eye-bars shall not be re- STEEL BARS. q u ; re( j to s h ow mO re than 10 per cent, elongation in the body of the bar, and tensile strength not more than 4,000 pounds below the minimum tensile strength required in specimen tests, of the grade of steel from which it is rolled. SPECIFICATIONS FOR CONSTRUCTIONAL CAST IRON. 1. Except where chilled iron is specified, all castings shall be tough gray iron, free from injurious cold shuts or blow holes, true to pattern and of a workmanlike finish. Sample pieces 1 inch square cast from the same heat of metal in sand molds shall be capable of sustaining on a clear span of 4 feet 6 inches a central load of 500 pounds when tested in the rough bar. SPECIFICATIONS FOR WORKMANSHIP. iNSPtcTioN. 1 . Inspection of work shall be made as it progresses, and at as early a period as the nature of the work permits . ISO THE CARNEGIE STEEL. COMPANY, LIMITED. 2. All workmanship must be first class. All abutting sur- faces of compression members, except flanges of plate girders where the joints are fully spliced, must be planed or turned to- even bearings so that they shall be in such contact throughout as may be obtained by such means. All finished surfaces must be protected by white lead and tallow. 3. The rivet holes for splice plates of abutting members shall be so accurately spaced that when the members are brought into position the holes shall be truly opposite before the rivets are driven. 4. Rollers must be finished perfectly round and roller-beds planed. RIVETS. 5. The pitch of rivets in all classes of work shall never ex- ceed 6 inches, nor 16 times the thinnest outside plate, nor be less than 3 diameters of the rivet. The rivets used shall gen- erally be ^e t tyi an< ^ Y% inch diameter. The distance between the edge of any piece and the center of a rivet hole must never be less than 1^ inches, except for bars less than 2 % inches wide. When practicable it shall be at least two diameters of the rivet. Rivets must completely fill the holes, have full heads concentric with the rivet, of a height not less than . 6 the diameter of the rivet, and in full contact with the surface, or be countersunk when so required, and machine-driven wherever practicable. PUNCHING. 6. The diameter of the punch shall not exceed by more than 1-16 inch the diameter of the rivets to be used, and all holes must be clean cuts without torn or ragged edges. Rivet holes must be accurately spaced ; the use of drift pins will be allowed only for bringing together the several parts forming a member, and they must not be driven with such force as to disturb the metal about the holes. 7. Built members must, when finished, be true and free from twists, kinks, buckles, or open joints between the component pieces. EYE BARS AND 8. All pin-holes must be accurately bored at right angles to )LES. j|^ e ax j s o f ^6 members, unless otherwise shown in the draw- 181 THE CARNEGIE STEEL COMPANY, LIMITED. ings, and in pieces not adjustable for length no variation of more than 1-32 of an inch will be allowed in the length between centers of pin-holes ; the diameter of the pin-holes shall not ex- ceed that of the pins by more than 1-32 inch, nor by more than 1-50 inch for pins under 8% inches diameter. Eye-bars must be straight before boring ; the holes must be in the center of the heads, and on the center line of the bars. Whenever eye-bars are to be packed more than J4 of an inch to the foot of their length out of parallel with the axis of the structure, they must be bent with a gentle curve until the head stands at right angles to the pin in their intended position before being bored. All eye-bars belonging to the same panel, when placed in a pile, must allow the pin at each end to pass through at the same time without forcing. No welds will be allowed in the body ol the bar of eye-bars, laterals or counters, except to form the loops of laterals, counters and sway rods; eyes of laterals, stirrups, sway rods and counters must be bored; pins and lateral bolts must be finished perfectly round and straight, and the PILOT NUTS, party contracting to erect the work must provide pilot nuts where necessary to preserve the threads while the pins are being driven. Thimbles or washers must be used whenever required to fill the vacant spaces on pins or bolts. ANNEALING. 9. ^ n a ^ cases where a steel piece in which the full strength is required has been partially heated the whole piece must be subsequently annealed. All bends in steel must be made cold, or if the degree of curvature is so great as to require heating, the whole piece must be subsequently annealed. PAINTING. 10- All surfaces inaccessible after assembling must be well painted or oiled before the parts are assembled . 11. The decision of the engineer shall control as to the in- terpretation of drawings and specifications during the execu- tion of work thereunder, but this shall not deprive the con- tractor of his right to redress, after the completion of the work, for an improper decision 182 THE CARNEGIE STEEL COMPANY, LIMITED. NOTES ON STEEL AND IRON. 1. The average \veight of wrought iron is 480 Ibs. per cubic foot. A bar I inch square and 3 feet long weighs, therefore, exactly lo Ibs. Hence : To find the sectional area, given the weight per foot : Multiply by T 3 ^. To find the "weight per foot, given the sectional area : Multiply by M. 2. The weight of steel is 2 per cent, greater than that of wrought iron. 3. The center load, at which a bar of wrought iron I inch square and 12 inches center to center of points of support will give way, is very nearly one ton (of 2,240 Ibs.) 4. Within the elastic limit, the extension and compression of wrought iron is very nearly T7J ^ 7 of its length for a strain oi one ton (of 2,240 Ibs.) per square inch. For cast iron this ratio is -^-^ for tension, but becomes varia- ble for compression. 5. The contraction or expansion of wrought iron under changes of temperature is about y^^ of its length, for a varia- tion of 15 Fahrenheit. The strain thus induced, if the ends are held rigidly fixed, will be about one ton (of 2,240 Ibs.) per square inch of cross- section. 6. The coefficient of expansion of wrought iron, for 100 Fahrenheit, is 0.000686. Therefore, for a variation in tempera- ture of 125, a bar of wrought iron 100 feet long will expand or contract 1 .029 inches. Conversely: A change in length of I inch per hundred feet would be produced by a variation in temperature of 121 5 Fahrenheit. 7. The melting point of iron and steel is about as follows : Wrought iron, . . 3,000 Fahrenheit. Cast iron, .... 2.000 Steel ..... 2,400 " 8. The welding heat of wrought iron is 2,733 Fahrenheit. MISCELLANEOUS NOTES. I . Thrust of arch per lineal foot : I 5 wl 2 T= - - , in which w = load per square foot, r = rise in arch in inches, and 1 = span in feet. 2. Approximately the radius of gyration for a box section is T the least side. 183 THE CARNEGIE STEEL COMPANY, LIMITED. WOODEN PILLARS. Extensive tests have been made at the Watertown Arsenal, Mass., to determine the resistance of wooden posts to crushing. These tests, conducted partly by the U. S. Government and partly by Prof. Lanza, furnish the most reliable data existing at present on this subject. Prof. Lanza's experiments were made upon short rectangular blocks and upon circular posts such as are commonly used in mills. In diameter the latter ranged from 6% to io^ inches, in some cases tapering slightly towards the top. They were from 2 to 14 feet in length and were tested with flat ends. The following are the results thus obtained : ULTIMATE RESISTANCE TO COMPRESSION. POUNDS PER SQUARE INCH. KIND OP TIMBER. MAXIMUM. MINIMUM. MEAN. White Oak, . . . Yellow Pine, . . . 4450 5452 3006 3604 3470 4544 The timber employed in these tests was neither green nor thoroughly seasoned. It was selected so as to fairly represent its condition as ordinarily used for constructional purposes. Prof. Lanza made further a series of tests upon old and thor- oughly seasoned mill posts of white oak, some varying from 6% inches diameter at the base to 5^ inches at the top, and others having a uniform diameter of about lo inches. They were ap- proximately from 12 to 14 feet in length. For the ultimate resistance to compression in this case he obtained an average value of 3,957 pounds per square inch. It is to be noted that this result is only about 14 per cent, in excess of the mean value given above for similar posts of white oak of the character there described. In all the foregoing tests, failure took place by direct crushing, the bending of the post being too inconsiderable to materially affect the result. The other series of tests conducted at the Watertown Arsenal, was made upon rectangular posts with flat ends having a length of from 5 to 28 feet, and ranging in sectional area from 27 to 140 square inches. The results may be generalized as follows, calling the ratio of length of post to least side of cross-section, and f the ultimate resistance to compression, in pounds per square inch ; 184 THE CARNEGIE STEEL COMPANY, LIMITED. WHITE PINE. YELLOW PINE. J_ s ! Ratio of Decrease. J_ s f Ratio cf Decrease. OtolO 10 " 35 35 " 45 45 " 60 2500 2000 1500 1000 1.00 0.80 0.60 0.40 Oto 15 15 30 30 40 40 45 45 50 50 60 4000 3500 3000 2500 2000 1500 1.00 0.88 0.75 0.63 0.50 0.38 Experiments upon white oak posts of such lengths have up to the present time not been made. Probably values from 75 per cent, to 80 per cent, of those given for yellow pine may be safely assumed. "WOODEN BEAMS. The following is a general summary of the results obtained by Prof. Lanza from numerous experiments upon wooden beams. They were of an average section of about 12x4 inches and were tested for mean span lengths of about 18 feet: KIND OF TIMBER. Modulus of Rupture M (Moment^ forces causing rupture,) R (Moment of resistance of cross section.) Maximum. Minimum. Mean. Spruce, . . . White Pine, . . Oak, .... Yellow Pine, . . 5878 6415 7659 11360 2995 3438 4984 5092 4884 4808 6075 7292 The above statement of the maximum and minimum values does not consider the results obtained in a few isolated cases for which the conditions were radically different than for the others. It was found that the beams frequently gave way through longi- tudinal shearing near the neutral axis, though this was not as common a source of failure as breaking across the grain. For spruce, the mean intensity of the shearing strains, for beams that failed in this manner, was 191 Ibs., and for yellow pine 248 Ibs. For beams that failed otherwise, the mean inten- sity of shearing strains at the moment of rupture was very nearly the same. The conclusion appears, therefore, to be warranted that for soft timber there is an almost equal tendency for beams to fail by shearing longitudinally at the neutral axis, as by the tearing of the outside fibers. Owing to the wide range of the results obtained and the generally erratic behavior of timber subjected to strains, Prof. Lanza recommends the following values for Moduli of Rupture to be adopted in practice : 185 THE CARNEGIE STEEL COMPANY, LIMITED. Spruce and White pine, .... 3,ooo Ibs. Oak, . 4,000 " Yellow pine, , 5,ooo " These values are lower than heretofore in use and a safety factor of 4, on the basis of these values, may be assumed as ample for all cases. The following table has been calculated for extreme fibre strains of 750 Ibs. per square inch : SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR RECT- ANGULAR SPRUCE OR WHITE PINE BEAMS. ONE INCH THICK. (For oak, increase values in table by ^.) (For yellow pine, increase values in table by ^.) gl DEPTH OF BEAM. fe. 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 5 600 820 1070 1350 1670 2020 2400 2820 3270 3750 4270 6 500 680 890 1120 1390 1680 2000 2350 2730 3120 3560 7 430 580 760 960 1190 1440 1710 2010 2330 2680 3050 8 380 510 670 840 1040 1260 1500 1760 2040 2340 2670 9 330 460 590 750 930 1120 1330 1560 1810 2080 2370 10 300 410 530 670 830 1010 1200 1410 1630 1880 2130 11 270 370 490 610 760 920 1090 1280 1490 1710 1940 12 250 340 440 560 690 840 1000 1180 1360 1560 1780 13 230 310 410 520 640 780 930 1080 1260 1440 1640 14 210 290 380 480 590 720 860 1010 1170 1340 1530 15 200 270 360 450 560 670 800 940 1090 1250 1420 16 190 260 330 420 520 630 750 880 1020 1180 1330 17 180 240 310 400 490 590 710 830 960 1100 1260 18 170 230 290 370 460 560 670 780 910 1040 1190 19 160 210 280 360 440 530 630 740 860 990 1130 20 150 200 270 340 420 510 600 710 820 940 1070 21 140 190 260 320 390 480 570 670 780 890 1020 22 140 190 240 310 380 460 540 640 740 850 970 23 130 180 230 290 360 440 520 610 710 810 920 24 130 170 220 280 350 420 500 590 680 780 890 25 120 160 210 270 330 410 480 560 660 750 860 26 110 160 210 260 320 390 460 540 630 720 820 27 110 150 200 250 310 370 440 520 610 690 790 28 110 140 190 240 300 360 430 500 580 670 760 29 110 140 180 230 290 350 410 490 580 640 740 To obtain the safe load for any thickness : Multiply values for I inch by thickness of beam. To obtain the required thickness for any load : Divide by safe load for I inch. 186 THE CARNEGIE STEEL COMPANY, LIMITED. STRENGTH OF MATERIALS. ULTIMATE RESISTANCE TO TENSION IN LBS. PER SQUARE INCH. METALS AND ALLOYS. Aluminum Bronze, AVERAGE. 10 per cent Al. and 90 per cent. Copper, . 85000 i# " " 98^ " " 28000 Brass, cast, 1800O " wire, 49000 Bronze or gun metal, 36000 Copper, cast, 1900O sheet, 30000 bolts, 36000 " wire, (unannealed,) 60000 Iron, cast, 13,400 to 29,000, 16500 " wrought, round or square bars of I to 2 inch diameter, double refined, . . 50000 to 5400O " wrought, specimens ^ inch square, cut from large bars of double refined iron, . . 50000 to 530OO " wrought, double refined, in large bars of about 7 square inches section, . . 46000 to 47000 " wrought, universal mill plates, angles and other shapes, 48000 to 51000 wrought plates over 36" wide, . 46000 to 50000 The modulus of elasticity of Union Iron Mills' double refined bar iron is 25000000 to 27000000 from tests made on finished eye bars. Iron, wire, 70OOO to 100000 " wire ropes, 90000 Lead, sheet, 3300 Steel, 65000 to 120000 Tin, cast, 4600 Zinc, ....... 7000 to 8000 187 THE CARNEGIE STEEL COMPANY, LIMITED. STRENGTH OF MATERIALS. Continued. TIMBER, SEASONED, AND OTHER ORGANIC FIBER. Taken largely from Trautwine's pocket book, (edition of 1888.) AVERAGE. Ash, English, 1700O " American, . 1600O Beech, . 150OO to 18000 Birch, 15000 Cedar of Lebanon, 11400 " American, red, 10300 Fir or Spruce, 10000 Hempen Ropes, 12000 to 1600O Hickory, American, ....... 1100O Mahogany, 800O to 21800 Oak, American, white, .... 10000 to 18000 European, 100OO to 19800 Pine, American, white, red and pitch, Memel, Riga, . 10000 " " long leaf yellow, . . 12600 to 19200 Poplar, ........ 7000 Silk fiber, ........ 52000 Walnut, black, .... 16000 STONE, NATURAL AND ARTIFICIAL. Brick and Cement. . . . . . 280 to 300 Glass, 9400 Slate, ....... 9600 to 12800 Mortar, ordinary, . , . . . . . 50 ULTIMATE RESISTANCE TO COMPRESSION. METALS, Brass, cast, . ..... 10300 Iron, , 82000 to 145000 wrought, . ... . 38000 to 40OOO 188 THE CARNEGIE STEEL COMPANY, LIMITED. STRENGTH OF MATERIALS. Continued. TIMBER, SEASONED, COMPRESSED IN THE DIRECTION OF THE GRAIN. Taken largely from Trautwine's pocket book ; (edition of 1888.) AVERAGE. Ash, American, 680O Beech, " 7000 Birch, 8000 Cedar of Lebanon, . . . 5900 " American, red, 60OO Chestnut, 5300 Deal, red, . . . . . . . . 6500 Fir or Spruce, 5000 Hickory, 8000 Oak, American, white, ...... 7000 " British, 10OOO Dantzig, 7700 Pine, American, white, 5400 " " long leaf yellow, .... 8500 Walnut, black, 8000 STONE, NATURAL AND ARTIFICIAL. Brick, weak, 550 to 800 " strong, 1100 " nre, 1700 Brickwork, ordinary, in cement, . . . 300 to 600 best, 1000 Granite, 500O to 18000 Limestone, 400O to 16000 Sandstone, ordinary, .... 2500 to 10000 ULTIMATE RESISTANCE TO SHEARING. METALS. Iron, cast, 25000 " wrought, along the fiber, 45000 TIMBER, SEASONED, ALONG THE GRAIN. White Pine, Spruce, Hemlock, . . . 250 to 500 Yellow Pine, long leaf, ..... 30O to 600 Oak, 400 to 700 THE CARNEGIE STEEL COMPANY, LIMITED. LINEAR EXPANSION OF SUBSTANCES BY HEAT. To find the increase in the length of a bar of any material due to an increase of temperature, multiply the number of degrees of increase of temperature by the coefficient for 100 degrees and by the length of the bar, and divide by 100. NAME OF SUBSTANCE. Coefficient for 100 Fahrenheit. Coefficient for 180 Fahrenheit, or 100 Centigrade. Baywood, (in the direction of the J .00026 TO .00046 TO grain, dry,) - [ .00031 .OOO57 Brass, (cast,) - .00104 .00188 " (wire,) .O0107 .00193 Brick, (fire,) - .0003 .0005 Cement, (Roman,) - .0008 .0014 Copper, .0009 .0017 Deal, (in the direction of the grain, f .00024 .00044 dry,) - -{ Glass, (English flint,) - .00045 .00081 " (French white lead,) .00048 .00087 Gold, - .0008 .0015 Granite, (average,) .00047 .00085 Iron, (cast,) - .0006 .0011 " (soft forged,) .0007 .0012 " (wire,) - .0008 .0014 Lead, .0016 .0029 ( .00036 .00065 Marble, (Carrara,) \ TO TO I .0006 .0011 Mercury, .0033 .0060 Platinum, .0005 .0009 ( .0005 .0009 Sandstone, - - 1 TO TO 1 .0007 .0012 Silver, .0011 .002 Slate, (Wales,) .0006 .001 Water, (varies considerably with f the temperature,) - - \ .0086 .0155 ^ .^ ____^__ 190 THE CARNEGIE STEEL COMPANY, LIMITED, AREAS OF FLAT ROLLED BARS, For Thicknesses from y 1 ^ in. to 2 in. and Widths from 1 in. to 12% In. Thickness in Inches. 1" iK" w w 2" 2^" 2^" 2%' 12" A .063 .078 .094 .109 .125 .141 .156 .172 .750 i .125 .156 .188 .219 .250 .281 .313 .344 1.50 A .188 .234 .281 .328 .375 .422 .469 .516 2.25 1 .250 .313 .375 .438 .500 .563 .625 .688 3.00 A .313 .391 .469 .547 .625 .703 .781 .859 3.75 f .375 .469 .563 .656 .750 .844 .938 1.03 4.50 & .438 .547 .656 .766 .875 .984 1.09 1.20 5.25 i .500 .625 .750 .875 1.00 1.13 1.25 1.38 6.00 A .563 .703 .844 .984 1.13 1.27 1.41 1.55 6.75 .625 .781 .938 1.09 1.25 1.41 1.56 1.72 7.50 t* .688 .859 1.03 1.20 1.38 1.55 1.72 1.89 8.25 I .750 .938 1.13 1.31 1.50 1.69 1.88 2.06 9.00 it .813 1.02 1.22 1.42 1.63 1.83 2.03 2.23 9.75 1 .875 1.09 1.31 1.53 1.75 1.97 2.19 2.41 10.50 if .938 1.17 1.41 1.64 1.88 2.11 2.34 2.58 11.25 i 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 12.00 IA 1.06 1.33 1.59 1.86 2.13 2.39 2.66 2.92 12.75 1 1. 1.13 1.41 1.69 1.97 2.25 2.53 2.81 3.09 13.50 1 3_ 1.19 1.48 1.78 2.08 2.38 2.67 2.97 3.27 14.25 if 1.25 1.56 1.88 2.19 2.50 2.81 3.13 3.44 15.00 1_5 1.31 1.64 1.97 2.30 2.63 2,95 3.28 3.61 15.75 If 1.38 1.72 2.06 2.41 2.75 3.09 3.44 3.78 16.50 ITS 1.44 1.80 2.16 2.52 2.88 3.23 3.59 3.95 17.25 11 1.50 1.88 2.25 2.63 3.00 3.38 3.75 4.13 18.00 IA 1.56 1.95 2.34 2.73 3.13 3.52 3.91 4.30 18.75 i* 1.63 2.03 2.44 2.84 3.25 3.66 4.06 4.47 19.50 1.69 2.11 2.53 2.95 3.38 3.80 4.22 4.64 20.25 it 1.75 2.19 2.63 3.06 3.50 3.94 4.38 4.81 21.00 jit 1.81 2.27 2.72 3.17 3.63 4.08 4.53 4.98 21.75 1.88 2.34 2.81 3.28 3.75 4.22 4.69 5.16 22.50 Hf 1.94 2.42 2.91 3.39 3.88 4.36 4.84 5.33 23.25 2 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 24.00 191 1 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS OF FLAT ROLLED BARS. (CONTINUED.) Thickness in Inches. 3" 3M" W* BX" 4" m* w 4M 12" j .188 .203 .219 .234 .250 .266 .281 .297 .750 ? .375 .406 .438 .469 .500 .531 .563 .594 1.50 _3_ .563 .609 .656 .703 .750 .797 .844 .891 2.25 1 .7501 .813 .875 .938 1.00 1.06 1.13 1,19 3.00 T 5 r .938 1,02 1,09 1.17 1.25 1.33 1.41 1.48 3.75 f 1.13 1.22 1.81 1.41 1.50 1.59 1.69 1.78 4.50 A 1.31 1.42 1.53 1.64 1.75 1.86 1.97 2.08 5.25 ? 1.50 1.63 1.75 1.88 2.00 2.13 2.25 2.38 6.00 _ 9 ^ 1.69 1.83 1.97 2.11 2.25 2.39 2.53 2.67 6.75 f 1.88 2.03 2.19 2.34 2.50 2.66 2.81 2.97 7.50 H 2.06 2.23 2.41 2.58 2.75 2.92 3.09 3.27 8.25 f 2.25 2.44 2.63 2.81 3.00 3.19 3.38 3.56 9.00 it 2 - 4 4 2.64 2.84 3.05 3.25 3.45 3.66 3.86 9.75 2.63 12.84 3.06 3.28 3.50 3.72 3.94 4.16 10.50 if 2.81 13.05 3.28 3.52 3.75 3.98 4.22 4.45 11.25 I 1 3.00 13.25 3.50 3.75 4.00 4.25 4.50 4.75 12.00 jj. 3.19 3.45 3.72 3.98 4.25 4.52 4.78 5.05 12.75 If 3.38 3.66 3.94 4.22 4.50 4.78 5.06 5.34 13.50 4 3.56 3.86 4.16 4.45 4.75 5.05 5.34 5.64 14.25 u 3.75 4.06 4.38 4.69 5.00 5.31 5.63 5.94 15.00 JJL 3.94 4.27 4.59 4.92 5.25 5.58 5.91 6.23 15.75 1 ^ 4.13 4.47 4.81 5.16 5.50 5.84 6.19 6.53 16.50 iA 4.31 4.67 5.03 5.39 5.75 6.11 6.47 6.83 17.25 4.50 4.88 5.25 5.63 6.00 6.38 6.75 7.13 18.00 *A 4.69 5.08 5.47 5.86 6.25 6.64 7.03 7.42 18.75 if 4.88 5.28 5.69 6.09 6.50 6.91 7.31 7.72 19.50 5.06 5.48 5.91 6.33 6.75 7.17 7.59 8.02 20.25 if 5.25 5.69 6.13 6.56 7.00 7.44 7.88 8.31 21.00 lit 5.44 5.89 6.34 6.80 7.25 7.70 8.16 8.61 21.75 1? 5.63 6.09 6.56 7.03 7.50 7.97 8.44 8.91 22.50 5.81 6.30 6.78 7.27 7.75 8.23 8.72 9.20 23.25 2 16 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 24.00 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS OF FLAT ROLLED BARS. (CONTINUED.) Thickness in Inches. 5" 5M" 5W 5%" 6" 6K" 6K" 6%" 12" A .313 .328 .344 .359 .375 .391 .406 .422 .750 i .625 .656 .688 .719 .750 .781 .813 .844 1.50 A .938 .984 1.03 1.08 1.13 1.17 1.22 1.27 2.25 i 1.25 1.31 1.38 1.44 1.50 1.56 1.63 1.69 3.00 A 1.56 1.64 1.72 1.80 1.88 1.95 2.03 2.11 3.75 I 1.88 1.97 2.06 2.16 2.25 2.34 2.44 2.53 4.50 JL 2.19 2.30 2.41 2.52 2.63 2.73 2.84 2.95 5.25 I 2.50 2.63 2.75 2.88 3.00 3.13 3.25 3.38 6.00 T 9 S 2.81 2.95 3.09 3.23 3.38 3.52 3.66 3.80 6.75 t 3.13 3.28 3.44 3.59 3.75 3.91 4.06 4.22 7.50 a 3.44 3.61 3.78 3.95 4.13 4.30 4.47 4.64 8.25 3.75 3.94 4.13 4.31 4.50 4.69 4.88 5.06 9.00 IS 4.06 4.27 4.47 4.67 4.88 5.08 5.28 5.48 9.75 4.38 4.59 4.81 5.03 5.25 5.47 5.69 5.91 10.50 H 4.69 4.92 5.16 5.39 5.63 5.86 6.09 6.33 11.25 i 5.00 5.25 5.50 5.75 6.00 6.25 6.50 675 12.00 IT\ 5.31 5.58 5.84 6.11 6.38 6.64 6.91 7.17 12.75 1? 5.63 5.91 6.19 6.47 6.75 7.03 7.31 7.59 13.50 iA 5.94 6.23 6.53 6.83 7.13 7.42 7.72 8.02 14.25 u 6.25 6.56 6,88 7=19 7.50 7.81 8.13 8.44 15.00 I 1& 6.56 6.89 7.22 7.55 7.88 8.20 8.53 8.86 15.75 1? 6.88 7.22 7.56 7.91 8.25 8.59 8.94 9.28 16.50 4 7.19 7.55 7.91 8.27 8.63 8.98 9.34 9.70 17.25 i" 7.50 7.88 8.25 8.63 9.00 9.38 9.75 10.13 18.00 *& 7.81 8.20 8.59 8.98 9.38 9.77 10.16 10.55 18.75 if 8.13 8.53 8.94 9.34 9.75 10.16 10.56 10.97 19.50 IH 8.44 8.86 9.28 9.70 10.13 10.55 10.97 11.39 20.25 if 8.75 9.19 9.63 10.06 10.50 10.94 11.38 11.81 21.00 m 9.06 9.52 9.97 10.42 10.88 11.33 11.78 12.23 21.75 i? 9.38 9.84 10.31 10.78 11.25 11.72 12.19 12.66 22.50 HI 9.69 10.17 110.66 11.14 11.63 12.11 12.59 13.08 23.25 2 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 24.00 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS OP FLAT ROLLED BARS. (CONTINUED.) 'iliickness iu laches. 7/7 m n 7K" 7&" s " 8M" 8K" w 12" A .438 .453 .469 .484 .500 .516 .531 .547 .750 % .875 .906 .938 .969 1.00 1.03 1.06 1.09 1.50 JL 1.31 1.36 1.41 1.45 1.50 1.55 1.59 1.64 2.25 i 1.75 1.81 1.88 1.94 2.00 2.06 2.13 2.19 3.00 A 2.19 2.27 2.34 2.42 2.50 2.58 2.66 2.73 3.75 f 2.63 2.72 2.81 2.91 3.00 3.09 3.19 3.28 4.50 TV 3.06 3.17 3.28 3.39 3.50 3.61 3.72 3.83 5.25 1 3.50 3.63 3.75 3.88 4.00 4.13 4.25 4.38 G.OO T 9 * 3.94 4.08 4.22 4.36 4.50 4.64 4.78 4.92 6.75 f 4.38 4.53 4.69 4.84 5.00 5.16 5.31 5.47 7.50 H 4.81 4.98 5.16 5.33 5.50 5.67 5.84 6.02 8.25 1 5.25 5.44 5.63 5.81 6.00 6.19 6.38 6.56 9.00 If 5.69 5.89 6.09 6.30 6.50 6.70 6.91 7.11 9.75 ? 6.13 6.34 6.56 6.78 7.00 7.22 7.44 7.66 10.50 if 6.56 6.80 7.03 7.27 7.50 7.73 7.97 8.20 11.25 i 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 12.00 1A 7.44 7.70 7.97 8.23 8.50 8.77 9.03 9.30 12.75 H 7.88 8.16 8.44 8.72 9.00 9.28 9.56 9.84 13.50 i 8.31 8.61 8.91 9.20 9.50 9.80 jlO.09 10.39 14.25 u 8.75 9.06 9.38 9.69 10.00 10.31 10.63 10.94 15.00 1A 9.19 9.52 9.84 10.17 10.50 10.83 11.16 11.48 15.75 if ' 9.63 9.97 10.31 10.66 11.00 11.34 111.69 12.03 16.50 *A 10.06 10.42 10.78 jll.U 11.50 11.86 ! 12.22 12.58 17.25 i? 10.50 10.88 11.25 11.63 12.00 12.38 12.75 13.13 18.00 IA 10.94 11.33 11.72 12.11 12.50 12.89 13.28 13.67 18.75 H 11.38 11.78 12.19 (12.59 13.00 13.41 13.81 114.22 19.50 m 11.81 12.23 12.66 18.08 13.50 13.92 14.34 14.77 20.25 if 12.25 12.69 13.13 13.56 14.00 14.44 14.88 15.31 21.00 Hf 12.69 13.14 13.59 14.05 14.50 14.95 15.41 15.86 21.75 if 13.13 13.59 14.06 14.53 15.00 15.47 15.94 16.41 22.50 Hf 13.56 14.05 : 14.53 15.02 15.50 15.98 16.47 16.95 23.25 2 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 24-00 1 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS OF FLAT ROLLED BARS. (CONTINUED.) Thickness in Inches. 9" 8* 9K" W 10" i lO^" 10*" iof" 12" ~T~ .563 .578 .594 .609 .625 .641 .656 .672 .750 i 1.13 1.16 1.19 1.22 1.25 1.28 1.31 1.34 1.50 3 1.69 1.73 1.78 1.83 1.88 1.92 1.97 2.02 2.25 i 2.25 2.31 2.38 2.44 1 2.50 2.56 2.63 1 2.69 3.00 A 2.81 2.89 2.97 3.05 3.13 3.20 3.28 3.36 3.75 3.38 3.47 3.56 3.66 3.75 3.84 3.94 4.03 4.50 7 3.94 4.05 4.16 4.27 4.38 4.48 4.59 4.70 5.25 4.50 4.63 4.75 4.88 5.00 5.13 5.25 5.38 6.00 T* 5.06 5.20 5.34 5.48 5.63 5.77 5.91 6.05 6.75 A 5.63 5.78 5.94 6.09 6.25 6.41 6.56 6.72 7.50 6.19 6.36 6.53 6.70 6.88 7.05 7.22 7.39 8.25 t 6.75 6.94 7.13 7.31 7.50 7.69 7.88 8.06 9.00 it 7.31 7.52 7.72 7.92 8.13 8.33 8.53 8.73 9.75 7.88 8.09 8.31 8.53 8.75 8.97 9.19 9.41 10.50 15 8.44 8.67 8.91 9.14 9.38 9.61 9.84 10.08 11.25 ^ 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 12.00 ITS 9.56 9.83 10.09 10.36 10.63 110.89 11.16 11.42 12.75 1 10.13 10.41 10.69 10.97 11.25 11.53 11.81 12.09 13.50 1A 10.69 10.98 11.28 11.58 11.88 12.17 j 12.47 J12.77 14.25 1 1 11.25 11.56 11.88 12.19 12.50 12.81 13.13 13.44 15.00 If 5 - 11.81 12.14 12.47 12.80 13.13 13.45 13.78 14.11 15.75 If 12.38 12.72 13.06 13.41 13.75 14.09 14.44 14.78 16.50 ll 12.94 13.30 13.66 14.02 14.38 14.73 15.09 15.45 17.25 1? 13.50 i 13.88 14.25 14.63 15.00 15.38 15.75 16.13 18.00 IJL 14.06 14.45 14.84 15.23 15.63 16.02 16.41 16.80 18.75 iY 14.63 15.03 15.44 15.84 16.25 16.66 17.06 17.47 19.50 15.19 15.61 16.03 16.45 16.88 17.30 17.72 18.14 20.25 H 15.75 16.19 16.63 17.06 17.50 17.94 18.38 18.81 21.00 IT! 16.31 16.77 17.22 17.67 18.13 18.58 19.03 19.48 21.75 H 16.88 17.34 17.81 18.28 18.75 19.22 19.69 20.16 22.50 17.44 i 17.92 18.41 18.89 19.38 19.86 20.34 20.83 23.25 2 1 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 24.00 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS OF FLAT ROLLED BARS. (CONTINUED.) Thickness in Inches. 11" Hi' iii" ii!" 12" 12i" 12$" 12f" IS A .688; .703 .719 .734 .750 .766 .781 .797 IK | 1.38 1.41 1.44 1.47 1.50 1.53 1.56 1.59 5x 3^ 2 06 2.11 2.16 2.20 2.25 2.30 2.34 2.39 O Q 2.75 2.81 2.88 2.94 3.00 3.08 3.13 3.19 il T 5 7 3.44 3.52 3.59 3.67 3.75 3.83 3.91 3.98 rt X 1 4.13 4.22 4.31 4.41 4.50 4.59 4.69 4.78 Is A 4.81 4.92 5.03 5.14 5.25 5.36 5.47 5.58 t 5.50 5.63 5.75 5.88 6.00 6.13 6.25 6.38 H A 6.19 6.33 6.47 6.61 6.75 6.89 7.03 7.17 1 6.88 7.03 7.19 7.34 7.50 7.66 7.81 7.97 co Sa ii 7.56 7.73 7.91 8.08 8.25 8.42 8.59 8.77 ii I 8.25 8.44 8.63 8.81 9.00 9.19 9.38 9.56 j g if 8.94 9.14 9.34 9.55 9.75 9.95 10.16 10.36 il 9.63 9.84 10.06 10.28 10.50 10.72 10.94 11.16 a S H 10.31 10.55 10.78 11.02 11.25 11.48 11.72 11.95 1 -3 i 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 1 1 *A 11.69 11.95 12.22 12.48 12.75 13.02 13.28 13.55 JJ 1 .|. 12.38 12.66 12.94 13.22 J13.50 13.78 14.06 14.34 IF? 13.06 13.36 13.66 13.95 14.25 14.55 14.84 15.14 sK* 1 13.75 14.06 14.38 14.69 15.00 15.31 15.63 15.94 il? Ix 1^ 14.44 14.77 15.09 15.42 15.75 16.08 16.41 16.73 If 15.13 15.47 15.81 16.16 16.50 16.84 17.19 17.53 43 10 15.81 16.17 16.53 16.89 17.25 17.61 17.97 18.33 H 16.50 116.88 117.25 17.63 18.00 18.38 18.75 19.13 S | 8 t 17.19 17.58 17.97 18.36 18.75 19.14 19.53 19.92 il- 1 1 17.88 18.28 18.69 19.09 i 19.50 19.91 20.31 20.72 lu. 18.56 18.98 19.41 19.83 ;20.25 20.67 21.09 21.52 j ^ it 19.25 19.69 20.13 20.56 21.00 21.44 21.88 22.31 5|3 m 19.94 20.39 20.84 '21.30 121.75 22.20 22.66 23.11 !L- " il 20.63 121.09 21.56 ,22.03 J22.50 22.97 j23.44 23.91 21.31 21.80 22.28 122.77 23.25 23.73 '24.22 24.70 1^1 ^ ** 2 22.00 22.50 23.00 ;23.50 24.00 24.50 25.00 25.50 3 + 1 Q THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS OF FLAT ROLLED BARS. PER LINEAL FOOT. For thicknesses from T \ in. to 2 in. and "Widths from 1 in. to 12^ in. Thickness in inches. l x/ 1X 7/ 1X 7/ itf" 8" 2#" 2X X/ 2tf" 12" a .838 .850 .797 1.06 .957 1.28 1.11 1.49 1.28 1.70 1.44 1.91 1.59 2.12 1.75 2.34 7.65 10.20 | 1.06 1.28 1.49 1.70 1.33 1.59 1.86 2.12 1.59 1.92 2.23 2.55 1.86 2.23 2.60 2.98 2.12 2.55 2.98 3.40 2.39 2.87 3.35 3.83 2.65 3.19 3.72 4.25 2.92 3.51 4.09 4.67 12.75 15.30 17.85 20.40 5 1.92 2.12 2.34 2.55 2.39 2.65 2.92 3.19 2.87 3.19 3.51 3.83 3.35 3.72 4.09 4.47 3.83 4.25 4.67 5.10 4.30 4.78 5.26 5.75 4.78 5.31 5.84 6.38 5.26 5.84 6.43 7.02 22.95 25.50 28.05 30.60 1 i 2.76 2.98 3.19 3.40 3.45 3.72 3.99 4.25 4,14 4.47 4.78 5.10 4.84 5.20 5.58 5.95 5.53 5.95 6.38 6.80 6.21 6.69 7.18 7.65 6.90 7.44 7.97 8.50 7.60 8.18 8.77 9.35 33.15 35.70 38.25 40.80 $ $ 3.61 3.83 4.04 4.25 4.52 4.78 5.05 5.31 5.42 5.74 6.06 6.38 6.32 6.70 7.07 7.44 7.22 7.65 8.08 8.50 8.13 8.61 9.09 9.57 9.03 9.57 10.10 10.63 9.93 10.52 11.11 11.69 43.35 45.90 48.45 51.00 1! i> 4.46 4.67 4.89 5.10 5.58 5.84 6.11 6.38 6.69 7.02 7.34 7.65 7.81 8.18 8.56 8.93 8.93 9.35 9.78 10.20 10.04 10.52 11.00 11.48 11.16 11.69 12.22 12.75 12.27 12.85 13.44 14.03 53.55 56.10 58.65 61.20 $ IB 5.32 5.52 5.74 5.95 6.64 6.90 7.17 7.44 7.97 8.29 8.61 8.93 9.30 9.67 10.04 10.42 10.63 11.05 11.47 11.90 11.95 12.43 12.91 13.40 13.28 13.81 14.34 14.88 14.61 15.19 15.78 16.37 63.75 66.30 68.85 71.40 111 1** 6.16 6.38 6.59 6.80 7.70 7.97 8.24 8.50 9.24 9.57 9.88 10.20 10.79 11.15 11.53 11.90 12.33 12.75 13.18 13.60 13.86 14.34 14.83 15.30 15.40 15.94 16.47 17.00 16.95 17.53 18.12 18.70 73.95 76.50 79.05 81.60 1 Q 1 ? THE CABNEGIE STEEL COMPANY, LIMITED. WEIGHTS OP FLAT ROLLED BARS. PER LINEAL FOOT. (CONTINUED.) Thickness in inches. ff " 4#" " W 18" # m V4 $ 1.91 2.55 2.07 2.76 2.23 2.98 2.39 3.19 2.55 3.40 2.71 3.61 2.87 3.83 3.03 4.04 7.65 10.20 A " VjT 3.19 3.83 4.46 5.10 3.45 4.15 4.83 5.53 3.72 4.47 5.20 5.95 3.99 4.78 5.58 6.38 4.25 5.10 5.95 6.80 4.52 5.42 6.32 7.22 4.78 5.74 6.70 7.65 5.05 6.06 7.07 8.08 12.75 15.30 17.85 20.40 fi 9 5.74 6.38 7.02 7.65 6.22 6.91 7.60 8.29 6.70 7.44 8.18 8.93 7.17 7.97 8.76 9.57 7.65 8.50 9.35 10.20 8.13 9.03 9.93 10.84 8.61 9.57 10.52 11.48 9.09 10.10 11.11 12.12 22.95 25.50 28.05 30.60 8 , 8.29 8.93 9.57 10.20 8.98 9.67 10.36 11.05 9.67 10.41 11.16 11.90 10.36 11.16 11.95 12.75 11.05 11.90 12.75 13.60 11.74 12.65 13.55 14.45 12.43 13.39 14.34 15.30 13.12 14.13 15.14 16.15 33.15 35.70 38.25 40.80 | 10.84 11.48 12.12 12.75 11.74 12.43 13.12 13.81 12.65 13.39 14.13 14.87 13.55 14.34 15.14 15.94 14.45 15.30 16.15 17.00 15.35 16.26 17.16 18.06 16.26 17.22 18.17 19.13 17,16 18.17 19.18 20.19 43.35 45.90 48.45 51.00 1 13.39 14.03 14.66 15.30 14.50 15.20 15.88 16.58 15.62 16.36 17.10 17.85 16.74 17.53 18.33 19.13 17.85 18.70 19.55 20.40 18.96 19.87 20.77 21.68 20.08 21.04 21.99 22.95 21.20 22.21 23.22 24.23 53.55 56.10 58.65 61.20 1 15.94 16.58 17.22 17.85 17.27 17.96 18.65 19.34 18.60 19.34 20.08 20.83 19.92 20.72 21.51 22.32 21.25 22.10 22.95 23.80 22.58 23.48 24.38 25.29. 23.91 24.87 25.82 26.78 25.24 26.25 27.26 28.27 63.75 66.30 68.85 71.40 P 18.49 19.13 19.77 20.40 20.03 20.72 21.41 22.10 21.57 22.31 23.06 23.80 23.11 23.91 24.70 25.50 24.65 25.50 26.35 27.20 26.19 27.10 28.00 28.90 27.73 28.69 29.64 30.60 29.27 30.28 31.29 32.30 73.95 76.50 79.05 81.60 198 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTSJ3F PLAT ROLLED BARS. PER LINEAL FOOT. (CONTINUED.) Thickness in inches. 5" w &#" w &>' 6X /X 6% x/ 6^" 12" t 3.19 4.25 3.35 4,46 3.51 4.67 3.67 4.89 3.83 5.10 3.99 5.31 4.14 5.53 4.30 5.74 7.65 10.20 I 5.31 6.38 7.44 8.50 5.58 6.69 7.81 8.93 5.84 7.02 8.18 9.35 6.11 7.34 8.56 9.77 6.38 7.65 8.93 10.20 6.64 7.97 9.29 10.63 6.90 8.29 9.67 11.05 7.17 8.61 10.04 11.48 12.75 15.30 17.85 20.40 ft i 9.57 10.63 11.69 12.75 10.04 11.1? 12.27 13.39 10.52 11.69 12.85 14.03 11.00 12.22 13.44 14.67 11.48 12.75 14.03 15.30 11.95 13.28 14.61 15.94 12.43 13.81 15.20 16.58 12.91 14.34 15.78 17.22 22.95 25.50 28.05 30.60 , 13.81 14.87 15.94 17.00 14.50 15.62 16.74 17.85 15.19 16,36 17.53 18.70 15.88 17.10 18.33 19.55 16.58 17.85 19.13 20.40 17.27 18.60 19.92 21.25 17.95 19.34 20.72 22.10 18.65 20.08 21.51 22.95 33.15 35.70 38.25 40.80 ..i 18.06 19.13 20.19 21.25 18.96 20.08 21.20 22.32 19.87 21.04 22.21 23.38 20.77 21.99 23.22 24.44 21.68 22.95 24.23 25.50 22.58 23.91 25.23 26.56 23.48 24.87 26.24 27.62 24.39 25.82 27.25 28.69 43.35 45.90 48.45 51.00 ifV l^ 8 22.32 23.38 24.44 25.50 23.43 24.54 25.66 26.78 24.54 25.71 26.88 28.05 25.66 26.88 28.10 29.33 26.78 28.05 29.33 30.60 27.90 29.22 30.55 31.88 29.01 30.39 31.77 33.15 30.12 31.56 32.99 34.43 53.55 56.10 58.65 61.20 i T 9 * if? 1 26.57 27.63 28.69 29.75 27.89 29.01 30.12 31.24 29.22 30.39 31.55 32.73 30.55 31.77 32.99 34.22 31.88 33.15 34.43 35.70 33.20 34.53 35.86 37.19 34.53 35.91 37.30 38.68 35.86 37.29 38.73 40.17 63.75 66.30 68.85 71.40 A J 30.81 31.87 32.94 34.00 32.35 33.47 34.59 35.70 33.89 35.06 36.23 37.40 35.43 36.65 37.88 39.10 36.98 38.25 39.53 40.80 38.52 39.85 41.17 42.50 40.05 41.44 42.82 44.20 41.60 43.03 44.46 45.90 73.95 76.50 79.05 81,60 199 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS OF FLAT ROLLED BARS- PER LINEAL FOOT. (CONTINUED.) Thickness in inches. 7" w %" 7#" 8" 8X- 8X" 8*f- 12" 4.46 5.95 4.62 6.16 4.78 6.36 4.94 6.58 5.10 6.80 5.26 7.01 5.42 7.22 5.58 7.43 7.65 10.20 1 7.44 8.93 10.41 11.90 7.70 9.25 10.78 12.32 7.97 9.57 11.16 12.75 8.23 9.88 11.53 13.18 8.50 10.20 11.90 13.60 8.76 10.52 12.27 14.03 9.03 10.84 12.64 14.44 9.29 11.16 13.02 14.87 12.75 15.30 17.85 20.40 1 13.39 14.87 16.36 17.85 13.86 15.40 16.94 18.49 14.34 15.94 17.53 19.13 14.82 16.47 18.12 19.77 15.30 17.00 18.70 20.40 15.78 17.53 19.28 21.04 16.26 18.06 19.86 21.68 16.74 18.59 20.45 22.32 22.95 25.50 28.05 30.60 i 19.34 20.83 22.32 23.80 20.03 21.57 23.11 24.65 20.72 22.32 23.91 25.50 21.41 23.05 24.70 26.35 22.10 23.80 25.50 27.20 22.79 24.55 26.30 28.05 23.48 25.30 27.10 28.90 24.17 26.04 27.89 29.75 33.15 35.70 38.25 40.80 || 25.29 26.78 28.26 29.75 26.19 27.73 29.27 30.81 27.10 28.68 30.28 31.88 28.00 29.64 31.29 32.94 28.90 30.60 32.30 34.00 29.80 31.56 33.31 35.06 30.70 32.52 34.32 36.12 31.61 33.47 35.33 37.20 43.35 45.90 48.45 51.00 1 31.23 32.72 34.21 35.70 32.35 33.89 35.44 36.98 33.48 35.06 36.66 38.26 34.59 36.23 37.88 39.53 35.70 37.40 39.10 40.80 36.81 38.57 40.32 42.08 37.93 39.74 41.54 43.35 39.05 40.91 42.77 44.63 53.55 56.10 58.65 61.20 iH IH 37.19 38.67 40.16 41.65 38.51 40.05 41.59 43.14 39.84 41.44 43.03 44.63 41.17 42.82 44.47 46.12 42.50 44.20 45.90 47.60 43.83 45.58 47.33 49.09 45.16 46.96 48.76 50.58 46.49 48.34 50.20 52,07 63.75 66.30 68.85 71.40 IH 43.14 44.63 46.12 47.60 44.68 46.22 47.76 49.30 46.22 47.82 49.41 51.00 47.76 49.40 51.05 52.70 49.30 51.00 52.70 54.40 50.84 52.60 54.35 56.10 52.38 54.20 56.00 57.80 53.92 55.79 57.64 59.50 73.95 76.50 79.05 81.60 200 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS OP PLAT ROLLED BARS. PER LINEAL FOOT. (CONTINUED.) Thickness in inches. 9" 9^" 9X" 9^" 10" W Wiotf" 12" 1l 5.74 7.65 5.90 7.86 6.06 8.08 6.22 8.29 6.38 8.50 6.54 8.71 6.70 8.92 8.86 9.14 7.65 10.20 ft t 9.56 11.48 13.40 15.30 9.83 11.80 13.76 15.73 10.10 12.12 14.14 16.16 10.36 12.44 14.51 16.58 10.62 12.75 14.88 17.00 10.89 13.07 15.25 17.42 11.16 13.39 15.62 17.85 11.42 13.71 15.99 18.28 12.75 15.30 17.85 20.40 8 % 17.22 19.13 21.04 22.96 17.69 19.65 21.62 23.59 18.18 20.19 22.21 24.23 18.65 20.72 22.79 24.86 19.14 ?1.25 23.38 25.50 19.61 21.78 23.96 26.14 20.08 22.32 24.54 26.78 20.56 22.85 25.13 27.42 22.95 25.50 28.05 30.60 t a 24.86 26.78 28.69 30.60 25.55 27.52 29.49 31.45 26.24 28.26 30.28 32.30 26.94 29.01 31.08 33.15 27.62 29.75 31.88 34.00 28.32 30.50 32.67 34.85 29.00 31.24 33.48 35.70 29.69 31.98 34.28 36.55 33.15 35.70 38.25 40.80 ii it 32.52 34.43 36.34 38.26 33.41 35.38 37.35 39.31 34.32 36.34 38.36 40.37 35.22 37.29 39.37 41.44 36.12 38.25 40.38 42.50 37.03 39.21 41.39 43.56 37.92 40.17 42.40 44.63 38.83 41.12 43.40 45.69 43.35 45.90 48.45 51.00 $ $ 40.16 42.08 44.00 45.90 41.28 43.25 45.22 47.18 42.40 44.41 46.44 48.45 43.52 45.58 47.66 49.73 44.64 46.75 48.88 51.00 45.75 47.92 50.10 52.28 46.86 49.08 51.32 53.55 47.97 50.25 52.54 54.83 53.55 56.10 58.65 61.20 IS 1 47.82 4973 51.64 53.56 49.14 51.10 53.07 55.04 50.48 52.49 54.51 56.53 51.80 53.87 55.94 58.01 53.14 55.25 57.38 59.50 54.46 56.63 58.81 60.99 55.78 58.02 60.24 62.48 57.11 59.40 61.68 63.97 63.75 66.30 68.85 71.40 i| P 55.46 57.38 59.29 61.20 57.00 58.97 60.94 62.90 58.54 60.56 62.58 64.60 60.09 62.16 64.23 66.30 61.62 63.75 65.88 68.00 63.17 65.35 67.52 69.70 64.70 66.94 69.18 71.40 66.24 68.53 70.83 73.10 73.95 76.50 79.05 81.60 201 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS OF FLAT ROLLED BARS. PER LINEAL FOOT. (CONTINUED.) Thickness in inches. 11" HX" 11#" H#" 12" i&" 12X" 1" | ! M T 3 r 7.02 7.17 7.32 7.49 7.65 7.82 7.98 8.13 'S X X 9.34 9.57 9.78 10.00 10.20 10.42 10.63 10.84 fi JL 11.68 11.95 12.22 12.49 12.75 13.01 13.28 13.55 H 14.03 14.35 14.68 14.99 15.30 15.62 15.94 16.26 ji ^ 2 16.36 16.74 17.12 17.49 17.85 18.23 18.60 18.97 o .2 o o X 18.70 19.13 19.55 19.97 20.40 20.82 21.25 21.67 i! A 21.02 21.51 22.00 22.48 22.95 23.43 23.90 24.39 i X 23.38 23.91 24.44 24.97 25.50 26.03 26.56 27.09 M ^ s 25.70 26.30 26.88 27.47 28.05 28.64 29.22 29.80 S' 28.05 28.68 29.33 29.97 30.60 31.25 31.88 32.52 i J 03 i 37.40 38.25 39.10 39.95 40.80 41.65 42.50 43.35 J J 1 T V 39.74 40.64 41.54 42.45 43.35 44.25 45.16 46.06 ll l/^ 42.08 43.04 44.00 44.94 45.90 46.86 47.82 48.77 "o i" lye 44.42 45.42 46.44 47.45 48.45 49.46 50.46 51.48 rt 3 ^ IX 46.76 47.82 48.88 49.94 51.00 52.06 53.12 54.19 fl ifV 49.08 50.20 51.32 52.44 53.55 54.67 55.78 56.90 rrf ^ iU 51.42 52.59 53.76 54.93 56.10 57.27 58.44 59.60 1 .2 o ,d ift 53.76 54.99 58.21 57.43 58.65 59.87 61.10 62.32 If ix 56.10 57.37 58.65 59.93 61.20 62.48 63.75 65.03 ffc tj l-V 58.42 59.76 61.10 62.43 63.75 65.08 66.40 67.74 la- 1>I 60.78 62.16 63.54 64.92 66.30 67.68 69.06 70.44 O ^2 63.10 64.55 65.98 67.42 68.85 70.29 71.72 73.15 7! -*a 5 iff 65.45 66.93 68.43 69.92 71.40 72.90 74.38 75.87 s ** 7 -2 ^- II Ht 67.80 69.33 70.86 72.41 73.95 75.48 77.03 78.57 ||i 1# 70.12 71.72 73.31 74.90 76.50 78.09 79.69 81.28 J -3 -f- HI 72.46 74.11 75.76 77.41 79.05 80.70 82.34 83.99 ** M =3 2 74.80 76.50 78.20 79.90 81.60 83.30 85.00 86.70 202 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS AND AREAS OF SQUARE AND ROUND BARS AND CIRCUMFER- ENCES OF ROUND BARS. One cubic foot weighing 490 Ibs. Thickness Weight of Weight of Area of Area of Circumference or Diameter ED Bar O Bar CD Bar O Bar of O Bar in Inches. One Foot long. One Foot long. in sc[. inches. in sq. inches. in inches. .013 .010 .O039 .0031 .1963 .053 .042 .O156 .0123 .3927 .119 .094 .O352 .0276 .5890 1 .212 .167 .O625 .0491 .7854 JL .333 .261 .O977 .0767 .9817 3 .478 .375 .1406 .1104 1.1781 A .651 .511 .1914 .1503 1.3744 i .850 .667 .2500 .1963 1.5708 9^ 1.076 .845 .3164 .2485 1.7671 |^ 1,328 1.043 .3906 .3068 1.9635 TF 1608 1.262 .4727 .3712 2.1598 1 1.913 1.502 .5625 .4418 2.3562 it 2.245 1.763 .6602 .5185 2.5525 1 2.603 2.044 .7656 .6013 2.7489 if 2.989 2.347 .8789 .6903 2.9452 1 3.400 2.670 1.0000 .7854 3.1416 A 3.838 3.014 1.1289 .8866 3.3379 4.303 3.379 1.2656 .9940 3.5343 A 4.795 3.766 1.4102 1.1075 3.7306 i 5.312 4.173 1.5625 1.2272 3.9270 JL. 5.857 4.600 1.7227 1.3530 4.1233 |. 6.428 5.049 1.8906 1.4849 4.3197 & 7.026 5.518 2.0664 1.6230 4.5160 \ 7.650 6.008 2.2500 1.7671 4.7124 A 8.301 6.520 2.4414 1.9175 4.9087 f 8.978 7.051 2.6406 2.0739 5.1051 H 9.682 7.604 2.8477 2.2365 5.3014 I 10.41 8.178 3.0625 2.4053 5.4978 it 11.17 8.773 3.2852 2.5802 5.6941 i 11.95 9.388 3.5156 2.7612 5.8905 B 12.76 10.02 3.7539 2.9483 6.0868 Q/-JO THE CARNEGIE STEEL COMPANY, LIMITED. SQUARE AND ROUND BARS. (CONTINUED.) Thickness or Diameter in Inches. Weight of QBar One Foot long. Weight of O Bar One Foot long. Area of . C]Bar in s| 2^ 3.18 3.54 3.89 69 54 41 1% 319. 400. 500. 62G. if ip 3 3^ 4.24 4.60 4.95 5.30 31.3 24.8 19.9 16.2 2 2% 2% 2y 750. 780. 930. 960. 1130. 1370. 2 2 4 4 4J/ 5.66 5.66 6.01 6.01 6.36 6.72 13.4 12.8 10.7 10.4 8.9 7.3 3 1610. 2110. 2750. 3Jl 3 5 5>^ 6 7.07 7.78 8.49 6.2 4.7 3.6 211 THE CARNEGIE STEEL, COMPANY, LIMITED. SIZES AND WEIGHTS OF HOT PRESSED HEXAGON NUTS. The sizes are the usual manufacturers', not the Franklin Institute Standard. Both weights and sizes are for the unfinished Nut. The weights are calculated, one cubic foot weighing 480 Ibs. Size of Weight of Bolt. | 100 Mute. Rough Hole. Thickness of Hut. Short Diameter. Long Diameter. No. of Nuts in 100 Ibs. I T* 1.3 2.4 4.1 6.8 1 II 1 .58 .72 .87 1.01 8000 4170 2410 1460 A 7.1 9.8 14.0 s 1 1 * 1.01 1.15 1.30 1410 1020 710 I 14.7 19.1 22.9 1 I | 1.30 1.44 1.44 680 520 440 I 7/ /3 27.2 39. 44. 50. it I 1 1.59 1.73 1.88 1.88 370 256 226 198 1 1 57. 64. 96. 1 1 ll 2.02 2.02 2.31 176 156 104 }| 134. 180. 235. 8 l| |f 2.60 2.89 3.18 75 56 42 jP 300. 370. 460. H 3 3.46 3.75 4.04 33.4 26.7 21.5 2 450. 560. 560. 2 3^ 4.04 4.33 4.33 22.4 18.0 17.7 in 680. 810. 980. li* 1 4 4.62 4.91 5.20 14.7 12.3 10.2 3 1150. 1340. 1580. 2H 3 5 4 5.48 5.77 6.06 8.7 7.5 6.3 212 THE CARNEGIE STEEL, COMPANY, LIMITED. UPSET SCREW ENDS FOR ROUND AND SQUARE BARS. Dia. of ROUND BARS. SQUARE BARS. Round or Side of cquare Bar. Inches. Dia. of Upset Screw End. Inches. Dia. of Screw at Root of Thread. Inches. Threads per Inch. No. Excess of Effective Area of Screw End over Bar. Per Cent. Dia. of Upset Screw End. Inches. Dia. of Screw at Root of Thread. Inches. Threads per Inch. No. Excess of Effective Area of Screw End over Bar. Per Cent K K .620 10 54 H .620 10 21 T 9 * % .620 10 21 .731 9 33 % % .731 9 37 1 .837 8 41 n i .837 8 48 1 .837 8 17 X i .837 8 25 \\/ .940 7 23 H IK .940 7 34 m 1.065 7 35 % 11^ 1.065 7 48 \% 1.160 6 38 M i/2 1.065 7 29 1% 1.160 6 20 1 \y 1.160 6 35 IK 1.284 6 29 \% 1.160 6 19 IX 1.389 5^2 34 IK \% 1.284 6 30 IK 1.389 Qyn 20 ify IK 1.284 6 17 1.490 5 24 \\y i^ 1.389 5K 23 \y 1.615 6 31 ITS ij| 1.490 5 2 29 \% 1.615 5 19 \y IK 1.490 5 18 2 1.712 4K 22 ITS IK 1.615 5 26 2K 1.837 4K 28 IK 2 1.712 4K 30 2K 1.837 41^ 18 I T \ 2 1.712 4K 20 2M 1.962 4K 24 |Sg 8K 1.837 4K 28 2% 2.087 4K 30 iff 2K 1.837 4K 18 2.087 4K 20 w 2^ 1.962 4K 26 2K 2.175 4 21 iff 2K 1.962 4 K 17 2% 2.300 4 25 IV 2% 2.087 4 1/ 24 %5/ 2.300 4 18 Hf 2K 2.175 4 X 26 2K 2.425 4 23 2 2K 2.175 4 18 g?/ 2.550 4 28 2.300 4 24 2% 2.550 4 20 ^78 4 9.300 4 17 3 2.629 3K 20 2 T V 2% 2.426 23 2.754 3K 24 i 213 THE CARNEGIE STEEL COMPANY, LIMITED. UPSET SCREW ENDS. (CONTINUED.) Dia. of ROUND BARS. SQUARE BARS. Round or Side of Square Bar. Inches. Dia. of Upset Screw End. Inches. Dia. of Screw at Root of Thread. Inches. Threads per Inch. No. Excess of Effective Area of Screw End \ over Bar. \ Per Cent. Dia. of Upset Screw End. Inches. Dia. of Screw at Root of Thread. Inches. Threads per Inch. No. Excess of Effective Area of Screw End over Bar. Per Cent. "^T 2% 2.550 4 28 3M 2.754 3^ 18 2 T \ 2% 2.550 4 22 3)4 2.879 %% 22 2% 3 2.629 3/ 23 3^ 3.004 3/4 26 %% 2.754 3> 28 3.004 3/1 19 jL/ 31^ 2.754 3K 21 33^ 3.100 3i/ 21 2 T 9 g- 334 2.879 3j^ 26 3% 3.225 m 24 2% 3ix 2.879 3^ 20 3^ 3.225 31^ 19 2yi 3% 3.004 25 3.317 3 20 2% 8& 3.004 3K 19 8% 3.442 3 23 2yf 3.100 3>| 22 3.442 3 18 %y 3% 3.225 V/A, 26 4 3.567 3 21 2i! 3^ 3.225 3K 21 *bi 3.692 3 24 3 33/ 3.317 3 22 41^ 3.692 3 19 % 3% 3.442 3 21 4% 3.923 2% 24 31^ 4 3.567 3 20 41^ 4.028 2% 21 3% 4M 3.692 3 20 4% 4.153 19 S 1 ^ 41^ 3.798 2% 18 3% 4/2 4.028 23 $y 4% 4.153 2% 23 3% 4K 4.255 m 21 REMARKS. As upsetting reduces the strength, bars having the same diameter at root of thread as that of the bar, invariably break in the screw end, when tested to destruction, without developing the full strength of the bar. It is therefore necessary to make up for this loss in strength by an excess of metal in the upset screw ends over that in the bar. The above table is the result of numerous tests on finished bars made by The Carnegie Steel Company, Limited, and gives proportions that will cause the bar to break in the body m preference to the upset end. The screw threads in above table are the Franklin Institute standard. To make one upset end for 5" length of thread allow 6" length of rod additional. 214 THE CARNEGIE STEEL COMPANY, LIMITED. STANDARD SCREW THREADS, NUTS AND BOLT HEADS. Recommended by the Franklin Institute. SCREW THREADS. Nuts and Bolt Heads A ^ ff are determined by the fol- /^Hy /? /^Hk 3 * y/^lil^ lowing rules, which apply to /^BB^r Square and Hexagon Nuts ,^i|iill|'^k y^lliiliilkl both: Angle of Thread 60. Flat at Top and Bottom= % of pitch. Short diameter of rough nut = 1% x dia. of bolt + y s in. Dia. of Dia. at Root Threads Short diameterof finished nut Screw. of Thread. per Inch. = 1% x dia. of bolt + 1-16 in. Inches. Inches. * No. Thickness of rough nut y .185 20 = diameter of bolt. X .240 18 Thickness of finished nut % .294 16 = diameter of bolt 1-16 in. .344 14 Short diameter of rough head y .400 13 = 1^ X dia. of bolt + y a in. .454 12 Short dia. of finished head .507 11 =1% X dia. of bolt + 1-16 in. .620 10 Thickness of rough head % .731 9 = % short dia. of head. 1 .837 8 Thickness of finished head .940 7 = dia. of bolt 1-16 In. lx^ 1.065 7 The long diameter of a ].% 1.160 6 hexagon nut may bo obtained \v 1.284 3 by multiplying the short ty 1.389 diameter by 1.155, and the 1$ 1.490 5 long diameter of a square 10 1.615 5 nut by multiplying the short 2 1.712 diameter by 1.414. 1.962 4K The above standards for 01/ 2.175 A screw threads, nuts and bolt %y 2.425 4 heads, were recommended by /4 the Franklin Institute in 3 2.629 2f\F7f\ 3K Dec. 1864. The standard for 1 .879 3.100 3.317 screw threads has been very generally adopted in the United States, but the pro- 4 3.567 3 portions recommended for 4% 3.798 2% nuts and bolt heads have not 4+4 4.028 found general acceptance be- 4% 4.255 a* cause of the odd sizes of bar 5 4.480 2K not usually rolled by the 6M 4.730 2/i mills required to make the 5M 5.053 2% nut. 5% 5.203 2% 6 5.423 215 THE CARNEGIE STEEL COMPANY, LIMITED. "WHIT WORTH'S STANDARD ANGULAR SCREW THREADS. * f ^v A ^ Angle of thread 55. Depth of thread = pitch of screw. i/ of depth is rounded off top and bottom. Number of threads to the inch in square threads = l / z the num- ber in angular threads. Dia. of Screw. In. X I % % Threads to the inch. 20 18 16 14 12 11 10 9 Dia. of Screw. In. 1 1# IX Threads to the inch. No. Dia. of Screw. In. Threads to the inch. No. Dia. of Screw. In. Threads to the inch. No. 3 2/8 |# 1% STANDARD SLEEVE NUTS. IX 1/8 2% SLEEVE NUT. 2 1/8 111 if! . 4.2 4.6 4.8 6.0 6.6 7.5 9.0 10.5 11.4 13.5 SCREW. { 1* SLEEVE NUT. 3# 4/8 14.8 19.8 20.0 22.7 25.2 29.8 30.5 34.8 39.2 41.0 35.6 All dimensions are in inches. Weights are for finished nuts. 216 THE CARNEGIE STEEL COMPANY, LIMITED. STANDARD PIN-NUTS. PINS. PIN-NUTS. PINS. PIN-NUTS. s I* a s 1 It -sl ij |i I II |l ii i] sl |l j l# IX 8 2X 2^ ?i 0.85 3j^ 3X ( t 5 5X 1 y\ 4.74 % 1 A 1, ^ 8 2K 2^ H 1.03 4K 3% ( > 5K 6/8 IX 6.19 2X 1 * 8 2K 2^ i 0.97 4/8 3K < i 5K 6^ IX 6.19 2^ 1; 4 7 8 3 3K i 1.50 4^ 3X < 5 5K 6^ IX 5.37 2^ 1, tf 8 3 3& i 1.37 4^ 4 ( > 6 615 IX 6.63 2^ 2 8 3K 4 i 2.06 5^ 4 < ) 6 6if IX 6.63 2X 2 8 3K 4 i 1.96 5^ 4X 6 6 6^ U/ 5.82 27/ 8 2, * 8 4 4^ IX 3.38 5^ 4K 6 6X 711 IX 8.53 3 2; /8 8 4 4^ IX 3.22 bj/s W ( i 6K 7ft IX 7.59 3^ 2X 8 4X 4^ IX 3.63 $ l /8 4X 1 5 6X 71! IX 7.59 3X 9 *; * 8 4X 4^ IX 3.41 6^ 5 6 8 9X IX 13.06 3^ o *; / 6 4K BI\ IX 4.09 6^ 5X 6 8 9X 1 K 14.86 3K 9 *j ^ 6 4X 5K IX 4.63 6^ 5K 6 8 9X 1 K 14.00 3^ 3 6 5 5X IX 5.25 7K 5^ 6 8 9X 1 r/ 13.10 All dimensions given above are in inches. Weigl its refer to untapped nuts. WOOD SCREWS. Diameter=numberx 0.01325+0.056. No. Diam. No. Diam. No. Diam. No. Diam. No. Diam. .056 6 .135 12 .215 18 .293 24 .374 1 .069 7 .149 13 .228 19 .308 25 .387 2 .082 8 .162 14 .241 20 .321 26 .401 3 .096 9 .175 15 .255 21 .334 27 .414 4 .109 10 .188 16 .268 22 .347 28 .427 5 .122 11 .201 17 .281 23 .361 29 .440 30 1 .453 9,17 THE CARNEGIE STEEL COMPANY, LIMITED. SPIKES, NAILS AND TACKS. STANDARD STEEL WIRE NAILS. 2d 3d 4d 5d 6d 7d 8d 9d 10d 12d 16d 20d 30d 40d 50d 60d IX' 2^ A 9.1/A Common. Diam. No. per nches. pound. .0524 .0588 .0720 .0764 .0858 .0935 .0963 .1082 .1144 .1285 .162C .1819 .2043 .2294 .2576 060 640 380 275 210 160 115 93 77 60 48 31 Finishing. Diam. No. per nches. pound. .0453 .0508 .0508 .0571 .0641 .0641 .0720 .0720 .0907 .1019 1558 913 761 500 350 315 214 195 137 127 90 STEEL WIRE SPIKES. Length. 4" 45*" 5" 8" 8" 9" Diam. nches. .1819 .2043 .2294 .2576 .2249 .3648 o. per pound 41 30 23 17 13 11 10 7/ 2 7 5 OMMON IRON NAILS. Size. 2d 3d 4d 5d 6d 7d 8d 9d lOd 12d 16d 20d 30d 40d 50d 60d Length. No-per IX" 2" 2X" 9 i/// 2X" 3" 3X" 800 400 300 200 150 120 85 75 60 50 40 20 16 14 11 TACKS. Title. Length, in. Number per pound. 16000 10666 8000 6400 Title, oz. Length, in. Number per pound. 4000 2666 2000 1600 1333 Title, oz. 24 Length, in. Number per pound. 1143 1000 888 800 727 666 WROUGHT SPIKES. Number to a keg of 150 Ibs. length. I st 6 1-4 inch. 5-16 inch. 3-8 inch. Length No. 2250 1890 1650 1464 1380 1292 No. 1208 1135 1064 930 868 No. 742 570 In. 1-4 inch. Ho. 1161 M6ineh 3-8 inch. 7-16 inch- No. 635 573 No. 482 455 424 391 No. 445 384 300 270 249 23S 1-2 inch No. 306 256 240 22 203 180 9.1R THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHT OF SHEETS OF WROUGHT IRON, STEEL, COPPER AND BRASS. (From Haswell.) Weights per Square Foot. Thickness by Birmingham Gauge. No. of Gauge. Thickness in inches. Iron. Steel. Copper. Brass. 0000 .454 18.22 18.46 20.57 19.43 000 .425 17.05 17.28 19.25 18.19 00 .38 15.25 15.45 17.21 16.26 .34 13.64 13.82 15.40 14.55 1 .3 12.04" 12.20 13.59 12.84 2 .284 11.40 11.55 12.87 12.16 3 .259 10.39 10.53 11.73 11.09 4 .238 9.55 9.68 10.78 10.19 5 .22 8.83 8.95 9.97 9.42 6 .203 8.15 8.25 9.20 8.69 7 .18 7.22 7.32 8.15 7.70 8 .165 6.62 6.71 7.47 7.06 9 .148 5.94 6.02 6.70 6.33 10 .134 5.38 5.45 6.07 5.74 11 .12 4.82 4.88 5.44 6.14 12 .109 4.37 4.43 4.94 4.67 13 .095 3.81 3.86 4.30 4.07 14 .083 3.33 3.37 3.76 3.55 15 .072 2.89 2.93 3.26 3.08 16 .065 2.61 2.64 2.94 2.78 17 .058 2.33 2.36 2.63 2.48 18 .049 1.97 1.99 2.22 2.10 19 .042 1.69 1.71 1.90 1.80 20 .035 1.40 1.42 1.59 1.50 21 .032 1.28 1.30 1.45 1.37 22 .028 1.12 1.14 1.27 1.20 23 .025 1.00 1.02 1.13 1.07 24 .022 .883 .895 1.00 .942 25 .02 .803 .813 .906 .856 26 .018 .722 .732 .815 .770 27 .016 .642 .651 .725 .685 - 28 .014 .562 .569 .634 .599 ! 29 .013 .522 .529 .589 .556 i 30 .012 .482 .488 .544 .514 I 31 .01 .401 .407 .453 .428 32 .009 .361 .366 .408 .385 33 .008 .321 .325 .362 .342 34 .007 .281 .285 .317 .300 35 .005 .201 .203 .227 .214 Specific Gravity, 7.704 7.806 8.698 8.218 Weight Cubic Foot, 481.25 487.75 543.6 513.6 " " Inch, .2787 .2823 .3146 .2972 219 1 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHT OP SHEETS OF WROUGHT IRON, STEEL, COPPER AND BRASS. (Prom Haswell.) Weights per Sq. Foot. Thickness by American (Browne & Sharpe's) Gauge. No. of Gauge. Thickness in inches. Iron. | Steel. | Copper. Brass. 0000 .46 18.46 18.70 20.84 19.69 000 .4096 16.44 16.66 18.56 17.53 00 .3648 14.64 14.83 16.53 15.61 .3249 13.04 13.21 14.72 13.90 1 .2893 11.61 11.76 13.11 12.38 2 .2576 10.34 10.48 11.67 11.03 3 .2294 9.21 9.33 10.39 9.82 4 .2043 8.20 8.31 9.26 8.74 5 .1819 7.30 7.40 8.24 7.79 6 .1620 6.50 6.59 7.34 6.93 7 .1443 5.79 5.87 6.54 6.18 8 .1285 5.16 5.22 5.82 5.50 9 .1144 4.59 4.65 5.18 4.90 10 .1019 4.09 4.14 4.62 4.36 11 .0907 3.64 3.69 4.11 3.88 12 .0808 3.24 3.29 3.66 3.46 13 .0720 2.89 2.93 3.26 3.08 14 .0641 2.57 2.61 2.90 2.74 15 .0571 2.29 2.32 2.59 2.44 16 .0508 2.04 2.07 2.30 2.18 17 .0453 1.82 1.84 2.05 1.94 18 .0403 1.62 1.64 1.83 1.73 19 .0359 1.44 1.46 1.63 1.54 20 .0320 1.28 1.30 1.45 1.37 21 .0285 1.14 1.16 1.29 1.22 22 .0253 1.02 1.03 1.15 1.08 23 .0226 .906 .918 1.02 .966 24 .0201 .807 .817 .911 .860 25 .0179 .718 .728 .811 ' .766 26 .0159 .640 .648 .722 .682 27 .0142 .570 .577 .643 .608 28 .0126 .507 .514 .573 .541 29 .0113 .452 .458 .510 .482 30 .0100 .402 .408 .454 .429 31 .0089 .358 .363 .404 .382 32 .0080 .319 .323 .360 .340 33 .0071 .284 .288 .321 .303 34 .0063 .253 .256 .286 .270 35 .0056 .225 .228 .254 .240 As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufactuiers, orders for sheets and wire should always state the weight per squar? toot, or the thickness in thousandths of an inch. 22O THE CARNEGIE STEEL COMPANY, LIMITED. il-si 1^^^ ^-5^5 "IH * &i a * 3* 71 +? VI Qi si p g" 5fii lig S-'s IP II OOOO-*-"^ T-I T-H T-I T-I OO OOOOOOOOOO OO OO OO OO OO OS OS CO T-I 1 10 (?>j - tO CO l>- -^< < IS- 1^- I iO -^f CO IO " " " *^t< >- ^- ^*- T * oo cvi oo co ' C 3981.5289 223.6814 .3 3557.2960 211.4292 .3 3992.7208 223.9956 .4 3567.8754 211.7433 .4 4003.9284 224.3097 .5 3578.4704 212.0575 .5 4015.1518 224.6239 .6 3589.0811 212.3717 .6 4026.3908 224.9380 .7 3599.7075 212.6858 .7 4037.6456 225.2522 .8 3610.3497 213.0000 .8 4048.9160 225.5664 .9 3621.0075 213.3141 .9 4060.2022 225.8805 QOO THE CARNEGIE STEEL COMPANY, LIMITED. AREAS and CIRCUMFERENCES OP CIRCLES. (CONTINUED.) Diam. Area. Circum. Diam. Area. Circum. 72.0 4071.5041 226.1947 76.0 4536.4598 238.7610 .1 4082.8217 226.5088 .1 4548.4057 239.0752 .2 4094.1550 226.8230 .2 4560.3673 239.3894 .3 4105.5040 227.1371 .3 4572.3446 239.7035 .4 4116.8687 227.4513 .4 4584.3377 240.0177 .5 4128.2491 227.7655 .5 4596.3464 240.3318 .6 4139.6452 228.0796 .6 4608.3708 240.6460 .7 4151.0571 228.3938 .7 4620.4110 240.9602 .8 4162.4846 228.7079 .8 4632.4669 241.2743 .9 4173.9279 229.0221 .9 4644.5384 241.5885 73.0 4185.3868 229.3363 77.0 4656.6257 241.9026 .1 4196.8615 229.6504 .1 4668.7287 242.2168 .2 4208.3519 229.9646 .2 4680.8474 242.5310 .3 4219.8579 230.2787 .3 4692.9818 242.8451 .4 4231.3797 230.5929 A 4705.1319 243.1592 .5 4242.9172 230.9071 .5 4717.2977 243.4734 .6 4254.4704 231.2212 .6 4729.4792 243.7876 .7 4266.0394 231.5354 .7 4741.6765 244.1017 .8 4277.6240 231.8495 .8 4753.8894 244.4159 .9 4289.2243 232.1637 .9 4766.1181 244.7301 74.0 4300.8403 232.4779 78.0 4778.3624 245.0442 .1 4312.4721 232.7920 .1 4790.6225 245.3584 .2 4324.1195 233.1062 .2 4802.8983 245.6725 .3 4335.7827 233.4203 .3 4815.1897 245.9867 .4 4347.4616 233.7345 .4 4827.4969 246.3009 .5 4359.1562 234.0487 .5 4839.8198 246.6150 .6 4370.8664 234.3628 .6 4852.1584 246.9292 .7 4382.5924 234.6770 .7 4864.5128 247.2433 .8 4394.3341 234.9911 .8 4876.8828 247.5575 .9 4406.0916 235.3053 .9 4889.2685 247.8717 75.0 4417.8647 235.6194 79.0 4901.6699 248.1858 .1 4429.6535 235.9336 .1 4914.0871 248.5000 .2 4441.4580 236.2478 .2 4926.5199 248.8141 .3 4453.2783 236.5619 .3 4938.9685 249.1283 .4 4465.1142 236.8761 .4 4951.4328 249.4425 .5 4476.9659 237.1902 .5 4963.9127 249.7566 .6 4488.8332 237.5044 .6 4976.4084 250.0708 .7 4500.7163 237.8186 .7 4988.9198 250.3850 .8 4512.6151 238.1327 .8 5001.4469 250.6991 .9 4524.5296 238.4469 .9 5013.9897 251.0133 934- THE CARNEGIE STEEL COMPANY, LIMITED. AREAS and CIRCUMFERENCES OF CIRCLES. (CONTINUED.) Diam. Area. Circum. Diam. Area. Circum. 80.0 5026.5482 251.3274 84.0 5541.7694 263.8938 .1 5039.1225 251.6416 .1 5554.9720 264.2079 .2 5051.7124 251.9557 .2 5568.1902 264.5221 .3 5064.3180 252.2699 .3 5581.4242 264.8363 .4 5076.9394 252.5840 .4 5594.6739 285.1514 .5 5089.5764 252.8932 .5 5607.9392 265.4646 .6 5102.2292 253.2124 .6 5821.2203 265.7787 .7 5114.8977 253.5265 .7 5634.5171 266.0929 .8 5127.5819 253.8407 .8 5647.8296 266.4071 .9 5140.2818 254.1548 .9 5661.1578 266.7212 81.0 5152.9973 254.4690 85.0 5674.5017 267.0354 .1 5165.7287 254.7832 .1 5687.8614 287.3495 .2 5178.4757 255.0973 .2 5701.2367 267.6637 .3 5191.2384 255.4115 .3 5714.6277 287.9779 .4 5204.0168 255.7256 .4 5728.0345 268.2920 .5 5216.8110 256.0398 .5 5741.4569 268.6062 .6 5229.6208 256.3540 .6 5754.8951 268.9203 .7 5242.4463 256.6681 .7 5768.3490 269.2345 .8 5255.2876 256.9823 .8 5781.8185 269.5486 .9 5268.1446 257.2966 .9 5795.3038 269.8628 82.0 5281.0173 257.6106 86.0 5808.8048 270.1770 .1 5293.9056 257.9247 .1 5822.3215 270.4911 .2 5306.8097 258.2389 .2 5835.8539 270.8053 .3 5319.7295 258.5531 .3 5849.4020 271.1194 .4 5332.6650 258.8672 .4 5862.9659 271.4336 .5 5345.6162 259.1814 .5 5876.5454 271.7478 .6 5358.5832 259.4956 .6 5890.1407 272.0619 .7 5371.5658 259.8097 .7 5903.7516 272.3761 .8 5384.5641 260.1239 .8 5917.3783 272.6902 .9 5397.5782 260.4380 .9 5931.0206 273.0044 83.0 5410.6079 260.7522 87.0 5944.6787 273.3186 .1 5423.6534 261.0663 . .1 5958.3525 273.6327 .2 5436.7146 261.3805 .2 5972.0420 273.9469 .3 5449.7915 261.6947 .3 5985.7472 274.2610 .4 5462.8840 262.0088 .4 5999.4681 274.5752 .5 5475.9923 262.3230 .5 6013.2047 274.8894 .6 5489.1163 262.6371 .6 6026.9570 275.2035 7 5502.2561 262.9513 .7 6040.7250 275.5177 .8 56io.4il5 263.2655 .8 6054.5088 275.8318 .9 5528.5826 263.6796 .9 60683082 276.1460 235 THE CARNEGIE STEEL COMPANY, LIMITED. AREAS and CIRCUMFERENCES OP CIRCLES, (CONTINUED.) Diam. Area. Circum. Diam. Area. Circum. 88.0 6082.1234 276.4602 92.0 6647.6101 289.0265 .1 6095.9542 276.7743 .1 6662.0692 289.3407 2 6109.8008 277.0885 .2 6676.5441 289.6548 is 6123.6631 277.4026 .3 6891.0347 289.9690 .4 6137.5411 277.7168 .4 6705.5410 290.2832 .5 6151.4348 278.0309 .5 6720.0630 290.5973 .6 6165.3442 278.3451 .6 6734.6008 290.9115 .7 6179.2693 278.6593 .7 6749.1542 291.2256 .8 6193.2101 278.9740 .8 6763.7233 291.5398 .9 6207.1666 279.2876 .9 6778.3082 291.8540 89.0 6221.1389 279.6017 93.0 6792.9087 292.1681 .1 6235.1268 279.9159 .1 6807.5250 292.4823 .2 6249.1304 280.2301 .2 6822.1569 292.7964 .3 6263.1498 280.5442 .3 6836.8046 293.1106 .4 6277.1849 280.8584 .4 6851.4680 293.4248 .5 6291.2356 281.1725 .5 6866.1471 293.7389 .6 6305.3021 281.4867 .6 6880.8419 294.0531 .7 6319.3843 281.8009 .7 6895.5524 294.3672 .8 6333.4822 282.1150 .8 6910.2786 294.6814 .9 6347.5958 282.4292 .9 6925.0205 294.9956 90.0 6361.7251 282.7433 94.0 6939.7782 295.3097 .1 6375.8701 283.0575 .1 6954.5515 295.6239 .2 6390,0309 283.3717 .2 6969.3106 295.9380 .3 6404.2073 283.6858 .3 6984.1453 296.2522 .4 6418.3995 284.0000 .4 6998.9658 296.5663 .5 6432.6073 284.3141 .5 7013.8019 296.8805 .6 6446.8309 284.6283 .6 7028.6538 297.1947 .7 6461.0701 284.9425 .7 7043.5214 297.5088 .8 6475.3251 285.2566 .8 7058.4047 297.8230 .9 6489.5958 285.5708 .9 7073.3033 298.1371 91.0 6503.8822 285.8849 95.0 7088.2184 298.4513 .1 6518.1843 286.1991 .1 7103.1488 298.7655 .2 6532.5021 286.5133 .2 7118.1950 299.0796 .3 6546.8356 286.8274 .3 7133.0568 299.3938 .4 6561.1848 287.1416 .4 7148.0343 299.7079, .5 6575.5498 287.4557 .5 7163.0276 300.0221 .6 6589.9304 287.7699 .6 7178.0366 300.3363 .7 6604.3268 288.0840 .7 7193.0612 300.6504 .8 6618.7388 288.3982 .8 7208.1016 300.9646 .9 6633.1666 288.7124 .9 7223.1577 301.278? 236 THE CARNEGIE STEEL COMPANY, LIMITED. AEEAS and CIRCUMFERENCES OP CIRCLES. (CONTINUED.) Diam. Area. Circum. Diam. Area. Oircum. 96.0 .1 .2 .3 .4 7238.2295 7253.3170 7268.4202 7283.5391 7298.6737 301.5929 301.9071 302.2212 302.5354 302.8405 98.0 .1 .2 .3 .4 7542.9640 7558.3656 7573.7830 7589.2161 7604.6648 307.8761 308.1902 308.5044 308.8186 309.1327 .5 .6 .7 .8 .9 7313.8240 7328.9901 7344.1718 7359.3693 7374.5824 303.1637 303.4779 303.7920 304.1062 304.4203 .5 .6 .7 .8 .9 7620.1293 7635.6095 7651.1054 7666.6170 7682.1444 309.4469 309.7610 310.0752 310.3894 310.7035 97.0 .1 .2 .3 .4 7389.8113 7405.0559 7420.3162 7435.5922 7450.8839 304.7345 305.0486 305.3628 305.6770 305.9911 99.0 .1 .2 .3 .4 7697.6893 7713.2461 7728.8206 7744.4107 7760.0166 311.0177 311.3318 311.6460 311.9602 312.2743 .5 .6 .7 .8 .9 7466.1913 7481.5144 7496.8532 7512.2078 7527.5780 306.3053 306.6194 306.9336 307.2478 307.5619 .5 .6 .7 .8 .9 7775.6382 7791.2754 7806.9284 7822.5971 7838.2815 312.5885 312.9026 313.2168 313.5309 313.8451 100.0 7853.9816 314.1593 To compute the area or circumference of a diameter greater than 100 and less than 1001 : Take out the area or circumference from table as though the number had one decimal, and move the decimal point two places to the right for the area, and one place for the circumference. EXAMPLE Wanted the area and circumference of 567. Tb.9 tabular area for 56.7 is 2524.9687, and circumference 178.1283. Therefore area for 567 = 252496.87 and circumference = 1781.283. To compute the area or circumference of a diameter greater than 1000: Divide by a factor, as 2, 3, 4, 5, etc., if practicable, that will leave a quotient to be found in table, then multiply the tabular area of the quotient by the square of the factor, or the tabular circumference by the factor. EXAMPLE Wanted the area and circumference ot 2109. Dividing by 3, the quotient is 703, for which the area is 388150.84 and the circumference 2208.54. Therefore area of 2109 = 388150.84 X & = 3493357.56 and circumference = 2208.54 X 3 = 6625.62. 237 THE CARNEGIE STEEL COMPANY, LIMITED. LOGARITHMS OF NUMBERS. No. 1 2 3 0128 4 5 6 7 8 9 Diff. 10 11 12 13 0000 0043 0086 0170 0212 0253 0294 0334 0374 40 37 33 31 0414 0792 1139 0453 0828 1173 0492 0864 1206 0531 0899 1239 0569 0934 1271 0607 0969 1303 0645 1004 1335 0682 1038 1367 0719 1072 1399 0755 1106 1430 14 15 16 1461 1761 2041 1492 1790 2068 1523 1818 2095 1553 1847 2122 1584 1875 2148 1614 1903 2175 1644 1931 2201 1673 1959 2227 1703 1987 2253 1732 2014 2279 29 27 25 17 18 19 20 21 22 23 2304 2553 2788 2330 2577 2810 2355 2601 2833 2380 2625 2856 2405 2648 2878 2430 2672 2900 2455 2695 2923 2480 2718 2945 2504 2742 2967 2529 2765 2989 24 23 21 21 20 19 18 3010 3032 3054 3263 3464 3655 3075 3096 3118 3139 3160 3181 3201 3222 3424 3617 3243 3444 3636 3284 3483 3674 3304 3502 3692 3324 3522 3711 3345 3541 3729 3365 3560 3747 3385 8579 3766 3404 3598 3784 24 25 26 3802 3979 4150 3820 3997 4166 3838 4014 4183 3856 4031 4200 3874 4048 4216 3892 4065 4232 3909 4082 4249 3927 4099 4265 3945 4116 4281 3962 4133 4298 17 17 16 27 28 29 30 31 32 33 4314 4472 4624 4330 4487 4639 4346 4502 4654 4362 4518 4669 4378 4533 4683 4393 4548 4698 4409 4564 4713 4425 4579 4728 4440 4456 4594 4609 4742 4757 488614900 16 15 14 14 13 13 13 4771 4786 4800 4942 5079 5211 4814 4829 4843 4857 4871 4914 5051 5185 4928 5065 5198 4955 5092 5224 4969 5105 5237 4983 5119 5250 4997 5132 5263 5011 5145 5276 5024 5159 5289 5038 5172 5302 34 35 36 5315 5441 5563 5328 5453 5575 5340 5465 5587 5353 5478 5599 5366 5490 5611 5378 5502 5623 5391 5514 5635 5403 5527 5647 5416 5539 5658 5428 5551 5670 13 12 12 37 38 39 5682 5798 5911 5694 5809 5922 5705 5821 5933 5717 5832 5944 5729 5843 5955 5740 5855 5966 5752 5866 5977 5763 5877 5988 5775 5888 5999 5786 5899 6010 12 12 11 Diff. No. 1 2 3 4 5 6 7 8 9 238 THE CARNEGIE STEEL COMPANY, LIMITED. LOGARITHMS OF NUMBERS-Continued. No. 1 2 3 4 5 6 7 8 9 Diff. 40 41 42 43 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 6222 6325 6425 11 10 10 10 6128 6232 6335 6138 6243 6345 6149 6253 6355 6160 8263 6365 6170 6274 6375 6180 6284 6385 6191 6294 6395 6201 6304 6405 6212 6314 6415 44 45 46 6435 6532 6628 6444 6542 6637 6454 6551 6646 6464 6561 6656 6474 6571 6665 6484 6580 6675 6493 6590 6684 6503 6599 6693 6513 6609 6702 6522 6618 6712 10 10 9 47 48 49 50 51 52 53 6721 6812 6902 6730 6821 6911 6739 6830 6920 7007 6749 6839 6928 6758 6848 6937 6767 6857 6946 6776 6866 6955 6785 6875 6964 6794 6884 6972 6803 6893 6981 9 9 9 9 8 8 8 6990 6998 7016 7024 7033 7042 7050 7059 7067 7076 7160 7243 7084 7168 7251 7093 7177 7259 7101 7185 7267 7110 7193 7275 7118 7202 7284 7126 7210 7292 7135 7218 7300 7143 7226 7308 7152 7235 7316 54 55 56 7324 7404 7482 7332 7412 7490 7340 7419 7497 7348 7427 7505 7356 7435 7513 7364 7443 7520 7372 7451 7528 7380 7459 7536 7388 7466 7543 7396 7474 7551 8 8 8 57 58 59 6O 61 62 63 7559 7634 7709 7566 7642 7716 7574 7649 7723 7582 7657 7731 7589 7664 7738 7597 7672 7745 7604 7679 7752 7612 7686 7760 7619 7694 7767 7839 7910 7980 8048 7627 7701 7774 7 8 8 7 7 6 7 7782 7789 7860 7931 8000 7796 7803 7810 7818 7825 7832 7846 7853 7924 7993 7868 7938 8007 7875 7945 8014 7882 7952 8021 7889 7959 8028 7896 7966 8035 7903 7973 8041 7917 7987 8055 64 65 66 8062 8129 8195 8069 8136 8202 8075 8142 8209 8082 8149 8215 8089 8156 8222 8096 8162 8228 8102 8169 8235 8109 8176 8241 8116 8182 8248 8122 8189 8254 7 6 7 67 68 69 No. 8261 8325 8388 8267 8274 8331 8338 8395 8401 8280 8344 8407 8287 8351 8414 8293 8357 8420 8299 8363 8426 8306 8370 8432 8312 8376 8439 8 8319 8382 8445 6 6 6 Diff. 1 2 3 4 5 6 7 9 239 THE CARNEGIE STEEL COMPANY, LIMITED. LOGARITHMS OP NUMBERS Continued. No. 1 2 3 4 5 6 7 8 9 Diff. 70 71 72 73 8451 8513 8573 8633 8457 8463 8470 8476 8482 8488 8494 8500 8506 7 6 6 6 8519 8579 8639 8525 8585 8645 8531 8591 8651 8537 8597 8657 8543 8603 8663 8549 8609 8669 8555 8615 8675 8561 8621 8681 8567 8627 8686 74 75 76 8692 8698 875118756 8808 i 8814 8704 8762 8820 8710 8768 8825 8716 8774 8831 8722 8779 8837 8727 8785 8842 8733 8791 8848 8739 8797 8854 8745 8802 8859 6 6 6 77 78 79 80 81 82 83 8865 8921 8976 903T 9085 9138 9191 8871 8927 8982 9036 8876 8932 8987 8882 8938 8993 8887 8943 8998 8893 8949 9004 8899 8954 9009 8904 8960 9015 8910 8965 9020 8915 8971 9025 6 5 6 6 5 5 5 9042 9047 9053 9058 9112 9165 9217 9063 9069 9074 9079 9090 9143 9196 9096 9149 9201 9101 9154 9206 9106 9159 9212 9117 9170 9222 9122 9175 9227 9128 9180 9232 9133 9186 9238 84 85 86 9243 9294 9345 9248 9299 9350 9253 9304 9355 9258 9309 9360 9263 9315 9365 9269 9320 9370 9274 9325 9375 9279 9330 9380 9284 9335 9385 9289 9340 9390 5 5 5 87 88 89 90 91 92 93 9395 9445 9494 9542 9590 9638 9685 9400 9450 9499 9547 9405 9455 9504 9410 9460 9509 9415 9465 9513 9420 9469 9518 9425 9474 9523 9430 9479 9528 9435 9484 9533 9440 9489 9538 5 5 4 4 5 5 4 9552 9557 9562 9609 9657 9703 9566 9571 9576 9581 9586 9595 9643 9689 9600 9647 9694 9605 9652 9699 9614 9661 9708 9619 9666 9713 9624 9671 9717 9628 9675 9722 9633 9680 9727 94 95 96 9731 9777 9823 9736 9782 9827 9741 9786 9832 9745 9791 9836 9750 9795 9841 9754 9800 9845 9759 9805 9850 9763 9809 9854 9768 9814 9859 9773 9818 9863 4 5 5 97 98 99 9868 9872 9912 9917 9956 9961 9877 9921 9965 9881 9926 9969 9886 9930 9974 9890 9934 9978 9894 9939 9983 9899 9943 9987 9903 9948 9991 9908 9952 9996 4 4 4 No. 1 2 3 4 5 6 7 8 9 Diff THE CARNEGIE STEEL, COMPANY, LIMITED. NATTJBAIi SINES, TANGENTS AND SECANTS , Advancing by 1O min. Deg. Min Sine. Tangent. Secant. Deg. Min Sine. Tangent. Secant. 00 .0000 .0000 1.0000 5 00 .0872 .0875 1.0038 10 .0029 .0029 1.0000 10 .0901 .0904 1.0041 20 .0058 .0058 1.0000 20 .0929 .0934 1.0043 30 .0087 .0087 1.0000 30 .0958 .0963 1.0046 40 .0116 .0116 1.0001 40 .0987 .0992 1.0049 50 .0145 .0145 1.0001 50 .1016 .1022 1.0052 1 00 .0175 .0175 1.0002 6 00 .1045 .1051 1.0055 10 .0204 .0204 1.0002 10 .1074 .1080 1.0058 20 .0233 .0233 1.0003 20 .1103 .1110 1.0061 30 .0262 .0262 1.0003 30 .1132 .1139 1.0065 40 .0291 .0291 1.0004 40 .1161 .1169 1.0068 50 .0320 .0320 1.0005 50 .1190 .1198 1.0072 a 00 .0349 .0349 1.0006 7 00 .1219 .1228 1.0075 10 .0378 .0378 1.0007 10 .1248 .1257 1.0079 20 .0407 .0407 1.0008 20 .1276 .1287 1.0082 30 .0436 .0437 1.0010 30 .1305 .1317 1.0086 40 .0465 .0466 1.0011 40 .1334 .1346 1.0090 50 .0494 .0495 1.0012 50 .1363 .1376 1.0094 3 00 .0523 .0524 1.0014 8 00 .1392 .1405 1.0098 10 .0552 .0553 1.0015 10 .1421 .1435 1.0102 20 .0581 .0582 1.0017 20 .1449 .1465 1.0107 30 .0610 .0612 1.0019 30 .1478 .1495 1.0111 40 .0640 .0641 1.0021 40 .1507 .1524 1.0116 50 .0669 .0670 1.0022 50 .1536 .1554 1.0120 4 00 .0698 .0699 1.0024 9 00 .1564 .1584 1.0125 10 .0727 .0729 1.0027 10 .1593 .1614 1.0129 20 .0756 .0758 1.0029 20 .1622 .1644 1.0134 30 .0785 .0787 1.0031 30 .1650 .1673 1.0139 40 .0814 .0816 1.0033 40 .1679 .1703 1.0144 50 .0843 .0846 1.0036 50 .1708 .1733 1.0149 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) Deg. Min. Sine. Tangent. Secant. Deg. Min. Sine. Tangent. Secant. 10 00 10 20 .1736 .1765 .1794 .1763 .1793 .1823 1.0154 1.0160 1.0165 15 00 10 20 .2588 .2616 .2644 .2679 .2711 .2742 1.0353 1.0361 1.0369 30 40 50 .1822 .1851 .1880 .1853 .1883 .1914 1.0170 1.0176 1.0181 30 40 50 .2672 .2700 .2728 .2773 .2805 .2836 1.0377 1.0386 1.0394 11 00 10 20 .1908 .1937 .1965 .1944 .1974 .2004 1.0187 1.0193 1.0199 16 00 10 20 .2756 .2784 .2812 .2867 .2899 .2931 1.0403 1.0412 1.0421 30 40 50 .1994 .2022 .2051 .2035 .2065 .2095 1.0205 1.0211 1.0217 30 40 50 .2840 .2868 .2896 .2962 .2994 .3026 1.0429 1.0439 1.0448 12 00 10 20 .2079 ,2108 .2136 .2126 .2156 .2186 1.0223 1.0230 1.0236 17 00 10 20 .2924 .2952 .2979 .3057 .3089 .3121 1.0457 1.0466 1.0476 30 40 50 .2164 .2193 .2221 .2217 .2247 .2278 1.0243 1.0249 1.0256 30 40 50 .3007 .3035 .3062 .3153 .3185 .3217 1.0485 1.0495 1.0505 13 00 10 20 .2250 .2278 .2306 .2309 .2339 .2370 1.0263 1.0270 1.0277 18 00 10 20 .3090 .3118 .3145 .3249 .3281 .3314 1.0515 1.0525 1.0535 30 40 50 .2334 .2363 .2391 .2401 .2432 .2462 1.0284 1.0291 1.0299 30 40 50 .3173 .3201 .3228 .3346 .3378 .3411 1.0545 1.0555 1.0566 14 00 10 20 .2419 .2447 .2476 .2493 .2524 .2555 1.0306 1.0314 1.0321 19 00 10 20 .3256 .3283 .3311 .3443 .3476 .3508 1.0576 1.0587 1.0598 30 40 50 .2504 .2532 .2560 .2586 .2617 .2648 1.0329 1.0337 1.0345 30 40 50 .3338 .3365 .3393 .3541 .3574 .3607 1.0608 1.0619 1.0631 THE CARNEGIE STEEL, COMPANY, LIMITED. NATUKAL SINES, TANGENTS AND SECANTS. (CONTINUED.) " Mi, Sine. Tangent. Secant. Deg. jMin. Sine. Tangent. Secant. 20 00 .3420 .3640 1.0642 25 00 .4226 .4663 1.1034 10 .3448 .3673 1.0653 10 .4253 .4699 1.1049 20 .3475 .3706 1.0665 20 .4279 .4734 1.1064 30 .3502 .3739 1.0676 30 .4305 .4770 1.1079 40 .3529 .3772 1.0688 40 .4331 .4806 1.1095 50 .3557 .3805 1.0700 50 .4358 .4841 1.1110 21 00 .3584 .3839 1.0711 26 00 .4384 .4877 1.1126 10 .3611 .3872 1.0723 10 .4410 .4913 1.1142 20 .3638 .3906 1.0736 20 .4436 .4950 1.1158 30 .3665 .3939 1.0748 30 .4462 .4986 1.1174 40 .3692 .3973 1.0760 40 .4488 .5022 1.1190 50 .3719 .4006 1.0773 50 .4514 .5059 1.1207 22 00 .3746 .4040 1.0785 27 00 .4540 .5095 1.1223 10 .3773 .4074 1.0798 10 .4566 .5132 1.1240 20 .3800 .4108 1.0811 20 .4592 .5169 1.1257 30 .3827 .4142 1.0824 30 .4617 .5206 1.1274 40 .3854 .4176 1.0837 40 .4643 .5243 1.1291 50 .3881 .4210 1.0850 50 .4669 .5280 1.1308 23 00 .3907 .4245 1.0864 28 00 .4695 .5317 1.1326 10 .3934 .4279 1.0877 10 .4720 .5354 1.1343 20 .3961 .4314 1.0891 20 .4746 .5392 1.1361 30 .3987 .4348 1.0904 30 .4772 .5430 1.1379 40 .4014 .4383 1.0918 40 .4797 .5467 1.1397 50 .4041 .4417 1.0932 50 .4823 .5505 1.1415 24 00 .4067 .4452 1.0946 29 00 .4848 .5543 1.1434 10 .4094 .4487 1.0961 10 .4874 .5581 1.1452 20 .4120 .4522 1.0975 20 .4899 .5619 1.1471 30 .4147 .4557 1.0989 30 .4924 .5658 1.1490 40 .4173 .4592 1.1004 40 .4950 .5696 1.1509 50 .4200 .4628 1.1019 50 .4975 .5735 1.1528 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) De, Min. 00 10 20 Sine. Tangent. Secant. Deg. Min. 00 10 20 Sine. .5736 .5760 .5783 Tangent. Secant. 30 .5000 .5025 .5050 .5774 .5812 .5851 1.1547 1.1566 1.1586 35 .7002 .7046 .7089 1.2208 1.2233 1.2258 30 40 50 .5075 .5100 .5125 .5890 .5930 .5969 1.1606 1.1626 1.1646 30 40 50 .5807 .5831 .5854 .7133 .7177 .7221 1.2283 1.2309 1.2335 31 00 10 20 .5150 .5175 .5200 .6009 .6048 .6088 1.1666 1.1687 1.1707 36 00 10 20 .5878 .5901 .5925 .7265 .7310 .7355 1.2361 1.2387 1.2413 30 40 50 .5225 .5250 .5275 .6128 .6168 .6208 1.1728 1.1749 1.1770 30 40 50 .5948 .5972 .5995 .7400 .7445 .7490 1.2440 1.2467 1.2494 32 00 10 20 .5299 ,5324 .5348 .6249 .6289 .6330 1.1792 1.1813 1.1835 37 00 10 20 .6018 .6041 .6065 .7536 .7581 .7627 1.2521 1.2549 1.2577 30 40 50 .5373 .5398 .5422 .6371 .6412 .6453 1.1857 1.1879 1.1901 30 40 50 .6088 .6111 .6134 .7673 .7720 .7766 1.2605 1.2633 1.2661 33 00 10 20 .5446 .5471 .5495 .6494 .6536 .6577 1.1924 1.1946 1.1969 38 00 10 20 .6157 .6180 .6202 .7813 .7860 .7907 1.2690 1.2719 1.2748 30 40 50 .5519 .5544 .5568 .6619 .6661 .6703 1.1992 1.2015 1.2039 30 40 50 .6225 .6248 .6271 .7954 .8002 .8050 1.2778 1.2808 1.2837 34 00 10 20 .5592 .5616 .5640 .6745 .6787 .6830 1.2062 1.2086 1.2110 39 00 10 20 .6293 .6316 .6338 .8098 .8146 .8195 1.2868 1.2898 1.2929 30 40 50 .5664 .5688 .5712 .6873 .6916 .6959 1.2134 1.2158 1.2183 30 40 50 .6361 .6383 .6406 .8243 .8292 .8342 1.2960 1.2991 1.3022 244 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) Deg. 40 Min. 00 10 20 Sine. Tangent. Secant. Deg.lMin. Sine. Tangent. Secant. .6428 .6450 .6472 .8391 .8441 .8491 1.3054 1.3086 1.3118 45 00 10 20 .7071 .7092 .7112 1.0000 1.0058 1.0117 1.4142 1.4183 1.4225 30 40 50 .6494 .6517 .6539 .8541 .8591 .8642 1.3151 1.3184 1.3217 30 40 50 .7133 .7153 .7173 1.0176 1.0235 1.0295 1.4267 1.4310 1.4352 41 00 10 20 .6561 .6583 .6604 .8693 .8744 .8796 1.3250 1.3284 1.3318 46 00 10 20 .7193 .7214 .7234 1.0355 1.0416 1.0477 1.4396 1.4439 1.4483 30 40 50 .6626 .6648 .6670 .8847 .8899 .8952 1.3352 1.3386 1.3421 30 40 50 .7254 .7274 ,7294 1.0538 1.0599 1.0661 1.4527 1.4572 1.4617 42 00 10 20 .6691 .6713 .6734 .9004 .9057 .9110 1.3456 1.3492 1.3527 47 00 10 20 .7314 .7333 .7353 1.0724 1.0786 1.0850 1.4663 1.4709 1.4755 30 40 50 .6756 .6777 .6799 .9163 .9217 .9271 1.3563 1.3600 1.3636 30 40 50 .7373 .7392 .7412 1.0913 1.0977 1.1041 1.4802 1.4849 1.4897 43 00 10 20 .6820 .6841 .6862 .9325 .9380 .9435 1.3673 1.3711 1.3748 48 00 10 20 .7431 .7451 .7470 1.1106 1.1171 1.1237 1.4945 1.4993 1.5042 30 40 50 .6884 .6905 .6926 .9490 .9545 .9601 1.3786 1.3824 1.3863 30 40 50 .7490 .7509 .7528 1.1303 1.1369 1.1436 1.5092 1.5141 1.5192 44 00 10 20 .6947 .6967 .6988 .9657 .9713 .9770 1.3902 1.3941 1.3980 49 00 10 20 .7547 .7566 .7585 1.1504 1.1571 1.1640 1.5243 1.5294 1.5345 30 40 50 .7009 .7030 .7050 .9827 .9884 .9942 1.4020 1.4061 1.4101 30 40 50 .7604 .7623 .7642 1.1708 1.1778 1.1847 1.5398 1.5450 1.5504 245 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) Beg. 50 Min. 00 10 20 Sine. Tangent. Secant. De, 55 Min. 00 10 20 i Sine. Tangent. Secant. .7660 .7679 .7698 1.1918 1.1988 1.2059 1.5557 1.5611 1.5666 .8192 .8208 .8225 1.4281 1.4370 1.4460 1.7434 1.7507 1.7581 30 40 50 .7716 .7735 .7753 1.2131 1.2203 1.2276 1.5721 1.5777 1.5833 30 40 50 .8241 .8258 .8274 1.4550 1.4641 1.4733 1.7655 1.7730 1.7806 51 00 10 20 .7771 .7790 .7808 1.2349 1.2423 1.2497 1.5890 1.5948 1.6005 56 00 10 20 .8290 .8307 .8323 1.4826 1.4919 1.5013 1.7883 1.7960 1.8039 30 40 50 .7826 .7844 .7862 1.2572 1.2647 1.2723 1.6064 1.6123 1.6183 30 40 50 .8339 .8355 .8371 1.5108 1.5204 1.5301 1.8118 1.8198 1.8279 52 00 10 20 .7880 .7898 .7916 1.2799 1.2876 1.2954 1.6243 1.6303 1.6365 57 00 10 20 .8387 .8403 .8418 1.5399 1.5497 1.5597 1.8361 1.8443 1.8527 30 40 50 .7934 .7951 .7969 1.3032 1.3111 1.3190 1.6427 1.6489 1.6553 30 40 50 .8434 .8450 .8465 1.5697 1.5798 1.5900 1.8612 1.8699 1.8783 53 00 10 20 .7986 .8004 .8021 1.3270 1.3351 1.3432 1.6616 1.6681 1.6746 58 00 10 20 .8480 .8496 .8511 1.6003 1.6107 1.6213 1.8871 1.8959 1.9048 30 40 50 .8039 .8056 .8073 1.3514 1.3597 1.3680 1.6812 1.6878 1.6945 30 40 50 .8526 .8542 .8557 1.6319 1.6426 1.6534 1.9139 1.9230 1.9323 54 00 10 20 .8090 .8107 .8124 1.3764 1.3848 1.3934 1.7013 1.7081 1.7151 59 00 10 20 .8572 .8587 .8601 1.6643 1.6753 1.6864 1.9416 1.9511 1.9606 30 40 50 .8141 .8158 .8175 1.4019 1.4106 1.4193 1.7221 1.7291 1.7362 30 40 50 .8616 .8631 .8646 1.6977 1.7090 1.7205 1.9703 1.9801 1.9900 246 THE CARNEGIE STEEL. COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) Deg. Min. 00 10 20 Sine. Tangent. Secant. Deg. 65 Min. Sine. Tangent. Secant. 60 .8660 .8675 .8689 1.7321 1.7437 1.7556 2.0000 2.0101 2.0204 00 10 20 .9063 .9075 .9088 2.1445 2.1609 2.1775 2.3662 2.3811 2.3961 30 40 50 .8704 .8718 .8732 1.7675 1.7796 1.7917 2.0308 2.0413 2.0519 30 40 50 .9100 .9112 .9124 2.1943 2.2113 2.2286 2.4114 2.4269 2.4426 61 00 10 20 .8746 .8760 .8774 1.8040 1.8165 1.8291 2.0627 2.0736 2.0846 66 00 10 20 .9135 .9147 .9159 2.2460 2.2637 2.2817 2.4586 2.4748 2.4912 30 40 50 .8788 .8802 .8816 1.8418 1.8546 1.8676 2.0957 2.1070 2.1185 30 40 50 .9171 .9182 .9194 2.2998 2.3183 2.3369 2.5078 2.5247 2.5419 62 00 10 20 .8829 .8843 .8857 1.8807 1.8940 1.9074 2.1301 2.1418 2.1537 67 00 10 20 .9205 .9216 .9228 2.3559 2.3750 2.3945 2.5593 2.5770 2.5940 30 40 50 .8870 .8884 .8897 1.9210 1.9347 1.9486 2.1657 2.1786 2.1902 30 40 50 .9239 .9250 .9261 2.4141 2.4342 2.4545 2.6131 2.6316 2.6504 63 00 10 20 .8910 .8923 .8936 1.9626 1.9768 1.9912 2.2027 2.2153 2.2282 68 00 10 20 .9272 .9283 .9293 2.4751 2.4960 2.5172 2.6695 2.6888 2.7085 30 40 50 .8949 .8962 .8975 2.0057 2.0204 2.0353 2.2412 2.2543 2.2677 30 40 50 .9304 .9315 .9325 2.5386 2.5605 2.5826 2.7285 2.7488 2.7695 64 00 10 20 .8988 .9001 .9013 2.0503 2.0655 2.0809 2.2812 2.2949 2.3088 69 00 10 20 .9336 .9346 .9356 2.6051 2.6279 2.6511 2.7904 2.8117 2.8334 30 40 50 .9026 .9038 .9051 2.0965 2.1123 2.1283 2.3228 2.3371 2.3515 30 40 50 .9367 .9377 .9387 2.6746 2.6985 2.7228 2.8555 2.8779 2.9006 247 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS Deg. 70 (CONTINUED.) Min. Sine. Tangent. Secant. Deg. Min. Sine. i Tangent. 1 Secant 00 10 20 .9397 .9407 .9417 2.7475 2.7725 2.7980 2.9238 2.9474 2.9713 75 00 10 20 .9659 .9667 .9674 3.7321 3.7760 3.8208 3.8637 3.9061 3.9495 30 40 50 .9426 .9436 .9446 2.8239 2.8502 2.8770 2.9957 3.0206 3.0458 30 40 50 .9681 .9689 .9696 3.8667 3.9136 3.9617 3.9939 4.0394 4.0859 71 00 10 20 .9455 .9465 .9474 2.9042 2.9319 2.9600 3.0716 3.0977 3.1244 76 00 10 20 .9703 .9710 .9717 4.0108 4.0611 4.1126 4.1336 4.1824 4.2324 30 40 50 .9483 .9492 .9502 2.9887 3.0178 3.0475 3.1515 3.1792 3.2074 30 40 50 .9724 .9730 .9737 4.1653 4.2193 4.2747 4.2837 4.3362 4.3901 72 00 10 20 .9511 .9520 .9528 3.0777 3.1084 3.1397 3.2361 3.2653 3.2951 77 00 10 20 .9744 .9750 .9757 4.3315 4.3897 4.4494 4.4454 4.5022 4.5604 30 40 50 .9537 .9546 .9555 3.1716 3.2041 3.2371 3.3255 3.3565 3.3881 30 40 50 .9763 .9769 .9775 4.5107 4.5736 4.6382 4.6202 4.6817 4.7448 73 00 10 20 .9563 .9572 .9580 3.2709 3.3052 3.3402 3.4203 3.4532 3.4867 78 00 10 20 .9781 .9787 .9793 4.7046 4.7729 4.8430 4.8097 4.8765 4,9452 30 40 50 .9588 .9596 .9605 3.3759 3.4124 3.4495 3.5209 3.5559 3.5915 30 40 50 .9799 .9805 .9811 4.9152 4.9894 5.0658 5.0159 5.0886 5.1636 74 00 10 20 .9613 .9621 .9628 3.4874 3.5261 3.5656 3.6280 3.6652 3.7032 79 00 10 20 .9816 .9822 .9827 5.1446 5.2257 5.3093 5.2408 5.3205 5.4026 30 40 50 .9636 .9644 .9652 3.6059 3.6470 3.6891 3.7420 3.7817 3.8222 30 40 50 .9833 .9838 .9843 5.3955 5.4845 5.5764 5.4874 5.5749 5.6653 248 THE CARNEGIE STEEL COMPANY, LIMITED. NATURAL SINES, TANGENTS AND SECANTS. (CONTINUED.) Deg. Mm Sine. Tangent. Secant. Beg. Min 00 10 20 Sine. Tangent. Secant. 80 00 10 20 .9848 .9853 .9858 5.6713 5.7694 5.8708 5.7588 5.8554 5.9554 85 .9962 .9964 .9967 11.430 11.826 12.251 11.474 11.868 12.291 30 40 50 .9863 .9868 .9872 5.9758 6.0844 6.1970 6.0589 i 6.1661 6.2772 30 40 50 .9969 .9971 .9974 12.706 13.197 13.727 12.745 13.235 13.763 81 00 10 20 .9877 .9881 .9886 6.3138 6.4348 6.5606 6.3925 6.5121 6.6363 86 00 10 20 .9976 .9978 .9980 14.301 14.924 15.605 14.336 14.958 15.637 30 40 50 .9890 .9894 .9899 6.6912 6.8269 6.9682 6.7655 6.8998 7.0396 30 40 50 .9981 .9983 .9985 16.350 17.169 18.075 16.380 17.198 18.103 82 00 10 20 .9903 .9907 .9911 7.1154 7.2687 7.4287 7.1S53 7.3372 7.4957 87 00 10 20 .9986 .9988 .9989 19.081 20.206 21.470 19.107 20.230 21.494 30 40 50 .9914 .9918 .9922 7.5958 7.7704 7.9530 7.6613 7.8344 8.0156 30 40 50 .9990 .9992 .9993 22.904 24.542 26.432 22.926 24.562 26.451 83 00 10 20 .9925 .9929 .9932 8.1443 8.3450 8.5555 8.2055 8.4047 8.6138 88 00 10 20 .9994 .9995 .9996 28.636 31.242 34.368 28.654 31.258 34.382 30 40 50 .9936 .9939 .9942 8.7769 9.0098 9.2553 8.8337 9.0652 9.3092 30 40 50 .9997 .9997 .9998 38.188 42.964 49.104 38.202 42.976 49.114 84 00 10 20 .9945 .9948 .9951 9.5144 9.7882 10.0780 9.5668 9.8391 10.1275 89 00 10 20 .9998 .9999 .9999 57.290 68.750 85.940 57.299 68.757 85.946 30 40 50 .9954 .9957 .9959 10.3854 10.4334 10.7119 10.7585 11.059411.1045 30 40 50 1.0000 114.589 1.0000 171.885! 1.0000 343.774 114.593 171.888 343.775 90 00 1.0000 Infinite. Infinite. 249 THE CARNEGIE STEEL COMPANY, LIMITED. SQUARES, CUBES AND RECIPROCALS. Nos. Squares. Cubes. Reciprocals. Nos. Squares. Cubes. Reciprocals. 1 1 1 I. 000000000 51 2601 132651 .019607843 2 4 8 .5000DOOOO 52 2704 140 608 .019230769 3 9 27 .333333333 53 2809 148 877 .018867925 4 16 61 .2.50000000 54 2916 157 464 .018518519 5 25 125 .200000000 55 3025 166 375 .018181818 6 36 216 .166666667 56 3136 175616 .017857143 7 49 343 .142857143 57 3249 185 193 .017543860 8 64 512 .125000000 58 3364 195 112 .017241379 9 81 729 .111111111 59 3481 205 379 .016949153 10 100 1000 .100000000 60 3600 216000 .016666667 11 121 1R31 .090909091 61 3721 226 981 .016393443 12 144 1728 .083333333 62 3844 238328 .016129032 IS 169 2197 .076923077 63 3969 250047 .015873016 14 196 2744 .071428571 64 4096 262 144 .015625000 15 225 3375 .066666667 65 4225 274625 .015384615 16 256 4096 .062500000 66 4356 287496 .015151515 17 289 4913 .058823529 67 4489 300 763 .014925373 18 324 5832 .055555556 68 4624 314 432 .014705882 19 361 6859 .052631579 4761 328 509 .014492754 2L 400 8000 .050000000 70 4900 343 000 .014285714 21 441 9261 .047619048 71 50 4i 357 911 .014084507 22 484 10648 .045454545 72 5184 373 248 .013888889 23 529 12167 .043478260 73 5329 389 017 .013698630 24 576 13824 .041666667 74 5476 405224 .013513514 25 625 15625 .040000000 75 56i:5 421 875 .013333333 26 676 17576 .038461538 76 5776 438 976 .013157895 27 729 19683 .037037037 77 5929 456 5S3 .012987013 28 784 21952 .035714286 78 6084 474552 .012820513 20 841 24389 .034482759 79 6241 493 039 .012658228 30 900 27000 .033333333 80 6400 512000 .012500000 31 961 29791 .032258065 81 6561 531441 .012345679 32 1024 32768 .031250000 82 6724 551 368 .012195122 33 1089 &5 937 .030303030 83 6889 571 787 .012048193 34 1156 39304 .029411765 84 7056 592 704 .011904762 35 1225 42875 .028571429 85 7225 614125 .011764706 36 1296 46656 .027777778 86 7396 636056 .011627907 37 1369 50653 .027027027 87 7569 658503 .011494253 38 1444 64 872 .026315789 88 7744 681472 .011363636 39. 1521 69319 .025641026 89 7921 704 969 .011235955 40 1600 64000 .025000000 90 8100 729000 .011111111 41 1681 68921 .024390244 91 8281 753571 .010989011 42 1764 74088 .023809524 92 8464 778688 .010869565 43 1849 79507 .023255814 93 8649 804357 .010752888 44 1936 85184 .022727273 94 8836 830584 .010638298 45 2025 91125 .022222222 95 9025 857375 .010526316 46 2116 97336 .021739130 96 9216 884 736 .010416667 47 2209 103 823 .021276600 97 94u9 912 673 .010309278 48 2304 110 592 .020^33335 98 9604 941 192 .010204082 49 2401 117 649 .020408163 99 98 OL 970 299 .010101010 50 2500 125000 .020000000 100 1 0000 1000000 .010000000 25O THE CARNEGIE STEEL COMPANY, LIMITED. SQUARES, CUBES AND RECIPROCALS CONTINUED. Hos. Squares. Cubes. Reciprocals. Nos. Squares. Cubes. Reciprocals. 101 102 103 104 105 10201 10404 10609 10816 11025 1 030 301 1 061 208 1 092 727 1 124 864 1 157 625 .009900990 .009803922 .009708738 .009615*85 .009523810 151 1-52 153 154 155 22801 23104 23409 23716 24025 3 442 951 3 511 808 3 581 677 3 52 264 3 723 875 .006622517 .006578947 .006535948 .006493506 .006451613 106 '107 108 109 110 11236 1 J449 11664 11881 12100 1 191 016 1 225 043 I 259 712 1 295 029 1 331 000 .009433962 .009345794 .0092,59259 .009174312 .009090909 156 157 158 159 160 24336 24649 24964 25281 25600 3 796 416 3 869 893 3944312 4 019 679 4 096 000 .006410256 .006369427 .006329114 .006289308 .006250000 111 111 113 114 115 12321 12544 12769 12998 13225 1 367 631 1 404 928 1 442 897 l 481 544 1 520 875 .009009009 .008928571 .008849558 .008771930 .008695652 161 162 163 164 165 25921 26244 26569 26896 2 72 25 4 173 281 4251528 4 330 747 4 410 944 4 492 125 .006211180 .006172840 .006134969 .006097561 .006060606 116 117 118 119 120 13456 13689 13924 141 61 14400 1 560 896 1 601 613 1 643 032 1 685 159 1728000 .008620690 .008547009 .008474576 .008403361 .008333333 163 167 168 169 170 27556 27889 28224 28561 28900 4 574 296 4 657 463 4 741 632 4 826 809 4 913 OJO .006021096 .005988024 .005952381 .0039171HO .005882353 121 122 123 124 125 14641 14884 15129 1 53 76 15825 1 771 561 1 815 848 1 860 867 1 906 624 1 953 125 .008264403 .008196721 .008130081 .008064516 .008000000 171 172 173 174 175 2 92 41 29584 29929 30276 30625 5 000 211 5 088 448 5 177 717 5 268 024 5 359 375 .005847953 .005813953 .O.)5780347 .005747126 .005714286 126 127 128 129 130 1 58 76 16129 16384 16641 16900 2000376 2 048 3K3 2 097 152 2 146 6S9 2 197 000 .007936508 .007874016 .007812)00 .007751938 .007692308 176 177 178 179 ISO 3 09 76 31329 31684 32041 32400 5 451 776 5 545 233 5 639 752 5 735 339 5 832 GOO .005631818 .005649718 .005617978 .005586592 .005555556 131 132 133 134 135 17161 17421 17689 17956 18225 2248091 2 299 968 2 352 637 2 406 104 2 460 375 .007633588 .007575758 .007518797 .007462687 .007407407 181 182 183 184 185 32761 3 31 24 33489 3 3S 56 34225 5 929 741 6 028 568 6 128 487 6229504 6 331 625 .005524862 .005494505 .00,5464481 .005434783 .005405405 136 137 138 139 140 18496 18769 19044 19321 19600 2 515 456 2571353 2 628 072 2 685 619 2 744 000 .007352941 .007299270 .007246377 .007194245 .007142857 186 187 188 189 190 34596 34969 3,5344 35721 36100 6 434 856 6 539 203 6 644 672 6 751 289 6 859 000 .005376344 .005347594 .005319149 .005291005 .005263158 141- 142 143 144 145 19881 20164 20149 20736 21025 2 803 221 2 863 288 2 924 207 2 985 984 3 048 625 .007092199 .007042254 008993007 .006944444 .006898552 191 192 193 194 195 3 64 81 36864 37249 3 76 36 3 80 25 6 967 871 7 077 88S 7 189 057 7 301 384 7 414 875 .005235602 .00)208833 .OOf-181347 .005154639 .005128205 146' 147 148 149 150 21316 21609 21904 22201 22500 3 112 136 3 176 523 3 '241 792 3 307 949 3375000 .006849315 .006802721 .006756757 .008711409 .008666667 196 197 J98 199 200 3 84 16 3 88 09 39201 39601 4 00 UO 7 529 536 7 645 373 7 762 S92 7 880 599 8000000 .005102041 .005076142 .005050505 .005025126 .005000000 251 THE CARNEGIE STEEL COMPANY, LIMITED. SQUARES, CUBES AND RECIPROCALS CONTINUED. Hos. Squares. Cubes. Reciprocals. Nos. Squares. Cubes. Reciprocals. 201 202 203 204 205 4 04 01 40804 41209 4 1616 42025 8120601 8 242 408 8 365 427 8489661 8 615 125 .004975124 .004950495 .004926108 .004901961 .004878049 2-51 2-52 2-53 254 255 63001 63504 64009 64516 65025 15 813 251 16 003 008 16 194 277 16 87 064 16 5S I 375 .003934064 .003968254 .003952569 .003937008 .003921569 206 207 208 209 210 424S6 42849 43264 43681 44100 8 741 816 8 869 743 8 998 912 9 129 3-29 9 261 000 .0048-54369 .00483;J918 .004807692 .004784689 .004761905 256 257 258 259 260 65536 66049 66564 67081 67600 16777216 16 974 593 17173512 17 373 979 17 576 000 .003906250 .003891051 .003875969 .003861004 .003846154 211 212 213 214 215 44521 44944 45369 45796 46225 9 393 931 9 528 128 9 663 597 9 800 344 9 938 375 .004739336 ,004716981 .004694836 .004672897 .004651163 261 262 263 264 265 68121 68644 69169 69696 70225 17 779 581 17 984 728 18 191 447 18 399 744 18 609 625 .003 diameter. Pyramid or cone, right or oblique, regular or irregular, = area of base X /^ perpendicular hight. PRISMOIDAL FORMULA. A prismoid is a solid bounded by six plane surfaces, only two of which are parallel. To find the contents of a prismoid, add together the areas of the two parallel surfaces and four times the area of a section taken midway between and parallel to them, and multiply the sum by */th of the perpendicular distance between the parallel surfaces. 267 THE CARNEGIE STEEL. COMPANY, LIMITED. WEIGHTS AND MEASURES. AVOIRDUPOIS OR ORDINARY COMMERCIAL WEIGHT. UNITED STATES AND BRITISH. Ton. Owts. Pounds. Ounces. 1. 0.050 20. 1. 0.0089 2240. 112. 1. 0.0625 35840. 1792. 16. 1. 1 pound = 27.7 cubic inches of distilled water at its maximum density, (39 Fahrenheit.) LONG MEASURE. UNITED STATES AND BRITISH. Miles. i: 0.003125 0.000568 0.0001894 0.0000158 Rods. Yards. Feet. Inches. 320. 1. 0.1818 0.0606 0.005051 1760. 5.5 1. 0.3333 0.02778 5280. 16.5 3. 1, 0.08333 63360. 198. 36. 12. 1. The British measures are shorter than those of the U. S. by about 1 part in 17230 or 3.677 inches in a mile. A fathom = 6 feet. A Gunter's surveying chain =s 66 feet or 4 rods, 80 chains making a mile. SQUARE OR LAND MEASURE. UNITED STATES AND BRITISH. Sq. Miles. Acres. Sq. Rods. Sq. Yards. Sq. Feet. Sq. Inches. 1. 640. 1. 102400. 160. 1. 0.0331 3097600. 4840. 30.25 1. 0.111 27878400. 43560. 272.25 9.0 1. 0.00694 6272640. 39204. 1296. 144. 1. 268 THE CARNEGIE STEEL COMPANY, LIMITED. WEIGHTS AND MEASURES Continued. CUBIC OR SOLID MEASURE. UNITED STATES AND BRITISH. 1728 cubic inches = 1 cubic foot. 27 cubic feet = 1 cubic yard. A cord of wood = 4' X 4' X 8' = 128 cubic feet. A perch of masonry = 16.5' X 1.5' X 1' = 24.75 cubic feet, but is generally assumed at 25 cubic feet. DRY MEASURE. UNITED STATES ONLY. Struck Bush Pecks. Quarts. Pints. Gallons. Cubic Inch. 1 4 1 32. 8. 1. 0.5 4. 64 16 2 1 8 8. 2. 0.25 0.125 1. 2150. 537.6 67.2 33.6 268.8 A gallon of liquid measure = 231 cubic inches. A heaped bushel = IX struck bushels. The cone in a heaped bushel must be not less than 6 inches high. A barrel of U. S. hydraulic cement = 300 to 310 Ibs., usually, and of genuine Portland cement = 425 Ibs. To reduce U. S. dry measures to British imperial of the same name, divide by 1.032. NAUTICAL MEASURE. A nautical or sea mile is the length of a minute of longitude of the earth at the equator at the level of the sea. It is assumed ess 6086.07 feet = 1.152664 statute or land miles by the United Stites Coast Survey. 3 nautical miles = 1 league. THE CARNEGIE STEEL COMPANY, LIMITED. COMPARATIVE TABLE OF UNITED STATES AND FRENCH MEASURES, MEASURES. One grain = gramme, - One pound avoirdupois = kilogramme, One ton of 2240 Ibs. = tonnes, One ton of 2000 Ibs. = tonne, ... One inch = millimetres, ... One foot = metre, One mile = kilometres, - One square inch = square millimetres, One square foot square metre, One acre = are (100 square metres), One square mile = square kilometres, One cubic inch = cubic centimetres, One cubic foot = cubic metre, One cubic yard = cubic metre, - One quart dry measure = litres, One quart liquid or wine measure = litre, One foot pound = kilogrammetre, One pound per foot = kilogrammes per metre, One thousand pounds per square inch = kilogramme per square millimetre, - One pound per square foot = kilogrammes per square metre, - One pound per cubic foot cubic metre, kilogrammes per One degree Frhrenheit = degree centigrade, No. 0.0648 0.4536 1.0160 0.9071 25.400 0.3048 1.6094 645.2 0.09291 40.47 2.590 16.39 O.02832 0.7646 1.101 0.9465 0.1383 1.488 0.703 4.882 16.02 0.5556 27O THE CARNEGIE STEEL COMPANY, LIMITED. COMPARATIVE TABLE OF FRENCH AND UNITED STATES MEASURES. MEASURES. No. One gramme = grains, - - - 15.433 One kilogramme = pounds avoirdupois, - - 2.2047 One tonne = tons of 2240 Ibs. 0.9843 One tonne = tons of 2000 Ibs. - 1.1024 One millimetre = inch, - 0.0394 One metre = feet, - 3.2807 Ons kilometre = mile, - 0.6213 One square millimetre = square inch, - - 0.00155 One square metre = square feet, - - 10.763 One are (100 square metres) = acres, - - 0.02471 One square kilometre = square mile, - 0.3861 One cubic centimetre = cubic inch, - 0.06 1O One cubic metre or stere = cubic feet, - 35.3105 One cubic metre = cubic yards, - 1.3078 One litre (one cubic decimetre) = cubic inches, 61.017 One litre = quarts, dry measure, - 0.908 One litre = quarts, liquid or wine measure, - 1.0566 One kilogrammetre =.- foot pounds, - - 7.2331 One kilogramme per metre = pounds per foot, 0.6720 One kilogramme per square millimetre = pounds per square inch, - 1422 One kilogramme per square metre = pounds per square foot, - - 0.2048 One kilogramme per cubic metre = pounds per cubic foot, 0.0624 One degree centigrade = degrees Fahrenheit, - 1.8 271 THE CARNEGIE STEEL COMPANY, LIMITED. 272 THE CARNEGIE STEEL. COMPANY, LIMITED. THE CARNEGIE STEEL COMPANY, LIMITED, OWNS AND OPERATES THE FOLLOWING WORKS: Edgar Thomson Furnaces, - - Bessemer, Lucy Furnaces, - Pittsburgh, Edgar Thomson Steel Works, - Bessemer, Duquesne Steel Works, - Duquesne, Homestead Steel Works, - - Munhall, Keystone Bridge Works, ... Pittsburg, Upper Union Mills, - Pittsburg, Lower Union Mills, .... Pittsburg, Beaver Falls Mills, - Beaver Falls, Larimer Coke Works, - - - Larimer, Youghiogheny Coke Works, - - Douglass, Scotia Ore Mines, ----- Benore. 273 THE CARNEGIE STEEL COMPANY, LIMITED. AT WHICH ARE PRODUCED! Armor Plate, Billets (\y 2 " up), Blooms, Slabs, Coke. Ferro Manganese, Spiegel-eisen, Pig Iron. Forgings, such as Axles, Arch Bars, Links, Pins and other Car Forgings, Connecting Bods, Crank Shafts, Locomo- tive Frames, Eye Bars. Plates for Boilers, Bridges, Ships and Tanks. Rails, (16 to 85 Ibs. per yd.). Rolled Structural Shapes, such as Angles, Rounds, Flats, Squares, Ovals, I-Beams, Channels, Bulb Angles, Deck Beams, Tees, Zees, etc. Structural Work, such as Bridges, Buildings, Elevated Rail- roads, Girders, Columns, etc. Wire, Wire Nails and Wire Rods. ADDRESS: General Offices ; 42-48, Fifth Avenue, Pittsburg, or Sales Offices ; 1O, Marietta St., Atlanta; 125, Milk St., Boston; 45 1 , Main St. , Buffalo ; 2O5, La Salle St., Chicago ; 126, W. Fourth St., Cincinnati; 1O3, Superior St., Cleveland; Peoples Bank Building, Denver ; 122, Griswold St., Detroit; Guaranty Building, Minneapolis ; 44-46, Wall St., New York; 2O3, S. Fourth St., Philadelphia; 6O4, Pine St., St. Louis; 258, Market St., San Francisco. THE CARNEGIE STEEL COMPANY, LIMITED. 275 THE CARNEGIE STEEL, COMPANY, LIMITED. INDEX. PAGE. Angles, areas of 106 " deflection coefficients for 7 " lithographs, bulb 7 " cover (see special) " equal legs 14-16 " " obtuse (see special) " " safe (see special) " " special 24 " " square root 22-23 " unequal legs . . . . 17-21 " properties of, examples of 93~94 " properties, explanation of tables 9l~93 " properties of bulb 107 " " " equal legs 105 " " " unequal legs 103-104 " radii of gyration of two back to back . . . .150-152 " rivet spacing for connection 5 " " " " channels and connection . . 48 " " " I-beams and connection . . 48 " safe loads for bulb 74 " " equal legs 78 " " unequal legs, long leg vertical . . 79 " " short " " . . 80 " weights and dimensions of bulb 35 " " " cover .... (see special) " " equal legs .... 38-39 " " obtuse . . . (see special) " " " safe .... (see special) " " special 39 < " " square root ... 42 <; " " unequal legs . . . 40-41 Arches, fire -proof, various types of 51 " notes on 59-64 Areas and circumferences of circles 225-237 276 THE CAKNEGIE STEEL COMPANY, LIMITED. PAGE. Areas of flat-rolled bars 191-196 Bars, weights and areas of, square and round .... 203-208 " sizes of, rounds, squares, half rounds, ovals, round edge flats and flats 32 " rule for finding the area given the weight,vice versa 183 " weights of flat rolled 197-202 Beams, bending moments and deflections of, under va- rious systems of loading 96 " examples of application of tables on foundations 125 " " " " properties of 93-94 ' " " " safe loads and spacings 68-69 " explanation of tables 66-67 " " " on properties 91-94 " flexure of any cross section 95 " inertia, moments of 97~9^ " lithograph of deck 6 " " girders 57 " standard I . 1-5 " method of framing 57 " properties of deck 107 " " standard I 99 " rivet spacing 4$ " safe loads for deck 74 " " lengths as used in foundations 126 " " loads standard I 71-73 " " " wooden 186 " spacing of standard I, for uniform loads . . . 83-90 " special cases of loading 94 " standard I, as used in foundations 124-126 " weights and dimensions of deck 34 " " standard I ... 34 " wooden, notes on 185 Bolts, weights of round headed 209 " square heads 210 Brass, weights of sheet 219-220 Brickwork, weight of walls 65 277 THE CARNEGIE STEEL, COMPANY, LIMITED. PAGE. Bridge pin nuts, sizes and weights 217 " trusses, explanation of tables of Pratt and Whipple 161-162 " " table of stresses for Pratt and Whipple . 163-165 Buckled plates, explanation of 157 " safe loads 157-158 Carnegie shapes, general notes on 59-64 " " explanation of tables on properties of 91-94 " " method of increasing sectional areas . 58 " " moments of inertia for 97 Channels, deflection coefficients for 70 " explanation of tables of properties 9 I- 94 " lithograph of car truck 10 " " standard 8-9 " " unequal flanges 10 |; properties of standard -. . . loo ' rivet spacing 48 " safe loads for standard 75~76 " weights and dimensions of car truck . . . , 36 " " " standard ... 35 u " " unequal flange . 36 Checkered plate (see miscellaneous) Clevis nuts, standard 166 Columns and struts 131 " areas and dimensions of cast iron 154 of Z-bar 135, 137, 139, 141, 143, 145, H7 " connections for Z-bar . 55~56 " dimensions of Z-bar 136, 138, 140, 142, 144, 146, 148 " example of application of tables, Z-bar ... 134 ' explanation of tables on Z-bar 131-134 " lithograph of built sections 53 4< " connections for Z-bar .... 55-56 " in fire-proof buildings 127-130 " rivet spacing for Z-bar (see dimensions) " safe loads, cast iron 154 Z-bar . . 135, 137, 139, 141, 143, 145, 147 " ultimate strength of cast iron 153 (< " " wrought iron 149-150 278 THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Columns, ultimate strength of wooden 184-185 " weights of cast iron 154 " " Z-bar 135, 137,- 139, 141, 143, 145, 147 Connection angles, standard, for I-beams and Channels 49-50 " " Z-bars 55-56 Constructional details 57 Copper, weights of sheet 219-220 Corrugated flooring, dimensions of 155.156 " " notes on 155 " " safe loads and weights 155-156 " sheets, dimensions of 1 60 " " notes on ... 159 " plates, dimensions of (see miscellaneous) " " lithographs 31 " " properties of Ill " " weights of ...... (see miscellaneous) Cover angles (see special angles) Decimal parts of a foot for each -^ of an inch .... 261-264 " " an inch for each -^ 260 Deck beams (see beams) Deflection and bending moments of beams under vari- ous systems of loading 96 '< coefficients for Carnegie shapes 70 " limit to be allowed for plastering 66.67 Details, Constructional 57 Eye bar heads, standard 167 Expansion, linear, of substance by heat 190 Fire-proof partitions, construction lithographs of . . . .51,52,54 " " notes on 59-64 Flat rolled bars, areas of 191-196 " *' plates, table of extreme length of .... 33 * < bars, weights of 197-202 Flexure of beams of any cross sections, general formulae on 95 Floors, fire-proof, lithographs of 5 J -5 2 " general notes on 59 64 " loads per square foot 63 Galvanized sheets, notes on 159 279 THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Gauge, American 220 " Birmingham 219 Girders, dimensions and weights of beam box .... 113-117 " dimensions and weights of riveted box and plate 120-123 " examples of beam box 112 " " riveted box and plate . . . 119 " explanation of tables of beam box 1 12 " explanation of tables of riveted box and plate . 118119 " in building, notes on 65 " lithographs of beam and riveted 57 " safe loads for beam box 113-117 " " " " riveted box and plate . . . 120-123 Half tees (see special angles) Hand rails (see special tees) Heads, standard eye bar 167 Inertia, moments of, for Carnegie sections 97 " " for usual sections 98 Logarithms of numbers 238-240 Measures and weights, United States and French, com- parative table of 270 " " French and United States, com- parative table of 271 Mensuration 265-267 Methods of increasing sectional areas of structural shapes 58 Miscellaneous notes on steel and iron 183 " shapes, dimensions of trough, corrugated and checkered 46 " ' lithographs of trough, etc. ... 31 " " properties of trough and corru- gated plates in " lt weights of 46 Modulus of elasticity for eye bars 187 " " for steel and iron 95 Moments, bending, to be allowed on pins 173 <: " and deflection of beams under vari- ous systems of loading .... 96 " of inertia for Carnegie sections 97 28O THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Moments of inertia and resistance for usual sections . 98 (see also tables on properties of beams, channels, angles, etc.) Nails, wrought, sizes and weights of 218 Notes, miscellaneous, on steel and iron 183 Nuts and bolt heads, weights of 210 " sizes and weights of hot pressed hexagon . ... 212 '* " square 211 " " " pin 217 sleeve 216 " standard clevis 166 Obtuse angles (see special) Pillars, wooden, notes on 184 " table of ultimate strength 184-185 Pins, bearing value of, for one inch thickness of plate . 174 " bending moments 173 Pin-nuts, sizes and weights of . 217 Pipe, size and weight of 221 " wrought iron, welded for gas, steam or water . . 221 Plastering, limit of deflection to allow for 66-67 Plate, checkered (see miscellaneous) " corrugated (see miscellaneous) " trough (see miscellaneous) " rectangular, extreme lengths of 33 Plates (see flat rolled bars) Pratt truss, explanation of table on stresses for . . . .161-162 " " tables of stresses in 163-165 Properties (see beams, channels, etc.) Radii of gyration for two angles placed back to back . 150-152 " " usual sections 98 (see also tables on properties of beams, channels, angles, etc.) Rail, dimensions of 46 " lithograph of 26 " weight of 46 Reciprocals, squares and cubes 250-259 Rivets and pins, explanation of tables on 171-172 " and round headed bolts, weights of 209 " table of bearing and shearing values of .... 175-176 281 THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Riveting, conventional signs for 168 Rivet and bolt spacing through flanges of beams, channels and angles 48 " spacing for standard Z-bars 136,138,140,142,144,146,148 Roofs, loads per square foot 59~^4 " loads on and notes for same 169 " notes on strains in members of 170 Round bars, and square, weights, areas and circumferences ......... 203-208 Safe angles (see special) " loads (see beams, channels, angles, etc.) Screws, wood, table of standard size of 217 Screw ends upset, for square and round bars .... 213-214 " threads, Franklin Institute standard 215 " " Whitworth standard 216 Separators, cast, for I-beams, lithographs 57 " " " weights and dimensions 47 Shearing and bearing values of rivets 175-176 Sheets, iron, steel, copper and brass, weights of ... 219-220 Sines, tangents and secants, table of natural 241-249 Sleeve nuts, standard weights and dimensions of ... 21 6 Spacing of beams 83-90 Specifications for constructional cast iron 180 " " iron 177-178 " " steel 179-180 " workmanship 180 182 Special angles (see angles) " loading of beams 94 ' tees (see tees) " Z-bars (see Z-bars) Spikes, wrought, table of weights and sizes of .... 218 Square root angles (see angles) Square and round bars, weights, areas and circumference 203-208 Squares, cubes and reciprocals of numbers 250-259 Steel and iron, general notes on 183 Steel, sheets, table of weights and sizes 219-220 Stresses on Pratt and Whipple trusses 163-165 282 THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Strength of materials 187-189 " ultimate, of columns, cast iron 153 " " " wrought iron 149-150 " " wooden pillars 184-185 Struts (see columns) Substances, linear expansion of, by heat 190 " weight per cubic foot of 222-224 Tacks, standard sizes of 218 Tangents, sines and secants, natural ... ... 241-249 Tees, lithographs, equal legs 25-26 " " half (see special angles) " " special 26 " " unequal legs 2 7~3 O " properties of 108-110 " safe loads 81-82 " weights and dimensions of, equal legs 43 " " " half . . . (see special angles) " " " special 46 " " " unequal legs .... 44-45 Threads, screw, Franklin Institute standard 215 tl Whitworth standard 216 Tie rods for brick arches in buildings 60 Timber beams, notes and tests on 185 " " safe loads 186 " pillars, notes and tests on 184 " " ultimate strength of 184-185 Trough plates, lithograph (see miscellaneous) " " properties of in Tubes, wrought iron, welded, for gas, steam and water 221 Upset screw ends 213-214 Weights and measures, United States and British . . . 268-269 ' " comparative table of United States and French . . . 270 " *' comparative table of French and United States 271 Whipple truss, explanation of tables on stresses in . . 161-162 " " table on maximum stresses in .... 163-165 283 THE CARNEGIE STEEL COMPANY, LIMITED. PAGE. Whitworth standard screw threads 216 Wooden beams, notes on, and table of safe uniform loads 186 Wood screws . . 217 Z-bars, dimensions of special 36 " standard 37 ' lithographs of special 13 " " standard 11-12 " properties of 101-102 " safe loads 77 '* weights and dimensions of special 36 " " standard 37 Z-bar columns, areas of .... 135, 137, 139, 141, 143, 145, J 47 " '' dimensions of 136, 138 140, 142, 144, 146, 148 " " examples of application of tables ... 134 " lt explanation of tables 131-134 " " lithographs, standard connection angles . 55-56 11 " " bases 54 4i " 6PNI3 ^ x^C S ^ General Library OF CALIFORNIA LIBRARY OF YA 06573 7 OF CALIFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORN 91-e OF CALIFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORN